Linux Audio

Check our new training course

Loading...
v4.6
   1/*
   2   BlueZ - Bluetooth protocol stack for Linux
   3   Copyright (C) 2000-2001 Qualcomm Incorporated
   4   Copyright (C) 2011 ProFUSION Embedded Systems
   5
   6   Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
   7
   8   This program is free software; you can redistribute it and/or modify
   9   it under the terms of the GNU General Public License version 2 as
  10   published by the Free Software Foundation;
  11
  12   THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
  13   OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  14   FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
  15   IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
  16   CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
  17   WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  18   ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  19   OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  20
  21   ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
  22   COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
  23   SOFTWARE IS DISCLAIMED.
  24*/
  25
  26/* Bluetooth HCI core. */
  27
  28#include <linux/export.h>
  29#include <linux/idr.h>
  30#include <linux/rfkill.h>
  31#include <linux/debugfs.h>
  32#include <linux/crypto.h>
  33#include <asm/unaligned.h>
  34
  35#include <net/bluetooth/bluetooth.h>
  36#include <net/bluetooth/hci_core.h>
  37#include <net/bluetooth/l2cap.h>
  38#include <net/bluetooth/mgmt.h>
  39
  40#include "hci_request.h"
  41#include "hci_debugfs.h"
  42#include "smp.h"
  43#include "leds.h"
  44
  45static void hci_rx_work(struct work_struct *work);
  46static void hci_cmd_work(struct work_struct *work);
  47static void hci_tx_work(struct work_struct *work);
  48
  49/* HCI device list */
  50LIST_HEAD(hci_dev_list);
  51DEFINE_RWLOCK(hci_dev_list_lock);
  52
  53/* HCI callback list */
  54LIST_HEAD(hci_cb_list);
  55DEFINE_MUTEX(hci_cb_list_lock);
  56
  57/* HCI ID Numbering */
  58static DEFINE_IDA(hci_index_ida);
  59
  60/* ---- HCI debugfs entries ---- */
  61
  62static ssize_t dut_mode_read(struct file *file, char __user *user_buf,
  63			     size_t count, loff_t *ppos)
  64{
  65	struct hci_dev *hdev = file->private_data;
  66	char buf[3];
  67
  68	buf[0] = hci_dev_test_flag(hdev, HCI_DUT_MODE) ? 'Y' : 'N';
  69	buf[1] = '\n';
  70	buf[2] = '\0';
  71	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
  72}
  73
  74static ssize_t dut_mode_write(struct file *file, const char __user *user_buf,
  75			      size_t count, loff_t *ppos)
  76{
  77	struct hci_dev *hdev = file->private_data;
  78	struct sk_buff *skb;
  79	char buf[32];
  80	size_t buf_size = min(count, (sizeof(buf)-1));
  81	bool enable;
  82
  83	if (!test_bit(HCI_UP, &hdev->flags))
  84		return -ENETDOWN;
  85
  86	if (copy_from_user(buf, user_buf, buf_size))
  87		return -EFAULT;
  88
  89	buf[buf_size] = '\0';
  90	if (strtobool(buf, &enable))
  91		return -EINVAL;
  92
  93	if (enable == hci_dev_test_flag(hdev, HCI_DUT_MODE))
  94		return -EALREADY;
  95
  96	hci_req_sync_lock(hdev);
  97	if (enable)
  98		skb = __hci_cmd_sync(hdev, HCI_OP_ENABLE_DUT_MODE, 0, NULL,
  99				     HCI_CMD_TIMEOUT);
 100	else
 101		skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL,
 102				     HCI_CMD_TIMEOUT);
 103	hci_req_sync_unlock(hdev);
 104
 105	if (IS_ERR(skb))
 106		return PTR_ERR(skb);
 107
 108	kfree_skb(skb);
 109
 110	hci_dev_change_flag(hdev, HCI_DUT_MODE);
 111
 112	return count;
 113}
 114
 115static const struct file_operations dut_mode_fops = {
 116	.open		= simple_open,
 117	.read		= dut_mode_read,
 118	.write		= dut_mode_write,
 119	.llseek		= default_llseek,
 120};
 121
 122static ssize_t vendor_diag_read(struct file *file, char __user *user_buf,
 123				size_t count, loff_t *ppos)
 124{
 125	struct hci_dev *hdev = file->private_data;
 126	char buf[3];
 127
 128	buf[0] = hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) ? 'Y' : 'N';
 129	buf[1] = '\n';
 130	buf[2] = '\0';
 131	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
 132}
 133
 134static ssize_t vendor_diag_write(struct file *file, const char __user *user_buf,
 135				 size_t count, loff_t *ppos)
 136{
 137	struct hci_dev *hdev = file->private_data;
 138	char buf[32];
 139	size_t buf_size = min(count, (sizeof(buf)-1));
 140	bool enable;
 141	int err;
 142
 143	if (copy_from_user(buf, user_buf, buf_size))
 144		return -EFAULT;
 145
 146	buf[buf_size] = '\0';
 147	if (strtobool(buf, &enable))
 148		return -EINVAL;
 149
 150	/* When the diagnostic flags are not persistent and the transport
 151	 * is not active, then there is no need for the vendor callback.
 152	 *
 153	 * Instead just store the desired value. If needed the setting
 154	 * will be programmed when the controller gets powered on.
 155	 */
 156	if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) &&
 157	    !test_bit(HCI_RUNNING, &hdev->flags))
 
 158		goto done;
 159
 160	hci_req_sync_lock(hdev);
 161	err = hdev->set_diag(hdev, enable);
 162	hci_req_sync_unlock(hdev);
 163
 164	if (err < 0)
 165		return err;
 166
 167done:
 168	if (enable)
 169		hci_dev_set_flag(hdev, HCI_VENDOR_DIAG);
 170	else
 171		hci_dev_clear_flag(hdev, HCI_VENDOR_DIAG);
 172
 173	return count;
 174}
 175
 176static const struct file_operations vendor_diag_fops = {
 177	.open		= simple_open,
 178	.read		= vendor_diag_read,
 179	.write		= vendor_diag_write,
 180	.llseek		= default_llseek,
 181};
 182
 183static void hci_debugfs_create_basic(struct hci_dev *hdev)
 184{
 185	debugfs_create_file("dut_mode", 0644, hdev->debugfs, hdev,
 186			    &dut_mode_fops);
 187
 188	if (hdev->set_diag)
 189		debugfs_create_file("vendor_diag", 0644, hdev->debugfs, hdev,
 190				    &vendor_diag_fops);
 191}
 192
 193static int hci_reset_req(struct hci_request *req, unsigned long opt)
 194{
 195	BT_DBG("%s %ld", req->hdev->name, opt);
 196
 197	/* Reset device */
 198	set_bit(HCI_RESET, &req->hdev->flags);
 199	hci_req_add(req, HCI_OP_RESET, 0, NULL);
 200	return 0;
 201}
 202
 203static void bredr_init(struct hci_request *req)
 204{
 205	req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_PACKET_BASED;
 206
 207	/* Read Local Supported Features */
 208	hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
 209
 210	/* Read Local Version */
 211	hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
 212
 213	/* Read BD Address */
 214	hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL);
 215}
 216
 217static void amp_init1(struct hci_request *req)
 218{
 219	req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_BLOCK_BASED;
 220
 221	/* Read Local Version */
 222	hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
 223
 224	/* Read Local Supported Commands */
 225	hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL);
 226
 227	/* Read Local AMP Info */
 228	hci_req_add(req, HCI_OP_READ_LOCAL_AMP_INFO, 0, NULL);
 229
 230	/* Read Data Blk size */
 231	hci_req_add(req, HCI_OP_READ_DATA_BLOCK_SIZE, 0, NULL);
 232
 233	/* Read Flow Control Mode */
 234	hci_req_add(req, HCI_OP_READ_FLOW_CONTROL_MODE, 0, NULL);
 235
 236	/* Read Location Data */
 237	hci_req_add(req, HCI_OP_READ_LOCATION_DATA, 0, NULL);
 238}
 239
 240static int amp_init2(struct hci_request *req)
 241{
 242	/* Read Local Supported Features. Not all AMP controllers
 243	 * support this so it's placed conditionally in the second
 244	 * stage init.
 245	 */
 246	if (req->hdev->commands[14] & 0x20)
 247		hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
 248
 249	return 0;
 250}
 251
 252static int hci_init1_req(struct hci_request *req, unsigned long opt)
 253{
 254	struct hci_dev *hdev = req->hdev;
 255
 256	BT_DBG("%s %ld", hdev->name, opt);
 257
 258	/* Reset */
 259	if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks))
 260		hci_reset_req(req, 0);
 261
 262	switch (hdev->dev_type) {
 263	case HCI_BREDR:
 264		bredr_init(req);
 265		break;
 266
 267	case HCI_AMP:
 268		amp_init1(req);
 269		break;
 270
 271	default:
 272		BT_ERR("Unknown device type %d", hdev->dev_type);
 273		break;
 274	}
 275
 276	return 0;
 277}
 278
 279static void bredr_setup(struct hci_request *req)
 280{
 281	__le16 param;
 282	__u8 flt_type;
 283
 284	/* Read Buffer Size (ACL mtu, max pkt, etc.) */
 285	hci_req_add(req, HCI_OP_READ_BUFFER_SIZE, 0, NULL);
 286
 287	/* Read Class of Device */
 288	hci_req_add(req, HCI_OP_READ_CLASS_OF_DEV, 0, NULL);
 289
 290	/* Read Local Name */
 291	hci_req_add(req, HCI_OP_READ_LOCAL_NAME, 0, NULL);
 292
 293	/* Read Voice Setting */
 294	hci_req_add(req, HCI_OP_READ_VOICE_SETTING, 0, NULL);
 295
 296	/* Read Number of Supported IAC */
 297	hci_req_add(req, HCI_OP_READ_NUM_SUPPORTED_IAC, 0, NULL);
 298
 299	/* Read Current IAC LAP */
 300	hci_req_add(req, HCI_OP_READ_CURRENT_IAC_LAP, 0, NULL);
 301
 302	/* Clear Event Filters */
 303	flt_type = HCI_FLT_CLEAR_ALL;
 304	hci_req_add(req, HCI_OP_SET_EVENT_FLT, 1, &flt_type);
 305
 306	/* Connection accept timeout ~20 secs */
 307	param = cpu_to_le16(0x7d00);
 308	hci_req_add(req, HCI_OP_WRITE_CA_TIMEOUT, 2, &param);
 309}
 310
 311static void le_setup(struct hci_request *req)
 312{
 313	struct hci_dev *hdev = req->hdev;
 314
 315	/* Read LE Buffer Size */
 316	hci_req_add(req, HCI_OP_LE_READ_BUFFER_SIZE, 0, NULL);
 317
 318	/* Read LE Local Supported Features */
 319	hci_req_add(req, HCI_OP_LE_READ_LOCAL_FEATURES, 0, NULL);
 320
 321	/* Read LE Supported States */
 322	hci_req_add(req, HCI_OP_LE_READ_SUPPORTED_STATES, 0, NULL);
 323
 324	/* LE-only controllers have LE implicitly enabled */
 325	if (!lmp_bredr_capable(hdev))
 326		hci_dev_set_flag(hdev, HCI_LE_ENABLED);
 327}
 328
 329static void hci_setup_event_mask(struct hci_request *req)
 330{
 331	struct hci_dev *hdev = req->hdev;
 332
 333	/* The second byte is 0xff instead of 0x9f (two reserved bits
 334	 * disabled) since a Broadcom 1.2 dongle doesn't respond to the
 335	 * command otherwise.
 336	 */
 337	u8 events[8] = { 0xff, 0xff, 0xfb, 0xff, 0x00, 0x00, 0x00, 0x00 };
 338
 339	/* CSR 1.1 dongles does not accept any bitfield so don't try to set
 340	 * any event mask for pre 1.2 devices.
 341	 */
 342	if (hdev->hci_ver < BLUETOOTH_VER_1_2)
 343		return;
 344
 345	if (lmp_bredr_capable(hdev)) {
 346		events[4] |= 0x01; /* Flow Specification Complete */
 347	} else {
 348		/* Use a different default for LE-only devices */
 349		memset(events, 0, sizeof(events));
 350		events[1] |= 0x20; /* Command Complete */
 351		events[1] |= 0x40; /* Command Status */
 352		events[1] |= 0x80; /* Hardware Error */
 353
 354		/* If the controller supports the Disconnect command, enable
 355		 * the corresponding event. In addition enable packet flow
 356		 * control related events.
 357		 */
 358		if (hdev->commands[0] & 0x20) {
 359			events[0] |= 0x10; /* Disconnection Complete */
 360			events[2] |= 0x04; /* Number of Completed Packets */
 361			events[3] |= 0x02; /* Data Buffer Overflow */
 362		}
 363
 364		/* If the controller supports the Read Remote Version
 365		 * Information command, enable the corresponding event.
 366		 */
 367		if (hdev->commands[2] & 0x80)
 368			events[1] |= 0x08; /* Read Remote Version Information
 369					    * Complete
 370					    */
 371
 372		if (hdev->le_features[0] & HCI_LE_ENCRYPTION) {
 373			events[0] |= 0x80; /* Encryption Change */
 374			events[5] |= 0x80; /* Encryption Key Refresh Complete */
 375		}
 376	}
 377
 378	if (lmp_inq_rssi_capable(hdev) ||
 379	    test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks))
 380		events[4] |= 0x02; /* Inquiry Result with RSSI */
 381
 382	if (lmp_ext_feat_capable(hdev))
 383		events[4] |= 0x04; /* Read Remote Extended Features Complete */
 384
 385	if (lmp_esco_capable(hdev)) {
 386		events[5] |= 0x08; /* Synchronous Connection Complete */
 387		events[5] |= 0x10; /* Synchronous Connection Changed */
 388	}
 389
 390	if (lmp_sniffsubr_capable(hdev))
 391		events[5] |= 0x20; /* Sniff Subrating */
 392
 393	if (lmp_pause_enc_capable(hdev))
 394		events[5] |= 0x80; /* Encryption Key Refresh Complete */
 395
 396	if (lmp_ext_inq_capable(hdev))
 397		events[5] |= 0x40; /* Extended Inquiry Result */
 398
 399	if (lmp_no_flush_capable(hdev))
 400		events[7] |= 0x01; /* Enhanced Flush Complete */
 401
 402	if (lmp_lsto_capable(hdev))
 403		events[6] |= 0x80; /* Link Supervision Timeout Changed */
 404
 405	if (lmp_ssp_capable(hdev)) {
 406		events[6] |= 0x01;	/* IO Capability Request */
 407		events[6] |= 0x02;	/* IO Capability Response */
 408		events[6] |= 0x04;	/* User Confirmation Request */
 409		events[6] |= 0x08;	/* User Passkey Request */
 410		events[6] |= 0x10;	/* Remote OOB Data Request */
 411		events[6] |= 0x20;	/* Simple Pairing Complete */
 412		events[7] |= 0x04;	/* User Passkey Notification */
 413		events[7] |= 0x08;	/* Keypress Notification */
 414		events[7] |= 0x10;	/* Remote Host Supported
 415					 * Features Notification
 416					 */
 417	}
 418
 419	if (lmp_le_capable(hdev))
 420		events[7] |= 0x20;	/* LE Meta-Event */
 421
 422	hci_req_add(req, HCI_OP_SET_EVENT_MASK, sizeof(events), events);
 423}
 424
 425static int hci_init2_req(struct hci_request *req, unsigned long opt)
 426{
 427	struct hci_dev *hdev = req->hdev;
 428
 429	if (hdev->dev_type == HCI_AMP)
 430		return amp_init2(req);
 431
 432	if (lmp_bredr_capable(hdev))
 433		bredr_setup(req);
 434	else
 435		hci_dev_clear_flag(hdev, HCI_BREDR_ENABLED);
 436
 437	if (lmp_le_capable(hdev))
 438		le_setup(req);
 439
 440	/* All Bluetooth 1.2 and later controllers should support the
 441	 * HCI command for reading the local supported commands.
 442	 *
 443	 * Unfortunately some controllers indicate Bluetooth 1.2 support,
 444	 * but do not have support for this command. If that is the case,
 445	 * the driver can quirk the behavior and skip reading the local
 446	 * supported commands.
 447	 */
 448	if (hdev->hci_ver > BLUETOOTH_VER_1_1 &&
 449	    !test_bit(HCI_QUIRK_BROKEN_LOCAL_COMMANDS, &hdev->quirks))
 450		hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL);
 451
 452	if (lmp_ssp_capable(hdev)) {
 453		/* When SSP is available, then the host features page
 454		 * should also be available as well. However some
 455		 * controllers list the max_page as 0 as long as SSP
 456		 * has not been enabled. To achieve proper debugging
 457		 * output, force the minimum max_page to 1 at least.
 458		 */
 459		hdev->max_page = 0x01;
 460
 461		if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) {
 462			u8 mode = 0x01;
 463
 464			hci_req_add(req, HCI_OP_WRITE_SSP_MODE,
 465				    sizeof(mode), &mode);
 466		} else {
 467			struct hci_cp_write_eir cp;
 468
 469			memset(hdev->eir, 0, sizeof(hdev->eir));
 470			memset(&cp, 0, sizeof(cp));
 471
 472			hci_req_add(req, HCI_OP_WRITE_EIR, sizeof(cp), &cp);
 473		}
 474	}
 475
 476	if (lmp_inq_rssi_capable(hdev) ||
 477	    test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks)) {
 478		u8 mode;
 479
 480		/* If Extended Inquiry Result events are supported, then
 481		 * they are clearly preferred over Inquiry Result with RSSI
 482		 * events.
 483		 */
 484		mode = lmp_ext_inq_capable(hdev) ? 0x02 : 0x01;
 485
 486		hci_req_add(req, HCI_OP_WRITE_INQUIRY_MODE, 1, &mode);
 487	}
 488
 489	if (lmp_inq_tx_pwr_capable(hdev))
 490		hci_req_add(req, HCI_OP_READ_INQ_RSP_TX_POWER, 0, NULL);
 491
 492	if (lmp_ext_feat_capable(hdev)) {
 493		struct hci_cp_read_local_ext_features cp;
 494
 495		cp.page = 0x01;
 496		hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES,
 497			    sizeof(cp), &cp);
 498	}
 499
 500	if (hci_dev_test_flag(hdev, HCI_LINK_SECURITY)) {
 501		u8 enable = 1;
 502		hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, sizeof(enable),
 503			    &enable);
 504	}
 505
 506	return 0;
 507}
 508
 509static void hci_setup_link_policy(struct hci_request *req)
 510{
 511	struct hci_dev *hdev = req->hdev;
 512	struct hci_cp_write_def_link_policy cp;
 513	u16 link_policy = 0;
 514
 515	if (lmp_rswitch_capable(hdev))
 516		link_policy |= HCI_LP_RSWITCH;
 517	if (lmp_hold_capable(hdev))
 518		link_policy |= HCI_LP_HOLD;
 519	if (lmp_sniff_capable(hdev))
 520		link_policy |= HCI_LP_SNIFF;
 521	if (lmp_park_capable(hdev))
 522		link_policy |= HCI_LP_PARK;
 523
 524	cp.policy = cpu_to_le16(link_policy);
 525	hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, sizeof(cp), &cp);
 526}
 527
 528static void hci_set_le_support(struct hci_request *req)
 529{
 530	struct hci_dev *hdev = req->hdev;
 531	struct hci_cp_write_le_host_supported cp;
 532
 533	/* LE-only devices do not support explicit enablement */
 534	if (!lmp_bredr_capable(hdev))
 535		return;
 536
 537	memset(&cp, 0, sizeof(cp));
 538
 539	if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
 540		cp.le = 0x01;
 541		cp.simul = 0x00;
 542	}
 543
 544	if (cp.le != lmp_host_le_capable(hdev))
 545		hci_req_add(req, HCI_OP_WRITE_LE_HOST_SUPPORTED, sizeof(cp),
 546			    &cp);
 547}
 548
 549static void hci_set_event_mask_page_2(struct hci_request *req)
 550{
 551	struct hci_dev *hdev = req->hdev;
 552	u8 events[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
 
 553
 554	/* If Connectionless Slave Broadcast master role is supported
 555	 * enable all necessary events for it.
 556	 */
 557	if (lmp_csb_master_capable(hdev)) {
 558		events[1] |= 0x40;	/* Triggered Clock Capture */
 559		events[1] |= 0x80;	/* Synchronization Train Complete */
 560		events[2] |= 0x10;	/* Slave Page Response Timeout */
 561		events[2] |= 0x20;	/* CSB Channel Map Change */
 
 562	}
 563
 564	/* If Connectionless Slave Broadcast slave role is supported
 565	 * enable all necessary events for it.
 566	 */
 567	if (lmp_csb_slave_capable(hdev)) {
 568		events[2] |= 0x01;	/* Synchronization Train Received */
 569		events[2] |= 0x02;	/* CSB Receive */
 570		events[2] |= 0x04;	/* CSB Timeout */
 571		events[2] |= 0x08;	/* Truncated Page Complete */
 
 572	}
 573
 574	/* Enable Authenticated Payload Timeout Expired event if supported */
 575	if (lmp_ping_capable(hdev) || hdev->le_features[0] & HCI_LE_PING)
 576		events[2] |= 0x80;
 
 
 577
 578	hci_req_add(req, HCI_OP_SET_EVENT_MASK_PAGE_2, sizeof(events), events);
 
 
 
 
 
 
 
 
 579}
 580
 581static int hci_init3_req(struct hci_request *req, unsigned long opt)
 582{
 583	struct hci_dev *hdev = req->hdev;
 584	u8 p;
 585
 586	hci_setup_event_mask(req);
 587
 588	if (hdev->commands[6] & 0x20 &&
 589	    !test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) {
 590		struct hci_cp_read_stored_link_key cp;
 591
 592		bacpy(&cp.bdaddr, BDADDR_ANY);
 593		cp.read_all = 0x01;
 594		hci_req_add(req, HCI_OP_READ_STORED_LINK_KEY, sizeof(cp), &cp);
 595	}
 596
 597	if (hdev->commands[5] & 0x10)
 598		hci_setup_link_policy(req);
 599
 600	if (hdev->commands[8] & 0x01)
 601		hci_req_add(req, HCI_OP_READ_PAGE_SCAN_ACTIVITY, 0, NULL);
 602
 603	/* Some older Broadcom based Bluetooth 1.2 controllers do not
 604	 * support the Read Page Scan Type command. Check support for
 605	 * this command in the bit mask of supported commands.
 606	 */
 607	if (hdev->commands[13] & 0x01)
 608		hci_req_add(req, HCI_OP_READ_PAGE_SCAN_TYPE, 0, NULL);
 609
 610	if (lmp_le_capable(hdev)) {
 611		u8 events[8];
 612
 613		memset(events, 0, sizeof(events));
 614
 615		if (hdev->le_features[0] & HCI_LE_ENCRYPTION)
 616			events[0] |= 0x10;	/* LE Long Term Key Request */
 617
 618		/* If controller supports the Connection Parameters Request
 619		 * Link Layer Procedure, enable the corresponding event.
 620		 */
 621		if (hdev->le_features[0] & HCI_LE_CONN_PARAM_REQ_PROC)
 622			events[0] |= 0x20;	/* LE Remote Connection
 623						 * Parameter Request
 624						 */
 625
 626		/* If the controller supports the Data Length Extension
 627		 * feature, enable the corresponding event.
 628		 */
 629		if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)
 630			events[0] |= 0x40;	/* LE Data Length Change */
 631
 632		/* If the controller supports Extended Scanner Filter
 633		 * Policies, enable the correspondig event.
 634		 */
 635		if (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY)
 636			events[1] |= 0x04;	/* LE Direct Advertising
 637						 * Report
 638						 */
 639
 
 
 
 
 
 
 
 
 640		/* If the controller supports the LE Set Scan Enable command,
 641		 * enable the corresponding advertising report event.
 642		 */
 643		if (hdev->commands[26] & 0x08)
 644			events[0] |= 0x02;	/* LE Advertising Report */
 645
 646		/* If the controller supports the LE Create Connection
 647		 * command, enable the corresponding event.
 648		 */
 649		if (hdev->commands[26] & 0x10)
 650			events[0] |= 0x01;	/* LE Connection Complete */
 651
 652		/* If the controller supports the LE Connection Update
 653		 * command, enable the corresponding event.
 654		 */
 655		if (hdev->commands[27] & 0x04)
 656			events[0] |= 0x04;	/* LE Connection Update
 657						 * Complete
 658						 */
 659
 660		/* If the controller supports the LE Read Remote Used Features
 661		 * command, enable the corresponding event.
 662		 */
 663		if (hdev->commands[27] & 0x20)
 664			events[0] |= 0x08;	/* LE Read Remote Used
 665						 * Features Complete
 666						 */
 667
 668		/* If the controller supports the LE Read Local P-256
 669		 * Public Key command, enable the corresponding event.
 670		 */
 671		if (hdev->commands[34] & 0x02)
 672			events[0] |= 0x80;	/* LE Read Local P-256
 673						 * Public Key Complete
 674						 */
 675
 676		/* If the controller supports the LE Generate DHKey
 677		 * command, enable the corresponding event.
 678		 */
 679		if (hdev->commands[34] & 0x04)
 680			events[1] |= 0x01;	/* LE Generate DHKey Complete */
 681
 
 
 
 
 
 
 682		hci_req_add(req, HCI_OP_LE_SET_EVENT_MASK, sizeof(events),
 683			    events);
 684
 685		if (hdev->commands[25] & 0x40) {
 686			/* Read LE Advertising Channel TX Power */
 687			hci_req_add(req, HCI_OP_LE_READ_ADV_TX_POWER, 0, NULL);
 688		}
 689
 690		if (hdev->commands[26] & 0x40) {
 691			/* Read LE White List Size */
 692			hci_req_add(req, HCI_OP_LE_READ_WHITE_LIST_SIZE,
 693				    0, NULL);
 694		}
 695
 696		if (hdev->commands[26] & 0x80) {
 697			/* Clear LE White List */
 698			hci_req_add(req, HCI_OP_LE_CLEAR_WHITE_LIST, 0, NULL);
 699		}
 700
 701		if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) {
 702			/* Read LE Maximum Data Length */
 703			hci_req_add(req, HCI_OP_LE_READ_MAX_DATA_LEN, 0, NULL);
 704
 705			/* Read LE Suggested Default Data Length */
 706			hci_req_add(req, HCI_OP_LE_READ_DEF_DATA_LEN, 0, NULL);
 707		}
 708
 709		hci_set_le_support(req);
 710	}
 711
 712	/* Read features beyond page 1 if available */
 713	for (p = 2; p < HCI_MAX_PAGES && p <= hdev->max_page; p++) {
 714		struct hci_cp_read_local_ext_features cp;
 715
 716		cp.page = p;
 717		hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES,
 718			    sizeof(cp), &cp);
 719	}
 720
 721	return 0;
 722}
 723
 724static int hci_init4_req(struct hci_request *req, unsigned long opt)
 725{
 726	struct hci_dev *hdev = req->hdev;
 727
 728	/* Some Broadcom based Bluetooth controllers do not support the
 729	 * Delete Stored Link Key command. They are clearly indicating its
 730	 * absence in the bit mask of supported commands.
 731	 *
 732	 * Check the supported commands and only if the the command is marked
 733	 * as supported send it. If not supported assume that the controller
 734	 * does not have actual support for stored link keys which makes this
 735	 * command redundant anyway.
 736	 *
 737	 * Some controllers indicate that they support handling deleting
 738	 * stored link keys, but they don't. The quirk lets a driver
 739	 * just disable this command.
 740	 */
 741	if (hdev->commands[6] & 0x80 &&
 742	    !test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) {
 743		struct hci_cp_delete_stored_link_key cp;
 744
 745		bacpy(&cp.bdaddr, BDADDR_ANY);
 746		cp.delete_all = 0x01;
 747		hci_req_add(req, HCI_OP_DELETE_STORED_LINK_KEY,
 748			    sizeof(cp), &cp);
 749	}
 750
 751	/* Set event mask page 2 if the HCI command for it is supported */
 752	if (hdev->commands[22] & 0x04)
 753		hci_set_event_mask_page_2(req);
 754
 755	/* Read local codec list if the HCI command is supported */
 756	if (hdev->commands[29] & 0x20)
 757		hci_req_add(req, HCI_OP_READ_LOCAL_CODECS, 0, NULL);
 758
 759	/* Get MWS transport configuration if the HCI command is supported */
 760	if (hdev->commands[30] & 0x08)
 761		hci_req_add(req, HCI_OP_GET_MWS_TRANSPORT_CONFIG, 0, NULL);
 762
 763	/* Check for Synchronization Train support */
 764	if (lmp_sync_train_capable(hdev))
 765		hci_req_add(req, HCI_OP_READ_SYNC_TRAIN_PARAMS, 0, NULL);
 766
 767	/* Enable Secure Connections if supported and configured */
 768	if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED) &&
 769	    bredr_sc_enabled(hdev)) {
 770		u8 support = 0x01;
 771
 772		hci_req_add(req, HCI_OP_WRITE_SC_SUPPORT,
 773			    sizeof(support), &support);
 774	}
 775
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 776	return 0;
 777}
 778
 779static int __hci_init(struct hci_dev *hdev)
 780{
 781	int err;
 782
 783	err = __hci_req_sync(hdev, hci_init1_req, 0, HCI_INIT_TIMEOUT, NULL);
 784	if (err < 0)
 785		return err;
 786
 787	if (hci_dev_test_flag(hdev, HCI_SETUP))
 788		hci_debugfs_create_basic(hdev);
 789
 790	err = __hci_req_sync(hdev, hci_init2_req, 0, HCI_INIT_TIMEOUT, NULL);
 791	if (err < 0)
 792		return err;
 793
 794	/* HCI_BREDR covers both single-mode LE, BR/EDR and dual-mode
 795	 * BR/EDR/LE type controllers. AMP controllers only need the
 796	 * first two stages of init.
 797	 */
 798	if (hdev->dev_type != HCI_BREDR)
 799		return 0;
 800
 801	err = __hci_req_sync(hdev, hci_init3_req, 0, HCI_INIT_TIMEOUT, NULL);
 802	if (err < 0)
 803		return err;
 804
 805	err = __hci_req_sync(hdev, hci_init4_req, 0, HCI_INIT_TIMEOUT, NULL);
 806	if (err < 0)
 807		return err;
 808
 809	/* This function is only called when the controller is actually in
 810	 * configured state. When the controller is marked as unconfigured,
 811	 * this initialization procedure is not run.
 812	 *
 813	 * It means that it is possible that a controller runs through its
 814	 * setup phase and then discovers missing settings. If that is the
 815	 * case, then this function will not be called. It then will only
 816	 * be called during the config phase.
 817	 *
 818	 * So only when in setup phase or config phase, create the debugfs
 819	 * entries and register the SMP channels.
 820	 */
 821	if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
 822	    !hci_dev_test_flag(hdev, HCI_CONFIG))
 823		return 0;
 824
 825	hci_debugfs_create_common(hdev);
 826
 827	if (lmp_bredr_capable(hdev))
 828		hci_debugfs_create_bredr(hdev);
 829
 830	if (lmp_le_capable(hdev))
 831		hci_debugfs_create_le(hdev);
 832
 833	return 0;
 834}
 835
 836static int hci_init0_req(struct hci_request *req, unsigned long opt)
 837{
 838	struct hci_dev *hdev = req->hdev;
 839
 840	BT_DBG("%s %ld", hdev->name, opt);
 841
 842	/* Reset */
 843	if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks))
 844		hci_reset_req(req, 0);
 845
 846	/* Read Local Version */
 847	hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
 848
 849	/* Read BD Address */
 850	if (hdev->set_bdaddr)
 851		hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL);
 852
 853	return 0;
 854}
 855
 856static int __hci_unconf_init(struct hci_dev *hdev)
 857{
 858	int err;
 859
 860	if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
 861		return 0;
 862
 863	err = __hci_req_sync(hdev, hci_init0_req, 0, HCI_INIT_TIMEOUT, NULL);
 864	if (err < 0)
 865		return err;
 866
 867	if (hci_dev_test_flag(hdev, HCI_SETUP))
 868		hci_debugfs_create_basic(hdev);
 869
 870	return 0;
 871}
 872
 873static int hci_scan_req(struct hci_request *req, unsigned long opt)
 874{
 875	__u8 scan = opt;
 876
 877	BT_DBG("%s %x", req->hdev->name, scan);
 878
 879	/* Inquiry and Page scans */
 880	hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
 881	return 0;
 882}
 883
 884static int hci_auth_req(struct hci_request *req, unsigned long opt)
 885{
 886	__u8 auth = opt;
 887
 888	BT_DBG("%s %x", req->hdev->name, auth);
 889
 890	/* Authentication */
 891	hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, 1, &auth);
 892	return 0;
 893}
 894
 895static int hci_encrypt_req(struct hci_request *req, unsigned long opt)
 896{
 897	__u8 encrypt = opt;
 898
 899	BT_DBG("%s %x", req->hdev->name, encrypt);
 900
 901	/* Encryption */
 902	hci_req_add(req, HCI_OP_WRITE_ENCRYPT_MODE, 1, &encrypt);
 903	return 0;
 904}
 905
 906static int hci_linkpol_req(struct hci_request *req, unsigned long opt)
 907{
 908	__le16 policy = cpu_to_le16(opt);
 909
 910	BT_DBG("%s %x", req->hdev->name, policy);
 911
 912	/* Default link policy */
 913	hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, 2, &policy);
 914	return 0;
 915}
 916
 917/* Get HCI device by index.
 918 * Device is held on return. */
 919struct hci_dev *hci_dev_get(int index)
 920{
 921	struct hci_dev *hdev = NULL, *d;
 922
 923	BT_DBG("%d", index);
 924
 925	if (index < 0)
 926		return NULL;
 927
 928	read_lock(&hci_dev_list_lock);
 929	list_for_each_entry(d, &hci_dev_list, list) {
 930		if (d->id == index) {
 931			hdev = hci_dev_hold(d);
 932			break;
 933		}
 934	}
 935	read_unlock(&hci_dev_list_lock);
 936	return hdev;
 937}
 938
 939/* ---- Inquiry support ---- */
 940
 941bool hci_discovery_active(struct hci_dev *hdev)
 942{
 943	struct discovery_state *discov = &hdev->discovery;
 944
 945	switch (discov->state) {
 946	case DISCOVERY_FINDING:
 947	case DISCOVERY_RESOLVING:
 948		return true;
 949
 950	default:
 951		return false;
 952	}
 953}
 954
 955void hci_discovery_set_state(struct hci_dev *hdev, int state)
 956{
 957	int old_state = hdev->discovery.state;
 958
 959	BT_DBG("%s state %u -> %u", hdev->name, hdev->discovery.state, state);
 960
 961	if (old_state == state)
 962		return;
 963
 964	hdev->discovery.state = state;
 965
 966	switch (state) {
 967	case DISCOVERY_STOPPED:
 968		hci_update_background_scan(hdev);
 969
 970		if (old_state != DISCOVERY_STARTING)
 971			mgmt_discovering(hdev, 0);
 972		break;
 973	case DISCOVERY_STARTING:
 974		break;
 975	case DISCOVERY_FINDING:
 976		mgmt_discovering(hdev, 1);
 977		break;
 978	case DISCOVERY_RESOLVING:
 979		break;
 980	case DISCOVERY_STOPPING:
 981		break;
 982	}
 983}
 984
 985void hci_inquiry_cache_flush(struct hci_dev *hdev)
 986{
 987	struct discovery_state *cache = &hdev->discovery;
 988	struct inquiry_entry *p, *n;
 989
 990	list_for_each_entry_safe(p, n, &cache->all, all) {
 991		list_del(&p->all);
 992		kfree(p);
 993	}
 994
 995	INIT_LIST_HEAD(&cache->unknown);
 996	INIT_LIST_HEAD(&cache->resolve);
 997}
 998
 999struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev,
1000					       bdaddr_t *bdaddr)
1001{
1002	struct discovery_state *cache = &hdev->discovery;
1003	struct inquiry_entry *e;
1004
1005	BT_DBG("cache %p, %pMR", cache, bdaddr);
1006
1007	list_for_each_entry(e, &cache->all, all) {
1008		if (!bacmp(&e->data.bdaddr, bdaddr))
1009			return e;
1010	}
1011
1012	return NULL;
1013}
1014
1015struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev,
1016						       bdaddr_t *bdaddr)
1017{
1018	struct discovery_state *cache = &hdev->discovery;
1019	struct inquiry_entry *e;
1020
1021	BT_DBG("cache %p, %pMR", cache, bdaddr);
1022
1023	list_for_each_entry(e, &cache->unknown, list) {
1024		if (!bacmp(&e->data.bdaddr, bdaddr))
1025			return e;
1026	}
1027
1028	return NULL;
1029}
1030
1031struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev,
1032						       bdaddr_t *bdaddr,
1033						       int state)
1034{
1035	struct discovery_state *cache = &hdev->discovery;
1036	struct inquiry_entry *e;
1037
1038	BT_DBG("cache %p bdaddr %pMR state %d", cache, bdaddr, state);
1039
1040	list_for_each_entry(e, &cache->resolve, list) {
1041		if (!bacmp(bdaddr, BDADDR_ANY) && e->name_state == state)
1042			return e;
1043		if (!bacmp(&e->data.bdaddr, bdaddr))
1044			return e;
1045	}
1046
1047	return NULL;
1048}
1049
1050void hci_inquiry_cache_update_resolve(struct hci_dev *hdev,
1051				      struct inquiry_entry *ie)
1052{
1053	struct discovery_state *cache = &hdev->discovery;
1054	struct list_head *pos = &cache->resolve;
1055	struct inquiry_entry *p;
1056
1057	list_del(&ie->list);
1058
1059	list_for_each_entry(p, &cache->resolve, list) {
1060		if (p->name_state != NAME_PENDING &&
1061		    abs(p->data.rssi) >= abs(ie->data.rssi))
1062			break;
1063		pos = &p->list;
1064	}
1065
1066	list_add(&ie->list, pos);
1067}
1068
1069u32 hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data,
1070			     bool name_known)
1071{
1072	struct discovery_state *cache = &hdev->discovery;
1073	struct inquiry_entry *ie;
1074	u32 flags = 0;
1075
1076	BT_DBG("cache %p, %pMR", cache, &data->bdaddr);
1077
1078	hci_remove_remote_oob_data(hdev, &data->bdaddr, BDADDR_BREDR);
1079
1080	if (!data->ssp_mode)
1081		flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
1082
1083	ie = hci_inquiry_cache_lookup(hdev, &data->bdaddr);
1084	if (ie) {
1085		if (!ie->data.ssp_mode)
1086			flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
1087
1088		if (ie->name_state == NAME_NEEDED &&
1089		    data->rssi != ie->data.rssi) {
1090			ie->data.rssi = data->rssi;
1091			hci_inquiry_cache_update_resolve(hdev, ie);
1092		}
1093
1094		goto update;
1095	}
1096
1097	/* Entry not in the cache. Add new one. */
1098	ie = kzalloc(sizeof(*ie), GFP_KERNEL);
1099	if (!ie) {
1100		flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
1101		goto done;
1102	}
1103
1104	list_add(&ie->all, &cache->all);
1105
1106	if (name_known) {
1107		ie->name_state = NAME_KNOWN;
1108	} else {
1109		ie->name_state = NAME_NOT_KNOWN;
1110		list_add(&ie->list, &cache->unknown);
1111	}
1112
1113update:
1114	if (name_known && ie->name_state != NAME_KNOWN &&
1115	    ie->name_state != NAME_PENDING) {
1116		ie->name_state = NAME_KNOWN;
1117		list_del(&ie->list);
1118	}
1119
1120	memcpy(&ie->data, data, sizeof(*data));
1121	ie->timestamp = jiffies;
1122	cache->timestamp = jiffies;
1123
1124	if (ie->name_state == NAME_NOT_KNOWN)
1125		flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
1126
1127done:
1128	return flags;
1129}
1130
1131static int inquiry_cache_dump(struct hci_dev *hdev, int num, __u8 *buf)
1132{
1133	struct discovery_state *cache = &hdev->discovery;
1134	struct inquiry_info *info = (struct inquiry_info *) buf;
1135	struct inquiry_entry *e;
1136	int copied = 0;
1137
1138	list_for_each_entry(e, &cache->all, all) {
1139		struct inquiry_data *data = &e->data;
1140
1141		if (copied >= num)
1142			break;
1143
1144		bacpy(&info->bdaddr, &data->bdaddr);
1145		info->pscan_rep_mode	= data->pscan_rep_mode;
1146		info->pscan_period_mode	= data->pscan_period_mode;
1147		info->pscan_mode	= data->pscan_mode;
1148		memcpy(info->dev_class, data->dev_class, 3);
1149		info->clock_offset	= data->clock_offset;
1150
1151		info++;
1152		copied++;
1153	}
1154
1155	BT_DBG("cache %p, copied %d", cache, copied);
1156	return copied;
1157}
1158
1159static int hci_inq_req(struct hci_request *req, unsigned long opt)
1160{
1161	struct hci_inquiry_req *ir = (struct hci_inquiry_req *) opt;
1162	struct hci_dev *hdev = req->hdev;
1163	struct hci_cp_inquiry cp;
1164
1165	BT_DBG("%s", hdev->name);
1166
1167	if (test_bit(HCI_INQUIRY, &hdev->flags))
1168		return 0;
1169
1170	/* Start Inquiry */
1171	memcpy(&cp.lap, &ir->lap, 3);
1172	cp.length  = ir->length;
1173	cp.num_rsp = ir->num_rsp;
1174	hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp);
1175
1176	return 0;
1177}
1178
1179int hci_inquiry(void __user *arg)
1180{
1181	__u8 __user *ptr = arg;
1182	struct hci_inquiry_req ir;
1183	struct hci_dev *hdev;
1184	int err = 0, do_inquiry = 0, max_rsp;
1185	long timeo;
1186	__u8 *buf;
1187
1188	if (copy_from_user(&ir, ptr, sizeof(ir)))
1189		return -EFAULT;
1190
1191	hdev = hci_dev_get(ir.dev_id);
1192	if (!hdev)
1193		return -ENODEV;
1194
1195	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1196		err = -EBUSY;
1197		goto done;
1198	}
1199
1200	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1201		err = -EOPNOTSUPP;
1202		goto done;
1203	}
1204
1205	if (hdev->dev_type != HCI_BREDR) {
1206		err = -EOPNOTSUPP;
1207		goto done;
1208	}
1209
1210	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
1211		err = -EOPNOTSUPP;
1212		goto done;
1213	}
1214
1215	hci_dev_lock(hdev);
1216	if (inquiry_cache_age(hdev) > INQUIRY_CACHE_AGE_MAX ||
1217	    inquiry_cache_empty(hdev) || ir.flags & IREQ_CACHE_FLUSH) {
1218		hci_inquiry_cache_flush(hdev);
1219		do_inquiry = 1;
1220	}
1221	hci_dev_unlock(hdev);
1222
1223	timeo = ir.length * msecs_to_jiffies(2000);
1224
1225	if (do_inquiry) {
1226		err = hci_req_sync(hdev, hci_inq_req, (unsigned long) &ir,
1227				   timeo, NULL);
1228		if (err < 0)
1229			goto done;
1230
1231		/* Wait until Inquiry procedure finishes (HCI_INQUIRY flag is
1232		 * cleared). If it is interrupted by a signal, return -EINTR.
1233		 */
1234		if (wait_on_bit(&hdev->flags, HCI_INQUIRY,
1235				TASK_INTERRUPTIBLE))
1236			return -EINTR;
1237	}
1238
1239	/* for unlimited number of responses we will use buffer with
1240	 * 255 entries
1241	 */
1242	max_rsp = (ir.num_rsp == 0) ? 255 : ir.num_rsp;
1243
1244	/* cache_dump can't sleep. Therefore we allocate temp buffer and then
1245	 * copy it to the user space.
1246	 */
1247	buf = kmalloc(sizeof(struct inquiry_info) * max_rsp, GFP_KERNEL);
1248	if (!buf) {
1249		err = -ENOMEM;
1250		goto done;
1251	}
1252
1253	hci_dev_lock(hdev);
1254	ir.num_rsp = inquiry_cache_dump(hdev, max_rsp, buf);
1255	hci_dev_unlock(hdev);
1256
1257	BT_DBG("num_rsp %d", ir.num_rsp);
1258
1259	if (!copy_to_user(ptr, &ir, sizeof(ir))) {
1260		ptr += sizeof(ir);
1261		if (copy_to_user(ptr, buf, sizeof(struct inquiry_info) *
1262				 ir.num_rsp))
1263			err = -EFAULT;
1264	} else
1265		err = -EFAULT;
1266
1267	kfree(buf);
1268
1269done:
1270	hci_dev_put(hdev);
1271	return err;
1272}
1273
1274static int hci_dev_do_open(struct hci_dev *hdev)
1275{
1276	int ret = 0;
1277
1278	BT_DBG("%s %p", hdev->name, hdev);
1279
1280	hci_req_sync_lock(hdev);
1281
1282	if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) {
1283		ret = -ENODEV;
1284		goto done;
1285	}
1286
1287	if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
1288	    !hci_dev_test_flag(hdev, HCI_CONFIG)) {
1289		/* Check for rfkill but allow the HCI setup stage to
1290		 * proceed (which in itself doesn't cause any RF activity).
1291		 */
1292		if (hci_dev_test_flag(hdev, HCI_RFKILLED)) {
1293			ret = -ERFKILL;
1294			goto done;
1295		}
1296
1297		/* Check for valid public address or a configured static
1298		 * random adddress, but let the HCI setup proceed to
1299		 * be able to determine if there is a public address
1300		 * or not.
1301		 *
1302		 * In case of user channel usage, it is not important
1303		 * if a public address or static random address is
1304		 * available.
1305		 *
1306		 * This check is only valid for BR/EDR controllers
1307		 * since AMP controllers do not have an address.
1308		 */
1309		if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1310		    hdev->dev_type == HCI_BREDR &&
1311		    !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
1312		    !bacmp(&hdev->static_addr, BDADDR_ANY)) {
1313			ret = -EADDRNOTAVAIL;
1314			goto done;
1315		}
1316	}
1317
1318	if (test_bit(HCI_UP, &hdev->flags)) {
1319		ret = -EALREADY;
1320		goto done;
1321	}
1322
1323	if (hdev->open(hdev)) {
1324		ret = -EIO;
1325		goto done;
1326	}
1327
1328	set_bit(HCI_RUNNING, &hdev->flags);
1329	hci_sock_dev_event(hdev, HCI_DEV_OPEN);
1330
1331	atomic_set(&hdev->cmd_cnt, 1);
1332	set_bit(HCI_INIT, &hdev->flags);
1333
1334	if (hci_dev_test_flag(hdev, HCI_SETUP)) {
1335		hci_sock_dev_event(hdev, HCI_DEV_SETUP);
1336
1337		if (hdev->setup)
1338			ret = hdev->setup(hdev);
1339
1340		/* The transport driver can set these quirks before
1341		 * creating the HCI device or in its setup callback.
1342		 *
1343		 * In case any of them is set, the controller has to
1344		 * start up as unconfigured.
1345		 */
1346		if (test_bit(HCI_QUIRK_EXTERNAL_CONFIG, &hdev->quirks) ||
1347		    test_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks))
1348			hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
1349
1350		/* For an unconfigured controller it is required to
1351		 * read at least the version information provided by
1352		 * the Read Local Version Information command.
1353		 *
1354		 * If the set_bdaddr driver callback is provided, then
1355		 * also the original Bluetooth public device address
1356		 * will be read using the Read BD Address command.
1357		 */
1358		if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
1359			ret = __hci_unconf_init(hdev);
1360	}
1361
1362	if (hci_dev_test_flag(hdev, HCI_CONFIG)) {
1363		/* If public address change is configured, ensure that
1364		 * the address gets programmed. If the driver does not
1365		 * support changing the public address, fail the power
1366		 * on procedure.
1367		 */
1368		if (bacmp(&hdev->public_addr, BDADDR_ANY) &&
1369		    hdev->set_bdaddr)
1370			ret = hdev->set_bdaddr(hdev, &hdev->public_addr);
1371		else
1372			ret = -EADDRNOTAVAIL;
1373	}
1374
1375	if (!ret) {
1376		if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1377		    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1378			ret = __hci_init(hdev);
1379			if (!ret && hdev->post_init)
1380				ret = hdev->post_init(hdev);
1381		}
1382	}
1383
1384	/* If the HCI Reset command is clearing all diagnostic settings,
1385	 * then they need to be reprogrammed after the init procedure
1386	 * completed.
1387	 */
1388	if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) &&
 
1389	    hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) && hdev->set_diag)
1390		ret = hdev->set_diag(hdev, true);
1391
1392	clear_bit(HCI_INIT, &hdev->flags);
1393
1394	if (!ret) {
1395		hci_dev_hold(hdev);
1396		hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
1397		set_bit(HCI_UP, &hdev->flags);
1398		hci_sock_dev_event(hdev, HCI_DEV_UP);
1399		hci_leds_update_powered(hdev, true);
1400		if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
1401		    !hci_dev_test_flag(hdev, HCI_CONFIG) &&
1402		    !hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1403		    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1404		    hci_dev_test_flag(hdev, HCI_MGMT) &&
1405		    hdev->dev_type == HCI_BREDR) {
1406			ret = __hci_req_hci_power_on(hdev);
1407			mgmt_power_on(hdev, ret);
1408		}
1409	} else {
1410		/* Init failed, cleanup */
1411		flush_work(&hdev->tx_work);
1412		flush_work(&hdev->cmd_work);
1413		flush_work(&hdev->rx_work);
1414
1415		skb_queue_purge(&hdev->cmd_q);
1416		skb_queue_purge(&hdev->rx_q);
1417
1418		if (hdev->flush)
1419			hdev->flush(hdev);
1420
1421		if (hdev->sent_cmd) {
1422			kfree_skb(hdev->sent_cmd);
1423			hdev->sent_cmd = NULL;
1424		}
1425
1426		clear_bit(HCI_RUNNING, &hdev->flags);
1427		hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
1428
1429		hdev->close(hdev);
1430		hdev->flags &= BIT(HCI_RAW);
1431	}
1432
1433done:
1434	hci_req_sync_unlock(hdev);
1435	return ret;
1436}
1437
1438/* ---- HCI ioctl helpers ---- */
1439
1440int hci_dev_open(__u16 dev)
1441{
1442	struct hci_dev *hdev;
1443	int err;
1444
1445	hdev = hci_dev_get(dev);
1446	if (!hdev)
1447		return -ENODEV;
1448
1449	/* Devices that are marked as unconfigured can only be powered
1450	 * up as user channel. Trying to bring them up as normal devices
1451	 * will result into a failure. Only user channel operation is
1452	 * possible.
1453	 *
1454	 * When this function is called for a user channel, the flag
1455	 * HCI_USER_CHANNEL will be set first before attempting to
1456	 * open the device.
1457	 */
1458	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1459	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1460		err = -EOPNOTSUPP;
1461		goto done;
1462	}
1463
1464	/* We need to ensure that no other power on/off work is pending
1465	 * before proceeding to call hci_dev_do_open. This is
1466	 * particularly important if the setup procedure has not yet
1467	 * completed.
1468	 */
1469	if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
1470		cancel_delayed_work(&hdev->power_off);
1471
1472	/* After this call it is guaranteed that the setup procedure
1473	 * has finished. This means that error conditions like RFKILL
1474	 * or no valid public or static random address apply.
1475	 */
1476	flush_workqueue(hdev->req_workqueue);
1477
1478	/* For controllers not using the management interface and that
1479	 * are brought up using legacy ioctl, set the HCI_BONDABLE bit
1480	 * so that pairing works for them. Once the management interface
1481	 * is in use this bit will be cleared again and userspace has
1482	 * to explicitly enable it.
1483	 */
1484	if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1485	    !hci_dev_test_flag(hdev, HCI_MGMT))
1486		hci_dev_set_flag(hdev, HCI_BONDABLE);
1487
1488	err = hci_dev_do_open(hdev);
1489
1490done:
1491	hci_dev_put(hdev);
1492	return err;
1493}
1494
1495/* This function requires the caller holds hdev->lock */
1496static void hci_pend_le_actions_clear(struct hci_dev *hdev)
1497{
1498	struct hci_conn_params *p;
1499
1500	list_for_each_entry(p, &hdev->le_conn_params, list) {
1501		if (p->conn) {
1502			hci_conn_drop(p->conn);
1503			hci_conn_put(p->conn);
1504			p->conn = NULL;
1505		}
1506		list_del_init(&p->action);
1507	}
1508
1509	BT_DBG("All LE pending actions cleared");
1510}
1511
1512int hci_dev_do_close(struct hci_dev *hdev)
1513{
1514	bool auto_off;
1515
1516	BT_DBG("%s %p", hdev->name, hdev);
1517
1518	if (!hci_dev_test_flag(hdev, HCI_UNREGISTER) &&
1519	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1520	    test_bit(HCI_UP, &hdev->flags)) {
1521		/* Execute vendor specific shutdown routine */
1522		if (hdev->shutdown)
1523			hdev->shutdown(hdev);
1524	}
1525
1526	cancel_delayed_work(&hdev->power_off);
1527
1528	hci_request_cancel_all(hdev);
1529	hci_req_sync_lock(hdev);
1530
1531	if (!test_and_clear_bit(HCI_UP, &hdev->flags)) {
1532		cancel_delayed_work_sync(&hdev->cmd_timer);
1533		hci_req_sync_unlock(hdev);
1534		return 0;
1535	}
1536
1537	hci_leds_update_powered(hdev, false);
1538
1539	/* Flush RX and TX works */
1540	flush_work(&hdev->tx_work);
1541	flush_work(&hdev->rx_work);
1542
1543	if (hdev->discov_timeout > 0) {
1544		hdev->discov_timeout = 0;
1545		hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
1546		hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
1547	}
1548
1549	if (hci_dev_test_and_clear_flag(hdev, HCI_SERVICE_CACHE))
1550		cancel_delayed_work(&hdev->service_cache);
1551
1552	if (hci_dev_test_flag(hdev, HCI_MGMT))
1553		cancel_delayed_work_sync(&hdev->rpa_expired);
1554
1555	/* Avoid potential lockdep warnings from the *_flush() calls by
1556	 * ensuring the workqueue is empty up front.
1557	 */
1558	drain_workqueue(hdev->workqueue);
1559
1560	hci_dev_lock(hdev);
1561
1562	hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
1563
1564	auto_off = hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF);
1565
1566	if (!auto_off && hdev->dev_type == HCI_BREDR &&
 
1567	    hci_dev_test_flag(hdev, HCI_MGMT))
1568		__mgmt_power_off(hdev);
1569
1570	hci_inquiry_cache_flush(hdev);
1571	hci_pend_le_actions_clear(hdev);
1572	hci_conn_hash_flush(hdev);
1573	hci_dev_unlock(hdev);
1574
1575	smp_unregister(hdev);
1576
1577	hci_sock_dev_event(hdev, HCI_DEV_DOWN);
1578
1579	if (hdev->flush)
1580		hdev->flush(hdev);
1581
1582	/* Reset device */
1583	skb_queue_purge(&hdev->cmd_q);
1584	atomic_set(&hdev->cmd_cnt, 1);
1585	if (test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks) &&
1586	    !auto_off && !hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1587		set_bit(HCI_INIT, &hdev->flags);
1588		__hci_req_sync(hdev, hci_reset_req, 0, HCI_CMD_TIMEOUT, NULL);
1589		clear_bit(HCI_INIT, &hdev->flags);
1590	}
1591
1592	/* flush cmd  work */
1593	flush_work(&hdev->cmd_work);
1594
1595	/* Drop queues */
1596	skb_queue_purge(&hdev->rx_q);
1597	skb_queue_purge(&hdev->cmd_q);
1598	skb_queue_purge(&hdev->raw_q);
1599
1600	/* Drop last sent command */
1601	if (hdev->sent_cmd) {
1602		cancel_delayed_work_sync(&hdev->cmd_timer);
1603		kfree_skb(hdev->sent_cmd);
1604		hdev->sent_cmd = NULL;
1605	}
1606
1607	clear_bit(HCI_RUNNING, &hdev->flags);
1608	hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
1609
1610	/* After this point our queues are empty
1611	 * and no tasks are scheduled. */
1612	hdev->close(hdev);
1613
1614	/* Clear flags */
1615	hdev->flags &= BIT(HCI_RAW);
1616	hci_dev_clear_volatile_flags(hdev);
1617
1618	/* Controller radio is available but is currently powered down */
1619	hdev->amp_status = AMP_STATUS_POWERED_DOWN;
1620
1621	memset(hdev->eir, 0, sizeof(hdev->eir));
1622	memset(hdev->dev_class, 0, sizeof(hdev->dev_class));
1623	bacpy(&hdev->random_addr, BDADDR_ANY);
1624
1625	hci_req_sync_unlock(hdev);
1626
1627	hci_dev_put(hdev);
1628	return 0;
1629}
1630
1631int hci_dev_close(__u16 dev)
1632{
1633	struct hci_dev *hdev;
1634	int err;
1635
1636	hdev = hci_dev_get(dev);
1637	if (!hdev)
1638		return -ENODEV;
1639
1640	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1641		err = -EBUSY;
1642		goto done;
1643	}
1644
1645	if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
1646		cancel_delayed_work(&hdev->power_off);
1647
1648	err = hci_dev_do_close(hdev);
1649
1650done:
1651	hci_dev_put(hdev);
1652	return err;
1653}
1654
1655static int hci_dev_do_reset(struct hci_dev *hdev)
1656{
1657	int ret;
1658
1659	BT_DBG("%s %p", hdev->name, hdev);
1660
1661	hci_req_sync_lock(hdev);
1662
1663	/* Drop queues */
1664	skb_queue_purge(&hdev->rx_q);
1665	skb_queue_purge(&hdev->cmd_q);
1666
1667	/* Avoid potential lockdep warnings from the *_flush() calls by
1668	 * ensuring the workqueue is empty up front.
1669	 */
1670	drain_workqueue(hdev->workqueue);
1671
1672	hci_dev_lock(hdev);
1673	hci_inquiry_cache_flush(hdev);
1674	hci_conn_hash_flush(hdev);
1675	hci_dev_unlock(hdev);
1676
1677	if (hdev->flush)
1678		hdev->flush(hdev);
1679
1680	atomic_set(&hdev->cmd_cnt, 1);
1681	hdev->acl_cnt = 0; hdev->sco_cnt = 0; hdev->le_cnt = 0;
1682
1683	ret = __hci_req_sync(hdev, hci_reset_req, 0, HCI_INIT_TIMEOUT, NULL);
1684
1685	hci_req_sync_unlock(hdev);
1686	return ret;
1687}
1688
1689int hci_dev_reset(__u16 dev)
1690{
1691	struct hci_dev *hdev;
1692	int err;
1693
1694	hdev = hci_dev_get(dev);
1695	if (!hdev)
1696		return -ENODEV;
1697
1698	if (!test_bit(HCI_UP, &hdev->flags)) {
1699		err = -ENETDOWN;
1700		goto done;
1701	}
1702
1703	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1704		err = -EBUSY;
1705		goto done;
1706	}
1707
1708	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1709		err = -EOPNOTSUPP;
1710		goto done;
1711	}
1712
1713	err = hci_dev_do_reset(hdev);
1714
1715done:
1716	hci_dev_put(hdev);
1717	return err;
1718}
1719
1720int hci_dev_reset_stat(__u16 dev)
1721{
1722	struct hci_dev *hdev;
1723	int ret = 0;
1724
1725	hdev = hci_dev_get(dev);
1726	if (!hdev)
1727		return -ENODEV;
1728
1729	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1730		ret = -EBUSY;
1731		goto done;
1732	}
1733
1734	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1735		ret = -EOPNOTSUPP;
1736		goto done;
1737	}
1738
1739	memset(&hdev->stat, 0, sizeof(struct hci_dev_stats));
1740
1741done:
1742	hci_dev_put(hdev);
1743	return ret;
1744}
1745
1746static void hci_update_scan_state(struct hci_dev *hdev, u8 scan)
1747{
1748	bool conn_changed, discov_changed;
1749
1750	BT_DBG("%s scan 0x%02x", hdev->name, scan);
1751
1752	if ((scan & SCAN_PAGE))
1753		conn_changed = !hci_dev_test_and_set_flag(hdev,
1754							  HCI_CONNECTABLE);
1755	else
1756		conn_changed = hci_dev_test_and_clear_flag(hdev,
1757							   HCI_CONNECTABLE);
1758
1759	if ((scan & SCAN_INQUIRY)) {
1760		discov_changed = !hci_dev_test_and_set_flag(hdev,
1761							    HCI_DISCOVERABLE);
1762	} else {
1763		hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
1764		discov_changed = hci_dev_test_and_clear_flag(hdev,
1765							     HCI_DISCOVERABLE);
1766	}
1767
1768	if (!hci_dev_test_flag(hdev, HCI_MGMT))
1769		return;
1770
1771	if (conn_changed || discov_changed) {
1772		/* In case this was disabled through mgmt */
1773		hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
1774
1775		if (hci_dev_test_flag(hdev, HCI_LE_ENABLED))
1776			hci_req_update_adv_data(hdev, hdev->cur_adv_instance);
1777
1778		mgmt_new_settings(hdev);
1779	}
1780}
1781
1782int hci_dev_cmd(unsigned int cmd, void __user *arg)
1783{
1784	struct hci_dev *hdev;
1785	struct hci_dev_req dr;
1786	int err = 0;
1787
1788	if (copy_from_user(&dr, arg, sizeof(dr)))
1789		return -EFAULT;
1790
1791	hdev = hci_dev_get(dr.dev_id);
1792	if (!hdev)
1793		return -ENODEV;
1794
1795	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1796		err = -EBUSY;
1797		goto done;
1798	}
1799
1800	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1801		err = -EOPNOTSUPP;
1802		goto done;
1803	}
1804
1805	if (hdev->dev_type != HCI_BREDR) {
1806		err = -EOPNOTSUPP;
1807		goto done;
1808	}
1809
1810	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
1811		err = -EOPNOTSUPP;
1812		goto done;
1813	}
1814
1815	switch (cmd) {
1816	case HCISETAUTH:
1817		err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
1818				   HCI_INIT_TIMEOUT, NULL);
1819		break;
1820
1821	case HCISETENCRYPT:
1822		if (!lmp_encrypt_capable(hdev)) {
1823			err = -EOPNOTSUPP;
1824			break;
1825		}
1826
1827		if (!test_bit(HCI_AUTH, &hdev->flags)) {
1828			/* Auth must be enabled first */
1829			err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
1830					   HCI_INIT_TIMEOUT, NULL);
1831			if (err)
1832				break;
1833		}
1834
1835		err = hci_req_sync(hdev, hci_encrypt_req, dr.dev_opt,
1836				   HCI_INIT_TIMEOUT, NULL);
1837		break;
1838
1839	case HCISETSCAN:
1840		err = hci_req_sync(hdev, hci_scan_req, dr.dev_opt,
1841				   HCI_INIT_TIMEOUT, NULL);
1842
1843		/* Ensure that the connectable and discoverable states
1844		 * get correctly modified as this was a non-mgmt change.
1845		 */
1846		if (!err)
1847			hci_update_scan_state(hdev, dr.dev_opt);
1848		break;
1849
1850	case HCISETLINKPOL:
1851		err = hci_req_sync(hdev, hci_linkpol_req, dr.dev_opt,
1852				   HCI_INIT_TIMEOUT, NULL);
1853		break;
1854
1855	case HCISETLINKMODE:
1856		hdev->link_mode = ((__u16) dr.dev_opt) &
1857					(HCI_LM_MASTER | HCI_LM_ACCEPT);
1858		break;
1859
1860	case HCISETPTYPE:
1861		hdev->pkt_type = (__u16) dr.dev_opt;
1862		break;
1863
1864	case HCISETACLMTU:
1865		hdev->acl_mtu  = *((__u16 *) &dr.dev_opt + 1);
1866		hdev->acl_pkts = *((__u16 *) &dr.dev_opt + 0);
1867		break;
1868
1869	case HCISETSCOMTU:
1870		hdev->sco_mtu  = *((__u16 *) &dr.dev_opt + 1);
1871		hdev->sco_pkts = *((__u16 *) &dr.dev_opt + 0);
1872		break;
1873
1874	default:
1875		err = -EINVAL;
1876		break;
1877	}
1878
1879done:
1880	hci_dev_put(hdev);
1881	return err;
1882}
1883
1884int hci_get_dev_list(void __user *arg)
1885{
1886	struct hci_dev *hdev;
1887	struct hci_dev_list_req *dl;
1888	struct hci_dev_req *dr;
1889	int n = 0, size, err;
1890	__u16 dev_num;
1891
1892	if (get_user(dev_num, (__u16 __user *) arg))
1893		return -EFAULT;
1894
1895	if (!dev_num || dev_num > (PAGE_SIZE * 2) / sizeof(*dr))
1896		return -EINVAL;
1897
1898	size = sizeof(*dl) + dev_num * sizeof(*dr);
1899
1900	dl = kzalloc(size, GFP_KERNEL);
1901	if (!dl)
1902		return -ENOMEM;
1903
1904	dr = dl->dev_req;
1905
1906	read_lock(&hci_dev_list_lock);
1907	list_for_each_entry(hdev, &hci_dev_list, list) {
1908		unsigned long flags = hdev->flags;
1909
1910		/* When the auto-off is configured it means the transport
1911		 * is running, but in that case still indicate that the
1912		 * device is actually down.
1913		 */
1914		if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
1915			flags &= ~BIT(HCI_UP);
1916
1917		(dr + n)->dev_id  = hdev->id;
1918		(dr + n)->dev_opt = flags;
1919
1920		if (++n >= dev_num)
1921			break;
1922	}
1923	read_unlock(&hci_dev_list_lock);
1924
1925	dl->dev_num = n;
1926	size = sizeof(*dl) + n * sizeof(*dr);
1927
1928	err = copy_to_user(arg, dl, size);
1929	kfree(dl);
1930
1931	return err ? -EFAULT : 0;
1932}
1933
1934int hci_get_dev_info(void __user *arg)
1935{
1936	struct hci_dev *hdev;
1937	struct hci_dev_info di;
1938	unsigned long flags;
1939	int err = 0;
1940
1941	if (copy_from_user(&di, arg, sizeof(di)))
1942		return -EFAULT;
1943
1944	hdev = hci_dev_get(di.dev_id);
1945	if (!hdev)
1946		return -ENODEV;
1947
1948	/* When the auto-off is configured it means the transport
1949	 * is running, but in that case still indicate that the
1950	 * device is actually down.
1951	 */
1952	if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
1953		flags = hdev->flags & ~BIT(HCI_UP);
1954	else
1955		flags = hdev->flags;
1956
1957	strcpy(di.name, hdev->name);
1958	di.bdaddr   = hdev->bdaddr;
1959	di.type     = (hdev->bus & 0x0f) | ((hdev->dev_type & 0x03) << 4);
1960	di.flags    = flags;
1961	di.pkt_type = hdev->pkt_type;
1962	if (lmp_bredr_capable(hdev)) {
1963		di.acl_mtu  = hdev->acl_mtu;
1964		di.acl_pkts = hdev->acl_pkts;
1965		di.sco_mtu  = hdev->sco_mtu;
1966		di.sco_pkts = hdev->sco_pkts;
1967	} else {
1968		di.acl_mtu  = hdev->le_mtu;
1969		di.acl_pkts = hdev->le_pkts;
1970		di.sco_mtu  = 0;
1971		di.sco_pkts = 0;
1972	}
1973	di.link_policy = hdev->link_policy;
1974	di.link_mode   = hdev->link_mode;
1975
1976	memcpy(&di.stat, &hdev->stat, sizeof(di.stat));
1977	memcpy(&di.features, &hdev->features, sizeof(di.features));
1978
1979	if (copy_to_user(arg, &di, sizeof(di)))
1980		err = -EFAULT;
1981
1982	hci_dev_put(hdev);
1983
1984	return err;
1985}
1986
1987/* ---- Interface to HCI drivers ---- */
1988
1989static int hci_rfkill_set_block(void *data, bool blocked)
1990{
1991	struct hci_dev *hdev = data;
1992
1993	BT_DBG("%p name %s blocked %d", hdev, hdev->name, blocked);
1994
1995	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL))
1996		return -EBUSY;
1997
1998	if (blocked) {
1999		hci_dev_set_flag(hdev, HCI_RFKILLED);
2000		if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
2001		    !hci_dev_test_flag(hdev, HCI_CONFIG))
2002			hci_dev_do_close(hdev);
2003	} else {
2004		hci_dev_clear_flag(hdev, HCI_RFKILLED);
2005	}
2006
2007	return 0;
2008}
2009
2010static const struct rfkill_ops hci_rfkill_ops = {
2011	.set_block = hci_rfkill_set_block,
2012};
2013
2014static void hci_power_on(struct work_struct *work)
2015{
2016	struct hci_dev *hdev = container_of(work, struct hci_dev, power_on);
2017	int err;
2018
2019	BT_DBG("%s", hdev->name);
2020
2021	if (test_bit(HCI_UP, &hdev->flags) &&
2022	    hci_dev_test_flag(hdev, HCI_MGMT) &&
2023	    hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) {
2024		cancel_delayed_work(&hdev->power_off);
2025		hci_req_sync_lock(hdev);
2026		err = __hci_req_hci_power_on(hdev);
2027		hci_req_sync_unlock(hdev);
2028		mgmt_power_on(hdev, err);
2029		return;
2030	}
2031
2032	err = hci_dev_do_open(hdev);
2033	if (err < 0) {
2034		hci_dev_lock(hdev);
2035		mgmt_set_powered_failed(hdev, err);
2036		hci_dev_unlock(hdev);
2037		return;
2038	}
2039
2040	/* During the HCI setup phase, a few error conditions are
2041	 * ignored and they need to be checked now. If they are still
2042	 * valid, it is important to turn the device back off.
2043	 */
2044	if (hci_dev_test_flag(hdev, HCI_RFKILLED) ||
2045	    hci_dev_test_flag(hdev, HCI_UNCONFIGURED) ||
2046	    (hdev->dev_type == HCI_BREDR &&
2047	     !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
2048	     !bacmp(&hdev->static_addr, BDADDR_ANY))) {
2049		hci_dev_clear_flag(hdev, HCI_AUTO_OFF);
2050		hci_dev_do_close(hdev);
2051	} else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) {
2052		queue_delayed_work(hdev->req_workqueue, &hdev->power_off,
2053				   HCI_AUTO_OFF_TIMEOUT);
2054	}
2055
2056	if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) {
2057		/* For unconfigured devices, set the HCI_RAW flag
2058		 * so that userspace can easily identify them.
2059		 */
2060		if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
2061			set_bit(HCI_RAW, &hdev->flags);
2062
2063		/* For fully configured devices, this will send
2064		 * the Index Added event. For unconfigured devices,
2065		 * it will send Unconfigued Index Added event.
2066		 *
2067		 * Devices with HCI_QUIRK_RAW_DEVICE are ignored
2068		 * and no event will be send.
2069		 */
2070		mgmt_index_added(hdev);
2071	} else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) {
2072		/* When the controller is now configured, then it
2073		 * is important to clear the HCI_RAW flag.
2074		 */
2075		if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
2076			clear_bit(HCI_RAW, &hdev->flags);
2077
2078		/* Powering on the controller with HCI_CONFIG set only
2079		 * happens with the transition from unconfigured to
2080		 * configured. This will send the Index Added event.
2081		 */
2082		mgmt_index_added(hdev);
2083	}
2084}
2085
2086static void hci_power_off(struct work_struct *work)
2087{
2088	struct hci_dev *hdev = container_of(work, struct hci_dev,
2089					    power_off.work);
2090
2091	BT_DBG("%s", hdev->name);
2092
2093	hci_dev_do_close(hdev);
2094}
2095
2096static void hci_error_reset(struct work_struct *work)
2097{
2098	struct hci_dev *hdev = container_of(work, struct hci_dev, error_reset);
2099
2100	BT_DBG("%s", hdev->name);
2101
2102	if (hdev->hw_error)
2103		hdev->hw_error(hdev, hdev->hw_error_code);
2104	else
2105		BT_ERR("%s hardware error 0x%2.2x", hdev->name,
2106		       hdev->hw_error_code);
2107
2108	if (hci_dev_do_close(hdev))
2109		return;
2110
2111	hci_dev_do_open(hdev);
2112}
2113
2114void hci_uuids_clear(struct hci_dev *hdev)
2115{
2116	struct bt_uuid *uuid, *tmp;
2117
2118	list_for_each_entry_safe(uuid, tmp, &hdev->uuids, list) {
2119		list_del(&uuid->list);
2120		kfree(uuid);
2121	}
2122}
2123
2124void hci_link_keys_clear(struct hci_dev *hdev)
2125{
2126	struct link_key *key;
2127
2128	list_for_each_entry_rcu(key, &hdev->link_keys, list) {
2129		list_del_rcu(&key->list);
2130		kfree_rcu(key, rcu);
2131	}
2132}
2133
2134void hci_smp_ltks_clear(struct hci_dev *hdev)
2135{
2136	struct smp_ltk *k;
2137
2138	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2139		list_del_rcu(&k->list);
2140		kfree_rcu(k, rcu);
2141	}
2142}
2143
2144void hci_smp_irks_clear(struct hci_dev *hdev)
2145{
2146	struct smp_irk *k;
2147
2148	list_for_each_entry_rcu(k, &hdev->identity_resolving_keys, list) {
2149		list_del_rcu(&k->list);
2150		kfree_rcu(k, rcu);
2151	}
2152}
2153
2154struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
2155{
2156	struct link_key *k;
2157
2158	rcu_read_lock();
2159	list_for_each_entry_rcu(k, &hdev->link_keys, list) {
2160		if (bacmp(bdaddr, &k->bdaddr) == 0) {
2161			rcu_read_unlock();
2162			return k;
2163		}
2164	}
2165	rcu_read_unlock();
2166
2167	return NULL;
2168}
2169
2170static bool hci_persistent_key(struct hci_dev *hdev, struct hci_conn *conn,
2171			       u8 key_type, u8 old_key_type)
2172{
2173	/* Legacy key */
2174	if (key_type < 0x03)
2175		return true;
2176
2177	/* Debug keys are insecure so don't store them persistently */
2178	if (key_type == HCI_LK_DEBUG_COMBINATION)
2179		return false;
2180
2181	/* Changed combination key and there's no previous one */
2182	if (key_type == HCI_LK_CHANGED_COMBINATION && old_key_type == 0xff)
2183		return false;
2184
2185	/* Security mode 3 case */
2186	if (!conn)
2187		return true;
2188
2189	/* BR/EDR key derived using SC from an LE link */
2190	if (conn->type == LE_LINK)
2191		return true;
2192
2193	/* Neither local nor remote side had no-bonding as requirement */
2194	if (conn->auth_type > 0x01 && conn->remote_auth > 0x01)
2195		return true;
2196
2197	/* Local side had dedicated bonding as requirement */
2198	if (conn->auth_type == 0x02 || conn->auth_type == 0x03)
2199		return true;
2200
2201	/* Remote side had dedicated bonding as requirement */
2202	if (conn->remote_auth == 0x02 || conn->remote_auth == 0x03)
2203		return true;
2204
2205	/* If none of the above criteria match, then don't store the key
2206	 * persistently */
2207	return false;
2208}
2209
2210static u8 ltk_role(u8 type)
2211{
2212	if (type == SMP_LTK)
2213		return HCI_ROLE_MASTER;
2214
2215	return HCI_ROLE_SLAVE;
2216}
2217
2218struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2219			     u8 addr_type, u8 role)
2220{
2221	struct smp_ltk *k;
2222
2223	rcu_read_lock();
2224	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2225		if (addr_type != k->bdaddr_type || bacmp(bdaddr, &k->bdaddr))
2226			continue;
2227
2228		if (smp_ltk_is_sc(k) || ltk_role(k->type) == role) {
2229			rcu_read_unlock();
2230			return k;
2231		}
2232	}
2233	rcu_read_unlock();
2234
2235	return NULL;
2236}
2237
2238struct smp_irk *hci_find_irk_by_rpa(struct hci_dev *hdev, bdaddr_t *rpa)
2239{
2240	struct smp_irk *irk;
2241
2242	rcu_read_lock();
2243	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2244		if (!bacmp(&irk->rpa, rpa)) {
2245			rcu_read_unlock();
2246			return irk;
2247		}
2248	}
2249
2250	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2251		if (smp_irk_matches(hdev, irk->val, rpa)) {
2252			bacpy(&irk->rpa, rpa);
2253			rcu_read_unlock();
2254			return irk;
2255		}
2256	}
2257	rcu_read_unlock();
2258
2259	return NULL;
2260}
2261
2262struct smp_irk *hci_find_irk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr,
2263				     u8 addr_type)
2264{
2265	struct smp_irk *irk;
2266
2267	/* Identity Address must be public or static random */
2268	if (addr_type == ADDR_LE_DEV_RANDOM && (bdaddr->b[5] & 0xc0) != 0xc0)
2269		return NULL;
2270
2271	rcu_read_lock();
2272	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2273		if (addr_type == irk->addr_type &&
2274		    bacmp(bdaddr, &irk->bdaddr) == 0) {
2275			rcu_read_unlock();
2276			return irk;
2277		}
2278	}
2279	rcu_read_unlock();
2280
2281	return NULL;
2282}
2283
2284struct link_key *hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn,
2285				  bdaddr_t *bdaddr, u8 *val, u8 type,
2286				  u8 pin_len, bool *persistent)
2287{
2288	struct link_key *key, *old_key;
2289	u8 old_key_type;
2290
2291	old_key = hci_find_link_key(hdev, bdaddr);
2292	if (old_key) {
2293		old_key_type = old_key->type;
2294		key = old_key;
2295	} else {
2296		old_key_type = conn ? conn->key_type : 0xff;
2297		key = kzalloc(sizeof(*key), GFP_KERNEL);
2298		if (!key)
2299			return NULL;
2300		list_add_rcu(&key->list, &hdev->link_keys);
2301	}
2302
2303	BT_DBG("%s key for %pMR type %u", hdev->name, bdaddr, type);
2304
2305	/* Some buggy controller combinations generate a changed
2306	 * combination key for legacy pairing even when there's no
2307	 * previous key */
2308	if (type == HCI_LK_CHANGED_COMBINATION &&
2309	    (!conn || conn->remote_auth == 0xff) && old_key_type == 0xff) {
2310		type = HCI_LK_COMBINATION;
2311		if (conn)
2312			conn->key_type = type;
2313	}
2314
2315	bacpy(&key->bdaddr, bdaddr);
2316	memcpy(key->val, val, HCI_LINK_KEY_SIZE);
2317	key->pin_len = pin_len;
2318
2319	if (type == HCI_LK_CHANGED_COMBINATION)
2320		key->type = old_key_type;
2321	else
2322		key->type = type;
2323
2324	if (persistent)
2325		*persistent = hci_persistent_key(hdev, conn, type,
2326						 old_key_type);
2327
2328	return key;
2329}
2330
2331struct smp_ltk *hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2332			    u8 addr_type, u8 type, u8 authenticated,
2333			    u8 tk[16], u8 enc_size, __le16 ediv, __le64 rand)
2334{
2335	struct smp_ltk *key, *old_key;
2336	u8 role = ltk_role(type);
2337
2338	old_key = hci_find_ltk(hdev, bdaddr, addr_type, role);
2339	if (old_key)
2340		key = old_key;
2341	else {
2342		key = kzalloc(sizeof(*key), GFP_KERNEL);
2343		if (!key)
2344			return NULL;
2345		list_add_rcu(&key->list, &hdev->long_term_keys);
2346	}
2347
2348	bacpy(&key->bdaddr, bdaddr);
2349	key->bdaddr_type = addr_type;
2350	memcpy(key->val, tk, sizeof(key->val));
2351	key->authenticated = authenticated;
2352	key->ediv = ediv;
2353	key->rand = rand;
2354	key->enc_size = enc_size;
2355	key->type = type;
2356
2357	return key;
2358}
2359
2360struct smp_irk *hci_add_irk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2361			    u8 addr_type, u8 val[16], bdaddr_t *rpa)
2362{
2363	struct smp_irk *irk;
2364
2365	irk = hci_find_irk_by_addr(hdev, bdaddr, addr_type);
2366	if (!irk) {
2367		irk = kzalloc(sizeof(*irk), GFP_KERNEL);
2368		if (!irk)
2369			return NULL;
2370
2371		bacpy(&irk->bdaddr, bdaddr);
2372		irk->addr_type = addr_type;
2373
2374		list_add_rcu(&irk->list, &hdev->identity_resolving_keys);
2375	}
2376
2377	memcpy(irk->val, val, 16);
2378	bacpy(&irk->rpa, rpa);
2379
2380	return irk;
2381}
2382
2383int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
2384{
2385	struct link_key *key;
2386
2387	key = hci_find_link_key(hdev, bdaddr);
2388	if (!key)
2389		return -ENOENT;
2390
2391	BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2392
2393	list_del_rcu(&key->list);
2394	kfree_rcu(key, rcu);
2395
2396	return 0;
2397}
2398
2399int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type)
2400{
2401	struct smp_ltk *k;
2402	int removed = 0;
2403
2404	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2405		if (bacmp(bdaddr, &k->bdaddr) || k->bdaddr_type != bdaddr_type)
2406			continue;
2407
2408		BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2409
2410		list_del_rcu(&k->list);
2411		kfree_rcu(k, rcu);
2412		removed++;
2413	}
2414
2415	return removed ? 0 : -ENOENT;
2416}
2417
2418void hci_remove_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type)
2419{
2420	struct smp_irk *k;
2421
2422	list_for_each_entry_rcu(k, &hdev->identity_resolving_keys, list) {
2423		if (bacmp(bdaddr, &k->bdaddr) || k->addr_type != addr_type)
2424			continue;
2425
2426		BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2427
2428		list_del_rcu(&k->list);
2429		kfree_rcu(k, rcu);
2430	}
2431}
2432
2433bool hci_bdaddr_is_paired(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type)
2434{
2435	struct smp_ltk *k;
2436	struct smp_irk *irk;
2437	u8 addr_type;
2438
2439	if (type == BDADDR_BREDR) {
2440		if (hci_find_link_key(hdev, bdaddr))
2441			return true;
2442		return false;
2443	}
2444
2445	/* Convert to HCI addr type which struct smp_ltk uses */
2446	if (type == BDADDR_LE_PUBLIC)
2447		addr_type = ADDR_LE_DEV_PUBLIC;
2448	else
2449		addr_type = ADDR_LE_DEV_RANDOM;
2450
2451	irk = hci_get_irk(hdev, bdaddr, addr_type);
2452	if (irk) {
2453		bdaddr = &irk->bdaddr;
2454		addr_type = irk->addr_type;
2455	}
2456
2457	rcu_read_lock();
2458	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2459		if (k->bdaddr_type == addr_type && !bacmp(bdaddr, &k->bdaddr)) {
2460			rcu_read_unlock();
2461			return true;
2462		}
2463	}
2464	rcu_read_unlock();
2465
2466	return false;
2467}
2468
2469/* HCI command timer function */
2470static void hci_cmd_timeout(struct work_struct *work)
2471{
2472	struct hci_dev *hdev = container_of(work, struct hci_dev,
2473					    cmd_timer.work);
2474
2475	if (hdev->sent_cmd) {
2476		struct hci_command_hdr *sent = (void *) hdev->sent_cmd->data;
2477		u16 opcode = __le16_to_cpu(sent->opcode);
2478
2479		BT_ERR("%s command 0x%4.4x tx timeout", hdev->name, opcode);
2480	} else {
2481		BT_ERR("%s command tx timeout", hdev->name);
2482	}
2483
2484	atomic_set(&hdev->cmd_cnt, 1);
2485	queue_work(hdev->workqueue, &hdev->cmd_work);
2486}
2487
2488struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev,
2489					  bdaddr_t *bdaddr, u8 bdaddr_type)
2490{
2491	struct oob_data *data;
2492
2493	list_for_each_entry(data, &hdev->remote_oob_data, list) {
2494		if (bacmp(bdaddr, &data->bdaddr) != 0)
2495			continue;
2496		if (data->bdaddr_type != bdaddr_type)
2497			continue;
2498		return data;
2499	}
2500
2501	return NULL;
2502}
2503
2504int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
2505			       u8 bdaddr_type)
2506{
2507	struct oob_data *data;
2508
2509	data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
2510	if (!data)
2511		return -ENOENT;
2512
2513	BT_DBG("%s removing %pMR (%u)", hdev->name, bdaddr, bdaddr_type);
2514
2515	list_del(&data->list);
2516	kfree(data);
2517
2518	return 0;
2519}
2520
2521void hci_remote_oob_data_clear(struct hci_dev *hdev)
2522{
2523	struct oob_data *data, *n;
2524
2525	list_for_each_entry_safe(data, n, &hdev->remote_oob_data, list) {
2526		list_del(&data->list);
2527		kfree(data);
2528	}
2529}
2530
2531int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
2532			    u8 bdaddr_type, u8 *hash192, u8 *rand192,
2533			    u8 *hash256, u8 *rand256)
2534{
2535	struct oob_data *data;
2536
2537	data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
2538	if (!data) {
2539		data = kmalloc(sizeof(*data), GFP_KERNEL);
2540		if (!data)
2541			return -ENOMEM;
2542
2543		bacpy(&data->bdaddr, bdaddr);
2544		data->bdaddr_type = bdaddr_type;
2545		list_add(&data->list, &hdev->remote_oob_data);
2546	}
2547
2548	if (hash192 && rand192) {
2549		memcpy(data->hash192, hash192, sizeof(data->hash192));
2550		memcpy(data->rand192, rand192, sizeof(data->rand192));
2551		if (hash256 && rand256)
2552			data->present = 0x03;
2553	} else {
2554		memset(data->hash192, 0, sizeof(data->hash192));
2555		memset(data->rand192, 0, sizeof(data->rand192));
2556		if (hash256 && rand256)
2557			data->present = 0x02;
2558		else
2559			data->present = 0x00;
2560	}
2561
2562	if (hash256 && rand256) {
2563		memcpy(data->hash256, hash256, sizeof(data->hash256));
2564		memcpy(data->rand256, rand256, sizeof(data->rand256));
2565	} else {
2566		memset(data->hash256, 0, sizeof(data->hash256));
2567		memset(data->rand256, 0, sizeof(data->rand256));
2568		if (hash192 && rand192)
2569			data->present = 0x01;
2570	}
2571
2572	BT_DBG("%s for %pMR", hdev->name, bdaddr);
2573
2574	return 0;
2575}
2576
2577/* This function requires the caller holds hdev->lock */
2578struct adv_info *hci_find_adv_instance(struct hci_dev *hdev, u8 instance)
2579{
2580	struct adv_info *adv_instance;
2581
2582	list_for_each_entry(adv_instance, &hdev->adv_instances, list) {
2583		if (adv_instance->instance == instance)
2584			return adv_instance;
2585	}
2586
2587	return NULL;
2588}
2589
2590/* This function requires the caller holds hdev->lock */
2591struct adv_info *hci_get_next_instance(struct hci_dev *hdev, u8 instance)
2592{
2593	struct adv_info *cur_instance;
2594
2595	cur_instance = hci_find_adv_instance(hdev, instance);
2596	if (!cur_instance)
2597		return NULL;
2598
2599	if (cur_instance == list_last_entry(&hdev->adv_instances,
2600					    struct adv_info, list))
2601		return list_first_entry(&hdev->adv_instances,
2602						 struct adv_info, list);
2603	else
2604		return list_next_entry(cur_instance, list);
2605}
2606
2607/* This function requires the caller holds hdev->lock */
2608int hci_remove_adv_instance(struct hci_dev *hdev, u8 instance)
2609{
2610	struct adv_info *adv_instance;
2611
2612	adv_instance = hci_find_adv_instance(hdev, instance);
2613	if (!adv_instance)
2614		return -ENOENT;
2615
2616	BT_DBG("%s removing %dMR", hdev->name, instance);
2617
2618	if (hdev->cur_adv_instance == instance) {
2619		if (hdev->adv_instance_timeout) {
2620			cancel_delayed_work(&hdev->adv_instance_expire);
2621			hdev->adv_instance_timeout = 0;
2622		}
2623		hdev->cur_adv_instance = 0x00;
2624	}
2625
2626	list_del(&adv_instance->list);
2627	kfree(adv_instance);
2628
2629	hdev->adv_instance_cnt--;
2630
2631	return 0;
2632}
2633
2634/* This function requires the caller holds hdev->lock */
2635void hci_adv_instances_clear(struct hci_dev *hdev)
2636{
2637	struct adv_info *adv_instance, *n;
2638
2639	if (hdev->adv_instance_timeout) {
2640		cancel_delayed_work(&hdev->adv_instance_expire);
2641		hdev->adv_instance_timeout = 0;
2642	}
2643
2644	list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list) {
2645		list_del(&adv_instance->list);
2646		kfree(adv_instance);
2647	}
2648
2649	hdev->adv_instance_cnt = 0;
2650	hdev->cur_adv_instance = 0x00;
2651}
2652
2653/* This function requires the caller holds hdev->lock */
2654int hci_add_adv_instance(struct hci_dev *hdev, u8 instance, u32 flags,
2655			 u16 adv_data_len, u8 *adv_data,
2656			 u16 scan_rsp_len, u8 *scan_rsp_data,
2657			 u16 timeout, u16 duration)
2658{
2659	struct adv_info *adv_instance;
2660
2661	adv_instance = hci_find_adv_instance(hdev, instance);
2662	if (adv_instance) {
2663		memset(adv_instance->adv_data, 0,
2664		       sizeof(adv_instance->adv_data));
2665		memset(adv_instance->scan_rsp_data, 0,
2666		       sizeof(adv_instance->scan_rsp_data));
2667	} else {
2668		if (hdev->adv_instance_cnt >= HCI_MAX_ADV_INSTANCES ||
2669		    instance < 1 || instance > HCI_MAX_ADV_INSTANCES)
2670			return -EOVERFLOW;
2671
2672		adv_instance = kzalloc(sizeof(*adv_instance), GFP_KERNEL);
2673		if (!adv_instance)
2674			return -ENOMEM;
2675
2676		adv_instance->pending = true;
2677		adv_instance->instance = instance;
2678		list_add(&adv_instance->list, &hdev->adv_instances);
2679		hdev->adv_instance_cnt++;
2680	}
2681
2682	adv_instance->flags = flags;
2683	adv_instance->adv_data_len = adv_data_len;
2684	adv_instance->scan_rsp_len = scan_rsp_len;
2685
2686	if (adv_data_len)
2687		memcpy(adv_instance->adv_data, adv_data, adv_data_len);
2688
2689	if (scan_rsp_len)
2690		memcpy(adv_instance->scan_rsp_data,
2691		       scan_rsp_data, scan_rsp_len);
2692
2693	adv_instance->timeout = timeout;
2694	adv_instance->remaining_time = timeout;
2695
2696	if (duration == 0)
2697		adv_instance->duration = HCI_DEFAULT_ADV_DURATION;
2698	else
2699		adv_instance->duration = duration;
2700
2701	BT_DBG("%s for %dMR", hdev->name, instance);
2702
2703	return 0;
2704}
2705
2706struct bdaddr_list *hci_bdaddr_list_lookup(struct list_head *bdaddr_list,
2707					 bdaddr_t *bdaddr, u8 type)
2708{
2709	struct bdaddr_list *b;
2710
2711	list_for_each_entry(b, bdaddr_list, list) {
2712		if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2713			return b;
2714	}
2715
2716	return NULL;
2717}
2718
2719void hci_bdaddr_list_clear(struct list_head *bdaddr_list)
2720{
2721	struct bdaddr_list *b, *n;
2722
2723	list_for_each_entry_safe(b, n, bdaddr_list, list) {
2724		list_del(&b->list);
2725		kfree(b);
2726	}
2727}
2728
2729int hci_bdaddr_list_add(struct list_head *list, bdaddr_t *bdaddr, u8 type)
2730{
2731	struct bdaddr_list *entry;
2732
2733	if (!bacmp(bdaddr, BDADDR_ANY))
2734		return -EBADF;
2735
2736	if (hci_bdaddr_list_lookup(list, bdaddr, type))
2737		return -EEXIST;
2738
2739	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
2740	if (!entry)
2741		return -ENOMEM;
2742
2743	bacpy(&entry->bdaddr, bdaddr);
2744	entry->bdaddr_type = type;
2745
2746	list_add(&entry->list, list);
2747
2748	return 0;
2749}
2750
2751int hci_bdaddr_list_del(struct list_head *list, bdaddr_t *bdaddr, u8 type)
2752{
2753	struct bdaddr_list *entry;
2754
2755	if (!bacmp(bdaddr, BDADDR_ANY)) {
2756		hci_bdaddr_list_clear(list);
2757		return 0;
2758	}
2759
2760	entry = hci_bdaddr_list_lookup(list, bdaddr, type);
2761	if (!entry)
2762		return -ENOENT;
2763
2764	list_del(&entry->list);
2765	kfree(entry);
2766
2767	return 0;
2768}
2769
2770/* This function requires the caller holds hdev->lock */
2771struct hci_conn_params *hci_conn_params_lookup(struct hci_dev *hdev,
2772					       bdaddr_t *addr, u8 addr_type)
2773{
2774	struct hci_conn_params *params;
2775
2776	list_for_each_entry(params, &hdev->le_conn_params, list) {
2777		if (bacmp(&params->addr, addr) == 0 &&
2778		    params->addr_type == addr_type) {
2779			return params;
2780		}
2781	}
2782
2783	return NULL;
2784}
2785
2786/* This function requires the caller holds hdev->lock */
2787struct hci_conn_params *hci_pend_le_action_lookup(struct list_head *list,
2788						  bdaddr_t *addr, u8 addr_type)
2789{
2790	struct hci_conn_params *param;
2791
2792	list_for_each_entry(param, list, action) {
2793		if (bacmp(&param->addr, addr) == 0 &&
2794		    param->addr_type == addr_type)
2795			return param;
2796	}
2797
2798	return NULL;
2799}
2800
2801/* This function requires the caller holds hdev->lock */
2802struct hci_conn_params *hci_conn_params_add(struct hci_dev *hdev,
2803					    bdaddr_t *addr, u8 addr_type)
2804{
2805	struct hci_conn_params *params;
2806
2807	params = hci_conn_params_lookup(hdev, addr, addr_type);
2808	if (params)
2809		return params;
2810
2811	params = kzalloc(sizeof(*params), GFP_KERNEL);
2812	if (!params) {
2813		BT_ERR("Out of memory");
2814		return NULL;
2815	}
2816
2817	bacpy(&params->addr, addr);
2818	params->addr_type = addr_type;
2819
2820	list_add(&params->list, &hdev->le_conn_params);
2821	INIT_LIST_HEAD(&params->action);
2822
2823	params->conn_min_interval = hdev->le_conn_min_interval;
2824	params->conn_max_interval = hdev->le_conn_max_interval;
2825	params->conn_latency = hdev->le_conn_latency;
2826	params->supervision_timeout = hdev->le_supv_timeout;
2827	params->auto_connect = HCI_AUTO_CONN_DISABLED;
2828
2829	BT_DBG("addr %pMR (type %u)", addr, addr_type);
2830
2831	return params;
2832}
2833
2834static void hci_conn_params_free(struct hci_conn_params *params)
2835{
2836	if (params->conn) {
2837		hci_conn_drop(params->conn);
2838		hci_conn_put(params->conn);
2839	}
2840
2841	list_del(&params->action);
2842	list_del(&params->list);
2843	kfree(params);
2844}
2845
2846/* This function requires the caller holds hdev->lock */
2847void hci_conn_params_del(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type)
2848{
2849	struct hci_conn_params *params;
2850
2851	params = hci_conn_params_lookup(hdev, addr, addr_type);
2852	if (!params)
2853		return;
2854
2855	hci_conn_params_free(params);
2856
2857	hci_update_background_scan(hdev);
2858
2859	BT_DBG("addr %pMR (type %u)", addr, addr_type);
2860}
2861
2862/* This function requires the caller holds hdev->lock */
2863void hci_conn_params_clear_disabled(struct hci_dev *hdev)
2864{
2865	struct hci_conn_params *params, *tmp;
2866
2867	list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list) {
2868		if (params->auto_connect != HCI_AUTO_CONN_DISABLED)
2869			continue;
2870
2871		/* If trying to estabilish one time connection to disabled
2872		 * device, leave the params, but mark them as just once.
2873		 */
2874		if (params->explicit_connect) {
2875			params->auto_connect = HCI_AUTO_CONN_EXPLICIT;
2876			continue;
2877		}
2878
2879		list_del(&params->list);
2880		kfree(params);
2881	}
2882
2883	BT_DBG("All LE disabled connection parameters were removed");
2884}
2885
2886/* This function requires the caller holds hdev->lock */
2887static void hci_conn_params_clear_all(struct hci_dev *hdev)
2888{
2889	struct hci_conn_params *params, *tmp;
2890
2891	list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list)
2892		hci_conn_params_free(params);
2893
2894	BT_DBG("All LE connection parameters were removed");
2895}
2896
2897/* Copy the Identity Address of the controller.
2898 *
2899 * If the controller has a public BD_ADDR, then by default use that one.
2900 * If this is a LE only controller without a public address, default to
2901 * the static random address.
2902 *
2903 * For debugging purposes it is possible to force controllers with a
2904 * public address to use the static random address instead.
2905 *
2906 * In case BR/EDR has been disabled on a dual-mode controller and
2907 * userspace has configured a static address, then that address
2908 * becomes the identity address instead of the public BR/EDR address.
2909 */
2910void hci_copy_identity_address(struct hci_dev *hdev, bdaddr_t *bdaddr,
2911			       u8 *bdaddr_type)
2912{
2913	if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
2914	    !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
2915	    (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
2916	     bacmp(&hdev->static_addr, BDADDR_ANY))) {
2917		bacpy(bdaddr, &hdev->static_addr);
2918		*bdaddr_type = ADDR_LE_DEV_RANDOM;
2919	} else {
2920		bacpy(bdaddr, &hdev->bdaddr);
2921		*bdaddr_type = ADDR_LE_DEV_PUBLIC;
2922	}
2923}
2924
2925/* Alloc HCI device */
2926struct hci_dev *hci_alloc_dev(void)
2927{
2928	struct hci_dev *hdev;
2929
2930	hdev = kzalloc(sizeof(*hdev), GFP_KERNEL);
2931	if (!hdev)
2932		return NULL;
2933
2934	hdev->pkt_type  = (HCI_DM1 | HCI_DH1 | HCI_HV1);
2935	hdev->esco_type = (ESCO_HV1);
2936	hdev->link_mode = (HCI_LM_ACCEPT);
2937	hdev->num_iac = 0x01;		/* One IAC support is mandatory */
2938	hdev->io_capability = 0x03;	/* No Input No Output */
2939	hdev->manufacturer = 0xffff;	/* Default to internal use */
2940	hdev->inq_tx_power = HCI_TX_POWER_INVALID;
2941	hdev->adv_tx_power = HCI_TX_POWER_INVALID;
2942	hdev->adv_instance_cnt = 0;
2943	hdev->cur_adv_instance = 0x00;
2944	hdev->adv_instance_timeout = 0;
2945
2946	hdev->sniff_max_interval = 800;
2947	hdev->sniff_min_interval = 80;
2948
2949	hdev->le_adv_channel_map = 0x07;
2950	hdev->le_adv_min_interval = 0x0800;
2951	hdev->le_adv_max_interval = 0x0800;
2952	hdev->le_scan_interval = 0x0060;
2953	hdev->le_scan_window = 0x0030;
2954	hdev->le_conn_min_interval = 0x0028;
2955	hdev->le_conn_max_interval = 0x0038;
2956	hdev->le_conn_latency = 0x0000;
2957	hdev->le_supv_timeout = 0x002a;
2958	hdev->le_def_tx_len = 0x001b;
2959	hdev->le_def_tx_time = 0x0148;
2960	hdev->le_max_tx_len = 0x001b;
2961	hdev->le_max_tx_time = 0x0148;
2962	hdev->le_max_rx_len = 0x001b;
2963	hdev->le_max_rx_time = 0x0148;
2964
2965	hdev->rpa_timeout = HCI_DEFAULT_RPA_TIMEOUT;
2966	hdev->discov_interleaved_timeout = DISCOV_INTERLEAVED_TIMEOUT;
2967	hdev->conn_info_min_age = DEFAULT_CONN_INFO_MIN_AGE;
2968	hdev->conn_info_max_age = DEFAULT_CONN_INFO_MAX_AGE;
2969
2970	mutex_init(&hdev->lock);
2971	mutex_init(&hdev->req_lock);
2972
2973	INIT_LIST_HEAD(&hdev->mgmt_pending);
2974	INIT_LIST_HEAD(&hdev->blacklist);
2975	INIT_LIST_HEAD(&hdev->whitelist);
2976	INIT_LIST_HEAD(&hdev->uuids);
2977	INIT_LIST_HEAD(&hdev->link_keys);
2978	INIT_LIST_HEAD(&hdev->long_term_keys);
2979	INIT_LIST_HEAD(&hdev->identity_resolving_keys);
2980	INIT_LIST_HEAD(&hdev->remote_oob_data);
2981	INIT_LIST_HEAD(&hdev->le_white_list);
2982	INIT_LIST_HEAD(&hdev->le_conn_params);
2983	INIT_LIST_HEAD(&hdev->pend_le_conns);
2984	INIT_LIST_HEAD(&hdev->pend_le_reports);
2985	INIT_LIST_HEAD(&hdev->conn_hash.list);
2986	INIT_LIST_HEAD(&hdev->adv_instances);
2987
2988	INIT_WORK(&hdev->rx_work, hci_rx_work);
2989	INIT_WORK(&hdev->cmd_work, hci_cmd_work);
2990	INIT_WORK(&hdev->tx_work, hci_tx_work);
2991	INIT_WORK(&hdev->power_on, hci_power_on);
2992	INIT_WORK(&hdev->error_reset, hci_error_reset);
2993
2994	INIT_DELAYED_WORK(&hdev->power_off, hci_power_off);
2995
2996	skb_queue_head_init(&hdev->rx_q);
2997	skb_queue_head_init(&hdev->cmd_q);
2998	skb_queue_head_init(&hdev->raw_q);
2999
3000	init_waitqueue_head(&hdev->req_wait_q);
3001
3002	INIT_DELAYED_WORK(&hdev->cmd_timer, hci_cmd_timeout);
3003
3004	hci_request_setup(hdev);
3005
3006	hci_init_sysfs(hdev);
3007	discovery_init(hdev);
3008
3009	return hdev;
3010}
3011EXPORT_SYMBOL(hci_alloc_dev);
3012
3013/* Free HCI device */
3014void hci_free_dev(struct hci_dev *hdev)
3015{
3016	/* will free via device release */
3017	put_device(&hdev->dev);
3018}
3019EXPORT_SYMBOL(hci_free_dev);
3020
3021/* Register HCI device */
3022int hci_register_dev(struct hci_dev *hdev)
3023{
3024	int id, error;
3025
3026	if (!hdev->open || !hdev->close || !hdev->send)
3027		return -EINVAL;
3028
3029	/* Do not allow HCI_AMP devices to register at index 0,
3030	 * so the index can be used as the AMP controller ID.
3031	 */
3032	switch (hdev->dev_type) {
3033	case HCI_BREDR:
3034		id = ida_simple_get(&hci_index_ida, 0, 0, GFP_KERNEL);
3035		break;
3036	case HCI_AMP:
3037		id = ida_simple_get(&hci_index_ida, 1, 0, GFP_KERNEL);
3038		break;
3039	default:
3040		return -EINVAL;
3041	}
3042
3043	if (id < 0)
3044		return id;
3045
3046	sprintf(hdev->name, "hci%d", id);
3047	hdev->id = id;
3048
3049	BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
3050
3051	hdev->workqueue = alloc_workqueue("%s", WQ_HIGHPRI | WQ_UNBOUND |
3052					  WQ_MEM_RECLAIM, 1, hdev->name);
3053	if (!hdev->workqueue) {
3054		error = -ENOMEM;
3055		goto err;
3056	}
3057
3058	hdev->req_workqueue = alloc_workqueue("%s", WQ_HIGHPRI | WQ_UNBOUND |
3059					      WQ_MEM_RECLAIM, 1, hdev->name);
3060	if (!hdev->req_workqueue) {
3061		destroy_workqueue(hdev->workqueue);
3062		error = -ENOMEM;
3063		goto err;
3064	}
3065
3066	if (!IS_ERR_OR_NULL(bt_debugfs))
3067		hdev->debugfs = debugfs_create_dir(hdev->name, bt_debugfs);
3068
3069	dev_set_name(&hdev->dev, "%s", hdev->name);
3070
3071	error = device_add(&hdev->dev);
3072	if (error < 0)
3073		goto err_wqueue;
3074
3075	hci_leds_init(hdev);
3076
3077	hdev->rfkill = rfkill_alloc(hdev->name, &hdev->dev,
3078				    RFKILL_TYPE_BLUETOOTH, &hci_rfkill_ops,
3079				    hdev);
3080	if (hdev->rfkill) {
3081		if (rfkill_register(hdev->rfkill) < 0) {
3082			rfkill_destroy(hdev->rfkill);
3083			hdev->rfkill = NULL;
3084		}
3085	}
3086
3087	if (hdev->rfkill && rfkill_blocked(hdev->rfkill))
3088		hci_dev_set_flag(hdev, HCI_RFKILLED);
3089
3090	hci_dev_set_flag(hdev, HCI_SETUP);
3091	hci_dev_set_flag(hdev, HCI_AUTO_OFF);
3092
3093	if (hdev->dev_type == HCI_BREDR) {
3094		/* Assume BR/EDR support until proven otherwise (such as
3095		 * through reading supported features during init.
3096		 */
3097		hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
3098	}
3099
3100	write_lock(&hci_dev_list_lock);
3101	list_add(&hdev->list, &hci_dev_list);
3102	write_unlock(&hci_dev_list_lock);
3103
3104	/* Devices that are marked for raw-only usage are unconfigured
3105	 * and should not be included in normal operation.
3106	 */
3107	if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
3108		hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
3109
3110	hci_sock_dev_event(hdev, HCI_DEV_REG);
3111	hci_dev_hold(hdev);
3112
3113	queue_work(hdev->req_workqueue, &hdev->power_on);
3114
3115	return id;
3116
3117err_wqueue:
3118	destroy_workqueue(hdev->workqueue);
3119	destroy_workqueue(hdev->req_workqueue);
3120err:
3121	ida_simple_remove(&hci_index_ida, hdev->id);
3122
3123	return error;
3124}
3125EXPORT_SYMBOL(hci_register_dev);
3126
3127/* Unregister HCI device */
3128void hci_unregister_dev(struct hci_dev *hdev)
3129{
3130	int id;
3131
3132	BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
3133
3134	hci_dev_set_flag(hdev, HCI_UNREGISTER);
3135
3136	id = hdev->id;
3137
3138	write_lock(&hci_dev_list_lock);
3139	list_del(&hdev->list);
3140	write_unlock(&hci_dev_list_lock);
3141
3142	hci_dev_do_close(hdev);
3143
3144	cancel_work_sync(&hdev->power_on);
3145
 
 
3146	if (!test_bit(HCI_INIT, &hdev->flags) &&
3147	    !hci_dev_test_flag(hdev, HCI_SETUP) &&
3148	    !hci_dev_test_flag(hdev, HCI_CONFIG)) {
3149		hci_dev_lock(hdev);
3150		mgmt_index_removed(hdev);
3151		hci_dev_unlock(hdev);
3152	}
3153
3154	/* mgmt_index_removed should take care of emptying the
3155	 * pending list */
3156	BUG_ON(!list_empty(&hdev->mgmt_pending));
3157
3158	hci_sock_dev_event(hdev, HCI_DEV_UNREG);
3159
3160	if (hdev->rfkill) {
3161		rfkill_unregister(hdev->rfkill);
3162		rfkill_destroy(hdev->rfkill);
3163	}
3164
3165	device_del(&hdev->dev);
3166
3167	debugfs_remove_recursive(hdev->debugfs);
 
 
3168
3169	destroy_workqueue(hdev->workqueue);
3170	destroy_workqueue(hdev->req_workqueue);
3171
3172	hci_dev_lock(hdev);
3173	hci_bdaddr_list_clear(&hdev->blacklist);
3174	hci_bdaddr_list_clear(&hdev->whitelist);
3175	hci_uuids_clear(hdev);
3176	hci_link_keys_clear(hdev);
3177	hci_smp_ltks_clear(hdev);
3178	hci_smp_irks_clear(hdev);
3179	hci_remote_oob_data_clear(hdev);
3180	hci_adv_instances_clear(hdev);
3181	hci_bdaddr_list_clear(&hdev->le_white_list);
3182	hci_conn_params_clear_all(hdev);
3183	hci_discovery_filter_clear(hdev);
3184	hci_dev_unlock(hdev);
3185
3186	hci_dev_put(hdev);
3187
3188	ida_simple_remove(&hci_index_ida, id);
3189}
3190EXPORT_SYMBOL(hci_unregister_dev);
3191
3192/* Suspend HCI device */
3193int hci_suspend_dev(struct hci_dev *hdev)
3194{
3195	hci_sock_dev_event(hdev, HCI_DEV_SUSPEND);
3196	return 0;
3197}
3198EXPORT_SYMBOL(hci_suspend_dev);
3199
3200/* Resume HCI device */
3201int hci_resume_dev(struct hci_dev *hdev)
3202{
3203	hci_sock_dev_event(hdev, HCI_DEV_RESUME);
3204	return 0;
3205}
3206EXPORT_SYMBOL(hci_resume_dev);
3207
3208/* Reset HCI device */
3209int hci_reset_dev(struct hci_dev *hdev)
3210{
3211	const u8 hw_err[] = { HCI_EV_HARDWARE_ERROR, 0x01, 0x00 };
3212	struct sk_buff *skb;
3213
3214	skb = bt_skb_alloc(3, GFP_ATOMIC);
3215	if (!skb)
3216		return -ENOMEM;
3217
3218	hci_skb_pkt_type(skb) = HCI_EVENT_PKT;
3219	memcpy(skb_put(skb, 3), hw_err, 3);
3220
3221	/* Send Hardware Error to upper stack */
3222	return hci_recv_frame(hdev, skb);
3223}
3224EXPORT_SYMBOL(hci_reset_dev);
3225
3226/* Receive frame from HCI drivers */
3227int hci_recv_frame(struct hci_dev *hdev, struct sk_buff *skb)
3228{
3229	if (!hdev || (!test_bit(HCI_UP, &hdev->flags)
3230		      && !test_bit(HCI_INIT, &hdev->flags))) {
3231		kfree_skb(skb);
3232		return -ENXIO;
3233	}
3234
3235	if (hci_skb_pkt_type(skb) != HCI_EVENT_PKT &&
3236	    hci_skb_pkt_type(skb) != HCI_ACLDATA_PKT &&
3237	    hci_skb_pkt_type(skb) != HCI_SCODATA_PKT) {
3238		kfree_skb(skb);
3239		return -EINVAL;
3240	}
3241
3242	/* Incoming skb */
3243	bt_cb(skb)->incoming = 1;
3244
3245	/* Time stamp */
3246	__net_timestamp(skb);
3247
3248	skb_queue_tail(&hdev->rx_q, skb);
3249	queue_work(hdev->workqueue, &hdev->rx_work);
3250
3251	return 0;
3252}
3253EXPORT_SYMBOL(hci_recv_frame);
3254
3255/* Receive diagnostic message from HCI drivers */
3256int hci_recv_diag(struct hci_dev *hdev, struct sk_buff *skb)
3257{
3258	/* Mark as diagnostic packet */
3259	hci_skb_pkt_type(skb) = HCI_DIAG_PKT;
3260
3261	/* Time stamp */
3262	__net_timestamp(skb);
3263
3264	skb_queue_tail(&hdev->rx_q, skb);
3265	queue_work(hdev->workqueue, &hdev->rx_work);
3266
3267	return 0;
3268}
3269EXPORT_SYMBOL(hci_recv_diag);
3270
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3271/* ---- Interface to upper protocols ---- */
3272
3273int hci_register_cb(struct hci_cb *cb)
3274{
3275	BT_DBG("%p name %s", cb, cb->name);
3276
3277	mutex_lock(&hci_cb_list_lock);
3278	list_add_tail(&cb->list, &hci_cb_list);
3279	mutex_unlock(&hci_cb_list_lock);
3280
3281	return 0;
3282}
3283EXPORT_SYMBOL(hci_register_cb);
3284
3285int hci_unregister_cb(struct hci_cb *cb)
3286{
3287	BT_DBG("%p name %s", cb, cb->name);
3288
3289	mutex_lock(&hci_cb_list_lock);
3290	list_del(&cb->list);
3291	mutex_unlock(&hci_cb_list_lock);
3292
3293	return 0;
3294}
3295EXPORT_SYMBOL(hci_unregister_cb);
3296
3297static void hci_send_frame(struct hci_dev *hdev, struct sk_buff *skb)
3298{
3299	int err;
3300
3301	BT_DBG("%s type %d len %d", hdev->name, hci_skb_pkt_type(skb),
3302	       skb->len);
3303
3304	/* Time stamp */
3305	__net_timestamp(skb);
3306
3307	/* Send copy to monitor */
3308	hci_send_to_monitor(hdev, skb);
3309
3310	if (atomic_read(&hdev->promisc)) {
3311		/* Send copy to the sockets */
3312		hci_send_to_sock(hdev, skb);
3313	}
3314
3315	/* Get rid of skb owner, prior to sending to the driver. */
3316	skb_orphan(skb);
3317
3318	if (!test_bit(HCI_RUNNING, &hdev->flags)) {
3319		kfree_skb(skb);
3320		return;
3321	}
3322
3323	err = hdev->send(hdev, skb);
3324	if (err < 0) {
3325		BT_ERR("%s sending frame failed (%d)", hdev->name, err);
3326		kfree_skb(skb);
3327	}
3328}
3329
3330/* Send HCI command */
3331int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen,
3332		 const void *param)
3333{
3334	struct sk_buff *skb;
3335
3336	BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen);
3337
3338	skb = hci_prepare_cmd(hdev, opcode, plen, param);
3339	if (!skb) {
3340		BT_ERR("%s no memory for command", hdev->name);
3341		return -ENOMEM;
3342	}
3343
3344	/* Stand-alone HCI commands must be flagged as
3345	 * single-command requests.
3346	 */
3347	bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
3348
3349	skb_queue_tail(&hdev->cmd_q, skb);
3350	queue_work(hdev->workqueue, &hdev->cmd_work);
3351
3352	return 0;
3353}
3354
3355/* Get data from the previously sent command */
3356void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode)
3357{
3358	struct hci_command_hdr *hdr;
3359
3360	if (!hdev->sent_cmd)
3361		return NULL;
3362
3363	hdr = (void *) hdev->sent_cmd->data;
3364
3365	if (hdr->opcode != cpu_to_le16(opcode))
3366		return NULL;
3367
3368	BT_DBG("%s opcode 0x%4.4x", hdev->name, opcode);
3369
3370	return hdev->sent_cmd->data + HCI_COMMAND_HDR_SIZE;
3371}
3372
3373/* Send HCI command and wait for command commplete event */
3374struct sk_buff *hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
3375			     const void *param, u32 timeout)
3376{
3377	struct sk_buff *skb;
3378
3379	if (!test_bit(HCI_UP, &hdev->flags))
3380		return ERR_PTR(-ENETDOWN);
3381
3382	bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen);
3383
3384	hci_req_sync_lock(hdev);
3385	skb = __hci_cmd_sync(hdev, opcode, plen, param, timeout);
3386	hci_req_sync_unlock(hdev);
3387
3388	return skb;
3389}
3390EXPORT_SYMBOL(hci_cmd_sync);
3391
3392/* Send ACL data */
3393static void hci_add_acl_hdr(struct sk_buff *skb, __u16 handle, __u16 flags)
3394{
3395	struct hci_acl_hdr *hdr;
3396	int len = skb->len;
3397
3398	skb_push(skb, HCI_ACL_HDR_SIZE);
3399	skb_reset_transport_header(skb);
3400	hdr = (struct hci_acl_hdr *)skb_transport_header(skb);
3401	hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
3402	hdr->dlen   = cpu_to_le16(len);
3403}
3404
3405static void hci_queue_acl(struct hci_chan *chan, struct sk_buff_head *queue,
3406			  struct sk_buff *skb, __u16 flags)
3407{
3408	struct hci_conn *conn = chan->conn;
3409	struct hci_dev *hdev = conn->hdev;
3410	struct sk_buff *list;
3411
3412	skb->len = skb_headlen(skb);
3413	skb->data_len = 0;
3414
3415	hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
3416
3417	switch (hdev->dev_type) {
3418	case HCI_BREDR:
3419		hci_add_acl_hdr(skb, conn->handle, flags);
3420		break;
3421	case HCI_AMP:
3422		hci_add_acl_hdr(skb, chan->handle, flags);
3423		break;
3424	default:
3425		BT_ERR("%s unknown dev_type %d", hdev->name, hdev->dev_type);
3426		return;
3427	}
3428
3429	list = skb_shinfo(skb)->frag_list;
3430	if (!list) {
3431		/* Non fragmented */
3432		BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
3433
3434		skb_queue_tail(queue, skb);
3435	} else {
3436		/* Fragmented */
3437		BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3438
3439		skb_shinfo(skb)->frag_list = NULL;
3440
3441		/* Queue all fragments atomically. We need to use spin_lock_bh
3442		 * here because of 6LoWPAN links, as there this function is
3443		 * called from softirq and using normal spin lock could cause
3444		 * deadlocks.
3445		 */
3446		spin_lock_bh(&queue->lock);
3447
3448		__skb_queue_tail(queue, skb);
3449
3450		flags &= ~ACL_START;
3451		flags |= ACL_CONT;
3452		do {
3453			skb = list; list = list->next;
3454
3455			hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
3456			hci_add_acl_hdr(skb, conn->handle, flags);
3457
3458			BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3459
3460			__skb_queue_tail(queue, skb);
3461		} while (list);
3462
3463		spin_unlock_bh(&queue->lock);
3464	}
3465}
3466
3467void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags)
3468{
3469	struct hci_dev *hdev = chan->conn->hdev;
3470
3471	BT_DBG("%s chan %p flags 0x%4.4x", hdev->name, chan, flags);
3472
3473	hci_queue_acl(chan, &chan->data_q, skb, flags);
3474
3475	queue_work(hdev->workqueue, &hdev->tx_work);
3476}
3477
3478/* Send SCO data */
3479void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb)
3480{
3481	struct hci_dev *hdev = conn->hdev;
3482	struct hci_sco_hdr hdr;
3483
3484	BT_DBG("%s len %d", hdev->name, skb->len);
3485
3486	hdr.handle = cpu_to_le16(conn->handle);
3487	hdr.dlen   = skb->len;
3488
3489	skb_push(skb, HCI_SCO_HDR_SIZE);
3490	skb_reset_transport_header(skb);
3491	memcpy(skb_transport_header(skb), &hdr, HCI_SCO_HDR_SIZE);
3492
3493	hci_skb_pkt_type(skb) = HCI_SCODATA_PKT;
3494
3495	skb_queue_tail(&conn->data_q, skb);
3496	queue_work(hdev->workqueue, &hdev->tx_work);
3497}
3498
3499/* ---- HCI TX task (outgoing data) ---- */
3500
3501/* HCI Connection scheduler */
3502static struct hci_conn *hci_low_sent(struct hci_dev *hdev, __u8 type,
3503				     int *quote)
3504{
3505	struct hci_conn_hash *h = &hdev->conn_hash;
3506	struct hci_conn *conn = NULL, *c;
3507	unsigned int num = 0, min = ~0;
3508
3509	/* We don't have to lock device here. Connections are always
3510	 * added and removed with TX task disabled. */
3511
3512	rcu_read_lock();
3513
3514	list_for_each_entry_rcu(c, &h->list, list) {
3515		if (c->type != type || skb_queue_empty(&c->data_q))
3516			continue;
3517
3518		if (c->state != BT_CONNECTED && c->state != BT_CONFIG)
3519			continue;
3520
3521		num++;
3522
3523		if (c->sent < min) {
3524			min  = c->sent;
3525			conn = c;
3526		}
3527
3528		if (hci_conn_num(hdev, type) == num)
3529			break;
3530	}
3531
3532	rcu_read_unlock();
3533
3534	if (conn) {
3535		int cnt, q;
3536
3537		switch (conn->type) {
3538		case ACL_LINK:
3539			cnt = hdev->acl_cnt;
3540			break;
3541		case SCO_LINK:
3542		case ESCO_LINK:
3543			cnt = hdev->sco_cnt;
3544			break;
3545		case LE_LINK:
3546			cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3547			break;
3548		default:
3549			cnt = 0;
3550			BT_ERR("Unknown link type");
3551		}
3552
3553		q = cnt / num;
3554		*quote = q ? q : 1;
3555	} else
3556		*quote = 0;
3557
3558	BT_DBG("conn %p quote %d", conn, *quote);
3559	return conn;
3560}
3561
3562static void hci_link_tx_to(struct hci_dev *hdev, __u8 type)
3563{
3564	struct hci_conn_hash *h = &hdev->conn_hash;
3565	struct hci_conn *c;
3566
3567	BT_ERR("%s link tx timeout", hdev->name);
3568
3569	rcu_read_lock();
3570
3571	/* Kill stalled connections */
3572	list_for_each_entry_rcu(c, &h->list, list) {
3573		if (c->type == type && c->sent) {
3574			BT_ERR("%s killing stalled connection %pMR",
3575			       hdev->name, &c->dst);
3576			hci_disconnect(c, HCI_ERROR_REMOTE_USER_TERM);
3577		}
3578	}
3579
3580	rcu_read_unlock();
3581}
3582
3583static struct hci_chan *hci_chan_sent(struct hci_dev *hdev, __u8 type,
3584				      int *quote)
3585{
3586	struct hci_conn_hash *h = &hdev->conn_hash;
3587	struct hci_chan *chan = NULL;
3588	unsigned int num = 0, min = ~0, cur_prio = 0;
3589	struct hci_conn *conn;
3590	int cnt, q, conn_num = 0;
3591
3592	BT_DBG("%s", hdev->name);
3593
3594	rcu_read_lock();
3595
3596	list_for_each_entry_rcu(conn, &h->list, list) {
3597		struct hci_chan *tmp;
3598
3599		if (conn->type != type)
3600			continue;
3601
3602		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3603			continue;
3604
3605		conn_num++;
3606
3607		list_for_each_entry_rcu(tmp, &conn->chan_list, list) {
3608			struct sk_buff *skb;
3609
3610			if (skb_queue_empty(&tmp->data_q))
3611				continue;
3612
3613			skb = skb_peek(&tmp->data_q);
3614			if (skb->priority < cur_prio)
3615				continue;
3616
3617			if (skb->priority > cur_prio) {
3618				num = 0;
3619				min = ~0;
3620				cur_prio = skb->priority;
3621			}
3622
3623			num++;
3624
3625			if (conn->sent < min) {
3626				min  = conn->sent;
3627				chan = tmp;
3628			}
3629		}
3630
3631		if (hci_conn_num(hdev, type) == conn_num)
3632			break;
3633	}
3634
3635	rcu_read_unlock();
3636
3637	if (!chan)
3638		return NULL;
3639
3640	switch (chan->conn->type) {
3641	case ACL_LINK:
3642		cnt = hdev->acl_cnt;
3643		break;
3644	case AMP_LINK:
3645		cnt = hdev->block_cnt;
3646		break;
3647	case SCO_LINK:
3648	case ESCO_LINK:
3649		cnt = hdev->sco_cnt;
3650		break;
3651	case LE_LINK:
3652		cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3653		break;
3654	default:
3655		cnt = 0;
3656		BT_ERR("Unknown link type");
3657	}
3658
3659	q = cnt / num;
3660	*quote = q ? q : 1;
3661	BT_DBG("chan %p quote %d", chan, *quote);
3662	return chan;
3663}
3664
3665static void hci_prio_recalculate(struct hci_dev *hdev, __u8 type)
3666{
3667	struct hci_conn_hash *h = &hdev->conn_hash;
3668	struct hci_conn *conn;
3669	int num = 0;
3670
3671	BT_DBG("%s", hdev->name);
3672
3673	rcu_read_lock();
3674
3675	list_for_each_entry_rcu(conn, &h->list, list) {
3676		struct hci_chan *chan;
3677
3678		if (conn->type != type)
3679			continue;
3680
3681		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3682			continue;
3683
3684		num++;
3685
3686		list_for_each_entry_rcu(chan, &conn->chan_list, list) {
3687			struct sk_buff *skb;
3688
3689			if (chan->sent) {
3690				chan->sent = 0;
3691				continue;
3692			}
3693
3694			if (skb_queue_empty(&chan->data_q))
3695				continue;
3696
3697			skb = skb_peek(&chan->data_q);
3698			if (skb->priority >= HCI_PRIO_MAX - 1)
3699				continue;
3700
3701			skb->priority = HCI_PRIO_MAX - 1;
3702
3703			BT_DBG("chan %p skb %p promoted to %d", chan, skb,
3704			       skb->priority);
3705		}
3706
3707		if (hci_conn_num(hdev, type) == num)
3708			break;
3709	}
3710
3711	rcu_read_unlock();
3712
3713}
3714
3715static inline int __get_blocks(struct hci_dev *hdev, struct sk_buff *skb)
3716{
3717	/* Calculate count of blocks used by this packet */
3718	return DIV_ROUND_UP(skb->len - HCI_ACL_HDR_SIZE, hdev->block_len);
3719}
3720
3721static void __check_timeout(struct hci_dev *hdev, unsigned int cnt)
3722{
3723	if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
3724		/* ACL tx timeout must be longer than maximum
3725		 * link supervision timeout (40.9 seconds) */
3726		if (!cnt && time_after(jiffies, hdev->acl_last_tx +
3727				       HCI_ACL_TX_TIMEOUT))
3728			hci_link_tx_to(hdev, ACL_LINK);
3729	}
3730}
3731
3732static void hci_sched_acl_pkt(struct hci_dev *hdev)
3733{
3734	unsigned int cnt = hdev->acl_cnt;
3735	struct hci_chan *chan;
3736	struct sk_buff *skb;
3737	int quote;
3738
3739	__check_timeout(hdev, cnt);
3740
3741	while (hdev->acl_cnt &&
3742	       (chan = hci_chan_sent(hdev, ACL_LINK, &quote))) {
3743		u32 priority = (skb_peek(&chan->data_q))->priority;
3744		while (quote-- && (skb = skb_peek(&chan->data_q))) {
3745			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3746			       skb->len, skb->priority);
3747
3748			/* Stop if priority has changed */
3749			if (skb->priority < priority)
3750				break;
3751
3752			skb = skb_dequeue(&chan->data_q);
3753
3754			hci_conn_enter_active_mode(chan->conn,
3755						   bt_cb(skb)->force_active);
3756
3757			hci_send_frame(hdev, skb);
3758			hdev->acl_last_tx = jiffies;
3759
3760			hdev->acl_cnt--;
3761			chan->sent++;
3762			chan->conn->sent++;
3763		}
3764	}
3765
3766	if (cnt != hdev->acl_cnt)
3767		hci_prio_recalculate(hdev, ACL_LINK);
3768}
3769
3770static void hci_sched_acl_blk(struct hci_dev *hdev)
3771{
3772	unsigned int cnt = hdev->block_cnt;
3773	struct hci_chan *chan;
3774	struct sk_buff *skb;
3775	int quote;
3776	u8 type;
3777
3778	__check_timeout(hdev, cnt);
3779
3780	BT_DBG("%s", hdev->name);
3781
3782	if (hdev->dev_type == HCI_AMP)
3783		type = AMP_LINK;
3784	else
3785		type = ACL_LINK;
3786
3787	while (hdev->block_cnt > 0 &&
3788	       (chan = hci_chan_sent(hdev, type, &quote))) {
3789		u32 priority = (skb_peek(&chan->data_q))->priority;
3790		while (quote > 0 && (skb = skb_peek(&chan->data_q))) {
3791			int blocks;
3792
3793			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3794			       skb->len, skb->priority);
3795
3796			/* Stop if priority has changed */
3797			if (skb->priority < priority)
3798				break;
3799
3800			skb = skb_dequeue(&chan->data_q);
3801
3802			blocks = __get_blocks(hdev, skb);
3803			if (blocks > hdev->block_cnt)
3804				return;
3805
3806			hci_conn_enter_active_mode(chan->conn,
3807						   bt_cb(skb)->force_active);
3808
3809			hci_send_frame(hdev, skb);
3810			hdev->acl_last_tx = jiffies;
3811
3812			hdev->block_cnt -= blocks;
3813			quote -= blocks;
3814
3815			chan->sent += blocks;
3816			chan->conn->sent += blocks;
3817		}
3818	}
3819
3820	if (cnt != hdev->block_cnt)
3821		hci_prio_recalculate(hdev, type);
3822}
3823
3824static void hci_sched_acl(struct hci_dev *hdev)
3825{
3826	BT_DBG("%s", hdev->name);
3827
3828	/* No ACL link over BR/EDR controller */
3829	if (!hci_conn_num(hdev, ACL_LINK) && hdev->dev_type == HCI_BREDR)
3830		return;
3831
3832	/* No AMP link over AMP controller */
3833	if (!hci_conn_num(hdev, AMP_LINK) && hdev->dev_type == HCI_AMP)
3834		return;
3835
3836	switch (hdev->flow_ctl_mode) {
3837	case HCI_FLOW_CTL_MODE_PACKET_BASED:
3838		hci_sched_acl_pkt(hdev);
3839		break;
3840
3841	case HCI_FLOW_CTL_MODE_BLOCK_BASED:
3842		hci_sched_acl_blk(hdev);
3843		break;
3844	}
3845}
3846
3847/* Schedule SCO */
3848static void hci_sched_sco(struct hci_dev *hdev)
3849{
3850	struct hci_conn *conn;
3851	struct sk_buff *skb;
3852	int quote;
3853
3854	BT_DBG("%s", hdev->name);
3855
3856	if (!hci_conn_num(hdev, SCO_LINK))
3857		return;
3858
3859	while (hdev->sco_cnt && (conn = hci_low_sent(hdev, SCO_LINK, &quote))) {
3860		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3861			BT_DBG("skb %p len %d", skb, skb->len);
3862			hci_send_frame(hdev, skb);
3863
3864			conn->sent++;
3865			if (conn->sent == ~0)
3866				conn->sent = 0;
3867		}
3868	}
3869}
3870
3871static void hci_sched_esco(struct hci_dev *hdev)
3872{
3873	struct hci_conn *conn;
3874	struct sk_buff *skb;
3875	int quote;
3876
3877	BT_DBG("%s", hdev->name);
3878
3879	if (!hci_conn_num(hdev, ESCO_LINK))
3880		return;
3881
3882	while (hdev->sco_cnt && (conn = hci_low_sent(hdev, ESCO_LINK,
3883						     &quote))) {
3884		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3885			BT_DBG("skb %p len %d", skb, skb->len);
3886			hci_send_frame(hdev, skb);
3887
3888			conn->sent++;
3889			if (conn->sent == ~0)
3890				conn->sent = 0;
3891		}
3892	}
3893}
3894
3895static void hci_sched_le(struct hci_dev *hdev)
3896{
3897	struct hci_chan *chan;
3898	struct sk_buff *skb;
3899	int quote, cnt, tmp;
3900
3901	BT_DBG("%s", hdev->name);
3902
3903	if (!hci_conn_num(hdev, LE_LINK))
3904		return;
3905
3906	if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
3907		/* LE tx timeout must be longer than maximum
3908		 * link supervision timeout (40.9 seconds) */
3909		if (!hdev->le_cnt && hdev->le_pkts &&
3910		    time_after(jiffies, hdev->le_last_tx + HZ * 45))
3911			hci_link_tx_to(hdev, LE_LINK);
3912	}
3913
3914	cnt = hdev->le_pkts ? hdev->le_cnt : hdev->acl_cnt;
3915	tmp = cnt;
3916	while (cnt && (chan = hci_chan_sent(hdev, LE_LINK, &quote))) {
3917		u32 priority = (skb_peek(&chan->data_q))->priority;
3918		while (quote-- && (skb = skb_peek(&chan->data_q))) {
3919			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3920			       skb->len, skb->priority);
3921
3922			/* Stop if priority has changed */
3923			if (skb->priority < priority)
3924				break;
3925
3926			skb = skb_dequeue(&chan->data_q);
3927
3928			hci_send_frame(hdev, skb);
3929			hdev->le_last_tx = jiffies;
3930
3931			cnt--;
3932			chan->sent++;
3933			chan->conn->sent++;
3934		}
3935	}
3936
3937	if (hdev->le_pkts)
3938		hdev->le_cnt = cnt;
3939	else
3940		hdev->acl_cnt = cnt;
3941
3942	if (cnt != tmp)
3943		hci_prio_recalculate(hdev, LE_LINK);
3944}
3945
3946static void hci_tx_work(struct work_struct *work)
3947{
3948	struct hci_dev *hdev = container_of(work, struct hci_dev, tx_work);
3949	struct sk_buff *skb;
3950
3951	BT_DBG("%s acl %d sco %d le %d", hdev->name, hdev->acl_cnt,
3952	       hdev->sco_cnt, hdev->le_cnt);
3953
3954	if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
3955		/* Schedule queues and send stuff to HCI driver */
3956		hci_sched_acl(hdev);
3957		hci_sched_sco(hdev);
3958		hci_sched_esco(hdev);
3959		hci_sched_le(hdev);
3960	}
3961
3962	/* Send next queued raw (unknown type) packet */
3963	while ((skb = skb_dequeue(&hdev->raw_q)))
3964		hci_send_frame(hdev, skb);
3965}
3966
3967/* ----- HCI RX task (incoming data processing) ----- */
3968
3969/* ACL data packet */
3970static void hci_acldata_packet(struct hci_dev *hdev, struct sk_buff *skb)
3971{
3972	struct hci_acl_hdr *hdr = (void *) skb->data;
3973	struct hci_conn *conn;
3974	__u16 handle, flags;
3975
3976	skb_pull(skb, HCI_ACL_HDR_SIZE);
3977
3978	handle = __le16_to_cpu(hdr->handle);
3979	flags  = hci_flags(handle);
3980	handle = hci_handle(handle);
3981
3982	BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len,
3983	       handle, flags);
3984
3985	hdev->stat.acl_rx++;
3986
3987	hci_dev_lock(hdev);
3988	conn = hci_conn_hash_lookup_handle(hdev, handle);
3989	hci_dev_unlock(hdev);
3990
3991	if (conn) {
3992		hci_conn_enter_active_mode(conn, BT_POWER_FORCE_ACTIVE_OFF);
3993
3994		/* Send to upper protocol */
3995		l2cap_recv_acldata(conn, skb, flags);
3996		return;
3997	} else {
3998		BT_ERR("%s ACL packet for unknown connection handle %d",
3999		       hdev->name, handle);
4000	}
4001
4002	kfree_skb(skb);
4003}
4004
4005/* SCO data packet */
4006static void hci_scodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
4007{
4008	struct hci_sco_hdr *hdr = (void *) skb->data;
4009	struct hci_conn *conn;
4010	__u16 handle;
4011
4012	skb_pull(skb, HCI_SCO_HDR_SIZE);
4013
4014	handle = __le16_to_cpu(hdr->handle);
4015
4016	BT_DBG("%s len %d handle 0x%4.4x", hdev->name, skb->len, handle);
4017
4018	hdev->stat.sco_rx++;
4019
4020	hci_dev_lock(hdev);
4021	conn = hci_conn_hash_lookup_handle(hdev, handle);
4022	hci_dev_unlock(hdev);
4023
4024	if (conn) {
4025		/* Send to upper protocol */
4026		sco_recv_scodata(conn, skb);
4027		return;
4028	} else {
4029		BT_ERR("%s SCO packet for unknown connection handle %d",
4030		       hdev->name, handle);
4031	}
4032
4033	kfree_skb(skb);
4034}
4035
4036static bool hci_req_is_complete(struct hci_dev *hdev)
4037{
4038	struct sk_buff *skb;
4039
4040	skb = skb_peek(&hdev->cmd_q);
4041	if (!skb)
4042		return true;
4043
4044	return (bt_cb(skb)->hci.req_flags & HCI_REQ_START);
4045}
4046
4047static void hci_resend_last(struct hci_dev *hdev)
4048{
4049	struct hci_command_hdr *sent;
4050	struct sk_buff *skb;
4051	u16 opcode;
4052
4053	if (!hdev->sent_cmd)
4054		return;
4055
4056	sent = (void *) hdev->sent_cmd->data;
4057	opcode = __le16_to_cpu(sent->opcode);
4058	if (opcode == HCI_OP_RESET)
4059		return;
4060
4061	skb = skb_clone(hdev->sent_cmd, GFP_KERNEL);
4062	if (!skb)
4063		return;
4064
4065	skb_queue_head(&hdev->cmd_q, skb);
4066	queue_work(hdev->workqueue, &hdev->cmd_work);
4067}
4068
4069void hci_req_cmd_complete(struct hci_dev *hdev, u16 opcode, u8 status,
4070			  hci_req_complete_t *req_complete,
4071			  hci_req_complete_skb_t *req_complete_skb)
4072{
4073	struct sk_buff *skb;
4074	unsigned long flags;
4075
4076	BT_DBG("opcode 0x%04x status 0x%02x", opcode, status);
4077
4078	/* If the completed command doesn't match the last one that was
4079	 * sent we need to do special handling of it.
4080	 */
4081	if (!hci_sent_cmd_data(hdev, opcode)) {
4082		/* Some CSR based controllers generate a spontaneous
4083		 * reset complete event during init and any pending
4084		 * command will never be completed. In such a case we
4085		 * need to resend whatever was the last sent
4086		 * command.
4087		 */
4088		if (test_bit(HCI_INIT, &hdev->flags) && opcode == HCI_OP_RESET)
4089			hci_resend_last(hdev);
4090
4091		return;
4092	}
4093
4094	/* If the command succeeded and there's still more commands in
4095	 * this request the request is not yet complete.
4096	 */
4097	if (!status && !hci_req_is_complete(hdev))
4098		return;
4099
4100	/* If this was the last command in a request the complete
4101	 * callback would be found in hdev->sent_cmd instead of the
4102	 * command queue (hdev->cmd_q).
4103	 */
4104	if (bt_cb(hdev->sent_cmd)->hci.req_flags & HCI_REQ_SKB) {
4105		*req_complete_skb = bt_cb(hdev->sent_cmd)->hci.req_complete_skb;
4106		return;
4107	}
4108
4109	if (bt_cb(hdev->sent_cmd)->hci.req_complete) {
4110		*req_complete = bt_cb(hdev->sent_cmd)->hci.req_complete;
4111		return;
4112	}
4113
4114	/* Remove all pending commands belonging to this request */
4115	spin_lock_irqsave(&hdev->cmd_q.lock, flags);
4116	while ((skb = __skb_dequeue(&hdev->cmd_q))) {
4117		if (bt_cb(skb)->hci.req_flags & HCI_REQ_START) {
4118			__skb_queue_head(&hdev->cmd_q, skb);
4119			break;
4120		}
4121
4122		if (bt_cb(skb)->hci.req_flags & HCI_REQ_SKB)
4123			*req_complete_skb = bt_cb(skb)->hci.req_complete_skb;
4124		else
4125			*req_complete = bt_cb(skb)->hci.req_complete;
4126		kfree_skb(skb);
4127	}
4128	spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
4129}
4130
4131static void hci_rx_work(struct work_struct *work)
4132{
4133	struct hci_dev *hdev = container_of(work, struct hci_dev, rx_work);
4134	struct sk_buff *skb;
4135
4136	BT_DBG("%s", hdev->name);
4137
4138	while ((skb = skb_dequeue(&hdev->rx_q))) {
4139		/* Send copy to monitor */
4140		hci_send_to_monitor(hdev, skb);
4141
4142		if (atomic_read(&hdev->promisc)) {
4143			/* Send copy to the sockets */
4144			hci_send_to_sock(hdev, skb);
4145		}
4146
4147		if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
4148			kfree_skb(skb);
4149			continue;
4150		}
4151
4152		if (test_bit(HCI_INIT, &hdev->flags)) {
4153			/* Don't process data packets in this states. */
4154			switch (hci_skb_pkt_type(skb)) {
4155			case HCI_ACLDATA_PKT:
4156			case HCI_SCODATA_PKT:
4157				kfree_skb(skb);
4158				continue;
4159			}
4160		}
4161
4162		/* Process frame */
4163		switch (hci_skb_pkt_type(skb)) {
4164		case HCI_EVENT_PKT:
4165			BT_DBG("%s Event packet", hdev->name);
4166			hci_event_packet(hdev, skb);
4167			break;
4168
4169		case HCI_ACLDATA_PKT:
4170			BT_DBG("%s ACL data packet", hdev->name);
4171			hci_acldata_packet(hdev, skb);
4172			break;
4173
4174		case HCI_SCODATA_PKT:
4175			BT_DBG("%s SCO data packet", hdev->name);
4176			hci_scodata_packet(hdev, skb);
4177			break;
4178
4179		default:
4180			kfree_skb(skb);
4181			break;
4182		}
4183	}
4184}
4185
4186static void hci_cmd_work(struct work_struct *work)
4187{
4188	struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_work);
4189	struct sk_buff *skb;
4190
4191	BT_DBG("%s cmd_cnt %d cmd queued %d", hdev->name,
4192	       atomic_read(&hdev->cmd_cnt), skb_queue_len(&hdev->cmd_q));
4193
4194	/* Send queued commands */
4195	if (atomic_read(&hdev->cmd_cnt)) {
4196		skb = skb_dequeue(&hdev->cmd_q);
4197		if (!skb)
4198			return;
4199
4200		kfree_skb(hdev->sent_cmd);
4201
4202		hdev->sent_cmd = skb_clone(skb, GFP_KERNEL);
4203		if (hdev->sent_cmd) {
4204			atomic_dec(&hdev->cmd_cnt);
4205			hci_send_frame(hdev, skb);
4206			if (test_bit(HCI_RESET, &hdev->flags))
4207				cancel_delayed_work(&hdev->cmd_timer);
4208			else
4209				schedule_delayed_work(&hdev->cmd_timer,
4210						      HCI_CMD_TIMEOUT);
4211		} else {
4212			skb_queue_head(&hdev->cmd_q, skb);
4213			queue_work(hdev->workqueue, &hdev->cmd_work);
4214		}
4215	}
4216}
v4.17
   1/*
   2   BlueZ - Bluetooth protocol stack for Linux
   3   Copyright (C) 2000-2001 Qualcomm Incorporated
   4   Copyright (C) 2011 ProFUSION Embedded Systems
   5
   6   Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
   7
   8   This program is free software; you can redistribute it and/or modify
   9   it under the terms of the GNU General Public License version 2 as
  10   published by the Free Software Foundation;
  11
  12   THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
  13   OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  14   FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
  15   IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
  16   CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
  17   WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  18   ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  19   OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  20
  21   ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
  22   COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
  23   SOFTWARE IS DISCLAIMED.
  24*/
  25
  26/* Bluetooth HCI core. */
  27
  28#include <linux/export.h>
  29#include <linux/idr.h>
  30#include <linux/rfkill.h>
  31#include <linux/debugfs.h>
  32#include <linux/crypto.h>
  33#include <asm/unaligned.h>
  34
  35#include <net/bluetooth/bluetooth.h>
  36#include <net/bluetooth/hci_core.h>
  37#include <net/bluetooth/l2cap.h>
  38#include <net/bluetooth/mgmt.h>
  39
  40#include "hci_request.h"
  41#include "hci_debugfs.h"
  42#include "smp.h"
  43#include "leds.h"
  44
  45static void hci_rx_work(struct work_struct *work);
  46static void hci_cmd_work(struct work_struct *work);
  47static void hci_tx_work(struct work_struct *work);
  48
  49/* HCI device list */
  50LIST_HEAD(hci_dev_list);
  51DEFINE_RWLOCK(hci_dev_list_lock);
  52
  53/* HCI callback list */
  54LIST_HEAD(hci_cb_list);
  55DEFINE_MUTEX(hci_cb_list_lock);
  56
  57/* HCI ID Numbering */
  58static DEFINE_IDA(hci_index_ida);
  59
  60/* ---- HCI debugfs entries ---- */
  61
  62static ssize_t dut_mode_read(struct file *file, char __user *user_buf,
  63			     size_t count, loff_t *ppos)
  64{
  65	struct hci_dev *hdev = file->private_data;
  66	char buf[3];
  67
  68	buf[0] = hci_dev_test_flag(hdev, HCI_DUT_MODE) ? 'Y' : 'N';
  69	buf[1] = '\n';
  70	buf[2] = '\0';
  71	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
  72}
  73
  74static ssize_t dut_mode_write(struct file *file, const char __user *user_buf,
  75			      size_t count, loff_t *ppos)
  76{
  77	struct hci_dev *hdev = file->private_data;
  78	struct sk_buff *skb;
  79	char buf[32];
  80	size_t buf_size = min(count, (sizeof(buf)-1));
  81	bool enable;
  82
  83	if (!test_bit(HCI_UP, &hdev->flags))
  84		return -ENETDOWN;
  85
  86	if (copy_from_user(buf, user_buf, buf_size))
  87		return -EFAULT;
  88
  89	buf[buf_size] = '\0';
  90	if (strtobool(buf, &enable))
  91		return -EINVAL;
  92
  93	if (enable == hci_dev_test_flag(hdev, HCI_DUT_MODE))
  94		return -EALREADY;
  95
  96	hci_req_sync_lock(hdev);
  97	if (enable)
  98		skb = __hci_cmd_sync(hdev, HCI_OP_ENABLE_DUT_MODE, 0, NULL,
  99				     HCI_CMD_TIMEOUT);
 100	else
 101		skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL,
 102				     HCI_CMD_TIMEOUT);
 103	hci_req_sync_unlock(hdev);
 104
 105	if (IS_ERR(skb))
 106		return PTR_ERR(skb);
 107
 108	kfree_skb(skb);
 109
 110	hci_dev_change_flag(hdev, HCI_DUT_MODE);
 111
 112	return count;
 113}
 114
 115static const struct file_operations dut_mode_fops = {
 116	.open		= simple_open,
 117	.read		= dut_mode_read,
 118	.write		= dut_mode_write,
 119	.llseek		= default_llseek,
 120};
 121
 122static ssize_t vendor_diag_read(struct file *file, char __user *user_buf,
 123				size_t count, loff_t *ppos)
 124{
 125	struct hci_dev *hdev = file->private_data;
 126	char buf[3];
 127
 128	buf[0] = hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) ? 'Y' : 'N';
 129	buf[1] = '\n';
 130	buf[2] = '\0';
 131	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
 132}
 133
 134static ssize_t vendor_diag_write(struct file *file, const char __user *user_buf,
 135				 size_t count, loff_t *ppos)
 136{
 137	struct hci_dev *hdev = file->private_data;
 138	char buf[32];
 139	size_t buf_size = min(count, (sizeof(buf)-1));
 140	bool enable;
 141	int err;
 142
 143	if (copy_from_user(buf, user_buf, buf_size))
 144		return -EFAULT;
 145
 146	buf[buf_size] = '\0';
 147	if (strtobool(buf, &enable))
 148		return -EINVAL;
 149
 150	/* When the diagnostic flags are not persistent and the transport
 151	 * is not active or in user channel operation, then there is no need
 152	 * for the vendor callback. Instead just store the desired value and
 153	 * the setting will be programmed when the controller gets powered on.
 
 154	 */
 155	if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) &&
 156	    (!test_bit(HCI_RUNNING, &hdev->flags) ||
 157	     hci_dev_test_flag(hdev, HCI_USER_CHANNEL)))
 158		goto done;
 159
 160	hci_req_sync_lock(hdev);
 161	err = hdev->set_diag(hdev, enable);
 162	hci_req_sync_unlock(hdev);
 163
 164	if (err < 0)
 165		return err;
 166
 167done:
 168	if (enable)
 169		hci_dev_set_flag(hdev, HCI_VENDOR_DIAG);
 170	else
 171		hci_dev_clear_flag(hdev, HCI_VENDOR_DIAG);
 172
 173	return count;
 174}
 175
 176static const struct file_operations vendor_diag_fops = {
 177	.open		= simple_open,
 178	.read		= vendor_diag_read,
 179	.write		= vendor_diag_write,
 180	.llseek		= default_llseek,
 181};
 182
 183static void hci_debugfs_create_basic(struct hci_dev *hdev)
 184{
 185	debugfs_create_file("dut_mode", 0644, hdev->debugfs, hdev,
 186			    &dut_mode_fops);
 187
 188	if (hdev->set_diag)
 189		debugfs_create_file("vendor_diag", 0644, hdev->debugfs, hdev,
 190				    &vendor_diag_fops);
 191}
 192
 193static int hci_reset_req(struct hci_request *req, unsigned long opt)
 194{
 195	BT_DBG("%s %ld", req->hdev->name, opt);
 196
 197	/* Reset device */
 198	set_bit(HCI_RESET, &req->hdev->flags);
 199	hci_req_add(req, HCI_OP_RESET, 0, NULL);
 200	return 0;
 201}
 202
 203static void bredr_init(struct hci_request *req)
 204{
 205	req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_PACKET_BASED;
 206
 207	/* Read Local Supported Features */
 208	hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
 209
 210	/* Read Local Version */
 211	hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
 212
 213	/* Read BD Address */
 214	hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL);
 215}
 216
 217static void amp_init1(struct hci_request *req)
 218{
 219	req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_BLOCK_BASED;
 220
 221	/* Read Local Version */
 222	hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
 223
 224	/* Read Local Supported Commands */
 225	hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL);
 226
 227	/* Read Local AMP Info */
 228	hci_req_add(req, HCI_OP_READ_LOCAL_AMP_INFO, 0, NULL);
 229
 230	/* Read Data Blk size */
 231	hci_req_add(req, HCI_OP_READ_DATA_BLOCK_SIZE, 0, NULL);
 232
 233	/* Read Flow Control Mode */
 234	hci_req_add(req, HCI_OP_READ_FLOW_CONTROL_MODE, 0, NULL);
 235
 236	/* Read Location Data */
 237	hci_req_add(req, HCI_OP_READ_LOCATION_DATA, 0, NULL);
 238}
 239
 240static int amp_init2(struct hci_request *req)
 241{
 242	/* Read Local Supported Features. Not all AMP controllers
 243	 * support this so it's placed conditionally in the second
 244	 * stage init.
 245	 */
 246	if (req->hdev->commands[14] & 0x20)
 247		hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
 248
 249	return 0;
 250}
 251
 252static int hci_init1_req(struct hci_request *req, unsigned long opt)
 253{
 254	struct hci_dev *hdev = req->hdev;
 255
 256	BT_DBG("%s %ld", hdev->name, opt);
 257
 258	/* Reset */
 259	if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks))
 260		hci_reset_req(req, 0);
 261
 262	switch (hdev->dev_type) {
 263	case HCI_PRIMARY:
 264		bredr_init(req);
 265		break;
 
 266	case HCI_AMP:
 267		amp_init1(req);
 268		break;
 
 269	default:
 270		bt_dev_err(hdev, "Unknown device type %d", hdev->dev_type);
 271		break;
 272	}
 273
 274	return 0;
 275}
 276
 277static void bredr_setup(struct hci_request *req)
 278{
 279	__le16 param;
 280	__u8 flt_type;
 281
 282	/* Read Buffer Size (ACL mtu, max pkt, etc.) */
 283	hci_req_add(req, HCI_OP_READ_BUFFER_SIZE, 0, NULL);
 284
 285	/* Read Class of Device */
 286	hci_req_add(req, HCI_OP_READ_CLASS_OF_DEV, 0, NULL);
 287
 288	/* Read Local Name */
 289	hci_req_add(req, HCI_OP_READ_LOCAL_NAME, 0, NULL);
 290
 291	/* Read Voice Setting */
 292	hci_req_add(req, HCI_OP_READ_VOICE_SETTING, 0, NULL);
 293
 294	/* Read Number of Supported IAC */
 295	hci_req_add(req, HCI_OP_READ_NUM_SUPPORTED_IAC, 0, NULL);
 296
 297	/* Read Current IAC LAP */
 298	hci_req_add(req, HCI_OP_READ_CURRENT_IAC_LAP, 0, NULL);
 299
 300	/* Clear Event Filters */
 301	flt_type = HCI_FLT_CLEAR_ALL;
 302	hci_req_add(req, HCI_OP_SET_EVENT_FLT, 1, &flt_type);
 303
 304	/* Connection accept timeout ~20 secs */
 305	param = cpu_to_le16(0x7d00);
 306	hci_req_add(req, HCI_OP_WRITE_CA_TIMEOUT, 2, &param);
 307}
 308
 309static void le_setup(struct hci_request *req)
 310{
 311	struct hci_dev *hdev = req->hdev;
 312
 313	/* Read LE Buffer Size */
 314	hci_req_add(req, HCI_OP_LE_READ_BUFFER_SIZE, 0, NULL);
 315
 316	/* Read LE Local Supported Features */
 317	hci_req_add(req, HCI_OP_LE_READ_LOCAL_FEATURES, 0, NULL);
 318
 319	/* Read LE Supported States */
 320	hci_req_add(req, HCI_OP_LE_READ_SUPPORTED_STATES, 0, NULL);
 321
 322	/* LE-only controllers have LE implicitly enabled */
 323	if (!lmp_bredr_capable(hdev))
 324		hci_dev_set_flag(hdev, HCI_LE_ENABLED);
 325}
 326
 327static void hci_setup_event_mask(struct hci_request *req)
 328{
 329	struct hci_dev *hdev = req->hdev;
 330
 331	/* The second byte is 0xff instead of 0x9f (two reserved bits
 332	 * disabled) since a Broadcom 1.2 dongle doesn't respond to the
 333	 * command otherwise.
 334	 */
 335	u8 events[8] = { 0xff, 0xff, 0xfb, 0xff, 0x00, 0x00, 0x00, 0x00 };
 336
 337	/* CSR 1.1 dongles does not accept any bitfield so don't try to set
 338	 * any event mask for pre 1.2 devices.
 339	 */
 340	if (hdev->hci_ver < BLUETOOTH_VER_1_2)
 341		return;
 342
 343	if (lmp_bredr_capable(hdev)) {
 344		events[4] |= 0x01; /* Flow Specification Complete */
 345	} else {
 346		/* Use a different default for LE-only devices */
 347		memset(events, 0, sizeof(events));
 348		events[1] |= 0x20; /* Command Complete */
 349		events[1] |= 0x40; /* Command Status */
 350		events[1] |= 0x80; /* Hardware Error */
 351
 352		/* If the controller supports the Disconnect command, enable
 353		 * the corresponding event. In addition enable packet flow
 354		 * control related events.
 355		 */
 356		if (hdev->commands[0] & 0x20) {
 357			events[0] |= 0x10; /* Disconnection Complete */
 358			events[2] |= 0x04; /* Number of Completed Packets */
 359			events[3] |= 0x02; /* Data Buffer Overflow */
 360		}
 361
 362		/* If the controller supports the Read Remote Version
 363		 * Information command, enable the corresponding event.
 364		 */
 365		if (hdev->commands[2] & 0x80)
 366			events[1] |= 0x08; /* Read Remote Version Information
 367					    * Complete
 368					    */
 369
 370		if (hdev->le_features[0] & HCI_LE_ENCRYPTION) {
 371			events[0] |= 0x80; /* Encryption Change */
 372			events[5] |= 0x80; /* Encryption Key Refresh Complete */
 373		}
 374	}
 375
 376	if (lmp_inq_rssi_capable(hdev) ||
 377	    test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks))
 378		events[4] |= 0x02; /* Inquiry Result with RSSI */
 379
 380	if (lmp_ext_feat_capable(hdev))
 381		events[4] |= 0x04; /* Read Remote Extended Features Complete */
 382
 383	if (lmp_esco_capable(hdev)) {
 384		events[5] |= 0x08; /* Synchronous Connection Complete */
 385		events[5] |= 0x10; /* Synchronous Connection Changed */
 386	}
 387
 388	if (lmp_sniffsubr_capable(hdev))
 389		events[5] |= 0x20; /* Sniff Subrating */
 390
 391	if (lmp_pause_enc_capable(hdev))
 392		events[5] |= 0x80; /* Encryption Key Refresh Complete */
 393
 394	if (lmp_ext_inq_capable(hdev))
 395		events[5] |= 0x40; /* Extended Inquiry Result */
 396
 397	if (lmp_no_flush_capable(hdev))
 398		events[7] |= 0x01; /* Enhanced Flush Complete */
 399
 400	if (lmp_lsto_capable(hdev))
 401		events[6] |= 0x80; /* Link Supervision Timeout Changed */
 402
 403	if (lmp_ssp_capable(hdev)) {
 404		events[6] |= 0x01;	/* IO Capability Request */
 405		events[6] |= 0x02;	/* IO Capability Response */
 406		events[6] |= 0x04;	/* User Confirmation Request */
 407		events[6] |= 0x08;	/* User Passkey Request */
 408		events[6] |= 0x10;	/* Remote OOB Data Request */
 409		events[6] |= 0x20;	/* Simple Pairing Complete */
 410		events[7] |= 0x04;	/* User Passkey Notification */
 411		events[7] |= 0x08;	/* Keypress Notification */
 412		events[7] |= 0x10;	/* Remote Host Supported
 413					 * Features Notification
 414					 */
 415	}
 416
 417	if (lmp_le_capable(hdev))
 418		events[7] |= 0x20;	/* LE Meta-Event */
 419
 420	hci_req_add(req, HCI_OP_SET_EVENT_MASK, sizeof(events), events);
 421}
 422
 423static int hci_init2_req(struct hci_request *req, unsigned long opt)
 424{
 425	struct hci_dev *hdev = req->hdev;
 426
 427	if (hdev->dev_type == HCI_AMP)
 428		return amp_init2(req);
 429
 430	if (lmp_bredr_capable(hdev))
 431		bredr_setup(req);
 432	else
 433		hci_dev_clear_flag(hdev, HCI_BREDR_ENABLED);
 434
 435	if (lmp_le_capable(hdev))
 436		le_setup(req);
 437
 438	/* All Bluetooth 1.2 and later controllers should support the
 439	 * HCI command for reading the local supported commands.
 440	 *
 441	 * Unfortunately some controllers indicate Bluetooth 1.2 support,
 442	 * but do not have support for this command. If that is the case,
 443	 * the driver can quirk the behavior and skip reading the local
 444	 * supported commands.
 445	 */
 446	if (hdev->hci_ver > BLUETOOTH_VER_1_1 &&
 447	    !test_bit(HCI_QUIRK_BROKEN_LOCAL_COMMANDS, &hdev->quirks))
 448		hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL);
 449
 450	if (lmp_ssp_capable(hdev)) {
 451		/* When SSP is available, then the host features page
 452		 * should also be available as well. However some
 453		 * controllers list the max_page as 0 as long as SSP
 454		 * has not been enabled. To achieve proper debugging
 455		 * output, force the minimum max_page to 1 at least.
 456		 */
 457		hdev->max_page = 0x01;
 458
 459		if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) {
 460			u8 mode = 0x01;
 461
 462			hci_req_add(req, HCI_OP_WRITE_SSP_MODE,
 463				    sizeof(mode), &mode);
 464		} else {
 465			struct hci_cp_write_eir cp;
 466
 467			memset(hdev->eir, 0, sizeof(hdev->eir));
 468			memset(&cp, 0, sizeof(cp));
 469
 470			hci_req_add(req, HCI_OP_WRITE_EIR, sizeof(cp), &cp);
 471		}
 472	}
 473
 474	if (lmp_inq_rssi_capable(hdev) ||
 475	    test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks)) {
 476		u8 mode;
 477
 478		/* If Extended Inquiry Result events are supported, then
 479		 * they are clearly preferred over Inquiry Result with RSSI
 480		 * events.
 481		 */
 482		mode = lmp_ext_inq_capable(hdev) ? 0x02 : 0x01;
 483
 484		hci_req_add(req, HCI_OP_WRITE_INQUIRY_MODE, 1, &mode);
 485	}
 486
 487	if (lmp_inq_tx_pwr_capable(hdev))
 488		hci_req_add(req, HCI_OP_READ_INQ_RSP_TX_POWER, 0, NULL);
 489
 490	if (lmp_ext_feat_capable(hdev)) {
 491		struct hci_cp_read_local_ext_features cp;
 492
 493		cp.page = 0x01;
 494		hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES,
 495			    sizeof(cp), &cp);
 496	}
 497
 498	if (hci_dev_test_flag(hdev, HCI_LINK_SECURITY)) {
 499		u8 enable = 1;
 500		hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, sizeof(enable),
 501			    &enable);
 502	}
 503
 504	return 0;
 505}
 506
 507static void hci_setup_link_policy(struct hci_request *req)
 508{
 509	struct hci_dev *hdev = req->hdev;
 510	struct hci_cp_write_def_link_policy cp;
 511	u16 link_policy = 0;
 512
 513	if (lmp_rswitch_capable(hdev))
 514		link_policy |= HCI_LP_RSWITCH;
 515	if (lmp_hold_capable(hdev))
 516		link_policy |= HCI_LP_HOLD;
 517	if (lmp_sniff_capable(hdev))
 518		link_policy |= HCI_LP_SNIFF;
 519	if (lmp_park_capable(hdev))
 520		link_policy |= HCI_LP_PARK;
 521
 522	cp.policy = cpu_to_le16(link_policy);
 523	hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, sizeof(cp), &cp);
 524}
 525
 526static void hci_set_le_support(struct hci_request *req)
 527{
 528	struct hci_dev *hdev = req->hdev;
 529	struct hci_cp_write_le_host_supported cp;
 530
 531	/* LE-only devices do not support explicit enablement */
 532	if (!lmp_bredr_capable(hdev))
 533		return;
 534
 535	memset(&cp, 0, sizeof(cp));
 536
 537	if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
 538		cp.le = 0x01;
 539		cp.simul = 0x00;
 540	}
 541
 542	if (cp.le != lmp_host_le_capable(hdev))
 543		hci_req_add(req, HCI_OP_WRITE_LE_HOST_SUPPORTED, sizeof(cp),
 544			    &cp);
 545}
 546
 547static void hci_set_event_mask_page_2(struct hci_request *req)
 548{
 549	struct hci_dev *hdev = req->hdev;
 550	u8 events[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
 551	bool changed = false;
 552
 553	/* If Connectionless Slave Broadcast master role is supported
 554	 * enable all necessary events for it.
 555	 */
 556	if (lmp_csb_master_capable(hdev)) {
 557		events[1] |= 0x40;	/* Triggered Clock Capture */
 558		events[1] |= 0x80;	/* Synchronization Train Complete */
 559		events[2] |= 0x10;	/* Slave Page Response Timeout */
 560		events[2] |= 0x20;	/* CSB Channel Map Change */
 561		changed = true;
 562	}
 563
 564	/* If Connectionless Slave Broadcast slave role is supported
 565	 * enable all necessary events for it.
 566	 */
 567	if (lmp_csb_slave_capable(hdev)) {
 568		events[2] |= 0x01;	/* Synchronization Train Received */
 569		events[2] |= 0x02;	/* CSB Receive */
 570		events[2] |= 0x04;	/* CSB Timeout */
 571		events[2] |= 0x08;	/* Truncated Page Complete */
 572		changed = true;
 573	}
 574
 575	/* Enable Authenticated Payload Timeout Expired event if supported */
 576	if (lmp_ping_capable(hdev) || hdev->le_features[0] & HCI_LE_PING) {
 577		events[2] |= 0x80;
 578		changed = true;
 579	}
 580
 581	/* Some Broadcom based controllers indicate support for Set Event
 582	 * Mask Page 2 command, but then actually do not support it. Since
 583	 * the default value is all bits set to zero, the command is only
 584	 * required if the event mask has to be changed. In case no change
 585	 * to the event mask is needed, skip this command.
 586	 */
 587	if (changed)
 588		hci_req_add(req, HCI_OP_SET_EVENT_MASK_PAGE_2,
 589			    sizeof(events), events);
 590}
 591
 592static int hci_init3_req(struct hci_request *req, unsigned long opt)
 593{
 594	struct hci_dev *hdev = req->hdev;
 595	u8 p;
 596
 597	hci_setup_event_mask(req);
 598
 599	if (hdev->commands[6] & 0x20 &&
 600	    !test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) {
 601		struct hci_cp_read_stored_link_key cp;
 602
 603		bacpy(&cp.bdaddr, BDADDR_ANY);
 604		cp.read_all = 0x01;
 605		hci_req_add(req, HCI_OP_READ_STORED_LINK_KEY, sizeof(cp), &cp);
 606	}
 607
 608	if (hdev->commands[5] & 0x10)
 609		hci_setup_link_policy(req);
 610
 611	if (hdev->commands[8] & 0x01)
 612		hci_req_add(req, HCI_OP_READ_PAGE_SCAN_ACTIVITY, 0, NULL);
 613
 614	/* Some older Broadcom based Bluetooth 1.2 controllers do not
 615	 * support the Read Page Scan Type command. Check support for
 616	 * this command in the bit mask of supported commands.
 617	 */
 618	if (hdev->commands[13] & 0x01)
 619		hci_req_add(req, HCI_OP_READ_PAGE_SCAN_TYPE, 0, NULL);
 620
 621	if (lmp_le_capable(hdev)) {
 622		u8 events[8];
 623
 624		memset(events, 0, sizeof(events));
 625
 626		if (hdev->le_features[0] & HCI_LE_ENCRYPTION)
 627			events[0] |= 0x10;	/* LE Long Term Key Request */
 628
 629		/* If controller supports the Connection Parameters Request
 630		 * Link Layer Procedure, enable the corresponding event.
 631		 */
 632		if (hdev->le_features[0] & HCI_LE_CONN_PARAM_REQ_PROC)
 633			events[0] |= 0x20;	/* LE Remote Connection
 634						 * Parameter Request
 635						 */
 636
 637		/* If the controller supports the Data Length Extension
 638		 * feature, enable the corresponding event.
 639		 */
 640		if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)
 641			events[0] |= 0x40;	/* LE Data Length Change */
 642
 643		/* If the controller supports Extended Scanner Filter
 644		 * Policies, enable the correspondig event.
 645		 */
 646		if (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY)
 647			events[1] |= 0x04;	/* LE Direct Advertising
 648						 * Report
 649						 */
 650
 651		/* If the controller supports Channel Selection Algorithm #2
 652		 * feature, enable the corresponding event.
 653		 */
 654		if (hdev->le_features[1] & HCI_LE_CHAN_SEL_ALG2)
 655			events[2] |= 0x08;	/* LE Channel Selection
 656						 * Algorithm
 657						 */
 658
 659		/* If the controller supports the LE Set Scan Enable command,
 660		 * enable the corresponding advertising report event.
 661		 */
 662		if (hdev->commands[26] & 0x08)
 663			events[0] |= 0x02;	/* LE Advertising Report */
 664
 665		/* If the controller supports the LE Create Connection
 666		 * command, enable the corresponding event.
 667		 */
 668		if (hdev->commands[26] & 0x10)
 669			events[0] |= 0x01;	/* LE Connection Complete */
 670
 671		/* If the controller supports the LE Connection Update
 672		 * command, enable the corresponding event.
 673		 */
 674		if (hdev->commands[27] & 0x04)
 675			events[0] |= 0x04;	/* LE Connection Update
 676						 * Complete
 677						 */
 678
 679		/* If the controller supports the LE Read Remote Used Features
 680		 * command, enable the corresponding event.
 681		 */
 682		if (hdev->commands[27] & 0x20)
 683			events[0] |= 0x08;	/* LE Read Remote Used
 684						 * Features Complete
 685						 */
 686
 687		/* If the controller supports the LE Read Local P-256
 688		 * Public Key command, enable the corresponding event.
 689		 */
 690		if (hdev->commands[34] & 0x02)
 691			events[0] |= 0x80;	/* LE Read Local P-256
 692						 * Public Key Complete
 693						 */
 694
 695		/* If the controller supports the LE Generate DHKey
 696		 * command, enable the corresponding event.
 697		 */
 698		if (hdev->commands[34] & 0x04)
 699			events[1] |= 0x01;	/* LE Generate DHKey Complete */
 700
 701		/* If the controller supports the LE Set Default PHY or
 702		 * LE Set PHY commands, enable the corresponding event.
 703		 */
 704		if (hdev->commands[35] & (0x20 | 0x40))
 705			events[1] |= 0x08;        /* LE PHY Update Complete */
 706
 707		hci_req_add(req, HCI_OP_LE_SET_EVENT_MASK, sizeof(events),
 708			    events);
 709
 710		if (hdev->commands[25] & 0x40) {
 711			/* Read LE Advertising Channel TX Power */
 712			hci_req_add(req, HCI_OP_LE_READ_ADV_TX_POWER, 0, NULL);
 713		}
 714
 715		if (hdev->commands[26] & 0x40) {
 716			/* Read LE White List Size */
 717			hci_req_add(req, HCI_OP_LE_READ_WHITE_LIST_SIZE,
 718				    0, NULL);
 719		}
 720
 721		if (hdev->commands[26] & 0x80) {
 722			/* Clear LE White List */
 723			hci_req_add(req, HCI_OP_LE_CLEAR_WHITE_LIST, 0, NULL);
 724		}
 725
 726		if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) {
 727			/* Read LE Maximum Data Length */
 728			hci_req_add(req, HCI_OP_LE_READ_MAX_DATA_LEN, 0, NULL);
 729
 730			/* Read LE Suggested Default Data Length */
 731			hci_req_add(req, HCI_OP_LE_READ_DEF_DATA_LEN, 0, NULL);
 732		}
 733
 734		hci_set_le_support(req);
 735	}
 736
 737	/* Read features beyond page 1 if available */
 738	for (p = 2; p < HCI_MAX_PAGES && p <= hdev->max_page; p++) {
 739		struct hci_cp_read_local_ext_features cp;
 740
 741		cp.page = p;
 742		hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES,
 743			    sizeof(cp), &cp);
 744	}
 745
 746	return 0;
 747}
 748
 749static int hci_init4_req(struct hci_request *req, unsigned long opt)
 750{
 751	struct hci_dev *hdev = req->hdev;
 752
 753	/* Some Broadcom based Bluetooth controllers do not support the
 754	 * Delete Stored Link Key command. They are clearly indicating its
 755	 * absence in the bit mask of supported commands.
 756	 *
 757	 * Check the supported commands and only if the the command is marked
 758	 * as supported send it. If not supported assume that the controller
 759	 * does not have actual support for stored link keys which makes this
 760	 * command redundant anyway.
 761	 *
 762	 * Some controllers indicate that they support handling deleting
 763	 * stored link keys, but they don't. The quirk lets a driver
 764	 * just disable this command.
 765	 */
 766	if (hdev->commands[6] & 0x80 &&
 767	    !test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) {
 768		struct hci_cp_delete_stored_link_key cp;
 769
 770		bacpy(&cp.bdaddr, BDADDR_ANY);
 771		cp.delete_all = 0x01;
 772		hci_req_add(req, HCI_OP_DELETE_STORED_LINK_KEY,
 773			    sizeof(cp), &cp);
 774	}
 775
 776	/* Set event mask page 2 if the HCI command for it is supported */
 777	if (hdev->commands[22] & 0x04)
 778		hci_set_event_mask_page_2(req);
 779
 780	/* Read local codec list if the HCI command is supported */
 781	if (hdev->commands[29] & 0x20)
 782		hci_req_add(req, HCI_OP_READ_LOCAL_CODECS, 0, NULL);
 783
 784	/* Get MWS transport configuration if the HCI command is supported */
 785	if (hdev->commands[30] & 0x08)
 786		hci_req_add(req, HCI_OP_GET_MWS_TRANSPORT_CONFIG, 0, NULL);
 787
 788	/* Check for Synchronization Train support */
 789	if (lmp_sync_train_capable(hdev))
 790		hci_req_add(req, HCI_OP_READ_SYNC_TRAIN_PARAMS, 0, NULL);
 791
 792	/* Enable Secure Connections if supported and configured */
 793	if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED) &&
 794	    bredr_sc_enabled(hdev)) {
 795		u8 support = 0x01;
 796
 797		hci_req_add(req, HCI_OP_WRITE_SC_SUPPORT,
 798			    sizeof(support), &support);
 799	}
 800
 801	/* Set Suggested Default Data Length to maximum if supported */
 802	if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) {
 803		struct hci_cp_le_write_def_data_len cp;
 804
 805		cp.tx_len = hdev->le_max_tx_len;
 806		cp.tx_time = hdev->le_max_tx_time;
 807		hci_req_add(req, HCI_OP_LE_WRITE_DEF_DATA_LEN, sizeof(cp), &cp);
 808	}
 809
 810	/* Set Default PHY parameters if command is supported */
 811	if (hdev->commands[35] & 0x20) {
 812		struct hci_cp_le_set_default_phy cp;
 813
 814		/* No transmitter PHY or receiver PHY preferences */
 815		cp.all_phys = 0x03;
 816		cp.tx_phys = 0;
 817		cp.rx_phys = 0;
 818
 819		hci_req_add(req, HCI_OP_LE_SET_DEFAULT_PHY, sizeof(cp), &cp);
 820	}
 821
 822	return 0;
 823}
 824
 825static int __hci_init(struct hci_dev *hdev)
 826{
 827	int err;
 828
 829	err = __hci_req_sync(hdev, hci_init1_req, 0, HCI_INIT_TIMEOUT, NULL);
 830	if (err < 0)
 831		return err;
 832
 833	if (hci_dev_test_flag(hdev, HCI_SETUP))
 834		hci_debugfs_create_basic(hdev);
 835
 836	err = __hci_req_sync(hdev, hci_init2_req, 0, HCI_INIT_TIMEOUT, NULL);
 837	if (err < 0)
 838		return err;
 839
 840	/* HCI_PRIMARY covers both single-mode LE, BR/EDR and dual-mode
 841	 * BR/EDR/LE type controllers. AMP controllers only need the
 842	 * first two stages of init.
 843	 */
 844	if (hdev->dev_type != HCI_PRIMARY)
 845		return 0;
 846
 847	err = __hci_req_sync(hdev, hci_init3_req, 0, HCI_INIT_TIMEOUT, NULL);
 848	if (err < 0)
 849		return err;
 850
 851	err = __hci_req_sync(hdev, hci_init4_req, 0, HCI_INIT_TIMEOUT, NULL);
 852	if (err < 0)
 853		return err;
 854
 855	/* This function is only called when the controller is actually in
 856	 * configured state. When the controller is marked as unconfigured,
 857	 * this initialization procedure is not run.
 858	 *
 859	 * It means that it is possible that a controller runs through its
 860	 * setup phase and then discovers missing settings. If that is the
 861	 * case, then this function will not be called. It then will only
 862	 * be called during the config phase.
 863	 *
 864	 * So only when in setup phase or config phase, create the debugfs
 865	 * entries and register the SMP channels.
 866	 */
 867	if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
 868	    !hci_dev_test_flag(hdev, HCI_CONFIG))
 869		return 0;
 870
 871	hci_debugfs_create_common(hdev);
 872
 873	if (lmp_bredr_capable(hdev))
 874		hci_debugfs_create_bredr(hdev);
 875
 876	if (lmp_le_capable(hdev))
 877		hci_debugfs_create_le(hdev);
 878
 879	return 0;
 880}
 881
 882static int hci_init0_req(struct hci_request *req, unsigned long opt)
 883{
 884	struct hci_dev *hdev = req->hdev;
 885
 886	BT_DBG("%s %ld", hdev->name, opt);
 887
 888	/* Reset */
 889	if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks))
 890		hci_reset_req(req, 0);
 891
 892	/* Read Local Version */
 893	hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
 894
 895	/* Read BD Address */
 896	if (hdev->set_bdaddr)
 897		hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL);
 898
 899	return 0;
 900}
 901
 902static int __hci_unconf_init(struct hci_dev *hdev)
 903{
 904	int err;
 905
 906	if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
 907		return 0;
 908
 909	err = __hci_req_sync(hdev, hci_init0_req, 0, HCI_INIT_TIMEOUT, NULL);
 910	if (err < 0)
 911		return err;
 912
 913	if (hci_dev_test_flag(hdev, HCI_SETUP))
 914		hci_debugfs_create_basic(hdev);
 915
 916	return 0;
 917}
 918
 919static int hci_scan_req(struct hci_request *req, unsigned long opt)
 920{
 921	__u8 scan = opt;
 922
 923	BT_DBG("%s %x", req->hdev->name, scan);
 924
 925	/* Inquiry and Page scans */
 926	hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
 927	return 0;
 928}
 929
 930static int hci_auth_req(struct hci_request *req, unsigned long opt)
 931{
 932	__u8 auth = opt;
 933
 934	BT_DBG("%s %x", req->hdev->name, auth);
 935
 936	/* Authentication */
 937	hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, 1, &auth);
 938	return 0;
 939}
 940
 941static int hci_encrypt_req(struct hci_request *req, unsigned long opt)
 942{
 943	__u8 encrypt = opt;
 944
 945	BT_DBG("%s %x", req->hdev->name, encrypt);
 946
 947	/* Encryption */
 948	hci_req_add(req, HCI_OP_WRITE_ENCRYPT_MODE, 1, &encrypt);
 949	return 0;
 950}
 951
 952static int hci_linkpol_req(struct hci_request *req, unsigned long opt)
 953{
 954	__le16 policy = cpu_to_le16(opt);
 955
 956	BT_DBG("%s %x", req->hdev->name, policy);
 957
 958	/* Default link policy */
 959	hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, 2, &policy);
 960	return 0;
 961}
 962
 963/* Get HCI device by index.
 964 * Device is held on return. */
 965struct hci_dev *hci_dev_get(int index)
 966{
 967	struct hci_dev *hdev = NULL, *d;
 968
 969	BT_DBG("%d", index);
 970
 971	if (index < 0)
 972		return NULL;
 973
 974	read_lock(&hci_dev_list_lock);
 975	list_for_each_entry(d, &hci_dev_list, list) {
 976		if (d->id == index) {
 977			hdev = hci_dev_hold(d);
 978			break;
 979		}
 980	}
 981	read_unlock(&hci_dev_list_lock);
 982	return hdev;
 983}
 984
 985/* ---- Inquiry support ---- */
 986
 987bool hci_discovery_active(struct hci_dev *hdev)
 988{
 989	struct discovery_state *discov = &hdev->discovery;
 990
 991	switch (discov->state) {
 992	case DISCOVERY_FINDING:
 993	case DISCOVERY_RESOLVING:
 994		return true;
 995
 996	default:
 997		return false;
 998	}
 999}
1000
1001void hci_discovery_set_state(struct hci_dev *hdev, int state)
1002{
1003	int old_state = hdev->discovery.state;
1004
1005	BT_DBG("%s state %u -> %u", hdev->name, hdev->discovery.state, state);
1006
1007	if (old_state == state)
1008		return;
1009
1010	hdev->discovery.state = state;
1011
1012	switch (state) {
1013	case DISCOVERY_STOPPED:
1014		hci_update_background_scan(hdev);
1015
1016		if (old_state != DISCOVERY_STARTING)
1017			mgmt_discovering(hdev, 0);
1018		break;
1019	case DISCOVERY_STARTING:
1020		break;
1021	case DISCOVERY_FINDING:
1022		mgmt_discovering(hdev, 1);
1023		break;
1024	case DISCOVERY_RESOLVING:
1025		break;
1026	case DISCOVERY_STOPPING:
1027		break;
1028	}
1029}
1030
1031void hci_inquiry_cache_flush(struct hci_dev *hdev)
1032{
1033	struct discovery_state *cache = &hdev->discovery;
1034	struct inquiry_entry *p, *n;
1035
1036	list_for_each_entry_safe(p, n, &cache->all, all) {
1037		list_del(&p->all);
1038		kfree(p);
1039	}
1040
1041	INIT_LIST_HEAD(&cache->unknown);
1042	INIT_LIST_HEAD(&cache->resolve);
1043}
1044
1045struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev,
1046					       bdaddr_t *bdaddr)
1047{
1048	struct discovery_state *cache = &hdev->discovery;
1049	struct inquiry_entry *e;
1050
1051	BT_DBG("cache %p, %pMR", cache, bdaddr);
1052
1053	list_for_each_entry(e, &cache->all, all) {
1054		if (!bacmp(&e->data.bdaddr, bdaddr))
1055			return e;
1056	}
1057
1058	return NULL;
1059}
1060
1061struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev,
1062						       bdaddr_t *bdaddr)
1063{
1064	struct discovery_state *cache = &hdev->discovery;
1065	struct inquiry_entry *e;
1066
1067	BT_DBG("cache %p, %pMR", cache, bdaddr);
1068
1069	list_for_each_entry(e, &cache->unknown, list) {
1070		if (!bacmp(&e->data.bdaddr, bdaddr))
1071			return e;
1072	}
1073
1074	return NULL;
1075}
1076
1077struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev,
1078						       bdaddr_t *bdaddr,
1079						       int state)
1080{
1081	struct discovery_state *cache = &hdev->discovery;
1082	struct inquiry_entry *e;
1083
1084	BT_DBG("cache %p bdaddr %pMR state %d", cache, bdaddr, state);
1085
1086	list_for_each_entry(e, &cache->resolve, list) {
1087		if (!bacmp(bdaddr, BDADDR_ANY) && e->name_state == state)
1088			return e;
1089		if (!bacmp(&e->data.bdaddr, bdaddr))
1090			return e;
1091	}
1092
1093	return NULL;
1094}
1095
1096void hci_inquiry_cache_update_resolve(struct hci_dev *hdev,
1097				      struct inquiry_entry *ie)
1098{
1099	struct discovery_state *cache = &hdev->discovery;
1100	struct list_head *pos = &cache->resolve;
1101	struct inquiry_entry *p;
1102
1103	list_del(&ie->list);
1104
1105	list_for_each_entry(p, &cache->resolve, list) {
1106		if (p->name_state != NAME_PENDING &&
1107		    abs(p->data.rssi) >= abs(ie->data.rssi))
1108			break;
1109		pos = &p->list;
1110	}
1111
1112	list_add(&ie->list, pos);
1113}
1114
1115u32 hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data,
1116			     bool name_known)
1117{
1118	struct discovery_state *cache = &hdev->discovery;
1119	struct inquiry_entry *ie;
1120	u32 flags = 0;
1121
1122	BT_DBG("cache %p, %pMR", cache, &data->bdaddr);
1123
1124	hci_remove_remote_oob_data(hdev, &data->bdaddr, BDADDR_BREDR);
1125
1126	if (!data->ssp_mode)
1127		flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
1128
1129	ie = hci_inquiry_cache_lookup(hdev, &data->bdaddr);
1130	if (ie) {
1131		if (!ie->data.ssp_mode)
1132			flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
1133
1134		if (ie->name_state == NAME_NEEDED &&
1135		    data->rssi != ie->data.rssi) {
1136			ie->data.rssi = data->rssi;
1137			hci_inquiry_cache_update_resolve(hdev, ie);
1138		}
1139
1140		goto update;
1141	}
1142
1143	/* Entry not in the cache. Add new one. */
1144	ie = kzalloc(sizeof(*ie), GFP_KERNEL);
1145	if (!ie) {
1146		flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
1147		goto done;
1148	}
1149
1150	list_add(&ie->all, &cache->all);
1151
1152	if (name_known) {
1153		ie->name_state = NAME_KNOWN;
1154	} else {
1155		ie->name_state = NAME_NOT_KNOWN;
1156		list_add(&ie->list, &cache->unknown);
1157	}
1158
1159update:
1160	if (name_known && ie->name_state != NAME_KNOWN &&
1161	    ie->name_state != NAME_PENDING) {
1162		ie->name_state = NAME_KNOWN;
1163		list_del(&ie->list);
1164	}
1165
1166	memcpy(&ie->data, data, sizeof(*data));
1167	ie->timestamp = jiffies;
1168	cache->timestamp = jiffies;
1169
1170	if (ie->name_state == NAME_NOT_KNOWN)
1171		flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
1172
1173done:
1174	return flags;
1175}
1176
1177static int inquiry_cache_dump(struct hci_dev *hdev, int num, __u8 *buf)
1178{
1179	struct discovery_state *cache = &hdev->discovery;
1180	struct inquiry_info *info = (struct inquiry_info *) buf;
1181	struct inquiry_entry *e;
1182	int copied = 0;
1183
1184	list_for_each_entry(e, &cache->all, all) {
1185		struct inquiry_data *data = &e->data;
1186
1187		if (copied >= num)
1188			break;
1189
1190		bacpy(&info->bdaddr, &data->bdaddr);
1191		info->pscan_rep_mode	= data->pscan_rep_mode;
1192		info->pscan_period_mode	= data->pscan_period_mode;
1193		info->pscan_mode	= data->pscan_mode;
1194		memcpy(info->dev_class, data->dev_class, 3);
1195		info->clock_offset	= data->clock_offset;
1196
1197		info++;
1198		copied++;
1199	}
1200
1201	BT_DBG("cache %p, copied %d", cache, copied);
1202	return copied;
1203}
1204
1205static int hci_inq_req(struct hci_request *req, unsigned long opt)
1206{
1207	struct hci_inquiry_req *ir = (struct hci_inquiry_req *) opt;
1208	struct hci_dev *hdev = req->hdev;
1209	struct hci_cp_inquiry cp;
1210
1211	BT_DBG("%s", hdev->name);
1212
1213	if (test_bit(HCI_INQUIRY, &hdev->flags))
1214		return 0;
1215
1216	/* Start Inquiry */
1217	memcpy(&cp.lap, &ir->lap, 3);
1218	cp.length  = ir->length;
1219	cp.num_rsp = ir->num_rsp;
1220	hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp);
1221
1222	return 0;
1223}
1224
1225int hci_inquiry(void __user *arg)
1226{
1227	__u8 __user *ptr = arg;
1228	struct hci_inquiry_req ir;
1229	struct hci_dev *hdev;
1230	int err = 0, do_inquiry = 0, max_rsp;
1231	long timeo;
1232	__u8 *buf;
1233
1234	if (copy_from_user(&ir, ptr, sizeof(ir)))
1235		return -EFAULT;
1236
1237	hdev = hci_dev_get(ir.dev_id);
1238	if (!hdev)
1239		return -ENODEV;
1240
1241	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1242		err = -EBUSY;
1243		goto done;
1244	}
1245
1246	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1247		err = -EOPNOTSUPP;
1248		goto done;
1249	}
1250
1251	if (hdev->dev_type != HCI_PRIMARY) {
1252		err = -EOPNOTSUPP;
1253		goto done;
1254	}
1255
1256	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
1257		err = -EOPNOTSUPP;
1258		goto done;
1259	}
1260
1261	hci_dev_lock(hdev);
1262	if (inquiry_cache_age(hdev) > INQUIRY_CACHE_AGE_MAX ||
1263	    inquiry_cache_empty(hdev) || ir.flags & IREQ_CACHE_FLUSH) {
1264		hci_inquiry_cache_flush(hdev);
1265		do_inquiry = 1;
1266	}
1267	hci_dev_unlock(hdev);
1268
1269	timeo = ir.length * msecs_to_jiffies(2000);
1270
1271	if (do_inquiry) {
1272		err = hci_req_sync(hdev, hci_inq_req, (unsigned long) &ir,
1273				   timeo, NULL);
1274		if (err < 0)
1275			goto done;
1276
1277		/* Wait until Inquiry procedure finishes (HCI_INQUIRY flag is
1278		 * cleared). If it is interrupted by a signal, return -EINTR.
1279		 */
1280		if (wait_on_bit(&hdev->flags, HCI_INQUIRY,
1281				TASK_INTERRUPTIBLE))
1282			return -EINTR;
1283	}
1284
1285	/* for unlimited number of responses we will use buffer with
1286	 * 255 entries
1287	 */
1288	max_rsp = (ir.num_rsp == 0) ? 255 : ir.num_rsp;
1289
1290	/* cache_dump can't sleep. Therefore we allocate temp buffer and then
1291	 * copy it to the user space.
1292	 */
1293	buf = kmalloc(sizeof(struct inquiry_info) * max_rsp, GFP_KERNEL);
1294	if (!buf) {
1295		err = -ENOMEM;
1296		goto done;
1297	}
1298
1299	hci_dev_lock(hdev);
1300	ir.num_rsp = inquiry_cache_dump(hdev, max_rsp, buf);
1301	hci_dev_unlock(hdev);
1302
1303	BT_DBG("num_rsp %d", ir.num_rsp);
1304
1305	if (!copy_to_user(ptr, &ir, sizeof(ir))) {
1306		ptr += sizeof(ir);
1307		if (copy_to_user(ptr, buf, sizeof(struct inquiry_info) *
1308				 ir.num_rsp))
1309			err = -EFAULT;
1310	} else
1311		err = -EFAULT;
1312
1313	kfree(buf);
1314
1315done:
1316	hci_dev_put(hdev);
1317	return err;
1318}
1319
1320static int hci_dev_do_open(struct hci_dev *hdev)
1321{
1322	int ret = 0;
1323
1324	BT_DBG("%s %p", hdev->name, hdev);
1325
1326	hci_req_sync_lock(hdev);
1327
1328	if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) {
1329		ret = -ENODEV;
1330		goto done;
1331	}
1332
1333	if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
1334	    !hci_dev_test_flag(hdev, HCI_CONFIG)) {
1335		/* Check for rfkill but allow the HCI setup stage to
1336		 * proceed (which in itself doesn't cause any RF activity).
1337		 */
1338		if (hci_dev_test_flag(hdev, HCI_RFKILLED)) {
1339			ret = -ERFKILL;
1340			goto done;
1341		}
1342
1343		/* Check for valid public address or a configured static
1344		 * random adddress, but let the HCI setup proceed to
1345		 * be able to determine if there is a public address
1346		 * or not.
1347		 *
1348		 * In case of user channel usage, it is not important
1349		 * if a public address or static random address is
1350		 * available.
1351		 *
1352		 * This check is only valid for BR/EDR controllers
1353		 * since AMP controllers do not have an address.
1354		 */
1355		if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1356		    hdev->dev_type == HCI_PRIMARY &&
1357		    !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
1358		    !bacmp(&hdev->static_addr, BDADDR_ANY)) {
1359			ret = -EADDRNOTAVAIL;
1360			goto done;
1361		}
1362	}
1363
1364	if (test_bit(HCI_UP, &hdev->flags)) {
1365		ret = -EALREADY;
1366		goto done;
1367	}
1368
1369	if (hdev->open(hdev)) {
1370		ret = -EIO;
1371		goto done;
1372	}
1373
1374	set_bit(HCI_RUNNING, &hdev->flags);
1375	hci_sock_dev_event(hdev, HCI_DEV_OPEN);
1376
1377	atomic_set(&hdev->cmd_cnt, 1);
1378	set_bit(HCI_INIT, &hdev->flags);
1379
1380	if (hci_dev_test_flag(hdev, HCI_SETUP)) {
1381		hci_sock_dev_event(hdev, HCI_DEV_SETUP);
1382
1383		if (hdev->setup)
1384			ret = hdev->setup(hdev);
1385
1386		/* The transport driver can set these quirks before
1387		 * creating the HCI device or in its setup callback.
1388		 *
1389		 * In case any of them is set, the controller has to
1390		 * start up as unconfigured.
1391		 */
1392		if (test_bit(HCI_QUIRK_EXTERNAL_CONFIG, &hdev->quirks) ||
1393		    test_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks))
1394			hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
1395
1396		/* For an unconfigured controller it is required to
1397		 * read at least the version information provided by
1398		 * the Read Local Version Information command.
1399		 *
1400		 * If the set_bdaddr driver callback is provided, then
1401		 * also the original Bluetooth public device address
1402		 * will be read using the Read BD Address command.
1403		 */
1404		if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
1405			ret = __hci_unconf_init(hdev);
1406	}
1407
1408	if (hci_dev_test_flag(hdev, HCI_CONFIG)) {
1409		/* If public address change is configured, ensure that
1410		 * the address gets programmed. If the driver does not
1411		 * support changing the public address, fail the power
1412		 * on procedure.
1413		 */
1414		if (bacmp(&hdev->public_addr, BDADDR_ANY) &&
1415		    hdev->set_bdaddr)
1416			ret = hdev->set_bdaddr(hdev, &hdev->public_addr);
1417		else
1418			ret = -EADDRNOTAVAIL;
1419	}
1420
1421	if (!ret) {
1422		if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1423		    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1424			ret = __hci_init(hdev);
1425			if (!ret && hdev->post_init)
1426				ret = hdev->post_init(hdev);
1427		}
1428	}
1429
1430	/* If the HCI Reset command is clearing all diagnostic settings,
1431	 * then they need to be reprogrammed after the init procedure
1432	 * completed.
1433	 */
1434	if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) &&
1435	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1436	    hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) && hdev->set_diag)
1437		ret = hdev->set_diag(hdev, true);
1438
1439	clear_bit(HCI_INIT, &hdev->flags);
1440
1441	if (!ret) {
1442		hci_dev_hold(hdev);
1443		hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
1444		set_bit(HCI_UP, &hdev->flags);
1445		hci_sock_dev_event(hdev, HCI_DEV_UP);
1446		hci_leds_update_powered(hdev, true);
1447		if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
1448		    !hci_dev_test_flag(hdev, HCI_CONFIG) &&
1449		    !hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1450		    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1451		    hci_dev_test_flag(hdev, HCI_MGMT) &&
1452		    hdev->dev_type == HCI_PRIMARY) {
1453			ret = __hci_req_hci_power_on(hdev);
1454			mgmt_power_on(hdev, ret);
1455		}
1456	} else {
1457		/* Init failed, cleanup */
1458		flush_work(&hdev->tx_work);
1459		flush_work(&hdev->cmd_work);
1460		flush_work(&hdev->rx_work);
1461
1462		skb_queue_purge(&hdev->cmd_q);
1463		skb_queue_purge(&hdev->rx_q);
1464
1465		if (hdev->flush)
1466			hdev->flush(hdev);
1467
1468		if (hdev->sent_cmd) {
1469			kfree_skb(hdev->sent_cmd);
1470			hdev->sent_cmd = NULL;
1471		}
1472
1473		clear_bit(HCI_RUNNING, &hdev->flags);
1474		hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
1475
1476		hdev->close(hdev);
1477		hdev->flags &= BIT(HCI_RAW);
1478	}
1479
1480done:
1481	hci_req_sync_unlock(hdev);
1482	return ret;
1483}
1484
1485/* ---- HCI ioctl helpers ---- */
1486
1487int hci_dev_open(__u16 dev)
1488{
1489	struct hci_dev *hdev;
1490	int err;
1491
1492	hdev = hci_dev_get(dev);
1493	if (!hdev)
1494		return -ENODEV;
1495
1496	/* Devices that are marked as unconfigured can only be powered
1497	 * up as user channel. Trying to bring them up as normal devices
1498	 * will result into a failure. Only user channel operation is
1499	 * possible.
1500	 *
1501	 * When this function is called for a user channel, the flag
1502	 * HCI_USER_CHANNEL will be set first before attempting to
1503	 * open the device.
1504	 */
1505	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1506	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1507		err = -EOPNOTSUPP;
1508		goto done;
1509	}
1510
1511	/* We need to ensure that no other power on/off work is pending
1512	 * before proceeding to call hci_dev_do_open. This is
1513	 * particularly important if the setup procedure has not yet
1514	 * completed.
1515	 */
1516	if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
1517		cancel_delayed_work(&hdev->power_off);
1518
1519	/* After this call it is guaranteed that the setup procedure
1520	 * has finished. This means that error conditions like RFKILL
1521	 * or no valid public or static random address apply.
1522	 */
1523	flush_workqueue(hdev->req_workqueue);
1524
1525	/* For controllers not using the management interface and that
1526	 * are brought up using legacy ioctl, set the HCI_BONDABLE bit
1527	 * so that pairing works for them. Once the management interface
1528	 * is in use this bit will be cleared again and userspace has
1529	 * to explicitly enable it.
1530	 */
1531	if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1532	    !hci_dev_test_flag(hdev, HCI_MGMT))
1533		hci_dev_set_flag(hdev, HCI_BONDABLE);
1534
1535	err = hci_dev_do_open(hdev);
1536
1537done:
1538	hci_dev_put(hdev);
1539	return err;
1540}
1541
1542/* This function requires the caller holds hdev->lock */
1543static void hci_pend_le_actions_clear(struct hci_dev *hdev)
1544{
1545	struct hci_conn_params *p;
1546
1547	list_for_each_entry(p, &hdev->le_conn_params, list) {
1548		if (p->conn) {
1549			hci_conn_drop(p->conn);
1550			hci_conn_put(p->conn);
1551			p->conn = NULL;
1552		}
1553		list_del_init(&p->action);
1554	}
1555
1556	BT_DBG("All LE pending actions cleared");
1557}
1558
1559int hci_dev_do_close(struct hci_dev *hdev)
1560{
1561	bool auto_off;
1562
1563	BT_DBG("%s %p", hdev->name, hdev);
1564
1565	if (!hci_dev_test_flag(hdev, HCI_UNREGISTER) &&
1566	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1567	    test_bit(HCI_UP, &hdev->flags)) {
1568		/* Execute vendor specific shutdown routine */
1569		if (hdev->shutdown)
1570			hdev->shutdown(hdev);
1571	}
1572
1573	cancel_delayed_work(&hdev->power_off);
1574
1575	hci_request_cancel_all(hdev);
1576	hci_req_sync_lock(hdev);
1577
1578	if (!test_and_clear_bit(HCI_UP, &hdev->flags)) {
1579		cancel_delayed_work_sync(&hdev->cmd_timer);
1580		hci_req_sync_unlock(hdev);
1581		return 0;
1582	}
1583
1584	hci_leds_update_powered(hdev, false);
1585
1586	/* Flush RX and TX works */
1587	flush_work(&hdev->tx_work);
1588	flush_work(&hdev->rx_work);
1589
1590	if (hdev->discov_timeout > 0) {
1591		hdev->discov_timeout = 0;
1592		hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
1593		hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
1594	}
1595
1596	if (hci_dev_test_and_clear_flag(hdev, HCI_SERVICE_CACHE))
1597		cancel_delayed_work(&hdev->service_cache);
1598
1599	if (hci_dev_test_flag(hdev, HCI_MGMT))
1600		cancel_delayed_work_sync(&hdev->rpa_expired);
1601
1602	/* Avoid potential lockdep warnings from the *_flush() calls by
1603	 * ensuring the workqueue is empty up front.
1604	 */
1605	drain_workqueue(hdev->workqueue);
1606
1607	hci_dev_lock(hdev);
1608
1609	hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
1610
1611	auto_off = hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF);
1612
1613	if (!auto_off && hdev->dev_type == HCI_PRIMARY &&
1614	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1615	    hci_dev_test_flag(hdev, HCI_MGMT))
1616		__mgmt_power_off(hdev);
1617
1618	hci_inquiry_cache_flush(hdev);
1619	hci_pend_le_actions_clear(hdev);
1620	hci_conn_hash_flush(hdev);
1621	hci_dev_unlock(hdev);
1622
1623	smp_unregister(hdev);
1624
1625	hci_sock_dev_event(hdev, HCI_DEV_DOWN);
1626
1627	if (hdev->flush)
1628		hdev->flush(hdev);
1629
1630	/* Reset device */
1631	skb_queue_purge(&hdev->cmd_q);
1632	atomic_set(&hdev->cmd_cnt, 1);
1633	if (test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks) &&
1634	    !auto_off && !hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1635		set_bit(HCI_INIT, &hdev->flags);
1636		__hci_req_sync(hdev, hci_reset_req, 0, HCI_CMD_TIMEOUT, NULL);
1637		clear_bit(HCI_INIT, &hdev->flags);
1638	}
1639
1640	/* flush cmd  work */
1641	flush_work(&hdev->cmd_work);
1642
1643	/* Drop queues */
1644	skb_queue_purge(&hdev->rx_q);
1645	skb_queue_purge(&hdev->cmd_q);
1646	skb_queue_purge(&hdev->raw_q);
1647
1648	/* Drop last sent command */
1649	if (hdev->sent_cmd) {
1650		cancel_delayed_work_sync(&hdev->cmd_timer);
1651		kfree_skb(hdev->sent_cmd);
1652		hdev->sent_cmd = NULL;
1653	}
1654
1655	clear_bit(HCI_RUNNING, &hdev->flags);
1656	hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
1657
1658	/* After this point our queues are empty
1659	 * and no tasks are scheduled. */
1660	hdev->close(hdev);
1661
1662	/* Clear flags */
1663	hdev->flags &= BIT(HCI_RAW);
1664	hci_dev_clear_volatile_flags(hdev);
1665
1666	/* Controller radio is available but is currently powered down */
1667	hdev->amp_status = AMP_STATUS_POWERED_DOWN;
1668
1669	memset(hdev->eir, 0, sizeof(hdev->eir));
1670	memset(hdev->dev_class, 0, sizeof(hdev->dev_class));
1671	bacpy(&hdev->random_addr, BDADDR_ANY);
1672
1673	hci_req_sync_unlock(hdev);
1674
1675	hci_dev_put(hdev);
1676	return 0;
1677}
1678
1679int hci_dev_close(__u16 dev)
1680{
1681	struct hci_dev *hdev;
1682	int err;
1683
1684	hdev = hci_dev_get(dev);
1685	if (!hdev)
1686		return -ENODEV;
1687
1688	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1689		err = -EBUSY;
1690		goto done;
1691	}
1692
1693	if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
1694		cancel_delayed_work(&hdev->power_off);
1695
1696	err = hci_dev_do_close(hdev);
1697
1698done:
1699	hci_dev_put(hdev);
1700	return err;
1701}
1702
1703static int hci_dev_do_reset(struct hci_dev *hdev)
1704{
1705	int ret;
1706
1707	BT_DBG("%s %p", hdev->name, hdev);
1708
1709	hci_req_sync_lock(hdev);
1710
1711	/* Drop queues */
1712	skb_queue_purge(&hdev->rx_q);
1713	skb_queue_purge(&hdev->cmd_q);
1714
1715	/* Avoid potential lockdep warnings from the *_flush() calls by
1716	 * ensuring the workqueue is empty up front.
1717	 */
1718	drain_workqueue(hdev->workqueue);
1719
1720	hci_dev_lock(hdev);
1721	hci_inquiry_cache_flush(hdev);
1722	hci_conn_hash_flush(hdev);
1723	hci_dev_unlock(hdev);
1724
1725	if (hdev->flush)
1726		hdev->flush(hdev);
1727
1728	atomic_set(&hdev->cmd_cnt, 1);
1729	hdev->acl_cnt = 0; hdev->sco_cnt = 0; hdev->le_cnt = 0;
1730
1731	ret = __hci_req_sync(hdev, hci_reset_req, 0, HCI_INIT_TIMEOUT, NULL);
1732
1733	hci_req_sync_unlock(hdev);
1734	return ret;
1735}
1736
1737int hci_dev_reset(__u16 dev)
1738{
1739	struct hci_dev *hdev;
1740	int err;
1741
1742	hdev = hci_dev_get(dev);
1743	if (!hdev)
1744		return -ENODEV;
1745
1746	if (!test_bit(HCI_UP, &hdev->flags)) {
1747		err = -ENETDOWN;
1748		goto done;
1749	}
1750
1751	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1752		err = -EBUSY;
1753		goto done;
1754	}
1755
1756	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1757		err = -EOPNOTSUPP;
1758		goto done;
1759	}
1760
1761	err = hci_dev_do_reset(hdev);
1762
1763done:
1764	hci_dev_put(hdev);
1765	return err;
1766}
1767
1768int hci_dev_reset_stat(__u16 dev)
1769{
1770	struct hci_dev *hdev;
1771	int ret = 0;
1772
1773	hdev = hci_dev_get(dev);
1774	if (!hdev)
1775		return -ENODEV;
1776
1777	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1778		ret = -EBUSY;
1779		goto done;
1780	}
1781
1782	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1783		ret = -EOPNOTSUPP;
1784		goto done;
1785	}
1786
1787	memset(&hdev->stat, 0, sizeof(struct hci_dev_stats));
1788
1789done:
1790	hci_dev_put(hdev);
1791	return ret;
1792}
1793
1794static void hci_update_scan_state(struct hci_dev *hdev, u8 scan)
1795{
1796	bool conn_changed, discov_changed;
1797
1798	BT_DBG("%s scan 0x%02x", hdev->name, scan);
1799
1800	if ((scan & SCAN_PAGE))
1801		conn_changed = !hci_dev_test_and_set_flag(hdev,
1802							  HCI_CONNECTABLE);
1803	else
1804		conn_changed = hci_dev_test_and_clear_flag(hdev,
1805							   HCI_CONNECTABLE);
1806
1807	if ((scan & SCAN_INQUIRY)) {
1808		discov_changed = !hci_dev_test_and_set_flag(hdev,
1809							    HCI_DISCOVERABLE);
1810	} else {
1811		hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
1812		discov_changed = hci_dev_test_and_clear_flag(hdev,
1813							     HCI_DISCOVERABLE);
1814	}
1815
1816	if (!hci_dev_test_flag(hdev, HCI_MGMT))
1817		return;
1818
1819	if (conn_changed || discov_changed) {
1820		/* In case this was disabled through mgmt */
1821		hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
1822
1823		if (hci_dev_test_flag(hdev, HCI_LE_ENABLED))
1824			hci_req_update_adv_data(hdev, hdev->cur_adv_instance);
1825
1826		mgmt_new_settings(hdev);
1827	}
1828}
1829
1830int hci_dev_cmd(unsigned int cmd, void __user *arg)
1831{
1832	struct hci_dev *hdev;
1833	struct hci_dev_req dr;
1834	int err = 0;
1835
1836	if (copy_from_user(&dr, arg, sizeof(dr)))
1837		return -EFAULT;
1838
1839	hdev = hci_dev_get(dr.dev_id);
1840	if (!hdev)
1841		return -ENODEV;
1842
1843	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1844		err = -EBUSY;
1845		goto done;
1846	}
1847
1848	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1849		err = -EOPNOTSUPP;
1850		goto done;
1851	}
1852
1853	if (hdev->dev_type != HCI_PRIMARY) {
1854		err = -EOPNOTSUPP;
1855		goto done;
1856	}
1857
1858	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
1859		err = -EOPNOTSUPP;
1860		goto done;
1861	}
1862
1863	switch (cmd) {
1864	case HCISETAUTH:
1865		err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
1866				   HCI_INIT_TIMEOUT, NULL);
1867		break;
1868
1869	case HCISETENCRYPT:
1870		if (!lmp_encrypt_capable(hdev)) {
1871			err = -EOPNOTSUPP;
1872			break;
1873		}
1874
1875		if (!test_bit(HCI_AUTH, &hdev->flags)) {
1876			/* Auth must be enabled first */
1877			err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
1878					   HCI_INIT_TIMEOUT, NULL);
1879			if (err)
1880				break;
1881		}
1882
1883		err = hci_req_sync(hdev, hci_encrypt_req, dr.dev_opt,
1884				   HCI_INIT_TIMEOUT, NULL);
1885		break;
1886
1887	case HCISETSCAN:
1888		err = hci_req_sync(hdev, hci_scan_req, dr.dev_opt,
1889				   HCI_INIT_TIMEOUT, NULL);
1890
1891		/* Ensure that the connectable and discoverable states
1892		 * get correctly modified as this was a non-mgmt change.
1893		 */
1894		if (!err)
1895			hci_update_scan_state(hdev, dr.dev_opt);
1896		break;
1897
1898	case HCISETLINKPOL:
1899		err = hci_req_sync(hdev, hci_linkpol_req, dr.dev_opt,
1900				   HCI_INIT_TIMEOUT, NULL);
1901		break;
1902
1903	case HCISETLINKMODE:
1904		hdev->link_mode = ((__u16) dr.dev_opt) &
1905					(HCI_LM_MASTER | HCI_LM_ACCEPT);
1906		break;
1907
1908	case HCISETPTYPE:
1909		hdev->pkt_type = (__u16) dr.dev_opt;
1910		break;
1911
1912	case HCISETACLMTU:
1913		hdev->acl_mtu  = *((__u16 *) &dr.dev_opt + 1);
1914		hdev->acl_pkts = *((__u16 *) &dr.dev_opt + 0);
1915		break;
1916
1917	case HCISETSCOMTU:
1918		hdev->sco_mtu  = *((__u16 *) &dr.dev_opt + 1);
1919		hdev->sco_pkts = *((__u16 *) &dr.dev_opt + 0);
1920		break;
1921
1922	default:
1923		err = -EINVAL;
1924		break;
1925	}
1926
1927done:
1928	hci_dev_put(hdev);
1929	return err;
1930}
1931
1932int hci_get_dev_list(void __user *arg)
1933{
1934	struct hci_dev *hdev;
1935	struct hci_dev_list_req *dl;
1936	struct hci_dev_req *dr;
1937	int n = 0, size, err;
1938	__u16 dev_num;
1939
1940	if (get_user(dev_num, (__u16 __user *) arg))
1941		return -EFAULT;
1942
1943	if (!dev_num || dev_num > (PAGE_SIZE * 2) / sizeof(*dr))
1944		return -EINVAL;
1945
1946	size = sizeof(*dl) + dev_num * sizeof(*dr);
1947
1948	dl = kzalloc(size, GFP_KERNEL);
1949	if (!dl)
1950		return -ENOMEM;
1951
1952	dr = dl->dev_req;
1953
1954	read_lock(&hci_dev_list_lock);
1955	list_for_each_entry(hdev, &hci_dev_list, list) {
1956		unsigned long flags = hdev->flags;
1957
1958		/* When the auto-off is configured it means the transport
1959		 * is running, but in that case still indicate that the
1960		 * device is actually down.
1961		 */
1962		if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
1963			flags &= ~BIT(HCI_UP);
1964
1965		(dr + n)->dev_id  = hdev->id;
1966		(dr + n)->dev_opt = flags;
1967
1968		if (++n >= dev_num)
1969			break;
1970	}
1971	read_unlock(&hci_dev_list_lock);
1972
1973	dl->dev_num = n;
1974	size = sizeof(*dl) + n * sizeof(*dr);
1975
1976	err = copy_to_user(arg, dl, size);
1977	kfree(dl);
1978
1979	return err ? -EFAULT : 0;
1980}
1981
1982int hci_get_dev_info(void __user *arg)
1983{
1984	struct hci_dev *hdev;
1985	struct hci_dev_info di;
1986	unsigned long flags;
1987	int err = 0;
1988
1989	if (copy_from_user(&di, arg, sizeof(di)))
1990		return -EFAULT;
1991
1992	hdev = hci_dev_get(di.dev_id);
1993	if (!hdev)
1994		return -ENODEV;
1995
1996	/* When the auto-off is configured it means the transport
1997	 * is running, but in that case still indicate that the
1998	 * device is actually down.
1999	 */
2000	if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
2001		flags = hdev->flags & ~BIT(HCI_UP);
2002	else
2003		flags = hdev->flags;
2004
2005	strcpy(di.name, hdev->name);
2006	di.bdaddr   = hdev->bdaddr;
2007	di.type     = (hdev->bus & 0x0f) | ((hdev->dev_type & 0x03) << 4);
2008	di.flags    = flags;
2009	di.pkt_type = hdev->pkt_type;
2010	if (lmp_bredr_capable(hdev)) {
2011		di.acl_mtu  = hdev->acl_mtu;
2012		di.acl_pkts = hdev->acl_pkts;
2013		di.sco_mtu  = hdev->sco_mtu;
2014		di.sco_pkts = hdev->sco_pkts;
2015	} else {
2016		di.acl_mtu  = hdev->le_mtu;
2017		di.acl_pkts = hdev->le_pkts;
2018		di.sco_mtu  = 0;
2019		di.sco_pkts = 0;
2020	}
2021	di.link_policy = hdev->link_policy;
2022	di.link_mode   = hdev->link_mode;
2023
2024	memcpy(&di.stat, &hdev->stat, sizeof(di.stat));
2025	memcpy(&di.features, &hdev->features, sizeof(di.features));
2026
2027	if (copy_to_user(arg, &di, sizeof(di)))
2028		err = -EFAULT;
2029
2030	hci_dev_put(hdev);
2031
2032	return err;
2033}
2034
2035/* ---- Interface to HCI drivers ---- */
2036
2037static int hci_rfkill_set_block(void *data, bool blocked)
2038{
2039	struct hci_dev *hdev = data;
2040
2041	BT_DBG("%p name %s blocked %d", hdev, hdev->name, blocked);
2042
2043	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL))
2044		return -EBUSY;
2045
2046	if (blocked) {
2047		hci_dev_set_flag(hdev, HCI_RFKILLED);
2048		if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
2049		    !hci_dev_test_flag(hdev, HCI_CONFIG))
2050			hci_dev_do_close(hdev);
2051	} else {
2052		hci_dev_clear_flag(hdev, HCI_RFKILLED);
2053	}
2054
2055	return 0;
2056}
2057
2058static const struct rfkill_ops hci_rfkill_ops = {
2059	.set_block = hci_rfkill_set_block,
2060};
2061
2062static void hci_power_on(struct work_struct *work)
2063{
2064	struct hci_dev *hdev = container_of(work, struct hci_dev, power_on);
2065	int err;
2066
2067	BT_DBG("%s", hdev->name);
2068
2069	if (test_bit(HCI_UP, &hdev->flags) &&
2070	    hci_dev_test_flag(hdev, HCI_MGMT) &&
2071	    hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) {
2072		cancel_delayed_work(&hdev->power_off);
2073		hci_req_sync_lock(hdev);
2074		err = __hci_req_hci_power_on(hdev);
2075		hci_req_sync_unlock(hdev);
2076		mgmt_power_on(hdev, err);
2077		return;
2078	}
2079
2080	err = hci_dev_do_open(hdev);
2081	if (err < 0) {
2082		hci_dev_lock(hdev);
2083		mgmt_set_powered_failed(hdev, err);
2084		hci_dev_unlock(hdev);
2085		return;
2086	}
2087
2088	/* During the HCI setup phase, a few error conditions are
2089	 * ignored and they need to be checked now. If they are still
2090	 * valid, it is important to turn the device back off.
2091	 */
2092	if (hci_dev_test_flag(hdev, HCI_RFKILLED) ||
2093	    hci_dev_test_flag(hdev, HCI_UNCONFIGURED) ||
2094	    (hdev->dev_type == HCI_PRIMARY &&
2095	     !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
2096	     !bacmp(&hdev->static_addr, BDADDR_ANY))) {
2097		hci_dev_clear_flag(hdev, HCI_AUTO_OFF);
2098		hci_dev_do_close(hdev);
2099	} else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) {
2100		queue_delayed_work(hdev->req_workqueue, &hdev->power_off,
2101				   HCI_AUTO_OFF_TIMEOUT);
2102	}
2103
2104	if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) {
2105		/* For unconfigured devices, set the HCI_RAW flag
2106		 * so that userspace can easily identify them.
2107		 */
2108		if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
2109			set_bit(HCI_RAW, &hdev->flags);
2110
2111		/* For fully configured devices, this will send
2112		 * the Index Added event. For unconfigured devices,
2113		 * it will send Unconfigued Index Added event.
2114		 *
2115		 * Devices with HCI_QUIRK_RAW_DEVICE are ignored
2116		 * and no event will be send.
2117		 */
2118		mgmt_index_added(hdev);
2119	} else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) {
2120		/* When the controller is now configured, then it
2121		 * is important to clear the HCI_RAW flag.
2122		 */
2123		if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
2124			clear_bit(HCI_RAW, &hdev->flags);
2125
2126		/* Powering on the controller with HCI_CONFIG set only
2127		 * happens with the transition from unconfigured to
2128		 * configured. This will send the Index Added event.
2129		 */
2130		mgmt_index_added(hdev);
2131	}
2132}
2133
2134static void hci_power_off(struct work_struct *work)
2135{
2136	struct hci_dev *hdev = container_of(work, struct hci_dev,
2137					    power_off.work);
2138
2139	BT_DBG("%s", hdev->name);
2140
2141	hci_dev_do_close(hdev);
2142}
2143
2144static void hci_error_reset(struct work_struct *work)
2145{
2146	struct hci_dev *hdev = container_of(work, struct hci_dev, error_reset);
2147
2148	BT_DBG("%s", hdev->name);
2149
2150	if (hdev->hw_error)
2151		hdev->hw_error(hdev, hdev->hw_error_code);
2152	else
2153		bt_dev_err(hdev, "hardware error 0x%2.2x", hdev->hw_error_code);
 
2154
2155	if (hci_dev_do_close(hdev))
2156		return;
2157
2158	hci_dev_do_open(hdev);
2159}
2160
2161void hci_uuids_clear(struct hci_dev *hdev)
2162{
2163	struct bt_uuid *uuid, *tmp;
2164
2165	list_for_each_entry_safe(uuid, tmp, &hdev->uuids, list) {
2166		list_del(&uuid->list);
2167		kfree(uuid);
2168	}
2169}
2170
2171void hci_link_keys_clear(struct hci_dev *hdev)
2172{
2173	struct link_key *key;
2174
2175	list_for_each_entry_rcu(key, &hdev->link_keys, list) {
2176		list_del_rcu(&key->list);
2177		kfree_rcu(key, rcu);
2178	}
2179}
2180
2181void hci_smp_ltks_clear(struct hci_dev *hdev)
2182{
2183	struct smp_ltk *k;
2184
2185	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2186		list_del_rcu(&k->list);
2187		kfree_rcu(k, rcu);
2188	}
2189}
2190
2191void hci_smp_irks_clear(struct hci_dev *hdev)
2192{
2193	struct smp_irk *k;
2194
2195	list_for_each_entry_rcu(k, &hdev->identity_resolving_keys, list) {
2196		list_del_rcu(&k->list);
2197		kfree_rcu(k, rcu);
2198	}
2199}
2200
2201struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
2202{
2203	struct link_key *k;
2204
2205	rcu_read_lock();
2206	list_for_each_entry_rcu(k, &hdev->link_keys, list) {
2207		if (bacmp(bdaddr, &k->bdaddr) == 0) {
2208			rcu_read_unlock();
2209			return k;
2210		}
2211	}
2212	rcu_read_unlock();
2213
2214	return NULL;
2215}
2216
2217static bool hci_persistent_key(struct hci_dev *hdev, struct hci_conn *conn,
2218			       u8 key_type, u8 old_key_type)
2219{
2220	/* Legacy key */
2221	if (key_type < 0x03)
2222		return true;
2223
2224	/* Debug keys are insecure so don't store them persistently */
2225	if (key_type == HCI_LK_DEBUG_COMBINATION)
2226		return false;
2227
2228	/* Changed combination key and there's no previous one */
2229	if (key_type == HCI_LK_CHANGED_COMBINATION && old_key_type == 0xff)
2230		return false;
2231
2232	/* Security mode 3 case */
2233	if (!conn)
2234		return true;
2235
2236	/* BR/EDR key derived using SC from an LE link */
2237	if (conn->type == LE_LINK)
2238		return true;
2239
2240	/* Neither local nor remote side had no-bonding as requirement */
2241	if (conn->auth_type > 0x01 && conn->remote_auth > 0x01)
2242		return true;
2243
2244	/* Local side had dedicated bonding as requirement */
2245	if (conn->auth_type == 0x02 || conn->auth_type == 0x03)
2246		return true;
2247
2248	/* Remote side had dedicated bonding as requirement */
2249	if (conn->remote_auth == 0x02 || conn->remote_auth == 0x03)
2250		return true;
2251
2252	/* If none of the above criteria match, then don't store the key
2253	 * persistently */
2254	return false;
2255}
2256
2257static u8 ltk_role(u8 type)
2258{
2259	if (type == SMP_LTK)
2260		return HCI_ROLE_MASTER;
2261
2262	return HCI_ROLE_SLAVE;
2263}
2264
2265struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2266			     u8 addr_type, u8 role)
2267{
2268	struct smp_ltk *k;
2269
2270	rcu_read_lock();
2271	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2272		if (addr_type != k->bdaddr_type || bacmp(bdaddr, &k->bdaddr))
2273			continue;
2274
2275		if (smp_ltk_is_sc(k) || ltk_role(k->type) == role) {
2276			rcu_read_unlock();
2277			return k;
2278		}
2279	}
2280	rcu_read_unlock();
2281
2282	return NULL;
2283}
2284
2285struct smp_irk *hci_find_irk_by_rpa(struct hci_dev *hdev, bdaddr_t *rpa)
2286{
2287	struct smp_irk *irk;
2288
2289	rcu_read_lock();
2290	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2291		if (!bacmp(&irk->rpa, rpa)) {
2292			rcu_read_unlock();
2293			return irk;
2294		}
2295	}
2296
2297	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2298		if (smp_irk_matches(hdev, irk->val, rpa)) {
2299			bacpy(&irk->rpa, rpa);
2300			rcu_read_unlock();
2301			return irk;
2302		}
2303	}
2304	rcu_read_unlock();
2305
2306	return NULL;
2307}
2308
2309struct smp_irk *hci_find_irk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr,
2310				     u8 addr_type)
2311{
2312	struct smp_irk *irk;
2313
2314	/* Identity Address must be public or static random */
2315	if (addr_type == ADDR_LE_DEV_RANDOM && (bdaddr->b[5] & 0xc0) != 0xc0)
2316		return NULL;
2317
2318	rcu_read_lock();
2319	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2320		if (addr_type == irk->addr_type &&
2321		    bacmp(bdaddr, &irk->bdaddr) == 0) {
2322			rcu_read_unlock();
2323			return irk;
2324		}
2325	}
2326	rcu_read_unlock();
2327
2328	return NULL;
2329}
2330
2331struct link_key *hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn,
2332				  bdaddr_t *bdaddr, u8 *val, u8 type,
2333				  u8 pin_len, bool *persistent)
2334{
2335	struct link_key *key, *old_key;
2336	u8 old_key_type;
2337
2338	old_key = hci_find_link_key(hdev, bdaddr);
2339	if (old_key) {
2340		old_key_type = old_key->type;
2341		key = old_key;
2342	} else {
2343		old_key_type = conn ? conn->key_type : 0xff;
2344		key = kzalloc(sizeof(*key), GFP_KERNEL);
2345		if (!key)
2346			return NULL;
2347		list_add_rcu(&key->list, &hdev->link_keys);
2348	}
2349
2350	BT_DBG("%s key for %pMR type %u", hdev->name, bdaddr, type);
2351
2352	/* Some buggy controller combinations generate a changed
2353	 * combination key for legacy pairing even when there's no
2354	 * previous key */
2355	if (type == HCI_LK_CHANGED_COMBINATION &&
2356	    (!conn || conn->remote_auth == 0xff) && old_key_type == 0xff) {
2357		type = HCI_LK_COMBINATION;
2358		if (conn)
2359			conn->key_type = type;
2360	}
2361
2362	bacpy(&key->bdaddr, bdaddr);
2363	memcpy(key->val, val, HCI_LINK_KEY_SIZE);
2364	key->pin_len = pin_len;
2365
2366	if (type == HCI_LK_CHANGED_COMBINATION)
2367		key->type = old_key_type;
2368	else
2369		key->type = type;
2370
2371	if (persistent)
2372		*persistent = hci_persistent_key(hdev, conn, type,
2373						 old_key_type);
2374
2375	return key;
2376}
2377
2378struct smp_ltk *hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2379			    u8 addr_type, u8 type, u8 authenticated,
2380			    u8 tk[16], u8 enc_size, __le16 ediv, __le64 rand)
2381{
2382	struct smp_ltk *key, *old_key;
2383	u8 role = ltk_role(type);
2384
2385	old_key = hci_find_ltk(hdev, bdaddr, addr_type, role);
2386	if (old_key)
2387		key = old_key;
2388	else {
2389		key = kzalloc(sizeof(*key), GFP_KERNEL);
2390		if (!key)
2391			return NULL;
2392		list_add_rcu(&key->list, &hdev->long_term_keys);
2393	}
2394
2395	bacpy(&key->bdaddr, bdaddr);
2396	key->bdaddr_type = addr_type;
2397	memcpy(key->val, tk, sizeof(key->val));
2398	key->authenticated = authenticated;
2399	key->ediv = ediv;
2400	key->rand = rand;
2401	key->enc_size = enc_size;
2402	key->type = type;
2403
2404	return key;
2405}
2406
2407struct smp_irk *hci_add_irk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2408			    u8 addr_type, u8 val[16], bdaddr_t *rpa)
2409{
2410	struct smp_irk *irk;
2411
2412	irk = hci_find_irk_by_addr(hdev, bdaddr, addr_type);
2413	if (!irk) {
2414		irk = kzalloc(sizeof(*irk), GFP_KERNEL);
2415		if (!irk)
2416			return NULL;
2417
2418		bacpy(&irk->bdaddr, bdaddr);
2419		irk->addr_type = addr_type;
2420
2421		list_add_rcu(&irk->list, &hdev->identity_resolving_keys);
2422	}
2423
2424	memcpy(irk->val, val, 16);
2425	bacpy(&irk->rpa, rpa);
2426
2427	return irk;
2428}
2429
2430int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
2431{
2432	struct link_key *key;
2433
2434	key = hci_find_link_key(hdev, bdaddr);
2435	if (!key)
2436		return -ENOENT;
2437
2438	BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2439
2440	list_del_rcu(&key->list);
2441	kfree_rcu(key, rcu);
2442
2443	return 0;
2444}
2445
2446int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type)
2447{
2448	struct smp_ltk *k;
2449	int removed = 0;
2450
2451	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2452		if (bacmp(bdaddr, &k->bdaddr) || k->bdaddr_type != bdaddr_type)
2453			continue;
2454
2455		BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2456
2457		list_del_rcu(&k->list);
2458		kfree_rcu(k, rcu);
2459		removed++;
2460	}
2461
2462	return removed ? 0 : -ENOENT;
2463}
2464
2465void hci_remove_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type)
2466{
2467	struct smp_irk *k;
2468
2469	list_for_each_entry_rcu(k, &hdev->identity_resolving_keys, list) {
2470		if (bacmp(bdaddr, &k->bdaddr) || k->addr_type != addr_type)
2471			continue;
2472
2473		BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2474
2475		list_del_rcu(&k->list);
2476		kfree_rcu(k, rcu);
2477	}
2478}
2479
2480bool hci_bdaddr_is_paired(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type)
2481{
2482	struct smp_ltk *k;
2483	struct smp_irk *irk;
2484	u8 addr_type;
2485
2486	if (type == BDADDR_BREDR) {
2487		if (hci_find_link_key(hdev, bdaddr))
2488			return true;
2489		return false;
2490	}
2491
2492	/* Convert to HCI addr type which struct smp_ltk uses */
2493	if (type == BDADDR_LE_PUBLIC)
2494		addr_type = ADDR_LE_DEV_PUBLIC;
2495	else
2496		addr_type = ADDR_LE_DEV_RANDOM;
2497
2498	irk = hci_get_irk(hdev, bdaddr, addr_type);
2499	if (irk) {
2500		bdaddr = &irk->bdaddr;
2501		addr_type = irk->addr_type;
2502	}
2503
2504	rcu_read_lock();
2505	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2506		if (k->bdaddr_type == addr_type && !bacmp(bdaddr, &k->bdaddr)) {
2507			rcu_read_unlock();
2508			return true;
2509		}
2510	}
2511	rcu_read_unlock();
2512
2513	return false;
2514}
2515
2516/* HCI command timer function */
2517static void hci_cmd_timeout(struct work_struct *work)
2518{
2519	struct hci_dev *hdev = container_of(work, struct hci_dev,
2520					    cmd_timer.work);
2521
2522	if (hdev->sent_cmd) {
2523		struct hci_command_hdr *sent = (void *) hdev->sent_cmd->data;
2524		u16 opcode = __le16_to_cpu(sent->opcode);
2525
2526		bt_dev_err(hdev, "command 0x%4.4x tx timeout", opcode);
2527	} else {
2528		bt_dev_err(hdev, "command tx timeout");
2529	}
2530
2531	atomic_set(&hdev->cmd_cnt, 1);
2532	queue_work(hdev->workqueue, &hdev->cmd_work);
2533}
2534
2535struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev,
2536					  bdaddr_t *bdaddr, u8 bdaddr_type)
2537{
2538	struct oob_data *data;
2539
2540	list_for_each_entry(data, &hdev->remote_oob_data, list) {
2541		if (bacmp(bdaddr, &data->bdaddr) != 0)
2542			continue;
2543		if (data->bdaddr_type != bdaddr_type)
2544			continue;
2545		return data;
2546	}
2547
2548	return NULL;
2549}
2550
2551int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
2552			       u8 bdaddr_type)
2553{
2554	struct oob_data *data;
2555
2556	data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
2557	if (!data)
2558		return -ENOENT;
2559
2560	BT_DBG("%s removing %pMR (%u)", hdev->name, bdaddr, bdaddr_type);
2561
2562	list_del(&data->list);
2563	kfree(data);
2564
2565	return 0;
2566}
2567
2568void hci_remote_oob_data_clear(struct hci_dev *hdev)
2569{
2570	struct oob_data *data, *n;
2571
2572	list_for_each_entry_safe(data, n, &hdev->remote_oob_data, list) {
2573		list_del(&data->list);
2574		kfree(data);
2575	}
2576}
2577
2578int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
2579			    u8 bdaddr_type, u8 *hash192, u8 *rand192,
2580			    u8 *hash256, u8 *rand256)
2581{
2582	struct oob_data *data;
2583
2584	data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
2585	if (!data) {
2586		data = kmalloc(sizeof(*data), GFP_KERNEL);
2587		if (!data)
2588			return -ENOMEM;
2589
2590		bacpy(&data->bdaddr, bdaddr);
2591		data->bdaddr_type = bdaddr_type;
2592		list_add(&data->list, &hdev->remote_oob_data);
2593	}
2594
2595	if (hash192 && rand192) {
2596		memcpy(data->hash192, hash192, sizeof(data->hash192));
2597		memcpy(data->rand192, rand192, sizeof(data->rand192));
2598		if (hash256 && rand256)
2599			data->present = 0x03;
2600	} else {
2601		memset(data->hash192, 0, sizeof(data->hash192));
2602		memset(data->rand192, 0, sizeof(data->rand192));
2603		if (hash256 && rand256)
2604			data->present = 0x02;
2605		else
2606			data->present = 0x00;
2607	}
2608
2609	if (hash256 && rand256) {
2610		memcpy(data->hash256, hash256, sizeof(data->hash256));
2611		memcpy(data->rand256, rand256, sizeof(data->rand256));
2612	} else {
2613		memset(data->hash256, 0, sizeof(data->hash256));
2614		memset(data->rand256, 0, sizeof(data->rand256));
2615		if (hash192 && rand192)
2616			data->present = 0x01;
2617	}
2618
2619	BT_DBG("%s for %pMR", hdev->name, bdaddr);
2620
2621	return 0;
2622}
2623
2624/* This function requires the caller holds hdev->lock */
2625struct adv_info *hci_find_adv_instance(struct hci_dev *hdev, u8 instance)
2626{
2627	struct adv_info *adv_instance;
2628
2629	list_for_each_entry(adv_instance, &hdev->adv_instances, list) {
2630		if (adv_instance->instance == instance)
2631			return adv_instance;
2632	}
2633
2634	return NULL;
2635}
2636
2637/* This function requires the caller holds hdev->lock */
2638struct adv_info *hci_get_next_instance(struct hci_dev *hdev, u8 instance)
2639{
2640	struct adv_info *cur_instance;
2641
2642	cur_instance = hci_find_adv_instance(hdev, instance);
2643	if (!cur_instance)
2644		return NULL;
2645
2646	if (cur_instance == list_last_entry(&hdev->adv_instances,
2647					    struct adv_info, list))
2648		return list_first_entry(&hdev->adv_instances,
2649						 struct adv_info, list);
2650	else
2651		return list_next_entry(cur_instance, list);
2652}
2653
2654/* This function requires the caller holds hdev->lock */
2655int hci_remove_adv_instance(struct hci_dev *hdev, u8 instance)
2656{
2657	struct adv_info *adv_instance;
2658
2659	adv_instance = hci_find_adv_instance(hdev, instance);
2660	if (!adv_instance)
2661		return -ENOENT;
2662
2663	BT_DBG("%s removing %dMR", hdev->name, instance);
2664
2665	if (hdev->cur_adv_instance == instance) {
2666		if (hdev->adv_instance_timeout) {
2667			cancel_delayed_work(&hdev->adv_instance_expire);
2668			hdev->adv_instance_timeout = 0;
2669		}
2670		hdev->cur_adv_instance = 0x00;
2671	}
2672
2673	list_del(&adv_instance->list);
2674	kfree(adv_instance);
2675
2676	hdev->adv_instance_cnt--;
2677
2678	return 0;
2679}
2680
2681/* This function requires the caller holds hdev->lock */
2682void hci_adv_instances_clear(struct hci_dev *hdev)
2683{
2684	struct adv_info *adv_instance, *n;
2685
2686	if (hdev->adv_instance_timeout) {
2687		cancel_delayed_work(&hdev->adv_instance_expire);
2688		hdev->adv_instance_timeout = 0;
2689	}
2690
2691	list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list) {
2692		list_del(&adv_instance->list);
2693		kfree(adv_instance);
2694	}
2695
2696	hdev->adv_instance_cnt = 0;
2697	hdev->cur_adv_instance = 0x00;
2698}
2699
2700/* This function requires the caller holds hdev->lock */
2701int hci_add_adv_instance(struct hci_dev *hdev, u8 instance, u32 flags,
2702			 u16 adv_data_len, u8 *adv_data,
2703			 u16 scan_rsp_len, u8 *scan_rsp_data,
2704			 u16 timeout, u16 duration)
2705{
2706	struct adv_info *adv_instance;
2707
2708	adv_instance = hci_find_adv_instance(hdev, instance);
2709	if (adv_instance) {
2710		memset(adv_instance->adv_data, 0,
2711		       sizeof(adv_instance->adv_data));
2712		memset(adv_instance->scan_rsp_data, 0,
2713		       sizeof(adv_instance->scan_rsp_data));
2714	} else {
2715		if (hdev->adv_instance_cnt >= HCI_MAX_ADV_INSTANCES ||
2716		    instance < 1 || instance > HCI_MAX_ADV_INSTANCES)
2717			return -EOVERFLOW;
2718
2719		adv_instance = kzalloc(sizeof(*adv_instance), GFP_KERNEL);
2720		if (!adv_instance)
2721			return -ENOMEM;
2722
2723		adv_instance->pending = true;
2724		adv_instance->instance = instance;
2725		list_add(&adv_instance->list, &hdev->adv_instances);
2726		hdev->adv_instance_cnt++;
2727	}
2728
2729	adv_instance->flags = flags;
2730	adv_instance->adv_data_len = adv_data_len;
2731	adv_instance->scan_rsp_len = scan_rsp_len;
2732
2733	if (adv_data_len)
2734		memcpy(adv_instance->adv_data, adv_data, adv_data_len);
2735
2736	if (scan_rsp_len)
2737		memcpy(adv_instance->scan_rsp_data,
2738		       scan_rsp_data, scan_rsp_len);
2739
2740	adv_instance->timeout = timeout;
2741	adv_instance->remaining_time = timeout;
2742
2743	if (duration == 0)
2744		adv_instance->duration = HCI_DEFAULT_ADV_DURATION;
2745	else
2746		adv_instance->duration = duration;
2747
2748	BT_DBG("%s for %dMR", hdev->name, instance);
2749
2750	return 0;
2751}
2752
2753struct bdaddr_list *hci_bdaddr_list_lookup(struct list_head *bdaddr_list,
2754					 bdaddr_t *bdaddr, u8 type)
2755{
2756	struct bdaddr_list *b;
2757
2758	list_for_each_entry(b, bdaddr_list, list) {
2759		if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2760			return b;
2761	}
2762
2763	return NULL;
2764}
2765
2766void hci_bdaddr_list_clear(struct list_head *bdaddr_list)
2767{
2768	struct bdaddr_list *b, *n;
2769
2770	list_for_each_entry_safe(b, n, bdaddr_list, list) {
2771		list_del(&b->list);
2772		kfree(b);
2773	}
2774}
2775
2776int hci_bdaddr_list_add(struct list_head *list, bdaddr_t *bdaddr, u8 type)
2777{
2778	struct bdaddr_list *entry;
2779
2780	if (!bacmp(bdaddr, BDADDR_ANY))
2781		return -EBADF;
2782
2783	if (hci_bdaddr_list_lookup(list, bdaddr, type))
2784		return -EEXIST;
2785
2786	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
2787	if (!entry)
2788		return -ENOMEM;
2789
2790	bacpy(&entry->bdaddr, bdaddr);
2791	entry->bdaddr_type = type;
2792
2793	list_add(&entry->list, list);
2794
2795	return 0;
2796}
2797
2798int hci_bdaddr_list_del(struct list_head *list, bdaddr_t *bdaddr, u8 type)
2799{
2800	struct bdaddr_list *entry;
2801
2802	if (!bacmp(bdaddr, BDADDR_ANY)) {
2803		hci_bdaddr_list_clear(list);
2804		return 0;
2805	}
2806
2807	entry = hci_bdaddr_list_lookup(list, bdaddr, type);
2808	if (!entry)
2809		return -ENOENT;
2810
2811	list_del(&entry->list);
2812	kfree(entry);
2813
2814	return 0;
2815}
2816
2817/* This function requires the caller holds hdev->lock */
2818struct hci_conn_params *hci_conn_params_lookup(struct hci_dev *hdev,
2819					       bdaddr_t *addr, u8 addr_type)
2820{
2821	struct hci_conn_params *params;
2822
2823	list_for_each_entry(params, &hdev->le_conn_params, list) {
2824		if (bacmp(&params->addr, addr) == 0 &&
2825		    params->addr_type == addr_type) {
2826			return params;
2827		}
2828	}
2829
2830	return NULL;
2831}
2832
2833/* This function requires the caller holds hdev->lock */
2834struct hci_conn_params *hci_pend_le_action_lookup(struct list_head *list,
2835						  bdaddr_t *addr, u8 addr_type)
2836{
2837	struct hci_conn_params *param;
2838
2839	list_for_each_entry(param, list, action) {
2840		if (bacmp(&param->addr, addr) == 0 &&
2841		    param->addr_type == addr_type)
2842			return param;
2843	}
2844
2845	return NULL;
2846}
2847
2848/* This function requires the caller holds hdev->lock */
2849struct hci_conn_params *hci_conn_params_add(struct hci_dev *hdev,
2850					    bdaddr_t *addr, u8 addr_type)
2851{
2852	struct hci_conn_params *params;
2853
2854	params = hci_conn_params_lookup(hdev, addr, addr_type);
2855	if (params)
2856		return params;
2857
2858	params = kzalloc(sizeof(*params), GFP_KERNEL);
2859	if (!params) {
2860		bt_dev_err(hdev, "out of memory");
2861		return NULL;
2862	}
2863
2864	bacpy(&params->addr, addr);
2865	params->addr_type = addr_type;
2866
2867	list_add(&params->list, &hdev->le_conn_params);
2868	INIT_LIST_HEAD(&params->action);
2869
2870	params->conn_min_interval = hdev->le_conn_min_interval;
2871	params->conn_max_interval = hdev->le_conn_max_interval;
2872	params->conn_latency = hdev->le_conn_latency;
2873	params->supervision_timeout = hdev->le_supv_timeout;
2874	params->auto_connect = HCI_AUTO_CONN_DISABLED;
2875
2876	BT_DBG("addr %pMR (type %u)", addr, addr_type);
2877
2878	return params;
2879}
2880
2881static void hci_conn_params_free(struct hci_conn_params *params)
2882{
2883	if (params->conn) {
2884		hci_conn_drop(params->conn);
2885		hci_conn_put(params->conn);
2886	}
2887
2888	list_del(&params->action);
2889	list_del(&params->list);
2890	kfree(params);
2891}
2892
2893/* This function requires the caller holds hdev->lock */
2894void hci_conn_params_del(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type)
2895{
2896	struct hci_conn_params *params;
2897
2898	params = hci_conn_params_lookup(hdev, addr, addr_type);
2899	if (!params)
2900		return;
2901
2902	hci_conn_params_free(params);
2903
2904	hci_update_background_scan(hdev);
2905
2906	BT_DBG("addr %pMR (type %u)", addr, addr_type);
2907}
2908
2909/* This function requires the caller holds hdev->lock */
2910void hci_conn_params_clear_disabled(struct hci_dev *hdev)
2911{
2912	struct hci_conn_params *params, *tmp;
2913
2914	list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list) {
2915		if (params->auto_connect != HCI_AUTO_CONN_DISABLED)
2916			continue;
2917
2918		/* If trying to estabilish one time connection to disabled
2919		 * device, leave the params, but mark them as just once.
2920		 */
2921		if (params->explicit_connect) {
2922			params->auto_connect = HCI_AUTO_CONN_EXPLICIT;
2923			continue;
2924		}
2925
2926		list_del(&params->list);
2927		kfree(params);
2928	}
2929
2930	BT_DBG("All LE disabled connection parameters were removed");
2931}
2932
2933/* This function requires the caller holds hdev->lock */
2934static void hci_conn_params_clear_all(struct hci_dev *hdev)
2935{
2936	struct hci_conn_params *params, *tmp;
2937
2938	list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list)
2939		hci_conn_params_free(params);
2940
2941	BT_DBG("All LE connection parameters were removed");
2942}
2943
2944/* Copy the Identity Address of the controller.
2945 *
2946 * If the controller has a public BD_ADDR, then by default use that one.
2947 * If this is a LE only controller without a public address, default to
2948 * the static random address.
2949 *
2950 * For debugging purposes it is possible to force controllers with a
2951 * public address to use the static random address instead.
2952 *
2953 * In case BR/EDR has been disabled on a dual-mode controller and
2954 * userspace has configured a static address, then that address
2955 * becomes the identity address instead of the public BR/EDR address.
2956 */
2957void hci_copy_identity_address(struct hci_dev *hdev, bdaddr_t *bdaddr,
2958			       u8 *bdaddr_type)
2959{
2960	if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
2961	    !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
2962	    (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
2963	     bacmp(&hdev->static_addr, BDADDR_ANY))) {
2964		bacpy(bdaddr, &hdev->static_addr);
2965		*bdaddr_type = ADDR_LE_DEV_RANDOM;
2966	} else {
2967		bacpy(bdaddr, &hdev->bdaddr);
2968		*bdaddr_type = ADDR_LE_DEV_PUBLIC;
2969	}
2970}
2971
2972/* Alloc HCI device */
2973struct hci_dev *hci_alloc_dev(void)
2974{
2975	struct hci_dev *hdev;
2976
2977	hdev = kzalloc(sizeof(*hdev), GFP_KERNEL);
2978	if (!hdev)
2979		return NULL;
2980
2981	hdev->pkt_type  = (HCI_DM1 | HCI_DH1 | HCI_HV1);
2982	hdev->esco_type = (ESCO_HV1);
2983	hdev->link_mode = (HCI_LM_ACCEPT);
2984	hdev->num_iac = 0x01;		/* One IAC support is mandatory */
2985	hdev->io_capability = 0x03;	/* No Input No Output */
2986	hdev->manufacturer = 0xffff;	/* Default to internal use */
2987	hdev->inq_tx_power = HCI_TX_POWER_INVALID;
2988	hdev->adv_tx_power = HCI_TX_POWER_INVALID;
2989	hdev->adv_instance_cnt = 0;
2990	hdev->cur_adv_instance = 0x00;
2991	hdev->adv_instance_timeout = 0;
2992
2993	hdev->sniff_max_interval = 800;
2994	hdev->sniff_min_interval = 80;
2995
2996	hdev->le_adv_channel_map = 0x07;
2997	hdev->le_adv_min_interval = 0x0800;
2998	hdev->le_adv_max_interval = 0x0800;
2999	hdev->le_scan_interval = 0x0060;
3000	hdev->le_scan_window = 0x0030;
3001	hdev->le_conn_min_interval = 0x0018;
3002	hdev->le_conn_max_interval = 0x0028;
3003	hdev->le_conn_latency = 0x0000;
3004	hdev->le_supv_timeout = 0x002a;
3005	hdev->le_def_tx_len = 0x001b;
3006	hdev->le_def_tx_time = 0x0148;
3007	hdev->le_max_tx_len = 0x001b;
3008	hdev->le_max_tx_time = 0x0148;
3009	hdev->le_max_rx_len = 0x001b;
3010	hdev->le_max_rx_time = 0x0148;
3011
3012	hdev->rpa_timeout = HCI_DEFAULT_RPA_TIMEOUT;
3013	hdev->discov_interleaved_timeout = DISCOV_INTERLEAVED_TIMEOUT;
3014	hdev->conn_info_min_age = DEFAULT_CONN_INFO_MIN_AGE;
3015	hdev->conn_info_max_age = DEFAULT_CONN_INFO_MAX_AGE;
3016
3017	mutex_init(&hdev->lock);
3018	mutex_init(&hdev->req_lock);
3019
3020	INIT_LIST_HEAD(&hdev->mgmt_pending);
3021	INIT_LIST_HEAD(&hdev->blacklist);
3022	INIT_LIST_HEAD(&hdev->whitelist);
3023	INIT_LIST_HEAD(&hdev->uuids);
3024	INIT_LIST_HEAD(&hdev->link_keys);
3025	INIT_LIST_HEAD(&hdev->long_term_keys);
3026	INIT_LIST_HEAD(&hdev->identity_resolving_keys);
3027	INIT_LIST_HEAD(&hdev->remote_oob_data);
3028	INIT_LIST_HEAD(&hdev->le_white_list);
3029	INIT_LIST_HEAD(&hdev->le_conn_params);
3030	INIT_LIST_HEAD(&hdev->pend_le_conns);
3031	INIT_LIST_HEAD(&hdev->pend_le_reports);
3032	INIT_LIST_HEAD(&hdev->conn_hash.list);
3033	INIT_LIST_HEAD(&hdev->adv_instances);
3034
3035	INIT_WORK(&hdev->rx_work, hci_rx_work);
3036	INIT_WORK(&hdev->cmd_work, hci_cmd_work);
3037	INIT_WORK(&hdev->tx_work, hci_tx_work);
3038	INIT_WORK(&hdev->power_on, hci_power_on);
3039	INIT_WORK(&hdev->error_reset, hci_error_reset);
3040
3041	INIT_DELAYED_WORK(&hdev->power_off, hci_power_off);
3042
3043	skb_queue_head_init(&hdev->rx_q);
3044	skb_queue_head_init(&hdev->cmd_q);
3045	skb_queue_head_init(&hdev->raw_q);
3046
3047	init_waitqueue_head(&hdev->req_wait_q);
3048
3049	INIT_DELAYED_WORK(&hdev->cmd_timer, hci_cmd_timeout);
3050
3051	hci_request_setup(hdev);
3052
3053	hci_init_sysfs(hdev);
3054	discovery_init(hdev);
3055
3056	return hdev;
3057}
3058EXPORT_SYMBOL(hci_alloc_dev);
3059
3060/* Free HCI device */
3061void hci_free_dev(struct hci_dev *hdev)
3062{
3063	/* will free via device release */
3064	put_device(&hdev->dev);
3065}
3066EXPORT_SYMBOL(hci_free_dev);
3067
3068/* Register HCI device */
3069int hci_register_dev(struct hci_dev *hdev)
3070{
3071	int id, error;
3072
3073	if (!hdev->open || !hdev->close || !hdev->send)
3074		return -EINVAL;
3075
3076	/* Do not allow HCI_AMP devices to register at index 0,
3077	 * so the index can be used as the AMP controller ID.
3078	 */
3079	switch (hdev->dev_type) {
3080	case HCI_PRIMARY:
3081		id = ida_simple_get(&hci_index_ida, 0, 0, GFP_KERNEL);
3082		break;
3083	case HCI_AMP:
3084		id = ida_simple_get(&hci_index_ida, 1, 0, GFP_KERNEL);
3085		break;
3086	default:
3087		return -EINVAL;
3088	}
3089
3090	if (id < 0)
3091		return id;
3092
3093	sprintf(hdev->name, "hci%d", id);
3094	hdev->id = id;
3095
3096	BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
3097
3098	hdev->workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI, hdev->name);
 
3099	if (!hdev->workqueue) {
3100		error = -ENOMEM;
3101		goto err;
3102	}
3103
3104	hdev->req_workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI,
3105						      hdev->name);
3106	if (!hdev->req_workqueue) {
3107		destroy_workqueue(hdev->workqueue);
3108		error = -ENOMEM;
3109		goto err;
3110	}
3111
3112	if (!IS_ERR_OR_NULL(bt_debugfs))
3113		hdev->debugfs = debugfs_create_dir(hdev->name, bt_debugfs);
3114
3115	dev_set_name(&hdev->dev, "%s", hdev->name);
3116
3117	error = device_add(&hdev->dev);
3118	if (error < 0)
3119		goto err_wqueue;
3120
3121	hci_leds_init(hdev);
3122
3123	hdev->rfkill = rfkill_alloc(hdev->name, &hdev->dev,
3124				    RFKILL_TYPE_BLUETOOTH, &hci_rfkill_ops,
3125				    hdev);
3126	if (hdev->rfkill) {
3127		if (rfkill_register(hdev->rfkill) < 0) {
3128			rfkill_destroy(hdev->rfkill);
3129			hdev->rfkill = NULL;
3130		}
3131	}
3132
3133	if (hdev->rfkill && rfkill_blocked(hdev->rfkill))
3134		hci_dev_set_flag(hdev, HCI_RFKILLED);
3135
3136	hci_dev_set_flag(hdev, HCI_SETUP);
3137	hci_dev_set_flag(hdev, HCI_AUTO_OFF);
3138
3139	if (hdev->dev_type == HCI_PRIMARY) {
3140		/* Assume BR/EDR support until proven otherwise (such as
3141		 * through reading supported features during init.
3142		 */
3143		hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
3144	}
3145
3146	write_lock(&hci_dev_list_lock);
3147	list_add(&hdev->list, &hci_dev_list);
3148	write_unlock(&hci_dev_list_lock);
3149
3150	/* Devices that are marked for raw-only usage are unconfigured
3151	 * and should not be included in normal operation.
3152	 */
3153	if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
3154		hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
3155
3156	hci_sock_dev_event(hdev, HCI_DEV_REG);
3157	hci_dev_hold(hdev);
3158
3159	queue_work(hdev->req_workqueue, &hdev->power_on);
3160
3161	return id;
3162
3163err_wqueue:
3164	destroy_workqueue(hdev->workqueue);
3165	destroy_workqueue(hdev->req_workqueue);
3166err:
3167	ida_simple_remove(&hci_index_ida, hdev->id);
3168
3169	return error;
3170}
3171EXPORT_SYMBOL(hci_register_dev);
3172
3173/* Unregister HCI device */
3174void hci_unregister_dev(struct hci_dev *hdev)
3175{
3176	int id;
3177
3178	BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
3179
3180	hci_dev_set_flag(hdev, HCI_UNREGISTER);
3181
3182	id = hdev->id;
3183
3184	write_lock(&hci_dev_list_lock);
3185	list_del(&hdev->list);
3186	write_unlock(&hci_dev_list_lock);
3187
 
 
3188	cancel_work_sync(&hdev->power_on);
3189
3190	hci_dev_do_close(hdev);
3191
3192	if (!test_bit(HCI_INIT, &hdev->flags) &&
3193	    !hci_dev_test_flag(hdev, HCI_SETUP) &&
3194	    !hci_dev_test_flag(hdev, HCI_CONFIG)) {
3195		hci_dev_lock(hdev);
3196		mgmt_index_removed(hdev);
3197		hci_dev_unlock(hdev);
3198	}
3199
3200	/* mgmt_index_removed should take care of emptying the
3201	 * pending list */
3202	BUG_ON(!list_empty(&hdev->mgmt_pending));
3203
3204	hci_sock_dev_event(hdev, HCI_DEV_UNREG);
3205
3206	if (hdev->rfkill) {
3207		rfkill_unregister(hdev->rfkill);
3208		rfkill_destroy(hdev->rfkill);
3209	}
3210
3211	device_del(&hdev->dev);
3212
3213	debugfs_remove_recursive(hdev->debugfs);
3214	kfree_const(hdev->hw_info);
3215	kfree_const(hdev->fw_info);
3216
3217	destroy_workqueue(hdev->workqueue);
3218	destroy_workqueue(hdev->req_workqueue);
3219
3220	hci_dev_lock(hdev);
3221	hci_bdaddr_list_clear(&hdev->blacklist);
3222	hci_bdaddr_list_clear(&hdev->whitelist);
3223	hci_uuids_clear(hdev);
3224	hci_link_keys_clear(hdev);
3225	hci_smp_ltks_clear(hdev);
3226	hci_smp_irks_clear(hdev);
3227	hci_remote_oob_data_clear(hdev);
3228	hci_adv_instances_clear(hdev);
3229	hci_bdaddr_list_clear(&hdev->le_white_list);
3230	hci_conn_params_clear_all(hdev);
3231	hci_discovery_filter_clear(hdev);
3232	hci_dev_unlock(hdev);
3233
3234	hci_dev_put(hdev);
3235
3236	ida_simple_remove(&hci_index_ida, id);
3237}
3238EXPORT_SYMBOL(hci_unregister_dev);
3239
3240/* Suspend HCI device */
3241int hci_suspend_dev(struct hci_dev *hdev)
3242{
3243	hci_sock_dev_event(hdev, HCI_DEV_SUSPEND);
3244	return 0;
3245}
3246EXPORT_SYMBOL(hci_suspend_dev);
3247
3248/* Resume HCI device */
3249int hci_resume_dev(struct hci_dev *hdev)
3250{
3251	hci_sock_dev_event(hdev, HCI_DEV_RESUME);
3252	return 0;
3253}
3254EXPORT_SYMBOL(hci_resume_dev);
3255
3256/* Reset HCI device */
3257int hci_reset_dev(struct hci_dev *hdev)
3258{
3259	const u8 hw_err[] = { HCI_EV_HARDWARE_ERROR, 0x01, 0x00 };
3260	struct sk_buff *skb;
3261
3262	skb = bt_skb_alloc(3, GFP_ATOMIC);
3263	if (!skb)
3264		return -ENOMEM;
3265
3266	hci_skb_pkt_type(skb) = HCI_EVENT_PKT;
3267	skb_put_data(skb, hw_err, 3);
3268
3269	/* Send Hardware Error to upper stack */
3270	return hci_recv_frame(hdev, skb);
3271}
3272EXPORT_SYMBOL(hci_reset_dev);
3273
3274/* Receive frame from HCI drivers */
3275int hci_recv_frame(struct hci_dev *hdev, struct sk_buff *skb)
3276{
3277	if (!hdev || (!test_bit(HCI_UP, &hdev->flags)
3278		      && !test_bit(HCI_INIT, &hdev->flags))) {
3279		kfree_skb(skb);
3280		return -ENXIO;
3281	}
3282
3283	if (hci_skb_pkt_type(skb) != HCI_EVENT_PKT &&
3284	    hci_skb_pkt_type(skb) != HCI_ACLDATA_PKT &&
3285	    hci_skb_pkt_type(skb) != HCI_SCODATA_PKT) {
3286		kfree_skb(skb);
3287		return -EINVAL;
3288	}
3289
3290	/* Incoming skb */
3291	bt_cb(skb)->incoming = 1;
3292
3293	/* Time stamp */
3294	__net_timestamp(skb);
3295
3296	skb_queue_tail(&hdev->rx_q, skb);
3297	queue_work(hdev->workqueue, &hdev->rx_work);
3298
3299	return 0;
3300}
3301EXPORT_SYMBOL(hci_recv_frame);
3302
3303/* Receive diagnostic message from HCI drivers */
3304int hci_recv_diag(struct hci_dev *hdev, struct sk_buff *skb)
3305{
3306	/* Mark as diagnostic packet */
3307	hci_skb_pkt_type(skb) = HCI_DIAG_PKT;
3308
3309	/* Time stamp */
3310	__net_timestamp(skb);
3311
3312	skb_queue_tail(&hdev->rx_q, skb);
3313	queue_work(hdev->workqueue, &hdev->rx_work);
3314
3315	return 0;
3316}
3317EXPORT_SYMBOL(hci_recv_diag);
3318
3319void hci_set_hw_info(struct hci_dev *hdev, const char *fmt, ...)
3320{
3321	va_list vargs;
3322
3323	va_start(vargs, fmt);
3324	kfree_const(hdev->hw_info);
3325	hdev->hw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
3326	va_end(vargs);
3327}
3328EXPORT_SYMBOL(hci_set_hw_info);
3329
3330void hci_set_fw_info(struct hci_dev *hdev, const char *fmt, ...)
3331{
3332	va_list vargs;
3333
3334	va_start(vargs, fmt);
3335	kfree_const(hdev->fw_info);
3336	hdev->fw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
3337	va_end(vargs);
3338}
3339EXPORT_SYMBOL(hci_set_fw_info);
3340
3341/* ---- Interface to upper protocols ---- */
3342
3343int hci_register_cb(struct hci_cb *cb)
3344{
3345	BT_DBG("%p name %s", cb, cb->name);
3346
3347	mutex_lock(&hci_cb_list_lock);
3348	list_add_tail(&cb->list, &hci_cb_list);
3349	mutex_unlock(&hci_cb_list_lock);
3350
3351	return 0;
3352}
3353EXPORT_SYMBOL(hci_register_cb);
3354
3355int hci_unregister_cb(struct hci_cb *cb)
3356{
3357	BT_DBG("%p name %s", cb, cb->name);
3358
3359	mutex_lock(&hci_cb_list_lock);
3360	list_del(&cb->list);
3361	mutex_unlock(&hci_cb_list_lock);
3362
3363	return 0;
3364}
3365EXPORT_SYMBOL(hci_unregister_cb);
3366
3367static void hci_send_frame(struct hci_dev *hdev, struct sk_buff *skb)
3368{
3369	int err;
3370
3371	BT_DBG("%s type %d len %d", hdev->name, hci_skb_pkt_type(skb),
3372	       skb->len);
3373
3374	/* Time stamp */
3375	__net_timestamp(skb);
3376
3377	/* Send copy to monitor */
3378	hci_send_to_monitor(hdev, skb);
3379
3380	if (atomic_read(&hdev->promisc)) {
3381		/* Send copy to the sockets */
3382		hci_send_to_sock(hdev, skb);
3383	}
3384
3385	/* Get rid of skb owner, prior to sending to the driver. */
3386	skb_orphan(skb);
3387
3388	if (!test_bit(HCI_RUNNING, &hdev->flags)) {
3389		kfree_skb(skb);
3390		return;
3391	}
3392
3393	err = hdev->send(hdev, skb);
3394	if (err < 0) {
3395		bt_dev_err(hdev, "sending frame failed (%d)", err);
3396		kfree_skb(skb);
3397	}
3398}
3399
3400/* Send HCI command */
3401int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen,
3402		 const void *param)
3403{
3404	struct sk_buff *skb;
3405
3406	BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen);
3407
3408	skb = hci_prepare_cmd(hdev, opcode, plen, param);
3409	if (!skb) {
3410		bt_dev_err(hdev, "no memory for command");
3411		return -ENOMEM;
3412	}
3413
3414	/* Stand-alone HCI commands must be flagged as
3415	 * single-command requests.
3416	 */
3417	bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
3418
3419	skb_queue_tail(&hdev->cmd_q, skb);
3420	queue_work(hdev->workqueue, &hdev->cmd_work);
3421
3422	return 0;
3423}
3424
3425/* Get data from the previously sent command */
3426void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode)
3427{
3428	struct hci_command_hdr *hdr;
3429
3430	if (!hdev->sent_cmd)
3431		return NULL;
3432
3433	hdr = (void *) hdev->sent_cmd->data;
3434
3435	if (hdr->opcode != cpu_to_le16(opcode))
3436		return NULL;
3437
3438	BT_DBG("%s opcode 0x%4.4x", hdev->name, opcode);
3439
3440	return hdev->sent_cmd->data + HCI_COMMAND_HDR_SIZE;
3441}
3442
3443/* Send HCI command and wait for command commplete event */
3444struct sk_buff *hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
3445			     const void *param, u32 timeout)
3446{
3447	struct sk_buff *skb;
3448
3449	if (!test_bit(HCI_UP, &hdev->flags))
3450		return ERR_PTR(-ENETDOWN);
3451
3452	bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen);
3453
3454	hci_req_sync_lock(hdev);
3455	skb = __hci_cmd_sync(hdev, opcode, plen, param, timeout);
3456	hci_req_sync_unlock(hdev);
3457
3458	return skb;
3459}
3460EXPORT_SYMBOL(hci_cmd_sync);
3461
3462/* Send ACL data */
3463static void hci_add_acl_hdr(struct sk_buff *skb, __u16 handle, __u16 flags)
3464{
3465	struct hci_acl_hdr *hdr;
3466	int len = skb->len;
3467
3468	skb_push(skb, HCI_ACL_HDR_SIZE);
3469	skb_reset_transport_header(skb);
3470	hdr = (struct hci_acl_hdr *)skb_transport_header(skb);
3471	hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
3472	hdr->dlen   = cpu_to_le16(len);
3473}
3474
3475static void hci_queue_acl(struct hci_chan *chan, struct sk_buff_head *queue,
3476			  struct sk_buff *skb, __u16 flags)
3477{
3478	struct hci_conn *conn = chan->conn;
3479	struct hci_dev *hdev = conn->hdev;
3480	struct sk_buff *list;
3481
3482	skb->len = skb_headlen(skb);
3483	skb->data_len = 0;
3484
3485	hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
3486
3487	switch (hdev->dev_type) {
3488	case HCI_PRIMARY:
3489		hci_add_acl_hdr(skb, conn->handle, flags);
3490		break;
3491	case HCI_AMP:
3492		hci_add_acl_hdr(skb, chan->handle, flags);
3493		break;
3494	default:
3495		bt_dev_err(hdev, "unknown dev_type %d", hdev->dev_type);
3496		return;
3497	}
3498
3499	list = skb_shinfo(skb)->frag_list;
3500	if (!list) {
3501		/* Non fragmented */
3502		BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
3503
3504		skb_queue_tail(queue, skb);
3505	} else {
3506		/* Fragmented */
3507		BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3508
3509		skb_shinfo(skb)->frag_list = NULL;
3510
3511		/* Queue all fragments atomically. We need to use spin_lock_bh
3512		 * here because of 6LoWPAN links, as there this function is
3513		 * called from softirq and using normal spin lock could cause
3514		 * deadlocks.
3515		 */
3516		spin_lock_bh(&queue->lock);
3517
3518		__skb_queue_tail(queue, skb);
3519
3520		flags &= ~ACL_START;
3521		flags |= ACL_CONT;
3522		do {
3523			skb = list; list = list->next;
3524
3525			hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
3526			hci_add_acl_hdr(skb, conn->handle, flags);
3527
3528			BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3529
3530			__skb_queue_tail(queue, skb);
3531		} while (list);
3532
3533		spin_unlock_bh(&queue->lock);
3534	}
3535}
3536
3537void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags)
3538{
3539	struct hci_dev *hdev = chan->conn->hdev;
3540
3541	BT_DBG("%s chan %p flags 0x%4.4x", hdev->name, chan, flags);
3542
3543	hci_queue_acl(chan, &chan->data_q, skb, flags);
3544
3545	queue_work(hdev->workqueue, &hdev->tx_work);
3546}
3547
3548/* Send SCO data */
3549void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb)
3550{
3551	struct hci_dev *hdev = conn->hdev;
3552	struct hci_sco_hdr hdr;
3553
3554	BT_DBG("%s len %d", hdev->name, skb->len);
3555
3556	hdr.handle = cpu_to_le16(conn->handle);
3557	hdr.dlen   = skb->len;
3558
3559	skb_push(skb, HCI_SCO_HDR_SIZE);
3560	skb_reset_transport_header(skb);
3561	memcpy(skb_transport_header(skb), &hdr, HCI_SCO_HDR_SIZE);
3562
3563	hci_skb_pkt_type(skb) = HCI_SCODATA_PKT;
3564
3565	skb_queue_tail(&conn->data_q, skb);
3566	queue_work(hdev->workqueue, &hdev->tx_work);
3567}
3568
3569/* ---- HCI TX task (outgoing data) ---- */
3570
3571/* HCI Connection scheduler */
3572static struct hci_conn *hci_low_sent(struct hci_dev *hdev, __u8 type,
3573				     int *quote)
3574{
3575	struct hci_conn_hash *h = &hdev->conn_hash;
3576	struct hci_conn *conn = NULL, *c;
3577	unsigned int num = 0, min = ~0;
3578
3579	/* We don't have to lock device here. Connections are always
3580	 * added and removed with TX task disabled. */
3581
3582	rcu_read_lock();
3583
3584	list_for_each_entry_rcu(c, &h->list, list) {
3585		if (c->type != type || skb_queue_empty(&c->data_q))
3586			continue;
3587
3588		if (c->state != BT_CONNECTED && c->state != BT_CONFIG)
3589			continue;
3590
3591		num++;
3592
3593		if (c->sent < min) {
3594			min  = c->sent;
3595			conn = c;
3596		}
3597
3598		if (hci_conn_num(hdev, type) == num)
3599			break;
3600	}
3601
3602	rcu_read_unlock();
3603
3604	if (conn) {
3605		int cnt, q;
3606
3607		switch (conn->type) {
3608		case ACL_LINK:
3609			cnt = hdev->acl_cnt;
3610			break;
3611		case SCO_LINK:
3612		case ESCO_LINK:
3613			cnt = hdev->sco_cnt;
3614			break;
3615		case LE_LINK:
3616			cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3617			break;
3618		default:
3619			cnt = 0;
3620			bt_dev_err(hdev, "unknown link type %d", conn->type);
3621		}
3622
3623		q = cnt / num;
3624		*quote = q ? q : 1;
3625	} else
3626		*quote = 0;
3627
3628	BT_DBG("conn %p quote %d", conn, *quote);
3629	return conn;
3630}
3631
3632static void hci_link_tx_to(struct hci_dev *hdev, __u8 type)
3633{
3634	struct hci_conn_hash *h = &hdev->conn_hash;
3635	struct hci_conn *c;
3636
3637	bt_dev_err(hdev, "link tx timeout");
3638
3639	rcu_read_lock();
3640
3641	/* Kill stalled connections */
3642	list_for_each_entry_rcu(c, &h->list, list) {
3643		if (c->type == type && c->sent) {
3644			bt_dev_err(hdev, "killing stalled connection %pMR",
3645				   &c->dst);
3646			hci_disconnect(c, HCI_ERROR_REMOTE_USER_TERM);
3647		}
3648	}
3649
3650	rcu_read_unlock();
3651}
3652
3653static struct hci_chan *hci_chan_sent(struct hci_dev *hdev, __u8 type,
3654				      int *quote)
3655{
3656	struct hci_conn_hash *h = &hdev->conn_hash;
3657	struct hci_chan *chan = NULL;
3658	unsigned int num = 0, min = ~0, cur_prio = 0;
3659	struct hci_conn *conn;
3660	int cnt, q, conn_num = 0;
3661
3662	BT_DBG("%s", hdev->name);
3663
3664	rcu_read_lock();
3665
3666	list_for_each_entry_rcu(conn, &h->list, list) {
3667		struct hci_chan *tmp;
3668
3669		if (conn->type != type)
3670			continue;
3671
3672		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3673			continue;
3674
3675		conn_num++;
3676
3677		list_for_each_entry_rcu(tmp, &conn->chan_list, list) {
3678			struct sk_buff *skb;
3679
3680			if (skb_queue_empty(&tmp->data_q))
3681				continue;
3682
3683			skb = skb_peek(&tmp->data_q);
3684			if (skb->priority < cur_prio)
3685				continue;
3686
3687			if (skb->priority > cur_prio) {
3688				num = 0;
3689				min = ~0;
3690				cur_prio = skb->priority;
3691			}
3692
3693			num++;
3694
3695			if (conn->sent < min) {
3696				min  = conn->sent;
3697				chan = tmp;
3698			}
3699		}
3700
3701		if (hci_conn_num(hdev, type) == conn_num)
3702			break;
3703	}
3704
3705	rcu_read_unlock();
3706
3707	if (!chan)
3708		return NULL;
3709
3710	switch (chan->conn->type) {
3711	case ACL_LINK:
3712		cnt = hdev->acl_cnt;
3713		break;
3714	case AMP_LINK:
3715		cnt = hdev->block_cnt;
3716		break;
3717	case SCO_LINK:
3718	case ESCO_LINK:
3719		cnt = hdev->sco_cnt;
3720		break;
3721	case LE_LINK:
3722		cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3723		break;
3724	default:
3725		cnt = 0;
3726		bt_dev_err(hdev, "unknown link type %d", chan->conn->type);
3727	}
3728
3729	q = cnt / num;
3730	*quote = q ? q : 1;
3731	BT_DBG("chan %p quote %d", chan, *quote);
3732	return chan;
3733}
3734
3735static void hci_prio_recalculate(struct hci_dev *hdev, __u8 type)
3736{
3737	struct hci_conn_hash *h = &hdev->conn_hash;
3738	struct hci_conn *conn;
3739	int num = 0;
3740
3741	BT_DBG("%s", hdev->name);
3742
3743	rcu_read_lock();
3744
3745	list_for_each_entry_rcu(conn, &h->list, list) {
3746		struct hci_chan *chan;
3747
3748		if (conn->type != type)
3749			continue;
3750
3751		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3752			continue;
3753
3754		num++;
3755
3756		list_for_each_entry_rcu(chan, &conn->chan_list, list) {
3757			struct sk_buff *skb;
3758
3759			if (chan->sent) {
3760				chan->sent = 0;
3761				continue;
3762			}
3763
3764			if (skb_queue_empty(&chan->data_q))
3765				continue;
3766
3767			skb = skb_peek(&chan->data_q);
3768			if (skb->priority >= HCI_PRIO_MAX - 1)
3769				continue;
3770
3771			skb->priority = HCI_PRIO_MAX - 1;
3772
3773			BT_DBG("chan %p skb %p promoted to %d", chan, skb,
3774			       skb->priority);
3775		}
3776
3777		if (hci_conn_num(hdev, type) == num)
3778			break;
3779	}
3780
3781	rcu_read_unlock();
3782
3783}
3784
3785static inline int __get_blocks(struct hci_dev *hdev, struct sk_buff *skb)
3786{
3787	/* Calculate count of blocks used by this packet */
3788	return DIV_ROUND_UP(skb->len - HCI_ACL_HDR_SIZE, hdev->block_len);
3789}
3790
3791static void __check_timeout(struct hci_dev *hdev, unsigned int cnt)
3792{
3793	if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
3794		/* ACL tx timeout must be longer than maximum
3795		 * link supervision timeout (40.9 seconds) */
3796		if (!cnt && time_after(jiffies, hdev->acl_last_tx +
3797				       HCI_ACL_TX_TIMEOUT))
3798			hci_link_tx_to(hdev, ACL_LINK);
3799	}
3800}
3801
3802static void hci_sched_acl_pkt(struct hci_dev *hdev)
3803{
3804	unsigned int cnt = hdev->acl_cnt;
3805	struct hci_chan *chan;
3806	struct sk_buff *skb;
3807	int quote;
3808
3809	__check_timeout(hdev, cnt);
3810
3811	while (hdev->acl_cnt &&
3812	       (chan = hci_chan_sent(hdev, ACL_LINK, &quote))) {
3813		u32 priority = (skb_peek(&chan->data_q))->priority;
3814		while (quote-- && (skb = skb_peek(&chan->data_q))) {
3815			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3816			       skb->len, skb->priority);
3817
3818			/* Stop if priority has changed */
3819			if (skb->priority < priority)
3820				break;
3821
3822			skb = skb_dequeue(&chan->data_q);
3823
3824			hci_conn_enter_active_mode(chan->conn,
3825						   bt_cb(skb)->force_active);
3826
3827			hci_send_frame(hdev, skb);
3828			hdev->acl_last_tx = jiffies;
3829
3830			hdev->acl_cnt--;
3831			chan->sent++;
3832			chan->conn->sent++;
3833		}
3834	}
3835
3836	if (cnt != hdev->acl_cnt)
3837		hci_prio_recalculate(hdev, ACL_LINK);
3838}
3839
3840static void hci_sched_acl_blk(struct hci_dev *hdev)
3841{
3842	unsigned int cnt = hdev->block_cnt;
3843	struct hci_chan *chan;
3844	struct sk_buff *skb;
3845	int quote;
3846	u8 type;
3847
3848	__check_timeout(hdev, cnt);
3849
3850	BT_DBG("%s", hdev->name);
3851
3852	if (hdev->dev_type == HCI_AMP)
3853		type = AMP_LINK;
3854	else
3855		type = ACL_LINK;
3856
3857	while (hdev->block_cnt > 0 &&
3858	       (chan = hci_chan_sent(hdev, type, &quote))) {
3859		u32 priority = (skb_peek(&chan->data_q))->priority;
3860		while (quote > 0 && (skb = skb_peek(&chan->data_q))) {
3861			int blocks;
3862
3863			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3864			       skb->len, skb->priority);
3865
3866			/* Stop if priority has changed */
3867			if (skb->priority < priority)
3868				break;
3869
3870			skb = skb_dequeue(&chan->data_q);
3871
3872			blocks = __get_blocks(hdev, skb);
3873			if (blocks > hdev->block_cnt)
3874				return;
3875
3876			hci_conn_enter_active_mode(chan->conn,
3877						   bt_cb(skb)->force_active);
3878
3879			hci_send_frame(hdev, skb);
3880			hdev->acl_last_tx = jiffies;
3881
3882			hdev->block_cnt -= blocks;
3883			quote -= blocks;
3884
3885			chan->sent += blocks;
3886			chan->conn->sent += blocks;
3887		}
3888	}
3889
3890	if (cnt != hdev->block_cnt)
3891		hci_prio_recalculate(hdev, type);
3892}
3893
3894static void hci_sched_acl(struct hci_dev *hdev)
3895{
3896	BT_DBG("%s", hdev->name);
3897
3898	/* No ACL link over BR/EDR controller */
3899	if (!hci_conn_num(hdev, ACL_LINK) && hdev->dev_type == HCI_PRIMARY)
3900		return;
3901
3902	/* No AMP link over AMP controller */
3903	if (!hci_conn_num(hdev, AMP_LINK) && hdev->dev_type == HCI_AMP)
3904		return;
3905
3906	switch (hdev->flow_ctl_mode) {
3907	case HCI_FLOW_CTL_MODE_PACKET_BASED:
3908		hci_sched_acl_pkt(hdev);
3909		break;
3910
3911	case HCI_FLOW_CTL_MODE_BLOCK_BASED:
3912		hci_sched_acl_blk(hdev);
3913		break;
3914	}
3915}
3916
3917/* Schedule SCO */
3918static void hci_sched_sco(struct hci_dev *hdev)
3919{
3920	struct hci_conn *conn;
3921	struct sk_buff *skb;
3922	int quote;
3923
3924	BT_DBG("%s", hdev->name);
3925
3926	if (!hci_conn_num(hdev, SCO_LINK))
3927		return;
3928
3929	while (hdev->sco_cnt && (conn = hci_low_sent(hdev, SCO_LINK, &quote))) {
3930		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3931			BT_DBG("skb %p len %d", skb, skb->len);
3932			hci_send_frame(hdev, skb);
3933
3934			conn->sent++;
3935			if (conn->sent == ~0)
3936				conn->sent = 0;
3937		}
3938	}
3939}
3940
3941static void hci_sched_esco(struct hci_dev *hdev)
3942{
3943	struct hci_conn *conn;
3944	struct sk_buff *skb;
3945	int quote;
3946
3947	BT_DBG("%s", hdev->name);
3948
3949	if (!hci_conn_num(hdev, ESCO_LINK))
3950		return;
3951
3952	while (hdev->sco_cnt && (conn = hci_low_sent(hdev, ESCO_LINK,
3953						     &quote))) {
3954		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3955			BT_DBG("skb %p len %d", skb, skb->len);
3956			hci_send_frame(hdev, skb);
3957
3958			conn->sent++;
3959			if (conn->sent == ~0)
3960				conn->sent = 0;
3961		}
3962	}
3963}
3964
3965static void hci_sched_le(struct hci_dev *hdev)
3966{
3967	struct hci_chan *chan;
3968	struct sk_buff *skb;
3969	int quote, cnt, tmp;
3970
3971	BT_DBG("%s", hdev->name);
3972
3973	if (!hci_conn_num(hdev, LE_LINK))
3974		return;
3975
3976	if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
3977		/* LE tx timeout must be longer than maximum
3978		 * link supervision timeout (40.9 seconds) */
3979		if (!hdev->le_cnt && hdev->le_pkts &&
3980		    time_after(jiffies, hdev->le_last_tx + HZ * 45))
3981			hci_link_tx_to(hdev, LE_LINK);
3982	}
3983
3984	cnt = hdev->le_pkts ? hdev->le_cnt : hdev->acl_cnt;
3985	tmp = cnt;
3986	while (cnt && (chan = hci_chan_sent(hdev, LE_LINK, &quote))) {
3987		u32 priority = (skb_peek(&chan->data_q))->priority;
3988		while (quote-- && (skb = skb_peek(&chan->data_q))) {
3989			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3990			       skb->len, skb->priority);
3991
3992			/* Stop if priority has changed */
3993			if (skb->priority < priority)
3994				break;
3995
3996			skb = skb_dequeue(&chan->data_q);
3997
3998			hci_send_frame(hdev, skb);
3999			hdev->le_last_tx = jiffies;
4000
4001			cnt--;
4002			chan->sent++;
4003			chan->conn->sent++;
4004		}
4005	}
4006
4007	if (hdev->le_pkts)
4008		hdev->le_cnt = cnt;
4009	else
4010		hdev->acl_cnt = cnt;
4011
4012	if (cnt != tmp)
4013		hci_prio_recalculate(hdev, LE_LINK);
4014}
4015
4016static void hci_tx_work(struct work_struct *work)
4017{
4018	struct hci_dev *hdev = container_of(work, struct hci_dev, tx_work);
4019	struct sk_buff *skb;
4020
4021	BT_DBG("%s acl %d sco %d le %d", hdev->name, hdev->acl_cnt,
4022	       hdev->sco_cnt, hdev->le_cnt);
4023
4024	if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
4025		/* Schedule queues and send stuff to HCI driver */
4026		hci_sched_acl(hdev);
4027		hci_sched_sco(hdev);
4028		hci_sched_esco(hdev);
4029		hci_sched_le(hdev);
4030	}
4031
4032	/* Send next queued raw (unknown type) packet */
4033	while ((skb = skb_dequeue(&hdev->raw_q)))
4034		hci_send_frame(hdev, skb);
4035}
4036
4037/* ----- HCI RX task (incoming data processing) ----- */
4038
4039/* ACL data packet */
4040static void hci_acldata_packet(struct hci_dev *hdev, struct sk_buff *skb)
4041{
4042	struct hci_acl_hdr *hdr = (void *) skb->data;
4043	struct hci_conn *conn;
4044	__u16 handle, flags;
4045
4046	skb_pull(skb, HCI_ACL_HDR_SIZE);
4047
4048	handle = __le16_to_cpu(hdr->handle);
4049	flags  = hci_flags(handle);
4050	handle = hci_handle(handle);
4051
4052	BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len,
4053	       handle, flags);
4054
4055	hdev->stat.acl_rx++;
4056
4057	hci_dev_lock(hdev);
4058	conn = hci_conn_hash_lookup_handle(hdev, handle);
4059	hci_dev_unlock(hdev);
4060
4061	if (conn) {
4062		hci_conn_enter_active_mode(conn, BT_POWER_FORCE_ACTIVE_OFF);
4063
4064		/* Send to upper protocol */
4065		l2cap_recv_acldata(conn, skb, flags);
4066		return;
4067	} else {
4068		bt_dev_err(hdev, "ACL packet for unknown connection handle %d",
4069			   handle);
4070	}
4071
4072	kfree_skb(skb);
4073}
4074
4075/* SCO data packet */
4076static void hci_scodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
4077{
4078	struct hci_sco_hdr *hdr = (void *) skb->data;
4079	struct hci_conn *conn;
4080	__u16 handle;
4081
4082	skb_pull(skb, HCI_SCO_HDR_SIZE);
4083
4084	handle = __le16_to_cpu(hdr->handle);
4085
4086	BT_DBG("%s len %d handle 0x%4.4x", hdev->name, skb->len, handle);
4087
4088	hdev->stat.sco_rx++;
4089
4090	hci_dev_lock(hdev);
4091	conn = hci_conn_hash_lookup_handle(hdev, handle);
4092	hci_dev_unlock(hdev);
4093
4094	if (conn) {
4095		/* Send to upper protocol */
4096		sco_recv_scodata(conn, skb);
4097		return;
4098	} else {
4099		bt_dev_err(hdev, "SCO packet for unknown connection handle %d",
4100			   handle);
4101	}
4102
4103	kfree_skb(skb);
4104}
4105
4106static bool hci_req_is_complete(struct hci_dev *hdev)
4107{
4108	struct sk_buff *skb;
4109
4110	skb = skb_peek(&hdev->cmd_q);
4111	if (!skb)
4112		return true;
4113
4114	return (bt_cb(skb)->hci.req_flags & HCI_REQ_START);
4115}
4116
4117static void hci_resend_last(struct hci_dev *hdev)
4118{
4119	struct hci_command_hdr *sent;
4120	struct sk_buff *skb;
4121	u16 opcode;
4122
4123	if (!hdev->sent_cmd)
4124		return;
4125
4126	sent = (void *) hdev->sent_cmd->data;
4127	opcode = __le16_to_cpu(sent->opcode);
4128	if (opcode == HCI_OP_RESET)
4129		return;
4130
4131	skb = skb_clone(hdev->sent_cmd, GFP_KERNEL);
4132	if (!skb)
4133		return;
4134
4135	skb_queue_head(&hdev->cmd_q, skb);
4136	queue_work(hdev->workqueue, &hdev->cmd_work);
4137}
4138
4139void hci_req_cmd_complete(struct hci_dev *hdev, u16 opcode, u8 status,
4140			  hci_req_complete_t *req_complete,
4141			  hci_req_complete_skb_t *req_complete_skb)
4142{
4143	struct sk_buff *skb;
4144	unsigned long flags;
4145
4146	BT_DBG("opcode 0x%04x status 0x%02x", opcode, status);
4147
4148	/* If the completed command doesn't match the last one that was
4149	 * sent we need to do special handling of it.
4150	 */
4151	if (!hci_sent_cmd_data(hdev, opcode)) {
4152		/* Some CSR based controllers generate a spontaneous
4153		 * reset complete event during init and any pending
4154		 * command will never be completed. In such a case we
4155		 * need to resend whatever was the last sent
4156		 * command.
4157		 */
4158		if (test_bit(HCI_INIT, &hdev->flags) && opcode == HCI_OP_RESET)
4159			hci_resend_last(hdev);
4160
4161		return;
4162	}
4163
4164	/* If the command succeeded and there's still more commands in
4165	 * this request the request is not yet complete.
4166	 */
4167	if (!status && !hci_req_is_complete(hdev))
4168		return;
4169
4170	/* If this was the last command in a request the complete
4171	 * callback would be found in hdev->sent_cmd instead of the
4172	 * command queue (hdev->cmd_q).
4173	 */
4174	if (bt_cb(hdev->sent_cmd)->hci.req_flags & HCI_REQ_SKB) {
4175		*req_complete_skb = bt_cb(hdev->sent_cmd)->hci.req_complete_skb;
4176		return;
4177	}
4178
4179	if (bt_cb(hdev->sent_cmd)->hci.req_complete) {
4180		*req_complete = bt_cb(hdev->sent_cmd)->hci.req_complete;
4181		return;
4182	}
4183
4184	/* Remove all pending commands belonging to this request */
4185	spin_lock_irqsave(&hdev->cmd_q.lock, flags);
4186	while ((skb = __skb_dequeue(&hdev->cmd_q))) {
4187		if (bt_cb(skb)->hci.req_flags & HCI_REQ_START) {
4188			__skb_queue_head(&hdev->cmd_q, skb);
4189			break;
4190		}
4191
4192		if (bt_cb(skb)->hci.req_flags & HCI_REQ_SKB)
4193			*req_complete_skb = bt_cb(skb)->hci.req_complete_skb;
4194		else
4195			*req_complete = bt_cb(skb)->hci.req_complete;
4196		kfree_skb(skb);
4197	}
4198	spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
4199}
4200
4201static void hci_rx_work(struct work_struct *work)
4202{
4203	struct hci_dev *hdev = container_of(work, struct hci_dev, rx_work);
4204	struct sk_buff *skb;
4205
4206	BT_DBG("%s", hdev->name);
4207
4208	while ((skb = skb_dequeue(&hdev->rx_q))) {
4209		/* Send copy to monitor */
4210		hci_send_to_monitor(hdev, skb);
4211
4212		if (atomic_read(&hdev->promisc)) {
4213			/* Send copy to the sockets */
4214			hci_send_to_sock(hdev, skb);
4215		}
4216
4217		if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
4218			kfree_skb(skb);
4219			continue;
4220		}
4221
4222		if (test_bit(HCI_INIT, &hdev->flags)) {
4223			/* Don't process data packets in this states. */
4224			switch (hci_skb_pkt_type(skb)) {
4225			case HCI_ACLDATA_PKT:
4226			case HCI_SCODATA_PKT:
4227				kfree_skb(skb);
4228				continue;
4229			}
4230		}
4231
4232		/* Process frame */
4233		switch (hci_skb_pkt_type(skb)) {
4234		case HCI_EVENT_PKT:
4235			BT_DBG("%s Event packet", hdev->name);
4236			hci_event_packet(hdev, skb);
4237			break;
4238
4239		case HCI_ACLDATA_PKT:
4240			BT_DBG("%s ACL data packet", hdev->name);
4241			hci_acldata_packet(hdev, skb);
4242			break;
4243
4244		case HCI_SCODATA_PKT:
4245			BT_DBG("%s SCO data packet", hdev->name);
4246			hci_scodata_packet(hdev, skb);
4247			break;
4248
4249		default:
4250			kfree_skb(skb);
4251			break;
4252		}
4253	}
4254}
4255
4256static void hci_cmd_work(struct work_struct *work)
4257{
4258	struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_work);
4259	struct sk_buff *skb;
4260
4261	BT_DBG("%s cmd_cnt %d cmd queued %d", hdev->name,
4262	       atomic_read(&hdev->cmd_cnt), skb_queue_len(&hdev->cmd_q));
4263
4264	/* Send queued commands */
4265	if (atomic_read(&hdev->cmd_cnt)) {
4266		skb = skb_dequeue(&hdev->cmd_q);
4267		if (!skb)
4268			return;
4269
4270		kfree_skb(hdev->sent_cmd);
4271
4272		hdev->sent_cmd = skb_clone(skb, GFP_KERNEL);
4273		if (hdev->sent_cmd) {
4274			atomic_dec(&hdev->cmd_cnt);
4275			hci_send_frame(hdev, skb);
4276			if (test_bit(HCI_RESET, &hdev->flags))
4277				cancel_delayed_work(&hdev->cmd_timer);
4278			else
4279				schedule_delayed_work(&hdev->cmd_timer,
4280						      HCI_CMD_TIMEOUT);
4281		} else {
4282			skb_queue_head(&hdev->cmd_q, skb);
4283			queue_work(hdev->workqueue, &hdev->cmd_work);
4284		}
4285	}
4286}