Loading...
1/*
2 BlueZ - Bluetooth protocol stack for Linux
3 Copyright (C) 2000-2001 Qualcomm Incorporated
4 Copyright (C) 2011 ProFUSION Embedded Systems
5
6 Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License version 2 as
10 published by the Free Software Foundation;
11
12 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
13 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
14 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
15 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
16 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
17 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20
21 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
22 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
23 SOFTWARE IS DISCLAIMED.
24*/
25
26/* Bluetooth HCI core. */
27
28#include <linux/export.h>
29#include <linux/idr.h>
30#include <linux/rfkill.h>
31#include <linux/debugfs.h>
32#include <linux/crypto.h>
33#include <asm/unaligned.h>
34
35#include <net/bluetooth/bluetooth.h>
36#include <net/bluetooth/hci_core.h>
37#include <net/bluetooth/l2cap.h>
38#include <net/bluetooth/mgmt.h>
39
40#include "hci_request.h"
41#include "hci_debugfs.h"
42#include "smp.h"
43#include "leds.h"
44
45static void hci_rx_work(struct work_struct *work);
46static void hci_cmd_work(struct work_struct *work);
47static void hci_tx_work(struct work_struct *work);
48
49/* HCI device list */
50LIST_HEAD(hci_dev_list);
51DEFINE_RWLOCK(hci_dev_list_lock);
52
53/* HCI callback list */
54LIST_HEAD(hci_cb_list);
55DEFINE_MUTEX(hci_cb_list_lock);
56
57/* HCI ID Numbering */
58static DEFINE_IDA(hci_index_ida);
59
60/* ---- HCI debugfs entries ---- */
61
62static ssize_t dut_mode_read(struct file *file, char __user *user_buf,
63 size_t count, loff_t *ppos)
64{
65 struct hci_dev *hdev = file->private_data;
66 char buf[3];
67
68 buf[0] = hci_dev_test_flag(hdev, HCI_DUT_MODE) ? 'Y' : 'N';
69 buf[1] = '\n';
70 buf[2] = '\0';
71 return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
72}
73
74static ssize_t dut_mode_write(struct file *file, const char __user *user_buf,
75 size_t count, loff_t *ppos)
76{
77 struct hci_dev *hdev = file->private_data;
78 struct sk_buff *skb;
79 char buf[32];
80 size_t buf_size = min(count, (sizeof(buf)-1));
81 bool enable;
82
83 if (!test_bit(HCI_UP, &hdev->flags))
84 return -ENETDOWN;
85
86 if (copy_from_user(buf, user_buf, buf_size))
87 return -EFAULT;
88
89 buf[buf_size] = '\0';
90 if (strtobool(buf, &enable))
91 return -EINVAL;
92
93 if (enable == hci_dev_test_flag(hdev, HCI_DUT_MODE))
94 return -EALREADY;
95
96 hci_req_sync_lock(hdev);
97 if (enable)
98 skb = __hci_cmd_sync(hdev, HCI_OP_ENABLE_DUT_MODE, 0, NULL,
99 HCI_CMD_TIMEOUT);
100 else
101 skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL,
102 HCI_CMD_TIMEOUT);
103 hci_req_sync_unlock(hdev);
104
105 if (IS_ERR(skb))
106 return PTR_ERR(skb);
107
108 kfree_skb(skb);
109
110 hci_dev_change_flag(hdev, HCI_DUT_MODE);
111
112 return count;
113}
114
115static const struct file_operations dut_mode_fops = {
116 .open = simple_open,
117 .read = dut_mode_read,
118 .write = dut_mode_write,
119 .llseek = default_llseek,
120};
121
122static ssize_t vendor_diag_read(struct file *file, char __user *user_buf,
123 size_t count, loff_t *ppos)
124{
125 struct hci_dev *hdev = file->private_data;
126 char buf[3];
127
128 buf[0] = hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) ? 'Y' : 'N';
129 buf[1] = '\n';
130 buf[2] = '\0';
131 return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
132}
133
134static ssize_t vendor_diag_write(struct file *file, const char __user *user_buf,
135 size_t count, loff_t *ppos)
136{
137 struct hci_dev *hdev = file->private_data;
138 char buf[32];
139 size_t buf_size = min(count, (sizeof(buf)-1));
140 bool enable;
141 int err;
142
143 if (copy_from_user(buf, user_buf, buf_size))
144 return -EFAULT;
145
146 buf[buf_size] = '\0';
147 if (strtobool(buf, &enable))
148 return -EINVAL;
149
150 /* When the diagnostic flags are not persistent and the transport
151 * is not active, then there is no need for the vendor callback.
152 *
153 * Instead just store the desired value. If needed the setting
154 * will be programmed when the controller gets powered on.
155 */
156 if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) &&
157 !test_bit(HCI_RUNNING, &hdev->flags))
158 goto done;
159
160 hci_req_sync_lock(hdev);
161 err = hdev->set_diag(hdev, enable);
162 hci_req_sync_unlock(hdev);
163
164 if (err < 0)
165 return err;
166
167done:
168 if (enable)
169 hci_dev_set_flag(hdev, HCI_VENDOR_DIAG);
170 else
171 hci_dev_clear_flag(hdev, HCI_VENDOR_DIAG);
172
173 return count;
174}
175
176static const struct file_operations vendor_diag_fops = {
177 .open = simple_open,
178 .read = vendor_diag_read,
179 .write = vendor_diag_write,
180 .llseek = default_llseek,
181};
182
183static void hci_debugfs_create_basic(struct hci_dev *hdev)
184{
185 debugfs_create_file("dut_mode", 0644, hdev->debugfs, hdev,
186 &dut_mode_fops);
187
188 if (hdev->set_diag)
189 debugfs_create_file("vendor_diag", 0644, hdev->debugfs, hdev,
190 &vendor_diag_fops);
191}
192
193static int hci_reset_req(struct hci_request *req, unsigned long opt)
194{
195 BT_DBG("%s %ld", req->hdev->name, opt);
196
197 /* Reset device */
198 set_bit(HCI_RESET, &req->hdev->flags);
199 hci_req_add(req, HCI_OP_RESET, 0, NULL);
200 return 0;
201}
202
203static void bredr_init(struct hci_request *req)
204{
205 req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_PACKET_BASED;
206
207 /* Read Local Supported Features */
208 hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
209
210 /* Read Local Version */
211 hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
212
213 /* Read BD Address */
214 hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL);
215}
216
217static void amp_init1(struct hci_request *req)
218{
219 req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_BLOCK_BASED;
220
221 /* Read Local Version */
222 hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
223
224 /* Read Local Supported Commands */
225 hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL);
226
227 /* Read Local AMP Info */
228 hci_req_add(req, HCI_OP_READ_LOCAL_AMP_INFO, 0, NULL);
229
230 /* Read Data Blk size */
231 hci_req_add(req, HCI_OP_READ_DATA_BLOCK_SIZE, 0, NULL);
232
233 /* Read Flow Control Mode */
234 hci_req_add(req, HCI_OP_READ_FLOW_CONTROL_MODE, 0, NULL);
235
236 /* Read Location Data */
237 hci_req_add(req, HCI_OP_READ_LOCATION_DATA, 0, NULL);
238}
239
240static int amp_init2(struct hci_request *req)
241{
242 /* Read Local Supported Features. Not all AMP controllers
243 * support this so it's placed conditionally in the second
244 * stage init.
245 */
246 if (req->hdev->commands[14] & 0x20)
247 hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
248
249 return 0;
250}
251
252static int hci_init1_req(struct hci_request *req, unsigned long opt)
253{
254 struct hci_dev *hdev = req->hdev;
255
256 BT_DBG("%s %ld", hdev->name, opt);
257
258 /* Reset */
259 if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks))
260 hci_reset_req(req, 0);
261
262 switch (hdev->dev_type) {
263 case HCI_BREDR:
264 bredr_init(req);
265 break;
266
267 case HCI_AMP:
268 amp_init1(req);
269 break;
270
271 default:
272 BT_ERR("Unknown device type %d", hdev->dev_type);
273 break;
274 }
275
276 return 0;
277}
278
279static void bredr_setup(struct hci_request *req)
280{
281 __le16 param;
282 __u8 flt_type;
283
284 /* Read Buffer Size (ACL mtu, max pkt, etc.) */
285 hci_req_add(req, HCI_OP_READ_BUFFER_SIZE, 0, NULL);
286
287 /* Read Class of Device */
288 hci_req_add(req, HCI_OP_READ_CLASS_OF_DEV, 0, NULL);
289
290 /* Read Local Name */
291 hci_req_add(req, HCI_OP_READ_LOCAL_NAME, 0, NULL);
292
293 /* Read Voice Setting */
294 hci_req_add(req, HCI_OP_READ_VOICE_SETTING, 0, NULL);
295
296 /* Read Number of Supported IAC */
297 hci_req_add(req, HCI_OP_READ_NUM_SUPPORTED_IAC, 0, NULL);
298
299 /* Read Current IAC LAP */
300 hci_req_add(req, HCI_OP_READ_CURRENT_IAC_LAP, 0, NULL);
301
302 /* Clear Event Filters */
303 flt_type = HCI_FLT_CLEAR_ALL;
304 hci_req_add(req, HCI_OP_SET_EVENT_FLT, 1, &flt_type);
305
306 /* Connection accept timeout ~20 secs */
307 param = cpu_to_le16(0x7d00);
308 hci_req_add(req, HCI_OP_WRITE_CA_TIMEOUT, 2, ¶m);
309}
310
311static void le_setup(struct hci_request *req)
312{
313 struct hci_dev *hdev = req->hdev;
314
315 /* Read LE Buffer Size */
316 hci_req_add(req, HCI_OP_LE_READ_BUFFER_SIZE, 0, NULL);
317
318 /* Read LE Local Supported Features */
319 hci_req_add(req, HCI_OP_LE_READ_LOCAL_FEATURES, 0, NULL);
320
321 /* Read LE Supported States */
322 hci_req_add(req, HCI_OP_LE_READ_SUPPORTED_STATES, 0, NULL);
323
324 /* LE-only controllers have LE implicitly enabled */
325 if (!lmp_bredr_capable(hdev))
326 hci_dev_set_flag(hdev, HCI_LE_ENABLED);
327}
328
329static void hci_setup_event_mask(struct hci_request *req)
330{
331 struct hci_dev *hdev = req->hdev;
332
333 /* The second byte is 0xff instead of 0x9f (two reserved bits
334 * disabled) since a Broadcom 1.2 dongle doesn't respond to the
335 * command otherwise.
336 */
337 u8 events[8] = { 0xff, 0xff, 0xfb, 0xff, 0x00, 0x00, 0x00, 0x00 };
338
339 /* CSR 1.1 dongles does not accept any bitfield so don't try to set
340 * any event mask for pre 1.2 devices.
341 */
342 if (hdev->hci_ver < BLUETOOTH_VER_1_2)
343 return;
344
345 if (lmp_bredr_capable(hdev)) {
346 events[4] |= 0x01; /* Flow Specification Complete */
347 } else {
348 /* Use a different default for LE-only devices */
349 memset(events, 0, sizeof(events));
350 events[1] |= 0x20; /* Command Complete */
351 events[1] |= 0x40; /* Command Status */
352 events[1] |= 0x80; /* Hardware Error */
353
354 /* If the controller supports the Disconnect command, enable
355 * the corresponding event. In addition enable packet flow
356 * control related events.
357 */
358 if (hdev->commands[0] & 0x20) {
359 events[0] |= 0x10; /* Disconnection Complete */
360 events[2] |= 0x04; /* Number of Completed Packets */
361 events[3] |= 0x02; /* Data Buffer Overflow */
362 }
363
364 /* If the controller supports the Read Remote Version
365 * Information command, enable the corresponding event.
366 */
367 if (hdev->commands[2] & 0x80)
368 events[1] |= 0x08; /* Read Remote Version Information
369 * Complete
370 */
371
372 if (hdev->le_features[0] & HCI_LE_ENCRYPTION) {
373 events[0] |= 0x80; /* Encryption Change */
374 events[5] |= 0x80; /* Encryption Key Refresh Complete */
375 }
376 }
377
378 if (lmp_inq_rssi_capable(hdev) ||
379 test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks))
380 events[4] |= 0x02; /* Inquiry Result with RSSI */
381
382 if (lmp_ext_feat_capable(hdev))
383 events[4] |= 0x04; /* Read Remote Extended Features Complete */
384
385 if (lmp_esco_capable(hdev)) {
386 events[5] |= 0x08; /* Synchronous Connection Complete */
387 events[5] |= 0x10; /* Synchronous Connection Changed */
388 }
389
390 if (lmp_sniffsubr_capable(hdev))
391 events[5] |= 0x20; /* Sniff Subrating */
392
393 if (lmp_pause_enc_capable(hdev))
394 events[5] |= 0x80; /* Encryption Key Refresh Complete */
395
396 if (lmp_ext_inq_capable(hdev))
397 events[5] |= 0x40; /* Extended Inquiry Result */
398
399 if (lmp_no_flush_capable(hdev))
400 events[7] |= 0x01; /* Enhanced Flush Complete */
401
402 if (lmp_lsto_capable(hdev))
403 events[6] |= 0x80; /* Link Supervision Timeout Changed */
404
405 if (lmp_ssp_capable(hdev)) {
406 events[6] |= 0x01; /* IO Capability Request */
407 events[6] |= 0x02; /* IO Capability Response */
408 events[6] |= 0x04; /* User Confirmation Request */
409 events[6] |= 0x08; /* User Passkey Request */
410 events[6] |= 0x10; /* Remote OOB Data Request */
411 events[6] |= 0x20; /* Simple Pairing Complete */
412 events[7] |= 0x04; /* User Passkey Notification */
413 events[7] |= 0x08; /* Keypress Notification */
414 events[7] |= 0x10; /* Remote Host Supported
415 * Features Notification
416 */
417 }
418
419 if (lmp_le_capable(hdev))
420 events[7] |= 0x20; /* LE Meta-Event */
421
422 hci_req_add(req, HCI_OP_SET_EVENT_MASK, sizeof(events), events);
423}
424
425static int hci_init2_req(struct hci_request *req, unsigned long opt)
426{
427 struct hci_dev *hdev = req->hdev;
428
429 if (hdev->dev_type == HCI_AMP)
430 return amp_init2(req);
431
432 if (lmp_bredr_capable(hdev))
433 bredr_setup(req);
434 else
435 hci_dev_clear_flag(hdev, HCI_BREDR_ENABLED);
436
437 if (lmp_le_capable(hdev))
438 le_setup(req);
439
440 /* All Bluetooth 1.2 and later controllers should support the
441 * HCI command for reading the local supported commands.
442 *
443 * Unfortunately some controllers indicate Bluetooth 1.2 support,
444 * but do not have support for this command. If that is the case,
445 * the driver can quirk the behavior and skip reading the local
446 * supported commands.
447 */
448 if (hdev->hci_ver > BLUETOOTH_VER_1_1 &&
449 !test_bit(HCI_QUIRK_BROKEN_LOCAL_COMMANDS, &hdev->quirks))
450 hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL);
451
452 if (lmp_ssp_capable(hdev)) {
453 /* When SSP is available, then the host features page
454 * should also be available as well. However some
455 * controllers list the max_page as 0 as long as SSP
456 * has not been enabled. To achieve proper debugging
457 * output, force the minimum max_page to 1 at least.
458 */
459 hdev->max_page = 0x01;
460
461 if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) {
462 u8 mode = 0x01;
463
464 hci_req_add(req, HCI_OP_WRITE_SSP_MODE,
465 sizeof(mode), &mode);
466 } else {
467 struct hci_cp_write_eir cp;
468
469 memset(hdev->eir, 0, sizeof(hdev->eir));
470 memset(&cp, 0, sizeof(cp));
471
472 hci_req_add(req, HCI_OP_WRITE_EIR, sizeof(cp), &cp);
473 }
474 }
475
476 if (lmp_inq_rssi_capable(hdev) ||
477 test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks)) {
478 u8 mode;
479
480 /* If Extended Inquiry Result events are supported, then
481 * they are clearly preferred over Inquiry Result with RSSI
482 * events.
483 */
484 mode = lmp_ext_inq_capable(hdev) ? 0x02 : 0x01;
485
486 hci_req_add(req, HCI_OP_WRITE_INQUIRY_MODE, 1, &mode);
487 }
488
489 if (lmp_inq_tx_pwr_capable(hdev))
490 hci_req_add(req, HCI_OP_READ_INQ_RSP_TX_POWER, 0, NULL);
491
492 if (lmp_ext_feat_capable(hdev)) {
493 struct hci_cp_read_local_ext_features cp;
494
495 cp.page = 0x01;
496 hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES,
497 sizeof(cp), &cp);
498 }
499
500 if (hci_dev_test_flag(hdev, HCI_LINK_SECURITY)) {
501 u8 enable = 1;
502 hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, sizeof(enable),
503 &enable);
504 }
505
506 return 0;
507}
508
509static void hci_setup_link_policy(struct hci_request *req)
510{
511 struct hci_dev *hdev = req->hdev;
512 struct hci_cp_write_def_link_policy cp;
513 u16 link_policy = 0;
514
515 if (lmp_rswitch_capable(hdev))
516 link_policy |= HCI_LP_RSWITCH;
517 if (lmp_hold_capable(hdev))
518 link_policy |= HCI_LP_HOLD;
519 if (lmp_sniff_capable(hdev))
520 link_policy |= HCI_LP_SNIFF;
521 if (lmp_park_capable(hdev))
522 link_policy |= HCI_LP_PARK;
523
524 cp.policy = cpu_to_le16(link_policy);
525 hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, sizeof(cp), &cp);
526}
527
528static void hci_set_le_support(struct hci_request *req)
529{
530 struct hci_dev *hdev = req->hdev;
531 struct hci_cp_write_le_host_supported cp;
532
533 /* LE-only devices do not support explicit enablement */
534 if (!lmp_bredr_capable(hdev))
535 return;
536
537 memset(&cp, 0, sizeof(cp));
538
539 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
540 cp.le = 0x01;
541 cp.simul = 0x00;
542 }
543
544 if (cp.le != lmp_host_le_capable(hdev))
545 hci_req_add(req, HCI_OP_WRITE_LE_HOST_SUPPORTED, sizeof(cp),
546 &cp);
547}
548
549static void hci_set_event_mask_page_2(struct hci_request *req)
550{
551 struct hci_dev *hdev = req->hdev;
552 u8 events[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
553
554 /* If Connectionless Slave Broadcast master role is supported
555 * enable all necessary events for it.
556 */
557 if (lmp_csb_master_capable(hdev)) {
558 events[1] |= 0x40; /* Triggered Clock Capture */
559 events[1] |= 0x80; /* Synchronization Train Complete */
560 events[2] |= 0x10; /* Slave Page Response Timeout */
561 events[2] |= 0x20; /* CSB Channel Map Change */
562 }
563
564 /* If Connectionless Slave Broadcast slave role is supported
565 * enable all necessary events for it.
566 */
567 if (lmp_csb_slave_capable(hdev)) {
568 events[2] |= 0x01; /* Synchronization Train Received */
569 events[2] |= 0x02; /* CSB Receive */
570 events[2] |= 0x04; /* CSB Timeout */
571 events[2] |= 0x08; /* Truncated Page Complete */
572 }
573
574 /* Enable Authenticated Payload Timeout Expired event if supported */
575 if (lmp_ping_capable(hdev) || hdev->le_features[0] & HCI_LE_PING)
576 events[2] |= 0x80;
577
578 hci_req_add(req, HCI_OP_SET_EVENT_MASK_PAGE_2, sizeof(events), events);
579}
580
581static int hci_init3_req(struct hci_request *req, unsigned long opt)
582{
583 struct hci_dev *hdev = req->hdev;
584 u8 p;
585
586 hci_setup_event_mask(req);
587
588 if (hdev->commands[6] & 0x20 &&
589 !test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) {
590 struct hci_cp_read_stored_link_key cp;
591
592 bacpy(&cp.bdaddr, BDADDR_ANY);
593 cp.read_all = 0x01;
594 hci_req_add(req, HCI_OP_READ_STORED_LINK_KEY, sizeof(cp), &cp);
595 }
596
597 if (hdev->commands[5] & 0x10)
598 hci_setup_link_policy(req);
599
600 if (hdev->commands[8] & 0x01)
601 hci_req_add(req, HCI_OP_READ_PAGE_SCAN_ACTIVITY, 0, NULL);
602
603 /* Some older Broadcom based Bluetooth 1.2 controllers do not
604 * support the Read Page Scan Type command. Check support for
605 * this command in the bit mask of supported commands.
606 */
607 if (hdev->commands[13] & 0x01)
608 hci_req_add(req, HCI_OP_READ_PAGE_SCAN_TYPE, 0, NULL);
609
610 if (lmp_le_capable(hdev)) {
611 u8 events[8];
612
613 memset(events, 0, sizeof(events));
614
615 if (hdev->le_features[0] & HCI_LE_ENCRYPTION)
616 events[0] |= 0x10; /* LE Long Term Key Request */
617
618 /* If controller supports the Connection Parameters Request
619 * Link Layer Procedure, enable the corresponding event.
620 */
621 if (hdev->le_features[0] & HCI_LE_CONN_PARAM_REQ_PROC)
622 events[0] |= 0x20; /* LE Remote Connection
623 * Parameter Request
624 */
625
626 /* If the controller supports the Data Length Extension
627 * feature, enable the corresponding event.
628 */
629 if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)
630 events[0] |= 0x40; /* LE Data Length Change */
631
632 /* If the controller supports Extended Scanner Filter
633 * Policies, enable the correspondig event.
634 */
635 if (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY)
636 events[1] |= 0x04; /* LE Direct Advertising
637 * Report
638 */
639
640 /* If the controller supports the LE Set Scan Enable command,
641 * enable the corresponding advertising report event.
642 */
643 if (hdev->commands[26] & 0x08)
644 events[0] |= 0x02; /* LE Advertising Report */
645
646 /* If the controller supports the LE Create Connection
647 * command, enable the corresponding event.
648 */
649 if (hdev->commands[26] & 0x10)
650 events[0] |= 0x01; /* LE Connection Complete */
651
652 /* If the controller supports the LE Connection Update
653 * command, enable the corresponding event.
654 */
655 if (hdev->commands[27] & 0x04)
656 events[0] |= 0x04; /* LE Connection Update
657 * Complete
658 */
659
660 /* If the controller supports the LE Read Remote Used Features
661 * command, enable the corresponding event.
662 */
663 if (hdev->commands[27] & 0x20)
664 events[0] |= 0x08; /* LE Read Remote Used
665 * Features Complete
666 */
667
668 /* If the controller supports the LE Read Local P-256
669 * Public Key command, enable the corresponding event.
670 */
671 if (hdev->commands[34] & 0x02)
672 events[0] |= 0x80; /* LE Read Local P-256
673 * Public Key Complete
674 */
675
676 /* If the controller supports the LE Generate DHKey
677 * command, enable the corresponding event.
678 */
679 if (hdev->commands[34] & 0x04)
680 events[1] |= 0x01; /* LE Generate DHKey Complete */
681
682 hci_req_add(req, HCI_OP_LE_SET_EVENT_MASK, sizeof(events),
683 events);
684
685 if (hdev->commands[25] & 0x40) {
686 /* Read LE Advertising Channel TX Power */
687 hci_req_add(req, HCI_OP_LE_READ_ADV_TX_POWER, 0, NULL);
688 }
689
690 if (hdev->commands[26] & 0x40) {
691 /* Read LE White List Size */
692 hci_req_add(req, HCI_OP_LE_READ_WHITE_LIST_SIZE,
693 0, NULL);
694 }
695
696 if (hdev->commands[26] & 0x80) {
697 /* Clear LE White List */
698 hci_req_add(req, HCI_OP_LE_CLEAR_WHITE_LIST, 0, NULL);
699 }
700
701 if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) {
702 /* Read LE Maximum Data Length */
703 hci_req_add(req, HCI_OP_LE_READ_MAX_DATA_LEN, 0, NULL);
704
705 /* Read LE Suggested Default Data Length */
706 hci_req_add(req, HCI_OP_LE_READ_DEF_DATA_LEN, 0, NULL);
707 }
708
709 hci_set_le_support(req);
710 }
711
712 /* Read features beyond page 1 if available */
713 for (p = 2; p < HCI_MAX_PAGES && p <= hdev->max_page; p++) {
714 struct hci_cp_read_local_ext_features cp;
715
716 cp.page = p;
717 hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES,
718 sizeof(cp), &cp);
719 }
720
721 return 0;
722}
723
724static int hci_init4_req(struct hci_request *req, unsigned long opt)
725{
726 struct hci_dev *hdev = req->hdev;
727
728 /* Some Broadcom based Bluetooth controllers do not support the
729 * Delete Stored Link Key command. They are clearly indicating its
730 * absence in the bit mask of supported commands.
731 *
732 * Check the supported commands and only if the the command is marked
733 * as supported send it. If not supported assume that the controller
734 * does not have actual support for stored link keys which makes this
735 * command redundant anyway.
736 *
737 * Some controllers indicate that they support handling deleting
738 * stored link keys, but they don't. The quirk lets a driver
739 * just disable this command.
740 */
741 if (hdev->commands[6] & 0x80 &&
742 !test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) {
743 struct hci_cp_delete_stored_link_key cp;
744
745 bacpy(&cp.bdaddr, BDADDR_ANY);
746 cp.delete_all = 0x01;
747 hci_req_add(req, HCI_OP_DELETE_STORED_LINK_KEY,
748 sizeof(cp), &cp);
749 }
750
751 /* Set event mask page 2 if the HCI command for it is supported */
752 if (hdev->commands[22] & 0x04)
753 hci_set_event_mask_page_2(req);
754
755 /* Read local codec list if the HCI command is supported */
756 if (hdev->commands[29] & 0x20)
757 hci_req_add(req, HCI_OP_READ_LOCAL_CODECS, 0, NULL);
758
759 /* Get MWS transport configuration if the HCI command is supported */
760 if (hdev->commands[30] & 0x08)
761 hci_req_add(req, HCI_OP_GET_MWS_TRANSPORT_CONFIG, 0, NULL);
762
763 /* Check for Synchronization Train support */
764 if (lmp_sync_train_capable(hdev))
765 hci_req_add(req, HCI_OP_READ_SYNC_TRAIN_PARAMS, 0, NULL);
766
767 /* Enable Secure Connections if supported and configured */
768 if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED) &&
769 bredr_sc_enabled(hdev)) {
770 u8 support = 0x01;
771
772 hci_req_add(req, HCI_OP_WRITE_SC_SUPPORT,
773 sizeof(support), &support);
774 }
775
776 return 0;
777}
778
779static int __hci_init(struct hci_dev *hdev)
780{
781 int err;
782
783 err = __hci_req_sync(hdev, hci_init1_req, 0, HCI_INIT_TIMEOUT, NULL);
784 if (err < 0)
785 return err;
786
787 if (hci_dev_test_flag(hdev, HCI_SETUP))
788 hci_debugfs_create_basic(hdev);
789
790 err = __hci_req_sync(hdev, hci_init2_req, 0, HCI_INIT_TIMEOUT, NULL);
791 if (err < 0)
792 return err;
793
794 /* HCI_BREDR covers both single-mode LE, BR/EDR and dual-mode
795 * BR/EDR/LE type controllers. AMP controllers only need the
796 * first two stages of init.
797 */
798 if (hdev->dev_type != HCI_BREDR)
799 return 0;
800
801 err = __hci_req_sync(hdev, hci_init3_req, 0, HCI_INIT_TIMEOUT, NULL);
802 if (err < 0)
803 return err;
804
805 err = __hci_req_sync(hdev, hci_init4_req, 0, HCI_INIT_TIMEOUT, NULL);
806 if (err < 0)
807 return err;
808
809 /* This function is only called when the controller is actually in
810 * configured state. When the controller is marked as unconfigured,
811 * this initialization procedure is not run.
812 *
813 * It means that it is possible that a controller runs through its
814 * setup phase and then discovers missing settings. If that is the
815 * case, then this function will not be called. It then will only
816 * be called during the config phase.
817 *
818 * So only when in setup phase or config phase, create the debugfs
819 * entries and register the SMP channels.
820 */
821 if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
822 !hci_dev_test_flag(hdev, HCI_CONFIG))
823 return 0;
824
825 hci_debugfs_create_common(hdev);
826
827 if (lmp_bredr_capable(hdev))
828 hci_debugfs_create_bredr(hdev);
829
830 if (lmp_le_capable(hdev))
831 hci_debugfs_create_le(hdev);
832
833 return 0;
834}
835
836static int hci_init0_req(struct hci_request *req, unsigned long opt)
837{
838 struct hci_dev *hdev = req->hdev;
839
840 BT_DBG("%s %ld", hdev->name, opt);
841
842 /* Reset */
843 if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks))
844 hci_reset_req(req, 0);
845
846 /* Read Local Version */
847 hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
848
849 /* Read BD Address */
850 if (hdev->set_bdaddr)
851 hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL);
852
853 return 0;
854}
855
856static int __hci_unconf_init(struct hci_dev *hdev)
857{
858 int err;
859
860 if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
861 return 0;
862
863 err = __hci_req_sync(hdev, hci_init0_req, 0, HCI_INIT_TIMEOUT, NULL);
864 if (err < 0)
865 return err;
866
867 if (hci_dev_test_flag(hdev, HCI_SETUP))
868 hci_debugfs_create_basic(hdev);
869
870 return 0;
871}
872
873static int hci_scan_req(struct hci_request *req, unsigned long opt)
874{
875 __u8 scan = opt;
876
877 BT_DBG("%s %x", req->hdev->name, scan);
878
879 /* Inquiry and Page scans */
880 hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
881 return 0;
882}
883
884static int hci_auth_req(struct hci_request *req, unsigned long opt)
885{
886 __u8 auth = opt;
887
888 BT_DBG("%s %x", req->hdev->name, auth);
889
890 /* Authentication */
891 hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, 1, &auth);
892 return 0;
893}
894
895static int hci_encrypt_req(struct hci_request *req, unsigned long opt)
896{
897 __u8 encrypt = opt;
898
899 BT_DBG("%s %x", req->hdev->name, encrypt);
900
901 /* Encryption */
902 hci_req_add(req, HCI_OP_WRITE_ENCRYPT_MODE, 1, &encrypt);
903 return 0;
904}
905
906static int hci_linkpol_req(struct hci_request *req, unsigned long opt)
907{
908 __le16 policy = cpu_to_le16(opt);
909
910 BT_DBG("%s %x", req->hdev->name, policy);
911
912 /* Default link policy */
913 hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, 2, &policy);
914 return 0;
915}
916
917/* Get HCI device by index.
918 * Device is held on return. */
919struct hci_dev *hci_dev_get(int index)
920{
921 struct hci_dev *hdev = NULL, *d;
922
923 BT_DBG("%d", index);
924
925 if (index < 0)
926 return NULL;
927
928 read_lock(&hci_dev_list_lock);
929 list_for_each_entry(d, &hci_dev_list, list) {
930 if (d->id == index) {
931 hdev = hci_dev_hold(d);
932 break;
933 }
934 }
935 read_unlock(&hci_dev_list_lock);
936 return hdev;
937}
938
939/* ---- Inquiry support ---- */
940
941bool hci_discovery_active(struct hci_dev *hdev)
942{
943 struct discovery_state *discov = &hdev->discovery;
944
945 switch (discov->state) {
946 case DISCOVERY_FINDING:
947 case DISCOVERY_RESOLVING:
948 return true;
949
950 default:
951 return false;
952 }
953}
954
955void hci_discovery_set_state(struct hci_dev *hdev, int state)
956{
957 int old_state = hdev->discovery.state;
958
959 BT_DBG("%s state %u -> %u", hdev->name, hdev->discovery.state, state);
960
961 if (old_state == state)
962 return;
963
964 hdev->discovery.state = state;
965
966 switch (state) {
967 case DISCOVERY_STOPPED:
968 hci_update_background_scan(hdev);
969
970 if (old_state != DISCOVERY_STARTING)
971 mgmt_discovering(hdev, 0);
972 break;
973 case DISCOVERY_STARTING:
974 break;
975 case DISCOVERY_FINDING:
976 mgmt_discovering(hdev, 1);
977 break;
978 case DISCOVERY_RESOLVING:
979 break;
980 case DISCOVERY_STOPPING:
981 break;
982 }
983}
984
985void hci_inquiry_cache_flush(struct hci_dev *hdev)
986{
987 struct discovery_state *cache = &hdev->discovery;
988 struct inquiry_entry *p, *n;
989
990 list_for_each_entry_safe(p, n, &cache->all, all) {
991 list_del(&p->all);
992 kfree(p);
993 }
994
995 INIT_LIST_HEAD(&cache->unknown);
996 INIT_LIST_HEAD(&cache->resolve);
997}
998
999struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev,
1000 bdaddr_t *bdaddr)
1001{
1002 struct discovery_state *cache = &hdev->discovery;
1003 struct inquiry_entry *e;
1004
1005 BT_DBG("cache %p, %pMR", cache, bdaddr);
1006
1007 list_for_each_entry(e, &cache->all, all) {
1008 if (!bacmp(&e->data.bdaddr, bdaddr))
1009 return e;
1010 }
1011
1012 return NULL;
1013}
1014
1015struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev,
1016 bdaddr_t *bdaddr)
1017{
1018 struct discovery_state *cache = &hdev->discovery;
1019 struct inquiry_entry *e;
1020
1021 BT_DBG("cache %p, %pMR", cache, bdaddr);
1022
1023 list_for_each_entry(e, &cache->unknown, list) {
1024 if (!bacmp(&e->data.bdaddr, bdaddr))
1025 return e;
1026 }
1027
1028 return NULL;
1029}
1030
1031struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev,
1032 bdaddr_t *bdaddr,
1033 int state)
1034{
1035 struct discovery_state *cache = &hdev->discovery;
1036 struct inquiry_entry *e;
1037
1038 BT_DBG("cache %p bdaddr %pMR state %d", cache, bdaddr, state);
1039
1040 list_for_each_entry(e, &cache->resolve, list) {
1041 if (!bacmp(bdaddr, BDADDR_ANY) && e->name_state == state)
1042 return e;
1043 if (!bacmp(&e->data.bdaddr, bdaddr))
1044 return e;
1045 }
1046
1047 return NULL;
1048}
1049
1050void hci_inquiry_cache_update_resolve(struct hci_dev *hdev,
1051 struct inquiry_entry *ie)
1052{
1053 struct discovery_state *cache = &hdev->discovery;
1054 struct list_head *pos = &cache->resolve;
1055 struct inquiry_entry *p;
1056
1057 list_del(&ie->list);
1058
1059 list_for_each_entry(p, &cache->resolve, list) {
1060 if (p->name_state != NAME_PENDING &&
1061 abs(p->data.rssi) >= abs(ie->data.rssi))
1062 break;
1063 pos = &p->list;
1064 }
1065
1066 list_add(&ie->list, pos);
1067}
1068
1069u32 hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data,
1070 bool name_known)
1071{
1072 struct discovery_state *cache = &hdev->discovery;
1073 struct inquiry_entry *ie;
1074 u32 flags = 0;
1075
1076 BT_DBG("cache %p, %pMR", cache, &data->bdaddr);
1077
1078 hci_remove_remote_oob_data(hdev, &data->bdaddr, BDADDR_BREDR);
1079
1080 if (!data->ssp_mode)
1081 flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
1082
1083 ie = hci_inquiry_cache_lookup(hdev, &data->bdaddr);
1084 if (ie) {
1085 if (!ie->data.ssp_mode)
1086 flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
1087
1088 if (ie->name_state == NAME_NEEDED &&
1089 data->rssi != ie->data.rssi) {
1090 ie->data.rssi = data->rssi;
1091 hci_inquiry_cache_update_resolve(hdev, ie);
1092 }
1093
1094 goto update;
1095 }
1096
1097 /* Entry not in the cache. Add new one. */
1098 ie = kzalloc(sizeof(*ie), GFP_KERNEL);
1099 if (!ie) {
1100 flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
1101 goto done;
1102 }
1103
1104 list_add(&ie->all, &cache->all);
1105
1106 if (name_known) {
1107 ie->name_state = NAME_KNOWN;
1108 } else {
1109 ie->name_state = NAME_NOT_KNOWN;
1110 list_add(&ie->list, &cache->unknown);
1111 }
1112
1113update:
1114 if (name_known && ie->name_state != NAME_KNOWN &&
1115 ie->name_state != NAME_PENDING) {
1116 ie->name_state = NAME_KNOWN;
1117 list_del(&ie->list);
1118 }
1119
1120 memcpy(&ie->data, data, sizeof(*data));
1121 ie->timestamp = jiffies;
1122 cache->timestamp = jiffies;
1123
1124 if (ie->name_state == NAME_NOT_KNOWN)
1125 flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
1126
1127done:
1128 return flags;
1129}
1130
1131static int inquiry_cache_dump(struct hci_dev *hdev, int num, __u8 *buf)
1132{
1133 struct discovery_state *cache = &hdev->discovery;
1134 struct inquiry_info *info = (struct inquiry_info *) buf;
1135 struct inquiry_entry *e;
1136 int copied = 0;
1137
1138 list_for_each_entry(e, &cache->all, all) {
1139 struct inquiry_data *data = &e->data;
1140
1141 if (copied >= num)
1142 break;
1143
1144 bacpy(&info->bdaddr, &data->bdaddr);
1145 info->pscan_rep_mode = data->pscan_rep_mode;
1146 info->pscan_period_mode = data->pscan_period_mode;
1147 info->pscan_mode = data->pscan_mode;
1148 memcpy(info->dev_class, data->dev_class, 3);
1149 info->clock_offset = data->clock_offset;
1150
1151 info++;
1152 copied++;
1153 }
1154
1155 BT_DBG("cache %p, copied %d", cache, copied);
1156 return copied;
1157}
1158
1159static int hci_inq_req(struct hci_request *req, unsigned long opt)
1160{
1161 struct hci_inquiry_req *ir = (struct hci_inquiry_req *) opt;
1162 struct hci_dev *hdev = req->hdev;
1163 struct hci_cp_inquiry cp;
1164
1165 BT_DBG("%s", hdev->name);
1166
1167 if (test_bit(HCI_INQUIRY, &hdev->flags))
1168 return 0;
1169
1170 /* Start Inquiry */
1171 memcpy(&cp.lap, &ir->lap, 3);
1172 cp.length = ir->length;
1173 cp.num_rsp = ir->num_rsp;
1174 hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp);
1175
1176 return 0;
1177}
1178
1179int hci_inquiry(void __user *arg)
1180{
1181 __u8 __user *ptr = arg;
1182 struct hci_inquiry_req ir;
1183 struct hci_dev *hdev;
1184 int err = 0, do_inquiry = 0, max_rsp;
1185 long timeo;
1186 __u8 *buf;
1187
1188 if (copy_from_user(&ir, ptr, sizeof(ir)))
1189 return -EFAULT;
1190
1191 hdev = hci_dev_get(ir.dev_id);
1192 if (!hdev)
1193 return -ENODEV;
1194
1195 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1196 err = -EBUSY;
1197 goto done;
1198 }
1199
1200 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1201 err = -EOPNOTSUPP;
1202 goto done;
1203 }
1204
1205 if (hdev->dev_type != HCI_BREDR) {
1206 err = -EOPNOTSUPP;
1207 goto done;
1208 }
1209
1210 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
1211 err = -EOPNOTSUPP;
1212 goto done;
1213 }
1214
1215 hci_dev_lock(hdev);
1216 if (inquiry_cache_age(hdev) > INQUIRY_CACHE_AGE_MAX ||
1217 inquiry_cache_empty(hdev) || ir.flags & IREQ_CACHE_FLUSH) {
1218 hci_inquiry_cache_flush(hdev);
1219 do_inquiry = 1;
1220 }
1221 hci_dev_unlock(hdev);
1222
1223 timeo = ir.length * msecs_to_jiffies(2000);
1224
1225 if (do_inquiry) {
1226 err = hci_req_sync(hdev, hci_inq_req, (unsigned long) &ir,
1227 timeo, NULL);
1228 if (err < 0)
1229 goto done;
1230
1231 /* Wait until Inquiry procedure finishes (HCI_INQUIRY flag is
1232 * cleared). If it is interrupted by a signal, return -EINTR.
1233 */
1234 if (wait_on_bit(&hdev->flags, HCI_INQUIRY,
1235 TASK_INTERRUPTIBLE))
1236 return -EINTR;
1237 }
1238
1239 /* for unlimited number of responses we will use buffer with
1240 * 255 entries
1241 */
1242 max_rsp = (ir.num_rsp == 0) ? 255 : ir.num_rsp;
1243
1244 /* cache_dump can't sleep. Therefore we allocate temp buffer and then
1245 * copy it to the user space.
1246 */
1247 buf = kmalloc(sizeof(struct inquiry_info) * max_rsp, GFP_KERNEL);
1248 if (!buf) {
1249 err = -ENOMEM;
1250 goto done;
1251 }
1252
1253 hci_dev_lock(hdev);
1254 ir.num_rsp = inquiry_cache_dump(hdev, max_rsp, buf);
1255 hci_dev_unlock(hdev);
1256
1257 BT_DBG("num_rsp %d", ir.num_rsp);
1258
1259 if (!copy_to_user(ptr, &ir, sizeof(ir))) {
1260 ptr += sizeof(ir);
1261 if (copy_to_user(ptr, buf, sizeof(struct inquiry_info) *
1262 ir.num_rsp))
1263 err = -EFAULT;
1264 } else
1265 err = -EFAULT;
1266
1267 kfree(buf);
1268
1269done:
1270 hci_dev_put(hdev);
1271 return err;
1272}
1273
1274static int hci_dev_do_open(struct hci_dev *hdev)
1275{
1276 int ret = 0;
1277
1278 BT_DBG("%s %p", hdev->name, hdev);
1279
1280 hci_req_sync_lock(hdev);
1281
1282 if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) {
1283 ret = -ENODEV;
1284 goto done;
1285 }
1286
1287 if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
1288 !hci_dev_test_flag(hdev, HCI_CONFIG)) {
1289 /* Check for rfkill but allow the HCI setup stage to
1290 * proceed (which in itself doesn't cause any RF activity).
1291 */
1292 if (hci_dev_test_flag(hdev, HCI_RFKILLED)) {
1293 ret = -ERFKILL;
1294 goto done;
1295 }
1296
1297 /* Check for valid public address or a configured static
1298 * random adddress, but let the HCI setup proceed to
1299 * be able to determine if there is a public address
1300 * or not.
1301 *
1302 * In case of user channel usage, it is not important
1303 * if a public address or static random address is
1304 * available.
1305 *
1306 * This check is only valid for BR/EDR controllers
1307 * since AMP controllers do not have an address.
1308 */
1309 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1310 hdev->dev_type == HCI_BREDR &&
1311 !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
1312 !bacmp(&hdev->static_addr, BDADDR_ANY)) {
1313 ret = -EADDRNOTAVAIL;
1314 goto done;
1315 }
1316 }
1317
1318 if (test_bit(HCI_UP, &hdev->flags)) {
1319 ret = -EALREADY;
1320 goto done;
1321 }
1322
1323 if (hdev->open(hdev)) {
1324 ret = -EIO;
1325 goto done;
1326 }
1327
1328 set_bit(HCI_RUNNING, &hdev->flags);
1329 hci_sock_dev_event(hdev, HCI_DEV_OPEN);
1330
1331 atomic_set(&hdev->cmd_cnt, 1);
1332 set_bit(HCI_INIT, &hdev->flags);
1333
1334 if (hci_dev_test_flag(hdev, HCI_SETUP)) {
1335 hci_sock_dev_event(hdev, HCI_DEV_SETUP);
1336
1337 if (hdev->setup)
1338 ret = hdev->setup(hdev);
1339
1340 /* The transport driver can set these quirks before
1341 * creating the HCI device or in its setup callback.
1342 *
1343 * In case any of them is set, the controller has to
1344 * start up as unconfigured.
1345 */
1346 if (test_bit(HCI_QUIRK_EXTERNAL_CONFIG, &hdev->quirks) ||
1347 test_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks))
1348 hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
1349
1350 /* For an unconfigured controller it is required to
1351 * read at least the version information provided by
1352 * the Read Local Version Information command.
1353 *
1354 * If the set_bdaddr driver callback is provided, then
1355 * also the original Bluetooth public device address
1356 * will be read using the Read BD Address command.
1357 */
1358 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
1359 ret = __hci_unconf_init(hdev);
1360 }
1361
1362 if (hci_dev_test_flag(hdev, HCI_CONFIG)) {
1363 /* If public address change is configured, ensure that
1364 * the address gets programmed. If the driver does not
1365 * support changing the public address, fail the power
1366 * on procedure.
1367 */
1368 if (bacmp(&hdev->public_addr, BDADDR_ANY) &&
1369 hdev->set_bdaddr)
1370 ret = hdev->set_bdaddr(hdev, &hdev->public_addr);
1371 else
1372 ret = -EADDRNOTAVAIL;
1373 }
1374
1375 if (!ret) {
1376 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1377 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1378 ret = __hci_init(hdev);
1379 if (!ret && hdev->post_init)
1380 ret = hdev->post_init(hdev);
1381 }
1382 }
1383
1384 /* If the HCI Reset command is clearing all diagnostic settings,
1385 * then they need to be reprogrammed after the init procedure
1386 * completed.
1387 */
1388 if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) &&
1389 hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) && hdev->set_diag)
1390 ret = hdev->set_diag(hdev, true);
1391
1392 clear_bit(HCI_INIT, &hdev->flags);
1393
1394 if (!ret) {
1395 hci_dev_hold(hdev);
1396 hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
1397 set_bit(HCI_UP, &hdev->flags);
1398 hci_sock_dev_event(hdev, HCI_DEV_UP);
1399 hci_leds_update_powered(hdev, true);
1400 if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
1401 !hci_dev_test_flag(hdev, HCI_CONFIG) &&
1402 !hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1403 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1404 hci_dev_test_flag(hdev, HCI_MGMT) &&
1405 hdev->dev_type == HCI_BREDR) {
1406 ret = __hci_req_hci_power_on(hdev);
1407 mgmt_power_on(hdev, ret);
1408 }
1409 } else {
1410 /* Init failed, cleanup */
1411 flush_work(&hdev->tx_work);
1412 flush_work(&hdev->cmd_work);
1413 flush_work(&hdev->rx_work);
1414
1415 skb_queue_purge(&hdev->cmd_q);
1416 skb_queue_purge(&hdev->rx_q);
1417
1418 if (hdev->flush)
1419 hdev->flush(hdev);
1420
1421 if (hdev->sent_cmd) {
1422 kfree_skb(hdev->sent_cmd);
1423 hdev->sent_cmd = NULL;
1424 }
1425
1426 clear_bit(HCI_RUNNING, &hdev->flags);
1427 hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
1428
1429 hdev->close(hdev);
1430 hdev->flags &= BIT(HCI_RAW);
1431 }
1432
1433done:
1434 hci_req_sync_unlock(hdev);
1435 return ret;
1436}
1437
1438/* ---- HCI ioctl helpers ---- */
1439
1440int hci_dev_open(__u16 dev)
1441{
1442 struct hci_dev *hdev;
1443 int err;
1444
1445 hdev = hci_dev_get(dev);
1446 if (!hdev)
1447 return -ENODEV;
1448
1449 /* Devices that are marked as unconfigured can only be powered
1450 * up as user channel. Trying to bring them up as normal devices
1451 * will result into a failure. Only user channel operation is
1452 * possible.
1453 *
1454 * When this function is called for a user channel, the flag
1455 * HCI_USER_CHANNEL will be set first before attempting to
1456 * open the device.
1457 */
1458 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1459 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1460 err = -EOPNOTSUPP;
1461 goto done;
1462 }
1463
1464 /* We need to ensure that no other power on/off work is pending
1465 * before proceeding to call hci_dev_do_open. This is
1466 * particularly important if the setup procedure has not yet
1467 * completed.
1468 */
1469 if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
1470 cancel_delayed_work(&hdev->power_off);
1471
1472 /* After this call it is guaranteed that the setup procedure
1473 * has finished. This means that error conditions like RFKILL
1474 * or no valid public or static random address apply.
1475 */
1476 flush_workqueue(hdev->req_workqueue);
1477
1478 /* For controllers not using the management interface and that
1479 * are brought up using legacy ioctl, set the HCI_BONDABLE bit
1480 * so that pairing works for them. Once the management interface
1481 * is in use this bit will be cleared again and userspace has
1482 * to explicitly enable it.
1483 */
1484 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1485 !hci_dev_test_flag(hdev, HCI_MGMT))
1486 hci_dev_set_flag(hdev, HCI_BONDABLE);
1487
1488 err = hci_dev_do_open(hdev);
1489
1490done:
1491 hci_dev_put(hdev);
1492 return err;
1493}
1494
1495/* This function requires the caller holds hdev->lock */
1496static void hci_pend_le_actions_clear(struct hci_dev *hdev)
1497{
1498 struct hci_conn_params *p;
1499
1500 list_for_each_entry(p, &hdev->le_conn_params, list) {
1501 if (p->conn) {
1502 hci_conn_drop(p->conn);
1503 hci_conn_put(p->conn);
1504 p->conn = NULL;
1505 }
1506 list_del_init(&p->action);
1507 }
1508
1509 BT_DBG("All LE pending actions cleared");
1510}
1511
1512int hci_dev_do_close(struct hci_dev *hdev)
1513{
1514 bool auto_off;
1515
1516 BT_DBG("%s %p", hdev->name, hdev);
1517
1518 if (!hci_dev_test_flag(hdev, HCI_UNREGISTER) &&
1519 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1520 test_bit(HCI_UP, &hdev->flags)) {
1521 /* Execute vendor specific shutdown routine */
1522 if (hdev->shutdown)
1523 hdev->shutdown(hdev);
1524 }
1525
1526 cancel_delayed_work(&hdev->power_off);
1527
1528 hci_request_cancel_all(hdev);
1529 hci_req_sync_lock(hdev);
1530
1531 if (!test_and_clear_bit(HCI_UP, &hdev->flags)) {
1532 cancel_delayed_work_sync(&hdev->cmd_timer);
1533 hci_req_sync_unlock(hdev);
1534 return 0;
1535 }
1536
1537 hci_leds_update_powered(hdev, false);
1538
1539 /* Flush RX and TX works */
1540 flush_work(&hdev->tx_work);
1541 flush_work(&hdev->rx_work);
1542
1543 if (hdev->discov_timeout > 0) {
1544 hdev->discov_timeout = 0;
1545 hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
1546 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
1547 }
1548
1549 if (hci_dev_test_and_clear_flag(hdev, HCI_SERVICE_CACHE))
1550 cancel_delayed_work(&hdev->service_cache);
1551
1552 if (hci_dev_test_flag(hdev, HCI_MGMT))
1553 cancel_delayed_work_sync(&hdev->rpa_expired);
1554
1555 /* Avoid potential lockdep warnings from the *_flush() calls by
1556 * ensuring the workqueue is empty up front.
1557 */
1558 drain_workqueue(hdev->workqueue);
1559
1560 hci_dev_lock(hdev);
1561
1562 hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
1563
1564 auto_off = hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF);
1565
1566 if (!auto_off && hdev->dev_type == HCI_BREDR &&
1567 hci_dev_test_flag(hdev, HCI_MGMT))
1568 __mgmt_power_off(hdev);
1569
1570 hci_inquiry_cache_flush(hdev);
1571 hci_pend_le_actions_clear(hdev);
1572 hci_conn_hash_flush(hdev);
1573 hci_dev_unlock(hdev);
1574
1575 smp_unregister(hdev);
1576
1577 hci_sock_dev_event(hdev, HCI_DEV_DOWN);
1578
1579 if (hdev->flush)
1580 hdev->flush(hdev);
1581
1582 /* Reset device */
1583 skb_queue_purge(&hdev->cmd_q);
1584 atomic_set(&hdev->cmd_cnt, 1);
1585 if (test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks) &&
1586 !auto_off && !hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1587 set_bit(HCI_INIT, &hdev->flags);
1588 __hci_req_sync(hdev, hci_reset_req, 0, HCI_CMD_TIMEOUT, NULL);
1589 clear_bit(HCI_INIT, &hdev->flags);
1590 }
1591
1592 /* flush cmd work */
1593 flush_work(&hdev->cmd_work);
1594
1595 /* Drop queues */
1596 skb_queue_purge(&hdev->rx_q);
1597 skb_queue_purge(&hdev->cmd_q);
1598 skb_queue_purge(&hdev->raw_q);
1599
1600 /* Drop last sent command */
1601 if (hdev->sent_cmd) {
1602 cancel_delayed_work_sync(&hdev->cmd_timer);
1603 kfree_skb(hdev->sent_cmd);
1604 hdev->sent_cmd = NULL;
1605 }
1606
1607 clear_bit(HCI_RUNNING, &hdev->flags);
1608 hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
1609
1610 /* After this point our queues are empty
1611 * and no tasks are scheduled. */
1612 hdev->close(hdev);
1613
1614 /* Clear flags */
1615 hdev->flags &= BIT(HCI_RAW);
1616 hci_dev_clear_volatile_flags(hdev);
1617
1618 /* Controller radio is available but is currently powered down */
1619 hdev->amp_status = AMP_STATUS_POWERED_DOWN;
1620
1621 memset(hdev->eir, 0, sizeof(hdev->eir));
1622 memset(hdev->dev_class, 0, sizeof(hdev->dev_class));
1623 bacpy(&hdev->random_addr, BDADDR_ANY);
1624
1625 hci_req_sync_unlock(hdev);
1626
1627 hci_dev_put(hdev);
1628 return 0;
1629}
1630
1631int hci_dev_close(__u16 dev)
1632{
1633 struct hci_dev *hdev;
1634 int err;
1635
1636 hdev = hci_dev_get(dev);
1637 if (!hdev)
1638 return -ENODEV;
1639
1640 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1641 err = -EBUSY;
1642 goto done;
1643 }
1644
1645 if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
1646 cancel_delayed_work(&hdev->power_off);
1647
1648 err = hci_dev_do_close(hdev);
1649
1650done:
1651 hci_dev_put(hdev);
1652 return err;
1653}
1654
1655static int hci_dev_do_reset(struct hci_dev *hdev)
1656{
1657 int ret;
1658
1659 BT_DBG("%s %p", hdev->name, hdev);
1660
1661 hci_req_sync_lock(hdev);
1662
1663 /* Drop queues */
1664 skb_queue_purge(&hdev->rx_q);
1665 skb_queue_purge(&hdev->cmd_q);
1666
1667 /* Avoid potential lockdep warnings from the *_flush() calls by
1668 * ensuring the workqueue is empty up front.
1669 */
1670 drain_workqueue(hdev->workqueue);
1671
1672 hci_dev_lock(hdev);
1673 hci_inquiry_cache_flush(hdev);
1674 hci_conn_hash_flush(hdev);
1675 hci_dev_unlock(hdev);
1676
1677 if (hdev->flush)
1678 hdev->flush(hdev);
1679
1680 atomic_set(&hdev->cmd_cnt, 1);
1681 hdev->acl_cnt = 0; hdev->sco_cnt = 0; hdev->le_cnt = 0;
1682
1683 ret = __hci_req_sync(hdev, hci_reset_req, 0, HCI_INIT_TIMEOUT, NULL);
1684
1685 hci_req_sync_unlock(hdev);
1686 return ret;
1687}
1688
1689int hci_dev_reset(__u16 dev)
1690{
1691 struct hci_dev *hdev;
1692 int err;
1693
1694 hdev = hci_dev_get(dev);
1695 if (!hdev)
1696 return -ENODEV;
1697
1698 if (!test_bit(HCI_UP, &hdev->flags)) {
1699 err = -ENETDOWN;
1700 goto done;
1701 }
1702
1703 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1704 err = -EBUSY;
1705 goto done;
1706 }
1707
1708 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1709 err = -EOPNOTSUPP;
1710 goto done;
1711 }
1712
1713 err = hci_dev_do_reset(hdev);
1714
1715done:
1716 hci_dev_put(hdev);
1717 return err;
1718}
1719
1720int hci_dev_reset_stat(__u16 dev)
1721{
1722 struct hci_dev *hdev;
1723 int ret = 0;
1724
1725 hdev = hci_dev_get(dev);
1726 if (!hdev)
1727 return -ENODEV;
1728
1729 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1730 ret = -EBUSY;
1731 goto done;
1732 }
1733
1734 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1735 ret = -EOPNOTSUPP;
1736 goto done;
1737 }
1738
1739 memset(&hdev->stat, 0, sizeof(struct hci_dev_stats));
1740
1741done:
1742 hci_dev_put(hdev);
1743 return ret;
1744}
1745
1746static void hci_update_scan_state(struct hci_dev *hdev, u8 scan)
1747{
1748 bool conn_changed, discov_changed;
1749
1750 BT_DBG("%s scan 0x%02x", hdev->name, scan);
1751
1752 if ((scan & SCAN_PAGE))
1753 conn_changed = !hci_dev_test_and_set_flag(hdev,
1754 HCI_CONNECTABLE);
1755 else
1756 conn_changed = hci_dev_test_and_clear_flag(hdev,
1757 HCI_CONNECTABLE);
1758
1759 if ((scan & SCAN_INQUIRY)) {
1760 discov_changed = !hci_dev_test_and_set_flag(hdev,
1761 HCI_DISCOVERABLE);
1762 } else {
1763 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
1764 discov_changed = hci_dev_test_and_clear_flag(hdev,
1765 HCI_DISCOVERABLE);
1766 }
1767
1768 if (!hci_dev_test_flag(hdev, HCI_MGMT))
1769 return;
1770
1771 if (conn_changed || discov_changed) {
1772 /* In case this was disabled through mgmt */
1773 hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
1774
1775 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED))
1776 hci_req_update_adv_data(hdev, hdev->cur_adv_instance);
1777
1778 mgmt_new_settings(hdev);
1779 }
1780}
1781
1782int hci_dev_cmd(unsigned int cmd, void __user *arg)
1783{
1784 struct hci_dev *hdev;
1785 struct hci_dev_req dr;
1786 int err = 0;
1787
1788 if (copy_from_user(&dr, arg, sizeof(dr)))
1789 return -EFAULT;
1790
1791 hdev = hci_dev_get(dr.dev_id);
1792 if (!hdev)
1793 return -ENODEV;
1794
1795 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1796 err = -EBUSY;
1797 goto done;
1798 }
1799
1800 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1801 err = -EOPNOTSUPP;
1802 goto done;
1803 }
1804
1805 if (hdev->dev_type != HCI_BREDR) {
1806 err = -EOPNOTSUPP;
1807 goto done;
1808 }
1809
1810 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
1811 err = -EOPNOTSUPP;
1812 goto done;
1813 }
1814
1815 switch (cmd) {
1816 case HCISETAUTH:
1817 err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
1818 HCI_INIT_TIMEOUT, NULL);
1819 break;
1820
1821 case HCISETENCRYPT:
1822 if (!lmp_encrypt_capable(hdev)) {
1823 err = -EOPNOTSUPP;
1824 break;
1825 }
1826
1827 if (!test_bit(HCI_AUTH, &hdev->flags)) {
1828 /* Auth must be enabled first */
1829 err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
1830 HCI_INIT_TIMEOUT, NULL);
1831 if (err)
1832 break;
1833 }
1834
1835 err = hci_req_sync(hdev, hci_encrypt_req, dr.dev_opt,
1836 HCI_INIT_TIMEOUT, NULL);
1837 break;
1838
1839 case HCISETSCAN:
1840 err = hci_req_sync(hdev, hci_scan_req, dr.dev_opt,
1841 HCI_INIT_TIMEOUT, NULL);
1842
1843 /* Ensure that the connectable and discoverable states
1844 * get correctly modified as this was a non-mgmt change.
1845 */
1846 if (!err)
1847 hci_update_scan_state(hdev, dr.dev_opt);
1848 break;
1849
1850 case HCISETLINKPOL:
1851 err = hci_req_sync(hdev, hci_linkpol_req, dr.dev_opt,
1852 HCI_INIT_TIMEOUT, NULL);
1853 break;
1854
1855 case HCISETLINKMODE:
1856 hdev->link_mode = ((__u16) dr.dev_opt) &
1857 (HCI_LM_MASTER | HCI_LM_ACCEPT);
1858 break;
1859
1860 case HCISETPTYPE:
1861 hdev->pkt_type = (__u16) dr.dev_opt;
1862 break;
1863
1864 case HCISETACLMTU:
1865 hdev->acl_mtu = *((__u16 *) &dr.dev_opt + 1);
1866 hdev->acl_pkts = *((__u16 *) &dr.dev_opt + 0);
1867 break;
1868
1869 case HCISETSCOMTU:
1870 hdev->sco_mtu = *((__u16 *) &dr.dev_opt + 1);
1871 hdev->sco_pkts = *((__u16 *) &dr.dev_opt + 0);
1872 break;
1873
1874 default:
1875 err = -EINVAL;
1876 break;
1877 }
1878
1879done:
1880 hci_dev_put(hdev);
1881 return err;
1882}
1883
1884int hci_get_dev_list(void __user *arg)
1885{
1886 struct hci_dev *hdev;
1887 struct hci_dev_list_req *dl;
1888 struct hci_dev_req *dr;
1889 int n = 0, size, err;
1890 __u16 dev_num;
1891
1892 if (get_user(dev_num, (__u16 __user *) arg))
1893 return -EFAULT;
1894
1895 if (!dev_num || dev_num > (PAGE_SIZE * 2) / sizeof(*dr))
1896 return -EINVAL;
1897
1898 size = sizeof(*dl) + dev_num * sizeof(*dr);
1899
1900 dl = kzalloc(size, GFP_KERNEL);
1901 if (!dl)
1902 return -ENOMEM;
1903
1904 dr = dl->dev_req;
1905
1906 read_lock(&hci_dev_list_lock);
1907 list_for_each_entry(hdev, &hci_dev_list, list) {
1908 unsigned long flags = hdev->flags;
1909
1910 /* When the auto-off is configured it means the transport
1911 * is running, but in that case still indicate that the
1912 * device is actually down.
1913 */
1914 if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
1915 flags &= ~BIT(HCI_UP);
1916
1917 (dr + n)->dev_id = hdev->id;
1918 (dr + n)->dev_opt = flags;
1919
1920 if (++n >= dev_num)
1921 break;
1922 }
1923 read_unlock(&hci_dev_list_lock);
1924
1925 dl->dev_num = n;
1926 size = sizeof(*dl) + n * sizeof(*dr);
1927
1928 err = copy_to_user(arg, dl, size);
1929 kfree(dl);
1930
1931 return err ? -EFAULT : 0;
1932}
1933
1934int hci_get_dev_info(void __user *arg)
1935{
1936 struct hci_dev *hdev;
1937 struct hci_dev_info di;
1938 unsigned long flags;
1939 int err = 0;
1940
1941 if (copy_from_user(&di, arg, sizeof(di)))
1942 return -EFAULT;
1943
1944 hdev = hci_dev_get(di.dev_id);
1945 if (!hdev)
1946 return -ENODEV;
1947
1948 /* When the auto-off is configured it means the transport
1949 * is running, but in that case still indicate that the
1950 * device is actually down.
1951 */
1952 if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
1953 flags = hdev->flags & ~BIT(HCI_UP);
1954 else
1955 flags = hdev->flags;
1956
1957 strcpy(di.name, hdev->name);
1958 di.bdaddr = hdev->bdaddr;
1959 di.type = (hdev->bus & 0x0f) | ((hdev->dev_type & 0x03) << 4);
1960 di.flags = flags;
1961 di.pkt_type = hdev->pkt_type;
1962 if (lmp_bredr_capable(hdev)) {
1963 di.acl_mtu = hdev->acl_mtu;
1964 di.acl_pkts = hdev->acl_pkts;
1965 di.sco_mtu = hdev->sco_mtu;
1966 di.sco_pkts = hdev->sco_pkts;
1967 } else {
1968 di.acl_mtu = hdev->le_mtu;
1969 di.acl_pkts = hdev->le_pkts;
1970 di.sco_mtu = 0;
1971 di.sco_pkts = 0;
1972 }
1973 di.link_policy = hdev->link_policy;
1974 di.link_mode = hdev->link_mode;
1975
1976 memcpy(&di.stat, &hdev->stat, sizeof(di.stat));
1977 memcpy(&di.features, &hdev->features, sizeof(di.features));
1978
1979 if (copy_to_user(arg, &di, sizeof(di)))
1980 err = -EFAULT;
1981
1982 hci_dev_put(hdev);
1983
1984 return err;
1985}
1986
1987/* ---- Interface to HCI drivers ---- */
1988
1989static int hci_rfkill_set_block(void *data, bool blocked)
1990{
1991 struct hci_dev *hdev = data;
1992
1993 BT_DBG("%p name %s blocked %d", hdev, hdev->name, blocked);
1994
1995 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL))
1996 return -EBUSY;
1997
1998 if (blocked) {
1999 hci_dev_set_flag(hdev, HCI_RFKILLED);
2000 if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
2001 !hci_dev_test_flag(hdev, HCI_CONFIG))
2002 hci_dev_do_close(hdev);
2003 } else {
2004 hci_dev_clear_flag(hdev, HCI_RFKILLED);
2005 }
2006
2007 return 0;
2008}
2009
2010static const struct rfkill_ops hci_rfkill_ops = {
2011 .set_block = hci_rfkill_set_block,
2012};
2013
2014static void hci_power_on(struct work_struct *work)
2015{
2016 struct hci_dev *hdev = container_of(work, struct hci_dev, power_on);
2017 int err;
2018
2019 BT_DBG("%s", hdev->name);
2020
2021 if (test_bit(HCI_UP, &hdev->flags) &&
2022 hci_dev_test_flag(hdev, HCI_MGMT) &&
2023 hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) {
2024 cancel_delayed_work(&hdev->power_off);
2025 hci_req_sync_lock(hdev);
2026 err = __hci_req_hci_power_on(hdev);
2027 hci_req_sync_unlock(hdev);
2028 mgmt_power_on(hdev, err);
2029 return;
2030 }
2031
2032 err = hci_dev_do_open(hdev);
2033 if (err < 0) {
2034 hci_dev_lock(hdev);
2035 mgmt_set_powered_failed(hdev, err);
2036 hci_dev_unlock(hdev);
2037 return;
2038 }
2039
2040 /* During the HCI setup phase, a few error conditions are
2041 * ignored and they need to be checked now. If they are still
2042 * valid, it is important to turn the device back off.
2043 */
2044 if (hci_dev_test_flag(hdev, HCI_RFKILLED) ||
2045 hci_dev_test_flag(hdev, HCI_UNCONFIGURED) ||
2046 (hdev->dev_type == HCI_BREDR &&
2047 !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
2048 !bacmp(&hdev->static_addr, BDADDR_ANY))) {
2049 hci_dev_clear_flag(hdev, HCI_AUTO_OFF);
2050 hci_dev_do_close(hdev);
2051 } else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) {
2052 queue_delayed_work(hdev->req_workqueue, &hdev->power_off,
2053 HCI_AUTO_OFF_TIMEOUT);
2054 }
2055
2056 if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) {
2057 /* For unconfigured devices, set the HCI_RAW flag
2058 * so that userspace can easily identify them.
2059 */
2060 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
2061 set_bit(HCI_RAW, &hdev->flags);
2062
2063 /* For fully configured devices, this will send
2064 * the Index Added event. For unconfigured devices,
2065 * it will send Unconfigued Index Added event.
2066 *
2067 * Devices with HCI_QUIRK_RAW_DEVICE are ignored
2068 * and no event will be send.
2069 */
2070 mgmt_index_added(hdev);
2071 } else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) {
2072 /* When the controller is now configured, then it
2073 * is important to clear the HCI_RAW flag.
2074 */
2075 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
2076 clear_bit(HCI_RAW, &hdev->flags);
2077
2078 /* Powering on the controller with HCI_CONFIG set only
2079 * happens with the transition from unconfigured to
2080 * configured. This will send the Index Added event.
2081 */
2082 mgmt_index_added(hdev);
2083 }
2084}
2085
2086static void hci_power_off(struct work_struct *work)
2087{
2088 struct hci_dev *hdev = container_of(work, struct hci_dev,
2089 power_off.work);
2090
2091 BT_DBG("%s", hdev->name);
2092
2093 hci_dev_do_close(hdev);
2094}
2095
2096static void hci_error_reset(struct work_struct *work)
2097{
2098 struct hci_dev *hdev = container_of(work, struct hci_dev, error_reset);
2099
2100 BT_DBG("%s", hdev->name);
2101
2102 if (hdev->hw_error)
2103 hdev->hw_error(hdev, hdev->hw_error_code);
2104 else
2105 BT_ERR("%s hardware error 0x%2.2x", hdev->name,
2106 hdev->hw_error_code);
2107
2108 if (hci_dev_do_close(hdev))
2109 return;
2110
2111 hci_dev_do_open(hdev);
2112}
2113
2114void hci_uuids_clear(struct hci_dev *hdev)
2115{
2116 struct bt_uuid *uuid, *tmp;
2117
2118 list_for_each_entry_safe(uuid, tmp, &hdev->uuids, list) {
2119 list_del(&uuid->list);
2120 kfree(uuid);
2121 }
2122}
2123
2124void hci_link_keys_clear(struct hci_dev *hdev)
2125{
2126 struct link_key *key;
2127
2128 list_for_each_entry_rcu(key, &hdev->link_keys, list) {
2129 list_del_rcu(&key->list);
2130 kfree_rcu(key, rcu);
2131 }
2132}
2133
2134void hci_smp_ltks_clear(struct hci_dev *hdev)
2135{
2136 struct smp_ltk *k;
2137
2138 list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2139 list_del_rcu(&k->list);
2140 kfree_rcu(k, rcu);
2141 }
2142}
2143
2144void hci_smp_irks_clear(struct hci_dev *hdev)
2145{
2146 struct smp_irk *k;
2147
2148 list_for_each_entry_rcu(k, &hdev->identity_resolving_keys, list) {
2149 list_del_rcu(&k->list);
2150 kfree_rcu(k, rcu);
2151 }
2152}
2153
2154struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
2155{
2156 struct link_key *k;
2157
2158 rcu_read_lock();
2159 list_for_each_entry_rcu(k, &hdev->link_keys, list) {
2160 if (bacmp(bdaddr, &k->bdaddr) == 0) {
2161 rcu_read_unlock();
2162 return k;
2163 }
2164 }
2165 rcu_read_unlock();
2166
2167 return NULL;
2168}
2169
2170static bool hci_persistent_key(struct hci_dev *hdev, struct hci_conn *conn,
2171 u8 key_type, u8 old_key_type)
2172{
2173 /* Legacy key */
2174 if (key_type < 0x03)
2175 return true;
2176
2177 /* Debug keys are insecure so don't store them persistently */
2178 if (key_type == HCI_LK_DEBUG_COMBINATION)
2179 return false;
2180
2181 /* Changed combination key and there's no previous one */
2182 if (key_type == HCI_LK_CHANGED_COMBINATION && old_key_type == 0xff)
2183 return false;
2184
2185 /* Security mode 3 case */
2186 if (!conn)
2187 return true;
2188
2189 /* BR/EDR key derived using SC from an LE link */
2190 if (conn->type == LE_LINK)
2191 return true;
2192
2193 /* Neither local nor remote side had no-bonding as requirement */
2194 if (conn->auth_type > 0x01 && conn->remote_auth > 0x01)
2195 return true;
2196
2197 /* Local side had dedicated bonding as requirement */
2198 if (conn->auth_type == 0x02 || conn->auth_type == 0x03)
2199 return true;
2200
2201 /* Remote side had dedicated bonding as requirement */
2202 if (conn->remote_auth == 0x02 || conn->remote_auth == 0x03)
2203 return true;
2204
2205 /* If none of the above criteria match, then don't store the key
2206 * persistently */
2207 return false;
2208}
2209
2210static u8 ltk_role(u8 type)
2211{
2212 if (type == SMP_LTK)
2213 return HCI_ROLE_MASTER;
2214
2215 return HCI_ROLE_SLAVE;
2216}
2217
2218struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2219 u8 addr_type, u8 role)
2220{
2221 struct smp_ltk *k;
2222
2223 rcu_read_lock();
2224 list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2225 if (addr_type != k->bdaddr_type || bacmp(bdaddr, &k->bdaddr))
2226 continue;
2227
2228 if (smp_ltk_is_sc(k) || ltk_role(k->type) == role) {
2229 rcu_read_unlock();
2230 return k;
2231 }
2232 }
2233 rcu_read_unlock();
2234
2235 return NULL;
2236}
2237
2238struct smp_irk *hci_find_irk_by_rpa(struct hci_dev *hdev, bdaddr_t *rpa)
2239{
2240 struct smp_irk *irk;
2241
2242 rcu_read_lock();
2243 list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2244 if (!bacmp(&irk->rpa, rpa)) {
2245 rcu_read_unlock();
2246 return irk;
2247 }
2248 }
2249
2250 list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2251 if (smp_irk_matches(hdev, irk->val, rpa)) {
2252 bacpy(&irk->rpa, rpa);
2253 rcu_read_unlock();
2254 return irk;
2255 }
2256 }
2257 rcu_read_unlock();
2258
2259 return NULL;
2260}
2261
2262struct smp_irk *hci_find_irk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr,
2263 u8 addr_type)
2264{
2265 struct smp_irk *irk;
2266
2267 /* Identity Address must be public or static random */
2268 if (addr_type == ADDR_LE_DEV_RANDOM && (bdaddr->b[5] & 0xc0) != 0xc0)
2269 return NULL;
2270
2271 rcu_read_lock();
2272 list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2273 if (addr_type == irk->addr_type &&
2274 bacmp(bdaddr, &irk->bdaddr) == 0) {
2275 rcu_read_unlock();
2276 return irk;
2277 }
2278 }
2279 rcu_read_unlock();
2280
2281 return NULL;
2282}
2283
2284struct link_key *hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn,
2285 bdaddr_t *bdaddr, u8 *val, u8 type,
2286 u8 pin_len, bool *persistent)
2287{
2288 struct link_key *key, *old_key;
2289 u8 old_key_type;
2290
2291 old_key = hci_find_link_key(hdev, bdaddr);
2292 if (old_key) {
2293 old_key_type = old_key->type;
2294 key = old_key;
2295 } else {
2296 old_key_type = conn ? conn->key_type : 0xff;
2297 key = kzalloc(sizeof(*key), GFP_KERNEL);
2298 if (!key)
2299 return NULL;
2300 list_add_rcu(&key->list, &hdev->link_keys);
2301 }
2302
2303 BT_DBG("%s key for %pMR type %u", hdev->name, bdaddr, type);
2304
2305 /* Some buggy controller combinations generate a changed
2306 * combination key for legacy pairing even when there's no
2307 * previous key */
2308 if (type == HCI_LK_CHANGED_COMBINATION &&
2309 (!conn || conn->remote_auth == 0xff) && old_key_type == 0xff) {
2310 type = HCI_LK_COMBINATION;
2311 if (conn)
2312 conn->key_type = type;
2313 }
2314
2315 bacpy(&key->bdaddr, bdaddr);
2316 memcpy(key->val, val, HCI_LINK_KEY_SIZE);
2317 key->pin_len = pin_len;
2318
2319 if (type == HCI_LK_CHANGED_COMBINATION)
2320 key->type = old_key_type;
2321 else
2322 key->type = type;
2323
2324 if (persistent)
2325 *persistent = hci_persistent_key(hdev, conn, type,
2326 old_key_type);
2327
2328 return key;
2329}
2330
2331struct smp_ltk *hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2332 u8 addr_type, u8 type, u8 authenticated,
2333 u8 tk[16], u8 enc_size, __le16 ediv, __le64 rand)
2334{
2335 struct smp_ltk *key, *old_key;
2336 u8 role = ltk_role(type);
2337
2338 old_key = hci_find_ltk(hdev, bdaddr, addr_type, role);
2339 if (old_key)
2340 key = old_key;
2341 else {
2342 key = kzalloc(sizeof(*key), GFP_KERNEL);
2343 if (!key)
2344 return NULL;
2345 list_add_rcu(&key->list, &hdev->long_term_keys);
2346 }
2347
2348 bacpy(&key->bdaddr, bdaddr);
2349 key->bdaddr_type = addr_type;
2350 memcpy(key->val, tk, sizeof(key->val));
2351 key->authenticated = authenticated;
2352 key->ediv = ediv;
2353 key->rand = rand;
2354 key->enc_size = enc_size;
2355 key->type = type;
2356
2357 return key;
2358}
2359
2360struct smp_irk *hci_add_irk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2361 u8 addr_type, u8 val[16], bdaddr_t *rpa)
2362{
2363 struct smp_irk *irk;
2364
2365 irk = hci_find_irk_by_addr(hdev, bdaddr, addr_type);
2366 if (!irk) {
2367 irk = kzalloc(sizeof(*irk), GFP_KERNEL);
2368 if (!irk)
2369 return NULL;
2370
2371 bacpy(&irk->bdaddr, bdaddr);
2372 irk->addr_type = addr_type;
2373
2374 list_add_rcu(&irk->list, &hdev->identity_resolving_keys);
2375 }
2376
2377 memcpy(irk->val, val, 16);
2378 bacpy(&irk->rpa, rpa);
2379
2380 return irk;
2381}
2382
2383int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
2384{
2385 struct link_key *key;
2386
2387 key = hci_find_link_key(hdev, bdaddr);
2388 if (!key)
2389 return -ENOENT;
2390
2391 BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2392
2393 list_del_rcu(&key->list);
2394 kfree_rcu(key, rcu);
2395
2396 return 0;
2397}
2398
2399int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type)
2400{
2401 struct smp_ltk *k;
2402 int removed = 0;
2403
2404 list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2405 if (bacmp(bdaddr, &k->bdaddr) || k->bdaddr_type != bdaddr_type)
2406 continue;
2407
2408 BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2409
2410 list_del_rcu(&k->list);
2411 kfree_rcu(k, rcu);
2412 removed++;
2413 }
2414
2415 return removed ? 0 : -ENOENT;
2416}
2417
2418void hci_remove_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type)
2419{
2420 struct smp_irk *k;
2421
2422 list_for_each_entry_rcu(k, &hdev->identity_resolving_keys, list) {
2423 if (bacmp(bdaddr, &k->bdaddr) || k->addr_type != addr_type)
2424 continue;
2425
2426 BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2427
2428 list_del_rcu(&k->list);
2429 kfree_rcu(k, rcu);
2430 }
2431}
2432
2433bool hci_bdaddr_is_paired(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type)
2434{
2435 struct smp_ltk *k;
2436 struct smp_irk *irk;
2437 u8 addr_type;
2438
2439 if (type == BDADDR_BREDR) {
2440 if (hci_find_link_key(hdev, bdaddr))
2441 return true;
2442 return false;
2443 }
2444
2445 /* Convert to HCI addr type which struct smp_ltk uses */
2446 if (type == BDADDR_LE_PUBLIC)
2447 addr_type = ADDR_LE_DEV_PUBLIC;
2448 else
2449 addr_type = ADDR_LE_DEV_RANDOM;
2450
2451 irk = hci_get_irk(hdev, bdaddr, addr_type);
2452 if (irk) {
2453 bdaddr = &irk->bdaddr;
2454 addr_type = irk->addr_type;
2455 }
2456
2457 rcu_read_lock();
2458 list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2459 if (k->bdaddr_type == addr_type && !bacmp(bdaddr, &k->bdaddr)) {
2460 rcu_read_unlock();
2461 return true;
2462 }
2463 }
2464 rcu_read_unlock();
2465
2466 return false;
2467}
2468
2469/* HCI command timer function */
2470static void hci_cmd_timeout(struct work_struct *work)
2471{
2472 struct hci_dev *hdev = container_of(work, struct hci_dev,
2473 cmd_timer.work);
2474
2475 if (hdev->sent_cmd) {
2476 struct hci_command_hdr *sent = (void *) hdev->sent_cmd->data;
2477 u16 opcode = __le16_to_cpu(sent->opcode);
2478
2479 BT_ERR("%s command 0x%4.4x tx timeout", hdev->name, opcode);
2480 } else {
2481 BT_ERR("%s command tx timeout", hdev->name);
2482 }
2483
2484 atomic_set(&hdev->cmd_cnt, 1);
2485 queue_work(hdev->workqueue, &hdev->cmd_work);
2486}
2487
2488struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev,
2489 bdaddr_t *bdaddr, u8 bdaddr_type)
2490{
2491 struct oob_data *data;
2492
2493 list_for_each_entry(data, &hdev->remote_oob_data, list) {
2494 if (bacmp(bdaddr, &data->bdaddr) != 0)
2495 continue;
2496 if (data->bdaddr_type != bdaddr_type)
2497 continue;
2498 return data;
2499 }
2500
2501 return NULL;
2502}
2503
2504int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
2505 u8 bdaddr_type)
2506{
2507 struct oob_data *data;
2508
2509 data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
2510 if (!data)
2511 return -ENOENT;
2512
2513 BT_DBG("%s removing %pMR (%u)", hdev->name, bdaddr, bdaddr_type);
2514
2515 list_del(&data->list);
2516 kfree(data);
2517
2518 return 0;
2519}
2520
2521void hci_remote_oob_data_clear(struct hci_dev *hdev)
2522{
2523 struct oob_data *data, *n;
2524
2525 list_for_each_entry_safe(data, n, &hdev->remote_oob_data, list) {
2526 list_del(&data->list);
2527 kfree(data);
2528 }
2529}
2530
2531int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
2532 u8 bdaddr_type, u8 *hash192, u8 *rand192,
2533 u8 *hash256, u8 *rand256)
2534{
2535 struct oob_data *data;
2536
2537 data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
2538 if (!data) {
2539 data = kmalloc(sizeof(*data), GFP_KERNEL);
2540 if (!data)
2541 return -ENOMEM;
2542
2543 bacpy(&data->bdaddr, bdaddr);
2544 data->bdaddr_type = bdaddr_type;
2545 list_add(&data->list, &hdev->remote_oob_data);
2546 }
2547
2548 if (hash192 && rand192) {
2549 memcpy(data->hash192, hash192, sizeof(data->hash192));
2550 memcpy(data->rand192, rand192, sizeof(data->rand192));
2551 if (hash256 && rand256)
2552 data->present = 0x03;
2553 } else {
2554 memset(data->hash192, 0, sizeof(data->hash192));
2555 memset(data->rand192, 0, sizeof(data->rand192));
2556 if (hash256 && rand256)
2557 data->present = 0x02;
2558 else
2559 data->present = 0x00;
2560 }
2561
2562 if (hash256 && rand256) {
2563 memcpy(data->hash256, hash256, sizeof(data->hash256));
2564 memcpy(data->rand256, rand256, sizeof(data->rand256));
2565 } else {
2566 memset(data->hash256, 0, sizeof(data->hash256));
2567 memset(data->rand256, 0, sizeof(data->rand256));
2568 if (hash192 && rand192)
2569 data->present = 0x01;
2570 }
2571
2572 BT_DBG("%s for %pMR", hdev->name, bdaddr);
2573
2574 return 0;
2575}
2576
2577/* This function requires the caller holds hdev->lock */
2578struct adv_info *hci_find_adv_instance(struct hci_dev *hdev, u8 instance)
2579{
2580 struct adv_info *adv_instance;
2581
2582 list_for_each_entry(adv_instance, &hdev->adv_instances, list) {
2583 if (adv_instance->instance == instance)
2584 return adv_instance;
2585 }
2586
2587 return NULL;
2588}
2589
2590/* This function requires the caller holds hdev->lock */
2591struct adv_info *hci_get_next_instance(struct hci_dev *hdev, u8 instance)
2592{
2593 struct adv_info *cur_instance;
2594
2595 cur_instance = hci_find_adv_instance(hdev, instance);
2596 if (!cur_instance)
2597 return NULL;
2598
2599 if (cur_instance == list_last_entry(&hdev->adv_instances,
2600 struct adv_info, list))
2601 return list_first_entry(&hdev->adv_instances,
2602 struct adv_info, list);
2603 else
2604 return list_next_entry(cur_instance, list);
2605}
2606
2607/* This function requires the caller holds hdev->lock */
2608int hci_remove_adv_instance(struct hci_dev *hdev, u8 instance)
2609{
2610 struct adv_info *adv_instance;
2611
2612 adv_instance = hci_find_adv_instance(hdev, instance);
2613 if (!adv_instance)
2614 return -ENOENT;
2615
2616 BT_DBG("%s removing %dMR", hdev->name, instance);
2617
2618 if (hdev->cur_adv_instance == instance) {
2619 if (hdev->adv_instance_timeout) {
2620 cancel_delayed_work(&hdev->adv_instance_expire);
2621 hdev->adv_instance_timeout = 0;
2622 }
2623 hdev->cur_adv_instance = 0x00;
2624 }
2625
2626 list_del(&adv_instance->list);
2627 kfree(adv_instance);
2628
2629 hdev->adv_instance_cnt--;
2630
2631 return 0;
2632}
2633
2634/* This function requires the caller holds hdev->lock */
2635void hci_adv_instances_clear(struct hci_dev *hdev)
2636{
2637 struct adv_info *adv_instance, *n;
2638
2639 if (hdev->adv_instance_timeout) {
2640 cancel_delayed_work(&hdev->adv_instance_expire);
2641 hdev->adv_instance_timeout = 0;
2642 }
2643
2644 list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list) {
2645 list_del(&adv_instance->list);
2646 kfree(adv_instance);
2647 }
2648
2649 hdev->adv_instance_cnt = 0;
2650 hdev->cur_adv_instance = 0x00;
2651}
2652
2653/* This function requires the caller holds hdev->lock */
2654int hci_add_adv_instance(struct hci_dev *hdev, u8 instance, u32 flags,
2655 u16 adv_data_len, u8 *adv_data,
2656 u16 scan_rsp_len, u8 *scan_rsp_data,
2657 u16 timeout, u16 duration)
2658{
2659 struct adv_info *adv_instance;
2660
2661 adv_instance = hci_find_adv_instance(hdev, instance);
2662 if (adv_instance) {
2663 memset(adv_instance->adv_data, 0,
2664 sizeof(adv_instance->adv_data));
2665 memset(adv_instance->scan_rsp_data, 0,
2666 sizeof(adv_instance->scan_rsp_data));
2667 } else {
2668 if (hdev->adv_instance_cnt >= HCI_MAX_ADV_INSTANCES ||
2669 instance < 1 || instance > HCI_MAX_ADV_INSTANCES)
2670 return -EOVERFLOW;
2671
2672 adv_instance = kzalloc(sizeof(*adv_instance), GFP_KERNEL);
2673 if (!adv_instance)
2674 return -ENOMEM;
2675
2676 adv_instance->pending = true;
2677 adv_instance->instance = instance;
2678 list_add(&adv_instance->list, &hdev->adv_instances);
2679 hdev->adv_instance_cnt++;
2680 }
2681
2682 adv_instance->flags = flags;
2683 adv_instance->adv_data_len = adv_data_len;
2684 adv_instance->scan_rsp_len = scan_rsp_len;
2685
2686 if (adv_data_len)
2687 memcpy(adv_instance->adv_data, adv_data, adv_data_len);
2688
2689 if (scan_rsp_len)
2690 memcpy(adv_instance->scan_rsp_data,
2691 scan_rsp_data, scan_rsp_len);
2692
2693 adv_instance->timeout = timeout;
2694 adv_instance->remaining_time = timeout;
2695
2696 if (duration == 0)
2697 adv_instance->duration = HCI_DEFAULT_ADV_DURATION;
2698 else
2699 adv_instance->duration = duration;
2700
2701 BT_DBG("%s for %dMR", hdev->name, instance);
2702
2703 return 0;
2704}
2705
2706struct bdaddr_list *hci_bdaddr_list_lookup(struct list_head *bdaddr_list,
2707 bdaddr_t *bdaddr, u8 type)
2708{
2709 struct bdaddr_list *b;
2710
2711 list_for_each_entry(b, bdaddr_list, list) {
2712 if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2713 return b;
2714 }
2715
2716 return NULL;
2717}
2718
2719void hci_bdaddr_list_clear(struct list_head *bdaddr_list)
2720{
2721 struct bdaddr_list *b, *n;
2722
2723 list_for_each_entry_safe(b, n, bdaddr_list, list) {
2724 list_del(&b->list);
2725 kfree(b);
2726 }
2727}
2728
2729int hci_bdaddr_list_add(struct list_head *list, bdaddr_t *bdaddr, u8 type)
2730{
2731 struct bdaddr_list *entry;
2732
2733 if (!bacmp(bdaddr, BDADDR_ANY))
2734 return -EBADF;
2735
2736 if (hci_bdaddr_list_lookup(list, bdaddr, type))
2737 return -EEXIST;
2738
2739 entry = kzalloc(sizeof(*entry), GFP_KERNEL);
2740 if (!entry)
2741 return -ENOMEM;
2742
2743 bacpy(&entry->bdaddr, bdaddr);
2744 entry->bdaddr_type = type;
2745
2746 list_add(&entry->list, list);
2747
2748 return 0;
2749}
2750
2751int hci_bdaddr_list_del(struct list_head *list, bdaddr_t *bdaddr, u8 type)
2752{
2753 struct bdaddr_list *entry;
2754
2755 if (!bacmp(bdaddr, BDADDR_ANY)) {
2756 hci_bdaddr_list_clear(list);
2757 return 0;
2758 }
2759
2760 entry = hci_bdaddr_list_lookup(list, bdaddr, type);
2761 if (!entry)
2762 return -ENOENT;
2763
2764 list_del(&entry->list);
2765 kfree(entry);
2766
2767 return 0;
2768}
2769
2770/* This function requires the caller holds hdev->lock */
2771struct hci_conn_params *hci_conn_params_lookup(struct hci_dev *hdev,
2772 bdaddr_t *addr, u8 addr_type)
2773{
2774 struct hci_conn_params *params;
2775
2776 list_for_each_entry(params, &hdev->le_conn_params, list) {
2777 if (bacmp(¶ms->addr, addr) == 0 &&
2778 params->addr_type == addr_type) {
2779 return params;
2780 }
2781 }
2782
2783 return NULL;
2784}
2785
2786/* This function requires the caller holds hdev->lock */
2787struct hci_conn_params *hci_pend_le_action_lookup(struct list_head *list,
2788 bdaddr_t *addr, u8 addr_type)
2789{
2790 struct hci_conn_params *param;
2791
2792 list_for_each_entry(param, list, action) {
2793 if (bacmp(¶m->addr, addr) == 0 &&
2794 param->addr_type == addr_type)
2795 return param;
2796 }
2797
2798 return NULL;
2799}
2800
2801/* This function requires the caller holds hdev->lock */
2802struct hci_conn_params *hci_conn_params_add(struct hci_dev *hdev,
2803 bdaddr_t *addr, u8 addr_type)
2804{
2805 struct hci_conn_params *params;
2806
2807 params = hci_conn_params_lookup(hdev, addr, addr_type);
2808 if (params)
2809 return params;
2810
2811 params = kzalloc(sizeof(*params), GFP_KERNEL);
2812 if (!params) {
2813 BT_ERR("Out of memory");
2814 return NULL;
2815 }
2816
2817 bacpy(¶ms->addr, addr);
2818 params->addr_type = addr_type;
2819
2820 list_add(¶ms->list, &hdev->le_conn_params);
2821 INIT_LIST_HEAD(¶ms->action);
2822
2823 params->conn_min_interval = hdev->le_conn_min_interval;
2824 params->conn_max_interval = hdev->le_conn_max_interval;
2825 params->conn_latency = hdev->le_conn_latency;
2826 params->supervision_timeout = hdev->le_supv_timeout;
2827 params->auto_connect = HCI_AUTO_CONN_DISABLED;
2828
2829 BT_DBG("addr %pMR (type %u)", addr, addr_type);
2830
2831 return params;
2832}
2833
2834static void hci_conn_params_free(struct hci_conn_params *params)
2835{
2836 if (params->conn) {
2837 hci_conn_drop(params->conn);
2838 hci_conn_put(params->conn);
2839 }
2840
2841 list_del(¶ms->action);
2842 list_del(¶ms->list);
2843 kfree(params);
2844}
2845
2846/* This function requires the caller holds hdev->lock */
2847void hci_conn_params_del(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type)
2848{
2849 struct hci_conn_params *params;
2850
2851 params = hci_conn_params_lookup(hdev, addr, addr_type);
2852 if (!params)
2853 return;
2854
2855 hci_conn_params_free(params);
2856
2857 hci_update_background_scan(hdev);
2858
2859 BT_DBG("addr %pMR (type %u)", addr, addr_type);
2860}
2861
2862/* This function requires the caller holds hdev->lock */
2863void hci_conn_params_clear_disabled(struct hci_dev *hdev)
2864{
2865 struct hci_conn_params *params, *tmp;
2866
2867 list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list) {
2868 if (params->auto_connect != HCI_AUTO_CONN_DISABLED)
2869 continue;
2870
2871 /* If trying to estabilish one time connection to disabled
2872 * device, leave the params, but mark them as just once.
2873 */
2874 if (params->explicit_connect) {
2875 params->auto_connect = HCI_AUTO_CONN_EXPLICIT;
2876 continue;
2877 }
2878
2879 list_del(¶ms->list);
2880 kfree(params);
2881 }
2882
2883 BT_DBG("All LE disabled connection parameters were removed");
2884}
2885
2886/* This function requires the caller holds hdev->lock */
2887static void hci_conn_params_clear_all(struct hci_dev *hdev)
2888{
2889 struct hci_conn_params *params, *tmp;
2890
2891 list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list)
2892 hci_conn_params_free(params);
2893
2894 BT_DBG("All LE connection parameters were removed");
2895}
2896
2897/* Copy the Identity Address of the controller.
2898 *
2899 * If the controller has a public BD_ADDR, then by default use that one.
2900 * If this is a LE only controller without a public address, default to
2901 * the static random address.
2902 *
2903 * For debugging purposes it is possible to force controllers with a
2904 * public address to use the static random address instead.
2905 *
2906 * In case BR/EDR has been disabled on a dual-mode controller and
2907 * userspace has configured a static address, then that address
2908 * becomes the identity address instead of the public BR/EDR address.
2909 */
2910void hci_copy_identity_address(struct hci_dev *hdev, bdaddr_t *bdaddr,
2911 u8 *bdaddr_type)
2912{
2913 if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
2914 !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
2915 (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
2916 bacmp(&hdev->static_addr, BDADDR_ANY))) {
2917 bacpy(bdaddr, &hdev->static_addr);
2918 *bdaddr_type = ADDR_LE_DEV_RANDOM;
2919 } else {
2920 bacpy(bdaddr, &hdev->bdaddr);
2921 *bdaddr_type = ADDR_LE_DEV_PUBLIC;
2922 }
2923}
2924
2925/* Alloc HCI device */
2926struct hci_dev *hci_alloc_dev(void)
2927{
2928 struct hci_dev *hdev;
2929
2930 hdev = kzalloc(sizeof(*hdev), GFP_KERNEL);
2931 if (!hdev)
2932 return NULL;
2933
2934 hdev->pkt_type = (HCI_DM1 | HCI_DH1 | HCI_HV1);
2935 hdev->esco_type = (ESCO_HV1);
2936 hdev->link_mode = (HCI_LM_ACCEPT);
2937 hdev->num_iac = 0x01; /* One IAC support is mandatory */
2938 hdev->io_capability = 0x03; /* No Input No Output */
2939 hdev->manufacturer = 0xffff; /* Default to internal use */
2940 hdev->inq_tx_power = HCI_TX_POWER_INVALID;
2941 hdev->adv_tx_power = HCI_TX_POWER_INVALID;
2942 hdev->adv_instance_cnt = 0;
2943 hdev->cur_adv_instance = 0x00;
2944 hdev->adv_instance_timeout = 0;
2945
2946 hdev->sniff_max_interval = 800;
2947 hdev->sniff_min_interval = 80;
2948
2949 hdev->le_adv_channel_map = 0x07;
2950 hdev->le_adv_min_interval = 0x0800;
2951 hdev->le_adv_max_interval = 0x0800;
2952 hdev->le_scan_interval = 0x0060;
2953 hdev->le_scan_window = 0x0030;
2954 hdev->le_conn_min_interval = 0x0028;
2955 hdev->le_conn_max_interval = 0x0038;
2956 hdev->le_conn_latency = 0x0000;
2957 hdev->le_supv_timeout = 0x002a;
2958 hdev->le_def_tx_len = 0x001b;
2959 hdev->le_def_tx_time = 0x0148;
2960 hdev->le_max_tx_len = 0x001b;
2961 hdev->le_max_tx_time = 0x0148;
2962 hdev->le_max_rx_len = 0x001b;
2963 hdev->le_max_rx_time = 0x0148;
2964
2965 hdev->rpa_timeout = HCI_DEFAULT_RPA_TIMEOUT;
2966 hdev->discov_interleaved_timeout = DISCOV_INTERLEAVED_TIMEOUT;
2967 hdev->conn_info_min_age = DEFAULT_CONN_INFO_MIN_AGE;
2968 hdev->conn_info_max_age = DEFAULT_CONN_INFO_MAX_AGE;
2969
2970 mutex_init(&hdev->lock);
2971 mutex_init(&hdev->req_lock);
2972
2973 INIT_LIST_HEAD(&hdev->mgmt_pending);
2974 INIT_LIST_HEAD(&hdev->blacklist);
2975 INIT_LIST_HEAD(&hdev->whitelist);
2976 INIT_LIST_HEAD(&hdev->uuids);
2977 INIT_LIST_HEAD(&hdev->link_keys);
2978 INIT_LIST_HEAD(&hdev->long_term_keys);
2979 INIT_LIST_HEAD(&hdev->identity_resolving_keys);
2980 INIT_LIST_HEAD(&hdev->remote_oob_data);
2981 INIT_LIST_HEAD(&hdev->le_white_list);
2982 INIT_LIST_HEAD(&hdev->le_conn_params);
2983 INIT_LIST_HEAD(&hdev->pend_le_conns);
2984 INIT_LIST_HEAD(&hdev->pend_le_reports);
2985 INIT_LIST_HEAD(&hdev->conn_hash.list);
2986 INIT_LIST_HEAD(&hdev->adv_instances);
2987
2988 INIT_WORK(&hdev->rx_work, hci_rx_work);
2989 INIT_WORK(&hdev->cmd_work, hci_cmd_work);
2990 INIT_WORK(&hdev->tx_work, hci_tx_work);
2991 INIT_WORK(&hdev->power_on, hci_power_on);
2992 INIT_WORK(&hdev->error_reset, hci_error_reset);
2993
2994 INIT_DELAYED_WORK(&hdev->power_off, hci_power_off);
2995
2996 skb_queue_head_init(&hdev->rx_q);
2997 skb_queue_head_init(&hdev->cmd_q);
2998 skb_queue_head_init(&hdev->raw_q);
2999
3000 init_waitqueue_head(&hdev->req_wait_q);
3001
3002 INIT_DELAYED_WORK(&hdev->cmd_timer, hci_cmd_timeout);
3003
3004 hci_request_setup(hdev);
3005
3006 hci_init_sysfs(hdev);
3007 discovery_init(hdev);
3008
3009 return hdev;
3010}
3011EXPORT_SYMBOL(hci_alloc_dev);
3012
3013/* Free HCI device */
3014void hci_free_dev(struct hci_dev *hdev)
3015{
3016 /* will free via device release */
3017 put_device(&hdev->dev);
3018}
3019EXPORT_SYMBOL(hci_free_dev);
3020
3021/* Register HCI device */
3022int hci_register_dev(struct hci_dev *hdev)
3023{
3024 int id, error;
3025
3026 if (!hdev->open || !hdev->close || !hdev->send)
3027 return -EINVAL;
3028
3029 /* Do not allow HCI_AMP devices to register at index 0,
3030 * so the index can be used as the AMP controller ID.
3031 */
3032 switch (hdev->dev_type) {
3033 case HCI_BREDR:
3034 id = ida_simple_get(&hci_index_ida, 0, 0, GFP_KERNEL);
3035 break;
3036 case HCI_AMP:
3037 id = ida_simple_get(&hci_index_ida, 1, 0, GFP_KERNEL);
3038 break;
3039 default:
3040 return -EINVAL;
3041 }
3042
3043 if (id < 0)
3044 return id;
3045
3046 sprintf(hdev->name, "hci%d", id);
3047 hdev->id = id;
3048
3049 BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
3050
3051 hdev->workqueue = alloc_workqueue("%s", WQ_HIGHPRI | WQ_UNBOUND |
3052 WQ_MEM_RECLAIM, 1, hdev->name);
3053 if (!hdev->workqueue) {
3054 error = -ENOMEM;
3055 goto err;
3056 }
3057
3058 hdev->req_workqueue = alloc_workqueue("%s", WQ_HIGHPRI | WQ_UNBOUND |
3059 WQ_MEM_RECLAIM, 1, hdev->name);
3060 if (!hdev->req_workqueue) {
3061 destroy_workqueue(hdev->workqueue);
3062 error = -ENOMEM;
3063 goto err;
3064 }
3065
3066 if (!IS_ERR_OR_NULL(bt_debugfs))
3067 hdev->debugfs = debugfs_create_dir(hdev->name, bt_debugfs);
3068
3069 dev_set_name(&hdev->dev, "%s", hdev->name);
3070
3071 error = device_add(&hdev->dev);
3072 if (error < 0)
3073 goto err_wqueue;
3074
3075 hci_leds_init(hdev);
3076
3077 hdev->rfkill = rfkill_alloc(hdev->name, &hdev->dev,
3078 RFKILL_TYPE_BLUETOOTH, &hci_rfkill_ops,
3079 hdev);
3080 if (hdev->rfkill) {
3081 if (rfkill_register(hdev->rfkill) < 0) {
3082 rfkill_destroy(hdev->rfkill);
3083 hdev->rfkill = NULL;
3084 }
3085 }
3086
3087 if (hdev->rfkill && rfkill_blocked(hdev->rfkill))
3088 hci_dev_set_flag(hdev, HCI_RFKILLED);
3089
3090 hci_dev_set_flag(hdev, HCI_SETUP);
3091 hci_dev_set_flag(hdev, HCI_AUTO_OFF);
3092
3093 if (hdev->dev_type == HCI_BREDR) {
3094 /* Assume BR/EDR support until proven otherwise (such as
3095 * through reading supported features during init.
3096 */
3097 hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
3098 }
3099
3100 write_lock(&hci_dev_list_lock);
3101 list_add(&hdev->list, &hci_dev_list);
3102 write_unlock(&hci_dev_list_lock);
3103
3104 /* Devices that are marked for raw-only usage are unconfigured
3105 * and should not be included in normal operation.
3106 */
3107 if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
3108 hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
3109
3110 hci_sock_dev_event(hdev, HCI_DEV_REG);
3111 hci_dev_hold(hdev);
3112
3113 queue_work(hdev->req_workqueue, &hdev->power_on);
3114
3115 return id;
3116
3117err_wqueue:
3118 destroy_workqueue(hdev->workqueue);
3119 destroy_workqueue(hdev->req_workqueue);
3120err:
3121 ida_simple_remove(&hci_index_ida, hdev->id);
3122
3123 return error;
3124}
3125EXPORT_SYMBOL(hci_register_dev);
3126
3127/* Unregister HCI device */
3128void hci_unregister_dev(struct hci_dev *hdev)
3129{
3130 int id;
3131
3132 BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
3133
3134 hci_dev_set_flag(hdev, HCI_UNREGISTER);
3135
3136 id = hdev->id;
3137
3138 write_lock(&hci_dev_list_lock);
3139 list_del(&hdev->list);
3140 write_unlock(&hci_dev_list_lock);
3141
3142 hci_dev_do_close(hdev);
3143
3144 cancel_work_sync(&hdev->power_on);
3145
3146 if (!test_bit(HCI_INIT, &hdev->flags) &&
3147 !hci_dev_test_flag(hdev, HCI_SETUP) &&
3148 !hci_dev_test_flag(hdev, HCI_CONFIG)) {
3149 hci_dev_lock(hdev);
3150 mgmt_index_removed(hdev);
3151 hci_dev_unlock(hdev);
3152 }
3153
3154 /* mgmt_index_removed should take care of emptying the
3155 * pending list */
3156 BUG_ON(!list_empty(&hdev->mgmt_pending));
3157
3158 hci_sock_dev_event(hdev, HCI_DEV_UNREG);
3159
3160 if (hdev->rfkill) {
3161 rfkill_unregister(hdev->rfkill);
3162 rfkill_destroy(hdev->rfkill);
3163 }
3164
3165 device_del(&hdev->dev);
3166
3167 debugfs_remove_recursive(hdev->debugfs);
3168
3169 destroy_workqueue(hdev->workqueue);
3170 destroy_workqueue(hdev->req_workqueue);
3171
3172 hci_dev_lock(hdev);
3173 hci_bdaddr_list_clear(&hdev->blacklist);
3174 hci_bdaddr_list_clear(&hdev->whitelist);
3175 hci_uuids_clear(hdev);
3176 hci_link_keys_clear(hdev);
3177 hci_smp_ltks_clear(hdev);
3178 hci_smp_irks_clear(hdev);
3179 hci_remote_oob_data_clear(hdev);
3180 hci_adv_instances_clear(hdev);
3181 hci_bdaddr_list_clear(&hdev->le_white_list);
3182 hci_conn_params_clear_all(hdev);
3183 hci_discovery_filter_clear(hdev);
3184 hci_dev_unlock(hdev);
3185
3186 hci_dev_put(hdev);
3187
3188 ida_simple_remove(&hci_index_ida, id);
3189}
3190EXPORT_SYMBOL(hci_unregister_dev);
3191
3192/* Suspend HCI device */
3193int hci_suspend_dev(struct hci_dev *hdev)
3194{
3195 hci_sock_dev_event(hdev, HCI_DEV_SUSPEND);
3196 return 0;
3197}
3198EXPORT_SYMBOL(hci_suspend_dev);
3199
3200/* Resume HCI device */
3201int hci_resume_dev(struct hci_dev *hdev)
3202{
3203 hci_sock_dev_event(hdev, HCI_DEV_RESUME);
3204 return 0;
3205}
3206EXPORT_SYMBOL(hci_resume_dev);
3207
3208/* Reset HCI device */
3209int hci_reset_dev(struct hci_dev *hdev)
3210{
3211 const u8 hw_err[] = { HCI_EV_HARDWARE_ERROR, 0x01, 0x00 };
3212 struct sk_buff *skb;
3213
3214 skb = bt_skb_alloc(3, GFP_ATOMIC);
3215 if (!skb)
3216 return -ENOMEM;
3217
3218 hci_skb_pkt_type(skb) = HCI_EVENT_PKT;
3219 memcpy(skb_put(skb, 3), hw_err, 3);
3220
3221 /* Send Hardware Error to upper stack */
3222 return hci_recv_frame(hdev, skb);
3223}
3224EXPORT_SYMBOL(hci_reset_dev);
3225
3226/* Receive frame from HCI drivers */
3227int hci_recv_frame(struct hci_dev *hdev, struct sk_buff *skb)
3228{
3229 if (!hdev || (!test_bit(HCI_UP, &hdev->flags)
3230 && !test_bit(HCI_INIT, &hdev->flags))) {
3231 kfree_skb(skb);
3232 return -ENXIO;
3233 }
3234
3235 if (hci_skb_pkt_type(skb) != HCI_EVENT_PKT &&
3236 hci_skb_pkt_type(skb) != HCI_ACLDATA_PKT &&
3237 hci_skb_pkt_type(skb) != HCI_SCODATA_PKT) {
3238 kfree_skb(skb);
3239 return -EINVAL;
3240 }
3241
3242 /* Incoming skb */
3243 bt_cb(skb)->incoming = 1;
3244
3245 /* Time stamp */
3246 __net_timestamp(skb);
3247
3248 skb_queue_tail(&hdev->rx_q, skb);
3249 queue_work(hdev->workqueue, &hdev->rx_work);
3250
3251 return 0;
3252}
3253EXPORT_SYMBOL(hci_recv_frame);
3254
3255/* Receive diagnostic message from HCI drivers */
3256int hci_recv_diag(struct hci_dev *hdev, struct sk_buff *skb)
3257{
3258 /* Mark as diagnostic packet */
3259 hci_skb_pkt_type(skb) = HCI_DIAG_PKT;
3260
3261 /* Time stamp */
3262 __net_timestamp(skb);
3263
3264 skb_queue_tail(&hdev->rx_q, skb);
3265 queue_work(hdev->workqueue, &hdev->rx_work);
3266
3267 return 0;
3268}
3269EXPORT_SYMBOL(hci_recv_diag);
3270
3271/* ---- Interface to upper protocols ---- */
3272
3273int hci_register_cb(struct hci_cb *cb)
3274{
3275 BT_DBG("%p name %s", cb, cb->name);
3276
3277 mutex_lock(&hci_cb_list_lock);
3278 list_add_tail(&cb->list, &hci_cb_list);
3279 mutex_unlock(&hci_cb_list_lock);
3280
3281 return 0;
3282}
3283EXPORT_SYMBOL(hci_register_cb);
3284
3285int hci_unregister_cb(struct hci_cb *cb)
3286{
3287 BT_DBG("%p name %s", cb, cb->name);
3288
3289 mutex_lock(&hci_cb_list_lock);
3290 list_del(&cb->list);
3291 mutex_unlock(&hci_cb_list_lock);
3292
3293 return 0;
3294}
3295EXPORT_SYMBOL(hci_unregister_cb);
3296
3297static void hci_send_frame(struct hci_dev *hdev, struct sk_buff *skb)
3298{
3299 int err;
3300
3301 BT_DBG("%s type %d len %d", hdev->name, hci_skb_pkt_type(skb),
3302 skb->len);
3303
3304 /* Time stamp */
3305 __net_timestamp(skb);
3306
3307 /* Send copy to monitor */
3308 hci_send_to_monitor(hdev, skb);
3309
3310 if (atomic_read(&hdev->promisc)) {
3311 /* Send copy to the sockets */
3312 hci_send_to_sock(hdev, skb);
3313 }
3314
3315 /* Get rid of skb owner, prior to sending to the driver. */
3316 skb_orphan(skb);
3317
3318 if (!test_bit(HCI_RUNNING, &hdev->flags)) {
3319 kfree_skb(skb);
3320 return;
3321 }
3322
3323 err = hdev->send(hdev, skb);
3324 if (err < 0) {
3325 BT_ERR("%s sending frame failed (%d)", hdev->name, err);
3326 kfree_skb(skb);
3327 }
3328}
3329
3330/* Send HCI command */
3331int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen,
3332 const void *param)
3333{
3334 struct sk_buff *skb;
3335
3336 BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen);
3337
3338 skb = hci_prepare_cmd(hdev, opcode, plen, param);
3339 if (!skb) {
3340 BT_ERR("%s no memory for command", hdev->name);
3341 return -ENOMEM;
3342 }
3343
3344 /* Stand-alone HCI commands must be flagged as
3345 * single-command requests.
3346 */
3347 bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
3348
3349 skb_queue_tail(&hdev->cmd_q, skb);
3350 queue_work(hdev->workqueue, &hdev->cmd_work);
3351
3352 return 0;
3353}
3354
3355/* Get data from the previously sent command */
3356void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode)
3357{
3358 struct hci_command_hdr *hdr;
3359
3360 if (!hdev->sent_cmd)
3361 return NULL;
3362
3363 hdr = (void *) hdev->sent_cmd->data;
3364
3365 if (hdr->opcode != cpu_to_le16(opcode))
3366 return NULL;
3367
3368 BT_DBG("%s opcode 0x%4.4x", hdev->name, opcode);
3369
3370 return hdev->sent_cmd->data + HCI_COMMAND_HDR_SIZE;
3371}
3372
3373/* Send HCI command and wait for command commplete event */
3374struct sk_buff *hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
3375 const void *param, u32 timeout)
3376{
3377 struct sk_buff *skb;
3378
3379 if (!test_bit(HCI_UP, &hdev->flags))
3380 return ERR_PTR(-ENETDOWN);
3381
3382 bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen);
3383
3384 hci_req_sync_lock(hdev);
3385 skb = __hci_cmd_sync(hdev, opcode, plen, param, timeout);
3386 hci_req_sync_unlock(hdev);
3387
3388 return skb;
3389}
3390EXPORT_SYMBOL(hci_cmd_sync);
3391
3392/* Send ACL data */
3393static void hci_add_acl_hdr(struct sk_buff *skb, __u16 handle, __u16 flags)
3394{
3395 struct hci_acl_hdr *hdr;
3396 int len = skb->len;
3397
3398 skb_push(skb, HCI_ACL_HDR_SIZE);
3399 skb_reset_transport_header(skb);
3400 hdr = (struct hci_acl_hdr *)skb_transport_header(skb);
3401 hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
3402 hdr->dlen = cpu_to_le16(len);
3403}
3404
3405static void hci_queue_acl(struct hci_chan *chan, struct sk_buff_head *queue,
3406 struct sk_buff *skb, __u16 flags)
3407{
3408 struct hci_conn *conn = chan->conn;
3409 struct hci_dev *hdev = conn->hdev;
3410 struct sk_buff *list;
3411
3412 skb->len = skb_headlen(skb);
3413 skb->data_len = 0;
3414
3415 hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
3416
3417 switch (hdev->dev_type) {
3418 case HCI_BREDR:
3419 hci_add_acl_hdr(skb, conn->handle, flags);
3420 break;
3421 case HCI_AMP:
3422 hci_add_acl_hdr(skb, chan->handle, flags);
3423 break;
3424 default:
3425 BT_ERR("%s unknown dev_type %d", hdev->name, hdev->dev_type);
3426 return;
3427 }
3428
3429 list = skb_shinfo(skb)->frag_list;
3430 if (!list) {
3431 /* Non fragmented */
3432 BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
3433
3434 skb_queue_tail(queue, skb);
3435 } else {
3436 /* Fragmented */
3437 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3438
3439 skb_shinfo(skb)->frag_list = NULL;
3440
3441 /* Queue all fragments atomically. We need to use spin_lock_bh
3442 * here because of 6LoWPAN links, as there this function is
3443 * called from softirq and using normal spin lock could cause
3444 * deadlocks.
3445 */
3446 spin_lock_bh(&queue->lock);
3447
3448 __skb_queue_tail(queue, skb);
3449
3450 flags &= ~ACL_START;
3451 flags |= ACL_CONT;
3452 do {
3453 skb = list; list = list->next;
3454
3455 hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
3456 hci_add_acl_hdr(skb, conn->handle, flags);
3457
3458 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3459
3460 __skb_queue_tail(queue, skb);
3461 } while (list);
3462
3463 spin_unlock_bh(&queue->lock);
3464 }
3465}
3466
3467void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags)
3468{
3469 struct hci_dev *hdev = chan->conn->hdev;
3470
3471 BT_DBG("%s chan %p flags 0x%4.4x", hdev->name, chan, flags);
3472
3473 hci_queue_acl(chan, &chan->data_q, skb, flags);
3474
3475 queue_work(hdev->workqueue, &hdev->tx_work);
3476}
3477
3478/* Send SCO data */
3479void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb)
3480{
3481 struct hci_dev *hdev = conn->hdev;
3482 struct hci_sco_hdr hdr;
3483
3484 BT_DBG("%s len %d", hdev->name, skb->len);
3485
3486 hdr.handle = cpu_to_le16(conn->handle);
3487 hdr.dlen = skb->len;
3488
3489 skb_push(skb, HCI_SCO_HDR_SIZE);
3490 skb_reset_transport_header(skb);
3491 memcpy(skb_transport_header(skb), &hdr, HCI_SCO_HDR_SIZE);
3492
3493 hci_skb_pkt_type(skb) = HCI_SCODATA_PKT;
3494
3495 skb_queue_tail(&conn->data_q, skb);
3496 queue_work(hdev->workqueue, &hdev->tx_work);
3497}
3498
3499/* ---- HCI TX task (outgoing data) ---- */
3500
3501/* HCI Connection scheduler */
3502static struct hci_conn *hci_low_sent(struct hci_dev *hdev, __u8 type,
3503 int *quote)
3504{
3505 struct hci_conn_hash *h = &hdev->conn_hash;
3506 struct hci_conn *conn = NULL, *c;
3507 unsigned int num = 0, min = ~0;
3508
3509 /* We don't have to lock device here. Connections are always
3510 * added and removed with TX task disabled. */
3511
3512 rcu_read_lock();
3513
3514 list_for_each_entry_rcu(c, &h->list, list) {
3515 if (c->type != type || skb_queue_empty(&c->data_q))
3516 continue;
3517
3518 if (c->state != BT_CONNECTED && c->state != BT_CONFIG)
3519 continue;
3520
3521 num++;
3522
3523 if (c->sent < min) {
3524 min = c->sent;
3525 conn = c;
3526 }
3527
3528 if (hci_conn_num(hdev, type) == num)
3529 break;
3530 }
3531
3532 rcu_read_unlock();
3533
3534 if (conn) {
3535 int cnt, q;
3536
3537 switch (conn->type) {
3538 case ACL_LINK:
3539 cnt = hdev->acl_cnt;
3540 break;
3541 case SCO_LINK:
3542 case ESCO_LINK:
3543 cnt = hdev->sco_cnt;
3544 break;
3545 case LE_LINK:
3546 cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3547 break;
3548 default:
3549 cnt = 0;
3550 BT_ERR("Unknown link type");
3551 }
3552
3553 q = cnt / num;
3554 *quote = q ? q : 1;
3555 } else
3556 *quote = 0;
3557
3558 BT_DBG("conn %p quote %d", conn, *quote);
3559 return conn;
3560}
3561
3562static void hci_link_tx_to(struct hci_dev *hdev, __u8 type)
3563{
3564 struct hci_conn_hash *h = &hdev->conn_hash;
3565 struct hci_conn *c;
3566
3567 BT_ERR("%s link tx timeout", hdev->name);
3568
3569 rcu_read_lock();
3570
3571 /* Kill stalled connections */
3572 list_for_each_entry_rcu(c, &h->list, list) {
3573 if (c->type == type && c->sent) {
3574 BT_ERR("%s killing stalled connection %pMR",
3575 hdev->name, &c->dst);
3576 hci_disconnect(c, HCI_ERROR_REMOTE_USER_TERM);
3577 }
3578 }
3579
3580 rcu_read_unlock();
3581}
3582
3583static struct hci_chan *hci_chan_sent(struct hci_dev *hdev, __u8 type,
3584 int *quote)
3585{
3586 struct hci_conn_hash *h = &hdev->conn_hash;
3587 struct hci_chan *chan = NULL;
3588 unsigned int num = 0, min = ~0, cur_prio = 0;
3589 struct hci_conn *conn;
3590 int cnt, q, conn_num = 0;
3591
3592 BT_DBG("%s", hdev->name);
3593
3594 rcu_read_lock();
3595
3596 list_for_each_entry_rcu(conn, &h->list, list) {
3597 struct hci_chan *tmp;
3598
3599 if (conn->type != type)
3600 continue;
3601
3602 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3603 continue;
3604
3605 conn_num++;
3606
3607 list_for_each_entry_rcu(tmp, &conn->chan_list, list) {
3608 struct sk_buff *skb;
3609
3610 if (skb_queue_empty(&tmp->data_q))
3611 continue;
3612
3613 skb = skb_peek(&tmp->data_q);
3614 if (skb->priority < cur_prio)
3615 continue;
3616
3617 if (skb->priority > cur_prio) {
3618 num = 0;
3619 min = ~0;
3620 cur_prio = skb->priority;
3621 }
3622
3623 num++;
3624
3625 if (conn->sent < min) {
3626 min = conn->sent;
3627 chan = tmp;
3628 }
3629 }
3630
3631 if (hci_conn_num(hdev, type) == conn_num)
3632 break;
3633 }
3634
3635 rcu_read_unlock();
3636
3637 if (!chan)
3638 return NULL;
3639
3640 switch (chan->conn->type) {
3641 case ACL_LINK:
3642 cnt = hdev->acl_cnt;
3643 break;
3644 case AMP_LINK:
3645 cnt = hdev->block_cnt;
3646 break;
3647 case SCO_LINK:
3648 case ESCO_LINK:
3649 cnt = hdev->sco_cnt;
3650 break;
3651 case LE_LINK:
3652 cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3653 break;
3654 default:
3655 cnt = 0;
3656 BT_ERR("Unknown link type");
3657 }
3658
3659 q = cnt / num;
3660 *quote = q ? q : 1;
3661 BT_DBG("chan %p quote %d", chan, *quote);
3662 return chan;
3663}
3664
3665static void hci_prio_recalculate(struct hci_dev *hdev, __u8 type)
3666{
3667 struct hci_conn_hash *h = &hdev->conn_hash;
3668 struct hci_conn *conn;
3669 int num = 0;
3670
3671 BT_DBG("%s", hdev->name);
3672
3673 rcu_read_lock();
3674
3675 list_for_each_entry_rcu(conn, &h->list, list) {
3676 struct hci_chan *chan;
3677
3678 if (conn->type != type)
3679 continue;
3680
3681 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3682 continue;
3683
3684 num++;
3685
3686 list_for_each_entry_rcu(chan, &conn->chan_list, list) {
3687 struct sk_buff *skb;
3688
3689 if (chan->sent) {
3690 chan->sent = 0;
3691 continue;
3692 }
3693
3694 if (skb_queue_empty(&chan->data_q))
3695 continue;
3696
3697 skb = skb_peek(&chan->data_q);
3698 if (skb->priority >= HCI_PRIO_MAX - 1)
3699 continue;
3700
3701 skb->priority = HCI_PRIO_MAX - 1;
3702
3703 BT_DBG("chan %p skb %p promoted to %d", chan, skb,
3704 skb->priority);
3705 }
3706
3707 if (hci_conn_num(hdev, type) == num)
3708 break;
3709 }
3710
3711 rcu_read_unlock();
3712
3713}
3714
3715static inline int __get_blocks(struct hci_dev *hdev, struct sk_buff *skb)
3716{
3717 /* Calculate count of blocks used by this packet */
3718 return DIV_ROUND_UP(skb->len - HCI_ACL_HDR_SIZE, hdev->block_len);
3719}
3720
3721static void __check_timeout(struct hci_dev *hdev, unsigned int cnt)
3722{
3723 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
3724 /* ACL tx timeout must be longer than maximum
3725 * link supervision timeout (40.9 seconds) */
3726 if (!cnt && time_after(jiffies, hdev->acl_last_tx +
3727 HCI_ACL_TX_TIMEOUT))
3728 hci_link_tx_to(hdev, ACL_LINK);
3729 }
3730}
3731
3732static void hci_sched_acl_pkt(struct hci_dev *hdev)
3733{
3734 unsigned int cnt = hdev->acl_cnt;
3735 struct hci_chan *chan;
3736 struct sk_buff *skb;
3737 int quote;
3738
3739 __check_timeout(hdev, cnt);
3740
3741 while (hdev->acl_cnt &&
3742 (chan = hci_chan_sent(hdev, ACL_LINK, "e))) {
3743 u32 priority = (skb_peek(&chan->data_q))->priority;
3744 while (quote-- && (skb = skb_peek(&chan->data_q))) {
3745 BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3746 skb->len, skb->priority);
3747
3748 /* Stop if priority has changed */
3749 if (skb->priority < priority)
3750 break;
3751
3752 skb = skb_dequeue(&chan->data_q);
3753
3754 hci_conn_enter_active_mode(chan->conn,
3755 bt_cb(skb)->force_active);
3756
3757 hci_send_frame(hdev, skb);
3758 hdev->acl_last_tx = jiffies;
3759
3760 hdev->acl_cnt--;
3761 chan->sent++;
3762 chan->conn->sent++;
3763 }
3764 }
3765
3766 if (cnt != hdev->acl_cnt)
3767 hci_prio_recalculate(hdev, ACL_LINK);
3768}
3769
3770static void hci_sched_acl_blk(struct hci_dev *hdev)
3771{
3772 unsigned int cnt = hdev->block_cnt;
3773 struct hci_chan *chan;
3774 struct sk_buff *skb;
3775 int quote;
3776 u8 type;
3777
3778 __check_timeout(hdev, cnt);
3779
3780 BT_DBG("%s", hdev->name);
3781
3782 if (hdev->dev_type == HCI_AMP)
3783 type = AMP_LINK;
3784 else
3785 type = ACL_LINK;
3786
3787 while (hdev->block_cnt > 0 &&
3788 (chan = hci_chan_sent(hdev, type, "e))) {
3789 u32 priority = (skb_peek(&chan->data_q))->priority;
3790 while (quote > 0 && (skb = skb_peek(&chan->data_q))) {
3791 int blocks;
3792
3793 BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3794 skb->len, skb->priority);
3795
3796 /* Stop if priority has changed */
3797 if (skb->priority < priority)
3798 break;
3799
3800 skb = skb_dequeue(&chan->data_q);
3801
3802 blocks = __get_blocks(hdev, skb);
3803 if (blocks > hdev->block_cnt)
3804 return;
3805
3806 hci_conn_enter_active_mode(chan->conn,
3807 bt_cb(skb)->force_active);
3808
3809 hci_send_frame(hdev, skb);
3810 hdev->acl_last_tx = jiffies;
3811
3812 hdev->block_cnt -= blocks;
3813 quote -= blocks;
3814
3815 chan->sent += blocks;
3816 chan->conn->sent += blocks;
3817 }
3818 }
3819
3820 if (cnt != hdev->block_cnt)
3821 hci_prio_recalculate(hdev, type);
3822}
3823
3824static void hci_sched_acl(struct hci_dev *hdev)
3825{
3826 BT_DBG("%s", hdev->name);
3827
3828 /* No ACL link over BR/EDR controller */
3829 if (!hci_conn_num(hdev, ACL_LINK) && hdev->dev_type == HCI_BREDR)
3830 return;
3831
3832 /* No AMP link over AMP controller */
3833 if (!hci_conn_num(hdev, AMP_LINK) && hdev->dev_type == HCI_AMP)
3834 return;
3835
3836 switch (hdev->flow_ctl_mode) {
3837 case HCI_FLOW_CTL_MODE_PACKET_BASED:
3838 hci_sched_acl_pkt(hdev);
3839 break;
3840
3841 case HCI_FLOW_CTL_MODE_BLOCK_BASED:
3842 hci_sched_acl_blk(hdev);
3843 break;
3844 }
3845}
3846
3847/* Schedule SCO */
3848static void hci_sched_sco(struct hci_dev *hdev)
3849{
3850 struct hci_conn *conn;
3851 struct sk_buff *skb;
3852 int quote;
3853
3854 BT_DBG("%s", hdev->name);
3855
3856 if (!hci_conn_num(hdev, SCO_LINK))
3857 return;
3858
3859 while (hdev->sco_cnt && (conn = hci_low_sent(hdev, SCO_LINK, "e))) {
3860 while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3861 BT_DBG("skb %p len %d", skb, skb->len);
3862 hci_send_frame(hdev, skb);
3863
3864 conn->sent++;
3865 if (conn->sent == ~0)
3866 conn->sent = 0;
3867 }
3868 }
3869}
3870
3871static void hci_sched_esco(struct hci_dev *hdev)
3872{
3873 struct hci_conn *conn;
3874 struct sk_buff *skb;
3875 int quote;
3876
3877 BT_DBG("%s", hdev->name);
3878
3879 if (!hci_conn_num(hdev, ESCO_LINK))
3880 return;
3881
3882 while (hdev->sco_cnt && (conn = hci_low_sent(hdev, ESCO_LINK,
3883 "e))) {
3884 while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3885 BT_DBG("skb %p len %d", skb, skb->len);
3886 hci_send_frame(hdev, skb);
3887
3888 conn->sent++;
3889 if (conn->sent == ~0)
3890 conn->sent = 0;
3891 }
3892 }
3893}
3894
3895static void hci_sched_le(struct hci_dev *hdev)
3896{
3897 struct hci_chan *chan;
3898 struct sk_buff *skb;
3899 int quote, cnt, tmp;
3900
3901 BT_DBG("%s", hdev->name);
3902
3903 if (!hci_conn_num(hdev, LE_LINK))
3904 return;
3905
3906 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
3907 /* LE tx timeout must be longer than maximum
3908 * link supervision timeout (40.9 seconds) */
3909 if (!hdev->le_cnt && hdev->le_pkts &&
3910 time_after(jiffies, hdev->le_last_tx + HZ * 45))
3911 hci_link_tx_to(hdev, LE_LINK);
3912 }
3913
3914 cnt = hdev->le_pkts ? hdev->le_cnt : hdev->acl_cnt;
3915 tmp = cnt;
3916 while (cnt && (chan = hci_chan_sent(hdev, LE_LINK, "e))) {
3917 u32 priority = (skb_peek(&chan->data_q))->priority;
3918 while (quote-- && (skb = skb_peek(&chan->data_q))) {
3919 BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3920 skb->len, skb->priority);
3921
3922 /* Stop if priority has changed */
3923 if (skb->priority < priority)
3924 break;
3925
3926 skb = skb_dequeue(&chan->data_q);
3927
3928 hci_send_frame(hdev, skb);
3929 hdev->le_last_tx = jiffies;
3930
3931 cnt--;
3932 chan->sent++;
3933 chan->conn->sent++;
3934 }
3935 }
3936
3937 if (hdev->le_pkts)
3938 hdev->le_cnt = cnt;
3939 else
3940 hdev->acl_cnt = cnt;
3941
3942 if (cnt != tmp)
3943 hci_prio_recalculate(hdev, LE_LINK);
3944}
3945
3946static void hci_tx_work(struct work_struct *work)
3947{
3948 struct hci_dev *hdev = container_of(work, struct hci_dev, tx_work);
3949 struct sk_buff *skb;
3950
3951 BT_DBG("%s acl %d sco %d le %d", hdev->name, hdev->acl_cnt,
3952 hdev->sco_cnt, hdev->le_cnt);
3953
3954 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
3955 /* Schedule queues and send stuff to HCI driver */
3956 hci_sched_acl(hdev);
3957 hci_sched_sco(hdev);
3958 hci_sched_esco(hdev);
3959 hci_sched_le(hdev);
3960 }
3961
3962 /* Send next queued raw (unknown type) packet */
3963 while ((skb = skb_dequeue(&hdev->raw_q)))
3964 hci_send_frame(hdev, skb);
3965}
3966
3967/* ----- HCI RX task (incoming data processing) ----- */
3968
3969/* ACL data packet */
3970static void hci_acldata_packet(struct hci_dev *hdev, struct sk_buff *skb)
3971{
3972 struct hci_acl_hdr *hdr = (void *) skb->data;
3973 struct hci_conn *conn;
3974 __u16 handle, flags;
3975
3976 skb_pull(skb, HCI_ACL_HDR_SIZE);
3977
3978 handle = __le16_to_cpu(hdr->handle);
3979 flags = hci_flags(handle);
3980 handle = hci_handle(handle);
3981
3982 BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len,
3983 handle, flags);
3984
3985 hdev->stat.acl_rx++;
3986
3987 hci_dev_lock(hdev);
3988 conn = hci_conn_hash_lookup_handle(hdev, handle);
3989 hci_dev_unlock(hdev);
3990
3991 if (conn) {
3992 hci_conn_enter_active_mode(conn, BT_POWER_FORCE_ACTIVE_OFF);
3993
3994 /* Send to upper protocol */
3995 l2cap_recv_acldata(conn, skb, flags);
3996 return;
3997 } else {
3998 BT_ERR("%s ACL packet for unknown connection handle %d",
3999 hdev->name, handle);
4000 }
4001
4002 kfree_skb(skb);
4003}
4004
4005/* SCO data packet */
4006static void hci_scodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
4007{
4008 struct hci_sco_hdr *hdr = (void *) skb->data;
4009 struct hci_conn *conn;
4010 __u16 handle;
4011
4012 skb_pull(skb, HCI_SCO_HDR_SIZE);
4013
4014 handle = __le16_to_cpu(hdr->handle);
4015
4016 BT_DBG("%s len %d handle 0x%4.4x", hdev->name, skb->len, handle);
4017
4018 hdev->stat.sco_rx++;
4019
4020 hci_dev_lock(hdev);
4021 conn = hci_conn_hash_lookup_handle(hdev, handle);
4022 hci_dev_unlock(hdev);
4023
4024 if (conn) {
4025 /* Send to upper protocol */
4026 sco_recv_scodata(conn, skb);
4027 return;
4028 } else {
4029 BT_ERR("%s SCO packet for unknown connection handle %d",
4030 hdev->name, handle);
4031 }
4032
4033 kfree_skb(skb);
4034}
4035
4036static bool hci_req_is_complete(struct hci_dev *hdev)
4037{
4038 struct sk_buff *skb;
4039
4040 skb = skb_peek(&hdev->cmd_q);
4041 if (!skb)
4042 return true;
4043
4044 return (bt_cb(skb)->hci.req_flags & HCI_REQ_START);
4045}
4046
4047static void hci_resend_last(struct hci_dev *hdev)
4048{
4049 struct hci_command_hdr *sent;
4050 struct sk_buff *skb;
4051 u16 opcode;
4052
4053 if (!hdev->sent_cmd)
4054 return;
4055
4056 sent = (void *) hdev->sent_cmd->data;
4057 opcode = __le16_to_cpu(sent->opcode);
4058 if (opcode == HCI_OP_RESET)
4059 return;
4060
4061 skb = skb_clone(hdev->sent_cmd, GFP_KERNEL);
4062 if (!skb)
4063 return;
4064
4065 skb_queue_head(&hdev->cmd_q, skb);
4066 queue_work(hdev->workqueue, &hdev->cmd_work);
4067}
4068
4069void hci_req_cmd_complete(struct hci_dev *hdev, u16 opcode, u8 status,
4070 hci_req_complete_t *req_complete,
4071 hci_req_complete_skb_t *req_complete_skb)
4072{
4073 struct sk_buff *skb;
4074 unsigned long flags;
4075
4076 BT_DBG("opcode 0x%04x status 0x%02x", opcode, status);
4077
4078 /* If the completed command doesn't match the last one that was
4079 * sent we need to do special handling of it.
4080 */
4081 if (!hci_sent_cmd_data(hdev, opcode)) {
4082 /* Some CSR based controllers generate a spontaneous
4083 * reset complete event during init and any pending
4084 * command will never be completed. In such a case we
4085 * need to resend whatever was the last sent
4086 * command.
4087 */
4088 if (test_bit(HCI_INIT, &hdev->flags) && opcode == HCI_OP_RESET)
4089 hci_resend_last(hdev);
4090
4091 return;
4092 }
4093
4094 /* If the command succeeded and there's still more commands in
4095 * this request the request is not yet complete.
4096 */
4097 if (!status && !hci_req_is_complete(hdev))
4098 return;
4099
4100 /* If this was the last command in a request the complete
4101 * callback would be found in hdev->sent_cmd instead of the
4102 * command queue (hdev->cmd_q).
4103 */
4104 if (bt_cb(hdev->sent_cmd)->hci.req_flags & HCI_REQ_SKB) {
4105 *req_complete_skb = bt_cb(hdev->sent_cmd)->hci.req_complete_skb;
4106 return;
4107 }
4108
4109 if (bt_cb(hdev->sent_cmd)->hci.req_complete) {
4110 *req_complete = bt_cb(hdev->sent_cmd)->hci.req_complete;
4111 return;
4112 }
4113
4114 /* Remove all pending commands belonging to this request */
4115 spin_lock_irqsave(&hdev->cmd_q.lock, flags);
4116 while ((skb = __skb_dequeue(&hdev->cmd_q))) {
4117 if (bt_cb(skb)->hci.req_flags & HCI_REQ_START) {
4118 __skb_queue_head(&hdev->cmd_q, skb);
4119 break;
4120 }
4121
4122 if (bt_cb(skb)->hci.req_flags & HCI_REQ_SKB)
4123 *req_complete_skb = bt_cb(skb)->hci.req_complete_skb;
4124 else
4125 *req_complete = bt_cb(skb)->hci.req_complete;
4126 kfree_skb(skb);
4127 }
4128 spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
4129}
4130
4131static void hci_rx_work(struct work_struct *work)
4132{
4133 struct hci_dev *hdev = container_of(work, struct hci_dev, rx_work);
4134 struct sk_buff *skb;
4135
4136 BT_DBG("%s", hdev->name);
4137
4138 while ((skb = skb_dequeue(&hdev->rx_q))) {
4139 /* Send copy to monitor */
4140 hci_send_to_monitor(hdev, skb);
4141
4142 if (atomic_read(&hdev->promisc)) {
4143 /* Send copy to the sockets */
4144 hci_send_to_sock(hdev, skb);
4145 }
4146
4147 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
4148 kfree_skb(skb);
4149 continue;
4150 }
4151
4152 if (test_bit(HCI_INIT, &hdev->flags)) {
4153 /* Don't process data packets in this states. */
4154 switch (hci_skb_pkt_type(skb)) {
4155 case HCI_ACLDATA_PKT:
4156 case HCI_SCODATA_PKT:
4157 kfree_skb(skb);
4158 continue;
4159 }
4160 }
4161
4162 /* Process frame */
4163 switch (hci_skb_pkt_type(skb)) {
4164 case HCI_EVENT_PKT:
4165 BT_DBG("%s Event packet", hdev->name);
4166 hci_event_packet(hdev, skb);
4167 break;
4168
4169 case HCI_ACLDATA_PKT:
4170 BT_DBG("%s ACL data packet", hdev->name);
4171 hci_acldata_packet(hdev, skb);
4172 break;
4173
4174 case HCI_SCODATA_PKT:
4175 BT_DBG("%s SCO data packet", hdev->name);
4176 hci_scodata_packet(hdev, skb);
4177 break;
4178
4179 default:
4180 kfree_skb(skb);
4181 break;
4182 }
4183 }
4184}
4185
4186static void hci_cmd_work(struct work_struct *work)
4187{
4188 struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_work);
4189 struct sk_buff *skb;
4190
4191 BT_DBG("%s cmd_cnt %d cmd queued %d", hdev->name,
4192 atomic_read(&hdev->cmd_cnt), skb_queue_len(&hdev->cmd_q));
4193
4194 /* Send queued commands */
4195 if (atomic_read(&hdev->cmd_cnt)) {
4196 skb = skb_dequeue(&hdev->cmd_q);
4197 if (!skb)
4198 return;
4199
4200 kfree_skb(hdev->sent_cmd);
4201
4202 hdev->sent_cmd = skb_clone(skb, GFP_KERNEL);
4203 if (hdev->sent_cmd) {
4204 atomic_dec(&hdev->cmd_cnt);
4205 hci_send_frame(hdev, skb);
4206 if (test_bit(HCI_RESET, &hdev->flags))
4207 cancel_delayed_work(&hdev->cmd_timer);
4208 else
4209 schedule_delayed_work(&hdev->cmd_timer,
4210 HCI_CMD_TIMEOUT);
4211 } else {
4212 skb_queue_head(&hdev->cmd_q, skb);
4213 queue_work(hdev->workqueue, &hdev->cmd_work);
4214 }
4215 }
4216}
1/*
2 BlueZ - Bluetooth protocol stack for Linux
3 Copyright (C) 2000-2001 Qualcomm Incorporated
4 Copyright (C) 2011 ProFUSION Embedded Systems
5
6 Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License version 2 as
10 published by the Free Software Foundation;
11
12 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
13 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
14 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
15 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
16 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
17 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20
21 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
22 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
23 SOFTWARE IS DISCLAIMED.
24*/
25
26/* Bluetooth HCI core. */
27
28#include <linux/export.h>
29#include <linux/rfkill.h>
30#include <linux/debugfs.h>
31#include <linux/crypto.h>
32#include <linux/property.h>
33#include <linux/suspend.h>
34#include <linux/wait.h>
35#include <asm/unaligned.h>
36
37#include <net/bluetooth/bluetooth.h>
38#include <net/bluetooth/hci_core.h>
39#include <net/bluetooth/l2cap.h>
40#include <net/bluetooth/mgmt.h>
41
42#include "hci_request.h"
43#include "hci_debugfs.h"
44#include "smp.h"
45#include "leds.h"
46#include "msft.h"
47
48static void hci_rx_work(struct work_struct *work);
49static void hci_cmd_work(struct work_struct *work);
50static void hci_tx_work(struct work_struct *work);
51
52/* HCI device list */
53LIST_HEAD(hci_dev_list);
54DEFINE_RWLOCK(hci_dev_list_lock);
55
56/* HCI callback list */
57LIST_HEAD(hci_cb_list);
58DEFINE_MUTEX(hci_cb_list_lock);
59
60/* HCI ID Numbering */
61static DEFINE_IDA(hci_index_ida);
62
63/* ---- HCI debugfs entries ---- */
64
65static ssize_t dut_mode_read(struct file *file, char __user *user_buf,
66 size_t count, loff_t *ppos)
67{
68 struct hci_dev *hdev = file->private_data;
69 char buf[3];
70
71 buf[0] = hci_dev_test_flag(hdev, HCI_DUT_MODE) ? 'Y' : 'N';
72 buf[1] = '\n';
73 buf[2] = '\0';
74 return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
75}
76
77static ssize_t dut_mode_write(struct file *file, const char __user *user_buf,
78 size_t count, loff_t *ppos)
79{
80 struct hci_dev *hdev = file->private_data;
81 struct sk_buff *skb;
82 bool enable;
83 int err;
84
85 if (!test_bit(HCI_UP, &hdev->flags))
86 return -ENETDOWN;
87
88 err = kstrtobool_from_user(user_buf, count, &enable);
89 if (err)
90 return err;
91
92 if (enable == hci_dev_test_flag(hdev, HCI_DUT_MODE))
93 return -EALREADY;
94
95 hci_req_sync_lock(hdev);
96 if (enable)
97 skb = __hci_cmd_sync(hdev, HCI_OP_ENABLE_DUT_MODE, 0, NULL,
98 HCI_CMD_TIMEOUT);
99 else
100 skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL,
101 HCI_CMD_TIMEOUT);
102 hci_req_sync_unlock(hdev);
103
104 if (IS_ERR(skb))
105 return PTR_ERR(skb);
106
107 kfree_skb(skb);
108
109 hci_dev_change_flag(hdev, HCI_DUT_MODE);
110
111 return count;
112}
113
114static const struct file_operations dut_mode_fops = {
115 .open = simple_open,
116 .read = dut_mode_read,
117 .write = dut_mode_write,
118 .llseek = default_llseek,
119};
120
121static ssize_t vendor_diag_read(struct file *file, char __user *user_buf,
122 size_t count, loff_t *ppos)
123{
124 struct hci_dev *hdev = file->private_data;
125 char buf[3];
126
127 buf[0] = hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) ? 'Y' : 'N';
128 buf[1] = '\n';
129 buf[2] = '\0';
130 return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
131}
132
133static ssize_t vendor_diag_write(struct file *file, const char __user *user_buf,
134 size_t count, loff_t *ppos)
135{
136 struct hci_dev *hdev = file->private_data;
137 bool enable;
138 int err;
139
140 err = kstrtobool_from_user(user_buf, count, &enable);
141 if (err)
142 return err;
143
144 /* When the diagnostic flags are not persistent and the transport
145 * is not active or in user channel operation, then there is no need
146 * for the vendor callback. Instead just store the desired value and
147 * the setting will be programmed when the controller gets powered on.
148 */
149 if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) &&
150 (!test_bit(HCI_RUNNING, &hdev->flags) ||
151 hci_dev_test_flag(hdev, HCI_USER_CHANNEL)))
152 goto done;
153
154 hci_req_sync_lock(hdev);
155 err = hdev->set_diag(hdev, enable);
156 hci_req_sync_unlock(hdev);
157
158 if (err < 0)
159 return err;
160
161done:
162 if (enable)
163 hci_dev_set_flag(hdev, HCI_VENDOR_DIAG);
164 else
165 hci_dev_clear_flag(hdev, HCI_VENDOR_DIAG);
166
167 return count;
168}
169
170static const struct file_operations vendor_diag_fops = {
171 .open = simple_open,
172 .read = vendor_diag_read,
173 .write = vendor_diag_write,
174 .llseek = default_llseek,
175};
176
177static void hci_debugfs_create_basic(struct hci_dev *hdev)
178{
179 debugfs_create_file("dut_mode", 0644, hdev->debugfs, hdev,
180 &dut_mode_fops);
181
182 if (hdev->set_diag)
183 debugfs_create_file("vendor_diag", 0644, hdev->debugfs, hdev,
184 &vendor_diag_fops);
185}
186
187static int hci_reset_req(struct hci_request *req, unsigned long opt)
188{
189 BT_DBG("%s %ld", req->hdev->name, opt);
190
191 /* Reset device */
192 set_bit(HCI_RESET, &req->hdev->flags);
193 hci_req_add(req, HCI_OP_RESET, 0, NULL);
194 return 0;
195}
196
197static void bredr_init(struct hci_request *req)
198{
199 req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_PACKET_BASED;
200
201 /* Read Local Supported Features */
202 hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
203
204 /* Read Local Version */
205 hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
206
207 /* Read BD Address */
208 hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL);
209}
210
211static void amp_init1(struct hci_request *req)
212{
213 req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_BLOCK_BASED;
214
215 /* Read Local Version */
216 hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
217
218 /* Read Local Supported Commands */
219 hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL);
220
221 /* Read Local AMP Info */
222 hci_req_add(req, HCI_OP_READ_LOCAL_AMP_INFO, 0, NULL);
223
224 /* Read Data Blk size */
225 hci_req_add(req, HCI_OP_READ_DATA_BLOCK_SIZE, 0, NULL);
226
227 /* Read Flow Control Mode */
228 hci_req_add(req, HCI_OP_READ_FLOW_CONTROL_MODE, 0, NULL);
229
230 /* Read Location Data */
231 hci_req_add(req, HCI_OP_READ_LOCATION_DATA, 0, NULL);
232}
233
234static int amp_init2(struct hci_request *req)
235{
236 /* Read Local Supported Features. Not all AMP controllers
237 * support this so it's placed conditionally in the second
238 * stage init.
239 */
240 if (req->hdev->commands[14] & 0x20)
241 hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
242
243 return 0;
244}
245
246static int hci_init1_req(struct hci_request *req, unsigned long opt)
247{
248 struct hci_dev *hdev = req->hdev;
249
250 BT_DBG("%s %ld", hdev->name, opt);
251
252 /* Reset */
253 if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks))
254 hci_reset_req(req, 0);
255
256 switch (hdev->dev_type) {
257 case HCI_PRIMARY:
258 bredr_init(req);
259 break;
260 case HCI_AMP:
261 amp_init1(req);
262 break;
263 default:
264 bt_dev_err(hdev, "Unknown device type %d", hdev->dev_type);
265 break;
266 }
267
268 return 0;
269}
270
271static void bredr_setup(struct hci_request *req)
272{
273 __le16 param;
274 __u8 flt_type;
275
276 /* Read Buffer Size (ACL mtu, max pkt, etc.) */
277 hci_req_add(req, HCI_OP_READ_BUFFER_SIZE, 0, NULL);
278
279 /* Read Class of Device */
280 hci_req_add(req, HCI_OP_READ_CLASS_OF_DEV, 0, NULL);
281
282 /* Read Local Name */
283 hci_req_add(req, HCI_OP_READ_LOCAL_NAME, 0, NULL);
284
285 /* Read Voice Setting */
286 hci_req_add(req, HCI_OP_READ_VOICE_SETTING, 0, NULL);
287
288 /* Read Number of Supported IAC */
289 hci_req_add(req, HCI_OP_READ_NUM_SUPPORTED_IAC, 0, NULL);
290
291 /* Read Current IAC LAP */
292 hci_req_add(req, HCI_OP_READ_CURRENT_IAC_LAP, 0, NULL);
293
294 /* Clear Event Filters */
295 flt_type = HCI_FLT_CLEAR_ALL;
296 hci_req_add(req, HCI_OP_SET_EVENT_FLT, 1, &flt_type);
297
298 /* Connection accept timeout ~20 secs */
299 param = cpu_to_le16(0x7d00);
300 hci_req_add(req, HCI_OP_WRITE_CA_TIMEOUT, 2, ¶m);
301}
302
303static void le_setup(struct hci_request *req)
304{
305 struct hci_dev *hdev = req->hdev;
306
307 /* Read LE Buffer Size */
308 hci_req_add(req, HCI_OP_LE_READ_BUFFER_SIZE, 0, NULL);
309
310 /* Read LE Local Supported Features */
311 hci_req_add(req, HCI_OP_LE_READ_LOCAL_FEATURES, 0, NULL);
312
313 /* Read LE Supported States */
314 hci_req_add(req, HCI_OP_LE_READ_SUPPORTED_STATES, 0, NULL);
315
316 /* LE-only controllers have LE implicitly enabled */
317 if (!lmp_bredr_capable(hdev))
318 hci_dev_set_flag(hdev, HCI_LE_ENABLED);
319}
320
321static void hci_setup_event_mask(struct hci_request *req)
322{
323 struct hci_dev *hdev = req->hdev;
324
325 /* The second byte is 0xff instead of 0x9f (two reserved bits
326 * disabled) since a Broadcom 1.2 dongle doesn't respond to the
327 * command otherwise.
328 */
329 u8 events[8] = { 0xff, 0xff, 0xfb, 0xff, 0x00, 0x00, 0x00, 0x00 };
330
331 /* CSR 1.1 dongles does not accept any bitfield so don't try to set
332 * any event mask for pre 1.2 devices.
333 */
334 if (hdev->hci_ver < BLUETOOTH_VER_1_2)
335 return;
336
337 if (lmp_bredr_capable(hdev)) {
338 events[4] |= 0x01; /* Flow Specification Complete */
339 } else {
340 /* Use a different default for LE-only devices */
341 memset(events, 0, sizeof(events));
342 events[1] |= 0x20; /* Command Complete */
343 events[1] |= 0x40; /* Command Status */
344 events[1] |= 0x80; /* Hardware Error */
345
346 /* If the controller supports the Disconnect command, enable
347 * the corresponding event. In addition enable packet flow
348 * control related events.
349 */
350 if (hdev->commands[0] & 0x20) {
351 events[0] |= 0x10; /* Disconnection Complete */
352 events[2] |= 0x04; /* Number of Completed Packets */
353 events[3] |= 0x02; /* Data Buffer Overflow */
354 }
355
356 /* If the controller supports the Read Remote Version
357 * Information command, enable the corresponding event.
358 */
359 if (hdev->commands[2] & 0x80)
360 events[1] |= 0x08; /* Read Remote Version Information
361 * Complete
362 */
363
364 if (hdev->le_features[0] & HCI_LE_ENCRYPTION) {
365 events[0] |= 0x80; /* Encryption Change */
366 events[5] |= 0x80; /* Encryption Key Refresh Complete */
367 }
368 }
369
370 if (lmp_inq_rssi_capable(hdev) ||
371 test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks))
372 events[4] |= 0x02; /* Inquiry Result with RSSI */
373
374 if (lmp_ext_feat_capable(hdev))
375 events[4] |= 0x04; /* Read Remote Extended Features Complete */
376
377 if (lmp_esco_capable(hdev)) {
378 events[5] |= 0x08; /* Synchronous Connection Complete */
379 events[5] |= 0x10; /* Synchronous Connection Changed */
380 }
381
382 if (lmp_sniffsubr_capable(hdev))
383 events[5] |= 0x20; /* Sniff Subrating */
384
385 if (lmp_pause_enc_capable(hdev))
386 events[5] |= 0x80; /* Encryption Key Refresh Complete */
387
388 if (lmp_ext_inq_capable(hdev))
389 events[5] |= 0x40; /* Extended Inquiry Result */
390
391 if (lmp_no_flush_capable(hdev))
392 events[7] |= 0x01; /* Enhanced Flush Complete */
393
394 if (lmp_lsto_capable(hdev))
395 events[6] |= 0x80; /* Link Supervision Timeout Changed */
396
397 if (lmp_ssp_capable(hdev)) {
398 events[6] |= 0x01; /* IO Capability Request */
399 events[6] |= 0x02; /* IO Capability Response */
400 events[6] |= 0x04; /* User Confirmation Request */
401 events[6] |= 0x08; /* User Passkey Request */
402 events[6] |= 0x10; /* Remote OOB Data Request */
403 events[6] |= 0x20; /* Simple Pairing Complete */
404 events[7] |= 0x04; /* User Passkey Notification */
405 events[7] |= 0x08; /* Keypress Notification */
406 events[7] |= 0x10; /* Remote Host Supported
407 * Features Notification
408 */
409 }
410
411 if (lmp_le_capable(hdev))
412 events[7] |= 0x20; /* LE Meta-Event */
413
414 hci_req_add(req, HCI_OP_SET_EVENT_MASK, sizeof(events), events);
415}
416
417static int hci_init2_req(struct hci_request *req, unsigned long opt)
418{
419 struct hci_dev *hdev = req->hdev;
420
421 if (hdev->dev_type == HCI_AMP)
422 return amp_init2(req);
423
424 if (lmp_bredr_capable(hdev))
425 bredr_setup(req);
426 else
427 hci_dev_clear_flag(hdev, HCI_BREDR_ENABLED);
428
429 if (lmp_le_capable(hdev))
430 le_setup(req);
431
432 /* All Bluetooth 1.2 and later controllers should support the
433 * HCI command for reading the local supported commands.
434 *
435 * Unfortunately some controllers indicate Bluetooth 1.2 support,
436 * but do not have support for this command. If that is the case,
437 * the driver can quirk the behavior and skip reading the local
438 * supported commands.
439 */
440 if (hdev->hci_ver > BLUETOOTH_VER_1_1 &&
441 !test_bit(HCI_QUIRK_BROKEN_LOCAL_COMMANDS, &hdev->quirks))
442 hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL);
443
444 if (lmp_ssp_capable(hdev)) {
445 /* When SSP is available, then the host features page
446 * should also be available as well. However some
447 * controllers list the max_page as 0 as long as SSP
448 * has not been enabled. To achieve proper debugging
449 * output, force the minimum max_page to 1 at least.
450 */
451 hdev->max_page = 0x01;
452
453 if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) {
454 u8 mode = 0x01;
455
456 hci_req_add(req, HCI_OP_WRITE_SSP_MODE,
457 sizeof(mode), &mode);
458 } else {
459 struct hci_cp_write_eir cp;
460
461 memset(hdev->eir, 0, sizeof(hdev->eir));
462 memset(&cp, 0, sizeof(cp));
463
464 hci_req_add(req, HCI_OP_WRITE_EIR, sizeof(cp), &cp);
465 }
466 }
467
468 if (lmp_inq_rssi_capable(hdev) ||
469 test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks)) {
470 u8 mode;
471
472 /* If Extended Inquiry Result events are supported, then
473 * they are clearly preferred over Inquiry Result with RSSI
474 * events.
475 */
476 mode = lmp_ext_inq_capable(hdev) ? 0x02 : 0x01;
477
478 hci_req_add(req, HCI_OP_WRITE_INQUIRY_MODE, 1, &mode);
479 }
480
481 if (lmp_inq_tx_pwr_capable(hdev))
482 hci_req_add(req, HCI_OP_READ_INQ_RSP_TX_POWER, 0, NULL);
483
484 if (lmp_ext_feat_capable(hdev)) {
485 struct hci_cp_read_local_ext_features cp;
486
487 cp.page = 0x01;
488 hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES,
489 sizeof(cp), &cp);
490 }
491
492 if (hci_dev_test_flag(hdev, HCI_LINK_SECURITY)) {
493 u8 enable = 1;
494 hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, sizeof(enable),
495 &enable);
496 }
497
498 return 0;
499}
500
501static void hci_setup_link_policy(struct hci_request *req)
502{
503 struct hci_dev *hdev = req->hdev;
504 struct hci_cp_write_def_link_policy cp;
505 u16 link_policy = 0;
506
507 if (lmp_rswitch_capable(hdev))
508 link_policy |= HCI_LP_RSWITCH;
509 if (lmp_hold_capable(hdev))
510 link_policy |= HCI_LP_HOLD;
511 if (lmp_sniff_capable(hdev))
512 link_policy |= HCI_LP_SNIFF;
513 if (lmp_park_capable(hdev))
514 link_policy |= HCI_LP_PARK;
515
516 cp.policy = cpu_to_le16(link_policy);
517 hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, sizeof(cp), &cp);
518}
519
520static void hci_set_le_support(struct hci_request *req)
521{
522 struct hci_dev *hdev = req->hdev;
523 struct hci_cp_write_le_host_supported cp;
524
525 /* LE-only devices do not support explicit enablement */
526 if (!lmp_bredr_capable(hdev))
527 return;
528
529 memset(&cp, 0, sizeof(cp));
530
531 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
532 cp.le = 0x01;
533 cp.simul = 0x00;
534 }
535
536 if (cp.le != lmp_host_le_capable(hdev))
537 hci_req_add(req, HCI_OP_WRITE_LE_HOST_SUPPORTED, sizeof(cp),
538 &cp);
539}
540
541static void hci_set_event_mask_page_2(struct hci_request *req)
542{
543 struct hci_dev *hdev = req->hdev;
544 u8 events[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
545 bool changed = false;
546
547 /* If Connectionless Slave Broadcast master role is supported
548 * enable all necessary events for it.
549 */
550 if (lmp_csb_master_capable(hdev)) {
551 events[1] |= 0x40; /* Triggered Clock Capture */
552 events[1] |= 0x80; /* Synchronization Train Complete */
553 events[2] |= 0x10; /* Slave Page Response Timeout */
554 events[2] |= 0x20; /* CSB Channel Map Change */
555 changed = true;
556 }
557
558 /* If Connectionless Slave Broadcast slave role is supported
559 * enable all necessary events for it.
560 */
561 if (lmp_csb_slave_capable(hdev)) {
562 events[2] |= 0x01; /* Synchronization Train Received */
563 events[2] |= 0x02; /* CSB Receive */
564 events[2] |= 0x04; /* CSB Timeout */
565 events[2] |= 0x08; /* Truncated Page Complete */
566 changed = true;
567 }
568
569 /* Enable Authenticated Payload Timeout Expired event if supported */
570 if (lmp_ping_capable(hdev) || hdev->le_features[0] & HCI_LE_PING) {
571 events[2] |= 0x80;
572 changed = true;
573 }
574
575 /* Some Broadcom based controllers indicate support for Set Event
576 * Mask Page 2 command, but then actually do not support it. Since
577 * the default value is all bits set to zero, the command is only
578 * required if the event mask has to be changed. In case no change
579 * to the event mask is needed, skip this command.
580 */
581 if (changed)
582 hci_req_add(req, HCI_OP_SET_EVENT_MASK_PAGE_2,
583 sizeof(events), events);
584}
585
586static int hci_init3_req(struct hci_request *req, unsigned long opt)
587{
588 struct hci_dev *hdev = req->hdev;
589 u8 p;
590
591 hci_setup_event_mask(req);
592
593 if (hdev->commands[6] & 0x20 &&
594 !test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) {
595 struct hci_cp_read_stored_link_key cp;
596
597 bacpy(&cp.bdaddr, BDADDR_ANY);
598 cp.read_all = 0x01;
599 hci_req_add(req, HCI_OP_READ_STORED_LINK_KEY, sizeof(cp), &cp);
600 }
601
602 if (hdev->commands[5] & 0x10)
603 hci_setup_link_policy(req);
604
605 if (hdev->commands[8] & 0x01)
606 hci_req_add(req, HCI_OP_READ_PAGE_SCAN_ACTIVITY, 0, NULL);
607
608 if (hdev->commands[18] & 0x04 &&
609 !test_bit(HCI_QUIRK_BROKEN_ERR_DATA_REPORTING, &hdev->quirks))
610 hci_req_add(req, HCI_OP_READ_DEF_ERR_DATA_REPORTING, 0, NULL);
611
612 /* Some older Broadcom based Bluetooth 1.2 controllers do not
613 * support the Read Page Scan Type command. Check support for
614 * this command in the bit mask of supported commands.
615 */
616 if (hdev->commands[13] & 0x01)
617 hci_req_add(req, HCI_OP_READ_PAGE_SCAN_TYPE, 0, NULL);
618
619 if (lmp_le_capable(hdev)) {
620 u8 events[8];
621
622 memset(events, 0, sizeof(events));
623
624 if (hdev->le_features[0] & HCI_LE_ENCRYPTION)
625 events[0] |= 0x10; /* LE Long Term Key Request */
626
627 /* If controller supports the Connection Parameters Request
628 * Link Layer Procedure, enable the corresponding event.
629 */
630 if (hdev->le_features[0] & HCI_LE_CONN_PARAM_REQ_PROC)
631 events[0] |= 0x20; /* LE Remote Connection
632 * Parameter Request
633 */
634
635 /* If the controller supports the Data Length Extension
636 * feature, enable the corresponding event.
637 */
638 if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)
639 events[0] |= 0x40; /* LE Data Length Change */
640
641 /* If the controller supports LL Privacy feature, enable
642 * the corresponding event.
643 */
644 if (hdev->le_features[0] & HCI_LE_LL_PRIVACY)
645 events[1] |= 0x02; /* LE Enhanced Connection
646 * Complete
647 */
648
649 /* If the controller supports Extended Scanner Filter
650 * Policies, enable the correspondig event.
651 */
652 if (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY)
653 events[1] |= 0x04; /* LE Direct Advertising
654 * Report
655 */
656
657 /* If the controller supports Channel Selection Algorithm #2
658 * feature, enable the corresponding event.
659 */
660 if (hdev->le_features[1] & HCI_LE_CHAN_SEL_ALG2)
661 events[2] |= 0x08; /* LE Channel Selection
662 * Algorithm
663 */
664
665 /* If the controller supports the LE Set Scan Enable command,
666 * enable the corresponding advertising report event.
667 */
668 if (hdev->commands[26] & 0x08)
669 events[0] |= 0x02; /* LE Advertising Report */
670
671 /* If the controller supports the LE Create Connection
672 * command, enable the corresponding event.
673 */
674 if (hdev->commands[26] & 0x10)
675 events[0] |= 0x01; /* LE Connection Complete */
676
677 /* If the controller supports the LE Connection Update
678 * command, enable the corresponding event.
679 */
680 if (hdev->commands[27] & 0x04)
681 events[0] |= 0x04; /* LE Connection Update
682 * Complete
683 */
684
685 /* If the controller supports the LE Read Remote Used Features
686 * command, enable the corresponding event.
687 */
688 if (hdev->commands[27] & 0x20)
689 events[0] |= 0x08; /* LE Read Remote Used
690 * Features Complete
691 */
692
693 /* If the controller supports the LE Read Local P-256
694 * Public Key command, enable the corresponding event.
695 */
696 if (hdev->commands[34] & 0x02)
697 events[0] |= 0x80; /* LE Read Local P-256
698 * Public Key Complete
699 */
700
701 /* If the controller supports the LE Generate DHKey
702 * command, enable the corresponding event.
703 */
704 if (hdev->commands[34] & 0x04)
705 events[1] |= 0x01; /* LE Generate DHKey Complete */
706
707 /* If the controller supports the LE Set Default PHY or
708 * LE Set PHY commands, enable the corresponding event.
709 */
710 if (hdev->commands[35] & (0x20 | 0x40))
711 events[1] |= 0x08; /* LE PHY Update Complete */
712
713 /* If the controller supports LE Set Extended Scan Parameters
714 * and LE Set Extended Scan Enable commands, enable the
715 * corresponding event.
716 */
717 if (use_ext_scan(hdev))
718 events[1] |= 0x10; /* LE Extended Advertising
719 * Report
720 */
721
722 /* If the controller supports the LE Extended Advertising
723 * command, enable the corresponding event.
724 */
725 if (ext_adv_capable(hdev))
726 events[2] |= 0x02; /* LE Advertising Set
727 * Terminated
728 */
729
730 hci_req_add(req, HCI_OP_LE_SET_EVENT_MASK, sizeof(events),
731 events);
732
733 /* Read LE Advertising Channel TX Power */
734 if ((hdev->commands[25] & 0x40) && !ext_adv_capable(hdev)) {
735 /* HCI TS spec forbids mixing of legacy and extended
736 * advertising commands wherein READ_ADV_TX_POWER is
737 * also included. So do not call it if extended adv
738 * is supported otherwise controller will return
739 * COMMAND_DISALLOWED for extended commands.
740 */
741 hci_req_add(req, HCI_OP_LE_READ_ADV_TX_POWER, 0, NULL);
742 }
743
744 if (hdev->commands[26] & 0x40) {
745 /* Read LE White List Size */
746 hci_req_add(req, HCI_OP_LE_READ_WHITE_LIST_SIZE,
747 0, NULL);
748 }
749
750 if (hdev->commands[26] & 0x80) {
751 /* Clear LE White List */
752 hci_req_add(req, HCI_OP_LE_CLEAR_WHITE_LIST, 0, NULL);
753 }
754
755 if (hdev->commands[34] & 0x40) {
756 /* Read LE Resolving List Size */
757 hci_req_add(req, HCI_OP_LE_READ_RESOLV_LIST_SIZE,
758 0, NULL);
759 }
760
761 if (hdev->commands[34] & 0x20) {
762 /* Clear LE Resolving List */
763 hci_req_add(req, HCI_OP_LE_CLEAR_RESOLV_LIST, 0, NULL);
764 }
765
766 if (hdev->commands[35] & 0x40) {
767 __le16 rpa_timeout = cpu_to_le16(hdev->rpa_timeout);
768
769 /* Set RPA timeout */
770 hci_req_add(req, HCI_OP_LE_SET_RPA_TIMEOUT, 2,
771 &rpa_timeout);
772 }
773
774 if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) {
775 /* Read LE Maximum Data Length */
776 hci_req_add(req, HCI_OP_LE_READ_MAX_DATA_LEN, 0, NULL);
777
778 /* Read LE Suggested Default Data Length */
779 hci_req_add(req, HCI_OP_LE_READ_DEF_DATA_LEN, 0, NULL);
780 }
781
782 if (ext_adv_capable(hdev)) {
783 /* Read LE Number of Supported Advertising Sets */
784 hci_req_add(req, HCI_OP_LE_READ_NUM_SUPPORTED_ADV_SETS,
785 0, NULL);
786 }
787
788 hci_set_le_support(req);
789 }
790
791 /* Read features beyond page 1 if available */
792 for (p = 2; p < HCI_MAX_PAGES && p <= hdev->max_page; p++) {
793 struct hci_cp_read_local_ext_features cp;
794
795 cp.page = p;
796 hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES,
797 sizeof(cp), &cp);
798 }
799
800 return 0;
801}
802
803static int hci_init4_req(struct hci_request *req, unsigned long opt)
804{
805 struct hci_dev *hdev = req->hdev;
806
807 /* Some Broadcom based Bluetooth controllers do not support the
808 * Delete Stored Link Key command. They are clearly indicating its
809 * absence in the bit mask of supported commands.
810 *
811 * Check the supported commands and only if the the command is marked
812 * as supported send it. If not supported assume that the controller
813 * does not have actual support for stored link keys which makes this
814 * command redundant anyway.
815 *
816 * Some controllers indicate that they support handling deleting
817 * stored link keys, but they don't. The quirk lets a driver
818 * just disable this command.
819 */
820 if (hdev->commands[6] & 0x80 &&
821 !test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) {
822 struct hci_cp_delete_stored_link_key cp;
823
824 bacpy(&cp.bdaddr, BDADDR_ANY);
825 cp.delete_all = 0x01;
826 hci_req_add(req, HCI_OP_DELETE_STORED_LINK_KEY,
827 sizeof(cp), &cp);
828 }
829
830 /* Set event mask page 2 if the HCI command for it is supported */
831 if (hdev->commands[22] & 0x04)
832 hci_set_event_mask_page_2(req);
833
834 /* Read local codec list if the HCI command is supported */
835 if (hdev->commands[29] & 0x20)
836 hci_req_add(req, HCI_OP_READ_LOCAL_CODECS, 0, NULL);
837
838 /* Read local pairing options if the HCI command is supported */
839 if (hdev->commands[41] & 0x08)
840 hci_req_add(req, HCI_OP_READ_LOCAL_PAIRING_OPTS, 0, NULL);
841
842 /* Get MWS transport configuration if the HCI command is supported */
843 if (hdev->commands[30] & 0x08)
844 hci_req_add(req, HCI_OP_GET_MWS_TRANSPORT_CONFIG, 0, NULL);
845
846 /* Check for Synchronization Train support */
847 if (lmp_sync_train_capable(hdev))
848 hci_req_add(req, HCI_OP_READ_SYNC_TRAIN_PARAMS, 0, NULL);
849
850 /* Enable Secure Connections if supported and configured */
851 if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED) &&
852 bredr_sc_enabled(hdev)) {
853 u8 support = 0x01;
854
855 hci_req_add(req, HCI_OP_WRITE_SC_SUPPORT,
856 sizeof(support), &support);
857 }
858
859 /* Set erroneous data reporting if supported to the wideband speech
860 * setting value
861 */
862 if (hdev->commands[18] & 0x08 &&
863 !test_bit(HCI_QUIRK_BROKEN_ERR_DATA_REPORTING, &hdev->quirks)) {
864 bool enabled = hci_dev_test_flag(hdev,
865 HCI_WIDEBAND_SPEECH_ENABLED);
866
867 if (enabled !=
868 (hdev->err_data_reporting == ERR_DATA_REPORTING_ENABLED)) {
869 struct hci_cp_write_def_err_data_reporting cp;
870
871 cp.err_data_reporting = enabled ?
872 ERR_DATA_REPORTING_ENABLED :
873 ERR_DATA_REPORTING_DISABLED;
874
875 hci_req_add(req, HCI_OP_WRITE_DEF_ERR_DATA_REPORTING,
876 sizeof(cp), &cp);
877 }
878 }
879
880 /* Set Suggested Default Data Length to maximum if supported */
881 if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) {
882 struct hci_cp_le_write_def_data_len cp;
883
884 cp.tx_len = cpu_to_le16(hdev->le_max_tx_len);
885 cp.tx_time = cpu_to_le16(hdev->le_max_tx_time);
886 hci_req_add(req, HCI_OP_LE_WRITE_DEF_DATA_LEN, sizeof(cp), &cp);
887 }
888
889 /* Set Default PHY parameters if command is supported */
890 if (hdev->commands[35] & 0x20) {
891 struct hci_cp_le_set_default_phy cp;
892
893 cp.all_phys = 0x00;
894 cp.tx_phys = hdev->le_tx_def_phys;
895 cp.rx_phys = hdev->le_rx_def_phys;
896
897 hci_req_add(req, HCI_OP_LE_SET_DEFAULT_PHY, sizeof(cp), &cp);
898 }
899
900 return 0;
901}
902
903static int __hci_init(struct hci_dev *hdev)
904{
905 int err;
906
907 err = __hci_req_sync(hdev, hci_init1_req, 0, HCI_INIT_TIMEOUT, NULL);
908 if (err < 0)
909 return err;
910
911 if (hci_dev_test_flag(hdev, HCI_SETUP))
912 hci_debugfs_create_basic(hdev);
913
914 err = __hci_req_sync(hdev, hci_init2_req, 0, HCI_INIT_TIMEOUT, NULL);
915 if (err < 0)
916 return err;
917
918 /* HCI_PRIMARY covers both single-mode LE, BR/EDR and dual-mode
919 * BR/EDR/LE type controllers. AMP controllers only need the
920 * first two stages of init.
921 */
922 if (hdev->dev_type != HCI_PRIMARY)
923 return 0;
924
925 err = __hci_req_sync(hdev, hci_init3_req, 0, HCI_INIT_TIMEOUT, NULL);
926 if (err < 0)
927 return err;
928
929 err = __hci_req_sync(hdev, hci_init4_req, 0, HCI_INIT_TIMEOUT, NULL);
930 if (err < 0)
931 return err;
932
933 /* This function is only called when the controller is actually in
934 * configured state. When the controller is marked as unconfigured,
935 * this initialization procedure is not run.
936 *
937 * It means that it is possible that a controller runs through its
938 * setup phase and then discovers missing settings. If that is the
939 * case, then this function will not be called. It then will only
940 * be called during the config phase.
941 *
942 * So only when in setup phase or config phase, create the debugfs
943 * entries and register the SMP channels.
944 */
945 if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
946 !hci_dev_test_flag(hdev, HCI_CONFIG))
947 return 0;
948
949 hci_debugfs_create_common(hdev);
950
951 if (lmp_bredr_capable(hdev))
952 hci_debugfs_create_bredr(hdev);
953
954 if (lmp_le_capable(hdev))
955 hci_debugfs_create_le(hdev);
956
957 return 0;
958}
959
960static int hci_init0_req(struct hci_request *req, unsigned long opt)
961{
962 struct hci_dev *hdev = req->hdev;
963
964 BT_DBG("%s %ld", hdev->name, opt);
965
966 /* Reset */
967 if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks))
968 hci_reset_req(req, 0);
969
970 /* Read Local Version */
971 hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
972
973 /* Read BD Address */
974 if (hdev->set_bdaddr)
975 hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL);
976
977 return 0;
978}
979
980static int __hci_unconf_init(struct hci_dev *hdev)
981{
982 int err;
983
984 if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
985 return 0;
986
987 err = __hci_req_sync(hdev, hci_init0_req, 0, HCI_INIT_TIMEOUT, NULL);
988 if (err < 0)
989 return err;
990
991 if (hci_dev_test_flag(hdev, HCI_SETUP))
992 hci_debugfs_create_basic(hdev);
993
994 return 0;
995}
996
997static int hci_scan_req(struct hci_request *req, unsigned long opt)
998{
999 __u8 scan = opt;
1000
1001 BT_DBG("%s %x", req->hdev->name, scan);
1002
1003 /* Inquiry and Page scans */
1004 hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
1005 return 0;
1006}
1007
1008static int hci_auth_req(struct hci_request *req, unsigned long opt)
1009{
1010 __u8 auth = opt;
1011
1012 BT_DBG("%s %x", req->hdev->name, auth);
1013
1014 /* Authentication */
1015 hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, 1, &auth);
1016 return 0;
1017}
1018
1019static int hci_encrypt_req(struct hci_request *req, unsigned long opt)
1020{
1021 __u8 encrypt = opt;
1022
1023 BT_DBG("%s %x", req->hdev->name, encrypt);
1024
1025 /* Encryption */
1026 hci_req_add(req, HCI_OP_WRITE_ENCRYPT_MODE, 1, &encrypt);
1027 return 0;
1028}
1029
1030static int hci_linkpol_req(struct hci_request *req, unsigned long opt)
1031{
1032 __le16 policy = cpu_to_le16(opt);
1033
1034 BT_DBG("%s %x", req->hdev->name, policy);
1035
1036 /* Default link policy */
1037 hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, 2, &policy);
1038 return 0;
1039}
1040
1041/* Get HCI device by index.
1042 * Device is held on return. */
1043struct hci_dev *hci_dev_get(int index)
1044{
1045 struct hci_dev *hdev = NULL, *d;
1046
1047 BT_DBG("%d", index);
1048
1049 if (index < 0)
1050 return NULL;
1051
1052 read_lock(&hci_dev_list_lock);
1053 list_for_each_entry(d, &hci_dev_list, list) {
1054 if (d->id == index) {
1055 hdev = hci_dev_hold(d);
1056 break;
1057 }
1058 }
1059 read_unlock(&hci_dev_list_lock);
1060 return hdev;
1061}
1062
1063/* ---- Inquiry support ---- */
1064
1065bool hci_discovery_active(struct hci_dev *hdev)
1066{
1067 struct discovery_state *discov = &hdev->discovery;
1068
1069 switch (discov->state) {
1070 case DISCOVERY_FINDING:
1071 case DISCOVERY_RESOLVING:
1072 return true;
1073
1074 default:
1075 return false;
1076 }
1077}
1078
1079void hci_discovery_set_state(struct hci_dev *hdev, int state)
1080{
1081 int old_state = hdev->discovery.state;
1082
1083 BT_DBG("%s state %u -> %u", hdev->name, hdev->discovery.state, state);
1084
1085 if (old_state == state)
1086 return;
1087
1088 hdev->discovery.state = state;
1089
1090 switch (state) {
1091 case DISCOVERY_STOPPED:
1092 hci_update_background_scan(hdev);
1093
1094 if (old_state != DISCOVERY_STARTING)
1095 mgmt_discovering(hdev, 0);
1096 break;
1097 case DISCOVERY_STARTING:
1098 break;
1099 case DISCOVERY_FINDING:
1100 mgmt_discovering(hdev, 1);
1101 break;
1102 case DISCOVERY_RESOLVING:
1103 break;
1104 case DISCOVERY_STOPPING:
1105 break;
1106 }
1107}
1108
1109void hci_inquiry_cache_flush(struct hci_dev *hdev)
1110{
1111 struct discovery_state *cache = &hdev->discovery;
1112 struct inquiry_entry *p, *n;
1113
1114 list_for_each_entry_safe(p, n, &cache->all, all) {
1115 list_del(&p->all);
1116 kfree(p);
1117 }
1118
1119 INIT_LIST_HEAD(&cache->unknown);
1120 INIT_LIST_HEAD(&cache->resolve);
1121}
1122
1123struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev,
1124 bdaddr_t *bdaddr)
1125{
1126 struct discovery_state *cache = &hdev->discovery;
1127 struct inquiry_entry *e;
1128
1129 BT_DBG("cache %p, %pMR", cache, bdaddr);
1130
1131 list_for_each_entry(e, &cache->all, all) {
1132 if (!bacmp(&e->data.bdaddr, bdaddr))
1133 return e;
1134 }
1135
1136 return NULL;
1137}
1138
1139struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev,
1140 bdaddr_t *bdaddr)
1141{
1142 struct discovery_state *cache = &hdev->discovery;
1143 struct inquiry_entry *e;
1144
1145 BT_DBG("cache %p, %pMR", cache, bdaddr);
1146
1147 list_for_each_entry(e, &cache->unknown, list) {
1148 if (!bacmp(&e->data.bdaddr, bdaddr))
1149 return e;
1150 }
1151
1152 return NULL;
1153}
1154
1155struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev,
1156 bdaddr_t *bdaddr,
1157 int state)
1158{
1159 struct discovery_state *cache = &hdev->discovery;
1160 struct inquiry_entry *e;
1161
1162 BT_DBG("cache %p bdaddr %pMR state %d", cache, bdaddr, state);
1163
1164 list_for_each_entry(e, &cache->resolve, list) {
1165 if (!bacmp(bdaddr, BDADDR_ANY) && e->name_state == state)
1166 return e;
1167 if (!bacmp(&e->data.bdaddr, bdaddr))
1168 return e;
1169 }
1170
1171 return NULL;
1172}
1173
1174void hci_inquiry_cache_update_resolve(struct hci_dev *hdev,
1175 struct inquiry_entry *ie)
1176{
1177 struct discovery_state *cache = &hdev->discovery;
1178 struct list_head *pos = &cache->resolve;
1179 struct inquiry_entry *p;
1180
1181 list_del(&ie->list);
1182
1183 list_for_each_entry(p, &cache->resolve, list) {
1184 if (p->name_state != NAME_PENDING &&
1185 abs(p->data.rssi) >= abs(ie->data.rssi))
1186 break;
1187 pos = &p->list;
1188 }
1189
1190 list_add(&ie->list, pos);
1191}
1192
1193u32 hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data,
1194 bool name_known)
1195{
1196 struct discovery_state *cache = &hdev->discovery;
1197 struct inquiry_entry *ie;
1198 u32 flags = 0;
1199
1200 BT_DBG("cache %p, %pMR", cache, &data->bdaddr);
1201
1202 hci_remove_remote_oob_data(hdev, &data->bdaddr, BDADDR_BREDR);
1203
1204 if (!data->ssp_mode)
1205 flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
1206
1207 ie = hci_inquiry_cache_lookup(hdev, &data->bdaddr);
1208 if (ie) {
1209 if (!ie->data.ssp_mode)
1210 flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
1211
1212 if (ie->name_state == NAME_NEEDED &&
1213 data->rssi != ie->data.rssi) {
1214 ie->data.rssi = data->rssi;
1215 hci_inquiry_cache_update_resolve(hdev, ie);
1216 }
1217
1218 goto update;
1219 }
1220
1221 /* Entry not in the cache. Add new one. */
1222 ie = kzalloc(sizeof(*ie), GFP_KERNEL);
1223 if (!ie) {
1224 flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
1225 goto done;
1226 }
1227
1228 list_add(&ie->all, &cache->all);
1229
1230 if (name_known) {
1231 ie->name_state = NAME_KNOWN;
1232 } else {
1233 ie->name_state = NAME_NOT_KNOWN;
1234 list_add(&ie->list, &cache->unknown);
1235 }
1236
1237update:
1238 if (name_known && ie->name_state != NAME_KNOWN &&
1239 ie->name_state != NAME_PENDING) {
1240 ie->name_state = NAME_KNOWN;
1241 list_del(&ie->list);
1242 }
1243
1244 memcpy(&ie->data, data, sizeof(*data));
1245 ie->timestamp = jiffies;
1246 cache->timestamp = jiffies;
1247
1248 if (ie->name_state == NAME_NOT_KNOWN)
1249 flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
1250
1251done:
1252 return flags;
1253}
1254
1255static int inquiry_cache_dump(struct hci_dev *hdev, int num, __u8 *buf)
1256{
1257 struct discovery_state *cache = &hdev->discovery;
1258 struct inquiry_info *info = (struct inquiry_info *) buf;
1259 struct inquiry_entry *e;
1260 int copied = 0;
1261
1262 list_for_each_entry(e, &cache->all, all) {
1263 struct inquiry_data *data = &e->data;
1264
1265 if (copied >= num)
1266 break;
1267
1268 bacpy(&info->bdaddr, &data->bdaddr);
1269 info->pscan_rep_mode = data->pscan_rep_mode;
1270 info->pscan_period_mode = data->pscan_period_mode;
1271 info->pscan_mode = data->pscan_mode;
1272 memcpy(info->dev_class, data->dev_class, 3);
1273 info->clock_offset = data->clock_offset;
1274
1275 info++;
1276 copied++;
1277 }
1278
1279 BT_DBG("cache %p, copied %d", cache, copied);
1280 return copied;
1281}
1282
1283static int hci_inq_req(struct hci_request *req, unsigned long opt)
1284{
1285 struct hci_inquiry_req *ir = (struct hci_inquiry_req *) opt;
1286 struct hci_dev *hdev = req->hdev;
1287 struct hci_cp_inquiry cp;
1288
1289 BT_DBG("%s", hdev->name);
1290
1291 if (test_bit(HCI_INQUIRY, &hdev->flags))
1292 return 0;
1293
1294 /* Start Inquiry */
1295 memcpy(&cp.lap, &ir->lap, 3);
1296 cp.length = ir->length;
1297 cp.num_rsp = ir->num_rsp;
1298 hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp);
1299
1300 return 0;
1301}
1302
1303int hci_inquiry(void __user *arg)
1304{
1305 __u8 __user *ptr = arg;
1306 struct hci_inquiry_req ir;
1307 struct hci_dev *hdev;
1308 int err = 0, do_inquiry = 0, max_rsp;
1309 long timeo;
1310 __u8 *buf;
1311
1312 if (copy_from_user(&ir, ptr, sizeof(ir)))
1313 return -EFAULT;
1314
1315 hdev = hci_dev_get(ir.dev_id);
1316 if (!hdev)
1317 return -ENODEV;
1318
1319 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1320 err = -EBUSY;
1321 goto done;
1322 }
1323
1324 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1325 err = -EOPNOTSUPP;
1326 goto done;
1327 }
1328
1329 if (hdev->dev_type != HCI_PRIMARY) {
1330 err = -EOPNOTSUPP;
1331 goto done;
1332 }
1333
1334 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
1335 err = -EOPNOTSUPP;
1336 goto done;
1337 }
1338
1339 hci_dev_lock(hdev);
1340 if (inquiry_cache_age(hdev) > INQUIRY_CACHE_AGE_MAX ||
1341 inquiry_cache_empty(hdev) || ir.flags & IREQ_CACHE_FLUSH) {
1342 hci_inquiry_cache_flush(hdev);
1343 do_inquiry = 1;
1344 }
1345 hci_dev_unlock(hdev);
1346
1347 timeo = ir.length * msecs_to_jiffies(2000);
1348
1349 if (do_inquiry) {
1350 err = hci_req_sync(hdev, hci_inq_req, (unsigned long) &ir,
1351 timeo, NULL);
1352 if (err < 0)
1353 goto done;
1354
1355 /* Wait until Inquiry procedure finishes (HCI_INQUIRY flag is
1356 * cleared). If it is interrupted by a signal, return -EINTR.
1357 */
1358 if (wait_on_bit(&hdev->flags, HCI_INQUIRY,
1359 TASK_INTERRUPTIBLE))
1360 return -EINTR;
1361 }
1362
1363 /* for unlimited number of responses we will use buffer with
1364 * 255 entries
1365 */
1366 max_rsp = (ir.num_rsp == 0) ? 255 : ir.num_rsp;
1367
1368 /* cache_dump can't sleep. Therefore we allocate temp buffer and then
1369 * copy it to the user space.
1370 */
1371 buf = kmalloc_array(max_rsp, sizeof(struct inquiry_info), GFP_KERNEL);
1372 if (!buf) {
1373 err = -ENOMEM;
1374 goto done;
1375 }
1376
1377 hci_dev_lock(hdev);
1378 ir.num_rsp = inquiry_cache_dump(hdev, max_rsp, buf);
1379 hci_dev_unlock(hdev);
1380
1381 BT_DBG("num_rsp %d", ir.num_rsp);
1382
1383 if (!copy_to_user(ptr, &ir, sizeof(ir))) {
1384 ptr += sizeof(ir);
1385 if (copy_to_user(ptr, buf, sizeof(struct inquiry_info) *
1386 ir.num_rsp))
1387 err = -EFAULT;
1388 } else
1389 err = -EFAULT;
1390
1391 kfree(buf);
1392
1393done:
1394 hci_dev_put(hdev);
1395 return err;
1396}
1397
1398/**
1399 * hci_dev_get_bd_addr_from_property - Get the Bluetooth Device Address
1400 * (BD_ADDR) for a HCI device from
1401 * a firmware node property.
1402 * @hdev: The HCI device
1403 *
1404 * Search the firmware node for 'local-bd-address'.
1405 *
1406 * All-zero BD addresses are rejected, because those could be properties
1407 * that exist in the firmware tables, but were not updated by the firmware. For
1408 * example, the DTS could define 'local-bd-address', with zero BD addresses.
1409 */
1410static void hci_dev_get_bd_addr_from_property(struct hci_dev *hdev)
1411{
1412 struct fwnode_handle *fwnode = dev_fwnode(hdev->dev.parent);
1413 bdaddr_t ba;
1414 int ret;
1415
1416 ret = fwnode_property_read_u8_array(fwnode, "local-bd-address",
1417 (u8 *)&ba, sizeof(ba));
1418 if (ret < 0 || !bacmp(&ba, BDADDR_ANY))
1419 return;
1420
1421 bacpy(&hdev->public_addr, &ba);
1422}
1423
1424static int hci_dev_do_open(struct hci_dev *hdev)
1425{
1426 int ret = 0;
1427
1428 BT_DBG("%s %p", hdev->name, hdev);
1429
1430 hci_req_sync_lock(hdev);
1431
1432 if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) {
1433 ret = -ENODEV;
1434 goto done;
1435 }
1436
1437 if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
1438 !hci_dev_test_flag(hdev, HCI_CONFIG)) {
1439 /* Check for rfkill but allow the HCI setup stage to
1440 * proceed (which in itself doesn't cause any RF activity).
1441 */
1442 if (hci_dev_test_flag(hdev, HCI_RFKILLED)) {
1443 ret = -ERFKILL;
1444 goto done;
1445 }
1446
1447 /* Check for valid public address or a configured static
1448 * random adddress, but let the HCI setup proceed to
1449 * be able to determine if there is a public address
1450 * or not.
1451 *
1452 * In case of user channel usage, it is not important
1453 * if a public address or static random address is
1454 * available.
1455 *
1456 * This check is only valid for BR/EDR controllers
1457 * since AMP controllers do not have an address.
1458 */
1459 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1460 hdev->dev_type == HCI_PRIMARY &&
1461 !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
1462 !bacmp(&hdev->static_addr, BDADDR_ANY)) {
1463 ret = -EADDRNOTAVAIL;
1464 goto done;
1465 }
1466 }
1467
1468 if (test_bit(HCI_UP, &hdev->flags)) {
1469 ret = -EALREADY;
1470 goto done;
1471 }
1472
1473 if (hdev->open(hdev)) {
1474 ret = -EIO;
1475 goto done;
1476 }
1477
1478 set_bit(HCI_RUNNING, &hdev->flags);
1479 hci_sock_dev_event(hdev, HCI_DEV_OPEN);
1480
1481 atomic_set(&hdev->cmd_cnt, 1);
1482 set_bit(HCI_INIT, &hdev->flags);
1483
1484 if (hci_dev_test_flag(hdev, HCI_SETUP) ||
1485 test_bit(HCI_QUIRK_NON_PERSISTENT_SETUP, &hdev->quirks)) {
1486 bool invalid_bdaddr;
1487
1488 hci_sock_dev_event(hdev, HCI_DEV_SETUP);
1489
1490 if (hdev->setup)
1491 ret = hdev->setup(hdev);
1492
1493 /* The transport driver can set the quirk to mark the
1494 * BD_ADDR invalid before creating the HCI device or in
1495 * its setup callback.
1496 */
1497 invalid_bdaddr = test_bit(HCI_QUIRK_INVALID_BDADDR,
1498 &hdev->quirks);
1499
1500 if (ret)
1501 goto setup_failed;
1502
1503 if (test_bit(HCI_QUIRK_USE_BDADDR_PROPERTY, &hdev->quirks)) {
1504 if (!bacmp(&hdev->public_addr, BDADDR_ANY))
1505 hci_dev_get_bd_addr_from_property(hdev);
1506
1507 if (bacmp(&hdev->public_addr, BDADDR_ANY) &&
1508 hdev->set_bdaddr) {
1509 ret = hdev->set_bdaddr(hdev,
1510 &hdev->public_addr);
1511
1512 /* If setting of the BD_ADDR from the device
1513 * property succeeds, then treat the address
1514 * as valid even if the invalid BD_ADDR
1515 * quirk indicates otherwise.
1516 */
1517 if (!ret)
1518 invalid_bdaddr = false;
1519 }
1520 }
1521
1522setup_failed:
1523 /* The transport driver can set these quirks before
1524 * creating the HCI device or in its setup callback.
1525 *
1526 * For the invalid BD_ADDR quirk it is possible that
1527 * it becomes a valid address if the bootloader does
1528 * provide it (see above).
1529 *
1530 * In case any of them is set, the controller has to
1531 * start up as unconfigured.
1532 */
1533 if (test_bit(HCI_QUIRK_EXTERNAL_CONFIG, &hdev->quirks) ||
1534 invalid_bdaddr)
1535 hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
1536
1537 /* For an unconfigured controller it is required to
1538 * read at least the version information provided by
1539 * the Read Local Version Information command.
1540 *
1541 * If the set_bdaddr driver callback is provided, then
1542 * also the original Bluetooth public device address
1543 * will be read using the Read BD Address command.
1544 */
1545 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
1546 ret = __hci_unconf_init(hdev);
1547 }
1548
1549 if (hci_dev_test_flag(hdev, HCI_CONFIG)) {
1550 /* If public address change is configured, ensure that
1551 * the address gets programmed. If the driver does not
1552 * support changing the public address, fail the power
1553 * on procedure.
1554 */
1555 if (bacmp(&hdev->public_addr, BDADDR_ANY) &&
1556 hdev->set_bdaddr)
1557 ret = hdev->set_bdaddr(hdev, &hdev->public_addr);
1558 else
1559 ret = -EADDRNOTAVAIL;
1560 }
1561
1562 if (!ret) {
1563 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1564 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1565 ret = __hci_init(hdev);
1566 if (!ret && hdev->post_init)
1567 ret = hdev->post_init(hdev);
1568 }
1569 }
1570
1571 /* If the HCI Reset command is clearing all diagnostic settings,
1572 * then they need to be reprogrammed after the init procedure
1573 * completed.
1574 */
1575 if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) &&
1576 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1577 hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) && hdev->set_diag)
1578 ret = hdev->set_diag(hdev, true);
1579
1580 msft_do_open(hdev);
1581
1582 clear_bit(HCI_INIT, &hdev->flags);
1583
1584 if (!ret) {
1585 hci_dev_hold(hdev);
1586 hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
1587 hci_adv_instances_set_rpa_expired(hdev, true);
1588 set_bit(HCI_UP, &hdev->flags);
1589 hci_sock_dev_event(hdev, HCI_DEV_UP);
1590 hci_leds_update_powered(hdev, true);
1591 if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
1592 !hci_dev_test_flag(hdev, HCI_CONFIG) &&
1593 !hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1594 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1595 hci_dev_test_flag(hdev, HCI_MGMT) &&
1596 hdev->dev_type == HCI_PRIMARY) {
1597 ret = __hci_req_hci_power_on(hdev);
1598 mgmt_power_on(hdev, ret);
1599 }
1600 } else {
1601 /* Init failed, cleanup */
1602 flush_work(&hdev->tx_work);
1603 flush_work(&hdev->cmd_work);
1604 flush_work(&hdev->rx_work);
1605
1606 skb_queue_purge(&hdev->cmd_q);
1607 skb_queue_purge(&hdev->rx_q);
1608
1609 if (hdev->flush)
1610 hdev->flush(hdev);
1611
1612 if (hdev->sent_cmd) {
1613 kfree_skb(hdev->sent_cmd);
1614 hdev->sent_cmd = NULL;
1615 }
1616
1617 clear_bit(HCI_RUNNING, &hdev->flags);
1618 hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
1619
1620 hdev->close(hdev);
1621 hdev->flags &= BIT(HCI_RAW);
1622 }
1623
1624done:
1625 hci_req_sync_unlock(hdev);
1626 return ret;
1627}
1628
1629/* ---- HCI ioctl helpers ---- */
1630
1631int hci_dev_open(__u16 dev)
1632{
1633 struct hci_dev *hdev;
1634 int err;
1635
1636 hdev = hci_dev_get(dev);
1637 if (!hdev)
1638 return -ENODEV;
1639
1640 /* Devices that are marked as unconfigured can only be powered
1641 * up as user channel. Trying to bring them up as normal devices
1642 * will result into a failure. Only user channel operation is
1643 * possible.
1644 *
1645 * When this function is called for a user channel, the flag
1646 * HCI_USER_CHANNEL will be set first before attempting to
1647 * open the device.
1648 */
1649 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1650 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1651 err = -EOPNOTSUPP;
1652 goto done;
1653 }
1654
1655 /* We need to ensure that no other power on/off work is pending
1656 * before proceeding to call hci_dev_do_open. This is
1657 * particularly important if the setup procedure has not yet
1658 * completed.
1659 */
1660 if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
1661 cancel_delayed_work(&hdev->power_off);
1662
1663 /* After this call it is guaranteed that the setup procedure
1664 * has finished. This means that error conditions like RFKILL
1665 * or no valid public or static random address apply.
1666 */
1667 flush_workqueue(hdev->req_workqueue);
1668
1669 /* For controllers not using the management interface and that
1670 * are brought up using legacy ioctl, set the HCI_BONDABLE bit
1671 * so that pairing works for them. Once the management interface
1672 * is in use this bit will be cleared again and userspace has
1673 * to explicitly enable it.
1674 */
1675 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1676 !hci_dev_test_flag(hdev, HCI_MGMT))
1677 hci_dev_set_flag(hdev, HCI_BONDABLE);
1678
1679 err = hci_dev_do_open(hdev);
1680
1681done:
1682 hci_dev_put(hdev);
1683 return err;
1684}
1685
1686/* This function requires the caller holds hdev->lock */
1687static void hci_pend_le_actions_clear(struct hci_dev *hdev)
1688{
1689 struct hci_conn_params *p;
1690
1691 list_for_each_entry(p, &hdev->le_conn_params, list) {
1692 if (p->conn) {
1693 hci_conn_drop(p->conn);
1694 hci_conn_put(p->conn);
1695 p->conn = NULL;
1696 }
1697 list_del_init(&p->action);
1698 }
1699
1700 BT_DBG("All LE pending actions cleared");
1701}
1702
1703int hci_dev_do_close(struct hci_dev *hdev)
1704{
1705 bool auto_off;
1706
1707 BT_DBG("%s %p", hdev->name, hdev);
1708
1709 if (!hci_dev_test_flag(hdev, HCI_UNREGISTER) &&
1710 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1711 test_bit(HCI_UP, &hdev->flags)) {
1712 /* Execute vendor specific shutdown routine */
1713 if (hdev->shutdown)
1714 hdev->shutdown(hdev);
1715 }
1716
1717 cancel_delayed_work(&hdev->power_off);
1718
1719 hci_request_cancel_all(hdev);
1720 hci_req_sync_lock(hdev);
1721
1722 if (!test_and_clear_bit(HCI_UP, &hdev->flags)) {
1723 cancel_delayed_work_sync(&hdev->cmd_timer);
1724 hci_req_sync_unlock(hdev);
1725 return 0;
1726 }
1727
1728 hci_leds_update_powered(hdev, false);
1729
1730 /* Flush RX and TX works */
1731 flush_work(&hdev->tx_work);
1732 flush_work(&hdev->rx_work);
1733
1734 if (hdev->discov_timeout > 0) {
1735 hdev->discov_timeout = 0;
1736 hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
1737 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
1738 }
1739
1740 if (hci_dev_test_and_clear_flag(hdev, HCI_SERVICE_CACHE))
1741 cancel_delayed_work(&hdev->service_cache);
1742
1743 if (hci_dev_test_flag(hdev, HCI_MGMT)) {
1744 struct adv_info *adv_instance;
1745
1746 cancel_delayed_work_sync(&hdev->rpa_expired);
1747
1748 list_for_each_entry(adv_instance, &hdev->adv_instances, list)
1749 cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
1750 }
1751
1752 /* Avoid potential lockdep warnings from the *_flush() calls by
1753 * ensuring the workqueue is empty up front.
1754 */
1755 drain_workqueue(hdev->workqueue);
1756
1757 hci_dev_lock(hdev);
1758
1759 hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
1760
1761 auto_off = hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF);
1762
1763 if (!auto_off && hdev->dev_type == HCI_PRIMARY &&
1764 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1765 hci_dev_test_flag(hdev, HCI_MGMT))
1766 __mgmt_power_off(hdev);
1767
1768 hci_inquiry_cache_flush(hdev);
1769 hci_pend_le_actions_clear(hdev);
1770 hci_conn_hash_flush(hdev);
1771 hci_dev_unlock(hdev);
1772
1773 smp_unregister(hdev);
1774
1775 hci_sock_dev_event(hdev, HCI_DEV_DOWN);
1776
1777 msft_do_close(hdev);
1778
1779 if (hdev->flush)
1780 hdev->flush(hdev);
1781
1782 /* Reset device */
1783 skb_queue_purge(&hdev->cmd_q);
1784 atomic_set(&hdev->cmd_cnt, 1);
1785 if (test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks) &&
1786 !auto_off && !hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1787 set_bit(HCI_INIT, &hdev->flags);
1788 __hci_req_sync(hdev, hci_reset_req, 0, HCI_CMD_TIMEOUT, NULL);
1789 clear_bit(HCI_INIT, &hdev->flags);
1790 }
1791
1792 /* flush cmd work */
1793 flush_work(&hdev->cmd_work);
1794
1795 /* Drop queues */
1796 skb_queue_purge(&hdev->rx_q);
1797 skb_queue_purge(&hdev->cmd_q);
1798 skb_queue_purge(&hdev->raw_q);
1799
1800 /* Drop last sent command */
1801 if (hdev->sent_cmd) {
1802 cancel_delayed_work_sync(&hdev->cmd_timer);
1803 kfree_skb(hdev->sent_cmd);
1804 hdev->sent_cmd = NULL;
1805 }
1806
1807 clear_bit(HCI_RUNNING, &hdev->flags);
1808 hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
1809
1810 if (test_and_clear_bit(SUSPEND_POWERING_DOWN, hdev->suspend_tasks))
1811 wake_up(&hdev->suspend_wait_q);
1812
1813 /* After this point our queues are empty
1814 * and no tasks are scheduled. */
1815 hdev->close(hdev);
1816
1817 /* Clear flags */
1818 hdev->flags &= BIT(HCI_RAW);
1819 hci_dev_clear_volatile_flags(hdev);
1820
1821 /* Controller radio is available but is currently powered down */
1822 hdev->amp_status = AMP_STATUS_POWERED_DOWN;
1823
1824 memset(hdev->eir, 0, sizeof(hdev->eir));
1825 memset(hdev->dev_class, 0, sizeof(hdev->dev_class));
1826 bacpy(&hdev->random_addr, BDADDR_ANY);
1827
1828 hci_req_sync_unlock(hdev);
1829
1830 hci_dev_put(hdev);
1831 return 0;
1832}
1833
1834int hci_dev_close(__u16 dev)
1835{
1836 struct hci_dev *hdev;
1837 int err;
1838
1839 hdev = hci_dev_get(dev);
1840 if (!hdev)
1841 return -ENODEV;
1842
1843 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1844 err = -EBUSY;
1845 goto done;
1846 }
1847
1848 if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
1849 cancel_delayed_work(&hdev->power_off);
1850
1851 err = hci_dev_do_close(hdev);
1852
1853done:
1854 hci_dev_put(hdev);
1855 return err;
1856}
1857
1858static int hci_dev_do_reset(struct hci_dev *hdev)
1859{
1860 int ret;
1861
1862 BT_DBG("%s %p", hdev->name, hdev);
1863
1864 hci_req_sync_lock(hdev);
1865
1866 /* Drop queues */
1867 skb_queue_purge(&hdev->rx_q);
1868 skb_queue_purge(&hdev->cmd_q);
1869
1870 /* Avoid potential lockdep warnings from the *_flush() calls by
1871 * ensuring the workqueue is empty up front.
1872 */
1873 drain_workqueue(hdev->workqueue);
1874
1875 hci_dev_lock(hdev);
1876 hci_inquiry_cache_flush(hdev);
1877 hci_conn_hash_flush(hdev);
1878 hci_dev_unlock(hdev);
1879
1880 if (hdev->flush)
1881 hdev->flush(hdev);
1882
1883 atomic_set(&hdev->cmd_cnt, 1);
1884 hdev->acl_cnt = 0; hdev->sco_cnt = 0; hdev->le_cnt = 0;
1885
1886 ret = __hci_req_sync(hdev, hci_reset_req, 0, HCI_INIT_TIMEOUT, NULL);
1887
1888 hci_req_sync_unlock(hdev);
1889 return ret;
1890}
1891
1892int hci_dev_reset(__u16 dev)
1893{
1894 struct hci_dev *hdev;
1895 int err;
1896
1897 hdev = hci_dev_get(dev);
1898 if (!hdev)
1899 return -ENODEV;
1900
1901 if (!test_bit(HCI_UP, &hdev->flags)) {
1902 err = -ENETDOWN;
1903 goto done;
1904 }
1905
1906 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1907 err = -EBUSY;
1908 goto done;
1909 }
1910
1911 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1912 err = -EOPNOTSUPP;
1913 goto done;
1914 }
1915
1916 err = hci_dev_do_reset(hdev);
1917
1918done:
1919 hci_dev_put(hdev);
1920 return err;
1921}
1922
1923int hci_dev_reset_stat(__u16 dev)
1924{
1925 struct hci_dev *hdev;
1926 int ret = 0;
1927
1928 hdev = hci_dev_get(dev);
1929 if (!hdev)
1930 return -ENODEV;
1931
1932 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1933 ret = -EBUSY;
1934 goto done;
1935 }
1936
1937 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1938 ret = -EOPNOTSUPP;
1939 goto done;
1940 }
1941
1942 memset(&hdev->stat, 0, sizeof(struct hci_dev_stats));
1943
1944done:
1945 hci_dev_put(hdev);
1946 return ret;
1947}
1948
1949static void hci_update_scan_state(struct hci_dev *hdev, u8 scan)
1950{
1951 bool conn_changed, discov_changed;
1952
1953 BT_DBG("%s scan 0x%02x", hdev->name, scan);
1954
1955 if ((scan & SCAN_PAGE))
1956 conn_changed = !hci_dev_test_and_set_flag(hdev,
1957 HCI_CONNECTABLE);
1958 else
1959 conn_changed = hci_dev_test_and_clear_flag(hdev,
1960 HCI_CONNECTABLE);
1961
1962 if ((scan & SCAN_INQUIRY)) {
1963 discov_changed = !hci_dev_test_and_set_flag(hdev,
1964 HCI_DISCOVERABLE);
1965 } else {
1966 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
1967 discov_changed = hci_dev_test_and_clear_flag(hdev,
1968 HCI_DISCOVERABLE);
1969 }
1970
1971 if (!hci_dev_test_flag(hdev, HCI_MGMT))
1972 return;
1973
1974 if (conn_changed || discov_changed) {
1975 /* In case this was disabled through mgmt */
1976 hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
1977
1978 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED))
1979 hci_req_update_adv_data(hdev, hdev->cur_adv_instance);
1980
1981 mgmt_new_settings(hdev);
1982 }
1983}
1984
1985int hci_dev_cmd(unsigned int cmd, void __user *arg)
1986{
1987 struct hci_dev *hdev;
1988 struct hci_dev_req dr;
1989 int err = 0;
1990
1991 if (copy_from_user(&dr, arg, sizeof(dr)))
1992 return -EFAULT;
1993
1994 hdev = hci_dev_get(dr.dev_id);
1995 if (!hdev)
1996 return -ENODEV;
1997
1998 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1999 err = -EBUSY;
2000 goto done;
2001 }
2002
2003 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
2004 err = -EOPNOTSUPP;
2005 goto done;
2006 }
2007
2008 if (hdev->dev_type != HCI_PRIMARY) {
2009 err = -EOPNOTSUPP;
2010 goto done;
2011 }
2012
2013 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
2014 err = -EOPNOTSUPP;
2015 goto done;
2016 }
2017
2018 switch (cmd) {
2019 case HCISETAUTH:
2020 err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
2021 HCI_INIT_TIMEOUT, NULL);
2022 break;
2023
2024 case HCISETENCRYPT:
2025 if (!lmp_encrypt_capable(hdev)) {
2026 err = -EOPNOTSUPP;
2027 break;
2028 }
2029
2030 if (!test_bit(HCI_AUTH, &hdev->flags)) {
2031 /* Auth must be enabled first */
2032 err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
2033 HCI_INIT_TIMEOUT, NULL);
2034 if (err)
2035 break;
2036 }
2037
2038 err = hci_req_sync(hdev, hci_encrypt_req, dr.dev_opt,
2039 HCI_INIT_TIMEOUT, NULL);
2040 break;
2041
2042 case HCISETSCAN:
2043 err = hci_req_sync(hdev, hci_scan_req, dr.dev_opt,
2044 HCI_INIT_TIMEOUT, NULL);
2045
2046 /* Ensure that the connectable and discoverable states
2047 * get correctly modified as this was a non-mgmt change.
2048 */
2049 if (!err)
2050 hci_update_scan_state(hdev, dr.dev_opt);
2051 break;
2052
2053 case HCISETLINKPOL:
2054 err = hci_req_sync(hdev, hci_linkpol_req, dr.dev_opt,
2055 HCI_INIT_TIMEOUT, NULL);
2056 break;
2057
2058 case HCISETLINKMODE:
2059 hdev->link_mode = ((__u16) dr.dev_opt) &
2060 (HCI_LM_MASTER | HCI_LM_ACCEPT);
2061 break;
2062
2063 case HCISETPTYPE:
2064 if (hdev->pkt_type == (__u16) dr.dev_opt)
2065 break;
2066
2067 hdev->pkt_type = (__u16) dr.dev_opt;
2068 mgmt_phy_configuration_changed(hdev, NULL);
2069 break;
2070
2071 case HCISETACLMTU:
2072 hdev->acl_mtu = *((__u16 *) &dr.dev_opt + 1);
2073 hdev->acl_pkts = *((__u16 *) &dr.dev_opt + 0);
2074 break;
2075
2076 case HCISETSCOMTU:
2077 hdev->sco_mtu = *((__u16 *) &dr.dev_opt + 1);
2078 hdev->sco_pkts = *((__u16 *) &dr.dev_opt + 0);
2079 break;
2080
2081 default:
2082 err = -EINVAL;
2083 break;
2084 }
2085
2086done:
2087 hci_dev_put(hdev);
2088 return err;
2089}
2090
2091int hci_get_dev_list(void __user *arg)
2092{
2093 struct hci_dev *hdev;
2094 struct hci_dev_list_req *dl;
2095 struct hci_dev_req *dr;
2096 int n = 0, size, err;
2097 __u16 dev_num;
2098
2099 if (get_user(dev_num, (__u16 __user *) arg))
2100 return -EFAULT;
2101
2102 if (!dev_num || dev_num > (PAGE_SIZE * 2) / sizeof(*dr))
2103 return -EINVAL;
2104
2105 size = sizeof(*dl) + dev_num * sizeof(*dr);
2106
2107 dl = kzalloc(size, GFP_KERNEL);
2108 if (!dl)
2109 return -ENOMEM;
2110
2111 dr = dl->dev_req;
2112
2113 read_lock(&hci_dev_list_lock);
2114 list_for_each_entry(hdev, &hci_dev_list, list) {
2115 unsigned long flags = hdev->flags;
2116
2117 /* When the auto-off is configured it means the transport
2118 * is running, but in that case still indicate that the
2119 * device is actually down.
2120 */
2121 if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
2122 flags &= ~BIT(HCI_UP);
2123
2124 (dr + n)->dev_id = hdev->id;
2125 (dr + n)->dev_opt = flags;
2126
2127 if (++n >= dev_num)
2128 break;
2129 }
2130 read_unlock(&hci_dev_list_lock);
2131
2132 dl->dev_num = n;
2133 size = sizeof(*dl) + n * sizeof(*dr);
2134
2135 err = copy_to_user(arg, dl, size);
2136 kfree(dl);
2137
2138 return err ? -EFAULT : 0;
2139}
2140
2141int hci_get_dev_info(void __user *arg)
2142{
2143 struct hci_dev *hdev;
2144 struct hci_dev_info di;
2145 unsigned long flags;
2146 int err = 0;
2147
2148 if (copy_from_user(&di, arg, sizeof(di)))
2149 return -EFAULT;
2150
2151 hdev = hci_dev_get(di.dev_id);
2152 if (!hdev)
2153 return -ENODEV;
2154
2155 /* When the auto-off is configured it means the transport
2156 * is running, but in that case still indicate that the
2157 * device is actually down.
2158 */
2159 if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
2160 flags = hdev->flags & ~BIT(HCI_UP);
2161 else
2162 flags = hdev->flags;
2163
2164 strcpy(di.name, hdev->name);
2165 di.bdaddr = hdev->bdaddr;
2166 di.type = (hdev->bus & 0x0f) | ((hdev->dev_type & 0x03) << 4);
2167 di.flags = flags;
2168 di.pkt_type = hdev->pkt_type;
2169 if (lmp_bredr_capable(hdev)) {
2170 di.acl_mtu = hdev->acl_mtu;
2171 di.acl_pkts = hdev->acl_pkts;
2172 di.sco_mtu = hdev->sco_mtu;
2173 di.sco_pkts = hdev->sco_pkts;
2174 } else {
2175 di.acl_mtu = hdev->le_mtu;
2176 di.acl_pkts = hdev->le_pkts;
2177 di.sco_mtu = 0;
2178 di.sco_pkts = 0;
2179 }
2180 di.link_policy = hdev->link_policy;
2181 di.link_mode = hdev->link_mode;
2182
2183 memcpy(&di.stat, &hdev->stat, sizeof(di.stat));
2184 memcpy(&di.features, &hdev->features, sizeof(di.features));
2185
2186 if (copy_to_user(arg, &di, sizeof(di)))
2187 err = -EFAULT;
2188
2189 hci_dev_put(hdev);
2190
2191 return err;
2192}
2193
2194/* ---- Interface to HCI drivers ---- */
2195
2196static int hci_rfkill_set_block(void *data, bool blocked)
2197{
2198 struct hci_dev *hdev = data;
2199
2200 BT_DBG("%p name %s blocked %d", hdev, hdev->name, blocked);
2201
2202 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL))
2203 return -EBUSY;
2204
2205 if (blocked) {
2206 hci_dev_set_flag(hdev, HCI_RFKILLED);
2207 if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
2208 !hci_dev_test_flag(hdev, HCI_CONFIG))
2209 hci_dev_do_close(hdev);
2210 } else {
2211 hci_dev_clear_flag(hdev, HCI_RFKILLED);
2212 }
2213
2214 return 0;
2215}
2216
2217static const struct rfkill_ops hci_rfkill_ops = {
2218 .set_block = hci_rfkill_set_block,
2219};
2220
2221static void hci_power_on(struct work_struct *work)
2222{
2223 struct hci_dev *hdev = container_of(work, struct hci_dev, power_on);
2224 int err;
2225
2226 BT_DBG("%s", hdev->name);
2227
2228 if (test_bit(HCI_UP, &hdev->flags) &&
2229 hci_dev_test_flag(hdev, HCI_MGMT) &&
2230 hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) {
2231 cancel_delayed_work(&hdev->power_off);
2232 hci_req_sync_lock(hdev);
2233 err = __hci_req_hci_power_on(hdev);
2234 hci_req_sync_unlock(hdev);
2235 mgmt_power_on(hdev, err);
2236 return;
2237 }
2238
2239 err = hci_dev_do_open(hdev);
2240 if (err < 0) {
2241 hci_dev_lock(hdev);
2242 mgmt_set_powered_failed(hdev, err);
2243 hci_dev_unlock(hdev);
2244 return;
2245 }
2246
2247 /* During the HCI setup phase, a few error conditions are
2248 * ignored and they need to be checked now. If they are still
2249 * valid, it is important to turn the device back off.
2250 */
2251 if (hci_dev_test_flag(hdev, HCI_RFKILLED) ||
2252 hci_dev_test_flag(hdev, HCI_UNCONFIGURED) ||
2253 (hdev->dev_type == HCI_PRIMARY &&
2254 !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
2255 !bacmp(&hdev->static_addr, BDADDR_ANY))) {
2256 hci_dev_clear_flag(hdev, HCI_AUTO_OFF);
2257 hci_dev_do_close(hdev);
2258 } else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) {
2259 queue_delayed_work(hdev->req_workqueue, &hdev->power_off,
2260 HCI_AUTO_OFF_TIMEOUT);
2261 }
2262
2263 if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) {
2264 /* For unconfigured devices, set the HCI_RAW flag
2265 * so that userspace can easily identify them.
2266 */
2267 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
2268 set_bit(HCI_RAW, &hdev->flags);
2269
2270 /* For fully configured devices, this will send
2271 * the Index Added event. For unconfigured devices,
2272 * it will send Unconfigued Index Added event.
2273 *
2274 * Devices with HCI_QUIRK_RAW_DEVICE are ignored
2275 * and no event will be send.
2276 */
2277 mgmt_index_added(hdev);
2278 } else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) {
2279 /* When the controller is now configured, then it
2280 * is important to clear the HCI_RAW flag.
2281 */
2282 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
2283 clear_bit(HCI_RAW, &hdev->flags);
2284
2285 /* Powering on the controller with HCI_CONFIG set only
2286 * happens with the transition from unconfigured to
2287 * configured. This will send the Index Added event.
2288 */
2289 mgmt_index_added(hdev);
2290 }
2291}
2292
2293static void hci_power_off(struct work_struct *work)
2294{
2295 struct hci_dev *hdev = container_of(work, struct hci_dev,
2296 power_off.work);
2297
2298 BT_DBG("%s", hdev->name);
2299
2300 hci_dev_do_close(hdev);
2301}
2302
2303static void hci_error_reset(struct work_struct *work)
2304{
2305 struct hci_dev *hdev = container_of(work, struct hci_dev, error_reset);
2306
2307 BT_DBG("%s", hdev->name);
2308
2309 if (hdev->hw_error)
2310 hdev->hw_error(hdev, hdev->hw_error_code);
2311 else
2312 bt_dev_err(hdev, "hardware error 0x%2.2x", hdev->hw_error_code);
2313
2314 if (hci_dev_do_close(hdev))
2315 return;
2316
2317 hci_dev_do_open(hdev);
2318}
2319
2320void hci_uuids_clear(struct hci_dev *hdev)
2321{
2322 struct bt_uuid *uuid, *tmp;
2323
2324 list_for_each_entry_safe(uuid, tmp, &hdev->uuids, list) {
2325 list_del(&uuid->list);
2326 kfree(uuid);
2327 }
2328}
2329
2330void hci_link_keys_clear(struct hci_dev *hdev)
2331{
2332 struct link_key *key;
2333
2334 list_for_each_entry(key, &hdev->link_keys, list) {
2335 list_del_rcu(&key->list);
2336 kfree_rcu(key, rcu);
2337 }
2338}
2339
2340void hci_smp_ltks_clear(struct hci_dev *hdev)
2341{
2342 struct smp_ltk *k;
2343
2344 list_for_each_entry(k, &hdev->long_term_keys, list) {
2345 list_del_rcu(&k->list);
2346 kfree_rcu(k, rcu);
2347 }
2348}
2349
2350void hci_smp_irks_clear(struct hci_dev *hdev)
2351{
2352 struct smp_irk *k;
2353
2354 list_for_each_entry(k, &hdev->identity_resolving_keys, list) {
2355 list_del_rcu(&k->list);
2356 kfree_rcu(k, rcu);
2357 }
2358}
2359
2360void hci_blocked_keys_clear(struct hci_dev *hdev)
2361{
2362 struct blocked_key *b;
2363
2364 list_for_each_entry(b, &hdev->blocked_keys, list) {
2365 list_del_rcu(&b->list);
2366 kfree_rcu(b, rcu);
2367 }
2368}
2369
2370bool hci_is_blocked_key(struct hci_dev *hdev, u8 type, u8 val[16])
2371{
2372 bool blocked = false;
2373 struct blocked_key *b;
2374
2375 rcu_read_lock();
2376 list_for_each_entry_rcu(b, &hdev->blocked_keys, list) {
2377 if (b->type == type && !memcmp(b->val, val, sizeof(b->val))) {
2378 blocked = true;
2379 break;
2380 }
2381 }
2382
2383 rcu_read_unlock();
2384 return blocked;
2385}
2386
2387struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
2388{
2389 struct link_key *k;
2390
2391 rcu_read_lock();
2392 list_for_each_entry_rcu(k, &hdev->link_keys, list) {
2393 if (bacmp(bdaddr, &k->bdaddr) == 0) {
2394 rcu_read_unlock();
2395
2396 if (hci_is_blocked_key(hdev,
2397 HCI_BLOCKED_KEY_TYPE_LINKKEY,
2398 k->val)) {
2399 bt_dev_warn_ratelimited(hdev,
2400 "Link key blocked for %pMR",
2401 &k->bdaddr);
2402 return NULL;
2403 }
2404
2405 return k;
2406 }
2407 }
2408 rcu_read_unlock();
2409
2410 return NULL;
2411}
2412
2413static bool hci_persistent_key(struct hci_dev *hdev, struct hci_conn *conn,
2414 u8 key_type, u8 old_key_type)
2415{
2416 /* Legacy key */
2417 if (key_type < 0x03)
2418 return true;
2419
2420 /* Debug keys are insecure so don't store them persistently */
2421 if (key_type == HCI_LK_DEBUG_COMBINATION)
2422 return false;
2423
2424 /* Changed combination key and there's no previous one */
2425 if (key_type == HCI_LK_CHANGED_COMBINATION && old_key_type == 0xff)
2426 return false;
2427
2428 /* Security mode 3 case */
2429 if (!conn)
2430 return true;
2431
2432 /* BR/EDR key derived using SC from an LE link */
2433 if (conn->type == LE_LINK)
2434 return true;
2435
2436 /* Neither local nor remote side had no-bonding as requirement */
2437 if (conn->auth_type > 0x01 && conn->remote_auth > 0x01)
2438 return true;
2439
2440 /* Local side had dedicated bonding as requirement */
2441 if (conn->auth_type == 0x02 || conn->auth_type == 0x03)
2442 return true;
2443
2444 /* Remote side had dedicated bonding as requirement */
2445 if (conn->remote_auth == 0x02 || conn->remote_auth == 0x03)
2446 return true;
2447
2448 /* If none of the above criteria match, then don't store the key
2449 * persistently */
2450 return false;
2451}
2452
2453static u8 ltk_role(u8 type)
2454{
2455 if (type == SMP_LTK)
2456 return HCI_ROLE_MASTER;
2457
2458 return HCI_ROLE_SLAVE;
2459}
2460
2461struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2462 u8 addr_type, u8 role)
2463{
2464 struct smp_ltk *k;
2465
2466 rcu_read_lock();
2467 list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2468 if (addr_type != k->bdaddr_type || bacmp(bdaddr, &k->bdaddr))
2469 continue;
2470
2471 if (smp_ltk_is_sc(k) || ltk_role(k->type) == role) {
2472 rcu_read_unlock();
2473
2474 if (hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_LTK,
2475 k->val)) {
2476 bt_dev_warn_ratelimited(hdev,
2477 "LTK blocked for %pMR",
2478 &k->bdaddr);
2479 return NULL;
2480 }
2481
2482 return k;
2483 }
2484 }
2485 rcu_read_unlock();
2486
2487 return NULL;
2488}
2489
2490struct smp_irk *hci_find_irk_by_rpa(struct hci_dev *hdev, bdaddr_t *rpa)
2491{
2492 struct smp_irk *irk_to_return = NULL;
2493 struct smp_irk *irk;
2494
2495 rcu_read_lock();
2496 list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2497 if (!bacmp(&irk->rpa, rpa)) {
2498 irk_to_return = irk;
2499 goto done;
2500 }
2501 }
2502
2503 list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2504 if (smp_irk_matches(hdev, irk->val, rpa)) {
2505 bacpy(&irk->rpa, rpa);
2506 irk_to_return = irk;
2507 goto done;
2508 }
2509 }
2510
2511done:
2512 if (irk_to_return && hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_IRK,
2513 irk_to_return->val)) {
2514 bt_dev_warn_ratelimited(hdev, "Identity key blocked for %pMR",
2515 &irk_to_return->bdaddr);
2516 irk_to_return = NULL;
2517 }
2518
2519 rcu_read_unlock();
2520
2521 return irk_to_return;
2522}
2523
2524struct smp_irk *hci_find_irk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr,
2525 u8 addr_type)
2526{
2527 struct smp_irk *irk_to_return = NULL;
2528 struct smp_irk *irk;
2529
2530 /* Identity Address must be public or static random */
2531 if (addr_type == ADDR_LE_DEV_RANDOM && (bdaddr->b[5] & 0xc0) != 0xc0)
2532 return NULL;
2533
2534 rcu_read_lock();
2535 list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2536 if (addr_type == irk->addr_type &&
2537 bacmp(bdaddr, &irk->bdaddr) == 0) {
2538 irk_to_return = irk;
2539 goto done;
2540 }
2541 }
2542
2543done:
2544
2545 if (irk_to_return && hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_IRK,
2546 irk_to_return->val)) {
2547 bt_dev_warn_ratelimited(hdev, "Identity key blocked for %pMR",
2548 &irk_to_return->bdaddr);
2549 irk_to_return = NULL;
2550 }
2551
2552 rcu_read_unlock();
2553
2554 return irk_to_return;
2555}
2556
2557struct link_key *hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn,
2558 bdaddr_t *bdaddr, u8 *val, u8 type,
2559 u8 pin_len, bool *persistent)
2560{
2561 struct link_key *key, *old_key;
2562 u8 old_key_type;
2563
2564 old_key = hci_find_link_key(hdev, bdaddr);
2565 if (old_key) {
2566 old_key_type = old_key->type;
2567 key = old_key;
2568 } else {
2569 old_key_type = conn ? conn->key_type : 0xff;
2570 key = kzalloc(sizeof(*key), GFP_KERNEL);
2571 if (!key)
2572 return NULL;
2573 list_add_rcu(&key->list, &hdev->link_keys);
2574 }
2575
2576 BT_DBG("%s key for %pMR type %u", hdev->name, bdaddr, type);
2577
2578 /* Some buggy controller combinations generate a changed
2579 * combination key for legacy pairing even when there's no
2580 * previous key */
2581 if (type == HCI_LK_CHANGED_COMBINATION &&
2582 (!conn || conn->remote_auth == 0xff) && old_key_type == 0xff) {
2583 type = HCI_LK_COMBINATION;
2584 if (conn)
2585 conn->key_type = type;
2586 }
2587
2588 bacpy(&key->bdaddr, bdaddr);
2589 memcpy(key->val, val, HCI_LINK_KEY_SIZE);
2590 key->pin_len = pin_len;
2591
2592 if (type == HCI_LK_CHANGED_COMBINATION)
2593 key->type = old_key_type;
2594 else
2595 key->type = type;
2596
2597 if (persistent)
2598 *persistent = hci_persistent_key(hdev, conn, type,
2599 old_key_type);
2600
2601 return key;
2602}
2603
2604struct smp_ltk *hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2605 u8 addr_type, u8 type, u8 authenticated,
2606 u8 tk[16], u8 enc_size, __le16 ediv, __le64 rand)
2607{
2608 struct smp_ltk *key, *old_key;
2609 u8 role = ltk_role(type);
2610
2611 old_key = hci_find_ltk(hdev, bdaddr, addr_type, role);
2612 if (old_key)
2613 key = old_key;
2614 else {
2615 key = kzalloc(sizeof(*key), GFP_KERNEL);
2616 if (!key)
2617 return NULL;
2618 list_add_rcu(&key->list, &hdev->long_term_keys);
2619 }
2620
2621 bacpy(&key->bdaddr, bdaddr);
2622 key->bdaddr_type = addr_type;
2623 memcpy(key->val, tk, sizeof(key->val));
2624 key->authenticated = authenticated;
2625 key->ediv = ediv;
2626 key->rand = rand;
2627 key->enc_size = enc_size;
2628 key->type = type;
2629
2630 return key;
2631}
2632
2633struct smp_irk *hci_add_irk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2634 u8 addr_type, u8 val[16], bdaddr_t *rpa)
2635{
2636 struct smp_irk *irk;
2637
2638 irk = hci_find_irk_by_addr(hdev, bdaddr, addr_type);
2639 if (!irk) {
2640 irk = kzalloc(sizeof(*irk), GFP_KERNEL);
2641 if (!irk)
2642 return NULL;
2643
2644 bacpy(&irk->bdaddr, bdaddr);
2645 irk->addr_type = addr_type;
2646
2647 list_add_rcu(&irk->list, &hdev->identity_resolving_keys);
2648 }
2649
2650 memcpy(irk->val, val, 16);
2651 bacpy(&irk->rpa, rpa);
2652
2653 return irk;
2654}
2655
2656int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
2657{
2658 struct link_key *key;
2659
2660 key = hci_find_link_key(hdev, bdaddr);
2661 if (!key)
2662 return -ENOENT;
2663
2664 BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2665
2666 list_del_rcu(&key->list);
2667 kfree_rcu(key, rcu);
2668
2669 return 0;
2670}
2671
2672int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type)
2673{
2674 struct smp_ltk *k;
2675 int removed = 0;
2676
2677 list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2678 if (bacmp(bdaddr, &k->bdaddr) || k->bdaddr_type != bdaddr_type)
2679 continue;
2680
2681 BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2682
2683 list_del_rcu(&k->list);
2684 kfree_rcu(k, rcu);
2685 removed++;
2686 }
2687
2688 return removed ? 0 : -ENOENT;
2689}
2690
2691void hci_remove_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type)
2692{
2693 struct smp_irk *k;
2694
2695 list_for_each_entry_rcu(k, &hdev->identity_resolving_keys, list) {
2696 if (bacmp(bdaddr, &k->bdaddr) || k->addr_type != addr_type)
2697 continue;
2698
2699 BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2700
2701 list_del_rcu(&k->list);
2702 kfree_rcu(k, rcu);
2703 }
2704}
2705
2706bool hci_bdaddr_is_paired(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type)
2707{
2708 struct smp_ltk *k;
2709 struct smp_irk *irk;
2710 u8 addr_type;
2711
2712 if (type == BDADDR_BREDR) {
2713 if (hci_find_link_key(hdev, bdaddr))
2714 return true;
2715 return false;
2716 }
2717
2718 /* Convert to HCI addr type which struct smp_ltk uses */
2719 if (type == BDADDR_LE_PUBLIC)
2720 addr_type = ADDR_LE_DEV_PUBLIC;
2721 else
2722 addr_type = ADDR_LE_DEV_RANDOM;
2723
2724 irk = hci_get_irk(hdev, bdaddr, addr_type);
2725 if (irk) {
2726 bdaddr = &irk->bdaddr;
2727 addr_type = irk->addr_type;
2728 }
2729
2730 rcu_read_lock();
2731 list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2732 if (k->bdaddr_type == addr_type && !bacmp(bdaddr, &k->bdaddr)) {
2733 rcu_read_unlock();
2734 return true;
2735 }
2736 }
2737 rcu_read_unlock();
2738
2739 return false;
2740}
2741
2742/* HCI command timer function */
2743static void hci_cmd_timeout(struct work_struct *work)
2744{
2745 struct hci_dev *hdev = container_of(work, struct hci_dev,
2746 cmd_timer.work);
2747
2748 if (hdev->sent_cmd) {
2749 struct hci_command_hdr *sent = (void *) hdev->sent_cmd->data;
2750 u16 opcode = __le16_to_cpu(sent->opcode);
2751
2752 bt_dev_err(hdev, "command 0x%4.4x tx timeout", opcode);
2753 } else {
2754 bt_dev_err(hdev, "command tx timeout");
2755 }
2756
2757 if (hdev->cmd_timeout)
2758 hdev->cmd_timeout(hdev);
2759
2760 atomic_set(&hdev->cmd_cnt, 1);
2761 queue_work(hdev->workqueue, &hdev->cmd_work);
2762}
2763
2764struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev,
2765 bdaddr_t *bdaddr, u8 bdaddr_type)
2766{
2767 struct oob_data *data;
2768
2769 list_for_each_entry(data, &hdev->remote_oob_data, list) {
2770 if (bacmp(bdaddr, &data->bdaddr) != 0)
2771 continue;
2772 if (data->bdaddr_type != bdaddr_type)
2773 continue;
2774 return data;
2775 }
2776
2777 return NULL;
2778}
2779
2780int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
2781 u8 bdaddr_type)
2782{
2783 struct oob_data *data;
2784
2785 data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
2786 if (!data)
2787 return -ENOENT;
2788
2789 BT_DBG("%s removing %pMR (%u)", hdev->name, bdaddr, bdaddr_type);
2790
2791 list_del(&data->list);
2792 kfree(data);
2793
2794 return 0;
2795}
2796
2797void hci_remote_oob_data_clear(struct hci_dev *hdev)
2798{
2799 struct oob_data *data, *n;
2800
2801 list_for_each_entry_safe(data, n, &hdev->remote_oob_data, list) {
2802 list_del(&data->list);
2803 kfree(data);
2804 }
2805}
2806
2807int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
2808 u8 bdaddr_type, u8 *hash192, u8 *rand192,
2809 u8 *hash256, u8 *rand256)
2810{
2811 struct oob_data *data;
2812
2813 data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
2814 if (!data) {
2815 data = kmalloc(sizeof(*data), GFP_KERNEL);
2816 if (!data)
2817 return -ENOMEM;
2818
2819 bacpy(&data->bdaddr, bdaddr);
2820 data->bdaddr_type = bdaddr_type;
2821 list_add(&data->list, &hdev->remote_oob_data);
2822 }
2823
2824 if (hash192 && rand192) {
2825 memcpy(data->hash192, hash192, sizeof(data->hash192));
2826 memcpy(data->rand192, rand192, sizeof(data->rand192));
2827 if (hash256 && rand256)
2828 data->present = 0x03;
2829 } else {
2830 memset(data->hash192, 0, sizeof(data->hash192));
2831 memset(data->rand192, 0, sizeof(data->rand192));
2832 if (hash256 && rand256)
2833 data->present = 0x02;
2834 else
2835 data->present = 0x00;
2836 }
2837
2838 if (hash256 && rand256) {
2839 memcpy(data->hash256, hash256, sizeof(data->hash256));
2840 memcpy(data->rand256, rand256, sizeof(data->rand256));
2841 } else {
2842 memset(data->hash256, 0, sizeof(data->hash256));
2843 memset(data->rand256, 0, sizeof(data->rand256));
2844 if (hash192 && rand192)
2845 data->present = 0x01;
2846 }
2847
2848 BT_DBG("%s for %pMR", hdev->name, bdaddr);
2849
2850 return 0;
2851}
2852
2853/* This function requires the caller holds hdev->lock */
2854struct adv_info *hci_find_adv_instance(struct hci_dev *hdev, u8 instance)
2855{
2856 struct adv_info *adv_instance;
2857
2858 list_for_each_entry(adv_instance, &hdev->adv_instances, list) {
2859 if (adv_instance->instance == instance)
2860 return adv_instance;
2861 }
2862
2863 return NULL;
2864}
2865
2866/* This function requires the caller holds hdev->lock */
2867struct adv_info *hci_get_next_instance(struct hci_dev *hdev, u8 instance)
2868{
2869 struct adv_info *cur_instance;
2870
2871 cur_instance = hci_find_adv_instance(hdev, instance);
2872 if (!cur_instance)
2873 return NULL;
2874
2875 if (cur_instance == list_last_entry(&hdev->adv_instances,
2876 struct adv_info, list))
2877 return list_first_entry(&hdev->adv_instances,
2878 struct adv_info, list);
2879 else
2880 return list_next_entry(cur_instance, list);
2881}
2882
2883/* This function requires the caller holds hdev->lock */
2884int hci_remove_adv_instance(struct hci_dev *hdev, u8 instance)
2885{
2886 struct adv_info *adv_instance;
2887
2888 adv_instance = hci_find_adv_instance(hdev, instance);
2889 if (!adv_instance)
2890 return -ENOENT;
2891
2892 BT_DBG("%s removing %dMR", hdev->name, instance);
2893
2894 if (hdev->cur_adv_instance == instance) {
2895 if (hdev->adv_instance_timeout) {
2896 cancel_delayed_work(&hdev->adv_instance_expire);
2897 hdev->adv_instance_timeout = 0;
2898 }
2899 hdev->cur_adv_instance = 0x00;
2900 }
2901
2902 cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
2903
2904 list_del(&adv_instance->list);
2905 kfree(adv_instance);
2906
2907 hdev->adv_instance_cnt--;
2908
2909 return 0;
2910}
2911
2912void hci_adv_instances_set_rpa_expired(struct hci_dev *hdev, bool rpa_expired)
2913{
2914 struct adv_info *adv_instance, *n;
2915
2916 list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list)
2917 adv_instance->rpa_expired = rpa_expired;
2918}
2919
2920/* This function requires the caller holds hdev->lock */
2921void hci_adv_instances_clear(struct hci_dev *hdev)
2922{
2923 struct adv_info *adv_instance, *n;
2924
2925 if (hdev->adv_instance_timeout) {
2926 cancel_delayed_work(&hdev->adv_instance_expire);
2927 hdev->adv_instance_timeout = 0;
2928 }
2929
2930 list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list) {
2931 cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
2932 list_del(&adv_instance->list);
2933 kfree(adv_instance);
2934 }
2935
2936 hdev->adv_instance_cnt = 0;
2937 hdev->cur_adv_instance = 0x00;
2938}
2939
2940static void adv_instance_rpa_expired(struct work_struct *work)
2941{
2942 struct adv_info *adv_instance = container_of(work, struct adv_info,
2943 rpa_expired_cb.work);
2944
2945 BT_DBG("");
2946
2947 adv_instance->rpa_expired = true;
2948}
2949
2950/* This function requires the caller holds hdev->lock */
2951int hci_add_adv_instance(struct hci_dev *hdev, u8 instance, u32 flags,
2952 u16 adv_data_len, u8 *adv_data,
2953 u16 scan_rsp_len, u8 *scan_rsp_data,
2954 u16 timeout, u16 duration)
2955{
2956 struct adv_info *adv_instance;
2957
2958 adv_instance = hci_find_adv_instance(hdev, instance);
2959 if (adv_instance) {
2960 memset(adv_instance->adv_data, 0,
2961 sizeof(adv_instance->adv_data));
2962 memset(adv_instance->scan_rsp_data, 0,
2963 sizeof(adv_instance->scan_rsp_data));
2964 } else {
2965 if (hdev->adv_instance_cnt >= hdev->le_num_of_adv_sets ||
2966 instance < 1 || instance > HCI_MAX_ADV_INSTANCES)
2967 return -EOVERFLOW;
2968
2969 adv_instance = kzalloc(sizeof(*adv_instance), GFP_KERNEL);
2970 if (!adv_instance)
2971 return -ENOMEM;
2972
2973 adv_instance->pending = true;
2974 adv_instance->instance = instance;
2975 list_add(&adv_instance->list, &hdev->adv_instances);
2976 hdev->adv_instance_cnt++;
2977 }
2978
2979 adv_instance->flags = flags;
2980 adv_instance->adv_data_len = adv_data_len;
2981 adv_instance->scan_rsp_len = scan_rsp_len;
2982
2983 if (adv_data_len)
2984 memcpy(adv_instance->adv_data, adv_data, adv_data_len);
2985
2986 if (scan_rsp_len)
2987 memcpy(adv_instance->scan_rsp_data,
2988 scan_rsp_data, scan_rsp_len);
2989
2990 adv_instance->timeout = timeout;
2991 adv_instance->remaining_time = timeout;
2992
2993 if (duration == 0)
2994 adv_instance->duration = hdev->def_multi_adv_rotation_duration;
2995 else
2996 adv_instance->duration = duration;
2997
2998 adv_instance->tx_power = HCI_TX_POWER_INVALID;
2999
3000 INIT_DELAYED_WORK(&adv_instance->rpa_expired_cb,
3001 adv_instance_rpa_expired);
3002
3003 BT_DBG("%s for %dMR", hdev->name, instance);
3004
3005 return 0;
3006}
3007
3008/* This function requires the caller holds hdev->lock */
3009void hci_adv_monitors_clear(struct hci_dev *hdev)
3010{
3011 struct adv_monitor *monitor;
3012 int handle;
3013
3014 idr_for_each_entry(&hdev->adv_monitors_idr, monitor, handle)
3015 hci_free_adv_monitor(monitor);
3016
3017 idr_destroy(&hdev->adv_monitors_idr);
3018}
3019
3020void hci_free_adv_monitor(struct adv_monitor *monitor)
3021{
3022 struct adv_pattern *pattern;
3023 struct adv_pattern *tmp;
3024
3025 if (!monitor)
3026 return;
3027
3028 list_for_each_entry_safe(pattern, tmp, &monitor->patterns, list)
3029 kfree(pattern);
3030
3031 kfree(monitor);
3032}
3033
3034/* This function requires the caller holds hdev->lock */
3035int hci_add_adv_monitor(struct hci_dev *hdev, struct adv_monitor *monitor)
3036{
3037 int min, max, handle;
3038
3039 if (!monitor)
3040 return -EINVAL;
3041
3042 min = HCI_MIN_ADV_MONITOR_HANDLE;
3043 max = HCI_MIN_ADV_MONITOR_HANDLE + HCI_MAX_ADV_MONITOR_NUM_HANDLES;
3044 handle = idr_alloc(&hdev->adv_monitors_idr, monitor, min, max,
3045 GFP_KERNEL);
3046 if (handle < 0)
3047 return handle;
3048
3049 hdev->adv_monitors_cnt++;
3050 monitor->handle = handle;
3051
3052 hci_update_background_scan(hdev);
3053
3054 return 0;
3055}
3056
3057static int free_adv_monitor(int id, void *ptr, void *data)
3058{
3059 struct hci_dev *hdev = data;
3060 struct adv_monitor *monitor = ptr;
3061
3062 idr_remove(&hdev->adv_monitors_idr, monitor->handle);
3063 hci_free_adv_monitor(monitor);
3064
3065 return 0;
3066}
3067
3068/* This function requires the caller holds hdev->lock */
3069int hci_remove_adv_monitor(struct hci_dev *hdev, u16 handle)
3070{
3071 struct adv_monitor *monitor;
3072
3073 if (handle) {
3074 monitor = idr_find(&hdev->adv_monitors_idr, handle);
3075 if (!monitor)
3076 return -ENOENT;
3077
3078 idr_remove(&hdev->adv_monitors_idr, monitor->handle);
3079 hci_free_adv_monitor(monitor);
3080 } else {
3081 /* Remove all monitors if handle is 0. */
3082 idr_for_each(&hdev->adv_monitors_idr, &free_adv_monitor, hdev);
3083 }
3084
3085 hci_update_background_scan(hdev);
3086
3087 return 0;
3088}
3089
3090/* This function requires the caller holds hdev->lock */
3091bool hci_is_adv_monitoring(struct hci_dev *hdev)
3092{
3093 return !idr_is_empty(&hdev->adv_monitors_idr);
3094}
3095
3096struct bdaddr_list *hci_bdaddr_list_lookup(struct list_head *bdaddr_list,
3097 bdaddr_t *bdaddr, u8 type)
3098{
3099 struct bdaddr_list *b;
3100
3101 list_for_each_entry(b, bdaddr_list, list) {
3102 if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
3103 return b;
3104 }
3105
3106 return NULL;
3107}
3108
3109struct bdaddr_list_with_irk *hci_bdaddr_list_lookup_with_irk(
3110 struct list_head *bdaddr_list, bdaddr_t *bdaddr,
3111 u8 type)
3112{
3113 struct bdaddr_list_with_irk *b;
3114
3115 list_for_each_entry(b, bdaddr_list, list) {
3116 if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
3117 return b;
3118 }
3119
3120 return NULL;
3121}
3122
3123struct bdaddr_list_with_flags *
3124hci_bdaddr_list_lookup_with_flags(struct list_head *bdaddr_list,
3125 bdaddr_t *bdaddr, u8 type)
3126{
3127 struct bdaddr_list_with_flags *b;
3128
3129 list_for_each_entry(b, bdaddr_list, list) {
3130 if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
3131 return b;
3132 }
3133
3134 return NULL;
3135}
3136
3137void hci_bdaddr_list_clear(struct list_head *bdaddr_list)
3138{
3139 struct bdaddr_list *b, *n;
3140
3141 list_for_each_entry_safe(b, n, bdaddr_list, list) {
3142 list_del(&b->list);
3143 kfree(b);
3144 }
3145}
3146
3147int hci_bdaddr_list_add(struct list_head *list, bdaddr_t *bdaddr, u8 type)
3148{
3149 struct bdaddr_list *entry;
3150
3151 if (!bacmp(bdaddr, BDADDR_ANY))
3152 return -EBADF;
3153
3154 if (hci_bdaddr_list_lookup(list, bdaddr, type))
3155 return -EEXIST;
3156
3157 entry = kzalloc(sizeof(*entry), GFP_KERNEL);
3158 if (!entry)
3159 return -ENOMEM;
3160
3161 bacpy(&entry->bdaddr, bdaddr);
3162 entry->bdaddr_type = type;
3163
3164 list_add(&entry->list, list);
3165
3166 return 0;
3167}
3168
3169int hci_bdaddr_list_add_with_irk(struct list_head *list, bdaddr_t *bdaddr,
3170 u8 type, u8 *peer_irk, u8 *local_irk)
3171{
3172 struct bdaddr_list_with_irk *entry;
3173
3174 if (!bacmp(bdaddr, BDADDR_ANY))
3175 return -EBADF;
3176
3177 if (hci_bdaddr_list_lookup(list, bdaddr, type))
3178 return -EEXIST;
3179
3180 entry = kzalloc(sizeof(*entry), GFP_KERNEL);
3181 if (!entry)
3182 return -ENOMEM;
3183
3184 bacpy(&entry->bdaddr, bdaddr);
3185 entry->bdaddr_type = type;
3186
3187 if (peer_irk)
3188 memcpy(entry->peer_irk, peer_irk, 16);
3189
3190 if (local_irk)
3191 memcpy(entry->local_irk, local_irk, 16);
3192
3193 list_add(&entry->list, list);
3194
3195 return 0;
3196}
3197
3198int hci_bdaddr_list_add_with_flags(struct list_head *list, bdaddr_t *bdaddr,
3199 u8 type, u32 flags)
3200{
3201 struct bdaddr_list_with_flags *entry;
3202
3203 if (!bacmp(bdaddr, BDADDR_ANY))
3204 return -EBADF;
3205
3206 if (hci_bdaddr_list_lookup(list, bdaddr, type))
3207 return -EEXIST;
3208
3209 entry = kzalloc(sizeof(*entry), GFP_KERNEL);
3210 if (!entry)
3211 return -ENOMEM;
3212
3213 bacpy(&entry->bdaddr, bdaddr);
3214 entry->bdaddr_type = type;
3215 entry->current_flags = flags;
3216
3217 list_add(&entry->list, list);
3218
3219 return 0;
3220}
3221
3222int hci_bdaddr_list_del(struct list_head *list, bdaddr_t *bdaddr, u8 type)
3223{
3224 struct bdaddr_list *entry;
3225
3226 if (!bacmp(bdaddr, BDADDR_ANY)) {
3227 hci_bdaddr_list_clear(list);
3228 return 0;
3229 }
3230
3231 entry = hci_bdaddr_list_lookup(list, bdaddr, type);
3232 if (!entry)
3233 return -ENOENT;
3234
3235 list_del(&entry->list);
3236 kfree(entry);
3237
3238 return 0;
3239}
3240
3241int hci_bdaddr_list_del_with_irk(struct list_head *list, bdaddr_t *bdaddr,
3242 u8 type)
3243{
3244 struct bdaddr_list_with_irk *entry;
3245
3246 if (!bacmp(bdaddr, BDADDR_ANY)) {
3247 hci_bdaddr_list_clear(list);
3248 return 0;
3249 }
3250
3251 entry = hci_bdaddr_list_lookup_with_irk(list, bdaddr, type);
3252 if (!entry)
3253 return -ENOENT;
3254
3255 list_del(&entry->list);
3256 kfree(entry);
3257
3258 return 0;
3259}
3260
3261int hci_bdaddr_list_del_with_flags(struct list_head *list, bdaddr_t *bdaddr,
3262 u8 type)
3263{
3264 struct bdaddr_list_with_flags *entry;
3265
3266 if (!bacmp(bdaddr, BDADDR_ANY)) {
3267 hci_bdaddr_list_clear(list);
3268 return 0;
3269 }
3270
3271 entry = hci_bdaddr_list_lookup_with_flags(list, bdaddr, type);
3272 if (!entry)
3273 return -ENOENT;
3274
3275 list_del(&entry->list);
3276 kfree(entry);
3277
3278 return 0;
3279}
3280
3281/* This function requires the caller holds hdev->lock */
3282struct hci_conn_params *hci_conn_params_lookup(struct hci_dev *hdev,
3283 bdaddr_t *addr, u8 addr_type)
3284{
3285 struct hci_conn_params *params;
3286
3287 list_for_each_entry(params, &hdev->le_conn_params, list) {
3288 if (bacmp(¶ms->addr, addr) == 0 &&
3289 params->addr_type == addr_type) {
3290 return params;
3291 }
3292 }
3293
3294 return NULL;
3295}
3296
3297/* This function requires the caller holds hdev->lock */
3298struct hci_conn_params *hci_pend_le_action_lookup(struct list_head *list,
3299 bdaddr_t *addr, u8 addr_type)
3300{
3301 struct hci_conn_params *param;
3302
3303 switch (addr_type) {
3304 case ADDR_LE_DEV_PUBLIC_RESOLVED:
3305 addr_type = ADDR_LE_DEV_PUBLIC;
3306 break;
3307 case ADDR_LE_DEV_RANDOM_RESOLVED:
3308 addr_type = ADDR_LE_DEV_RANDOM;
3309 break;
3310 }
3311
3312 list_for_each_entry(param, list, action) {
3313 if (bacmp(¶m->addr, addr) == 0 &&
3314 param->addr_type == addr_type)
3315 return param;
3316 }
3317
3318 return NULL;
3319}
3320
3321/* This function requires the caller holds hdev->lock */
3322struct hci_conn_params *hci_conn_params_add(struct hci_dev *hdev,
3323 bdaddr_t *addr, u8 addr_type)
3324{
3325 struct hci_conn_params *params;
3326
3327 params = hci_conn_params_lookup(hdev, addr, addr_type);
3328 if (params)
3329 return params;
3330
3331 params = kzalloc(sizeof(*params), GFP_KERNEL);
3332 if (!params) {
3333 bt_dev_err(hdev, "out of memory");
3334 return NULL;
3335 }
3336
3337 bacpy(¶ms->addr, addr);
3338 params->addr_type = addr_type;
3339
3340 list_add(¶ms->list, &hdev->le_conn_params);
3341 INIT_LIST_HEAD(¶ms->action);
3342
3343 params->conn_min_interval = hdev->le_conn_min_interval;
3344 params->conn_max_interval = hdev->le_conn_max_interval;
3345 params->conn_latency = hdev->le_conn_latency;
3346 params->supervision_timeout = hdev->le_supv_timeout;
3347 params->auto_connect = HCI_AUTO_CONN_DISABLED;
3348
3349 BT_DBG("addr %pMR (type %u)", addr, addr_type);
3350
3351 return params;
3352}
3353
3354static void hci_conn_params_free(struct hci_conn_params *params)
3355{
3356 if (params->conn) {
3357 hci_conn_drop(params->conn);
3358 hci_conn_put(params->conn);
3359 }
3360
3361 list_del(¶ms->action);
3362 list_del(¶ms->list);
3363 kfree(params);
3364}
3365
3366/* This function requires the caller holds hdev->lock */
3367void hci_conn_params_del(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type)
3368{
3369 struct hci_conn_params *params;
3370
3371 params = hci_conn_params_lookup(hdev, addr, addr_type);
3372 if (!params)
3373 return;
3374
3375 hci_conn_params_free(params);
3376
3377 hci_update_background_scan(hdev);
3378
3379 BT_DBG("addr %pMR (type %u)", addr, addr_type);
3380}
3381
3382/* This function requires the caller holds hdev->lock */
3383void hci_conn_params_clear_disabled(struct hci_dev *hdev)
3384{
3385 struct hci_conn_params *params, *tmp;
3386
3387 list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list) {
3388 if (params->auto_connect != HCI_AUTO_CONN_DISABLED)
3389 continue;
3390
3391 /* If trying to estabilish one time connection to disabled
3392 * device, leave the params, but mark them as just once.
3393 */
3394 if (params->explicit_connect) {
3395 params->auto_connect = HCI_AUTO_CONN_EXPLICIT;
3396 continue;
3397 }
3398
3399 list_del(¶ms->list);
3400 kfree(params);
3401 }
3402
3403 BT_DBG("All LE disabled connection parameters were removed");
3404}
3405
3406/* This function requires the caller holds hdev->lock */
3407static void hci_conn_params_clear_all(struct hci_dev *hdev)
3408{
3409 struct hci_conn_params *params, *tmp;
3410
3411 list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list)
3412 hci_conn_params_free(params);
3413
3414 BT_DBG("All LE connection parameters were removed");
3415}
3416
3417/* Copy the Identity Address of the controller.
3418 *
3419 * If the controller has a public BD_ADDR, then by default use that one.
3420 * If this is a LE only controller without a public address, default to
3421 * the static random address.
3422 *
3423 * For debugging purposes it is possible to force controllers with a
3424 * public address to use the static random address instead.
3425 *
3426 * In case BR/EDR has been disabled on a dual-mode controller and
3427 * userspace has configured a static address, then that address
3428 * becomes the identity address instead of the public BR/EDR address.
3429 */
3430void hci_copy_identity_address(struct hci_dev *hdev, bdaddr_t *bdaddr,
3431 u8 *bdaddr_type)
3432{
3433 if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
3434 !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
3435 (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
3436 bacmp(&hdev->static_addr, BDADDR_ANY))) {
3437 bacpy(bdaddr, &hdev->static_addr);
3438 *bdaddr_type = ADDR_LE_DEV_RANDOM;
3439 } else {
3440 bacpy(bdaddr, &hdev->bdaddr);
3441 *bdaddr_type = ADDR_LE_DEV_PUBLIC;
3442 }
3443}
3444
3445static int hci_suspend_wait_event(struct hci_dev *hdev)
3446{
3447#define WAKE_COND \
3448 (find_first_bit(hdev->suspend_tasks, __SUSPEND_NUM_TASKS) == \
3449 __SUSPEND_NUM_TASKS)
3450
3451 int i;
3452 int ret = wait_event_timeout(hdev->suspend_wait_q,
3453 WAKE_COND, SUSPEND_NOTIFIER_TIMEOUT);
3454
3455 if (ret == 0) {
3456 bt_dev_err(hdev, "Timed out waiting for suspend events");
3457 for (i = 0; i < __SUSPEND_NUM_TASKS; ++i) {
3458 if (test_bit(i, hdev->suspend_tasks))
3459 bt_dev_err(hdev, "Suspend timeout bit: %d", i);
3460 clear_bit(i, hdev->suspend_tasks);
3461 }
3462
3463 ret = -ETIMEDOUT;
3464 } else {
3465 ret = 0;
3466 }
3467
3468 return ret;
3469}
3470
3471static void hci_prepare_suspend(struct work_struct *work)
3472{
3473 struct hci_dev *hdev =
3474 container_of(work, struct hci_dev, suspend_prepare);
3475
3476 hci_dev_lock(hdev);
3477 hci_req_prepare_suspend(hdev, hdev->suspend_state_next);
3478 hci_dev_unlock(hdev);
3479}
3480
3481static int hci_change_suspend_state(struct hci_dev *hdev,
3482 enum suspended_state next)
3483{
3484 hdev->suspend_state_next = next;
3485 set_bit(SUSPEND_PREPARE_NOTIFIER, hdev->suspend_tasks);
3486 queue_work(hdev->req_workqueue, &hdev->suspend_prepare);
3487 return hci_suspend_wait_event(hdev);
3488}
3489
3490static int hci_suspend_notifier(struct notifier_block *nb, unsigned long action,
3491 void *data)
3492{
3493 struct hci_dev *hdev =
3494 container_of(nb, struct hci_dev, suspend_notifier);
3495 int ret = 0;
3496
3497 /* If powering down, wait for completion. */
3498 if (mgmt_powering_down(hdev)) {
3499 set_bit(SUSPEND_POWERING_DOWN, hdev->suspend_tasks);
3500 ret = hci_suspend_wait_event(hdev);
3501 if (ret)
3502 goto done;
3503 }
3504
3505 /* Suspend notifier should only act on events when powered. */
3506 if (!hdev_is_powered(hdev))
3507 goto done;
3508
3509 if (action == PM_SUSPEND_PREPARE) {
3510 /* Suspend consists of two actions:
3511 * - First, disconnect everything and make the controller not
3512 * connectable (disabling scanning)
3513 * - Second, program event filter/whitelist and enable scan
3514 */
3515 ret = hci_change_suspend_state(hdev, BT_SUSPEND_DISCONNECT);
3516
3517 /* Only configure whitelist if disconnect succeeded and wake
3518 * isn't being prevented.
3519 */
3520 if (!ret && !(hdev->prevent_wake && hdev->prevent_wake(hdev)))
3521 ret = hci_change_suspend_state(hdev,
3522 BT_SUSPEND_CONFIGURE_WAKE);
3523 } else if (action == PM_POST_SUSPEND) {
3524 ret = hci_change_suspend_state(hdev, BT_RUNNING);
3525 }
3526
3527done:
3528 /* We always allow suspend even if suspend preparation failed and
3529 * attempt to recover in resume.
3530 */
3531 if (ret)
3532 bt_dev_err(hdev, "Suspend notifier action (%lu) failed: %d",
3533 action, ret);
3534
3535 return NOTIFY_DONE;
3536}
3537
3538/* Alloc HCI device */
3539struct hci_dev *hci_alloc_dev(void)
3540{
3541 struct hci_dev *hdev;
3542
3543 hdev = kzalloc(sizeof(*hdev), GFP_KERNEL);
3544 if (!hdev)
3545 return NULL;
3546
3547 hdev->pkt_type = (HCI_DM1 | HCI_DH1 | HCI_HV1);
3548 hdev->esco_type = (ESCO_HV1);
3549 hdev->link_mode = (HCI_LM_ACCEPT);
3550 hdev->num_iac = 0x01; /* One IAC support is mandatory */
3551 hdev->io_capability = 0x03; /* No Input No Output */
3552 hdev->manufacturer = 0xffff; /* Default to internal use */
3553 hdev->inq_tx_power = HCI_TX_POWER_INVALID;
3554 hdev->adv_tx_power = HCI_TX_POWER_INVALID;
3555 hdev->adv_instance_cnt = 0;
3556 hdev->cur_adv_instance = 0x00;
3557 hdev->adv_instance_timeout = 0;
3558
3559 hdev->sniff_max_interval = 800;
3560 hdev->sniff_min_interval = 80;
3561
3562 hdev->le_adv_channel_map = 0x07;
3563 hdev->le_adv_min_interval = 0x0800;
3564 hdev->le_adv_max_interval = 0x0800;
3565 hdev->le_scan_interval = 0x0060;
3566 hdev->le_scan_window = 0x0030;
3567 hdev->le_scan_int_suspend = 0x0400;
3568 hdev->le_scan_window_suspend = 0x0012;
3569 hdev->le_scan_int_discovery = DISCOV_LE_SCAN_INT;
3570 hdev->le_scan_window_discovery = DISCOV_LE_SCAN_WIN;
3571 hdev->le_scan_int_connect = 0x0060;
3572 hdev->le_scan_window_connect = 0x0060;
3573 hdev->le_conn_min_interval = 0x0018;
3574 hdev->le_conn_max_interval = 0x0028;
3575 hdev->le_conn_latency = 0x0000;
3576 hdev->le_supv_timeout = 0x002a;
3577 hdev->le_def_tx_len = 0x001b;
3578 hdev->le_def_tx_time = 0x0148;
3579 hdev->le_max_tx_len = 0x001b;
3580 hdev->le_max_tx_time = 0x0148;
3581 hdev->le_max_rx_len = 0x001b;
3582 hdev->le_max_rx_time = 0x0148;
3583 hdev->le_max_key_size = SMP_MAX_ENC_KEY_SIZE;
3584 hdev->le_min_key_size = SMP_MIN_ENC_KEY_SIZE;
3585 hdev->le_tx_def_phys = HCI_LE_SET_PHY_1M;
3586 hdev->le_rx_def_phys = HCI_LE_SET_PHY_1M;
3587 hdev->le_num_of_adv_sets = HCI_MAX_ADV_INSTANCES;
3588 hdev->def_multi_adv_rotation_duration = HCI_DEFAULT_ADV_DURATION;
3589 hdev->def_le_autoconnect_timeout = HCI_LE_AUTOCONN_TIMEOUT;
3590
3591 hdev->rpa_timeout = HCI_DEFAULT_RPA_TIMEOUT;
3592 hdev->discov_interleaved_timeout = DISCOV_INTERLEAVED_TIMEOUT;
3593 hdev->conn_info_min_age = DEFAULT_CONN_INFO_MIN_AGE;
3594 hdev->conn_info_max_age = DEFAULT_CONN_INFO_MAX_AGE;
3595 hdev->auth_payload_timeout = DEFAULT_AUTH_PAYLOAD_TIMEOUT;
3596 hdev->min_enc_key_size = HCI_MIN_ENC_KEY_SIZE;
3597
3598 /* default 1.28 sec page scan */
3599 hdev->def_page_scan_type = PAGE_SCAN_TYPE_STANDARD;
3600 hdev->def_page_scan_int = 0x0800;
3601 hdev->def_page_scan_window = 0x0012;
3602
3603 mutex_init(&hdev->lock);
3604 mutex_init(&hdev->req_lock);
3605
3606 INIT_LIST_HEAD(&hdev->mgmt_pending);
3607 INIT_LIST_HEAD(&hdev->blacklist);
3608 INIT_LIST_HEAD(&hdev->whitelist);
3609 INIT_LIST_HEAD(&hdev->uuids);
3610 INIT_LIST_HEAD(&hdev->link_keys);
3611 INIT_LIST_HEAD(&hdev->long_term_keys);
3612 INIT_LIST_HEAD(&hdev->identity_resolving_keys);
3613 INIT_LIST_HEAD(&hdev->remote_oob_data);
3614 INIT_LIST_HEAD(&hdev->le_white_list);
3615 INIT_LIST_HEAD(&hdev->le_resolv_list);
3616 INIT_LIST_HEAD(&hdev->le_conn_params);
3617 INIT_LIST_HEAD(&hdev->pend_le_conns);
3618 INIT_LIST_HEAD(&hdev->pend_le_reports);
3619 INIT_LIST_HEAD(&hdev->conn_hash.list);
3620 INIT_LIST_HEAD(&hdev->adv_instances);
3621 INIT_LIST_HEAD(&hdev->blocked_keys);
3622
3623 INIT_WORK(&hdev->rx_work, hci_rx_work);
3624 INIT_WORK(&hdev->cmd_work, hci_cmd_work);
3625 INIT_WORK(&hdev->tx_work, hci_tx_work);
3626 INIT_WORK(&hdev->power_on, hci_power_on);
3627 INIT_WORK(&hdev->error_reset, hci_error_reset);
3628 INIT_WORK(&hdev->suspend_prepare, hci_prepare_suspend);
3629
3630 INIT_DELAYED_WORK(&hdev->power_off, hci_power_off);
3631
3632 skb_queue_head_init(&hdev->rx_q);
3633 skb_queue_head_init(&hdev->cmd_q);
3634 skb_queue_head_init(&hdev->raw_q);
3635
3636 init_waitqueue_head(&hdev->req_wait_q);
3637 init_waitqueue_head(&hdev->suspend_wait_q);
3638
3639 INIT_DELAYED_WORK(&hdev->cmd_timer, hci_cmd_timeout);
3640
3641 hci_request_setup(hdev);
3642
3643 hci_init_sysfs(hdev);
3644 discovery_init(hdev);
3645
3646 return hdev;
3647}
3648EXPORT_SYMBOL(hci_alloc_dev);
3649
3650/* Free HCI device */
3651void hci_free_dev(struct hci_dev *hdev)
3652{
3653 /* will free via device release */
3654 put_device(&hdev->dev);
3655}
3656EXPORT_SYMBOL(hci_free_dev);
3657
3658/* Register HCI device */
3659int hci_register_dev(struct hci_dev *hdev)
3660{
3661 int id, error;
3662
3663 if (!hdev->open || !hdev->close || !hdev->send)
3664 return -EINVAL;
3665
3666 /* Do not allow HCI_AMP devices to register at index 0,
3667 * so the index can be used as the AMP controller ID.
3668 */
3669 switch (hdev->dev_type) {
3670 case HCI_PRIMARY:
3671 id = ida_simple_get(&hci_index_ida, 0, 0, GFP_KERNEL);
3672 break;
3673 case HCI_AMP:
3674 id = ida_simple_get(&hci_index_ida, 1, 0, GFP_KERNEL);
3675 break;
3676 default:
3677 return -EINVAL;
3678 }
3679
3680 if (id < 0)
3681 return id;
3682
3683 sprintf(hdev->name, "hci%d", id);
3684 hdev->id = id;
3685
3686 BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
3687
3688 hdev->workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI, hdev->name);
3689 if (!hdev->workqueue) {
3690 error = -ENOMEM;
3691 goto err;
3692 }
3693
3694 hdev->req_workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI,
3695 hdev->name);
3696 if (!hdev->req_workqueue) {
3697 destroy_workqueue(hdev->workqueue);
3698 error = -ENOMEM;
3699 goto err;
3700 }
3701
3702 if (!IS_ERR_OR_NULL(bt_debugfs))
3703 hdev->debugfs = debugfs_create_dir(hdev->name, bt_debugfs);
3704
3705 dev_set_name(&hdev->dev, "%s", hdev->name);
3706
3707 error = device_add(&hdev->dev);
3708 if (error < 0)
3709 goto err_wqueue;
3710
3711 hci_leds_init(hdev);
3712
3713 hdev->rfkill = rfkill_alloc(hdev->name, &hdev->dev,
3714 RFKILL_TYPE_BLUETOOTH, &hci_rfkill_ops,
3715 hdev);
3716 if (hdev->rfkill) {
3717 if (rfkill_register(hdev->rfkill) < 0) {
3718 rfkill_destroy(hdev->rfkill);
3719 hdev->rfkill = NULL;
3720 }
3721 }
3722
3723 if (hdev->rfkill && rfkill_blocked(hdev->rfkill))
3724 hci_dev_set_flag(hdev, HCI_RFKILLED);
3725
3726 hci_dev_set_flag(hdev, HCI_SETUP);
3727 hci_dev_set_flag(hdev, HCI_AUTO_OFF);
3728
3729 if (hdev->dev_type == HCI_PRIMARY) {
3730 /* Assume BR/EDR support until proven otherwise (such as
3731 * through reading supported features during init.
3732 */
3733 hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
3734 }
3735
3736 write_lock(&hci_dev_list_lock);
3737 list_add(&hdev->list, &hci_dev_list);
3738 write_unlock(&hci_dev_list_lock);
3739
3740 /* Devices that are marked for raw-only usage are unconfigured
3741 * and should not be included in normal operation.
3742 */
3743 if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
3744 hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
3745
3746 hci_sock_dev_event(hdev, HCI_DEV_REG);
3747 hci_dev_hold(hdev);
3748
3749 hdev->suspend_notifier.notifier_call = hci_suspend_notifier;
3750 error = register_pm_notifier(&hdev->suspend_notifier);
3751 if (error)
3752 goto err_wqueue;
3753
3754 queue_work(hdev->req_workqueue, &hdev->power_on);
3755
3756 idr_init(&hdev->adv_monitors_idr);
3757
3758 return id;
3759
3760err_wqueue:
3761 destroy_workqueue(hdev->workqueue);
3762 destroy_workqueue(hdev->req_workqueue);
3763err:
3764 ida_simple_remove(&hci_index_ida, hdev->id);
3765
3766 return error;
3767}
3768EXPORT_SYMBOL(hci_register_dev);
3769
3770/* Unregister HCI device */
3771void hci_unregister_dev(struct hci_dev *hdev)
3772{
3773 int id;
3774
3775 BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
3776
3777 hci_dev_set_flag(hdev, HCI_UNREGISTER);
3778
3779 id = hdev->id;
3780
3781 write_lock(&hci_dev_list_lock);
3782 list_del(&hdev->list);
3783 write_unlock(&hci_dev_list_lock);
3784
3785 cancel_work_sync(&hdev->power_on);
3786
3787 unregister_pm_notifier(&hdev->suspend_notifier);
3788 cancel_work_sync(&hdev->suspend_prepare);
3789
3790 hci_dev_do_close(hdev);
3791
3792 if (!test_bit(HCI_INIT, &hdev->flags) &&
3793 !hci_dev_test_flag(hdev, HCI_SETUP) &&
3794 !hci_dev_test_flag(hdev, HCI_CONFIG)) {
3795 hci_dev_lock(hdev);
3796 mgmt_index_removed(hdev);
3797 hci_dev_unlock(hdev);
3798 }
3799
3800 /* mgmt_index_removed should take care of emptying the
3801 * pending list */
3802 BUG_ON(!list_empty(&hdev->mgmt_pending));
3803
3804 hci_sock_dev_event(hdev, HCI_DEV_UNREG);
3805
3806 if (hdev->rfkill) {
3807 rfkill_unregister(hdev->rfkill);
3808 rfkill_destroy(hdev->rfkill);
3809 }
3810
3811 device_del(&hdev->dev);
3812
3813 debugfs_remove_recursive(hdev->debugfs);
3814 kfree_const(hdev->hw_info);
3815 kfree_const(hdev->fw_info);
3816
3817 destroy_workqueue(hdev->workqueue);
3818 destroy_workqueue(hdev->req_workqueue);
3819
3820 hci_dev_lock(hdev);
3821 hci_bdaddr_list_clear(&hdev->blacklist);
3822 hci_bdaddr_list_clear(&hdev->whitelist);
3823 hci_uuids_clear(hdev);
3824 hci_link_keys_clear(hdev);
3825 hci_smp_ltks_clear(hdev);
3826 hci_smp_irks_clear(hdev);
3827 hci_remote_oob_data_clear(hdev);
3828 hci_adv_instances_clear(hdev);
3829 hci_adv_monitors_clear(hdev);
3830 hci_bdaddr_list_clear(&hdev->le_white_list);
3831 hci_bdaddr_list_clear(&hdev->le_resolv_list);
3832 hci_conn_params_clear_all(hdev);
3833 hci_discovery_filter_clear(hdev);
3834 hci_blocked_keys_clear(hdev);
3835 hci_dev_unlock(hdev);
3836
3837 hci_dev_put(hdev);
3838
3839 ida_simple_remove(&hci_index_ida, id);
3840}
3841EXPORT_SYMBOL(hci_unregister_dev);
3842
3843/* Suspend HCI device */
3844int hci_suspend_dev(struct hci_dev *hdev)
3845{
3846 hci_sock_dev_event(hdev, HCI_DEV_SUSPEND);
3847 return 0;
3848}
3849EXPORT_SYMBOL(hci_suspend_dev);
3850
3851/* Resume HCI device */
3852int hci_resume_dev(struct hci_dev *hdev)
3853{
3854 hci_sock_dev_event(hdev, HCI_DEV_RESUME);
3855 return 0;
3856}
3857EXPORT_SYMBOL(hci_resume_dev);
3858
3859/* Reset HCI device */
3860int hci_reset_dev(struct hci_dev *hdev)
3861{
3862 static const u8 hw_err[] = { HCI_EV_HARDWARE_ERROR, 0x01, 0x00 };
3863 struct sk_buff *skb;
3864
3865 skb = bt_skb_alloc(3, GFP_ATOMIC);
3866 if (!skb)
3867 return -ENOMEM;
3868
3869 hci_skb_pkt_type(skb) = HCI_EVENT_PKT;
3870 skb_put_data(skb, hw_err, 3);
3871
3872 /* Send Hardware Error to upper stack */
3873 return hci_recv_frame(hdev, skb);
3874}
3875EXPORT_SYMBOL(hci_reset_dev);
3876
3877/* Receive frame from HCI drivers */
3878int hci_recv_frame(struct hci_dev *hdev, struct sk_buff *skb)
3879{
3880 if (!hdev || (!test_bit(HCI_UP, &hdev->flags)
3881 && !test_bit(HCI_INIT, &hdev->flags))) {
3882 kfree_skb(skb);
3883 return -ENXIO;
3884 }
3885
3886 if (hci_skb_pkt_type(skb) != HCI_EVENT_PKT &&
3887 hci_skb_pkt_type(skb) != HCI_ACLDATA_PKT &&
3888 hci_skb_pkt_type(skb) != HCI_SCODATA_PKT &&
3889 hci_skb_pkt_type(skb) != HCI_ISODATA_PKT) {
3890 kfree_skb(skb);
3891 return -EINVAL;
3892 }
3893
3894 /* Incoming skb */
3895 bt_cb(skb)->incoming = 1;
3896
3897 /* Time stamp */
3898 __net_timestamp(skb);
3899
3900 skb_queue_tail(&hdev->rx_q, skb);
3901 queue_work(hdev->workqueue, &hdev->rx_work);
3902
3903 return 0;
3904}
3905EXPORT_SYMBOL(hci_recv_frame);
3906
3907/* Receive diagnostic message from HCI drivers */
3908int hci_recv_diag(struct hci_dev *hdev, struct sk_buff *skb)
3909{
3910 /* Mark as diagnostic packet */
3911 hci_skb_pkt_type(skb) = HCI_DIAG_PKT;
3912
3913 /* Time stamp */
3914 __net_timestamp(skb);
3915
3916 skb_queue_tail(&hdev->rx_q, skb);
3917 queue_work(hdev->workqueue, &hdev->rx_work);
3918
3919 return 0;
3920}
3921EXPORT_SYMBOL(hci_recv_diag);
3922
3923void hci_set_hw_info(struct hci_dev *hdev, const char *fmt, ...)
3924{
3925 va_list vargs;
3926
3927 va_start(vargs, fmt);
3928 kfree_const(hdev->hw_info);
3929 hdev->hw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
3930 va_end(vargs);
3931}
3932EXPORT_SYMBOL(hci_set_hw_info);
3933
3934void hci_set_fw_info(struct hci_dev *hdev, const char *fmt, ...)
3935{
3936 va_list vargs;
3937
3938 va_start(vargs, fmt);
3939 kfree_const(hdev->fw_info);
3940 hdev->fw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
3941 va_end(vargs);
3942}
3943EXPORT_SYMBOL(hci_set_fw_info);
3944
3945/* ---- Interface to upper protocols ---- */
3946
3947int hci_register_cb(struct hci_cb *cb)
3948{
3949 BT_DBG("%p name %s", cb, cb->name);
3950
3951 mutex_lock(&hci_cb_list_lock);
3952 list_add_tail(&cb->list, &hci_cb_list);
3953 mutex_unlock(&hci_cb_list_lock);
3954
3955 return 0;
3956}
3957EXPORT_SYMBOL(hci_register_cb);
3958
3959int hci_unregister_cb(struct hci_cb *cb)
3960{
3961 BT_DBG("%p name %s", cb, cb->name);
3962
3963 mutex_lock(&hci_cb_list_lock);
3964 list_del(&cb->list);
3965 mutex_unlock(&hci_cb_list_lock);
3966
3967 return 0;
3968}
3969EXPORT_SYMBOL(hci_unregister_cb);
3970
3971static void hci_send_frame(struct hci_dev *hdev, struct sk_buff *skb)
3972{
3973 int err;
3974
3975 BT_DBG("%s type %d len %d", hdev->name, hci_skb_pkt_type(skb),
3976 skb->len);
3977
3978 /* Time stamp */
3979 __net_timestamp(skb);
3980
3981 /* Send copy to monitor */
3982 hci_send_to_monitor(hdev, skb);
3983
3984 if (atomic_read(&hdev->promisc)) {
3985 /* Send copy to the sockets */
3986 hci_send_to_sock(hdev, skb);
3987 }
3988
3989 /* Get rid of skb owner, prior to sending to the driver. */
3990 skb_orphan(skb);
3991
3992 if (!test_bit(HCI_RUNNING, &hdev->flags)) {
3993 kfree_skb(skb);
3994 return;
3995 }
3996
3997 err = hdev->send(hdev, skb);
3998 if (err < 0) {
3999 bt_dev_err(hdev, "sending frame failed (%d)", err);
4000 kfree_skb(skb);
4001 }
4002}
4003
4004/* Send HCI command */
4005int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen,
4006 const void *param)
4007{
4008 struct sk_buff *skb;
4009
4010 BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen);
4011
4012 skb = hci_prepare_cmd(hdev, opcode, plen, param);
4013 if (!skb) {
4014 bt_dev_err(hdev, "no memory for command");
4015 return -ENOMEM;
4016 }
4017
4018 /* Stand-alone HCI commands must be flagged as
4019 * single-command requests.
4020 */
4021 bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
4022
4023 skb_queue_tail(&hdev->cmd_q, skb);
4024 queue_work(hdev->workqueue, &hdev->cmd_work);
4025
4026 return 0;
4027}
4028
4029int __hci_cmd_send(struct hci_dev *hdev, u16 opcode, u32 plen,
4030 const void *param)
4031{
4032 struct sk_buff *skb;
4033
4034 if (hci_opcode_ogf(opcode) != 0x3f) {
4035 /* A controller receiving a command shall respond with either
4036 * a Command Status Event or a Command Complete Event.
4037 * Therefore, all standard HCI commands must be sent via the
4038 * standard API, using hci_send_cmd or hci_cmd_sync helpers.
4039 * Some vendors do not comply with this rule for vendor-specific
4040 * commands and do not return any event. We want to support
4041 * unresponded commands for such cases only.
4042 */
4043 bt_dev_err(hdev, "unresponded command not supported");
4044 return -EINVAL;
4045 }
4046
4047 skb = hci_prepare_cmd(hdev, opcode, plen, param);
4048 if (!skb) {
4049 bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)",
4050 opcode);
4051 return -ENOMEM;
4052 }
4053
4054 hci_send_frame(hdev, skb);
4055
4056 return 0;
4057}
4058EXPORT_SYMBOL(__hci_cmd_send);
4059
4060/* Get data from the previously sent command */
4061void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode)
4062{
4063 struct hci_command_hdr *hdr;
4064
4065 if (!hdev->sent_cmd)
4066 return NULL;
4067
4068 hdr = (void *) hdev->sent_cmd->data;
4069
4070 if (hdr->opcode != cpu_to_le16(opcode))
4071 return NULL;
4072
4073 BT_DBG("%s opcode 0x%4.4x", hdev->name, opcode);
4074
4075 return hdev->sent_cmd->data + HCI_COMMAND_HDR_SIZE;
4076}
4077
4078/* Send HCI command and wait for command commplete event */
4079struct sk_buff *hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
4080 const void *param, u32 timeout)
4081{
4082 struct sk_buff *skb;
4083
4084 if (!test_bit(HCI_UP, &hdev->flags))
4085 return ERR_PTR(-ENETDOWN);
4086
4087 bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen);
4088
4089 hci_req_sync_lock(hdev);
4090 skb = __hci_cmd_sync(hdev, opcode, plen, param, timeout);
4091 hci_req_sync_unlock(hdev);
4092
4093 return skb;
4094}
4095EXPORT_SYMBOL(hci_cmd_sync);
4096
4097/* Send ACL data */
4098static void hci_add_acl_hdr(struct sk_buff *skb, __u16 handle, __u16 flags)
4099{
4100 struct hci_acl_hdr *hdr;
4101 int len = skb->len;
4102
4103 skb_push(skb, HCI_ACL_HDR_SIZE);
4104 skb_reset_transport_header(skb);
4105 hdr = (struct hci_acl_hdr *)skb_transport_header(skb);
4106 hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
4107 hdr->dlen = cpu_to_le16(len);
4108}
4109
4110static void hci_queue_acl(struct hci_chan *chan, struct sk_buff_head *queue,
4111 struct sk_buff *skb, __u16 flags)
4112{
4113 struct hci_conn *conn = chan->conn;
4114 struct hci_dev *hdev = conn->hdev;
4115 struct sk_buff *list;
4116
4117 skb->len = skb_headlen(skb);
4118 skb->data_len = 0;
4119
4120 hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
4121
4122 switch (hdev->dev_type) {
4123 case HCI_PRIMARY:
4124 hci_add_acl_hdr(skb, conn->handle, flags);
4125 break;
4126 case HCI_AMP:
4127 hci_add_acl_hdr(skb, chan->handle, flags);
4128 break;
4129 default:
4130 bt_dev_err(hdev, "unknown dev_type %d", hdev->dev_type);
4131 return;
4132 }
4133
4134 list = skb_shinfo(skb)->frag_list;
4135 if (!list) {
4136 /* Non fragmented */
4137 BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
4138
4139 skb_queue_tail(queue, skb);
4140 } else {
4141 /* Fragmented */
4142 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
4143
4144 skb_shinfo(skb)->frag_list = NULL;
4145
4146 /* Queue all fragments atomically. We need to use spin_lock_bh
4147 * here because of 6LoWPAN links, as there this function is
4148 * called from softirq and using normal spin lock could cause
4149 * deadlocks.
4150 */
4151 spin_lock_bh(&queue->lock);
4152
4153 __skb_queue_tail(queue, skb);
4154
4155 flags &= ~ACL_START;
4156 flags |= ACL_CONT;
4157 do {
4158 skb = list; list = list->next;
4159
4160 hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
4161 hci_add_acl_hdr(skb, conn->handle, flags);
4162
4163 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
4164
4165 __skb_queue_tail(queue, skb);
4166 } while (list);
4167
4168 spin_unlock_bh(&queue->lock);
4169 }
4170}
4171
4172void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags)
4173{
4174 struct hci_dev *hdev = chan->conn->hdev;
4175
4176 BT_DBG("%s chan %p flags 0x%4.4x", hdev->name, chan, flags);
4177
4178 hci_queue_acl(chan, &chan->data_q, skb, flags);
4179
4180 queue_work(hdev->workqueue, &hdev->tx_work);
4181}
4182
4183/* Send SCO data */
4184void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb)
4185{
4186 struct hci_dev *hdev = conn->hdev;
4187 struct hci_sco_hdr hdr;
4188
4189 BT_DBG("%s len %d", hdev->name, skb->len);
4190
4191 hdr.handle = cpu_to_le16(conn->handle);
4192 hdr.dlen = skb->len;
4193
4194 skb_push(skb, HCI_SCO_HDR_SIZE);
4195 skb_reset_transport_header(skb);
4196 memcpy(skb_transport_header(skb), &hdr, HCI_SCO_HDR_SIZE);
4197
4198 hci_skb_pkt_type(skb) = HCI_SCODATA_PKT;
4199
4200 skb_queue_tail(&conn->data_q, skb);
4201 queue_work(hdev->workqueue, &hdev->tx_work);
4202}
4203
4204/* ---- HCI TX task (outgoing data) ---- */
4205
4206/* HCI Connection scheduler */
4207static struct hci_conn *hci_low_sent(struct hci_dev *hdev, __u8 type,
4208 int *quote)
4209{
4210 struct hci_conn_hash *h = &hdev->conn_hash;
4211 struct hci_conn *conn = NULL, *c;
4212 unsigned int num = 0, min = ~0;
4213
4214 /* We don't have to lock device here. Connections are always
4215 * added and removed with TX task disabled. */
4216
4217 rcu_read_lock();
4218
4219 list_for_each_entry_rcu(c, &h->list, list) {
4220 if (c->type != type || skb_queue_empty(&c->data_q))
4221 continue;
4222
4223 if (c->state != BT_CONNECTED && c->state != BT_CONFIG)
4224 continue;
4225
4226 num++;
4227
4228 if (c->sent < min) {
4229 min = c->sent;
4230 conn = c;
4231 }
4232
4233 if (hci_conn_num(hdev, type) == num)
4234 break;
4235 }
4236
4237 rcu_read_unlock();
4238
4239 if (conn) {
4240 int cnt, q;
4241
4242 switch (conn->type) {
4243 case ACL_LINK:
4244 cnt = hdev->acl_cnt;
4245 break;
4246 case SCO_LINK:
4247 case ESCO_LINK:
4248 cnt = hdev->sco_cnt;
4249 break;
4250 case LE_LINK:
4251 cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
4252 break;
4253 default:
4254 cnt = 0;
4255 bt_dev_err(hdev, "unknown link type %d", conn->type);
4256 }
4257
4258 q = cnt / num;
4259 *quote = q ? q : 1;
4260 } else
4261 *quote = 0;
4262
4263 BT_DBG("conn %p quote %d", conn, *quote);
4264 return conn;
4265}
4266
4267static void hci_link_tx_to(struct hci_dev *hdev, __u8 type)
4268{
4269 struct hci_conn_hash *h = &hdev->conn_hash;
4270 struct hci_conn *c;
4271
4272 bt_dev_err(hdev, "link tx timeout");
4273
4274 rcu_read_lock();
4275
4276 /* Kill stalled connections */
4277 list_for_each_entry_rcu(c, &h->list, list) {
4278 if (c->type == type && c->sent) {
4279 bt_dev_err(hdev, "killing stalled connection %pMR",
4280 &c->dst);
4281 hci_disconnect(c, HCI_ERROR_REMOTE_USER_TERM);
4282 }
4283 }
4284
4285 rcu_read_unlock();
4286}
4287
4288static struct hci_chan *hci_chan_sent(struct hci_dev *hdev, __u8 type,
4289 int *quote)
4290{
4291 struct hci_conn_hash *h = &hdev->conn_hash;
4292 struct hci_chan *chan = NULL;
4293 unsigned int num = 0, min = ~0, cur_prio = 0;
4294 struct hci_conn *conn;
4295 int cnt, q, conn_num = 0;
4296
4297 BT_DBG("%s", hdev->name);
4298
4299 rcu_read_lock();
4300
4301 list_for_each_entry_rcu(conn, &h->list, list) {
4302 struct hci_chan *tmp;
4303
4304 if (conn->type != type)
4305 continue;
4306
4307 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
4308 continue;
4309
4310 conn_num++;
4311
4312 list_for_each_entry_rcu(tmp, &conn->chan_list, list) {
4313 struct sk_buff *skb;
4314
4315 if (skb_queue_empty(&tmp->data_q))
4316 continue;
4317
4318 skb = skb_peek(&tmp->data_q);
4319 if (skb->priority < cur_prio)
4320 continue;
4321
4322 if (skb->priority > cur_prio) {
4323 num = 0;
4324 min = ~0;
4325 cur_prio = skb->priority;
4326 }
4327
4328 num++;
4329
4330 if (conn->sent < min) {
4331 min = conn->sent;
4332 chan = tmp;
4333 }
4334 }
4335
4336 if (hci_conn_num(hdev, type) == conn_num)
4337 break;
4338 }
4339
4340 rcu_read_unlock();
4341
4342 if (!chan)
4343 return NULL;
4344
4345 switch (chan->conn->type) {
4346 case ACL_LINK:
4347 cnt = hdev->acl_cnt;
4348 break;
4349 case AMP_LINK:
4350 cnt = hdev->block_cnt;
4351 break;
4352 case SCO_LINK:
4353 case ESCO_LINK:
4354 cnt = hdev->sco_cnt;
4355 break;
4356 case LE_LINK:
4357 cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
4358 break;
4359 default:
4360 cnt = 0;
4361 bt_dev_err(hdev, "unknown link type %d", chan->conn->type);
4362 }
4363
4364 q = cnt / num;
4365 *quote = q ? q : 1;
4366 BT_DBG("chan %p quote %d", chan, *quote);
4367 return chan;
4368}
4369
4370static void hci_prio_recalculate(struct hci_dev *hdev, __u8 type)
4371{
4372 struct hci_conn_hash *h = &hdev->conn_hash;
4373 struct hci_conn *conn;
4374 int num = 0;
4375
4376 BT_DBG("%s", hdev->name);
4377
4378 rcu_read_lock();
4379
4380 list_for_each_entry_rcu(conn, &h->list, list) {
4381 struct hci_chan *chan;
4382
4383 if (conn->type != type)
4384 continue;
4385
4386 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
4387 continue;
4388
4389 num++;
4390
4391 list_for_each_entry_rcu(chan, &conn->chan_list, list) {
4392 struct sk_buff *skb;
4393
4394 if (chan->sent) {
4395 chan->sent = 0;
4396 continue;
4397 }
4398
4399 if (skb_queue_empty(&chan->data_q))
4400 continue;
4401
4402 skb = skb_peek(&chan->data_q);
4403 if (skb->priority >= HCI_PRIO_MAX - 1)
4404 continue;
4405
4406 skb->priority = HCI_PRIO_MAX - 1;
4407
4408 BT_DBG("chan %p skb %p promoted to %d", chan, skb,
4409 skb->priority);
4410 }
4411
4412 if (hci_conn_num(hdev, type) == num)
4413 break;
4414 }
4415
4416 rcu_read_unlock();
4417
4418}
4419
4420static inline int __get_blocks(struct hci_dev *hdev, struct sk_buff *skb)
4421{
4422 /* Calculate count of blocks used by this packet */
4423 return DIV_ROUND_UP(skb->len - HCI_ACL_HDR_SIZE, hdev->block_len);
4424}
4425
4426static void __check_timeout(struct hci_dev *hdev, unsigned int cnt)
4427{
4428 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
4429 /* ACL tx timeout must be longer than maximum
4430 * link supervision timeout (40.9 seconds) */
4431 if (!cnt && time_after(jiffies, hdev->acl_last_tx +
4432 HCI_ACL_TX_TIMEOUT))
4433 hci_link_tx_to(hdev, ACL_LINK);
4434 }
4435}
4436
4437/* Schedule SCO */
4438static void hci_sched_sco(struct hci_dev *hdev)
4439{
4440 struct hci_conn *conn;
4441 struct sk_buff *skb;
4442 int quote;
4443
4444 BT_DBG("%s", hdev->name);
4445
4446 if (!hci_conn_num(hdev, SCO_LINK))
4447 return;
4448
4449 while (hdev->sco_cnt && (conn = hci_low_sent(hdev, SCO_LINK, "e))) {
4450 while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
4451 BT_DBG("skb %p len %d", skb, skb->len);
4452 hci_send_frame(hdev, skb);
4453
4454 conn->sent++;
4455 if (conn->sent == ~0)
4456 conn->sent = 0;
4457 }
4458 }
4459}
4460
4461static void hci_sched_esco(struct hci_dev *hdev)
4462{
4463 struct hci_conn *conn;
4464 struct sk_buff *skb;
4465 int quote;
4466
4467 BT_DBG("%s", hdev->name);
4468
4469 if (!hci_conn_num(hdev, ESCO_LINK))
4470 return;
4471
4472 while (hdev->sco_cnt && (conn = hci_low_sent(hdev, ESCO_LINK,
4473 "e))) {
4474 while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
4475 BT_DBG("skb %p len %d", skb, skb->len);
4476 hci_send_frame(hdev, skb);
4477
4478 conn->sent++;
4479 if (conn->sent == ~0)
4480 conn->sent = 0;
4481 }
4482 }
4483}
4484
4485static void hci_sched_acl_pkt(struct hci_dev *hdev)
4486{
4487 unsigned int cnt = hdev->acl_cnt;
4488 struct hci_chan *chan;
4489 struct sk_buff *skb;
4490 int quote;
4491
4492 __check_timeout(hdev, cnt);
4493
4494 while (hdev->acl_cnt &&
4495 (chan = hci_chan_sent(hdev, ACL_LINK, "e))) {
4496 u32 priority = (skb_peek(&chan->data_q))->priority;
4497 while (quote-- && (skb = skb_peek(&chan->data_q))) {
4498 BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
4499 skb->len, skb->priority);
4500
4501 /* Stop if priority has changed */
4502 if (skb->priority < priority)
4503 break;
4504
4505 skb = skb_dequeue(&chan->data_q);
4506
4507 hci_conn_enter_active_mode(chan->conn,
4508 bt_cb(skb)->force_active);
4509
4510 hci_send_frame(hdev, skb);
4511 hdev->acl_last_tx = jiffies;
4512
4513 hdev->acl_cnt--;
4514 chan->sent++;
4515 chan->conn->sent++;
4516
4517 /* Send pending SCO packets right away */
4518 hci_sched_sco(hdev);
4519 hci_sched_esco(hdev);
4520 }
4521 }
4522
4523 if (cnt != hdev->acl_cnt)
4524 hci_prio_recalculate(hdev, ACL_LINK);
4525}
4526
4527static void hci_sched_acl_blk(struct hci_dev *hdev)
4528{
4529 unsigned int cnt = hdev->block_cnt;
4530 struct hci_chan *chan;
4531 struct sk_buff *skb;
4532 int quote;
4533 u8 type;
4534
4535 __check_timeout(hdev, cnt);
4536
4537 BT_DBG("%s", hdev->name);
4538
4539 if (hdev->dev_type == HCI_AMP)
4540 type = AMP_LINK;
4541 else
4542 type = ACL_LINK;
4543
4544 while (hdev->block_cnt > 0 &&
4545 (chan = hci_chan_sent(hdev, type, "e))) {
4546 u32 priority = (skb_peek(&chan->data_q))->priority;
4547 while (quote > 0 && (skb = skb_peek(&chan->data_q))) {
4548 int blocks;
4549
4550 BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
4551 skb->len, skb->priority);
4552
4553 /* Stop if priority has changed */
4554 if (skb->priority < priority)
4555 break;
4556
4557 skb = skb_dequeue(&chan->data_q);
4558
4559 blocks = __get_blocks(hdev, skb);
4560 if (blocks > hdev->block_cnt)
4561 return;
4562
4563 hci_conn_enter_active_mode(chan->conn,
4564 bt_cb(skb)->force_active);
4565
4566 hci_send_frame(hdev, skb);
4567 hdev->acl_last_tx = jiffies;
4568
4569 hdev->block_cnt -= blocks;
4570 quote -= blocks;
4571
4572 chan->sent += blocks;
4573 chan->conn->sent += blocks;
4574 }
4575 }
4576
4577 if (cnt != hdev->block_cnt)
4578 hci_prio_recalculate(hdev, type);
4579}
4580
4581static void hci_sched_acl(struct hci_dev *hdev)
4582{
4583 BT_DBG("%s", hdev->name);
4584
4585 /* No ACL link over BR/EDR controller */
4586 if (!hci_conn_num(hdev, ACL_LINK) && hdev->dev_type == HCI_PRIMARY)
4587 return;
4588
4589 /* No AMP link over AMP controller */
4590 if (!hci_conn_num(hdev, AMP_LINK) && hdev->dev_type == HCI_AMP)
4591 return;
4592
4593 switch (hdev->flow_ctl_mode) {
4594 case HCI_FLOW_CTL_MODE_PACKET_BASED:
4595 hci_sched_acl_pkt(hdev);
4596 break;
4597
4598 case HCI_FLOW_CTL_MODE_BLOCK_BASED:
4599 hci_sched_acl_blk(hdev);
4600 break;
4601 }
4602}
4603
4604static void hci_sched_le(struct hci_dev *hdev)
4605{
4606 struct hci_chan *chan;
4607 struct sk_buff *skb;
4608 int quote, cnt, tmp;
4609
4610 BT_DBG("%s", hdev->name);
4611
4612 if (!hci_conn_num(hdev, LE_LINK))
4613 return;
4614
4615 cnt = hdev->le_pkts ? hdev->le_cnt : hdev->acl_cnt;
4616
4617 __check_timeout(hdev, cnt);
4618
4619 tmp = cnt;
4620 while (cnt && (chan = hci_chan_sent(hdev, LE_LINK, "e))) {
4621 u32 priority = (skb_peek(&chan->data_q))->priority;
4622 while (quote-- && (skb = skb_peek(&chan->data_q))) {
4623 BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
4624 skb->len, skb->priority);
4625
4626 /* Stop if priority has changed */
4627 if (skb->priority < priority)
4628 break;
4629
4630 skb = skb_dequeue(&chan->data_q);
4631
4632 hci_send_frame(hdev, skb);
4633 hdev->le_last_tx = jiffies;
4634
4635 cnt--;
4636 chan->sent++;
4637 chan->conn->sent++;
4638
4639 /* Send pending SCO packets right away */
4640 hci_sched_sco(hdev);
4641 hci_sched_esco(hdev);
4642 }
4643 }
4644
4645 if (hdev->le_pkts)
4646 hdev->le_cnt = cnt;
4647 else
4648 hdev->acl_cnt = cnt;
4649
4650 if (cnt != tmp)
4651 hci_prio_recalculate(hdev, LE_LINK);
4652}
4653
4654static void hci_tx_work(struct work_struct *work)
4655{
4656 struct hci_dev *hdev = container_of(work, struct hci_dev, tx_work);
4657 struct sk_buff *skb;
4658
4659 BT_DBG("%s acl %d sco %d le %d", hdev->name, hdev->acl_cnt,
4660 hdev->sco_cnt, hdev->le_cnt);
4661
4662 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
4663 /* Schedule queues and send stuff to HCI driver */
4664 hci_sched_sco(hdev);
4665 hci_sched_esco(hdev);
4666 hci_sched_acl(hdev);
4667 hci_sched_le(hdev);
4668 }
4669
4670 /* Send next queued raw (unknown type) packet */
4671 while ((skb = skb_dequeue(&hdev->raw_q)))
4672 hci_send_frame(hdev, skb);
4673}
4674
4675/* ----- HCI RX task (incoming data processing) ----- */
4676
4677/* ACL data packet */
4678static void hci_acldata_packet(struct hci_dev *hdev, struct sk_buff *skb)
4679{
4680 struct hci_acl_hdr *hdr = (void *) skb->data;
4681 struct hci_conn *conn;
4682 __u16 handle, flags;
4683
4684 skb_pull(skb, HCI_ACL_HDR_SIZE);
4685
4686 handle = __le16_to_cpu(hdr->handle);
4687 flags = hci_flags(handle);
4688 handle = hci_handle(handle);
4689
4690 BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len,
4691 handle, flags);
4692
4693 hdev->stat.acl_rx++;
4694
4695 hci_dev_lock(hdev);
4696 conn = hci_conn_hash_lookup_handle(hdev, handle);
4697 hci_dev_unlock(hdev);
4698
4699 if (conn) {
4700 hci_conn_enter_active_mode(conn, BT_POWER_FORCE_ACTIVE_OFF);
4701
4702 /* Send to upper protocol */
4703 l2cap_recv_acldata(conn, skb, flags);
4704 return;
4705 } else {
4706 bt_dev_err(hdev, "ACL packet for unknown connection handle %d",
4707 handle);
4708 }
4709
4710 kfree_skb(skb);
4711}
4712
4713/* SCO data packet */
4714static void hci_scodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
4715{
4716 struct hci_sco_hdr *hdr = (void *) skb->data;
4717 struct hci_conn *conn;
4718 __u16 handle, flags;
4719
4720 skb_pull(skb, HCI_SCO_HDR_SIZE);
4721
4722 handle = __le16_to_cpu(hdr->handle);
4723 flags = hci_flags(handle);
4724 handle = hci_handle(handle);
4725
4726 BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len,
4727 handle, flags);
4728
4729 hdev->stat.sco_rx++;
4730
4731 hci_dev_lock(hdev);
4732 conn = hci_conn_hash_lookup_handle(hdev, handle);
4733 hci_dev_unlock(hdev);
4734
4735 if (conn) {
4736 /* Send to upper protocol */
4737 bt_cb(skb)->sco.pkt_status = flags & 0x03;
4738 sco_recv_scodata(conn, skb);
4739 return;
4740 } else {
4741 bt_dev_err(hdev, "SCO packet for unknown connection handle %d",
4742 handle);
4743 }
4744
4745 kfree_skb(skb);
4746}
4747
4748static bool hci_req_is_complete(struct hci_dev *hdev)
4749{
4750 struct sk_buff *skb;
4751
4752 skb = skb_peek(&hdev->cmd_q);
4753 if (!skb)
4754 return true;
4755
4756 return (bt_cb(skb)->hci.req_flags & HCI_REQ_START);
4757}
4758
4759static void hci_resend_last(struct hci_dev *hdev)
4760{
4761 struct hci_command_hdr *sent;
4762 struct sk_buff *skb;
4763 u16 opcode;
4764
4765 if (!hdev->sent_cmd)
4766 return;
4767
4768 sent = (void *) hdev->sent_cmd->data;
4769 opcode = __le16_to_cpu(sent->opcode);
4770 if (opcode == HCI_OP_RESET)
4771 return;
4772
4773 skb = skb_clone(hdev->sent_cmd, GFP_KERNEL);
4774 if (!skb)
4775 return;
4776
4777 skb_queue_head(&hdev->cmd_q, skb);
4778 queue_work(hdev->workqueue, &hdev->cmd_work);
4779}
4780
4781void hci_req_cmd_complete(struct hci_dev *hdev, u16 opcode, u8 status,
4782 hci_req_complete_t *req_complete,
4783 hci_req_complete_skb_t *req_complete_skb)
4784{
4785 struct sk_buff *skb;
4786 unsigned long flags;
4787
4788 BT_DBG("opcode 0x%04x status 0x%02x", opcode, status);
4789
4790 /* If the completed command doesn't match the last one that was
4791 * sent we need to do special handling of it.
4792 */
4793 if (!hci_sent_cmd_data(hdev, opcode)) {
4794 /* Some CSR based controllers generate a spontaneous
4795 * reset complete event during init and any pending
4796 * command will never be completed. In such a case we
4797 * need to resend whatever was the last sent
4798 * command.
4799 */
4800 if (test_bit(HCI_INIT, &hdev->flags) && opcode == HCI_OP_RESET)
4801 hci_resend_last(hdev);
4802
4803 return;
4804 }
4805
4806 /* If we reach this point this event matches the last command sent */
4807 hci_dev_clear_flag(hdev, HCI_CMD_PENDING);
4808
4809 /* If the command succeeded and there's still more commands in
4810 * this request the request is not yet complete.
4811 */
4812 if (!status && !hci_req_is_complete(hdev))
4813 return;
4814
4815 /* If this was the last command in a request the complete
4816 * callback would be found in hdev->sent_cmd instead of the
4817 * command queue (hdev->cmd_q).
4818 */
4819 if (bt_cb(hdev->sent_cmd)->hci.req_flags & HCI_REQ_SKB) {
4820 *req_complete_skb = bt_cb(hdev->sent_cmd)->hci.req_complete_skb;
4821 return;
4822 }
4823
4824 if (bt_cb(hdev->sent_cmd)->hci.req_complete) {
4825 *req_complete = bt_cb(hdev->sent_cmd)->hci.req_complete;
4826 return;
4827 }
4828
4829 /* Remove all pending commands belonging to this request */
4830 spin_lock_irqsave(&hdev->cmd_q.lock, flags);
4831 while ((skb = __skb_dequeue(&hdev->cmd_q))) {
4832 if (bt_cb(skb)->hci.req_flags & HCI_REQ_START) {
4833 __skb_queue_head(&hdev->cmd_q, skb);
4834 break;
4835 }
4836
4837 if (bt_cb(skb)->hci.req_flags & HCI_REQ_SKB)
4838 *req_complete_skb = bt_cb(skb)->hci.req_complete_skb;
4839 else
4840 *req_complete = bt_cb(skb)->hci.req_complete;
4841 kfree_skb(skb);
4842 }
4843 spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
4844}
4845
4846static void hci_rx_work(struct work_struct *work)
4847{
4848 struct hci_dev *hdev = container_of(work, struct hci_dev, rx_work);
4849 struct sk_buff *skb;
4850
4851 BT_DBG("%s", hdev->name);
4852
4853 while ((skb = skb_dequeue(&hdev->rx_q))) {
4854 /* Send copy to monitor */
4855 hci_send_to_monitor(hdev, skb);
4856
4857 if (atomic_read(&hdev->promisc)) {
4858 /* Send copy to the sockets */
4859 hci_send_to_sock(hdev, skb);
4860 }
4861
4862 /* If the device has been opened in HCI_USER_CHANNEL,
4863 * the userspace has exclusive access to device.
4864 * When device is HCI_INIT, we still need to process
4865 * the data packets to the driver in order
4866 * to complete its setup().
4867 */
4868 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
4869 !test_bit(HCI_INIT, &hdev->flags)) {
4870 kfree_skb(skb);
4871 continue;
4872 }
4873
4874 if (test_bit(HCI_INIT, &hdev->flags)) {
4875 /* Don't process data packets in this states. */
4876 switch (hci_skb_pkt_type(skb)) {
4877 case HCI_ACLDATA_PKT:
4878 case HCI_SCODATA_PKT:
4879 case HCI_ISODATA_PKT:
4880 kfree_skb(skb);
4881 continue;
4882 }
4883 }
4884
4885 /* Process frame */
4886 switch (hci_skb_pkt_type(skb)) {
4887 case HCI_EVENT_PKT:
4888 BT_DBG("%s Event packet", hdev->name);
4889 hci_event_packet(hdev, skb);
4890 break;
4891
4892 case HCI_ACLDATA_PKT:
4893 BT_DBG("%s ACL data packet", hdev->name);
4894 hci_acldata_packet(hdev, skb);
4895 break;
4896
4897 case HCI_SCODATA_PKT:
4898 BT_DBG("%s SCO data packet", hdev->name);
4899 hci_scodata_packet(hdev, skb);
4900 break;
4901
4902 default:
4903 kfree_skb(skb);
4904 break;
4905 }
4906 }
4907}
4908
4909static void hci_cmd_work(struct work_struct *work)
4910{
4911 struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_work);
4912 struct sk_buff *skb;
4913
4914 BT_DBG("%s cmd_cnt %d cmd queued %d", hdev->name,
4915 atomic_read(&hdev->cmd_cnt), skb_queue_len(&hdev->cmd_q));
4916
4917 /* Send queued commands */
4918 if (atomic_read(&hdev->cmd_cnt)) {
4919 skb = skb_dequeue(&hdev->cmd_q);
4920 if (!skb)
4921 return;
4922
4923 kfree_skb(hdev->sent_cmd);
4924
4925 hdev->sent_cmd = skb_clone(skb, GFP_KERNEL);
4926 if (hdev->sent_cmd) {
4927 if (hci_req_status_pend(hdev))
4928 hci_dev_set_flag(hdev, HCI_CMD_PENDING);
4929 atomic_dec(&hdev->cmd_cnt);
4930 hci_send_frame(hdev, skb);
4931 if (test_bit(HCI_RESET, &hdev->flags))
4932 cancel_delayed_work(&hdev->cmd_timer);
4933 else
4934 schedule_delayed_work(&hdev->cmd_timer,
4935 HCI_CMD_TIMEOUT);
4936 } else {
4937 skb_queue_head(&hdev->cmd_q, skb);
4938 queue_work(hdev->workqueue, &hdev->cmd_work);
4939 }
4940 }
4941}