Linux Audio

Check our new training course

Loading...
v4.6
   1/*
   2   BlueZ - Bluetooth protocol stack for Linux
   3   Copyright (C) 2000-2001 Qualcomm Incorporated
   4   Copyright (C) 2011 ProFUSION Embedded Systems
   5
   6   Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
   7
   8   This program is free software; you can redistribute it and/or modify
   9   it under the terms of the GNU General Public License version 2 as
  10   published by the Free Software Foundation;
  11
  12   THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
  13   OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  14   FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
  15   IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
  16   CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
  17   WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  18   ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  19   OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  20
  21   ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
  22   COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
  23   SOFTWARE IS DISCLAIMED.
  24*/
  25
  26/* Bluetooth HCI core. */
  27
  28#include <linux/export.h>
  29#include <linux/idr.h>
  30#include <linux/rfkill.h>
  31#include <linux/debugfs.h>
  32#include <linux/crypto.h>
 
 
 
 
  33#include <asm/unaligned.h>
  34
  35#include <net/bluetooth/bluetooth.h>
  36#include <net/bluetooth/hci_core.h>
  37#include <net/bluetooth/l2cap.h>
  38#include <net/bluetooth/mgmt.h>
  39
  40#include "hci_request.h"
  41#include "hci_debugfs.h"
  42#include "smp.h"
  43#include "leds.h"
 
 
 
  44
  45static void hci_rx_work(struct work_struct *work);
  46static void hci_cmd_work(struct work_struct *work);
  47static void hci_tx_work(struct work_struct *work);
  48
  49/* HCI device list */
  50LIST_HEAD(hci_dev_list);
  51DEFINE_RWLOCK(hci_dev_list_lock);
  52
  53/* HCI callback list */
  54LIST_HEAD(hci_cb_list);
  55DEFINE_MUTEX(hci_cb_list_lock);
  56
  57/* HCI ID Numbering */
  58static DEFINE_IDA(hci_index_ida);
  59
  60/* ---- HCI debugfs entries ---- */
  61
  62static ssize_t dut_mode_read(struct file *file, char __user *user_buf,
  63			     size_t count, loff_t *ppos)
  64{
  65	struct hci_dev *hdev = file->private_data;
  66	char buf[3];
  67
  68	buf[0] = hci_dev_test_flag(hdev, HCI_DUT_MODE) ? 'Y' : 'N';
  69	buf[1] = '\n';
  70	buf[2] = '\0';
  71	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
  72}
  73
  74static ssize_t dut_mode_write(struct file *file, const char __user *user_buf,
  75			      size_t count, loff_t *ppos)
  76{
  77	struct hci_dev *hdev = file->private_data;
  78	struct sk_buff *skb;
  79	char buf[32];
  80	size_t buf_size = min(count, (sizeof(buf)-1));
  81	bool enable;
  82
  83	if (!test_bit(HCI_UP, &hdev->flags))
  84		return -ENETDOWN;
  85
  86	if (copy_from_user(buf, user_buf, buf_size))
  87		return -EFAULT;
  88
  89	buf[buf_size] = '\0';
  90	if (strtobool(buf, &enable))
  91		return -EINVAL;
  92
  93	if (enable == hci_dev_test_flag(hdev, HCI_DUT_MODE))
  94		return -EALREADY;
  95
  96	hci_req_sync_lock(hdev);
  97	if (enable)
  98		skb = __hci_cmd_sync(hdev, HCI_OP_ENABLE_DUT_MODE, 0, NULL,
  99				     HCI_CMD_TIMEOUT);
 100	else
 101		skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL,
 102				     HCI_CMD_TIMEOUT);
 103	hci_req_sync_unlock(hdev);
 104
 105	if (IS_ERR(skb))
 106		return PTR_ERR(skb);
 107
 108	kfree_skb(skb);
 109
 110	hci_dev_change_flag(hdev, HCI_DUT_MODE);
 111
 112	return count;
 113}
 114
 115static const struct file_operations dut_mode_fops = {
 116	.open		= simple_open,
 117	.read		= dut_mode_read,
 118	.write		= dut_mode_write,
 119	.llseek		= default_llseek,
 120};
 121
 122static ssize_t vendor_diag_read(struct file *file, char __user *user_buf,
 123				size_t count, loff_t *ppos)
 124{
 125	struct hci_dev *hdev = file->private_data;
 126	char buf[3];
 127
 128	buf[0] = hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) ? 'Y' : 'N';
 129	buf[1] = '\n';
 130	buf[2] = '\0';
 131	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
 132}
 133
 134static ssize_t vendor_diag_write(struct file *file, const char __user *user_buf,
 135				 size_t count, loff_t *ppos)
 136{
 137	struct hci_dev *hdev = file->private_data;
 138	char buf[32];
 139	size_t buf_size = min(count, (sizeof(buf)-1));
 140	bool enable;
 141	int err;
 142
 143	if (copy_from_user(buf, user_buf, buf_size))
 144		return -EFAULT;
 145
 146	buf[buf_size] = '\0';
 147	if (strtobool(buf, &enable))
 148		return -EINVAL;
 149
 150	/* When the diagnostic flags are not persistent and the transport
 151	 * is not active, then there is no need for the vendor callback.
 152	 *
 153	 * Instead just store the desired value. If needed the setting
 154	 * will be programmed when the controller gets powered on.
 155	 */
 156	if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) &&
 157	    !test_bit(HCI_RUNNING, &hdev->flags))
 158		goto done;
 159
 160	hci_req_sync_lock(hdev);
 161	err = hdev->set_diag(hdev, enable);
 162	hci_req_sync_unlock(hdev);
 163
 164	if (err < 0)
 165		return err;
 166
 167done:
 168	if (enable)
 169		hci_dev_set_flag(hdev, HCI_VENDOR_DIAG);
 170	else
 171		hci_dev_clear_flag(hdev, HCI_VENDOR_DIAG);
 172
 173	return count;
 174}
 175
 176static const struct file_operations vendor_diag_fops = {
 177	.open		= simple_open,
 178	.read		= vendor_diag_read,
 179	.write		= vendor_diag_write,
 180	.llseek		= default_llseek,
 181};
 182
 183static void hci_debugfs_create_basic(struct hci_dev *hdev)
 184{
 185	debugfs_create_file("dut_mode", 0644, hdev->debugfs, hdev,
 186			    &dut_mode_fops);
 187
 188	if (hdev->set_diag)
 189		debugfs_create_file("vendor_diag", 0644, hdev->debugfs, hdev,
 190				    &vendor_diag_fops);
 191}
 192
 193static int hci_reset_req(struct hci_request *req, unsigned long opt)
 194{
 195	BT_DBG("%s %ld", req->hdev->name, opt);
 196
 197	/* Reset device */
 198	set_bit(HCI_RESET, &req->hdev->flags);
 199	hci_req_add(req, HCI_OP_RESET, 0, NULL);
 200	return 0;
 201}
 202
 203static void bredr_init(struct hci_request *req)
 204{
 205	req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_PACKET_BASED;
 206
 207	/* Read Local Supported Features */
 208	hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
 209
 210	/* Read Local Version */
 211	hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
 212
 213	/* Read BD Address */
 214	hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL);
 215}
 216
 217static void amp_init1(struct hci_request *req)
 218{
 219	req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_BLOCK_BASED;
 220
 221	/* Read Local Version */
 222	hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
 223
 224	/* Read Local Supported Commands */
 225	hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL);
 226
 227	/* Read Local AMP Info */
 228	hci_req_add(req, HCI_OP_READ_LOCAL_AMP_INFO, 0, NULL);
 229
 230	/* Read Data Blk size */
 231	hci_req_add(req, HCI_OP_READ_DATA_BLOCK_SIZE, 0, NULL);
 232
 233	/* Read Flow Control Mode */
 234	hci_req_add(req, HCI_OP_READ_FLOW_CONTROL_MODE, 0, NULL);
 235
 236	/* Read Location Data */
 237	hci_req_add(req, HCI_OP_READ_LOCATION_DATA, 0, NULL);
 238}
 239
 240static int amp_init2(struct hci_request *req)
 241{
 242	/* Read Local Supported Features. Not all AMP controllers
 243	 * support this so it's placed conditionally in the second
 244	 * stage init.
 245	 */
 246	if (req->hdev->commands[14] & 0x20)
 247		hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
 248
 249	return 0;
 250}
 251
 252static int hci_init1_req(struct hci_request *req, unsigned long opt)
 253{
 254	struct hci_dev *hdev = req->hdev;
 255
 256	BT_DBG("%s %ld", hdev->name, opt);
 257
 258	/* Reset */
 259	if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks))
 260		hci_reset_req(req, 0);
 261
 262	switch (hdev->dev_type) {
 263	case HCI_BREDR:
 264		bredr_init(req);
 265		break;
 266
 267	case HCI_AMP:
 268		amp_init1(req);
 269		break;
 270
 271	default:
 272		BT_ERR("Unknown device type %d", hdev->dev_type);
 273		break;
 274	}
 275
 276	return 0;
 277}
 278
 279static void bredr_setup(struct hci_request *req)
 280{
 281	__le16 param;
 282	__u8 flt_type;
 283
 284	/* Read Buffer Size (ACL mtu, max pkt, etc.) */
 285	hci_req_add(req, HCI_OP_READ_BUFFER_SIZE, 0, NULL);
 286
 287	/* Read Class of Device */
 288	hci_req_add(req, HCI_OP_READ_CLASS_OF_DEV, 0, NULL);
 289
 290	/* Read Local Name */
 291	hci_req_add(req, HCI_OP_READ_LOCAL_NAME, 0, NULL);
 292
 293	/* Read Voice Setting */
 294	hci_req_add(req, HCI_OP_READ_VOICE_SETTING, 0, NULL);
 295
 296	/* Read Number of Supported IAC */
 297	hci_req_add(req, HCI_OP_READ_NUM_SUPPORTED_IAC, 0, NULL);
 298
 299	/* Read Current IAC LAP */
 300	hci_req_add(req, HCI_OP_READ_CURRENT_IAC_LAP, 0, NULL);
 301
 302	/* Clear Event Filters */
 303	flt_type = HCI_FLT_CLEAR_ALL;
 304	hci_req_add(req, HCI_OP_SET_EVENT_FLT, 1, &flt_type);
 305
 306	/* Connection accept timeout ~20 secs */
 307	param = cpu_to_le16(0x7d00);
 308	hci_req_add(req, HCI_OP_WRITE_CA_TIMEOUT, 2, &param);
 309}
 310
 311static void le_setup(struct hci_request *req)
 312{
 313	struct hci_dev *hdev = req->hdev;
 314
 315	/* Read LE Buffer Size */
 316	hci_req_add(req, HCI_OP_LE_READ_BUFFER_SIZE, 0, NULL);
 317
 318	/* Read LE Local Supported Features */
 319	hci_req_add(req, HCI_OP_LE_READ_LOCAL_FEATURES, 0, NULL);
 320
 321	/* Read LE Supported States */
 322	hci_req_add(req, HCI_OP_LE_READ_SUPPORTED_STATES, 0, NULL);
 323
 324	/* LE-only controllers have LE implicitly enabled */
 325	if (!lmp_bredr_capable(hdev))
 326		hci_dev_set_flag(hdev, HCI_LE_ENABLED);
 327}
 328
 329static void hci_setup_event_mask(struct hci_request *req)
 330{
 331	struct hci_dev *hdev = req->hdev;
 332
 333	/* The second byte is 0xff instead of 0x9f (two reserved bits
 334	 * disabled) since a Broadcom 1.2 dongle doesn't respond to the
 335	 * command otherwise.
 336	 */
 337	u8 events[8] = { 0xff, 0xff, 0xfb, 0xff, 0x00, 0x00, 0x00, 0x00 };
 338
 339	/* CSR 1.1 dongles does not accept any bitfield so don't try to set
 340	 * any event mask for pre 1.2 devices.
 341	 */
 342	if (hdev->hci_ver < BLUETOOTH_VER_1_2)
 343		return;
 344
 345	if (lmp_bredr_capable(hdev)) {
 346		events[4] |= 0x01; /* Flow Specification Complete */
 347	} else {
 348		/* Use a different default for LE-only devices */
 349		memset(events, 0, sizeof(events));
 350		events[1] |= 0x20; /* Command Complete */
 351		events[1] |= 0x40; /* Command Status */
 352		events[1] |= 0x80; /* Hardware Error */
 353
 354		/* If the controller supports the Disconnect command, enable
 355		 * the corresponding event. In addition enable packet flow
 356		 * control related events.
 357		 */
 358		if (hdev->commands[0] & 0x20) {
 359			events[0] |= 0x10; /* Disconnection Complete */
 360			events[2] |= 0x04; /* Number of Completed Packets */
 361			events[3] |= 0x02; /* Data Buffer Overflow */
 362		}
 363
 364		/* If the controller supports the Read Remote Version
 365		 * Information command, enable the corresponding event.
 366		 */
 367		if (hdev->commands[2] & 0x80)
 368			events[1] |= 0x08; /* Read Remote Version Information
 369					    * Complete
 370					    */
 371
 372		if (hdev->le_features[0] & HCI_LE_ENCRYPTION) {
 373			events[0] |= 0x80; /* Encryption Change */
 374			events[5] |= 0x80; /* Encryption Key Refresh Complete */
 375		}
 376	}
 377
 378	if (lmp_inq_rssi_capable(hdev) ||
 379	    test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks))
 380		events[4] |= 0x02; /* Inquiry Result with RSSI */
 381
 382	if (lmp_ext_feat_capable(hdev))
 383		events[4] |= 0x04; /* Read Remote Extended Features Complete */
 384
 385	if (lmp_esco_capable(hdev)) {
 386		events[5] |= 0x08; /* Synchronous Connection Complete */
 387		events[5] |= 0x10; /* Synchronous Connection Changed */
 388	}
 389
 390	if (lmp_sniffsubr_capable(hdev))
 391		events[5] |= 0x20; /* Sniff Subrating */
 392
 393	if (lmp_pause_enc_capable(hdev))
 394		events[5] |= 0x80; /* Encryption Key Refresh Complete */
 395
 396	if (lmp_ext_inq_capable(hdev))
 397		events[5] |= 0x40; /* Extended Inquiry Result */
 398
 399	if (lmp_no_flush_capable(hdev))
 400		events[7] |= 0x01; /* Enhanced Flush Complete */
 401
 402	if (lmp_lsto_capable(hdev))
 403		events[6] |= 0x80; /* Link Supervision Timeout Changed */
 404
 405	if (lmp_ssp_capable(hdev)) {
 406		events[6] |= 0x01;	/* IO Capability Request */
 407		events[6] |= 0x02;	/* IO Capability Response */
 408		events[6] |= 0x04;	/* User Confirmation Request */
 409		events[6] |= 0x08;	/* User Passkey Request */
 410		events[6] |= 0x10;	/* Remote OOB Data Request */
 411		events[6] |= 0x20;	/* Simple Pairing Complete */
 412		events[7] |= 0x04;	/* User Passkey Notification */
 413		events[7] |= 0x08;	/* Keypress Notification */
 414		events[7] |= 0x10;	/* Remote Host Supported
 415					 * Features Notification
 416					 */
 417	}
 418
 419	if (lmp_le_capable(hdev))
 420		events[7] |= 0x20;	/* LE Meta-Event */
 421
 422	hci_req_add(req, HCI_OP_SET_EVENT_MASK, sizeof(events), events);
 423}
 424
 425static int hci_init2_req(struct hci_request *req, unsigned long opt)
 426{
 427	struct hci_dev *hdev = req->hdev;
 428
 429	if (hdev->dev_type == HCI_AMP)
 430		return amp_init2(req);
 431
 432	if (lmp_bredr_capable(hdev))
 433		bredr_setup(req);
 434	else
 435		hci_dev_clear_flag(hdev, HCI_BREDR_ENABLED);
 436
 437	if (lmp_le_capable(hdev))
 438		le_setup(req);
 439
 440	/* All Bluetooth 1.2 and later controllers should support the
 441	 * HCI command for reading the local supported commands.
 442	 *
 443	 * Unfortunately some controllers indicate Bluetooth 1.2 support,
 444	 * but do not have support for this command. If that is the case,
 445	 * the driver can quirk the behavior and skip reading the local
 446	 * supported commands.
 447	 */
 448	if (hdev->hci_ver > BLUETOOTH_VER_1_1 &&
 449	    !test_bit(HCI_QUIRK_BROKEN_LOCAL_COMMANDS, &hdev->quirks))
 450		hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL);
 451
 452	if (lmp_ssp_capable(hdev)) {
 453		/* When SSP is available, then the host features page
 454		 * should also be available as well. However some
 455		 * controllers list the max_page as 0 as long as SSP
 456		 * has not been enabled. To achieve proper debugging
 457		 * output, force the minimum max_page to 1 at least.
 458		 */
 459		hdev->max_page = 0x01;
 460
 461		if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) {
 462			u8 mode = 0x01;
 463
 464			hci_req_add(req, HCI_OP_WRITE_SSP_MODE,
 465				    sizeof(mode), &mode);
 466		} else {
 467			struct hci_cp_write_eir cp;
 468
 469			memset(hdev->eir, 0, sizeof(hdev->eir));
 470			memset(&cp, 0, sizeof(cp));
 471
 472			hci_req_add(req, HCI_OP_WRITE_EIR, sizeof(cp), &cp);
 473		}
 474	}
 475
 476	if (lmp_inq_rssi_capable(hdev) ||
 477	    test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks)) {
 478		u8 mode;
 479
 480		/* If Extended Inquiry Result events are supported, then
 481		 * they are clearly preferred over Inquiry Result with RSSI
 482		 * events.
 483		 */
 484		mode = lmp_ext_inq_capable(hdev) ? 0x02 : 0x01;
 485
 486		hci_req_add(req, HCI_OP_WRITE_INQUIRY_MODE, 1, &mode);
 487	}
 488
 489	if (lmp_inq_tx_pwr_capable(hdev))
 490		hci_req_add(req, HCI_OP_READ_INQ_RSP_TX_POWER, 0, NULL);
 491
 492	if (lmp_ext_feat_capable(hdev)) {
 493		struct hci_cp_read_local_ext_features cp;
 494
 495		cp.page = 0x01;
 496		hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES,
 497			    sizeof(cp), &cp);
 498	}
 499
 500	if (hci_dev_test_flag(hdev, HCI_LINK_SECURITY)) {
 501		u8 enable = 1;
 502		hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, sizeof(enable),
 503			    &enable);
 504	}
 505
 506	return 0;
 507}
 508
 509static void hci_setup_link_policy(struct hci_request *req)
 510{
 511	struct hci_dev *hdev = req->hdev;
 512	struct hci_cp_write_def_link_policy cp;
 513	u16 link_policy = 0;
 514
 515	if (lmp_rswitch_capable(hdev))
 516		link_policy |= HCI_LP_RSWITCH;
 517	if (lmp_hold_capable(hdev))
 518		link_policy |= HCI_LP_HOLD;
 519	if (lmp_sniff_capable(hdev))
 520		link_policy |= HCI_LP_SNIFF;
 521	if (lmp_park_capable(hdev))
 522		link_policy |= HCI_LP_PARK;
 523
 524	cp.policy = cpu_to_le16(link_policy);
 525	hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, sizeof(cp), &cp);
 526}
 527
 528static void hci_set_le_support(struct hci_request *req)
 529{
 530	struct hci_dev *hdev = req->hdev;
 531	struct hci_cp_write_le_host_supported cp;
 532
 533	/* LE-only devices do not support explicit enablement */
 534	if (!lmp_bredr_capable(hdev))
 535		return;
 536
 537	memset(&cp, 0, sizeof(cp));
 538
 539	if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
 540		cp.le = 0x01;
 541		cp.simul = 0x00;
 542	}
 543
 544	if (cp.le != lmp_host_le_capable(hdev))
 545		hci_req_add(req, HCI_OP_WRITE_LE_HOST_SUPPORTED, sizeof(cp),
 546			    &cp);
 547}
 548
 549static void hci_set_event_mask_page_2(struct hci_request *req)
 550{
 551	struct hci_dev *hdev = req->hdev;
 552	u8 events[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
 553
 554	/* If Connectionless Slave Broadcast master role is supported
 555	 * enable all necessary events for it.
 556	 */
 557	if (lmp_csb_master_capable(hdev)) {
 558		events[1] |= 0x40;	/* Triggered Clock Capture */
 559		events[1] |= 0x80;	/* Synchronization Train Complete */
 560		events[2] |= 0x10;	/* Slave Page Response Timeout */
 561		events[2] |= 0x20;	/* CSB Channel Map Change */
 562	}
 563
 564	/* If Connectionless Slave Broadcast slave role is supported
 565	 * enable all necessary events for it.
 566	 */
 567	if (lmp_csb_slave_capable(hdev)) {
 568		events[2] |= 0x01;	/* Synchronization Train Received */
 569		events[2] |= 0x02;	/* CSB Receive */
 570		events[2] |= 0x04;	/* CSB Timeout */
 571		events[2] |= 0x08;	/* Truncated Page Complete */
 572	}
 573
 574	/* Enable Authenticated Payload Timeout Expired event if supported */
 575	if (lmp_ping_capable(hdev) || hdev->le_features[0] & HCI_LE_PING)
 576		events[2] |= 0x80;
 577
 578	hci_req_add(req, HCI_OP_SET_EVENT_MASK_PAGE_2, sizeof(events), events);
 579}
 580
 581static int hci_init3_req(struct hci_request *req, unsigned long opt)
 582{
 583	struct hci_dev *hdev = req->hdev;
 584	u8 p;
 585
 586	hci_setup_event_mask(req);
 587
 588	if (hdev->commands[6] & 0x20 &&
 589	    !test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) {
 590		struct hci_cp_read_stored_link_key cp;
 591
 592		bacpy(&cp.bdaddr, BDADDR_ANY);
 593		cp.read_all = 0x01;
 594		hci_req_add(req, HCI_OP_READ_STORED_LINK_KEY, sizeof(cp), &cp);
 595	}
 596
 597	if (hdev->commands[5] & 0x10)
 598		hci_setup_link_policy(req);
 599
 600	if (hdev->commands[8] & 0x01)
 601		hci_req_add(req, HCI_OP_READ_PAGE_SCAN_ACTIVITY, 0, NULL);
 602
 603	/* Some older Broadcom based Bluetooth 1.2 controllers do not
 604	 * support the Read Page Scan Type command. Check support for
 605	 * this command in the bit mask of supported commands.
 606	 */
 607	if (hdev->commands[13] & 0x01)
 608		hci_req_add(req, HCI_OP_READ_PAGE_SCAN_TYPE, 0, NULL);
 609
 610	if (lmp_le_capable(hdev)) {
 611		u8 events[8];
 612
 613		memset(events, 0, sizeof(events));
 614
 615		if (hdev->le_features[0] & HCI_LE_ENCRYPTION)
 616			events[0] |= 0x10;	/* LE Long Term Key Request */
 617
 618		/* If controller supports the Connection Parameters Request
 619		 * Link Layer Procedure, enable the corresponding event.
 620		 */
 621		if (hdev->le_features[0] & HCI_LE_CONN_PARAM_REQ_PROC)
 622			events[0] |= 0x20;	/* LE Remote Connection
 623						 * Parameter Request
 624						 */
 625
 626		/* If the controller supports the Data Length Extension
 627		 * feature, enable the corresponding event.
 628		 */
 629		if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)
 630			events[0] |= 0x40;	/* LE Data Length Change */
 631
 632		/* If the controller supports Extended Scanner Filter
 633		 * Policies, enable the correspondig event.
 634		 */
 635		if (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY)
 636			events[1] |= 0x04;	/* LE Direct Advertising
 637						 * Report
 638						 */
 639
 640		/* If the controller supports the LE Set Scan Enable command,
 641		 * enable the corresponding advertising report event.
 642		 */
 643		if (hdev->commands[26] & 0x08)
 644			events[0] |= 0x02;	/* LE Advertising Report */
 645
 646		/* If the controller supports the LE Create Connection
 647		 * command, enable the corresponding event.
 648		 */
 649		if (hdev->commands[26] & 0x10)
 650			events[0] |= 0x01;	/* LE Connection Complete */
 651
 652		/* If the controller supports the LE Connection Update
 653		 * command, enable the corresponding event.
 654		 */
 655		if (hdev->commands[27] & 0x04)
 656			events[0] |= 0x04;	/* LE Connection Update
 657						 * Complete
 658						 */
 659
 660		/* If the controller supports the LE Read Remote Used Features
 661		 * command, enable the corresponding event.
 662		 */
 663		if (hdev->commands[27] & 0x20)
 664			events[0] |= 0x08;	/* LE Read Remote Used
 665						 * Features Complete
 666						 */
 667
 668		/* If the controller supports the LE Read Local P-256
 669		 * Public Key command, enable the corresponding event.
 670		 */
 671		if (hdev->commands[34] & 0x02)
 672			events[0] |= 0x80;	/* LE Read Local P-256
 673						 * Public Key Complete
 674						 */
 675
 676		/* If the controller supports the LE Generate DHKey
 677		 * command, enable the corresponding event.
 678		 */
 679		if (hdev->commands[34] & 0x04)
 680			events[1] |= 0x01;	/* LE Generate DHKey Complete */
 681
 682		hci_req_add(req, HCI_OP_LE_SET_EVENT_MASK, sizeof(events),
 683			    events);
 684
 685		if (hdev->commands[25] & 0x40) {
 686			/* Read LE Advertising Channel TX Power */
 687			hci_req_add(req, HCI_OP_LE_READ_ADV_TX_POWER, 0, NULL);
 688		}
 689
 690		if (hdev->commands[26] & 0x40) {
 691			/* Read LE White List Size */
 692			hci_req_add(req, HCI_OP_LE_READ_WHITE_LIST_SIZE,
 693				    0, NULL);
 694		}
 695
 696		if (hdev->commands[26] & 0x80) {
 697			/* Clear LE White List */
 698			hci_req_add(req, HCI_OP_LE_CLEAR_WHITE_LIST, 0, NULL);
 699		}
 700
 701		if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) {
 702			/* Read LE Maximum Data Length */
 703			hci_req_add(req, HCI_OP_LE_READ_MAX_DATA_LEN, 0, NULL);
 704
 705			/* Read LE Suggested Default Data Length */
 706			hci_req_add(req, HCI_OP_LE_READ_DEF_DATA_LEN, 0, NULL);
 707		}
 708
 709		hci_set_le_support(req);
 710	}
 711
 712	/* Read features beyond page 1 if available */
 713	for (p = 2; p < HCI_MAX_PAGES && p <= hdev->max_page; p++) {
 714		struct hci_cp_read_local_ext_features cp;
 715
 716		cp.page = p;
 717		hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES,
 718			    sizeof(cp), &cp);
 719	}
 720
 721	return 0;
 722}
 723
 724static int hci_init4_req(struct hci_request *req, unsigned long opt)
 725{
 726	struct hci_dev *hdev = req->hdev;
 727
 728	/* Some Broadcom based Bluetooth controllers do not support the
 729	 * Delete Stored Link Key command. They are clearly indicating its
 730	 * absence in the bit mask of supported commands.
 731	 *
 732	 * Check the supported commands and only if the the command is marked
 733	 * as supported send it. If not supported assume that the controller
 734	 * does not have actual support for stored link keys which makes this
 735	 * command redundant anyway.
 736	 *
 737	 * Some controllers indicate that they support handling deleting
 738	 * stored link keys, but they don't. The quirk lets a driver
 739	 * just disable this command.
 740	 */
 741	if (hdev->commands[6] & 0x80 &&
 742	    !test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) {
 743		struct hci_cp_delete_stored_link_key cp;
 744
 745		bacpy(&cp.bdaddr, BDADDR_ANY);
 746		cp.delete_all = 0x01;
 747		hci_req_add(req, HCI_OP_DELETE_STORED_LINK_KEY,
 748			    sizeof(cp), &cp);
 749	}
 750
 751	/* Set event mask page 2 if the HCI command for it is supported */
 752	if (hdev->commands[22] & 0x04)
 753		hci_set_event_mask_page_2(req);
 754
 755	/* Read local codec list if the HCI command is supported */
 756	if (hdev->commands[29] & 0x20)
 757		hci_req_add(req, HCI_OP_READ_LOCAL_CODECS, 0, NULL);
 758
 759	/* Get MWS transport configuration if the HCI command is supported */
 760	if (hdev->commands[30] & 0x08)
 761		hci_req_add(req, HCI_OP_GET_MWS_TRANSPORT_CONFIG, 0, NULL);
 762
 763	/* Check for Synchronization Train support */
 764	if (lmp_sync_train_capable(hdev))
 765		hci_req_add(req, HCI_OP_READ_SYNC_TRAIN_PARAMS, 0, NULL);
 766
 767	/* Enable Secure Connections if supported and configured */
 768	if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED) &&
 769	    bredr_sc_enabled(hdev)) {
 770		u8 support = 0x01;
 771
 772		hci_req_add(req, HCI_OP_WRITE_SC_SUPPORT,
 773			    sizeof(support), &support);
 774	}
 775
 776	return 0;
 777}
 778
 779static int __hci_init(struct hci_dev *hdev)
 780{
 781	int err;
 782
 783	err = __hci_req_sync(hdev, hci_init1_req, 0, HCI_INIT_TIMEOUT, NULL);
 784	if (err < 0)
 785		return err;
 786
 787	if (hci_dev_test_flag(hdev, HCI_SETUP))
 788		hci_debugfs_create_basic(hdev);
 789
 790	err = __hci_req_sync(hdev, hci_init2_req, 0, HCI_INIT_TIMEOUT, NULL);
 791	if (err < 0)
 792		return err;
 793
 794	/* HCI_BREDR covers both single-mode LE, BR/EDR and dual-mode
 795	 * BR/EDR/LE type controllers. AMP controllers only need the
 796	 * first two stages of init.
 797	 */
 798	if (hdev->dev_type != HCI_BREDR)
 799		return 0;
 800
 801	err = __hci_req_sync(hdev, hci_init3_req, 0, HCI_INIT_TIMEOUT, NULL);
 802	if (err < 0)
 803		return err;
 804
 805	err = __hci_req_sync(hdev, hci_init4_req, 0, HCI_INIT_TIMEOUT, NULL);
 806	if (err < 0)
 807		return err;
 808
 809	/* This function is only called when the controller is actually in
 810	 * configured state. When the controller is marked as unconfigured,
 811	 * this initialization procedure is not run.
 812	 *
 813	 * It means that it is possible that a controller runs through its
 814	 * setup phase and then discovers missing settings. If that is the
 815	 * case, then this function will not be called. It then will only
 816	 * be called during the config phase.
 817	 *
 818	 * So only when in setup phase or config phase, create the debugfs
 819	 * entries and register the SMP channels.
 820	 */
 821	if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
 822	    !hci_dev_test_flag(hdev, HCI_CONFIG))
 823		return 0;
 824
 825	hci_debugfs_create_common(hdev);
 826
 827	if (lmp_bredr_capable(hdev))
 828		hci_debugfs_create_bredr(hdev);
 829
 830	if (lmp_le_capable(hdev))
 831		hci_debugfs_create_le(hdev);
 832
 833	return 0;
 834}
 835
 836static int hci_init0_req(struct hci_request *req, unsigned long opt)
 837{
 838	struct hci_dev *hdev = req->hdev;
 839
 840	BT_DBG("%s %ld", hdev->name, opt);
 841
 842	/* Reset */
 843	if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks))
 844		hci_reset_req(req, 0);
 845
 846	/* Read Local Version */
 847	hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
 848
 849	/* Read BD Address */
 850	if (hdev->set_bdaddr)
 851		hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL);
 852
 853	return 0;
 854}
 855
 856static int __hci_unconf_init(struct hci_dev *hdev)
 857{
 858	int err;
 859
 860	if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
 861		return 0;
 862
 863	err = __hci_req_sync(hdev, hci_init0_req, 0, HCI_INIT_TIMEOUT, NULL);
 864	if (err < 0)
 865		return err;
 866
 867	if (hci_dev_test_flag(hdev, HCI_SETUP))
 868		hci_debugfs_create_basic(hdev);
 869
 870	return 0;
 871}
 872
 873static int hci_scan_req(struct hci_request *req, unsigned long opt)
 874{
 875	__u8 scan = opt;
 876
 877	BT_DBG("%s %x", req->hdev->name, scan);
 878
 879	/* Inquiry and Page scans */
 880	hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
 881	return 0;
 882}
 883
 884static int hci_auth_req(struct hci_request *req, unsigned long opt)
 885{
 886	__u8 auth = opt;
 887
 888	BT_DBG("%s %x", req->hdev->name, auth);
 889
 890	/* Authentication */
 891	hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, 1, &auth);
 892	return 0;
 893}
 894
 895static int hci_encrypt_req(struct hci_request *req, unsigned long opt)
 896{
 897	__u8 encrypt = opt;
 898
 899	BT_DBG("%s %x", req->hdev->name, encrypt);
 900
 901	/* Encryption */
 902	hci_req_add(req, HCI_OP_WRITE_ENCRYPT_MODE, 1, &encrypt);
 903	return 0;
 904}
 905
 906static int hci_linkpol_req(struct hci_request *req, unsigned long opt)
 907{
 908	__le16 policy = cpu_to_le16(opt);
 909
 910	BT_DBG("%s %x", req->hdev->name, policy);
 911
 912	/* Default link policy */
 913	hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, 2, &policy);
 914	return 0;
 915}
 916
 917/* Get HCI device by index.
 918 * Device is held on return. */
 919struct hci_dev *hci_dev_get(int index)
 920{
 921	struct hci_dev *hdev = NULL, *d;
 922
 923	BT_DBG("%d", index);
 924
 925	if (index < 0)
 926		return NULL;
 927
 928	read_lock(&hci_dev_list_lock);
 929	list_for_each_entry(d, &hci_dev_list, list) {
 930		if (d->id == index) {
 931			hdev = hci_dev_hold(d);
 932			break;
 933		}
 934	}
 935	read_unlock(&hci_dev_list_lock);
 936	return hdev;
 937}
 938
 939/* ---- Inquiry support ---- */
 940
 941bool hci_discovery_active(struct hci_dev *hdev)
 942{
 943	struct discovery_state *discov = &hdev->discovery;
 944
 945	switch (discov->state) {
 946	case DISCOVERY_FINDING:
 947	case DISCOVERY_RESOLVING:
 948		return true;
 949
 950	default:
 951		return false;
 952	}
 953}
 954
 955void hci_discovery_set_state(struct hci_dev *hdev, int state)
 956{
 957	int old_state = hdev->discovery.state;
 958
 959	BT_DBG("%s state %u -> %u", hdev->name, hdev->discovery.state, state);
 960
 961	if (old_state == state)
 962		return;
 963
 964	hdev->discovery.state = state;
 965
 966	switch (state) {
 967	case DISCOVERY_STOPPED:
 968		hci_update_background_scan(hdev);
 969
 970		if (old_state != DISCOVERY_STARTING)
 971			mgmt_discovering(hdev, 0);
 972		break;
 973	case DISCOVERY_STARTING:
 974		break;
 975	case DISCOVERY_FINDING:
 976		mgmt_discovering(hdev, 1);
 977		break;
 978	case DISCOVERY_RESOLVING:
 979		break;
 980	case DISCOVERY_STOPPING:
 981		break;
 982	}
 983}
 984
 985void hci_inquiry_cache_flush(struct hci_dev *hdev)
 986{
 987	struct discovery_state *cache = &hdev->discovery;
 988	struct inquiry_entry *p, *n;
 989
 990	list_for_each_entry_safe(p, n, &cache->all, all) {
 991		list_del(&p->all);
 992		kfree(p);
 993	}
 994
 995	INIT_LIST_HEAD(&cache->unknown);
 996	INIT_LIST_HEAD(&cache->resolve);
 997}
 998
 999struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev,
1000					       bdaddr_t *bdaddr)
1001{
1002	struct discovery_state *cache = &hdev->discovery;
1003	struct inquiry_entry *e;
1004
1005	BT_DBG("cache %p, %pMR", cache, bdaddr);
1006
1007	list_for_each_entry(e, &cache->all, all) {
1008		if (!bacmp(&e->data.bdaddr, bdaddr))
1009			return e;
1010	}
1011
1012	return NULL;
1013}
1014
1015struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev,
1016						       bdaddr_t *bdaddr)
1017{
1018	struct discovery_state *cache = &hdev->discovery;
1019	struct inquiry_entry *e;
1020
1021	BT_DBG("cache %p, %pMR", cache, bdaddr);
1022
1023	list_for_each_entry(e, &cache->unknown, list) {
1024		if (!bacmp(&e->data.bdaddr, bdaddr))
1025			return e;
1026	}
1027
1028	return NULL;
1029}
1030
1031struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev,
1032						       bdaddr_t *bdaddr,
1033						       int state)
1034{
1035	struct discovery_state *cache = &hdev->discovery;
1036	struct inquiry_entry *e;
1037
1038	BT_DBG("cache %p bdaddr %pMR state %d", cache, bdaddr, state);
1039
1040	list_for_each_entry(e, &cache->resolve, list) {
1041		if (!bacmp(bdaddr, BDADDR_ANY) && e->name_state == state)
1042			return e;
1043		if (!bacmp(&e->data.bdaddr, bdaddr))
1044			return e;
1045	}
1046
1047	return NULL;
1048}
1049
1050void hci_inquiry_cache_update_resolve(struct hci_dev *hdev,
1051				      struct inquiry_entry *ie)
1052{
1053	struct discovery_state *cache = &hdev->discovery;
1054	struct list_head *pos = &cache->resolve;
1055	struct inquiry_entry *p;
1056
1057	list_del(&ie->list);
1058
1059	list_for_each_entry(p, &cache->resolve, list) {
1060		if (p->name_state != NAME_PENDING &&
1061		    abs(p->data.rssi) >= abs(ie->data.rssi))
1062			break;
1063		pos = &p->list;
1064	}
1065
1066	list_add(&ie->list, pos);
1067}
1068
1069u32 hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data,
1070			     bool name_known)
1071{
1072	struct discovery_state *cache = &hdev->discovery;
1073	struct inquiry_entry *ie;
1074	u32 flags = 0;
1075
1076	BT_DBG("cache %p, %pMR", cache, &data->bdaddr);
1077
1078	hci_remove_remote_oob_data(hdev, &data->bdaddr, BDADDR_BREDR);
1079
1080	if (!data->ssp_mode)
1081		flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
1082
1083	ie = hci_inquiry_cache_lookup(hdev, &data->bdaddr);
1084	if (ie) {
1085		if (!ie->data.ssp_mode)
1086			flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
1087
1088		if (ie->name_state == NAME_NEEDED &&
1089		    data->rssi != ie->data.rssi) {
1090			ie->data.rssi = data->rssi;
1091			hci_inquiry_cache_update_resolve(hdev, ie);
1092		}
1093
1094		goto update;
1095	}
1096
1097	/* Entry not in the cache. Add new one. */
1098	ie = kzalloc(sizeof(*ie), GFP_KERNEL);
1099	if (!ie) {
1100		flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
1101		goto done;
1102	}
1103
1104	list_add(&ie->all, &cache->all);
1105
1106	if (name_known) {
1107		ie->name_state = NAME_KNOWN;
1108	} else {
1109		ie->name_state = NAME_NOT_KNOWN;
1110		list_add(&ie->list, &cache->unknown);
1111	}
1112
1113update:
1114	if (name_known && ie->name_state != NAME_KNOWN &&
1115	    ie->name_state != NAME_PENDING) {
1116		ie->name_state = NAME_KNOWN;
1117		list_del(&ie->list);
1118	}
1119
1120	memcpy(&ie->data, data, sizeof(*data));
1121	ie->timestamp = jiffies;
1122	cache->timestamp = jiffies;
1123
1124	if (ie->name_state == NAME_NOT_KNOWN)
1125		flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
1126
1127done:
1128	return flags;
1129}
1130
1131static int inquiry_cache_dump(struct hci_dev *hdev, int num, __u8 *buf)
1132{
1133	struct discovery_state *cache = &hdev->discovery;
1134	struct inquiry_info *info = (struct inquiry_info *) buf;
1135	struct inquiry_entry *e;
1136	int copied = 0;
1137
1138	list_for_each_entry(e, &cache->all, all) {
1139		struct inquiry_data *data = &e->data;
1140
1141		if (copied >= num)
1142			break;
1143
1144		bacpy(&info->bdaddr, &data->bdaddr);
1145		info->pscan_rep_mode	= data->pscan_rep_mode;
1146		info->pscan_period_mode	= data->pscan_period_mode;
1147		info->pscan_mode	= data->pscan_mode;
1148		memcpy(info->dev_class, data->dev_class, 3);
1149		info->clock_offset	= data->clock_offset;
1150
1151		info++;
1152		copied++;
1153	}
1154
1155	BT_DBG("cache %p, copied %d", cache, copied);
1156	return copied;
1157}
1158
1159static int hci_inq_req(struct hci_request *req, unsigned long opt)
1160{
1161	struct hci_inquiry_req *ir = (struct hci_inquiry_req *) opt;
1162	struct hci_dev *hdev = req->hdev;
1163	struct hci_cp_inquiry cp;
1164
1165	BT_DBG("%s", hdev->name);
1166
1167	if (test_bit(HCI_INQUIRY, &hdev->flags))
1168		return 0;
1169
1170	/* Start Inquiry */
1171	memcpy(&cp.lap, &ir->lap, 3);
1172	cp.length  = ir->length;
1173	cp.num_rsp = ir->num_rsp;
1174	hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp);
1175
1176	return 0;
1177}
1178
1179int hci_inquiry(void __user *arg)
1180{
1181	__u8 __user *ptr = arg;
1182	struct hci_inquiry_req ir;
1183	struct hci_dev *hdev;
1184	int err = 0, do_inquiry = 0, max_rsp;
1185	long timeo;
1186	__u8 *buf;
1187
1188	if (copy_from_user(&ir, ptr, sizeof(ir)))
1189		return -EFAULT;
1190
1191	hdev = hci_dev_get(ir.dev_id);
1192	if (!hdev)
1193		return -ENODEV;
1194
1195	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1196		err = -EBUSY;
1197		goto done;
1198	}
1199
1200	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1201		err = -EOPNOTSUPP;
1202		goto done;
1203	}
1204
1205	if (hdev->dev_type != HCI_BREDR) {
1206		err = -EOPNOTSUPP;
1207		goto done;
1208	}
1209
1210	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
1211		err = -EOPNOTSUPP;
 
1212		goto done;
1213	}
1214
1215	hci_dev_lock(hdev);
1216	if (inquiry_cache_age(hdev) > INQUIRY_CACHE_AGE_MAX ||
1217	    inquiry_cache_empty(hdev) || ir.flags & IREQ_CACHE_FLUSH) {
1218		hci_inquiry_cache_flush(hdev);
1219		do_inquiry = 1;
1220	}
1221	hci_dev_unlock(hdev);
1222
1223	timeo = ir.length * msecs_to_jiffies(2000);
1224
1225	if (do_inquiry) {
1226		err = hci_req_sync(hdev, hci_inq_req, (unsigned long) &ir,
1227				   timeo, NULL);
1228		if (err < 0)
1229			goto done;
1230
1231		/* Wait until Inquiry procedure finishes (HCI_INQUIRY flag is
1232		 * cleared). If it is interrupted by a signal, return -EINTR.
1233		 */
1234		if (wait_on_bit(&hdev->flags, HCI_INQUIRY,
1235				TASK_INTERRUPTIBLE))
1236			return -EINTR;
 
 
1237	}
1238
1239	/* for unlimited number of responses we will use buffer with
1240	 * 255 entries
1241	 */
1242	max_rsp = (ir.num_rsp == 0) ? 255 : ir.num_rsp;
1243
1244	/* cache_dump can't sleep. Therefore we allocate temp buffer and then
1245	 * copy it to the user space.
1246	 */
1247	buf = kmalloc(sizeof(struct inquiry_info) * max_rsp, GFP_KERNEL);
1248	if (!buf) {
1249		err = -ENOMEM;
1250		goto done;
1251	}
1252
1253	hci_dev_lock(hdev);
1254	ir.num_rsp = inquiry_cache_dump(hdev, max_rsp, buf);
1255	hci_dev_unlock(hdev);
1256
1257	BT_DBG("num_rsp %d", ir.num_rsp);
1258
1259	if (!copy_to_user(ptr, &ir, sizeof(ir))) {
1260		ptr += sizeof(ir);
1261		if (copy_to_user(ptr, buf, sizeof(struct inquiry_info) *
1262				 ir.num_rsp))
1263			err = -EFAULT;
1264	} else
1265		err = -EFAULT;
1266
1267	kfree(buf);
1268
1269done:
1270	hci_dev_put(hdev);
1271	return err;
1272}
1273
1274static int hci_dev_do_open(struct hci_dev *hdev)
1275{
1276	int ret = 0;
1277
1278	BT_DBG("%s %p", hdev->name, hdev);
1279
1280	hci_req_sync_lock(hdev);
1281
1282	if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) {
1283		ret = -ENODEV;
1284		goto done;
1285	}
1286
1287	if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
1288	    !hci_dev_test_flag(hdev, HCI_CONFIG)) {
1289		/* Check for rfkill but allow the HCI setup stage to
1290		 * proceed (which in itself doesn't cause any RF activity).
1291		 */
1292		if (hci_dev_test_flag(hdev, HCI_RFKILLED)) {
1293			ret = -ERFKILL;
1294			goto done;
1295		}
1296
1297		/* Check for valid public address or a configured static
1298		 * random adddress, but let the HCI setup proceed to
1299		 * be able to determine if there is a public address
1300		 * or not.
1301		 *
1302		 * In case of user channel usage, it is not important
1303		 * if a public address or static random address is
1304		 * available.
1305		 *
1306		 * This check is only valid for BR/EDR controllers
1307		 * since AMP controllers do not have an address.
1308		 */
1309		if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1310		    hdev->dev_type == HCI_BREDR &&
1311		    !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
1312		    !bacmp(&hdev->static_addr, BDADDR_ANY)) {
1313			ret = -EADDRNOTAVAIL;
1314			goto done;
1315		}
1316	}
1317
1318	if (test_bit(HCI_UP, &hdev->flags)) {
1319		ret = -EALREADY;
1320		goto done;
1321	}
1322
1323	if (hdev->open(hdev)) {
1324		ret = -EIO;
1325		goto done;
1326	}
1327
1328	set_bit(HCI_RUNNING, &hdev->flags);
1329	hci_sock_dev_event(hdev, HCI_DEV_OPEN);
1330
1331	atomic_set(&hdev->cmd_cnt, 1);
1332	set_bit(HCI_INIT, &hdev->flags);
1333
1334	if (hci_dev_test_flag(hdev, HCI_SETUP)) {
1335		hci_sock_dev_event(hdev, HCI_DEV_SETUP);
1336
1337		if (hdev->setup)
1338			ret = hdev->setup(hdev);
1339
1340		/* The transport driver can set these quirks before
1341		 * creating the HCI device or in its setup callback.
1342		 *
1343		 * In case any of them is set, the controller has to
1344		 * start up as unconfigured.
1345		 */
1346		if (test_bit(HCI_QUIRK_EXTERNAL_CONFIG, &hdev->quirks) ||
1347		    test_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks))
1348			hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
1349
1350		/* For an unconfigured controller it is required to
1351		 * read at least the version information provided by
1352		 * the Read Local Version Information command.
1353		 *
1354		 * If the set_bdaddr driver callback is provided, then
1355		 * also the original Bluetooth public device address
1356		 * will be read using the Read BD Address command.
1357		 */
1358		if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
1359			ret = __hci_unconf_init(hdev);
1360	}
1361
1362	if (hci_dev_test_flag(hdev, HCI_CONFIG)) {
1363		/* If public address change is configured, ensure that
1364		 * the address gets programmed. If the driver does not
1365		 * support changing the public address, fail the power
1366		 * on procedure.
1367		 */
1368		if (bacmp(&hdev->public_addr, BDADDR_ANY) &&
1369		    hdev->set_bdaddr)
1370			ret = hdev->set_bdaddr(hdev, &hdev->public_addr);
1371		else
1372			ret = -EADDRNOTAVAIL;
1373	}
1374
1375	if (!ret) {
1376		if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1377		    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1378			ret = __hci_init(hdev);
1379			if (!ret && hdev->post_init)
1380				ret = hdev->post_init(hdev);
1381		}
1382	}
1383
1384	/* If the HCI Reset command is clearing all diagnostic settings,
1385	 * then they need to be reprogrammed after the init procedure
1386	 * completed.
1387	 */
1388	if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) &&
1389	    hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) && hdev->set_diag)
1390		ret = hdev->set_diag(hdev, true);
1391
1392	clear_bit(HCI_INIT, &hdev->flags);
1393
1394	if (!ret) {
1395		hci_dev_hold(hdev);
1396		hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
1397		set_bit(HCI_UP, &hdev->flags);
1398		hci_sock_dev_event(hdev, HCI_DEV_UP);
1399		hci_leds_update_powered(hdev, true);
1400		if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
1401		    !hci_dev_test_flag(hdev, HCI_CONFIG) &&
1402		    !hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1403		    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1404		    hci_dev_test_flag(hdev, HCI_MGMT) &&
1405		    hdev->dev_type == HCI_BREDR) {
1406			ret = __hci_req_hci_power_on(hdev);
1407			mgmt_power_on(hdev, ret);
1408		}
1409	} else {
1410		/* Init failed, cleanup */
1411		flush_work(&hdev->tx_work);
1412		flush_work(&hdev->cmd_work);
1413		flush_work(&hdev->rx_work);
1414
1415		skb_queue_purge(&hdev->cmd_q);
1416		skb_queue_purge(&hdev->rx_q);
1417
1418		if (hdev->flush)
1419			hdev->flush(hdev);
1420
1421		if (hdev->sent_cmd) {
1422			kfree_skb(hdev->sent_cmd);
1423			hdev->sent_cmd = NULL;
1424		}
1425
1426		clear_bit(HCI_RUNNING, &hdev->flags);
1427		hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
1428
1429		hdev->close(hdev);
1430		hdev->flags &= BIT(HCI_RAW);
1431	}
1432
1433done:
1434	hci_req_sync_unlock(hdev);
1435	return ret;
1436}
1437
1438/* ---- HCI ioctl helpers ---- */
1439
1440int hci_dev_open(__u16 dev)
1441{
1442	struct hci_dev *hdev;
1443	int err;
1444
1445	hdev = hci_dev_get(dev);
1446	if (!hdev)
1447		return -ENODEV;
1448
1449	/* Devices that are marked as unconfigured can only be powered
1450	 * up as user channel. Trying to bring them up as normal devices
1451	 * will result into a failure. Only user channel operation is
1452	 * possible.
1453	 *
1454	 * When this function is called for a user channel, the flag
1455	 * HCI_USER_CHANNEL will be set first before attempting to
1456	 * open the device.
1457	 */
1458	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1459	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1460		err = -EOPNOTSUPP;
1461		goto done;
1462	}
1463
1464	/* We need to ensure that no other power on/off work is pending
1465	 * before proceeding to call hci_dev_do_open. This is
1466	 * particularly important if the setup procedure has not yet
1467	 * completed.
1468	 */
1469	if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
1470		cancel_delayed_work(&hdev->power_off);
1471
1472	/* After this call it is guaranteed that the setup procedure
1473	 * has finished. This means that error conditions like RFKILL
1474	 * or no valid public or static random address apply.
1475	 */
1476	flush_workqueue(hdev->req_workqueue);
1477
1478	/* For controllers not using the management interface and that
1479	 * are brought up using legacy ioctl, set the HCI_BONDABLE bit
1480	 * so that pairing works for them. Once the management interface
1481	 * is in use this bit will be cleared again and userspace has
1482	 * to explicitly enable it.
1483	 */
1484	if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1485	    !hci_dev_test_flag(hdev, HCI_MGMT))
1486		hci_dev_set_flag(hdev, HCI_BONDABLE);
1487
1488	err = hci_dev_do_open(hdev);
1489
1490done:
1491	hci_dev_put(hdev);
1492	return err;
1493}
1494
1495/* This function requires the caller holds hdev->lock */
1496static void hci_pend_le_actions_clear(struct hci_dev *hdev)
1497{
1498	struct hci_conn_params *p;
1499
1500	list_for_each_entry(p, &hdev->le_conn_params, list) {
1501		if (p->conn) {
1502			hci_conn_drop(p->conn);
1503			hci_conn_put(p->conn);
1504			p->conn = NULL;
1505		}
1506		list_del_init(&p->action);
1507	}
1508
1509	BT_DBG("All LE pending actions cleared");
1510}
1511
1512int hci_dev_do_close(struct hci_dev *hdev)
1513{
1514	bool auto_off;
1515
1516	BT_DBG("%s %p", hdev->name, hdev);
1517
1518	if (!hci_dev_test_flag(hdev, HCI_UNREGISTER) &&
1519	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1520	    test_bit(HCI_UP, &hdev->flags)) {
1521		/* Execute vendor specific shutdown routine */
1522		if (hdev->shutdown)
1523			hdev->shutdown(hdev);
1524	}
1525
1526	cancel_delayed_work(&hdev->power_off);
1527
1528	hci_request_cancel_all(hdev);
1529	hci_req_sync_lock(hdev);
1530
1531	if (!test_and_clear_bit(HCI_UP, &hdev->flags)) {
1532		cancel_delayed_work_sync(&hdev->cmd_timer);
1533		hci_req_sync_unlock(hdev);
1534		return 0;
1535	}
1536
1537	hci_leds_update_powered(hdev, false);
1538
1539	/* Flush RX and TX works */
1540	flush_work(&hdev->tx_work);
1541	flush_work(&hdev->rx_work);
1542
1543	if (hdev->discov_timeout > 0) {
1544		hdev->discov_timeout = 0;
1545		hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
1546		hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
1547	}
1548
1549	if (hci_dev_test_and_clear_flag(hdev, HCI_SERVICE_CACHE))
1550		cancel_delayed_work(&hdev->service_cache);
1551
1552	if (hci_dev_test_flag(hdev, HCI_MGMT))
1553		cancel_delayed_work_sync(&hdev->rpa_expired);
1554
1555	/* Avoid potential lockdep warnings from the *_flush() calls by
1556	 * ensuring the workqueue is empty up front.
1557	 */
1558	drain_workqueue(hdev->workqueue);
1559
1560	hci_dev_lock(hdev);
1561
1562	hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
1563
1564	auto_off = hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF);
1565
1566	if (!auto_off && hdev->dev_type == HCI_BREDR &&
1567	    hci_dev_test_flag(hdev, HCI_MGMT))
1568		__mgmt_power_off(hdev);
1569
1570	hci_inquiry_cache_flush(hdev);
1571	hci_pend_le_actions_clear(hdev);
1572	hci_conn_hash_flush(hdev);
1573	hci_dev_unlock(hdev);
1574
1575	smp_unregister(hdev);
1576
1577	hci_sock_dev_event(hdev, HCI_DEV_DOWN);
1578
1579	if (hdev->flush)
1580		hdev->flush(hdev);
1581
1582	/* Reset device */
1583	skb_queue_purge(&hdev->cmd_q);
1584	atomic_set(&hdev->cmd_cnt, 1);
1585	if (test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks) &&
1586	    !auto_off && !hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1587		set_bit(HCI_INIT, &hdev->flags);
1588		__hci_req_sync(hdev, hci_reset_req, 0, HCI_CMD_TIMEOUT, NULL);
1589		clear_bit(HCI_INIT, &hdev->flags);
1590	}
1591
1592	/* flush cmd  work */
1593	flush_work(&hdev->cmd_work);
1594
1595	/* Drop queues */
1596	skb_queue_purge(&hdev->rx_q);
1597	skb_queue_purge(&hdev->cmd_q);
1598	skb_queue_purge(&hdev->raw_q);
1599
1600	/* Drop last sent command */
1601	if (hdev->sent_cmd) {
1602		cancel_delayed_work_sync(&hdev->cmd_timer);
1603		kfree_skb(hdev->sent_cmd);
1604		hdev->sent_cmd = NULL;
1605	}
1606
1607	clear_bit(HCI_RUNNING, &hdev->flags);
1608	hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
1609
1610	/* After this point our queues are empty
1611	 * and no tasks are scheduled. */
1612	hdev->close(hdev);
1613
1614	/* Clear flags */
1615	hdev->flags &= BIT(HCI_RAW);
1616	hci_dev_clear_volatile_flags(hdev);
1617
1618	/* Controller radio is available but is currently powered down */
1619	hdev->amp_status = AMP_STATUS_POWERED_DOWN;
1620
1621	memset(hdev->eir, 0, sizeof(hdev->eir));
1622	memset(hdev->dev_class, 0, sizeof(hdev->dev_class));
1623	bacpy(&hdev->random_addr, BDADDR_ANY);
1624
1625	hci_req_sync_unlock(hdev);
1626
1627	hci_dev_put(hdev);
1628	return 0;
1629}
1630
1631int hci_dev_close(__u16 dev)
1632{
1633	struct hci_dev *hdev;
1634	int err;
1635
1636	hdev = hci_dev_get(dev);
1637	if (!hdev)
1638		return -ENODEV;
1639
1640	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1641		err = -EBUSY;
1642		goto done;
1643	}
1644
 
1645	if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
1646		cancel_delayed_work(&hdev->power_off);
1647
1648	err = hci_dev_do_close(hdev);
1649
1650done:
1651	hci_dev_put(hdev);
1652	return err;
1653}
1654
1655static int hci_dev_do_reset(struct hci_dev *hdev)
1656{
1657	int ret;
1658
1659	BT_DBG("%s %p", hdev->name, hdev);
1660
1661	hci_req_sync_lock(hdev);
1662
1663	/* Drop queues */
1664	skb_queue_purge(&hdev->rx_q);
1665	skb_queue_purge(&hdev->cmd_q);
1666
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1667	/* Avoid potential lockdep warnings from the *_flush() calls by
1668	 * ensuring the workqueue is empty up front.
1669	 */
1670	drain_workqueue(hdev->workqueue);
1671
1672	hci_dev_lock(hdev);
1673	hci_inquiry_cache_flush(hdev);
1674	hci_conn_hash_flush(hdev);
1675	hci_dev_unlock(hdev);
1676
1677	if (hdev->flush)
1678		hdev->flush(hdev);
1679
 
 
1680	atomic_set(&hdev->cmd_cnt, 1);
1681	hdev->acl_cnt = 0; hdev->sco_cnt = 0; hdev->le_cnt = 0;
 
 
 
1682
1683	ret = __hci_req_sync(hdev, hci_reset_req, 0, HCI_INIT_TIMEOUT, NULL);
1684
1685	hci_req_sync_unlock(hdev);
1686	return ret;
1687}
1688
1689int hci_dev_reset(__u16 dev)
1690{
1691	struct hci_dev *hdev;
1692	int err;
1693
1694	hdev = hci_dev_get(dev);
1695	if (!hdev)
1696		return -ENODEV;
1697
1698	if (!test_bit(HCI_UP, &hdev->flags)) {
1699		err = -ENETDOWN;
1700		goto done;
1701	}
1702
1703	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1704		err = -EBUSY;
1705		goto done;
1706	}
1707
1708	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1709		err = -EOPNOTSUPP;
1710		goto done;
1711	}
1712
1713	err = hci_dev_do_reset(hdev);
1714
1715done:
1716	hci_dev_put(hdev);
1717	return err;
1718}
1719
1720int hci_dev_reset_stat(__u16 dev)
1721{
1722	struct hci_dev *hdev;
1723	int ret = 0;
1724
1725	hdev = hci_dev_get(dev);
1726	if (!hdev)
1727		return -ENODEV;
1728
1729	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1730		ret = -EBUSY;
1731		goto done;
1732	}
1733
1734	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1735		ret = -EOPNOTSUPP;
1736		goto done;
1737	}
1738
1739	memset(&hdev->stat, 0, sizeof(struct hci_dev_stats));
1740
1741done:
1742	hci_dev_put(hdev);
1743	return ret;
1744}
1745
1746static void hci_update_scan_state(struct hci_dev *hdev, u8 scan)
1747{
1748	bool conn_changed, discov_changed;
1749
1750	BT_DBG("%s scan 0x%02x", hdev->name, scan);
1751
1752	if ((scan & SCAN_PAGE))
1753		conn_changed = !hci_dev_test_and_set_flag(hdev,
1754							  HCI_CONNECTABLE);
1755	else
1756		conn_changed = hci_dev_test_and_clear_flag(hdev,
1757							   HCI_CONNECTABLE);
1758
1759	if ((scan & SCAN_INQUIRY)) {
1760		discov_changed = !hci_dev_test_and_set_flag(hdev,
1761							    HCI_DISCOVERABLE);
1762	} else {
1763		hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
1764		discov_changed = hci_dev_test_and_clear_flag(hdev,
1765							     HCI_DISCOVERABLE);
1766	}
1767
1768	if (!hci_dev_test_flag(hdev, HCI_MGMT))
1769		return;
1770
1771	if (conn_changed || discov_changed) {
1772		/* In case this was disabled through mgmt */
1773		hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
1774
1775		if (hci_dev_test_flag(hdev, HCI_LE_ENABLED))
1776			hci_req_update_adv_data(hdev, hdev->cur_adv_instance);
1777
1778		mgmt_new_settings(hdev);
1779	}
1780}
1781
1782int hci_dev_cmd(unsigned int cmd, void __user *arg)
1783{
1784	struct hci_dev *hdev;
1785	struct hci_dev_req dr;
1786	int err = 0;
1787
1788	if (copy_from_user(&dr, arg, sizeof(dr)))
1789		return -EFAULT;
1790
1791	hdev = hci_dev_get(dr.dev_id);
1792	if (!hdev)
1793		return -ENODEV;
1794
1795	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1796		err = -EBUSY;
1797		goto done;
1798	}
1799
1800	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1801		err = -EOPNOTSUPP;
1802		goto done;
1803	}
1804
1805	if (hdev->dev_type != HCI_BREDR) {
1806		err = -EOPNOTSUPP;
1807		goto done;
1808	}
1809
1810	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
1811		err = -EOPNOTSUPP;
1812		goto done;
1813	}
1814
1815	switch (cmd) {
1816	case HCISETAUTH:
1817		err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
1818				   HCI_INIT_TIMEOUT, NULL);
1819		break;
1820
1821	case HCISETENCRYPT:
1822		if (!lmp_encrypt_capable(hdev)) {
1823			err = -EOPNOTSUPP;
1824			break;
1825		}
1826
1827		if (!test_bit(HCI_AUTH, &hdev->flags)) {
1828			/* Auth must be enabled first */
1829			err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
1830					   HCI_INIT_TIMEOUT, NULL);
1831			if (err)
1832				break;
1833		}
1834
1835		err = hci_req_sync(hdev, hci_encrypt_req, dr.dev_opt,
1836				   HCI_INIT_TIMEOUT, NULL);
1837		break;
1838
1839	case HCISETSCAN:
1840		err = hci_req_sync(hdev, hci_scan_req, dr.dev_opt,
1841				   HCI_INIT_TIMEOUT, NULL);
1842
1843		/* Ensure that the connectable and discoverable states
1844		 * get correctly modified as this was a non-mgmt change.
1845		 */
1846		if (!err)
1847			hci_update_scan_state(hdev, dr.dev_opt);
1848		break;
1849
1850	case HCISETLINKPOL:
1851		err = hci_req_sync(hdev, hci_linkpol_req, dr.dev_opt,
1852				   HCI_INIT_TIMEOUT, NULL);
1853		break;
1854
1855	case HCISETLINKMODE:
1856		hdev->link_mode = ((__u16) dr.dev_opt) &
1857					(HCI_LM_MASTER | HCI_LM_ACCEPT);
1858		break;
1859
1860	case HCISETPTYPE:
 
 
 
1861		hdev->pkt_type = (__u16) dr.dev_opt;
 
1862		break;
1863
1864	case HCISETACLMTU:
1865		hdev->acl_mtu  = *((__u16 *) &dr.dev_opt + 1);
1866		hdev->acl_pkts = *((__u16 *) &dr.dev_opt + 0);
1867		break;
1868
1869	case HCISETSCOMTU:
1870		hdev->sco_mtu  = *((__u16 *) &dr.dev_opt + 1);
1871		hdev->sco_pkts = *((__u16 *) &dr.dev_opt + 0);
1872		break;
1873
1874	default:
1875		err = -EINVAL;
1876		break;
1877	}
1878
1879done:
1880	hci_dev_put(hdev);
1881	return err;
1882}
1883
1884int hci_get_dev_list(void __user *arg)
1885{
1886	struct hci_dev *hdev;
1887	struct hci_dev_list_req *dl;
1888	struct hci_dev_req *dr;
1889	int n = 0, size, err;
1890	__u16 dev_num;
1891
1892	if (get_user(dev_num, (__u16 __user *) arg))
1893		return -EFAULT;
1894
1895	if (!dev_num || dev_num > (PAGE_SIZE * 2) / sizeof(*dr))
1896		return -EINVAL;
1897
1898	size = sizeof(*dl) + dev_num * sizeof(*dr);
1899
1900	dl = kzalloc(size, GFP_KERNEL);
1901	if (!dl)
1902		return -ENOMEM;
1903
1904	dr = dl->dev_req;
1905
1906	read_lock(&hci_dev_list_lock);
1907	list_for_each_entry(hdev, &hci_dev_list, list) {
1908		unsigned long flags = hdev->flags;
1909
1910		/* When the auto-off is configured it means the transport
1911		 * is running, but in that case still indicate that the
1912		 * device is actually down.
1913		 */
1914		if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
1915			flags &= ~BIT(HCI_UP);
1916
1917		(dr + n)->dev_id  = hdev->id;
1918		(dr + n)->dev_opt = flags;
1919
1920		if (++n >= dev_num)
1921			break;
1922	}
1923	read_unlock(&hci_dev_list_lock);
1924
1925	dl->dev_num = n;
1926	size = sizeof(*dl) + n * sizeof(*dr);
1927
1928	err = copy_to_user(arg, dl, size);
1929	kfree(dl);
1930
1931	return err ? -EFAULT : 0;
1932}
1933
1934int hci_get_dev_info(void __user *arg)
1935{
1936	struct hci_dev *hdev;
1937	struct hci_dev_info di;
1938	unsigned long flags;
1939	int err = 0;
1940
1941	if (copy_from_user(&di, arg, sizeof(di)))
1942		return -EFAULT;
1943
1944	hdev = hci_dev_get(di.dev_id);
1945	if (!hdev)
1946		return -ENODEV;
1947
1948	/* When the auto-off is configured it means the transport
1949	 * is running, but in that case still indicate that the
1950	 * device is actually down.
1951	 */
1952	if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
1953		flags = hdev->flags & ~BIT(HCI_UP);
1954	else
1955		flags = hdev->flags;
1956
1957	strcpy(di.name, hdev->name);
1958	di.bdaddr   = hdev->bdaddr;
1959	di.type     = (hdev->bus & 0x0f) | ((hdev->dev_type & 0x03) << 4);
1960	di.flags    = flags;
1961	di.pkt_type = hdev->pkt_type;
1962	if (lmp_bredr_capable(hdev)) {
1963		di.acl_mtu  = hdev->acl_mtu;
1964		di.acl_pkts = hdev->acl_pkts;
1965		di.sco_mtu  = hdev->sco_mtu;
1966		di.sco_pkts = hdev->sco_pkts;
1967	} else {
1968		di.acl_mtu  = hdev->le_mtu;
1969		di.acl_pkts = hdev->le_pkts;
1970		di.sco_mtu  = 0;
1971		di.sco_pkts = 0;
1972	}
1973	di.link_policy = hdev->link_policy;
1974	di.link_mode   = hdev->link_mode;
1975
1976	memcpy(&di.stat, &hdev->stat, sizeof(di.stat));
1977	memcpy(&di.features, &hdev->features, sizeof(di.features));
1978
1979	if (copy_to_user(arg, &di, sizeof(di)))
1980		err = -EFAULT;
1981
1982	hci_dev_put(hdev);
1983
1984	return err;
1985}
1986
1987/* ---- Interface to HCI drivers ---- */
1988
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1989static int hci_rfkill_set_block(void *data, bool blocked)
1990{
1991	struct hci_dev *hdev = data;
 
1992
1993	BT_DBG("%p name %s blocked %d", hdev, hdev->name, blocked);
1994
1995	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL))
1996		return -EBUSY;
1997
 
 
 
1998	if (blocked) {
1999		hci_dev_set_flag(hdev, HCI_RFKILLED);
 
2000		if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
2001		    !hci_dev_test_flag(hdev, HCI_CONFIG))
2002			hci_dev_do_close(hdev);
 
 
 
 
 
 
 
 
 
 
 
2003	} else {
2004		hci_dev_clear_flag(hdev, HCI_RFKILLED);
2005	}
2006
2007	return 0;
2008}
2009
2010static const struct rfkill_ops hci_rfkill_ops = {
2011	.set_block = hci_rfkill_set_block,
2012};
2013
2014static void hci_power_on(struct work_struct *work)
2015{
2016	struct hci_dev *hdev = container_of(work, struct hci_dev, power_on);
2017	int err;
2018
2019	BT_DBG("%s", hdev->name);
2020
2021	if (test_bit(HCI_UP, &hdev->flags) &&
2022	    hci_dev_test_flag(hdev, HCI_MGMT) &&
2023	    hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) {
2024		cancel_delayed_work(&hdev->power_off);
2025		hci_req_sync_lock(hdev);
2026		err = __hci_req_hci_power_on(hdev);
2027		hci_req_sync_unlock(hdev);
2028		mgmt_power_on(hdev, err);
2029		return;
2030	}
2031
2032	err = hci_dev_do_open(hdev);
2033	if (err < 0) {
2034		hci_dev_lock(hdev);
2035		mgmt_set_powered_failed(hdev, err);
2036		hci_dev_unlock(hdev);
2037		return;
2038	}
2039
2040	/* During the HCI setup phase, a few error conditions are
2041	 * ignored and they need to be checked now. If they are still
2042	 * valid, it is important to turn the device back off.
2043	 */
2044	if (hci_dev_test_flag(hdev, HCI_RFKILLED) ||
2045	    hci_dev_test_flag(hdev, HCI_UNCONFIGURED) ||
2046	    (hdev->dev_type == HCI_BREDR &&
2047	     !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
2048	     !bacmp(&hdev->static_addr, BDADDR_ANY))) {
2049		hci_dev_clear_flag(hdev, HCI_AUTO_OFF);
2050		hci_dev_do_close(hdev);
2051	} else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) {
2052		queue_delayed_work(hdev->req_workqueue, &hdev->power_off,
2053				   HCI_AUTO_OFF_TIMEOUT);
2054	}
2055
2056	if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) {
2057		/* For unconfigured devices, set the HCI_RAW flag
2058		 * so that userspace can easily identify them.
2059		 */
2060		if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
2061			set_bit(HCI_RAW, &hdev->flags);
2062
2063		/* For fully configured devices, this will send
2064		 * the Index Added event. For unconfigured devices,
2065		 * it will send Unconfigued Index Added event.
2066		 *
2067		 * Devices with HCI_QUIRK_RAW_DEVICE are ignored
2068		 * and no event will be send.
2069		 */
2070		mgmt_index_added(hdev);
2071	} else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) {
2072		/* When the controller is now configured, then it
2073		 * is important to clear the HCI_RAW flag.
2074		 */
2075		if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
2076			clear_bit(HCI_RAW, &hdev->flags);
2077
2078		/* Powering on the controller with HCI_CONFIG set only
2079		 * happens with the transition from unconfigured to
2080		 * configured. This will send the Index Added event.
2081		 */
2082		mgmt_index_added(hdev);
2083	}
2084}
2085
2086static void hci_power_off(struct work_struct *work)
2087{
2088	struct hci_dev *hdev = container_of(work, struct hci_dev,
2089					    power_off.work);
2090
2091	BT_DBG("%s", hdev->name);
2092
2093	hci_dev_do_close(hdev);
2094}
2095
2096static void hci_error_reset(struct work_struct *work)
2097{
2098	struct hci_dev *hdev = container_of(work, struct hci_dev, error_reset);
2099
 
2100	BT_DBG("%s", hdev->name);
2101
2102	if (hdev->hw_error)
2103		hdev->hw_error(hdev, hdev->hw_error_code);
2104	else
2105		BT_ERR("%s hardware error 0x%2.2x", hdev->name,
2106		       hdev->hw_error_code);
2107
2108	if (hci_dev_do_close(hdev))
2109		return;
2110
2111	hci_dev_do_open(hdev);
2112}
2113
2114void hci_uuids_clear(struct hci_dev *hdev)
2115{
2116	struct bt_uuid *uuid, *tmp;
2117
2118	list_for_each_entry_safe(uuid, tmp, &hdev->uuids, list) {
2119		list_del(&uuid->list);
2120		kfree(uuid);
2121	}
2122}
2123
2124void hci_link_keys_clear(struct hci_dev *hdev)
2125{
2126	struct link_key *key;
2127
2128	list_for_each_entry_rcu(key, &hdev->link_keys, list) {
2129		list_del_rcu(&key->list);
2130		kfree_rcu(key, rcu);
2131	}
2132}
2133
2134void hci_smp_ltks_clear(struct hci_dev *hdev)
2135{
2136	struct smp_ltk *k;
2137
2138	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2139		list_del_rcu(&k->list);
2140		kfree_rcu(k, rcu);
2141	}
2142}
2143
2144void hci_smp_irks_clear(struct hci_dev *hdev)
2145{
2146	struct smp_irk *k;
2147
2148	list_for_each_entry_rcu(k, &hdev->identity_resolving_keys, list) {
2149		list_del_rcu(&k->list);
2150		kfree_rcu(k, rcu);
2151	}
2152}
2153
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2154struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
2155{
2156	struct link_key *k;
2157
2158	rcu_read_lock();
2159	list_for_each_entry_rcu(k, &hdev->link_keys, list) {
2160		if (bacmp(bdaddr, &k->bdaddr) == 0) {
2161			rcu_read_unlock();
 
 
 
 
 
 
 
 
 
 
2162			return k;
2163		}
2164	}
2165	rcu_read_unlock();
2166
2167	return NULL;
2168}
2169
2170static bool hci_persistent_key(struct hci_dev *hdev, struct hci_conn *conn,
2171			       u8 key_type, u8 old_key_type)
2172{
2173	/* Legacy key */
2174	if (key_type < 0x03)
2175		return true;
2176
2177	/* Debug keys are insecure so don't store them persistently */
2178	if (key_type == HCI_LK_DEBUG_COMBINATION)
2179		return false;
2180
2181	/* Changed combination key and there's no previous one */
2182	if (key_type == HCI_LK_CHANGED_COMBINATION && old_key_type == 0xff)
2183		return false;
2184
2185	/* Security mode 3 case */
2186	if (!conn)
2187		return true;
2188
2189	/* BR/EDR key derived using SC from an LE link */
2190	if (conn->type == LE_LINK)
2191		return true;
2192
2193	/* Neither local nor remote side had no-bonding as requirement */
2194	if (conn->auth_type > 0x01 && conn->remote_auth > 0x01)
2195		return true;
2196
2197	/* Local side had dedicated bonding as requirement */
2198	if (conn->auth_type == 0x02 || conn->auth_type == 0x03)
2199		return true;
2200
2201	/* Remote side had dedicated bonding as requirement */
2202	if (conn->remote_auth == 0x02 || conn->remote_auth == 0x03)
2203		return true;
2204
2205	/* If none of the above criteria match, then don't store the key
2206	 * persistently */
2207	return false;
2208}
2209
2210static u8 ltk_role(u8 type)
2211{
2212	if (type == SMP_LTK)
2213		return HCI_ROLE_MASTER;
2214
2215	return HCI_ROLE_SLAVE;
2216}
2217
2218struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2219			     u8 addr_type, u8 role)
2220{
2221	struct smp_ltk *k;
2222
2223	rcu_read_lock();
2224	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2225		if (addr_type != k->bdaddr_type || bacmp(bdaddr, &k->bdaddr))
2226			continue;
2227
2228		if (smp_ltk_is_sc(k) || ltk_role(k->type) == role) {
2229			rcu_read_unlock();
 
 
 
 
 
 
 
 
 
2230			return k;
2231		}
2232	}
2233	rcu_read_unlock();
2234
2235	return NULL;
2236}
2237
2238struct smp_irk *hci_find_irk_by_rpa(struct hci_dev *hdev, bdaddr_t *rpa)
2239{
 
2240	struct smp_irk *irk;
2241
2242	rcu_read_lock();
2243	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2244		if (!bacmp(&irk->rpa, rpa)) {
2245			rcu_read_unlock();
2246			return irk;
2247		}
2248	}
2249
2250	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2251		if (smp_irk_matches(hdev, irk->val, rpa)) {
2252			bacpy(&irk->rpa, rpa);
2253			rcu_read_unlock();
2254			return irk;
2255		}
2256	}
 
 
 
 
 
 
 
 
 
2257	rcu_read_unlock();
2258
2259	return NULL;
2260}
2261
2262struct smp_irk *hci_find_irk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr,
2263				     u8 addr_type)
2264{
 
2265	struct smp_irk *irk;
2266
2267	/* Identity Address must be public or static random */
2268	if (addr_type == ADDR_LE_DEV_RANDOM && (bdaddr->b[5] & 0xc0) != 0xc0)
2269		return NULL;
2270
2271	rcu_read_lock();
2272	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2273		if (addr_type == irk->addr_type &&
2274		    bacmp(bdaddr, &irk->bdaddr) == 0) {
2275			rcu_read_unlock();
2276			return irk;
2277		}
2278	}
 
 
 
 
 
 
 
 
 
 
2279	rcu_read_unlock();
2280
2281	return NULL;
2282}
2283
2284struct link_key *hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn,
2285				  bdaddr_t *bdaddr, u8 *val, u8 type,
2286				  u8 pin_len, bool *persistent)
2287{
2288	struct link_key *key, *old_key;
2289	u8 old_key_type;
2290
2291	old_key = hci_find_link_key(hdev, bdaddr);
2292	if (old_key) {
2293		old_key_type = old_key->type;
2294		key = old_key;
2295	} else {
2296		old_key_type = conn ? conn->key_type : 0xff;
2297		key = kzalloc(sizeof(*key), GFP_KERNEL);
2298		if (!key)
2299			return NULL;
2300		list_add_rcu(&key->list, &hdev->link_keys);
2301	}
2302
2303	BT_DBG("%s key for %pMR type %u", hdev->name, bdaddr, type);
2304
2305	/* Some buggy controller combinations generate a changed
2306	 * combination key for legacy pairing even when there's no
2307	 * previous key */
2308	if (type == HCI_LK_CHANGED_COMBINATION &&
2309	    (!conn || conn->remote_auth == 0xff) && old_key_type == 0xff) {
2310		type = HCI_LK_COMBINATION;
2311		if (conn)
2312			conn->key_type = type;
2313	}
2314
2315	bacpy(&key->bdaddr, bdaddr);
2316	memcpy(key->val, val, HCI_LINK_KEY_SIZE);
2317	key->pin_len = pin_len;
2318
2319	if (type == HCI_LK_CHANGED_COMBINATION)
2320		key->type = old_key_type;
2321	else
2322		key->type = type;
2323
2324	if (persistent)
2325		*persistent = hci_persistent_key(hdev, conn, type,
2326						 old_key_type);
2327
2328	return key;
2329}
2330
2331struct smp_ltk *hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2332			    u8 addr_type, u8 type, u8 authenticated,
2333			    u8 tk[16], u8 enc_size, __le16 ediv, __le64 rand)
2334{
2335	struct smp_ltk *key, *old_key;
2336	u8 role = ltk_role(type);
2337
2338	old_key = hci_find_ltk(hdev, bdaddr, addr_type, role);
2339	if (old_key)
2340		key = old_key;
2341	else {
2342		key = kzalloc(sizeof(*key), GFP_KERNEL);
2343		if (!key)
2344			return NULL;
2345		list_add_rcu(&key->list, &hdev->long_term_keys);
2346	}
2347
2348	bacpy(&key->bdaddr, bdaddr);
2349	key->bdaddr_type = addr_type;
2350	memcpy(key->val, tk, sizeof(key->val));
2351	key->authenticated = authenticated;
2352	key->ediv = ediv;
2353	key->rand = rand;
2354	key->enc_size = enc_size;
2355	key->type = type;
2356
2357	return key;
2358}
2359
2360struct smp_irk *hci_add_irk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2361			    u8 addr_type, u8 val[16], bdaddr_t *rpa)
2362{
2363	struct smp_irk *irk;
2364
2365	irk = hci_find_irk_by_addr(hdev, bdaddr, addr_type);
2366	if (!irk) {
2367		irk = kzalloc(sizeof(*irk), GFP_KERNEL);
2368		if (!irk)
2369			return NULL;
2370
2371		bacpy(&irk->bdaddr, bdaddr);
2372		irk->addr_type = addr_type;
2373
2374		list_add_rcu(&irk->list, &hdev->identity_resolving_keys);
2375	}
2376
2377	memcpy(irk->val, val, 16);
2378	bacpy(&irk->rpa, rpa);
2379
2380	return irk;
2381}
2382
2383int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
2384{
2385	struct link_key *key;
2386
2387	key = hci_find_link_key(hdev, bdaddr);
2388	if (!key)
2389		return -ENOENT;
2390
2391	BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2392
2393	list_del_rcu(&key->list);
2394	kfree_rcu(key, rcu);
2395
2396	return 0;
2397}
2398
2399int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type)
2400{
2401	struct smp_ltk *k;
2402	int removed = 0;
2403
2404	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2405		if (bacmp(bdaddr, &k->bdaddr) || k->bdaddr_type != bdaddr_type)
2406			continue;
2407
2408		BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2409
2410		list_del_rcu(&k->list);
2411		kfree_rcu(k, rcu);
2412		removed++;
2413	}
2414
2415	return removed ? 0 : -ENOENT;
2416}
2417
2418void hci_remove_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type)
2419{
2420	struct smp_irk *k;
2421
2422	list_for_each_entry_rcu(k, &hdev->identity_resolving_keys, list) {
2423		if (bacmp(bdaddr, &k->bdaddr) || k->addr_type != addr_type)
2424			continue;
2425
2426		BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2427
2428		list_del_rcu(&k->list);
2429		kfree_rcu(k, rcu);
2430	}
2431}
2432
2433bool hci_bdaddr_is_paired(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type)
2434{
2435	struct smp_ltk *k;
2436	struct smp_irk *irk;
2437	u8 addr_type;
2438
2439	if (type == BDADDR_BREDR) {
2440		if (hci_find_link_key(hdev, bdaddr))
2441			return true;
2442		return false;
2443	}
2444
2445	/* Convert to HCI addr type which struct smp_ltk uses */
2446	if (type == BDADDR_LE_PUBLIC)
2447		addr_type = ADDR_LE_DEV_PUBLIC;
2448	else
2449		addr_type = ADDR_LE_DEV_RANDOM;
2450
2451	irk = hci_get_irk(hdev, bdaddr, addr_type);
2452	if (irk) {
2453		bdaddr = &irk->bdaddr;
2454		addr_type = irk->addr_type;
2455	}
2456
2457	rcu_read_lock();
2458	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2459		if (k->bdaddr_type == addr_type && !bacmp(bdaddr, &k->bdaddr)) {
2460			rcu_read_unlock();
2461			return true;
2462		}
2463	}
2464	rcu_read_unlock();
2465
2466	return false;
2467}
2468
2469/* HCI command timer function */
2470static void hci_cmd_timeout(struct work_struct *work)
2471{
2472	struct hci_dev *hdev = container_of(work, struct hci_dev,
2473					    cmd_timer.work);
2474
2475	if (hdev->sent_cmd) {
2476		struct hci_command_hdr *sent = (void *) hdev->sent_cmd->data;
2477		u16 opcode = __le16_to_cpu(sent->opcode);
2478
2479		BT_ERR("%s command 0x%4.4x tx timeout", hdev->name, opcode);
 
 
2480	} else {
2481		BT_ERR("%s command tx timeout", hdev->name);
2482	}
2483
 
 
 
2484	atomic_set(&hdev->cmd_cnt, 1);
2485	queue_work(hdev->workqueue, &hdev->cmd_work);
2486}
2487
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2488struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev,
2489					  bdaddr_t *bdaddr, u8 bdaddr_type)
2490{
2491	struct oob_data *data;
2492
2493	list_for_each_entry(data, &hdev->remote_oob_data, list) {
2494		if (bacmp(bdaddr, &data->bdaddr) != 0)
2495			continue;
2496		if (data->bdaddr_type != bdaddr_type)
2497			continue;
2498		return data;
2499	}
2500
2501	return NULL;
2502}
2503
2504int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
2505			       u8 bdaddr_type)
2506{
2507	struct oob_data *data;
2508
2509	data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
2510	if (!data)
2511		return -ENOENT;
2512
2513	BT_DBG("%s removing %pMR (%u)", hdev->name, bdaddr, bdaddr_type);
2514
2515	list_del(&data->list);
2516	kfree(data);
2517
2518	return 0;
2519}
2520
2521void hci_remote_oob_data_clear(struct hci_dev *hdev)
2522{
2523	struct oob_data *data, *n;
2524
2525	list_for_each_entry_safe(data, n, &hdev->remote_oob_data, list) {
2526		list_del(&data->list);
2527		kfree(data);
2528	}
2529}
2530
2531int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
2532			    u8 bdaddr_type, u8 *hash192, u8 *rand192,
2533			    u8 *hash256, u8 *rand256)
2534{
2535	struct oob_data *data;
2536
2537	data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
2538	if (!data) {
2539		data = kmalloc(sizeof(*data), GFP_KERNEL);
2540		if (!data)
2541			return -ENOMEM;
2542
2543		bacpy(&data->bdaddr, bdaddr);
2544		data->bdaddr_type = bdaddr_type;
2545		list_add(&data->list, &hdev->remote_oob_data);
2546	}
2547
2548	if (hash192 && rand192) {
2549		memcpy(data->hash192, hash192, sizeof(data->hash192));
2550		memcpy(data->rand192, rand192, sizeof(data->rand192));
2551		if (hash256 && rand256)
2552			data->present = 0x03;
2553	} else {
2554		memset(data->hash192, 0, sizeof(data->hash192));
2555		memset(data->rand192, 0, sizeof(data->rand192));
2556		if (hash256 && rand256)
2557			data->present = 0x02;
2558		else
2559			data->present = 0x00;
2560	}
2561
2562	if (hash256 && rand256) {
2563		memcpy(data->hash256, hash256, sizeof(data->hash256));
2564		memcpy(data->rand256, rand256, sizeof(data->rand256));
2565	} else {
2566		memset(data->hash256, 0, sizeof(data->hash256));
2567		memset(data->rand256, 0, sizeof(data->rand256));
2568		if (hash192 && rand192)
2569			data->present = 0x01;
2570	}
2571
2572	BT_DBG("%s for %pMR", hdev->name, bdaddr);
2573
2574	return 0;
2575}
2576
2577/* This function requires the caller holds hdev->lock */
2578struct adv_info *hci_find_adv_instance(struct hci_dev *hdev, u8 instance)
2579{
2580	struct adv_info *adv_instance;
2581
2582	list_for_each_entry(adv_instance, &hdev->adv_instances, list) {
2583		if (adv_instance->instance == instance)
2584			return adv_instance;
2585	}
2586
2587	return NULL;
2588}
2589
2590/* This function requires the caller holds hdev->lock */
2591struct adv_info *hci_get_next_instance(struct hci_dev *hdev, u8 instance)
2592{
2593	struct adv_info *cur_instance;
2594
2595	cur_instance = hci_find_adv_instance(hdev, instance);
2596	if (!cur_instance)
2597		return NULL;
2598
2599	if (cur_instance == list_last_entry(&hdev->adv_instances,
2600					    struct adv_info, list))
2601		return list_first_entry(&hdev->adv_instances,
2602						 struct adv_info, list);
2603	else
2604		return list_next_entry(cur_instance, list);
2605}
2606
2607/* This function requires the caller holds hdev->lock */
2608int hci_remove_adv_instance(struct hci_dev *hdev, u8 instance)
2609{
2610	struct adv_info *adv_instance;
2611
2612	adv_instance = hci_find_adv_instance(hdev, instance);
2613	if (!adv_instance)
2614		return -ENOENT;
2615
2616	BT_DBG("%s removing %dMR", hdev->name, instance);
2617
2618	if (hdev->cur_adv_instance == instance) {
2619		if (hdev->adv_instance_timeout) {
2620			cancel_delayed_work(&hdev->adv_instance_expire);
2621			hdev->adv_instance_timeout = 0;
2622		}
2623		hdev->cur_adv_instance = 0x00;
2624	}
2625
 
 
2626	list_del(&adv_instance->list);
2627	kfree(adv_instance);
2628
2629	hdev->adv_instance_cnt--;
2630
2631	return 0;
2632}
2633
 
 
 
 
 
 
 
 
2634/* This function requires the caller holds hdev->lock */
2635void hci_adv_instances_clear(struct hci_dev *hdev)
2636{
2637	struct adv_info *adv_instance, *n;
2638
2639	if (hdev->adv_instance_timeout) {
2640		cancel_delayed_work(&hdev->adv_instance_expire);
2641		hdev->adv_instance_timeout = 0;
2642	}
2643
2644	list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list) {
 
2645		list_del(&adv_instance->list);
2646		kfree(adv_instance);
2647	}
2648
2649	hdev->adv_instance_cnt = 0;
2650	hdev->cur_adv_instance = 0x00;
2651}
2652
2653/* This function requires the caller holds hdev->lock */
2654int hci_add_adv_instance(struct hci_dev *hdev, u8 instance, u32 flags,
2655			 u16 adv_data_len, u8 *adv_data,
2656			 u16 scan_rsp_len, u8 *scan_rsp_data,
2657			 u16 timeout, u16 duration)
2658{
2659	struct adv_info *adv_instance;
 
2660
2661	adv_instance = hci_find_adv_instance(hdev, instance);
2662	if (adv_instance) {
2663		memset(adv_instance->adv_data, 0,
2664		       sizeof(adv_instance->adv_data));
2665		memset(adv_instance->scan_rsp_data, 0,
2666		       sizeof(adv_instance->scan_rsp_data));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2667	} else {
2668		if (hdev->adv_instance_cnt >= HCI_MAX_ADV_INSTANCES ||
2669		    instance < 1 || instance > HCI_MAX_ADV_INSTANCES)
2670			return -EOVERFLOW;
 
 
 
 
2671
2672		adv_instance = kzalloc(sizeof(*adv_instance), GFP_KERNEL);
2673		if (!adv_instance)
2674			return -ENOMEM;
 
 
 
 
 
 
 
2675
2676		adv_instance->pending = true;
2677		adv_instance->instance = instance;
2678		list_add(&adv_instance->list, &hdev->adv_instances);
2679		hdev->adv_instance_cnt++;
2680	}
2681
2682	adv_instance->flags = flags;
2683	adv_instance->adv_data_len = adv_data_len;
2684	adv_instance->scan_rsp_len = scan_rsp_len;
2685
2686	if (adv_data_len)
2687		memcpy(adv_instance->adv_data, adv_data, adv_data_len);
2688
2689	if (scan_rsp_len)
2690		memcpy(adv_instance->scan_rsp_data,
2691		       scan_rsp_data, scan_rsp_len);
 
 
2692
2693	adv_instance->timeout = timeout;
2694	adv_instance->remaining_time = timeout;
2695
2696	if (duration == 0)
2697		adv_instance->duration = HCI_DEFAULT_ADV_DURATION;
2698	else
2699		adv_instance->duration = duration;
 
 
2700
2701	BT_DBG("%s for %dMR", hdev->name, instance);
2702
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2703	return 0;
2704}
2705
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2706struct bdaddr_list *hci_bdaddr_list_lookup(struct list_head *bdaddr_list,
2707					 bdaddr_t *bdaddr, u8 type)
2708{
2709	struct bdaddr_list *b;
2710
2711	list_for_each_entry(b, bdaddr_list, list) {
2712		if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2713			return b;
2714	}
2715
2716	return NULL;
2717}
2718
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2719void hci_bdaddr_list_clear(struct list_head *bdaddr_list)
2720{
2721	struct bdaddr_list *b, *n;
2722
2723	list_for_each_entry_safe(b, n, bdaddr_list, list) {
2724		list_del(&b->list);
2725		kfree(b);
2726	}
2727}
2728
2729int hci_bdaddr_list_add(struct list_head *list, bdaddr_t *bdaddr, u8 type)
2730{
2731	struct bdaddr_list *entry;
2732
2733	if (!bacmp(bdaddr, BDADDR_ANY))
2734		return -EBADF;
2735
2736	if (hci_bdaddr_list_lookup(list, bdaddr, type))
2737		return -EEXIST;
2738
2739	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
2740	if (!entry)
2741		return -ENOMEM;
2742
2743	bacpy(&entry->bdaddr, bdaddr);
2744	entry->bdaddr_type = type;
2745
2746	list_add(&entry->list, list);
2747
2748	return 0;
2749}
2750
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2751int hci_bdaddr_list_del(struct list_head *list, bdaddr_t *bdaddr, u8 type)
2752{
2753	struct bdaddr_list *entry;
2754
2755	if (!bacmp(bdaddr, BDADDR_ANY)) {
2756		hci_bdaddr_list_clear(list);
2757		return 0;
2758	}
2759
2760	entry = hci_bdaddr_list_lookup(list, bdaddr, type);
2761	if (!entry)
2762		return -ENOENT;
2763
2764	list_del(&entry->list);
2765	kfree(entry);
2766
2767	return 0;
2768}
2769
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2770/* This function requires the caller holds hdev->lock */
2771struct hci_conn_params *hci_conn_params_lookup(struct hci_dev *hdev,
2772					       bdaddr_t *addr, u8 addr_type)
2773{
2774	struct hci_conn_params *params;
2775
2776	list_for_each_entry(params, &hdev->le_conn_params, list) {
2777		if (bacmp(&params->addr, addr) == 0 &&
2778		    params->addr_type == addr_type) {
2779			return params;
2780		}
2781	}
2782
2783	return NULL;
2784}
2785
2786/* This function requires the caller holds hdev->lock */
2787struct hci_conn_params *hci_pend_le_action_lookup(struct list_head *list,
2788						  bdaddr_t *addr, u8 addr_type)
2789{
2790	struct hci_conn_params *param;
2791
2792	list_for_each_entry(param, list, action) {
 
 
2793		if (bacmp(&param->addr, addr) == 0 &&
2794		    param->addr_type == addr_type)
 
2795			return param;
 
2796	}
2797
 
 
2798	return NULL;
2799}
2800
2801/* This function requires the caller holds hdev->lock */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2802struct hci_conn_params *hci_conn_params_add(struct hci_dev *hdev,
2803					    bdaddr_t *addr, u8 addr_type)
2804{
2805	struct hci_conn_params *params;
2806
2807	params = hci_conn_params_lookup(hdev, addr, addr_type);
2808	if (params)
2809		return params;
2810
2811	params = kzalloc(sizeof(*params), GFP_KERNEL);
2812	if (!params) {
2813		BT_ERR("Out of memory");
2814		return NULL;
2815	}
2816
2817	bacpy(&params->addr, addr);
2818	params->addr_type = addr_type;
2819
2820	list_add(&params->list, &hdev->le_conn_params);
2821	INIT_LIST_HEAD(&params->action);
2822
2823	params->conn_min_interval = hdev->le_conn_min_interval;
2824	params->conn_max_interval = hdev->le_conn_max_interval;
2825	params->conn_latency = hdev->le_conn_latency;
2826	params->supervision_timeout = hdev->le_supv_timeout;
2827	params->auto_connect = HCI_AUTO_CONN_DISABLED;
2828
2829	BT_DBG("addr %pMR (type %u)", addr, addr_type);
2830
2831	return params;
2832}
2833
2834static void hci_conn_params_free(struct hci_conn_params *params)
2835{
 
 
2836	if (params->conn) {
2837		hci_conn_drop(params->conn);
2838		hci_conn_put(params->conn);
2839	}
2840
2841	list_del(&params->action);
2842	list_del(&params->list);
2843	kfree(params);
2844}
2845
2846/* This function requires the caller holds hdev->lock */
2847void hci_conn_params_del(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type)
2848{
2849	struct hci_conn_params *params;
2850
2851	params = hci_conn_params_lookup(hdev, addr, addr_type);
2852	if (!params)
2853		return;
2854
2855	hci_conn_params_free(params);
2856
2857	hci_update_background_scan(hdev);
2858
2859	BT_DBG("addr %pMR (type %u)", addr, addr_type);
2860}
2861
2862/* This function requires the caller holds hdev->lock */
2863void hci_conn_params_clear_disabled(struct hci_dev *hdev)
2864{
2865	struct hci_conn_params *params, *tmp;
2866
2867	list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list) {
2868		if (params->auto_connect != HCI_AUTO_CONN_DISABLED)
2869			continue;
2870
2871		/* If trying to estabilish one time connection to disabled
2872		 * device, leave the params, but mark them as just once.
2873		 */
2874		if (params->explicit_connect) {
2875			params->auto_connect = HCI_AUTO_CONN_EXPLICIT;
2876			continue;
2877		}
2878
2879		list_del(&params->list);
2880		kfree(params);
2881	}
2882
2883	BT_DBG("All LE disabled connection parameters were removed");
2884}
2885
2886/* This function requires the caller holds hdev->lock */
2887static void hci_conn_params_clear_all(struct hci_dev *hdev)
2888{
2889	struct hci_conn_params *params, *tmp;
2890
2891	list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list)
2892		hci_conn_params_free(params);
2893
2894	BT_DBG("All LE connection parameters were removed");
2895}
2896
2897/* Copy the Identity Address of the controller.
2898 *
2899 * If the controller has a public BD_ADDR, then by default use that one.
2900 * If this is a LE only controller without a public address, default to
2901 * the static random address.
2902 *
2903 * For debugging purposes it is possible to force controllers with a
2904 * public address to use the static random address instead.
2905 *
2906 * In case BR/EDR has been disabled on a dual-mode controller and
2907 * userspace has configured a static address, then that address
2908 * becomes the identity address instead of the public BR/EDR address.
2909 */
2910void hci_copy_identity_address(struct hci_dev *hdev, bdaddr_t *bdaddr,
2911			       u8 *bdaddr_type)
2912{
2913	if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
2914	    !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
2915	    (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
2916	     bacmp(&hdev->static_addr, BDADDR_ANY))) {
2917		bacpy(bdaddr, &hdev->static_addr);
2918		*bdaddr_type = ADDR_LE_DEV_RANDOM;
2919	} else {
2920		bacpy(bdaddr, &hdev->bdaddr);
2921		*bdaddr_type = ADDR_LE_DEV_PUBLIC;
2922	}
2923}
2924
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2925/* Alloc HCI device */
2926struct hci_dev *hci_alloc_dev(void)
2927{
2928	struct hci_dev *hdev;
 
 
 
 
 
 
 
2929
2930	hdev = kzalloc(sizeof(*hdev), GFP_KERNEL);
2931	if (!hdev)
2932		return NULL;
2933
2934	hdev->pkt_type  = (HCI_DM1 | HCI_DH1 | HCI_HV1);
2935	hdev->esco_type = (ESCO_HV1);
2936	hdev->link_mode = (HCI_LM_ACCEPT);
2937	hdev->num_iac = 0x01;		/* One IAC support is mandatory */
2938	hdev->io_capability = 0x03;	/* No Input No Output */
2939	hdev->manufacturer = 0xffff;	/* Default to internal use */
2940	hdev->inq_tx_power = HCI_TX_POWER_INVALID;
2941	hdev->adv_tx_power = HCI_TX_POWER_INVALID;
2942	hdev->adv_instance_cnt = 0;
2943	hdev->cur_adv_instance = 0x00;
2944	hdev->adv_instance_timeout = 0;
2945
 
 
 
 
2946	hdev->sniff_max_interval = 800;
2947	hdev->sniff_min_interval = 80;
2948
2949	hdev->le_adv_channel_map = 0x07;
2950	hdev->le_adv_min_interval = 0x0800;
2951	hdev->le_adv_max_interval = 0x0800;
2952	hdev->le_scan_interval = 0x0060;
2953	hdev->le_scan_window = 0x0030;
2954	hdev->le_conn_min_interval = 0x0028;
2955	hdev->le_conn_max_interval = 0x0038;
 
 
 
 
 
 
 
 
2956	hdev->le_conn_latency = 0x0000;
2957	hdev->le_supv_timeout = 0x002a;
2958	hdev->le_def_tx_len = 0x001b;
2959	hdev->le_def_tx_time = 0x0148;
2960	hdev->le_max_tx_len = 0x001b;
2961	hdev->le_max_tx_time = 0x0148;
2962	hdev->le_max_rx_len = 0x001b;
2963	hdev->le_max_rx_time = 0x0148;
 
 
 
 
 
 
 
 
 
2964
2965	hdev->rpa_timeout = HCI_DEFAULT_RPA_TIMEOUT;
2966	hdev->discov_interleaved_timeout = DISCOV_INTERLEAVED_TIMEOUT;
2967	hdev->conn_info_min_age = DEFAULT_CONN_INFO_MIN_AGE;
2968	hdev->conn_info_max_age = DEFAULT_CONN_INFO_MAX_AGE;
 
 
 
 
 
 
 
2969
2970	mutex_init(&hdev->lock);
2971	mutex_init(&hdev->req_lock);
2972
 
 
 
2973	INIT_LIST_HEAD(&hdev->mgmt_pending);
2974	INIT_LIST_HEAD(&hdev->blacklist);
2975	INIT_LIST_HEAD(&hdev->whitelist);
2976	INIT_LIST_HEAD(&hdev->uuids);
2977	INIT_LIST_HEAD(&hdev->link_keys);
2978	INIT_LIST_HEAD(&hdev->long_term_keys);
2979	INIT_LIST_HEAD(&hdev->identity_resolving_keys);
2980	INIT_LIST_HEAD(&hdev->remote_oob_data);
2981	INIT_LIST_HEAD(&hdev->le_white_list);
 
2982	INIT_LIST_HEAD(&hdev->le_conn_params);
2983	INIT_LIST_HEAD(&hdev->pend_le_conns);
2984	INIT_LIST_HEAD(&hdev->pend_le_reports);
2985	INIT_LIST_HEAD(&hdev->conn_hash.list);
2986	INIT_LIST_HEAD(&hdev->adv_instances);
 
 
2987
 
2988	INIT_WORK(&hdev->rx_work, hci_rx_work);
2989	INIT_WORK(&hdev->cmd_work, hci_cmd_work);
2990	INIT_WORK(&hdev->tx_work, hci_tx_work);
2991	INIT_WORK(&hdev->power_on, hci_power_on);
2992	INIT_WORK(&hdev->error_reset, hci_error_reset);
2993
 
 
2994	INIT_DELAYED_WORK(&hdev->power_off, hci_power_off);
2995
2996	skb_queue_head_init(&hdev->rx_q);
2997	skb_queue_head_init(&hdev->cmd_q);
2998	skb_queue_head_init(&hdev->raw_q);
2999
3000	init_waitqueue_head(&hdev->req_wait_q);
3001
3002	INIT_DELAYED_WORK(&hdev->cmd_timer, hci_cmd_timeout);
 
3003
 
3004	hci_request_setup(hdev);
3005
3006	hci_init_sysfs(hdev);
3007	discovery_init(hdev);
3008
3009	return hdev;
3010}
3011EXPORT_SYMBOL(hci_alloc_dev);
3012
3013/* Free HCI device */
3014void hci_free_dev(struct hci_dev *hdev)
3015{
3016	/* will free via device release */
3017	put_device(&hdev->dev);
3018}
3019EXPORT_SYMBOL(hci_free_dev);
3020
3021/* Register HCI device */
3022int hci_register_dev(struct hci_dev *hdev)
3023{
3024	int id, error;
3025
3026	if (!hdev->open || !hdev->close || !hdev->send)
3027		return -EINVAL;
3028
3029	/* Do not allow HCI_AMP devices to register at index 0,
3030	 * so the index can be used as the AMP controller ID.
3031	 */
3032	switch (hdev->dev_type) {
3033	case HCI_BREDR:
3034		id = ida_simple_get(&hci_index_ida, 0, 0, GFP_KERNEL);
3035		break;
3036	case HCI_AMP:
3037		id = ida_simple_get(&hci_index_ida, 1, 0, GFP_KERNEL);
3038		break;
3039	default:
3040		return -EINVAL;
3041	}
3042
3043	if (id < 0)
3044		return id;
3045
3046	sprintf(hdev->name, "hci%d", id);
 
 
 
 
3047	hdev->id = id;
3048
3049	BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
3050
3051	hdev->workqueue = alloc_workqueue("%s", WQ_HIGHPRI | WQ_UNBOUND |
3052					  WQ_MEM_RECLAIM, 1, hdev->name);
3053	if (!hdev->workqueue) {
3054		error = -ENOMEM;
3055		goto err;
3056	}
3057
3058	hdev->req_workqueue = alloc_workqueue("%s", WQ_HIGHPRI | WQ_UNBOUND |
3059					      WQ_MEM_RECLAIM, 1, hdev->name);
3060	if (!hdev->req_workqueue) {
3061		destroy_workqueue(hdev->workqueue);
3062		error = -ENOMEM;
3063		goto err;
3064	}
3065
3066	if (!IS_ERR_OR_NULL(bt_debugfs))
3067		hdev->debugfs = debugfs_create_dir(hdev->name, bt_debugfs);
3068
3069	dev_set_name(&hdev->dev, "%s", hdev->name);
3070
3071	error = device_add(&hdev->dev);
3072	if (error < 0)
3073		goto err_wqueue;
3074
3075	hci_leds_init(hdev);
3076
3077	hdev->rfkill = rfkill_alloc(hdev->name, &hdev->dev,
3078				    RFKILL_TYPE_BLUETOOTH, &hci_rfkill_ops,
3079				    hdev);
3080	if (hdev->rfkill) {
3081		if (rfkill_register(hdev->rfkill) < 0) {
3082			rfkill_destroy(hdev->rfkill);
3083			hdev->rfkill = NULL;
3084		}
3085	}
3086
3087	if (hdev->rfkill && rfkill_blocked(hdev->rfkill))
3088		hci_dev_set_flag(hdev, HCI_RFKILLED);
3089
3090	hci_dev_set_flag(hdev, HCI_SETUP);
3091	hci_dev_set_flag(hdev, HCI_AUTO_OFF);
3092
3093	if (hdev->dev_type == HCI_BREDR) {
3094		/* Assume BR/EDR support until proven otherwise (such as
3095		 * through reading supported features during init.
3096		 */
3097		hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
3098	}
3099
3100	write_lock(&hci_dev_list_lock);
3101	list_add(&hdev->list, &hci_dev_list);
3102	write_unlock(&hci_dev_list_lock);
3103
3104	/* Devices that are marked for raw-only usage are unconfigured
3105	 * and should not be included in normal operation.
3106	 */
3107	if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
3108		hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
3109
 
 
 
 
 
 
3110	hci_sock_dev_event(hdev, HCI_DEV_REG);
3111	hci_dev_hold(hdev);
3112
 
 
 
 
3113	queue_work(hdev->req_workqueue, &hdev->power_on);
3114
 
 
 
3115	return id;
3116
3117err_wqueue:
 
3118	destroy_workqueue(hdev->workqueue);
3119	destroy_workqueue(hdev->req_workqueue);
3120err:
3121	ida_simple_remove(&hci_index_ida, hdev->id);
3122
3123	return error;
3124}
3125EXPORT_SYMBOL(hci_register_dev);
3126
3127/* Unregister HCI device */
3128void hci_unregister_dev(struct hci_dev *hdev)
3129{
3130	int id;
3131
3132	BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
3133
 
3134	hci_dev_set_flag(hdev, HCI_UNREGISTER);
3135
3136	id = hdev->id;
3137
3138	write_lock(&hci_dev_list_lock);
3139	list_del(&hdev->list);
3140	write_unlock(&hci_dev_list_lock);
3141
3142	hci_dev_do_close(hdev);
3143
3144	cancel_work_sync(&hdev->power_on);
3145
 
 
 
 
 
 
3146	if (!test_bit(HCI_INIT, &hdev->flags) &&
3147	    !hci_dev_test_flag(hdev, HCI_SETUP) &&
3148	    !hci_dev_test_flag(hdev, HCI_CONFIG)) {
3149		hci_dev_lock(hdev);
3150		mgmt_index_removed(hdev);
3151		hci_dev_unlock(hdev);
3152	}
3153
3154	/* mgmt_index_removed should take care of emptying the
3155	 * pending list */
3156	BUG_ON(!list_empty(&hdev->mgmt_pending));
3157
3158	hci_sock_dev_event(hdev, HCI_DEV_UNREG);
3159
3160	if (hdev->rfkill) {
3161		rfkill_unregister(hdev->rfkill);
3162		rfkill_destroy(hdev->rfkill);
3163	}
3164
3165	device_del(&hdev->dev);
 
 
 
 
3166
 
 
 
3167	debugfs_remove_recursive(hdev->debugfs);
 
 
3168
3169	destroy_workqueue(hdev->workqueue);
3170	destroy_workqueue(hdev->req_workqueue);
3171
3172	hci_dev_lock(hdev);
3173	hci_bdaddr_list_clear(&hdev->blacklist);
3174	hci_bdaddr_list_clear(&hdev->whitelist);
3175	hci_uuids_clear(hdev);
3176	hci_link_keys_clear(hdev);
3177	hci_smp_ltks_clear(hdev);
3178	hci_smp_irks_clear(hdev);
3179	hci_remote_oob_data_clear(hdev);
3180	hci_adv_instances_clear(hdev);
3181	hci_bdaddr_list_clear(&hdev->le_white_list);
 
 
3182	hci_conn_params_clear_all(hdev);
3183	hci_discovery_filter_clear(hdev);
 
 
 
3184	hci_dev_unlock(hdev);
3185
3186	hci_dev_put(hdev);
 
 
 
 
 
 
 
3187
3188	ida_simple_remove(&hci_index_ida, id);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3189}
3190EXPORT_SYMBOL(hci_unregister_dev);
3191
3192/* Suspend HCI device */
3193int hci_suspend_dev(struct hci_dev *hdev)
3194{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3195	hci_sock_dev_event(hdev, HCI_DEV_SUSPEND);
3196	return 0;
3197}
3198EXPORT_SYMBOL(hci_suspend_dev);
3199
3200/* Resume HCI device */
3201int hci_resume_dev(struct hci_dev *hdev)
3202{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3203	hci_sock_dev_event(hdev, HCI_DEV_RESUME);
3204	return 0;
3205}
3206EXPORT_SYMBOL(hci_resume_dev);
3207
3208/* Reset HCI device */
3209int hci_reset_dev(struct hci_dev *hdev)
3210{
3211	const u8 hw_err[] = { HCI_EV_HARDWARE_ERROR, 0x01, 0x00 };
3212	struct sk_buff *skb;
3213
3214	skb = bt_skb_alloc(3, GFP_ATOMIC);
3215	if (!skb)
3216		return -ENOMEM;
3217
3218	hci_skb_pkt_type(skb) = HCI_EVENT_PKT;
3219	memcpy(skb_put(skb, 3), hw_err, 3);
 
 
3220
3221	/* Send Hardware Error to upper stack */
3222	return hci_recv_frame(hdev, skb);
3223}
3224EXPORT_SYMBOL(hci_reset_dev);
3225
3226/* Receive frame from HCI drivers */
3227int hci_recv_frame(struct hci_dev *hdev, struct sk_buff *skb)
3228{
3229	if (!hdev || (!test_bit(HCI_UP, &hdev->flags)
3230		      && !test_bit(HCI_INIT, &hdev->flags))) {
3231		kfree_skb(skb);
3232		return -ENXIO;
3233	}
3234
3235	if (hci_skb_pkt_type(skb) != HCI_EVENT_PKT &&
3236	    hci_skb_pkt_type(skb) != HCI_ACLDATA_PKT &&
3237	    hci_skb_pkt_type(skb) != HCI_SCODATA_PKT) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3238		kfree_skb(skb);
3239		return -EINVAL;
3240	}
3241
3242	/* Incoming skb */
3243	bt_cb(skb)->incoming = 1;
3244
3245	/* Time stamp */
3246	__net_timestamp(skb);
3247
3248	skb_queue_tail(&hdev->rx_q, skb);
3249	queue_work(hdev->workqueue, &hdev->rx_work);
3250
3251	return 0;
3252}
3253EXPORT_SYMBOL(hci_recv_frame);
3254
3255/* Receive diagnostic message from HCI drivers */
3256int hci_recv_diag(struct hci_dev *hdev, struct sk_buff *skb)
3257{
3258	/* Mark as diagnostic packet */
3259	hci_skb_pkt_type(skb) = HCI_DIAG_PKT;
3260
3261	/* Time stamp */
3262	__net_timestamp(skb);
3263
3264	skb_queue_tail(&hdev->rx_q, skb);
3265	queue_work(hdev->workqueue, &hdev->rx_work);
3266
3267	return 0;
3268}
3269EXPORT_SYMBOL(hci_recv_diag);
3270
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3271/* ---- Interface to upper protocols ---- */
3272
3273int hci_register_cb(struct hci_cb *cb)
3274{
3275	BT_DBG("%p name %s", cb, cb->name);
3276
3277	mutex_lock(&hci_cb_list_lock);
3278	list_add_tail(&cb->list, &hci_cb_list);
3279	mutex_unlock(&hci_cb_list_lock);
3280
3281	return 0;
3282}
3283EXPORT_SYMBOL(hci_register_cb);
3284
3285int hci_unregister_cb(struct hci_cb *cb)
3286{
3287	BT_DBG("%p name %s", cb, cb->name);
3288
3289	mutex_lock(&hci_cb_list_lock);
3290	list_del(&cb->list);
3291	mutex_unlock(&hci_cb_list_lock);
3292
3293	return 0;
3294}
3295EXPORT_SYMBOL(hci_unregister_cb);
3296
3297static void hci_send_frame(struct hci_dev *hdev, struct sk_buff *skb)
3298{
3299	int err;
3300
3301	BT_DBG("%s type %d len %d", hdev->name, hci_skb_pkt_type(skb),
3302	       skb->len);
3303
3304	/* Time stamp */
3305	__net_timestamp(skb);
3306
3307	/* Send copy to monitor */
3308	hci_send_to_monitor(hdev, skb);
3309
3310	if (atomic_read(&hdev->promisc)) {
3311		/* Send copy to the sockets */
3312		hci_send_to_sock(hdev, skb);
3313	}
3314
3315	/* Get rid of skb owner, prior to sending to the driver. */
3316	skb_orphan(skb);
3317
3318	if (!test_bit(HCI_RUNNING, &hdev->flags)) {
3319		kfree_skb(skb);
3320		return;
3321	}
3322
3323	err = hdev->send(hdev, skb);
3324	if (err < 0) {
3325		BT_ERR("%s sending frame failed (%d)", hdev->name, err);
3326		kfree_skb(skb);
 
3327	}
 
 
3328}
3329
3330/* Send HCI command */
3331int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen,
3332		 const void *param)
3333{
3334	struct sk_buff *skb;
3335
3336	BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen);
3337
3338	skb = hci_prepare_cmd(hdev, opcode, plen, param);
3339	if (!skb) {
3340		BT_ERR("%s no memory for command", hdev->name);
3341		return -ENOMEM;
3342	}
3343
3344	/* Stand-alone HCI commands must be flagged as
3345	 * single-command requests.
3346	 */
3347	bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
3348
3349	skb_queue_tail(&hdev->cmd_q, skb);
3350	queue_work(hdev->workqueue, &hdev->cmd_work);
3351
3352	return 0;
3353}
3354
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3355/* Get data from the previously sent command */
3356void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode)
3357{
3358	struct hci_command_hdr *hdr;
3359
3360	if (!hdev->sent_cmd)
3361		return NULL;
3362
3363	hdr = (void *) hdev->sent_cmd->data;
3364
3365	if (hdr->opcode != cpu_to_le16(opcode))
3366		return NULL;
3367
3368	BT_DBG("%s opcode 0x%4.4x", hdev->name, opcode);
 
 
 
 
 
 
3369
3370	return hdev->sent_cmd->data + HCI_COMMAND_HDR_SIZE;
 
 
 
 
 
 
3371}
3372
3373/* Send HCI command and wait for command commplete event */
3374struct sk_buff *hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
3375			     const void *param, u32 timeout)
3376{
3377	struct sk_buff *skb;
 
3378
3379	if (!test_bit(HCI_UP, &hdev->flags))
3380		return ERR_PTR(-ENETDOWN);
3381
3382	bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen);
 
3383
3384	hci_req_sync_lock(hdev);
3385	skb = __hci_cmd_sync(hdev, opcode, plen, param, timeout);
3386	hci_req_sync_unlock(hdev);
 
 
 
 
 
 
 
 
 
 
 
 
3387
3388	return skb;
3389}
3390EXPORT_SYMBOL(hci_cmd_sync);
3391
3392/* Send ACL data */
3393static void hci_add_acl_hdr(struct sk_buff *skb, __u16 handle, __u16 flags)
3394{
3395	struct hci_acl_hdr *hdr;
3396	int len = skb->len;
3397
3398	skb_push(skb, HCI_ACL_HDR_SIZE);
3399	skb_reset_transport_header(skb);
3400	hdr = (struct hci_acl_hdr *)skb_transport_header(skb);
3401	hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
3402	hdr->dlen   = cpu_to_le16(len);
3403}
3404
3405static void hci_queue_acl(struct hci_chan *chan, struct sk_buff_head *queue,
3406			  struct sk_buff *skb, __u16 flags)
3407{
3408	struct hci_conn *conn = chan->conn;
3409	struct hci_dev *hdev = conn->hdev;
3410	struct sk_buff *list;
3411
3412	skb->len = skb_headlen(skb);
3413	skb->data_len = 0;
3414
3415	hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
3416
3417	switch (hdev->dev_type) {
3418	case HCI_BREDR:
3419		hci_add_acl_hdr(skb, conn->handle, flags);
3420		break;
3421	case HCI_AMP:
3422		hci_add_acl_hdr(skb, chan->handle, flags);
3423		break;
3424	default:
3425		BT_ERR("%s unknown dev_type %d", hdev->name, hdev->dev_type);
3426		return;
3427	}
3428
3429	list = skb_shinfo(skb)->frag_list;
3430	if (!list) {
3431		/* Non fragmented */
3432		BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
3433
3434		skb_queue_tail(queue, skb);
3435	} else {
3436		/* Fragmented */
3437		BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3438
3439		skb_shinfo(skb)->frag_list = NULL;
3440
3441		/* Queue all fragments atomically. We need to use spin_lock_bh
3442		 * here because of 6LoWPAN links, as there this function is
3443		 * called from softirq and using normal spin lock could cause
3444		 * deadlocks.
3445		 */
3446		spin_lock_bh(&queue->lock);
3447
3448		__skb_queue_tail(queue, skb);
3449
3450		flags &= ~ACL_START;
3451		flags |= ACL_CONT;
3452		do {
3453			skb = list; list = list->next;
3454
3455			hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
3456			hci_add_acl_hdr(skb, conn->handle, flags);
3457
3458			BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3459
3460			__skb_queue_tail(queue, skb);
3461		} while (list);
3462
3463		spin_unlock_bh(&queue->lock);
3464	}
3465}
3466
3467void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags)
3468{
3469	struct hci_dev *hdev = chan->conn->hdev;
3470
3471	BT_DBG("%s chan %p flags 0x%4.4x", hdev->name, chan, flags);
3472
3473	hci_queue_acl(chan, &chan->data_q, skb, flags);
3474
3475	queue_work(hdev->workqueue, &hdev->tx_work);
3476}
3477
3478/* Send SCO data */
3479void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb)
3480{
3481	struct hci_dev *hdev = conn->hdev;
3482	struct hci_sco_hdr hdr;
3483
3484	BT_DBG("%s len %d", hdev->name, skb->len);
3485
3486	hdr.handle = cpu_to_le16(conn->handle);
3487	hdr.dlen   = skb->len;
3488
3489	skb_push(skb, HCI_SCO_HDR_SIZE);
3490	skb_reset_transport_header(skb);
3491	memcpy(skb_transport_header(skb), &hdr, HCI_SCO_HDR_SIZE);
3492
3493	hci_skb_pkt_type(skb) = HCI_SCODATA_PKT;
3494
3495	skb_queue_tail(&conn->data_q, skb);
3496	queue_work(hdev->workqueue, &hdev->tx_work);
3497}
3498
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3499/* ---- HCI TX task (outgoing data) ---- */
3500
3501/* HCI Connection scheduler */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3502static struct hci_conn *hci_low_sent(struct hci_dev *hdev, __u8 type,
3503				     int *quote)
3504{
3505	struct hci_conn_hash *h = &hdev->conn_hash;
3506	struct hci_conn *conn = NULL, *c;
3507	unsigned int num = 0, min = ~0;
3508
3509	/* We don't have to lock device here. Connections are always
3510	 * added and removed with TX task disabled. */
3511
3512	rcu_read_lock();
3513
3514	list_for_each_entry_rcu(c, &h->list, list) {
3515		if (c->type != type || skb_queue_empty(&c->data_q))
3516			continue;
3517
3518		if (c->state != BT_CONNECTED && c->state != BT_CONFIG)
3519			continue;
3520
3521		num++;
3522
3523		if (c->sent < min) {
3524			min  = c->sent;
3525			conn = c;
3526		}
3527
3528		if (hci_conn_num(hdev, type) == num)
3529			break;
3530	}
3531
3532	rcu_read_unlock();
3533
3534	if (conn) {
3535		int cnt, q;
3536
3537		switch (conn->type) {
3538		case ACL_LINK:
3539			cnt = hdev->acl_cnt;
3540			break;
3541		case SCO_LINK:
3542		case ESCO_LINK:
3543			cnt = hdev->sco_cnt;
3544			break;
3545		case LE_LINK:
3546			cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3547			break;
3548		default:
3549			cnt = 0;
3550			BT_ERR("Unknown link type");
3551		}
3552
3553		q = cnt / num;
3554		*quote = q ? q : 1;
3555	} else
3556		*quote = 0;
3557
3558	BT_DBG("conn %p quote %d", conn, *quote);
3559	return conn;
3560}
3561
3562static void hci_link_tx_to(struct hci_dev *hdev, __u8 type)
3563{
3564	struct hci_conn_hash *h = &hdev->conn_hash;
3565	struct hci_conn *c;
3566
3567	BT_ERR("%s link tx timeout", hdev->name);
3568
3569	rcu_read_lock();
3570
3571	/* Kill stalled connections */
3572	list_for_each_entry_rcu(c, &h->list, list) {
3573		if (c->type == type && c->sent) {
3574			BT_ERR("%s killing stalled connection %pMR",
3575			       hdev->name, &c->dst);
 
 
 
 
3576			hci_disconnect(c, HCI_ERROR_REMOTE_USER_TERM);
 
3577		}
3578	}
3579
3580	rcu_read_unlock();
3581}
3582
3583static struct hci_chan *hci_chan_sent(struct hci_dev *hdev, __u8 type,
3584				      int *quote)
3585{
3586	struct hci_conn_hash *h = &hdev->conn_hash;
3587	struct hci_chan *chan = NULL;
3588	unsigned int num = 0, min = ~0, cur_prio = 0;
3589	struct hci_conn *conn;
3590	int cnt, q, conn_num = 0;
3591
3592	BT_DBG("%s", hdev->name);
3593
3594	rcu_read_lock();
3595
3596	list_for_each_entry_rcu(conn, &h->list, list) {
3597		struct hci_chan *tmp;
3598
3599		if (conn->type != type)
3600			continue;
3601
3602		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3603			continue;
3604
3605		conn_num++;
3606
3607		list_for_each_entry_rcu(tmp, &conn->chan_list, list) {
3608			struct sk_buff *skb;
3609
3610			if (skb_queue_empty(&tmp->data_q))
3611				continue;
3612
3613			skb = skb_peek(&tmp->data_q);
3614			if (skb->priority < cur_prio)
3615				continue;
3616
3617			if (skb->priority > cur_prio) {
3618				num = 0;
3619				min = ~0;
3620				cur_prio = skb->priority;
3621			}
3622
3623			num++;
3624
3625			if (conn->sent < min) {
3626				min  = conn->sent;
3627				chan = tmp;
3628			}
3629		}
3630
3631		if (hci_conn_num(hdev, type) == conn_num)
3632			break;
3633	}
3634
3635	rcu_read_unlock();
3636
3637	if (!chan)
3638		return NULL;
3639
3640	switch (chan->conn->type) {
3641	case ACL_LINK:
3642		cnt = hdev->acl_cnt;
3643		break;
3644	case AMP_LINK:
3645		cnt = hdev->block_cnt;
3646		break;
3647	case SCO_LINK:
3648	case ESCO_LINK:
3649		cnt = hdev->sco_cnt;
3650		break;
3651	case LE_LINK:
3652		cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3653		break;
3654	default:
3655		cnt = 0;
3656		BT_ERR("Unknown link type");
3657	}
3658
3659	q = cnt / num;
3660	*quote = q ? q : 1;
3661	BT_DBG("chan %p quote %d", chan, *quote);
3662	return chan;
3663}
3664
3665static void hci_prio_recalculate(struct hci_dev *hdev, __u8 type)
3666{
3667	struct hci_conn_hash *h = &hdev->conn_hash;
3668	struct hci_conn *conn;
3669	int num = 0;
3670
3671	BT_DBG("%s", hdev->name);
3672
3673	rcu_read_lock();
3674
3675	list_for_each_entry_rcu(conn, &h->list, list) {
3676		struct hci_chan *chan;
3677
3678		if (conn->type != type)
3679			continue;
3680
3681		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3682			continue;
3683
3684		num++;
3685
3686		list_for_each_entry_rcu(chan, &conn->chan_list, list) {
3687			struct sk_buff *skb;
3688
3689			if (chan->sent) {
3690				chan->sent = 0;
3691				continue;
3692			}
3693
3694			if (skb_queue_empty(&chan->data_q))
3695				continue;
3696
3697			skb = skb_peek(&chan->data_q);
3698			if (skb->priority >= HCI_PRIO_MAX - 1)
3699				continue;
3700
3701			skb->priority = HCI_PRIO_MAX - 1;
3702
3703			BT_DBG("chan %p skb %p promoted to %d", chan, skb,
3704			       skb->priority);
3705		}
3706
3707		if (hci_conn_num(hdev, type) == num)
3708			break;
3709	}
3710
3711	rcu_read_unlock();
3712
3713}
3714
3715static inline int __get_blocks(struct hci_dev *hdev, struct sk_buff *skb)
3716{
3717	/* Calculate count of blocks used by this packet */
3718	return DIV_ROUND_UP(skb->len - HCI_ACL_HDR_SIZE, hdev->block_len);
3719}
3720
3721static void __check_timeout(struct hci_dev *hdev, unsigned int cnt)
3722{
3723	if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
3724		/* ACL tx timeout must be longer than maximum
3725		 * link supervision timeout (40.9 seconds) */
3726		if (!cnt && time_after(jiffies, hdev->acl_last_tx +
3727				       HCI_ACL_TX_TIMEOUT))
3728			hci_link_tx_to(hdev, ACL_LINK);
3729	}
3730}
3731
3732static void hci_sched_acl_pkt(struct hci_dev *hdev)
3733{
3734	unsigned int cnt = hdev->acl_cnt;
3735	struct hci_chan *chan;
3736	struct sk_buff *skb;
3737	int quote;
3738
3739	__check_timeout(hdev, cnt);
3740
3741	while (hdev->acl_cnt &&
3742	       (chan = hci_chan_sent(hdev, ACL_LINK, &quote))) {
3743		u32 priority = (skb_peek(&chan->data_q))->priority;
3744		while (quote-- && (skb = skb_peek(&chan->data_q))) {
3745			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3746			       skb->len, skb->priority);
3747
3748			/* Stop if priority has changed */
3749			if (skb->priority < priority)
3750				break;
3751
3752			skb = skb_dequeue(&chan->data_q);
3753
3754			hci_conn_enter_active_mode(chan->conn,
3755						   bt_cb(skb)->force_active);
3756
3757			hci_send_frame(hdev, skb);
3758			hdev->acl_last_tx = jiffies;
3759
3760			hdev->acl_cnt--;
3761			chan->sent++;
3762			chan->conn->sent++;
3763		}
3764	}
3765
3766	if (cnt != hdev->acl_cnt)
3767		hci_prio_recalculate(hdev, ACL_LINK);
3768}
3769
3770static void hci_sched_acl_blk(struct hci_dev *hdev)
3771{
3772	unsigned int cnt = hdev->block_cnt;
3773	struct hci_chan *chan;
3774	struct sk_buff *skb;
3775	int quote;
3776	u8 type;
3777
3778	__check_timeout(hdev, cnt);
3779
3780	BT_DBG("%s", hdev->name);
3781
3782	if (hdev->dev_type == HCI_AMP)
3783		type = AMP_LINK;
3784	else
3785		type = ACL_LINK;
3786
3787	while (hdev->block_cnt > 0 &&
3788	       (chan = hci_chan_sent(hdev, type, &quote))) {
3789		u32 priority = (skb_peek(&chan->data_q))->priority;
3790		while (quote > 0 && (skb = skb_peek(&chan->data_q))) {
3791			int blocks;
3792
3793			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3794			       skb->len, skb->priority);
3795
3796			/* Stop if priority has changed */
3797			if (skb->priority < priority)
3798				break;
3799
3800			skb = skb_dequeue(&chan->data_q);
3801
3802			blocks = __get_blocks(hdev, skb);
3803			if (blocks > hdev->block_cnt)
3804				return;
3805
3806			hci_conn_enter_active_mode(chan->conn,
3807						   bt_cb(skb)->force_active);
3808
3809			hci_send_frame(hdev, skb);
3810			hdev->acl_last_tx = jiffies;
3811
3812			hdev->block_cnt -= blocks;
3813			quote -= blocks;
3814
3815			chan->sent += blocks;
3816			chan->conn->sent += blocks;
3817		}
3818	}
3819
3820	if (cnt != hdev->block_cnt)
3821		hci_prio_recalculate(hdev, type);
3822}
3823
3824static void hci_sched_acl(struct hci_dev *hdev)
3825{
3826	BT_DBG("%s", hdev->name);
3827
3828	/* No ACL link over BR/EDR controller */
3829	if (!hci_conn_num(hdev, ACL_LINK) && hdev->dev_type == HCI_BREDR)
3830		return;
3831
3832	/* No AMP link over AMP controller */
3833	if (!hci_conn_num(hdev, AMP_LINK) && hdev->dev_type == HCI_AMP)
3834		return;
3835
3836	switch (hdev->flow_ctl_mode) {
3837	case HCI_FLOW_CTL_MODE_PACKET_BASED:
3838		hci_sched_acl_pkt(hdev);
3839		break;
3840
3841	case HCI_FLOW_CTL_MODE_BLOCK_BASED:
3842		hci_sched_acl_blk(hdev);
3843		break;
3844	}
 
 
 
 
 
 
3845}
3846
3847/* Schedule SCO */
3848static void hci_sched_sco(struct hci_dev *hdev)
3849{
3850	struct hci_conn *conn;
3851	struct sk_buff *skb;
3852	int quote;
3853
3854	BT_DBG("%s", hdev->name);
3855
3856	if (!hci_conn_num(hdev, SCO_LINK))
3857		return;
3858
3859	while (hdev->sco_cnt && (conn = hci_low_sent(hdev, SCO_LINK, &quote))) {
3860		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3861			BT_DBG("skb %p len %d", skb, skb->len);
3862			hci_send_frame(hdev, skb);
3863
3864			conn->sent++;
3865			if (conn->sent == ~0)
3866				conn->sent = 0;
3867		}
3868	}
3869}
3870
3871static void hci_sched_esco(struct hci_dev *hdev)
3872{
3873	struct hci_conn *conn;
3874	struct sk_buff *skb;
3875	int quote;
3876
3877	BT_DBG("%s", hdev->name);
3878
3879	if (!hci_conn_num(hdev, ESCO_LINK))
3880		return;
3881
3882	while (hdev->sco_cnt && (conn = hci_low_sent(hdev, ESCO_LINK,
3883						     &quote))) {
3884		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3885			BT_DBG("skb %p len %d", skb, skb->len);
3886			hci_send_frame(hdev, skb);
3887
3888			conn->sent++;
3889			if (conn->sent == ~0)
3890				conn->sent = 0;
3891		}
3892	}
3893}
3894
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3895static void hci_sched_le(struct hci_dev *hdev)
3896{
3897	struct hci_chan *chan;
3898	struct sk_buff *skb;
3899	int quote, cnt, tmp;
3900
3901	BT_DBG("%s", hdev->name);
3902
3903	if (!hci_conn_num(hdev, LE_LINK))
3904		return;
3905
3906	if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
3907		/* LE tx timeout must be longer than maximum
3908		 * link supervision timeout (40.9 seconds) */
3909		if (!hdev->le_cnt && hdev->le_pkts &&
3910		    time_after(jiffies, hdev->le_last_tx + HZ * 45))
3911			hci_link_tx_to(hdev, LE_LINK);
3912	}
3913
3914	cnt = hdev->le_pkts ? hdev->le_cnt : hdev->acl_cnt;
 
 
 
3915	tmp = cnt;
3916	while (cnt && (chan = hci_chan_sent(hdev, LE_LINK, &quote))) {
3917		u32 priority = (skb_peek(&chan->data_q))->priority;
3918		while (quote-- && (skb = skb_peek(&chan->data_q))) {
3919			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3920			       skb->len, skb->priority);
3921
3922			/* Stop if priority has changed */
3923			if (skb->priority < priority)
3924				break;
3925
3926			skb = skb_dequeue(&chan->data_q);
3927
3928			hci_send_frame(hdev, skb);
3929			hdev->le_last_tx = jiffies;
3930
3931			cnt--;
3932			chan->sent++;
3933			chan->conn->sent++;
 
 
 
 
3934		}
3935	}
3936
3937	if (hdev->le_pkts)
3938		hdev->le_cnt = cnt;
3939	else
3940		hdev->acl_cnt = cnt;
3941
3942	if (cnt != tmp)
3943		hci_prio_recalculate(hdev, LE_LINK);
3944}
3945
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3946static void hci_tx_work(struct work_struct *work)
3947{
3948	struct hci_dev *hdev = container_of(work, struct hci_dev, tx_work);
3949	struct sk_buff *skb;
3950
3951	BT_DBG("%s acl %d sco %d le %d", hdev->name, hdev->acl_cnt,
3952	       hdev->sco_cnt, hdev->le_cnt);
3953
3954	if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
3955		/* Schedule queues and send stuff to HCI driver */
3956		hci_sched_acl(hdev);
3957		hci_sched_sco(hdev);
3958		hci_sched_esco(hdev);
 
 
3959		hci_sched_le(hdev);
3960	}
3961
3962	/* Send next queued raw (unknown type) packet */
3963	while ((skb = skb_dequeue(&hdev->raw_q)))
3964		hci_send_frame(hdev, skb);
3965}
3966
3967/* ----- HCI RX task (incoming data processing) ----- */
3968
3969/* ACL data packet */
3970static void hci_acldata_packet(struct hci_dev *hdev, struct sk_buff *skb)
3971{
3972	struct hci_acl_hdr *hdr = (void *) skb->data;
3973	struct hci_conn *conn;
3974	__u16 handle, flags;
3975
3976	skb_pull(skb, HCI_ACL_HDR_SIZE);
3977
3978	handle = __le16_to_cpu(hdr->handle);
3979	flags  = hci_flags(handle);
3980	handle = hci_handle(handle);
3981
3982	BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len,
3983	       handle, flags);
3984
3985	hdev->stat.acl_rx++;
3986
3987	hci_dev_lock(hdev);
3988	conn = hci_conn_hash_lookup_handle(hdev, handle);
3989	hci_dev_unlock(hdev);
3990
3991	if (conn) {
3992		hci_conn_enter_active_mode(conn, BT_POWER_FORCE_ACTIVE_OFF);
3993
3994		/* Send to upper protocol */
3995		l2cap_recv_acldata(conn, skb, flags);
3996		return;
3997	} else {
3998		BT_ERR("%s ACL packet for unknown connection handle %d",
3999		       hdev->name, handle);
4000	}
4001
4002	kfree_skb(skb);
4003}
4004
4005/* SCO data packet */
4006static void hci_scodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
4007{
4008	struct hci_sco_hdr *hdr = (void *) skb->data;
4009	struct hci_conn *conn;
4010	__u16 handle;
4011
4012	skb_pull(skb, HCI_SCO_HDR_SIZE);
4013
4014	handle = __le16_to_cpu(hdr->handle);
 
 
4015
4016	BT_DBG("%s len %d handle 0x%4.4x", hdev->name, skb->len, handle);
 
4017
4018	hdev->stat.sco_rx++;
4019
4020	hci_dev_lock(hdev);
4021	conn = hci_conn_hash_lookup_handle(hdev, handle);
4022	hci_dev_unlock(hdev);
4023
4024	if (conn) {
4025		/* Send to upper protocol */
 
4026		sco_recv_scodata(conn, skb);
4027		return;
4028	} else {
4029		BT_ERR("%s SCO packet for unknown connection handle %d",
4030		       hdev->name, handle);
4031	}
4032
4033	kfree_skb(skb);
4034}
4035
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4036static bool hci_req_is_complete(struct hci_dev *hdev)
4037{
4038	struct sk_buff *skb;
4039
4040	skb = skb_peek(&hdev->cmd_q);
4041	if (!skb)
4042		return true;
4043
4044	return (bt_cb(skb)->hci.req_flags & HCI_REQ_START);
4045}
4046
4047static void hci_resend_last(struct hci_dev *hdev)
4048{
4049	struct hci_command_hdr *sent;
4050	struct sk_buff *skb;
4051	u16 opcode;
4052
4053	if (!hdev->sent_cmd)
4054		return;
4055
4056	sent = (void *) hdev->sent_cmd->data;
4057	opcode = __le16_to_cpu(sent->opcode);
4058	if (opcode == HCI_OP_RESET)
4059		return;
4060
4061	skb = skb_clone(hdev->sent_cmd, GFP_KERNEL);
4062	if (!skb)
4063		return;
4064
4065	skb_queue_head(&hdev->cmd_q, skb);
4066	queue_work(hdev->workqueue, &hdev->cmd_work);
4067}
4068
4069void hci_req_cmd_complete(struct hci_dev *hdev, u16 opcode, u8 status,
4070			  hci_req_complete_t *req_complete,
4071			  hci_req_complete_skb_t *req_complete_skb)
4072{
4073	struct sk_buff *skb;
4074	unsigned long flags;
4075
4076	BT_DBG("opcode 0x%04x status 0x%02x", opcode, status);
4077
4078	/* If the completed command doesn't match the last one that was
4079	 * sent we need to do special handling of it.
4080	 */
4081	if (!hci_sent_cmd_data(hdev, opcode)) {
4082		/* Some CSR based controllers generate a spontaneous
4083		 * reset complete event during init and any pending
4084		 * command will never be completed. In such a case we
4085		 * need to resend whatever was the last sent
4086		 * command.
4087		 */
4088		if (test_bit(HCI_INIT, &hdev->flags) && opcode == HCI_OP_RESET)
4089			hci_resend_last(hdev);
4090
4091		return;
4092	}
4093
 
 
 
4094	/* If the command succeeded and there's still more commands in
4095	 * this request the request is not yet complete.
4096	 */
4097	if (!status && !hci_req_is_complete(hdev))
4098		return;
4099
 
 
4100	/* If this was the last command in a request the complete
4101	 * callback would be found in hdev->sent_cmd instead of the
4102	 * command queue (hdev->cmd_q).
4103	 */
4104	if (bt_cb(hdev->sent_cmd)->hci.req_flags & HCI_REQ_SKB) {
4105		*req_complete_skb = bt_cb(hdev->sent_cmd)->hci.req_complete_skb;
4106		return;
4107	}
4108
4109	if (bt_cb(hdev->sent_cmd)->hci.req_complete) {
4110		*req_complete = bt_cb(hdev->sent_cmd)->hci.req_complete;
4111		return;
4112	}
4113
4114	/* Remove all pending commands belonging to this request */
4115	spin_lock_irqsave(&hdev->cmd_q.lock, flags);
4116	while ((skb = __skb_dequeue(&hdev->cmd_q))) {
4117		if (bt_cb(skb)->hci.req_flags & HCI_REQ_START) {
4118			__skb_queue_head(&hdev->cmd_q, skb);
4119			break;
4120		}
4121
4122		if (bt_cb(skb)->hci.req_flags & HCI_REQ_SKB)
4123			*req_complete_skb = bt_cb(skb)->hci.req_complete_skb;
4124		else
4125			*req_complete = bt_cb(skb)->hci.req_complete;
4126		kfree_skb(skb);
4127	}
4128	spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
4129}
4130
4131static void hci_rx_work(struct work_struct *work)
4132{
4133	struct hci_dev *hdev = container_of(work, struct hci_dev, rx_work);
4134	struct sk_buff *skb;
4135
4136	BT_DBG("%s", hdev->name);
4137
4138	while ((skb = skb_dequeue(&hdev->rx_q))) {
 
 
 
 
 
 
 
4139		/* Send copy to monitor */
4140		hci_send_to_monitor(hdev, skb);
4141
4142		if (atomic_read(&hdev->promisc)) {
4143			/* Send copy to the sockets */
4144			hci_send_to_sock(hdev, skb);
4145		}
4146
4147		if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
 
 
 
 
 
 
 
4148			kfree_skb(skb);
4149			continue;
4150		}
4151
4152		if (test_bit(HCI_INIT, &hdev->flags)) {
4153			/* Don't process data packets in this states. */
4154			switch (hci_skb_pkt_type(skb)) {
4155			case HCI_ACLDATA_PKT:
4156			case HCI_SCODATA_PKT:
 
4157				kfree_skb(skb);
4158				continue;
4159			}
4160		}
4161
4162		/* Process frame */
4163		switch (hci_skb_pkt_type(skb)) {
4164		case HCI_EVENT_PKT:
4165			BT_DBG("%s Event packet", hdev->name);
4166			hci_event_packet(hdev, skb);
4167			break;
4168
4169		case HCI_ACLDATA_PKT:
4170			BT_DBG("%s ACL data packet", hdev->name);
4171			hci_acldata_packet(hdev, skb);
4172			break;
4173
4174		case HCI_SCODATA_PKT:
4175			BT_DBG("%s SCO data packet", hdev->name);
4176			hci_scodata_packet(hdev, skb);
4177			break;
4178
 
 
 
 
 
4179		default:
4180			kfree_skb(skb);
4181			break;
4182		}
4183	}
4184}
4185
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4186static void hci_cmd_work(struct work_struct *work)
4187{
4188	struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_work);
4189	struct sk_buff *skb;
4190
4191	BT_DBG("%s cmd_cnt %d cmd queued %d", hdev->name,
4192	       atomic_read(&hdev->cmd_cnt), skb_queue_len(&hdev->cmd_q));
4193
4194	/* Send queued commands */
4195	if (atomic_read(&hdev->cmd_cnt)) {
4196		skb = skb_dequeue(&hdev->cmd_q);
4197		if (!skb)
4198			return;
4199
4200		kfree_skb(hdev->sent_cmd);
4201
4202		hdev->sent_cmd = skb_clone(skb, GFP_KERNEL);
4203		if (hdev->sent_cmd) {
4204			atomic_dec(&hdev->cmd_cnt);
4205			hci_send_frame(hdev, skb);
4206			if (test_bit(HCI_RESET, &hdev->flags))
4207				cancel_delayed_work(&hdev->cmd_timer);
4208			else
4209				schedule_delayed_work(&hdev->cmd_timer,
4210						      HCI_CMD_TIMEOUT);
4211		} else {
4212			skb_queue_head(&hdev->cmd_q, skb);
4213			queue_work(hdev->workqueue, &hdev->cmd_work);
4214		}
4215	}
4216}
v6.9.4
   1/*
   2   BlueZ - Bluetooth protocol stack for Linux
   3   Copyright (C) 2000-2001 Qualcomm Incorporated
   4   Copyright (C) 2011 ProFUSION Embedded Systems
   5
   6   Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
   7
   8   This program is free software; you can redistribute it and/or modify
   9   it under the terms of the GNU General Public License version 2 as
  10   published by the Free Software Foundation;
  11
  12   THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
  13   OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  14   FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
  15   IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
  16   CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
  17   WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  18   ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  19   OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  20
  21   ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
  22   COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
  23   SOFTWARE IS DISCLAIMED.
  24*/
  25
  26/* Bluetooth HCI core. */
  27
  28#include <linux/export.h>
 
  29#include <linux/rfkill.h>
  30#include <linux/debugfs.h>
  31#include <linux/crypto.h>
  32#include <linux/kcov.h>
  33#include <linux/property.h>
  34#include <linux/suspend.h>
  35#include <linux/wait.h>
  36#include <asm/unaligned.h>
  37
  38#include <net/bluetooth/bluetooth.h>
  39#include <net/bluetooth/hci_core.h>
  40#include <net/bluetooth/l2cap.h>
  41#include <net/bluetooth/mgmt.h>
  42
  43#include "hci_request.h"
  44#include "hci_debugfs.h"
  45#include "smp.h"
  46#include "leds.h"
  47#include "msft.h"
  48#include "aosp.h"
  49#include "hci_codec.h"
  50
  51static void hci_rx_work(struct work_struct *work);
  52static void hci_cmd_work(struct work_struct *work);
  53static void hci_tx_work(struct work_struct *work);
  54
  55/* HCI device list */
  56LIST_HEAD(hci_dev_list);
  57DEFINE_RWLOCK(hci_dev_list_lock);
  58
  59/* HCI callback list */
  60LIST_HEAD(hci_cb_list);
  61DEFINE_MUTEX(hci_cb_list_lock);
  62
  63/* HCI ID Numbering */
  64static DEFINE_IDA(hci_index_ida);
  65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  66static int hci_scan_req(struct hci_request *req, unsigned long opt)
  67{
  68	__u8 scan = opt;
  69
  70	BT_DBG("%s %x", req->hdev->name, scan);
  71
  72	/* Inquiry and Page scans */
  73	hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
  74	return 0;
  75}
  76
  77static int hci_auth_req(struct hci_request *req, unsigned long opt)
  78{
  79	__u8 auth = opt;
  80
  81	BT_DBG("%s %x", req->hdev->name, auth);
  82
  83	/* Authentication */
  84	hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, 1, &auth);
  85	return 0;
  86}
  87
  88static int hci_encrypt_req(struct hci_request *req, unsigned long opt)
  89{
  90	__u8 encrypt = opt;
  91
  92	BT_DBG("%s %x", req->hdev->name, encrypt);
  93
  94	/* Encryption */
  95	hci_req_add(req, HCI_OP_WRITE_ENCRYPT_MODE, 1, &encrypt);
  96	return 0;
  97}
  98
  99static int hci_linkpol_req(struct hci_request *req, unsigned long opt)
 100{
 101	__le16 policy = cpu_to_le16(opt);
 102
 103	BT_DBG("%s %x", req->hdev->name, policy);
 104
 105	/* Default link policy */
 106	hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, 2, &policy);
 107	return 0;
 108}
 109
 110/* Get HCI device by index.
 111 * Device is held on return. */
 112struct hci_dev *hci_dev_get(int index)
 113{
 114	struct hci_dev *hdev = NULL, *d;
 115
 116	BT_DBG("%d", index);
 117
 118	if (index < 0)
 119		return NULL;
 120
 121	read_lock(&hci_dev_list_lock);
 122	list_for_each_entry(d, &hci_dev_list, list) {
 123		if (d->id == index) {
 124			hdev = hci_dev_hold(d);
 125			break;
 126		}
 127	}
 128	read_unlock(&hci_dev_list_lock);
 129	return hdev;
 130}
 131
 132/* ---- Inquiry support ---- */
 133
 134bool hci_discovery_active(struct hci_dev *hdev)
 135{
 136	struct discovery_state *discov = &hdev->discovery;
 137
 138	switch (discov->state) {
 139	case DISCOVERY_FINDING:
 140	case DISCOVERY_RESOLVING:
 141		return true;
 142
 143	default:
 144		return false;
 145	}
 146}
 147
 148void hci_discovery_set_state(struct hci_dev *hdev, int state)
 149{
 150	int old_state = hdev->discovery.state;
 151
 152	BT_DBG("%s state %u -> %u", hdev->name, hdev->discovery.state, state);
 153
 154	if (old_state == state)
 155		return;
 156
 157	hdev->discovery.state = state;
 158
 159	switch (state) {
 160	case DISCOVERY_STOPPED:
 161		hci_update_passive_scan(hdev);
 162
 163		if (old_state != DISCOVERY_STARTING)
 164			mgmt_discovering(hdev, 0);
 165		break;
 166	case DISCOVERY_STARTING:
 167		break;
 168	case DISCOVERY_FINDING:
 169		mgmt_discovering(hdev, 1);
 170		break;
 171	case DISCOVERY_RESOLVING:
 172		break;
 173	case DISCOVERY_STOPPING:
 174		break;
 175	}
 176}
 177
 178void hci_inquiry_cache_flush(struct hci_dev *hdev)
 179{
 180	struct discovery_state *cache = &hdev->discovery;
 181	struct inquiry_entry *p, *n;
 182
 183	list_for_each_entry_safe(p, n, &cache->all, all) {
 184		list_del(&p->all);
 185		kfree(p);
 186	}
 187
 188	INIT_LIST_HEAD(&cache->unknown);
 189	INIT_LIST_HEAD(&cache->resolve);
 190}
 191
 192struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev,
 193					       bdaddr_t *bdaddr)
 194{
 195	struct discovery_state *cache = &hdev->discovery;
 196	struct inquiry_entry *e;
 197
 198	BT_DBG("cache %p, %pMR", cache, bdaddr);
 199
 200	list_for_each_entry(e, &cache->all, all) {
 201		if (!bacmp(&e->data.bdaddr, bdaddr))
 202			return e;
 203	}
 204
 205	return NULL;
 206}
 207
 208struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev,
 209						       bdaddr_t *bdaddr)
 210{
 211	struct discovery_state *cache = &hdev->discovery;
 212	struct inquiry_entry *e;
 213
 214	BT_DBG("cache %p, %pMR", cache, bdaddr);
 215
 216	list_for_each_entry(e, &cache->unknown, list) {
 217		if (!bacmp(&e->data.bdaddr, bdaddr))
 218			return e;
 219	}
 220
 221	return NULL;
 222}
 223
 224struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev,
 225						       bdaddr_t *bdaddr,
 226						       int state)
 227{
 228	struct discovery_state *cache = &hdev->discovery;
 229	struct inquiry_entry *e;
 230
 231	BT_DBG("cache %p bdaddr %pMR state %d", cache, bdaddr, state);
 232
 233	list_for_each_entry(e, &cache->resolve, list) {
 234		if (!bacmp(bdaddr, BDADDR_ANY) && e->name_state == state)
 235			return e;
 236		if (!bacmp(&e->data.bdaddr, bdaddr))
 237			return e;
 238	}
 239
 240	return NULL;
 241}
 242
 243void hci_inquiry_cache_update_resolve(struct hci_dev *hdev,
 244				      struct inquiry_entry *ie)
 245{
 246	struct discovery_state *cache = &hdev->discovery;
 247	struct list_head *pos = &cache->resolve;
 248	struct inquiry_entry *p;
 249
 250	list_del(&ie->list);
 251
 252	list_for_each_entry(p, &cache->resolve, list) {
 253		if (p->name_state != NAME_PENDING &&
 254		    abs(p->data.rssi) >= abs(ie->data.rssi))
 255			break;
 256		pos = &p->list;
 257	}
 258
 259	list_add(&ie->list, pos);
 260}
 261
 262u32 hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data,
 263			     bool name_known)
 264{
 265	struct discovery_state *cache = &hdev->discovery;
 266	struct inquiry_entry *ie;
 267	u32 flags = 0;
 268
 269	BT_DBG("cache %p, %pMR", cache, &data->bdaddr);
 270
 271	hci_remove_remote_oob_data(hdev, &data->bdaddr, BDADDR_BREDR);
 272
 273	if (!data->ssp_mode)
 274		flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
 275
 276	ie = hci_inquiry_cache_lookup(hdev, &data->bdaddr);
 277	if (ie) {
 278		if (!ie->data.ssp_mode)
 279			flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
 280
 281		if (ie->name_state == NAME_NEEDED &&
 282		    data->rssi != ie->data.rssi) {
 283			ie->data.rssi = data->rssi;
 284			hci_inquiry_cache_update_resolve(hdev, ie);
 285		}
 286
 287		goto update;
 288	}
 289
 290	/* Entry not in the cache. Add new one. */
 291	ie = kzalloc(sizeof(*ie), GFP_KERNEL);
 292	if (!ie) {
 293		flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
 294		goto done;
 295	}
 296
 297	list_add(&ie->all, &cache->all);
 298
 299	if (name_known) {
 300		ie->name_state = NAME_KNOWN;
 301	} else {
 302		ie->name_state = NAME_NOT_KNOWN;
 303		list_add(&ie->list, &cache->unknown);
 304	}
 305
 306update:
 307	if (name_known && ie->name_state != NAME_KNOWN &&
 308	    ie->name_state != NAME_PENDING) {
 309		ie->name_state = NAME_KNOWN;
 310		list_del(&ie->list);
 311	}
 312
 313	memcpy(&ie->data, data, sizeof(*data));
 314	ie->timestamp = jiffies;
 315	cache->timestamp = jiffies;
 316
 317	if (ie->name_state == NAME_NOT_KNOWN)
 318		flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
 319
 320done:
 321	return flags;
 322}
 323
 324static int inquiry_cache_dump(struct hci_dev *hdev, int num, __u8 *buf)
 325{
 326	struct discovery_state *cache = &hdev->discovery;
 327	struct inquiry_info *info = (struct inquiry_info *) buf;
 328	struct inquiry_entry *e;
 329	int copied = 0;
 330
 331	list_for_each_entry(e, &cache->all, all) {
 332		struct inquiry_data *data = &e->data;
 333
 334		if (copied >= num)
 335			break;
 336
 337		bacpy(&info->bdaddr, &data->bdaddr);
 338		info->pscan_rep_mode	= data->pscan_rep_mode;
 339		info->pscan_period_mode	= data->pscan_period_mode;
 340		info->pscan_mode	= data->pscan_mode;
 341		memcpy(info->dev_class, data->dev_class, 3);
 342		info->clock_offset	= data->clock_offset;
 343
 344		info++;
 345		copied++;
 346	}
 347
 348	BT_DBG("cache %p, copied %d", cache, copied);
 349	return copied;
 350}
 351
 352static int hci_inq_req(struct hci_request *req, unsigned long opt)
 353{
 354	struct hci_inquiry_req *ir = (struct hci_inquiry_req *) opt;
 355	struct hci_dev *hdev = req->hdev;
 356	struct hci_cp_inquiry cp;
 357
 358	BT_DBG("%s", hdev->name);
 359
 360	if (test_bit(HCI_INQUIRY, &hdev->flags))
 361		return 0;
 362
 363	/* Start Inquiry */
 364	memcpy(&cp.lap, &ir->lap, 3);
 365	cp.length  = ir->length;
 366	cp.num_rsp = ir->num_rsp;
 367	hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp);
 368
 369	return 0;
 370}
 371
 372int hci_inquiry(void __user *arg)
 373{
 374	__u8 __user *ptr = arg;
 375	struct hci_inquiry_req ir;
 376	struct hci_dev *hdev;
 377	int err = 0, do_inquiry = 0, max_rsp;
 378	long timeo;
 379	__u8 *buf;
 380
 381	if (copy_from_user(&ir, ptr, sizeof(ir)))
 382		return -EFAULT;
 383
 384	hdev = hci_dev_get(ir.dev_id);
 385	if (!hdev)
 386		return -ENODEV;
 387
 388	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
 389		err = -EBUSY;
 390		goto done;
 391	}
 392
 393	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
 394		err = -EOPNOTSUPP;
 395		goto done;
 396	}
 397
 398	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
 399		err = -EOPNOTSUPP;
 400		goto done;
 401	}
 402
 403	/* Restrict maximum inquiry length to 60 seconds */
 404	if (ir.length > 60) {
 405		err = -EINVAL;
 406		goto done;
 407	}
 408
 409	hci_dev_lock(hdev);
 410	if (inquiry_cache_age(hdev) > INQUIRY_CACHE_AGE_MAX ||
 411	    inquiry_cache_empty(hdev) || ir.flags & IREQ_CACHE_FLUSH) {
 412		hci_inquiry_cache_flush(hdev);
 413		do_inquiry = 1;
 414	}
 415	hci_dev_unlock(hdev);
 416
 417	timeo = ir.length * msecs_to_jiffies(2000);
 418
 419	if (do_inquiry) {
 420		err = hci_req_sync(hdev, hci_inq_req, (unsigned long) &ir,
 421				   timeo, NULL);
 422		if (err < 0)
 423			goto done;
 424
 425		/* Wait until Inquiry procedure finishes (HCI_INQUIRY flag is
 426		 * cleared). If it is interrupted by a signal, return -EINTR.
 427		 */
 428		if (wait_on_bit(&hdev->flags, HCI_INQUIRY,
 429				TASK_INTERRUPTIBLE)) {
 430			err = -EINTR;
 431			goto done;
 432		}
 433	}
 434
 435	/* for unlimited number of responses we will use buffer with
 436	 * 255 entries
 437	 */
 438	max_rsp = (ir.num_rsp == 0) ? 255 : ir.num_rsp;
 439
 440	/* cache_dump can't sleep. Therefore we allocate temp buffer and then
 441	 * copy it to the user space.
 442	 */
 443	buf = kmalloc_array(max_rsp, sizeof(struct inquiry_info), GFP_KERNEL);
 444	if (!buf) {
 445		err = -ENOMEM;
 446		goto done;
 447	}
 448
 449	hci_dev_lock(hdev);
 450	ir.num_rsp = inquiry_cache_dump(hdev, max_rsp, buf);
 451	hci_dev_unlock(hdev);
 452
 453	BT_DBG("num_rsp %d", ir.num_rsp);
 454
 455	if (!copy_to_user(ptr, &ir, sizeof(ir))) {
 456		ptr += sizeof(ir);
 457		if (copy_to_user(ptr, buf, sizeof(struct inquiry_info) *
 458				 ir.num_rsp))
 459			err = -EFAULT;
 460	} else
 461		err = -EFAULT;
 462
 463	kfree(buf);
 464
 465done:
 466	hci_dev_put(hdev);
 467	return err;
 468}
 469
 470static int hci_dev_do_open(struct hci_dev *hdev)
 471{
 472	int ret = 0;
 473
 474	BT_DBG("%s %p", hdev->name, hdev);
 475
 476	hci_req_sync_lock(hdev);
 477
 478	ret = hci_dev_open_sync(hdev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 479
 
 480	hci_req_sync_unlock(hdev);
 481	return ret;
 482}
 483
 484/* ---- HCI ioctl helpers ---- */
 485
 486int hci_dev_open(__u16 dev)
 487{
 488	struct hci_dev *hdev;
 489	int err;
 490
 491	hdev = hci_dev_get(dev);
 492	if (!hdev)
 493		return -ENODEV;
 494
 495	/* Devices that are marked as unconfigured can only be powered
 496	 * up as user channel. Trying to bring them up as normal devices
 497	 * will result into a failure. Only user channel operation is
 498	 * possible.
 499	 *
 500	 * When this function is called for a user channel, the flag
 501	 * HCI_USER_CHANNEL will be set first before attempting to
 502	 * open the device.
 503	 */
 504	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
 505	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
 506		err = -EOPNOTSUPP;
 507		goto done;
 508	}
 509
 510	/* We need to ensure that no other power on/off work is pending
 511	 * before proceeding to call hci_dev_do_open. This is
 512	 * particularly important if the setup procedure has not yet
 513	 * completed.
 514	 */
 515	if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
 516		cancel_delayed_work(&hdev->power_off);
 517
 518	/* After this call it is guaranteed that the setup procedure
 519	 * has finished. This means that error conditions like RFKILL
 520	 * or no valid public or static random address apply.
 521	 */
 522	flush_workqueue(hdev->req_workqueue);
 523
 524	/* For controllers not using the management interface and that
 525	 * are brought up using legacy ioctl, set the HCI_BONDABLE bit
 526	 * so that pairing works for them. Once the management interface
 527	 * is in use this bit will be cleared again and userspace has
 528	 * to explicitly enable it.
 529	 */
 530	if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
 531	    !hci_dev_test_flag(hdev, HCI_MGMT))
 532		hci_dev_set_flag(hdev, HCI_BONDABLE);
 533
 534	err = hci_dev_do_open(hdev);
 535
 536done:
 537	hci_dev_put(hdev);
 538	return err;
 539}
 540
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 541int hci_dev_do_close(struct hci_dev *hdev)
 542{
 543	int err;
 544
 545	BT_DBG("%s %p", hdev->name, hdev);
 546
 
 
 
 
 
 
 
 
 
 
 
 547	hci_req_sync_lock(hdev);
 548
 549	err = hci_dev_close_sync(hdev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 550
 551	hci_req_sync_unlock(hdev);
 552
 553	return err;
 
 554}
 555
 556int hci_dev_close(__u16 dev)
 557{
 558	struct hci_dev *hdev;
 559	int err;
 560
 561	hdev = hci_dev_get(dev);
 562	if (!hdev)
 563		return -ENODEV;
 564
 565	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
 566		err = -EBUSY;
 567		goto done;
 568	}
 569
 570	cancel_work_sync(&hdev->power_on);
 571	if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
 572		cancel_delayed_work(&hdev->power_off);
 573
 574	err = hci_dev_do_close(hdev);
 575
 576done:
 577	hci_dev_put(hdev);
 578	return err;
 579}
 580
 581static int hci_dev_do_reset(struct hci_dev *hdev)
 582{
 583	int ret;
 584
 585	BT_DBG("%s %p", hdev->name, hdev);
 586
 587	hci_req_sync_lock(hdev);
 588
 589	/* Drop queues */
 590	skb_queue_purge(&hdev->rx_q);
 591	skb_queue_purge(&hdev->cmd_q);
 592
 593	/* Cancel these to avoid queueing non-chained pending work */
 594	hci_dev_set_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE);
 595	/* Wait for
 596	 *
 597	 *    if (!hci_dev_test_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE))
 598	 *        queue_delayed_work(&hdev->{cmd,ncmd}_timer)
 599	 *
 600	 * inside RCU section to see the flag or complete scheduling.
 601	 */
 602	synchronize_rcu();
 603	/* Explicitly cancel works in case scheduled after setting the flag. */
 604	cancel_delayed_work(&hdev->cmd_timer);
 605	cancel_delayed_work(&hdev->ncmd_timer);
 606
 607	/* Avoid potential lockdep warnings from the *_flush() calls by
 608	 * ensuring the workqueue is empty up front.
 609	 */
 610	drain_workqueue(hdev->workqueue);
 611
 612	hci_dev_lock(hdev);
 613	hci_inquiry_cache_flush(hdev);
 614	hci_conn_hash_flush(hdev);
 615	hci_dev_unlock(hdev);
 616
 617	if (hdev->flush)
 618		hdev->flush(hdev);
 619
 620	hci_dev_clear_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE);
 621
 622	atomic_set(&hdev->cmd_cnt, 1);
 623	hdev->acl_cnt = 0;
 624	hdev->sco_cnt = 0;
 625	hdev->le_cnt = 0;
 626	hdev->iso_cnt = 0;
 627
 628	ret = hci_reset_sync(hdev);
 629
 630	hci_req_sync_unlock(hdev);
 631	return ret;
 632}
 633
 634int hci_dev_reset(__u16 dev)
 635{
 636	struct hci_dev *hdev;
 637	int err;
 638
 639	hdev = hci_dev_get(dev);
 640	if (!hdev)
 641		return -ENODEV;
 642
 643	if (!test_bit(HCI_UP, &hdev->flags)) {
 644		err = -ENETDOWN;
 645		goto done;
 646	}
 647
 648	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
 649		err = -EBUSY;
 650		goto done;
 651	}
 652
 653	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
 654		err = -EOPNOTSUPP;
 655		goto done;
 656	}
 657
 658	err = hci_dev_do_reset(hdev);
 659
 660done:
 661	hci_dev_put(hdev);
 662	return err;
 663}
 664
 665int hci_dev_reset_stat(__u16 dev)
 666{
 667	struct hci_dev *hdev;
 668	int ret = 0;
 669
 670	hdev = hci_dev_get(dev);
 671	if (!hdev)
 672		return -ENODEV;
 673
 674	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
 675		ret = -EBUSY;
 676		goto done;
 677	}
 678
 679	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
 680		ret = -EOPNOTSUPP;
 681		goto done;
 682	}
 683
 684	memset(&hdev->stat, 0, sizeof(struct hci_dev_stats));
 685
 686done:
 687	hci_dev_put(hdev);
 688	return ret;
 689}
 690
 691static void hci_update_passive_scan_state(struct hci_dev *hdev, u8 scan)
 692{
 693	bool conn_changed, discov_changed;
 694
 695	BT_DBG("%s scan 0x%02x", hdev->name, scan);
 696
 697	if ((scan & SCAN_PAGE))
 698		conn_changed = !hci_dev_test_and_set_flag(hdev,
 699							  HCI_CONNECTABLE);
 700	else
 701		conn_changed = hci_dev_test_and_clear_flag(hdev,
 702							   HCI_CONNECTABLE);
 703
 704	if ((scan & SCAN_INQUIRY)) {
 705		discov_changed = !hci_dev_test_and_set_flag(hdev,
 706							    HCI_DISCOVERABLE);
 707	} else {
 708		hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
 709		discov_changed = hci_dev_test_and_clear_flag(hdev,
 710							     HCI_DISCOVERABLE);
 711	}
 712
 713	if (!hci_dev_test_flag(hdev, HCI_MGMT))
 714		return;
 715
 716	if (conn_changed || discov_changed) {
 717		/* In case this was disabled through mgmt */
 718		hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
 719
 720		if (hci_dev_test_flag(hdev, HCI_LE_ENABLED))
 721			hci_update_adv_data(hdev, hdev->cur_adv_instance);
 722
 723		mgmt_new_settings(hdev);
 724	}
 725}
 726
 727int hci_dev_cmd(unsigned int cmd, void __user *arg)
 728{
 729	struct hci_dev *hdev;
 730	struct hci_dev_req dr;
 731	int err = 0;
 732
 733	if (copy_from_user(&dr, arg, sizeof(dr)))
 734		return -EFAULT;
 735
 736	hdev = hci_dev_get(dr.dev_id);
 737	if (!hdev)
 738		return -ENODEV;
 739
 740	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
 741		err = -EBUSY;
 742		goto done;
 743	}
 744
 745	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
 746		err = -EOPNOTSUPP;
 747		goto done;
 748	}
 749
 
 
 
 
 
 750	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
 751		err = -EOPNOTSUPP;
 752		goto done;
 753	}
 754
 755	switch (cmd) {
 756	case HCISETAUTH:
 757		err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
 758				   HCI_INIT_TIMEOUT, NULL);
 759		break;
 760
 761	case HCISETENCRYPT:
 762		if (!lmp_encrypt_capable(hdev)) {
 763			err = -EOPNOTSUPP;
 764			break;
 765		}
 766
 767		if (!test_bit(HCI_AUTH, &hdev->flags)) {
 768			/* Auth must be enabled first */
 769			err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
 770					   HCI_INIT_TIMEOUT, NULL);
 771			if (err)
 772				break;
 773		}
 774
 775		err = hci_req_sync(hdev, hci_encrypt_req, dr.dev_opt,
 776				   HCI_INIT_TIMEOUT, NULL);
 777		break;
 778
 779	case HCISETSCAN:
 780		err = hci_req_sync(hdev, hci_scan_req, dr.dev_opt,
 781				   HCI_INIT_TIMEOUT, NULL);
 782
 783		/* Ensure that the connectable and discoverable states
 784		 * get correctly modified as this was a non-mgmt change.
 785		 */
 786		if (!err)
 787			hci_update_passive_scan_state(hdev, dr.dev_opt);
 788		break;
 789
 790	case HCISETLINKPOL:
 791		err = hci_req_sync(hdev, hci_linkpol_req, dr.dev_opt,
 792				   HCI_INIT_TIMEOUT, NULL);
 793		break;
 794
 795	case HCISETLINKMODE:
 796		hdev->link_mode = ((__u16) dr.dev_opt) &
 797					(HCI_LM_MASTER | HCI_LM_ACCEPT);
 798		break;
 799
 800	case HCISETPTYPE:
 801		if (hdev->pkt_type == (__u16) dr.dev_opt)
 802			break;
 803
 804		hdev->pkt_type = (__u16) dr.dev_opt;
 805		mgmt_phy_configuration_changed(hdev, NULL);
 806		break;
 807
 808	case HCISETACLMTU:
 809		hdev->acl_mtu  = *((__u16 *) &dr.dev_opt + 1);
 810		hdev->acl_pkts = *((__u16 *) &dr.dev_opt + 0);
 811		break;
 812
 813	case HCISETSCOMTU:
 814		hdev->sco_mtu  = *((__u16 *) &dr.dev_opt + 1);
 815		hdev->sco_pkts = *((__u16 *) &dr.dev_opt + 0);
 816		break;
 817
 818	default:
 819		err = -EINVAL;
 820		break;
 821	}
 822
 823done:
 824	hci_dev_put(hdev);
 825	return err;
 826}
 827
 828int hci_get_dev_list(void __user *arg)
 829{
 830	struct hci_dev *hdev;
 831	struct hci_dev_list_req *dl;
 832	struct hci_dev_req *dr;
 833	int n = 0, size, err;
 834	__u16 dev_num;
 835
 836	if (get_user(dev_num, (__u16 __user *) arg))
 837		return -EFAULT;
 838
 839	if (!dev_num || dev_num > (PAGE_SIZE * 2) / sizeof(*dr))
 840		return -EINVAL;
 841
 842	size = sizeof(*dl) + dev_num * sizeof(*dr);
 843
 844	dl = kzalloc(size, GFP_KERNEL);
 845	if (!dl)
 846		return -ENOMEM;
 847
 848	dr = dl->dev_req;
 849
 850	read_lock(&hci_dev_list_lock);
 851	list_for_each_entry(hdev, &hci_dev_list, list) {
 852		unsigned long flags = hdev->flags;
 853
 854		/* When the auto-off is configured it means the transport
 855		 * is running, but in that case still indicate that the
 856		 * device is actually down.
 857		 */
 858		if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
 859			flags &= ~BIT(HCI_UP);
 860
 861		(dr + n)->dev_id  = hdev->id;
 862		(dr + n)->dev_opt = flags;
 863
 864		if (++n >= dev_num)
 865			break;
 866	}
 867	read_unlock(&hci_dev_list_lock);
 868
 869	dl->dev_num = n;
 870	size = sizeof(*dl) + n * sizeof(*dr);
 871
 872	err = copy_to_user(arg, dl, size);
 873	kfree(dl);
 874
 875	return err ? -EFAULT : 0;
 876}
 877
 878int hci_get_dev_info(void __user *arg)
 879{
 880	struct hci_dev *hdev;
 881	struct hci_dev_info di;
 882	unsigned long flags;
 883	int err = 0;
 884
 885	if (copy_from_user(&di, arg, sizeof(di)))
 886		return -EFAULT;
 887
 888	hdev = hci_dev_get(di.dev_id);
 889	if (!hdev)
 890		return -ENODEV;
 891
 892	/* When the auto-off is configured it means the transport
 893	 * is running, but in that case still indicate that the
 894	 * device is actually down.
 895	 */
 896	if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
 897		flags = hdev->flags & ~BIT(HCI_UP);
 898	else
 899		flags = hdev->flags;
 900
 901	strscpy(di.name, hdev->name, sizeof(di.name));
 902	di.bdaddr   = hdev->bdaddr;
 903	di.type     = (hdev->bus & 0x0f);
 904	di.flags    = flags;
 905	di.pkt_type = hdev->pkt_type;
 906	if (lmp_bredr_capable(hdev)) {
 907		di.acl_mtu  = hdev->acl_mtu;
 908		di.acl_pkts = hdev->acl_pkts;
 909		di.sco_mtu  = hdev->sco_mtu;
 910		di.sco_pkts = hdev->sco_pkts;
 911	} else {
 912		di.acl_mtu  = hdev->le_mtu;
 913		di.acl_pkts = hdev->le_pkts;
 914		di.sco_mtu  = 0;
 915		di.sco_pkts = 0;
 916	}
 917	di.link_policy = hdev->link_policy;
 918	di.link_mode   = hdev->link_mode;
 919
 920	memcpy(&di.stat, &hdev->stat, sizeof(di.stat));
 921	memcpy(&di.features, &hdev->features, sizeof(di.features));
 922
 923	if (copy_to_user(arg, &di, sizeof(di)))
 924		err = -EFAULT;
 925
 926	hci_dev_put(hdev);
 927
 928	return err;
 929}
 930
 931/* ---- Interface to HCI drivers ---- */
 932
 933static int hci_dev_do_poweroff(struct hci_dev *hdev)
 934{
 935	int err;
 936
 937	BT_DBG("%s %p", hdev->name, hdev);
 938
 939	hci_req_sync_lock(hdev);
 940
 941	err = hci_set_powered_sync(hdev, false);
 942
 943	hci_req_sync_unlock(hdev);
 944
 945	return err;
 946}
 947
 948static int hci_rfkill_set_block(void *data, bool blocked)
 949{
 950	struct hci_dev *hdev = data;
 951	int err;
 952
 953	BT_DBG("%p name %s blocked %d", hdev, hdev->name, blocked);
 954
 955	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL))
 956		return -EBUSY;
 957
 958	if (blocked == hci_dev_test_flag(hdev, HCI_RFKILLED))
 959		return 0;
 960
 961	if (blocked) {
 962		hci_dev_set_flag(hdev, HCI_RFKILLED);
 963
 964		if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
 965		    !hci_dev_test_flag(hdev, HCI_CONFIG)) {
 966			err = hci_dev_do_poweroff(hdev);
 967			if (err) {
 968				bt_dev_err(hdev, "Error when powering off device on rfkill (%d)",
 969					   err);
 970
 971				/* Make sure the device is still closed even if
 972				 * anything during power off sequence (eg.
 973				 * disconnecting devices) failed.
 974				 */
 975				hci_dev_do_close(hdev);
 976			}
 977		}
 978	} else {
 979		hci_dev_clear_flag(hdev, HCI_RFKILLED);
 980	}
 981
 982	return 0;
 983}
 984
 985static const struct rfkill_ops hci_rfkill_ops = {
 986	.set_block = hci_rfkill_set_block,
 987};
 988
 989static void hci_power_on(struct work_struct *work)
 990{
 991	struct hci_dev *hdev = container_of(work, struct hci_dev, power_on);
 992	int err;
 993
 994	BT_DBG("%s", hdev->name);
 995
 996	if (test_bit(HCI_UP, &hdev->flags) &&
 997	    hci_dev_test_flag(hdev, HCI_MGMT) &&
 998	    hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) {
 999		cancel_delayed_work(&hdev->power_off);
1000		err = hci_powered_update_sync(hdev);
 
 
1001		mgmt_power_on(hdev, err);
1002		return;
1003	}
1004
1005	err = hci_dev_do_open(hdev);
1006	if (err < 0) {
1007		hci_dev_lock(hdev);
1008		mgmt_set_powered_failed(hdev, err);
1009		hci_dev_unlock(hdev);
1010		return;
1011	}
1012
1013	/* During the HCI setup phase, a few error conditions are
1014	 * ignored and they need to be checked now. If they are still
1015	 * valid, it is important to turn the device back off.
1016	 */
1017	if (hci_dev_test_flag(hdev, HCI_RFKILLED) ||
1018	    hci_dev_test_flag(hdev, HCI_UNCONFIGURED) ||
1019	    (!bacmp(&hdev->bdaddr, BDADDR_ANY) &&
 
1020	     !bacmp(&hdev->static_addr, BDADDR_ANY))) {
1021		hci_dev_clear_flag(hdev, HCI_AUTO_OFF);
1022		hci_dev_do_close(hdev);
1023	} else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) {
1024		queue_delayed_work(hdev->req_workqueue, &hdev->power_off,
1025				   HCI_AUTO_OFF_TIMEOUT);
1026	}
1027
1028	if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) {
1029		/* For unconfigured devices, set the HCI_RAW flag
1030		 * so that userspace can easily identify them.
1031		 */
1032		if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
1033			set_bit(HCI_RAW, &hdev->flags);
1034
1035		/* For fully configured devices, this will send
1036		 * the Index Added event. For unconfigured devices,
1037		 * it will send Unconfigued Index Added event.
1038		 *
1039		 * Devices with HCI_QUIRK_RAW_DEVICE are ignored
1040		 * and no event will be send.
1041		 */
1042		mgmt_index_added(hdev);
1043	} else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) {
1044		/* When the controller is now configured, then it
1045		 * is important to clear the HCI_RAW flag.
1046		 */
1047		if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
1048			clear_bit(HCI_RAW, &hdev->flags);
1049
1050		/* Powering on the controller with HCI_CONFIG set only
1051		 * happens with the transition from unconfigured to
1052		 * configured. This will send the Index Added event.
1053		 */
1054		mgmt_index_added(hdev);
1055	}
1056}
1057
1058static void hci_power_off(struct work_struct *work)
1059{
1060	struct hci_dev *hdev = container_of(work, struct hci_dev,
1061					    power_off.work);
1062
1063	BT_DBG("%s", hdev->name);
1064
1065	hci_dev_do_close(hdev);
1066}
1067
1068static void hci_error_reset(struct work_struct *work)
1069{
1070	struct hci_dev *hdev = container_of(work, struct hci_dev, error_reset);
1071
1072	hci_dev_hold(hdev);
1073	BT_DBG("%s", hdev->name);
1074
1075	if (hdev->hw_error)
1076		hdev->hw_error(hdev, hdev->hw_error_code);
1077	else
1078		bt_dev_err(hdev, "hardware error 0x%2.2x", hdev->hw_error_code);
 
1079
1080	if (!hci_dev_do_close(hdev))
1081		hci_dev_do_open(hdev);
1082
1083	hci_dev_put(hdev);
1084}
1085
1086void hci_uuids_clear(struct hci_dev *hdev)
1087{
1088	struct bt_uuid *uuid, *tmp;
1089
1090	list_for_each_entry_safe(uuid, tmp, &hdev->uuids, list) {
1091		list_del(&uuid->list);
1092		kfree(uuid);
1093	}
1094}
1095
1096void hci_link_keys_clear(struct hci_dev *hdev)
1097{
1098	struct link_key *key, *tmp;
1099
1100	list_for_each_entry_safe(key, tmp, &hdev->link_keys, list) {
1101		list_del_rcu(&key->list);
1102		kfree_rcu(key, rcu);
1103	}
1104}
1105
1106void hci_smp_ltks_clear(struct hci_dev *hdev)
1107{
1108	struct smp_ltk *k, *tmp;
1109
1110	list_for_each_entry_safe(k, tmp, &hdev->long_term_keys, list) {
1111		list_del_rcu(&k->list);
1112		kfree_rcu(k, rcu);
1113	}
1114}
1115
1116void hci_smp_irks_clear(struct hci_dev *hdev)
1117{
1118	struct smp_irk *k, *tmp;
1119
1120	list_for_each_entry_safe(k, tmp, &hdev->identity_resolving_keys, list) {
1121		list_del_rcu(&k->list);
1122		kfree_rcu(k, rcu);
1123	}
1124}
1125
1126void hci_blocked_keys_clear(struct hci_dev *hdev)
1127{
1128	struct blocked_key *b, *tmp;
1129
1130	list_for_each_entry_safe(b, tmp, &hdev->blocked_keys, list) {
1131		list_del_rcu(&b->list);
1132		kfree_rcu(b, rcu);
1133	}
1134}
1135
1136bool hci_is_blocked_key(struct hci_dev *hdev, u8 type, u8 val[16])
1137{
1138	bool blocked = false;
1139	struct blocked_key *b;
1140
1141	rcu_read_lock();
1142	list_for_each_entry_rcu(b, &hdev->blocked_keys, list) {
1143		if (b->type == type && !memcmp(b->val, val, sizeof(b->val))) {
1144			blocked = true;
1145			break;
1146		}
1147	}
1148
1149	rcu_read_unlock();
1150	return blocked;
1151}
1152
1153struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
1154{
1155	struct link_key *k;
1156
1157	rcu_read_lock();
1158	list_for_each_entry_rcu(k, &hdev->link_keys, list) {
1159		if (bacmp(bdaddr, &k->bdaddr) == 0) {
1160			rcu_read_unlock();
1161
1162			if (hci_is_blocked_key(hdev,
1163					       HCI_BLOCKED_KEY_TYPE_LINKKEY,
1164					       k->val)) {
1165				bt_dev_warn_ratelimited(hdev,
1166							"Link key blocked for %pMR",
1167							&k->bdaddr);
1168				return NULL;
1169			}
1170
1171			return k;
1172		}
1173	}
1174	rcu_read_unlock();
1175
1176	return NULL;
1177}
1178
1179static bool hci_persistent_key(struct hci_dev *hdev, struct hci_conn *conn,
1180			       u8 key_type, u8 old_key_type)
1181{
1182	/* Legacy key */
1183	if (key_type < 0x03)
1184		return true;
1185
1186	/* Debug keys are insecure so don't store them persistently */
1187	if (key_type == HCI_LK_DEBUG_COMBINATION)
1188		return false;
1189
1190	/* Changed combination key and there's no previous one */
1191	if (key_type == HCI_LK_CHANGED_COMBINATION && old_key_type == 0xff)
1192		return false;
1193
1194	/* Security mode 3 case */
1195	if (!conn)
1196		return true;
1197
1198	/* BR/EDR key derived using SC from an LE link */
1199	if (conn->type == LE_LINK)
1200		return true;
1201
1202	/* Neither local nor remote side had no-bonding as requirement */
1203	if (conn->auth_type > 0x01 && conn->remote_auth > 0x01)
1204		return true;
1205
1206	/* Local side had dedicated bonding as requirement */
1207	if (conn->auth_type == 0x02 || conn->auth_type == 0x03)
1208		return true;
1209
1210	/* Remote side had dedicated bonding as requirement */
1211	if (conn->remote_auth == 0x02 || conn->remote_auth == 0x03)
1212		return true;
1213
1214	/* If none of the above criteria match, then don't store the key
1215	 * persistently */
1216	return false;
1217}
1218
1219static u8 ltk_role(u8 type)
1220{
1221	if (type == SMP_LTK)
1222		return HCI_ROLE_MASTER;
1223
1224	return HCI_ROLE_SLAVE;
1225}
1226
1227struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
1228			     u8 addr_type, u8 role)
1229{
1230	struct smp_ltk *k;
1231
1232	rcu_read_lock();
1233	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
1234		if (addr_type != k->bdaddr_type || bacmp(bdaddr, &k->bdaddr))
1235			continue;
1236
1237		if (smp_ltk_is_sc(k) || ltk_role(k->type) == role) {
1238			rcu_read_unlock();
1239
1240			if (hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_LTK,
1241					       k->val)) {
1242				bt_dev_warn_ratelimited(hdev,
1243							"LTK blocked for %pMR",
1244							&k->bdaddr);
1245				return NULL;
1246			}
1247
1248			return k;
1249		}
1250	}
1251	rcu_read_unlock();
1252
1253	return NULL;
1254}
1255
1256struct smp_irk *hci_find_irk_by_rpa(struct hci_dev *hdev, bdaddr_t *rpa)
1257{
1258	struct smp_irk *irk_to_return = NULL;
1259	struct smp_irk *irk;
1260
1261	rcu_read_lock();
1262	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
1263		if (!bacmp(&irk->rpa, rpa)) {
1264			irk_to_return = irk;
1265			goto done;
1266		}
1267	}
1268
1269	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
1270		if (smp_irk_matches(hdev, irk->val, rpa)) {
1271			bacpy(&irk->rpa, rpa);
1272			irk_to_return = irk;
1273			goto done;
1274		}
1275	}
1276
1277done:
1278	if (irk_to_return && hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_IRK,
1279						irk_to_return->val)) {
1280		bt_dev_warn_ratelimited(hdev, "Identity key blocked for %pMR",
1281					&irk_to_return->bdaddr);
1282		irk_to_return = NULL;
1283	}
1284
1285	rcu_read_unlock();
1286
1287	return irk_to_return;
1288}
1289
1290struct smp_irk *hci_find_irk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr,
1291				     u8 addr_type)
1292{
1293	struct smp_irk *irk_to_return = NULL;
1294	struct smp_irk *irk;
1295
1296	/* Identity Address must be public or static random */
1297	if (addr_type == ADDR_LE_DEV_RANDOM && (bdaddr->b[5] & 0xc0) != 0xc0)
1298		return NULL;
1299
1300	rcu_read_lock();
1301	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
1302		if (addr_type == irk->addr_type &&
1303		    bacmp(bdaddr, &irk->bdaddr) == 0) {
1304			irk_to_return = irk;
1305			goto done;
1306		}
1307	}
1308
1309done:
1310
1311	if (irk_to_return && hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_IRK,
1312						irk_to_return->val)) {
1313		bt_dev_warn_ratelimited(hdev, "Identity key blocked for %pMR",
1314					&irk_to_return->bdaddr);
1315		irk_to_return = NULL;
1316	}
1317
1318	rcu_read_unlock();
1319
1320	return irk_to_return;
1321}
1322
1323struct link_key *hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn,
1324				  bdaddr_t *bdaddr, u8 *val, u8 type,
1325				  u8 pin_len, bool *persistent)
1326{
1327	struct link_key *key, *old_key;
1328	u8 old_key_type;
1329
1330	old_key = hci_find_link_key(hdev, bdaddr);
1331	if (old_key) {
1332		old_key_type = old_key->type;
1333		key = old_key;
1334	} else {
1335		old_key_type = conn ? conn->key_type : 0xff;
1336		key = kzalloc(sizeof(*key), GFP_KERNEL);
1337		if (!key)
1338			return NULL;
1339		list_add_rcu(&key->list, &hdev->link_keys);
1340	}
1341
1342	BT_DBG("%s key for %pMR type %u", hdev->name, bdaddr, type);
1343
1344	/* Some buggy controller combinations generate a changed
1345	 * combination key for legacy pairing even when there's no
1346	 * previous key */
1347	if (type == HCI_LK_CHANGED_COMBINATION &&
1348	    (!conn || conn->remote_auth == 0xff) && old_key_type == 0xff) {
1349		type = HCI_LK_COMBINATION;
1350		if (conn)
1351			conn->key_type = type;
1352	}
1353
1354	bacpy(&key->bdaddr, bdaddr);
1355	memcpy(key->val, val, HCI_LINK_KEY_SIZE);
1356	key->pin_len = pin_len;
1357
1358	if (type == HCI_LK_CHANGED_COMBINATION)
1359		key->type = old_key_type;
1360	else
1361		key->type = type;
1362
1363	if (persistent)
1364		*persistent = hci_persistent_key(hdev, conn, type,
1365						 old_key_type);
1366
1367	return key;
1368}
1369
1370struct smp_ltk *hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
1371			    u8 addr_type, u8 type, u8 authenticated,
1372			    u8 tk[16], u8 enc_size, __le16 ediv, __le64 rand)
1373{
1374	struct smp_ltk *key, *old_key;
1375	u8 role = ltk_role(type);
1376
1377	old_key = hci_find_ltk(hdev, bdaddr, addr_type, role);
1378	if (old_key)
1379		key = old_key;
1380	else {
1381		key = kzalloc(sizeof(*key), GFP_KERNEL);
1382		if (!key)
1383			return NULL;
1384		list_add_rcu(&key->list, &hdev->long_term_keys);
1385	}
1386
1387	bacpy(&key->bdaddr, bdaddr);
1388	key->bdaddr_type = addr_type;
1389	memcpy(key->val, tk, sizeof(key->val));
1390	key->authenticated = authenticated;
1391	key->ediv = ediv;
1392	key->rand = rand;
1393	key->enc_size = enc_size;
1394	key->type = type;
1395
1396	return key;
1397}
1398
1399struct smp_irk *hci_add_irk(struct hci_dev *hdev, bdaddr_t *bdaddr,
1400			    u8 addr_type, u8 val[16], bdaddr_t *rpa)
1401{
1402	struct smp_irk *irk;
1403
1404	irk = hci_find_irk_by_addr(hdev, bdaddr, addr_type);
1405	if (!irk) {
1406		irk = kzalloc(sizeof(*irk), GFP_KERNEL);
1407		if (!irk)
1408			return NULL;
1409
1410		bacpy(&irk->bdaddr, bdaddr);
1411		irk->addr_type = addr_type;
1412
1413		list_add_rcu(&irk->list, &hdev->identity_resolving_keys);
1414	}
1415
1416	memcpy(irk->val, val, 16);
1417	bacpy(&irk->rpa, rpa);
1418
1419	return irk;
1420}
1421
1422int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
1423{
1424	struct link_key *key;
1425
1426	key = hci_find_link_key(hdev, bdaddr);
1427	if (!key)
1428		return -ENOENT;
1429
1430	BT_DBG("%s removing %pMR", hdev->name, bdaddr);
1431
1432	list_del_rcu(&key->list);
1433	kfree_rcu(key, rcu);
1434
1435	return 0;
1436}
1437
1438int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type)
1439{
1440	struct smp_ltk *k, *tmp;
1441	int removed = 0;
1442
1443	list_for_each_entry_safe(k, tmp, &hdev->long_term_keys, list) {
1444		if (bacmp(bdaddr, &k->bdaddr) || k->bdaddr_type != bdaddr_type)
1445			continue;
1446
1447		BT_DBG("%s removing %pMR", hdev->name, bdaddr);
1448
1449		list_del_rcu(&k->list);
1450		kfree_rcu(k, rcu);
1451		removed++;
1452	}
1453
1454	return removed ? 0 : -ENOENT;
1455}
1456
1457void hci_remove_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type)
1458{
1459	struct smp_irk *k, *tmp;
1460
1461	list_for_each_entry_safe(k, tmp, &hdev->identity_resolving_keys, list) {
1462		if (bacmp(bdaddr, &k->bdaddr) || k->addr_type != addr_type)
1463			continue;
1464
1465		BT_DBG("%s removing %pMR", hdev->name, bdaddr);
1466
1467		list_del_rcu(&k->list);
1468		kfree_rcu(k, rcu);
1469	}
1470}
1471
1472bool hci_bdaddr_is_paired(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type)
1473{
1474	struct smp_ltk *k;
1475	struct smp_irk *irk;
1476	u8 addr_type;
1477
1478	if (type == BDADDR_BREDR) {
1479		if (hci_find_link_key(hdev, bdaddr))
1480			return true;
1481		return false;
1482	}
1483
1484	/* Convert to HCI addr type which struct smp_ltk uses */
1485	if (type == BDADDR_LE_PUBLIC)
1486		addr_type = ADDR_LE_DEV_PUBLIC;
1487	else
1488		addr_type = ADDR_LE_DEV_RANDOM;
1489
1490	irk = hci_get_irk(hdev, bdaddr, addr_type);
1491	if (irk) {
1492		bdaddr = &irk->bdaddr;
1493		addr_type = irk->addr_type;
1494	}
1495
1496	rcu_read_lock();
1497	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
1498		if (k->bdaddr_type == addr_type && !bacmp(bdaddr, &k->bdaddr)) {
1499			rcu_read_unlock();
1500			return true;
1501		}
1502	}
1503	rcu_read_unlock();
1504
1505	return false;
1506}
1507
1508/* HCI command timer function */
1509static void hci_cmd_timeout(struct work_struct *work)
1510{
1511	struct hci_dev *hdev = container_of(work, struct hci_dev,
1512					    cmd_timer.work);
1513
1514	if (hdev->req_skb) {
1515		u16 opcode = hci_skb_opcode(hdev->req_skb);
 
1516
1517		bt_dev_err(hdev, "command 0x%4.4x tx timeout", opcode);
1518
1519		hci_cmd_sync_cancel_sync(hdev, ETIMEDOUT);
1520	} else {
1521		bt_dev_err(hdev, "command tx timeout");
1522	}
1523
1524	if (hdev->cmd_timeout)
1525		hdev->cmd_timeout(hdev);
1526
1527	atomic_set(&hdev->cmd_cnt, 1);
1528	queue_work(hdev->workqueue, &hdev->cmd_work);
1529}
1530
1531/* HCI ncmd timer function */
1532static void hci_ncmd_timeout(struct work_struct *work)
1533{
1534	struct hci_dev *hdev = container_of(work, struct hci_dev,
1535					    ncmd_timer.work);
1536
1537	bt_dev_err(hdev, "Controller not accepting commands anymore: ncmd = 0");
1538
1539	/* During HCI_INIT phase no events can be injected if the ncmd timer
1540	 * triggers since the procedure has its own timeout handling.
1541	 */
1542	if (test_bit(HCI_INIT, &hdev->flags))
1543		return;
1544
1545	/* This is an irrecoverable state, inject hardware error event */
1546	hci_reset_dev(hdev);
1547}
1548
1549struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev,
1550					  bdaddr_t *bdaddr, u8 bdaddr_type)
1551{
1552	struct oob_data *data;
1553
1554	list_for_each_entry(data, &hdev->remote_oob_data, list) {
1555		if (bacmp(bdaddr, &data->bdaddr) != 0)
1556			continue;
1557		if (data->bdaddr_type != bdaddr_type)
1558			continue;
1559		return data;
1560	}
1561
1562	return NULL;
1563}
1564
1565int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
1566			       u8 bdaddr_type)
1567{
1568	struct oob_data *data;
1569
1570	data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
1571	if (!data)
1572		return -ENOENT;
1573
1574	BT_DBG("%s removing %pMR (%u)", hdev->name, bdaddr, bdaddr_type);
1575
1576	list_del(&data->list);
1577	kfree(data);
1578
1579	return 0;
1580}
1581
1582void hci_remote_oob_data_clear(struct hci_dev *hdev)
1583{
1584	struct oob_data *data, *n;
1585
1586	list_for_each_entry_safe(data, n, &hdev->remote_oob_data, list) {
1587		list_del(&data->list);
1588		kfree(data);
1589	}
1590}
1591
1592int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
1593			    u8 bdaddr_type, u8 *hash192, u8 *rand192,
1594			    u8 *hash256, u8 *rand256)
1595{
1596	struct oob_data *data;
1597
1598	data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
1599	if (!data) {
1600		data = kmalloc(sizeof(*data), GFP_KERNEL);
1601		if (!data)
1602			return -ENOMEM;
1603
1604		bacpy(&data->bdaddr, bdaddr);
1605		data->bdaddr_type = bdaddr_type;
1606		list_add(&data->list, &hdev->remote_oob_data);
1607	}
1608
1609	if (hash192 && rand192) {
1610		memcpy(data->hash192, hash192, sizeof(data->hash192));
1611		memcpy(data->rand192, rand192, sizeof(data->rand192));
1612		if (hash256 && rand256)
1613			data->present = 0x03;
1614	} else {
1615		memset(data->hash192, 0, sizeof(data->hash192));
1616		memset(data->rand192, 0, sizeof(data->rand192));
1617		if (hash256 && rand256)
1618			data->present = 0x02;
1619		else
1620			data->present = 0x00;
1621	}
1622
1623	if (hash256 && rand256) {
1624		memcpy(data->hash256, hash256, sizeof(data->hash256));
1625		memcpy(data->rand256, rand256, sizeof(data->rand256));
1626	} else {
1627		memset(data->hash256, 0, sizeof(data->hash256));
1628		memset(data->rand256, 0, sizeof(data->rand256));
1629		if (hash192 && rand192)
1630			data->present = 0x01;
1631	}
1632
1633	BT_DBG("%s for %pMR", hdev->name, bdaddr);
1634
1635	return 0;
1636}
1637
1638/* This function requires the caller holds hdev->lock */
1639struct adv_info *hci_find_adv_instance(struct hci_dev *hdev, u8 instance)
1640{
1641	struct adv_info *adv_instance;
1642
1643	list_for_each_entry(adv_instance, &hdev->adv_instances, list) {
1644		if (adv_instance->instance == instance)
1645			return adv_instance;
1646	}
1647
1648	return NULL;
1649}
1650
1651/* This function requires the caller holds hdev->lock */
1652struct adv_info *hci_get_next_instance(struct hci_dev *hdev, u8 instance)
1653{
1654	struct adv_info *cur_instance;
1655
1656	cur_instance = hci_find_adv_instance(hdev, instance);
1657	if (!cur_instance)
1658		return NULL;
1659
1660	if (cur_instance == list_last_entry(&hdev->adv_instances,
1661					    struct adv_info, list))
1662		return list_first_entry(&hdev->adv_instances,
1663						 struct adv_info, list);
1664	else
1665		return list_next_entry(cur_instance, list);
1666}
1667
1668/* This function requires the caller holds hdev->lock */
1669int hci_remove_adv_instance(struct hci_dev *hdev, u8 instance)
1670{
1671	struct adv_info *adv_instance;
1672
1673	adv_instance = hci_find_adv_instance(hdev, instance);
1674	if (!adv_instance)
1675		return -ENOENT;
1676
1677	BT_DBG("%s removing %dMR", hdev->name, instance);
1678
1679	if (hdev->cur_adv_instance == instance) {
1680		if (hdev->adv_instance_timeout) {
1681			cancel_delayed_work(&hdev->adv_instance_expire);
1682			hdev->adv_instance_timeout = 0;
1683		}
1684		hdev->cur_adv_instance = 0x00;
1685	}
1686
1687	cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
1688
1689	list_del(&adv_instance->list);
1690	kfree(adv_instance);
1691
1692	hdev->adv_instance_cnt--;
1693
1694	return 0;
1695}
1696
1697void hci_adv_instances_set_rpa_expired(struct hci_dev *hdev, bool rpa_expired)
1698{
1699	struct adv_info *adv_instance, *n;
1700
1701	list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list)
1702		adv_instance->rpa_expired = rpa_expired;
1703}
1704
1705/* This function requires the caller holds hdev->lock */
1706void hci_adv_instances_clear(struct hci_dev *hdev)
1707{
1708	struct adv_info *adv_instance, *n;
1709
1710	if (hdev->adv_instance_timeout) {
1711		cancel_delayed_work(&hdev->adv_instance_expire);
1712		hdev->adv_instance_timeout = 0;
1713	}
1714
1715	list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list) {
1716		cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
1717		list_del(&adv_instance->list);
1718		kfree(adv_instance);
1719	}
1720
1721	hdev->adv_instance_cnt = 0;
1722	hdev->cur_adv_instance = 0x00;
1723}
1724
1725static void adv_instance_rpa_expired(struct work_struct *work)
 
 
 
 
1726{
1727	struct adv_info *adv_instance = container_of(work, struct adv_info,
1728						     rpa_expired_cb.work);
1729
1730	BT_DBG("");
1731
1732	adv_instance->rpa_expired = true;
1733}
1734
1735/* This function requires the caller holds hdev->lock */
1736struct adv_info *hci_add_adv_instance(struct hci_dev *hdev, u8 instance,
1737				      u32 flags, u16 adv_data_len, u8 *adv_data,
1738				      u16 scan_rsp_len, u8 *scan_rsp_data,
1739				      u16 timeout, u16 duration, s8 tx_power,
1740				      u32 min_interval, u32 max_interval,
1741				      u8 mesh_handle)
1742{
1743	struct adv_info *adv;
1744
1745	adv = hci_find_adv_instance(hdev, instance);
1746	if (adv) {
1747		memset(adv->adv_data, 0, sizeof(adv->adv_data));
1748		memset(adv->scan_rsp_data, 0, sizeof(adv->scan_rsp_data));
1749		memset(adv->per_adv_data, 0, sizeof(adv->per_adv_data));
1750	} else {
1751		if (hdev->adv_instance_cnt >= hdev->le_num_of_adv_sets ||
1752		    instance < 1 || instance > hdev->le_num_of_adv_sets + 1)
1753			return ERR_PTR(-EOVERFLOW);
1754
1755		adv = kzalloc(sizeof(*adv), GFP_KERNEL);
1756		if (!adv)
1757			return ERR_PTR(-ENOMEM);
1758
1759		adv->pending = true;
1760		adv->instance = instance;
1761
1762		/* If controller support only one set and the instance is set to
1763		 * 1 then there is no option other than using handle 0x00.
1764		 */
1765		if (hdev->le_num_of_adv_sets == 1 && instance == 1)
1766			adv->handle = 0x00;
1767		else
1768			adv->handle = instance;
1769
1770		list_add(&adv->list, &hdev->adv_instances);
 
 
1771		hdev->adv_instance_cnt++;
1772	}
1773
1774	adv->flags = flags;
1775	adv->min_interval = min_interval;
1776	adv->max_interval = max_interval;
1777	adv->tx_power = tx_power;
1778	/* Defining a mesh_handle changes the timing units to ms,
1779	 * rather than seconds, and ties the instance to the requested
1780	 * mesh_tx queue.
1781	 */
1782	adv->mesh = mesh_handle;
1783
1784	hci_set_adv_instance_data(hdev, instance, adv_data_len, adv_data,
1785				  scan_rsp_len, scan_rsp_data);
1786
1787	adv->timeout = timeout;
1788	adv->remaining_time = timeout;
1789
1790	if (duration == 0)
1791		adv->duration = hdev->def_multi_adv_rotation_duration;
1792	else
1793		adv->duration = duration;
1794
1795	INIT_DELAYED_WORK(&adv->rpa_expired_cb, adv_instance_rpa_expired);
1796
1797	BT_DBG("%s for %dMR", hdev->name, instance);
1798
1799	return adv;
1800}
1801
1802/* This function requires the caller holds hdev->lock */
1803struct adv_info *hci_add_per_instance(struct hci_dev *hdev, u8 instance,
1804				      u32 flags, u8 data_len, u8 *data,
1805				      u32 min_interval, u32 max_interval)
1806{
1807	struct adv_info *adv;
1808
1809	adv = hci_add_adv_instance(hdev, instance, flags, 0, NULL, 0, NULL,
1810				   0, 0, HCI_ADV_TX_POWER_NO_PREFERENCE,
1811				   min_interval, max_interval, 0);
1812	if (IS_ERR(adv))
1813		return adv;
1814
1815	adv->periodic = true;
1816	adv->per_adv_data_len = data_len;
1817
1818	if (data)
1819		memcpy(adv->per_adv_data, data, data_len);
1820
1821	return adv;
1822}
1823
1824/* This function requires the caller holds hdev->lock */
1825int hci_set_adv_instance_data(struct hci_dev *hdev, u8 instance,
1826			      u16 adv_data_len, u8 *adv_data,
1827			      u16 scan_rsp_len, u8 *scan_rsp_data)
1828{
1829	struct adv_info *adv;
1830
1831	adv = hci_find_adv_instance(hdev, instance);
1832
1833	/* If advertisement doesn't exist, we can't modify its data */
1834	if (!adv)
1835		return -ENOENT;
1836
1837	if (adv_data_len && ADV_DATA_CMP(adv, adv_data, adv_data_len)) {
1838		memset(adv->adv_data, 0, sizeof(adv->adv_data));
1839		memcpy(adv->adv_data, adv_data, adv_data_len);
1840		adv->adv_data_len = adv_data_len;
1841		adv->adv_data_changed = true;
1842	}
1843
1844	if (scan_rsp_len && SCAN_RSP_CMP(adv, scan_rsp_data, scan_rsp_len)) {
1845		memset(adv->scan_rsp_data, 0, sizeof(adv->scan_rsp_data));
1846		memcpy(adv->scan_rsp_data, scan_rsp_data, scan_rsp_len);
1847		adv->scan_rsp_len = scan_rsp_len;
1848		adv->scan_rsp_changed = true;
1849	}
1850
1851	/* Mark as changed if there are flags which would affect it */
1852	if (((adv->flags & MGMT_ADV_FLAG_APPEARANCE) && hdev->appearance) ||
1853	    adv->flags & MGMT_ADV_FLAG_LOCAL_NAME)
1854		adv->scan_rsp_changed = true;
1855
1856	return 0;
1857}
1858
1859/* This function requires the caller holds hdev->lock */
1860u32 hci_adv_instance_flags(struct hci_dev *hdev, u8 instance)
1861{
1862	u32 flags;
1863	struct adv_info *adv;
1864
1865	if (instance == 0x00) {
1866		/* Instance 0 always manages the "Tx Power" and "Flags"
1867		 * fields
1868		 */
1869		flags = MGMT_ADV_FLAG_TX_POWER | MGMT_ADV_FLAG_MANAGED_FLAGS;
1870
1871		/* For instance 0, the HCI_ADVERTISING_CONNECTABLE setting
1872		 * corresponds to the "connectable" instance flag.
1873		 */
1874		if (hci_dev_test_flag(hdev, HCI_ADVERTISING_CONNECTABLE))
1875			flags |= MGMT_ADV_FLAG_CONNECTABLE;
1876
1877		if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE))
1878			flags |= MGMT_ADV_FLAG_LIMITED_DISCOV;
1879		else if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
1880			flags |= MGMT_ADV_FLAG_DISCOV;
1881
1882		return flags;
1883	}
1884
1885	adv = hci_find_adv_instance(hdev, instance);
1886
1887	/* Return 0 when we got an invalid instance identifier. */
1888	if (!adv)
1889		return 0;
1890
1891	return adv->flags;
1892}
1893
1894bool hci_adv_instance_is_scannable(struct hci_dev *hdev, u8 instance)
1895{
1896	struct adv_info *adv;
1897
1898	/* Instance 0x00 always set local name */
1899	if (instance == 0x00)
1900		return true;
1901
1902	adv = hci_find_adv_instance(hdev, instance);
1903	if (!adv)
1904		return false;
1905
1906	if (adv->flags & MGMT_ADV_FLAG_APPEARANCE ||
1907	    adv->flags & MGMT_ADV_FLAG_LOCAL_NAME)
1908		return true;
1909
1910	return adv->scan_rsp_len ? true : false;
1911}
1912
1913/* This function requires the caller holds hdev->lock */
1914void hci_adv_monitors_clear(struct hci_dev *hdev)
1915{
1916	struct adv_monitor *monitor;
1917	int handle;
1918
1919	idr_for_each_entry(&hdev->adv_monitors_idr, monitor, handle)
1920		hci_free_adv_monitor(hdev, monitor);
1921
1922	idr_destroy(&hdev->adv_monitors_idr);
1923}
1924
1925/* Frees the monitor structure and do some bookkeepings.
1926 * This function requires the caller holds hdev->lock.
1927 */
1928void hci_free_adv_monitor(struct hci_dev *hdev, struct adv_monitor *monitor)
1929{
1930	struct adv_pattern *pattern;
1931	struct adv_pattern *tmp;
1932
1933	if (!monitor)
1934		return;
1935
1936	list_for_each_entry_safe(pattern, tmp, &monitor->patterns, list) {
1937		list_del(&pattern->list);
1938		kfree(pattern);
1939	}
1940
1941	if (monitor->handle)
1942		idr_remove(&hdev->adv_monitors_idr, monitor->handle);
1943
1944	if (monitor->state != ADV_MONITOR_STATE_NOT_REGISTERED) {
1945		hdev->adv_monitors_cnt--;
1946		mgmt_adv_monitor_removed(hdev, monitor->handle);
1947	}
1948
1949	kfree(monitor);
1950}
1951
1952/* Assigns handle to a monitor, and if offloading is supported and power is on,
1953 * also attempts to forward the request to the controller.
1954 * This function requires the caller holds hci_req_sync_lock.
1955 */
1956int hci_add_adv_monitor(struct hci_dev *hdev, struct adv_monitor *monitor)
1957{
1958	int min, max, handle;
1959	int status = 0;
1960
1961	if (!monitor)
1962		return -EINVAL;
1963
1964	hci_dev_lock(hdev);
1965
1966	min = HCI_MIN_ADV_MONITOR_HANDLE;
1967	max = HCI_MIN_ADV_MONITOR_HANDLE + HCI_MAX_ADV_MONITOR_NUM_HANDLES;
1968	handle = idr_alloc(&hdev->adv_monitors_idr, monitor, min, max,
1969			   GFP_KERNEL);
1970
1971	hci_dev_unlock(hdev);
1972
1973	if (handle < 0)
1974		return handle;
1975
1976	monitor->handle = handle;
1977
1978	if (!hdev_is_powered(hdev))
1979		return status;
1980
1981	switch (hci_get_adv_monitor_offload_ext(hdev)) {
1982	case HCI_ADV_MONITOR_EXT_NONE:
1983		bt_dev_dbg(hdev, "add monitor %d status %d",
1984			   monitor->handle, status);
1985		/* Message was not forwarded to controller - not an error */
1986		break;
1987
1988	case HCI_ADV_MONITOR_EXT_MSFT:
1989		status = msft_add_monitor_pattern(hdev, monitor);
1990		bt_dev_dbg(hdev, "add monitor %d msft status %d",
1991			   handle, status);
1992		break;
1993	}
1994
1995	return status;
1996}
1997
1998/* Attempts to tell the controller and free the monitor. If somehow the
1999 * controller doesn't have a corresponding handle, remove anyway.
2000 * This function requires the caller holds hci_req_sync_lock.
2001 */
2002static int hci_remove_adv_monitor(struct hci_dev *hdev,
2003				  struct adv_monitor *monitor)
2004{
2005	int status = 0;
2006	int handle;
2007
2008	switch (hci_get_adv_monitor_offload_ext(hdev)) {
2009	case HCI_ADV_MONITOR_EXT_NONE: /* also goes here when powered off */
2010		bt_dev_dbg(hdev, "remove monitor %d status %d",
2011			   monitor->handle, status);
2012		goto free_monitor;
2013
2014	case HCI_ADV_MONITOR_EXT_MSFT:
2015		handle = monitor->handle;
2016		status = msft_remove_monitor(hdev, monitor);
2017		bt_dev_dbg(hdev, "remove monitor %d msft status %d",
2018			   handle, status);
2019		break;
2020	}
2021
2022	/* In case no matching handle registered, just free the monitor */
2023	if (status == -ENOENT)
2024		goto free_monitor;
2025
2026	return status;
2027
2028free_monitor:
2029	if (status == -ENOENT)
2030		bt_dev_warn(hdev, "Removing monitor with no matching handle %d",
2031			    monitor->handle);
2032	hci_free_adv_monitor(hdev, monitor);
2033
2034	return status;
2035}
2036
2037/* This function requires the caller holds hci_req_sync_lock */
2038int hci_remove_single_adv_monitor(struct hci_dev *hdev, u16 handle)
2039{
2040	struct adv_monitor *monitor = idr_find(&hdev->adv_monitors_idr, handle);
2041
2042	if (!monitor)
2043		return -EINVAL;
2044
2045	return hci_remove_adv_monitor(hdev, monitor);
2046}
2047
2048/* This function requires the caller holds hci_req_sync_lock */
2049int hci_remove_all_adv_monitor(struct hci_dev *hdev)
2050{
2051	struct adv_monitor *monitor;
2052	int idr_next_id = 0;
2053	int status = 0;
2054
2055	while (1) {
2056		monitor = idr_get_next(&hdev->adv_monitors_idr, &idr_next_id);
2057		if (!monitor)
2058			break;
2059
2060		status = hci_remove_adv_monitor(hdev, monitor);
2061		if (status)
2062			return status;
2063
2064		idr_next_id++;
2065	}
2066
2067	return status;
2068}
2069
2070/* This function requires the caller holds hdev->lock */
2071bool hci_is_adv_monitoring(struct hci_dev *hdev)
2072{
2073	return !idr_is_empty(&hdev->adv_monitors_idr);
2074}
2075
2076int hci_get_adv_monitor_offload_ext(struct hci_dev *hdev)
2077{
2078	if (msft_monitor_supported(hdev))
2079		return HCI_ADV_MONITOR_EXT_MSFT;
2080
2081	return HCI_ADV_MONITOR_EXT_NONE;
2082}
2083
2084struct bdaddr_list *hci_bdaddr_list_lookup(struct list_head *bdaddr_list,
2085					 bdaddr_t *bdaddr, u8 type)
2086{
2087	struct bdaddr_list *b;
2088
2089	list_for_each_entry(b, bdaddr_list, list) {
2090		if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2091			return b;
2092	}
2093
2094	return NULL;
2095}
2096
2097struct bdaddr_list_with_irk *hci_bdaddr_list_lookup_with_irk(
2098				struct list_head *bdaddr_list, bdaddr_t *bdaddr,
2099				u8 type)
2100{
2101	struct bdaddr_list_with_irk *b;
2102
2103	list_for_each_entry(b, bdaddr_list, list) {
2104		if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2105			return b;
2106	}
2107
2108	return NULL;
2109}
2110
2111struct bdaddr_list_with_flags *
2112hci_bdaddr_list_lookup_with_flags(struct list_head *bdaddr_list,
2113				  bdaddr_t *bdaddr, u8 type)
2114{
2115	struct bdaddr_list_with_flags *b;
2116
2117	list_for_each_entry(b, bdaddr_list, list) {
2118		if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2119			return b;
2120	}
2121
2122	return NULL;
2123}
2124
2125void hci_bdaddr_list_clear(struct list_head *bdaddr_list)
2126{
2127	struct bdaddr_list *b, *n;
2128
2129	list_for_each_entry_safe(b, n, bdaddr_list, list) {
2130		list_del(&b->list);
2131		kfree(b);
2132	}
2133}
2134
2135int hci_bdaddr_list_add(struct list_head *list, bdaddr_t *bdaddr, u8 type)
2136{
2137	struct bdaddr_list *entry;
2138
2139	if (!bacmp(bdaddr, BDADDR_ANY))
2140		return -EBADF;
2141
2142	if (hci_bdaddr_list_lookup(list, bdaddr, type))
2143		return -EEXIST;
2144
2145	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
2146	if (!entry)
2147		return -ENOMEM;
2148
2149	bacpy(&entry->bdaddr, bdaddr);
2150	entry->bdaddr_type = type;
2151
2152	list_add(&entry->list, list);
2153
2154	return 0;
2155}
2156
2157int hci_bdaddr_list_add_with_irk(struct list_head *list, bdaddr_t *bdaddr,
2158					u8 type, u8 *peer_irk, u8 *local_irk)
2159{
2160	struct bdaddr_list_with_irk *entry;
2161
2162	if (!bacmp(bdaddr, BDADDR_ANY))
2163		return -EBADF;
2164
2165	if (hci_bdaddr_list_lookup(list, bdaddr, type))
2166		return -EEXIST;
2167
2168	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
2169	if (!entry)
2170		return -ENOMEM;
2171
2172	bacpy(&entry->bdaddr, bdaddr);
2173	entry->bdaddr_type = type;
2174
2175	if (peer_irk)
2176		memcpy(entry->peer_irk, peer_irk, 16);
2177
2178	if (local_irk)
2179		memcpy(entry->local_irk, local_irk, 16);
2180
2181	list_add(&entry->list, list);
2182
2183	return 0;
2184}
2185
2186int hci_bdaddr_list_add_with_flags(struct list_head *list, bdaddr_t *bdaddr,
2187				   u8 type, u32 flags)
2188{
2189	struct bdaddr_list_with_flags *entry;
2190
2191	if (!bacmp(bdaddr, BDADDR_ANY))
2192		return -EBADF;
2193
2194	if (hci_bdaddr_list_lookup(list, bdaddr, type))
2195		return -EEXIST;
2196
2197	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
2198	if (!entry)
2199		return -ENOMEM;
2200
2201	bacpy(&entry->bdaddr, bdaddr);
2202	entry->bdaddr_type = type;
2203	entry->flags = flags;
2204
2205	list_add(&entry->list, list);
2206
2207	return 0;
2208}
2209
2210int hci_bdaddr_list_del(struct list_head *list, bdaddr_t *bdaddr, u8 type)
2211{
2212	struct bdaddr_list *entry;
2213
2214	if (!bacmp(bdaddr, BDADDR_ANY)) {
2215		hci_bdaddr_list_clear(list);
2216		return 0;
2217	}
2218
2219	entry = hci_bdaddr_list_lookup(list, bdaddr, type);
2220	if (!entry)
2221		return -ENOENT;
2222
2223	list_del(&entry->list);
2224	kfree(entry);
2225
2226	return 0;
2227}
2228
2229int hci_bdaddr_list_del_with_irk(struct list_head *list, bdaddr_t *bdaddr,
2230							u8 type)
2231{
2232	struct bdaddr_list_with_irk *entry;
2233
2234	if (!bacmp(bdaddr, BDADDR_ANY)) {
2235		hci_bdaddr_list_clear(list);
2236		return 0;
2237	}
2238
2239	entry = hci_bdaddr_list_lookup_with_irk(list, bdaddr, type);
2240	if (!entry)
2241		return -ENOENT;
2242
2243	list_del(&entry->list);
2244	kfree(entry);
2245
2246	return 0;
2247}
2248
2249int hci_bdaddr_list_del_with_flags(struct list_head *list, bdaddr_t *bdaddr,
2250				   u8 type)
2251{
2252	struct bdaddr_list_with_flags *entry;
2253
2254	if (!bacmp(bdaddr, BDADDR_ANY)) {
2255		hci_bdaddr_list_clear(list);
2256		return 0;
2257	}
2258
2259	entry = hci_bdaddr_list_lookup_with_flags(list, bdaddr, type);
2260	if (!entry)
2261		return -ENOENT;
2262
2263	list_del(&entry->list);
2264	kfree(entry);
2265
2266	return 0;
2267}
2268
2269/* This function requires the caller holds hdev->lock */
2270struct hci_conn_params *hci_conn_params_lookup(struct hci_dev *hdev,
2271					       bdaddr_t *addr, u8 addr_type)
2272{
2273	struct hci_conn_params *params;
2274
2275	list_for_each_entry(params, &hdev->le_conn_params, list) {
2276		if (bacmp(&params->addr, addr) == 0 &&
2277		    params->addr_type == addr_type) {
2278			return params;
2279		}
2280	}
2281
2282	return NULL;
2283}
2284
2285/* This function requires the caller holds hdev->lock or rcu_read_lock */
2286struct hci_conn_params *hci_pend_le_action_lookup(struct list_head *list,
2287						  bdaddr_t *addr, u8 addr_type)
2288{
2289	struct hci_conn_params *param;
2290
2291	rcu_read_lock();
2292
2293	list_for_each_entry_rcu(param, list, action) {
2294		if (bacmp(&param->addr, addr) == 0 &&
2295		    param->addr_type == addr_type) {
2296			rcu_read_unlock();
2297			return param;
2298		}
2299	}
2300
2301	rcu_read_unlock();
2302
2303	return NULL;
2304}
2305
2306/* This function requires the caller holds hdev->lock */
2307void hci_pend_le_list_del_init(struct hci_conn_params *param)
2308{
2309	if (list_empty(&param->action))
2310		return;
2311
2312	list_del_rcu(&param->action);
2313	synchronize_rcu();
2314	INIT_LIST_HEAD(&param->action);
2315}
2316
2317/* This function requires the caller holds hdev->lock */
2318void hci_pend_le_list_add(struct hci_conn_params *param,
2319			  struct list_head *list)
2320{
2321	list_add_rcu(&param->action, list);
2322}
2323
2324/* This function requires the caller holds hdev->lock */
2325struct hci_conn_params *hci_conn_params_add(struct hci_dev *hdev,
2326					    bdaddr_t *addr, u8 addr_type)
2327{
2328	struct hci_conn_params *params;
2329
2330	params = hci_conn_params_lookup(hdev, addr, addr_type);
2331	if (params)
2332		return params;
2333
2334	params = kzalloc(sizeof(*params), GFP_KERNEL);
2335	if (!params) {
2336		bt_dev_err(hdev, "out of memory");
2337		return NULL;
2338	}
2339
2340	bacpy(&params->addr, addr);
2341	params->addr_type = addr_type;
2342
2343	list_add(&params->list, &hdev->le_conn_params);
2344	INIT_LIST_HEAD(&params->action);
2345
2346	params->conn_min_interval = hdev->le_conn_min_interval;
2347	params->conn_max_interval = hdev->le_conn_max_interval;
2348	params->conn_latency = hdev->le_conn_latency;
2349	params->supervision_timeout = hdev->le_supv_timeout;
2350	params->auto_connect = HCI_AUTO_CONN_DISABLED;
2351
2352	BT_DBG("addr %pMR (type %u)", addr, addr_type);
2353
2354	return params;
2355}
2356
2357void hci_conn_params_free(struct hci_conn_params *params)
2358{
2359	hci_pend_le_list_del_init(params);
2360
2361	if (params->conn) {
2362		hci_conn_drop(params->conn);
2363		hci_conn_put(params->conn);
2364	}
2365
 
2366	list_del(&params->list);
2367	kfree(params);
2368}
2369
2370/* This function requires the caller holds hdev->lock */
2371void hci_conn_params_del(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type)
2372{
2373	struct hci_conn_params *params;
2374
2375	params = hci_conn_params_lookup(hdev, addr, addr_type);
2376	if (!params)
2377		return;
2378
2379	hci_conn_params_free(params);
2380
2381	hci_update_passive_scan(hdev);
2382
2383	BT_DBG("addr %pMR (type %u)", addr, addr_type);
2384}
2385
2386/* This function requires the caller holds hdev->lock */
2387void hci_conn_params_clear_disabled(struct hci_dev *hdev)
2388{
2389	struct hci_conn_params *params, *tmp;
2390
2391	list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list) {
2392		if (params->auto_connect != HCI_AUTO_CONN_DISABLED)
2393			continue;
2394
2395		/* If trying to establish one time connection to disabled
2396		 * device, leave the params, but mark them as just once.
2397		 */
2398		if (params->explicit_connect) {
2399			params->auto_connect = HCI_AUTO_CONN_EXPLICIT;
2400			continue;
2401		}
2402
2403		hci_conn_params_free(params);
 
2404	}
2405
2406	BT_DBG("All LE disabled connection parameters were removed");
2407}
2408
2409/* This function requires the caller holds hdev->lock */
2410static void hci_conn_params_clear_all(struct hci_dev *hdev)
2411{
2412	struct hci_conn_params *params, *tmp;
2413
2414	list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list)
2415		hci_conn_params_free(params);
2416
2417	BT_DBG("All LE connection parameters were removed");
2418}
2419
2420/* Copy the Identity Address of the controller.
2421 *
2422 * If the controller has a public BD_ADDR, then by default use that one.
2423 * If this is a LE only controller without a public address, default to
2424 * the static random address.
2425 *
2426 * For debugging purposes it is possible to force controllers with a
2427 * public address to use the static random address instead.
2428 *
2429 * In case BR/EDR has been disabled on a dual-mode controller and
2430 * userspace has configured a static address, then that address
2431 * becomes the identity address instead of the public BR/EDR address.
2432 */
2433void hci_copy_identity_address(struct hci_dev *hdev, bdaddr_t *bdaddr,
2434			       u8 *bdaddr_type)
2435{
2436	if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
2437	    !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
2438	    (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
2439	     bacmp(&hdev->static_addr, BDADDR_ANY))) {
2440		bacpy(bdaddr, &hdev->static_addr);
2441		*bdaddr_type = ADDR_LE_DEV_RANDOM;
2442	} else {
2443		bacpy(bdaddr, &hdev->bdaddr);
2444		*bdaddr_type = ADDR_LE_DEV_PUBLIC;
2445	}
2446}
2447
2448static void hci_clear_wake_reason(struct hci_dev *hdev)
2449{
2450	hci_dev_lock(hdev);
2451
2452	hdev->wake_reason = 0;
2453	bacpy(&hdev->wake_addr, BDADDR_ANY);
2454	hdev->wake_addr_type = 0;
2455
2456	hci_dev_unlock(hdev);
2457}
2458
2459static int hci_suspend_notifier(struct notifier_block *nb, unsigned long action,
2460				void *data)
2461{
2462	struct hci_dev *hdev =
2463		container_of(nb, struct hci_dev, suspend_notifier);
2464	int ret = 0;
2465
2466	/* Userspace has full control of this device. Do nothing. */
2467	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL))
2468		return NOTIFY_DONE;
2469
2470	/* To avoid a potential race with hci_unregister_dev. */
2471	hci_dev_hold(hdev);
2472
2473	if (action == PM_SUSPEND_PREPARE)
2474		ret = hci_suspend_dev(hdev);
2475	else if (action == PM_POST_SUSPEND)
2476		ret = hci_resume_dev(hdev);
2477
2478	if (ret)
2479		bt_dev_err(hdev, "Suspend notifier action (%lu) failed: %d",
2480			   action, ret);
2481
2482	hci_dev_put(hdev);
2483	return NOTIFY_DONE;
2484}
2485
2486/* Alloc HCI device */
2487struct hci_dev *hci_alloc_dev_priv(int sizeof_priv)
2488{
2489	struct hci_dev *hdev;
2490	unsigned int alloc_size;
2491
2492	alloc_size = sizeof(*hdev);
2493	if (sizeof_priv) {
2494		/* Fixme: May need ALIGN-ment? */
2495		alloc_size += sizeof_priv;
2496	}
2497
2498	hdev = kzalloc(alloc_size, GFP_KERNEL);
2499	if (!hdev)
2500		return NULL;
2501
2502	hdev->pkt_type  = (HCI_DM1 | HCI_DH1 | HCI_HV1);
2503	hdev->esco_type = (ESCO_HV1);
2504	hdev->link_mode = (HCI_LM_ACCEPT);
2505	hdev->num_iac = 0x01;		/* One IAC support is mandatory */
2506	hdev->io_capability = 0x03;	/* No Input No Output */
2507	hdev->manufacturer = 0xffff;	/* Default to internal use */
2508	hdev->inq_tx_power = HCI_TX_POWER_INVALID;
2509	hdev->adv_tx_power = HCI_TX_POWER_INVALID;
2510	hdev->adv_instance_cnt = 0;
2511	hdev->cur_adv_instance = 0x00;
2512	hdev->adv_instance_timeout = 0;
2513
2514	hdev->advmon_allowlist_duration = 300;
2515	hdev->advmon_no_filter_duration = 500;
2516	hdev->enable_advmon_interleave_scan = 0x00;	/* Default to disable */
2517
2518	hdev->sniff_max_interval = 800;
2519	hdev->sniff_min_interval = 80;
2520
2521	hdev->le_adv_channel_map = 0x07;
2522	hdev->le_adv_min_interval = 0x0800;
2523	hdev->le_adv_max_interval = 0x0800;
2524	hdev->le_scan_interval = 0x0060;
2525	hdev->le_scan_window = 0x0030;
2526	hdev->le_scan_int_suspend = 0x0400;
2527	hdev->le_scan_window_suspend = 0x0012;
2528	hdev->le_scan_int_discovery = DISCOV_LE_SCAN_INT;
2529	hdev->le_scan_window_discovery = DISCOV_LE_SCAN_WIN;
2530	hdev->le_scan_int_adv_monitor = 0x0060;
2531	hdev->le_scan_window_adv_monitor = 0x0030;
2532	hdev->le_scan_int_connect = 0x0060;
2533	hdev->le_scan_window_connect = 0x0060;
2534	hdev->le_conn_min_interval = 0x0018;
2535	hdev->le_conn_max_interval = 0x0028;
2536	hdev->le_conn_latency = 0x0000;
2537	hdev->le_supv_timeout = 0x002a;
2538	hdev->le_def_tx_len = 0x001b;
2539	hdev->le_def_tx_time = 0x0148;
2540	hdev->le_max_tx_len = 0x001b;
2541	hdev->le_max_tx_time = 0x0148;
2542	hdev->le_max_rx_len = 0x001b;
2543	hdev->le_max_rx_time = 0x0148;
2544	hdev->le_max_key_size = SMP_MAX_ENC_KEY_SIZE;
2545	hdev->le_min_key_size = SMP_MIN_ENC_KEY_SIZE;
2546	hdev->le_tx_def_phys = HCI_LE_SET_PHY_1M;
2547	hdev->le_rx_def_phys = HCI_LE_SET_PHY_1M;
2548	hdev->le_num_of_adv_sets = HCI_MAX_ADV_INSTANCES;
2549	hdev->def_multi_adv_rotation_duration = HCI_DEFAULT_ADV_DURATION;
2550	hdev->def_le_autoconnect_timeout = HCI_LE_AUTOCONN_TIMEOUT;
2551	hdev->min_le_tx_power = HCI_TX_POWER_INVALID;
2552	hdev->max_le_tx_power = HCI_TX_POWER_INVALID;
2553
2554	hdev->rpa_timeout = HCI_DEFAULT_RPA_TIMEOUT;
2555	hdev->discov_interleaved_timeout = DISCOV_INTERLEAVED_TIMEOUT;
2556	hdev->conn_info_min_age = DEFAULT_CONN_INFO_MIN_AGE;
2557	hdev->conn_info_max_age = DEFAULT_CONN_INFO_MAX_AGE;
2558	hdev->auth_payload_timeout = DEFAULT_AUTH_PAYLOAD_TIMEOUT;
2559	hdev->min_enc_key_size = HCI_MIN_ENC_KEY_SIZE;
2560
2561	/* default 1.28 sec page scan */
2562	hdev->def_page_scan_type = PAGE_SCAN_TYPE_STANDARD;
2563	hdev->def_page_scan_int = 0x0800;
2564	hdev->def_page_scan_window = 0x0012;
2565
2566	mutex_init(&hdev->lock);
2567	mutex_init(&hdev->req_lock);
2568
2569	ida_init(&hdev->unset_handle_ida);
2570
2571	INIT_LIST_HEAD(&hdev->mesh_pending);
2572	INIT_LIST_HEAD(&hdev->mgmt_pending);
2573	INIT_LIST_HEAD(&hdev->reject_list);
2574	INIT_LIST_HEAD(&hdev->accept_list);
2575	INIT_LIST_HEAD(&hdev->uuids);
2576	INIT_LIST_HEAD(&hdev->link_keys);
2577	INIT_LIST_HEAD(&hdev->long_term_keys);
2578	INIT_LIST_HEAD(&hdev->identity_resolving_keys);
2579	INIT_LIST_HEAD(&hdev->remote_oob_data);
2580	INIT_LIST_HEAD(&hdev->le_accept_list);
2581	INIT_LIST_HEAD(&hdev->le_resolv_list);
2582	INIT_LIST_HEAD(&hdev->le_conn_params);
2583	INIT_LIST_HEAD(&hdev->pend_le_conns);
2584	INIT_LIST_HEAD(&hdev->pend_le_reports);
2585	INIT_LIST_HEAD(&hdev->conn_hash.list);
2586	INIT_LIST_HEAD(&hdev->adv_instances);
2587	INIT_LIST_HEAD(&hdev->blocked_keys);
2588	INIT_LIST_HEAD(&hdev->monitored_devices);
2589
2590	INIT_LIST_HEAD(&hdev->local_codecs);
2591	INIT_WORK(&hdev->rx_work, hci_rx_work);
2592	INIT_WORK(&hdev->cmd_work, hci_cmd_work);
2593	INIT_WORK(&hdev->tx_work, hci_tx_work);
2594	INIT_WORK(&hdev->power_on, hci_power_on);
2595	INIT_WORK(&hdev->error_reset, hci_error_reset);
2596
2597	hci_cmd_sync_init(hdev);
2598
2599	INIT_DELAYED_WORK(&hdev->power_off, hci_power_off);
2600
2601	skb_queue_head_init(&hdev->rx_q);
2602	skb_queue_head_init(&hdev->cmd_q);
2603	skb_queue_head_init(&hdev->raw_q);
2604
2605	init_waitqueue_head(&hdev->req_wait_q);
2606
2607	INIT_DELAYED_WORK(&hdev->cmd_timer, hci_cmd_timeout);
2608	INIT_DELAYED_WORK(&hdev->ncmd_timer, hci_ncmd_timeout);
2609
2610	hci_devcd_setup(hdev);
2611	hci_request_setup(hdev);
2612
2613	hci_init_sysfs(hdev);
2614	discovery_init(hdev);
2615
2616	return hdev;
2617}
2618EXPORT_SYMBOL(hci_alloc_dev_priv);
2619
2620/* Free HCI device */
2621void hci_free_dev(struct hci_dev *hdev)
2622{
2623	/* will free via device release */
2624	put_device(&hdev->dev);
2625}
2626EXPORT_SYMBOL(hci_free_dev);
2627
2628/* Register HCI device */
2629int hci_register_dev(struct hci_dev *hdev)
2630{
2631	int id, error;
2632
2633	if (!hdev->open || !hdev->close || !hdev->send)
2634		return -EINVAL;
2635
2636	id = ida_alloc_max(&hci_index_ida, HCI_MAX_ID - 1, GFP_KERNEL);
 
 
 
 
 
 
 
 
 
 
 
 
 
2637	if (id < 0)
2638		return id;
2639
2640	error = dev_set_name(&hdev->dev, "hci%u", id);
2641	if (error)
2642		return error;
2643
2644	hdev->name = dev_name(&hdev->dev);
2645	hdev->id = id;
2646
2647	BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
2648
2649	hdev->workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI, hdev->name);
 
2650	if (!hdev->workqueue) {
2651		error = -ENOMEM;
2652		goto err;
2653	}
2654
2655	hdev->req_workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI,
2656						      hdev->name);
2657	if (!hdev->req_workqueue) {
2658		destroy_workqueue(hdev->workqueue);
2659		error = -ENOMEM;
2660		goto err;
2661	}
2662
2663	if (!IS_ERR_OR_NULL(bt_debugfs))
2664		hdev->debugfs = debugfs_create_dir(hdev->name, bt_debugfs);
2665
 
 
2666	error = device_add(&hdev->dev);
2667	if (error < 0)
2668		goto err_wqueue;
2669
2670	hci_leds_init(hdev);
2671
2672	hdev->rfkill = rfkill_alloc(hdev->name, &hdev->dev,
2673				    RFKILL_TYPE_BLUETOOTH, &hci_rfkill_ops,
2674				    hdev);
2675	if (hdev->rfkill) {
2676		if (rfkill_register(hdev->rfkill) < 0) {
2677			rfkill_destroy(hdev->rfkill);
2678			hdev->rfkill = NULL;
2679		}
2680	}
2681
2682	if (hdev->rfkill && rfkill_blocked(hdev->rfkill))
2683		hci_dev_set_flag(hdev, HCI_RFKILLED);
2684
2685	hci_dev_set_flag(hdev, HCI_SETUP);
2686	hci_dev_set_flag(hdev, HCI_AUTO_OFF);
2687
2688	/* Assume BR/EDR support until proven otherwise (such as
2689	 * through reading supported features during init.
2690	 */
2691	hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
 
 
2692
2693	write_lock(&hci_dev_list_lock);
2694	list_add(&hdev->list, &hci_dev_list);
2695	write_unlock(&hci_dev_list_lock);
2696
2697	/* Devices that are marked for raw-only usage are unconfigured
2698	 * and should not be included in normal operation.
2699	 */
2700	if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
2701		hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
2702
2703	/* Mark Remote Wakeup connection flag as supported if driver has wakeup
2704	 * callback.
2705	 */
2706	if (hdev->wakeup)
2707		hdev->conn_flags |= HCI_CONN_FLAG_REMOTE_WAKEUP;
2708
2709	hci_sock_dev_event(hdev, HCI_DEV_REG);
2710	hci_dev_hold(hdev);
2711
2712	error = hci_register_suspend_notifier(hdev);
2713	if (error)
2714		BT_WARN("register suspend notifier failed error:%d\n", error);
2715
2716	queue_work(hdev->req_workqueue, &hdev->power_on);
2717
2718	idr_init(&hdev->adv_monitors_idr);
2719	msft_register(hdev);
2720
2721	return id;
2722
2723err_wqueue:
2724	debugfs_remove_recursive(hdev->debugfs);
2725	destroy_workqueue(hdev->workqueue);
2726	destroy_workqueue(hdev->req_workqueue);
2727err:
2728	ida_free(&hci_index_ida, hdev->id);
2729
2730	return error;
2731}
2732EXPORT_SYMBOL(hci_register_dev);
2733
2734/* Unregister HCI device */
2735void hci_unregister_dev(struct hci_dev *hdev)
2736{
 
 
2737	BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
2738
2739	mutex_lock(&hdev->unregister_lock);
2740	hci_dev_set_flag(hdev, HCI_UNREGISTER);
2741	mutex_unlock(&hdev->unregister_lock);
 
2742
2743	write_lock(&hci_dev_list_lock);
2744	list_del(&hdev->list);
2745	write_unlock(&hci_dev_list_lock);
2746
 
 
2747	cancel_work_sync(&hdev->power_on);
2748
2749	hci_cmd_sync_clear(hdev);
2750
2751	hci_unregister_suspend_notifier(hdev);
2752
2753	hci_dev_do_close(hdev);
2754
2755	if (!test_bit(HCI_INIT, &hdev->flags) &&
2756	    !hci_dev_test_flag(hdev, HCI_SETUP) &&
2757	    !hci_dev_test_flag(hdev, HCI_CONFIG)) {
2758		hci_dev_lock(hdev);
2759		mgmt_index_removed(hdev);
2760		hci_dev_unlock(hdev);
2761	}
2762
2763	/* mgmt_index_removed should take care of emptying the
2764	 * pending list */
2765	BUG_ON(!list_empty(&hdev->mgmt_pending));
2766
2767	hci_sock_dev_event(hdev, HCI_DEV_UNREG);
2768
2769	if (hdev->rfkill) {
2770		rfkill_unregister(hdev->rfkill);
2771		rfkill_destroy(hdev->rfkill);
2772	}
2773
2774	device_del(&hdev->dev);
2775	/* Actual cleanup is deferred until hci_release_dev(). */
2776	hci_dev_put(hdev);
2777}
2778EXPORT_SYMBOL(hci_unregister_dev);
2779
2780/* Release HCI device */
2781void hci_release_dev(struct hci_dev *hdev)
2782{
2783	debugfs_remove_recursive(hdev->debugfs);
2784	kfree_const(hdev->hw_info);
2785	kfree_const(hdev->fw_info);
2786
2787	destroy_workqueue(hdev->workqueue);
2788	destroy_workqueue(hdev->req_workqueue);
2789
2790	hci_dev_lock(hdev);
2791	hci_bdaddr_list_clear(&hdev->reject_list);
2792	hci_bdaddr_list_clear(&hdev->accept_list);
2793	hci_uuids_clear(hdev);
2794	hci_link_keys_clear(hdev);
2795	hci_smp_ltks_clear(hdev);
2796	hci_smp_irks_clear(hdev);
2797	hci_remote_oob_data_clear(hdev);
2798	hci_adv_instances_clear(hdev);
2799	hci_adv_monitors_clear(hdev);
2800	hci_bdaddr_list_clear(&hdev->le_accept_list);
2801	hci_bdaddr_list_clear(&hdev->le_resolv_list);
2802	hci_conn_params_clear_all(hdev);
2803	hci_discovery_filter_clear(hdev);
2804	hci_blocked_keys_clear(hdev);
2805	hci_codec_list_clear(&hdev->local_codecs);
2806	msft_release(hdev);
2807	hci_dev_unlock(hdev);
2808
2809	ida_destroy(&hdev->unset_handle_ida);
2810	ida_free(&hci_index_ida, hdev->id);
2811	kfree_skb(hdev->sent_cmd);
2812	kfree_skb(hdev->req_skb);
2813	kfree_skb(hdev->recv_event);
2814	kfree(hdev);
2815}
2816EXPORT_SYMBOL(hci_release_dev);
2817
2818int hci_register_suspend_notifier(struct hci_dev *hdev)
2819{
2820	int ret = 0;
2821
2822	if (!hdev->suspend_notifier.notifier_call &&
2823	    !test_bit(HCI_QUIRK_NO_SUSPEND_NOTIFIER, &hdev->quirks)) {
2824		hdev->suspend_notifier.notifier_call = hci_suspend_notifier;
2825		ret = register_pm_notifier(&hdev->suspend_notifier);
2826	}
2827
2828	return ret;
2829}
2830
2831int hci_unregister_suspend_notifier(struct hci_dev *hdev)
2832{
2833	int ret = 0;
2834
2835	if (hdev->suspend_notifier.notifier_call) {
2836		ret = unregister_pm_notifier(&hdev->suspend_notifier);
2837		if (!ret)
2838			hdev->suspend_notifier.notifier_call = NULL;
2839	}
2840
2841	return ret;
2842}
2843
2844/* Cancel ongoing command synchronously:
2845 *
2846 * - Cancel command timer
2847 * - Reset command counter
2848 * - Cancel command request
2849 */
2850static void hci_cancel_cmd_sync(struct hci_dev *hdev, int err)
2851{
2852	bt_dev_dbg(hdev, "err 0x%2.2x", err);
2853
2854	cancel_delayed_work_sync(&hdev->cmd_timer);
2855	cancel_delayed_work_sync(&hdev->ncmd_timer);
2856	atomic_set(&hdev->cmd_cnt, 1);
2857
2858	hci_cmd_sync_cancel_sync(hdev, err);
2859}
 
2860
2861/* Suspend HCI device */
2862int hci_suspend_dev(struct hci_dev *hdev)
2863{
2864	int ret;
2865
2866	bt_dev_dbg(hdev, "");
2867
2868	/* Suspend should only act on when powered. */
2869	if (!hdev_is_powered(hdev) ||
2870	    hci_dev_test_flag(hdev, HCI_UNREGISTER))
2871		return 0;
2872
2873	/* If powering down don't attempt to suspend */
2874	if (mgmt_powering_down(hdev))
2875		return 0;
2876
2877	/* Cancel potentially blocking sync operation before suspend */
2878	hci_cancel_cmd_sync(hdev, EHOSTDOWN);
2879
2880	hci_req_sync_lock(hdev);
2881	ret = hci_suspend_sync(hdev);
2882	hci_req_sync_unlock(hdev);
2883
2884	hci_clear_wake_reason(hdev);
2885	mgmt_suspending(hdev, hdev->suspend_state);
2886
2887	hci_sock_dev_event(hdev, HCI_DEV_SUSPEND);
2888	return ret;
2889}
2890EXPORT_SYMBOL(hci_suspend_dev);
2891
2892/* Resume HCI device */
2893int hci_resume_dev(struct hci_dev *hdev)
2894{
2895	int ret;
2896
2897	bt_dev_dbg(hdev, "");
2898
2899	/* Resume should only act on when powered. */
2900	if (!hdev_is_powered(hdev) ||
2901	    hci_dev_test_flag(hdev, HCI_UNREGISTER))
2902		return 0;
2903
2904	/* If powering down don't attempt to resume */
2905	if (mgmt_powering_down(hdev))
2906		return 0;
2907
2908	hci_req_sync_lock(hdev);
2909	ret = hci_resume_sync(hdev);
2910	hci_req_sync_unlock(hdev);
2911
2912	mgmt_resuming(hdev, hdev->wake_reason, &hdev->wake_addr,
2913		      hdev->wake_addr_type);
2914
2915	hci_sock_dev_event(hdev, HCI_DEV_RESUME);
2916	return ret;
2917}
2918EXPORT_SYMBOL(hci_resume_dev);
2919
2920/* Reset HCI device */
2921int hci_reset_dev(struct hci_dev *hdev)
2922{
2923	static const u8 hw_err[] = { HCI_EV_HARDWARE_ERROR, 0x01, 0x00 };
2924	struct sk_buff *skb;
2925
2926	skb = bt_skb_alloc(3, GFP_ATOMIC);
2927	if (!skb)
2928		return -ENOMEM;
2929
2930	hci_skb_pkt_type(skb) = HCI_EVENT_PKT;
2931	skb_put_data(skb, hw_err, 3);
2932
2933	bt_dev_err(hdev, "Injecting HCI hardware error event");
2934
2935	/* Send Hardware Error to upper stack */
2936	return hci_recv_frame(hdev, skb);
2937}
2938EXPORT_SYMBOL(hci_reset_dev);
2939
2940/* Receive frame from HCI drivers */
2941int hci_recv_frame(struct hci_dev *hdev, struct sk_buff *skb)
2942{
2943	if (!hdev || (!test_bit(HCI_UP, &hdev->flags)
2944		      && !test_bit(HCI_INIT, &hdev->flags))) {
2945		kfree_skb(skb);
2946		return -ENXIO;
2947	}
2948
2949	switch (hci_skb_pkt_type(skb)) {
2950	case HCI_EVENT_PKT:
2951		break;
2952	case HCI_ACLDATA_PKT:
2953		/* Detect if ISO packet has been sent as ACL */
2954		if (hci_conn_num(hdev, ISO_LINK)) {
2955			__u16 handle = __le16_to_cpu(hci_acl_hdr(skb)->handle);
2956			__u8 type;
2957
2958			type = hci_conn_lookup_type(hdev, hci_handle(handle));
2959			if (type == ISO_LINK)
2960				hci_skb_pkt_type(skb) = HCI_ISODATA_PKT;
2961		}
2962		break;
2963	case HCI_SCODATA_PKT:
2964		break;
2965	case HCI_ISODATA_PKT:
2966		break;
2967	default:
2968		kfree_skb(skb);
2969		return -EINVAL;
2970	}
2971
2972	/* Incoming skb */
2973	bt_cb(skb)->incoming = 1;
2974
2975	/* Time stamp */
2976	__net_timestamp(skb);
2977
2978	skb_queue_tail(&hdev->rx_q, skb);
2979	queue_work(hdev->workqueue, &hdev->rx_work);
2980
2981	return 0;
2982}
2983EXPORT_SYMBOL(hci_recv_frame);
2984
2985/* Receive diagnostic message from HCI drivers */
2986int hci_recv_diag(struct hci_dev *hdev, struct sk_buff *skb)
2987{
2988	/* Mark as diagnostic packet */
2989	hci_skb_pkt_type(skb) = HCI_DIAG_PKT;
2990
2991	/* Time stamp */
2992	__net_timestamp(skb);
2993
2994	skb_queue_tail(&hdev->rx_q, skb);
2995	queue_work(hdev->workqueue, &hdev->rx_work);
2996
2997	return 0;
2998}
2999EXPORT_SYMBOL(hci_recv_diag);
3000
3001void hci_set_hw_info(struct hci_dev *hdev, const char *fmt, ...)
3002{
3003	va_list vargs;
3004
3005	va_start(vargs, fmt);
3006	kfree_const(hdev->hw_info);
3007	hdev->hw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
3008	va_end(vargs);
3009}
3010EXPORT_SYMBOL(hci_set_hw_info);
3011
3012void hci_set_fw_info(struct hci_dev *hdev, const char *fmt, ...)
3013{
3014	va_list vargs;
3015
3016	va_start(vargs, fmt);
3017	kfree_const(hdev->fw_info);
3018	hdev->fw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
3019	va_end(vargs);
3020}
3021EXPORT_SYMBOL(hci_set_fw_info);
3022
3023/* ---- Interface to upper protocols ---- */
3024
3025int hci_register_cb(struct hci_cb *cb)
3026{
3027	BT_DBG("%p name %s", cb, cb->name);
3028
3029	mutex_lock(&hci_cb_list_lock);
3030	list_add_tail(&cb->list, &hci_cb_list);
3031	mutex_unlock(&hci_cb_list_lock);
3032
3033	return 0;
3034}
3035EXPORT_SYMBOL(hci_register_cb);
3036
3037int hci_unregister_cb(struct hci_cb *cb)
3038{
3039	BT_DBG("%p name %s", cb, cb->name);
3040
3041	mutex_lock(&hci_cb_list_lock);
3042	list_del(&cb->list);
3043	mutex_unlock(&hci_cb_list_lock);
3044
3045	return 0;
3046}
3047EXPORT_SYMBOL(hci_unregister_cb);
3048
3049static int hci_send_frame(struct hci_dev *hdev, struct sk_buff *skb)
3050{
3051	int err;
3052
3053	BT_DBG("%s type %d len %d", hdev->name, hci_skb_pkt_type(skb),
3054	       skb->len);
3055
3056	/* Time stamp */
3057	__net_timestamp(skb);
3058
3059	/* Send copy to monitor */
3060	hci_send_to_monitor(hdev, skb);
3061
3062	if (atomic_read(&hdev->promisc)) {
3063		/* Send copy to the sockets */
3064		hci_send_to_sock(hdev, skb);
3065	}
3066
3067	/* Get rid of skb owner, prior to sending to the driver. */
3068	skb_orphan(skb);
3069
3070	if (!test_bit(HCI_RUNNING, &hdev->flags)) {
3071		kfree_skb(skb);
3072		return -EINVAL;
3073	}
3074
3075	err = hdev->send(hdev, skb);
3076	if (err < 0) {
3077		bt_dev_err(hdev, "sending frame failed (%d)", err);
3078		kfree_skb(skb);
3079		return err;
3080	}
3081
3082	return 0;
3083}
3084
3085/* Send HCI command */
3086int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen,
3087		 const void *param)
3088{
3089	struct sk_buff *skb;
3090
3091	BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen);
3092
3093	skb = hci_prepare_cmd(hdev, opcode, plen, param);
3094	if (!skb) {
3095		bt_dev_err(hdev, "no memory for command");
3096		return -ENOMEM;
3097	}
3098
3099	/* Stand-alone HCI commands must be flagged as
3100	 * single-command requests.
3101	 */
3102	bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
3103
3104	skb_queue_tail(&hdev->cmd_q, skb);
3105	queue_work(hdev->workqueue, &hdev->cmd_work);
3106
3107	return 0;
3108}
3109
3110int __hci_cmd_send(struct hci_dev *hdev, u16 opcode, u32 plen,
3111		   const void *param)
3112{
3113	struct sk_buff *skb;
3114
3115	if (hci_opcode_ogf(opcode) != 0x3f) {
3116		/* A controller receiving a command shall respond with either
3117		 * a Command Status Event or a Command Complete Event.
3118		 * Therefore, all standard HCI commands must be sent via the
3119		 * standard API, using hci_send_cmd or hci_cmd_sync helpers.
3120		 * Some vendors do not comply with this rule for vendor-specific
3121		 * commands and do not return any event. We want to support
3122		 * unresponded commands for such cases only.
3123		 */
3124		bt_dev_err(hdev, "unresponded command not supported");
3125		return -EINVAL;
3126	}
3127
3128	skb = hci_prepare_cmd(hdev, opcode, plen, param);
3129	if (!skb) {
3130		bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)",
3131			   opcode);
3132		return -ENOMEM;
3133	}
3134
3135	hci_send_frame(hdev, skb);
3136
3137	return 0;
3138}
3139EXPORT_SYMBOL(__hci_cmd_send);
3140
3141/* Get data from the previously sent command */
3142static void *hci_cmd_data(struct sk_buff *skb, __u16 opcode)
3143{
3144	struct hci_command_hdr *hdr;
3145
3146	if (!skb || skb->len < HCI_COMMAND_HDR_SIZE)
3147		return NULL;
3148
3149	hdr = (void *)skb->data;
3150
3151	if (hdr->opcode != cpu_to_le16(opcode))
3152		return NULL;
3153
3154	return skb->data + HCI_COMMAND_HDR_SIZE;
3155}
3156
3157/* Get data from the previously sent command */
3158void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode)
3159{
3160	void *data;
3161
3162	/* Check if opcode matches last sent command */
3163	data = hci_cmd_data(hdev->sent_cmd, opcode);
3164	if (!data)
3165		/* Check if opcode matches last request */
3166		data = hci_cmd_data(hdev->req_skb, opcode);
3167
3168	return data;
3169}
3170
3171/* Get data from last received event */
3172void *hci_recv_event_data(struct hci_dev *hdev, __u8 event)
 
3173{
3174	struct hci_event_hdr *hdr;
3175	int offset;
3176
3177	if (!hdev->recv_event)
3178		return NULL;
3179
3180	hdr = (void *)hdev->recv_event->data;
3181	offset = sizeof(*hdr);
3182
3183	if (hdr->evt != event) {
3184		/* In case of LE metaevent check the subevent match */
3185		if (hdr->evt == HCI_EV_LE_META) {
3186			struct hci_ev_le_meta *ev;
3187
3188			ev = (void *)hdev->recv_event->data + offset;
3189			offset += sizeof(*ev);
3190			if (ev->subevent == event)
3191				goto found;
3192		}
3193		return NULL;
3194	}
3195
3196found:
3197	bt_dev_dbg(hdev, "event 0x%2.2x", event);
3198
3199	return hdev->recv_event->data + offset;
3200}
 
3201
3202/* Send ACL data */
3203static void hci_add_acl_hdr(struct sk_buff *skb, __u16 handle, __u16 flags)
3204{
3205	struct hci_acl_hdr *hdr;
3206	int len = skb->len;
3207
3208	skb_push(skb, HCI_ACL_HDR_SIZE);
3209	skb_reset_transport_header(skb);
3210	hdr = (struct hci_acl_hdr *)skb_transport_header(skb);
3211	hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
3212	hdr->dlen   = cpu_to_le16(len);
3213}
3214
3215static void hci_queue_acl(struct hci_chan *chan, struct sk_buff_head *queue,
3216			  struct sk_buff *skb, __u16 flags)
3217{
3218	struct hci_conn *conn = chan->conn;
3219	struct hci_dev *hdev = conn->hdev;
3220	struct sk_buff *list;
3221
3222	skb->len = skb_headlen(skb);
3223	skb->data_len = 0;
3224
3225	hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
3226
3227	hci_add_acl_hdr(skb, conn->handle, flags);
 
 
 
 
 
 
 
 
 
 
3228
3229	list = skb_shinfo(skb)->frag_list;
3230	if (!list) {
3231		/* Non fragmented */
3232		BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
3233
3234		skb_queue_tail(queue, skb);
3235	} else {
3236		/* Fragmented */
3237		BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3238
3239		skb_shinfo(skb)->frag_list = NULL;
3240
3241		/* Queue all fragments atomically. We need to use spin_lock_bh
3242		 * here because of 6LoWPAN links, as there this function is
3243		 * called from softirq and using normal spin lock could cause
3244		 * deadlocks.
3245		 */
3246		spin_lock_bh(&queue->lock);
3247
3248		__skb_queue_tail(queue, skb);
3249
3250		flags &= ~ACL_START;
3251		flags |= ACL_CONT;
3252		do {
3253			skb = list; list = list->next;
3254
3255			hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
3256			hci_add_acl_hdr(skb, conn->handle, flags);
3257
3258			BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3259
3260			__skb_queue_tail(queue, skb);
3261		} while (list);
3262
3263		spin_unlock_bh(&queue->lock);
3264	}
3265}
3266
3267void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags)
3268{
3269	struct hci_dev *hdev = chan->conn->hdev;
3270
3271	BT_DBG("%s chan %p flags 0x%4.4x", hdev->name, chan, flags);
3272
3273	hci_queue_acl(chan, &chan->data_q, skb, flags);
3274
3275	queue_work(hdev->workqueue, &hdev->tx_work);
3276}
3277
3278/* Send SCO data */
3279void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb)
3280{
3281	struct hci_dev *hdev = conn->hdev;
3282	struct hci_sco_hdr hdr;
3283
3284	BT_DBG("%s len %d", hdev->name, skb->len);
3285
3286	hdr.handle = cpu_to_le16(conn->handle);
3287	hdr.dlen   = skb->len;
3288
3289	skb_push(skb, HCI_SCO_HDR_SIZE);
3290	skb_reset_transport_header(skb);
3291	memcpy(skb_transport_header(skb), &hdr, HCI_SCO_HDR_SIZE);
3292
3293	hci_skb_pkt_type(skb) = HCI_SCODATA_PKT;
3294
3295	skb_queue_tail(&conn->data_q, skb);
3296	queue_work(hdev->workqueue, &hdev->tx_work);
3297}
3298
3299/* Send ISO data */
3300static void hci_add_iso_hdr(struct sk_buff *skb, __u16 handle, __u8 flags)
3301{
3302	struct hci_iso_hdr *hdr;
3303	int len = skb->len;
3304
3305	skb_push(skb, HCI_ISO_HDR_SIZE);
3306	skb_reset_transport_header(skb);
3307	hdr = (struct hci_iso_hdr *)skb_transport_header(skb);
3308	hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
3309	hdr->dlen   = cpu_to_le16(len);
3310}
3311
3312static void hci_queue_iso(struct hci_conn *conn, struct sk_buff_head *queue,
3313			  struct sk_buff *skb)
3314{
3315	struct hci_dev *hdev = conn->hdev;
3316	struct sk_buff *list;
3317	__u16 flags;
3318
3319	skb->len = skb_headlen(skb);
3320	skb->data_len = 0;
3321
3322	hci_skb_pkt_type(skb) = HCI_ISODATA_PKT;
3323
3324	list = skb_shinfo(skb)->frag_list;
3325
3326	flags = hci_iso_flags_pack(list ? ISO_START : ISO_SINGLE, 0x00);
3327	hci_add_iso_hdr(skb, conn->handle, flags);
3328
3329	if (!list) {
3330		/* Non fragmented */
3331		BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
3332
3333		skb_queue_tail(queue, skb);
3334	} else {
3335		/* Fragmented */
3336		BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3337
3338		skb_shinfo(skb)->frag_list = NULL;
3339
3340		__skb_queue_tail(queue, skb);
3341
3342		do {
3343			skb = list; list = list->next;
3344
3345			hci_skb_pkt_type(skb) = HCI_ISODATA_PKT;
3346			flags = hci_iso_flags_pack(list ? ISO_CONT : ISO_END,
3347						   0x00);
3348			hci_add_iso_hdr(skb, conn->handle, flags);
3349
3350			BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3351
3352			__skb_queue_tail(queue, skb);
3353		} while (list);
3354	}
3355}
3356
3357void hci_send_iso(struct hci_conn *conn, struct sk_buff *skb)
3358{
3359	struct hci_dev *hdev = conn->hdev;
3360
3361	BT_DBG("%s len %d", hdev->name, skb->len);
3362
3363	hci_queue_iso(conn, &conn->data_q, skb);
3364
3365	queue_work(hdev->workqueue, &hdev->tx_work);
3366}
3367
3368/* ---- HCI TX task (outgoing data) ---- */
3369
3370/* HCI Connection scheduler */
3371static inline void hci_quote_sent(struct hci_conn *conn, int num, int *quote)
3372{
3373	struct hci_dev *hdev;
3374	int cnt, q;
3375
3376	if (!conn) {
3377		*quote = 0;
3378		return;
3379	}
3380
3381	hdev = conn->hdev;
3382
3383	switch (conn->type) {
3384	case ACL_LINK:
3385		cnt = hdev->acl_cnt;
3386		break;
3387	case SCO_LINK:
3388	case ESCO_LINK:
3389		cnt = hdev->sco_cnt;
3390		break;
3391	case LE_LINK:
3392		cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3393		break;
3394	case ISO_LINK:
3395		cnt = hdev->iso_mtu ? hdev->iso_cnt :
3396			hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3397		break;
3398	default:
3399		cnt = 0;
3400		bt_dev_err(hdev, "unknown link type %d", conn->type);
3401	}
3402
3403	q = cnt / num;
3404	*quote = q ? q : 1;
3405}
3406
3407static struct hci_conn *hci_low_sent(struct hci_dev *hdev, __u8 type,
3408				     int *quote)
3409{
3410	struct hci_conn_hash *h = &hdev->conn_hash;
3411	struct hci_conn *conn = NULL, *c;
3412	unsigned int num = 0, min = ~0;
3413
3414	/* We don't have to lock device here. Connections are always
3415	 * added and removed with TX task disabled. */
3416
3417	rcu_read_lock();
3418
3419	list_for_each_entry_rcu(c, &h->list, list) {
3420		if (c->type != type || skb_queue_empty(&c->data_q))
3421			continue;
3422
3423		if (c->state != BT_CONNECTED && c->state != BT_CONFIG)
3424			continue;
3425
3426		num++;
3427
3428		if (c->sent < min) {
3429			min  = c->sent;
3430			conn = c;
3431		}
3432
3433		if (hci_conn_num(hdev, type) == num)
3434			break;
3435	}
3436
3437	rcu_read_unlock();
3438
3439	hci_quote_sent(conn, num, quote);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3440
3441	BT_DBG("conn %p quote %d", conn, *quote);
3442	return conn;
3443}
3444
3445static void hci_link_tx_to(struct hci_dev *hdev, __u8 type)
3446{
3447	struct hci_conn_hash *h = &hdev->conn_hash;
3448	struct hci_conn *c;
3449
3450	bt_dev_err(hdev, "link tx timeout");
3451
3452	rcu_read_lock();
3453
3454	/* Kill stalled connections */
3455	list_for_each_entry_rcu(c, &h->list, list) {
3456		if (c->type == type && c->sent) {
3457			bt_dev_err(hdev, "killing stalled connection %pMR",
3458				   &c->dst);
3459			/* hci_disconnect might sleep, so, we have to release
3460			 * the RCU read lock before calling it.
3461			 */
3462			rcu_read_unlock();
3463			hci_disconnect(c, HCI_ERROR_REMOTE_USER_TERM);
3464			rcu_read_lock();
3465		}
3466	}
3467
3468	rcu_read_unlock();
3469}
3470
3471static struct hci_chan *hci_chan_sent(struct hci_dev *hdev, __u8 type,
3472				      int *quote)
3473{
3474	struct hci_conn_hash *h = &hdev->conn_hash;
3475	struct hci_chan *chan = NULL;
3476	unsigned int num = 0, min = ~0, cur_prio = 0;
3477	struct hci_conn *conn;
3478	int conn_num = 0;
3479
3480	BT_DBG("%s", hdev->name);
3481
3482	rcu_read_lock();
3483
3484	list_for_each_entry_rcu(conn, &h->list, list) {
3485		struct hci_chan *tmp;
3486
3487		if (conn->type != type)
3488			continue;
3489
3490		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3491			continue;
3492
3493		conn_num++;
3494
3495		list_for_each_entry_rcu(tmp, &conn->chan_list, list) {
3496			struct sk_buff *skb;
3497
3498			if (skb_queue_empty(&tmp->data_q))
3499				continue;
3500
3501			skb = skb_peek(&tmp->data_q);
3502			if (skb->priority < cur_prio)
3503				continue;
3504
3505			if (skb->priority > cur_prio) {
3506				num = 0;
3507				min = ~0;
3508				cur_prio = skb->priority;
3509			}
3510
3511			num++;
3512
3513			if (conn->sent < min) {
3514				min  = conn->sent;
3515				chan = tmp;
3516			}
3517		}
3518
3519		if (hci_conn_num(hdev, type) == conn_num)
3520			break;
3521	}
3522
3523	rcu_read_unlock();
3524
3525	if (!chan)
3526		return NULL;
3527
3528	hci_quote_sent(chan->conn, num, quote);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3529
 
 
3530	BT_DBG("chan %p quote %d", chan, *quote);
3531	return chan;
3532}
3533
3534static void hci_prio_recalculate(struct hci_dev *hdev, __u8 type)
3535{
3536	struct hci_conn_hash *h = &hdev->conn_hash;
3537	struct hci_conn *conn;
3538	int num = 0;
3539
3540	BT_DBG("%s", hdev->name);
3541
3542	rcu_read_lock();
3543
3544	list_for_each_entry_rcu(conn, &h->list, list) {
3545		struct hci_chan *chan;
3546
3547		if (conn->type != type)
3548			continue;
3549
3550		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3551			continue;
3552
3553		num++;
3554
3555		list_for_each_entry_rcu(chan, &conn->chan_list, list) {
3556			struct sk_buff *skb;
3557
3558			if (chan->sent) {
3559				chan->sent = 0;
3560				continue;
3561			}
3562
3563			if (skb_queue_empty(&chan->data_q))
3564				continue;
3565
3566			skb = skb_peek(&chan->data_q);
3567			if (skb->priority >= HCI_PRIO_MAX - 1)
3568				continue;
3569
3570			skb->priority = HCI_PRIO_MAX - 1;
3571
3572			BT_DBG("chan %p skb %p promoted to %d", chan, skb,
3573			       skb->priority);
3574		}
3575
3576		if (hci_conn_num(hdev, type) == num)
3577			break;
3578	}
3579
3580	rcu_read_unlock();
3581
3582}
3583
3584static void __check_timeout(struct hci_dev *hdev, unsigned int cnt, u8 type)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3585{
3586	unsigned long last_tx;
 
 
 
 
 
 
 
 
3587
3588	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3589		return;
3590
3591	switch (type) {
3592	case LE_LINK:
3593		last_tx = hdev->le_last_tx;
 
 
 
 
3594		break;
3595	default:
3596		last_tx = hdev->acl_last_tx;
 
3597		break;
3598	}
3599
3600	/* tx timeout must be longer than maximum link supervision timeout
3601	 * (40.9 seconds)
3602	 */
3603	if (!cnt && time_after(jiffies, last_tx + HCI_ACL_TX_TIMEOUT))
3604		hci_link_tx_to(hdev, type);
3605}
3606
3607/* Schedule SCO */
3608static void hci_sched_sco(struct hci_dev *hdev)
3609{
3610	struct hci_conn *conn;
3611	struct sk_buff *skb;
3612	int quote;
3613
3614	BT_DBG("%s", hdev->name);
3615
3616	if (!hci_conn_num(hdev, SCO_LINK))
3617		return;
3618
3619	while (hdev->sco_cnt && (conn = hci_low_sent(hdev, SCO_LINK, &quote))) {
3620		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3621			BT_DBG("skb %p len %d", skb, skb->len);
3622			hci_send_frame(hdev, skb);
3623
3624			conn->sent++;
3625			if (conn->sent == ~0)
3626				conn->sent = 0;
3627		}
3628	}
3629}
3630
3631static void hci_sched_esco(struct hci_dev *hdev)
3632{
3633	struct hci_conn *conn;
3634	struct sk_buff *skb;
3635	int quote;
3636
3637	BT_DBG("%s", hdev->name);
3638
3639	if (!hci_conn_num(hdev, ESCO_LINK))
3640		return;
3641
3642	while (hdev->sco_cnt && (conn = hci_low_sent(hdev, ESCO_LINK,
3643						     &quote))) {
3644		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3645			BT_DBG("skb %p len %d", skb, skb->len);
3646			hci_send_frame(hdev, skb);
3647
3648			conn->sent++;
3649			if (conn->sent == ~0)
3650				conn->sent = 0;
3651		}
3652	}
3653}
3654
3655static void hci_sched_acl_pkt(struct hci_dev *hdev)
3656{
3657	unsigned int cnt = hdev->acl_cnt;
3658	struct hci_chan *chan;
3659	struct sk_buff *skb;
3660	int quote;
3661
3662	__check_timeout(hdev, cnt, ACL_LINK);
3663
3664	while (hdev->acl_cnt &&
3665	       (chan = hci_chan_sent(hdev, ACL_LINK, &quote))) {
3666		u32 priority = (skb_peek(&chan->data_q))->priority;
3667		while (quote-- && (skb = skb_peek(&chan->data_q))) {
3668			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3669			       skb->len, skb->priority);
3670
3671			/* Stop if priority has changed */
3672			if (skb->priority < priority)
3673				break;
3674
3675			skb = skb_dequeue(&chan->data_q);
3676
3677			hci_conn_enter_active_mode(chan->conn,
3678						   bt_cb(skb)->force_active);
3679
3680			hci_send_frame(hdev, skb);
3681			hdev->acl_last_tx = jiffies;
3682
3683			hdev->acl_cnt--;
3684			chan->sent++;
3685			chan->conn->sent++;
3686
3687			/* Send pending SCO packets right away */
3688			hci_sched_sco(hdev);
3689			hci_sched_esco(hdev);
3690		}
3691	}
3692
3693	if (cnt != hdev->acl_cnt)
3694		hci_prio_recalculate(hdev, ACL_LINK);
3695}
3696
3697static void hci_sched_acl(struct hci_dev *hdev)
3698{
3699	BT_DBG("%s", hdev->name);
3700
3701	/* No ACL link over BR/EDR controller */
3702	if (!hci_conn_num(hdev, ACL_LINK))
3703		return;
3704
3705	hci_sched_acl_pkt(hdev);
3706}
3707
3708static void hci_sched_le(struct hci_dev *hdev)
3709{
3710	struct hci_chan *chan;
3711	struct sk_buff *skb;
3712	int quote, cnt, tmp;
3713
3714	BT_DBG("%s", hdev->name);
3715
3716	if (!hci_conn_num(hdev, LE_LINK))
3717		return;
3718
 
 
 
 
 
 
 
 
3719	cnt = hdev->le_pkts ? hdev->le_cnt : hdev->acl_cnt;
3720
3721	__check_timeout(hdev, cnt, LE_LINK);
3722
3723	tmp = cnt;
3724	while (cnt && (chan = hci_chan_sent(hdev, LE_LINK, &quote))) {
3725		u32 priority = (skb_peek(&chan->data_q))->priority;
3726		while (quote-- && (skb = skb_peek(&chan->data_q))) {
3727			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3728			       skb->len, skb->priority);
3729
3730			/* Stop if priority has changed */
3731			if (skb->priority < priority)
3732				break;
3733
3734			skb = skb_dequeue(&chan->data_q);
3735
3736			hci_send_frame(hdev, skb);
3737			hdev->le_last_tx = jiffies;
3738
3739			cnt--;
3740			chan->sent++;
3741			chan->conn->sent++;
3742
3743			/* Send pending SCO packets right away */
3744			hci_sched_sco(hdev);
3745			hci_sched_esco(hdev);
3746		}
3747	}
3748
3749	if (hdev->le_pkts)
3750		hdev->le_cnt = cnt;
3751	else
3752		hdev->acl_cnt = cnt;
3753
3754	if (cnt != tmp)
3755		hci_prio_recalculate(hdev, LE_LINK);
3756}
3757
3758/* Schedule CIS */
3759static void hci_sched_iso(struct hci_dev *hdev)
3760{
3761	struct hci_conn *conn;
3762	struct sk_buff *skb;
3763	int quote, *cnt;
3764
3765	BT_DBG("%s", hdev->name);
3766
3767	if (!hci_conn_num(hdev, ISO_LINK))
3768		return;
3769
3770	cnt = hdev->iso_pkts ? &hdev->iso_cnt :
3771		hdev->le_pkts ? &hdev->le_cnt : &hdev->acl_cnt;
3772	while (*cnt && (conn = hci_low_sent(hdev, ISO_LINK, &quote))) {
3773		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3774			BT_DBG("skb %p len %d", skb, skb->len);
3775			hci_send_frame(hdev, skb);
3776
3777			conn->sent++;
3778			if (conn->sent == ~0)
3779				conn->sent = 0;
3780			(*cnt)--;
3781		}
3782	}
3783}
3784
3785static void hci_tx_work(struct work_struct *work)
3786{
3787	struct hci_dev *hdev = container_of(work, struct hci_dev, tx_work);
3788	struct sk_buff *skb;
3789
3790	BT_DBG("%s acl %d sco %d le %d iso %d", hdev->name, hdev->acl_cnt,
3791	       hdev->sco_cnt, hdev->le_cnt, hdev->iso_cnt);
3792
3793	if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
3794		/* Schedule queues and send stuff to HCI driver */
 
3795		hci_sched_sco(hdev);
3796		hci_sched_esco(hdev);
3797		hci_sched_iso(hdev);
3798		hci_sched_acl(hdev);
3799		hci_sched_le(hdev);
3800	}
3801
3802	/* Send next queued raw (unknown type) packet */
3803	while ((skb = skb_dequeue(&hdev->raw_q)))
3804		hci_send_frame(hdev, skb);
3805}
3806
3807/* ----- HCI RX task (incoming data processing) ----- */
3808
3809/* ACL data packet */
3810static void hci_acldata_packet(struct hci_dev *hdev, struct sk_buff *skb)
3811{
3812	struct hci_acl_hdr *hdr = (void *) skb->data;
3813	struct hci_conn *conn;
3814	__u16 handle, flags;
3815
3816	skb_pull(skb, HCI_ACL_HDR_SIZE);
3817
3818	handle = __le16_to_cpu(hdr->handle);
3819	flags  = hci_flags(handle);
3820	handle = hci_handle(handle);
3821
3822	BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len,
3823	       handle, flags);
3824
3825	hdev->stat.acl_rx++;
3826
3827	hci_dev_lock(hdev);
3828	conn = hci_conn_hash_lookup_handle(hdev, handle);
3829	hci_dev_unlock(hdev);
3830
3831	if (conn) {
3832		hci_conn_enter_active_mode(conn, BT_POWER_FORCE_ACTIVE_OFF);
3833
3834		/* Send to upper protocol */
3835		l2cap_recv_acldata(conn, skb, flags);
3836		return;
3837	} else {
3838		bt_dev_err(hdev, "ACL packet for unknown connection handle %d",
3839			   handle);
3840	}
3841
3842	kfree_skb(skb);
3843}
3844
3845/* SCO data packet */
3846static void hci_scodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
3847{
3848	struct hci_sco_hdr *hdr = (void *) skb->data;
3849	struct hci_conn *conn;
3850	__u16 handle, flags;
3851
3852	skb_pull(skb, HCI_SCO_HDR_SIZE);
3853
3854	handle = __le16_to_cpu(hdr->handle);
3855	flags  = hci_flags(handle);
3856	handle = hci_handle(handle);
3857
3858	BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len,
3859	       handle, flags);
3860
3861	hdev->stat.sco_rx++;
3862
3863	hci_dev_lock(hdev);
3864	conn = hci_conn_hash_lookup_handle(hdev, handle);
3865	hci_dev_unlock(hdev);
3866
3867	if (conn) {
3868		/* Send to upper protocol */
3869		hci_skb_pkt_status(skb) = flags & 0x03;
3870		sco_recv_scodata(conn, skb);
3871		return;
3872	} else {
3873		bt_dev_err_ratelimited(hdev, "SCO packet for unknown connection handle %d",
3874				       handle);
3875	}
3876
3877	kfree_skb(skb);
3878}
3879
3880static void hci_isodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
3881{
3882	struct hci_iso_hdr *hdr;
3883	struct hci_conn *conn;
3884	__u16 handle, flags;
3885
3886	hdr = skb_pull_data(skb, sizeof(*hdr));
3887	if (!hdr) {
3888		bt_dev_err(hdev, "ISO packet too small");
3889		goto drop;
3890	}
3891
3892	handle = __le16_to_cpu(hdr->handle);
3893	flags  = hci_flags(handle);
3894	handle = hci_handle(handle);
3895
3896	bt_dev_dbg(hdev, "len %d handle 0x%4.4x flags 0x%4.4x", skb->len,
3897		   handle, flags);
3898
3899	hci_dev_lock(hdev);
3900	conn = hci_conn_hash_lookup_handle(hdev, handle);
3901	hci_dev_unlock(hdev);
3902
3903	if (!conn) {
3904		bt_dev_err(hdev, "ISO packet for unknown connection handle %d",
3905			   handle);
3906		goto drop;
3907	}
3908
3909	/* Send to upper protocol */
3910	iso_recv(conn, skb, flags);
3911	return;
3912
3913drop:
3914	kfree_skb(skb);
3915}
3916
3917static bool hci_req_is_complete(struct hci_dev *hdev)
3918{
3919	struct sk_buff *skb;
3920
3921	skb = skb_peek(&hdev->cmd_q);
3922	if (!skb)
3923		return true;
3924
3925	return (bt_cb(skb)->hci.req_flags & HCI_REQ_START);
3926}
3927
3928static void hci_resend_last(struct hci_dev *hdev)
3929{
3930	struct hci_command_hdr *sent;
3931	struct sk_buff *skb;
3932	u16 opcode;
3933
3934	if (!hdev->sent_cmd)
3935		return;
3936
3937	sent = (void *) hdev->sent_cmd->data;
3938	opcode = __le16_to_cpu(sent->opcode);
3939	if (opcode == HCI_OP_RESET)
3940		return;
3941
3942	skb = skb_clone(hdev->sent_cmd, GFP_KERNEL);
3943	if (!skb)
3944		return;
3945
3946	skb_queue_head(&hdev->cmd_q, skb);
3947	queue_work(hdev->workqueue, &hdev->cmd_work);
3948}
3949
3950void hci_req_cmd_complete(struct hci_dev *hdev, u16 opcode, u8 status,
3951			  hci_req_complete_t *req_complete,
3952			  hci_req_complete_skb_t *req_complete_skb)
3953{
3954	struct sk_buff *skb;
3955	unsigned long flags;
3956
3957	BT_DBG("opcode 0x%04x status 0x%02x", opcode, status);
3958
3959	/* If the completed command doesn't match the last one that was
3960	 * sent we need to do special handling of it.
3961	 */
3962	if (!hci_sent_cmd_data(hdev, opcode)) {
3963		/* Some CSR based controllers generate a spontaneous
3964		 * reset complete event during init and any pending
3965		 * command will never be completed. In such a case we
3966		 * need to resend whatever was the last sent
3967		 * command.
3968		 */
3969		if (test_bit(HCI_INIT, &hdev->flags) && opcode == HCI_OP_RESET)
3970			hci_resend_last(hdev);
3971
3972		return;
3973	}
3974
3975	/* If we reach this point this event matches the last command sent */
3976	hci_dev_clear_flag(hdev, HCI_CMD_PENDING);
3977
3978	/* If the command succeeded and there's still more commands in
3979	 * this request the request is not yet complete.
3980	 */
3981	if (!status && !hci_req_is_complete(hdev))
3982		return;
3983
3984	skb = hdev->req_skb;
3985
3986	/* If this was the last command in a request the complete
3987	 * callback would be found in hdev->req_skb instead of the
3988	 * command queue (hdev->cmd_q).
3989	 */
3990	if (skb && bt_cb(skb)->hci.req_flags & HCI_REQ_SKB) {
3991		*req_complete_skb = bt_cb(skb)->hci.req_complete_skb;
3992		return;
3993	}
3994
3995	if (skb && bt_cb(skb)->hci.req_complete) {
3996		*req_complete = bt_cb(skb)->hci.req_complete;
3997		return;
3998	}
3999
4000	/* Remove all pending commands belonging to this request */
4001	spin_lock_irqsave(&hdev->cmd_q.lock, flags);
4002	while ((skb = __skb_dequeue(&hdev->cmd_q))) {
4003		if (bt_cb(skb)->hci.req_flags & HCI_REQ_START) {
4004			__skb_queue_head(&hdev->cmd_q, skb);
4005			break;
4006		}
4007
4008		if (bt_cb(skb)->hci.req_flags & HCI_REQ_SKB)
4009			*req_complete_skb = bt_cb(skb)->hci.req_complete_skb;
4010		else
4011			*req_complete = bt_cb(skb)->hci.req_complete;
4012		dev_kfree_skb_irq(skb);
4013	}
4014	spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
4015}
4016
4017static void hci_rx_work(struct work_struct *work)
4018{
4019	struct hci_dev *hdev = container_of(work, struct hci_dev, rx_work);
4020	struct sk_buff *skb;
4021
4022	BT_DBG("%s", hdev->name);
4023
4024	/* The kcov_remote functions used for collecting packet parsing
4025	 * coverage information from this background thread and associate
4026	 * the coverage with the syscall's thread which originally injected
4027	 * the packet. This helps fuzzing the kernel.
4028	 */
4029	for (; (skb = skb_dequeue(&hdev->rx_q)); kcov_remote_stop()) {
4030		kcov_remote_start_common(skb_get_kcov_handle(skb));
4031
4032		/* Send copy to monitor */
4033		hci_send_to_monitor(hdev, skb);
4034
4035		if (atomic_read(&hdev->promisc)) {
4036			/* Send copy to the sockets */
4037			hci_send_to_sock(hdev, skb);
4038		}
4039
4040		/* If the device has been opened in HCI_USER_CHANNEL,
4041		 * the userspace has exclusive access to device.
4042		 * When device is HCI_INIT, we still need to process
4043		 * the data packets to the driver in order
4044		 * to complete its setup().
4045		 */
4046		if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
4047		    !test_bit(HCI_INIT, &hdev->flags)) {
4048			kfree_skb(skb);
4049			continue;
4050		}
4051
4052		if (test_bit(HCI_INIT, &hdev->flags)) {
4053			/* Don't process data packets in this states. */
4054			switch (hci_skb_pkt_type(skb)) {
4055			case HCI_ACLDATA_PKT:
4056			case HCI_SCODATA_PKT:
4057			case HCI_ISODATA_PKT:
4058				kfree_skb(skb);
4059				continue;
4060			}
4061		}
4062
4063		/* Process frame */
4064		switch (hci_skb_pkt_type(skb)) {
4065		case HCI_EVENT_PKT:
4066			BT_DBG("%s Event packet", hdev->name);
4067			hci_event_packet(hdev, skb);
4068			break;
4069
4070		case HCI_ACLDATA_PKT:
4071			BT_DBG("%s ACL data packet", hdev->name);
4072			hci_acldata_packet(hdev, skb);
4073			break;
4074
4075		case HCI_SCODATA_PKT:
4076			BT_DBG("%s SCO data packet", hdev->name);
4077			hci_scodata_packet(hdev, skb);
4078			break;
4079
4080		case HCI_ISODATA_PKT:
4081			BT_DBG("%s ISO data packet", hdev->name);
4082			hci_isodata_packet(hdev, skb);
4083			break;
4084
4085		default:
4086			kfree_skb(skb);
4087			break;
4088		}
4089	}
4090}
4091
4092static void hci_send_cmd_sync(struct hci_dev *hdev, struct sk_buff *skb)
4093{
4094	int err;
4095
4096	bt_dev_dbg(hdev, "skb %p", skb);
4097
4098	kfree_skb(hdev->sent_cmd);
4099
4100	hdev->sent_cmd = skb_clone(skb, GFP_KERNEL);
4101	if (!hdev->sent_cmd) {
4102		skb_queue_head(&hdev->cmd_q, skb);
4103		queue_work(hdev->workqueue, &hdev->cmd_work);
4104		return;
4105	}
4106
4107	err = hci_send_frame(hdev, skb);
4108	if (err < 0) {
4109		hci_cmd_sync_cancel_sync(hdev, -err);
4110		return;
4111	}
4112
4113	if (hci_req_status_pend(hdev) &&
4114	    !hci_dev_test_and_set_flag(hdev, HCI_CMD_PENDING)) {
4115		kfree_skb(hdev->req_skb);
4116		hdev->req_skb = skb_clone(hdev->sent_cmd, GFP_KERNEL);
4117	}
4118
4119	atomic_dec(&hdev->cmd_cnt);
4120}
4121
4122static void hci_cmd_work(struct work_struct *work)
4123{
4124	struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_work);
4125	struct sk_buff *skb;
4126
4127	BT_DBG("%s cmd_cnt %d cmd queued %d", hdev->name,
4128	       atomic_read(&hdev->cmd_cnt), skb_queue_len(&hdev->cmd_q));
4129
4130	/* Send queued commands */
4131	if (atomic_read(&hdev->cmd_cnt)) {
4132		skb = skb_dequeue(&hdev->cmd_q);
4133		if (!skb)
4134			return;
4135
4136		hci_send_cmd_sync(hdev, skb);
4137
4138		rcu_read_lock();
4139		if (test_bit(HCI_RESET, &hdev->flags) ||
4140		    hci_dev_test_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE))
4141			cancel_delayed_work(&hdev->cmd_timer);
4142		else
4143			queue_delayed_work(hdev->workqueue, &hdev->cmd_timer,
4144					   HCI_CMD_TIMEOUT);
4145		rcu_read_unlock();
 
 
 
 
 
4146	}
4147}