Loading...
1/*
2 BlueZ - Bluetooth protocol stack for Linux
3 Copyright (C) 2000-2001 Qualcomm Incorporated
4 Copyright (C) 2011 ProFUSION Embedded Systems
5
6 Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License version 2 as
10 published by the Free Software Foundation;
11
12 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
13 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
14 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
15 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
16 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
17 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20
21 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
22 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
23 SOFTWARE IS DISCLAIMED.
24*/
25
26/* Bluetooth HCI core. */
27
28#include <linux/export.h>
29#include <linux/idr.h>
30#include <linux/rfkill.h>
31#include <linux/debugfs.h>
32#include <linux/crypto.h>
33#include <asm/unaligned.h>
34
35#include <net/bluetooth/bluetooth.h>
36#include <net/bluetooth/hci_core.h>
37#include <net/bluetooth/l2cap.h>
38#include <net/bluetooth/mgmt.h>
39
40#include "hci_request.h"
41#include "hci_debugfs.h"
42#include "smp.h"
43#include "leds.h"
44
45static void hci_rx_work(struct work_struct *work);
46static void hci_cmd_work(struct work_struct *work);
47static void hci_tx_work(struct work_struct *work);
48
49/* HCI device list */
50LIST_HEAD(hci_dev_list);
51DEFINE_RWLOCK(hci_dev_list_lock);
52
53/* HCI callback list */
54LIST_HEAD(hci_cb_list);
55DEFINE_MUTEX(hci_cb_list_lock);
56
57/* HCI ID Numbering */
58static DEFINE_IDA(hci_index_ida);
59
60/* ---- HCI debugfs entries ---- */
61
62static ssize_t dut_mode_read(struct file *file, char __user *user_buf,
63 size_t count, loff_t *ppos)
64{
65 struct hci_dev *hdev = file->private_data;
66 char buf[3];
67
68 buf[0] = hci_dev_test_flag(hdev, HCI_DUT_MODE) ? 'Y' : 'N';
69 buf[1] = '\n';
70 buf[2] = '\0';
71 return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
72}
73
74static ssize_t dut_mode_write(struct file *file, const char __user *user_buf,
75 size_t count, loff_t *ppos)
76{
77 struct hci_dev *hdev = file->private_data;
78 struct sk_buff *skb;
79 char buf[32];
80 size_t buf_size = min(count, (sizeof(buf)-1));
81 bool enable;
82
83 if (!test_bit(HCI_UP, &hdev->flags))
84 return -ENETDOWN;
85
86 if (copy_from_user(buf, user_buf, buf_size))
87 return -EFAULT;
88
89 buf[buf_size] = '\0';
90 if (strtobool(buf, &enable))
91 return -EINVAL;
92
93 if (enable == hci_dev_test_flag(hdev, HCI_DUT_MODE))
94 return -EALREADY;
95
96 hci_req_sync_lock(hdev);
97 if (enable)
98 skb = __hci_cmd_sync(hdev, HCI_OP_ENABLE_DUT_MODE, 0, NULL,
99 HCI_CMD_TIMEOUT);
100 else
101 skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL,
102 HCI_CMD_TIMEOUT);
103 hci_req_sync_unlock(hdev);
104
105 if (IS_ERR(skb))
106 return PTR_ERR(skb);
107
108 kfree_skb(skb);
109
110 hci_dev_change_flag(hdev, HCI_DUT_MODE);
111
112 return count;
113}
114
115static const struct file_operations dut_mode_fops = {
116 .open = simple_open,
117 .read = dut_mode_read,
118 .write = dut_mode_write,
119 .llseek = default_llseek,
120};
121
122static ssize_t vendor_diag_read(struct file *file, char __user *user_buf,
123 size_t count, loff_t *ppos)
124{
125 struct hci_dev *hdev = file->private_data;
126 char buf[3];
127
128 buf[0] = hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) ? 'Y' : 'N';
129 buf[1] = '\n';
130 buf[2] = '\0';
131 return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
132}
133
134static ssize_t vendor_diag_write(struct file *file, const char __user *user_buf,
135 size_t count, loff_t *ppos)
136{
137 struct hci_dev *hdev = file->private_data;
138 char buf[32];
139 size_t buf_size = min(count, (sizeof(buf)-1));
140 bool enable;
141 int err;
142
143 if (copy_from_user(buf, user_buf, buf_size))
144 return -EFAULT;
145
146 buf[buf_size] = '\0';
147 if (strtobool(buf, &enable))
148 return -EINVAL;
149
150 /* When the diagnostic flags are not persistent and the transport
151 * is not active, then there is no need for the vendor callback.
152 *
153 * Instead just store the desired value. If needed the setting
154 * will be programmed when the controller gets powered on.
155 */
156 if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) &&
157 !test_bit(HCI_RUNNING, &hdev->flags))
158 goto done;
159
160 hci_req_sync_lock(hdev);
161 err = hdev->set_diag(hdev, enable);
162 hci_req_sync_unlock(hdev);
163
164 if (err < 0)
165 return err;
166
167done:
168 if (enable)
169 hci_dev_set_flag(hdev, HCI_VENDOR_DIAG);
170 else
171 hci_dev_clear_flag(hdev, HCI_VENDOR_DIAG);
172
173 return count;
174}
175
176static const struct file_operations vendor_diag_fops = {
177 .open = simple_open,
178 .read = vendor_diag_read,
179 .write = vendor_diag_write,
180 .llseek = default_llseek,
181};
182
183static void hci_debugfs_create_basic(struct hci_dev *hdev)
184{
185 debugfs_create_file("dut_mode", 0644, hdev->debugfs, hdev,
186 &dut_mode_fops);
187
188 if (hdev->set_diag)
189 debugfs_create_file("vendor_diag", 0644, hdev->debugfs, hdev,
190 &vendor_diag_fops);
191}
192
193static int hci_reset_req(struct hci_request *req, unsigned long opt)
194{
195 BT_DBG("%s %ld", req->hdev->name, opt);
196
197 /* Reset device */
198 set_bit(HCI_RESET, &req->hdev->flags);
199 hci_req_add(req, HCI_OP_RESET, 0, NULL);
200 return 0;
201}
202
203static void bredr_init(struct hci_request *req)
204{
205 req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_PACKET_BASED;
206
207 /* Read Local Supported Features */
208 hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
209
210 /* Read Local Version */
211 hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
212
213 /* Read BD Address */
214 hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL);
215}
216
217static void amp_init1(struct hci_request *req)
218{
219 req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_BLOCK_BASED;
220
221 /* Read Local Version */
222 hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
223
224 /* Read Local Supported Commands */
225 hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL);
226
227 /* Read Local AMP Info */
228 hci_req_add(req, HCI_OP_READ_LOCAL_AMP_INFO, 0, NULL);
229
230 /* Read Data Blk size */
231 hci_req_add(req, HCI_OP_READ_DATA_BLOCK_SIZE, 0, NULL);
232
233 /* Read Flow Control Mode */
234 hci_req_add(req, HCI_OP_READ_FLOW_CONTROL_MODE, 0, NULL);
235
236 /* Read Location Data */
237 hci_req_add(req, HCI_OP_READ_LOCATION_DATA, 0, NULL);
238}
239
240static int amp_init2(struct hci_request *req)
241{
242 /* Read Local Supported Features. Not all AMP controllers
243 * support this so it's placed conditionally in the second
244 * stage init.
245 */
246 if (req->hdev->commands[14] & 0x20)
247 hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
248
249 return 0;
250}
251
252static int hci_init1_req(struct hci_request *req, unsigned long opt)
253{
254 struct hci_dev *hdev = req->hdev;
255
256 BT_DBG("%s %ld", hdev->name, opt);
257
258 /* Reset */
259 if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks))
260 hci_reset_req(req, 0);
261
262 switch (hdev->dev_type) {
263 case HCI_BREDR:
264 bredr_init(req);
265 break;
266
267 case HCI_AMP:
268 amp_init1(req);
269 break;
270
271 default:
272 BT_ERR("Unknown device type %d", hdev->dev_type);
273 break;
274 }
275
276 return 0;
277}
278
279static void bredr_setup(struct hci_request *req)
280{
281 __le16 param;
282 __u8 flt_type;
283
284 /* Read Buffer Size (ACL mtu, max pkt, etc.) */
285 hci_req_add(req, HCI_OP_READ_BUFFER_SIZE, 0, NULL);
286
287 /* Read Class of Device */
288 hci_req_add(req, HCI_OP_READ_CLASS_OF_DEV, 0, NULL);
289
290 /* Read Local Name */
291 hci_req_add(req, HCI_OP_READ_LOCAL_NAME, 0, NULL);
292
293 /* Read Voice Setting */
294 hci_req_add(req, HCI_OP_READ_VOICE_SETTING, 0, NULL);
295
296 /* Read Number of Supported IAC */
297 hci_req_add(req, HCI_OP_READ_NUM_SUPPORTED_IAC, 0, NULL);
298
299 /* Read Current IAC LAP */
300 hci_req_add(req, HCI_OP_READ_CURRENT_IAC_LAP, 0, NULL);
301
302 /* Clear Event Filters */
303 flt_type = HCI_FLT_CLEAR_ALL;
304 hci_req_add(req, HCI_OP_SET_EVENT_FLT, 1, &flt_type);
305
306 /* Connection accept timeout ~20 secs */
307 param = cpu_to_le16(0x7d00);
308 hci_req_add(req, HCI_OP_WRITE_CA_TIMEOUT, 2, ¶m);
309}
310
311static void le_setup(struct hci_request *req)
312{
313 struct hci_dev *hdev = req->hdev;
314
315 /* Read LE Buffer Size */
316 hci_req_add(req, HCI_OP_LE_READ_BUFFER_SIZE, 0, NULL);
317
318 /* Read LE Local Supported Features */
319 hci_req_add(req, HCI_OP_LE_READ_LOCAL_FEATURES, 0, NULL);
320
321 /* Read LE Supported States */
322 hci_req_add(req, HCI_OP_LE_READ_SUPPORTED_STATES, 0, NULL);
323
324 /* LE-only controllers have LE implicitly enabled */
325 if (!lmp_bredr_capable(hdev))
326 hci_dev_set_flag(hdev, HCI_LE_ENABLED);
327}
328
329static void hci_setup_event_mask(struct hci_request *req)
330{
331 struct hci_dev *hdev = req->hdev;
332
333 /* The second byte is 0xff instead of 0x9f (two reserved bits
334 * disabled) since a Broadcom 1.2 dongle doesn't respond to the
335 * command otherwise.
336 */
337 u8 events[8] = { 0xff, 0xff, 0xfb, 0xff, 0x00, 0x00, 0x00, 0x00 };
338
339 /* CSR 1.1 dongles does not accept any bitfield so don't try to set
340 * any event mask for pre 1.2 devices.
341 */
342 if (hdev->hci_ver < BLUETOOTH_VER_1_2)
343 return;
344
345 if (lmp_bredr_capable(hdev)) {
346 events[4] |= 0x01; /* Flow Specification Complete */
347 } else {
348 /* Use a different default for LE-only devices */
349 memset(events, 0, sizeof(events));
350 events[1] |= 0x20; /* Command Complete */
351 events[1] |= 0x40; /* Command Status */
352 events[1] |= 0x80; /* Hardware Error */
353
354 /* If the controller supports the Disconnect command, enable
355 * the corresponding event. In addition enable packet flow
356 * control related events.
357 */
358 if (hdev->commands[0] & 0x20) {
359 events[0] |= 0x10; /* Disconnection Complete */
360 events[2] |= 0x04; /* Number of Completed Packets */
361 events[3] |= 0x02; /* Data Buffer Overflow */
362 }
363
364 /* If the controller supports the Read Remote Version
365 * Information command, enable the corresponding event.
366 */
367 if (hdev->commands[2] & 0x80)
368 events[1] |= 0x08; /* Read Remote Version Information
369 * Complete
370 */
371
372 if (hdev->le_features[0] & HCI_LE_ENCRYPTION) {
373 events[0] |= 0x80; /* Encryption Change */
374 events[5] |= 0x80; /* Encryption Key Refresh Complete */
375 }
376 }
377
378 if (lmp_inq_rssi_capable(hdev) ||
379 test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks))
380 events[4] |= 0x02; /* Inquiry Result with RSSI */
381
382 if (lmp_ext_feat_capable(hdev))
383 events[4] |= 0x04; /* Read Remote Extended Features Complete */
384
385 if (lmp_esco_capable(hdev)) {
386 events[5] |= 0x08; /* Synchronous Connection Complete */
387 events[5] |= 0x10; /* Synchronous Connection Changed */
388 }
389
390 if (lmp_sniffsubr_capable(hdev))
391 events[5] |= 0x20; /* Sniff Subrating */
392
393 if (lmp_pause_enc_capable(hdev))
394 events[5] |= 0x80; /* Encryption Key Refresh Complete */
395
396 if (lmp_ext_inq_capable(hdev))
397 events[5] |= 0x40; /* Extended Inquiry Result */
398
399 if (lmp_no_flush_capable(hdev))
400 events[7] |= 0x01; /* Enhanced Flush Complete */
401
402 if (lmp_lsto_capable(hdev))
403 events[6] |= 0x80; /* Link Supervision Timeout Changed */
404
405 if (lmp_ssp_capable(hdev)) {
406 events[6] |= 0x01; /* IO Capability Request */
407 events[6] |= 0x02; /* IO Capability Response */
408 events[6] |= 0x04; /* User Confirmation Request */
409 events[6] |= 0x08; /* User Passkey Request */
410 events[6] |= 0x10; /* Remote OOB Data Request */
411 events[6] |= 0x20; /* Simple Pairing Complete */
412 events[7] |= 0x04; /* User Passkey Notification */
413 events[7] |= 0x08; /* Keypress Notification */
414 events[7] |= 0x10; /* Remote Host Supported
415 * Features Notification
416 */
417 }
418
419 if (lmp_le_capable(hdev))
420 events[7] |= 0x20; /* LE Meta-Event */
421
422 hci_req_add(req, HCI_OP_SET_EVENT_MASK, sizeof(events), events);
423}
424
425static int hci_init2_req(struct hci_request *req, unsigned long opt)
426{
427 struct hci_dev *hdev = req->hdev;
428
429 if (hdev->dev_type == HCI_AMP)
430 return amp_init2(req);
431
432 if (lmp_bredr_capable(hdev))
433 bredr_setup(req);
434 else
435 hci_dev_clear_flag(hdev, HCI_BREDR_ENABLED);
436
437 if (lmp_le_capable(hdev))
438 le_setup(req);
439
440 /* All Bluetooth 1.2 and later controllers should support the
441 * HCI command for reading the local supported commands.
442 *
443 * Unfortunately some controllers indicate Bluetooth 1.2 support,
444 * but do not have support for this command. If that is the case,
445 * the driver can quirk the behavior and skip reading the local
446 * supported commands.
447 */
448 if (hdev->hci_ver > BLUETOOTH_VER_1_1 &&
449 !test_bit(HCI_QUIRK_BROKEN_LOCAL_COMMANDS, &hdev->quirks))
450 hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL);
451
452 if (lmp_ssp_capable(hdev)) {
453 /* When SSP is available, then the host features page
454 * should also be available as well. However some
455 * controllers list the max_page as 0 as long as SSP
456 * has not been enabled. To achieve proper debugging
457 * output, force the minimum max_page to 1 at least.
458 */
459 hdev->max_page = 0x01;
460
461 if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) {
462 u8 mode = 0x01;
463
464 hci_req_add(req, HCI_OP_WRITE_SSP_MODE,
465 sizeof(mode), &mode);
466 } else {
467 struct hci_cp_write_eir cp;
468
469 memset(hdev->eir, 0, sizeof(hdev->eir));
470 memset(&cp, 0, sizeof(cp));
471
472 hci_req_add(req, HCI_OP_WRITE_EIR, sizeof(cp), &cp);
473 }
474 }
475
476 if (lmp_inq_rssi_capable(hdev) ||
477 test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks)) {
478 u8 mode;
479
480 /* If Extended Inquiry Result events are supported, then
481 * they are clearly preferred over Inquiry Result with RSSI
482 * events.
483 */
484 mode = lmp_ext_inq_capable(hdev) ? 0x02 : 0x01;
485
486 hci_req_add(req, HCI_OP_WRITE_INQUIRY_MODE, 1, &mode);
487 }
488
489 if (lmp_inq_tx_pwr_capable(hdev))
490 hci_req_add(req, HCI_OP_READ_INQ_RSP_TX_POWER, 0, NULL);
491
492 if (lmp_ext_feat_capable(hdev)) {
493 struct hci_cp_read_local_ext_features cp;
494
495 cp.page = 0x01;
496 hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES,
497 sizeof(cp), &cp);
498 }
499
500 if (hci_dev_test_flag(hdev, HCI_LINK_SECURITY)) {
501 u8 enable = 1;
502 hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, sizeof(enable),
503 &enable);
504 }
505
506 return 0;
507}
508
509static void hci_setup_link_policy(struct hci_request *req)
510{
511 struct hci_dev *hdev = req->hdev;
512 struct hci_cp_write_def_link_policy cp;
513 u16 link_policy = 0;
514
515 if (lmp_rswitch_capable(hdev))
516 link_policy |= HCI_LP_RSWITCH;
517 if (lmp_hold_capable(hdev))
518 link_policy |= HCI_LP_HOLD;
519 if (lmp_sniff_capable(hdev))
520 link_policy |= HCI_LP_SNIFF;
521 if (lmp_park_capable(hdev))
522 link_policy |= HCI_LP_PARK;
523
524 cp.policy = cpu_to_le16(link_policy);
525 hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, sizeof(cp), &cp);
526}
527
528static void hci_set_le_support(struct hci_request *req)
529{
530 struct hci_dev *hdev = req->hdev;
531 struct hci_cp_write_le_host_supported cp;
532
533 /* LE-only devices do not support explicit enablement */
534 if (!lmp_bredr_capable(hdev))
535 return;
536
537 memset(&cp, 0, sizeof(cp));
538
539 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
540 cp.le = 0x01;
541 cp.simul = 0x00;
542 }
543
544 if (cp.le != lmp_host_le_capable(hdev))
545 hci_req_add(req, HCI_OP_WRITE_LE_HOST_SUPPORTED, sizeof(cp),
546 &cp);
547}
548
549static void hci_set_event_mask_page_2(struct hci_request *req)
550{
551 struct hci_dev *hdev = req->hdev;
552 u8 events[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
553
554 /* If Connectionless Slave Broadcast master role is supported
555 * enable all necessary events for it.
556 */
557 if (lmp_csb_master_capable(hdev)) {
558 events[1] |= 0x40; /* Triggered Clock Capture */
559 events[1] |= 0x80; /* Synchronization Train Complete */
560 events[2] |= 0x10; /* Slave Page Response Timeout */
561 events[2] |= 0x20; /* CSB Channel Map Change */
562 }
563
564 /* If Connectionless Slave Broadcast slave role is supported
565 * enable all necessary events for it.
566 */
567 if (lmp_csb_slave_capable(hdev)) {
568 events[2] |= 0x01; /* Synchronization Train Received */
569 events[2] |= 0x02; /* CSB Receive */
570 events[2] |= 0x04; /* CSB Timeout */
571 events[2] |= 0x08; /* Truncated Page Complete */
572 }
573
574 /* Enable Authenticated Payload Timeout Expired event if supported */
575 if (lmp_ping_capable(hdev) || hdev->le_features[0] & HCI_LE_PING)
576 events[2] |= 0x80;
577
578 hci_req_add(req, HCI_OP_SET_EVENT_MASK_PAGE_2, sizeof(events), events);
579}
580
581static int hci_init3_req(struct hci_request *req, unsigned long opt)
582{
583 struct hci_dev *hdev = req->hdev;
584 u8 p;
585
586 hci_setup_event_mask(req);
587
588 if (hdev->commands[6] & 0x20 &&
589 !test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) {
590 struct hci_cp_read_stored_link_key cp;
591
592 bacpy(&cp.bdaddr, BDADDR_ANY);
593 cp.read_all = 0x01;
594 hci_req_add(req, HCI_OP_READ_STORED_LINK_KEY, sizeof(cp), &cp);
595 }
596
597 if (hdev->commands[5] & 0x10)
598 hci_setup_link_policy(req);
599
600 if (hdev->commands[8] & 0x01)
601 hci_req_add(req, HCI_OP_READ_PAGE_SCAN_ACTIVITY, 0, NULL);
602
603 /* Some older Broadcom based Bluetooth 1.2 controllers do not
604 * support the Read Page Scan Type command. Check support for
605 * this command in the bit mask of supported commands.
606 */
607 if (hdev->commands[13] & 0x01)
608 hci_req_add(req, HCI_OP_READ_PAGE_SCAN_TYPE, 0, NULL);
609
610 if (lmp_le_capable(hdev)) {
611 u8 events[8];
612
613 memset(events, 0, sizeof(events));
614
615 if (hdev->le_features[0] & HCI_LE_ENCRYPTION)
616 events[0] |= 0x10; /* LE Long Term Key Request */
617
618 /* If controller supports the Connection Parameters Request
619 * Link Layer Procedure, enable the corresponding event.
620 */
621 if (hdev->le_features[0] & HCI_LE_CONN_PARAM_REQ_PROC)
622 events[0] |= 0x20; /* LE Remote Connection
623 * Parameter Request
624 */
625
626 /* If the controller supports the Data Length Extension
627 * feature, enable the corresponding event.
628 */
629 if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)
630 events[0] |= 0x40; /* LE Data Length Change */
631
632 /* If the controller supports Extended Scanner Filter
633 * Policies, enable the correspondig event.
634 */
635 if (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY)
636 events[1] |= 0x04; /* LE Direct Advertising
637 * Report
638 */
639
640 /* If the controller supports the LE Set Scan Enable command,
641 * enable the corresponding advertising report event.
642 */
643 if (hdev->commands[26] & 0x08)
644 events[0] |= 0x02; /* LE Advertising Report */
645
646 /* If the controller supports the LE Create Connection
647 * command, enable the corresponding event.
648 */
649 if (hdev->commands[26] & 0x10)
650 events[0] |= 0x01; /* LE Connection Complete */
651
652 /* If the controller supports the LE Connection Update
653 * command, enable the corresponding event.
654 */
655 if (hdev->commands[27] & 0x04)
656 events[0] |= 0x04; /* LE Connection Update
657 * Complete
658 */
659
660 /* If the controller supports the LE Read Remote Used Features
661 * command, enable the corresponding event.
662 */
663 if (hdev->commands[27] & 0x20)
664 events[0] |= 0x08; /* LE Read Remote Used
665 * Features Complete
666 */
667
668 /* If the controller supports the LE Read Local P-256
669 * Public Key command, enable the corresponding event.
670 */
671 if (hdev->commands[34] & 0x02)
672 events[0] |= 0x80; /* LE Read Local P-256
673 * Public Key Complete
674 */
675
676 /* If the controller supports the LE Generate DHKey
677 * command, enable the corresponding event.
678 */
679 if (hdev->commands[34] & 0x04)
680 events[1] |= 0x01; /* LE Generate DHKey Complete */
681
682 hci_req_add(req, HCI_OP_LE_SET_EVENT_MASK, sizeof(events),
683 events);
684
685 if (hdev->commands[25] & 0x40) {
686 /* Read LE Advertising Channel TX Power */
687 hci_req_add(req, HCI_OP_LE_READ_ADV_TX_POWER, 0, NULL);
688 }
689
690 if (hdev->commands[26] & 0x40) {
691 /* Read LE White List Size */
692 hci_req_add(req, HCI_OP_LE_READ_WHITE_LIST_SIZE,
693 0, NULL);
694 }
695
696 if (hdev->commands[26] & 0x80) {
697 /* Clear LE White List */
698 hci_req_add(req, HCI_OP_LE_CLEAR_WHITE_LIST, 0, NULL);
699 }
700
701 if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) {
702 /* Read LE Maximum Data Length */
703 hci_req_add(req, HCI_OP_LE_READ_MAX_DATA_LEN, 0, NULL);
704
705 /* Read LE Suggested Default Data Length */
706 hci_req_add(req, HCI_OP_LE_READ_DEF_DATA_LEN, 0, NULL);
707 }
708
709 hci_set_le_support(req);
710 }
711
712 /* Read features beyond page 1 if available */
713 for (p = 2; p < HCI_MAX_PAGES && p <= hdev->max_page; p++) {
714 struct hci_cp_read_local_ext_features cp;
715
716 cp.page = p;
717 hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES,
718 sizeof(cp), &cp);
719 }
720
721 return 0;
722}
723
724static int hci_init4_req(struct hci_request *req, unsigned long opt)
725{
726 struct hci_dev *hdev = req->hdev;
727
728 /* Some Broadcom based Bluetooth controllers do not support the
729 * Delete Stored Link Key command. They are clearly indicating its
730 * absence in the bit mask of supported commands.
731 *
732 * Check the supported commands and only if the the command is marked
733 * as supported send it. If not supported assume that the controller
734 * does not have actual support for stored link keys which makes this
735 * command redundant anyway.
736 *
737 * Some controllers indicate that they support handling deleting
738 * stored link keys, but they don't. The quirk lets a driver
739 * just disable this command.
740 */
741 if (hdev->commands[6] & 0x80 &&
742 !test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) {
743 struct hci_cp_delete_stored_link_key cp;
744
745 bacpy(&cp.bdaddr, BDADDR_ANY);
746 cp.delete_all = 0x01;
747 hci_req_add(req, HCI_OP_DELETE_STORED_LINK_KEY,
748 sizeof(cp), &cp);
749 }
750
751 /* Set event mask page 2 if the HCI command for it is supported */
752 if (hdev->commands[22] & 0x04)
753 hci_set_event_mask_page_2(req);
754
755 /* Read local codec list if the HCI command is supported */
756 if (hdev->commands[29] & 0x20)
757 hci_req_add(req, HCI_OP_READ_LOCAL_CODECS, 0, NULL);
758
759 /* Get MWS transport configuration if the HCI command is supported */
760 if (hdev->commands[30] & 0x08)
761 hci_req_add(req, HCI_OP_GET_MWS_TRANSPORT_CONFIG, 0, NULL);
762
763 /* Check for Synchronization Train support */
764 if (lmp_sync_train_capable(hdev))
765 hci_req_add(req, HCI_OP_READ_SYNC_TRAIN_PARAMS, 0, NULL);
766
767 /* Enable Secure Connections if supported and configured */
768 if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED) &&
769 bredr_sc_enabled(hdev)) {
770 u8 support = 0x01;
771
772 hci_req_add(req, HCI_OP_WRITE_SC_SUPPORT,
773 sizeof(support), &support);
774 }
775
776 return 0;
777}
778
779static int __hci_init(struct hci_dev *hdev)
780{
781 int err;
782
783 err = __hci_req_sync(hdev, hci_init1_req, 0, HCI_INIT_TIMEOUT, NULL);
784 if (err < 0)
785 return err;
786
787 if (hci_dev_test_flag(hdev, HCI_SETUP))
788 hci_debugfs_create_basic(hdev);
789
790 err = __hci_req_sync(hdev, hci_init2_req, 0, HCI_INIT_TIMEOUT, NULL);
791 if (err < 0)
792 return err;
793
794 /* HCI_BREDR covers both single-mode LE, BR/EDR and dual-mode
795 * BR/EDR/LE type controllers. AMP controllers only need the
796 * first two stages of init.
797 */
798 if (hdev->dev_type != HCI_BREDR)
799 return 0;
800
801 err = __hci_req_sync(hdev, hci_init3_req, 0, HCI_INIT_TIMEOUT, NULL);
802 if (err < 0)
803 return err;
804
805 err = __hci_req_sync(hdev, hci_init4_req, 0, HCI_INIT_TIMEOUT, NULL);
806 if (err < 0)
807 return err;
808
809 /* This function is only called when the controller is actually in
810 * configured state. When the controller is marked as unconfigured,
811 * this initialization procedure is not run.
812 *
813 * It means that it is possible that a controller runs through its
814 * setup phase and then discovers missing settings. If that is the
815 * case, then this function will not be called. It then will only
816 * be called during the config phase.
817 *
818 * So only when in setup phase or config phase, create the debugfs
819 * entries and register the SMP channels.
820 */
821 if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
822 !hci_dev_test_flag(hdev, HCI_CONFIG))
823 return 0;
824
825 hci_debugfs_create_common(hdev);
826
827 if (lmp_bredr_capable(hdev))
828 hci_debugfs_create_bredr(hdev);
829
830 if (lmp_le_capable(hdev))
831 hci_debugfs_create_le(hdev);
832
833 return 0;
834}
835
836static int hci_init0_req(struct hci_request *req, unsigned long opt)
837{
838 struct hci_dev *hdev = req->hdev;
839
840 BT_DBG("%s %ld", hdev->name, opt);
841
842 /* Reset */
843 if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks))
844 hci_reset_req(req, 0);
845
846 /* Read Local Version */
847 hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
848
849 /* Read BD Address */
850 if (hdev->set_bdaddr)
851 hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL);
852
853 return 0;
854}
855
856static int __hci_unconf_init(struct hci_dev *hdev)
857{
858 int err;
859
860 if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
861 return 0;
862
863 err = __hci_req_sync(hdev, hci_init0_req, 0, HCI_INIT_TIMEOUT, NULL);
864 if (err < 0)
865 return err;
866
867 if (hci_dev_test_flag(hdev, HCI_SETUP))
868 hci_debugfs_create_basic(hdev);
869
870 return 0;
871}
872
873static int hci_scan_req(struct hci_request *req, unsigned long opt)
874{
875 __u8 scan = opt;
876
877 BT_DBG("%s %x", req->hdev->name, scan);
878
879 /* Inquiry and Page scans */
880 hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
881 return 0;
882}
883
884static int hci_auth_req(struct hci_request *req, unsigned long opt)
885{
886 __u8 auth = opt;
887
888 BT_DBG("%s %x", req->hdev->name, auth);
889
890 /* Authentication */
891 hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, 1, &auth);
892 return 0;
893}
894
895static int hci_encrypt_req(struct hci_request *req, unsigned long opt)
896{
897 __u8 encrypt = opt;
898
899 BT_DBG("%s %x", req->hdev->name, encrypt);
900
901 /* Encryption */
902 hci_req_add(req, HCI_OP_WRITE_ENCRYPT_MODE, 1, &encrypt);
903 return 0;
904}
905
906static int hci_linkpol_req(struct hci_request *req, unsigned long opt)
907{
908 __le16 policy = cpu_to_le16(opt);
909
910 BT_DBG("%s %x", req->hdev->name, policy);
911
912 /* Default link policy */
913 hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, 2, &policy);
914 return 0;
915}
916
917/* Get HCI device by index.
918 * Device is held on return. */
919struct hci_dev *hci_dev_get(int index)
920{
921 struct hci_dev *hdev = NULL, *d;
922
923 BT_DBG("%d", index);
924
925 if (index < 0)
926 return NULL;
927
928 read_lock(&hci_dev_list_lock);
929 list_for_each_entry(d, &hci_dev_list, list) {
930 if (d->id == index) {
931 hdev = hci_dev_hold(d);
932 break;
933 }
934 }
935 read_unlock(&hci_dev_list_lock);
936 return hdev;
937}
938
939/* ---- Inquiry support ---- */
940
941bool hci_discovery_active(struct hci_dev *hdev)
942{
943 struct discovery_state *discov = &hdev->discovery;
944
945 switch (discov->state) {
946 case DISCOVERY_FINDING:
947 case DISCOVERY_RESOLVING:
948 return true;
949
950 default:
951 return false;
952 }
953}
954
955void hci_discovery_set_state(struct hci_dev *hdev, int state)
956{
957 int old_state = hdev->discovery.state;
958
959 BT_DBG("%s state %u -> %u", hdev->name, hdev->discovery.state, state);
960
961 if (old_state == state)
962 return;
963
964 hdev->discovery.state = state;
965
966 switch (state) {
967 case DISCOVERY_STOPPED:
968 hci_update_background_scan(hdev);
969
970 if (old_state != DISCOVERY_STARTING)
971 mgmt_discovering(hdev, 0);
972 break;
973 case DISCOVERY_STARTING:
974 break;
975 case DISCOVERY_FINDING:
976 mgmt_discovering(hdev, 1);
977 break;
978 case DISCOVERY_RESOLVING:
979 break;
980 case DISCOVERY_STOPPING:
981 break;
982 }
983}
984
985void hci_inquiry_cache_flush(struct hci_dev *hdev)
986{
987 struct discovery_state *cache = &hdev->discovery;
988 struct inquiry_entry *p, *n;
989
990 list_for_each_entry_safe(p, n, &cache->all, all) {
991 list_del(&p->all);
992 kfree(p);
993 }
994
995 INIT_LIST_HEAD(&cache->unknown);
996 INIT_LIST_HEAD(&cache->resolve);
997}
998
999struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev,
1000 bdaddr_t *bdaddr)
1001{
1002 struct discovery_state *cache = &hdev->discovery;
1003 struct inquiry_entry *e;
1004
1005 BT_DBG("cache %p, %pMR", cache, bdaddr);
1006
1007 list_for_each_entry(e, &cache->all, all) {
1008 if (!bacmp(&e->data.bdaddr, bdaddr))
1009 return e;
1010 }
1011
1012 return NULL;
1013}
1014
1015struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev,
1016 bdaddr_t *bdaddr)
1017{
1018 struct discovery_state *cache = &hdev->discovery;
1019 struct inquiry_entry *e;
1020
1021 BT_DBG("cache %p, %pMR", cache, bdaddr);
1022
1023 list_for_each_entry(e, &cache->unknown, list) {
1024 if (!bacmp(&e->data.bdaddr, bdaddr))
1025 return e;
1026 }
1027
1028 return NULL;
1029}
1030
1031struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev,
1032 bdaddr_t *bdaddr,
1033 int state)
1034{
1035 struct discovery_state *cache = &hdev->discovery;
1036 struct inquiry_entry *e;
1037
1038 BT_DBG("cache %p bdaddr %pMR state %d", cache, bdaddr, state);
1039
1040 list_for_each_entry(e, &cache->resolve, list) {
1041 if (!bacmp(bdaddr, BDADDR_ANY) && e->name_state == state)
1042 return e;
1043 if (!bacmp(&e->data.bdaddr, bdaddr))
1044 return e;
1045 }
1046
1047 return NULL;
1048}
1049
1050void hci_inquiry_cache_update_resolve(struct hci_dev *hdev,
1051 struct inquiry_entry *ie)
1052{
1053 struct discovery_state *cache = &hdev->discovery;
1054 struct list_head *pos = &cache->resolve;
1055 struct inquiry_entry *p;
1056
1057 list_del(&ie->list);
1058
1059 list_for_each_entry(p, &cache->resolve, list) {
1060 if (p->name_state != NAME_PENDING &&
1061 abs(p->data.rssi) >= abs(ie->data.rssi))
1062 break;
1063 pos = &p->list;
1064 }
1065
1066 list_add(&ie->list, pos);
1067}
1068
1069u32 hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data,
1070 bool name_known)
1071{
1072 struct discovery_state *cache = &hdev->discovery;
1073 struct inquiry_entry *ie;
1074 u32 flags = 0;
1075
1076 BT_DBG("cache %p, %pMR", cache, &data->bdaddr);
1077
1078 hci_remove_remote_oob_data(hdev, &data->bdaddr, BDADDR_BREDR);
1079
1080 if (!data->ssp_mode)
1081 flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
1082
1083 ie = hci_inquiry_cache_lookup(hdev, &data->bdaddr);
1084 if (ie) {
1085 if (!ie->data.ssp_mode)
1086 flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
1087
1088 if (ie->name_state == NAME_NEEDED &&
1089 data->rssi != ie->data.rssi) {
1090 ie->data.rssi = data->rssi;
1091 hci_inquiry_cache_update_resolve(hdev, ie);
1092 }
1093
1094 goto update;
1095 }
1096
1097 /* Entry not in the cache. Add new one. */
1098 ie = kzalloc(sizeof(*ie), GFP_KERNEL);
1099 if (!ie) {
1100 flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
1101 goto done;
1102 }
1103
1104 list_add(&ie->all, &cache->all);
1105
1106 if (name_known) {
1107 ie->name_state = NAME_KNOWN;
1108 } else {
1109 ie->name_state = NAME_NOT_KNOWN;
1110 list_add(&ie->list, &cache->unknown);
1111 }
1112
1113update:
1114 if (name_known && ie->name_state != NAME_KNOWN &&
1115 ie->name_state != NAME_PENDING) {
1116 ie->name_state = NAME_KNOWN;
1117 list_del(&ie->list);
1118 }
1119
1120 memcpy(&ie->data, data, sizeof(*data));
1121 ie->timestamp = jiffies;
1122 cache->timestamp = jiffies;
1123
1124 if (ie->name_state == NAME_NOT_KNOWN)
1125 flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
1126
1127done:
1128 return flags;
1129}
1130
1131static int inquiry_cache_dump(struct hci_dev *hdev, int num, __u8 *buf)
1132{
1133 struct discovery_state *cache = &hdev->discovery;
1134 struct inquiry_info *info = (struct inquiry_info *) buf;
1135 struct inquiry_entry *e;
1136 int copied = 0;
1137
1138 list_for_each_entry(e, &cache->all, all) {
1139 struct inquiry_data *data = &e->data;
1140
1141 if (copied >= num)
1142 break;
1143
1144 bacpy(&info->bdaddr, &data->bdaddr);
1145 info->pscan_rep_mode = data->pscan_rep_mode;
1146 info->pscan_period_mode = data->pscan_period_mode;
1147 info->pscan_mode = data->pscan_mode;
1148 memcpy(info->dev_class, data->dev_class, 3);
1149 info->clock_offset = data->clock_offset;
1150
1151 info++;
1152 copied++;
1153 }
1154
1155 BT_DBG("cache %p, copied %d", cache, copied);
1156 return copied;
1157}
1158
1159static int hci_inq_req(struct hci_request *req, unsigned long opt)
1160{
1161 struct hci_inquiry_req *ir = (struct hci_inquiry_req *) opt;
1162 struct hci_dev *hdev = req->hdev;
1163 struct hci_cp_inquiry cp;
1164
1165 BT_DBG("%s", hdev->name);
1166
1167 if (test_bit(HCI_INQUIRY, &hdev->flags))
1168 return 0;
1169
1170 /* Start Inquiry */
1171 memcpy(&cp.lap, &ir->lap, 3);
1172 cp.length = ir->length;
1173 cp.num_rsp = ir->num_rsp;
1174 hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp);
1175
1176 return 0;
1177}
1178
1179int hci_inquiry(void __user *arg)
1180{
1181 __u8 __user *ptr = arg;
1182 struct hci_inquiry_req ir;
1183 struct hci_dev *hdev;
1184 int err = 0, do_inquiry = 0, max_rsp;
1185 long timeo;
1186 __u8 *buf;
1187
1188 if (copy_from_user(&ir, ptr, sizeof(ir)))
1189 return -EFAULT;
1190
1191 hdev = hci_dev_get(ir.dev_id);
1192 if (!hdev)
1193 return -ENODEV;
1194
1195 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1196 err = -EBUSY;
1197 goto done;
1198 }
1199
1200 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1201 err = -EOPNOTSUPP;
1202 goto done;
1203 }
1204
1205 if (hdev->dev_type != HCI_BREDR) {
1206 err = -EOPNOTSUPP;
1207 goto done;
1208 }
1209
1210 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
1211 err = -EOPNOTSUPP;
1212 goto done;
1213 }
1214
1215 hci_dev_lock(hdev);
1216 if (inquiry_cache_age(hdev) > INQUIRY_CACHE_AGE_MAX ||
1217 inquiry_cache_empty(hdev) || ir.flags & IREQ_CACHE_FLUSH) {
1218 hci_inquiry_cache_flush(hdev);
1219 do_inquiry = 1;
1220 }
1221 hci_dev_unlock(hdev);
1222
1223 timeo = ir.length * msecs_to_jiffies(2000);
1224
1225 if (do_inquiry) {
1226 err = hci_req_sync(hdev, hci_inq_req, (unsigned long) &ir,
1227 timeo, NULL);
1228 if (err < 0)
1229 goto done;
1230
1231 /* Wait until Inquiry procedure finishes (HCI_INQUIRY flag is
1232 * cleared). If it is interrupted by a signal, return -EINTR.
1233 */
1234 if (wait_on_bit(&hdev->flags, HCI_INQUIRY,
1235 TASK_INTERRUPTIBLE))
1236 return -EINTR;
1237 }
1238
1239 /* for unlimited number of responses we will use buffer with
1240 * 255 entries
1241 */
1242 max_rsp = (ir.num_rsp == 0) ? 255 : ir.num_rsp;
1243
1244 /* cache_dump can't sleep. Therefore we allocate temp buffer and then
1245 * copy it to the user space.
1246 */
1247 buf = kmalloc(sizeof(struct inquiry_info) * max_rsp, GFP_KERNEL);
1248 if (!buf) {
1249 err = -ENOMEM;
1250 goto done;
1251 }
1252
1253 hci_dev_lock(hdev);
1254 ir.num_rsp = inquiry_cache_dump(hdev, max_rsp, buf);
1255 hci_dev_unlock(hdev);
1256
1257 BT_DBG("num_rsp %d", ir.num_rsp);
1258
1259 if (!copy_to_user(ptr, &ir, sizeof(ir))) {
1260 ptr += sizeof(ir);
1261 if (copy_to_user(ptr, buf, sizeof(struct inquiry_info) *
1262 ir.num_rsp))
1263 err = -EFAULT;
1264 } else
1265 err = -EFAULT;
1266
1267 kfree(buf);
1268
1269done:
1270 hci_dev_put(hdev);
1271 return err;
1272}
1273
1274static int hci_dev_do_open(struct hci_dev *hdev)
1275{
1276 int ret = 0;
1277
1278 BT_DBG("%s %p", hdev->name, hdev);
1279
1280 hci_req_sync_lock(hdev);
1281
1282 if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) {
1283 ret = -ENODEV;
1284 goto done;
1285 }
1286
1287 if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
1288 !hci_dev_test_flag(hdev, HCI_CONFIG)) {
1289 /* Check for rfkill but allow the HCI setup stage to
1290 * proceed (which in itself doesn't cause any RF activity).
1291 */
1292 if (hci_dev_test_flag(hdev, HCI_RFKILLED)) {
1293 ret = -ERFKILL;
1294 goto done;
1295 }
1296
1297 /* Check for valid public address or a configured static
1298 * random adddress, but let the HCI setup proceed to
1299 * be able to determine if there is a public address
1300 * or not.
1301 *
1302 * In case of user channel usage, it is not important
1303 * if a public address or static random address is
1304 * available.
1305 *
1306 * This check is only valid for BR/EDR controllers
1307 * since AMP controllers do not have an address.
1308 */
1309 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1310 hdev->dev_type == HCI_BREDR &&
1311 !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
1312 !bacmp(&hdev->static_addr, BDADDR_ANY)) {
1313 ret = -EADDRNOTAVAIL;
1314 goto done;
1315 }
1316 }
1317
1318 if (test_bit(HCI_UP, &hdev->flags)) {
1319 ret = -EALREADY;
1320 goto done;
1321 }
1322
1323 if (hdev->open(hdev)) {
1324 ret = -EIO;
1325 goto done;
1326 }
1327
1328 set_bit(HCI_RUNNING, &hdev->flags);
1329 hci_sock_dev_event(hdev, HCI_DEV_OPEN);
1330
1331 atomic_set(&hdev->cmd_cnt, 1);
1332 set_bit(HCI_INIT, &hdev->flags);
1333
1334 if (hci_dev_test_flag(hdev, HCI_SETUP)) {
1335 hci_sock_dev_event(hdev, HCI_DEV_SETUP);
1336
1337 if (hdev->setup)
1338 ret = hdev->setup(hdev);
1339
1340 /* The transport driver can set these quirks before
1341 * creating the HCI device or in its setup callback.
1342 *
1343 * In case any of them is set, the controller has to
1344 * start up as unconfigured.
1345 */
1346 if (test_bit(HCI_QUIRK_EXTERNAL_CONFIG, &hdev->quirks) ||
1347 test_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks))
1348 hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
1349
1350 /* For an unconfigured controller it is required to
1351 * read at least the version information provided by
1352 * the Read Local Version Information command.
1353 *
1354 * If the set_bdaddr driver callback is provided, then
1355 * also the original Bluetooth public device address
1356 * will be read using the Read BD Address command.
1357 */
1358 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
1359 ret = __hci_unconf_init(hdev);
1360 }
1361
1362 if (hci_dev_test_flag(hdev, HCI_CONFIG)) {
1363 /* If public address change is configured, ensure that
1364 * the address gets programmed. If the driver does not
1365 * support changing the public address, fail the power
1366 * on procedure.
1367 */
1368 if (bacmp(&hdev->public_addr, BDADDR_ANY) &&
1369 hdev->set_bdaddr)
1370 ret = hdev->set_bdaddr(hdev, &hdev->public_addr);
1371 else
1372 ret = -EADDRNOTAVAIL;
1373 }
1374
1375 if (!ret) {
1376 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1377 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1378 ret = __hci_init(hdev);
1379 if (!ret && hdev->post_init)
1380 ret = hdev->post_init(hdev);
1381 }
1382 }
1383
1384 /* If the HCI Reset command is clearing all diagnostic settings,
1385 * then they need to be reprogrammed after the init procedure
1386 * completed.
1387 */
1388 if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) &&
1389 hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) && hdev->set_diag)
1390 ret = hdev->set_diag(hdev, true);
1391
1392 clear_bit(HCI_INIT, &hdev->flags);
1393
1394 if (!ret) {
1395 hci_dev_hold(hdev);
1396 hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
1397 set_bit(HCI_UP, &hdev->flags);
1398 hci_sock_dev_event(hdev, HCI_DEV_UP);
1399 hci_leds_update_powered(hdev, true);
1400 if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
1401 !hci_dev_test_flag(hdev, HCI_CONFIG) &&
1402 !hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1403 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1404 hci_dev_test_flag(hdev, HCI_MGMT) &&
1405 hdev->dev_type == HCI_BREDR) {
1406 ret = __hci_req_hci_power_on(hdev);
1407 mgmt_power_on(hdev, ret);
1408 }
1409 } else {
1410 /* Init failed, cleanup */
1411 flush_work(&hdev->tx_work);
1412 flush_work(&hdev->cmd_work);
1413 flush_work(&hdev->rx_work);
1414
1415 skb_queue_purge(&hdev->cmd_q);
1416 skb_queue_purge(&hdev->rx_q);
1417
1418 if (hdev->flush)
1419 hdev->flush(hdev);
1420
1421 if (hdev->sent_cmd) {
1422 kfree_skb(hdev->sent_cmd);
1423 hdev->sent_cmd = NULL;
1424 }
1425
1426 clear_bit(HCI_RUNNING, &hdev->flags);
1427 hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
1428
1429 hdev->close(hdev);
1430 hdev->flags &= BIT(HCI_RAW);
1431 }
1432
1433done:
1434 hci_req_sync_unlock(hdev);
1435 return ret;
1436}
1437
1438/* ---- HCI ioctl helpers ---- */
1439
1440int hci_dev_open(__u16 dev)
1441{
1442 struct hci_dev *hdev;
1443 int err;
1444
1445 hdev = hci_dev_get(dev);
1446 if (!hdev)
1447 return -ENODEV;
1448
1449 /* Devices that are marked as unconfigured can only be powered
1450 * up as user channel. Trying to bring them up as normal devices
1451 * will result into a failure. Only user channel operation is
1452 * possible.
1453 *
1454 * When this function is called for a user channel, the flag
1455 * HCI_USER_CHANNEL will be set first before attempting to
1456 * open the device.
1457 */
1458 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1459 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1460 err = -EOPNOTSUPP;
1461 goto done;
1462 }
1463
1464 /* We need to ensure that no other power on/off work is pending
1465 * before proceeding to call hci_dev_do_open. This is
1466 * particularly important if the setup procedure has not yet
1467 * completed.
1468 */
1469 if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
1470 cancel_delayed_work(&hdev->power_off);
1471
1472 /* After this call it is guaranteed that the setup procedure
1473 * has finished. This means that error conditions like RFKILL
1474 * or no valid public or static random address apply.
1475 */
1476 flush_workqueue(hdev->req_workqueue);
1477
1478 /* For controllers not using the management interface and that
1479 * are brought up using legacy ioctl, set the HCI_BONDABLE bit
1480 * so that pairing works for them. Once the management interface
1481 * is in use this bit will be cleared again and userspace has
1482 * to explicitly enable it.
1483 */
1484 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1485 !hci_dev_test_flag(hdev, HCI_MGMT))
1486 hci_dev_set_flag(hdev, HCI_BONDABLE);
1487
1488 err = hci_dev_do_open(hdev);
1489
1490done:
1491 hci_dev_put(hdev);
1492 return err;
1493}
1494
1495/* This function requires the caller holds hdev->lock */
1496static void hci_pend_le_actions_clear(struct hci_dev *hdev)
1497{
1498 struct hci_conn_params *p;
1499
1500 list_for_each_entry(p, &hdev->le_conn_params, list) {
1501 if (p->conn) {
1502 hci_conn_drop(p->conn);
1503 hci_conn_put(p->conn);
1504 p->conn = NULL;
1505 }
1506 list_del_init(&p->action);
1507 }
1508
1509 BT_DBG("All LE pending actions cleared");
1510}
1511
1512int hci_dev_do_close(struct hci_dev *hdev)
1513{
1514 bool auto_off;
1515
1516 BT_DBG("%s %p", hdev->name, hdev);
1517
1518 if (!hci_dev_test_flag(hdev, HCI_UNREGISTER) &&
1519 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1520 test_bit(HCI_UP, &hdev->flags)) {
1521 /* Execute vendor specific shutdown routine */
1522 if (hdev->shutdown)
1523 hdev->shutdown(hdev);
1524 }
1525
1526 cancel_delayed_work(&hdev->power_off);
1527
1528 hci_request_cancel_all(hdev);
1529 hci_req_sync_lock(hdev);
1530
1531 if (!test_and_clear_bit(HCI_UP, &hdev->flags)) {
1532 cancel_delayed_work_sync(&hdev->cmd_timer);
1533 hci_req_sync_unlock(hdev);
1534 return 0;
1535 }
1536
1537 hci_leds_update_powered(hdev, false);
1538
1539 /* Flush RX and TX works */
1540 flush_work(&hdev->tx_work);
1541 flush_work(&hdev->rx_work);
1542
1543 if (hdev->discov_timeout > 0) {
1544 hdev->discov_timeout = 0;
1545 hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
1546 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
1547 }
1548
1549 if (hci_dev_test_and_clear_flag(hdev, HCI_SERVICE_CACHE))
1550 cancel_delayed_work(&hdev->service_cache);
1551
1552 if (hci_dev_test_flag(hdev, HCI_MGMT))
1553 cancel_delayed_work_sync(&hdev->rpa_expired);
1554
1555 /* Avoid potential lockdep warnings from the *_flush() calls by
1556 * ensuring the workqueue is empty up front.
1557 */
1558 drain_workqueue(hdev->workqueue);
1559
1560 hci_dev_lock(hdev);
1561
1562 hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
1563
1564 auto_off = hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF);
1565
1566 if (!auto_off && hdev->dev_type == HCI_BREDR &&
1567 hci_dev_test_flag(hdev, HCI_MGMT))
1568 __mgmt_power_off(hdev);
1569
1570 hci_inquiry_cache_flush(hdev);
1571 hci_pend_le_actions_clear(hdev);
1572 hci_conn_hash_flush(hdev);
1573 hci_dev_unlock(hdev);
1574
1575 smp_unregister(hdev);
1576
1577 hci_sock_dev_event(hdev, HCI_DEV_DOWN);
1578
1579 if (hdev->flush)
1580 hdev->flush(hdev);
1581
1582 /* Reset device */
1583 skb_queue_purge(&hdev->cmd_q);
1584 atomic_set(&hdev->cmd_cnt, 1);
1585 if (test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks) &&
1586 !auto_off && !hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1587 set_bit(HCI_INIT, &hdev->flags);
1588 __hci_req_sync(hdev, hci_reset_req, 0, HCI_CMD_TIMEOUT, NULL);
1589 clear_bit(HCI_INIT, &hdev->flags);
1590 }
1591
1592 /* flush cmd work */
1593 flush_work(&hdev->cmd_work);
1594
1595 /* Drop queues */
1596 skb_queue_purge(&hdev->rx_q);
1597 skb_queue_purge(&hdev->cmd_q);
1598 skb_queue_purge(&hdev->raw_q);
1599
1600 /* Drop last sent command */
1601 if (hdev->sent_cmd) {
1602 cancel_delayed_work_sync(&hdev->cmd_timer);
1603 kfree_skb(hdev->sent_cmd);
1604 hdev->sent_cmd = NULL;
1605 }
1606
1607 clear_bit(HCI_RUNNING, &hdev->flags);
1608 hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
1609
1610 /* After this point our queues are empty
1611 * and no tasks are scheduled. */
1612 hdev->close(hdev);
1613
1614 /* Clear flags */
1615 hdev->flags &= BIT(HCI_RAW);
1616 hci_dev_clear_volatile_flags(hdev);
1617
1618 /* Controller radio is available but is currently powered down */
1619 hdev->amp_status = AMP_STATUS_POWERED_DOWN;
1620
1621 memset(hdev->eir, 0, sizeof(hdev->eir));
1622 memset(hdev->dev_class, 0, sizeof(hdev->dev_class));
1623 bacpy(&hdev->random_addr, BDADDR_ANY);
1624
1625 hci_req_sync_unlock(hdev);
1626
1627 hci_dev_put(hdev);
1628 return 0;
1629}
1630
1631int hci_dev_close(__u16 dev)
1632{
1633 struct hci_dev *hdev;
1634 int err;
1635
1636 hdev = hci_dev_get(dev);
1637 if (!hdev)
1638 return -ENODEV;
1639
1640 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1641 err = -EBUSY;
1642 goto done;
1643 }
1644
1645 if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
1646 cancel_delayed_work(&hdev->power_off);
1647
1648 err = hci_dev_do_close(hdev);
1649
1650done:
1651 hci_dev_put(hdev);
1652 return err;
1653}
1654
1655static int hci_dev_do_reset(struct hci_dev *hdev)
1656{
1657 int ret;
1658
1659 BT_DBG("%s %p", hdev->name, hdev);
1660
1661 hci_req_sync_lock(hdev);
1662
1663 /* Drop queues */
1664 skb_queue_purge(&hdev->rx_q);
1665 skb_queue_purge(&hdev->cmd_q);
1666
1667 /* Avoid potential lockdep warnings from the *_flush() calls by
1668 * ensuring the workqueue is empty up front.
1669 */
1670 drain_workqueue(hdev->workqueue);
1671
1672 hci_dev_lock(hdev);
1673 hci_inquiry_cache_flush(hdev);
1674 hci_conn_hash_flush(hdev);
1675 hci_dev_unlock(hdev);
1676
1677 if (hdev->flush)
1678 hdev->flush(hdev);
1679
1680 atomic_set(&hdev->cmd_cnt, 1);
1681 hdev->acl_cnt = 0; hdev->sco_cnt = 0; hdev->le_cnt = 0;
1682
1683 ret = __hci_req_sync(hdev, hci_reset_req, 0, HCI_INIT_TIMEOUT, NULL);
1684
1685 hci_req_sync_unlock(hdev);
1686 return ret;
1687}
1688
1689int hci_dev_reset(__u16 dev)
1690{
1691 struct hci_dev *hdev;
1692 int err;
1693
1694 hdev = hci_dev_get(dev);
1695 if (!hdev)
1696 return -ENODEV;
1697
1698 if (!test_bit(HCI_UP, &hdev->flags)) {
1699 err = -ENETDOWN;
1700 goto done;
1701 }
1702
1703 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1704 err = -EBUSY;
1705 goto done;
1706 }
1707
1708 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1709 err = -EOPNOTSUPP;
1710 goto done;
1711 }
1712
1713 err = hci_dev_do_reset(hdev);
1714
1715done:
1716 hci_dev_put(hdev);
1717 return err;
1718}
1719
1720int hci_dev_reset_stat(__u16 dev)
1721{
1722 struct hci_dev *hdev;
1723 int ret = 0;
1724
1725 hdev = hci_dev_get(dev);
1726 if (!hdev)
1727 return -ENODEV;
1728
1729 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1730 ret = -EBUSY;
1731 goto done;
1732 }
1733
1734 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1735 ret = -EOPNOTSUPP;
1736 goto done;
1737 }
1738
1739 memset(&hdev->stat, 0, sizeof(struct hci_dev_stats));
1740
1741done:
1742 hci_dev_put(hdev);
1743 return ret;
1744}
1745
1746static void hci_update_scan_state(struct hci_dev *hdev, u8 scan)
1747{
1748 bool conn_changed, discov_changed;
1749
1750 BT_DBG("%s scan 0x%02x", hdev->name, scan);
1751
1752 if ((scan & SCAN_PAGE))
1753 conn_changed = !hci_dev_test_and_set_flag(hdev,
1754 HCI_CONNECTABLE);
1755 else
1756 conn_changed = hci_dev_test_and_clear_flag(hdev,
1757 HCI_CONNECTABLE);
1758
1759 if ((scan & SCAN_INQUIRY)) {
1760 discov_changed = !hci_dev_test_and_set_flag(hdev,
1761 HCI_DISCOVERABLE);
1762 } else {
1763 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
1764 discov_changed = hci_dev_test_and_clear_flag(hdev,
1765 HCI_DISCOVERABLE);
1766 }
1767
1768 if (!hci_dev_test_flag(hdev, HCI_MGMT))
1769 return;
1770
1771 if (conn_changed || discov_changed) {
1772 /* In case this was disabled through mgmt */
1773 hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
1774
1775 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED))
1776 hci_req_update_adv_data(hdev, hdev->cur_adv_instance);
1777
1778 mgmt_new_settings(hdev);
1779 }
1780}
1781
1782int hci_dev_cmd(unsigned int cmd, void __user *arg)
1783{
1784 struct hci_dev *hdev;
1785 struct hci_dev_req dr;
1786 int err = 0;
1787
1788 if (copy_from_user(&dr, arg, sizeof(dr)))
1789 return -EFAULT;
1790
1791 hdev = hci_dev_get(dr.dev_id);
1792 if (!hdev)
1793 return -ENODEV;
1794
1795 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1796 err = -EBUSY;
1797 goto done;
1798 }
1799
1800 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1801 err = -EOPNOTSUPP;
1802 goto done;
1803 }
1804
1805 if (hdev->dev_type != HCI_BREDR) {
1806 err = -EOPNOTSUPP;
1807 goto done;
1808 }
1809
1810 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
1811 err = -EOPNOTSUPP;
1812 goto done;
1813 }
1814
1815 switch (cmd) {
1816 case HCISETAUTH:
1817 err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
1818 HCI_INIT_TIMEOUT, NULL);
1819 break;
1820
1821 case HCISETENCRYPT:
1822 if (!lmp_encrypt_capable(hdev)) {
1823 err = -EOPNOTSUPP;
1824 break;
1825 }
1826
1827 if (!test_bit(HCI_AUTH, &hdev->flags)) {
1828 /* Auth must be enabled first */
1829 err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
1830 HCI_INIT_TIMEOUT, NULL);
1831 if (err)
1832 break;
1833 }
1834
1835 err = hci_req_sync(hdev, hci_encrypt_req, dr.dev_opt,
1836 HCI_INIT_TIMEOUT, NULL);
1837 break;
1838
1839 case HCISETSCAN:
1840 err = hci_req_sync(hdev, hci_scan_req, dr.dev_opt,
1841 HCI_INIT_TIMEOUT, NULL);
1842
1843 /* Ensure that the connectable and discoverable states
1844 * get correctly modified as this was a non-mgmt change.
1845 */
1846 if (!err)
1847 hci_update_scan_state(hdev, dr.dev_opt);
1848 break;
1849
1850 case HCISETLINKPOL:
1851 err = hci_req_sync(hdev, hci_linkpol_req, dr.dev_opt,
1852 HCI_INIT_TIMEOUT, NULL);
1853 break;
1854
1855 case HCISETLINKMODE:
1856 hdev->link_mode = ((__u16) dr.dev_opt) &
1857 (HCI_LM_MASTER | HCI_LM_ACCEPT);
1858 break;
1859
1860 case HCISETPTYPE:
1861 hdev->pkt_type = (__u16) dr.dev_opt;
1862 break;
1863
1864 case HCISETACLMTU:
1865 hdev->acl_mtu = *((__u16 *) &dr.dev_opt + 1);
1866 hdev->acl_pkts = *((__u16 *) &dr.dev_opt + 0);
1867 break;
1868
1869 case HCISETSCOMTU:
1870 hdev->sco_mtu = *((__u16 *) &dr.dev_opt + 1);
1871 hdev->sco_pkts = *((__u16 *) &dr.dev_opt + 0);
1872 break;
1873
1874 default:
1875 err = -EINVAL;
1876 break;
1877 }
1878
1879done:
1880 hci_dev_put(hdev);
1881 return err;
1882}
1883
1884int hci_get_dev_list(void __user *arg)
1885{
1886 struct hci_dev *hdev;
1887 struct hci_dev_list_req *dl;
1888 struct hci_dev_req *dr;
1889 int n = 0, size, err;
1890 __u16 dev_num;
1891
1892 if (get_user(dev_num, (__u16 __user *) arg))
1893 return -EFAULT;
1894
1895 if (!dev_num || dev_num > (PAGE_SIZE * 2) / sizeof(*dr))
1896 return -EINVAL;
1897
1898 size = sizeof(*dl) + dev_num * sizeof(*dr);
1899
1900 dl = kzalloc(size, GFP_KERNEL);
1901 if (!dl)
1902 return -ENOMEM;
1903
1904 dr = dl->dev_req;
1905
1906 read_lock(&hci_dev_list_lock);
1907 list_for_each_entry(hdev, &hci_dev_list, list) {
1908 unsigned long flags = hdev->flags;
1909
1910 /* When the auto-off is configured it means the transport
1911 * is running, but in that case still indicate that the
1912 * device is actually down.
1913 */
1914 if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
1915 flags &= ~BIT(HCI_UP);
1916
1917 (dr + n)->dev_id = hdev->id;
1918 (dr + n)->dev_opt = flags;
1919
1920 if (++n >= dev_num)
1921 break;
1922 }
1923 read_unlock(&hci_dev_list_lock);
1924
1925 dl->dev_num = n;
1926 size = sizeof(*dl) + n * sizeof(*dr);
1927
1928 err = copy_to_user(arg, dl, size);
1929 kfree(dl);
1930
1931 return err ? -EFAULT : 0;
1932}
1933
1934int hci_get_dev_info(void __user *arg)
1935{
1936 struct hci_dev *hdev;
1937 struct hci_dev_info di;
1938 unsigned long flags;
1939 int err = 0;
1940
1941 if (copy_from_user(&di, arg, sizeof(di)))
1942 return -EFAULT;
1943
1944 hdev = hci_dev_get(di.dev_id);
1945 if (!hdev)
1946 return -ENODEV;
1947
1948 /* When the auto-off is configured it means the transport
1949 * is running, but in that case still indicate that the
1950 * device is actually down.
1951 */
1952 if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
1953 flags = hdev->flags & ~BIT(HCI_UP);
1954 else
1955 flags = hdev->flags;
1956
1957 strcpy(di.name, hdev->name);
1958 di.bdaddr = hdev->bdaddr;
1959 di.type = (hdev->bus & 0x0f) | ((hdev->dev_type & 0x03) << 4);
1960 di.flags = flags;
1961 di.pkt_type = hdev->pkt_type;
1962 if (lmp_bredr_capable(hdev)) {
1963 di.acl_mtu = hdev->acl_mtu;
1964 di.acl_pkts = hdev->acl_pkts;
1965 di.sco_mtu = hdev->sco_mtu;
1966 di.sco_pkts = hdev->sco_pkts;
1967 } else {
1968 di.acl_mtu = hdev->le_mtu;
1969 di.acl_pkts = hdev->le_pkts;
1970 di.sco_mtu = 0;
1971 di.sco_pkts = 0;
1972 }
1973 di.link_policy = hdev->link_policy;
1974 di.link_mode = hdev->link_mode;
1975
1976 memcpy(&di.stat, &hdev->stat, sizeof(di.stat));
1977 memcpy(&di.features, &hdev->features, sizeof(di.features));
1978
1979 if (copy_to_user(arg, &di, sizeof(di)))
1980 err = -EFAULT;
1981
1982 hci_dev_put(hdev);
1983
1984 return err;
1985}
1986
1987/* ---- Interface to HCI drivers ---- */
1988
1989static int hci_rfkill_set_block(void *data, bool blocked)
1990{
1991 struct hci_dev *hdev = data;
1992
1993 BT_DBG("%p name %s blocked %d", hdev, hdev->name, blocked);
1994
1995 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL))
1996 return -EBUSY;
1997
1998 if (blocked) {
1999 hci_dev_set_flag(hdev, HCI_RFKILLED);
2000 if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
2001 !hci_dev_test_flag(hdev, HCI_CONFIG))
2002 hci_dev_do_close(hdev);
2003 } else {
2004 hci_dev_clear_flag(hdev, HCI_RFKILLED);
2005 }
2006
2007 return 0;
2008}
2009
2010static const struct rfkill_ops hci_rfkill_ops = {
2011 .set_block = hci_rfkill_set_block,
2012};
2013
2014static void hci_power_on(struct work_struct *work)
2015{
2016 struct hci_dev *hdev = container_of(work, struct hci_dev, power_on);
2017 int err;
2018
2019 BT_DBG("%s", hdev->name);
2020
2021 if (test_bit(HCI_UP, &hdev->flags) &&
2022 hci_dev_test_flag(hdev, HCI_MGMT) &&
2023 hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) {
2024 cancel_delayed_work(&hdev->power_off);
2025 hci_req_sync_lock(hdev);
2026 err = __hci_req_hci_power_on(hdev);
2027 hci_req_sync_unlock(hdev);
2028 mgmt_power_on(hdev, err);
2029 return;
2030 }
2031
2032 err = hci_dev_do_open(hdev);
2033 if (err < 0) {
2034 hci_dev_lock(hdev);
2035 mgmt_set_powered_failed(hdev, err);
2036 hci_dev_unlock(hdev);
2037 return;
2038 }
2039
2040 /* During the HCI setup phase, a few error conditions are
2041 * ignored and they need to be checked now. If they are still
2042 * valid, it is important to turn the device back off.
2043 */
2044 if (hci_dev_test_flag(hdev, HCI_RFKILLED) ||
2045 hci_dev_test_flag(hdev, HCI_UNCONFIGURED) ||
2046 (hdev->dev_type == HCI_BREDR &&
2047 !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
2048 !bacmp(&hdev->static_addr, BDADDR_ANY))) {
2049 hci_dev_clear_flag(hdev, HCI_AUTO_OFF);
2050 hci_dev_do_close(hdev);
2051 } else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) {
2052 queue_delayed_work(hdev->req_workqueue, &hdev->power_off,
2053 HCI_AUTO_OFF_TIMEOUT);
2054 }
2055
2056 if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) {
2057 /* For unconfigured devices, set the HCI_RAW flag
2058 * so that userspace can easily identify them.
2059 */
2060 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
2061 set_bit(HCI_RAW, &hdev->flags);
2062
2063 /* For fully configured devices, this will send
2064 * the Index Added event. For unconfigured devices,
2065 * it will send Unconfigued Index Added event.
2066 *
2067 * Devices with HCI_QUIRK_RAW_DEVICE are ignored
2068 * and no event will be send.
2069 */
2070 mgmt_index_added(hdev);
2071 } else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) {
2072 /* When the controller is now configured, then it
2073 * is important to clear the HCI_RAW flag.
2074 */
2075 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
2076 clear_bit(HCI_RAW, &hdev->flags);
2077
2078 /* Powering on the controller with HCI_CONFIG set only
2079 * happens with the transition from unconfigured to
2080 * configured. This will send the Index Added event.
2081 */
2082 mgmt_index_added(hdev);
2083 }
2084}
2085
2086static void hci_power_off(struct work_struct *work)
2087{
2088 struct hci_dev *hdev = container_of(work, struct hci_dev,
2089 power_off.work);
2090
2091 BT_DBG("%s", hdev->name);
2092
2093 hci_dev_do_close(hdev);
2094}
2095
2096static void hci_error_reset(struct work_struct *work)
2097{
2098 struct hci_dev *hdev = container_of(work, struct hci_dev, error_reset);
2099
2100 BT_DBG("%s", hdev->name);
2101
2102 if (hdev->hw_error)
2103 hdev->hw_error(hdev, hdev->hw_error_code);
2104 else
2105 BT_ERR("%s hardware error 0x%2.2x", hdev->name,
2106 hdev->hw_error_code);
2107
2108 if (hci_dev_do_close(hdev))
2109 return;
2110
2111 hci_dev_do_open(hdev);
2112}
2113
2114void hci_uuids_clear(struct hci_dev *hdev)
2115{
2116 struct bt_uuid *uuid, *tmp;
2117
2118 list_for_each_entry_safe(uuid, tmp, &hdev->uuids, list) {
2119 list_del(&uuid->list);
2120 kfree(uuid);
2121 }
2122}
2123
2124void hci_link_keys_clear(struct hci_dev *hdev)
2125{
2126 struct link_key *key;
2127
2128 list_for_each_entry_rcu(key, &hdev->link_keys, list) {
2129 list_del_rcu(&key->list);
2130 kfree_rcu(key, rcu);
2131 }
2132}
2133
2134void hci_smp_ltks_clear(struct hci_dev *hdev)
2135{
2136 struct smp_ltk *k;
2137
2138 list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2139 list_del_rcu(&k->list);
2140 kfree_rcu(k, rcu);
2141 }
2142}
2143
2144void hci_smp_irks_clear(struct hci_dev *hdev)
2145{
2146 struct smp_irk *k;
2147
2148 list_for_each_entry_rcu(k, &hdev->identity_resolving_keys, list) {
2149 list_del_rcu(&k->list);
2150 kfree_rcu(k, rcu);
2151 }
2152}
2153
2154struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
2155{
2156 struct link_key *k;
2157
2158 rcu_read_lock();
2159 list_for_each_entry_rcu(k, &hdev->link_keys, list) {
2160 if (bacmp(bdaddr, &k->bdaddr) == 0) {
2161 rcu_read_unlock();
2162 return k;
2163 }
2164 }
2165 rcu_read_unlock();
2166
2167 return NULL;
2168}
2169
2170static bool hci_persistent_key(struct hci_dev *hdev, struct hci_conn *conn,
2171 u8 key_type, u8 old_key_type)
2172{
2173 /* Legacy key */
2174 if (key_type < 0x03)
2175 return true;
2176
2177 /* Debug keys are insecure so don't store them persistently */
2178 if (key_type == HCI_LK_DEBUG_COMBINATION)
2179 return false;
2180
2181 /* Changed combination key and there's no previous one */
2182 if (key_type == HCI_LK_CHANGED_COMBINATION && old_key_type == 0xff)
2183 return false;
2184
2185 /* Security mode 3 case */
2186 if (!conn)
2187 return true;
2188
2189 /* BR/EDR key derived using SC from an LE link */
2190 if (conn->type == LE_LINK)
2191 return true;
2192
2193 /* Neither local nor remote side had no-bonding as requirement */
2194 if (conn->auth_type > 0x01 && conn->remote_auth > 0x01)
2195 return true;
2196
2197 /* Local side had dedicated bonding as requirement */
2198 if (conn->auth_type == 0x02 || conn->auth_type == 0x03)
2199 return true;
2200
2201 /* Remote side had dedicated bonding as requirement */
2202 if (conn->remote_auth == 0x02 || conn->remote_auth == 0x03)
2203 return true;
2204
2205 /* If none of the above criteria match, then don't store the key
2206 * persistently */
2207 return false;
2208}
2209
2210static u8 ltk_role(u8 type)
2211{
2212 if (type == SMP_LTK)
2213 return HCI_ROLE_MASTER;
2214
2215 return HCI_ROLE_SLAVE;
2216}
2217
2218struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2219 u8 addr_type, u8 role)
2220{
2221 struct smp_ltk *k;
2222
2223 rcu_read_lock();
2224 list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2225 if (addr_type != k->bdaddr_type || bacmp(bdaddr, &k->bdaddr))
2226 continue;
2227
2228 if (smp_ltk_is_sc(k) || ltk_role(k->type) == role) {
2229 rcu_read_unlock();
2230 return k;
2231 }
2232 }
2233 rcu_read_unlock();
2234
2235 return NULL;
2236}
2237
2238struct smp_irk *hci_find_irk_by_rpa(struct hci_dev *hdev, bdaddr_t *rpa)
2239{
2240 struct smp_irk *irk;
2241
2242 rcu_read_lock();
2243 list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2244 if (!bacmp(&irk->rpa, rpa)) {
2245 rcu_read_unlock();
2246 return irk;
2247 }
2248 }
2249
2250 list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2251 if (smp_irk_matches(hdev, irk->val, rpa)) {
2252 bacpy(&irk->rpa, rpa);
2253 rcu_read_unlock();
2254 return irk;
2255 }
2256 }
2257 rcu_read_unlock();
2258
2259 return NULL;
2260}
2261
2262struct smp_irk *hci_find_irk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr,
2263 u8 addr_type)
2264{
2265 struct smp_irk *irk;
2266
2267 /* Identity Address must be public or static random */
2268 if (addr_type == ADDR_LE_DEV_RANDOM && (bdaddr->b[5] & 0xc0) != 0xc0)
2269 return NULL;
2270
2271 rcu_read_lock();
2272 list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2273 if (addr_type == irk->addr_type &&
2274 bacmp(bdaddr, &irk->bdaddr) == 0) {
2275 rcu_read_unlock();
2276 return irk;
2277 }
2278 }
2279 rcu_read_unlock();
2280
2281 return NULL;
2282}
2283
2284struct link_key *hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn,
2285 bdaddr_t *bdaddr, u8 *val, u8 type,
2286 u8 pin_len, bool *persistent)
2287{
2288 struct link_key *key, *old_key;
2289 u8 old_key_type;
2290
2291 old_key = hci_find_link_key(hdev, bdaddr);
2292 if (old_key) {
2293 old_key_type = old_key->type;
2294 key = old_key;
2295 } else {
2296 old_key_type = conn ? conn->key_type : 0xff;
2297 key = kzalloc(sizeof(*key), GFP_KERNEL);
2298 if (!key)
2299 return NULL;
2300 list_add_rcu(&key->list, &hdev->link_keys);
2301 }
2302
2303 BT_DBG("%s key for %pMR type %u", hdev->name, bdaddr, type);
2304
2305 /* Some buggy controller combinations generate a changed
2306 * combination key for legacy pairing even when there's no
2307 * previous key */
2308 if (type == HCI_LK_CHANGED_COMBINATION &&
2309 (!conn || conn->remote_auth == 0xff) && old_key_type == 0xff) {
2310 type = HCI_LK_COMBINATION;
2311 if (conn)
2312 conn->key_type = type;
2313 }
2314
2315 bacpy(&key->bdaddr, bdaddr);
2316 memcpy(key->val, val, HCI_LINK_KEY_SIZE);
2317 key->pin_len = pin_len;
2318
2319 if (type == HCI_LK_CHANGED_COMBINATION)
2320 key->type = old_key_type;
2321 else
2322 key->type = type;
2323
2324 if (persistent)
2325 *persistent = hci_persistent_key(hdev, conn, type,
2326 old_key_type);
2327
2328 return key;
2329}
2330
2331struct smp_ltk *hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2332 u8 addr_type, u8 type, u8 authenticated,
2333 u8 tk[16], u8 enc_size, __le16 ediv, __le64 rand)
2334{
2335 struct smp_ltk *key, *old_key;
2336 u8 role = ltk_role(type);
2337
2338 old_key = hci_find_ltk(hdev, bdaddr, addr_type, role);
2339 if (old_key)
2340 key = old_key;
2341 else {
2342 key = kzalloc(sizeof(*key), GFP_KERNEL);
2343 if (!key)
2344 return NULL;
2345 list_add_rcu(&key->list, &hdev->long_term_keys);
2346 }
2347
2348 bacpy(&key->bdaddr, bdaddr);
2349 key->bdaddr_type = addr_type;
2350 memcpy(key->val, tk, sizeof(key->val));
2351 key->authenticated = authenticated;
2352 key->ediv = ediv;
2353 key->rand = rand;
2354 key->enc_size = enc_size;
2355 key->type = type;
2356
2357 return key;
2358}
2359
2360struct smp_irk *hci_add_irk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2361 u8 addr_type, u8 val[16], bdaddr_t *rpa)
2362{
2363 struct smp_irk *irk;
2364
2365 irk = hci_find_irk_by_addr(hdev, bdaddr, addr_type);
2366 if (!irk) {
2367 irk = kzalloc(sizeof(*irk), GFP_KERNEL);
2368 if (!irk)
2369 return NULL;
2370
2371 bacpy(&irk->bdaddr, bdaddr);
2372 irk->addr_type = addr_type;
2373
2374 list_add_rcu(&irk->list, &hdev->identity_resolving_keys);
2375 }
2376
2377 memcpy(irk->val, val, 16);
2378 bacpy(&irk->rpa, rpa);
2379
2380 return irk;
2381}
2382
2383int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
2384{
2385 struct link_key *key;
2386
2387 key = hci_find_link_key(hdev, bdaddr);
2388 if (!key)
2389 return -ENOENT;
2390
2391 BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2392
2393 list_del_rcu(&key->list);
2394 kfree_rcu(key, rcu);
2395
2396 return 0;
2397}
2398
2399int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type)
2400{
2401 struct smp_ltk *k;
2402 int removed = 0;
2403
2404 list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2405 if (bacmp(bdaddr, &k->bdaddr) || k->bdaddr_type != bdaddr_type)
2406 continue;
2407
2408 BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2409
2410 list_del_rcu(&k->list);
2411 kfree_rcu(k, rcu);
2412 removed++;
2413 }
2414
2415 return removed ? 0 : -ENOENT;
2416}
2417
2418void hci_remove_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type)
2419{
2420 struct smp_irk *k;
2421
2422 list_for_each_entry_rcu(k, &hdev->identity_resolving_keys, list) {
2423 if (bacmp(bdaddr, &k->bdaddr) || k->addr_type != addr_type)
2424 continue;
2425
2426 BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2427
2428 list_del_rcu(&k->list);
2429 kfree_rcu(k, rcu);
2430 }
2431}
2432
2433bool hci_bdaddr_is_paired(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type)
2434{
2435 struct smp_ltk *k;
2436 struct smp_irk *irk;
2437 u8 addr_type;
2438
2439 if (type == BDADDR_BREDR) {
2440 if (hci_find_link_key(hdev, bdaddr))
2441 return true;
2442 return false;
2443 }
2444
2445 /* Convert to HCI addr type which struct smp_ltk uses */
2446 if (type == BDADDR_LE_PUBLIC)
2447 addr_type = ADDR_LE_DEV_PUBLIC;
2448 else
2449 addr_type = ADDR_LE_DEV_RANDOM;
2450
2451 irk = hci_get_irk(hdev, bdaddr, addr_type);
2452 if (irk) {
2453 bdaddr = &irk->bdaddr;
2454 addr_type = irk->addr_type;
2455 }
2456
2457 rcu_read_lock();
2458 list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2459 if (k->bdaddr_type == addr_type && !bacmp(bdaddr, &k->bdaddr)) {
2460 rcu_read_unlock();
2461 return true;
2462 }
2463 }
2464 rcu_read_unlock();
2465
2466 return false;
2467}
2468
2469/* HCI command timer function */
2470static void hci_cmd_timeout(struct work_struct *work)
2471{
2472 struct hci_dev *hdev = container_of(work, struct hci_dev,
2473 cmd_timer.work);
2474
2475 if (hdev->sent_cmd) {
2476 struct hci_command_hdr *sent = (void *) hdev->sent_cmd->data;
2477 u16 opcode = __le16_to_cpu(sent->opcode);
2478
2479 BT_ERR("%s command 0x%4.4x tx timeout", hdev->name, opcode);
2480 } else {
2481 BT_ERR("%s command tx timeout", hdev->name);
2482 }
2483
2484 atomic_set(&hdev->cmd_cnt, 1);
2485 queue_work(hdev->workqueue, &hdev->cmd_work);
2486}
2487
2488struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev,
2489 bdaddr_t *bdaddr, u8 bdaddr_type)
2490{
2491 struct oob_data *data;
2492
2493 list_for_each_entry(data, &hdev->remote_oob_data, list) {
2494 if (bacmp(bdaddr, &data->bdaddr) != 0)
2495 continue;
2496 if (data->bdaddr_type != bdaddr_type)
2497 continue;
2498 return data;
2499 }
2500
2501 return NULL;
2502}
2503
2504int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
2505 u8 bdaddr_type)
2506{
2507 struct oob_data *data;
2508
2509 data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
2510 if (!data)
2511 return -ENOENT;
2512
2513 BT_DBG("%s removing %pMR (%u)", hdev->name, bdaddr, bdaddr_type);
2514
2515 list_del(&data->list);
2516 kfree(data);
2517
2518 return 0;
2519}
2520
2521void hci_remote_oob_data_clear(struct hci_dev *hdev)
2522{
2523 struct oob_data *data, *n;
2524
2525 list_for_each_entry_safe(data, n, &hdev->remote_oob_data, list) {
2526 list_del(&data->list);
2527 kfree(data);
2528 }
2529}
2530
2531int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
2532 u8 bdaddr_type, u8 *hash192, u8 *rand192,
2533 u8 *hash256, u8 *rand256)
2534{
2535 struct oob_data *data;
2536
2537 data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
2538 if (!data) {
2539 data = kmalloc(sizeof(*data), GFP_KERNEL);
2540 if (!data)
2541 return -ENOMEM;
2542
2543 bacpy(&data->bdaddr, bdaddr);
2544 data->bdaddr_type = bdaddr_type;
2545 list_add(&data->list, &hdev->remote_oob_data);
2546 }
2547
2548 if (hash192 && rand192) {
2549 memcpy(data->hash192, hash192, sizeof(data->hash192));
2550 memcpy(data->rand192, rand192, sizeof(data->rand192));
2551 if (hash256 && rand256)
2552 data->present = 0x03;
2553 } else {
2554 memset(data->hash192, 0, sizeof(data->hash192));
2555 memset(data->rand192, 0, sizeof(data->rand192));
2556 if (hash256 && rand256)
2557 data->present = 0x02;
2558 else
2559 data->present = 0x00;
2560 }
2561
2562 if (hash256 && rand256) {
2563 memcpy(data->hash256, hash256, sizeof(data->hash256));
2564 memcpy(data->rand256, rand256, sizeof(data->rand256));
2565 } else {
2566 memset(data->hash256, 0, sizeof(data->hash256));
2567 memset(data->rand256, 0, sizeof(data->rand256));
2568 if (hash192 && rand192)
2569 data->present = 0x01;
2570 }
2571
2572 BT_DBG("%s for %pMR", hdev->name, bdaddr);
2573
2574 return 0;
2575}
2576
2577/* This function requires the caller holds hdev->lock */
2578struct adv_info *hci_find_adv_instance(struct hci_dev *hdev, u8 instance)
2579{
2580 struct adv_info *adv_instance;
2581
2582 list_for_each_entry(adv_instance, &hdev->adv_instances, list) {
2583 if (adv_instance->instance == instance)
2584 return adv_instance;
2585 }
2586
2587 return NULL;
2588}
2589
2590/* This function requires the caller holds hdev->lock */
2591struct adv_info *hci_get_next_instance(struct hci_dev *hdev, u8 instance)
2592{
2593 struct adv_info *cur_instance;
2594
2595 cur_instance = hci_find_adv_instance(hdev, instance);
2596 if (!cur_instance)
2597 return NULL;
2598
2599 if (cur_instance == list_last_entry(&hdev->adv_instances,
2600 struct adv_info, list))
2601 return list_first_entry(&hdev->adv_instances,
2602 struct adv_info, list);
2603 else
2604 return list_next_entry(cur_instance, list);
2605}
2606
2607/* This function requires the caller holds hdev->lock */
2608int hci_remove_adv_instance(struct hci_dev *hdev, u8 instance)
2609{
2610 struct adv_info *adv_instance;
2611
2612 adv_instance = hci_find_adv_instance(hdev, instance);
2613 if (!adv_instance)
2614 return -ENOENT;
2615
2616 BT_DBG("%s removing %dMR", hdev->name, instance);
2617
2618 if (hdev->cur_adv_instance == instance) {
2619 if (hdev->adv_instance_timeout) {
2620 cancel_delayed_work(&hdev->adv_instance_expire);
2621 hdev->adv_instance_timeout = 0;
2622 }
2623 hdev->cur_adv_instance = 0x00;
2624 }
2625
2626 list_del(&adv_instance->list);
2627 kfree(adv_instance);
2628
2629 hdev->adv_instance_cnt--;
2630
2631 return 0;
2632}
2633
2634/* This function requires the caller holds hdev->lock */
2635void hci_adv_instances_clear(struct hci_dev *hdev)
2636{
2637 struct adv_info *adv_instance, *n;
2638
2639 if (hdev->adv_instance_timeout) {
2640 cancel_delayed_work(&hdev->adv_instance_expire);
2641 hdev->adv_instance_timeout = 0;
2642 }
2643
2644 list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list) {
2645 list_del(&adv_instance->list);
2646 kfree(adv_instance);
2647 }
2648
2649 hdev->adv_instance_cnt = 0;
2650 hdev->cur_adv_instance = 0x00;
2651}
2652
2653/* This function requires the caller holds hdev->lock */
2654int hci_add_adv_instance(struct hci_dev *hdev, u8 instance, u32 flags,
2655 u16 adv_data_len, u8 *adv_data,
2656 u16 scan_rsp_len, u8 *scan_rsp_data,
2657 u16 timeout, u16 duration)
2658{
2659 struct adv_info *adv_instance;
2660
2661 adv_instance = hci_find_adv_instance(hdev, instance);
2662 if (adv_instance) {
2663 memset(adv_instance->adv_data, 0,
2664 sizeof(adv_instance->adv_data));
2665 memset(adv_instance->scan_rsp_data, 0,
2666 sizeof(adv_instance->scan_rsp_data));
2667 } else {
2668 if (hdev->adv_instance_cnt >= HCI_MAX_ADV_INSTANCES ||
2669 instance < 1 || instance > HCI_MAX_ADV_INSTANCES)
2670 return -EOVERFLOW;
2671
2672 adv_instance = kzalloc(sizeof(*adv_instance), GFP_KERNEL);
2673 if (!adv_instance)
2674 return -ENOMEM;
2675
2676 adv_instance->pending = true;
2677 adv_instance->instance = instance;
2678 list_add(&adv_instance->list, &hdev->adv_instances);
2679 hdev->adv_instance_cnt++;
2680 }
2681
2682 adv_instance->flags = flags;
2683 adv_instance->adv_data_len = adv_data_len;
2684 adv_instance->scan_rsp_len = scan_rsp_len;
2685
2686 if (adv_data_len)
2687 memcpy(adv_instance->adv_data, adv_data, adv_data_len);
2688
2689 if (scan_rsp_len)
2690 memcpy(adv_instance->scan_rsp_data,
2691 scan_rsp_data, scan_rsp_len);
2692
2693 adv_instance->timeout = timeout;
2694 adv_instance->remaining_time = timeout;
2695
2696 if (duration == 0)
2697 adv_instance->duration = HCI_DEFAULT_ADV_DURATION;
2698 else
2699 adv_instance->duration = duration;
2700
2701 BT_DBG("%s for %dMR", hdev->name, instance);
2702
2703 return 0;
2704}
2705
2706struct bdaddr_list *hci_bdaddr_list_lookup(struct list_head *bdaddr_list,
2707 bdaddr_t *bdaddr, u8 type)
2708{
2709 struct bdaddr_list *b;
2710
2711 list_for_each_entry(b, bdaddr_list, list) {
2712 if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2713 return b;
2714 }
2715
2716 return NULL;
2717}
2718
2719void hci_bdaddr_list_clear(struct list_head *bdaddr_list)
2720{
2721 struct bdaddr_list *b, *n;
2722
2723 list_for_each_entry_safe(b, n, bdaddr_list, list) {
2724 list_del(&b->list);
2725 kfree(b);
2726 }
2727}
2728
2729int hci_bdaddr_list_add(struct list_head *list, bdaddr_t *bdaddr, u8 type)
2730{
2731 struct bdaddr_list *entry;
2732
2733 if (!bacmp(bdaddr, BDADDR_ANY))
2734 return -EBADF;
2735
2736 if (hci_bdaddr_list_lookup(list, bdaddr, type))
2737 return -EEXIST;
2738
2739 entry = kzalloc(sizeof(*entry), GFP_KERNEL);
2740 if (!entry)
2741 return -ENOMEM;
2742
2743 bacpy(&entry->bdaddr, bdaddr);
2744 entry->bdaddr_type = type;
2745
2746 list_add(&entry->list, list);
2747
2748 return 0;
2749}
2750
2751int hci_bdaddr_list_del(struct list_head *list, bdaddr_t *bdaddr, u8 type)
2752{
2753 struct bdaddr_list *entry;
2754
2755 if (!bacmp(bdaddr, BDADDR_ANY)) {
2756 hci_bdaddr_list_clear(list);
2757 return 0;
2758 }
2759
2760 entry = hci_bdaddr_list_lookup(list, bdaddr, type);
2761 if (!entry)
2762 return -ENOENT;
2763
2764 list_del(&entry->list);
2765 kfree(entry);
2766
2767 return 0;
2768}
2769
2770/* This function requires the caller holds hdev->lock */
2771struct hci_conn_params *hci_conn_params_lookup(struct hci_dev *hdev,
2772 bdaddr_t *addr, u8 addr_type)
2773{
2774 struct hci_conn_params *params;
2775
2776 list_for_each_entry(params, &hdev->le_conn_params, list) {
2777 if (bacmp(¶ms->addr, addr) == 0 &&
2778 params->addr_type == addr_type) {
2779 return params;
2780 }
2781 }
2782
2783 return NULL;
2784}
2785
2786/* This function requires the caller holds hdev->lock */
2787struct hci_conn_params *hci_pend_le_action_lookup(struct list_head *list,
2788 bdaddr_t *addr, u8 addr_type)
2789{
2790 struct hci_conn_params *param;
2791
2792 list_for_each_entry(param, list, action) {
2793 if (bacmp(¶m->addr, addr) == 0 &&
2794 param->addr_type == addr_type)
2795 return param;
2796 }
2797
2798 return NULL;
2799}
2800
2801/* This function requires the caller holds hdev->lock */
2802struct hci_conn_params *hci_conn_params_add(struct hci_dev *hdev,
2803 bdaddr_t *addr, u8 addr_type)
2804{
2805 struct hci_conn_params *params;
2806
2807 params = hci_conn_params_lookup(hdev, addr, addr_type);
2808 if (params)
2809 return params;
2810
2811 params = kzalloc(sizeof(*params), GFP_KERNEL);
2812 if (!params) {
2813 BT_ERR("Out of memory");
2814 return NULL;
2815 }
2816
2817 bacpy(¶ms->addr, addr);
2818 params->addr_type = addr_type;
2819
2820 list_add(¶ms->list, &hdev->le_conn_params);
2821 INIT_LIST_HEAD(¶ms->action);
2822
2823 params->conn_min_interval = hdev->le_conn_min_interval;
2824 params->conn_max_interval = hdev->le_conn_max_interval;
2825 params->conn_latency = hdev->le_conn_latency;
2826 params->supervision_timeout = hdev->le_supv_timeout;
2827 params->auto_connect = HCI_AUTO_CONN_DISABLED;
2828
2829 BT_DBG("addr %pMR (type %u)", addr, addr_type);
2830
2831 return params;
2832}
2833
2834static void hci_conn_params_free(struct hci_conn_params *params)
2835{
2836 if (params->conn) {
2837 hci_conn_drop(params->conn);
2838 hci_conn_put(params->conn);
2839 }
2840
2841 list_del(¶ms->action);
2842 list_del(¶ms->list);
2843 kfree(params);
2844}
2845
2846/* This function requires the caller holds hdev->lock */
2847void hci_conn_params_del(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type)
2848{
2849 struct hci_conn_params *params;
2850
2851 params = hci_conn_params_lookup(hdev, addr, addr_type);
2852 if (!params)
2853 return;
2854
2855 hci_conn_params_free(params);
2856
2857 hci_update_background_scan(hdev);
2858
2859 BT_DBG("addr %pMR (type %u)", addr, addr_type);
2860}
2861
2862/* This function requires the caller holds hdev->lock */
2863void hci_conn_params_clear_disabled(struct hci_dev *hdev)
2864{
2865 struct hci_conn_params *params, *tmp;
2866
2867 list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list) {
2868 if (params->auto_connect != HCI_AUTO_CONN_DISABLED)
2869 continue;
2870
2871 /* If trying to estabilish one time connection to disabled
2872 * device, leave the params, but mark them as just once.
2873 */
2874 if (params->explicit_connect) {
2875 params->auto_connect = HCI_AUTO_CONN_EXPLICIT;
2876 continue;
2877 }
2878
2879 list_del(¶ms->list);
2880 kfree(params);
2881 }
2882
2883 BT_DBG("All LE disabled connection parameters were removed");
2884}
2885
2886/* This function requires the caller holds hdev->lock */
2887static void hci_conn_params_clear_all(struct hci_dev *hdev)
2888{
2889 struct hci_conn_params *params, *tmp;
2890
2891 list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list)
2892 hci_conn_params_free(params);
2893
2894 BT_DBG("All LE connection parameters were removed");
2895}
2896
2897/* Copy the Identity Address of the controller.
2898 *
2899 * If the controller has a public BD_ADDR, then by default use that one.
2900 * If this is a LE only controller without a public address, default to
2901 * the static random address.
2902 *
2903 * For debugging purposes it is possible to force controllers with a
2904 * public address to use the static random address instead.
2905 *
2906 * In case BR/EDR has been disabled on a dual-mode controller and
2907 * userspace has configured a static address, then that address
2908 * becomes the identity address instead of the public BR/EDR address.
2909 */
2910void hci_copy_identity_address(struct hci_dev *hdev, bdaddr_t *bdaddr,
2911 u8 *bdaddr_type)
2912{
2913 if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
2914 !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
2915 (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
2916 bacmp(&hdev->static_addr, BDADDR_ANY))) {
2917 bacpy(bdaddr, &hdev->static_addr);
2918 *bdaddr_type = ADDR_LE_DEV_RANDOM;
2919 } else {
2920 bacpy(bdaddr, &hdev->bdaddr);
2921 *bdaddr_type = ADDR_LE_DEV_PUBLIC;
2922 }
2923}
2924
2925/* Alloc HCI device */
2926struct hci_dev *hci_alloc_dev(void)
2927{
2928 struct hci_dev *hdev;
2929
2930 hdev = kzalloc(sizeof(*hdev), GFP_KERNEL);
2931 if (!hdev)
2932 return NULL;
2933
2934 hdev->pkt_type = (HCI_DM1 | HCI_DH1 | HCI_HV1);
2935 hdev->esco_type = (ESCO_HV1);
2936 hdev->link_mode = (HCI_LM_ACCEPT);
2937 hdev->num_iac = 0x01; /* One IAC support is mandatory */
2938 hdev->io_capability = 0x03; /* No Input No Output */
2939 hdev->manufacturer = 0xffff; /* Default to internal use */
2940 hdev->inq_tx_power = HCI_TX_POWER_INVALID;
2941 hdev->adv_tx_power = HCI_TX_POWER_INVALID;
2942 hdev->adv_instance_cnt = 0;
2943 hdev->cur_adv_instance = 0x00;
2944 hdev->adv_instance_timeout = 0;
2945
2946 hdev->sniff_max_interval = 800;
2947 hdev->sniff_min_interval = 80;
2948
2949 hdev->le_adv_channel_map = 0x07;
2950 hdev->le_adv_min_interval = 0x0800;
2951 hdev->le_adv_max_interval = 0x0800;
2952 hdev->le_scan_interval = 0x0060;
2953 hdev->le_scan_window = 0x0030;
2954 hdev->le_conn_min_interval = 0x0028;
2955 hdev->le_conn_max_interval = 0x0038;
2956 hdev->le_conn_latency = 0x0000;
2957 hdev->le_supv_timeout = 0x002a;
2958 hdev->le_def_tx_len = 0x001b;
2959 hdev->le_def_tx_time = 0x0148;
2960 hdev->le_max_tx_len = 0x001b;
2961 hdev->le_max_tx_time = 0x0148;
2962 hdev->le_max_rx_len = 0x001b;
2963 hdev->le_max_rx_time = 0x0148;
2964
2965 hdev->rpa_timeout = HCI_DEFAULT_RPA_TIMEOUT;
2966 hdev->discov_interleaved_timeout = DISCOV_INTERLEAVED_TIMEOUT;
2967 hdev->conn_info_min_age = DEFAULT_CONN_INFO_MIN_AGE;
2968 hdev->conn_info_max_age = DEFAULT_CONN_INFO_MAX_AGE;
2969
2970 mutex_init(&hdev->lock);
2971 mutex_init(&hdev->req_lock);
2972
2973 INIT_LIST_HEAD(&hdev->mgmt_pending);
2974 INIT_LIST_HEAD(&hdev->blacklist);
2975 INIT_LIST_HEAD(&hdev->whitelist);
2976 INIT_LIST_HEAD(&hdev->uuids);
2977 INIT_LIST_HEAD(&hdev->link_keys);
2978 INIT_LIST_HEAD(&hdev->long_term_keys);
2979 INIT_LIST_HEAD(&hdev->identity_resolving_keys);
2980 INIT_LIST_HEAD(&hdev->remote_oob_data);
2981 INIT_LIST_HEAD(&hdev->le_white_list);
2982 INIT_LIST_HEAD(&hdev->le_conn_params);
2983 INIT_LIST_HEAD(&hdev->pend_le_conns);
2984 INIT_LIST_HEAD(&hdev->pend_le_reports);
2985 INIT_LIST_HEAD(&hdev->conn_hash.list);
2986 INIT_LIST_HEAD(&hdev->adv_instances);
2987
2988 INIT_WORK(&hdev->rx_work, hci_rx_work);
2989 INIT_WORK(&hdev->cmd_work, hci_cmd_work);
2990 INIT_WORK(&hdev->tx_work, hci_tx_work);
2991 INIT_WORK(&hdev->power_on, hci_power_on);
2992 INIT_WORK(&hdev->error_reset, hci_error_reset);
2993
2994 INIT_DELAYED_WORK(&hdev->power_off, hci_power_off);
2995
2996 skb_queue_head_init(&hdev->rx_q);
2997 skb_queue_head_init(&hdev->cmd_q);
2998 skb_queue_head_init(&hdev->raw_q);
2999
3000 init_waitqueue_head(&hdev->req_wait_q);
3001
3002 INIT_DELAYED_WORK(&hdev->cmd_timer, hci_cmd_timeout);
3003
3004 hci_request_setup(hdev);
3005
3006 hci_init_sysfs(hdev);
3007 discovery_init(hdev);
3008
3009 return hdev;
3010}
3011EXPORT_SYMBOL(hci_alloc_dev);
3012
3013/* Free HCI device */
3014void hci_free_dev(struct hci_dev *hdev)
3015{
3016 /* will free via device release */
3017 put_device(&hdev->dev);
3018}
3019EXPORT_SYMBOL(hci_free_dev);
3020
3021/* Register HCI device */
3022int hci_register_dev(struct hci_dev *hdev)
3023{
3024 int id, error;
3025
3026 if (!hdev->open || !hdev->close || !hdev->send)
3027 return -EINVAL;
3028
3029 /* Do not allow HCI_AMP devices to register at index 0,
3030 * so the index can be used as the AMP controller ID.
3031 */
3032 switch (hdev->dev_type) {
3033 case HCI_BREDR:
3034 id = ida_simple_get(&hci_index_ida, 0, 0, GFP_KERNEL);
3035 break;
3036 case HCI_AMP:
3037 id = ida_simple_get(&hci_index_ida, 1, 0, GFP_KERNEL);
3038 break;
3039 default:
3040 return -EINVAL;
3041 }
3042
3043 if (id < 0)
3044 return id;
3045
3046 sprintf(hdev->name, "hci%d", id);
3047 hdev->id = id;
3048
3049 BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
3050
3051 hdev->workqueue = alloc_workqueue("%s", WQ_HIGHPRI | WQ_UNBOUND |
3052 WQ_MEM_RECLAIM, 1, hdev->name);
3053 if (!hdev->workqueue) {
3054 error = -ENOMEM;
3055 goto err;
3056 }
3057
3058 hdev->req_workqueue = alloc_workqueue("%s", WQ_HIGHPRI | WQ_UNBOUND |
3059 WQ_MEM_RECLAIM, 1, hdev->name);
3060 if (!hdev->req_workqueue) {
3061 destroy_workqueue(hdev->workqueue);
3062 error = -ENOMEM;
3063 goto err;
3064 }
3065
3066 if (!IS_ERR_OR_NULL(bt_debugfs))
3067 hdev->debugfs = debugfs_create_dir(hdev->name, bt_debugfs);
3068
3069 dev_set_name(&hdev->dev, "%s", hdev->name);
3070
3071 error = device_add(&hdev->dev);
3072 if (error < 0)
3073 goto err_wqueue;
3074
3075 hci_leds_init(hdev);
3076
3077 hdev->rfkill = rfkill_alloc(hdev->name, &hdev->dev,
3078 RFKILL_TYPE_BLUETOOTH, &hci_rfkill_ops,
3079 hdev);
3080 if (hdev->rfkill) {
3081 if (rfkill_register(hdev->rfkill) < 0) {
3082 rfkill_destroy(hdev->rfkill);
3083 hdev->rfkill = NULL;
3084 }
3085 }
3086
3087 if (hdev->rfkill && rfkill_blocked(hdev->rfkill))
3088 hci_dev_set_flag(hdev, HCI_RFKILLED);
3089
3090 hci_dev_set_flag(hdev, HCI_SETUP);
3091 hci_dev_set_flag(hdev, HCI_AUTO_OFF);
3092
3093 if (hdev->dev_type == HCI_BREDR) {
3094 /* Assume BR/EDR support until proven otherwise (such as
3095 * through reading supported features during init.
3096 */
3097 hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
3098 }
3099
3100 write_lock(&hci_dev_list_lock);
3101 list_add(&hdev->list, &hci_dev_list);
3102 write_unlock(&hci_dev_list_lock);
3103
3104 /* Devices that are marked for raw-only usage are unconfigured
3105 * and should not be included in normal operation.
3106 */
3107 if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
3108 hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
3109
3110 hci_sock_dev_event(hdev, HCI_DEV_REG);
3111 hci_dev_hold(hdev);
3112
3113 queue_work(hdev->req_workqueue, &hdev->power_on);
3114
3115 return id;
3116
3117err_wqueue:
3118 destroy_workqueue(hdev->workqueue);
3119 destroy_workqueue(hdev->req_workqueue);
3120err:
3121 ida_simple_remove(&hci_index_ida, hdev->id);
3122
3123 return error;
3124}
3125EXPORT_SYMBOL(hci_register_dev);
3126
3127/* Unregister HCI device */
3128void hci_unregister_dev(struct hci_dev *hdev)
3129{
3130 int id;
3131
3132 BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
3133
3134 hci_dev_set_flag(hdev, HCI_UNREGISTER);
3135
3136 id = hdev->id;
3137
3138 write_lock(&hci_dev_list_lock);
3139 list_del(&hdev->list);
3140 write_unlock(&hci_dev_list_lock);
3141
3142 hci_dev_do_close(hdev);
3143
3144 cancel_work_sync(&hdev->power_on);
3145
3146 if (!test_bit(HCI_INIT, &hdev->flags) &&
3147 !hci_dev_test_flag(hdev, HCI_SETUP) &&
3148 !hci_dev_test_flag(hdev, HCI_CONFIG)) {
3149 hci_dev_lock(hdev);
3150 mgmt_index_removed(hdev);
3151 hci_dev_unlock(hdev);
3152 }
3153
3154 /* mgmt_index_removed should take care of emptying the
3155 * pending list */
3156 BUG_ON(!list_empty(&hdev->mgmt_pending));
3157
3158 hci_sock_dev_event(hdev, HCI_DEV_UNREG);
3159
3160 if (hdev->rfkill) {
3161 rfkill_unregister(hdev->rfkill);
3162 rfkill_destroy(hdev->rfkill);
3163 }
3164
3165 device_del(&hdev->dev);
3166
3167 debugfs_remove_recursive(hdev->debugfs);
3168
3169 destroy_workqueue(hdev->workqueue);
3170 destroy_workqueue(hdev->req_workqueue);
3171
3172 hci_dev_lock(hdev);
3173 hci_bdaddr_list_clear(&hdev->blacklist);
3174 hci_bdaddr_list_clear(&hdev->whitelist);
3175 hci_uuids_clear(hdev);
3176 hci_link_keys_clear(hdev);
3177 hci_smp_ltks_clear(hdev);
3178 hci_smp_irks_clear(hdev);
3179 hci_remote_oob_data_clear(hdev);
3180 hci_adv_instances_clear(hdev);
3181 hci_bdaddr_list_clear(&hdev->le_white_list);
3182 hci_conn_params_clear_all(hdev);
3183 hci_discovery_filter_clear(hdev);
3184 hci_dev_unlock(hdev);
3185
3186 hci_dev_put(hdev);
3187
3188 ida_simple_remove(&hci_index_ida, id);
3189}
3190EXPORT_SYMBOL(hci_unregister_dev);
3191
3192/* Suspend HCI device */
3193int hci_suspend_dev(struct hci_dev *hdev)
3194{
3195 hci_sock_dev_event(hdev, HCI_DEV_SUSPEND);
3196 return 0;
3197}
3198EXPORT_SYMBOL(hci_suspend_dev);
3199
3200/* Resume HCI device */
3201int hci_resume_dev(struct hci_dev *hdev)
3202{
3203 hci_sock_dev_event(hdev, HCI_DEV_RESUME);
3204 return 0;
3205}
3206EXPORT_SYMBOL(hci_resume_dev);
3207
3208/* Reset HCI device */
3209int hci_reset_dev(struct hci_dev *hdev)
3210{
3211 const u8 hw_err[] = { HCI_EV_HARDWARE_ERROR, 0x01, 0x00 };
3212 struct sk_buff *skb;
3213
3214 skb = bt_skb_alloc(3, GFP_ATOMIC);
3215 if (!skb)
3216 return -ENOMEM;
3217
3218 hci_skb_pkt_type(skb) = HCI_EVENT_PKT;
3219 memcpy(skb_put(skb, 3), hw_err, 3);
3220
3221 /* Send Hardware Error to upper stack */
3222 return hci_recv_frame(hdev, skb);
3223}
3224EXPORT_SYMBOL(hci_reset_dev);
3225
3226/* Receive frame from HCI drivers */
3227int hci_recv_frame(struct hci_dev *hdev, struct sk_buff *skb)
3228{
3229 if (!hdev || (!test_bit(HCI_UP, &hdev->flags)
3230 && !test_bit(HCI_INIT, &hdev->flags))) {
3231 kfree_skb(skb);
3232 return -ENXIO;
3233 }
3234
3235 if (hci_skb_pkt_type(skb) != HCI_EVENT_PKT &&
3236 hci_skb_pkt_type(skb) != HCI_ACLDATA_PKT &&
3237 hci_skb_pkt_type(skb) != HCI_SCODATA_PKT) {
3238 kfree_skb(skb);
3239 return -EINVAL;
3240 }
3241
3242 /* Incoming skb */
3243 bt_cb(skb)->incoming = 1;
3244
3245 /* Time stamp */
3246 __net_timestamp(skb);
3247
3248 skb_queue_tail(&hdev->rx_q, skb);
3249 queue_work(hdev->workqueue, &hdev->rx_work);
3250
3251 return 0;
3252}
3253EXPORT_SYMBOL(hci_recv_frame);
3254
3255/* Receive diagnostic message from HCI drivers */
3256int hci_recv_diag(struct hci_dev *hdev, struct sk_buff *skb)
3257{
3258 /* Mark as diagnostic packet */
3259 hci_skb_pkt_type(skb) = HCI_DIAG_PKT;
3260
3261 /* Time stamp */
3262 __net_timestamp(skb);
3263
3264 skb_queue_tail(&hdev->rx_q, skb);
3265 queue_work(hdev->workqueue, &hdev->rx_work);
3266
3267 return 0;
3268}
3269EXPORT_SYMBOL(hci_recv_diag);
3270
3271/* ---- Interface to upper protocols ---- */
3272
3273int hci_register_cb(struct hci_cb *cb)
3274{
3275 BT_DBG("%p name %s", cb, cb->name);
3276
3277 mutex_lock(&hci_cb_list_lock);
3278 list_add_tail(&cb->list, &hci_cb_list);
3279 mutex_unlock(&hci_cb_list_lock);
3280
3281 return 0;
3282}
3283EXPORT_SYMBOL(hci_register_cb);
3284
3285int hci_unregister_cb(struct hci_cb *cb)
3286{
3287 BT_DBG("%p name %s", cb, cb->name);
3288
3289 mutex_lock(&hci_cb_list_lock);
3290 list_del(&cb->list);
3291 mutex_unlock(&hci_cb_list_lock);
3292
3293 return 0;
3294}
3295EXPORT_SYMBOL(hci_unregister_cb);
3296
3297static void hci_send_frame(struct hci_dev *hdev, struct sk_buff *skb)
3298{
3299 int err;
3300
3301 BT_DBG("%s type %d len %d", hdev->name, hci_skb_pkt_type(skb),
3302 skb->len);
3303
3304 /* Time stamp */
3305 __net_timestamp(skb);
3306
3307 /* Send copy to monitor */
3308 hci_send_to_monitor(hdev, skb);
3309
3310 if (atomic_read(&hdev->promisc)) {
3311 /* Send copy to the sockets */
3312 hci_send_to_sock(hdev, skb);
3313 }
3314
3315 /* Get rid of skb owner, prior to sending to the driver. */
3316 skb_orphan(skb);
3317
3318 if (!test_bit(HCI_RUNNING, &hdev->flags)) {
3319 kfree_skb(skb);
3320 return;
3321 }
3322
3323 err = hdev->send(hdev, skb);
3324 if (err < 0) {
3325 BT_ERR("%s sending frame failed (%d)", hdev->name, err);
3326 kfree_skb(skb);
3327 }
3328}
3329
3330/* Send HCI command */
3331int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen,
3332 const void *param)
3333{
3334 struct sk_buff *skb;
3335
3336 BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen);
3337
3338 skb = hci_prepare_cmd(hdev, opcode, plen, param);
3339 if (!skb) {
3340 BT_ERR("%s no memory for command", hdev->name);
3341 return -ENOMEM;
3342 }
3343
3344 /* Stand-alone HCI commands must be flagged as
3345 * single-command requests.
3346 */
3347 bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
3348
3349 skb_queue_tail(&hdev->cmd_q, skb);
3350 queue_work(hdev->workqueue, &hdev->cmd_work);
3351
3352 return 0;
3353}
3354
3355/* Get data from the previously sent command */
3356void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode)
3357{
3358 struct hci_command_hdr *hdr;
3359
3360 if (!hdev->sent_cmd)
3361 return NULL;
3362
3363 hdr = (void *) hdev->sent_cmd->data;
3364
3365 if (hdr->opcode != cpu_to_le16(opcode))
3366 return NULL;
3367
3368 BT_DBG("%s opcode 0x%4.4x", hdev->name, opcode);
3369
3370 return hdev->sent_cmd->data + HCI_COMMAND_HDR_SIZE;
3371}
3372
3373/* Send HCI command and wait for command commplete event */
3374struct sk_buff *hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
3375 const void *param, u32 timeout)
3376{
3377 struct sk_buff *skb;
3378
3379 if (!test_bit(HCI_UP, &hdev->flags))
3380 return ERR_PTR(-ENETDOWN);
3381
3382 bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen);
3383
3384 hci_req_sync_lock(hdev);
3385 skb = __hci_cmd_sync(hdev, opcode, plen, param, timeout);
3386 hci_req_sync_unlock(hdev);
3387
3388 return skb;
3389}
3390EXPORT_SYMBOL(hci_cmd_sync);
3391
3392/* Send ACL data */
3393static void hci_add_acl_hdr(struct sk_buff *skb, __u16 handle, __u16 flags)
3394{
3395 struct hci_acl_hdr *hdr;
3396 int len = skb->len;
3397
3398 skb_push(skb, HCI_ACL_HDR_SIZE);
3399 skb_reset_transport_header(skb);
3400 hdr = (struct hci_acl_hdr *)skb_transport_header(skb);
3401 hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
3402 hdr->dlen = cpu_to_le16(len);
3403}
3404
3405static void hci_queue_acl(struct hci_chan *chan, struct sk_buff_head *queue,
3406 struct sk_buff *skb, __u16 flags)
3407{
3408 struct hci_conn *conn = chan->conn;
3409 struct hci_dev *hdev = conn->hdev;
3410 struct sk_buff *list;
3411
3412 skb->len = skb_headlen(skb);
3413 skb->data_len = 0;
3414
3415 hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
3416
3417 switch (hdev->dev_type) {
3418 case HCI_BREDR:
3419 hci_add_acl_hdr(skb, conn->handle, flags);
3420 break;
3421 case HCI_AMP:
3422 hci_add_acl_hdr(skb, chan->handle, flags);
3423 break;
3424 default:
3425 BT_ERR("%s unknown dev_type %d", hdev->name, hdev->dev_type);
3426 return;
3427 }
3428
3429 list = skb_shinfo(skb)->frag_list;
3430 if (!list) {
3431 /* Non fragmented */
3432 BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
3433
3434 skb_queue_tail(queue, skb);
3435 } else {
3436 /* Fragmented */
3437 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3438
3439 skb_shinfo(skb)->frag_list = NULL;
3440
3441 /* Queue all fragments atomically. We need to use spin_lock_bh
3442 * here because of 6LoWPAN links, as there this function is
3443 * called from softirq and using normal spin lock could cause
3444 * deadlocks.
3445 */
3446 spin_lock_bh(&queue->lock);
3447
3448 __skb_queue_tail(queue, skb);
3449
3450 flags &= ~ACL_START;
3451 flags |= ACL_CONT;
3452 do {
3453 skb = list; list = list->next;
3454
3455 hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
3456 hci_add_acl_hdr(skb, conn->handle, flags);
3457
3458 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3459
3460 __skb_queue_tail(queue, skb);
3461 } while (list);
3462
3463 spin_unlock_bh(&queue->lock);
3464 }
3465}
3466
3467void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags)
3468{
3469 struct hci_dev *hdev = chan->conn->hdev;
3470
3471 BT_DBG("%s chan %p flags 0x%4.4x", hdev->name, chan, flags);
3472
3473 hci_queue_acl(chan, &chan->data_q, skb, flags);
3474
3475 queue_work(hdev->workqueue, &hdev->tx_work);
3476}
3477
3478/* Send SCO data */
3479void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb)
3480{
3481 struct hci_dev *hdev = conn->hdev;
3482 struct hci_sco_hdr hdr;
3483
3484 BT_DBG("%s len %d", hdev->name, skb->len);
3485
3486 hdr.handle = cpu_to_le16(conn->handle);
3487 hdr.dlen = skb->len;
3488
3489 skb_push(skb, HCI_SCO_HDR_SIZE);
3490 skb_reset_transport_header(skb);
3491 memcpy(skb_transport_header(skb), &hdr, HCI_SCO_HDR_SIZE);
3492
3493 hci_skb_pkt_type(skb) = HCI_SCODATA_PKT;
3494
3495 skb_queue_tail(&conn->data_q, skb);
3496 queue_work(hdev->workqueue, &hdev->tx_work);
3497}
3498
3499/* ---- HCI TX task (outgoing data) ---- */
3500
3501/* HCI Connection scheduler */
3502static struct hci_conn *hci_low_sent(struct hci_dev *hdev, __u8 type,
3503 int *quote)
3504{
3505 struct hci_conn_hash *h = &hdev->conn_hash;
3506 struct hci_conn *conn = NULL, *c;
3507 unsigned int num = 0, min = ~0;
3508
3509 /* We don't have to lock device here. Connections are always
3510 * added and removed with TX task disabled. */
3511
3512 rcu_read_lock();
3513
3514 list_for_each_entry_rcu(c, &h->list, list) {
3515 if (c->type != type || skb_queue_empty(&c->data_q))
3516 continue;
3517
3518 if (c->state != BT_CONNECTED && c->state != BT_CONFIG)
3519 continue;
3520
3521 num++;
3522
3523 if (c->sent < min) {
3524 min = c->sent;
3525 conn = c;
3526 }
3527
3528 if (hci_conn_num(hdev, type) == num)
3529 break;
3530 }
3531
3532 rcu_read_unlock();
3533
3534 if (conn) {
3535 int cnt, q;
3536
3537 switch (conn->type) {
3538 case ACL_LINK:
3539 cnt = hdev->acl_cnt;
3540 break;
3541 case SCO_LINK:
3542 case ESCO_LINK:
3543 cnt = hdev->sco_cnt;
3544 break;
3545 case LE_LINK:
3546 cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3547 break;
3548 default:
3549 cnt = 0;
3550 BT_ERR("Unknown link type");
3551 }
3552
3553 q = cnt / num;
3554 *quote = q ? q : 1;
3555 } else
3556 *quote = 0;
3557
3558 BT_DBG("conn %p quote %d", conn, *quote);
3559 return conn;
3560}
3561
3562static void hci_link_tx_to(struct hci_dev *hdev, __u8 type)
3563{
3564 struct hci_conn_hash *h = &hdev->conn_hash;
3565 struct hci_conn *c;
3566
3567 BT_ERR("%s link tx timeout", hdev->name);
3568
3569 rcu_read_lock();
3570
3571 /* Kill stalled connections */
3572 list_for_each_entry_rcu(c, &h->list, list) {
3573 if (c->type == type && c->sent) {
3574 BT_ERR("%s killing stalled connection %pMR",
3575 hdev->name, &c->dst);
3576 hci_disconnect(c, HCI_ERROR_REMOTE_USER_TERM);
3577 }
3578 }
3579
3580 rcu_read_unlock();
3581}
3582
3583static struct hci_chan *hci_chan_sent(struct hci_dev *hdev, __u8 type,
3584 int *quote)
3585{
3586 struct hci_conn_hash *h = &hdev->conn_hash;
3587 struct hci_chan *chan = NULL;
3588 unsigned int num = 0, min = ~0, cur_prio = 0;
3589 struct hci_conn *conn;
3590 int cnt, q, conn_num = 0;
3591
3592 BT_DBG("%s", hdev->name);
3593
3594 rcu_read_lock();
3595
3596 list_for_each_entry_rcu(conn, &h->list, list) {
3597 struct hci_chan *tmp;
3598
3599 if (conn->type != type)
3600 continue;
3601
3602 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3603 continue;
3604
3605 conn_num++;
3606
3607 list_for_each_entry_rcu(tmp, &conn->chan_list, list) {
3608 struct sk_buff *skb;
3609
3610 if (skb_queue_empty(&tmp->data_q))
3611 continue;
3612
3613 skb = skb_peek(&tmp->data_q);
3614 if (skb->priority < cur_prio)
3615 continue;
3616
3617 if (skb->priority > cur_prio) {
3618 num = 0;
3619 min = ~0;
3620 cur_prio = skb->priority;
3621 }
3622
3623 num++;
3624
3625 if (conn->sent < min) {
3626 min = conn->sent;
3627 chan = tmp;
3628 }
3629 }
3630
3631 if (hci_conn_num(hdev, type) == conn_num)
3632 break;
3633 }
3634
3635 rcu_read_unlock();
3636
3637 if (!chan)
3638 return NULL;
3639
3640 switch (chan->conn->type) {
3641 case ACL_LINK:
3642 cnt = hdev->acl_cnt;
3643 break;
3644 case AMP_LINK:
3645 cnt = hdev->block_cnt;
3646 break;
3647 case SCO_LINK:
3648 case ESCO_LINK:
3649 cnt = hdev->sco_cnt;
3650 break;
3651 case LE_LINK:
3652 cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3653 break;
3654 default:
3655 cnt = 0;
3656 BT_ERR("Unknown link type");
3657 }
3658
3659 q = cnt / num;
3660 *quote = q ? q : 1;
3661 BT_DBG("chan %p quote %d", chan, *quote);
3662 return chan;
3663}
3664
3665static void hci_prio_recalculate(struct hci_dev *hdev, __u8 type)
3666{
3667 struct hci_conn_hash *h = &hdev->conn_hash;
3668 struct hci_conn *conn;
3669 int num = 0;
3670
3671 BT_DBG("%s", hdev->name);
3672
3673 rcu_read_lock();
3674
3675 list_for_each_entry_rcu(conn, &h->list, list) {
3676 struct hci_chan *chan;
3677
3678 if (conn->type != type)
3679 continue;
3680
3681 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3682 continue;
3683
3684 num++;
3685
3686 list_for_each_entry_rcu(chan, &conn->chan_list, list) {
3687 struct sk_buff *skb;
3688
3689 if (chan->sent) {
3690 chan->sent = 0;
3691 continue;
3692 }
3693
3694 if (skb_queue_empty(&chan->data_q))
3695 continue;
3696
3697 skb = skb_peek(&chan->data_q);
3698 if (skb->priority >= HCI_PRIO_MAX - 1)
3699 continue;
3700
3701 skb->priority = HCI_PRIO_MAX - 1;
3702
3703 BT_DBG("chan %p skb %p promoted to %d", chan, skb,
3704 skb->priority);
3705 }
3706
3707 if (hci_conn_num(hdev, type) == num)
3708 break;
3709 }
3710
3711 rcu_read_unlock();
3712
3713}
3714
3715static inline int __get_blocks(struct hci_dev *hdev, struct sk_buff *skb)
3716{
3717 /* Calculate count of blocks used by this packet */
3718 return DIV_ROUND_UP(skb->len - HCI_ACL_HDR_SIZE, hdev->block_len);
3719}
3720
3721static void __check_timeout(struct hci_dev *hdev, unsigned int cnt)
3722{
3723 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
3724 /* ACL tx timeout must be longer than maximum
3725 * link supervision timeout (40.9 seconds) */
3726 if (!cnt && time_after(jiffies, hdev->acl_last_tx +
3727 HCI_ACL_TX_TIMEOUT))
3728 hci_link_tx_to(hdev, ACL_LINK);
3729 }
3730}
3731
3732static void hci_sched_acl_pkt(struct hci_dev *hdev)
3733{
3734 unsigned int cnt = hdev->acl_cnt;
3735 struct hci_chan *chan;
3736 struct sk_buff *skb;
3737 int quote;
3738
3739 __check_timeout(hdev, cnt);
3740
3741 while (hdev->acl_cnt &&
3742 (chan = hci_chan_sent(hdev, ACL_LINK, "e))) {
3743 u32 priority = (skb_peek(&chan->data_q))->priority;
3744 while (quote-- && (skb = skb_peek(&chan->data_q))) {
3745 BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3746 skb->len, skb->priority);
3747
3748 /* Stop if priority has changed */
3749 if (skb->priority < priority)
3750 break;
3751
3752 skb = skb_dequeue(&chan->data_q);
3753
3754 hci_conn_enter_active_mode(chan->conn,
3755 bt_cb(skb)->force_active);
3756
3757 hci_send_frame(hdev, skb);
3758 hdev->acl_last_tx = jiffies;
3759
3760 hdev->acl_cnt--;
3761 chan->sent++;
3762 chan->conn->sent++;
3763 }
3764 }
3765
3766 if (cnt != hdev->acl_cnt)
3767 hci_prio_recalculate(hdev, ACL_LINK);
3768}
3769
3770static void hci_sched_acl_blk(struct hci_dev *hdev)
3771{
3772 unsigned int cnt = hdev->block_cnt;
3773 struct hci_chan *chan;
3774 struct sk_buff *skb;
3775 int quote;
3776 u8 type;
3777
3778 __check_timeout(hdev, cnt);
3779
3780 BT_DBG("%s", hdev->name);
3781
3782 if (hdev->dev_type == HCI_AMP)
3783 type = AMP_LINK;
3784 else
3785 type = ACL_LINK;
3786
3787 while (hdev->block_cnt > 0 &&
3788 (chan = hci_chan_sent(hdev, type, "e))) {
3789 u32 priority = (skb_peek(&chan->data_q))->priority;
3790 while (quote > 0 && (skb = skb_peek(&chan->data_q))) {
3791 int blocks;
3792
3793 BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3794 skb->len, skb->priority);
3795
3796 /* Stop if priority has changed */
3797 if (skb->priority < priority)
3798 break;
3799
3800 skb = skb_dequeue(&chan->data_q);
3801
3802 blocks = __get_blocks(hdev, skb);
3803 if (blocks > hdev->block_cnt)
3804 return;
3805
3806 hci_conn_enter_active_mode(chan->conn,
3807 bt_cb(skb)->force_active);
3808
3809 hci_send_frame(hdev, skb);
3810 hdev->acl_last_tx = jiffies;
3811
3812 hdev->block_cnt -= blocks;
3813 quote -= blocks;
3814
3815 chan->sent += blocks;
3816 chan->conn->sent += blocks;
3817 }
3818 }
3819
3820 if (cnt != hdev->block_cnt)
3821 hci_prio_recalculate(hdev, type);
3822}
3823
3824static void hci_sched_acl(struct hci_dev *hdev)
3825{
3826 BT_DBG("%s", hdev->name);
3827
3828 /* No ACL link over BR/EDR controller */
3829 if (!hci_conn_num(hdev, ACL_LINK) && hdev->dev_type == HCI_BREDR)
3830 return;
3831
3832 /* No AMP link over AMP controller */
3833 if (!hci_conn_num(hdev, AMP_LINK) && hdev->dev_type == HCI_AMP)
3834 return;
3835
3836 switch (hdev->flow_ctl_mode) {
3837 case HCI_FLOW_CTL_MODE_PACKET_BASED:
3838 hci_sched_acl_pkt(hdev);
3839 break;
3840
3841 case HCI_FLOW_CTL_MODE_BLOCK_BASED:
3842 hci_sched_acl_blk(hdev);
3843 break;
3844 }
3845}
3846
3847/* Schedule SCO */
3848static void hci_sched_sco(struct hci_dev *hdev)
3849{
3850 struct hci_conn *conn;
3851 struct sk_buff *skb;
3852 int quote;
3853
3854 BT_DBG("%s", hdev->name);
3855
3856 if (!hci_conn_num(hdev, SCO_LINK))
3857 return;
3858
3859 while (hdev->sco_cnt && (conn = hci_low_sent(hdev, SCO_LINK, "e))) {
3860 while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3861 BT_DBG("skb %p len %d", skb, skb->len);
3862 hci_send_frame(hdev, skb);
3863
3864 conn->sent++;
3865 if (conn->sent == ~0)
3866 conn->sent = 0;
3867 }
3868 }
3869}
3870
3871static void hci_sched_esco(struct hci_dev *hdev)
3872{
3873 struct hci_conn *conn;
3874 struct sk_buff *skb;
3875 int quote;
3876
3877 BT_DBG("%s", hdev->name);
3878
3879 if (!hci_conn_num(hdev, ESCO_LINK))
3880 return;
3881
3882 while (hdev->sco_cnt && (conn = hci_low_sent(hdev, ESCO_LINK,
3883 "e))) {
3884 while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3885 BT_DBG("skb %p len %d", skb, skb->len);
3886 hci_send_frame(hdev, skb);
3887
3888 conn->sent++;
3889 if (conn->sent == ~0)
3890 conn->sent = 0;
3891 }
3892 }
3893}
3894
3895static void hci_sched_le(struct hci_dev *hdev)
3896{
3897 struct hci_chan *chan;
3898 struct sk_buff *skb;
3899 int quote, cnt, tmp;
3900
3901 BT_DBG("%s", hdev->name);
3902
3903 if (!hci_conn_num(hdev, LE_LINK))
3904 return;
3905
3906 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
3907 /* LE tx timeout must be longer than maximum
3908 * link supervision timeout (40.9 seconds) */
3909 if (!hdev->le_cnt && hdev->le_pkts &&
3910 time_after(jiffies, hdev->le_last_tx + HZ * 45))
3911 hci_link_tx_to(hdev, LE_LINK);
3912 }
3913
3914 cnt = hdev->le_pkts ? hdev->le_cnt : hdev->acl_cnt;
3915 tmp = cnt;
3916 while (cnt && (chan = hci_chan_sent(hdev, LE_LINK, "e))) {
3917 u32 priority = (skb_peek(&chan->data_q))->priority;
3918 while (quote-- && (skb = skb_peek(&chan->data_q))) {
3919 BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3920 skb->len, skb->priority);
3921
3922 /* Stop if priority has changed */
3923 if (skb->priority < priority)
3924 break;
3925
3926 skb = skb_dequeue(&chan->data_q);
3927
3928 hci_send_frame(hdev, skb);
3929 hdev->le_last_tx = jiffies;
3930
3931 cnt--;
3932 chan->sent++;
3933 chan->conn->sent++;
3934 }
3935 }
3936
3937 if (hdev->le_pkts)
3938 hdev->le_cnt = cnt;
3939 else
3940 hdev->acl_cnt = cnt;
3941
3942 if (cnt != tmp)
3943 hci_prio_recalculate(hdev, LE_LINK);
3944}
3945
3946static void hci_tx_work(struct work_struct *work)
3947{
3948 struct hci_dev *hdev = container_of(work, struct hci_dev, tx_work);
3949 struct sk_buff *skb;
3950
3951 BT_DBG("%s acl %d sco %d le %d", hdev->name, hdev->acl_cnt,
3952 hdev->sco_cnt, hdev->le_cnt);
3953
3954 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
3955 /* Schedule queues and send stuff to HCI driver */
3956 hci_sched_acl(hdev);
3957 hci_sched_sco(hdev);
3958 hci_sched_esco(hdev);
3959 hci_sched_le(hdev);
3960 }
3961
3962 /* Send next queued raw (unknown type) packet */
3963 while ((skb = skb_dequeue(&hdev->raw_q)))
3964 hci_send_frame(hdev, skb);
3965}
3966
3967/* ----- HCI RX task (incoming data processing) ----- */
3968
3969/* ACL data packet */
3970static void hci_acldata_packet(struct hci_dev *hdev, struct sk_buff *skb)
3971{
3972 struct hci_acl_hdr *hdr = (void *) skb->data;
3973 struct hci_conn *conn;
3974 __u16 handle, flags;
3975
3976 skb_pull(skb, HCI_ACL_HDR_SIZE);
3977
3978 handle = __le16_to_cpu(hdr->handle);
3979 flags = hci_flags(handle);
3980 handle = hci_handle(handle);
3981
3982 BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len,
3983 handle, flags);
3984
3985 hdev->stat.acl_rx++;
3986
3987 hci_dev_lock(hdev);
3988 conn = hci_conn_hash_lookup_handle(hdev, handle);
3989 hci_dev_unlock(hdev);
3990
3991 if (conn) {
3992 hci_conn_enter_active_mode(conn, BT_POWER_FORCE_ACTIVE_OFF);
3993
3994 /* Send to upper protocol */
3995 l2cap_recv_acldata(conn, skb, flags);
3996 return;
3997 } else {
3998 BT_ERR("%s ACL packet for unknown connection handle %d",
3999 hdev->name, handle);
4000 }
4001
4002 kfree_skb(skb);
4003}
4004
4005/* SCO data packet */
4006static void hci_scodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
4007{
4008 struct hci_sco_hdr *hdr = (void *) skb->data;
4009 struct hci_conn *conn;
4010 __u16 handle;
4011
4012 skb_pull(skb, HCI_SCO_HDR_SIZE);
4013
4014 handle = __le16_to_cpu(hdr->handle);
4015
4016 BT_DBG("%s len %d handle 0x%4.4x", hdev->name, skb->len, handle);
4017
4018 hdev->stat.sco_rx++;
4019
4020 hci_dev_lock(hdev);
4021 conn = hci_conn_hash_lookup_handle(hdev, handle);
4022 hci_dev_unlock(hdev);
4023
4024 if (conn) {
4025 /* Send to upper protocol */
4026 sco_recv_scodata(conn, skb);
4027 return;
4028 } else {
4029 BT_ERR("%s SCO packet for unknown connection handle %d",
4030 hdev->name, handle);
4031 }
4032
4033 kfree_skb(skb);
4034}
4035
4036static bool hci_req_is_complete(struct hci_dev *hdev)
4037{
4038 struct sk_buff *skb;
4039
4040 skb = skb_peek(&hdev->cmd_q);
4041 if (!skb)
4042 return true;
4043
4044 return (bt_cb(skb)->hci.req_flags & HCI_REQ_START);
4045}
4046
4047static void hci_resend_last(struct hci_dev *hdev)
4048{
4049 struct hci_command_hdr *sent;
4050 struct sk_buff *skb;
4051 u16 opcode;
4052
4053 if (!hdev->sent_cmd)
4054 return;
4055
4056 sent = (void *) hdev->sent_cmd->data;
4057 opcode = __le16_to_cpu(sent->opcode);
4058 if (opcode == HCI_OP_RESET)
4059 return;
4060
4061 skb = skb_clone(hdev->sent_cmd, GFP_KERNEL);
4062 if (!skb)
4063 return;
4064
4065 skb_queue_head(&hdev->cmd_q, skb);
4066 queue_work(hdev->workqueue, &hdev->cmd_work);
4067}
4068
4069void hci_req_cmd_complete(struct hci_dev *hdev, u16 opcode, u8 status,
4070 hci_req_complete_t *req_complete,
4071 hci_req_complete_skb_t *req_complete_skb)
4072{
4073 struct sk_buff *skb;
4074 unsigned long flags;
4075
4076 BT_DBG("opcode 0x%04x status 0x%02x", opcode, status);
4077
4078 /* If the completed command doesn't match the last one that was
4079 * sent we need to do special handling of it.
4080 */
4081 if (!hci_sent_cmd_data(hdev, opcode)) {
4082 /* Some CSR based controllers generate a spontaneous
4083 * reset complete event during init and any pending
4084 * command will never be completed. In such a case we
4085 * need to resend whatever was the last sent
4086 * command.
4087 */
4088 if (test_bit(HCI_INIT, &hdev->flags) && opcode == HCI_OP_RESET)
4089 hci_resend_last(hdev);
4090
4091 return;
4092 }
4093
4094 /* If the command succeeded and there's still more commands in
4095 * this request the request is not yet complete.
4096 */
4097 if (!status && !hci_req_is_complete(hdev))
4098 return;
4099
4100 /* If this was the last command in a request the complete
4101 * callback would be found in hdev->sent_cmd instead of the
4102 * command queue (hdev->cmd_q).
4103 */
4104 if (bt_cb(hdev->sent_cmd)->hci.req_flags & HCI_REQ_SKB) {
4105 *req_complete_skb = bt_cb(hdev->sent_cmd)->hci.req_complete_skb;
4106 return;
4107 }
4108
4109 if (bt_cb(hdev->sent_cmd)->hci.req_complete) {
4110 *req_complete = bt_cb(hdev->sent_cmd)->hci.req_complete;
4111 return;
4112 }
4113
4114 /* Remove all pending commands belonging to this request */
4115 spin_lock_irqsave(&hdev->cmd_q.lock, flags);
4116 while ((skb = __skb_dequeue(&hdev->cmd_q))) {
4117 if (bt_cb(skb)->hci.req_flags & HCI_REQ_START) {
4118 __skb_queue_head(&hdev->cmd_q, skb);
4119 break;
4120 }
4121
4122 if (bt_cb(skb)->hci.req_flags & HCI_REQ_SKB)
4123 *req_complete_skb = bt_cb(skb)->hci.req_complete_skb;
4124 else
4125 *req_complete = bt_cb(skb)->hci.req_complete;
4126 kfree_skb(skb);
4127 }
4128 spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
4129}
4130
4131static void hci_rx_work(struct work_struct *work)
4132{
4133 struct hci_dev *hdev = container_of(work, struct hci_dev, rx_work);
4134 struct sk_buff *skb;
4135
4136 BT_DBG("%s", hdev->name);
4137
4138 while ((skb = skb_dequeue(&hdev->rx_q))) {
4139 /* Send copy to monitor */
4140 hci_send_to_monitor(hdev, skb);
4141
4142 if (atomic_read(&hdev->promisc)) {
4143 /* Send copy to the sockets */
4144 hci_send_to_sock(hdev, skb);
4145 }
4146
4147 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
4148 kfree_skb(skb);
4149 continue;
4150 }
4151
4152 if (test_bit(HCI_INIT, &hdev->flags)) {
4153 /* Don't process data packets in this states. */
4154 switch (hci_skb_pkt_type(skb)) {
4155 case HCI_ACLDATA_PKT:
4156 case HCI_SCODATA_PKT:
4157 kfree_skb(skb);
4158 continue;
4159 }
4160 }
4161
4162 /* Process frame */
4163 switch (hci_skb_pkt_type(skb)) {
4164 case HCI_EVENT_PKT:
4165 BT_DBG("%s Event packet", hdev->name);
4166 hci_event_packet(hdev, skb);
4167 break;
4168
4169 case HCI_ACLDATA_PKT:
4170 BT_DBG("%s ACL data packet", hdev->name);
4171 hci_acldata_packet(hdev, skb);
4172 break;
4173
4174 case HCI_SCODATA_PKT:
4175 BT_DBG("%s SCO data packet", hdev->name);
4176 hci_scodata_packet(hdev, skb);
4177 break;
4178
4179 default:
4180 kfree_skb(skb);
4181 break;
4182 }
4183 }
4184}
4185
4186static void hci_cmd_work(struct work_struct *work)
4187{
4188 struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_work);
4189 struct sk_buff *skb;
4190
4191 BT_DBG("%s cmd_cnt %d cmd queued %d", hdev->name,
4192 atomic_read(&hdev->cmd_cnt), skb_queue_len(&hdev->cmd_q));
4193
4194 /* Send queued commands */
4195 if (atomic_read(&hdev->cmd_cnt)) {
4196 skb = skb_dequeue(&hdev->cmd_q);
4197 if (!skb)
4198 return;
4199
4200 kfree_skb(hdev->sent_cmd);
4201
4202 hdev->sent_cmd = skb_clone(skb, GFP_KERNEL);
4203 if (hdev->sent_cmd) {
4204 atomic_dec(&hdev->cmd_cnt);
4205 hci_send_frame(hdev, skb);
4206 if (test_bit(HCI_RESET, &hdev->flags))
4207 cancel_delayed_work(&hdev->cmd_timer);
4208 else
4209 schedule_delayed_work(&hdev->cmd_timer,
4210 HCI_CMD_TIMEOUT);
4211 } else {
4212 skb_queue_head(&hdev->cmd_q, skb);
4213 queue_work(hdev->workqueue, &hdev->cmd_work);
4214 }
4215 }
4216}
1/*
2 BlueZ - Bluetooth protocol stack for Linux
3 Copyright (C) 2000-2001 Qualcomm Incorporated
4 Copyright (C) 2011 ProFUSION Embedded Systems
5
6 Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License version 2 as
10 published by the Free Software Foundation;
11
12 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
13 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
14 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
15 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
16 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
17 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20
21 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
22 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
23 SOFTWARE IS DISCLAIMED.
24*/
25
26/* Bluetooth HCI core. */
27
28#include <linux/export.h>
29#include <linux/rfkill.h>
30#include <linux/debugfs.h>
31#include <linux/crypto.h>
32#include <linux/kcov.h>
33#include <linux/property.h>
34#include <linux/suspend.h>
35#include <linux/wait.h>
36#include <asm/unaligned.h>
37
38#include <net/bluetooth/bluetooth.h>
39#include <net/bluetooth/hci_core.h>
40#include <net/bluetooth/l2cap.h>
41#include <net/bluetooth/mgmt.h>
42
43#include "hci_request.h"
44#include "hci_debugfs.h"
45#include "smp.h"
46#include "leds.h"
47#include "msft.h"
48#include "aosp.h"
49#include "hci_codec.h"
50
51static void hci_rx_work(struct work_struct *work);
52static void hci_cmd_work(struct work_struct *work);
53static void hci_tx_work(struct work_struct *work);
54
55/* HCI device list */
56LIST_HEAD(hci_dev_list);
57DEFINE_RWLOCK(hci_dev_list_lock);
58
59/* HCI callback list */
60LIST_HEAD(hci_cb_list);
61DEFINE_MUTEX(hci_cb_list_lock);
62
63/* HCI ID Numbering */
64static DEFINE_IDA(hci_index_ida);
65
66static int hci_scan_req(struct hci_request *req, unsigned long opt)
67{
68 __u8 scan = opt;
69
70 BT_DBG("%s %x", req->hdev->name, scan);
71
72 /* Inquiry and Page scans */
73 hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
74 return 0;
75}
76
77static int hci_auth_req(struct hci_request *req, unsigned long opt)
78{
79 __u8 auth = opt;
80
81 BT_DBG("%s %x", req->hdev->name, auth);
82
83 /* Authentication */
84 hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, 1, &auth);
85 return 0;
86}
87
88static int hci_encrypt_req(struct hci_request *req, unsigned long opt)
89{
90 __u8 encrypt = opt;
91
92 BT_DBG("%s %x", req->hdev->name, encrypt);
93
94 /* Encryption */
95 hci_req_add(req, HCI_OP_WRITE_ENCRYPT_MODE, 1, &encrypt);
96 return 0;
97}
98
99static int hci_linkpol_req(struct hci_request *req, unsigned long opt)
100{
101 __le16 policy = cpu_to_le16(opt);
102
103 BT_DBG("%s %x", req->hdev->name, policy);
104
105 /* Default link policy */
106 hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, 2, &policy);
107 return 0;
108}
109
110/* Get HCI device by index.
111 * Device is held on return. */
112struct hci_dev *hci_dev_get(int index)
113{
114 struct hci_dev *hdev = NULL, *d;
115
116 BT_DBG("%d", index);
117
118 if (index < 0)
119 return NULL;
120
121 read_lock(&hci_dev_list_lock);
122 list_for_each_entry(d, &hci_dev_list, list) {
123 if (d->id == index) {
124 hdev = hci_dev_hold(d);
125 break;
126 }
127 }
128 read_unlock(&hci_dev_list_lock);
129 return hdev;
130}
131
132/* ---- Inquiry support ---- */
133
134bool hci_discovery_active(struct hci_dev *hdev)
135{
136 struct discovery_state *discov = &hdev->discovery;
137
138 switch (discov->state) {
139 case DISCOVERY_FINDING:
140 case DISCOVERY_RESOLVING:
141 return true;
142
143 default:
144 return false;
145 }
146}
147
148void hci_discovery_set_state(struct hci_dev *hdev, int state)
149{
150 int old_state = hdev->discovery.state;
151
152 BT_DBG("%s state %u -> %u", hdev->name, hdev->discovery.state, state);
153
154 if (old_state == state)
155 return;
156
157 hdev->discovery.state = state;
158
159 switch (state) {
160 case DISCOVERY_STOPPED:
161 hci_update_passive_scan(hdev);
162
163 if (old_state != DISCOVERY_STARTING)
164 mgmt_discovering(hdev, 0);
165 break;
166 case DISCOVERY_STARTING:
167 break;
168 case DISCOVERY_FINDING:
169 mgmt_discovering(hdev, 1);
170 break;
171 case DISCOVERY_RESOLVING:
172 break;
173 case DISCOVERY_STOPPING:
174 break;
175 }
176}
177
178void hci_inquiry_cache_flush(struct hci_dev *hdev)
179{
180 struct discovery_state *cache = &hdev->discovery;
181 struct inquiry_entry *p, *n;
182
183 list_for_each_entry_safe(p, n, &cache->all, all) {
184 list_del(&p->all);
185 kfree(p);
186 }
187
188 INIT_LIST_HEAD(&cache->unknown);
189 INIT_LIST_HEAD(&cache->resolve);
190}
191
192struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev,
193 bdaddr_t *bdaddr)
194{
195 struct discovery_state *cache = &hdev->discovery;
196 struct inquiry_entry *e;
197
198 BT_DBG("cache %p, %pMR", cache, bdaddr);
199
200 list_for_each_entry(e, &cache->all, all) {
201 if (!bacmp(&e->data.bdaddr, bdaddr))
202 return e;
203 }
204
205 return NULL;
206}
207
208struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev,
209 bdaddr_t *bdaddr)
210{
211 struct discovery_state *cache = &hdev->discovery;
212 struct inquiry_entry *e;
213
214 BT_DBG("cache %p, %pMR", cache, bdaddr);
215
216 list_for_each_entry(e, &cache->unknown, list) {
217 if (!bacmp(&e->data.bdaddr, bdaddr))
218 return e;
219 }
220
221 return NULL;
222}
223
224struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev,
225 bdaddr_t *bdaddr,
226 int state)
227{
228 struct discovery_state *cache = &hdev->discovery;
229 struct inquiry_entry *e;
230
231 BT_DBG("cache %p bdaddr %pMR state %d", cache, bdaddr, state);
232
233 list_for_each_entry(e, &cache->resolve, list) {
234 if (!bacmp(bdaddr, BDADDR_ANY) && e->name_state == state)
235 return e;
236 if (!bacmp(&e->data.bdaddr, bdaddr))
237 return e;
238 }
239
240 return NULL;
241}
242
243void hci_inquiry_cache_update_resolve(struct hci_dev *hdev,
244 struct inquiry_entry *ie)
245{
246 struct discovery_state *cache = &hdev->discovery;
247 struct list_head *pos = &cache->resolve;
248 struct inquiry_entry *p;
249
250 list_del(&ie->list);
251
252 list_for_each_entry(p, &cache->resolve, list) {
253 if (p->name_state != NAME_PENDING &&
254 abs(p->data.rssi) >= abs(ie->data.rssi))
255 break;
256 pos = &p->list;
257 }
258
259 list_add(&ie->list, pos);
260}
261
262u32 hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data,
263 bool name_known)
264{
265 struct discovery_state *cache = &hdev->discovery;
266 struct inquiry_entry *ie;
267 u32 flags = 0;
268
269 BT_DBG("cache %p, %pMR", cache, &data->bdaddr);
270
271 hci_remove_remote_oob_data(hdev, &data->bdaddr, BDADDR_BREDR);
272
273 if (!data->ssp_mode)
274 flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
275
276 ie = hci_inquiry_cache_lookup(hdev, &data->bdaddr);
277 if (ie) {
278 if (!ie->data.ssp_mode)
279 flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
280
281 if (ie->name_state == NAME_NEEDED &&
282 data->rssi != ie->data.rssi) {
283 ie->data.rssi = data->rssi;
284 hci_inquiry_cache_update_resolve(hdev, ie);
285 }
286
287 goto update;
288 }
289
290 /* Entry not in the cache. Add new one. */
291 ie = kzalloc(sizeof(*ie), GFP_KERNEL);
292 if (!ie) {
293 flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
294 goto done;
295 }
296
297 list_add(&ie->all, &cache->all);
298
299 if (name_known) {
300 ie->name_state = NAME_KNOWN;
301 } else {
302 ie->name_state = NAME_NOT_KNOWN;
303 list_add(&ie->list, &cache->unknown);
304 }
305
306update:
307 if (name_known && ie->name_state != NAME_KNOWN &&
308 ie->name_state != NAME_PENDING) {
309 ie->name_state = NAME_KNOWN;
310 list_del(&ie->list);
311 }
312
313 memcpy(&ie->data, data, sizeof(*data));
314 ie->timestamp = jiffies;
315 cache->timestamp = jiffies;
316
317 if (ie->name_state == NAME_NOT_KNOWN)
318 flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
319
320done:
321 return flags;
322}
323
324static int inquiry_cache_dump(struct hci_dev *hdev, int num, __u8 *buf)
325{
326 struct discovery_state *cache = &hdev->discovery;
327 struct inquiry_info *info = (struct inquiry_info *) buf;
328 struct inquiry_entry *e;
329 int copied = 0;
330
331 list_for_each_entry(e, &cache->all, all) {
332 struct inquiry_data *data = &e->data;
333
334 if (copied >= num)
335 break;
336
337 bacpy(&info->bdaddr, &data->bdaddr);
338 info->pscan_rep_mode = data->pscan_rep_mode;
339 info->pscan_period_mode = data->pscan_period_mode;
340 info->pscan_mode = data->pscan_mode;
341 memcpy(info->dev_class, data->dev_class, 3);
342 info->clock_offset = data->clock_offset;
343
344 info++;
345 copied++;
346 }
347
348 BT_DBG("cache %p, copied %d", cache, copied);
349 return copied;
350}
351
352static int hci_inq_req(struct hci_request *req, unsigned long opt)
353{
354 struct hci_inquiry_req *ir = (struct hci_inquiry_req *) opt;
355 struct hci_dev *hdev = req->hdev;
356 struct hci_cp_inquiry cp;
357
358 BT_DBG("%s", hdev->name);
359
360 if (test_bit(HCI_INQUIRY, &hdev->flags))
361 return 0;
362
363 /* Start Inquiry */
364 memcpy(&cp.lap, &ir->lap, 3);
365 cp.length = ir->length;
366 cp.num_rsp = ir->num_rsp;
367 hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp);
368
369 return 0;
370}
371
372int hci_inquiry(void __user *arg)
373{
374 __u8 __user *ptr = arg;
375 struct hci_inquiry_req ir;
376 struct hci_dev *hdev;
377 int err = 0, do_inquiry = 0, max_rsp;
378 long timeo;
379 __u8 *buf;
380
381 if (copy_from_user(&ir, ptr, sizeof(ir)))
382 return -EFAULT;
383
384 hdev = hci_dev_get(ir.dev_id);
385 if (!hdev)
386 return -ENODEV;
387
388 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
389 err = -EBUSY;
390 goto done;
391 }
392
393 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
394 err = -EOPNOTSUPP;
395 goto done;
396 }
397
398 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
399 err = -EOPNOTSUPP;
400 goto done;
401 }
402
403 /* Restrict maximum inquiry length to 60 seconds */
404 if (ir.length > 60) {
405 err = -EINVAL;
406 goto done;
407 }
408
409 hci_dev_lock(hdev);
410 if (inquiry_cache_age(hdev) > INQUIRY_CACHE_AGE_MAX ||
411 inquiry_cache_empty(hdev) || ir.flags & IREQ_CACHE_FLUSH) {
412 hci_inquiry_cache_flush(hdev);
413 do_inquiry = 1;
414 }
415 hci_dev_unlock(hdev);
416
417 timeo = ir.length * msecs_to_jiffies(2000);
418
419 if (do_inquiry) {
420 err = hci_req_sync(hdev, hci_inq_req, (unsigned long) &ir,
421 timeo, NULL);
422 if (err < 0)
423 goto done;
424
425 /* Wait until Inquiry procedure finishes (HCI_INQUIRY flag is
426 * cleared). If it is interrupted by a signal, return -EINTR.
427 */
428 if (wait_on_bit(&hdev->flags, HCI_INQUIRY,
429 TASK_INTERRUPTIBLE)) {
430 err = -EINTR;
431 goto done;
432 }
433 }
434
435 /* for unlimited number of responses we will use buffer with
436 * 255 entries
437 */
438 max_rsp = (ir.num_rsp == 0) ? 255 : ir.num_rsp;
439
440 /* cache_dump can't sleep. Therefore we allocate temp buffer and then
441 * copy it to the user space.
442 */
443 buf = kmalloc_array(max_rsp, sizeof(struct inquiry_info), GFP_KERNEL);
444 if (!buf) {
445 err = -ENOMEM;
446 goto done;
447 }
448
449 hci_dev_lock(hdev);
450 ir.num_rsp = inquiry_cache_dump(hdev, max_rsp, buf);
451 hci_dev_unlock(hdev);
452
453 BT_DBG("num_rsp %d", ir.num_rsp);
454
455 if (!copy_to_user(ptr, &ir, sizeof(ir))) {
456 ptr += sizeof(ir);
457 if (copy_to_user(ptr, buf, sizeof(struct inquiry_info) *
458 ir.num_rsp))
459 err = -EFAULT;
460 } else
461 err = -EFAULT;
462
463 kfree(buf);
464
465done:
466 hci_dev_put(hdev);
467 return err;
468}
469
470static int hci_dev_do_open(struct hci_dev *hdev)
471{
472 int ret = 0;
473
474 BT_DBG("%s %p", hdev->name, hdev);
475
476 hci_req_sync_lock(hdev);
477
478 ret = hci_dev_open_sync(hdev);
479
480 hci_req_sync_unlock(hdev);
481 return ret;
482}
483
484/* ---- HCI ioctl helpers ---- */
485
486int hci_dev_open(__u16 dev)
487{
488 struct hci_dev *hdev;
489 int err;
490
491 hdev = hci_dev_get(dev);
492 if (!hdev)
493 return -ENODEV;
494
495 /* Devices that are marked as unconfigured can only be powered
496 * up as user channel. Trying to bring them up as normal devices
497 * will result into a failure. Only user channel operation is
498 * possible.
499 *
500 * When this function is called for a user channel, the flag
501 * HCI_USER_CHANNEL will be set first before attempting to
502 * open the device.
503 */
504 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
505 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
506 err = -EOPNOTSUPP;
507 goto done;
508 }
509
510 /* We need to ensure that no other power on/off work is pending
511 * before proceeding to call hci_dev_do_open. This is
512 * particularly important if the setup procedure has not yet
513 * completed.
514 */
515 if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
516 cancel_delayed_work(&hdev->power_off);
517
518 /* After this call it is guaranteed that the setup procedure
519 * has finished. This means that error conditions like RFKILL
520 * or no valid public or static random address apply.
521 */
522 flush_workqueue(hdev->req_workqueue);
523
524 /* For controllers not using the management interface and that
525 * are brought up using legacy ioctl, set the HCI_BONDABLE bit
526 * so that pairing works for them. Once the management interface
527 * is in use this bit will be cleared again and userspace has
528 * to explicitly enable it.
529 */
530 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
531 !hci_dev_test_flag(hdev, HCI_MGMT))
532 hci_dev_set_flag(hdev, HCI_BONDABLE);
533
534 err = hci_dev_do_open(hdev);
535
536done:
537 hci_dev_put(hdev);
538 return err;
539}
540
541int hci_dev_do_close(struct hci_dev *hdev)
542{
543 int err;
544
545 BT_DBG("%s %p", hdev->name, hdev);
546
547 hci_req_sync_lock(hdev);
548
549 err = hci_dev_close_sync(hdev);
550
551 hci_req_sync_unlock(hdev);
552
553 return err;
554}
555
556int hci_dev_close(__u16 dev)
557{
558 struct hci_dev *hdev;
559 int err;
560
561 hdev = hci_dev_get(dev);
562 if (!hdev)
563 return -ENODEV;
564
565 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
566 err = -EBUSY;
567 goto done;
568 }
569
570 cancel_work_sync(&hdev->power_on);
571 if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
572 cancel_delayed_work(&hdev->power_off);
573
574 err = hci_dev_do_close(hdev);
575
576done:
577 hci_dev_put(hdev);
578 return err;
579}
580
581static int hci_dev_do_reset(struct hci_dev *hdev)
582{
583 int ret;
584
585 BT_DBG("%s %p", hdev->name, hdev);
586
587 hci_req_sync_lock(hdev);
588
589 /* Drop queues */
590 skb_queue_purge(&hdev->rx_q);
591 skb_queue_purge(&hdev->cmd_q);
592
593 /* Cancel these to avoid queueing non-chained pending work */
594 hci_dev_set_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE);
595 /* Wait for
596 *
597 * if (!hci_dev_test_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE))
598 * queue_delayed_work(&hdev->{cmd,ncmd}_timer)
599 *
600 * inside RCU section to see the flag or complete scheduling.
601 */
602 synchronize_rcu();
603 /* Explicitly cancel works in case scheduled after setting the flag. */
604 cancel_delayed_work(&hdev->cmd_timer);
605 cancel_delayed_work(&hdev->ncmd_timer);
606
607 /* Avoid potential lockdep warnings from the *_flush() calls by
608 * ensuring the workqueue is empty up front.
609 */
610 drain_workqueue(hdev->workqueue);
611
612 hci_dev_lock(hdev);
613 hci_inquiry_cache_flush(hdev);
614 hci_conn_hash_flush(hdev);
615 hci_dev_unlock(hdev);
616
617 if (hdev->flush)
618 hdev->flush(hdev);
619
620 hci_dev_clear_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE);
621
622 atomic_set(&hdev->cmd_cnt, 1);
623 hdev->acl_cnt = 0;
624 hdev->sco_cnt = 0;
625 hdev->le_cnt = 0;
626 hdev->iso_cnt = 0;
627
628 ret = hci_reset_sync(hdev);
629
630 hci_req_sync_unlock(hdev);
631 return ret;
632}
633
634int hci_dev_reset(__u16 dev)
635{
636 struct hci_dev *hdev;
637 int err;
638
639 hdev = hci_dev_get(dev);
640 if (!hdev)
641 return -ENODEV;
642
643 if (!test_bit(HCI_UP, &hdev->flags)) {
644 err = -ENETDOWN;
645 goto done;
646 }
647
648 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
649 err = -EBUSY;
650 goto done;
651 }
652
653 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
654 err = -EOPNOTSUPP;
655 goto done;
656 }
657
658 err = hci_dev_do_reset(hdev);
659
660done:
661 hci_dev_put(hdev);
662 return err;
663}
664
665int hci_dev_reset_stat(__u16 dev)
666{
667 struct hci_dev *hdev;
668 int ret = 0;
669
670 hdev = hci_dev_get(dev);
671 if (!hdev)
672 return -ENODEV;
673
674 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
675 ret = -EBUSY;
676 goto done;
677 }
678
679 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
680 ret = -EOPNOTSUPP;
681 goto done;
682 }
683
684 memset(&hdev->stat, 0, sizeof(struct hci_dev_stats));
685
686done:
687 hci_dev_put(hdev);
688 return ret;
689}
690
691static void hci_update_passive_scan_state(struct hci_dev *hdev, u8 scan)
692{
693 bool conn_changed, discov_changed;
694
695 BT_DBG("%s scan 0x%02x", hdev->name, scan);
696
697 if ((scan & SCAN_PAGE))
698 conn_changed = !hci_dev_test_and_set_flag(hdev,
699 HCI_CONNECTABLE);
700 else
701 conn_changed = hci_dev_test_and_clear_flag(hdev,
702 HCI_CONNECTABLE);
703
704 if ((scan & SCAN_INQUIRY)) {
705 discov_changed = !hci_dev_test_and_set_flag(hdev,
706 HCI_DISCOVERABLE);
707 } else {
708 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
709 discov_changed = hci_dev_test_and_clear_flag(hdev,
710 HCI_DISCOVERABLE);
711 }
712
713 if (!hci_dev_test_flag(hdev, HCI_MGMT))
714 return;
715
716 if (conn_changed || discov_changed) {
717 /* In case this was disabled through mgmt */
718 hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
719
720 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED))
721 hci_update_adv_data(hdev, hdev->cur_adv_instance);
722
723 mgmt_new_settings(hdev);
724 }
725}
726
727int hci_dev_cmd(unsigned int cmd, void __user *arg)
728{
729 struct hci_dev *hdev;
730 struct hci_dev_req dr;
731 int err = 0;
732
733 if (copy_from_user(&dr, arg, sizeof(dr)))
734 return -EFAULT;
735
736 hdev = hci_dev_get(dr.dev_id);
737 if (!hdev)
738 return -ENODEV;
739
740 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
741 err = -EBUSY;
742 goto done;
743 }
744
745 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
746 err = -EOPNOTSUPP;
747 goto done;
748 }
749
750 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
751 err = -EOPNOTSUPP;
752 goto done;
753 }
754
755 switch (cmd) {
756 case HCISETAUTH:
757 err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
758 HCI_INIT_TIMEOUT, NULL);
759 break;
760
761 case HCISETENCRYPT:
762 if (!lmp_encrypt_capable(hdev)) {
763 err = -EOPNOTSUPP;
764 break;
765 }
766
767 if (!test_bit(HCI_AUTH, &hdev->flags)) {
768 /* Auth must be enabled first */
769 err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
770 HCI_INIT_TIMEOUT, NULL);
771 if (err)
772 break;
773 }
774
775 err = hci_req_sync(hdev, hci_encrypt_req, dr.dev_opt,
776 HCI_INIT_TIMEOUT, NULL);
777 break;
778
779 case HCISETSCAN:
780 err = hci_req_sync(hdev, hci_scan_req, dr.dev_opt,
781 HCI_INIT_TIMEOUT, NULL);
782
783 /* Ensure that the connectable and discoverable states
784 * get correctly modified as this was a non-mgmt change.
785 */
786 if (!err)
787 hci_update_passive_scan_state(hdev, dr.dev_opt);
788 break;
789
790 case HCISETLINKPOL:
791 err = hci_req_sync(hdev, hci_linkpol_req, dr.dev_opt,
792 HCI_INIT_TIMEOUT, NULL);
793 break;
794
795 case HCISETLINKMODE:
796 hdev->link_mode = ((__u16) dr.dev_opt) &
797 (HCI_LM_MASTER | HCI_LM_ACCEPT);
798 break;
799
800 case HCISETPTYPE:
801 if (hdev->pkt_type == (__u16) dr.dev_opt)
802 break;
803
804 hdev->pkt_type = (__u16) dr.dev_opt;
805 mgmt_phy_configuration_changed(hdev, NULL);
806 break;
807
808 case HCISETACLMTU:
809 hdev->acl_mtu = *((__u16 *) &dr.dev_opt + 1);
810 hdev->acl_pkts = *((__u16 *) &dr.dev_opt + 0);
811 break;
812
813 case HCISETSCOMTU:
814 hdev->sco_mtu = *((__u16 *) &dr.dev_opt + 1);
815 hdev->sco_pkts = *((__u16 *) &dr.dev_opt + 0);
816 break;
817
818 default:
819 err = -EINVAL;
820 break;
821 }
822
823done:
824 hci_dev_put(hdev);
825 return err;
826}
827
828int hci_get_dev_list(void __user *arg)
829{
830 struct hci_dev *hdev;
831 struct hci_dev_list_req *dl;
832 struct hci_dev_req *dr;
833 int n = 0, size, err;
834 __u16 dev_num;
835
836 if (get_user(dev_num, (__u16 __user *) arg))
837 return -EFAULT;
838
839 if (!dev_num || dev_num > (PAGE_SIZE * 2) / sizeof(*dr))
840 return -EINVAL;
841
842 size = sizeof(*dl) + dev_num * sizeof(*dr);
843
844 dl = kzalloc(size, GFP_KERNEL);
845 if (!dl)
846 return -ENOMEM;
847
848 dr = dl->dev_req;
849
850 read_lock(&hci_dev_list_lock);
851 list_for_each_entry(hdev, &hci_dev_list, list) {
852 unsigned long flags = hdev->flags;
853
854 /* When the auto-off is configured it means the transport
855 * is running, but in that case still indicate that the
856 * device is actually down.
857 */
858 if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
859 flags &= ~BIT(HCI_UP);
860
861 (dr + n)->dev_id = hdev->id;
862 (dr + n)->dev_opt = flags;
863
864 if (++n >= dev_num)
865 break;
866 }
867 read_unlock(&hci_dev_list_lock);
868
869 dl->dev_num = n;
870 size = sizeof(*dl) + n * sizeof(*dr);
871
872 err = copy_to_user(arg, dl, size);
873 kfree(dl);
874
875 return err ? -EFAULT : 0;
876}
877
878int hci_get_dev_info(void __user *arg)
879{
880 struct hci_dev *hdev;
881 struct hci_dev_info di;
882 unsigned long flags;
883 int err = 0;
884
885 if (copy_from_user(&di, arg, sizeof(di)))
886 return -EFAULT;
887
888 hdev = hci_dev_get(di.dev_id);
889 if (!hdev)
890 return -ENODEV;
891
892 /* When the auto-off is configured it means the transport
893 * is running, but in that case still indicate that the
894 * device is actually down.
895 */
896 if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
897 flags = hdev->flags & ~BIT(HCI_UP);
898 else
899 flags = hdev->flags;
900
901 strscpy(di.name, hdev->name, sizeof(di.name));
902 di.bdaddr = hdev->bdaddr;
903 di.type = (hdev->bus & 0x0f);
904 di.flags = flags;
905 di.pkt_type = hdev->pkt_type;
906 if (lmp_bredr_capable(hdev)) {
907 di.acl_mtu = hdev->acl_mtu;
908 di.acl_pkts = hdev->acl_pkts;
909 di.sco_mtu = hdev->sco_mtu;
910 di.sco_pkts = hdev->sco_pkts;
911 } else {
912 di.acl_mtu = hdev->le_mtu;
913 di.acl_pkts = hdev->le_pkts;
914 di.sco_mtu = 0;
915 di.sco_pkts = 0;
916 }
917 di.link_policy = hdev->link_policy;
918 di.link_mode = hdev->link_mode;
919
920 memcpy(&di.stat, &hdev->stat, sizeof(di.stat));
921 memcpy(&di.features, &hdev->features, sizeof(di.features));
922
923 if (copy_to_user(arg, &di, sizeof(di)))
924 err = -EFAULT;
925
926 hci_dev_put(hdev);
927
928 return err;
929}
930
931/* ---- Interface to HCI drivers ---- */
932
933static int hci_dev_do_poweroff(struct hci_dev *hdev)
934{
935 int err;
936
937 BT_DBG("%s %p", hdev->name, hdev);
938
939 hci_req_sync_lock(hdev);
940
941 err = hci_set_powered_sync(hdev, false);
942
943 hci_req_sync_unlock(hdev);
944
945 return err;
946}
947
948static int hci_rfkill_set_block(void *data, bool blocked)
949{
950 struct hci_dev *hdev = data;
951 int err;
952
953 BT_DBG("%p name %s blocked %d", hdev, hdev->name, blocked);
954
955 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL))
956 return -EBUSY;
957
958 if (blocked == hci_dev_test_flag(hdev, HCI_RFKILLED))
959 return 0;
960
961 if (blocked) {
962 hci_dev_set_flag(hdev, HCI_RFKILLED);
963
964 if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
965 !hci_dev_test_flag(hdev, HCI_CONFIG)) {
966 err = hci_dev_do_poweroff(hdev);
967 if (err) {
968 bt_dev_err(hdev, "Error when powering off device on rfkill (%d)",
969 err);
970
971 /* Make sure the device is still closed even if
972 * anything during power off sequence (eg.
973 * disconnecting devices) failed.
974 */
975 hci_dev_do_close(hdev);
976 }
977 }
978 } else {
979 hci_dev_clear_flag(hdev, HCI_RFKILLED);
980 }
981
982 return 0;
983}
984
985static const struct rfkill_ops hci_rfkill_ops = {
986 .set_block = hci_rfkill_set_block,
987};
988
989static void hci_power_on(struct work_struct *work)
990{
991 struct hci_dev *hdev = container_of(work, struct hci_dev, power_on);
992 int err;
993
994 BT_DBG("%s", hdev->name);
995
996 if (test_bit(HCI_UP, &hdev->flags) &&
997 hci_dev_test_flag(hdev, HCI_MGMT) &&
998 hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) {
999 cancel_delayed_work(&hdev->power_off);
1000 err = hci_powered_update_sync(hdev);
1001 mgmt_power_on(hdev, err);
1002 return;
1003 }
1004
1005 err = hci_dev_do_open(hdev);
1006 if (err < 0) {
1007 hci_dev_lock(hdev);
1008 mgmt_set_powered_failed(hdev, err);
1009 hci_dev_unlock(hdev);
1010 return;
1011 }
1012
1013 /* During the HCI setup phase, a few error conditions are
1014 * ignored and they need to be checked now. If they are still
1015 * valid, it is important to turn the device back off.
1016 */
1017 if (hci_dev_test_flag(hdev, HCI_RFKILLED) ||
1018 hci_dev_test_flag(hdev, HCI_UNCONFIGURED) ||
1019 (!bacmp(&hdev->bdaddr, BDADDR_ANY) &&
1020 !bacmp(&hdev->static_addr, BDADDR_ANY))) {
1021 hci_dev_clear_flag(hdev, HCI_AUTO_OFF);
1022 hci_dev_do_close(hdev);
1023 } else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) {
1024 queue_delayed_work(hdev->req_workqueue, &hdev->power_off,
1025 HCI_AUTO_OFF_TIMEOUT);
1026 }
1027
1028 if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) {
1029 /* For unconfigured devices, set the HCI_RAW flag
1030 * so that userspace can easily identify them.
1031 */
1032 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
1033 set_bit(HCI_RAW, &hdev->flags);
1034
1035 /* For fully configured devices, this will send
1036 * the Index Added event. For unconfigured devices,
1037 * it will send Unconfigued Index Added event.
1038 *
1039 * Devices with HCI_QUIRK_RAW_DEVICE are ignored
1040 * and no event will be send.
1041 */
1042 mgmt_index_added(hdev);
1043 } else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) {
1044 /* When the controller is now configured, then it
1045 * is important to clear the HCI_RAW flag.
1046 */
1047 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
1048 clear_bit(HCI_RAW, &hdev->flags);
1049
1050 /* Powering on the controller with HCI_CONFIG set only
1051 * happens with the transition from unconfigured to
1052 * configured. This will send the Index Added event.
1053 */
1054 mgmt_index_added(hdev);
1055 }
1056}
1057
1058static void hci_power_off(struct work_struct *work)
1059{
1060 struct hci_dev *hdev = container_of(work, struct hci_dev,
1061 power_off.work);
1062
1063 BT_DBG("%s", hdev->name);
1064
1065 hci_dev_do_close(hdev);
1066}
1067
1068static void hci_error_reset(struct work_struct *work)
1069{
1070 struct hci_dev *hdev = container_of(work, struct hci_dev, error_reset);
1071
1072 hci_dev_hold(hdev);
1073 BT_DBG("%s", hdev->name);
1074
1075 if (hdev->hw_error)
1076 hdev->hw_error(hdev, hdev->hw_error_code);
1077 else
1078 bt_dev_err(hdev, "hardware error 0x%2.2x", hdev->hw_error_code);
1079
1080 if (!hci_dev_do_close(hdev))
1081 hci_dev_do_open(hdev);
1082
1083 hci_dev_put(hdev);
1084}
1085
1086void hci_uuids_clear(struct hci_dev *hdev)
1087{
1088 struct bt_uuid *uuid, *tmp;
1089
1090 list_for_each_entry_safe(uuid, tmp, &hdev->uuids, list) {
1091 list_del(&uuid->list);
1092 kfree(uuid);
1093 }
1094}
1095
1096void hci_link_keys_clear(struct hci_dev *hdev)
1097{
1098 struct link_key *key, *tmp;
1099
1100 list_for_each_entry_safe(key, tmp, &hdev->link_keys, list) {
1101 list_del_rcu(&key->list);
1102 kfree_rcu(key, rcu);
1103 }
1104}
1105
1106void hci_smp_ltks_clear(struct hci_dev *hdev)
1107{
1108 struct smp_ltk *k, *tmp;
1109
1110 list_for_each_entry_safe(k, tmp, &hdev->long_term_keys, list) {
1111 list_del_rcu(&k->list);
1112 kfree_rcu(k, rcu);
1113 }
1114}
1115
1116void hci_smp_irks_clear(struct hci_dev *hdev)
1117{
1118 struct smp_irk *k, *tmp;
1119
1120 list_for_each_entry_safe(k, tmp, &hdev->identity_resolving_keys, list) {
1121 list_del_rcu(&k->list);
1122 kfree_rcu(k, rcu);
1123 }
1124}
1125
1126void hci_blocked_keys_clear(struct hci_dev *hdev)
1127{
1128 struct blocked_key *b, *tmp;
1129
1130 list_for_each_entry_safe(b, tmp, &hdev->blocked_keys, list) {
1131 list_del_rcu(&b->list);
1132 kfree_rcu(b, rcu);
1133 }
1134}
1135
1136bool hci_is_blocked_key(struct hci_dev *hdev, u8 type, u8 val[16])
1137{
1138 bool blocked = false;
1139 struct blocked_key *b;
1140
1141 rcu_read_lock();
1142 list_for_each_entry_rcu(b, &hdev->blocked_keys, list) {
1143 if (b->type == type && !memcmp(b->val, val, sizeof(b->val))) {
1144 blocked = true;
1145 break;
1146 }
1147 }
1148
1149 rcu_read_unlock();
1150 return blocked;
1151}
1152
1153struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
1154{
1155 struct link_key *k;
1156
1157 rcu_read_lock();
1158 list_for_each_entry_rcu(k, &hdev->link_keys, list) {
1159 if (bacmp(bdaddr, &k->bdaddr) == 0) {
1160 rcu_read_unlock();
1161
1162 if (hci_is_blocked_key(hdev,
1163 HCI_BLOCKED_KEY_TYPE_LINKKEY,
1164 k->val)) {
1165 bt_dev_warn_ratelimited(hdev,
1166 "Link key blocked for %pMR",
1167 &k->bdaddr);
1168 return NULL;
1169 }
1170
1171 return k;
1172 }
1173 }
1174 rcu_read_unlock();
1175
1176 return NULL;
1177}
1178
1179static bool hci_persistent_key(struct hci_dev *hdev, struct hci_conn *conn,
1180 u8 key_type, u8 old_key_type)
1181{
1182 /* Legacy key */
1183 if (key_type < 0x03)
1184 return true;
1185
1186 /* Debug keys are insecure so don't store them persistently */
1187 if (key_type == HCI_LK_DEBUG_COMBINATION)
1188 return false;
1189
1190 /* Changed combination key and there's no previous one */
1191 if (key_type == HCI_LK_CHANGED_COMBINATION && old_key_type == 0xff)
1192 return false;
1193
1194 /* Security mode 3 case */
1195 if (!conn)
1196 return true;
1197
1198 /* BR/EDR key derived using SC from an LE link */
1199 if (conn->type == LE_LINK)
1200 return true;
1201
1202 /* Neither local nor remote side had no-bonding as requirement */
1203 if (conn->auth_type > 0x01 && conn->remote_auth > 0x01)
1204 return true;
1205
1206 /* Local side had dedicated bonding as requirement */
1207 if (conn->auth_type == 0x02 || conn->auth_type == 0x03)
1208 return true;
1209
1210 /* Remote side had dedicated bonding as requirement */
1211 if (conn->remote_auth == 0x02 || conn->remote_auth == 0x03)
1212 return true;
1213
1214 /* If none of the above criteria match, then don't store the key
1215 * persistently */
1216 return false;
1217}
1218
1219static u8 ltk_role(u8 type)
1220{
1221 if (type == SMP_LTK)
1222 return HCI_ROLE_MASTER;
1223
1224 return HCI_ROLE_SLAVE;
1225}
1226
1227struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
1228 u8 addr_type, u8 role)
1229{
1230 struct smp_ltk *k;
1231
1232 rcu_read_lock();
1233 list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
1234 if (addr_type != k->bdaddr_type || bacmp(bdaddr, &k->bdaddr))
1235 continue;
1236
1237 if (smp_ltk_is_sc(k) || ltk_role(k->type) == role) {
1238 rcu_read_unlock();
1239
1240 if (hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_LTK,
1241 k->val)) {
1242 bt_dev_warn_ratelimited(hdev,
1243 "LTK blocked for %pMR",
1244 &k->bdaddr);
1245 return NULL;
1246 }
1247
1248 return k;
1249 }
1250 }
1251 rcu_read_unlock();
1252
1253 return NULL;
1254}
1255
1256struct smp_irk *hci_find_irk_by_rpa(struct hci_dev *hdev, bdaddr_t *rpa)
1257{
1258 struct smp_irk *irk_to_return = NULL;
1259 struct smp_irk *irk;
1260
1261 rcu_read_lock();
1262 list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
1263 if (!bacmp(&irk->rpa, rpa)) {
1264 irk_to_return = irk;
1265 goto done;
1266 }
1267 }
1268
1269 list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
1270 if (smp_irk_matches(hdev, irk->val, rpa)) {
1271 bacpy(&irk->rpa, rpa);
1272 irk_to_return = irk;
1273 goto done;
1274 }
1275 }
1276
1277done:
1278 if (irk_to_return && hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_IRK,
1279 irk_to_return->val)) {
1280 bt_dev_warn_ratelimited(hdev, "Identity key blocked for %pMR",
1281 &irk_to_return->bdaddr);
1282 irk_to_return = NULL;
1283 }
1284
1285 rcu_read_unlock();
1286
1287 return irk_to_return;
1288}
1289
1290struct smp_irk *hci_find_irk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr,
1291 u8 addr_type)
1292{
1293 struct smp_irk *irk_to_return = NULL;
1294 struct smp_irk *irk;
1295
1296 /* Identity Address must be public or static random */
1297 if (addr_type == ADDR_LE_DEV_RANDOM && (bdaddr->b[5] & 0xc0) != 0xc0)
1298 return NULL;
1299
1300 rcu_read_lock();
1301 list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
1302 if (addr_type == irk->addr_type &&
1303 bacmp(bdaddr, &irk->bdaddr) == 0) {
1304 irk_to_return = irk;
1305 goto done;
1306 }
1307 }
1308
1309done:
1310
1311 if (irk_to_return && hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_IRK,
1312 irk_to_return->val)) {
1313 bt_dev_warn_ratelimited(hdev, "Identity key blocked for %pMR",
1314 &irk_to_return->bdaddr);
1315 irk_to_return = NULL;
1316 }
1317
1318 rcu_read_unlock();
1319
1320 return irk_to_return;
1321}
1322
1323struct link_key *hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn,
1324 bdaddr_t *bdaddr, u8 *val, u8 type,
1325 u8 pin_len, bool *persistent)
1326{
1327 struct link_key *key, *old_key;
1328 u8 old_key_type;
1329
1330 old_key = hci_find_link_key(hdev, bdaddr);
1331 if (old_key) {
1332 old_key_type = old_key->type;
1333 key = old_key;
1334 } else {
1335 old_key_type = conn ? conn->key_type : 0xff;
1336 key = kzalloc(sizeof(*key), GFP_KERNEL);
1337 if (!key)
1338 return NULL;
1339 list_add_rcu(&key->list, &hdev->link_keys);
1340 }
1341
1342 BT_DBG("%s key for %pMR type %u", hdev->name, bdaddr, type);
1343
1344 /* Some buggy controller combinations generate a changed
1345 * combination key for legacy pairing even when there's no
1346 * previous key */
1347 if (type == HCI_LK_CHANGED_COMBINATION &&
1348 (!conn || conn->remote_auth == 0xff) && old_key_type == 0xff) {
1349 type = HCI_LK_COMBINATION;
1350 if (conn)
1351 conn->key_type = type;
1352 }
1353
1354 bacpy(&key->bdaddr, bdaddr);
1355 memcpy(key->val, val, HCI_LINK_KEY_SIZE);
1356 key->pin_len = pin_len;
1357
1358 if (type == HCI_LK_CHANGED_COMBINATION)
1359 key->type = old_key_type;
1360 else
1361 key->type = type;
1362
1363 if (persistent)
1364 *persistent = hci_persistent_key(hdev, conn, type,
1365 old_key_type);
1366
1367 return key;
1368}
1369
1370struct smp_ltk *hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
1371 u8 addr_type, u8 type, u8 authenticated,
1372 u8 tk[16], u8 enc_size, __le16 ediv, __le64 rand)
1373{
1374 struct smp_ltk *key, *old_key;
1375 u8 role = ltk_role(type);
1376
1377 old_key = hci_find_ltk(hdev, bdaddr, addr_type, role);
1378 if (old_key)
1379 key = old_key;
1380 else {
1381 key = kzalloc(sizeof(*key), GFP_KERNEL);
1382 if (!key)
1383 return NULL;
1384 list_add_rcu(&key->list, &hdev->long_term_keys);
1385 }
1386
1387 bacpy(&key->bdaddr, bdaddr);
1388 key->bdaddr_type = addr_type;
1389 memcpy(key->val, tk, sizeof(key->val));
1390 key->authenticated = authenticated;
1391 key->ediv = ediv;
1392 key->rand = rand;
1393 key->enc_size = enc_size;
1394 key->type = type;
1395
1396 return key;
1397}
1398
1399struct smp_irk *hci_add_irk(struct hci_dev *hdev, bdaddr_t *bdaddr,
1400 u8 addr_type, u8 val[16], bdaddr_t *rpa)
1401{
1402 struct smp_irk *irk;
1403
1404 irk = hci_find_irk_by_addr(hdev, bdaddr, addr_type);
1405 if (!irk) {
1406 irk = kzalloc(sizeof(*irk), GFP_KERNEL);
1407 if (!irk)
1408 return NULL;
1409
1410 bacpy(&irk->bdaddr, bdaddr);
1411 irk->addr_type = addr_type;
1412
1413 list_add_rcu(&irk->list, &hdev->identity_resolving_keys);
1414 }
1415
1416 memcpy(irk->val, val, 16);
1417 bacpy(&irk->rpa, rpa);
1418
1419 return irk;
1420}
1421
1422int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
1423{
1424 struct link_key *key;
1425
1426 key = hci_find_link_key(hdev, bdaddr);
1427 if (!key)
1428 return -ENOENT;
1429
1430 BT_DBG("%s removing %pMR", hdev->name, bdaddr);
1431
1432 list_del_rcu(&key->list);
1433 kfree_rcu(key, rcu);
1434
1435 return 0;
1436}
1437
1438int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type)
1439{
1440 struct smp_ltk *k, *tmp;
1441 int removed = 0;
1442
1443 list_for_each_entry_safe(k, tmp, &hdev->long_term_keys, list) {
1444 if (bacmp(bdaddr, &k->bdaddr) || k->bdaddr_type != bdaddr_type)
1445 continue;
1446
1447 BT_DBG("%s removing %pMR", hdev->name, bdaddr);
1448
1449 list_del_rcu(&k->list);
1450 kfree_rcu(k, rcu);
1451 removed++;
1452 }
1453
1454 return removed ? 0 : -ENOENT;
1455}
1456
1457void hci_remove_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type)
1458{
1459 struct smp_irk *k, *tmp;
1460
1461 list_for_each_entry_safe(k, tmp, &hdev->identity_resolving_keys, list) {
1462 if (bacmp(bdaddr, &k->bdaddr) || k->addr_type != addr_type)
1463 continue;
1464
1465 BT_DBG("%s removing %pMR", hdev->name, bdaddr);
1466
1467 list_del_rcu(&k->list);
1468 kfree_rcu(k, rcu);
1469 }
1470}
1471
1472bool hci_bdaddr_is_paired(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type)
1473{
1474 struct smp_ltk *k;
1475 struct smp_irk *irk;
1476 u8 addr_type;
1477
1478 if (type == BDADDR_BREDR) {
1479 if (hci_find_link_key(hdev, bdaddr))
1480 return true;
1481 return false;
1482 }
1483
1484 /* Convert to HCI addr type which struct smp_ltk uses */
1485 if (type == BDADDR_LE_PUBLIC)
1486 addr_type = ADDR_LE_DEV_PUBLIC;
1487 else
1488 addr_type = ADDR_LE_DEV_RANDOM;
1489
1490 irk = hci_get_irk(hdev, bdaddr, addr_type);
1491 if (irk) {
1492 bdaddr = &irk->bdaddr;
1493 addr_type = irk->addr_type;
1494 }
1495
1496 rcu_read_lock();
1497 list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
1498 if (k->bdaddr_type == addr_type && !bacmp(bdaddr, &k->bdaddr)) {
1499 rcu_read_unlock();
1500 return true;
1501 }
1502 }
1503 rcu_read_unlock();
1504
1505 return false;
1506}
1507
1508/* HCI command timer function */
1509static void hci_cmd_timeout(struct work_struct *work)
1510{
1511 struct hci_dev *hdev = container_of(work, struct hci_dev,
1512 cmd_timer.work);
1513
1514 if (hdev->req_skb) {
1515 u16 opcode = hci_skb_opcode(hdev->req_skb);
1516
1517 bt_dev_err(hdev, "command 0x%4.4x tx timeout", opcode);
1518
1519 hci_cmd_sync_cancel_sync(hdev, ETIMEDOUT);
1520 } else {
1521 bt_dev_err(hdev, "command tx timeout");
1522 }
1523
1524 if (hdev->cmd_timeout)
1525 hdev->cmd_timeout(hdev);
1526
1527 atomic_set(&hdev->cmd_cnt, 1);
1528 queue_work(hdev->workqueue, &hdev->cmd_work);
1529}
1530
1531/* HCI ncmd timer function */
1532static void hci_ncmd_timeout(struct work_struct *work)
1533{
1534 struct hci_dev *hdev = container_of(work, struct hci_dev,
1535 ncmd_timer.work);
1536
1537 bt_dev_err(hdev, "Controller not accepting commands anymore: ncmd = 0");
1538
1539 /* During HCI_INIT phase no events can be injected if the ncmd timer
1540 * triggers since the procedure has its own timeout handling.
1541 */
1542 if (test_bit(HCI_INIT, &hdev->flags))
1543 return;
1544
1545 /* This is an irrecoverable state, inject hardware error event */
1546 hci_reset_dev(hdev);
1547}
1548
1549struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev,
1550 bdaddr_t *bdaddr, u8 bdaddr_type)
1551{
1552 struct oob_data *data;
1553
1554 list_for_each_entry(data, &hdev->remote_oob_data, list) {
1555 if (bacmp(bdaddr, &data->bdaddr) != 0)
1556 continue;
1557 if (data->bdaddr_type != bdaddr_type)
1558 continue;
1559 return data;
1560 }
1561
1562 return NULL;
1563}
1564
1565int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
1566 u8 bdaddr_type)
1567{
1568 struct oob_data *data;
1569
1570 data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
1571 if (!data)
1572 return -ENOENT;
1573
1574 BT_DBG("%s removing %pMR (%u)", hdev->name, bdaddr, bdaddr_type);
1575
1576 list_del(&data->list);
1577 kfree(data);
1578
1579 return 0;
1580}
1581
1582void hci_remote_oob_data_clear(struct hci_dev *hdev)
1583{
1584 struct oob_data *data, *n;
1585
1586 list_for_each_entry_safe(data, n, &hdev->remote_oob_data, list) {
1587 list_del(&data->list);
1588 kfree(data);
1589 }
1590}
1591
1592int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
1593 u8 bdaddr_type, u8 *hash192, u8 *rand192,
1594 u8 *hash256, u8 *rand256)
1595{
1596 struct oob_data *data;
1597
1598 data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
1599 if (!data) {
1600 data = kmalloc(sizeof(*data), GFP_KERNEL);
1601 if (!data)
1602 return -ENOMEM;
1603
1604 bacpy(&data->bdaddr, bdaddr);
1605 data->bdaddr_type = bdaddr_type;
1606 list_add(&data->list, &hdev->remote_oob_data);
1607 }
1608
1609 if (hash192 && rand192) {
1610 memcpy(data->hash192, hash192, sizeof(data->hash192));
1611 memcpy(data->rand192, rand192, sizeof(data->rand192));
1612 if (hash256 && rand256)
1613 data->present = 0x03;
1614 } else {
1615 memset(data->hash192, 0, sizeof(data->hash192));
1616 memset(data->rand192, 0, sizeof(data->rand192));
1617 if (hash256 && rand256)
1618 data->present = 0x02;
1619 else
1620 data->present = 0x00;
1621 }
1622
1623 if (hash256 && rand256) {
1624 memcpy(data->hash256, hash256, sizeof(data->hash256));
1625 memcpy(data->rand256, rand256, sizeof(data->rand256));
1626 } else {
1627 memset(data->hash256, 0, sizeof(data->hash256));
1628 memset(data->rand256, 0, sizeof(data->rand256));
1629 if (hash192 && rand192)
1630 data->present = 0x01;
1631 }
1632
1633 BT_DBG("%s for %pMR", hdev->name, bdaddr);
1634
1635 return 0;
1636}
1637
1638/* This function requires the caller holds hdev->lock */
1639struct adv_info *hci_find_adv_instance(struct hci_dev *hdev, u8 instance)
1640{
1641 struct adv_info *adv_instance;
1642
1643 list_for_each_entry(adv_instance, &hdev->adv_instances, list) {
1644 if (adv_instance->instance == instance)
1645 return adv_instance;
1646 }
1647
1648 return NULL;
1649}
1650
1651/* This function requires the caller holds hdev->lock */
1652struct adv_info *hci_get_next_instance(struct hci_dev *hdev, u8 instance)
1653{
1654 struct adv_info *cur_instance;
1655
1656 cur_instance = hci_find_adv_instance(hdev, instance);
1657 if (!cur_instance)
1658 return NULL;
1659
1660 if (cur_instance == list_last_entry(&hdev->adv_instances,
1661 struct adv_info, list))
1662 return list_first_entry(&hdev->adv_instances,
1663 struct adv_info, list);
1664 else
1665 return list_next_entry(cur_instance, list);
1666}
1667
1668/* This function requires the caller holds hdev->lock */
1669int hci_remove_adv_instance(struct hci_dev *hdev, u8 instance)
1670{
1671 struct adv_info *adv_instance;
1672
1673 adv_instance = hci_find_adv_instance(hdev, instance);
1674 if (!adv_instance)
1675 return -ENOENT;
1676
1677 BT_DBG("%s removing %dMR", hdev->name, instance);
1678
1679 if (hdev->cur_adv_instance == instance) {
1680 if (hdev->adv_instance_timeout) {
1681 cancel_delayed_work(&hdev->adv_instance_expire);
1682 hdev->adv_instance_timeout = 0;
1683 }
1684 hdev->cur_adv_instance = 0x00;
1685 }
1686
1687 cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
1688
1689 list_del(&adv_instance->list);
1690 kfree(adv_instance);
1691
1692 hdev->adv_instance_cnt--;
1693
1694 return 0;
1695}
1696
1697void hci_adv_instances_set_rpa_expired(struct hci_dev *hdev, bool rpa_expired)
1698{
1699 struct adv_info *adv_instance, *n;
1700
1701 list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list)
1702 adv_instance->rpa_expired = rpa_expired;
1703}
1704
1705/* This function requires the caller holds hdev->lock */
1706void hci_adv_instances_clear(struct hci_dev *hdev)
1707{
1708 struct adv_info *adv_instance, *n;
1709
1710 if (hdev->adv_instance_timeout) {
1711 cancel_delayed_work(&hdev->adv_instance_expire);
1712 hdev->adv_instance_timeout = 0;
1713 }
1714
1715 list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list) {
1716 cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
1717 list_del(&adv_instance->list);
1718 kfree(adv_instance);
1719 }
1720
1721 hdev->adv_instance_cnt = 0;
1722 hdev->cur_adv_instance = 0x00;
1723}
1724
1725static void adv_instance_rpa_expired(struct work_struct *work)
1726{
1727 struct adv_info *adv_instance = container_of(work, struct adv_info,
1728 rpa_expired_cb.work);
1729
1730 BT_DBG("");
1731
1732 adv_instance->rpa_expired = true;
1733}
1734
1735/* This function requires the caller holds hdev->lock */
1736struct adv_info *hci_add_adv_instance(struct hci_dev *hdev, u8 instance,
1737 u32 flags, u16 adv_data_len, u8 *adv_data,
1738 u16 scan_rsp_len, u8 *scan_rsp_data,
1739 u16 timeout, u16 duration, s8 tx_power,
1740 u32 min_interval, u32 max_interval,
1741 u8 mesh_handle)
1742{
1743 struct adv_info *adv;
1744
1745 adv = hci_find_adv_instance(hdev, instance);
1746 if (adv) {
1747 memset(adv->adv_data, 0, sizeof(adv->adv_data));
1748 memset(adv->scan_rsp_data, 0, sizeof(adv->scan_rsp_data));
1749 memset(adv->per_adv_data, 0, sizeof(adv->per_adv_data));
1750 } else {
1751 if (hdev->adv_instance_cnt >= hdev->le_num_of_adv_sets ||
1752 instance < 1 || instance > hdev->le_num_of_adv_sets + 1)
1753 return ERR_PTR(-EOVERFLOW);
1754
1755 adv = kzalloc(sizeof(*adv), GFP_KERNEL);
1756 if (!adv)
1757 return ERR_PTR(-ENOMEM);
1758
1759 adv->pending = true;
1760 adv->instance = instance;
1761
1762 /* If controller support only one set and the instance is set to
1763 * 1 then there is no option other than using handle 0x00.
1764 */
1765 if (hdev->le_num_of_adv_sets == 1 && instance == 1)
1766 adv->handle = 0x00;
1767 else
1768 adv->handle = instance;
1769
1770 list_add(&adv->list, &hdev->adv_instances);
1771 hdev->adv_instance_cnt++;
1772 }
1773
1774 adv->flags = flags;
1775 adv->min_interval = min_interval;
1776 adv->max_interval = max_interval;
1777 adv->tx_power = tx_power;
1778 /* Defining a mesh_handle changes the timing units to ms,
1779 * rather than seconds, and ties the instance to the requested
1780 * mesh_tx queue.
1781 */
1782 adv->mesh = mesh_handle;
1783
1784 hci_set_adv_instance_data(hdev, instance, adv_data_len, adv_data,
1785 scan_rsp_len, scan_rsp_data);
1786
1787 adv->timeout = timeout;
1788 adv->remaining_time = timeout;
1789
1790 if (duration == 0)
1791 adv->duration = hdev->def_multi_adv_rotation_duration;
1792 else
1793 adv->duration = duration;
1794
1795 INIT_DELAYED_WORK(&adv->rpa_expired_cb, adv_instance_rpa_expired);
1796
1797 BT_DBG("%s for %dMR", hdev->name, instance);
1798
1799 return adv;
1800}
1801
1802/* This function requires the caller holds hdev->lock */
1803struct adv_info *hci_add_per_instance(struct hci_dev *hdev, u8 instance,
1804 u32 flags, u8 data_len, u8 *data,
1805 u32 min_interval, u32 max_interval)
1806{
1807 struct adv_info *adv;
1808
1809 adv = hci_add_adv_instance(hdev, instance, flags, 0, NULL, 0, NULL,
1810 0, 0, HCI_ADV_TX_POWER_NO_PREFERENCE,
1811 min_interval, max_interval, 0);
1812 if (IS_ERR(adv))
1813 return adv;
1814
1815 adv->periodic = true;
1816 adv->per_adv_data_len = data_len;
1817
1818 if (data)
1819 memcpy(adv->per_adv_data, data, data_len);
1820
1821 return adv;
1822}
1823
1824/* This function requires the caller holds hdev->lock */
1825int hci_set_adv_instance_data(struct hci_dev *hdev, u8 instance,
1826 u16 adv_data_len, u8 *adv_data,
1827 u16 scan_rsp_len, u8 *scan_rsp_data)
1828{
1829 struct adv_info *adv;
1830
1831 adv = hci_find_adv_instance(hdev, instance);
1832
1833 /* If advertisement doesn't exist, we can't modify its data */
1834 if (!adv)
1835 return -ENOENT;
1836
1837 if (adv_data_len && ADV_DATA_CMP(adv, adv_data, adv_data_len)) {
1838 memset(adv->adv_data, 0, sizeof(adv->adv_data));
1839 memcpy(adv->adv_data, adv_data, adv_data_len);
1840 adv->adv_data_len = adv_data_len;
1841 adv->adv_data_changed = true;
1842 }
1843
1844 if (scan_rsp_len && SCAN_RSP_CMP(adv, scan_rsp_data, scan_rsp_len)) {
1845 memset(adv->scan_rsp_data, 0, sizeof(adv->scan_rsp_data));
1846 memcpy(adv->scan_rsp_data, scan_rsp_data, scan_rsp_len);
1847 adv->scan_rsp_len = scan_rsp_len;
1848 adv->scan_rsp_changed = true;
1849 }
1850
1851 /* Mark as changed if there are flags which would affect it */
1852 if (((adv->flags & MGMT_ADV_FLAG_APPEARANCE) && hdev->appearance) ||
1853 adv->flags & MGMT_ADV_FLAG_LOCAL_NAME)
1854 adv->scan_rsp_changed = true;
1855
1856 return 0;
1857}
1858
1859/* This function requires the caller holds hdev->lock */
1860u32 hci_adv_instance_flags(struct hci_dev *hdev, u8 instance)
1861{
1862 u32 flags;
1863 struct adv_info *adv;
1864
1865 if (instance == 0x00) {
1866 /* Instance 0 always manages the "Tx Power" and "Flags"
1867 * fields
1868 */
1869 flags = MGMT_ADV_FLAG_TX_POWER | MGMT_ADV_FLAG_MANAGED_FLAGS;
1870
1871 /* For instance 0, the HCI_ADVERTISING_CONNECTABLE setting
1872 * corresponds to the "connectable" instance flag.
1873 */
1874 if (hci_dev_test_flag(hdev, HCI_ADVERTISING_CONNECTABLE))
1875 flags |= MGMT_ADV_FLAG_CONNECTABLE;
1876
1877 if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE))
1878 flags |= MGMT_ADV_FLAG_LIMITED_DISCOV;
1879 else if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
1880 flags |= MGMT_ADV_FLAG_DISCOV;
1881
1882 return flags;
1883 }
1884
1885 adv = hci_find_adv_instance(hdev, instance);
1886
1887 /* Return 0 when we got an invalid instance identifier. */
1888 if (!adv)
1889 return 0;
1890
1891 return adv->flags;
1892}
1893
1894bool hci_adv_instance_is_scannable(struct hci_dev *hdev, u8 instance)
1895{
1896 struct adv_info *adv;
1897
1898 /* Instance 0x00 always set local name */
1899 if (instance == 0x00)
1900 return true;
1901
1902 adv = hci_find_adv_instance(hdev, instance);
1903 if (!adv)
1904 return false;
1905
1906 if (adv->flags & MGMT_ADV_FLAG_APPEARANCE ||
1907 adv->flags & MGMT_ADV_FLAG_LOCAL_NAME)
1908 return true;
1909
1910 return adv->scan_rsp_len ? true : false;
1911}
1912
1913/* This function requires the caller holds hdev->lock */
1914void hci_adv_monitors_clear(struct hci_dev *hdev)
1915{
1916 struct adv_monitor *monitor;
1917 int handle;
1918
1919 idr_for_each_entry(&hdev->adv_monitors_idr, monitor, handle)
1920 hci_free_adv_monitor(hdev, monitor);
1921
1922 idr_destroy(&hdev->adv_monitors_idr);
1923}
1924
1925/* Frees the monitor structure and do some bookkeepings.
1926 * This function requires the caller holds hdev->lock.
1927 */
1928void hci_free_adv_monitor(struct hci_dev *hdev, struct adv_monitor *monitor)
1929{
1930 struct adv_pattern *pattern;
1931 struct adv_pattern *tmp;
1932
1933 if (!monitor)
1934 return;
1935
1936 list_for_each_entry_safe(pattern, tmp, &monitor->patterns, list) {
1937 list_del(&pattern->list);
1938 kfree(pattern);
1939 }
1940
1941 if (monitor->handle)
1942 idr_remove(&hdev->adv_monitors_idr, monitor->handle);
1943
1944 if (monitor->state != ADV_MONITOR_STATE_NOT_REGISTERED) {
1945 hdev->adv_monitors_cnt--;
1946 mgmt_adv_monitor_removed(hdev, monitor->handle);
1947 }
1948
1949 kfree(monitor);
1950}
1951
1952/* Assigns handle to a monitor, and if offloading is supported and power is on,
1953 * also attempts to forward the request to the controller.
1954 * This function requires the caller holds hci_req_sync_lock.
1955 */
1956int hci_add_adv_monitor(struct hci_dev *hdev, struct adv_monitor *monitor)
1957{
1958 int min, max, handle;
1959 int status = 0;
1960
1961 if (!monitor)
1962 return -EINVAL;
1963
1964 hci_dev_lock(hdev);
1965
1966 min = HCI_MIN_ADV_MONITOR_HANDLE;
1967 max = HCI_MIN_ADV_MONITOR_HANDLE + HCI_MAX_ADV_MONITOR_NUM_HANDLES;
1968 handle = idr_alloc(&hdev->adv_monitors_idr, monitor, min, max,
1969 GFP_KERNEL);
1970
1971 hci_dev_unlock(hdev);
1972
1973 if (handle < 0)
1974 return handle;
1975
1976 monitor->handle = handle;
1977
1978 if (!hdev_is_powered(hdev))
1979 return status;
1980
1981 switch (hci_get_adv_monitor_offload_ext(hdev)) {
1982 case HCI_ADV_MONITOR_EXT_NONE:
1983 bt_dev_dbg(hdev, "add monitor %d status %d",
1984 monitor->handle, status);
1985 /* Message was not forwarded to controller - not an error */
1986 break;
1987
1988 case HCI_ADV_MONITOR_EXT_MSFT:
1989 status = msft_add_monitor_pattern(hdev, monitor);
1990 bt_dev_dbg(hdev, "add monitor %d msft status %d",
1991 handle, status);
1992 break;
1993 }
1994
1995 return status;
1996}
1997
1998/* Attempts to tell the controller and free the monitor. If somehow the
1999 * controller doesn't have a corresponding handle, remove anyway.
2000 * This function requires the caller holds hci_req_sync_lock.
2001 */
2002static int hci_remove_adv_monitor(struct hci_dev *hdev,
2003 struct adv_monitor *monitor)
2004{
2005 int status = 0;
2006 int handle;
2007
2008 switch (hci_get_adv_monitor_offload_ext(hdev)) {
2009 case HCI_ADV_MONITOR_EXT_NONE: /* also goes here when powered off */
2010 bt_dev_dbg(hdev, "remove monitor %d status %d",
2011 monitor->handle, status);
2012 goto free_monitor;
2013
2014 case HCI_ADV_MONITOR_EXT_MSFT:
2015 handle = monitor->handle;
2016 status = msft_remove_monitor(hdev, monitor);
2017 bt_dev_dbg(hdev, "remove monitor %d msft status %d",
2018 handle, status);
2019 break;
2020 }
2021
2022 /* In case no matching handle registered, just free the monitor */
2023 if (status == -ENOENT)
2024 goto free_monitor;
2025
2026 return status;
2027
2028free_monitor:
2029 if (status == -ENOENT)
2030 bt_dev_warn(hdev, "Removing monitor with no matching handle %d",
2031 monitor->handle);
2032 hci_free_adv_monitor(hdev, monitor);
2033
2034 return status;
2035}
2036
2037/* This function requires the caller holds hci_req_sync_lock */
2038int hci_remove_single_adv_monitor(struct hci_dev *hdev, u16 handle)
2039{
2040 struct adv_monitor *monitor = idr_find(&hdev->adv_monitors_idr, handle);
2041
2042 if (!monitor)
2043 return -EINVAL;
2044
2045 return hci_remove_adv_monitor(hdev, monitor);
2046}
2047
2048/* This function requires the caller holds hci_req_sync_lock */
2049int hci_remove_all_adv_monitor(struct hci_dev *hdev)
2050{
2051 struct adv_monitor *monitor;
2052 int idr_next_id = 0;
2053 int status = 0;
2054
2055 while (1) {
2056 monitor = idr_get_next(&hdev->adv_monitors_idr, &idr_next_id);
2057 if (!monitor)
2058 break;
2059
2060 status = hci_remove_adv_monitor(hdev, monitor);
2061 if (status)
2062 return status;
2063
2064 idr_next_id++;
2065 }
2066
2067 return status;
2068}
2069
2070/* This function requires the caller holds hdev->lock */
2071bool hci_is_adv_monitoring(struct hci_dev *hdev)
2072{
2073 return !idr_is_empty(&hdev->adv_monitors_idr);
2074}
2075
2076int hci_get_adv_monitor_offload_ext(struct hci_dev *hdev)
2077{
2078 if (msft_monitor_supported(hdev))
2079 return HCI_ADV_MONITOR_EXT_MSFT;
2080
2081 return HCI_ADV_MONITOR_EXT_NONE;
2082}
2083
2084struct bdaddr_list *hci_bdaddr_list_lookup(struct list_head *bdaddr_list,
2085 bdaddr_t *bdaddr, u8 type)
2086{
2087 struct bdaddr_list *b;
2088
2089 list_for_each_entry(b, bdaddr_list, list) {
2090 if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2091 return b;
2092 }
2093
2094 return NULL;
2095}
2096
2097struct bdaddr_list_with_irk *hci_bdaddr_list_lookup_with_irk(
2098 struct list_head *bdaddr_list, bdaddr_t *bdaddr,
2099 u8 type)
2100{
2101 struct bdaddr_list_with_irk *b;
2102
2103 list_for_each_entry(b, bdaddr_list, list) {
2104 if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2105 return b;
2106 }
2107
2108 return NULL;
2109}
2110
2111struct bdaddr_list_with_flags *
2112hci_bdaddr_list_lookup_with_flags(struct list_head *bdaddr_list,
2113 bdaddr_t *bdaddr, u8 type)
2114{
2115 struct bdaddr_list_with_flags *b;
2116
2117 list_for_each_entry(b, bdaddr_list, list) {
2118 if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2119 return b;
2120 }
2121
2122 return NULL;
2123}
2124
2125void hci_bdaddr_list_clear(struct list_head *bdaddr_list)
2126{
2127 struct bdaddr_list *b, *n;
2128
2129 list_for_each_entry_safe(b, n, bdaddr_list, list) {
2130 list_del(&b->list);
2131 kfree(b);
2132 }
2133}
2134
2135int hci_bdaddr_list_add(struct list_head *list, bdaddr_t *bdaddr, u8 type)
2136{
2137 struct bdaddr_list *entry;
2138
2139 if (!bacmp(bdaddr, BDADDR_ANY))
2140 return -EBADF;
2141
2142 if (hci_bdaddr_list_lookup(list, bdaddr, type))
2143 return -EEXIST;
2144
2145 entry = kzalloc(sizeof(*entry), GFP_KERNEL);
2146 if (!entry)
2147 return -ENOMEM;
2148
2149 bacpy(&entry->bdaddr, bdaddr);
2150 entry->bdaddr_type = type;
2151
2152 list_add(&entry->list, list);
2153
2154 return 0;
2155}
2156
2157int hci_bdaddr_list_add_with_irk(struct list_head *list, bdaddr_t *bdaddr,
2158 u8 type, u8 *peer_irk, u8 *local_irk)
2159{
2160 struct bdaddr_list_with_irk *entry;
2161
2162 if (!bacmp(bdaddr, BDADDR_ANY))
2163 return -EBADF;
2164
2165 if (hci_bdaddr_list_lookup(list, bdaddr, type))
2166 return -EEXIST;
2167
2168 entry = kzalloc(sizeof(*entry), GFP_KERNEL);
2169 if (!entry)
2170 return -ENOMEM;
2171
2172 bacpy(&entry->bdaddr, bdaddr);
2173 entry->bdaddr_type = type;
2174
2175 if (peer_irk)
2176 memcpy(entry->peer_irk, peer_irk, 16);
2177
2178 if (local_irk)
2179 memcpy(entry->local_irk, local_irk, 16);
2180
2181 list_add(&entry->list, list);
2182
2183 return 0;
2184}
2185
2186int hci_bdaddr_list_add_with_flags(struct list_head *list, bdaddr_t *bdaddr,
2187 u8 type, u32 flags)
2188{
2189 struct bdaddr_list_with_flags *entry;
2190
2191 if (!bacmp(bdaddr, BDADDR_ANY))
2192 return -EBADF;
2193
2194 if (hci_bdaddr_list_lookup(list, bdaddr, type))
2195 return -EEXIST;
2196
2197 entry = kzalloc(sizeof(*entry), GFP_KERNEL);
2198 if (!entry)
2199 return -ENOMEM;
2200
2201 bacpy(&entry->bdaddr, bdaddr);
2202 entry->bdaddr_type = type;
2203 entry->flags = flags;
2204
2205 list_add(&entry->list, list);
2206
2207 return 0;
2208}
2209
2210int hci_bdaddr_list_del(struct list_head *list, bdaddr_t *bdaddr, u8 type)
2211{
2212 struct bdaddr_list *entry;
2213
2214 if (!bacmp(bdaddr, BDADDR_ANY)) {
2215 hci_bdaddr_list_clear(list);
2216 return 0;
2217 }
2218
2219 entry = hci_bdaddr_list_lookup(list, bdaddr, type);
2220 if (!entry)
2221 return -ENOENT;
2222
2223 list_del(&entry->list);
2224 kfree(entry);
2225
2226 return 0;
2227}
2228
2229int hci_bdaddr_list_del_with_irk(struct list_head *list, bdaddr_t *bdaddr,
2230 u8 type)
2231{
2232 struct bdaddr_list_with_irk *entry;
2233
2234 if (!bacmp(bdaddr, BDADDR_ANY)) {
2235 hci_bdaddr_list_clear(list);
2236 return 0;
2237 }
2238
2239 entry = hci_bdaddr_list_lookup_with_irk(list, bdaddr, type);
2240 if (!entry)
2241 return -ENOENT;
2242
2243 list_del(&entry->list);
2244 kfree(entry);
2245
2246 return 0;
2247}
2248
2249int hci_bdaddr_list_del_with_flags(struct list_head *list, bdaddr_t *bdaddr,
2250 u8 type)
2251{
2252 struct bdaddr_list_with_flags *entry;
2253
2254 if (!bacmp(bdaddr, BDADDR_ANY)) {
2255 hci_bdaddr_list_clear(list);
2256 return 0;
2257 }
2258
2259 entry = hci_bdaddr_list_lookup_with_flags(list, bdaddr, type);
2260 if (!entry)
2261 return -ENOENT;
2262
2263 list_del(&entry->list);
2264 kfree(entry);
2265
2266 return 0;
2267}
2268
2269/* This function requires the caller holds hdev->lock */
2270struct hci_conn_params *hci_conn_params_lookup(struct hci_dev *hdev,
2271 bdaddr_t *addr, u8 addr_type)
2272{
2273 struct hci_conn_params *params;
2274
2275 list_for_each_entry(params, &hdev->le_conn_params, list) {
2276 if (bacmp(¶ms->addr, addr) == 0 &&
2277 params->addr_type == addr_type) {
2278 return params;
2279 }
2280 }
2281
2282 return NULL;
2283}
2284
2285/* This function requires the caller holds hdev->lock or rcu_read_lock */
2286struct hci_conn_params *hci_pend_le_action_lookup(struct list_head *list,
2287 bdaddr_t *addr, u8 addr_type)
2288{
2289 struct hci_conn_params *param;
2290
2291 rcu_read_lock();
2292
2293 list_for_each_entry_rcu(param, list, action) {
2294 if (bacmp(¶m->addr, addr) == 0 &&
2295 param->addr_type == addr_type) {
2296 rcu_read_unlock();
2297 return param;
2298 }
2299 }
2300
2301 rcu_read_unlock();
2302
2303 return NULL;
2304}
2305
2306/* This function requires the caller holds hdev->lock */
2307void hci_pend_le_list_del_init(struct hci_conn_params *param)
2308{
2309 if (list_empty(¶m->action))
2310 return;
2311
2312 list_del_rcu(¶m->action);
2313 synchronize_rcu();
2314 INIT_LIST_HEAD(¶m->action);
2315}
2316
2317/* This function requires the caller holds hdev->lock */
2318void hci_pend_le_list_add(struct hci_conn_params *param,
2319 struct list_head *list)
2320{
2321 list_add_rcu(¶m->action, list);
2322}
2323
2324/* This function requires the caller holds hdev->lock */
2325struct hci_conn_params *hci_conn_params_add(struct hci_dev *hdev,
2326 bdaddr_t *addr, u8 addr_type)
2327{
2328 struct hci_conn_params *params;
2329
2330 params = hci_conn_params_lookup(hdev, addr, addr_type);
2331 if (params)
2332 return params;
2333
2334 params = kzalloc(sizeof(*params), GFP_KERNEL);
2335 if (!params) {
2336 bt_dev_err(hdev, "out of memory");
2337 return NULL;
2338 }
2339
2340 bacpy(¶ms->addr, addr);
2341 params->addr_type = addr_type;
2342
2343 list_add(¶ms->list, &hdev->le_conn_params);
2344 INIT_LIST_HEAD(¶ms->action);
2345
2346 params->conn_min_interval = hdev->le_conn_min_interval;
2347 params->conn_max_interval = hdev->le_conn_max_interval;
2348 params->conn_latency = hdev->le_conn_latency;
2349 params->supervision_timeout = hdev->le_supv_timeout;
2350 params->auto_connect = HCI_AUTO_CONN_DISABLED;
2351
2352 BT_DBG("addr %pMR (type %u)", addr, addr_type);
2353
2354 return params;
2355}
2356
2357void hci_conn_params_free(struct hci_conn_params *params)
2358{
2359 hci_pend_le_list_del_init(params);
2360
2361 if (params->conn) {
2362 hci_conn_drop(params->conn);
2363 hci_conn_put(params->conn);
2364 }
2365
2366 list_del(¶ms->list);
2367 kfree(params);
2368}
2369
2370/* This function requires the caller holds hdev->lock */
2371void hci_conn_params_del(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type)
2372{
2373 struct hci_conn_params *params;
2374
2375 params = hci_conn_params_lookup(hdev, addr, addr_type);
2376 if (!params)
2377 return;
2378
2379 hci_conn_params_free(params);
2380
2381 hci_update_passive_scan(hdev);
2382
2383 BT_DBG("addr %pMR (type %u)", addr, addr_type);
2384}
2385
2386/* This function requires the caller holds hdev->lock */
2387void hci_conn_params_clear_disabled(struct hci_dev *hdev)
2388{
2389 struct hci_conn_params *params, *tmp;
2390
2391 list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list) {
2392 if (params->auto_connect != HCI_AUTO_CONN_DISABLED)
2393 continue;
2394
2395 /* If trying to establish one time connection to disabled
2396 * device, leave the params, but mark them as just once.
2397 */
2398 if (params->explicit_connect) {
2399 params->auto_connect = HCI_AUTO_CONN_EXPLICIT;
2400 continue;
2401 }
2402
2403 hci_conn_params_free(params);
2404 }
2405
2406 BT_DBG("All LE disabled connection parameters were removed");
2407}
2408
2409/* This function requires the caller holds hdev->lock */
2410static void hci_conn_params_clear_all(struct hci_dev *hdev)
2411{
2412 struct hci_conn_params *params, *tmp;
2413
2414 list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list)
2415 hci_conn_params_free(params);
2416
2417 BT_DBG("All LE connection parameters were removed");
2418}
2419
2420/* Copy the Identity Address of the controller.
2421 *
2422 * If the controller has a public BD_ADDR, then by default use that one.
2423 * If this is a LE only controller without a public address, default to
2424 * the static random address.
2425 *
2426 * For debugging purposes it is possible to force controllers with a
2427 * public address to use the static random address instead.
2428 *
2429 * In case BR/EDR has been disabled on a dual-mode controller and
2430 * userspace has configured a static address, then that address
2431 * becomes the identity address instead of the public BR/EDR address.
2432 */
2433void hci_copy_identity_address(struct hci_dev *hdev, bdaddr_t *bdaddr,
2434 u8 *bdaddr_type)
2435{
2436 if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
2437 !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
2438 (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
2439 bacmp(&hdev->static_addr, BDADDR_ANY))) {
2440 bacpy(bdaddr, &hdev->static_addr);
2441 *bdaddr_type = ADDR_LE_DEV_RANDOM;
2442 } else {
2443 bacpy(bdaddr, &hdev->bdaddr);
2444 *bdaddr_type = ADDR_LE_DEV_PUBLIC;
2445 }
2446}
2447
2448static void hci_clear_wake_reason(struct hci_dev *hdev)
2449{
2450 hci_dev_lock(hdev);
2451
2452 hdev->wake_reason = 0;
2453 bacpy(&hdev->wake_addr, BDADDR_ANY);
2454 hdev->wake_addr_type = 0;
2455
2456 hci_dev_unlock(hdev);
2457}
2458
2459static int hci_suspend_notifier(struct notifier_block *nb, unsigned long action,
2460 void *data)
2461{
2462 struct hci_dev *hdev =
2463 container_of(nb, struct hci_dev, suspend_notifier);
2464 int ret = 0;
2465
2466 /* Userspace has full control of this device. Do nothing. */
2467 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL))
2468 return NOTIFY_DONE;
2469
2470 /* To avoid a potential race with hci_unregister_dev. */
2471 hci_dev_hold(hdev);
2472
2473 if (action == PM_SUSPEND_PREPARE)
2474 ret = hci_suspend_dev(hdev);
2475 else if (action == PM_POST_SUSPEND)
2476 ret = hci_resume_dev(hdev);
2477
2478 if (ret)
2479 bt_dev_err(hdev, "Suspend notifier action (%lu) failed: %d",
2480 action, ret);
2481
2482 hci_dev_put(hdev);
2483 return NOTIFY_DONE;
2484}
2485
2486/* Alloc HCI device */
2487struct hci_dev *hci_alloc_dev_priv(int sizeof_priv)
2488{
2489 struct hci_dev *hdev;
2490 unsigned int alloc_size;
2491
2492 alloc_size = sizeof(*hdev);
2493 if (sizeof_priv) {
2494 /* Fixme: May need ALIGN-ment? */
2495 alloc_size += sizeof_priv;
2496 }
2497
2498 hdev = kzalloc(alloc_size, GFP_KERNEL);
2499 if (!hdev)
2500 return NULL;
2501
2502 hdev->pkt_type = (HCI_DM1 | HCI_DH1 | HCI_HV1);
2503 hdev->esco_type = (ESCO_HV1);
2504 hdev->link_mode = (HCI_LM_ACCEPT);
2505 hdev->num_iac = 0x01; /* One IAC support is mandatory */
2506 hdev->io_capability = 0x03; /* No Input No Output */
2507 hdev->manufacturer = 0xffff; /* Default to internal use */
2508 hdev->inq_tx_power = HCI_TX_POWER_INVALID;
2509 hdev->adv_tx_power = HCI_TX_POWER_INVALID;
2510 hdev->adv_instance_cnt = 0;
2511 hdev->cur_adv_instance = 0x00;
2512 hdev->adv_instance_timeout = 0;
2513
2514 hdev->advmon_allowlist_duration = 300;
2515 hdev->advmon_no_filter_duration = 500;
2516 hdev->enable_advmon_interleave_scan = 0x00; /* Default to disable */
2517
2518 hdev->sniff_max_interval = 800;
2519 hdev->sniff_min_interval = 80;
2520
2521 hdev->le_adv_channel_map = 0x07;
2522 hdev->le_adv_min_interval = 0x0800;
2523 hdev->le_adv_max_interval = 0x0800;
2524 hdev->le_scan_interval = 0x0060;
2525 hdev->le_scan_window = 0x0030;
2526 hdev->le_scan_int_suspend = 0x0400;
2527 hdev->le_scan_window_suspend = 0x0012;
2528 hdev->le_scan_int_discovery = DISCOV_LE_SCAN_INT;
2529 hdev->le_scan_window_discovery = DISCOV_LE_SCAN_WIN;
2530 hdev->le_scan_int_adv_monitor = 0x0060;
2531 hdev->le_scan_window_adv_monitor = 0x0030;
2532 hdev->le_scan_int_connect = 0x0060;
2533 hdev->le_scan_window_connect = 0x0060;
2534 hdev->le_conn_min_interval = 0x0018;
2535 hdev->le_conn_max_interval = 0x0028;
2536 hdev->le_conn_latency = 0x0000;
2537 hdev->le_supv_timeout = 0x002a;
2538 hdev->le_def_tx_len = 0x001b;
2539 hdev->le_def_tx_time = 0x0148;
2540 hdev->le_max_tx_len = 0x001b;
2541 hdev->le_max_tx_time = 0x0148;
2542 hdev->le_max_rx_len = 0x001b;
2543 hdev->le_max_rx_time = 0x0148;
2544 hdev->le_max_key_size = SMP_MAX_ENC_KEY_SIZE;
2545 hdev->le_min_key_size = SMP_MIN_ENC_KEY_SIZE;
2546 hdev->le_tx_def_phys = HCI_LE_SET_PHY_1M;
2547 hdev->le_rx_def_phys = HCI_LE_SET_PHY_1M;
2548 hdev->le_num_of_adv_sets = HCI_MAX_ADV_INSTANCES;
2549 hdev->def_multi_adv_rotation_duration = HCI_DEFAULT_ADV_DURATION;
2550 hdev->def_le_autoconnect_timeout = HCI_LE_AUTOCONN_TIMEOUT;
2551 hdev->min_le_tx_power = HCI_TX_POWER_INVALID;
2552 hdev->max_le_tx_power = HCI_TX_POWER_INVALID;
2553
2554 hdev->rpa_timeout = HCI_DEFAULT_RPA_TIMEOUT;
2555 hdev->discov_interleaved_timeout = DISCOV_INTERLEAVED_TIMEOUT;
2556 hdev->conn_info_min_age = DEFAULT_CONN_INFO_MIN_AGE;
2557 hdev->conn_info_max_age = DEFAULT_CONN_INFO_MAX_AGE;
2558 hdev->auth_payload_timeout = DEFAULT_AUTH_PAYLOAD_TIMEOUT;
2559 hdev->min_enc_key_size = HCI_MIN_ENC_KEY_SIZE;
2560
2561 /* default 1.28 sec page scan */
2562 hdev->def_page_scan_type = PAGE_SCAN_TYPE_STANDARD;
2563 hdev->def_page_scan_int = 0x0800;
2564 hdev->def_page_scan_window = 0x0012;
2565
2566 mutex_init(&hdev->lock);
2567 mutex_init(&hdev->req_lock);
2568
2569 ida_init(&hdev->unset_handle_ida);
2570
2571 INIT_LIST_HEAD(&hdev->mesh_pending);
2572 INIT_LIST_HEAD(&hdev->mgmt_pending);
2573 INIT_LIST_HEAD(&hdev->reject_list);
2574 INIT_LIST_HEAD(&hdev->accept_list);
2575 INIT_LIST_HEAD(&hdev->uuids);
2576 INIT_LIST_HEAD(&hdev->link_keys);
2577 INIT_LIST_HEAD(&hdev->long_term_keys);
2578 INIT_LIST_HEAD(&hdev->identity_resolving_keys);
2579 INIT_LIST_HEAD(&hdev->remote_oob_data);
2580 INIT_LIST_HEAD(&hdev->le_accept_list);
2581 INIT_LIST_HEAD(&hdev->le_resolv_list);
2582 INIT_LIST_HEAD(&hdev->le_conn_params);
2583 INIT_LIST_HEAD(&hdev->pend_le_conns);
2584 INIT_LIST_HEAD(&hdev->pend_le_reports);
2585 INIT_LIST_HEAD(&hdev->conn_hash.list);
2586 INIT_LIST_HEAD(&hdev->adv_instances);
2587 INIT_LIST_HEAD(&hdev->blocked_keys);
2588 INIT_LIST_HEAD(&hdev->monitored_devices);
2589
2590 INIT_LIST_HEAD(&hdev->local_codecs);
2591 INIT_WORK(&hdev->rx_work, hci_rx_work);
2592 INIT_WORK(&hdev->cmd_work, hci_cmd_work);
2593 INIT_WORK(&hdev->tx_work, hci_tx_work);
2594 INIT_WORK(&hdev->power_on, hci_power_on);
2595 INIT_WORK(&hdev->error_reset, hci_error_reset);
2596
2597 hci_cmd_sync_init(hdev);
2598
2599 INIT_DELAYED_WORK(&hdev->power_off, hci_power_off);
2600
2601 skb_queue_head_init(&hdev->rx_q);
2602 skb_queue_head_init(&hdev->cmd_q);
2603 skb_queue_head_init(&hdev->raw_q);
2604
2605 init_waitqueue_head(&hdev->req_wait_q);
2606
2607 INIT_DELAYED_WORK(&hdev->cmd_timer, hci_cmd_timeout);
2608 INIT_DELAYED_WORK(&hdev->ncmd_timer, hci_ncmd_timeout);
2609
2610 hci_devcd_setup(hdev);
2611 hci_request_setup(hdev);
2612
2613 hci_init_sysfs(hdev);
2614 discovery_init(hdev);
2615
2616 return hdev;
2617}
2618EXPORT_SYMBOL(hci_alloc_dev_priv);
2619
2620/* Free HCI device */
2621void hci_free_dev(struct hci_dev *hdev)
2622{
2623 /* will free via device release */
2624 put_device(&hdev->dev);
2625}
2626EXPORT_SYMBOL(hci_free_dev);
2627
2628/* Register HCI device */
2629int hci_register_dev(struct hci_dev *hdev)
2630{
2631 int id, error;
2632
2633 if (!hdev->open || !hdev->close || !hdev->send)
2634 return -EINVAL;
2635
2636 id = ida_alloc_max(&hci_index_ida, HCI_MAX_ID - 1, GFP_KERNEL);
2637 if (id < 0)
2638 return id;
2639
2640 error = dev_set_name(&hdev->dev, "hci%u", id);
2641 if (error)
2642 return error;
2643
2644 hdev->name = dev_name(&hdev->dev);
2645 hdev->id = id;
2646
2647 BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
2648
2649 hdev->workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI, hdev->name);
2650 if (!hdev->workqueue) {
2651 error = -ENOMEM;
2652 goto err;
2653 }
2654
2655 hdev->req_workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI,
2656 hdev->name);
2657 if (!hdev->req_workqueue) {
2658 destroy_workqueue(hdev->workqueue);
2659 error = -ENOMEM;
2660 goto err;
2661 }
2662
2663 if (!IS_ERR_OR_NULL(bt_debugfs))
2664 hdev->debugfs = debugfs_create_dir(hdev->name, bt_debugfs);
2665
2666 error = device_add(&hdev->dev);
2667 if (error < 0)
2668 goto err_wqueue;
2669
2670 hci_leds_init(hdev);
2671
2672 hdev->rfkill = rfkill_alloc(hdev->name, &hdev->dev,
2673 RFKILL_TYPE_BLUETOOTH, &hci_rfkill_ops,
2674 hdev);
2675 if (hdev->rfkill) {
2676 if (rfkill_register(hdev->rfkill) < 0) {
2677 rfkill_destroy(hdev->rfkill);
2678 hdev->rfkill = NULL;
2679 }
2680 }
2681
2682 if (hdev->rfkill && rfkill_blocked(hdev->rfkill))
2683 hci_dev_set_flag(hdev, HCI_RFKILLED);
2684
2685 hci_dev_set_flag(hdev, HCI_SETUP);
2686 hci_dev_set_flag(hdev, HCI_AUTO_OFF);
2687
2688 /* Assume BR/EDR support until proven otherwise (such as
2689 * through reading supported features during init.
2690 */
2691 hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
2692
2693 write_lock(&hci_dev_list_lock);
2694 list_add(&hdev->list, &hci_dev_list);
2695 write_unlock(&hci_dev_list_lock);
2696
2697 /* Devices that are marked for raw-only usage are unconfigured
2698 * and should not be included in normal operation.
2699 */
2700 if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
2701 hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
2702
2703 /* Mark Remote Wakeup connection flag as supported if driver has wakeup
2704 * callback.
2705 */
2706 if (hdev->wakeup)
2707 hdev->conn_flags |= HCI_CONN_FLAG_REMOTE_WAKEUP;
2708
2709 hci_sock_dev_event(hdev, HCI_DEV_REG);
2710 hci_dev_hold(hdev);
2711
2712 error = hci_register_suspend_notifier(hdev);
2713 if (error)
2714 BT_WARN("register suspend notifier failed error:%d\n", error);
2715
2716 queue_work(hdev->req_workqueue, &hdev->power_on);
2717
2718 idr_init(&hdev->adv_monitors_idr);
2719 msft_register(hdev);
2720
2721 return id;
2722
2723err_wqueue:
2724 debugfs_remove_recursive(hdev->debugfs);
2725 destroy_workqueue(hdev->workqueue);
2726 destroy_workqueue(hdev->req_workqueue);
2727err:
2728 ida_free(&hci_index_ida, hdev->id);
2729
2730 return error;
2731}
2732EXPORT_SYMBOL(hci_register_dev);
2733
2734/* Unregister HCI device */
2735void hci_unregister_dev(struct hci_dev *hdev)
2736{
2737 BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
2738
2739 mutex_lock(&hdev->unregister_lock);
2740 hci_dev_set_flag(hdev, HCI_UNREGISTER);
2741 mutex_unlock(&hdev->unregister_lock);
2742
2743 write_lock(&hci_dev_list_lock);
2744 list_del(&hdev->list);
2745 write_unlock(&hci_dev_list_lock);
2746
2747 cancel_work_sync(&hdev->power_on);
2748
2749 hci_cmd_sync_clear(hdev);
2750
2751 hci_unregister_suspend_notifier(hdev);
2752
2753 hci_dev_do_close(hdev);
2754
2755 if (!test_bit(HCI_INIT, &hdev->flags) &&
2756 !hci_dev_test_flag(hdev, HCI_SETUP) &&
2757 !hci_dev_test_flag(hdev, HCI_CONFIG)) {
2758 hci_dev_lock(hdev);
2759 mgmt_index_removed(hdev);
2760 hci_dev_unlock(hdev);
2761 }
2762
2763 /* mgmt_index_removed should take care of emptying the
2764 * pending list */
2765 BUG_ON(!list_empty(&hdev->mgmt_pending));
2766
2767 hci_sock_dev_event(hdev, HCI_DEV_UNREG);
2768
2769 if (hdev->rfkill) {
2770 rfkill_unregister(hdev->rfkill);
2771 rfkill_destroy(hdev->rfkill);
2772 }
2773
2774 device_del(&hdev->dev);
2775 /* Actual cleanup is deferred until hci_release_dev(). */
2776 hci_dev_put(hdev);
2777}
2778EXPORT_SYMBOL(hci_unregister_dev);
2779
2780/* Release HCI device */
2781void hci_release_dev(struct hci_dev *hdev)
2782{
2783 debugfs_remove_recursive(hdev->debugfs);
2784 kfree_const(hdev->hw_info);
2785 kfree_const(hdev->fw_info);
2786
2787 destroy_workqueue(hdev->workqueue);
2788 destroy_workqueue(hdev->req_workqueue);
2789
2790 hci_dev_lock(hdev);
2791 hci_bdaddr_list_clear(&hdev->reject_list);
2792 hci_bdaddr_list_clear(&hdev->accept_list);
2793 hci_uuids_clear(hdev);
2794 hci_link_keys_clear(hdev);
2795 hci_smp_ltks_clear(hdev);
2796 hci_smp_irks_clear(hdev);
2797 hci_remote_oob_data_clear(hdev);
2798 hci_adv_instances_clear(hdev);
2799 hci_adv_monitors_clear(hdev);
2800 hci_bdaddr_list_clear(&hdev->le_accept_list);
2801 hci_bdaddr_list_clear(&hdev->le_resolv_list);
2802 hci_conn_params_clear_all(hdev);
2803 hci_discovery_filter_clear(hdev);
2804 hci_blocked_keys_clear(hdev);
2805 hci_codec_list_clear(&hdev->local_codecs);
2806 msft_release(hdev);
2807 hci_dev_unlock(hdev);
2808
2809 ida_destroy(&hdev->unset_handle_ida);
2810 ida_free(&hci_index_ida, hdev->id);
2811 kfree_skb(hdev->sent_cmd);
2812 kfree_skb(hdev->req_skb);
2813 kfree_skb(hdev->recv_event);
2814 kfree(hdev);
2815}
2816EXPORT_SYMBOL(hci_release_dev);
2817
2818int hci_register_suspend_notifier(struct hci_dev *hdev)
2819{
2820 int ret = 0;
2821
2822 if (!hdev->suspend_notifier.notifier_call &&
2823 !test_bit(HCI_QUIRK_NO_SUSPEND_NOTIFIER, &hdev->quirks)) {
2824 hdev->suspend_notifier.notifier_call = hci_suspend_notifier;
2825 ret = register_pm_notifier(&hdev->suspend_notifier);
2826 }
2827
2828 return ret;
2829}
2830
2831int hci_unregister_suspend_notifier(struct hci_dev *hdev)
2832{
2833 int ret = 0;
2834
2835 if (hdev->suspend_notifier.notifier_call) {
2836 ret = unregister_pm_notifier(&hdev->suspend_notifier);
2837 if (!ret)
2838 hdev->suspend_notifier.notifier_call = NULL;
2839 }
2840
2841 return ret;
2842}
2843
2844/* Cancel ongoing command synchronously:
2845 *
2846 * - Cancel command timer
2847 * - Reset command counter
2848 * - Cancel command request
2849 */
2850static void hci_cancel_cmd_sync(struct hci_dev *hdev, int err)
2851{
2852 bt_dev_dbg(hdev, "err 0x%2.2x", err);
2853
2854 cancel_delayed_work_sync(&hdev->cmd_timer);
2855 cancel_delayed_work_sync(&hdev->ncmd_timer);
2856 atomic_set(&hdev->cmd_cnt, 1);
2857
2858 hci_cmd_sync_cancel_sync(hdev, err);
2859}
2860
2861/* Suspend HCI device */
2862int hci_suspend_dev(struct hci_dev *hdev)
2863{
2864 int ret;
2865
2866 bt_dev_dbg(hdev, "");
2867
2868 /* Suspend should only act on when powered. */
2869 if (!hdev_is_powered(hdev) ||
2870 hci_dev_test_flag(hdev, HCI_UNREGISTER))
2871 return 0;
2872
2873 /* If powering down don't attempt to suspend */
2874 if (mgmt_powering_down(hdev))
2875 return 0;
2876
2877 /* Cancel potentially blocking sync operation before suspend */
2878 hci_cancel_cmd_sync(hdev, EHOSTDOWN);
2879
2880 hci_req_sync_lock(hdev);
2881 ret = hci_suspend_sync(hdev);
2882 hci_req_sync_unlock(hdev);
2883
2884 hci_clear_wake_reason(hdev);
2885 mgmt_suspending(hdev, hdev->suspend_state);
2886
2887 hci_sock_dev_event(hdev, HCI_DEV_SUSPEND);
2888 return ret;
2889}
2890EXPORT_SYMBOL(hci_suspend_dev);
2891
2892/* Resume HCI device */
2893int hci_resume_dev(struct hci_dev *hdev)
2894{
2895 int ret;
2896
2897 bt_dev_dbg(hdev, "");
2898
2899 /* Resume should only act on when powered. */
2900 if (!hdev_is_powered(hdev) ||
2901 hci_dev_test_flag(hdev, HCI_UNREGISTER))
2902 return 0;
2903
2904 /* If powering down don't attempt to resume */
2905 if (mgmt_powering_down(hdev))
2906 return 0;
2907
2908 hci_req_sync_lock(hdev);
2909 ret = hci_resume_sync(hdev);
2910 hci_req_sync_unlock(hdev);
2911
2912 mgmt_resuming(hdev, hdev->wake_reason, &hdev->wake_addr,
2913 hdev->wake_addr_type);
2914
2915 hci_sock_dev_event(hdev, HCI_DEV_RESUME);
2916 return ret;
2917}
2918EXPORT_SYMBOL(hci_resume_dev);
2919
2920/* Reset HCI device */
2921int hci_reset_dev(struct hci_dev *hdev)
2922{
2923 static const u8 hw_err[] = { HCI_EV_HARDWARE_ERROR, 0x01, 0x00 };
2924 struct sk_buff *skb;
2925
2926 skb = bt_skb_alloc(3, GFP_ATOMIC);
2927 if (!skb)
2928 return -ENOMEM;
2929
2930 hci_skb_pkt_type(skb) = HCI_EVENT_PKT;
2931 skb_put_data(skb, hw_err, 3);
2932
2933 bt_dev_err(hdev, "Injecting HCI hardware error event");
2934
2935 /* Send Hardware Error to upper stack */
2936 return hci_recv_frame(hdev, skb);
2937}
2938EXPORT_SYMBOL(hci_reset_dev);
2939
2940/* Receive frame from HCI drivers */
2941int hci_recv_frame(struct hci_dev *hdev, struct sk_buff *skb)
2942{
2943 if (!hdev || (!test_bit(HCI_UP, &hdev->flags)
2944 && !test_bit(HCI_INIT, &hdev->flags))) {
2945 kfree_skb(skb);
2946 return -ENXIO;
2947 }
2948
2949 switch (hci_skb_pkt_type(skb)) {
2950 case HCI_EVENT_PKT:
2951 break;
2952 case HCI_ACLDATA_PKT:
2953 /* Detect if ISO packet has been sent as ACL */
2954 if (hci_conn_num(hdev, ISO_LINK)) {
2955 __u16 handle = __le16_to_cpu(hci_acl_hdr(skb)->handle);
2956 __u8 type;
2957
2958 type = hci_conn_lookup_type(hdev, hci_handle(handle));
2959 if (type == ISO_LINK)
2960 hci_skb_pkt_type(skb) = HCI_ISODATA_PKT;
2961 }
2962 break;
2963 case HCI_SCODATA_PKT:
2964 break;
2965 case HCI_ISODATA_PKT:
2966 break;
2967 default:
2968 kfree_skb(skb);
2969 return -EINVAL;
2970 }
2971
2972 /* Incoming skb */
2973 bt_cb(skb)->incoming = 1;
2974
2975 /* Time stamp */
2976 __net_timestamp(skb);
2977
2978 skb_queue_tail(&hdev->rx_q, skb);
2979 queue_work(hdev->workqueue, &hdev->rx_work);
2980
2981 return 0;
2982}
2983EXPORT_SYMBOL(hci_recv_frame);
2984
2985/* Receive diagnostic message from HCI drivers */
2986int hci_recv_diag(struct hci_dev *hdev, struct sk_buff *skb)
2987{
2988 /* Mark as diagnostic packet */
2989 hci_skb_pkt_type(skb) = HCI_DIAG_PKT;
2990
2991 /* Time stamp */
2992 __net_timestamp(skb);
2993
2994 skb_queue_tail(&hdev->rx_q, skb);
2995 queue_work(hdev->workqueue, &hdev->rx_work);
2996
2997 return 0;
2998}
2999EXPORT_SYMBOL(hci_recv_diag);
3000
3001void hci_set_hw_info(struct hci_dev *hdev, const char *fmt, ...)
3002{
3003 va_list vargs;
3004
3005 va_start(vargs, fmt);
3006 kfree_const(hdev->hw_info);
3007 hdev->hw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
3008 va_end(vargs);
3009}
3010EXPORT_SYMBOL(hci_set_hw_info);
3011
3012void hci_set_fw_info(struct hci_dev *hdev, const char *fmt, ...)
3013{
3014 va_list vargs;
3015
3016 va_start(vargs, fmt);
3017 kfree_const(hdev->fw_info);
3018 hdev->fw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
3019 va_end(vargs);
3020}
3021EXPORT_SYMBOL(hci_set_fw_info);
3022
3023/* ---- Interface to upper protocols ---- */
3024
3025int hci_register_cb(struct hci_cb *cb)
3026{
3027 BT_DBG("%p name %s", cb, cb->name);
3028
3029 mutex_lock(&hci_cb_list_lock);
3030 list_add_tail(&cb->list, &hci_cb_list);
3031 mutex_unlock(&hci_cb_list_lock);
3032
3033 return 0;
3034}
3035EXPORT_SYMBOL(hci_register_cb);
3036
3037int hci_unregister_cb(struct hci_cb *cb)
3038{
3039 BT_DBG("%p name %s", cb, cb->name);
3040
3041 mutex_lock(&hci_cb_list_lock);
3042 list_del(&cb->list);
3043 mutex_unlock(&hci_cb_list_lock);
3044
3045 return 0;
3046}
3047EXPORT_SYMBOL(hci_unregister_cb);
3048
3049static int hci_send_frame(struct hci_dev *hdev, struct sk_buff *skb)
3050{
3051 int err;
3052
3053 BT_DBG("%s type %d len %d", hdev->name, hci_skb_pkt_type(skb),
3054 skb->len);
3055
3056 /* Time stamp */
3057 __net_timestamp(skb);
3058
3059 /* Send copy to monitor */
3060 hci_send_to_monitor(hdev, skb);
3061
3062 if (atomic_read(&hdev->promisc)) {
3063 /* Send copy to the sockets */
3064 hci_send_to_sock(hdev, skb);
3065 }
3066
3067 /* Get rid of skb owner, prior to sending to the driver. */
3068 skb_orphan(skb);
3069
3070 if (!test_bit(HCI_RUNNING, &hdev->flags)) {
3071 kfree_skb(skb);
3072 return -EINVAL;
3073 }
3074
3075 err = hdev->send(hdev, skb);
3076 if (err < 0) {
3077 bt_dev_err(hdev, "sending frame failed (%d)", err);
3078 kfree_skb(skb);
3079 return err;
3080 }
3081
3082 return 0;
3083}
3084
3085/* Send HCI command */
3086int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen,
3087 const void *param)
3088{
3089 struct sk_buff *skb;
3090
3091 BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen);
3092
3093 skb = hci_prepare_cmd(hdev, opcode, plen, param);
3094 if (!skb) {
3095 bt_dev_err(hdev, "no memory for command");
3096 return -ENOMEM;
3097 }
3098
3099 /* Stand-alone HCI commands must be flagged as
3100 * single-command requests.
3101 */
3102 bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
3103
3104 skb_queue_tail(&hdev->cmd_q, skb);
3105 queue_work(hdev->workqueue, &hdev->cmd_work);
3106
3107 return 0;
3108}
3109
3110int __hci_cmd_send(struct hci_dev *hdev, u16 opcode, u32 plen,
3111 const void *param)
3112{
3113 struct sk_buff *skb;
3114
3115 if (hci_opcode_ogf(opcode) != 0x3f) {
3116 /* A controller receiving a command shall respond with either
3117 * a Command Status Event or a Command Complete Event.
3118 * Therefore, all standard HCI commands must be sent via the
3119 * standard API, using hci_send_cmd or hci_cmd_sync helpers.
3120 * Some vendors do not comply with this rule for vendor-specific
3121 * commands and do not return any event. We want to support
3122 * unresponded commands for such cases only.
3123 */
3124 bt_dev_err(hdev, "unresponded command not supported");
3125 return -EINVAL;
3126 }
3127
3128 skb = hci_prepare_cmd(hdev, opcode, plen, param);
3129 if (!skb) {
3130 bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)",
3131 opcode);
3132 return -ENOMEM;
3133 }
3134
3135 hci_send_frame(hdev, skb);
3136
3137 return 0;
3138}
3139EXPORT_SYMBOL(__hci_cmd_send);
3140
3141/* Get data from the previously sent command */
3142static void *hci_cmd_data(struct sk_buff *skb, __u16 opcode)
3143{
3144 struct hci_command_hdr *hdr;
3145
3146 if (!skb || skb->len < HCI_COMMAND_HDR_SIZE)
3147 return NULL;
3148
3149 hdr = (void *)skb->data;
3150
3151 if (hdr->opcode != cpu_to_le16(opcode))
3152 return NULL;
3153
3154 return skb->data + HCI_COMMAND_HDR_SIZE;
3155}
3156
3157/* Get data from the previously sent command */
3158void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode)
3159{
3160 void *data;
3161
3162 /* Check if opcode matches last sent command */
3163 data = hci_cmd_data(hdev->sent_cmd, opcode);
3164 if (!data)
3165 /* Check if opcode matches last request */
3166 data = hci_cmd_data(hdev->req_skb, opcode);
3167
3168 return data;
3169}
3170
3171/* Get data from last received event */
3172void *hci_recv_event_data(struct hci_dev *hdev, __u8 event)
3173{
3174 struct hci_event_hdr *hdr;
3175 int offset;
3176
3177 if (!hdev->recv_event)
3178 return NULL;
3179
3180 hdr = (void *)hdev->recv_event->data;
3181 offset = sizeof(*hdr);
3182
3183 if (hdr->evt != event) {
3184 /* In case of LE metaevent check the subevent match */
3185 if (hdr->evt == HCI_EV_LE_META) {
3186 struct hci_ev_le_meta *ev;
3187
3188 ev = (void *)hdev->recv_event->data + offset;
3189 offset += sizeof(*ev);
3190 if (ev->subevent == event)
3191 goto found;
3192 }
3193 return NULL;
3194 }
3195
3196found:
3197 bt_dev_dbg(hdev, "event 0x%2.2x", event);
3198
3199 return hdev->recv_event->data + offset;
3200}
3201
3202/* Send ACL data */
3203static void hci_add_acl_hdr(struct sk_buff *skb, __u16 handle, __u16 flags)
3204{
3205 struct hci_acl_hdr *hdr;
3206 int len = skb->len;
3207
3208 skb_push(skb, HCI_ACL_HDR_SIZE);
3209 skb_reset_transport_header(skb);
3210 hdr = (struct hci_acl_hdr *)skb_transport_header(skb);
3211 hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
3212 hdr->dlen = cpu_to_le16(len);
3213}
3214
3215static void hci_queue_acl(struct hci_chan *chan, struct sk_buff_head *queue,
3216 struct sk_buff *skb, __u16 flags)
3217{
3218 struct hci_conn *conn = chan->conn;
3219 struct hci_dev *hdev = conn->hdev;
3220 struct sk_buff *list;
3221
3222 skb->len = skb_headlen(skb);
3223 skb->data_len = 0;
3224
3225 hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
3226
3227 hci_add_acl_hdr(skb, conn->handle, flags);
3228
3229 list = skb_shinfo(skb)->frag_list;
3230 if (!list) {
3231 /* Non fragmented */
3232 BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
3233
3234 skb_queue_tail(queue, skb);
3235 } else {
3236 /* Fragmented */
3237 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3238
3239 skb_shinfo(skb)->frag_list = NULL;
3240
3241 /* Queue all fragments atomically. We need to use spin_lock_bh
3242 * here because of 6LoWPAN links, as there this function is
3243 * called from softirq and using normal spin lock could cause
3244 * deadlocks.
3245 */
3246 spin_lock_bh(&queue->lock);
3247
3248 __skb_queue_tail(queue, skb);
3249
3250 flags &= ~ACL_START;
3251 flags |= ACL_CONT;
3252 do {
3253 skb = list; list = list->next;
3254
3255 hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
3256 hci_add_acl_hdr(skb, conn->handle, flags);
3257
3258 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3259
3260 __skb_queue_tail(queue, skb);
3261 } while (list);
3262
3263 spin_unlock_bh(&queue->lock);
3264 }
3265}
3266
3267void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags)
3268{
3269 struct hci_dev *hdev = chan->conn->hdev;
3270
3271 BT_DBG("%s chan %p flags 0x%4.4x", hdev->name, chan, flags);
3272
3273 hci_queue_acl(chan, &chan->data_q, skb, flags);
3274
3275 queue_work(hdev->workqueue, &hdev->tx_work);
3276}
3277
3278/* Send SCO data */
3279void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb)
3280{
3281 struct hci_dev *hdev = conn->hdev;
3282 struct hci_sco_hdr hdr;
3283
3284 BT_DBG("%s len %d", hdev->name, skb->len);
3285
3286 hdr.handle = cpu_to_le16(conn->handle);
3287 hdr.dlen = skb->len;
3288
3289 skb_push(skb, HCI_SCO_HDR_SIZE);
3290 skb_reset_transport_header(skb);
3291 memcpy(skb_transport_header(skb), &hdr, HCI_SCO_HDR_SIZE);
3292
3293 hci_skb_pkt_type(skb) = HCI_SCODATA_PKT;
3294
3295 skb_queue_tail(&conn->data_q, skb);
3296 queue_work(hdev->workqueue, &hdev->tx_work);
3297}
3298
3299/* Send ISO data */
3300static void hci_add_iso_hdr(struct sk_buff *skb, __u16 handle, __u8 flags)
3301{
3302 struct hci_iso_hdr *hdr;
3303 int len = skb->len;
3304
3305 skb_push(skb, HCI_ISO_HDR_SIZE);
3306 skb_reset_transport_header(skb);
3307 hdr = (struct hci_iso_hdr *)skb_transport_header(skb);
3308 hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
3309 hdr->dlen = cpu_to_le16(len);
3310}
3311
3312static void hci_queue_iso(struct hci_conn *conn, struct sk_buff_head *queue,
3313 struct sk_buff *skb)
3314{
3315 struct hci_dev *hdev = conn->hdev;
3316 struct sk_buff *list;
3317 __u16 flags;
3318
3319 skb->len = skb_headlen(skb);
3320 skb->data_len = 0;
3321
3322 hci_skb_pkt_type(skb) = HCI_ISODATA_PKT;
3323
3324 list = skb_shinfo(skb)->frag_list;
3325
3326 flags = hci_iso_flags_pack(list ? ISO_START : ISO_SINGLE, 0x00);
3327 hci_add_iso_hdr(skb, conn->handle, flags);
3328
3329 if (!list) {
3330 /* Non fragmented */
3331 BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
3332
3333 skb_queue_tail(queue, skb);
3334 } else {
3335 /* Fragmented */
3336 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3337
3338 skb_shinfo(skb)->frag_list = NULL;
3339
3340 __skb_queue_tail(queue, skb);
3341
3342 do {
3343 skb = list; list = list->next;
3344
3345 hci_skb_pkt_type(skb) = HCI_ISODATA_PKT;
3346 flags = hci_iso_flags_pack(list ? ISO_CONT : ISO_END,
3347 0x00);
3348 hci_add_iso_hdr(skb, conn->handle, flags);
3349
3350 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3351
3352 __skb_queue_tail(queue, skb);
3353 } while (list);
3354 }
3355}
3356
3357void hci_send_iso(struct hci_conn *conn, struct sk_buff *skb)
3358{
3359 struct hci_dev *hdev = conn->hdev;
3360
3361 BT_DBG("%s len %d", hdev->name, skb->len);
3362
3363 hci_queue_iso(conn, &conn->data_q, skb);
3364
3365 queue_work(hdev->workqueue, &hdev->tx_work);
3366}
3367
3368/* ---- HCI TX task (outgoing data) ---- */
3369
3370/* HCI Connection scheduler */
3371static inline void hci_quote_sent(struct hci_conn *conn, int num, int *quote)
3372{
3373 struct hci_dev *hdev;
3374 int cnt, q;
3375
3376 if (!conn) {
3377 *quote = 0;
3378 return;
3379 }
3380
3381 hdev = conn->hdev;
3382
3383 switch (conn->type) {
3384 case ACL_LINK:
3385 cnt = hdev->acl_cnt;
3386 break;
3387 case SCO_LINK:
3388 case ESCO_LINK:
3389 cnt = hdev->sco_cnt;
3390 break;
3391 case LE_LINK:
3392 cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3393 break;
3394 case ISO_LINK:
3395 cnt = hdev->iso_mtu ? hdev->iso_cnt :
3396 hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3397 break;
3398 default:
3399 cnt = 0;
3400 bt_dev_err(hdev, "unknown link type %d", conn->type);
3401 }
3402
3403 q = cnt / num;
3404 *quote = q ? q : 1;
3405}
3406
3407static struct hci_conn *hci_low_sent(struct hci_dev *hdev, __u8 type,
3408 int *quote)
3409{
3410 struct hci_conn_hash *h = &hdev->conn_hash;
3411 struct hci_conn *conn = NULL, *c;
3412 unsigned int num = 0, min = ~0;
3413
3414 /* We don't have to lock device here. Connections are always
3415 * added and removed with TX task disabled. */
3416
3417 rcu_read_lock();
3418
3419 list_for_each_entry_rcu(c, &h->list, list) {
3420 if (c->type != type || skb_queue_empty(&c->data_q))
3421 continue;
3422
3423 if (c->state != BT_CONNECTED && c->state != BT_CONFIG)
3424 continue;
3425
3426 num++;
3427
3428 if (c->sent < min) {
3429 min = c->sent;
3430 conn = c;
3431 }
3432
3433 if (hci_conn_num(hdev, type) == num)
3434 break;
3435 }
3436
3437 rcu_read_unlock();
3438
3439 hci_quote_sent(conn, num, quote);
3440
3441 BT_DBG("conn %p quote %d", conn, *quote);
3442 return conn;
3443}
3444
3445static void hci_link_tx_to(struct hci_dev *hdev, __u8 type)
3446{
3447 struct hci_conn_hash *h = &hdev->conn_hash;
3448 struct hci_conn *c;
3449
3450 bt_dev_err(hdev, "link tx timeout");
3451
3452 rcu_read_lock();
3453
3454 /* Kill stalled connections */
3455 list_for_each_entry_rcu(c, &h->list, list) {
3456 if (c->type == type && c->sent) {
3457 bt_dev_err(hdev, "killing stalled connection %pMR",
3458 &c->dst);
3459 /* hci_disconnect might sleep, so, we have to release
3460 * the RCU read lock before calling it.
3461 */
3462 rcu_read_unlock();
3463 hci_disconnect(c, HCI_ERROR_REMOTE_USER_TERM);
3464 rcu_read_lock();
3465 }
3466 }
3467
3468 rcu_read_unlock();
3469}
3470
3471static struct hci_chan *hci_chan_sent(struct hci_dev *hdev, __u8 type,
3472 int *quote)
3473{
3474 struct hci_conn_hash *h = &hdev->conn_hash;
3475 struct hci_chan *chan = NULL;
3476 unsigned int num = 0, min = ~0, cur_prio = 0;
3477 struct hci_conn *conn;
3478 int conn_num = 0;
3479
3480 BT_DBG("%s", hdev->name);
3481
3482 rcu_read_lock();
3483
3484 list_for_each_entry_rcu(conn, &h->list, list) {
3485 struct hci_chan *tmp;
3486
3487 if (conn->type != type)
3488 continue;
3489
3490 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3491 continue;
3492
3493 conn_num++;
3494
3495 list_for_each_entry_rcu(tmp, &conn->chan_list, list) {
3496 struct sk_buff *skb;
3497
3498 if (skb_queue_empty(&tmp->data_q))
3499 continue;
3500
3501 skb = skb_peek(&tmp->data_q);
3502 if (skb->priority < cur_prio)
3503 continue;
3504
3505 if (skb->priority > cur_prio) {
3506 num = 0;
3507 min = ~0;
3508 cur_prio = skb->priority;
3509 }
3510
3511 num++;
3512
3513 if (conn->sent < min) {
3514 min = conn->sent;
3515 chan = tmp;
3516 }
3517 }
3518
3519 if (hci_conn_num(hdev, type) == conn_num)
3520 break;
3521 }
3522
3523 rcu_read_unlock();
3524
3525 if (!chan)
3526 return NULL;
3527
3528 hci_quote_sent(chan->conn, num, quote);
3529
3530 BT_DBG("chan %p quote %d", chan, *quote);
3531 return chan;
3532}
3533
3534static void hci_prio_recalculate(struct hci_dev *hdev, __u8 type)
3535{
3536 struct hci_conn_hash *h = &hdev->conn_hash;
3537 struct hci_conn *conn;
3538 int num = 0;
3539
3540 BT_DBG("%s", hdev->name);
3541
3542 rcu_read_lock();
3543
3544 list_for_each_entry_rcu(conn, &h->list, list) {
3545 struct hci_chan *chan;
3546
3547 if (conn->type != type)
3548 continue;
3549
3550 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3551 continue;
3552
3553 num++;
3554
3555 list_for_each_entry_rcu(chan, &conn->chan_list, list) {
3556 struct sk_buff *skb;
3557
3558 if (chan->sent) {
3559 chan->sent = 0;
3560 continue;
3561 }
3562
3563 if (skb_queue_empty(&chan->data_q))
3564 continue;
3565
3566 skb = skb_peek(&chan->data_q);
3567 if (skb->priority >= HCI_PRIO_MAX - 1)
3568 continue;
3569
3570 skb->priority = HCI_PRIO_MAX - 1;
3571
3572 BT_DBG("chan %p skb %p promoted to %d", chan, skb,
3573 skb->priority);
3574 }
3575
3576 if (hci_conn_num(hdev, type) == num)
3577 break;
3578 }
3579
3580 rcu_read_unlock();
3581
3582}
3583
3584static void __check_timeout(struct hci_dev *hdev, unsigned int cnt, u8 type)
3585{
3586 unsigned long last_tx;
3587
3588 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
3589 return;
3590
3591 switch (type) {
3592 case LE_LINK:
3593 last_tx = hdev->le_last_tx;
3594 break;
3595 default:
3596 last_tx = hdev->acl_last_tx;
3597 break;
3598 }
3599
3600 /* tx timeout must be longer than maximum link supervision timeout
3601 * (40.9 seconds)
3602 */
3603 if (!cnt && time_after(jiffies, last_tx + HCI_ACL_TX_TIMEOUT))
3604 hci_link_tx_to(hdev, type);
3605}
3606
3607/* Schedule SCO */
3608static void hci_sched_sco(struct hci_dev *hdev)
3609{
3610 struct hci_conn *conn;
3611 struct sk_buff *skb;
3612 int quote;
3613
3614 BT_DBG("%s", hdev->name);
3615
3616 if (!hci_conn_num(hdev, SCO_LINK))
3617 return;
3618
3619 while (hdev->sco_cnt && (conn = hci_low_sent(hdev, SCO_LINK, "e))) {
3620 while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3621 BT_DBG("skb %p len %d", skb, skb->len);
3622 hci_send_frame(hdev, skb);
3623
3624 conn->sent++;
3625 if (conn->sent == ~0)
3626 conn->sent = 0;
3627 }
3628 }
3629}
3630
3631static void hci_sched_esco(struct hci_dev *hdev)
3632{
3633 struct hci_conn *conn;
3634 struct sk_buff *skb;
3635 int quote;
3636
3637 BT_DBG("%s", hdev->name);
3638
3639 if (!hci_conn_num(hdev, ESCO_LINK))
3640 return;
3641
3642 while (hdev->sco_cnt && (conn = hci_low_sent(hdev, ESCO_LINK,
3643 "e))) {
3644 while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3645 BT_DBG("skb %p len %d", skb, skb->len);
3646 hci_send_frame(hdev, skb);
3647
3648 conn->sent++;
3649 if (conn->sent == ~0)
3650 conn->sent = 0;
3651 }
3652 }
3653}
3654
3655static void hci_sched_acl_pkt(struct hci_dev *hdev)
3656{
3657 unsigned int cnt = hdev->acl_cnt;
3658 struct hci_chan *chan;
3659 struct sk_buff *skb;
3660 int quote;
3661
3662 __check_timeout(hdev, cnt, ACL_LINK);
3663
3664 while (hdev->acl_cnt &&
3665 (chan = hci_chan_sent(hdev, ACL_LINK, "e))) {
3666 u32 priority = (skb_peek(&chan->data_q))->priority;
3667 while (quote-- && (skb = skb_peek(&chan->data_q))) {
3668 BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3669 skb->len, skb->priority);
3670
3671 /* Stop if priority has changed */
3672 if (skb->priority < priority)
3673 break;
3674
3675 skb = skb_dequeue(&chan->data_q);
3676
3677 hci_conn_enter_active_mode(chan->conn,
3678 bt_cb(skb)->force_active);
3679
3680 hci_send_frame(hdev, skb);
3681 hdev->acl_last_tx = jiffies;
3682
3683 hdev->acl_cnt--;
3684 chan->sent++;
3685 chan->conn->sent++;
3686
3687 /* Send pending SCO packets right away */
3688 hci_sched_sco(hdev);
3689 hci_sched_esco(hdev);
3690 }
3691 }
3692
3693 if (cnt != hdev->acl_cnt)
3694 hci_prio_recalculate(hdev, ACL_LINK);
3695}
3696
3697static void hci_sched_acl(struct hci_dev *hdev)
3698{
3699 BT_DBG("%s", hdev->name);
3700
3701 /* No ACL link over BR/EDR controller */
3702 if (!hci_conn_num(hdev, ACL_LINK))
3703 return;
3704
3705 hci_sched_acl_pkt(hdev);
3706}
3707
3708static void hci_sched_le(struct hci_dev *hdev)
3709{
3710 struct hci_chan *chan;
3711 struct sk_buff *skb;
3712 int quote, cnt, tmp;
3713
3714 BT_DBG("%s", hdev->name);
3715
3716 if (!hci_conn_num(hdev, LE_LINK))
3717 return;
3718
3719 cnt = hdev->le_pkts ? hdev->le_cnt : hdev->acl_cnt;
3720
3721 __check_timeout(hdev, cnt, LE_LINK);
3722
3723 tmp = cnt;
3724 while (cnt && (chan = hci_chan_sent(hdev, LE_LINK, "e))) {
3725 u32 priority = (skb_peek(&chan->data_q))->priority;
3726 while (quote-- && (skb = skb_peek(&chan->data_q))) {
3727 BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3728 skb->len, skb->priority);
3729
3730 /* Stop if priority has changed */
3731 if (skb->priority < priority)
3732 break;
3733
3734 skb = skb_dequeue(&chan->data_q);
3735
3736 hci_send_frame(hdev, skb);
3737 hdev->le_last_tx = jiffies;
3738
3739 cnt--;
3740 chan->sent++;
3741 chan->conn->sent++;
3742
3743 /* Send pending SCO packets right away */
3744 hci_sched_sco(hdev);
3745 hci_sched_esco(hdev);
3746 }
3747 }
3748
3749 if (hdev->le_pkts)
3750 hdev->le_cnt = cnt;
3751 else
3752 hdev->acl_cnt = cnt;
3753
3754 if (cnt != tmp)
3755 hci_prio_recalculate(hdev, LE_LINK);
3756}
3757
3758/* Schedule CIS */
3759static void hci_sched_iso(struct hci_dev *hdev)
3760{
3761 struct hci_conn *conn;
3762 struct sk_buff *skb;
3763 int quote, *cnt;
3764
3765 BT_DBG("%s", hdev->name);
3766
3767 if (!hci_conn_num(hdev, ISO_LINK))
3768 return;
3769
3770 cnt = hdev->iso_pkts ? &hdev->iso_cnt :
3771 hdev->le_pkts ? &hdev->le_cnt : &hdev->acl_cnt;
3772 while (*cnt && (conn = hci_low_sent(hdev, ISO_LINK, "e))) {
3773 while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3774 BT_DBG("skb %p len %d", skb, skb->len);
3775 hci_send_frame(hdev, skb);
3776
3777 conn->sent++;
3778 if (conn->sent == ~0)
3779 conn->sent = 0;
3780 (*cnt)--;
3781 }
3782 }
3783}
3784
3785static void hci_tx_work(struct work_struct *work)
3786{
3787 struct hci_dev *hdev = container_of(work, struct hci_dev, tx_work);
3788 struct sk_buff *skb;
3789
3790 BT_DBG("%s acl %d sco %d le %d iso %d", hdev->name, hdev->acl_cnt,
3791 hdev->sco_cnt, hdev->le_cnt, hdev->iso_cnt);
3792
3793 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
3794 /* Schedule queues and send stuff to HCI driver */
3795 hci_sched_sco(hdev);
3796 hci_sched_esco(hdev);
3797 hci_sched_iso(hdev);
3798 hci_sched_acl(hdev);
3799 hci_sched_le(hdev);
3800 }
3801
3802 /* Send next queued raw (unknown type) packet */
3803 while ((skb = skb_dequeue(&hdev->raw_q)))
3804 hci_send_frame(hdev, skb);
3805}
3806
3807/* ----- HCI RX task (incoming data processing) ----- */
3808
3809/* ACL data packet */
3810static void hci_acldata_packet(struct hci_dev *hdev, struct sk_buff *skb)
3811{
3812 struct hci_acl_hdr *hdr = (void *) skb->data;
3813 struct hci_conn *conn;
3814 __u16 handle, flags;
3815
3816 skb_pull(skb, HCI_ACL_HDR_SIZE);
3817
3818 handle = __le16_to_cpu(hdr->handle);
3819 flags = hci_flags(handle);
3820 handle = hci_handle(handle);
3821
3822 BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len,
3823 handle, flags);
3824
3825 hdev->stat.acl_rx++;
3826
3827 hci_dev_lock(hdev);
3828 conn = hci_conn_hash_lookup_handle(hdev, handle);
3829 hci_dev_unlock(hdev);
3830
3831 if (conn) {
3832 hci_conn_enter_active_mode(conn, BT_POWER_FORCE_ACTIVE_OFF);
3833
3834 /* Send to upper protocol */
3835 l2cap_recv_acldata(conn, skb, flags);
3836 return;
3837 } else {
3838 bt_dev_err(hdev, "ACL packet for unknown connection handle %d",
3839 handle);
3840 }
3841
3842 kfree_skb(skb);
3843}
3844
3845/* SCO data packet */
3846static void hci_scodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
3847{
3848 struct hci_sco_hdr *hdr = (void *) skb->data;
3849 struct hci_conn *conn;
3850 __u16 handle, flags;
3851
3852 skb_pull(skb, HCI_SCO_HDR_SIZE);
3853
3854 handle = __le16_to_cpu(hdr->handle);
3855 flags = hci_flags(handle);
3856 handle = hci_handle(handle);
3857
3858 BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len,
3859 handle, flags);
3860
3861 hdev->stat.sco_rx++;
3862
3863 hci_dev_lock(hdev);
3864 conn = hci_conn_hash_lookup_handle(hdev, handle);
3865 hci_dev_unlock(hdev);
3866
3867 if (conn) {
3868 /* Send to upper protocol */
3869 hci_skb_pkt_status(skb) = flags & 0x03;
3870 sco_recv_scodata(conn, skb);
3871 return;
3872 } else {
3873 bt_dev_err_ratelimited(hdev, "SCO packet for unknown connection handle %d",
3874 handle);
3875 }
3876
3877 kfree_skb(skb);
3878}
3879
3880static void hci_isodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
3881{
3882 struct hci_iso_hdr *hdr;
3883 struct hci_conn *conn;
3884 __u16 handle, flags;
3885
3886 hdr = skb_pull_data(skb, sizeof(*hdr));
3887 if (!hdr) {
3888 bt_dev_err(hdev, "ISO packet too small");
3889 goto drop;
3890 }
3891
3892 handle = __le16_to_cpu(hdr->handle);
3893 flags = hci_flags(handle);
3894 handle = hci_handle(handle);
3895
3896 bt_dev_dbg(hdev, "len %d handle 0x%4.4x flags 0x%4.4x", skb->len,
3897 handle, flags);
3898
3899 hci_dev_lock(hdev);
3900 conn = hci_conn_hash_lookup_handle(hdev, handle);
3901 hci_dev_unlock(hdev);
3902
3903 if (!conn) {
3904 bt_dev_err(hdev, "ISO packet for unknown connection handle %d",
3905 handle);
3906 goto drop;
3907 }
3908
3909 /* Send to upper protocol */
3910 iso_recv(conn, skb, flags);
3911 return;
3912
3913drop:
3914 kfree_skb(skb);
3915}
3916
3917static bool hci_req_is_complete(struct hci_dev *hdev)
3918{
3919 struct sk_buff *skb;
3920
3921 skb = skb_peek(&hdev->cmd_q);
3922 if (!skb)
3923 return true;
3924
3925 return (bt_cb(skb)->hci.req_flags & HCI_REQ_START);
3926}
3927
3928static void hci_resend_last(struct hci_dev *hdev)
3929{
3930 struct hci_command_hdr *sent;
3931 struct sk_buff *skb;
3932 u16 opcode;
3933
3934 if (!hdev->sent_cmd)
3935 return;
3936
3937 sent = (void *) hdev->sent_cmd->data;
3938 opcode = __le16_to_cpu(sent->opcode);
3939 if (opcode == HCI_OP_RESET)
3940 return;
3941
3942 skb = skb_clone(hdev->sent_cmd, GFP_KERNEL);
3943 if (!skb)
3944 return;
3945
3946 skb_queue_head(&hdev->cmd_q, skb);
3947 queue_work(hdev->workqueue, &hdev->cmd_work);
3948}
3949
3950void hci_req_cmd_complete(struct hci_dev *hdev, u16 opcode, u8 status,
3951 hci_req_complete_t *req_complete,
3952 hci_req_complete_skb_t *req_complete_skb)
3953{
3954 struct sk_buff *skb;
3955 unsigned long flags;
3956
3957 BT_DBG("opcode 0x%04x status 0x%02x", opcode, status);
3958
3959 /* If the completed command doesn't match the last one that was
3960 * sent we need to do special handling of it.
3961 */
3962 if (!hci_sent_cmd_data(hdev, opcode)) {
3963 /* Some CSR based controllers generate a spontaneous
3964 * reset complete event during init and any pending
3965 * command will never be completed. In such a case we
3966 * need to resend whatever was the last sent
3967 * command.
3968 */
3969 if (test_bit(HCI_INIT, &hdev->flags) && opcode == HCI_OP_RESET)
3970 hci_resend_last(hdev);
3971
3972 return;
3973 }
3974
3975 /* If we reach this point this event matches the last command sent */
3976 hci_dev_clear_flag(hdev, HCI_CMD_PENDING);
3977
3978 /* If the command succeeded and there's still more commands in
3979 * this request the request is not yet complete.
3980 */
3981 if (!status && !hci_req_is_complete(hdev))
3982 return;
3983
3984 skb = hdev->req_skb;
3985
3986 /* If this was the last command in a request the complete
3987 * callback would be found in hdev->req_skb instead of the
3988 * command queue (hdev->cmd_q).
3989 */
3990 if (skb && bt_cb(skb)->hci.req_flags & HCI_REQ_SKB) {
3991 *req_complete_skb = bt_cb(skb)->hci.req_complete_skb;
3992 return;
3993 }
3994
3995 if (skb && bt_cb(skb)->hci.req_complete) {
3996 *req_complete = bt_cb(skb)->hci.req_complete;
3997 return;
3998 }
3999
4000 /* Remove all pending commands belonging to this request */
4001 spin_lock_irqsave(&hdev->cmd_q.lock, flags);
4002 while ((skb = __skb_dequeue(&hdev->cmd_q))) {
4003 if (bt_cb(skb)->hci.req_flags & HCI_REQ_START) {
4004 __skb_queue_head(&hdev->cmd_q, skb);
4005 break;
4006 }
4007
4008 if (bt_cb(skb)->hci.req_flags & HCI_REQ_SKB)
4009 *req_complete_skb = bt_cb(skb)->hci.req_complete_skb;
4010 else
4011 *req_complete = bt_cb(skb)->hci.req_complete;
4012 dev_kfree_skb_irq(skb);
4013 }
4014 spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
4015}
4016
4017static void hci_rx_work(struct work_struct *work)
4018{
4019 struct hci_dev *hdev = container_of(work, struct hci_dev, rx_work);
4020 struct sk_buff *skb;
4021
4022 BT_DBG("%s", hdev->name);
4023
4024 /* The kcov_remote functions used for collecting packet parsing
4025 * coverage information from this background thread and associate
4026 * the coverage with the syscall's thread which originally injected
4027 * the packet. This helps fuzzing the kernel.
4028 */
4029 for (; (skb = skb_dequeue(&hdev->rx_q)); kcov_remote_stop()) {
4030 kcov_remote_start_common(skb_get_kcov_handle(skb));
4031
4032 /* Send copy to monitor */
4033 hci_send_to_monitor(hdev, skb);
4034
4035 if (atomic_read(&hdev->promisc)) {
4036 /* Send copy to the sockets */
4037 hci_send_to_sock(hdev, skb);
4038 }
4039
4040 /* If the device has been opened in HCI_USER_CHANNEL,
4041 * the userspace has exclusive access to device.
4042 * When device is HCI_INIT, we still need to process
4043 * the data packets to the driver in order
4044 * to complete its setup().
4045 */
4046 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
4047 !test_bit(HCI_INIT, &hdev->flags)) {
4048 kfree_skb(skb);
4049 continue;
4050 }
4051
4052 if (test_bit(HCI_INIT, &hdev->flags)) {
4053 /* Don't process data packets in this states. */
4054 switch (hci_skb_pkt_type(skb)) {
4055 case HCI_ACLDATA_PKT:
4056 case HCI_SCODATA_PKT:
4057 case HCI_ISODATA_PKT:
4058 kfree_skb(skb);
4059 continue;
4060 }
4061 }
4062
4063 /* Process frame */
4064 switch (hci_skb_pkt_type(skb)) {
4065 case HCI_EVENT_PKT:
4066 BT_DBG("%s Event packet", hdev->name);
4067 hci_event_packet(hdev, skb);
4068 break;
4069
4070 case HCI_ACLDATA_PKT:
4071 BT_DBG("%s ACL data packet", hdev->name);
4072 hci_acldata_packet(hdev, skb);
4073 break;
4074
4075 case HCI_SCODATA_PKT:
4076 BT_DBG("%s SCO data packet", hdev->name);
4077 hci_scodata_packet(hdev, skb);
4078 break;
4079
4080 case HCI_ISODATA_PKT:
4081 BT_DBG("%s ISO data packet", hdev->name);
4082 hci_isodata_packet(hdev, skb);
4083 break;
4084
4085 default:
4086 kfree_skb(skb);
4087 break;
4088 }
4089 }
4090}
4091
4092static void hci_send_cmd_sync(struct hci_dev *hdev, struct sk_buff *skb)
4093{
4094 int err;
4095
4096 bt_dev_dbg(hdev, "skb %p", skb);
4097
4098 kfree_skb(hdev->sent_cmd);
4099
4100 hdev->sent_cmd = skb_clone(skb, GFP_KERNEL);
4101 if (!hdev->sent_cmd) {
4102 skb_queue_head(&hdev->cmd_q, skb);
4103 queue_work(hdev->workqueue, &hdev->cmd_work);
4104 return;
4105 }
4106
4107 err = hci_send_frame(hdev, skb);
4108 if (err < 0) {
4109 hci_cmd_sync_cancel_sync(hdev, -err);
4110 return;
4111 }
4112
4113 if (hci_req_status_pend(hdev) &&
4114 !hci_dev_test_and_set_flag(hdev, HCI_CMD_PENDING)) {
4115 kfree_skb(hdev->req_skb);
4116 hdev->req_skb = skb_clone(hdev->sent_cmd, GFP_KERNEL);
4117 }
4118
4119 atomic_dec(&hdev->cmd_cnt);
4120}
4121
4122static void hci_cmd_work(struct work_struct *work)
4123{
4124 struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_work);
4125 struct sk_buff *skb;
4126
4127 BT_DBG("%s cmd_cnt %d cmd queued %d", hdev->name,
4128 atomic_read(&hdev->cmd_cnt), skb_queue_len(&hdev->cmd_q));
4129
4130 /* Send queued commands */
4131 if (atomic_read(&hdev->cmd_cnt)) {
4132 skb = skb_dequeue(&hdev->cmd_q);
4133 if (!skb)
4134 return;
4135
4136 hci_send_cmd_sync(hdev, skb);
4137
4138 rcu_read_lock();
4139 if (test_bit(HCI_RESET, &hdev->flags) ||
4140 hci_dev_test_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE))
4141 cancel_delayed_work(&hdev->cmd_timer);
4142 else
4143 queue_delayed_work(hdev->workqueue, &hdev->cmd_timer,
4144 HCI_CMD_TIMEOUT);
4145 rcu_read_unlock();
4146 }
4147}