Linux Audio

Check our new training course

Loading...
v4.6
   1/*
   2   BlueZ - Bluetooth protocol stack for Linux
   3   Copyright (C) 2000-2001 Qualcomm Incorporated
   4   Copyright (C) 2011 ProFUSION Embedded Systems
   5
   6   Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
   7
   8   This program is free software; you can redistribute it and/or modify
   9   it under the terms of the GNU General Public License version 2 as
  10   published by the Free Software Foundation;
  11
  12   THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
  13   OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  14   FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
  15   IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
  16   CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
  17   WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  18   ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  19   OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  20
  21   ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
  22   COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
  23   SOFTWARE IS DISCLAIMED.
  24*/
  25
  26/* Bluetooth HCI core. */
  27
  28#include <linux/export.h>
  29#include <linux/idr.h>
  30#include <linux/rfkill.h>
  31#include <linux/debugfs.h>
  32#include <linux/crypto.h>
 
 
 
  33#include <asm/unaligned.h>
  34
  35#include <net/bluetooth/bluetooth.h>
  36#include <net/bluetooth/hci_core.h>
  37#include <net/bluetooth/l2cap.h>
  38#include <net/bluetooth/mgmt.h>
  39
  40#include "hci_request.h"
  41#include "hci_debugfs.h"
  42#include "smp.h"
  43#include "leds.h"
 
 
  44
  45static void hci_rx_work(struct work_struct *work);
  46static void hci_cmd_work(struct work_struct *work);
  47static void hci_tx_work(struct work_struct *work);
  48
  49/* HCI device list */
  50LIST_HEAD(hci_dev_list);
  51DEFINE_RWLOCK(hci_dev_list_lock);
  52
  53/* HCI callback list */
  54LIST_HEAD(hci_cb_list);
  55DEFINE_MUTEX(hci_cb_list_lock);
  56
  57/* HCI ID Numbering */
  58static DEFINE_IDA(hci_index_ida);
  59
  60/* ---- HCI debugfs entries ---- */
  61
  62static ssize_t dut_mode_read(struct file *file, char __user *user_buf,
  63			     size_t count, loff_t *ppos)
  64{
  65	struct hci_dev *hdev = file->private_data;
  66	char buf[3];
  67
  68	buf[0] = hci_dev_test_flag(hdev, HCI_DUT_MODE) ? 'Y' : 'N';
  69	buf[1] = '\n';
  70	buf[2] = '\0';
  71	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
  72}
  73
  74static ssize_t dut_mode_write(struct file *file, const char __user *user_buf,
  75			      size_t count, loff_t *ppos)
  76{
  77	struct hci_dev *hdev = file->private_data;
  78	struct sk_buff *skb;
  79	char buf[32];
  80	size_t buf_size = min(count, (sizeof(buf)-1));
  81	bool enable;
 
  82
  83	if (!test_bit(HCI_UP, &hdev->flags))
  84		return -ENETDOWN;
  85
  86	if (copy_from_user(buf, user_buf, buf_size))
  87		return -EFAULT;
  88
  89	buf[buf_size] = '\0';
  90	if (strtobool(buf, &enable))
  91		return -EINVAL;
  92
  93	if (enable == hci_dev_test_flag(hdev, HCI_DUT_MODE))
  94		return -EALREADY;
  95
  96	hci_req_sync_lock(hdev);
  97	if (enable)
  98		skb = __hci_cmd_sync(hdev, HCI_OP_ENABLE_DUT_MODE, 0, NULL,
  99				     HCI_CMD_TIMEOUT);
 100	else
 101		skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL,
 102				     HCI_CMD_TIMEOUT);
 103	hci_req_sync_unlock(hdev);
 104
 105	if (IS_ERR(skb))
 106		return PTR_ERR(skb);
 107
 108	kfree_skb(skb);
 109
 110	hci_dev_change_flag(hdev, HCI_DUT_MODE);
 111
 112	return count;
 113}
 114
 115static const struct file_operations dut_mode_fops = {
 116	.open		= simple_open,
 117	.read		= dut_mode_read,
 118	.write		= dut_mode_write,
 119	.llseek		= default_llseek,
 120};
 121
 122static ssize_t vendor_diag_read(struct file *file, char __user *user_buf,
 123				size_t count, loff_t *ppos)
 124{
 125	struct hci_dev *hdev = file->private_data;
 126	char buf[3];
 127
 128	buf[0] = hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) ? 'Y' : 'N';
 129	buf[1] = '\n';
 130	buf[2] = '\0';
 131	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
 132}
 133
 134static ssize_t vendor_diag_write(struct file *file, const char __user *user_buf,
 135				 size_t count, loff_t *ppos)
 136{
 137	struct hci_dev *hdev = file->private_data;
 138	char buf[32];
 139	size_t buf_size = min(count, (sizeof(buf)-1));
 140	bool enable;
 141	int err;
 142
 143	if (copy_from_user(buf, user_buf, buf_size))
 144		return -EFAULT;
 145
 146	buf[buf_size] = '\0';
 147	if (strtobool(buf, &enable))
 148		return -EINVAL;
 149
 150	/* When the diagnostic flags are not persistent and the transport
 151	 * is not active, then there is no need for the vendor callback.
 152	 *
 153	 * Instead just store the desired value. If needed the setting
 154	 * will be programmed when the controller gets powered on.
 155	 */
 156	if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) &&
 157	    !test_bit(HCI_RUNNING, &hdev->flags))
 
 158		goto done;
 159
 160	hci_req_sync_lock(hdev);
 161	err = hdev->set_diag(hdev, enable);
 162	hci_req_sync_unlock(hdev);
 163
 164	if (err < 0)
 165		return err;
 166
 167done:
 168	if (enable)
 169		hci_dev_set_flag(hdev, HCI_VENDOR_DIAG);
 170	else
 171		hci_dev_clear_flag(hdev, HCI_VENDOR_DIAG);
 172
 173	return count;
 174}
 175
 176static const struct file_operations vendor_diag_fops = {
 177	.open		= simple_open,
 178	.read		= vendor_diag_read,
 179	.write		= vendor_diag_write,
 180	.llseek		= default_llseek,
 181};
 182
 183static void hci_debugfs_create_basic(struct hci_dev *hdev)
 184{
 185	debugfs_create_file("dut_mode", 0644, hdev->debugfs, hdev,
 186			    &dut_mode_fops);
 187
 188	if (hdev->set_diag)
 189		debugfs_create_file("vendor_diag", 0644, hdev->debugfs, hdev,
 190				    &vendor_diag_fops);
 191}
 192
 193static int hci_reset_req(struct hci_request *req, unsigned long opt)
 194{
 195	BT_DBG("%s %ld", req->hdev->name, opt);
 196
 197	/* Reset device */
 198	set_bit(HCI_RESET, &req->hdev->flags);
 199	hci_req_add(req, HCI_OP_RESET, 0, NULL);
 200	return 0;
 201}
 202
 203static void bredr_init(struct hci_request *req)
 204{
 205	req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_PACKET_BASED;
 206
 207	/* Read Local Supported Features */
 208	hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
 209
 210	/* Read Local Version */
 211	hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
 212
 213	/* Read BD Address */
 214	hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL);
 215}
 216
 217static void amp_init1(struct hci_request *req)
 218{
 219	req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_BLOCK_BASED;
 220
 221	/* Read Local Version */
 222	hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
 223
 224	/* Read Local Supported Commands */
 225	hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL);
 226
 227	/* Read Local AMP Info */
 228	hci_req_add(req, HCI_OP_READ_LOCAL_AMP_INFO, 0, NULL);
 229
 230	/* Read Data Blk size */
 231	hci_req_add(req, HCI_OP_READ_DATA_BLOCK_SIZE, 0, NULL);
 232
 233	/* Read Flow Control Mode */
 234	hci_req_add(req, HCI_OP_READ_FLOW_CONTROL_MODE, 0, NULL);
 235
 236	/* Read Location Data */
 237	hci_req_add(req, HCI_OP_READ_LOCATION_DATA, 0, NULL);
 238}
 239
 240static int amp_init2(struct hci_request *req)
 241{
 242	/* Read Local Supported Features. Not all AMP controllers
 243	 * support this so it's placed conditionally in the second
 244	 * stage init.
 245	 */
 246	if (req->hdev->commands[14] & 0x20)
 247		hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
 248
 249	return 0;
 250}
 251
 252static int hci_init1_req(struct hci_request *req, unsigned long opt)
 253{
 254	struct hci_dev *hdev = req->hdev;
 255
 256	BT_DBG("%s %ld", hdev->name, opt);
 257
 258	/* Reset */
 259	if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks))
 260		hci_reset_req(req, 0);
 261
 262	switch (hdev->dev_type) {
 263	case HCI_BREDR:
 264		bredr_init(req);
 265		break;
 266
 267	case HCI_AMP:
 268		amp_init1(req);
 269		break;
 270
 271	default:
 272		BT_ERR("Unknown device type %d", hdev->dev_type);
 273		break;
 274	}
 275
 276	return 0;
 277}
 278
 279static void bredr_setup(struct hci_request *req)
 280{
 281	__le16 param;
 282	__u8 flt_type;
 283
 284	/* Read Buffer Size (ACL mtu, max pkt, etc.) */
 285	hci_req_add(req, HCI_OP_READ_BUFFER_SIZE, 0, NULL);
 286
 287	/* Read Class of Device */
 288	hci_req_add(req, HCI_OP_READ_CLASS_OF_DEV, 0, NULL);
 289
 290	/* Read Local Name */
 291	hci_req_add(req, HCI_OP_READ_LOCAL_NAME, 0, NULL);
 292
 293	/* Read Voice Setting */
 294	hci_req_add(req, HCI_OP_READ_VOICE_SETTING, 0, NULL);
 295
 296	/* Read Number of Supported IAC */
 297	hci_req_add(req, HCI_OP_READ_NUM_SUPPORTED_IAC, 0, NULL);
 298
 299	/* Read Current IAC LAP */
 300	hci_req_add(req, HCI_OP_READ_CURRENT_IAC_LAP, 0, NULL);
 301
 302	/* Clear Event Filters */
 303	flt_type = HCI_FLT_CLEAR_ALL;
 304	hci_req_add(req, HCI_OP_SET_EVENT_FLT, 1, &flt_type);
 305
 306	/* Connection accept timeout ~20 secs */
 307	param = cpu_to_le16(0x7d00);
 308	hci_req_add(req, HCI_OP_WRITE_CA_TIMEOUT, 2, &param);
 309}
 310
 311static void le_setup(struct hci_request *req)
 312{
 313	struct hci_dev *hdev = req->hdev;
 314
 315	/* Read LE Buffer Size */
 316	hci_req_add(req, HCI_OP_LE_READ_BUFFER_SIZE, 0, NULL);
 317
 318	/* Read LE Local Supported Features */
 319	hci_req_add(req, HCI_OP_LE_READ_LOCAL_FEATURES, 0, NULL);
 320
 321	/* Read LE Supported States */
 322	hci_req_add(req, HCI_OP_LE_READ_SUPPORTED_STATES, 0, NULL);
 323
 324	/* LE-only controllers have LE implicitly enabled */
 325	if (!lmp_bredr_capable(hdev))
 326		hci_dev_set_flag(hdev, HCI_LE_ENABLED);
 327}
 328
 329static void hci_setup_event_mask(struct hci_request *req)
 330{
 331	struct hci_dev *hdev = req->hdev;
 332
 333	/* The second byte is 0xff instead of 0x9f (two reserved bits
 334	 * disabled) since a Broadcom 1.2 dongle doesn't respond to the
 335	 * command otherwise.
 336	 */
 337	u8 events[8] = { 0xff, 0xff, 0xfb, 0xff, 0x00, 0x00, 0x00, 0x00 };
 338
 339	/* CSR 1.1 dongles does not accept any bitfield so don't try to set
 340	 * any event mask for pre 1.2 devices.
 341	 */
 342	if (hdev->hci_ver < BLUETOOTH_VER_1_2)
 343		return;
 344
 345	if (lmp_bredr_capable(hdev)) {
 346		events[4] |= 0x01; /* Flow Specification Complete */
 347	} else {
 348		/* Use a different default for LE-only devices */
 349		memset(events, 0, sizeof(events));
 350		events[1] |= 0x20; /* Command Complete */
 351		events[1] |= 0x40; /* Command Status */
 352		events[1] |= 0x80; /* Hardware Error */
 353
 354		/* If the controller supports the Disconnect command, enable
 355		 * the corresponding event. In addition enable packet flow
 356		 * control related events.
 357		 */
 358		if (hdev->commands[0] & 0x20) {
 359			events[0] |= 0x10; /* Disconnection Complete */
 360			events[2] |= 0x04; /* Number of Completed Packets */
 361			events[3] |= 0x02; /* Data Buffer Overflow */
 362		}
 363
 364		/* If the controller supports the Read Remote Version
 365		 * Information command, enable the corresponding event.
 366		 */
 367		if (hdev->commands[2] & 0x80)
 368			events[1] |= 0x08; /* Read Remote Version Information
 369					    * Complete
 370					    */
 371
 372		if (hdev->le_features[0] & HCI_LE_ENCRYPTION) {
 373			events[0] |= 0x80; /* Encryption Change */
 374			events[5] |= 0x80; /* Encryption Key Refresh Complete */
 375		}
 376	}
 377
 378	if (lmp_inq_rssi_capable(hdev) ||
 379	    test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks))
 380		events[4] |= 0x02; /* Inquiry Result with RSSI */
 381
 382	if (lmp_ext_feat_capable(hdev))
 383		events[4] |= 0x04; /* Read Remote Extended Features Complete */
 384
 385	if (lmp_esco_capable(hdev)) {
 386		events[5] |= 0x08; /* Synchronous Connection Complete */
 387		events[5] |= 0x10; /* Synchronous Connection Changed */
 388	}
 389
 390	if (lmp_sniffsubr_capable(hdev))
 391		events[5] |= 0x20; /* Sniff Subrating */
 392
 393	if (lmp_pause_enc_capable(hdev))
 394		events[5] |= 0x80; /* Encryption Key Refresh Complete */
 395
 396	if (lmp_ext_inq_capable(hdev))
 397		events[5] |= 0x40; /* Extended Inquiry Result */
 398
 399	if (lmp_no_flush_capable(hdev))
 400		events[7] |= 0x01; /* Enhanced Flush Complete */
 401
 402	if (lmp_lsto_capable(hdev))
 403		events[6] |= 0x80; /* Link Supervision Timeout Changed */
 404
 405	if (lmp_ssp_capable(hdev)) {
 406		events[6] |= 0x01;	/* IO Capability Request */
 407		events[6] |= 0x02;	/* IO Capability Response */
 408		events[6] |= 0x04;	/* User Confirmation Request */
 409		events[6] |= 0x08;	/* User Passkey Request */
 410		events[6] |= 0x10;	/* Remote OOB Data Request */
 411		events[6] |= 0x20;	/* Simple Pairing Complete */
 412		events[7] |= 0x04;	/* User Passkey Notification */
 413		events[7] |= 0x08;	/* Keypress Notification */
 414		events[7] |= 0x10;	/* Remote Host Supported
 415					 * Features Notification
 416					 */
 417	}
 418
 419	if (lmp_le_capable(hdev))
 420		events[7] |= 0x20;	/* LE Meta-Event */
 421
 422	hci_req_add(req, HCI_OP_SET_EVENT_MASK, sizeof(events), events);
 423}
 424
 425static int hci_init2_req(struct hci_request *req, unsigned long opt)
 426{
 427	struct hci_dev *hdev = req->hdev;
 428
 429	if (hdev->dev_type == HCI_AMP)
 430		return amp_init2(req);
 431
 432	if (lmp_bredr_capable(hdev))
 433		bredr_setup(req);
 434	else
 435		hci_dev_clear_flag(hdev, HCI_BREDR_ENABLED);
 436
 437	if (lmp_le_capable(hdev))
 438		le_setup(req);
 439
 440	/* All Bluetooth 1.2 and later controllers should support the
 441	 * HCI command for reading the local supported commands.
 442	 *
 443	 * Unfortunately some controllers indicate Bluetooth 1.2 support,
 444	 * but do not have support for this command. If that is the case,
 445	 * the driver can quirk the behavior and skip reading the local
 446	 * supported commands.
 447	 */
 448	if (hdev->hci_ver > BLUETOOTH_VER_1_1 &&
 449	    !test_bit(HCI_QUIRK_BROKEN_LOCAL_COMMANDS, &hdev->quirks))
 450		hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL);
 451
 452	if (lmp_ssp_capable(hdev)) {
 453		/* When SSP is available, then the host features page
 454		 * should also be available as well. However some
 455		 * controllers list the max_page as 0 as long as SSP
 456		 * has not been enabled. To achieve proper debugging
 457		 * output, force the minimum max_page to 1 at least.
 458		 */
 459		hdev->max_page = 0x01;
 460
 461		if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) {
 462			u8 mode = 0x01;
 463
 464			hci_req_add(req, HCI_OP_WRITE_SSP_MODE,
 465				    sizeof(mode), &mode);
 466		} else {
 467			struct hci_cp_write_eir cp;
 468
 469			memset(hdev->eir, 0, sizeof(hdev->eir));
 470			memset(&cp, 0, sizeof(cp));
 471
 472			hci_req_add(req, HCI_OP_WRITE_EIR, sizeof(cp), &cp);
 473		}
 474	}
 475
 476	if (lmp_inq_rssi_capable(hdev) ||
 477	    test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks)) {
 478		u8 mode;
 479
 480		/* If Extended Inquiry Result events are supported, then
 481		 * they are clearly preferred over Inquiry Result with RSSI
 482		 * events.
 483		 */
 484		mode = lmp_ext_inq_capable(hdev) ? 0x02 : 0x01;
 485
 486		hci_req_add(req, HCI_OP_WRITE_INQUIRY_MODE, 1, &mode);
 487	}
 488
 489	if (lmp_inq_tx_pwr_capable(hdev))
 490		hci_req_add(req, HCI_OP_READ_INQ_RSP_TX_POWER, 0, NULL);
 491
 492	if (lmp_ext_feat_capable(hdev)) {
 493		struct hci_cp_read_local_ext_features cp;
 494
 495		cp.page = 0x01;
 496		hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES,
 497			    sizeof(cp), &cp);
 498	}
 499
 500	if (hci_dev_test_flag(hdev, HCI_LINK_SECURITY)) {
 501		u8 enable = 1;
 502		hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, sizeof(enable),
 503			    &enable);
 504	}
 505
 506	return 0;
 507}
 508
 509static void hci_setup_link_policy(struct hci_request *req)
 510{
 511	struct hci_dev *hdev = req->hdev;
 512	struct hci_cp_write_def_link_policy cp;
 513	u16 link_policy = 0;
 514
 515	if (lmp_rswitch_capable(hdev))
 516		link_policy |= HCI_LP_RSWITCH;
 517	if (lmp_hold_capable(hdev))
 518		link_policy |= HCI_LP_HOLD;
 519	if (lmp_sniff_capable(hdev))
 520		link_policy |= HCI_LP_SNIFF;
 521	if (lmp_park_capable(hdev))
 522		link_policy |= HCI_LP_PARK;
 523
 524	cp.policy = cpu_to_le16(link_policy);
 525	hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, sizeof(cp), &cp);
 526}
 527
 528static void hci_set_le_support(struct hci_request *req)
 529{
 530	struct hci_dev *hdev = req->hdev;
 531	struct hci_cp_write_le_host_supported cp;
 532
 533	/* LE-only devices do not support explicit enablement */
 534	if (!lmp_bredr_capable(hdev))
 535		return;
 536
 537	memset(&cp, 0, sizeof(cp));
 538
 539	if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
 540		cp.le = 0x01;
 541		cp.simul = 0x00;
 542	}
 543
 544	if (cp.le != lmp_host_le_capable(hdev))
 545		hci_req_add(req, HCI_OP_WRITE_LE_HOST_SUPPORTED, sizeof(cp),
 546			    &cp);
 547}
 548
 549static void hci_set_event_mask_page_2(struct hci_request *req)
 550{
 551	struct hci_dev *hdev = req->hdev;
 552	u8 events[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
 
 553
 554	/* If Connectionless Slave Broadcast master role is supported
 555	 * enable all necessary events for it.
 556	 */
 557	if (lmp_csb_master_capable(hdev)) {
 558		events[1] |= 0x40;	/* Triggered Clock Capture */
 559		events[1] |= 0x80;	/* Synchronization Train Complete */
 560		events[2] |= 0x10;	/* Slave Page Response Timeout */
 561		events[2] |= 0x20;	/* CSB Channel Map Change */
 
 562	}
 563
 564	/* If Connectionless Slave Broadcast slave role is supported
 565	 * enable all necessary events for it.
 566	 */
 567	if (lmp_csb_slave_capable(hdev)) {
 568		events[2] |= 0x01;	/* Synchronization Train Received */
 569		events[2] |= 0x02;	/* CSB Receive */
 570		events[2] |= 0x04;	/* CSB Timeout */
 571		events[2] |= 0x08;	/* Truncated Page Complete */
 
 572	}
 573
 574	/* Enable Authenticated Payload Timeout Expired event if supported */
 575	if (lmp_ping_capable(hdev) || hdev->le_features[0] & HCI_LE_PING)
 576		events[2] |= 0x80;
 
 
 577
 578	hci_req_add(req, HCI_OP_SET_EVENT_MASK_PAGE_2, sizeof(events), events);
 
 
 
 
 
 
 
 
 579}
 580
 581static int hci_init3_req(struct hci_request *req, unsigned long opt)
 582{
 583	struct hci_dev *hdev = req->hdev;
 584	u8 p;
 585
 586	hci_setup_event_mask(req);
 587
 588	if (hdev->commands[6] & 0x20 &&
 589	    !test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) {
 590		struct hci_cp_read_stored_link_key cp;
 591
 592		bacpy(&cp.bdaddr, BDADDR_ANY);
 593		cp.read_all = 0x01;
 594		hci_req_add(req, HCI_OP_READ_STORED_LINK_KEY, sizeof(cp), &cp);
 595	}
 596
 597	if (hdev->commands[5] & 0x10)
 598		hci_setup_link_policy(req);
 599
 600	if (hdev->commands[8] & 0x01)
 601		hci_req_add(req, HCI_OP_READ_PAGE_SCAN_ACTIVITY, 0, NULL);
 602
 
 
 
 
 603	/* Some older Broadcom based Bluetooth 1.2 controllers do not
 604	 * support the Read Page Scan Type command. Check support for
 605	 * this command in the bit mask of supported commands.
 606	 */
 607	if (hdev->commands[13] & 0x01)
 608		hci_req_add(req, HCI_OP_READ_PAGE_SCAN_TYPE, 0, NULL);
 609
 610	if (lmp_le_capable(hdev)) {
 611		u8 events[8];
 612
 613		memset(events, 0, sizeof(events));
 614
 615		if (hdev->le_features[0] & HCI_LE_ENCRYPTION)
 616			events[0] |= 0x10;	/* LE Long Term Key Request */
 617
 618		/* If controller supports the Connection Parameters Request
 619		 * Link Layer Procedure, enable the corresponding event.
 620		 */
 621		if (hdev->le_features[0] & HCI_LE_CONN_PARAM_REQ_PROC)
 622			events[0] |= 0x20;	/* LE Remote Connection
 623						 * Parameter Request
 624						 */
 625
 626		/* If the controller supports the Data Length Extension
 627		 * feature, enable the corresponding event.
 628		 */
 629		if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)
 630			events[0] |= 0x40;	/* LE Data Length Change */
 631
 
 
 
 
 
 
 
 
 632		/* If the controller supports Extended Scanner Filter
 633		 * Policies, enable the correspondig event.
 634		 */
 635		if (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY)
 636			events[1] |= 0x04;	/* LE Direct Advertising
 637						 * Report
 638						 */
 639
 
 
 
 
 
 
 
 
 640		/* If the controller supports the LE Set Scan Enable command,
 641		 * enable the corresponding advertising report event.
 642		 */
 643		if (hdev->commands[26] & 0x08)
 644			events[0] |= 0x02;	/* LE Advertising Report */
 645
 646		/* If the controller supports the LE Create Connection
 647		 * command, enable the corresponding event.
 648		 */
 649		if (hdev->commands[26] & 0x10)
 650			events[0] |= 0x01;	/* LE Connection Complete */
 651
 652		/* If the controller supports the LE Connection Update
 653		 * command, enable the corresponding event.
 654		 */
 655		if (hdev->commands[27] & 0x04)
 656			events[0] |= 0x04;	/* LE Connection Update
 657						 * Complete
 658						 */
 659
 660		/* If the controller supports the LE Read Remote Used Features
 661		 * command, enable the corresponding event.
 662		 */
 663		if (hdev->commands[27] & 0x20)
 664			events[0] |= 0x08;	/* LE Read Remote Used
 665						 * Features Complete
 666						 */
 667
 668		/* If the controller supports the LE Read Local P-256
 669		 * Public Key command, enable the corresponding event.
 670		 */
 671		if (hdev->commands[34] & 0x02)
 672			events[0] |= 0x80;	/* LE Read Local P-256
 673						 * Public Key Complete
 674						 */
 675
 676		/* If the controller supports the LE Generate DHKey
 677		 * command, enable the corresponding event.
 678		 */
 679		if (hdev->commands[34] & 0x04)
 680			events[1] |= 0x01;	/* LE Generate DHKey Complete */
 681
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 682		hci_req_add(req, HCI_OP_LE_SET_EVENT_MASK, sizeof(events),
 683			    events);
 684
 685		if (hdev->commands[25] & 0x40) {
 686			/* Read LE Advertising Channel TX Power */
 
 
 
 
 
 
 687			hci_req_add(req, HCI_OP_LE_READ_ADV_TX_POWER, 0, NULL);
 688		}
 689
 
 
 
 
 
 
 690		if (hdev->commands[26] & 0x40) {
 691			/* Read LE White List Size */
 692			hci_req_add(req, HCI_OP_LE_READ_WHITE_LIST_SIZE,
 693				    0, NULL);
 694		}
 695
 696		if (hdev->commands[26] & 0x80) {
 697			/* Clear LE White List */
 698			hci_req_add(req, HCI_OP_LE_CLEAR_WHITE_LIST, 0, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 699		}
 700
 701		if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) {
 702			/* Read LE Maximum Data Length */
 703			hci_req_add(req, HCI_OP_LE_READ_MAX_DATA_LEN, 0, NULL);
 704
 705			/* Read LE Suggested Default Data Length */
 706			hci_req_add(req, HCI_OP_LE_READ_DEF_DATA_LEN, 0, NULL);
 707		}
 708
 
 
 
 
 
 
 709		hci_set_le_support(req);
 710	}
 711
 712	/* Read features beyond page 1 if available */
 713	for (p = 2; p < HCI_MAX_PAGES && p <= hdev->max_page; p++) {
 714		struct hci_cp_read_local_ext_features cp;
 715
 716		cp.page = p;
 717		hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES,
 718			    sizeof(cp), &cp);
 719	}
 720
 721	return 0;
 722}
 723
 724static int hci_init4_req(struct hci_request *req, unsigned long opt)
 725{
 726	struct hci_dev *hdev = req->hdev;
 727
 728	/* Some Broadcom based Bluetooth controllers do not support the
 729	 * Delete Stored Link Key command. They are clearly indicating its
 730	 * absence in the bit mask of supported commands.
 731	 *
 732	 * Check the supported commands and only if the the command is marked
 733	 * as supported send it. If not supported assume that the controller
 734	 * does not have actual support for stored link keys which makes this
 735	 * command redundant anyway.
 736	 *
 737	 * Some controllers indicate that they support handling deleting
 738	 * stored link keys, but they don't. The quirk lets a driver
 739	 * just disable this command.
 740	 */
 741	if (hdev->commands[6] & 0x80 &&
 742	    !test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) {
 743		struct hci_cp_delete_stored_link_key cp;
 744
 745		bacpy(&cp.bdaddr, BDADDR_ANY);
 746		cp.delete_all = 0x01;
 747		hci_req_add(req, HCI_OP_DELETE_STORED_LINK_KEY,
 748			    sizeof(cp), &cp);
 749	}
 750
 751	/* Set event mask page 2 if the HCI command for it is supported */
 752	if (hdev->commands[22] & 0x04)
 753		hci_set_event_mask_page_2(req);
 754
 755	/* Read local codec list if the HCI command is supported */
 756	if (hdev->commands[29] & 0x20)
 757		hci_req_add(req, HCI_OP_READ_LOCAL_CODECS, 0, NULL);
 758
 
 
 
 
 759	/* Get MWS transport configuration if the HCI command is supported */
 760	if (hdev->commands[30] & 0x08)
 761		hci_req_add(req, HCI_OP_GET_MWS_TRANSPORT_CONFIG, 0, NULL);
 762
 763	/* Check for Synchronization Train support */
 764	if (lmp_sync_train_capable(hdev))
 765		hci_req_add(req, HCI_OP_READ_SYNC_TRAIN_PARAMS, 0, NULL);
 766
 767	/* Enable Secure Connections if supported and configured */
 768	if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED) &&
 769	    bredr_sc_enabled(hdev)) {
 770		u8 support = 0x01;
 771
 772		hci_req_add(req, HCI_OP_WRITE_SC_SUPPORT,
 773			    sizeof(support), &support);
 774	}
 775
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 776	return 0;
 777}
 778
 779static int __hci_init(struct hci_dev *hdev)
 780{
 781	int err;
 782
 783	err = __hci_req_sync(hdev, hci_init1_req, 0, HCI_INIT_TIMEOUT, NULL);
 784	if (err < 0)
 785		return err;
 786
 787	if (hci_dev_test_flag(hdev, HCI_SETUP))
 788		hci_debugfs_create_basic(hdev);
 789
 790	err = __hci_req_sync(hdev, hci_init2_req, 0, HCI_INIT_TIMEOUT, NULL);
 791	if (err < 0)
 792		return err;
 793
 794	/* HCI_BREDR covers both single-mode LE, BR/EDR and dual-mode
 795	 * BR/EDR/LE type controllers. AMP controllers only need the
 796	 * first two stages of init.
 797	 */
 798	if (hdev->dev_type != HCI_BREDR)
 799		return 0;
 800
 801	err = __hci_req_sync(hdev, hci_init3_req, 0, HCI_INIT_TIMEOUT, NULL);
 802	if (err < 0)
 803		return err;
 804
 805	err = __hci_req_sync(hdev, hci_init4_req, 0, HCI_INIT_TIMEOUT, NULL);
 806	if (err < 0)
 807		return err;
 808
 809	/* This function is only called when the controller is actually in
 810	 * configured state. When the controller is marked as unconfigured,
 811	 * this initialization procedure is not run.
 812	 *
 813	 * It means that it is possible that a controller runs through its
 814	 * setup phase and then discovers missing settings. If that is the
 815	 * case, then this function will not be called. It then will only
 816	 * be called during the config phase.
 817	 *
 818	 * So only when in setup phase or config phase, create the debugfs
 819	 * entries and register the SMP channels.
 820	 */
 821	if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
 822	    !hci_dev_test_flag(hdev, HCI_CONFIG))
 823		return 0;
 824
 825	hci_debugfs_create_common(hdev);
 826
 827	if (lmp_bredr_capable(hdev))
 828		hci_debugfs_create_bredr(hdev);
 829
 830	if (lmp_le_capable(hdev))
 831		hci_debugfs_create_le(hdev);
 832
 833	return 0;
 834}
 835
 836static int hci_init0_req(struct hci_request *req, unsigned long opt)
 837{
 838	struct hci_dev *hdev = req->hdev;
 839
 840	BT_DBG("%s %ld", hdev->name, opt);
 841
 842	/* Reset */
 843	if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks))
 844		hci_reset_req(req, 0);
 845
 846	/* Read Local Version */
 847	hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
 848
 849	/* Read BD Address */
 850	if (hdev->set_bdaddr)
 851		hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL);
 852
 853	return 0;
 854}
 855
 856static int __hci_unconf_init(struct hci_dev *hdev)
 857{
 858	int err;
 859
 860	if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
 861		return 0;
 862
 863	err = __hci_req_sync(hdev, hci_init0_req, 0, HCI_INIT_TIMEOUT, NULL);
 864	if (err < 0)
 865		return err;
 866
 867	if (hci_dev_test_flag(hdev, HCI_SETUP))
 868		hci_debugfs_create_basic(hdev);
 869
 870	return 0;
 871}
 872
 873static int hci_scan_req(struct hci_request *req, unsigned long opt)
 874{
 875	__u8 scan = opt;
 876
 877	BT_DBG("%s %x", req->hdev->name, scan);
 878
 879	/* Inquiry and Page scans */
 880	hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
 881	return 0;
 882}
 883
 884static int hci_auth_req(struct hci_request *req, unsigned long opt)
 885{
 886	__u8 auth = opt;
 887
 888	BT_DBG("%s %x", req->hdev->name, auth);
 889
 890	/* Authentication */
 891	hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, 1, &auth);
 892	return 0;
 893}
 894
 895static int hci_encrypt_req(struct hci_request *req, unsigned long opt)
 896{
 897	__u8 encrypt = opt;
 898
 899	BT_DBG("%s %x", req->hdev->name, encrypt);
 900
 901	/* Encryption */
 902	hci_req_add(req, HCI_OP_WRITE_ENCRYPT_MODE, 1, &encrypt);
 903	return 0;
 904}
 905
 906static int hci_linkpol_req(struct hci_request *req, unsigned long opt)
 907{
 908	__le16 policy = cpu_to_le16(opt);
 909
 910	BT_DBG("%s %x", req->hdev->name, policy);
 911
 912	/* Default link policy */
 913	hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, 2, &policy);
 914	return 0;
 915}
 916
 917/* Get HCI device by index.
 918 * Device is held on return. */
 919struct hci_dev *hci_dev_get(int index)
 920{
 921	struct hci_dev *hdev = NULL, *d;
 922
 923	BT_DBG("%d", index);
 924
 925	if (index < 0)
 926		return NULL;
 927
 928	read_lock(&hci_dev_list_lock);
 929	list_for_each_entry(d, &hci_dev_list, list) {
 930		if (d->id == index) {
 931			hdev = hci_dev_hold(d);
 932			break;
 933		}
 934	}
 935	read_unlock(&hci_dev_list_lock);
 936	return hdev;
 937}
 938
 939/* ---- Inquiry support ---- */
 940
 941bool hci_discovery_active(struct hci_dev *hdev)
 942{
 943	struct discovery_state *discov = &hdev->discovery;
 944
 945	switch (discov->state) {
 946	case DISCOVERY_FINDING:
 947	case DISCOVERY_RESOLVING:
 948		return true;
 949
 950	default:
 951		return false;
 952	}
 953}
 954
 955void hci_discovery_set_state(struct hci_dev *hdev, int state)
 956{
 957	int old_state = hdev->discovery.state;
 958
 959	BT_DBG("%s state %u -> %u", hdev->name, hdev->discovery.state, state);
 960
 961	if (old_state == state)
 962		return;
 963
 964	hdev->discovery.state = state;
 965
 966	switch (state) {
 967	case DISCOVERY_STOPPED:
 968		hci_update_background_scan(hdev);
 969
 970		if (old_state != DISCOVERY_STARTING)
 971			mgmt_discovering(hdev, 0);
 972		break;
 973	case DISCOVERY_STARTING:
 974		break;
 975	case DISCOVERY_FINDING:
 976		mgmt_discovering(hdev, 1);
 977		break;
 978	case DISCOVERY_RESOLVING:
 979		break;
 980	case DISCOVERY_STOPPING:
 981		break;
 982	}
 983}
 984
 985void hci_inquiry_cache_flush(struct hci_dev *hdev)
 986{
 987	struct discovery_state *cache = &hdev->discovery;
 988	struct inquiry_entry *p, *n;
 989
 990	list_for_each_entry_safe(p, n, &cache->all, all) {
 991		list_del(&p->all);
 992		kfree(p);
 993	}
 994
 995	INIT_LIST_HEAD(&cache->unknown);
 996	INIT_LIST_HEAD(&cache->resolve);
 997}
 998
 999struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev,
1000					       bdaddr_t *bdaddr)
1001{
1002	struct discovery_state *cache = &hdev->discovery;
1003	struct inquiry_entry *e;
1004
1005	BT_DBG("cache %p, %pMR", cache, bdaddr);
1006
1007	list_for_each_entry(e, &cache->all, all) {
1008		if (!bacmp(&e->data.bdaddr, bdaddr))
1009			return e;
1010	}
1011
1012	return NULL;
1013}
1014
1015struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev,
1016						       bdaddr_t *bdaddr)
1017{
1018	struct discovery_state *cache = &hdev->discovery;
1019	struct inquiry_entry *e;
1020
1021	BT_DBG("cache %p, %pMR", cache, bdaddr);
1022
1023	list_for_each_entry(e, &cache->unknown, list) {
1024		if (!bacmp(&e->data.bdaddr, bdaddr))
1025			return e;
1026	}
1027
1028	return NULL;
1029}
1030
1031struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev,
1032						       bdaddr_t *bdaddr,
1033						       int state)
1034{
1035	struct discovery_state *cache = &hdev->discovery;
1036	struct inquiry_entry *e;
1037
1038	BT_DBG("cache %p bdaddr %pMR state %d", cache, bdaddr, state);
1039
1040	list_for_each_entry(e, &cache->resolve, list) {
1041		if (!bacmp(bdaddr, BDADDR_ANY) && e->name_state == state)
1042			return e;
1043		if (!bacmp(&e->data.bdaddr, bdaddr))
1044			return e;
1045	}
1046
1047	return NULL;
1048}
1049
1050void hci_inquiry_cache_update_resolve(struct hci_dev *hdev,
1051				      struct inquiry_entry *ie)
1052{
1053	struct discovery_state *cache = &hdev->discovery;
1054	struct list_head *pos = &cache->resolve;
1055	struct inquiry_entry *p;
1056
1057	list_del(&ie->list);
1058
1059	list_for_each_entry(p, &cache->resolve, list) {
1060		if (p->name_state != NAME_PENDING &&
1061		    abs(p->data.rssi) >= abs(ie->data.rssi))
1062			break;
1063		pos = &p->list;
1064	}
1065
1066	list_add(&ie->list, pos);
1067}
1068
1069u32 hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data,
1070			     bool name_known)
1071{
1072	struct discovery_state *cache = &hdev->discovery;
1073	struct inquiry_entry *ie;
1074	u32 flags = 0;
1075
1076	BT_DBG("cache %p, %pMR", cache, &data->bdaddr);
1077
1078	hci_remove_remote_oob_data(hdev, &data->bdaddr, BDADDR_BREDR);
1079
1080	if (!data->ssp_mode)
1081		flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
1082
1083	ie = hci_inquiry_cache_lookup(hdev, &data->bdaddr);
1084	if (ie) {
1085		if (!ie->data.ssp_mode)
1086			flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
1087
1088		if (ie->name_state == NAME_NEEDED &&
1089		    data->rssi != ie->data.rssi) {
1090			ie->data.rssi = data->rssi;
1091			hci_inquiry_cache_update_resolve(hdev, ie);
1092		}
1093
1094		goto update;
1095	}
1096
1097	/* Entry not in the cache. Add new one. */
1098	ie = kzalloc(sizeof(*ie), GFP_KERNEL);
1099	if (!ie) {
1100		flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
1101		goto done;
1102	}
1103
1104	list_add(&ie->all, &cache->all);
1105
1106	if (name_known) {
1107		ie->name_state = NAME_KNOWN;
1108	} else {
1109		ie->name_state = NAME_NOT_KNOWN;
1110		list_add(&ie->list, &cache->unknown);
1111	}
1112
1113update:
1114	if (name_known && ie->name_state != NAME_KNOWN &&
1115	    ie->name_state != NAME_PENDING) {
1116		ie->name_state = NAME_KNOWN;
1117		list_del(&ie->list);
1118	}
1119
1120	memcpy(&ie->data, data, sizeof(*data));
1121	ie->timestamp = jiffies;
1122	cache->timestamp = jiffies;
1123
1124	if (ie->name_state == NAME_NOT_KNOWN)
1125		flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
1126
1127done:
1128	return flags;
1129}
1130
1131static int inquiry_cache_dump(struct hci_dev *hdev, int num, __u8 *buf)
1132{
1133	struct discovery_state *cache = &hdev->discovery;
1134	struct inquiry_info *info = (struct inquiry_info *) buf;
1135	struct inquiry_entry *e;
1136	int copied = 0;
1137
1138	list_for_each_entry(e, &cache->all, all) {
1139		struct inquiry_data *data = &e->data;
1140
1141		if (copied >= num)
1142			break;
1143
1144		bacpy(&info->bdaddr, &data->bdaddr);
1145		info->pscan_rep_mode	= data->pscan_rep_mode;
1146		info->pscan_period_mode	= data->pscan_period_mode;
1147		info->pscan_mode	= data->pscan_mode;
1148		memcpy(info->dev_class, data->dev_class, 3);
1149		info->clock_offset	= data->clock_offset;
1150
1151		info++;
1152		copied++;
1153	}
1154
1155	BT_DBG("cache %p, copied %d", cache, copied);
1156	return copied;
1157}
1158
1159static int hci_inq_req(struct hci_request *req, unsigned long opt)
1160{
1161	struct hci_inquiry_req *ir = (struct hci_inquiry_req *) opt;
1162	struct hci_dev *hdev = req->hdev;
1163	struct hci_cp_inquiry cp;
1164
1165	BT_DBG("%s", hdev->name);
1166
1167	if (test_bit(HCI_INQUIRY, &hdev->flags))
1168		return 0;
1169
1170	/* Start Inquiry */
1171	memcpy(&cp.lap, &ir->lap, 3);
1172	cp.length  = ir->length;
1173	cp.num_rsp = ir->num_rsp;
1174	hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp);
1175
1176	return 0;
1177}
1178
1179int hci_inquiry(void __user *arg)
1180{
1181	__u8 __user *ptr = arg;
1182	struct hci_inquiry_req ir;
1183	struct hci_dev *hdev;
1184	int err = 0, do_inquiry = 0, max_rsp;
1185	long timeo;
1186	__u8 *buf;
1187
1188	if (copy_from_user(&ir, ptr, sizeof(ir)))
1189		return -EFAULT;
1190
1191	hdev = hci_dev_get(ir.dev_id);
1192	if (!hdev)
1193		return -ENODEV;
1194
1195	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1196		err = -EBUSY;
1197		goto done;
1198	}
1199
1200	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1201		err = -EOPNOTSUPP;
1202		goto done;
1203	}
1204
1205	if (hdev->dev_type != HCI_BREDR) {
1206		err = -EOPNOTSUPP;
1207		goto done;
1208	}
1209
1210	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
1211		err = -EOPNOTSUPP;
1212		goto done;
1213	}
1214
 
 
 
 
 
 
1215	hci_dev_lock(hdev);
1216	if (inquiry_cache_age(hdev) > INQUIRY_CACHE_AGE_MAX ||
1217	    inquiry_cache_empty(hdev) || ir.flags & IREQ_CACHE_FLUSH) {
1218		hci_inquiry_cache_flush(hdev);
1219		do_inquiry = 1;
1220	}
1221	hci_dev_unlock(hdev);
1222
1223	timeo = ir.length * msecs_to_jiffies(2000);
1224
1225	if (do_inquiry) {
1226		err = hci_req_sync(hdev, hci_inq_req, (unsigned long) &ir,
1227				   timeo, NULL);
1228		if (err < 0)
1229			goto done;
1230
1231		/* Wait until Inquiry procedure finishes (HCI_INQUIRY flag is
1232		 * cleared). If it is interrupted by a signal, return -EINTR.
1233		 */
1234		if (wait_on_bit(&hdev->flags, HCI_INQUIRY,
1235				TASK_INTERRUPTIBLE))
1236			return -EINTR;
 
 
1237	}
1238
1239	/* for unlimited number of responses we will use buffer with
1240	 * 255 entries
1241	 */
1242	max_rsp = (ir.num_rsp == 0) ? 255 : ir.num_rsp;
1243
1244	/* cache_dump can't sleep. Therefore we allocate temp buffer and then
1245	 * copy it to the user space.
1246	 */
1247	buf = kmalloc(sizeof(struct inquiry_info) * max_rsp, GFP_KERNEL);
1248	if (!buf) {
1249		err = -ENOMEM;
1250		goto done;
1251	}
1252
1253	hci_dev_lock(hdev);
1254	ir.num_rsp = inquiry_cache_dump(hdev, max_rsp, buf);
1255	hci_dev_unlock(hdev);
1256
1257	BT_DBG("num_rsp %d", ir.num_rsp);
1258
1259	if (!copy_to_user(ptr, &ir, sizeof(ir))) {
1260		ptr += sizeof(ir);
1261		if (copy_to_user(ptr, buf, sizeof(struct inquiry_info) *
1262				 ir.num_rsp))
1263			err = -EFAULT;
1264	} else
1265		err = -EFAULT;
1266
1267	kfree(buf);
1268
1269done:
1270	hci_dev_put(hdev);
1271	return err;
1272}
1273
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1274static int hci_dev_do_open(struct hci_dev *hdev)
1275{
1276	int ret = 0;
1277
1278	BT_DBG("%s %p", hdev->name, hdev);
1279
1280	hci_req_sync_lock(hdev);
1281
1282	if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) {
1283		ret = -ENODEV;
1284		goto done;
1285	}
1286
1287	if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
1288	    !hci_dev_test_flag(hdev, HCI_CONFIG)) {
1289		/* Check for rfkill but allow the HCI setup stage to
1290		 * proceed (which in itself doesn't cause any RF activity).
1291		 */
1292		if (hci_dev_test_flag(hdev, HCI_RFKILLED)) {
1293			ret = -ERFKILL;
1294			goto done;
1295		}
1296
1297		/* Check for valid public address or a configured static
1298		 * random adddress, but let the HCI setup proceed to
1299		 * be able to determine if there is a public address
1300		 * or not.
1301		 *
1302		 * In case of user channel usage, it is not important
1303		 * if a public address or static random address is
1304		 * available.
1305		 *
1306		 * This check is only valid for BR/EDR controllers
1307		 * since AMP controllers do not have an address.
1308		 */
1309		if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1310		    hdev->dev_type == HCI_BREDR &&
1311		    !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
1312		    !bacmp(&hdev->static_addr, BDADDR_ANY)) {
1313			ret = -EADDRNOTAVAIL;
1314			goto done;
1315		}
1316	}
1317
1318	if (test_bit(HCI_UP, &hdev->flags)) {
1319		ret = -EALREADY;
1320		goto done;
1321	}
1322
1323	if (hdev->open(hdev)) {
1324		ret = -EIO;
1325		goto done;
1326	}
1327
1328	set_bit(HCI_RUNNING, &hdev->flags);
1329	hci_sock_dev_event(hdev, HCI_DEV_OPEN);
1330
1331	atomic_set(&hdev->cmd_cnt, 1);
1332	set_bit(HCI_INIT, &hdev->flags);
1333
1334	if (hci_dev_test_flag(hdev, HCI_SETUP)) {
 
 
 
1335		hci_sock_dev_event(hdev, HCI_DEV_SETUP);
1336
1337		if (hdev->setup)
1338			ret = hdev->setup(hdev);
1339
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1340		/* The transport driver can set these quirks before
1341		 * creating the HCI device or in its setup callback.
1342		 *
 
 
 
 
1343		 * In case any of them is set, the controller has to
1344		 * start up as unconfigured.
1345		 */
1346		if (test_bit(HCI_QUIRK_EXTERNAL_CONFIG, &hdev->quirks) ||
1347		    test_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks))
1348			hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
1349
1350		/* For an unconfigured controller it is required to
1351		 * read at least the version information provided by
1352		 * the Read Local Version Information command.
1353		 *
1354		 * If the set_bdaddr driver callback is provided, then
1355		 * also the original Bluetooth public device address
1356		 * will be read using the Read BD Address command.
1357		 */
1358		if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
1359			ret = __hci_unconf_init(hdev);
1360	}
1361
1362	if (hci_dev_test_flag(hdev, HCI_CONFIG)) {
1363		/* If public address change is configured, ensure that
1364		 * the address gets programmed. If the driver does not
1365		 * support changing the public address, fail the power
1366		 * on procedure.
1367		 */
1368		if (bacmp(&hdev->public_addr, BDADDR_ANY) &&
1369		    hdev->set_bdaddr)
1370			ret = hdev->set_bdaddr(hdev, &hdev->public_addr);
1371		else
1372			ret = -EADDRNOTAVAIL;
1373	}
1374
1375	if (!ret) {
1376		if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1377		    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1378			ret = __hci_init(hdev);
1379			if (!ret && hdev->post_init)
1380				ret = hdev->post_init(hdev);
1381		}
1382	}
1383
1384	/* If the HCI Reset command is clearing all diagnostic settings,
1385	 * then they need to be reprogrammed after the init procedure
1386	 * completed.
1387	 */
1388	if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) &&
 
1389	    hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) && hdev->set_diag)
1390		ret = hdev->set_diag(hdev, true);
1391
 
 
 
1392	clear_bit(HCI_INIT, &hdev->flags);
1393
1394	if (!ret) {
1395		hci_dev_hold(hdev);
1396		hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
 
1397		set_bit(HCI_UP, &hdev->flags);
1398		hci_sock_dev_event(hdev, HCI_DEV_UP);
1399		hci_leds_update_powered(hdev, true);
1400		if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
1401		    !hci_dev_test_flag(hdev, HCI_CONFIG) &&
1402		    !hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1403		    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1404		    hci_dev_test_flag(hdev, HCI_MGMT) &&
1405		    hdev->dev_type == HCI_BREDR) {
1406			ret = __hci_req_hci_power_on(hdev);
1407			mgmt_power_on(hdev, ret);
1408		}
1409	} else {
1410		/* Init failed, cleanup */
1411		flush_work(&hdev->tx_work);
1412		flush_work(&hdev->cmd_work);
 
 
 
 
1413		flush_work(&hdev->rx_work);
 
1414
1415		skb_queue_purge(&hdev->cmd_q);
1416		skb_queue_purge(&hdev->rx_q);
1417
1418		if (hdev->flush)
1419			hdev->flush(hdev);
1420
1421		if (hdev->sent_cmd) {
1422			kfree_skb(hdev->sent_cmd);
1423			hdev->sent_cmd = NULL;
1424		}
1425
1426		clear_bit(HCI_RUNNING, &hdev->flags);
1427		hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
1428
1429		hdev->close(hdev);
1430		hdev->flags &= BIT(HCI_RAW);
1431	}
1432
1433done:
1434	hci_req_sync_unlock(hdev);
1435	return ret;
1436}
1437
1438/* ---- HCI ioctl helpers ---- */
1439
1440int hci_dev_open(__u16 dev)
1441{
1442	struct hci_dev *hdev;
1443	int err;
1444
1445	hdev = hci_dev_get(dev);
1446	if (!hdev)
1447		return -ENODEV;
1448
1449	/* Devices that are marked as unconfigured can only be powered
1450	 * up as user channel. Trying to bring them up as normal devices
1451	 * will result into a failure. Only user channel operation is
1452	 * possible.
1453	 *
1454	 * When this function is called for a user channel, the flag
1455	 * HCI_USER_CHANNEL will be set first before attempting to
1456	 * open the device.
1457	 */
1458	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1459	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1460		err = -EOPNOTSUPP;
1461		goto done;
1462	}
1463
1464	/* We need to ensure that no other power on/off work is pending
1465	 * before proceeding to call hci_dev_do_open. This is
1466	 * particularly important if the setup procedure has not yet
1467	 * completed.
1468	 */
1469	if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
1470		cancel_delayed_work(&hdev->power_off);
1471
1472	/* After this call it is guaranteed that the setup procedure
1473	 * has finished. This means that error conditions like RFKILL
1474	 * or no valid public or static random address apply.
1475	 */
1476	flush_workqueue(hdev->req_workqueue);
1477
1478	/* For controllers not using the management interface and that
1479	 * are brought up using legacy ioctl, set the HCI_BONDABLE bit
1480	 * so that pairing works for them. Once the management interface
1481	 * is in use this bit will be cleared again and userspace has
1482	 * to explicitly enable it.
1483	 */
1484	if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1485	    !hci_dev_test_flag(hdev, HCI_MGMT))
1486		hci_dev_set_flag(hdev, HCI_BONDABLE);
1487
1488	err = hci_dev_do_open(hdev);
1489
1490done:
1491	hci_dev_put(hdev);
1492	return err;
1493}
1494
1495/* This function requires the caller holds hdev->lock */
1496static void hci_pend_le_actions_clear(struct hci_dev *hdev)
1497{
1498	struct hci_conn_params *p;
1499
1500	list_for_each_entry(p, &hdev->le_conn_params, list) {
1501		if (p->conn) {
1502			hci_conn_drop(p->conn);
1503			hci_conn_put(p->conn);
1504			p->conn = NULL;
1505		}
1506		list_del_init(&p->action);
1507	}
1508
1509	BT_DBG("All LE pending actions cleared");
1510}
1511
1512int hci_dev_do_close(struct hci_dev *hdev)
1513{
1514	bool auto_off;
1515
1516	BT_DBG("%s %p", hdev->name, hdev);
1517
 
 
 
 
 
 
1518	if (!hci_dev_test_flag(hdev, HCI_UNREGISTER) &&
1519	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1520	    test_bit(HCI_UP, &hdev->flags)) {
1521		/* Execute vendor specific shutdown routine */
1522		if (hdev->shutdown)
1523			hdev->shutdown(hdev);
1524	}
1525
1526	cancel_delayed_work(&hdev->power_off);
1527
1528	hci_request_cancel_all(hdev);
1529	hci_req_sync_lock(hdev);
1530
1531	if (!test_and_clear_bit(HCI_UP, &hdev->flags)) {
1532		cancel_delayed_work_sync(&hdev->cmd_timer);
1533		hci_req_sync_unlock(hdev);
1534		return 0;
1535	}
1536
1537	hci_leds_update_powered(hdev, false);
1538
1539	/* Flush RX and TX works */
1540	flush_work(&hdev->tx_work);
1541	flush_work(&hdev->rx_work);
1542
1543	if (hdev->discov_timeout > 0) {
1544		hdev->discov_timeout = 0;
1545		hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
1546		hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
1547	}
1548
1549	if (hci_dev_test_and_clear_flag(hdev, HCI_SERVICE_CACHE))
1550		cancel_delayed_work(&hdev->service_cache);
1551
1552	if (hci_dev_test_flag(hdev, HCI_MGMT))
 
 
1553		cancel_delayed_work_sync(&hdev->rpa_expired);
1554
 
 
 
 
1555	/* Avoid potential lockdep warnings from the *_flush() calls by
1556	 * ensuring the workqueue is empty up front.
1557	 */
1558	drain_workqueue(hdev->workqueue);
1559
1560	hci_dev_lock(hdev);
1561
1562	hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
1563
1564	auto_off = hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF);
1565
1566	if (!auto_off && hdev->dev_type == HCI_BREDR &&
 
1567	    hci_dev_test_flag(hdev, HCI_MGMT))
1568		__mgmt_power_off(hdev);
1569
1570	hci_inquiry_cache_flush(hdev);
1571	hci_pend_le_actions_clear(hdev);
1572	hci_conn_hash_flush(hdev);
1573	hci_dev_unlock(hdev);
1574
1575	smp_unregister(hdev);
1576
1577	hci_sock_dev_event(hdev, HCI_DEV_DOWN);
1578
 
 
 
1579	if (hdev->flush)
1580		hdev->flush(hdev);
1581
1582	/* Reset device */
1583	skb_queue_purge(&hdev->cmd_q);
1584	atomic_set(&hdev->cmd_cnt, 1);
1585	if (test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks) &&
1586	    !auto_off && !hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1587		set_bit(HCI_INIT, &hdev->flags);
1588		__hci_req_sync(hdev, hci_reset_req, 0, HCI_CMD_TIMEOUT, NULL);
1589		clear_bit(HCI_INIT, &hdev->flags);
1590	}
1591
1592	/* flush cmd  work */
1593	flush_work(&hdev->cmd_work);
1594
1595	/* Drop queues */
1596	skb_queue_purge(&hdev->rx_q);
1597	skb_queue_purge(&hdev->cmd_q);
1598	skb_queue_purge(&hdev->raw_q);
1599
1600	/* Drop last sent command */
1601	if (hdev->sent_cmd) {
1602		cancel_delayed_work_sync(&hdev->cmd_timer);
1603		kfree_skb(hdev->sent_cmd);
1604		hdev->sent_cmd = NULL;
1605	}
1606
1607	clear_bit(HCI_RUNNING, &hdev->flags);
1608	hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
1609
 
 
 
1610	/* After this point our queues are empty
1611	 * and no tasks are scheduled. */
1612	hdev->close(hdev);
1613
1614	/* Clear flags */
1615	hdev->flags &= BIT(HCI_RAW);
1616	hci_dev_clear_volatile_flags(hdev);
1617
1618	/* Controller radio is available but is currently powered down */
1619	hdev->amp_status = AMP_STATUS_POWERED_DOWN;
1620
1621	memset(hdev->eir, 0, sizeof(hdev->eir));
1622	memset(hdev->dev_class, 0, sizeof(hdev->dev_class));
1623	bacpy(&hdev->random_addr, BDADDR_ANY);
1624
1625	hci_req_sync_unlock(hdev);
1626
1627	hci_dev_put(hdev);
1628	return 0;
1629}
1630
1631int hci_dev_close(__u16 dev)
1632{
1633	struct hci_dev *hdev;
1634	int err;
1635
1636	hdev = hci_dev_get(dev);
1637	if (!hdev)
1638		return -ENODEV;
1639
1640	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1641		err = -EBUSY;
1642		goto done;
1643	}
1644
1645	if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
1646		cancel_delayed_work(&hdev->power_off);
1647
1648	err = hci_dev_do_close(hdev);
1649
1650done:
1651	hci_dev_put(hdev);
1652	return err;
1653}
1654
1655static int hci_dev_do_reset(struct hci_dev *hdev)
1656{
1657	int ret;
1658
1659	BT_DBG("%s %p", hdev->name, hdev);
1660
1661	hci_req_sync_lock(hdev);
1662
1663	/* Drop queues */
1664	skb_queue_purge(&hdev->rx_q);
1665	skb_queue_purge(&hdev->cmd_q);
1666
1667	/* Avoid potential lockdep warnings from the *_flush() calls by
1668	 * ensuring the workqueue is empty up front.
1669	 */
1670	drain_workqueue(hdev->workqueue);
1671
1672	hci_dev_lock(hdev);
1673	hci_inquiry_cache_flush(hdev);
1674	hci_conn_hash_flush(hdev);
1675	hci_dev_unlock(hdev);
1676
1677	if (hdev->flush)
1678		hdev->flush(hdev);
1679
1680	atomic_set(&hdev->cmd_cnt, 1);
1681	hdev->acl_cnt = 0; hdev->sco_cnt = 0; hdev->le_cnt = 0;
1682
1683	ret = __hci_req_sync(hdev, hci_reset_req, 0, HCI_INIT_TIMEOUT, NULL);
1684
1685	hci_req_sync_unlock(hdev);
1686	return ret;
1687}
1688
1689int hci_dev_reset(__u16 dev)
1690{
1691	struct hci_dev *hdev;
1692	int err;
1693
1694	hdev = hci_dev_get(dev);
1695	if (!hdev)
1696		return -ENODEV;
1697
1698	if (!test_bit(HCI_UP, &hdev->flags)) {
1699		err = -ENETDOWN;
1700		goto done;
1701	}
1702
1703	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1704		err = -EBUSY;
1705		goto done;
1706	}
1707
1708	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1709		err = -EOPNOTSUPP;
1710		goto done;
1711	}
1712
1713	err = hci_dev_do_reset(hdev);
1714
1715done:
1716	hci_dev_put(hdev);
1717	return err;
1718}
1719
1720int hci_dev_reset_stat(__u16 dev)
1721{
1722	struct hci_dev *hdev;
1723	int ret = 0;
1724
1725	hdev = hci_dev_get(dev);
1726	if (!hdev)
1727		return -ENODEV;
1728
1729	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1730		ret = -EBUSY;
1731		goto done;
1732	}
1733
1734	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1735		ret = -EOPNOTSUPP;
1736		goto done;
1737	}
1738
1739	memset(&hdev->stat, 0, sizeof(struct hci_dev_stats));
1740
1741done:
1742	hci_dev_put(hdev);
1743	return ret;
1744}
1745
1746static void hci_update_scan_state(struct hci_dev *hdev, u8 scan)
1747{
1748	bool conn_changed, discov_changed;
1749
1750	BT_DBG("%s scan 0x%02x", hdev->name, scan);
1751
1752	if ((scan & SCAN_PAGE))
1753		conn_changed = !hci_dev_test_and_set_flag(hdev,
1754							  HCI_CONNECTABLE);
1755	else
1756		conn_changed = hci_dev_test_and_clear_flag(hdev,
1757							   HCI_CONNECTABLE);
1758
1759	if ((scan & SCAN_INQUIRY)) {
1760		discov_changed = !hci_dev_test_and_set_flag(hdev,
1761							    HCI_DISCOVERABLE);
1762	} else {
1763		hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
1764		discov_changed = hci_dev_test_and_clear_flag(hdev,
1765							     HCI_DISCOVERABLE);
1766	}
1767
1768	if (!hci_dev_test_flag(hdev, HCI_MGMT))
1769		return;
1770
1771	if (conn_changed || discov_changed) {
1772		/* In case this was disabled through mgmt */
1773		hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
1774
1775		if (hci_dev_test_flag(hdev, HCI_LE_ENABLED))
1776			hci_req_update_adv_data(hdev, hdev->cur_adv_instance);
1777
1778		mgmt_new_settings(hdev);
1779	}
1780}
1781
1782int hci_dev_cmd(unsigned int cmd, void __user *arg)
1783{
1784	struct hci_dev *hdev;
1785	struct hci_dev_req dr;
1786	int err = 0;
1787
1788	if (copy_from_user(&dr, arg, sizeof(dr)))
1789		return -EFAULT;
1790
1791	hdev = hci_dev_get(dr.dev_id);
1792	if (!hdev)
1793		return -ENODEV;
1794
1795	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1796		err = -EBUSY;
1797		goto done;
1798	}
1799
1800	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1801		err = -EOPNOTSUPP;
1802		goto done;
1803	}
1804
1805	if (hdev->dev_type != HCI_BREDR) {
1806		err = -EOPNOTSUPP;
1807		goto done;
1808	}
1809
1810	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
1811		err = -EOPNOTSUPP;
1812		goto done;
1813	}
1814
1815	switch (cmd) {
1816	case HCISETAUTH:
1817		err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
1818				   HCI_INIT_TIMEOUT, NULL);
1819		break;
1820
1821	case HCISETENCRYPT:
1822		if (!lmp_encrypt_capable(hdev)) {
1823			err = -EOPNOTSUPP;
1824			break;
1825		}
1826
1827		if (!test_bit(HCI_AUTH, &hdev->flags)) {
1828			/* Auth must be enabled first */
1829			err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
1830					   HCI_INIT_TIMEOUT, NULL);
1831			if (err)
1832				break;
1833		}
1834
1835		err = hci_req_sync(hdev, hci_encrypt_req, dr.dev_opt,
1836				   HCI_INIT_TIMEOUT, NULL);
1837		break;
1838
1839	case HCISETSCAN:
1840		err = hci_req_sync(hdev, hci_scan_req, dr.dev_opt,
1841				   HCI_INIT_TIMEOUT, NULL);
1842
1843		/* Ensure that the connectable and discoverable states
1844		 * get correctly modified as this was a non-mgmt change.
1845		 */
1846		if (!err)
1847			hci_update_scan_state(hdev, dr.dev_opt);
1848		break;
1849
1850	case HCISETLINKPOL:
1851		err = hci_req_sync(hdev, hci_linkpol_req, dr.dev_opt,
1852				   HCI_INIT_TIMEOUT, NULL);
1853		break;
1854
1855	case HCISETLINKMODE:
1856		hdev->link_mode = ((__u16) dr.dev_opt) &
1857					(HCI_LM_MASTER | HCI_LM_ACCEPT);
1858		break;
1859
1860	case HCISETPTYPE:
 
 
 
1861		hdev->pkt_type = (__u16) dr.dev_opt;
 
1862		break;
1863
1864	case HCISETACLMTU:
1865		hdev->acl_mtu  = *((__u16 *) &dr.dev_opt + 1);
1866		hdev->acl_pkts = *((__u16 *) &dr.dev_opt + 0);
1867		break;
1868
1869	case HCISETSCOMTU:
1870		hdev->sco_mtu  = *((__u16 *) &dr.dev_opt + 1);
1871		hdev->sco_pkts = *((__u16 *) &dr.dev_opt + 0);
1872		break;
1873
1874	default:
1875		err = -EINVAL;
1876		break;
1877	}
1878
1879done:
1880	hci_dev_put(hdev);
1881	return err;
1882}
1883
1884int hci_get_dev_list(void __user *arg)
1885{
1886	struct hci_dev *hdev;
1887	struct hci_dev_list_req *dl;
1888	struct hci_dev_req *dr;
1889	int n = 0, size, err;
1890	__u16 dev_num;
1891
1892	if (get_user(dev_num, (__u16 __user *) arg))
1893		return -EFAULT;
1894
1895	if (!dev_num || dev_num > (PAGE_SIZE * 2) / sizeof(*dr))
1896		return -EINVAL;
1897
1898	size = sizeof(*dl) + dev_num * sizeof(*dr);
1899
1900	dl = kzalloc(size, GFP_KERNEL);
1901	if (!dl)
1902		return -ENOMEM;
1903
1904	dr = dl->dev_req;
1905
1906	read_lock(&hci_dev_list_lock);
1907	list_for_each_entry(hdev, &hci_dev_list, list) {
1908		unsigned long flags = hdev->flags;
1909
1910		/* When the auto-off is configured it means the transport
1911		 * is running, but in that case still indicate that the
1912		 * device is actually down.
1913		 */
1914		if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
1915			flags &= ~BIT(HCI_UP);
1916
1917		(dr + n)->dev_id  = hdev->id;
1918		(dr + n)->dev_opt = flags;
1919
1920		if (++n >= dev_num)
1921			break;
1922	}
1923	read_unlock(&hci_dev_list_lock);
1924
1925	dl->dev_num = n;
1926	size = sizeof(*dl) + n * sizeof(*dr);
1927
1928	err = copy_to_user(arg, dl, size);
1929	kfree(dl);
1930
1931	return err ? -EFAULT : 0;
1932}
1933
1934int hci_get_dev_info(void __user *arg)
1935{
1936	struct hci_dev *hdev;
1937	struct hci_dev_info di;
1938	unsigned long flags;
1939	int err = 0;
1940
1941	if (copy_from_user(&di, arg, sizeof(di)))
1942		return -EFAULT;
1943
1944	hdev = hci_dev_get(di.dev_id);
1945	if (!hdev)
1946		return -ENODEV;
1947
1948	/* When the auto-off is configured it means the transport
1949	 * is running, but in that case still indicate that the
1950	 * device is actually down.
1951	 */
1952	if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
1953		flags = hdev->flags & ~BIT(HCI_UP);
1954	else
1955		flags = hdev->flags;
1956
1957	strcpy(di.name, hdev->name);
1958	di.bdaddr   = hdev->bdaddr;
1959	di.type     = (hdev->bus & 0x0f) | ((hdev->dev_type & 0x03) << 4);
1960	di.flags    = flags;
1961	di.pkt_type = hdev->pkt_type;
1962	if (lmp_bredr_capable(hdev)) {
1963		di.acl_mtu  = hdev->acl_mtu;
1964		di.acl_pkts = hdev->acl_pkts;
1965		di.sco_mtu  = hdev->sco_mtu;
1966		di.sco_pkts = hdev->sco_pkts;
1967	} else {
1968		di.acl_mtu  = hdev->le_mtu;
1969		di.acl_pkts = hdev->le_pkts;
1970		di.sco_mtu  = 0;
1971		di.sco_pkts = 0;
1972	}
1973	di.link_policy = hdev->link_policy;
1974	di.link_mode   = hdev->link_mode;
1975
1976	memcpy(&di.stat, &hdev->stat, sizeof(di.stat));
1977	memcpy(&di.features, &hdev->features, sizeof(di.features));
1978
1979	if (copy_to_user(arg, &di, sizeof(di)))
1980		err = -EFAULT;
1981
1982	hci_dev_put(hdev);
1983
1984	return err;
1985}
1986
1987/* ---- Interface to HCI drivers ---- */
1988
1989static int hci_rfkill_set_block(void *data, bool blocked)
1990{
1991	struct hci_dev *hdev = data;
1992
1993	BT_DBG("%p name %s blocked %d", hdev, hdev->name, blocked);
1994
1995	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL))
1996		return -EBUSY;
1997
1998	if (blocked) {
1999		hci_dev_set_flag(hdev, HCI_RFKILLED);
2000		if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
2001		    !hci_dev_test_flag(hdev, HCI_CONFIG))
2002			hci_dev_do_close(hdev);
2003	} else {
2004		hci_dev_clear_flag(hdev, HCI_RFKILLED);
2005	}
2006
2007	return 0;
2008}
2009
2010static const struct rfkill_ops hci_rfkill_ops = {
2011	.set_block = hci_rfkill_set_block,
2012};
2013
2014static void hci_power_on(struct work_struct *work)
2015{
2016	struct hci_dev *hdev = container_of(work, struct hci_dev, power_on);
2017	int err;
2018
2019	BT_DBG("%s", hdev->name);
2020
2021	if (test_bit(HCI_UP, &hdev->flags) &&
2022	    hci_dev_test_flag(hdev, HCI_MGMT) &&
2023	    hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) {
2024		cancel_delayed_work(&hdev->power_off);
2025		hci_req_sync_lock(hdev);
2026		err = __hci_req_hci_power_on(hdev);
2027		hci_req_sync_unlock(hdev);
2028		mgmt_power_on(hdev, err);
2029		return;
2030	}
2031
2032	err = hci_dev_do_open(hdev);
2033	if (err < 0) {
2034		hci_dev_lock(hdev);
2035		mgmt_set_powered_failed(hdev, err);
2036		hci_dev_unlock(hdev);
2037		return;
2038	}
2039
2040	/* During the HCI setup phase, a few error conditions are
2041	 * ignored and they need to be checked now. If they are still
2042	 * valid, it is important to turn the device back off.
2043	 */
2044	if (hci_dev_test_flag(hdev, HCI_RFKILLED) ||
2045	    hci_dev_test_flag(hdev, HCI_UNCONFIGURED) ||
2046	    (hdev->dev_type == HCI_BREDR &&
2047	     !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
2048	     !bacmp(&hdev->static_addr, BDADDR_ANY))) {
2049		hci_dev_clear_flag(hdev, HCI_AUTO_OFF);
2050		hci_dev_do_close(hdev);
2051	} else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) {
2052		queue_delayed_work(hdev->req_workqueue, &hdev->power_off,
2053				   HCI_AUTO_OFF_TIMEOUT);
2054	}
2055
2056	if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) {
2057		/* For unconfigured devices, set the HCI_RAW flag
2058		 * so that userspace can easily identify them.
2059		 */
2060		if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
2061			set_bit(HCI_RAW, &hdev->flags);
2062
2063		/* For fully configured devices, this will send
2064		 * the Index Added event. For unconfigured devices,
2065		 * it will send Unconfigued Index Added event.
2066		 *
2067		 * Devices with HCI_QUIRK_RAW_DEVICE are ignored
2068		 * and no event will be send.
2069		 */
2070		mgmt_index_added(hdev);
2071	} else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) {
2072		/* When the controller is now configured, then it
2073		 * is important to clear the HCI_RAW flag.
2074		 */
2075		if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
2076			clear_bit(HCI_RAW, &hdev->flags);
2077
2078		/* Powering on the controller with HCI_CONFIG set only
2079		 * happens with the transition from unconfigured to
2080		 * configured. This will send the Index Added event.
2081		 */
2082		mgmt_index_added(hdev);
2083	}
2084}
2085
2086static void hci_power_off(struct work_struct *work)
2087{
2088	struct hci_dev *hdev = container_of(work, struct hci_dev,
2089					    power_off.work);
2090
2091	BT_DBG("%s", hdev->name);
2092
2093	hci_dev_do_close(hdev);
2094}
2095
2096static void hci_error_reset(struct work_struct *work)
2097{
2098	struct hci_dev *hdev = container_of(work, struct hci_dev, error_reset);
2099
2100	BT_DBG("%s", hdev->name);
2101
2102	if (hdev->hw_error)
2103		hdev->hw_error(hdev, hdev->hw_error_code);
2104	else
2105		BT_ERR("%s hardware error 0x%2.2x", hdev->name,
2106		       hdev->hw_error_code);
2107
2108	if (hci_dev_do_close(hdev))
2109		return;
2110
2111	hci_dev_do_open(hdev);
2112}
2113
2114void hci_uuids_clear(struct hci_dev *hdev)
2115{
2116	struct bt_uuid *uuid, *tmp;
2117
2118	list_for_each_entry_safe(uuid, tmp, &hdev->uuids, list) {
2119		list_del(&uuid->list);
2120		kfree(uuid);
2121	}
2122}
2123
2124void hci_link_keys_clear(struct hci_dev *hdev)
2125{
2126	struct link_key *key;
2127
2128	list_for_each_entry_rcu(key, &hdev->link_keys, list) {
2129		list_del_rcu(&key->list);
2130		kfree_rcu(key, rcu);
2131	}
2132}
2133
2134void hci_smp_ltks_clear(struct hci_dev *hdev)
2135{
2136	struct smp_ltk *k;
2137
2138	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2139		list_del_rcu(&k->list);
2140		kfree_rcu(k, rcu);
2141	}
2142}
2143
2144void hci_smp_irks_clear(struct hci_dev *hdev)
2145{
2146	struct smp_irk *k;
2147
2148	list_for_each_entry_rcu(k, &hdev->identity_resolving_keys, list) {
2149		list_del_rcu(&k->list);
2150		kfree_rcu(k, rcu);
2151	}
2152}
2153
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2154struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
2155{
2156	struct link_key *k;
2157
2158	rcu_read_lock();
2159	list_for_each_entry_rcu(k, &hdev->link_keys, list) {
2160		if (bacmp(bdaddr, &k->bdaddr) == 0) {
2161			rcu_read_unlock();
 
 
 
 
 
 
 
 
 
 
2162			return k;
2163		}
2164	}
2165	rcu_read_unlock();
2166
2167	return NULL;
2168}
2169
2170static bool hci_persistent_key(struct hci_dev *hdev, struct hci_conn *conn,
2171			       u8 key_type, u8 old_key_type)
2172{
2173	/* Legacy key */
2174	if (key_type < 0x03)
2175		return true;
2176
2177	/* Debug keys are insecure so don't store them persistently */
2178	if (key_type == HCI_LK_DEBUG_COMBINATION)
2179		return false;
2180
2181	/* Changed combination key and there's no previous one */
2182	if (key_type == HCI_LK_CHANGED_COMBINATION && old_key_type == 0xff)
2183		return false;
2184
2185	/* Security mode 3 case */
2186	if (!conn)
2187		return true;
2188
2189	/* BR/EDR key derived using SC from an LE link */
2190	if (conn->type == LE_LINK)
2191		return true;
2192
2193	/* Neither local nor remote side had no-bonding as requirement */
2194	if (conn->auth_type > 0x01 && conn->remote_auth > 0x01)
2195		return true;
2196
2197	/* Local side had dedicated bonding as requirement */
2198	if (conn->auth_type == 0x02 || conn->auth_type == 0x03)
2199		return true;
2200
2201	/* Remote side had dedicated bonding as requirement */
2202	if (conn->remote_auth == 0x02 || conn->remote_auth == 0x03)
2203		return true;
2204
2205	/* If none of the above criteria match, then don't store the key
2206	 * persistently */
2207	return false;
2208}
2209
2210static u8 ltk_role(u8 type)
2211{
2212	if (type == SMP_LTK)
2213		return HCI_ROLE_MASTER;
2214
2215	return HCI_ROLE_SLAVE;
2216}
2217
2218struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2219			     u8 addr_type, u8 role)
2220{
2221	struct smp_ltk *k;
2222
2223	rcu_read_lock();
2224	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2225		if (addr_type != k->bdaddr_type || bacmp(bdaddr, &k->bdaddr))
2226			continue;
2227
2228		if (smp_ltk_is_sc(k) || ltk_role(k->type) == role) {
2229			rcu_read_unlock();
 
 
 
 
 
 
 
 
 
2230			return k;
2231		}
2232	}
2233	rcu_read_unlock();
2234
2235	return NULL;
2236}
2237
2238struct smp_irk *hci_find_irk_by_rpa(struct hci_dev *hdev, bdaddr_t *rpa)
2239{
 
2240	struct smp_irk *irk;
2241
2242	rcu_read_lock();
2243	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2244		if (!bacmp(&irk->rpa, rpa)) {
2245			rcu_read_unlock();
2246			return irk;
2247		}
2248	}
2249
2250	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2251		if (smp_irk_matches(hdev, irk->val, rpa)) {
2252			bacpy(&irk->rpa, rpa);
2253			rcu_read_unlock();
2254			return irk;
2255		}
2256	}
 
 
 
 
 
 
 
 
 
2257	rcu_read_unlock();
2258
2259	return NULL;
2260}
2261
2262struct smp_irk *hci_find_irk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr,
2263				     u8 addr_type)
2264{
 
2265	struct smp_irk *irk;
2266
2267	/* Identity Address must be public or static random */
2268	if (addr_type == ADDR_LE_DEV_RANDOM && (bdaddr->b[5] & 0xc0) != 0xc0)
2269		return NULL;
2270
2271	rcu_read_lock();
2272	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2273		if (addr_type == irk->addr_type &&
2274		    bacmp(bdaddr, &irk->bdaddr) == 0) {
2275			rcu_read_unlock();
2276			return irk;
2277		}
2278	}
 
 
 
 
 
 
 
 
 
 
2279	rcu_read_unlock();
2280
2281	return NULL;
2282}
2283
2284struct link_key *hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn,
2285				  bdaddr_t *bdaddr, u8 *val, u8 type,
2286				  u8 pin_len, bool *persistent)
2287{
2288	struct link_key *key, *old_key;
2289	u8 old_key_type;
2290
2291	old_key = hci_find_link_key(hdev, bdaddr);
2292	if (old_key) {
2293		old_key_type = old_key->type;
2294		key = old_key;
2295	} else {
2296		old_key_type = conn ? conn->key_type : 0xff;
2297		key = kzalloc(sizeof(*key), GFP_KERNEL);
2298		if (!key)
2299			return NULL;
2300		list_add_rcu(&key->list, &hdev->link_keys);
2301	}
2302
2303	BT_DBG("%s key for %pMR type %u", hdev->name, bdaddr, type);
2304
2305	/* Some buggy controller combinations generate a changed
2306	 * combination key for legacy pairing even when there's no
2307	 * previous key */
2308	if (type == HCI_LK_CHANGED_COMBINATION &&
2309	    (!conn || conn->remote_auth == 0xff) && old_key_type == 0xff) {
2310		type = HCI_LK_COMBINATION;
2311		if (conn)
2312			conn->key_type = type;
2313	}
2314
2315	bacpy(&key->bdaddr, bdaddr);
2316	memcpy(key->val, val, HCI_LINK_KEY_SIZE);
2317	key->pin_len = pin_len;
2318
2319	if (type == HCI_LK_CHANGED_COMBINATION)
2320		key->type = old_key_type;
2321	else
2322		key->type = type;
2323
2324	if (persistent)
2325		*persistent = hci_persistent_key(hdev, conn, type,
2326						 old_key_type);
2327
2328	return key;
2329}
2330
2331struct smp_ltk *hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2332			    u8 addr_type, u8 type, u8 authenticated,
2333			    u8 tk[16], u8 enc_size, __le16 ediv, __le64 rand)
2334{
2335	struct smp_ltk *key, *old_key;
2336	u8 role = ltk_role(type);
2337
2338	old_key = hci_find_ltk(hdev, bdaddr, addr_type, role);
2339	if (old_key)
2340		key = old_key;
2341	else {
2342		key = kzalloc(sizeof(*key), GFP_KERNEL);
2343		if (!key)
2344			return NULL;
2345		list_add_rcu(&key->list, &hdev->long_term_keys);
2346	}
2347
2348	bacpy(&key->bdaddr, bdaddr);
2349	key->bdaddr_type = addr_type;
2350	memcpy(key->val, tk, sizeof(key->val));
2351	key->authenticated = authenticated;
2352	key->ediv = ediv;
2353	key->rand = rand;
2354	key->enc_size = enc_size;
2355	key->type = type;
2356
2357	return key;
2358}
2359
2360struct smp_irk *hci_add_irk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2361			    u8 addr_type, u8 val[16], bdaddr_t *rpa)
2362{
2363	struct smp_irk *irk;
2364
2365	irk = hci_find_irk_by_addr(hdev, bdaddr, addr_type);
2366	if (!irk) {
2367		irk = kzalloc(sizeof(*irk), GFP_KERNEL);
2368		if (!irk)
2369			return NULL;
2370
2371		bacpy(&irk->bdaddr, bdaddr);
2372		irk->addr_type = addr_type;
2373
2374		list_add_rcu(&irk->list, &hdev->identity_resolving_keys);
2375	}
2376
2377	memcpy(irk->val, val, 16);
2378	bacpy(&irk->rpa, rpa);
2379
2380	return irk;
2381}
2382
2383int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
2384{
2385	struct link_key *key;
2386
2387	key = hci_find_link_key(hdev, bdaddr);
2388	if (!key)
2389		return -ENOENT;
2390
2391	BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2392
2393	list_del_rcu(&key->list);
2394	kfree_rcu(key, rcu);
2395
2396	return 0;
2397}
2398
2399int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type)
2400{
2401	struct smp_ltk *k;
2402	int removed = 0;
2403
2404	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2405		if (bacmp(bdaddr, &k->bdaddr) || k->bdaddr_type != bdaddr_type)
2406			continue;
2407
2408		BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2409
2410		list_del_rcu(&k->list);
2411		kfree_rcu(k, rcu);
2412		removed++;
2413	}
2414
2415	return removed ? 0 : -ENOENT;
2416}
2417
2418void hci_remove_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type)
2419{
2420	struct smp_irk *k;
2421
2422	list_for_each_entry_rcu(k, &hdev->identity_resolving_keys, list) {
2423		if (bacmp(bdaddr, &k->bdaddr) || k->addr_type != addr_type)
2424			continue;
2425
2426		BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2427
2428		list_del_rcu(&k->list);
2429		kfree_rcu(k, rcu);
2430	}
2431}
2432
2433bool hci_bdaddr_is_paired(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type)
2434{
2435	struct smp_ltk *k;
2436	struct smp_irk *irk;
2437	u8 addr_type;
2438
2439	if (type == BDADDR_BREDR) {
2440		if (hci_find_link_key(hdev, bdaddr))
2441			return true;
2442		return false;
2443	}
2444
2445	/* Convert to HCI addr type which struct smp_ltk uses */
2446	if (type == BDADDR_LE_PUBLIC)
2447		addr_type = ADDR_LE_DEV_PUBLIC;
2448	else
2449		addr_type = ADDR_LE_DEV_RANDOM;
2450
2451	irk = hci_get_irk(hdev, bdaddr, addr_type);
2452	if (irk) {
2453		bdaddr = &irk->bdaddr;
2454		addr_type = irk->addr_type;
2455	}
2456
2457	rcu_read_lock();
2458	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2459		if (k->bdaddr_type == addr_type && !bacmp(bdaddr, &k->bdaddr)) {
2460			rcu_read_unlock();
2461			return true;
2462		}
2463	}
2464	rcu_read_unlock();
2465
2466	return false;
2467}
2468
2469/* HCI command timer function */
2470static void hci_cmd_timeout(struct work_struct *work)
2471{
2472	struct hci_dev *hdev = container_of(work, struct hci_dev,
2473					    cmd_timer.work);
2474
2475	if (hdev->sent_cmd) {
2476		struct hci_command_hdr *sent = (void *) hdev->sent_cmd->data;
2477		u16 opcode = __le16_to_cpu(sent->opcode);
2478
2479		BT_ERR("%s command 0x%4.4x tx timeout", hdev->name, opcode);
2480	} else {
2481		BT_ERR("%s command tx timeout", hdev->name);
2482	}
2483
 
 
 
2484	atomic_set(&hdev->cmd_cnt, 1);
2485	queue_work(hdev->workqueue, &hdev->cmd_work);
2486}
2487
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2488struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev,
2489					  bdaddr_t *bdaddr, u8 bdaddr_type)
2490{
2491	struct oob_data *data;
2492
2493	list_for_each_entry(data, &hdev->remote_oob_data, list) {
2494		if (bacmp(bdaddr, &data->bdaddr) != 0)
2495			continue;
2496		if (data->bdaddr_type != bdaddr_type)
2497			continue;
2498		return data;
2499	}
2500
2501	return NULL;
2502}
2503
2504int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
2505			       u8 bdaddr_type)
2506{
2507	struct oob_data *data;
2508
2509	data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
2510	if (!data)
2511		return -ENOENT;
2512
2513	BT_DBG("%s removing %pMR (%u)", hdev->name, bdaddr, bdaddr_type);
2514
2515	list_del(&data->list);
2516	kfree(data);
2517
2518	return 0;
2519}
2520
2521void hci_remote_oob_data_clear(struct hci_dev *hdev)
2522{
2523	struct oob_data *data, *n;
2524
2525	list_for_each_entry_safe(data, n, &hdev->remote_oob_data, list) {
2526		list_del(&data->list);
2527		kfree(data);
2528	}
2529}
2530
2531int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
2532			    u8 bdaddr_type, u8 *hash192, u8 *rand192,
2533			    u8 *hash256, u8 *rand256)
2534{
2535	struct oob_data *data;
2536
2537	data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
2538	if (!data) {
2539		data = kmalloc(sizeof(*data), GFP_KERNEL);
2540		if (!data)
2541			return -ENOMEM;
2542
2543		bacpy(&data->bdaddr, bdaddr);
2544		data->bdaddr_type = bdaddr_type;
2545		list_add(&data->list, &hdev->remote_oob_data);
2546	}
2547
2548	if (hash192 && rand192) {
2549		memcpy(data->hash192, hash192, sizeof(data->hash192));
2550		memcpy(data->rand192, rand192, sizeof(data->rand192));
2551		if (hash256 && rand256)
2552			data->present = 0x03;
2553	} else {
2554		memset(data->hash192, 0, sizeof(data->hash192));
2555		memset(data->rand192, 0, sizeof(data->rand192));
2556		if (hash256 && rand256)
2557			data->present = 0x02;
2558		else
2559			data->present = 0x00;
2560	}
2561
2562	if (hash256 && rand256) {
2563		memcpy(data->hash256, hash256, sizeof(data->hash256));
2564		memcpy(data->rand256, rand256, sizeof(data->rand256));
2565	} else {
2566		memset(data->hash256, 0, sizeof(data->hash256));
2567		memset(data->rand256, 0, sizeof(data->rand256));
2568		if (hash192 && rand192)
2569			data->present = 0x01;
2570	}
2571
2572	BT_DBG("%s for %pMR", hdev->name, bdaddr);
2573
2574	return 0;
2575}
2576
2577/* This function requires the caller holds hdev->lock */
2578struct adv_info *hci_find_adv_instance(struct hci_dev *hdev, u8 instance)
2579{
2580	struct adv_info *adv_instance;
2581
2582	list_for_each_entry(adv_instance, &hdev->adv_instances, list) {
2583		if (adv_instance->instance == instance)
2584			return adv_instance;
2585	}
2586
2587	return NULL;
2588}
2589
2590/* This function requires the caller holds hdev->lock */
2591struct adv_info *hci_get_next_instance(struct hci_dev *hdev, u8 instance)
2592{
2593	struct adv_info *cur_instance;
2594
2595	cur_instance = hci_find_adv_instance(hdev, instance);
2596	if (!cur_instance)
2597		return NULL;
2598
2599	if (cur_instance == list_last_entry(&hdev->adv_instances,
2600					    struct adv_info, list))
2601		return list_first_entry(&hdev->adv_instances,
2602						 struct adv_info, list);
2603	else
2604		return list_next_entry(cur_instance, list);
2605}
2606
2607/* This function requires the caller holds hdev->lock */
2608int hci_remove_adv_instance(struct hci_dev *hdev, u8 instance)
2609{
2610	struct adv_info *adv_instance;
2611
2612	adv_instance = hci_find_adv_instance(hdev, instance);
2613	if (!adv_instance)
2614		return -ENOENT;
2615
2616	BT_DBG("%s removing %dMR", hdev->name, instance);
2617
2618	if (hdev->cur_adv_instance == instance) {
2619		if (hdev->adv_instance_timeout) {
2620			cancel_delayed_work(&hdev->adv_instance_expire);
2621			hdev->adv_instance_timeout = 0;
2622		}
2623		hdev->cur_adv_instance = 0x00;
2624	}
2625
 
 
2626	list_del(&adv_instance->list);
2627	kfree(adv_instance);
2628
2629	hdev->adv_instance_cnt--;
2630
2631	return 0;
2632}
2633
 
 
 
 
 
 
 
 
2634/* This function requires the caller holds hdev->lock */
2635void hci_adv_instances_clear(struct hci_dev *hdev)
2636{
2637	struct adv_info *adv_instance, *n;
2638
2639	if (hdev->adv_instance_timeout) {
2640		cancel_delayed_work(&hdev->adv_instance_expire);
2641		hdev->adv_instance_timeout = 0;
2642	}
2643
2644	list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list) {
 
2645		list_del(&adv_instance->list);
2646		kfree(adv_instance);
2647	}
2648
2649	hdev->adv_instance_cnt = 0;
2650	hdev->cur_adv_instance = 0x00;
2651}
2652
 
 
 
 
 
 
 
 
 
 
2653/* This function requires the caller holds hdev->lock */
2654int hci_add_adv_instance(struct hci_dev *hdev, u8 instance, u32 flags,
2655			 u16 adv_data_len, u8 *adv_data,
2656			 u16 scan_rsp_len, u8 *scan_rsp_data,
2657			 u16 timeout, u16 duration)
 
2658{
2659	struct adv_info *adv_instance;
2660
2661	adv_instance = hci_find_adv_instance(hdev, instance);
2662	if (adv_instance) {
2663		memset(adv_instance->adv_data, 0,
2664		       sizeof(adv_instance->adv_data));
2665		memset(adv_instance->scan_rsp_data, 0,
2666		       sizeof(adv_instance->scan_rsp_data));
2667	} else {
2668		if (hdev->adv_instance_cnt >= HCI_MAX_ADV_INSTANCES ||
2669		    instance < 1 || instance > HCI_MAX_ADV_INSTANCES)
2670			return -EOVERFLOW;
2671
2672		adv_instance = kzalloc(sizeof(*adv_instance), GFP_KERNEL);
2673		if (!adv_instance)
2674			return -ENOMEM;
2675
2676		adv_instance->pending = true;
2677		adv_instance->instance = instance;
2678		list_add(&adv_instance->list, &hdev->adv_instances);
2679		hdev->adv_instance_cnt++;
2680	}
2681
2682	adv_instance->flags = flags;
2683	adv_instance->adv_data_len = adv_data_len;
2684	adv_instance->scan_rsp_len = scan_rsp_len;
 
 
 
2685
2686	if (adv_data_len)
2687		memcpy(adv_instance->adv_data, adv_data, adv_data_len);
2688
2689	if (scan_rsp_len)
2690		memcpy(adv_instance->scan_rsp_data,
2691		       scan_rsp_data, scan_rsp_len);
2692
2693	adv_instance->timeout = timeout;
2694	adv_instance->remaining_time = timeout;
2695
2696	if (duration == 0)
2697		adv_instance->duration = HCI_DEFAULT_ADV_DURATION;
2698	else
2699		adv_instance->duration = duration;
2700
 
 
 
2701	BT_DBG("%s for %dMR", hdev->name, instance);
2702
2703	return 0;
2704}
2705
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2706struct bdaddr_list *hci_bdaddr_list_lookup(struct list_head *bdaddr_list,
2707					 bdaddr_t *bdaddr, u8 type)
2708{
2709	struct bdaddr_list *b;
2710
2711	list_for_each_entry(b, bdaddr_list, list) {
2712		if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2713			return b;
2714	}
2715
2716	return NULL;
2717}
2718
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2719void hci_bdaddr_list_clear(struct list_head *bdaddr_list)
2720{
2721	struct bdaddr_list *b, *n;
2722
2723	list_for_each_entry_safe(b, n, bdaddr_list, list) {
2724		list_del(&b->list);
2725		kfree(b);
2726	}
2727}
2728
2729int hci_bdaddr_list_add(struct list_head *list, bdaddr_t *bdaddr, u8 type)
2730{
2731	struct bdaddr_list *entry;
2732
2733	if (!bacmp(bdaddr, BDADDR_ANY))
2734		return -EBADF;
2735
2736	if (hci_bdaddr_list_lookup(list, bdaddr, type))
2737		return -EEXIST;
2738
2739	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
2740	if (!entry)
2741		return -ENOMEM;
2742
2743	bacpy(&entry->bdaddr, bdaddr);
2744	entry->bdaddr_type = type;
2745
2746	list_add(&entry->list, list);
2747
2748	return 0;
2749}
2750
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2751int hci_bdaddr_list_del(struct list_head *list, bdaddr_t *bdaddr, u8 type)
2752{
2753	struct bdaddr_list *entry;
2754
2755	if (!bacmp(bdaddr, BDADDR_ANY)) {
2756		hci_bdaddr_list_clear(list);
2757		return 0;
2758	}
2759
2760	entry = hci_bdaddr_list_lookup(list, bdaddr, type);
2761	if (!entry)
2762		return -ENOENT;
2763
2764	list_del(&entry->list);
2765	kfree(entry);
2766
2767	return 0;
2768}
2769
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2770/* This function requires the caller holds hdev->lock */
2771struct hci_conn_params *hci_conn_params_lookup(struct hci_dev *hdev,
2772					       bdaddr_t *addr, u8 addr_type)
2773{
2774	struct hci_conn_params *params;
2775
2776	list_for_each_entry(params, &hdev->le_conn_params, list) {
2777		if (bacmp(&params->addr, addr) == 0 &&
2778		    params->addr_type == addr_type) {
2779			return params;
2780		}
2781	}
2782
2783	return NULL;
2784}
2785
2786/* This function requires the caller holds hdev->lock */
2787struct hci_conn_params *hci_pend_le_action_lookup(struct list_head *list,
2788						  bdaddr_t *addr, u8 addr_type)
2789{
2790	struct hci_conn_params *param;
2791
 
 
 
 
 
 
 
 
 
2792	list_for_each_entry(param, list, action) {
2793		if (bacmp(&param->addr, addr) == 0 &&
2794		    param->addr_type == addr_type)
2795			return param;
2796	}
2797
2798	return NULL;
2799}
2800
2801/* This function requires the caller holds hdev->lock */
2802struct hci_conn_params *hci_conn_params_add(struct hci_dev *hdev,
2803					    bdaddr_t *addr, u8 addr_type)
2804{
2805	struct hci_conn_params *params;
2806
2807	params = hci_conn_params_lookup(hdev, addr, addr_type);
2808	if (params)
2809		return params;
2810
2811	params = kzalloc(sizeof(*params), GFP_KERNEL);
2812	if (!params) {
2813		BT_ERR("Out of memory");
2814		return NULL;
2815	}
2816
2817	bacpy(&params->addr, addr);
2818	params->addr_type = addr_type;
2819
2820	list_add(&params->list, &hdev->le_conn_params);
2821	INIT_LIST_HEAD(&params->action);
2822
2823	params->conn_min_interval = hdev->le_conn_min_interval;
2824	params->conn_max_interval = hdev->le_conn_max_interval;
2825	params->conn_latency = hdev->le_conn_latency;
2826	params->supervision_timeout = hdev->le_supv_timeout;
2827	params->auto_connect = HCI_AUTO_CONN_DISABLED;
2828
2829	BT_DBG("addr %pMR (type %u)", addr, addr_type);
2830
2831	return params;
2832}
2833
2834static void hci_conn_params_free(struct hci_conn_params *params)
2835{
2836	if (params->conn) {
2837		hci_conn_drop(params->conn);
2838		hci_conn_put(params->conn);
2839	}
2840
2841	list_del(&params->action);
2842	list_del(&params->list);
2843	kfree(params);
2844}
2845
2846/* This function requires the caller holds hdev->lock */
2847void hci_conn_params_del(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type)
2848{
2849	struct hci_conn_params *params;
2850
2851	params = hci_conn_params_lookup(hdev, addr, addr_type);
2852	if (!params)
2853		return;
2854
2855	hci_conn_params_free(params);
2856
2857	hci_update_background_scan(hdev);
2858
2859	BT_DBG("addr %pMR (type %u)", addr, addr_type);
2860}
2861
2862/* This function requires the caller holds hdev->lock */
2863void hci_conn_params_clear_disabled(struct hci_dev *hdev)
2864{
2865	struct hci_conn_params *params, *tmp;
2866
2867	list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list) {
2868		if (params->auto_connect != HCI_AUTO_CONN_DISABLED)
2869			continue;
2870
2871		/* If trying to estabilish one time connection to disabled
2872		 * device, leave the params, but mark them as just once.
2873		 */
2874		if (params->explicit_connect) {
2875			params->auto_connect = HCI_AUTO_CONN_EXPLICIT;
2876			continue;
2877		}
2878
2879		list_del(&params->list);
2880		kfree(params);
2881	}
2882
2883	BT_DBG("All LE disabled connection parameters were removed");
2884}
2885
2886/* This function requires the caller holds hdev->lock */
2887static void hci_conn_params_clear_all(struct hci_dev *hdev)
2888{
2889	struct hci_conn_params *params, *tmp;
2890
2891	list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list)
2892		hci_conn_params_free(params);
2893
2894	BT_DBG("All LE connection parameters were removed");
2895}
2896
2897/* Copy the Identity Address of the controller.
2898 *
2899 * If the controller has a public BD_ADDR, then by default use that one.
2900 * If this is a LE only controller without a public address, default to
2901 * the static random address.
2902 *
2903 * For debugging purposes it is possible to force controllers with a
2904 * public address to use the static random address instead.
2905 *
2906 * In case BR/EDR has been disabled on a dual-mode controller and
2907 * userspace has configured a static address, then that address
2908 * becomes the identity address instead of the public BR/EDR address.
2909 */
2910void hci_copy_identity_address(struct hci_dev *hdev, bdaddr_t *bdaddr,
2911			       u8 *bdaddr_type)
2912{
2913	if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
2914	    !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
2915	    (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
2916	     bacmp(&hdev->static_addr, BDADDR_ANY))) {
2917		bacpy(bdaddr, &hdev->static_addr);
2918		*bdaddr_type = ADDR_LE_DEV_RANDOM;
2919	} else {
2920		bacpy(bdaddr, &hdev->bdaddr);
2921		*bdaddr_type = ADDR_LE_DEV_PUBLIC;
2922	}
2923}
2924
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2925/* Alloc HCI device */
2926struct hci_dev *hci_alloc_dev(void)
2927{
2928	struct hci_dev *hdev;
2929
2930	hdev = kzalloc(sizeof(*hdev), GFP_KERNEL);
2931	if (!hdev)
2932		return NULL;
2933
2934	hdev->pkt_type  = (HCI_DM1 | HCI_DH1 | HCI_HV1);
2935	hdev->esco_type = (ESCO_HV1);
2936	hdev->link_mode = (HCI_LM_ACCEPT);
2937	hdev->num_iac = 0x01;		/* One IAC support is mandatory */
2938	hdev->io_capability = 0x03;	/* No Input No Output */
2939	hdev->manufacturer = 0xffff;	/* Default to internal use */
2940	hdev->inq_tx_power = HCI_TX_POWER_INVALID;
2941	hdev->adv_tx_power = HCI_TX_POWER_INVALID;
2942	hdev->adv_instance_cnt = 0;
2943	hdev->cur_adv_instance = 0x00;
2944	hdev->adv_instance_timeout = 0;
2945
 
 
 
 
2946	hdev->sniff_max_interval = 800;
2947	hdev->sniff_min_interval = 80;
2948
2949	hdev->le_adv_channel_map = 0x07;
2950	hdev->le_adv_min_interval = 0x0800;
2951	hdev->le_adv_max_interval = 0x0800;
2952	hdev->le_scan_interval = 0x0060;
2953	hdev->le_scan_window = 0x0030;
2954	hdev->le_conn_min_interval = 0x0028;
2955	hdev->le_conn_max_interval = 0x0038;
 
 
 
 
 
 
 
 
2956	hdev->le_conn_latency = 0x0000;
2957	hdev->le_supv_timeout = 0x002a;
2958	hdev->le_def_tx_len = 0x001b;
2959	hdev->le_def_tx_time = 0x0148;
2960	hdev->le_max_tx_len = 0x001b;
2961	hdev->le_max_tx_time = 0x0148;
2962	hdev->le_max_rx_len = 0x001b;
2963	hdev->le_max_rx_time = 0x0148;
 
 
 
 
 
 
 
 
 
2964
2965	hdev->rpa_timeout = HCI_DEFAULT_RPA_TIMEOUT;
2966	hdev->discov_interleaved_timeout = DISCOV_INTERLEAVED_TIMEOUT;
2967	hdev->conn_info_min_age = DEFAULT_CONN_INFO_MIN_AGE;
2968	hdev->conn_info_max_age = DEFAULT_CONN_INFO_MAX_AGE;
 
 
 
 
 
 
 
2969
2970	mutex_init(&hdev->lock);
2971	mutex_init(&hdev->req_lock);
2972
2973	INIT_LIST_HEAD(&hdev->mgmt_pending);
2974	INIT_LIST_HEAD(&hdev->blacklist);
2975	INIT_LIST_HEAD(&hdev->whitelist);
2976	INIT_LIST_HEAD(&hdev->uuids);
2977	INIT_LIST_HEAD(&hdev->link_keys);
2978	INIT_LIST_HEAD(&hdev->long_term_keys);
2979	INIT_LIST_HEAD(&hdev->identity_resolving_keys);
2980	INIT_LIST_HEAD(&hdev->remote_oob_data);
2981	INIT_LIST_HEAD(&hdev->le_white_list);
 
2982	INIT_LIST_HEAD(&hdev->le_conn_params);
2983	INIT_LIST_HEAD(&hdev->pend_le_conns);
2984	INIT_LIST_HEAD(&hdev->pend_le_reports);
2985	INIT_LIST_HEAD(&hdev->conn_hash.list);
2986	INIT_LIST_HEAD(&hdev->adv_instances);
 
2987
2988	INIT_WORK(&hdev->rx_work, hci_rx_work);
2989	INIT_WORK(&hdev->cmd_work, hci_cmd_work);
2990	INIT_WORK(&hdev->tx_work, hci_tx_work);
2991	INIT_WORK(&hdev->power_on, hci_power_on);
2992	INIT_WORK(&hdev->error_reset, hci_error_reset);
 
2993
2994	INIT_DELAYED_WORK(&hdev->power_off, hci_power_off);
2995
2996	skb_queue_head_init(&hdev->rx_q);
2997	skb_queue_head_init(&hdev->cmd_q);
2998	skb_queue_head_init(&hdev->raw_q);
2999
3000	init_waitqueue_head(&hdev->req_wait_q);
 
3001
3002	INIT_DELAYED_WORK(&hdev->cmd_timer, hci_cmd_timeout);
 
3003
3004	hci_request_setup(hdev);
3005
3006	hci_init_sysfs(hdev);
3007	discovery_init(hdev);
3008
3009	return hdev;
3010}
3011EXPORT_SYMBOL(hci_alloc_dev);
3012
3013/* Free HCI device */
3014void hci_free_dev(struct hci_dev *hdev)
3015{
3016	/* will free via device release */
3017	put_device(&hdev->dev);
3018}
3019EXPORT_SYMBOL(hci_free_dev);
3020
3021/* Register HCI device */
3022int hci_register_dev(struct hci_dev *hdev)
3023{
3024	int id, error;
3025
3026	if (!hdev->open || !hdev->close || !hdev->send)
3027		return -EINVAL;
3028
3029	/* Do not allow HCI_AMP devices to register at index 0,
3030	 * so the index can be used as the AMP controller ID.
3031	 */
3032	switch (hdev->dev_type) {
3033	case HCI_BREDR:
3034		id = ida_simple_get(&hci_index_ida, 0, 0, GFP_KERNEL);
3035		break;
3036	case HCI_AMP:
3037		id = ida_simple_get(&hci_index_ida, 1, 0, GFP_KERNEL);
3038		break;
3039	default:
3040		return -EINVAL;
3041	}
3042
3043	if (id < 0)
3044		return id;
3045
3046	sprintf(hdev->name, "hci%d", id);
3047	hdev->id = id;
3048
3049	BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
3050
3051	hdev->workqueue = alloc_workqueue("%s", WQ_HIGHPRI | WQ_UNBOUND |
3052					  WQ_MEM_RECLAIM, 1, hdev->name);
3053	if (!hdev->workqueue) {
3054		error = -ENOMEM;
3055		goto err;
3056	}
3057
3058	hdev->req_workqueue = alloc_workqueue("%s", WQ_HIGHPRI | WQ_UNBOUND |
3059					      WQ_MEM_RECLAIM, 1, hdev->name);
3060	if (!hdev->req_workqueue) {
3061		destroy_workqueue(hdev->workqueue);
3062		error = -ENOMEM;
3063		goto err;
3064	}
3065
3066	if (!IS_ERR_OR_NULL(bt_debugfs))
3067		hdev->debugfs = debugfs_create_dir(hdev->name, bt_debugfs);
3068
3069	dev_set_name(&hdev->dev, "%s", hdev->name);
3070
3071	error = device_add(&hdev->dev);
3072	if (error < 0)
3073		goto err_wqueue;
3074
3075	hci_leds_init(hdev);
3076
3077	hdev->rfkill = rfkill_alloc(hdev->name, &hdev->dev,
3078				    RFKILL_TYPE_BLUETOOTH, &hci_rfkill_ops,
3079				    hdev);
3080	if (hdev->rfkill) {
3081		if (rfkill_register(hdev->rfkill) < 0) {
3082			rfkill_destroy(hdev->rfkill);
3083			hdev->rfkill = NULL;
3084		}
3085	}
3086
3087	if (hdev->rfkill && rfkill_blocked(hdev->rfkill))
3088		hci_dev_set_flag(hdev, HCI_RFKILLED);
3089
3090	hci_dev_set_flag(hdev, HCI_SETUP);
3091	hci_dev_set_flag(hdev, HCI_AUTO_OFF);
3092
3093	if (hdev->dev_type == HCI_BREDR) {
3094		/* Assume BR/EDR support until proven otherwise (such as
3095		 * through reading supported features during init.
3096		 */
3097		hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
3098	}
3099
3100	write_lock(&hci_dev_list_lock);
3101	list_add(&hdev->list, &hci_dev_list);
3102	write_unlock(&hci_dev_list_lock);
3103
3104	/* Devices that are marked for raw-only usage are unconfigured
3105	 * and should not be included in normal operation.
3106	 */
3107	if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
3108		hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
3109
3110	hci_sock_dev_event(hdev, HCI_DEV_REG);
3111	hci_dev_hold(hdev);
3112
 
 
 
 
 
 
 
3113	queue_work(hdev->req_workqueue, &hdev->power_on);
3114
 
 
3115	return id;
3116
3117err_wqueue:
3118	destroy_workqueue(hdev->workqueue);
3119	destroy_workqueue(hdev->req_workqueue);
3120err:
3121	ida_simple_remove(&hci_index_ida, hdev->id);
3122
3123	return error;
3124}
3125EXPORT_SYMBOL(hci_register_dev);
3126
3127/* Unregister HCI device */
3128void hci_unregister_dev(struct hci_dev *hdev)
3129{
3130	int id;
3131
3132	BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
3133
3134	hci_dev_set_flag(hdev, HCI_UNREGISTER);
3135
3136	id = hdev->id;
3137
3138	write_lock(&hci_dev_list_lock);
3139	list_del(&hdev->list);
3140	write_unlock(&hci_dev_list_lock);
3141
3142	hci_dev_do_close(hdev);
3143
3144	cancel_work_sync(&hdev->power_on);
3145
 
 
 
 
 
 
 
 
3146	if (!test_bit(HCI_INIT, &hdev->flags) &&
3147	    !hci_dev_test_flag(hdev, HCI_SETUP) &&
3148	    !hci_dev_test_flag(hdev, HCI_CONFIG)) {
3149		hci_dev_lock(hdev);
3150		mgmt_index_removed(hdev);
3151		hci_dev_unlock(hdev);
3152	}
3153
3154	/* mgmt_index_removed should take care of emptying the
3155	 * pending list */
3156	BUG_ON(!list_empty(&hdev->mgmt_pending));
3157
3158	hci_sock_dev_event(hdev, HCI_DEV_UNREG);
3159
3160	if (hdev->rfkill) {
3161		rfkill_unregister(hdev->rfkill);
3162		rfkill_destroy(hdev->rfkill);
3163	}
3164
3165	device_del(&hdev->dev);
 
 
 
 
3166
 
 
 
3167	debugfs_remove_recursive(hdev->debugfs);
 
 
3168
3169	destroy_workqueue(hdev->workqueue);
3170	destroy_workqueue(hdev->req_workqueue);
3171
3172	hci_dev_lock(hdev);
3173	hci_bdaddr_list_clear(&hdev->blacklist);
3174	hci_bdaddr_list_clear(&hdev->whitelist);
3175	hci_uuids_clear(hdev);
3176	hci_link_keys_clear(hdev);
3177	hci_smp_ltks_clear(hdev);
3178	hci_smp_irks_clear(hdev);
3179	hci_remote_oob_data_clear(hdev);
3180	hci_adv_instances_clear(hdev);
3181	hci_bdaddr_list_clear(&hdev->le_white_list);
 
 
3182	hci_conn_params_clear_all(hdev);
3183	hci_discovery_filter_clear(hdev);
 
3184	hci_dev_unlock(hdev);
3185
3186	hci_dev_put(hdev);
3187
3188	ida_simple_remove(&hci_index_ida, id);
3189}
3190EXPORT_SYMBOL(hci_unregister_dev);
3191
3192/* Suspend HCI device */
3193int hci_suspend_dev(struct hci_dev *hdev)
3194{
3195	hci_sock_dev_event(hdev, HCI_DEV_SUSPEND);
3196	return 0;
3197}
3198EXPORT_SYMBOL(hci_suspend_dev);
3199
3200/* Resume HCI device */
3201int hci_resume_dev(struct hci_dev *hdev)
3202{
3203	hci_sock_dev_event(hdev, HCI_DEV_RESUME);
3204	return 0;
3205}
3206EXPORT_SYMBOL(hci_resume_dev);
3207
3208/* Reset HCI device */
3209int hci_reset_dev(struct hci_dev *hdev)
3210{
3211	const u8 hw_err[] = { HCI_EV_HARDWARE_ERROR, 0x01, 0x00 };
3212	struct sk_buff *skb;
3213
3214	skb = bt_skb_alloc(3, GFP_ATOMIC);
3215	if (!skb)
3216		return -ENOMEM;
3217
3218	hci_skb_pkt_type(skb) = HCI_EVENT_PKT;
3219	memcpy(skb_put(skb, 3), hw_err, 3);
 
 
3220
3221	/* Send Hardware Error to upper stack */
3222	return hci_recv_frame(hdev, skb);
3223}
3224EXPORT_SYMBOL(hci_reset_dev);
3225
3226/* Receive frame from HCI drivers */
3227int hci_recv_frame(struct hci_dev *hdev, struct sk_buff *skb)
3228{
3229	if (!hdev || (!test_bit(HCI_UP, &hdev->flags)
3230		      && !test_bit(HCI_INIT, &hdev->flags))) {
3231		kfree_skb(skb);
3232		return -ENXIO;
3233	}
3234
3235	if (hci_skb_pkt_type(skb) != HCI_EVENT_PKT &&
3236	    hci_skb_pkt_type(skb) != HCI_ACLDATA_PKT &&
3237	    hci_skb_pkt_type(skb) != HCI_SCODATA_PKT) {
 
3238		kfree_skb(skb);
3239		return -EINVAL;
3240	}
3241
3242	/* Incoming skb */
3243	bt_cb(skb)->incoming = 1;
3244
3245	/* Time stamp */
3246	__net_timestamp(skb);
3247
3248	skb_queue_tail(&hdev->rx_q, skb);
3249	queue_work(hdev->workqueue, &hdev->rx_work);
3250
3251	return 0;
3252}
3253EXPORT_SYMBOL(hci_recv_frame);
3254
3255/* Receive diagnostic message from HCI drivers */
3256int hci_recv_diag(struct hci_dev *hdev, struct sk_buff *skb)
3257{
3258	/* Mark as diagnostic packet */
3259	hci_skb_pkt_type(skb) = HCI_DIAG_PKT;
3260
3261	/* Time stamp */
3262	__net_timestamp(skb);
3263
3264	skb_queue_tail(&hdev->rx_q, skb);
3265	queue_work(hdev->workqueue, &hdev->rx_work);
3266
3267	return 0;
3268}
3269EXPORT_SYMBOL(hci_recv_diag);
3270
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3271/* ---- Interface to upper protocols ---- */
3272
3273int hci_register_cb(struct hci_cb *cb)
3274{
3275	BT_DBG("%p name %s", cb, cb->name);
3276
3277	mutex_lock(&hci_cb_list_lock);
3278	list_add_tail(&cb->list, &hci_cb_list);
3279	mutex_unlock(&hci_cb_list_lock);
3280
3281	return 0;
3282}
3283EXPORT_SYMBOL(hci_register_cb);
3284
3285int hci_unregister_cb(struct hci_cb *cb)
3286{
3287	BT_DBG("%p name %s", cb, cb->name);
3288
3289	mutex_lock(&hci_cb_list_lock);
3290	list_del(&cb->list);
3291	mutex_unlock(&hci_cb_list_lock);
3292
3293	return 0;
3294}
3295EXPORT_SYMBOL(hci_unregister_cb);
3296
3297static void hci_send_frame(struct hci_dev *hdev, struct sk_buff *skb)
3298{
3299	int err;
3300
3301	BT_DBG("%s type %d len %d", hdev->name, hci_skb_pkt_type(skb),
3302	       skb->len);
3303
3304	/* Time stamp */
3305	__net_timestamp(skb);
3306
3307	/* Send copy to monitor */
3308	hci_send_to_monitor(hdev, skb);
3309
3310	if (atomic_read(&hdev->promisc)) {
3311		/* Send copy to the sockets */
3312		hci_send_to_sock(hdev, skb);
3313	}
3314
3315	/* Get rid of skb owner, prior to sending to the driver. */
3316	skb_orphan(skb);
3317
3318	if (!test_bit(HCI_RUNNING, &hdev->flags)) {
3319		kfree_skb(skb);
3320		return;
3321	}
3322
3323	err = hdev->send(hdev, skb);
3324	if (err < 0) {
3325		BT_ERR("%s sending frame failed (%d)", hdev->name, err);
3326		kfree_skb(skb);
3327	}
3328}
3329
3330/* Send HCI command */
3331int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen,
3332		 const void *param)
3333{
3334	struct sk_buff *skb;
3335
3336	BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen);
3337
3338	skb = hci_prepare_cmd(hdev, opcode, plen, param);
3339	if (!skb) {
3340		BT_ERR("%s no memory for command", hdev->name);
3341		return -ENOMEM;
3342	}
3343
3344	/* Stand-alone HCI commands must be flagged as
3345	 * single-command requests.
3346	 */
3347	bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
3348
3349	skb_queue_tail(&hdev->cmd_q, skb);
3350	queue_work(hdev->workqueue, &hdev->cmd_work);
3351
3352	return 0;
3353}
3354
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3355/* Get data from the previously sent command */
3356void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode)
3357{
3358	struct hci_command_hdr *hdr;
3359
3360	if (!hdev->sent_cmd)
3361		return NULL;
3362
3363	hdr = (void *) hdev->sent_cmd->data;
3364
3365	if (hdr->opcode != cpu_to_le16(opcode))
3366		return NULL;
3367
3368	BT_DBG("%s opcode 0x%4.4x", hdev->name, opcode);
3369
3370	return hdev->sent_cmd->data + HCI_COMMAND_HDR_SIZE;
3371}
3372
3373/* Send HCI command and wait for command commplete event */
3374struct sk_buff *hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
3375			     const void *param, u32 timeout)
3376{
3377	struct sk_buff *skb;
3378
3379	if (!test_bit(HCI_UP, &hdev->flags))
3380		return ERR_PTR(-ENETDOWN);
3381
3382	bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen);
3383
3384	hci_req_sync_lock(hdev);
3385	skb = __hci_cmd_sync(hdev, opcode, plen, param, timeout);
3386	hci_req_sync_unlock(hdev);
3387
3388	return skb;
3389}
3390EXPORT_SYMBOL(hci_cmd_sync);
3391
3392/* Send ACL data */
3393static void hci_add_acl_hdr(struct sk_buff *skb, __u16 handle, __u16 flags)
3394{
3395	struct hci_acl_hdr *hdr;
3396	int len = skb->len;
3397
3398	skb_push(skb, HCI_ACL_HDR_SIZE);
3399	skb_reset_transport_header(skb);
3400	hdr = (struct hci_acl_hdr *)skb_transport_header(skb);
3401	hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
3402	hdr->dlen   = cpu_to_le16(len);
3403}
3404
3405static void hci_queue_acl(struct hci_chan *chan, struct sk_buff_head *queue,
3406			  struct sk_buff *skb, __u16 flags)
3407{
3408	struct hci_conn *conn = chan->conn;
3409	struct hci_dev *hdev = conn->hdev;
3410	struct sk_buff *list;
3411
3412	skb->len = skb_headlen(skb);
3413	skb->data_len = 0;
3414
3415	hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
3416
3417	switch (hdev->dev_type) {
3418	case HCI_BREDR:
3419		hci_add_acl_hdr(skb, conn->handle, flags);
3420		break;
3421	case HCI_AMP:
3422		hci_add_acl_hdr(skb, chan->handle, flags);
3423		break;
3424	default:
3425		BT_ERR("%s unknown dev_type %d", hdev->name, hdev->dev_type);
3426		return;
3427	}
3428
3429	list = skb_shinfo(skb)->frag_list;
3430	if (!list) {
3431		/* Non fragmented */
3432		BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
3433
3434		skb_queue_tail(queue, skb);
3435	} else {
3436		/* Fragmented */
3437		BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3438
3439		skb_shinfo(skb)->frag_list = NULL;
3440
3441		/* Queue all fragments atomically. We need to use spin_lock_bh
3442		 * here because of 6LoWPAN links, as there this function is
3443		 * called from softirq and using normal spin lock could cause
3444		 * deadlocks.
3445		 */
3446		spin_lock_bh(&queue->lock);
3447
3448		__skb_queue_tail(queue, skb);
3449
3450		flags &= ~ACL_START;
3451		flags |= ACL_CONT;
3452		do {
3453			skb = list; list = list->next;
3454
3455			hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
3456			hci_add_acl_hdr(skb, conn->handle, flags);
3457
3458			BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3459
3460			__skb_queue_tail(queue, skb);
3461		} while (list);
3462
3463		spin_unlock_bh(&queue->lock);
3464	}
3465}
3466
3467void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags)
3468{
3469	struct hci_dev *hdev = chan->conn->hdev;
3470
3471	BT_DBG("%s chan %p flags 0x%4.4x", hdev->name, chan, flags);
3472
3473	hci_queue_acl(chan, &chan->data_q, skb, flags);
3474
3475	queue_work(hdev->workqueue, &hdev->tx_work);
3476}
3477
3478/* Send SCO data */
3479void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb)
3480{
3481	struct hci_dev *hdev = conn->hdev;
3482	struct hci_sco_hdr hdr;
3483
3484	BT_DBG("%s len %d", hdev->name, skb->len);
3485
3486	hdr.handle = cpu_to_le16(conn->handle);
3487	hdr.dlen   = skb->len;
3488
3489	skb_push(skb, HCI_SCO_HDR_SIZE);
3490	skb_reset_transport_header(skb);
3491	memcpy(skb_transport_header(skb), &hdr, HCI_SCO_HDR_SIZE);
3492
3493	hci_skb_pkt_type(skb) = HCI_SCODATA_PKT;
3494
3495	skb_queue_tail(&conn->data_q, skb);
3496	queue_work(hdev->workqueue, &hdev->tx_work);
3497}
3498
3499/* ---- HCI TX task (outgoing data) ---- */
3500
3501/* HCI Connection scheduler */
3502static struct hci_conn *hci_low_sent(struct hci_dev *hdev, __u8 type,
3503				     int *quote)
3504{
3505	struct hci_conn_hash *h = &hdev->conn_hash;
3506	struct hci_conn *conn = NULL, *c;
3507	unsigned int num = 0, min = ~0;
3508
3509	/* We don't have to lock device here. Connections are always
3510	 * added and removed with TX task disabled. */
3511
3512	rcu_read_lock();
3513
3514	list_for_each_entry_rcu(c, &h->list, list) {
3515		if (c->type != type || skb_queue_empty(&c->data_q))
3516			continue;
3517
3518		if (c->state != BT_CONNECTED && c->state != BT_CONFIG)
3519			continue;
3520
3521		num++;
3522
3523		if (c->sent < min) {
3524			min  = c->sent;
3525			conn = c;
3526		}
3527
3528		if (hci_conn_num(hdev, type) == num)
3529			break;
3530	}
3531
3532	rcu_read_unlock();
3533
3534	if (conn) {
3535		int cnt, q;
3536
3537		switch (conn->type) {
3538		case ACL_LINK:
3539			cnt = hdev->acl_cnt;
3540			break;
3541		case SCO_LINK:
3542		case ESCO_LINK:
3543			cnt = hdev->sco_cnt;
3544			break;
3545		case LE_LINK:
3546			cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3547			break;
3548		default:
3549			cnt = 0;
3550			BT_ERR("Unknown link type");
3551		}
3552
3553		q = cnt / num;
3554		*quote = q ? q : 1;
3555	} else
3556		*quote = 0;
3557
3558	BT_DBG("conn %p quote %d", conn, *quote);
3559	return conn;
3560}
3561
3562static void hci_link_tx_to(struct hci_dev *hdev, __u8 type)
3563{
3564	struct hci_conn_hash *h = &hdev->conn_hash;
3565	struct hci_conn *c;
3566
3567	BT_ERR("%s link tx timeout", hdev->name);
3568
3569	rcu_read_lock();
3570
3571	/* Kill stalled connections */
3572	list_for_each_entry_rcu(c, &h->list, list) {
3573		if (c->type == type && c->sent) {
3574			BT_ERR("%s killing stalled connection %pMR",
3575			       hdev->name, &c->dst);
3576			hci_disconnect(c, HCI_ERROR_REMOTE_USER_TERM);
3577		}
3578	}
3579
3580	rcu_read_unlock();
3581}
3582
3583static struct hci_chan *hci_chan_sent(struct hci_dev *hdev, __u8 type,
3584				      int *quote)
3585{
3586	struct hci_conn_hash *h = &hdev->conn_hash;
3587	struct hci_chan *chan = NULL;
3588	unsigned int num = 0, min = ~0, cur_prio = 0;
3589	struct hci_conn *conn;
3590	int cnt, q, conn_num = 0;
3591
3592	BT_DBG("%s", hdev->name);
3593
3594	rcu_read_lock();
3595
3596	list_for_each_entry_rcu(conn, &h->list, list) {
3597		struct hci_chan *tmp;
3598
3599		if (conn->type != type)
3600			continue;
3601
3602		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3603			continue;
3604
3605		conn_num++;
3606
3607		list_for_each_entry_rcu(tmp, &conn->chan_list, list) {
3608			struct sk_buff *skb;
3609
3610			if (skb_queue_empty(&tmp->data_q))
3611				continue;
3612
3613			skb = skb_peek(&tmp->data_q);
3614			if (skb->priority < cur_prio)
3615				continue;
3616
3617			if (skb->priority > cur_prio) {
3618				num = 0;
3619				min = ~0;
3620				cur_prio = skb->priority;
3621			}
3622
3623			num++;
3624
3625			if (conn->sent < min) {
3626				min  = conn->sent;
3627				chan = tmp;
3628			}
3629		}
3630
3631		if (hci_conn_num(hdev, type) == conn_num)
3632			break;
3633	}
3634
3635	rcu_read_unlock();
3636
3637	if (!chan)
3638		return NULL;
3639
3640	switch (chan->conn->type) {
3641	case ACL_LINK:
3642		cnt = hdev->acl_cnt;
3643		break;
3644	case AMP_LINK:
3645		cnt = hdev->block_cnt;
3646		break;
3647	case SCO_LINK:
3648	case ESCO_LINK:
3649		cnt = hdev->sco_cnt;
3650		break;
3651	case LE_LINK:
3652		cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3653		break;
3654	default:
3655		cnt = 0;
3656		BT_ERR("Unknown link type");
3657	}
3658
3659	q = cnt / num;
3660	*quote = q ? q : 1;
3661	BT_DBG("chan %p quote %d", chan, *quote);
3662	return chan;
3663}
3664
3665static void hci_prio_recalculate(struct hci_dev *hdev, __u8 type)
3666{
3667	struct hci_conn_hash *h = &hdev->conn_hash;
3668	struct hci_conn *conn;
3669	int num = 0;
3670
3671	BT_DBG("%s", hdev->name);
3672
3673	rcu_read_lock();
3674
3675	list_for_each_entry_rcu(conn, &h->list, list) {
3676		struct hci_chan *chan;
3677
3678		if (conn->type != type)
3679			continue;
3680
3681		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3682			continue;
3683
3684		num++;
3685
3686		list_for_each_entry_rcu(chan, &conn->chan_list, list) {
3687			struct sk_buff *skb;
3688
3689			if (chan->sent) {
3690				chan->sent = 0;
3691				continue;
3692			}
3693
3694			if (skb_queue_empty(&chan->data_q))
3695				continue;
3696
3697			skb = skb_peek(&chan->data_q);
3698			if (skb->priority >= HCI_PRIO_MAX - 1)
3699				continue;
3700
3701			skb->priority = HCI_PRIO_MAX - 1;
3702
3703			BT_DBG("chan %p skb %p promoted to %d", chan, skb,
3704			       skb->priority);
3705		}
3706
3707		if (hci_conn_num(hdev, type) == num)
3708			break;
3709	}
3710
3711	rcu_read_unlock();
3712
3713}
3714
3715static inline int __get_blocks(struct hci_dev *hdev, struct sk_buff *skb)
3716{
3717	/* Calculate count of blocks used by this packet */
3718	return DIV_ROUND_UP(skb->len - HCI_ACL_HDR_SIZE, hdev->block_len);
3719}
3720
3721static void __check_timeout(struct hci_dev *hdev, unsigned int cnt)
3722{
3723	if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
3724		/* ACL tx timeout must be longer than maximum
3725		 * link supervision timeout (40.9 seconds) */
3726		if (!cnt && time_after(jiffies, hdev->acl_last_tx +
3727				       HCI_ACL_TX_TIMEOUT))
3728			hci_link_tx_to(hdev, ACL_LINK);
3729	}
3730}
3731
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3732static void hci_sched_acl_pkt(struct hci_dev *hdev)
3733{
3734	unsigned int cnt = hdev->acl_cnt;
3735	struct hci_chan *chan;
3736	struct sk_buff *skb;
3737	int quote;
3738
3739	__check_timeout(hdev, cnt);
3740
3741	while (hdev->acl_cnt &&
3742	       (chan = hci_chan_sent(hdev, ACL_LINK, &quote))) {
3743		u32 priority = (skb_peek(&chan->data_q))->priority;
3744		while (quote-- && (skb = skb_peek(&chan->data_q))) {
3745			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3746			       skb->len, skb->priority);
3747
3748			/* Stop if priority has changed */
3749			if (skb->priority < priority)
3750				break;
3751
3752			skb = skb_dequeue(&chan->data_q);
3753
3754			hci_conn_enter_active_mode(chan->conn,
3755						   bt_cb(skb)->force_active);
3756
3757			hci_send_frame(hdev, skb);
3758			hdev->acl_last_tx = jiffies;
3759
3760			hdev->acl_cnt--;
3761			chan->sent++;
3762			chan->conn->sent++;
 
 
 
 
3763		}
3764	}
3765
3766	if (cnt != hdev->acl_cnt)
3767		hci_prio_recalculate(hdev, ACL_LINK);
3768}
3769
3770static void hci_sched_acl_blk(struct hci_dev *hdev)
3771{
3772	unsigned int cnt = hdev->block_cnt;
3773	struct hci_chan *chan;
3774	struct sk_buff *skb;
3775	int quote;
3776	u8 type;
3777
3778	__check_timeout(hdev, cnt);
3779
3780	BT_DBG("%s", hdev->name);
3781
3782	if (hdev->dev_type == HCI_AMP)
3783		type = AMP_LINK;
3784	else
3785		type = ACL_LINK;
3786
3787	while (hdev->block_cnt > 0 &&
3788	       (chan = hci_chan_sent(hdev, type, &quote))) {
3789		u32 priority = (skb_peek(&chan->data_q))->priority;
3790		while (quote > 0 && (skb = skb_peek(&chan->data_q))) {
3791			int blocks;
3792
3793			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3794			       skb->len, skb->priority);
3795
3796			/* Stop if priority has changed */
3797			if (skb->priority < priority)
3798				break;
3799
3800			skb = skb_dequeue(&chan->data_q);
3801
3802			blocks = __get_blocks(hdev, skb);
3803			if (blocks > hdev->block_cnt)
3804				return;
3805
3806			hci_conn_enter_active_mode(chan->conn,
3807						   bt_cb(skb)->force_active);
3808
3809			hci_send_frame(hdev, skb);
3810			hdev->acl_last_tx = jiffies;
3811
3812			hdev->block_cnt -= blocks;
3813			quote -= blocks;
3814
3815			chan->sent += blocks;
3816			chan->conn->sent += blocks;
3817		}
3818	}
3819
3820	if (cnt != hdev->block_cnt)
3821		hci_prio_recalculate(hdev, type);
3822}
3823
3824static void hci_sched_acl(struct hci_dev *hdev)
3825{
3826	BT_DBG("%s", hdev->name);
3827
3828	/* No ACL link over BR/EDR controller */
3829	if (!hci_conn_num(hdev, ACL_LINK) && hdev->dev_type == HCI_BREDR)
3830		return;
3831
3832	/* No AMP link over AMP controller */
3833	if (!hci_conn_num(hdev, AMP_LINK) && hdev->dev_type == HCI_AMP)
3834		return;
3835
3836	switch (hdev->flow_ctl_mode) {
3837	case HCI_FLOW_CTL_MODE_PACKET_BASED:
3838		hci_sched_acl_pkt(hdev);
3839		break;
3840
3841	case HCI_FLOW_CTL_MODE_BLOCK_BASED:
3842		hci_sched_acl_blk(hdev);
3843		break;
3844	}
3845}
3846
3847/* Schedule SCO */
3848static void hci_sched_sco(struct hci_dev *hdev)
3849{
3850	struct hci_conn *conn;
3851	struct sk_buff *skb;
3852	int quote;
3853
3854	BT_DBG("%s", hdev->name);
3855
3856	if (!hci_conn_num(hdev, SCO_LINK))
3857		return;
3858
3859	while (hdev->sco_cnt && (conn = hci_low_sent(hdev, SCO_LINK, &quote))) {
3860		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3861			BT_DBG("skb %p len %d", skb, skb->len);
3862			hci_send_frame(hdev, skb);
3863
3864			conn->sent++;
3865			if (conn->sent == ~0)
3866				conn->sent = 0;
3867		}
3868	}
3869}
3870
3871static void hci_sched_esco(struct hci_dev *hdev)
3872{
3873	struct hci_conn *conn;
3874	struct sk_buff *skb;
3875	int quote;
3876
3877	BT_DBG("%s", hdev->name);
3878
3879	if (!hci_conn_num(hdev, ESCO_LINK))
3880		return;
3881
3882	while (hdev->sco_cnt && (conn = hci_low_sent(hdev, ESCO_LINK,
3883						     &quote))) {
3884		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3885			BT_DBG("skb %p len %d", skb, skb->len);
3886			hci_send_frame(hdev, skb);
3887
3888			conn->sent++;
3889			if (conn->sent == ~0)
3890				conn->sent = 0;
3891		}
3892	}
3893}
3894
3895static void hci_sched_le(struct hci_dev *hdev)
3896{
3897	struct hci_chan *chan;
3898	struct sk_buff *skb;
3899	int quote, cnt, tmp;
3900
3901	BT_DBG("%s", hdev->name);
3902
3903	if (!hci_conn_num(hdev, LE_LINK))
3904		return;
3905
3906	if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
3907		/* LE tx timeout must be longer than maximum
3908		 * link supervision timeout (40.9 seconds) */
3909		if (!hdev->le_cnt && hdev->le_pkts &&
3910		    time_after(jiffies, hdev->le_last_tx + HZ * 45))
3911			hci_link_tx_to(hdev, LE_LINK);
3912	}
3913
3914	cnt = hdev->le_pkts ? hdev->le_cnt : hdev->acl_cnt;
 
 
 
3915	tmp = cnt;
3916	while (cnt && (chan = hci_chan_sent(hdev, LE_LINK, &quote))) {
3917		u32 priority = (skb_peek(&chan->data_q))->priority;
3918		while (quote-- && (skb = skb_peek(&chan->data_q))) {
3919			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3920			       skb->len, skb->priority);
3921
3922			/* Stop if priority has changed */
3923			if (skb->priority < priority)
3924				break;
3925
3926			skb = skb_dequeue(&chan->data_q);
3927
3928			hci_send_frame(hdev, skb);
3929			hdev->le_last_tx = jiffies;
3930
3931			cnt--;
3932			chan->sent++;
3933			chan->conn->sent++;
 
 
 
 
3934		}
3935	}
3936
3937	if (hdev->le_pkts)
3938		hdev->le_cnt = cnt;
3939	else
3940		hdev->acl_cnt = cnt;
3941
3942	if (cnt != tmp)
3943		hci_prio_recalculate(hdev, LE_LINK);
3944}
3945
3946static void hci_tx_work(struct work_struct *work)
3947{
3948	struct hci_dev *hdev = container_of(work, struct hci_dev, tx_work);
3949	struct sk_buff *skb;
3950
3951	BT_DBG("%s acl %d sco %d le %d", hdev->name, hdev->acl_cnt,
3952	       hdev->sco_cnt, hdev->le_cnt);
3953
3954	if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
3955		/* Schedule queues and send stuff to HCI driver */
3956		hci_sched_acl(hdev);
3957		hci_sched_sco(hdev);
3958		hci_sched_esco(hdev);
 
3959		hci_sched_le(hdev);
3960	}
3961
3962	/* Send next queued raw (unknown type) packet */
3963	while ((skb = skb_dequeue(&hdev->raw_q)))
3964		hci_send_frame(hdev, skb);
3965}
3966
3967/* ----- HCI RX task (incoming data processing) ----- */
3968
3969/* ACL data packet */
3970static void hci_acldata_packet(struct hci_dev *hdev, struct sk_buff *skb)
3971{
3972	struct hci_acl_hdr *hdr = (void *) skb->data;
3973	struct hci_conn *conn;
3974	__u16 handle, flags;
3975
3976	skb_pull(skb, HCI_ACL_HDR_SIZE);
3977
3978	handle = __le16_to_cpu(hdr->handle);
3979	flags  = hci_flags(handle);
3980	handle = hci_handle(handle);
3981
3982	BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len,
3983	       handle, flags);
3984
3985	hdev->stat.acl_rx++;
3986
3987	hci_dev_lock(hdev);
3988	conn = hci_conn_hash_lookup_handle(hdev, handle);
3989	hci_dev_unlock(hdev);
3990
3991	if (conn) {
3992		hci_conn_enter_active_mode(conn, BT_POWER_FORCE_ACTIVE_OFF);
3993
3994		/* Send to upper protocol */
3995		l2cap_recv_acldata(conn, skb, flags);
3996		return;
3997	} else {
3998		BT_ERR("%s ACL packet for unknown connection handle %d",
3999		       hdev->name, handle);
4000	}
4001
4002	kfree_skb(skb);
4003}
4004
4005/* SCO data packet */
4006static void hci_scodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
4007{
4008	struct hci_sco_hdr *hdr = (void *) skb->data;
4009	struct hci_conn *conn;
4010	__u16 handle;
4011
4012	skb_pull(skb, HCI_SCO_HDR_SIZE);
4013
4014	handle = __le16_to_cpu(hdr->handle);
 
 
4015
4016	BT_DBG("%s len %d handle 0x%4.4x", hdev->name, skb->len, handle);
 
4017
4018	hdev->stat.sco_rx++;
4019
4020	hci_dev_lock(hdev);
4021	conn = hci_conn_hash_lookup_handle(hdev, handle);
4022	hci_dev_unlock(hdev);
4023
4024	if (conn) {
4025		/* Send to upper protocol */
 
4026		sco_recv_scodata(conn, skb);
4027		return;
4028	} else {
4029		BT_ERR("%s SCO packet for unknown connection handle %d",
4030		       hdev->name, handle);
4031	}
4032
4033	kfree_skb(skb);
4034}
4035
4036static bool hci_req_is_complete(struct hci_dev *hdev)
4037{
4038	struct sk_buff *skb;
4039
4040	skb = skb_peek(&hdev->cmd_q);
4041	if (!skb)
4042		return true;
4043
4044	return (bt_cb(skb)->hci.req_flags & HCI_REQ_START);
4045}
4046
4047static void hci_resend_last(struct hci_dev *hdev)
4048{
4049	struct hci_command_hdr *sent;
4050	struct sk_buff *skb;
4051	u16 opcode;
4052
4053	if (!hdev->sent_cmd)
4054		return;
4055
4056	sent = (void *) hdev->sent_cmd->data;
4057	opcode = __le16_to_cpu(sent->opcode);
4058	if (opcode == HCI_OP_RESET)
4059		return;
4060
4061	skb = skb_clone(hdev->sent_cmd, GFP_KERNEL);
4062	if (!skb)
4063		return;
4064
4065	skb_queue_head(&hdev->cmd_q, skb);
4066	queue_work(hdev->workqueue, &hdev->cmd_work);
4067}
4068
4069void hci_req_cmd_complete(struct hci_dev *hdev, u16 opcode, u8 status,
4070			  hci_req_complete_t *req_complete,
4071			  hci_req_complete_skb_t *req_complete_skb)
4072{
4073	struct sk_buff *skb;
4074	unsigned long flags;
4075
4076	BT_DBG("opcode 0x%04x status 0x%02x", opcode, status);
4077
4078	/* If the completed command doesn't match the last one that was
4079	 * sent we need to do special handling of it.
4080	 */
4081	if (!hci_sent_cmd_data(hdev, opcode)) {
4082		/* Some CSR based controllers generate a spontaneous
4083		 * reset complete event during init and any pending
4084		 * command will never be completed. In such a case we
4085		 * need to resend whatever was the last sent
4086		 * command.
4087		 */
4088		if (test_bit(HCI_INIT, &hdev->flags) && opcode == HCI_OP_RESET)
4089			hci_resend_last(hdev);
4090
4091		return;
4092	}
4093
 
 
 
4094	/* If the command succeeded and there's still more commands in
4095	 * this request the request is not yet complete.
4096	 */
4097	if (!status && !hci_req_is_complete(hdev))
4098		return;
4099
4100	/* If this was the last command in a request the complete
4101	 * callback would be found in hdev->sent_cmd instead of the
4102	 * command queue (hdev->cmd_q).
4103	 */
4104	if (bt_cb(hdev->sent_cmd)->hci.req_flags & HCI_REQ_SKB) {
4105		*req_complete_skb = bt_cb(hdev->sent_cmd)->hci.req_complete_skb;
4106		return;
4107	}
4108
4109	if (bt_cb(hdev->sent_cmd)->hci.req_complete) {
4110		*req_complete = bt_cb(hdev->sent_cmd)->hci.req_complete;
4111		return;
4112	}
4113
4114	/* Remove all pending commands belonging to this request */
4115	spin_lock_irqsave(&hdev->cmd_q.lock, flags);
4116	while ((skb = __skb_dequeue(&hdev->cmd_q))) {
4117		if (bt_cb(skb)->hci.req_flags & HCI_REQ_START) {
4118			__skb_queue_head(&hdev->cmd_q, skb);
4119			break;
4120		}
4121
4122		if (bt_cb(skb)->hci.req_flags & HCI_REQ_SKB)
4123			*req_complete_skb = bt_cb(skb)->hci.req_complete_skb;
4124		else
4125			*req_complete = bt_cb(skb)->hci.req_complete;
4126		kfree_skb(skb);
4127	}
4128	spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
4129}
4130
4131static void hci_rx_work(struct work_struct *work)
4132{
4133	struct hci_dev *hdev = container_of(work, struct hci_dev, rx_work);
4134	struct sk_buff *skb;
4135
4136	BT_DBG("%s", hdev->name);
4137
4138	while ((skb = skb_dequeue(&hdev->rx_q))) {
4139		/* Send copy to monitor */
4140		hci_send_to_monitor(hdev, skb);
4141
4142		if (atomic_read(&hdev->promisc)) {
4143			/* Send copy to the sockets */
4144			hci_send_to_sock(hdev, skb);
4145		}
4146
4147		if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
 
 
 
 
 
 
 
4148			kfree_skb(skb);
4149			continue;
4150		}
4151
4152		if (test_bit(HCI_INIT, &hdev->flags)) {
4153			/* Don't process data packets in this states. */
4154			switch (hci_skb_pkt_type(skb)) {
4155			case HCI_ACLDATA_PKT:
4156			case HCI_SCODATA_PKT:
 
4157				kfree_skb(skb);
4158				continue;
4159			}
4160		}
4161
4162		/* Process frame */
4163		switch (hci_skb_pkt_type(skb)) {
4164		case HCI_EVENT_PKT:
4165			BT_DBG("%s Event packet", hdev->name);
4166			hci_event_packet(hdev, skb);
4167			break;
4168
4169		case HCI_ACLDATA_PKT:
4170			BT_DBG("%s ACL data packet", hdev->name);
4171			hci_acldata_packet(hdev, skb);
4172			break;
4173
4174		case HCI_SCODATA_PKT:
4175			BT_DBG("%s SCO data packet", hdev->name);
4176			hci_scodata_packet(hdev, skb);
4177			break;
4178
4179		default:
4180			kfree_skb(skb);
4181			break;
4182		}
4183	}
4184}
4185
4186static void hci_cmd_work(struct work_struct *work)
4187{
4188	struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_work);
4189	struct sk_buff *skb;
4190
4191	BT_DBG("%s cmd_cnt %d cmd queued %d", hdev->name,
4192	       atomic_read(&hdev->cmd_cnt), skb_queue_len(&hdev->cmd_q));
4193
4194	/* Send queued commands */
4195	if (atomic_read(&hdev->cmd_cnt)) {
4196		skb = skb_dequeue(&hdev->cmd_q);
4197		if (!skb)
4198			return;
4199
4200		kfree_skb(hdev->sent_cmd);
4201
4202		hdev->sent_cmd = skb_clone(skb, GFP_KERNEL);
4203		if (hdev->sent_cmd) {
 
 
4204			atomic_dec(&hdev->cmd_cnt);
4205			hci_send_frame(hdev, skb);
4206			if (test_bit(HCI_RESET, &hdev->flags))
4207				cancel_delayed_work(&hdev->cmd_timer);
4208			else
4209				schedule_delayed_work(&hdev->cmd_timer,
4210						      HCI_CMD_TIMEOUT);
4211		} else {
4212			skb_queue_head(&hdev->cmd_q, skb);
4213			queue_work(hdev->workqueue, &hdev->cmd_work);
4214		}
4215	}
4216}
v5.14.15
   1/*
   2   BlueZ - Bluetooth protocol stack for Linux
   3   Copyright (C) 2000-2001 Qualcomm Incorporated
   4   Copyright (C) 2011 ProFUSION Embedded Systems
   5
   6   Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
   7
   8   This program is free software; you can redistribute it and/or modify
   9   it under the terms of the GNU General Public License version 2 as
  10   published by the Free Software Foundation;
  11
  12   THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
  13   OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  14   FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
  15   IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
  16   CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
  17   WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  18   ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  19   OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  20
  21   ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
  22   COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
  23   SOFTWARE IS DISCLAIMED.
  24*/
  25
  26/* Bluetooth HCI core. */
  27
  28#include <linux/export.h>
 
  29#include <linux/rfkill.h>
  30#include <linux/debugfs.h>
  31#include <linux/crypto.h>
  32#include <linux/property.h>
  33#include <linux/suspend.h>
  34#include <linux/wait.h>
  35#include <asm/unaligned.h>
  36
  37#include <net/bluetooth/bluetooth.h>
  38#include <net/bluetooth/hci_core.h>
  39#include <net/bluetooth/l2cap.h>
  40#include <net/bluetooth/mgmt.h>
  41
  42#include "hci_request.h"
  43#include "hci_debugfs.h"
  44#include "smp.h"
  45#include "leds.h"
  46#include "msft.h"
  47#include "aosp.h"
  48
  49static void hci_rx_work(struct work_struct *work);
  50static void hci_cmd_work(struct work_struct *work);
  51static void hci_tx_work(struct work_struct *work);
  52
  53/* HCI device list */
  54LIST_HEAD(hci_dev_list);
  55DEFINE_RWLOCK(hci_dev_list_lock);
  56
  57/* HCI callback list */
  58LIST_HEAD(hci_cb_list);
  59DEFINE_MUTEX(hci_cb_list_lock);
  60
  61/* HCI ID Numbering */
  62static DEFINE_IDA(hci_index_ida);
  63
  64/* ---- HCI debugfs entries ---- */
  65
  66static ssize_t dut_mode_read(struct file *file, char __user *user_buf,
  67			     size_t count, loff_t *ppos)
  68{
  69	struct hci_dev *hdev = file->private_data;
  70	char buf[3];
  71
  72	buf[0] = hci_dev_test_flag(hdev, HCI_DUT_MODE) ? 'Y' : 'N';
  73	buf[1] = '\n';
  74	buf[2] = '\0';
  75	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
  76}
  77
  78static ssize_t dut_mode_write(struct file *file, const char __user *user_buf,
  79			      size_t count, loff_t *ppos)
  80{
  81	struct hci_dev *hdev = file->private_data;
  82	struct sk_buff *skb;
 
 
  83	bool enable;
  84	int err;
  85
  86	if (!test_bit(HCI_UP, &hdev->flags))
  87		return -ENETDOWN;
  88
  89	err = kstrtobool_from_user(user_buf, count, &enable);
  90	if (err)
  91		return err;
 
 
 
  92
  93	if (enable == hci_dev_test_flag(hdev, HCI_DUT_MODE))
  94		return -EALREADY;
  95
  96	hci_req_sync_lock(hdev);
  97	if (enable)
  98		skb = __hci_cmd_sync(hdev, HCI_OP_ENABLE_DUT_MODE, 0, NULL,
  99				     HCI_CMD_TIMEOUT);
 100	else
 101		skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL,
 102				     HCI_CMD_TIMEOUT);
 103	hci_req_sync_unlock(hdev);
 104
 105	if (IS_ERR(skb))
 106		return PTR_ERR(skb);
 107
 108	kfree_skb(skb);
 109
 110	hci_dev_change_flag(hdev, HCI_DUT_MODE);
 111
 112	return count;
 113}
 114
 115static const struct file_operations dut_mode_fops = {
 116	.open		= simple_open,
 117	.read		= dut_mode_read,
 118	.write		= dut_mode_write,
 119	.llseek		= default_llseek,
 120};
 121
 122static ssize_t vendor_diag_read(struct file *file, char __user *user_buf,
 123				size_t count, loff_t *ppos)
 124{
 125	struct hci_dev *hdev = file->private_data;
 126	char buf[3];
 127
 128	buf[0] = hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) ? 'Y' : 'N';
 129	buf[1] = '\n';
 130	buf[2] = '\0';
 131	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
 132}
 133
 134static ssize_t vendor_diag_write(struct file *file, const char __user *user_buf,
 135				 size_t count, loff_t *ppos)
 136{
 137	struct hci_dev *hdev = file->private_data;
 
 
 138	bool enable;
 139	int err;
 140
 141	err = kstrtobool_from_user(user_buf, count, &enable);
 142	if (err)
 143		return err;
 
 
 
 144
 145	/* When the diagnostic flags are not persistent and the transport
 146	 * is not active or in user channel operation, then there is no need
 147	 * for the vendor callback. Instead just store the desired value and
 148	 * the setting will be programmed when the controller gets powered on.
 
 149	 */
 150	if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) &&
 151	    (!test_bit(HCI_RUNNING, &hdev->flags) ||
 152	     hci_dev_test_flag(hdev, HCI_USER_CHANNEL)))
 153		goto done;
 154
 155	hci_req_sync_lock(hdev);
 156	err = hdev->set_diag(hdev, enable);
 157	hci_req_sync_unlock(hdev);
 158
 159	if (err < 0)
 160		return err;
 161
 162done:
 163	if (enable)
 164		hci_dev_set_flag(hdev, HCI_VENDOR_DIAG);
 165	else
 166		hci_dev_clear_flag(hdev, HCI_VENDOR_DIAG);
 167
 168	return count;
 169}
 170
 171static const struct file_operations vendor_diag_fops = {
 172	.open		= simple_open,
 173	.read		= vendor_diag_read,
 174	.write		= vendor_diag_write,
 175	.llseek		= default_llseek,
 176};
 177
 178static void hci_debugfs_create_basic(struct hci_dev *hdev)
 179{
 180	debugfs_create_file("dut_mode", 0644, hdev->debugfs, hdev,
 181			    &dut_mode_fops);
 182
 183	if (hdev->set_diag)
 184		debugfs_create_file("vendor_diag", 0644, hdev->debugfs, hdev,
 185				    &vendor_diag_fops);
 186}
 187
 188static int hci_reset_req(struct hci_request *req, unsigned long opt)
 189{
 190	BT_DBG("%s %ld", req->hdev->name, opt);
 191
 192	/* Reset device */
 193	set_bit(HCI_RESET, &req->hdev->flags);
 194	hci_req_add(req, HCI_OP_RESET, 0, NULL);
 195	return 0;
 196}
 197
 198static void bredr_init(struct hci_request *req)
 199{
 200	req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_PACKET_BASED;
 201
 202	/* Read Local Supported Features */
 203	hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
 204
 205	/* Read Local Version */
 206	hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
 207
 208	/* Read BD Address */
 209	hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL);
 210}
 211
 212static void amp_init1(struct hci_request *req)
 213{
 214	req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_BLOCK_BASED;
 215
 216	/* Read Local Version */
 217	hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
 218
 219	/* Read Local Supported Commands */
 220	hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL);
 221
 222	/* Read Local AMP Info */
 223	hci_req_add(req, HCI_OP_READ_LOCAL_AMP_INFO, 0, NULL);
 224
 225	/* Read Data Blk size */
 226	hci_req_add(req, HCI_OP_READ_DATA_BLOCK_SIZE, 0, NULL);
 227
 228	/* Read Flow Control Mode */
 229	hci_req_add(req, HCI_OP_READ_FLOW_CONTROL_MODE, 0, NULL);
 230
 231	/* Read Location Data */
 232	hci_req_add(req, HCI_OP_READ_LOCATION_DATA, 0, NULL);
 233}
 234
 235static int amp_init2(struct hci_request *req)
 236{
 237	/* Read Local Supported Features. Not all AMP controllers
 238	 * support this so it's placed conditionally in the second
 239	 * stage init.
 240	 */
 241	if (req->hdev->commands[14] & 0x20)
 242		hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
 243
 244	return 0;
 245}
 246
 247static int hci_init1_req(struct hci_request *req, unsigned long opt)
 248{
 249	struct hci_dev *hdev = req->hdev;
 250
 251	BT_DBG("%s %ld", hdev->name, opt);
 252
 253	/* Reset */
 254	if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks))
 255		hci_reset_req(req, 0);
 256
 257	switch (hdev->dev_type) {
 258	case HCI_PRIMARY:
 259		bredr_init(req);
 260		break;
 
 261	case HCI_AMP:
 262		amp_init1(req);
 263		break;
 
 264	default:
 265		bt_dev_err(hdev, "Unknown device type %d", hdev->dev_type);
 266		break;
 267	}
 268
 269	return 0;
 270}
 271
 272static void bredr_setup(struct hci_request *req)
 273{
 274	__le16 param;
 275	__u8 flt_type;
 276
 277	/* Read Buffer Size (ACL mtu, max pkt, etc.) */
 278	hci_req_add(req, HCI_OP_READ_BUFFER_SIZE, 0, NULL);
 279
 280	/* Read Class of Device */
 281	hci_req_add(req, HCI_OP_READ_CLASS_OF_DEV, 0, NULL);
 282
 283	/* Read Local Name */
 284	hci_req_add(req, HCI_OP_READ_LOCAL_NAME, 0, NULL);
 285
 286	/* Read Voice Setting */
 287	hci_req_add(req, HCI_OP_READ_VOICE_SETTING, 0, NULL);
 288
 289	/* Read Number of Supported IAC */
 290	hci_req_add(req, HCI_OP_READ_NUM_SUPPORTED_IAC, 0, NULL);
 291
 292	/* Read Current IAC LAP */
 293	hci_req_add(req, HCI_OP_READ_CURRENT_IAC_LAP, 0, NULL);
 294
 295	/* Clear Event Filters */
 296	flt_type = HCI_FLT_CLEAR_ALL;
 297	hci_req_add(req, HCI_OP_SET_EVENT_FLT, 1, &flt_type);
 298
 299	/* Connection accept timeout ~20 secs */
 300	param = cpu_to_le16(0x7d00);
 301	hci_req_add(req, HCI_OP_WRITE_CA_TIMEOUT, 2, &param);
 302}
 303
 304static void le_setup(struct hci_request *req)
 305{
 306	struct hci_dev *hdev = req->hdev;
 307
 308	/* Read LE Buffer Size */
 309	hci_req_add(req, HCI_OP_LE_READ_BUFFER_SIZE, 0, NULL);
 310
 311	/* Read LE Local Supported Features */
 312	hci_req_add(req, HCI_OP_LE_READ_LOCAL_FEATURES, 0, NULL);
 313
 314	/* Read LE Supported States */
 315	hci_req_add(req, HCI_OP_LE_READ_SUPPORTED_STATES, 0, NULL);
 316
 317	/* LE-only controllers have LE implicitly enabled */
 318	if (!lmp_bredr_capable(hdev))
 319		hci_dev_set_flag(hdev, HCI_LE_ENABLED);
 320}
 321
 322static void hci_setup_event_mask(struct hci_request *req)
 323{
 324	struct hci_dev *hdev = req->hdev;
 325
 326	/* The second byte is 0xff instead of 0x9f (two reserved bits
 327	 * disabled) since a Broadcom 1.2 dongle doesn't respond to the
 328	 * command otherwise.
 329	 */
 330	u8 events[8] = { 0xff, 0xff, 0xfb, 0xff, 0x00, 0x00, 0x00, 0x00 };
 331
 332	/* CSR 1.1 dongles does not accept any bitfield so don't try to set
 333	 * any event mask for pre 1.2 devices.
 334	 */
 335	if (hdev->hci_ver < BLUETOOTH_VER_1_2)
 336		return;
 337
 338	if (lmp_bredr_capable(hdev)) {
 339		events[4] |= 0x01; /* Flow Specification Complete */
 340	} else {
 341		/* Use a different default for LE-only devices */
 342		memset(events, 0, sizeof(events));
 343		events[1] |= 0x20; /* Command Complete */
 344		events[1] |= 0x40; /* Command Status */
 345		events[1] |= 0x80; /* Hardware Error */
 346
 347		/* If the controller supports the Disconnect command, enable
 348		 * the corresponding event. In addition enable packet flow
 349		 * control related events.
 350		 */
 351		if (hdev->commands[0] & 0x20) {
 352			events[0] |= 0x10; /* Disconnection Complete */
 353			events[2] |= 0x04; /* Number of Completed Packets */
 354			events[3] |= 0x02; /* Data Buffer Overflow */
 355		}
 356
 357		/* If the controller supports the Read Remote Version
 358		 * Information command, enable the corresponding event.
 359		 */
 360		if (hdev->commands[2] & 0x80)
 361			events[1] |= 0x08; /* Read Remote Version Information
 362					    * Complete
 363					    */
 364
 365		if (hdev->le_features[0] & HCI_LE_ENCRYPTION) {
 366			events[0] |= 0x80; /* Encryption Change */
 367			events[5] |= 0x80; /* Encryption Key Refresh Complete */
 368		}
 369	}
 370
 371	if (lmp_inq_rssi_capable(hdev) ||
 372	    test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks))
 373		events[4] |= 0x02; /* Inquiry Result with RSSI */
 374
 375	if (lmp_ext_feat_capable(hdev))
 376		events[4] |= 0x04; /* Read Remote Extended Features Complete */
 377
 378	if (lmp_esco_capable(hdev)) {
 379		events[5] |= 0x08; /* Synchronous Connection Complete */
 380		events[5] |= 0x10; /* Synchronous Connection Changed */
 381	}
 382
 383	if (lmp_sniffsubr_capable(hdev))
 384		events[5] |= 0x20; /* Sniff Subrating */
 385
 386	if (lmp_pause_enc_capable(hdev))
 387		events[5] |= 0x80; /* Encryption Key Refresh Complete */
 388
 389	if (lmp_ext_inq_capable(hdev))
 390		events[5] |= 0x40; /* Extended Inquiry Result */
 391
 392	if (lmp_no_flush_capable(hdev))
 393		events[7] |= 0x01; /* Enhanced Flush Complete */
 394
 395	if (lmp_lsto_capable(hdev))
 396		events[6] |= 0x80; /* Link Supervision Timeout Changed */
 397
 398	if (lmp_ssp_capable(hdev)) {
 399		events[6] |= 0x01;	/* IO Capability Request */
 400		events[6] |= 0x02;	/* IO Capability Response */
 401		events[6] |= 0x04;	/* User Confirmation Request */
 402		events[6] |= 0x08;	/* User Passkey Request */
 403		events[6] |= 0x10;	/* Remote OOB Data Request */
 404		events[6] |= 0x20;	/* Simple Pairing Complete */
 405		events[7] |= 0x04;	/* User Passkey Notification */
 406		events[7] |= 0x08;	/* Keypress Notification */
 407		events[7] |= 0x10;	/* Remote Host Supported
 408					 * Features Notification
 409					 */
 410	}
 411
 412	if (lmp_le_capable(hdev))
 413		events[7] |= 0x20;	/* LE Meta-Event */
 414
 415	hci_req_add(req, HCI_OP_SET_EVENT_MASK, sizeof(events), events);
 416}
 417
 418static int hci_init2_req(struct hci_request *req, unsigned long opt)
 419{
 420	struct hci_dev *hdev = req->hdev;
 421
 422	if (hdev->dev_type == HCI_AMP)
 423		return amp_init2(req);
 424
 425	if (lmp_bredr_capable(hdev))
 426		bredr_setup(req);
 427	else
 428		hci_dev_clear_flag(hdev, HCI_BREDR_ENABLED);
 429
 430	if (lmp_le_capable(hdev))
 431		le_setup(req);
 432
 433	/* All Bluetooth 1.2 and later controllers should support the
 434	 * HCI command for reading the local supported commands.
 435	 *
 436	 * Unfortunately some controllers indicate Bluetooth 1.2 support,
 437	 * but do not have support for this command. If that is the case,
 438	 * the driver can quirk the behavior and skip reading the local
 439	 * supported commands.
 440	 */
 441	if (hdev->hci_ver > BLUETOOTH_VER_1_1 &&
 442	    !test_bit(HCI_QUIRK_BROKEN_LOCAL_COMMANDS, &hdev->quirks))
 443		hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL);
 444
 445	if (lmp_ssp_capable(hdev)) {
 446		/* When SSP is available, then the host features page
 447		 * should also be available as well. However some
 448		 * controllers list the max_page as 0 as long as SSP
 449		 * has not been enabled. To achieve proper debugging
 450		 * output, force the minimum max_page to 1 at least.
 451		 */
 452		hdev->max_page = 0x01;
 453
 454		if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) {
 455			u8 mode = 0x01;
 456
 457			hci_req_add(req, HCI_OP_WRITE_SSP_MODE,
 458				    sizeof(mode), &mode);
 459		} else {
 460			struct hci_cp_write_eir cp;
 461
 462			memset(hdev->eir, 0, sizeof(hdev->eir));
 463			memset(&cp, 0, sizeof(cp));
 464
 465			hci_req_add(req, HCI_OP_WRITE_EIR, sizeof(cp), &cp);
 466		}
 467	}
 468
 469	if (lmp_inq_rssi_capable(hdev) ||
 470	    test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks)) {
 471		u8 mode;
 472
 473		/* If Extended Inquiry Result events are supported, then
 474		 * they are clearly preferred over Inquiry Result with RSSI
 475		 * events.
 476		 */
 477		mode = lmp_ext_inq_capable(hdev) ? 0x02 : 0x01;
 478
 479		hci_req_add(req, HCI_OP_WRITE_INQUIRY_MODE, 1, &mode);
 480	}
 481
 482	if (lmp_inq_tx_pwr_capable(hdev))
 483		hci_req_add(req, HCI_OP_READ_INQ_RSP_TX_POWER, 0, NULL);
 484
 485	if (lmp_ext_feat_capable(hdev)) {
 486		struct hci_cp_read_local_ext_features cp;
 487
 488		cp.page = 0x01;
 489		hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES,
 490			    sizeof(cp), &cp);
 491	}
 492
 493	if (hci_dev_test_flag(hdev, HCI_LINK_SECURITY)) {
 494		u8 enable = 1;
 495		hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, sizeof(enable),
 496			    &enable);
 497	}
 498
 499	return 0;
 500}
 501
 502static void hci_setup_link_policy(struct hci_request *req)
 503{
 504	struct hci_dev *hdev = req->hdev;
 505	struct hci_cp_write_def_link_policy cp;
 506	u16 link_policy = 0;
 507
 508	if (lmp_rswitch_capable(hdev))
 509		link_policy |= HCI_LP_RSWITCH;
 510	if (lmp_hold_capable(hdev))
 511		link_policy |= HCI_LP_HOLD;
 512	if (lmp_sniff_capable(hdev))
 513		link_policy |= HCI_LP_SNIFF;
 514	if (lmp_park_capable(hdev))
 515		link_policy |= HCI_LP_PARK;
 516
 517	cp.policy = cpu_to_le16(link_policy);
 518	hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, sizeof(cp), &cp);
 519}
 520
 521static void hci_set_le_support(struct hci_request *req)
 522{
 523	struct hci_dev *hdev = req->hdev;
 524	struct hci_cp_write_le_host_supported cp;
 525
 526	/* LE-only devices do not support explicit enablement */
 527	if (!lmp_bredr_capable(hdev))
 528		return;
 529
 530	memset(&cp, 0, sizeof(cp));
 531
 532	if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
 533		cp.le = 0x01;
 534		cp.simul = 0x00;
 535	}
 536
 537	if (cp.le != lmp_host_le_capable(hdev))
 538		hci_req_add(req, HCI_OP_WRITE_LE_HOST_SUPPORTED, sizeof(cp),
 539			    &cp);
 540}
 541
 542static void hci_set_event_mask_page_2(struct hci_request *req)
 543{
 544	struct hci_dev *hdev = req->hdev;
 545	u8 events[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
 546	bool changed = false;
 547
 548	/* If Connectionless Peripheral Broadcast central role is supported
 549	 * enable all necessary events for it.
 550	 */
 551	if (lmp_cpb_central_capable(hdev)) {
 552		events[1] |= 0x40;	/* Triggered Clock Capture */
 553		events[1] |= 0x80;	/* Synchronization Train Complete */
 554		events[2] |= 0x10;	/* Peripheral Page Response Timeout */
 555		events[2] |= 0x20;	/* CPB Channel Map Change */
 556		changed = true;
 557	}
 558
 559	/* If Connectionless Peripheral Broadcast peripheral role is supported
 560	 * enable all necessary events for it.
 561	 */
 562	if (lmp_cpb_peripheral_capable(hdev)) {
 563		events[2] |= 0x01;	/* Synchronization Train Received */
 564		events[2] |= 0x02;	/* CPB Receive */
 565		events[2] |= 0x04;	/* CPB Timeout */
 566		events[2] |= 0x08;	/* Truncated Page Complete */
 567		changed = true;
 568	}
 569
 570	/* Enable Authenticated Payload Timeout Expired event if supported */
 571	if (lmp_ping_capable(hdev) || hdev->le_features[0] & HCI_LE_PING) {
 572		events[2] |= 0x80;
 573		changed = true;
 574	}
 575
 576	/* Some Broadcom based controllers indicate support for Set Event
 577	 * Mask Page 2 command, but then actually do not support it. Since
 578	 * the default value is all bits set to zero, the command is only
 579	 * required if the event mask has to be changed. In case no change
 580	 * to the event mask is needed, skip this command.
 581	 */
 582	if (changed)
 583		hci_req_add(req, HCI_OP_SET_EVENT_MASK_PAGE_2,
 584			    sizeof(events), events);
 585}
 586
 587static int hci_init3_req(struct hci_request *req, unsigned long opt)
 588{
 589	struct hci_dev *hdev = req->hdev;
 590	u8 p;
 591
 592	hci_setup_event_mask(req);
 593
 594	if (hdev->commands[6] & 0x20 &&
 595	    !test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) {
 596		struct hci_cp_read_stored_link_key cp;
 597
 598		bacpy(&cp.bdaddr, BDADDR_ANY);
 599		cp.read_all = 0x01;
 600		hci_req_add(req, HCI_OP_READ_STORED_LINK_KEY, sizeof(cp), &cp);
 601	}
 602
 603	if (hdev->commands[5] & 0x10)
 604		hci_setup_link_policy(req);
 605
 606	if (hdev->commands[8] & 0x01)
 607		hci_req_add(req, HCI_OP_READ_PAGE_SCAN_ACTIVITY, 0, NULL);
 608
 609	if (hdev->commands[18] & 0x04 &&
 610	    !test_bit(HCI_QUIRK_BROKEN_ERR_DATA_REPORTING, &hdev->quirks))
 611		hci_req_add(req, HCI_OP_READ_DEF_ERR_DATA_REPORTING, 0, NULL);
 612
 613	/* Some older Broadcom based Bluetooth 1.2 controllers do not
 614	 * support the Read Page Scan Type command. Check support for
 615	 * this command in the bit mask of supported commands.
 616	 */
 617	if (hdev->commands[13] & 0x01)
 618		hci_req_add(req, HCI_OP_READ_PAGE_SCAN_TYPE, 0, NULL);
 619
 620	if (lmp_le_capable(hdev)) {
 621		u8 events[8];
 622
 623		memset(events, 0, sizeof(events));
 624
 625		if (hdev->le_features[0] & HCI_LE_ENCRYPTION)
 626			events[0] |= 0x10;	/* LE Long Term Key Request */
 627
 628		/* If controller supports the Connection Parameters Request
 629		 * Link Layer Procedure, enable the corresponding event.
 630		 */
 631		if (hdev->le_features[0] & HCI_LE_CONN_PARAM_REQ_PROC)
 632			events[0] |= 0x20;	/* LE Remote Connection
 633						 * Parameter Request
 634						 */
 635
 636		/* If the controller supports the Data Length Extension
 637		 * feature, enable the corresponding event.
 638		 */
 639		if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)
 640			events[0] |= 0x40;	/* LE Data Length Change */
 641
 642		/* If the controller supports LL Privacy feature, enable
 643		 * the corresponding event.
 644		 */
 645		if (hdev->le_features[0] & HCI_LE_LL_PRIVACY)
 646			events[1] |= 0x02;	/* LE Enhanced Connection
 647						 * Complete
 648						 */
 649
 650		/* If the controller supports Extended Scanner Filter
 651		 * Policies, enable the corresponding event.
 652		 */
 653		if (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY)
 654			events[1] |= 0x04;	/* LE Direct Advertising
 655						 * Report
 656						 */
 657
 658		/* If the controller supports Channel Selection Algorithm #2
 659		 * feature, enable the corresponding event.
 660		 */
 661		if (hdev->le_features[1] & HCI_LE_CHAN_SEL_ALG2)
 662			events[2] |= 0x08;	/* LE Channel Selection
 663						 * Algorithm
 664						 */
 665
 666		/* If the controller supports the LE Set Scan Enable command,
 667		 * enable the corresponding advertising report event.
 668		 */
 669		if (hdev->commands[26] & 0x08)
 670			events[0] |= 0x02;	/* LE Advertising Report */
 671
 672		/* If the controller supports the LE Create Connection
 673		 * command, enable the corresponding event.
 674		 */
 675		if (hdev->commands[26] & 0x10)
 676			events[0] |= 0x01;	/* LE Connection Complete */
 677
 678		/* If the controller supports the LE Connection Update
 679		 * command, enable the corresponding event.
 680		 */
 681		if (hdev->commands[27] & 0x04)
 682			events[0] |= 0x04;	/* LE Connection Update
 683						 * Complete
 684						 */
 685
 686		/* If the controller supports the LE Read Remote Used Features
 687		 * command, enable the corresponding event.
 688		 */
 689		if (hdev->commands[27] & 0x20)
 690			events[0] |= 0x08;	/* LE Read Remote Used
 691						 * Features Complete
 692						 */
 693
 694		/* If the controller supports the LE Read Local P-256
 695		 * Public Key command, enable the corresponding event.
 696		 */
 697		if (hdev->commands[34] & 0x02)
 698			events[0] |= 0x80;	/* LE Read Local P-256
 699						 * Public Key Complete
 700						 */
 701
 702		/* If the controller supports the LE Generate DHKey
 703		 * command, enable the corresponding event.
 704		 */
 705		if (hdev->commands[34] & 0x04)
 706			events[1] |= 0x01;	/* LE Generate DHKey Complete */
 707
 708		/* If the controller supports the LE Set Default PHY or
 709		 * LE Set PHY commands, enable the corresponding event.
 710		 */
 711		if (hdev->commands[35] & (0x20 | 0x40))
 712			events[1] |= 0x08;        /* LE PHY Update Complete */
 713
 714		/* If the controller supports LE Set Extended Scan Parameters
 715		 * and LE Set Extended Scan Enable commands, enable the
 716		 * corresponding event.
 717		 */
 718		if (use_ext_scan(hdev))
 719			events[1] |= 0x10;	/* LE Extended Advertising
 720						 * Report
 721						 */
 722
 723		/* If the controller supports the LE Extended Advertising
 724		 * command, enable the corresponding event.
 725		 */
 726		if (ext_adv_capable(hdev))
 727			events[2] |= 0x02;	/* LE Advertising Set
 728						 * Terminated
 729						 */
 730
 731		hci_req_add(req, HCI_OP_LE_SET_EVENT_MASK, sizeof(events),
 732			    events);
 733
 734		/* Read LE Advertising Channel TX Power */
 735		if ((hdev->commands[25] & 0x40) && !ext_adv_capable(hdev)) {
 736			/* HCI TS spec forbids mixing of legacy and extended
 737			 * advertising commands wherein READ_ADV_TX_POWER is
 738			 * also included. So do not call it if extended adv
 739			 * is supported otherwise controller will return
 740			 * COMMAND_DISALLOWED for extended commands.
 741			 */
 742			hci_req_add(req, HCI_OP_LE_READ_ADV_TX_POWER, 0, NULL);
 743		}
 744
 745		if (hdev->commands[38] & 0x80) {
 746			/* Read LE Min/Max Tx Power*/
 747			hci_req_add(req, HCI_OP_LE_READ_TRANSMIT_POWER,
 748				    0, NULL);
 749		}
 750
 751		if (hdev->commands[26] & 0x40) {
 752			/* Read LE Accept List Size */
 753			hci_req_add(req, HCI_OP_LE_READ_ACCEPT_LIST_SIZE,
 754				    0, NULL);
 755		}
 756
 757		if (hdev->commands[26] & 0x80) {
 758			/* Clear LE Accept List */
 759			hci_req_add(req, HCI_OP_LE_CLEAR_ACCEPT_LIST, 0, NULL);
 760		}
 761
 762		if (hdev->commands[34] & 0x40) {
 763			/* Read LE Resolving List Size */
 764			hci_req_add(req, HCI_OP_LE_READ_RESOLV_LIST_SIZE,
 765				    0, NULL);
 766		}
 767
 768		if (hdev->commands[34] & 0x20) {
 769			/* Clear LE Resolving List */
 770			hci_req_add(req, HCI_OP_LE_CLEAR_RESOLV_LIST, 0, NULL);
 771		}
 772
 773		if (hdev->commands[35] & 0x04) {
 774			__le16 rpa_timeout = cpu_to_le16(hdev->rpa_timeout);
 775
 776			/* Set RPA timeout */
 777			hci_req_add(req, HCI_OP_LE_SET_RPA_TIMEOUT, 2,
 778				    &rpa_timeout);
 779		}
 780
 781		if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) {
 782			/* Read LE Maximum Data Length */
 783			hci_req_add(req, HCI_OP_LE_READ_MAX_DATA_LEN, 0, NULL);
 784
 785			/* Read LE Suggested Default Data Length */
 786			hci_req_add(req, HCI_OP_LE_READ_DEF_DATA_LEN, 0, NULL);
 787		}
 788
 789		if (ext_adv_capable(hdev)) {
 790			/* Read LE Number of Supported Advertising Sets */
 791			hci_req_add(req, HCI_OP_LE_READ_NUM_SUPPORTED_ADV_SETS,
 792				    0, NULL);
 793		}
 794
 795		hci_set_le_support(req);
 796	}
 797
 798	/* Read features beyond page 1 if available */
 799	for (p = 2; p < HCI_MAX_PAGES && p <= hdev->max_page; p++) {
 800		struct hci_cp_read_local_ext_features cp;
 801
 802		cp.page = p;
 803		hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES,
 804			    sizeof(cp), &cp);
 805	}
 806
 807	return 0;
 808}
 809
 810static int hci_init4_req(struct hci_request *req, unsigned long opt)
 811{
 812	struct hci_dev *hdev = req->hdev;
 813
 814	/* Some Broadcom based Bluetooth controllers do not support the
 815	 * Delete Stored Link Key command. They are clearly indicating its
 816	 * absence in the bit mask of supported commands.
 817	 *
 818	 * Check the supported commands and only if the command is marked
 819	 * as supported send it. If not supported assume that the controller
 820	 * does not have actual support for stored link keys which makes this
 821	 * command redundant anyway.
 822	 *
 823	 * Some controllers indicate that they support handling deleting
 824	 * stored link keys, but they don't. The quirk lets a driver
 825	 * just disable this command.
 826	 */
 827	if (hdev->commands[6] & 0x80 &&
 828	    !test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) {
 829		struct hci_cp_delete_stored_link_key cp;
 830
 831		bacpy(&cp.bdaddr, BDADDR_ANY);
 832		cp.delete_all = 0x01;
 833		hci_req_add(req, HCI_OP_DELETE_STORED_LINK_KEY,
 834			    sizeof(cp), &cp);
 835	}
 836
 837	/* Set event mask page 2 if the HCI command for it is supported */
 838	if (hdev->commands[22] & 0x04)
 839		hci_set_event_mask_page_2(req);
 840
 841	/* Read local codec list if the HCI command is supported */
 842	if (hdev->commands[29] & 0x20)
 843		hci_req_add(req, HCI_OP_READ_LOCAL_CODECS, 0, NULL);
 844
 845	/* Read local pairing options if the HCI command is supported */
 846	if (hdev->commands[41] & 0x08)
 847		hci_req_add(req, HCI_OP_READ_LOCAL_PAIRING_OPTS, 0, NULL);
 848
 849	/* Get MWS transport configuration if the HCI command is supported */
 850	if (hdev->commands[30] & 0x08)
 851		hci_req_add(req, HCI_OP_GET_MWS_TRANSPORT_CONFIG, 0, NULL);
 852
 853	/* Check for Synchronization Train support */
 854	if (lmp_sync_train_capable(hdev))
 855		hci_req_add(req, HCI_OP_READ_SYNC_TRAIN_PARAMS, 0, NULL);
 856
 857	/* Enable Secure Connections if supported and configured */
 858	if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED) &&
 859	    bredr_sc_enabled(hdev)) {
 860		u8 support = 0x01;
 861
 862		hci_req_add(req, HCI_OP_WRITE_SC_SUPPORT,
 863			    sizeof(support), &support);
 864	}
 865
 866	/* Set erroneous data reporting if supported to the wideband speech
 867	 * setting value
 868	 */
 869	if (hdev->commands[18] & 0x08 &&
 870	    !test_bit(HCI_QUIRK_BROKEN_ERR_DATA_REPORTING, &hdev->quirks)) {
 871		bool enabled = hci_dev_test_flag(hdev,
 872						 HCI_WIDEBAND_SPEECH_ENABLED);
 873
 874		if (enabled !=
 875		    (hdev->err_data_reporting == ERR_DATA_REPORTING_ENABLED)) {
 876			struct hci_cp_write_def_err_data_reporting cp;
 877
 878			cp.err_data_reporting = enabled ?
 879						ERR_DATA_REPORTING_ENABLED :
 880						ERR_DATA_REPORTING_DISABLED;
 881
 882			hci_req_add(req, HCI_OP_WRITE_DEF_ERR_DATA_REPORTING,
 883				    sizeof(cp), &cp);
 884		}
 885	}
 886
 887	/* Set Suggested Default Data Length to maximum if supported */
 888	if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) {
 889		struct hci_cp_le_write_def_data_len cp;
 890
 891		cp.tx_len = cpu_to_le16(hdev->le_max_tx_len);
 892		cp.tx_time = cpu_to_le16(hdev->le_max_tx_time);
 893		hci_req_add(req, HCI_OP_LE_WRITE_DEF_DATA_LEN, sizeof(cp), &cp);
 894	}
 895
 896	/* Set Default PHY parameters if command is supported */
 897	if (hdev->commands[35] & 0x20) {
 898		struct hci_cp_le_set_default_phy cp;
 899
 900		cp.all_phys = 0x00;
 901		cp.tx_phys = hdev->le_tx_def_phys;
 902		cp.rx_phys = hdev->le_rx_def_phys;
 903
 904		hci_req_add(req, HCI_OP_LE_SET_DEFAULT_PHY, sizeof(cp), &cp);
 905	}
 906
 907	return 0;
 908}
 909
 910static int __hci_init(struct hci_dev *hdev)
 911{
 912	int err;
 913
 914	err = __hci_req_sync(hdev, hci_init1_req, 0, HCI_INIT_TIMEOUT, NULL);
 915	if (err < 0)
 916		return err;
 917
 918	if (hci_dev_test_flag(hdev, HCI_SETUP))
 919		hci_debugfs_create_basic(hdev);
 920
 921	err = __hci_req_sync(hdev, hci_init2_req, 0, HCI_INIT_TIMEOUT, NULL);
 922	if (err < 0)
 923		return err;
 924
 925	/* HCI_PRIMARY covers both single-mode LE, BR/EDR and dual-mode
 926	 * BR/EDR/LE type controllers. AMP controllers only need the
 927	 * first two stages of init.
 928	 */
 929	if (hdev->dev_type != HCI_PRIMARY)
 930		return 0;
 931
 932	err = __hci_req_sync(hdev, hci_init3_req, 0, HCI_INIT_TIMEOUT, NULL);
 933	if (err < 0)
 934		return err;
 935
 936	err = __hci_req_sync(hdev, hci_init4_req, 0, HCI_INIT_TIMEOUT, NULL);
 937	if (err < 0)
 938		return err;
 939
 940	/* This function is only called when the controller is actually in
 941	 * configured state. When the controller is marked as unconfigured,
 942	 * this initialization procedure is not run.
 943	 *
 944	 * It means that it is possible that a controller runs through its
 945	 * setup phase and then discovers missing settings. If that is the
 946	 * case, then this function will not be called. It then will only
 947	 * be called during the config phase.
 948	 *
 949	 * So only when in setup phase or config phase, create the debugfs
 950	 * entries and register the SMP channels.
 951	 */
 952	if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
 953	    !hci_dev_test_flag(hdev, HCI_CONFIG))
 954		return 0;
 955
 956	hci_debugfs_create_common(hdev);
 957
 958	if (lmp_bredr_capable(hdev))
 959		hci_debugfs_create_bredr(hdev);
 960
 961	if (lmp_le_capable(hdev))
 962		hci_debugfs_create_le(hdev);
 963
 964	return 0;
 965}
 966
 967static int hci_init0_req(struct hci_request *req, unsigned long opt)
 968{
 969	struct hci_dev *hdev = req->hdev;
 970
 971	BT_DBG("%s %ld", hdev->name, opt);
 972
 973	/* Reset */
 974	if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks))
 975		hci_reset_req(req, 0);
 976
 977	/* Read Local Version */
 978	hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
 979
 980	/* Read BD Address */
 981	if (hdev->set_bdaddr)
 982		hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL);
 983
 984	return 0;
 985}
 986
 987static int __hci_unconf_init(struct hci_dev *hdev)
 988{
 989	int err;
 990
 991	if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
 992		return 0;
 993
 994	err = __hci_req_sync(hdev, hci_init0_req, 0, HCI_INIT_TIMEOUT, NULL);
 995	if (err < 0)
 996		return err;
 997
 998	if (hci_dev_test_flag(hdev, HCI_SETUP))
 999		hci_debugfs_create_basic(hdev);
1000
1001	return 0;
1002}
1003
1004static int hci_scan_req(struct hci_request *req, unsigned long opt)
1005{
1006	__u8 scan = opt;
1007
1008	BT_DBG("%s %x", req->hdev->name, scan);
1009
1010	/* Inquiry and Page scans */
1011	hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
1012	return 0;
1013}
1014
1015static int hci_auth_req(struct hci_request *req, unsigned long opt)
1016{
1017	__u8 auth = opt;
1018
1019	BT_DBG("%s %x", req->hdev->name, auth);
1020
1021	/* Authentication */
1022	hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, 1, &auth);
1023	return 0;
1024}
1025
1026static int hci_encrypt_req(struct hci_request *req, unsigned long opt)
1027{
1028	__u8 encrypt = opt;
1029
1030	BT_DBG("%s %x", req->hdev->name, encrypt);
1031
1032	/* Encryption */
1033	hci_req_add(req, HCI_OP_WRITE_ENCRYPT_MODE, 1, &encrypt);
1034	return 0;
1035}
1036
1037static int hci_linkpol_req(struct hci_request *req, unsigned long opt)
1038{
1039	__le16 policy = cpu_to_le16(opt);
1040
1041	BT_DBG("%s %x", req->hdev->name, policy);
1042
1043	/* Default link policy */
1044	hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, 2, &policy);
1045	return 0;
1046}
1047
1048/* Get HCI device by index.
1049 * Device is held on return. */
1050struct hci_dev *hci_dev_get(int index)
1051{
1052	struct hci_dev *hdev = NULL, *d;
1053
1054	BT_DBG("%d", index);
1055
1056	if (index < 0)
1057		return NULL;
1058
1059	read_lock(&hci_dev_list_lock);
1060	list_for_each_entry(d, &hci_dev_list, list) {
1061		if (d->id == index) {
1062			hdev = hci_dev_hold(d);
1063			break;
1064		}
1065	}
1066	read_unlock(&hci_dev_list_lock);
1067	return hdev;
1068}
1069
1070/* ---- Inquiry support ---- */
1071
1072bool hci_discovery_active(struct hci_dev *hdev)
1073{
1074	struct discovery_state *discov = &hdev->discovery;
1075
1076	switch (discov->state) {
1077	case DISCOVERY_FINDING:
1078	case DISCOVERY_RESOLVING:
1079		return true;
1080
1081	default:
1082		return false;
1083	}
1084}
1085
1086void hci_discovery_set_state(struct hci_dev *hdev, int state)
1087{
1088	int old_state = hdev->discovery.state;
1089
1090	BT_DBG("%s state %u -> %u", hdev->name, hdev->discovery.state, state);
1091
1092	if (old_state == state)
1093		return;
1094
1095	hdev->discovery.state = state;
1096
1097	switch (state) {
1098	case DISCOVERY_STOPPED:
1099		hci_update_background_scan(hdev);
1100
1101		if (old_state != DISCOVERY_STARTING)
1102			mgmt_discovering(hdev, 0);
1103		break;
1104	case DISCOVERY_STARTING:
1105		break;
1106	case DISCOVERY_FINDING:
1107		mgmt_discovering(hdev, 1);
1108		break;
1109	case DISCOVERY_RESOLVING:
1110		break;
1111	case DISCOVERY_STOPPING:
1112		break;
1113	}
1114}
1115
1116void hci_inquiry_cache_flush(struct hci_dev *hdev)
1117{
1118	struct discovery_state *cache = &hdev->discovery;
1119	struct inquiry_entry *p, *n;
1120
1121	list_for_each_entry_safe(p, n, &cache->all, all) {
1122		list_del(&p->all);
1123		kfree(p);
1124	}
1125
1126	INIT_LIST_HEAD(&cache->unknown);
1127	INIT_LIST_HEAD(&cache->resolve);
1128}
1129
1130struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev,
1131					       bdaddr_t *bdaddr)
1132{
1133	struct discovery_state *cache = &hdev->discovery;
1134	struct inquiry_entry *e;
1135
1136	BT_DBG("cache %p, %pMR", cache, bdaddr);
1137
1138	list_for_each_entry(e, &cache->all, all) {
1139		if (!bacmp(&e->data.bdaddr, bdaddr))
1140			return e;
1141	}
1142
1143	return NULL;
1144}
1145
1146struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev,
1147						       bdaddr_t *bdaddr)
1148{
1149	struct discovery_state *cache = &hdev->discovery;
1150	struct inquiry_entry *e;
1151
1152	BT_DBG("cache %p, %pMR", cache, bdaddr);
1153
1154	list_for_each_entry(e, &cache->unknown, list) {
1155		if (!bacmp(&e->data.bdaddr, bdaddr))
1156			return e;
1157	}
1158
1159	return NULL;
1160}
1161
1162struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev,
1163						       bdaddr_t *bdaddr,
1164						       int state)
1165{
1166	struct discovery_state *cache = &hdev->discovery;
1167	struct inquiry_entry *e;
1168
1169	BT_DBG("cache %p bdaddr %pMR state %d", cache, bdaddr, state);
1170
1171	list_for_each_entry(e, &cache->resolve, list) {
1172		if (!bacmp(bdaddr, BDADDR_ANY) && e->name_state == state)
1173			return e;
1174		if (!bacmp(&e->data.bdaddr, bdaddr))
1175			return e;
1176	}
1177
1178	return NULL;
1179}
1180
1181void hci_inquiry_cache_update_resolve(struct hci_dev *hdev,
1182				      struct inquiry_entry *ie)
1183{
1184	struct discovery_state *cache = &hdev->discovery;
1185	struct list_head *pos = &cache->resolve;
1186	struct inquiry_entry *p;
1187
1188	list_del(&ie->list);
1189
1190	list_for_each_entry(p, &cache->resolve, list) {
1191		if (p->name_state != NAME_PENDING &&
1192		    abs(p->data.rssi) >= abs(ie->data.rssi))
1193			break;
1194		pos = &p->list;
1195	}
1196
1197	list_add(&ie->list, pos);
1198}
1199
1200u32 hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data,
1201			     bool name_known)
1202{
1203	struct discovery_state *cache = &hdev->discovery;
1204	struct inquiry_entry *ie;
1205	u32 flags = 0;
1206
1207	BT_DBG("cache %p, %pMR", cache, &data->bdaddr);
1208
1209	hci_remove_remote_oob_data(hdev, &data->bdaddr, BDADDR_BREDR);
1210
1211	if (!data->ssp_mode)
1212		flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
1213
1214	ie = hci_inquiry_cache_lookup(hdev, &data->bdaddr);
1215	if (ie) {
1216		if (!ie->data.ssp_mode)
1217			flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
1218
1219		if (ie->name_state == NAME_NEEDED &&
1220		    data->rssi != ie->data.rssi) {
1221			ie->data.rssi = data->rssi;
1222			hci_inquiry_cache_update_resolve(hdev, ie);
1223		}
1224
1225		goto update;
1226	}
1227
1228	/* Entry not in the cache. Add new one. */
1229	ie = kzalloc(sizeof(*ie), GFP_KERNEL);
1230	if (!ie) {
1231		flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
1232		goto done;
1233	}
1234
1235	list_add(&ie->all, &cache->all);
1236
1237	if (name_known) {
1238		ie->name_state = NAME_KNOWN;
1239	} else {
1240		ie->name_state = NAME_NOT_KNOWN;
1241		list_add(&ie->list, &cache->unknown);
1242	}
1243
1244update:
1245	if (name_known && ie->name_state != NAME_KNOWN &&
1246	    ie->name_state != NAME_PENDING) {
1247		ie->name_state = NAME_KNOWN;
1248		list_del(&ie->list);
1249	}
1250
1251	memcpy(&ie->data, data, sizeof(*data));
1252	ie->timestamp = jiffies;
1253	cache->timestamp = jiffies;
1254
1255	if (ie->name_state == NAME_NOT_KNOWN)
1256		flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
1257
1258done:
1259	return flags;
1260}
1261
1262static int inquiry_cache_dump(struct hci_dev *hdev, int num, __u8 *buf)
1263{
1264	struct discovery_state *cache = &hdev->discovery;
1265	struct inquiry_info *info = (struct inquiry_info *) buf;
1266	struct inquiry_entry *e;
1267	int copied = 0;
1268
1269	list_for_each_entry(e, &cache->all, all) {
1270		struct inquiry_data *data = &e->data;
1271
1272		if (copied >= num)
1273			break;
1274
1275		bacpy(&info->bdaddr, &data->bdaddr);
1276		info->pscan_rep_mode	= data->pscan_rep_mode;
1277		info->pscan_period_mode	= data->pscan_period_mode;
1278		info->pscan_mode	= data->pscan_mode;
1279		memcpy(info->dev_class, data->dev_class, 3);
1280		info->clock_offset	= data->clock_offset;
1281
1282		info++;
1283		copied++;
1284	}
1285
1286	BT_DBG("cache %p, copied %d", cache, copied);
1287	return copied;
1288}
1289
1290static int hci_inq_req(struct hci_request *req, unsigned long opt)
1291{
1292	struct hci_inquiry_req *ir = (struct hci_inquiry_req *) opt;
1293	struct hci_dev *hdev = req->hdev;
1294	struct hci_cp_inquiry cp;
1295
1296	BT_DBG("%s", hdev->name);
1297
1298	if (test_bit(HCI_INQUIRY, &hdev->flags))
1299		return 0;
1300
1301	/* Start Inquiry */
1302	memcpy(&cp.lap, &ir->lap, 3);
1303	cp.length  = ir->length;
1304	cp.num_rsp = ir->num_rsp;
1305	hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp);
1306
1307	return 0;
1308}
1309
1310int hci_inquiry(void __user *arg)
1311{
1312	__u8 __user *ptr = arg;
1313	struct hci_inquiry_req ir;
1314	struct hci_dev *hdev;
1315	int err = 0, do_inquiry = 0, max_rsp;
1316	long timeo;
1317	__u8 *buf;
1318
1319	if (copy_from_user(&ir, ptr, sizeof(ir)))
1320		return -EFAULT;
1321
1322	hdev = hci_dev_get(ir.dev_id);
1323	if (!hdev)
1324		return -ENODEV;
1325
1326	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1327		err = -EBUSY;
1328		goto done;
1329	}
1330
1331	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1332		err = -EOPNOTSUPP;
1333		goto done;
1334	}
1335
1336	if (hdev->dev_type != HCI_PRIMARY) {
1337		err = -EOPNOTSUPP;
1338		goto done;
1339	}
1340
1341	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
1342		err = -EOPNOTSUPP;
1343		goto done;
1344	}
1345
1346	/* Restrict maximum inquiry length to 60 seconds */
1347	if (ir.length > 60) {
1348		err = -EINVAL;
1349		goto done;
1350	}
1351
1352	hci_dev_lock(hdev);
1353	if (inquiry_cache_age(hdev) > INQUIRY_CACHE_AGE_MAX ||
1354	    inquiry_cache_empty(hdev) || ir.flags & IREQ_CACHE_FLUSH) {
1355		hci_inquiry_cache_flush(hdev);
1356		do_inquiry = 1;
1357	}
1358	hci_dev_unlock(hdev);
1359
1360	timeo = ir.length * msecs_to_jiffies(2000);
1361
1362	if (do_inquiry) {
1363		err = hci_req_sync(hdev, hci_inq_req, (unsigned long) &ir,
1364				   timeo, NULL);
1365		if (err < 0)
1366			goto done;
1367
1368		/* Wait until Inquiry procedure finishes (HCI_INQUIRY flag is
1369		 * cleared). If it is interrupted by a signal, return -EINTR.
1370		 */
1371		if (wait_on_bit(&hdev->flags, HCI_INQUIRY,
1372				TASK_INTERRUPTIBLE)) {
1373			err = -EINTR;
1374			goto done;
1375		}
1376	}
1377
1378	/* for unlimited number of responses we will use buffer with
1379	 * 255 entries
1380	 */
1381	max_rsp = (ir.num_rsp == 0) ? 255 : ir.num_rsp;
1382
1383	/* cache_dump can't sleep. Therefore we allocate temp buffer and then
1384	 * copy it to the user space.
1385	 */
1386	buf = kmalloc_array(max_rsp, sizeof(struct inquiry_info), GFP_KERNEL);
1387	if (!buf) {
1388		err = -ENOMEM;
1389		goto done;
1390	}
1391
1392	hci_dev_lock(hdev);
1393	ir.num_rsp = inquiry_cache_dump(hdev, max_rsp, buf);
1394	hci_dev_unlock(hdev);
1395
1396	BT_DBG("num_rsp %d", ir.num_rsp);
1397
1398	if (!copy_to_user(ptr, &ir, sizeof(ir))) {
1399		ptr += sizeof(ir);
1400		if (copy_to_user(ptr, buf, sizeof(struct inquiry_info) *
1401				 ir.num_rsp))
1402			err = -EFAULT;
1403	} else
1404		err = -EFAULT;
1405
1406	kfree(buf);
1407
1408done:
1409	hci_dev_put(hdev);
1410	return err;
1411}
1412
1413/**
1414 * hci_dev_get_bd_addr_from_property - Get the Bluetooth Device Address
1415 *				       (BD_ADDR) for a HCI device from
1416 *				       a firmware node property.
1417 * @hdev:	The HCI device
1418 *
1419 * Search the firmware node for 'local-bd-address'.
1420 *
1421 * All-zero BD addresses are rejected, because those could be properties
1422 * that exist in the firmware tables, but were not updated by the firmware. For
1423 * example, the DTS could define 'local-bd-address', with zero BD addresses.
1424 */
1425static void hci_dev_get_bd_addr_from_property(struct hci_dev *hdev)
1426{
1427	struct fwnode_handle *fwnode = dev_fwnode(hdev->dev.parent);
1428	bdaddr_t ba;
1429	int ret;
1430
1431	ret = fwnode_property_read_u8_array(fwnode, "local-bd-address",
1432					    (u8 *)&ba, sizeof(ba));
1433	if (ret < 0 || !bacmp(&ba, BDADDR_ANY))
1434		return;
1435
1436	bacpy(&hdev->public_addr, &ba);
1437}
1438
1439static int hci_dev_do_open(struct hci_dev *hdev)
1440{
1441	int ret = 0;
1442
1443	BT_DBG("%s %p", hdev->name, hdev);
1444
1445	hci_req_sync_lock(hdev);
1446
1447	if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) {
1448		ret = -ENODEV;
1449		goto done;
1450	}
1451
1452	if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
1453	    !hci_dev_test_flag(hdev, HCI_CONFIG)) {
1454		/* Check for rfkill but allow the HCI setup stage to
1455		 * proceed (which in itself doesn't cause any RF activity).
1456		 */
1457		if (hci_dev_test_flag(hdev, HCI_RFKILLED)) {
1458			ret = -ERFKILL;
1459			goto done;
1460		}
1461
1462		/* Check for valid public address or a configured static
1463		 * random address, but let the HCI setup proceed to
1464		 * be able to determine if there is a public address
1465		 * or not.
1466		 *
1467		 * In case of user channel usage, it is not important
1468		 * if a public address or static random address is
1469		 * available.
1470		 *
1471		 * This check is only valid for BR/EDR controllers
1472		 * since AMP controllers do not have an address.
1473		 */
1474		if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1475		    hdev->dev_type == HCI_PRIMARY &&
1476		    !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
1477		    !bacmp(&hdev->static_addr, BDADDR_ANY)) {
1478			ret = -EADDRNOTAVAIL;
1479			goto done;
1480		}
1481	}
1482
1483	if (test_bit(HCI_UP, &hdev->flags)) {
1484		ret = -EALREADY;
1485		goto done;
1486	}
1487
1488	if (hdev->open(hdev)) {
1489		ret = -EIO;
1490		goto done;
1491	}
1492
1493	set_bit(HCI_RUNNING, &hdev->flags);
1494	hci_sock_dev_event(hdev, HCI_DEV_OPEN);
1495
1496	atomic_set(&hdev->cmd_cnt, 1);
1497	set_bit(HCI_INIT, &hdev->flags);
1498
1499	if (hci_dev_test_flag(hdev, HCI_SETUP) ||
1500	    test_bit(HCI_QUIRK_NON_PERSISTENT_SETUP, &hdev->quirks)) {
1501		bool invalid_bdaddr;
1502
1503		hci_sock_dev_event(hdev, HCI_DEV_SETUP);
1504
1505		if (hdev->setup)
1506			ret = hdev->setup(hdev);
1507
1508		/* The transport driver can set the quirk to mark the
1509		 * BD_ADDR invalid before creating the HCI device or in
1510		 * its setup callback.
1511		 */
1512		invalid_bdaddr = test_bit(HCI_QUIRK_INVALID_BDADDR,
1513					  &hdev->quirks);
1514
1515		if (ret)
1516			goto setup_failed;
1517
1518		if (test_bit(HCI_QUIRK_USE_BDADDR_PROPERTY, &hdev->quirks)) {
1519			if (!bacmp(&hdev->public_addr, BDADDR_ANY))
1520				hci_dev_get_bd_addr_from_property(hdev);
1521
1522			if (bacmp(&hdev->public_addr, BDADDR_ANY) &&
1523			    hdev->set_bdaddr) {
1524				ret = hdev->set_bdaddr(hdev,
1525						       &hdev->public_addr);
1526
1527				/* If setting of the BD_ADDR from the device
1528				 * property succeeds, then treat the address
1529				 * as valid even if the invalid BD_ADDR
1530				 * quirk indicates otherwise.
1531				 */
1532				if (!ret)
1533					invalid_bdaddr = false;
1534			}
1535		}
1536
1537setup_failed:
1538		/* The transport driver can set these quirks before
1539		 * creating the HCI device or in its setup callback.
1540		 *
1541		 * For the invalid BD_ADDR quirk it is possible that
1542		 * it becomes a valid address if the bootloader does
1543		 * provide it (see above).
1544		 *
1545		 * In case any of them is set, the controller has to
1546		 * start up as unconfigured.
1547		 */
1548		if (test_bit(HCI_QUIRK_EXTERNAL_CONFIG, &hdev->quirks) ||
1549		    invalid_bdaddr)
1550			hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
1551
1552		/* For an unconfigured controller it is required to
1553		 * read at least the version information provided by
1554		 * the Read Local Version Information command.
1555		 *
1556		 * If the set_bdaddr driver callback is provided, then
1557		 * also the original Bluetooth public device address
1558		 * will be read using the Read BD Address command.
1559		 */
1560		if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
1561			ret = __hci_unconf_init(hdev);
1562	}
1563
1564	if (hci_dev_test_flag(hdev, HCI_CONFIG)) {
1565		/* If public address change is configured, ensure that
1566		 * the address gets programmed. If the driver does not
1567		 * support changing the public address, fail the power
1568		 * on procedure.
1569		 */
1570		if (bacmp(&hdev->public_addr, BDADDR_ANY) &&
1571		    hdev->set_bdaddr)
1572			ret = hdev->set_bdaddr(hdev, &hdev->public_addr);
1573		else
1574			ret = -EADDRNOTAVAIL;
1575	}
1576
1577	if (!ret) {
1578		if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1579		    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1580			ret = __hci_init(hdev);
1581			if (!ret && hdev->post_init)
1582				ret = hdev->post_init(hdev);
1583		}
1584	}
1585
1586	/* If the HCI Reset command is clearing all diagnostic settings,
1587	 * then they need to be reprogrammed after the init procedure
1588	 * completed.
1589	 */
1590	if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) &&
1591	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1592	    hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) && hdev->set_diag)
1593		ret = hdev->set_diag(hdev, true);
1594
1595	msft_do_open(hdev);
1596	aosp_do_open(hdev);
1597
1598	clear_bit(HCI_INIT, &hdev->flags);
1599
1600	if (!ret) {
1601		hci_dev_hold(hdev);
1602		hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
1603		hci_adv_instances_set_rpa_expired(hdev, true);
1604		set_bit(HCI_UP, &hdev->flags);
1605		hci_sock_dev_event(hdev, HCI_DEV_UP);
1606		hci_leds_update_powered(hdev, true);
1607		if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
1608		    !hci_dev_test_flag(hdev, HCI_CONFIG) &&
1609		    !hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1610		    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1611		    hci_dev_test_flag(hdev, HCI_MGMT) &&
1612		    hdev->dev_type == HCI_PRIMARY) {
1613			ret = __hci_req_hci_power_on(hdev);
1614			mgmt_power_on(hdev, ret);
1615		}
1616	} else {
1617		/* Init failed, cleanup */
1618		flush_work(&hdev->tx_work);
1619
1620		/* Since hci_rx_work() is possible to awake new cmd_work
1621		 * it should be flushed first to avoid unexpected call of
1622		 * hci_cmd_work()
1623		 */
1624		flush_work(&hdev->rx_work);
1625		flush_work(&hdev->cmd_work);
1626
1627		skb_queue_purge(&hdev->cmd_q);
1628		skb_queue_purge(&hdev->rx_q);
1629
1630		if (hdev->flush)
1631			hdev->flush(hdev);
1632
1633		if (hdev->sent_cmd) {
1634			kfree_skb(hdev->sent_cmd);
1635			hdev->sent_cmd = NULL;
1636		}
1637
1638		clear_bit(HCI_RUNNING, &hdev->flags);
1639		hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
1640
1641		hdev->close(hdev);
1642		hdev->flags &= BIT(HCI_RAW);
1643	}
1644
1645done:
1646	hci_req_sync_unlock(hdev);
1647	return ret;
1648}
1649
1650/* ---- HCI ioctl helpers ---- */
1651
1652int hci_dev_open(__u16 dev)
1653{
1654	struct hci_dev *hdev;
1655	int err;
1656
1657	hdev = hci_dev_get(dev);
1658	if (!hdev)
1659		return -ENODEV;
1660
1661	/* Devices that are marked as unconfigured can only be powered
1662	 * up as user channel. Trying to bring them up as normal devices
1663	 * will result into a failure. Only user channel operation is
1664	 * possible.
1665	 *
1666	 * When this function is called for a user channel, the flag
1667	 * HCI_USER_CHANNEL will be set first before attempting to
1668	 * open the device.
1669	 */
1670	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1671	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1672		err = -EOPNOTSUPP;
1673		goto done;
1674	}
1675
1676	/* We need to ensure that no other power on/off work is pending
1677	 * before proceeding to call hci_dev_do_open. This is
1678	 * particularly important if the setup procedure has not yet
1679	 * completed.
1680	 */
1681	if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
1682		cancel_delayed_work(&hdev->power_off);
1683
1684	/* After this call it is guaranteed that the setup procedure
1685	 * has finished. This means that error conditions like RFKILL
1686	 * or no valid public or static random address apply.
1687	 */
1688	flush_workqueue(hdev->req_workqueue);
1689
1690	/* For controllers not using the management interface and that
1691	 * are brought up using legacy ioctl, set the HCI_BONDABLE bit
1692	 * so that pairing works for them. Once the management interface
1693	 * is in use this bit will be cleared again and userspace has
1694	 * to explicitly enable it.
1695	 */
1696	if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1697	    !hci_dev_test_flag(hdev, HCI_MGMT))
1698		hci_dev_set_flag(hdev, HCI_BONDABLE);
1699
1700	err = hci_dev_do_open(hdev);
1701
1702done:
1703	hci_dev_put(hdev);
1704	return err;
1705}
1706
1707/* This function requires the caller holds hdev->lock */
1708static void hci_pend_le_actions_clear(struct hci_dev *hdev)
1709{
1710	struct hci_conn_params *p;
1711
1712	list_for_each_entry(p, &hdev->le_conn_params, list) {
1713		if (p->conn) {
1714			hci_conn_drop(p->conn);
1715			hci_conn_put(p->conn);
1716			p->conn = NULL;
1717		}
1718		list_del_init(&p->action);
1719	}
1720
1721	BT_DBG("All LE pending actions cleared");
1722}
1723
1724int hci_dev_do_close(struct hci_dev *hdev)
1725{
1726	bool auto_off;
1727
1728	BT_DBG("%s %p", hdev->name, hdev);
1729
1730	cancel_delayed_work(&hdev->power_off);
1731	cancel_delayed_work(&hdev->ncmd_timer);
1732
1733	hci_request_cancel_all(hdev);
1734	hci_req_sync_lock(hdev);
1735
1736	if (!hci_dev_test_flag(hdev, HCI_UNREGISTER) &&
1737	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1738	    test_bit(HCI_UP, &hdev->flags)) {
1739		/* Execute vendor specific shutdown routine */
1740		if (hdev->shutdown)
1741			hdev->shutdown(hdev);
1742	}
1743
 
 
 
 
 
1744	if (!test_and_clear_bit(HCI_UP, &hdev->flags)) {
1745		cancel_delayed_work_sync(&hdev->cmd_timer);
1746		hci_req_sync_unlock(hdev);
1747		return 0;
1748	}
1749
1750	hci_leds_update_powered(hdev, false);
1751
1752	/* Flush RX and TX works */
1753	flush_work(&hdev->tx_work);
1754	flush_work(&hdev->rx_work);
1755
1756	if (hdev->discov_timeout > 0) {
1757		hdev->discov_timeout = 0;
1758		hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
1759		hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
1760	}
1761
1762	if (hci_dev_test_and_clear_flag(hdev, HCI_SERVICE_CACHE))
1763		cancel_delayed_work(&hdev->service_cache);
1764
1765	if (hci_dev_test_flag(hdev, HCI_MGMT)) {
1766		struct adv_info *adv_instance;
1767
1768		cancel_delayed_work_sync(&hdev->rpa_expired);
1769
1770		list_for_each_entry(adv_instance, &hdev->adv_instances, list)
1771			cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
1772	}
1773
1774	/* Avoid potential lockdep warnings from the *_flush() calls by
1775	 * ensuring the workqueue is empty up front.
1776	 */
1777	drain_workqueue(hdev->workqueue);
1778
1779	hci_dev_lock(hdev);
1780
1781	hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
1782
1783	auto_off = hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF);
1784
1785	if (!auto_off && hdev->dev_type == HCI_PRIMARY &&
1786	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1787	    hci_dev_test_flag(hdev, HCI_MGMT))
1788		__mgmt_power_off(hdev);
1789
1790	hci_inquiry_cache_flush(hdev);
1791	hci_pend_le_actions_clear(hdev);
1792	hci_conn_hash_flush(hdev);
1793	hci_dev_unlock(hdev);
1794
1795	smp_unregister(hdev);
1796
1797	hci_sock_dev_event(hdev, HCI_DEV_DOWN);
1798
1799	aosp_do_close(hdev);
1800	msft_do_close(hdev);
1801
1802	if (hdev->flush)
1803		hdev->flush(hdev);
1804
1805	/* Reset device */
1806	skb_queue_purge(&hdev->cmd_q);
1807	atomic_set(&hdev->cmd_cnt, 1);
1808	if (test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks) &&
1809	    !auto_off && !hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1810		set_bit(HCI_INIT, &hdev->flags);
1811		__hci_req_sync(hdev, hci_reset_req, 0, HCI_CMD_TIMEOUT, NULL);
1812		clear_bit(HCI_INIT, &hdev->flags);
1813	}
1814
1815	/* flush cmd  work */
1816	flush_work(&hdev->cmd_work);
1817
1818	/* Drop queues */
1819	skb_queue_purge(&hdev->rx_q);
1820	skb_queue_purge(&hdev->cmd_q);
1821	skb_queue_purge(&hdev->raw_q);
1822
1823	/* Drop last sent command */
1824	if (hdev->sent_cmd) {
1825		cancel_delayed_work_sync(&hdev->cmd_timer);
1826		kfree_skb(hdev->sent_cmd);
1827		hdev->sent_cmd = NULL;
1828	}
1829
1830	clear_bit(HCI_RUNNING, &hdev->flags);
1831	hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
1832
1833	if (test_and_clear_bit(SUSPEND_POWERING_DOWN, hdev->suspend_tasks))
1834		wake_up(&hdev->suspend_wait_q);
1835
1836	/* After this point our queues are empty
1837	 * and no tasks are scheduled. */
1838	hdev->close(hdev);
1839
1840	/* Clear flags */
1841	hdev->flags &= BIT(HCI_RAW);
1842	hci_dev_clear_volatile_flags(hdev);
1843
1844	/* Controller radio is available but is currently powered down */
1845	hdev->amp_status = AMP_STATUS_POWERED_DOWN;
1846
1847	memset(hdev->eir, 0, sizeof(hdev->eir));
1848	memset(hdev->dev_class, 0, sizeof(hdev->dev_class));
1849	bacpy(&hdev->random_addr, BDADDR_ANY);
1850
1851	hci_req_sync_unlock(hdev);
1852
1853	hci_dev_put(hdev);
1854	return 0;
1855}
1856
1857int hci_dev_close(__u16 dev)
1858{
1859	struct hci_dev *hdev;
1860	int err;
1861
1862	hdev = hci_dev_get(dev);
1863	if (!hdev)
1864		return -ENODEV;
1865
1866	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1867		err = -EBUSY;
1868		goto done;
1869	}
1870
1871	if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
1872		cancel_delayed_work(&hdev->power_off);
1873
1874	err = hci_dev_do_close(hdev);
1875
1876done:
1877	hci_dev_put(hdev);
1878	return err;
1879}
1880
1881static int hci_dev_do_reset(struct hci_dev *hdev)
1882{
1883	int ret;
1884
1885	BT_DBG("%s %p", hdev->name, hdev);
1886
1887	hci_req_sync_lock(hdev);
1888
1889	/* Drop queues */
1890	skb_queue_purge(&hdev->rx_q);
1891	skb_queue_purge(&hdev->cmd_q);
1892
1893	/* Avoid potential lockdep warnings from the *_flush() calls by
1894	 * ensuring the workqueue is empty up front.
1895	 */
1896	drain_workqueue(hdev->workqueue);
1897
1898	hci_dev_lock(hdev);
1899	hci_inquiry_cache_flush(hdev);
1900	hci_conn_hash_flush(hdev);
1901	hci_dev_unlock(hdev);
1902
1903	if (hdev->flush)
1904		hdev->flush(hdev);
1905
1906	atomic_set(&hdev->cmd_cnt, 1);
1907	hdev->acl_cnt = 0; hdev->sco_cnt = 0; hdev->le_cnt = 0;
1908
1909	ret = __hci_req_sync(hdev, hci_reset_req, 0, HCI_INIT_TIMEOUT, NULL);
1910
1911	hci_req_sync_unlock(hdev);
1912	return ret;
1913}
1914
1915int hci_dev_reset(__u16 dev)
1916{
1917	struct hci_dev *hdev;
1918	int err;
1919
1920	hdev = hci_dev_get(dev);
1921	if (!hdev)
1922		return -ENODEV;
1923
1924	if (!test_bit(HCI_UP, &hdev->flags)) {
1925		err = -ENETDOWN;
1926		goto done;
1927	}
1928
1929	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1930		err = -EBUSY;
1931		goto done;
1932	}
1933
1934	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1935		err = -EOPNOTSUPP;
1936		goto done;
1937	}
1938
1939	err = hci_dev_do_reset(hdev);
1940
1941done:
1942	hci_dev_put(hdev);
1943	return err;
1944}
1945
1946int hci_dev_reset_stat(__u16 dev)
1947{
1948	struct hci_dev *hdev;
1949	int ret = 0;
1950
1951	hdev = hci_dev_get(dev);
1952	if (!hdev)
1953		return -ENODEV;
1954
1955	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1956		ret = -EBUSY;
1957		goto done;
1958	}
1959
1960	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1961		ret = -EOPNOTSUPP;
1962		goto done;
1963	}
1964
1965	memset(&hdev->stat, 0, sizeof(struct hci_dev_stats));
1966
1967done:
1968	hci_dev_put(hdev);
1969	return ret;
1970}
1971
1972static void hci_update_scan_state(struct hci_dev *hdev, u8 scan)
1973{
1974	bool conn_changed, discov_changed;
1975
1976	BT_DBG("%s scan 0x%02x", hdev->name, scan);
1977
1978	if ((scan & SCAN_PAGE))
1979		conn_changed = !hci_dev_test_and_set_flag(hdev,
1980							  HCI_CONNECTABLE);
1981	else
1982		conn_changed = hci_dev_test_and_clear_flag(hdev,
1983							   HCI_CONNECTABLE);
1984
1985	if ((scan & SCAN_INQUIRY)) {
1986		discov_changed = !hci_dev_test_and_set_flag(hdev,
1987							    HCI_DISCOVERABLE);
1988	} else {
1989		hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
1990		discov_changed = hci_dev_test_and_clear_flag(hdev,
1991							     HCI_DISCOVERABLE);
1992	}
1993
1994	if (!hci_dev_test_flag(hdev, HCI_MGMT))
1995		return;
1996
1997	if (conn_changed || discov_changed) {
1998		/* In case this was disabled through mgmt */
1999		hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
2000
2001		if (hci_dev_test_flag(hdev, HCI_LE_ENABLED))
2002			hci_req_update_adv_data(hdev, hdev->cur_adv_instance);
2003
2004		mgmt_new_settings(hdev);
2005	}
2006}
2007
2008int hci_dev_cmd(unsigned int cmd, void __user *arg)
2009{
2010	struct hci_dev *hdev;
2011	struct hci_dev_req dr;
2012	int err = 0;
2013
2014	if (copy_from_user(&dr, arg, sizeof(dr)))
2015		return -EFAULT;
2016
2017	hdev = hci_dev_get(dr.dev_id);
2018	if (!hdev)
2019		return -ENODEV;
2020
2021	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
2022		err = -EBUSY;
2023		goto done;
2024	}
2025
2026	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
2027		err = -EOPNOTSUPP;
2028		goto done;
2029	}
2030
2031	if (hdev->dev_type != HCI_PRIMARY) {
2032		err = -EOPNOTSUPP;
2033		goto done;
2034	}
2035
2036	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
2037		err = -EOPNOTSUPP;
2038		goto done;
2039	}
2040
2041	switch (cmd) {
2042	case HCISETAUTH:
2043		err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
2044				   HCI_INIT_TIMEOUT, NULL);
2045		break;
2046
2047	case HCISETENCRYPT:
2048		if (!lmp_encrypt_capable(hdev)) {
2049			err = -EOPNOTSUPP;
2050			break;
2051		}
2052
2053		if (!test_bit(HCI_AUTH, &hdev->flags)) {
2054			/* Auth must be enabled first */
2055			err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
2056					   HCI_INIT_TIMEOUT, NULL);
2057			if (err)
2058				break;
2059		}
2060
2061		err = hci_req_sync(hdev, hci_encrypt_req, dr.dev_opt,
2062				   HCI_INIT_TIMEOUT, NULL);
2063		break;
2064
2065	case HCISETSCAN:
2066		err = hci_req_sync(hdev, hci_scan_req, dr.dev_opt,
2067				   HCI_INIT_TIMEOUT, NULL);
2068
2069		/* Ensure that the connectable and discoverable states
2070		 * get correctly modified as this was a non-mgmt change.
2071		 */
2072		if (!err)
2073			hci_update_scan_state(hdev, dr.dev_opt);
2074		break;
2075
2076	case HCISETLINKPOL:
2077		err = hci_req_sync(hdev, hci_linkpol_req, dr.dev_opt,
2078				   HCI_INIT_TIMEOUT, NULL);
2079		break;
2080
2081	case HCISETLINKMODE:
2082		hdev->link_mode = ((__u16) dr.dev_opt) &
2083					(HCI_LM_MASTER | HCI_LM_ACCEPT);
2084		break;
2085
2086	case HCISETPTYPE:
2087		if (hdev->pkt_type == (__u16) dr.dev_opt)
2088			break;
2089
2090		hdev->pkt_type = (__u16) dr.dev_opt;
2091		mgmt_phy_configuration_changed(hdev, NULL);
2092		break;
2093
2094	case HCISETACLMTU:
2095		hdev->acl_mtu  = *((__u16 *) &dr.dev_opt + 1);
2096		hdev->acl_pkts = *((__u16 *) &dr.dev_opt + 0);
2097		break;
2098
2099	case HCISETSCOMTU:
2100		hdev->sco_mtu  = *((__u16 *) &dr.dev_opt + 1);
2101		hdev->sco_pkts = *((__u16 *) &dr.dev_opt + 0);
2102		break;
2103
2104	default:
2105		err = -EINVAL;
2106		break;
2107	}
2108
2109done:
2110	hci_dev_put(hdev);
2111	return err;
2112}
2113
2114int hci_get_dev_list(void __user *arg)
2115{
2116	struct hci_dev *hdev;
2117	struct hci_dev_list_req *dl;
2118	struct hci_dev_req *dr;
2119	int n = 0, size, err;
2120	__u16 dev_num;
2121
2122	if (get_user(dev_num, (__u16 __user *) arg))
2123		return -EFAULT;
2124
2125	if (!dev_num || dev_num > (PAGE_SIZE * 2) / sizeof(*dr))
2126		return -EINVAL;
2127
2128	size = sizeof(*dl) + dev_num * sizeof(*dr);
2129
2130	dl = kzalloc(size, GFP_KERNEL);
2131	if (!dl)
2132		return -ENOMEM;
2133
2134	dr = dl->dev_req;
2135
2136	read_lock(&hci_dev_list_lock);
2137	list_for_each_entry(hdev, &hci_dev_list, list) {
2138		unsigned long flags = hdev->flags;
2139
2140		/* When the auto-off is configured it means the transport
2141		 * is running, but in that case still indicate that the
2142		 * device is actually down.
2143		 */
2144		if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
2145			flags &= ~BIT(HCI_UP);
2146
2147		(dr + n)->dev_id  = hdev->id;
2148		(dr + n)->dev_opt = flags;
2149
2150		if (++n >= dev_num)
2151			break;
2152	}
2153	read_unlock(&hci_dev_list_lock);
2154
2155	dl->dev_num = n;
2156	size = sizeof(*dl) + n * sizeof(*dr);
2157
2158	err = copy_to_user(arg, dl, size);
2159	kfree(dl);
2160
2161	return err ? -EFAULT : 0;
2162}
2163
2164int hci_get_dev_info(void __user *arg)
2165{
2166	struct hci_dev *hdev;
2167	struct hci_dev_info di;
2168	unsigned long flags;
2169	int err = 0;
2170
2171	if (copy_from_user(&di, arg, sizeof(di)))
2172		return -EFAULT;
2173
2174	hdev = hci_dev_get(di.dev_id);
2175	if (!hdev)
2176		return -ENODEV;
2177
2178	/* When the auto-off is configured it means the transport
2179	 * is running, but in that case still indicate that the
2180	 * device is actually down.
2181	 */
2182	if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
2183		flags = hdev->flags & ~BIT(HCI_UP);
2184	else
2185		flags = hdev->flags;
2186
2187	strcpy(di.name, hdev->name);
2188	di.bdaddr   = hdev->bdaddr;
2189	di.type     = (hdev->bus & 0x0f) | ((hdev->dev_type & 0x03) << 4);
2190	di.flags    = flags;
2191	di.pkt_type = hdev->pkt_type;
2192	if (lmp_bredr_capable(hdev)) {
2193		di.acl_mtu  = hdev->acl_mtu;
2194		di.acl_pkts = hdev->acl_pkts;
2195		di.sco_mtu  = hdev->sco_mtu;
2196		di.sco_pkts = hdev->sco_pkts;
2197	} else {
2198		di.acl_mtu  = hdev->le_mtu;
2199		di.acl_pkts = hdev->le_pkts;
2200		di.sco_mtu  = 0;
2201		di.sco_pkts = 0;
2202	}
2203	di.link_policy = hdev->link_policy;
2204	di.link_mode   = hdev->link_mode;
2205
2206	memcpy(&di.stat, &hdev->stat, sizeof(di.stat));
2207	memcpy(&di.features, &hdev->features, sizeof(di.features));
2208
2209	if (copy_to_user(arg, &di, sizeof(di)))
2210		err = -EFAULT;
2211
2212	hci_dev_put(hdev);
2213
2214	return err;
2215}
2216
2217/* ---- Interface to HCI drivers ---- */
2218
2219static int hci_rfkill_set_block(void *data, bool blocked)
2220{
2221	struct hci_dev *hdev = data;
2222
2223	BT_DBG("%p name %s blocked %d", hdev, hdev->name, blocked);
2224
2225	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL))
2226		return -EBUSY;
2227
2228	if (blocked) {
2229		hci_dev_set_flag(hdev, HCI_RFKILLED);
2230		if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
2231		    !hci_dev_test_flag(hdev, HCI_CONFIG))
2232			hci_dev_do_close(hdev);
2233	} else {
2234		hci_dev_clear_flag(hdev, HCI_RFKILLED);
2235	}
2236
2237	return 0;
2238}
2239
2240static const struct rfkill_ops hci_rfkill_ops = {
2241	.set_block = hci_rfkill_set_block,
2242};
2243
2244static void hci_power_on(struct work_struct *work)
2245{
2246	struct hci_dev *hdev = container_of(work, struct hci_dev, power_on);
2247	int err;
2248
2249	BT_DBG("%s", hdev->name);
2250
2251	if (test_bit(HCI_UP, &hdev->flags) &&
2252	    hci_dev_test_flag(hdev, HCI_MGMT) &&
2253	    hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) {
2254		cancel_delayed_work(&hdev->power_off);
2255		hci_req_sync_lock(hdev);
2256		err = __hci_req_hci_power_on(hdev);
2257		hci_req_sync_unlock(hdev);
2258		mgmt_power_on(hdev, err);
2259		return;
2260	}
2261
2262	err = hci_dev_do_open(hdev);
2263	if (err < 0) {
2264		hci_dev_lock(hdev);
2265		mgmt_set_powered_failed(hdev, err);
2266		hci_dev_unlock(hdev);
2267		return;
2268	}
2269
2270	/* During the HCI setup phase, a few error conditions are
2271	 * ignored and they need to be checked now. If they are still
2272	 * valid, it is important to turn the device back off.
2273	 */
2274	if (hci_dev_test_flag(hdev, HCI_RFKILLED) ||
2275	    hci_dev_test_flag(hdev, HCI_UNCONFIGURED) ||
2276	    (hdev->dev_type == HCI_PRIMARY &&
2277	     !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
2278	     !bacmp(&hdev->static_addr, BDADDR_ANY))) {
2279		hci_dev_clear_flag(hdev, HCI_AUTO_OFF);
2280		hci_dev_do_close(hdev);
2281	} else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) {
2282		queue_delayed_work(hdev->req_workqueue, &hdev->power_off,
2283				   HCI_AUTO_OFF_TIMEOUT);
2284	}
2285
2286	if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) {
2287		/* For unconfigured devices, set the HCI_RAW flag
2288		 * so that userspace can easily identify them.
2289		 */
2290		if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
2291			set_bit(HCI_RAW, &hdev->flags);
2292
2293		/* For fully configured devices, this will send
2294		 * the Index Added event. For unconfigured devices,
2295		 * it will send Unconfigued Index Added event.
2296		 *
2297		 * Devices with HCI_QUIRK_RAW_DEVICE are ignored
2298		 * and no event will be send.
2299		 */
2300		mgmt_index_added(hdev);
2301	} else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) {
2302		/* When the controller is now configured, then it
2303		 * is important to clear the HCI_RAW flag.
2304		 */
2305		if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
2306			clear_bit(HCI_RAW, &hdev->flags);
2307
2308		/* Powering on the controller with HCI_CONFIG set only
2309		 * happens with the transition from unconfigured to
2310		 * configured. This will send the Index Added event.
2311		 */
2312		mgmt_index_added(hdev);
2313	}
2314}
2315
2316static void hci_power_off(struct work_struct *work)
2317{
2318	struct hci_dev *hdev = container_of(work, struct hci_dev,
2319					    power_off.work);
2320
2321	BT_DBG("%s", hdev->name);
2322
2323	hci_dev_do_close(hdev);
2324}
2325
2326static void hci_error_reset(struct work_struct *work)
2327{
2328	struct hci_dev *hdev = container_of(work, struct hci_dev, error_reset);
2329
2330	BT_DBG("%s", hdev->name);
2331
2332	if (hdev->hw_error)
2333		hdev->hw_error(hdev, hdev->hw_error_code);
2334	else
2335		bt_dev_err(hdev, "hardware error 0x%2.2x", hdev->hw_error_code);
 
2336
2337	if (hci_dev_do_close(hdev))
2338		return;
2339
2340	hci_dev_do_open(hdev);
2341}
2342
2343void hci_uuids_clear(struct hci_dev *hdev)
2344{
2345	struct bt_uuid *uuid, *tmp;
2346
2347	list_for_each_entry_safe(uuid, tmp, &hdev->uuids, list) {
2348		list_del(&uuid->list);
2349		kfree(uuid);
2350	}
2351}
2352
2353void hci_link_keys_clear(struct hci_dev *hdev)
2354{
2355	struct link_key *key;
2356
2357	list_for_each_entry(key, &hdev->link_keys, list) {
2358		list_del_rcu(&key->list);
2359		kfree_rcu(key, rcu);
2360	}
2361}
2362
2363void hci_smp_ltks_clear(struct hci_dev *hdev)
2364{
2365	struct smp_ltk *k;
2366
2367	list_for_each_entry(k, &hdev->long_term_keys, list) {
2368		list_del_rcu(&k->list);
2369		kfree_rcu(k, rcu);
2370	}
2371}
2372
2373void hci_smp_irks_clear(struct hci_dev *hdev)
2374{
2375	struct smp_irk *k;
2376
2377	list_for_each_entry(k, &hdev->identity_resolving_keys, list) {
2378		list_del_rcu(&k->list);
2379		kfree_rcu(k, rcu);
2380	}
2381}
2382
2383void hci_blocked_keys_clear(struct hci_dev *hdev)
2384{
2385	struct blocked_key *b;
2386
2387	list_for_each_entry(b, &hdev->blocked_keys, list) {
2388		list_del_rcu(&b->list);
2389		kfree_rcu(b, rcu);
2390	}
2391}
2392
2393bool hci_is_blocked_key(struct hci_dev *hdev, u8 type, u8 val[16])
2394{
2395	bool blocked = false;
2396	struct blocked_key *b;
2397
2398	rcu_read_lock();
2399	list_for_each_entry_rcu(b, &hdev->blocked_keys, list) {
2400		if (b->type == type && !memcmp(b->val, val, sizeof(b->val))) {
2401			blocked = true;
2402			break;
2403		}
2404	}
2405
2406	rcu_read_unlock();
2407	return blocked;
2408}
2409
2410struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
2411{
2412	struct link_key *k;
2413
2414	rcu_read_lock();
2415	list_for_each_entry_rcu(k, &hdev->link_keys, list) {
2416		if (bacmp(bdaddr, &k->bdaddr) == 0) {
2417			rcu_read_unlock();
2418
2419			if (hci_is_blocked_key(hdev,
2420					       HCI_BLOCKED_KEY_TYPE_LINKKEY,
2421					       k->val)) {
2422				bt_dev_warn_ratelimited(hdev,
2423							"Link key blocked for %pMR",
2424							&k->bdaddr);
2425				return NULL;
2426			}
2427
2428			return k;
2429		}
2430	}
2431	rcu_read_unlock();
2432
2433	return NULL;
2434}
2435
2436static bool hci_persistent_key(struct hci_dev *hdev, struct hci_conn *conn,
2437			       u8 key_type, u8 old_key_type)
2438{
2439	/* Legacy key */
2440	if (key_type < 0x03)
2441		return true;
2442
2443	/* Debug keys are insecure so don't store them persistently */
2444	if (key_type == HCI_LK_DEBUG_COMBINATION)
2445		return false;
2446
2447	/* Changed combination key and there's no previous one */
2448	if (key_type == HCI_LK_CHANGED_COMBINATION && old_key_type == 0xff)
2449		return false;
2450
2451	/* Security mode 3 case */
2452	if (!conn)
2453		return true;
2454
2455	/* BR/EDR key derived using SC from an LE link */
2456	if (conn->type == LE_LINK)
2457		return true;
2458
2459	/* Neither local nor remote side had no-bonding as requirement */
2460	if (conn->auth_type > 0x01 && conn->remote_auth > 0x01)
2461		return true;
2462
2463	/* Local side had dedicated bonding as requirement */
2464	if (conn->auth_type == 0x02 || conn->auth_type == 0x03)
2465		return true;
2466
2467	/* Remote side had dedicated bonding as requirement */
2468	if (conn->remote_auth == 0x02 || conn->remote_auth == 0x03)
2469		return true;
2470
2471	/* If none of the above criteria match, then don't store the key
2472	 * persistently */
2473	return false;
2474}
2475
2476static u8 ltk_role(u8 type)
2477{
2478	if (type == SMP_LTK)
2479		return HCI_ROLE_MASTER;
2480
2481	return HCI_ROLE_SLAVE;
2482}
2483
2484struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2485			     u8 addr_type, u8 role)
2486{
2487	struct smp_ltk *k;
2488
2489	rcu_read_lock();
2490	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2491		if (addr_type != k->bdaddr_type || bacmp(bdaddr, &k->bdaddr))
2492			continue;
2493
2494		if (smp_ltk_is_sc(k) || ltk_role(k->type) == role) {
2495			rcu_read_unlock();
2496
2497			if (hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_LTK,
2498					       k->val)) {
2499				bt_dev_warn_ratelimited(hdev,
2500							"LTK blocked for %pMR",
2501							&k->bdaddr);
2502				return NULL;
2503			}
2504
2505			return k;
2506		}
2507	}
2508	rcu_read_unlock();
2509
2510	return NULL;
2511}
2512
2513struct smp_irk *hci_find_irk_by_rpa(struct hci_dev *hdev, bdaddr_t *rpa)
2514{
2515	struct smp_irk *irk_to_return = NULL;
2516	struct smp_irk *irk;
2517
2518	rcu_read_lock();
2519	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2520		if (!bacmp(&irk->rpa, rpa)) {
2521			irk_to_return = irk;
2522			goto done;
2523		}
2524	}
2525
2526	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2527		if (smp_irk_matches(hdev, irk->val, rpa)) {
2528			bacpy(&irk->rpa, rpa);
2529			irk_to_return = irk;
2530			goto done;
2531		}
2532	}
2533
2534done:
2535	if (irk_to_return && hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_IRK,
2536						irk_to_return->val)) {
2537		bt_dev_warn_ratelimited(hdev, "Identity key blocked for %pMR",
2538					&irk_to_return->bdaddr);
2539		irk_to_return = NULL;
2540	}
2541
2542	rcu_read_unlock();
2543
2544	return irk_to_return;
2545}
2546
2547struct smp_irk *hci_find_irk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr,
2548				     u8 addr_type)
2549{
2550	struct smp_irk *irk_to_return = NULL;
2551	struct smp_irk *irk;
2552
2553	/* Identity Address must be public or static random */
2554	if (addr_type == ADDR_LE_DEV_RANDOM && (bdaddr->b[5] & 0xc0) != 0xc0)
2555		return NULL;
2556
2557	rcu_read_lock();
2558	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2559		if (addr_type == irk->addr_type &&
2560		    bacmp(bdaddr, &irk->bdaddr) == 0) {
2561			irk_to_return = irk;
2562			goto done;
2563		}
2564	}
2565
2566done:
2567
2568	if (irk_to_return && hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_IRK,
2569						irk_to_return->val)) {
2570		bt_dev_warn_ratelimited(hdev, "Identity key blocked for %pMR",
2571					&irk_to_return->bdaddr);
2572		irk_to_return = NULL;
2573	}
2574
2575	rcu_read_unlock();
2576
2577	return irk_to_return;
2578}
2579
2580struct link_key *hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn,
2581				  bdaddr_t *bdaddr, u8 *val, u8 type,
2582				  u8 pin_len, bool *persistent)
2583{
2584	struct link_key *key, *old_key;
2585	u8 old_key_type;
2586
2587	old_key = hci_find_link_key(hdev, bdaddr);
2588	if (old_key) {
2589		old_key_type = old_key->type;
2590		key = old_key;
2591	} else {
2592		old_key_type = conn ? conn->key_type : 0xff;
2593		key = kzalloc(sizeof(*key), GFP_KERNEL);
2594		if (!key)
2595			return NULL;
2596		list_add_rcu(&key->list, &hdev->link_keys);
2597	}
2598
2599	BT_DBG("%s key for %pMR type %u", hdev->name, bdaddr, type);
2600
2601	/* Some buggy controller combinations generate a changed
2602	 * combination key for legacy pairing even when there's no
2603	 * previous key */
2604	if (type == HCI_LK_CHANGED_COMBINATION &&
2605	    (!conn || conn->remote_auth == 0xff) && old_key_type == 0xff) {
2606		type = HCI_LK_COMBINATION;
2607		if (conn)
2608			conn->key_type = type;
2609	}
2610
2611	bacpy(&key->bdaddr, bdaddr);
2612	memcpy(key->val, val, HCI_LINK_KEY_SIZE);
2613	key->pin_len = pin_len;
2614
2615	if (type == HCI_LK_CHANGED_COMBINATION)
2616		key->type = old_key_type;
2617	else
2618		key->type = type;
2619
2620	if (persistent)
2621		*persistent = hci_persistent_key(hdev, conn, type,
2622						 old_key_type);
2623
2624	return key;
2625}
2626
2627struct smp_ltk *hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2628			    u8 addr_type, u8 type, u8 authenticated,
2629			    u8 tk[16], u8 enc_size, __le16 ediv, __le64 rand)
2630{
2631	struct smp_ltk *key, *old_key;
2632	u8 role = ltk_role(type);
2633
2634	old_key = hci_find_ltk(hdev, bdaddr, addr_type, role);
2635	if (old_key)
2636		key = old_key;
2637	else {
2638		key = kzalloc(sizeof(*key), GFP_KERNEL);
2639		if (!key)
2640			return NULL;
2641		list_add_rcu(&key->list, &hdev->long_term_keys);
2642	}
2643
2644	bacpy(&key->bdaddr, bdaddr);
2645	key->bdaddr_type = addr_type;
2646	memcpy(key->val, tk, sizeof(key->val));
2647	key->authenticated = authenticated;
2648	key->ediv = ediv;
2649	key->rand = rand;
2650	key->enc_size = enc_size;
2651	key->type = type;
2652
2653	return key;
2654}
2655
2656struct smp_irk *hci_add_irk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2657			    u8 addr_type, u8 val[16], bdaddr_t *rpa)
2658{
2659	struct smp_irk *irk;
2660
2661	irk = hci_find_irk_by_addr(hdev, bdaddr, addr_type);
2662	if (!irk) {
2663		irk = kzalloc(sizeof(*irk), GFP_KERNEL);
2664		if (!irk)
2665			return NULL;
2666
2667		bacpy(&irk->bdaddr, bdaddr);
2668		irk->addr_type = addr_type;
2669
2670		list_add_rcu(&irk->list, &hdev->identity_resolving_keys);
2671	}
2672
2673	memcpy(irk->val, val, 16);
2674	bacpy(&irk->rpa, rpa);
2675
2676	return irk;
2677}
2678
2679int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
2680{
2681	struct link_key *key;
2682
2683	key = hci_find_link_key(hdev, bdaddr);
2684	if (!key)
2685		return -ENOENT;
2686
2687	BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2688
2689	list_del_rcu(&key->list);
2690	kfree_rcu(key, rcu);
2691
2692	return 0;
2693}
2694
2695int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type)
2696{
2697	struct smp_ltk *k;
2698	int removed = 0;
2699
2700	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2701		if (bacmp(bdaddr, &k->bdaddr) || k->bdaddr_type != bdaddr_type)
2702			continue;
2703
2704		BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2705
2706		list_del_rcu(&k->list);
2707		kfree_rcu(k, rcu);
2708		removed++;
2709	}
2710
2711	return removed ? 0 : -ENOENT;
2712}
2713
2714void hci_remove_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type)
2715{
2716	struct smp_irk *k;
2717
2718	list_for_each_entry_rcu(k, &hdev->identity_resolving_keys, list) {
2719		if (bacmp(bdaddr, &k->bdaddr) || k->addr_type != addr_type)
2720			continue;
2721
2722		BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2723
2724		list_del_rcu(&k->list);
2725		kfree_rcu(k, rcu);
2726	}
2727}
2728
2729bool hci_bdaddr_is_paired(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type)
2730{
2731	struct smp_ltk *k;
2732	struct smp_irk *irk;
2733	u8 addr_type;
2734
2735	if (type == BDADDR_BREDR) {
2736		if (hci_find_link_key(hdev, bdaddr))
2737			return true;
2738		return false;
2739	}
2740
2741	/* Convert to HCI addr type which struct smp_ltk uses */
2742	if (type == BDADDR_LE_PUBLIC)
2743		addr_type = ADDR_LE_DEV_PUBLIC;
2744	else
2745		addr_type = ADDR_LE_DEV_RANDOM;
2746
2747	irk = hci_get_irk(hdev, bdaddr, addr_type);
2748	if (irk) {
2749		bdaddr = &irk->bdaddr;
2750		addr_type = irk->addr_type;
2751	}
2752
2753	rcu_read_lock();
2754	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2755		if (k->bdaddr_type == addr_type && !bacmp(bdaddr, &k->bdaddr)) {
2756			rcu_read_unlock();
2757			return true;
2758		}
2759	}
2760	rcu_read_unlock();
2761
2762	return false;
2763}
2764
2765/* HCI command timer function */
2766static void hci_cmd_timeout(struct work_struct *work)
2767{
2768	struct hci_dev *hdev = container_of(work, struct hci_dev,
2769					    cmd_timer.work);
2770
2771	if (hdev->sent_cmd) {
2772		struct hci_command_hdr *sent = (void *) hdev->sent_cmd->data;
2773		u16 opcode = __le16_to_cpu(sent->opcode);
2774
2775		bt_dev_err(hdev, "command 0x%4.4x tx timeout", opcode);
2776	} else {
2777		bt_dev_err(hdev, "command tx timeout");
2778	}
2779
2780	if (hdev->cmd_timeout)
2781		hdev->cmd_timeout(hdev);
2782
2783	atomic_set(&hdev->cmd_cnt, 1);
2784	queue_work(hdev->workqueue, &hdev->cmd_work);
2785}
2786
2787/* HCI ncmd timer function */
2788static void hci_ncmd_timeout(struct work_struct *work)
2789{
2790	struct hci_dev *hdev = container_of(work, struct hci_dev,
2791					    ncmd_timer.work);
2792
2793	bt_dev_err(hdev, "Controller not accepting commands anymore: ncmd = 0");
2794
2795	/* During HCI_INIT phase no events can be injected if the ncmd timer
2796	 * triggers since the procedure has its own timeout handling.
2797	 */
2798	if (test_bit(HCI_INIT, &hdev->flags))
2799		return;
2800
2801	/* This is an irrecoverable state, inject hardware error event */
2802	hci_reset_dev(hdev);
2803}
2804
2805struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev,
2806					  bdaddr_t *bdaddr, u8 bdaddr_type)
2807{
2808	struct oob_data *data;
2809
2810	list_for_each_entry(data, &hdev->remote_oob_data, list) {
2811		if (bacmp(bdaddr, &data->bdaddr) != 0)
2812			continue;
2813		if (data->bdaddr_type != bdaddr_type)
2814			continue;
2815		return data;
2816	}
2817
2818	return NULL;
2819}
2820
2821int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
2822			       u8 bdaddr_type)
2823{
2824	struct oob_data *data;
2825
2826	data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
2827	if (!data)
2828		return -ENOENT;
2829
2830	BT_DBG("%s removing %pMR (%u)", hdev->name, bdaddr, bdaddr_type);
2831
2832	list_del(&data->list);
2833	kfree(data);
2834
2835	return 0;
2836}
2837
2838void hci_remote_oob_data_clear(struct hci_dev *hdev)
2839{
2840	struct oob_data *data, *n;
2841
2842	list_for_each_entry_safe(data, n, &hdev->remote_oob_data, list) {
2843		list_del(&data->list);
2844		kfree(data);
2845	}
2846}
2847
2848int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
2849			    u8 bdaddr_type, u8 *hash192, u8 *rand192,
2850			    u8 *hash256, u8 *rand256)
2851{
2852	struct oob_data *data;
2853
2854	data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
2855	if (!data) {
2856		data = kmalloc(sizeof(*data), GFP_KERNEL);
2857		if (!data)
2858			return -ENOMEM;
2859
2860		bacpy(&data->bdaddr, bdaddr);
2861		data->bdaddr_type = bdaddr_type;
2862		list_add(&data->list, &hdev->remote_oob_data);
2863	}
2864
2865	if (hash192 && rand192) {
2866		memcpy(data->hash192, hash192, sizeof(data->hash192));
2867		memcpy(data->rand192, rand192, sizeof(data->rand192));
2868		if (hash256 && rand256)
2869			data->present = 0x03;
2870	} else {
2871		memset(data->hash192, 0, sizeof(data->hash192));
2872		memset(data->rand192, 0, sizeof(data->rand192));
2873		if (hash256 && rand256)
2874			data->present = 0x02;
2875		else
2876			data->present = 0x00;
2877	}
2878
2879	if (hash256 && rand256) {
2880		memcpy(data->hash256, hash256, sizeof(data->hash256));
2881		memcpy(data->rand256, rand256, sizeof(data->rand256));
2882	} else {
2883		memset(data->hash256, 0, sizeof(data->hash256));
2884		memset(data->rand256, 0, sizeof(data->rand256));
2885		if (hash192 && rand192)
2886			data->present = 0x01;
2887	}
2888
2889	BT_DBG("%s for %pMR", hdev->name, bdaddr);
2890
2891	return 0;
2892}
2893
2894/* This function requires the caller holds hdev->lock */
2895struct adv_info *hci_find_adv_instance(struct hci_dev *hdev, u8 instance)
2896{
2897	struct adv_info *adv_instance;
2898
2899	list_for_each_entry(adv_instance, &hdev->adv_instances, list) {
2900		if (adv_instance->instance == instance)
2901			return adv_instance;
2902	}
2903
2904	return NULL;
2905}
2906
2907/* This function requires the caller holds hdev->lock */
2908struct adv_info *hci_get_next_instance(struct hci_dev *hdev, u8 instance)
2909{
2910	struct adv_info *cur_instance;
2911
2912	cur_instance = hci_find_adv_instance(hdev, instance);
2913	if (!cur_instance)
2914		return NULL;
2915
2916	if (cur_instance == list_last_entry(&hdev->adv_instances,
2917					    struct adv_info, list))
2918		return list_first_entry(&hdev->adv_instances,
2919						 struct adv_info, list);
2920	else
2921		return list_next_entry(cur_instance, list);
2922}
2923
2924/* This function requires the caller holds hdev->lock */
2925int hci_remove_adv_instance(struct hci_dev *hdev, u8 instance)
2926{
2927	struct adv_info *adv_instance;
2928
2929	adv_instance = hci_find_adv_instance(hdev, instance);
2930	if (!adv_instance)
2931		return -ENOENT;
2932
2933	BT_DBG("%s removing %dMR", hdev->name, instance);
2934
2935	if (hdev->cur_adv_instance == instance) {
2936		if (hdev->adv_instance_timeout) {
2937			cancel_delayed_work(&hdev->adv_instance_expire);
2938			hdev->adv_instance_timeout = 0;
2939		}
2940		hdev->cur_adv_instance = 0x00;
2941	}
2942
2943	cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
2944
2945	list_del(&adv_instance->list);
2946	kfree(adv_instance);
2947
2948	hdev->adv_instance_cnt--;
2949
2950	return 0;
2951}
2952
2953void hci_adv_instances_set_rpa_expired(struct hci_dev *hdev, bool rpa_expired)
2954{
2955	struct adv_info *adv_instance, *n;
2956
2957	list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list)
2958		adv_instance->rpa_expired = rpa_expired;
2959}
2960
2961/* This function requires the caller holds hdev->lock */
2962void hci_adv_instances_clear(struct hci_dev *hdev)
2963{
2964	struct adv_info *adv_instance, *n;
2965
2966	if (hdev->adv_instance_timeout) {
2967		cancel_delayed_work(&hdev->adv_instance_expire);
2968		hdev->adv_instance_timeout = 0;
2969	}
2970
2971	list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list) {
2972		cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
2973		list_del(&adv_instance->list);
2974		kfree(adv_instance);
2975	}
2976
2977	hdev->adv_instance_cnt = 0;
2978	hdev->cur_adv_instance = 0x00;
2979}
2980
2981static void adv_instance_rpa_expired(struct work_struct *work)
2982{
2983	struct adv_info *adv_instance = container_of(work, struct adv_info,
2984						     rpa_expired_cb.work);
2985
2986	BT_DBG("");
2987
2988	adv_instance->rpa_expired = true;
2989}
2990
2991/* This function requires the caller holds hdev->lock */
2992int hci_add_adv_instance(struct hci_dev *hdev, u8 instance, u32 flags,
2993			 u16 adv_data_len, u8 *adv_data,
2994			 u16 scan_rsp_len, u8 *scan_rsp_data,
2995			 u16 timeout, u16 duration, s8 tx_power,
2996			 u32 min_interval, u32 max_interval)
2997{
2998	struct adv_info *adv_instance;
2999
3000	adv_instance = hci_find_adv_instance(hdev, instance);
3001	if (adv_instance) {
3002		memset(adv_instance->adv_data, 0,
3003		       sizeof(adv_instance->adv_data));
3004		memset(adv_instance->scan_rsp_data, 0,
3005		       sizeof(adv_instance->scan_rsp_data));
3006	} else {
3007		if (hdev->adv_instance_cnt >= hdev->le_num_of_adv_sets ||
3008		    instance < 1 || instance > hdev->le_num_of_adv_sets)
3009			return -EOVERFLOW;
3010
3011		adv_instance = kzalloc(sizeof(*adv_instance), GFP_KERNEL);
3012		if (!adv_instance)
3013			return -ENOMEM;
3014
3015		adv_instance->pending = true;
3016		adv_instance->instance = instance;
3017		list_add(&adv_instance->list, &hdev->adv_instances);
3018		hdev->adv_instance_cnt++;
3019	}
3020
3021	adv_instance->flags = flags;
3022	adv_instance->adv_data_len = adv_data_len;
3023	adv_instance->scan_rsp_len = scan_rsp_len;
3024	adv_instance->min_interval = min_interval;
3025	adv_instance->max_interval = max_interval;
3026	adv_instance->tx_power = tx_power;
3027
3028	if (adv_data_len)
3029		memcpy(adv_instance->adv_data, adv_data, adv_data_len);
3030
3031	if (scan_rsp_len)
3032		memcpy(adv_instance->scan_rsp_data,
3033		       scan_rsp_data, scan_rsp_len);
3034
3035	adv_instance->timeout = timeout;
3036	adv_instance->remaining_time = timeout;
3037
3038	if (duration == 0)
3039		adv_instance->duration = hdev->def_multi_adv_rotation_duration;
3040	else
3041		adv_instance->duration = duration;
3042
3043	INIT_DELAYED_WORK(&adv_instance->rpa_expired_cb,
3044			  adv_instance_rpa_expired);
3045
3046	BT_DBG("%s for %dMR", hdev->name, instance);
3047
3048	return 0;
3049}
3050
3051/* This function requires the caller holds hdev->lock */
3052int hci_set_adv_instance_data(struct hci_dev *hdev, u8 instance,
3053			      u16 adv_data_len, u8 *adv_data,
3054			      u16 scan_rsp_len, u8 *scan_rsp_data)
3055{
3056	struct adv_info *adv_instance;
3057
3058	adv_instance = hci_find_adv_instance(hdev, instance);
3059
3060	/* If advertisement doesn't exist, we can't modify its data */
3061	if (!adv_instance)
3062		return -ENOENT;
3063
3064	if (adv_data_len) {
3065		memset(adv_instance->adv_data, 0,
3066		       sizeof(adv_instance->adv_data));
3067		memcpy(adv_instance->adv_data, adv_data, adv_data_len);
3068		adv_instance->adv_data_len = adv_data_len;
3069	}
3070
3071	if (scan_rsp_len) {
3072		memset(adv_instance->scan_rsp_data, 0,
3073		       sizeof(adv_instance->scan_rsp_data));
3074		memcpy(adv_instance->scan_rsp_data,
3075		       scan_rsp_data, scan_rsp_len);
3076		adv_instance->scan_rsp_len = scan_rsp_len;
3077	}
3078
3079	return 0;
3080}
3081
3082/* This function requires the caller holds hdev->lock */
3083void hci_adv_monitors_clear(struct hci_dev *hdev)
3084{
3085	struct adv_monitor *monitor;
3086	int handle;
3087
3088	idr_for_each_entry(&hdev->adv_monitors_idr, monitor, handle)
3089		hci_free_adv_monitor(hdev, monitor);
3090
3091	idr_destroy(&hdev->adv_monitors_idr);
3092}
3093
3094/* Frees the monitor structure and do some bookkeepings.
3095 * This function requires the caller holds hdev->lock.
3096 */
3097void hci_free_adv_monitor(struct hci_dev *hdev, struct adv_monitor *monitor)
3098{
3099	struct adv_pattern *pattern;
3100	struct adv_pattern *tmp;
3101
3102	if (!monitor)
3103		return;
3104
3105	list_for_each_entry_safe(pattern, tmp, &monitor->patterns, list) {
3106		list_del(&pattern->list);
3107		kfree(pattern);
3108	}
3109
3110	if (monitor->handle)
3111		idr_remove(&hdev->adv_monitors_idr, monitor->handle);
3112
3113	if (monitor->state != ADV_MONITOR_STATE_NOT_REGISTERED) {
3114		hdev->adv_monitors_cnt--;
3115		mgmt_adv_monitor_removed(hdev, monitor->handle);
3116	}
3117
3118	kfree(monitor);
3119}
3120
3121int hci_add_adv_patterns_monitor_complete(struct hci_dev *hdev, u8 status)
3122{
3123	return mgmt_add_adv_patterns_monitor_complete(hdev, status);
3124}
3125
3126int hci_remove_adv_monitor_complete(struct hci_dev *hdev, u8 status)
3127{
3128	return mgmt_remove_adv_monitor_complete(hdev, status);
3129}
3130
3131/* Assigns handle to a monitor, and if offloading is supported and power is on,
3132 * also attempts to forward the request to the controller.
3133 * Returns true if request is forwarded (result is pending), false otherwise.
3134 * This function requires the caller holds hdev->lock.
3135 */
3136bool hci_add_adv_monitor(struct hci_dev *hdev, struct adv_monitor *monitor,
3137			 int *err)
3138{
3139	int min, max, handle;
3140
3141	*err = 0;
3142
3143	if (!monitor) {
3144		*err = -EINVAL;
3145		return false;
3146	}
3147
3148	min = HCI_MIN_ADV_MONITOR_HANDLE;
3149	max = HCI_MIN_ADV_MONITOR_HANDLE + HCI_MAX_ADV_MONITOR_NUM_HANDLES;
3150	handle = idr_alloc(&hdev->adv_monitors_idr, monitor, min, max,
3151			   GFP_KERNEL);
3152	if (handle < 0) {
3153		*err = handle;
3154		return false;
3155	}
3156
3157	monitor->handle = handle;
3158
3159	if (!hdev_is_powered(hdev))
3160		return false;
3161
3162	switch (hci_get_adv_monitor_offload_ext(hdev)) {
3163	case HCI_ADV_MONITOR_EXT_NONE:
3164		hci_update_background_scan(hdev);
3165		bt_dev_dbg(hdev, "%s add monitor status %d", hdev->name, *err);
3166		/* Message was not forwarded to controller - not an error */
3167		return false;
3168	case HCI_ADV_MONITOR_EXT_MSFT:
3169		*err = msft_add_monitor_pattern(hdev, monitor);
3170		bt_dev_dbg(hdev, "%s add monitor msft status %d", hdev->name,
3171			   *err);
3172		break;
3173	}
3174
3175	return (*err == 0);
3176}
3177
3178/* Attempts to tell the controller and free the monitor. If somehow the
3179 * controller doesn't have a corresponding handle, remove anyway.
3180 * Returns true if request is forwarded (result is pending), false otherwise.
3181 * This function requires the caller holds hdev->lock.
3182 */
3183static bool hci_remove_adv_monitor(struct hci_dev *hdev,
3184				   struct adv_monitor *monitor,
3185				   u16 handle, int *err)
3186{
3187	*err = 0;
3188
3189	switch (hci_get_adv_monitor_offload_ext(hdev)) {
3190	case HCI_ADV_MONITOR_EXT_NONE: /* also goes here when powered off */
3191		goto free_monitor;
3192	case HCI_ADV_MONITOR_EXT_MSFT:
3193		*err = msft_remove_monitor(hdev, monitor, handle);
3194		break;
3195	}
3196
3197	/* In case no matching handle registered, just free the monitor */
3198	if (*err == -ENOENT)
3199		goto free_monitor;
3200
3201	return (*err == 0);
3202
3203free_monitor:
3204	if (*err == -ENOENT)
3205		bt_dev_warn(hdev, "Removing monitor with no matching handle %d",
3206			    monitor->handle);
3207	hci_free_adv_monitor(hdev, monitor);
3208
3209	*err = 0;
3210	return false;
3211}
3212
3213/* Returns true if request is forwarded (result is pending), false otherwise.
3214 * This function requires the caller holds hdev->lock.
3215 */
3216bool hci_remove_single_adv_monitor(struct hci_dev *hdev, u16 handle, int *err)
3217{
3218	struct adv_monitor *monitor = idr_find(&hdev->adv_monitors_idr, handle);
3219	bool pending;
3220
3221	if (!monitor) {
3222		*err = -EINVAL;
3223		return false;
3224	}
3225
3226	pending = hci_remove_adv_monitor(hdev, monitor, handle, err);
3227	if (!*err && !pending)
3228		hci_update_background_scan(hdev);
3229
3230	bt_dev_dbg(hdev, "%s remove monitor handle %d, status %d, %spending",
3231		   hdev->name, handle, *err, pending ? "" : "not ");
3232
3233	return pending;
3234}
3235
3236/* Returns true if request is forwarded (result is pending), false otherwise.
3237 * This function requires the caller holds hdev->lock.
3238 */
3239bool hci_remove_all_adv_monitor(struct hci_dev *hdev, int *err)
3240{
3241	struct adv_monitor *monitor;
3242	int idr_next_id = 0;
3243	bool pending = false;
3244	bool update = false;
3245
3246	*err = 0;
3247
3248	while (!*err && !pending) {
3249		monitor = idr_get_next(&hdev->adv_monitors_idr, &idr_next_id);
3250		if (!monitor)
3251			break;
3252
3253		pending = hci_remove_adv_monitor(hdev, monitor, 0, err);
3254
3255		if (!*err && !pending)
3256			update = true;
3257	}
3258
3259	if (update)
3260		hci_update_background_scan(hdev);
3261
3262	bt_dev_dbg(hdev, "%s remove all monitors status %d, %spending",
3263		   hdev->name, *err, pending ? "" : "not ");
3264
3265	return pending;
3266}
3267
3268/* This function requires the caller holds hdev->lock */
3269bool hci_is_adv_monitoring(struct hci_dev *hdev)
3270{
3271	return !idr_is_empty(&hdev->adv_monitors_idr);
3272}
3273
3274int hci_get_adv_monitor_offload_ext(struct hci_dev *hdev)
3275{
3276	if (msft_monitor_supported(hdev))
3277		return HCI_ADV_MONITOR_EXT_MSFT;
3278
3279	return HCI_ADV_MONITOR_EXT_NONE;
3280}
3281
3282struct bdaddr_list *hci_bdaddr_list_lookup(struct list_head *bdaddr_list,
3283					 bdaddr_t *bdaddr, u8 type)
3284{
3285	struct bdaddr_list *b;
3286
3287	list_for_each_entry(b, bdaddr_list, list) {
3288		if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
3289			return b;
3290	}
3291
3292	return NULL;
3293}
3294
3295struct bdaddr_list_with_irk *hci_bdaddr_list_lookup_with_irk(
3296				struct list_head *bdaddr_list, bdaddr_t *bdaddr,
3297				u8 type)
3298{
3299	struct bdaddr_list_with_irk *b;
3300
3301	list_for_each_entry(b, bdaddr_list, list) {
3302		if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
3303			return b;
3304	}
3305
3306	return NULL;
3307}
3308
3309struct bdaddr_list_with_flags *
3310hci_bdaddr_list_lookup_with_flags(struct list_head *bdaddr_list,
3311				  bdaddr_t *bdaddr, u8 type)
3312{
3313	struct bdaddr_list_with_flags *b;
3314
3315	list_for_each_entry(b, bdaddr_list, list) {
3316		if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
3317			return b;
3318	}
3319
3320	return NULL;
3321}
3322
3323void hci_bdaddr_list_clear(struct list_head *bdaddr_list)
3324{
3325	struct bdaddr_list *b, *n;
3326
3327	list_for_each_entry_safe(b, n, bdaddr_list, list) {
3328		list_del(&b->list);
3329		kfree(b);
3330	}
3331}
3332
3333int hci_bdaddr_list_add(struct list_head *list, bdaddr_t *bdaddr, u8 type)
3334{
3335	struct bdaddr_list *entry;
3336
3337	if (!bacmp(bdaddr, BDADDR_ANY))
3338		return -EBADF;
3339
3340	if (hci_bdaddr_list_lookup(list, bdaddr, type))
3341		return -EEXIST;
3342
3343	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
3344	if (!entry)
3345		return -ENOMEM;
3346
3347	bacpy(&entry->bdaddr, bdaddr);
3348	entry->bdaddr_type = type;
3349
3350	list_add(&entry->list, list);
3351
3352	return 0;
3353}
3354
3355int hci_bdaddr_list_add_with_irk(struct list_head *list, bdaddr_t *bdaddr,
3356					u8 type, u8 *peer_irk, u8 *local_irk)
3357{
3358	struct bdaddr_list_with_irk *entry;
3359
3360	if (!bacmp(bdaddr, BDADDR_ANY))
3361		return -EBADF;
3362
3363	if (hci_bdaddr_list_lookup(list, bdaddr, type))
3364		return -EEXIST;
3365
3366	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
3367	if (!entry)
3368		return -ENOMEM;
3369
3370	bacpy(&entry->bdaddr, bdaddr);
3371	entry->bdaddr_type = type;
3372
3373	if (peer_irk)
3374		memcpy(entry->peer_irk, peer_irk, 16);
3375
3376	if (local_irk)
3377		memcpy(entry->local_irk, local_irk, 16);
3378
3379	list_add(&entry->list, list);
3380
3381	return 0;
3382}
3383
3384int hci_bdaddr_list_add_with_flags(struct list_head *list, bdaddr_t *bdaddr,
3385				   u8 type, u32 flags)
3386{
3387	struct bdaddr_list_with_flags *entry;
3388
3389	if (!bacmp(bdaddr, BDADDR_ANY))
3390		return -EBADF;
3391
3392	if (hci_bdaddr_list_lookup(list, bdaddr, type))
3393		return -EEXIST;
3394
3395	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
3396	if (!entry)
3397		return -ENOMEM;
3398
3399	bacpy(&entry->bdaddr, bdaddr);
3400	entry->bdaddr_type = type;
3401	entry->current_flags = flags;
3402
3403	list_add(&entry->list, list);
3404
3405	return 0;
3406}
3407
3408int hci_bdaddr_list_del(struct list_head *list, bdaddr_t *bdaddr, u8 type)
3409{
3410	struct bdaddr_list *entry;
3411
3412	if (!bacmp(bdaddr, BDADDR_ANY)) {
3413		hci_bdaddr_list_clear(list);
3414		return 0;
3415	}
3416
3417	entry = hci_bdaddr_list_lookup(list, bdaddr, type);
3418	if (!entry)
3419		return -ENOENT;
3420
3421	list_del(&entry->list);
3422	kfree(entry);
3423
3424	return 0;
3425}
3426
3427int hci_bdaddr_list_del_with_irk(struct list_head *list, bdaddr_t *bdaddr,
3428							u8 type)
3429{
3430	struct bdaddr_list_with_irk *entry;
3431
3432	if (!bacmp(bdaddr, BDADDR_ANY)) {
3433		hci_bdaddr_list_clear(list);
3434		return 0;
3435	}
3436
3437	entry = hci_bdaddr_list_lookup_with_irk(list, bdaddr, type);
3438	if (!entry)
3439		return -ENOENT;
3440
3441	list_del(&entry->list);
3442	kfree(entry);
3443
3444	return 0;
3445}
3446
3447int hci_bdaddr_list_del_with_flags(struct list_head *list, bdaddr_t *bdaddr,
3448				   u8 type)
3449{
3450	struct bdaddr_list_with_flags *entry;
3451
3452	if (!bacmp(bdaddr, BDADDR_ANY)) {
3453		hci_bdaddr_list_clear(list);
3454		return 0;
3455	}
3456
3457	entry = hci_bdaddr_list_lookup_with_flags(list, bdaddr, type);
3458	if (!entry)
3459		return -ENOENT;
3460
3461	list_del(&entry->list);
3462	kfree(entry);
3463
3464	return 0;
3465}
3466
3467/* This function requires the caller holds hdev->lock */
3468struct hci_conn_params *hci_conn_params_lookup(struct hci_dev *hdev,
3469					       bdaddr_t *addr, u8 addr_type)
3470{
3471	struct hci_conn_params *params;
3472
3473	list_for_each_entry(params, &hdev->le_conn_params, list) {
3474		if (bacmp(&params->addr, addr) == 0 &&
3475		    params->addr_type == addr_type) {
3476			return params;
3477		}
3478	}
3479
3480	return NULL;
3481}
3482
3483/* This function requires the caller holds hdev->lock */
3484struct hci_conn_params *hci_pend_le_action_lookup(struct list_head *list,
3485						  bdaddr_t *addr, u8 addr_type)
3486{
3487	struct hci_conn_params *param;
3488
3489	switch (addr_type) {
3490	case ADDR_LE_DEV_PUBLIC_RESOLVED:
3491		addr_type = ADDR_LE_DEV_PUBLIC;
3492		break;
3493	case ADDR_LE_DEV_RANDOM_RESOLVED:
3494		addr_type = ADDR_LE_DEV_RANDOM;
3495		break;
3496	}
3497
3498	list_for_each_entry(param, list, action) {
3499		if (bacmp(&param->addr, addr) == 0 &&
3500		    param->addr_type == addr_type)
3501			return param;
3502	}
3503
3504	return NULL;
3505}
3506
3507/* This function requires the caller holds hdev->lock */
3508struct hci_conn_params *hci_conn_params_add(struct hci_dev *hdev,
3509					    bdaddr_t *addr, u8 addr_type)
3510{
3511	struct hci_conn_params *params;
3512
3513	params = hci_conn_params_lookup(hdev, addr, addr_type);
3514	if (params)
3515		return params;
3516
3517	params = kzalloc(sizeof(*params), GFP_KERNEL);
3518	if (!params) {
3519		bt_dev_err(hdev, "out of memory");
3520		return NULL;
3521	}
3522
3523	bacpy(&params->addr, addr);
3524	params->addr_type = addr_type;
3525
3526	list_add(&params->list, &hdev->le_conn_params);
3527	INIT_LIST_HEAD(&params->action);
3528
3529	params->conn_min_interval = hdev->le_conn_min_interval;
3530	params->conn_max_interval = hdev->le_conn_max_interval;
3531	params->conn_latency = hdev->le_conn_latency;
3532	params->supervision_timeout = hdev->le_supv_timeout;
3533	params->auto_connect = HCI_AUTO_CONN_DISABLED;
3534
3535	BT_DBG("addr %pMR (type %u)", addr, addr_type);
3536
3537	return params;
3538}
3539
3540static void hci_conn_params_free(struct hci_conn_params *params)
3541{
3542	if (params->conn) {
3543		hci_conn_drop(params->conn);
3544		hci_conn_put(params->conn);
3545	}
3546
3547	list_del(&params->action);
3548	list_del(&params->list);
3549	kfree(params);
3550}
3551
3552/* This function requires the caller holds hdev->lock */
3553void hci_conn_params_del(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type)
3554{
3555	struct hci_conn_params *params;
3556
3557	params = hci_conn_params_lookup(hdev, addr, addr_type);
3558	if (!params)
3559		return;
3560
3561	hci_conn_params_free(params);
3562
3563	hci_update_background_scan(hdev);
3564
3565	BT_DBG("addr %pMR (type %u)", addr, addr_type);
3566}
3567
3568/* This function requires the caller holds hdev->lock */
3569void hci_conn_params_clear_disabled(struct hci_dev *hdev)
3570{
3571	struct hci_conn_params *params, *tmp;
3572
3573	list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list) {
3574		if (params->auto_connect != HCI_AUTO_CONN_DISABLED)
3575			continue;
3576
3577		/* If trying to establish one time connection to disabled
3578		 * device, leave the params, but mark them as just once.
3579		 */
3580		if (params->explicit_connect) {
3581			params->auto_connect = HCI_AUTO_CONN_EXPLICIT;
3582			continue;
3583		}
3584
3585		list_del(&params->list);
3586		kfree(params);
3587	}
3588
3589	BT_DBG("All LE disabled connection parameters were removed");
3590}
3591
3592/* This function requires the caller holds hdev->lock */
3593static void hci_conn_params_clear_all(struct hci_dev *hdev)
3594{
3595	struct hci_conn_params *params, *tmp;
3596
3597	list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list)
3598		hci_conn_params_free(params);
3599
3600	BT_DBG("All LE connection parameters were removed");
3601}
3602
3603/* Copy the Identity Address of the controller.
3604 *
3605 * If the controller has a public BD_ADDR, then by default use that one.
3606 * If this is a LE only controller without a public address, default to
3607 * the static random address.
3608 *
3609 * For debugging purposes it is possible to force controllers with a
3610 * public address to use the static random address instead.
3611 *
3612 * In case BR/EDR has been disabled on a dual-mode controller and
3613 * userspace has configured a static address, then that address
3614 * becomes the identity address instead of the public BR/EDR address.
3615 */
3616void hci_copy_identity_address(struct hci_dev *hdev, bdaddr_t *bdaddr,
3617			       u8 *bdaddr_type)
3618{
3619	if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
3620	    !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
3621	    (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
3622	     bacmp(&hdev->static_addr, BDADDR_ANY))) {
3623		bacpy(bdaddr, &hdev->static_addr);
3624		*bdaddr_type = ADDR_LE_DEV_RANDOM;
3625	} else {
3626		bacpy(bdaddr, &hdev->bdaddr);
3627		*bdaddr_type = ADDR_LE_DEV_PUBLIC;
3628	}
3629}
3630
3631static void hci_suspend_clear_tasks(struct hci_dev *hdev)
3632{
3633	int i;
3634
3635	for (i = 0; i < __SUSPEND_NUM_TASKS; i++)
3636		clear_bit(i, hdev->suspend_tasks);
3637
3638	wake_up(&hdev->suspend_wait_q);
3639}
3640
3641static int hci_suspend_wait_event(struct hci_dev *hdev)
3642{
3643#define WAKE_COND                                                              \
3644	(find_first_bit(hdev->suspend_tasks, __SUSPEND_NUM_TASKS) ==           \
3645	 __SUSPEND_NUM_TASKS)
3646
3647	int i;
3648	int ret = wait_event_timeout(hdev->suspend_wait_q,
3649				     WAKE_COND, SUSPEND_NOTIFIER_TIMEOUT);
3650
3651	if (ret == 0) {
3652		bt_dev_err(hdev, "Timed out waiting for suspend events");
3653		for (i = 0; i < __SUSPEND_NUM_TASKS; ++i) {
3654			if (test_bit(i, hdev->suspend_tasks))
3655				bt_dev_err(hdev, "Suspend timeout bit: %d", i);
3656			clear_bit(i, hdev->suspend_tasks);
3657		}
3658
3659		ret = -ETIMEDOUT;
3660	} else {
3661		ret = 0;
3662	}
3663
3664	return ret;
3665}
3666
3667static void hci_prepare_suspend(struct work_struct *work)
3668{
3669	struct hci_dev *hdev =
3670		container_of(work, struct hci_dev, suspend_prepare);
3671
3672	hci_dev_lock(hdev);
3673	hci_req_prepare_suspend(hdev, hdev->suspend_state_next);
3674	hci_dev_unlock(hdev);
3675}
3676
3677static int hci_change_suspend_state(struct hci_dev *hdev,
3678				    enum suspended_state next)
3679{
3680	hdev->suspend_state_next = next;
3681	set_bit(SUSPEND_PREPARE_NOTIFIER, hdev->suspend_tasks);
3682	queue_work(hdev->req_workqueue, &hdev->suspend_prepare);
3683	return hci_suspend_wait_event(hdev);
3684}
3685
3686static void hci_clear_wake_reason(struct hci_dev *hdev)
3687{
3688	hci_dev_lock(hdev);
3689
3690	hdev->wake_reason = 0;
3691	bacpy(&hdev->wake_addr, BDADDR_ANY);
3692	hdev->wake_addr_type = 0;
3693
3694	hci_dev_unlock(hdev);
3695}
3696
3697static int hci_suspend_notifier(struct notifier_block *nb, unsigned long action,
3698				void *data)
3699{
3700	struct hci_dev *hdev =
3701		container_of(nb, struct hci_dev, suspend_notifier);
3702	int ret = 0;
3703	u8 state = BT_RUNNING;
3704
3705	/* If powering down, wait for completion. */
3706	if (mgmt_powering_down(hdev)) {
3707		set_bit(SUSPEND_POWERING_DOWN, hdev->suspend_tasks);
3708		ret = hci_suspend_wait_event(hdev);
3709		if (ret)
3710			goto done;
3711	}
3712
3713	/* Suspend notifier should only act on events when powered. */
3714	if (!hdev_is_powered(hdev) ||
3715	    hci_dev_test_flag(hdev, HCI_UNREGISTER))
3716		goto done;
3717
3718	if (action == PM_SUSPEND_PREPARE) {
3719		/* Suspend consists of two actions:
3720		 *  - First, disconnect everything and make the controller not
3721		 *    connectable (disabling scanning)
3722		 *  - Second, program event filter/accept list and enable scan
3723		 */
3724		ret = hci_change_suspend_state(hdev, BT_SUSPEND_DISCONNECT);
3725		if (!ret)
3726			state = BT_SUSPEND_DISCONNECT;
3727
3728		/* Only configure accept list if disconnect succeeded and wake
3729		 * isn't being prevented.
3730		 */
3731		if (!ret && !(hdev->prevent_wake && hdev->prevent_wake(hdev))) {
3732			ret = hci_change_suspend_state(hdev,
3733						BT_SUSPEND_CONFIGURE_WAKE);
3734			if (!ret)
3735				state = BT_SUSPEND_CONFIGURE_WAKE;
3736		}
3737
3738		hci_clear_wake_reason(hdev);
3739		mgmt_suspending(hdev, state);
3740
3741	} else if (action == PM_POST_SUSPEND) {
3742		ret = hci_change_suspend_state(hdev, BT_RUNNING);
3743
3744		mgmt_resuming(hdev, hdev->wake_reason, &hdev->wake_addr,
3745			      hdev->wake_addr_type);
3746	}
3747
3748done:
3749	/* We always allow suspend even if suspend preparation failed and
3750	 * attempt to recover in resume.
3751	 */
3752	if (ret)
3753		bt_dev_err(hdev, "Suspend notifier action (%lu) failed: %d",
3754			   action, ret);
3755
3756	return NOTIFY_DONE;
3757}
3758
3759/* Alloc HCI device */
3760struct hci_dev *hci_alloc_dev(void)
3761{
3762	struct hci_dev *hdev;
3763
3764	hdev = kzalloc(sizeof(*hdev), GFP_KERNEL);
3765	if (!hdev)
3766		return NULL;
3767
3768	hdev->pkt_type  = (HCI_DM1 | HCI_DH1 | HCI_HV1);
3769	hdev->esco_type = (ESCO_HV1);
3770	hdev->link_mode = (HCI_LM_ACCEPT);
3771	hdev->num_iac = 0x01;		/* One IAC support is mandatory */
3772	hdev->io_capability = 0x03;	/* No Input No Output */
3773	hdev->manufacturer = 0xffff;	/* Default to internal use */
3774	hdev->inq_tx_power = HCI_TX_POWER_INVALID;
3775	hdev->adv_tx_power = HCI_TX_POWER_INVALID;
3776	hdev->adv_instance_cnt = 0;
3777	hdev->cur_adv_instance = 0x00;
3778	hdev->adv_instance_timeout = 0;
3779
3780	hdev->advmon_allowlist_duration = 300;
3781	hdev->advmon_no_filter_duration = 500;
3782	hdev->enable_advmon_interleave_scan = 0x00;	/* Default to disable */
3783
3784	hdev->sniff_max_interval = 800;
3785	hdev->sniff_min_interval = 80;
3786
3787	hdev->le_adv_channel_map = 0x07;
3788	hdev->le_adv_min_interval = 0x0800;
3789	hdev->le_adv_max_interval = 0x0800;
3790	hdev->le_scan_interval = 0x0060;
3791	hdev->le_scan_window = 0x0030;
3792	hdev->le_scan_int_suspend = 0x0400;
3793	hdev->le_scan_window_suspend = 0x0012;
3794	hdev->le_scan_int_discovery = DISCOV_LE_SCAN_INT;
3795	hdev->le_scan_window_discovery = DISCOV_LE_SCAN_WIN;
3796	hdev->le_scan_int_adv_monitor = 0x0060;
3797	hdev->le_scan_window_adv_monitor = 0x0030;
3798	hdev->le_scan_int_connect = 0x0060;
3799	hdev->le_scan_window_connect = 0x0060;
3800	hdev->le_conn_min_interval = 0x0018;
3801	hdev->le_conn_max_interval = 0x0028;
3802	hdev->le_conn_latency = 0x0000;
3803	hdev->le_supv_timeout = 0x002a;
3804	hdev->le_def_tx_len = 0x001b;
3805	hdev->le_def_tx_time = 0x0148;
3806	hdev->le_max_tx_len = 0x001b;
3807	hdev->le_max_tx_time = 0x0148;
3808	hdev->le_max_rx_len = 0x001b;
3809	hdev->le_max_rx_time = 0x0148;
3810	hdev->le_max_key_size = SMP_MAX_ENC_KEY_SIZE;
3811	hdev->le_min_key_size = SMP_MIN_ENC_KEY_SIZE;
3812	hdev->le_tx_def_phys = HCI_LE_SET_PHY_1M;
3813	hdev->le_rx_def_phys = HCI_LE_SET_PHY_1M;
3814	hdev->le_num_of_adv_sets = HCI_MAX_ADV_INSTANCES;
3815	hdev->def_multi_adv_rotation_duration = HCI_DEFAULT_ADV_DURATION;
3816	hdev->def_le_autoconnect_timeout = HCI_LE_AUTOCONN_TIMEOUT;
3817	hdev->min_le_tx_power = HCI_TX_POWER_INVALID;
3818	hdev->max_le_tx_power = HCI_TX_POWER_INVALID;
3819
3820	hdev->rpa_timeout = HCI_DEFAULT_RPA_TIMEOUT;
3821	hdev->discov_interleaved_timeout = DISCOV_INTERLEAVED_TIMEOUT;
3822	hdev->conn_info_min_age = DEFAULT_CONN_INFO_MIN_AGE;
3823	hdev->conn_info_max_age = DEFAULT_CONN_INFO_MAX_AGE;
3824	hdev->auth_payload_timeout = DEFAULT_AUTH_PAYLOAD_TIMEOUT;
3825	hdev->min_enc_key_size = HCI_MIN_ENC_KEY_SIZE;
3826
3827	/* default 1.28 sec page scan */
3828	hdev->def_page_scan_type = PAGE_SCAN_TYPE_STANDARD;
3829	hdev->def_page_scan_int = 0x0800;
3830	hdev->def_page_scan_window = 0x0012;
3831
3832	mutex_init(&hdev->lock);
3833	mutex_init(&hdev->req_lock);
3834
3835	INIT_LIST_HEAD(&hdev->mgmt_pending);
3836	INIT_LIST_HEAD(&hdev->reject_list);
3837	INIT_LIST_HEAD(&hdev->accept_list);
3838	INIT_LIST_HEAD(&hdev->uuids);
3839	INIT_LIST_HEAD(&hdev->link_keys);
3840	INIT_LIST_HEAD(&hdev->long_term_keys);
3841	INIT_LIST_HEAD(&hdev->identity_resolving_keys);
3842	INIT_LIST_HEAD(&hdev->remote_oob_data);
3843	INIT_LIST_HEAD(&hdev->le_accept_list);
3844	INIT_LIST_HEAD(&hdev->le_resolv_list);
3845	INIT_LIST_HEAD(&hdev->le_conn_params);
3846	INIT_LIST_HEAD(&hdev->pend_le_conns);
3847	INIT_LIST_HEAD(&hdev->pend_le_reports);
3848	INIT_LIST_HEAD(&hdev->conn_hash.list);
3849	INIT_LIST_HEAD(&hdev->adv_instances);
3850	INIT_LIST_HEAD(&hdev->blocked_keys);
3851
3852	INIT_WORK(&hdev->rx_work, hci_rx_work);
3853	INIT_WORK(&hdev->cmd_work, hci_cmd_work);
3854	INIT_WORK(&hdev->tx_work, hci_tx_work);
3855	INIT_WORK(&hdev->power_on, hci_power_on);
3856	INIT_WORK(&hdev->error_reset, hci_error_reset);
3857	INIT_WORK(&hdev->suspend_prepare, hci_prepare_suspend);
3858
3859	INIT_DELAYED_WORK(&hdev->power_off, hci_power_off);
3860
3861	skb_queue_head_init(&hdev->rx_q);
3862	skb_queue_head_init(&hdev->cmd_q);
3863	skb_queue_head_init(&hdev->raw_q);
3864
3865	init_waitqueue_head(&hdev->req_wait_q);
3866	init_waitqueue_head(&hdev->suspend_wait_q);
3867
3868	INIT_DELAYED_WORK(&hdev->cmd_timer, hci_cmd_timeout);
3869	INIT_DELAYED_WORK(&hdev->ncmd_timer, hci_ncmd_timeout);
3870
3871	hci_request_setup(hdev);
3872
3873	hci_init_sysfs(hdev);
3874	discovery_init(hdev);
3875
3876	return hdev;
3877}
3878EXPORT_SYMBOL(hci_alloc_dev);
3879
3880/* Free HCI device */
3881void hci_free_dev(struct hci_dev *hdev)
3882{
3883	/* will free via device release */
3884	put_device(&hdev->dev);
3885}
3886EXPORT_SYMBOL(hci_free_dev);
3887
3888/* Register HCI device */
3889int hci_register_dev(struct hci_dev *hdev)
3890{
3891	int id, error;
3892
3893	if (!hdev->open || !hdev->close || !hdev->send)
3894		return -EINVAL;
3895
3896	/* Do not allow HCI_AMP devices to register at index 0,
3897	 * so the index can be used as the AMP controller ID.
3898	 */
3899	switch (hdev->dev_type) {
3900	case HCI_PRIMARY:
3901		id = ida_simple_get(&hci_index_ida, 0, 0, GFP_KERNEL);
3902		break;
3903	case HCI_AMP:
3904		id = ida_simple_get(&hci_index_ida, 1, 0, GFP_KERNEL);
3905		break;
3906	default:
3907		return -EINVAL;
3908	}
3909
3910	if (id < 0)
3911		return id;
3912
3913	sprintf(hdev->name, "hci%d", id);
3914	hdev->id = id;
3915
3916	BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
3917
3918	hdev->workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI, hdev->name);
 
3919	if (!hdev->workqueue) {
3920		error = -ENOMEM;
3921		goto err;
3922	}
3923
3924	hdev->req_workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI,
3925						      hdev->name);
3926	if (!hdev->req_workqueue) {
3927		destroy_workqueue(hdev->workqueue);
3928		error = -ENOMEM;
3929		goto err;
3930	}
3931
3932	if (!IS_ERR_OR_NULL(bt_debugfs))
3933		hdev->debugfs = debugfs_create_dir(hdev->name, bt_debugfs);
3934
3935	dev_set_name(&hdev->dev, "%s", hdev->name);
3936
3937	error = device_add(&hdev->dev);
3938	if (error < 0)
3939		goto err_wqueue;
3940
3941	hci_leds_init(hdev);
3942
3943	hdev->rfkill = rfkill_alloc(hdev->name, &hdev->dev,
3944				    RFKILL_TYPE_BLUETOOTH, &hci_rfkill_ops,
3945				    hdev);
3946	if (hdev->rfkill) {
3947		if (rfkill_register(hdev->rfkill) < 0) {
3948			rfkill_destroy(hdev->rfkill);
3949			hdev->rfkill = NULL;
3950		}
3951	}
3952
3953	if (hdev->rfkill && rfkill_blocked(hdev->rfkill))
3954		hci_dev_set_flag(hdev, HCI_RFKILLED);
3955
3956	hci_dev_set_flag(hdev, HCI_SETUP);
3957	hci_dev_set_flag(hdev, HCI_AUTO_OFF);
3958
3959	if (hdev->dev_type == HCI_PRIMARY) {
3960		/* Assume BR/EDR support until proven otherwise (such as
3961		 * through reading supported features during init.
3962		 */
3963		hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
3964	}
3965
3966	write_lock(&hci_dev_list_lock);
3967	list_add(&hdev->list, &hci_dev_list);
3968	write_unlock(&hci_dev_list_lock);
3969
3970	/* Devices that are marked for raw-only usage are unconfigured
3971	 * and should not be included in normal operation.
3972	 */
3973	if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
3974		hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
3975
3976	hci_sock_dev_event(hdev, HCI_DEV_REG);
3977	hci_dev_hold(hdev);
3978
3979	if (!test_bit(HCI_QUIRK_NO_SUSPEND_NOTIFIER, &hdev->quirks)) {
3980		hdev->suspend_notifier.notifier_call = hci_suspend_notifier;
3981		error = register_pm_notifier(&hdev->suspend_notifier);
3982		if (error)
3983			goto err_wqueue;
3984	}
3985
3986	queue_work(hdev->req_workqueue, &hdev->power_on);
3987
3988	idr_init(&hdev->adv_monitors_idr);
3989
3990	return id;
3991
3992err_wqueue:
3993	destroy_workqueue(hdev->workqueue);
3994	destroy_workqueue(hdev->req_workqueue);
3995err:
3996	ida_simple_remove(&hci_index_ida, hdev->id);
3997
3998	return error;
3999}
4000EXPORT_SYMBOL(hci_register_dev);
4001
4002/* Unregister HCI device */
4003void hci_unregister_dev(struct hci_dev *hdev)
4004{
 
 
4005	BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
4006
4007	hci_dev_set_flag(hdev, HCI_UNREGISTER);
4008
 
 
4009	write_lock(&hci_dev_list_lock);
4010	list_del(&hdev->list);
4011	write_unlock(&hci_dev_list_lock);
4012
 
 
4013	cancel_work_sync(&hdev->power_on);
4014
4015	if (!test_bit(HCI_QUIRK_NO_SUSPEND_NOTIFIER, &hdev->quirks)) {
4016		hci_suspend_clear_tasks(hdev);
4017		unregister_pm_notifier(&hdev->suspend_notifier);
4018		cancel_work_sync(&hdev->suspend_prepare);
4019	}
4020
4021	hci_dev_do_close(hdev);
4022
4023	if (!test_bit(HCI_INIT, &hdev->flags) &&
4024	    !hci_dev_test_flag(hdev, HCI_SETUP) &&
4025	    !hci_dev_test_flag(hdev, HCI_CONFIG)) {
4026		hci_dev_lock(hdev);
4027		mgmt_index_removed(hdev);
4028		hci_dev_unlock(hdev);
4029	}
4030
4031	/* mgmt_index_removed should take care of emptying the
4032	 * pending list */
4033	BUG_ON(!list_empty(&hdev->mgmt_pending));
4034
4035	hci_sock_dev_event(hdev, HCI_DEV_UNREG);
4036
4037	if (hdev->rfkill) {
4038		rfkill_unregister(hdev->rfkill);
4039		rfkill_destroy(hdev->rfkill);
4040	}
4041
4042	device_del(&hdev->dev);
4043	/* Actual cleanup is deferred until hci_cleanup_dev(). */
4044	hci_dev_put(hdev);
4045}
4046EXPORT_SYMBOL(hci_unregister_dev);
4047
4048/* Cleanup HCI device */
4049void hci_cleanup_dev(struct hci_dev *hdev)
4050{
4051	debugfs_remove_recursive(hdev->debugfs);
4052	kfree_const(hdev->hw_info);
4053	kfree_const(hdev->fw_info);
4054
4055	destroy_workqueue(hdev->workqueue);
4056	destroy_workqueue(hdev->req_workqueue);
4057
4058	hci_dev_lock(hdev);
4059	hci_bdaddr_list_clear(&hdev->reject_list);
4060	hci_bdaddr_list_clear(&hdev->accept_list);
4061	hci_uuids_clear(hdev);
4062	hci_link_keys_clear(hdev);
4063	hci_smp_ltks_clear(hdev);
4064	hci_smp_irks_clear(hdev);
4065	hci_remote_oob_data_clear(hdev);
4066	hci_adv_instances_clear(hdev);
4067	hci_adv_monitors_clear(hdev);
4068	hci_bdaddr_list_clear(&hdev->le_accept_list);
4069	hci_bdaddr_list_clear(&hdev->le_resolv_list);
4070	hci_conn_params_clear_all(hdev);
4071	hci_discovery_filter_clear(hdev);
4072	hci_blocked_keys_clear(hdev);
4073	hci_dev_unlock(hdev);
4074
4075	ida_simple_remove(&hci_index_ida, hdev->id);
 
 
4076}
 
4077
4078/* Suspend HCI device */
4079int hci_suspend_dev(struct hci_dev *hdev)
4080{
4081	hci_sock_dev_event(hdev, HCI_DEV_SUSPEND);
4082	return 0;
4083}
4084EXPORT_SYMBOL(hci_suspend_dev);
4085
4086/* Resume HCI device */
4087int hci_resume_dev(struct hci_dev *hdev)
4088{
4089	hci_sock_dev_event(hdev, HCI_DEV_RESUME);
4090	return 0;
4091}
4092EXPORT_SYMBOL(hci_resume_dev);
4093
4094/* Reset HCI device */
4095int hci_reset_dev(struct hci_dev *hdev)
4096{
4097	static const u8 hw_err[] = { HCI_EV_HARDWARE_ERROR, 0x01, 0x00 };
4098	struct sk_buff *skb;
4099
4100	skb = bt_skb_alloc(3, GFP_ATOMIC);
4101	if (!skb)
4102		return -ENOMEM;
4103
4104	hci_skb_pkt_type(skb) = HCI_EVENT_PKT;
4105	skb_put_data(skb, hw_err, 3);
4106
4107	bt_dev_err(hdev, "Injecting HCI hardware error event");
4108
4109	/* Send Hardware Error to upper stack */
4110	return hci_recv_frame(hdev, skb);
4111}
4112EXPORT_SYMBOL(hci_reset_dev);
4113
4114/* Receive frame from HCI drivers */
4115int hci_recv_frame(struct hci_dev *hdev, struct sk_buff *skb)
4116{
4117	if (!hdev || (!test_bit(HCI_UP, &hdev->flags)
4118		      && !test_bit(HCI_INIT, &hdev->flags))) {
4119		kfree_skb(skb);
4120		return -ENXIO;
4121	}
4122
4123	if (hci_skb_pkt_type(skb) != HCI_EVENT_PKT &&
4124	    hci_skb_pkt_type(skb) != HCI_ACLDATA_PKT &&
4125	    hci_skb_pkt_type(skb) != HCI_SCODATA_PKT &&
4126	    hci_skb_pkt_type(skb) != HCI_ISODATA_PKT) {
4127		kfree_skb(skb);
4128		return -EINVAL;
4129	}
4130
4131	/* Incoming skb */
4132	bt_cb(skb)->incoming = 1;
4133
4134	/* Time stamp */
4135	__net_timestamp(skb);
4136
4137	skb_queue_tail(&hdev->rx_q, skb);
4138	queue_work(hdev->workqueue, &hdev->rx_work);
4139
4140	return 0;
4141}
4142EXPORT_SYMBOL(hci_recv_frame);
4143
4144/* Receive diagnostic message from HCI drivers */
4145int hci_recv_diag(struct hci_dev *hdev, struct sk_buff *skb)
4146{
4147	/* Mark as diagnostic packet */
4148	hci_skb_pkt_type(skb) = HCI_DIAG_PKT;
4149
4150	/* Time stamp */
4151	__net_timestamp(skb);
4152
4153	skb_queue_tail(&hdev->rx_q, skb);
4154	queue_work(hdev->workqueue, &hdev->rx_work);
4155
4156	return 0;
4157}
4158EXPORT_SYMBOL(hci_recv_diag);
4159
4160void hci_set_hw_info(struct hci_dev *hdev, const char *fmt, ...)
4161{
4162	va_list vargs;
4163
4164	va_start(vargs, fmt);
4165	kfree_const(hdev->hw_info);
4166	hdev->hw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
4167	va_end(vargs);
4168}
4169EXPORT_SYMBOL(hci_set_hw_info);
4170
4171void hci_set_fw_info(struct hci_dev *hdev, const char *fmt, ...)
4172{
4173	va_list vargs;
4174
4175	va_start(vargs, fmt);
4176	kfree_const(hdev->fw_info);
4177	hdev->fw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
4178	va_end(vargs);
4179}
4180EXPORT_SYMBOL(hci_set_fw_info);
4181
4182/* ---- Interface to upper protocols ---- */
4183
4184int hci_register_cb(struct hci_cb *cb)
4185{
4186	BT_DBG("%p name %s", cb, cb->name);
4187
4188	mutex_lock(&hci_cb_list_lock);
4189	list_add_tail(&cb->list, &hci_cb_list);
4190	mutex_unlock(&hci_cb_list_lock);
4191
4192	return 0;
4193}
4194EXPORT_SYMBOL(hci_register_cb);
4195
4196int hci_unregister_cb(struct hci_cb *cb)
4197{
4198	BT_DBG("%p name %s", cb, cb->name);
4199
4200	mutex_lock(&hci_cb_list_lock);
4201	list_del(&cb->list);
4202	mutex_unlock(&hci_cb_list_lock);
4203
4204	return 0;
4205}
4206EXPORT_SYMBOL(hci_unregister_cb);
4207
4208static void hci_send_frame(struct hci_dev *hdev, struct sk_buff *skb)
4209{
4210	int err;
4211
4212	BT_DBG("%s type %d len %d", hdev->name, hci_skb_pkt_type(skb),
4213	       skb->len);
4214
4215	/* Time stamp */
4216	__net_timestamp(skb);
4217
4218	/* Send copy to monitor */
4219	hci_send_to_monitor(hdev, skb);
4220
4221	if (atomic_read(&hdev->promisc)) {
4222		/* Send copy to the sockets */
4223		hci_send_to_sock(hdev, skb);
4224	}
4225
4226	/* Get rid of skb owner, prior to sending to the driver. */
4227	skb_orphan(skb);
4228
4229	if (!test_bit(HCI_RUNNING, &hdev->flags)) {
4230		kfree_skb(skb);
4231		return;
4232	}
4233
4234	err = hdev->send(hdev, skb);
4235	if (err < 0) {
4236		bt_dev_err(hdev, "sending frame failed (%d)", err);
4237		kfree_skb(skb);
4238	}
4239}
4240
4241/* Send HCI command */
4242int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen,
4243		 const void *param)
4244{
4245	struct sk_buff *skb;
4246
4247	BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen);
4248
4249	skb = hci_prepare_cmd(hdev, opcode, plen, param);
4250	if (!skb) {
4251		bt_dev_err(hdev, "no memory for command");
4252		return -ENOMEM;
4253	}
4254
4255	/* Stand-alone HCI commands must be flagged as
4256	 * single-command requests.
4257	 */
4258	bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
4259
4260	skb_queue_tail(&hdev->cmd_q, skb);
4261	queue_work(hdev->workqueue, &hdev->cmd_work);
4262
4263	return 0;
4264}
4265
4266int __hci_cmd_send(struct hci_dev *hdev, u16 opcode, u32 plen,
4267		   const void *param)
4268{
4269	struct sk_buff *skb;
4270
4271	if (hci_opcode_ogf(opcode) != 0x3f) {
4272		/* A controller receiving a command shall respond with either
4273		 * a Command Status Event or a Command Complete Event.
4274		 * Therefore, all standard HCI commands must be sent via the
4275		 * standard API, using hci_send_cmd or hci_cmd_sync helpers.
4276		 * Some vendors do not comply with this rule for vendor-specific
4277		 * commands and do not return any event. We want to support
4278		 * unresponded commands for such cases only.
4279		 */
4280		bt_dev_err(hdev, "unresponded command not supported");
4281		return -EINVAL;
4282	}
4283
4284	skb = hci_prepare_cmd(hdev, opcode, plen, param);
4285	if (!skb) {
4286		bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)",
4287			   opcode);
4288		return -ENOMEM;
4289	}
4290
4291	hci_send_frame(hdev, skb);
4292
4293	return 0;
4294}
4295EXPORT_SYMBOL(__hci_cmd_send);
4296
4297/* Get data from the previously sent command */
4298void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode)
4299{
4300	struct hci_command_hdr *hdr;
4301
4302	if (!hdev->sent_cmd)
4303		return NULL;
4304
4305	hdr = (void *) hdev->sent_cmd->data;
4306
4307	if (hdr->opcode != cpu_to_le16(opcode))
4308		return NULL;
4309
4310	BT_DBG("%s opcode 0x%4.4x", hdev->name, opcode);
4311
4312	return hdev->sent_cmd->data + HCI_COMMAND_HDR_SIZE;
4313}
4314
4315/* Send HCI command and wait for command complete event */
4316struct sk_buff *hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
4317			     const void *param, u32 timeout)
4318{
4319	struct sk_buff *skb;
4320
4321	if (!test_bit(HCI_UP, &hdev->flags))
4322		return ERR_PTR(-ENETDOWN);
4323
4324	bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen);
4325
4326	hci_req_sync_lock(hdev);
4327	skb = __hci_cmd_sync(hdev, opcode, plen, param, timeout);
4328	hci_req_sync_unlock(hdev);
4329
4330	return skb;
4331}
4332EXPORT_SYMBOL(hci_cmd_sync);
4333
4334/* Send ACL data */
4335static void hci_add_acl_hdr(struct sk_buff *skb, __u16 handle, __u16 flags)
4336{
4337	struct hci_acl_hdr *hdr;
4338	int len = skb->len;
4339
4340	skb_push(skb, HCI_ACL_HDR_SIZE);
4341	skb_reset_transport_header(skb);
4342	hdr = (struct hci_acl_hdr *)skb_transport_header(skb);
4343	hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
4344	hdr->dlen   = cpu_to_le16(len);
4345}
4346
4347static void hci_queue_acl(struct hci_chan *chan, struct sk_buff_head *queue,
4348			  struct sk_buff *skb, __u16 flags)
4349{
4350	struct hci_conn *conn = chan->conn;
4351	struct hci_dev *hdev = conn->hdev;
4352	struct sk_buff *list;
4353
4354	skb->len = skb_headlen(skb);
4355	skb->data_len = 0;
4356
4357	hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
4358
4359	switch (hdev->dev_type) {
4360	case HCI_PRIMARY:
4361		hci_add_acl_hdr(skb, conn->handle, flags);
4362		break;
4363	case HCI_AMP:
4364		hci_add_acl_hdr(skb, chan->handle, flags);
4365		break;
4366	default:
4367		bt_dev_err(hdev, "unknown dev_type %d", hdev->dev_type);
4368		return;
4369	}
4370
4371	list = skb_shinfo(skb)->frag_list;
4372	if (!list) {
4373		/* Non fragmented */
4374		BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
4375
4376		skb_queue_tail(queue, skb);
4377	} else {
4378		/* Fragmented */
4379		BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
4380
4381		skb_shinfo(skb)->frag_list = NULL;
4382
4383		/* Queue all fragments atomically. We need to use spin_lock_bh
4384		 * here because of 6LoWPAN links, as there this function is
4385		 * called from softirq and using normal spin lock could cause
4386		 * deadlocks.
4387		 */
4388		spin_lock_bh(&queue->lock);
4389
4390		__skb_queue_tail(queue, skb);
4391
4392		flags &= ~ACL_START;
4393		flags |= ACL_CONT;
4394		do {
4395			skb = list; list = list->next;
4396
4397			hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
4398			hci_add_acl_hdr(skb, conn->handle, flags);
4399
4400			BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
4401
4402			__skb_queue_tail(queue, skb);
4403		} while (list);
4404
4405		spin_unlock_bh(&queue->lock);
4406	}
4407}
4408
4409void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags)
4410{
4411	struct hci_dev *hdev = chan->conn->hdev;
4412
4413	BT_DBG("%s chan %p flags 0x%4.4x", hdev->name, chan, flags);
4414
4415	hci_queue_acl(chan, &chan->data_q, skb, flags);
4416
4417	queue_work(hdev->workqueue, &hdev->tx_work);
4418}
4419
4420/* Send SCO data */
4421void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb)
4422{
4423	struct hci_dev *hdev = conn->hdev;
4424	struct hci_sco_hdr hdr;
4425
4426	BT_DBG("%s len %d", hdev->name, skb->len);
4427
4428	hdr.handle = cpu_to_le16(conn->handle);
4429	hdr.dlen   = skb->len;
4430
4431	skb_push(skb, HCI_SCO_HDR_SIZE);
4432	skb_reset_transport_header(skb);
4433	memcpy(skb_transport_header(skb), &hdr, HCI_SCO_HDR_SIZE);
4434
4435	hci_skb_pkt_type(skb) = HCI_SCODATA_PKT;
4436
4437	skb_queue_tail(&conn->data_q, skb);
4438	queue_work(hdev->workqueue, &hdev->tx_work);
4439}
4440
4441/* ---- HCI TX task (outgoing data) ---- */
4442
4443/* HCI Connection scheduler */
4444static struct hci_conn *hci_low_sent(struct hci_dev *hdev, __u8 type,
4445				     int *quote)
4446{
4447	struct hci_conn_hash *h = &hdev->conn_hash;
4448	struct hci_conn *conn = NULL, *c;
4449	unsigned int num = 0, min = ~0;
4450
4451	/* We don't have to lock device here. Connections are always
4452	 * added and removed with TX task disabled. */
4453
4454	rcu_read_lock();
4455
4456	list_for_each_entry_rcu(c, &h->list, list) {
4457		if (c->type != type || skb_queue_empty(&c->data_q))
4458			continue;
4459
4460		if (c->state != BT_CONNECTED && c->state != BT_CONFIG)
4461			continue;
4462
4463		num++;
4464
4465		if (c->sent < min) {
4466			min  = c->sent;
4467			conn = c;
4468		}
4469
4470		if (hci_conn_num(hdev, type) == num)
4471			break;
4472	}
4473
4474	rcu_read_unlock();
4475
4476	if (conn) {
4477		int cnt, q;
4478
4479		switch (conn->type) {
4480		case ACL_LINK:
4481			cnt = hdev->acl_cnt;
4482			break;
4483		case SCO_LINK:
4484		case ESCO_LINK:
4485			cnt = hdev->sco_cnt;
4486			break;
4487		case LE_LINK:
4488			cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
4489			break;
4490		default:
4491			cnt = 0;
4492			bt_dev_err(hdev, "unknown link type %d", conn->type);
4493		}
4494
4495		q = cnt / num;
4496		*quote = q ? q : 1;
4497	} else
4498		*quote = 0;
4499
4500	BT_DBG("conn %p quote %d", conn, *quote);
4501	return conn;
4502}
4503
4504static void hci_link_tx_to(struct hci_dev *hdev, __u8 type)
4505{
4506	struct hci_conn_hash *h = &hdev->conn_hash;
4507	struct hci_conn *c;
4508
4509	bt_dev_err(hdev, "link tx timeout");
4510
4511	rcu_read_lock();
4512
4513	/* Kill stalled connections */
4514	list_for_each_entry_rcu(c, &h->list, list) {
4515		if (c->type == type && c->sent) {
4516			bt_dev_err(hdev, "killing stalled connection %pMR",
4517				   &c->dst);
4518			hci_disconnect(c, HCI_ERROR_REMOTE_USER_TERM);
4519		}
4520	}
4521
4522	rcu_read_unlock();
4523}
4524
4525static struct hci_chan *hci_chan_sent(struct hci_dev *hdev, __u8 type,
4526				      int *quote)
4527{
4528	struct hci_conn_hash *h = &hdev->conn_hash;
4529	struct hci_chan *chan = NULL;
4530	unsigned int num = 0, min = ~0, cur_prio = 0;
4531	struct hci_conn *conn;
4532	int cnt, q, conn_num = 0;
4533
4534	BT_DBG("%s", hdev->name);
4535
4536	rcu_read_lock();
4537
4538	list_for_each_entry_rcu(conn, &h->list, list) {
4539		struct hci_chan *tmp;
4540
4541		if (conn->type != type)
4542			continue;
4543
4544		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
4545			continue;
4546
4547		conn_num++;
4548
4549		list_for_each_entry_rcu(tmp, &conn->chan_list, list) {
4550			struct sk_buff *skb;
4551
4552			if (skb_queue_empty(&tmp->data_q))
4553				continue;
4554
4555			skb = skb_peek(&tmp->data_q);
4556			if (skb->priority < cur_prio)
4557				continue;
4558
4559			if (skb->priority > cur_prio) {
4560				num = 0;
4561				min = ~0;
4562				cur_prio = skb->priority;
4563			}
4564
4565			num++;
4566
4567			if (conn->sent < min) {
4568				min  = conn->sent;
4569				chan = tmp;
4570			}
4571		}
4572
4573		if (hci_conn_num(hdev, type) == conn_num)
4574			break;
4575	}
4576
4577	rcu_read_unlock();
4578
4579	if (!chan)
4580		return NULL;
4581
4582	switch (chan->conn->type) {
4583	case ACL_LINK:
4584		cnt = hdev->acl_cnt;
4585		break;
4586	case AMP_LINK:
4587		cnt = hdev->block_cnt;
4588		break;
4589	case SCO_LINK:
4590	case ESCO_LINK:
4591		cnt = hdev->sco_cnt;
4592		break;
4593	case LE_LINK:
4594		cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
4595		break;
4596	default:
4597		cnt = 0;
4598		bt_dev_err(hdev, "unknown link type %d", chan->conn->type);
4599	}
4600
4601	q = cnt / num;
4602	*quote = q ? q : 1;
4603	BT_DBG("chan %p quote %d", chan, *quote);
4604	return chan;
4605}
4606
4607static void hci_prio_recalculate(struct hci_dev *hdev, __u8 type)
4608{
4609	struct hci_conn_hash *h = &hdev->conn_hash;
4610	struct hci_conn *conn;
4611	int num = 0;
4612
4613	BT_DBG("%s", hdev->name);
4614
4615	rcu_read_lock();
4616
4617	list_for_each_entry_rcu(conn, &h->list, list) {
4618		struct hci_chan *chan;
4619
4620		if (conn->type != type)
4621			continue;
4622
4623		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
4624			continue;
4625
4626		num++;
4627
4628		list_for_each_entry_rcu(chan, &conn->chan_list, list) {
4629			struct sk_buff *skb;
4630
4631			if (chan->sent) {
4632				chan->sent = 0;
4633				continue;
4634			}
4635
4636			if (skb_queue_empty(&chan->data_q))
4637				continue;
4638
4639			skb = skb_peek(&chan->data_q);
4640			if (skb->priority >= HCI_PRIO_MAX - 1)
4641				continue;
4642
4643			skb->priority = HCI_PRIO_MAX - 1;
4644
4645			BT_DBG("chan %p skb %p promoted to %d", chan, skb,
4646			       skb->priority);
4647		}
4648
4649		if (hci_conn_num(hdev, type) == num)
4650			break;
4651	}
4652
4653	rcu_read_unlock();
4654
4655}
4656
4657static inline int __get_blocks(struct hci_dev *hdev, struct sk_buff *skb)
4658{
4659	/* Calculate count of blocks used by this packet */
4660	return DIV_ROUND_UP(skb->len - HCI_ACL_HDR_SIZE, hdev->block_len);
4661}
4662
4663static void __check_timeout(struct hci_dev *hdev, unsigned int cnt)
4664{
4665	if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
4666		/* ACL tx timeout must be longer than maximum
4667		 * link supervision timeout (40.9 seconds) */
4668		if (!cnt && time_after(jiffies, hdev->acl_last_tx +
4669				       HCI_ACL_TX_TIMEOUT))
4670			hci_link_tx_to(hdev, ACL_LINK);
4671	}
4672}
4673
4674/* Schedule SCO */
4675static void hci_sched_sco(struct hci_dev *hdev)
4676{
4677	struct hci_conn *conn;
4678	struct sk_buff *skb;
4679	int quote;
4680
4681	BT_DBG("%s", hdev->name);
4682
4683	if (!hci_conn_num(hdev, SCO_LINK))
4684		return;
4685
4686	while (hdev->sco_cnt && (conn = hci_low_sent(hdev, SCO_LINK, &quote))) {
4687		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
4688			BT_DBG("skb %p len %d", skb, skb->len);
4689			hci_send_frame(hdev, skb);
4690
4691			conn->sent++;
4692			if (conn->sent == ~0)
4693				conn->sent = 0;
4694		}
4695	}
4696}
4697
4698static void hci_sched_esco(struct hci_dev *hdev)
4699{
4700	struct hci_conn *conn;
4701	struct sk_buff *skb;
4702	int quote;
4703
4704	BT_DBG("%s", hdev->name);
4705
4706	if (!hci_conn_num(hdev, ESCO_LINK))
4707		return;
4708
4709	while (hdev->sco_cnt && (conn = hci_low_sent(hdev, ESCO_LINK,
4710						     &quote))) {
4711		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
4712			BT_DBG("skb %p len %d", skb, skb->len);
4713			hci_send_frame(hdev, skb);
4714
4715			conn->sent++;
4716			if (conn->sent == ~0)
4717				conn->sent = 0;
4718		}
4719	}
4720}
4721
4722static void hci_sched_acl_pkt(struct hci_dev *hdev)
4723{
4724	unsigned int cnt = hdev->acl_cnt;
4725	struct hci_chan *chan;
4726	struct sk_buff *skb;
4727	int quote;
4728
4729	__check_timeout(hdev, cnt);
4730
4731	while (hdev->acl_cnt &&
4732	       (chan = hci_chan_sent(hdev, ACL_LINK, &quote))) {
4733		u32 priority = (skb_peek(&chan->data_q))->priority;
4734		while (quote-- && (skb = skb_peek(&chan->data_q))) {
4735			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
4736			       skb->len, skb->priority);
4737
4738			/* Stop if priority has changed */
4739			if (skb->priority < priority)
4740				break;
4741
4742			skb = skb_dequeue(&chan->data_q);
4743
4744			hci_conn_enter_active_mode(chan->conn,
4745						   bt_cb(skb)->force_active);
4746
4747			hci_send_frame(hdev, skb);
4748			hdev->acl_last_tx = jiffies;
4749
4750			hdev->acl_cnt--;
4751			chan->sent++;
4752			chan->conn->sent++;
4753
4754			/* Send pending SCO packets right away */
4755			hci_sched_sco(hdev);
4756			hci_sched_esco(hdev);
4757		}
4758	}
4759
4760	if (cnt != hdev->acl_cnt)
4761		hci_prio_recalculate(hdev, ACL_LINK);
4762}
4763
4764static void hci_sched_acl_blk(struct hci_dev *hdev)
4765{
4766	unsigned int cnt = hdev->block_cnt;
4767	struct hci_chan *chan;
4768	struct sk_buff *skb;
4769	int quote;
4770	u8 type;
4771
4772	__check_timeout(hdev, cnt);
4773
4774	BT_DBG("%s", hdev->name);
4775
4776	if (hdev->dev_type == HCI_AMP)
4777		type = AMP_LINK;
4778	else
4779		type = ACL_LINK;
4780
4781	while (hdev->block_cnt > 0 &&
4782	       (chan = hci_chan_sent(hdev, type, &quote))) {
4783		u32 priority = (skb_peek(&chan->data_q))->priority;
4784		while (quote > 0 && (skb = skb_peek(&chan->data_q))) {
4785			int blocks;
4786
4787			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
4788			       skb->len, skb->priority);
4789
4790			/* Stop if priority has changed */
4791			if (skb->priority < priority)
4792				break;
4793
4794			skb = skb_dequeue(&chan->data_q);
4795
4796			blocks = __get_blocks(hdev, skb);
4797			if (blocks > hdev->block_cnt)
4798				return;
4799
4800			hci_conn_enter_active_mode(chan->conn,
4801						   bt_cb(skb)->force_active);
4802
4803			hci_send_frame(hdev, skb);
4804			hdev->acl_last_tx = jiffies;
4805
4806			hdev->block_cnt -= blocks;
4807			quote -= blocks;
4808
4809			chan->sent += blocks;
4810			chan->conn->sent += blocks;
4811		}
4812	}
4813
4814	if (cnt != hdev->block_cnt)
4815		hci_prio_recalculate(hdev, type);
4816}
4817
4818static void hci_sched_acl(struct hci_dev *hdev)
4819{
4820	BT_DBG("%s", hdev->name);
4821
4822	/* No ACL link over BR/EDR controller */
4823	if (!hci_conn_num(hdev, ACL_LINK) && hdev->dev_type == HCI_PRIMARY)
4824		return;
4825
4826	/* No AMP link over AMP controller */
4827	if (!hci_conn_num(hdev, AMP_LINK) && hdev->dev_type == HCI_AMP)
4828		return;
4829
4830	switch (hdev->flow_ctl_mode) {
4831	case HCI_FLOW_CTL_MODE_PACKET_BASED:
4832		hci_sched_acl_pkt(hdev);
4833		break;
4834
4835	case HCI_FLOW_CTL_MODE_BLOCK_BASED:
4836		hci_sched_acl_blk(hdev);
4837		break;
4838	}
4839}
4840
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4841static void hci_sched_le(struct hci_dev *hdev)
4842{
4843	struct hci_chan *chan;
4844	struct sk_buff *skb;
4845	int quote, cnt, tmp;
4846
4847	BT_DBG("%s", hdev->name);
4848
4849	if (!hci_conn_num(hdev, LE_LINK))
4850		return;
4851
 
 
 
 
 
 
 
 
4852	cnt = hdev->le_pkts ? hdev->le_cnt : hdev->acl_cnt;
4853
4854	__check_timeout(hdev, cnt);
4855
4856	tmp = cnt;
4857	while (cnt && (chan = hci_chan_sent(hdev, LE_LINK, &quote))) {
4858		u32 priority = (skb_peek(&chan->data_q))->priority;
4859		while (quote-- && (skb = skb_peek(&chan->data_q))) {
4860			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
4861			       skb->len, skb->priority);
4862
4863			/* Stop if priority has changed */
4864			if (skb->priority < priority)
4865				break;
4866
4867			skb = skb_dequeue(&chan->data_q);
4868
4869			hci_send_frame(hdev, skb);
4870			hdev->le_last_tx = jiffies;
4871
4872			cnt--;
4873			chan->sent++;
4874			chan->conn->sent++;
4875
4876			/* Send pending SCO packets right away */
4877			hci_sched_sco(hdev);
4878			hci_sched_esco(hdev);
4879		}
4880	}
4881
4882	if (hdev->le_pkts)
4883		hdev->le_cnt = cnt;
4884	else
4885		hdev->acl_cnt = cnt;
4886
4887	if (cnt != tmp)
4888		hci_prio_recalculate(hdev, LE_LINK);
4889}
4890
4891static void hci_tx_work(struct work_struct *work)
4892{
4893	struct hci_dev *hdev = container_of(work, struct hci_dev, tx_work);
4894	struct sk_buff *skb;
4895
4896	BT_DBG("%s acl %d sco %d le %d", hdev->name, hdev->acl_cnt,
4897	       hdev->sco_cnt, hdev->le_cnt);
4898
4899	if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
4900		/* Schedule queues and send stuff to HCI driver */
 
4901		hci_sched_sco(hdev);
4902		hci_sched_esco(hdev);
4903		hci_sched_acl(hdev);
4904		hci_sched_le(hdev);
4905	}
4906
4907	/* Send next queued raw (unknown type) packet */
4908	while ((skb = skb_dequeue(&hdev->raw_q)))
4909		hci_send_frame(hdev, skb);
4910}
4911
4912/* ----- HCI RX task (incoming data processing) ----- */
4913
4914/* ACL data packet */
4915static void hci_acldata_packet(struct hci_dev *hdev, struct sk_buff *skb)
4916{
4917	struct hci_acl_hdr *hdr = (void *) skb->data;
4918	struct hci_conn *conn;
4919	__u16 handle, flags;
4920
4921	skb_pull(skb, HCI_ACL_HDR_SIZE);
4922
4923	handle = __le16_to_cpu(hdr->handle);
4924	flags  = hci_flags(handle);
4925	handle = hci_handle(handle);
4926
4927	BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len,
4928	       handle, flags);
4929
4930	hdev->stat.acl_rx++;
4931
4932	hci_dev_lock(hdev);
4933	conn = hci_conn_hash_lookup_handle(hdev, handle);
4934	hci_dev_unlock(hdev);
4935
4936	if (conn) {
4937		hci_conn_enter_active_mode(conn, BT_POWER_FORCE_ACTIVE_OFF);
4938
4939		/* Send to upper protocol */
4940		l2cap_recv_acldata(conn, skb, flags);
4941		return;
4942	} else {
4943		bt_dev_err(hdev, "ACL packet for unknown connection handle %d",
4944			   handle);
4945	}
4946
4947	kfree_skb(skb);
4948}
4949
4950/* SCO data packet */
4951static void hci_scodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
4952{
4953	struct hci_sco_hdr *hdr = (void *) skb->data;
4954	struct hci_conn *conn;
4955	__u16 handle, flags;
4956
4957	skb_pull(skb, HCI_SCO_HDR_SIZE);
4958
4959	handle = __le16_to_cpu(hdr->handle);
4960	flags  = hci_flags(handle);
4961	handle = hci_handle(handle);
4962
4963	BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len,
4964	       handle, flags);
4965
4966	hdev->stat.sco_rx++;
4967
4968	hci_dev_lock(hdev);
4969	conn = hci_conn_hash_lookup_handle(hdev, handle);
4970	hci_dev_unlock(hdev);
4971
4972	if (conn) {
4973		/* Send to upper protocol */
4974		bt_cb(skb)->sco.pkt_status = flags & 0x03;
4975		sco_recv_scodata(conn, skb);
4976		return;
4977	} else {
4978		bt_dev_err(hdev, "SCO packet for unknown connection handle %d",
4979			   handle);
4980	}
4981
4982	kfree_skb(skb);
4983}
4984
4985static bool hci_req_is_complete(struct hci_dev *hdev)
4986{
4987	struct sk_buff *skb;
4988
4989	skb = skb_peek(&hdev->cmd_q);
4990	if (!skb)
4991		return true;
4992
4993	return (bt_cb(skb)->hci.req_flags & HCI_REQ_START);
4994}
4995
4996static void hci_resend_last(struct hci_dev *hdev)
4997{
4998	struct hci_command_hdr *sent;
4999	struct sk_buff *skb;
5000	u16 opcode;
5001
5002	if (!hdev->sent_cmd)
5003		return;
5004
5005	sent = (void *) hdev->sent_cmd->data;
5006	opcode = __le16_to_cpu(sent->opcode);
5007	if (opcode == HCI_OP_RESET)
5008		return;
5009
5010	skb = skb_clone(hdev->sent_cmd, GFP_KERNEL);
5011	if (!skb)
5012		return;
5013
5014	skb_queue_head(&hdev->cmd_q, skb);
5015	queue_work(hdev->workqueue, &hdev->cmd_work);
5016}
5017
5018void hci_req_cmd_complete(struct hci_dev *hdev, u16 opcode, u8 status,
5019			  hci_req_complete_t *req_complete,
5020			  hci_req_complete_skb_t *req_complete_skb)
5021{
5022	struct sk_buff *skb;
5023	unsigned long flags;
5024
5025	BT_DBG("opcode 0x%04x status 0x%02x", opcode, status);
5026
5027	/* If the completed command doesn't match the last one that was
5028	 * sent we need to do special handling of it.
5029	 */
5030	if (!hci_sent_cmd_data(hdev, opcode)) {
5031		/* Some CSR based controllers generate a spontaneous
5032		 * reset complete event during init and any pending
5033		 * command will never be completed. In such a case we
5034		 * need to resend whatever was the last sent
5035		 * command.
5036		 */
5037		if (test_bit(HCI_INIT, &hdev->flags) && opcode == HCI_OP_RESET)
5038			hci_resend_last(hdev);
5039
5040		return;
5041	}
5042
5043	/* If we reach this point this event matches the last command sent */
5044	hci_dev_clear_flag(hdev, HCI_CMD_PENDING);
5045
5046	/* If the command succeeded and there's still more commands in
5047	 * this request the request is not yet complete.
5048	 */
5049	if (!status && !hci_req_is_complete(hdev))
5050		return;
5051
5052	/* If this was the last command in a request the complete
5053	 * callback would be found in hdev->sent_cmd instead of the
5054	 * command queue (hdev->cmd_q).
5055	 */
5056	if (bt_cb(hdev->sent_cmd)->hci.req_flags & HCI_REQ_SKB) {
5057		*req_complete_skb = bt_cb(hdev->sent_cmd)->hci.req_complete_skb;
5058		return;
5059	}
5060
5061	if (bt_cb(hdev->sent_cmd)->hci.req_complete) {
5062		*req_complete = bt_cb(hdev->sent_cmd)->hci.req_complete;
5063		return;
5064	}
5065
5066	/* Remove all pending commands belonging to this request */
5067	spin_lock_irqsave(&hdev->cmd_q.lock, flags);
5068	while ((skb = __skb_dequeue(&hdev->cmd_q))) {
5069		if (bt_cb(skb)->hci.req_flags & HCI_REQ_START) {
5070			__skb_queue_head(&hdev->cmd_q, skb);
5071			break;
5072		}
5073
5074		if (bt_cb(skb)->hci.req_flags & HCI_REQ_SKB)
5075			*req_complete_skb = bt_cb(skb)->hci.req_complete_skb;
5076		else
5077			*req_complete = bt_cb(skb)->hci.req_complete;
5078		kfree_skb(skb);
5079	}
5080	spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
5081}
5082
5083static void hci_rx_work(struct work_struct *work)
5084{
5085	struct hci_dev *hdev = container_of(work, struct hci_dev, rx_work);
5086	struct sk_buff *skb;
5087
5088	BT_DBG("%s", hdev->name);
5089
5090	while ((skb = skb_dequeue(&hdev->rx_q))) {
5091		/* Send copy to monitor */
5092		hci_send_to_monitor(hdev, skb);
5093
5094		if (atomic_read(&hdev->promisc)) {
5095			/* Send copy to the sockets */
5096			hci_send_to_sock(hdev, skb);
5097		}
5098
5099		/* If the device has been opened in HCI_USER_CHANNEL,
5100		 * the userspace has exclusive access to device.
5101		 * When device is HCI_INIT, we still need to process
5102		 * the data packets to the driver in order
5103		 * to complete its setup().
5104		 */
5105		if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
5106		    !test_bit(HCI_INIT, &hdev->flags)) {
5107			kfree_skb(skb);
5108			continue;
5109		}
5110
5111		if (test_bit(HCI_INIT, &hdev->flags)) {
5112			/* Don't process data packets in this states. */
5113			switch (hci_skb_pkt_type(skb)) {
5114			case HCI_ACLDATA_PKT:
5115			case HCI_SCODATA_PKT:
5116			case HCI_ISODATA_PKT:
5117				kfree_skb(skb);
5118				continue;
5119			}
5120		}
5121
5122		/* Process frame */
5123		switch (hci_skb_pkt_type(skb)) {
5124		case HCI_EVENT_PKT:
5125			BT_DBG("%s Event packet", hdev->name);
5126			hci_event_packet(hdev, skb);
5127			break;
5128
5129		case HCI_ACLDATA_PKT:
5130			BT_DBG("%s ACL data packet", hdev->name);
5131			hci_acldata_packet(hdev, skb);
5132			break;
5133
5134		case HCI_SCODATA_PKT:
5135			BT_DBG("%s SCO data packet", hdev->name);
5136			hci_scodata_packet(hdev, skb);
5137			break;
5138
5139		default:
5140			kfree_skb(skb);
5141			break;
5142		}
5143	}
5144}
5145
5146static void hci_cmd_work(struct work_struct *work)
5147{
5148	struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_work);
5149	struct sk_buff *skb;
5150
5151	BT_DBG("%s cmd_cnt %d cmd queued %d", hdev->name,
5152	       atomic_read(&hdev->cmd_cnt), skb_queue_len(&hdev->cmd_q));
5153
5154	/* Send queued commands */
5155	if (atomic_read(&hdev->cmd_cnt)) {
5156		skb = skb_dequeue(&hdev->cmd_q);
5157		if (!skb)
5158			return;
5159
5160		kfree_skb(hdev->sent_cmd);
5161
5162		hdev->sent_cmd = skb_clone(skb, GFP_KERNEL);
5163		if (hdev->sent_cmd) {
5164			if (hci_req_status_pend(hdev))
5165				hci_dev_set_flag(hdev, HCI_CMD_PENDING);
5166			atomic_dec(&hdev->cmd_cnt);
5167			hci_send_frame(hdev, skb);
5168			if (test_bit(HCI_RESET, &hdev->flags))
5169				cancel_delayed_work(&hdev->cmd_timer);
5170			else
5171				schedule_delayed_work(&hdev->cmd_timer,
5172						      HCI_CMD_TIMEOUT);
5173		} else {
5174			skb_queue_head(&hdev->cmd_q, skb);
5175			queue_work(hdev->workqueue, &hdev->cmd_work);
5176		}
5177	}
5178}