Linux Audio

Check our new training course

Linux kernel drivers training

May 6-19, 2025
Register
Loading...
v4.6
   1/*
   2   BlueZ - Bluetooth protocol stack for Linux
   3   Copyright (C) 2000-2001 Qualcomm Incorporated
   4   Copyright (C) 2011 ProFUSION Embedded Systems
   5
   6   Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
   7
   8   This program is free software; you can redistribute it and/or modify
   9   it under the terms of the GNU General Public License version 2 as
  10   published by the Free Software Foundation;
  11
  12   THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
  13   OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  14   FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
  15   IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
  16   CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
  17   WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  18   ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  19   OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  20
  21   ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
  22   COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
  23   SOFTWARE IS DISCLAIMED.
  24*/
  25
  26/* Bluetooth HCI core. */
  27
  28#include <linux/export.h>
  29#include <linux/idr.h>
  30#include <linux/rfkill.h>
  31#include <linux/debugfs.h>
  32#include <linux/crypto.h>
  33#include <asm/unaligned.h>
  34
  35#include <net/bluetooth/bluetooth.h>
  36#include <net/bluetooth/hci_core.h>
  37#include <net/bluetooth/l2cap.h>
  38#include <net/bluetooth/mgmt.h>
  39
  40#include "hci_request.h"
  41#include "hci_debugfs.h"
  42#include "smp.h"
  43#include "leds.h"
  44
  45static void hci_rx_work(struct work_struct *work);
  46static void hci_cmd_work(struct work_struct *work);
  47static void hci_tx_work(struct work_struct *work);
  48
  49/* HCI device list */
  50LIST_HEAD(hci_dev_list);
  51DEFINE_RWLOCK(hci_dev_list_lock);
  52
  53/* HCI callback list */
  54LIST_HEAD(hci_cb_list);
  55DEFINE_MUTEX(hci_cb_list_lock);
  56
  57/* HCI ID Numbering */
  58static DEFINE_IDA(hci_index_ida);
  59
 
 
 
 
 
 
 
  60/* ---- HCI debugfs entries ---- */
  61
  62static ssize_t dut_mode_read(struct file *file, char __user *user_buf,
  63			     size_t count, loff_t *ppos)
  64{
  65	struct hci_dev *hdev = file->private_data;
  66	char buf[3];
  67
  68	buf[0] = hci_dev_test_flag(hdev, HCI_DUT_MODE) ? 'Y' : 'N';
  69	buf[1] = '\n';
  70	buf[2] = '\0';
  71	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
  72}
  73
  74static ssize_t dut_mode_write(struct file *file, const char __user *user_buf,
  75			      size_t count, loff_t *ppos)
  76{
  77	struct hci_dev *hdev = file->private_data;
  78	struct sk_buff *skb;
  79	char buf[32];
  80	size_t buf_size = min(count, (sizeof(buf)-1));
  81	bool enable;
 
  82
  83	if (!test_bit(HCI_UP, &hdev->flags))
  84		return -ENETDOWN;
  85
  86	if (copy_from_user(buf, user_buf, buf_size))
  87		return -EFAULT;
  88
  89	buf[buf_size] = '\0';
  90	if (strtobool(buf, &enable))
  91		return -EINVAL;
  92
  93	if (enable == hci_dev_test_flag(hdev, HCI_DUT_MODE))
  94		return -EALREADY;
  95
  96	hci_req_sync_lock(hdev);
  97	if (enable)
  98		skb = __hci_cmd_sync(hdev, HCI_OP_ENABLE_DUT_MODE, 0, NULL,
  99				     HCI_CMD_TIMEOUT);
 100	else
 101		skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL,
 102				     HCI_CMD_TIMEOUT);
 103	hci_req_sync_unlock(hdev);
 104
 105	if (IS_ERR(skb))
 106		return PTR_ERR(skb);
 107
 
 108	kfree_skb(skb);
 109
 110	hci_dev_change_flag(hdev, HCI_DUT_MODE);
 
 
 
 111
 112	return count;
 113}
 114
 115static const struct file_operations dut_mode_fops = {
 116	.open		= simple_open,
 117	.read		= dut_mode_read,
 118	.write		= dut_mode_write,
 119	.llseek		= default_llseek,
 120};
 121
 122static ssize_t vendor_diag_read(struct file *file, char __user *user_buf,
 123				size_t count, loff_t *ppos)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 124{
 125	struct hci_dev *hdev = file->private_data;
 126	char buf[3];
 127
 128	buf[0] = hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) ? 'Y' : 'N';
 129	buf[1] = '\n';
 130	buf[2] = '\0';
 131	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
 132}
 133
 134static ssize_t vendor_diag_write(struct file *file, const char __user *user_buf,
 135				 size_t count, loff_t *ppos)
 
 136{
 137	struct hci_dev *hdev = file->private_data;
 138	char buf[32];
 139	size_t buf_size = min(count, (sizeof(buf)-1));
 140	bool enable;
 141	int err;
 
 
 142
 143	if (copy_from_user(buf, user_buf, buf_size))
 144		return -EFAULT;
 145
 146	buf[buf_size] = '\0';
 147	if (strtobool(buf, &enable))
 148		return -EINVAL;
 149
 150	/* When the diagnostic flags are not persistent and the transport
 151	 * is not active, then there is no need for the vendor callback.
 152	 *
 153	 * Instead just store the desired value. If needed the setting
 154	 * will be programmed when the controller gets powered on.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 155	 */
 156	if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) &&
 157	    !test_bit(HCI_RUNNING, &hdev->flags))
 158		goto done;
 159
 160	hci_req_sync_lock(hdev);
 161	err = hdev->set_diag(hdev, enable);
 162	hci_req_sync_unlock(hdev);
 163
 164	if (err < 0)
 165		return err;
 166
 167done:
 168	if (enable)
 169		hci_dev_set_flag(hdev, HCI_VENDOR_DIAG);
 170	else
 171		hci_dev_clear_flag(hdev, HCI_VENDOR_DIAG);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 172
 173	return count;
 174}
 175
 176static const struct file_operations vendor_diag_fops = {
 177	.open		= simple_open,
 178	.read		= vendor_diag_read,
 179	.write		= vendor_diag_write,
 180	.llseek		= default_llseek,
 181};
 182
 183static void hci_debugfs_create_basic(struct hci_dev *hdev)
 184{
 185	debugfs_create_file("dut_mode", 0644, hdev->debugfs, hdev,
 186			    &dut_mode_fops);
 187
 188	if (hdev->set_diag)
 189		debugfs_create_file("vendor_diag", 0644, hdev->debugfs, hdev,
 190				    &vendor_diag_fops);
 
 
 
 
 
 
 
 191}
 192
 193static int hci_reset_req(struct hci_request *req, unsigned long opt)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 194{
 195	BT_DBG("%s %ld", req->hdev->name, opt);
 196
 197	/* Reset device */
 198	set_bit(HCI_RESET, &req->hdev->flags);
 199	hci_req_add(req, HCI_OP_RESET, 0, NULL);
 200	return 0;
 201}
 202
 203static void bredr_init(struct hci_request *req)
 204{
 205	req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_PACKET_BASED;
 206
 207	/* Read Local Supported Features */
 208	hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
 209
 210	/* Read Local Version */
 211	hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
 212
 213	/* Read BD Address */
 214	hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL);
 215}
 216
 217static void amp_init1(struct hci_request *req)
 218{
 219	req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_BLOCK_BASED;
 220
 221	/* Read Local Version */
 222	hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
 223
 224	/* Read Local Supported Commands */
 225	hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL);
 226
 
 
 
 227	/* Read Local AMP Info */
 228	hci_req_add(req, HCI_OP_READ_LOCAL_AMP_INFO, 0, NULL);
 229
 230	/* Read Data Blk size */
 231	hci_req_add(req, HCI_OP_READ_DATA_BLOCK_SIZE, 0, NULL);
 232
 233	/* Read Flow Control Mode */
 234	hci_req_add(req, HCI_OP_READ_FLOW_CONTROL_MODE, 0, NULL);
 235
 236	/* Read Location Data */
 237	hci_req_add(req, HCI_OP_READ_LOCATION_DATA, 0, NULL);
 238}
 239
 240static int amp_init2(struct hci_request *req)
 241{
 242	/* Read Local Supported Features. Not all AMP controllers
 243	 * support this so it's placed conditionally in the second
 244	 * stage init.
 245	 */
 246	if (req->hdev->commands[14] & 0x20)
 247		hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
 248
 249	return 0;
 250}
 251
 252static int hci_init1_req(struct hci_request *req, unsigned long opt)
 253{
 254	struct hci_dev *hdev = req->hdev;
 255
 256	BT_DBG("%s %ld", hdev->name, opt);
 257
 258	/* Reset */
 259	if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks))
 260		hci_reset_req(req, 0);
 261
 262	switch (hdev->dev_type) {
 263	case HCI_BREDR:
 264		bredr_init(req);
 265		break;
 266
 267	case HCI_AMP:
 268		amp_init1(req);
 269		break;
 270
 271	default:
 272		BT_ERR("Unknown device type %d", hdev->dev_type);
 273		break;
 274	}
 275
 276	return 0;
 277}
 278
 279static void bredr_setup(struct hci_request *req)
 280{
 
 
 281	__le16 param;
 282	__u8 flt_type;
 283
 284	/* Read Buffer Size (ACL mtu, max pkt, etc.) */
 285	hci_req_add(req, HCI_OP_READ_BUFFER_SIZE, 0, NULL);
 286
 287	/* Read Class of Device */
 288	hci_req_add(req, HCI_OP_READ_CLASS_OF_DEV, 0, NULL);
 289
 290	/* Read Local Name */
 291	hci_req_add(req, HCI_OP_READ_LOCAL_NAME, 0, NULL);
 292
 293	/* Read Voice Setting */
 294	hci_req_add(req, HCI_OP_READ_VOICE_SETTING, 0, NULL);
 295
 296	/* Read Number of Supported IAC */
 297	hci_req_add(req, HCI_OP_READ_NUM_SUPPORTED_IAC, 0, NULL);
 298
 299	/* Read Current IAC LAP */
 300	hci_req_add(req, HCI_OP_READ_CURRENT_IAC_LAP, 0, NULL);
 301
 302	/* Clear Event Filters */
 303	flt_type = HCI_FLT_CLEAR_ALL;
 304	hci_req_add(req, HCI_OP_SET_EVENT_FLT, 1, &flt_type);
 305
 306	/* Connection accept timeout ~20 secs */
 307	param = cpu_to_le16(0x7d00);
 308	hci_req_add(req, HCI_OP_WRITE_CA_TIMEOUT, 2, &param);
 
 
 
 
 
 
 
 
 309}
 310
 311static void le_setup(struct hci_request *req)
 312{
 313	struct hci_dev *hdev = req->hdev;
 314
 315	/* Read LE Buffer Size */
 316	hci_req_add(req, HCI_OP_LE_READ_BUFFER_SIZE, 0, NULL);
 317
 318	/* Read LE Local Supported Features */
 319	hci_req_add(req, HCI_OP_LE_READ_LOCAL_FEATURES, 0, NULL);
 320
 321	/* Read LE Supported States */
 322	hci_req_add(req, HCI_OP_LE_READ_SUPPORTED_STATES, 0, NULL);
 323
 
 
 
 
 
 
 
 
 
 324	/* LE-only controllers have LE implicitly enabled */
 325	if (!lmp_bredr_capable(hdev))
 326		hci_dev_set_flag(hdev, HCI_LE_ENABLED);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 327}
 328
 329static void hci_setup_event_mask(struct hci_request *req)
 330{
 331	struct hci_dev *hdev = req->hdev;
 332
 333	/* The second byte is 0xff instead of 0x9f (two reserved bits
 334	 * disabled) since a Broadcom 1.2 dongle doesn't respond to the
 335	 * command otherwise.
 336	 */
 337	u8 events[8] = { 0xff, 0xff, 0xfb, 0xff, 0x00, 0x00, 0x00, 0x00 };
 338
 339	/* CSR 1.1 dongles does not accept any bitfield so don't try to set
 340	 * any event mask for pre 1.2 devices.
 341	 */
 342	if (hdev->hci_ver < BLUETOOTH_VER_1_2)
 343		return;
 344
 345	if (lmp_bredr_capable(hdev)) {
 346		events[4] |= 0x01; /* Flow Specification Complete */
 
 
 
 
 347	} else {
 348		/* Use a different default for LE-only devices */
 349		memset(events, 0, sizeof(events));
 
 
 
 350		events[1] |= 0x20; /* Command Complete */
 351		events[1] |= 0x40; /* Command Status */
 352		events[1] |= 0x80; /* Hardware Error */
 353
 354		/* If the controller supports the Disconnect command, enable
 355		 * the corresponding event. In addition enable packet flow
 356		 * control related events.
 357		 */
 358		if (hdev->commands[0] & 0x20) {
 359			events[0] |= 0x10; /* Disconnection Complete */
 360			events[2] |= 0x04; /* Number of Completed Packets */
 361			events[3] |= 0x02; /* Data Buffer Overflow */
 362		}
 363
 364		/* If the controller supports the Read Remote Version
 365		 * Information command, enable the corresponding event.
 366		 */
 367		if (hdev->commands[2] & 0x80)
 368			events[1] |= 0x08; /* Read Remote Version Information
 369					    * Complete
 370					    */
 371
 372		if (hdev->le_features[0] & HCI_LE_ENCRYPTION) {
 373			events[0] |= 0x80; /* Encryption Change */
 374			events[5] |= 0x80; /* Encryption Key Refresh Complete */
 375		}
 376	}
 377
 378	if (lmp_inq_rssi_capable(hdev) ||
 379	    test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks))
 380		events[4] |= 0x02; /* Inquiry Result with RSSI */
 381
 382	if (lmp_ext_feat_capable(hdev))
 383		events[4] |= 0x04; /* Read Remote Extended Features Complete */
 384
 385	if (lmp_esco_capable(hdev)) {
 386		events[5] |= 0x08; /* Synchronous Connection Complete */
 387		events[5] |= 0x10; /* Synchronous Connection Changed */
 388	}
 389
 390	if (lmp_sniffsubr_capable(hdev))
 391		events[5] |= 0x20; /* Sniff Subrating */
 392
 393	if (lmp_pause_enc_capable(hdev))
 394		events[5] |= 0x80; /* Encryption Key Refresh Complete */
 395
 396	if (lmp_ext_inq_capable(hdev))
 397		events[5] |= 0x40; /* Extended Inquiry Result */
 398
 399	if (lmp_no_flush_capable(hdev))
 400		events[7] |= 0x01; /* Enhanced Flush Complete */
 401
 402	if (lmp_lsto_capable(hdev))
 403		events[6] |= 0x80; /* Link Supervision Timeout Changed */
 404
 405	if (lmp_ssp_capable(hdev)) {
 406		events[6] |= 0x01;	/* IO Capability Request */
 407		events[6] |= 0x02;	/* IO Capability Response */
 408		events[6] |= 0x04;	/* User Confirmation Request */
 409		events[6] |= 0x08;	/* User Passkey Request */
 410		events[6] |= 0x10;	/* Remote OOB Data Request */
 411		events[6] |= 0x20;	/* Simple Pairing Complete */
 412		events[7] |= 0x04;	/* User Passkey Notification */
 413		events[7] |= 0x08;	/* Keypress Notification */
 414		events[7] |= 0x10;	/* Remote Host Supported
 415					 * Features Notification
 416					 */
 417	}
 418
 419	if (lmp_le_capable(hdev))
 420		events[7] |= 0x20;	/* LE Meta-Event */
 421
 422	hci_req_add(req, HCI_OP_SET_EVENT_MASK, sizeof(events), events);
 
 
 
 
 
 
 
 423}
 424
 425static int hci_init2_req(struct hci_request *req, unsigned long opt)
 426{
 427	struct hci_dev *hdev = req->hdev;
 428
 429	if (hdev->dev_type == HCI_AMP)
 430		return amp_init2(req);
 431
 432	if (lmp_bredr_capable(hdev))
 433		bredr_setup(req);
 434	else
 435		hci_dev_clear_flag(hdev, HCI_BREDR_ENABLED);
 436
 437	if (lmp_le_capable(hdev))
 438		le_setup(req);
 439
 440	/* All Bluetooth 1.2 and later controllers should support the
 441	 * HCI command for reading the local supported commands.
 442	 *
 443	 * Unfortunately some controllers indicate Bluetooth 1.2 support,
 444	 * but do not have support for this command. If that is the case,
 445	 * the driver can quirk the behavior and skip reading the local
 446	 * supported commands.
 447	 */
 448	if (hdev->hci_ver > BLUETOOTH_VER_1_1 &&
 449	    !test_bit(HCI_QUIRK_BROKEN_LOCAL_COMMANDS, &hdev->quirks))
 450		hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL);
 451
 452	if (lmp_ssp_capable(hdev)) {
 453		/* When SSP is available, then the host features page
 454		 * should also be available as well. However some
 455		 * controllers list the max_page as 0 as long as SSP
 456		 * has not been enabled. To achieve proper debugging
 457		 * output, force the minimum max_page to 1 at least.
 458		 */
 459		hdev->max_page = 0x01;
 460
 461		if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) {
 462			u8 mode = 0x01;
 463
 464			hci_req_add(req, HCI_OP_WRITE_SSP_MODE,
 465				    sizeof(mode), &mode);
 466		} else {
 467			struct hci_cp_write_eir cp;
 468
 469			memset(hdev->eir, 0, sizeof(hdev->eir));
 470			memset(&cp, 0, sizeof(cp));
 471
 472			hci_req_add(req, HCI_OP_WRITE_EIR, sizeof(cp), &cp);
 473		}
 474	}
 475
 476	if (lmp_inq_rssi_capable(hdev) ||
 477	    test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks)) {
 478		u8 mode;
 479
 480		/* If Extended Inquiry Result events are supported, then
 481		 * they are clearly preferred over Inquiry Result with RSSI
 482		 * events.
 483		 */
 484		mode = lmp_ext_inq_capable(hdev) ? 0x02 : 0x01;
 485
 486		hci_req_add(req, HCI_OP_WRITE_INQUIRY_MODE, 1, &mode);
 487	}
 488
 489	if (lmp_inq_tx_pwr_capable(hdev))
 490		hci_req_add(req, HCI_OP_READ_INQ_RSP_TX_POWER, 0, NULL);
 491
 492	if (lmp_ext_feat_capable(hdev)) {
 493		struct hci_cp_read_local_ext_features cp;
 494
 495		cp.page = 0x01;
 496		hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES,
 497			    sizeof(cp), &cp);
 498	}
 499
 500	if (hci_dev_test_flag(hdev, HCI_LINK_SECURITY)) {
 501		u8 enable = 1;
 502		hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, sizeof(enable),
 503			    &enable);
 504	}
 505
 506	return 0;
 507}
 508
 509static void hci_setup_link_policy(struct hci_request *req)
 510{
 511	struct hci_dev *hdev = req->hdev;
 512	struct hci_cp_write_def_link_policy cp;
 513	u16 link_policy = 0;
 514
 515	if (lmp_rswitch_capable(hdev))
 516		link_policy |= HCI_LP_RSWITCH;
 517	if (lmp_hold_capable(hdev))
 518		link_policy |= HCI_LP_HOLD;
 519	if (lmp_sniff_capable(hdev))
 520		link_policy |= HCI_LP_SNIFF;
 521	if (lmp_park_capable(hdev))
 522		link_policy |= HCI_LP_PARK;
 523
 524	cp.policy = cpu_to_le16(link_policy);
 525	hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, sizeof(cp), &cp);
 526}
 527
 528static void hci_set_le_support(struct hci_request *req)
 529{
 530	struct hci_dev *hdev = req->hdev;
 531	struct hci_cp_write_le_host_supported cp;
 532
 533	/* LE-only devices do not support explicit enablement */
 534	if (!lmp_bredr_capable(hdev))
 535		return;
 536
 537	memset(&cp, 0, sizeof(cp));
 538
 539	if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
 540		cp.le = 0x01;
 541		cp.simul = 0x00;
 542	}
 543
 544	if (cp.le != lmp_host_le_capable(hdev))
 545		hci_req_add(req, HCI_OP_WRITE_LE_HOST_SUPPORTED, sizeof(cp),
 546			    &cp);
 547}
 548
 549static void hci_set_event_mask_page_2(struct hci_request *req)
 550{
 551	struct hci_dev *hdev = req->hdev;
 552	u8 events[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
 553
 554	/* If Connectionless Slave Broadcast master role is supported
 555	 * enable all necessary events for it.
 556	 */
 557	if (lmp_csb_master_capable(hdev)) {
 558		events[1] |= 0x40;	/* Triggered Clock Capture */
 559		events[1] |= 0x80;	/* Synchronization Train Complete */
 560		events[2] |= 0x10;	/* Slave Page Response Timeout */
 561		events[2] |= 0x20;	/* CSB Channel Map Change */
 562	}
 563
 564	/* If Connectionless Slave Broadcast slave role is supported
 565	 * enable all necessary events for it.
 566	 */
 567	if (lmp_csb_slave_capable(hdev)) {
 568		events[2] |= 0x01;	/* Synchronization Train Received */
 569		events[2] |= 0x02;	/* CSB Receive */
 570		events[2] |= 0x04;	/* CSB Timeout */
 571		events[2] |= 0x08;	/* Truncated Page Complete */
 572	}
 573
 574	/* Enable Authenticated Payload Timeout Expired event if supported */
 575	if (lmp_ping_capable(hdev) || hdev->le_features[0] & HCI_LE_PING)
 576		events[2] |= 0x80;
 577
 578	hci_req_add(req, HCI_OP_SET_EVENT_MASK_PAGE_2, sizeof(events), events);
 579}
 580
 581static int hci_init3_req(struct hci_request *req, unsigned long opt)
 582{
 583	struct hci_dev *hdev = req->hdev;
 584	u8 p;
 585
 586	hci_setup_event_mask(req);
 587
 588	if (hdev->commands[6] & 0x20 &&
 589	    !test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) {
 590		struct hci_cp_read_stored_link_key cp;
 591
 592		bacpy(&cp.bdaddr, BDADDR_ANY);
 593		cp.read_all = 0x01;
 594		hci_req_add(req, HCI_OP_READ_STORED_LINK_KEY, sizeof(cp), &cp);
 595	}
 596
 597	if (hdev->commands[5] & 0x10)
 598		hci_setup_link_policy(req);
 599
 600	if (hdev->commands[8] & 0x01)
 601		hci_req_add(req, HCI_OP_READ_PAGE_SCAN_ACTIVITY, 0, NULL);
 602
 603	/* Some older Broadcom based Bluetooth 1.2 controllers do not
 604	 * support the Read Page Scan Type command. Check support for
 605	 * this command in the bit mask of supported commands.
 606	 */
 607	if (hdev->commands[13] & 0x01)
 608		hci_req_add(req, HCI_OP_READ_PAGE_SCAN_TYPE, 0, NULL);
 609
 610	if (lmp_le_capable(hdev)) {
 611		u8 events[8];
 612
 613		memset(events, 0, sizeof(events));
 614
 615		if (hdev->le_features[0] & HCI_LE_ENCRYPTION)
 616			events[0] |= 0x10;	/* LE Long Term Key Request */
 617
 618		/* If controller supports the Connection Parameters Request
 619		 * Link Layer Procedure, enable the corresponding event.
 620		 */
 621		if (hdev->le_features[0] & HCI_LE_CONN_PARAM_REQ_PROC)
 622			events[0] |= 0x20;	/* LE Remote Connection
 623						 * Parameter Request
 624						 */
 625
 626		/* If the controller supports the Data Length Extension
 627		 * feature, enable the corresponding event.
 628		 */
 629		if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)
 630			events[0] |= 0x40;	/* LE Data Length Change */
 631
 632		/* If the controller supports Extended Scanner Filter
 633		 * Policies, enable the correspondig event.
 634		 */
 635		if (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY)
 636			events[1] |= 0x04;	/* LE Direct Advertising
 637						 * Report
 638						 */
 639
 640		/* If the controller supports the LE Set Scan Enable command,
 641		 * enable the corresponding advertising report event.
 642		 */
 643		if (hdev->commands[26] & 0x08)
 644			events[0] |= 0x02;	/* LE Advertising Report */
 645
 646		/* If the controller supports the LE Create Connection
 647		 * command, enable the corresponding event.
 648		 */
 649		if (hdev->commands[26] & 0x10)
 650			events[0] |= 0x01;	/* LE Connection Complete */
 651
 652		/* If the controller supports the LE Connection Update
 653		 * command, enable the corresponding event.
 654		 */
 655		if (hdev->commands[27] & 0x04)
 656			events[0] |= 0x04;	/* LE Connection Update
 657						 * Complete
 658						 */
 659
 660		/* If the controller supports the LE Read Remote Used Features
 661		 * command, enable the corresponding event.
 662		 */
 663		if (hdev->commands[27] & 0x20)
 664			events[0] |= 0x08;	/* LE Read Remote Used
 665						 * Features Complete
 666						 */
 667
 668		/* If the controller supports the LE Read Local P-256
 669		 * Public Key command, enable the corresponding event.
 670		 */
 671		if (hdev->commands[34] & 0x02)
 672			events[0] |= 0x80;	/* LE Read Local P-256
 673						 * Public Key Complete
 674						 */
 675
 676		/* If the controller supports the LE Generate DHKey
 677		 * command, enable the corresponding event.
 678		 */
 679		if (hdev->commands[34] & 0x04)
 680			events[1] |= 0x01;	/* LE Generate DHKey Complete */
 681
 682		hci_req_add(req, HCI_OP_LE_SET_EVENT_MASK, sizeof(events),
 683			    events);
 684
 685		if (hdev->commands[25] & 0x40) {
 686			/* Read LE Advertising Channel TX Power */
 687			hci_req_add(req, HCI_OP_LE_READ_ADV_TX_POWER, 0, NULL);
 688		}
 689
 690		if (hdev->commands[26] & 0x40) {
 691			/* Read LE White List Size */
 692			hci_req_add(req, HCI_OP_LE_READ_WHITE_LIST_SIZE,
 693				    0, NULL);
 694		}
 695
 696		if (hdev->commands[26] & 0x80) {
 697			/* Clear LE White List */
 698			hci_req_add(req, HCI_OP_LE_CLEAR_WHITE_LIST, 0, NULL);
 699		}
 700
 701		if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) {
 702			/* Read LE Maximum Data Length */
 703			hci_req_add(req, HCI_OP_LE_READ_MAX_DATA_LEN, 0, NULL);
 704
 705			/* Read LE Suggested Default Data Length */
 706			hci_req_add(req, HCI_OP_LE_READ_DEF_DATA_LEN, 0, NULL);
 707		}
 708
 709		hci_set_le_support(req);
 710	}
 711
 712	/* Read features beyond page 1 if available */
 713	for (p = 2; p < HCI_MAX_PAGES && p <= hdev->max_page; p++) {
 714		struct hci_cp_read_local_ext_features cp;
 715
 716		cp.page = p;
 717		hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES,
 718			    sizeof(cp), &cp);
 719	}
 720
 721	return 0;
 722}
 723
 724static int hci_init4_req(struct hci_request *req, unsigned long opt)
 725{
 726	struct hci_dev *hdev = req->hdev;
 727
 728	/* Some Broadcom based Bluetooth controllers do not support the
 729	 * Delete Stored Link Key command. They are clearly indicating its
 730	 * absence in the bit mask of supported commands.
 731	 *
 732	 * Check the supported commands and only if the the command is marked
 733	 * as supported send it. If not supported assume that the controller
 734	 * does not have actual support for stored link keys which makes this
 735	 * command redundant anyway.
 736	 *
 737	 * Some controllers indicate that they support handling deleting
 738	 * stored link keys, but they don't. The quirk lets a driver
 739	 * just disable this command.
 740	 */
 741	if (hdev->commands[6] & 0x80 &&
 742	    !test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) {
 743		struct hci_cp_delete_stored_link_key cp;
 744
 745		bacpy(&cp.bdaddr, BDADDR_ANY);
 746		cp.delete_all = 0x01;
 747		hci_req_add(req, HCI_OP_DELETE_STORED_LINK_KEY,
 748			    sizeof(cp), &cp);
 749	}
 750
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 751	/* Set event mask page 2 if the HCI command for it is supported */
 752	if (hdev->commands[22] & 0x04)
 753		hci_set_event_mask_page_2(req);
 754
 755	/* Read local codec list if the HCI command is supported */
 756	if (hdev->commands[29] & 0x20)
 757		hci_req_add(req, HCI_OP_READ_LOCAL_CODECS, 0, NULL);
 758
 759	/* Get MWS transport configuration if the HCI command is supported */
 760	if (hdev->commands[30] & 0x08)
 761		hci_req_add(req, HCI_OP_GET_MWS_TRANSPORT_CONFIG, 0, NULL);
 762
 763	/* Check for Synchronization Train support */
 764	if (lmp_sync_train_capable(hdev))
 765		hci_req_add(req, HCI_OP_READ_SYNC_TRAIN_PARAMS, 0, NULL);
 766
 767	/* Enable Secure Connections if supported and configured */
 768	if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED) &&
 769	    bredr_sc_enabled(hdev)) {
 
 770		u8 support = 0x01;
 771
 772		hci_req_add(req, HCI_OP_WRITE_SC_SUPPORT,
 773			    sizeof(support), &support);
 774	}
 775
 776	return 0;
 777}
 778
 779static int __hci_init(struct hci_dev *hdev)
 780{
 781	int err;
 782
 783	err = __hci_req_sync(hdev, hci_init1_req, 0, HCI_INIT_TIMEOUT, NULL);
 784	if (err < 0)
 785		return err;
 786
 787	if (hci_dev_test_flag(hdev, HCI_SETUP))
 788		hci_debugfs_create_basic(hdev);
 789
 790	err = __hci_req_sync(hdev, hci_init2_req, 0, HCI_INIT_TIMEOUT, NULL);
 791	if (err < 0)
 792		return err;
 
 793
 794	/* HCI_BREDR covers both single-mode LE, BR/EDR and dual-mode
 795	 * BR/EDR/LE type controllers. AMP controllers only need the
 796	 * first two stages of init.
 797	 */
 798	if (hdev->dev_type != HCI_BREDR)
 799		return 0;
 800
 801	err = __hci_req_sync(hdev, hci_init3_req, 0, HCI_INIT_TIMEOUT, NULL);
 802	if (err < 0)
 803		return err;
 804
 805	err = __hci_req_sync(hdev, hci_init4_req, 0, HCI_INIT_TIMEOUT, NULL);
 806	if (err < 0)
 807		return err;
 808
 809	/* This function is only called when the controller is actually in
 810	 * configured state. When the controller is marked as unconfigured,
 811	 * this initialization procedure is not run.
 812	 *
 813	 * It means that it is possible that a controller runs through its
 814	 * setup phase and then discovers missing settings. If that is the
 815	 * case, then this function will not be called. It then will only
 816	 * be called during the config phase.
 817	 *
 818	 * So only when in setup phase or config phase, create the debugfs
 819	 * entries and register the SMP channels.
 820	 */
 821	if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
 822	    !hci_dev_test_flag(hdev, HCI_CONFIG))
 823		return 0;
 824
 825	hci_debugfs_create_common(hdev);
 826
 827	if (lmp_bredr_capable(hdev))
 828		hci_debugfs_create_bredr(hdev);
 829
 830	if (lmp_le_capable(hdev))
 831		hci_debugfs_create_le(hdev);
 
 
 832
 833	return 0;
 834}
 835
 836static int hci_init0_req(struct hci_request *req, unsigned long opt)
 837{
 838	struct hci_dev *hdev = req->hdev;
 839
 840	BT_DBG("%s %ld", hdev->name, opt);
 841
 842	/* Reset */
 843	if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks))
 844		hci_reset_req(req, 0);
 845
 846	/* Read Local Version */
 847	hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
 848
 849	/* Read BD Address */
 850	if (hdev->set_bdaddr)
 851		hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL);
 852
 853	return 0;
 854}
 855
 856static int __hci_unconf_init(struct hci_dev *hdev)
 857{
 858	int err;
 859
 860	if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
 861		return 0;
 862
 863	err = __hci_req_sync(hdev, hci_init0_req, 0, HCI_INIT_TIMEOUT, NULL);
 864	if (err < 0)
 865		return err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 866
 867	if (hci_dev_test_flag(hdev, HCI_SETUP))
 868		hci_debugfs_create_basic(hdev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 869
 870	return 0;
 871}
 872
 873static int hci_scan_req(struct hci_request *req, unsigned long opt)
 874{
 875	__u8 scan = opt;
 876
 877	BT_DBG("%s %x", req->hdev->name, scan);
 878
 879	/* Inquiry and Page scans */
 880	hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
 881	return 0;
 882}
 883
 884static int hci_auth_req(struct hci_request *req, unsigned long opt)
 885{
 886	__u8 auth = opt;
 887
 888	BT_DBG("%s %x", req->hdev->name, auth);
 889
 890	/* Authentication */
 891	hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, 1, &auth);
 892	return 0;
 893}
 894
 895static int hci_encrypt_req(struct hci_request *req, unsigned long opt)
 896{
 897	__u8 encrypt = opt;
 898
 899	BT_DBG("%s %x", req->hdev->name, encrypt);
 900
 901	/* Encryption */
 902	hci_req_add(req, HCI_OP_WRITE_ENCRYPT_MODE, 1, &encrypt);
 903	return 0;
 904}
 905
 906static int hci_linkpol_req(struct hci_request *req, unsigned long opt)
 907{
 908	__le16 policy = cpu_to_le16(opt);
 909
 910	BT_DBG("%s %x", req->hdev->name, policy);
 911
 912	/* Default link policy */
 913	hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, 2, &policy);
 914	return 0;
 915}
 916
 917/* Get HCI device by index.
 918 * Device is held on return. */
 919struct hci_dev *hci_dev_get(int index)
 920{
 921	struct hci_dev *hdev = NULL, *d;
 922
 923	BT_DBG("%d", index);
 924
 925	if (index < 0)
 926		return NULL;
 927
 928	read_lock(&hci_dev_list_lock);
 929	list_for_each_entry(d, &hci_dev_list, list) {
 930		if (d->id == index) {
 931			hdev = hci_dev_hold(d);
 932			break;
 933		}
 934	}
 935	read_unlock(&hci_dev_list_lock);
 936	return hdev;
 937}
 938
 939/* ---- Inquiry support ---- */
 940
 941bool hci_discovery_active(struct hci_dev *hdev)
 942{
 943	struct discovery_state *discov = &hdev->discovery;
 944
 945	switch (discov->state) {
 946	case DISCOVERY_FINDING:
 947	case DISCOVERY_RESOLVING:
 948		return true;
 949
 950	default:
 951		return false;
 952	}
 953}
 954
 955void hci_discovery_set_state(struct hci_dev *hdev, int state)
 956{
 957	int old_state = hdev->discovery.state;
 958
 959	BT_DBG("%s state %u -> %u", hdev->name, hdev->discovery.state, state);
 960
 961	if (old_state == state)
 962		return;
 963
 964	hdev->discovery.state = state;
 965
 966	switch (state) {
 967	case DISCOVERY_STOPPED:
 968		hci_update_background_scan(hdev);
 969
 970		if (old_state != DISCOVERY_STARTING)
 971			mgmt_discovering(hdev, 0);
 972		break;
 973	case DISCOVERY_STARTING:
 974		break;
 975	case DISCOVERY_FINDING:
 976		mgmt_discovering(hdev, 1);
 977		break;
 978	case DISCOVERY_RESOLVING:
 979		break;
 980	case DISCOVERY_STOPPING:
 981		break;
 982	}
 
 
 983}
 984
 985void hci_inquiry_cache_flush(struct hci_dev *hdev)
 986{
 987	struct discovery_state *cache = &hdev->discovery;
 988	struct inquiry_entry *p, *n;
 989
 990	list_for_each_entry_safe(p, n, &cache->all, all) {
 991		list_del(&p->all);
 992		kfree(p);
 993	}
 994
 995	INIT_LIST_HEAD(&cache->unknown);
 996	INIT_LIST_HEAD(&cache->resolve);
 997}
 998
 999struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev,
1000					       bdaddr_t *bdaddr)
1001{
1002	struct discovery_state *cache = &hdev->discovery;
1003	struct inquiry_entry *e;
1004
1005	BT_DBG("cache %p, %pMR", cache, bdaddr);
1006
1007	list_for_each_entry(e, &cache->all, all) {
1008		if (!bacmp(&e->data.bdaddr, bdaddr))
1009			return e;
1010	}
1011
1012	return NULL;
1013}
1014
1015struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev,
1016						       bdaddr_t *bdaddr)
1017{
1018	struct discovery_state *cache = &hdev->discovery;
1019	struct inquiry_entry *e;
1020
1021	BT_DBG("cache %p, %pMR", cache, bdaddr);
1022
1023	list_for_each_entry(e, &cache->unknown, list) {
1024		if (!bacmp(&e->data.bdaddr, bdaddr))
1025			return e;
1026	}
1027
1028	return NULL;
1029}
1030
1031struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev,
1032						       bdaddr_t *bdaddr,
1033						       int state)
1034{
1035	struct discovery_state *cache = &hdev->discovery;
1036	struct inquiry_entry *e;
1037
1038	BT_DBG("cache %p bdaddr %pMR state %d", cache, bdaddr, state);
1039
1040	list_for_each_entry(e, &cache->resolve, list) {
1041		if (!bacmp(bdaddr, BDADDR_ANY) && e->name_state == state)
1042			return e;
1043		if (!bacmp(&e->data.bdaddr, bdaddr))
1044			return e;
1045	}
1046
1047	return NULL;
1048}
1049
1050void hci_inquiry_cache_update_resolve(struct hci_dev *hdev,
1051				      struct inquiry_entry *ie)
1052{
1053	struct discovery_state *cache = &hdev->discovery;
1054	struct list_head *pos = &cache->resolve;
1055	struct inquiry_entry *p;
1056
1057	list_del(&ie->list);
1058
1059	list_for_each_entry(p, &cache->resolve, list) {
1060		if (p->name_state != NAME_PENDING &&
1061		    abs(p->data.rssi) >= abs(ie->data.rssi))
1062			break;
1063		pos = &p->list;
1064	}
1065
1066	list_add(&ie->list, pos);
1067}
1068
1069u32 hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data,
1070			     bool name_known)
1071{
1072	struct discovery_state *cache = &hdev->discovery;
1073	struct inquiry_entry *ie;
1074	u32 flags = 0;
1075
1076	BT_DBG("cache %p, %pMR", cache, &data->bdaddr);
1077
1078	hci_remove_remote_oob_data(hdev, &data->bdaddr, BDADDR_BREDR);
1079
1080	if (!data->ssp_mode)
1081		flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
1082
1083	ie = hci_inquiry_cache_lookup(hdev, &data->bdaddr);
1084	if (ie) {
1085		if (!ie->data.ssp_mode)
1086			flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
1087
1088		if (ie->name_state == NAME_NEEDED &&
1089		    data->rssi != ie->data.rssi) {
1090			ie->data.rssi = data->rssi;
1091			hci_inquiry_cache_update_resolve(hdev, ie);
1092		}
1093
1094		goto update;
1095	}
1096
1097	/* Entry not in the cache. Add new one. */
1098	ie = kzalloc(sizeof(*ie), GFP_KERNEL);
1099	if (!ie) {
1100		flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
1101		goto done;
1102	}
1103
1104	list_add(&ie->all, &cache->all);
1105
1106	if (name_known) {
1107		ie->name_state = NAME_KNOWN;
1108	} else {
1109		ie->name_state = NAME_NOT_KNOWN;
1110		list_add(&ie->list, &cache->unknown);
1111	}
1112
1113update:
1114	if (name_known && ie->name_state != NAME_KNOWN &&
1115	    ie->name_state != NAME_PENDING) {
1116		ie->name_state = NAME_KNOWN;
1117		list_del(&ie->list);
1118	}
1119
1120	memcpy(&ie->data, data, sizeof(*data));
1121	ie->timestamp = jiffies;
1122	cache->timestamp = jiffies;
1123
1124	if (ie->name_state == NAME_NOT_KNOWN)
1125		flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
1126
1127done:
1128	return flags;
1129}
1130
1131static int inquiry_cache_dump(struct hci_dev *hdev, int num, __u8 *buf)
1132{
1133	struct discovery_state *cache = &hdev->discovery;
1134	struct inquiry_info *info = (struct inquiry_info *) buf;
1135	struct inquiry_entry *e;
1136	int copied = 0;
1137
1138	list_for_each_entry(e, &cache->all, all) {
1139		struct inquiry_data *data = &e->data;
1140
1141		if (copied >= num)
1142			break;
1143
1144		bacpy(&info->bdaddr, &data->bdaddr);
1145		info->pscan_rep_mode	= data->pscan_rep_mode;
1146		info->pscan_period_mode	= data->pscan_period_mode;
1147		info->pscan_mode	= data->pscan_mode;
1148		memcpy(info->dev_class, data->dev_class, 3);
1149		info->clock_offset	= data->clock_offset;
1150
1151		info++;
1152		copied++;
1153	}
1154
1155	BT_DBG("cache %p, copied %d", cache, copied);
1156	return copied;
1157}
1158
1159static int hci_inq_req(struct hci_request *req, unsigned long opt)
1160{
1161	struct hci_inquiry_req *ir = (struct hci_inquiry_req *) opt;
1162	struct hci_dev *hdev = req->hdev;
1163	struct hci_cp_inquiry cp;
1164
1165	BT_DBG("%s", hdev->name);
1166
1167	if (test_bit(HCI_INQUIRY, &hdev->flags))
1168		return 0;
1169
1170	/* Start Inquiry */
1171	memcpy(&cp.lap, &ir->lap, 3);
1172	cp.length  = ir->length;
1173	cp.num_rsp = ir->num_rsp;
1174	hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp);
 
1175
1176	return 0;
 
 
 
1177}
1178
1179int hci_inquiry(void __user *arg)
1180{
1181	__u8 __user *ptr = arg;
1182	struct hci_inquiry_req ir;
1183	struct hci_dev *hdev;
1184	int err = 0, do_inquiry = 0, max_rsp;
1185	long timeo;
1186	__u8 *buf;
1187
1188	if (copy_from_user(&ir, ptr, sizeof(ir)))
1189		return -EFAULT;
1190
1191	hdev = hci_dev_get(ir.dev_id);
1192	if (!hdev)
1193		return -ENODEV;
1194
1195	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1196		err = -EBUSY;
1197		goto done;
1198	}
1199
1200	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1201		err = -EOPNOTSUPP;
1202		goto done;
1203	}
1204
1205	if (hdev->dev_type != HCI_BREDR) {
1206		err = -EOPNOTSUPP;
1207		goto done;
1208	}
1209
1210	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
1211		err = -EOPNOTSUPP;
1212		goto done;
1213	}
1214
1215	hci_dev_lock(hdev);
1216	if (inquiry_cache_age(hdev) > INQUIRY_CACHE_AGE_MAX ||
1217	    inquiry_cache_empty(hdev) || ir.flags & IREQ_CACHE_FLUSH) {
1218		hci_inquiry_cache_flush(hdev);
1219		do_inquiry = 1;
1220	}
1221	hci_dev_unlock(hdev);
1222
1223	timeo = ir.length * msecs_to_jiffies(2000);
1224
1225	if (do_inquiry) {
1226		err = hci_req_sync(hdev, hci_inq_req, (unsigned long) &ir,
1227				   timeo, NULL);
1228		if (err < 0)
1229			goto done;
1230
1231		/* Wait until Inquiry procedure finishes (HCI_INQUIRY flag is
1232		 * cleared). If it is interrupted by a signal, return -EINTR.
1233		 */
1234		if (wait_on_bit(&hdev->flags, HCI_INQUIRY,
1235				TASK_INTERRUPTIBLE))
1236			return -EINTR;
1237	}
1238
1239	/* for unlimited number of responses we will use buffer with
1240	 * 255 entries
1241	 */
1242	max_rsp = (ir.num_rsp == 0) ? 255 : ir.num_rsp;
1243
1244	/* cache_dump can't sleep. Therefore we allocate temp buffer and then
1245	 * copy it to the user space.
1246	 */
1247	buf = kmalloc(sizeof(struct inquiry_info) * max_rsp, GFP_KERNEL);
1248	if (!buf) {
1249		err = -ENOMEM;
1250		goto done;
1251	}
1252
1253	hci_dev_lock(hdev);
1254	ir.num_rsp = inquiry_cache_dump(hdev, max_rsp, buf);
1255	hci_dev_unlock(hdev);
1256
1257	BT_DBG("num_rsp %d", ir.num_rsp);
1258
1259	if (!copy_to_user(ptr, &ir, sizeof(ir))) {
1260		ptr += sizeof(ir);
1261		if (copy_to_user(ptr, buf, sizeof(struct inquiry_info) *
1262				 ir.num_rsp))
1263			err = -EFAULT;
1264	} else
1265		err = -EFAULT;
1266
1267	kfree(buf);
1268
1269done:
1270	hci_dev_put(hdev);
1271	return err;
1272}
1273
1274static int hci_dev_do_open(struct hci_dev *hdev)
1275{
1276	int ret = 0;
1277
1278	BT_DBG("%s %p", hdev->name, hdev);
1279
1280	hci_req_sync_lock(hdev);
1281
1282	if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) {
1283		ret = -ENODEV;
1284		goto done;
1285	}
1286
1287	if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
1288	    !hci_dev_test_flag(hdev, HCI_CONFIG)) {
1289		/* Check for rfkill but allow the HCI setup stage to
1290		 * proceed (which in itself doesn't cause any RF activity).
1291		 */
1292		if (hci_dev_test_flag(hdev, HCI_RFKILLED)) {
1293			ret = -ERFKILL;
1294			goto done;
1295		}
1296
1297		/* Check for valid public address or a configured static
1298		 * random adddress, but let the HCI setup proceed to
1299		 * be able to determine if there is a public address
1300		 * or not.
1301		 *
1302		 * In case of user channel usage, it is not important
1303		 * if a public address or static random address is
1304		 * available.
1305		 *
1306		 * This check is only valid for BR/EDR controllers
1307		 * since AMP controllers do not have an address.
1308		 */
1309		if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1310		    hdev->dev_type == HCI_BREDR &&
1311		    !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
1312		    !bacmp(&hdev->static_addr, BDADDR_ANY)) {
1313			ret = -EADDRNOTAVAIL;
1314			goto done;
1315		}
1316	}
1317
1318	if (test_bit(HCI_UP, &hdev->flags)) {
1319		ret = -EALREADY;
1320		goto done;
1321	}
1322
1323	if (hdev->open(hdev)) {
1324		ret = -EIO;
1325		goto done;
1326	}
1327
1328	set_bit(HCI_RUNNING, &hdev->flags);
1329	hci_sock_dev_event(hdev, HCI_DEV_OPEN);
1330
1331	atomic_set(&hdev->cmd_cnt, 1);
1332	set_bit(HCI_INIT, &hdev->flags);
1333
1334	if (hci_dev_test_flag(hdev, HCI_SETUP)) {
1335		hci_sock_dev_event(hdev, HCI_DEV_SETUP);
1336
1337		if (hdev->setup)
1338			ret = hdev->setup(hdev);
1339
1340		/* The transport driver can set these quirks before
1341		 * creating the HCI device or in its setup callback.
1342		 *
1343		 * In case any of them is set, the controller has to
1344		 * start up as unconfigured.
1345		 */
1346		if (test_bit(HCI_QUIRK_EXTERNAL_CONFIG, &hdev->quirks) ||
1347		    test_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks))
1348			hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
1349
1350		/* For an unconfigured controller it is required to
1351		 * read at least the version information provided by
1352		 * the Read Local Version Information command.
1353		 *
1354		 * If the set_bdaddr driver callback is provided, then
1355		 * also the original Bluetooth public device address
1356		 * will be read using the Read BD Address command.
1357		 */
1358		if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
1359			ret = __hci_unconf_init(hdev);
1360	}
1361
1362	if (hci_dev_test_flag(hdev, HCI_CONFIG)) {
1363		/* If public address change is configured, ensure that
1364		 * the address gets programmed. If the driver does not
1365		 * support changing the public address, fail the power
1366		 * on procedure.
1367		 */
1368		if (bacmp(&hdev->public_addr, BDADDR_ANY) &&
1369		    hdev->set_bdaddr)
1370			ret = hdev->set_bdaddr(hdev, &hdev->public_addr);
1371		else
1372			ret = -EADDRNOTAVAIL;
1373	}
1374
1375	if (!ret) {
1376		if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1377		    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
 
 
 
1378			ret = __hci_init(hdev);
1379			if (!ret && hdev->post_init)
1380				ret = hdev->post_init(hdev);
1381		}
1382	}
1383
1384	/* If the HCI Reset command is clearing all diagnostic settings,
1385	 * then they need to be reprogrammed after the init procedure
1386	 * completed.
1387	 */
1388	if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) &&
1389	    hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) && hdev->set_diag)
1390		ret = hdev->set_diag(hdev, true);
1391
1392	clear_bit(HCI_INIT, &hdev->flags);
1393
1394	if (!ret) {
1395		hci_dev_hold(hdev);
1396		hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
1397		set_bit(HCI_UP, &hdev->flags);
1398		hci_sock_dev_event(hdev, HCI_DEV_UP);
1399		hci_leds_update_powered(hdev, true);
1400		if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
1401		    !hci_dev_test_flag(hdev, HCI_CONFIG) &&
1402		    !hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1403		    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1404		    hci_dev_test_flag(hdev, HCI_MGMT) &&
1405		    hdev->dev_type == HCI_BREDR) {
1406			ret = __hci_req_hci_power_on(hdev);
1407			mgmt_power_on(hdev, ret);
 
1408		}
1409	} else {
1410		/* Init failed, cleanup */
1411		flush_work(&hdev->tx_work);
1412		flush_work(&hdev->cmd_work);
1413		flush_work(&hdev->rx_work);
1414
1415		skb_queue_purge(&hdev->cmd_q);
1416		skb_queue_purge(&hdev->rx_q);
1417
1418		if (hdev->flush)
1419			hdev->flush(hdev);
1420
1421		if (hdev->sent_cmd) {
1422			kfree_skb(hdev->sent_cmd);
1423			hdev->sent_cmd = NULL;
1424		}
1425
1426		clear_bit(HCI_RUNNING, &hdev->flags);
1427		hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
1428
1429		hdev->close(hdev);
1430		hdev->flags &= BIT(HCI_RAW);
1431	}
1432
1433done:
1434	hci_req_sync_unlock(hdev);
1435	return ret;
1436}
1437
1438/* ---- HCI ioctl helpers ---- */
1439
1440int hci_dev_open(__u16 dev)
1441{
1442	struct hci_dev *hdev;
1443	int err;
1444
1445	hdev = hci_dev_get(dev);
1446	if (!hdev)
1447		return -ENODEV;
1448
1449	/* Devices that are marked as unconfigured can only be powered
1450	 * up as user channel. Trying to bring them up as normal devices
1451	 * will result into a failure. Only user channel operation is
1452	 * possible.
1453	 *
1454	 * When this function is called for a user channel, the flag
1455	 * HCI_USER_CHANNEL will be set first before attempting to
1456	 * open the device.
1457	 */
1458	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1459	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1460		err = -EOPNOTSUPP;
1461		goto done;
1462	}
1463
1464	/* We need to ensure that no other power on/off work is pending
1465	 * before proceeding to call hci_dev_do_open. This is
1466	 * particularly important if the setup procedure has not yet
1467	 * completed.
1468	 */
1469	if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
1470		cancel_delayed_work(&hdev->power_off);
1471
1472	/* After this call it is guaranteed that the setup procedure
1473	 * has finished. This means that error conditions like RFKILL
1474	 * or no valid public or static random address apply.
1475	 */
1476	flush_workqueue(hdev->req_workqueue);
1477
1478	/* For controllers not using the management interface and that
1479	 * are brought up using legacy ioctl, set the HCI_BONDABLE bit
1480	 * so that pairing works for them. Once the management interface
1481	 * is in use this bit will be cleared again and userspace has
1482	 * to explicitly enable it.
1483	 */
1484	if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1485	    !hci_dev_test_flag(hdev, HCI_MGMT))
1486		hci_dev_set_flag(hdev, HCI_BONDABLE);
1487
1488	err = hci_dev_do_open(hdev);
1489
1490done:
1491	hci_dev_put(hdev);
1492	return err;
1493}
1494
1495/* This function requires the caller holds hdev->lock */
1496static void hci_pend_le_actions_clear(struct hci_dev *hdev)
1497{
1498	struct hci_conn_params *p;
1499
1500	list_for_each_entry(p, &hdev->le_conn_params, list) {
1501		if (p->conn) {
1502			hci_conn_drop(p->conn);
1503			hci_conn_put(p->conn);
1504			p->conn = NULL;
1505		}
1506		list_del_init(&p->action);
1507	}
1508
1509	BT_DBG("All LE pending actions cleared");
1510}
1511
1512int hci_dev_do_close(struct hci_dev *hdev)
1513{
1514	bool auto_off;
1515
1516	BT_DBG("%s %p", hdev->name, hdev);
1517
1518	if (!hci_dev_test_flag(hdev, HCI_UNREGISTER) &&
1519	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1520	    test_bit(HCI_UP, &hdev->flags)) {
1521		/* Execute vendor specific shutdown routine */
1522		if (hdev->shutdown)
1523			hdev->shutdown(hdev);
1524	}
1525
1526	cancel_delayed_work(&hdev->power_off);
1527
1528	hci_request_cancel_all(hdev);
1529	hci_req_sync_lock(hdev);
1530
1531	if (!test_and_clear_bit(HCI_UP, &hdev->flags)) {
1532		cancel_delayed_work_sync(&hdev->cmd_timer);
1533		hci_req_sync_unlock(hdev);
1534		return 0;
1535	}
1536
1537	hci_leds_update_powered(hdev, false);
1538
1539	/* Flush RX and TX works */
1540	flush_work(&hdev->tx_work);
1541	flush_work(&hdev->rx_work);
1542
1543	if (hdev->discov_timeout > 0) {
 
1544		hdev->discov_timeout = 0;
1545		hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
1546		hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
1547	}
1548
1549	if (hci_dev_test_and_clear_flag(hdev, HCI_SERVICE_CACHE))
1550		cancel_delayed_work(&hdev->service_cache);
1551
1552	if (hci_dev_test_flag(hdev, HCI_MGMT))
1553		cancel_delayed_work_sync(&hdev->rpa_expired);
1554
1555	/* Avoid potential lockdep warnings from the *_flush() calls by
1556	 * ensuring the workqueue is empty up front.
1557	 */
1558	drain_workqueue(hdev->workqueue);
1559
1560	hci_dev_lock(hdev);
1561
1562	hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
1563
1564	auto_off = hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF);
1565
1566	if (!auto_off && hdev->dev_type == HCI_BREDR &&
1567	    hci_dev_test_flag(hdev, HCI_MGMT))
1568		__mgmt_power_off(hdev);
1569
1570	hci_inquiry_cache_flush(hdev);
1571	hci_pend_le_actions_clear(hdev);
1572	hci_conn_hash_flush(hdev);
 
1573	hci_dev_unlock(hdev);
1574
1575	smp_unregister(hdev);
1576
1577	hci_sock_dev_event(hdev, HCI_DEV_DOWN);
1578
1579	if (hdev->flush)
1580		hdev->flush(hdev);
1581
1582	/* Reset device */
1583	skb_queue_purge(&hdev->cmd_q);
1584	atomic_set(&hdev->cmd_cnt, 1);
1585	if (test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks) &&
1586	    !auto_off && !hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
 
1587		set_bit(HCI_INIT, &hdev->flags);
1588		__hci_req_sync(hdev, hci_reset_req, 0, HCI_CMD_TIMEOUT, NULL);
1589		clear_bit(HCI_INIT, &hdev->flags);
1590	}
1591
1592	/* flush cmd  work */
1593	flush_work(&hdev->cmd_work);
1594
1595	/* Drop queues */
1596	skb_queue_purge(&hdev->rx_q);
1597	skb_queue_purge(&hdev->cmd_q);
1598	skb_queue_purge(&hdev->raw_q);
1599
1600	/* Drop last sent command */
1601	if (hdev->sent_cmd) {
1602		cancel_delayed_work_sync(&hdev->cmd_timer);
1603		kfree_skb(hdev->sent_cmd);
1604		hdev->sent_cmd = NULL;
1605	}
1606
1607	clear_bit(HCI_RUNNING, &hdev->flags);
1608	hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
1609
1610	/* After this point our queues are empty
1611	 * and no tasks are scheduled. */
1612	hdev->close(hdev);
1613
1614	/* Clear flags */
1615	hdev->flags &= BIT(HCI_RAW);
1616	hci_dev_clear_volatile_flags(hdev);
 
 
 
 
 
 
 
 
1617
1618	/* Controller radio is available but is currently powered down */
1619	hdev->amp_status = AMP_STATUS_POWERED_DOWN;
1620
1621	memset(hdev->eir, 0, sizeof(hdev->eir));
1622	memset(hdev->dev_class, 0, sizeof(hdev->dev_class));
1623	bacpy(&hdev->random_addr, BDADDR_ANY);
1624
1625	hci_req_sync_unlock(hdev);
1626
1627	hci_dev_put(hdev);
1628	return 0;
1629}
1630
1631int hci_dev_close(__u16 dev)
1632{
1633	struct hci_dev *hdev;
1634	int err;
1635
1636	hdev = hci_dev_get(dev);
1637	if (!hdev)
1638		return -ENODEV;
1639
1640	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1641		err = -EBUSY;
1642		goto done;
1643	}
1644
1645	if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
1646		cancel_delayed_work(&hdev->power_off);
1647
1648	err = hci_dev_do_close(hdev);
1649
1650done:
1651	hci_dev_put(hdev);
1652	return err;
1653}
1654
1655static int hci_dev_do_reset(struct hci_dev *hdev)
1656{
1657	int ret;
 
1658
1659	BT_DBG("%s %p", hdev->name, hdev);
 
 
 
 
 
 
 
 
 
1660
1661	hci_req_sync_lock(hdev);
 
 
 
1662
1663	/* Drop queues */
1664	skb_queue_purge(&hdev->rx_q);
1665	skb_queue_purge(&hdev->cmd_q);
1666
1667	/* Avoid potential lockdep warnings from the *_flush() calls by
1668	 * ensuring the workqueue is empty up front.
1669	 */
1670	drain_workqueue(hdev->workqueue);
1671
1672	hci_dev_lock(hdev);
1673	hci_inquiry_cache_flush(hdev);
1674	hci_conn_hash_flush(hdev);
1675	hci_dev_unlock(hdev);
1676
1677	if (hdev->flush)
1678		hdev->flush(hdev);
1679
1680	atomic_set(&hdev->cmd_cnt, 1);
1681	hdev->acl_cnt = 0; hdev->sco_cnt = 0; hdev->le_cnt = 0;
1682
1683	ret = __hci_req_sync(hdev, hci_reset_req, 0, HCI_INIT_TIMEOUT, NULL);
1684
1685	hci_req_sync_unlock(hdev);
1686	return ret;
1687}
1688
1689int hci_dev_reset(__u16 dev)
1690{
1691	struct hci_dev *hdev;
1692	int err;
1693
1694	hdev = hci_dev_get(dev);
1695	if (!hdev)
1696		return -ENODEV;
1697
1698	if (!test_bit(HCI_UP, &hdev->flags)) {
1699		err = -ENETDOWN;
1700		goto done;
1701	}
1702
1703	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1704		err = -EBUSY;
1705		goto done;
1706	}
1707
1708	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1709		err = -EOPNOTSUPP;
1710		goto done;
1711	}
1712
1713	err = hci_dev_do_reset(hdev);
1714
1715done:
 
1716	hci_dev_put(hdev);
1717	return err;
1718}
1719
1720int hci_dev_reset_stat(__u16 dev)
1721{
1722	struct hci_dev *hdev;
1723	int ret = 0;
1724
1725	hdev = hci_dev_get(dev);
1726	if (!hdev)
1727		return -ENODEV;
1728
1729	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1730		ret = -EBUSY;
1731		goto done;
1732	}
1733
1734	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1735		ret = -EOPNOTSUPP;
1736		goto done;
1737	}
1738
1739	memset(&hdev->stat, 0, sizeof(struct hci_dev_stats));
1740
1741done:
1742	hci_dev_put(hdev);
1743	return ret;
1744}
1745
1746static void hci_update_scan_state(struct hci_dev *hdev, u8 scan)
1747{
1748	bool conn_changed, discov_changed;
1749
1750	BT_DBG("%s scan 0x%02x", hdev->name, scan);
1751
1752	if ((scan & SCAN_PAGE))
1753		conn_changed = !hci_dev_test_and_set_flag(hdev,
1754							  HCI_CONNECTABLE);
1755	else
1756		conn_changed = hci_dev_test_and_clear_flag(hdev,
1757							   HCI_CONNECTABLE);
1758
1759	if ((scan & SCAN_INQUIRY)) {
1760		discov_changed = !hci_dev_test_and_set_flag(hdev,
1761							    HCI_DISCOVERABLE);
1762	} else {
1763		hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
1764		discov_changed = hci_dev_test_and_clear_flag(hdev,
1765							     HCI_DISCOVERABLE);
1766	}
1767
1768	if (!hci_dev_test_flag(hdev, HCI_MGMT))
1769		return;
1770
1771	if (conn_changed || discov_changed) {
1772		/* In case this was disabled through mgmt */
1773		hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
1774
1775		if (hci_dev_test_flag(hdev, HCI_LE_ENABLED))
1776			hci_req_update_adv_data(hdev, hdev->cur_adv_instance);
1777
1778		mgmt_new_settings(hdev);
1779	}
1780}
1781
1782int hci_dev_cmd(unsigned int cmd, void __user *arg)
1783{
1784	struct hci_dev *hdev;
1785	struct hci_dev_req dr;
1786	int err = 0;
1787
1788	if (copy_from_user(&dr, arg, sizeof(dr)))
1789		return -EFAULT;
1790
1791	hdev = hci_dev_get(dr.dev_id);
1792	if (!hdev)
1793		return -ENODEV;
1794
1795	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1796		err = -EBUSY;
1797		goto done;
1798	}
1799
1800	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1801		err = -EOPNOTSUPP;
1802		goto done;
1803	}
1804
1805	if (hdev->dev_type != HCI_BREDR) {
1806		err = -EOPNOTSUPP;
1807		goto done;
1808	}
1809
1810	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
1811		err = -EOPNOTSUPP;
1812		goto done;
1813	}
1814
1815	switch (cmd) {
1816	case HCISETAUTH:
1817		err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
1818				   HCI_INIT_TIMEOUT, NULL);
1819		break;
1820
1821	case HCISETENCRYPT:
1822		if (!lmp_encrypt_capable(hdev)) {
1823			err = -EOPNOTSUPP;
1824			break;
1825		}
1826
1827		if (!test_bit(HCI_AUTH, &hdev->flags)) {
1828			/* Auth must be enabled first */
1829			err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
1830					   HCI_INIT_TIMEOUT, NULL);
1831			if (err)
1832				break;
1833		}
1834
1835		err = hci_req_sync(hdev, hci_encrypt_req, dr.dev_opt,
1836				   HCI_INIT_TIMEOUT, NULL);
1837		break;
1838
1839	case HCISETSCAN:
1840		err = hci_req_sync(hdev, hci_scan_req, dr.dev_opt,
1841				   HCI_INIT_TIMEOUT, NULL);
1842
1843		/* Ensure that the connectable and discoverable states
1844		 * get correctly modified as this was a non-mgmt change.
1845		 */
1846		if (!err)
1847			hci_update_scan_state(hdev, dr.dev_opt);
1848		break;
1849
1850	case HCISETLINKPOL:
1851		err = hci_req_sync(hdev, hci_linkpol_req, dr.dev_opt,
1852				   HCI_INIT_TIMEOUT, NULL);
1853		break;
1854
1855	case HCISETLINKMODE:
1856		hdev->link_mode = ((__u16) dr.dev_opt) &
1857					(HCI_LM_MASTER | HCI_LM_ACCEPT);
1858		break;
1859
1860	case HCISETPTYPE:
1861		hdev->pkt_type = (__u16) dr.dev_opt;
1862		break;
1863
1864	case HCISETACLMTU:
1865		hdev->acl_mtu  = *((__u16 *) &dr.dev_opt + 1);
1866		hdev->acl_pkts = *((__u16 *) &dr.dev_opt + 0);
1867		break;
1868
1869	case HCISETSCOMTU:
1870		hdev->sco_mtu  = *((__u16 *) &dr.dev_opt + 1);
1871		hdev->sco_pkts = *((__u16 *) &dr.dev_opt + 0);
1872		break;
1873
1874	default:
1875		err = -EINVAL;
1876		break;
1877	}
1878
1879done:
1880	hci_dev_put(hdev);
1881	return err;
1882}
1883
1884int hci_get_dev_list(void __user *arg)
1885{
1886	struct hci_dev *hdev;
1887	struct hci_dev_list_req *dl;
1888	struct hci_dev_req *dr;
1889	int n = 0, size, err;
1890	__u16 dev_num;
1891
1892	if (get_user(dev_num, (__u16 __user *) arg))
1893		return -EFAULT;
1894
1895	if (!dev_num || dev_num > (PAGE_SIZE * 2) / sizeof(*dr))
1896		return -EINVAL;
1897
1898	size = sizeof(*dl) + dev_num * sizeof(*dr);
1899
1900	dl = kzalloc(size, GFP_KERNEL);
1901	if (!dl)
1902		return -ENOMEM;
1903
1904	dr = dl->dev_req;
1905
1906	read_lock(&hci_dev_list_lock);
1907	list_for_each_entry(hdev, &hci_dev_list, list) {
1908		unsigned long flags = hdev->flags;
 
1909
1910		/* When the auto-off is configured it means the transport
1911		 * is running, but in that case still indicate that the
1912		 * device is actually down.
1913		 */
1914		if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
1915			flags &= ~BIT(HCI_UP);
1916
1917		(dr + n)->dev_id  = hdev->id;
1918		(dr + n)->dev_opt = flags;
1919
1920		if (++n >= dev_num)
1921			break;
1922	}
1923	read_unlock(&hci_dev_list_lock);
1924
1925	dl->dev_num = n;
1926	size = sizeof(*dl) + n * sizeof(*dr);
1927
1928	err = copy_to_user(arg, dl, size);
1929	kfree(dl);
1930
1931	return err ? -EFAULT : 0;
1932}
1933
1934int hci_get_dev_info(void __user *arg)
1935{
1936	struct hci_dev *hdev;
1937	struct hci_dev_info di;
1938	unsigned long flags;
1939	int err = 0;
1940
1941	if (copy_from_user(&di, arg, sizeof(di)))
1942		return -EFAULT;
1943
1944	hdev = hci_dev_get(di.dev_id);
1945	if (!hdev)
1946		return -ENODEV;
1947
1948	/* When the auto-off is configured it means the transport
1949	 * is running, but in that case still indicate that the
1950	 * device is actually down.
1951	 */
1952	if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
1953		flags = hdev->flags & ~BIT(HCI_UP);
1954	else
1955		flags = hdev->flags;
1956
1957	strcpy(di.name, hdev->name);
1958	di.bdaddr   = hdev->bdaddr;
1959	di.type     = (hdev->bus & 0x0f) | ((hdev->dev_type & 0x03) << 4);
1960	di.flags    = flags;
1961	di.pkt_type = hdev->pkt_type;
1962	if (lmp_bredr_capable(hdev)) {
1963		di.acl_mtu  = hdev->acl_mtu;
1964		di.acl_pkts = hdev->acl_pkts;
1965		di.sco_mtu  = hdev->sco_mtu;
1966		di.sco_pkts = hdev->sco_pkts;
1967	} else {
1968		di.acl_mtu  = hdev->le_mtu;
1969		di.acl_pkts = hdev->le_pkts;
1970		di.sco_mtu  = 0;
1971		di.sco_pkts = 0;
1972	}
1973	di.link_policy = hdev->link_policy;
1974	di.link_mode   = hdev->link_mode;
1975
1976	memcpy(&di.stat, &hdev->stat, sizeof(di.stat));
1977	memcpy(&di.features, &hdev->features, sizeof(di.features));
1978
1979	if (copy_to_user(arg, &di, sizeof(di)))
1980		err = -EFAULT;
1981
1982	hci_dev_put(hdev);
1983
1984	return err;
1985}
1986
1987/* ---- Interface to HCI drivers ---- */
1988
1989static int hci_rfkill_set_block(void *data, bool blocked)
1990{
1991	struct hci_dev *hdev = data;
1992
1993	BT_DBG("%p name %s blocked %d", hdev, hdev->name, blocked);
1994
1995	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL))
1996		return -EBUSY;
1997
1998	if (blocked) {
1999		hci_dev_set_flag(hdev, HCI_RFKILLED);
2000		if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
2001		    !hci_dev_test_flag(hdev, HCI_CONFIG))
2002			hci_dev_do_close(hdev);
2003	} else {
2004		hci_dev_clear_flag(hdev, HCI_RFKILLED);
2005	}
2006
2007	return 0;
2008}
2009
2010static const struct rfkill_ops hci_rfkill_ops = {
2011	.set_block = hci_rfkill_set_block,
2012};
2013
2014static void hci_power_on(struct work_struct *work)
2015{
2016	struct hci_dev *hdev = container_of(work, struct hci_dev, power_on);
2017	int err;
2018
2019	BT_DBG("%s", hdev->name);
2020
2021	if (test_bit(HCI_UP, &hdev->flags) &&
2022	    hci_dev_test_flag(hdev, HCI_MGMT) &&
2023	    hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) {
2024		cancel_delayed_work(&hdev->power_off);
2025		hci_req_sync_lock(hdev);
2026		err = __hci_req_hci_power_on(hdev);
2027		hci_req_sync_unlock(hdev);
2028		mgmt_power_on(hdev, err);
2029		return;
2030	}
2031
2032	err = hci_dev_do_open(hdev);
2033	if (err < 0) {
2034		hci_dev_lock(hdev);
2035		mgmt_set_powered_failed(hdev, err);
2036		hci_dev_unlock(hdev);
2037		return;
2038	}
2039
2040	/* During the HCI setup phase, a few error conditions are
2041	 * ignored and they need to be checked now. If they are still
2042	 * valid, it is important to turn the device back off.
2043	 */
2044	if (hci_dev_test_flag(hdev, HCI_RFKILLED) ||
2045	    hci_dev_test_flag(hdev, HCI_UNCONFIGURED) ||
2046	    (hdev->dev_type == HCI_BREDR &&
2047	     !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
2048	     !bacmp(&hdev->static_addr, BDADDR_ANY))) {
2049		hci_dev_clear_flag(hdev, HCI_AUTO_OFF);
2050		hci_dev_do_close(hdev);
2051	} else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) {
2052		queue_delayed_work(hdev->req_workqueue, &hdev->power_off,
2053				   HCI_AUTO_OFF_TIMEOUT);
2054	}
2055
2056	if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) {
2057		/* For unconfigured devices, set the HCI_RAW flag
2058		 * so that userspace can easily identify them.
2059		 */
2060		if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
2061			set_bit(HCI_RAW, &hdev->flags);
2062
2063		/* For fully configured devices, this will send
2064		 * the Index Added event. For unconfigured devices,
2065		 * it will send Unconfigued Index Added event.
2066		 *
2067		 * Devices with HCI_QUIRK_RAW_DEVICE are ignored
2068		 * and no event will be send.
2069		 */
2070		mgmt_index_added(hdev);
2071	} else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) {
2072		/* When the controller is now configured, then it
2073		 * is important to clear the HCI_RAW flag.
2074		 */
2075		if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
2076			clear_bit(HCI_RAW, &hdev->flags);
2077
2078		/* Powering on the controller with HCI_CONFIG set only
2079		 * happens with the transition from unconfigured to
2080		 * configured. This will send the Index Added event.
2081		 */
2082		mgmt_index_added(hdev);
2083	}
2084}
2085
2086static void hci_power_off(struct work_struct *work)
2087{
2088	struct hci_dev *hdev = container_of(work, struct hci_dev,
2089					    power_off.work);
2090
2091	BT_DBG("%s", hdev->name);
2092
2093	hci_dev_do_close(hdev);
2094}
2095
2096static void hci_error_reset(struct work_struct *work)
2097{
2098	struct hci_dev *hdev = container_of(work, struct hci_dev, error_reset);
2099
2100	BT_DBG("%s", hdev->name);
2101
2102	if (hdev->hw_error)
2103		hdev->hw_error(hdev, hdev->hw_error_code);
2104	else
2105		BT_ERR("%s hardware error 0x%2.2x", hdev->name,
2106		       hdev->hw_error_code);
2107
2108	if (hci_dev_do_close(hdev))
2109		return;
2110
2111	hci_dev_do_open(hdev);
2112}
2113
2114void hci_uuids_clear(struct hci_dev *hdev)
2115{
2116	struct bt_uuid *uuid, *tmp;
2117
2118	list_for_each_entry_safe(uuid, tmp, &hdev->uuids, list) {
2119		list_del(&uuid->list);
2120		kfree(uuid);
2121	}
2122}
2123
2124void hci_link_keys_clear(struct hci_dev *hdev)
2125{
2126	struct link_key *key;
2127
2128	list_for_each_entry_rcu(key, &hdev->link_keys, list) {
2129		list_del_rcu(&key->list);
2130		kfree_rcu(key, rcu);
 
 
 
 
2131	}
2132}
2133
2134void hci_smp_ltks_clear(struct hci_dev *hdev)
2135{
2136	struct smp_ltk *k;
2137
2138	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2139		list_del_rcu(&k->list);
2140		kfree_rcu(k, rcu);
2141	}
2142}
2143
2144void hci_smp_irks_clear(struct hci_dev *hdev)
2145{
2146	struct smp_irk *k;
2147
2148	list_for_each_entry_rcu(k, &hdev->identity_resolving_keys, list) {
2149		list_del_rcu(&k->list);
2150		kfree_rcu(k, rcu);
2151	}
2152}
2153
2154struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
2155{
2156	struct link_key *k;
2157
2158	rcu_read_lock();
2159	list_for_each_entry_rcu(k, &hdev->link_keys, list) {
2160		if (bacmp(bdaddr, &k->bdaddr) == 0) {
2161			rcu_read_unlock();
2162			return k;
2163		}
2164	}
2165	rcu_read_unlock();
2166
2167	return NULL;
2168}
2169
2170static bool hci_persistent_key(struct hci_dev *hdev, struct hci_conn *conn,
2171			       u8 key_type, u8 old_key_type)
2172{
2173	/* Legacy key */
2174	if (key_type < 0x03)
2175		return true;
2176
2177	/* Debug keys are insecure so don't store them persistently */
2178	if (key_type == HCI_LK_DEBUG_COMBINATION)
2179		return false;
2180
2181	/* Changed combination key and there's no previous one */
2182	if (key_type == HCI_LK_CHANGED_COMBINATION && old_key_type == 0xff)
2183		return false;
2184
2185	/* Security mode 3 case */
2186	if (!conn)
2187		return true;
2188
2189	/* BR/EDR key derived using SC from an LE link */
2190	if (conn->type == LE_LINK)
2191		return true;
2192
2193	/* Neither local nor remote side had no-bonding as requirement */
2194	if (conn->auth_type > 0x01 && conn->remote_auth > 0x01)
2195		return true;
2196
2197	/* Local side had dedicated bonding as requirement */
2198	if (conn->auth_type == 0x02 || conn->auth_type == 0x03)
2199		return true;
2200
2201	/* Remote side had dedicated bonding as requirement */
2202	if (conn->remote_auth == 0x02 || conn->remote_auth == 0x03)
2203		return true;
2204
2205	/* If none of the above criteria match, then don't store the key
2206	 * persistently */
2207	return false;
2208}
2209
2210static u8 ltk_role(u8 type)
2211{
2212	if (type == SMP_LTK)
2213		return HCI_ROLE_MASTER;
2214
2215	return HCI_ROLE_SLAVE;
2216}
2217
2218struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2219			     u8 addr_type, u8 role)
2220{
2221	struct smp_ltk *k;
2222
2223	rcu_read_lock();
2224	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2225		if (addr_type != k->bdaddr_type || bacmp(bdaddr, &k->bdaddr))
2226			continue;
2227
2228		if (smp_ltk_is_sc(k) || ltk_role(k->type) == role) {
2229			rcu_read_unlock();
2230			return k;
2231		}
2232	}
2233	rcu_read_unlock();
 
 
 
 
 
 
 
 
 
 
 
 
 
2234
2235	return NULL;
2236}
2237
2238struct smp_irk *hci_find_irk_by_rpa(struct hci_dev *hdev, bdaddr_t *rpa)
2239{
2240	struct smp_irk *irk;
2241
2242	rcu_read_lock();
2243	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2244		if (!bacmp(&irk->rpa, rpa)) {
2245			rcu_read_unlock();
2246			return irk;
2247		}
2248	}
2249
2250	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2251		if (smp_irk_matches(hdev, irk->val, rpa)) {
2252			bacpy(&irk->rpa, rpa);
2253			rcu_read_unlock();
2254			return irk;
2255		}
2256	}
2257	rcu_read_unlock();
2258
2259	return NULL;
2260}
2261
2262struct smp_irk *hci_find_irk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr,
2263				     u8 addr_type)
2264{
2265	struct smp_irk *irk;
2266
2267	/* Identity Address must be public or static random */
2268	if (addr_type == ADDR_LE_DEV_RANDOM && (bdaddr->b[5] & 0xc0) != 0xc0)
2269		return NULL;
2270
2271	rcu_read_lock();
2272	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2273		if (addr_type == irk->addr_type &&
2274		    bacmp(bdaddr, &irk->bdaddr) == 0) {
2275			rcu_read_unlock();
2276			return irk;
2277		}
2278	}
2279	rcu_read_unlock();
2280
2281	return NULL;
2282}
2283
2284struct link_key *hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn,
2285				  bdaddr_t *bdaddr, u8 *val, u8 type,
2286				  u8 pin_len, bool *persistent)
2287{
2288	struct link_key *key, *old_key;
2289	u8 old_key_type;
 
2290
2291	old_key = hci_find_link_key(hdev, bdaddr);
2292	if (old_key) {
2293		old_key_type = old_key->type;
2294		key = old_key;
2295	} else {
2296		old_key_type = conn ? conn->key_type : 0xff;
2297		key = kzalloc(sizeof(*key), GFP_KERNEL);
2298		if (!key)
2299			return NULL;
2300		list_add_rcu(&key->list, &hdev->link_keys);
2301	}
2302
2303	BT_DBG("%s key for %pMR type %u", hdev->name, bdaddr, type);
2304
2305	/* Some buggy controller combinations generate a changed
2306	 * combination key for legacy pairing even when there's no
2307	 * previous key */
2308	if (type == HCI_LK_CHANGED_COMBINATION &&
2309	    (!conn || conn->remote_auth == 0xff) && old_key_type == 0xff) {
2310		type = HCI_LK_COMBINATION;
2311		if (conn)
2312			conn->key_type = type;
2313	}
2314
2315	bacpy(&key->bdaddr, bdaddr);
2316	memcpy(key->val, val, HCI_LINK_KEY_SIZE);
2317	key->pin_len = pin_len;
2318
2319	if (type == HCI_LK_CHANGED_COMBINATION)
2320		key->type = old_key_type;
2321	else
2322		key->type = type;
2323
2324	if (persistent)
2325		*persistent = hci_persistent_key(hdev, conn, type,
2326						 old_key_type);
2327
2328	return key;
 
 
 
 
 
 
 
2329}
2330
2331struct smp_ltk *hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2332			    u8 addr_type, u8 type, u8 authenticated,
2333			    u8 tk[16], u8 enc_size, __le16 ediv, __le64 rand)
2334{
2335	struct smp_ltk *key, *old_key;
2336	u8 role = ltk_role(type);
2337
2338	old_key = hci_find_ltk(hdev, bdaddr, addr_type, role);
2339	if (old_key)
2340		key = old_key;
2341	else {
2342		key = kzalloc(sizeof(*key), GFP_KERNEL);
2343		if (!key)
2344			return NULL;
2345		list_add_rcu(&key->list, &hdev->long_term_keys);
2346	}
2347
2348	bacpy(&key->bdaddr, bdaddr);
2349	key->bdaddr_type = addr_type;
2350	memcpy(key->val, tk, sizeof(key->val));
2351	key->authenticated = authenticated;
2352	key->ediv = ediv;
2353	key->rand = rand;
2354	key->enc_size = enc_size;
2355	key->type = type;
2356
2357	return key;
2358}
2359
2360struct smp_irk *hci_add_irk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2361			    u8 addr_type, u8 val[16], bdaddr_t *rpa)
2362{
2363	struct smp_irk *irk;
2364
2365	irk = hci_find_irk_by_addr(hdev, bdaddr, addr_type);
2366	if (!irk) {
2367		irk = kzalloc(sizeof(*irk), GFP_KERNEL);
2368		if (!irk)
2369			return NULL;
2370
2371		bacpy(&irk->bdaddr, bdaddr);
2372		irk->addr_type = addr_type;
2373
2374		list_add_rcu(&irk->list, &hdev->identity_resolving_keys);
2375	}
2376
2377	memcpy(irk->val, val, 16);
2378	bacpy(&irk->rpa, rpa);
2379
2380	return irk;
2381}
2382
2383int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
2384{
2385	struct link_key *key;
2386
2387	key = hci_find_link_key(hdev, bdaddr);
2388	if (!key)
2389		return -ENOENT;
2390
2391	BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2392
2393	list_del_rcu(&key->list);
2394	kfree_rcu(key, rcu);
2395
2396	return 0;
2397}
2398
2399int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type)
2400{
2401	struct smp_ltk *k;
2402	int removed = 0;
2403
2404	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2405		if (bacmp(bdaddr, &k->bdaddr) || k->bdaddr_type != bdaddr_type)
2406			continue;
2407
2408		BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2409
2410		list_del_rcu(&k->list);
2411		kfree_rcu(k, rcu);
2412		removed++;
2413	}
2414
2415	return removed ? 0 : -ENOENT;
2416}
2417
2418void hci_remove_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type)
2419{
2420	struct smp_irk *k;
2421
2422	list_for_each_entry_rcu(k, &hdev->identity_resolving_keys, list) {
2423		if (bacmp(bdaddr, &k->bdaddr) || k->addr_type != addr_type)
2424			continue;
2425
2426		BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2427
2428		list_del_rcu(&k->list);
2429		kfree_rcu(k, rcu);
2430	}
2431}
2432
2433bool hci_bdaddr_is_paired(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type)
2434{
2435	struct smp_ltk *k;
2436	struct smp_irk *irk;
2437	u8 addr_type;
2438
2439	if (type == BDADDR_BREDR) {
2440		if (hci_find_link_key(hdev, bdaddr))
2441			return true;
2442		return false;
2443	}
2444
2445	/* Convert to HCI addr type which struct smp_ltk uses */
2446	if (type == BDADDR_LE_PUBLIC)
2447		addr_type = ADDR_LE_DEV_PUBLIC;
2448	else
2449		addr_type = ADDR_LE_DEV_RANDOM;
2450
2451	irk = hci_get_irk(hdev, bdaddr, addr_type);
2452	if (irk) {
2453		bdaddr = &irk->bdaddr;
2454		addr_type = irk->addr_type;
2455	}
2456
2457	rcu_read_lock();
2458	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2459		if (k->bdaddr_type == addr_type && !bacmp(bdaddr, &k->bdaddr)) {
2460			rcu_read_unlock();
2461			return true;
2462		}
2463	}
2464	rcu_read_unlock();
2465
2466	return false;
2467}
2468
2469/* HCI command timer function */
2470static void hci_cmd_timeout(struct work_struct *work)
2471{
2472	struct hci_dev *hdev = container_of(work, struct hci_dev,
2473					    cmd_timer.work);
2474
2475	if (hdev->sent_cmd) {
2476		struct hci_command_hdr *sent = (void *) hdev->sent_cmd->data;
2477		u16 opcode = __le16_to_cpu(sent->opcode);
2478
2479		BT_ERR("%s command 0x%4.4x tx timeout", hdev->name, opcode);
2480	} else {
2481		BT_ERR("%s command tx timeout", hdev->name);
2482	}
2483
2484	atomic_set(&hdev->cmd_cnt, 1);
2485	queue_work(hdev->workqueue, &hdev->cmd_work);
2486}
2487
2488struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev,
2489					  bdaddr_t *bdaddr, u8 bdaddr_type)
2490{
2491	struct oob_data *data;
2492
2493	list_for_each_entry(data, &hdev->remote_oob_data, list) {
2494		if (bacmp(bdaddr, &data->bdaddr) != 0)
2495			continue;
2496		if (data->bdaddr_type != bdaddr_type)
2497			continue;
2498		return data;
2499	}
2500
2501	return NULL;
2502}
2503
2504int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
2505			       u8 bdaddr_type)
2506{
2507	struct oob_data *data;
2508
2509	data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
2510	if (!data)
2511		return -ENOENT;
2512
2513	BT_DBG("%s removing %pMR (%u)", hdev->name, bdaddr, bdaddr_type);
2514
2515	list_del(&data->list);
2516	kfree(data);
2517
2518	return 0;
2519}
2520
2521void hci_remote_oob_data_clear(struct hci_dev *hdev)
2522{
2523	struct oob_data *data, *n;
2524
2525	list_for_each_entry_safe(data, n, &hdev->remote_oob_data, list) {
2526		list_del(&data->list);
2527		kfree(data);
2528	}
2529}
2530
2531int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
2532			    u8 bdaddr_type, u8 *hash192, u8 *rand192,
2533			    u8 *hash256, u8 *rand256)
2534{
2535	struct oob_data *data;
2536
2537	data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
2538	if (!data) {
2539		data = kmalloc(sizeof(*data), GFP_KERNEL);
2540		if (!data)
2541			return -ENOMEM;
2542
2543		bacpy(&data->bdaddr, bdaddr);
2544		data->bdaddr_type = bdaddr_type;
2545		list_add(&data->list, &hdev->remote_oob_data);
2546	}
2547
2548	if (hash192 && rand192) {
2549		memcpy(data->hash192, hash192, sizeof(data->hash192));
2550		memcpy(data->rand192, rand192, sizeof(data->rand192));
2551		if (hash256 && rand256)
2552			data->present = 0x03;
2553	} else {
2554		memset(data->hash192, 0, sizeof(data->hash192));
2555		memset(data->rand192, 0, sizeof(data->rand192));
2556		if (hash256 && rand256)
2557			data->present = 0x02;
2558		else
2559			data->present = 0x00;
2560	}
2561
2562	if (hash256 && rand256) {
2563		memcpy(data->hash256, hash256, sizeof(data->hash256));
2564		memcpy(data->rand256, rand256, sizeof(data->rand256));
2565	} else {
2566		memset(data->hash256, 0, sizeof(data->hash256));
2567		memset(data->rand256, 0, sizeof(data->rand256));
2568		if (hash192 && rand192)
2569			data->present = 0x01;
2570	}
2571
2572	BT_DBG("%s for %pMR", hdev->name, bdaddr);
2573
2574	return 0;
2575}
2576
2577/* This function requires the caller holds hdev->lock */
2578struct adv_info *hci_find_adv_instance(struct hci_dev *hdev, u8 instance)
 
2579{
2580	struct adv_info *adv_instance;
 
 
 
 
 
 
2581
2582	list_for_each_entry(adv_instance, &hdev->adv_instances, list) {
2583		if (adv_instance->instance == instance)
2584			return adv_instance;
2585	}
2586
2587	return NULL;
2588}
2589
2590/* This function requires the caller holds hdev->lock */
2591struct adv_info *hci_get_next_instance(struct hci_dev *hdev, u8 instance)
2592{
2593	struct adv_info *cur_instance;
2594
2595	cur_instance = hci_find_adv_instance(hdev, instance);
2596	if (!cur_instance)
2597		return NULL;
2598
2599	if (cur_instance == list_last_entry(&hdev->adv_instances,
2600					    struct adv_info, list))
2601		return list_first_entry(&hdev->adv_instances,
2602						 struct adv_info, list);
2603	else
2604		return list_next_entry(cur_instance, list);
2605}
2606
2607/* This function requires the caller holds hdev->lock */
2608int hci_remove_adv_instance(struct hci_dev *hdev, u8 instance)
2609{
2610	struct adv_info *adv_instance;
2611
2612	adv_instance = hci_find_adv_instance(hdev, instance);
2613	if (!adv_instance)
2614		return -ENOENT;
2615
2616	BT_DBG("%s removing %dMR", hdev->name, instance);
2617
2618	if (hdev->cur_adv_instance == instance) {
2619		if (hdev->adv_instance_timeout) {
2620			cancel_delayed_work(&hdev->adv_instance_expire);
2621			hdev->adv_instance_timeout = 0;
2622		}
2623		hdev->cur_adv_instance = 0x00;
2624	}
2625
2626	list_del(&adv_instance->list);
2627	kfree(adv_instance);
2628
2629	hdev->adv_instance_cnt--;
2630
2631	return 0;
2632}
2633
2634/* This function requires the caller holds hdev->lock */
2635void hci_adv_instances_clear(struct hci_dev *hdev)
2636{
2637	struct adv_info *adv_instance, *n;
2638
2639	if (hdev->adv_instance_timeout) {
2640		cancel_delayed_work(&hdev->adv_instance_expire);
2641		hdev->adv_instance_timeout = 0;
2642	}
2643
2644	list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list) {
2645		list_del(&adv_instance->list);
2646		kfree(adv_instance);
2647	}
2648
2649	hdev->adv_instance_cnt = 0;
2650	hdev->cur_adv_instance = 0x00;
2651}
2652
2653/* This function requires the caller holds hdev->lock */
2654int hci_add_adv_instance(struct hci_dev *hdev, u8 instance, u32 flags,
2655			 u16 adv_data_len, u8 *adv_data,
2656			 u16 scan_rsp_len, u8 *scan_rsp_data,
2657			 u16 timeout, u16 duration)
2658{
2659	struct adv_info *adv_instance;
2660
2661	adv_instance = hci_find_adv_instance(hdev, instance);
2662	if (adv_instance) {
2663		memset(adv_instance->adv_data, 0,
2664		       sizeof(adv_instance->adv_data));
2665		memset(adv_instance->scan_rsp_data, 0,
2666		       sizeof(adv_instance->scan_rsp_data));
2667	} else {
2668		if (hdev->adv_instance_cnt >= HCI_MAX_ADV_INSTANCES ||
2669		    instance < 1 || instance > HCI_MAX_ADV_INSTANCES)
2670			return -EOVERFLOW;
2671
2672		adv_instance = kzalloc(sizeof(*adv_instance), GFP_KERNEL);
2673		if (!adv_instance)
2674			return -ENOMEM;
2675
2676		adv_instance->pending = true;
2677		adv_instance->instance = instance;
2678		list_add(&adv_instance->list, &hdev->adv_instances);
2679		hdev->adv_instance_cnt++;
2680	}
2681
2682	adv_instance->flags = flags;
2683	adv_instance->adv_data_len = adv_data_len;
2684	adv_instance->scan_rsp_len = scan_rsp_len;
2685
2686	if (adv_data_len)
2687		memcpy(adv_instance->adv_data, adv_data, adv_data_len);
2688
2689	if (scan_rsp_len)
2690		memcpy(adv_instance->scan_rsp_data,
2691		       scan_rsp_data, scan_rsp_len);
2692
2693	adv_instance->timeout = timeout;
2694	adv_instance->remaining_time = timeout;
2695
2696	if (duration == 0)
2697		adv_instance->duration = HCI_DEFAULT_ADV_DURATION;
2698	else
2699		adv_instance->duration = duration;
2700
2701	BT_DBG("%s for %dMR", hdev->name, instance);
 
 
 
2702
2703	return 0;
 
 
 
 
 
 
 
2704}
2705
2706struct bdaddr_list *hci_bdaddr_list_lookup(struct list_head *bdaddr_list,
2707					 bdaddr_t *bdaddr, u8 type)
2708{
2709	struct bdaddr_list *b;
2710
2711	list_for_each_entry(b, bdaddr_list, list) {
2712		if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2713			return b;
2714	}
2715
2716	return NULL;
2717}
2718
2719void hci_bdaddr_list_clear(struct list_head *bdaddr_list)
2720{
2721	struct bdaddr_list *b, *n;
 
 
 
2722
2723	list_for_each_entry_safe(b, n, bdaddr_list, list) {
2724		list_del(&b->list);
2725		kfree(b);
2726	}
2727}
2728
2729int hci_bdaddr_list_add(struct list_head *list, bdaddr_t *bdaddr, u8 type)
2730{
2731	struct bdaddr_list *entry;
2732
2733	if (!bacmp(bdaddr, BDADDR_ANY))
2734		return -EBADF;
2735
2736	if (hci_bdaddr_list_lookup(list, bdaddr, type))
2737		return -EEXIST;
2738
2739	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
2740	if (!entry)
2741		return -ENOMEM;
2742
2743	bacpy(&entry->bdaddr, bdaddr);
2744	entry->bdaddr_type = type;
2745
2746	list_add(&entry->list, list);
2747
2748	return 0;
2749}
2750
2751int hci_bdaddr_list_del(struct list_head *list, bdaddr_t *bdaddr, u8 type)
2752{
2753	struct bdaddr_list *entry;
2754
2755	if (!bacmp(bdaddr, BDADDR_ANY)) {
2756		hci_bdaddr_list_clear(list);
2757		return 0;
2758	}
2759
2760	entry = hci_bdaddr_list_lookup(list, bdaddr, type);
2761	if (!entry)
2762		return -ENOENT;
2763
2764	list_del(&entry->list);
2765	kfree(entry);
2766
2767	return 0;
2768}
2769
2770/* This function requires the caller holds hdev->lock */
2771struct hci_conn_params *hci_conn_params_lookup(struct hci_dev *hdev,
2772					       bdaddr_t *addr, u8 addr_type)
2773{
2774	struct hci_conn_params *params;
2775
2776	list_for_each_entry(params, &hdev->le_conn_params, list) {
2777		if (bacmp(&params->addr, addr) == 0 &&
2778		    params->addr_type == addr_type) {
2779			return params;
2780		}
2781	}
2782
2783	return NULL;
2784}
2785
2786/* This function requires the caller holds hdev->lock */
2787struct hci_conn_params *hci_pend_le_action_lookup(struct list_head *list,
2788						  bdaddr_t *addr, u8 addr_type)
2789{
2790	struct hci_conn_params *param;
2791
2792	list_for_each_entry(param, list, action) {
2793		if (bacmp(&param->addr, addr) == 0 &&
2794		    param->addr_type == addr_type)
2795			return param;
2796	}
2797
2798	return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2799}
2800
2801/* This function requires the caller holds hdev->lock */
2802struct hci_conn_params *hci_conn_params_add(struct hci_dev *hdev,
2803					    bdaddr_t *addr, u8 addr_type)
 
2804{
2805	struct hci_conn_params *params;
2806
 
 
 
2807	params = hci_conn_params_lookup(hdev, addr, addr_type);
2808	if (params)
2809		return params;
2810
2811	params = kzalloc(sizeof(*params), GFP_KERNEL);
2812	if (!params) {
2813		BT_ERR("Out of memory");
2814		return NULL;
2815	}
2816
2817	bacpy(&params->addr, addr);
2818	params->addr_type = addr_type;
2819
2820	list_add(&params->list, &hdev->le_conn_params);
2821	INIT_LIST_HEAD(&params->action);
2822
2823	params->conn_min_interval = hdev->le_conn_min_interval;
2824	params->conn_max_interval = hdev->le_conn_max_interval;
2825	params->conn_latency = hdev->le_conn_latency;
2826	params->supervision_timeout = hdev->le_supv_timeout;
2827	params->auto_connect = HCI_AUTO_CONN_DISABLED;
 
 
 
 
 
 
 
 
 
 
2828
2829	BT_DBG("addr %pMR (type %u)", addr, addr_type);
 
 
2830
2831	return params;
2832}
2833
2834static void hci_conn_params_free(struct hci_conn_params *params)
 
2835{
2836	if (params->conn) {
2837		hci_conn_drop(params->conn);
2838		hci_conn_put(params->conn);
2839	}
 
 
 
2840
2841	list_del(&params->action);
2842	list_del(&params->list);
2843	kfree(params);
 
 
2844}
2845
2846/* This function requires the caller holds hdev->lock */
2847void hci_conn_params_del(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type)
2848{
2849	struct hci_conn_params *params;
2850
2851	params = hci_conn_params_lookup(hdev, addr, addr_type);
2852	if (!params)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2853		return;
 
 
 
 
2854
2855	hci_conn_params_free(params);
2856
 
 
 
2857	hci_update_background_scan(hdev);
 
 
 
 
 
 
 
 
 
 
 
 
 
2858
2859	BT_DBG("addr %pMR (type %u)", addr, addr_type);
 
 
 
2860}
2861
2862/* This function requires the caller holds hdev->lock */
2863void hci_conn_params_clear_disabled(struct hci_dev *hdev)
2864{
2865	struct hci_conn_params *params, *tmp;
2866
2867	list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list) {
2868		if (params->auto_connect != HCI_AUTO_CONN_DISABLED)
2869			continue;
 
2870
2871		/* If trying to estabilish one time connection to disabled
2872		 * device, leave the params, but mark them as just once.
2873		 */
2874		if (params->explicit_connect) {
2875			params->auto_connect = HCI_AUTO_CONN_EXPLICIT;
2876			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2877		}
2878
2879		list_del(&params->list);
2880		kfree(params);
2881	}
 
 
 
 
 
 
 
 
 
 
2882
2883	BT_DBG("All LE disabled connection parameters were removed");
 
 
 
 
 
 
2884}
2885
2886/* This function requires the caller holds hdev->lock */
2887static void hci_conn_params_clear_all(struct hci_dev *hdev)
2888{
2889	struct hci_conn_params *params, *tmp;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2890
2891	list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list)
2892		hci_conn_params_free(params);
2893
2894	BT_DBG("All LE connection parameters were removed");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2895}
2896
2897/* Copy the Identity Address of the controller.
2898 *
2899 * If the controller has a public BD_ADDR, then by default use that one.
2900 * If this is a LE only controller without a public address, default to
2901 * the static random address.
2902 *
2903 * For debugging purposes it is possible to force controllers with a
2904 * public address to use the static random address instead.
2905 *
2906 * In case BR/EDR has been disabled on a dual-mode controller and
2907 * userspace has configured a static address, then that address
2908 * becomes the identity address instead of the public BR/EDR address.
2909 */
2910void hci_copy_identity_address(struct hci_dev *hdev, bdaddr_t *bdaddr,
2911			       u8 *bdaddr_type)
2912{
2913	if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
2914	    !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
2915	    (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
2916	     bacmp(&hdev->static_addr, BDADDR_ANY))) {
2917		bacpy(bdaddr, &hdev->static_addr);
2918		*bdaddr_type = ADDR_LE_DEV_RANDOM;
2919	} else {
2920		bacpy(bdaddr, &hdev->bdaddr);
2921		*bdaddr_type = ADDR_LE_DEV_PUBLIC;
2922	}
2923}
2924
2925/* Alloc HCI device */
2926struct hci_dev *hci_alloc_dev(void)
2927{
2928	struct hci_dev *hdev;
2929
2930	hdev = kzalloc(sizeof(*hdev), GFP_KERNEL);
2931	if (!hdev)
2932		return NULL;
2933
2934	hdev->pkt_type  = (HCI_DM1 | HCI_DH1 | HCI_HV1);
2935	hdev->esco_type = (ESCO_HV1);
2936	hdev->link_mode = (HCI_LM_ACCEPT);
2937	hdev->num_iac = 0x01;		/* One IAC support is mandatory */
2938	hdev->io_capability = 0x03;	/* No Input No Output */
2939	hdev->manufacturer = 0xffff;	/* Default to internal use */
2940	hdev->inq_tx_power = HCI_TX_POWER_INVALID;
2941	hdev->adv_tx_power = HCI_TX_POWER_INVALID;
2942	hdev->adv_instance_cnt = 0;
2943	hdev->cur_adv_instance = 0x00;
2944	hdev->adv_instance_timeout = 0;
2945
2946	hdev->sniff_max_interval = 800;
2947	hdev->sniff_min_interval = 80;
2948
2949	hdev->le_adv_channel_map = 0x07;
2950	hdev->le_adv_min_interval = 0x0800;
2951	hdev->le_adv_max_interval = 0x0800;
2952	hdev->le_scan_interval = 0x0060;
2953	hdev->le_scan_window = 0x0030;
2954	hdev->le_conn_min_interval = 0x0028;
2955	hdev->le_conn_max_interval = 0x0038;
2956	hdev->le_conn_latency = 0x0000;
2957	hdev->le_supv_timeout = 0x002a;
2958	hdev->le_def_tx_len = 0x001b;
2959	hdev->le_def_tx_time = 0x0148;
2960	hdev->le_max_tx_len = 0x001b;
2961	hdev->le_max_tx_time = 0x0148;
2962	hdev->le_max_rx_len = 0x001b;
2963	hdev->le_max_rx_time = 0x0148;
2964
2965	hdev->rpa_timeout = HCI_DEFAULT_RPA_TIMEOUT;
2966	hdev->discov_interleaved_timeout = DISCOV_INTERLEAVED_TIMEOUT;
2967	hdev->conn_info_min_age = DEFAULT_CONN_INFO_MIN_AGE;
2968	hdev->conn_info_max_age = DEFAULT_CONN_INFO_MAX_AGE;
2969
2970	mutex_init(&hdev->lock);
2971	mutex_init(&hdev->req_lock);
2972
2973	INIT_LIST_HEAD(&hdev->mgmt_pending);
2974	INIT_LIST_HEAD(&hdev->blacklist);
2975	INIT_LIST_HEAD(&hdev->whitelist);
2976	INIT_LIST_HEAD(&hdev->uuids);
2977	INIT_LIST_HEAD(&hdev->link_keys);
2978	INIT_LIST_HEAD(&hdev->long_term_keys);
2979	INIT_LIST_HEAD(&hdev->identity_resolving_keys);
2980	INIT_LIST_HEAD(&hdev->remote_oob_data);
2981	INIT_LIST_HEAD(&hdev->le_white_list);
2982	INIT_LIST_HEAD(&hdev->le_conn_params);
2983	INIT_LIST_HEAD(&hdev->pend_le_conns);
2984	INIT_LIST_HEAD(&hdev->pend_le_reports);
2985	INIT_LIST_HEAD(&hdev->conn_hash.list);
2986	INIT_LIST_HEAD(&hdev->adv_instances);
2987
2988	INIT_WORK(&hdev->rx_work, hci_rx_work);
2989	INIT_WORK(&hdev->cmd_work, hci_cmd_work);
2990	INIT_WORK(&hdev->tx_work, hci_tx_work);
2991	INIT_WORK(&hdev->power_on, hci_power_on);
2992	INIT_WORK(&hdev->error_reset, hci_error_reset);
2993
2994	INIT_DELAYED_WORK(&hdev->power_off, hci_power_off);
 
 
2995
2996	skb_queue_head_init(&hdev->rx_q);
2997	skb_queue_head_init(&hdev->cmd_q);
2998	skb_queue_head_init(&hdev->raw_q);
2999
3000	init_waitqueue_head(&hdev->req_wait_q);
3001
3002	INIT_DELAYED_WORK(&hdev->cmd_timer, hci_cmd_timeout);
3003
3004	hci_request_setup(hdev);
3005
3006	hci_init_sysfs(hdev);
3007	discovery_init(hdev);
3008
3009	return hdev;
3010}
3011EXPORT_SYMBOL(hci_alloc_dev);
3012
3013/* Free HCI device */
3014void hci_free_dev(struct hci_dev *hdev)
3015{
3016	/* will free via device release */
3017	put_device(&hdev->dev);
3018}
3019EXPORT_SYMBOL(hci_free_dev);
3020
3021/* Register HCI device */
3022int hci_register_dev(struct hci_dev *hdev)
3023{
3024	int id, error;
3025
3026	if (!hdev->open || !hdev->close || !hdev->send)
3027		return -EINVAL;
3028
3029	/* Do not allow HCI_AMP devices to register at index 0,
3030	 * so the index can be used as the AMP controller ID.
3031	 */
3032	switch (hdev->dev_type) {
3033	case HCI_BREDR:
3034		id = ida_simple_get(&hci_index_ida, 0, 0, GFP_KERNEL);
3035		break;
3036	case HCI_AMP:
3037		id = ida_simple_get(&hci_index_ida, 1, 0, GFP_KERNEL);
3038		break;
3039	default:
3040		return -EINVAL;
3041	}
3042
3043	if (id < 0)
3044		return id;
3045
3046	sprintf(hdev->name, "hci%d", id);
3047	hdev->id = id;
3048
3049	BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
3050
3051	hdev->workqueue = alloc_workqueue("%s", WQ_HIGHPRI | WQ_UNBOUND |
3052					  WQ_MEM_RECLAIM, 1, hdev->name);
3053	if (!hdev->workqueue) {
3054		error = -ENOMEM;
3055		goto err;
3056	}
3057
3058	hdev->req_workqueue = alloc_workqueue("%s", WQ_HIGHPRI | WQ_UNBOUND |
3059					      WQ_MEM_RECLAIM, 1, hdev->name);
3060	if (!hdev->req_workqueue) {
3061		destroy_workqueue(hdev->workqueue);
3062		error = -ENOMEM;
3063		goto err;
3064	}
3065
3066	if (!IS_ERR_OR_NULL(bt_debugfs))
3067		hdev->debugfs = debugfs_create_dir(hdev->name, bt_debugfs);
3068
3069	dev_set_name(&hdev->dev, "%s", hdev->name);
3070
3071	error = device_add(&hdev->dev);
3072	if (error < 0)
 
 
 
 
3073		goto err_wqueue;
 
3074
3075	hci_leds_init(hdev);
 
 
3076
3077	hdev->rfkill = rfkill_alloc(hdev->name, &hdev->dev,
3078				    RFKILL_TYPE_BLUETOOTH, &hci_rfkill_ops,
3079				    hdev);
3080	if (hdev->rfkill) {
3081		if (rfkill_register(hdev->rfkill) < 0) {
3082			rfkill_destroy(hdev->rfkill);
3083			hdev->rfkill = NULL;
3084		}
3085	}
3086
3087	if (hdev->rfkill && rfkill_blocked(hdev->rfkill))
3088		hci_dev_set_flag(hdev, HCI_RFKILLED);
3089
3090	hci_dev_set_flag(hdev, HCI_SETUP);
3091	hci_dev_set_flag(hdev, HCI_AUTO_OFF);
3092
3093	if (hdev->dev_type == HCI_BREDR) {
3094		/* Assume BR/EDR support until proven otherwise (such as
3095		 * through reading supported features during init.
3096		 */
3097		hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
3098	}
3099
3100	write_lock(&hci_dev_list_lock);
3101	list_add(&hdev->list, &hci_dev_list);
3102	write_unlock(&hci_dev_list_lock);
3103
3104	/* Devices that are marked for raw-only usage are unconfigured
3105	 * and should not be included in normal operation.
3106	 */
3107	if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
3108		hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
3109
3110	hci_sock_dev_event(hdev, HCI_DEV_REG);
3111	hci_dev_hold(hdev);
3112
3113	queue_work(hdev->req_workqueue, &hdev->power_on);
3114
3115	return id;
3116
 
 
3117err_wqueue:
3118	destroy_workqueue(hdev->workqueue);
3119	destroy_workqueue(hdev->req_workqueue);
3120err:
3121	ida_simple_remove(&hci_index_ida, hdev->id);
3122
3123	return error;
3124}
3125EXPORT_SYMBOL(hci_register_dev);
3126
3127/* Unregister HCI device */
3128void hci_unregister_dev(struct hci_dev *hdev)
3129{
3130	int id;
3131
3132	BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
3133
3134	hci_dev_set_flag(hdev, HCI_UNREGISTER);
3135
3136	id = hdev->id;
3137
3138	write_lock(&hci_dev_list_lock);
3139	list_del(&hdev->list);
3140	write_unlock(&hci_dev_list_lock);
3141
3142	hci_dev_do_close(hdev);
3143
 
 
 
3144	cancel_work_sync(&hdev->power_on);
3145
3146	if (!test_bit(HCI_INIT, &hdev->flags) &&
3147	    !hci_dev_test_flag(hdev, HCI_SETUP) &&
3148	    !hci_dev_test_flag(hdev, HCI_CONFIG)) {
3149		hci_dev_lock(hdev);
3150		mgmt_index_removed(hdev);
3151		hci_dev_unlock(hdev);
3152	}
3153
3154	/* mgmt_index_removed should take care of emptying the
3155	 * pending list */
3156	BUG_ON(!list_empty(&hdev->mgmt_pending));
3157
3158	hci_sock_dev_event(hdev, HCI_DEV_UNREG);
3159
3160	if (hdev->rfkill) {
3161		rfkill_unregister(hdev->rfkill);
3162		rfkill_destroy(hdev->rfkill);
3163	}
3164
 
 
 
3165	device_del(&hdev->dev);
3166
3167	debugfs_remove_recursive(hdev->debugfs);
3168
3169	destroy_workqueue(hdev->workqueue);
3170	destroy_workqueue(hdev->req_workqueue);
3171
3172	hci_dev_lock(hdev);
3173	hci_bdaddr_list_clear(&hdev->blacklist);
3174	hci_bdaddr_list_clear(&hdev->whitelist);
3175	hci_uuids_clear(hdev);
3176	hci_link_keys_clear(hdev);
3177	hci_smp_ltks_clear(hdev);
3178	hci_smp_irks_clear(hdev);
3179	hci_remote_oob_data_clear(hdev);
3180	hci_adv_instances_clear(hdev);
3181	hci_bdaddr_list_clear(&hdev->le_white_list);
3182	hci_conn_params_clear_all(hdev);
3183	hci_discovery_filter_clear(hdev);
3184	hci_dev_unlock(hdev);
3185
3186	hci_dev_put(hdev);
3187
3188	ida_simple_remove(&hci_index_ida, id);
3189}
3190EXPORT_SYMBOL(hci_unregister_dev);
3191
3192/* Suspend HCI device */
3193int hci_suspend_dev(struct hci_dev *hdev)
3194{
3195	hci_sock_dev_event(hdev, HCI_DEV_SUSPEND);
3196	return 0;
3197}
3198EXPORT_SYMBOL(hci_suspend_dev);
3199
3200/* Resume HCI device */
3201int hci_resume_dev(struct hci_dev *hdev)
3202{
3203	hci_sock_dev_event(hdev, HCI_DEV_RESUME);
3204	return 0;
3205}
3206EXPORT_SYMBOL(hci_resume_dev);
3207
3208/* Reset HCI device */
3209int hci_reset_dev(struct hci_dev *hdev)
3210{
3211	const u8 hw_err[] = { HCI_EV_HARDWARE_ERROR, 0x01, 0x00 };
3212	struct sk_buff *skb;
3213
3214	skb = bt_skb_alloc(3, GFP_ATOMIC);
3215	if (!skb)
3216		return -ENOMEM;
3217
3218	hci_skb_pkt_type(skb) = HCI_EVENT_PKT;
3219	memcpy(skb_put(skb, 3), hw_err, 3);
3220
3221	/* Send Hardware Error to upper stack */
3222	return hci_recv_frame(hdev, skb);
3223}
3224EXPORT_SYMBOL(hci_reset_dev);
3225
3226/* Receive frame from HCI drivers */
3227int hci_recv_frame(struct hci_dev *hdev, struct sk_buff *skb)
3228{
3229	if (!hdev || (!test_bit(HCI_UP, &hdev->flags)
3230		      && !test_bit(HCI_INIT, &hdev->flags))) {
3231		kfree_skb(skb);
3232		return -ENXIO;
3233	}
3234
3235	if (hci_skb_pkt_type(skb) != HCI_EVENT_PKT &&
3236	    hci_skb_pkt_type(skb) != HCI_ACLDATA_PKT &&
3237	    hci_skb_pkt_type(skb) != HCI_SCODATA_PKT) {
3238		kfree_skb(skb);
3239		return -EINVAL;
3240	}
3241
3242	/* Incoming skb */
3243	bt_cb(skb)->incoming = 1;
3244
3245	/* Time stamp */
3246	__net_timestamp(skb);
3247
3248	skb_queue_tail(&hdev->rx_q, skb);
3249	queue_work(hdev->workqueue, &hdev->rx_work);
3250
3251	return 0;
3252}
3253EXPORT_SYMBOL(hci_recv_frame);
3254
3255/* Receive diagnostic message from HCI drivers */
3256int hci_recv_diag(struct hci_dev *hdev, struct sk_buff *skb)
3257{
3258	/* Mark as diagnostic packet */
3259	hci_skb_pkt_type(skb) = HCI_DIAG_PKT;
 
 
 
3260
3261	/* Time stamp */
3262	__net_timestamp(skb);
 
3263
3264	skb_queue_tail(&hdev->rx_q, skb);
3265	queue_work(hdev->workqueue, &hdev->rx_work);
3266
3267	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3268}
3269EXPORT_SYMBOL(hci_recv_diag);
3270
3271/* ---- Interface to upper protocols ---- */
3272
3273int hci_register_cb(struct hci_cb *cb)
3274{
3275	BT_DBG("%p name %s", cb, cb->name);
3276
3277	mutex_lock(&hci_cb_list_lock);
3278	list_add_tail(&cb->list, &hci_cb_list);
3279	mutex_unlock(&hci_cb_list_lock);
3280
3281	return 0;
3282}
3283EXPORT_SYMBOL(hci_register_cb);
3284
3285int hci_unregister_cb(struct hci_cb *cb)
3286{
3287	BT_DBG("%p name %s", cb, cb->name);
3288
3289	mutex_lock(&hci_cb_list_lock);
3290	list_del(&cb->list);
3291	mutex_unlock(&hci_cb_list_lock);
3292
3293	return 0;
3294}
3295EXPORT_SYMBOL(hci_unregister_cb);
3296
3297static void hci_send_frame(struct hci_dev *hdev, struct sk_buff *skb)
3298{
3299	int err;
3300
3301	BT_DBG("%s type %d len %d", hdev->name, hci_skb_pkt_type(skb),
3302	       skb->len);
3303
3304	/* Time stamp */
3305	__net_timestamp(skb);
3306
3307	/* Send copy to monitor */
3308	hci_send_to_monitor(hdev, skb);
3309
3310	if (atomic_read(&hdev->promisc)) {
3311		/* Send copy to the sockets */
3312		hci_send_to_sock(hdev, skb);
3313	}
3314
3315	/* Get rid of skb owner, prior to sending to the driver. */
3316	skb_orphan(skb);
3317
3318	if (!test_bit(HCI_RUNNING, &hdev->flags)) {
3319		kfree_skb(skb);
3320		return;
3321	}
3322
3323	err = hdev->send(hdev, skb);
3324	if (err < 0) {
3325		BT_ERR("%s sending frame failed (%d)", hdev->name, err);
3326		kfree_skb(skb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3327	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3328}
3329
3330/* Send HCI command */
3331int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen,
3332		 const void *param)
3333{
3334	struct sk_buff *skb;
3335
3336	BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen);
3337
3338	skb = hci_prepare_cmd(hdev, opcode, plen, param);
3339	if (!skb) {
3340		BT_ERR("%s no memory for command", hdev->name);
3341		return -ENOMEM;
3342	}
3343
3344	/* Stand-alone HCI commands must be flagged as
3345	 * single-command requests.
3346	 */
3347	bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
3348
3349	skb_queue_tail(&hdev->cmd_q, skb);
3350	queue_work(hdev->workqueue, &hdev->cmd_work);
3351
3352	return 0;
3353}
3354
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3355/* Get data from the previously sent command */
3356void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode)
3357{
3358	struct hci_command_hdr *hdr;
3359
3360	if (!hdev->sent_cmd)
3361		return NULL;
3362
3363	hdr = (void *) hdev->sent_cmd->data;
3364
3365	if (hdr->opcode != cpu_to_le16(opcode))
3366		return NULL;
3367
3368	BT_DBG("%s opcode 0x%4.4x", hdev->name, opcode);
3369
3370	return hdev->sent_cmd->data + HCI_COMMAND_HDR_SIZE;
3371}
3372
3373/* Send HCI command and wait for command commplete event */
3374struct sk_buff *hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
3375			     const void *param, u32 timeout)
3376{
3377	struct sk_buff *skb;
3378
3379	if (!test_bit(HCI_UP, &hdev->flags))
3380		return ERR_PTR(-ENETDOWN);
3381
3382	bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen);
3383
3384	hci_req_sync_lock(hdev);
3385	skb = __hci_cmd_sync(hdev, opcode, plen, param, timeout);
3386	hci_req_sync_unlock(hdev);
3387
3388	return skb;
3389}
3390EXPORT_SYMBOL(hci_cmd_sync);
3391
3392/* Send ACL data */
3393static void hci_add_acl_hdr(struct sk_buff *skb, __u16 handle, __u16 flags)
3394{
3395	struct hci_acl_hdr *hdr;
3396	int len = skb->len;
3397
3398	skb_push(skb, HCI_ACL_HDR_SIZE);
3399	skb_reset_transport_header(skb);
3400	hdr = (struct hci_acl_hdr *)skb_transport_header(skb);
3401	hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
3402	hdr->dlen   = cpu_to_le16(len);
3403}
3404
3405static void hci_queue_acl(struct hci_chan *chan, struct sk_buff_head *queue,
3406			  struct sk_buff *skb, __u16 flags)
3407{
3408	struct hci_conn *conn = chan->conn;
3409	struct hci_dev *hdev = conn->hdev;
3410	struct sk_buff *list;
3411
3412	skb->len = skb_headlen(skb);
3413	skb->data_len = 0;
3414
3415	hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
3416
3417	switch (hdev->dev_type) {
3418	case HCI_BREDR:
3419		hci_add_acl_hdr(skb, conn->handle, flags);
3420		break;
3421	case HCI_AMP:
3422		hci_add_acl_hdr(skb, chan->handle, flags);
3423		break;
3424	default:
3425		BT_ERR("%s unknown dev_type %d", hdev->name, hdev->dev_type);
3426		return;
3427	}
3428
3429	list = skb_shinfo(skb)->frag_list;
3430	if (!list) {
3431		/* Non fragmented */
3432		BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
3433
3434		skb_queue_tail(queue, skb);
3435	} else {
3436		/* Fragmented */
3437		BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3438
3439		skb_shinfo(skb)->frag_list = NULL;
3440
3441		/* Queue all fragments atomically. We need to use spin_lock_bh
3442		 * here because of 6LoWPAN links, as there this function is
3443		 * called from softirq and using normal spin lock could cause
3444		 * deadlocks.
3445		 */
3446		spin_lock_bh(&queue->lock);
3447
3448		__skb_queue_tail(queue, skb);
3449
3450		flags &= ~ACL_START;
3451		flags |= ACL_CONT;
3452		do {
3453			skb = list; list = list->next;
3454
3455			hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
3456			hci_add_acl_hdr(skb, conn->handle, flags);
3457
3458			BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3459
3460			__skb_queue_tail(queue, skb);
3461		} while (list);
3462
3463		spin_unlock_bh(&queue->lock);
3464	}
3465}
3466
3467void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags)
3468{
3469	struct hci_dev *hdev = chan->conn->hdev;
3470
3471	BT_DBG("%s chan %p flags 0x%4.4x", hdev->name, chan, flags);
3472
3473	hci_queue_acl(chan, &chan->data_q, skb, flags);
3474
3475	queue_work(hdev->workqueue, &hdev->tx_work);
3476}
3477
3478/* Send SCO data */
3479void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb)
3480{
3481	struct hci_dev *hdev = conn->hdev;
3482	struct hci_sco_hdr hdr;
3483
3484	BT_DBG("%s len %d", hdev->name, skb->len);
3485
3486	hdr.handle = cpu_to_le16(conn->handle);
3487	hdr.dlen   = skb->len;
3488
3489	skb_push(skb, HCI_SCO_HDR_SIZE);
3490	skb_reset_transport_header(skb);
3491	memcpy(skb_transport_header(skb), &hdr, HCI_SCO_HDR_SIZE);
3492
3493	hci_skb_pkt_type(skb) = HCI_SCODATA_PKT;
3494
3495	skb_queue_tail(&conn->data_q, skb);
3496	queue_work(hdev->workqueue, &hdev->tx_work);
3497}
3498
3499/* ---- HCI TX task (outgoing data) ---- */
3500
3501/* HCI Connection scheduler */
3502static struct hci_conn *hci_low_sent(struct hci_dev *hdev, __u8 type,
3503				     int *quote)
3504{
3505	struct hci_conn_hash *h = &hdev->conn_hash;
3506	struct hci_conn *conn = NULL, *c;
3507	unsigned int num = 0, min = ~0;
3508
3509	/* We don't have to lock device here. Connections are always
3510	 * added and removed with TX task disabled. */
3511
3512	rcu_read_lock();
3513
3514	list_for_each_entry_rcu(c, &h->list, list) {
3515		if (c->type != type || skb_queue_empty(&c->data_q))
3516			continue;
3517
3518		if (c->state != BT_CONNECTED && c->state != BT_CONFIG)
3519			continue;
3520
3521		num++;
3522
3523		if (c->sent < min) {
3524			min  = c->sent;
3525			conn = c;
3526		}
3527
3528		if (hci_conn_num(hdev, type) == num)
3529			break;
3530	}
3531
3532	rcu_read_unlock();
3533
3534	if (conn) {
3535		int cnt, q;
3536
3537		switch (conn->type) {
3538		case ACL_LINK:
3539			cnt = hdev->acl_cnt;
3540			break;
3541		case SCO_LINK:
3542		case ESCO_LINK:
3543			cnt = hdev->sco_cnt;
3544			break;
3545		case LE_LINK:
3546			cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3547			break;
3548		default:
3549			cnt = 0;
3550			BT_ERR("Unknown link type");
3551		}
3552
3553		q = cnt / num;
3554		*quote = q ? q : 1;
3555	} else
3556		*quote = 0;
3557
3558	BT_DBG("conn %p quote %d", conn, *quote);
3559	return conn;
3560}
3561
3562static void hci_link_tx_to(struct hci_dev *hdev, __u8 type)
3563{
3564	struct hci_conn_hash *h = &hdev->conn_hash;
3565	struct hci_conn *c;
3566
3567	BT_ERR("%s link tx timeout", hdev->name);
3568
3569	rcu_read_lock();
3570
3571	/* Kill stalled connections */
3572	list_for_each_entry_rcu(c, &h->list, list) {
3573		if (c->type == type && c->sent) {
3574			BT_ERR("%s killing stalled connection %pMR",
3575			       hdev->name, &c->dst);
3576			hci_disconnect(c, HCI_ERROR_REMOTE_USER_TERM);
3577		}
3578	}
3579
3580	rcu_read_unlock();
3581}
3582
3583static struct hci_chan *hci_chan_sent(struct hci_dev *hdev, __u8 type,
3584				      int *quote)
3585{
3586	struct hci_conn_hash *h = &hdev->conn_hash;
3587	struct hci_chan *chan = NULL;
3588	unsigned int num = 0, min = ~0, cur_prio = 0;
3589	struct hci_conn *conn;
3590	int cnt, q, conn_num = 0;
3591
3592	BT_DBG("%s", hdev->name);
3593
3594	rcu_read_lock();
3595
3596	list_for_each_entry_rcu(conn, &h->list, list) {
3597		struct hci_chan *tmp;
3598
3599		if (conn->type != type)
3600			continue;
3601
3602		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3603			continue;
3604
3605		conn_num++;
3606
3607		list_for_each_entry_rcu(tmp, &conn->chan_list, list) {
3608			struct sk_buff *skb;
3609
3610			if (skb_queue_empty(&tmp->data_q))
3611				continue;
3612
3613			skb = skb_peek(&tmp->data_q);
3614			if (skb->priority < cur_prio)
3615				continue;
3616
3617			if (skb->priority > cur_prio) {
3618				num = 0;
3619				min = ~0;
3620				cur_prio = skb->priority;
3621			}
3622
3623			num++;
3624
3625			if (conn->sent < min) {
3626				min  = conn->sent;
3627				chan = tmp;
3628			}
3629		}
3630
3631		if (hci_conn_num(hdev, type) == conn_num)
3632			break;
3633	}
3634
3635	rcu_read_unlock();
3636
3637	if (!chan)
3638		return NULL;
3639
3640	switch (chan->conn->type) {
3641	case ACL_LINK:
3642		cnt = hdev->acl_cnt;
3643		break;
3644	case AMP_LINK:
3645		cnt = hdev->block_cnt;
3646		break;
3647	case SCO_LINK:
3648	case ESCO_LINK:
3649		cnt = hdev->sco_cnt;
3650		break;
3651	case LE_LINK:
3652		cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3653		break;
3654	default:
3655		cnt = 0;
3656		BT_ERR("Unknown link type");
3657	}
3658
3659	q = cnt / num;
3660	*quote = q ? q : 1;
3661	BT_DBG("chan %p quote %d", chan, *quote);
3662	return chan;
3663}
3664
3665static void hci_prio_recalculate(struct hci_dev *hdev, __u8 type)
3666{
3667	struct hci_conn_hash *h = &hdev->conn_hash;
3668	struct hci_conn *conn;
3669	int num = 0;
3670
3671	BT_DBG("%s", hdev->name);
3672
3673	rcu_read_lock();
3674
3675	list_for_each_entry_rcu(conn, &h->list, list) {
3676		struct hci_chan *chan;
3677
3678		if (conn->type != type)
3679			continue;
3680
3681		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3682			continue;
3683
3684		num++;
3685
3686		list_for_each_entry_rcu(chan, &conn->chan_list, list) {
3687			struct sk_buff *skb;
3688
3689			if (chan->sent) {
3690				chan->sent = 0;
3691				continue;
3692			}
3693
3694			if (skb_queue_empty(&chan->data_q))
3695				continue;
3696
3697			skb = skb_peek(&chan->data_q);
3698			if (skb->priority >= HCI_PRIO_MAX - 1)
3699				continue;
3700
3701			skb->priority = HCI_PRIO_MAX - 1;
3702
3703			BT_DBG("chan %p skb %p promoted to %d", chan, skb,
3704			       skb->priority);
3705		}
3706
3707		if (hci_conn_num(hdev, type) == num)
3708			break;
3709	}
3710
3711	rcu_read_unlock();
3712
3713}
3714
3715static inline int __get_blocks(struct hci_dev *hdev, struct sk_buff *skb)
3716{
3717	/* Calculate count of blocks used by this packet */
3718	return DIV_ROUND_UP(skb->len - HCI_ACL_HDR_SIZE, hdev->block_len);
3719}
3720
3721static void __check_timeout(struct hci_dev *hdev, unsigned int cnt)
3722{
3723	if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
3724		/* ACL tx timeout must be longer than maximum
3725		 * link supervision timeout (40.9 seconds) */
3726		if (!cnt && time_after(jiffies, hdev->acl_last_tx +
3727				       HCI_ACL_TX_TIMEOUT))
3728			hci_link_tx_to(hdev, ACL_LINK);
3729	}
3730}
3731
3732static void hci_sched_acl_pkt(struct hci_dev *hdev)
3733{
3734	unsigned int cnt = hdev->acl_cnt;
3735	struct hci_chan *chan;
3736	struct sk_buff *skb;
3737	int quote;
3738
3739	__check_timeout(hdev, cnt);
3740
3741	while (hdev->acl_cnt &&
3742	       (chan = hci_chan_sent(hdev, ACL_LINK, &quote))) {
3743		u32 priority = (skb_peek(&chan->data_q))->priority;
3744		while (quote-- && (skb = skb_peek(&chan->data_q))) {
3745			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3746			       skb->len, skb->priority);
3747
3748			/* Stop if priority has changed */
3749			if (skb->priority < priority)
3750				break;
3751
3752			skb = skb_dequeue(&chan->data_q);
3753
3754			hci_conn_enter_active_mode(chan->conn,
3755						   bt_cb(skb)->force_active);
3756
3757			hci_send_frame(hdev, skb);
3758			hdev->acl_last_tx = jiffies;
3759
3760			hdev->acl_cnt--;
3761			chan->sent++;
3762			chan->conn->sent++;
3763		}
3764	}
3765
3766	if (cnt != hdev->acl_cnt)
3767		hci_prio_recalculate(hdev, ACL_LINK);
3768}
3769
3770static void hci_sched_acl_blk(struct hci_dev *hdev)
3771{
3772	unsigned int cnt = hdev->block_cnt;
3773	struct hci_chan *chan;
3774	struct sk_buff *skb;
3775	int quote;
3776	u8 type;
3777
3778	__check_timeout(hdev, cnt);
3779
3780	BT_DBG("%s", hdev->name);
3781
3782	if (hdev->dev_type == HCI_AMP)
3783		type = AMP_LINK;
3784	else
3785		type = ACL_LINK;
3786
3787	while (hdev->block_cnt > 0 &&
3788	       (chan = hci_chan_sent(hdev, type, &quote))) {
3789		u32 priority = (skb_peek(&chan->data_q))->priority;
3790		while (quote > 0 && (skb = skb_peek(&chan->data_q))) {
3791			int blocks;
3792
3793			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3794			       skb->len, skb->priority);
3795
3796			/* Stop if priority has changed */
3797			if (skb->priority < priority)
3798				break;
3799
3800			skb = skb_dequeue(&chan->data_q);
3801
3802			blocks = __get_blocks(hdev, skb);
3803			if (blocks > hdev->block_cnt)
3804				return;
3805
3806			hci_conn_enter_active_mode(chan->conn,
3807						   bt_cb(skb)->force_active);
3808
3809			hci_send_frame(hdev, skb);
3810			hdev->acl_last_tx = jiffies;
3811
3812			hdev->block_cnt -= blocks;
3813			quote -= blocks;
3814
3815			chan->sent += blocks;
3816			chan->conn->sent += blocks;
3817		}
3818	}
3819
3820	if (cnt != hdev->block_cnt)
3821		hci_prio_recalculate(hdev, type);
3822}
3823
3824static void hci_sched_acl(struct hci_dev *hdev)
3825{
3826	BT_DBG("%s", hdev->name);
3827
3828	/* No ACL link over BR/EDR controller */
3829	if (!hci_conn_num(hdev, ACL_LINK) && hdev->dev_type == HCI_BREDR)
3830		return;
3831
3832	/* No AMP link over AMP controller */
3833	if (!hci_conn_num(hdev, AMP_LINK) && hdev->dev_type == HCI_AMP)
3834		return;
3835
3836	switch (hdev->flow_ctl_mode) {
3837	case HCI_FLOW_CTL_MODE_PACKET_BASED:
3838		hci_sched_acl_pkt(hdev);
3839		break;
3840
3841	case HCI_FLOW_CTL_MODE_BLOCK_BASED:
3842		hci_sched_acl_blk(hdev);
3843		break;
3844	}
3845}
3846
3847/* Schedule SCO */
3848static void hci_sched_sco(struct hci_dev *hdev)
3849{
3850	struct hci_conn *conn;
3851	struct sk_buff *skb;
3852	int quote;
3853
3854	BT_DBG("%s", hdev->name);
3855
3856	if (!hci_conn_num(hdev, SCO_LINK))
3857		return;
3858
3859	while (hdev->sco_cnt && (conn = hci_low_sent(hdev, SCO_LINK, &quote))) {
3860		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3861			BT_DBG("skb %p len %d", skb, skb->len);
3862			hci_send_frame(hdev, skb);
3863
3864			conn->sent++;
3865			if (conn->sent == ~0)
3866				conn->sent = 0;
3867		}
3868	}
3869}
3870
3871static void hci_sched_esco(struct hci_dev *hdev)
3872{
3873	struct hci_conn *conn;
3874	struct sk_buff *skb;
3875	int quote;
3876
3877	BT_DBG("%s", hdev->name);
3878
3879	if (!hci_conn_num(hdev, ESCO_LINK))
3880		return;
3881
3882	while (hdev->sco_cnt && (conn = hci_low_sent(hdev, ESCO_LINK,
3883						     &quote))) {
3884		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3885			BT_DBG("skb %p len %d", skb, skb->len);
3886			hci_send_frame(hdev, skb);
3887
3888			conn->sent++;
3889			if (conn->sent == ~0)
3890				conn->sent = 0;
3891		}
3892	}
3893}
3894
3895static void hci_sched_le(struct hci_dev *hdev)
3896{
3897	struct hci_chan *chan;
3898	struct sk_buff *skb;
3899	int quote, cnt, tmp;
3900
3901	BT_DBG("%s", hdev->name);
3902
3903	if (!hci_conn_num(hdev, LE_LINK))
3904		return;
3905
3906	if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
3907		/* LE tx timeout must be longer than maximum
3908		 * link supervision timeout (40.9 seconds) */
3909		if (!hdev->le_cnt && hdev->le_pkts &&
3910		    time_after(jiffies, hdev->le_last_tx + HZ * 45))
3911			hci_link_tx_to(hdev, LE_LINK);
3912	}
3913
3914	cnt = hdev->le_pkts ? hdev->le_cnt : hdev->acl_cnt;
3915	tmp = cnt;
3916	while (cnt && (chan = hci_chan_sent(hdev, LE_LINK, &quote))) {
3917		u32 priority = (skb_peek(&chan->data_q))->priority;
3918		while (quote-- && (skb = skb_peek(&chan->data_q))) {
3919			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3920			       skb->len, skb->priority);
3921
3922			/* Stop if priority has changed */
3923			if (skb->priority < priority)
3924				break;
3925
3926			skb = skb_dequeue(&chan->data_q);
3927
3928			hci_send_frame(hdev, skb);
3929			hdev->le_last_tx = jiffies;
3930
3931			cnt--;
3932			chan->sent++;
3933			chan->conn->sent++;
3934		}
3935	}
3936
3937	if (hdev->le_pkts)
3938		hdev->le_cnt = cnt;
3939	else
3940		hdev->acl_cnt = cnt;
3941
3942	if (cnt != tmp)
3943		hci_prio_recalculate(hdev, LE_LINK);
3944}
3945
3946static void hci_tx_work(struct work_struct *work)
3947{
3948	struct hci_dev *hdev = container_of(work, struct hci_dev, tx_work);
3949	struct sk_buff *skb;
3950
3951	BT_DBG("%s acl %d sco %d le %d", hdev->name, hdev->acl_cnt,
3952	       hdev->sco_cnt, hdev->le_cnt);
3953
3954	if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
3955		/* Schedule queues and send stuff to HCI driver */
3956		hci_sched_acl(hdev);
3957		hci_sched_sco(hdev);
3958		hci_sched_esco(hdev);
3959		hci_sched_le(hdev);
3960	}
3961
3962	/* Send next queued raw (unknown type) packet */
3963	while ((skb = skb_dequeue(&hdev->raw_q)))
3964		hci_send_frame(hdev, skb);
3965}
3966
3967/* ----- HCI RX task (incoming data processing) ----- */
3968
3969/* ACL data packet */
3970static void hci_acldata_packet(struct hci_dev *hdev, struct sk_buff *skb)
3971{
3972	struct hci_acl_hdr *hdr = (void *) skb->data;
3973	struct hci_conn *conn;
3974	__u16 handle, flags;
3975
3976	skb_pull(skb, HCI_ACL_HDR_SIZE);
3977
3978	handle = __le16_to_cpu(hdr->handle);
3979	flags  = hci_flags(handle);
3980	handle = hci_handle(handle);
3981
3982	BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len,
3983	       handle, flags);
3984
3985	hdev->stat.acl_rx++;
3986
3987	hci_dev_lock(hdev);
3988	conn = hci_conn_hash_lookup_handle(hdev, handle);
3989	hci_dev_unlock(hdev);
3990
3991	if (conn) {
3992		hci_conn_enter_active_mode(conn, BT_POWER_FORCE_ACTIVE_OFF);
3993
3994		/* Send to upper protocol */
3995		l2cap_recv_acldata(conn, skb, flags);
3996		return;
3997	} else {
3998		BT_ERR("%s ACL packet for unknown connection handle %d",
3999		       hdev->name, handle);
4000	}
4001
4002	kfree_skb(skb);
4003}
4004
4005/* SCO data packet */
4006static void hci_scodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
4007{
4008	struct hci_sco_hdr *hdr = (void *) skb->data;
4009	struct hci_conn *conn;
4010	__u16 handle;
4011
4012	skb_pull(skb, HCI_SCO_HDR_SIZE);
4013
4014	handle = __le16_to_cpu(hdr->handle);
4015
4016	BT_DBG("%s len %d handle 0x%4.4x", hdev->name, skb->len, handle);
4017
4018	hdev->stat.sco_rx++;
4019
4020	hci_dev_lock(hdev);
4021	conn = hci_conn_hash_lookup_handle(hdev, handle);
4022	hci_dev_unlock(hdev);
4023
4024	if (conn) {
4025		/* Send to upper protocol */
4026		sco_recv_scodata(conn, skb);
4027		return;
4028	} else {
4029		BT_ERR("%s SCO packet for unknown connection handle %d",
4030		       hdev->name, handle);
4031	}
4032
4033	kfree_skb(skb);
4034}
4035
4036static bool hci_req_is_complete(struct hci_dev *hdev)
4037{
4038	struct sk_buff *skb;
4039
4040	skb = skb_peek(&hdev->cmd_q);
4041	if (!skb)
4042		return true;
4043
4044	return (bt_cb(skb)->hci.req_flags & HCI_REQ_START);
4045}
4046
4047static void hci_resend_last(struct hci_dev *hdev)
4048{
4049	struct hci_command_hdr *sent;
4050	struct sk_buff *skb;
4051	u16 opcode;
4052
4053	if (!hdev->sent_cmd)
4054		return;
4055
4056	sent = (void *) hdev->sent_cmd->data;
4057	opcode = __le16_to_cpu(sent->opcode);
4058	if (opcode == HCI_OP_RESET)
4059		return;
4060
4061	skb = skb_clone(hdev->sent_cmd, GFP_KERNEL);
4062	if (!skb)
4063		return;
4064
4065	skb_queue_head(&hdev->cmd_q, skb);
4066	queue_work(hdev->workqueue, &hdev->cmd_work);
4067}
4068
4069void hci_req_cmd_complete(struct hci_dev *hdev, u16 opcode, u8 status,
4070			  hci_req_complete_t *req_complete,
4071			  hci_req_complete_skb_t *req_complete_skb)
4072{
 
4073	struct sk_buff *skb;
4074	unsigned long flags;
4075
4076	BT_DBG("opcode 0x%04x status 0x%02x", opcode, status);
4077
4078	/* If the completed command doesn't match the last one that was
4079	 * sent we need to do special handling of it.
4080	 */
4081	if (!hci_sent_cmd_data(hdev, opcode)) {
4082		/* Some CSR based controllers generate a spontaneous
4083		 * reset complete event during init and any pending
4084		 * command will never be completed. In such a case we
4085		 * need to resend whatever was the last sent
4086		 * command.
4087		 */
4088		if (test_bit(HCI_INIT, &hdev->flags) && opcode == HCI_OP_RESET)
4089			hci_resend_last(hdev);
4090
4091		return;
4092	}
4093
4094	/* If the command succeeded and there's still more commands in
4095	 * this request the request is not yet complete.
4096	 */
4097	if (!status && !hci_req_is_complete(hdev))
4098		return;
4099
4100	/* If this was the last command in a request the complete
4101	 * callback would be found in hdev->sent_cmd instead of the
4102	 * command queue (hdev->cmd_q).
4103	 */
4104	if (bt_cb(hdev->sent_cmd)->hci.req_flags & HCI_REQ_SKB) {
4105		*req_complete_skb = bt_cb(hdev->sent_cmd)->hci.req_complete_skb;
4106		return;
4107	}
4108
4109	if (bt_cb(hdev->sent_cmd)->hci.req_complete) {
4110		*req_complete = bt_cb(hdev->sent_cmd)->hci.req_complete;
4111		return;
 
 
 
 
 
 
4112	}
4113
4114	/* Remove all pending commands belonging to this request */
4115	spin_lock_irqsave(&hdev->cmd_q.lock, flags);
4116	while ((skb = __skb_dequeue(&hdev->cmd_q))) {
4117		if (bt_cb(skb)->hci.req_flags & HCI_REQ_START) {
4118			__skb_queue_head(&hdev->cmd_q, skb);
4119			break;
4120		}
4121
4122		if (bt_cb(skb)->hci.req_flags & HCI_REQ_SKB)
4123			*req_complete_skb = bt_cb(skb)->hci.req_complete_skb;
4124		else
4125			*req_complete = bt_cb(skb)->hci.req_complete;
4126		kfree_skb(skb);
4127	}
4128	spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
 
 
 
 
4129}
4130
4131static void hci_rx_work(struct work_struct *work)
4132{
4133	struct hci_dev *hdev = container_of(work, struct hci_dev, rx_work);
4134	struct sk_buff *skb;
4135
4136	BT_DBG("%s", hdev->name);
4137
4138	while ((skb = skb_dequeue(&hdev->rx_q))) {
4139		/* Send copy to monitor */
4140		hci_send_to_monitor(hdev, skb);
4141
4142		if (atomic_read(&hdev->promisc)) {
4143			/* Send copy to the sockets */
4144			hci_send_to_sock(hdev, skb);
4145		}
4146
4147		if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
 
4148			kfree_skb(skb);
4149			continue;
4150		}
4151
4152		if (test_bit(HCI_INIT, &hdev->flags)) {
4153			/* Don't process data packets in this states. */
4154			switch (hci_skb_pkt_type(skb)) {
4155			case HCI_ACLDATA_PKT:
4156			case HCI_SCODATA_PKT:
4157				kfree_skb(skb);
4158				continue;
4159			}
4160		}
4161
4162		/* Process frame */
4163		switch (hci_skb_pkt_type(skb)) {
4164		case HCI_EVENT_PKT:
4165			BT_DBG("%s Event packet", hdev->name);
4166			hci_event_packet(hdev, skb);
4167			break;
4168
4169		case HCI_ACLDATA_PKT:
4170			BT_DBG("%s ACL data packet", hdev->name);
4171			hci_acldata_packet(hdev, skb);
4172			break;
4173
4174		case HCI_SCODATA_PKT:
4175			BT_DBG("%s SCO data packet", hdev->name);
4176			hci_scodata_packet(hdev, skb);
4177			break;
4178
4179		default:
4180			kfree_skb(skb);
4181			break;
4182		}
4183	}
4184}
4185
4186static void hci_cmd_work(struct work_struct *work)
4187{
4188	struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_work);
4189	struct sk_buff *skb;
4190
4191	BT_DBG("%s cmd_cnt %d cmd queued %d", hdev->name,
4192	       atomic_read(&hdev->cmd_cnt), skb_queue_len(&hdev->cmd_q));
4193
4194	/* Send queued commands */
4195	if (atomic_read(&hdev->cmd_cnt)) {
4196		skb = skb_dequeue(&hdev->cmd_q);
4197		if (!skb)
4198			return;
4199
4200		kfree_skb(hdev->sent_cmd);
4201
4202		hdev->sent_cmd = skb_clone(skb, GFP_KERNEL);
4203		if (hdev->sent_cmd) {
4204			atomic_dec(&hdev->cmd_cnt);
4205			hci_send_frame(hdev, skb);
4206			if (test_bit(HCI_RESET, &hdev->flags))
4207				cancel_delayed_work(&hdev->cmd_timer);
4208			else
4209				schedule_delayed_work(&hdev->cmd_timer,
4210						      HCI_CMD_TIMEOUT);
4211		} else {
4212			skb_queue_head(&hdev->cmd_q, skb);
4213			queue_work(hdev->workqueue, &hdev->cmd_work);
4214		}
4215	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4216}
v3.15
   1/*
   2   BlueZ - Bluetooth protocol stack for Linux
   3   Copyright (C) 2000-2001 Qualcomm Incorporated
   4   Copyright (C) 2011 ProFUSION Embedded Systems
   5
   6   Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
   7
   8   This program is free software; you can redistribute it and/or modify
   9   it under the terms of the GNU General Public License version 2 as
  10   published by the Free Software Foundation;
  11
  12   THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
  13   OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  14   FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
  15   IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
  16   CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
  17   WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  18   ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  19   OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  20
  21   ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
  22   COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
  23   SOFTWARE IS DISCLAIMED.
  24*/
  25
  26/* Bluetooth HCI core. */
  27
  28#include <linux/export.h>
  29#include <linux/idr.h>
  30#include <linux/rfkill.h>
  31#include <linux/debugfs.h>
  32#include <linux/crypto.h>
  33#include <asm/unaligned.h>
  34
  35#include <net/bluetooth/bluetooth.h>
  36#include <net/bluetooth/hci_core.h>
 
 
  37
 
 
  38#include "smp.h"
 
  39
  40static void hci_rx_work(struct work_struct *work);
  41static void hci_cmd_work(struct work_struct *work);
  42static void hci_tx_work(struct work_struct *work);
  43
  44/* HCI device list */
  45LIST_HEAD(hci_dev_list);
  46DEFINE_RWLOCK(hci_dev_list_lock);
  47
  48/* HCI callback list */
  49LIST_HEAD(hci_cb_list);
  50DEFINE_RWLOCK(hci_cb_list_lock);
  51
  52/* HCI ID Numbering */
  53static DEFINE_IDA(hci_index_ida);
  54
  55/* ---- HCI notifications ---- */
  56
  57static void hci_notify(struct hci_dev *hdev, int event)
  58{
  59	hci_sock_dev_event(hdev, event);
  60}
  61
  62/* ---- HCI debugfs entries ---- */
  63
  64static ssize_t dut_mode_read(struct file *file, char __user *user_buf,
  65			     size_t count, loff_t *ppos)
  66{
  67	struct hci_dev *hdev = file->private_data;
  68	char buf[3];
  69
  70	buf[0] = test_bit(HCI_DUT_MODE, &hdev->dev_flags) ? 'Y': 'N';
  71	buf[1] = '\n';
  72	buf[2] = '\0';
  73	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
  74}
  75
  76static ssize_t dut_mode_write(struct file *file, const char __user *user_buf,
  77			      size_t count, loff_t *ppos)
  78{
  79	struct hci_dev *hdev = file->private_data;
  80	struct sk_buff *skb;
  81	char buf[32];
  82	size_t buf_size = min(count, (sizeof(buf)-1));
  83	bool enable;
  84	int err;
  85
  86	if (!test_bit(HCI_UP, &hdev->flags))
  87		return -ENETDOWN;
  88
  89	if (copy_from_user(buf, user_buf, buf_size))
  90		return -EFAULT;
  91
  92	buf[buf_size] = '\0';
  93	if (strtobool(buf, &enable))
  94		return -EINVAL;
  95
  96	if (enable == test_bit(HCI_DUT_MODE, &hdev->dev_flags))
  97		return -EALREADY;
  98
  99	hci_req_lock(hdev);
 100	if (enable)
 101		skb = __hci_cmd_sync(hdev, HCI_OP_ENABLE_DUT_MODE, 0, NULL,
 102				     HCI_CMD_TIMEOUT);
 103	else
 104		skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL,
 105				     HCI_CMD_TIMEOUT);
 106	hci_req_unlock(hdev);
 107
 108	if (IS_ERR(skb))
 109		return PTR_ERR(skb);
 110
 111	err = -bt_to_errno(skb->data[0]);
 112	kfree_skb(skb);
 113
 114	if (err < 0)
 115		return err;
 116
 117	change_bit(HCI_DUT_MODE, &hdev->dev_flags);
 118
 119	return count;
 120}
 121
 122static const struct file_operations dut_mode_fops = {
 123	.open		= simple_open,
 124	.read		= dut_mode_read,
 125	.write		= dut_mode_write,
 126	.llseek		= default_llseek,
 127};
 128
 129static int features_show(struct seq_file *f, void *ptr)
 130{
 131	struct hci_dev *hdev = f->private;
 132	u8 p;
 133
 134	hci_dev_lock(hdev);
 135	for (p = 0; p < HCI_MAX_PAGES && p <= hdev->max_page; p++) {
 136		seq_printf(f, "%2u: 0x%2.2x 0x%2.2x 0x%2.2x 0x%2.2x "
 137			   "0x%2.2x 0x%2.2x 0x%2.2x 0x%2.2x\n", p,
 138			   hdev->features[p][0], hdev->features[p][1],
 139			   hdev->features[p][2], hdev->features[p][3],
 140			   hdev->features[p][4], hdev->features[p][5],
 141			   hdev->features[p][6], hdev->features[p][7]);
 142	}
 143	if (lmp_le_capable(hdev))
 144		seq_printf(f, "LE: 0x%2.2x 0x%2.2x 0x%2.2x 0x%2.2x "
 145			   "0x%2.2x 0x%2.2x 0x%2.2x 0x%2.2x\n",
 146			   hdev->le_features[0], hdev->le_features[1],
 147			   hdev->le_features[2], hdev->le_features[3],
 148			   hdev->le_features[4], hdev->le_features[5],
 149			   hdev->le_features[6], hdev->le_features[7]);
 150	hci_dev_unlock(hdev);
 151
 152	return 0;
 153}
 154
 155static int features_open(struct inode *inode, struct file *file)
 156{
 157	return single_open(file, features_show, inode->i_private);
 158}
 159
 160static const struct file_operations features_fops = {
 161	.open		= features_open,
 162	.read		= seq_read,
 163	.llseek		= seq_lseek,
 164	.release	= single_release,
 165};
 166
 167static int blacklist_show(struct seq_file *f, void *p)
 168{
 169	struct hci_dev *hdev = f->private;
 170	struct bdaddr_list *b;
 171
 172	hci_dev_lock(hdev);
 173	list_for_each_entry(b, &hdev->blacklist, list)
 174		seq_printf(f, "%pMR (type %u)\n", &b->bdaddr, b->bdaddr_type);
 175	hci_dev_unlock(hdev);
 176
 177	return 0;
 178}
 179
 180static int blacklist_open(struct inode *inode, struct file *file)
 181{
 182	return single_open(file, blacklist_show, inode->i_private);
 183}
 184
 185static const struct file_operations blacklist_fops = {
 186	.open		= blacklist_open,
 187	.read		= seq_read,
 188	.llseek		= seq_lseek,
 189	.release	= single_release,
 190};
 191
 192static int uuids_show(struct seq_file *f, void *p)
 193{
 194	struct hci_dev *hdev = f->private;
 195	struct bt_uuid *uuid;
 196
 197	hci_dev_lock(hdev);
 198	list_for_each_entry(uuid, &hdev->uuids, list) {
 199		u8 i, val[16];
 200
 201		/* The Bluetooth UUID values are stored in big endian,
 202		 * but with reversed byte order. So convert them into
 203		 * the right order for the %pUb modifier.
 204		 */
 205		for (i = 0; i < 16; i++)
 206			val[i] = uuid->uuid[15 - i];
 207
 208		seq_printf(f, "%pUb\n", val);
 209	}
 210	hci_dev_unlock(hdev);
 211
 212	return 0;
 213}
 214
 215static int uuids_open(struct inode *inode, struct file *file)
 216{
 217	return single_open(file, uuids_show, inode->i_private);
 218}
 219
 220static const struct file_operations uuids_fops = {
 221	.open		= uuids_open,
 222	.read		= seq_read,
 223	.llseek		= seq_lseek,
 224	.release	= single_release,
 225};
 226
 227static int inquiry_cache_show(struct seq_file *f, void *p)
 228{
 229	struct hci_dev *hdev = f->private;
 230	struct discovery_state *cache = &hdev->discovery;
 231	struct inquiry_entry *e;
 232
 233	hci_dev_lock(hdev);
 234
 235	list_for_each_entry(e, &cache->all, all) {
 236		struct inquiry_data *data = &e->data;
 237		seq_printf(f, "%pMR %d %d %d 0x%.2x%.2x%.2x 0x%.4x %d %d %u\n",
 238			   &data->bdaddr,
 239			   data->pscan_rep_mode, data->pscan_period_mode,
 240			   data->pscan_mode, data->dev_class[2],
 241			   data->dev_class[1], data->dev_class[0],
 242			   __le16_to_cpu(data->clock_offset),
 243			   data->rssi, data->ssp_mode, e->timestamp);
 244	}
 245
 246	hci_dev_unlock(hdev);
 247
 248	return 0;
 249}
 250
 251static int inquiry_cache_open(struct inode *inode, struct file *file)
 252{
 253	return single_open(file, inquiry_cache_show, inode->i_private);
 254}
 255
 256static const struct file_operations inquiry_cache_fops = {
 257	.open		= inquiry_cache_open,
 258	.read		= seq_read,
 259	.llseek		= seq_lseek,
 260	.release	= single_release,
 261};
 262
 263static int link_keys_show(struct seq_file *f, void *ptr)
 264{
 265	struct hci_dev *hdev = f->private;
 266	struct list_head *p, *n;
 267
 268	hci_dev_lock(hdev);
 269	list_for_each_safe(p, n, &hdev->link_keys) {
 270		struct link_key *key = list_entry(p, struct link_key, list);
 271		seq_printf(f, "%pMR %u %*phN %u\n", &key->bdaddr, key->type,
 272			   HCI_LINK_KEY_SIZE, key->val, key->pin_len);
 273	}
 274	hci_dev_unlock(hdev);
 275
 276	return 0;
 277}
 278
 279static int link_keys_open(struct inode *inode, struct file *file)
 280{
 281	return single_open(file, link_keys_show, inode->i_private);
 282}
 283
 284static const struct file_operations link_keys_fops = {
 285	.open		= link_keys_open,
 286	.read		= seq_read,
 287	.llseek		= seq_lseek,
 288	.release	= single_release,
 289};
 290
 291static int dev_class_show(struct seq_file *f, void *ptr)
 292{
 293	struct hci_dev *hdev = f->private;
 294
 295	hci_dev_lock(hdev);
 296	seq_printf(f, "0x%.2x%.2x%.2x\n", hdev->dev_class[2],
 297		   hdev->dev_class[1], hdev->dev_class[0]);
 298	hci_dev_unlock(hdev);
 299
 300	return 0;
 301}
 302
 303static int dev_class_open(struct inode *inode, struct file *file)
 304{
 305	return single_open(file, dev_class_show, inode->i_private);
 306}
 307
 308static const struct file_operations dev_class_fops = {
 309	.open		= dev_class_open,
 310	.read		= seq_read,
 311	.llseek		= seq_lseek,
 312	.release	= single_release,
 313};
 314
 315static int voice_setting_get(void *data, u64 *val)
 316{
 317	struct hci_dev *hdev = data;
 318
 319	hci_dev_lock(hdev);
 320	*val = hdev->voice_setting;
 321	hci_dev_unlock(hdev);
 322
 323	return 0;
 324}
 325
 326DEFINE_SIMPLE_ATTRIBUTE(voice_setting_fops, voice_setting_get,
 327			NULL, "0x%4.4llx\n");
 328
 329static int auto_accept_delay_set(void *data, u64 val)
 330{
 331	struct hci_dev *hdev = data;
 332
 333	hci_dev_lock(hdev);
 334	hdev->auto_accept_delay = val;
 335	hci_dev_unlock(hdev);
 336
 337	return 0;
 338}
 339
 340static int auto_accept_delay_get(void *data, u64 *val)
 341{
 342	struct hci_dev *hdev = data;
 343
 344	hci_dev_lock(hdev);
 345	*val = hdev->auto_accept_delay;
 346	hci_dev_unlock(hdev);
 347
 348	return 0;
 349}
 350
 351DEFINE_SIMPLE_ATTRIBUTE(auto_accept_delay_fops, auto_accept_delay_get,
 352			auto_accept_delay_set, "%llu\n");
 353
 354static int ssp_debug_mode_set(void *data, u64 val)
 355{
 356	struct hci_dev *hdev = data;
 357	struct sk_buff *skb;
 358	__u8 mode;
 359	int err;
 360
 361	if (val != 0 && val != 1)
 362		return -EINVAL;
 363
 364	if (!test_bit(HCI_UP, &hdev->flags))
 365		return -ENETDOWN;
 366
 367	hci_req_lock(hdev);
 368	mode = val;
 369	skb = __hci_cmd_sync(hdev, HCI_OP_WRITE_SSP_DEBUG_MODE, sizeof(mode),
 370			     &mode, HCI_CMD_TIMEOUT);
 371	hci_req_unlock(hdev);
 372
 373	if (IS_ERR(skb))
 374		return PTR_ERR(skb);
 375
 376	err = -bt_to_errno(skb->data[0]);
 377	kfree_skb(skb);
 378
 379	if (err < 0)
 380		return err;
 381
 382	hci_dev_lock(hdev);
 383	hdev->ssp_debug_mode = val;
 384	hci_dev_unlock(hdev);
 385
 386	return 0;
 387}
 388
 389static int ssp_debug_mode_get(void *data, u64 *val)
 390{
 391	struct hci_dev *hdev = data;
 392
 393	hci_dev_lock(hdev);
 394	*val = hdev->ssp_debug_mode;
 395	hci_dev_unlock(hdev);
 396
 397	return 0;
 398}
 399
 400DEFINE_SIMPLE_ATTRIBUTE(ssp_debug_mode_fops, ssp_debug_mode_get,
 401			ssp_debug_mode_set, "%llu\n");
 402
 403static ssize_t force_sc_support_read(struct file *file, char __user *user_buf,
 404				     size_t count, loff_t *ppos)
 405{
 406	struct hci_dev *hdev = file->private_data;
 407	char buf[3];
 408
 409	buf[0] = test_bit(HCI_FORCE_SC, &hdev->dev_flags) ? 'Y': 'N';
 410	buf[1] = '\n';
 411	buf[2] = '\0';
 412	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
 413}
 414
 415static ssize_t force_sc_support_write(struct file *file,
 416				      const char __user *user_buf,
 417				      size_t count, loff_t *ppos)
 418{
 419	struct hci_dev *hdev = file->private_data;
 420	char buf[32];
 421	size_t buf_size = min(count, (sizeof(buf)-1));
 422	bool enable;
 423
 424	if (test_bit(HCI_UP, &hdev->flags))
 425		return -EBUSY;
 426
 427	if (copy_from_user(buf, user_buf, buf_size))
 428		return -EFAULT;
 429
 430	buf[buf_size] = '\0';
 431	if (strtobool(buf, &enable))
 432		return -EINVAL;
 433
 434	if (enable == test_bit(HCI_FORCE_SC, &hdev->dev_flags))
 435		return -EALREADY;
 436
 437	change_bit(HCI_FORCE_SC, &hdev->dev_flags);
 438
 439	return count;
 440}
 441
 442static const struct file_operations force_sc_support_fops = {
 443	.open		= simple_open,
 444	.read		= force_sc_support_read,
 445	.write		= force_sc_support_write,
 446	.llseek		= default_llseek,
 447};
 448
 449static ssize_t sc_only_mode_read(struct file *file, char __user *user_buf,
 450				 size_t count, loff_t *ppos)
 451{
 452	struct hci_dev *hdev = file->private_data;
 453	char buf[3];
 454
 455	buf[0] = test_bit(HCI_SC_ONLY, &hdev->dev_flags) ? 'Y': 'N';
 456	buf[1] = '\n';
 457	buf[2] = '\0';
 458	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
 459}
 460
 461static const struct file_operations sc_only_mode_fops = {
 462	.open		= simple_open,
 463	.read		= sc_only_mode_read,
 464	.llseek		= default_llseek,
 465};
 466
 467static int idle_timeout_set(void *data, u64 val)
 468{
 469	struct hci_dev *hdev = data;
 470
 471	if (val != 0 && (val < 500 || val > 3600000))
 472		return -EINVAL;
 473
 474	hci_dev_lock(hdev);
 475	hdev->idle_timeout = val;
 476	hci_dev_unlock(hdev);
 477
 478	return 0;
 479}
 480
 481static int idle_timeout_get(void *data, u64 *val)
 482{
 483	struct hci_dev *hdev = data;
 484
 485	hci_dev_lock(hdev);
 486	*val = hdev->idle_timeout;
 487	hci_dev_unlock(hdev);
 488
 489	return 0;
 490}
 491
 492DEFINE_SIMPLE_ATTRIBUTE(idle_timeout_fops, idle_timeout_get,
 493			idle_timeout_set, "%llu\n");
 494
 495static int rpa_timeout_set(void *data, u64 val)
 496{
 497	struct hci_dev *hdev = data;
 498
 499	/* Require the RPA timeout to be at least 30 seconds and at most
 500	 * 24 hours.
 501	 */
 502	if (val < 30 || val > (60 * 60 * 24))
 503		return -EINVAL;
 
 504
 505	hci_dev_lock(hdev);
 506	hdev->rpa_timeout = val;
 507	hci_dev_unlock(hdev);
 508
 509	return 0;
 510}
 511
 512static int rpa_timeout_get(void *data, u64 *val)
 513{
 514	struct hci_dev *hdev = data;
 515
 516	hci_dev_lock(hdev);
 517	*val = hdev->rpa_timeout;
 518	hci_dev_unlock(hdev);
 519
 520	return 0;
 521}
 522
 523DEFINE_SIMPLE_ATTRIBUTE(rpa_timeout_fops, rpa_timeout_get,
 524			rpa_timeout_set, "%llu\n");
 525
 526static int sniff_min_interval_set(void *data, u64 val)
 527{
 528	struct hci_dev *hdev = data;
 529
 530	if (val == 0 || val % 2 || val > hdev->sniff_max_interval)
 531		return -EINVAL;
 532
 533	hci_dev_lock(hdev);
 534	hdev->sniff_min_interval = val;
 535	hci_dev_unlock(hdev);
 536
 537	return 0;
 538}
 539
 540static int sniff_min_interval_get(void *data, u64 *val)
 541{
 542	struct hci_dev *hdev = data;
 543
 544	hci_dev_lock(hdev);
 545	*val = hdev->sniff_min_interval;
 546	hci_dev_unlock(hdev);
 547
 548	return 0;
 549}
 550
 551DEFINE_SIMPLE_ATTRIBUTE(sniff_min_interval_fops, sniff_min_interval_get,
 552			sniff_min_interval_set, "%llu\n");
 553
 554static int sniff_max_interval_set(void *data, u64 val)
 555{
 556	struct hci_dev *hdev = data;
 557
 558	if (val == 0 || val % 2 || val < hdev->sniff_min_interval)
 559		return -EINVAL;
 560
 561	hci_dev_lock(hdev);
 562	hdev->sniff_max_interval = val;
 563	hci_dev_unlock(hdev);
 564
 565	return 0;
 566}
 567
 568static int sniff_max_interval_get(void *data, u64 *val)
 569{
 570	struct hci_dev *hdev = data;
 571
 572	hci_dev_lock(hdev);
 573	*val = hdev->sniff_max_interval;
 574	hci_dev_unlock(hdev);
 575
 576	return 0;
 577}
 578
 579DEFINE_SIMPLE_ATTRIBUTE(sniff_max_interval_fops, sniff_max_interval_get,
 580			sniff_max_interval_set, "%llu\n");
 581
 582static int identity_show(struct seq_file *f, void *p)
 583{
 584	struct hci_dev *hdev = f->private;
 585	bdaddr_t addr;
 586	u8 addr_type;
 587
 588	hci_dev_lock(hdev);
 589
 590	hci_copy_identity_address(hdev, &addr, &addr_type);
 591
 592	seq_printf(f, "%pMR (type %u) %*phN %pMR\n", &addr, addr_type,
 593		   16, hdev->irk, &hdev->rpa);
 594
 595	hci_dev_unlock(hdev);
 596
 597	return 0;
 598}
 599
 600static int identity_open(struct inode *inode, struct file *file)
 601{
 602	return single_open(file, identity_show, inode->i_private);
 603}
 604
 605static const struct file_operations identity_fops = {
 606	.open		= identity_open,
 607	.read		= seq_read,
 608	.llseek		= seq_lseek,
 609	.release	= single_release,
 610};
 611
 612static int random_address_show(struct seq_file *f, void *p)
 613{
 614	struct hci_dev *hdev = f->private;
 615
 616	hci_dev_lock(hdev);
 617	seq_printf(f, "%pMR\n", &hdev->random_addr);
 618	hci_dev_unlock(hdev);
 619
 620	return 0;
 621}
 622
 623static int random_address_open(struct inode *inode, struct file *file)
 624{
 625	return single_open(file, random_address_show, inode->i_private);
 626}
 627
 628static const struct file_operations random_address_fops = {
 629	.open		= random_address_open,
 630	.read		= seq_read,
 631	.llseek		= seq_lseek,
 632	.release	= single_release,
 633};
 634
 635static int static_address_show(struct seq_file *f, void *p)
 636{
 637	struct hci_dev *hdev = f->private;
 638
 639	hci_dev_lock(hdev);
 640	seq_printf(f, "%pMR\n", &hdev->static_addr);
 641	hci_dev_unlock(hdev);
 642
 643	return 0;
 644}
 645
 646static int static_address_open(struct inode *inode, struct file *file)
 647{
 648	return single_open(file, static_address_show, inode->i_private);
 649}
 650
 651static const struct file_operations static_address_fops = {
 652	.open		= static_address_open,
 653	.read		= seq_read,
 654	.llseek		= seq_lseek,
 655	.release	= single_release,
 656};
 657
 658static ssize_t force_static_address_read(struct file *file,
 659					 char __user *user_buf,
 660					 size_t count, loff_t *ppos)
 661{
 662	struct hci_dev *hdev = file->private_data;
 663	char buf[3];
 664
 665	buf[0] = test_bit(HCI_FORCE_STATIC_ADDR, &hdev->dev_flags) ? 'Y': 'N';
 666	buf[1] = '\n';
 667	buf[2] = '\0';
 668	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
 669}
 670
 671static ssize_t force_static_address_write(struct file *file,
 672					  const char __user *user_buf,
 673					  size_t count, loff_t *ppos)
 674{
 675	struct hci_dev *hdev = file->private_data;
 676	char buf[32];
 677	size_t buf_size = min(count, (sizeof(buf)-1));
 678	bool enable;
 679
 680	if (test_bit(HCI_UP, &hdev->flags))
 681		return -EBUSY;
 682
 683	if (copy_from_user(buf, user_buf, buf_size))
 684		return -EFAULT;
 685
 686	buf[buf_size] = '\0';
 687	if (strtobool(buf, &enable))
 688		return -EINVAL;
 689
 690	if (enable == test_bit(HCI_FORCE_STATIC_ADDR, &hdev->dev_flags))
 691		return -EALREADY;
 692
 693	change_bit(HCI_FORCE_STATIC_ADDR, &hdev->dev_flags);
 694
 695	return count;
 696}
 697
 698static const struct file_operations force_static_address_fops = {
 699	.open		= simple_open,
 700	.read		= force_static_address_read,
 701	.write		= force_static_address_write,
 702	.llseek		= default_llseek,
 703};
 704
 705static int white_list_show(struct seq_file *f, void *ptr)
 706{
 707	struct hci_dev *hdev = f->private;
 708	struct bdaddr_list *b;
 709
 710	hci_dev_lock(hdev);
 711	list_for_each_entry(b, &hdev->le_white_list, list)
 712		seq_printf(f, "%pMR (type %u)\n", &b->bdaddr, b->bdaddr_type);
 713	hci_dev_unlock(hdev);
 714
 715	return 0;
 716}
 717
 718static int white_list_open(struct inode *inode, struct file *file)
 719{
 720	return single_open(file, white_list_show, inode->i_private);
 721}
 722
 723static const struct file_operations white_list_fops = {
 724	.open		= white_list_open,
 725	.read		= seq_read,
 726	.llseek		= seq_lseek,
 727	.release	= single_release,
 728};
 729
 730static int identity_resolving_keys_show(struct seq_file *f, void *ptr)
 731{
 732	struct hci_dev *hdev = f->private;
 733	struct list_head *p, *n;
 734
 735	hci_dev_lock(hdev);
 736	list_for_each_safe(p, n, &hdev->identity_resolving_keys) {
 737		struct smp_irk *irk = list_entry(p, struct smp_irk, list);
 738		seq_printf(f, "%pMR (type %u) %*phN %pMR\n",
 739			   &irk->bdaddr, irk->addr_type,
 740			   16, irk->val, &irk->rpa);
 741	}
 742	hci_dev_unlock(hdev);
 743
 744	return 0;
 745}
 746
 747static int identity_resolving_keys_open(struct inode *inode, struct file *file)
 748{
 749	return single_open(file, identity_resolving_keys_show,
 750			   inode->i_private);
 751}
 752
 753static const struct file_operations identity_resolving_keys_fops = {
 754	.open		= identity_resolving_keys_open,
 755	.read		= seq_read,
 756	.llseek		= seq_lseek,
 757	.release	= single_release,
 758};
 759
 760static int long_term_keys_show(struct seq_file *f, void *ptr)
 761{
 762	struct hci_dev *hdev = f->private;
 763	struct list_head *p, *n;
 764
 765	hci_dev_lock(hdev);
 766	list_for_each_safe(p, n, &hdev->long_term_keys) {
 767		struct smp_ltk *ltk = list_entry(p, struct smp_ltk, list);
 768		seq_printf(f, "%pMR (type %u) %u 0x%02x %u %.4x %.16llx %*phN\n",
 769			   &ltk->bdaddr, ltk->bdaddr_type, ltk->authenticated,
 770			   ltk->type, ltk->enc_size, __le16_to_cpu(ltk->ediv),
 771			   __le64_to_cpu(ltk->rand), 16, ltk->val);
 772	}
 773	hci_dev_unlock(hdev);
 774
 775	return 0;
 776}
 777
 778static int long_term_keys_open(struct inode *inode, struct file *file)
 779{
 780	return single_open(file, long_term_keys_show, inode->i_private);
 781}
 782
 783static const struct file_operations long_term_keys_fops = {
 784	.open		= long_term_keys_open,
 785	.read		= seq_read,
 786	.llseek		= seq_lseek,
 787	.release	= single_release,
 788};
 789
 790static int conn_min_interval_set(void *data, u64 val)
 791{
 792	struct hci_dev *hdev = data;
 793
 794	if (val < 0x0006 || val > 0x0c80 || val > hdev->le_conn_max_interval)
 795		return -EINVAL;
 796
 797	hci_dev_lock(hdev);
 798	hdev->le_conn_min_interval = val;
 799	hci_dev_unlock(hdev);
 800
 801	return 0;
 802}
 803
 804static int conn_min_interval_get(void *data, u64 *val)
 805{
 806	struct hci_dev *hdev = data;
 807
 808	hci_dev_lock(hdev);
 809	*val = hdev->le_conn_min_interval;
 810	hci_dev_unlock(hdev);
 811
 812	return 0;
 813}
 814
 815DEFINE_SIMPLE_ATTRIBUTE(conn_min_interval_fops, conn_min_interval_get,
 816			conn_min_interval_set, "%llu\n");
 817
 818static int conn_max_interval_set(void *data, u64 val)
 819{
 820	struct hci_dev *hdev = data;
 821
 822	if (val < 0x0006 || val > 0x0c80 || val < hdev->le_conn_min_interval)
 823		return -EINVAL;
 824
 825	hci_dev_lock(hdev);
 826	hdev->le_conn_max_interval = val;
 827	hci_dev_unlock(hdev);
 828
 829	return 0;
 830}
 831
 832static int conn_max_interval_get(void *data, u64 *val)
 833{
 834	struct hci_dev *hdev = data;
 835
 836	hci_dev_lock(hdev);
 837	*val = hdev->le_conn_max_interval;
 838	hci_dev_unlock(hdev);
 839
 840	return 0;
 841}
 842
 843DEFINE_SIMPLE_ATTRIBUTE(conn_max_interval_fops, conn_max_interval_get,
 844			conn_max_interval_set, "%llu\n");
 845
 846static int adv_channel_map_set(void *data, u64 val)
 847{
 848	struct hci_dev *hdev = data;
 849
 850	if (val < 0x01 || val > 0x07)
 851		return -EINVAL;
 852
 853	hci_dev_lock(hdev);
 854	hdev->le_adv_channel_map = val;
 855	hci_dev_unlock(hdev);
 856
 857	return 0;
 858}
 859
 860static int adv_channel_map_get(void *data, u64 *val)
 861{
 862	struct hci_dev *hdev = data;
 863
 864	hci_dev_lock(hdev);
 865	*val = hdev->le_adv_channel_map;
 866	hci_dev_unlock(hdev);
 867
 868	return 0;
 869}
 870
 871DEFINE_SIMPLE_ATTRIBUTE(adv_channel_map_fops, adv_channel_map_get,
 872			adv_channel_map_set, "%llu\n");
 873
 874static ssize_t lowpan_read(struct file *file, char __user *user_buf,
 875			   size_t count, loff_t *ppos)
 876{
 877	struct hci_dev *hdev = file->private_data;
 878	char buf[3];
 879
 880	buf[0] = test_bit(HCI_6LOWPAN_ENABLED, &hdev->dev_flags) ? 'Y' : 'N';
 881	buf[1] = '\n';
 882	buf[2] = '\0';
 883	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
 884}
 885
 886static ssize_t lowpan_write(struct file *fp, const char __user *user_buffer,
 887			    size_t count, loff_t *position)
 888{
 889	struct hci_dev *hdev = fp->private_data;
 890	bool enable;
 891	char buf[32];
 892	size_t buf_size = min(count, (sizeof(buf)-1));
 893
 894	if (copy_from_user(buf, user_buffer, buf_size))
 895		return -EFAULT;
 896
 897	buf[buf_size] = '\0';
 898
 899	if (strtobool(buf, &enable) < 0)
 900		return -EINVAL;
 901
 902	if (enable == test_bit(HCI_6LOWPAN_ENABLED, &hdev->dev_flags))
 903		return -EALREADY;
 904
 905	change_bit(HCI_6LOWPAN_ENABLED, &hdev->dev_flags);
 906
 907	return count;
 908}
 909
 910static const struct file_operations lowpan_debugfs_fops = {
 911	.open		= simple_open,
 912	.read		= lowpan_read,
 913	.write		= lowpan_write,
 914	.llseek		= default_llseek,
 915};
 916
 917static int le_auto_conn_show(struct seq_file *sf, void *ptr)
 918{
 919	struct hci_dev *hdev = sf->private;
 920	struct hci_conn_params *p;
 921
 922	hci_dev_lock(hdev);
 923
 924	list_for_each_entry(p, &hdev->le_conn_params, list) {
 925		seq_printf(sf, "%pMR %u %u\n", &p->addr, p->addr_type,
 926			   p->auto_connect);
 927	}
 928
 929	hci_dev_unlock(hdev);
 930
 931	return 0;
 932}
 933
 934static int le_auto_conn_open(struct inode *inode, struct file *file)
 935{
 936	return single_open(file, le_auto_conn_show, inode->i_private);
 937}
 938
 939static ssize_t le_auto_conn_write(struct file *file, const char __user *data,
 940				  size_t count, loff_t *offset)
 941{
 942	struct seq_file *sf = file->private_data;
 943	struct hci_dev *hdev = sf->private;
 944	u8 auto_connect = 0;
 945	bdaddr_t addr;
 946	u8 addr_type;
 947	char *buf;
 948	int err = 0;
 949	int n;
 950
 951	/* Don't allow partial write */
 952	if (*offset != 0)
 953		return -EINVAL;
 954
 955	if (count < 3)
 956		return -EINVAL;
 957
 958	buf = kzalloc(count, GFP_KERNEL);
 959	if (!buf)
 960		return -ENOMEM;
 961
 962	if (copy_from_user(buf, data, count)) {
 963		err = -EFAULT;
 964		goto done;
 965	}
 966
 967	if (memcmp(buf, "add", 3) == 0) {
 968		n = sscanf(&buf[4], "%hhx:%hhx:%hhx:%hhx:%hhx:%hhx %hhu %hhu",
 969			   &addr.b[5], &addr.b[4], &addr.b[3], &addr.b[2],
 970			   &addr.b[1], &addr.b[0], &addr_type,
 971			   &auto_connect);
 972
 973		if (n < 7) {
 974			err = -EINVAL;
 975			goto done;
 976		}
 977
 978		hci_dev_lock(hdev);
 979		err = hci_conn_params_add(hdev, &addr, addr_type, auto_connect,
 980					  hdev->le_conn_min_interval,
 981					  hdev->le_conn_max_interval);
 982		hci_dev_unlock(hdev);
 983
 984		if (err)
 985			goto done;
 986	} else if (memcmp(buf, "del", 3) == 0) {
 987		n = sscanf(&buf[4], "%hhx:%hhx:%hhx:%hhx:%hhx:%hhx %hhu",
 988			   &addr.b[5], &addr.b[4], &addr.b[3], &addr.b[2],
 989			   &addr.b[1], &addr.b[0], &addr_type);
 990
 991		if (n < 7) {
 992			err = -EINVAL;
 993			goto done;
 994		}
 995
 996		hci_dev_lock(hdev);
 997		hci_conn_params_del(hdev, &addr, addr_type);
 998		hci_dev_unlock(hdev);
 999	} else if (memcmp(buf, "clr", 3) == 0) {
1000		hci_dev_lock(hdev);
1001		hci_conn_params_clear(hdev);
1002		hci_pend_le_conns_clear(hdev);
1003		hci_update_background_scan(hdev);
1004		hci_dev_unlock(hdev);
1005	} else {
1006		err = -EINVAL;
1007	}
1008
1009done:
1010	kfree(buf);
1011
1012	if (err)
1013		return err;
1014	else
1015		return count;
1016}
1017
1018static const struct file_operations le_auto_conn_fops = {
1019	.open		= le_auto_conn_open,
1020	.read		= seq_read,
1021	.write		= le_auto_conn_write,
1022	.llseek		= seq_lseek,
1023	.release	= single_release,
1024};
1025
1026/* ---- HCI requests ---- */
1027
1028static void hci_req_sync_complete(struct hci_dev *hdev, u8 result)
1029{
1030	BT_DBG("%s result 0x%2.2x", hdev->name, result);
1031
1032	if (hdev->req_status == HCI_REQ_PEND) {
1033		hdev->req_result = result;
1034		hdev->req_status = HCI_REQ_DONE;
1035		wake_up_interruptible(&hdev->req_wait_q);
1036	}
1037}
1038
1039static void hci_req_cancel(struct hci_dev *hdev, int err)
1040{
1041	BT_DBG("%s err 0x%2.2x", hdev->name, err);
1042
1043	if (hdev->req_status == HCI_REQ_PEND) {
1044		hdev->req_result = err;
1045		hdev->req_status = HCI_REQ_CANCELED;
1046		wake_up_interruptible(&hdev->req_wait_q);
1047	}
1048}
1049
1050static struct sk_buff *hci_get_cmd_complete(struct hci_dev *hdev, u16 opcode,
1051					    u8 event)
1052{
1053	struct hci_ev_cmd_complete *ev;
1054	struct hci_event_hdr *hdr;
1055	struct sk_buff *skb;
1056
1057	hci_dev_lock(hdev);
1058
1059	skb = hdev->recv_evt;
1060	hdev->recv_evt = NULL;
1061
1062	hci_dev_unlock(hdev);
1063
1064	if (!skb)
1065		return ERR_PTR(-ENODATA);
1066
1067	if (skb->len < sizeof(*hdr)) {
1068		BT_ERR("Too short HCI event");
1069		goto failed;
1070	}
1071
1072	hdr = (void *) skb->data;
1073	skb_pull(skb, HCI_EVENT_HDR_SIZE);
1074
1075	if (event) {
1076		if (hdr->evt != event)
1077			goto failed;
1078		return skb;
1079	}
1080
1081	if (hdr->evt != HCI_EV_CMD_COMPLETE) {
1082		BT_DBG("Last event is not cmd complete (0x%2.2x)", hdr->evt);
1083		goto failed;
1084	}
1085
1086	if (skb->len < sizeof(*ev)) {
1087		BT_ERR("Too short cmd_complete event");
1088		goto failed;
1089	}
1090
1091	ev = (void *) skb->data;
1092	skb_pull(skb, sizeof(*ev));
1093
1094	if (opcode == __le16_to_cpu(ev->opcode))
1095		return skb;
1096
1097	BT_DBG("opcode doesn't match (0x%2.2x != 0x%2.2x)", opcode,
1098	       __le16_to_cpu(ev->opcode));
1099
1100failed:
1101	kfree_skb(skb);
1102	return ERR_PTR(-ENODATA);
1103}
1104
1105struct sk_buff *__hci_cmd_sync_ev(struct hci_dev *hdev, u16 opcode, u32 plen,
1106				  const void *param, u8 event, u32 timeout)
1107{
1108	DECLARE_WAITQUEUE(wait, current);
1109	struct hci_request req;
1110	int err = 0;
1111
1112	BT_DBG("%s", hdev->name);
1113
1114	hci_req_init(&req, hdev);
1115
1116	hci_req_add_ev(&req, opcode, plen, param, event);
1117
1118	hdev->req_status = HCI_REQ_PEND;
1119
1120	err = hci_req_run(&req, hci_req_sync_complete);
1121	if (err < 0)
1122		return ERR_PTR(err);
1123
1124	add_wait_queue(&hdev->req_wait_q, &wait);
1125	set_current_state(TASK_INTERRUPTIBLE);
1126
1127	schedule_timeout(timeout);
1128
1129	remove_wait_queue(&hdev->req_wait_q, &wait);
1130
1131	if (signal_pending(current))
1132		return ERR_PTR(-EINTR);
1133
1134	switch (hdev->req_status) {
1135	case HCI_REQ_DONE:
1136		err = -bt_to_errno(hdev->req_result);
1137		break;
1138
1139	case HCI_REQ_CANCELED:
1140		err = -hdev->req_result;
1141		break;
1142
1143	default:
1144		err = -ETIMEDOUT;
1145		break;
1146	}
1147
1148	hdev->req_status = hdev->req_result = 0;
1149
1150	BT_DBG("%s end: err %d", hdev->name, err);
1151
1152	if (err < 0)
1153		return ERR_PTR(err);
1154
1155	return hci_get_cmd_complete(hdev, opcode, event);
1156}
1157EXPORT_SYMBOL(__hci_cmd_sync_ev);
1158
1159struct sk_buff *__hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
1160			       const void *param, u32 timeout)
1161{
1162	return __hci_cmd_sync_ev(hdev, opcode, plen, param, 0, timeout);
1163}
1164EXPORT_SYMBOL(__hci_cmd_sync);
1165
1166/* Execute request and wait for completion. */
1167static int __hci_req_sync(struct hci_dev *hdev,
1168			  void (*func)(struct hci_request *req,
1169				      unsigned long opt),
1170			  unsigned long opt, __u32 timeout)
1171{
1172	struct hci_request req;
1173	DECLARE_WAITQUEUE(wait, current);
1174	int err = 0;
1175
1176	BT_DBG("%s start", hdev->name);
1177
1178	hci_req_init(&req, hdev);
1179
1180	hdev->req_status = HCI_REQ_PEND;
1181
1182	func(&req, opt);
1183
1184	err = hci_req_run(&req, hci_req_sync_complete);
1185	if (err < 0) {
1186		hdev->req_status = 0;
1187
1188		/* ENODATA means the HCI request command queue is empty.
1189		 * This can happen when a request with conditionals doesn't
1190		 * trigger any commands to be sent. This is normal behavior
1191		 * and should not trigger an error return.
1192		 */
1193		if (err == -ENODATA)
1194			return 0;
1195
1196		return err;
1197	}
1198
1199	add_wait_queue(&hdev->req_wait_q, &wait);
1200	set_current_state(TASK_INTERRUPTIBLE);
1201
1202	schedule_timeout(timeout);
1203
1204	remove_wait_queue(&hdev->req_wait_q, &wait);
1205
1206	if (signal_pending(current))
1207		return -EINTR;
1208
1209	switch (hdev->req_status) {
1210	case HCI_REQ_DONE:
1211		err = -bt_to_errno(hdev->req_result);
1212		break;
1213
1214	case HCI_REQ_CANCELED:
1215		err = -hdev->req_result;
1216		break;
1217
1218	default:
1219		err = -ETIMEDOUT;
1220		break;
1221	}
1222
1223	hdev->req_status = hdev->req_result = 0;
1224
1225	BT_DBG("%s end: err %d", hdev->name, err);
1226
1227	return err;
1228}
1229
1230static int hci_req_sync(struct hci_dev *hdev,
1231			void (*req)(struct hci_request *req,
1232				    unsigned long opt),
1233			unsigned long opt, __u32 timeout)
1234{
1235	int ret;
1236
1237	if (!test_bit(HCI_UP, &hdev->flags))
1238		return -ENETDOWN;
1239
1240	/* Serialize all requests */
1241	hci_req_lock(hdev);
1242	ret = __hci_req_sync(hdev, req, opt, timeout);
1243	hci_req_unlock(hdev);
1244
1245	return ret;
1246}
1247
1248static void hci_reset_req(struct hci_request *req, unsigned long opt)
1249{
1250	BT_DBG("%s %ld", req->hdev->name, opt);
1251
1252	/* Reset device */
1253	set_bit(HCI_RESET, &req->hdev->flags);
1254	hci_req_add(req, HCI_OP_RESET, 0, NULL);
 
1255}
1256
1257static void bredr_init(struct hci_request *req)
1258{
1259	req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_PACKET_BASED;
1260
1261	/* Read Local Supported Features */
1262	hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
1263
1264	/* Read Local Version */
1265	hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
1266
1267	/* Read BD Address */
1268	hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL);
1269}
1270
1271static void amp_init(struct hci_request *req)
1272{
1273	req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_BLOCK_BASED;
1274
1275	/* Read Local Version */
1276	hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
1277
1278	/* Read Local Supported Commands */
1279	hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL);
1280
1281	/* Read Local Supported Features */
1282	hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
1283
1284	/* Read Local AMP Info */
1285	hci_req_add(req, HCI_OP_READ_LOCAL_AMP_INFO, 0, NULL);
1286
1287	/* Read Data Blk size */
1288	hci_req_add(req, HCI_OP_READ_DATA_BLOCK_SIZE, 0, NULL);
1289
1290	/* Read Flow Control Mode */
1291	hci_req_add(req, HCI_OP_READ_FLOW_CONTROL_MODE, 0, NULL);
1292
1293	/* Read Location Data */
1294	hci_req_add(req, HCI_OP_READ_LOCATION_DATA, 0, NULL);
1295}
1296
1297static void hci_init1_req(struct hci_request *req, unsigned long opt)
 
 
 
 
 
 
 
 
 
 
 
 
1298{
1299	struct hci_dev *hdev = req->hdev;
1300
1301	BT_DBG("%s %ld", hdev->name, opt);
1302
1303	/* Reset */
1304	if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks))
1305		hci_reset_req(req, 0);
1306
1307	switch (hdev->dev_type) {
1308	case HCI_BREDR:
1309		bredr_init(req);
1310		break;
1311
1312	case HCI_AMP:
1313		amp_init(req);
1314		break;
1315
1316	default:
1317		BT_ERR("Unknown device type %d", hdev->dev_type);
1318		break;
1319	}
 
 
1320}
1321
1322static void bredr_setup(struct hci_request *req)
1323{
1324	struct hci_dev *hdev = req->hdev;
1325
1326	__le16 param;
1327	__u8 flt_type;
1328
1329	/* Read Buffer Size (ACL mtu, max pkt, etc.) */
1330	hci_req_add(req, HCI_OP_READ_BUFFER_SIZE, 0, NULL);
1331
1332	/* Read Class of Device */
1333	hci_req_add(req, HCI_OP_READ_CLASS_OF_DEV, 0, NULL);
1334
1335	/* Read Local Name */
1336	hci_req_add(req, HCI_OP_READ_LOCAL_NAME, 0, NULL);
1337
1338	/* Read Voice Setting */
1339	hci_req_add(req, HCI_OP_READ_VOICE_SETTING, 0, NULL);
1340
1341	/* Read Number of Supported IAC */
1342	hci_req_add(req, HCI_OP_READ_NUM_SUPPORTED_IAC, 0, NULL);
1343
1344	/* Read Current IAC LAP */
1345	hci_req_add(req, HCI_OP_READ_CURRENT_IAC_LAP, 0, NULL);
1346
1347	/* Clear Event Filters */
1348	flt_type = HCI_FLT_CLEAR_ALL;
1349	hci_req_add(req, HCI_OP_SET_EVENT_FLT, 1, &flt_type);
1350
1351	/* Connection accept timeout ~20 secs */
1352	param = cpu_to_le16(0x7d00);
1353	hci_req_add(req, HCI_OP_WRITE_CA_TIMEOUT, 2, &param);
1354
1355	/* AVM Berlin (31), aka "BlueFRITZ!", reports version 1.2,
1356	 * but it does not support page scan related HCI commands.
1357	 */
1358	if (hdev->manufacturer != 31 && hdev->hci_ver > BLUETOOTH_VER_1_1) {
1359		hci_req_add(req, HCI_OP_READ_PAGE_SCAN_ACTIVITY, 0, NULL);
1360		hci_req_add(req, HCI_OP_READ_PAGE_SCAN_TYPE, 0, NULL);
1361	}
1362}
1363
1364static void le_setup(struct hci_request *req)
1365{
1366	struct hci_dev *hdev = req->hdev;
1367
1368	/* Read LE Buffer Size */
1369	hci_req_add(req, HCI_OP_LE_READ_BUFFER_SIZE, 0, NULL);
1370
1371	/* Read LE Local Supported Features */
1372	hci_req_add(req, HCI_OP_LE_READ_LOCAL_FEATURES, 0, NULL);
1373
1374	/* Read LE Supported States */
1375	hci_req_add(req, HCI_OP_LE_READ_SUPPORTED_STATES, 0, NULL);
1376
1377	/* Read LE Advertising Channel TX Power */
1378	hci_req_add(req, HCI_OP_LE_READ_ADV_TX_POWER, 0, NULL);
1379
1380	/* Read LE White List Size */
1381	hci_req_add(req, HCI_OP_LE_READ_WHITE_LIST_SIZE, 0, NULL);
1382
1383	/* Clear LE White List */
1384	hci_req_add(req, HCI_OP_LE_CLEAR_WHITE_LIST, 0, NULL);
1385
1386	/* LE-only controllers have LE implicitly enabled */
1387	if (!lmp_bredr_capable(hdev))
1388		set_bit(HCI_LE_ENABLED, &hdev->dev_flags);
1389}
1390
1391static u8 hci_get_inquiry_mode(struct hci_dev *hdev)
1392{
1393	if (lmp_ext_inq_capable(hdev))
1394		return 0x02;
1395
1396	if (lmp_inq_rssi_capable(hdev))
1397		return 0x01;
1398
1399	if (hdev->manufacturer == 11 && hdev->hci_rev == 0x00 &&
1400	    hdev->lmp_subver == 0x0757)
1401		return 0x01;
1402
1403	if (hdev->manufacturer == 15) {
1404		if (hdev->hci_rev == 0x03 && hdev->lmp_subver == 0x6963)
1405			return 0x01;
1406		if (hdev->hci_rev == 0x09 && hdev->lmp_subver == 0x6963)
1407			return 0x01;
1408		if (hdev->hci_rev == 0x00 && hdev->lmp_subver == 0x6965)
1409			return 0x01;
1410	}
1411
1412	if (hdev->manufacturer == 31 && hdev->hci_rev == 0x2005 &&
1413	    hdev->lmp_subver == 0x1805)
1414		return 0x01;
1415
1416	return 0x00;
1417}
1418
1419static void hci_setup_inquiry_mode(struct hci_request *req)
1420{
1421	u8 mode;
1422
1423	mode = hci_get_inquiry_mode(req->hdev);
1424
1425	hci_req_add(req, HCI_OP_WRITE_INQUIRY_MODE, 1, &mode);
1426}
1427
1428static void hci_setup_event_mask(struct hci_request *req)
1429{
1430	struct hci_dev *hdev = req->hdev;
1431
1432	/* The second byte is 0xff instead of 0x9f (two reserved bits
1433	 * disabled) since a Broadcom 1.2 dongle doesn't respond to the
1434	 * command otherwise.
1435	 */
1436	u8 events[8] = { 0xff, 0xff, 0xfb, 0xff, 0x00, 0x00, 0x00, 0x00 };
1437
1438	/* CSR 1.1 dongles does not accept any bitfield so don't try to set
1439	 * any event mask for pre 1.2 devices.
1440	 */
1441	if (hdev->hci_ver < BLUETOOTH_VER_1_2)
1442		return;
1443
1444	if (lmp_bredr_capable(hdev)) {
1445		events[4] |= 0x01; /* Flow Specification Complete */
1446		events[4] |= 0x02; /* Inquiry Result with RSSI */
1447		events[4] |= 0x04; /* Read Remote Extended Features Complete */
1448		events[5] |= 0x08; /* Synchronous Connection Complete */
1449		events[5] |= 0x10; /* Synchronous Connection Changed */
1450	} else {
1451		/* Use a different default for LE-only devices */
1452		memset(events, 0, sizeof(events));
1453		events[0] |= 0x10; /* Disconnection Complete */
1454		events[0] |= 0x80; /* Encryption Change */
1455		events[1] |= 0x08; /* Read Remote Version Information Complete */
1456		events[1] |= 0x20; /* Command Complete */
1457		events[1] |= 0x40; /* Command Status */
1458		events[1] |= 0x80; /* Hardware Error */
1459		events[2] |= 0x04; /* Number of Completed Packets */
1460		events[3] |= 0x02; /* Data Buffer Overflow */
1461		events[5] |= 0x80; /* Encryption Key Refresh Complete */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1462	}
1463
1464	if (lmp_inq_rssi_capable(hdev))
 
1465		events[4] |= 0x02; /* Inquiry Result with RSSI */
1466
 
 
 
 
 
 
 
 
1467	if (lmp_sniffsubr_capable(hdev))
1468		events[5] |= 0x20; /* Sniff Subrating */
1469
1470	if (lmp_pause_enc_capable(hdev))
1471		events[5] |= 0x80; /* Encryption Key Refresh Complete */
1472
1473	if (lmp_ext_inq_capable(hdev))
1474		events[5] |= 0x40; /* Extended Inquiry Result */
1475
1476	if (lmp_no_flush_capable(hdev))
1477		events[7] |= 0x01; /* Enhanced Flush Complete */
1478
1479	if (lmp_lsto_capable(hdev))
1480		events[6] |= 0x80; /* Link Supervision Timeout Changed */
1481
1482	if (lmp_ssp_capable(hdev)) {
1483		events[6] |= 0x01;	/* IO Capability Request */
1484		events[6] |= 0x02;	/* IO Capability Response */
1485		events[6] |= 0x04;	/* User Confirmation Request */
1486		events[6] |= 0x08;	/* User Passkey Request */
1487		events[6] |= 0x10;	/* Remote OOB Data Request */
1488		events[6] |= 0x20;	/* Simple Pairing Complete */
1489		events[7] |= 0x04;	/* User Passkey Notification */
1490		events[7] |= 0x08;	/* Keypress Notification */
1491		events[7] |= 0x10;	/* Remote Host Supported
1492					 * Features Notification
1493					 */
1494	}
1495
1496	if (lmp_le_capable(hdev))
1497		events[7] |= 0x20;	/* LE Meta-Event */
1498
1499	hci_req_add(req, HCI_OP_SET_EVENT_MASK, sizeof(events), events);
1500
1501	if (lmp_le_capable(hdev)) {
1502		memset(events, 0, sizeof(events));
1503		events[0] = 0x1f;
1504		hci_req_add(req, HCI_OP_LE_SET_EVENT_MASK,
1505			    sizeof(events), events);
1506	}
1507}
1508
1509static void hci_init2_req(struct hci_request *req, unsigned long opt)
1510{
1511	struct hci_dev *hdev = req->hdev;
1512
 
 
 
1513	if (lmp_bredr_capable(hdev))
1514		bredr_setup(req);
1515	else
1516		clear_bit(HCI_BREDR_ENABLED, &hdev->dev_flags);
1517
1518	if (lmp_le_capable(hdev))
1519		le_setup(req);
1520
1521	hci_setup_event_mask(req);
1522
1523	/* AVM Berlin (31), aka "BlueFRITZ!", doesn't support the read
1524	 * local supported commands HCI command.
 
 
 
1525	 */
1526	if (hdev->manufacturer != 31 && hdev->hci_ver > BLUETOOTH_VER_1_1)
 
1527		hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL);
1528
1529	if (lmp_ssp_capable(hdev)) {
1530		/* When SSP is available, then the host features page
1531		 * should also be available as well. However some
1532		 * controllers list the max_page as 0 as long as SSP
1533		 * has not been enabled. To achieve proper debugging
1534		 * output, force the minimum max_page to 1 at least.
1535		 */
1536		hdev->max_page = 0x01;
1537
1538		if (test_bit(HCI_SSP_ENABLED, &hdev->dev_flags)) {
1539			u8 mode = 0x01;
 
1540			hci_req_add(req, HCI_OP_WRITE_SSP_MODE,
1541				    sizeof(mode), &mode);
1542		} else {
1543			struct hci_cp_write_eir cp;
1544
1545			memset(hdev->eir, 0, sizeof(hdev->eir));
1546			memset(&cp, 0, sizeof(cp));
1547
1548			hci_req_add(req, HCI_OP_WRITE_EIR, sizeof(cp), &cp);
1549		}
1550	}
1551
1552	if (lmp_inq_rssi_capable(hdev))
1553		hci_setup_inquiry_mode(req);
 
 
 
 
 
 
 
 
 
 
1554
1555	if (lmp_inq_tx_pwr_capable(hdev))
1556		hci_req_add(req, HCI_OP_READ_INQ_RSP_TX_POWER, 0, NULL);
1557
1558	if (lmp_ext_feat_capable(hdev)) {
1559		struct hci_cp_read_local_ext_features cp;
1560
1561		cp.page = 0x01;
1562		hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES,
1563			    sizeof(cp), &cp);
1564	}
1565
1566	if (test_bit(HCI_LINK_SECURITY, &hdev->dev_flags)) {
1567		u8 enable = 1;
1568		hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, sizeof(enable),
1569			    &enable);
1570	}
 
 
1571}
1572
1573static void hci_setup_link_policy(struct hci_request *req)
1574{
1575	struct hci_dev *hdev = req->hdev;
1576	struct hci_cp_write_def_link_policy cp;
1577	u16 link_policy = 0;
1578
1579	if (lmp_rswitch_capable(hdev))
1580		link_policy |= HCI_LP_RSWITCH;
1581	if (lmp_hold_capable(hdev))
1582		link_policy |= HCI_LP_HOLD;
1583	if (lmp_sniff_capable(hdev))
1584		link_policy |= HCI_LP_SNIFF;
1585	if (lmp_park_capable(hdev))
1586		link_policy |= HCI_LP_PARK;
1587
1588	cp.policy = cpu_to_le16(link_policy);
1589	hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, sizeof(cp), &cp);
1590}
1591
1592static void hci_set_le_support(struct hci_request *req)
1593{
1594	struct hci_dev *hdev = req->hdev;
1595	struct hci_cp_write_le_host_supported cp;
1596
1597	/* LE-only devices do not support explicit enablement */
1598	if (!lmp_bredr_capable(hdev))
1599		return;
1600
1601	memset(&cp, 0, sizeof(cp));
1602
1603	if (test_bit(HCI_LE_ENABLED, &hdev->dev_flags)) {
1604		cp.le = 0x01;
1605		cp.simul = lmp_le_br_capable(hdev);
1606	}
1607
1608	if (cp.le != lmp_host_le_capable(hdev))
1609		hci_req_add(req, HCI_OP_WRITE_LE_HOST_SUPPORTED, sizeof(cp),
1610			    &cp);
1611}
1612
1613static void hci_set_event_mask_page_2(struct hci_request *req)
1614{
1615	struct hci_dev *hdev = req->hdev;
1616	u8 events[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
1617
1618	/* If Connectionless Slave Broadcast master role is supported
1619	 * enable all necessary events for it.
1620	 */
1621	if (lmp_csb_master_capable(hdev)) {
1622		events[1] |= 0x40;	/* Triggered Clock Capture */
1623		events[1] |= 0x80;	/* Synchronization Train Complete */
1624		events[2] |= 0x10;	/* Slave Page Response Timeout */
1625		events[2] |= 0x20;	/* CSB Channel Map Change */
1626	}
1627
1628	/* If Connectionless Slave Broadcast slave role is supported
1629	 * enable all necessary events for it.
1630	 */
1631	if (lmp_csb_slave_capable(hdev)) {
1632		events[2] |= 0x01;	/* Synchronization Train Received */
1633		events[2] |= 0x02;	/* CSB Receive */
1634		events[2] |= 0x04;	/* CSB Timeout */
1635		events[2] |= 0x08;	/* Truncated Page Complete */
1636	}
1637
1638	/* Enable Authenticated Payload Timeout Expired event if supported */
1639	if (lmp_ping_capable(hdev))
1640		events[2] |= 0x80;
1641
1642	hci_req_add(req, HCI_OP_SET_EVENT_MASK_PAGE_2, sizeof(events), events);
1643}
1644
1645static void hci_init3_req(struct hci_request *req, unsigned long opt)
1646{
1647	struct hci_dev *hdev = req->hdev;
1648	u8 p;
1649
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1650	/* Some Broadcom based Bluetooth controllers do not support the
1651	 * Delete Stored Link Key command. They are clearly indicating its
1652	 * absence in the bit mask of supported commands.
1653	 *
1654	 * Check the supported commands and only if the the command is marked
1655	 * as supported send it. If not supported assume that the controller
1656	 * does not have actual support for stored link keys which makes this
1657	 * command redundant anyway.
1658	 *
1659	 * Some controllers indicate that they support handling deleting
1660	 * stored link keys, but they don't. The quirk lets a driver
1661	 * just disable this command.
1662	 */
1663	if (hdev->commands[6] & 0x80 &&
1664	    !test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) {
1665		struct hci_cp_delete_stored_link_key cp;
1666
1667		bacpy(&cp.bdaddr, BDADDR_ANY);
1668		cp.delete_all = 0x01;
1669		hci_req_add(req, HCI_OP_DELETE_STORED_LINK_KEY,
1670			    sizeof(cp), &cp);
1671	}
1672
1673	if (hdev->commands[5] & 0x10)
1674		hci_setup_link_policy(req);
1675
1676	if (lmp_le_capable(hdev))
1677		hci_set_le_support(req);
1678
1679	/* Read features beyond page 1 if available */
1680	for (p = 2; p < HCI_MAX_PAGES && p <= hdev->max_page; p++) {
1681		struct hci_cp_read_local_ext_features cp;
1682
1683		cp.page = p;
1684		hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES,
1685			    sizeof(cp), &cp);
1686	}
1687}
1688
1689static void hci_init4_req(struct hci_request *req, unsigned long opt)
1690{
1691	struct hci_dev *hdev = req->hdev;
1692
1693	/* Set event mask page 2 if the HCI command for it is supported */
1694	if (hdev->commands[22] & 0x04)
1695		hci_set_event_mask_page_2(req);
1696
 
 
 
 
 
 
 
 
1697	/* Check for Synchronization Train support */
1698	if (lmp_sync_train_capable(hdev))
1699		hci_req_add(req, HCI_OP_READ_SYNC_TRAIN_PARAMS, 0, NULL);
1700
1701	/* Enable Secure Connections if supported and configured */
1702	if ((lmp_sc_capable(hdev) ||
1703	     test_bit(HCI_FORCE_SC, &hdev->dev_flags)) &&
1704	    test_bit(HCI_SC_ENABLED, &hdev->dev_flags)) {
1705		u8 support = 0x01;
 
1706		hci_req_add(req, HCI_OP_WRITE_SC_SUPPORT,
1707			    sizeof(support), &support);
1708	}
 
 
1709}
1710
1711static int __hci_init(struct hci_dev *hdev)
1712{
1713	int err;
1714
1715	err = __hci_req_sync(hdev, hci_init1_req, 0, HCI_INIT_TIMEOUT);
1716	if (err < 0)
1717		return err;
1718
1719	/* The Device Under Test (DUT) mode is special and available for
1720	 * all controller types. So just create it early on.
1721	 */
1722	if (test_bit(HCI_SETUP, &hdev->dev_flags)) {
1723		debugfs_create_file("dut_mode", 0644, hdev->debugfs, hdev,
1724				    &dut_mode_fops);
1725	}
1726
1727	/* HCI_BREDR covers both single-mode LE, BR/EDR and dual-mode
1728	 * BR/EDR/LE type controllers. AMP controllers only need the
1729	 * first stage init.
1730	 */
1731	if (hdev->dev_type != HCI_BREDR)
1732		return 0;
1733
1734	err = __hci_req_sync(hdev, hci_init2_req, 0, HCI_INIT_TIMEOUT);
1735	if (err < 0)
1736		return err;
1737
1738	err = __hci_req_sync(hdev, hci_init3_req, 0, HCI_INIT_TIMEOUT);
1739	if (err < 0)
1740		return err;
1741
1742	err = __hci_req_sync(hdev, hci_init4_req, 0, HCI_INIT_TIMEOUT);
1743	if (err < 0)
1744		return err;
1745
1746	/* Only create debugfs entries during the initial setup
1747	 * phase and not every time the controller gets powered on.
 
 
 
 
 
1748	 */
1749	if (!test_bit(HCI_SETUP, &hdev->dev_flags))
 
1750		return 0;
1751
1752	debugfs_create_file("features", 0444, hdev->debugfs, hdev,
1753			    &features_fops);
1754	debugfs_create_u16("manufacturer", 0444, hdev->debugfs,
1755			   &hdev->manufacturer);
1756	debugfs_create_u8("hci_version", 0444, hdev->debugfs, &hdev->hci_ver);
1757	debugfs_create_u16("hci_revision", 0444, hdev->debugfs, &hdev->hci_rev);
1758	debugfs_create_file("blacklist", 0444, hdev->debugfs, hdev,
1759			    &blacklist_fops);
1760	debugfs_create_file("uuids", 0444, hdev->debugfs, hdev, &uuids_fops);
1761
1762	if (lmp_bredr_capable(hdev)) {
1763		debugfs_create_file("inquiry_cache", 0444, hdev->debugfs,
1764				    hdev, &inquiry_cache_fops);
1765		debugfs_create_file("link_keys", 0400, hdev->debugfs,
1766				    hdev, &link_keys_fops);
1767		debugfs_create_file("dev_class", 0444, hdev->debugfs,
1768				    hdev, &dev_class_fops);
1769		debugfs_create_file("voice_setting", 0444, hdev->debugfs,
1770				    hdev, &voice_setting_fops);
1771	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1772
1773	if (lmp_ssp_capable(hdev)) {
1774		debugfs_create_file("auto_accept_delay", 0644, hdev->debugfs,
1775				    hdev, &auto_accept_delay_fops);
1776		debugfs_create_file("ssp_debug_mode", 0644, hdev->debugfs,
1777				    hdev, &ssp_debug_mode_fops);
1778		debugfs_create_file("force_sc_support", 0644, hdev->debugfs,
1779				    hdev, &force_sc_support_fops);
1780		debugfs_create_file("sc_only_mode", 0444, hdev->debugfs,
1781				    hdev, &sc_only_mode_fops);
1782	}
1783
1784	if (lmp_sniff_capable(hdev)) {
1785		debugfs_create_file("idle_timeout", 0644, hdev->debugfs,
1786				    hdev, &idle_timeout_fops);
1787		debugfs_create_file("sniff_min_interval", 0644, hdev->debugfs,
1788				    hdev, &sniff_min_interval_fops);
1789		debugfs_create_file("sniff_max_interval", 0644, hdev->debugfs,
1790				    hdev, &sniff_max_interval_fops);
1791	}
1792
1793	if (lmp_le_capable(hdev)) {
1794		debugfs_create_file("identity", 0400, hdev->debugfs,
1795				    hdev, &identity_fops);
1796		debugfs_create_file("rpa_timeout", 0644, hdev->debugfs,
1797				    hdev, &rpa_timeout_fops);
1798		debugfs_create_file("random_address", 0444, hdev->debugfs,
1799				    hdev, &random_address_fops);
1800		debugfs_create_file("static_address", 0444, hdev->debugfs,
1801				    hdev, &static_address_fops);
1802
1803		/* For controllers with a public address, provide a debug
1804		 * option to force the usage of the configured static
1805		 * address. By default the public address is used.
1806		 */
1807		if (bacmp(&hdev->bdaddr, BDADDR_ANY))
1808			debugfs_create_file("force_static_address", 0644,
1809					    hdev->debugfs, hdev,
1810					    &force_static_address_fops);
1811
1812		debugfs_create_u8("white_list_size", 0444, hdev->debugfs,
1813				  &hdev->le_white_list_size);
1814		debugfs_create_file("white_list", 0444, hdev->debugfs, hdev,
1815				    &white_list_fops);
1816		debugfs_create_file("identity_resolving_keys", 0400,
1817				    hdev->debugfs, hdev,
1818				    &identity_resolving_keys_fops);
1819		debugfs_create_file("long_term_keys", 0400, hdev->debugfs,
1820				    hdev, &long_term_keys_fops);
1821		debugfs_create_file("conn_min_interval", 0644, hdev->debugfs,
1822				    hdev, &conn_min_interval_fops);
1823		debugfs_create_file("conn_max_interval", 0644, hdev->debugfs,
1824				    hdev, &conn_max_interval_fops);
1825		debugfs_create_file("adv_channel_map", 0644, hdev->debugfs,
1826				    hdev, &adv_channel_map_fops);
1827		debugfs_create_file("6lowpan", 0644, hdev->debugfs, hdev,
1828				    &lowpan_debugfs_fops);
1829		debugfs_create_file("le_auto_conn", 0644, hdev->debugfs, hdev,
1830				    &le_auto_conn_fops);
1831	}
1832
1833	return 0;
1834}
1835
1836static void hci_scan_req(struct hci_request *req, unsigned long opt)
1837{
1838	__u8 scan = opt;
1839
1840	BT_DBG("%s %x", req->hdev->name, scan);
1841
1842	/* Inquiry and Page scans */
1843	hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
 
1844}
1845
1846static void hci_auth_req(struct hci_request *req, unsigned long opt)
1847{
1848	__u8 auth = opt;
1849
1850	BT_DBG("%s %x", req->hdev->name, auth);
1851
1852	/* Authentication */
1853	hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, 1, &auth);
 
1854}
1855
1856static void hci_encrypt_req(struct hci_request *req, unsigned long opt)
1857{
1858	__u8 encrypt = opt;
1859
1860	BT_DBG("%s %x", req->hdev->name, encrypt);
1861
1862	/* Encryption */
1863	hci_req_add(req, HCI_OP_WRITE_ENCRYPT_MODE, 1, &encrypt);
 
1864}
1865
1866static void hci_linkpol_req(struct hci_request *req, unsigned long opt)
1867{
1868	__le16 policy = cpu_to_le16(opt);
1869
1870	BT_DBG("%s %x", req->hdev->name, policy);
1871
1872	/* Default link policy */
1873	hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, 2, &policy);
 
1874}
1875
1876/* Get HCI device by index.
1877 * Device is held on return. */
1878struct hci_dev *hci_dev_get(int index)
1879{
1880	struct hci_dev *hdev = NULL, *d;
1881
1882	BT_DBG("%d", index);
1883
1884	if (index < 0)
1885		return NULL;
1886
1887	read_lock(&hci_dev_list_lock);
1888	list_for_each_entry(d, &hci_dev_list, list) {
1889		if (d->id == index) {
1890			hdev = hci_dev_hold(d);
1891			break;
1892		}
1893	}
1894	read_unlock(&hci_dev_list_lock);
1895	return hdev;
1896}
1897
1898/* ---- Inquiry support ---- */
1899
1900bool hci_discovery_active(struct hci_dev *hdev)
1901{
1902	struct discovery_state *discov = &hdev->discovery;
1903
1904	switch (discov->state) {
1905	case DISCOVERY_FINDING:
1906	case DISCOVERY_RESOLVING:
1907		return true;
1908
1909	default:
1910		return false;
1911	}
1912}
1913
1914void hci_discovery_set_state(struct hci_dev *hdev, int state)
1915{
 
 
1916	BT_DBG("%s state %u -> %u", hdev->name, hdev->discovery.state, state);
1917
1918	if (hdev->discovery.state == state)
1919		return;
1920
 
 
1921	switch (state) {
1922	case DISCOVERY_STOPPED:
1923		hci_update_background_scan(hdev);
1924
1925		if (hdev->discovery.state != DISCOVERY_STARTING)
1926			mgmt_discovering(hdev, 0);
1927		break;
1928	case DISCOVERY_STARTING:
1929		break;
1930	case DISCOVERY_FINDING:
1931		mgmt_discovering(hdev, 1);
1932		break;
1933	case DISCOVERY_RESOLVING:
1934		break;
1935	case DISCOVERY_STOPPING:
1936		break;
1937	}
1938
1939	hdev->discovery.state = state;
1940}
1941
1942void hci_inquiry_cache_flush(struct hci_dev *hdev)
1943{
1944	struct discovery_state *cache = &hdev->discovery;
1945	struct inquiry_entry *p, *n;
1946
1947	list_for_each_entry_safe(p, n, &cache->all, all) {
1948		list_del(&p->all);
1949		kfree(p);
1950	}
1951
1952	INIT_LIST_HEAD(&cache->unknown);
1953	INIT_LIST_HEAD(&cache->resolve);
1954}
1955
1956struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev,
1957					       bdaddr_t *bdaddr)
1958{
1959	struct discovery_state *cache = &hdev->discovery;
1960	struct inquiry_entry *e;
1961
1962	BT_DBG("cache %p, %pMR", cache, bdaddr);
1963
1964	list_for_each_entry(e, &cache->all, all) {
1965		if (!bacmp(&e->data.bdaddr, bdaddr))
1966			return e;
1967	}
1968
1969	return NULL;
1970}
1971
1972struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev,
1973						       bdaddr_t *bdaddr)
1974{
1975	struct discovery_state *cache = &hdev->discovery;
1976	struct inquiry_entry *e;
1977
1978	BT_DBG("cache %p, %pMR", cache, bdaddr);
1979
1980	list_for_each_entry(e, &cache->unknown, list) {
1981		if (!bacmp(&e->data.bdaddr, bdaddr))
1982			return e;
1983	}
1984
1985	return NULL;
1986}
1987
1988struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev,
1989						       bdaddr_t *bdaddr,
1990						       int state)
1991{
1992	struct discovery_state *cache = &hdev->discovery;
1993	struct inquiry_entry *e;
1994
1995	BT_DBG("cache %p bdaddr %pMR state %d", cache, bdaddr, state);
1996
1997	list_for_each_entry(e, &cache->resolve, list) {
1998		if (!bacmp(bdaddr, BDADDR_ANY) && e->name_state == state)
1999			return e;
2000		if (!bacmp(&e->data.bdaddr, bdaddr))
2001			return e;
2002	}
2003
2004	return NULL;
2005}
2006
2007void hci_inquiry_cache_update_resolve(struct hci_dev *hdev,
2008				      struct inquiry_entry *ie)
2009{
2010	struct discovery_state *cache = &hdev->discovery;
2011	struct list_head *pos = &cache->resolve;
2012	struct inquiry_entry *p;
2013
2014	list_del(&ie->list);
2015
2016	list_for_each_entry(p, &cache->resolve, list) {
2017		if (p->name_state != NAME_PENDING &&
2018		    abs(p->data.rssi) >= abs(ie->data.rssi))
2019			break;
2020		pos = &p->list;
2021	}
2022
2023	list_add(&ie->list, pos);
2024}
2025
2026bool hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data,
2027			      bool name_known, bool *ssp)
2028{
2029	struct discovery_state *cache = &hdev->discovery;
2030	struct inquiry_entry *ie;
 
2031
2032	BT_DBG("cache %p, %pMR", cache, &data->bdaddr);
2033
2034	hci_remove_remote_oob_data(hdev, &data->bdaddr);
2035
2036	if (ssp)
2037		*ssp = data->ssp_mode;
2038
2039	ie = hci_inquiry_cache_lookup(hdev, &data->bdaddr);
2040	if (ie) {
2041		if (ie->data.ssp_mode && ssp)
2042			*ssp = true;
2043
2044		if (ie->name_state == NAME_NEEDED &&
2045		    data->rssi != ie->data.rssi) {
2046			ie->data.rssi = data->rssi;
2047			hci_inquiry_cache_update_resolve(hdev, ie);
2048		}
2049
2050		goto update;
2051	}
2052
2053	/* Entry not in the cache. Add new one. */
2054	ie = kzalloc(sizeof(struct inquiry_entry), GFP_ATOMIC);
2055	if (!ie)
2056		return false;
 
 
2057
2058	list_add(&ie->all, &cache->all);
2059
2060	if (name_known) {
2061		ie->name_state = NAME_KNOWN;
2062	} else {
2063		ie->name_state = NAME_NOT_KNOWN;
2064		list_add(&ie->list, &cache->unknown);
2065	}
2066
2067update:
2068	if (name_known && ie->name_state != NAME_KNOWN &&
2069	    ie->name_state != NAME_PENDING) {
2070		ie->name_state = NAME_KNOWN;
2071		list_del(&ie->list);
2072	}
2073
2074	memcpy(&ie->data, data, sizeof(*data));
2075	ie->timestamp = jiffies;
2076	cache->timestamp = jiffies;
2077
2078	if (ie->name_state == NAME_NOT_KNOWN)
2079		return false;
2080
2081	return true;
 
2082}
2083
2084static int inquiry_cache_dump(struct hci_dev *hdev, int num, __u8 *buf)
2085{
2086	struct discovery_state *cache = &hdev->discovery;
2087	struct inquiry_info *info = (struct inquiry_info *) buf;
2088	struct inquiry_entry *e;
2089	int copied = 0;
2090
2091	list_for_each_entry(e, &cache->all, all) {
2092		struct inquiry_data *data = &e->data;
2093
2094		if (copied >= num)
2095			break;
2096
2097		bacpy(&info->bdaddr, &data->bdaddr);
2098		info->pscan_rep_mode	= data->pscan_rep_mode;
2099		info->pscan_period_mode	= data->pscan_period_mode;
2100		info->pscan_mode	= data->pscan_mode;
2101		memcpy(info->dev_class, data->dev_class, 3);
2102		info->clock_offset	= data->clock_offset;
2103
2104		info++;
2105		copied++;
2106	}
2107
2108	BT_DBG("cache %p, copied %d", cache, copied);
2109	return copied;
2110}
2111
2112static void hci_inq_req(struct hci_request *req, unsigned long opt)
2113{
2114	struct hci_inquiry_req *ir = (struct hci_inquiry_req *) opt;
2115	struct hci_dev *hdev = req->hdev;
2116	struct hci_cp_inquiry cp;
2117
2118	BT_DBG("%s", hdev->name);
2119
2120	if (test_bit(HCI_INQUIRY, &hdev->flags))
2121		return;
2122
2123	/* Start Inquiry */
2124	memcpy(&cp.lap, &ir->lap, 3);
2125	cp.length  = ir->length;
2126	cp.num_rsp = ir->num_rsp;
2127	hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp);
2128}
2129
2130static int wait_inquiry(void *word)
2131{
2132	schedule();
2133	return signal_pending(current);
2134}
2135
2136int hci_inquiry(void __user *arg)
2137{
2138	__u8 __user *ptr = arg;
2139	struct hci_inquiry_req ir;
2140	struct hci_dev *hdev;
2141	int err = 0, do_inquiry = 0, max_rsp;
2142	long timeo;
2143	__u8 *buf;
2144
2145	if (copy_from_user(&ir, ptr, sizeof(ir)))
2146		return -EFAULT;
2147
2148	hdev = hci_dev_get(ir.dev_id);
2149	if (!hdev)
2150		return -ENODEV;
2151
2152	if (test_bit(HCI_USER_CHANNEL, &hdev->dev_flags)) {
2153		err = -EBUSY;
2154		goto done;
2155	}
2156
 
 
 
 
 
2157	if (hdev->dev_type != HCI_BREDR) {
2158		err = -EOPNOTSUPP;
2159		goto done;
2160	}
2161
2162	if (!test_bit(HCI_BREDR_ENABLED, &hdev->dev_flags)) {
2163		err = -EOPNOTSUPP;
2164		goto done;
2165	}
2166
2167	hci_dev_lock(hdev);
2168	if (inquiry_cache_age(hdev) > INQUIRY_CACHE_AGE_MAX ||
2169	    inquiry_cache_empty(hdev) || ir.flags & IREQ_CACHE_FLUSH) {
2170		hci_inquiry_cache_flush(hdev);
2171		do_inquiry = 1;
2172	}
2173	hci_dev_unlock(hdev);
2174
2175	timeo = ir.length * msecs_to_jiffies(2000);
2176
2177	if (do_inquiry) {
2178		err = hci_req_sync(hdev, hci_inq_req, (unsigned long) &ir,
2179				   timeo);
2180		if (err < 0)
2181			goto done;
2182
2183		/* Wait until Inquiry procedure finishes (HCI_INQUIRY flag is
2184		 * cleared). If it is interrupted by a signal, return -EINTR.
2185		 */
2186		if (wait_on_bit(&hdev->flags, HCI_INQUIRY, wait_inquiry,
2187				TASK_INTERRUPTIBLE))
2188			return -EINTR;
2189	}
2190
2191	/* for unlimited number of responses we will use buffer with
2192	 * 255 entries
2193	 */
2194	max_rsp = (ir.num_rsp == 0) ? 255 : ir.num_rsp;
2195
2196	/* cache_dump can't sleep. Therefore we allocate temp buffer and then
2197	 * copy it to the user space.
2198	 */
2199	buf = kmalloc(sizeof(struct inquiry_info) * max_rsp, GFP_KERNEL);
2200	if (!buf) {
2201		err = -ENOMEM;
2202		goto done;
2203	}
2204
2205	hci_dev_lock(hdev);
2206	ir.num_rsp = inquiry_cache_dump(hdev, max_rsp, buf);
2207	hci_dev_unlock(hdev);
2208
2209	BT_DBG("num_rsp %d", ir.num_rsp);
2210
2211	if (!copy_to_user(ptr, &ir, sizeof(ir))) {
2212		ptr += sizeof(ir);
2213		if (copy_to_user(ptr, buf, sizeof(struct inquiry_info) *
2214				 ir.num_rsp))
2215			err = -EFAULT;
2216	} else
2217		err = -EFAULT;
2218
2219	kfree(buf);
2220
2221done:
2222	hci_dev_put(hdev);
2223	return err;
2224}
2225
2226static int hci_dev_do_open(struct hci_dev *hdev)
2227{
2228	int ret = 0;
2229
2230	BT_DBG("%s %p", hdev->name, hdev);
2231
2232	hci_req_lock(hdev);
2233
2234	if (test_bit(HCI_UNREGISTER, &hdev->dev_flags)) {
2235		ret = -ENODEV;
2236		goto done;
2237	}
2238
2239	if (!test_bit(HCI_SETUP, &hdev->dev_flags)) {
 
2240		/* Check for rfkill but allow the HCI setup stage to
2241		 * proceed (which in itself doesn't cause any RF activity).
2242		 */
2243		if (test_bit(HCI_RFKILLED, &hdev->dev_flags)) {
2244			ret = -ERFKILL;
2245			goto done;
2246		}
2247
2248		/* Check for valid public address or a configured static
2249		 * random adddress, but let the HCI setup proceed to
2250		 * be able to determine if there is a public address
2251		 * or not.
2252		 *
2253		 * In case of user channel usage, it is not important
2254		 * if a public address or static random address is
2255		 * available.
2256		 *
2257		 * This check is only valid for BR/EDR controllers
2258		 * since AMP controllers do not have an address.
2259		 */
2260		if (!test_bit(HCI_USER_CHANNEL, &hdev->dev_flags) &&
2261		    hdev->dev_type == HCI_BREDR &&
2262		    !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
2263		    !bacmp(&hdev->static_addr, BDADDR_ANY)) {
2264			ret = -EADDRNOTAVAIL;
2265			goto done;
2266		}
2267	}
2268
2269	if (test_bit(HCI_UP, &hdev->flags)) {
2270		ret = -EALREADY;
2271		goto done;
2272	}
2273
2274	if (hdev->open(hdev)) {
2275		ret = -EIO;
2276		goto done;
2277	}
2278
 
 
 
2279	atomic_set(&hdev->cmd_cnt, 1);
2280	set_bit(HCI_INIT, &hdev->flags);
2281
2282	if (hdev->setup && test_bit(HCI_SETUP, &hdev->dev_flags))
2283		ret = hdev->setup(hdev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2284
2285	if (!ret) {
2286		if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
2287			set_bit(HCI_RAW, &hdev->flags);
2288
2289		if (!test_bit(HCI_RAW, &hdev->flags) &&
2290		    !test_bit(HCI_USER_CHANNEL, &hdev->dev_flags))
2291			ret = __hci_init(hdev);
 
 
 
2292	}
2293
 
 
 
 
 
 
 
 
2294	clear_bit(HCI_INIT, &hdev->flags);
2295
2296	if (!ret) {
2297		hci_dev_hold(hdev);
2298		set_bit(HCI_RPA_EXPIRED, &hdev->dev_flags);
2299		set_bit(HCI_UP, &hdev->flags);
2300		hci_notify(hdev, HCI_DEV_UP);
2301		if (!test_bit(HCI_SETUP, &hdev->dev_flags) &&
2302		    !test_bit(HCI_USER_CHANNEL, &hdev->dev_flags) &&
 
 
 
 
2303		    hdev->dev_type == HCI_BREDR) {
2304			hci_dev_lock(hdev);
2305			mgmt_powered(hdev, 1);
2306			hci_dev_unlock(hdev);
2307		}
2308	} else {
2309		/* Init failed, cleanup */
2310		flush_work(&hdev->tx_work);
2311		flush_work(&hdev->cmd_work);
2312		flush_work(&hdev->rx_work);
2313
2314		skb_queue_purge(&hdev->cmd_q);
2315		skb_queue_purge(&hdev->rx_q);
2316
2317		if (hdev->flush)
2318			hdev->flush(hdev);
2319
2320		if (hdev->sent_cmd) {
2321			kfree_skb(hdev->sent_cmd);
2322			hdev->sent_cmd = NULL;
2323		}
2324
 
 
 
2325		hdev->close(hdev);
2326		hdev->flags = 0;
2327	}
2328
2329done:
2330	hci_req_unlock(hdev);
2331	return ret;
2332}
2333
2334/* ---- HCI ioctl helpers ---- */
2335
2336int hci_dev_open(__u16 dev)
2337{
2338	struct hci_dev *hdev;
2339	int err;
2340
2341	hdev = hci_dev_get(dev);
2342	if (!hdev)
2343		return -ENODEV;
2344
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2345	/* We need to ensure that no other power on/off work is pending
2346	 * before proceeding to call hci_dev_do_open. This is
2347	 * particularly important if the setup procedure has not yet
2348	 * completed.
2349	 */
2350	if (test_and_clear_bit(HCI_AUTO_OFF, &hdev->dev_flags))
2351		cancel_delayed_work(&hdev->power_off);
2352
2353	/* After this call it is guaranteed that the setup procedure
2354	 * has finished. This means that error conditions like RFKILL
2355	 * or no valid public or static random address apply.
2356	 */
2357	flush_workqueue(hdev->req_workqueue);
2358
 
 
 
 
 
 
 
 
 
 
2359	err = hci_dev_do_open(hdev);
2360
 
2361	hci_dev_put(hdev);
 
 
2362
2363	return err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2364}
2365
2366static int hci_dev_do_close(struct hci_dev *hdev)
2367{
 
 
2368	BT_DBG("%s %p", hdev->name, hdev);
2369
 
 
 
 
 
 
 
 
2370	cancel_delayed_work(&hdev->power_off);
2371
2372	hci_req_cancel(hdev, ENODEV);
2373	hci_req_lock(hdev);
2374
2375	if (!test_and_clear_bit(HCI_UP, &hdev->flags)) {
2376		del_timer_sync(&hdev->cmd_timer);
2377		hci_req_unlock(hdev);
2378		return 0;
2379	}
2380
 
 
2381	/* Flush RX and TX works */
2382	flush_work(&hdev->tx_work);
2383	flush_work(&hdev->rx_work);
2384
2385	if (hdev->discov_timeout > 0) {
2386		cancel_delayed_work(&hdev->discov_off);
2387		hdev->discov_timeout = 0;
2388		clear_bit(HCI_DISCOVERABLE, &hdev->dev_flags);
2389		clear_bit(HCI_LIMITED_DISCOVERABLE, &hdev->dev_flags);
2390	}
2391
2392	if (test_and_clear_bit(HCI_SERVICE_CACHE, &hdev->dev_flags))
2393		cancel_delayed_work(&hdev->service_cache);
2394
2395	cancel_delayed_work_sync(&hdev->le_scan_disable);
 
2396
2397	if (test_bit(HCI_MGMT, &hdev->dev_flags))
2398		cancel_delayed_work_sync(&hdev->rpa_expired);
 
 
2399
2400	hci_dev_lock(hdev);
 
 
 
 
 
 
 
 
 
2401	hci_inquiry_cache_flush(hdev);
 
2402	hci_conn_hash_flush(hdev);
2403	hci_pend_le_conns_clear(hdev);
2404	hci_dev_unlock(hdev);
2405
2406	hci_notify(hdev, HCI_DEV_DOWN);
 
 
2407
2408	if (hdev->flush)
2409		hdev->flush(hdev);
2410
2411	/* Reset device */
2412	skb_queue_purge(&hdev->cmd_q);
2413	atomic_set(&hdev->cmd_cnt, 1);
2414	if (!test_bit(HCI_RAW, &hdev->flags) &&
2415	    !test_bit(HCI_AUTO_OFF, &hdev->dev_flags) &&
2416	    test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks)) {
2417		set_bit(HCI_INIT, &hdev->flags);
2418		__hci_req_sync(hdev, hci_reset_req, 0, HCI_CMD_TIMEOUT);
2419		clear_bit(HCI_INIT, &hdev->flags);
2420	}
2421
2422	/* flush cmd  work */
2423	flush_work(&hdev->cmd_work);
2424
2425	/* Drop queues */
2426	skb_queue_purge(&hdev->rx_q);
2427	skb_queue_purge(&hdev->cmd_q);
2428	skb_queue_purge(&hdev->raw_q);
2429
2430	/* Drop last sent command */
2431	if (hdev->sent_cmd) {
2432		del_timer_sync(&hdev->cmd_timer);
2433		kfree_skb(hdev->sent_cmd);
2434		hdev->sent_cmd = NULL;
2435	}
2436
2437	kfree_skb(hdev->recv_evt);
2438	hdev->recv_evt = NULL;
2439
2440	/* After this point our queues are empty
2441	 * and no tasks are scheduled. */
2442	hdev->close(hdev);
2443
2444	/* Clear flags */
2445	hdev->flags = 0;
2446	hdev->dev_flags &= ~HCI_PERSISTENT_MASK;
2447
2448	if (!test_and_clear_bit(HCI_AUTO_OFF, &hdev->dev_flags)) {
2449		if (hdev->dev_type == HCI_BREDR) {
2450			hci_dev_lock(hdev);
2451			mgmt_powered(hdev, 0);
2452			hci_dev_unlock(hdev);
2453		}
2454	}
2455
2456	/* Controller radio is available but is currently powered down */
2457	hdev->amp_status = AMP_STATUS_POWERED_DOWN;
2458
2459	memset(hdev->eir, 0, sizeof(hdev->eir));
2460	memset(hdev->dev_class, 0, sizeof(hdev->dev_class));
2461	bacpy(&hdev->random_addr, BDADDR_ANY);
2462
2463	hci_req_unlock(hdev);
2464
2465	hci_dev_put(hdev);
2466	return 0;
2467}
2468
2469int hci_dev_close(__u16 dev)
2470{
2471	struct hci_dev *hdev;
2472	int err;
2473
2474	hdev = hci_dev_get(dev);
2475	if (!hdev)
2476		return -ENODEV;
2477
2478	if (test_bit(HCI_USER_CHANNEL, &hdev->dev_flags)) {
2479		err = -EBUSY;
2480		goto done;
2481	}
2482
2483	if (test_and_clear_bit(HCI_AUTO_OFF, &hdev->dev_flags))
2484		cancel_delayed_work(&hdev->power_off);
2485
2486	err = hci_dev_do_close(hdev);
2487
2488done:
2489	hci_dev_put(hdev);
2490	return err;
2491}
2492
2493int hci_dev_reset(__u16 dev)
2494{
2495	struct hci_dev *hdev;
2496	int ret = 0;
2497
2498	hdev = hci_dev_get(dev);
2499	if (!hdev)
2500		return -ENODEV;
2501
2502	hci_req_lock(hdev);
2503
2504	if (!test_bit(HCI_UP, &hdev->flags)) {
2505		ret = -ENETDOWN;
2506		goto done;
2507	}
2508
2509	if (test_bit(HCI_USER_CHANNEL, &hdev->dev_flags)) {
2510		ret = -EBUSY;
2511		goto done;
2512	}
2513
2514	/* Drop queues */
2515	skb_queue_purge(&hdev->rx_q);
2516	skb_queue_purge(&hdev->cmd_q);
2517
 
 
 
 
 
2518	hci_dev_lock(hdev);
2519	hci_inquiry_cache_flush(hdev);
2520	hci_conn_hash_flush(hdev);
2521	hci_dev_unlock(hdev);
2522
2523	if (hdev->flush)
2524		hdev->flush(hdev);
2525
2526	atomic_set(&hdev->cmd_cnt, 1);
2527	hdev->acl_cnt = 0; hdev->sco_cnt = 0; hdev->le_cnt = 0;
2528
2529	if (!test_bit(HCI_RAW, &hdev->flags))
2530		ret = __hci_req_sync(hdev, hci_reset_req, 0, HCI_INIT_TIMEOUT);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2531
2532done:
2533	hci_req_unlock(hdev);
2534	hci_dev_put(hdev);
2535	return ret;
2536}
2537
2538int hci_dev_reset_stat(__u16 dev)
2539{
2540	struct hci_dev *hdev;
2541	int ret = 0;
2542
2543	hdev = hci_dev_get(dev);
2544	if (!hdev)
2545		return -ENODEV;
2546
2547	if (test_bit(HCI_USER_CHANNEL, &hdev->dev_flags)) {
2548		ret = -EBUSY;
2549		goto done;
2550	}
2551
 
 
 
 
 
2552	memset(&hdev->stat, 0, sizeof(struct hci_dev_stats));
2553
2554done:
2555	hci_dev_put(hdev);
2556	return ret;
2557}
2558
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2559int hci_dev_cmd(unsigned int cmd, void __user *arg)
2560{
2561	struct hci_dev *hdev;
2562	struct hci_dev_req dr;
2563	int err = 0;
2564
2565	if (copy_from_user(&dr, arg, sizeof(dr)))
2566		return -EFAULT;
2567
2568	hdev = hci_dev_get(dr.dev_id);
2569	if (!hdev)
2570		return -ENODEV;
2571
2572	if (test_bit(HCI_USER_CHANNEL, &hdev->dev_flags)) {
2573		err = -EBUSY;
2574		goto done;
2575	}
2576
 
 
 
 
 
2577	if (hdev->dev_type != HCI_BREDR) {
2578		err = -EOPNOTSUPP;
2579		goto done;
2580	}
2581
2582	if (!test_bit(HCI_BREDR_ENABLED, &hdev->dev_flags)) {
2583		err = -EOPNOTSUPP;
2584		goto done;
2585	}
2586
2587	switch (cmd) {
2588	case HCISETAUTH:
2589		err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
2590				   HCI_INIT_TIMEOUT);
2591		break;
2592
2593	case HCISETENCRYPT:
2594		if (!lmp_encrypt_capable(hdev)) {
2595			err = -EOPNOTSUPP;
2596			break;
2597		}
2598
2599		if (!test_bit(HCI_AUTH, &hdev->flags)) {
2600			/* Auth must be enabled first */
2601			err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
2602					   HCI_INIT_TIMEOUT);
2603			if (err)
2604				break;
2605		}
2606
2607		err = hci_req_sync(hdev, hci_encrypt_req, dr.dev_opt,
2608				   HCI_INIT_TIMEOUT);
2609		break;
2610
2611	case HCISETSCAN:
2612		err = hci_req_sync(hdev, hci_scan_req, dr.dev_opt,
2613				   HCI_INIT_TIMEOUT);
 
 
 
 
 
 
2614		break;
2615
2616	case HCISETLINKPOL:
2617		err = hci_req_sync(hdev, hci_linkpol_req, dr.dev_opt,
2618				   HCI_INIT_TIMEOUT);
2619		break;
2620
2621	case HCISETLINKMODE:
2622		hdev->link_mode = ((__u16) dr.dev_opt) &
2623					(HCI_LM_MASTER | HCI_LM_ACCEPT);
2624		break;
2625
2626	case HCISETPTYPE:
2627		hdev->pkt_type = (__u16) dr.dev_opt;
2628		break;
2629
2630	case HCISETACLMTU:
2631		hdev->acl_mtu  = *((__u16 *) &dr.dev_opt + 1);
2632		hdev->acl_pkts = *((__u16 *) &dr.dev_opt + 0);
2633		break;
2634
2635	case HCISETSCOMTU:
2636		hdev->sco_mtu  = *((__u16 *) &dr.dev_opt + 1);
2637		hdev->sco_pkts = *((__u16 *) &dr.dev_opt + 0);
2638		break;
2639
2640	default:
2641		err = -EINVAL;
2642		break;
2643	}
2644
2645done:
2646	hci_dev_put(hdev);
2647	return err;
2648}
2649
2650int hci_get_dev_list(void __user *arg)
2651{
2652	struct hci_dev *hdev;
2653	struct hci_dev_list_req *dl;
2654	struct hci_dev_req *dr;
2655	int n = 0, size, err;
2656	__u16 dev_num;
2657
2658	if (get_user(dev_num, (__u16 __user *) arg))
2659		return -EFAULT;
2660
2661	if (!dev_num || dev_num > (PAGE_SIZE * 2) / sizeof(*dr))
2662		return -EINVAL;
2663
2664	size = sizeof(*dl) + dev_num * sizeof(*dr);
2665
2666	dl = kzalloc(size, GFP_KERNEL);
2667	if (!dl)
2668		return -ENOMEM;
2669
2670	dr = dl->dev_req;
2671
2672	read_lock(&hci_dev_list_lock);
2673	list_for_each_entry(hdev, &hci_dev_list, list) {
2674		if (test_and_clear_bit(HCI_AUTO_OFF, &hdev->dev_flags))
2675			cancel_delayed_work(&hdev->power_off);
2676
2677		if (!test_bit(HCI_MGMT, &hdev->dev_flags))
2678			set_bit(HCI_PAIRABLE, &hdev->dev_flags);
 
 
 
 
2679
2680		(dr + n)->dev_id  = hdev->id;
2681		(dr + n)->dev_opt = hdev->flags;
2682
2683		if (++n >= dev_num)
2684			break;
2685	}
2686	read_unlock(&hci_dev_list_lock);
2687
2688	dl->dev_num = n;
2689	size = sizeof(*dl) + n * sizeof(*dr);
2690
2691	err = copy_to_user(arg, dl, size);
2692	kfree(dl);
2693
2694	return err ? -EFAULT : 0;
2695}
2696
2697int hci_get_dev_info(void __user *arg)
2698{
2699	struct hci_dev *hdev;
2700	struct hci_dev_info di;
 
2701	int err = 0;
2702
2703	if (copy_from_user(&di, arg, sizeof(di)))
2704		return -EFAULT;
2705
2706	hdev = hci_dev_get(di.dev_id);
2707	if (!hdev)
2708		return -ENODEV;
2709
2710	if (test_and_clear_bit(HCI_AUTO_OFF, &hdev->dev_flags))
2711		cancel_delayed_work_sync(&hdev->power_off);
2712
2713	if (!test_bit(HCI_MGMT, &hdev->dev_flags))
2714		set_bit(HCI_PAIRABLE, &hdev->dev_flags);
 
 
 
2715
2716	strcpy(di.name, hdev->name);
2717	di.bdaddr   = hdev->bdaddr;
2718	di.type     = (hdev->bus & 0x0f) | ((hdev->dev_type & 0x03) << 4);
2719	di.flags    = hdev->flags;
2720	di.pkt_type = hdev->pkt_type;
2721	if (lmp_bredr_capable(hdev)) {
2722		di.acl_mtu  = hdev->acl_mtu;
2723		di.acl_pkts = hdev->acl_pkts;
2724		di.sco_mtu  = hdev->sco_mtu;
2725		di.sco_pkts = hdev->sco_pkts;
2726	} else {
2727		di.acl_mtu  = hdev->le_mtu;
2728		di.acl_pkts = hdev->le_pkts;
2729		di.sco_mtu  = 0;
2730		di.sco_pkts = 0;
2731	}
2732	di.link_policy = hdev->link_policy;
2733	di.link_mode   = hdev->link_mode;
2734
2735	memcpy(&di.stat, &hdev->stat, sizeof(di.stat));
2736	memcpy(&di.features, &hdev->features, sizeof(di.features));
2737
2738	if (copy_to_user(arg, &di, sizeof(di)))
2739		err = -EFAULT;
2740
2741	hci_dev_put(hdev);
2742
2743	return err;
2744}
2745
2746/* ---- Interface to HCI drivers ---- */
2747
2748static int hci_rfkill_set_block(void *data, bool blocked)
2749{
2750	struct hci_dev *hdev = data;
2751
2752	BT_DBG("%p name %s blocked %d", hdev, hdev->name, blocked);
2753
2754	if (test_bit(HCI_USER_CHANNEL, &hdev->dev_flags))
2755		return -EBUSY;
2756
2757	if (blocked) {
2758		set_bit(HCI_RFKILLED, &hdev->dev_flags);
2759		if (!test_bit(HCI_SETUP, &hdev->dev_flags))
 
2760			hci_dev_do_close(hdev);
2761	} else {
2762		clear_bit(HCI_RFKILLED, &hdev->dev_flags);
2763	}
2764
2765	return 0;
2766}
2767
2768static const struct rfkill_ops hci_rfkill_ops = {
2769	.set_block = hci_rfkill_set_block,
2770};
2771
2772static void hci_power_on(struct work_struct *work)
2773{
2774	struct hci_dev *hdev = container_of(work, struct hci_dev, power_on);
2775	int err;
2776
2777	BT_DBG("%s", hdev->name);
2778
 
 
 
 
 
 
 
 
 
 
 
2779	err = hci_dev_do_open(hdev);
2780	if (err < 0) {
 
2781		mgmt_set_powered_failed(hdev, err);
 
2782		return;
2783	}
2784
2785	/* During the HCI setup phase, a few error conditions are
2786	 * ignored and they need to be checked now. If they are still
2787	 * valid, it is important to turn the device back off.
2788	 */
2789	if (test_bit(HCI_RFKILLED, &hdev->dev_flags) ||
 
2790	    (hdev->dev_type == HCI_BREDR &&
2791	     !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
2792	     !bacmp(&hdev->static_addr, BDADDR_ANY))) {
2793		clear_bit(HCI_AUTO_OFF, &hdev->dev_flags);
2794		hci_dev_do_close(hdev);
2795	} else if (test_bit(HCI_AUTO_OFF, &hdev->dev_flags)) {
2796		queue_delayed_work(hdev->req_workqueue, &hdev->power_off,
2797				   HCI_AUTO_OFF_TIMEOUT);
2798	}
2799
2800	if (test_and_clear_bit(HCI_SETUP, &hdev->dev_flags))
 
 
 
 
 
 
 
 
 
 
 
 
 
2801		mgmt_index_added(hdev);
 
 
 
 
 
 
 
 
 
 
 
 
 
2802}
2803
2804static void hci_power_off(struct work_struct *work)
2805{
2806	struct hci_dev *hdev = container_of(work, struct hci_dev,
2807					    power_off.work);
2808
2809	BT_DBG("%s", hdev->name);
2810
2811	hci_dev_do_close(hdev);
2812}
2813
2814static void hci_discov_off(struct work_struct *work)
2815{
2816	struct hci_dev *hdev;
 
 
2817
2818	hdev = container_of(work, struct hci_dev, discov_off.work);
 
 
 
 
2819
2820	BT_DBG("%s", hdev->name);
 
2821
2822	mgmt_discoverable_timeout(hdev);
2823}
2824
2825void hci_uuids_clear(struct hci_dev *hdev)
2826{
2827	struct bt_uuid *uuid, *tmp;
2828
2829	list_for_each_entry_safe(uuid, tmp, &hdev->uuids, list) {
2830		list_del(&uuid->list);
2831		kfree(uuid);
2832	}
2833}
2834
2835void hci_link_keys_clear(struct hci_dev *hdev)
2836{
2837	struct list_head *p, *n;
2838
2839	list_for_each_safe(p, n, &hdev->link_keys) {
2840		struct link_key *key;
2841
2842		key = list_entry(p, struct link_key, list);
2843
2844		list_del(p);
2845		kfree(key);
2846	}
2847}
2848
2849void hci_smp_ltks_clear(struct hci_dev *hdev)
2850{
2851	struct smp_ltk *k, *tmp;
2852
2853	list_for_each_entry_safe(k, tmp, &hdev->long_term_keys, list) {
2854		list_del(&k->list);
2855		kfree(k);
2856	}
2857}
2858
2859void hci_smp_irks_clear(struct hci_dev *hdev)
2860{
2861	struct smp_irk *k, *tmp;
2862
2863	list_for_each_entry_safe(k, tmp, &hdev->identity_resolving_keys, list) {
2864		list_del(&k->list);
2865		kfree(k);
2866	}
2867}
2868
2869struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
2870{
2871	struct link_key *k;
2872
2873	list_for_each_entry(k, &hdev->link_keys, list)
2874		if (bacmp(bdaddr, &k->bdaddr) == 0)
 
 
2875			return k;
 
 
 
2876
2877	return NULL;
2878}
2879
2880static bool hci_persistent_key(struct hci_dev *hdev, struct hci_conn *conn,
2881			       u8 key_type, u8 old_key_type)
2882{
2883	/* Legacy key */
2884	if (key_type < 0x03)
2885		return true;
2886
2887	/* Debug keys are insecure so don't store them persistently */
2888	if (key_type == HCI_LK_DEBUG_COMBINATION)
2889		return false;
2890
2891	/* Changed combination key and there's no previous one */
2892	if (key_type == HCI_LK_CHANGED_COMBINATION && old_key_type == 0xff)
2893		return false;
2894
2895	/* Security mode 3 case */
2896	if (!conn)
2897		return true;
2898
 
 
 
 
2899	/* Neither local nor remote side had no-bonding as requirement */
2900	if (conn->auth_type > 0x01 && conn->remote_auth > 0x01)
2901		return true;
2902
2903	/* Local side had dedicated bonding as requirement */
2904	if (conn->auth_type == 0x02 || conn->auth_type == 0x03)
2905		return true;
2906
2907	/* Remote side had dedicated bonding as requirement */
2908	if (conn->remote_auth == 0x02 || conn->remote_auth == 0x03)
2909		return true;
2910
2911	/* If none of the above criteria match, then don't store the key
2912	 * persistently */
2913	return false;
2914}
2915
2916static bool ltk_type_master(u8 type)
2917{
2918	if (type == HCI_SMP_STK || type == HCI_SMP_LTK)
2919		return true;
2920
2921	return false;
2922}
2923
2924struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, __le16 ediv, __le64 rand,
2925			     bool master)
2926{
2927	struct smp_ltk *k;
2928
2929	list_for_each_entry(k, &hdev->long_term_keys, list) {
2930		if (k->ediv != ediv || k->rand != rand)
 
2931			continue;
2932
2933		if (ltk_type_master(k->type) != master)
2934			continue;
2935
2936		return k;
2937	}
2938
2939	return NULL;
2940}
2941
2942struct smp_ltk *hci_find_ltk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr,
2943				     u8 addr_type, bool master)
2944{
2945	struct smp_ltk *k;
2946
2947	list_for_each_entry(k, &hdev->long_term_keys, list)
2948		if (addr_type == k->bdaddr_type &&
2949		    bacmp(bdaddr, &k->bdaddr) == 0 &&
2950		    ltk_type_master(k->type) == master)
2951			return k;
2952
2953	return NULL;
2954}
2955
2956struct smp_irk *hci_find_irk_by_rpa(struct hci_dev *hdev, bdaddr_t *rpa)
2957{
2958	struct smp_irk *irk;
2959
2960	list_for_each_entry(irk, &hdev->identity_resolving_keys, list) {
2961		if (!bacmp(&irk->rpa, rpa))
 
 
2962			return irk;
 
2963	}
2964
2965	list_for_each_entry(irk, &hdev->identity_resolving_keys, list) {
2966		if (smp_irk_matches(hdev->tfm_aes, irk->val, rpa)) {
2967			bacpy(&irk->rpa, rpa);
 
2968			return irk;
2969		}
2970	}
 
2971
2972	return NULL;
2973}
2974
2975struct smp_irk *hci_find_irk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr,
2976				     u8 addr_type)
2977{
2978	struct smp_irk *irk;
2979
2980	/* Identity Address must be public or static random */
2981	if (addr_type == ADDR_LE_DEV_RANDOM && (bdaddr->b[5] & 0xc0) != 0xc0)
2982		return NULL;
2983
2984	list_for_each_entry(irk, &hdev->identity_resolving_keys, list) {
 
2985		if (addr_type == irk->addr_type &&
2986		    bacmp(bdaddr, &irk->bdaddr) == 0)
 
2987			return irk;
 
2988	}
 
2989
2990	return NULL;
2991}
2992
2993int hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn, int new_key,
2994		     bdaddr_t *bdaddr, u8 *val, u8 type, u8 pin_len)
 
2995{
2996	struct link_key *key, *old_key;
2997	u8 old_key_type;
2998	bool persistent;
2999
3000	old_key = hci_find_link_key(hdev, bdaddr);
3001	if (old_key) {
3002		old_key_type = old_key->type;
3003		key = old_key;
3004	} else {
3005		old_key_type = conn ? conn->key_type : 0xff;
3006		key = kzalloc(sizeof(*key), GFP_KERNEL);
3007		if (!key)
3008			return -ENOMEM;
3009		list_add(&key->list, &hdev->link_keys);
3010	}
3011
3012	BT_DBG("%s key for %pMR type %u", hdev->name, bdaddr, type);
3013
3014	/* Some buggy controller combinations generate a changed
3015	 * combination key for legacy pairing even when there's no
3016	 * previous key */
3017	if (type == HCI_LK_CHANGED_COMBINATION &&
3018	    (!conn || conn->remote_auth == 0xff) && old_key_type == 0xff) {
3019		type = HCI_LK_COMBINATION;
3020		if (conn)
3021			conn->key_type = type;
3022	}
3023
3024	bacpy(&key->bdaddr, bdaddr);
3025	memcpy(key->val, val, HCI_LINK_KEY_SIZE);
3026	key->pin_len = pin_len;
3027
3028	if (type == HCI_LK_CHANGED_COMBINATION)
3029		key->type = old_key_type;
3030	else
3031		key->type = type;
3032
3033	if (!new_key)
3034		return 0;
 
3035
3036	persistent = hci_persistent_key(hdev, conn, type, old_key_type);
3037
3038	mgmt_new_link_key(hdev, key, persistent);
3039
3040	if (conn)
3041		conn->flush_key = !persistent;
3042
3043	return 0;
3044}
3045
3046struct smp_ltk *hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
3047			    u8 addr_type, u8 type, u8 authenticated,
3048			    u8 tk[16], u8 enc_size, __le16 ediv, __le64 rand)
3049{
3050	struct smp_ltk *key, *old_key;
3051	bool master = ltk_type_master(type);
3052
3053	old_key = hci_find_ltk_by_addr(hdev, bdaddr, addr_type, master);
3054	if (old_key)
3055		key = old_key;
3056	else {
3057		key = kzalloc(sizeof(*key), GFP_KERNEL);
3058		if (!key)
3059			return NULL;
3060		list_add(&key->list, &hdev->long_term_keys);
3061	}
3062
3063	bacpy(&key->bdaddr, bdaddr);
3064	key->bdaddr_type = addr_type;
3065	memcpy(key->val, tk, sizeof(key->val));
3066	key->authenticated = authenticated;
3067	key->ediv = ediv;
3068	key->rand = rand;
3069	key->enc_size = enc_size;
3070	key->type = type;
3071
3072	return key;
3073}
3074
3075struct smp_irk *hci_add_irk(struct hci_dev *hdev, bdaddr_t *bdaddr,
3076			    u8 addr_type, u8 val[16], bdaddr_t *rpa)
3077{
3078	struct smp_irk *irk;
3079
3080	irk = hci_find_irk_by_addr(hdev, bdaddr, addr_type);
3081	if (!irk) {
3082		irk = kzalloc(sizeof(*irk), GFP_KERNEL);
3083		if (!irk)
3084			return NULL;
3085
3086		bacpy(&irk->bdaddr, bdaddr);
3087		irk->addr_type = addr_type;
3088
3089		list_add(&irk->list, &hdev->identity_resolving_keys);
3090	}
3091
3092	memcpy(irk->val, val, 16);
3093	bacpy(&irk->rpa, rpa);
3094
3095	return irk;
3096}
3097
3098int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
3099{
3100	struct link_key *key;
3101
3102	key = hci_find_link_key(hdev, bdaddr);
3103	if (!key)
3104		return -ENOENT;
3105
3106	BT_DBG("%s removing %pMR", hdev->name, bdaddr);
3107
3108	list_del(&key->list);
3109	kfree(key);
3110
3111	return 0;
3112}
3113
3114int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type)
3115{
3116	struct smp_ltk *k, *tmp;
3117	int removed = 0;
3118
3119	list_for_each_entry_safe(k, tmp, &hdev->long_term_keys, list) {
3120		if (bacmp(bdaddr, &k->bdaddr) || k->bdaddr_type != bdaddr_type)
3121			continue;
3122
3123		BT_DBG("%s removing %pMR", hdev->name, bdaddr);
3124
3125		list_del(&k->list);
3126		kfree(k);
3127		removed++;
3128	}
3129
3130	return removed ? 0 : -ENOENT;
3131}
3132
3133void hci_remove_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type)
3134{
3135	struct smp_irk *k, *tmp;
3136
3137	list_for_each_entry_safe(k, tmp, &hdev->identity_resolving_keys, list) {
3138		if (bacmp(bdaddr, &k->bdaddr) || k->addr_type != addr_type)
3139			continue;
3140
3141		BT_DBG("%s removing %pMR", hdev->name, bdaddr);
3142
3143		list_del(&k->list);
3144		kfree(k);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3145	}
 
 
 
3146}
3147
3148/* HCI command timer function */
3149static void hci_cmd_timeout(unsigned long arg)
3150{
3151	struct hci_dev *hdev = (void *) arg;
 
3152
3153	if (hdev->sent_cmd) {
3154		struct hci_command_hdr *sent = (void *) hdev->sent_cmd->data;
3155		u16 opcode = __le16_to_cpu(sent->opcode);
3156
3157		BT_ERR("%s command 0x%4.4x tx timeout", hdev->name, opcode);
3158	} else {
3159		BT_ERR("%s command tx timeout", hdev->name);
3160	}
3161
3162	atomic_set(&hdev->cmd_cnt, 1);
3163	queue_work(hdev->workqueue, &hdev->cmd_work);
3164}
3165
3166struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev,
3167					  bdaddr_t *bdaddr)
3168{
3169	struct oob_data *data;
3170
3171	list_for_each_entry(data, &hdev->remote_oob_data, list)
3172		if (bacmp(bdaddr, &data->bdaddr) == 0)
3173			return data;
 
 
 
 
3174
3175	return NULL;
3176}
3177
3178int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr)
 
3179{
3180	struct oob_data *data;
3181
3182	data = hci_find_remote_oob_data(hdev, bdaddr);
3183	if (!data)
3184		return -ENOENT;
3185
3186	BT_DBG("%s removing %pMR", hdev->name, bdaddr);
3187
3188	list_del(&data->list);
3189	kfree(data);
3190
3191	return 0;
3192}
3193
3194void hci_remote_oob_data_clear(struct hci_dev *hdev)
3195{
3196	struct oob_data *data, *n;
3197
3198	list_for_each_entry_safe(data, n, &hdev->remote_oob_data, list) {
3199		list_del(&data->list);
3200		kfree(data);
3201	}
3202}
3203
3204int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
3205			    u8 *hash, u8 *randomizer)
 
3206{
3207	struct oob_data *data;
3208
3209	data = hci_find_remote_oob_data(hdev, bdaddr);
3210	if (!data) {
3211		data = kmalloc(sizeof(*data), GFP_KERNEL);
3212		if (!data)
3213			return -ENOMEM;
3214
3215		bacpy(&data->bdaddr, bdaddr);
 
3216		list_add(&data->list, &hdev->remote_oob_data);
3217	}
3218
3219	memcpy(data->hash192, hash, sizeof(data->hash192));
3220	memcpy(data->randomizer192, randomizer, sizeof(data->randomizer192));
 
 
 
 
 
 
 
 
 
 
 
3221
3222	memset(data->hash256, 0, sizeof(data->hash256));
3223	memset(data->randomizer256, 0, sizeof(data->randomizer256));
 
 
 
 
 
 
 
3224
3225	BT_DBG("%s for %pMR", hdev->name, bdaddr);
3226
3227	return 0;
3228}
3229
3230int hci_add_remote_oob_ext_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
3231				u8 *hash192, u8 *randomizer192,
3232				u8 *hash256, u8 *randomizer256)
3233{
3234	struct oob_data *data;
3235
3236	data = hci_find_remote_oob_data(hdev, bdaddr);
3237	if (!data) {
3238		data = kmalloc(sizeof(*data), GFP_KERNEL);
3239		if (!data)
3240			return -ENOMEM;
3241
3242		bacpy(&data->bdaddr, bdaddr);
3243		list_add(&data->list, &hdev->remote_oob_data);
 
3244	}
3245
3246	memcpy(data->hash192, hash192, sizeof(data->hash192));
3247	memcpy(data->randomizer192, randomizer192, sizeof(data->randomizer192));
3248
3249	memcpy(data->hash256, hash256, sizeof(data->hash256));
3250	memcpy(data->randomizer256, randomizer256, sizeof(data->randomizer256));
 
 
3251
3252	BT_DBG("%s for %pMR", hdev->name, bdaddr);
 
 
3253
3254	return 0;
 
 
 
 
 
3255}
3256
3257struct bdaddr_list *hci_blacklist_lookup(struct hci_dev *hdev,
3258					 bdaddr_t *bdaddr, u8 type)
3259{
3260	struct bdaddr_list *b;
 
 
 
 
 
 
3261
3262	list_for_each_entry(b, &hdev->blacklist, list) {
3263		if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
3264			return b;
 
 
 
3265	}
3266
3267	return NULL;
 
 
 
 
 
3268}
3269
3270static void hci_blacklist_clear(struct hci_dev *hdev)
 
3271{
3272	struct list_head *p, *n;
3273
3274	list_for_each_safe(p, n, &hdev->blacklist) {
3275		struct bdaddr_list *b = list_entry(p, struct bdaddr_list, list);
 
 
3276
3277		list_del(p);
3278		kfree(b);
 
3279	}
 
 
 
3280}
3281
3282int hci_blacklist_add(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type)
3283{
3284	struct bdaddr_list *entry;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3285
3286	if (!bacmp(bdaddr, BDADDR_ANY))
3287		return -EBADF;
 
3288
3289	if (hci_blacklist_lookup(hdev, bdaddr, type))
3290		return -EEXIST;
 
 
 
3291
3292	entry = kzalloc(sizeof(struct bdaddr_list), GFP_KERNEL);
3293	if (!entry)
3294		return -ENOMEM;
3295
3296	bacpy(&entry->bdaddr, bdaddr);
3297	entry->bdaddr_type = type;
3298
3299	list_add(&entry->list, &hdev->blacklist);
 
 
3300
3301	return mgmt_device_blocked(hdev, bdaddr, type);
3302}
3303
3304int hci_blacklist_del(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type)
3305{
3306	struct bdaddr_list *entry;
 
3307
3308	if (!bacmp(bdaddr, BDADDR_ANY)) {
3309		hci_blacklist_clear(hdev);
3310		return 0;
3311	}
3312
3313	entry = hci_blacklist_lookup(hdev, bdaddr, type);
3314	if (!entry)
3315		return -ENOENT;
3316
3317	list_del(&entry->list);
3318	kfree(entry);
3319
3320	return mgmt_device_unblocked(hdev, bdaddr, type);
3321}
3322
3323struct bdaddr_list *hci_white_list_lookup(struct hci_dev *hdev,
3324					  bdaddr_t *bdaddr, u8 type)
3325{
3326	struct bdaddr_list *b;
3327
3328	list_for_each_entry(b, &hdev->le_white_list, list) {
3329		if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
3330			return b;
3331	}
3332
3333	return NULL;
3334}
3335
3336void hci_white_list_clear(struct hci_dev *hdev)
3337{
3338	struct list_head *p, *n;
3339
3340	list_for_each_safe(p, n, &hdev->le_white_list) {
3341		struct bdaddr_list *b = list_entry(p, struct bdaddr_list, list);
3342
3343		list_del(p);
 
3344		kfree(b);
3345	}
3346}
3347
3348int hci_white_list_add(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type)
3349{
3350	struct bdaddr_list *entry;
3351
3352	if (!bacmp(bdaddr, BDADDR_ANY))
3353		return -EBADF;
3354
3355	entry = kzalloc(sizeof(struct bdaddr_list), GFP_KERNEL);
 
 
 
3356	if (!entry)
3357		return -ENOMEM;
3358
3359	bacpy(&entry->bdaddr, bdaddr);
3360	entry->bdaddr_type = type;
3361
3362	list_add(&entry->list, &hdev->le_white_list);
3363
3364	return 0;
3365}
3366
3367int hci_white_list_del(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type)
3368{
3369	struct bdaddr_list *entry;
3370
3371	if (!bacmp(bdaddr, BDADDR_ANY))
3372		return -EBADF;
 
 
3373
3374	entry = hci_white_list_lookup(hdev, bdaddr, type);
3375	if (!entry)
3376		return -ENOENT;
3377
3378	list_del(&entry->list);
3379	kfree(entry);
3380
3381	return 0;
3382}
3383
3384/* This function requires the caller holds hdev->lock */
3385struct hci_conn_params *hci_conn_params_lookup(struct hci_dev *hdev,
3386					       bdaddr_t *addr, u8 addr_type)
3387{
3388	struct hci_conn_params *params;
3389
3390	list_for_each_entry(params, &hdev->le_conn_params, list) {
3391		if (bacmp(&params->addr, addr) == 0 &&
3392		    params->addr_type == addr_type) {
3393			return params;
3394		}
3395	}
3396
3397	return NULL;
3398}
3399
3400static bool is_connected(struct hci_dev *hdev, bdaddr_t *addr, u8 type)
 
 
3401{
3402	struct hci_conn *conn;
3403
3404	conn = hci_conn_hash_lookup_ba(hdev, LE_LINK, addr);
3405	if (!conn)
3406		return false;
 
 
3407
3408	if (conn->dst_type != type)
3409		return false;
3410
3411	if (conn->state != BT_CONNECTED)
3412		return false;
3413
3414	return true;
3415}
3416
3417static bool is_identity_address(bdaddr_t *addr, u8 addr_type)
3418{
3419	if (addr_type == ADDR_LE_DEV_PUBLIC)
3420		return true;
3421
3422	/* Check for Random Static address type */
3423	if ((addr->b[5] & 0xc0) == 0xc0)
3424		return true;
3425
3426	return false;
3427}
3428
3429/* This function requires the caller holds hdev->lock */
3430int hci_conn_params_add(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type,
3431			u8 auto_connect, u16 conn_min_interval,
3432			u16 conn_max_interval)
3433{
3434	struct hci_conn_params *params;
3435
3436	if (!is_identity_address(addr, addr_type))
3437		return -EINVAL;
3438
3439	params = hci_conn_params_lookup(hdev, addr, addr_type);
3440	if (params)
3441		goto update;
3442
3443	params = kzalloc(sizeof(*params), GFP_KERNEL);
3444	if (!params) {
3445		BT_ERR("Out of memory");
3446		return -ENOMEM;
3447	}
3448
3449	bacpy(&params->addr, addr);
3450	params->addr_type = addr_type;
3451
3452	list_add(&params->list, &hdev->le_conn_params);
 
3453
3454update:
3455	params->conn_min_interval = conn_min_interval;
3456	params->conn_max_interval = conn_max_interval;
3457	params->auto_connect = auto_connect;
3458
3459	switch (auto_connect) {
3460	case HCI_AUTO_CONN_DISABLED:
3461	case HCI_AUTO_CONN_LINK_LOSS:
3462		hci_pend_le_conn_del(hdev, addr, addr_type);
3463		break;
3464	case HCI_AUTO_CONN_ALWAYS:
3465		if (!is_connected(hdev, addr, addr_type))
3466			hci_pend_le_conn_add(hdev, addr, addr_type);
3467		break;
3468	}
3469
3470	BT_DBG("addr %pMR (type %u) auto_connect %u conn_min_interval 0x%.4x "
3471	       "conn_max_interval 0x%.4x", addr, addr_type, auto_connect,
3472	       conn_min_interval, conn_max_interval);
3473
3474	return 0;
3475}
3476
3477/* This function requires the caller holds hdev->lock */
3478void hci_conn_params_del(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type)
3479{
3480	struct hci_conn_params *params;
3481
3482	params = hci_conn_params_lookup(hdev, addr, addr_type);
3483	if (!params)
3484		return;
3485
3486	hci_pend_le_conn_del(hdev, addr, addr_type);
3487
 
3488	list_del(&params->list);
3489	kfree(params);
3490
3491	BT_DBG("addr %pMR (type %u)", addr, addr_type);
3492}
3493
3494/* This function requires the caller holds hdev->lock */
3495void hci_conn_params_clear(struct hci_dev *hdev)
3496{
3497	struct hci_conn_params *params, *tmp;
3498
3499	list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list) {
3500		list_del(&params->list);
3501		kfree(params);
3502	}
3503
3504	BT_DBG("All LE connection parameters were removed");
3505}
3506
3507/* This function requires the caller holds hdev->lock */
3508struct bdaddr_list *hci_pend_le_conn_lookup(struct hci_dev *hdev,
3509					    bdaddr_t *addr, u8 addr_type)
3510{
3511	struct bdaddr_list *entry;
3512
3513	list_for_each_entry(entry, &hdev->pend_le_conns, list) {
3514		if (bacmp(&entry->bdaddr, addr) == 0 &&
3515		    entry->bdaddr_type == addr_type)
3516			return entry;
3517	}
3518
3519	return NULL;
3520}
3521
3522/* This function requires the caller holds hdev->lock */
3523void hci_pend_le_conn_add(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type)
3524{
3525	struct bdaddr_list *entry;
3526
3527	entry = hci_pend_le_conn_lookup(hdev, addr, addr_type);
3528	if (entry)
3529		goto done;
3530
3531	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
3532	if (!entry) {
3533		BT_ERR("Out of memory");
3534		return;
3535	}
3536
3537	bacpy(&entry->bdaddr, addr);
3538	entry->bdaddr_type = addr_type;
3539
3540	list_add(&entry->list, &hdev->pend_le_conns);
3541
3542	BT_DBG("addr %pMR (type %u)", addr, addr_type);
3543
3544done:
3545	hci_update_background_scan(hdev);
3546}
3547
3548/* This function requires the caller holds hdev->lock */
3549void hci_pend_le_conn_del(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type)
3550{
3551	struct bdaddr_list *entry;
3552
3553	entry = hci_pend_le_conn_lookup(hdev, addr, addr_type);
3554	if (!entry)
3555		goto done;
3556
3557	list_del(&entry->list);
3558	kfree(entry);
3559
3560	BT_DBG("addr %pMR (type %u)", addr, addr_type);
3561
3562done:
3563	hci_update_background_scan(hdev);
3564}
3565
3566/* This function requires the caller holds hdev->lock */
3567void hci_pend_le_conns_clear(struct hci_dev *hdev)
3568{
3569	struct bdaddr_list *entry, *tmp;
3570
3571	list_for_each_entry_safe(entry, tmp, &hdev->pend_le_conns, list) {
3572		list_del(&entry->list);
3573		kfree(entry);
3574	}
3575
3576	BT_DBG("All LE pending connections cleared");
3577}
3578
3579static void inquiry_complete(struct hci_dev *hdev, u8 status)
3580{
3581	if (status) {
3582		BT_ERR("Failed to start inquiry: status %d", status);
3583
3584		hci_dev_lock(hdev);
3585		hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
3586		hci_dev_unlock(hdev);
3587		return;
3588	}
3589}
3590
3591static void le_scan_disable_work_complete(struct hci_dev *hdev, u8 status)
3592{
3593	/* General inquiry access code (GIAC) */
3594	u8 lap[3] = { 0x33, 0x8b, 0x9e };
3595	struct hci_request req;
3596	struct hci_cp_inquiry cp;
3597	int err;
3598
3599	if (status) {
3600		BT_ERR("Failed to disable LE scanning: status %d", status);
3601		return;
3602	}
3603
3604	switch (hdev->discovery.type) {
3605	case DISCOV_TYPE_LE:
3606		hci_dev_lock(hdev);
3607		hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
3608		hci_dev_unlock(hdev);
3609		break;
3610
3611	case DISCOV_TYPE_INTERLEAVED:
3612		hci_req_init(&req, hdev);
3613
3614		memset(&cp, 0, sizeof(cp));
3615		memcpy(&cp.lap, lap, sizeof(cp.lap));
3616		cp.length = DISCOV_INTERLEAVED_INQUIRY_LEN;
3617		hci_req_add(&req, HCI_OP_INQUIRY, sizeof(cp), &cp);
3618
3619		hci_dev_lock(hdev);
3620
3621		hci_inquiry_cache_flush(hdev);
3622
3623		err = hci_req_run(&req, inquiry_complete);
3624		if (err) {
3625			BT_ERR("Inquiry request failed: err %d", err);
3626			hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
3627		}
3628
3629		hci_dev_unlock(hdev);
3630		break;
3631	}
3632}
3633
3634static void le_scan_disable_work(struct work_struct *work)
3635{
3636	struct hci_dev *hdev = container_of(work, struct hci_dev,
3637					    le_scan_disable.work);
3638	struct hci_request req;
3639	int err;
3640
3641	BT_DBG("%s", hdev->name);
3642
3643	hci_req_init(&req, hdev);
3644
3645	hci_req_add_le_scan_disable(&req);
3646
3647	err = hci_req_run(&req, le_scan_disable_work_complete);
3648	if (err)
3649		BT_ERR("Disable LE scanning request failed: err %d", err);
3650}
3651
3652static void set_random_addr(struct hci_request *req, bdaddr_t *rpa)
 
3653{
3654	struct hci_dev *hdev = req->hdev;
3655
3656	/* If we're advertising or initiating an LE connection we can't
3657	 * go ahead and change the random address at this time. This is
3658	 * because the eventual initiator address used for the
3659	 * subsequently created connection will be undefined (some
3660	 * controllers use the new address and others the one we had
3661	 * when the operation started).
3662	 *
3663	 * In this kind of scenario skip the update and let the random
3664	 * address be updated at the next cycle.
3665	 */
3666	if (test_bit(HCI_ADVERTISING, &hdev->dev_flags) ||
3667	    hci_conn_hash_lookup_state(hdev, LE_LINK, BT_CONNECT)) {
3668		BT_DBG("Deferring random address update");
3669		return;
3670	}
3671
3672	hci_req_add(req, HCI_OP_LE_SET_RANDOM_ADDR, 6, rpa);
3673}
3674
3675int hci_update_random_address(struct hci_request *req, bool require_privacy,
3676			      u8 *own_addr_type)
3677{
3678	struct hci_dev *hdev = req->hdev;
3679	int err;
3680
3681	/* If privacy is enabled use a resolvable private address. If
3682	 * current RPA has expired or there is something else than
3683	 * the current RPA in use, then generate a new one.
3684	 */
3685	if (test_bit(HCI_PRIVACY, &hdev->dev_flags)) {
3686		int to;
3687
3688		*own_addr_type = ADDR_LE_DEV_RANDOM;
3689
3690		if (!test_and_clear_bit(HCI_RPA_EXPIRED, &hdev->dev_flags) &&
3691		    !bacmp(&hdev->random_addr, &hdev->rpa))
3692			return 0;
3693
3694		err = smp_generate_rpa(hdev->tfm_aes, hdev->irk, &hdev->rpa);
3695		if (err < 0) {
3696			BT_ERR("%s failed to generate new RPA", hdev->name);
3697			return err;
3698		}
3699
3700		set_random_addr(req, &hdev->rpa);
3701
3702		to = msecs_to_jiffies(hdev->rpa_timeout * 1000);
3703		queue_delayed_work(hdev->workqueue, &hdev->rpa_expired, to);
3704
3705		return 0;
3706	}
3707
3708	/* In case of required privacy without resolvable private address,
3709	 * use an unresolvable private address. This is useful for active
3710	 * scanning and non-connectable advertising.
3711	 */
3712	if (require_privacy) {
3713		bdaddr_t urpa;
3714
3715		get_random_bytes(&urpa, 6);
3716		urpa.b[5] &= 0x3f;	/* Clear two most significant bits */
3717
3718		*own_addr_type = ADDR_LE_DEV_RANDOM;
3719		set_random_addr(req, &urpa);
3720		return 0;
3721	}
3722
3723	/* If forcing static address is in use or there is no public
3724	 * address use the static address as random address (but skip
3725	 * the HCI command if the current random address is already the
3726	 * static one.
3727	 */
3728	if (test_bit(HCI_FORCE_STATIC_ADDR, &hdev->dev_flags) ||
3729	    !bacmp(&hdev->bdaddr, BDADDR_ANY)) {
3730		*own_addr_type = ADDR_LE_DEV_RANDOM;
3731		if (bacmp(&hdev->static_addr, &hdev->random_addr))
3732			hci_req_add(req, HCI_OP_LE_SET_RANDOM_ADDR, 6,
3733				    &hdev->static_addr);
3734		return 0;
3735	}
3736
3737	/* Neither privacy nor static address is being used so use a
3738	 * public address.
3739	 */
3740	*own_addr_type = ADDR_LE_DEV_PUBLIC;
3741
3742	return 0;
3743}
3744
3745/* Copy the Identity Address of the controller.
3746 *
3747 * If the controller has a public BD_ADDR, then by default use that one.
3748 * If this is a LE only controller without a public address, default to
3749 * the static random address.
3750 *
3751 * For debugging purposes it is possible to force controllers with a
3752 * public address to use the static random address instead.
 
 
 
 
3753 */
3754void hci_copy_identity_address(struct hci_dev *hdev, bdaddr_t *bdaddr,
3755			       u8 *bdaddr_type)
3756{
3757	if (test_bit(HCI_FORCE_STATIC_ADDR, &hdev->dev_flags) ||
3758	    !bacmp(&hdev->bdaddr, BDADDR_ANY)) {
 
 
3759		bacpy(bdaddr, &hdev->static_addr);
3760		*bdaddr_type = ADDR_LE_DEV_RANDOM;
3761	} else {
3762		bacpy(bdaddr, &hdev->bdaddr);
3763		*bdaddr_type = ADDR_LE_DEV_PUBLIC;
3764	}
3765}
3766
3767/* Alloc HCI device */
3768struct hci_dev *hci_alloc_dev(void)
3769{
3770	struct hci_dev *hdev;
3771
3772	hdev = kzalloc(sizeof(struct hci_dev), GFP_KERNEL);
3773	if (!hdev)
3774		return NULL;
3775
3776	hdev->pkt_type  = (HCI_DM1 | HCI_DH1 | HCI_HV1);
3777	hdev->esco_type = (ESCO_HV1);
3778	hdev->link_mode = (HCI_LM_ACCEPT);
3779	hdev->num_iac = 0x01;		/* One IAC support is mandatory */
3780	hdev->io_capability = 0x03;	/* No Input No Output */
 
3781	hdev->inq_tx_power = HCI_TX_POWER_INVALID;
3782	hdev->adv_tx_power = HCI_TX_POWER_INVALID;
 
 
 
3783
3784	hdev->sniff_max_interval = 800;
3785	hdev->sniff_min_interval = 80;
3786
3787	hdev->le_adv_channel_map = 0x07;
 
 
3788	hdev->le_scan_interval = 0x0060;
3789	hdev->le_scan_window = 0x0030;
3790	hdev->le_conn_min_interval = 0x0028;
3791	hdev->le_conn_max_interval = 0x0038;
 
 
 
 
 
 
 
 
3792
3793	hdev->rpa_timeout = HCI_DEFAULT_RPA_TIMEOUT;
 
 
 
3794
3795	mutex_init(&hdev->lock);
3796	mutex_init(&hdev->req_lock);
3797
3798	INIT_LIST_HEAD(&hdev->mgmt_pending);
3799	INIT_LIST_HEAD(&hdev->blacklist);
 
3800	INIT_LIST_HEAD(&hdev->uuids);
3801	INIT_LIST_HEAD(&hdev->link_keys);
3802	INIT_LIST_HEAD(&hdev->long_term_keys);
3803	INIT_LIST_HEAD(&hdev->identity_resolving_keys);
3804	INIT_LIST_HEAD(&hdev->remote_oob_data);
3805	INIT_LIST_HEAD(&hdev->le_white_list);
3806	INIT_LIST_HEAD(&hdev->le_conn_params);
3807	INIT_LIST_HEAD(&hdev->pend_le_conns);
 
3808	INIT_LIST_HEAD(&hdev->conn_hash.list);
 
3809
3810	INIT_WORK(&hdev->rx_work, hci_rx_work);
3811	INIT_WORK(&hdev->cmd_work, hci_cmd_work);
3812	INIT_WORK(&hdev->tx_work, hci_tx_work);
3813	INIT_WORK(&hdev->power_on, hci_power_on);
 
3814
3815	INIT_DELAYED_WORK(&hdev->power_off, hci_power_off);
3816	INIT_DELAYED_WORK(&hdev->discov_off, hci_discov_off);
3817	INIT_DELAYED_WORK(&hdev->le_scan_disable, le_scan_disable_work);
3818
3819	skb_queue_head_init(&hdev->rx_q);
3820	skb_queue_head_init(&hdev->cmd_q);
3821	skb_queue_head_init(&hdev->raw_q);
3822
3823	init_waitqueue_head(&hdev->req_wait_q);
3824
3825	setup_timer(&hdev->cmd_timer, hci_cmd_timeout, (unsigned long) hdev);
 
 
3826
3827	hci_init_sysfs(hdev);
3828	discovery_init(hdev);
3829
3830	return hdev;
3831}
3832EXPORT_SYMBOL(hci_alloc_dev);
3833
3834/* Free HCI device */
3835void hci_free_dev(struct hci_dev *hdev)
3836{
3837	/* will free via device release */
3838	put_device(&hdev->dev);
3839}
3840EXPORT_SYMBOL(hci_free_dev);
3841
3842/* Register HCI device */
3843int hci_register_dev(struct hci_dev *hdev)
3844{
3845	int id, error;
3846
3847	if (!hdev->open || !hdev->close)
3848		return -EINVAL;
3849
3850	/* Do not allow HCI_AMP devices to register at index 0,
3851	 * so the index can be used as the AMP controller ID.
3852	 */
3853	switch (hdev->dev_type) {
3854	case HCI_BREDR:
3855		id = ida_simple_get(&hci_index_ida, 0, 0, GFP_KERNEL);
3856		break;
3857	case HCI_AMP:
3858		id = ida_simple_get(&hci_index_ida, 1, 0, GFP_KERNEL);
3859		break;
3860	default:
3861		return -EINVAL;
3862	}
3863
3864	if (id < 0)
3865		return id;
3866
3867	sprintf(hdev->name, "hci%d", id);
3868	hdev->id = id;
3869
3870	BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
3871
3872	hdev->workqueue = alloc_workqueue("%s", WQ_HIGHPRI | WQ_UNBOUND |
3873					  WQ_MEM_RECLAIM, 1, hdev->name);
3874	if (!hdev->workqueue) {
3875		error = -ENOMEM;
3876		goto err;
3877	}
3878
3879	hdev->req_workqueue = alloc_workqueue("%s", WQ_HIGHPRI | WQ_UNBOUND |
3880					      WQ_MEM_RECLAIM, 1, hdev->name);
3881	if (!hdev->req_workqueue) {
3882		destroy_workqueue(hdev->workqueue);
3883		error = -ENOMEM;
3884		goto err;
3885	}
3886
3887	if (!IS_ERR_OR_NULL(bt_debugfs))
3888		hdev->debugfs = debugfs_create_dir(hdev->name, bt_debugfs);
3889
3890	dev_set_name(&hdev->dev, "%s", hdev->name);
3891
3892	hdev->tfm_aes = crypto_alloc_blkcipher("ecb(aes)", 0,
3893					       CRYPTO_ALG_ASYNC);
3894	if (IS_ERR(hdev->tfm_aes)) {
3895		BT_ERR("Unable to create crypto context");
3896		error = PTR_ERR(hdev->tfm_aes);
3897		hdev->tfm_aes = NULL;
3898		goto err_wqueue;
3899	}
3900
3901	error = device_add(&hdev->dev);
3902	if (error < 0)
3903		goto err_tfm;
3904
3905	hdev->rfkill = rfkill_alloc(hdev->name, &hdev->dev,
3906				    RFKILL_TYPE_BLUETOOTH, &hci_rfkill_ops,
3907				    hdev);
3908	if (hdev->rfkill) {
3909		if (rfkill_register(hdev->rfkill) < 0) {
3910			rfkill_destroy(hdev->rfkill);
3911			hdev->rfkill = NULL;
3912		}
3913	}
3914
3915	if (hdev->rfkill && rfkill_blocked(hdev->rfkill))
3916		set_bit(HCI_RFKILLED, &hdev->dev_flags);
3917
3918	set_bit(HCI_SETUP, &hdev->dev_flags);
3919	set_bit(HCI_AUTO_OFF, &hdev->dev_flags);
3920
3921	if (hdev->dev_type == HCI_BREDR) {
3922		/* Assume BR/EDR support until proven otherwise (such as
3923		 * through reading supported features during init.
3924		 */
3925		set_bit(HCI_BREDR_ENABLED, &hdev->dev_flags);
3926	}
3927
3928	write_lock(&hci_dev_list_lock);
3929	list_add(&hdev->list, &hci_dev_list);
3930	write_unlock(&hci_dev_list_lock);
3931
3932	hci_notify(hdev, HCI_DEV_REG);
 
 
 
 
 
 
3933	hci_dev_hold(hdev);
3934
3935	queue_work(hdev->req_workqueue, &hdev->power_on);
3936
3937	return id;
3938
3939err_tfm:
3940	crypto_free_blkcipher(hdev->tfm_aes);
3941err_wqueue:
3942	destroy_workqueue(hdev->workqueue);
3943	destroy_workqueue(hdev->req_workqueue);
3944err:
3945	ida_simple_remove(&hci_index_ida, hdev->id);
3946
3947	return error;
3948}
3949EXPORT_SYMBOL(hci_register_dev);
3950
3951/* Unregister HCI device */
3952void hci_unregister_dev(struct hci_dev *hdev)
3953{
3954	int i, id;
3955
3956	BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
3957
3958	set_bit(HCI_UNREGISTER, &hdev->dev_flags);
3959
3960	id = hdev->id;
3961
3962	write_lock(&hci_dev_list_lock);
3963	list_del(&hdev->list);
3964	write_unlock(&hci_dev_list_lock);
3965
3966	hci_dev_do_close(hdev);
3967
3968	for (i = 0; i < NUM_REASSEMBLY; i++)
3969		kfree_skb(hdev->reassembly[i]);
3970
3971	cancel_work_sync(&hdev->power_on);
3972
3973	if (!test_bit(HCI_INIT, &hdev->flags) &&
3974	    !test_bit(HCI_SETUP, &hdev->dev_flags)) {
 
3975		hci_dev_lock(hdev);
3976		mgmt_index_removed(hdev);
3977		hci_dev_unlock(hdev);
3978	}
3979
3980	/* mgmt_index_removed should take care of emptying the
3981	 * pending list */
3982	BUG_ON(!list_empty(&hdev->mgmt_pending));
3983
3984	hci_notify(hdev, HCI_DEV_UNREG);
3985
3986	if (hdev->rfkill) {
3987		rfkill_unregister(hdev->rfkill);
3988		rfkill_destroy(hdev->rfkill);
3989	}
3990
3991	if (hdev->tfm_aes)
3992		crypto_free_blkcipher(hdev->tfm_aes);
3993
3994	device_del(&hdev->dev);
3995
3996	debugfs_remove_recursive(hdev->debugfs);
3997
3998	destroy_workqueue(hdev->workqueue);
3999	destroy_workqueue(hdev->req_workqueue);
4000
4001	hci_dev_lock(hdev);
4002	hci_blacklist_clear(hdev);
 
4003	hci_uuids_clear(hdev);
4004	hci_link_keys_clear(hdev);
4005	hci_smp_ltks_clear(hdev);
4006	hci_smp_irks_clear(hdev);
4007	hci_remote_oob_data_clear(hdev);
4008	hci_white_list_clear(hdev);
4009	hci_conn_params_clear(hdev);
4010	hci_pend_le_conns_clear(hdev);
 
4011	hci_dev_unlock(hdev);
4012
4013	hci_dev_put(hdev);
4014
4015	ida_simple_remove(&hci_index_ida, id);
4016}
4017EXPORT_SYMBOL(hci_unregister_dev);
4018
4019/* Suspend HCI device */
4020int hci_suspend_dev(struct hci_dev *hdev)
4021{
4022	hci_notify(hdev, HCI_DEV_SUSPEND);
4023	return 0;
4024}
4025EXPORT_SYMBOL(hci_suspend_dev);
4026
4027/* Resume HCI device */
4028int hci_resume_dev(struct hci_dev *hdev)
4029{
4030	hci_notify(hdev, HCI_DEV_RESUME);
4031	return 0;
4032}
4033EXPORT_SYMBOL(hci_resume_dev);
4034
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4035/* Receive frame from HCI drivers */
4036int hci_recv_frame(struct hci_dev *hdev, struct sk_buff *skb)
4037{
4038	if (!hdev || (!test_bit(HCI_UP, &hdev->flags)
4039		      && !test_bit(HCI_INIT, &hdev->flags))) {
4040		kfree_skb(skb);
4041		return -ENXIO;
4042	}
4043
 
 
 
 
 
 
 
4044	/* Incoming skb */
4045	bt_cb(skb)->incoming = 1;
4046
4047	/* Time stamp */
4048	__net_timestamp(skb);
4049
4050	skb_queue_tail(&hdev->rx_q, skb);
4051	queue_work(hdev->workqueue, &hdev->rx_work);
4052
4053	return 0;
4054}
4055EXPORT_SYMBOL(hci_recv_frame);
4056
4057static int hci_reassembly(struct hci_dev *hdev, int type, void *data,
4058			  int count, __u8 index)
4059{
4060	int len = 0;
4061	int hlen = 0;
4062	int remain = count;
4063	struct sk_buff *skb;
4064	struct bt_skb_cb *scb;
4065
4066	if ((type < HCI_ACLDATA_PKT || type > HCI_EVENT_PKT) ||
4067	    index >= NUM_REASSEMBLY)
4068		return -EILSEQ;
4069
4070	skb = hdev->reassembly[index];
 
4071
4072	if (!skb) {
4073		switch (type) {
4074		case HCI_ACLDATA_PKT:
4075			len = HCI_MAX_FRAME_SIZE;
4076			hlen = HCI_ACL_HDR_SIZE;
4077			break;
4078		case HCI_EVENT_PKT:
4079			len = HCI_MAX_EVENT_SIZE;
4080			hlen = HCI_EVENT_HDR_SIZE;
4081			break;
4082		case HCI_SCODATA_PKT:
4083			len = HCI_MAX_SCO_SIZE;
4084			hlen = HCI_SCO_HDR_SIZE;
4085			break;
4086		}
4087
4088		skb = bt_skb_alloc(len, GFP_ATOMIC);
4089		if (!skb)
4090			return -ENOMEM;
4091
4092		scb = (void *) skb->cb;
4093		scb->expect = hlen;
4094		scb->pkt_type = type;
4095
4096		hdev->reassembly[index] = skb;
4097	}
4098
4099	while (count) {
4100		scb = (void *) skb->cb;
4101		len = min_t(uint, scb->expect, count);
4102
4103		memcpy(skb_put(skb, len), data, len);
4104
4105		count -= len;
4106		data += len;
4107		scb->expect -= len;
4108		remain = count;
4109
4110		switch (type) {
4111		case HCI_EVENT_PKT:
4112			if (skb->len == HCI_EVENT_HDR_SIZE) {
4113				struct hci_event_hdr *h = hci_event_hdr(skb);
4114				scb->expect = h->plen;
4115
4116				if (skb_tailroom(skb) < scb->expect) {
4117					kfree_skb(skb);
4118					hdev->reassembly[index] = NULL;
4119					return -ENOMEM;
4120				}
4121			}
4122			break;
4123
4124		case HCI_ACLDATA_PKT:
4125			if (skb->len  == HCI_ACL_HDR_SIZE) {
4126				struct hci_acl_hdr *h = hci_acl_hdr(skb);
4127				scb->expect = __le16_to_cpu(h->dlen);
4128
4129				if (skb_tailroom(skb) < scb->expect) {
4130					kfree_skb(skb);
4131					hdev->reassembly[index] = NULL;
4132					return -ENOMEM;
4133				}
4134			}
4135			break;
4136
4137		case HCI_SCODATA_PKT:
4138			if (skb->len == HCI_SCO_HDR_SIZE) {
4139				struct hci_sco_hdr *h = hci_sco_hdr(skb);
4140				scb->expect = h->dlen;
4141
4142				if (skb_tailroom(skb) < scb->expect) {
4143					kfree_skb(skb);
4144					hdev->reassembly[index] = NULL;
4145					return -ENOMEM;
4146				}
4147			}
4148			break;
4149		}
4150
4151		if (scb->expect == 0) {
4152			/* Complete frame */
4153
4154			bt_cb(skb)->pkt_type = type;
4155			hci_recv_frame(hdev, skb);
4156
4157			hdev->reassembly[index] = NULL;
4158			return remain;
4159		}
4160	}
4161
4162	return remain;
4163}
4164
4165int hci_recv_fragment(struct hci_dev *hdev, int type, void *data, int count)
4166{
4167	int rem = 0;
4168
4169	if (type < HCI_ACLDATA_PKT || type > HCI_EVENT_PKT)
4170		return -EILSEQ;
4171
4172	while (count) {
4173		rem = hci_reassembly(hdev, type, data, count, type - 1);
4174		if (rem < 0)
4175			return rem;
4176
4177		data += (count - rem);
4178		count = rem;
4179	}
4180
4181	return rem;
4182}
4183EXPORT_SYMBOL(hci_recv_fragment);
4184
4185#define STREAM_REASSEMBLY 0
4186
4187int hci_recv_stream_fragment(struct hci_dev *hdev, void *data, int count)
4188{
4189	int type;
4190	int rem = 0;
4191
4192	while (count) {
4193		struct sk_buff *skb = hdev->reassembly[STREAM_REASSEMBLY];
4194
4195		if (!skb) {
4196			struct { char type; } *pkt;
4197
4198			/* Start of the frame */
4199			pkt = data;
4200			type = pkt->type;
4201
4202			data++;
4203			count--;
4204		} else
4205			type = bt_cb(skb)->pkt_type;
4206
4207		rem = hci_reassembly(hdev, type, data, count,
4208				     STREAM_REASSEMBLY);
4209		if (rem < 0)
4210			return rem;
4211
4212		data += (count - rem);
4213		count = rem;
4214	}
4215
4216	return rem;
4217}
4218EXPORT_SYMBOL(hci_recv_stream_fragment);
4219
4220/* ---- Interface to upper protocols ---- */
4221
4222int hci_register_cb(struct hci_cb *cb)
4223{
4224	BT_DBG("%p name %s", cb, cb->name);
4225
4226	write_lock(&hci_cb_list_lock);
4227	list_add(&cb->list, &hci_cb_list);
4228	write_unlock(&hci_cb_list_lock);
4229
4230	return 0;
4231}
4232EXPORT_SYMBOL(hci_register_cb);
4233
4234int hci_unregister_cb(struct hci_cb *cb)
4235{
4236	BT_DBG("%p name %s", cb, cb->name);
4237
4238	write_lock(&hci_cb_list_lock);
4239	list_del(&cb->list);
4240	write_unlock(&hci_cb_list_lock);
4241
4242	return 0;
4243}
4244EXPORT_SYMBOL(hci_unregister_cb);
4245
4246static void hci_send_frame(struct hci_dev *hdev, struct sk_buff *skb)
4247{
4248	BT_DBG("%s type %d len %d", hdev->name, bt_cb(skb)->pkt_type, skb->len);
 
 
 
4249
4250	/* Time stamp */
4251	__net_timestamp(skb);
4252
4253	/* Send copy to monitor */
4254	hci_send_to_monitor(hdev, skb);
4255
4256	if (atomic_read(&hdev->promisc)) {
4257		/* Send copy to the sockets */
4258		hci_send_to_sock(hdev, skb);
4259	}
4260
4261	/* Get rid of skb owner, prior to sending to the driver. */
4262	skb_orphan(skb);
4263
4264	if (hdev->send(hdev, skb) < 0)
4265		BT_ERR("%s sending frame failed", hdev->name);
4266}
 
4267
4268void hci_req_init(struct hci_request *req, struct hci_dev *hdev)
4269{
4270	skb_queue_head_init(&req->cmd_q);
4271	req->hdev = hdev;
4272	req->err = 0;
4273}
4274
4275int hci_req_run(struct hci_request *req, hci_req_complete_t complete)
4276{
4277	struct hci_dev *hdev = req->hdev;
4278	struct sk_buff *skb;
4279	unsigned long flags;
4280
4281	BT_DBG("length %u", skb_queue_len(&req->cmd_q));
4282
4283	/* If an error occured during request building, remove all HCI
4284	 * commands queued on the HCI request queue.
4285	 */
4286	if (req->err) {
4287		skb_queue_purge(&req->cmd_q);
4288		return req->err;
4289	}
4290
4291	/* Do not allow empty requests */
4292	if (skb_queue_empty(&req->cmd_q))
4293		return -ENODATA;
4294
4295	skb = skb_peek_tail(&req->cmd_q);
4296	bt_cb(skb)->req.complete = complete;
4297
4298	spin_lock_irqsave(&hdev->cmd_q.lock, flags);
4299	skb_queue_splice_tail(&req->cmd_q, &hdev->cmd_q);
4300	spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
4301
4302	queue_work(hdev->workqueue, &hdev->cmd_work);
4303
4304	return 0;
4305}
4306
4307static struct sk_buff *hci_prepare_cmd(struct hci_dev *hdev, u16 opcode,
4308				       u32 plen, const void *param)
4309{
4310	int len = HCI_COMMAND_HDR_SIZE + plen;
4311	struct hci_command_hdr *hdr;
4312	struct sk_buff *skb;
4313
4314	skb = bt_skb_alloc(len, GFP_ATOMIC);
4315	if (!skb)
4316		return NULL;
4317
4318	hdr = (struct hci_command_hdr *) skb_put(skb, HCI_COMMAND_HDR_SIZE);
4319	hdr->opcode = cpu_to_le16(opcode);
4320	hdr->plen   = plen;
4321
4322	if (plen)
4323		memcpy(skb_put(skb, plen), param, plen);
4324
4325	BT_DBG("skb len %d", skb->len);
4326
4327	bt_cb(skb)->pkt_type = HCI_COMMAND_PKT;
4328
4329	return skb;
4330}
4331
4332/* Send HCI command */
4333int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen,
4334		 const void *param)
4335{
4336	struct sk_buff *skb;
4337
4338	BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen);
4339
4340	skb = hci_prepare_cmd(hdev, opcode, plen, param);
4341	if (!skb) {
4342		BT_ERR("%s no memory for command", hdev->name);
4343		return -ENOMEM;
4344	}
4345
4346	/* Stand-alone HCI commands must be flaged as
4347	 * single-command requests.
4348	 */
4349	bt_cb(skb)->req.start = true;
4350
4351	skb_queue_tail(&hdev->cmd_q, skb);
4352	queue_work(hdev->workqueue, &hdev->cmd_work);
4353
4354	return 0;
4355}
4356
4357/* Queue a command to an asynchronous HCI request */
4358void hci_req_add_ev(struct hci_request *req, u16 opcode, u32 plen,
4359		    const void *param, u8 event)
4360{
4361	struct hci_dev *hdev = req->hdev;
4362	struct sk_buff *skb;
4363
4364	BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen);
4365
4366	/* If an error occured during request building, there is no point in
4367	 * queueing the HCI command. We can simply return.
4368	 */
4369	if (req->err)
4370		return;
4371
4372	skb = hci_prepare_cmd(hdev, opcode, plen, param);
4373	if (!skb) {
4374		BT_ERR("%s no memory for command (opcode 0x%4.4x)",
4375		       hdev->name, opcode);
4376		req->err = -ENOMEM;
4377		return;
4378	}
4379
4380	if (skb_queue_empty(&req->cmd_q))
4381		bt_cb(skb)->req.start = true;
4382
4383	bt_cb(skb)->req.event = event;
4384
4385	skb_queue_tail(&req->cmd_q, skb);
4386}
4387
4388void hci_req_add(struct hci_request *req, u16 opcode, u32 plen,
4389		 const void *param)
4390{
4391	hci_req_add_ev(req, opcode, plen, param, 0);
4392}
4393
4394/* Get data from the previously sent command */
4395void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode)
4396{
4397	struct hci_command_hdr *hdr;
4398
4399	if (!hdev->sent_cmd)
4400		return NULL;
4401
4402	hdr = (void *) hdev->sent_cmd->data;
4403
4404	if (hdr->opcode != cpu_to_le16(opcode))
4405		return NULL;
4406
4407	BT_DBG("%s opcode 0x%4.4x", hdev->name, opcode);
4408
4409	return hdev->sent_cmd->data + HCI_COMMAND_HDR_SIZE;
4410}
4411
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4412/* Send ACL data */
4413static void hci_add_acl_hdr(struct sk_buff *skb, __u16 handle, __u16 flags)
4414{
4415	struct hci_acl_hdr *hdr;
4416	int len = skb->len;
4417
4418	skb_push(skb, HCI_ACL_HDR_SIZE);
4419	skb_reset_transport_header(skb);
4420	hdr = (struct hci_acl_hdr *)skb_transport_header(skb);
4421	hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
4422	hdr->dlen   = cpu_to_le16(len);
4423}
4424
4425static void hci_queue_acl(struct hci_chan *chan, struct sk_buff_head *queue,
4426			  struct sk_buff *skb, __u16 flags)
4427{
4428	struct hci_conn *conn = chan->conn;
4429	struct hci_dev *hdev = conn->hdev;
4430	struct sk_buff *list;
4431
4432	skb->len = skb_headlen(skb);
4433	skb->data_len = 0;
4434
4435	bt_cb(skb)->pkt_type = HCI_ACLDATA_PKT;
4436
4437	switch (hdev->dev_type) {
4438	case HCI_BREDR:
4439		hci_add_acl_hdr(skb, conn->handle, flags);
4440		break;
4441	case HCI_AMP:
4442		hci_add_acl_hdr(skb, chan->handle, flags);
4443		break;
4444	default:
4445		BT_ERR("%s unknown dev_type %d", hdev->name, hdev->dev_type);
4446		return;
4447	}
4448
4449	list = skb_shinfo(skb)->frag_list;
4450	if (!list) {
4451		/* Non fragmented */
4452		BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
4453
4454		skb_queue_tail(queue, skb);
4455	} else {
4456		/* Fragmented */
4457		BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
4458
4459		skb_shinfo(skb)->frag_list = NULL;
4460
4461		/* Queue all fragments atomically */
4462		spin_lock(&queue->lock);
 
 
 
 
4463
4464		__skb_queue_tail(queue, skb);
4465
4466		flags &= ~ACL_START;
4467		flags |= ACL_CONT;
4468		do {
4469			skb = list; list = list->next;
4470
4471			bt_cb(skb)->pkt_type = HCI_ACLDATA_PKT;
4472			hci_add_acl_hdr(skb, conn->handle, flags);
4473
4474			BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
4475
4476			__skb_queue_tail(queue, skb);
4477		} while (list);
4478
4479		spin_unlock(&queue->lock);
4480	}
4481}
4482
4483void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags)
4484{
4485	struct hci_dev *hdev = chan->conn->hdev;
4486
4487	BT_DBG("%s chan %p flags 0x%4.4x", hdev->name, chan, flags);
4488
4489	hci_queue_acl(chan, &chan->data_q, skb, flags);
4490
4491	queue_work(hdev->workqueue, &hdev->tx_work);
4492}
4493
4494/* Send SCO data */
4495void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb)
4496{
4497	struct hci_dev *hdev = conn->hdev;
4498	struct hci_sco_hdr hdr;
4499
4500	BT_DBG("%s len %d", hdev->name, skb->len);
4501
4502	hdr.handle = cpu_to_le16(conn->handle);
4503	hdr.dlen   = skb->len;
4504
4505	skb_push(skb, HCI_SCO_HDR_SIZE);
4506	skb_reset_transport_header(skb);
4507	memcpy(skb_transport_header(skb), &hdr, HCI_SCO_HDR_SIZE);
4508
4509	bt_cb(skb)->pkt_type = HCI_SCODATA_PKT;
4510
4511	skb_queue_tail(&conn->data_q, skb);
4512	queue_work(hdev->workqueue, &hdev->tx_work);
4513}
4514
4515/* ---- HCI TX task (outgoing data) ---- */
4516
4517/* HCI Connection scheduler */
4518static struct hci_conn *hci_low_sent(struct hci_dev *hdev, __u8 type,
4519				     int *quote)
4520{
4521	struct hci_conn_hash *h = &hdev->conn_hash;
4522	struct hci_conn *conn = NULL, *c;
4523	unsigned int num = 0, min = ~0;
4524
4525	/* We don't have to lock device here. Connections are always
4526	 * added and removed with TX task disabled. */
4527
4528	rcu_read_lock();
4529
4530	list_for_each_entry_rcu(c, &h->list, list) {
4531		if (c->type != type || skb_queue_empty(&c->data_q))
4532			continue;
4533
4534		if (c->state != BT_CONNECTED && c->state != BT_CONFIG)
4535			continue;
4536
4537		num++;
4538
4539		if (c->sent < min) {
4540			min  = c->sent;
4541			conn = c;
4542		}
4543
4544		if (hci_conn_num(hdev, type) == num)
4545			break;
4546	}
4547
4548	rcu_read_unlock();
4549
4550	if (conn) {
4551		int cnt, q;
4552
4553		switch (conn->type) {
4554		case ACL_LINK:
4555			cnt = hdev->acl_cnt;
4556			break;
4557		case SCO_LINK:
4558		case ESCO_LINK:
4559			cnt = hdev->sco_cnt;
4560			break;
4561		case LE_LINK:
4562			cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
4563			break;
4564		default:
4565			cnt = 0;
4566			BT_ERR("Unknown link type");
4567		}
4568
4569		q = cnt / num;
4570		*quote = q ? q : 1;
4571	} else
4572		*quote = 0;
4573
4574	BT_DBG("conn %p quote %d", conn, *quote);
4575	return conn;
4576}
4577
4578static void hci_link_tx_to(struct hci_dev *hdev, __u8 type)
4579{
4580	struct hci_conn_hash *h = &hdev->conn_hash;
4581	struct hci_conn *c;
4582
4583	BT_ERR("%s link tx timeout", hdev->name);
4584
4585	rcu_read_lock();
4586
4587	/* Kill stalled connections */
4588	list_for_each_entry_rcu(c, &h->list, list) {
4589		if (c->type == type && c->sent) {
4590			BT_ERR("%s killing stalled connection %pMR",
4591			       hdev->name, &c->dst);
4592			hci_disconnect(c, HCI_ERROR_REMOTE_USER_TERM);
4593		}
4594	}
4595
4596	rcu_read_unlock();
4597}
4598
4599static struct hci_chan *hci_chan_sent(struct hci_dev *hdev, __u8 type,
4600				      int *quote)
4601{
4602	struct hci_conn_hash *h = &hdev->conn_hash;
4603	struct hci_chan *chan = NULL;
4604	unsigned int num = 0, min = ~0, cur_prio = 0;
4605	struct hci_conn *conn;
4606	int cnt, q, conn_num = 0;
4607
4608	BT_DBG("%s", hdev->name);
4609
4610	rcu_read_lock();
4611
4612	list_for_each_entry_rcu(conn, &h->list, list) {
4613		struct hci_chan *tmp;
4614
4615		if (conn->type != type)
4616			continue;
4617
4618		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
4619			continue;
4620
4621		conn_num++;
4622
4623		list_for_each_entry_rcu(tmp, &conn->chan_list, list) {
4624			struct sk_buff *skb;
4625
4626			if (skb_queue_empty(&tmp->data_q))
4627				continue;
4628
4629			skb = skb_peek(&tmp->data_q);
4630			if (skb->priority < cur_prio)
4631				continue;
4632
4633			if (skb->priority > cur_prio) {
4634				num = 0;
4635				min = ~0;
4636				cur_prio = skb->priority;
4637			}
4638
4639			num++;
4640
4641			if (conn->sent < min) {
4642				min  = conn->sent;
4643				chan = tmp;
4644			}
4645		}
4646
4647		if (hci_conn_num(hdev, type) == conn_num)
4648			break;
4649	}
4650
4651	rcu_read_unlock();
4652
4653	if (!chan)
4654		return NULL;
4655
4656	switch (chan->conn->type) {
4657	case ACL_LINK:
4658		cnt = hdev->acl_cnt;
4659		break;
4660	case AMP_LINK:
4661		cnt = hdev->block_cnt;
4662		break;
4663	case SCO_LINK:
4664	case ESCO_LINK:
4665		cnt = hdev->sco_cnt;
4666		break;
4667	case LE_LINK:
4668		cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
4669		break;
4670	default:
4671		cnt = 0;
4672		BT_ERR("Unknown link type");
4673	}
4674
4675	q = cnt / num;
4676	*quote = q ? q : 1;
4677	BT_DBG("chan %p quote %d", chan, *quote);
4678	return chan;
4679}
4680
4681static void hci_prio_recalculate(struct hci_dev *hdev, __u8 type)
4682{
4683	struct hci_conn_hash *h = &hdev->conn_hash;
4684	struct hci_conn *conn;
4685	int num = 0;
4686
4687	BT_DBG("%s", hdev->name);
4688
4689	rcu_read_lock();
4690
4691	list_for_each_entry_rcu(conn, &h->list, list) {
4692		struct hci_chan *chan;
4693
4694		if (conn->type != type)
4695			continue;
4696
4697		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
4698			continue;
4699
4700		num++;
4701
4702		list_for_each_entry_rcu(chan, &conn->chan_list, list) {
4703			struct sk_buff *skb;
4704
4705			if (chan->sent) {
4706				chan->sent = 0;
4707				continue;
4708			}
4709
4710			if (skb_queue_empty(&chan->data_q))
4711				continue;
4712
4713			skb = skb_peek(&chan->data_q);
4714			if (skb->priority >= HCI_PRIO_MAX - 1)
4715				continue;
4716
4717			skb->priority = HCI_PRIO_MAX - 1;
4718
4719			BT_DBG("chan %p skb %p promoted to %d", chan, skb,
4720			       skb->priority);
4721		}
4722
4723		if (hci_conn_num(hdev, type) == num)
4724			break;
4725	}
4726
4727	rcu_read_unlock();
4728
4729}
4730
4731static inline int __get_blocks(struct hci_dev *hdev, struct sk_buff *skb)
4732{
4733	/* Calculate count of blocks used by this packet */
4734	return DIV_ROUND_UP(skb->len - HCI_ACL_HDR_SIZE, hdev->block_len);
4735}
4736
4737static void __check_timeout(struct hci_dev *hdev, unsigned int cnt)
4738{
4739	if (!test_bit(HCI_RAW, &hdev->flags)) {
4740		/* ACL tx timeout must be longer than maximum
4741		 * link supervision timeout (40.9 seconds) */
4742		if (!cnt && time_after(jiffies, hdev->acl_last_tx +
4743				       HCI_ACL_TX_TIMEOUT))
4744			hci_link_tx_to(hdev, ACL_LINK);
4745	}
4746}
4747
4748static void hci_sched_acl_pkt(struct hci_dev *hdev)
4749{
4750	unsigned int cnt = hdev->acl_cnt;
4751	struct hci_chan *chan;
4752	struct sk_buff *skb;
4753	int quote;
4754
4755	__check_timeout(hdev, cnt);
4756
4757	while (hdev->acl_cnt &&
4758	       (chan = hci_chan_sent(hdev, ACL_LINK, &quote))) {
4759		u32 priority = (skb_peek(&chan->data_q))->priority;
4760		while (quote-- && (skb = skb_peek(&chan->data_q))) {
4761			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
4762			       skb->len, skb->priority);
4763
4764			/* Stop if priority has changed */
4765			if (skb->priority < priority)
4766				break;
4767
4768			skb = skb_dequeue(&chan->data_q);
4769
4770			hci_conn_enter_active_mode(chan->conn,
4771						   bt_cb(skb)->force_active);
4772
4773			hci_send_frame(hdev, skb);
4774			hdev->acl_last_tx = jiffies;
4775
4776			hdev->acl_cnt--;
4777			chan->sent++;
4778			chan->conn->sent++;
4779		}
4780	}
4781
4782	if (cnt != hdev->acl_cnt)
4783		hci_prio_recalculate(hdev, ACL_LINK);
4784}
4785
4786static void hci_sched_acl_blk(struct hci_dev *hdev)
4787{
4788	unsigned int cnt = hdev->block_cnt;
4789	struct hci_chan *chan;
4790	struct sk_buff *skb;
4791	int quote;
4792	u8 type;
4793
4794	__check_timeout(hdev, cnt);
4795
4796	BT_DBG("%s", hdev->name);
4797
4798	if (hdev->dev_type == HCI_AMP)
4799		type = AMP_LINK;
4800	else
4801		type = ACL_LINK;
4802
4803	while (hdev->block_cnt > 0 &&
4804	       (chan = hci_chan_sent(hdev, type, &quote))) {
4805		u32 priority = (skb_peek(&chan->data_q))->priority;
4806		while (quote > 0 && (skb = skb_peek(&chan->data_q))) {
4807			int blocks;
4808
4809			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
4810			       skb->len, skb->priority);
4811
4812			/* Stop if priority has changed */
4813			if (skb->priority < priority)
4814				break;
4815
4816			skb = skb_dequeue(&chan->data_q);
4817
4818			blocks = __get_blocks(hdev, skb);
4819			if (blocks > hdev->block_cnt)
4820				return;
4821
4822			hci_conn_enter_active_mode(chan->conn,
4823						   bt_cb(skb)->force_active);
4824
4825			hci_send_frame(hdev, skb);
4826			hdev->acl_last_tx = jiffies;
4827
4828			hdev->block_cnt -= blocks;
4829			quote -= blocks;
4830
4831			chan->sent += blocks;
4832			chan->conn->sent += blocks;
4833		}
4834	}
4835
4836	if (cnt != hdev->block_cnt)
4837		hci_prio_recalculate(hdev, type);
4838}
4839
4840static void hci_sched_acl(struct hci_dev *hdev)
4841{
4842	BT_DBG("%s", hdev->name);
4843
4844	/* No ACL link over BR/EDR controller */
4845	if (!hci_conn_num(hdev, ACL_LINK) && hdev->dev_type == HCI_BREDR)
4846		return;
4847
4848	/* No AMP link over AMP controller */
4849	if (!hci_conn_num(hdev, AMP_LINK) && hdev->dev_type == HCI_AMP)
4850		return;
4851
4852	switch (hdev->flow_ctl_mode) {
4853	case HCI_FLOW_CTL_MODE_PACKET_BASED:
4854		hci_sched_acl_pkt(hdev);
4855		break;
4856
4857	case HCI_FLOW_CTL_MODE_BLOCK_BASED:
4858		hci_sched_acl_blk(hdev);
4859		break;
4860	}
4861}
4862
4863/* Schedule SCO */
4864static void hci_sched_sco(struct hci_dev *hdev)
4865{
4866	struct hci_conn *conn;
4867	struct sk_buff *skb;
4868	int quote;
4869
4870	BT_DBG("%s", hdev->name);
4871
4872	if (!hci_conn_num(hdev, SCO_LINK))
4873		return;
4874
4875	while (hdev->sco_cnt && (conn = hci_low_sent(hdev, SCO_LINK, &quote))) {
4876		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
4877			BT_DBG("skb %p len %d", skb, skb->len);
4878			hci_send_frame(hdev, skb);
4879
4880			conn->sent++;
4881			if (conn->sent == ~0)
4882				conn->sent = 0;
4883		}
4884	}
4885}
4886
4887static void hci_sched_esco(struct hci_dev *hdev)
4888{
4889	struct hci_conn *conn;
4890	struct sk_buff *skb;
4891	int quote;
4892
4893	BT_DBG("%s", hdev->name);
4894
4895	if (!hci_conn_num(hdev, ESCO_LINK))
4896		return;
4897
4898	while (hdev->sco_cnt && (conn = hci_low_sent(hdev, ESCO_LINK,
4899						     &quote))) {
4900		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
4901			BT_DBG("skb %p len %d", skb, skb->len);
4902			hci_send_frame(hdev, skb);
4903
4904			conn->sent++;
4905			if (conn->sent == ~0)
4906				conn->sent = 0;
4907		}
4908	}
4909}
4910
4911static void hci_sched_le(struct hci_dev *hdev)
4912{
4913	struct hci_chan *chan;
4914	struct sk_buff *skb;
4915	int quote, cnt, tmp;
4916
4917	BT_DBG("%s", hdev->name);
4918
4919	if (!hci_conn_num(hdev, LE_LINK))
4920		return;
4921
4922	if (!test_bit(HCI_RAW, &hdev->flags)) {
4923		/* LE tx timeout must be longer than maximum
4924		 * link supervision timeout (40.9 seconds) */
4925		if (!hdev->le_cnt && hdev->le_pkts &&
4926		    time_after(jiffies, hdev->le_last_tx + HZ * 45))
4927			hci_link_tx_to(hdev, LE_LINK);
4928	}
4929
4930	cnt = hdev->le_pkts ? hdev->le_cnt : hdev->acl_cnt;
4931	tmp = cnt;
4932	while (cnt && (chan = hci_chan_sent(hdev, LE_LINK, &quote))) {
4933		u32 priority = (skb_peek(&chan->data_q))->priority;
4934		while (quote-- && (skb = skb_peek(&chan->data_q))) {
4935			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
4936			       skb->len, skb->priority);
4937
4938			/* Stop if priority has changed */
4939			if (skb->priority < priority)
4940				break;
4941
4942			skb = skb_dequeue(&chan->data_q);
4943
4944			hci_send_frame(hdev, skb);
4945			hdev->le_last_tx = jiffies;
4946
4947			cnt--;
4948			chan->sent++;
4949			chan->conn->sent++;
4950		}
4951	}
4952
4953	if (hdev->le_pkts)
4954		hdev->le_cnt = cnt;
4955	else
4956		hdev->acl_cnt = cnt;
4957
4958	if (cnt != tmp)
4959		hci_prio_recalculate(hdev, LE_LINK);
4960}
4961
4962static void hci_tx_work(struct work_struct *work)
4963{
4964	struct hci_dev *hdev = container_of(work, struct hci_dev, tx_work);
4965	struct sk_buff *skb;
4966
4967	BT_DBG("%s acl %d sco %d le %d", hdev->name, hdev->acl_cnt,
4968	       hdev->sco_cnt, hdev->le_cnt);
4969
4970	if (!test_bit(HCI_USER_CHANNEL, &hdev->dev_flags)) {
4971		/* Schedule queues and send stuff to HCI driver */
4972		hci_sched_acl(hdev);
4973		hci_sched_sco(hdev);
4974		hci_sched_esco(hdev);
4975		hci_sched_le(hdev);
4976	}
4977
4978	/* Send next queued raw (unknown type) packet */
4979	while ((skb = skb_dequeue(&hdev->raw_q)))
4980		hci_send_frame(hdev, skb);
4981}
4982
4983/* ----- HCI RX task (incoming data processing) ----- */
4984
4985/* ACL data packet */
4986static void hci_acldata_packet(struct hci_dev *hdev, struct sk_buff *skb)
4987{
4988	struct hci_acl_hdr *hdr = (void *) skb->data;
4989	struct hci_conn *conn;
4990	__u16 handle, flags;
4991
4992	skb_pull(skb, HCI_ACL_HDR_SIZE);
4993
4994	handle = __le16_to_cpu(hdr->handle);
4995	flags  = hci_flags(handle);
4996	handle = hci_handle(handle);
4997
4998	BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len,
4999	       handle, flags);
5000
5001	hdev->stat.acl_rx++;
5002
5003	hci_dev_lock(hdev);
5004	conn = hci_conn_hash_lookup_handle(hdev, handle);
5005	hci_dev_unlock(hdev);
5006
5007	if (conn) {
5008		hci_conn_enter_active_mode(conn, BT_POWER_FORCE_ACTIVE_OFF);
5009
5010		/* Send to upper protocol */
5011		l2cap_recv_acldata(conn, skb, flags);
5012		return;
5013	} else {
5014		BT_ERR("%s ACL packet for unknown connection handle %d",
5015		       hdev->name, handle);
5016	}
5017
5018	kfree_skb(skb);
5019}
5020
5021/* SCO data packet */
5022static void hci_scodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
5023{
5024	struct hci_sco_hdr *hdr = (void *) skb->data;
5025	struct hci_conn *conn;
5026	__u16 handle;
5027
5028	skb_pull(skb, HCI_SCO_HDR_SIZE);
5029
5030	handle = __le16_to_cpu(hdr->handle);
5031
5032	BT_DBG("%s len %d handle 0x%4.4x", hdev->name, skb->len, handle);
5033
5034	hdev->stat.sco_rx++;
5035
5036	hci_dev_lock(hdev);
5037	conn = hci_conn_hash_lookup_handle(hdev, handle);
5038	hci_dev_unlock(hdev);
5039
5040	if (conn) {
5041		/* Send to upper protocol */
5042		sco_recv_scodata(conn, skb);
5043		return;
5044	} else {
5045		BT_ERR("%s SCO packet for unknown connection handle %d",
5046		       hdev->name, handle);
5047	}
5048
5049	kfree_skb(skb);
5050}
5051
5052static bool hci_req_is_complete(struct hci_dev *hdev)
5053{
5054	struct sk_buff *skb;
5055
5056	skb = skb_peek(&hdev->cmd_q);
5057	if (!skb)
5058		return true;
5059
5060	return bt_cb(skb)->req.start;
5061}
5062
5063static void hci_resend_last(struct hci_dev *hdev)
5064{
5065	struct hci_command_hdr *sent;
5066	struct sk_buff *skb;
5067	u16 opcode;
5068
5069	if (!hdev->sent_cmd)
5070		return;
5071
5072	sent = (void *) hdev->sent_cmd->data;
5073	opcode = __le16_to_cpu(sent->opcode);
5074	if (opcode == HCI_OP_RESET)
5075		return;
5076
5077	skb = skb_clone(hdev->sent_cmd, GFP_KERNEL);
5078	if (!skb)
5079		return;
5080
5081	skb_queue_head(&hdev->cmd_q, skb);
5082	queue_work(hdev->workqueue, &hdev->cmd_work);
5083}
5084
5085void hci_req_cmd_complete(struct hci_dev *hdev, u16 opcode, u8 status)
 
 
5086{
5087	hci_req_complete_t req_complete = NULL;
5088	struct sk_buff *skb;
5089	unsigned long flags;
5090
5091	BT_DBG("opcode 0x%04x status 0x%02x", opcode, status);
5092
5093	/* If the completed command doesn't match the last one that was
5094	 * sent we need to do special handling of it.
5095	 */
5096	if (!hci_sent_cmd_data(hdev, opcode)) {
5097		/* Some CSR based controllers generate a spontaneous
5098		 * reset complete event during init and any pending
5099		 * command will never be completed. In such a case we
5100		 * need to resend whatever was the last sent
5101		 * command.
5102		 */
5103		if (test_bit(HCI_INIT, &hdev->flags) && opcode == HCI_OP_RESET)
5104			hci_resend_last(hdev);
5105
5106		return;
5107	}
5108
5109	/* If the command succeeded and there's still more commands in
5110	 * this request the request is not yet complete.
5111	 */
5112	if (!status && !hci_req_is_complete(hdev))
5113		return;
5114
5115	/* If this was the last command in a request the complete
5116	 * callback would be found in hdev->sent_cmd instead of the
5117	 * command queue (hdev->cmd_q).
5118	 */
5119	if (hdev->sent_cmd) {
5120		req_complete = bt_cb(hdev->sent_cmd)->req.complete;
 
 
5121
5122		if (req_complete) {
5123			/* We must set the complete callback to NULL to
5124			 * avoid calling the callback more than once if
5125			 * this function gets called again.
5126			 */
5127			bt_cb(hdev->sent_cmd)->req.complete = NULL;
5128
5129			goto call_complete;
5130		}
5131	}
5132
5133	/* Remove all pending commands belonging to this request */
5134	spin_lock_irqsave(&hdev->cmd_q.lock, flags);
5135	while ((skb = __skb_dequeue(&hdev->cmd_q))) {
5136		if (bt_cb(skb)->req.start) {
5137			__skb_queue_head(&hdev->cmd_q, skb);
5138			break;
5139		}
5140
5141		req_complete = bt_cb(skb)->req.complete;
 
 
 
5142		kfree_skb(skb);
5143	}
5144	spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
5145
5146call_complete:
5147	if (req_complete)
5148		req_complete(hdev, status);
5149}
5150
5151static void hci_rx_work(struct work_struct *work)
5152{
5153	struct hci_dev *hdev = container_of(work, struct hci_dev, rx_work);
5154	struct sk_buff *skb;
5155
5156	BT_DBG("%s", hdev->name);
5157
5158	while ((skb = skb_dequeue(&hdev->rx_q))) {
5159		/* Send copy to monitor */
5160		hci_send_to_monitor(hdev, skb);
5161
5162		if (atomic_read(&hdev->promisc)) {
5163			/* Send copy to the sockets */
5164			hci_send_to_sock(hdev, skb);
5165		}
5166
5167		if (test_bit(HCI_RAW, &hdev->flags) ||
5168		    test_bit(HCI_USER_CHANNEL, &hdev->dev_flags)) {
5169			kfree_skb(skb);
5170			continue;
5171		}
5172
5173		if (test_bit(HCI_INIT, &hdev->flags)) {
5174			/* Don't process data packets in this states. */
5175			switch (bt_cb(skb)->pkt_type) {
5176			case HCI_ACLDATA_PKT:
5177			case HCI_SCODATA_PKT:
5178				kfree_skb(skb);
5179				continue;
5180			}
5181		}
5182
5183		/* Process frame */
5184		switch (bt_cb(skb)->pkt_type) {
5185		case HCI_EVENT_PKT:
5186			BT_DBG("%s Event packet", hdev->name);
5187			hci_event_packet(hdev, skb);
5188			break;
5189
5190		case HCI_ACLDATA_PKT:
5191			BT_DBG("%s ACL data packet", hdev->name);
5192			hci_acldata_packet(hdev, skb);
5193			break;
5194
5195		case HCI_SCODATA_PKT:
5196			BT_DBG("%s SCO data packet", hdev->name);
5197			hci_scodata_packet(hdev, skb);
5198			break;
5199
5200		default:
5201			kfree_skb(skb);
5202			break;
5203		}
5204	}
5205}
5206
5207static void hci_cmd_work(struct work_struct *work)
5208{
5209	struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_work);
5210	struct sk_buff *skb;
5211
5212	BT_DBG("%s cmd_cnt %d cmd queued %d", hdev->name,
5213	       atomic_read(&hdev->cmd_cnt), skb_queue_len(&hdev->cmd_q));
5214
5215	/* Send queued commands */
5216	if (atomic_read(&hdev->cmd_cnt)) {
5217		skb = skb_dequeue(&hdev->cmd_q);
5218		if (!skb)
5219			return;
5220
5221		kfree_skb(hdev->sent_cmd);
5222
5223		hdev->sent_cmd = skb_clone(skb, GFP_KERNEL);
5224		if (hdev->sent_cmd) {
5225			atomic_dec(&hdev->cmd_cnt);
5226			hci_send_frame(hdev, skb);
5227			if (test_bit(HCI_RESET, &hdev->flags))
5228				del_timer(&hdev->cmd_timer);
5229			else
5230				mod_timer(&hdev->cmd_timer,
5231					  jiffies + HCI_CMD_TIMEOUT);
5232		} else {
5233			skb_queue_head(&hdev->cmd_q, skb);
5234			queue_work(hdev->workqueue, &hdev->cmd_work);
5235		}
5236	}
5237}
5238
5239void hci_req_add_le_scan_disable(struct hci_request *req)
5240{
5241	struct hci_cp_le_set_scan_enable cp;
5242
5243	memset(&cp, 0, sizeof(cp));
5244	cp.enable = LE_SCAN_DISABLE;
5245	hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(cp), &cp);
5246}
5247
5248void hci_req_add_le_passive_scan(struct hci_request *req)
5249{
5250	struct hci_cp_le_set_scan_param param_cp;
5251	struct hci_cp_le_set_scan_enable enable_cp;
5252	struct hci_dev *hdev = req->hdev;
5253	u8 own_addr_type;
5254
5255	/* Set require_privacy to true to avoid identification from
5256	 * unknown peer devices. Since this is passive scanning, no
5257	 * SCAN_REQ using the local identity should be sent. Mandating
5258	 * privacy is just an extra precaution.
5259	 */
5260	if (hci_update_random_address(req, true, &own_addr_type))
5261		return;
5262
5263	memset(&param_cp, 0, sizeof(param_cp));
5264	param_cp.type = LE_SCAN_PASSIVE;
5265	param_cp.interval = cpu_to_le16(hdev->le_scan_interval);
5266	param_cp.window = cpu_to_le16(hdev->le_scan_window);
5267	param_cp.own_address_type = own_addr_type;
5268	hci_req_add(req, HCI_OP_LE_SET_SCAN_PARAM, sizeof(param_cp),
5269		    &param_cp);
5270
5271	memset(&enable_cp, 0, sizeof(enable_cp));
5272	enable_cp.enable = LE_SCAN_ENABLE;
5273	enable_cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
5274	hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(enable_cp),
5275		    &enable_cp);
5276}
5277
5278static void update_background_scan_complete(struct hci_dev *hdev, u8 status)
5279{
5280	if (status)
5281		BT_DBG("HCI request failed to update background scanning: "
5282		       "status 0x%2.2x", status);
5283}
5284
5285/* This function controls the background scanning based on hdev->pend_le_conns
5286 * list. If there are pending LE connection we start the background scanning,
5287 * otherwise we stop it.
5288 *
5289 * This function requires the caller holds hdev->lock.
5290 */
5291void hci_update_background_scan(struct hci_dev *hdev)
5292{
5293	struct hci_request req;
5294	struct hci_conn *conn;
5295	int err;
5296
5297	hci_req_init(&req, hdev);
5298
5299	if (list_empty(&hdev->pend_le_conns)) {
5300		/* If there is no pending LE connections, we should stop
5301		 * the background scanning.
5302		 */
5303
5304		/* If controller is not scanning we are done. */
5305		if (!test_bit(HCI_LE_SCAN, &hdev->dev_flags))
5306			return;
5307
5308		hci_req_add_le_scan_disable(&req);
5309
5310		BT_DBG("%s stopping background scanning", hdev->name);
5311	} else {
5312		/* If there is at least one pending LE connection, we should
5313		 * keep the background scan running.
5314		 */
5315
5316		/* If controller is connecting, we should not start scanning
5317		 * since some controllers are not able to scan and connect at
5318		 * the same time.
5319		 */
5320		conn = hci_conn_hash_lookup_state(hdev, LE_LINK, BT_CONNECT);
5321		if (conn)
5322			return;
5323
5324		/* If controller is currently scanning, we stop it to ensure we
5325		 * don't miss any advertising (due to duplicates filter).
5326		 */
5327		if (test_bit(HCI_LE_SCAN, &hdev->dev_flags))
5328			hci_req_add_le_scan_disable(&req);
5329
5330		hci_req_add_le_passive_scan(&req);
5331
5332		BT_DBG("%s starting background scanning", hdev->name);
5333	}
5334
5335	err = hci_req_run(&req, update_background_scan_complete);
5336	if (err)
5337		BT_ERR("Failed to run HCI request: err %d", err);
5338}