Linux Audio

Check our new training course

Linux BSP development engineering services

Need help to port Linux and bootloaders to your hardware?
Loading...
v4.6
   1/*
   2   BlueZ - Bluetooth protocol stack for Linux
   3   Copyright (C) 2000-2001 Qualcomm Incorporated
   4   Copyright (C) 2011 ProFUSION Embedded Systems
   5
   6   Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
   7
   8   This program is free software; you can redistribute it and/or modify
   9   it under the terms of the GNU General Public License version 2 as
  10   published by the Free Software Foundation;
  11
  12   THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
  13   OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  14   FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
  15   IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
  16   CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
  17   WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  18   ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  19   OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  20
  21   ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
  22   COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
  23   SOFTWARE IS DISCLAIMED.
  24*/
  25
  26/* Bluetooth HCI core. */
  27
  28#include <linux/export.h>
  29#include <linux/idr.h>
  30#include <linux/rfkill.h>
  31#include <linux/debugfs.h>
  32#include <linux/crypto.h>
  33#include <asm/unaligned.h>
  34
  35#include <net/bluetooth/bluetooth.h>
  36#include <net/bluetooth/hci_core.h>
  37#include <net/bluetooth/l2cap.h>
  38#include <net/bluetooth/mgmt.h>
  39
  40#include "hci_request.h"
  41#include "hci_debugfs.h"
  42#include "smp.h"
  43#include "leds.h"
  44
  45static void hci_rx_work(struct work_struct *work);
  46static void hci_cmd_work(struct work_struct *work);
  47static void hci_tx_work(struct work_struct *work);
  48
  49/* HCI device list */
  50LIST_HEAD(hci_dev_list);
  51DEFINE_RWLOCK(hci_dev_list_lock);
  52
  53/* HCI callback list */
  54LIST_HEAD(hci_cb_list);
  55DEFINE_MUTEX(hci_cb_list_lock);
  56
  57/* HCI ID Numbering */
  58static DEFINE_IDA(hci_index_ida);
  59
  60/* ---- HCI debugfs entries ---- */
  61
  62static ssize_t dut_mode_read(struct file *file, char __user *user_buf,
  63			     size_t count, loff_t *ppos)
  64{
  65	struct hci_dev *hdev = file->private_data;
  66	char buf[3];
  67
  68	buf[0] = hci_dev_test_flag(hdev, HCI_DUT_MODE) ? 'Y' : 'N';
  69	buf[1] = '\n';
  70	buf[2] = '\0';
  71	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
  72}
  73
  74static ssize_t dut_mode_write(struct file *file, const char __user *user_buf,
  75			      size_t count, loff_t *ppos)
  76{
  77	struct hci_dev *hdev = file->private_data;
  78	struct sk_buff *skb;
  79	char buf[32];
  80	size_t buf_size = min(count, (sizeof(buf)-1));
  81	bool enable;
  82
  83	if (!test_bit(HCI_UP, &hdev->flags))
  84		return -ENETDOWN;
  85
  86	if (copy_from_user(buf, user_buf, buf_size))
  87		return -EFAULT;
  88
  89	buf[buf_size] = '\0';
  90	if (strtobool(buf, &enable))
  91		return -EINVAL;
  92
  93	if (enable == hci_dev_test_flag(hdev, HCI_DUT_MODE))
  94		return -EALREADY;
  95
  96	hci_req_sync_lock(hdev);
  97	if (enable)
  98		skb = __hci_cmd_sync(hdev, HCI_OP_ENABLE_DUT_MODE, 0, NULL,
  99				     HCI_CMD_TIMEOUT);
 100	else
 101		skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL,
 102				     HCI_CMD_TIMEOUT);
 103	hci_req_sync_unlock(hdev);
 104
 105	if (IS_ERR(skb))
 106		return PTR_ERR(skb);
 107
 108	kfree_skb(skb);
 109
 110	hci_dev_change_flag(hdev, HCI_DUT_MODE);
 111
 112	return count;
 113}
 114
 115static const struct file_operations dut_mode_fops = {
 116	.open		= simple_open,
 117	.read		= dut_mode_read,
 118	.write		= dut_mode_write,
 119	.llseek		= default_llseek,
 120};
 121
 122static ssize_t vendor_diag_read(struct file *file, char __user *user_buf,
 123				size_t count, loff_t *ppos)
 124{
 125	struct hci_dev *hdev = file->private_data;
 126	char buf[3];
 127
 128	buf[0] = hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) ? 'Y' : 'N';
 129	buf[1] = '\n';
 130	buf[2] = '\0';
 131	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
 132}
 133
 134static ssize_t vendor_diag_write(struct file *file, const char __user *user_buf,
 135				 size_t count, loff_t *ppos)
 136{
 137	struct hci_dev *hdev = file->private_data;
 138	char buf[32];
 139	size_t buf_size = min(count, (sizeof(buf)-1));
 140	bool enable;
 141	int err;
 142
 143	if (copy_from_user(buf, user_buf, buf_size))
 144		return -EFAULT;
 145
 146	buf[buf_size] = '\0';
 147	if (strtobool(buf, &enable))
 148		return -EINVAL;
 149
 150	/* When the diagnostic flags are not persistent and the transport
 151	 * is not active, then there is no need for the vendor callback.
 152	 *
 153	 * Instead just store the desired value. If needed the setting
 154	 * will be programmed when the controller gets powered on.
 155	 */
 156	if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) &&
 157	    !test_bit(HCI_RUNNING, &hdev->flags))
 158		goto done;
 159
 160	hci_req_sync_lock(hdev);
 161	err = hdev->set_diag(hdev, enable);
 162	hci_req_sync_unlock(hdev);
 163
 164	if (err < 0)
 165		return err;
 166
 167done:
 168	if (enable)
 169		hci_dev_set_flag(hdev, HCI_VENDOR_DIAG);
 170	else
 171		hci_dev_clear_flag(hdev, HCI_VENDOR_DIAG);
 172
 173	return count;
 174}
 175
 176static const struct file_operations vendor_diag_fops = {
 177	.open		= simple_open,
 178	.read		= vendor_diag_read,
 179	.write		= vendor_diag_write,
 180	.llseek		= default_llseek,
 181};
 182
 183static void hci_debugfs_create_basic(struct hci_dev *hdev)
 184{
 185	debugfs_create_file("dut_mode", 0644, hdev->debugfs, hdev,
 186			    &dut_mode_fops);
 187
 188	if (hdev->set_diag)
 189		debugfs_create_file("vendor_diag", 0644, hdev->debugfs, hdev,
 190				    &vendor_diag_fops);
 191}
 192
 193static int hci_reset_req(struct hci_request *req, unsigned long opt)
 194{
 195	BT_DBG("%s %ld", req->hdev->name, opt);
 196
 197	/* Reset device */
 198	set_bit(HCI_RESET, &req->hdev->flags);
 199	hci_req_add(req, HCI_OP_RESET, 0, NULL);
 200	return 0;
 201}
 202
 203static void bredr_init(struct hci_request *req)
 204{
 205	req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_PACKET_BASED;
 206
 207	/* Read Local Supported Features */
 208	hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
 209
 210	/* Read Local Version */
 211	hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
 212
 213	/* Read BD Address */
 214	hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL);
 215}
 216
 217static void amp_init1(struct hci_request *req)
 218{
 219	req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_BLOCK_BASED;
 220
 221	/* Read Local Version */
 222	hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
 223
 224	/* Read Local Supported Commands */
 225	hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL);
 226
 227	/* Read Local AMP Info */
 228	hci_req_add(req, HCI_OP_READ_LOCAL_AMP_INFO, 0, NULL);
 229
 230	/* Read Data Blk size */
 231	hci_req_add(req, HCI_OP_READ_DATA_BLOCK_SIZE, 0, NULL);
 232
 233	/* Read Flow Control Mode */
 234	hci_req_add(req, HCI_OP_READ_FLOW_CONTROL_MODE, 0, NULL);
 235
 236	/* Read Location Data */
 237	hci_req_add(req, HCI_OP_READ_LOCATION_DATA, 0, NULL);
 238}
 239
 240static int amp_init2(struct hci_request *req)
 241{
 242	/* Read Local Supported Features. Not all AMP controllers
 243	 * support this so it's placed conditionally in the second
 244	 * stage init.
 245	 */
 246	if (req->hdev->commands[14] & 0x20)
 247		hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
 248
 249	return 0;
 250}
 251
 252static int hci_init1_req(struct hci_request *req, unsigned long opt)
 253{
 254	struct hci_dev *hdev = req->hdev;
 255
 256	BT_DBG("%s %ld", hdev->name, opt);
 257
 258	/* Reset */
 259	if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks))
 260		hci_reset_req(req, 0);
 261
 262	switch (hdev->dev_type) {
 263	case HCI_BREDR:
 264		bredr_init(req);
 265		break;
 266
 267	case HCI_AMP:
 268		amp_init1(req);
 269		break;
 270
 271	default:
 272		BT_ERR("Unknown device type %d", hdev->dev_type);
 273		break;
 274	}
 275
 276	return 0;
 277}
 278
 279static void bredr_setup(struct hci_request *req)
 280{
 281	__le16 param;
 282	__u8 flt_type;
 283
 284	/* Read Buffer Size (ACL mtu, max pkt, etc.) */
 285	hci_req_add(req, HCI_OP_READ_BUFFER_SIZE, 0, NULL);
 286
 287	/* Read Class of Device */
 288	hci_req_add(req, HCI_OP_READ_CLASS_OF_DEV, 0, NULL);
 289
 290	/* Read Local Name */
 291	hci_req_add(req, HCI_OP_READ_LOCAL_NAME, 0, NULL);
 292
 293	/* Read Voice Setting */
 294	hci_req_add(req, HCI_OP_READ_VOICE_SETTING, 0, NULL);
 295
 296	/* Read Number of Supported IAC */
 297	hci_req_add(req, HCI_OP_READ_NUM_SUPPORTED_IAC, 0, NULL);
 298
 299	/* Read Current IAC LAP */
 300	hci_req_add(req, HCI_OP_READ_CURRENT_IAC_LAP, 0, NULL);
 301
 302	/* Clear Event Filters */
 303	flt_type = HCI_FLT_CLEAR_ALL;
 304	hci_req_add(req, HCI_OP_SET_EVENT_FLT, 1, &flt_type);
 305
 306	/* Connection accept timeout ~20 secs */
 307	param = cpu_to_le16(0x7d00);
 308	hci_req_add(req, HCI_OP_WRITE_CA_TIMEOUT, 2, &param);
 309}
 310
 311static void le_setup(struct hci_request *req)
 312{
 313	struct hci_dev *hdev = req->hdev;
 314
 315	/* Read LE Buffer Size */
 316	hci_req_add(req, HCI_OP_LE_READ_BUFFER_SIZE, 0, NULL);
 317
 318	/* Read LE Local Supported Features */
 319	hci_req_add(req, HCI_OP_LE_READ_LOCAL_FEATURES, 0, NULL);
 320
 321	/* Read LE Supported States */
 322	hci_req_add(req, HCI_OP_LE_READ_SUPPORTED_STATES, 0, NULL);
 323
 324	/* LE-only controllers have LE implicitly enabled */
 325	if (!lmp_bredr_capable(hdev))
 326		hci_dev_set_flag(hdev, HCI_LE_ENABLED);
 327}
 328
 329static void hci_setup_event_mask(struct hci_request *req)
 330{
 331	struct hci_dev *hdev = req->hdev;
 332
 333	/* The second byte is 0xff instead of 0x9f (two reserved bits
 334	 * disabled) since a Broadcom 1.2 dongle doesn't respond to the
 335	 * command otherwise.
 336	 */
 337	u8 events[8] = { 0xff, 0xff, 0xfb, 0xff, 0x00, 0x00, 0x00, 0x00 };
 338
 339	/* CSR 1.1 dongles does not accept any bitfield so don't try to set
 340	 * any event mask for pre 1.2 devices.
 341	 */
 342	if (hdev->hci_ver < BLUETOOTH_VER_1_2)
 343		return;
 344
 345	if (lmp_bredr_capable(hdev)) {
 346		events[4] |= 0x01; /* Flow Specification Complete */
 347	} else {
 348		/* Use a different default for LE-only devices */
 349		memset(events, 0, sizeof(events));
 350		events[1] |= 0x20; /* Command Complete */
 351		events[1] |= 0x40; /* Command Status */
 352		events[1] |= 0x80; /* Hardware Error */
 353
 354		/* If the controller supports the Disconnect command, enable
 355		 * the corresponding event. In addition enable packet flow
 356		 * control related events.
 357		 */
 358		if (hdev->commands[0] & 0x20) {
 359			events[0] |= 0x10; /* Disconnection Complete */
 360			events[2] |= 0x04; /* Number of Completed Packets */
 361			events[3] |= 0x02; /* Data Buffer Overflow */
 362		}
 363
 364		/* If the controller supports the Read Remote Version
 365		 * Information command, enable the corresponding event.
 366		 */
 367		if (hdev->commands[2] & 0x80)
 368			events[1] |= 0x08; /* Read Remote Version Information
 369					    * Complete
 370					    */
 371
 372		if (hdev->le_features[0] & HCI_LE_ENCRYPTION) {
 373			events[0] |= 0x80; /* Encryption Change */
 374			events[5] |= 0x80; /* Encryption Key Refresh Complete */
 375		}
 376	}
 377
 378	if (lmp_inq_rssi_capable(hdev) ||
 379	    test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks))
 380		events[4] |= 0x02; /* Inquiry Result with RSSI */
 381
 382	if (lmp_ext_feat_capable(hdev))
 383		events[4] |= 0x04; /* Read Remote Extended Features Complete */
 384
 385	if (lmp_esco_capable(hdev)) {
 386		events[5] |= 0x08; /* Synchronous Connection Complete */
 387		events[5] |= 0x10; /* Synchronous Connection Changed */
 388	}
 389
 390	if (lmp_sniffsubr_capable(hdev))
 391		events[5] |= 0x20; /* Sniff Subrating */
 392
 393	if (lmp_pause_enc_capable(hdev))
 394		events[5] |= 0x80; /* Encryption Key Refresh Complete */
 395
 396	if (lmp_ext_inq_capable(hdev))
 397		events[5] |= 0x40; /* Extended Inquiry Result */
 398
 399	if (lmp_no_flush_capable(hdev))
 400		events[7] |= 0x01; /* Enhanced Flush Complete */
 401
 402	if (lmp_lsto_capable(hdev))
 403		events[6] |= 0x80; /* Link Supervision Timeout Changed */
 404
 405	if (lmp_ssp_capable(hdev)) {
 406		events[6] |= 0x01;	/* IO Capability Request */
 407		events[6] |= 0x02;	/* IO Capability Response */
 408		events[6] |= 0x04;	/* User Confirmation Request */
 409		events[6] |= 0x08;	/* User Passkey Request */
 410		events[6] |= 0x10;	/* Remote OOB Data Request */
 411		events[6] |= 0x20;	/* Simple Pairing Complete */
 412		events[7] |= 0x04;	/* User Passkey Notification */
 413		events[7] |= 0x08;	/* Keypress Notification */
 414		events[7] |= 0x10;	/* Remote Host Supported
 415					 * Features Notification
 416					 */
 417	}
 418
 419	if (lmp_le_capable(hdev))
 420		events[7] |= 0x20;	/* LE Meta-Event */
 421
 422	hci_req_add(req, HCI_OP_SET_EVENT_MASK, sizeof(events), events);
 423}
 424
 425static int hci_init2_req(struct hci_request *req, unsigned long opt)
 426{
 427	struct hci_dev *hdev = req->hdev;
 428
 429	if (hdev->dev_type == HCI_AMP)
 430		return amp_init2(req);
 431
 432	if (lmp_bredr_capable(hdev))
 433		bredr_setup(req);
 434	else
 435		hci_dev_clear_flag(hdev, HCI_BREDR_ENABLED);
 436
 437	if (lmp_le_capable(hdev))
 438		le_setup(req);
 439
 440	/* All Bluetooth 1.2 and later controllers should support the
 441	 * HCI command for reading the local supported commands.
 442	 *
 443	 * Unfortunately some controllers indicate Bluetooth 1.2 support,
 444	 * but do not have support for this command. If that is the case,
 445	 * the driver can quirk the behavior and skip reading the local
 446	 * supported commands.
 447	 */
 448	if (hdev->hci_ver > BLUETOOTH_VER_1_1 &&
 449	    !test_bit(HCI_QUIRK_BROKEN_LOCAL_COMMANDS, &hdev->quirks))
 450		hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL);
 451
 452	if (lmp_ssp_capable(hdev)) {
 453		/* When SSP is available, then the host features page
 454		 * should also be available as well. However some
 455		 * controllers list the max_page as 0 as long as SSP
 456		 * has not been enabled. To achieve proper debugging
 457		 * output, force the minimum max_page to 1 at least.
 458		 */
 459		hdev->max_page = 0x01;
 460
 461		if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) {
 462			u8 mode = 0x01;
 463
 464			hci_req_add(req, HCI_OP_WRITE_SSP_MODE,
 465				    sizeof(mode), &mode);
 466		} else {
 467			struct hci_cp_write_eir cp;
 468
 469			memset(hdev->eir, 0, sizeof(hdev->eir));
 470			memset(&cp, 0, sizeof(cp));
 471
 472			hci_req_add(req, HCI_OP_WRITE_EIR, sizeof(cp), &cp);
 473		}
 474	}
 475
 476	if (lmp_inq_rssi_capable(hdev) ||
 477	    test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks)) {
 478		u8 mode;
 479
 480		/* If Extended Inquiry Result events are supported, then
 481		 * they are clearly preferred over Inquiry Result with RSSI
 482		 * events.
 483		 */
 484		mode = lmp_ext_inq_capable(hdev) ? 0x02 : 0x01;
 485
 486		hci_req_add(req, HCI_OP_WRITE_INQUIRY_MODE, 1, &mode);
 487	}
 488
 489	if (lmp_inq_tx_pwr_capable(hdev))
 490		hci_req_add(req, HCI_OP_READ_INQ_RSP_TX_POWER, 0, NULL);
 491
 492	if (lmp_ext_feat_capable(hdev)) {
 493		struct hci_cp_read_local_ext_features cp;
 494
 495		cp.page = 0x01;
 496		hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES,
 497			    sizeof(cp), &cp);
 498	}
 499
 500	if (hci_dev_test_flag(hdev, HCI_LINK_SECURITY)) {
 501		u8 enable = 1;
 502		hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, sizeof(enable),
 503			    &enable);
 504	}
 505
 506	return 0;
 507}
 508
 509static void hci_setup_link_policy(struct hci_request *req)
 510{
 511	struct hci_dev *hdev = req->hdev;
 512	struct hci_cp_write_def_link_policy cp;
 513	u16 link_policy = 0;
 514
 515	if (lmp_rswitch_capable(hdev))
 516		link_policy |= HCI_LP_RSWITCH;
 517	if (lmp_hold_capable(hdev))
 518		link_policy |= HCI_LP_HOLD;
 519	if (lmp_sniff_capable(hdev))
 520		link_policy |= HCI_LP_SNIFF;
 521	if (lmp_park_capable(hdev))
 522		link_policy |= HCI_LP_PARK;
 523
 524	cp.policy = cpu_to_le16(link_policy);
 525	hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, sizeof(cp), &cp);
 526}
 527
 528static void hci_set_le_support(struct hci_request *req)
 529{
 530	struct hci_dev *hdev = req->hdev;
 531	struct hci_cp_write_le_host_supported cp;
 532
 533	/* LE-only devices do not support explicit enablement */
 534	if (!lmp_bredr_capable(hdev))
 535		return;
 536
 537	memset(&cp, 0, sizeof(cp));
 538
 539	if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
 540		cp.le = 0x01;
 541		cp.simul = 0x00;
 542	}
 543
 544	if (cp.le != lmp_host_le_capable(hdev))
 545		hci_req_add(req, HCI_OP_WRITE_LE_HOST_SUPPORTED, sizeof(cp),
 546			    &cp);
 547}
 548
 549static void hci_set_event_mask_page_2(struct hci_request *req)
 550{
 551	struct hci_dev *hdev = req->hdev;
 552	u8 events[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
 553
 554	/* If Connectionless Slave Broadcast master role is supported
 555	 * enable all necessary events for it.
 556	 */
 557	if (lmp_csb_master_capable(hdev)) {
 558		events[1] |= 0x40;	/* Triggered Clock Capture */
 559		events[1] |= 0x80;	/* Synchronization Train Complete */
 560		events[2] |= 0x10;	/* Slave Page Response Timeout */
 561		events[2] |= 0x20;	/* CSB Channel Map Change */
 562	}
 563
 564	/* If Connectionless Slave Broadcast slave role is supported
 565	 * enable all necessary events for it.
 566	 */
 567	if (lmp_csb_slave_capable(hdev)) {
 568		events[2] |= 0x01;	/* Synchronization Train Received */
 569		events[2] |= 0x02;	/* CSB Receive */
 570		events[2] |= 0x04;	/* CSB Timeout */
 571		events[2] |= 0x08;	/* Truncated Page Complete */
 572	}
 573
 574	/* Enable Authenticated Payload Timeout Expired event if supported */
 575	if (lmp_ping_capable(hdev) || hdev->le_features[0] & HCI_LE_PING)
 576		events[2] |= 0x80;
 577
 578	hci_req_add(req, HCI_OP_SET_EVENT_MASK_PAGE_2, sizeof(events), events);
 579}
 580
 581static int hci_init3_req(struct hci_request *req, unsigned long opt)
 582{
 583	struct hci_dev *hdev = req->hdev;
 584	u8 p;
 585
 586	hci_setup_event_mask(req);
 587
 588	if (hdev->commands[6] & 0x20 &&
 589	    !test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) {
 590		struct hci_cp_read_stored_link_key cp;
 591
 592		bacpy(&cp.bdaddr, BDADDR_ANY);
 593		cp.read_all = 0x01;
 594		hci_req_add(req, HCI_OP_READ_STORED_LINK_KEY, sizeof(cp), &cp);
 595	}
 596
 597	if (hdev->commands[5] & 0x10)
 598		hci_setup_link_policy(req);
 599
 600	if (hdev->commands[8] & 0x01)
 601		hci_req_add(req, HCI_OP_READ_PAGE_SCAN_ACTIVITY, 0, NULL);
 602
 603	/* Some older Broadcom based Bluetooth 1.2 controllers do not
 604	 * support the Read Page Scan Type command. Check support for
 605	 * this command in the bit mask of supported commands.
 606	 */
 607	if (hdev->commands[13] & 0x01)
 608		hci_req_add(req, HCI_OP_READ_PAGE_SCAN_TYPE, 0, NULL);
 609
 610	if (lmp_le_capable(hdev)) {
 611		u8 events[8];
 612
 613		memset(events, 0, sizeof(events));
 614
 615		if (hdev->le_features[0] & HCI_LE_ENCRYPTION)
 616			events[0] |= 0x10;	/* LE Long Term Key Request */
 617
 618		/* If controller supports the Connection Parameters Request
 619		 * Link Layer Procedure, enable the corresponding event.
 620		 */
 621		if (hdev->le_features[0] & HCI_LE_CONN_PARAM_REQ_PROC)
 622			events[0] |= 0x20;	/* LE Remote Connection
 623						 * Parameter Request
 624						 */
 625
 626		/* If the controller supports the Data Length Extension
 627		 * feature, enable the corresponding event.
 628		 */
 629		if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)
 630			events[0] |= 0x40;	/* LE Data Length Change */
 631
 632		/* If the controller supports Extended Scanner Filter
 633		 * Policies, enable the correspondig event.
 634		 */
 635		if (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY)
 636			events[1] |= 0x04;	/* LE Direct Advertising
 637						 * Report
 638						 */
 639
 640		/* If the controller supports the LE Set Scan Enable command,
 641		 * enable the corresponding advertising report event.
 642		 */
 643		if (hdev->commands[26] & 0x08)
 644			events[0] |= 0x02;	/* LE Advertising Report */
 645
 646		/* If the controller supports the LE Create Connection
 647		 * command, enable the corresponding event.
 648		 */
 649		if (hdev->commands[26] & 0x10)
 650			events[0] |= 0x01;	/* LE Connection Complete */
 651
 652		/* If the controller supports the LE Connection Update
 653		 * command, enable the corresponding event.
 654		 */
 655		if (hdev->commands[27] & 0x04)
 656			events[0] |= 0x04;	/* LE Connection Update
 657						 * Complete
 658						 */
 659
 660		/* If the controller supports the LE Read Remote Used Features
 661		 * command, enable the corresponding event.
 662		 */
 663		if (hdev->commands[27] & 0x20)
 664			events[0] |= 0x08;	/* LE Read Remote Used
 665						 * Features Complete
 666						 */
 667
 668		/* If the controller supports the LE Read Local P-256
 669		 * Public Key command, enable the corresponding event.
 670		 */
 671		if (hdev->commands[34] & 0x02)
 672			events[0] |= 0x80;	/* LE Read Local P-256
 673						 * Public Key Complete
 674						 */
 675
 676		/* If the controller supports the LE Generate DHKey
 677		 * command, enable the corresponding event.
 678		 */
 679		if (hdev->commands[34] & 0x04)
 680			events[1] |= 0x01;	/* LE Generate DHKey Complete */
 681
 682		hci_req_add(req, HCI_OP_LE_SET_EVENT_MASK, sizeof(events),
 683			    events);
 684
 685		if (hdev->commands[25] & 0x40) {
 686			/* Read LE Advertising Channel TX Power */
 687			hci_req_add(req, HCI_OP_LE_READ_ADV_TX_POWER, 0, NULL);
 688		}
 689
 690		if (hdev->commands[26] & 0x40) {
 691			/* Read LE White List Size */
 692			hci_req_add(req, HCI_OP_LE_READ_WHITE_LIST_SIZE,
 693				    0, NULL);
 694		}
 695
 696		if (hdev->commands[26] & 0x80) {
 697			/* Clear LE White List */
 698			hci_req_add(req, HCI_OP_LE_CLEAR_WHITE_LIST, 0, NULL);
 699		}
 700
 701		if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) {
 702			/* Read LE Maximum Data Length */
 703			hci_req_add(req, HCI_OP_LE_READ_MAX_DATA_LEN, 0, NULL);
 704
 705			/* Read LE Suggested Default Data Length */
 706			hci_req_add(req, HCI_OP_LE_READ_DEF_DATA_LEN, 0, NULL);
 707		}
 708
 709		hci_set_le_support(req);
 710	}
 711
 712	/* Read features beyond page 1 if available */
 713	for (p = 2; p < HCI_MAX_PAGES && p <= hdev->max_page; p++) {
 714		struct hci_cp_read_local_ext_features cp;
 715
 716		cp.page = p;
 717		hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES,
 718			    sizeof(cp), &cp);
 719	}
 720
 721	return 0;
 722}
 723
 724static int hci_init4_req(struct hci_request *req, unsigned long opt)
 725{
 726	struct hci_dev *hdev = req->hdev;
 727
 728	/* Some Broadcom based Bluetooth controllers do not support the
 729	 * Delete Stored Link Key command. They are clearly indicating its
 730	 * absence in the bit mask of supported commands.
 731	 *
 732	 * Check the supported commands and only if the the command is marked
 733	 * as supported send it. If not supported assume that the controller
 734	 * does not have actual support for stored link keys which makes this
 735	 * command redundant anyway.
 736	 *
 737	 * Some controllers indicate that they support handling deleting
 738	 * stored link keys, but they don't. The quirk lets a driver
 739	 * just disable this command.
 740	 */
 741	if (hdev->commands[6] & 0x80 &&
 742	    !test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) {
 743		struct hci_cp_delete_stored_link_key cp;
 744
 745		bacpy(&cp.bdaddr, BDADDR_ANY);
 746		cp.delete_all = 0x01;
 747		hci_req_add(req, HCI_OP_DELETE_STORED_LINK_KEY,
 748			    sizeof(cp), &cp);
 749	}
 750
 751	/* Set event mask page 2 if the HCI command for it is supported */
 752	if (hdev->commands[22] & 0x04)
 753		hci_set_event_mask_page_2(req);
 754
 755	/* Read local codec list if the HCI command is supported */
 756	if (hdev->commands[29] & 0x20)
 757		hci_req_add(req, HCI_OP_READ_LOCAL_CODECS, 0, NULL);
 758
 759	/* Get MWS transport configuration if the HCI command is supported */
 760	if (hdev->commands[30] & 0x08)
 761		hci_req_add(req, HCI_OP_GET_MWS_TRANSPORT_CONFIG, 0, NULL);
 762
 763	/* Check for Synchronization Train support */
 764	if (lmp_sync_train_capable(hdev))
 765		hci_req_add(req, HCI_OP_READ_SYNC_TRAIN_PARAMS, 0, NULL);
 766
 767	/* Enable Secure Connections if supported and configured */
 768	if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED) &&
 769	    bredr_sc_enabled(hdev)) {
 770		u8 support = 0x01;
 771
 772		hci_req_add(req, HCI_OP_WRITE_SC_SUPPORT,
 773			    sizeof(support), &support);
 774	}
 775
 776	return 0;
 777}
 778
 779static int __hci_init(struct hci_dev *hdev)
 780{
 781	int err;
 782
 783	err = __hci_req_sync(hdev, hci_init1_req, 0, HCI_INIT_TIMEOUT, NULL);
 784	if (err < 0)
 785		return err;
 786
 787	if (hci_dev_test_flag(hdev, HCI_SETUP))
 788		hci_debugfs_create_basic(hdev);
 789
 790	err = __hci_req_sync(hdev, hci_init2_req, 0, HCI_INIT_TIMEOUT, NULL);
 791	if (err < 0)
 792		return err;
 793
 794	/* HCI_BREDR covers both single-mode LE, BR/EDR and dual-mode
 795	 * BR/EDR/LE type controllers. AMP controllers only need the
 796	 * first two stages of init.
 797	 */
 798	if (hdev->dev_type != HCI_BREDR)
 799		return 0;
 800
 801	err = __hci_req_sync(hdev, hci_init3_req, 0, HCI_INIT_TIMEOUT, NULL);
 802	if (err < 0)
 803		return err;
 804
 805	err = __hci_req_sync(hdev, hci_init4_req, 0, HCI_INIT_TIMEOUT, NULL);
 806	if (err < 0)
 807		return err;
 808
 809	/* This function is only called when the controller is actually in
 810	 * configured state. When the controller is marked as unconfigured,
 811	 * this initialization procedure is not run.
 812	 *
 813	 * It means that it is possible that a controller runs through its
 814	 * setup phase and then discovers missing settings. If that is the
 815	 * case, then this function will not be called. It then will only
 816	 * be called during the config phase.
 817	 *
 818	 * So only when in setup phase or config phase, create the debugfs
 819	 * entries and register the SMP channels.
 820	 */
 821	if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
 822	    !hci_dev_test_flag(hdev, HCI_CONFIG))
 823		return 0;
 824
 825	hci_debugfs_create_common(hdev);
 826
 827	if (lmp_bredr_capable(hdev))
 828		hci_debugfs_create_bredr(hdev);
 829
 830	if (lmp_le_capable(hdev))
 831		hci_debugfs_create_le(hdev);
 832
 833	return 0;
 834}
 835
 836static int hci_init0_req(struct hci_request *req, unsigned long opt)
 837{
 838	struct hci_dev *hdev = req->hdev;
 839
 840	BT_DBG("%s %ld", hdev->name, opt);
 841
 842	/* Reset */
 843	if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks))
 844		hci_reset_req(req, 0);
 845
 846	/* Read Local Version */
 847	hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
 848
 849	/* Read BD Address */
 850	if (hdev->set_bdaddr)
 851		hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL);
 852
 853	return 0;
 854}
 855
 856static int __hci_unconf_init(struct hci_dev *hdev)
 857{
 858	int err;
 859
 860	if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
 861		return 0;
 862
 863	err = __hci_req_sync(hdev, hci_init0_req, 0, HCI_INIT_TIMEOUT, NULL);
 864	if (err < 0)
 865		return err;
 866
 867	if (hci_dev_test_flag(hdev, HCI_SETUP))
 868		hci_debugfs_create_basic(hdev);
 869
 870	return 0;
 871}
 872
 873static int hci_scan_req(struct hci_request *req, unsigned long opt)
 874{
 875	__u8 scan = opt;
 876
 877	BT_DBG("%s %x", req->hdev->name, scan);
 878
 879	/* Inquiry and Page scans */
 880	hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
 881	return 0;
 882}
 883
 884static int hci_auth_req(struct hci_request *req, unsigned long opt)
 885{
 886	__u8 auth = opt;
 887
 888	BT_DBG("%s %x", req->hdev->name, auth);
 889
 890	/* Authentication */
 891	hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, 1, &auth);
 892	return 0;
 893}
 894
 895static int hci_encrypt_req(struct hci_request *req, unsigned long opt)
 896{
 897	__u8 encrypt = opt;
 898
 899	BT_DBG("%s %x", req->hdev->name, encrypt);
 900
 901	/* Encryption */
 902	hci_req_add(req, HCI_OP_WRITE_ENCRYPT_MODE, 1, &encrypt);
 903	return 0;
 904}
 905
 906static int hci_linkpol_req(struct hci_request *req, unsigned long opt)
 907{
 908	__le16 policy = cpu_to_le16(opt);
 909
 910	BT_DBG("%s %x", req->hdev->name, policy);
 911
 912	/* Default link policy */
 913	hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, 2, &policy);
 914	return 0;
 915}
 916
 917/* Get HCI device by index.
 918 * Device is held on return. */
 919struct hci_dev *hci_dev_get(int index)
 920{
 921	struct hci_dev *hdev = NULL, *d;
 922
 923	BT_DBG("%d", index);
 924
 925	if (index < 0)
 926		return NULL;
 927
 928	read_lock(&hci_dev_list_lock);
 929	list_for_each_entry(d, &hci_dev_list, list) {
 930		if (d->id == index) {
 931			hdev = hci_dev_hold(d);
 932			break;
 933		}
 934	}
 935	read_unlock(&hci_dev_list_lock);
 936	return hdev;
 937}
 938
 939/* ---- Inquiry support ---- */
 940
 941bool hci_discovery_active(struct hci_dev *hdev)
 942{
 943	struct discovery_state *discov = &hdev->discovery;
 944
 945	switch (discov->state) {
 946	case DISCOVERY_FINDING:
 947	case DISCOVERY_RESOLVING:
 948		return true;
 949
 950	default:
 951		return false;
 952	}
 953}
 954
 955void hci_discovery_set_state(struct hci_dev *hdev, int state)
 956{
 957	int old_state = hdev->discovery.state;
 958
 959	BT_DBG("%s state %u -> %u", hdev->name, hdev->discovery.state, state);
 960
 961	if (old_state == state)
 962		return;
 963
 964	hdev->discovery.state = state;
 965
 966	switch (state) {
 967	case DISCOVERY_STOPPED:
 968		hci_update_background_scan(hdev);
 969
 970		if (old_state != DISCOVERY_STARTING)
 971			mgmt_discovering(hdev, 0);
 972		break;
 973	case DISCOVERY_STARTING:
 974		break;
 975	case DISCOVERY_FINDING:
 976		mgmt_discovering(hdev, 1);
 977		break;
 978	case DISCOVERY_RESOLVING:
 979		break;
 980	case DISCOVERY_STOPPING:
 981		break;
 982	}
 983}
 984
 985void hci_inquiry_cache_flush(struct hci_dev *hdev)
 986{
 987	struct discovery_state *cache = &hdev->discovery;
 988	struct inquiry_entry *p, *n;
 989
 990	list_for_each_entry_safe(p, n, &cache->all, all) {
 991		list_del(&p->all);
 992		kfree(p);
 993	}
 994
 995	INIT_LIST_HEAD(&cache->unknown);
 996	INIT_LIST_HEAD(&cache->resolve);
 997}
 998
 999struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev,
1000					       bdaddr_t *bdaddr)
1001{
1002	struct discovery_state *cache = &hdev->discovery;
1003	struct inquiry_entry *e;
1004
1005	BT_DBG("cache %p, %pMR", cache, bdaddr);
1006
1007	list_for_each_entry(e, &cache->all, all) {
1008		if (!bacmp(&e->data.bdaddr, bdaddr))
1009			return e;
1010	}
1011
1012	return NULL;
1013}
1014
1015struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev,
1016						       bdaddr_t *bdaddr)
1017{
1018	struct discovery_state *cache = &hdev->discovery;
1019	struct inquiry_entry *e;
1020
1021	BT_DBG("cache %p, %pMR", cache, bdaddr);
1022
1023	list_for_each_entry(e, &cache->unknown, list) {
1024		if (!bacmp(&e->data.bdaddr, bdaddr))
1025			return e;
1026	}
1027
1028	return NULL;
1029}
1030
1031struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev,
1032						       bdaddr_t *bdaddr,
1033						       int state)
1034{
1035	struct discovery_state *cache = &hdev->discovery;
1036	struct inquiry_entry *e;
1037
1038	BT_DBG("cache %p bdaddr %pMR state %d", cache, bdaddr, state);
1039
1040	list_for_each_entry(e, &cache->resolve, list) {
1041		if (!bacmp(bdaddr, BDADDR_ANY) && e->name_state == state)
1042			return e;
1043		if (!bacmp(&e->data.bdaddr, bdaddr))
1044			return e;
1045	}
1046
1047	return NULL;
1048}
1049
1050void hci_inquiry_cache_update_resolve(struct hci_dev *hdev,
1051				      struct inquiry_entry *ie)
1052{
1053	struct discovery_state *cache = &hdev->discovery;
1054	struct list_head *pos = &cache->resolve;
1055	struct inquiry_entry *p;
1056
1057	list_del(&ie->list);
1058
1059	list_for_each_entry(p, &cache->resolve, list) {
1060		if (p->name_state != NAME_PENDING &&
1061		    abs(p->data.rssi) >= abs(ie->data.rssi))
1062			break;
1063		pos = &p->list;
1064	}
1065
1066	list_add(&ie->list, pos);
1067}
1068
1069u32 hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data,
1070			     bool name_known)
1071{
1072	struct discovery_state *cache = &hdev->discovery;
1073	struct inquiry_entry *ie;
1074	u32 flags = 0;
1075
1076	BT_DBG("cache %p, %pMR", cache, &data->bdaddr);
1077
1078	hci_remove_remote_oob_data(hdev, &data->bdaddr, BDADDR_BREDR);
1079
1080	if (!data->ssp_mode)
1081		flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
1082
1083	ie = hci_inquiry_cache_lookup(hdev, &data->bdaddr);
1084	if (ie) {
1085		if (!ie->data.ssp_mode)
1086			flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
1087
1088		if (ie->name_state == NAME_NEEDED &&
1089		    data->rssi != ie->data.rssi) {
1090			ie->data.rssi = data->rssi;
1091			hci_inquiry_cache_update_resolve(hdev, ie);
1092		}
1093
1094		goto update;
1095	}
1096
1097	/* Entry not in the cache. Add new one. */
1098	ie = kzalloc(sizeof(*ie), GFP_KERNEL);
1099	if (!ie) {
1100		flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
1101		goto done;
1102	}
1103
1104	list_add(&ie->all, &cache->all);
1105
1106	if (name_known) {
1107		ie->name_state = NAME_KNOWN;
1108	} else {
1109		ie->name_state = NAME_NOT_KNOWN;
1110		list_add(&ie->list, &cache->unknown);
1111	}
1112
1113update:
1114	if (name_known && ie->name_state != NAME_KNOWN &&
1115	    ie->name_state != NAME_PENDING) {
1116		ie->name_state = NAME_KNOWN;
1117		list_del(&ie->list);
1118	}
1119
1120	memcpy(&ie->data, data, sizeof(*data));
1121	ie->timestamp = jiffies;
1122	cache->timestamp = jiffies;
1123
1124	if (ie->name_state == NAME_NOT_KNOWN)
1125		flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
1126
1127done:
1128	return flags;
1129}
1130
1131static int inquiry_cache_dump(struct hci_dev *hdev, int num, __u8 *buf)
1132{
1133	struct discovery_state *cache = &hdev->discovery;
1134	struct inquiry_info *info = (struct inquiry_info *) buf;
1135	struct inquiry_entry *e;
1136	int copied = 0;
1137
1138	list_for_each_entry(e, &cache->all, all) {
1139		struct inquiry_data *data = &e->data;
1140
1141		if (copied >= num)
1142			break;
1143
1144		bacpy(&info->bdaddr, &data->bdaddr);
1145		info->pscan_rep_mode	= data->pscan_rep_mode;
1146		info->pscan_period_mode	= data->pscan_period_mode;
1147		info->pscan_mode	= data->pscan_mode;
1148		memcpy(info->dev_class, data->dev_class, 3);
1149		info->clock_offset	= data->clock_offset;
1150
1151		info++;
1152		copied++;
1153	}
1154
1155	BT_DBG("cache %p, copied %d", cache, copied);
1156	return copied;
1157}
1158
1159static int hci_inq_req(struct hci_request *req, unsigned long opt)
1160{
1161	struct hci_inquiry_req *ir = (struct hci_inquiry_req *) opt;
1162	struct hci_dev *hdev = req->hdev;
1163	struct hci_cp_inquiry cp;
1164
1165	BT_DBG("%s", hdev->name);
1166
1167	if (test_bit(HCI_INQUIRY, &hdev->flags))
1168		return 0;
1169
1170	/* Start Inquiry */
1171	memcpy(&cp.lap, &ir->lap, 3);
1172	cp.length  = ir->length;
1173	cp.num_rsp = ir->num_rsp;
1174	hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp);
1175
1176	return 0;
1177}
1178
1179int hci_inquiry(void __user *arg)
1180{
1181	__u8 __user *ptr = arg;
1182	struct hci_inquiry_req ir;
1183	struct hci_dev *hdev;
1184	int err = 0, do_inquiry = 0, max_rsp;
1185	long timeo;
1186	__u8 *buf;
1187
1188	if (copy_from_user(&ir, ptr, sizeof(ir)))
1189		return -EFAULT;
1190
1191	hdev = hci_dev_get(ir.dev_id);
1192	if (!hdev)
1193		return -ENODEV;
1194
1195	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1196		err = -EBUSY;
1197		goto done;
1198	}
1199
1200	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1201		err = -EOPNOTSUPP;
1202		goto done;
1203	}
1204
1205	if (hdev->dev_type != HCI_BREDR) {
1206		err = -EOPNOTSUPP;
1207		goto done;
1208	}
1209
1210	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
1211		err = -EOPNOTSUPP;
1212		goto done;
1213	}
1214
1215	hci_dev_lock(hdev);
1216	if (inquiry_cache_age(hdev) > INQUIRY_CACHE_AGE_MAX ||
1217	    inquiry_cache_empty(hdev) || ir.flags & IREQ_CACHE_FLUSH) {
1218		hci_inquiry_cache_flush(hdev);
1219		do_inquiry = 1;
1220	}
1221	hci_dev_unlock(hdev);
1222
1223	timeo = ir.length * msecs_to_jiffies(2000);
1224
1225	if (do_inquiry) {
1226		err = hci_req_sync(hdev, hci_inq_req, (unsigned long) &ir,
1227				   timeo, NULL);
1228		if (err < 0)
1229			goto done;
1230
1231		/* Wait until Inquiry procedure finishes (HCI_INQUIRY flag is
1232		 * cleared). If it is interrupted by a signal, return -EINTR.
1233		 */
1234		if (wait_on_bit(&hdev->flags, HCI_INQUIRY,
1235				TASK_INTERRUPTIBLE))
1236			return -EINTR;
1237	}
1238
1239	/* for unlimited number of responses we will use buffer with
1240	 * 255 entries
1241	 */
1242	max_rsp = (ir.num_rsp == 0) ? 255 : ir.num_rsp;
1243
1244	/* cache_dump can't sleep. Therefore we allocate temp buffer and then
1245	 * copy it to the user space.
1246	 */
1247	buf = kmalloc(sizeof(struct inquiry_info) * max_rsp, GFP_KERNEL);
1248	if (!buf) {
1249		err = -ENOMEM;
1250		goto done;
1251	}
1252
1253	hci_dev_lock(hdev);
1254	ir.num_rsp = inquiry_cache_dump(hdev, max_rsp, buf);
1255	hci_dev_unlock(hdev);
1256
1257	BT_DBG("num_rsp %d", ir.num_rsp);
1258
1259	if (!copy_to_user(ptr, &ir, sizeof(ir))) {
1260		ptr += sizeof(ir);
1261		if (copy_to_user(ptr, buf, sizeof(struct inquiry_info) *
1262				 ir.num_rsp))
1263			err = -EFAULT;
1264	} else
1265		err = -EFAULT;
1266
1267	kfree(buf);
1268
1269done:
1270	hci_dev_put(hdev);
1271	return err;
1272}
1273
1274static int hci_dev_do_open(struct hci_dev *hdev)
1275{
1276	int ret = 0;
1277
1278	BT_DBG("%s %p", hdev->name, hdev);
1279
1280	hci_req_sync_lock(hdev);
1281
1282	if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) {
1283		ret = -ENODEV;
1284		goto done;
1285	}
1286
1287	if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
1288	    !hci_dev_test_flag(hdev, HCI_CONFIG)) {
1289		/* Check for rfkill but allow the HCI setup stage to
1290		 * proceed (which in itself doesn't cause any RF activity).
1291		 */
1292		if (hci_dev_test_flag(hdev, HCI_RFKILLED)) {
1293			ret = -ERFKILL;
1294			goto done;
1295		}
1296
1297		/* Check for valid public address or a configured static
1298		 * random adddress, but let the HCI setup proceed to
1299		 * be able to determine if there is a public address
1300		 * or not.
1301		 *
1302		 * In case of user channel usage, it is not important
1303		 * if a public address or static random address is
1304		 * available.
1305		 *
1306		 * This check is only valid for BR/EDR controllers
1307		 * since AMP controllers do not have an address.
1308		 */
1309		if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1310		    hdev->dev_type == HCI_BREDR &&
1311		    !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
1312		    !bacmp(&hdev->static_addr, BDADDR_ANY)) {
1313			ret = -EADDRNOTAVAIL;
1314			goto done;
1315		}
1316	}
1317
1318	if (test_bit(HCI_UP, &hdev->flags)) {
1319		ret = -EALREADY;
1320		goto done;
1321	}
1322
1323	if (hdev->open(hdev)) {
1324		ret = -EIO;
1325		goto done;
1326	}
1327
1328	set_bit(HCI_RUNNING, &hdev->flags);
1329	hci_sock_dev_event(hdev, HCI_DEV_OPEN);
1330
1331	atomic_set(&hdev->cmd_cnt, 1);
1332	set_bit(HCI_INIT, &hdev->flags);
1333
1334	if (hci_dev_test_flag(hdev, HCI_SETUP)) {
1335		hci_sock_dev_event(hdev, HCI_DEV_SETUP);
1336
1337		if (hdev->setup)
1338			ret = hdev->setup(hdev);
1339
1340		/* The transport driver can set these quirks before
1341		 * creating the HCI device or in its setup callback.
1342		 *
1343		 * In case any of them is set, the controller has to
1344		 * start up as unconfigured.
1345		 */
1346		if (test_bit(HCI_QUIRK_EXTERNAL_CONFIG, &hdev->quirks) ||
1347		    test_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks))
1348			hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
1349
1350		/* For an unconfigured controller it is required to
1351		 * read at least the version information provided by
1352		 * the Read Local Version Information command.
1353		 *
1354		 * If the set_bdaddr driver callback is provided, then
1355		 * also the original Bluetooth public device address
1356		 * will be read using the Read BD Address command.
1357		 */
1358		if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
1359			ret = __hci_unconf_init(hdev);
1360	}
1361
1362	if (hci_dev_test_flag(hdev, HCI_CONFIG)) {
1363		/* If public address change is configured, ensure that
1364		 * the address gets programmed. If the driver does not
1365		 * support changing the public address, fail the power
1366		 * on procedure.
1367		 */
1368		if (bacmp(&hdev->public_addr, BDADDR_ANY) &&
1369		    hdev->set_bdaddr)
1370			ret = hdev->set_bdaddr(hdev, &hdev->public_addr);
1371		else
1372			ret = -EADDRNOTAVAIL;
1373	}
1374
1375	if (!ret) {
1376		if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1377		    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1378			ret = __hci_init(hdev);
1379			if (!ret && hdev->post_init)
1380				ret = hdev->post_init(hdev);
1381		}
1382	}
1383
1384	/* If the HCI Reset command is clearing all diagnostic settings,
1385	 * then they need to be reprogrammed after the init procedure
1386	 * completed.
1387	 */
1388	if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) &&
1389	    hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) && hdev->set_diag)
1390		ret = hdev->set_diag(hdev, true);
1391
1392	clear_bit(HCI_INIT, &hdev->flags);
1393
1394	if (!ret) {
1395		hci_dev_hold(hdev);
1396		hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
1397		set_bit(HCI_UP, &hdev->flags);
1398		hci_sock_dev_event(hdev, HCI_DEV_UP);
1399		hci_leds_update_powered(hdev, true);
1400		if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
1401		    !hci_dev_test_flag(hdev, HCI_CONFIG) &&
1402		    !hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1403		    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1404		    hci_dev_test_flag(hdev, HCI_MGMT) &&
1405		    hdev->dev_type == HCI_BREDR) {
1406			ret = __hci_req_hci_power_on(hdev);
1407			mgmt_power_on(hdev, ret);
1408		}
1409	} else {
1410		/* Init failed, cleanup */
1411		flush_work(&hdev->tx_work);
1412		flush_work(&hdev->cmd_work);
1413		flush_work(&hdev->rx_work);
1414
1415		skb_queue_purge(&hdev->cmd_q);
1416		skb_queue_purge(&hdev->rx_q);
1417
1418		if (hdev->flush)
1419			hdev->flush(hdev);
1420
1421		if (hdev->sent_cmd) {
1422			kfree_skb(hdev->sent_cmd);
1423			hdev->sent_cmd = NULL;
1424		}
1425
1426		clear_bit(HCI_RUNNING, &hdev->flags);
1427		hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
1428
1429		hdev->close(hdev);
1430		hdev->flags &= BIT(HCI_RAW);
1431	}
1432
1433done:
1434	hci_req_sync_unlock(hdev);
1435	return ret;
1436}
1437
1438/* ---- HCI ioctl helpers ---- */
1439
1440int hci_dev_open(__u16 dev)
1441{
1442	struct hci_dev *hdev;
1443	int err;
1444
1445	hdev = hci_dev_get(dev);
1446	if (!hdev)
1447		return -ENODEV;
1448
1449	/* Devices that are marked as unconfigured can only be powered
1450	 * up as user channel. Trying to bring them up as normal devices
1451	 * will result into a failure. Only user channel operation is
1452	 * possible.
1453	 *
1454	 * When this function is called for a user channel, the flag
1455	 * HCI_USER_CHANNEL will be set first before attempting to
1456	 * open the device.
1457	 */
1458	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1459	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1460		err = -EOPNOTSUPP;
1461		goto done;
1462	}
1463
1464	/* We need to ensure that no other power on/off work is pending
1465	 * before proceeding to call hci_dev_do_open. This is
1466	 * particularly important if the setup procedure has not yet
1467	 * completed.
1468	 */
1469	if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
1470		cancel_delayed_work(&hdev->power_off);
1471
1472	/* After this call it is guaranteed that the setup procedure
1473	 * has finished. This means that error conditions like RFKILL
1474	 * or no valid public or static random address apply.
1475	 */
1476	flush_workqueue(hdev->req_workqueue);
1477
1478	/* For controllers not using the management interface and that
1479	 * are brought up using legacy ioctl, set the HCI_BONDABLE bit
1480	 * so that pairing works for them. Once the management interface
1481	 * is in use this bit will be cleared again and userspace has
1482	 * to explicitly enable it.
1483	 */
1484	if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1485	    !hci_dev_test_flag(hdev, HCI_MGMT))
1486		hci_dev_set_flag(hdev, HCI_BONDABLE);
1487
1488	err = hci_dev_do_open(hdev);
1489
1490done:
1491	hci_dev_put(hdev);
1492	return err;
1493}
1494
1495/* This function requires the caller holds hdev->lock */
1496static void hci_pend_le_actions_clear(struct hci_dev *hdev)
1497{
1498	struct hci_conn_params *p;
1499
1500	list_for_each_entry(p, &hdev->le_conn_params, list) {
1501		if (p->conn) {
1502			hci_conn_drop(p->conn);
1503			hci_conn_put(p->conn);
1504			p->conn = NULL;
1505		}
1506		list_del_init(&p->action);
1507	}
1508
1509	BT_DBG("All LE pending actions cleared");
1510}
1511
1512int hci_dev_do_close(struct hci_dev *hdev)
1513{
1514	bool auto_off;
1515
1516	BT_DBG("%s %p", hdev->name, hdev);
1517
1518	if (!hci_dev_test_flag(hdev, HCI_UNREGISTER) &&
1519	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1520	    test_bit(HCI_UP, &hdev->flags)) {
1521		/* Execute vendor specific shutdown routine */
1522		if (hdev->shutdown)
1523			hdev->shutdown(hdev);
1524	}
1525
1526	cancel_delayed_work(&hdev->power_off);
1527
1528	hci_request_cancel_all(hdev);
1529	hci_req_sync_lock(hdev);
1530
1531	if (!test_and_clear_bit(HCI_UP, &hdev->flags)) {
1532		cancel_delayed_work_sync(&hdev->cmd_timer);
1533		hci_req_sync_unlock(hdev);
1534		return 0;
1535	}
1536
1537	hci_leds_update_powered(hdev, false);
1538
1539	/* Flush RX and TX works */
1540	flush_work(&hdev->tx_work);
1541	flush_work(&hdev->rx_work);
1542
1543	if (hdev->discov_timeout > 0) {
1544		hdev->discov_timeout = 0;
1545		hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
1546		hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
1547	}
1548
1549	if (hci_dev_test_and_clear_flag(hdev, HCI_SERVICE_CACHE))
1550		cancel_delayed_work(&hdev->service_cache);
1551
1552	if (hci_dev_test_flag(hdev, HCI_MGMT))
1553		cancel_delayed_work_sync(&hdev->rpa_expired);
1554
1555	/* Avoid potential lockdep warnings from the *_flush() calls by
1556	 * ensuring the workqueue is empty up front.
1557	 */
1558	drain_workqueue(hdev->workqueue);
1559
1560	hci_dev_lock(hdev);
1561
1562	hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
1563
1564	auto_off = hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF);
1565
1566	if (!auto_off && hdev->dev_type == HCI_BREDR &&
 
1567	    hci_dev_test_flag(hdev, HCI_MGMT))
1568		__mgmt_power_off(hdev);
1569
1570	hci_inquiry_cache_flush(hdev);
1571	hci_pend_le_actions_clear(hdev);
1572	hci_conn_hash_flush(hdev);
1573	hci_dev_unlock(hdev);
1574
1575	smp_unregister(hdev);
1576
1577	hci_sock_dev_event(hdev, HCI_DEV_DOWN);
1578
1579	if (hdev->flush)
1580		hdev->flush(hdev);
1581
1582	/* Reset device */
1583	skb_queue_purge(&hdev->cmd_q);
1584	atomic_set(&hdev->cmd_cnt, 1);
1585	if (test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks) &&
1586	    !auto_off && !hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1587		set_bit(HCI_INIT, &hdev->flags);
1588		__hci_req_sync(hdev, hci_reset_req, 0, HCI_CMD_TIMEOUT, NULL);
1589		clear_bit(HCI_INIT, &hdev->flags);
1590	}
1591
1592	/* flush cmd  work */
1593	flush_work(&hdev->cmd_work);
1594
1595	/* Drop queues */
1596	skb_queue_purge(&hdev->rx_q);
1597	skb_queue_purge(&hdev->cmd_q);
1598	skb_queue_purge(&hdev->raw_q);
1599
1600	/* Drop last sent command */
1601	if (hdev->sent_cmd) {
1602		cancel_delayed_work_sync(&hdev->cmd_timer);
1603		kfree_skb(hdev->sent_cmd);
1604		hdev->sent_cmd = NULL;
1605	}
1606
1607	clear_bit(HCI_RUNNING, &hdev->flags);
1608	hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
1609
1610	/* After this point our queues are empty
1611	 * and no tasks are scheduled. */
1612	hdev->close(hdev);
1613
1614	/* Clear flags */
1615	hdev->flags &= BIT(HCI_RAW);
1616	hci_dev_clear_volatile_flags(hdev);
1617
1618	/* Controller radio is available but is currently powered down */
1619	hdev->amp_status = AMP_STATUS_POWERED_DOWN;
1620
1621	memset(hdev->eir, 0, sizeof(hdev->eir));
1622	memset(hdev->dev_class, 0, sizeof(hdev->dev_class));
1623	bacpy(&hdev->random_addr, BDADDR_ANY);
1624
1625	hci_req_sync_unlock(hdev);
1626
1627	hci_dev_put(hdev);
1628	return 0;
1629}
1630
1631int hci_dev_close(__u16 dev)
1632{
1633	struct hci_dev *hdev;
1634	int err;
1635
1636	hdev = hci_dev_get(dev);
1637	if (!hdev)
1638		return -ENODEV;
1639
1640	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1641		err = -EBUSY;
1642		goto done;
1643	}
1644
1645	if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
1646		cancel_delayed_work(&hdev->power_off);
1647
1648	err = hci_dev_do_close(hdev);
1649
1650done:
1651	hci_dev_put(hdev);
1652	return err;
1653}
1654
1655static int hci_dev_do_reset(struct hci_dev *hdev)
1656{
1657	int ret;
1658
1659	BT_DBG("%s %p", hdev->name, hdev);
1660
1661	hci_req_sync_lock(hdev);
1662
1663	/* Drop queues */
1664	skb_queue_purge(&hdev->rx_q);
1665	skb_queue_purge(&hdev->cmd_q);
1666
1667	/* Avoid potential lockdep warnings from the *_flush() calls by
1668	 * ensuring the workqueue is empty up front.
1669	 */
1670	drain_workqueue(hdev->workqueue);
1671
1672	hci_dev_lock(hdev);
1673	hci_inquiry_cache_flush(hdev);
1674	hci_conn_hash_flush(hdev);
1675	hci_dev_unlock(hdev);
1676
1677	if (hdev->flush)
1678		hdev->flush(hdev);
1679
1680	atomic_set(&hdev->cmd_cnt, 1);
1681	hdev->acl_cnt = 0; hdev->sco_cnt = 0; hdev->le_cnt = 0;
1682
1683	ret = __hci_req_sync(hdev, hci_reset_req, 0, HCI_INIT_TIMEOUT, NULL);
1684
1685	hci_req_sync_unlock(hdev);
1686	return ret;
1687}
1688
1689int hci_dev_reset(__u16 dev)
1690{
1691	struct hci_dev *hdev;
1692	int err;
1693
1694	hdev = hci_dev_get(dev);
1695	if (!hdev)
1696		return -ENODEV;
1697
1698	if (!test_bit(HCI_UP, &hdev->flags)) {
1699		err = -ENETDOWN;
1700		goto done;
1701	}
1702
1703	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1704		err = -EBUSY;
1705		goto done;
1706	}
1707
1708	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1709		err = -EOPNOTSUPP;
1710		goto done;
1711	}
1712
1713	err = hci_dev_do_reset(hdev);
1714
1715done:
1716	hci_dev_put(hdev);
1717	return err;
1718}
1719
1720int hci_dev_reset_stat(__u16 dev)
1721{
1722	struct hci_dev *hdev;
1723	int ret = 0;
1724
1725	hdev = hci_dev_get(dev);
1726	if (!hdev)
1727		return -ENODEV;
1728
1729	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1730		ret = -EBUSY;
1731		goto done;
1732	}
1733
1734	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1735		ret = -EOPNOTSUPP;
1736		goto done;
1737	}
1738
1739	memset(&hdev->stat, 0, sizeof(struct hci_dev_stats));
1740
1741done:
1742	hci_dev_put(hdev);
1743	return ret;
1744}
1745
1746static void hci_update_scan_state(struct hci_dev *hdev, u8 scan)
1747{
1748	bool conn_changed, discov_changed;
1749
1750	BT_DBG("%s scan 0x%02x", hdev->name, scan);
1751
1752	if ((scan & SCAN_PAGE))
1753		conn_changed = !hci_dev_test_and_set_flag(hdev,
1754							  HCI_CONNECTABLE);
1755	else
1756		conn_changed = hci_dev_test_and_clear_flag(hdev,
1757							   HCI_CONNECTABLE);
1758
1759	if ((scan & SCAN_INQUIRY)) {
1760		discov_changed = !hci_dev_test_and_set_flag(hdev,
1761							    HCI_DISCOVERABLE);
1762	} else {
1763		hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
1764		discov_changed = hci_dev_test_and_clear_flag(hdev,
1765							     HCI_DISCOVERABLE);
1766	}
1767
1768	if (!hci_dev_test_flag(hdev, HCI_MGMT))
1769		return;
1770
1771	if (conn_changed || discov_changed) {
1772		/* In case this was disabled through mgmt */
1773		hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
1774
1775		if (hci_dev_test_flag(hdev, HCI_LE_ENABLED))
1776			hci_req_update_adv_data(hdev, hdev->cur_adv_instance);
1777
1778		mgmt_new_settings(hdev);
1779	}
1780}
1781
1782int hci_dev_cmd(unsigned int cmd, void __user *arg)
1783{
1784	struct hci_dev *hdev;
1785	struct hci_dev_req dr;
1786	int err = 0;
1787
1788	if (copy_from_user(&dr, arg, sizeof(dr)))
1789		return -EFAULT;
1790
1791	hdev = hci_dev_get(dr.dev_id);
1792	if (!hdev)
1793		return -ENODEV;
1794
1795	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1796		err = -EBUSY;
1797		goto done;
1798	}
1799
1800	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1801		err = -EOPNOTSUPP;
1802		goto done;
1803	}
1804
1805	if (hdev->dev_type != HCI_BREDR) {
1806		err = -EOPNOTSUPP;
1807		goto done;
1808	}
1809
1810	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
1811		err = -EOPNOTSUPP;
1812		goto done;
1813	}
1814
1815	switch (cmd) {
1816	case HCISETAUTH:
1817		err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
1818				   HCI_INIT_TIMEOUT, NULL);
1819		break;
1820
1821	case HCISETENCRYPT:
1822		if (!lmp_encrypt_capable(hdev)) {
1823			err = -EOPNOTSUPP;
1824			break;
1825		}
1826
1827		if (!test_bit(HCI_AUTH, &hdev->flags)) {
1828			/* Auth must be enabled first */
1829			err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
1830					   HCI_INIT_TIMEOUT, NULL);
1831			if (err)
1832				break;
1833		}
1834
1835		err = hci_req_sync(hdev, hci_encrypt_req, dr.dev_opt,
1836				   HCI_INIT_TIMEOUT, NULL);
1837		break;
1838
1839	case HCISETSCAN:
1840		err = hci_req_sync(hdev, hci_scan_req, dr.dev_opt,
1841				   HCI_INIT_TIMEOUT, NULL);
1842
1843		/* Ensure that the connectable and discoverable states
1844		 * get correctly modified as this was a non-mgmt change.
1845		 */
1846		if (!err)
1847			hci_update_scan_state(hdev, dr.dev_opt);
1848		break;
1849
1850	case HCISETLINKPOL:
1851		err = hci_req_sync(hdev, hci_linkpol_req, dr.dev_opt,
1852				   HCI_INIT_TIMEOUT, NULL);
1853		break;
1854
1855	case HCISETLINKMODE:
1856		hdev->link_mode = ((__u16) dr.dev_opt) &
1857					(HCI_LM_MASTER | HCI_LM_ACCEPT);
1858		break;
1859
1860	case HCISETPTYPE:
1861		hdev->pkt_type = (__u16) dr.dev_opt;
1862		break;
1863
1864	case HCISETACLMTU:
1865		hdev->acl_mtu  = *((__u16 *) &dr.dev_opt + 1);
1866		hdev->acl_pkts = *((__u16 *) &dr.dev_opt + 0);
1867		break;
1868
1869	case HCISETSCOMTU:
1870		hdev->sco_mtu  = *((__u16 *) &dr.dev_opt + 1);
1871		hdev->sco_pkts = *((__u16 *) &dr.dev_opt + 0);
1872		break;
1873
1874	default:
1875		err = -EINVAL;
1876		break;
1877	}
1878
1879done:
1880	hci_dev_put(hdev);
1881	return err;
1882}
1883
1884int hci_get_dev_list(void __user *arg)
1885{
1886	struct hci_dev *hdev;
1887	struct hci_dev_list_req *dl;
1888	struct hci_dev_req *dr;
1889	int n = 0, size, err;
1890	__u16 dev_num;
1891
1892	if (get_user(dev_num, (__u16 __user *) arg))
1893		return -EFAULT;
1894
1895	if (!dev_num || dev_num > (PAGE_SIZE * 2) / sizeof(*dr))
1896		return -EINVAL;
1897
1898	size = sizeof(*dl) + dev_num * sizeof(*dr);
1899
1900	dl = kzalloc(size, GFP_KERNEL);
1901	if (!dl)
1902		return -ENOMEM;
1903
1904	dr = dl->dev_req;
1905
1906	read_lock(&hci_dev_list_lock);
1907	list_for_each_entry(hdev, &hci_dev_list, list) {
1908		unsigned long flags = hdev->flags;
1909
1910		/* When the auto-off is configured it means the transport
1911		 * is running, but in that case still indicate that the
1912		 * device is actually down.
1913		 */
1914		if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
1915			flags &= ~BIT(HCI_UP);
1916
1917		(dr + n)->dev_id  = hdev->id;
1918		(dr + n)->dev_opt = flags;
1919
1920		if (++n >= dev_num)
1921			break;
1922	}
1923	read_unlock(&hci_dev_list_lock);
1924
1925	dl->dev_num = n;
1926	size = sizeof(*dl) + n * sizeof(*dr);
1927
1928	err = copy_to_user(arg, dl, size);
1929	kfree(dl);
1930
1931	return err ? -EFAULT : 0;
1932}
1933
1934int hci_get_dev_info(void __user *arg)
1935{
1936	struct hci_dev *hdev;
1937	struct hci_dev_info di;
1938	unsigned long flags;
1939	int err = 0;
1940
1941	if (copy_from_user(&di, arg, sizeof(di)))
1942		return -EFAULT;
1943
1944	hdev = hci_dev_get(di.dev_id);
1945	if (!hdev)
1946		return -ENODEV;
1947
1948	/* When the auto-off is configured it means the transport
1949	 * is running, but in that case still indicate that the
1950	 * device is actually down.
1951	 */
1952	if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
1953		flags = hdev->flags & ~BIT(HCI_UP);
1954	else
1955		flags = hdev->flags;
1956
1957	strcpy(di.name, hdev->name);
1958	di.bdaddr   = hdev->bdaddr;
1959	di.type     = (hdev->bus & 0x0f) | ((hdev->dev_type & 0x03) << 4);
1960	di.flags    = flags;
1961	di.pkt_type = hdev->pkt_type;
1962	if (lmp_bredr_capable(hdev)) {
1963		di.acl_mtu  = hdev->acl_mtu;
1964		di.acl_pkts = hdev->acl_pkts;
1965		di.sco_mtu  = hdev->sco_mtu;
1966		di.sco_pkts = hdev->sco_pkts;
1967	} else {
1968		di.acl_mtu  = hdev->le_mtu;
1969		di.acl_pkts = hdev->le_pkts;
1970		di.sco_mtu  = 0;
1971		di.sco_pkts = 0;
1972	}
1973	di.link_policy = hdev->link_policy;
1974	di.link_mode   = hdev->link_mode;
1975
1976	memcpy(&di.stat, &hdev->stat, sizeof(di.stat));
1977	memcpy(&di.features, &hdev->features, sizeof(di.features));
1978
1979	if (copy_to_user(arg, &di, sizeof(di)))
1980		err = -EFAULT;
1981
1982	hci_dev_put(hdev);
1983
1984	return err;
1985}
1986
1987/* ---- Interface to HCI drivers ---- */
1988
1989static int hci_rfkill_set_block(void *data, bool blocked)
1990{
1991	struct hci_dev *hdev = data;
1992
1993	BT_DBG("%p name %s blocked %d", hdev, hdev->name, blocked);
1994
1995	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL))
1996		return -EBUSY;
1997
1998	if (blocked) {
1999		hci_dev_set_flag(hdev, HCI_RFKILLED);
2000		if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
2001		    !hci_dev_test_flag(hdev, HCI_CONFIG))
2002			hci_dev_do_close(hdev);
2003	} else {
2004		hci_dev_clear_flag(hdev, HCI_RFKILLED);
2005	}
2006
2007	return 0;
2008}
2009
2010static const struct rfkill_ops hci_rfkill_ops = {
2011	.set_block = hci_rfkill_set_block,
2012};
2013
2014static void hci_power_on(struct work_struct *work)
2015{
2016	struct hci_dev *hdev = container_of(work, struct hci_dev, power_on);
2017	int err;
2018
2019	BT_DBG("%s", hdev->name);
2020
2021	if (test_bit(HCI_UP, &hdev->flags) &&
2022	    hci_dev_test_flag(hdev, HCI_MGMT) &&
2023	    hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) {
2024		cancel_delayed_work(&hdev->power_off);
2025		hci_req_sync_lock(hdev);
2026		err = __hci_req_hci_power_on(hdev);
2027		hci_req_sync_unlock(hdev);
2028		mgmt_power_on(hdev, err);
2029		return;
2030	}
2031
2032	err = hci_dev_do_open(hdev);
2033	if (err < 0) {
2034		hci_dev_lock(hdev);
2035		mgmt_set_powered_failed(hdev, err);
2036		hci_dev_unlock(hdev);
2037		return;
2038	}
2039
2040	/* During the HCI setup phase, a few error conditions are
2041	 * ignored and they need to be checked now. If they are still
2042	 * valid, it is important to turn the device back off.
2043	 */
2044	if (hci_dev_test_flag(hdev, HCI_RFKILLED) ||
2045	    hci_dev_test_flag(hdev, HCI_UNCONFIGURED) ||
2046	    (hdev->dev_type == HCI_BREDR &&
2047	     !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
2048	     !bacmp(&hdev->static_addr, BDADDR_ANY))) {
2049		hci_dev_clear_flag(hdev, HCI_AUTO_OFF);
2050		hci_dev_do_close(hdev);
2051	} else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) {
2052		queue_delayed_work(hdev->req_workqueue, &hdev->power_off,
2053				   HCI_AUTO_OFF_TIMEOUT);
2054	}
2055
2056	if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) {
2057		/* For unconfigured devices, set the HCI_RAW flag
2058		 * so that userspace can easily identify them.
2059		 */
2060		if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
2061			set_bit(HCI_RAW, &hdev->flags);
2062
2063		/* For fully configured devices, this will send
2064		 * the Index Added event. For unconfigured devices,
2065		 * it will send Unconfigued Index Added event.
2066		 *
2067		 * Devices with HCI_QUIRK_RAW_DEVICE are ignored
2068		 * and no event will be send.
2069		 */
2070		mgmt_index_added(hdev);
2071	} else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) {
2072		/* When the controller is now configured, then it
2073		 * is important to clear the HCI_RAW flag.
2074		 */
2075		if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
2076			clear_bit(HCI_RAW, &hdev->flags);
2077
2078		/* Powering on the controller with HCI_CONFIG set only
2079		 * happens with the transition from unconfigured to
2080		 * configured. This will send the Index Added event.
2081		 */
2082		mgmt_index_added(hdev);
2083	}
2084}
2085
2086static void hci_power_off(struct work_struct *work)
2087{
2088	struct hci_dev *hdev = container_of(work, struct hci_dev,
2089					    power_off.work);
2090
2091	BT_DBG("%s", hdev->name);
2092
2093	hci_dev_do_close(hdev);
2094}
2095
2096static void hci_error_reset(struct work_struct *work)
2097{
2098	struct hci_dev *hdev = container_of(work, struct hci_dev, error_reset);
2099
2100	BT_DBG("%s", hdev->name);
2101
2102	if (hdev->hw_error)
2103		hdev->hw_error(hdev, hdev->hw_error_code);
2104	else
2105		BT_ERR("%s hardware error 0x%2.2x", hdev->name,
2106		       hdev->hw_error_code);
2107
2108	if (hci_dev_do_close(hdev))
2109		return;
2110
2111	hci_dev_do_open(hdev);
2112}
2113
2114void hci_uuids_clear(struct hci_dev *hdev)
2115{
2116	struct bt_uuid *uuid, *tmp;
2117
2118	list_for_each_entry_safe(uuid, tmp, &hdev->uuids, list) {
2119		list_del(&uuid->list);
2120		kfree(uuid);
2121	}
2122}
2123
2124void hci_link_keys_clear(struct hci_dev *hdev)
2125{
2126	struct link_key *key;
2127
2128	list_for_each_entry_rcu(key, &hdev->link_keys, list) {
2129		list_del_rcu(&key->list);
2130		kfree_rcu(key, rcu);
2131	}
2132}
2133
2134void hci_smp_ltks_clear(struct hci_dev *hdev)
2135{
2136	struct smp_ltk *k;
2137
2138	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2139		list_del_rcu(&k->list);
2140		kfree_rcu(k, rcu);
2141	}
2142}
2143
2144void hci_smp_irks_clear(struct hci_dev *hdev)
2145{
2146	struct smp_irk *k;
2147
2148	list_for_each_entry_rcu(k, &hdev->identity_resolving_keys, list) {
2149		list_del_rcu(&k->list);
2150		kfree_rcu(k, rcu);
2151	}
2152}
2153
2154struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
2155{
2156	struct link_key *k;
2157
2158	rcu_read_lock();
2159	list_for_each_entry_rcu(k, &hdev->link_keys, list) {
2160		if (bacmp(bdaddr, &k->bdaddr) == 0) {
2161			rcu_read_unlock();
2162			return k;
2163		}
2164	}
2165	rcu_read_unlock();
2166
2167	return NULL;
2168}
2169
2170static bool hci_persistent_key(struct hci_dev *hdev, struct hci_conn *conn,
2171			       u8 key_type, u8 old_key_type)
2172{
2173	/* Legacy key */
2174	if (key_type < 0x03)
2175		return true;
2176
2177	/* Debug keys are insecure so don't store them persistently */
2178	if (key_type == HCI_LK_DEBUG_COMBINATION)
2179		return false;
2180
2181	/* Changed combination key and there's no previous one */
2182	if (key_type == HCI_LK_CHANGED_COMBINATION && old_key_type == 0xff)
2183		return false;
2184
2185	/* Security mode 3 case */
2186	if (!conn)
2187		return true;
2188
2189	/* BR/EDR key derived using SC from an LE link */
2190	if (conn->type == LE_LINK)
2191		return true;
2192
2193	/* Neither local nor remote side had no-bonding as requirement */
2194	if (conn->auth_type > 0x01 && conn->remote_auth > 0x01)
2195		return true;
2196
2197	/* Local side had dedicated bonding as requirement */
2198	if (conn->auth_type == 0x02 || conn->auth_type == 0x03)
2199		return true;
2200
2201	/* Remote side had dedicated bonding as requirement */
2202	if (conn->remote_auth == 0x02 || conn->remote_auth == 0x03)
2203		return true;
2204
2205	/* If none of the above criteria match, then don't store the key
2206	 * persistently */
2207	return false;
2208}
2209
2210static u8 ltk_role(u8 type)
2211{
2212	if (type == SMP_LTK)
2213		return HCI_ROLE_MASTER;
2214
2215	return HCI_ROLE_SLAVE;
2216}
2217
2218struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2219			     u8 addr_type, u8 role)
2220{
2221	struct smp_ltk *k;
2222
2223	rcu_read_lock();
2224	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2225		if (addr_type != k->bdaddr_type || bacmp(bdaddr, &k->bdaddr))
2226			continue;
2227
2228		if (smp_ltk_is_sc(k) || ltk_role(k->type) == role) {
2229			rcu_read_unlock();
2230			return k;
2231		}
2232	}
2233	rcu_read_unlock();
2234
2235	return NULL;
2236}
2237
2238struct smp_irk *hci_find_irk_by_rpa(struct hci_dev *hdev, bdaddr_t *rpa)
2239{
2240	struct smp_irk *irk;
2241
2242	rcu_read_lock();
2243	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2244		if (!bacmp(&irk->rpa, rpa)) {
2245			rcu_read_unlock();
2246			return irk;
2247		}
2248	}
2249
2250	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2251		if (smp_irk_matches(hdev, irk->val, rpa)) {
2252			bacpy(&irk->rpa, rpa);
2253			rcu_read_unlock();
2254			return irk;
2255		}
2256	}
2257	rcu_read_unlock();
2258
2259	return NULL;
2260}
2261
2262struct smp_irk *hci_find_irk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr,
2263				     u8 addr_type)
2264{
2265	struct smp_irk *irk;
2266
2267	/* Identity Address must be public or static random */
2268	if (addr_type == ADDR_LE_DEV_RANDOM && (bdaddr->b[5] & 0xc0) != 0xc0)
2269		return NULL;
2270
2271	rcu_read_lock();
2272	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2273		if (addr_type == irk->addr_type &&
2274		    bacmp(bdaddr, &irk->bdaddr) == 0) {
2275			rcu_read_unlock();
2276			return irk;
2277		}
2278	}
2279	rcu_read_unlock();
2280
2281	return NULL;
2282}
2283
2284struct link_key *hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn,
2285				  bdaddr_t *bdaddr, u8 *val, u8 type,
2286				  u8 pin_len, bool *persistent)
2287{
2288	struct link_key *key, *old_key;
2289	u8 old_key_type;
2290
2291	old_key = hci_find_link_key(hdev, bdaddr);
2292	if (old_key) {
2293		old_key_type = old_key->type;
2294		key = old_key;
2295	} else {
2296		old_key_type = conn ? conn->key_type : 0xff;
2297		key = kzalloc(sizeof(*key), GFP_KERNEL);
2298		if (!key)
2299			return NULL;
2300		list_add_rcu(&key->list, &hdev->link_keys);
2301	}
2302
2303	BT_DBG("%s key for %pMR type %u", hdev->name, bdaddr, type);
2304
2305	/* Some buggy controller combinations generate a changed
2306	 * combination key for legacy pairing even when there's no
2307	 * previous key */
2308	if (type == HCI_LK_CHANGED_COMBINATION &&
2309	    (!conn || conn->remote_auth == 0xff) && old_key_type == 0xff) {
2310		type = HCI_LK_COMBINATION;
2311		if (conn)
2312			conn->key_type = type;
2313	}
2314
2315	bacpy(&key->bdaddr, bdaddr);
2316	memcpy(key->val, val, HCI_LINK_KEY_SIZE);
2317	key->pin_len = pin_len;
2318
2319	if (type == HCI_LK_CHANGED_COMBINATION)
2320		key->type = old_key_type;
2321	else
2322		key->type = type;
2323
2324	if (persistent)
2325		*persistent = hci_persistent_key(hdev, conn, type,
2326						 old_key_type);
2327
2328	return key;
2329}
2330
2331struct smp_ltk *hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2332			    u8 addr_type, u8 type, u8 authenticated,
2333			    u8 tk[16], u8 enc_size, __le16 ediv, __le64 rand)
2334{
2335	struct smp_ltk *key, *old_key;
2336	u8 role = ltk_role(type);
2337
2338	old_key = hci_find_ltk(hdev, bdaddr, addr_type, role);
2339	if (old_key)
2340		key = old_key;
2341	else {
2342		key = kzalloc(sizeof(*key), GFP_KERNEL);
2343		if (!key)
2344			return NULL;
2345		list_add_rcu(&key->list, &hdev->long_term_keys);
2346	}
2347
2348	bacpy(&key->bdaddr, bdaddr);
2349	key->bdaddr_type = addr_type;
2350	memcpy(key->val, tk, sizeof(key->val));
2351	key->authenticated = authenticated;
2352	key->ediv = ediv;
2353	key->rand = rand;
2354	key->enc_size = enc_size;
2355	key->type = type;
2356
2357	return key;
2358}
2359
2360struct smp_irk *hci_add_irk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2361			    u8 addr_type, u8 val[16], bdaddr_t *rpa)
2362{
2363	struct smp_irk *irk;
2364
2365	irk = hci_find_irk_by_addr(hdev, bdaddr, addr_type);
2366	if (!irk) {
2367		irk = kzalloc(sizeof(*irk), GFP_KERNEL);
2368		if (!irk)
2369			return NULL;
2370
2371		bacpy(&irk->bdaddr, bdaddr);
2372		irk->addr_type = addr_type;
2373
2374		list_add_rcu(&irk->list, &hdev->identity_resolving_keys);
2375	}
2376
2377	memcpy(irk->val, val, 16);
2378	bacpy(&irk->rpa, rpa);
2379
2380	return irk;
2381}
2382
2383int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
2384{
2385	struct link_key *key;
2386
2387	key = hci_find_link_key(hdev, bdaddr);
2388	if (!key)
2389		return -ENOENT;
2390
2391	BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2392
2393	list_del_rcu(&key->list);
2394	kfree_rcu(key, rcu);
2395
2396	return 0;
2397}
2398
2399int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type)
2400{
2401	struct smp_ltk *k;
2402	int removed = 0;
2403
2404	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2405		if (bacmp(bdaddr, &k->bdaddr) || k->bdaddr_type != bdaddr_type)
2406			continue;
2407
2408		BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2409
2410		list_del_rcu(&k->list);
2411		kfree_rcu(k, rcu);
2412		removed++;
2413	}
2414
2415	return removed ? 0 : -ENOENT;
2416}
2417
2418void hci_remove_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type)
2419{
2420	struct smp_irk *k;
2421
2422	list_for_each_entry_rcu(k, &hdev->identity_resolving_keys, list) {
2423		if (bacmp(bdaddr, &k->bdaddr) || k->addr_type != addr_type)
2424			continue;
2425
2426		BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2427
2428		list_del_rcu(&k->list);
2429		kfree_rcu(k, rcu);
2430	}
2431}
2432
2433bool hci_bdaddr_is_paired(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type)
2434{
2435	struct smp_ltk *k;
2436	struct smp_irk *irk;
2437	u8 addr_type;
2438
2439	if (type == BDADDR_BREDR) {
2440		if (hci_find_link_key(hdev, bdaddr))
2441			return true;
2442		return false;
2443	}
2444
2445	/* Convert to HCI addr type which struct smp_ltk uses */
2446	if (type == BDADDR_LE_PUBLIC)
2447		addr_type = ADDR_LE_DEV_PUBLIC;
2448	else
2449		addr_type = ADDR_LE_DEV_RANDOM;
2450
2451	irk = hci_get_irk(hdev, bdaddr, addr_type);
2452	if (irk) {
2453		bdaddr = &irk->bdaddr;
2454		addr_type = irk->addr_type;
2455	}
2456
2457	rcu_read_lock();
2458	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2459		if (k->bdaddr_type == addr_type && !bacmp(bdaddr, &k->bdaddr)) {
2460			rcu_read_unlock();
2461			return true;
2462		}
2463	}
2464	rcu_read_unlock();
2465
2466	return false;
2467}
2468
2469/* HCI command timer function */
2470static void hci_cmd_timeout(struct work_struct *work)
2471{
2472	struct hci_dev *hdev = container_of(work, struct hci_dev,
2473					    cmd_timer.work);
2474
2475	if (hdev->sent_cmd) {
2476		struct hci_command_hdr *sent = (void *) hdev->sent_cmd->data;
2477		u16 opcode = __le16_to_cpu(sent->opcode);
2478
2479		BT_ERR("%s command 0x%4.4x tx timeout", hdev->name, opcode);
2480	} else {
2481		BT_ERR("%s command tx timeout", hdev->name);
2482	}
2483
2484	atomic_set(&hdev->cmd_cnt, 1);
2485	queue_work(hdev->workqueue, &hdev->cmd_work);
2486}
2487
2488struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev,
2489					  bdaddr_t *bdaddr, u8 bdaddr_type)
2490{
2491	struct oob_data *data;
2492
2493	list_for_each_entry(data, &hdev->remote_oob_data, list) {
2494		if (bacmp(bdaddr, &data->bdaddr) != 0)
2495			continue;
2496		if (data->bdaddr_type != bdaddr_type)
2497			continue;
2498		return data;
2499	}
2500
2501	return NULL;
2502}
2503
2504int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
2505			       u8 bdaddr_type)
2506{
2507	struct oob_data *data;
2508
2509	data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
2510	if (!data)
2511		return -ENOENT;
2512
2513	BT_DBG("%s removing %pMR (%u)", hdev->name, bdaddr, bdaddr_type);
2514
2515	list_del(&data->list);
2516	kfree(data);
2517
2518	return 0;
2519}
2520
2521void hci_remote_oob_data_clear(struct hci_dev *hdev)
2522{
2523	struct oob_data *data, *n;
2524
2525	list_for_each_entry_safe(data, n, &hdev->remote_oob_data, list) {
2526		list_del(&data->list);
2527		kfree(data);
2528	}
2529}
2530
2531int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
2532			    u8 bdaddr_type, u8 *hash192, u8 *rand192,
2533			    u8 *hash256, u8 *rand256)
2534{
2535	struct oob_data *data;
2536
2537	data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
2538	if (!data) {
2539		data = kmalloc(sizeof(*data), GFP_KERNEL);
2540		if (!data)
2541			return -ENOMEM;
2542
2543		bacpy(&data->bdaddr, bdaddr);
2544		data->bdaddr_type = bdaddr_type;
2545		list_add(&data->list, &hdev->remote_oob_data);
2546	}
2547
2548	if (hash192 && rand192) {
2549		memcpy(data->hash192, hash192, sizeof(data->hash192));
2550		memcpy(data->rand192, rand192, sizeof(data->rand192));
2551		if (hash256 && rand256)
2552			data->present = 0x03;
2553	} else {
2554		memset(data->hash192, 0, sizeof(data->hash192));
2555		memset(data->rand192, 0, sizeof(data->rand192));
2556		if (hash256 && rand256)
2557			data->present = 0x02;
2558		else
2559			data->present = 0x00;
2560	}
2561
2562	if (hash256 && rand256) {
2563		memcpy(data->hash256, hash256, sizeof(data->hash256));
2564		memcpy(data->rand256, rand256, sizeof(data->rand256));
2565	} else {
2566		memset(data->hash256, 0, sizeof(data->hash256));
2567		memset(data->rand256, 0, sizeof(data->rand256));
2568		if (hash192 && rand192)
2569			data->present = 0x01;
2570	}
2571
2572	BT_DBG("%s for %pMR", hdev->name, bdaddr);
2573
2574	return 0;
2575}
2576
2577/* This function requires the caller holds hdev->lock */
2578struct adv_info *hci_find_adv_instance(struct hci_dev *hdev, u8 instance)
2579{
2580	struct adv_info *adv_instance;
2581
2582	list_for_each_entry(adv_instance, &hdev->adv_instances, list) {
2583		if (adv_instance->instance == instance)
2584			return adv_instance;
2585	}
2586
2587	return NULL;
2588}
2589
2590/* This function requires the caller holds hdev->lock */
2591struct adv_info *hci_get_next_instance(struct hci_dev *hdev, u8 instance)
2592{
2593	struct adv_info *cur_instance;
2594
2595	cur_instance = hci_find_adv_instance(hdev, instance);
2596	if (!cur_instance)
2597		return NULL;
2598
2599	if (cur_instance == list_last_entry(&hdev->adv_instances,
2600					    struct adv_info, list))
2601		return list_first_entry(&hdev->adv_instances,
2602						 struct adv_info, list);
2603	else
2604		return list_next_entry(cur_instance, list);
2605}
2606
2607/* This function requires the caller holds hdev->lock */
2608int hci_remove_adv_instance(struct hci_dev *hdev, u8 instance)
2609{
2610	struct adv_info *adv_instance;
2611
2612	adv_instance = hci_find_adv_instance(hdev, instance);
2613	if (!adv_instance)
2614		return -ENOENT;
2615
2616	BT_DBG("%s removing %dMR", hdev->name, instance);
2617
2618	if (hdev->cur_adv_instance == instance) {
2619		if (hdev->adv_instance_timeout) {
2620			cancel_delayed_work(&hdev->adv_instance_expire);
2621			hdev->adv_instance_timeout = 0;
2622		}
2623		hdev->cur_adv_instance = 0x00;
2624	}
2625
2626	list_del(&adv_instance->list);
2627	kfree(adv_instance);
2628
2629	hdev->adv_instance_cnt--;
2630
2631	return 0;
2632}
2633
2634/* This function requires the caller holds hdev->lock */
2635void hci_adv_instances_clear(struct hci_dev *hdev)
2636{
2637	struct adv_info *adv_instance, *n;
2638
2639	if (hdev->adv_instance_timeout) {
2640		cancel_delayed_work(&hdev->adv_instance_expire);
2641		hdev->adv_instance_timeout = 0;
2642	}
2643
2644	list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list) {
2645		list_del(&adv_instance->list);
2646		kfree(adv_instance);
2647	}
2648
2649	hdev->adv_instance_cnt = 0;
2650	hdev->cur_adv_instance = 0x00;
2651}
2652
2653/* This function requires the caller holds hdev->lock */
2654int hci_add_adv_instance(struct hci_dev *hdev, u8 instance, u32 flags,
2655			 u16 adv_data_len, u8 *adv_data,
2656			 u16 scan_rsp_len, u8 *scan_rsp_data,
2657			 u16 timeout, u16 duration)
2658{
2659	struct adv_info *adv_instance;
2660
2661	adv_instance = hci_find_adv_instance(hdev, instance);
2662	if (adv_instance) {
2663		memset(adv_instance->adv_data, 0,
2664		       sizeof(adv_instance->adv_data));
2665		memset(adv_instance->scan_rsp_data, 0,
2666		       sizeof(adv_instance->scan_rsp_data));
2667	} else {
2668		if (hdev->adv_instance_cnt >= HCI_MAX_ADV_INSTANCES ||
2669		    instance < 1 || instance > HCI_MAX_ADV_INSTANCES)
2670			return -EOVERFLOW;
2671
2672		adv_instance = kzalloc(sizeof(*adv_instance), GFP_KERNEL);
2673		if (!adv_instance)
2674			return -ENOMEM;
2675
2676		adv_instance->pending = true;
2677		adv_instance->instance = instance;
2678		list_add(&adv_instance->list, &hdev->adv_instances);
2679		hdev->adv_instance_cnt++;
2680	}
2681
2682	adv_instance->flags = flags;
2683	adv_instance->adv_data_len = adv_data_len;
2684	adv_instance->scan_rsp_len = scan_rsp_len;
2685
2686	if (adv_data_len)
2687		memcpy(adv_instance->adv_data, adv_data, adv_data_len);
2688
2689	if (scan_rsp_len)
2690		memcpy(adv_instance->scan_rsp_data,
2691		       scan_rsp_data, scan_rsp_len);
2692
2693	adv_instance->timeout = timeout;
2694	adv_instance->remaining_time = timeout;
2695
2696	if (duration == 0)
2697		adv_instance->duration = HCI_DEFAULT_ADV_DURATION;
2698	else
2699		adv_instance->duration = duration;
2700
2701	BT_DBG("%s for %dMR", hdev->name, instance);
2702
2703	return 0;
2704}
2705
2706struct bdaddr_list *hci_bdaddr_list_lookup(struct list_head *bdaddr_list,
2707					 bdaddr_t *bdaddr, u8 type)
2708{
2709	struct bdaddr_list *b;
2710
2711	list_for_each_entry(b, bdaddr_list, list) {
2712		if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2713			return b;
2714	}
2715
2716	return NULL;
2717}
2718
2719void hci_bdaddr_list_clear(struct list_head *bdaddr_list)
2720{
2721	struct bdaddr_list *b, *n;
2722
2723	list_for_each_entry_safe(b, n, bdaddr_list, list) {
2724		list_del(&b->list);
2725		kfree(b);
2726	}
2727}
2728
2729int hci_bdaddr_list_add(struct list_head *list, bdaddr_t *bdaddr, u8 type)
2730{
2731	struct bdaddr_list *entry;
2732
2733	if (!bacmp(bdaddr, BDADDR_ANY))
2734		return -EBADF;
2735
2736	if (hci_bdaddr_list_lookup(list, bdaddr, type))
2737		return -EEXIST;
2738
2739	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
2740	if (!entry)
2741		return -ENOMEM;
2742
2743	bacpy(&entry->bdaddr, bdaddr);
2744	entry->bdaddr_type = type;
2745
2746	list_add(&entry->list, list);
2747
2748	return 0;
2749}
2750
2751int hci_bdaddr_list_del(struct list_head *list, bdaddr_t *bdaddr, u8 type)
2752{
2753	struct bdaddr_list *entry;
2754
2755	if (!bacmp(bdaddr, BDADDR_ANY)) {
2756		hci_bdaddr_list_clear(list);
2757		return 0;
2758	}
2759
2760	entry = hci_bdaddr_list_lookup(list, bdaddr, type);
2761	if (!entry)
2762		return -ENOENT;
2763
2764	list_del(&entry->list);
2765	kfree(entry);
2766
2767	return 0;
2768}
2769
2770/* This function requires the caller holds hdev->lock */
2771struct hci_conn_params *hci_conn_params_lookup(struct hci_dev *hdev,
2772					       bdaddr_t *addr, u8 addr_type)
2773{
2774	struct hci_conn_params *params;
2775
2776	list_for_each_entry(params, &hdev->le_conn_params, list) {
2777		if (bacmp(&params->addr, addr) == 0 &&
2778		    params->addr_type == addr_type) {
2779			return params;
2780		}
2781	}
2782
2783	return NULL;
2784}
2785
2786/* This function requires the caller holds hdev->lock */
2787struct hci_conn_params *hci_pend_le_action_lookup(struct list_head *list,
2788						  bdaddr_t *addr, u8 addr_type)
2789{
2790	struct hci_conn_params *param;
2791
2792	list_for_each_entry(param, list, action) {
2793		if (bacmp(&param->addr, addr) == 0 &&
2794		    param->addr_type == addr_type)
2795			return param;
2796	}
2797
2798	return NULL;
2799}
2800
2801/* This function requires the caller holds hdev->lock */
2802struct hci_conn_params *hci_conn_params_add(struct hci_dev *hdev,
2803					    bdaddr_t *addr, u8 addr_type)
2804{
2805	struct hci_conn_params *params;
2806
2807	params = hci_conn_params_lookup(hdev, addr, addr_type);
2808	if (params)
2809		return params;
2810
2811	params = kzalloc(sizeof(*params), GFP_KERNEL);
2812	if (!params) {
2813		BT_ERR("Out of memory");
2814		return NULL;
2815	}
2816
2817	bacpy(&params->addr, addr);
2818	params->addr_type = addr_type;
2819
2820	list_add(&params->list, &hdev->le_conn_params);
2821	INIT_LIST_HEAD(&params->action);
2822
2823	params->conn_min_interval = hdev->le_conn_min_interval;
2824	params->conn_max_interval = hdev->le_conn_max_interval;
2825	params->conn_latency = hdev->le_conn_latency;
2826	params->supervision_timeout = hdev->le_supv_timeout;
2827	params->auto_connect = HCI_AUTO_CONN_DISABLED;
2828
2829	BT_DBG("addr %pMR (type %u)", addr, addr_type);
2830
2831	return params;
2832}
2833
2834static void hci_conn_params_free(struct hci_conn_params *params)
2835{
2836	if (params->conn) {
2837		hci_conn_drop(params->conn);
2838		hci_conn_put(params->conn);
2839	}
2840
2841	list_del(&params->action);
2842	list_del(&params->list);
2843	kfree(params);
2844}
2845
2846/* This function requires the caller holds hdev->lock */
2847void hci_conn_params_del(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type)
2848{
2849	struct hci_conn_params *params;
2850
2851	params = hci_conn_params_lookup(hdev, addr, addr_type);
2852	if (!params)
2853		return;
2854
2855	hci_conn_params_free(params);
2856
2857	hci_update_background_scan(hdev);
2858
2859	BT_DBG("addr %pMR (type %u)", addr, addr_type);
2860}
2861
2862/* This function requires the caller holds hdev->lock */
2863void hci_conn_params_clear_disabled(struct hci_dev *hdev)
2864{
2865	struct hci_conn_params *params, *tmp;
2866
2867	list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list) {
2868		if (params->auto_connect != HCI_AUTO_CONN_DISABLED)
2869			continue;
2870
2871		/* If trying to estabilish one time connection to disabled
2872		 * device, leave the params, but mark them as just once.
2873		 */
2874		if (params->explicit_connect) {
2875			params->auto_connect = HCI_AUTO_CONN_EXPLICIT;
2876			continue;
2877		}
2878
2879		list_del(&params->list);
2880		kfree(params);
2881	}
2882
2883	BT_DBG("All LE disabled connection parameters were removed");
2884}
2885
2886/* This function requires the caller holds hdev->lock */
2887static void hci_conn_params_clear_all(struct hci_dev *hdev)
2888{
2889	struct hci_conn_params *params, *tmp;
2890
2891	list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list)
2892		hci_conn_params_free(params);
2893
2894	BT_DBG("All LE connection parameters were removed");
2895}
2896
2897/* Copy the Identity Address of the controller.
2898 *
2899 * If the controller has a public BD_ADDR, then by default use that one.
2900 * If this is a LE only controller without a public address, default to
2901 * the static random address.
2902 *
2903 * For debugging purposes it is possible to force controllers with a
2904 * public address to use the static random address instead.
2905 *
2906 * In case BR/EDR has been disabled on a dual-mode controller and
2907 * userspace has configured a static address, then that address
2908 * becomes the identity address instead of the public BR/EDR address.
2909 */
2910void hci_copy_identity_address(struct hci_dev *hdev, bdaddr_t *bdaddr,
2911			       u8 *bdaddr_type)
2912{
2913	if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
2914	    !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
2915	    (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
2916	     bacmp(&hdev->static_addr, BDADDR_ANY))) {
2917		bacpy(bdaddr, &hdev->static_addr);
2918		*bdaddr_type = ADDR_LE_DEV_RANDOM;
2919	} else {
2920		bacpy(bdaddr, &hdev->bdaddr);
2921		*bdaddr_type = ADDR_LE_DEV_PUBLIC;
2922	}
2923}
2924
2925/* Alloc HCI device */
2926struct hci_dev *hci_alloc_dev(void)
2927{
2928	struct hci_dev *hdev;
2929
2930	hdev = kzalloc(sizeof(*hdev), GFP_KERNEL);
2931	if (!hdev)
2932		return NULL;
2933
2934	hdev->pkt_type  = (HCI_DM1 | HCI_DH1 | HCI_HV1);
2935	hdev->esco_type = (ESCO_HV1);
2936	hdev->link_mode = (HCI_LM_ACCEPT);
2937	hdev->num_iac = 0x01;		/* One IAC support is mandatory */
2938	hdev->io_capability = 0x03;	/* No Input No Output */
2939	hdev->manufacturer = 0xffff;	/* Default to internal use */
2940	hdev->inq_tx_power = HCI_TX_POWER_INVALID;
2941	hdev->adv_tx_power = HCI_TX_POWER_INVALID;
2942	hdev->adv_instance_cnt = 0;
2943	hdev->cur_adv_instance = 0x00;
2944	hdev->adv_instance_timeout = 0;
2945
2946	hdev->sniff_max_interval = 800;
2947	hdev->sniff_min_interval = 80;
2948
2949	hdev->le_adv_channel_map = 0x07;
2950	hdev->le_adv_min_interval = 0x0800;
2951	hdev->le_adv_max_interval = 0x0800;
2952	hdev->le_scan_interval = 0x0060;
2953	hdev->le_scan_window = 0x0030;
2954	hdev->le_conn_min_interval = 0x0028;
2955	hdev->le_conn_max_interval = 0x0038;
2956	hdev->le_conn_latency = 0x0000;
2957	hdev->le_supv_timeout = 0x002a;
2958	hdev->le_def_tx_len = 0x001b;
2959	hdev->le_def_tx_time = 0x0148;
2960	hdev->le_max_tx_len = 0x001b;
2961	hdev->le_max_tx_time = 0x0148;
2962	hdev->le_max_rx_len = 0x001b;
2963	hdev->le_max_rx_time = 0x0148;
2964
2965	hdev->rpa_timeout = HCI_DEFAULT_RPA_TIMEOUT;
2966	hdev->discov_interleaved_timeout = DISCOV_INTERLEAVED_TIMEOUT;
2967	hdev->conn_info_min_age = DEFAULT_CONN_INFO_MIN_AGE;
2968	hdev->conn_info_max_age = DEFAULT_CONN_INFO_MAX_AGE;
2969
2970	mutex_init(&hdev->lock);
2971	mutex_init(&hdev->req_lock);
2972
2973	INIT_LIST_HEAD(&hdev->mgmt_pending);
2974	INIT_LIST_HEAD(&hdev->blacklist);
2975	INIT_LIST_HEAD(&hdev->whitelist);
2976	INIT_LIST_HEAD(&hdev->uuids);
2977	INIT_LIST_HEAD(&hdev->link_keys);
2978	INIT_LIST_HEAD(&hdev->long_term_keys);
2979	INIT_LIST_HEAD(&hdev->identity_resolving_keys);
2980	INIT_LIST_HEAD(&hdev->remote_oob_data);
2981	INIT_LIST_HEAD(&hdev->le_white_list);
2982	INIT_LIST_HEAD(&hdev->le_conn_params);
2983	INIT_LIST_HEAD(&hdev->pend_le_conns);
2984	INIT_LIST_HEAD(&hdev->pend_le_reports);
2985	INIT_LIST_HEAD(&hdev->conn_hash.list);
2986	INIT_LIST_HEAD(&hdev->adv_instances);
2987
2988	INIT_WORK(&hdev->rx_work, hci_rx_work);
2989	INIT_WORK(&hdev->cmd_work, hci_cmd_work);
2990	INIT_WORK(&hdev->tx_work, hci_tx_work);
2991	INIT_WORK(&hdev->power_on, hci_power_on);
2992	INIT_WORK(&hdev->error_reset, hci_error_reset);
2993
2994	INIT_DELAYED_WORK(&hdev->power_off, hci_power_off);
2995
2996	skb_queue_head_init(&hdev->rx_q);
2997	skb_queue_head_init(&hdev->cmd_q);
2998	skb_queue_head_init(&hdev->raw_q);
2999
3000	init_waitqueue_head(&hdev->req_wait_q);
3001
3002	INIT_DELAYED_WORK(&hdev->cmd_timer, hci_cmd_timeout);
3003
3004	hci_request_setup(hdev);
3005
3006	hci_init_sysfs(hdev);
3007	discovery_init(hdev);
3008
3009	return hdev;
3010}
3011EXPORT_SYMBOL(hci_alloc_dev);
3012
3013/* Free HCI device */
3014void hci_free_dev(struct hci_dev *hdev)
3015{
3016	/* will free via device release */
3017	put_device(&hdev->dev);
3018}
3019EXPORT_SYMBOL(hci_free_dev);
3020
3021/* Register HCI device */
3022int hci_register_dev(struct hci_dev *hdev)
3023{
3024	int id, error;
3025
3026	if (!hdev->open || !hdev->close || !hdev->send)
3027		return -EINVAL;
3028
3029	/* Do not allow HCI_AMP devices to register at index 0,
3030	 * so the index can be used as the AMP controller ID.
3031	 */
3032	switch (hdev->dev_type) {
3033	case HCI_BREDR:
3034		id = ida_simple_get(&hci_index_ida, 0, 0, GFP_KERNEL);
3035		break;
3036	case HCI_AMP:
3037		id = ida_simple_get(&hci_index_ida, 1, 0, GFP_KERNEL);
3038		break;
3039	default:
3040		return -EINVAL;
3041	}
3042
3043	if (id < 0)
3044		return id;
3045
3046	sprintf(hdev->name, "hci%d", id);
3047	hdev->id = id;
3048
3049	BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
3050
3051	hdev->workqueue = alloc_workqueue("%s", WQ_HIGHPRI | WQ_UNBOUND |
3052					  WQ_MEM_RECLAIM, 1, hdev->name);
3053	if (!hdev->workqueue) {
3054		error = -ENOMEM;
3055		goto err;
3056	}
3057
3058	hdev->req_workqueue = alloc_workqueue("%s", WQ_HIGHPRI | WQ_UNBOUND |
3059					      WQ_MEM_RECLAIM, 1, hdev->name);
3060	if (!hdev->req_workqueue) {
3061		destroy_workqueue(hdev->workqueue);
3062		error = -ENOMEM;
3063		goto err;
3064	}
3065
3066	if (!IS_ERR_OR_NULL(bt_debugfs))
3067		hdev->debugfs = debugfs_create_dir(hdev->name, bt_debugfs);
3068
3069	dev_set_name(&hdev->dev, "%s", hdev->name);
3070
3071	error = device_add(&hdev->dev);
3072	if (error < 0)
3073		goto err_wqueue;
3074
3075	hci_leds_init(hdev);
3076
3077	hdev->rfkill = rfkill_alloc(hdev->name, &hdev->dev,
3078				    RFKILL_TYPE_BLUETOOTH, &hci_rfkill_ops,
3079				    hdev);
3080	if (hdev->rfkill) {
3081		if (rfkill_register(hdev->rfkill) < 0) {
3082			rfkill_destroy(hdev->rfkill);
3083			hdev->rfkill = NULL;
3084		}
3085	}
3086
3087	if (hdev->rfkill && rfkill_blocked(hdev->rfkill))
3088		hci_dev_set_flag(hdev, HCI_RFKILLED);
3089
3090	hci_dev_set_flag(hdev, HCI_SETUP);
3091	hci_dev_set_flag(hdev, HCI_AUTO_OFF);
3092
3093	if (hdev->dev_type == HCI_BREDR) {
3094		/* Assume BR/EDR support until proven otherwise (such as
3095		 * through reading supported features during init.
3096		 */
3097		hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
3098	}
3099
3100	write_lock(&hci_dev_list_lock);
3101	list_add(&hdev->list, &hci_dev_list);
3102	write_unlock(&hci_dev_list_lock);
3103
3104	/* Devices that are marked for raw-only usage are unconfigured
3105	 * and should not be included in normal operation.
3106	 */
3107	if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
3108		hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
3109
3110	hci_sock_dev_event(hdev, HCI_DEV_REG);
3111	hci_dev_hold(hdev);
3112
3113	queue_work(hdev->req_workqueue, &hdev->power_on);
3114
3115	return id;
3116
3117err_wqueue:
3118	destroy_workqueue(hdev->workqueue);
3119	destroy_workqueue(hdev->req_workqueue);
3120err:
3121	ida_simple_remove(&hci_index_ida, hdev->id);
3122
3123	return error;
3124}
3125EXPORT_SYMBOL(hci_register_dev);
3126
3127/* Unregister HCI device */
3128void hci_unregister_dev(struct hci_dev *hdev)
3129{
3130	int id;
3131
3132	BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
3133
3134	hci_dev_set_flag(hdev, HCI_UNREGISTER);
3135
3136	id = hdev->id;
3137
3138	write_lock(&hci_dev_list_lock);
3139	list_del(&hdev->list);
3140	write_unlock(&hci_dev_list_lock);
3141
3142	hci_dev_do_close(hdev);
3143
3144	cancel_work_sync(&hdev->power_on);
3145
 
 
3146	if (!test_bit(HCI_INIT, &hdev->flags) &&
3147	    !hci_dev_test_flag(hdev, HCI_SETUP) &&
3148	    !hci_dev_test_flag(hdev, HCI_CONFIG)) {
3149		hci_dev_lock(hdev);
3150		mgmt_index_removed(hdev);
3151		hci_dev_unlock(hdev);
3152	}
3153
3154	/* mgmt_index_removed should take care of emptying the
3155	 * pending list */
3156	BUG_ON(!list_empty(&hdev->mgmt_pending));
3157
3158	hci_sock_dev_event(hdev, HCI_DEV_UNREG);
3159
3160	if (hdev->rfkill) {
3161		rfkill_unregister(hdev->rfkill);
3162		rfkill_destroy(hdev->rfkill);
3163	}
3164
3165	device_del(&hdev->dev);
3166
3167	debugfs_remove_recursive(hdev->debugfs);
 
 
3168
3169	destroy_workqueue(hdev->workqueue);
3170	destroy_workqueue(hdev->req_workqueue);
3171
3172	hci_dev_lock(hdev);
3173	hci_bdaddr_list_clear(&hdev->blacklist);
3174	hci_bdaddr_list_clear(&hdev->whitelist);
3175	hci_uuids_clear(hdev);
3176	hci_link_keys_clear(hdev);
3177	hci_smp_ltks_clear(hdev);
3178	hci_smp_irks_clear(hdev);
3179	hci_remote_oob_data_clear(hdev);
3180	hci_adv_instances_clear(hdev);
3181	hci_bdaddr_list_clear(&hdev->le_white_list);
3182	hci_conn_params_clear_all(hdev);
3183	hci_discovery_filter_clear(hdev);
3184	hci_dev_unlock(hdev);
3185
3186	hci_dev_put(hdev);
3187
3188	ida_simple_remove(&hci_index_ida, id);
3189}
3190EXPORT_SYMBOL(hci_unregister_dev);
3191
3192/* Suspend HCI device */
3193int hci_suspend_dev(struct hci_dev *hdev)
3194{
3195	hci_sock_dev_event(hdev, HCI_DEV_SUSPEND);
3196	return 0;
3197}
3198EXPORT_SYMBOL(hci_suspend_dev);
3199
3200/* Resume HCI device */
3201int hci_resume_dev(struct hci_dev *hdev)
3202{
3203	hci_sock_dev_event(hdev, HCI_DEV_RESUME);
3204	return 0;
3205}
3206EXPORT_SYMBOL(hci_resume_dev);
3207
3208/* Reset HCI device */
3209int hci_reset_dev(struct hci_dev *hdev)
3210{
3211	const u8 hw_err[] = { HCI_EV_HARDWARE_ERROR, 0x01, 0x00 };
3212	struct sk_buff *skb;
3213
3214	skb = bt_skb_alloc(3, GFP_ATOMIC);
3215	if (!skb)
3216		return -ENOMEM;
3217
3218	hci_skb_pkt_type(skb) = HCI_EVENT_PKT;
3219	memcpy(skb_put(skb, 3), hw_err, 3);
3220
3221	/* Send Hardware Error to upper stack */
3222	return hci_recv_frame(hdev, skb);
3223}
3224EXPORT_SYMBOL(hci_reset_dev);
3225
3226/* Receive frame from HCI drivers */
3227int hci_recv_frame(struct hci_dev *hdev, struct sk_buff *skb)
3228{
3229	if (!hdev || (!test_bit(HCI_UP, &hdev->flags)
3230		      && !test_bit(HCI_INIT, &hdev->flags))) {
3231		kfree_skb(skb);
3232		return -ENXIO;
3233	}
3234
3235	if (hci_skb_pkt_type(skb) != HCI_EVENT_PKT &&
3236	    hci_skb_pkt_type(skb) != HCI_ACLDATA_PKT &&
3237	    hci_skb_pkt_type(skb) != HCI_SCODATA_PKT) {
3238		kfree_skb(skb);
3239		return -EINVAL;
3240	}
3241
3242	/* Incoming skb */
3243	bt_cb(skb)->incoming = 1;
3244
3245	/* Time stamp */
3246	__net_timestamp(skb);
3247
3248	skb_queue_tail(&hdev->rx_q, skb);
3249	queue_work(hdev->workqueue, &hdev->rx_work);
3250
3251	return 0;
3252}
3253EXPORT_SYMBOL(hci_recv_frame);
3254
3255/* Receive diagnostic message from HCI drivers */
3256int hci_recv_diag(struct hci_dev *hdev, struct sk_buff *skb)
3257{
3258	/* Mark as diagnostic packet */
3259	hci_skb_pkt_type(skb) = HCI_DIAG_PKT;
3260
3261	/* Time stamp */
3262	__net_timestamp(skb);
3263
3264	skb_queue_tail(&hdev->rx_q, skb);
3265	queue_work(hdev->workqueue, &hdev->rx_work);
3266
3267	return 0;
3268}
3269EXPORT_SYMBOL(hci_recv_diag);
3270
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3271/* ---- Interface to upper protocols ---- */
3272
3273int hci_register_cb(struct hci_cb *cb)
3274{
3275	BT_DBG("%p name %s", cb, cb->name);
3276
3277	mutex_lock(&hci_cb_list_lock);
3278	list_add_tail(&cb->list, &hci_cb_list);
3279	mutex_unlock(&hci_cb_list_lock);
3280
3281	return 0;
3282}
3283EXPORT_SYMBOL(hci_register_cb);
3284
3285int hci_unregister_cb(struct hci_cb *cb)
3286{
3287	BT_DBG("%p name %s", cb, cb->name);
3288
3289	mutex_lock(&hci_cb_list_lock);
3290	list_del(&cb->list);
3291	mutex_unlock(&hci_cb_list_lock);
3292
3293	return 0;
3294}
3295EXPORT_SYMBOL(hci_unregister_cb);
3296
3297static void hci_send_frame(struct hci_dev *hdev, struct sk_buff *skb)
3298{
3299	int err;
3300
3301	BT_DBG("%s type %d len %d", hdev->name, hci_skb_pkt_type(skb),
3302	       skb->len);
3303
3304	/* Time stamp */
3305	__net_timestamp(skb);
3306
3307	/* Send copy to monitor */
3308	hci_send_to_monitor(hdev, skb);
3309
3310	if (atomic_read(&hdev->promisc)) {
3311		/* Send copy to the sockets */
3312		hci_send_to_sock(hdev, skb);
3313	}
3314
3315	/* Get rid of skb owner, prior to sending to the driver. */
3316	skb_orphan(skb);
3317
3318	if (!test_bit(HCI_RUNNING, &hdev->flags)) {
3319		kfree_skb(skb);
3320		return;
3321	}
3322
3323	err = hdev->send(hdev, skb);
3324	if (err < 0) {
3325		BT_ERR("%s sending frame failed (%d)", hdev->name, err);
3326		kfree_skb(skb);
3327	}
3328}
3329
3330/* Send HCI command */
3331int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen,
3332		 const void *param)
3333{
3334	struct sk_buff *skb;
3335
3336	BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen);
3337
3338	skb = hci_prepare_cmd(hdev, opcode, plen, param);
3339	if (!skb) {
3340		BT_ERR("%s no memory for command", hdev->name);
3341		return -ENOMEM;
3342	}
3343
3344	/* Stand-alone HCI commands must be flagged as
3345	 * single-command requests.
3346	 */
3347	bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
3348
3349	skb_queue_tail(&hdev->cmd_q, skb);
3350	queue_work(hdev->workqueue, &hdev->cmd_work);
3351
3352	return 0;
3353}
3354
3355/* Get data from the previously sent command */
3356void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode)
3357{
3358	struct hci_command_hdr *hdr;
3359
3360	if (!hdev->sent_cmd)
3361		return NULL;
3362
3363	hdr = (void *) hdev->sent_cmd->data;
3364
3365	if (hdr->opcode != cpu_to_le16(opcode))
3366		return NULL;
3367
3368	BT_DBG("%s opcode 0x%4.4x", hdev->name, opcode);
3369
3370	return hdev->sent_cmd->data + HCI_COMMAND_HDR_SIZE;
3371}
3372
3373/* Send HCI command and wait for command commplete event */
3374struct sk_buff *hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
3375			     const void *param, u32 timeout)
3376{
3377	struct sk_buff *skb;
3378
3379	if (!test_bit(HCI_UP, &hdev->flags))
3380		return ERR_PTR(-ENETDOWN);
3381
3382	bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen);
3383
3384	hci_req_sync_lock(hdev);
3385	skb = __hci_cmd_sync(hdev, opcode, plen, param, timeout);
3386	hci_req_sync_unlock(hdev);
3387
3388	return skb;
3389}
3390EXPORT_SYMBOL(hci_cmd_sync);
3391
3392/* Send ACL data */
3393static void hci_add_acl_hdr(struct sk_buff *skb, __u16 handle, __u16 flags)
3394{
3395	struct hci_acl_hdr *hdr;
3396	int len = skb->len;
3397
3398	skb_push(skb, HCI_ACL_HDR_SIZE);
3399	skb_reset_transport_header(skb);
3400	hdr = (struct hci_acl_hdr *)skb_transport_header(skb);
3401	hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
3402	hdr->dlen   = cpu_to_le16(len);
3403}
3404
3405static void hci_queue_acl(struct hci_chan *chan, struct sk_buff_head *queue,
3406			  struct sk_buff *skb, __u16 flags)
3407{
3408	struct hci_conn *conn = chan->conn;
3409	struct hci_dev *hdev = conn->hdev;
3410	struct sk_buff *list;
3411
3412	skb->len = skb_headlen(skb);
3413	skb->data_len = 0;
3414
3415	hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
3416
3417	switch (hdev->dev_type) {
3418	case HCI_BREDR:
3419		hci_add_acl_hdr(skb, conn->handle, flags);
3420		break;
3421	case HCI_AMP:
3422		hci_add_acl_hdr(skb, chan->handle, flags);
3423		break;
3424	default:
3425		BT_ERR("%s unknown dev_type %d", hdev->name, hdev->dev_type);
3426		return;
3427	}
3428
3429	list = skb_shinfo(skb)->frag_list;
3430	if (!list) {
3431		/* Non fragmented */
3432		BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
3433
3434		skb_queue_tail(queue, skb);
3435	} else {
3436		/* Fragmented */
3437		BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3438
3439		skb_shinfo(skb)->frag_list = NULL;
3440
3441		/* Queue all fragments atomically. We need to use spin_lock_bh
3442		 * here because of 6LoWPAN links, as there this function is
3443		 * called from softirq and using normal spin lock could cause
3444		 * deadlocks.
3445		 */
3446		spin_lock_bh(&queue->lock);
3447
3448		__skb_queue_tail(queue, skb);
3449
3450		flags &= ~ACL_START;
3451		flags |= ACL_CONT;
3452		do {
3453			skb = list; list = list->next;
3454
3455			hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
3456			hci_add_acl_hdr(skb, conn->handle, flags);
3457
3458			BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3459
3460			__skb_queue_tail(queue, skb);
3461		} while (list);
3462
3463		spin_unlock_bh(&queue->lock);
3464	}
3465}
3466
3467void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags)
3468{
3469	struct hci_dev *hdev = chan->conn->hdev;
3470
3471	BT_DBG("%s chan %p flags 0x%4.4x", hdev->name, chan, flags);
3472
3473	hci_queue_acl(chan, &chan->data_q, skb, flags);
3474
3475	queue_work(hdev->workqueue, &hdev->tx_work);
3476}
3477
3478/* Send SCO data */
3479void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb)
3480{
3481	struct hci_dev *hdev = conn->hdev;
3482	struct hci_sco_hdr hdr;
3483
3484	BT_DBG("%s len %d", hdev->name, skb->len);
3485
3486	hdr.handle = cpu_to_le16(conn->handle);
3487	hdr.dlen   = skb->len;
3488
3489	skb_push(skb, HCI_SCO_HDR_SIZE);
3490	skb_reset_transport_header(skb);
3491	memcpy(skb_transport_header(skb), &hdr, HCI_SCO_HDR_SIZE);
3492
3493	hci_skb_pkt_type(skb) = HCI_SCODATA_PKT;
3494
3495	skb_queue_tail(&conn->data_q, skb);
3496	queue_work(hdev->workqueue, &hdev->tx_work);
3497}
3498
3499/* ---- HCI TX task (outgoing data) ---- */
3500
3501/* HCI Connection scheduler */
3502static struct hci_conn *hci_low_sent(struct hci_dev *hdev, __u8 type,
3503				     int *quote)
3504{
3505	struct hci_conn_hash *h = &hdev->conn_hash;
3506	struct hci_conn *conn = NULL, *c;
3507	unsigned int num = 0, min = ~0;
3508
3509	/* We don't have to lock device here. Connections are always
3510	 * added and removed with TX task disabled. */
3511
3512	rcu_read_lock();
3513
3514	list_for_each_entry_rcu(c, &h->list, list) {
3515		if (c->type != type || skb_queue_empty(&c->data_q))
3516			continue;
3517
3518		if (c->state != BT_CONNECTED && c->state != BT_CONFIG)
3519			continue;
3520
3521		num++;
3522
3523		if (c->sent < min) {
3524			min  = c->sent;
3525			conn = c;
3526		}
3527
3528		if (hci_conn_num(hdev, type) == num)
3529			break;
3530	}
3531
3532	rcu_read_unlock();
3533
3534	if (conn) {
3535		int cnt, q;
3536
3537		switch (conn->type) {
3538		case ACL_LINK:
3539			cnt = hdev->acl_cnt;
3540			break;
3541		case SCO_LINK:
3542		case ESCO_LINK:
3543			cnt = hdev->sco_cnt;
3544			break;
3545		case LE_LINK:
3546			cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3547			break;
3548		default:
3549			cnt = 0;
3550			BT_ERR("Unknown link type");
3551		}
3552
3553		q = cnt / num;
3554		*quote = q ? q : 1;
3555	} else
3556		*quote = 0;
3557
3558	BT_DBG("conn %p quote %d", conn, *quote);
3559	return conn;
3560}
3561
3562static void hci_link_tx_to(struct hci_dev *hdev, __u8 type)
3563{
3564	struct hci_conn_hash *h = &hdev->conn_hash;
3565	struct hci_conn *c;
3566
3567	BT_ERR("%s link tx timeout", hdev->name);
3568
3569	rcu_read_lock();
3570
3571	/* Kill stalled connections */
3572	list_for_each_entry_rcu(c, &h->list, list) {
3573		if (c->type == type && c->sent) {
3574			BT_ERR("%s killing stalled connection %pMR",
3575			       hdev->name, &c->dst);
3576			hci_disconnect(c, HCI_ERROR_REMOTE_USER_TERM);
3577		}
3578	}
3579
3580	rcu_read_unlock();
3581}
3582
3583static struct hci_chan *hci_chan_sent(struct hci_dev *hdev, __u8 type,
3584				      int *quote)
3585{
3586	struct hci_conn_hash *h = &hdev->conn_hash;
3587	struct hci_chan *chan = NULL;
3588	unsigned int num = 0, min = ~0, cur_prio = 0;
3589	struct hci_conn *conn;
3590	int cnt, q, conn_num = 0;
3591
3592	BT_DBG("%s", hdev->name);
3593
3594	rcu_read_lock();
3595
3596	list_for_each_entry_rcu(conn, &h->list, list) {
3597		struct hci_chan *tmp;
3598
3599		if (conn->type != type)
3600			continue;
3601
3602		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3603			continue;
3604
3605		conn_num++;
3606
3607		list_for_each_entry_rcu(tmp, &conn->chan_list, list) {
3608			struct sk_buff *skb;
3609
3610			if (skb_queue_empty(&tmp->data_q))
3611				continue;
3612
3613			skb = skb_peek(&tmp->data_q);
3614			if (skb->priority < cur_prio)
3615				continue;
3616
3617			if (skb->priority > cur_prio) {
3618				num = 0;
3619				min = ~0;
3620				cur_prio = skb->priority;
3621			}
3622
3623			num++;
3624
3625			if (conn->sent < min) {
3626				min  = conn->sent;
3627				chan = tmp;
3628			}
3629		}
3630
3631		if (hci_conn_num(hdev, type) == conn_num)
3632			break;
3633	}
3634
3635	rcu_read_unlock();
3636
3637	if (!chan)
3638		return NULL;
3639
3640	switch (chan->conn->type) {
3641	case ACL_LINK:
3642		cnt = hdev->acl_cnt;
3643		break;
3644	case AMP_LINK:
3645		cnt = hdev->block_cnt;
3646		break;
3647	case SCO_LINK:
3648	case ESCO_LINK:
3649		cnt = hdev->sco_cnt;
3650		break;
3651	case LE_LINK:
3652		cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3653		break;
3654	default:
3655		cnt = 0;
3656		BT_ERR("Unknown link type");
3657	}
3658
3659	q = cnt / num;
3660	*quote = q ? q : 1;
3661	BT_DBG("chan %p quote %d", chan, *quote);
3662	return chan;
3663}
3664
3665static void hci_prio_recalculate(struct hci_dev *hdev, __u8 type)
3666{
3667	struct hci_conn_hash *h = &hdev->conn_hash;
3668	struct hci_conn *conn;
3669	int num = 0;
3670
3671	BT_DBG("%s", hdev->name);
3672
3673	rcu_read_lock();
3674
3675	list_for_each_entry_rcu(conn, &h->list, list) {
3676		struct hci_chan *chan;
3677
3678		if (conn->type != type)
3679			continue;
3680
3681		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3682			continue;
3683
3684		num++;
3685
3686		list_for_each_entry_rcu(chan, &conn->chan_list, list) {
3687			struct sk_buff *skb;
3688
3689			if (chan->sent) {
3690				chan->sent = 0;
3691				continue;
3692			}
3693
3694			if (skb_queue_empty(&chan->data_q))
3695				continue;
3696
3697			skb = skb_peek(&chan->data_q);
3698			if (skb->priority >= HCI_PRIO_MAX - 1)
3699				continue;
3700
3701			skb->priority = HCI_PRIO_MAX - 1;
3702
3703			BT_DBG("chan %p skb %p promoted to %d", chan, skb,
3704			       skb->priority);
3705		}
3706
3707		if (hci_conn_num(hdev, type) == num)
3708			break;
3709	}
3710
3711	rcu_read_unlock();
3712
3713}
3714
3715static inline int __get_blocks(struct hci_dev *hdev, struct sk_buff *skb)
3716{
3717	/* Calculate count of blocks used by this packet */
3718	return DIV_ROUND_UP(skb->len - HCI_ACL_HDR_SIZE, hdev->block_len);
3719}
3720
3721static void __check_timeout(struct hci_dev *hdev, unsigned int cnt)
3722{
3723	if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
3724		/* ACL tx timeout must be longer than maximum
3725		 * link supervision timeout (40.9 seconds) */
3726		if (!cnt && time_after(jiffies, hdev->acl_last_tx +
3727				       HCI_ACL_TX_TIMEOUT))
3728			hci_link_tx_to(hdev, ACL_LINK);
3729	}
3730}
3731
3732static void hci_sched_acl_pkt(struct hci_dev *hdev)
3733{
3734	unsigned int cnt = hdev->acl_cnt;
3735	struct hci_chan *chan;
3736	struct sk_buff *skb;
3737	int quote;
3738
3739	__check_timeout(hdev, cnt);
3740
3741	while (hdev->acl_cnt &&
3742	       (chan = hci_chan_sent(hdev, ACL_LINK, &quote))) {
3743		u32 priority = (skb_peek(&chan->data_q))->priority;
3744		while (quote-- && (skb = skb_peek(&chan->data_q))) {
3745			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3746			       skb->len, skb->priority);
3747
3748			/* Stop if priority has changed */
3749			if (skb->priority < priority)
3750				break;
3751
3752			skb = skb_dequeue(&chan->data_q);
3753
3754			hci_conn_enter_active_mode(chan->conn,
3755						   bt_cb(skb)->force_active);
3756
3757			hci_send_frame(hdev, skb);
3758			hdev->acl_last_tx = jiffies;
3759
3760			hdev->acl_cnt--;
3761			chan->sent++;
3762			chan->conn->sent++;
3763		}
3764	}
3765
3766	if (cnt != hdev->acl_cnt)
3767		hci_prio_recalculate(hdev, ACL_LINK);
3768}
3769
3770static void hci_sched_acl_blk(struct hci_dev *hdev)
3771{
3772	unsigned int cnt = hdev->block_cnt;
3773	struct hci_chan *chan;
3774	struct sk_buff *skb;
3775	int quote;
3776	u8 type;
3777
3778	__check_timeout(hdev, cnt);
3779
3780	BT_DBG("%s", hdev->name);
3781
3782	if (hdev->dev_type == HCI_AMP)
3783		type = AMP_LINK;
3784	else
3785		type = ACL_LINK;
3786
3787	while (hdev->block_cnt > 0 &&
3788	       (chan = hci_chan_sent(hdev, type, &quote))) {
3789		u32 priority = (skb_peek(&chan->data_q))->priority;
3790		while (quote > 0 && (skb = skb_peek(&chan->data_q))) {
3791			int blocks;
3792
3793			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3794			       skb->len, skb->priority);
3795
3796			/* Stop if priority has changed */
3797			if (skb->priority < priority)
3798				break;
3799
3800			skb = skb_dequeue(&chan->data_q);
3801
3802			blocks = __get_blocks(hdev, skb);
3803			if (blocks > hdev->block_cnt)
3804				return;
3805
3806			hci_conn_enter_active_mode(chan->conn,
3807						   bt_cb(skb)->force_active);
3808
3809			hci_send_frame(hdev, skb);
3810			hdev->acl_last_tx = jiffies;
3811
3812			hdev->block_cnt -= blocks;
3813			quote -= blocks;
3814
3815			chan->sent += blocks;
3816			chan->conn->sent += blocks;
3817		}
3818	}
3819
3820	if (cnt != hdev->block_cnt)
3821		hci_prio_recalculate(hdev, type);
3822}
3823
3824static void hci_sched_acl(struct hci_dev *hdev)
3825{
3826	BT_DBG("%s", hdev->name);
3827
3828	/* No ACL link over BR/EDR controller */
3829	if (!hci_conn_num(hdev, ACL_LINK) && hdev->dev_type == HCI_BREDR)
3830		return;
3831
3832	/* No AMP link over AMP controller */
3833	if (!hci_conn_num(hdev, AMP_LINK) && hdev->dev_type == HCI_AMP)
3834		return;
3835
3836	switch (hdev->flow_ctl_mode) {
3837	case HCI_FLOW_CTL_MODE_PACKET_BASED:
3838		hci_sched_acl_pkt(hdev);
3839		break;
3840
3841	case HCI_FLOW_CTL_MODE_BLOCK_BASED:
3842		hci_sched_acl_blk(hdev);
3843		break;
3844	}
3845}
3846
3847/* Schedule SCO */
3848static void hci_sched_sco(struct hci_dev *hdev)
3849{
3850	struct hci_conn *conn;
3851	struct sk_buff *skb;
3852	int quote;
3853
3854	BT_DBG("%s", hdev->name);
3855
3856	if (!hci_conn_num(hdev, SCO_LINK))
3857		return;
3858
3859	while (hdev->sco_cnt && (conn = hci_low_sent(hdev, SCO_LINK, &quote))) {
3860		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3861			BT_DBG("skb %p len %d", skb, skb->len);
3862			hci_send_frame(hdev, skb);
3863
3864			conn->sent++;
3865			if (conn->sent == ~0)
3866				conn->sent = 0;
3867		}
3868	}
3869}
3870
3871static void hci_sched_esco(struct hci_dev *hdev)
3872{
3873	struct hci_conn *conn;
3874	struct sk_buff *skb;
3875	int quote;
3876
3877	BT_DBG("%s", hdev->name);
3878
3879	if (!hci_conn_num(hdev, ESCO_LINK))
3880		return;
3881
3882	while (hdev->sco_cnt && (conn = hci_low_sent(hdev, ESCO_LINK,
3883						     &quote))) {
3884		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3885			BT_DBG("skb %p len %d", skb, skb->len);
3886			hci_send_frame(hdev, skb);
3887
3888			conn->sent++;
3889			if (conn->sent == ~0)
3890				conn->sent = 0;
3891		}
3892	}
3893}
3894
3895static void hci_sched_le(struct hci_dev *hdev)
3896{
3897	struct hci_chan *chan;
3898	struct sk_buff *skb;
3899	int quote, cnt, tmp;
3900
3901	BT_DBG("%s", hdev->name);
3902
3903	if (!hci_conn_num(hdev, LE_LINK))
3904		return;
3905
3906	if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
3907		/* LE tx timeout must be longer than maximum
3908		 * link supervision timeout (40.9 seconds) */
3909		if (!hdev->le_cnt && hdev->le_pkts &&
3910		    time_after(jiffies, hdev->le_last_tx + HZ * 45))
3911			hci_link_tx_to(hdev, LE_LINK);
3912	}
3913
3914	cnt = hdev->le_pkts ? hdev->le_cnt : hdev->acl_cnt;
3915	tmp = cnt;
3916	while (cnt && (chan = hci_chan_sent(hdev, LE_LINK, &quote))) {
3917		u32 priority = (skb_peek(&chan->data_q))->priority;
3918		while (quote-- && (skb = skb_peek(&chan->data_q))) {
3919			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3920			       skb->len, skb->priority);
3921
3922			/* Stop if priority has changed */
3923			if (skb->priority < priority)
3924				break;
3925
3926			skb = skb_dequeue(&chan->data_q);
3927
3928			hci_send_frame(hdev, skb);
3929			hdev->le_last_tx = jiffies;
3930
3931			cnt--;
3932			chan->sent++;
3933			chan->conn->sent++;
3934		}
3935	}
3936
3937	if (hdev->le_pkts)
3938		hdev->le_cnt = cnt;
3939	else
3940		hdev->acl_cnt = cnt;
3941
3942	if (cnt != tmp)
3943		hci_prio_recalculate(hdev, LE_LINK);
3944}
3945
3946static void hci_tx_work(struct work_struct *work)
3947{
3948	struct hci_dev *hdev = container_of(work, struct hci_dev, tx_work);
3949	struct sk_buff *skb;
3950
3951	BT_DBG("%s acl %d sco %d le %d", hdev->name, hdev->acl_cnt,
3952	       hdev->sco_cnt, hdev->le_cnt);
3953
3954	if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
3955		/* Schedule queues and send stuff to HCI driver */
3956		hci_sched_acl(hdev);
3957		hci_sched_sco(hdev);
3958		hci_sched_esco(hdev);
3959		hci_sched_le(hdev);
3960	}
3961
3962	/* Send next queued raw (unknown type) packet */
3963	while ((skb = skb_dequeue(&hdev->raw_q)))
3964		hci_send_frame(hdev, skb);
3965}
3966
3967/* ----- HCI RX task (incoming data processing) ----- */
3968
3969/* ACL data packet */
3970static void hci_acldata_packet(struct hci_dev *hdev, struct sk_buff *skb)
3971{
3972	struct hci_acl_hdr *hdr = (void *) skb->data;
3973	struct hci_conn *conn;
3974	__u16 handle, flags;
3975
3976	skb_pull(skb, HCI_ACL_HDR_SIZE);
3977
3978	handle = __le16_to_cpu(hdr->handle);
3979	flags  = hci_flags(handle);
3980	handle = hci_handle(handle);
3981
3982	BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len,
3983	       handle, flags);
3984
3985	hdev->stat.acl_rx++;
3986
3987	hci_dev_lock(hdev);
3988	conn = hci_conn_hash_lookup_handle(hdev, handle);
3989	hci_dev_unlock(hdev);
3990
3991	if (conn) {
3992		hci_conn_enter_active_mode(conn, BT_POWER_FORCE_ACTIVE_OFF);
3993
3994		/* Send to upper protocol */
3995		l2cap_recv_acldata(conn, skb, flags);
3996		return;
3997	} else {
3998		BT_ERR("%s ACL packet for unknown connection handle %d",
3999		       hdev->name, handle);
4000	}
4001
4002	kfree_skb(skb);
4003}
4004
4005/* SCO data packet */
4006static void hci_scodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
4007{
4008	struct hci_sco_hdr *hdr = (void *) skb->data;
4009	struct hci_conn *conn;
4010	__u16 handle;
4011
4012	skb_pull(skb, HCI_SCO_HDR_SIZE);
4013
4014	handle = __le16_to_cpu(hdr->handle);
4015
4016	BT_DBG("%s len %d handle 0x%4.4x", hdev->name, skb->len, handle);
4017
4018	hdev->stat.sco_rx++;
4019
4020	hci_dev_lock(hdev);
4021	conn = hci_conn_hash_lookup_handle(hdev, handle);
4022	hci_dev_unlock(hdev);
4023
4024	if (conn) {
4025		/* Send to upper protocol */
4026		sco_recv_scodata(conn, skb);
4027		return;
4028	} else {
4029		BT_ERR("%s SCO packet for unknown connection handle %d",
4030		       hdev->name, handle);
4031	}
4032
4033	kfree_skb(skb);
4034}
4035
4036static bool hci_req_is_complete(struct hci_dev *hdev)
4037{
4038	struct sk_buff *skb;
4039
4040	skb = skb_peek(&hdev->cmd_q);
4041	if (!skb)
4042		return true;
4043
4044	return (bt_cb(skb)->hci.req_flags & HCI_REQ_START);
4045}
4046
4047static void hci_resend_last(struct hci_dev *hdev)
4048{
4049	struct hci_command_hdr *sent;
4050	struct sk_buff *skb;
4051	u16 opcode;
4052
4053	if (!hdev->sent_cmd)
4054		return;
4055
4056	sent = (void *) hdev->sent_cmd->data;
4057	opcode = __le16_to_cpu(sent->opcode);
4058	if (opcode == HCI_OP_RESET)
4059		return;
4060
4061	skb = skb_clone(hdev->sent_cmd, GFP_KERNEL);
4062	if (!skb)
4063		return;
4064
4065	skb_queue_head(&hdev->cmd_q, skb);
4066	queue_work(hdev->workqueue, &hdev->cmd_work);
4067}
4068
4069void hci_req_cmd_complete(struct hci_dev *hdev, u16 opcode, u8 status,
4070			  hci_req_complete_t *req_complete,
4071			  hci_req_complete_skb_t *req_complete_skb)
4072{
4073	struct sk_buff *skb;
4074	unsigned long flags;
4075
4076	BT_DBG("opcode 0x%04x status 0x%02x", opcode, status);
4077
4078	/* If the completed command doesn't match the last one that was
4079	 * sent we need to do special handling of it.
4080	 */
4081	if (!hci_sent_cmd_data(hdev, opcode)) {
4082		/* Some CSR based controllers generate a spontaneous
4083		 * reset complete event during init and any pending
4084		 * command will never be completed. In such a case we
4085		 * need to resend whatever was the last sent
4086		 * command.
4087		 */
4088		if (test_bit(HCI_INIT, &hdev->flags) && opcode == HCI_OP_RESET)
4089			hci_resend_last(hdev);
4090
4091		return;
4092	}
4093
4094	/* If the command succeeded and there's still more commands in
4095	 * this request the request is not yet complete.
4096	 */
4097	if (!status && !hci_req_is_complete(hdev))
4098		return;
4099
4100	/* If this was the last command in a request the complete
4101	 * callback would be found in hdev->sent_cmd instead of the
4102	 * command queue (hdev->cmd_q).
4103	 */
4104	if (bt_cb(hdev->sent_cmd)->hci.req_flags & HCI_REQ_SKB) {
4105		*req_complete_skb = bt_cb(hdev->sent_cmd)->hci.req_complete_skb;
4106		return;
4107	}
4108
4109	if (bt_cb(hdev->sent_cmd)->hci.req_complete) {
4110		*req_complete = bt_cb(hdev->sent_cmd)->hci.req_complete;
4111		return;
4112	}
4113
4114	/* Remove all pending commands belonging to this request */
4115	spin_lock_irqsave(&hdev->cmd_q.lock, flags);
4116	while ((skb = __skb_dequeue(&hdev->cmd_q))) {
4117		if (bt_cb(skb)->hci.req_flags & HCI_REQ_START) {
4118			__skb_queue_head(&hdev->cmd_q, skb);
4119			break;
4120		}
4121
4122		if (bt_cb(skb)->hci.req_flags & HCI_REQ_SKB)
4123			*req_complete_skb = bt_cb(skb)->hci.req_complete_skb;
4124		else
4125			*req_complete = bt_cb(skb)->hci.req_complete;
4126		kfree_skb(skb);
4127	}
4128	spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
4129}
4130
4131static void hci_rx_work(struct work_struct *work)
4132{
4133	struct hci_dev *hdev = container_of(work, struct hci_dev, rx_work);
4134	struct sk_buff *skb;
4135
4136	BT_DBG("%s", hdev->name);
4137
4138	while ((skb = skb_dequeue(&hdev->rx_q))) {
4139		/* Send copy to monitor */
4140		hci_send_to_monitor(hdev, skb);
4141
4142		if (atomic_read(&hdev->promisc)) {
4143			/* Send copy to the sockets */
4144			hci_send_to_sock(hdev, skb);
4145		}
4146
4147		if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
4148			kfree_skb(skb);
4149			continue;
4150		}
4151
4152		if (test_bit(HCI_INIT, &hdev->flags)) {
4153			/* Don't process data packets in this states. */
4154			switch (hci_skb_pkt_type(skb)) {
4155			case HCI_ACLDATA_PKT:
4156			case HCI_SCODATA_PKT:
4157				kfree_skb(skb);
4158				continue;
4159			}
4160		}
4161
4162		/* Process frame */
4163		switch (hci_skb_pkt_type(skb)) {
4164		case HCI_EVENT_PKT:
4165			BT_DBG("%s Event packet", hdev->name);
4166			hci_event_packet(hdev, skb);
4167			break;
4168
4169		case HCI_ACLDATA_PKT:
4170			BT_DBG("%s ACL data packet", hdev->name);
4171			hci_acldata_packet(hdev, skb);
4172			break;
4173
4174		case HCI_SCODATA_PKT:
4175			BT_DBG("%s SCO data packet", hdev->name);
4176			hci_scodata_packet(hdev, skb);
4177			break;
4178
4179		default:
4180			kfree_skb(skb);
4181			break;
4182		}
4183	}
4184}
4185
4186static void hci_cmd_work(struct work_struct *work)
4187{
4188	struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_work);
4189	struct sk_buff *skb;
4190
4191	BT_DBG("%s cmd_cnt %d cmd queued %d", hdev->name,
4192	       atomic_read(&hdev->cmd_cnt), skb_queue_len(&hdev->cmd_q));
4193
4194	/* Send queued commands */
4195	if (atomic_read(&hdev->cmd_cnt)) {
4196		skb = skb_dequeue(&hdev->cmd_q);
4197		if (!skb)
4198			return;
4199
4200		kfree_skb(hdev->sent_cmd);
4201
4202		hdev->sent_cmd = skb_clone(skb, GFP_KERNEL);
4203		if (hdev->sent_cmd) {
4204			atomic_dec(&hdev->cmd_cnt);
4205			hci_send_frame(hdev, skb);
4206			if (test_bit(HCI_RESET, &hdev->flags))
4207				cancel_delayed_work(&hdev->cmd_timer);
4208			else
4209				schedule_delayed_work(&hdev->cmd_timer,
4210						      HCI_CMD_TIMEOUT);
4211		} else {
4212			skb_queue_head(&hdev->cmd_q, skb);
4213			queue_work(hdev->workqueue, &hdev->cmd_work);
4214		}
4215	}
4216}
v4.10.11
   1/*
   2   BlueZ - Bluetooth protocol stack for Linux
   3   Copyright (C) 2000-2001 Qualcomm Incorporated
   4   Copyright (C) 2011 ProFUSION Embedded Systems
   5
   6   Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
   7
   8   This program is free software; you can redistribute it and/or modify
   9   it under the terms of the GNU General Public License version 2 as
  10   published by the Free Software Foundation;
  11
  12   THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
  13   OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  14   FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
  15   IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
  16   CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
  17   WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  18   ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  19   OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  20
  21   ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
  22   COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
  23   SOFTWARE IS DISCLAIMED.
  24*/
  25
  26/* Bluetooth HCI core. */
  27
  28#include <linux/export.h>
  29#include <linux/idr.h>
  30#include <linux/rfkill.h>
  31#include <linux/debugfs.h>
  32#include <linux/crypto.h>
  33#include <asm/unaligned.h>
  34
  35#include <net/bluetooth/bluetooth.h>
  36#include <net/bluetooth/hci_core.h>
  37#include <net/bluetooth/l2cap.h>
  38#include <net/bluetooth/mgmt.h>
  39
  40#include "hci_request.h"
  41#include "hci_debugfs.h"
  42#include "smp.h"
  43#include "leds.h"
  44
  45static void hci_rx_work(struct work_struct *work);
  46static void hci_cmd_work(struct work_struct *work);
  47static void hci_tx_work(struct work_struct *work);
  48
  49/* HCI device list */
  50LIST_HEAD(hci_dev_list);
  51DEFINE_RWLOCK(hci_dev_list_lock);
  52
  53/* HCI callback list */
  54LIST_HEAD(hci_cb_list);
  55DEFINE_MUTEX(hci_cb_list_lock);
  56
  57/* HCI ID Numbering */
  58static DEFINE_IDA(hci_index_ida);
  59
  60/* ---- HCI debugfs entries ---- */
  61
  62static ssize_t dut_mode_read(struct file *file, char __user *user_buf,
  63			     size_t count, loff_t *ppos)
  64{
  65	struct hci_dev *hdev = file->private_data;
  66	char buf[3];
  67
  68	buf[0] = hci_dev_test_flag(hdev, HCI_DUT_MODE) ? 'Y' : 'N';
  69	buf[1] = '\n';
  70	buf[2] = '\0';
  71	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
  72}
  73
  74static ssize_t dut_mode_write(struct file *file, const char __user *user_buf,
  75			      size_t count, loff_t *ppos)
  76{
  77	struct hci_dev *hdev = file->private_data;
  78	struct sk_buff *skb;
  79	char buf[32];
  80	size_t buf_size = min(count, (sizeof(buf)-1));
  81	bool enable;
  82
  83	if (!test_bit(HCI_UP, &hdev->flags))
  84		return -ENETDOWN;
  85
  86	if (copy_from_user(buf, user_buf, buf_size))
  87		return -EFAULT;
  88
  89	buf[buf_size] = '\0';
  90	if (strtobool(buf, &enable))
  91		return -EINVAL;
  92
  93	if (enable == hci_dev_test_flag(hdev, HCI_DUT_MODE))
  94		return -EALREADY;
  95
  96	hci_req_sync_lock(hdev);
  97	if (enable)
  98		skb = __hci_cmd_sync(hdev, HCI_OP_ENABLE_DUT_MODE, 0, NULL,
  99				     HCI_CMD_TIMEOUT);
 100	else
 101		skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL,
 102				     HCI_CMD_TIMEOUT);
 103	hci_req_sync_unlock(hdev);
 104
 105	if (IS_ERR(skb))
 106		return PTR_ERR(skb);
 107
 108	kfree_skb(skb);
 109
 110	hci_dev_change_flag(hdev, HCI_DUT_MODE);
 111
 112	return count;
 113}
 114
 115static const struct file_operations dut_mode_fops = {
 116	.open		= simple_open,
 117	.read		= dut_mode_read,
 118	.write		= dut_mode_write,
 119	.llseek		= default_llseek,
 120};
 121
 122static ssize_t vendor_diag_read(struct file *file, char __user *user_buf,
 123				size_t count, loff_t *ppos)
 124{
 125	struct hci_dev *hdev = file->private_data;
 126	char buf[3];
 127
 128	buf[0] = hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) ? 'Y' : 'N';
 129	buf[1] = '\n';
 130	buf[2] = '\0';
 131	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
 132}
 133
 134static ssize_t vendor_diag_write(struct file *file, const char __user *user_buf,
 135				 size_t count, loff_t *ppos)
 136{
 137	struct hci_dev *hdev = file->private_data;
 138	char buf[32];
 139	size_t buf_size = min(count, (sizeof(buf)-1));
 140	bool enable;
 141	int err;
 142
 143	if (copy_from_user(buf, user_buf, buf_size))
 144		return -EFAULT;
 145
 146	buf[buf_size] = '\0';
 147	if (strtobool(buf, &enable))
 148		return -EINVAL;
 149
 150	/* When the diagnostic flags are not persistent and the transport
 151	 * is not active, then there is no need for the vendor callback.
 152	 *
 153	 * Instead just store the desired value. If needed the setting
 154	 * will be programmed when the controller gets powered on.
 155	 */
 156	if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) &&
 157	    !test_bit(HCI_RUNNING, &hdev->flags))
 158		goto done;
 159
 160	hci_req_sync_lock(hdev);
 161	err = hdev->set_diag(hdev, enable);
 162	hci_req_sync_unlock(hdev);
 163
 164	if (err < 0)
 165		return err;
 166
 167done:
 168	if (enable)
 169		hci_dev_set_flag(hdev, HCI_VENDOR_DIAG);
 170	else
 171		hci_dev_clear_flag(hdev, HCI_VENDOR_DIAG);
 172
 173	return count;
 174}
 175
 176static const struct file_operations vendor_diag_fops = {
 177	.open		= simple_open,
 178	.read		= vendor_diag_read,
 179	.write		= vendor_diag_write,
 180	.llseek		= default_llseek,
 181};
 182
 183static void hci_debugfs_create_basic(struct hci_dev *hdev)
 184{
 185	debugfs_create_file("dut_mode", 0644, hdev->debugfs, hdev,
 186			    &dut_mode_fops);
 187
 188	if (hdev->set_diag)
 189		debugfs_create_file("vendor_diag", 0644, hdev->debugfs, hdev,
 190				    &vendor_diag_fops);
 191}
 192
 193static int hci_reset_req(struct hci_request *req, unsigned long opt)
 194{
 195	BT_DBG("%s %ld", req->hdev->name, opt);
 196
 197	/* Reset device */
 198	set_bit(HCI_RESET, &req->hdev->flags);
 199	hci_req_add(req, HCI_OP_RESET, 0, NULL);
 200	return 0;
 201}
 202
 203static void bredr_init(struct hci_request *req)
 204{
 205	req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_PACKET_BASED;
 206
 207	/* Read Local Supported Features */
 208	hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
 209
 210	/* Read Local Version */
 211	hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
 212
 213	/* Read BD Address */
 214	hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL);
 215}
 216
 217static void amp_init1(struct hci_request *req)
 218{
 219	req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_BLOCK_BASED;
 220
 221	/* Read Local Version */
 222	hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
 223
 224	/* Read Local Supported Commands */
 225	hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL);
 226
 227	/* Read Local AMP Info */
 228	hci_req_add(req, HCI_OP_READ_LOCAL_AMP_INFO, 0, NULL);
 229
 230	/* Read Data Blk size */
 231	hci_req_add(req, HCI_OP_READ_DATA_BLOCK_SIZE, 0, NULL);
 232
 233	/* Read Flow Control Mode */
 234	hci_req_add(req, HCI_OP_READ_FLOW_CONTROL_MODE, 0, NULL);
 235
 236	/* Read Location Data */
 237	hci_req_add(req, HCI_OP_READ_LOCATION_DATA, 0, NULL);
 238}
 239
 240static int amp_init2(struct hci_request *req)
 241{
 242	/* Read Local Supported Features. Not all AMP controllers
 243	 * support this so it's placed conditionally in the second
 244	 * stage init.
 245	 */
 246	if (req->hdev->commands[14] & 0x20)
 247		hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
 248
 249	return 0;
 250}
 251
 252static int hci_init1_req(struct hci_request *req, unsigned long opt)
 253{
 254	struct hci_dev *hdev = req->hdev;
 255
 256	BT_DBG("%s %ld", hdev->name, opt);
 257
 258	/* Reset */
 259	if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks))
 260		hci_reset_req(req, 0);
 261
 262	switch (hdev->dev_type) {
 263	case HCI_PRIMARY:
 264		bredr_init(req);
 265		break;
 
 266	case HCI_AMP:
 267		amp_init1(req);
 268		break;
 
 269	default:
 270		BT_ERR("Unknown device type %d", hdev->dev_type);
 271		break;
 272	}
 273
 274	return 0;
 275}
 276
 277static void bredr_setup(struct hci_request *req)
 278{
 279	__le16 param;
 280	__u8 flt_type;
 281
 282	/* Read Buffer Size (ACL mtu, max pkt, etc.) */
 283	hci_req_add(req, HCI_OP_READ_BUFFER_SIZE, 0, NULL);
 284
 285	/* Read Class of Device */
 286	hci_req_add(req, HCI_OP_READ_CLASS_OF_DEV, 0, NULL);
 287
 288	/* Read Local Name */
 289	hci_req_add(req, HCI_OP_READ_LOCAL_NAME, 0, NULL);
 290
 291	/* Read Voice Setting */
 292	hci_req_add(req, HCI_OP_READ_VOICE_SETTING, 0, NULL);
 293
 294	/* Read Number of Supported IAC */
 295	hci_req_add(req, HCI_OP_READ_NUM_SUPPORTED_IAC, 0, NULL);
 296
 297	/* Read Current IAC LAP */
 298	hci_req_add(req, HCI_OP_READ_CURRENT_IAC_LAP, 0, NULL);
 299
 300	/* Clear Event Filters */
 301	flt_type = HCI_FLT_CLEAR_ALL;
 302	hci_req_add(req, HCI_OP_SET_EVENT_FLT, 1, &flt_type);
 303
 304	/* Connection accept timeout ~20 secs */
 305	param = cpu_to_le16(0x7d00);
 306	hci_req_add(req, HCI_OP_WRITE_CA_TIMEOUT, 2, &param);
 307}
 308
 309static void le_setup(struct hci_request *req)
 310{
 311	struct hci_dev *hdev = req->hdev;
 312
 313	/* Read LE Buffer Size */
 314	hci_req_add(req, HCI_OP_LE_READ_BUFFER_SIZE, 0, NULL);
 315
 316	/* Read LE Local Supported Features */
 317	hci_req_add(req, HCI_OP_LE_READ_LOCAL_FEATURES, 0, NULL);
 318
 319	/* Read LE Supported States */
 320	hci_req_add(req, HCI_OP_LE_READ_SUPPORTED_STATES, 0, NULL);
 321
 322	/* LE-only controllers have LE implicitly enabled */
 323	if (!lmp_bredr_capable(hdev))
 324		hci_dev_set_flag(hdev, HCI_LE_ENABLED);
 325}
 326
 327static void hci_setup_event_mask(struct hci_request *req)
 328{
 329	struct hci_dev *hdev = req->hdev;
 330
 331	/* The second byte is 0xff instead of 0x9f (two reserved bits
 332	 * disabled) since a Broadcom 1.2 dongle doesn't respond to the
 333	 * command otherwise.
 334	 */
 335	u8 events[8] = { 0xff, 0xff, 0xfb, 0xff, 0x00, 0x00, 0x00, 0x00 };
 336
 337	/* CSR 1.1 dongles does not accept any bitfield so don't try to set
 338	 * any event mask for pre 1.2 devices.
 339	 */
 340	if (hdev->hci_ver < BLUETOOTH_VER_1_2)
 341		return;
 342
 343	if (lmp_bredr_capable(hdev)) {
 344		events[4] |= 0x01; /* Flow Specification Complete */
 345	} else {
 346		/* Use a different default for LE-only devices */
 347		memset(events, 0, sizeof(events));
 348		events[1] |= 0x20; /* Command Complete */
 349		events[1] |= 0x40; /* Command Status */
 350		events[1] |= 0x80; /* Hardware Error */
 351
 352		/* If the controller supports the Disconnect command, enable
 353		 * the corresponding event. In addition enable packet flow
 354		 * control related events.
 355		 */
 356		if (hdev->commands[0] & 0x20) {
 357			events[0] |= 0x10; /* Disconnection Complete */
 358			events[2] |= 0x04; /* Number of Completed Packets */
 359			events[3] |= 0x02; /* Data Buffer Overflow */
 360		}
 361
 362		/* If the controller supports the Read Remote Version
 363		 * Information command, enable the corresponding event.
 364		 */
 365		if (hdev->commands[2] & 0x80)
 366			events[1] |= 0x08; /* Read Remote Version Information
 367					    * Complete
 368					    */
 369
 370		if (hdev->le_features[0] & HCI_LE_ENCRYPTION) {
 371			events[0] |= 0x80; /* Encryption Change */
 372			events[5] |= 0x80; /* Encryption Key Refresh Complete */
 373		}
 374	}
 375
 376	if (lmp_inq_rssi_capable(hdev) ||
 377	    test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks))
 378		events[4] |= 0x02; /* Inquiry Result with RSSI */
 379
 380	if (lmp_ext_feat_capable(hdev))
 381		events[4] |= 0x04; /* Read Remote Extended Features Complete */
 382
 383	if (lmp_esco_capable(hdev)) {
 384		events[5] |= 0x08; /* Synchronous Connection Complete */
 385		events[5] |= 0x10; /* Synchronous Connection Changed */
 386	}
 387
 388	if (lmp_sniffsubr_capable(hdev))
 389		events[5] |= 0x20; /* Sniff Subrating */
 390
 391	if (lmp_pause_enc_capable(hdev))
 392		events[5] |= 0x80; /* Encryption Key Refresh Complete */
 393
 394	if (lmp_ext_inq_capable(hdev))
 395		events[5] |= 0x40; /* Extended Inquiry Result */
 396
 397	if (lmp_no_flush_capable(hdev))
 398		events[7] |= 0x01; /* Enhanced Flush Complete */
 399
 400	if (lmp_lsto_capable(hdev))
 401		events[6] |= 0x80; /* Link Supervision Timeout Changed */
 402
 403	if (lmp_ssp_capable(hdev)) {
 404		events[6] |= 0x01;	/* IO Capability Request */
 405		events[6] |= 0x02;	/* IO Capability Response */
 406		events[6] |= 0x04;	/* User Confirmation Request */
 407		events[6] |= 0x08;	/* User Passkey Request */
 408		events[6] |= 0x10;	/* Remote OOB Data Request */
 409		events[6] |= 0x20;	/* Simple Pairing Complete */
 410		events[7] |= 0x04;	/* User Passkey Notification */
 411		events[7] |= 0x08;	/* Keypress Notification */
 412		events[7] |= 0x10;	/* Remote Host Supported
 413					 * Features Notification
 414					 */
 415	}
 416
 417	if (lmp_le_capable(hdev))
 418		events[7] |= 0x20;	/* LE Meta-Event */
 419
 420	hci_req_add(req, HCI_OP_SET_EVENT_MASK, sizeof(events), events);
 421}
 422
 423static int hci_init2_req(struct hci_request *req, unsigned long opt)
 424{
 425	struct hci_dev *hdev = req->hdev;
 426
 427	if (hdev->dev_type == HCI_AMP)
 428		return amp_init2(req);
 429
 430	if (lmp_bredr_capable(hdev))
 431		bredr_setup(req);
 432	else
 433		hci_dev_clear_flag(hdev, HCI_BREDR_ENABLED);
 434
 435	if (lmp_le_capable(hdev))
 436		le_setup(req);
 437
 438	/* All Bluetooth 1.2 and later controllers should support the
 439	 * HCI command for reading the local supported commands.
 440	 *
 441	 * Unfortunately some controllers indicate Bluetooth 1.2 support,
 442	 * but do not have support for this command. If that is the case,
 443	 * the driver can quirk the behavior and skip reading the local
 444	 * supported commands.
 445	 */
 446	if (hdev->hci_ver > BLUETOOTH_VER_1_1 &&
 447	    !test_bit(HCI_QUIRK_BROKEN_LOCAL_COMMANDS, &hdev->quirks))
 448		hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL);
 449
 450	if (lmp_ssp_capable(hdev)) {
 451		/* When SSP is available, then the host features page
 452		 * should also be available as well. However some
 453		 * controllers list the max_page as 0 as long as SSP
 454		 * has not been enabled. To achieve proper debugging
 455		 * output, force the minimum max_page to 1 at least.
 456		 */
 457		hdev->max_page = 0x01;
 458
 459		if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) {
 460			u8 mode = 0x01;
 461
 462			hci_req_add(req, HCI_OP_WRITE_SSP_MODE,
 463				    sizeof(mode), &mode);
 464		} else {
 465			struct hci_cp_write_eir cp;
 466
 467			memset(hdev->eir, 0, sizeof(hdev->eir));
 468			memset(&cp, 0, sizeof(cp));
 469
 470			hci_req_add(req, HCI_OP_WRITE_EIR, sizeof(cp), &cp);
 471		}
 472	}
 473
 474	if (lmp_inq_rssi_capable(hdev) ||
 475	    test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks)) {
 476		u8 mode;
 477
 478		/* If Extended Inquiry Result events are supported, then
 479		 * they are clearly preferred over Inquiry Result with RSSI
 480		 * events.
 481		 */
 482		mode = lmp_ext_inq_capable(hdev) ? 0x02 : 0x01;
 483
 484		hci_req_add(req, HCI_OP_WRITE_INQUIRY_MODE, 1, &mode);
 485	}
 486
 487	if (lmp_inq_tx_pwr_capable(hdev))
 488		hci_req_add(req, HCI_OP_READ_INQ_RSP_TX_POWER, 0, NULL);
 489
 490	if (lmp_ext_feat_capable(hdev)) {
 491		struct hci_cp_read_local_ext_features cp;
 492
 493		cp.page = 0x01;
 494		hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES,
 495			    sizeof(cp), &cp);
 496	}
 497
 498	if (hci_dev_test_flag(hdev, HCI_LINK_SECURITY)) {
 499		u8 enable = 1;
 500		hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, sizeof(enable),
 501			    &enable);
 502	}
 503
 504	return 0;
 505}
 506
 507static void hci_setup_link_policy(struct hci_request *req)
 508{
 509	struct hci_dev *hdev = req->hdev;
 510	struct hci_cp_write_def_link_policy cp;
 511	u16 link_policy = 0;
 512
 513	if (lmp_rswitch_capable(hdev))
 514		link_policy |= HCI_LP_RSWITCH;
 515	if (lmp_hold_capable(hdev))
 516		link_policy |= HCI_LP_HOLD;
 517	if (lmp_sniff_capable(hdev))
 518		link_policy |= HCI_LP_SNIFF;
 519	if (lmp_park_capable(hdev))
 520		link_policy |= HCI_LP_PARK;
 521
 522	cp.policy = cpu_to_le16(link_policy);
 523	hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, sizeof(cp), &cp);
 524}
 525
 526static void hci_set_le_support(struct hci_request *req)
 527{
 528	struct hci_dev *hdev = req->hdev;
 529	struct hci_cp_write_le_host_supported cp;
 530
 531	/* LE-only devices do not support explicit enablement */
 532	if (!lmp_bredr_capable(hdev))
 533		return;
 534
 535	memset(&cp, 0, sizeof(cp));
 536
 537	if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
 538		cp.le = 0x01;
 539		cp.simul = 0x00;
 540	}
 541
 542	if (cp.le != lmp_host_le_capable(hdev))
 543		hci_req_add(req, HCI_OP_WRITE_LE_HOST_SUPPORTED, sizeof(cp),
 544			    &cp);
 545}
 546
 547static void hci_set_event_mask_page_2(struct hci_request *req)
 548{
 549	struct hci_dev *hdev = req->hdev;
 550	u8 events[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
 551
 552	/* If Connectionless Slave Broadcast master role is supported
 553	 * enable all necessary events for it.
 554	 */
 555	if (lmp_csb_master_capable(hdev)) {
 556		events[1] |= 0x40;	/* Triggered Clock Capture */
 557		events[1] |= 0x80;	/* Synchronization Train Complete */
 558		events[2] |= 0x10;	/* Slave Page Response Timeout */
 559		events[2] |= 0x20;	/* CSB Channel Map Change */
 560	}
 561
 562	/* If Connectionless Slave Broadcast slave role is supported
 563	 * enable all necessary events for it.
 564	 */
 565	if (lmp_csb_slave_capable(hdev)) {
 566		events[2] |= 0x01;	/* Synchronization Train Received */
 567		events[2] |= 0x02;	/* CSB Receive */
 568		events[2] |= 0x04;	/* CSB Timeout */
 569		events[2] |= 0x08;	/* Truncated Page Complete */
 570	}
 571
 572	/* Enable Authenticated Payload Timeout Expired event if supported */
 573	if (lmp_ping_capable(hdev) || hdev->le_features[0] & HCI_LE_PING)
 574		events[2] |= 0x80;
 575
 576	hci_req_add(req, HCI_OP_SET_EVENT_MASK_PAGE_2, sizeof(events), events);
 577}
 578
 579static int hci_init3_req(struct hci_request *req, unsigned long opt)
 580{
 581	struct hci_dev *hdev = req->hdev;
 582	u8 p;
 583
 584	hci_setup_event_mask(req);
 585
 586	if (hdev->commands[6] & 0x20 &&
 587	    !test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) {
 588		struct hci_cp_read_stored_link_key cp;
 589
 590		bacpy(&cp.bdaddr, BDADDR_ANY);
 591		cp.read_all = 0x01;
 592		hci_req_add(req, HCI_OP_READ_STORED_LINK_KEY, sizeof(cp), &cp);
 593	}
 594
 595	if (hdev->commands[5] & 0x10)
 596		hci_setup_link_policy(req);
 597
 598	if (hdev->commands[8] & 0x01)
 599		hci_req_add(req, HCI_OP_READ_PAGE_SCAN_ACTIVITY, 0, NULL);
 600
 601	/* Some older Broadcom based Bluetooth 1.2 controllers do not
 602	 * support the Read Page Scan Type command. Check support for
 603	 * this command in the bit mask of supported commands.
 604	 */
 605	if (hdev->commands[13] & 0x01)
 606		hci_req_add(req, HCI_OP_READ_PAGE_SCAN_TYPE, 0, NULL);
 607
 608	if (lmp_le_capable(hdev)) {
 609		u8 events[8];
 610
 611		memset(events, 0, sizeof(events));
 612
 613		if (hdev->le_features[0] & HCI_LE_ENCRYPTION)
 614			events[0] |= 0x10;	/* LE Long Term Key Request */
 615
 616		/* If controller supports the Connection Parameters Request
 617		 * Link Layer Procedure, enable the corresponding event.
 618		 */
 619		if (hdev->le_features[0] & HCI_LE_CONN_PARAM_REQ_PROC)
 620			events[0] |= 0x20;	/* LE Remote Connection
 621						 * Parameter Request
 622						 */
 623
 624		/* If the controller supports the Data Length Extension
 625		 * feature, enable the corresponding event.
 626		 */
 627		if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)
 628			events[0] |= 0x40;	/* LE Data Length Change */
 629
 630		/* If the controller supports Extended Scanner Filter
 631		 * Policies, enable the correspondig event.
 632		 */
 633		if (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY)
 634			events[1] |= 0x04;	/* LE Direct Advertising
 635						 * Report
 636						 */
 637
 638		/* If the controller supports the LE Set Scan Enable command,
 639		 * enable the corresponding advertising report event.
 640		 */
 641		if (hdev->commands[26] & 0x08)
 642			events[0] |= 0x02;	/* LE Advertising Report */
 643
 644		/* If the controller supports the LE Create Connection
 645		 * command, enable the corresponding event.
 646		 */
 647		if (hdev->commands[26] & 0x10)
 648			events[0] |= 0x01;	/* LE Connection Complete */
 649
 650		/* If the controller supports the LE Connection Update
 651		 * command, enable the corresponding event.
 652		 */
 653		if (hdev->commands[27] & 0x04)
 654			events[0] |= 0x04;	/* LE Connection Update
 655						 * Complete
 656						 */
 657
 658		/* If the controller supports the LE Read Remote Used Features
 659		 * command, enable the corresponding event.
 660		 */
 661		if (hdev->commands[27] & 0x20)
 662			events[0] |= 0x08;	/* LE Read Remote Used
 663						 * Features Complete
 664						 */
 665
 666		/* If the controller supports the LE Read Local P-256
 667		 * Public Key command, enable the corresponding event.
 668		 */
 669		if (hdev->commands[34] & 0x02)
 670			events[0] |= 0x80;	/* LE Read Local P-256
 671						 * Public Key Complete
 672						 */
 673
 674		/* If the controller supports the LE Generate DHKey
 675		 * command, enable the corresponding event.
 676		 */
 677		if (hdev->commands[34] & 0x04)
 678			events[1] |= 0x01;	/* LE Generate DHKey Complete */
 679
 680		hci_req_add(req, HCI_OP_LE_SET_EVENT_MASK, sizeof(events),
 681			    events);
 682
 683		if (hdev->commands[25] & 0x40) {
 684			/* Read LE Advertising Channel TX Power */
 685			hci_req_add(req, HCI_OP_LE_READ_ADV_TX_POWER, 0, NULL);
 686		}
 687
 688		if (hdev->commands[26] & 0x40) {
 689			/* Read LE White List Size */
 690			hci_req_add(req, HCI_OP_LE_READ_WHITE_LIST_SIZE,
 691				    0, NULL);
 692		}
 693
 694		if (hdev->commands[26] & 0x80) {
 695			/* Clear LE White List */
 696			hci_req_add(req, HCI_OP_LE_CLEAR_WHITE_LIST, 0, NULL);
 697		}
 698
 699		if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) {
 700			/* Read LE Maximum Data Length */
 701			hci_req_add(req, HCI_OP_LE_READ_MAX_DATA_LEN, 0, NULL);
 702
 703			/* Read LE Suggested Default Data Length */
 704			hci_req_add(req, HCI_OP_LE_READ_DEF_DATA_LEN, 0, NULL);
 705		}
 706
 707		hci_set_le_support(req);
 708	}
 709
 710	/* Read features beyond page 1 if available */
 711	for (p = 2; p < HCI_MAX_PAGES && p <= hdev->max_page; p++) {
 712		struct hci_cp_read_local_ext_features cp;
 713
 714		cp.page = p;
 715		hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES,
 716			    sizeof(cp), &cp);
 717	}
 718
 719	return 0;
 720}
 721
 722static int hci_init4_req(struct hci_request *req, unsigned long opt)
 723{
 724	struct hci_dev *hdev = req->hdev;
 725
 726	/* Some Broadcom based Bluetooth controllers do not support the
 727	 * Delete Stored Link Key command. They are clearly indicating its
 728	 * absence in the bit mask of supported commands.
 729	 *
 730	 * Check the supported commands and only if the the command is marked
 731	 * as supported send it. If not supported assume that the controller
 732	 * does not have actual support for stored link keys which makes this
 733	 * command redundant anyway.
 734	 *
 735	 * Some controllers indicate that they support handling deleting
 736	 * stored link keys, but they don't. The quirk lets a driver
 737	 * just disable this command.
 738	 */
 739	if (hdev->commands[6] & 0x80 &&
 740	    !test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) {
 741		struct hci_cp_delete_stored_link_key cp;
 742
 743		bacpy(&cp.bdaddr, BDADDR_ANY);
 744		cp.delete_all = 0x01;
 745		hci_req_add(req, HCI_OP_DELETE_STORED_LINK_KEY,
 746			    sizeof(cp), &cp);
 747	}
 748
 749	/* Set event mask page 2 if the HCI command for it is supported */
 750	if (hdev->commands[22] & 0x04)
 751		hci_set_event_mask_page_2(req);
 752
 753	/* Read local codec list if the HCI command is supported */
 754	if (hdev->commands[29] & 0x20)
 755		hci_req_add(req, HCI_OP_READ_LOCAL_CODECS, 0, NULL);
 756
 757	/* Get MWS transport configuration if the HCI command is supported */
 758	if (hdev->commands[30] & 0x08)
 759		hci_req_add(req, HCI_OP_GET_MWS_TRANSPORT_CONFIG, 0, NULL);
 760
 761	/* Check for Synchronization Train support */
 762	if (lmp_sync_train_capable(hdev))
 763		hci_req_add(req, HCI_OP_READ_SYNC_TRAIN_PARAMS, 0, NULL);
 764
 765	/* Enable Secure Connections if supported and configured */
 766	if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED) &&
 767	    bredr_sc_enabled(hdev)) {
 768		u8 support = 0x01;
 769
 770		hci_req_add(req, HCI_OP_WRITE_SC_SUPPORT,
 771			    sizeof(support), &support);
 772	}
 773
 774	return 0;
 775}
 776
 777static int __hci_init(struct hci_dev *hdev)
 778{
 779	int err;
 780
 781	err = __hci_req_sync(hdev, hci_init1_req, 0, HCI_INIT_TIMEOUT, NULL);
 782	if (err < 0)
 783		return err;
 784
 785	if (hci_dev_test_flag(hdev, HCI_SETUP))
 786		hci_debugfs_create_basic(hdev);
 787
 788	err = __hci_req_sync(hdev, hci_init2_req, 0, HCI_INIT_TIMEOUT, NULL);
 789	if (err < 0)
 790		return err;
 791
 792	/* HCI_PRIMARY covers both single-mode LE, BR/EDR and dual-mode
 793	 * BR/EDR/LE type controllers. AMP controllers only need the
 794	 * first two stages of init.
 795	 */
 796	if (hdev->dev_type != HCI_PRIMARY)
 797		return 0;
 798
 799	err = __hci_req_sync(hdev, hci_init3_req, 0, HCI_INIT_TIMEOUT, NULL);
 800	if (err < 0)
 801		return err;
 802
 803	err = __hci_req_sync(hdev, hci_init4_req, 0, HCI_INIT_TIMEOUT, NULL);
 804	if (err < 0)
 805		return err;
 806
 807	/* This function is only called when the controller is actually in
 808	 * configured state. When the controller is marked as unconfigured,
 809	 * this initialization procedure is not run.
 810	 *
 811	 * It means that it is possible that a controller runs through its
 812	 * setup phase and then discovers missing settings. If that is the
 813	 * case, then this function will not be called. It then will only
 814	 * be called during the config phase.
 815	 *
 816	 * So only when in setup phase or config phase, create the debugfs
 817	 * entries and register the SMP channels.
 818	 */
 819	if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
 820	    !hci_dev_test_flag(hdev, HCI_CONFIG))
 821		return 0;
 822
 823	hci_debugfs_create_common(hdev);
 824
 825	if (lmp_bredr_capable(hdev))
 826		hci_debugfs_create_bredr(hdev);
 827
 828	if (lmp_le_capable(hdev))
 829		hci_debugfs_create_le(hdev);
 830
 831	return 0;
 832}
 833
 834static int hci_init0_req(struct hci_request *req, unsigned long opt)
 835{
 836	struct hci_dev *hdev = req->hdev;
 837
 838	BT_DBG("%s %ld", hdev->name, opt);
 839
 840	/* Reset */
 841	if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks))
 842		hci_reset_req(req, 0);
 843
 844	/* Read Local Version */
 845	hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
 846
 847	/* Read BD Address */
 848	if (hdev->set_bdaddr)
 849		hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL);
 850
 851	return 0;
 852}
 853
 854static int __hci_unconf_init(struct hci_dev *hdev)
 855{
 856	int err;
 857
 858	if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
 859		return 0;
 860
 861	err = __hci_req_sync(hdev, hci_init0_req, 0, HCI_INIT_TIMEOUT, NULL);
 862	if (err < 0)
 863		return err;
 864
 865	if (hci_dev_test_flag(hdev, HCI_SETUP))
 866		hci_debugfs_create_basic(hdev);
 867
 868	return 0;
 869}
 870
 871static int hci_scan_req(struct hci_request *req, unsigned long opt)
 872{
 873	__u8 scan = opt;
 874
 875	BT_DBG("%s %x", req->hdev->name, scan);
 876
 877	/* Inquiry and Page scans */
 878	hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
 879	return 0;
 880}
 881
 882static int hci_auth_req(struct hci_request *req, unsigned long opt)
 883{
 884	__u8 auth = opt;
 885
 886	BT_DBG("%s %x", req->hdev->name, auth);
 887
 888	/* Authentication */
 889	hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, 1, &auth);
 890	return 0;
 891}
 892
 893static int hci_encrypt_req(struct hci_request *req, unsigned long opt)
 894{
 895	__u8 encrypt = opt;
 896
 897	BT_DBG("%s %x", req->hdev->name, encrypt);
 898
 899	/* Encryption */
 900	hci_req_add(req, HCI_OP_WRITE_ENCRYPT_MODE, 1, &encrypt);
 901	return 0;
 902}
 903
 904static int hci_linkpol_req(struct hci_request *req, unsigned long opt)
 905{
 906	__le16 policy = cpu_to_le16(opt);
 907
 908	BT_DBG("%s %x", req->hdev->name, policy);
 909
 910	/* Default link policy */
 911	hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, 2, &policy);
 912	return 0;
 913}
 914
 915/* Get HCI device by index.
 916 * Device is held on return. */
 917struct hci_dev *hci_dev_get(int index)
 918{
 919	struct hci_dev *hdev = NULL, *d;
 920
 921	BT_DBG("%d", index);
 922
 923	if (index < 0)
 924		return NULL;
 925
 926	read_lock(&hci_dev_list_lock);
 927	list_for_each_entry(d, &hci_dev_list, list) {
 928		if (d->id == index) {
 929			hdev = hci_dev_hold(d);
 930			break;
 931		}
 932	}
 933	read_unlock(&hci_dev_list_lock);
 934	return hdev;
 935}
 936
 937/* ---- Inquiry support ---- */
 938
 939bool hci_discovery_active(struct hci_dev *hdev)
 940{
 941	struct discovery_state *discov = &hdev->discovery;
 942
 943	switch (discov->state) {
 944	case DISCOVERY_FINDING:
 945	case DISCOVERY_RESOLVING:
 946		return true;
 947
 948	default:
 949		return false;
 950	}
 951}
 952
 953void hci_discovery_set_state(struct hci_dev *hdev, int state)
 954{
 955	int old_state = hdev->discovery.state;
 956
 957	BT_DBG("%s state %u -> %u", hdev->name, hdev->discovery.state, state);
 958
 959	if (old_state == state)
 960		return;
 961
 962	hdev->discovery.state = state;
 963
 964	switch (state) {
 965	case DISCOVERY_STOPPED:
 966		hci_update_background_scan(hdev);
 967
 968		if (old_state != DISCOVERY_STARTING)
 969			mgmt_discovering(hdev, 0);
 970		break;
 971	case DISCOVERY_STARTING:
 972		break;
 973	case DISCOVERY_FINDING:
 974		mgmt_discovering(hdev, 1);
 975		break;
 976	case DISCOVERY_RESOLVING:
 977		break;
 978	case DISCOVERY_STOPPING:
 979		break;
 980	}
 981}
 982
 983void hci_inquiry_cache_flush(struct hci_dev *hdev)
 984{
 985	struct discovery_state *cache = &hdev->discovery;
 986	struct inquiry_entry *p, *n;
 987
 988	list_for_each_entry_safe(p, n, &cache->all, all) {
 989		list_del(&p->all);
 990		kfree(p);
 991	}
 992
 993	INIT_LIST_HEAD(&cache->unknown);
 994	INIT_LIST_HEAD(&cache->resolve);
 995}
 996
 997struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev,
 998					       bdaddr_t *bdaddr)
 999{
1000	struct discovery_state *cache = &hdev->discovery;
1001	struct inquiry_entry *e;
1002
1003	BT_DBG("cache %p, %pMR", cache, bdaddr);
1004
1005	list_for_each_entry(e, &cache->all, all) {
1006		if (!bacmp(&e->data.bdaddr, bdaddr))
1007			return e;
1008	}
1009
1010	return NULL;
1011}
1012
1013struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev,
1014						       bdaddr_t *bdaddr)
1015{
1016	struct discovery_state *cache = &hdev->discovery;
1017	struct inquiry_entry *e;
1018
1019	BT_DBG("cache %p, %pMR", cache, bdaddr);
1020
1021	list_for_each_entry(e, &cache->unknown, list) {
1022		if (!bacmp(&e->data.bdaddr, bdaddr))
1023			return e;
1024	}
1025
1026	return NULL;
1027}
1028
1029struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev,
1030						       bdaddr_t *bdaddr,
1031						       int state)
1032{
1033	struct discovery_state *cache = &hdev->discovery;
1034	struct inquiry_entry *e;
1035
1036	BT_DBG("cache %p bdaddr %pMR state %d", cache, bdaddr, state);
1037
1038	list_for_each_entry(e, &cache->resolve, list) {
1039		if (!bacmp(bdaddr, BDADDR_ANY) && e->name_state == state)
1040			return e;
1041		if (!bacmp(&e->data.bdaddr, bdaddr))
1042			return e;
1043	}
1044
1045	return NULL;
1046}
1047
1048void hci_inquiry_cache_update_resolve(struct hci_dev *hdev,
1049				      struct inquiry_entry *ie)
1050{
1051	struct discovery_state *cache = &hdev->discovery;
1052	struct list_head *pos = &cache->resolve;
1053	struct inquiry_entry *p;
1054
1055	list_del(&ie->list);
1056
1057	list_for_each_entry(p, &cache->resolve, list) {
1058		if (p->name_state != NAME_PENDING &&
1059		    abs(p->data.rssi) >= abs(ie->data.rssi))
1060			break;
1061		pos = &p->list;
1062	}
1063
1064	list_add(&ie->list, pos);
1065}
1066
1067u32 hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data,
1068			     bool name_known)
1069{
1070	struct discovery_state *cache = &hdev->discovery;
1071	struct inquiry_entry *ie;
1072	u32 flags = 0;
1073
1074	BT_DBG("cache %p, %pMR", cache, &data->bdaddr);
1075
1076	hci_remove_remote_oob_data(hdev, &data->bdaddr, BDADDR_BREDR);
1077
1078	if (!data->ssp_mode)
1079		flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
1080
1081	ie = hci_inquiry_cache_lookup(hdev, &data->bdaddr);
1082	if (ie) {
1083		if (!ie->data.ssp_mode)
1084			flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
1085
1086		if (ie->name_state == NAME_NEEDED &&
1087		    data->rssi != ie->data.rssi) {
1088			ie->data.rssi = data->rssi;
1089			hci_inquiry_cache_update_resolve(hdev, ie);
1090		}
1091
1092		goto update;
1093	}
1094
1095	/* Entry not in the cache. Add new one. */
1096	ie = kzalloc(sizeof(*ie), GFP_KERNEL);
1097	if (!ie) {
1098		flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
1099		goto done;
1100	}
1101
1102	list_add(&ie->all, &cache->all);
1103
1104	if (name_known) {
1105		ie->name_state = NAME_KNOWN;
1106	} else {
1107		ie->name_state = NAME_NOT_KNOWN;
1108		list_add(&ie->list, &cache->unknown);
1109	}
1110
1111update:
1112	if (name_known && ie->name_state != NAME_KNOWN &&
1113	    ie->name_state != NAME_PENDING) {
1114		ie->name_state = NAME_KNOWN;
1115		list_del(&ie->list);
1116	}
1117
1118	memcpy(&ie->data, data, sizeof(*data));
1119	ie->timestamp = jiffies;
1120	cache->timestamp = jiffies;
1121
1122	if (ie->name_state == NAME_NOT_KNOWN)
1123		flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
1124
1125done:
1126	return flags;
1127}
1128
1129static int inquiry_cache_dump(struct hci_dev *hdev, int num, __u8 *buf)
1130{
1131	struct discovery_state *cache = &hdev->discovery;
1132	struct inquiry_info *info = (struct inquiry_info *) buf;
1133	struct inquiry_entry *e;
1134	int copied = 0;
1135
1136	list_for_each_entry(e, &cache->all, all) {
1137		struct inquiry_data *data = &e->data;
1138
1139		if (copied >= num)
1140			break;
1141
1142		bacpy(&info->bdaddr, &data->bdaddr);
1143		info->pscan_rep_mode	= data->pscan_rep_mode;
1144		info->pscan_period_mode	= data->pscan_period_mode;
1145		info->pscan_mode	= data->pscan_mode;
1146		memcpy(info->dev_class, data->dev_class, 3);
1147		info->clock_offset	= data->clock_offset;
1148
1149		info++;
1150		copied++;
1151	}
1152
1153	BT_DBG("cache %p, copied %d", cache, copied);
1154	return copied;
1155}
1156
1157static int hci_inq_req(struct hci_request *req, unsigned long opt)
1158{
1159	struct hci_inquiry_req *ir = (struct hci_inquiry_req *) opt;
1160	struct hci_dev *hdev = req->hdev;
1161	struct hci_cp_inquiry cp;
1162
1163	BT_DBG("%s", hdev->name);
1164
1165	if (test_bit(HCI_INQUIRY, &hdev->flags))
1166		return 0;
1167
1168	/* Start Inquiry */
1169	memcpy(&cp.lap, &ir->lap, 3);
1170	cp.length  = ir->length;
1171	cp.num_rsp = ir->num_rsp;
1172	hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp);
1173
1174	return 0;
1175}
1176
1177int hci_inquiry(void __user *arg)
1178{
1179	__u8 __user *ptr = arg;
1180	struct hci_inquiry_req ir;
1181	struct hci_dev *hdev;
1182	int err = 0, do_inquiry = 0, max_rsp;
1183	long timeo;
1184	__u8 *buf;
1185
1186	if (copy_from_user(&ir, ptr, sizeof(ir)))
1187		return -EFAULT;
1188
1189	hdev = hci_dev_get(ir.dev_id);
1190	if (!hdev)
1191		return -ENODEV;
1192
1193	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1194		err = -EBUSY;
1195		goto done;
1196	}
1197
1198	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1199		err = -EOPNOTSUPP;
1200		goto done;
1201	}
1202
1203	if (hdev->dev_type != HCI_PRIMARY) {
1204		err = -EOPNOTSUPP;
1205		goto done;
1206	}
1207
1208	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
1209		err = -EOPNOTSUPP;
1210		goto done;
1211	}
1212
1213	hci_dev_lock(hdev);
1214	if (inquiry_cache_age(hdev) > INQUIRY_CACHE_AGE_MAX ||
1215	    inquiry_cache_empty(hdev) || ir.flags & IREQ_CACHE_FLUSH) {
1216		hci_inquiry_cache_flush(hdev);
1217		do_inquiry = 1;
1218	}
1219	hci_dev_unlock(hdev);
1220
1221	timeo = ir.length * msecs_to_jiffies(2000);
1222
1223	if (do_inquiry) {
1224		err = hci_req_sync(hdev, hci_inq_req, (unsigned long) &ir,
1225				   timeo, NULL);
1226		if (err < 0)
1227			goto done;
1228
1229		/* Wait until Inquiry procedure finishes (HCI_INQUIRY flag is
1230		 * cleared). If it is interrupted by a signal, return -EINTR.
1231		 */
1232		if (wait_on_bit(&hdev->flags, HCI_INQUIRY,
1233				TASK_INTERRUPTIBLE))
1234			return -EINTR;
1235	}
1236
1237	/* for unlimited number of responses we will use buffer with
1238	 * 255 entries
1239	 */
1240	max_rsp = (ir.num_rsp == 0) ? 255 : ir.num_rsp;
1241
1242	/* cache_dump can't sleep. Therefore we allocate temp buffer and then
1243	 * copy it to the user space.
1244	 */
1245	buf = kmalloc(sizeof(struct inquiry_info) * max_rsp, GFP_KERNEL);
1246	if (!buf) {
1247		err = -ENOMEM;
1248		goto done;
1249	}
1250
1251	hci_dev_lock(hdev);
1252	ir.num_rsp = inquiry_cache_dump(hdev, max_rsp, buf);
1253	hci_dev_unlock(hdev);
1254
1255	BT_DBG("num_rsp %d", ir.num_rsp);
1256
1257	if (!copy_to_user(ptr, &ir, sizeof(ir))) {
1258		ptr += sizeof(ir);
1259		if (copy_to_user(ptr, buf, sizeof(struct inquiry_info) *
1260				 ir.num_rsp))
1261			err = -EFAULT;
1262	} else
1263		err = -EFAULT;
1264
1265	kfree(buf);
1266
1267done:
1268	hci_dev_put(hdev);
1269	return err;
1270}
1271
1272static int hci_dev_do_open(struct hci_dev *hdev)
1273{
1274	int ret = 0;
1275
1276	BT_DBG("%s %p", hdev->name, hdev);
1277
1278	hci_req_sync_lock(hdev);
1279
1280	if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) {
1281		ret = -ENODEV;
1282		goto done;
1283	}
1284
1285	if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
1286	    !hci_dev_test_flag(hdev, HCI_CONFIG)) {
1287		/* Check for rfkill but allow the HCI setup stage to
1288		 * proceed (which in itself doesn't cause any RF activity).
1289		 */
1290		if (hci_dev_test_flag(hdev, HCI_RFKILLED)) {
1291			ret = -ERFKILL;
1292			goto done;
1293		}
1294
1295		/* Check for valid public address or a configured static
1296		 * random adddress, but let the HCI setup proceed to
1297		 * be able to determine if there is a public address
1298		 * or not.
1299		 *
1300		 * In case of user channel usage, it is not important
1301		 * if a public address or static random address is
1302		 * available.
1303		 *
1304		 * This check is only valid for BR/EDR controllers
1305		 * since AMP controllers do not have an address.
1306		 */
1307		if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1308		    hdev->dev_type == HCI_PRIMARY &&
1309		    !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
1310		    !bacmp(&hdev->static_addr, BDADDR_ANY)) {
1311			ret = -EADDRNOTAVAIL;
1312			goto done;
1313		}
1314	}
1315
1316	if (test_bit(HCI_UP, &hdev->flags)) {
1317		ret = -EALREADY;
1318		goto done;
1319	}
1320
1321	if (hdev->open(hdev)) {
1322		ret = -EIO;
1323		goto done;
1324	}
1325
1326	set_bit(HCI_RUNNING, &hdev->flags);
1327	hci_sock_dev_event(hdev, HCI_DEV_OPEN);
1328
1329	atomic_set(&hdev->cmd_cnt, 1);
1330	set_bit(HCI_INIT, &hdev->flags);
1331
1332	if (hci_dev_test_flag(hdev, HCI_SETUP)) {
1333		hci_sock_dev_event(hdev, HCI_DEV_SETUP);
1334
1335		if (hdev->setup)
1336			ret = hdev->setup(hdev);
1337
1338		/* The transport driver can set these quirks before
1339		 * creating the HCI device or in its setup callback.
1340		 *
1341		 * In case any of them is set, the controller has to
1342		 * start up as unconfigured.
1343		 */
1344		if (test_bit(HCI_QUIRK_EXTERNAL_CONFIG, &hdev->quirks) ||
1345		    test_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks))
1346			hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
1347
1348		/* For an unconfigured controller it is required to
1349		 * read at least the version information provided by
1350		 * the Read Local Version Information command.
1351		 *
1352		 * If the set_bdaddr driver callback is provided, then
1353		 * also the original Bluetooth public device address
1354		 * will be read using the Read BD Address command.
1355		 */
1356		if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
1357			ret = __hci_unconf_init(hdev);
1358	}
1359
1360	if (hci_dev_test_flag(hdev, HCI_CONFIG)) {
1361		/* If public address change is configured, ensure that
1362		 * the address gets programmed. If the driver does not
1363		 * support changing the public address, fail the power
1364		 * on procedure.
1365		 */
1366		if (bacmp(&hdev->public_addr, BDADDR_ANY) &&
1367		    hdev->set_bdaddr)
1368			ret = hdev->set_bdaddr(hdev, &hdev->public_addr);
1369		else
1370			ret = -EADDRNOTAVAIL;
1371	}
1372
1373	if (!ret) {
1374		if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1375		    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1376			ret = __hci_init(hdev);
1377			if (!ret && hdev->post_init)
1378				ret = hdev->post_init(hdev);
1379		}
1380	}
1381
1382	/* If the HCI Reset command is clearing all diagnostic settings,
1383	 * then they need to be reprogrammed after the init procedure
1384	 * completed.
1385	 */
1386	if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) &&
1387	    hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) && hdev->set_diag)
1388		ret = hdev->set_diag(hdev, true);
1389
1390	clear_bit(HCI_INIT, &hdev->flags);
1391
1392	if (!ret) {
1393		hci_dev_hold(hdev);
1394		hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
1395		set_bit(HCI_UP, &hdev->flags);
1396		hci_sock_dev_event(hdev, HCI_DEV_UP);
1397		hci_leds_update_powered(hdev, true);
1398		if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
1399		    !hci_dev_test_flag(hdev, HCI_CONFIG) &&
1400		    !hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1401		    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1402		    hci_dev_test_flag(hdev, HCI_MGMT) &&
1403		    hdev->dev_type == HCI_PRIMARY) {
1404			ret = __hci_req_hci_power_on(hdev);
1405			mgmt_power_on(hdev, ret);
1406		}
1407	} else {
1408		/* Init failed, cleanup */
1409		flush_work(&hdev->tx_work);
1410		flush_work(&hdev->cmd_work);
1411		flush_work(&hdev->rx_work);
1412
1413		skb_queue_purge(&hdev->cmd_q);
1414		skb_queue_purge(&hdev->rx_q);
1415
1416		if (hdev->flush)
1417			hdev->flush(hdev);
1418
1419		if (hdev->sent_cmd) {
1420			kfree_skb(hdev->sent_cmd);
1421			hdev->sent_cmd = NULL;
1422		}
1423
1424		clear_bit(HCI_RUNNING, &hdev->flags);
1425		hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
1426
1427		hdev->close(hdev);
1428		hdev->flags &= BIT(HCI_RAW);
1429	}
1430
1431done:
1432	hci_req_sync_unlock(hdev);
1433	return ret;
1434}
1435
1436/* ---- HCI ioctl helpers ---- */
1437
1438int hci_dev_open(__u16 dev)
1439{
1440	struct hci_dev *hdev;
1441	int err;
1442
1443	hdev = hci_dev_get(dev);
1444	if (!hdev)
1445		return -ENODEV;
1446
1447	/* Devices that are marked as unconfigured can only be powered
1448	 * up as user channel. Trying to bring them up as normal devices
1449	 * will result into a failure. Only user channel operation is
1450	 * possible.
1451	 *
1452	 * When this function is called for a user channel, the flag
1453	 * HCI_USER_CHANNEL will be set first before attempting to
1454	 * open the device.
1455	 */
1456	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1457	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1458		err = -EOPNOTSUPP;
1459		goto done;
1460	}
1461
1462	/* We need to ensure that no other power on/off work is pending
1463	 * before proceeding to call hci_dev_do_open. This is
1464	 * particularly important if the setup procedure has not yet
1465	 * completed.
1466	 */
1467	if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
1468		cancel_delayed_work(&hdev->power_off);
1469
1470	/* After this call it is guaranteed that the setup procedure
1471	 * has finished. This means that error conditions like RFKILL
1472	 * or no valid public or static random address apply.
1473	 */
1474	flush_workqueue(hdev->req_workqueue);
1475
1476	/* For controllers not using the management interface and that
1477	 * are brought up using legacy ioctl, set the HCI_BONDABLE bit
1478	 * so that pairing works for them. Once the management interface
1479	 * is in use this bit will be cleared again and userspace has
1480	 * to explicitly enable it.
1481	 */
1482	if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1483	    !hci_dev_test_flag(hdev, HCI_MGMT))
1484		hci_dev_set_flag(hdev, HCI_BONDABLE);
1485
1486	err = hci_dev_do_open(hdev);
1487
1488done:
1489	hci_dev_put(hdev);
1490	return err;
1491}
1492
1493/* This function requires the caller holds hdev->lock */
1494static void hci_pend_le_actions_clear(struct hci_dev *hdev)
1495{
1496	struct hci_conn_params *p;
1497
1498	list_for_each_entry(p, &hdev->le_conn_params, list) {
1499		if (p->conn) {
1500			hci_conn_drop(p->conn);
1501			hci_conn_put(p->conn);
1502			p->conn = NULL;
1503		}
1504		list_del_init(&p->action);
1505	}
1506
1507	BT_DBG("All LE pending actions cleared");
1508}
1509
1510int hci_dev_do_close(struct hci_dev *hdev)
1511{
1512	bool auto_off;
1513
1514	BT_DBG("%s %p", hdev->name, hdev);
1515
1516	if (!hci_dev_test_flag(hdev, HCI_UNREGISTER) &&
1517	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1518	    test_bit(HCI_UP, &hdev->flags)) {
1519		/* Execute vendor specific shutdown routine */
1520		if (hdev->shutdown)
1521			hdev->shutdown(hdev);
1522	}
1523
1524	cancel_delayed_work(&hdev->power_off);
1525
1526	hci_request_cancel_all(hdev);
1527	hci_req_sync_lock(hdev);
1528
1529	if (!test_and_clear_bit(HCI_UP, &hdev->flags)) {
1530		cancel_delayed_work_sync(&hdev->cmd_timer);
1531		hci_req_sync_unlock(hdev);
1532		return 0;
1533	}
1534
1535	hci_leds_update_powered(hdev, false);
1536
1537	/* Flush RX and TX works */
1538	flush_work(&hdev->tx_work);
1539	flush_work(&hdev->rx_work);
1540
1541	if (hdev->discov_timeout > 0) {
1542		hdev->discov_timeout = 0;
1543		hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
1544		hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
1545	}
1546
1547	if (hci_dev_test_and_clear_flag(hdev, HCI_SERVICE_CACHE))
1548		cancel_delayed_work(&hdev->service_cache);
1549
1550	if (hci_dev_test_flag(hdev, HCI_MGMT))
1551		cancel_delayed_work_sync(&hdev->rpa_expired);
1552
1553	/* Avoid potential lockdep warnings from the *_flush() calls by
1554	 * ensuring the workqueue is empty up front.
1555	 */
1556	drain_workqueue(hdev->workqueue);
1557
1558	hci_dev_lock(hdev);
1559
1560	hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
1561
1562	auto_off = hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF);
1563
1564	if (!auto_off && hdev->dev_type == HCI_PRIMARY &&
1565	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1566	    hci_dev_test_flag(hdev, HCI_MGMT))
1567		__mgmt_power_off(hdev);
1568
1569	hci_inquiry_cache_flush(hdev);
1570	hci_pend_le_actions_clear(hdev);
1571	hci_conn_hash_flush(hdev);
1572	hci_dev_unlock(hdev);
1573
1574	smp_unregister(hdev);
1575
1576	hci_sock_dev_event(hdev, HCI_DEV_DOWN);
1577
1578	if (hdev->flush)
1579		hdev->flush(hdev);
1580
1581	/* Reset device */
1582	skb_queue_purge(&hdev->cmd_q);
1583	atomic_set(&hdev->cmd_cnt, 1);
1584	if (test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks) &&
1585	    !auto_off && !hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1586		set_bit(HCI_INIT, &hdev->flags);
1587		__hci_req_sync(hdev, hci_reset_req, 0, HCI_CMD_TIMEOUT, NULL);
1588		clear_bit(HCI_INIT, &hdev->flags);
1589	}
1590
1591	/* flush cmd  work */
1592	flush_work(&hdev->cmd_work);
1593
1594	/* Drop queues */
1595	skb_queue_purge(&hdev->rx_q);
1596	skb_queue_purge(&hdev->cmd_q);
1597	skb_queue_purge(&hdev->raw_q);
1598
1599	/* Drop last sent command */
1600	if (hdev->sent_cmd) {
1601		cancel_delayed_work_sync(&hdev->cmd_timer);
1602		kfree_skb(hdev->sent_cmd);
1603		hdev->sent_cmd = NULL;
1604	}
1605
1606	clear_bit(HCI_RUNNING, &hdev->flags);
1607	hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
1608
1609	/* After this point our queues are empty
1610	 * and no tasks are scheduled. */
1611	hdev->close(hdev);
1612
1613	/* Clear flags */
1614	hdev->flags &= BIT(HCI_RAW);
1615	hci_dev_clear_volatile_flags(hdev);
1616
1617	/* Controller radio is available but is currently powered down */
1618	hdev->amp_status = AMP_STATUS_POWERED_DOWN;
1619
1620	memset(hdev->eir, 0, sizeof(hdev->eir));
1621	memset(hdev->dev_class, 0, sizeof(hdev->dev_class));
1622	bacpy(&hdev->random_addr, BDADDR_ANY);
1623
1624	hci_req_sync_unlock(hdev);
1625
1626	hci_dev_put(hdev);
1627	return 0;
1628}
1629
1630int hci_dev_close(__u16 dev)
1631{
1632	struct hci_dev *hdev;
1633	int err;
1634
1635	hdev = hci_dev_get(dev);
1636	if (!hdev)
1637		return -ENODEV;
1638
1639	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1640		err = -EBUSY;
1641		goto done;
1642	}
1643
1644	if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
1645		cancel_delayed_work(&hdev->power_off);
1646
1647	err = hci_dev_do_close(hdev);
1648
1649done:
1650	hci_dev_put(hdev);
1651	return err;
1652}
1653
1654static int hci_dev_do_reset(struct hci_dev *hdev)
1655{
1656	int ret;
1657
1658	BT_DBG("%s %p", hdev->name, hdev);
1659
1660	hci_req_sync_lock(hdev);
1661
1662	/* Drop queues */
1663	skb_queue_purge(&hdev->rx_q);
1664	skb_queue_purge(&hdev->cmd_q);
1665
1666	/* Avoid potential lockdep warnings from the *_flush() calls by
1667	 * ensuring the workqueue is empty up front.
1668	 */
1669	drain_workqueue(hdev->workqueue);
1670
1671	hci_dev_lock(hdev);
1672	hci_inquiry_cache_flush(hdev);
1673	hci_conn_hash_flush(hdev);
1674	hci_dev_unlock(hdev);
1675
1676	if (hdev->flush)
1677		hdev->flush(hdev);
1678
1679	atomic_set(&hdev->cmd_cnt, 1);
1680	hdev->acl_cnt = 0; hdev->sco_cnt = 0; hdev->le_cnt = 0;
1681
1682	ret = __hci_req_sync(hdev, hci_reset_req, 0, HCI_INIT_TIMEOUT, NULL);
1683
1684	hci_req_sync_unlock(hdev);
1685	return ret;
1686}
1687
1688int hci_dev_reset(__u16 dev)
1689{
1690	struct hci_dev *hdev;
1691	int err;
1692
1693	hdev = hci_dev_get(dev);
1694	if (!hdev)
1695		return -ENODEV;
1696
1697	if (!test_bit(HCI_UP, &hdev->flags)) {
1698		err = -ENETDOWN;
1699		goto done;
1700	}
1701
1702	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1703		err = -EBUSY;
1704		goto done;
1705	}
1706
1707	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1708		err = -EOPNOTSUPP;
1709		goto done;
1710	}
1711
1712	err = hci_dev_do_reset(hdev);
1713
1714done:
1715	hci_dev_put(hdev);
1716	return err;
1717}
1718
1719int hci_dev_reset_stat(__u16 dev)
1720{
1721	struct hci_dev *hdev;
1722	int ret = 0;
1723
1724	hdev = hci_dev_get(dev);
1725	if (!hdev)
1726		return -ENODEV;
1727
1728	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1729		ret = -EBUSY;
1730		goto done;
1731	}
1732
1733	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1734		ret = -EOPNOTSUPP;
1735		goto done;
1736	}
1737
1738	memset(&hdev->stat, 0, sizeof(struct hci_dev_stats));
1739
1740done:
1741	hci_dev_put(hdev);
1742	return ret;
1743}
1744
1745static void hci_update_scan_state(struct hci_dev *hdev, u8 scan)
1746{
1747	bool conn_changed, discov_changed;
1748
1749	BT_DBG("%s scan 0x%02x", hdev->name, scan);
1750
1751	if ((scan & SCAN_PAGE))
1752		conn_changed = !hci_dev_test_and_set_flag(hdev,
1753							  HCI_CONNECTABLE);
1754	else
1755		conn_changed = hci_dev_test_and_clear_flag(hdev,
1756							   HCI_CONNECTABLE);
1757
1758	if ((scan & SCAN_INQUIRY)) {
1759		discov_changed = !hci_dev_test_and_set_flag(hdev,
1760							    HCI_DISCOVERABLE);
1761	} else {
1762		hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
1763		discov_changed = hci_dev_test_and_clear_flag(hdev,
1764							     HCI_DISCOVERABLE);
1765	}
1766
1767	if (!hci_dev_test_flag(hdev, HCI_MGMT))
1768		return;
1769
1770	if (conn_changed || discov_changed) {
1771		/* In case this was disabled through mgmt */
1772		hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
1773
1774		if (hci_dev_test_flag(hdev, HCI_LE_ENABLED))
1775			hci_req_update_adv_data(hdev, hdev->cur_adv_instance);
1776
1777		mgmt_new_settings(hdev);
1778	}
1779}
1780
1781int hci_dev_cmd(unsigned int cmd, void __user *arg)
1782{
1783	struct hci_dev *hdev;
1784	struct hci_dev_req dr;
1785	int err = 0;
1786
1787	if (copy_from_user(&dr, arg, sizeof(dr)))
1788		return -EFAULT;
1789
1790	hdev = hci_dev_get(dr.dev_id);
1791	if (!hdev)
1792		return -ENODEV;
1793
1794	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1795		err = -EBUSY;
1796		goto done;
1797	}
1798
1799	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1800		err = -EOPNOTSUPP;
1801		goto done;
1802	}
1803
1804	if (hdev->dev_type != HCI_PRIMARY) {
1805		err = -EOPNOTSUPP;
1806		goto done;
1807	}
1808
1809	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
1810		err = -EOPNOTSUPP;
1811		goto done;
1812	}
1813
1814	switch (cmd) {
1815	case HCISETAUTH:
1816		err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
1817				   HCI_INIT_TIMEOUT, NULL);
1818		break;
1819
1820	case HCISETENCRYPT:
1821		if (!lmp_encrypt_capable(hdev)) {
1822			err = -EOPNOTSUPP;
1823			break;
1824		}
1825
1826		if (!test_bit(HCI_AUTH, &hdev->flags)) {
1827			/* Auth must be enabled first */
1828			err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
1829					   HCI_INIT_TIMEOUT, NULL);
1830			if (err)
1831				break;
1832		}
1833
1834		err = hci_req_sync(hdev, hci_encrypt_req, dr.dev_opt,
1835				   HCI_INIT_TIMEOUT, NULL);
1836		break;
1837
1838	case HCISETSCAN:
1839		err = hci_req_sync(hdev, hci_scan_req, dr.dev_opt,
1840				   HCI_INIT_TIMEOUT, NULL);
1841
1842		/* Ensure that the connectable and discoverable states
1843		 * get correctly modified as this was a non-mgmt change.
1844		 */
1845		if (!err)
1846			hci_update_scan_state(hdev, dr.dev_opt);
1847		break;
1848
1849	case HCISETLINKPOL:
1850		err = hci_req_sync(hdev, hci_linkpol_req, dr.dev_opt,
1851				   HCI_INIT_TIMEOUT, NULL);
1852		break;
1853
1854	case HCISETLINKMODE:
1855		hdev->link_mode = ((__u16) dr.dev_opt) &
1856					(HCI_LM_MASTER | HCI_LM_ACCEPT);
1857		break;
1858
1859	case HCISETPTYPE:
1860		hdev->pkt_type = (__u16) dr.dev_opt;
1861		break;
1862
1863	case HCISETACLMTU:
1864		hdev->acl_mtu  = *((__u16 *) &dr.dev_opt + 1);
1865		hdev->acl_pkts = *((__u16 *) &dr.dev_opt + 0);
1866		break;
1867
1868	case HCISETSCOMTU:
1869		hdev->sco_mtu  = *((__u16 *) &dr.dev_opt + 1);
1870		hdev->sco_pkts = *((__u16 *) &dr.dev_opt + 0);
1871		break;
1872
1873	default:
1874		err = -EINVAL;
1875		break;
1876	}
1877
1878done:
1879	hci_dev_put(hdev);
1880	return err;
1881}
1882
1883int hci_get_dev_list(void __user *arg)
1884{
1885	struct hci_dev *hdev;
1886	struct hci_dev_list_req *dl;
1887	struct hci_dev_req *dr;
1888	int n = 0, size, err;
1889	__u16 dev_num;
1890
1891	if (get_user(dev_num, (__u16 __user *) arg))
1892		return -EFAULT;
1893
1894	if (!dev_num || dev_num > (PAGE_SIZE * 2) / sizeof(*dr))
1895		return -EINVAL;
1896
1897	size = sizeof(*dl) + dev_num * sizeof(*dr);
1898
1899	dl = kzalloc(size, GFP_KERNEL);
1900	if (!dl)
1901		return -ENOMEM;
1902
1903	dr = dl->dev_req;
1904
1905	read_lock(&hci_dev_list_lock);
1906	list_for_each_entry(hdev, &hci_dev_list, list) {
1907		unsigned long flags = hdev->flags;
1908
1909		/* When the auto-off is configured it means the transport
1910		 * is running, but in that case still indicate that the
1911		 * device is actually down.
1912		 */
1913		if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
1914			flags &= ~BIT(HCI_UP);
1915
1916		(dr + n)->dev_id  = hdev->id;
1917		(dr + n)->dev_opt = flags;
1918
1919		if (++n >= dev_num)
1920			break;
1921	}
1922	read_unlock(&hci_dev_list_lock);
1923
1924	dl->dev_num = n;
1925	size = sizeof(*dl) + n * sizeof(*dr);
1926
1927	err = copy_to_user(arg, dl, size);
1928	kfree(dl);
1929
1930	return err ? -EFAULT : 0;
1931}
1932
1933int hci_get_dev_info(void __user *arg)
1934{
1935	struct hci_dev *hdev;
1936	struct hci_dev_info di;
1937	unsigned long flags;
1938	int err = 0;
1939
1940	if (copy_from_user(&di, arg, sizeof(di)))
1941		return -EFAULT;
1942
1943	hdev = hci_dev_get(di.dev_id);
1944	if (!hdev)
1945		return -ENODEV;
1946
1947	/* When the auto-off is configured it means the transport
1948	 * is running, but in that case still indicate that the
1949	 * device is actually down.
1950	 */
1951	if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
1952		flags = hdev->flags & ~BIT(HCI_UP);
1953	else
1954		flags = hdev->flags;
1955
1956	strcpy(di.name, hdev->name);
1957	di.bdaddr   = hdev->bdaddr;
1958	di.type     = (hdev->bus & 0x0f) | ((hdev->dev_type & 0x03) << 4);
1959	di.flags    = flags;
1960	di.pkt_type = hdev->pkt_type;
1961	if (lmp_bredr_capable(hdev)) {
1962		di.acl_mtu  = hdev->acl_mtu;
1963		di.acl_pkts = hdev->acl_pkts;
1964		di.sco_mtu  = hdev->sco_mtu;
1965		di.sco_pkts = hdev->sco_pkts;
1966	} else {
1967		di.acl_mtu  = hdev->le_mtu;
1968		di.acl_pkts = hdev->le_pkts;
1969		di.sco_mtu  = 0;
1970		di.sco_pkts = 0;
1971	}
1972	di.link_policy = hdev->link_policy;
1973	di.link_mode   = hdev->link_mode;
1974
1975	memcpy(&di.stat, &hdev->stat, sizeof(di.stat));
1976	memcpy(&di.features, &hdev->features, sizeof(di.features));
1977
1978	if (copy_to_user(arg, &di, sizeof(di)))
1979		err = -EFAULT;
1980
1981	hci_dev_put(hdev);
1982
1983	return err;
1984}
1985
1986/* ---- Interface to HCI drivers ---- */
1987
1988static int hci_rfkill_set_block(void *data, bool blocked)
1989{
1990	struct hci_dev *hdev = data;
1991
1992	BT_DBG("%p name %s blocked %d", hdev, hdev->name, blocked);
1993
1994	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL))
1995		return -EBUSY;
1996
1997	if (blocked) {
1998		hci_dev_set_flag(hdev, HCI_RFKILLED);
1999		if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
2000		    !hci_dev_test_flag(hdev, HCI_CONFIG))
2001			hci_dev_do_close(hdev);
2002	} else {
2003		hci_dev_clear_flag(hdev, HCI_RFKILLED);
2004	}
2005
2006	return 0;
2007}
2008
2009static const struct rfkill_ops hci_rfkill_ops = {
2010	.set_block = hci_rfkill_set_block,
2011};
2012
2013static void hci_power_on(struct work_struct *work)
2014{
2015	struct hci_dev *hdev = container_of(work, struct hci_dev, power_on);
2016	int err;
2017
2018	BT_DBG("%s", hdev->name);
2019
2020	if (test_bit(HCI_UP, &hdev->flags) &&
2021	    hci_dev_test_flag(hdev, HCI_MGMT) &&
2022	    hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) {
2023		cancel_delayed_work(&hdev->power_off);
2024		hci_req_sync_lock(hdev);
2025		err = __hci_req_hci_power_on(hdev);
2026		hci_req_sync_unlock(hdev);
2027		mgmt_power_on(hdev, err);
2028		return;
2029	}
2030
2031	err = hci_dev_do_open(hdev);
2032	if (err < 0) {
2033		hci_dev_lock(hdev);
2034		mgmt_set_powered_failed(hdev, err);
2035		hci_dev_unlock(hdev);
2036		return;
2037	}
2038
2039	/* During the HCI setup phase, a few error conditions are
2040	 * ignored and they need to be checked now. If they are still
2041	 * valid, it is important to turn the device back off.
2042	 */
2043	if (hci_dev_test_flag(hdev, HCI_RFKILLED) ||
2044	    hci_dev_test_flag(hdev, HCI_UNCONFIGURED) ||
2045	    (hdev->dev_type == HCI_PRIMARY &&
2046	     !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
2047	     !bacmp(&hdev->static_addr, BDADDR_ANY))) {
2048		hci_dev_clear_flag(hdev, HCI_AUTO_OFF);
2049		hci_dev_do_close(hdev);
2050	} else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) {
2051		queue_delayed_work(hdev->req_workqueue, &hdev->power_off,
2052				   HCI_AUTO_OFF_TIMEOUT);
2053	}
2054
2055	if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) {
2056		/* For unconfigured devices, set the HCI_RAW flag
2057		 * so that userspace can easily identify them.
2058		 */
2059		if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
2060			set_bit(HCI_RAW, &hdev->flags);
2061
2062		/* For fully configured devices, this will send
2063		 * the Index Added event. For unconfigured devices,
2064		 * it will send Unconfigued Index Added event.
2065		 *
2066		 * Devices with HCI_QUIRK_RAW_DEVICE are ignored
2067		 * and no event will be send.
2068		 */
2069		mgmt_index_added(hdev);
2070	} else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) {
2071		/* When the controller is now configured, then it
2072		 * is important to clear the HCI_RAW flag.
2073		 */
2074		if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
2075			clear_bit(HCI_RAW, &hdev->flags);
2076
2077		/* Powering on the controller with HCI_CONFIG set only
2078		 * happens with the transition from unconfigured to
2079		 * configured. This will send the Index Added event.
2080		 */
2081		mgmt_index_added(hdev);
2082	}
2083}
2084
2085static void hci_power_off(struct work_struct *work)
2086{
2087	struct hci_dev *hdev = container_of(work, struct hci_dev,
2088					    power_off.work);
2089
2090	BT_DBG("%s", hdev->name);
2091
2092	hci_dev_do_close(hdev);
2093}
2094
2095static void hci_error_reset(struct work_struct *work)
2096{
2097	struct hci_dev *hdev = container_of(work, struct hci_dev, error_reset);
2098
2099	BT_DBG("%s", hdev->name);
2100
2101	if (hdev->hw_error)
2102		hdev->hw_error(hdev, hdev->hw_error_code);
2103	else
2104		BT_ERR("%s hardware error 0x%2.2x", hdev->name,
2105		       hdev->hw_error_code);
2106
2107	if (hci_dev_do_close(hdev))
2108		return;
2109
2110	hci_dev_do_open(hdev);
2111}
2112
2113void hci_uuids_clear(struct hci_dev *hdev)
2114{
2115	struct bt_uuid *uuid, *tmp;
2116
2117	list_for_each_entry_safe(uuid, tmp, &hdev->uuids, list) {
2118		list_del(&uuid->list);
2119		kfree(uuid);
2120	}
2121}
2122
2123void hci_link_keys_clear(struct hci_dev *hdev)
2124{
2125	struct link_key *key;
2126
2127	list_for_each_entry_rcu(key, &hdev->link_keys, list) {
2128		list_del_rcu(&key->list);
2129		kfree_rcu(key, rcu);
2130	}
2131}
2132
2133void hci_smp_ltks_clear(struct hci_dev *hdev)
2134{
2135	struct smp_ltk *k;
2136
2137	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2138		list_del_rcu(&k->list);
2139		kfree_rcu(k, rcu);
2140	}
2141}
2142
2143void hci_smp_irks_clear(struct hci_dev *hdev)
2144{
2145	struct smp_irk *k;
2146
2147	list_for_each_entry_rcu(k, &hdev->identity_resolving_keys, list) {
2148		list_del_rcu(&k->list);
2149		kfree_rcu(k, rcu);
2150	}
2151}
2152
2153struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
2154{
2155	struct link_key *k;
2156
2157	rcu_read_lock();
2158	list_for_each_entry_rcu(k, &hdev->link_keys, list) {
2159		if (bacmp(bdaddr, &k->bdaddr) == 0) {
2160			rcu_read_unlock();
2161			return k;
2162		}
2163	}
2164	rcu_read_unlock();
2165
2166	return NULL;
2167}
2168
2169static bool hci_persistent_key(struct hci_dev *hdev, struct hci_conn *conn,
2170			       u8 key_type, u8 old_key_type)
2171{
2172	/* Legacy key */
2173	if (key_type < 0x03)
2174		return true;
2175
2176	/* Debug keys are insecure so don't store them persistently */
2177	if (key_type == HCI_LK_DEBUG_COMBINATION)
2178		return false;
2179
2180	/* Changed combination key and there's no previous one */
2181	if (key_type == HCI_LK_CHANGED_COMBINATION && old_key_type == 0xff)
2182		return false;
2183
2184	/* Security mode 3 case */
2185	if (!conn)
2186		return true;
2187
2188	/* BR/EDR key derived using SC from an LE link */
2189	if (conn->type == LE_LINK)
2190		return true;
2191
2192	/* Neither local nor remote side had no-bonding as requirement */
2193	if (conn->auth_type > 0x01 && conn->remote_auth > 0x01)
2194		return true;
2195
2196	/* Local side had dedicated bonding as requirement */
2197	if (conn->auth_type == 0x02 || conn->auth_type == 0x03)
2198		return true;
2199
2200	/* Remote side had dedicated bonding as requirement */
2201	if (conn->remote_auth == 0x02 || conn->remote_auth == 0x03)
2202		return true;
2203
2204	/* If none of the above criteria match, then don't store the key
2205	 * persistently */
2206	return false;
2207}
2208
2209static u8 ltk_role(u8 type)
2210{
2211	if (type == SMP_LTK)
2212		return HCI_ROLE_MASTER;
2213
2214	return HCI_ROLE_SLAVE;
2215}
2216
2217struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2218			     u8 addr_type, u8 role)
2219{
2220	struct smp_ltk *k;
2221
2222	rcu_read_lock();
2223	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2224		if (addr_type != k->bdaddr_type || bacmp(bdaddr, &k->bdaddr))
2225			continue;
2226
2227		if (smp_ltk_is_sc(k) || ltk_role(k->type) == role) {
2228			rcu_read_unlock();
2229			return k;
2230		}
2231	}
2232	rcu_read_unlock();
2233
2234	return NULL;
2235}
2236
2237struct smp_irk *hci_find_irk_by_rpa(struct hci_dev *hdev, bdaddr_t *rpa)
2238{
2239	struct smp_irk *irk;
2240
2241	rcu_read_lock();
2242	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2243		if (!bacmp(&irk->rpa, rpa)) {
2244			rcu_read_unlock();
2245			return irk;
2246		}
2247	}
2248
2249	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2250		if (smp_irk_matches(hdev, irk->val, rpa)) {
2251			bacpy(&irk->rpa, rpa);
2252			rcu_read_unlock();
2253			return irk;
2254		}
2255	}
2256	rcu_read_unlock();
2257
2258	return NULL;
2259}
2260
2261struct smp_irk *hci_find_irk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr,
2262				     u8 addr_type)
2263{
2264	struct smp_irk *irk;
2265
2266	/* Identity Address must be public or static random */
2267	if (addr_type == ADDR_LE_DEV_RANDOM && (bdaddr->b[5] & 0xc0) != 0xc0)
2268		return NULL;
2269
2270	rcu_read_lock();
2271	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2272		if (addr_type == irk->addr_type &&
2273		    bacmp(bdaddr, &irk->bdaddr) == 0) {
2274			rcu_read_unlock();
2275			return irk;
2276		}
2277	}
2278	rcu_read_unlock();
2279
2280	return NULL;
2281}
2282
2283struct link_key *hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn,
2284				  bdaddr_t *bdaddr, u8 *val, u8 type,
2285				  u8 pin_len, bool *persistent)
2286{
2287	struct link_key *key, *old_key;
2288	u8 old_key_type;
2289
2290	old_key = hci_find_link_key(hdev, bdaddr);
2291	if (old_key) {
2292		old_key_type = old_key->type;
2293		key = old_key;
2294	} else {
2295		old_key_type = conn ? conn->key_type : 0xff;
2296		key = kzalloc(sizeof(*key), GFP_KERNEL);
2297		if (!key)
2298			return NULL;
2299		list_add_rcu(&key->list, &hdev->link_keys);
2300	}
2301
2302	BT_DBG("%s key for %pMR type %u", hdev->name, bdaddr, type);
2303
2304	/* Some buggy controller combinations generate a changed
2305	 * combination key for legacy pairing even when there's no
2306	 * previous key */
2307	if (type == HCI_LK_CHANGED_COMBINATION &&
2308	    (!conn || conn->remote_auth == 0xff) && old_key_type == 0xff) {
2309		type = HCI_LK_COMBINATION;
2310		if (conn)
2311			conn->key_type = type;
2312	}
2313
2314	bacpy(&key->bdaddr, bdaddr);
2315	memcpy(key->val, val, HCI_LINK_KEY_SIZE);
2316	key->pin_len = pin_len;
2317
2318	if (type == HCI_LK_CHANGED_COMBINATION)
2319		key->type = old_key_type;
2320	else
2321		key->type = type;
2322
2323	if (persistent)
2324		*persistent = hci_persistent_key(hdev, conn, type,
2325						 old_key_type);
2326
2327	return key;
2328}
2329
2330struct smp_ltk *hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2331			    u8 addr_type, u8 type, u8 authenticated,
2332			    u8 tk[16], u8 enc_size, __le16 ediv, __le64 rand)
2333{
2334	struct smp_ltk *key, *old_key;
2335	u8 role = ltk_role(type);
2336
2337	old_key = hci_find_ltk(hdev, bdaddr, addr_type, role);
2338	if (old_key)
2339		key = old_key;
2340	else {
2341		key = kzalloc(sizeof(*key), GFP_KERNEL);
2342		if (!key)
2343			return NULL;
2344		list_add_rcu(&key->list, &hdev->long_term_keys);
2345	}
2346
2347	bacpy(&key->bdaddr, bdaddr);
2348	key->bdaddr_type = addr_type;
2349	memcpy(key->val, tk, sizeof(key->val));
2350	key->authenticated = authenticated;
2351	key->ediv = ediv;
2352	key->rand = rand;
2353	key->enc_size = enc_size;
2354	key->type = type;
2355
2356	return key;
2357}
2358
2359struct smp_irk *hci_add_irk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2360			    u8 addr_type, u8 val[16], bdaddr_t *rpa)
2361{
2362	struct smp_irk *irk;
2363
2364	irk = hci_find_irk_by_addr(hdev, bdaddr, addr_type);
2365	if (!irk) {
2366		irk = kzalloc(sizeof(*irk), GFP_KERNEL);
2367		if (!irk)
2368			return NULL;
2369
2370		bacpy(&irk->bdaddr, bdaddr);
2371		irk->addr_type = addr_type;
2372
2373		list_add_rcu(&irk->list, &hdev->identity_resolving_keys);
2374	}
2375
2376	memcpy(irk->val, val, 16);
2377	bacpy(&irk->rpa, rpa);
2378
2379	return irk;
2380}
2381
2382int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
2383{
2384	struct link_key *key;
2385
2386	key = hci_find_link_key(hdev, bdaddr);
2387	if (!key)
2388		return -ENOENT;
2389
2390	BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2391
2392	list_del_rcu(&key->list);
2393	kfree_rcu(key, rcu);
2394
2395	return 0;
2396}
2397
2398int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type)
2399{
2400	struct smp_ltk *k;
2401	int removed = 0;
2402
2403	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2404		if (bacmp(bdaddr, &k->bdaddr) || k->bdaddr_type != bdaddr_type)
2405			continue;
2406
2407		BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2408
2409		list_del_rcu(&k->list);
2410		kfree_rcu(k, rcu);
2411		removed++;
2412	}
2413
2414	return removed ? 0 : -ENOENT;
2415}
2416
2417void hci_remove_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type)
2418{
2419	struct smp_irk *k;
2420
2421	list_for_each_entry_rcu(k, &hdev->identity_resolving_keys, list) {
2422		if (bacmp(bdaddr, &k->bdaddr) || k->addr_type != addr_type)
2423			continue;
2424
2425		BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2426
2427		list_del_rcu(&k->list);
2428		kfree_rcu(k, rcu);
2429	}
2430}
2431
2432bool hci_bdaddr_is_paired(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type)
2433{
2434	struct smp_ltk *k;
2435	struct smp_irk *irk;
2436	u8 addr_type;
2437
2438	if (type == BDADDR_BREDR) {
2439		if (hci_find_link_key(hdev, bdaddr))
2440			return true;
2441		return false;
2442	}
2443
2444	/* Convert to HCI addr type which struct smp_ltk uses */
2445	if (type == BDADDR_LE_PUBLIC)
2446		addr_type = ADDR_LE_DEV_PUBLIC;
2447	else
2448		addr_type = ADDR_LE_DEV_RANDOM;
2449
2450	irk = hci_get_irk(hdev, bdaddr, addr_type);
2451	if (irk) {
2452		bdaddr = &irk->bdaddr;
2453		addr_type = irk->addr_type;
2454	}
2455
2456	rcu_read_lock();
2457	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2458		if (k->bdaddr_type == addr_type && !bacmp(bdaddr, &k->bdaddr)) {
2459			rcu_read_unlock();
2460			return true;
2461		}
2462	}
2463	rcu_read_unlock();
2464
2465	return false;
2466}
2467
2468/* HCI command timer function */
2469static void hci_cmd_timeout(struct work_struct *work)
2470{
2471	struct hci_dev *hdev = container_of(work, struct hci_dev,
2472					    cmd_timer.work);
2473
2474	if (hdev->sent_cmd) {
2475		struct hci_command_hdr *sent = (void *) hdev->sent_cmd->data;
2476		u16 opcode = __le16_to_cpu(sent->opcode);
2477
2478		BT_ERR("%s command 0x%4.4x tx timeout", hdev->name, opcode);
2479	} else {
2480		BT_ERR("%s command tx timeout", hdev->name);
2481	}
2482
2483	atomic_set(&hdev->cmd_cnt, 1);
2484	queue_work(hdev->workqueue, &hdev->cmd_work);
2485}
2486
2487struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev,
2488					  bdaddr_t *bdaddr, u8 bdaddr_type)
2489{
2490	struct oob_data *data;
2491
2492	list_for_each_entry(data, &hdev->remote_oob_data, list) {
2493		if (bacmp(bdaddr, &data->bdaddr) != 0)
2494			continue;
2495		if (data->bdaddr_type != bdaddr_type)
2496			continue;
2497		return data;
2498	}
2499
2500	return NULL;
2501}
2502
2503int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
2504			       u8 bdaddr_type)
2505{
2506	struct oob_data *data;
2507
2508	data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
2509	if (!data)
2510		return -ENOENT;
2511
2512	BT_DBG("%s removing %pMR (%u)", hdev->name, bdaddr, bdaddr_type);
2513
2514	list_del(&data->list);
2515	kfree(data);
2516
2517	return 0;
2518}
2519
2520void hci_remote_oob_data_clear(struct hci_dev *hdev)
2521{
2522	struct oob_data *data, *n;
2523
2524	list_for_each_entry_safe(data, n, &hdev->remote_oob_data, list) {
2525		list_del(&data->list);
2526		kfree(data);
2527	}
2528}
2529
2530int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
2531			    u8 bdaddr_type, u8 *hash192, u8 *rand192,
2532			    u8 *hash256, u8 *rand256)
2533{
2534	struct oob_data *data;
2535
2536	data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
2537	if (!data) {
2538		data = kmalloc(sizeof(*data), GFP_KERNEL);
2539		if (!data)
2540			return -ENOMEM;
2541
2542		bacpy(&data->bdaddr, bdaddr);
2543		data->bdaddr_type = bdaddr_type;
2544		list_add(&data->list, &hdev->remote_oob_data);
2545	}
2546
2547	if (hash192 && rand192) {
2548		memcpy(data->hash192, hash192, sizeof(data->hash192));
2549		memcpy(data->rand192, rand192, sizeof(data->rand192));
2550		if (hash256 && rand256)
2551			data->present = 0x03;
2552	} else {
2553		memset(data->hash192, 0, sizeof(data->hash192));
2554		memset(data->rand192, 0, sizeof(data->rand192));
2555		if (hash256 && rand256)
2556			data->present = 0x02;
2557		else
2558			data->present = 0x00;
2559	}
2560
2561	if (hash256 && rand256) {
2562		memcpy(data->hash256, hash256, sizeof(data->hash256));
2563		memcpy(data->rand256, rand256, sizeof(data->rand256));
2564	} else {
2565		memset(data->hash256, 0, sizeof(data->hash256));
2566		memset(data->rand256, 0, sizeof(data->rand256));
2567		if (hash192 && rand192)
2568			data->present = 0x01;
2569	}
2570
2571	BT_DBG("%s for %pMR", hdev->name, bdaddr);
2572
2573	return 0;
2574}
2575
2576/* This function requires the caller holds hdev->lock */
2577struct adv_info *hci_find_adv_instance(struct hci_dev *hdev, u8 instance)
2578{
2579	struct adv_info *adv_instance;
2580
2581	list_for_each_entry(adv_instance, &hdev->adv_instances, list) {
2582		if (adv_instance->instance == instance)
2583			return adv_instance;
2584	}
2585
2586	return NULL;
2587}
2588
2589/* This function requires the caller holds hdev->lock */
2590struct adv_info *hci_get_next_instance(struct hci_dev *hdev, u8 instance)
2591{
2592	struct adv_info *cur_instance;
2593
2594	cur_instance = hci_find_adv_instance(hdev, instance);
2595	if (!cur_instance)
2596		return NULL;
2597
2598	if (cur_instance == list_last_entry(&hdev->adv_instances,
2599					    struct adv_info, list))
2600		return list_first_entry(&hdev->adv_instances,
2601						 struct adv_info, list);
2602	else
2603		return list_next_entry(cur_instance, list);
2604}
2605
2606/* This function requires the caller holds hdev->lock */
2607int hci_remove_adv_instance(struct hci_dev *hdev, u8 instance)
2608{
2609	struct adv_info *adv_instance;
2610
2611	adv_instance = hci_find_adv_instance(hdev, instance);
2612	if (!adv_instance)
2613		return -ENOENT;
2614
2615	BT_DBG("%s removing %dMR", hdev->name, instance);
2616
2617	if (hdev->cur_adv_instance == instance) {
2618		if (hdev->adv_instance_timeout) {
2619			cancel_delayed_work(&hdev->adv_instance_expire);
2620			hdev->adv_instance_timeout = 0;
2621		}
2622		hdev->cur_adv_instance = 0x00;
2623	}
2624
2625	list_del(&adv_instance->list);
2626	kfree(adv_instance);
2627
2628	hdev->adv_instance_cnt--;
2629
2630	return 0;
2631}
2632
2633/* This function requires the caller holds hdev->lock */
2634void hci_adv_instances_clear(struct hci_dev *hdev)
2635{
2636	struct adv_info *adv_instance, *n;
2637
2638	if (hdev->adv_instance_timeout) {
2639		cancel_delayed_work(&hdev->adv_instance_expire);
2640		hdev->adv_instance_timeout = 0;
2641	}
2642
2643	list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list) {
2644		list_del(&adv_instance->list);
2645		kfree(adv_instance);
2646	}
2647
2648	hdev->adv_instance_cnt = 0;
2649	hdev->cur_adv_instance = 0x00;
2650}
2651
2652/* This function requires the caller holds hdev->lock */
2653int hci_add_adv_instance(struct hci_dev *hdev, u8 instance, u32 flags,
2654			 u16 adv_data_len, u8 *adv_data,
2655			 u16 scan_rsp_len, u8 *scan_rsp_data,
2656			 u16 timeout, u16 duration)
2657{
2658	struct adv_info *adv_instance;
2659
2660	adv_instance = hci_find_adv_instance(hdev, instance);
2661	if (adv_instance) {
2662		memset(adv_instance->adv_data, 0,
2663		       sizeof(adv_instance->adv_data));
2664		memset(adv_instance->scan_rsp_data, 0,
2665		       sizeof(adv_instance->scan_rsp_data));
2666	} else {
2667		if (hdev->adv_instance_cnt >= HCI_MAX_ADV_INSTANCES ||
2668		    instance < 1 || instance > HCI_MAX_ADV_INSTANCES)
2669			return -EOVERFLOW;
2670
2671		adv_instance = kzalloc(sizeof(*adv_instance), GFP_KERNEL);
2672		if (!adv_instance)
2673			return -ENOMEM;
2674
2675		adv_instance->pending = true;
2676		adv_instance->instance = instance;
2677		list_add(&adv_instance->list, &hdev->adv_instances);
2678		hdev->adv_instance_cnt++;
2679	}
2680
2681	adv_instance->flags = flags;
2682	adv_instance->adv_data_len = adv_data_len;
2683	adv_instance->scan_rsp_len = scan_rsp_len;
2684
2685	if (adv_data_len)
2686		memcpy(adv_instance->adv_data, adv_data, adv_data_len);
2687
2688	if (scan_rsp_len)
2689		memcpy(adv_instance->scan_rsp_data,
2690		       scan_rsp_data, scan_rsp_len);
2691
2692	adv_instance->timeout = timeout;
2693	adv_instance->remaining_time = timeout;
2694
2695	if (duration == 0)
2696		adv_instance->duration = HCI_DEFAULT_ADV_DURATION;
2697	else
2698		adv_instance->duration = duration;
2699
2700	BT_DBG("%s for %dMR", hdev->name, instance);
2701
2702	return 0;
2703}
2704
2705struct bdaddr_list *hci_bdaddr_list_lookup(struct list_head *bdaddr_list,
2706					 bdaddr_t *bdaddr, u8 type)
2707{
2708	struct bdaddr_list *b;
2709
2710	list_for_each_entry(b, bdaddr_list, list) {
2711		if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2712			return b;
2713	}
2714
2715	return NULL;
2716}
2717
2718void hci_bdaddr_list_clear(struct list_head *bdaddr_list)
2719{
2720	struct bdaddr_list *b, *n;
2721
2722	list_for_each_entry_safe(b, n, bdaddr_list, list) {
2723		list_del(&b->list);
2724		kfree(b);
2725	}
2726}
2727
2728int hci_bdaddr_list_add(struct list_head *list, bdaddr_t *bdaddr, u8 type)
2729{
2730	struct bdaddr_list *entry;
2731
2732	if (!bacmp(bdaddr, BDADDR_ANY))
2733		return -EBADF;
2734
2735	if (hci_bdaddr_list_lookup(list, bdaddr, type))
2736		return -EEXIST;
2737
2738	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
2739	if (!entry)
2740		return -ENOMEM;
2741
2742	bacpy(&entry->bdaddr, bdaddr);
2743	entry->bdaddr_type = type;
2744
2745	list_add(&entry->list, list);
2746
2747	return 0;
2748}
2749
2750int hci_bdaddr_list_del(struct list_head *list, bdaddr_t *bdaddr, u8 type)
2751{
2752	struct bdaddr_list *entry;
2753
2754	if (!bacmp(bdaddr, BDADDR_ANY)) {
2755		hci_bdaddr_list_clear(list);
2756		return 0;
2757	}
2758
2759	entry = hci_bdaddr_list_lookup(list, bdaddr, type);
2760	if (!entry)
2761		return -ENOENT;
2762
2763	list_del(&entry->list);
2764	kfree(entry);
2765
2766	return 0;
2767}
2768
2769/* This function requires the caller holds hdev->lock */
2770struct hci_conn_params *hci_conn_params_lookup(struct hci_dev *hdev,
2771					       bdaddr_t *addr, u8 addr_type)
2772{
2773	struct hci_conn_params *params;
2774
2775	list_for_each_entry(params, &hdev->le_conn_params, list) {
2776		if (bacmp(&params->addr, addr) == 0 &&
2777		    params->addr_type == addr_type) {
2778			return params;
2779		}
2780	}
2781
2782	return NULL;
2783}
2784
2785/* This function requires the caller holds hdev->lock */
2786struct hci_conn_params *hci_pend_le_action_lookup(struct list_head *list,
2787						  bdaddr_t *addr, u8 addr_type)
2788{
2789	struct hci_conn_params *param;
2790
2791	list_for_each_entry(param, list, action) {
2792		if (bacmp(&param->addr, addr) == 0 &&
2793		    param->addr_type == addr_type)
2794			return param;
2795	}
2796
2797	return NULL;
2798}
2799
2800/* This function requires the caller holds hdev->lock */
2801struct hci_conn_params *hci_conn_params_add(struct hci_dev *hdev,
2802					    bdaddr_t *addr, u8 addr_type)
2803{
2804	struct hci_conn_params *params;
2805
2806	params = hci_conn_params_lookup(hdev, addr, addr_type);
2807	if (params)
2808		return params;
2809
2810	params = kzalloc(sizeof(*params), GFP_KERNEL);
2811	if (!params) {
2812		BT_ERR("Out of memory");
2813		return NULL;
2814	}
2815
2816	bacpy(&params->addr, addr);
2817	params->addr_type = addr_type;
2818
2819	list_add(&params->list, &hdev->le_conn_params);
2820	INIT_LIST_HEAD(&params->action);
2821
2822	params->conn_min_interval = hdev->le_conn_min_interval;
2823	params->conn_max_interval = hdev->le_conn_max_interval;
2824	params->conn_latency = hdev->le_conn_latency;
2825	params->supervision_timeout = hdev->le_supv_timeout;
2826	params->auto_connect = HCI_AUTO_CONN_DISABLED;
2827
2828	BT_DBG("addr %pMR (type %u)", addr, addr_type);
2829
2830	return params;
2831}
2832
2833static void hci_conn_params_free(struct hci_conn_params *params)
2834{
2835	if (params->conn) {
2836		hci_conn_drop(params->conn);
2837		hci_conn_put(params->conn);
2838	}
2839
2840	list_del(&params->action);
2841	list_del(&params->list);
2842	kfree(params);
2843}
2844
2845/* This function requires the caller holds hdev->lock */
2846void hci_conn_params_del(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type)
2847{
2848	struct hci_conn_params *params;
2849
2850	params = hci_conn_params_lookup(hdev, addr, addr_type);
2851	if (!params)
2852		return;
2853
2854	hci_conn_params_free(params);
2855
2856	hci_update_background_scan(hdev);
2857
2858	BT_DBG("addr %pMR (type %u)", addr, addr_type);
2859}
2860
2861/* This function requires the caller holds hdev->lock */
2862void hci_conn_params_clear_disabled(struct hci_dev *hdev)
2863{
2864	struct hci_conn_params *params, *tmp;
2865
2866	list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list) {
2867		if (params->auto_connect != HCI_AUTO_CONN_DISABLED)
2868			continue;
2869
2870		/* If trying to estabilish one time connection to disabled
2871		 * device, leave the params, but mark them as just once.
2872		 */
2873		if (params->explicit_connect) {
2874			params->auto_connect = HCI_AUTO_CONN_EXPLICIT;
2875			continue;
2876		}
2877
2878		list_del(&params->list);
2879		kfree(params);
2880	}
2881
2882	BT_DBG("All LE disabled connection parameters were removed");
2883}
2884
2885/* This function requires the caller holds hdev->lock */
2886static void hci_conn_params_clear_all(struct hci_dev *hdev)
2887{
2888	struct hci_conn_params *params, *tmp;
2889
2890	list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list)
2891		hci_conn_params_free(params);
2892
2893	BT_DBG("All LE connection parameters were removed");
2894}
2895
2896/* Copy the Identity Address of the controller.
2897 *
2898 * If the controller has a public BD_ADDR, then by default use that one.
2899 * If this is a LE only controller without a public address, default to
2900 * the static random address.
2901 *
2902 * For debugging purposes it is possible to force controllers with a
2903 * public address to use the static random address instead.
2904 *
2905 * In case BR/EDR has been disabled on a dual-mode controller and
2906 * userspace has configured a static address, then that address
2907 * becomes the identity address instead of the public BR/EDR address.
2908 */
2909void hci_copy_identity_address(struct hci_dev *hdev, bdaddr_t *bdaddr,
2910			       u8 *bdaddr_type)
2911{
2912	if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
2913	    !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
2914	    (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
2915	     bacmp(&hdev->static_addr, BDADDR_ANY))) {
2916		bacpy(bdaddr, &hdev->static_addr);
2917		*bdaddr_type = ADDR_LE_DEV_RANDOM;
2918	} else {
2919		bacpy(bdaddr, &hdev->bdaddr);
2920		*bdaddr_type = ADDR_LE_DEV_PUBLIC;
2921	}
2922}
2923
2924/* Alloc HCI device */
2925struct hci_dev *hci_alloc_dev(void)
2926{
2927	struct hci_dev *hdev;
2928
2929	hdev = kzalloc(sizeof(*hdev), GFP_KERNEL);
2930	if (!hdev)
2931		return NULL;
2932
2933	hdev->pkt_type  = (HCI_DM1 | HCI_DH1 | HCI_HV1);
2934	hdev->esco_type = (ESCO_HV1);
2935	hdev->link_mode = (HCI_LM_ACCEPT);
2936	hdev->num_iac = 0x01;		/* One IAC support is mandatory */
2937	hdev->io_capability = 0x03;	/* No Input No Output */
2938	hdev->manufacturer = 0xffff;	/* Default to internal use */
2939	hdev->inq_tx_power = HCI_TX_POWER_INVALID;
2940	hdev->adv_tx_power = HCI_TX_POWER_INVALID;
2941	hdev->adv_instance_cnt = 0;
2942	hdev->cur_adv_instance = 0x00;
2943	hdev->adv_instance_timeout = 0;
2944
2945	hdev->sniff_max_interval = 800;
2946	hdev->sniff_min_interval = 80;
2947
2948	hdev->le_adv_channel_map = 0x07;
2949	hdev->le_adv_min_interval = 0x0800;
2950	hdev->le_adv_max_interval = 0x0800;
2951	hdev->le_scan_interval = 0x0060;
2952	hdev->le_scan_window = 0x0030;
2953	hdev->le_conn_min_interval = 0x0028;
2954	hdev->le_conn_max_interval = 0x0038;
2955	hdev->le_conn_latency = 0x0000;
2956	hdev->le_supv_timeout = 0x002a;
2957	hdev->le_def_tx_len = 0x001b;
2958	hdev->le_def_tx_time = 0x0148;
2959	hdev->le_max_tx_len = 0x001b;
2960	hdev->le_max_tx_time = 0x0148;
2961	hdev->le_max_rx_len = 0x001b;
2962	hdev->le_max_rx_time = 0x0148;
2963
2964	hdev->rpa_timeout = HCI_DEFAULT_RPA_TIMEOUT;
2965	hdev->discov_interleaved_timeout = DISCOV_INTERLEAVED_TIMEOUT;
2966	hdev->conn_info_min_age = DEFAULT_CONN_INFO_MIN_AGE;
2967	hdev->conn_info_max_age = DEFAULT_CONN_INFO_MAX_AGE;
2968
2969	mutex_init(&hdev->lock);
2970	mutex_init(&hdev->req_lock);
2971
2972	INIT_LIST_HEAD(&hdev->mgmt_pending);
2973	INIT_LIST_HEAD(&hdev->blacklist);
2974	INIT_LIST_HEAD(&hdev->whitelist);
2975	INIT_LIST_HEAD(&hdev->uuids);
2976	INIT_LIST_HEAD(&hdev->link_keys);
2977	INIT_LIST_HEAD(&hdev->long_term_keys);
2978	INIT_LIST_HEAD(&hdev->identity_resolving_keys);
2979	INIT_LIST_HEAD(&hdev->remote_oob_data);
2980	INIT_LIST_HEAD(&hdev->le_white_list);
2981	INIT_LIST_HEAD(&hdev->le_conn_params);
2982	INIT_LIST_HEAD(&hdev->pend_le_conns);
2983	INIT_LIST_HEAD(&hdev->pend_le_reports);
2984	INIT_LIST_HEAD(&hdev->conn_hash.list);
2985	INIT_LIST_HEAD(&hdev->adv_instances);
2986
2987	INIT_WORK(&hdev->rx_work, hci_rx_work);
2988	INIT_WORK(&hdev->cmd_work, hci_cmd_work);
2989	INIT_WORK(&hdev->tx_work, hci_tx_work);
2990	INIT_WORK(&hdev->power_on, hci_power_on);
2991	INIT_WORK(&hdev->error_reset, hci_error_reset);
2992
2993	INIT_DELAYED_WORK(&hdev->power_off, hci_power_off);
2994
2995	skb_queue_head_init(&hdev->rx_q);
2996	skb_queue_head_init(&hdev->cmd_q);
2997	skb_queue_head_init(&hdev->raw_q);
2998
2999	init_waitqueue_head(&hdev->req_wait_q);
3000
3001	INIT_DELAYED_WORK(&hdev->cmd_timer, hci_cmd_timeout);
3002
3003	hci_request_setup(hdev);
3004
3005	hci_init_sysfs(hdev);
3006	discovery_init(hdev);
3007
3008	return hdev;
3009}
3010EXPORT_SYMBOL(hci_alloc_dev);
3011
3012/* Free HCI device */
3013void hci_free_dev(struct hci_dev *hdev)
3014{
3015	/* will free via device release */
3016	put_device(&hdev->dev);
3017}
3018EXPORT_SYMBOL(hci_free_dev);
3019
3020/* Register HCI device */
3021int hci_register_dev(struct hci_dev *hdev)
3022{
3023	int id, error;
3024
3025	if (!hdev->open || !hdev->close || !hdev->send)
3026		return -EINVAL;
3027
3028	/* Do not allow HCI_AMP devices to register at index 0,
3029	 * so the index can be used as the AMP controller ID.
3030	 */
3031	switch (hdev->dev_type) {
3032	case HCI_PRIMARY:
3033		id = ida_simple_get(&hci_index_ida, 0, 0, GFP_KERNEL);
3034		break;
3035	case HCI_AMP:
3036		id = ida_simple_get(&hci_index_ida, 1, 0, GFP_KERNEL);
3037		break;
3038	default:
3039		return -EINVAL;
3040	}
3041
3042	if (id < 0)
3043		return id;
3044
3045	sprintf(hdev->name, "hci%d", id);
3046	hdev->id = id;
3047
3048	BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
3049
3050	hdev->workqueue = alloc_workqueue("%s", WQ_HIGHPRI | WQ_UNBOUND |
3051					  WQ_MEM_RECLAIM, 1, hdev->name);
3052	if (!hdev->workqueue) {
3053		error = -ENOMEM;
3054		goto err;
3055	}
3056
3057	hdev->req_workqueue = alloc_workqueue("%s", WQ_HIGHPRI | WQ_UNBOUND |
3058					      WQ_MEM_RECLAIM, 1, hdev->name);
3059	if (!hdev->req_workqueue) {
3060		destroy_workqueue(hdev->workqueue);
3061		error = -ENOMEM;
3062		goto err;
3063	}
3064
3065	if (!IS_ERR_OR_NULL(bt_debugfs))
3066		hdev->debugfs = debugfs_create_dir(hdev->name, bt_debugfs);
3067
3068	dev_set_name(&hdev->dev, "%s", hdev->name);
3069
3070	error = device_add(&hdev->dev);
3071	if (error < 0)
3072		goto err_wqueue;
3073
3074	hci_leds_init(hdev);
3075
3076	hdev->rfkill = rfkill_alloc(hdev->name, &hdev->dev,
3077				    RFKILL_TYPE_BLUETOOTH, &hci_rfkill_ops,
3078				    hdev);
3079	if (hdev->rfkill) {
3080		if (rfkill_register(hdev->rfkill) < 0) {
3081			rfkill_destroy(hdev->rfkill);
3082			hdev->rfkill = NULL;
3083		}
3084	}
3085
3086	if (hdev->rfkill && rfkill_blocked(hdev->rfkill))
3087		hci_dev_set_flag(hdev, HCI_RFKILLED);
3088
3089	hci_dev_set_flag(hdev, HCI_SETUP);
3090	hci_dev_set_flag(hdev, HCI_AUTO_OFF);
3091
3092	if (hdev->dev_type == HCI_PRIMARY) {
3093		/* Assume BR/EDR support until proven otherwise (such as
3094		 * through reading supported features during init.
3095		 */
3096		hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
3097	}
3098
3099	write_lock(&hci_dev_list_lock);
3100	list_add(&hdev->list, &hci_dev_list);
3101	write_unlock(&hci_dev_list_lock);
3102
3103	/* Devices that are marked for raw-only usage are unconfigured
3104	 * and should not be included in normal operation.
3105	 */
3106	if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
3107		hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
3108
3109	hci_sock_dev_event(hdev, HCI_DEV_REG);
3110	hci_dev_hold(hdev);
3111
3112	queue_work(hdev->req_workqueue, &hdev->power_on);
3113
3114	return id;
3115
3116err_wqueue:
3117	destroy_workqueue(hdev->workqueue);
3118	destroy_workqueue(hdev->req_workqueue);
3119err:
3120	ida_simple_remove(&hci_index_ida, hdev->id);
3121
3122	return error;
3123}
3124EXPORT_SYMBOL(hci_register_dev);
3125
3126/* Unregister HCI device */
3127void hci_unregister_dev(struct hci_dev *hdev)
3128{
3129	int id;
3130
3131	BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
3132
3133	hci_dev_set_flag(hdev, HCI_UNREGISTER);
3134
3135	id = hdev->id;
3136
3137	write_lock(&hci_dev_list_lock);
3138	list_del(&hdev->list);
3139	write_unlock(&hci_dev_list_lock);
3140
 
 
3141	cancel_work_sync(&hdev->power_on);
3142
3143	hci_dev_do_close(hdev);
3144
3145	if (!test_bit(HCI_INIT, &hdev->flags) &&
3146	    !hci_dev_test_flag(hdev, HCI_SETUP) &&
3147	    !hci_dev_test_flag(hdev, HCI_CONFIG)) {
3148		hci_dev_lock(hdev);
3149		mgmt_index_removed(hdev);
3150		hci_dev_unlock(hdev);
3151	}
3152
3153	/* mgmt_index_removed should take care of emptying the
3154	 * pending list */
3155	BUG_ON(!list_empty(&hdev->mgmt_pending));
3156
3157	hci_sock_dev_event(hdev, HCI_DEV_UNREG);
3158
3159	if (hdev->rfkill) {
3160		rfkill_unregister(hdev->rfkill);
3161		rfkill_destroy(hdev->rfkill);
3162	}
3163
3164	device_del(&hdev->dev);
3165
3166	debugfs_remove_recursive(hdev->debugfs);
3167	kfree_const(hdev->hw_info);
3168	kfree_const(hdev->fw_info);
3169
3170	destroy_workqueue(hdev->workqueue);
3171	destroy_workqueue(hdev->req_workqueue);
3172
3173	hci_dev_lock(hdev);
3174	hci_bdaddr_list_clear(&hdev->blacklist);
3175	hci_bdaddr_list_clear(&hdev->whitelist);
3176	hci_uuids_clear(hdev);
3177	hci_link_keys_clear(hdev);
3178	hci_smp_ltks_clear(hdev);
3179	hci_smp_irks_clear(hdev);
3180	hci_remote_oob_data_clear(hdev);
3181	hci_adv_instances_clear(hdev);
3182	hci_bdaddr_list_clear(&hdev->le_white_list);
3183	hci_conn_params_clear_all(hdev);
3184	hci_discovery_filter_clear(hdev);
3185	hci_dev_unlock(hdev);
3186
3187	hci_dev_put(hdev);
3188
3189	ida_simple_remove(&hci_index_ida, id);
3190}
3191EXPORT_SYMBOL(hci_unregister_dev);
3192
3193/* Suspend HCI device */
3194int hci_suspend_dev(struct hci_dev *hdev)
3195{
3196	hci_sock_dev_event(hdev, HCI_DEV_SUSPEND);
3197	return 0;
3198}
3199EXPORT_SYMBOL(hci_suspend_dev);
3200
3201/* Resume HCI device */
3202int hci_resume_dev(struct hci_dev *hdev)
3203{
3204	hci_sock_dev_event(hdev, HCI_DEV_RESUME);
3205	return 0;
3206}
3207EXPORT_SYMBOL(hci_resume_dev);
3208
3209/* Reset HCI device */
3210int hci_reset_dev(struct hci_dev *hdev)
3211{
3212	const u8 hw_err[] = { HCI_EV_HARDWARE_ERROR, 0x01, 0x00 };
3213	struct sk_buff *skb;
3214
3215	skb = bt_skb_alloc(3, GFP_ATOMIC);
3216	if (!skb)
3217		return -ENOMEM;
3218
3219	hci_skb_pkt_type(skb) = HCI_EVENT_PKT;
3220	memcpy(skb_put(skb, 3), hw_err, 3);
3221
3222	/* Send Hardware Error to upper stack */
3223	return hci_recv_frame(hdev, skb);
3224}
3225EXPORT_SYMBOL(hci_reset_dev);
3226
3227/* Receive frame from HCI drivers */
3228int hci_recv_frame(struct hci_dev *hdev, struct sk_buff *skb)
3229{
3230	if (!hdev || (!test_bit(HCI_UP, &hdev->flags)
3231		      && !test_bit(HCI_INIT, &hdev->flags))) {
3232		kfree_skb(skb);
3233		return -ENXIO;
3234	}
3235
3236	if (hci_skb_pkt_type(skb) != HCI_EVENT_PKT &&
3237	    hci_skb_pkt_type(skb) != HCI_ACLDATA_PKT &&
3238	    hci_skb_pkt_type(skb) != HCI_SCODATA_PKT) {
3239		kfree_skb(skb);
3240		return -EINVAL;
3241	}
3242
3243	/* Incoming skb */
3244	bt_cb(skb)->incoming = 1;
3245
3246	/* Time stamp */
3247	__net_timestamp(skb);
3248
3249	skb_queue_tail(&hdev->rx_q, skb);
3250	queue_work(hdev->workqueue, &hdev->rx_work);
3251
3252	return 0;
3253}
3254EXPORT_SYMBOL(hci_recv_frame);
3255
3256/* Receive diagnostic message from HCI drivers */
3257int hci_recv_diag(struct hci_dev *hdev, struct sk_buff *skb)
3258{
3259	/* Mark as diagnostic packet */
3260	hci_skb_pkt_type(skb) = HCI_DIAG_PKT;
3261
3262	/* Time stamp */
3263	__net_timestamp(skb);
3264
3265	skb_queue_tail(&hdev->rx_q, skb);
3266	queue_work(hdev->workqueue, &hdev->rx_work);
3267
3268	return 0;
3269}
3270EXPORT_SYMBOL(hci_recv_diag);
3271
3272void hci_set_hw_info(struct hci_dev *hdev, const char *fmt, ...)
3273{
3274	va_list vargs;
3275
3276	va_start(vargs, fmt);
3277	kfree_const(hdev->hw_info);
3278	hdev->hw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
3279	va_end(vargs);
3280}
3281EXPORT_SYMBOL(hci_set_hw_info);
3282
3283void hci_set_fw_info(struct hci_dev *hdev, const char *fmt, ...)
3284{
3285	va_list vargs;
3286
3287	va_start(vargs, fmt);
3288	kfree_const(hdev->fw_info);
3289	hdev->fw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
3290	va_end(vargs);
3291}
3292EXPORT_SYMBOL(hci_set_fw_info);
3293
3294/* ---- Interface to upper protocols ---- */
3295
3296int hci_register_cb(struct hci_cb *cb)
3297{
3298	BT_DBG("%p name %s", cb, cb->name);
3299
3300	mutex_lock(&hci_cb_list_lock);
3301	list_add_tail(&cb->list, &hci_cb_list);
3302	mutex_unlock(&hci_cb_list_lock);
3303
3304	return 0;
3305}
3306EXPORT_SYMBOL(hci_register_cb);
3307
3308int hci_unregister_cb(struct hci_cb *cb)
3309{
3310	BT_DBG("%p name %s", cb, cb->name);
3311
3312	mutex_lock(&hci_cb_list_lock);
3313	list_del(&cb->list);
3314	mutex_unlock(&hci_cb_list_lock);
3315
3316	return 0;
3317}
3318EXPORT_SYMBOL(hci_unregister_cb);
3319
3320static void hci_send_frame(struct hci_dev *hdev, struct sk_buff *skb)
3321{
3322	int err;
3323
3324	BT_DBG("%s type %d len %d", hdev->name, hci_skb_pkt_type(skb),
3325	       skb->len);
3326
3327	/* Time stamp */
3328	__net_timestamp(skb);
3329
3330	/* Send copy to monitor */
3331	hci_send_to_monitor(hdev, skb);
3332
3333	if (atomic_read(&hdev->promisc)) {
3334		/* Send copy to the sockets */
3335		hci_send_to_sock(hdev, skb);
3336	}
3337
3338	/* Get rid of skb owner, prior to sending to the driver. */
3339	skb_orphan(skb);
3340
3341	if (!test_bit(HCI_RUNNING, &hdev->flags)) {
3342		kfree_skb(skb);
3343		return;
3344	}
3345
3346	err = hdev->send(hdev, skb);
3347	if (err < 0) {
3348		BT_ERR("%s sending frame failed (%d)", hdev->name, err);
3349		kfree_skb(skb);
3350	}
3351}
3352
3353/* Send HCI command */
3354int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen,
3355		 const void *param)
3356{
3357	struct sk_buff *skb;
3358
3359	BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen);
3360
3361	skb = hci_prepare_cmd(hdev, opcode, plen, param);
3362	if (!skb) {
3363		BT_ERR("%s no memory for command", hdev->name);
3364		return -ENOMEM;
3365	}
3366
3367	/* Stand-alone HCI commands must be flagged as
3368	 * single-command requests.
3369	 */
3370	bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
3371
3372	skb_queue_tail(&hdev->cmd_q, skb);
3373	queue_work(hdev->workqueue, &hdev->cmd_work);
3374
3375	return 0;
3376}
3377
3378/* Get data from the previously sent command */
3379void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode)
3380{
3381	struct hci_command_hdr *hdr;
3382
3383	if (!hdev->sent_cmd)
3384		return NULL;
3385
3386	hdr = (void *) hdev->sent_cmd->data;
3387
3388	if (hdr->opcode != cpu_to_le16(opcode))
3389		return NULL;
3390
3391	BT_DBG("%s opcode 0x%4.4x", hdev->name, opcode);
3392
3393	return hdev->sent_cmd->data + HCI_COMMAND_HDR_SIZE;
3394}
3395
3396/* Send HCI command and wait for command commplete event */
3397struct sk_buff *hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
3398			     const void *param, u32 timeout)
3399{
3400	struct sk_buff *skb;
3401
3402	if (!test_bit(HCI_UP, &hdev->flags))
3403		return ERR_PTR(-ENETDOWN);
3404
3405	bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen);
3406
3407	hci_req_sync_lock(hdev);
3408	skb = __hci_cmd_sync(hdev, opcode, plen, param, timeout);
3409	hci_req_sync_unlock(hdev);
3410
3411	return skb;
3412}
3413EXPORT_SYMBOL(hci_cmd_sync);
3414
3415/* Send ACL data */
3416static void hci_add_acl_hdr(struct sk_buff *skb, __u16 handle, __u16 flags)
3417{
3418	struct hci_acl_hdr *hdr;
3419	int len = skb->len;
3420
3421	skb_push(skb, HCI_ACL_HDR_SIZE);
3422	skb_reset_transport_header(skb);
3423	hdr = (struct hci_acl_hdr *)skb_transport_header(skb);
3424	hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
3425	hdr->dlen   = cpu_to_le16(len);
3426}
3427
3428static void hci_queue_acl(struct hci_chan *chan, struct sk_buff_head *queue,
3429			  struct sk_buff *skb, __u16 flags)
3430{
3431	struct hci_conn *conn = chan->conn;
3432	struct hci_dev *hdev = conn->hdev;
3433	struct sk_buff *list;
3434
3435	skb->len = skb_headlen(skb);
3436	skb->data_len = 0;
3437
3438	hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
3439
3440	switch (hdev->dev_type) {
3441	case HCI_PRIMARY:
3442		hci_add_acl_hdr(skb, conn->handle, flags);
3443		break;
3444	case HCI_AMP:
3445		hci_add_acl_hdr(skb, chan->handle, flags);
3446		break;
3447	default:
3448		BT_ERR("%s unknown dev_type %d", hdev->name, hdev->dev_type);
3449		return;
3450	}
3451
3452	list = skb_shinfo(skb)->frag_list;
3453	if (!list) {
3454		/* Non fragmented */
3455		BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
3456
3457		skb_queue_tail(queue, skb);
3458	} else {
3459		/* Fragmented */
3460		BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3461
3462		skb_shinfo(skb)->frag_list = NULL;
3463
3464		/* Queue all fragments atomically. We need to use spin_lock_bh
3465		 * here because of 6LoWPAN links, as there this function is
3466		 * called from softirq and using normal spin lock could cause
3467		 * deadlocks.
3468		 */
3469		spin_lock_bh(&queue->lock);
3470
3471		__skb_queue_tail(queue, skb);
3472
3473		flags &= ~ACL_START;
3474		flags |= ACL_CONT;
3475		do {
3476			skb = list; list = list->next;
3477
3478			hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
3479			hci_add_acl_hdr(skb, conn->handle, flags);
3480
3481			BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3482
3483			__skb_queue_tail(queue, skb);
3484		} while (list);
3485
3486		spin_unlock_bh(&queue->lock);
3487	}
3488}
3489
3490void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags)
3491{
3492	struct hci_dev *hdev = chan->conn->hdev;
3493
3494	BT_DBG("%s chan %p flags 0x%4.4x", hdev->name, chan, flags);
3495
3496	hci_queue_acl(chan, &chan->data_q, skb, flags);
3497
3498	queue_work(hdev->workqueue, &hdev->tx_work);
3499}
3500
3501/* Send SCO data */
3502void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb)
3503{
3504	struct hci_dev *hdev = conn->hdev;
3505	struct hci_sco_hdr hdr;
3506
3507	BT_DBG("%s len %d", hdev->name, skb->len);
3508
3509	hdr.handle = cpu_to_le16(conn->handle);
3510	hdr.dlen   = skb->len;
3511
3512	skb_push(skb, HCI_SCO_HDR_SIZE);
3513	skb_reset_transport_header(skb);
3514	memcpy(skb_transport_header(skb), &hdr, HCI_SCO_HDR_SIZE);
3515
3516	hci_skb_pkt_type(skb) = HCI_SCODATA_PKT;
3517
3518	skb_queue_tail(&conn->data_q, skb);
3519	queue_work(hdev->workqueue, &hdev->tx_work);
3520}
3521
3522/* ---- HCI TX task (outgoing data) ---- */
3523
3524/* HCI Connection scheduler */
3525static struct hci_conn *hci_low_sent(struct hci_dev *hdev, __u8 type,
3526				     int *quote)
3527{
3528	struct hci_conn_hash *h = &hdev->conn_hash;
3529	struct hci_conn *conn = NULL, *c;
3530	unsigned int num = 0, min = ~0;
3531
3532	/* We don't have to lock device here. Connections are always
3533	 * added and removed with TX task disabled. */
3534
3535	rcu_read_lock();
3536
3537	list_for_each_entry_rcu(c, &h->list, list) {
3538		if (c->type != type || skb_queue_empty(&c->data_q))
3539			continue;
3540
3541		if (c->state != BT_CONNECTED && c->state != BT_CONFIG)
3542			continue;
3543
3544		num++;
3545
3546		if (c->sent < min) {
3547			min  = c->sent;
3548			conn = c;
3549		}
3550
3551		if (hci_conn_num(hdev, type) == num)
3552			break;
3553	}
3554
3555	rcu_read_unlock();
3556
3557	if (conn) {
3558		int cnt, q;
3559
3560		switch (conn->type) {
3561		case ACL_LINK:
3562			cnt = hdev->acl_cnt;
3563			break;
3564		case SCO_LINK:
3565		case ESCO_LINK:
3566			cnt = hdev->sco_cnt;
3567			break;
3568		case LE_LINK:
3569			cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3570			break;
3571		default:
3572			cnt = 0;
3573			BT_ERR("Unknown link type");
3574		}
3575
3576		q = cnt / num;
3577		*quote = q ? q : 1;
3578	} else
3579		*quote = 0;
3580
3581	BT_DBG("conn %p quote %d", conn, *quote);
3582	return conn;
3583}
3584
3585static void hci_link_tx_to(struct hci_dev *hdev, __u8 type)
3586{
3587	struct hci_conn_hash *h = &hdev->conn_hash;
3588	struct hci_conn *c;
3589
3590	BT_ERR("%s link tx timeout", hdev->name);
3591
3592	rcu_read_lock();
3593
3594	/* Kill stalled connections */
3595	list_for_each_entry_rcu(c, &h->list, list) {
3596		if (c->type == type && c->sent) {
3597			BT_ERR("%s killing stalled connection %pMR",
3598			       hdev->name, &c->dst);
3599			hci_disconnect(c, HCI_ERROR_REMOTE_USER_TERM);
3600		}
3601	}
3602
3603	rcu_read_unlock();
3604}
3605
3606static struct hci_chan *hci_chan_sent(struct hci_dev *hdev, __u8 type,
3607				      int *quote)
3608{
3609	struct hci_conn_hash *h = &hdev->conn_hash;
3610	struct hci_chan *chan = NULL;
3611	unsigned int num = 0, min = ~0, cur_prio = 0;
3612	struct hci_conn *conn;
3613	int cnt, q, conn_num = 0;
3614
3615	BT_DBG("%s", hdev->name);
3616
3617	rcu_read_lock();
3618
3619	list_for_each_entry_rcu(conn, &h->list, list) {
3620		struct hci_chan *tmp;
3621
3622		if (conn->type != type)
3623			continue;
3624
3625		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3626			continue;
3627
3628		conn_num++;
3629
3630		list_for_each_entry_rcu(tmp, &conn->chan_list, list) {
3631			struct sk_buff *skb;
3632
3633			if (skb_queue_empty(&tmp->data_q))
3634				continue;
3635
3636			skb = skb_peek(&tmp->data_q);
3637			if (skb->priority < cur_prio)
3638				continue;
3639
3640			if (skb->priority > cur_prio) {
3641				num = 0;
3642				min = ~0;
3643				cur_prio = skb->priority;
3644			}
3645
3646			num++;
3647
3648			if (conn->sent < min) {
3649				min  = conn->sent;
3650				chan = tmp;
3651			}
3652		}
3653
3654		if (hci_conn_num(hdev, type) == conn_num)
3655			break;
3656	}
3657
3658	rcu_read_unlock();
3659
3660	if (!chan)
3661		return NULL;
3662
3663	switch (chan->conn->type) {
3664	case ACL_LINK:
3665		cnt = hdev->acl_cnt;
3666		break;
3667	case AMP_LINK:
3668		cnt = hdev->block_cnt;
3669		break;
3670	case SCO_LINK:
3671	case ESCO_LINK:
3672		cnt = hdev->sco_cnt;
3673		break;
3674	case LE_LINK:
3675		cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3676		break;
3677	default:
3678		cnt = 0;
3679		BT_ERR("Unknown link type");
3680	}
3681
3682	q = cnt / num;
3683	*quote = q ? q : 1;
3684	BT_DBG("chan %p quote %d", chan, *quote);
3685	return chan;
3686}
3687
3688static void hci_prio_recalculate(struct hci_dev *hdev, __u8 type)
3689{
3690	struct hci_conn_hash *h = &hdev->conn_hash;
3691	struct hci_conn *conn;
3692	int num = 0;
3693
3694	BT_DBG("%s", hdev->name);
3695
3696	rcu_read_lock();
3697
3698	list_for_each_entry_rcu(conn, &h->list, list) {
3699		struct hci_chan *chan;
3700
3701		if (conn->type != type)
3702			continue;
3703
3704		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3705			continue;
3706
3707		num++;
3708
3709		list_for_each_entry_rcu(chan, &conn->chan_list, list) {
3710			struct sk_buff *skb;
3711
3712			if (chan->sent) {
3713				chan->sent = 0;
3714				continue;
3715			}
3716
3717			if (skb_queue_empty(&chan->data_q))
3718				continue;
3719
3720			skb = skb_peek(&chan->data_q);
3721			if (skb->priority >= HCI_PRIO_MAX - 1)
3722				continue;
3723
3724			skb->priority = HCI_PRIO_MAX - 1;
3725
3726			BT_DBG("chan %p skb %p promoted to %d", chan, skb,
3727			       skb->priority);
3728		}
3729
3730		if (hci_conn_num(hdev, type) == num)
3731			break;
3732	}
3733
3734	rcu_read_unlock();
3735
3736}
3737
3738static inline int __get_blocks(struct hci_dev *hdev, struct sk_buff *skb)
3739{
3740	/* Calculate count of blocks used by this packet */
3741	return DIV_ROUND_UP(skb->len - HCI_ACL_HDR_SIZE, hdev->block_len);
3742}
3743
3744static void __check_timeout(struct hci_dev *hdev, unsigned int cnt)
3745{
3746	if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
3747		/* ACL tx timeout must be longer than maximum
3748		 * link supervision timeout (40.9 seconds) */
3749		if (!cnt && time_after(jiffies, hdev->acl_last_tx +
3750				       HCI_ACL_TX_TIMEOUT))
3751			hci_link_tx_to(hdev, ACL_LINK);
3752	}
3753}
3754
3755static void hci_sched_acl_pkt(struct hci_dev *hdev)
3756{
3757	unsigned int cnt = hdev->acl_cnt;
3758	struct hci_chan *chan;
3759	struct sk_buff *skb;
3760	int quote;
3761
3762	__check_timeout(hdev, cnt);
3763
3764	while (hdev->acl_cnt &&
3765	       (chan = hci_chan_sent(hdev, ACL_LINK, &quote))) {
3766		u32 priority = (skb_peek(&chan->data_q))->priority;
3767		while (quote-- && (skb = skb_peek(&chan->data_q))) {
3768			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3769			       skb->len, skb->priority);
3770
3771			/* Stop if priority has changed */
3772			if (skb->priority < priority)
3773				break;
3774
3775			skb = skb_dequeue(&chan->data_q);
3776
3777			hci_conn_enter_active_mode(chan->conn,
3778						   bt_cb(skb)->force_active);
3779
3780			hci_send_frame(hdev, skb);
3781			hdev->acl_last_tx = jiffies;
3782
3783			hdev->acl_cnt--;
3784			chan->sent++;
3785			chan->conn->sent++;
3786		}
3787	}
3788
3789	if (cnt != hdev->acl_cnt)
3790		hci_prio_recalculate(hdev, ACL_LINK);
3791}
3792
3793static void hci_sched_acl_blk(struct hci_dev *hdev)
3794{
3795	unsigned int cnt = hdev->block_cnt;
3796	struct hci_chan *chan;
3797	struct sk_buff *skb;
3798	int quote;
3799	u8 type;
3800
3801	__check_timeout(hdev, cnt);
3802
3803	BT_DBG("%s", hdev->name);
3804
3805	if (hdev->dev_type == HCI_AMP)
3806		type = AMP_LINK;
3807	else
3808		type = ACL_LINK;
3809
3810	while (hdev->block_cnt > 0 &&
3811	       (chan = hci_chan_sent(hdev, type, &quote))) {
3812		u32 priority = (skb_peek(&chan->data_q))->priority;
3813		while (quote > 0 && (skb = skb_peek(&chan->data_q))) {
3814			int blocks;
3815
3816			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3817			       skb->len, skb->priority);
3818
3819			/* Stop if priority has changed */
3820			if (skb->priority < priority)
3821				break;
3822
3823			skb = skb_dequeue(&chan->data_q);
3824
3825			blocks = __get_blocks(hdev, skb);
3826			if (blocks > hdev->block_cnt)
3827				return;
3828
3829			hci_conn_enter_active_mode(chan->conn,
3830						   bt_cb(skb)->force_active);
3831
3832			hci_send_frame(hdev, skb);
3833			hdev->acl_last_tx = jiffies;
3834
3835			hdev->block_cnt -= blocks;
3836			quote -= blocks;
3837
3838			chan->sent += blocks;
3839			chan->conn->sent += blocks;
3840		}
3841	}
3842
3843	if (cnt != hdev->block_cnt)
3844		hci_prio_recalculate(hdev, type);
3845}
3846
3847static void hci_sched_acl(struct hci_dev *hdev)
3848{
3849	BT_DBG("%s", hdev->name);
3850
3851	/* No ACL link over BR/EDR controller */
3852	if (!hci_conn_num(hdev, ACL_LINK) && hdev->dev_type == HCI_PRIMARY)
3853		return;
3854
3855	/* No AMP link over AMP controller */
3856	if (!hci_conn_num(hdev, AMP_LINK) && hdev->dev_type == HCI_AMP)
3857		return;
3858
3859	switch (hdev->flow_ctl_mode) {
3860	case HCI_FLOW_CTL_MODE_PACKET_BASED:
3861		hci_sched_acl_pkt(hdev);
3862		break;
3863
3864	case HCI_FLOW_CTL_MODE_BLOCK_BASED:
3865		hci_sched_acl_blk(hdev);
3866		break;
3867	}
3868}
3869
3870/* Schedule SCO */
3871static void hci_sched_sco(struct hci_dev *hdev)
3872{
3873	struct hci_conn *conn;
3874	struct sk_buff *skb;
3875	int quote;
3876
3877	BT_DBG("%s", hdev->name);
3878
3879	if (!hci_conn_num(hdev, SCO_LINK))
3880		return;
3881
3882	while (hdev->sco_cnt && (conn = hci_low_sent(hdev, SCO_LINK, &quote))) {
3883		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3884			BT_DBG("skb %p len %d", skb, skb->len);
3885			hci_send_frame(hdev, skb);
3886
3887			conn->sent++;
3888			if (conn->sent == ~0)
3889				conn->sent = 0;
3890		}
3891	}
3892}
3893
3894static void hci_sched_esco(struct hci_dev *hdev)
3895{
3896	struct hci_conn *conn;
3897	struct sk_buff *skb;
3898	int quote;
3899
3900	BT_DBG("%s", hdev->name);
3901
3902	if (!hci_conn_num(hdev, ESCO_LINK))
3903		return;
3904
3905	while (hdev->sco_cnt && (conn = hci_low_sent(hdev, ESCO_LINK,
3906						     &quote))) {
3907		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3908			BT_DBG("skb %p len %d", skb, skb->len);
3909			hci_send_frame(hdev, skb);
3910
3911			conn->sent++;
3912			if (conn->sent == ~0)
3913				conn->sent = 0;
3914		}
3915	}
3916}
3917
3918static void hci_sched_le(struct hci_dev *hdev)
3919{
3920	struct hci_chan *chan;
3921	struct sk_buff *skb;
3922	int quote, cnt, tmp;
3923
3924	BT_DBG("%s", hdev->name);
3925
3926	if (!hci_conn_num(hdev, LE_LINK))
3927		return;
3928
3929	if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
3930		/* LE tx timeout must be longer than maximum
3931		 * link supervision timeout (40.9 seconds) */
3932		if (!hdev->le_cnt && hdev->le_pkts &&
3933		    time_after(jiffies, hdev->le_last_tx + HZ * 45))
3934			hci_link_tx_to(hdev, LE_LINK);
3935	}
3936
3937	cnt = hdev->le_pkts ? hdev->le_cnt : hdev->acl_cnt;
3938	tmp = cnt;
3939	while (cnt && (chan = hci_chan_sent(hdev, LE_LINK, &quote))) {
3940		u32 priority = (skb_peek(&chan->data_q))->priority;
3941		while (quote-- && (skb = skb_peek(&chan->data_q))) {
3942			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3943			       skb->len, skb->priority);
3944
3945			/* Stop if priority has changed */
3946			if (skb->priority < priority)
3947				break;
3948
3949			skb = skb_dequeue(&chan->data_q);
3950
3951			hci_send_frame(hdev, skb);
3952			hdev->le_last_tx = jiffies;
3953
3954			cnt--;
3955			chan->sent++;
3956			chan->conn->sent++;
3957		}
3958	}
3959
3960	if (hdev->le_pkts)
3961		hdev->le_cnt = cnt;
3962	else
3963		hdev->acl_cnt = cnt;
3964
3965	if (cnt != tmp)
3966		hci_prio_recalculate(hdev, LE_LINK);
3967}
3968
3969static void hci_tx_work(struct work_struct *work)
3970{
3971	struct hci_dev *hdev = container_of(work, struct hci_dev, tx_work);
3972	struct sk_buff *skb;
3973
3974	BT_DBG("%s acl %d sco %d le %d", hdev->name, hdev->acl_cnt,
3975	       hdev->sco_cnt, hdev->le_cnt);
3976
3977	if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
3978		/* Schedule queues and send stuff to HCI driver */
3979		hci_sched_acl(hdev);
3980		hci_sched_sco(hdev);
3981		hci_sched_esco(hdev);
3982		hci_sched_le(hdev);
3983	}
3984
3985	/* Send next queued raw (unknown type) packet */
3986	while ((skb = skb_dequeue(&hdev->raw_q)))
3987		hci_send_frame(hdev, skb);
3988}
3989
3990/* ----- HCI RX task (incoming data processing) ----- */
3991
3992/* ACL data packet */
3993static void hci_acldata_packet(struct hci_dev *hdev, struct sk_buff *skb)
3994{
3995	struct hci_acl_hdr *hdr = (void *) skb->data;
3996	struct hci_conn *conn;
3997	__u16 handle, flags;
3998
3999	skb_pull(skb, HCI_ACL_HDR_SIZE);
4000
4001	handle = __le16_to_cpu(hdr->handle);
4002	flags  = hci_flags(handle);
4003	handle = hci_handle(handle);
4004
4005	BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len,
4006	       handle, flags);
4007
4008	hdev->stat.acl_rx++;
4009
4010	hci_dev_lock(hdev);
4011	conn = hci_conn_hash_lookup_handle(hdev, handle);
4012	hci_dev_unlock(hdev);
4013
4014	if (conn) {
4015		hci_conn_enter_active_mode(conn, BT_POWER_FORCE_ACTIVE_OFF);
4016
4017		/* Send to upper protocol */
4018		l2cap_recv_acldata(conn, skb, flags);
4019		return;
4020	} else {
4021		BT_ERR("%s ACL packet for unknown connection handle %d",
4022		       hdev->name, handle);
4023	}
4024
4025	kfree_skb(skb);
4026}
4027
4028/* SCO data packet */
4029static void hci_scodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
4030{
4031	struct hci_sco_hdr *hdr = (void *) skb->data;
4032	struct hci_conn *conn;
4033	__u16 handle;
4034
4035	skb_pull(skb, HCI_SCO_HDR_SIZE);
4036
4037	handle = __le16_to_cpu(hdr->handle);
4038
4039	BT_DBG("%s len %d handle 0x%4.4x", hdev->name, skb->len, handle);
4040
4041	hdev->stat.sco_rx++;
4042
4043	hci_dev_lock(hdev);
4044	conn = hci_conn_hash_lookup_handle(hdev, handle);
4045	hci_dev_unlock(hdev);
4046
4047	if (conn) {
4048		/* Send to upper protocol */
4049		sco_recv_scodata(conn, skb);
4050		return;
4051	} else {
4052		BT_ERR("%s SCO packet for unknown connection handle %d",
4053		       hdev->name, handle);
4054	}
4055
4056	kfree_skb(skb);
4057}
4058
4059static bool hci_req_is_complete(struct hci_dev *hdev)
4060{
4061	struct sk_buff *skb;
4062
4063	skb = skb_peek(&hdev->cmd_q);
4064	if (!skb)
4065		return true;
4066
4067	return (bt_cb(skb)->hci.req_flags & HCI_REQ_START);
4068}
4069
4070static void hci_resend_last(struct hci_dev *hdev)
4071{
4072	struct hci_command_hdr *sent;
4073	struct sk_buff *skb;
4074	u16 opcode;
4075
4076	if (!hdev->sent_cmd)
4077		return;
4078
4079	sent = (void *) hdev->sent_cmd->data;
4080	opcode = __le16_to_cpu(sent->opcode);
4081	if (opcode == HCI_OP_RESET)
4082		return;
4083
4084	skb = skb_clone(hdev->sent_cmd, GFP_KERNEL);
4085	if (!skb)
4086		return;
4087
4088	skb_queue_head(&hdev->cmd_q, skb);
4089	queue_work(hdev->workqueue, &hdev->cmd_work);
4090}
4091
4092void hci_req_cmd_complete(struct hci_dev *hdev, u16 opcode, u8 status,
4093			  hci_req_complete_t *req_complete,
4094			  hci_req_complete_skb_t *req_complete_skb)
4095{
4096	struct sk_buff *skb;
4097	unsigned long flags;
4098
4099	BT_DBG("opcode 0x%04x status 0x%02x", opcode, status);
4100
4101	/* If the completed command doesn't match the last one that was
4102	 * sent we need to do special handling of it.
4103	 */
4104	if (!hci_sent_cmd_data(hdev, opcode)) {
4105		/* Some CSR based controllers generate a spontaneous
4106		 * reset complete event during init and any pending
4107		 * command will never be completed. In such a case we
4108		 * need to resend whatever was the last sent
4109		 * command.
4110		 */
4111		if (test_bit(HCI_INIT, &hdev->flags) && opcode == HCI_OP_RESET)
4112			hci_resend_last(hdev);
4113
4114		return;
4115	}
4116
4117	/* If the command succeeded and there's still more commands in
4118	 * this request the request is not yet complete.
4119	 */
4120	if (!status && !hci_req_is_complete(hdev))
4121		return;
4122
4123	/* If this was the last command in a request the complete
4124	 * callback would be found in hdev->sent_cmd instead of the
4125	 * command queue (hdev->cmd_q).
4126	 */
4127	if (bt_cb(hdev->sent_cmd)->hci.req_flags & HCI_REQ_SKB) {
4128		*req_complete_skb = bt_cb(hdev->sent_cmd)->hci.req_complete_skb;
4129		return;
4130	}
4131
4132	if (bt_cb(hdev->sent_cmd)->hci.req_complete) {
4133		*req_complete = bt_cb(hdev->sent_cmd)->hci.req_complete;
4134		return;
4135	}
4136
4137	/* Remove all pending commands belonging to this request */
4138	spin_lock_irqsave(&hdev->cmd_q.lock, flags);
4139	while ((skb = __skb_dequeue(&hdev->cmd_q))) {
4140		if (bt_cb(skb)->hci.req_flags & HCI_REQ_START) {
4141			__skb_queue_head(&hdev->cmd_q, skb);
4142			break;
4143		}
4144
4145		if (bt_cb(skb)->hci.req_flags & HCI_REQ_SKB)
4146			*req_complete_skb = bt_cb(skb)->hci.req_complete_skb;
4147		else
4148			*req_complete = bt_cb(skb)->hci.req_complete;
4149		kfree_skb(skb);
4150	}
4151	spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
4152}
4153
4154static void hci_rx_work(struct work_struct *work)
4155{
4156	struct hci_dev *hdev = container_of(work, struct hci_dev, rx_work);
4157	struct sk_buff *skb;
4158
4159	BT_DBG("%s", hdev->name);
4160
4161	while ((skb = skb_dequeue(&hdev->rx_q))) {
4162		/* Send copy to monitor */
4163		hci_send_to_monitor(hdev, skb);
4164
4165		if (atomic_read(&hdev->promisc)) {
4166			/* Send copy to the sockets */
4167			hci_send_to_sock(hdev, skb);
4168		}
4169
4170		if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
4171			kfree_skb(skb);
4172			continue;
4173		}
4174
4175		if (test_bit(HCI_INIT, &hdev->flags)) {
4176			/* Don't process data packets in this states. */
4177			switch (hci_skb_pkt_type(skb)) {
4178			case HCI_ACLDATA_PKT:
4179			case HCI_SCODATA_PKT:
4180				kfree_skb(skb);
4181				continue;
4182			}
4183		}
4184
4185		/* Process frame */
4186		switch (hci_skb_pkt_type(skb)) {
4187		case HCI_EVENT_PKT:
4188			BT_DBG("%s Event packet", hdev->name);
4189			hci_event_packet(hdev, skb);
4190			break;
4191
4192		case HCI_ACLDATA_PKT:
4193			BT_DBG("%s ACL data packet", hdev->name);
4194			hci_acldata_packet(hdev, skb);
4195			break;
4196
4197		case HCI_SCODATA_PKT:
4198			BT_DBG("%s SCO data packet", hdev->name);
4199			hci_scodata_packet(hdev, skb);
4200			break;
4201
4202		default:
4203			kfree_skb(skb);
4204			break;
4205		}
4206	}
4207}
4208
4209static void hci_cmd_work(struct work_struct *work)
4210{
4211	struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_work);
4212	struct sk_buff *skb;
4213
4214	BT_DBG("%s cmd_cnt %d cmd queued %d", hdev->name,
4215	       atomic_read(&hdev->cmd_cnt), skb_queue_len(&hdev->cmd_q));
4216
4217	/* Send queued commands */
4218	if (atomic_read(&hdev->cmd_cnt)) {
4219		skb = skb_dequeue(&hdev->cmd_q);
4220		if (!skb)
4221			return;
4222
4223		kfree_skb(hdev->sent_cmd);
4224
4225		hdev->sent_cmd = skb_clone(skb, GFP_KERNEL);
4226		if (hdev->sent_cmd) {
4227			atomic_dec(&hdev->cmd_cnt);
4228			hci_send_frame(hdev, skb);
4229			if (test_bit(HCI_RESET, &hdev->flags))
4230				cancel_delayed_work(&hdev->cmd_timer);
4231			else
4232				schedule_delayed_work(&hdev->cmd_timer,
4233						      HCI_CMD_TIMEOUT);
4234		} else {
4235			skb_queue_head(&hdev->cmd_q, skb);
4236			queue_work(hdev->workqueue, &hdev->cmd_work);
4237		}
4238	}
4239}