Linux Audio

Check our new training course

Loading...
v4.6
   1/*
   2   BlueZ - Bluetooth protocol stack for Linux
   3   Copyright (C) 2000-2001 Qualcomm Incorporated
   4   Copyright (C) 2011 ProFUSION Embedded Systems
   5
   6   Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
   7
   8   This program is free software; you can redistribute it and/or modify
   9   it under the terms of the GNU General Public License version 2 as
  10   published by the Free Software Foundation;
  11
  12   THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
  13   OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  14   FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
  15   IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
  16   CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
  17   WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  18   ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  19   OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  20
  21   ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
  22   COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
  23   SOFTWARE IS DISCLAIMED.
  24*/
  25
  26/* Bluetooth HCI core. */
  27
  28#include <linux/export.h>
  29#include <linux/idr.h>
  30#include <linux/rfkill.h>
  31#include <linux/debugfs.h>
  32#include <linux/crypto.h>
 
 
 
  33#include <asm/unaligned.h>
  34
  35#include <net/bluetooth/bluetooth.h>
  36#include <net/bluetooth/hci_core.h>
  37#include <net/bluetooth/l2cap.h>
  38#include <net/bluetooth/mgmt.h>
  39
  40#include "hci_request.h"
  41#include "hci_debugfs.h"
  42#include "smp.h"
  43#include "leds.h"
 
  44
  45static void hci_rx_work(struct work_struct *work);
  46static void hci_cmd_work(struct work_struct *work);
  47static void hci_tx_work(struct work_struct *work);
  48
  49/* HCI device list */
  50LIST_HEAD(hci_dev_list);
  51DEFINE_RWLOCK(hci_dev_list_lock);
  52
  53/* HCI callback list */
  54LIST_HEAD(hci_cb_list);
  55DEFINE_MUTEX(hci_cb_list_lock);
  56
  57/* HCI ID Numbering */
  58static DEFINE_IDA(hci_index_ida);
  59
  60/* ---- HCI debugfs entries ---- */
  61
  62static ssize_t dut_mode_read(struct file *file, char __user *user_buf,
  63			     size_t count, loff_t *ppos)
  64{
  65	struct hci_dev *hdev = file->private_data;
  66	char buf[3];
  67
  68	buf[0] = hci_dev_test_flag(hdev, HCI_DUT_MODE) ? 'Y' : 'N';
  69	buf[1] = '\n';
  70	buf[2] = '\0';
  71	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
  72}
  73
  74static ssize_t dut_mode_write(struct file *file, const char __user *user_buf,
  75			      size_t count, loff_t *ppos)
  76{
  77	struct hci_dev *hdev = file->private_data;
  78	struct sk_buff *skb;
  79	char buf[32];
  80	size_t buf_size = min(count, (sizeof(buf)-1));
  81	bool enable;
 
  82
  83	if (!test_bit(HCI_UP, &hdev->flags))
  84		return -ENETDOWN;
  85
  86	if (copy_from_user(buf, user_buf, buf_size))
  87		return -EFAULT;
  88
  89	buf[buf_size] = '\0';
  90	if (strtobool(buf, &enable))
  91		return -EINVAL;
  92
  93	if (enable == hci_dev_test_flag(hdev, HCI_DUT_MODE))
  94		return -EALREADY;
  95
  96	hci_req_sync_lock(hdev);
  97	if (enable)
  98		skb = __hci_cmd_sync(hdev, HCI_OP_ENABLE_DUT_MODE, 0, NULL,
  99				     HCI_CMD_TIMEOUT);
 100	else
 101		skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL,
 102				     HCI_CMD_TIMEOUT);
 103	hci_req_sync_unlock(hdev);
 104
 105	if (IS_ERR(skb))
 106		return PTR_ERR(skb);
 107
 108	kfree_skb(skb);
 109
 110	hci_dev_change_flag(hdev, HCI_DUT_MODE);
 111
 112	return count;
 113}
 114
 115static const struct file_operations dut_mode_fops = {
 116	.open		= simple_open,
 117	.read		= dut_mode_read,
 118	.write		= dut_mode_write,
 119	.llseek		= default_llseek,
 120};
 121
 122static ssize_t vendor_diag_read(struct file *file, char __user *user_buf,
 123				size_t count, loff_t *ppos)
 124{
 125	struct hci_dev *hdev = file->private_data;
 126	char buf[3];
 127
 128	buf[0] = hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) ? 'Y' : 'N';
 129	buf[1] = '\n';
 130	buf[2] = '\0';
 131	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
 132}
 133
 134static ssize_t vendor_diag_write(struct file *file, const char __user *user_buf,
 135				 size_t count, loff_t *ppos)
 136{
 137	struct hci_dev *hdev = file->private_data;
 138	char buf[32];
 139	size_t buf_size = min(count, (sizeof(buf)-1));
 140	bool enable;
 141	int err;
 142
 143	if (copy_from_user(buf, user_buf, buf_size))
 144		return -EFAULT;
 145
 146	buf[buf_size] = '\0';
 147	if (strtobool(buf, &enable))
 148		return -EINVAL;
 149
 150	/* When the diagnostic flags are not persistent and the transport
 151	 * is not active, then there is no need for the vendor callback.
 152	 *
 153	 * Instead just store the desired value. If needed the setting
 154	 * will be programmed when the controller gets powered on.
 155	 */
 156	if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) &&
 157	    !test_bit(HCI_RUNNING, &hdev->flags))
 
 158		goto done;
 159
 160	hci_req_sync_lock(hdev);
 161	err = hdev->set_diag(hdev, enable);
 162	hci_req_sync_unlock(hdev);
 163
 164	if (err < 0)
 165		return err;
 166
 167done:
 168	if (enable)
 169		hci_dev_set_flag(hdev, HCI_VENDOR_DIAG);
 170	else
 171		hci_dev_clear_flag(hdev, HCI_VENDOR_DIAG);
 172
 173	return count;
 174}
 175
 176static const struct file_operations vendor_diag_fops = {
 177	.open		= simple_open,
 178	.read		= vendor_diag_read,
 179	.write		= vendor_diag_write,
 180	.llseek		= default_llseek,
 181};
 182
 183static void hci_debugfs_create_basic(struct hci_dev *hdev)
 184{
 185	debugfs_create_file("dut_mode", 0644, hdev->debugfs, hdev,
 186			    &dut_mode_fops);
 187
 188	if (hdev->set_diag)
 189		debugfs_create_file("vendor_diag", 0644, hdev->debugfs, hdev,
 190				    &vendor_diag_fops);
 191}
 192
 193static int hci_reset_req(struct hci_request *req, unsigned long opt)
 194{
 195	BT_DBG("%s %ld", req->hdev->name, opt);
 196
 197	/* Reset device */
 198	set_bit(HCI_RESET, &req->hdev->flags);
 199	hci_req_add(req, HCI_OP_RESET, 0, NULL);
 200	return 0;
 201}
 202
 203static void bredr_init(struct hci_request *req)
 204{
 205	req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_PACKET_BASED;
 206
 207	/* Read Local Supported Features */
 208	hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
 209
 210	/* Read Local Version */
 211	hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
 212
 213	/* Read BD Address */
 214	hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL);
 215}
 216
 217static void amp_init1(struct hci_request *req)
 218{
 219	req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_BLOCK_BASED;
 220
 221	/* Read Local Version */
 222	hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
 223
 224	/* Read Local Supported Commands */
 225	hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL);
 226
 227	/* Read Local AMP Info */
 228	hci_req_add(req, HCI_OP_READ_LOCAL_AMP_INFO, 0, NULL);
 229
 230	/* Read Data Blk size */
 231	hci_req_add(req, HCI_OP_READ_DATA_BLOCK_SIZE, 0, NULL);
 232
 233	/* Read Flow Control Mode */
 234	hci_req_add(req, HCI_OP_READ_FLOW_CONTROL_MODE, 0, NULL);
 235
 236	/* Read Location Data */
 237	hci_req_add(req, HCI_OP_READ_LOCATION_DATA, 0, NULL);
 238}
 239
 240static int amp_init2(struct hci_request *req)
 241{
 242	/* Read Local Supported Features. Not all AMP controllers
 243	 * support this so it's placed conditionally in the second
 244	 * stage init.
 245	 */
 246	if (req->hdev->commands[14] & 0x20)
 247		hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
 248
 249	return 0;
 250}
 251
 252static int hci_init1_req(struct hci_request *req, unsigned long opt)
 253{
 254	struct hci_dev *hdev = req->hdev;
 255
 256	BT_DBG("%s %ld", hdev->name, opt);
 257
 258	/* Reset */
 259	if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks))
 260		hci_reset_req(req, 0);
 261
 262	switch (hdev->dev_type) {
 263	case HCI_BREDR:
 264		bredr_init(req);
 265		break;
 266
 267	case HCI_AMP:
 268		amp_init1(req);
 269		break;
 270
 271	default:
 272		BT_ERR("Unknown device type %d", hdev->dev_type);
 273		break;
 274	}
 275
 276	return 0;
 277}
 278
 279static void bredr_setup(struct hci_request *req)
 280{
 281	__le16 param;
 282	__u8 flt_type;
 283
 284	/* Read Buffer Size (ACL mtu, max pkt, etc.) */
 285	hci_req_add(req, HCI_OP_READ_BUFFER_SIZE, 0, NULL);
 286
 287	/* Read Class of Device */
 288	hci_req_add(req, HCI_OP_READ_CLASS_OF_DEV, 0, NULL);
 289
 290	/* Read Local Name */
 291	hci_req_add(req, HCI_OP_READ_LOCAL_NAME, 0, NULL);
 292
 293	/* Read Voice Setting */
 294	hci_req_add(req, HCI_OP_READ_VOICE_SETTING, 0, NULL);
 295
 296	/* Read Number of Supported IAC */
 297	hci_req_add(req, HCI_OP_READ_NUM_SUPPORTED_IAC, 0, NULL);
 298
 299	/* Read Current IAC LAP */
 300	hci_req_add(req, HCI_OP_READ_CURRENT_IAC_LAP, 0, NULL);
 301
 302	/* Clear Event Filters */
 303	flt_type = HCI_FLT_CLEAR_ALL;
 304	hci_req_add(req, HCI_OP_SET_EVENT_FLT, 1, &flt_type);
 305
 306	/* Connection accept timeout ~20 secs */
 307	param = cpu_to_le16(0x7d00);
 308	hci_req_add(req, HCI_OP_WRITE_CA_TIMEOUT, 2, &param);
 309}
 310
 311static void le_setup(struct hci_request *req)
 312{
 313	struct hci_dev *hdev = req->hdev;
 314
 315	/* Read LE Buffer Size */
 316	hci_req_add(req, HCI_OP_LE_READ_BUFFER_SIZE, 0, NULL);
 317
 318	/* Read LE Local Supported Features */
 319	hci_req_add(req, HCI_OP_LE_READ_LOCAL_FEATURES, 0, NULL);
 320
 321	/* Read LE Supported States */
 322	hci_req_add(req, HCI_OP_LE_READ_SUPPORTED_STATES, 0, NULL);
 323
 324	/* LE-only controllers have LE implicitly enabled */
 325	if (!lmp_bredr_capable(hdev))
 326		hci_dev_set_flag(hdev, HCI_LE_ENABLED);
 327}
 328
 329static void hci_setup_event_mask(struct hci_request *req)
 330{
 331	struct hci_dev *hdev = req->hdev;
 332
 333	/* The second byte is 0xff instead of 0x9f (two reserved bits
 334	 * disabled) since a Broadcom 1.2 dongle doesn't respond to the
 335	 * command otherwise.
 336	 */
 337	u8 events[8] = { 0xff, 0xff, 0xfb, 0xff, 0x00, 0x00, 0x00, 0x00 };
 338
 339	/* CSR 1.1 dongles does not accept any bitfield so don't try to set
 340	 * any event mask for pre 1.2 devices.
 341	 */
 342	if (hdev->hci_ver < BLUETOOTH_VER_1_2)
 343		return;
 344
 345	if (lmp_bredr_capable(hdev)) {
 346		events[4] |= 0x01; /* Flow Specification Complete */
 347	} else {
 348		/* Use a different default for LE-only devices */
 349		memset(events, 0, sizeof(events));
 350		events[1] |= 0x20; /* Command Complete */
 351		events[1] |= 0x40; /* Command Status */
 352		events[1] |= 0x80; /* Hardware Error */
 353
 354		/* If the controller supports the Disconnect command, enable
 355		 * the corresponding event. In addition enable packet flow
 356		 * control related events.
 357		 */
 358		if (hdev->commands[0] & 0x20) {
 359			events[0] |= 0x10; /* Disconnection Complete */
 360			events[2] |= 0x04; /* Number of Completed Packets */
 361			events[3] |= 0x02; /* Data Buffer Overflow */
 362		}
 363
 364		/* If the controller supports the Read Remote Version
 365		 * Information command, enable the corresponding event.
 366		 */
 367		if (hdev->commands[2] & 0x80)
 368			events[1] |= 0x08; /* Read Remote Version Information
 369					    * Complete
 370					    */
 371
 372		if (hdev->le_features[0] & HCI_LE_ENCRYPTION) {
 373			events[0] |= 0x80; /* Encryption Change */
 374			events[5] |= 0x80; /* Encryption Key Refresh Complete */
 375		}
 376	}
 377
 378	if (lmp_inq_rssi_capable(hdev) ||
 379	    test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks))
 380		events[4] |= 0x02; /* Inquiry Result with RSSI */
 381
 382	if (lmp_ext_feat_capable(hdev))
 383		events[4] |= 0x04; /* Read Remote Extended Features Complete */
 384
 385	if (lmp_esco_capable(hdev)) {
 386		events[5] |= 0x08; /* Synchronous Connection Complete */
 387		events[5] |= 0x10; /* Synchronous Connection Changed */
 388	}
 389
 390	if (lmp_sniffsubr_capable(hdev))
 391		events[5] |= 0x20; /* Sniff Subrating */
 392
 393	if (lmp_pause_enc_capable(hdev))
 394		events[5] |= 0x80; /* Encryption Key Refresh Complete */
 395
 396	if (lmp_ext_inq_capable(hdev))
 397		events[5] |= 0x40; /* Extended Inquiry Result */
 398
 399	if (lmp_no_flush_capable(hdev))
 400		events[7] |= 0x01; /* Enhanced Flush Complete */
 401
 402	if (lmp_lsto_capable(hdev))
 403		events[6] |= 0x80; /* Link Supervision Timeout Changed */
 404
 405	if (lmp_ssp_capable(hdev)) {
 406		events[6] |= 0x01;	/* IO Capability Request */
 407		events[6] |= 0x02;	/* IO Capability Response */
 408		events[6] |= 0x04;	/* User Confirmation Request */
 409		events[6] |= 0x08;	/* User Passkey Request */
 410		events[6] |= 0x10;	/* Remote OOB Data Request */
 411		events[6] |= 0x20;	/* Simple Pairing Complete */
 412		events[7] |= 0x04;	/* User Passkey Notification */
 413		events[7] |= 0x08;	/* Keypress Notification */
 414		events[7] |= 0x10;	/* Remote Host Supported
 415					 * Features Notification
 416					 */
 417	}
 418
 419	if (lmp_le_capable(hdev))
 420		events[7] |= 0x20;	/* LE Meta-Event */
 421
 422	hci_req_add(req, HCI_OP_SET_EVENT_MASK, sizeof(events), events);
 423}
 424
 425static int hci_init2_req(struct hci_request *req, unsigned long opt)
 426{
 427	struct hci_dev *hdev = req->hdev;
 428
 429	if (hdev->dev_type == HCI_AMP)
 430		return amp_init2(req);
 431
 432	if (lmp_bredr_capable(hdev))
 433		bredr_setup(req);
 434	else
 435		hci_dev_clear_flag(hdev, HCI_BREDR_ENABLED);
 436
 437	if (lmp_le_capable(hdev))
 438		le_setup(req);
 439
 440	/* All Bluetooth 1.2 and later controllers should support the
 441	 * HCI command for reading the local supported commands.
 442	 *
 443	 * Unfortunately some controllers indicate Bluetooth 1.2 support,
 444	 * but do not have support for this command. If that is the case,
 445	 * the driver can quirk the behavior and skip reading the local
 446	 * supported commands.
 447	 */
 448	if (hdev->hci_ver > BLUETOOTH_VER_1_1 &&
 449	    !test_bit(HCI_QUIRK_BROKEN_LOCAL_COMMANDS, &hdev->quirks))
 450		hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL);
 451
 452	if (lmp_ssp_capable(hdev)) {
 453		/* When SSP is available, then the host features page
 454		 * should also be available as well. However some
 455		 * controllers list the max_page as 0 as long as SSP
 456		 * has not been enabled. To achieve proper debugging
 457		 * output, force the minimum max_page to 1 at least.
 458		 */
 459		hdev->max_page = 0x01;
 460
 461		if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) {
 462			u8 mode = 0x01;
 463
 464			hci_req_add(req, HCI_OP_WRITE_SSP_MODE,
 465				    sizeof(mode), &mode);
 466		} else {
 467			struct hci_cp_write_eir cp;
 468
 469			memset(hdev->eir, 0, sizeof(hdev->eir));
 470			memset(&cp, 0, sizeof(cp));
 471
 472			hci_req_add(req, HCI_OP_WRITE_EIR, sizeof(cp), &cp);
 473		}
 474	}
 475
 476	if (lmp_inq_rssi_capable(hdev) ||
 477	    test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks)) {
 478		u8 mode;
 479
 480		/* If Extended Inquiry Result events are supported, then
 481		 * they are clearly preferred over Inquiry Result with RSSI
 482		 * events.
 483		 */
 484		mode = lmp_ext_inq_capable(hdev) ? 0x02 : 0x01;
 485
 486		hci_req_add(req, HCI_OP_WRITE_INQUIRY_MODE, 1, &mode);
 487	}
 488
 489	if (lmp_inq_tx_pwr_capable(hdev))
 490		hci_req_add(req, HCI_OP_READ_INQ_RSP_TX_POWER, 0, NULL);
 491
 492	if (lmp_ext_feat_capable(hdev)) {
 493		struct hci_cp_read_local_ext_features cp;
 494
 495		cp.page = 0x01;
 496		hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES,
 497			    sizeof(cp), &cp);
 498	}
 499
 500	if (hci_dev_test_flag(hdev, HCI_LINK_SECURITY)) {
 501		u8 enable = 1;
 502		hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, sizeof(enable),
 503			    &enable);
 504	}
 505
 506	return 0;
 507}
 508
 509static void hci_setup_link_policy(struct hci_request *req)
 510{
 511	struct hci_dev *hdev = req->hdev;
 512	struct hci_cp_write_def_link_policy cp;
 513	u16 link_policy = 0;
 514
 515	if (lmp_rswitch_capable(hdev))
 516		link_policy |= HCI_LP_RSWITCH;
 517	if (lmp_hold_capable(hdev))
 518		link_policy |= HCI_LP_HOLD;
 519	if (lmp_sniff_capable(hdev))
 520		link_policy |= HCI_LP_SNIFF;
 521	if (lmp_park_capable(hdev))
 522		link_policy |= HCI_LP_PARK;
 523
 524	cp.policy = cpu_to_le16(link_policy);
 525	hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, sizeof(cp), &cp);
 526}
 527
 528static void hci_set_le_support(struct hci_request *req)
 529{
 530	struct hci_dev *hdev = req->hdev;
 531	struct hci_cp_write_le_host_supported cp;
 532
 533	/* LE-only devices do not support explicit enablement */
 534	if (!lmp_bredr_capable(hdev))
 535		return;
 536
 537	memset(&cp, 0, sizeof(cp));
 538
 539	if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
 540		cp.le = 0x01;
 541		cp.simul = 0x00;
 542	}
 543
 544	if (cp.le != lmp_host_le_capable(hdev))
 545		hci_req_add(req, HCI_OP_WRITE_LE_HOST_SUPPORTED, sizeof(cp),
 546			    &cp);
 547}
 548
 549static void hci_set_event_mask_page_2(struct hci_request *req)
 550{
 551	struct hci_dev *hdev = req->hdev;
 552	u8 events[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
 
 553
 554	/* If Connectionless Slave Broadcast master role is supported
 555	 * enable all necessary events for it.
 556	 */
 557	if (lmp_csb_master_capable(hdev)) {
 558		events[1] |= 0x40;	/* Triggered Clock Capture */
 559		events[1] |= 0x80;	/* Synchronization Train Complete */
 560		events[2] |= 0x10;	/* Slave Page Response Timeout */
 561		events[2] |= 0x20;	/* CSB Channel Map Change */
 
 562	}
 563
 564	/* If Connectionless Slave Broadcast slave role is supported
 565	 * enable all necessary events for it.
 566	 */
 567	if (lmp_csb_slave_capable(hdev)) {
 568		events[2] |= 0x01;	/* Synchronization Train Received */
 569		events[2] |= 0x02;	/* CSB Receive */
 570		events[2] |= 0x04;	/* CSB Timeout */
 571		events[2] |= 0x08;	/* Truncated Page Complete */
 
 572	}
 573
 574	/* Enable Authenticated Payload Timeout Expired event if supported */
 575	if (lmp_ping_capable(hdev) || hdev->le_features[0] & HCI_LE_PING)
 576		events[2] |= 0x80;
 
 
 577
 578	hci_req_add(req, HCI_OP_SET_EVENT_MASK_PAGE_2, sizeof(events), events);
 
 
 
 
 
 
 
 
 579}
 580
 581static int hci_init3_req(struct hci_request *req, unsigned long opt)
 582{
 583	struct hci_dev *hdev = req->hdev;
 584	u8 p;
 585
 586	hci_setup_event_mask(req);
 587
 588	if (hdev->commands[6] & 0x20 &&
 589	    !test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) {
 590		struct hci_cp_read_stored_link_key cp;
 591
 592		bacpy(&cp.bdaddr, BDADDR_ANY);
 593		cp.read_all = 0x01;
 594		hci_req_add(req, HCI_OP_READ_STORED_LINK_KEY, sizeof(cp), &cp);
 595	}
 596
 597	if (hdev->commands[5] & 0x10)
 598		hci_setup_link_policy(req);
 599
 600	if (hdev->commands[8] & 0x01)
 601		hci_req_add(req, HCI_OP_READ_PAGE_SCAN_ACTIVITY, 0, NULL);
 602
 
 
 
 
 603	/* Some older Broadcom based Bluetooth 1.2 controllers do not
 604	 * support the Read Page Scan Type command. Check support for
 605	 * this command in the bit mask of supported commands.
 606	 */
 607	if (hdev->commands[13] & 0x01)
 608		hci_req_add(req, HCI_OP_READ_PAGE_SCAN_TYPE, 0, NULL);
 609
 610	if (lmp_le_capable(hdev)) {
 611		u8 events[8];
 612
 613		memset(events, 0, sizeof(events));
 614
 615		if (hdev->le_features[0] & HCI_LE_ENCRYPTION)
 616			events[0] |= 0x10;	/* LE Long Term Key Request */
 617
 618		/* If controller supports the Connection Parameters Request
 619		 * Link Layer Procedure, enable the corresponding event.
 620		 */
 621		if (hdev->le_features[0] & HCI_LE_CONN_PARAM_REQ_PROC)
 622			events[0] |= 0x20;	/* LE Remote Connection
 623						 * Parameter Request
 624						 */
 625
 626		/* If the controller supports the Data Length Extension
 627		 * feature, enable the corresponding event.
 628		 */
 629		if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)
 630			events[0] |= 0x40;	/* LE Data Length Change */
 631
 
 
 
 
 
 
 
 
 632		/* If the controller supports Extended Scanner Filter
 633		 * Policies, enable the correspondig event.
 634		 */
 635		if (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY)
 636			events[1] |= 0x04;	/* LE Direct Advertising
 637						 * Report
 638						 */
 639
 
 
 
 
 
 
 
 
 640		/* If the controller supports the LE Set Scan Enable command,
 641		 * enable the corresponding advertising report event.
 642		 */
 643		if (hdev->commands[26] & 0x08)
 644			events[0] |= 0x02;	/* LE Advertising Report */
 645
 646		/* If the controller supports the LE Create Connection
 647		 * command, enable the corresponding event.
 648		 */
 649		if (hdev->commands[26] & 0x10)
 650			events[0] |= 0x01;	/* LE Connection Complete */
 651
 652		/* If the controller supports the LE Connection Update
 653		 * command, enable the corresponding event.
 654		 */
 655		if (hdev->commands[27] & 0x04)
 656			events[0] |= 0x04;	/* LE Connection Update
 657						 * Complete
 658						 */
 659
 660		/* If the controller supports the LE Read Remote Used Features
 661		 * command, enable the corresponding event.
 662		 */
 663		if (hdev->commands[27] & 0x20)
 664			events[0] |= 0x08;	/* LE Read Remote Used
 665						 * Features Complete
 666						 */
 667
 668		/* If the controller supports the LE Read Local P-256
 669		 * Public Key command, enable the corresponding event.
 670		 */
 671		if (hdev->commands[34] & 0x02)
 672			events[0] |= 0x80;	/* LE Read Local P-256
 673						 * Public Key Complete
 674						 */
 675
 676		/* If the controller supports the LE Generate DHKey
 677		 * command, enable the corresponding event.
 678		 */
 679		if (hdev->commands[34] & 0x04)
 680			events[1] |= 0x01;	/* LE Generate DHKey Complete */
 681
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 682		hci_req_add(req, HCI_OP_LE_SET_EVENT_MASK, sizeof(events),
 683			    events);
 684
 685		if (hdev->commands[25] & 0x40) {
 686			/* Read LE Advertising Channel TX Power */
 
 
 
 
 
 
 687			hci_req_add(req, HCI_OP_LE_READ_ADV_TX_POWER, 0, NULL);
 688		}
 689
 690		if (hdev->commands[26] & 0x40) {
 691			/* Read LE White List Size */
 692			hci_req_add(req, HCI_OP_LE_READ_WHITE_LIST_SIZE,
 693				    0, NULL);
 694		}
 695
 696		if (hdev->commands[26] & 0x80) {
 697			/* Clear LE White List */
 698			hci_req_add(req, HCI_OP_LE_CLEAR_WHITE_LIST, 0, NULL);
 699		}
 700
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 701		if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) {
 702			/* Read LE Maximum Data Length */
 703			hci_req_add(req, HCI_OP_LE_READ_MAX_DATA_LEN, 0, NULL);
 704
 705			/* Read LE Suggested Default Data Length */
 706			hci_req_add(req, HCI_OP_LE_READ_DEF_DATA_LEN, 0, NULL);
 707		}
 708
 
 
 
 
 
 
 709		hci_set_le_support(req);
 710	}
 711
 712	/* Read features beyond page 1 if available */
 713	for (p = 2; p < HCI_MAX_PAGES && p <= hdev->max_page; p++) {
 714		struct hci_cp_read_local_ext_features cp;
 715
 716		cp.page = p;
 717		hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES,
 718			    sizeof(cp), &cp);
 719	}
 720
 721	return 0;
 722}
 723
 724static int hci_init4_req(struct hci_request *req, unsigned long opt)
 725{
 726	struct hci_dev *hdev = req->hdev;
 727
 728	/* Some Broadcom based Bluetooth controllers do not support the
 729	 * Delete Stored Link Key command. They are clearly indicating its
 730	 * absence in the bit mask of supported commands.
 731	 *
 732	 * Check the supported commands and only if the the command is marked
 733	 * as supported send it. If not supported assume that the controller
 734	 * does not have actual support for stored link keys which makes this
 735	 * command redundant anyway.
 736	 *
 737	 * Some controllers indicate that they support handling deleting
 738	 * stored link keys, but they don't. The quirk lets a driver
 739	 * just disable this command.
 740	 */
 741	if (hdev->commands[6] & 0x80 &&
 742	    !test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) {
 743		struct hci_cp_delete_stored_link_key cp;
 744
 745		bacpy(&cp.bdaddr, BDADDR_ANY);
 746		cp.delete_all = 0x01;
 747		hci_req_add(req, HCI_OP_DELETE_STORED_LINK_KEY,
 748			    sizeof(cp), &cp);
 749	}
 750
 751	/* Set event mask page 2 if the HCI command for it is supported */
 752	if (hdev->commands[22] & 0x04)
 753		hci_set_event_mask_page_2(req);
 754
 755	/* Read local codec list if the HCI command is supported */
 756	if (hdev->commands[29] & 0x20)
 757		hci_req_add(req, HCI_OP_READ_LOCAL_CODECS, 0, NULL);
 758
 
 
 
 
 759	/* Get MWS transport configuration if the HCI command is supported */
 760	if (hdev->commands[30] & 0x08)
 761		hci_req_add(req, HCI_OP_GET_MWS_TRANSPORT_CONFIG, 0, NULL);
 762
 763	/* Check for Synchronization Train support */
 764	if (lmp_sync_train_capable(hdev))
 765		hci_req_add(req, HCI_OP_READ_SYNC_TRAIN_PARAMS, 0, NULL);
 766
 767	/* Enable Secure Connections if supported and configured */
 768	if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED) &&
 769	    bredr_sc_enabled(hdev)) {
 770		u8 support = 0x01;
 771
 772		hci_req_add(req, HCI_OP_WRITE_SC_SUPPORT,
 773			    sizeof(support), &support);
 774	}
 775
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 776	return 0;
 777}
 778
 779static int __hci_init(struct hci_dev *hdev)
 780{
 781	int err;
 782
 783	err = __hci_req_sync(hdev, hci_init1_req, 0, HCI_INIT_TIMEOUT, NULL);
 784	if (err < 0)
 785		return err;
 786
 787	if (hci_dev_test_flag(hdev, HCI_SETUP))
 788		hci_debugfs_create_basic(hdev);
 789
 790	err = __hci_req_sync(hdev, hci_init2_req, 0, HCI_INIT_TIMEOUT, NULL);
 791	if (err < 0)
 792		return err;
 793
 794	/* HCI_BREDR covers both single-mode LE, BR/EDR and dual-mode
 795	 * BR/EDR/LE type controllers. AMP controllers only need the
 796	 * first two stages of init.
 797	 */
 798	if (hdev->dev_type != HCI_BREDR)
 799		return 0;
 800
 801	err = __hci_req_sync(hdev, hci_init3_req, 0, HCI_INIT_TIMEOUT, NULL);
 802	if (err < 0)
 803		return err;
 804
 805	err = __hci_req_sync(hdev, hci_init4_req, 0, HCI_INIT_TIMEOUT, NULL);
 806	if (err < 0)
 807		return err;
 808
 809	/* This function is only called when the controller is actually in
 810	 * configured state. When the controller is marked as unconfigured,
 811	 * this initialization procedure is not run.
 812	 *
 813	 * It means that it is possible that a controller runs through its
 814	 * setup phase and then discovers missing settings. If that is the
 815	 * case, then this function will not be called. It then will only
 816	 * be called during the config phase.
 817	 *
 818	 * So only when in setup phase or config phase, create the debugfs
 819	 * entries and register the SMP channels.
 820	 */
 821	if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
 822	    !hci_dev_test_flag(hdev, HCI_CONFIG))
 823		return 0;
 824
 825	hci_debugfs_create_common(hdev);
 826
 827	if (lmp_bredr_capable(hdev))
 828		hci_debugfs_create_bredr(hdev);
 829
 830	if (lmp_le_capable(hdev))
 831		hci_debugfs_create_le(hdev);
 832
 833	return 0;
 834}
 835
 836static int hci_init0_req(struct hci_request *req, unsigned long opt)
 837{
 838	struct hci_dev *hdev = req->hdev;
 839
 840	BT_DBG("%s %ld", hdev->name, opt);
 841
 842	/* Reset */
 843	if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks))
 844		hci_reset_req(req, 0);
 845
 846	/* Read Local Version */
 847	hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
 848
 849	/* Read BD Address */
 850	if (hdev->set_bdaddr)
 851		hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL);
 852
 853	return 0;
 854}
 855
 856static int __hci_unconf_init(struct hci_dev *hdev)
 857{
 858	int err;
 859
 860	if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
 861		return 0;
 862
 863	err = __hci_req_sync(hdev, hci_init0_req, 0, HCI_INIT_TIMEOUT, NULL);
 864	if (err < 0)
 865		return err;
 866
 867	if (hci_dev_test_flag(hdev, HCI_SETUP))
 868		hci_debugfs_create_basic(hdev);
 869
 870	return 0;
 871}
 872
 873static int hci_scan_req(struct hci_request *req, unsigned long opt)
 874{
 875	__u8 scan = opt;
 876
 877	BT_DBG("%s %x", req->hdev->name, scan);
 878
 879	/* Inquiry and Page scans */
 880	hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
 881	return 0;
 882}
 883
 884static int hci_auth_req(struct hci_request *req, unsigned long opt)
 885{
 886	__u8 auth = opt;
 887
 888	BT_DBG("%s %x", req->hdev->name, auth);
 889
 890	/* Authentication */
 891	hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, 1, &auth);
 892	return 0;
 893}
 894
 895static int hci_encrypt_req(struct hci_request *req, unsigned long opt)
 896{
 897	__u8 encrypt = opt;
 898
 899	BT_DBG("%s %x", req->hdev->name, encrypt);
 900
 901	/* Encryption */
 902	hci_req_add(req, HCI_OP_WRITE_ENCRYPT_MODE, 1, &encrypt);
 903	return 0;
 904}
 905
 906static int hci_linkpol_req(struct hci_request *req, unsigned long opt)
 907{
 908	__le16 policy = cpu_to_le16(opt);
 909
 910	BT_DBG("%s %x", req->hdev->name, policy);
 911
 912	/* Default link policy */
 913	hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, 2, &policy);
 914	return 0;
 915}
 916
 917/* Get HCI device by index.
 918 * Device is held on return. */
 919struct hci_dev *hci_dev_get(int index)
 920{
 921	struct hci_dev *hdev = NULL, *d;
 922
 923	BT_DBG("%d", index);
 924
 925	if (index < 0)
 926		return NULL;
 927
 928	read_lock(&hci_dev_list_lock);
 929	list_for_each_entry(d, &hci_dev_list, list) {
 930		if (d->id == index) {
 931			hdev = hci_dev_hold(d);
 932			break;
 933		}
 934	}
 935	read_unlock(&hci_dev_list_lock);
 936	return hdev;
 937}
 938
 939/* ---- Inquiry support ---- */
 940
 941bool hci_discovery_active(struct hci_dev *hdev)
 942{
 943	struct discovery_state *discov = &hdev->discovery;
 944
 945	switch (discov->state) {
 946	case DISCOVERY_FINDING:
 947	case DISCOVERY_RESOLVING:
 948		return true;
 949
 950	default:
 951		return false;
 952	}
 953}
 954
 955void hci_discovery_set_state(struct hci_dev *hdev, int state)
 956{
 957	int old_state = hdev->discovery.state;
 958
 959	BT_DBG("%s state %u -> %u", hdev->name, hdev->discovery.state, state);
 960
 961	if (old_state == state)
 962		return;
 963
 964	hdev->discovery.state = state;
 965
 966	switch (state) {
 967	case DISCOVERY_STOPPED:
 968		hci_update_background_scan(hdev);
 969
 970		if (old_state != DISCOVERY_STARTING)
 971			mgmt_discovering(hdev, 0);
 972		break;
 973	case DISCOVERY_STARTING:
 974		break;
 975	case DISCOVERY_FINDING:
 976		mgmt_discovering(hdev, 1);
 977		break;
 978	case DISCOVERY_RESOLVING:
 979		break;
 980	case DISCOVERY_STOPPING:
 981		break;
 982	}
 983}
 984
 985void hci_inquiry_cache_flush(struct hci_dev *hdev)
 986{
 987	struct discovery_state *cache = &hdev->discovery;
 988	struct inquiry_entry *p, *n;
 989
 990	list_for_each_entry_safe(p, n, &cache->all, all) {
 991		list_del(&p->all);
 992		kfree(p);
 993	}
 994
 995	INIT_LIST_HEAD(&cache->unknown);
 996	INIT_LIST_HEAD(&cache->resolve);
 997}
 998
 999struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev,
1000					       bdaddr_t *bdaddr)
1001{
1002	struct discovery_state *cache = &hdev->discovery;
1003	struct inquiry_entry *e;
1004
1005	BT_DBG("cache %p, %pMR", cache, bdaddr);
1006
1007	list_for_each_entry(e, &cache->all, all) {
1008		if (!bacmp(&e->data.bdaddr, bdaddr))
1009			return e;
1010	}
1011
1012	return NULL;
1013}
1014
1015struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev,
1016						       bdaddr_t *bdaddr)
1017{
1018	struct discovery_state *cache = &hdev->discovery;
1019	struct inquiry_entry *e;
1020
1021	BT_DBG("cache %p, %pMR", cache, bdaddr);
1022
1023	list_for_each_entry(e, &cache->unknown, list) {
1024		if (!bacmp(&e->data.bdaddr, bdaddr))
1025			return e;
1026	}
1027
1028	return NULL;
1029}
1030
1031struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev,
1032						       bdaddr_t *bdaddr,
1033						       int state)
1034{
1035	struct discovery_state *cache = &hdev->discovery;
1036	struct inquiry_entry *e;
1037
1038	BT_DBG("cache %p bdaddr %pMR state %d", cache, bdaddr, state);
1039
1040	list_for_each_entry(e, &cache->resolve, list) {
1041		if (!bacmp(bdaddr, BDADDR_ANY) && e->name_state == state)
1042			return e;
1043		if (!bacmp(&e->data.bdaddr, bdaddr))
1044			return e;
1045	}
1046
1047	return NULL;
1048}
1049
1050void hci_inquiry_cache_update_resolve(struct hci_dev *hdev,
1051				      struct inquiry_entry *ie)
1052{
1053	struct discovery_state *cache = &hdev->discovery;
1054	struct list_head *pos = &cache->resolve;
1055	struct inquiry_entry *p;
1056
1057	list_del(&ie->list);
1058
1059	list_for_each_entry(p, &cache->resolve, list) {
1060		if (p->name_state != NAME_PENDING &&
1061		    abs(p->data.rssi) >= abs(ie->data.rssi))
1062			break;
1063		pos = &p->list;
1064	}
1065
1066	list_add(&ie->list, pos);
1067}
1068
1069u32 hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data,
1070			     bool name_known)
1071{
1072	struct discovery_state *cache = &hdev->discovery;
1073	struct inquiry_entry *ie;
1074	u32 flags = 0;
1075
1076	BT_DBG("cache %p, %pMR", cache, &data->bdaddr);
1077
1078	hci_remove_remote_oob_data(hdev, &data->bdaddr, BDADDR_BREDR);
1079
1080	if (!data->ssp_mode)
1081		flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
1082
1083	ie = hci_inquiry_cache_lookup(hdev, &data->bdaddr);
1084	if (ie) {
1085		if (!ie->data.ssp_mode)
1086			flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
1087
1088		if (ie->name_state == NAME_NEEDED &&
1089		    data->rssi != ie->data.rssi) {
1090			ie->data.rssi = data->rssi;
1091			hci_inquiry_cache_update_resolve(hdev, ie);
1092		}
1093
1094		goto update;
1095	}
1096
1097	/* Entry not in the cache. Add new one. */
1098	ie = kzalloc(sizeof(*ie), GFP_KERNEL);
1099	if (!ie) {
1100		flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
1101		goto done;
1102	}
1103
1104	list_add(&ie->all, &cache->all);
1105
1106	if (name_known) {
1107		ie->name_state = NAME_KNOWN;
1108	} else {
1109		ie->name_state = NAME_NOT_KNOWN;
1110		list_add(&ie->list, &cache->unknown);
1111	}
1112
1113update:
1114	if (name_known && ie->name_state != NAME_KNOWN &&
1115	    ie->name_state != NAME_PENDING) {
1116		ie->name_state = NAME_KNOWN;
1117		list_del(&ie->list);
1118	}
1119
1120	memcpy(&ie->data, data, sizeof(*data));
1121	ie->timestamp = jiffies;
1122	cache->timestamp = jiffies;
1123
1124	if (ie->name_state == NAME_NOT_KNOWN)
1125		flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
1126
1127done:
1128	return flags;
1129}
1130
1131static int inquiry_cache_dump(struct hci_dev *hdev, int num, __u8 *buf)
1132{
1133	struct discovery_state *cache = &hdev->discovery;
1134	struct inquiry_info *info = (struct inquiry_info *) buf;
1135	struct inquiry_entry *e;
1136	int copied = 0;
1137
1138	list_for_each_entry(e, &cache->all, all) {
1139		struct inquiry_data *data = &e->data;
1140
1141		if (copied >= num)
1142			break;
1143
1144		bacpy(&info->bdaddr, &data->bdaddr);
1145		info->pscan_rep_mode	= data->pscan_rep_mode;
1146		info->pscan_period_mode	= data->pscan_period_mode;
1147		info->pscan_mode	= data->pscan_mode;
1148		memcpy(info->dev_class, data->dev_class, 3);
1149		info->clock_offset	= data->clock_offset;
1150
1151		info++;
1152		copied++;
1153	}
1154
1155	BT_DBG("cache %p, copied %d", cache, copied);
1156	return copied;
1157}
1158
1159static int hci_inq_req(struct hci_request *req, unsigned long opt)
1160{
1161	struct hci_inquiry_req *ir = (struct hci_inquiry_req *) opt;
1162	struct hci_dev *hdev = req->hdev;
1163	struct hci_cp_inquiry cp;
1164
1165	BT_DBG("%s", hdev->name);
1166
1167	if (test_bit(HCI_INQUIRY, &hdev->flags))
1168		return 0;
1169
1170	/* Start Inquiry */
1171	memcpy(&cp.lap, &ir->lap, 3);
1172	cp.length  = ir->length;
1173	cp.num_rsp = ir->num_rsp;
1174	hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp);
1175
1176	return 0;
1177}
1178
1179int hci_inquiry(void __user *arg)
1180{
1181	__u8 __user *ptr = arg;
1182	struct hci_inquiry_req ir;
1183	struct hci_dev *hdev;
1184	int err = 0, do_inquiry = 0, max_rsp;
1185	long timeo;
1186	__u8 *buf;
1187
1188	if (copy_from_user(&ir, ptr, sizeof(ir)))
1189		return -EFAULT;
1190
1191	hdev = hci_dev_get(ir.dev_id);
1192	if (!hdev)
1193		return -ENODEV;
1194
1195	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1196		err = -EBUSY;
1197		goto done;
1198	}
1199
1200	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1201		err = -EOPNOTSUPP;
1202		goto done;
1203	}
1204
1205	if (hdev->dev_type != HCI_BREDR) {
1206		err = -EOPNOTSUPP;
1207		goto done;
1208	}
1209
1210	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
1211		err = -EOPNOTSUPP;
1212		goto done;
1213	}
1214
1215	hci_dev_lock(hdev);
1216	if (inquiry_cache_age(hdev) > INQUIRY_CACHE_AGE_MAX ||
1217	    inquiry_cache_empty(hdev) || ir.flags & IREQ_CACHE_FLUSH) {
1218		hci_inquiry_cache_flush(hdev);
1219		do_inquiry = 1;
1220	}
1221	hci_dev_unlock(hdev);
1222
1223	timeo = ir.length * msecs_to_jiffies(2000);
1224
1225	if (do_inquiry) {
1226		err = hci_req_sync(hdev, hci_inq_req, (unsigned long) &ir,
1227				   timeo, NULL);
1228		if (err < 0)
1229			goto done;
1230
1231		/* Wait until Inquiry procedure finishes (HCI_INQUIRY flag is
1232		 * cleared). If it is interrupted by a signal, return -EINTR.
1233		 */
1234		if (wait_on_bit(&hdev->flags, HCI_INQUIRY,
1235				TASK_INTERRUPTIBLE))
1236			return -EINTR;
1237	}
1238
1239	/* for unlimited number of responses we will use buffer with
1240	 * 255 entries
1241	 */
1242	max_rsp = (ir.num_rsp == 0) ? 255 : ir.num_rsp;
1243
1244	/* cache_dump can't sleep. Therefore we allocate temp buffer and then
1245	 * copy it to the user space.
1246	 */
1247	buf = kmalloc(sizeof(struct inquiry_info) * max_rsp, GFP_KERNEL);
1248	if (!buf) {
1249		err = -ENOMEM;
1250		goto done;
1251	}
1252
1253	hci_dev_lock(hdev);
1254	ir.num_rsp = inquiry_cache_dump(hdev, max_rsp, buf);
1255	hci_dev_unlock(hdev);
1256
1257	BT_DBG("num_rsp %d", ir.num_rsp);
1258
1259	if (!copy_to_user(ptr, &ir, sizeof(ir))) {
1260		ptr += sizeof(ir);
1261		if (copy_to_user(ptr, buf, sizeof(struct inquiry_info) *
1262				 ir.num_rsp))
1263			err = -EFAULT;
1264	} else
1265		err = -EFAULT;
1266
1267	kfree(buf);
1268
1269done:
1270	hci_dev_put(hdev);
1271	return err;
1272}
1273
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1274static int hci_dev_do_open(struct hci_dev *hdev)
1275{
1276	int ret = 0;
1277
1278	BT_DBG("%s %p", hdev->name, hdev);
1279
1280	hci_req_sync_lock(hdev);
1281
1282	if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) {
1283		ret = -ENODEV;
1284		goto done;
1285	}
1286
1287	if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
1288	    !hci_dev_test_flag(hdev, HCI_CONFIG)) {
1289		/* Check for rfkill but allow the HCI setup stage to
1290		 * proceed (which in itself doesn't cause any RF activity).
1291		 */
1292		if (hci_dev_test_flag(hdev, HCI_RFKILLED)) {
1293			ret = -ERFKILL;
1294			goto done;
1295		}
1296
1297		/* Check for valid public address or a configured static
1298		 * random adddress, but let the HCI setup proceed to
1299		 * be able to determine if there is a public address
1300		 * or not.
1301		 *
1302		 * In case of user channel usage, it is not important
1303		 * if a public address or static random address is
1304		 * available.
1305		 *
1306		 * This check is only valid for BR/EDR controllers
1307		 * since AMP controllers do not have an address.
1308		 */
1309		if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1310		    hdev->dev_type == HCI_BREDR &&
1311		    !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
1312		    !bacmp(&hdev->static_addr, BDADDR_ANY)) {
1313			ret = -EADDRNOTAVAIL;
1314			goto done;
1315		}
1316	}
1317
1318	if (test_bit(HCI_UP, &hdev->flags)) {
1319		ret = -EALREADY;
1320		goto done;
1321	}
1322
1323	if (hdev->open(hdev)) {
1324		ret = -EIO;
1325		goto done;
1326	}
1327
1328	set_bit(HCI_RUNNING, &hdev->flags);
1329	hci_sock_dev_event(hdev, HCI_DEV_OPEN);
1330
1331	atomic_set(&hdev->cmd_cnt, 1);
1332	set_bit(HCI_INIT, &hdev->flags);
1333
1334	if (hci_dev_test_flag(hdev, HCI_SETUP)) {
 
 
 
1335		hci_sock_dev_event(hdev, HCI_DEV_SETUP);
1336
1337		if (hdev->setup)
1338			ret = hdev->setup(hdev);
1339
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1340		/* The transport driver can set these quirks before
1341		 * creating the HCI device or in its setup callback.
1342		 *
 
 
 
 
1343		 * In case any of them is set, the controller has to
1344		 * start up as unconfigured.
1345		 */
1346		if (test_bit(HCI_QUIRK_EXTERNAL_CONFIG, &hdev->quirks) ||
1347		    test_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks))
1348			hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
1349
1350		/* For an unconfigured controller it is required to
1351		 * read at least the version information provided by
1352		 * the Read Local Version Information command.
1353		 *
1354		 * If the set_bdaddr driver callback is provided, then
1355		 * also the original Bluetooth public device address
1356		 * will be read using the Read BD Address command.
1357		 */
1358		if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
1359			ret = __hci_unconf_init(hdev);
1360	}
1361
1362	if (hci_dev_test_flag(hdev, HCI_CONFIG)) {
1363		/* If public address change is configured, ensure that
1364		 * the address gets programmed. If the driver does not
1365		 * support changing the public address, fail the power
1366		 * on procedure.
1367		 */
1368		if (bacmp(&hdev->public_addr, BDADDR_ANY) &&
1369		    hdev->set_bdaddr)
1370			ret = hdev->set_bdaddr(hdev, &hdev->public_addr);
1371		else
1372			ret = -EADDRNOTAVAIL;
1373	}
1374
1375	if (!ret) {
1376		if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1377		    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1378			ret = __hci_init(hdev);
1379			if (!ret && hdev->post_init)
1380				ret = hdev->post_init(hdev);
1381		}
1382	}
1383
1384	/* If the HCI Reset command is clearing all diagnostic settings,
1385	 * then they need to be reprogrammed after the init procedure
1386	 * completed.
1387	 */
1388	if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) &&
 
1389	    hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) && hdev->set_diag)
1390		ret = hdev->set_diag(hdev, true);
1391
 
 
1392	clear_bit(HCI_INIT, &hdev->flags);
1393
1394	if (!ret) {
1395		hci_dev_hold(hdev);
1396		hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
 
1397		set_bit(HCI_UP, &hdev->flags);
1398		hci_sock_dev_event(hdev, HCI_DEV_UP);
1399		hci_leds_update_powered(hdev, true);
1400		if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
1401		    !hci_dev_test_flag(hdev, HCI_CONFIG) &&
1402		    !hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1403		    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1404		    hci_dev_test_flag(hdev, HCI_MGMT) &&
1405		    hdev->dev_type == HCI_BREDR) {
1406			ret = __hci_req_hci_power_on(hdev);
1407			mgmt_power_on(hdev, ret);
1408		}
1409	} else {
1410		/* Init failed, cleanup */
1411		flush_work(&hdev->tx_work);
1412		flush_work(&hdev->cmd_work);
1413		flush_work(&hdev->rx_work);
1414
1415		skb_queue_purge(&hdev->cmd_q);
1416		skb_queue_purge(&hdev->rx_q);
1417
1418		if (hdev->flush)
1419			hdev->flush(hdev);
1420
1421		if (hdev->sent_cmd) {
1422			kfree_skb(hdev->sent_cmd);
1423			hdev->sent_cmd = NULL;
1424		}
1425
1426		clear_bit(HCI_RUNNING, &hdev->flags);
1427		hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
1428
1429		hdev->close(hdev);
1430		hdev->flags &= BIT(HCI_RAW);
1431	}
1432
1433done:
1434	hci_req_sync_unlock(hdev);
1435	return ret;
1436}
1437
1438/* ---- HCI ioctl helpers ---- */
1439
1440int hci_dev_open(__u16 dev)
1441{
1442	struct hci_dev *hdev;
1443	int err;
1444
1445	hdev = hci_dev_get(dev);
1446	if (!hdev)
1447		return -ENODEV;
1448
1449	/* Devices that are marked as unconfigured can only be powered
1450	 * up as user channel. Trying to bring them up as normal devices
1451	 * will result into a failure. Only user channel operation is
1452	 * possible.
1453	 *
1454	 * When this function is called for a user channel, the flag
1455	 * HCI_USER_CHANNEL will be set first before attempting to
1456	 * open the device.
1457	 */
1458	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1459	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1460		err = -EOPNOTSUPP;
1461		goto done;
1462	}
1463
1464	/* We need to ensure that no other power on/off work is pending
1465	 * before proceeding to call hci_dev_do_open. This is
1466	 * particularly important if the setup procedure has not yet
1467	 * completed.
1468	 */
1469	if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
1470		cancel_delayed_work(&hdev->power_off);
1471
1472	/* After this call it is guaranteed that the setup procedure
1473	 * has finished. This means that error conditions like RFKILL
1474	 * or no valid public or static random address apply.
1475	 */
1476	flush_workqueue(hdev->req_workqueue);
1477
1478	/* For controllers not using the management interface and that
1479	 * are brought up using legacy ioctl, set the HCI_BONDABLE bit
1480	 * so that pairing works for them. Once the management interface
1481	 * is in use this bit will be cleared again and userspace has
1482	 * to explicitly enable it.
1483	 */
1484	if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1485	    !hci_dev_test_flag(hdev, HCI_MGMT))
1486		hci_dev_set_flag(hdev, HCI_BONDABLE);
1487
1488	err = hci_dev_do_open(hdev);
1489
1490done:
1491	hci_dev_put(hdev);
1492	return err;
1493}
1494
1495/* This function requires the caller holds hdev->lock */
1496static void hci_pend_le_actions_clear(struct hci_dev *hdev)
1497{
1498	struct hci_conn_params *p;
1499
1500	list_for_each_entry(p, &hdev->le_conn_params, list) {
1501		if (p->conn) {
1502			hci_conn_drop(p->conn);
1503			hci_conn_put(p->conn);
1504			p->conn = NULL;
1505		}
1506		list_del_init(&p->action);
1507	}
1508
1509	BT_DBG("All LE pending actions cleared");
1510}
1511
1512int hci_dev_do_close(struct hci_dev *hdev)
1513{
1514	bool auto_off;
1515
1516	BT_DBG("%s %p", hdev->name, hdev);
1517
1518	if (!hci_dev_test_flag(hdev, HCI_UNREGISTER) &&
1519	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1520	    test_bit(HCI_UP, &hdev->flags)) {
1521		/* Execute vendor specific shutdown routine */
1522		if (hdev->shutdown)
1523			hdev->shutdown(hdev);
1524	}
1525
1526	cancel_delayed_work(&hdev->power_off);
1527
1528	hci_request_cancel_all(hdev);
1529	hci_req_sync_lock(hdev);
1530
1531	if (!test_and_clear_bit(HCI_UP, &hdev->flags)) {
1532		cancel_delayed_work_sync(&hdev->cmd_timer);
1533		hci_req_sync_unlock(hdev);
1534		return 0;
1535	}
1536
1537	hci_leds_update_powered(hdev, false);
1538
1539	/* Flush RX and TX works */
1540	flush_work(&hdev->tx_work);
1541	flush_work(&hdev->rx_work);
1542
1543	if (hdev->discov_timeout > 0) {
1544		hdev->discov_timeout = 0;
1545		hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
1546		hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
1547	}
1548
1549	if (hci_dev_test_and_clear_flag(hdev, HCI_SERVICE_CACHE))
1550		cancel_delayed_work(&hdev->service_cache);
1551
1552	if (hci_dev_test_flag(hdev, HCI_MGMT))
 
 
1553		cancel_delayed_work_sync(&hdev->rpa_expired);
1554
 
 
 
 
1555	/* Avoid potential lockdep warnings from the *_flush() calls by
1556	 * ensuring the workqueue is empty up front.
1557	 */
1558	drain_workqueue(hdev->workqueue);
1559
1560	hci_dev_lock(hdev);
1561
1562	hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
1563
1564	auto_off = hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF);
1565
1566	if (!auto_off && hdev->dev_type == HCI_BREDR &&
 
1567	    hci_dev_test_flag(hdev, HCI_MGMT))
1568		__mgmt_power_off(hdev);
1569
1570	hci_inquiry_cache_flush(hdev);
1571	hci_pend_le_actions_clear(hdev);
1572	hci_conn_hash_flush(hdev);
1573	hci_dev_unlock(hdev);
1574
1575	smp_unregister(hdev);
1576
1577	hci_sock_dev_event(hdev, HCI_DEV_DOWN);
1578
 
 
1579	if (hdev->flush)
1580		hdev->flush(hdev);
1581
1582	/* Reset device */
1583	skb_queue_purge(&hdev->cmd_q);
1584	atomic_set(&hdev->cmd_cnt, 1);
1585	if (test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks) &&
1586	    !auto_off && !hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1587		set_bit(HCI_INIT, &hdev->flags);
1588		__hci_req_sync(hdev, hci_reset_req, 0, HCI_CMD_TIMEOUT, NULL);
1589		clear_bit(HCI_INIT, &hdev->flags);
1590	}
1591
1592	/* flush cmd  work */
1593	flush_work(&hdev->cmd_work);
1594
1595	/* Drop queues */
1596	skb_queue_purge(&hdev->rx_q);
1597	skb_queue_purge(&hdev->cmd_q);
1598	skb_queue_purge(&hdev->raw_q);
1599
1600	/* Drop last sent command */
1601	if (hdev->sent_cmd) {
1602		cancel_delayed_work_sync(&hdev->cmd_timer);
1603		kfree_skb(hdev->sent_cmd);
1604		hdev->sent_cmd = NULL;
1605	}
1606
1607	clear_bit(HCI_RUNNING, &hdev->flags);
1608	hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
1609
 
 
 
1610	/* After this point our queues are empty
1611	 * and no tasks are scheduled. */
1612	hdev->close(hdev);
1613
1614	/* Clear flags */
1615	hdev->flags &= BIT(HCI_RAW);
1616	hci_dev_clear_volatile_flags(hdev);
1617
1618	/* Controller radio is available but is currently powered down */
1619	hdev->amp_status = AMP_STATUS_POWERED_DOWN;
1620
1621	memset(hdev->eir, 0, sizeof(hdev->eir));
1622	memset(hdev->dev_class, 0, sizeof(hdev->dev_class));
1623	bacpy(&hdev->random_addr, BDADDR_ANY);
1624
1625	hci_req_sync_unlock(hdev);
1626
1627	hci_dev_put(hdev);
1628	return 0;
1629}
1630
1631int hci_dev_close(__u16 dev)
1632{
1633	struct hci_dev *hdev;
1634	int err;
1635
1636	hdev = hci_dev_get(dev);
1637	if (!hdev)
1638		return -ENODEV;
1639
1640	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1641		err = -EBUSY;
1642		goto done;
1643	}
1644
1645	if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
1646		cancel_delayed_work(&hdev->power_off);
1647
1648	err = hci_dev_do_close(hdev);
1649
1650done:
1651	hci_dev_put(hdev);
1652	return err;
1653}
1654
1655static int hci_dev_do_reset(struct hci_dev *hdev)
1656{
1657	int ret;
1658
1659	BT_DBG("%s %p", hdev->name, hdev);
1660
1661	hci_req_sync_lock(hdev);
1662
1663	/* Drop queues */
1664	skb_queue_purge(&hdev->rx_q);
1665	skb_queue_purge(&hdev->cmd_q);
1666
1667	/* Avoid potential lockdep warnings from the *_flush() calls by
1668	 * ensuring the workqueue is empty up front.
1669	 */
1670	drain_workqueue(hdev->workqueue);
1671
1672	hci_dev_lock(hdev);
1673	hci_inquiry_cache_flush(hdev);
1674	hci_conn_hash_flush(hdev);
1675	hci_dev_unlock(hdev);
1676
1677	if (hdev->flush)
1678		hdev->flush(hdev);
1679
1680	atomic_set(&hdev->cmd_cnt, 1);
1681	hdev->acl_cnt = 0; hdev->sco_cnt = 0; hdev->le_cnt = 0;
1682
1683	ret = __hci_req_sync(hdev, hci_reset_req, 0, HCI_INIT_TIMEOUT, NULL);
1684
1685	hci_req_sync_unlock(hdev);
1686	return ret;
1687}
1688
1689int hci_dev_reset(__u16 dev)
1690{
1691	struct hci_dev *hdev;
1692	int err;
1693
1694	hdev = hci_dev_get(dev);
1695	if (!hdev)
1696		return -ENODEV;
1697
1698	if (!test_bit(HCI_UP, &hdev->flags)) {
1699		err = -ENETDOWN;
1700		goto done;
1701	}
1702
1703	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1704		err = -EBUSY;
1705		goto done;
1706	}
1707
1708	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1709		err = -EOPNOTSUPP;
1710		goto done;
1711	}
1712
1713	err = hci_dev_do_reset(hdev);
1714
1715done:
1716	hci_dev_put(hdev);
1717	return err;
1718}
1719
1720int hci_dev_reset_stat(__u16 dev)
1721{
1722	struct hci_dev *hdev;
1723	int ret = 0;
1724
1725	hdev = hci_dev_get(dev);
1726	if (!hdev)
1727		return -ENODEV;
1728
1729	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1730		ret = -EBUSY;
1731		goto done;
1732	}
1733
1734	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1735		ret = -EOPNOTSUPP;
1736		goto done;
1737	}
1738
1739	memset(&hdev->stat, 0, sizeof(struct hci_dev_stats));
1740
1741done:
1742	hci_dev_put(hdev);
1743	return ret;
1744}
1745
1746static void hci_update_scan_state(struct hci_dev *hdev, u8 scan)
1747{
1748	bool conn_changed, discov_changed;
1749
1750	BT_DBG("%s scan 0x%02x", hdev->name, scan);
1751
1752	if ((scan & SCAN_PAGE))
1753		conn_changed = !hci_dev_test_and_set_flag(hdev,
1754							  HCI_CONNECTABLE);
1755	else
1756		conn_changed = hci_dev_test_and_clear_flag(hdev,
1757							   HCI_CONNECTABLE);
1758
1759	if ((scan & SCAN_INQUIRY)) {
1760		discov_changed = !hci_dev_test_and_set_flag(hdev,
1761							    HCI_DISCOVERABLE);
1762	} else {
1763		hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
1764		discov_changed = hci_dev_test_and_clear_flag(hdev,
1765							     HCI_DISCOVERABLE);
1766	}
1767
1768	if (!hci_dev_test_flag(hdev, HCI_MGMT))
1769		return;
1770
1771	if (conn_changed || discov_changed) {
1772		/* In case this was disabled through mgmt */
1773		hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
1774
1775		if (hci_dev_test_flag(hdev, HCI_LE_ENABLED))
1776			hci_req_update_adv_data(hdev, hdev->cur_adv_instance);
1777
1778		mgmt_new_settings(hdev);
1779	}
1780}
1781
1782int hci_dev_cmd(unsigned int cmd, void __user *arg)
1783{
1784	struct hci_dev *hdev;
1785	struct hci_dev_req dr;
1786	int err = 0;
1787
1788	if (copy_from_user(&dr, arg, sizeof(dr)))
1789		return -EFAULT;
1790
1791	hdev = hci_dev_get(dr.dev_id);
1792	if (!hdev)
1793		return -ENODEV;
1794
1795	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1796		err = -EBUSY;
1797		goto done;
1798	}
1799
1800	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1801		err = -EOPNOTSUPP;
1802		goto done;
1803	}
1804
1805	if (hdev->dev_type != HCI_BREDR) {
1806		err = -EOPNOTSUPP;
1807		goto done;
1808	}
1809
1810	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
1811		err = -EOPNOTSUPP;
1812		goto done;
1813	}
1814
1815	switch (cmd) {
1816	case HCISETAUTH:
1817		err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
1818				   HCI_INIT_TIMEOUT, NULL);
1819		break;
1820
1821	case HCISETENCRYPT:
1822		if (!lmp_encrypt_capable(hdev)) {
1823			err = -EOPNOTSUPP;
1824			break;
1825		}
1826
1827		if (!test_bit(HCI_AUTH, &hdev->flags)) {
1828			/* Auth must be enabled first */
1829			err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
1830					   HCI_INIT_TIMEOUT, NULL);
1831			if (err)
1832				break;
1833		}
1834
1835		err = hci_req_sync(hdev, hci_encrypt_req, dr.dev_opt,
1836				   HCI_INIT_TIMEOUT, NULL);
1837		break;
1838
1839	case HCISETSCAN:
1840		err = hci_req_sync(hdev, hci_scan_req, dr.dev_opt,
1841				   HCI_INIT_TIMEOUT, NULL);
1842
1843		/* Ensure that the connectable and discoverable states
1844		 * get correctly modified as this was a non-mgmt change.
1845		 */
1846		if (!err)
1847			hci_update_scan_state(hdev, dr.dev_opt);
1848		break;
1849
1850	case HCISETLINKPOL:
1851		err = hci_req_sync(hdev, hci_linkpol_req, dr.dev_opt,
1852				   HCI_INIT_TIMEOUT, NULL);
1853		break;
1854
1855	case HCISETLINKMODE:
1856		hdev->link_mode = ((__u16) dr.dev_opt) &
1857					(HCI_LM_MASTER | HCI_LM_ACCEPT);
1858		break;
1859
1860	case HCISETPTYPE:
 
 
 
1861		hdev->pkt_type = (__u16) dr.dev_opt;
 
1862		break;
1863
1864	case HCISETACLMTU:
1865		hdev->acl_mtu  = *((__u16 *) &dr.dev_opt + 1);
1866		hdev->acl_pkts = *((__u16 *) &dr.dev_opt + 0);
1867		break;
1868
1869	case HCISETSCOMTU:
1870		hdev->sco_mtu  = *((__u16 *) &dr.dev_opt + 1);
1871		hdev->sco_pkts = *((__u16 *) &dr.dev_opt + 0);
1872		break;
1873
1874	default:
1875		err = -EINVAL;
1876		break;
1877	}
1878
1879done:
1880	hci_dev_put(hdev);
1881	return err;
1882}
1883
1884int hci_get_dev_list(void __user *arg)
1885{
1886	struct hci_dev *hdev;
1887	struct hci_dev_list_req *dl;
1888	struct hci_dev_req *dr;
1889	int n = 0, size, err;
1890	__u16 dev_num;
1891
1892	if (get_user(dev_num, (__u16 __user *) arg))
1893		return -EFAULT;
1894
1895	if (!dev_num || dev_num > (PAGE_SIZE * 2) / sizeof(*dr))
1896		return -EINVAL;
1897
1898	size = sizeof(*dl) + dev_num * sizeof(*dr);
1899
1900	dl = kzalloc(size, GFP_KERNEL);
1901	if (!dl)
1902		return -ENOMEM;
1903
1904	dr = dl->dev_req;
1905
1906	read_lock(&hci_dev_list_lock);
1907	list_for_each_entry(hdev, &hci_dev_list, list) {
1908		unsigned long flags = hdev->flags;
1909
1910		/* When the auto-off is configured it means the transport
1911		 * is running, but in that case still indicate that the
1912		 * device is actually down.
1913		 */
1914		if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
1915			flags &= ~BIT(HCI_UP);
1916
1917		(dr + n)->dev_id  = hdev->id;
1918		(dr + n)->dev_opt = flags;
1919
1920		if (++n >= dev_num)
1921			break;
1922	}
1923	read_unlock(&hci_dev_list_lock);
1924
1925	dl->dev_num = n;
1926	size = sizeof(*dl) + n * sizeof(*dr);
1927
1928	err = copy_to_user(arg, dl, size);
1929	kfree(dl);
1930
1931	return err ? -EFAULT : 0;
1932}
1933
1934int hci_get_dev_info(void __user *arg)
1935{
1936	struct hci_dev *hdev;
1937	struct hci_dev_info di;
1938	unsigned long flags;
1939	int err = 0;
1940
1941	if (copy_from_user(&di, arg, sizeof(di)))
1942		return -EFAULT;
1943
1944	hdev = hci_dev_get(di.dev_id);
1945	if (!hdev)
1946		return -ENODEV;
1947
1948	/* When the auto-off is configured it means the transport
1949	 * is running, but in that case still indicate that the
1950	 * device is actually down.
1951	 */
1952	if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
1953		flags = hdev->flags & ~BIT(HCI_UP);
1954	else
1955		flags = hdev->flags;
1956
1957	strcpy(di.name, hdev->name);
1958	di.bdaddr   = hdev->bdaddr;
1959	di.type     = (hdev->bus & 0x0f) | ((hdev->dev_type & 0x03) << 4);
1960	di.flags    = flags;
1961	di.pkt_type = hdev->pkt_type;
1962	if (lmp_bredr_capable(hdev)) {
1963		di.acl_mtu  = hdev->acl_mtu;
1964		di.acl_pkts = hdev->acl_pkts;
1965		di.sco_mtu  = hdev->sco_mtu;
1966		di.sco_pkts = hdev->sco_pkts;
1967	} else {
1968		di.acl_mtu  = hdev->le_mtu;
1969		di.acl_pkts = hdev->le_pkts;
1970		di.sco_mtu  = 0;
1971		di.sco_pkts = 0;
1972	}
1973	di.link_policy = hdev->link_policy;
1974	di.link_mode   = hdev->link_mode;
1975
1976	memcpy(&di.stat, &hdev->stat, sizeof(di.stat));
1977	memcpy(&di.features, &hdev->features, sizeof(di.features));
1978
1979	if (copy_to_user(arg, &di, sizeof(di)))
1980		err = -EFAULT;
1981
1982	hci_dev_put(hdev);
1983
1984	return err;
1985}
1986
1987/* ---- Interface to HCI drivers ---- */
1988
1989static int hci_rfkill_set_block(void *data, bool blocked)
1990{
1991	struct hci_dev *hdev = data;
1992
1993	BT_DBG("%p name %s blocked %d", hdev, hdev->name, blocked);
1994
1995	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL))
1996		return -EBUSY;
1997
1998	if (blocked) {
1999		hci_dev_set_flag(hdev, HCI_RFKILLED);
2000		if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
2001		    !hci_dev_test_flag(hdev, HCI_CONFIG))
2002			hci_dev_do_close(hdev);
2003	} else {
2004		hci_dev_clear_flag(hdev, HCI_RFKILLED);
2005	}
2006
2007	return 0;
2008}
2009
2010static const struct rfkill_ops hci_rfkill_ops = {
2011	.set_block = hci_rfkill_set_block,
2012};
2013
2014static void hci_power_on(struct work_struct *work)
2015{
2016	struct hci_dev *hdev = container_of(work, struct hci_dev, power_on);
2017	int err;
2018
2019	BT_DBG("%s", hdev->name);
2020
2021	if (test_bit(HCI_UP, &hdev->flags) &&
2022	    hci_dev_test_flag(hdev, HCI_MGMT) &&
2023	    hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) {
2024		cancel_delayed_work(&hdev->power_off);
2025		hci_req_sync_lock(hdev);
2026		err = __hci_req_hci_power_on(hdev);
2027		hci_req_sync_unlock(hdev);
2028		mgmt_power_on(hdev, err);
2029		return;
2030	}
2031
2032	err = hci_dev_do_open(hdev);
2033	if (err < 0) {
2034		hci_dev_lock(hdev);
2035		mgmt_set_powered_failed(hdev, err);
2036		hci_dev_unlock(hdev);
2037		return;
2038	}
2039
2040	/* During the HCI setup phase, a few error conditions are
2041	 * ignored and they need to be checked now. If they are still
2042	 * valid, it is important to turn the device back off.
2043	 */
2044	if (hci_dev_test_flag(hdev, HCI_RFKILLED) ||
2045	    hci_dev_test_flag(hdev, HCI_UNCONFIGURED) ||
2046	    (hdev->dev_type == HCI_BREDR &&
2047	     !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
2048	     !bacmp(&hdev->static_addr, BDADDR_ANY))) {
2049		hci_dev_clear_flag(hdev, HCI_AUTO_OFF);
2050		hci_dev_do_close(hdev);
2051	} else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) {
2052		queue_delayed_work(hdev->req_workqueue, &hdev->power_off,
2053				   HCI_AUTO_OFF_TIMEOUT);
2054	}
2055
2056	if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) {
2057		/* For unconfigured devices, set the HCI_RAW flag
2058		 * so that userspace can easily identify them.
2059		 */
2060		if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
2061			set_bit(HCI_RAW, &hdev->flags);
2062
2063		/* For fully configured devices, this will send
2064		 * the Index Added event. For unconfigured devices,
2065		 * it will send Unconfigued Index Added event.
2066		 *
2067		 * Devices with HCI_QUIRK_RAW_DEVICE are ignored
2068		 * and no event will be send.
2069		 */
2070		mgmt_index_added(hdev);
2071	} else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) {
2072		/* When the controller is now configured, then it
2073		 * is important to clear the HCI_RAW flag.
2074		 */
2075		if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
2076			clear_bit(HCI_RAW, &hdev->flags);
2077
2078		/* Powering on the controller with HCI_CONFIG set only
2079		 * happens with the transition from unconfigured to
2080		 * configured. This will send the Index Added event.
2081		 */
2082		mgmt_index_added(hdev);
2083	}
2084}
2085
2086static void hci_power_off(struct work_struct *work)
2087{
2088	struct hci_dev *hdev = container_of(work, struct hci_dev,
2089					    power_off.work);
2090
2091	BT_DBG("%s", hdev->name);
2092
2093	hci_dev_do_close(hdev);
2094}
2095
2096static void hci_error_reset(struct work_struct *work)
2097{
2098	struct hci_dev *hdev = container_of(work, struct hci_dev, error_reset);
2099
2100	BT_DBG("%s", hdev->name);
2101
2102	if (hdev->hw_error)
2103		hdev->hw_error(hdev, hdev->hw_error_code);
2104	else
2105		BT_ERR("%s hardware error 0x%2.2x", hdev->name,
2106		       hdev->hw_error_code);
2107
2108	if (hci_dev_do_close(hdev))
2109		return;
2110
2111	hci_dev_do_open(hdev);
2112}
2113
2114void hci_uuids_clear(struct hci_dev *hdev)
2115{
2116	struct bt_uuid *uuid, *tmp;
2117
2118	list_for_each_entry_safe(uuid, tmp, &hdev->uuids, list) {
2119		list_del(&uuid->list);
2120		kfree(uuid);
2121	}
2122}
2123
2124void hci_link_keys_clear(struct hci_dev *hdev)
2125{
2126	struct link_key *key;
2127
2128	list_for_each_entry_rcu(key, &hdev->link_keys, list) {
2129		list_del_rcu(&key->list);
2130		kfree_rcu(key, rcu);
2131	}
2132}
2133
2134void hci_smp_ltks_clear(struct hci_dev *hdev)
2135{
2136	struct smp_ltk *k;
2137
2138	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2139		list_del_rcu(&k->list);
2140		kfree_rcu(k, rcu);
2141	}
2142}
2143
2144void hci_smp_irks_clear(struct hci_dev *hdev)
2145{
2146	struct smp_irk *k;
2147
2148	list_for_each_entry_rcu(k, &hdev->identity_resolving_keys, list) {
2149		list_del_rcu(&k->list);
2150		kfree_rcu(k, rcu);
2151	}
2152}
2153
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2154struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
2155{
2156	struct link_key *k;
2157
2158	rcu_read_lock();
2159	list_for_each_entry_rcu(k, &hdev->link_keys, list) {
2160		if (bacmp(bdaddr, &k->bdaddr) == 0) {
2161			rcu_read_unlock();
 
 
 
 
 
 
 
 
 
 
2162			return k;
2163		}
2164	}
2165	rcu_read_unlock();
2166
2167	return NULL;
2168}
2169
2170static bool hci_persistent_key(struct hci_dev *hdev, struct hci_conn *conn,
2171			       u8 key_type, u8 old_key_type)
2172{
2173	/* Legacy key */
2174	if (key_type < 0x03)
2175		return true;
2176
2177	/* Debug keys are insecure so don't store them persistently */
2178	if (key_type == HCI_LK_DEBUG_COMBINATION)
2179		return false;
2180
2181	/* Changed combination key and there's no previous one */
2182	if (key_type == HCI_LK_CHANGED_COMBINATION && old_key_type == 0xff)
2183		return false;
2184
2185	/* Security mode 3 case */
2186	if (!conn)
2187		return true;
2188
2189	/* BR/EDR key derived using SC from an LE link */
2190	if (conn->type == LE_LINK)
2191		return true;
2192
2193	/* Neither local nor remote side had no-bonding as requirement */
2194	if (conn->auth_type > 0x01 && conn->remote_auth > 0x01)
2195		return true;
2196
2197	/* Local side had dedicated bonding as requirement */
2198	if (conn->auth_type == 0x02 || conn->auth_type == 0x03)
2199		return true;
2200
2201	/* Remote side had dedicated bonding as requirement */
2202	if (conn->remote_auth == 0x02 || conn->remote_auth == 0x03)
2203		return true;
2204
2205	/* If none of the above criteria match, then don't store the key
2206	 * persistently */
2207	return false;
2208}
2209
2210static u8 ltk_role(u8 type)
2211{
2212	if (type == SMP_LTK)
2213		return HCI_ROLE_MASTER;
2214
2215	return HCI_ROLE_SLAVE;
2216}
2217
2218struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2219			     u8 addr_type, u8 role)
2220{
2221	struct smp_ltk *k;
2222
2223	rcu_read_lock();
2224	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2225		if (addr_type != k->bdaddr_type || bacmp(bdaddr, &k->bdaddr))
2226			continue;
2227
2228		if (smp_ltk_is_sc(k) || ltk_role(k->type) == role) {
2229			rcu_read_unlock();
 
 
 
 
 
 
 
 
 
2230			return k;
2231		}
2232	}
2233	rcu_read_unlock();
2234
2235	return NULL;
2236}
2237
2238struct smp_irk *hci_find_irk_by_rpa(struct hci_dev *hdev, bdaddr_t *rpa)
2239{
 
2240	struct smp_irk *irk;
2241
2242	rcu_read_lock();
2243	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2244		if (!bacmp(&irk->rpa, rpa)) {
2245			rcu_read_unlock();
2246			return irk;
2247		}
2248	}
2249
2250	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2251		if (smp_irk_matches(hdev, irk->val, rpa)) {
2252			bacpy(&irk->rpa, rpa);
2253			rcu_read_unlock();
2254			return irk;
2255		}
2256	}
 
 
 
 
 
 
 
 
 
2257	rcu_read_unlock();
2258
2259	return NULL;
2260}
2261
2262struct smp_irk *hci_find_irk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr,
2263				     u8 addr_type)
2264{
 
2265	struct smp_irk *irk;
2266
2267	/* Identity Address must be public or static random */
2268	if (addr_type == ADDR_LE_DEV_RANDOM && (bdaddr->b[5] & 0xc0) != 0xc0)
2269		return NULL;
2270
2271	rcu_read_lock();
2272	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2273		if (addr_type == irk->addr_type &&
2274		    bacmp(bdaddr, &irk->bdaddr) == 0) {
2275			rcu_read_unlock();
2276			return irk;
2277		}
2278	}
 
 
 
 
 
 
 
 
 
 
2279	rcu_read_unlock();
2280
2281	return NULL;
2282}
2283
2284struct link_key *hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn,
2285				  bdaddr_t *bdaddr, u8 *val, u8 type,
2286				  u8 pin_len, bool *persistent)
2287{
2288	struct link_key *key, *old_key;
2289	u8 old_key_type;
2290
2291	old_key = hci_find_link_key(hdev, bdaddr);
2292	if (old_key) {
2293		old_key_type = old_key->type;
2294		key = old_key;
2295	} else {
2296		old_key_type = conn ? conn->key_type : 0xff;
2297		key = kzalloc(sizeof(*key), GFP_KERNEL);
2298		if (!key)
2299			return NULL;
2300		list_add_rcu(&key->list, &hdev->link_keys);
2301	}
2302
2303	BT_DBG("%s key for %pMR type %u", hdev->name, bdaddr, type);
2304
2305	/* Some buggy controller combinations generate a changed
2306	 * combination key for legacy pairing even when there's no
2307	 * previous key */
2308	if (type == HCI_LK_CHANGED_COMBINATION &&
2309	    (!conn || conn->remote_auth == 0xff) && old_key_type == 0xff) {
2310		type = HCI_LK_COMBINATION;
2311		if (conn)
2312			conn->key_type = type;
2313	}
2314
2315	bacpy(&key->bdaddr, bdaddr);
2316	memcpy(key->val, val, HCI_LINK_KEY_SIZE);
2317	key->pin_len = pin_len;
2318
2319	if (type == HCI_LK_CHANGED_COMBINATION)
2320		key->type = old_key_type;
2321	else
2322		key->type = type;
2323
2324	if (persistent)
2325		*persistent = hci_persistent_key(hdev, conn, type,
2326						 old_key_type);
2327
2328	return key;
2329}
2330
2331struct smp_ltk *hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2332			    u8 addr_type, u8 type, u8 authenticated,
2333			    u8 tk[16], u8 enc_size, __le16 ediv, __le64 rand)
2334{
2335	struct smp_ltk *key, *old_key;
2336	u8 role = ltk_role(type);
2337
2338	old_key = hci_find_ltk(hdev, bdaddr, addr_type, role);
2339	if (old_key)
2340		key = old_key;
2341	else {
2342		key = kzalloc(sizeof(*key), GFP_KERNEL);
2343		if (!key)
2344			return NULL;
2345		list_add_rcu(&key->list, &hdev->long_term_keys);
2346	}
2347
2348	bacpy(&key->bdaddr, bdaddr);
2349	key->bdaddr_type = addr_type;
2350	memcpy(key->val, tk, sizeof(key->val));
2351	key->authenticated = authenticated;
2352	key->ediv = ediv;
2353	key->rand = rand;
2354	key->enc_size = enc_size;
2355	key->type = type;
2356
2357	return key;
2358}
2359
2360struct smp_irk *hci_add_irk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2361			    u8 addr_type, u8 val[16], bdaddr_t *rpa)
2362{
2363	struct smp_irk *irk;
2364
2365	irk = hci_find_irk_by_addr(hdev, bdaddr, addr_type);
2366	if (!irk) {
2367		irk = kzalloc(sizeof(*irk), GFP_KERNEL);
2368		if (!irk)
2369			return NULL;
2370
2371		bacpy(&irk->bdaddr, bdaddr);
2372		irk->addr_type = addr_type;
2373
2374		list_add_rcu(&irk->list, &hdev->identity_resolving_keys);
2375	}
2376
2377	memcpy(irk->val, val, 16);
2378	bacpy(&irk->rpa, rpa);
2379
2380	return irk;
2381}
2382
2383int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
2384{
2385	struct link_key *key;
2386
2387	key = hci_find_link_key(hdev, bdaddr);
2388	if (!key)
2389		return -ENOENT;
2390
2391	BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2392
2393	list_del_rcu(&key->list);
2394	kfree_rcu(key, rcu);
2395
2396	return 0;
2397}
2398
2399int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type)
2400{
2401	struct smp_ltk *k;
2402	int removed = 0;
2403
2404	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2405		if (bacmp(bdaddr, &k->bdaddr) || k->bdaddr_type != bdaddr_type)
2406			continue;
2407
2408		BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2409
2410		list_del_rcu(&k->list);
2411		kfree_rcu(k, rcu);
2412		removed++;
2413	}
2414
2415	return removed ? 0 : -ENOENT;
2416}
2417
2418void hci_remove_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type)
2419{
2420	struct smp_irk *k;
2421
2422	list_for_each_entry_rcu(k, &hdev->identity_resolving_keys, list) {
2423		if (bacmp(bdaddr, &k->bdaddr) || k->addr_type != addr_type)
2424			continue;
2425
2426		BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2427
2428		list_del_rcu(&k->list);
2429		kfree_rcu(k, rcu);
2430	}
2431}
2432
2433bool hci_bdaddr_is_paired(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type)
2434{
2435	struct smp_ltk *k;
2436	struct smp_irk *irk;
2437	u8 addr_type;
2438
2439	if (type == BDADDR_BREDR) {
2440		if (hci_find_link_key(hdev, bdaddr))
2441			return true;
2442		return false;
2443	}
2444
2445	/* Convert to HCI addr type which struct smp_ltk uses */
2446	if (type == BDADDR_LE_PUBLIC)
2447		addr_type = ADDR_LE_DEV_PUBLIC;
2448	else
2449		addr_type = ADDR_LE_DEV_RANDOM;
2450
2451	irk = hci_get_irk(hdev, bdaddr, addr_type);
2452	if (irk) {
2453		bdaddr = &irk->bdaddr;
2454		addr_type = irk->addr_type;
2455	}
2456
2457	rcu_read_lock();
2458	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2459		if (k->bdaddr_type == addr_type && !bacmp(bdaddr, &k->bdaddr)) {
2460			rcu_read_unlock();
2461			return true;
2462		}
2463	}
2464	rcu_read_unlock();
2465
2466	return false;
2467}
2468
2469/* HCI command timer function */
2470static void hci_cmd_timeout(struct work_struct *work)
2471{
2472	struct hci_dev *hdev = container_of(work, struct hci_dev,
2473					    cmd_timer.work);
2474
2475	if (hdev->sent_cmd) {
2476		struct hci_command_hdr *sent = (void *) hdev->sent_cmd->data;
2477		u16 opcode = __le16_to_cpu(sent->opcode);
2478
2479		BT_ERR("%s command 0x%4.4x tx timeout", hdev->name, opcode);
2480	} else {
2481		BT_ERR("%s command tx timeout", hdev->name);
2482	}
2483
 
 
 
2484	atomic_set(&hdev->cmd_cnt, 1);
2485	queue_work(hdev->workqueue, &hdev->cmd_work);
2486}
2487
2488struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev,
2489					  bdaddr_t *bdaddr, u8 bdaddr_type)
2490{
2491	struct oob_data *data;
2492
2493	list_for_each_entry(data, &hdev->remote_oob_data, list) {
2494		if (bacmp(bdaddr, &data->bdaddr) != 0)
2495			continue;
2496		if (data->bdaddr_type != bdaddr_type)
2497			continue;
2498		return data;
2499	}
2500
2501	return NULL;
2502}
2503
2504int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
2505			       u8 bdaddr_type)
2506{
2507	struct oob_data *data;
2508
2509	data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
2510	if (!data)
2511		return -ENOENT;
2512
2513	BT_DBG("%s removing %pMR (%u)", hdev->name, bdaddr, bdaddr_type);
2514
2515	list_del(&data->list);
2516	kfree(data);
2517
2518	return 0;
2519}
2520
2521void hci_remote_oob_data_clear(struct hci_dev *hdev)
2522{
2523	struct oob_data *data, *n;
2524
2525	list_for_each_entry_safe(data, n, &hdev->remote_oob_data, list) {
2526		list_del(&data->list);
2527		kfree(data);
2528	}
2529}
2530
2531int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
2532			    u8 bdaddr_type, u8 *hash192, u8 *rand192,
2533			    u8 *hash256, u8 *rand256)
2534{
2535	struct oob_data *data;
2536
2537	data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
2538	if (!data) {
2539		data = kmalloc(sizeof(*data), GFP_KERNEL);
2540		if (!data)
2541			return -ENOMEM;
2542
2543		bacpy(&data->bdaddr, bdaddr);
2544		data->bdaddr_type = bdaddr_type;
2545		list_add(&data->list, &hdev->remote_oob_data);
2546	}
2547
2548	if (hash192 && rand192) {
2549		memcpy(data->hash192, hash192, sizeof(data->hash192));
2550		memcpy(data->rand192, rand192, sizeof(data->rand192));
2551		if (hash256 && rand256)
2552			data->present = 0x03;
2553	} else {
2554		memset(data->hash192, 0, sizeof(data->hash192));
2555		memset(data->rand192, 0, sizeof(data->rand192));
2556		if (hash256 && rand256)
2557			data->present = 0x02;
2558		else
2559			data->present = 0x00;
2560	}
2561
2562	if (hash256 && rand256) {
2563		memcpy(data->hash256, hash256, sizeof(data->hash256));
2564		memcpy(data->rand256, rand256, sizeof(data->rand256));
2565	} else {
2566		memset(data->hash256, 0, sizeof(data->hash256));
2567		memset(data->rand256, 0, sizeof(data->rand256));
2568		if (hash192 && rand192)
2569			data->present = 0x01;
2570	}
2571
2572	BT_DBG("%s for %pMR", hdev->name, bdaddr);
2573
2574	return 0;
2575}
2576
2577/* This function requires the caller holds hdev->lock */
2578struct adv_info *hci_find_adv_instance(struct hci_dev *hdev, u8 instance)
2579{
2580	struct adv_info *adv_instance;
2581
2582	list_for_each_entry(adv_instance, &hdev->adv_instances, list) {
2583		if (adv_instance->instance == instance)
2584			return adv_instance;
2585	}
2586
2587	return NULL;
2588}
2589
2590/* This function requires the caller holds hdev->lock */
2591struct adv_info *hci_get_next_instance(struct hci_dev *hdev, u8 instance)
2592{
2593	struct adv_info *cur_instance;
2594
2595	cur_instance = hci_find_adv_instance(hdev, instance);
2596	if (!cur_instance)
2597		return NULL;
2598
2599	if (cur_instance == list_last_entry(&hdev->adv_instances,
2600					    struct adv_info, list))
2601		return list_first_entry(&hdev->adv_instances,
2602						 struct adv_info, list);
2603	else
2604		return list_next_entry(cur_instance, list);
2605}
2606
2607/* This function requires the caller holds hdev->lock */
2608int hci_remove_adv_instance(struct hci_dev *hdev, u8 instance)
2609{
2610	struct adv_info *adv_instance;
2611
2612	adv_instance = hci_find_adv_instance(hdev, instance);
2613	if (!adv_instance)
2614		return -ENOENT;
2615
2616	BT_DBG("%s removing %dMR", hdev->name, instance);
2617
2618	if (hdev->cur_adv_instance == instance) {
2619		if (hdev->adv_instance_timeout) {
2620			cancel_delayed_work(&hdev->adv_instance_expire);
2621			hdev->adv_instance_timeout = 0;
2622		}
2623		hdev->cur_adv_instance = 0x00;
2624	}
2625
 
 
2626	list_del(&adv_instance->list);
2627	kfree(adv_instance);
2628
2629	hdev->adv_instance_cnt--;
2630
2631	return 0;
2632}
2633
 
 
 
 
 
 
 
 
2634/* This function requires the caller holds hdev->lock */
2635void hci_adv_instances_clear(struct hci_dev *hdev)
2636{
2637	struct adv_info *adv_instance, *n;
2638
2639	if (hdev->adv_instance_timeout) {
2640		cancel_delayed_work(&hdev->adv_instance_expire);
2641		hdev->adv_instance_timeout = 0;
2642	}
2643
2644	list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list) {
 
2645		list_del(&adv_instance->list);
2646		kfree(adv_instance);
2647	}
2648
2649	hdev->adv_instance_cnt = 0;
2650	hdev->cur_adv_instance = 0x00;
2651}
2652
 
 
 
 
 
 
 
 
 
 
2653/* This function requires the caller holds hdev->lock */
2654int hci_add_adv_instance(struct hci_dev *hdev, u8 instance, u32 flags,
2655			 u16 adv_data_len, u8 *adv_data,
2656			 u16 scan_rsp_len, u8 *scan_rsp_data,
2657			 u16 timeout, u16 duration)
2658{
2659	struct adv_info *adv_instance;
2660
2661	adv_instance = hci_find_adv_instance(hdev, instance);
2662	if (adv_instance) {
2663		memset(adv_instance->adv_data, 0,
2664		       sizeof(adv_instance->adv_data));
2665		memset(adv_instance->scan_rsp_data, 0,
2666		       sizeof(adv_instance->scan_rsp_data));
2667	} else {
2668		if (hdev->adv_instance_cnt >= HCI_MAX_ADV_INSTANCES ||
2669		    instance < 1 || instance > HCI_MAX_ADV_INSTANCES)
2670			return -EOVERFLOW;
2671
2672		adv_instance = kzalloc(sizeof(*adv_instance), GFP_KERNEL);
2673		if (!adv_instance)
2674			return -ENOMEM;
2675
2676		adv_instance->pending = true;
2677		adv_instance->instance = instance;
2678		list_add(&adv_instance->list, &hdev->adv_instances);
2679		hdev->adv_instance_cnt++;
2680	}
2681
2682	adv_instance->flags = flags;
2683	adv_instance->adv_data_len = adv_data_len;
2684	adv_instance->scan_rsp_len = scan_rsp_len;
2685
2686	if (adv_data_len)
2687		memcpy(adv_instance->adv_data, adv_data, adv_data_len);
2688
2689	if (scan_rsp_len)
2690		memcpy(adv_instance->scan_rsp_data,
2691		       scan_rsp_data, scan_rsp_len);
2692
2693	adv_instance->timeout = timeout;
2694	adv_instance->remaining_time = timeout;
2695
2696	if (duration == 0)
2697		adv_instance->duration = HCI_DEFAULT_ADV_DURATION;
2698	else
2699		adv_instance->duration = duration;
2700
 
 
 
 
 
2701	BT_DBG("%s for %dMR", hdev->name, instance);
2702
2703	return 0;
2704}
2705
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2706struct bdaddr_list *hci_bdaddr_list_lookup(struct list_head *bdaddr_list,
2707					 bdaddr_t *bdaddr, u8 type)
2708{
2709	struct bdaddr_list *b;
2710
2711	list_for_each_entry(b, bdaddr_list, list) {
2712		if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2713			return b;
2714	}
2715
2716	return NULL;
2717}
2718
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2719void hci_bdaddr_list_clear(struct list_head *bdaddr_list)
2720{
2721	struct bdaddr_list *b, *n;
2722
2723	list_for_each_entry_safe(b, n, bdaddr_list, list) {
2724		list_del(&b->list);
2725		kfree(b);
2726	}
2727}
2728
2729int hci_bdaddr_list_add(struct list_head *list, bdaddr_t *bdaddr, u8 type)
2730{
2731	struct bdaddr_list *entry;
2732
2733	if (!bacmp(bdaddr, BDADDR_ANY))
2734		return -EBADF;
2735
2736	if (hci_bdaddr_list_lookup(list, bdaddr, type))
2737		return -EEXIST;
2738
2739	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
2740	if (!entry)
2741		return -ENOMEM;
2742
2743	bacpy(&entry->bdaddr, bdaddr);
2744	entry->bdaddr_type = type;
2745
2746	list_add(&entry->list, list);
2747
2748	return 0;
2749}
2750
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2751int hci_bdaddr_list_del(struct list_head *list, bdaddr_t *bdaddr, u8 type)
2752{
2753	struct bdaddr_list *entry;
2754
2755	if (!bacmp(bdaddr, BDADDR_ANY)) {
2756		hci_bdaddr_list_clear(list);
2757		return 0;
2758	}
2759
2760	entry = hci_bdaddr_list_lookup(list, bdaddr, type);
2761	if (!entry)
2762		return -ENOENT;
2763
2764	list_del(&entry->list);
2765	kfree(entry);
2766
2767	return 0;
2768}
2769
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2770/* This function requires the caller holds hdev->lock */
2771struct hci_conn_params *hci_conn_params_lookup(struct hci_dev *hdev,
2772					       bdaddr_t *addr, u8 addr_type)
2773{
2774	struct hci_conn_params *params;
2775
2776	list_for_each_entry(params, &hdev->le_conn_params, list) {
2777		if (bacmp(&params->addr, addr) == 0 &&
2778		    params->addr_type == addr_type) {
2779			return params;
2780		}
2781	}
2782
2783	return NULL;
2784}
2785
2786/* This function requires the caller holds hdev->lock */
2787struct hci_conn_params *hci_pend_le_action_lookup(struct list_head *list,
2788						  bdaddr_t *addr, u8 addr_type)
2789{
2790	struct hci_conn_params *param;
2791
 
 
 
 
 
 
 
 
 
2792	list_for_each_entry(param, list, action) {
2793		if (bacmp(&param->addr, addr) == 0 &&
2794		    param->addr_type == addr_type)
2795			return param;
2796	}
2797
2798	return NULL;
2799}
2800
2801/* This function requires the caller holds hdev->lock */
2802struct hci_conn_params *hci_conn_params_add(struct hci_dev *hdev,
2803					    bdaddr_t *addr, u8 addr_type)
2804{
2805	struct hci_conn_params *params;
2806
2807	params = hci_conn_params_lookup(hdev, addr, addr_type);
2808	if (params)
2809		return params;
2810
2811	params = kzalloc(sizeof(*params), GFP_KERNEL);
2812	if (!params) {
2813		BT_ERR("Out of memory");
2814		return NULL;
2815	}
2816
2817	bacpy(&params->addr, addr);
2818	params->addr_type = addr_type;
2819
2820	list_add(&params->list, &hdev->le_conn_params);
2821	INIT_LIST_HEAD(&params->action);
2822
2823	params->conn_min_interval = hdev->le_conn_min_interval;
2824	params->conn_max_interval = hdev->le_conn_max_interval;
2825	params->conn_latency = hdev->le_conn_latency;
2826	params->supervision_timeout = hdev->le_supv_timeout;
2827	params->auto_connect = HCI_AUTO_CONN_DISABLED;
2828
2829	BT_DBG("addr %pMR (type %u)", addr, addr_type);
2830
2831	return params;
2832}
2833
2834static void hci_conn_params_free(struct hci_conn_params *params)
2835{
2836	if (params->conn) {
2837		hci_conn_drop(params->conn);
2838		hci_conn_put(params->conn);
2839	}
2840
2841	list_del(&params->action);
2842	list_del(&params->list);
2843	kfree(params);
2844}
2845
2846/* This function requires the caller holds hdev->lock */
2847void hci_conn_params_del(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type)
2848{
2849	struct hci_conn_params *params;
2850
2851	params = hci_conn_params_lookup(hdev, addr, addr_type);
2852	if (!params)
2853		return;
2854
2855	hci_conn_params_free(params);
2856
2857	hci_update_background_scan(hdev);
2858
2859	BT_DBG("addr %pMR (type %u)", addr, addr_type);
2860}
2861
2862/* This function requires the caller holds hdev->lock */
2863void hci_conn_params_clear_disabled(struct hci_dev *hdev)
2864{
2865	struct hci_conn_params *params, *tmp;
2866
2867	list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list) {
2868		if (params->auto_connect != HCI_AUTO_CONN_DISABLED)
2869			continue;
2870
2871		/* If trying to estabilish one time connection to disabled
2872		 * device, leave the params, but mark them as just once.
2873		 */
2874		if (params->explicit_connect) {
2875			params->auto_connect = HCI_AUTO_CONN_EXPLICIT;
2876			continue;
2877		}
2878
2879		list_del(&params->list);
2880		kfree(params);
2881	}
2882
2883	BT_DBG("All LE disabled connection parameters were removed");
2884}
2885
2886/* This function requires the caller holds hdev->lock */
2887static void hci_conn_params_clear_all(struct hci_dev *hdev)
2888{
2889	struct hci_conn_params *params, *tmp;
2890
2891	list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list)
2892		hci_conn_params_free(params);
2893
2894	BT_DBG("All LE connection parameters were removed");
2895}
2896
2897/* Copy the Identity Address of the controller.
2898 *
2899 * If the controller has a public BD_ADDR, then by default use that one.
2900 * If this is a LE only controller without a public address, default to
2901 * the static random address.
2902 *
2903 * For debugging purposes it is possible to force controllers with a
2904 * public address to use the static random address instead.
2905 *
2906 * In case BR/EDR has been disabled on a dual-mode controller and
2907 * userspace has configured a static address, then that address
2908 * becomes the identity address instead of the public BR/EDR address.
2909 */
2910void hci_copy_identity_address(struct hci_dev *hdev, bdaddr_t *bdaddr,
2911			       u8 *bdaddr_type)
2912{
2913	if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
2914	    !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
2915	    (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
2916	     bacmp(&hdev->static_addr, BDADDR_ANY))) {
2917		bacpy(bdaddr, &hdev->static_addr);
2918		*bdaddr_type = ADDR_LE_DEV_RANDOM;
2919	} else {
2920		bacpy(bdaddr, &hdev->bdaddr);
2921		*bdaddr_type = ADDR_LE_DEV_PUBLIC;
2922	}
2923}
2924
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2925/* Alloc HCI device */
2926struct hci_dev *hci_alloc_dev(void)
2927{
2928	struct hci_dev *hdev;
2929
2930	hdev = kzalloc(sizeof(*hdev), GFP_KERNEL);
2931	if (!hdev)
2932		return NULL;
2933
2934	hdev->pkt_type  = (HCI_DM1 | HCI_DH1 | HCI_HV1);
2935	hdev->esco_type = (ESCO_HV1);
2936	hdev->link_mode = (HCI_LM_ACCEPT);
2937	hdev->num_iac = 0x01;		/* One IAC support is mandatory */
2938	hdev->io_capability = 0x03;	/* No Input No Output */
2939	hdev->manufacturer = 0xffff;	/* Default to internal use */
2940	hdev->inq_tx_power = HCI_TX_POWER_INVALID;
2941	hdev->adv_tx_power = HCI_TX_POWER_INVALID;
2942	hdev->adv_instance_cnt = 0;
2943	hdev->cur_adv_instance = 0x00;
2944	hdev->adv_instance_timeout = 0;
2945
2946	hdev->sniff_max_interval = 800;
2947	hdev->sniff_min_interval = 80;
2948
2949	hdev->le_adv_channel_map = 0x07;
2950	hdev->le_adv_min_interval = 0x0800;
2951	hdev->le_adv_max_interval = 0x0800;
2952	hdev->le_scan_interval = 0x0060;
2953	hdev->le_scan_window = 0x0030;
2954	hdev->le_conn_min_interval = 0x0028;
2955	hdev->le_conn_max_interval = 0x0038;
 
 
 
 
 
 
2956	hdev->le_conn_latency = 0x0000;
2957	hdev->le_supv_timeout = 0x002a;
2958	hdev->le_def_tx_len = 0x001b;
2959	hdev->le_def_tx_time = 0x0148;
2960	hdev->le_max_tx_len = 0x001b;
2961	hdev->le_max_tx_time = 0x0148;
2962	hdev->le_max_rx_len = 0x001b;
2963	hdev->le_max_rx_time = 0x0148;
 
 
 
 
 
 
 
2964
2965	hdev->rpa_timeout = HCI_DEFAULT_RPA_TIMEOUT;
2966	hdev->discov_interleaved_timeout = DISCOV_INTERLEAVED_TIMEOUT;
2967	hdev->conn_info_min_age = DEFAULT_CONN_INFO_MIN_AGE;
2968	hdev->conn_info_max_age = DEFAULT_CONN_INFO_MAX_AGE;
 
 
 
 
 
 
 
2969
2970	mutex_init(&hdev->lock);
2971	mutex_init(&hdev->req_lock);
2972
2973	INIT_LIST_HEAD(&hdev->mgmt_pending);
2974	INIT_LIST_HEAD(&hdev->blacklist);
2975	INIT_LIST_HEAD(&hdev->whitelist);
2976	INIT_LIST_HEAD(&hdev->uuids);
2977	INIT_LIST_HEAD(&hdev->link_keys);
2978	INIT_LIST_HEAD(&hdev->long_term_keys);
2979	INIT_LIST_HEAD(&hdev->identity_resolving_keys);
2980	INIT_LIST_HEAD(&hdev->remote_oob_data);
2981	INIT_LIST_HEAD(&hdev->le_white_list);
 
2982	INIT_LIST_HEAD(&hdev->le_conn_params);
2983	INIT_LIST_HEAD(&hdev->pend_le_conns);
2984	INIT_LIST_HEAD(&hdev->pend_le_reports);
2985	INIT_LIST_HEAD(&hdev->conn_hash.list);
2986	INIT_LIST_HEAD(&hdev->adv_instances);
 
2987
2988	INIT_WORK(&hdev->rx_work, hci_rx_work);
2989	INIT_WORK(&hdev->cmd_work, hci_cmd_work);
2990	INIT_WORK(&hdev->tx_work, hci_tx_work);
2991	INIT_WORK(&hdev->power_on, hci_power_on);
2992	INIT_WORK(&hdev->error_reset, hci_error_reset);
 
2993
2994	INIT_DELAYED_WORK(&hdev->power_off, hci_power_off);
2995
2996	skb_queue_head_init(&hdev->rx_q);
2997	skb_queue_head_init(&hdev->cmd_q);
2998	skb_queue_head_init(&hdev->raw_q);
2999
3000	init_waitqueue_head(&hdev->req_wait_q);
 
3001
3002	INIT_DELAYED_WORK(&hdev->cmd_timer, hci_cmd_timeout);
3003
3004	hci_request_setup(hdev);
3005
3006	hci_init_sysfs(hdev);
3007	discovery_init(hdev);
3008
3009	return hdev;
3010}
3011EXPORT_SYMBOL(hci_alloc_dev);
3012
3013/* Free HCI device */
3014void hci_free_dev(struct hci_dev *hdev)
3015{
3016	/* will free via device release */
3017	put_device(&hdev->dev);
3018}
3019EXPORT_SYMBOL(hci_free_dev);
3020
3021/* Register HCI device */
3022int hci_register_dev(struct hci_dev *hdev)
3023{
3024	int id, error;
3025
3026	if (!hdev->open || !hdev->close || !hdev->send)
3027		return -EINVAL;
3028
3029	/* Do not allow HCI_AMP devices to register at index 0,
3030	 * so the index can be used as the AMP controller ID.
3031	 */
3032	switch (hdev->dev_type) {
3033	case HCI_BREDR:
3034		id = ida_simple_get(&hci_index_ida, 0, 0, GFP_KERNEL);
3035		break;
3036	case HCI_AMP:
3037		id = ida_simple_get(&hci_index_ida, 1, 0, GFP_KERNEL);
3038		break;
3039	default:
3040		return -EINVAL;
3041	}
3042
3043	if (id < 0)
3044		return id;
3045
3046	sprintf(hdev->name, "hci%d", id);
3047	hdev->id = id;
3048
3049	BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
3050
3051	hdev->workqueue = alloc_workqueue("%s", WQ_HIGHPRI | WQ_UNBOUND |
3052					  WQ_MEM_RECLAIM, 1, hdev->name);
3053	if (!hdev->workqueue) {
3054		error = -ENOMEM;
3055		goto err;
3056	}
3057
3058	hdev->req_workqueue = alloc_workqueue("%s", WQ_HIGHPRI | WQ_UNBOUND |
3059					      WQ_MEM_RECLAIM, 1, hdev->name);
3060	if (!hdev->req_workqueue) {
3061		destroy_workqueue(hdev->workqueue);
3062		error = -ENOMEM;
3063		goto err;
3064	}
3065
3066	if (!IS_ERR_OR_NULL(bt_debugfs))
3067		hdev->debugfs = debugfs_create_dir(hdev->name, bt_debugfs);
3068
3069	dev_set_name(&hdev->dev, "%s", hdev->name);
3070
3071	error = device_add(&hdev->dev);
3072	if (error < 0)
3073		goto err_wqueue;
3074
3075	hci_leds_init(hdev);
3076
3077	hdev->rfkill = rfkill_alloc(hdev->name, &hdev->dev,
3078				    RFKILL_TYPE_BLUETOOTH, &hci_rfkill_ops,
3079				    hdev);
3080	if (hdev->rfkill) {
3081		if (rfkill_register(hdev->rfkill) < 0) {
3082			rfkill_destroy(hdev->rfkill);
3083			hdev->rfkill = NULL;
3084		}
3085	}
3086
3087	if (hdev->rfkill && rfkill_blocked(hdev->rfkill))
3088		hci_dev_set_flag(hdev, HCI_RFKILLED);
3089
3090	hci_dev_set_flag(hdev, HCI_SETUP);
3091	hci_dev_set_flag(hdev, HCI_AUTO_OFF);
3092
3093	if (hdev->dev_type == HCI_BREDR) {
3094		/* Assume BR/EDR support until proven otherwise (such as
3095		 * through reading supported features during init.
3096		 */
3097		hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
3098	}
3099
3100	write_lock(&hci_dev_list_lock);
3101	list_add(&hdev->list, &hci_dev_list);
3102	write_unlock(&hci_dev_list_lock);
3103
3104	/* Devices that are marked for raw-only usage are unconfigured
3105	 * and should not be included in normal operation.
3106	 */
3107	if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
3108		hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
3109
3110	hci_sock_dev_event(hdev, HCI_DEV_REG);
3111	hci_dev_hold(hdev);
3112
 
 
 
 
 
3113	queue_work(hdev->req_workqueue, &hdev->power_on);
3114
 
 
3115	return id;
3116
3117err_wqueue:
3118	destroy_workqueue(hdev->workqueue);
3119	destroy_workqueue(hdev->req_workqueue);
3120err:
3121	ida_simple_remove(&hci_index_ida, hdev->id);
3122
3123	return error;
3124}
3125EXPORT_SYMBOL(hci_register_dev);
3126
3127/* Unregister HCI device */
3128void hci_unregister_dev(struct hci_dev *hdev)
3129{
3130	int id;
3131
3132	BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
3133
3134	hci_dev_set_flag(hdev, HCI_UNREGISTER);
3135
3136	id = hdev->id;
3137
3138	write_lock(&hci_dev_list_lock);
3139	list_del(&hdev->list);
3140	write_unlock(&hci_dev_list_lock);
3141
3142	hci_dev_do_close(hdev);
3143
3144	cancel_work_sync(&hdev->power_on);
3145
 
 
 
 
 
3146	if (!test_bit(HCI_INIT, &hdev->flags) &&
3147	    !hci_dev_test_flag(hdev, HCI_SETUP) &&
3148	    !hci_dev_test_flag(hdev, HCI_CONFIG)) {
3149		hci_dev_lock(hdev);
3150		mgmt_index_removed(hdev);
3151		hci_dev_unlock(hdev);
3152	}
3153
3154	/* mgmt_index_removed should take care of emptying the
3155	 * pending list */
3156	BUG_ON(!list_empty(&hdev->mgmt_pending));
3157
3158	hci_sock_dev_event(hdev, HCI_DEV_UNREG);
3159
3160	if (hdev->rfkill) {
3161		rfkill_unregister(hdev->rfkill);
3162		rfkill_destroy(hdev->rfkill);
3163	}
3164
3165	device_del(&hdev->dev);
3166
3167	debugfs_remove_recursive(hdev->debugfs);
 
 
3168
3169	destroy_workqueue(hdev->workqueue);
3170	destroy_workqueue(hdev->req_workqueue);
3171
3172	hci_dev_lock(hdev);
3173	hci_bdaddr_list_clear(&hdev->blacklist);
3174	hci_bdaddr_list_clear(&hdev->whitelist);
3175	hci_uuids_clear(hdev);
3176	hci_link_keys_clear(hdev);
3177	hci_smp_ltks_clear(hdev);
3178	hci_smp_irks_clear(hdev);
3179	hci_remote_oob_data_clear(hdev);
3180	hci_adv_instances_clear(hdev);
 
3181	hci_bdaddr_list_clear(&hdev->le_white_list);
 
3182	hci_conn_params_clear_all(hdev);
3183	hci_discovery_filter_clear(hdev);
 
3184	hci_dev_unlock(hdev);
3185
3186	hci_dev_put(hdev);
3187
3188	ida_simple_remove(&hci_index_ida, id);
3189}
3190EXPORT_SYMBOL(hci_unregister_dev);
3191
3192/* Suspend HCI device */
3193int hci_suspend_dev(struct hci_dev *hdev)
3194{
3195	hci_sock_dev_event(hdev, HCI_DEV_SUSPEND);
3196	return 0;
3197}
3198EXPORT_SYMBOL(hci_suspend_dev);
3199
3200/* Resume HCI device */
3201int hci_resume_dev(struct hci_dev *hdev)
3202{
3203	hci_sock_dev_event(hdev, HCI_DEV_RESUME);
3204	return 0;
3205}
3206EXPORT_SYMBOL(hci_resume_dev);
3207
3208/* Reset HCI device */
3209int hci_reset_dev(struct hci_dev *hdev)
3210{
3211	const u8 hw_err[] = { HCI_EV_HARDWARE_ERROR, 0x01, 0x00 };
3212	struct sk_buff *skb;
3213
3214	skb = bt_skb_alloc(3, GFP_ATOMIC);
3215	if (!skb)
3216		return -ENOMEM;
3217
3218	hci_skb_pkt_type(skb) = HCI_EVENT_PKT;
3219	memcpy(skb_put(skb, 3), hw_err, 3);
3220
3221	/* Send Hardware Error to upper stack */
3222	return hci_recv_frame(hdev, skb);
3223}
3224EXPORT_SYMBOL(hci_reset_dev);
3225
3226/* Receive frame from HCI drivers */
3227int hci_recv_frame(struct hci_dev *hdev, struct sk_buff *skb)
3228{
3229	if (!hdev || (!test_bit(HCI_UP, &hdev->flags)
3230		      && !test_bit(HCI_INIT, &hdev->flags))) {
3231		kfree_skb(skb);
3232		return -ENXIO;
3233	}
3234
3235	if (hci_skb_pkt_type(skb) != HCI_EVENT_PKT &&
3236	    hci_skb_pkt_type(skb) != HCI_ACLDATA_PKT &&
3237	    hci_skb_pkt_type(skb) != HCI_SCODATA_PKT) {
 
3238		kfree_skb(skb);
3239		return -EINVAL;
3240	}
3241
3242	/* Incoming skb */
3243	bt_cb(skb)->incoming = 1;
3244
3245	/* Time stamp */
3246	__net_timestamp(skb);
3247
3248	skb_queue_tail(&hdev->rx_q, skb);
3249	queue_work(hdev->workqueue, &hdev->rx_work);
3250
3251	return 0;
3252}
3253EXPORT_SYMBOL(hci_recv_frame);
3254
3255/* Receive diagnostic message from HCI drivers */
3256int hci_recv_diag(struct hci_dev *hdev, struct sk_buff *skb)
3257{
3258	/* Mark as diagnostic packet */
3259	hci_skb_pkt_type(skb) = HCI_DIAG_PKT;
3260
3261	/* Time stamp */
3262	__net_timestamp(skb);
3263
3264	skb_queue_tail(&hdev->rx_q, skb);
3265	queue_work(hdev->workqueue, &hdev->rx_work);
3266
3267	return 0;
3268}
3269EXPORT_SYMBOL(hci_recv_diag);
3270
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3271/* ---- Interface to upper protocols ---- */
3272
3273int hci_register_cb(struct hci_cb *cb)
3274{
3275	BT_DBG("%p name %s", cb, cb->name);
3276
3277	mutex_lock(&hci_cb_list_lock);
3278	list_add_tail(&cb->list, &hci_cb_list);
3279	mutex_unlock(&hci_cb_list_lock);
3280
3281	return 0;
3282}
3283EXPORT_SYMBOL(hci_register_cb);
3284
3285int hci_unregister_cb(struct hci_cb *cb)
3286{
3287	BT_DBG("%p name %s", cb, cb->name);
3288
3289	mutex_lock(&hci_cb_list_lock);
3290	list_del(&cb->list);
3291	mutex_unlock(&hci_cb_list_lock);
3292
3293	return 0;
3294}
3295EXPORT_SYMBOL(hci_unregister_cb);
3296
3297static void hci_send_frame(struct hci_dev *hdev, struct sk_buff *skb)
3298{
3299	int err;
3300
3301	BT_DBG("%s type %d len %d", hdev->name, hci_skb_pkt_type(skb),
3302	       skb->len);
3303
3304	/* Time stamp */
3305	__net_timestamp(skb);
3306
3307	/* Send copy to monitor */
3308	hci_send_to_monitor(hdev, skb);
3309
3310	if (atomic_read(&hdev->promisc)) {
3311		/* Send copy to the sockets */
3312		hci_send_to_sock(hdev, skb);
3313	}
3314
3315	/* Get rid of skb owner, prior to sending to the driver. */
3316	skb_orphan(skb);
3317
3318	if (!test_bit(HCI_RUNNING, &hdev->flags)) {
3319		kfree_skb(skb);
3320		return;
3321	}
3322
3323	err = hdev->send(hdev, skb);
3324	if (err < 0) {
3325		BT_ERR("%s sending frame failed (%d)", hdev->name, err);
3326		kfree_skb(skb);
3327	}
3328}
3329
3330/* Send HCI command */
3331int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen,
3332		 const void *param)
3333{
3334	struct sk_buff *skb;
3335
3336	BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen);
3337
3338	skb = hci_prepare_cmd(hdev, opcode, plen, param);
3339	if (!skb) {
3340		BT_ERR("%s no memory for command", hdev->name);
3341		return -ENOMEM;
3342	}
3343
3344	/* Stand-alone HCI commands must be flagged as
3345	 * single-command requests.
3346	 */
3347	bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
3348
3349	skb_queue_tail(&hdev->cmd_q, skb);
3350	queue_work(hdev->workqueue, &hdev->cmd_work);
3351
3352	return 0;
3353}
3354
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3355/* Get data from the previously sent command */
3356void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode)
3357{
3358	struct hci_command_hdr *hdr;
3359
3360	if (!hdev->sent_cmd)
3361		return NULL;
3362
3363	hdr = (void *) hdev->sent_cmd->data;
3364
3365	if (hdr->opcode != cpu_to_le16(opcode))
3366		return NULL;
3367
3368	BT_DBG("%s opcode 0x%4.4x", hdev->name, opcode);
3369
3370	return hdev->sent_cmd->data + HCI_COMMAND_HDR_SIZE;
3371}
3372
3373/* Send HCI command and wait for command commplete event */
3374struct sk_buff *hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
3375			     const void *param, u32 timeout)
3376{
3377	struct sk_buff *skb;
3378
3379	if (!test_bit(HCI_UP, &hdev->flags))
3380		return ERR_PTR(-ENETDOWN);
3381
3382	bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen);
3383
3384	hci_req_sync_lock(hdev);
3385	skb = __hci_cmd_sync(hdev, opcode, plen, param, timeout);
3386	hci_req_sync_unlock(hdev);
3387
3388	return skb;
3389}
3390EXPORT_SYMBOL(hci_cmd_sync);
3391
3392/* Send ACL data */
3393static void hci_add_acl_hdr(struct sk_buff *skb, __u16 handle, __u16 flags)
3394{
3395	struct hci_acl_hdr *hdr;
3396	int len = skb->len;
3397
3398	skb_push(skb, HCI_ACL_HDR_SIZE);
3399	skb_reset_transport_header(skb);
3400	hdr = (struct hci_acl_hdr *)skb_transport_header(skb);
3401	hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
3402	hdr->dlen   = cpu_to_le16(len);
3403}
3404
3405static void hci_queue_acl(struct hci_chan *chan, struct sk_buff_head *queue,
3406			  struct sk_buff *skb, __u16 flags)
3407{
3408	struct hci_conn *conn = chan->conn;
3409	struct hci_dev *hdev = conn->hdev;
3410	struct sk_buff *list;
3411
3412	skb->len = skb_headlen(skb);
3413	skb->data_len = 0;
3414
3415	hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
3416
3417	switch (hdev->dev_type) {
3418	case HCI_BREDR:
3419		hci_add_acl_hdr(skb, conn->handle, flags);
3420		break;
3421	case HCI_AMP:
3422		hci_add_acl_hdr(skb, chan->handle, flags);
3423		break;
3424	default:
3425		BT_ERR("%s unknown dev_type %d", hdev->name, hdev->dev_type);
3426		return;
3427	}
3428
3429	list = skb_shinfo(skb)->frag_list;
3430	if (!list) {
3431		/* Non fragmented */
3432		BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
3433
3434		skb_queue_tail(queue, skb);
3435	} else {
3436		/* Fragmented */
3437		BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3438
3439		skb_shinfo(skb)->frag_list = NULL;
3440
3441		/* Queue all fragments atomically. We need to use spin_lock_bh
3442		 * here because of 6LoWPAN links, as there this function is
3443		 * called from softirq and using normal spin lock could cause
3444		 * deadlocks.
3445		 */
3446		spin_lock_bh(&queue->lock);
3447
3448		__skb_queue_tail(queue, skb);
3449
3450		flags &= ~ACL_START;
3451		flags |= ACL_CONT;
3452		do {
3453			skb = list; list = list->next;
3454
3455			hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
3456			hci_add_acl_hdr(skb, conn->handle, flags);
3457
3458			BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3459
3460			__skb_queue_tail(queue, skb);
3461		} while (list);
3462
3463		spin_unlock_bh(&queue->lock);
3464	}
3465}
3466
3467void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags)
3468{
3469	struct hci_dev *hdev = chan->conn->hdev;
3470
3471	BT_DBG("%s chan %p flags 0x%4.4x", hdev->name, chan, flags);
3472
3473	hci_queue_acl(chan, &chan->data_q, skb, flags);
3474
3475	queue_work(hdev->workqueue, &hdev->tx_work);
3476}
3477
3478/* Send SCO data */
3479void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb)
3480{
3481	struct hci_dev *hdev = conn->hdev;
3482	struct hci_sco_hdr hdr;
3483
3484	BT_DBG("%s len %d", hdev->name, skb->len);
3485
3486	hdr.handle = cpu_to_le16(conn->handle);
3487	hdr.dlen   = skb->len;
3488
3489	skb_push(skb, HCI_SCO_HDR_SIZE);
3490	skb_reset_transport_header(skb);
3491	memcpy(skb_transport_header(skb), &hdr, HCI_SCO_HDR_SIZE);
3492
3493	hci_skb_pkt_type(skb) = HCI_SCODATA_PKT;
3494
3495	skb_queue_tail(&conn->data_q, skb);
3496	queue_work(hdev->workqueue, &hdev->tx_work);
3497}
3498
3499/* ---- HCI TX task (outgoing data) ---- */
3500
3501/* HCI Connection scheduler */
3502static struct hci_conn *hci_low_sent(struct hci_dev *hdev, __u8 type,
3503				     int *quote)
3504{
3505	struct hci_conn_hash *h = &hdev->conn_hash;
3506	struct hci_conn *conn = NULL, *c;
3507	unsigned int num = 0, min = ~0;
3508
3509	/* We don't have to lock device here. Connections are always
3510	 * added and removed with TX task disabled. */
3511
3512	rcu_read_lock();
3513
3514	list_for_each_entry_rcu(c, &h->list, list) {
3515		if (c->type != type || skb_queue_empty(&c->data_q))
3516			continue;
3517
3518		if (c->state != BT_CONNECTED && c->state != BT_CONFIG)
3519			continue;
3520
3521		num++;
3522
3523		if (c->sent < min) {
3524			min  = c->sent;
3525			conn = c;
3526		}
3527
3528		if (hci_conn_num(hdev, type) == num)
3529			break;
3530	}
3531
3532	rcu_read_unlock();
3533
3534	if (conn) {
3535		int cnt, q;
3536
3537		switch (conn->type) {
3538		case ACL_LINK:
3539			cnt = hdev->acl_cnt;
3540			break;
3541		case SCO_LINK:
3542		case ESCO_LINK:
3543			cnt = hdev->sco_cnt;
3544			break;
3545		case LE_LINK:
3546			cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3547			break;
3548		default:
3549			cnt = 0;
3550			BT_ERR("Unknown link type");
3551		}
3552
3553		q = cnt / num;
3554		*quote = q ? q : 1;
3555	} else
3556		*quote = 0;
3557
3558	BT_DBG("conn %p quote %d", conn, *quote);
3559	return conn;
3560}
3561
3562static void hci_link_tx_to(struct hci_dev *hdev, __u8 type)
3563{
3564	struct hci_conn_hash *h = &hdev->conn_hash;
3565	struct hci_conn *c;
3566
3567	BT_ERR("%s link tx timeout", hdev->name);
3568
3569	rcu_read_lock();
3570
3571	/* Kill stalled connections */
3572	list_for_each_entry_rcu(c, &h->list, list) {
3573		if (c->type == type && c->sent) {
3574			BT_ERR("%s killing stalled connection %pMR",
3575			       hdev->name, &c->dst);
3576			hci_disconnect(c, HCI_ERROR_REMOTE_USER_TERM);
3577		}
3578	}
3579
3580	rcu_read_unlock();
3581}
3582
3583static struct hci_chan *hci_chan_sent(struct hci_dev *hdev, __u8 type,
3584				      int *quote)
3585{
3586	struct hci_conn_hash *h = &hdev->conn_hash;
3587	struct hci_chan *chan = NULL;
3588	unsigned int num = 0, min = ~0, cur_prio = 0;
3589	struct hci_conn *conn;
3590	int cnt, q, conn_num = 0;
3591
3592	BT_DBG("%s", hdev->name);
3593
3594	rcu_read_lock();
3595
3596	list_for_each_entry_rcu(conn, &h->list, list) {
3597		struct hci_chan *tmp;
3598
3599		if (conn->type != type)
3600			continue;
3601
3602		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3603			continue;
3604
3605		conn_num++;
3606
3607		list_for_each_entry_rcu(tmp, &conn->chan_list, list) {
3608			struct sk_buff *skb;
3609
3610			if (skb_queue_empty(&tmp->data_q))
3611				continue;
3612
3613			skb = skb_peek(&tmp->data_q);
3614			if (skb->priority < cur_prio)
3615				continue;
3616
3617			if (skb->priority > cur_prio) {
3618				num = 0;
3619				min = ~0;
3620				cur_prio = skb->priority;
3621			}
3622
3623			num++;
3624
3625			if (conn->sent < min) {
3626				min  = conn->sent;
3627				chan = tmp;
3628			}
3629		}
3630
3631		if (hci_conn_num(hdev, type) == conn_num)
3632			break;
3633	}
3634
3635	rcu_read_unlock();
3636
3637	if (!chan)
3638		return NULL;
3639
3640	switch (chan->conn->type) {
3641	case ACL_LINK:
3642		cnt = hdev->acl_cnt;
3643		break;
3644	case AMP_LINK:
3645		cnt = hdev->block_cnt;
3646		break;
3647	case SCO_LINK:
3648	case ESCO_LINK:
3649		cnt = hdev->sco_cnt;
3650		break;
3651	case LE_LINK:
3652		cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3653		break;
3654	default:
3655		cnt = 0;
3656		BT_ERR("Unknown link type");
3657	}
3658
3659	q = cnt / num;
3660	*quote = q ? q : 1;
3661	BT_DBG("chan %p quote %d", chan, *quote);
3662	return chan;
3663}
3664
3665static void hci_prio_recalculate(struct hci_dev *hdev, __u8 type)
3666{
3667	struct hci_conn_hash *h = &hdev->conn_hash;
3668	struct hci_conn *conn;
3669	int num = 0;
3670
3671	BT_DBG("%s", hdev->name);
3672
3673	rcu_read_lock();
3674
3675	list_for_each_entry_rcu(conn, &h->list, list) {
3676		struct hci_chan *chan;
3677
3678		if (conn->type != type)
3679			continue;
3680
3681		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3682			continue;
3683
3684		num++;
3685
3686		list_for_each_entry_rcu(chan, &conn->chan_list, list) {
3687			struct sk_buff *skb;
3688
3689			if (chan->sent) {
3690				chan->sent = 0;
3691				continue;
3692			}
3693
3694			if (skb_queue_empty(&chan->data_q))
3695				continue;
3696
3697			skb = skb_peek(&chan->data_q);
3698			if (skb->priority >= HCI_PRIO_MAX - 1)
3699				continue;
3700
3701			skb->priority = HCI_PRIO_MAX - 1;
3702
3703			BT_DBG("chan %p skb %p promoted to %d", chan, skb,
3704			       skb->priority);
3705		}
3706
3707		if (hci_conn_num(hdev, type) == num)
3708			break;
3709	}
3710
3711	rcu_read_unlock();
3712
3713}
3714
3715static inline int __get_blocks(struct hci_dev *hdev, struct sk_buff *skb)
3716{
3717	/* Calculate count of blocks used by this packet */
3718	return DIV_ROUND_UP(skb->len - HCI_ACL_HDR_SIZE, hdev->block_len);
3719}
3720
3721static void __check_timeout(struct hci_dev *hdev, unsigned int cnt)
3722{
3723	if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
3724		/* ACL tx timeout must be longer than maximum
3725		 * link supervision timeout (40.9 seconds) */
3726		if (!cnt && time_after(jiffies, hdev->acl_last_tx +
3727				       HCI_ACL_TX_TIMEOUT))
3728			hci_link_tx_to(hdev, ACL_LINK);
3729	}
3730}
3731
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3732static void hci_sched_acl_pkt(struct hci_dev *hdev)
3733{
3734	unsigned int cnt = hdev->acl_cnt;
3735	struct hci_chan *chan;
3736	struct sk_buff *skb;
3737	int quote;
3738
3739	__check_timeout(hdev, cnt);
3740
3741	while (hdev->acl_cnt &&
3742	       (chan = hci_chan_sent(hdev, ACL_LINK, &quote))) {
3743		u32 priority = (skb_peek(&chan->data_q))->priority;
3744		while (quote-- && (skb = skb_peek(&chan->data_q))) {
3745			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3746			       skb->len, skb->priority);
3747
3748			/* Stop if priority has changed */
3749			if (skb->priority < priority)
3750				break;
3751
3752			skb = skb_dequeue(&chan->data_q);
3753
3754			hci_conn_enter_active_mode(chan->conn,
3755						   bt_cb(skb)->force_active);
3756
3757			hci_send_frame(hdev, skb);
3758			hdev->acl_last_tx = jiffies;
3759
3760			hdev->acl_cnt--;
3761			chan->sent++;
3762			chan->conn->sent++;
 
 
 
 
3763		}
3764	}
3765
3766	if (cnt != hdev->acl_cnt)
3767		hci_prio_recalculate(hdev, ACL_LINK);
3768}
3769
3770static void hci_sched_acl_blk(struct hci_dev *hdev)
3771{
3772	unsigned int cnt = hdev->block_cnt;
3773	struct hci_chan *chan;
3774	struct sk_buff *skb;
3775	int quote;
3776	u8 type;
3777
3778	__check_timeout(hdev, cnt);
3779
3780	BT_DBG("%s", hdev->name);
3781
3782	if (hdev->dev_type == HCI_AMP)
3783		type = AMP_LINK;
3784	else
3785		type = ACL_LINK;
3786
3787	while (hdev->block_cnt > 0 &&
3788	       (chan = hci_chan_sent(hdev, type, &quote))) {
3789		u32 priority = (skb_peek(&chan->data_q))->priority;
3790		while (quote > 0 && (skb = skb_peek(&chan->data_q))) {
3791			int blocks;
3792
3793			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3794			       skb->len, skb->priority);
3795
3796			/* Stop if priority has changed */
3797			if (skb->priority < priority)
3798				break;
3799
3800			skb = skb_dequeue(&chan->data_q);
3801
3802			blocks = __get_blocks(hdev, skb);
3803			if (blocks > hdev->block_cnt)
3804				return;
3805
3806			hci_conn_enter_active_mode(chan->conn,
3807						   bt_cb(skb)->force_active);
3808
3809			hci_send_frame(hdev, skb);
3810			hdev->acl_last_tx = jiffies;
3811
3812			hdev->block_cnt -= blocks;
3813			quote -= blocks;
3814
3815			chan->sent += blocks;
3816			chan->conn->sent += blocks;
3817		}
3818	}
3819
3820	if (cnt != hdev->block_cnt)
3821		hci_prio_recalculate(hdev, type);
3822}
3823
3824static void hci_sched_acl(struct hci_dev *hdev)
3825{
3826	BT_DBG("%s", hdev->name);
3827
3828	/* No ACL link over BR/EDR controller */
3829	if (!hci_conn_num(hdev, ACL_LINK) && hdev->dev_type == HCI_BREDR)
3830		return;
3831
3832	/* No AMP link over AMP controller */
3833	if (!hci_conn_num(hdev, AMP_LINK) && hdev->dev_type == HCI_AMP)
3834		return;
3835
3836	switch (hdev->flow_ctl_mode) {
3837	case HCI_FLOW_CTL_MODE_PACKET_BASED:
3838		hci_sched_acl_pkt(hdev);
3839		break;
3840
3841	case HCI_FLOW_CTL_MODE_BLOCK_BASED:
3842		hci_sched_acl_blk(hdev);
3843		break;
3844	}
3845}
3846
3847/* Schedule SCO */
3848static void hci_sched_sco(struct hci_dev *hdev)
3849{
3850	struct hci_conn *conn;
3851	struct sk_buff *skb;
3852	int quote;
3853
3854	BT_DBG("%s", hdev->name);
3855
3856	if (!hci_conn_num(hdev, SCO_LINK))
3857		return;
3858
3859	while (hdev->sco_cnt && (conn = hci_low_sent(hdev, SCO_LINK, &quote))) {
3860		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3861			BT_DBG("skb %p len %d", skb, skb->len);
3862			hci_send_frame(hdev, skb);
3863
3864			conn->sent++;
3865			if (conn->sent == ~0)
3866				conn->sent = 0;
3867		}
3868	}
3869}
3870
3871static void hci_sched_esco(struct hci_dev *hdev)
3872{
3873	struct hci_conn *conn;
3874	struct sk_buff *skb;
3875	int quote;
3876
3877	BT_DBG("%s", hdev->name);
3878
3879	if (!hci_conn_num(hdev, ESCO_LINK))
3880		return;
3881
3882	while (hdev->sco_cnt && (conn = hci_low_sent(hdev, ESCO_LINK,
3883						     &quote))) {
3884		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3885			BT_DBG("skb %p len %d", skb, skb->len);
3886			hci_send_frame(hdev, skb);
3887
3888			conn->sent++;
3889			if (conn->sent == ~0)
3890				conn->sent = 0;
3891		}
3892	}
3893}
3894
3895static void hci_sched_le(struct hci_dev *hdev)
3896{
3897	struct hci_chan *chan;
3898	struct sk_buff *skb;
3899	int quote, cnt, tmp;
3900
3901	BT_DBG("%s", hdev->name);
3902
3903	if (!hci_conn_num(hdev, LE_LINK))
3904		return;
3905
3906	if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
3907		/* LE tx timeout must be longer than maximum
3908		 * link supervision timeout (40.9 seconds) */
3909		if (!hdev->le_cnt && hdev->le_pkts &&
3910		    time_after(jiffies, hdev->le_last_tx + HZ * 45))
3911			hci_link_tx_to(hdev, LE_LINK);
3912	}
3913
3914	cnt = hdev->le_pkts ? hdev->le_cnt : hdev->acl_cnt;
 
 
 
3915	tmp = cnt;
3916	while (cnt && (chan = hci_chan_sent(hdev, LE_LINK, &quote))) {
3917		u32 priority = (skb_peek(&chan->data_q))->priority;
3918		while (quote-- && (skb = skb_peek(&chan->data_q))) {
3919			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3920			       skb->len, skb->priority);
3921
3922			/* Stop if priority has changed */
3923			if (skb->priority < priority)
3924				break;
3925
3926			skb = skb_dequeue(&chan->data_q);
3927
3928			hci_send_frame(hdev, skb);
3929			hdev->le_last_tx = jiffies;
3930
3931			cnt--;
3932			chan->sent++;
3933			chan->conn->sent++;
 
 
 
 
3934		}
3935	}
3936
3937	if (hdev->le_pkts)
3938		hdev->le_cnt = cnt;
3939	else
3940		hdev->acl_cnt = cnt;
3941
3942	if (cnt != tmp)
3943		hci_prio_recalculate(hdev, LE_LINK);
3944}
3945
3946static void hci_tx_work(struct work_struct *work)
3947{
3948	struct hci_dev *hdev = container_of(work, struct hci_dev, tx_work);
3949	struct sk_buff *skb;
3950
3951	BT_DBG("%s acl %d sco %d le %d", hdev->name, hdev->acl_cnt,
3952	       hdev->sco_cnt, hdev->le_cnt);
3953
3954	if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
3955		/* Schedule queues and send stuff to HCI driver */
3956		hci_sched_acl(hdev);
3957		hci_sched_sco(hdev);
3958		hci_sched_esco(hdev);
 
3959		hci_sched_le(hdev);
3960	}
3961
3962	/* Send next queued raw (unknown type) packet */
3963	while ((skb = skb_dequeue(&hdev->raw_q)))
3964		hci_send_frame(hdev, skb);
3965}
3966
3967/* ----- HCI RX task (incoming data processing) ----- */
3968
3969/* ACL data packet */
3970static void hci_acldata_packet(struct hci_dev *hdev, struct sk_buff *skb)
3971{
3972	struct hci_acl_hdr *hdr = (void *) skb->data;
3973	struct hci_conn *conn;
3974	__u16 handle, flags;
3975
3976	skb_pull(skb, HCI_ACL_HDR_SIZE);
3977
3978	handle = __le16_to_cpu(hdr->handle);
3979	flags  = hci_flags(handle);
3980	handle = hci_handle(handle);
3981
3982	BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len,
3983	       handle, flags);
3984
3985	hdev->stat.acl_rx++;
3986
3987	hci_dev_lock(hdev);
3988	conn = hci_conn_hash_lookup_handle(hdev, handle);
3989	hci_dev_unlock(hdev);
3990
3991	if (conn) {
3992		hci_conn_enter_active_mode(conn, BT_POWER_FORCE_ACTIVE_OFF);
3993
3994		/* Send to upper protocol */
3995		l2cap_recv_acldata(conn, skb, flags);
3996		return;
3997	} else {
3998		BT_ERR("%s ACL packet for unknown connection handle %d",
3999		       hdev->name, handle);
4000	}
4001
4002	kfree_skb(skb);
4003}
4004
4005/* SCO data packet */
4006static void hci_scodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
4007{
4008	struct hci_sco_hdr *hdr = (void *) skb->data;
4009	struct hci_conn *conn;
4010	__u16 handle;
4011
4012	skb_pull(skb, HCI_SCO_HDR_SIZE);
4013
4014	handle = __le16_to_cpu(hdr->handle);
 
 
4015
4016	BT_DBG("%s len %d handle 0x%4.4x", hdev->name, skb->len, handle);
 
4017
4018	hdev->stat.sco_rx++;
4019
4020	hci_dev_lock(hdev);
4021	conn = hci_conn_hash_lookup_handle(hdev, handle);
4022	hci_dev_unlock(hdev);
4023
4024	if (conn) {
4025		/* Send to upper protocol */
 
4026		sco_recv_scodata(conn, skb);
4027		return;
4028	} else {
4029		BT_ERR("%s SCO packet for unknown connection handle %d",
4030		       hdev->name, handle);
4031	}
4032
4033	kfree_skb(skb);
4034}
4035
4036static bool hci_req_is_complete(struct hci_dev *hdev)
4037{
4038	struct sk_buff *skb;
4039
4040	skb = skb_peek(&hdev->cmd_q);
4041	if (!skb)
4042		return true;
4043
4044	return (bt_cb(skb)->hci.req_flags & HCI_REQ_START);
4045}
4046
4047static void hci_resend_last(struct hci_dev *hdev)
4048{
4049	struct hci_command_hdr *sent;
4050	struct sk_buff *skb;
4051	u16 opcode;
4052
4053	if (!hdev->sent_cmd)
4054		return;
4055
4056	sent = (void *) hdev->sent_cmd->data;
4057	opcode = __le16_to_cpu(sent->opcode);
4058	if (opcode == HCI_OP_RESET)
4059		return;
4060
4061	skb = skb_clone(hdev->sent_cmd, GFP_KERNEL);
4062	if (!skb)
4063		return;
4064
4065	skb_queue_head(&hdev->cmd_q, skb);
4066	queue_work(hdev->workqueue, &hdev->cmd_work);
4067}
4068
4069void hci_req_cmd_complete(struct hci_dev *hdev, u16 opcode, u8 status,
4070			  hci_req_complete_t *req_complete,
4071			  hci_req_complete_skb_t *req_complete_skb)
4072{
4073	struct sk_buff *skb;
4074	unsigned long flags;
4075
4076	BT_DBG("opcode 0x%04x status 0x%02x", opcode, status);
4077
4078	/* If the completed command doesn't match the last one that was
4079	 * sent we need to do special handling of it.
4080	 */
4081	if (!hci_sent_cmd_data(hdev, opcode)) {
4082		/* Some CSR based controllers generate a spontaneous
4083		 * reset complete event during init and any pending
4084		 * command will never be completed. In such a case we
4085		 * need to resend whatever was the last sent
4086		 * command.
4087		 */
4088		if (test_bit(HCI_INIT, &hdev->flags) && opcode == HCI_OP_RESET)
4089			hci_resend_last(hdev);
4090
4091		return;
4092	}
4093
 
 
 
4094	/* If the command succeeded and there's still more commands in
4095	 * this request the request is not yet complete.
4096	 */
4097	if (!status && !hci_req_is_complete(hdev))
4098		return;
4099
4100	/* If this was the last command in a request the complete
4101	 * callback would be found in hdev->sent_cmd instead of the
4102	 * command queue (hdev->cmd_q).
4103	 */
4104	if (bt_cb(hdev->sent_cmd)->hci.req_flags & HCI_REQ_SKB) {
4105		*req_complete_skb = bt_cb(hdev->sent_cmd)->hci.req_complete_skb;
4106		return;
4107	}
4108
4109	if (bt_cb(hdev->sent_cmd)->hci.req_complete) {
4110		*req_complete = bt_cb(hdev->sent_cmd)->hci.req_complete;
4111		return;
4112	}
4113
4114	/* Remove all pending commands belonging to this request */
4115	spin_lock_irqsave(&hdev->cmd_q.lock, flags);
4116	while ((skb = __skb_dequeue(&hdev->cmd_q))) {
4117		if (bt_cb(skb)->hci.req_flags & HCI_REQ_START) {
4118			__skb_queue_head(&hdev->cmd_q, skb);
4119			break;
4120		}
4121
4122		if (bt_cb(skb)->hci.req_flags & HCI_REQ_SKB)
4123			*req_complete_skb = bt_cb(skb)->hci.req_complete_skb;
4124		else
4125			*req_complete = bt_cb(skb)->hci.req_complete;
4126		kfree_skb(skb);
4127	}
4128	spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
4129}
4130
4131static void hci_rx_work(struct work_struct *work)
4132{
4133	struct hci_dev *hdev = container_of(work, struct hci_dev, rx_work);
4134	struct sk_buff *skb;
4135
4136	BT_DBG("%s", hdev->name);
4137
4138	while ((skb = skb_dequeue(&hdev->rx_q))) {
4139		/* Send copy to monitor */
4140		hci_send_to_monitor(hdev, skb);
4141
4142		if (atomic_read(&hdev->promisc)) {
4143			/* Send copy to the sockets */
4144			hci_send_to_sock(hdev, skb);
4145		}
4146
4147		if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
 
 
 
 
 
 
 
4148			kfree_skb(skb);
4149			continue;
4150		}
4151
4152		if (test_bit(HCI_INIT, &hdev->flags)) {
4153			/* Don't process data packets in this states. */
4154			switch (hci_skb_pkt_type(skb)) {
4155			case HCI_ACLDATA_PKT:
4156			case HCI_SCODATA_PKT:
 
4157				kfree_skb(skb);
4158				continue;
4159			}
4160		}
4161
4162		/* Process frame */
4163		switch (hci_skb_pkt_type(skb)) {
4164		case HCI_EVENT_PKT:
4165			BT_DBG("%s Event packet", hdev->name);
4166			hci_event_packet(hdev, skb);
4167			break;
4168
4169		case HCI_ACLDATA_PKT:
4170			BT_DBG("%s ACL data packet", hdev->name);
4171			hci_acldata_packet(hdev, skb);
4172			break;
4173
4174		case HCI_SCODATA_PKT:
4175			BT_DBG("%s SCO data packet", hdev->name);
4176			hci_scodata_packet(hdev, skb);
4177			break;
4178
4179		default:
4180			kfree_skb(skb);
4181			break;
4182		}
4183	}
4184}
4185
4186static void hci_cmd_work(struct work_struct *work)
4187{
4188	struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_work);
4189	struct sk_buff *skb;
4190
4191	BT_DBG("%s cmd_cnt %d cmd queued %d", hdev->name,
4192	       atomic_read(&hdev->cmd_cnt), skb_queue_len(&hdev->cmd_q));
4193
4194	/* Send queued commands */
4195	if (atomic_read(&hdev->cmd_cnt)) {
4196		skb = skb_dequeue(&hdev->cmd_q);
4197		if (!skb)
4198			return;
4199
4200		kfree_skb(hdev->sent_cmd);
4201
4202		hdev->sent_cmd = skb_clone(skb, GFP_KERNEL);
4203		if (hdev->sent_cmd) {
 
 
4204			atomic_dec(&hdev->cmd_cnt);
4205			hci_send_frame(hdev, skb);
4206			if (test_bit(HCI_RESET, &hdev->flags))
4207				cancel_delayed_work(&hdev->cmd_timer);
4208			else
4209				schedule_delayed_work(&hdev->cmd_timer,
4210						      HCI_CMD_TIMEOUT);
4211		} else {
4212			skb_queue_head(&hdev->cmd_q, skb);
4213			queue_work(hdev->workqueue, &hdev->cmd_work);
4214		}
4215	}
4216}
v5.9
   1/*
   2   BlueZ - Bluetooth protocol stack for Linux
   3   Copyright (C) 2000-2001 Qualcomm Incorporated
   4   Copyright (C) 2011 ProFUSION Embedded Systems
   5
   6   Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
   7
   8   This program is free software; you can redistribute it and/or modify
   9   it under the terms of the GNU General Public License version 2 as
  10   published by the Free Software Foundation;
  11
  12   THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
  13   OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  14   FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
  15   IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
  16   CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
  17   WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  18   ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  19   OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  20
  21   ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
  22   COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
  23   SOFTWARE IS DISCLAIMED.
  24*/
  25
  26/* Bluetooth HCI core. */
  27
  28#include <linux/export.h>
 
  29#include <linux/rfkill.h>
  30#include <linux/debugfs.h>
  31#include <linux/crypto.h>
  32#include <linux/property.h>
  33#include <linux/suspend.h>
  34#include <linux/wait.h>
  35#include <asm/unaligned.h>
  36
  37#include <net/bluetooth/bluetooth.h>
  38#include <net/bluetooth/hci_core.h>
  39#include <net/bluetooth/l2cap.h>
  40#include <net/bluetooth/mgmt.h>
  41
  42#include "hci_request.h"
  43#include "hci_debugfs.h"
  44#include "smp.h"
  45#include "leds.h"
  46#include "msft.h"
  47
  48static void hci_rx_work(struct work_struct *work);
  49static void hci_cmd_work(struct work_struct *work);
  50static void hci_tx_work(struct work_struct *work);
  51
  52/* HCI device list */
  53LIST_HEAD(hci_dev_list);
  54DEFINE_RWLOCK(hci_dev_list_lock);
  55
  56/* HCI callback list */
  57LIST_HEAD(hci_cb_list);
  58DEFINE_MUTEX(hci_cb_list_lock);
  59
  60/* HCI ID Numbering */
  61static DEFINE_IDA(hci_index_ida);
  62
  63/* ---- HCI debugfs entries ---- */
  64
  65static ssize_t dut_mode_read(struct file *file, char __user *user_buf,
  66			     size_t count, loff_t *ppos)
  67{
  68	struct hci_dev *hdev = file->private_data;
  69	char buf[3];
  70
  71	buf[0] = hci_dev_test_flag(hdev, HCI_DUT_MODE) ? 'Y' : 'N';
  72	buf[1] = '\n';
  73	buf[2] = '\0';
  74	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
  75}
  76
  77static ssize_t dut_mode_write(struct file *file, const char __user *user_buf,
  78			      size_t count, loff_t *ppos)
  79{
  80	struct hci_dev *hdev = file->private_data;
  81	struct sk_buff *skb;
 
 
  82	bool enable;
  83	int err;
  84
  85	if (!test_bit(HCI_UP, &hdev->flags))
  86		return -ENETDOWN;
  87
  88	err = kstrtobool_from_user(user_buf, count, &enable);
  89	if (err)
  90		return err;
 
 
 
  91
  92	if (enable == hci_dev_test_flag(hdev, HCI_DUT_MODE))
  93		return -EALREADY;
  94
  95	hci_req_sync_lock(hdev);
  96	if (enable)
  97		skb = __hci_cmd_sync(hdev, HCI_OP_ENABLE_DUT_MODE, 0, NULL,
  98				     HCI_CMD_TIMEOUT);
  99	else
 100		skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL,
 101				     HCI_CMD_TIMEOUT);
 102	hci_req_sync_unlock(hdev);
 103
 104	if (IS_ERR(skb))
 105		return PTR_ERR(skb);
 106
 107	kfree_skb(skb);
 108
 109	hci_dev_change_flag(hdev, HCI_DUT_MODE);
 110
 111	return count;
 112}
 113
 114static const struct file_operations dut_mode_fops = {
 115	.open		= simple_open,
 116	.read		= dut_mode_read,
 117	.write		= dut_mode_write,
 118	.llseek		= default_llseek,
 119};
 120
 121static ssize_t vendor_diag_read(struct file *file, char __user *user_buf,
 122				size_t count, loff_t *ppos)
 123{
 124	struct hci_dev *hdev = file->private_data;
 125	char buf[3];
 126
 127	buf[0] = hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) ? 'Y' : 'N';
 128	buf[1] = '\n';
 129	buf[2] = '\0';
 130	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
 131}
 132
 133static ssize_t vendor_diag_write(struct file *file, const char __user *user_buf,
 134				 size_t count, loff_t *ppos)
 135{
 136	struct hci_dev *hdev = file->private_data;
 
 
 137	bool enable;
 138	int err;
 139
 140	err = kstrtobool_from_user(user_buf, count, &enable);
 141	if (err)
 142		return err;
 
 
 
 143
 144	/* When the diagnostic flags are not persistent and the transport
 145	 * is not active or in user channel operation, then there is no need
 146	 * for the vendor callback. Instead just store the desired value and
 147	 * the setting will be programmed when the controller gets powered on.
 
 148	 */
 149	if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) &&
 150	    (!test_bit(HCI_RUNNING, &hdev->flags) ||
 151	     hci_dev_test_flag(hdev, HCI_USER_CHANNEL)))
 152		goto done;
 153
 154	hci_req_sync_lock(hdev);
 155	err = hdev->set_diag(hdev, enable);
 156	hci_req_sync_unlock(hdev);
 157
 158	if (err < 0)
 159		return err;
 160
 161done:
 162	if (enable)
 163		hci_dev_set_flag(hdev, HCI_VENDOR_DIAG);
 164	else
 165		hci_dev_clear_flag(hdev, HCI_VENDOR_DIAG);
 166
 167	return count;
 168}
 169
 170static const struct file_operations vendor_diag_fops = {
 171	.open		= simple_open,
 172	.read		= vendor_diag_read,
 173	.write		= vendor_diag_write,
 174	.llseek		= default_llseek,
 175};
 176
 177static void hci_debugfs_create_basic(struct hci_dev *hdev)
 178{
 179	debugfs_create_file("dut_mode", 0644, hdev->debugfs, hdev,
 180			    &dut_mode_fops);
 181
 182	if (hdev->set_diag)
 183		debugfs_create_file("vendor_diag", 0644, hdev->debugfs, hdev,
 184				    &vendor_diag_fops);
 185}
 186
 187static int hci_reset_req(struct hci_request *req, unsigned long opt)
 188{
 189	BT_DBG("%s %ld", req->hdev->name, opt);
 190
 191	/* Reset device */
 192	set_bit(HCI_RESET, &req->hdev->flags);
 193	hci_req_add(req, HCI_OP_RESET, 0, NULL);
 194	return 0;
 195}
 196
 197static void bredr_init(struct hci_request *req)
 198{
 199	req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_PACKET_BASED;
 200
 201	/* Read Local Supported Features */
 202	hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
 203
 204	/* Read Local Version */
 205	hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
 206
 207	/* Read BD Address */
 208	hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL);
 209}
 210
 211static void amp_init1(struct hci_request *req)
 212{
 213	req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_BLOCK_BASED;
 214
 215	/* Read Local Version */
 216	hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
 217
 218	/* Read Local Supported Commands */
 219	hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL);
 220
 221	/* Read Local AMP Info */
 222	hci_req_add(req, HCI_OP_READ_LOCAL_AMP_INFO, 0, NULL);
 223
 224	/* Read Data Blk size */
 225	hci_req_add(req, HCI_OP_READ_DATA_BLOCK_SIZE, 0, NULL);
 226
 227	/* Read Flow Control Mode */
 228	hci_req_add(req, HCI_OP_READ_FLOW_CONTROL_MODE, 0, NULL);
 229
 230	/* Read Location Data */
 231	hci_req_add(req, HCI_OP_READ_LOCATION_DATA, 0, NULL);
 232}
 233
 234static int amp_init2(struct hci_request *req)
 235{
 236	/* Read Local Supported Features. Not all AMP controllers
 237	 * support this so it's placed conditionally in the second
 238	 * stage init.
 239	 */
 240	if (req->hdev->commands[14] & 0x20)
 241		hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
 242
 243	return 0;
 244}
 245
 246static int hci_init1_req(struct hci_request *req, unsigned long opt)
 247{
 248	struct hci_dev *hdev = req->hdev;
 249
 250	BT_DBG("%s %ld", hdev->name, opt);
 251
 252	/* Reset */
 253	if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks))
 254		hci_reset_req(req, 0);
 255
 256	switch (hdev->dev_type) {
 257	case HCI_PRIMARY:
 258		bredr_init(req);
 259		break;
 
 260	case HCI_AMP:
 261		amp_init1(req);
 262		break;
 
 263	default:
 264		bt_dev_err(hdev, "Unknown device type %d", hdev->dev_type);
 265		break;
 266	}
 267
 268	return 0;
 269}
 270
 271static void bredr_setup(struct hci_request *req)
 272{
 273	__le16 param;
 274	__u8 flt_type;
 275
 276	/* Read Buffer Size (ACL mtu, max pkt, etc.) */
 277	hci_req_add(req, HCI_OP_READ_BUFFER_SIZE, 0, NULL);
 278
 279	/* Read Class of Device */
 280	hci_req_add(req, HCI_OP_READ_CLASS_OF_DEV, 0, NULL);
 281
 282	/* Read Local Name */
 283	hci_req_add(req, HCI_OP_READ_LOCAL_NAME, 0, NULL);
 284
 285	/* Read Voice Setting */
 286	hci_req_add(req, HCI_OP_READ_VOICE_SETTING, 0, NULL);
 287
 288	/* Read Number of Supported IAC */
 289	hci_req_add(req, HCI_OP_READ_NUM_SUPPORTED_IAC, 0, NULL);
 290
 291	/* Read Current IAC LAP */
 292	hci_req_add(req, HCI_OP_READ_CURRENT_IAC_LAP, 0, NULL);
 293
 294	/* Clear Event Filters */
 295	flt_type = HCI_FLT_CLEAR_ALL;
 296	hci_req_add(req, HCI_OP_SET_EVENT_FLT, 1, &flt_type);
 297
 298	/* Connection accept timeout ~20 secs */
 299	param = cpu_to_le16(0x7d00);
 300	hci_req_add(req, HCI_OP_WRITE_CA_TIMEOUT, 2, &param);
 301}
 302
 303static void le_setup(struct hci_request *req)
 304{
 305	struct hci_dev *hdev = req->hdev;
 306
 307	/* Read LE Buffer Size */
 308	hci_req_add(req, HCI_OP_LE_READ_BUFFER_SIZE, 0, NULL);
 309
 310	/* Read LE Local Supported Features */
 311	hci_req_add(req, HCI_OP_LE_READ_LOCAL_FEATURES, 0, NULL);
 312
 313	/* Read LE Supported States */
 314	hci_req_add(req, HCI_OP_LE_READ_SUPPORTED_STATES, 0, NULL);
 315
 316	/* LE-only controllers have LE implicitly enabled */
 317	if (!lmp_bredr_capable(hdev))
 318		hci_dev_set_flag(hdev, HCI_LE_ENABLED);
 319}
 320
 321static void hci_setup_event_mask(struct hci_request *req)
 322{
 323	struct hci_dev *hdev = req->hdev;
 324
 325	/* The second byte is 0xff instead of 0x9f (two reserved bits
 326	 * disabled) since a Broadcom 1.2 dongle doesn't respond to the
 327	 * command otherwise.
 328	 */
 329	u8 events[8] = { 0xff, 0xff, 0xfb, 0xff, 0x00, 0x00, 0x00, 0x00 };
 330
 331	/* CSR 1.1 dongles does not accept any bitfield so don't try to set
 332	 * any event mask for pre 1.2 devices.
 333	 */
 334	if (hdev->hci_ver < BLUETOOTH_VER_1_2)
 335		return;
 336
 337	if (lmp_bredr_capable(hdev)) {
 338		events[4] |= 0x01; /* Flow Specification Complete */
 339	} else {
 340		/* Use a different default for LE-only devices */
 341		memset(events, 0, sizeof(events));
 342		events[1] |= 0x20; /* Command Complete */
 343		events[1] |= 0x40; /* Command Status */
 344		events[1] |= 0x80; /* Hardware Error */
 345
 346		/* If the controller supports the Disconnect command, enable
 347		 * the corresponding event. In addition enable packet flow
 348		 * control related events.
 349		 */
 350		if (hdev->commands[0] & 0x20) {
 351			events[0] |= 0x10; /* Disconnection Complete */
 352			events[2] |= 0x04; /* Number of Completed Packets */
 353			events[3] |= 0x02; /* Data Buffer Overflow */
 354		}
 355
 356		/* If the controller supports the Read Remote Version
 357		 * Information command, enable the corresponding event.
 358		 */
 359		if (hdev->commands[2] & 0x80)
 360			events[1] |= 0x08; /* Read Remote Version Information
 361					    * Complete
 362					    */
 363
 364		if (hdev->le_features[0] & HCI_LE_ENCRYPTION) {
 365			events[0] |= 0x80; /* Encryption Change */
 366			events[5] |= 0x80; /* Encryption Key Refresh Complete */
 367		}
 368	}
 369
 370	if (lmp_inq_rssi_capable(hdev) ||
 371	    test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks))
 372		events[4] |= 0x02; /* Inquiry Result with RSSI */
 373
 374	if (lmp_ext_feat_capable(hdev))
 375		events[4] |= 0x04; /* Read Remote Extended Features Complete */
 376
 377	if (lmp_esco_capable(hdev)) {
 378		events[5] |= 0x08; /* Synchronous Connection Complete */
 379		events[5] |= 0x10; /* Synchronous Connection Changed */
 380	}
 381
 382	if (lmp_sniffsubr_capable(hdev))
 383		events[5] |= 0x20; /* Sniff Subrating */
 384
 385	if (lmp_pause_enc_capable(hdev))
 386		events[5] |= 0x80; /* Encryption Key Refresh Complete */
 387
 388	if (lmp_ext_inq_capable(hdev))
 389		events[5] |= 0x40; /* Extended Inquiry Result */
 390
 391	if (lmp_no_flush_capable(hdev))
 392		events[7] |= 0x01; /* Enhanced Flush Complete */
 393
 394	if (lmp_lsto_capable(hdev))
 395		events[6] |= 0x80; /* Link Supervision Timeout Changed */
 396
 397	if (lmp_ssp_capable(hdev)) {
 398		events[6] |= 0x01;	/* IO Capability Request */
 399		events[6] |= 0x02;	/* IO Capability Response */
 400		events[6] |= 0x04;	/* User Confirmation Request */
 401		events[6] |= 0x08;	/* User Passkey Request */
 402		events[6] |= 0x10;	/* Remote OOB Data Request */
 403		events[6] |= 0x20;	/* Simple Pairing Complete */
 404		events[7] |= 0x04;	/* User Passkey Notification */
 405		events[7] |= 0x08;	/* Keypress Notification */
 406		events[7] |= 0x10;	/* Remote Host Supported
 407					 * Features Notification
 408					 */
 409	}
 410
 411	if (lmp_le_capable(hdev))
 412		events[7] |= 0x20;	/* LE Meta-Event */
 413
 414	hci_req_add(req, HCI_OP_SET_EVENT_MASK, sizeof(events), events);
 415}
 416
 417static int hci_init2_req(struct hci_request *req, unsigned long opt)
 418{
 419	struct hci_dev *hdev = req->hdev;
 420
 421	if (hdev->dev_type == HCI_AMP)
 422		return amp_init2(req);
 423
 424	if (lmp_bredr_capable(hdev))
 425		bredr_setup(req);
 426	else
 427		hci_dev_clear_flag(hdev, HCI_BREDR_ENABLED);
 428
 429	if (lmp_le_capable(hdev))
 430		le_setup(req);
 431
 432	/* All Bluetooth 1.2 and later controllers should support the
 433	 * HCI command for reading the local supported commands.
 434	 *
 435	 * Unfortunately some controllers indicate Bluetooth 1.2 support,
 436	 * but do not have support for this command. If that is the case,
 437	 * the driver can quirk the behavior and skip reading the local
 438	 * supported commands.
 439	 */
 440	if (hdev->hci_ver > BLUETOOTH_VER_1_1 &&
 441	    !test_bit(HCI_QUIRK_BROKEN_LOCAL_COMMANDS, &hdev->quirks))
 442		hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL);
 443
 444	if (lmp_ssp_capable(hdev)) {
 445		/* When SSP is available, then the host features page
 446		 * should also be available as well. However some
 447		 * controllers list the max_page as 0 as long as SSP
 448		 * has not been enabled. To achieve proper debugging
 449		 * output, force the minimum max_page to 1 at least.
 450		 */
 451		hdev->max_page = 0x01;
 452
 453		if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) {
 454			u8 mode = 0x01;
 455
 456			hci_req_add(req, HCI_OP_WRITE_SSP_MODE,
 457				    sizeof(mode), &mode);
 458		} else {
 459			struct hci_cp_write_eir cp;
 460
 461			memset(hdev->eir, 0, sizeof(hdev->eir));
 462			memset(&cp, 0, sizeof(cp));
 463
 464			hci_req_add(req, HCI_OP_WRITE_EIR, sizeof(cp), &cp);
 465		}
 466	}
 467
 468	if (lmp_inq_rssi_capable(hdev) ||
 469	    test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks)) {
 470		u8 mode;
 471
 472		/* If Extended Inquiry Result events are supported, then
 473		 * they are clearly preferred over Inquiry Result with RSSI
 474		 * events.
 475		 */
 476		mode = lmp_ext_inq_capable(hdev) ? 0x02 : 0x01;
 477
 478		hci_req_add(req, HCI_OP_WRITE_INQUIRY_MODE, 1, &mode);
 479	}
 480
 481	if (lmp_inq_tx_pwr_capable(hdev))
 482		hci_req_add(req, HCI_OP_READ_INQ_RSP_TX_POWER, 0, NULL);
 483
 484	if (lmp_ext_feat_capable(hdev)) {
 485		struct hci_cp_read_local_ext_features cp;
 486
 487		cp.page = 0x01;
 488		hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES,
 489			    sizeof(cp), &cp);
 490	}
 491
 492	if (hci_dev_test_flag(hdev, HCI_LINK_SECURITY)) {
 493		u8 enable = 1;
 494		hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, sizeof(enable),
 495			    &enable);
 496	}
 497
 498	return 0;
 499}
 500
 501static void hci_setup_link_policy(struct hci_request *req)
 502{
 503	struct hci_dev *hdev = req->hdev;
 504	struct hci_cp_write_def_link_policy cp;
 505	u16 link_policy = 0;
 506
 507	if (lmp_rswitch_capable(hdev))
 508		link_policy |= HCI_LP_RSWITCH;
 509	if (lmp_hold_capable(hdev))
 510		link_policy |= HCI_LP_HOLD;
 511	if (lmp_sniff_capable(hdev))
 512		link_policy |= HCI_LP_SNIFF;
 513	if (lmp_park_capable(hdev))
 514		link_policy |= HCI_LP_PARK;
 515
 516	cp.policy = cpu_to_le16(link_policy);
 517	hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, sizeof(cp), &cp);
 518}
 519
 520static void hci_set_le_support(struct hci_request *req)
 521{
 522	struct hci_dev *hdev = req->hdev;
 523	struct hci_cp_write_le_host_supported cp;
 524
 525	/* LE-only devices do not support explicit enablement */
 526	if (!lmp_bredr_capable(hdev))
 527		return;
 528
 529	memset(&cp, 0, sizeof(cp));
 530
 531	if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
 532		cp.le = 0x01;
 533		cp.simul = 0x00;
 534	}
 535
 536	if (cp.le != lmp_host_le_capable(hdev))
 537		hci_req_add(req, HCI_OP_WRITE_LE_HOST_SUPPORTED, sizeof(cp),
 538			    &cp);
 539}
 540
 541static void hci_set_event_mask_page_2(struct hci_request *req)
 542{
 543	struct hci_dev *hdev = req->hdev;
 544	u8 events[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
 545	bool changed = false;
 546
 547	/* If Connectionless Slave Broadcast master role is supported
 548	 * enable all necessary events for it.
 549	 */
 550	if (lmp_csb_master_capable(hdev)) {
 551		events[1] |= 0x40;	/* Triggered Clock Capture */
 552		events[1] |= 0x80;	/* Synchronization Train Complete */
 553		events[2] |= 0x10;	/* Slave Page Response Timeout */
 554		events[2] |= 0x20;	/* CSB Channel Map Change */
 555		changed = true;
 556	}
 557
 558	/* If Connectionless Slave Broadcast slave role is supported
 559	 * enable all necessary events for it.
 560	 */
 561	if (lmp_csb_slave_capable(hdev)) {
 562		events[2] |= 0x01;	/* Synchronization Train Received */
 563		events[2] |= 0x02;	/* CSB Receive */
 564		events[2] |= 0x04;	/* CSB Timeout */
 565		events[2] |= 0x08;	/* Truncated Page Complete */
 566		changed = true;
 567	}
 568
 569	/* Enable Authenticated Payload Timeout Expired event if supported */
 570	if (lmp_ping_capable(hdev) || hdev->le_features[0] & HCI_LE_PING) {
 571		events[2] |= 0x80;
 572		changed = true;
 573	}
 574
 575	/* Some Broadcom based controllers indicate support for Set Event
 576	 * Mask Page 2 command, but then actually do not support it. Since
 577	 * the default value is all bits set to zero, the command is only
 578	 * required if the event mask has to be changed. In case no change
 579	 * to the event mask is needed, skip this command.
 580	 */
 581	if (changed)
 582		hci_req_add(req, HCI_OP_SET_EVENT_MASK_PAGE_2,
 583			    sizeof(events), events);
 584}
 585
 586static int hci_init3_req(struct hci_request *req, unsigned long opt)
 587{
 588	struct hci_dev *hdev = req->hdev;
 589	u8 p;
 590
 591	hci_setup_event_mask(req);
 592
 593	if (hdev->commands[6] & 0x20 &&
 594	    !test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) {
 595		struct hci_cp_read_stored_link_key cp;
 596
 597		bacpy(&cp.bdaddr, BDADDR_ANY);
 598		cp.read_all = 0x01;
 599		hci_req_add(req, HCI_OP_READ_STORED_LINK_KEY, sizeof(cp), &cp);
 600	}
 601
 602	if (hdev->commands[5] & 0x10)
 603		hci_setup_link_policy(req);
 604
 605	if (hdev->commands[8] & 0x01)
 606		hci_req_add(req, HCI_OP_READ_PAGE_SCAN_ACTIVITY, 0, NULL);
 607
 608	if (hdev->commands[18] & 0x04 &&
 609	    !test_bit(HCI_QUIRK_BROKEN_ERR_DATA_REPORTING, &hdev->quirks))
 610		hci_req_add(req, HCI_OP_READ_DEF_ERR_DATA_REPORTING, 0, NULL);
 611
 612	/* Some older Broadcom based Bluetooth 1.2 controllers do not
 613	 * support the Read Page Scan Type command. Check support for
 614	 * this command in the bit mask of supported commands.
 615	 */
 616	if (hdev->commands[13] & 0x01)
 617		hci_req_add(req, HCI_OP_READ_PAGE_SCAN_TYPE, 0, NULL);
 618
 619	if (lmp_le_capable(hdev)) {
 620		u8 events[8];
 621
 622		memset(events, 0, sizeof(events));
 623
 624		if (hdev->le_features[0] & HCI_LE_ENCRYPTION)
 625			events[0] |= 0x10;	/* LE Long Term Key Request */
 626
 627		/* If controller supports the Connection Parameters Request
 628		 * Link Layer Procedure, enable the corresponding event.
 629		 */
 630		if (hdev->le_features[0] & HCI_LE_CONN_PARAM_REQ_PROC)
 631			events[0] |= 0x20;	/* LE Remote Connection
 632						 * Parameter Request
 633						 */
 634
 635		/* If the controller supports the Data Length Extension
 636		 * feature, enable the corresponding event.
 637		 */
 638		if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)
 639			events[0] |= 0x40;	/* LE Data Length Change */
 640
 641		/* If the controller supports LL Privacy feature, enable
 642		 * the corresponding event.
 643		 */
 644		if (hdev->le_features[0] & HCI_LE_LL_PRIVACY)
 645			events[1] |= 0x02;	/* LE Enhanced Connection
 646						 * Complete
 647						 */
 648
 649		/* If the controller supports Extended Scanner Filter
 650		 * Policies, enable the correspondig event.
 651		 */
 652		if (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY)
 653			events[1] |= 0x04;	/* LE Direct Advertising
 654						 * Report
 655						 */
 656
 657		/* If the controller supports Channel Selection Algorithm #2
 658		 * feature, enable the corresponding event.
 659		 */
 660		if (hdev->le_features[1] & HCI_LE_CHAN_SEL_ALG2)
 661			events[2] |= 0x08;	/* LE Channel Selection
 662						 * Algorithm
 663						 */
 664
 665		/* If the controller supports the LE Set Scan Enable command,
 666		 * enable the corresponding advertising report event.
 667		 */
 668		if (hdev->commands[26] & 0x08)
 669			events[0] |= 0x02;	/* LE Advertising Report */
 670
 671		/* If the controller supports the LE Create Connection
 672		 * command, enable the corresponding event.
 673		 */
 674		if (hdev->commands[26] & 0x10)
 675			events[0] |= 0x01;	/* LE Connection Complete */
 676
 677		/* If the controller supports the LE Connection Update
 678		 * command, enable the corresponding event.
 679		 */
 680		if (hdev->commands[27] & 0x04)
 681			events[0] |= 0x04;	/* LE Connection Update
 682						 * Complete
 683						 */
 684
 685		/* If the controller supports the LE Read Remote Used Features
 686		 * command, enable the corresponding event.
 687		 */
 688		if (hdev->commands[27] & 0x20)
 689			events[0] |= 0x08;	/* LE Read Remote Used
 690						 * Features Complete
 691						 */
 692
 693		/* If the controller supports the LE Read Local P-256
 694		 * Public Key command, enable the corresponding event.
 695		 */
 696		if (hdev->commands[34] & 0x02)
 697			events[0] |= 0x80;	/* LE Read Local P-256
 698						 * Public Key Complete
 699						 */
 700
 701		/* If the controller supports the LE Generate DHKey
 702		 * command, enable the corresponding event.
 703		 */
 704		if (hdev->commands[34] & 0x04)
 705			events[1] |= 0x01;	/* LE Generate DHKey Complete */
 706
 707		/* If the controller supports the LE Set Default PHY or
 708		 * LE Set PHY commands, enable the corresponding event.
 709		 */
 710		if (hdev->commands[35] & (0x20 | 0x40))
 711			events[1] |= 0x08;        /* LE PHY Update Complete */
 712
 713		/* If the controller supports LE Set Extended Scan Parameters
 714		 * and LE Set Extended Scan Enable commands, enable the
 715		 * corresponding event.
 716		 */
 717		if (use_ext_scan(hdev))
 718			events[1] |= 0x10;	/* LE Extended Advertising
 719						 * Report
 720						 */
 721
 722		/* If the controller supports the LE Extended Advertising
 723		 * command, enable the corresponding event.
 724		 */
 725		if (ext_adv_capable(hdev))
 726			events[2] |= 0x02;	/* LE Advertising Set
 727						 * Terminated
 728						 */
 729
 730		hci_req_add(req, HCI_OP_LE_SET_EVENT_MASK, sizeof(events),
 731			    events);
 732
 733		/* Read LE Advertising Channel TX Power */
 734		if ((hdev->commands[25] & 0x40) && !ext_adv_capable(hdev)) {
 735			/* HCI TS spec forbids mixing of legacy and extended
 736			 * advertising commands wherein READ_ADV_TX_POWER is
 737			 * also included. So do not call it if extended adv
 738			 * is supported otherwise controller will return
 739			 * COMMAND_DISALLOWED for extended commands.
 740			 */
 741			hci_req_add(req, HCI_OP_LE_READ_ADV_TX_POWER, 0, NULL);
 742		}
 743
 744		if (hdev->commands[26] & 0x40) {
 745			/* Read LE White List Size */
 746			hci_req_add(req, HCI_OP_LE_READ_WHITE_LIST_SIZE,
 747				    0, NULL);
 748		}
 749
 750		if (hdev->commands[26] & 0x80) {
 751			/* Clear LE White List */
 752			hci_req_add(req, HCI_OP_LE_CLEAR_WHITE_LIST, 0, NULL);
 753		}
 754
 755		if (hdev->commands[34] & 0x40) {
 756			/* Read LE Resolving List Size */
 757			hci_req_add(req, HCI_OP_LE_READ_RESOLV_LIST_SIZE,
 758				    0, NULL);
 759		}
 760
 761		if (hdev->commands[34] & 0x20) {
 762			/* Clear LE Resolving List */
 763			hci_req_add(req, HCI_OP_LE_CLEAR_RESOLV_LIST, 0, NULL);
 764		}
 765
 766		if (hdev->commands[35] & 0x40) {
 767			__le16 rpa_timeout = cpu_to_le16(hdev->rpa_timeout);
 768
 769			/* Set RPA timeout */
 770			hci_req_add(req, HCI_OP_LE_SET_RPA_TIMEOUT, 2,
 771				    &rpa_timeout);
 772		}
 773
 774		if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) {
 775			/* Read LE Maximum Data Length */
 776			hci_req_add(req, HCI_OP_LE_READ_MAX_DATA_LEN, 0, NULL);
 777
 778			/* Read LE Suggested Default Data Length */
 779			hci_req_add(req, HCI_OP_LE_READ_DEF_DATA_LEN, 0, NULL);
 780		}
 781
 782		if (ext_adv_capable(hdev)) {
 783			/* Read LE Number of Supported Advertising Sets */
 784			hci_req_add(req, HCI_OP_LE_READ_NUM_SUPPORTED_ADV_SETS,
 785				    0, NULL);
 786		}
 787
 788		hci_set_le_support(req);
 789	}
 790
 791	/* Read features beyond page 1 if available */
 792	for (p = 2; p < HCI_MAX_PAGES && p <= hdev->max_page; p++) {
 793		struct hci_cp_read_local_ext_features cp;
 794
 795		cp.page = p;
 796		hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES,
 797			    sizeof(cp), &cp);
 798	}
 799
 800	return 0;
 801}
 802
 803static int hci_init4_req(struct hci_request *req, unsigned long opt)
 804{
 805	struct hci_dev *hdev = req->hdev;
 806
 807	/* Some Broadcom based Bluetooth controllers do not support the
 808	 * Delete Stored Link Key command. They are clearly indicating its
 809	 * absence in the bit mask of supported commands.
 810	 *
 811	 * Check the supported commands and only if the the command is marked
 812	 * as supported send it. If not supported assume that the controller
 813	 * does not have actual support for stored link keys which makes this
 814	 * command redundant anyway.
 815	 *
 816	 * Some controllers indicate that they support handling deleting
 817	 * stored link keys, but they don't. The quirk lets a driver
 818	 * just disable this command.
 819	 */
 820	if (hdev->commands[6] & 0x80 &&
 821	    !test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) {
 822		struct hci_cp_delete_stored_link_key cp;
 823
 824		bacpy(&cp.bdaddr, BDADDR_ANY);
 825		cp.delete_all = 0x01;
 826		hci_req_add(req, HCI_OP_DELETE_STORED_LINK_KEY,
 827			    sizeof(cp), &cp);
 828	}
 829
 830	/* Set event mask page 2 if the HCI command for it is supported */
 831	if (hdev->commands[22] & 0x04)
 832		hci_set_event_mask_page_2(req);
 833
 834	/* Read local codec list if the HCI command is supported */
 835	if (hdev->commands[29] & 0x20)
 836		hci_req_add(req, HCI_OP_READ_LOCAL_CODECS, 0, NULL);
 837
 838	/* Read local pairing options if the HCI command is supported */
 839	if (hdev->commands[41] & 0x08)
 840		hci_req_add(req, HCI_OP_READ_LOCAL_PAIRING_OPTS, 0, NULL);
 841
 842	/* Get MWS transport configuration if the HCI command is supported */
 843	if (hdev->commands[30] & 0x08)
 844		hci_req_add(req, HCI_OP_GET_MWS_TRANSPORT_CONFIG, 0, NULL);
 845
 846	/* Check for Synchronization Train support */
 847	if (lmp_sync_train_capable(hdev))
 848		hci_req_add(req, HCI_OP_READ_SYNC_TRAIN_PARAMS, 0, NULL);
 849
 850	/* Enable Secure Connections if supported and configured */
 851	if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED) &&
 852	    bredr_sc_enabled(hdev)) {
 853		u8 support = 0x01;
 854
 855		hci_req_add(req, HCI_OP_WRITE_SC_SUPPORT,
 856			    sizeof(support), &support);
 857	}
 858
 859	/* Set erroneous data reporting if supported to the wideband speech
 860	 * setting value
 861	 */
 862	if (hdev->commands[18] & 0x08 &&
 863	    !test_bit(HCI_QUIRK_BROKEN_ERR_DATA_REPORTING, &hdev->quirks)) {
 864		bool enabled = hci_dev_test_flag(hdev,
 865						 HCI_WIDEBAND_SPEECH_ENABLED);
 866
 867		if (enabled !=
 868		    (hdev->err_data_reporting == ERR_DATA_REPORTING_ENABLED)) {
 869			struct hci_cp_write_def_err_data_reporting cp;
 870
 871			cp.err_data_reporting = enabled ?
 872						ERR_DATA_REPORTING_ENABLED :
 873						ERR_DATA_REPORTING_DISABLED;
 874
 875			hci_req_add(req, HCI_OP_WRITE_DEF_ERR_DATA_REPORTING,
 876				    sizeof(cp), &cp);
 877		}
 878	}
 879
 880	/* Set Suggested Default Data Length to maximum if supported */
 881	if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) {
 882		struct hci_cp_le_write_def_data_len cp;
 883
 884		cp.tx_len = cpu_to_le16(hdev->le_max_tx_len);
 885		cp.tx_time = cpu_to_le16(hdev->le_max_tx_time);
 886		hci_req_add(req, HCI_OP_LE_WRITE_DEF_DATA_LEN, sizeof(cp), &cp);
 887	}
 888
 889	/* Set Default PHY parameters if command is supported */
 890	if (hdev->commands[35] & 0x20) {
 891		struct hci_cp_le_set_default_phy cp;
 892
 893		cp.all_phys = 0x00;
 894		cp.tx_phys = hdev->le_tx_def_phys;
 895		cp.rx_phys = hdev->le_rx_def_phys;
 896
 897		hci_req_add(req, HCI_OP_LE_SET_DEFAULT_PHY, sizeof(cp), &cp);
 898	}
 899
 900	return 0;
 901}
 902
 903static int __hci_init(struct hci_dev *hdev)
 904{
 905	int err;
 906
 907	err = __hci_req_sync(hdev, hci_init1_req, 0, HCI_INIT_TIMEOUT, NULL);
 908	if (err < 0)
 909		return err;
 910
 911	if (hci_dev_test_flag(hdev, HCI_SETUP))
 912		hci_debugfs_create_basic(hdev);
 913
 914	err = __hci_req_sync(hdev, hci_init2_req, 0, HCI_INIT_TIMEOUT, NULL);
 915	if (err < 0)
 916		return err;
 917
 918	/* HCI_PRIMARY covers both single-mode LE, BR/EDR and dual-mode
 919	 * BR/EDR/LE type controllers. AMP controllers only need the
 920	 * first two stages of init.
 921	 */
 922	if (hdev->dev_type != HCI_PRIMARY)
 923		return 0;
 924
 925	err = __hci_req_sync(hdev, hci_init3_req, 0, HCI_INIT_TIMEOUT, NULL);
 926	if (err < 0)
 927		return err;
 928
 929	err = __hci_req_sync(hdev, hci_init4_req, 0, HCI_INIT_TIMEOUT, NULL);
 930	if (err < 0)
 931		return err;
 932
 933	/* This function is only called when the controller is actually in
 934	 * configured state. When the controller is marked as unconfigured,
 935	 * this initialization procedure is not run.
 936	 *
 937	 * It means that it is possible that a controller runs through its
 938	 * setup phase and then discovers missing settings. If that is the
 939	 * case, then this function will not be called. It then will only
 940	 * be called during the config phase.
 941	 *
 942	 * So only when in setup phase or config phase, create the debugfs
 943	 * entries and register the SMP channels.
 944	 */
 945	if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
 946	    !hci_dev_test_flag(hdev, HCI_CONFIG))
 947		return 0;
 948
 949	hci_debugfs_create_common(hdev);
 950
 951	if (lmp_bredr_capable(hdev))
 952		hci_debugfs_create_bredr(hdev);
 953
 954	if (lmp_le_capable(hdev))
 955		hci_debugfs_create_le(hdev);
 956
 957	return 0;
 958}
 959
 960static int hci_init0_req(struct hci_request *req, unsigned long opt)
 961{
 962	struct hci_dev *hdev = req->hdev;
 963
 964	BT_DBG("%s %ld", hdev->name, opt);
 965
 966	/* Reset */
 967	if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks))
 968		hci_reset_req(req, 0);
 969
 970	/* Read Local Version */
 971	hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
 972
 973	/* Read BD Address */
 974	if (hdev->set_bdaddr)
 975		hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL);
 976
 977	return 0;
 978}
 979
 980static int __hci_unconf_init(struct hci_dev *hdev)
 981{
 982	int err;
 983
 984	if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
 985		return 0;
 986
 987	err = __hci_req_sync(hdev, hci_init0_req, 0, HCI_INIT_TIMEOUT, NULL);
 988	if (err < 0)
 989		return err;
 990
 991	if (hci_dev_test_flag(hdev, HCI_SETUP))
 992		hci_debugfs_create_basic(hdev);
 993
 994	return 0;
 995}
 996
 997static int hci_scan_req(struct hci_request *req, unsigned long opt)
 998{
 999	__u8 scan = opt;
1000
1001	BT_DBG("%s %x", req->hdev->name, scan);
1002
1003	/* Inquiry and Page scans */
1004	hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
1005	return 0;
1006}
1007
1008static int hci_auth_req(struct hci_request *req, unsigned long opt)
1009{
1010	__u8 auth = opt;
1011
1012	BT_DBG("%s %x", req->hdev->name, auth);
1013
1014	/* Authentication */
1015	hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, 1, &auth);
1016	return 0;
1017}
1018
1019static int hci_encrypt_req(struct hci_request *req, unsigned long opt)
1020{
1021	__u8 encrypt = opt;
1022
1023	BT_DBG("%s %x", req->hdev->name, encrypt);
1024
1025	/* Encryption */
1026	hci_req_add(req, HCI_OP_WRITE_ENCRYPT_MODE, 1, &encrypt);
1027	return 0;
1028}
1029
1030static int hci_linkpol_req(struct hci_request *req, unsigned long opt)
1031{
1032	__le16 policy = cpu_to_le16(opt);
1033
1034	BT_DBG("%s %x", req->hdev->name, policy);
1035
1036	/* Default link policy */
1037	hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, 2, &policy);
1038	return 0;
1039}
1040
1041/* Get HCI device by index.
1042 * Device is held on return. */
1043struct hci_dev *hci_dev_get(int index)
1044{
1045	struct hci_dev *hdev = NULL, *d;
1046
1047	BT_DBG("%d", index);
1048
1049	if (index < 0)
1050		return NULL;
1051
1052	read_lock(&hci_dev_list_lock);
1053	list_for_each_entry(d, &hci_dev_list, list) {
1054		if (d->id == index) {
1055			hdev = hci_dev_hold(d);
1056			break;
1057		}
1058	}
1059	read_unlock(&hci_dev_list_lock);
1060	return hdev;
1061}
1062
1063/* ---- Inquiry support ---- */
1064
1065bool hci_discovery_active(struct hci_dev *hdev)
1066{
1067	struct discovery_state *discov = &hdev->discovery;
1068
1069	switch (discov->state) {
1070	case DISCOVERY_FINDING:
1071	case DISCOVERY_RESOLVING:
1072		return true;
1073
1074	default:
1075		return false;
1076	}
1077}
1078
1079void hci_discovery_set_state(struct hci_dev *hdev, int state)
1080{
1081	int old_state = hdev->discovery.state;
1082
1083	BT_DBG("%s state %u -> %u", hdev->name, hdev->discovery.state, state);
1084
1085	if (old_state == state)
1086		return;
1087
1088	hdev->discovery.state = state;
1089
1090	switch (state) {
1091	case DISCOVERY_STOPPED:
1092		hci_update_background_scan(hdev);
1093
1094		if (old_state != DISCOVERY_STARTING)
1095			mgmt_discovering(hdev, 0);
1096		break;
1097	case DISCOVERY_STARTING:
1098		break;
1099	case DISCOVERY_FINDING:
1100		mgmt_discovering(hdev, 1);
1101		break;
1102	case DISCOVERY_RESOLVING:
1103		break;
1104	case DISCOVERY_STOPPING:
1105		break;
1106	}
1107}
1108
1109void hci_inquiry_cache_flush(struct hci_dev *hdev)
1110{
1111	struct discovery_state *cache = &hdev->discovery;
1112	struct inquiry_entry *p, *n;
1113
1114	list_for_each_entry_safe(p, n, &cache->all, all) {
1115		list_del(&p->all);
1116		kfree(p);
1117	}
1118
1119	INIT_LIST_HEAD(&cache->unknown);
1120	INIT_LIST_HEAD(&cache->resolve);
1121}
1122
1123struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev,
1124					       bdaddr_t *bdaddr)
1125{
1126	struct discovery_state *cache = &hdev->discovery;
1127	struct inquiry_entry *e;
1128
1129	BT_DBG("cache %p, %pMR", cache, bdaddr);
1130
1131	list_for_each_entry(e, &cache->all, all) {
1132		if (!bacmp(&e->data.bdaddr, bdaddr))
1133			return e;
1134	}
1135
1136	return NULL;
1137}
1138
1139struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev,
1140						       bdaddr_t *bdaddr)
1141{
1142	struct discovery_state *cache = &hdev->discovery;
1143	struct inquiry_entry *e;
1144
1145	BT_DBG("cache %p, %pMR", cache, bdaddr);
1146
1147	list_for_each_entry(e, &cache->unknown, list) {
1148		if (!bacmp(&e->data.bdaddr, bdaddr))
1149			return e;
1150	}
1151
1152	return NULL;
1153}
1154
1155struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev,
1156						       bdaddr_t *bdaddr,
1157						       int state)
1158{
1159	struct discovery_state *cache = &hdev->discovery;
1160	struct inquiry_entry *e;
1161
1162	BT_DBG("cache %p bdaddr %pMR state %d", cache, bdaddr, state);
1163
1164	list_for_each_entry(e, &cache->resolve, list) {
1165		if (!bacmp(bdaddr, BDADDR_ANY) && e->name_state == state)
1166			return e;
1167		if (!bacmp(&e->data.bdaddr, bdaddr))
1168			return e;
1169	}
1170
1171	return NULL;
1172}
1173
1174void hci_inquiry_cache_update_resolve(struct hci_dev *hdev,
1175				      struct inquiry_entry *ie)
1176{
1177	struct discovery_state *cache = &hdev->discovery;
1178	struct list_head *pos = &cache->resolve;
1179	struct inquiry_entry *p;
1180
1181	list_del(&ie->list);
1182
1183	list_for_each_entry(p, &cache->resolve, list) {
1184		if (p->name_state != NAME_PENDING &&
1185		    abs(p->data.rssi) >= abs(ie->data.rssi))
1186			break;
1187		pos = &p->list;
1188	}
1189
1190	list_add(&ie->list, pos);
1191}
1192
1193u32 hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data,
1194			     bool name_known)
1195{
1196	struct discovery_state *cache = &hdev->discovery;
1197	struct inquiry_entry *ie;
1198	u32 flags = 0;
1199
1200	BT_DBG("cache %p, %pMR", cache, &data->bdaddr);
1201
1202	hci_remove_remote_oob_data(hdev, &data->bdaddr, BDADDR_BREDR);
1203
1204	if (!data->ssp_mode)
1205		flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
1206
1207	ie = hci_inquiry_cache_lookup(hdev, &data->bdaddr);
1208	if (ie) {
1209		if (!ie->data.ssp_mode)
1210			flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
1211
1212		if (ie->name_state == NAME_NEEDED &&
1213		    data->rssi != ie->data.rssi) {
1214			ie->data.rssi = data->rssi;
1215			hci_inquiry_cache_update_resolve(hdev, ie);
1216		}
1217
1218		goto update;
1219	}
1220
1221	/* Entry not in the cache. Add new one. */
1222	ie = kzalloc(sizeof(*ie), GFP_KERNEL);
1223	if (!ie) {
1224		flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
1225		goto done;
1226	}
1227
1228	list_add(&ie->all, &cache->all);
1229
1230	if (name_known) {
1231		ie->name_state = NAME_KNOWN;
1232	} else {
1233		ie->name_state = NAME_NOT_KNOWN;
1234		list_add(&ie->list, &cache->unknown);
1235	}
1236
1237update:
1238	if (name_known && ie->name_state != NAME_KNOWN &&
1239	    ie->name_state != NAME_PENDING) {
1240		ie->name_state = NAME_KNOWN;
1241		list_del(&ie->list);
1242	}
1243
1244	memcpy(&ie->data, data, sizeof(*data));
1245	ie->timestamp = jiffies;
1246	cache->timestamp = jiffies;
1247
1248	if (ie->name_state == NAME_NOT_KNOWN)
1249		flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
1250
1251done:
1252	return flags;
1253}
1254
1255static int inquiry_cache_dump(struct hci_dev *hdev, int num, __u8 *buf)
1256{
1257	struct discovery_state *cache = &hdev->discovery;
1258	struct inquiry_info *info = (struct inquiry_info *) buf;
1259	struct inquiry_entry *e;
1260	int copied = 0;
1261
1262	list_for_each_entry(e, &cache->all, all) {
1263		struct inquiry_data *data = &e->data;
1264
1265		if (copied >= num)
1266			break;
1267
1268		bacpy(&info->bdaddr, &data->bdaddr);
1269		info->pscan_rep_mode	= data->pscan_rep_mode;
1270		info->pscan_period_mode	= data->pscan_period_mode;
1271		info->pscan_mode	= data->pscan_mode;
1272		memcpy(info->dev_class, data->dev_class, 3);
1273		info->clock_offset	= data->clock_offset;
1274
1275		info++;
1276		copied++;
1277	}
1278
1279	BT_DBG("cache %p, copied %d", cache, copied);
1280	return copied;
1281}
1282
1283static int hci_inq_req(struct hci_request *req, unsigned long opt)
1284{
1285	struct hci_inquiry_req *ir = (struct hci_inquiry_req *) opt;
1286	struct hci_dev *hdev = req->hdev;
1287	struct hci_cp_inquiry cp;
1288
1289	BT_DBG("%s", hdev->name);
1290
1291	if (test_bit(HCI_INQUIRY, &hdev->flags))
1292		return 0;
1293
1294	/* Start Inquiry */
1295	memcpy(&cp.lap, &ir->lap, 3);
1296	cp.length  = ir->length;
1297	cp.num_rsp = ir->num_rsp;
1298	hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp);
1299
1300	return 0;
1301}
1302
1303int hci_inquiry(void __user *arg)
1304{
1305	__u8 __user *ptr = arg;
1306	struct hci_inquiry_req ir;
1307	struct hci_dev *hdev;
1308	int err = 0, do_inquiry = 0, max_rsp;
1309	long timeo;
1310	__u8 *buf;
1311
1312	if (copy_from_user(&ir, ptr, sizeof(ir)))
1313		return -EFAULT;
1314
1315	hdev = hci_dev_get(ir.dev_id);
1316	if (!hdev)
1317		return -ENODEV;
1318
1319	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1320		err = -EBUSY;
1321		goto done;
1322	}
1323
1324	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1325		err = -EOPNOTSUPP;
1326		goto done;
1327	}
1328
1329	if (hdev->dev_type != HCI_PRIMARY) {
1330		err = -EOPNOTSUPP;
1331		goto done;
1332	}
1333
1334	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
1335		err = -EOPNOTSUPP;
1336		goto done;
1337	}
1338
1339	hci_dev_lock(hdev);
1340	if (inquiry_cache_age(hdev) > INQUIRY_CACHE_AGE_MAX ||
1341	    inquiry_cache_empty(hdev) || ir.flags & IREQ_CACHE_FLUSH) {
1342		hci_inquiry_cache_flush(hdev);
1343		do_inquiry = 1;
1344	}
1345	hci_dev_unlock(hdev);
1346
1347	timeo = ir.length * msecs_to_jiffies(2000);
1348
1349	if (do_inquiry) {
1350		err = hci_req_sync(hdev, hci_inq_req, (unsigned long) &ir,
1351				   timeo, NULL);
1352		if (err < 0)
1353			goto done;
1354
1355		/* Wait until Inquiry procedure finishes (HCI_INQUIRY flag is
1356		 * cleared). If it is interrupted by a signal, return -EINTR.
1357		 */
1358		if (wait_on_bit(&hdev->flags, HCI_INQUIRY,
1359				TASK_INTERRUPTIBLE))
1360			return -EINTR;
1361	}
1362
1363	/* for unlimited number of responses we will use buffer with
1364	 * 255 entries
1365	 */
1366	max_rsp = (ir.num_rsp == 0) ? 255 : ir.num_rsp;
1367
1368	/* cache_dump can't sleep. Therefore we allocate temp buffer and then
1369	 * copy it to the user space.
1370	 */
1371	buf = kmalloc_array(max_rsp, sizeof(struct inquiry_info), GFP_KERNEL);
1372	if (!buf) {
1373		err = -ENOMEM;
1374		goto done;
1375	}
1376
1377	hci_dev_lock(hdev);
1378	ir.num_rsp = inquiry_cache_dump(hdev, max_rsp, buf);
1379	hci_dev_unlock(hdev);
1380
1381	BT_DBG("num_rsp %d", ir.num_rsp);
1382
1383	if (!copy_to_user(ptr, &ir, sizeof(ir))) {
1384		ptr += sizeof(ir);
1385		if (copy_to_user(ptr, buf, sizeof(struct inquiry_info) *
1386				 ir.num_rsp))
1387			err = -EFAULT;
1388	} else
1389		err = -EFAULT;
1390
1391	kfree(buf);
1392
1393done:
1394	hci_dev_put(hdev);
1395	return err;
1396}
1397
1398/**
1399 * hci_dev_get_bd_addr_from_property - Get the Bluetooth Device Address
1400 *				       (BD_ADDR) for a HCI device from
1401 *				       a firmware node property.
1402 * @hdev:	The HCI device
1403 *
1404 * Search the firmware node for 'local-bd-address'.
1405 *
1406 * All-zero BD addresses are rejected, because those could be properties
1407 * that exist in the firmware tables, but were not updated by the firmware. For
1408 * example, the DTS could define 'local-bd-address', with zero BD addresses.
1409 */
1410static void hci_dev_get_bd_addr_from_property(struct hci_dev *hdev)
1411{
1412	struct fwnode_handle *fwnode = dev_fwnode(hdev->dev.parent);
1413	bdaddr_t ba;
1414	int ret;
1415
1416	ret = fwnode_property_read_u8_array(fwnode, "local-bd-address",
1417					    (u8 *)&ba, sizeof(ba));
1418	if (ret < 0 || !bacmp(&ba, BDADDR_ANY))
1419		return;
1420
1421	bacpy(&hdev->public_addr, &ba);
1422}
1423
1424static int hci_dev_do_open(struct hci_dev *hdev)
1425{
1426	int ret = 0;
1427
1428	BT_DBG("%s %p", hdev->name, hdev);
1429
1430	hci_req_sync_lock(hdev);
1431
1432	if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) {
1433		ret = -ENODEV;
1434		goto done;
1435	}
1436
1437	if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
1438	    !hci_dev_test_flag(hdev, HCI_CONFIG)) {
1439		/* Check for rfkill but allow the HCI setup stage to
1440		 * proceed (which in itself doesn't cause any RF activity).
1441		 */
1442		if (hci_dev_test_flag(hdev, HCI_RFKILLED)) {
1443			ret = -ERFKILL;
1444			goto done;
1445		}
1446
1447		/* Check for valid public address or a configured static
1448		 * random adddress, but let the HCI setup proceed to
1449		 * be able to determine if there is a public address
1450		 * or not.
1451		 *
1452		 * In case of user channel usage, it is not important
1453		 * if a public address or static random address is
1454		 * available.
1455		 *
1456		 * This check is only valid for BR/EDR controllers
1457		 * since AMP controllers do not have an address.
1458		 */
1459		if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1460		    hdev->dev_type == HCI_PRIMARY &&
1461		    !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
1462		    !bacmp(&hdev->static_addr, BDADDR_ANY)) {
1463			ret = -EADDRNOTAVAIL;
1464			goto done;
1465		}
1466	}
1467
1468	if (test_bit(HCI_UP, &hdev->flags)) {
1469		ret = -EALREADY;
1470		goto done;
1471	}
1472
1473	if (hdev->open(hdev)) {
1474		ret = -EIO;
1475		goto done;
1476	}
1477
1478	set_bit(HCI_RUNNING, &hdev->flags);
1479	hci_sock_dev_event(hdev, HCI_DEV_OPEN);
1480
1481	atomic_set(&hdev->cmd_cnt, 1);
1482	set_bit(HCI_INIT, &hdev->flags);
1483
1484	if (hci_dev_test_flag(hdev, HCI_SETUP) ||
1485	    test_bit(HCI_QUIRK_NON_PERSISTENT_SETUP, &hdev->quirks)) {
1486		bool invalid_bdaddr;
1487
1488		hci_sock_dev_event(hdev, HCI_DEV_SETUP);
1489
1490		if (hdev->setup)
1491			ret = hdev->setup(hdev);
1492
1493		/* The transport driver can set the quirk to mark the
1494		 * BD_ADDR invalid before creating the HCI device or in
1495		 * its setup callback.
1496		 */
1497		invalid_bdaddr = test_bit(HCI_QUIRK_INVALID_BDADDR,
1498					  &hdev->quirks);
1499
1500		if (ret)
1501			goto setup_failed;
1502
1503		if (test_bit(HCI_QUIRK_USE_BDADDR_PROPERTY, &hdev->quirks)) {
1504			if (!bacmp(&hdev->public_addr, BDADDR_ANY))
1505				hci_dev_get_bd_addr_from_property(hdev);
1506
1507			if (bacmp(&hdev->public_addr, BDADDR_ANY) &&
1508			    hdev->set_bdaddr) {
1509				ret = hdev->set_bdaddr(hdev,
1510						       &hdev->public_addr);
1511
1512				/* If setting of the BD_ADDR from the device
1513				 * property succeeds, then treat the address
1514				 * as valid even if the invalid BD_ADDR
1515				 * quirk indicates otherwise.
1516				 */
1517				if (!ret)
1518					invalid_bdaddr = false;
1519			}
1520		}
1521
1522setup_failed:
1523		/* The transport driver can set these quirks before
1524		 * creating the HCI device or in its setup callback.
1525		 *
1526		 * For the invalid BD_ADDR quirk it is possible that
1527		 * it becomes a valid address if the bootloader does
1528		 * provide it (see above).
1529		 *
1530		 * In case any of them is set, the controller has to
1531		 * start up as unconfigured.
1532		 */
1533		if (test_bit(HCI_QUIRK_EXTERNAL_CONFIG, &hdev->quirks) ||
1534		    invalid_bdaddr)
1535			hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
1536
1537		/* For an unconfigured controller it is required to
1538		 * read at least the version information provided by
1539		 * the Read Local Version Information command.
1540		 *
1541		 * If the set_bdaddr driver callback is provided, then
1542		 * also the original Bluetooth public device address
1543		 * will be read using the Read BD Address command.
1544		 */
1545		if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
1546			ret = __hci_unconf_init(hdev);
1547	}
1548
1549	if (hci_dev_test_flag(hdev, HCI_CONFIG)) {
1550		/* If public address change is configured, ensure that
1551		 * the address gets programmed. If the driver does not
1552		 * support changing the public address, fail the power
1553		 * on procedure.
1554		 */
1555		if (bacmp(&hdev->public_addr, BDADDR_ANY) &&
1556		    hdev->set_bdaddr)
1557			ret = hdev->set_bdaddr(hdev, &hdev->public_addr);
1558		else
1559			ret = -EADDRNOTAVAIL;
1560	}
1561
1562	if (!ret) {
1563		if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1564		    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1565			ret = __hci_init(hdev);
1566			if (!ret && hdev->post_init)
1567				ret = hdev->post_init(hdev);
1568		}
1569	}
1570
1571	/* If the HCI Reset command is clearing all diagnostic settings,
1572	 * then they need to be reprogrammed after the init procedure
1573	 * completed.
1574	 */
1575	if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) &&
1576	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1577	    hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) && hdev->set_diag)
1578		ret = hdev->set_diag(hdev, true);
1579
1580	msft_do_open(hdev);
1581
1582	clear_bit(HCI_INIT, &hdev->flags);
1583
1584	if (!ret) {
1585		hci_dev_hold(hdev);
1586		hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
1587		hci_adv_instances_set_rpa_expired(hdev, true);
1588		set_bit(HCI_UP, &hdev->flags);
1589		hci_sock_dev_event(hdev, HCI_DEV_UP);
1590		hci_leds_update_powered(hdev, true);
1591		if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
1592		    !hci_dev_test_flag(hdev, HCI_CONFIG) &&
1593		    !hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1594		    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1595		    hci_dev_test_flag(hdev, HCI_MGMT) &&
1596		    hdev->dev_type == HCI_PRIMARY) {
1597			ret = __hci_req_hci_power_on(hdev);
1598			mgmt_power_on(hdev, ret);
1599		}
1600	} else {
1601		/* Init failed, cleanup */
1602		flush_work(&hdev->tx_work);
1603		flush_work(&hdev->cmd_work);
1604		flush_work(&hdev->rx_work);
1605
1606		skb_queue_purge(&hdev->cmd_q);
1607		skb_queue_purge(&hdev->rx_q);
1608
1609		if (hdev->flush)
1610			hdev->flush(hdev);
1611
1612		if (hdev->sent_cmd) {
1613			kfree_skb(hdev->sent_cmd);
1614			hdev->sent_cmd = NULL;
1615		}
1616
1617		clear_bit(HCI_RUNNING, &hdev->flags);
1618		hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
1619
1620		hdev->close(hdev);
1621		hdev->flags &= BIT(HCI_RAW);
1622	}
1623
1624done:
1625	hci_req_sync_unlock(hdev);
1626	return ret;
1627}
1628
1629/* ---- HCI ioctl helpers ---- */
1630
1631int hci_dev_open(__u16 dev)
1632{
1633	struct hci_dev *hdev;
1634	int err;
1635
1636	hdev = hci_dev_get(dev);
1637	if (!hdev)
1638		return -ENODEV;
1639
1640	/* Devices that are marked as unconfigured can only be powered
1641	 * up as user channel. Trying to bring them up as normal devices
1642	 * will result into a failure. Only user channel operation is
1643	 * possible.
1644	 *
1645	 * When this function is called for a user channel, the flag
1646	 * HCI_USER_CHANNEL will be set first before attempting to
1647	 * open the device.
1648	 */
1649	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1650	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1651		err = -EOPNOTSUPP;
1652		goto done;
1653	}
1654
1655	/* We need to ensure that no other power on/off work is pending
1656	 * before proceeding to call hci_dev_do_open. This is
1657	 * particularly important if the setup procedure has not yet
1658	 * completed.
1659	 */
1660	if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
1661		cancel_delayed_work(&hdev->power_off);
1662
1663	/* After this call it is guaranteed that the setup procedure
1664	 * has finished. This means that error conditions like RFKILL
1665	 * or no valid public or static random address apply.
1666	 */
1667	flush_workqueue(hdev->req_workqueue);
1668
1669	/* For controllers not using the management interface and that
1670	 * are brought up using legacy ioctl, set the HCI_BONDABLE bit
1671	 * so that pairing works for them. Once the management interface
1672	 * is in use this bit will be cleared again and userspace has
1673	 * to explicitly enable it.
1674	 */
1675	if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1676	    !hci_dev_test_flag(hdev, HCI_MGMT))
1677		hci_dev_set_flag(hdev, HCI_BONDABLE);
1678
1679	err = hci_dev_do_open(hdev);
1680
1681done:
1682	hci_dev_put(hdev);
1683	return err;
1684}
1685
1686/* This function requires the caller holds hdev->lock */
1687static void hci_pend_le_actions_clear(struct hci_dev *hdev)
1688{
1689	struct hci_conn_params *p;
1690
1691	list_for_each_entry(p, &hdev->le_conn_params, list) {
1692		if (p->conn) {
1693			hci_conn_drop(p->conn);
1694			hci_conn_put(p->conn);
1695			p->conn = NULL;
1696		}
1697		list_del_init(&p->action);
1698	}
1699
1700	BT_DBG("All LE pending actions cleared");
1701}
1702
1703int hci_dev_do_close(struct hci_dev *hdev)
1704{
1705	bool auto_off;
1706
1707	BT_DBG("%s %p", hdev->name, hdev);
1708
1709	if (!hci_dev_test_flag(hdev, HCI_UNREGISTER) &&
1710	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1711	    test_bit(HCI_UP, &hdev->flags)) {
1712		/* Execute vendor specific shutdown routine */
1713		if (hdev->shutdown)
1714			hdev->shutdown(hdev);
1715	}
1716
1717	cancel_delayed_work(&hdev->power_off);
1718
1719	hci_request_cancel_all(hdev);
1720	hci_req_sync_lock(hdev);
1721
1722	if (!test_and_clear_bit(HCI_UP, &hdev->flags)) {
1723		cancel_delayed_work_sync(&hdev->cmd_timer);
1724		hci_req_sync_unlock(hdev);
1725		return 0;
1726	}
1727
1728	hci_leds_update_powered(hdev, false);
1729
1730	/* Flush RX and TX works */
1731	flush_work(&hdev->tx_work);
1732	flush_work(&hdev->rx_work);
1733
1734	if (hdev->discov_timeout > 0) {
1735		hdev->discov_timeout = 0;
1736		hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
1737		hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
1738	}
1739
1740	if (hci_dev_test_and_clear_flag(hdev, HCI_SERVICE_CACHE))
1741		cancel_delayed_work(&hdev->service_cache);
1742
1743	if (hci_dev_test_flag(hdev, HCI_MGMT)) {
1744		struct adv_info *adv_instance;
1745
1746		cancel_delayed_work_sync(&hdev->rpa_expired);
1747
1748		list_for_each_entry(adv_instance, &hdev->adv_instances, list)
1749			cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
1750	}
1751
1752	/* Avoid potential lockdep warnings from the *_flush() calls by
1753	 * ensuring the workqueue is empty up front.
1754	 */
1755	drain_workqueue(hdev->workqueue);
1756
1757	hci_dev_lock(hdev);
1758
1759	hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
1760
1761	auto_off = hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF);
1762
1763	if (!auto_off && hdev->dev_type == HCI_PRIMARY &&
1764	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1765	    hci_dev_test_flag(hdev, HCI_MGMT))
1766		__mgmt_power_off(hdev);
1767
1768	hci_inquiry_cache_flush(hdev);
1769	hci_pend_le_actions_clear(hdev);
1770	hci_conn_hash_flush(hdev);
1771	hci_dev_unlock(hdev);
1772
1773	smp_unregister(hdev);
1774
1775	hci_sock_dev_event(hdev, HCI_DEV_DOWN);
1776
1777	msft_do_close(hdev);
1778
1779	if (hdev->flush)
1780		hdev->flush(hdev);
1781
1782	/* Reset device */
1783	skb_queue_purge(&hdev->cmd_q);
1784	atomic_set(&hdev->cmd_cnt, 1);
1785	if (test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks) &&
1786	    !auto_off && !hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1787		set_bit(HCI_INIT, &hdev->flags);
1788		__hci_req_sync(hdev, hci_reset_req, 0, HCI_CMD_TIMEOUT, NULL);
1789		clear_bit(HCI_INIT, &hdev->flags);
1790	}
1791
1792	/* flush cmd  work */
1793	flush_work(&hdev->cmd_work);
1794
1795	/* Drop queues */
1796	skb_queue_purge(&hdev->rx_q);
1797	skb_queue_purge(&hdev->cmd_q);
1798	skb_queue_purge(&hdev->raw_q);
1799
1800	/* Drop last sent command */
1801	if (hdev->sent_cmd) {
1802		cancel_delayed_work_sync(&hdev->cmd_timer);
1803		kfree_skb(hdev->sent_cmd);
1804		hdev->sent_cmd = NULL;
1805	}
1806
1807	clear_bit(HCI_RUNNING, &hdev->flags);
1808	hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
1809
1810	if (test_and_clear_bit(SUSPEND_POWERING_DOWN, hdev->suspend_tasks))
1811		wake_up(&hdev->suspend_wait_q);
1812
1813	/* After this point our queues are empty
1814	 * and no tasks are scheduled. */
1815	hdev->close(hdev);
1816
1817	/* Clear flags */
1818	hdev->flags &= BIT(HCI_RAW);
1819	hci_dev_clear_volatile_flags(hdev);
1820
1821	/* Controller radio is available but is currently powered down */
1822	hdev->amp_status = AMP_STATUS_POWERED_DOWN;
1823
1824	memset(hdev->eir, 0, sizeof(hdev->eir));
1825	memset(hdev->dev_class, 0, sizeof(hdev->dev_class));
1826	bacpy(&hdev->random_addr, BDADDR_ANY);
1827
1828	hci_req_sync_unlock(hdev);
1829
1830	hci_dev_put(hdev);
1831	return 0;
1832}
1833
1834int hci_dev_close(__u16 dev)
1835{
1836	struct hci_dev *hdev;
1837	int err;
1838
1839	hdev = hci_dev_get(dev);
1840	if (!hdev)
1841		return -ENODEV;
1842
1843	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1844		err = -EBUSY;
1845		goto done;
1846	}
1847
1848	if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
1849		cancel_delayed_work(&hdev->power_off);
1850
1851	err = hci_dev_do_close(hdev);
1852
1853done:
1854	hci_dev_put(hdev);
1855	return err;
1856}
1857
1858static int hci_dev_do_reset(struct hci_dev *hdev)
1859{
1860	int ret;
1861
1862	BT_DBG("%s %p", hdev->name, hdev);
1863
1864	hci_req_sync_lock(hdev);
1865
1866	/* Drop queues */
1867	skb_queue_purge(&hdev->rx_q);
1868	skb_queue_purge(&hdev->cmd_q);
1869
1870	/* Avoid potential lockdep warnings from the *_flush() calls by
1871	 * ensuring the workqueue is empty up front.
1872	 */
1873	drain_workqueue(hdev->workqueue);
1874
1875	hci_dev_lock(hdev);
1876	hci_inquiry_cache_flush(hdev);
1877	hci_conn_hash_flush(hdev);
1878	hci_dev_unlock(hdev);
1879
1880	if (hdev->flush)
1881		hdev->flush(hdev);
1882
1883	atomic_set(&hdev->cmd_cnt, 1);
1884	hdev->acl_cnt = 0; hdev->sco_cnt = 0; hdev->le_cnt = 0;
1885
1886	ret = __hci_req_sync(hdev, hci_reset_req, 0, HCI_INIT_TIMEOUT, NULL);
1887
1888	hci_req_sync_unlock(hdev);
1889	return ret;
1890}
1891
1892int hci_dev_reset(__u16 dev)
1893{
1894	struct hci_dev *hdev;
1895	int err;
1896
1897	hdev = hci_dev_get(dev);
1898	if (!hdev)
1899		return -ENODEV;
1900
1901	if (!test_bit(HCI_UP, &hdev->flags)) {
1902		err = -ENETDOWN;
1903		goto done;
1904	}
1905
1906	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1907		err = -EBUSY;
1908		goto done;
1909	}
1910
1911	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1912		err = -EOPNOTSUPP;
1913		goto done;
1914	}
1915
1916	err = hci_dev_do_reset(hdev);
1917
1918done:
1919	hci_dev_put(hdev);
1920	return err;
1921}
1922
1923int hci_dev_reset_stat(__u16 dev)
1924{
1925	struct hci_dev *hdev;
1926	int ret = 0;
1927
1928	hdev = hci_dev_get(dev);
1929	if (!hdev)
1930		return -ENODEV;
1931
1932	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1933		ret = -EBUSY;
1934		goto done;
1935	}
1936
1937	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1938		ret = -EOPNOTSUPP;
1939		goto done;
1940	}
1941
1942	memset(&hdev->stat, 0, sizeof(struct hci_dev_stats));
1943
1944done:
1945	hci_dev_put(hdev);
1946	return ret;
1947}
1948
1949static void hci_update_scan_state(struct hci_dev *hdev, u8 scan)
1950{
1951	bool conn_changed, discov_changed;
1952
1953	BT_DBG("%s scan 0x%02x", hdev->name, scan);
1954
1955	if ((scan & SCAN_PAGE))
1956		conn_changed = !hci_dev_test_and_set_flag(hdev,
1957							  HCI_CONNECTABLE);
1958	else
1959		conn_changed = hci_dev_test_and_clear_flag(hdev,
1960							   HCI_CONNECTABLE);
1961
1962	if ((scan & SCAN_INQUIRY)) {
1963		discov_changed = !hci_dev_test_and_set_flag(hdev,
1964							    HCI_DISCOVERABLE);
1965	} else {
1966		hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
1967		discov_changed = hci_dev_test_and_clear_flag(hdev,
1968							     HCI_DISCOVERABLE);
1969	}
1970
1971	if (!hci_dev_test_flag(hdev, HCI_MGMT))
1972		return;
1973
1974	if (conn_changed || discov_changed) {
1975		/* In case this was disabled through mgmt */
1976		hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
1977
1978		if (hci_dev_test_flag(hdev, HCI_LE_ENABLED))
1979			hci_req_update_adv_data(hdev, hdev->cur_adv_instance);
1980
1981		mgmt_new_settings(hdev);
1982	}
1983}
1984
1985int hci_dev_cmd(unsigned int cmd, void __user *arg)
1986{
1987	struct hci_dev *hdev;
1988	struct hci_dev_req dr;
1989	int err = 0;
1990
1991	if (copy_from_user(&dr, arg, sizeof(dr)))
1992		return -EFAULT;
1993
1994	hdev = hci_dev_get(dr.dev_id);
1995	if (!hdev)
1996		return -ENODEV;
1997
1998	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1999		err = -EBUSY;
2000		goto done;
2001	}
2002
2003	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
2004		err = -EOPNOTSUPP;
2005		goto done;
2006	}
2007
2008	if (hdev->dev_type != HCI_PRIMARY) {
2009		err = -EOPNOTSUPP;
2010		goto done;
2011	}
2012
2013	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
2014		err = -EOPNOTSUPP;
2015		goto done;
2016	}
2017
2018	switch (cmd) {
2019	case HCISETAUTH:
2020		err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
2021				   HCI_INIT_TIMEOUT, NULL);
2022		break;
2023
2024	case HCISETENCRYPT:
2025		if (!lmp_encrypt_capable(hdev)) {
2026			err = -EOPNOTSUPP;
2027			break;
2028		}
2029
2030		if (!test_bit(HCI_AUTH, &hdev->flags)) {
2031			/* Auth must be enabled first */
2032			err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
2033					   HCI_INIT_TIMEOUT, NULL);
2034			if (err)
2035				break;
2036		}
2037
2038		err = hci_req_sync(hdev, hci_encrypt_req, dr.dev_opt,
2039				   HCI_INIT_TIMEOUT, NULL);
2040		break;
2041
2042	case HCISETSCAN:
2043		err = hci_req_sync(hdev, hci_scan_req, dr.dev_opt,
2044				   HCI_INIT_TIMEOUT, NULL);
2045
2046		/* Ensure that the connectable and discoverable states
2047		 * get correctly modified as this was a non-mgmt change.
2048		 */
2049		if (!err)
2050			hci_update_scan_state(hdev, dr.dev_opt);
2051		break;
2052
2053	case HCISETLINKPOL:
2054		err = hci_req_sync(hdev, hci_linkpol_req, dr.dev_opt,
2055				   HCI_INIT_TIMEOUT, NULL);
2056		break;
2057
2058	case HCISETLINKMODE:
2059		hdev->link_mode = ((__u16) dr.dev_opt) &
2060					(HCI_LM_MASTER | HCI_LM_ACCEPT);
2061		break;
2062
2063	case HCISETPTYPE:
2064		if (hdev->pkt_type == (__u16) dr.dev_opt)
2065			break;
2066
2067		hdev->pkt_type = (__u16) dr.dev_opt;
2068		mgmt_phy_configuration_changed(hdev, NULL);
2069		break;
2070
2071	case HCISETACLMTU:
2072		hdev->acl_mtu  = *((__u16 *) &dr.dev_opt + 1);
2073		hdev->acl_pkts = *((__u16 *) &dr.dev_opt + 0);
2074		break;
2075
2076	case HCISETSCOMTU:
2077		hdev->sco_mtu  = *((__u16 *) &dr.dev_opt + 1);
2078		hdev->sco_pkts = *((__u16 *) &dr.dev_opt + 0);
2079		break;
2080
2081	default:
2082		err = -EINVAL;
2083		break;
2084	}
2085
2086done:
2087	hci_dev_put(hdev);
2088	return err;
2089}
2090
2091int hci_get_dev_list(void __user *arg)
2092{
2093	struct hci_dev *hdev;
2094	struct hci_dev_list_req *dl;
2095	struct hci_dev_req *dr;
2096	int n = 0, size, err;
2097	__u16 dev_num;
2098
2099	if (get_user(dev_num, (__u16 __user *) arg))
2100		return -EFAULT;
2101
2102	if (!dev_num || dev_num > (PAGE_SIZE * 2) / sizeof(*dr))
2103		return -EINVAL;
2104
2105	size = sizeof(*dl) + dev_num * sizeof(*dr);
2106
2107	dl = kzalloc(size, GFP_KERNEL);
2108	if (!dl)
2109		return -ENOMEM;
2110
2111	dr = dl->dev_req;
2112
2113	read_lock(&hci_dev_list_lock);
2114	list_for_each_entry(hdev, &hci_dev_list, list) {
2115		unsigned long flags = hdev->flags;
2116
2117		/* When the auto-off is configured it means the transport
2118		 * is running, but in that case still indicate that the
2119		 * device is actually down.
2120		 */
2121		if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
2122			flags &= ~BIT(HCI_UP);
2123
2124		(dr + n)->dev_id  = hdev->id;
2125		(dr + n)->dev_opt = flags;
2126
2127		if (++n >= dev_num)
2128			break;
2129	}
2130	read_unlock(&hci_dev_list_lock);
2131
2132	dl->dev_num = n;
2133	size = sizeof(*dl) + n * sizeof(*dr);
2134
2135	err = copy_to_user(arg, dl, size);
2136	kfree(dl);
2137
2138	return err ? -EFAULT : 0;
2139}
2140
2141int hci_get_dev_info(void __user *arg)
2142{
2143	struct hci_dev *hdev;
2144	struct hci_dev_info di;
2145	unsigned long flags;
2146	int err = 0;
2147
2148	if (copy_from_user(&di, arg, sizeof(di)))
2149		return -EFAULT;
2150
2151	hdev = hci_dev_get(di.dev_id);
2152	if (!hdev)
2153		return -ENODEV;
2154
2155	/* When the auto-off is configured it means the transport
2156	 * is running, but in that case still indicate that the
2157	 * device is actually down.
2158	 */
2159	if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
2160		flags = hdev->flags & ~BIT(HCI_UP);
2161	else
2162		flags = hdev->flags;
2163
2164	strcpy(di.name, hdev->name);
2165	di.bdaddr   = hdev->bdaddr;
2166	di.type     = (hdev->bus & 0x0f) | ((hdev->dev_type & 0x03) << 4);
2167	di.flags    = flags;
2168	di.pkt_type = hdev->pkt_type;
2169	if (lmp_bredr_capable(hdev)) {
2170		di.acl_mtu  = hdev->acl_mtu;
2171		di.acl_pkts = hdev->acl_pkts;
2172		di.sco_mtu  = hdev->sco_mtu;
2173		di.sco_pkts = hdev->sco_pkts;
2174	} else {
2175		di.acl_mtu  = hdev->le_mtu;
2176		di.acl_pkts = hdev->le_pkts;
2177		di.sco_mtu  = 0;
2178		di.sco_pkts = 0;
2179	}
2180	di.link_policy = hdev->link_policy;
2181	di.link_mode   = hdev->link_mode;
2182
2183	memcpy(&di.stat, &hdev->stat, sizeof(di.stat));
2184	memcpy(&di.features, &hdev->features, sizeof(di.features));
2185
2186	if (copy_to_user(arg, &di, sizeof(di)))
2187		err = -EFAULT;
2188
2189	hci_dev_put(hdev);
2190
2191	return err;
2192}
2193
2194/* ---- Interface to HCI drivers ---- */
2195
2196static int hci_rfkill_set_block(void *data, bool blocked)
2197{
2198	struct hci_dev *hdev = data;
2199
2200	BT_DBG("%p name %s blocked %d", hdev, hdev->name, blocked);
2201
2202	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL))
2203		return -EBUSY;
2204
2205	if (blocked) {
2206		hci_dev_set_flag(hdev, HCI_RFKILLED);
2207		if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
2208		    !hci_dev_test_flag(hdev, HCI_CONFIG))
2209			hci_dev_do_close(hdev);
2210	} else {
2211		hci_dev_clear_flag(hdev, HCI_RFKILLED);
2212	}
2213
2214	return 0;
2215}
2216
2217static const struct rfkill_ops hci_rfkill_ops = {
2218	.set_block = hci_rfkill_set_block,
2219};
2220
2221static void hci_power_on(struct work_struct *work)
2222{
2223	struct hci_dev *hdev = container_of(work, struct hci_dev, power_on);
2224	int err;
2225
2226	BT_DBG("%s", hdev->name);
2227
2228	if (test_bit(HCI_UP, &hdev->flags) &&
2229	    hci_dev_test_flag(hdev, HCI_MGMT) &&
2230	    hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) {
2231		cancel_delayed_work(&hdev->power_off);
2232		hci_req_sync_lock(hdev);
2233		err = __hci_req_hci_power_on(hdev);
2234		hci_req_sync_unlock(hdev);
2235		mgmt_power_on(hdev, err);
2236		return;
2237	}
2238
2239	err = hci_dev_do_open(hdev);
2240	if (err < 0) {
2241		hci_dev_lock(hdev);
2242		mgmt_set_powered_failed(hdev, err);
2243		hci_dev_unlock(hdev);
2244		return;
2245	}
2246
2247	/* During the HCI setup phase, a few error conditions are
2248	 * ignored and they need to be checked now. If they are still
2249	 * valid, it is important to turn the device back off.
2250	 */
2251	if (hci_dev_test_flag(hdev, HCI_RFKILLED) ||
2252	    hci_dev_test_flag(hdev, HCI_UNCONFIGURED) ||
2253	    (hdev->dev_type == HCI_PRIMARY &&
2254	     !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
2255	     !bacmp(&hdev->static_addr, BDADDR_ANY))) {
2256		hci_dev_clear_flag(hdev, HCI_AUTO_OFF);
2257		hci_dev_do_close(hdev);
2258	} else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) {
2259		queue_delayed_work(hdev->req_workqueue, &hdev->power_off,
2260				   HCI_AUTO_OFF_TIMEOUT);
2261	}
2262
2263	if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) {
2264		/* For unconfigured devices, set the HCI_RAW flag
2265		 * so that userspace can easily identify them.
2266		 */
2267		if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
2268			set_bit(HCI_RAW, &hdev->flags);
2269
2270		/* For fully configured devices, this will send
2271		 * the Index Added event. For unconfigured devices,
2272		 * it will send Unconfigued Index Added event.
2273		 *
2274		 * Devices with HCI_QUIRK_RAW_DEVICE are ignored
2275		 * and no event will be send.
2276		 */
2277		mgmt_index_added(hdev);
2278	} else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) {
2279		/* When the controller is now configured, then it
2280		 * is important to clear the HCI_RAW flag.
2281		 */
2282		if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
2283			clear_bit(HCI_RAW, &hdev->flags);
2284
2285		/* Powering on the controller with HCI_CONFIG set only
2286		 * happens with the transition from unconfigured to
2287		 * configured. This will send the Index Added event.
2288		 */
2289		mgmt_index_added(hdev);
2290	}
2291}
2292
2293static void hci_power_off(struct work_struct *work)
2294{
2295	struct hci_dev *hdev = container_of(work, struct hci_dev,
2296					    power_off.work);
2297
2298	BT_DBG("%s", hdev->name);
2299
2300	hci_dev_do_close(hdev);
2301}
2302
2303static void hci_error_reset(struct work_struct *work)
2304{
2305	struct hci_dev *hdev = container_of(work, struct hci_dev, error_reset);
2306
2307	BT_DBG("%s", hdev->name);
2308
2309	if (hdev->hw_error)
2310		hdev->hw_error(hdev, hdev->hw_error_code);
2311	else
2312		bt_dev_err(hdev, "hardware error 0x%2.2x", hdev->hw_error_code);
 
2313
2314	if (hci_dev_do_close(hdev))
2315		return;
2316
2317	hci_dev_do_open(hdev);
2318}
2319
2320void hci_uuids_clear(struct hci_dev *hdev)
2321{
2322	struct bt_uuid *uuid, *tmp;
2323
2324	list_for_each_entry_safe(uuid, tmp, &hdev->uuids, list) {
2325		list_del(&uuid->list);
2326		kfree(uuid);
2327	}
2328}
2329
2330void hci_link_keys_clear(struct hci_dev *hdev)
2331{
2332	struct link_key *key;
2333
2334	list_for_each_entry(key, &hdev->link_keys, list) {
2335		list_del_rcu(&key->list);
2336		kfree_rcu(key, rcu);
2337	}
2338}
2339
2340void hci_smp_ltks_clear(struct hci_dev *hdev)
2341{
2342	struct smp_ltk *k;
2343
2344	list_for_each_entry(k, &hdev->long_term_keys, list) {
2345		list_del_rcu(&k->list);
2346		kfree_rcu(k, rcu);
2347	}
2348}
2349
2350void hci_smp_irks_clear(struct hci_dev *hdev)
2351{
2352	struct smp_irk *k;
2353
2354	list_for_each_entry(k, &hdev->identity_resolving_keys, list) {
2355		list_del_rcu(&k->list);
2356		kfree_rcu(k, rcu);
2357	}
2358}
2359
2360void hci_blocked_keys_clear(struct hci_dev *hdev)
2361{
2362	struct blocked_key *b;
2363
2364	list_for_each_entry(b, &hdev->blocked_keys, list) {
2365		list_del_rcu(&b->list);
2366		kfree_rcu(b, rcu);
2367	}
2368}
2369
2370bool hci_is_blocked_key(struct hci_dev *hdev, u8 type, u8 val[16])
2371{
2372	bool blocked = false;
2373	struct blocked_key *b;
2374
2375	rcu_read_lock();
2376	list_for_each_entry_rcu(b, &hdev->blocked_keys, list) {
2377		if (b->type == type && !memcmp(b->val, val, sizeof(b->val))) {
2378			blocked = true;
2379			break;
2380		}
2381	}
2382
2383	rcu_read_unlock();
2384	return blocked;
2385}
2386
2387struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
2388{
2389	struct link_key *k;
2390
2391	rcu_read_lock();
2392	list_for_each_entry_rcu(k, &hdev->link_keys, list) {
2393		if (bacmp(bdaddr, &k->bdaddr) == 0) {
2394			rcu_read_unlock();
2395
2396			if (hci_is_blocked_key(hdev,
2397					       HCI_BLOCKED_KEY_TYPE_LINKKEY,
2398					       k->val)) {
2399				bt_dev_warn_ratelimited(hdev,
2400							"Link key blocked for %pMR",
2401							&k->bdaddr);
2402				return NULL;
2403			}
2404
2405			return k;
2406		}
2407	}
2408	rcu_read_unlock();
2409
2410	return NULL;
2411}
2412
2413static bool hci_persistent_key(struct hci_dev *hdev, struct hci_conn *conn,
2414			       u8 key_type, u8 old_key_type)
2415{
2416	/* Legacy key */
2417	if (key_type < 0x03)
2418		return true;
2419
2420	/* Debug keys are insecure so don't store them persistently */
2421	if (key_type == HCI_LK_DEBUG_COMBINATION)
2422		return false;
2423
2424	/* Changed combination key and there's no previous one */
2425	if (key_type == HCI_LK_CHANGED_COMBINATION && old_key_type == 0xff)
2426		return false;
2427
2428	/* Security mode 3 case */
2429	if (!conn)
2430		return true;
2431
2432	/* BR/EDR key derived using SC from an LE link */
2433	if (conn->type == LE_LINK)
2434		return true;
2435
2436	/* Neither local nor remote side had no-bonding as requirement */
2437	if (conn->auth_type > 0x01 && conn->remote_auth > 0x01)
2438		return true;
2439
2440	/* Local side had dedicated bonding as requirement */
2441	if (conn->auth_type == 0x02 || conn->auth_type == 0x03)
2442		return true;
2443
2444	/* Remote side had dedicated bonding as requirement */
2445	if (conn->remote_auth == 0x02 || conn->remote_auth == 0x03)
2446		return true;
2447
2448	/* If none of the above criteria match, then don't store the key
2449	 * persistently */
2450	return false;
2451}
2452
2453static u8 ltk_role(u8 type)
2454{
2455	if (type == SMP_LTK)
2456		return HCI_ROLE_MASTER;
2457
2458	return HCI_ROLE_SLAVE;
2459}
2460
2461struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2462			     u8 addr_type, u8 role)
2463{
2464	struct smp_ltk *k;
2465
2466	rcu_read_lock();
2467	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2468		if (addr_type != k->bdaddr_type || bacmp(bdaddr, &k->bdaddr))
2469			continue;
2470
2471		if (smp_ltk_is_sc(k) || ltk_role(k->type) == role) {
2472			rcu_read_unlock();
2473
2474			if (hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_LTK,
2475					       k->val)) {
2476				bt_dev_warn_ratelimited(hdev,
2477							"LTK blocked for %pMR",
2478							&k->bdaddr);
2479				return NULL;
2480			}
2481
2482			return k;
2483		}
2484	}
2485	rcu_read_unlock();
2486
2487	return NULL;
2488}
2489
2490struct smp_irk *hci_find_irk_by_rpa(struct hci_dev *hdev, bdaddr_t *rpa)
2491{
2492	struct smp_irk *irk_to_return = NULL;
2493	struct smp_irk *irk;
2494
2495	rcu_read_lock();
2496	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2497		if (!bacmp(&irk->rpa, rpa)) {
2498			irk_to_return = irk;
2499			goto done;
2500		}
2501	}
2502
2503	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2504		if (smp_irk_matches(hdev, irk->val, rpa)) {
2505			bacpy(&irk->rpa, rpa);
2506			irk_to_return = irk;
2507			goto done;
2508		}
2509	}
2510
2511done:
2512	if (irk_to_return && hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_IRK,
2513						irk_to_return->val)) {
2514		bt_dev_warn_ratelimited(hdev, "Identity key blocked for %pMR",
2515					&irk_to_return->bdaddr);
2516		irk_to_return = NULL;
2517	}
2518
2519	rcu_read_unlock();
2520
2521	return irk_to_return;
2522}
2523
2524struct smp_irk *hci_find_irk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr,
2525				     u8 addr_type)
2526{
2527	struct smp_irk *irk_to_return = NULL;
2528	struct smp_irk *irk;
2529
2530	/* Identity Address must be public or static random */
2531	if (addr_type == ADDR_LE_DEV_RANDOM && (bdaddr->b[5] & 0xc0) != 0xc0)
2532		return NULL;
2533
2534	rcu_read_lock();
2535	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2536		if (addr_type == irk->addr_type &&
2537		    bacmp(bdaddr, &irk->bdaddr) == 0) {
2538			irk_to_return = irk;
2539			goto done;
2540		}
2541	}
2542
2543done:
2544
2545	if (irk_to_return && hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_IRK,
2546						irk_to_return->val)) {
2547		bt_dev_warn_ratelimited(hdev, "Identity key blocked for %pMR",
2548					&irk_to_return->bdaddr);
2549		irk_to_return = NULL;
2550	}
2551
2552	rcu_read_unlock();
2553
2554	return irk_to_return;
2555}
2556
2557struct link_key *hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn,
2558				  bdaddr_t *bdaddr, u8 *val, u8 type,
2559				  u8 pin_len, bool *persistent)
2560{
2561	struct link_key *key, *old_key;
2562	u8 old_key_type;
2563
2564	old_key = hci_find_link_key(hdev, bdaddr);
2565	if (old_key) {
2566		old_key_type = old_key->type;
2567		key = old_key;
2568	} else {
2569		old_key_type = conn ? conn->key_type : 0xff;
2570		key = kzalloc(sizeof(*key), GFP_KERNEL);
2571		if (!key)
2572			return NULL;
2573		list_add_rcu(&key->list, &hdev->link_keys);
2574	}
2575
2576	BT_DBG("%s key for %pMR type %u", hdev->name, bdaddr, type);
2577
2578	/* Some buggy controller combinations generate a changed
2579	 * combination key for legacy pairing even when there's no
2580	 * previous key */
2581	if (type == HCI_LK_CHANGED_COMBINATION &&
2582	    (!conn || conn->remote_auth == 0xff) && old_key_type == 0xff) {
2583		type = HCI_LK_COMBINATION;
2584		if (conn)
2585			conn->key_type = type;
2586	}
2587
2588	bacpy(&key->bdaddr, bdaddr);
2589	memcpy(key->val, val, HCI_LINK_KEY_SIZE);
2590	key->pin_len = pin_len;
2591
2592	if (type == HCI_LK_CHANGED_COMBINATION)
2593		key->type = old_key_type;
2594	else
2595		key->type = type;
2596
2597	if (persistent)
2598		*persistent = hci_persistent_key(hdev, conn, type,
2599						 old_key_type);
2600
2601	return key;
2602}
2603
2604struct smp_ltk *hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2605			    u8 addr_type, u8 type, u8 authenticated,
2606			    u8 tk[16], u8 enc_size, __le16 ediv, __le64 rand)
2607{
2608	struct smp_ltk *key, *old_key;
2609	u8 role = ltk_role(type);
2610
2611	old_key = hci_find_ltk(hdev, bdaddr, addr_type, role);
2612	if (old_key)
2613		key = old_key;
2614	else {
2615		key = kzalloc(sizeof(*key), GFP_KERNEL);
2616		if (!key)
2617			return NULL;
2618		list_add_rcu(&key->list, &hdev->long_term_keys);
2619	}
2620
2621	bacpy(&key->bdaddr, bdaddr);
2622	key->bdaddr_type = addr_type;
2623	memcpy(key->val, tk, sizeof(key->val));
2624	key->authenticated = authenticated;
2625	key->ediv = ediv;
2626	key->rand = rand;
2627	key->enc_size = enc_size;
2628	key->type = type;
2629
2630	return key;
2631}
2632
2633struct smp_irk *hci_add_irk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2634			    u8 addr_type, u8 val[16], bdaddr_t *rpa)
2635{
2636	struct smp_irk *irk;
2637
2638	irk = hci_find_irk_by_addr(hdev, bdaddr, addr_type);
2639	if (!irk) {
2640		irk = kzalloc(sizeof(*irk), GFP_KERNEL);
2641		if (!irk)
2642			return NULL;
2643
2644		bacpy(&irk->bdaddr, bdaddr);
2645		irk->addr_type = addr_type;
2646
2647		list_add_rcu(&irk->list, &hdev->identity_resolving_keys);
2648	}
2649
2650	memcpy(irk->val, val, 16);
2651	bacpy(&irk->rpa, rpa);
2652
2653	return irk;
2654}
2655
2656int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
2657{
2658	struct link_key *key;
2659
2660	key = hci_find_link_key(hdev, bdaddr);
2661	if (!key)
2662		return -ENOENT;
2663
2664	BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2665
2666	list_del_rcu(&key->list);
2667	kfree_rcu(key, rcu);
2668
2669	return 0;
2670}
2671
2672int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type)
2673{
2674	struct smp_ltk *k;
2675	int removed = 0;
2676
2677	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2678		if (bacmp(bdaddr, &k->bdaddr) || k->bdaddr_type != bdaddr_type)
2679			continue;
2680
2681		BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2682
2683		list_del_rcu(&k->list);
2684		kfree_rcu(k, rcu);
2685		removed++;
2686	}
2687
2688	return removed ? 0 : -ENOENT;
2689}
2690
2691void hci_remove_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type)
2692{
2693	struct smp_irk *k;
2694
2695	list_for_each_entry_rcu(k, &hdev->identity_resolving_keys, list) {
2696		if (bacmp(bdaddr, &k->bdaddr) || k->addr_type != addr_type)
2697			continue;
2698
2699		BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2700
2701		list_del_rcu(&k->list);
2702		kfree_rcu(k, rcu);
2703	}
2704}
2705
2706bool hci_bdaddr_is_paired(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type)
2707{
2708	struct smp_ltk *k;
2709	struct smp_irk *irk;
2710	u8 addr_type;
2711
2712	if (type == BDADDR_BREDR) {
2713		if (hci_find_link_key(hdev, bdaddr))
2714			return true;
2715		return false;
2716	}
2717
2718	/* Convert to HCI addr type which struct smp_ltk uses */
2719	if (type == BDADDR_LE_PUBLIC)
2720		addr_type = ADDR_LE_DEV_PUBLIC;
2721	else
2722		addr_type = ADDR_LE_DEV_RANDOM;
2723
2724	irk = hci_get_irk(hdev, bdaddr, addr_type);
2725	if (irk) {
2726		bdaddr = &irk->bdaddr;
2727		addr_type = irk->addr_type;
2728	}
2729
2730	rcu_read_lock();
2731	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2732		if (k->bdaddr_type == addr_type && !bacmp(bdaddr, &k->bdaddr)) {
2733			rcu_read_unlock();
2734			return true;
2735		}
2736	}
2737	rcu_read_unlock();
2738
2739	return false;
2740}
2741
2742/* HCI command timer function */
2743static void hci_cmd_timeout(struct work_struct *work)
2744{
2745	struct hci_dev *hdev = container_of(work, struct hci_dev,
2746					    cmd_timer.work);
2747
2748	if (hdev->sent_cmd) {
2749		struct hci_command_hdr *sent = (void *) hdev->sent_cmd->data;
2750		u16 opcode = __le16_to_cpu(sent->opcode);
2751
2752		bt_dev_err(hdev, "command 0x%4.4x tx timeout", opcode);
2753	} else {
2754		bt_dev_err(hdev, "command tx timeout");
2755	}
2756
2757	if (hdev->cmd_timeout)
2758		hdev->cmd_timeout(hdev);
2759
2760	atomic_set(&hdev->cmd_cnt, 1);
2761	queue_work(hdev->workqueue, &hdev->cmd_work);
2762}
2763
2764struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev,
2765					  bdaddr_t *bdaddr, u8 bdaddr_type)
2766{
2767	struct oob_data *data;
2768
2769	list_for_each_entry(data, &hdev->remote_oob_data, list) {
2770		if (bacmp(bdaddr, &data->bdaddr) != 0)
2771			continue;
2772		if (data->bdaddr_type != bdaddr_type)
2773			continue;
2774		return data;
2775	}
2776
2777	return NULL;
2778}
2779
2780int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
2781			       u8 bdaddr_type)
2782{
2783	struct oob_data *data;
2784
2785	data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
2786	if (!data)
2787		return -ENOENT;
2788
2789	BT_DBG("%s removing %pMR (%u)", hdev->name, bdaddr, bdaddr_type);
2790
2791	list_del(&data->list);
2792	kfree(data);
2793
2794	return 0;
2795}
2796
2797void hci_remote_oob_data_clear(struct hci_dev *hdev)
2798{
2799	struct oob_data *data, *n;
2800
2801	list_for_each_entry_safe(data, n, &hdev->remote_oob_data, list) {
2802		list_del(&data->list);
2803		kfree(data);
2804	}
2805}
2806
2807int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
2808			    u8 bdaddr_type, u8 *hash192, u8 *rand192,
2809			    u8 *hash256, u8 *rand256)
2810{
2811	struct oob_data *data;
2812
2813	data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
2814	if (!data) {
2815		data = kmalloc(sizeof(*data), GFP_KERNEL);
2816		if (!data)
2817			return -ENOMEM;
2818
2819		bacpy(&data->bdaddr, bdaddr);
2820		data->bdaddr_type = bdaddr_type;
2821		list_add(&data->list, &hdev->remote_oob_data);
2822	}
2823
2824	if (hash192 && rand192) {
2825		memcpy(data->hash192, hash192, sizeof(data->hash192));
2826		memcpy(data->rand192, rand192, sizeof(data->rand192));
2827		if (hash256 && rand256)
2828			data->present = 0x03;
2829	} else {
2830		memset(data->hash192, 0, sizeof(data->hash192));
2831		memset(data->rand192, 0, sizeof(data->rand192));
2832		if (hash256 && rand256)
2833			data->present = 0x02;
2834		else
2835			data->present = 0x00;
2836	}
2837
2838	if (hash256 && rand256) {
2839		memcpy(data->hash256, hash256, sizeof(data->hash256));
2840		memcpy(data->rand256, rand256, sizeof(data->rand256));
2841	} else {
2842		memset(data->hash256, 0, sizeof(data->hash256));
2843		memset(data->rand256, 0, sizeof(data->rand256));
2844		if (hash192 && rand192)
2845			data->present = 0x01;
2846	}
2847
2848	BT_DBG("%s for %pMR", hdev->name, bdaddr);
2849
2850	return 0;
2851}
2852
2853/* This function requires the caller holds hdev->lock */
2854struct adv_info *hci_find_adv_instance(struct hci_dev *hdev, u8 instance)
2855{
2856	struct adv_info *adv_instance;
2857
2858	list_for_each_entry(adv_instance, &hdev->adv_instances, list) {
2859		if (adv_instance->instance == instance)
2860			return adv_instance;
2861	}
2862
2863	return NULL;
2864}
2865
2866/* This function requires the caller holds hdev->lock */
2867struct adv_info *hci_get_next_instance(struct hci_dev *hdev, u8 instance)
2868{
2869	struct adv_info *cur_instance;
2870
2871	cur_instance = hci_find_adv_instance(hdev, instance);
2872	if (!cur_instance)
2873		return NULL;
2874
2875	if (cur_instance == list_last_entry(&hdev->adv_instances,
2876					    struct adv_info, list))
2877		return list_first_entry(&hdev->adv_instances,
2878						 struct adv_info, list);
2879	else
2880		return list_next_entry(cur_instance, list);
2881}
2882
2883/* This function requires the caller holds hdev->lock */
2884int hci_remove_adv_instance(struct hci_dev *hdev, u8 instance)
2885{
2886	struct adv_info *adv_instance;
2887
2888	adv_instance = hci_find_adv_instance(hdev, instance);
2889	if (!adv_instance)
2890		return -ENOENT;
2891
2892	BT_DBG("%s removing %dMR", hdev->name, instance);
2893
2894	if (hdev->cur_adv_instance == instance) {
2895		if (hdev->adv_instance_timeout) {
2896			cancel_delayed_work(&hdev->adv_instance_expire);
2897			hdev->adv_instance_timeout = 0;
2898		}
2899		hdev->cur_adv_instance = 0x00;
2900	}
2901
2902	cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
2903
2904	list_del(&adv_instance->list);
2905	kfree(adv_instance);
2906
2907	hdev->adv_instance_cnt--;
2908
2909	return 0;
2910}
2911
2912void hci_adv_instances_set_rpa_expired(struct hci_dev *hdev, bool rpa_expired)
2913{
2914	struct adv_info *adv_instance, *n;
2915
2916	list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list)
2917		adv_instance->rpa_expired = rpa_expired;
2918}
2919
2920/* This function requires the caller holds hdev->lock */
2921void hci_adv_instances_clear(struct hci_dev *hdev)
2922{
2923	struct adv_info *adv_instance, *n;
2924
2925	if (hdev->adv_instance_timeout) {
2926		cancel_delayed_work(&hdev->adv_instance_expire);
2927		hdev->adv_instance_timeout = 0;
2928	}
2929
2930	list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list) {
2931		cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
2932		list_del(&adv_instance->list);
2933		kfree(adv_instance);
2934	}
2935
2936	hdev->adv_instance_cnt = 0;
2937	hdev->cur_adv_instance = 0x00;
2938}
2939
2940static void adv_instance_rpa_expired(struct work_struct *work)
2941{
2942	struct adv_info *adv_instance = container_of(work, struct adv_info,
2943						     rpa_expired_cb.work);
2944
2945	BT_DBG("");
2946
2947	adv_instance->rpa_expired = true;
2948}
2949
2950/* This function requires the caller holds hdev->lock */
2951int hci_add_adv_instance(struct hci_dev *hdev, u8 instance, u32 flags,
2952			 u16 adv_data_len, u8 *adv_data,
2953			 u16 scan_rsp_len, u8 *scan_rsp_data,
2954			 u16 timeout, u16 duration)
2955{
2956	struct adv_info *adv_instance;
2957
2958	adv_instance = hci_find_adv_instance(hdev, instance);
2959	if (adv_instance) {
2960		memset(adv_instance->adv_data, 0,
2961		       sizeof(adv_instance->adv_data));
2962		memset(adv_instance->scan_rsp_data, 0,
2963		       sizeof(adv_instance->scan_rsp_data));
2964	} else {
2965		if (hdev->adv_instance_cnt >= hdev->le_num_of_adv_sets ||
2966		    instance < 1 || instance > HCI_MAX_ADV_INSTANCES)
2967			return -EOVERFLOW;
2968
2969		adv_instance = kzalloc(sizeof(*adv_instance), GFP_KERNEL);
2970		if (!adv_instance)
2971			return -ENOMEM;
2972
2973		adv_instance->pending = true;
2974		adv_instance->instance = instance;
2975		list_add(&adv_instance->list, &hdev->adv_instances);
2976		hdev->adv_instance_cnt++;
2977	}
2978
2979	adv_instance->flags = flags;
2980	adv_instance->adv_data_len = adv_data_len;
2981	adv_instance->scan_rsp_len = scan_rsp_len;
2982
2983	if (adv_data_len)
2984		memcpy(adv_instance->adv_data, adv_data, adv_data_len);
2985
2986	if (scan_rsp_len)
2987		memcpy(adv_instance->scan_rsp_data,
2988		       scan_rsp_data, scan_rsp_len);
2989
2990	adv_instance->timeout = timeout;
2991	adv_instance->remaining_time = timeout;
2992
2993	if (duration == 0)
2994		adv_instance->duration = hdev->def_multi_adv_rotation_duration;
2995	else
2996		adv_instance->duration = duration;
2997
2998	adv_instance->tx_power = HCI_TX_POWER_INVALID;
2999
3000	INIT_DELAYED_WORK(&adv_instance->rpa_expired_cb,
3001			  adv_instance_rpa_expired);
3002
3003	BT_DBG("%s for %dMR", hdev->name, instance);
3004
3005	return 0;
3006}
3007
3008/* This function requires the caller holds hdev->lock */
3009void hci_adv_monitors_clear(struct hci_dev *hdev)
3010{
3011	struct adv_monitor *monitor;
3012	int handle;
3013
3014	idr_for_each_entry(&hdev->adv_monitors_idr, monitor, handle)
3015		hci_free_adv_monitor(monitor);
3016
3017	idr_destroy(&hdev->adv_monitors_idr);
3018}
3019
3020void hci_free_adv_monitor(struct adv_monitor *monitor)
3021{
3022	struct adv_pattern *pattern;
3023	struct adv_pattern *tmp;
3024
3025	if (!monitor)
3026		return;
3027
3028	list_for_each_entry_safe(pattern, tmp, &monitor->patterns, list)
3029		kfree(pattern);
3030
3031	kfree(monitor);
3032}
3033
3034/* This function requires the caller holds hdev->lock */
3035int hci_add_adv_monitor(struct hci_dev *hdev, struct adv_monitor *monitor)
3036{
3037	int min, max, handle;
3038
3039	if (!monitor)
3040		return -EINVAL;
3041
3042	min = HCI_MIN_ADV_MONITOR_HANDLE;
3043	max = HCI_MIN_ADV_MONITOR_HANDLE + HCI_MAX_ADV_MONITOR_NUM_HANDLES;
3044	handle = idr_alloc(&hdev->adv_monitors_idr, monitor, min, max,
3045			   GFP_KERNEL);
3046	if (handle < 0)
3047		return handle;
3048
3049	hdev->adv_monitors_cnt++;
3050	monitor->handle = handle;
3051
3052	hci_update_background_scan(hdev);
3053
3054	return 0;
3055}
3056
3057static int free_adv_monitor(int id, void *ptr, void *data)
3058{
3059	struct hci_dev *hdev = data;
3060	struct adv_monitor *monitor = ptr;
3061
3062	idr_remove(&hdev->adv_monitors_idr, monitor->handle);
3063	hci_free_adv_monitor(monitor);
3064
3065	return 0;
3066}
3067
3068/* This function requires the caller holds hdev->lock */
3069int hci_remove_adv_monitor(struct hci_dev *hdev, u16 handle)
3070{
3071	struct adv_monitor *monitor;
3072
3073	if (handle) {
3074		monitor = idr_find(&hdev->adv_monitors_idr, handle);
3075		if (!monitor)
3076			return -ENOENT;
3077
3078		idr_remove(&hdev->adv_monitors_idr, monitor->handle);
3079		hci_free_adv_monitor(monitor);
3080	} else {
3081		/* Remove all monitors if handle is 0. */
3082		idr_for_each(&hdev->adv_monitors_idr, &free_adv_monitor, hdev);
3083	}
3084
3085	hci_update_background_scan(hdev);
3086
3087	return 0;
3088}
3089
3090/* This function requires the caller holds hdev->lock */
3091bool hci_is_adv_monitoring(struct hci_dev *hdev)
3092{
3093	return !idr_is_empty(&hdev->adv_monitors_idr);
3094}
3095
3096struct bdaddr_list *hci_bdaddr_list_lookup(struct list_head *bdaddr_list,
3097					 bdaddr_t *bdaddr, u8 type)
3098{
3099	struct bdaddr_list *b;
3100
3101	list_for_each_entry(b, bdaddr_list, list) {
3102		if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
3103			return b;
3104	}
3105
3106	return NULL;
3107}
3108
3109struct bdaddr_list_with_irk *hci_bdaddr_list_lookup_with_irk(
3110				struct list_head *bdaddr_list, bdaddr_t *bdaddr,
3111				u8 type)
3112{
3113	struct bdaddr_list_with_irk *b;
3114
3115	list_for_each_entry(b, bdaddr_list, list) {
3116		if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
3117			return b;
3118	}
3119
3120	return NULL;
3121}
3122
3123struct bdaddr_list_with_flags *
3124hci_bdaddr_list_lookup_with_flags(struct list_head *bdaddr_list,
3125				  bdaddr_t *bdaddr, u8 type)
3126{
3127	struct bdaddr_list_with_flags *b;
3128
3129	list_for_each_entry(b, bdaddr_list, list) {
3130		if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
3131			return b;
3132	}
3133
3134	return NULL;
3135}
3136
3137void hci_bdaddr_list_clear(struct list_head *bdaddr_list)
3138{
3139	struct bdaddr_list *b, *n;
3140
3141	list_for_each_entry_safe(b, n, bdaddr_list, list) {
3142		list_del(&b->list);
3143		kfree(b);
3144	}
3145}
3146
3147int hci_bdaddr_list_add(struct list_head *list, bdaddr_t *bdaddr, u8 type)
3148{
3149	struct bdaddr_list *entry;
3150
3151	if (!bacmp(bdaddr, BDADDR_ANY))
3152		return -EBADF;
3153
3154	if (hci_bdaddr_list_lookup(list, bdaddr, type))
3155		return -EEXIST;
3156
3157	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
3158	if (!entry)
3159		return -ENOMEM;
3160
3161	bacpy(&entry->bdaddr, bdaddr);
3162	entry->bdaddr_type = type;
3163
3164	list_add(&entry->list, list);
3165
3166	return 0;
3167}
3168
3169int hci_bdaddr_list_add_with_irk(struct list_head *list, bdaddr_t *bdaddr,
3170					u8 type, u8 *peer_irk, u8 *local_irk)
3171{
3172	struct bdaddr_list_with_irk *entry;
3173
3174	if (!bacmp(bdaddr, BDADDR_ANY))
3175		return -EBADF;
3176
3177	if (hci_bdaddr_list_lookup(list, bdaddr, type))
3178		return -EEXIST;
3179
3180	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
3181	if (!entry)
3182		return -ENOMEM;
3183
3184	bacpy(&entry->bdaddr, bdaddr);
3185	entry->bdaddr_type = type;
3186
3187	if (peer_irk)
3188		memcpy(entry->peer_irk, peer_irk, 16);
3189
3190	if (local_irk)
3191		memcpy(entry->local_irk, local_irk, 16);
3192
3193	list_add(&entry->list, list);
3194
3195	return 0;
3196}
3197
3198int hci_bdaddr_list_add_with_flags(struct list_head *list, bdaddr_t *bdaddr,
3199				   u8 type, u32 flags)
3200{
3201	struct bdaddr_list_with_flags *entry;
3202
3203	if (!bacmp(bdaddr, BDADDR_ANY))
3204		return -EBADF;
3205
3206	if (hci_bdaddr_list_lookup(list, bdaddr, type))
3207		return -EEXIST;
3208
3209	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
3210	if (!entry)
3211		return -ENOMEM;
3212
3213	bacpy(&entry->bdaddr, bdaddr);
3214	entry->bdaddr_type = type;
3215	entry->current_flags = flags;
3216
3217	list_add(&entry->list, list);
3218
3219	return 0;
3220}
3221
3222int hci_bdaddr_list_del(struct list_head *list, bdaddr_t *bdaddr, u8 type)
3223{
3224	struct bdaddr_list *entry;
3225
3226	if (!bacmp(bdaddr, BDADDR_ANY)) {
3227		hci_bdaddr_list_clear(list);
3228		return 0;
3229	}
3230
3231	entry = hci_bdaddr_list_lookup(list, bdaddr, type);
3232	if (!entry)
3233		return -ENOENT;
3234
3235	list_del(&entry->list);
3236	kfree(entry);
3237
3238	return 0;
3239}
3240
3241int hci_bdaddr_list_del_with_irk(struct list_head *list, bdaddr_t *bdaddr,
3242							u8 type)
3243{
3244	struct bdaddr_list_with_irk *entry;
3245
3246	if (!bacmp(bdaddr, BDADDR_ANY)) {
3247		hci_bdaddr_list_clear(list);
3248		return 0;
3249	}
3250
3251	entry = hci_bdaddr_list_lookup_with_irk(list, bdaddr, type);
3252	if (!entry)
3253		return -ENOENT;
3254
3255	list_del(&entry->list);
3256	kfree(entry);
3257
3258	return 0;
3259}
3260
3261int hci_bdaddr_list_del_with_flags(struct list_head *list, bdaddr_t *bdaddr,
3262				   u8 type)
3263{
3264	struct bdaddr_list_with_flags *entry;
3265
3266	if (!bacmp(bdaddr, BDADDR_ANY)) {
3267		hci_bdaddr_list_clear(list);
3268		return 0;
3269	}
3270
3271	entry = hci_bdaddr_list_lookup_with_flags(list, bdaddr, type);
3272	if (!entry)
3273		return -ENOENT;
3274
3275	list_del(&entry->list);
3276	kfree(entry);
3277
3278	return 0;
3279}
3280
3281/* This function requires the caller holds hdev->lock */
3282struct hci_conn_params *hci_conn_params_lookup(struct hci_dev *hdev,
3283					       bdaddr_t *addr, u8 addr_type)
3284{
3285	struct hci_conn_params *params;
3286
3287	list_for_each_entry(params, &hdev->le_conn_params, list) {
3288		if (bacmp(&params->addr, addr) == 0 &&
3289		    params->addr_type == addr_type) {
3290			return params;
3291		}
3292	}
3293
3294	return NULL;
3295}
3296
3297/* This function requires the caller holds hdev->lock */
3298struct hci_conn_params *hci_pend_le_action_lookup(struct list_head *list,
3299						  bdaddr_t *addr, u8 addr_type)
3300{
3301	struct hci_conn_params *param;
3302
3303	switch (addr_type) {
3304	case ADDR_LE_DEV_PUBLIC_RESOLVED:
3305		addr_type = ADDR_LE_DEV_PUBLIC;
3306		break;
3307	case ADDR_LE_DEV_RANDOM_RESOLVED:
3308		addr_type = ADDR_LE_DEV_RANDOM;
3309		break;
3310	}
3311
3312	list_for_each_entry(param, list, action) {
3313		if (bacmp(&param->addr, addr) == 0 &&
3314		    param->addr_type == addr_type)
3315			return param;
3316	}
3317
3318	return NULL;
3319}
3320
3321/* This function requires the caller holds hdev->lock */
3322struct hci_conn_params *hci_conn_params_add(struct hci_dev *hdev,
3323					    bdaddr_t *addr, u8 addr_type)
3324{
3325	struct hci_conn_params *params;
3326
3327	params = hci_conn_params_lookup(hdev, addr, addr_type);
3328	if (params)
3329		return params;
3330
3331	params = kzalloc(sizeof(*params), GFP_KERNEL);
3332	if (!params) {
3333		bt_dev_err(hdev, "out of memory");
3334		return NULL;
3335	}
3336
3337	bacpy(&params->addr, addr);
3338	params->addr_type = addr_type;
3339
3340	list_add(&params->list, &hdev->le_conn_params);
3341	INIT_LIST_HEAD(&params->action);
3342
3343	params->conn_min_interval = hdev->le_conn_min_interval;
3344	params->conn_max_interval = hdev->le_conn_max_interval;
3345	params->conn_latency = hdev->le_conn_latency;
3346	params->supervision_timeout = hdev->le_supv_timeout;
3347	params->auto_connect = HCI_AUTO_CONN_DISABLED;
3348
3349	BT_DBG("addr %pMR (type %u)", addr, addr_type);
3350
3351	return params;
3352}
3353
3354static void hci_conn_params_free(struct hci_conn_params *params)
3355{
3356	if (params->conn) {
3357		hci_conn_drop(params->conn);
3358		hci_conn_put(params->conn);
3359	}
3360
3361	list_del(&params->action);
3362	list_del(&params->list);
3363	kfree(params);
3364}
3365
3366/* This function requires the caller holds hdev->lock */
3367void hci_conn_params_del(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type)
3368{
3369	struct hci_conn_params *params;
3370
3371	params = hci_conn_params_lookup(hdev, addr, addr_type);
3372	if (!params)
3373		return;
3374
3375	hci_conn_params_free(params);
3376
3377	hci_update_background_scan(hdev);
3378
3379	BT_DBG("addr %pMR (type %u)", addr, addr_type);
3380}
3381
3382/* This function requires the caller holds hdev->lock */
3383void hci_conn_params_clear_disabled(struct hci_dev *hdev)
3384{
3385	struct hci_conn_params *params, *tmp;
3386
3387	list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list) {
3388		if (params->auto_connect != HCI_AUTO_CONN_DISABLED)
3389			continue;
3390
3391		/* If trying to estabilish one time connection to disabled
3392		 * device, leave the params, but mark them as just once.
3393		 */
3394		if (params->explicit_connect) {
3395			params->auto_connect = HCI_AUTO_CONN_EXPLICIT;
3396			continue;
3397		}
3398
3399		list_del(&params->list);
3400		kfree(params);
3401	}
3402
3403	BT_DBG("All LE disabled connection parameters were removed");
3404}
3405
3406/* This function requires the caller holds hdev->lock */
3407static void hci_conn_params_clear_all(struct hci_dev *hdev)
3408{
3409	struct hci_conn_params *params, *tmp;
3410
3411	list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list)
3412		hci_conn_params_free(params);
3413
3414	BT_DBG("All LE connection parameters were removed");
3415}
3416
3417/* Copy the Identity Address of the controller.
3418 *
3419 * If the controller has a public BD_ADDR, then by default use that one.
3420 * If this is a LE only controller without a public address, default to
3421 * the static random address.
3422 *
3423 * For debugging purposes it is possible to force controllers with a
3424 * public address to use the static random address instead.
3425 *
3426 * In case BR/EDR has been disabled on a dual-mode controller and
3427 * userspace has configured a static address, then that address
3428 * becomes the identity address instead of the public BR/EDR address.
3429 */
3430void hci_copy_identity_address(struct hci_dev *hdev, bdaddr_t *bdaddr,
3431			       u8 *bdaddr_type)
3432{
3433	if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
3434	    !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
3435	    (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
3436	     bacmp(&hdev->static_addr, BDADDR_ANY))) {
3437		bacpy(bdaddr, &hdev->static_addr);
3438		*bdaddr_type = ADDR_LE_DEV_RANDOM;
3439	} else {
3440		bacpy(bdaddr, &hdev->bdaddr);
3441		*bdaddr_type = ADDR_LE_DEV_PUBLIC;
3442	}
3443}
3444
3445static int hci_suspend_wait_event(struct hci_dev *hdev)
3446{
3447#define WAKE_COND                                                              \
3448	(find_first_bit(hdev->suspend_tasks, __SUSPEND_NUM_TASKS) ==           \
3449	 __SUSPEND_NUM_TASKS)
3450
3451	int i;
3452	int ret = wait_event_timeout(hdev->suspend_wait_q,
3453				     WAKE_COND, SUSPEND_NOTIFIER_TIMEOUT);
3454
3455	if (ret == 0) {
3456		bt_dev_err(hdev, "Timed out waiting for suspend events");
3457		for (i = 0; i < __SUSPEND_NUM_TASKS; ++i) {
3458			if (test_bit(i, hdev->suspend_tasks))
3459				bt_dev_err(hdev, "Suspend timeout bit: %d", i);
3460			clear_bit(i, hdev->suspend_tasks);
3461		}
3462
3463		ret = -ETIMEDOUT;
3464	} else {
3465		ret = 0;
3466	}
3467
3468	return ret;
3469}
3470
3471static void hci_prepare_suspend(struct work_struct *work)
3472{
3473	struct hci_dev *hdev =
3474		container_of(work, struct hci_dev, suspend_prepare);
3475
3476	hci_dev_lock(hdev);
3477	hci_req_prepare_suspend(hdev, hdev->suspend_state_next);
3478	hci_dev_unlock(hdev);
3479}
3480
3481static int hci_change_suspend_state(struct hci_dev *hdev,
3482				    enum suspended_state next)
3483{
3484	hdev->suspend_state_next = next;
3485	set_bit(SUSPEND_PREPARE_NOTIFIER, hdev->suspend_tasks);
3486	queue_work(hdev->req_workqueue, &hdev->suspend_prepare);
3487	return hci_suspend_wait_event(hdev);
3488}
3489
3490static int hci_suspend_notifier(struct notifier_block *nb, unsigned long action,
3491				void *data)
3492{
3493	struct hci_dev *hdev =
3494		container_of(nb, struct hci_dev, suspend_notifier);
3495	int ret = 0;
3496
3497	/* If powering down, wait for completion. */
3498	if (mgmt_powering_down(hdev)) {
3499		set_bit(SUSPEND_POWERING_DOWN, hdev->suspend_tasks);
3500		ret = hci_suspend_wait_event(hdev);
3501		if (ret)
3502			goto done;
3503	}
3504
3505	/* Suspend notifier should only act on events when powered. */
3506	if (!hdev_is_powered(hdev))
3507		goto done;
3508
3509	if (action == PM_SUSPEND_PREPARE) {
3510		/* Suspend consists of two actions:
3511		 *  - First, disconnect everything and make the controller not
3512		 *    connectable (disabling scanning)
3513		 *  - Second, program event filter/whitelist and enable scan
3514		 */
3515		ret = hci_change_suspend_state(hdev, BT_SUSPEND_DISCONNECT);
3516
3517		/* Only configure whitelist if disconnect succeeded and wake
3518		 * isn't being prevented.
3519		 */
3520		if (!ret && !(hdev->prevent_wake && hdev->prevent_wake(hdev)))
3521			ret = hci_change_suspend_state(hdev,
3522						BT_SUSPEND_CONFIGURE_WAKE);
3523	} else if (action == PM_POST_SUSPEND) {
3524		ret = hci_change_suspend_state(hdev, BT_RUNNING);
3525	}
3526
3527done:
3528	/* We always allow suspend even if suspend preparation failed and
3529	 * attempt to recover in resume.
3530	 */
3531	if (ret)
3532		bt_dev_err(hdev, "Suspend notifier action (%lu) failed: %d",
3533			   action, ret);
3534
3535	return NOTIFY_DONE;
3536}
3537
3538/* Alloc HCI device */
3539struct hci_dev *hci_alloc_dev(void)
3540{
3541	struct hci_dev *hdev;
3542
3543	hdev = kzalloc(sizeof(*hdev), GFP_KERNEL);
3544	if (!hdev)
3545		return NULL;
3546
3547	hdev->pkt_type  = (HCI_DM1 | HCI_DH1 | HCI_HV1);
3548	hdev->esco_type = (ESCO_HV1);
3549	hdev->link_mode = (HCI_LM_ACCEPT);
3550	hdev->num_iac = 0x01;		/* One IAC support is mandatory */
3551	hdev->io_capability = 0x03;	/* No Input No Output */
3552	hdev->manufacturer = 0xffff;	/* Default to internal use */
3553	hdev->inq_tx_power = HCI_TX_POWER_INVALID;
3554	hdev->adv_tx_power = HCI_TX_POWER_INVALID;
3555	hdev->adv_instance_cnt = 0;
3556	hdev->cur_adv_instance = 0x00;
3557	hdev->adv_instance_timeout = 0;
3558
3559	hdev->sniff_max_interval = 800;
3560	hdev->sniff_min_interval = 80;
3561
3562	hdev->le_adv_channel_map = 0x07;
3563	hdev->le_adv_min_interval = 0x0800;
3564	hdev->le_adv_max_interval = 0x0800;
3565	hdev->le_scan_interval = 0x0060;
3566	hdev->le_scan_window = 0x0030;
3567	hdev->le_scan_int_suspend = 0x0400;
3568	hdev->le_scan_window_suspend = 0x0012;
3569	hdev->le_scan_int_discovery = DISCOV_LE_SCAN_INT;
3570	hdev->le_scan_window_discovery = DISCOV_LE_SCAN_WIN;
3571	hdev->le_scan_int_connect = 0x0060;
3572	hdev->le_scan_window_connect = 0x0060;
3573	hdev->le_conn_min_interval = 0x0018;
3574	hdev->le_conn_max_interval = 0x0028;
3575	hdev->le_conn_latency = 0x0000;
3576	hdev->le_supv_timeout = 0x002a;
3577	hdev->le_def_tx_len = 0x001b;
3578	hdev->le_def_tx_time = 0x0148;
3579	hdev->le_max_tx_len = 0x001b;
3580	hdev->le_max_tx_time = 0x0148;
3581	hdev->le_max_rx_len = 0x001b;
3582	hdev->le_max_rx_time = 0x0148;
3583	hdev->le_max_key_size = SMP_MAX_ENC_KEY_SIZE;
3584	hdev->le_min_key_size = SMP_MIN_ENC_KEY_SIZE;
3585	hdev->le_tx_def_phys = HCI_LE_SET_PHY_1M;
3586	hdev->le_rx_def_phys = HCI_LE_SET_PHY_1M;
3587	hdev->le_num_of_adv_sets = HCI_MAX_ADV_INSTANCES;
3588	hdev->def_multi_adv_rotation_duration = HCI_DEFAULT_ADV_DURATION;
3589	hdev->def_le_autoconnect_timeout = HCI_LE_AUTOCONN_TIMEOUT;
3590
3591	hdev->rpa_timeout = HCI_DEFAULT_RPA_TIMEOUT;
3592	hdev->discov_interleaved_timeout = DISCOV_INTERLEAVED_TIMEOUT;
3593	hdev->conn_info_min_age = DEFAULT_CONN_INFO_MIN_AGE;
3594	hdev->conn_info_max_age = DEFAULT_CONN_INFO_MAX_AGE;
3595	hdev->auth_payload_timeout = DEFAULT_AUTH_PAYLOAD_TIMEOUT;
3596	hdev->min_enc_key_size = HCI_MIN_ENC_KEY_SIZE;
3597
3598	/* default 1.28 sec page scan */
3599	hdev->def_page_scan_type = PAGE_SCAN_TYPE_STANDARD;
3600	hdev->def_page_scan_int = 0x0800;
3601	hdev->def_page_scan_window = 0x0012;
3602
3603	mutex_init(&hdev->lock);
3604	mutex_init(&hdev->req_lock);
3605
3606	INIT_LIST_HEAD(&hdev->mgmt_pending);
3607	INIT_LIST_HEAD(&hdev->blacklist);
3608	INIT_LIST_HEAD(&hdev->whitelist);
3609	INIT_LIST_HEAD(&hdev->uuids);
3610	INIT_LIST_HEAD(&hdev->link_keys);
3611	INIT_LIST_HEAD(&hdev->long_term_keys);
3612	INIT_LIST_HEAD(&hdev->identity_resolving_keys);
3613	INIT_LIST_HEAD(&hdev->remote_oob_data);
3614	INIT_LIST_HEAD(&hdev->le_white_list);
3615	INIT_LIST_HEAD(&hdev->le_resolv_list);
3616	INIT_LIST_HEAD(&hdev->le_conn_params);
3617	INIT_LIST_HEAD(&hdev->pend_le_conns);
3618	INIT_LIST_HEAD(&hdev->pend_le_reports);
3619	INIT_LIST_HEAD(&hdev->conn_hash.list);
3620	INIT_LIST_HEAD(&hdev->adv_instances);
3621	INIT_LIST_HEAD(&hdev->blocked_keys);
3622
3623	INIT_WORK(&hdev->rx_work, hci_rx_work);
3624	INIT_WORK(&hdev->cmd_work, hci_cmd_work);
3625	INIT_WORK(&hdev->tx_work, hci_tx_work);
3626	INIT_WORK(&hdev->power_on, hci_power_on);
3627	INIT_WORK(&hdev->error_reset, hci_error_reset);
3628	INIT_WORK(&hdev->suspend_prepare, hci_prepare_suspend);
3629
3630	INIT_DELAYED_WORK(&hdev->power_off, hci_power_off);
3631
3632	skb_queue_head_init(&hdev->rx_q);
3633	skb_queue_head_init(&hdev->cmd_q);
3634	skb_queue_head_init(&hdev->raw_q);
3635
3636	init_waitqueue_head(&hdev->req_wait_q);
3637	init_waitqueue_head(&hdev->suspend_wait_q);
3638
3639	INIT_DELAYED_WORK(&hdev->cmd_timer, hci_cmd_timeout);
3640
3641	hci_request_setup(hdev);
3642
3643	hci_init_sysfs(hdev);
3644	discovery_init(hdev);
3645
3646	return hdev;
3647}
3648EXPORT_SYMBOL(hci_alloc_dev);
3649
3650/* Free HCI device */
3651void hci_free_dev(struct hci_dev *hdev)
3652{
3653	/* will free via device release */
3654	put_device(&hdev->dev);
3655}
3656EXPORT_SYMBOL(hci_free_dev);
3657
3658/* Register HCI device */
3659int hci_register_dev(struct hci_dev *hdev)
3660{
3661	int id, error;
3662
3663	if (!hdev->open || !hdev->close || !hdev->send)
3664		return -EINVAL;
3665
3666	/* Do not allow HCI_AMP devices to register at index 0,
3667	 * so the index can be used as the AMP controller ID.
3668	 */
3669	switch (hdev->dev_type) {
3670	case HCI_PRIMARY:
3671		id = ida_simple_get(&hci_index_ida, 0, 0, GFP_KERNEL);
3672		break;
3673	case HCI_AMP:
3674		id = ida_simple_get(&hci_index_ida, 1, 0, GFP_KERNEL);
3675		break;
3676	default:
3677		return -EINVAL;
3678	}
3679
3680	if (id < 0)
3681		return id;
3682
3683	sprintf(hdev->name, "hci%d", id);
3684	hdev->id = id;
3685
3686	BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
3687
3688	hdev->workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI, hdev->name);
 
3689	if (!hdev->workqueue) {
3690		error = -ENOMEM;
3691		goto err;
3692	}
3693
3694	hdev->req_workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI,
3695						      hdev->name);
3696	if (!hdev->req_workqueue) {
3697		destroy_workqueue(hdev->workqueue);
3698		error = -ENOMEM;
3699		goto err;
3700	}
3701
3702	if (!IS_ERR_OR_NULL(bt_debugfs))
3703		hdev->debugfs = debugfs_create_dir(hdev->name, bt_debugfs);
3704
3705	dev_set_name(&hdev->dev, "%s", hdev->name);
3706
3707	error = device_add(&hdev->dev);
3708	if (error < 0)
3709		goto err_wqueue;
3710
3711	hci_leds_init(hdev);
3712
3713	hdev->rfkill = rfkill_alloc(hdev->name, &hdev->dev,
3714				    RFKILL_TYPE_BLUETOOTH, &hci_rfkill_ops,
3715				    hdev);
3716	if (hdev->rfkill) {
3717		if (rfkill_register(hdev->rfkill) < 0) {
3718			rfkill_destroy(hdev->rfkill);
3719			hdev->rfkill = NULL;
3720		}
3721	}
3722
3723	if (hdev->rfkill && rfkill_blocked(hdev->rfkill))
3724		hci_dev_set_flag(hdev, HCI_RFKILLED);
3725
3726	hci_dev_set_flag(hdev, HCI_SETUP);
3727	hci_dev_set_flag(hdev, HCI_AUTO_OFF);
3728
3729	if (hdev->dev_type == HCI_PRIMARY) {
3730		/* Assume BR/EDR support until proven otherwise (such as
3731		 * through reading supported features during init.
3732		 */
3733		hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
3734	}
3735
3736	write_lock(&hci_dev_list_lock);
3737	list_add(&hdev->list, &hci_dev_list);
3738	write_unlock(&hci_dev_list_lock);
3739
3740	/* Devices that are marked for raw-only usage are unconfigured
3741	 * and should not be included in normal operation.
3742	 */
3743	if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
3744		hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
3745
3746	hci_sock_dev_event(hdev, HCI_DEV_REG);
3747	hci_dev_hold(hdev);
3748
3749	hdev->suspend_notifier.notifier_call = hci_suspend_notifier;
3750	error = register_pm_notifier(&hdev->suspend_notifier);
3751	if (error)
3752		goto err_wqueue;
3753
3754	queue_work(hdev->req_workqueue, &hdev->power_on);
3755
3756	idr_init(&hdev->adv_monitors_idr);
3757
3758	return id;
3759
3760err_wqueue:
3761	destroy_workqueue(hdev->workqueue);
3762	destroy_workqueue(hdev->req_workqueue);
3763err:
3764	ida_simple_remove(&hci_index_ida, hdev->id);
3765
3766	return error;
3767}
3768EXPORT_SYMBOL(hci_register_dev);
3769
3770/* Unregister HCI device */
3771void hci_unregister_dev(struct hci_dev *hdev)
3772{
3773	int id;
3774
3775	BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
3776
3777	hci_dev_set_flag(hdev, HCI_UNREGISTER);
3778
3779	id = hdev->id;
3780
3781	write_lock(&hci_dev_list_lock);
3782	list_del(&hdev->list);
3783	write_unlock(&hci_dev_list_lock);
3784
 
 
3785	cancel_work_sync(&hdev->power_on);
3786
3787	unregister_pm_notifier(&hdev->suspend_notifier);
3788	cancel_work_sync(&hdev->suspend_prepare);
3789
3790	hci_dev_do_close(hdev);
3791
3792	if (!test_bit(HCI_INIT, &hdev->flags) &&
3793	    !hci_dev_test_flag(hdev, HCI_SETUP) &&
3794	    !hci_dev_test_flag(hdev, HCI_CONFIG)) {
3795		hci_dev_lock(hdev);
3796		mgmt_index_removed(hdev);
3797		hci_dev_unlock(hdev);
3798	}
3799
3800	/* mgmt_index_removed should take care of emptying the
3801	 * pending list */
3802	BUG_ON(!list_empty(&hdev->mgmt_pending));
3803
3804	hci_sock_dev_event(hdev, HCI_DEV_UNREG);
3805
3806	if (hdev->rfkill) {
3807		rfkill_unregister(hdev->rfkill);
3808		rfkill_destroy(hdev->rfkill);
3809	}
3810
3811	device_del(&hdev->dev);
3812
3813	debugfs_remove_recursive(hdev->debugfs);
3814	kfree_const(hdev->hw_info);
3815	kfree_const(hdev->fw_info);
3816
3817	destroy_workqueue(hdev->workqueue);
3818	destroy_workqueue(hdev->req_workqueue);
3819
3820	hci_dev_lock(hdev);
3821	hci_bdaddr_list_clear(&hdev->blacklist);
3822	hci_bdaddr_list_clear(&hdev->whitelist);
3823	hci_uuids_clear(hdev);
3824	hci_link_keys_clear(hdev);
3825	hci_smp_ltks_clear(hdev);
3826	hci_smp_irks_clear(hdev);
3827	hci_remote_oob_data_clear(hdev);
3828	hci_adv_instances_clear(hdev);
3829	hci_adv_monitors_clear(hdev);
3830	hci_bdaddr_list_clear(&hdev->le_white_list);
3831	hci_bdaddr_list_clear(&hdev->le_resolv_list);
3832	hci_conn_params_clear_all(hdev);
3833	hci_discovery_filter_clear(hdev);
3834	hci_blocked_keys_clear(hdev);
3835	hci_dev_unlock(hdev);
3836
3837	hci_dev_put(hdev);
3838
3839	ida_simple_remove(&hci_index_ida, id);
3840}
3841EXPORT_SYMBOL(hci_unregister_dev);
3842
3843/* Suspend HCI device */
3844int hci_suspend_dev(struct hci_dev *hdev)
3845{
3846	hci_sock_dev_event(hdev, HCI_DEV_SUSPEND);
3847	return 0;
3848}
3849EXPORT_SYMBOL(hci_suspend_dev);
3850
3851/* Resume HCI device */
3852int hci_resume_dev(struct hci_dev *hdev)
3853{
3854	hci_sock_dev_event(hdev, HCI_DEV_RESUME);
3855	return 0;
3856}
3857EXPORT_SYMBOL(hci_resume_dev);
3858
3859/* Reset HCI device */
3860int hci_reset_dev(struct hci_dev *hdev)
3861{
3862	static const u8 hw_err[] = { HCI_EV_HARDWARE_ERROR, 0x01, 0x00 };
3863	struct sk_buff *skb;
3864
3865	skb = bt_skb_alloc(3, GFP_ATOMIC);
3866	if (!skb)
3867		return -ENOMEM;
3868
3869	hci_skb_pkt_type(skb) = HCI_EVENT_PKT;
3870	skb_put_data(skb, hw_err, 3);
3871
3872	/* Send Hardware Error to upper stack */
3873	return hci_recv_frame(hdev, skb);
3874}
3875EXPORT_SYMBOL(hci_reset_dev);
3876
3877/* Receive frame from HCI drivers */
3878int hci_recv_frame(struct hci_dev *hdev, struct sk_buff *skb)
3879{
3880	if (!hdev || (!test_bit(HCI_UP, &hdev->flags)
3881		      && !test_bit(HCI_INIT, &hdev->flags))) {
3882		kfree_skb(skb);
3883		return -ENXIO;
3884	}
3885
3886	if (hci_skb_pkt_type(skb) != HCI_EVENT_PKT &&
3887	    hci_skb_pkt_type(skb) != HCI_ACLDATA_PKT &&
3888	    hci_skb_pkt_type(skb) != HCI_SCODATA_PKT &&
3889	    hci_skb_pkt_type(skb) != HCI_ISODATA_PKT) {
3890		kfree_skb(skb);
3891		return -EINVAL;
3892	}
3893
3894	/* Incoming skb */
3895	bt_cb(skb)->incoming = 1;
3896
3897	/* Time stamp */
3898	__net_timestamp(skb);
3899
3900	skb_queue_tail(&hdev->rx_q, skb);
3901	queue_work(hdev->workqueue, &hdev->rx_work);
3902
3903	return 0;
3904}
3905EXPORT_SYMBOL(hci_recv_frame);
3906
3907/* Receive diagnostic message from HCI drivers */
3908int hci_recv_diag(struct hci_dev *hdev, struct sk_buff *skb)
3909{
3910	/* Mark as diagnostic packet */
3911	hci_skb_pkt_type(skb) = HCI_DIAG_PKT;
3912
3913	/* Time stamp */
3914	__net_timestamp(skb);
3915
3916	skb_queue_tail(&hdev->rx_q, skb);
3917	queue_work(hdev->workqueue, &hdev->rx_work);
3918
3919	return 0;
3920}
3921EXPORT_SYMBOL(hci_recv_diag);
3922
3923void hci_set_hw_info(struct hci_dev *hdev, const char *fmt, ...)
3924{
3925	va_list vargs;
3926
3927	va_start(vargs, fmt);
3928	kfree_const(hdev->hw_info);
3929	hdev->hw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
3930	va_end(vargs);
3931}
3932EXPORT_SYMBOL(hci_set_hw_info);
3933
3934void hci_set_fw_info(struct hci_dev *hdev, const char *fmt, ...)
3935{
3936	va_list vargs;
3937
3938	va_start(vargs, fmt);
3939	kfree_const(hdev->fw_info);
3940	hdev->fw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
3941	va_end(vargs);
3942}
3943EXPORT_SYMBOL(hci_set_fw_info);
3944
3945/* ---- Interface to upper protocols ---- */
3946
3947int hci_register_cb(struct hci_cb *cb)
3948{
3949	BT_DBG("%p name %s", cb, cb->name);
3950
3951	mutex_lock(&hci_cb_list_lock);
3952	list_add_tail(&cb->list, &hci_cb_list);
3953	mutex_unlock(&hci_cb_list_lock);
3954
3955	return 0;
3956}
3957EXPORT_SYMBOL(hci_register_cb);
3958
3959int hci_unregister_cb(struct hci_cb *cb)
3960{
3961	BT_DBG("%p name %s", cb, cb->name);
3962
3963	mutex_lock(&hci_cb_list_lock);
3964	list_del(&cb->list);
3965	mutex_unlock(&hci_cb_list_lock);
3966
3967	return 0;
3968}
3969EXPORT_SYMBOL(hci_unregister_cb);
3970
3971static void hci_send_frame(struct hci_dev *hdev, struct sk_buff *skb)
3972{
3973	int err;
3974
3975	BT_DBG("%s type %d len %d", hdev->name, hci_skb_pkt_type(skb),
3976	       skb->len);
3977
3978	/* Time stamp */
3979	__net_timestamp(skb);
3980
3981	/* Send copy to monitor */
3982	hci_send_to_monitor(hdev, skb);
3983
3984	if (atomic_read(&hdev->promisc)) {
3985		/* Send copy to the sockets */
3986		hci_send_to_sock(hdev, skb);
3987	}
3988
3989	/* Get rid of skb owner, prior to sending to the driver. */
3990	skb_orphan(skb);
3991
3992	if (!test_bit(HCI_RUNNING, &hdev->flags)) {
3993		kfree_skb(skb);
3994		return;
3995	}
3996
3997	err = hdev->send(hdev, skb);
3998	if (err < 0) {
3999		bt_dev_err(hdev, "sending frame failed (%d)", err);
4000		kfree_skb(skb);
4001	}
4002}
4003
4004/* Send HCI command */
4005int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen,
4006		 const void *param)
4007{
4008	struct sk_buff *skb;
4009
4010	BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen);
4011
4012	skb = hci_prepare_cmd(hdev, opcode, plen, param);
4013	if (!skb) {
4014		bt_dev_err(hdev, "no memory for command");
4015		return -ENOMEM;
4016	}
4017
4018	/* Stand-alone HCI commands must be flagged as
4019	 * single-command requests.
4020	 */
4021	bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
4022
4023	skb_queue_tail(&hdev->cmd_q, skb);
4024	queue_work(hdev->workqueue, &hdev->cmd_work);
4025
4026	return 0;
4027}
4028
4029int __hci_cmd_send(struct hci_dev *hdev, u16 opcode, u32 plen,
4030		   const void *param)
4031{
4032	struct sk_buff *skb;
4033
4034	if (hci_opcode_ogf(opcode) != 0x3f) {
4035		/* A controller receiving a command shall respond with either
4036		 * a Command Status Event or a Command Complete Event.
4037		 * Therefore, all standard HCI commands must be sent via the
4038		 * standard API, using hci_send_cmd or hci_cmd_sync helpers.
4039		 * Some vendors do not comply with this rule for vendor-specific
4040		 * commands and do not return any event. We want to support
4041		 * unresponded commands for such cases only.
4042		 */
4043		bt_dev_err(hdev, "unresponded command not supported");
4044		return -EINVAL;
4045	}
4046
4047	skb = hci_prepare_cmd(hdev, opcode, plen, param);
4048	if (!skb) {
4049		bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)",
4050			   opcode);
4051		return -ENOMEM;
4052	}
4053
4054	hci_send_frame(hdev, skb);
4055
4056	return 0;
4057}
4058EXPORT_SYMBOL(__hci_cmd_send);
4059
4060/* Get data from the previously sent command */
4061void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode)
4062{
4063	struct hci_command_hdr *hdr;
4064
4065	if (!hdev->sent_cmd)
4066		return NULL;
4067
4068	hdr = (void *) hdev->sent_cmd->data;
4069
4070	if (hdr->opcode != cpu_to_le16(opcode))
4071		return NULL;
4072
4073	BT_DBG("%s opcode 0x%4.4x", hdev->name, opcode);
4074
4075	return hdev->sent_cmd->data + HCI_COMMAND_HDR_SIZE;
4076}
4077
4078/* Send HCI command and wait for command commplete event */
4079struct sk_buff *hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
4080			     const void *param, u32 timeout)
4081{
4082	struct sk_buff *skb;
4083
4084	if (!test_bit(HCI_UP, &hdev->flags))
4085		return ERR_PTR(-ENETDOWN);
4086
4087	bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen);
4088
4089	hci_req_sync_lock(hdev);
4090	skb = __hci_cmd_sync(hdev, opcode, plen, param, timeout);
4091	hci_req_sync_unlock(hdev);
4092
4093	return skb;
4094}
4095EXPORT_SYMBOL(hci_cmd_sync);
4096
4097/* Send ACL data */
4098static void hci_add_acl_hdr(struct sk_buff *skb, __u16 handle, __u16 flags)
4099{
4100	struct hci_acl_hdr *hdr;
4101	int len = skb->len;
4102
4103	skb_push(skb, HCI_ACL_HDR_SIZE);
4104	skb_reset_transport_header(skb);
4105	hdr = (struct hci_acl_hdr *)skb_transport_header(skb);
4106	hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
4107	hdr->dlen   = cpu_to_le16(len);
4108}
4109
4110static void hci_queue_acl(struct hci_chan *chan, struct sk_buff_head *queue,
4111			  struct sk_buff *skb, __u16 flags)
4112{
4113	struct hci_conn *conn = chan->conn;
4114	struct hci_dev *hdev = conn->hdev;
4115	struct sk_buff *list;
4116
4117	skb->len = skb_headlen(skb);
4118	skb->data_len = 0;
4119
4120	hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
4121
4122	switch (hdev->dev_type) {
4123	case HCI_PRIMARY:
4124		hci_add_acl_hdr(skb, conn->handle, flags);
4125		break;
4126	case HCI_AMP:
4127		hci_add_acl_hdr(skb, chan->handle, flags);
4128		break;
4129	default:
4130		bt_dev_err(hdev, "unknown dev_type %d", hdev->dev_type);
4131		return;
4132	}
4133
4134	list = skb_shinfo(skb)->frag_list;
4135	if (!list) {
4136		/* Non fragmented */
4137		BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
4138
4139		skb_queue_tail(queue, skb);
4140	} else {
4141		/* Fragmented */
4142		BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
4143
4144		skb_shinfo(skb)->frag_list = NULL;
4145
4146		/* Queue all fragments atomically. We need to use spin_lock_bh
4147		 * here because of 6LoWPAN links, as there this function is
4148		 * called from softirq and using normal spin lock could cause
4149		 * deadlocks.
4150		 */
4151		spin_lock_bh(&queue->lock);
4152
4153		__skb_queue_tail(queue, skb);
4154
4155		flags &= ~ACL_START;
4156		flags |= ACL_CONT;
4157		do {
4158			skb = list; list = list->next;
4159
4160			hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
4161			hci_add_acl_hdr(skb, conn->handle, flags);
4162
4163			BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
4164
4165			__skb_queue_tail(queue, skb);
4166		} while (list);
4167
4168		spin_unlock_bh(&queue->lock);
4169	}
4170}
4171
4172void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags)
4173{
4174	struct hci_dev *hdev = chan->conn->hdev;
4175
4176	BT_DBG("%s chan %p flags 0x%4.4x", hdev->name, chan, flags);
4177
4178	hci_queue_acl(chan, &chan->data_q, skb, flags);
4179
4180	queue_work(hdev->workqueue, &hdev->tx_work);
4181}
4182
4183/* Send SCO data */
4184void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb)
4185{
4186	struct hci_dev *hdev = conn->hdev;
4187	struct hci_sco_hdr hdr;
4188
4189	BT_DBG("%s len %d", hdev->name, skb->len);
4190
4191	hdr.handle = cpu_to_le16(conn->handle);
4192	hdr.dlen   = skb->len;
4193
4194	skb_push(skb, HCI_SCO_HDR_SIZE);
4195	skb_reset_transport_header(skb);
4196	memcpy(skb_transport_header(skb), &hdr, HCI_SCO_HDR_SIZE);
4197
4198	hci_skb_pkt_type(skb) = HCI_SCODATA_PKT;
4199
4200	skb_queue_tail(&conn->data_q, skb);
4201	queue_work(hdev->workqueue, &hdev->tx_work);
4202}
4203
4204/* ---- HCI TX task (outgoing data) ---- */
4205
4206/* HCI Connection scheduler */
4207static struct hci_conn *hci_low_sent(struct hci_dev *hdev, __u8 type,
4208				     int *quote)
4209{
4210	struct hci_conn_hash *h = &hdev->conn_hash;
4211	struct hci_conn *conn = NULL, *c;
4212	unsigned int num = 0, min = ~0;
4213
4214	/* We don't have to lock device here. Connections are always
4215	 * added and removed with TX task disabled. */
4216
4217	rcu_read_lock();
4218
4219	list_for_each_entry_rcu(c, &h->list, list) {
4220		if (c->type != type || skb_queue_empty(&c->data_q))
4221			continue;
4222
4223		if (c->state != BT_CONNECTED && c->state != BT_CONFIG)
4224			continue;
4225
4226		num++;
4227
4228		if (c->sent < min) {
4229			min  = c->sent;
4230			conn = c;
4231		}
4232
4233		if (hci_conn_num(hdev, type) == num)
4234			break;
4235	}
4236
4237	rcu_read_unlock();
4238
4239	if (conn) {
4240		int cnt, q;
4241
4242		switch (conn->type) {
4243		case ACL_LINK:
4244			cnt = hdev->acl_cnt;
4245			break;
4246		case SCO_LINK:
4247		case ESCO_LINK:
4248			cnt = hdev->sco_cnt;
4249			break;
4250		case LE_LINK:
4251			cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
4252			break;
4253		default:
4254			cnt = 0;
4255			bt_dev_err(hdev, "unknown link type %d", conn->type);
4256		}
4257
4258		q = cnt / num;
4259		*quote = q ? q : 1;
4260	} else
4261		*quote = 0;
4262
4263	BT_DBG("conn %p quote %d", conn, *quote);
4264	return conn;
4265}
4266
4267static void hci_link_tx_to(struct hci_dev *hdev, __u8 type)
4268{
4269	struct hci_conn_hash *h = &hdev->conn_hash;
4270	struct hci_conn *c;
4271
4272	bt_dev_err(hdev, "link tx timeout");
4273
4274	rcu_read_lock();
4275
4276	/* Kill stalled connections */
4277	list_for_each_entry_rcu(c, &h->list, list) {
4278		if (c->type == type && c->sent) {
4279			bt_dev_err(hdev, "killing stalled connection %pMR",
4280				   &c->dst);
4281			hci_disconnect(c, HCI_ERROR_REMOTE_USER_TERM);
4282		}
4283	}
4284
4285	rcu_read_unlock();
4286}
4287
4288static struct hci_chan *hci_chan_sent(struct hci_dev *hdev, __u8 type,
4289				      int *quote)
4290{
4291	struct hci_conn_hash *h = &hdev->conn_hash;
4292	struct hci_chan *chan = NULL;
4293	unsigned int num = 0, min = ~0, cur_prio = 0;
4294	struct hci_conn *conn;
4295	int cnt, q, conn_num = 0;
4296
4297	BT_DBG("%s", hdev->name);
4298
4299	rcu_read_lock();
4300
4301	list_for_each_entry_rcu(conn, &h->list, list) {
4302		struct hci_chan *tmp;
4303
4304		if (conn->type != type)
4305			continue;
4306
4307		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
4308			continue;
4309
4310		conn_num++;
4311
4312		list_for_each_entry_rcu(tmp, &conn->chan_list, list) {
4313			struct sk_buff *skb;
4314
4315			if (skb_queue_empty(&tmp->data_q))
4316				continue;
4317
4318			skb = skb_peek(&tmp->data_q);
4319			if (skb->priority < cur_prio)
4320				continue;
4321
4322			if (skb->priority > cur_prio) {
4323				num = 0;
4324				min = ~0;
4325				cur_prio = skb->priority;
4326			}
4327
4328			num++;
4329
4330			if (conn->sent < min) {
4331				min  = conn->sent;
4332				chan = tmp;
4333			}
4334		}
4335
4336		if (hci_conn_num(hdev, type) == conn_num)
4337			break;
4338	}
4339
4340	rcu_read_unlock();
4341
4342	if (!chan)
4343		return NULL;
4344
4345	switch (chan->conn->type) {
4346	case ACL_LINK:
4347		cnt = hdev->acl_cnt;
4348		break;
4349	case AMP_LINK:
4350		cnt = hdev->block_cnt;
4351		break;
4352	case SCO_LINK:
4353	case ESCO_LINK:
4354		cnt = hdev->sco_cnt;
4355		break;
4356	case LE_LINK:
4357		cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
4358		break;
4359	default:
4360		cnt = 0;
4361		bt_dev_err(hdev, "unknown link type %d", chan->conn->type);
4362	}
4363
4364	q = cnt / num;
4365	*quote = q ? q : 1;
4366	BT_DBG("chan %p quote %d", chan, *quote);
4367	return chan;
4368}
4369
4370static void hci_prio_recalculate(struct hci_dev *hdev, __u8 type)
4371{
4372	struct hci_conn_hash *h = &hdev->conn_hash;
4373	struct hci_conn *conn;
4374	int num = 0;
4375
4376	BT_DBG("%s", hdev->name);
4377
4378	rcu_read_lock();
4379
4380	list_for_each_entry_rcu(conn, &h->list, list) {
4381		struct hci_chan *chan;
4382
4383		if (conn->type != type)
4384			continue;
4385
4386		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
4387			continue;
4388
4389		num++;
4390
4391		list_for_each_entry_rcu(chan, &conn->chan_list, list) {
4392			struct sk_buff *skb;
4393
4394			if (chan->sent) {
4395				chan->sent = 0;
4396				continue;
4397			}
4398
4399			if (skb_queue_empty(&chan->data_q))
4400				continue;
4401
4402			skb = skb_peek(&chan->data_q);
4403			if (skb->priority >= HCI_PRIO_MAX - 1)
4404				continue;
4405
4406			skb->priority = HCI_PRIO_MAX - 1;
4407
4408			BT_DBG("chan %p skb %p promoted to %d", chan, skb,
4409			       skb->priority);
4410		}
4411
4412		if (hci_conn_num(hdev, type) == num)
4413			break;
4414	}
4415
4416	rcu_read_unlock();
4417
4418}
4419
4420static inline int __get_blocks(struct hci_dev *hdev, struct sk_buff *skb)
4421{
4422	/* Calculate count of blocks used by this packet */
4423	return DIV_ROUND_UP(skb->len - HCI_ACL_HDR_SIZE, hdev->block_len);
4424}
4425
4426static void __check_timeout(struct hci_dev *hdev, unsigned int cnt)
4427{
4428	if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
4429		/* ACL tx timeout must be longer than maximum
4430		 * link supervision timeout (40.9 seconds) */
4431		if (!cnt && time_after(jiffies, hdev->acl_last_tx +
4432				       HCI_ACL_TX_TIMEOUT))
4433			hci_link_tx_to(hdev, ACL_LINK);
4434	}
4435}
4436
4437/* Schedule SCO */
4438static void hci_sched_sco(struct hci_dev *hdev)
4439{
4440	struct hci_conn *conn;
4441	struct sk_buff *skb;
4442	int quote;
4443
4444	BT_DBG("%s", hdev->name);
4445
4446	if (!hci_conn_num(hdev, SCO_LINK))
4447		return;
4448
4449	while (hdev->sco_cnt && (conn = hci_low_sent(hdev, SCO_LINK, &quote))) {
4450		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
4451			BT_DBG("skb %p len %d", skb, skb->len);
4452			hci_send_frame(hdev, skb);
4453
4454			conn->sent++;
4455			if (conn->sent == ~0)
4456				conn->sent = 0;
4457		}
4458	}
4459}
4460
4461static void hci_sched_esco(struct hci_dev *hdev)
4462{
4463	struct hci_conn *conn;
4464	struct sk_buff *skb;
4465	int quote;
4466
4467	BT_DBG("%s", hdev->name);
4468
4469	if (!hci_conn_num(hdev, ESCO_LINK))
4470		return;
4471
4472	while (hdev->sco_cnt && (conn = hci_low_sent(hdev, ESCO_LINK,
4473						     &quote))) {
4474		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
4475			BT_DBG("skb %p len %d", skb, skb->len);
4476			hci_send_frame(hdev, skb);
4477
4478			conn->sent++;
4479			if (conn->sent == ~0)
4480				conn->sent = 0;
4481		}
4482	}
4483}
4484
4485static void hci_sched_acl_pkt(struct hci_dev *hdev)
4486{
4487	unsigned int cnt = hdev->acl_cnt;
4488	struct hci_chan *chan;
4489	struct sk_buff *skb;
4490	int quote;
4491
4492	__check_timeout(hdev, cnt);
4493
4494	while (hdev->acl_cnt &&
4495	       (chan = hci_chan_sent(hdev, ACL_LINK, &quote))) {
4496		u32 priority = (skb_peek(&chan->data_q))->priority;
4497		while (quote-- && (skb = skb_peek(&chan->data_q))) {
4498			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
4499			       skb->len, skb->priority);
4500
4501			/* Stop if priority has changed */
4502			if (skb->priority < priority)
4503				break;
4504
4505			skb = skb_dequeue(&chan->data_q);
4506
4507			hci_conn_enter_active_mode(chan->conn,
4508						   bt_cb(skb)->force_active);
4509
4510			hci_send_frame(hdev, skb);
4511			hdev->acl_last_tx = jiffies;
4512
4513			hdev->acl_cnt--;
4514			chan->sent++;
4515			chan->conn->sent++;
4516
4517			/* Send pending SCO packets right away */
4518			hci_sched_sco(hdev);
4519			hci_sched_esco(hdev);
4520		}
4521	}
4522
4523	if (cnt != hdev->acl_cnt)
4524		hci_prio_recalculate(hdev, ACL_LINK);
4525}
4526
4527static void hci_sched_acl_blk(struct hci_dev *hdev)
4528{
4529	unsigned int cnt = hdev->block_cnt;
4530	struct hci_chan *chan;
4531	struct sk_buff *skb;
4532	int quote;
4533	u8 type;
4534
4535	__check_timeout(hdev, cnt);
4536
4537	BT_DBG("%s", hdev->name);
4538
4539	if (hdev->dev_type == HCI_AMP)
4540		type = AMP_LINK;
4541	else
4542		type = ACL_LINK;
4543
4544	while (hdev->block_cnt > 0 &&
4545	       (chan = hci_chan_sent(hdev, type, &quote))) {
4546		u32 priority = (skb_peek(&chan->data_q))->priority;
4547		while (quote > 0 && (skb = skb_peek(&chan->data_q))) {
4548			int blocks;
4549
4550			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
4551			       skb->len, skb->priority);
4552
4553			/* Stop if priority has changed */
4554			if (skb->priority < priority)
4555				break;
4556
4557			skb = skb_dequeue(&chan->data_q);
4558
4559			blocks = __get_blocks(hdev, skb);
4560			if (blocks > hdev->block_cnt)
4561				return;
4562
4563			hci_conn_enter_active_mode(chan->conn,
4564						   bt_cb(skb)->force_active);
4565
4566			hci_send_frame(hdev, skb);
4567			hdev->acl_last_tx = jiffies;
4568
4569			hdev->block_cnt -= blocks;
4570			quote -= blocks;
4571
4572			chan->sent += blocks;
4573			chan->conn->sent += blocks;
4574		}
4575	}
4576
4577	if (cnt != hdev->block_cnt)
4578		hci_prio_recalculate(hdev, type);
4579}
4580
4581static void hci_sched_acl(struct hci_dev *hdev)
4582{
4583	BT_DBG("%s", hdev->name);
4584
4585	/* No ACL link over BR/EDR controller */
4586	if (!hci_conn_num(hdev, ACL_LINK) && hdev->dev_type == HCI_PRIMARY)
4587		return;
4588
4589	/* No AMP link over AMP controller */
4590	if (!hci_conn_num(hdev, AMP_LINK) && hdev->dev_type == HCI_AMP)
4591		return;
4592
4593	switch (hdev->flow_ctl_mode) {
4594	case HCI_FLOW_CTL_MODE_PACKET_BASED:
4595		hci_sched_acl_pkt(hdev);
4596		break;
4597
4598	case HCI_FLOW_CTL_MODE_BLOCK_BASED:
4599		hci_sched_acl_blk(hdev);
4600		break;
4601	}
4602}
4603
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4604static void hci_sched_le(struct hci_dev *hdev)
4605{
4606	struct hci_chan *chan;
4607	struct sk_buff *skb;
4608	int quote, cnt, tmp;
4609
4610	BT_DBG("%s", hdev->name);
4611
4612	if (!hci_conn_num(hdev, LE_LINK))
4613		return;
4614
 
 
 
 
 
 
 
 
4615	cnt = hdev->le_pkts ? hdev->le_cnt : hdev->acl_cnt;
4616
4617	__check_timeout(hdev, cnt);
4618
4619	tmp = cnt;
4620	while (cnt && (chan = hci_chan_sent(hdev, LE_LINK, &quote))) {
4621		u32 priority = (skb_peek(&chan->data_q))->priority;
4622		while (quote-- && (skb = skb_peek(&chan->data_q))) {
4623			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
4624			       skb->len, skb->priority);
4625
4626			/* Stop if priority has changed */
4627			if (skb->priority < priority)
4628				break;
4629
4630			skb = skb_dequeue(&chan->data_q);
4631
4632			hci_send_frame(hdev, skb);
4633			hdev->le_last_tx = jiffies;
4634
4635			cnt--;
4636			chan->sent++;
4637			chan->conn->sent++;
4638
4639			/* Send pending SCO packets right away */
4640			hci_sched_sco(hdev);
4641			hci_sched_esco(hdev);
4642		}
4643	}
4644
4645	if (hdev->le_pkts)
4646		hdev->le_cnt = cnt;
4647	else
4648		hdev->acl_cnt = cnt;
4649
4650	if (cnt != tmp)
4651		hci_prio_recalculate(hdev, LE_LINK);
4652}
4653
4654static void hci_tx_work(struct work_struct *work)
4655{
4656	struct hci_dev *hdev = container_of(work, struct hci_dev, tx_work);
4657	struct sk_buff *skb;
4658
4659	BT_DBG("%s acl %d sco %d le %d", hdev->name, hdev->acl_cnt,
4660	       hdev->sco_cnt, hdev->le_cnt);
4661
4662	if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
4663		/* Schedule queues and send stuff to HCI driver */
 
4664		hci_sched_sco(hdev);
4665		hci_sched_esco(hdev);
4666		hci_sched_acl(hdev);
4667		hci_sched_le(hdev);
4668	}
4669
4670	/* Send next queued raw (unknown type) packet */
4671	while ((skb = skb_dequeue(&hdev->raw_q)))
4672		hci_send_frame(hdev, skb);
4673}
4674
4675/* ----- HCI RX task (incoming data processing) ----- */
4676
4677/* ACL data packet */
4678static void hci_acldata_packet(struct hci_dev *hdev, struct sk_buff *skb)
4679{
4680	struct hci_acl_hdr *hdr = (void *) skb->data;
4681	struct hci_conn *conn;
4682	__u16 handle, flags;
4683
4684	skb_pull(skb, HCI_ACL_HDR_SIZE);
4685
4686	handle = __le16_to_cpu(hdr->handle);
4687	flags  = hci_flags(handle);
4688	handle = hci_handle(handle);
4689
4690	BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len,
4691	       handle, flags);
4692
4693	hdev->stat.acl_rx++;
4694
4695	hci_dev_lock(hdev);
4696	conn = hci_conn_hash_lookup_handle(hdev, handle);
4697	hci_dev_unlock(hdev);
4698
4699	if (conn) {
4700		hci_conn_enter_active_mode(conn, BT_POWER_FORCE_ACTIVE_OFF);
4701
4702		/* Send to upper protocol */
4703		l2cap_recv_acldata(conn, skb, flags);
4704		return;
4705	} else {
4706		bt_dev_err(hdev, "ACL packet for unknown connection handle %d",
4707			   handle);
4708	}
4709
4710	kfree_skb(skb);
4711}
4712
4713/* SCO data packet */
4714static void hci_scodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
4715{
4716	struct hci_sco_hdr *hdr = (void *) skb->data;
4717	struct hci_conn *conn;
4718	__u16 handle, flags;
4719
4720	skb_pull(skb, HCI_SCO_HDR_SIZE);
4721
4722	handle = __le16_to_cpu(hdr->handle);
4723	flags  = hci_flags(handle);
4724	handle = hci_handle(handle);
4725
4726	BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len,
4727	       handle, flags);
4728
4729	hdev->stat.sco_rx++;
4730
4731	hci_dev_lock(hdev);
4732	conn = hci_conn_hash_lookup_handle(hdev, handle);
4733	hci_dev_unlock(hdev);
4734
4735	if (conn) {
4736		/* Send to upper protocol */
4737		bt_cb(skb)->sco.pkt_status = flags & 0x03;
4738		sco_recv_scodata(conn, skb);
4739		return;
4740	} else {
4741		bt_dev_err(hdev, "SCO packet for unknown connection handle %d",
4742			   handle);
4743	}
4744
4745	kfree_skb(skb);
4746}
4747
4748static bool hci_req_is_complete(struct hci_dev *hdev)
4749{
4750	struct sk_buff *skb;
4751
4752	skb = skb_peek(&hdev->cmd_q);
4753	if (!skb)
4754		return true;
4755
4756	return (bt_cb(skb)->hci.req_flags & HCI_REQ_START);
4757}
4758
4759static void hci_resend_last(struct hci_dev *hdev)
4760{
4761	struct hci_command_hdr *sent;
4762	struct sk_buff *skb;
4763	u16 opcode;
4764
4765	if (!hdev->sent_cmd)
4766		return;
4767
4768	sent = (void *) hdev->sent_cmd->data;
4769	opcode = __le16_to_cpu(sent->opcode);
4770	if (opcode == HCI_OP_RESET)
4771		return;
4772
4773	skb = skb_clone(hdev->sent_cmd, GFP_KERNEL);
4774	if (!skb)
4775		return;
4776
4777	skb_queue_head(&hdev->cmd_q, skb);
4778	queue_work(hdev->workqueue, &hdev->cmd_work);
4779}
4780
4781void hci_req_cmd_complete(struct hci_dev *hdev, u16 opcode, u8 status,
4782			  hci_req_complete_t *req_complete,
4783			  hci_req_complete_skb_t *req_complete_skb)
4784{
4785	struct sk_buff *skb;
4786	unsigned long flags;
4787
4788	BT_DBG("opcode 0x%04x status 0x%02x", opcode, status);
4789
4790	/* If the completed command doesn't match the last one that was
4791	 * sent we need to do special handling of it.
4792	 */
4793	if (!hci_sent_cmd_data(hdev, opcode)) {
4794		/* Some CSR based controllers generate a spontaneous
4795		 * reset complete event during init and any pending
4796		 * command will never be completed. In such a case we
4797		 * need to resend whatever was the last sent
4798		 * command.
4799		 */
4800		if (test_bit(HCI_INIT, &hdev->flags) && opcode == HCI_OP_RESET)
4801			hci_resend_last(hdev);
4802
4803		return;
4804	}
4805
4806	/* If we reach this point this event matches the last command sent */
4807	hci_dev_clear_flag(hdev, HCI_CMD_PENDING);
4808
4809	/* If the command succeeded and there's still more commands in
4810	 * this request the request is not yet complete.
4811	 */
4812	if (!status && !hci_req_is_complete(hdev))
4813		return;
4814
4815	/* If this was the last command in a request the complete
4816	 * callback would be found in hdev->sent_cmd instead of the
4817	 * command queue (hdev->cmd_q).
4818	 */
4819	if (bt_cb(hdev->sent_cmd)->hci.req_flags & HCI_REQ_SKB) {
4820		*req_complete_skb = bt_cb(hdev->sent_cmd)->hci.req_complete_skb;
4821		return;
4822	}
4823
4824	if (bt_cb(hdev->sent_cmd)->hci.req_complete) {
4825		*req_complete = bt_cb(hdev->sent_cmd)->hci.req_complete;
4826		return;
4827	}
4828
4829	/* Remove all pending commands belonging to this request */
4830	spin_lock_irqsave(&hdev->cmd_q.lock, flags);
4831	while ((skb = __skb_dequeue(&hdev->cmd_q))) {
4832		if (bt_cb(skb)->hci.req_flags & HCI_REQ_START) {
4833			__skb_queue_head(&hdev->cmd_q, skb);
4834			break;
4835		}
4836
4837		if (bt_cb(skb)->hci.req_flags & HCI_REQ_SKB)
4838			*req_complete_skb = bt_cb(skb)->hci.req_complete_skb;
4839		else
4840			*req_complete = bt_cb(skb)->hci.req_complete;
4841		kfree_skb(skb);
4842	}
4843	spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
4844}
4845
4846static void hci_rx_work(struct work_struct *work)
4847{
4848	struct hci_dev *hdev = container_of(work, struct hci_dev, rx_work);
4849	struct sk_buff *skb;
4850
4851	BT_DBG("%s", hdev->name);
4852
4853	while ((skb = skb_dequeue(&hdev->rx_q))) {
4854		/* Send copy to monitor */
4855		hci_send_to_monitor(hdev, skb);
4856
4857		if (atomic_read(&hdev->promisc)) {
4858			/* Send copy to the sockets */
4859			hci_send_to_sock(hdev, skb);
4860		}
4861
4862		/* If the device has been opened in HCI_USER_CHANNEL,
4863		 * the userspace has exclusive access to device.
4864		 * When device is HCI_INIT, we still need to process
4865		 * the data packets to the driver in order
4866		 * to complete its setup().
4867		 */
4868		if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
4869		    !test_bit(HCI_INIT, &hdev->flags)) {
4870			kfree_skb(skb);
4871			continue;
4872		}
4873
4874		if (test_bit(HCI_INIT, &hdev->flags)) {
4875			/* Don't process data packets in this states. */
4876			switch (hci_skb_pkt_type(skb)) {
4877			case HCI_ACLDATA_PKT:
4878			case HCI_SCODATA_PKT:
4879			case HCI_ISODATA_PKT:
4880				kfree_skb(skb);
4881				continue;
4882			}
4883		}
4884
4885		/* Process frame */
4886		switch (hci_skb_pkt_type(skb)) {
4887		case HCI_EVENT_PKT:
4888			BT_DBG("%s Event packet", hdev->name);
4889			hci_event_packet(hdev, skb);
4890			break;
4891
4892		case HCI_ACLDATA_PKT:
4893			BT_DBG("%s ACL data packet", hdev->name);
4894			hci_acldata_packet(hdev, skb);
4895			break;
4896
4897		case HCI_SCODATA_PKT:
4898			BT_DBG("%s SCO data packet", hdev->name);
4899			hci_scodata_packet(hdev, skb);
4900			break;
4901
4902		default:
4903			kfree_skb(skb);
4904			break;
4905		}
4906	}
4907}
4908
4909static void hci_cmd_work(struct work_struct *work)
4910{
4911	struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_work);
4912	struct sk_buff *skb;
4913
4914	BT_DBG("%s cmd_cnt %d cmd queued %d", hdev->name,
4915	       atomic_read(&hdev->cmd_cnt), skb_queue_len(&hdev->cmd_q));
4916
4917	/* Send queued commands */
4918	if (atomic_read(&hdev->cmd_cnt)) {
4919		skb = skb_dequeue(&hdev->cmd_q);
4920		if (!skb)
4921			return;
4922
4923		kfree_skb(hdev->sent_cmd);
4924
4925		hdev->sent_cmd = skb_clone(skb, GFP_KERNEL);
4926		if (hdev->sent_cmd) {
4927			if (hci_req_status_pend(hdev))
4928				hci_dev_set_flag(hdev, HCI_CMD_PENDING);
4929			atomic_dec(&hdev->cmd_cnt);
4930			hci_send_frame(hdev, skb);
4931			if (test_bit(HCI_RESET, &hdev->flags))
4932				cancel_delayed_work(&hdev->cmd_timer);
4933			else
4934				schedule_delayed_work(&hdev->cmd_timer,
4935						      HCI_CMD_TIMEOUT);
4936		} else {
4937			skb_queue_head(&hdev->cmd_q, skb);
4938			queue_work(hdev->workqueue, &hdev->cmd_work);
4939		}
4940	}
4941}