Linux Audio

Check our new training course

Loading...
v4.6
 
   1/*
   2 *  NSA Security-Enhanced Linux (SELinux) security module
   3 *
   4 *  This file contains the SELinux hook function implementations.
   5 *
   6 *  Authors:  Stephen Smalley, <sds@epoch.ncsc.mil>
   7 *	      Chris Vance, <cvance@nai.com>
   8 *	      Wayne Salamon, <wsalamon@nai.com>
   9 *	      James Morris <jmorris@redhat.com>
  10 *
  11 *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
  12 *  Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
  13 *					   Eric Paris <eparis@redhat.com>
  14 *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
  15 *			    <dgoeddel@trustedcs.com>
  16 *  Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
  17 *	Paul Moore <paul@paul-moore.com>
  18 *  Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
  19 *		       Yuichi Nakamura <ynakam@hitachisoft.jp>
  20 *
  21 *	This program is free software; you can redistribute it and/or modify
  22 *	it under the terms of the GNU General Public License version 2,
  23 *	as published by the Free Software Foundation.
  24 */
  25
  26#include <linux/init.h>
  27#include <linux/kd.h>
  28#include <linux/kernel.h>
 
  29#include <linux/tracehook.h>
  30#include <linux/errno.h>
  31#include <linux/sched.h>
 
  32#include <linux/lsm_hooks.h>
  33#include <linux/xattr.h>
  34#include <linux/capability.h>
  35#include <linux/unistd.h>
  36#include <linux/mm.h>
  37#include <linux/mman.h>
  38#include <linux/slab.h>
  39#include <linux/pagemap.h>
  40#include <linux/proc_fs.h>
  41#include <linux/swap.h>
  42#include <linux/spinlock.h>
  43#include <linux/syscalls.h>
  44#include <linux/dcache.h>
  45#include <linux/file.h>
  46#include <linux/fdtable.h>
  47#include <linux/namei.h>
  48#include <linux/mount.h>
 
 
  49#include <linux/netfilter_ipv4.h>
  50#include <linux/netfilter_ipv6.h>
  51#include <linux/tty.h>
  52#include <net/icmp.h>
  53#include <net/ip.h>		/* for local_port_range[] */
  54#include <net/tcp.h>		/* struct or_callable used in sock_rcv_skb */
  55#include <net/inet_connection_sock.h>
  56#include <net/net_namespace.h>
  57#include <net/netlabel.h>
  58#include <linux/uaccess.h>
  59#include <asm/ioctls.h>
  60#include <linux/atomic.h>
  61#include <linux/bitops.h>
  62#include <linux/interrupt.h>
  63#include <linux/netdevice.h>	/* for network interface checks */
  64#include <net/netlink.h>
  65#include <linux/tcp.h>
  66#include <linux/udp.h>
  67#include <linux/dccp.h>
 
 
  68#include <linux/quota.h>
  69#include <linux/un.h>		/* for Unix socket types */
  70#include <net/af_unix.h>	/* for Unix socket types */
  71#include <linux/parser.h>
  72#include <linux/nfs_mount.h>
  73#include <net/ipv6.h>
  74#include <linux/hugetlb.h>
  75#include <linux/personality.h>
  76#include <linux/audit.h>
  77#include <linux/string.h>
  78#include <linux/selinux.h>
  79#include <linux/mutex.h>
  80#include <linux/posix-timers.h>
  81#include <linux/syslog.h>
  82#include <linux/user_namespace.h>
  83#include <linux/export.h>
  84#include <linux/msg.h>
  85#include <linux/shm.h>
 
 
 
 
 
 
  86
  87#include "avc.h"
  88#include "objsec.h"
  89#include "netif.h"
  90#include "netnode.h"
  91#include "netport.h"
 
  92#include "xfrm.h"
  93#include "netlabel.h"
  94#include "audit.h"
  95#include "avc_ss.h"
  96
 
 
  97/* SECMARK reference count */
  98static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
  99
 100#ifdef CONFIG_SECURITY_SELINUX_DEVELOP
 101int selinux_enforcing;
 102
 103static int __init enforcing_setup(char *str)
 104{
 105	unsigned long enforcing;
 106	if (!kstrtoul(str, 0, &enforcing))
 107		selinux_enforcing = enforcing ? 1 : 0;
 108	return 1;
 109}
 110__setup("enforcing=", enforcing_setup);
 
 
 111#endif
 112
 
 113#ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
 114int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
 115
 116static int __init selinux_enabled_setup(char *str)
 117{
 118	unsigned long enabled;
 119	if (!kstrtoul(str, 0, &enabled))
 120		selinux_enabled = enabled ? 1 : 0;
 121	return 1;
 122}
 123__setup("selinux=", selinux_enabled_setup);
 124#else
 125int selinux_enabled = 1;
 126#endif
 127
 128static struct kmem_cache *sel_inode_cache;
 129static struct kmem_cache *file_security_cache;
 
 
 
 
 
 
 
 
 
 
 
 
 
 130
 131/**
 132 * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
 133 *
 134 * Description:
 135 * This function checks the SECMARK reference counter to see if any SECMARK
 136 * targets are currently configured, if the reference counter is greater than
 137 * zero SECMARK is considered to be enabled.  Returns true (1) if SECMARK is
 138 * enabled, false (0) if SECMARK is disabled.  If the always_check_network
 139 * policy capability is enabled, SECMARK is always considered enabled.
 140 *
 141 */
 142static int selinux_secmark_enabled(void)
 143{
 144	return (selinux_policycap_alwaysnetwork || atomic_read(&selinux_secmark_refcount));
 
 145}
 146
 147/**
 148 * selinux_peerlbl_enabled - Check to see if peer labeling is currently enabled
 149 *
 150 * Description:
 151 * This function checks if NetLabel or labeled IPSEC is enabled.  Returns true
 152 * (1) if any are enabled or false (0) if neither are enabled.  If the
 153 * always_check_network policy capability is enabled, peer labeling
 154 * is always considered enabled.
 155 *
 156 */
 157static int selinux_peerlbl_enabled(void)
 158{
 159	return (selinux_policycap_alwaysnetwork || netlbl_enabled() || selinux_xfrm_enabled());
 
 160}
 161
 162static int selinux_netcache_avc_callback(u32 event)
 163{
 164	if (event == AVC_CALLBACK_RESET) {
 165		sel_netif_flush();
 166		sel_netnode_flush();
 167		sel_netport_flush();
 168		synchronize_net();
 169	}
 170	return 0;
 171}
 172
 
 
 
 
 
 
 
 
 
 
 173/*
 174 * initialise the security for the init task
 175 */
 176static void cred_init_security(void)
 177{
 178	struct cred *cred = (struct cred *) current->real_cred;
 179	struct task_security_struct *tsec;
 180
 181	tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
 182	if (!tsec)
 183		panic("SELinux:  Failed to initialize initial task.\n");
 184
 185	tsec->osid = tsec->sid = SECINITSID_KERNEL;
 186	cred->security = tsec;
 187}
 188
 189/*
 190 * get the security ID of a set of credentials
 191 */
 192static inline u32 cred_sid(const struct cred *cred)
 193{
 194	const struct task_security_struct *tsec;
 195
 196	tsec = cred->security;
 197	return tsec->sid;
 198}
 199
 200/*
 201 * get the objective security ID of a task
 202 */
 203static inline u32 task_sid(const struct task_struct *task)
 204{
 205	u32 sid;
 206
 207	rcu_read_lock();
 208	sid = cred_sid(__task_cred(task));
 209	rcu_read_unlock();
 210	return sid;
 211}
 212
 213/*
 214 * get the subjective security ID of the current task
 215 */
 216static inline u32 current_sid(void)
 217{
 218	const struct task_security_struct *tsec = current_security();
 219
 220	return tsec->sid;
 
 
 
 221}
 222
 223/* Allocate and free functions for each kind of security blob. */
 224
 225static int inode_alloc_security(struct inode *inode)
 
 226{
 227	struct inode_security_struct *isec;
 228	u32 sid = current_sid();
 229
 230	isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS);
 231	if (!isec)
 232		return -ENOMEM;
 233
 234	mutex_init(&isec->lock);
 235	INIT_LIST_HEAD(&isec->list);
 236	isec->inode = inode;
 237	isec->sid = SECINITSID_UNLABELED;
 238	isec->sclass = SECCLASS_FILE;
 239	isec->task_sid = sid;
 240	inode->i_security = isec;
 241
 242	return 0;
 243}
 244
 245static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
 246
 247/*
 248 * Try reloading inode security labels that have been marked as invalid.  The
 249 * @may_sleep parameter indicates when sleeping and thus reloading labels is
 250 * allowed; when set to false, returns ERR_PTR(-ECHILD) when the label is
 251 * invalid.  The @opt_dentry parameter should be set to a dentry of the inode;
 252 * when no dentry is available, set it to NULL instead.
 253 */
 254static int __inode_security_revalidate(struct inode *inode,
 255				       struct dentry *opt_dentry,
 256				       bool may_sleep)
 257{
 258	struct inode_security_struct *isec = inode->i_security;
 259
 260	might_sleep_if(may_sleep);
 261
 262	if (isec->initialized == LABEL_INVALID) {
 
 263		if (!may_sleep)
 264			return -ECHILD;
 265
 266		/*
 267		 * Try reloading the inode security label.  This will fail if
 268		 * @opt_dentry is NULL and no dentry for this inode can be
 269		 * found; in that case, continue using the old label.
 270		 */
 271		inode_doinit_with_dentry(inode, opt_dentry);
 272	}
 273	return 0;
 274}
 275
 276static struct inode_security_struct *inode_security_novalidate(struct inode *inode)
 277{
 278	return inode->i_security;
 279}
 280
 281static struct inode_security_struct *inode_security_rcu(struct inode *inode, bool rcu)
 282{
 283	int error;
 284
 285	error = __inode_security_revalidate(inode, NULL, !rcu);
 286	if (error)
 287		return ERR_PTR(error);
 288	return inode->i_security;
 289}
 290
 291/*
 292 * Get the security label of an inode.
 293 */
 294static struct inode_security_struct *inode_security(struct inode *inode)
 295{
 296	__inode_security_revalidate(inode, NULL, true);
 297	return inode->i_security;
 
 
 
 
 
 
 
 298}
 299
 300/*
 301 * Get the security label of a dentry's backing inode.
 302 */
 303static struct inode_security_struct *backing_inode_security(struct dentry *dentry)
 304{
 305	struct inode *inode = d_backing_inode(dentry);
 306
 307	__inode_security_revalidate(inode, dentry, true);
 308	return inode->i_security;
 309}
 310
 311static void inode_free_rcu(struct rcu_head *head)
 312{
 313	struct inode_security_struct *isec;
 314
 315	isec = container_of(head, struct inode_security_struct, rcu);
 316	kmem_cache_free(sel_inode_cache, isec);
 317}
 318
 319static void inode_free_security(struct inode *inode)
 320{
 321	struct inode_security_struct *isec = inode->i_security;
 322	struct superblock_security_struct *sbsec = inode->i_sb->s_security;
 323
 
 
 
 324	/*
 325	 * As not all inode security structures are in a list, we check for
 326	 * empty list outside of the lock to make sure that we won't waste
 327	 * time taking a lock doing nothing.
 328	 *
 329	 * The list_del_init() function can be safely called more than once.
 330	 * It should not be possible for this function to be called with
 331	 * concurrent list_add(), but for better safety against future changes
 332	 * in the code, we use list_empty_careful() here.
 333	 */
 334	if (!list_empty_careful(&isec->list)) {
 335		spin_lock(&sbsec->isec_lock);
 336		list_del_init(&isec->list);
 337		spin_unlock(&sbsec->isec_lock);
 338	}
 339
 340	/*
 341	 * The inode may still be referenced in a path walk and
 342	 * a call to selinux_inode_permission() can be made
 343	 * after inode_free_security() is called. Ideally, the VFS
 344	 * wouldn't do this, but fixing that is a much harder
 345	 * job. For now, simply free the i_security via RCU, and
 346	 * leave the current inode->i_security pointer intact.
 347	 * The inode will be freed after the RCU grace period too.
 348	 */
 349	call_rcu(&isec->rcu, inode_free_rcu);
 350}
 351
 352static int file_alloc_security(struct file *file)
 353{
 354	struct file_security_struct *fsec;
 355	u32 sid = current_sid();
 356
 357	fsec = kmem_cache_zalloc(file_security_cache, GFP_KERNEL);
 358	if (!fsec)
 359		return -ENOMEM;
 360
 361	fsec->sid = sid;
 362	fsec->fown_sid = sid;
 363	file->f_security = fsec;
 364
 365	return 0;
 366}
 367
 368static void file_free_security(struct file *file)
 369{
 370	struct file_security_struct *fsec = file->f_security;
 371	file->f_security = NULL;
 372	kmem_cache_free(file_security_cache, fsec);
 373}
 374
 375static int superblock_alloc_security(struct super_block *sb)
 376{
 377	struct superblock_security_struct *sbsec;
 378
 379	sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
 380	if (!sbsec)
 381		return -ENOMEM;
 382
 383	mutex_init(&sbsec->lock);
 384	INIT_LIST_HEAD(&sbsec->isec_head);
 385	spin_lock_init(&sbsec->isec_lock);
 386	sbsec->sb = sb;
 387	sbsec->sid = SECINITSID_UNLABELED;
 388	sbsec->def_sid = SECINITSID_FILE;
 389	sbsec->mntpoint_sid = SECINITSID_UNLABELED;
 390	sb->s_security = sbsec;
 391
 392	return 0;
 393}
 394
 395static void superblock_free_security(struct super_block *sb)
 396{
 397	struct superblock_security_struct *sbsec = sb->s_security;
 398	sb->s_security = NULL;
 399	kfree(sbsec);
 400}
 401
 402/* The file system's label must be initialized prior to use. */
 403
 404static const char *labeling_behaviors[7] = {
 405	"uses xattr",
 406	"uses transition SIDs",
 407	"uses task SIDs",
 408	"uses genfs_contexts",
 409	"not configured for labeling",
 410	"uses mountpoint labeling",
 411	"uses native labeling",
 412};
 413
 414static inline int inode_doinit(struct inode *inode)
 415{
 416	return inode_doinit_with_dentry(inode, NULL);
 
 
 
 
 
 417}
 418
 419enum {
 420	Opt_error = -1,
 421	Opt_context = 1,
 
 422	Opt_fscontext = 2,
 423	Opt_defcontext = 3,
 424	Opt_rootcontext = 4,
 425	Opt_labelsupport = 5,
 426	Opt_nextmntopt = 6,
 427};
 428
 429#define NUM_SEL_MNT_OPTS	(Opt_nextmntopt - 1)
 430
 431static const match_table_t tokens = {
 432	{Opt_context, CONTEXT_STR "%s"},
 433	{Opt_fscontext, FSCONTEXT_STR "%s"},
 434	{Opt_defcontext, DEFCONTEXT_STR "%s"},
 435	{Opt_rootcontext, ROOTCONTEXT_STR "%s"},
 436	{Opt_labelsupport, LABELSUPP_STR},
 437	{Opt_error, NULL},
 
 
 
 438};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 439
 440#define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
 441
 442static int may_context_mount_sb_relabel(u32 sid,
 443			struct superblock_security_struct *sbsec,
 444			const struct cred *cred)
 445{
 446	const struct task_security_struct *tsec = cred->security;
 447	int rc;
 448
 449	rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
 
 450			  FILESYSTEM__RELABELFROM, NULL);
 451	if (rc)
 452		return rc;
 453
 454	rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
 
 455			  FILESYSTEM__RELABELTO, NULL);
 456	return rc;
 457}
 458
 459static int may_context_mount_inode_relabel(u32 sid,
 460			struct superblock_security_struct *sbsec,
 461			const struct cred *cred)
 462{
 463	const struct task_security_struct *tsec = cred->security;
 464	int rc;
 465	rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
 
 466			  FILESYSTEM__RELABELFROM, NULL);
 467	if (rc)
 468		return rc;
 469
 470	rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
 
 471			  FILESYSTEM__ASSOCIATE, NULL);
 472	return rc;
 473}
 474
 
 
 
 
 
 
 
 
 
 
 
 
 
 475static int selinux_is_sblabel_mnt(struct super_block *sb)
 476{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 477	struct superblock_security_struct *sbsec = sb->s_security;
 
 
 
 
 478
 479	return sbsec->behavior == SECURITY_FS_USE_XATTR ||
 480		sbsec->behavior == SECURITY_FS_USE_TRANS ||
 481		sbsec->behavior == SECURITY_FS_USE_TASK ||
 482		sbsec->behavior == SECURITY_FS_USE_NATIVE ||
 483		/* Special handling. Genfs but also in-core setxattr handler */
 484		!strcmp(sb->s_type->name, "sysfs") ||
 485		!strcmp(sb->s_type->name, "pstore") ||
 486		!strcmp(sb->s_type->name, "debugfs") ||
 487		!strcmp(sb->s_type->name, "rootfs");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 488}
 489
 490static int sb_finish_set_opts(struct super_block *sb)
 491{
 492	struct superblock_security_struct *sbsec = sb->s_security;
 493	struct dentry *root = sb->s_root;
 494	struct inode *root_inode = d_backing_inode(root);
 495	int rc = 0;
 496
 497	if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
 498		/* Make sure that the xattr handler exists and that no
 499		   error other than -ENODATA is returned by getxattr on
 500		   the root directory.  -ENODATA is ok, as this may be
 501		   the first boot of the SELinux kernel before we have
 502		   assigned xattr values to the filesystem. */
 503		if (!root_inode->i_op->getxattr) {
 504			printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
 505			       "xattr support\n", sb->s_id, sb->s_type->name);
 506			rc = -EOPNOTSUPP;
 507			goto out;
 508		}
 509		rc = root_inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0);
 510		if (rc < 0 && rc != -ENODATA) {
 511			if (rc == -EOPNOTSUPP)
 512				printk(KERN_WARNING "SELinux: (dev %s, type "
 513				       "%s) has no security xattr handler\n",
 514				       sb->s_id, sb->s_type->name);
 515			else
 516				printk(KERN_WARNING "SELinux: (dev %s, type "
 517				       "%s) getxattr errno %d\n", sb->s_id,
 518				       sb->s_type->name, -rc);
 519			goto out;
 520		}
 521	}
 522
 523	if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
 524		printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n",
 525		       sb->s_id, sb->s_type->name);
 526
 527	sbsec->flags |= SE_SBINITIALIZED;
 
 
 
 
 
 
 528	if (selinux_is_sblabel_mnt(sb))
 529		sbsec->flags |= SBLABEL_MNT;
 
 
 530
 531	/* Initialize the root inode. */
 532	rc = inode_doinit_with_dentry(root_inode, root);
 533
 534	/* Initialize any other inodes associated with the superblock, e.g.
 535	   inodes created prior to initial policy load or inodes created
 536	   during get_sb by a pseudo filesystem that directly
 537	   populates itself. */
 538	spin_lock(&sbsec->isec_lock);
 539next_inode:
 540	if (!list_empty(&sbsec->isec_head)) {
 541		struct inode_security_struct *isec =
 542				list_entry(sbsec->isec_head.next,
 543					   struct inode_security_struct, list);
 544		struct inode *inode = isec->inode;
 545		list_del_init(&isec->list);
 546		spin_unlock(&sbsec->isec_lock);
 547		inode = igrab(inode);
 548		if (inode) {
 549			if (!IS_PRIVATE(inode))
 550				inode_doinit(inode);
 551			iput(inode);
 552		}
 553		spin_lock(&sbsec->isec_lock);
 554		goto next_inode;
 555	}
 556	spin_unlock(&sbsec->isec_lock);
 557out:
 558	return rc;
 559}
 560
 561/*
 562 * This function should allow an FS to ask what it's mount security
 563 * options were so it can use those later for submounts, displaying
 564 * mount options, or whatever.
 565 */
 566static int selinux_get_mnt_opts(const struct super_block *sb,
 567				struct security_mnt_opts *opts)
 568{
 569	int rc = 0, i;
 570	struct superblock_security_struct *sbsec = sb->s_security;
 571	char *context = NULL;
 572	u32 len;
 573	char tmp;
 574
 575	security_init_mnt_opts(opts);
 576
 577	if (!(sbsec->flags & SE_SBINITIALIZED))
 578		return -EINVAL;
 579
 580	if (!ss_initialized)
 581		return -EINVAL;
 582
 583	/* make sure we always check enough bits to cover the mask */
 584	BUILD_BUG_ON(SE_MNTMASK >= (1 << NUM_SEL_MNT_OPTS));
 585
 586	tmp = sbsec->flags & SE_MNTMASK;
 587	/* count the number of mount options for this sb */
 588	for (i = 0; i < NUM_SEL_MNT_OPTS; i++) {
 589		if (tmp & 0x01)
 590			opts->num_mnt_opts++;
 591		tmp >>= 1;
 592	}
 593	/* Check if the Label support flag is set */
 594	if (sbsec->flags & SBLABEL_MNT)
 595		opts->num_mnt_opts++;
 596
 597	opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC);
 598	if (!opts->mnt_opts) {
 599		rc = -ENOMEM;
 600		goto out_free;
 601	}
 602
 603	opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC);
 604	if (!opts->mnt_opts_flags) {
 605		rc = -ENOMEM;
 606		goto out_free;
 607	}
 608
 609	i = 0;
 610	if (sbsec->flags & FSCONTEXT_MNT) {
 611		rc = security_sid_to_context(sbsec->sid, &context, &len);
 612		if (rc)
 613			goto out_free;
 614		opts->mnt_opts[i] = context;
 615		opts->mnt_opts_flags[i++] = FSCONTEXT_MNT;
 616	}
 617	if (sbsec->flags & CONTEXT_MNT) {
 618		rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len);
 619		if (rc)
 620			goto out_free;
 621		opts->mnt_opts[i] = context;
 622		opts->mnt_opts_flags[i++] = CONTEXT_MNT;
 623	}
 624	if (sbsec->flags & DEFCONTEXT_MNT) {
 625		rc = security_sid_to_context(sbsec->def_sid, &context, &len);
 626		if (rc)
 627			goto out_free;
 628		opts->mnt_opts[i] = context;
 629		opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT;
 630	}
 631	if (sbsec->flags & ROOTCONTEXT_MNT) {
 632		struct dentry *root = sbsec->sb->s_root;
 633		struct inode_security_struct *isec = backing_inode_security(root);
 634
 635		rc = security_sid_to_context(isec->sid, &context, &len);
 636		if (rc)
 637			goto out_free;
 638		opts->mnt_opts[i] = context;
 639		opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT;
 640	}
 641	if (sbsec->flags & SBLABEL_MNT) {
 642		opts->mnt_opts[i] = NULL;
 643		opts->mnt_opts_flags[i++] = SBLABEL_MNT;
 644	}
 645
 646	BUG_ON(i != opts->num_mnt_opts);
 647
 648	return 0;
 649
 650out_free:
 651	security_free_mnt_opts(opts);
 652	return rc;
 653}
 654
 655static int bad_option(struct superblock_security_struct *sbsec, char flag,
 656		      u32 old_sid, u32 new_sid)
 657{
 658	char mnt_flags = sbsec->flags & SE_MNTMASK;
 659
 660	/* check if the old mount command had the same options */
 661	if (sbsec->flags & SE_SBINITIALIZED)
 662		if (!(sbsec->flags & flag) ||
 663		    (old_sid != new_sid))
 664			return 1;
 665
 666	/* check if we were passed the same options twice,
 667	 * aka someone passed context=a,context=b
 668	 */
 669	if (!(sbsec->flags & SE_SBINITIALIZED))
 670		if (mnt_flags & flag)
 671			return 1;
 672	return 0;
 673}
 674
 
 
 
 
 
 
 
 
 
 
 
 675/*
 676 * Allow filesystems with binary mount data to explicitly set mount point
 677 * labeling information.
 678 */
 679static int selinux_set_mnt_opts(struct super_block *sb,
 680				struct security_mnt_opts *opts,
 681				unsigned long kern_flags,
 682				unsigned long *set_kern_flags)
 683{
 684	const struct cred *cred = current_cred();
 685	int rc = 0, i;
 686	struct superblock_security_struct *sbsec = sb->s_security;
 687	const char *name = sb->s_type->name;
 688	struct dentry *root = sbsec->sb->s_root;
 689	struct inode_security_struct *root_isec = backing_inode_security(root);
 690	u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
 691	u32 defcontext_sid = 0;
 692	char **mount_options = opts->mnt_opts;
 693	int *flags = opts->mnt_opts_flags;
 694	int num_opts = opts->num_mnt_opts;
 695
 696	mutex_lock(&sbsec->lock);
 697
 698	if (!ss_initialized) {
 699		if (!num_opts) {
 700			/* Defer initialization until selinux_complete_init,
 701			   after the initial policy is loaded and the security
 702			   server is ready to handle calls. */
 703			goto out;
 704		}
 705		rc = -EINVAL;
 706		printk(KERN_WARNING "SELinux: Unable to set superblock options "
 707			"before the security server is initialized\n");
 708		goto out;
 709	}
 710	if (kern_flags && !set_kern_flags) {
 711		/* Specifying internal flags without providing a place to
 712		 * place the results is not allowed */
 713		rc = -EINVAL;
 714		goto out;
 715	}
 716
 717	/*
 718	 * Binary mount data FS will come through this function twice.  Once
 719	 * from an explicit call and once from the generic calls from the vfs.
 720	 * Since the generic VFS calls will not contain any security mount data
 721	 * we need to skip the double mount verification.
 722	 *
 723	 * This does open a hole in which we will not notice if the first
 724	 * mount using this sb set explict options and a second mount using
 725	 * this sb does not set any security options.  (The first options
 726	 * will be used for both mounts)
 727	 */
 728	if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
 729	    && (num_opts == 0))
 730		goto out;
 731
 
 
 732	/*
 733	 * parse the mount options, check if they are valid sids.
 734	 * also check if someone is trying to mount the same sb more
 735	 * than once with different security options.
 736	 */
 737	for (i = 0; i < num_opts; i++) {
 738		u32 sid;
 739
 740		if (flags[i] == SBLABEL_MNT)
 741			continue;
 742		rc = security_context_str_to_sid(mount_options[i], &sid, GFP_KERNEL);
 743		if (rc) {
 744			printk(KERN_WARNING "SELinux: security_context_str_to_sid"
 745			       "(%s) failed for (dev %s, type %s) errno=%d\n",
 746			       mount_options[i], sb->s_id, name, rc);
 747			goto out;
 748		}
 749		switch (flags[i]) {
 750		case FSCONTEXT_MNT:
 751			fscontext_sid = sid;
 752
 753			if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
 754					fscontext_sid))
 755				goto out_double_mount;
 756
 757			sbsec->flags |= FSCONTEXT_MNT;
 758			break;
 759		case CONTEXT_MNT:
 760			context_sid = sid;
 761
 
 762			if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
 763					context_sid))
 764				goto out_double_mount;
 765
 766			sbsec->flags |= CONTEXT_MNT;
 767			break;
 768		case ROOTCONTEXT_MNT:
 769			rootcontext_sid = sid;
 770
 
 771			if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
 772					rootcontext_sid))
 773				goto out_double_mount;
 774
 775			sbsec->flags |= ROOTCONTEXT_MNT;
 776
 777			break;
 778		case DEFCONTEXT_MNT:
 779			defcontext_sid = sid;
 780
 781			if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
 782					defcontext_sid))
 783				goto out_double_mount;
 784
 785			sbsec->flags |= DEFCONTEXT_MNT;
 786
 787			break;
 788		default:
 789			rc = -EINVAL;
 790			goto out;
 791		}
 792	}
 793
 794	if (sbsec->flags & SE_SBINITIALIZED) {
 795		/* previously mounted with options, but not on this attempt? */
 796		if ((sbsec->flags & SE_MNTMASK) && !num_opts)
 797			goto out_double_mount;
 798		rc = 0;
 799		goto out;
 800	}
 801
 802	if (strcmp(sb->s_type->name, "proc") == 0)
 803		sbsec->flags |= SE_SBPROC | SE_SBGENFS;
 804
 805	if (!strcmp(sb->s_type->name, "debugfs") ||
 806	    !strcmp(sb->s_type->name, "sysfs") ||
 
 
 807	    !strcmp(sb->s_type->name, "pstore"))
 808		sbsec->flags |= SE_SBGENFS;
 809
 
 
 
 
 
 810	if (!sbsec->behavior) {
 811		/*
 812		 * Determine the labeling behavior to use for this
 813		 * filesystem type.
 814		 */
 815		rc = security_fs_use(sb);
 816		if (rc) {
 817			printk(KERN_WARNING
 818				"%s: security_fs_use(%s) returned %d\n",
 819					__func__, sb->s_type->name, rc);
 820			goto out;
 821		}
 822	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 823	/* sets the context of the superblock for the fs being mounted. */
 824	if (fscontext_sid) {
 825		rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
 826		if (rc)
 827			goto out;
 828
 829		sbsec->sid = fscontext_sid;
 830	}
 831
 832	/*
 833	 * Switch to using mount point labeling behavior.
 834	 * sets the label used on all file below the mountpoint, and will set
 835	 * the superblock context if not already set.
 836	 */
 837	if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !context_sid) {
 838		sbsec->behavior = SECURITY_FS_USE_NATIVE;
 839		*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
 840	}
 841
 842	if (context_sid) {
 843		if (!fscontext_sid) {
 844			rc = may_context_mount_sb_relabel(context_sid, sbsec,
 845							  cred);
 846			if (rc)
 847				goto out;
 848			sbsec->sid = context_sid;
 849		} else {
 850			rc = may_context_mount_inode_relabel(context_sid, sbsec,
 851							     cred);
 852			if (rc)
 853				goto out;
 854		}
 855		if (!rootcontext_sid)
 856			rootcontext_sid = context_sid;
 857
 858		sbsec->mntpoint_sid = context_sid;
 859		sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
 860	}
 861
 862	if (rootcontext_sid) {
 863		rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
 864						     cred);
 865		if (rc)
 866			goto out;
 867
 868		root_isec->sid = rootcontext_sid;
 869		root_isec->initialized = LABEL_INITIALIZED;
 870	}
 871
 872	if (defcontext_sid) {
 873		if (sbsec->behavior != SECURITY_FS_USE_XATTR &&
 874			sbsec->behavior != SECURITY_FS_USE_NATIVE) {
 875			rc = -EINVAL;
 876			printk(KERN_WARNING "SELinux: defcontext option is "
 877			       "invalid for this filesystem type\n");
 878			goto out;
 879		}
 880
 881		if (defcontext_sid != sbsec->def_sid) {
 882			rc = may_context_mount_inode_relabel(defcontext_sid,
 883							     sbsec, cred);
 884			if (rc)
 885				goto out;
 886		}
 887
 888		sbsec->def_sid = defcontext_sid;
 889	}
 890
 
 891	rc = sb_finish_set_opts(sb);
 892out:
 893	mutex_unlock(&sbsec->lock);
 894	return rc;
 895out_double_mount:
 896	rc = -EINVAL;
 897	printk(KERN_WARNING "SELinux: mount invalid.  Same superblock, different "
 898	       "security settings for (dev %s, type %s)\n", sb->s_id, name);
 
 899	goto out;
 900}
 901
 902static int selinux_cmp_sb_context(const struct super_block *oldsb,
 903				    const struct super_block *newsb)
 904{
 905	struct superblock_security_struct *old = oldsb->s_security;
 906	struct superblock_security_struct *new = newsb->s_security;
 907	char oldflags = old->flags & SE_MNTMASK;
 908	char newflags = new->flags & SE_MNTMASK;
 909
 910	if (oldflags != newflags)
 911		goto mismatch;
 912	if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid)
 913		goto mismatch;
 914	if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid)
 915		goto mismatch;
 916	if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid)
 917		goto mismatch;
 918	if (oldflags & ROOTCONTEXT_MNT) {
 919		struct inode_security_struct *oldroot = backing_inode_security(oldsb->s_root);
 920		struct inode_security_struct *newroot = backing_inode_security(newsb->s_root);
 921		if (oldroot->sid != newroot->sid)
 922			goto mismatch;
 923	}
 924	return 0;
 925mismatch:
 926	printk(KERN_WARNING "SELinux: mount invalid.  Same superblock, "
 927			    "different security settings for (dev %s, "
 928			    "type %s)\n", newsb->s_id, newsb->s_type->name);
 929	return -EBUSY;
 930}
 931
 932static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
 933					struct super_block *newsb)
 
 
 934{
 935	const struct superblock_security_struct *oldsbsec = oldsb->s_security;
 936	struct superblock_security_struct *newsbsec = newsb->s_security;
 
 
 937
 938	int set_fscontext =	(oldsbsec->flags & FSCONTEXT_MNT);
 939	int set_context =	(oldsbsec->flags & CONTEXT_MNT);
 940	int set_rootcontext =	(oldsbsec->flags & ROOTCONTEXT_MNT);
 941
 942	/*
 943	 * if the parent was able to be mounted it clearly had no special lsm
 944	 * mount options.  thus we can safely deal with this superblock later
 945	 */
 946	if (!ss_initialized)
 947		return 0;
 948
 
 
 
 
 
 
 
 949	/* how can we clone if the old one wasn't set up?? */
 950	BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
 951
 952	/* if fs is reusing a sb, make sure that the contexts match */
 953	if (newsbsec->flags & SE_SBINITIALIZED)
 
 
 954		return selinux_cmp_sb_context(oldsb, newsb);
 
 955
 956	mutex_lock(&newsbsec->lock);
 957
 958	newsbsec->flags = oldsbsec->flags;
 959
 960	newsbsec->sid = oldsbsec->sid;
 961	newsbsec->def_sid = oldsbsec->def_sid;
 962	newsbsec->behavior = oldsbsec->behavior;
 963
 
 
 
 
 
 
 
 
 
 
 
 
 964	if (set_context) {
 965		u32 sid = oldsbsec->mntpoint_sid;
 966
 967		if (!set_fscontext)
 968			newsbsec->sid = sid;
 969		if (!set_rootcontext) {
 970			struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
 971			newisec->sid = sid;
 972		}
 973		newsbsec->mntpoint_sid = sid;
 974	}
 975	if (set_rootcontext) {
 976		const struct inode_security_struct *oldisec = backing_inode_security(oldsb->s_root);
 977		struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
 978
 979		newisec->sid = oldisec->sid;
 980	}
 981
 982	sb_finish_set_opts(newsb);
 
 983	mutex_unlock(&newsbsec->lock);
 984	return 0;
 985}
 986
 987static int selinux_parse_opts_str(char *options,
 988				  struct security_mnt_opts *opts)
 989{
 990	char *p;
 991	char *context = NULL, *defcontext = NULL;
 992	char *fscontext = NULL, *rootcontext = NULL;
 993	int rc, num_mnt_opts = 0;
 994
 995	opts->num_mnt_opts = 0;
 996
 997	/* Standard string-based options. */
 998	while ((p = strsep(&options, "|")) != NULL) {
 999		int token;
1000		substring_t args[MAX_OPT_ARGS];
1001
1002		if (!*p)
1003			continue;
1004
1005		token = match_token(p, tokens, args);
1006
1007		switch (token) {
1008		case Opt_context:
1009			if (context || defcontext) {
1010				rc = -EINVAL;
1011				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
1012				goto out_err;
1013			}
1014			context = match_strdup(&args[0]);
1015			if (!context) {
1016				rc = -ENOMEM;
1017				goto out_err;
1018			}
1019			break;
1020
1021		case Opt_fscontext:
1022			if (fscontext) {
1023				rc = -EINVAL;
1024				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
1025				goto out_err;
1026			}
1027			fscontext = match_strdup(&args[0]);
1028			if (!fscontext) {
1029				rc = -ENOMEM;
1030				goto out_err;
1031			}
1032			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1033
1034		case Opt_rootcontext:
1035			if (rootcontext) {
1036				rc = -EINVAL;
1037				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
1038				goto out_err;
1039			}
1040			rootcontext = match_strdup(&args[0]);
1041			if (!rootcontext) {
1042				rc = -ENOMEM;
1043				goto out_err;
1044			}
1045			break;
1046
1047		case Opt_defcontext:
1048			if (context || defcontext) {
1049				rc = -EINVAL;
1050				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
1051				goto out_err;
1052			}
1053			defcontext = match_strdup(&args[0]);
1054			if (!defcontext) {
1055				rc = -ENOMEM;
1056				goto out_err;
1057			}
1058			break;
1059		case Opt_labelsupport:
1060			break;
1061		default:
1062			rc = -EINVAL;
1063			printk(KERN_WARNING "SELinux:  unknown mount option\n");
1064			goto out_err;
1065
1066		}
1067	}
1068
1069	rc = -ENOMEM;
1070	opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_ATOMIC);
1071	if (!opts->mnt_opts)
1072		goto out_err;
1073
1074	opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int), GFP_ATOMIC);
1075	if (!opts->mnt_opts_flags) {
1076		kfree(opts->mnt_opts);
1077		goto out_err;
1078	}
1079
1080	if (fscontext) {
1081		opts->mnt_opts[num_mnt_opts] = fscontext;
1082		opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT;
1083	}
1084	if (context) {
1085		opts->mnt_opts[num_mnt_opts] = context;
1086		opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT;
1087	}
1088	if (rootcontext) {
1089		opts->mnt_opts[num_mnt_opts] = rootcontext;
1090		opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT;
1091	}
1092	if (defcontext) {
1093		opts->mnt_opts[num_mnt_opts] = defcontext;
1094		opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT;
 
1095	}
1096
1097	opts->num_mnt_opts = num_mnt_opts;
1098	return 0;
1099
1100out_err:
1101	kfree(context);
1102	kfree(defcontext);
1103	kfree(fscontext);
1104	kfree(rootcontext);
1105	return rc;
1106}
1107/*
1108 * string mount options parsing and call set the sbsec
1109 */
1110static int superblock_doinit(struct super_block *sb, void *data)
1111{
1112	int rc = 0;
1113	char *options = data;
1114	struct security_mnt_opts opts;
1115
1116	security_init_mnt_opts(&opts);
1117
1118	if (!data)
1119		goto out;
1120
1121	BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA);
1122
1123	rc = selinux_parse_opts_str(options, &opts);
1124	if (rc)
1125		goto out_err;
1126
1127out:
1128	rc = selinux_set_mnt_opts(sb, &opts, 0, NULL);
1129
1130out_err:
1131	security_free_mnt_opts(&opts);
1132	return rc;
1133}
1134
1135static void selinux_write_opts(struct seq_file *m,
1136			       struct security_mnt_opts *opts)
1137{
1138	int i;
1139	char *prefix;
1140
1141	for (i = 0; i < opts->num_mnt_opts; i++) {
1142		char *has_comma;
1143
1144		if (opts->mnt_opts[i])
1145			has_comma = strchr(opts->mnt_opts[i], ',');
1146		else
1147			has_comma = NULL;
1148
1149		switch (opts->mnt_opts_flags[i]) {
1150		case CONTEXT_MNT:
1151			prefix = CONTEXT_STR;
1152			break;
1153		case FSCONTEXT_MNT:
1154			prefix = FSCONTEXT_STR;
1155			break;
1156		case ROOTCONTEXT_MNT:
1157			prefix = ROOTCONTEXT_STR;
1158			break;
1159		case DEFCONTEXT_MNT:
1160			prefix = DEFCONTEXT_STR;
1161			break;
1162		case SBLABEL_MNT:
1163			seq_putc(m, ',');
1164			seq_puts(m, LABELSUPP_STR);
1165			continue;
1166		default:
1167			BUG();
1168			return;
1169		};
1170		/* we need a comma before each option */
1171		seq_putc(m, ',');
1172		seq_puts(m, prefix);
1173		if (has_comma)
1174			seq_putc(m, '\"');
1175		seq_escape(m, opts->mnt_opts[i], "\"\n\\");
1176		if (has_comma)
1177			seq_putc(m, '\"');
1178	}
 
 
1179}
1180
1181static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1182{
1183	struct security_mnt_opts opts;
1184	int rc;
1185
1186	rc = selinux_get_mnt_opts(sb, &opts);
1187	if (rc) {
1188		/* before policy load we may get EINVAL, don't show anything */
1189		if (rc == -EINVAL)
1190			rc = 0;
1191		return rc;
1192	}
1193
1194	selinux_write_opts(m, &opts);
1195
1196	security_free_mnt_opts(&opts);
 
1197
1198	return rc;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1199}
1200
1201static inline u16 inode_mode_to_security_class(umode_t mode)
1202{
1203	switch (mode & S_IFMT) {
1204	case S_IFSOCK:
1205		return SECCLASS_SOCK_FILE;
1206	case S_IFLNK:
1207		return SECCLASS_LNK_FILE;
1208	case S_IFREG:
1209		return SECCLASS_FILE;
1210	case S_IFBLK:
1211		return SECCLASS_BLK_FILE;
1212	case S_IFDIR:
1213		return SECCLASS_DIR;
1214	case S_IFCHR:
1215		return SECCLASS_CHR_FILE;
1216	case S_IFIFO:
1217		return SECCLASS_FIFO_FILE;
1218
1219	}
1220
1221	return SECCLASS_FILE;
1222}
1223
1224static inline int default_protocol_stream(int protocol)
1225{
1226	return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
 
1227}
1228
1229static inline int default_protocol_dgram(int protocol)
1230{
1231	return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1232}
1233
1234static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1235{
 
 
1236	switch (family) {
1237	case PF_UNIX:
1238		switch (type) {
1239		case SOCK_STREAM:
1240		case SOCK_SEQPACKET:
1241			return SECCLASS_UNIX_STREAM_SOCKET;
1242		case SOCK_DGRAM:
 
1243			return SECCLASS_UNIX_DGRAM_SOCKET;
1244		}
1245		break;
1246	case PF_INET:
1247	case PF_INET6:
1248		switch (type) {
1249		case SOCK_STREAM:
 
1250			if (default_protocol_stream(protocol))
1251				return SECCLASS_TCP_SOCKET;
 
 
1252			else
1253				return SECCLASS_RAWIP_SOCKET;
1254		case SOCK_DGRAM:
1255			if (default_protocol_dgram(protocol))
1256				return SECCLASS_UDP_SOCKET;
 
 
 
1257			else
1258				return SECCLASS_RAWIP_SOCKET;
1259		case SOCK_DCCP:
1260			return SECCLASS_DCCP_SOCKET;
1261		default:
1262			return SECCLASS_RAWIP_SOCKET;
1263		}
1264		break;
1265	case PF_NETLINK:
1266		switch (protocol) {
1267		case NETLINK_ROUTE:
1268			return SECCLASS_NETLINK_ROUTE_SOCKET;
1269		case NETLINK_SOCK_DIAG:
1270			return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1271		case NETLINK_NFLOG:
1272			return SECCLASS_NETLINK_NFLOG_SOCKET;
1273		case NETLINK_XFRM:
1274			return SECCLASS_NETLINK_XFRM_SOCKET;
1275		case NETLINK_SELINUX:
1276			return SECCLASS_NETLINK_SELINUX_SOCKET;
1277		case NETLINK_ISCSI:
1278			return SECCLASS_NETLINK_ISCSI_SOCKET;
1279		case NETLINK_AUDIT:
1280			return SECCLASS_NETLINK_AUDIT_SOCKET;
1281		case NETLINK_FIB_LOOKUP:
1282			return SECCLASS_NETLINK_FIB_LOOKUP_SOCKET;
1283		case NETLINK_CONNECTOR:
1284			return SECCLASS_NETLINK_CONNECTOR_SOCKET;
1285		case NETLINK_NETFILTER:
1286			return SECCLASS_NETLINK_NETFILTER_SOCKET;
1287		case NETLINK_DNRTMSG:
1288			return SECCLASS_NETLINK_DNRT_SOCKET;
1289		case NETLINK_KOBJECT_UEVENT:
1290			return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1291		case NETLINK_GENERIC:
1292			return SECCLASS_NETLINK_GENERIC_SOCKET;
1293		case NETLINK_SCSITRANSPORT:
1294			return SECCLASS_NETLINK_SCSITRANSPORT_SOCKET;
1295		case NETLINK_RDMA:
1296			return SECCLASS_NETLINK_RDMA_SOCKET;
1297		case NETLINK_CRYPTO:
1298			return SECCLASS_NETLINK_CRYPTO_SOCKET;
1299		default:
1300			return SECCLASS_NETLINK_SOCKET;
1301		}
1302	case PF_PACKET:
1303		return SECCLASS_PACKET_SOCKET;
1304	case PF_KEY:
1305		return SECCLASS_KEY_SOCKET;
1306	case PF_APPLETALK:
1307		return SECCLASS_APPLETALK_SOCKET;
1308	}
1309
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1310	return SECCLASS_SOCKET;
1311}
1312
1313static int selinux_genfs_get_sid(struct dentry *dentry,
1314				 u16 tclass,
1315				 u16 flags,
1316				 u32 *sid)
1317{
1318	int rc;
1319	struct super_block *sb = dentry->d_inode->i_sb;
1320	char *buffer, *path;
1321
1322	buffer = (char *)__get_free_page(GFP_KERNEL);
1323	if (!buffer)
1324		return -ENOMEM;
1325
1326	path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1327	if (IS_ERR(path))
1328		rc = PTR_ERR(path);
1329	else {
1330		if (flags & SE_SBPROC) {
1331			/* each process gets a /proc/PID/ entry. Strip off the
1332			 * PID part to get a valid selinux labeling.
1333			 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1334			while (path[1] >= '0' && path[1] <= '9') {
1335				path[1] = '/';
1336				path++;
1337			}
1338		}
1339		rc = security_genfs_sid(sb->s_type->name, path, tclass, sid);
 
 
 
 
 
 
1340	}
1341	free_page((unsigned long)buffer);
1342	return rc;
1343}
1344
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1345/* The inode's security attributes must be initialized before first use. */
1346static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1347{
1348	struct superblock_security_struct *sbsec = NULL;
1349	struct inode_security_struct *isec = inode->i_security;
1350	u32 sid;
 
1351	struct dentry *dentry;
1352#define INITCONTEXTLEN 255
1353	char *context = NULL;
1354	unsigned len = 0;
1355	int rc = 0;
1356
1357	if (isec->initialized == LABEL_INITIALIZED)
1358		goto out;
1359
1360	mutex_lock(&isec->lock);
1361	if (isec->initialized == LABEL_INITIALIZED)
1362		goto out_unlock;
1363
1364	sbsec = inode->i_sb->s_security;
 
 
 
1365	if (!(sbsec->flags & SE_SBINITIALIZED)) {
1366		/* Defer initialization until selinux_complete_init,
1367		   after the initial policy is loaded and the security
1368		   server is ready to handle calls. */
1369		spin_lock(&sbsec->isec_lock);
1370		if (list_empty(&isec->list))
1371			list_add(&isec->list, &sbsec->isec_head);
1372		spin_unlock(&sbsec->isec_lock);
1373		goto out_unlock;
1374	}
1375
 
 
 
 
 
 
1376	switch (sbsec->behavior) {
1377	case SECURITY_FS_USE_NATIVE:
1378		break;
1379	case SECURITY_FS_USE_XATTR:
1380		if (!inode->i_op->getxattr) {
1381			isec->sid = sbsec->def_sid;
1382			break;
1383		}
1384
1385		/* Need a dentry, since the xattr API requires one.
1386		   Life would be simpler if we could just pass the inode. */
1387		if (opt_dentry) {
1388			/* Called from d_instantiate or d_splice_alias. */
1389			dentry = dget(opt_dentry);
1390		} else {
1391			/* Called from selinux_complete_init, try to find a dentry. */
 
 
 
 
 
1392			dentry = d_find_alias(inode);
 
 
1393		}
1394		if (!dentry) {
1395			/*
1396			 * this is can be hit on boot when a file is accessed
1397			 * before the policy is loaded.  When we load policy we
1398			 * may find inodes that have no dentry on the
1399			 * sbsec->isec_head list.  No reason to complain as these
1400			 * will get fixed up the next time we go through
1401			 * inode_doinit with a dentry, before these inodes could
1402			 * be used again by userspace.
1403			 */
1404			goto out_unlock;
1405		}
1406
1407		len = INITCONTEXTLEN;
1408		context = kmalloc(len+1, GFP_NOFS);
1409		if (!context) {
1410			rc = -ENOMEM;
1411			dput(dentry);
1412			goto out_unlock;
1413		}
1414		context[len] = '\0';
1415		rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1416					   context, len);
1417		if (rc == -ERANGE) {
1418			kfree(context);
1419
1420			/* Need a larger buffer.  Query for the right size. */
1421			rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1422						   NULL, 0);
1423			if (rc < 0) {
1424				dput(dentry);
1425				goto out_unlock;
1426			}
1427			len = rc;
1428			context = kmalloc(len+1, GFP_NOFS);
1429			if (!context) {
1430				rc = -ENOMEM;
1431				dput(dentry);
1432				goto out_unlock;
1433			}
1434			context[len] = '\0';
1435			rc = inode->i_op->getxattr(dentry,
1436						   XATTR_NAME_SELINUX,
1437						   context, len);
1438		}
1439		dput(dentry);
1440		if (rc < 0) {
1441			if (rc != -ENODATA) {
1442				printk(KERN_WARNING "SELinux: %s:  getxattr returned "
1443				       "%d for dev=%s ino=%ld\n", __func__,
1444				       -rc, inode->i_sb->s_id, inode->i_ino);
1445				kfree(context);
1446				goto out_unlock;
1447			}
1448			/* Map ENODATA to the default file SID */
1449			sid = sbsec->def_sid;
1450			rc = 0;
1451		} else {
1452			rc = security_context_to_sid_default(context, rc, &sid,
1453							     sbsec->def_sid,
1454							     GFP_NOFS);
1455			if (rc) {
1456				char *dev = inode->i_sb->s_id;
1457				unsigned long ino = inode->i_ino;
1458
1459				if (rc == -EINVAL) {
1460					if (printk_ratelimit())
1461						printk(KERN_NOTICE "SELinux: inode=%lu on dev=%s was found to have an invalid "
1462							"context=%s.  This indicates you may need to relabel the inode or the "
1463							"filesystem in question.\n", ino, dev, context);
1464				} else {
1465					printk(KERN_WARNING "SELinux: %s:  context_to_sid(%s) "
1466					       "returned %d for dev=%s ino=%ld\n",
1467					       __func__, context, -rc, dev, ino);
1468				}
1469				kfree(context);
1470				/* Leave with the unlabeled SID */
1471				rc = 0;
1472				break;
1473			}
1474		}
1475		kfree(context);
1476		isec->sid = sid;
1477		break;
1478	case SECURITY_FS_USE_TASK:
1479		isec->sid = isec->task_sid;
1480		break;
1481	case SECURITY_FS_USE_TRANS:
1482		/* Default to the fs SID. */
1483		isec->sid = sbsec->sid;
1484
1485		/* Try to obtain a transition SID. */
1486		isec->sclass = inode_mode_to_security_class(inode->i_mode);
1487		rc = security_transition_sid(isec->task_sid, sbsec->sid,
1488					     isec->sclass, NULL, &sid);
1489		if (rc)
1490			goto out_unlock;
1491		isec->sid = sid;
1492		break;
1493	case SECURITY_FS_USE_MNTPOINT:
1494		isec->sid = sbsec->mntpoint_sid;
1495		break;
1496	default:
1497		/* Default to the fs superblock SID. */
1498		isec->sid = sbsec->sid;
1499
1500		if ((sbsec->flags & SE_SBGENFS) && !S_ISLNK(inode->i_mode)) {
 
 
1501			/* We must have a dentry to determine the label on
1502			 * procfs inodes */
1503			if (opt_dentry)
1504				/* Called from d_instantiate or
1505				 * d_splice_alias. */
1506				dentry = dget(opt_dentry);
1507			else
1508				/* Called from selinux_complete_init, try to
1509				 * find a dentry. */
 
 
1510				dentry = d_find_alias(inode);
 
 
 
1511			/*
1512			 * This can be hit on boot when a file is accessed
1513			 * before the policy is loaded.  When we load policy we
1514			 * may find inodes that have no dentry on the
1515			 * sbsec->isec_head list.  No reason to complain as
1516			 * these will get fixed up the next time we go through
1517			 * inode_doinit() with a dentry, before these inodes
1518			 * could be used again by userspace.
1519			 */
1520			if (!dentry)
1521				goto out_unlock;
1522			isec->sclass = inode_mode_to_security_class(inode->i_mode);
1523			rc = selinux_genfs_get_sid(dentry, isec->sclass,
1524						   sbsec->flags, &sid);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1525			dput(dentry);
1526			if (rc)
1527				goto out_unlock;
1528			isec->sid = sid;
1529		}
1530		break;
1531	}
1532
1533	isec->initialized = LABEL_INITIALIZED;
 
 
 
 
 
 
 
 
 
1534
1535out_unlock:
1536	mutex_unlock(&isec->lock);
1537out:
1538	if (isec->sclass == SECCLASS_FILE)
1539		isec->sclass = inode_mode_to_security_class(inode->i_mode);
1540	return rc;
 
 
 
 
 
 
 
 
 
1541}
1542
1543/* Convert a Linux signal to an access vector. */
1544static inline u32 signal_to_av(int sig)
1545{
1546	u32 perm = 0;
1547
1548	switch (sig) {
1549	case SIGCHLD:
1550		/* Commonly granted from child to parent. */
1551		perm = PROCESS__SIGCHLD;
1552		break;
1553	case SIGKILL:
1554		/* Cannot be caught or ignored */
1555		perm = PROCESS__SIGKILL;
1556		break;
1557	case SIGSTOP:
1558		/* Cannot be caught or ignored */
1559		perm = PROCESS__SIGSTOP;
1560		break;
1561	default:
1562		/* All other signals. */
1563		perm = PROCESS__SIGNAL;
1564		break;
1565	}
1566
1567	return perm;
1568}
1569
1570/*
1571 * Check permission between a pair of credentials
1572 * fork check, ptrace check, etc.
1573 */
1574static int cred_has_perm(const struct cred *actor,
1575			 const struct cred *target,
1576			 u32 perms)
1577{
1578	u32 asid = cred_sid(actor), tsid = cred_sid(target);
1579
1580	return avc_has_perm(asid, tsid, SECCLASS_PROCESS, perms, NULL);
1581}
1582
1583/*
1584 * Check permission between a pair of tasks, e.g. signal checks,
1585 * fork check, ptrace check, etc.
1586 * tsk1 is the actor and tsk2 is the target
1587 * - this uses the default subjective creds of tsk1
1588 */
1589static int task_has_perm(const struct task_struct *tsk1,
1590			 const struct task_struct *tsk2,
1591			 u32 perms)
1592{
1593	const struct task_security_struct *__tsec1, *__tsec2;
1594	u32 sid1, sid2;
1595
1596	rcu_read_lock();
1597	__tsec1 = __task_cred(tsk1)->security;	sid1 = __tsec1->sid;
1598	__tsec2 = __task_cred(tsk2)->security;	sid2 = __tsec2->sid;
1599	rcu_read_unlock();
1600	return avc_has_perm(sid1, sid2, SECCLASS_PROCESS, perms, NULL);
1601}
1602
1603/*
1604 * Check permission between current and another task, e.g. signal checks,
1605 * fork check, ptrace check, etc.
1606 * current is the actor and tsk2 is the target
1607 * - this uses current's subjective creds
1608 */
1609static int current_has_perm(const struct task_struct *tsk,
1610			    u32 perms)
1611{
1612	u32 sid, tsid;
1613
1614	sid = current_sid();
1615	tsid = task_sid(tsk);
1616	return avc_has_perm(sid, tsid, SECCLASS_PROCESS, perms, NULL);
1617}
1618
1619#if CAP_LAST_CAP > 63
1620#error Fix SELinux to handle capabilities > 63.
1621#endif
1622
1623/* Check whether a task is allowed to use a capability. */
1624static int cred_has_capability(const struct cred *cred,
1625			       int cap, int audit)
1626{
1627	struct common_audit_data ad;
1628	struct av_decision avd;
1629	u16 sclass;
1630	u32 sid = cred_sid(cred);
1631	u32 av = CAP_TO_MASK(cap);
1632	int rc;
1633
1634	ad.type = LSM_AUDIT_DATA_CAP;
1635	ad.u.cap = cap;
1636
1637	switch (CAP_TO_INDEX(cap)) {
1638	case 0:
1639		sclass = SECCLASS_CAPABILITY;
1640		break;
1641	case 1:
1642		sclass = SECCLASS_CAPABILITY2;
1643		break;
1644	default:
1645		printk(KERN_ERR
1646		       "SELinux:  out of range capability %d\n", cap);
1647		BUG();
1648		return -EINVAL;
1649	}
1650
1651	rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd);
1652	if (audit == SECURITY_CAP_AUDIT) {
1653		int rc2 = avc_audit(sid, sid, sclass, av, &avd, rc, &ad, 0);
 
 
1654		if (rc2)
1655			return rc2;
1656	}
1657	return rc;
1658}
1659
1660/* Check whether a task is allowed to use a system operation. */
1661static int task_has_system(struct task_struct *tsk,
1662			   u32 perms)
1663{
1664	u32 sid = task_sid(tsk);
1665
1666	return avc_has_perm(sid, SECINITSID_KERNEL,
1667			    SECCLASS_SYSTEM, perms, NULL);
1668}
1669
1670/* Check whether a task has a particular permission to an inode.
1671   The 'adp' parameter is optional and allows other audit
1672   data to be passed (e.g. the dentry). */
1673static int inode_has_perm(const struct cred *cred,
1674			  struct inode *inode,
1675			  u32 perms,
1676			  struct common_audit_data *adp)
1677{
1678	struct inode_security_struct *isec;
1679	u32 sid;
1680
1681	validate_creds(cred);
1682
1683	if (unlikely(IS_PRIVATE(inode)))
1684		return 0;
1685
1686	sid = cred_sid(cred);
1687	isec = inode->i_security;
1688
1689	return avc_has_perm(sid, isec->sid, isec->sclass, perms, adp);
 
1690}
1691
1692/* Same as inode_has_perm, but pass explicit audit data containing
1693   the dentry to help the auditing code to more easily generate the
1694   pathname if needed. */
1695static inline int dentry_has_perm(const struct cred *cred,
1696				  struct dentry *dentry,
1697				  u32 av)
1698{
1699	struct inode *inode = d_backing_inode(dentry);
1700	struct common_audit_data ad;
1701
1702	ad.type = LSM_AUDIT_DATA_DENTRY;
1703	ad.u.dentry = dentry;
1704	__inode_security_revalidate(inode, dentry, true);
1705	return inode_has_perm(cred, inode, av, &ad);
1706}
1707
1708/* Same as inode_has_perm, but pass explicit audit data containing
1709   the path to help the auditing code to more easily generate the
1710   pathname if needed. */
1711static inline int path_has_perm(const struct cred *cred,
1712				const struct path *path,
1713				u32 av)
1714{
1715	struct inode *inode = d_backing_inode(path->dentry);
1716	struct common_audit_data ad;
1717
1718	ad.type = LSM_AUDIT_DATA_PATH;
1719	ad.u.path = *path;
1720	__inode_security_revalidate(inode, path->dentry, true);
1721	return inode_has_perm(cred, inode, av, &ad);
1722}
1723
1724/* Same as path_has_perm, but uses the inode from the file struct. */
1725static inline int file_path_has_perm(const struct cred *cred,
1726				     struct file *file,
1727				     u32 av)
1728{
1729	struct common_audit_data ad;
1730
1731	ad.type = LSM_AUDIT_DATA_PATH;
1732	ad.u.path = file->f_path;
1733	return inode_has_perm(cred, file_inode(file), av, &ad);
1734}
1735
 
 
 
 
1736/* Check whether a task can use an open file descriptor to
1737   access an inode in a given way.  Check access to the
1738   descriptor itself, and then use dentry_has_perm to
1739   check a particular permission to the file.
1740   Access to the descriptor is implicitly granted if it
1741   has the same SID as the process.  If av is zero, then
1742   access to the file is not checked, e.g. for cases
1743   where only the descriptor is affected like seek. */
1744static int file_has_perm(const struct cred *cred,
1745			 struct file *file,
1746			 u32 av)
1747{
1748	struct file_security_struct *fsec = file->f_security;
1749	struct inode *inode = file_inode(file);
1750	struct common_audit_data ad;
1751	u32 sid = cred_sid(cred);
1752	int rc;
1753
1754	ad.type = LSM_AUDIT_DATA_PATH;
1755	ad.u.path = file->f_path;
1756
1757	if (sid != fsec->sid) {
1758		rc = avc_has_perm(sid, fsec->sid,
 
1759				  SECCLASS_FD,
1760				  FD__USE,
1761				  &ad);
1762		if (rc)
1763			goto out;
1764	}
1765
 
 
 
 
 
 
1766	/* av is zero if only checking access to the descriptor. */
1767	rc = 0;
1768	if (av)
1769		rc = inode_has_perm(cred, inode, av, &ad);
1770
1771out:
1772	return rc;
1773}
1774
1775/*
1776 * Determine the label for an inode that might be unioned.
1777 */
1778static int selinux_determine_inode_label(struct inode *dir,
1779					 const struct qstr *name,
1780					 u16 tclass,
1781					 u32 *_new_isid)
1782{
1783	const struct superblock_security_struct *sbsec = dir->i_sb->s_security;
1784	const struct inode_security_struct *dsec = inode_security(dir);
1785	const struct task_security_struct *tsec = current_security();
1786
1787	if ((sbsec->flags & SE_SBINITIALIZED) &&
1788	    (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)) {
1789		*_new_isid = sbsec->mntpoint_sid;
1790	} else if ((sbsec->flags & SBLABEL_MNT) &&
1791		   tsec->create_sid) {
1792		*_new_isid = tsec->create_sid;
1793	} else {
1794		return security_transition_sid(tsec->sid, dsec->sid, tclass,
 
 
1795					       name, _new_isid);
1796	}
1797
1798	return 0;
1799}
1800
1801/* Check whether a task can create a file. */
1802static int may_create(struct inode *dir,
1803		      struct dentry *dentry,
1804		      u16 tclass)
1805{
1806	const struct task_security_struct *tsec = current_security();
1807	struct inode_security_struct *dsec;
1808	struct superblock_security_struct *sbsec;
1809	u32 sid, newsid;
1810	struct common_audit_data ad;
1811	int rc;
1812
1813	dsec = inode_security(dir);
1814	sbsec = dir->i_sb->s_security;
1815
1816	sid = tsec->sid;
1817
1818	ad.type = LSM_AUDIT_DATA_DENTRY;
1819	ad.u.dentry = dentry;
1820
1821	rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR,
 
1822			  DIR__ADD_NAME | DIR__SEARCH,
1823			  &ad);
1824	if (rc)
1825		return rc;
1826
1827	rc = selinux_determine_inode_label(dir, &dentry->d_name, tclass,
1828					   &newsid);
1829	if (rc)
1830		return rc;
1831
1832	rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad);
 
1833	if (rc)
1834		return rc;
1835
1836	return avc_has_perm(newsid, sbsec->sid,
 
1837			    SECCLASS_FILESYSTEM,
1838			    FILESYSTEM__ASSOCIATE, &ad);
1839}
1840
1841/* Check whether a task can create a key. */
1842static int may_create_key(u32 ksid,
1843			  struct task_struct *ctx)
1844{
1845	u32 sid = task_sid(ctx);
1846
1847	return avc_has_perm(sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1848}
1849
1850#define MAY_LINK	0
1851#define MAY_UNLINK	1
1852#define MAY_RMDIR	2
1853
1854/* Check whether a task can link, unlink, or rmdir a file/directory. */
1855static int may_link(struct inode *dir,
1856		    struct dentry *dentry,
1857		    int kind)
1858
1859{
1860	struct inode_security_struct *dsec, *isec;
1861	struct common_audit_data ad;
1862	u32 sid = current_sid();
1863	u32 av;
1864	int rc;
1865
1866	dsec = inode_security(dir);
1867	isec = backing_inode_security(dentry);
1868
1869	ad.type = LSM_AUDIT_DATA_DENTRY;
1870	ad.u.dentry = dentry;
1871
1872	av = DIR__SEARCH;
1873	av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1874	rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad);
 
1875	if (rc)
1876		return rc;
1877
1878	switch (kind) {
1879	case MAY_LINK:
1880		av = FILE__LINK;
1881		break;
1882	case MAY_UNLINK:
1883		av = FILE__UNLINK;
1884		break;
1885	case MAY_RMDIR:
1886		av = DIR__RMDIR;
1887		break;
1888	default:
1889		printk(KERN_WARNING "SELinux: %s:  unrecognized kind %d\n",
1890			__func__, kind);
1891		return 0;
1892	}
1893
1894	rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad);
 
1895	return rc;
1896}
1897
1898static inline int may_rename(struct inode *old_dir,
1899			     struct dentry *old_dentry,
1900			     struct inode *new_dir,
1901			     struct dentry *new_dentry)
1902{
1903	struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1904	struct common_audit_data ad;
1905	u32 sid = current_sid();
1906	u32 av;
1907	int old_is_dir, new_is_dir;
1908	int rc;
1909
1910	old_dsec = inode_security(old_dir);
1911	old_isec = backing_inode_security(old_dentry);
1912	old_is_dir = d_is_dir(old_dentry);
1913	new_dsec = inode_security(new_dir);
1914
1915	ad.type = LSM_AUDIT_DATA_DENTRY;
1916
1917	ad.u.dentry = old_dentry;
1918	rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR,
 
1919			  DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1920	if (rc)
1921		return rc;
1922	rc = avc_has_perm(sid, old_isec->sid,
 
1923			  old_isec->sclass, FILE__RENAME, &ad);
1924	if (rc)
1925		return rc;
1926	if (old_is_dir && new_dir != old_dir) {
1927		rc = avc_has_perm(sid, old_isec->sid,
 
1928				  old_isec->sclass, DIR__REPARENT, &ad);
1929		if (rc)
1930			return rc;
1931	}
1932
1933	ad.u.dentry = new_dentry;
1934	av = DIR__ADD_NAME | DIR__SEARCH;
1935	if (d_is_positive(new_dentry))
1936		av |= DIR__REMOVE_NAME;
1937	rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
 
1938	if (rc)
1939		return rc;
1940	if (d_is_positive(new_dentry)) {
1941		new_isec = backing_inode_security(new_dentry);
1942		new_is_dir = d_is_dir(new_dentry);
1943		rc = avc_has_perm(sid, new_isec->sid,
 
1944				  new_isec->sclass,
1945				  (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1946		if (rc)
1947			return rc;
1948	}
1949
1950	return 0;
1951}
1952
1953/* Check whether a task can perform a filesystem operation. */
1954static int superblock_has_perm(const struct cred *cred,
1955			       struct super_block *sb,
1956			       u32 perms,
1957			       struct common_audit_data *ad)
1958{
1959	struct superblock_security_struct *sbsec;
1960	u32 sid = cred_sid(cred);
1961
1962	sbsec = sb->s_security;
1963	return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
 
1964}
1965
1966/* Convert a Linux mode and permission mask to an access vector. */
1967static inline u32 file_mask_to_av(int mode, int mask)
1968{
1969	u32 av = 0;
1970
1971	if (!S_ISDIR(mode)) {
1972		if (mask & MAY_EXEC)
1973			av |= FILE__EXECUTE;
1974		if (mask & MAY_READ)
1975			av |= FILE__READ;
1976
1977		if (mask & MAY_APPEND)
1978			av |= FILE__APPEND;
1979		else if (mask & MAY_WRITE)
1980			av |= FILE__WRITE;
1981
1982	} else {
1983		if (mask & MAY_EXEC)
1984			av |= DIR__SEARCH;
1985		if (mask & MAY_WRITE)
1986			av |= DIR__WRITE;
1987		if (mask & MAY_READ)
1988			av |= DIR__READ;
1989	}
1990
1991	return av;
1992}
1993
1994/* Convert a Linux file to an access vector. */
1995static inline u32 file_to_av(struct file *file)
1996{
1997	u32 av = 0;
1998
1999	if (file->f_mode & FMODE_READ)
2000		av |= FILE__READ;
2001	if (file->f_mode & FMODE_WRITE) {
2002		if (file->f_flags & O_APPEND)
2003			av |= FILE__APPEND;
2004		else
2005			av |= FILE__WRITE;
2006	}
2007	if (!av) {
2008		/*
2009		 * Special file opened with flags 3 for ioctl-only use.
2010		 */
2011		av = FILE__IOCTL;
2012	}
2013
2014	return av;
2015}
2016
2017/*
2018 * Convert a file to an access vector and include the correct open
2019 * open permission.
2020 */
2021static inline u32 open_file_to_av(struct file *file)
2022{
2023	u32 av = file_to_av(file);
 
2024
2025	if (selinux_policycap_openperm)
 
2026		av |= FILE__OPEN;
2027
2028	return av;
2029}
2030
2031/* Hook functions begin here. */
2032
2033static int selinux_binder_set_context_mgr(struct task_struct *mgr)
2034{
2035	u32 mysid = current_sid();
2036	u32 mgrsid = task_sid(mgr);
2037
2038	return avc_has_perm(mysid, mgrsid, SECCLASS_BINDER,
2039			    BINDER__SET_CONTEXT_MGR, NULL);
2040}
2041
2042static int selinux_binder_transaction(struct task_struct *from,
2043				      struct task_struct *to)
2044{
2045	u32 mysid = current_sid();
2046	u32 fromsid = task_sid(from);
2047	u32 tosid = task_sid(to);
2048	int rc;
2049
2050	if (mysid != fromsid) {
2051		rc = avc_has_perm(mysid, fromsid, SECCLASS_BINDER,
 
2052				  BINDER__IMPERSONATE, NULL);
2053		if (rc)
2054			return rc;
2055	}
2056
2057	return avc_has_perm(fromsid, tosid, SECCLASS_BINDER, BINDER__CALL,
2058			    NULL);
2059}
2060
2061static int selinux_binder_transfer_binder(struct task_struct *from,
2062					  struct task_struct *to)
2063{
2064	u32 fromsid = task_sid(from);
2065	u32 tosid = task_sid(to);
2066
2067	return avc_has_perm(fromsid, tosid, SECCLASS_BINDER, BINDER__TRANSFER,
2068			    NULL);
2069}
2070
2071static int selinux_binder_transfer_file(struct task_struct *from,
2072					struct task_struct *to,
2073					struct file *file)
2074{
2075	u32 sid = task_sid(to);
2076	struct file_security_struct *fsec = file->f_security;
2077	struct dentry *dentry = file->f_path.dentry;
2078	struct inode_security_struct *isec = backing_inode_security(dentry);
2079	struct common_audit_data ad;
2080	int rc;
2081
2082	ad.type = LSM_AUDIT_DATA_PATH;
2083	ad.u.path = file->f_path;
2084
2085	if (sid != fsec->sid) {
2086		rc = avc_has_perm(sid, fsec->sid,
 
2087				  SECCLASS_FD,
2088				  FD__USE,
2089				  &ad);
2090		if (rc)
2091			return rc;
2092	}
2093
 
 
 
 
 
 
2094	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2095		return 0;
2096
2097	return avc_has_perm(sid, isec->sid, isec->sclass, file_to_av(file),
 
 
2098			    &ad);
2099}
2100
2101static int selinux_ptrace_access_check(struct task_struct *child,
2102				     unsigned int mode)
2103{
2104	if (mode & PTRACE_MODE_READ) {
2105		u32 sid = current_sid();
2106		u32 csid = task_sid(child);
2107		return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ, NULL);
2108	}
 
2109
2110	return current_has_perm(child, PROCESS__PTRACE);
 
2111}
2112
2113static int selinux_ptrace_traceme(struct task_struct *parent)
2114{
2115	return task_has_perm(parent, current, PROCESS__PTRACE);
 
 
2116}
2117
2118static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
2119			  kernel_cap_t *inheritable, kernel_cap_t *permitted)
2120{
2121	return current_has_perm(target, PROCESS__GETCAP);
 
 
2122}
2123
2124static int selinux_capset(struct cred *new, const struct cred *old,
2125			  const kernel_cap_t *effective,
2126			  const kernel_cap_t *inheritable,
2127			  const kernel_cap_t *permitted)
2128{
2129	return cred_has_perm(old, new, PROCESS__SETCAP);
 
 
2130}
2131
2132/*
2133 * (This comment used to live with the selinux_task_setuid hook,
2134 * which was removed).
2135 *
2136 * Since setuid only affects the current process, and since the SELinux
2137 * controls are not based on the Linux identity attributes, SELinux does not
2138 * need to control this operation.  However, SELinux does control the use of
2139 * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
2140 */
2141
2142static int selinux_capable(const struct cred *cred, struct user_namespace *ns,
2143			   int cap, int audit)
2144{
2145	return cred_has_capability(cred, cap, audit);
2146}
2147
2148static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
2149{
2150	const struct cred *cred = current_cred();
2151	int rc = 0;
2152
2153	if (!sb)
2154		return 0;
2155
2156	switch (cmds) {
2157	case Q_SYNC:
2158	case Q_QUOTAON:
2159	case Q_QUOTAOFF:
2160	case Q_SETINFO:
2161	case Q_SETQUOTA:
 
 
 
2162		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
2163		break;
2164	case Q_GETFMT:
2165	case Q_GETINFO:
2166	case Q_GETQUOTA:
 
 
 
 
2167		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
2168		break;
2169	default:
2170		rc = 0;  /* let the kernel handle invalid cmds */
2171		break;
2172	}
2173	return rc;
2174}
2175
2176static int selinux_quota_on(struct dentry *dentry)
2177{
2178	const struct cred *cred = current_cred();
2179
2180	return dentry_has_perm(cred, dentry, FILE__QUOTAON);
2181}
2182
2183static int selinux_syslog(int type)
2184{
2185	int rc;
2186
2187	switch (type) {
2188	case SYSLOG_ACTION_READ_ALL:	/* Read last kernel messages */
2189	case SYSLOG_ACTION_SIZE_BUFFER:	/* Return size of the log buffer */
2190		rc = task_has_system(current, SYSTEM__SYSLOG_READ);
2191		break;
 
2192	case SYSLOG_ACTION_CONSOLE_OFF:	/* Disable logging to console */
2193	case SYSLOG_ACTION_CONSOLE_ON:	/* Enable logging to console */
2194	/* Set level of messages printed to console */
2195	case SYSLOG_ACTION_CONSOLE_LEVEL:
2196		rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
2197		break;
2198	case SYSLOG_ACTION_CLOSE:	/* Close log */
2199	case SYSLOG_ACTION_OPEN:	/* Open log */
2200	case SYSLOG_ACTION_READ:	/* Read from log */
2201	case SYSLOG_ACTION_READ_CLEAR:	/* Read/clear last kernel messages */
2202	case SYSLOG_ACTION_CLEAR:	/* Clear ring buffer */
2203	default:
2204		rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
2205		break;
2206	}
2207	return rc;
2208}
2209
2210/*
2211 * Check that a process has enough memory to allocate a new virtual
2212 * mapping. 0 means there is enough memory for the allocation to
2213 * succeed and -ENOMEM implies there is not.
2214 *
2215 * Do not audit the selinux permission check, as this is applied to all
2216 * processes that allocate mappings.
2217 */
2218static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2219{
2220	int rc, cap_sys_admin = 0;
2221
2222	rc = cred_has_capability(current_cred(), CAP_SYS_ADMIN,
2223					SECURITY_CAP_NOAUDIT);
2224	if (rc == 0)
2225		cap_sys_admin = 1;
2226
2227	return cap_sys_admin;
2228}
2229
2230/* binprm security operations */
2231
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2232static int check_nnp_nosuid(const struct linux_binprm *bprm,
2233			    const struct task_security_struct *old_tsec,
2234			    const struct task_security_struct *new_tsec)
2235{
2236	int nnp = (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS);
2237	int nosuid = (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID);
2238	int rc;
 
2239
2240	if (!nnp && !nosuid)
2241		return 0; /* neither NNP nor nosuid */
2242
2243	if (new_tsec->sid == old_tsec->sid)
2244		return 0; /* No change in credentials */
2245
2246	/*
2247	 * The only transitions we permit under NNP or nosuid
2248	 * are transitions to bounded SIDs, i.e. SIDs that are
2249	 * guaranteed to only be allowed a subset of the permissions
2250	 * of the current SID.
2251	 */
2252	rc = security_bounded_transition(old_tsec->sid, new_tsec->sid);
2253	if (rc) {
2254		/*
2255		 * On failure, preserve the errno values for NNP vs nosuid.
2256		 * NNP:  Operation not permitted for caller.
2257		 * nosuid:  Permission denied to file.
2258		 */
2259		if (nnp)
2260			return -EPERM;
2261		else
2262			return -EACCES;
 
 
 
 
 
2263	}
2264	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2265}
2266
2267static int selinux_bprm_set_creds(struct linux_binprm *bprm)
2268{
2269	const struct task_security_struct *old_tsec;
2270	struct task_security_struct *new_tsec;
2271	struct inode_security_struct *isec;
2272	struct common_audit_data ad;
2273	struct inode *inode = file_inode(bprm->file);
2274	int rc;
2275
2276	/* SELinux context only depends on initial program or script and not
2277	 * the script interpreter */
2278	if (bprm->cred_prepared)
2279		return 0;
2280
2281	old_tsec = current_security();
2282	new_tsec = bprm->cred->security;
2283	isec = inode_security(inode);
2284
2285	/* Default to the current task SID. */
2286	new_tsec->sid = old_tsec->sid;
2287	new_tsec->osid = old_tsec->sid;
2288
2289	/* Reset fs, key, and sock SIDs on execve. */
2290	new_tsec->create_sid = 0;
2291	new_tsec->keycreate_sid = 0;
2292	new_tsec->sockcreate_sid = 0;
2293
2294	if (old_tsec->exec_sid) {
2295		new_tsec->sid = old_tsec->exec_sid;
2296		/* Reset exec SID on execve. */
2297		new_tsec->exec_sid = 0;
2298
2299		/* Fail on NNP or nosuid if not an allowed transition. */
2300		rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2301		if (rc)
2302			return rc;
2303	} else {
2304		/* Check for a default transition on this program. */
2305		rc = security_transition_sid(old_tsec->sid, isec->sid,
2306					     SECCLASS_PROCESS, NULL,
2307					     &new_tsec->sid);
2308		if (rc)
2309			return rc;
2310
2311		/*
2312		 * Fallback to old SID on NNP or nosuid if not an allowed
2313		 * transition.
2314		 */
2315		rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2316		if (rc)
2317			new_tsec->sid = old_tsec->sid;
2318	}
2319
2320	ad.type = LSM_AUDIT_DATA_PATH;
2321	ad.u.path = bprm->file->f_path;
2322
2323	if (new_tsec->sid == old_tsec->sid) {
2324		rc = avc_has_perm(old_tsec->sid, isec->sid,
 
2325				  SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2326		if (rc)
2327			return rc;
2328	} else {
2329		/* Check permissions for the transition. */
2330		rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
 
2331				  SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2332		if (rc)
2333			return rc;
2334
2335		rc = avc_has_perm(new_tsec->sid, isec->sid,
 
2336				  SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2337		if (rc)
2338			return rc;
2339
2340		/* Check for shared state */
2341		if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2342			rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
 
2343					  SECCLASS_PROCESS, PROCESS__SHARE,
2344					  NULL);
2345			if (rc)
2346				return -EPERM;
2347		}
2348
2349		/* Make sure that anyone attempting to ptrace over a task that
2350		 * changes its SID has the appropriate permit */
2351		if (bprm->unsafe &
2352		    (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
2353			struct task_struct *tracer;
2354			struct task_security_struct *sec;
2355			u32 ptsid = 0;
2356
2357			rcu_read_lock();
2358			tracer = ptrace_parent(current);
2359			if (likely(tracer != NULL)) {
2360				sec = __task_cred(tracer)->security;
2361				ptsid = sec->sid;
2362			}
2363			rcu_read_unlock();
2364
2365			if (ptsid != 0) {
2366				rc = avc_has_perm(ptsid, new_tsec->sid,
 
2367						  SECCLASS_PROCESS,
2368						  PROCESS__PTRACE, NULL);
2369				if (rc)
2370					return -EPERM;
2371			}
2372		}
2373
2374		/* Clear any possibly unsafe personality bits on exec: */
2375		bprm->per_clear |= PER_CLEAR_ON_SETID;
2376	}
2377
2378	return 0;
2379}
2380
2381static int selinux_bprm_secureexec(struct linux_binprm *bprm)
2382{
2383	const struct task_security_struct *tsec = current_security();
2384	u32 sid, osid;
2385	int atsecure = 0;
2386
2387	sid = tsec->sid;
2388	osid = tsec->osid;
2389
2390	if (osid != sid) {
2391		/* Enable secure mode for SIDs transitions unless
2392		   the noatsecure permission is granted between
2393		   the two SIDs, i.e. ahp returns 0. */
2394		atsecure = avc_has_perm(osid, sid,
2395					SECCLASS_PROCESS,
2396					PROCESS__NOATSECURE, NULL);
 
 
2397	}
2398
2399	return !!atsecure;
2400}
2401
2402static int match_file(const void *p, struct file *file, unsigned fd)
2403{
2404	return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0;
2405}
2406
2407/* Derived from fs/exec.c:flush_old_files. */
2408static inline void flush_unauthorized_files(const struct cred *cred,
2409					    struct files_struct *files)
2410{
2411	struct file *file, *devnull = NULL;
2412	struct tty_struct *tty;
2413	int drop_tty = 0;
2414	unsigned n;
2415
2416	tty = get_current_tty();
2417	if (tty) {
2418		spin_lock(&tty->files_lock);
2419		if (!list_empty(&tty->tty_files)) {
2420			struct tty_file_private *file_priv;
2421
2422			/* Revalidate access to controlling tty.
2423			   Use file_path_has_perm on the tty path directly
2424			   rather than using file_has_perm, as this particular
2425			   open file may belong to another process and we are
2426			   only interested in the inode-based check here. */
2427			file_priv = list_first_entry(&tty->tty_files,
2428						struct tty_file_private, list);
2429			file = file_priv->file;
2430			if (file_path_has_perm(cred, file, FILE__READ | FILE__WRITE))
2431				drop_tty = 1;
2432		}
2433		spin_unlock(&tty->files_lock);
2434		tty_kref_put(tty);
2435	}
2436	/* Reset controlling tty. */
2437	if (drop_tty)
2438		no_tty();
2439
2440	/* Revalidate access to inherited open files. */
2441	n = iterate_fd(files, 0, match_file, cred);
2442	if (!n) /* none found? */
2443		return;
2444
2445	devnull = dentry_open(&selinux_null, O_RDWR, cred);
2446	if (IS_ERR(devnull))
2447		devnull = NULL;
2448	/* replace all the matching ones with this */
2449	do {
2450		replace_fd(n - 1, devnull, 0);
2451	} while ((n = iterate_fd(files, n, match_file, cred)) != 0);
2452	if (devnull)
2453		fput(devnull);
2454}
2455
2456/*
2457 * Prepare a process for imminent new credential changes due to exec
2458 */
2459static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2460{
2461	struct task_security_struct *new_tsec;
2462	struct rlimit *rlim, *initrlim;
2463	int rc, i;
2464
2465	new_tsec = bprm->cred->security;
2466	if (new_tsec->sid == new_tsec->osid)
2467		return;
2468
2469	/* Close files for which the new task SID is not authorized. */
2470	flush_unauthorized_files(bprm->cred, current->files);
2471
2472	/* Always clear parent death signal on SID transitions. */
2473	current->pdeath_signal = 0;
2474
2475	/* Check whether the new SID can inherit resource limits from the old
2476	 * SID.  If not, reset all soft limits to the lower of the current
2477	 * task's hard limit and the init task's soft limit.
2478	 *
2479	 * Note that the setting of hard limits (even to lower them) can be
2480	 * controlled by the setrlimit check.  The inclusion of the init task's
2481	 * soft limit into the computation is to avoid resetting soft limits
2482	 * higher than the default soft limit for cases where the default is
2483	 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2484	 */
2485	rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
 
2486			  PROCESS__RLIMITINH, NULL);
2487	if (rc) {
2488		/* protect against do_prlimit() */
2489		task_lock(current);
2490		for (i = 0; i < RLIM_NLIMITS; i++) {
2491			rlim = current->signal->rlim + i;
2492			initrlim = init_task.signal->rlim + i;
2493			rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2494		}
2495		task_unlock(current);
2496		update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
 
2497	}
2498}
2499
2500/*
2501 * Clean up the process immediately after the installation of new credentials
2502 * due to exec
2503 */
2504static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2505{
2506	const struct task_security_struct *tsec = current_security();
2507	struct itimerval itimer;
2508	u32 osid, sid;
2509	int rc, i;
2510
2511	osid = tsec->osid;
2512	sid = tsec->sid;
2513
2514	if (sid == osid)
2515		return;
2516
2517	/* Check whether the new SID can inherit signal state from the old SID.
2518	 * If not, clear itimers to avoid subsequent signal generation and
2519	 * flush and unblock signals.
2520	 *
2521	 * This must occur _after_ the task SID has been updated so that any
2522	 * kill done after the flush will be checked against the new SID.
2523	 */
2524	rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
 
2525	if (rc) {
2526		memset(&itimer, 0, sizeof itimer);
2527		for (i = 0; i < 3; i++)
2528			do_setitimer(i, &itimer, NULL);
2529		spin_lock_irq(&current->sighand->siglock);
2530		if (!fatal_signal_pending(current)) {
2531			flush_sigqueue(&current->pending);
2532			flush_sigqueue(&current->signal->shared_pending);
2533			flush_signal_handlers(current, 1);
2534			sigemptyset(&current->blocked);
2535			recalc_sigpending();
2536		}
2537		spin_unlock_irq(&current->sighand->siglock);
2538	}
2539
2540	/* Wake up the parent if it is waiting so that it can recheck
2541	 * wait permission to the new task SID. */
2542	read_lock(&tasklist_lock);
2543	__wake_up_parent(current, current->real_parent);
2544	read_unlock(&tasklist_lock);
2545}
2546
2547/* superblock security operations */
2548
2549static int selinux_sb_alloc_security(struct super_block *sb)
2550{
2551	return superblock_alloc_security(sb);
2552}
2553
2554static void selinux_sb_free_security(struct super_block *sb)
2555{
2556	superblock_free_security(sb);
2557}
2558
2559static inline int match_prefix(char *prefix, int plen, char *option, int olen)
2560{
2561	if (plen > olen)
2562		return 0;
2563
2564	return !memcmp(prefix, option, plen);
2565}
2566
2567static inline int selinux_option(char *option, int len)
2568{
2569	return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) ||
2570		match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) ||
2571		match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) ||
2572		match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len) ||
2573		match_prefix(LABELSUPP_STR, sizeof(LABELSUPP_STR)-1, option, len));
2574}
2575
2576static inline void take_option(char **to, char *from, int *first, int len)
2577{
2578	if (!*first) {
2579		**to = ',';
2580		*to += 1;
2581	} else
2582		*first = 0;
2583	memcpy(*to, from, len);
2584	*to += len;
2585}
2586
2587static inline void take_selinux_option(char **to, char *from, int *first,
2588				       int len)
2589{
2590	int current_size = 0;
2591
2592	if (!*first) {
2593		**to = '|';
2594		*to += 1;
2595	} else
2596		*first = 0;
2597
2598	while (current_size < len) {
2599		if (*from != '"') {
2600			**to = *from;
2601			*to += 1;
2602		}
2603		from += 1;
2604		current_size += 1;
2605	}
 
2606}
2607
2608static int selinux_sb_copy_data(char *orig, char *copy)
2609{
2610	int fnosec, fsec, rc = 0;
2611	char *in_save, *in_curr, *in_end;
2612	char *sec_curr, *nosec_save, *nosec;
2613	int open_quote = 0;
2614
2615	in_curr = orig;
2616	sec_curr = copy;
2617
2618	nosec = (char *)get_zeroed_page(GFP_KERNEL);
2619	if (!nosec) {
2620		rc = -ENOMEM;
2621		goto out;
2622	}
2623
2624	nosec_save = nosec;
2625	fnosec = fsec = 1;
2626	in_save = in_end = orig;
2627
2628	do {
2629		if (*in_end == '"')
2630			open_quote = !open_quote;
2631		if ((*in_end == ',' && open_quote == 0) ||
2632				*in_end == '\0') {
2633			int len = in_end - in_curr;
2634
2635			if (selinux_option(in_curr, len))
2636				take_selinux_option(&sec_curr, in_curr, &fsec, len);
2637			else
2638				take_option(&nosec, in_curr, &fnosec, len);
2639
2640			in_curr = in_end + 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2641		}
2642	} while (*in_end++);
 
 
 
 
 
2643
2644	strcpy(in_save, nosec_save);
2645	free_page((unsigned long)nosec_save);
2646out:
 
 
2647	return rc;
2648}
2649
2650static int selinux_sb_remount(struct super_block *sb, void *data)
2651{
2652	int rc, i, *flags;
2653	struct security_mnt_opts opts;
2654	char *secdata, **mount_options;
2655	struct superblock_security_struct *sbsec = sb->s_security;
 
 
2656
 
 
 
 
2657	if (!(sbsec->flags & SE_SBINITIALIZED))
2658		return 0;
2659
2660	if (!data)
2661		return 0;
2662
2663	if (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
2664		return 0;
 
 
 
 
2665
2666	security_init_mnt_opts(&opts);
2667	secdata = alloc_secdata();
2668	if (!secdata)
2669		return -ENOMEM;
2670	rc = selinux_sb_copy_data(data, secdata);
2671	if (rc)
2672		goto out_free_secdata;
 
 
 
 
 
 
 
 
 
2673
2674	rc = selinux_parse_opts_str(secdata, &opts);
2675	if (rc)
2676		goto out_free_secdata;
 
 
 
 
 
 
 
 
 
 
 
 
 
2677
2678	mount_options = opts.mnt_opts;
2679	flags = opts.mnt_opts_flags;
 
 
 
 
2680
2681	for (i = 0; i < opts.num_mnt_opts; i++) {
2682		u32 sid;
2683
2684		if (flags[i] == SBLABEL_MNT)
2685			continue;
2686		rc = security_context_str_to_sid(mount_options[i], &sid, GFP_KERNEL);
2687		if (rc) {
2688			printk(KERN_WARNING "SELinux: security_context_str_to_sid"
2689			       "(%s) failed for (dev %s, type %s) errno=%d\n",
2690			       mount_options[i], sb->s_id, sb->s_type->name, rc);
2691			goto out_free_opts;
2692		}
2693		rc = -EINVAL;
2694		switch (flags[i]) {
2695		case FSCONTEXT_MNT:
2696			if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid))
2697				goto out_bad_option;
2698			break;
2699		case CONTEXT_MNT:
2700			if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid))
2701				goto out_bad_option;
2702			break;
2703		case ROOTCONTEXT_MNT: {
2704			struct inode_security_struct *root_isec;
2705			root_isec = backing_inode_security(sb->s_root);
2706
2707			if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid))
2708				goto out_bad_option;
2709			break;
2710		}
2711		case DEFCONTEXT_MNT:
2712			if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid))
2713				goto out_bad_option;
2714			break;
2715		default:
2716			goto out_free_opts;
2717		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2718	}
 
2719
2720	rc = 0;
2721out_free_opts:
2722	security_free_mnt_opts(&opts);
2723out_free_secdata:
2724	free_secdata(secdata);
2725	return rc;
2726out_bad_option:
2727	printk(KERN_WARNING "SELinux: unable to change security options "
2728	       "during remount (dev %s, type=%s)\n", sb->s_id,
2729	       sb->s_type->name);
2730	goto out_free_opts;
2731}
2732
2733static int selinux_sb_kern_mount(struct super_block *sb, int flags, void *data)
2734{
2735	const struct cred *cred = current_cred();
2736	struct common_audit_data ad;
2737	int rc;
2738
2739	rc = superblock_doinit(sb, data);
2740	if (rc)
2741		return rc;
2742
2743	/* Allow all mounts performed by the kernel */
2744	if (flags & MS_KERNMOUNT)
2745		return 0;
2746
2747	ad.type = LSM_AUDIT_DATA_DENTRY;
2748	ad.u.dentry = sb->s_root;
2749	return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2750}
2751
2752static int selinux_sb_statfs(struct dentry *dentry)
2753{
2754	const struct cred *cred = current_cred();
2755	struct common_audit_data ad;
2756
2757	ad.type = LSM_AUDIT_DATA_DENTRY;
2758	ad.u.dentry = dentry->d_sb->s_root;
2759	return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2760}
2761
2762static int selinux_mount(const char *dev_name,
2763			 struct path *path,
2764			 const char *type,
2765			 unsigned long flags,
2766			 void *data)
2767{
2768	const struct cred *cred = current_cred();
2769
2770	if (flags & MS_REMOUNT)
2771		return superblock_has_perm(cred, path->dentry->d_sb,
2772					   FILESYSTEM__REMOUNT, NULL);
2773	else
2774		return path_has_perm(cred, path, FILE__MOUNTON);
2775}
2776
 
 
 
 
 
 
 
 
2777static int selinux_umount(struct vfsmount *mnt, int flags)
2778{
2779	const struct cred *cred = current_cred();
2780
2781	return superblock_has_perm(cred, mnt->mnt_sb,
2782				   FILESYSTEM__UNMOUNT, NULL);
2783}
2784
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2785/* inode security operations */
2786
2787static int selinux_inode_alloc_security(struct inode *inode)
2788{
2789	return inode_alloc_security(inode);
 
 
 
 
 
 
 
 
 
 
 
2790}
2791
2792static void selinux_inode_free_security(struct inode *inode)
2793{
2794	inode_free_security(inode);
2795}
2796
2797static int selinux_dentry_init_security(struct dentry *dentry, int mode,
2798					struct qstr *name, void **ctx,
2799					u32 *ctxlen)
2800{
2801	u32 newsid;
2802	int rc;
2803
2804	rc = selinux_determine_inode_label(d_inode(dentry->d_parent), name,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2805					   inode_mode_to_security_class(mode),
2806					   &newsid);
2807	if (rc)
2808		return rc;
2809
2810	return security_sid_to_context(newsid, (char **)ctx, ctxlen);
 
 
2811}
2812
2813static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2814				       const struct qstr *qstr,
2815				       const char **name,
2816				       void **value, size_t *len)
2817{
2818	const struct task_security_struct *tsec = current_security();
2819	struct superblock_security_struct *sbsec;
2820	u32 sid, newsid, clen;
2821	int rc;
2822	char *context;
2823
2824	sbsec = dir->i_sb->s_security;
2825
2826	sid = tsec->sid;
2827	newsid = tsec->create_sid;
2828
2829	rc = selinux_determine_inode_label(
2830		dir, qstr,
2831		inode_mode_to_security_class(inode->i_mode),
2832		&newsid);
2833	if (rc)
2834		return rc;
2835
2836	/* Possibly defer initialization to selinux_complete_init. */
2837	if (sbsec->flags & SE_SBINITIALIZED) {
2838		struct inode_security_struct *isec = inode->i_security;
2839		isec->sclass = inode_mode_to_security_class(inode->i_mode);
2840		isec->sid = newsid;
2841		isec->initialized = LABEL_INITIALIZED;
2842	}
2843
2844	if (!ss_initialized || !(sbsec->flags & SBLABEL_MNT))
 
2845		return -EOPNOTSUPP;
2846
2847	if (name)
2848		*name = XATTR_SELINUX_SUFFIX;
2849
2850	if (value && len) {
2851		rc = security_sid_to_context_force(newsid, &context, &clen);
 
2852		if (rc)
2853			return rc;
2854		*value = context;
2855		*len = clen;
2856	}
2857
2858	return 0;
2859}
2860
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2861static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
2862{
2863	return may_create(dir, dentry, SECCLASS_FILE);
2864}
2865
2866static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2867{
2868	return may_link(dir, old_dentry, MAY_LINK);
2869}
2870
2871static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2872{
2873	return may_link(dir, dentry, MAY_UNLINK);
2874}
2875
2876static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2877{
2878	return may_create(dir, dentry, SECCLASS_LNK_FILE);
2879}
2880
2881static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask)
2882{
2883	return may_create(dir, dentry, SECCLASS_DIR);
2884}
2885
2886static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2887{
2888	return may_link(dir, dentry, MAY_RMDIR);
2889}
2890
2891static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2892{
2893	return may_create(dir, dentry, inode_mode_to_security_class(mode));
2894}
2895
2896static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2897				struct inode *new_inode, struct dentry *new_dentry)
2898{
2899	return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2900}
2901
2902static int selinux_inode_readlink(struct dentry *dentry)
2903{
2904	const struct cred *cred = current_cred();
2905
2906	return dentry_has_perm(cred, dentry, FILE__READ);
2907}
2908
2909static int selinux_inode_follow_link(struct dentry *dentry, struct inode *inode,
2910				     bool rcu)
2911{
2912	const struct cred *cred = current_cred();
2913	struct common_audit_data ad;
2914	struct inode_security_struct *isec;
2915	u32 sid;
2916
2917	validate_creds(cred);
2918
2919	ad.type = LSM_AUDIT_DATA_DENTRY;
2920	ad.u.dentry = dentry;
2921	sid = cred_sid(cred);
2922	isec = inode_security_rcu(inode, rcu);
2923	if (IS_ERR(isec))
2924		return PTR_ERR(isec);
2925
2926	return avc_has_perm_flags(sid, isec->sid, isec->sclass, FILE__READ, &ad,
2927				  rcu ? MAY_NOT_BLOCK : 0);
2928}
2929
2930static noinline int audit_inode_permission(struct inode *inode,
2931					   u32 perms, u32 audited, u32 denied,
2932					   int result,
2933					   unsigned flags)
2934{
2935	struct common_audit_data ad;
2936	struct inode_security_struct *isec = inode->i_security;
2937	int rc;
2938
2939	ad.type = LSM_AUDIT_DATA_INODE;
2940	ad.u.inode = inode;
2941
2942	rc = slow_avc_audit(current_sid(), isec->sid, isec->sclass, perms,
2943			    audited, denied, result, &ad, flags);
2944	if (rc)
2945		return rc;
2946	return 0;
2947}
2948
2949static int selinux_inode_permission(struct inode *inode, int mask)
2950{
2951	const struct cred *cred = current_cred();
2952	u32 perms;
2953	bool from_access;
2954	unsigned flags = mask & MAY_NOT_BLOCK;
2955	struct inode_security_struct *isec;
2956	u32 sid;
2957	struct av_decision avd;
2958	int rc, rc2;
2959	u32 audited, denied;
2960
2961	from_access = mask & MAY_ACCESS;
2962	mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
2963
2964	/* No permission to check.  Existence test. */
2965	if (!mask)
2966		return 0;
2967
2968	validate_creds(cred);
2969
2970	if (unlikely(IS_PRIVATE(inode)))
2971		return 0;
2972
2973	perms = file_mask_to_av(inode->i_mode, mask);
2974
2975	sid = cred_sid(cred);
2976	isec = inode_security_rcu(inode, flags & MAY_NOT_BLOCK);
2977	if (IS_ERR(isec))
2978		return PTR_ERR(isec);
2979
2980	rc = avc_has_perm_noaudit(sid, isec->sid, isec->sclass, perms, 0, &avd);
 
 
2981	audited = avc_audit_required(perms, &avd, rc,
2982				     from_access ? FILE__AUDIT_ACCESS : 0,
2983				     &denied);
2984	if (likely(!audited))
2985		return rc;
2986
2987	rc2 = audit_inode_permission(inode, perms, audited, denied, rc, flags);
2988	if (rc2)
2989		return rc2;
2990	return rc;
2991}
2992
2993static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
2994{
2995	const struct cred *cred = current_cred();
 
2996	unsigned int ia_valid = iattr->ia_valid;
2997	__u32 av = FILE__WRITE;
2998
2999	/* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
3000	if (ia_valid & ATTR_FORCE) {
3001		ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
3002			      ATTR_FORCE);
3003		if (!ia_valid)
3004			return 0;
3005	}
3006
3007	if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
3008			ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
3009		return dentry_has_perm(cred, dentry, FILE__SETATTR);
3010
3011	if (selinux_policycap_openperm && (ia_valid & ATTR_SIZE)
3012			&& !(ia_valid & ATTR_FILE))
 
 
3013		av |= FILE__OPEN;
3014
3015	return dentry_has_perm(cred, dentry, av);
3016}
3017
3018static int selinux_inode_getattr(const struct path *path)
3019{
3020	return path_has_perm(current_cred(), path, FILE__GETATTR);
3021}
3022
3023static int selinux_inode_setotherxattr(struct dentry *dentry, const char *name)
3024{
3025	const struct cred *cred = current_cred();
 
3026
3027	if (!strncmp(name, XATTR_SECURITY_PREFIX,
3028		     sizeof XATTR_SECURITY_PREFIX - 1)) {
3029		if (!strcmp(name, XATTR_NAME_CAPS)) {
3030			if (!capable(CAP_SETFCAP))
3031				return -EPERM;
3032		} else if (!capable(CAP_SYS_ADMIN)) {
3033			/* A different attribute in the security namespace.
3034			   Restrict to administrator. */
3035			return -EPERM;
3036		}
3037	}
3038
3039	/* Not an attribute we recognize, so just check the
3040	   ordinary setattr permission. */
3041	return dentry_has_perm(cred, dentry, FILE__SETATTR);
3042}
3043
3044static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
 
3045				  const void *value, size_t size, int flags)
3046{
3047	struct inode *inode = d_backing_inode(dentry);
3048	struct inode_security_struct *isec = backing_inode_security(dentry);
3049	struct superblock_security_struct *sbsec;
3050	struct common_audit_data ad;
3051	u32 newsid, sid = current_sid();
3052	int rc = 0;
3053
3054	if (strcmp(name, XATTR_NAME_SELINUX))
3055		return selinux_inode_setotherxattr(dentry, name);
 
 
 
 
 
 
 
 
 
 
3056
3057	sbsec = inode->i_sb->s_security;
3058	if (!(sbsec->flags & SBLABEL_MNT))
3059		return -EOPNOTSUPP;
3060
3061	if (!inode_owner_or_capable(inode))
3062		return -EPERM;
3063
3064	ad.type = LSM_AUDIT_DATA_DENTRY;
3065	ad.u.dentry = dentry;
3066
3067	rc = avc_has_perm(sid, isec->sid, isec->sclass,
 
 
3068			  FILE__RELABELFROM, &ad);
3069	if (rc)
3070		return rc;
3071
3072	rc = security_context_to_sid(value, size, &newsid, GFP_KERNEL);
 
3073	if (rc == -EINVAL) {
3074		if (!capable(CAP_MAC_ADMIN)) {
3075			struct audit_buffer *ab;
3076			size_t audit_size;
3077			const char *str;
3078
3079			/* We strip a nul only if it is at the end, otherwise the
3080			 * context contains a nul and we should audit that */
3081			if (value) {
3082				str = value;
 
3083				if (str[size - 1] == '\0')
3084					audit_size = size - 1;
3085				else
3086					audit_size = size;
3087			} else {
3088				str = "";
3089				audit_size = 0;
3090			}
3091			ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
 
3092			audit_log_format(ab, "op=setxattr invalid_context=");
3093			audit_log_n_untrustedstring(ab, value, audit_size);
3094			audit_log_end(ab);
3095
3096			return rc;
3097		}
3098		rc = security_context_to_sid_force(value, size, &newsid);
 
3099	}
3100	if (rc)
3101		return rc;
3102
3103	rc = avc_has_perm(sid, newsid, isec->sclass,
 
3104			  FILE__RELABELTO, &ad);
3105	if (rc)
3106		return rc;
3107
3108	rc = security_validate_transition(isec->sid, newsid, sid,
3109					  isec->sclass);
3110	if (rc)
3111		return rc;
3112
3113	return avc_has_perm(newsid,
 
3114			    sbsec->sid,
3115			    SECCLASS_FILESYSTEM,
3116			    FILESYSTEM__ASSOCIATE,
3117			    &ad);
3118}
3119
3120static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
3121					const void *value, size_t size,
3122					int flags)
3123{
3124	struct inode *inode = d_backing_inode(dentry);
3125	struct inode_security_struct *isec = backing_inode_security(dentry);
3126	u32 newsid;
3127	int rc;
3128
3129	if (strcmp(name, XATTR_NAME_SELINUX)) {
3130		/* Not an attribute we recognize, so nothing to do. */
3131		return;
3132	}
3133
3134	rc = security_context_to_sid_force(value, size, &newsid);
 
 
 
 
 
 
 
 
 
 
3135	if (rc) {
3136		printk(KERN_ERR "SELinux:  unable to map context to SID"
3137		       "for (%s, %lu), rc=%d\n",
3138		       inode->i_sb->s_id, inode->i_ino, -rc);
3139		return;
3140	}
3141
 
 
3142	isec->sclass = inode_mode_to_security_class(inode->i_mode);
3143	isec->sid = newsid;
3144	isec->initialized = LABEL_INITIALIZED;
 
3145
3146	return;
3147}
3148
3149static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
3150{
3151	const struct cred *cred = current_cred();
3152
3153	return dentry_has_perm(cred, dentry, FILE__GETATTR);
3154}
3155
3156static int selinux_inode_listxattr(struct dentry *dentry)
3157{
3158	const struct cred *cred = current_cred();
3159
3160	return dentry_has_perm(cred, dentry, FILE__GETATTR);
3161}
3162
3163static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
 
3164{
3165	if (strcmp(name, XATTR_NAME_SELINUX))
3166		return selinux_inode_setotherxattr(dentry, name);
 
 
 
 
 
 
 
 
 
 
3167
3168	/* No one is allowed to remove a SELinux security label.
3169	   You can change the label, but all data must be labeled. */
3170	return -EACCES;
3171}
3172
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3173/*
3174 * Copy the inode security context value to the user.
3175 *
3176 * Permission check is handled by selinux_inode_getxattr hook.
3177 */
3178static int selinux_inode_getsecurity(struct inode *inode, const char *name, void **buffer, bool alloc)
 
 
3179{
3180	u32 size;
3181	int error;
3182	char *context = NULL;
3183	struct inode_security_struct *isec = inode_security(inode);
3184
3185	if (strcmp(name, XATTR_SELINUX_SUFFIX))
 
 
 
 
 
3186		return -EOPNOTSUPP;
3187
3188	/*
3189	 * If the caller has CAP_MAC_ADMIN, then get the raw context
3190	 * value even if it is not defined by current policy; otherwise,
3191	 * use the in-core value under current policy.
3192	 * Use the non-auditing forms of the permission checks since
3193	 * getxattr may be called by unprivileged processes commonly
3194	 * and lack of permission just means that we fall back to the
3195	 * in-core context value, not a denial.
3196	 */
3197	error = cap_capable(current_cred(), &init_user_ns, CAP_MAC_ADMIN,
3198			    SECURITY_CAP_NOAUDIT);
3199	if (!error)
3200		error = cred_has_capability(current_cred(), CAP_MAC_ADMIN,
3201					    SECURITY_CAP_NOAUDIT);
3202	if (!error)
3203		error = security_sid_to_context_force(isec->sid, &context,
3204						      &size);
3205	else
3206		error = security_sid_to_context(isec->sid, &context, &size);
 
3207	if (error)
3208		return error;
3209	error = size;
3210	if (alloc) {
3211		*buffer = context;
3212		goto out_nofree;
3213	}
3214	kfree(context);
3215out_nofree:
3216	return error;
3217}
3218
3219static int selinux_inode_setsecurity(struct inode *inode, const char *name,
3220				     const void *value, size_t size, int flags)
3221{
3222	struct inode_security_struct *isec = inode_security(inode);
 
3223	u32 newsid;
3224	int rc;
3225
3226	if (strcmp(name, XATTR_SELINUX_SUFFIX))
3227		return -EOPNOTSUPP;
3228
 
 
 
 
3229	if (!value || !size)
3230		return -EACCES;
3231
3232	rc = security_context_to_sid(value, size, &newsid, GFP_KERNEL);
 
3233	if (rc)
3234		return rc;
3235
 
3236	isec->sclass = inode_mode_to_security_class(inode->i_mode);
3237	isec->sid = newsid;
3238	isec->initialized = LABEL_INITIALIZED;
 
3239	return 0;
3240}
3241
3242static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
3243{
3244	const int len = sizeof(XATTR_NAME_SELINUX);
 
 
 
 
3245	if (buffer && len <= buffer_size)
3246		memcpy(buffer, XATTR_NAME_SELINUX, len);
3247	return len;
3248}
3249
3250static void selinux_inode_getsecid(struct inode *inode, u32 *secid)
3251{
3252	struct inode_security_struct *isec = inode_security_novalidate(inode);
3253	*secid = isec->sid;
3254}
3255
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3256/* file security operations */
3257
3258static int selinux_revalidate_file_permission(struct file *file, int mask)
3259{
3260	const struct cred *cred = current_cred();
3261	struct inode *inode = file_inode(file);
3262
3263	/* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
3264	if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
3265		mask |= MAY_APPEND;
3266
3267	return file_has_perm(cred, file,
3268			     file_mask_to_av(inode->i_mode, mask));
3269}
3270
3271static int selinux_file_permission(struct file *file, int mask)
3272{
3273	struct inode *inode = file_inode(file);
3274	struct file_security_struct *fsec = file->f_security;
3275	struct inode_security_struct *isec;
3276	u32 sid = current_sid();
3277
3278	if (!mask)
3279		/* No permission to check.  Existence test. */
3280		return 0;
3281
3282	isec = inode_security(inode);
3283	if (sid == fsec->sid && fsec->isid == isec->sid &&
3284	    fsec->pseqno == avc_policy_seqno())
3285		/* No change since file_open check. */
3286		return 0;
3287
3288	return selinux_revalidate_file_permission(file, mask);
3289}
3290
3291static int selinux_file_alloc_security(struct file *file)
3292{
3293	return file_alloc_security(file);
3294}
3295
3296static void selinux_file_free_security(struct file *file)
3297{
3298	file_free_security(file);
 
3299}
3300
3301/*
3302 * Check whether a task has the ioctl permission and cmd
3303 * operation to an inode.
3304 */
3305static int ioctl_has_perm(const struct cred *cred, struct file *file,
3306		u32 requested, u16 cmd)
3307{
3308	struct common_audit_data ad;
3309	struct file_security_struct *fsec = file->f_security;
3310	struct inode *inode = file_inode(file);
3311	struct inode_security_struct *isec = inode_security(inode);
3312	struct lsm_ioctlop_audit ioctl;
3313	u32 ssid = cred_sid(cred);
3314	int rc;
3315	u8 driver = cmd >> 8;
3316	u8 xperm = cmd & 0xff;
3317
3318	ad.type = LSM_AUDIT_DATA_IOCTL_OP;
3319	ad.u.op = &ioctl;
3320	ad.u.op->cmd = cmd;
3321	ad.u.op->path = file->f_path;
3322
3323	if (ssid != fsec->sid) {
3324		rc = avc_has_perm(ssid, fsec->sid,
 
3325				SECCLASS_FD,
3326				FD__USE,
3327				&ad);
3328		if (rc)
3329			goto out;
3330	}
3331
3332	if (unlikely(IS_PRIVATE(inode)))
3333		return 0;
3334
3335	rc = avc_has_extended_perms(ssid, isec->sid, isec->sclass,
3336			requested, driver, xperm, &ad);
 
 
3337out:
3338	return rc;
3339}
3340
3341static int selinux_file_ioctl(struct file *file, unsigned int cmd,
3342			      unsigned long arg)
3343{
3344	const struct cred *cred = current_cred();
3345	int error = 0;
3346
3347	switch (cmd) {
3348	case FIONREAD:
3349	/* fall through */
3350	case FIBMAP:
3351	/* fall through */
3352	case FIGETBSZ:
3353	/* fall through */
3354	case FS_IOC_GETFLAGS:
3355	/* fall through */
3356	case FS_IOC_GETVERSION:
3357		error = file_has_perm(cred, file, FILE__GETATTR);
3358		break;
3359
3360	case FS_IOC_SETFLAGS:
3361	/* fall through */
3362	case FS_IOC_SETVERSION:
3363		error = file_has_perm(cred, file, FILE__SETATTR);
3364		break;
3365
3366	/* sys_ioctl() checks */
3367	case FIONBIO:
3368	/* fall through */
3369	case FIOASYNC:
3370		error = file_has_perm(cred, file, 0);
3371		break;
3372
3373	case KDSKBENT:
3374	case KDSKBSENT:
3375		error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG,
3376					    SECURITY_CAP_AUDIT);
3377		break;
3378
3379	/* default case assumes that the command will go
3380	 * to the file's ioctl() function.
3381	 */
3382	default:
3383		error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd);
3384	}
3385	return error;
3386}
3387
3388static int default_noexec;
3389
3390static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3391{
3392	const struct cred *cred = current_cred();
 
3393	int rc = 0;
3394
3395	if (default_noexec &&
3396	    (prot & PROT_EXEC) && (!file || IS_PRIVATE(file_inode(file)) ||
3397				   (!shared && (prot & PROT_WRITE)))) {
3398		/*
3399		 * We are making executable an anonymous mapping or a
3400		 * private file mapping that will also be writable.
3401		 * This has an additional check.
3402		 */
3403		rc = cred_has_perm(cred, cred, PROCESS__EXECMEM);
 
 
3404		if (rc)
3405			goto error;
3406	}
3407
3408	if (file) {
3409		/* read access is always possible with a mapping */
3410		u32 av = FILE__READ;
3411
3412		/* write access only matters if the mapping is shared */
3413		if (shared && (prot & PROT_WRITE))
3414			av |= FILE__WRITE;
3415
3416		if (prot & PROT_EXEC)
3417			av |= FILE__EXECUTE;
3418
3419		return file_has_perm(cred, file, av);
3420	}
3421
3422error:
3423	return rc;
3424}
3425
3426static int selinux_mmap_addr(unsigned long addr)
3427{
3428	int rc = 0;
3429
3430	if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3431		u32 sid = current_sid();
3432		rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
 
3433				  MEMPROTECT__MMAP_ZERO, NULL);
3434	}
3435
3436	return rc;
3437}
3438
3439static int selinux_mmap_file(struct file *file, unsigned long reqprot,
3440			     unsigned long prot, unsigned long flags)
3441{
3442	if (selinux_checkreqprot)
 
 
 
 
 
 
 
 
 
 
 
 
3443		prot = reqprot;
3444
3445	return file_map_prot_check(file, prot,
3446				   (flags & MAP_TYPE) == MAP_SHARED);
3447}
3448
3449static int selinux_file_mprotect(struct vm_area_struct *vma,
3450				 unsigned long reqprot,
3451				 unsigned long prot)
3452{
3453	const struct cred *cred = current_cred();
 
3454
3455	if (selinux_checkreqprot)
3456		prot = reqprot;
3457
3458	if (default_noexec &&
3459	    (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3460		int rc = 0;
3461		if (vma->vm_start >= vma->vm_mm->start_brk &&
3462		    vma->vm_end <= vma->vm_mm->brk) {
3463			rc = cred_has_perm(cred, cred, PROCESS__EXECHEAP);
 
 
3464		} else if (!vma->vm_file &&
3465			   vma->vm_start <= vma->vm_mm->start_stack &&
3466			   vma->vm_end >= vma->vm_mm->start_stack) {
3467			rc = current_has_perm(current, PROCESS__EXECSTACK);
 
 
 
3468		} else if (vma->vm_file && vma->anon_vma) {
3469			/*
3470			 * We are making executable a file mapping that has
3471			 * had some COW done. Since pages might have been
3472			 * written, check ability to execute the possibly
3473			 * modified content.  This typically should only
3474			 * occur for text relocations.
3475			 */
3476			rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3477		}
3478		if (rc)
3479			return rc;
3480	}
3481
3482	return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3483}
3484
3485static int selinux_file_lock(struct file *file, unsigned int cmd)
3486{
3487	const struct cred *cred = current_cred();
3488
3489	return file_has_perm(cred, file, FILE__LOCK);
3490}
3491
3492static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3493			      unsigned long arg)
3494{
3495	const struct cred *cred = current_cred();
3496	int err = 0;
3497
3498	switch (cmd) {
3499	case F_SETFL:
3500		if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3501			err = file_has_perm(cred, file, FILE__WRITE);
3502			break;
3503		}
3504		/* fall through */
3505	case F_SETOWN:
3506	case F_SETSIG:
3507	case F_GETFL:
3508	case F_GETOWN:
3509	case F_GETSIG:
3510	case F_GETOWNER_UIDS:
3511		/* Just check FD__USE permission */
3512		err = file_has_perm(cred, file, 0);
3513		break;
3514	case F_GETLK:
3515	case F_SETLK:
3516	case F_SETLKW:
3517	case F_OFD_GETLK:
3518	case F_OFD_SETLK:
3519	case F_OFD_SETLKW:
3520#if BITS_PER_LONG == 32
3521	case F_GETLK64:
3522	case F_SETLK64:
3523	case F_SETLKW64:
3524#endif
3525		err = file_has_perm(cred, file, FILE__LOCK);
3526		break;
3527	}
3528
3529	return err;
3530}
3531
3532static void selinux_file_set_fowner(struct file *file)
3533{
3534	struct file_security_struct *fsec;
3535
3536	fsec = file->f_security;
3537	fsec->fown_sid = current_sid();
3538}
3539
3540static int selinux_file_send_sigiotask(struct task_struct *tsk,
3541				       struct fown_struct *fown, int signum)
3542{
3543	struct file *file;
3544	u32 sid = task_sid(tsk);
3545	u32 perm;
3546	struct file_security_struct *fsec;
3547
3548	/* struct fown_struct is never outside the context of a struct file */
3549	file = container_of(fown, struct file, f_owner);
3550
3551	fsec = file->f_security;
3552
3553	if (!signum)
3554		perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3555	else
3556		perm = signal_to_av(signum);
3557
3558	return avc_has_perm(fsec->fown_sid, sid,
 
3559			    SECCLASS_PROCESS, perm, NULL);
3560}
3561
3562static int selinux_file_receive(struct file *file)
3563{
3564	const struct cred *cred = current_cred();
3565
3566	return file_has_perm(cred, file, file_to_av(file));
3567}
3568
3569static int selinux_file_open(struct file *file, const struct cred *cred)
3570{
3571	struct file_security_struct *fsec;
3572	struct inode_security_struct *isec;
3573
3574	fsec = file->f_security;
3575	isec = inode_security(file_inode(file));
3576	/*
3577	 * Save inode label and policy sequence number
3578	 * at open-time so that selinux_file_permission
3579	 * can determine whether revalidation is necessary.
3580	 * Task label is already saved in the file security
3581	 * struct as its SID.
3582	 */
3583	fsec->isid = isec->sid;
3584	fsec->pseqno = avc_policy_seqno();
3585	/*
3586	 * Since the inode label or policy seqno may have changed
3587	 * between the selinux_inode_permission check and the saving
3588	 * of state above, recheck that access is still permitted.
3589	 * Otherwise, access might never be revalidated against the
3590	 * new inode label or new policy.
3591	 * This check is not redundant - do not remove.
3592	 */
3593	return file_path_has_perm(cred, file, open_file_to_av(file));
3594}
3595
3596/* task security operations */
3597
3598static int selinux_task_create(unsigned long clone_flags)
3599{
3600	return current_has_perm(current, PROCESS__FORK);
3601}
3602
3603/*
3604 * allocate the SELinux part of blank credentials
3605 */
3606static int selinux_cred_alloc_blank(struct cred *cred, gfp_t gfp)
3607{
3608	struct task_security_struct *tsec;
3609
3610	tsec = kzalloc(sizeof(struct task_security_struct), gfp);
3611	if (!tsec)
3612		return -ENOMEM;
3613
3614	cred->security = tsec;
3615	return 0;
3616}
3617
3618/*
3619 * detach and free the LSM part of a set of credentials
3620 */
3621static void selinux_cred_free(struct cred *cred)
3622{
3623	struct task_security_struct *tsec = cred->security;
3624
3625	/*
3626	 * cred->security == NULL if security_cred_alloc_blank() or
3627	 * security_prepare_creds() returned an error.
3628	 */
3629	BUG_ON(cred->security && (unsigned long) cred->security < PAGE_SIZE);
3630	cred->security = (void *) 0x7UL;
3631	kfree(tsec);
3632}
3633
3634/*
3635 * prepare a new set of credentials for modification
3636 */
3637static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3638				gfp_t gfp)
3639{
3640	const struct task_security_struct *old_tsec;
3641	struct task_security_struct *tsec;
3642
3643	old_tsec = old->security;
3644
3645	tsec = kmemdup(old_tsec, sizeof(struct task_security_struct), gfp);
3646	if (!tsec)
3647		return -ENOMEM;
3648
3649	new->security = tsec;
3650	return 0;
3651}
3652
3653/*
3654 * transfer the SELinux data to a blank set of creds
3655 */
3656static void selinux_cred_transfer(struct cred *new, const struct cred *old)
3657{
3658	const struct task_security_struct *old_tsec = old->security;
3659	struct task_security_struct *tsec = new->security;
3660
3661	*tsec = *old_tsec;
3662}
3663
 
 
 
 
 
3664/*
3665 * set the security data for a kernel service
3666 * - all the creation contexts are set to unlabelled
3667 */
3668static int selinux_kernel_act_as(struct cred *new, u32 secid)
3669{
3670	struct task_security_struct *tsec = new->security;
3671	u32 sid = current_sid();
3672	int ret;
3673
3674	ret = avc_has_perm(sid, secid,
 
3675			   SECCLASS_KERNEL_SERVICE,
3676			   KERNEL_SERVICE__USE_AS_OVERRIDE,
3677			   NULL);
3678	if (ret == 0) {
3679		tsec->sid = secid;
3680		tsec->create_sid = 0;
3681		tsec->keycreate_sid = 0;
3682		tsec->sockcreate_sid = 0;
3683	}
3684	return ret;
3685}
3686
3687/*
3688 * set the file creation context in a security record to the same as the
3689 * objective context of the specified inode
3690 */
3691static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
3692{
3693	struct inode_security_struct *isec = inode_security(inode);
3694	struct task_security_struct *tsec = new->security;
3695	u32 sid = current_sid();
3696	int ret;
3697
3698	ret = avc_has_perm(sid, isec->sid,
 
3699			   SECCLASS_KERNEL_SERVICE,
3700			   KERNEL_SERVICE__CREATE_FILES_AS,
3701			   NULL);
3702
3703	if (ret == 0)
3704		tsec->create_sid = isec->sid;
3705	return ret;
3706}
3707
3708static int selinux_kernel_module_request(char *kmod_name)
3709{
3710	u32 sid;
3711	struct common_audit_data ad;
3712
3713	sid = task_sid(current);
3714
3715	ad.type = LSM_AUDIT_DATA_KMOD;
3716	ad.u.kmod_name = kmod_name;
3717
3718	return avc_has_perm(sid, SECINITSID_KERNEL, SECCLASS_SYSTEM,
 
3719			    SYSTEM__MODULE_REQUEST, &ad);
3720}
3721
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3722static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
3723{
3724	return current_has_perm(p, PROCESS__SETPGID);
 
 
3725}
3726
3727static int selinux_task_getpgid(struct task_struct *p)
3728{
3729	return current_has_perm(p, PROCESS__GETPGID);
 
 
3730}
3731
3732static int selinux_task_getsid(struct task_struct *p)
3733{
3734	return current_has_perm(p, PROCESS__GETSESSION);
 
 
3735}
3736
3737static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
3738{
3739	*secid = task_sid(p);
 
 
 
 
 
3740}
3741
3742static int selinux_task_setnice(struct task_struct *p, int nice)
3743{
3744	return current_has_perm(p, PROCESS__SETSCHED);
 
 
3745}
3746
3747static int selinux_task_setioprio(struct task_struct *p, int ioprio)
3748{
3749	return current_has_perm(p, PROCESS__SETSCHED);
 
 
3750}
3751
3752static int selinux_task_getioprio(struct task_struct *p)
3753{
3754	return current_has_perm(p, PROCESS__GETSCHED);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3755}
3756
3757static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
3758		struct rlimit *new_rlim)
3759{
3760	struct rlimit *old_rlim = p->signal->rlim + resource;
3761
3762	/* Control the ability to change the hard limit (whether
3763	   lowering or raising it), so that the hard limit can
3764	   later be used as a safe reset point for the soft limit
3765	   upon context transitions.  See selinux_bprm_committing_creds. */
3766	if (old_rlim->rlim_max != new_rlim->rlim_max)
3767		return current_has_perm(p, PROCESS__SETRLIMIT);
 
 
3768
3769	return 0;
3770}
3771
3772static int selinux_task_setscheduler(struct task_struct *p)
3773{
3774	return current_has_perm(p, PROCESS__SETSCHED);
 
 
3775}
3776
3777static int selinux_task_getscheduler(struct task_struct *p)
3778{
3779	return current_has_perm(p, PROCESS__GETSCHED);
 
 
3780}
3781
3782static int selinux_task_movememory(struct task_struct *p)
3783{
3784	return current_has_perm(p, PROCESS__SETSCHED);
 
 
3785}
3786
3787static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
3788				int sig, u32 secid)
3789{
 
3790	u32 perm;
3791	int rc;
3792
3793	if (!sig)
3794		perm = PROCESS__SIGNULL; /* null signal; existence test */
3795	else
3796		perm = signal_to_av(sig);
3797	if (secid)
3798		rc = avc_has_perm(secid, task_sid(p),
3799				  SECCLASS_PROCESS, perm, NULL);
3800	else
3801		rc = current_has_perm(p, perm);
3802	return rc;
3803}
3804
3805static int selinux_task_wait(struct task_struct *p)
3806{
3807	return task_has_perm(p, current, PROCESS__SIGCHLD);
3808}
3809
3810static void selinux_task_to_inode(struct task_struct *p,
3811				  struct inode *inode)
3812{
3813	struct inode_security_struct *isec = inode->i_security;
3814	u32 sid = task_sid(p);
3815
 
 
3816	isec->sid = sid;
3817	isec->initialized = LABEL_INITIALIZED;
 
3818}
3819
3820/* Returns error only if unable to parse addresses */
3821static int selinux_parse_skb_ipv4(struct sk_buff *skb,
3822			struct common_audit_data *ad, u8 *proto)
3823{
3824	int offset, ihlen, ret = -EINVAL;
3825	struct iphdr _iph, *ih;
3826
3827	offset = skb_network_offset(skb);
3828	ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
3829	if (ih == NULL)
3830		goto out;
3831
3832	ihlen = ih->ihl * 4;
3833	if (ihlen < sizeof(_iph))
3834		goto out;
3835
3836	ad->u.net->v4info.saddr = ih->saddr;
3837	ad->u.net->v4info.daddr = ih->daddr;
3838	ret = 0;
3839
3840	if (proto)
3841		*proto = ih->protocol;
3842
3843	switch (ih->protocol) {
3844	case IPPROTO_TCP: {
3845		struct tcphdr _tcph, *th;
3846
3847		if (ntohs(ih->frag_off) & IP_OFFSET)
3848			break;
3849
3850		offset += ihlen;
3851		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3852		if (th == NULL)
3853			break;
3854
3855		ad->u.net->sport = th->source;
3856		ad->u.net->dport = th->dest;
3857		break;
3858	}
3859
3860	case IPPROTO_UDP: {
3861		struct udphdr _udph, *uh;
3862
3863		if (ntohs(ih->frag_off) & IP_OFFSET)
3864			break;
3865
3866		offset += ihlen;
3867		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3868		if (uh == NULL)
3869			break;
3870
3871		ad->u.net->sport = uh->source;
3872		ad->u.net->dport = uh->dest;
3873		break;
3874	}
3875
3876	case IPPROTO_DCCP: {
3877		struct dccp_hdr _dccph, *dh;
3878
3879		if (ntohs(ih->frag_off) & IP_OFFSET)
3880			break;
3881
3882		offset += ihlen;
3883		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3884		if (dh == NULL)
3885			break;
3886
3887		ad->u.net->sport = dh->dccph_sport;
3888		ad->u.net->dport = dh->dccph_dport;
3889		break;
3890	}
3891
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3892	default:
3893		break;
3894	}
3895out:
3896	return ret;
3897}
3898
3899#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3900
3901/* Returns error only if unable to parse addresses */
3902static int selinux_parse_skb_ipv6(struct sk_buff *skb,
3903			struct common_audit_data *ad, u8 *proto)
3904{
3905	u8 nexthdr;
3906	int ret = -EINVAL, offset;
3907	struct ipv6hdr _ipv6h, *ip6;
3908	__be16 frag_off;
3909
3910	offset = skb_network_offset(skb);
3911	ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
3912	if (ip6 == NULL)
3913		goto out;
3914
3915	ad->u.net->v6info.saddr = ip6->saddr;
3916	ad->u.net->v6info.daddr = ip6->daddr;
3917	ret = 0;
3918
3919	nexthdr = ip6->nexthdr;
3920	offset += sizeof(_ipv6h);
3921	offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off);
3922	if (offset < 0)
3923		goto out;
3924
3925	if (proto)
3926		*proto = nexthdr;
3927
3928	switch (nexthdr) {
3929	case IPPROTO_TCP: {
3930		struct tcphdr _tcph, *th;
3931
3932		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3933		if (th == NULL)
3934			break;
3935
3936		ad->u.net->sport = th->source;
3937		ad->u.net->dport = th->dest;
3938		break;
3939	}
3940
3941	case IPPROTO_UDP: {
3942		struct udphdr _udph, *uh;
3943
3944		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3945		if (uh == NULL)
3946			break;
3947
3948		ad->u.net->sport = uh->source;
3949		ad->u.net->dport = uh->dest;
3950		break;
3951	}
3952
3953	case IPPROTO_DCCP: {
3954		struct dccp_hdr _dccph, *dh;
3955
3956		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3957		if (dh == NULL)
3958			break;
3959
3960		ad->u.net->sport = dh->dccph_sport;
3961		ad->u.net->dport = dh->dccph_dport;
3962		break;
3963	}
3964
 
 
 
 
 
 
 
 
 
 
 
 
 
3965	/* includes fragments */
3966	default:
3967		break;
3968	}
3969out:
3970	return ret;
3971}
3972
3973#endif /* IPV6 */
3974
3975static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
3976			     char **_addrp, int src, u8 *proto)
3977{
3978	char *addrp;
3979	int ret;
3980
3981	switch (ad->u.net->family) {
3982	case PF_INET:
3983		ret = selinux_parse_skb_ipv4(skb, ad, proto);
3984		if (ret)
3985			goto parse_error;
3986		addrp = (char *)(src ? &ad->u.net->v4info.saddr :
3987				       &ad->u.net->v4info.daddr);
3988		goto okay;
3989
3990#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3991	case PF_INET6:
3992		ret = selinux_parse_skb_ipv6(skb, ad, proto);
3993		if (ret)
3994			goto parse_error;
3995		addrp = (char *)(src ? &ad->u.net->v6info.saddr :
3996				       &ad->u.net->v6info.daddr);
3997		goto okay;
3998#endif	/* IPV6 */
3999	default:
4000		addrp = NULL;
4001		goto okay;
4002	}
4003
4004parse_error:
4005	printk(KERN_WARNING
4006	       "SELinux: failure in selinux_parse_skb(),"
4007	       " unable to parse packet\n");
4008	return ret;
4009
4010okay:
4011	if (_addrp)
4012		*_addrp = addrp;
4013	return 0;
4014}
4015
4016/**
4017 * selinux_skb_peerlbl_sid - Determine the peer label of a packet
4018 * @skb: the packet
4019 * @family: protocol family
4020 * @sid: the packet's peer label SID
4021 *
4022 * Description:
4023 * Check the various different forms of network peer labeling and determine
4024 * the peer label/SID for the packet; most of the magic actually occurs in
4025 * the security server function security_net_peersid_cmp().  The function
4026 * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
4027 * or -EACCES if @sid is invalid due to inconsistencies with the different
4028 * peer labels.
4029 *
4030 */
4031static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
4032{
4033	int err;
4034	u32 xfrm_sid;
4035	u32 nlbl_sid;
4036	u32 nlbl_type;
4037
4038	err = selinux_xfrm_skb_sid(skb, &xfrm_sid);
4039	if (unlikely(err))
4040		return -EACCES;
4041	err = selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
4042	if (unlikely(err))
4043		return -EACCES;
4044
4045	err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid);
 
4046	if (unlikely(err)) {
4047		printk(KERN_WARNING
4048		       "SELinux: failure in selinux_skb_peerlbl_sid(),"
4049		       " unable to determine packet's peer label\n");
4050		return -EACCES;
4051	}
4052
4053	return 0;
4054}
4055
4056/**
4057 * selinux_conn_sid - Determine the child socket label for a connection
4058 * @sk_sid: the parent socket's SID
4059 * @skb_sid: the packet's SID
4060 * @conn_sid: the resulting connection SID
4061 *
4062 * If @skb_sid is valid then the user:role:type information from @sk_sid is
4063 * combined with the MLS information from @skb_sid in order to create
4064 * @conn_sid.  If @skb_sid is not valid then then @conn_sid is simply a copy
4065 * of @sk_sid.  Returns zero on success, negative values on failure.
4066 *
4067 */
4068static int selinux_conn_sid(u32 sk_sid, u32 skb_sid, u32 *conn_sid)
4069{
4070	int err = 0;
4071
4072	if (skb_sid != SECSID_NULL)
4073		err = security_sid_mls_copy(sk_sid, skb_sid, conn_sid);
 
4074	else
4075		*conn_sid = sk_sid;
4076
4077	return err;
4078}
4079
4080/* socket security operations */
4081
4082static int socket_sockcreate_sid(const struct task_security_struct *tsec,
4083				 u16 secclass, u32 *socksid)
4084{
4085	if (tsec->sockcreate_sid > SECSID_NULL) {
4086		*socksid = tsec->sockcreate_sid;
4087		return 0;
4088	}
4089
4090	return security_transition_sid(tsec->sid, tsec->sid, secclass, NULL,
4091				       socksid);
4092}
4093
4094static int sock_has_perm(struct task_struct *task, struct sock *sk, u32 perms)
4095{
4096	struct sk_security_struct *sksec = sk->sk_security;
4097	struct common_audit_data ad;
4098	struct lsm_network_audit net = {0,};
4099	u32 tsid = task_sid(task);
4100
4101	if (sksec->sid == SECINITSID_KERNEL)
4102		return 0;
4103
4104	ad.type = LSM_AUDIT_DATA_NET;
4105	ad.u.net = &net;
4106	ad.u.net->sk = sk;
4107
4108	return avc_has_perm(tsid, sksec->sid, sksec->sclass, perms, &ad);
 
 
4109}
4110
4111static int selinux_socket_create(int family, int type,
4112				 int protocol, int kern)
4113{
4114	const struct task_security_struct *tsec = current_security();
4115	u32 newsid;
4116	u16 secclass;
4117	int rc;
4118
4119	if (kern)
4120		return 0;
4121
4122	secclass = socket_type_to_security_class(family, type, protocol);
4123	rc = socket_sockcreate_sid(tsec, secclass, &newsid);
4124	if (rc)
4125		return rc;
4126
4127	return avc_has_perm(tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
 
4128}
4129
4130static int selinux_socket_post_create(struct socket *sock, int family,
4131				      int type, int protocol, int kern)
4132{
4133	const struct task_security_struct *tsec = current_security();
4134	struct inode_security_struct *isec = inode_security_novalidate(SOCK_INODE(sock));
4135	struct sk_security_struct *sksec;
 
 
4136	int err = 0;
4137
4138	isec->sclass = socket_type_to_security_class(family, type, protocol);
4139
4140	if (kern)
4141		isec->sid = SECINITSID_KERNEL;
4142	else {
4143		err = socket_sockcreate_sid(tsec, isec->sclass, &(isec->sid));
4144		if (err)
4145			return err;
4146	}
4147
 
 
4148	isec->initialized = LABEL_INITIALIZED;
4149
4150	if (sock->sk) {
4151		sksec = sock->sk->sk_security;
4152		sksec->sid = isec->sid;
4153		sksec->sclass = isec->sclass;
 
 
 
 
4154		err = selinux_netlbl_socket_post_create(sock->sk, family);
4155	}
4156
4157	return err;
4158}
4159
 
 
 
 
 
 
 
 
 
 
 
 
4160/* Range of port numbers used to automatically bind.
4161   Need to determine whether we should perform a name_bind
4162   permission check between the socket and the port number. */
4163
4164static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
4165{
4166	struct sock *sk = sock->sk;
 
4167	u16 family;
4168	int err;
4169
4170	err = sock_has_perm(current, sk, SOCKET__BIND);
4171	if (err)
4172		goto out;
4173
4174	/*
4175	 * If PF_INET or PF_INET6, check name_bind permission for the port.
4176	 * Multiple address binding for SCTP is not supported yet: we just
4177	 * check the first address now.
4178	 */
4179	family = sk->sk_family;
4180	if (family == PF_INET || family == PF_INET6) {
4181		char *addrp;
4182		struct sk_security_struct *sksec = sk->sk_security;
4183		struct common_audit_data ad;
4184		struct lsm_network_audit net = {0,};
4185		struct sockaddr_in *addr4 = NULL;
4186		struct sockaddr_in6 *addr6 = NULL;
 
4187		unsigned short snum;
4188		u32 sid, node_perm;
4189
4190		if (family == PF_INET) {
 
 
 
 
 
 
 
 
 
 
 
 
 
4191			addr4 = (struct sockaddr_in *)address;
 
 
 
 
 
 
 
 
4192			snum = ntohs(addr4->sin_port);
4193			addrp = (char *)&addr4->sin_addr.s_addr;
4194		} else {
 
 
 
4195			addr6 = (struct sockaddr_in6 *)address;
4196			snum = ntohs(addr6->sin6_port);
4197			addrp = (char *)&addr6->sin6_addr.s6_addr;
 
 
 
4198		}
4199
 
 
 
 
 
4200		if (snum) {
4201			int low, high;
4202
4203			inet_get_local_port_range(sock_net(sk), &low, &high);
4204
4205			if (snum < max(PROT_SOCK, low) || snum > high) {
 
4206				err = sel_netport_sid(sk->sk_protocol,
4207						      snum, &sid);
4208				if (err)
4209					goto out;
4210				ad.type = LSM_AUDIT_DATA_NET;
4211				ad.u.net = &net;
4212				ad.u.net->sport = htons(snum);
4213				ad.u.net->family = family;
4214				err = avc_has_perm(sksec->sid, sid,
4215						   sksec->sclass,
4216						   SOCKET__NAME_BIND, &ad);
4217				if (err)
4218					goto out;
4219			}
4220		}
4221
4222		switch (sksec->sclass) {
4223		case SECCLASS_TCP_SOCKET:
4224			node_perm = TCP_SOCKET__NODE_BIND;
4225			break;
4226
4227		case SECCLASS_UDP_SOCKET:
4228			node_perm = UDP_SOCKET__NODE_BIND;
4229			break;
4230
4231		case SECCLASS_DCCP_SOCKET:
4232			node_perm = DCCP_SOCKET__NODE_BIND;
4233			break;
4234
 
 
 
 
4235		default:
4236			node_perm = RAWIP_SOCKET__NODE_BIND;
4237			break;
4238		}
4239
4240		err = sel_netnode_sid(addrp, family, &sid);
4241		if (err)
4242			goto out;
4243
4244		ad.type = LSM_AUDIT_DATA_NET;
4245		ad.u.net = &net;
4246		ad.u.net->sport = htons(snum);
4247		ad.u.net->family = family;
4248
4249		if (family == PF_INET)
4250			ad.u.net->v4info.saddr = addr4->sin_addr.s_addr;
4251		else
4252			ad.u.net->v6info.saddr = addr6->sin6_addr;
4253
4254		err = avc_has_perm(sksec->sid, sid,
 
4255				   sksec->sclass, node_perm, &ad);
4256		if (err)
4257			goto out;
4258	}
4259out:
4260	return err;
 
 
 
 
 
4261}
4262
4263static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
 
 
 
 
4264{
4265	struct sock *sk = sock->sk;
4266	struct sk_security_struct *sksec = sk->sk_security;
4267	int err;
4268
4269	err = sock_has_perm(current, sk, SOCKET__CONNECT);
4270	if (err)
4271		return err;
 
 
 
 
 
 
 
 
4272
4273	/*
4274	 * If a TCP or DCCP socket, check name_connect permission for the port.
 
4275	 */
4276	if (sksec->sclass == SECCLASS_TCP_SOCKET ||
4277	    sksec->sclass == SECCLASS_DCCP_SOCKET) {
 
4278		struct common_audit_data ad;
4279		struct lsm_network_audit net = {0,};
4280		struct sockaddr_in *addr4 = NULL;
4281		struct sockaddr_in6 *addr6 = NULL;
4282		unsigned short snum;
4283		u32 sid, perm;
4284
4285		if (sk->sk_family == PF_INET) {
 
 
 
 
 
 
4286			addr4 = (struct sockaddr_in *)address;
4287			if (addrlen < sizeof(struct sockaddr_in))
4288				return -EINVAL;
4289			snum = ntohs(addr4->sin_port);
4290		} else {
 
4291			addr6 = (struct sockaddr_in6 *)address;
4292			if (addrlen < SIN6_LEN_RFC2133)
4293				return -EINVAL;
4294			snum = ntohs(addr6->sin6_port);
 
 
 
 
 
 
 
 
 
4295		}
4296
4297		err = sel_netport_sid(sk->sk_protocol, snum, &sid);
4298		if (err)
4299			goto out;
4300
4301		perm = (sksec->sclass == SECCLASS_TCP_SOCKET) ?
4302		       TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT;
 
 
 
 
 
 
 
 
 
4303
4304		ad.type = LSM_AUDIT_DATA_NET;
4305		ad.u.net = &net;
4306		ad.u.net->dport = htons(snum);
4307		ad.u.net->family = sk->sk_family;
4308		err = avc_has_perm(sksec->sid, sid, sksec->sclass, perm, &ad);
 
4309		if (err)
4310			goto out;
4311	}
4312
4313	err = selinux_netlbl_socket_connect(sk, address);
 
4314
4315out:
4316	return err;
 
 
 
 
 
 
 
 
 
 
4317}
4318
4319static int selinux_socket_listen(struct socket *sock, int backlog)
4320{
4321	return sock_has_perm(current, sock->sk, SOCKET__LISTEN);
4322}
4323
4324static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
4325{
4326	int err;
4327	struct inode_security_struct *isec;
4328	struct inode_security_struct *newisec;
 
 
4329
4330	err = sock_has_perm(current, sock->sk, SOCKET__ACCEPT);
4331	if (err)
4332		return err;
4333
4334	newisec = inode_security_novalidate(SOCK_INODE(newsock));
4335
4336	isec = inode_security_novalidate(SOCK_INODE(sock));
4337	newisec->sclass = isec->sclass;
4338	newisec->sid = isec->sid;
 
 
 
 
 
 
4339	newisec->initialized = LABEL_INITIALIZED;
4340
4341	return 0;
4342}
4343
4344static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
4345				  int size)
4346{
4347	return sock_has_perm(current, sock->sk, SOCKET__WRITE);
4348}
4349
4350static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4351				  int size, int flags)
4352{
4353	return sock_has_perm(current, sock->sk, SOCKET__READ);
4354}
4355
4356static int selinux_socket_getsockname(struct socket *sock)
4357{
4358	return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
4359}
4360
4361static int selinux_socket_getpeername(struct socket *sock)
4362{
4363	return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
4364}
4365
4366static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
4367{
4368	int err;
4369
4370	err = sock_has_perm(current, sock->sk, SOCKET__SETOPT);
4371	if (err)
4372		return err;
4373
4374	return selinux_netlbl_socket_setsockopt(sock, level, optname);
4375}
4376
4377static int selinux_socket_getsockopt(struct socket *sock, int level,
4378				     int optname)
4379{
4380	return sock_has_perm(current, sock->sk, SOCKET__GETOPT);
4381}
4382
4383static int selinux_socket_shutdown(struct socket *sock, int how)
4384{
4385	return sock_has_perm(current, sock->sk, SOCKET__SHUTDOWN);
4386}
4387
4388static int selinux_socket_unix_stream_connect(struct sock *sock,
4389					      struct sock *other,
4390					      struct sock *newsk)
4391{
4392	struct sk_security_struct *sksec_sock = sock->sk_security;
4393	struct sk_security_struct *sksec_other = other->sk_security;
4394	struct sk_security_struct *sksec_new = newsk->sk_security;
4395	struct common_audit_data ad;
4396	struct lsm_network_audit net = {0,};
4397	int err;
4398
4399	ad.type = LSM_AUDIT_DATA_NET;
4400	ad.u.net = &net;
4401	ad.u.net->sk = other;
4402
4403	err = avc_has_perm(sksec_sock->sid, sksec_other->sid,
 
4404			   sksec_other->sclass,
4405			   UNIX_STREAM_SOCKET__CONNECTTO, &ad);
4406	if (err)
4407		return err;
4408
4409	/* server child socket */
4410	sksec_new->peer_sid = sksec_sock->sid;
4411	err = security_sid_mls_copy(sksec_other->sid, sksec_sock->sid,
4412				    &sksec_new->sid);
4413	if (err)
4414		return err;
4415
4416	/* connecting socket */
4417	sksec_sock->peer_sid = sksec_new->sid;
4418
4419	return 0;
4420}
4421
4422static int selinux_socket_unix_may_send(struct socket *sock,
4423					struct socket *other)
4424{
4425	struct sk_security_struct *ssec = sock->sk->sk_security;
4426	struct sk_security_struct *osec = other->sk->sk_security;
4427	struct common_audit_data ad;
4428	struct lsm_network_audit net = {0,};
4429
4430	ad.type = LSM_AUDIT_DATA_NET;
4431	ad.u.net = &net;
4432	ad.u.net->sk = other->sk;
4433
4434	return avc_has_perm(ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
 
4435			    &ad);
4436}
4437
4438static int selinux_inet_sys_rcv_skb(struct net *ns, int ifindex,
4439				    char *addrp, u16 family, u32 peer_sid,
4440				    struct common_audit_data *ad)
4441{
4442	int err;
4443	u32 if_sid;
4444	u32 node_sid;
4445
4446	err = sel_netif_sid(ns, ifindex, &if_sid);
4447	if (err)
4448		return err;
4449	err = avc_has_perm(peer_sid, if_sid,
 
4450			   SECCLASS_NETIF, NETIF__INGRESS, ad);
4451	if (err)
4452		return err;
4453
4454	err = sel_netnode_sid(addrp, family, &node_sid);
4455	if (err)
4456		return err;
4457	return avc_has_perm(peer_sid, node_sid,
 
4458			    SECCLASS_NODE, NODE__RECVFROM, ad);
4459}
4460
4461static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4462				       u16 family)
4463{
4464	int err = 0;
4465	struct sk_security_struct *sksec = sk->sk_security;
4466	u32 sk_sid = sksec->sid;
4467	struct common_audit_data ad;
4468	struct lsm_network_audit net = {0,};
4469	char *addrp;
4470
4471	ad.type = LSM_AUDIT_DATA_NET;
4472	ad.u.net = &net;
4473	ad.u.net->netif = skb->skb_iif;
4474	ad.u.net->family = family;
4475	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4476	if (err)
4477		return err;
4478
4479	if (selinux_secmark_enabled()) {
4480		err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
 
4481				   PACKET__RECV, &ad);
4482		if (err)
4483			return err;
4484	}
4485
4486	err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4487	if (err)
4488		return err;
4489	err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4490
4491	return err;
4492}
4493
4494static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4495{
4496	int err;
4497	struct sk_security_struct *sksec = sk->sk_security;
4498	u16 family = sk->sk_family;
4499	u32 sk_sid = sksec->sid;
4500	struct common_audit_data ad;
4501	struct lsm_network_audit net = {0,};
4502	char *addrp;
4503	u8 secmark_active;
4504	u8 peerlbl_active;
4505
4506	if (family != PF_INET && family != PF_INET6)
4507		return 0;
4508
4509	/* Handle mapped IPv4 packets arriving via IPv6 sockets */
4510	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4511		family = PF_INET;
4512
4513	/* If any sort of compatibility mode is enabled then handoff processing
4514	 * to the selinux_sock_rcv_skb_compat() function to deal with the
4515	 * special handling.  We do this in an attempt to keep this function
4516	 * as fast and as clean as possible. */
4517	if (!selinux_policycap_netpeer)
4518		return selinux_sock_rcv_skb_compat(sk, skb, family);
4519
4520	secmark_active = selinux_secmark_enabled();
4521	peerlbl_active = selinux_peerlbl_enabled();
4522	if (!secmark_active && !peerlbl_active)
4523		return 0;
4524
4525	ad.type = LSM_AUDIT_DATA_NET;
4526	ad.u.net = &net;
4527	ad.u.net->netif = skb->skb_iif;
4528	ad.u.net->family = family;
4529	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4530	if (err)
4531		return err;
4532
4533	if (peerlbl_active) {
4534		u32 peer_sid;
4535
4536		err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4537		if (err)
4538			return err;
4539		err = selinux_inet_sys_rcv_skb(sock_net(sk), skb->skb_iif,
4540					       addrp, family, peer_sid, &ad);
4541		if (err) {
4542			selinux_netlbl_err(skb, err, 0);
4543			return err;
4544		}
4545		err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
 
4546				   PEER__RECV, &ad);
4547		if (err) {
4548			selinux_netlbl_err(skb, err, 0);
4549			return err;
4550		}
4551	}
4552
4553	if (secmark_active) {
4554		err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
 
4555				   PACKET__RECV, &ad);
4556		if (err)
4557			return err;
4558	}
4559
4560	return err;
4561}
4562
4563static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
4564					    int __user *optlen, unsigned len)
4565{
4566	int err = 0;
4567	char *scontext;
4568	u32 scontext_len;
4569	struct sk_security_struct *sksec = sock->sk->sk_security;
4570	u32 peer_sid = SECSID_NULL;
4571
4572	if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
4573	    sksec->sclass == SECCLASS_TCP_SOCKET)
 
4574		peer_sid = sksec->peer_sid;
4575	if (peer_sid == SECSID_NULL)
4576		return -ENOPROTOOPT;
4577
4578	err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
 
4579	if (err)
4580		return err;
4581
4582	if (scontext_len > len) {
4583		err = -ERANGE;
4584		goto out_len;
4585	}
4586
4587	if (copy_to_user(optval, scontext, scontext_len))
4588		err = -EFAULT;
4589
4590out_len:
4591	if (put_user(scontext_len, optlen))
4592		err = -EFAULT;
4593	kfree(scontext);
4594	return err;
4595}
4596
4597static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
4598{
4599	u32 peer_secid = SECSID_NULL;
4600	u16 family;
 
4601
4602	if (skb && skb->protocol == htons(ETH_P_IP))
4603		family = PF_INET;
4604	else if (skb && skb->protocol == htons(ETH_P_IPV6))
4605		family = PF_INET6;
4606	else if (sock)
4607		family = sock->sk->sk_family;
4608	else
4609		goto out;
4610
4611	if (sock && family == PF_UNIX)
4612		selinux_inode_getsecid(SOCK_INODE(sock), &peer_secid);
4613	else if (skb)
 
4614		selinux_skb_peerlbl_sid(skb, family, &peer_secid);
4615
4616out:
4617	*secid = peer_secid;
4618	if (peer_secid == SECSID_NULL)
4619		return -EINVAL;
4620	return 0;
4621}
4622
4623static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
4624{
4625	struct sk_security_struct *sksec;
4626
4627	sksec = kzalloc(sizeof(*sksec), priority);
4628	if (!sksec)
4629		return -ENOMEM;
4630
4631	sksec->peer_sid = SECINITSID_UNLABELED;
4632	sksec->sid = SECINITSID_UNLABELED;
4633	sksec->sclass = SECCLASS_SOCKET;
4634	selinux_netlbl_sk_security_reset(sksec);
4635	sk->sk_security = sksec;
4636
4637	return 0;
4638}
4639
4640static void selinux_sk_free_security(struct sock *sk)
4641{
4642	struct sk_security_struct *sksec = sk->sk_security;
4643
4644	sk->sk_security = NULL;
4645	selinux_netlbl_sk_security_free(sksec);
4646	kfree(sksec);
4647}
4648
4649static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
4650{
4651	struct sk_security_struct *sksec = sk->sk_security;
4652	struct sk_security_struct *newsksec = newsk->sk_security;
4653
4654	newsksec->sid = sksec->sid;
4655	newsksec->peer_sid = sksec->peer_sid;
4656	newsksec->sclass = sksec->sclass;
4657
4658	selinux_netlbl_sk_security_reset(newsksec);
4659}
4660
4661static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
4662{
4663	if (!sk)
4664		*secid = SECINITSID_ANY_SOCKET;
4665	else {
4666		struct sk_security_struct *sksec = sk->sk_security;
4667
4668		*secid = sksec->sid;
4669	}
4670}
4671
4672static void selinux_sock_graft(struct sock *sk, struct socket *parent)
4673{
4674	struct inode_security_struct *isec =
4675		inode_security_novalidate(SOCK_INODE(parent));
4676	struct sk_security_struct *sksec = sk->sk_security;
4677
4678	if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
4679	    sk->sk_family == PF_UNIX)
4680		isec->sid = sksec->sid;
4681	sksec->sclass = isec->sclass;
4682}
4683
4684static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4685				     struct request_sock *req)
4686{
4687	struct sk_security_struct *sksec = sk->sk_security;
4688	int err;
4689	u16 family = req->rsk_ops->family;
4690	u32 connsid;
4691	u32 peersid;
4692
4693	err = selinux_skb_peerlbl_sid(skb, family, &peersid);
4694	if (err)
4695		return err;
4696	err = selinux_conn_sid(sksec->sid, peersid, &connsid);
4697	if (err)
4698		return err;
4699	req->secid = connsid;
4700	req->peer_secid = peersid;
4701
4702	return selinux_netlbl_inet_conn_request(req, family);
4703}
4704
4705static void selinux_inet_csk_clone(struct sock *newsk,
4706				   const struct request_sock *req)
4707{
4708	struct sk_security_struct *newsksec = newsk->sk_security;
4709
4710	newsksec->sid = req->secid;
4711	newsksec->peer_sid = req->peer_secid;
4712	/* NOTE: Ideally, we should also get the isec->sid for the
4713	   new socket in sync, but we don't have the isec available yet.
4714	   So we will wait until sock_graft to do it, by which
4715	   time it will have been created and available. */
4716
4717	/* We don't need to take any sort of lock here as we are the only
4718	 * thread with access to newsksec */
4719	selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
4720}
4721
4722static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
4723{
4724	u16 family = sk->sk_family;
4725	struct sk_security_struct *sksec = sk->sk_security;
4726
4727	/* handle mapped IPv4 packets arriving via IPv6 sockets */
4728	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4729		family = PF_INET;
4730
4731	selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
4732}
4733
4734static int selinux_secmark_relabel_packet(u32 sid)
4735{
4736	const struct task_security_struct *__tsec;
4737	u32 tsid;
4738
4739	__tsec = current_security();
4740	tsid = __tsec->sid;
4741
4742	return avc_has_perm(tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO, NULL);
 
 
4743}
4744
4745static void selinux_secmark_refcount_inc(void)
4746{
4747	atomic_inc(&selinux_secmark_refcount);
4748}
4749
4750static void selinux_secmark_refcount_dec(void)
4751{
4752	atomic_dec(&selinux_secmark_refcount);
4753}
4754
4755static void selinux_req_classify_flow(const struct request_sock *req,
4756				      struct flowi *fl)
4757{
4758	fl->flowi_secid = req->secid;
4759}
4760
4761static int selinux_tun_dev_alloc_security(void **security)
4762{
4763	struct tun_security_struct *tunsec;
4764
4765	tunsec = kzalloc(sizeof(*tunsec), GFP_KERNEL);
4766	if (!tunsec)
4767		return -ENOMEM;
4768	tunsec->sid = current_sid();
4769
4770	*security = tunsec;
4771	return 0;
4772}
4773
4774static void selinux_tun_dev_free_security(void *security)
4775{
4776	kfree(security);
4777}
4778
4779static int selinux_tun_dev_create(void)
4780{
4781	u32 sid = current_sid();
4782
4783	/* we aren't taking into account the "sockcreate" SID since the socket
4784	 * that is being created here is not a socket in the traditional sense,
4785	 * instead it is a private sock, accessible only to the kernel, and
4786	 * representing a wide range of network traffic spanning multiple
4787	 * connections unlike traditional sockets - check the TUN driver to
4788	 * get a better understanding of why this socket is special */
4789
4790	return avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
 
4791			    NULL);
4792}
4793
4794static int selinux_tun_dev_attach_queue(void *security)
4795{
4796	struct tun_security_struct *tunsec = security;
4797
4798	return avc_has_perm(current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET,
 
4799			    TUN_SOCKET__ATTACH_QUEUE, NULL);
4800}
4801
4802static int selinux_tun_dev_attach(struct sock *sk, void *security)
4803{
4804	struct tun_security_struct *tunsec = security;
4805	struct sk_security_struct *sksec = sk->sk_security;
4806
4807	/* we don't currently perform any NetLabel based labeling here and it
4808	 * isn't clear that we would want to do so anyway; while we could apply
4809	 * labeling without the support of the TUN user the resulting labeled
4810	 * traffic from the other end of the connection would almost certainly
4811	 * cause confusion to the TUN user that had no idea network labeling
4812	 * protocols were being used */
4813
4814	sksec->sid = tunsec->sid;
4815	sksec->sclass = SECCLASS_TUN_SOCKET;
4816
4817	return 0;
4818}
4819
4820static int selinux_tun_dev_open(void *security)
4821{
4822	struct tun_security_struct *tunsec = security;
4823	u32 sid = current_sid();
4824	int err;
4825
4826	err = avc_has_perm(sid, tunsec->sid, SECCLASS_TUN_SOCKET,
 
4827			   TUN_SOCKET__RELABELFROM, NULL);
4828	if (err)
4829		return err;
4830	err = avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET,
 
4831			   TUN_SOCKET__RELABELTO, NULL);
4832	if (err)
4833		return err;
4834	tunsec->sid = sid;
4835
4836	return 0;
4837}
4838
4839static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
4840{
4841	int err = 0;
4842	u32 perm;
4843	struct nlmsghdr *nlh;
4844	struct sk_security_struct *sksec = sk->sk_security;
4845
4846	if (skb->len < NLMSG_HDRLEN) {
4847		err = -EINVAL;
4848		goto out;
4849	}
4850	nlh = nlmsg_hdr(skb);
4851
4852	err = selinux_nlmsg_lookup(sksec->sclass, nlh->nlmsg_type, &perm);
4853	if (err) {
4854		if (err == -EINVAL) {
4855			pr_warn_ratelimited("SELinux: unrecognized netlink"
4856			       " message: protocol=%hu nlmsg_type=%hu sclass=%s"
4857			       " pig=%d comm=%s\n",
4858			       sk->sk_protocol, nlh->nlmsg_type,
4859			       secclass_map[sksec->sclass - 1].name,
4860			       task_pid_nr(current), current->comm);
4861			if (!selinux_enforcing || security_get_allow_unknown())
4862				err = 0;
4863		}
4864
4865		/* Ignore */
4866		if (err == -ENOENT)
4867			err = 0;
4868		goto out;
4869	}
4870
4871	err = sock_has_perm(current, sk, perm);
4872out:
4873	return err;
4874}
4875
4876#ifdef CONFIG_NETFILTER
4877
4878static unsigned int selinux_ip_forward(struct sk_buff *skb,
4879				       const struct net_device *indev,
4880				       u16 family)
4881{
4882	int err;
4883	char *addrp;
4884	u32 peer_sid;
4885	struct common_audit_data ad;
4886	struct lsm_network_audit net = {0,};
4887	u8 secmark_active;
4888	u8 netlbl_active;
4889	u8 peerlbl_active;
4890
4891	if (!selinux_policycap_netpeer)
4892		return NF_ACCEPT;
4893
4894	secmark_active = selinux_secmark_enabled();
4895	netlbl_active = netlbl_enabled();
4896	peerlbl_active = selinux_peerlbl_enabled();
4897	if (!secmark_active && !peerlbl_active)
4898		return NF_ACCEPT;
4899
4900	if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
4901		return NF_DROP;
4902
4903	ad.type = LSM_AUDIT_DATA_NET;
4904	ad.u.net = &net;
4905	ad.u.net->netif = indev->ifindex;
4906	ad.u.net->family = family;
4907	if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
4908		return NF_DROP;
4909
4910	if (peerlbl_active) {
4911		err = selinux_inet_sys_rcv_skb(dev_net(indev), indev->ifindex,
4912					       addrp, family, peer_sid, &ad);
4913		if (err) {
4914			selinux_netlbl_err(skb, err, 1);
4915			return NF_DROP;
4916		}
4917	}
4918
4919	if (secmark_active)
4920		if (avc_has_perm(peer_sid, skb->secmark,
 
4921				 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
4922			return NF_DROP;
4923
4924	if (netlbl_active)
4925		/* we do this in the FORWARD path and not the POST_ROUTING
4926		 * path because we want to make sure we apply the necessary
4927		 * labeling before IPsec is applied so we can leverage AH
4928		 * protection */
4929		if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
4930			return NF_DROP;
4931
4932	return NF_ACCEPT;
4933}
4934
4935static unsigned int selinux_ipv4_forward(void *priv,
4936					 struct sk_buff *skb,
4937					 const struct nf_hook_state *state)
4938{
4939	return selinux_ip_forward(skb, state->in, PF_INET);
4940}
4941
4942#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4943static unsigned int selinux_ipv6_forward(void *priv,
4944					 struct sk_buff *skb,
4945					 const struct nf_hook_state *state)
4946{
4947	return selinux_ip_forward(skb, state->in, PF_INET6);
4948}
4949#endif	/* IPV6 */
4950
4951static unsigned int selinux_ip_output(struct sk_buff *skb,
4952				      u16 family)
4953{
4954	struct sock *sk;
4955	u32 sid;
4956
4957	if (!netlbl_enabled())
4958		return NF_ACCEPT;
4959
4960	/* we do this in the LOCAL_OUT path and not the POST_ROUTING path
4961	 * because we want to make sure we apply the necessary labeling
4962	 * before IPsec is applied so we can leverage AH protection */
4963	sk = skb->sk;
4964	if (sk) {
4965		struct sk_security_struct *sksec;
4966
4967		if (sk_listener(sk))
4968			/* if the socket is the listening state then this
4969			 * packet is a SYN-ACK packet which means it needs to
4970			 * be labeled based on the connection/request_sock and
4971			 * not the parent socket.  unfortunately, we can't
4972			 * lookup the request_sock yet as it isn't queued on
4973			 * the parent socket until after the SYN-ACK is sent.
4974			 * the "solution" is to simply pass the packet as-is
4975			 * as any IP option based labeling should be copied
4976			 * from the initial connection request (in the IP
4977			 * layer).  it is far from ideal, but until we get a
4978			 * security label in the packet itself this is the
4979			 * best we can do. */
4980			return NF_ACCEPT;
4981
4982		/* standard practice, label using the parent socket */
4983		sksec = sk->sk_security;
4984		sid = sksec->sid;
4985	} else
4986		sid = SECINITSID_KERNEL;
4987	if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
4988		return NF_DROP;
4989
4990	return NF_ACCEPT;
4991}
4992
4993static unsigned int selinux_ipv4_output(void *priv,
4994					struct sk_buff *skb,
4995					const struct nf_hook_state *state)
4996{
4997	return selinux_ip_output(skb, PF_INET);
4998}
4999
 
 
 
 
 
 
 
 
 
5000static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
5001						int ifindex,
5002						u16 family)
5003{
5004	struct sock *sk = skb_to_full_sk(skb);
5005	struct sk_security_struct *sksec;
5006	struct common_audit_data ad;
5007	struct lsm_network_audit net = {0,};
5008	char *addrp;
5009	u8 proto;
5010
5011	if (sk == NULL)
5012		return NF_ACCEPT;
5013	sksec = sk->sk_security;
5014
5015	ad.type = LSM_AUDIT_DATA_NET;
5016	ad.u.net = &net;
5017	ad.u.net->netif = ifindex;
5018	ad.u.net->family = family;
5019	if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
5020		return NF_DROP;
5021
5022	if (selinux_secmark_enabled())
5023		if (avc_has_perm(sksec->sid, skb->secmark,
 
5024				 SECCLASS_PACKET, PACKET__SEND, &ad))
5025			return NF_DROP_ERR(-ECONNREFUSED);
5026
5027	if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
5028		return NF_DROP_ERR(-ECONNREFUSED);
5029
5030	return NF_ACCEPT;
5031}
5032
5033static unsigned int selinux_ip_postroute(struct sk_buff *skb,
5034					 const struct net_device *outdev,
5035					 u16 family)
5036{
5037	u32 secmark_perm;
5038	u32 peer_sid;
5039	int ifindex = outdev->ifindex;
5040	struct sock *sk;
5041	struct common_audit_data ad;
5042	struct lsm_network_audit net = {0,};
5043	char *addrp;
5044	u8 secmark_active;
5045	u8 peerlbl_active;
5046
5047	/* If any sort of compatibility mode is enabled then handoff processing
5048	 * to the selinux_ip_postroute_compat() function to deal with the
5049	 * special handling.  We do this in an attempt to keep this function
5050	 * as fast and as clean as possible. */
5051	if (!selinux_policycap_netpeer)
5052		return selinux_ip_postroute_compat(skb, ifindex, family);
5053
5054	secmark_active = selinux_secmark_enabled();
5055	peerlbl_active = selinux_peerlbl_enabled();
5056	if (!secmark_active && !peerlbl_active)
5057		return NF_ACCEPT;
5058
5059	sk = skb_to_full_sk(skb);
5060
5061#ifdef CONFIG_XFRM
5062	/* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
5063	 * packet transformation so allow the packet to pass without any checks
5064	 * since we'll have another chance to perform access control checks
5065	 * when the packet is on it's final way out.
5066	 * NOTE: there appear to be some IPv6 multicast cases where skb->dst
5067	 *       is NULL, in this case go ahead and apply access control.
5068	 * NOTE: if this is a local socket (skb->sk != NULL) that is in the
5069	 *       TCP listening state we cannot wait until the XFRM processing
5070	 *       is done as we will miss out on the SA label if we do;
5071	 *       unfortunately, this means more work, but it is only once per
5072	 *       connection. */
5073	if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL &&
5074	    !(sk && sk_listener(sk)))
5075		return NF_ACCEPT;
5076#endif
5077
5078	if (sk == NULL) {
5079		/* Without an associated socket the packet is either coming
5080		 * from the kernel or it is being forwarded; check the packet
5081		 * to determine which and if the packet is being forwarded
5082		 * query the packet directly to determine the security label. */
5083		if (skb->skb_iif) {
5084			secmark_perm = PACKET__FORWARD_OUT;
5085			if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
5086				return NF_DROP;
5087		} else {
5088			secmark_perm = PACKET__SEND;
5089			peer_sid = SECINITSID_KERNEL;
5090		}
5091	} else if (sk_listener(sk)) {
5092		/* Locally generated packet but the associated socket is in the
5093		 * listening state which means this is a SYN-ACK packet.  In
5094		 * this particular case the correct security label is assigned
5095		 * to the connection/request_sock but unfortunately we can't
5096		 * query the request_sock as it isn't queued on the parent
5097		 * socket until after the SYN-ACK packet is sent; the only
5098		 * viable choice is to regenerate the label like we do in
5099		 * selinux_inet_conn_request().  See also selinux_ip_output()
5100		 * for similar problems. */
5101		u32 skb_sid;
5102		struct sk_security_struct *sksec;
5103
5104		sksec = sk->sk_security;
5105		if (selinux_skb_peerlbl_sid(skb, family, &skb_sid))
5106			return NF_DROP;
5107		/* At this point, if the returned skb peerlbl is SECSID_NULL
5108		 * and the packet has been through at least one XFRM
5109		 * transformation then we must be dealing with the "final"
5110		 * form of labeled IPsec packet; since we've already applied
5111		 * all of our access controls on this packet we can safely
5112		 * pass the packet. */
5113		if (skb_sid == SECSID_NULL) {
5114			switch (family) {
5115			case PF_INET:
5116				if (IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
5117					return NF_ACCEPT;
5118				break;
5119			case PF_INET6:
5120				if (IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
5121					return NF_ACCEPT;
5122				break;
5123			default:
5124				return NF_DROP_ERR(-ECONNREFUSED);
5125			}
5126		}
5127		if (selinux_conn_sid(sksec->sid, skb_sid, &peer_sid))
5128			return NF_DROP;
5129		secmark_perm = PACKET__SEND;
5130	} else {
5131		/* Locally generated packet, fetch the security label from the
5132		 * associated socket. */
5133		struct sk_security_struct *sksec = sk->sk_security;
5134		peer_sid = sksec->sid;
5135		secmark_perm = PACKET__SEND;
5136	}
5137
5138	ad.type = LSM_AUDIT_DATA_NET;
5139	ad.u.net = &net;
5140	ad.u.net->netif = ifindex;
5141	ad.u.net->family = family;
5142	if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
5143		return NF_DROP;
5144
5145	if (secmark_active)
5146		if (avc_has_perm(peer_sid, skb->secmark,
 
5147				 SECCLASS_PACKET, secmark_perm, &ad))
5148			return NF_DROP_ERR(-ECONNREFUSED);
5149
5150	if (peerlbl_active) {
5151		u32 if_sid;
5152		u32 node_sid;
5153
5154		if (sel_netif_sid(dev_net(outdev), ifindex, &if_sid))
5155			return NF_DROP;
5156		if (avc_has_perm(peer_sid, if_sid,
 
5157				 SECCLASS_NETIF, NETIF__EGRESS, &ad))
5158			return NF_DROP_ERR(-ECONNREFUSED);
5159
5160		if (sel_netnode_sid(addrp, family, &node_sid))
5161			return NF_DROP;
5162		if (avc_has_perm(peer_sid, node_sid,
 
5163				 SECCLASS_NODE, NODE__SENDTO, &ad))
5164			return NF_DROP_ERR(-ECONNREFUSED);
5165	}
5166
5167	return NF_ACCEPT;
5168}
5169
5170static unsigned int selinux_ipv4_postroute(void *priv,
5171					   struct sk_buff *skb,
5172					   const struct nf_hook_state *state)
5173{
5174	return selinux_ip_postroute(skb, state->out, PF_INET);
5175}
5176
5177#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5178static unsigned int selinux_ipv6_postroute(void *priv,
5179					   struct sk_buff *skb,
5180					   const struct nf_hook_state *state)
5181{
5182	return selinux_ip_postroute(skb, state->out, PF_INET6);
5183}
5184#endif	/* IPV6 */
5185
5186#endif	/* CONFIG_NETFILTER */
5187
5188static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
5189{
5190	return selinux_nlmsg_perm(sk, skb);
5191}
5192
5193static int ipc_alloc_security(struct task_struct *task,
5194			      struct kern_ipc_perm *perm,
5195			      u16 sclass)
5196{
5197	struct ipc_security_struct *isec;
5198	u32 sid;
5199
5200	isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
5201	if (!isec)
5202		return -ENOMEM;
5203
5204	sid = task_sid(task);
5205	isec->sclass = sclass;
5206	isec->sid = sid;
5207	perm->security = isec;
5208
5209	return 0;
5210}
5211
5212static void ipc_free_security(struct kern_ipc_perm *perm)
5213{
5214	struct ipc_security_struct *isec = perm->security;
5215	perm->security = NULL;
5216	kfree(isec);
5217}
5218
5219static int msg_msg_alloc_security(struct msg_msg *msg)
5220{
5221	struct msg_security_struct *msec;
 
 
 
 
 
5222
5223	msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
5224	if (!msec)
5225		return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5226
5227	msec->sid = SECINITSID_UNLABELED;
5228	msg->security = msec;
 
 
 
 
 
5229
5230	return 0;
5231}
5232
5233static void msg_msg_free_security(struct msg_msg *msg)
5234{
5235	struct msg_security_struct *msec = msg->security;
5236
5237	msg->security = NULL;
5238	kfree(msec);
5239}
5240
5241static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
5242			u32 perms)
5243{
5244	struct ipc_security_struct *isec;
5245	struct common_audit_data ad;
5246	u32 sid = current_sid();
5247
5248	isec = ipc_perms->security;
5249
5250	ad.type = LSM_AUDIT_DATA_IPC;
5251	ad.u.ipc_id = ipc_perms->key;
5252
5253	return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
 
5254}
5255
5256static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
5257{
5258	return msg_msg_alloc_security(msg);
5259}
5260
5261static void selinux_msg_msg_free_security(struct msg_msg *msg)
5262{
5263	msg_msg_free_security(msg);
 
5264}
5265
5266/* message queue security operations */
5267static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
5268{
5269	struct ipc_security_struct *isec;
5270	struct common_audit_data ad;
5271	u32 sid = current_sid();
5272	int rc;
5273
5274	rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
5275	if (rc)
5276		return rc;
5277
5278	isec = msq->q_perm.security;
5279
5280	ad.type = LSM_AUDIT_DATA_IPC;
5281	ad.u.ipc_id = msq->q_perm.key;
5282
5283	rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
 
5284			  MSGQ__CREATE, &ad);
5285	if (rc) {
5286		ipc_free_security(&msq->q_perm);
5287		return rc;
5288	}
5289	return 0;
5290}
5291
5292static void selinux_msg_queue_free_security(struct msg_queue *msq)
5293{
5294	ipc_free_security(&msq->q_perm);
5295}
5296
5297static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
5298{
5299	struct ipc_security_struct *isec;
5300	struct common_audit_data ad;
5301	u32 sid = current_sid();
5302
5303	isec = msq->q_perm.security;
5304
5305	ad.type = LSM_AUDIT_DATA_IPC;
5306	ad.u.ipc_id = msq->q_perm.key;
5307
5308	return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
 
5309			    MSGQ__ASSOCIATE, &ad);
5310}
5311
5312static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
5313{
5314	int err;
5315	int perms;
5316
5317	switch (cmd) {
5318	case IPC_INFO:
5319	case MSG_INFO:
5320		/* No specific object, just general system-wide information. */
5321		return task_has_system(current, SYSTEM__IPC_INFO);
 
 
5322	case IPC_STAT:
5323	case MSG_STAT:
 
5324		perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
5325		break;
5326	case IPC_SET:
5327		perms = MSGQ__SETATTR;
5328		break;
5329	case IPC_RMID:
5330		perms = MSGQ__DESTROY;
5331		break;
5332	default:
5333		return 0;
5334	}
5335
5336	err = ipc_has_perm(&msq->q_perm, perms);
5337	return err;
5338}
5339
5340static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
5341{
5342	struct ipc_security_struct *isec;
5343	struct msg_security_struct *msec;
5344	struct common_audit_data ad;
5345	u32 sid = current_sid();
5346	int rc;
5347
5348	isec = msq->q_perm.security;
5349	msec = msg->security;
5350
5351	/*
5352	 * First time through, need to assign label to the message
5353	 */
5354	if (msec->sid == SECINITSID_UNLABELED) {
5355		/*
5356		 * Compute new sid based on current process and
5357		 * message queue this message will be stored in
5358		 */
5359		rc = security_transition_sid(sid, isec->sid, SECCLASS_MSG,
5360					     NULL, &msec->sid);
5361		if (rc)
5362			return rc;
5363	}
5364
5365	ad.type = LSM_AUDIT_DATA_IPC;
5366	ad.u.ipc_id = msq->q_perm.key;
5367
5368	/* Can this process write to the queue? */
5369	rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
 
5370			  MSGQ__WRITE, &ad);
5371	if (!rc)
5372		/* Can this process send the message */
5373		rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG,
 
5374				  MSG__SEND, &ad);
5375	if (!rc)
5376		/* Can the message be put in the queue? */
5377		rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ,
 
5378				  MSGQ__ENQUEUE, &ad);
5379
5380	return rc;
5381}
5382
5383static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
5384				    struct task_struct *target,
5385				    long type, int mode)
5386{
5387	struct ipc_security_struct *isec;
5388	struct msg_security_struct *msec;
5389	struct common_audit_data ad;
5390	u32 sid = task_sid(target);
5391	int rc;
5392
5393	isec = msq->q_perm.security;
5394	msec = msg->security;
5395
5396	ad.type = LSM_AUDIT_DATA_IPC;
5397	ad.u.ipc_id = msq->q_perm.key;
5398
5399	rc = avc_has_perm(sid, isec->sid,
 
5400			  SECCLASS_MSGQ, MSGQ__READ, &ad);
5401	if (!rc)
5402		rc = avc_has_perm(sid, msec->sid,
 
5403				  SECCLASS_MSG, MSG__RECEIVE, &ad);
5404	return rc;
5405}
5406
5407/* Shared Memory security operations */
5408static int selinux_shm_alloc_security(struct shmid_kernel *shp)
5409{
5410	struct ipc_security_struct *isec;
5411	struct common_audit_data ad;
5412	u32 sid = current_sid();
5413	int rc;
5414
5415	rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
5416	if (rc)
5417		return rc;
5418
5419	isec = shp->shm_perm.security;
5420
5421	ad.type = LSM_AUDIT_DATA_IPC;
5422	ad.u.ipc_id = shp->shm_perm.key;
5423
5424	rc = avc_has_perm(sid, isec->sid, SECCLASS_SHM,
 
5425			  SHM__CREATE, &ad);
5426	if (rc) {
5427		ipc_free_security(&shp->shm_perm);
5428		return rc;
5429	}
5430	return 0;
5431}
5432
5433static void selinux_shm_free_security(struct shmid_kernel *shp)
5434{
5435	ipc_free_security(&shp->shm_perm);
5436}
5437
5438static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
5439{
5440	struct ipc_security_struct *isec;
5441	struct common_audit_data ad;
5442	u32 sid = current_sid();
5443
5444	isec = shp->shm_perm.security;
5445
5446	ad.type = LSM_AUDIT_DATA_IPC;
5447	ad.u.ipc_id = shp->shm_perm.key;
5448
5449	return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
 
5450			    SHM__ASSOCIATE, &ad);
5451}
5452
5453/* Note, at this point, shp is locked down */
5454static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
5455{
5456	int perms;
5457	int err;
5458
5459	switch (cmd) {
5460	case IPC_INFO:
5461	case SHM_INFO:
5462		/* No specific object, just general system-wide information. */
5463		return task_has_system(current, SYSTEM__IPC_INFO);
 
 
5464	case IPC_STAT:
5465	case SHM_STAT:
 
5466		perms = SHM__GETATTR | SHM__ASSOCIATE;
5467		break;
5468	case IPC_SET:
5469		perms = SHM__SETATTR;
5470		break;
5471	case SHM_LOCK:
5472	case SHM_UNLOCK:
5473		perms = SHM__LOCK;
5474		break;
5475	case IPC_RMID:
5476		perms = SHM__DESTROY;
5477		break;
5478	default:
5479		return 0;
5480	}
5481
5482	err = ipc_has_perm(&shp->shm_perm, perms);
5483	return err;
5484}
5485
5486static int selinux_shm_shmat(struct shmid_kernel *shp,
5487			     char __user *shmaddr, int shmflg)
5488{
5489	u32 perms;
5490
5491	if (shmflg & SHM_RDONLY)
5492		perms = SHM__READ;
5493	else
5494		perms = SHM__READ | SHM__WRITE;
5495
5496	return ipc_has_perm(&shp->shm_perm, perms);
5497}
5498
5499/* Semaphore security operations */
5500static int selinux_sem_alloc_security(struct sem_array *sma)
5501{
5502	struct ipc_security_struct *isec;
5503	struct common_audit_data ad;
5504	u32 sid = current_sid();
5505	int rc;
5506
5507	rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
5508	if (rc)
5509		return rc;
5510
5511	isec = sma->sem_perm.security;
5512
5513	ad.type = LSM_AUDIT_DATA_IPC;
5514	ad.u.ipc_id = sma->sem_perm.key;
5515
5516	rc = avc_has_perm(sid, isec->sid, SECCLASS_SEM,
 
5517			  SEM__CREATE, &ad);
5518	if (rc) {
5519		ipc_free_security(&sma->sem_perm);
5520		return rc;
5521	}
5522	return 0;
5523}
5524
5525static void selinux_sem_free_security(struct sem_array *sma)
5526{
5527	ipc_free_security(&sma->sem_perm);
5528}
5529
5530static int selinux_sem_associate(struct sem_array *sma, int semflg)
5531{
5532	struct ipc_security_struct *isec;
5533	struct common_audit_data ad;
5534	u32 sid = current_sid();
5535
5536	isec = sma->sem_perm.security;
5537
5538	ad.type = LSM_AUDIT_DATA_IPC;
5539	ad.u.ipc_id = sma->sem_perm.key;
5540
5541	return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
 
5542			    SEM__ASSOCIATE, &ad);
5543}
5544
5545/* Note, at this point, sma is locked down */
5546static int selinux_sem_semctl(struct sem_array *sma, int cmd)
5547{
5548	int err;
5549	u32 perms;
5550
5551	switch (cmd) {
5552	case IPC_INFO:
5553	case SEM_INFO:
5554		/* No specific object, just general system-wide information. */
5555		return task_has_system(current, SYSTEM__IPC_INFO);
 
 
5556	case GETPID:
5557	case GETNCNT:
5558	case GETZCNT:
5559		perms = SEM__GETATTR;
5560		break;
5561	case GETVAL:
5562	case GETALL:
5563		perms = SEM__READ;
5564		break;
5565	case SETVAL:
5566	case SETALL:
5567		perms = SEM__WRITE;
5568		break;
5569	case IPC_RMID:
5570		perms = SEM__DESTROY;
5571		break;
5572	case IPC_SET:
5573		perms = SEM__SETATTR;
5574		break;
5575	case IPC_STAT:
5576	case SEM_STAT:
 
5577		perms = SEM__GETATTR | SEM__ASSOCIATE;
5578		break;
5579	default:
5580		return 0;
5581	}
5582
5583	err = ipc_has_perm(&sma->sem_perm, perms);
5584	return err;
5585}
5586
5587static int selinux_sem_semop(struct sem_array *sma,
5588			     struct sembuf *sops, unsigned nsops, int alter)
5589{
5590	u32 perms;
5591
5592	if (alter)
5593		perms = SEM__READ | SEM__WRITE;
5594	else
5595		perms = SEM__READ;
5596
5597	return ipc_has_perm(&sma->sem_perm, perms);
5598}
5599
5600static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
5601{
5602	u32 av = 0;
5603
5604	av = 0;
5605	if (flag & S_IRUGO)
5606		av |= IPC__UNIX_READ;
5607	if (flag & S_IWUGO)
5608		av |= IPC__UNIX_WRITE;
5609
5610	if (av == 0)
5611		return 0;
5612
5613	return ipc_has_perm(ipcp, av);
5614}
5615
5616static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
5617{
5618	struct ipc_security_struct *isec = ipcp->security;
5619	*secid = isec->sid;
5620}
5621
5622static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
5623{
5624	if (inode)
5625		inode_doinit_with_dentry(inode, dentry);
5626}
5627
5628static int selinux_getprocattr(struct task_struct *p,
5629			       char *name, char **value)
5630{
5631	const struct task_security_struct *__tsec;
5632	u32 sid;
5633	int error;
5634	unsigned len;
5635
 
 
 
5636	if (current != p) {
5637		error = current_has_perm(p, PROCESS__GETATTR);
 
 
5638		if (error)
5639			return error;
5640	}
5641
5642	rcu_read_lock();
5643	__tsec = __task_cred(p)->security;
5644
5645	if (!strcmp(name, "current"))
5646		sid = __tsec->sid;
5647	else if (!strcmp(name, "prev"))
5648		sid = __tsec->osid;
5649	else if (!strcmp(name, "exec"))
5650		sid = __tsec->exec_sid;
5651	else if (!strcmp(name, "fscreate"))
5652		sid = __tsec->create_sid;
5653	else if (!strcmp(name, "keycreate"))
5654		sid = __tsec->keycreate_sid;
5655	else if (!strcmp(name, "sockcreate"))
5656		sid = __tsec->sockcreate_sid;
5657	else
5658		goto invalid;
 
 
5659	rcu_read_unlock();
5660
5661	if (!sid)
5662		return 0;
5663
5664	error = security_sid_to_context(sid, value, &len);
5665	if (error)
5666		return error;
5667	return len;
5668
5669invalid:
5670	rcu_read_unlock();
5671	return -EINVAL;
5672}
5673
5674static int selinux_setprocattr(struct task_struct *p,
5675			       char *name, void *value, size_t size)
5676{
5677	struct task_security_struct *tsec;
5678	struct task_struct *tracer;
5679	struct cred *new;
5680	u32 sid = 0, ptsid;
5681	int error;
5682	char *str = value;
5683
5684	if (current != p) {
5685		/* SELinux only allows a process to change its own
5686		   security attributes. */
5687		return -EACCES;
5688	}
5689
5690	/*
5691	 * Basic control over ability to set these attributes at all.
5692	 * current == p, but we'll pass them separately in case the
5693	 * above restriction is ever removed.
5694	 */
5695	if (!strcmp(name, "exec"))
5696		error = current_has_perm(p, PROCESS__SETEXEC);
 
 
5697	else if (!strcmp(name, "fscreate"))
5698		error = current_has_perm(p, PROCESS__SETFSCREATE);
 
 
5699	else if (!strcmp(name, "keycreate"))
5700		error = current_has_perm(p, PROCESS__SETKEYCREATE);
 
 
5701	else if (!strcmp(name, "sockcreate"))
5702		error = current_has_perm(p, PROCESS__SETSOCKCREATE);
 
 
5703	else if (!strcmp(name, "current"))
5704		error = current_has_perm(p, PROCESS__SETCURRENT);
 
 
5705	else
5706		error = -EINVAL;
5707	if (error)
5708		return error;
5709
5710	/* Obtain a SID for the context, if one was specified. */
5711	if (size && str[1] && str[1] != '\n') {
5712		if (str[size-1] == '\n') {
5713			str[size-1] = 0;
5714			size--;
5715		}
5716		error = security_context_to_sid(value, size, &sid, GFP_KERNEL);
 
5717		if (error == -EINVAL && !strcmp(name, "fscreate")) {
5718			if (!capable(CAP_MAC_ADMIN)) {
5719				struct audit_buffer *ab;
5720				size_t audit_size;
5721
5722				/* We strip a nul only if it is at the end, otherwise the
5723				 * context contains a nul and we should audit that */
5724				if (str[size - 1] == '\0')
5725					audit_size = size - 1;
5726				else
5727					audit_size = size;
5728				ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
 
 
5729				audit_log_format(ab, "op=fscreate invalid_context=");
5730				audit_log_n_untrustedstring(ab, value, audit_size);
5731				audit_log_end(ab);
5732
5733				return error;
5734			}
5735			error = security_context_to_sid_force(value, size,
5736							      &sid);
 
5737		}
5738		if (error)
5739			return error;
5740	}
5741
5742	new = prepare_creds();
5743	if (!new)
5744		return -ENOMEM;
5745
5746	/* Permission checking based on the specified context is
5747	   performed during the actual operation (execve,
5748	   open/mkdir/...), when we know the full context of the
5749	   operation.  See selinux_bprm_set_creds for the execve
5750	   checks and may_create for the file creation checks. The
5751	   operation will then fail if the context is not permitted. */
5752	tsec = new->security;
5753	if (!strcmp(name, "exec")) {
5754		tsec->exec_sid = sid;
5755	} else if (!strcmp(name, "fscreate")) {
5756		tsec->create_sid = sid;
5757	} else if (!strcmp(name, "keycreate")) {
5758		error = may_create_key(sid, p);
5759		if (error)
5760			goto abort_change;
 
 
 
5761		tsec->keycreate_sid = sid;
5762	} else if (!strcmp(name, "sockcreate")) {
5763		tsec->sockcreate_sid = sid;
5764	} else if (!strcmp(name, "current")) {
5765		error = -EINVAL;
5766		if (sid == 0)
5767			goto abort_change;
5768
5769		/* Only allow single threaded processes to change context */
5770		error = -EPERM;
5771		if (!current_is_single_threaded()) {
5772			error = security_bounded_transition(tsec->sid, sid);
 
5773			if (error)
5774				goto abort_change;
5775		}
5776
5777		/* Check permissions for the transition. */
5778		error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
 
5779				     PROCESS__DYNTRANSITION, NULL);
5780		if (error)
5781			goto abort_change;
5782
5783		/* Check for ptracing, and update the task SID if ok.
5784		   Otherwise, leave SID unchanged and fail. */
5785		ptsid = 0;
5786		rcu_read_lock();
5787		tracer = ptrace_parent(p);
5788		if (tracer)
5789			ptsid = task_sid(tracer);
5790		rcu_read_unlock();
5791
5792		if (tracer) {
5793			error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS,
5794					     PROCESS__PTRACE, NULL);
5795			if (error)
5796				goto abort_change;
5797		}
5798
5799		tsec->sid = sid;
5800	} else {
5801		error = -EINVAL;
5802		goto abort_change;
5803	}
5804
5805	commit_creds(new);
5806	return size;
5807
5808abort_change:
5809	abort_creds(new);
5810	return error;
5811}
5812
5813static int selinux_ismaclabel(const char *name)
5814{
5815	return (strcmp(name, XATTR_SELINUX_SUFFIX) == 0);
5816}
5817
5818static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
5819{
5820	return security_sid_to_context(secid, secdata, seclen);
 
5821}
5822
5823static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
5824{
5825	return security_context_to_sid(secdata, seclen, secid, GFP_KERNEL);
 
5826}
5827
5828static void selinux_release_secctx(char *secdata, u32 seclen)
5829{
5830	kfree(secdata);
5831}
5832
5833static void selinux_inode_invalidate_secctx(struct inode *inode)
5834{
5835	struct inode_security_struct *isec = inode->i_security;
5836
5837	mutex_lock(&isec->lock);
5838	isec->initialized = LABEL_INVALID;
5839	mutex_unlock(&isec->lock);
5840}
5841
5842/*
5843 *	called with inode->i_mutex locked
5844 */
5845static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
5846{
5847	return selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX, ctx, ctxlen, 0);
 
 
 
5848}
5849
5850/*
5851 *	called with inode->i_mutex locked
5852 */
5853static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
5854{
5855	return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0);
 
5856}
5857
5858static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
5859{
5860	int len = 0;
5861	len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX,
5862						ctx, true);
5863	if (len < 0)
5864		return len;
5865	*ctxlen = len;
5866	return 0;
5867}
5868#ifdef CONFIG_KEYS
5869
5870static int selinux_key_alloc(struct key *k, const struct cred *cred,
5871			     unsigned long flags)
5872{
5873	const struct task_security_struct *tsec;
5874	struct key_security_struct *ksec;
5875
5876	ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
5877	if (!ksec)
5878		return -ENOMEM;
5879
5880	tsec = cred->security;
5881	if (tsec->keycreate_sid)
5882		ksec->sid = tsec->keycreate_sid;
5883	else
5884		ksec->sid = tsec->sid;
5885
5886	k->security = ksec;
5887	return 0;
5888}
5889
5890static void selinux_key_free(struct key *k)
5891{
5892	struct key_security_struct *ksec = k->security;
5893
5894	k->security = NULL;
5895	kfree(ksec);
5896}
5897
5898static int selinux_key_permission(key_ref_t key_ref,
5899				  const struct cred *cred,
5900				  unsigned perm)
5901{
5902	struct key *key;
5903	struct key_security_struct *ksec;
5904	u32 sid;
5905
5906	/* if no specific permissions are requested, we skip the
5907	   permission check. No serious, additional covert channels
5908	   appear to be created. */
5909	if (perm == 0)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5910		return 0;
 
 
 
5911
5912	sid = cred_sid(cred);
5913
 
5914	key = key_ref_to_ptr(key_ref);
5915	ksec = key->security;
5916
5917	return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL);
 
5918}
5919
5920static int selinux_key_getsecurity(struct key *key, char **_buffer)
5921{
5922	struct key_security_struct *ksec = key->security;
5923	char *context = NULL;
5924	unsigned len;
5925	int rc;
5926
5927	rc = security_sid_to_context(ksec->sid, &context, &len);
 
5928	if (!rc)
5929		rc = len;
5930	*_buffer = context;
5931	return rc;
5932}
5933
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5934#endif
5935
5936static struct security_hook_list selinux_hooks[] = {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5937	LSM_HOOK_INIT(binder_set_context_mgr, selinux_binder_set_context_mgr),
5938	LSM_HOOK_INIT(binder_transaction, selinux_binder_transaction),
5939	LSM_HOOK_INIT(binder_transfer_binder, selinux_binder_transfer_binder),
5940	LSM_HOOK_INIT(binder_transfer_file, selinux_binder_transfer_file),
5941
5942	LSM_HOOK_INIT(ptrace_access_check, selinux_ptrace_access_check),
5943	LSM_HOOK_INIT(ptrace_traceme, selinux_ptrace_traceme),
5944	LSM_HOOK_INIT(capget, selinux_capget),
5945	LSM_HOOK_INIT(capset, selinux_capset),
5946	LSM_HOOK_INIT(capable, selinux_capable),
5947	LSM_HOOK_INIT(quotactl, selinux_quotactl),
5948	LSM_HOOK_INIT(quota_on, selinux_quota_on),
5949	LSM_HOOK_INIT(syslog, selinux_syslog),
5950	LSM_HOOK_INIT(vm_enough_memory, selinux_vm_enough_memory),
5951
5952	LSM_HOOK_INIT(netlink_send, selinux_netlink_send),
5953
5954	LSM_HOOK_INIT(bprm_set_creds, selinux_bprm_set_creds),
5955	LSM_HOOK_INIT(bprm_committing_creds, selinux_bprm_committing_creds),
5956	LSM_HOOK_INIT(bprm_committed_creds, selinux_bprm_committed_creds),
5957	LSM_HOOK_INIT(bprm_secureexec, selinux_bprm_secureexec),
5958
5959	LSM_HOOK_INIT(sb_alloc_security, selinux_sb_alloc_security),
5960	LSM_HOOK_INIT(sb_free_security, selinux_sb_free_security),
5961	LSM_HOOK_INIT(sb_copy_data, selinux_sb_copy_data),
5962	LSM_HOOK_INIT(sb_remount, selinux_sb_remount),
5963	LSM_HOOK_INIT(sb_kern_mount, selinux_sb_kern_mount),
5964	LSM_HOOK_INIT(sb_show_options, selinux_sb_show_options),
5965	LSM_HOOK_INIT(sb_statfs, selinux_sb_statfs),
5966	LSM_HOOK_INIT(sb_mount, selinux_mount),
5967	LSM_HOOK_INIT(sb_umount, selinux_umount),
5968	LSM_HOOK_INIT(sb_set_mnt_opts, selinux_set_mnt_opts),
5969	LSM_HOOK_INIT(sb_clone_mnt_opts, selinux_sb_clone_mnt_opts),
5970	LSM_HOOK_INIT(sb_parse_opts_str, selinux_parse_opts_str),
 
5971
5972	LSM_HOOK_INIT(dentry_init_security, selinux_dentry_init_security),
 
5973
5974	LSM_HOOK_INIT(inode_alloc_security, selinux_inode_alloc_security),
5975	LSM_HOOK_INIT(inode_free_security, selinux_inode_free_security),
5976	LSM_HOOK_INIT(inode_init_security, selinux_inode_init_security),
 
5977	LSM_HOOK_INIT(inode_create, selinux_inode_create),
5978	LSM_HOOK_INIT(inode_link, selinux_inode_link),
5979	LSM_HOOK_INIT(inode_unlink, selinux_inode_unlink),
5980	LSM_HOOK_INIT(inode_symlink, selinux_inode_symlink),
5981	LSM_HOOK_INIT(inode_mkdir, selinux_inode_mkdir),
5982	LSM_HOOK_INIT(inode_rmdir, selinux_inode_rmdir),
5983	LSM_HOOK_INIT(inode_mknod, selinux_inode_mknod),
5984	LSM_HOOK_INIT(inode_rename, selinux_inode_rename),
5985	LSM_HOOK_INIT(inode_readlink, selinux_inode_readlink),
5986	LSM_HOOK_INIT(inode_follow_link, selinux_inode_follow_link),
5987	LSM_HOOK_INIT(inode_permission, selinux_inode_permission),
5988	LSM_HOOK_INIT(inode_setattr, selinux_inode_setattr),
5989	LSM_HOOK_INIT(inode_getattr, selinux_inode_getattr),
5990	LSM_HOOK_INIT(inode_setxattr, selinux_inode_setxattr),
5991	LSM_HOOK_INIT(inode_post_setxattr, selinux_inode_post_setxattr),
5992	LSM_HOOK_INIT(inode_getxattr, selinux_inode_getxattr),
5993	LSM_HOOK_INIT(inode_listxattr, selinux_inode_listxattr),
5994	LSM_HOOK_INIT(inode_removexattr, selinux_inode_removexattr),
5995	LSM_HOOK_INIT(inode_getsecurity, selinux_inode_getsecurity),
5996	LSM_HOOK_INIT(inode_setsecurity, selinux_inode_setsecurity),
5997	LSM_HOOK_INIT(inode_listsecurity, selinux_inode_listsecurity),
5998	LSM_HOOK_INIT(inode_getsecid, selinux_inode_getsecid),
 
 
 
 
 
5999
6000	LSM_HOOK_INIT(file_permission, selinux_file_permission),
6001	LSM_HOOK_INIT(file_alloc_security, selinux_file_alloc_security),
6002	LSM_HOOK_INIT(file_free_security, selinux_file_free_security),
6003	LSM_HOOK_INIT(file_ioctl, selinux_file_ioctl),
6004	LSM_HOOK_INIT(mmap_file, selinux_mmap_file),
6005	LSM_HOOK_INIT(mmap_addr, selinux_mmap_addr),
6006	LSM_HOOK_INIT(file_mprotect, selinux_file_mprotect),
6007	LSM_HOOK_INIT(file_lock, selinux_file_lock),
6008	LSM_HOOK_INIT(file_fcntl, selinux_file_fcntl),
6009	LSM_HOOK_INIT(file_set_fowner, selinux_file_set_fowner),
6010	LSM_HOOK_INIT(file_send_sigiotask, selinux_file_send_sigiotask),
6011	LSM_HOOK_INIT(file_receive, selinux_file_receive),
6012
6013	LSM_HOOK_INIT(file_open, selinux_file_open),
6014
6015	LSM_HOOK_INIT(task_create, selinux_task_create),
6016	LSM_HOOK_INIT(cred_alloc_blank, selinux_cred_alloc_blank),
6017	LSM_HOOK_INIT(cred_free, selinux_cred_free),
6018	LSM_HOOK_INIT(cred_prepare, selinux_cred_prepare),
6019	LSM_HOOK_INIT(cred_transfer, selinux_cred_transfer),
 
6020	LSM_HOOK_INIT(kernel_act_as, selinux_kernel_act_as),
6021	LSM_HOOK_INIT(kernel_create_files_as, selinux_kernel_create_files_as),
6022	LSM_HOOK_INIT(kernel_module_request, selinux_kernel_module_request),
 
 
6023	LSM_HOOK_INIT(task_setpgid, selinux_task_setpgid),
6024	LSM_HOOK_INIT(task_getpgid, selinux_task_getpgid),
6025	LSM_HOOK_INIT(task_getsid, selinux_task_getsid),
6026	LSM_HOOK_INIT(task_getsecid, selinux_task_getsecid),
 
6027	LSM_HOOK_INIT(task_setnice, selinux_task_setnice),
6028	LSM_HOOK_INIT(task_setioprio, selinux_task_setioprio),
6029	LSM_HOOK_INIT(task_getioprio, selinux_task_getioprio),
 
6030	LSM_HOOK_INIT(task_setrlimit, selinux_task_setrlimit),
6031	LSM_HOOK_INIT(task_setscheduler, selinux_task_setscheduler),
6032	LSM_HOOK_INIT(task_getscheduler, selinux_task_getscheduler),
6033	LSM_HOOK_INIT(task_movememory, selinux_task_movememory),
6034	LSM_HOOK_INIT(task_kill, selinux_task_kill),
6035	LSM_HOOK_INIT(task_wait, selinux_task_wait),
6036	LSM_HOOK_INIT(task_to_inode, selinux_task_to_inode),
6037
6038	LSM_HOOK_INIT(ipc_permission, selinux_ipc_permission),
6039	LSM_HOOK_INIT(ipc_getsecid, selinux_ipc_getsecid),
6040
6041	LSM_HOOK_INIT(msg_msg_alloc_security, selinux_msg_msg_alloc_security),
6042	LSM_HOOK_INIT(msg_msg_free_security, selinux_msg_msg_free_security),
6043
6044	LSM_HOOK_INIT(msg_queue_alloc_security,
6045			selinux_msg_queue_alloc_security),
6046	LSM_HOOK_INIT(msg_queue_free_security, selinux_msg_queue_free_security),
6047	LSM_HOOK_INIT(msg_queue_associate, selinux_msg_queue_associate),
6048	LSM_HOOK_INIT(msg_queue_msgctl, selinux_msg_queue_msgctl),
6049	LSM_HOOK_INIT(msg_queue_msgsnd, selinux_msg_queue_msgsnd),
6050	LSM_HOOK_INIT(msg_queue_msgrcv, selinux_msg_queue_msgrcv),
6051
6052	LSM_HOOK_INIT(shm_alloc_security, selinux_shm_alloc_security),
6053	LSM_HOOK_INIT(shm_free_security, selinux_shm_free_security),
6054	LSM_HOOK_INIT(shm_associate, selinux_shm_associate),
6055	LSM_HOOK_INIT(shm_shmctl, selinux_shm_shmctl),
6056	LSM_HOOK_INIT(shm_shmat, selinux_shm_shmat),
6057
6058	LSM_HOOK_INIT(sem_alloc_security, selinux_sem_alloc_security),
6059	LSM_HOOK_INIT(sem_free_security, selinux_sem_free_security),
6060	LSM_HOOK_INIT(sem_associate, selinux_sem_associate),
6061	LSM_HOOK_INIT(sem_semctl, selinux_sem_semctl),
6062	LSM_HOOK_INIT(sem_semop, selinux_sem_semop),
6063
6064	LSM_HOOK_INIT(d_instantiate, selinux_d_instantiate),
6065
6066	LSM_HOOK_INIT(getprocattr, selinux_getprocattr),
6067	LSM_HOOK_INIT(setprocattr, selinux_setprocattr),
6068
6069	LSM_HOOK_INIT(ismaclabel, selinux_ismaclabel),
6070	LSM_HOOK_INIT(secid_to_secctx, selinux_secid_to_secctx),
6071	LSM_HOOK_INIT(secctx_to_secid, selinux_secctx_to_secid),
6072	LSM_HOOK_INIT(release_secctx, selinux_release_secctx),
6073	LSM_HOOK_INIT(inode_invalidate_secctx, selinux_inode_invalidate_secctx),
6074	LSM_HOOK_INIT(inode_notifysecctx, selinux_inode_notifysecctx),
6075	LSM_HOOK_INIT(inode_setsecctx, selinux_inode_setsecctx),
6076	LSM_HOOK_INIT(inode_getsecctx, selinux_inode_getsecctx),
6077
6078	LSM_HOOK_INIT(unix_stream_connect, selinux_socket_unix_stream_connect),
6079	LSM_HOOK_INIT(unix_may_send, selinux_socket_unix_may_send),
6080
6081	LSM_HOOK_INIT(socket_create, selinux_socket_create),
6082	LSM_HOOK_INIT(socket_post_create, selinux_socket_post_create),
 
6083	LSM_HOOK_INIT(socket_bind, selinux_socket_bind),
6084	LSM_HOOK_INIT(socket_connect, selinux_socket_connect),
6085	LSM_HOOK_INIT(socket_listen, selinux_socket_listen),
6086	LSM_HOOK_INIT(socket_accept, selinux_socket_accept),
6087	LSM_HOOK_INIT(socket_sendmsg, selinux_socket_sendmsg),
6088	LSM_HOOK_INIT(socket_recvmsg, selinux_socket_recvmsg),
6089	LSM_HOOK_INIT(socket_getsockname, selinux_socket_getsockname),
6090	LSM_HOOK_INIT(socket_getpeername, selinux_socket_getpeername),
6091	LSM_HOOK_INIT(socket_getsockopt, selinux_socket_getsockopt),
6092	LSM_HOOK_INIT(socket_setsockopt, selinux_socket_setsockopt),
6093	LSM_HOOK_INIT(socket_shutdown, selinux_socket_shutdown),
6094	LSM_HOOK_INIT(socket_sock_rcv_skb, selinux_socket_sock_rcv_skb),
6095	LSM_HOOK_INIT(socket_getpeersec_stream,
6096			selinux_socket_getpeersec_stream),
6097	LSM_HOOK_INIT(socket_getpeersec_dgram, selinux_socket_getpeersec_dgram),
6098	LSM_HOOK_INIT(sk_alloc_security, selinux_sk_alloc_security),
6099	LSM_HOOK_INIT(sk_free_security, selinux_sk_free_security),
6100	LSM_HOOK_INIT(sk_clone_security, selinux_sk_clone_security),
6101	LSM_HOOK_INIT(sk_getsecid, selinux_sk_getsecid),
6102	LSM_HOOK_INIT(sock_graft, selinux_sock_graft),
 
 
 
6103	LSM_HOOK_INIT(inet_conn_request, selinux_inet_conn_request),
6104	LSM_HOOK_INIT(inet_csk_clone, selinux_inet_csk_clone),
6105	LSM_HOOK_INIT(inet_conn_established, selinux_inet_conn_established),
6106	LSM_HOOK_INIT(secmark_relabel_packet, selinux_secmark_relabel_packet),
6107	LSM_HOOK_INIT(secmark_refcount_inc, selinux_secmark_refcount_inc),
6108	LSM_HOOK_INIT(secmark_refcount_dec, selinux_secmark_refcount_dec),
6109	LSM_HOOK_INIT(req_classify_flow, selinux_req_classify_flow),
6110	LSM_HOOK_INIT(tun_dev_alloc_security, selinux_tun_dev_alloc_security),
6111	LSM_HOOK_INIT(tun_dev_free_security, selinux_tun_dev_free_security),
6112	LSM_HOOK_INIT(tun_dev_create, selinux_tun_dev_create),
6113	LSM_HOOK_INIT(tun_dev_attach_queue, selinux_tun_dev_attach_queue),
6114	LSM_HOOK_INIT(tun_dev_attach, selinux_tun_dev_attach),
6115	LSM_HOOK_INIT(tun_dev_open, selinux_tun_dev_open),
6116
 
 
 
 
 
6117#ifdef CONFIG_SECURITY_NETWORK_XFRM
6118	LSM_HOOK_INIT(xfrm_policy_alloc_security, selinux_xfrm_policy_alloc),
6119	LSM_HOOK_INIT(xfrm_policy_clone_security, selinux_xfrm_policy_clone),
6120	LSM_HOOK_INIT(xfrm_policy_free_security, selinux_xfrm_policy_free),
6121	LSM_HOOK_INIT(xfrm_policy_delete_security, selinux_xfrm_policy_delete),
6122	LSM_HOOK_INIT(xfrm_state_alloc, selinux_xfrm_state_alloc),
6123	LSM_HOOK_INIT(xfrm_state_alloc_acquire,
6124			selinux_xfrm_state_alloc_acquire),
6125	LSM_HOOK_INIT(xfrm_state_free_security, selinux_xfrm_state_free),
6126	LSM_HOOK_INIT(xfrm_state_delete_security, selinux_xfrm_state_delete),
6127	LSM_HOOK_INIT(xfrm_policy_lookup, selinux_xfrm_policy_lookup),
6128	LSM_HOOK_INIT(xfrm_state_pol_flow_match,
6129			selinux_xfrm_state_pol_flow_match),
6130	LSM_HOOK_INIT(xfrm_decode_session, selinux_xfrm_decode_session),
6131#endif
6132
6133#ifdef CONFIG_KEYS
6134	LSM_HOOK_INIT(key_alloc, selinux_key_alloc),
6135	LSM_HOOK_INIT(key_free, selinux_key_free),
6136	LSM_HOOK_INIT(key_permission, selinux_key_permission),
6137	LSM_HOOK_INIT(key_getsecurity, selinux_key_getsecurity),
 
 
 
6138#endif
6139
6140#ifdef CONFIG_AUDIT
6141	LSM_HOOK_INIT(audit_rule_init, selinux_audit_rule_init),
6142	LSM_HOOK_INIT(audit_rule_known, selinux_audit_rule_known),
6143	LSM_HOOK_INIT(audit_rule_match, selinux_audit_rule_match),
6144	LSM_HOOK_INIT(audit_rule_free, selinux_audit_rule_free),
6145#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6146};
6147
6148static __init int selinux_init(void)
6149{
6150	if (!security_module_enable("selinux")) {
6151		selinux_enabled = 0;
6152		return 0;
6153	}
6154
6155	if (!selinux_enabled) {
6156		printk(KERN_INFO "SELinux:  Disabled at boot.\n");
6157		return 0;
6158	}
6159
6160	printk(KERN_INFO "SELinux:  Initializing.\n");
6161
6162	/* Set the security state for the initial task. */
6163	cred_init_security();
6164
6165	default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
6166
6167	sel_inode_cache = kmem_cache_create("selinux_inode_security",
6168					    sizeof(struct inode_security_struct),
6169					    0, SLAB_PANIC, NULL);
6170	file_security_cache = kmem_cache_create("selinux_file_security",
6171					    sizeof(struct file_security_struct),
6172					    0, SLAB_PANIC, NULL);
6173	avc_init();
6174
6175	security_add_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks));
 
 
 
 
 
 
6176
6177	if (avc_add_callback(selinux_netcache_avc_callback, AVC_CALLBACK_RESET))
6178		panic("SELinux: Unable to register AVC netcache callback\n");
6179
6180	if (selinux_enforcing)
6181		printk(KERN_DEBUG "SELinux:  Starting in enforcing mode\n");
 
 
 
6182	else
6183		printk(KERN_DEBUG "SELinux:  Starting in permissive mode\n");
 
 
6184
6185	return 0;
6186}
6187
6188static void delayed_superblock_init(struct super_block *sb, void *unused)
6189{
6190	superblock_doinit(sb, NULL);
6191}
6192
6193void selinux_complete_init(void)
6194{
6195	printk(KERN_DEBUG "SELinux:  Completing initialization.\n");
6196
6197	/* Set up any superblocks initialized prior to the policy load. */
6198	printk(KERN_DEBUG "SELinux:  Setting up existing superblocks.\n");
6199	iterate_supers(delayed_superblock_init, NULL);
6200}
6201
6202/* SELinux requires early initialization in order to label
6203   all processes and objects when they are created. */
6204security_initcall(selinux_init);
 
 
 
 
 
 
6205
6206#if defined(CONFIG_NETFILTER)
6207
6208static struct nf_hook_ops selinux_nf_ops[] = {
6209	{
6210		.hook =		selinux_ipv4_postroute,
6211		.pf =		NFPROTO_IPV4,
6212		.hooknum =	NF_INET_POST_ROUTING,
6213		.priority =	NF_IP_PRI_SELINUX_LAST,
6214	},
6215	{
6216		.hook =		selinux_ipv4_forward,
6217		.pf =		NFPROTO_IPV4,
6218		.hooknum =	NF_INET_FORWARD,
6219		.priority =	NF_IP_PRI_SELINUX_FIRST,
6220	},
6221	{
6222		.hook =		selinux_ipv4_output,
6223		.pf =		NFPROTO_IPV4,
6224		.hooknum =	NF_INET_LOCAL_OUT,
6225		.priority =	NF_IP_PRI_SELINUX_FIRST,
6226	},
6227#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
6228	{
6229		.hook =		selinux_ipv6_postroute,
6230		.pf =		NFPROTO_IPV6,
6231		.hooknum =	NF_INET_POST_ROUTING,
6232		.priority =	NF_IP6_PRI_SELINUX_LAST,
6233	},
6234	{
6235		.hook =		selinux_ipv6_forward,
6236		.pf =		NFPROTO_IPV6,
6237		.hooknum =	NF_INET_FORWARD,
6238		.priority =	NF_IP6_PRI_SELINUX_FIRST,
6239	},
 
 
 
 
 
 
6240#endif	/* IPV6 */
6241};
6242
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6243static int __init selinux_nf_ip_init(void)
6244{
6245	int err;
6246
6247	if (!selinux_enabled)
6248		return 0;
6249
6250	printk(KERN_DEBUG "SELinux:  Registering netfilter hooks\n");
6251
6252	err = nf_register_hooks(selinux_nf_ops, ARRAY_SIZE(selinux_nf_ops));
6253	if (err)
6254		panic("SELinux: nf_register_hooks: error %d\n", err);
6255
6256	return 0;
6257}
6258
6259__initcall(selinux_nf_ip_init);
6260
6261#ifdef CONFIG_SECURITY_SELINUX_DISABLE
6262static void selinux_nf_ip_exit(void)
6263{
6264	printk(KERN_DEBUG "SELinux:  Unregistering netfilter hooks\n");
6265
6266	nf_unregister_hooks(selinux_nf_ops, ARRAY_SIZE(selinux_nf_ops));
6267}
6268#endif
6269
6270#else /* CONFIG_NETFILTER */
6271
6272#ifdef CONFIG_SECURITY_SELINUX_DISABLE
6273#define selinux_nf_ip_exit()
6274#endif
6275
6276#endif /* CONFIG_NETFILTER */
6277
6278#ifdef CONFIG_SECURITY_SELINUX_DISABLE
6279static int selinux_disabled;
6280
6281int selinux_disable(void)
6282{
6283	if (ss_initialized) {
6284		/* Not permitted after initial policy load. */
6285		return -EINVAL;
6286	}
6287
6288	if (selinux_disabled) {
6289		/* Only do this once. */
6290		return -EINVAL;
6291	}
6292
6293	printk(KERN_INFO "SELinux:  Disabled at runtime.\n");
6294
6295	selinux_disabled = 1;
6296	selinux_enabled = 0;
 
 
 
 
 
 
6297
6298	security_delete_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks));
6299
6300	/* Try to destroy the avc node cache */
6301	avc_disable();
6302
6303	/* Unregister netfilter hooks. */
6304	selinux_nf_ip_exit();
6305
6306	/* Unregister selinuxfs. */
6307	exit_sel_fs();
6308
6309	return 0;
6310}
6311#endif
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  NSA Security-Enhanced Linux (SELinux) security module
   4 *
   5 *  This file contains the SELinux hook function implementations.
   6 *
   7 *  Authors:  Stephen Smalley, <sds@tycho.nsa.gov>
   8 *	      Chris Vance, <cvance@nai.com>
   9 *	      Wayne Salamon, <wsalamon@nai.com>
  10 *	      James Morris <jmorris@redhat.com>
  11 *
  12 *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
  13 *  Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
  14 *					   Eric Paris <eparis@redhat.com>
  15 *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
  16 *			    <dgoeddel@trustedcs.com>
  17 *  Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
  18 *	Paul Moore <paul@paul-moore.com>
  19 *  Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
  20 *		       Yuichi Nakamura <ynakam@hitachisoft.jp>
  21 *  Copyright (C) 2016 Mellanox Technologies
 
 
 
  22 */
  23
  24#include <linux/init.h>
  25#include <linux/kd.h>
  26#include <linux/kernel.h>
  27#include <linux/kernel_read_file.h>
  28#include <linux/tracehook.h>
  29#include <linux/errno.h>
  30#include <linux/sched/signal.h>
  31#include <linux/sched/task.h>
  32#include <linux/lsm_hooks.h>
  33#include <linux/xattr.h>
  34#include <linux/capability.h>
  35#include <linux/unistd.h>
  36#include <linux/mm.h>
  37#include <linux/mman.h>
  38#include <linux/slab.h>
  39#include <linux/pagemap.h>
  40#include <linux/proc_fs.h>
  41#include <linux/swap.h>
  42#include <linux/spinlock.h>
  43#include <linux/syscalls.h>
  44#include <linux/dcache.h>
  45#include <linux/file.h>
  46#include <linux/fdtable.h>
  47#include <linux/namei.h>
  48#include <linux/mount.h>
  49#include <linux/fs_context.h>
  50#include <linux/fs_parser.h>
  51#include <linux/netfilter_ipv4.h>
  52#include <linux/netfilter_ipv6.h>
  53#include <linux/tty.h>
  54#include <net/icmp.h>
  55#include <net/ip.h>		/* for local_port_range[] */
  56#include <net/tcp.h>		/* struct or_callable used in sock_rcv_skb */
  57#include <net/inet_connection_sock.h>
  58#include <net/net_namespace.h>
  59#include <net/netlabel.h>
  60#include <linux/uaccess.h>
  61#include <asm/ioctls.h>
  62#include <linux/atomic.h>
  63#include <linux/bitops.h>
  64#include <linux/interrupt.h>
  65#include <linux/netdevice.h>	/* for network interface checks */
  66#include <net/netlink.h>
  67#include <linux/tcp.h>
  68#include <linux/udp.h>
  69#include <linux/dccp.h>
  70#include <linux/sctp.h>
  71#include <net/sctp/structs.h>
  72#include <linux/quota.h>
  73#include <linux/un.h>		/* for Unix socket types */
  74#include <net/af_unix.h>	/* for Unix socket types */
  75#include <linux/parser.h>
  76#include <linux/nfs_mount.h>
  77#include <net/ipv6.h>
  78#include <linux/hugetlb.h>
  79#include <linux/personality.h>
  80#include <linux/audit.h>
  81#include <linux/string.h>
 
  82#include <linux/mutex.h>
  83#include <linux/posix-timers.h>
  84#include <linux/syslog.h>
  85#include <linux/user_namespace.h>
  86#include <linux/export.h>
  87#include <linux/msg.h>
  88#include <linux/shm.h>
  89#include <linux/bpf.h>
  90#include <linux/kernfs.h>
  91#include <linux/stringhash.h>	/* for hashlen_string() */
  92#include <uapi/linux/mount.h>
  93#include <linux/fsnotify.h>
  94#include <linux/fanotify.h>
  95
  96#include "avc.h"
  97#include "objsec.h"
  98#include "netif.h"
  99#include "netnode.h"
 100#include "netport.h"
 101#include "ibpkey.h"
 102#include "xfrm.h"
 103#include "netlabel.h"
 104#include "audit.h"
 105#include "avc_ss.h"
 106
 107struct selinux_state selinux_state;
 108
 109/* SECMARK reference count */
 110static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
 111
 112#ifdef CONFIG_SECURITY_SELINUX_DEVELOP
 113static int selinux_enforcing_boot __initdata;
 114
 115static int __init enforcing_setup(char *str)
 116{
 117	unsigned long enforcing;
 118	if (!kstrtoul(str, 0, &enforcing))
 119		selinux_enforcing_boot = enforcing ? 1 : 0;
 120	return 1;
 121}
 122__setup("enforcing=", enforcing_setup);
 123#else
 124#define selinux_enforcing_boot 1
 125#endif
 126
 127int selinux_enabled_boot __initdata = 1;
 128#ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
 
 
 129static int __init selinux_enabled_setup(char *str)
 130{
 131	unsigned long enabled;
 132	if (!kstrtoul(str, 0, &enabled))
 133		selinux_enabled_boot = enabled ? 1 : 0;
 134	return 1;
 135}
 136__setup("selinux=", selinux_enabled_setup);
 
 
 137#endif
 138
 139static unsigned int selinux_checkreqprot_boot =
 140	CONFIG_SECURITY_SELINUX_CHECKREQPROT_VALUE;
 141
 142static int __init checkreqprot_setup(char *str)
 143{
 144	unsigned long checkreqprot;
 145
 146	if (!kstrtoul(str, 0, &checkreqprot)) {
 147		selinux_checkreqprot_boot = checkreqprot ? 1 : 0;
 148		if (checkreqprot)
 149			pr_warn("SELinux: checkreqprot set to 1 via kernel parameter.  This is deprecated and will be rejected in a future kernel release.\n");
 150	}
 151	return 1;
 152}
 153__setup("checkreqprot=", checkreqprot_setup);
 154
 155/**
 156 * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
 157 *
 158 * Description:
 159 * This function checks the SECMARK reference counter to see if any SECMARK
 160 * targets are currently configured, if the reference counter is greater than
 161 * zero SECMARK is considered to be enabled.  Returns true (1) if SECMARK is
 162 * enabled, false (0) if SECMARK is disabled.  If the always_check_network
 163 * policy capability is enabled, SECMARK is always considered enabled.
 164 *
 165 */
 166static int selinux_secmark_enabled(void)
 167{
 168	return (selinux_policycap_alwaysnetwork() ||
 169		atomic_read(&selinux_secmark_refcount));
 170}
 171
 172/**
 173 * selinux_peerlbl_enabled - Check to see if peer labeling is currently enabled
 174 *
 175 * Description:
 176 * This function checks if NetLabel or labeled IPSEC is enabled.  Returns true
 177 * (1) if any are enabled or false (0) if neither are enabled.  If the
 178 * always_check_network policy capability is enabled, peer labeling
 179 * is always considered enabled.
 180 *
 181 */
 182static int selinux_peerlbl_enabled(void)
 183{
 184	return (selinux_policycap_alwaysnetwork() ||
 185		netlbl_enabled() || selinux_xfrm_enabled());
 186}
 187
 188static int selinux_netcache_avc_callback(u32 event)
 189{
 190	if (event == AVC_CALLBACK_RESET) {
 191		sel_netif_flush();
 192		sel_netnode_flush();
 193		sel_netport_flush();
 194		synchronize_net();
 195	}
 196	return 0;
 197}
 198
 199static int selinux_lsm_notifier_avc_callback(u32 event)
 200{
 201	if (event == AVC_CALLBACK_RESET) {
 202		sel_ib_pkey_flush();
 203		call_blocking_lsm_notifier(LSM_POLICY_CHANGE, NULL);
 204	}
 205
 206	return 0;
 207}
 208
 209/*
 210 * initialise the security for the init task
 211 */
 212static void cred_init_security(void)
 213{
 214	struct cred *cred = (struct cred *) current->real_cred;
 215	struct task_security_struct *tsec;
 216
 217	tsec = selinux_cred(cred);
 
 
 
 218	tsec->osid = tsec->sid = SECINITSID_KERNEL;
 
 219}
 220
 221/*
 222 * get the security ID of a set of credentials
 223 */
 224static inline u32 cred_sid(const struct cred *cred)
 225{
 226	const struct task_security_struct *tsec;
 227
 228	tsec = selinux_cred(cred);
 229	return tsec->sid;
 230}
 231
 232/*
 233 * get the subjective security ID of a task
 234 */
 235static inline u32 task_sid_subj(const struct task_struct *task)
 236{
 237	u32 sid;
 238
 239	rcu_read_lock();
 240	sid = cred_sid(rcu_dereference(task->cred));
 241	rcu_read_unlock();
 242	return sid;
 243}
 244
 245/*
 246 * get the objective security ID of a task
 247 */
 248static inline u32 task_sid_obj(const struct task_struct *task)
 249{
 250	u32 sid;
 251
 252	rcu_read_lock();
 253	sid = cred_sid(__task_cred(task));
 254	rcu_read_unlock();
 255	return sid;
 256}
 257
 258/*
 259 * get the security ID of a task for use with binder
 260 */
 261static inline u32 task_sid_binder(const struct task_struct *task)
 262{
 263	/*
 264	 * In many case where this function is used we should be using the
 265	 * task's subjective SID, but we can't reliably access the subjective
 266	 * creds of a task other than our own so we must use the objective
 267	 * creds/SID, which are safe to access.  The downside is that if a task
 268	 * is temporarily overriding it's creds it will not be reflected here;
 269	 * however, it isn't clear that binder would handle that case well
 270	 * anyway.
 271	 *
 272	 * If this ever changes and we can safely reference the subjective
 273	 * creds/SID of another task, this function will make it easier to
 274	 * identify the various places where we make use of the task SIDs in
 275	 * the binder code.  It is also likely that we will need to adjust
 276	 * the main drivers/android binder code as well.
 277	 */
 278	return task_sid_obj(task);
 279}
 280
 281static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
 282
 283/*
 284 * Try reloading inode security labels that have been marked as invalid.  The
 285 * @may_sleep parameter indicates when sleeping and thus reloading labels is
 286 * allowed; when set to false, returns -ECHILD when the label is
 287 * invalid.  The @dentry parameter should be set to a dentry of the inode.
 
 288 */
 289static int __inode_security_revalidate(struct inode *inode,
 290				       struct dentry *dentry,
 291				       bool may_sleep)
 292{
 293	struct inode_security_struct *isec = selinux_inode(inode);
 294
 295	might_sleep_if(may_sleep);
 296
 297	if (selinux_initialized(&selinux_state) &&
 298	    isec->initialized != LABEL_INITIALIZED) {
 299		if (!may_sleep)
 300			return -ECHILD;
 301
 302		/*
 303		 * Try reloading the inode security label.  This will fail if
 304		 * @opt_dentry is NULL and no dentry for this inode can be
 305		 * found; in that case, continue using the old label.
 306		 */
 307		inode_doinit_with_dentry(inode, dentry);
 308	}
 309	return 0;
 310}
 311
 312static struct inode_security_struct *inode_security_novalidate(struct inode *inode)
 313{
 314	return selinux_inode(inode);
 315}
 316
 317static struct inode_security_struct *inode_security_rcu(struct inode *inode, bool rcu)
 318{
 319	int error;
 320
 321	error = __inode_security_revalidate(inode, NULL, !rcu);
 322	if (error)
 323		return ERR_PTR(error);
 324	return selinux_inode(inode);
 325}
 326
 327/*
 328 * Get the security label of an inode.
 329 */
 330static struct inode_security_struct *inode_security(struct inode *inode)
 331{
 332	__inode_security_revalidate(inode, NULL, true);
 333	return selinux_inode(inode);
 334}
 335
 336static struct inode_security_struct *backing_inode_security_novalidate(struct dentry *dentry)
 337{
 338	struct inode *inode = d_backing_inode(dentry);
 339
 340	return selinux_inode(inode);
 341}
 342
 343/*
 344 * Get the security label of a dentry's backing inode.
 345 */
 346static struct inode_security_struct *backing_inode_security(struct dentry *dentry)
 347{
 348	struct inode *inode = d_backing_inode(dentry);
 349
 350	__inode_security_revalidate(inode, dentry, true);
 351	return selinux_inode(inode);
 
 
 
 
 
 
 
 
 352}
 353
 354static void inode_free_security(struct inode *inode)
 355{
 356	struct inode_security_struct *isec = selinux_inode(inode);
 357	struct superblock_security_struct *sbsec;
 358
 359	if (!isec)
 360		return;
 361	sbsec = selinux_superblock(inode->i_sb);
 362	/*
 363	 * As not all inode security structures are in a list, we check for
 364	 * empty list outside of the lock to make sure that we won't waste
 365	 * time taking a lock doing nothing.
 366	 *
 367	 * The list_del_init() function can be safely called more than once.
 368	 * It should not be possible for this function to be called with
 369	 * concurrent list_add(), but for better safety against future changes
 370	 * in the code, we use list_empty_careful() here.
 371	 */
 372	if (!list_empty_careful(&isec->list)) {
 373		spin_lock(&sbsec->isec_lock);
 374		list_del_init(&isec->list);
 375		spin_unlock(&sbsec->isec_lock);
 376	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 377}
 378
 379struct selinux_mnt_opts {
 380	const char *fscontext, *context, *rootcontext, *defcontext;
 
 
 
 
 
 
 
 
 381};
 382
 383static void selinux_free_mnt_opts(void *mnt_opts)
 384{
 385	struct selinux_mnt_opts *opts = mnt_opts;
 386	kfree(opts->fscontext);
 387	kfree(opts->context);
 388	kfree(opts->rootcontext);
 389	kfree(opts->defcontext);
 390	kfree(opts);
 391}
 392
 393enum {
 394	Opt_error = -1,
 395	Opt_context = 0,
 396	Opt_defcontext = 1,
 397	Opt_fscontext = 2,
 398	Opt_rootcontext = 3,
 399	Opt_seclabel = 4,
 
 
 400};
 401
 402#define A(s, has_arg) {#s, sizeof(#s) - 1, Opt_##s, has_arg}
 403static struct {
 404	const char *name;
 405	int len;
 406	int opt;
 407	bool has_arg;
 408} tokens[] = {
 409	A(context, true),
 410	A(fscontext, true),
 411	A(defcontext, true),
 412	A(rootcontext, true),
 413	A(seclabel, false),
 414};
 415#undef A
 416
 417static int match_opt_prefix(char *s, int l, char **arg)
 418{
 419	int i;
 420
 421	for (i = 0; i < ARRAY_SIZE(tokens); i++) {
 422		size_t len = tokens[i].len;
 423		if (len > l || memcmp(s, tokens[i].name, len))
 424			continue;
 425		if (tokens[i].has_arg) {
 426			if (len == l || s[len] != '=')
 427				continue;
 428			*arg = s + len + 1;
 429		} else if (len != l)
 430			continue;
 431		return tokens[i].opt;
 432	}
 433	return Opt_error;
 434}
 435
 436#define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
 437
 438static int may_context_mount_sb_relabel(u32 sid,
 439			struct superblock_security_struct *sbsec,
 440			const struct cred *cred)
 441{
 442	const struct task_security_struct *tsec = selinux_cred(cred);
 443	int rc;
 444
 445	rc = avc_has_perm(&selinux_state,
 446			  tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
 447			  FILESYSTEM__RELABELFROM, NULL);
 448	if (rc)
 449		return rc;
 450
 451	rc = avc_has_perm(&selinux_state,
 452			  tsec->sid, sid, SECCLASS_FILESYSTEM,
 453			  FILESYSTEM__RELABELTO, NULL);
 454	return rc;
 455}
 456
 457static int may_context_mount_inode_relabel(u32 sid,
 458			struct superblock_security_struct *sbsec,
 459			const struct cred *cred)
 460{
 461	const struct task_security_struct *tsec = selinux_cred(cred);
 462	int rc;
 463	rc = avc_has_perm(&selinux_state,
 464			  tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
 465			  FILESYSTEM__RELABELFROM, NULL);
 466	if (rc)
 467		return rc;
 468
 469	rc = avc_has_perm(&selinux_state,
 470			  sid, sbsec->sid, SECCLASS_FILESYSTEM,
 471			  FILESYSTEM__ASSOCIATE, NULL);
 472	return rc;
 473}
 474
 475static int selinux_is_genfs_special_handling(struct super_block *sb)
 476{
 477	/* Special handling. Genfs but also in-core setxattr handler */
 478	return	!strcmp(sb->s_type->name, "sysfs") ||
 479		!strcmp(sb->s_type->name, "pstore") ||
 480		!strcmp(sb->s_type->name, "debugfs") ||
 481		!strcmp(sb->s_type->name, "tracefs") ||
 482		!strcmp(sb->s_type->name, "rootfs") ||
 483		(selinux_policycap_cgroupseclabel() &&
 484		 (!strcmp(sb->s_type->name, "cgroup") ||
 485		  !strcmp(sb->s_type->name, "cgroup2")));
 486}
 487
 488static int selinux_is_sblabel_mnt(struct super_block *sb)
 489{
 490	struct superblock_security_struct *sbsec = selinux_superblock(sb);
 491
 492	/*
 493	 * IMPORTANT: Double-check logic in this function when adding a new
 494	 * SECURITY_FS_USE_* definition!
 495	 */
 496	BUILD_BUG_ON(SECURITY_FS_USE_MAX != 7);
 497
 498	switch (sbsec->behavior) {
 499	case SECURITY_FS_USE_XATTR:
 500	case SECURITY_FS_USE_TRANS:
 501	case SECURITY_FS_USE_TASK:
 502	case SECURITY_FS_USE_NATIVE:
 503		return 1;
 504
 505	case SECURITY_FS_USE_GENFS:
 506		return selinux_is_genfs_special_handling(sb);
 507
 508	/* Never allow relabeling on context mounts */
 509	case SECURITY_FS_USE_MNTPOINT:
 510	case SECURITY_FS_USE_NONE:
 511	default:
 512		return 0;
 513	}
 514}
 515
 516static int sb_check_xattr_support(struct super_block *sb)
 517{
 518	struct superblock_security_struct *sbsec = sb->s_security;
 519	struct dentry *root = sb->s_root;
 520	struct inode *root_inode = d_backing_inode(root);
 521	u32 sid;
 522	int rc;
 523
 524	/*
 525	 * Make sure that the xattr handler exists and that no
 526	 * error other than -ENODATA is returned by getxattr on
 527	 * the root directory.  -ENODATA is ok, as this may be
 528	 * the first boot of the SELinux kernel before we have
 529	 * assigned xattr values to the filesystem.
 530	 */
 531	if (!(root_inode->i_opflags & IOP_XATTR)) {
 532		pr_warn("SELinux: (dev %s, type %s) has no xattr support\n",
 533			sb->s_id, sb->s_type->name);
 534		goto fallback;
 535	}
 536
 537	rc = __vfs_getxattr(root, root_inode, XATTR_NAME_SELINUX, NULL, 0);
 538	if (rc < 0 && rc != -ENODATA) {
 539		if (rc == -EOPNOTSUPP) {
 540			pr_warn("SELinux: (dev %s, type %s) has no security xattr handler\n",
 541				sb->s_id, sb->s_type->name);
 542			goto fallback;
 543		} else {
 544			pr_warn("SELinux: (dev %s, type %s) getxattr errno %d\n",
 545				sb->s_id, sb->s_type->name, -rc);
 546			return rc;
 547		}
 548	}
 549	return 0;
 550
 551fallback:
 552	/* No xattr support - try to fallback to genfs if possible. */
 553	rc = security_genfs_sid(&selinux_state, sb->s_type->name, "/",
 554				SECCLASS_DIR, &sid);
 555	if (rc)
 556		return -EOPNOTSUPP;
 557
 558	pr_warn("SELinux: (dev %s, type %s) falling back to genfs\n",
 559		sb->s_id, sb->s_type->name);
 560	sbsec->behavior = SECURITY_FS_USE_GENFS;
 561	sbsec->sid = sid;
 562	return 0;
 563}
 564
 565static int sb_finish_set_opts(struct super_block *sb)
 566{
 567	struct superblock_security_struct *sbsec = selinux_superblock(sb);
 568	struct dentry *root = sb->s_root;
 569	struct inode *root_inode = d_backing_inode(root);
 570	int rc = 0;
 571
 572	if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
 573		rc = sb_check_xattr_support(sb);
 574		if (rc)
 575			return rc;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 576	}
 577
 
 
 
 
 578	sbsec->flags |= SE_SBINITIALIZED;
 579
 580	/*
 581	 * Explicitly set or clear SBLABEL_MNT.  It's not sufficient to simply
 582	 * leave the flag untouched because sb_clone_mnt_opts might be handing
 583	 * us a superblock that needs the flag to be cleared.
 584	 */
 585	if (selinux_is_sblabel_mnt(sb))
 586		sbsec->flags |= SBLABEL_MNT;
 587	else
 588		sbsec->flags &= ~SBLABEL_MNT;
 589
 590	/* Initialize the root inode. */
 591	rc = inode_doinit_with_dentry(root_inode, root);
 592
 593	/* Initialize any other inodes associated with the superblock, e.g.
 594	   inodes created prior to initial policy load or inodes created
 595	   during get_sb by a pseudo filesystem that directly
 596	   populates itself. */
 597	spin_lock(&sbsec->isec_lock);
 598	while (!list_empty(&sbsec->isec_head)) {
 
 599		struct inode_security_struct *isec =
 600				list_first_entry(&sbsec->isec_head,
 601					   struct inode_security_struct, list);
 602		struct inode *inode = isec->inode;
 603		list_del_init(&isec->list);
 604		spin_unlock(&sbsec->isec_lock);
 605		inode = igrab(inode);
 606		if (inode) {
 607			if (!IS_PRIVATE(inode))
 608				inode_doinit_with_dentry(inode, NULL);
 609			iput(inode);
 610		}
 611		spin_lock(&sbsec->isec_lock);
 
 612	}
 613	spin_unlock(&sbsec->isec_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 614	return rc;
 615}
 616
 617static int bad_option(struct superblock_security_struct *sbsec, char flag,
 618		      u32 old_sid, u32 new_sid)
 619{
 620	char mnt_flags = sbsec->flags & SE_MNTMASK;
 621
 622	/* check if the old mount command had the same options */
 623	if (sbsec->flags & SE_SBINITIALIZED)
 624		if (!(sbsec->flags & flag) ||
 625		    (old_sid != new_sid))
 626			return 1;
 627
 628	/* check if we were passed the same options twice,
 629	 * aka someone passed context=a,context=b
 630	 */
 631	if (!(sbsec->flags & SE_SBINITIALIZED))
 632		if (mnt_flags & flag)
 633			return 1;
 634	return 0;
 635}
 636
 637static int parse_sid(struct super_block *sb, const char *s, u32 *sid)
 638{
 639	int rc = security_context_str_to_sid(&selinux_state, s,
 640					     sid, GFP_KERNEL);
 641	if (rc)
 642		pr_warn("SELinux: security_context_str_to_sid"
 643		       "(%s) failed for (dev %s, type %s) errno=%d\n",
 644		       s, sb->s_id, sb->s_type->name, rc);
 645	return rc;
 646}
 647
 648/*
 649 * Allow filesystems with binary mount data to explicitly set mount point
 650 * labeling information.
 651 */
 652static int selinux_set_mnt_opts(struct super_block *sb,
 653				void *mnt_opts,
 654				unsigned long kern_flags,
 655				unsigned long *set_kern_flags)
 656{
 657	const struct cred *cred = current_cred();
 658	struct superblock_security_struct *sbsec = selinux_superblock(sb);
 659	struct dentry *root = sb->s_root;
 660	struct selinux_mnt_opts *opts = mnt_opts;
 661	struct inode_security_struct *root_isec;
 
 662	u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
 663	u32 defcontext_sid = 0;
 664	int rc = 0;
 
 
 665
 666	mutex_lock(&sbsec->lock);
 667
 668	if (!selinux_initialized(&selinux_state)) {
 669		if (!opts) {
 670			/* Defer initialization until selinux_complete_init,
 671			   after the initial policy is loaded and the security
 672			   server is ready to handle calls. */
 673			goto out;
 674		}
 675		rc = -EINVAL;
 676		pr_warn("SELinux: Unable to set superblock options "
 677			"before the security server is initialized\n");
 678		goto out;
 679	}
 680	if (kern_flags && !set_kern_flags) {
 681		/* Specifying internal flags without providing a place to
 682		 * place the results is not allowed */
 683		rc = -EINVAL;
 684		goto out;
 685	}
 686
 687	/*
 688	 * Binary mount data FS will come through this function twice.  Once
 689	 * from an explicit call and once from the generic calls from the vfs.
 690	 * Since the generic VFS calls will not contain any security mount data
 691	 * we need to skip the double mount verification.
 692	 *
 693	 * This does open a hole in which we will not notice if the first
 694	 * mount using this sb set explict options and a second mount using
 695	 * this sb does not set any security options.  (The first options
 696	 * will be used for both mounts)
 697	 */
 698	if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
 699	    && !opts)
 700		goto out;
 701
 702	root_isec = backing_inode_security_novalidate(root);
 703
 704	/*
 705	 * parse the mount options, check if they are valid sids.
 706	 * also check if someone is trying to mount the same sb more
 707	 * than once with different security options.
 708	 */
 709	if (opts) {
 710		if (opts->fscontext) {
 711			rc = parse_sid(sb, opts->fscontext, &fscontext_sid);
 712			if (rc)
 713				goto out;
 
 
 
 
 
 
 
 
 
 
 
 714			if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
 715					fscontext_sid))
 716				goto out_double_mount;
 
 717			sbsec->flags |= FSCONTEXT_MNT;
 718		}
 719		if (opts->context) {
 720			rc = parse_sid(sb, opts->context, &context_sid);
 721			if (rc)
 722				goto out;
 723			if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
 724					context_sid))
 725				goto out_double_mount;
 
 726			sbsec->flags |= CONTEXT_MNT;
 727		}
 728		if (opts->rootcontext) {
 729			rc = parse_sid(sb, opts->rootcontext, &rootcontext_sid);
 730			if (rc)
 731				goto out;
 732			if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
 733					rootcontext_sid))
 734				goto out_double_mount;
 
 735			sbsec->flags |= ROOTCONTEXT_MNT;
 736		}
 737		if (opts->defcontext) {
 738			rc = parse_sid(sb, opts->defcontext, &defcontext_sid);
 739			if (rc)
 740				goto out;
 741			if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
 742					defcontext_sid))
 743				goto out_double_mount;
 
 744			sbsec->flags |= DEFCONTEXT_MNT;
 
 
 
 
 
 745		}
 746	}
 747
 748	if (sbsec->flags & SE_SBINITIALIZED) {
 749		/* previously mounted with options, but not on this attempt? */
 750		if ((sbsec->flags & SE_MNTMASK) && !opts)
 751			goto out_double_mount;
 752		rc = 0;
 753		goto out;
 754	}
 755
 756	if (strcmp(sb->s_type->name, "proc") == 0)
 757		sbsec->flags |= SE_SBPROC | SE_SBGENFS;
 758
 759	if (!strcmp(sb->s_type->name, "debugfs") ||
 760	    !strcmp(sb->s_type->name, "tracefs") ||
 761	    !strcmp(sb->s_type->name, "binder") ||
 762	    !strcmp(sb->s_type->name, "bpf") ||
 763	    !strcmp(sb->s_type->name, "pstore"))
 764		sbsec->flags |= SE_SBGENFS;
 765
 766	if (!strcmp(sb->s_type->name, "sysfs") ||
 767	    !strcmp(sb->s_type->name, "cgroup") ||
 768	    !strcmp(sb->s_type->name, "cgroup2"))
 769		sbsec->flags |= SE_SBGENFS | SE_SBGENFS_XATTR;
 770
 771	if (!sbsec->behavior) {
 772		/*
 773		 * Determine the labeling behavior to use for this
 774		 * filesystem type.
 775		 */
 776		rc = security_fs_use(&selinux_state, sb);
 777		if (rc) {
 778			pr_warn("%s: security_fs_use(%s) returned %d\n",
 
 779					__func__, sb->s_type->name, rc);
 780			goto out;
 781		}
 782	}
 783
 784	/*
 785	 * If this is a user namespace mount and the filesystem type is not
 786	 * explicitly whitelisted, then no contexts are allowed on the command
 787	 * line and security labels must be ignored.
 788	 */
 789	if (sb->s_user_ns != &init_user_ns &&
 790	    strcmp(sb->s_type->name, "tmpfs") &&
 791	    strcmp(sb->s_type->name, "ramfs") &&
 792	    strcmp(sb->s_type->name, "devpts") &&
 793	    strcmp(sb->s_type->name, "overlay")) {
 794		if (context_sid || fscontext_sid || rootcontext_sid ||
 795		    defcontext_sid) {
 796			rc = -EACCES;
 797			goto out;
 798		}
 799		if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
 800			sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
 801			rc = security_transition_sid(&selinux_state,
 802						     current_sid(),
 803						     current_sid(),
 804						     SECCLASS_FILE, NULL,
 805						     &sbsec->mntpoint_sid);
 806			if (rc)
 807				goto out;
 808		}
 809		goto out_set_opts;
 810	}
 811
 812	/* sets the context of the superblock for the fs being mounted. */
 813	if (fscontext_sid) {
 814		rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
 815		if (rc)
 816			goto out;
 817
 818		sbsec->sid = fscontext_sid;
 819	}
 820
 821	/*
 822	 * Switch to using mount point labeling behavior.
 823	 * sets the label used on all file below the mountpoint, and will set
 824	 * the superblock context if not already set.
 825	 */
 826	if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !context_sid) {
 827		sbsec->behavior = SECURITY_FS_USE_NATIVE;
 828		*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
 829	}
 830
 831	if (context_sid) {
 832		if (!fscontext_sid) {
 833			rc = may_context_mount_sb_relabel(context_sid, sbsec,
 834							  cred);
 835			if (rc)
 836				goto out;
 837			sbsec->sid = context_sid;
 838		} else {
 839			rc = may_context_mount_inode_relabel(context_sid, sbsec,
 840							     cred);
 841			if (rc)
 842				goto out;
 843		}
 844		if (!rootcontext_sid)
 845			rootcontext_sid = context_sid;
 846
 847		sbsec->mntpoint_sid = context_sid;
 848		sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
 849	}
 850
 851	if (rootcontext_sid) {
 852		rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
 853						     cred);
 854		if (rc)
 855			goto out;
 856
 857		root_isec->sid = rootcontext_sid;
 858		root_isec->initialized = LABEL_INITIALIZED;
 859	}
 860
 861	if (defcontext_sid) {
 862		if (sbsec->behavior != SECURITY_FS_USE_XATTR &&
 863			sbsec->behavior != SECURITY_FS_USE_NATIVE) {
 864			rc = -EINVAL;
 865			pr_warn("SELinux: defcontext option is "
 866			       "invalid for this filesystem type\n");
 867			goto out;
 868		}
 869
 870		if (defcontext_sid != sbsec->def_sid) {
 871			rc = may_context_mount_inode_relabel(defcontext_sid,
 872							     sbsec, cred);
 873			if (rc)
 874				goto out;
 875		}
 876
 877		sbsec->def_sid = defcontext_sid;
 878	}
 879
 880out_set_opts:
 881	rc = sb_finish_set_opts(sb);
 882out:
 883	mutex_unlock(&sbsec->lock);
 884	return rc;
 885out_double_mount:
 886	rc = -EINVAL;
 887	pr_warn("SELinux: mount invalid.  Same superblock, different "
 888	       "security settings for (dev %s, type %s)\n", sb->s_id,
 889	       sb->s_type->name);
 890	goto out;
 891}
 892
 893static int selinux_cmp_sb_context(const struct super_block *oldsb,
 894				    const struct super_block *newsb)
 895{
 896	struct superblock_security_struct *old = selinux_superblock(oldsb);
 897	struct superblock_security_struct *new = selinux_superblock(newsb);
 898	char oldflags = old->flags & SE_MNTMASK;
 899	char newflags = new->flags & SE_MNTMASK;
 900
 901	if (oldflags != newflags)
 902		goto mismatch;
 903	if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid)
 904		goto mismatch;
 905	if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid)
 906		goto mismatch;
 907	if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid)
 908		goto mismatch;
 909	if (oldflags & ROOTCONTEXT_MNT) {
 910		struct inode_security_struct *oldroot = backing_inode_security(oldsb->s_root);
 911		struct inode_security_struct *newroot = backing_inode_security(newsb->s_root);
 912		if (oldroot->sid != newroot->sid)
 913			goto mismatch;
 914	}
 915	return 0;
 916mismatch:
 917	pr_warn("SELinux: mount invalid.  Same superblock, "
 918			    "different security settings for (dev %s, "
 919			    "type %s)\n", newsb->s_id, newsb->s_type->name);
 920	return -EBUSY;
 921}
 922
 923static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
 924					struct super_block *newsb,
 925					unsigned long kern_flags,
 926					unsigned long *set_kern_flags)
 927{
 928	int rc = 0;
 929	const struct superblock_security_struct *oldsbsec =
 930						selinux_superblock(oldsb);
 931	struct superblock_security_struct *newsbsec = selinux_superblock(newsb);
 932
 933	int set_fscontext =	(oldsbsec->flags & FSCONTEXT_MNT);
 934	int set_context =	(oldsbsec->flags & CONTEXT_MNT);
 935	int set_rootcontext =	(oldsbsec->flags & ROOTCONTEXT_MNT);
 936
 937	/*
 938	 * if the parent was able to be mounted it clearly had no special lsm
 939	 * mount options.  thus we can safely deal with this superblock later
 940	 */
 941	if (!selinux_initialized(&selinux_state))
 942		return 0;
 943
 944	/*
 945	 * Specifying internal flags without providing a place to
 946	 * place the results is not allowed.
 947	 */
 948	if (kern_flags && !set_kern_flags)
 949		return -EINVAL;
 950
 951	/* how can we clone if the old one wasn't set up?? */
 952	BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
 953
 954	/* if fs is reusing a sb, make sure that the contexts match */
 955	if (newsbsec->flags & SE_SBINITIALIZED) {
 956		if ((kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context)
 957			*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
 958		return selinux_cmp_sb_context(oldsb, newsb);
 959	}
 960
 961	mutex_lock(&newsbsec->lock);
 962
 963	newsbsec->flags = oldsbsec->flags;
 964
 965	newsbsec->sid = oldsbsec->sid;
 966	newsbsec->def_sid = oldsbsec->def_sid;
 967	newsbsec->behavior = oldsbsec->behavior;
 968
 969	if (newsbsec->behavior == SECURITY_FS_USE_NATIVE &&
 970		!(kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context) {
 971		rc = security_fs_use(&selinux_state, newsb);
 972		if (rc)
 973			goto out;
 974	}
 975
 976	if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !set_context) {
 977		newsbsec->behavior = SECURITY_FS_USE_NATIVE;
 978		*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
 979	}
 980
 981	if (set_context) {
 982		u32 sid = oldsbsec->mntpoint_sid;
 983
 984		if (!set_fscontext)
 985			newsbsec->sid = sid;
 986		if (!set_rootcontext) {
 987			struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
 988			newisec->sid = sid;
 989		}
 990		newsbsec->mntpoint_sid = sid;
 991	}
 992	if (set_rootcontext) {
 993		const struct inode_security_struct *oldisec = backing_inode_security(oldsb->s_root);
 994		struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
 995
 996		newisec->sid = oldisec->sid;
 997	}
 998
 999	sb_finish_set_opts(newsb);
1000out:
1001	mutex_unlock(&newsbsec->lock);
1002	return rc;
1003}
1004
1005static int selinux_add_opt(int token, const char *s, void **mnt_opts)
 
1006{
1007	struct selinux_mnt_opts *opts = *mnt_opts;
 
 
 
 
 
1008
1009	if (token == Opt_seclabel)	/* eaten and completely ignored */
1010		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1011
1012	if (!opts) {
1013		opts = kzalloc(sizeof(struct selinux_mnt_opts), GFP_KERNEL);
1014		if (!opts)
1015			return -ENOMEM;
1016		*mnt_opts = opts;
1017	}
1018	if (!s)
1019		return -ENOMEM;
1020	switch (token) {
1021	case Opt_context:
1022		if (opts->context || opts->defcontext)
1023			goto Einval;
1024		opts->context = s;
1025		break;
1026	case Opt_fscontext:
1027		if (opts->fscontext)
1028			goto Einval;
1029		opts->fscontext = s;
1030		break;
1031	case Opt_rootcontext:
1032		if (opts->rootcontext)
1033			goto Einval;
1034		opts->rootcontext = s;
1035		break;
1036	case Opt_defcontext:
1037		if (opts->context || opts->defcontext)
1038			goto Einval;
1039		opts->defcontext = s;
1040		break;
1041	}
1042	return 0;
1043Einval:
1044	pr_warn(SEL_MOUNT_FAIL_MSG);
1045	return -EINVAL;
1046}
1047
1048static int selinux_add_mnt_opt(const char *option, const char *val, int len,
1049			       void **mnt_opts)
1050{
1051	int token = Opt_error;
1052	int rc, i;
 
 
 
 
 
 
 
1053
1054	for (i = 0; i < ARRAY_SIZE(tokens); i++) {
1055		if (strcmp(option, tokens[i].name) == 0) {
1056			token = tokens[i].opt;
 
 
 
 
 
 
 
 
 
 
1057			break;
 
 
 
 
 
1058		}
1059	}
1060
1061	if (token == Opt_error)
1062		return -EINVAL;
 
 
 
 
 
 
 
 
1063
1064	if (token != Opt_seclabel) {
1065		val = kmemdup_nul(val, len, GFP_KERNEL);
1066		if (!val) {
1067			rc = -ENOMEM;
1068			goto free_opt;
1069		}
 
 
 
 
 
1070	}
1071	rc = selinux_add_opt(token, val, mnt_opts);
1072	if (unlikely(rc)) {
1073		kfree(val);
1074		goto free_opt;
1075	}
 
 
 
 
 
 
 
 
 
1076	return rc;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1077
1078free_opt:
1079	if (*mnt_opts) {
1080		selinux_free_mnt_opts(*mnt_opts);
1081		*mnt_opts = NULL;
1082	}
 
 
 
 
 
 
1083	return rc;
1084}
1085
1086static int show_sid(struct seq_file *m, u32 sid)
 
1087{
1088	char *context = NULL;
1089	u32 len;
1090	int rc;
 
 
1091
1092	rc = security_sid_to_context(&selinux_state, sid,
1093					     &context, &len);
1094	if (!rc) {
1095		bool has_comma = context && strchr(context, ',');
1096
1097		seq_putc(m, '=');
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1098		if (has_comma)
1099			seq_putc(m, '\"');
1100		seq_escape(m, context, "\"\n\\");
1101		if (has_comma)
1102			seq_putc(m, '\"');
1103	}
1104	kfree(context);
1105	return rc;
1106}
1107
1108static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1109{
1110	struct superblock_security_struct *sbsec = selinux_superblock(sb);
1111	int rc;
1112
1113	if (!(sbsec->flags & SE_SBINITIALIZED))
1114		return 0;
 
 
 
 
 
 
 
1115
1116	if (!selinux_initialized(&selinux_state))
1117		return 0;
1118
1119	if (sbsec->flags & FSCONTEXT_MNT) {
1120		seq_putc(m, ',');
1121		seq_puts(m, FSCONTEXT_STR);
1122		rc = show_sid(m, sbsec->sid);
1123		if (rc)
1124			return rc;
1125	}
1126	if (sbsec->flags & CONTEXT_MNT) {
1127		seq_putc(m, ',');
1128		seq_puts(m, CONTEXT_STR);
1129		rc = show_sid(m, sbsec->mntpoint_sid);
1130		if (rc)
1131			return rc;
1132	}
1133	if (sbsec->flags & DEFCONTEXT_MNT) {
1134		seq_putc(m, ',');
1135		seq_puts(m, DEFCONTEXT_STR);
1136		rc = show_sid(m, sbsec->def_sid);
1137		if (rc)
1138			return rc;
1139	}
1140	if (sbsec->flags & ROOTCONTEXT_MNT) {
1141		struct dentry *root = sb->s_root;
1142		struct inode_security_struct *isec = backing_inode_security(root);
1143		seq_putc(m, ',');
1144		seq_puts(m, ROOTCONTEXT_STR);
1145		rc = show_sid(m, isec->sid);
1146		if (rc)
1147			return rc;
1148	}
1149	if (sbsec->flags & SBLABEL_MNT) {
1150		seq_putc(m, ',');
1151		seq_puts(m, SECLABEL_STR);
1152	}
1153	return 0;
1154}
1155
1156static inline u16 inode_mode_to_security_class(umode_t mode)
1157{
1158	switch (mode & S_IFMT) {
1159	case S_IFSOCK:
1160		return SECCLASS_SOCK_FILE;
1161	case S_IFLNK:
1162		return SECCLASS_LNK_FILE;
1163	case S_IFREG:
1164		return SECCLASS_FILE;
1165	case S_IFBLK:
1166		return SECCLASS_BLK_FILE;
1167	case S_IFDIR:
1168		return SECCLASS_DIR;
1169	case S_IFCHR:
1170		return SECCLASS_CHR_FILE;
1171	case S_IFIFO:
1172		return SECCLASS_FIFO_FILE;
1173
1174	}
1175
1176	return SECCLASS_FILE;
1177}
1178
1179static inline int default_protocol_stream(int protocol)
1180{
1181	return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP ||
1182		protocol == IPPROTO_MPTCP);
1183}
1184
1185static inline int default_protocol_dgram(int protocol)
1186{
1187	return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1188}
1189
1190static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1191{
1192	int extsockclass = selinux_policycap_extsockclass();
1193
1194	switch (family) {
1195	case PF_UNIX:
1196		switch (type) {
1197		case SOCK_STREAM:
1198		case SOCK_SEQPACKET:
1199			return SECCLASS_UNIX_STREAM_SOCKET;
1200		case SOCK_DGRAM:
1201		case SOCK_RAW:
1202			return SECCLASS_UNIX_DGRAM_SOCKET;
1203		}
1204		break;
1205	case PF_INET:
1206	case PF_INET6:
1207		switch (type) {
1208		case SOCK_STREAM:
1209		case SOCK_SEQPACKET:
1210			if (default_protocol_stream(protocol))
1211				return SECCLASS_TCP_SOCKET;
1212			else if (extsockclass && protocol == IPPROTO_SCTP)
1213				return SECCLASS_SCTP_SOCKET;
1214			else
1215				return SECCLASS_RAWIP_SOCKET;
1216		case SOCK_DGRAM:
1217			if (default_protocol_dgram(protocol))
1218				return SECCLASS_UDP_SOCKET;
1219			else if (extsockclass && (protocol == IPPROTO_ICMP ||
1220						  protocol == IPPROTO_ICMPV6))
1221				return SECCLASS_ICMP_SOCKET;
1222			else
1223				return SECCLASS_RAWIP_SOCKET;
1224		case SOCK_DCCP:
1225			return SECCLASS_DCCP_SOCKET;
1226		default:
1227			return SECCLASS_RAWIP_SOCKET;
1228		}
1229		break;
1230	case PF_NETLINK:
1231		switch (protocol) {
1232		case NETLINK_ROUTE:
1233			return SECCLASS_NETLINK_ROUTE_SOCKET;
1234		case NETLINK_SOCK_DIAG:
1235			return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1236		case NETLINK_NFLOG:
1237			return SECCLASS_NETLINK_NFLOG_SOCKET;
1238		case NETLINK_XFRM:
1239			return SECCLASS_NETLINK_XFRM_SOCKET;
1240		case NETLINK_SELINUX:
1241			return SECCLASS_NETLINK_SELINUX_SOCKET;
1242		case NETLINK_ISCSI:
1243			return SECCLASS_NETLINK_ISCSI_SOCKET;
1244		case NETLINK_AUDIT:
1245			return SECCLASS_NETLINK_AUDIT_SOCKET;
1246		case NETLINK_FIB_LOOKUP:
1247			return SECCLASS_NETLINK_FIB_LOOKUP_SOCKET;
1248		case NETLINK_CONNECTOR:
1249			return SECCLASS_NETLINK_CONNECTOR_SOCKET;
1250		case NETLINK_NETFILTER:
1251			return SECCLASS_NETLINK_NETFILTER_SOCKET;
1252		case NETLINK_DNRTMSG:
1253			return SECCLASS_NETLINK_DNRT_SOCKET;
1254		case NETLINK_KOBJECT_UEVENT:
1255			return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1256		case NETLINK_GENERIC:
1257			return SECCLASS_NETLINK_GENERIC_SOCKET;
1258		case NETLINK_SCSITRANSPORT:
1259			return SECCLASS_NETLINK_SCSITRANSPORT_SOCKET;
1260		case NETLINK_RDMA:
1261			return SECCLASS_NETLINK_RDMA_SOCKET;
1262		case NETLINK_CRYPTO:
1263			return SECCLASS_NETLINK_CRYPTO_SOCKET;
1264		default:
1265			return SECCLASS_NETLINK_SOCKET;
1266		}
1267	case PF_PACKET:
1268		return SECCLASS_PACKET_SOCKET;
1269	case PF_KEY:
1270		return SECCLASS_KEY_SOCKET;
1271	case PF_APPLETALK:
1272		return SECCLASS_APPLETALK_SOCKET;
1273	}
1274
1275	if (extsockclass) {
1276		switch (family) {
1277		case PF_AX25:
1278			return SECCLASS_AX25_SOCKET;
1279		case PF_IPX:
1280			return SECCLASS_IPX_SOCKET;
1281		case PF_NETROM:
1282			return SECCLASS_NETROM_SOCKET;
1283		case PF_ATMPVC:
1284			return SECCLASS_ATMPVC_SOCKET;
1285		case PF_X25:
1286			return SECCLASS_X25_SOCKET;
1287		case PF_ROSE:
1288			return SECCLASS_ROSE_SOCKET;
1289		case PF_DECnet:
1290			return SECCLASS_DECNET_SOCKET;
1291		case PF_ATMSVC:
1292			return SECCLASS_ATMSVC_SOCKET;
1293		case PF_RDS:
1294			return SECCLASS_RDS_SOCKET;
1295		case PF_IRDA:
1296			return SECCLASS_IRDA_SOCKET;
1297		case PF_PPPOX:
1298			return SECCLASS_PPPOX_SOCKET;
1299		case PF_LLC:
1300			return SECCLASS_LLC_SOCKET;
1301		case PF_CAN:
1302			return SECCLASS_CAN_SOCKET;
1303		case PF_TIPC:
1304			return SECCLASS_TIPC_SOCKET;
1305		case PF_BLUETOOTH:
1306			return SECCLASS_BLUETOOTH_SOCKET;
1307		case PF_IUCV:
1308			return SECCLASS_IUCV_SOCKET;
1309		case PF_RXRPC:
1310			return SECCLASS_RXRPC_SOCKET;
1311		case PF_ISDN:
1312			return SECCLASS_ISDN_SOCKET;
1313		case PF_PHONET:
1314			return SECCLASS_PHONET_SOCKET;
1315		case PF_IEEE802154:
1316			return SECCLASS_IEEE802154_SOCKET;
1317		case PF_CAIF:
1318			return SECCLASS_CAIF_SOCKET;
1319		case PF_ALG:
1320			return SECCLASS_ALG_SOCKET;
1321		case PF_NFC:
1322			return SECCLASS_NFC_SOCKET;
1323		case PF_VSOCK:
1324			return SECCLASS_VSOCK_SOCKET;
1325		case PF_KCM:
1326			return SECCLASS_KCM_SOCKET;
1327		case PF_QIPCRTR:
1328			return SECCLASS_QIPCRTR_SOCKET;
1329		case PF_SMC:
1330			return SECCLASS_SMC_SOCKET;
1331		case PF_XDP:
1332			return SECCLASS_XDP_SOCKET;
1333#if PF_MAX > 45
1334#error New address family defined, please update this function.
1335#endif
1336		}
1337	}
1338
1339	return SECCLASS_SOCKET;
1340}
1341
1342static int selinux_genfs_get_sid(struct dentry *dentry,
1343				 u16 tclass,
1344				 u16 flags,
1345				 u32 *sid)
1346{
1347	int rc;
1348	struct super_block *sb = dentry->d_sb;
1349	char *buffer, *path;
1350
1351	buffer = (char *)__get_free_page(GFP_KERNEL);
1352	if (!buffer)
1353		return -ENOMEM;
1354
1355	path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1356	if (IS_ERR(path))
1357		rc = PTR_ERR(path);
1358	else {
1359		if (flags & SE_SBPROC) {
1360			/* each process gets a /proc/PID/ entry. Strip off the
1361			 * PID part to get a valid selinux labeling.
1362			 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1363			while (path[1] >= '0' && path[1] <= '9') {
1364				path[1] = '/';
1365				path++;
1366			}
1367		}
1368		rc = security_genfs_sid(&selinux_state, sb->s_type->name,
1369					path, tclass, sid);
1370		if (rc == -ENOENT) {
1371			/* No match in policy, mark as unlabeled. */
1372			*sid = SECINITSID_UNLABELED;
1373			rc = 0;
1374		}
1375	}
1376	free_page((unsigned long)buffer);
1377	return rc;
1378}
1379
1380static int inode_doinit_use_xattr(struct inode *inode, struct dentry *dentry,
1381				  u32 def_sid, u32 *sid)
1382{
1383#define INITCONTEXTLEN 255
1384	char *context;
1385	unsigned int len;
1386	int rc;
1387
1388	len = INITCONTEXTLEN;
1389	context = kmalloc(len + 1, GFP_NOFS);
1390	if (!context)
1391		return -ENOMEM;
1392
1393	context[len] = '\0';
1394	rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, context, len);
1395	if (rc == -ERANGE) {
1396		kfree(context);
1397
1398		/* Need a larger buffer.  Query for the right size. */
1399		rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, NULL, 0);
1400		if (rc < 0)
1401			return rc;
1402
1403		len = rc;
1404		context = kmalloc(len + 1, GFP_NOFS);
1405		if (!context)
1406			return -ENOMEM;
1407
1408		context[len] = '\0';
1409		rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX,
1410				    context, len);
1411	}
1412	if (rc < 0) {
1413		kfree(context);
1414		if (rc != -ENODATA) {
1415			pr_warn("SELinux: %s:  getxattr returned %d for dev=%s ino=%ld\n",
1416				__func__, -rc, inode->i_sb->s_id, inode->i_ino);
1417			return rc;
1418		}
1419		*sid = def_sid;
1420		return 0;
1421	}
1422
1423	rc = security_context_to_sid_default(&selinux_state, context, rc, sid,
1424					     def_sid, GFP_NOFS);
1425	if (rc) {
1426		char *dev = inode->i_sb->s_id;
1427		unsigned long ino = inode->i_ino;
1428
1429		if (rc == -EINVAL) {
1430			pr_notice_ratelimited("SELinux: inode=%lu on dev=%s was found to have an invalid context=%s.  This indicates you may need to relabel the inode or the filesystem in question.\n",
1431					      ino, dev, context);
1432		} else {
1433			pr_warn("SELinux: %s:  context_to_sid(%s) returned %d for dev=%s ino=%ld\n",
1434				__func__, context, -rc, dev, ino);
1435		}
1436	}
1437	kfree(context);
1438	return 0;
1439}
1440
1441/* The inode's security attributes must be initialized before first use. */
1442static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1443{
1444	struct superblock_security_struct *sbsec = NULL;
1445	struct inode_security_struct *isec = selinux_inode(inode);
1446	u32 task_sid, sid = 0;
1447	u16 sclass;
1448	struct dentry *dentry;
 
 
 
1449	int rc = 0;
1450
1451	if (isec->initialized == LABEL_INITIALIZED)
1452		return 0;
1453
1454	spin_lock(&isec->lock);
1455	if (isec->initialized == LABEL_INITIALIZED)
1456		goto out_unlock;
1457
1458	if (isec->sclass == SECCLASS_FILE)
1459		isec->sclass = inode_mode_to_security_class(inode->i_mode);
1460
1461	sbsec = selinux_superblock(inode->i_sb);
1462	if (!(sbsec->flags & SE_SBINITIALIZED)) {
1463		/* Defer initialization until selinux_complete_init,
1464		   after the initial policy is loaded and the security
1465		   server is ready to handle calls. */
1466		spin_lock(&sbsec->isec_lock);
1467		if (list_empty(&isec->list))
1468			list_add(&isec->list, &sbsec->isec_head);
1469		spin_unlock(&sbsec->isec_lock);
1470		goto out_unlock;
1471	}
1472
1473	sclass = isec->sclass;
1474	task_sid = isec->task_sid;
1475	sid = isec->sid;
1476	isec->initialized = LABEL_PENDING;
1477	spin_unlock(&isec->lock);
1478
1479	switch (sbsec->behavior) {
1480	case SECURITY_FS_USE_NATIVE:
1481		break;
1482	case SECURITY_FS_USE_XATTR:
1483		if (!(inode->i_opflags & IOP_XATTR)) {
1484			sid = sbsec->def_sid;
1485			break;
1486		}
 
1487		/* Need a dentry, since the xattr API requires one.
1488		   Life would be simpler if we could just pass the inode. */
1489		if (opt_dentry) {
1490			/* Called from d_instantiate or d_splice_alias. */
1491			dentry = dget(opt_dentry);
1492		} else {
1493			/*
1494			 * Called from selinux_complete_init, try to find a dentry.
1495			 * Some filesystems really want a connected one, so try
1496			 * that first.  We could split SECURITY_FS_USE_XATTR in
1497			 * two, depending upon that...
1498			 */
1499			dentry = d_find_alias(inode);
1500			if (!dentry)
1501				dentry = d_find_any_alias(inode);
1502		}
1503		if (!dentry) {
1504			/*
1505			 * this is can be hit on boot when a file is accessed
1506			 * before the policy is loaded.  When we load policy we
1507			 * may find inodes that have no dentry on the
1508			 * sbsec->isec_head list.  No reason to complain as these
1509			 * will get fixed up the next time we go through
1510			 * inode_doinit with a dentry, before these inodes could
1511			 * be used again by userspace.
1512			 */
1513			goto out_invalid;
1514		}
1515
1516		rc = inode_doinit_use_xattr(inode, dentry, sbsec->def_sid,
1517					    &sid);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1518		dput(dentry);
1519		if (rc)
1520			goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1521		break;
1522	case SECURITY_FS_USE_TASK:
1523		sid = task_sid;
1524		break;
1525	case SECURITY_FS_USE_TRANS:
1526		/* Default to the fs SID. */
1527		sid = sbsec->sid;
1528
1529		/* Try to obtain a transition SID. */
1530		rc = security_transition_sid(&selinux_state, task_sid, sid,
1531					     sclass, NULL, &sid);
 
1532		if (rc)
1533			goto out;
 
1534		break;
1535	case SECURITY_FS_USE_MNTPOINT:
1536		sid = sbsec->mntpoint_sid;
1537		break;
1538	default:
1539		/* Default to the fs superblock SID. */
1540		sid = sbsec->sid;
1541
1542		if ((sbsec->flags & SE_SBGENFS) &&
1543		     (!S_ISLNK(inode->i_mode) ||
1544		      selinux_policycap_genfs_seclabel_symlinks())) {
1545			/* We must have a dentry to determine the label on
1546			 * procfs inodes */
1547			if (opt_dentry) {
1548				/* Called from d_instantiate or
1549				 * d_splice_alias. */
1550				dentry = dget(opt_dentry);
1551			} else {
1552				/* Called from selinux_complete_init, try to
1553				 * find a dentry.  Some filesystems really want
1554				 * a connected one, so try that first.
1555				 */
1556				dentry = d_find_alias(inode);
1557				if (!dentry)
1558					dentry = d_find_any_alias(inode);
1559			}
1560			/*
1561			 * This can be hit on boot when a file is accessed
1562			 * before the policy is loaded.  When we load policy we
1563			 * may find inodes that have no dentry on the
1564			 * sbsec->isec_head list.  No reason to complain as
1565			 * these will get fixed up the next time we go through
1566			 * inode_doinit() with a dentry, before these inodes
1567			 * could be used again by userspace.
1568			 */
1569			if (!dentry)
1570				goto out_invalid;
1571			rc = selinux_genfs_get_sid(dentry, sclass,
 
1572						   sbsec->flags, &sid);
1573			if (rc) {
1574				dput(dentry);
1575				goto out;
1576			}
1577
1578			if ((sbsec->flags & SE_SBGENFS_XATTR) &&
1579			    (inode->i_opflags & IOP_XATTR)) {
1580				rc = inode_doinit_use_xattr(inode, dentry,
1581							    sid, &sid);
1582				if (rc) {
1583					dput(dentry);
1584					goto out;
1585				}
1586			}
1587			dput(dentry);
 
 
 
1588		}
1589		break;
1590	}
1591
1592out:
1593	spin_lock(&isec->lock);
1594	if (isec->initialized == LABEL_PENDING) {
1595		if (rc) {
1596			isec->initialized = LABEL_INVALID;
1597			goto out_unlock;
1598		}
1599		isec->initialized = LABEL_INITIALIZED;
1600		isec->sid = sid;
1601	}
1602
1603out_unlock:
1604	spin_unlock(&isec->lock);
 
 
 
1605	return rc;
1606
1607out_invalid:
1608	spin_lock(&isec->lock);
1609	if (isec->initialized == LABEL_PENDING) {
1610		isec->initialized = LABEL_INVALID;
1611		isec->sid = sid;
1612	}
1613	spin_unlock(&isec->lock);
1614	return 0;
1615}
1616
1617/* Convert a Linux signal to an access vector. */
1618static inline u32 signal_to_av(int sig)
1619{
1620	u32 perm = 0;
1621
1622	switch (sig) {
1623	case SIGCHLD:
1624		/* Commonly granted from child to parent. */
1625		perm = PROCESS__SIGCHLD;
1626		break;
1627	case SIGKILL:
1628		/* Cannot be caught or ignored */
1629		perm = PROCESS__SIGKILL;
1630		break;
1631	case SIGSTOP:
1632		/* Cannot be caught or ignored */
1633		perm = PROCESS__SIGSTOP;
1634		break;
1635	default:
1636		/* All other signals. */
1637		perm = PROCESS__SIGNAL;
1638		break;
1639	}
1640
1641	return perm;
1642}
1643
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1644#if CAP_LAST_CAP > 63
1645#error Fix SELinux to handle capabilities > 63.
1646#endif
1647
1648/* Check whether a task is allowed to use a capability. */
1649static int cred_has_capability(const struct cred *cred,
1650			       int cap, unsigned int opts, bool initns)
1651{
1652	struct common_audit_data ad;
1653	struct av_decision avd;
1654	u16 sclass;
1655	u32 sid = cred_sid(cred);
1656	u32 av = CAP_TO_MASK(cap);
1657	int rc;
1658
1659	ad.type = LSM_AUDIT_DATA_CAP;
1660	ad.u.cap = cap;
1661
1662	switch (CAP_TO_INDEX(cap)) {
1663	case 0:
1664		sclass = initns ? SECCLASS_CAPABILITY : SECCLASS_CAP_USERNS;
1665		break;
1666	case 1:
1667		sclass = initns ? SECCLASS_CAPABILITY2 : SECCLASS_CAP2_USERNS;
1668		break;
1669	default:
1670		pr_err("SELinux:  out of range capability %d\n", cap);
 
1671		BUG();
1672		return -EINVAL;
1673	}
1674
1675	rc = avc_has_perm_noaudit(&selinux_state,
1676				  sid, sid, sclass, av, 0, &avd);
1677	if (!(opts & CAP_OPT_NOAUDIT)) {
1678		int rc2 = avc_audit(&selinux_state,
1679				    sid, sid, sclass, av, &avd, rc, &ad);
1680		if (rc2)
1681			return rc2;
1682	}
1683	return rc;
1684}
1685
 
 
 
 
 
 
 
 
 
 
1686/* Check whether a task has a particular permission to an inode.
1687   The 'adp' parameter is optional and allows other audit
1688   data to be passed (e.g. the dentry). */
1689static int inode_has_perm(const struct cred *cred,
1690			  struct inode *inode,
1691			  u32 perms,
1692			  struct common_audit_data *adp)
1693{
1694	struct inode_security_struct *isec;
1695	u32 sid;
1696
1697	validate_creds(cred);
1698
1699	if (unlikely(IS_PRIVATE(inode)))
1700		return 0;
1701
1702	sid = cred_sid(cred);
1703	isec = selinux_inode(inode);
1704
1705	return avc_has_perm(&selinux_state,
1706			    sid, isec->sid, isec->sclass, perms, adp);
1707}
1708
1709/* Same as inode_has_perm, but pass explicit audit data containing
1710   the dentry to help the auditing code to more easily generate the
1711   pathname if needed. */
1712static inline int dentry_has_perm(const struct cred *cred,
1713				  struct dentry *dentry,
1714				  u32 av)
1715{
1716	struct inode *inode = d_backing_inode(dentry);
1717	struct common_audit_data ad;
1718
1719	ad.type = LSM_AUDIT_DATA_DENTRY;
1720	ad.u.dentry = dentry;
1721	__inode_security_revalidate(inode, dentry, true);
1722	return inode_has_perm(cred, inode, av, &ad);
1723}
1724
1725/* Same as inode_has_perm, but pass explicit audit data containing
1726   the path to help the auditing code to more easily generate the
1727   pathname if needed. */
1728static inline int path_has_perm(const struct cred *cred,
1729				const struct path *path,
1730				u32 av)
1731{
1732	struct inode *inode = d_backing_inode(path->dentry);
1733	struct common_audit_data ad;
1734
1735	ad.type = LSM_AUDIT_DATA_PATH;
1736	ad.u.path = *path;
1737	__inode_security_revalidate(inode, path->dentry, true);
1738	return inode_has_perm(cred, inode, av, &ad);
1739}
1740
1741/* Same as path_has_perm, but uses the inode from the file struct. */
1742static inline int file_path_has_perm(const struct cred *cred,
1743				     struct file *file,
1744				     u32 av)
1745{
1746	struct common_audit_data ad;
1747
1748	ad.type = LSM_AUDIT_DATA_FILE;
1749	ad.u.file = file;
1750	return inode_has_perm(cred, file_inode(file), av, &ad);
1751}
1752
1753#ifdef CONFIG_BPF_SYSCALL
1754static int bpf_fd_pass(struct file *file, u32 sid);
1755#endif
1756
1757/* Check whether a task can use an open file descriptor to
1758   access an inode in a given way.  Check access to the
1759   descriptor itself, and then use dentry_has_perm to
1760   check a particular permission to the file.
1761   Access to the descriptor is implicitly granted if it
1762   has the same SID as the process.  If av is zero, then
1763   access to the file is not checked, e.g. for cases
1764   where only the descriptor is affected like seek. */
1765static int file_has_perm(const struct cred *cred,
1766			 struct file *file,
1767			 u32 av)
1768{
1769	struct file_security_struct *fsec = selinux_file(file);
1770	struct inode *inode = file_inode(file);
1771	struct common_audit_data ad;
1772	u32 sid = cred_sid(cred);
1773	int rc;
1774
1775	ad.type = LSM_AUDIT_DATA_FILE;
1776	ad.u.file = file;
1777
1778	if (sid != fsec->sid) {
1779		rc = avc_has_perm(&selinux_state,
1780				  sid, fsec->sid,
1781				  SECCLASS_FD,
1782				  FD__USE,
1783				  &ad);
1784		if (rc)
1785			goto out;
1786	}
1787
1788#ifdef CONFIG_BPF_SYSCALL
1789	rc = bpf_fd_pass(file, cred_sid(cred));
1790	if (rc)
1791		return rc;
1792#endif
1793
1794	/* av is zero if only checking access to the descriptor. */
1795	rc = 0;
1796	if (av)
1797		rc = inode_has_perm(cred, inode, av, &ad);
1798
1799out:
1800	return rc;
1801}
1802
1803/*
1804 * Determine the label for an inode that might be unioned.
1805 */
1806static int
1807selinux_determine_inode_label(const struct task_security_struct *tsec,
1808				 struct inode *dir,
1809				 const struct qstr *name, u16 tclass,
1810				 u32 *_new_isid)
1811{
1812	const struct superblock_security_struct *sbsec =
1813						selinux_superblock(dir->i_sb);
1814
1815	if ((sbsec->flags & SE_SBINITIALIZED) &&
1816	    (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)) {
1817		*_new_isid = sbsec->mntpoint_sid;
1818	} else if ((sbsec->flags & SBLABEL_MNT) &&
1819		   tsec->create_sid) {
1820		*_new_isid = tsec->create_sid;
1821	} else {
1822		const struct inode_security_struct *dsec = inode_security(dir);
1823		return security_transition_sid(&selinux_state, tsec->sid,
1824					       dsec->sid, tclass,
1825					       name, _new_isid);
1826	}
1827
1828	return 0;
1829}
1830
1831/* Check whether a task can create a file. */
1832static int may_create(struct inode *dir,
1833		      struct dentry *dentry,
1834		      u16 tclass)
1835{
1836	const struct task_security_struct *tsec = selinux_cred(current_cred());
1837	struct inode_security_struct *dsec;
1838	struct superblock_security_struct *sbsec;
1839	u32 sid, newsid;
1840	struct common_audit_data ad;
1841	int rc;
1842
1843	dsec = inode_security(dir);
1844	sbsec = selinux_superblock(dir->i_sb);
1845
1846	sid = tsec->sid;
1847
1848	ad.type = LSM_AUDIT_DATA_DENTRY;
1849	ad.u.dentry = dentry;
1850
1851	rc = avc_has_perm(&selinux_state,
1852			  sid, dsec->sid, SECCLASS_DIR,
1853			  DIR__ADD_NAME | DIR__SEARCH,
1854			  &ad);
1855	if (rc)
1856		return rc;
1857
1858	rc = selinux_determine_inode_label(tsec, dir, &dentry->d_name, tclass,
1859					   &newsid);
1860	if (rc)
1861		return rc;
1862
1863	rc = avc_has_perm(&selinux_state,
1864			  sid, newsid, tclass, FILE__CREATE, &ad);
1865	if (rc)
1866		return rc;
1867
1868	return avc_has_perm(&selinux_state,
1869			    newsid, sbsec->sid,
1870			    SECCLASS_FILESYSTEM,
1871			    FILESYSTEM__ASSOCIATE, &ad);
1872}
1873
 
 
 
 
 
 
 
 
 
1874#define MAY_LINK	0
1875#define MAY_UNLINK	1
1876#define MAY_RMDIR	2
1877
1878/* Check whether a task can link, unlink, or rmdir a file/directory. */
1879static int may_link(struct inode *dir,
1880		    struct dentry *dentry,
1881		    int kind)
1882
1883{
1884	struct inode_security_struct *dsec, *isec;
1885	struct common_audit_data ad;
1886	u32 sid = current_sid();
1887	u32 av;
1888	int rc;
1889
1890	dsec = inode_security(dir);
1891	isec = backing_inode_security(dentry);
1892
1893	ad.type = LSM_AUDIT_DATA_DENTRY;
1894	ad.u.dentry = dentry;
1895
1896	av = DIR__SEARCH;
1897	av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1898	rc = avc_has_perm(&selinux_state,
1899			  sid, dsec->sid, SECCLASS_DIR, av, &ad);
1900	if (rc)
1901		return rc;
1902
1903	switch (kind) {
1904	case MAY_LINK:
1905		av = FILE__LINK;
1906		break;
1907	case MAY_UNLINK:
1908		av = FILE__UNLINK;
1909		break;
1910	case MAY_RMDIR:
1911		av = DIR__RMDIR;
1912		break;
1913	default:
1914		pr_warn("SELinux: %s:  unrecognized kind %d\n",
1915			__func__, kind);
1916		return 0;
1917	}
1918
1919	rc = avc_has_perm(&selinux_state,
1920			  sid, isec->sid, isec->sclass, av, &ad);
1921	return rc;
1922}
1923
1924static inline int may_rename(struct inode *old_dir,
1925			     struct dentry *old_dentry,
1926			     struct inode *new_dir,
1927			     struct dentry *new_dentry)
1928{
1929	struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1930	struct common_audit_data ad;
1931	u32 sid = current_sid();
1932	u32 av;
1933	int old_is_dir, new_is_dir;
1934	int rc;
1935
1936	old_dsec = inode_security(old_dir);
1937	old_isec = backing_inode_security(old_dentry);
1938	old_is_dir = d_is_dir(old_dentry);
1939	new_dsec = inode_security(new_dir);
1940
1941	ad.type = LSM_AUDIT_DATA_DENTRY;
1942
1943	ad.u.dentry = old_dentry;
1944	rc = avc_has_perm(&selinux_state,
1945			  sid, old_dsec->sid, SECCLASS_DIR,
1946			  DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1947	if (rc)
1948		return rc;
1949	rc = avc_has_perm(&selinux_state,
1950			  sid, old_isec->sid,
1951			  old_isec->sclass, FILE__RENAME, &ad);
1952	if (rc)
1953		return rc;
1954	if (old_is_dir && new_dir != old_dir) {
1955		rc = avc_has_perm(&selinux_state,
1956				  sid, old_isec->sid,
1957				  old_isec->sclass, DIR__REPARENT, &ad);
1958		if (rc)
1959			return rc;
1960	}
1961
1962	ad.u.dentry = new_dentry;
1963	av = DIR__ADD_NAME | DIR__SEARCH;
1964	if (d_is_positive(new_dentry))
1965		av |= DIR__REMOVE_NAME;
1966	rc = avc_has_perm(&selinux_state,
1967			  sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1968	if (rc)
1969		return rc;
1970	if (d_is_positive(new_dentry)) {
1971		new_isec = backing_inode_security(new_dentry);
1972		new_is_dir = d_is_dir(new_dentry);
1973		rc = avc_has_perm(&selinux_state,
1974				  sid, new_isec->sid,
1975				  new_isec->sclass,
1976				  (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1977		if (rc)
1978			return rc;
1979	}
1980
1981	return 0;
1982}
1983
1984/* Check whether a task can perform a filesystem operation. */
1985static int superblock_has_perm(const struct cred *cred,
1986			       struct super_block *sb,
1987			       u32 perms,
1988			       struct common_audit_data *ad)
1989{
1990	struct superblock_security_struct *sbsec;
1991	u32 sid = cred_sid(cred);
1992
1993	sbsec = selinux_superblock(sb);
1994	return avc_has_perm(&selinux_state,
1995			    sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
1996}
1997
1998/* Convert a Linux mode and permission mask to an access vector. */
1999static inline u32 file_mask_to_av(int mode, int mask)
2000{
2001	u32 av = 0;
2002
2003	if (!S_ISDIR(mode)) {
2004		if (mask & MAY_EXEC)
2005			av |= FILE__EXECUTE;
2006		if (mask & MAY_READ)
2007			av |= FILE__READ;
2008
2009		if (mask & MAY_APPEND)
2010			av |= FILE__APPEND;
2011		else if (mask & MAY_WRITE)
2012			av |= FILE__WRITE;
2013
2014	} else {
2015		if (mask & MAY_EXEC)
2016			av |= DIR__SEARCH;
2017		if (mask & MAY_WRITE)
2018			av |= DIR__WRITE;
2019		if (mask & MAY_READ)
2020			av |= DIR__READ;
2021	}
2022
2023	return av;
2024}
2025
2026/* Convert a Linux file to an access vector. */
2027static inline u32 file_to_av(struct file *file)
2028{
2029	u32 av = 0;
2030
2031	if (file->f_mode & FMODE_READ)
2032		av |= FILE__READ;
2033	if (file->f_mode & FMODE_WRITE) {
2034		if (file->f_flags & O_APPEND)
2035			av |= FILE__APPEND;
2036		else
2037			av |= FILE__WRITE;
2038	}
2039	if (!av) {
2040		/*
2041		 * Special file opened with flags 3 for ioctl-only use.
2042		 */
2043		av = FILE__IOCTL;
2044	}
2045
2046	return av;
2047}
2048
2049/*
2050 * Convert a file to an access vector and include the correct
2051 * open permission.
2052 */
2053static inline u32 open_file_to_av(struct file *file)
2054{
2055	u32 av = file_to_av(file);
2056	struct inode *inode = file_inode(file);
2057
2058	if (selinux_policycap_openperm() &&
2059	    inode->i_sb->s_magic != SOCKFS_MAGIC)
2060		av |= FILE__OPEN;
2061
2062	return av;
2063}
2064
2065/* Hook functions begin here. */
2066
2067static int selinux_binder_set_context_mgr(struct task_struct *mgr)
2068{
2069	return avc_has_perm(&selinux_state,
2070			    current_sid(), task_sid_binder(mgr), SECCLASS_BINDER,
 
 
2071			    BINDER__SET_CONTEXT_MGR, NULL);
2072}
2073
2074static int selinux_binder_transaction(struct task_struct *from,
2075				      struct task_struct *to)
2076{
2077	u32 mysid = current_sid();
2078	u32 fromsid = task_sid_binder(from);
 
2079	int rc;
2080
2081	if (mysid != fromsid) {
2082		rc = avc_has_perm(&selinux_state,
2083				  mysid, fromsid, SECCLASS_BINDER,
2084				  BINDER__IMPERSONATE, NULL);
2085		if (rc)
2086			return rc;
2087	}
2088
2089	return avc_has_perm(&selinux_state, fromsid, task_sid_binder(to),
2090			    SECCLASS_BINDER, BINDER__CALL, NULL);
2091}
2092
2093static int selinux_binder_transfer_binder(struct task_struct *from,
2094					  struct task_struct *to)
2095{
2096	return avc_has_perm(&selinux_state,
2097			    task_sid_binder(from), task_sid_binder(to),
2098			    SECCLASS_BINDER, BINDER__TRANSFER,
 
2099			    NULL);
2100}
2101
2102static int selinux_binder_transfer_file(struct task_struct *from,
2103					struct task_struct *to,
2104					struct file *file)
2105{
2106	u32 sid = task_sid_binder(to);
2107	struct file_security_struct *fsec = selinux_file(file);
2108	struct dentry *dentry = file->f_path.dentry;
2109	struct inode_security_struct *isec;
2110	struct common_audit_data ad;
2111	int rc;
2112
2113	ad.type = LSM_AUDIT_DATA_PATH;
2114	ad.u.path = file->f_path;
2115
2116	if (sid != fsec->sid) {
2117		rc = avc_has_perm(&selinux_state,
2118				  sid, fsec->sid,
2119				  SECCLASS_FD,
2120				  FD__USE,
2121				  &ad);
2122		if (rc)
2123			return rc;
2124	}
2125
2126#ifdef CONFIG_BPF_SYSCALL
2127	rc = bpf_fd_pass(file, sid);
2128	if (rc)
2129		return rc;
2130#endif
2131
2132	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2133		return 0;
2134
2135	isec = backing_inode_security(dentry);
2136	return avc_has_perm(&selinux_state,
2137			    sid, isec->sid, isec->sclass, file_to_av(file),
2138			    &ad);
2139}
2140
2141static int selinux_ptrace_access_check(struct task_struct *child,
2142				       unsigned int mode)
2143{
2144	u32 sid = current_sid();
2145	u32 csid = task_sid_obj(child);
2146
2147	if (mode & PTRACE_MODE_READ)
2148		return avc_has_perm(&selinux_state,
2149				    sid, csid, SECCLASS_FILE, FILE__READ, NULL);
2150
2151	return avc_has_perm(&selinux_state,
2152			    sid, csid, SECCLASS_PROCESS, PROCESS__PTRACE, NULL);
2153}
2154
2155static int selinux_ptrace_traceme(struct task_struct *parent)
2156{
2157	return avc_has_perm(&selinux_state,
2158			    task_sid_obj(parent), task_sid_obj(current),
2159			    SECCLASS_PROCESS, PROCESS__PTRACE, NULL);
2160}
2161
2162static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
2163			  kernel_cap_t *inheritable, kernel_cap_t *permitted)
2164{
2165	return avc_has_perm(&selinux_state,
2166			    current_sid(), task_sid_obj(target), SECCLASS_PROCESS,
2167			    PROCESS__GETCAP, NULL);
2168}
2169
2170static int selinux_capset(struct cred *new, const struct cred *old,
2171			  const kernel_cap_t *effective,
2172			  const kernel_cap_t *inheritable,
2173			  const kernel_cap_t *permitted)
2174{
2175	return avc_has_perm(&selinux_state,
2176			    cred_sid(old), cred_sid(new), SECCLASS_PROCESS,
2177			    PROCESS__SETCAP, NULL);
2178}
2179
2180/*
2181 * (This comment used to live with the selinux_task_setuid hook,
2182 * which was removed).
2183 *
2184 * Since setuid only affects the current process, and since the SELinux
2185 * controls are not based on the Linux identity attributes, SELinux does not
2186 * need to control this operation.  However, SELinux does control the use of
2187 * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
2188 */
2189
2190static int selinux_capable(const struct cred *cred, struct user_namespace *ns,
2191			   int cap, unsigned int opts)
2192{
2193	return cred_has_capability(cred, cap, opts, ns == &init_user_ns);
2194}
2195
2196static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
2197{
2198	const struct cred *cred = current_cred();
2199	int rc = 0;
2200
2201	if (!sb)
2202		return 0;
2203
2204	switch (cmds) {
2205	case Q_SYNC:
2206	case Q_QUOTAON:
2207	case Q_QUOTAOFF:
2208	case Q_SETINFO:
2209	case Q_SETQUOTA:
2210	case Q_XQUOTAOFF:
2211	case Q_XQUOTAON:
2212	case Q_XSETQLIM:
2213		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
2214		break;
2215	case Q_GETFMT:
2216	case Q_GETINFO:
2217	case Q_GETQUOTA:
2218	case Q_XGETQUOTA:
2219	case Q_XGETQSTAT:
2220	case Q_XGETQSTATV:
2221	case Q_XGETNEXTQUOTA:
2222		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
2223		break;
2224	default:
2225		rc = 0;  /* let the kernel handle invalid cmds */
2226		break;
2227	}
2228	return rc;
2229}
2230
2231static int selinux_quota_on(struct dentry *dentry)
2232{
2233	const struct cred *cred = current_cred();
2234
2235	return dentry_has_perm(cred, dentry, FILE__QUOTAON);
2236}
2237
2238static int selinux_syslog(int type)
2239{
 
 
2240	switch (type) {
2241	case SYSLOG_ACTION_READ_ALL:	/* Read last kernel messages */
2242	case SYSLOG_ACTION_SIZE_BUFFER:	/* Return size of the log buffer */
2243		return avc_has_perm(&selinux_state,
2244				    current_sid(), SECINITSID_KERNEL,
2245				    SECCLASS_SYSTEM, SYSTEM__SYSLOG_READ, NULL);
2246	case SYSLOG_ACTION_CONSOLE_OFF:	/* Disable logging to console */
2247	case SYSLOG_ACTION_CONSOLE_ON:	/* Enable logging to console */
2248	/* Set level of messages printed to console */
2249	case SYSLOG_ACTION_CONSOLE_LEVEL:
2250		return avc_has_perm(&selinux_state,
2251				    current_sid(), SECINITSID_KERNEL,
2252				    SECCLASS_SYSTEM, SYSTEM__SYSLOG_CONSOLE,
2253				    NULL);
2254	}
2255	/* All other syslog types */
2256	return avc_has_perm(&selinux_state,
2257			    current_sid(), SECINITSID_KERNEL,
2258			    SECCLASS_SYSTEM, SYSTEM__SYSLOG_MOD, NULL);
 
 
 
2259}
2260
2261/*
2262 * Check that a process has enough memory to allocate a new virtual
2263 * mapping. 0 means there is enough memory for the allocation to
2264 * succeed and -ENOMEM implies there is not.
2265 *
2266 * Do not audit the selinux permission check, as this is applied to all
2267 * processes that allocate mappings.
2268 */
2269static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2270{
2271	int rc, cap_sys_admin = 0;
2272
2273	rc = cred_has_capability(current_cred(), CAP_SYS_ADMIN,
2274				 CAP_OPT_NOAUDIT, true);
2275	if (rc == 0)
2276		cap_sys_admin = 1;
2277
2278	return cap_sys_admin;
2279}
2280
2281/* binprm security operations */
2282
2283static u32 ptrace_parent_sid(void)
2284{
2285	u32 sid = 0;
2286	struct task_struct *tracer;
2287
2288	rcu_read_lock();
2289	tracer = ptrace_parent(current);
2290	if (tracer)
2291		sid = task_sid_obj(tracer);
2292	rcu_read_unlock();
2293
2294	return sid;
2295}
2296
2297static int check_nnp_nosuid(const struct linux_binprm *bprm,
2298			    const struct task_security_struct *old_tsec,
2299			    const struct task_security_struct *new_tsec)
2300{
2301	int nnp = (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS);
2302	int nosuid = !mnt_may_suid(bprm->file->f_path.mnt);
2303	int rc;
2304	u32 av;
2305
2306	if (!nnp && !nosuid)
2307		return 0; /* neither NNP nor nosuid */
2308
2309	if (new_tsec->sid == old_tsec->sid)
2310		return 0; /* No change in credentials */
2311
2312	/*
2313	 * If the policy enables the nnp_nosuid_transition policy capability,
2314	 * then we permit transitions under NNP or nosuid if the
2315	 * policy allows the corresponding permission between
2316	 * the old and new contexts.
2317	 */
2318	if (selinux_policycap_nnp_nosuid_transition()) {
2319		av = 0;
 
 
 
 
 
2320		if (nnp)
2321			av |= PROCESS2__NNP_TRANSITION;
2322		if (nosuid)
2323			av |= PROCESS2__NOSUID_TRANSITION;
2324		rc = avc_has_perm(&selinux_state,
2325				  old_tsec->sid, new_tsec->sid,
2326				  SECCLASS_PROCESS2, av, NULL);
2327		if (!rc)
2328			return 0;
2329	}
2330
2331	/*
2332	 * We also permit NNP or nosuid transitions to bounded SIDs,
2333	 * i.e. SIDs that are guaranteed to only be allowed a subset
2334	 * of the permissions of the current SID.
2335	 */
2336	rc = security_bounded_transition(&selinux_state, old_tsec->sid,
2337					 new_tsec->sid);
2338	if (!rc)
2339		return 0;
2340
2341	/*
2342	 * On failure, preserve the errno values for NNP vs nosuid.
2343	 * NNP:  Operation not permitted for caller.
2344	 * nosuid:  Permission denied to file.
2345	 */
2346	if (nnp)
2347		return -EPERM;
2348	return -EACCES;
2349}
2350
2351static int selinux_bprm_creds_for_exec(struct linux_binprm *bprm)
2352{
2353	const struct task_security_struct *old_tsec;
2354	struct task_security_struct *new_tsec;
2355	struct inode_security_struct *isec;
2356	struct common_audit_data ad;
2357	struct inode *inode = file_inode(bprm->file);
2358	int rc;
2359
2360	/* SELinux context only depends on initial program or script and not
2361	 * the script interpreter */
 
 
2362
2363	old_tsec = selinux_cred(current_cred());
2364	new_tsec = selinux_cred(bprm->cred);
2365	isec = inode_security(inode);
2366
2367	/* Default to the current task SID. */
2368	new_tsec->sid = old_tsec->sid;
2369	new_tsec->osid = old_tsec->sid;
2370
2371	/* Reset fs, key, and sock SIDs on execve. */
2372	new_tsec->create_sid = 0;
2373	new_tsec->keycreate_sid = 0;
2374	new_tsec->sockcreate_sid = 0;
2375
2376	if (old_tsec->exec_sid) {
2377		new_tsec->sid = old_tsec->exec_sid;
2378		/* Reset exec SID on execve. */
2379		new_tsec->exec_sid = 0;
2380
2381		/* Fail on NNP or nosuid if not an allowed transition. */
2382		rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2383		if (rc)
2384			return rc;
2385	} else {
2386		/* Check for a default transition on this program. */
2387		rc = security_transition_sid(&selinux_state, old_tsec->sid,
2388					     isec->sid, SECCLASS_PROCESS, NULL,
2389					     &new_tsec->sid);
2390		if (rc)
2391			return rc;
2392
2393		/*
2394		 * Fallback to old SID on NNP or nosuid if not an allowed
2395		 * transition.
2396		 */
2397		rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2398		if (rc)
2399			new_tsec->sid = old_tsec->sid;
2400	}
2401
2402	ad.type = LSM_AUDIT_DATA_FILE;
2403	ad.u.file = bprm->file;
2404
2405	if (new_tsec->sid == old_tsec->sid) {
2406		rc = avc_has_perm(&selinux_state,
2407				  old_tsec->sid, isec->sid,
2408				  SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2409		if (rc)
2410			return rc;
2411	} else {
2412		/* Check permissions for the transition. */
2413		rc = avc_has_perm(&selinux_state,
2414				  old_tsec->sid, new_tsec->sid,
2415				  SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2416		if (rc)
2417			return rc;
2418
2419		rc = avc_has_perm(&selinux_state,
2420				  new_tsec->sid, isec->sid,
2421				  SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2422		if (rc)
2423			return rc;
2424
2425		/* Check for shared state */
2426		if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2427			rc = avc_has_perm(&selinux_state,
2428					  old_tsec->sid, new_tsec->sid,
2429					  SECCLASS_PROCESS, PROCESS__SHARE,
2430					  NULL);
2431			if (rc)
2432				return -EPERM;
2433		}
2434
2435		/* Make sure that anyone attempting to ptrace over a task that
2436		 * changes its SID has the appropriate permit */
2437		if (bprm->unsafe & LSM_UNSAFE_PTRACE) {
2438			u32 ptsid = ptrace_parent_sid();
 
 
 
 
 
 
 
 
 
 
 
 
2439			if (ptsid != 0) {
2440				rc = avc_has_perm(&selinux_state,
2441						  ptsid, new_tsec->sid,
2442						  SECCLASS_PROCESS,
2443						  PROCESS__PTRACE, NULL);
2444				if (rc)
2445					return -EPERM;
2446			}
2447		}
2448
2449		/* Clear any possibly unsafe personality bits on exec: */
2450		bprm->per_clear |= PER_CLEAR_ON_SETID;
 
2451
 
 
 
 
 
 
 
 
 
 
 
 
 
2452		/* Enable secure mode for SIDs transitions unless
2453		   the noatsecure permission is granted between
2454		   the two SIDs, i.e. ahp returns 0. */
2455		rc = avc_has_perm(&selinux_state,
2456				  old_tsec->sid, new_tsec->sid,
2457				  SECCLASS_PROCESS, PROCESS__NOATSECURE,
2458				  NULL);
2459		bprm->secureexec |= !!rc;
2460	}
2461
2462	return 0;
2463}
2464
2465static int match_file(const void *p, struct file *file, unsigned fd)
2466{
2467	return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0;
2468}
2469
2470/* Derived from fs/exec.c:flush_old_files. */
2471static inline void flush_unauthorized_files(const struct cred *cred,
2472					    struct files_struct *files)
2473{
2474	struct file *file, *devnull = NULL;
2475	struct tty_struct *tty;
2476	int drop_tty = 0;
2477	unsigned n;
2478
2479	tty = get_current_tty();
2480	if (tty) {
2481		spin_lock(&tty->files_lock);
2482		if (!list_empty(&tty->tty_files)) {
2483			struct tty_file_private *file_priv;
2484
2485			/* Revalidate access to controlling tty.
2486			   Use file_path_has_perm on the tty path directly
2487			   rather than using file_has_perm, as this particular
2488			   open file may belong to another process and we are
2489			   only interested in the inode-based check here. */
2490			file_priv = list_first_entry(&tty->tty_files,
2491						struct tty_file_private, list);
2492			file = file_priv->file;
2493			if (file_path_has_perm(cred, file, FILE__READ | FILE__WRITE))
2494				drop_tty = 1;
2495		}
2496		spin_unlock(&tty->files_lock);
2497		tty_kref_put(tty);
2498	}
2499	/* Reset controlling tty. */
2500	if (drop_tty)
2501		no_tty();
2502
2503	/* Revalidate access to inherited open files. */
2504	n = iterate_fd(files, 0, match_file, cred);
2505	if (!n) /* none found? */
2506		return;
2507
2508	devnull = dentry_open(&selinux_null, O_RDWR, cred);
2509	if (IS_ERR(devnull))
2510		devnull = NULL;
2511	/* replace all the matching ones with this */
2512	do {
2513		replace_fd(n - 1, devnull, 0);
2514	} while ((n = iterate_fd(files, n, match_file, cred)) != 0);
2515	if (devnull)
2516		fput(devnull);
2517}
2518
2519/*
2520 * Prepare a process for imminent new credential changes due to exec
2521 */
2522static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2523{
2524	struct task_security_struct *new_tsec;
2525	struct rlimit *rlim, *initrlim;
2526	int rc, i;
2527
2528	new_tsec = selinux_cred(bprm->cred);
2529	if (new_tsec->sid == new_tsec->osid)
2530		return;
2531
2532	/* Close files for which the new task SID is not authorized. */
2533	flush_unauthorized_files(bprm->cred, current->files);
2534
2535	/* Always clear parent death signal on SID transitions. */
2536	current->pdeath_signal = 0;
2537
2538	/* Check whether the new SID can inherit resource limits from the old
2539	 * SID.  If not, reset all soft limits to the lower of the current
2540	 * task's hard limit and the init task's soft limit.
2541	 *
2542	 * Note that the setting of hard limits (even to lower them) can be
2543	 * controlled by the setrlimit check.  The inclusion of the init task's
2544	 * soft limit into the computation is to avoid resetting soft limits
2545	 * higher than the default soft limit for cases where the default is
2546	 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2547	 */
2548	rc = avc_has_perm(&selinux_state,
2549			  new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2550			  PROCESS__RLIMITINH, NULL);
2551	if (rc) {
2552		/* protect against do_prlimit() */
2553		task_lock(current);
2554		for (i = 0; i < RLIM_NLIMITS; i++) {
2555			rlim = current->signal->rlim + i;
2556			initrlim = init_task.signal->rlim + i;
2557			rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2558		}
2559		task_unlock(current);
2560		if (IS_ENABLED(CONFIG_POSIX_TIMERS))
2561			update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
2562	}
2563}
2564
2565/*
2566 * Clean up the process immediately after the installation of new credentials
2567 * due to exec
2568 */
2569static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2570{
2571	const struct task_security_struct *tsec = selinux_cred(current_cred());
 
2572	u32 osid, sid;
2573	int rc;
2574
2575	osid = tsec->osid;
2576	sid = tsec->sid;
2577
2578	if (sid == osid)
2579		return;
2580
2581	/* Check whether the new SID can inherit signal state from the old SID.
2582	 * If not, clear itimers to avoid subsequent signal generation and
2583	 * flush and unblock signals.
2584	 *
2585	 * This must occur _after_ the task SID has been updated so that any
2586	 * kill done after the flush will be checked against the new SID.
2587	 */
2588	rc = avc_has_perm(&selinux_state,
2589			  osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2590	if (rc) {
2591		clear_itimer();
2592
 
2593		spin_lock_irq(&current->sighand->siglock);
2594		if (!fatal_signal_pending(current)) {
2595			flush_sigqueue(&current->pending);
2596			flush_sigqueue(&current->signal->shared_pending);
2597			flush_signal_handlers(current, 1);
2598			sigemptyset(&current->blocked);
2599			recalc_sigpending();
2600		}
2601		spin_unlock_irq(&current->sighand->siglock);
2602	}
2603
2604	/* Wake up the parent if it is waiting so that it can recheck
2605	 * wait permission to the new task SID. */
2606	read_lock(&tasklist_lock);
2607	__wake_up_parent(current, current->real_parent);
2608	read_unlock(&tasklist_lock);
2609}
2610
2611/* superblock security operations */
2612
2613static int selinux_sb_alloc_security(struct super_block *sb)
2614{
2615	struct superblock_security_struct *sbsec = selinux_superblock(sb);
 
 
 
 
 
 
 
 
 
 
 
2616
2617	mutex_init(&sbsec->lock);
2618	INIT_LIST_HEAD(&sbsec->isec_head);
2619	spin_lock_init(&sbsec->isec_lock);
2620	sbsec->sid = SECINITSID_UNLABELED;
2621	sbsec->def_sid = SECINITSID_FILE;
2622	sbsec->mntpoint_sid = SECINITSID_UNLABELED;
 
 
 
 
 
2623
2624	return 0;
 
 
 
 
 
 
 
 
2625}
2626
2627static inline int opt_len(const char *s)
 
2628{
2629	bool open_quote = false;
2630	int len;
2631	char c;
 
 
 
 
2632
2633	for (len = 0; (c = s[len]) != '\0'; len++) {
2634		if (c == '"')
2635			open_quote = !open_quote;
2636		if (c == ',' && !open_quote)
2637			break;
 
 
2638	}
2639	return len;
2640}
2641
2642static int selinux_sb_eat_lsm_opts(char *options, void **mnt_opts)
2643{
2644	char *from = options;
2645	char *to = options;
2646	bool first = true;
2647	int rc;
 
 
 
2648
2649	while (1) {
2650		int len = opt_len(from);
2651		int token;
2652		char *arg = NULL;
 
2653
2654		token = match_opt_prefix(from, len, &arg);
 
 
2655
2656		if (token != Opt_error) {
2657			char *p, *q;
 
 
 
 
2658
2659			/* strip quotes */
2660			if (arg) {
2661				for (p = q = arg; p < from + len; p++) {
2662					char c = *p;
2663					if (c != '"')
2664						*q++ = c;
2665				}
2666				arg = kmemdup_nul(arg, q - arg, GFP_KERNEL);
2667				if (!arg) {
2668					rc = -ENOMEM;
2669					goto free_opt;
2670				}
2671			}
2672			rc = selinux_add_opt(token, arg, mnt_opts);
2673			if (unlikely(rc)) {
2674				kfree(arg);
2675				goto free_opt;
2676			}
2677		} else {
2678			if (!first) {	// copy with preceding comma
2679				from--;
2680				len++;
2681			}
2682			if (to != from)
2683				memmove(to, from, len);
2684			to += len;
2685			first = false;
2686		}
2687		if (!from[len])
2688			break;
2689		from += len + 1;
2690	}
2691	*to = '\0';
2692	return 0;
2693
2694free_opt:
2695	if (*mnt_opts) {
2696		selinux_free_mnt_opts(*mnt_opts);
2697		*mnt_opts = NULL;
2698	}
2699	return rc;
2700}
2701
2702static int selinux_sb_mnt_opts_compat(struct super_block *sb, void *mnt_opts)
2703{
2704	struct selinux_mnt_opts *opts = mnt_opts;
 
 
2705	struct superblock_security_struct *sbsec = sb->s_security;
2706	u32 sid;
2707	int rc;
2708
2709	/*
2710	 * Superblock not initialized (i.e. no options) - reject if any
2711	 * options specified, otherwise accept.
2712	 */
2713	if (!(sbsec->flags & SE_SBINITIALIZED))
2714		return opts ? 1 : 0;
 
 
 
2715
2716	/*
2717	 * Superblock initialized and no options specified - reject if
2718	 * superblock has any options set, otherwise accept.
2719	 */
2720	if (!opts)
2721		return (sbsec->flags & SE_MNTMASK) ? 1 : 0;
2722
2723	if (opts->fscontext) {
2724		rc = parse_sid(sb, opts->fscontext, &sid);
2725		if (rc)
2726			return 1;
2727		if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid))
2728			return 1;
2729	}
2730	if (opts->context) {
2731		rc = parse_sid(sb, opts->context, &sid);
2732		if (rc)
2733			return 1;
2734		if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid))
2735			return 1;
2736	}
2737	if (opts->rootcontext) {
2738		struct inode_security_struct *root_isec;
2739
2740		root_isec = backing_inode_security(sb->s_root);
2741		rc = parse_sid(sb, opts->rootcontext, &sid);
2742		if (rc)
2743			return 1;
2744		if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid))
2745			return 1;
2746	}
2747	if (opts->defcontext) {
2748		rc = parse_sid(sb, opts->defcontext, &sid);
2749		if (rc)
2750			return 1;
2751		if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid))
2752			return 1;
2753	}
2754	return 0;
2755}
2756
2757static int selinux_sb_remount(struct super_block *sb, void *mnt_opts)
2758{
2759	struct selinux_mnt_opts *opts = mnt_opts;
2760	struct superblock_security_struct *sbsec = selinux_superblock(sb);
2761	u32 sid;
2762	int rc;
2763
2764	if (!(sbsec->flags & SE_SBINITIALIZED))
2765		return 0;
2766
2767	if (!opts)
2768		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2769
2770	if (opts->fscontext) {
2771		rc = parse_sid(sb, opts->fscontext, &sid);
2772		if (rc)
2773			return rc;
2774		if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid))
2775			goto out_bad_option;
2776	}
2777	if (opts->context) {
2778		rc = parse_sid(sb, opts->context, &sid);
2779		if (rc)
2780			return rc;
2781		if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid))
2782			goto out_bad_option;
2783	}
2784	if (opts->rootcontext) {
2785		struct inode_security_struct *root_isec;
2786		root_isec = backing_inode_security(sb->s_root);
2787		rc = parse_sid(sb, opts->rootcontext, &sid);
2788		if (rc)
2789			return rc;
2790		if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid))
2791			goto out_bad_option;
2792	}
2793	if (opts->defcontext) {
2794		rc = parse_sid(sb, opts->defcontext, &sid);
2795		if (rc)
2796			return rc;
2797		if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid))
2798			goto out_bad_option;
2799	}
2800	return 0;
2801
 
 
 
 
 
 
2802out_bad_option:
2803	pr_warn("SELinux: unable to change security options "
2804	       "during remount (dev %s, type=%s)\n", sb->s_id,
2805	       sb->s_type->name);
2806	return -EINVAL;
2807}
2808
2809static int selinux_sb_kern_mount(struct super_block *sb)
2810{
2811	const struct cred *cred = current_cred();
2812	struct common_audit_data ad;
 
 
 
 
 
 
 
 
 
2813
2814	ad.type = LSM_AUDIT_DATA_DENTRY;
2815	ad.u.dentry = sb->s_root;
2816	return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2817}
2818
2819static int selinux_sb_statfs(struct dentry *dentry)
2820{
2821	const struct cred *cred = current_cred();
2822	struct common_audit_data ad;
2823
2824	ad.type = LSM_AUDIT_DATA_DENTRY;
2825	ad.u.dentry = dentry->d_sb->s_root;
2826	return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2827}
2828
2829static int selinux_mount(const char *dev_name,
2830			 const struct path *path,
2831			 const char *type,
2832			 unsigned long flags,
2833			 void *data)
2834{
2835	const struct cred *cred = current_cred();
2836
2837	if (flags & MS_REMOUNT)
2838		return superblock_has_perm(cred, path->dentry->d_sb,
2839					   FILESYSTEM__REMOUNT, NULL);
2840	else
2841		return path_has_perm(cred, path, FILE__MOUNTON);
2842}
2843
2844static int selinux_move_mount(const struct path *from_path,
2845			      const struct path *to_path)
2846{
2847	const struct cred *cred = current_cred();
2848
2849	return path_has_perm(cred, to_path, FILE__MOUNTON);
2850}
2851
2852static int selinux_umount(struct vfsmount *mnt, int flags)
2853{
2854	const struct cred *cred = current_cred();
2855
2856	return superblock_has_perm(cred, mnt->mnt_sb,
2857				   FILESYSTEM__UNMOUNT, NULL);
2858}
2859
2860static int selinux_fs_context_dup(struct fs_context *fc,
2861				  struct fs_context *src_fc)
2862{
2863	const struct selinux_mnt_opts *src = src_fc->security;
2864	struct selinux_mnt_opts *opts;
2865
2866	if (!src)
2867		return 0;
2868
2869	fc->security = kzalloc(sizeof(struct selinux_mnt_opts), GFP_KERNEL);
2870	if (!fc->security)
2871		return -ENOMEM;
2872
2873	opts = fc->security;
2874
2875	if (src->fscontext) {
2876		opts->fscontext = kstrdup(src->fscontext, GFP_KERNEL);
2877		if (!opts->fscontext)
2878			return -ENOMEM;
2879	}
2880	if (src->context) {
2881		opts->context = kstrdup(src->context, GFP_KERNEL);
2882		if (!opts->context)
2883			return -ENOMEM;
2884	}
2885	if (src->rootcontext) {
2886		opts->rootcontext = kstrdup(src->rootcontext, GFP_KERNEL);
2887		if (!opts->rootcontext)
2888			return -ENOMEM;
2889	}
2890	if (src->defcontext) {
2891		opts->defcontext = kstrdup(src->defcontext, GFP_KERNEL);
2892		if (!opts->defcontext)
2893			return -ENOMEM;
2894	}
2895	return 0;
2896}
2897
2898static const struct fs_parameter_spec selinux_fs_parameters[] = {
2899	fsparam_string(CONTEXT_STR,	Opt_context),
2900	fsparam_string(DEFCONTEXT_STR,	Opt_defcontext),
2901	fsparam_string(FSCONTEXT_STR,	Opt_fscontext),
2902	fsparam_string(ROOTCONTEXT_STR,	Opt_rootcontext),
2903	fsparam_flag  (SECLABEL_STR,	Opt_seclabel),
2904	{}
2905};
2906
2907static int selinux_fs_context_parse_param(struct fs_context *fc,
2908					  struct fs_parameter *param)
2909{
2910	struct fs_parse_result result;
2911	int opt, rc;
2912
2913	opt = fs_parse(fc, selinux_fs_parameters, param, &result);
2914	if (opt < 0)
2915		return opt;
2916
2917	rc = selinux_add_opt(opt, param->string, &fc->security);
2918	if (!rc) {
2919		param->string = NULL;
2920		rc = 1;
2921	}
2922	return rc;
2923}
2924
2925/* inode security operations */
2926
2927static int selinux_inode_alloc_security(struct inode *inode)
2928{
2929	struct inode_security_struct *isec = selinux_inode(inode);
2930	u32 sid = current_sid();
2931
2932	spin_lock_init(&isec->lock);
2933	INIT_LIST_HEAD(&isec->list);
2934	isec->inode = inode;
2935	isec->sid = SECINITSID_UNLABELED;
2936	isec->sclass = SECCLASS_FILE;
2937	isec->task_sid = sid;
2938	isec->initialized = LABEL_INVALID;
2939
2940	return 0;
2941}
2942
2943static void selinux_inode_free_security(struct inode *inode)
2944{
2945	inode_free_security(inode);
2946}
2947
2948static int selinux_dentry_init_security(struct dentry *dentry, int mode,
2949					const struct qstr *name, void **ctx,
2950					u32 *ctxlen)
2951{
2952	u32 newsid;
2953	int rc;
2954
2955	rc = selinux_determine_inode_label(selinux_cred(current_cred()),
2956					   d_inode(dentry->d_parent), name,
2957					   inode_mode_to_security_class(mode),
2958					   &newsid);
2959	if (rc)
2960		return rc;
2961
2962	return security_sid_to_context(&selinux_state, newsid, (char **)ctx,
2963				       ctxlen);
2964}
2965
2966static int selinux_dentry_create_files_as(struct dentry *dentry, int mode,
2967					  struct qstr *name,
2968					  const struct cred *old,
2969					  struct cred *new)
2970{
2971	u32 newsid;
2972	int rc;
2973	struct task_security_struct *tsec;
2974
2975	rc = selinux_determine_inode_label(selinux_cred(old),
2976					   d_inode(dentry->d_parent), name,
2977					   inode_mode_to_security_class(mode),
2978					   &newsid);
2979	if (rc)
2980		return rc;
2981
2982	tsec = selinux_cred(new);
2983	tsec->create_sid = newsid;
2984	return 0;
2985}
2986
2987static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2988				       const struct qstr *qstr,
2989				       const char **name,
2990				       void **value, size_t *len)
2991{
2992	const struct task_security_struct *tsec = selinux_cred(current_cred());
2993	struct superblock_security_struct *sbsec;
2994	u32 newsid, clen;
2995	int rc;
2996	char *context;
2997
2998	sbsec = selinux_superblock(dir->i_sb);
2999
 
3000	newsid = tsec->create_sid;
3001
3002	rc = selinux_determine_inode_label(tsec, dir, qstr,
 
3003		inode_mode_to_security_class(inode->i_mode),
3004		&newsid);
3005	if (rc)
3006		return rc;
3007
3008	/* Possibly defer initialization to selinux_complete_init. */
3009	if (sbsec->flags & SE_SBINITIALIZED) {
3010		struct inode_security_struct *isec = selinux_inode(inode);
3011		isec->sclass = inode_mode_to_security_class(inode->i_mode);
3012		isec->sid = newsid;
3013		isec->initialized = LABEL_INITIALIZED;
3014	}
3015
3016	if (!selinux_initialized(&selinux_state) ||
3017	    !(sbsec->flags & SBLABEL_MNT))
3018		return -EOPNOTSUPP;
3019
3020	if (name)
3021		*name = XATTR_SELINUX_SUFFIX;
3022
3023	if (value && len) {
3024		rc = security_sid_to_context_force(&selinux_state, newsid,
3025						   &context, &clen);
3026		if (rc)
3027			return rc;
3028		*value = context;
3029		*len = clen;
3030	}
3031
3032	return 0;
3033}
3034
3035static int selinux_inode_init_security_anon(struct inode *inode,
3036					    const struct qstr *name,
3037					    const struct inode *context_inode)
3038{
3039	const struct task_security_struct *tsec = selinux_cred(current_cred());
3040	struct common_audit_data ad;
3041	struct inode_security_struct *isec;
3042	int rc;
3043
3044	if (unlikely(!selinux_initialized(&selinux_state)))
3045		return 0;
3046
3047	isec = selinux_inode(inode);
3048
3049	/*
3050	 * We only get here once per ephemeral inode.  The inode has
3051	 * been initialized via inode_alloc_security but is otherwise
3052	 * untouched.
3053	 */
3054
3055	if (context_inode) {
3056		struct inode_security_struct *context_isec =
3057			selinux_inode(context_inode);
3058		if (context_isec->initialized != LABEL_INITIALIZED) {
3059			pr_err("SELinux:  context_inode is not initialized");
3060			return -EACCES;
3061		}
3062
3063		isec->sclass = context_isec->sclass;
3064		isec->sid = context_isec->sid;
3065	} else {
3066		isec->sclass = SECCLASS_ANON_INODE;
3067		rc = security_transition_sid(
3068			&selinux_state, tsec->sid, tsec->sid,
3069			isec->sclass, name, &isec->sid);
3070		if (rc)
3071			return rc;
3072	}
3073
3074	isec->initialized = LABEL_INITIALIZED;
3075	/*
3076	 * Now that we've initialized security, check whether we're
3077	 * allowed to actually create this type of anonymous inode.
3078	 */
3079
3080	ad.type = LSM_AUDIT_DATA_INODE;
3081	ad.u.inode = inode;
3082
3083	return avc_has_perm(&selinux_state,
3084			    tsec->sid,
3085			    isec->sid,
3086			    isec->sclass,
3087			    FILE__CREATE,
3088			    &ad);
3089}
3090
3091static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
3092{
3093	return may_create(dir, dentry, SECCLASS_FILE);
3094}
3095
3096static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
3097{
3098	return may_link(dir, old_dentry, MAY_LINK);
3099}
3100
3101static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
3102{
3103	return may_link(dir, dentry, MAY_UNLINK);
3104}
3105
3106static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
3107{
3108	return may_create(dir, dentry, SECCLASS_LNK_FILE);
3109}
3110
3111static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask)
3112{
3113	return may_create(dir, dentry, SECCLASS_DIR);
3114}
3115
3116static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
3117{
3118	return may_link(dir, dentry, MAY_RMDIR);
3119}
3120
3121static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3122{
3123	return may_create(dir, dentry, inode_mode_to_security_class(mode));
3124}
3125
3126static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
3127				struct inode *new_inode, struct dentry *new_dentry)
3128{
3129	return may_rename(old_inode, old_dentry, new_inode, new_dentry);
3130}
3131
3132static int selinux_inode_readlink(struct dentry *dentry)
3133{
3134	const struct cred *cred = current_cred();
3135
3136	return dentry_has_perm(cred, dentry, FILE__READ);
3137}
3138
3139static int selinux_inode_follow_link(struct dentry *dentry, struct inode *inode,
3140				     bool rcu)
3141{
3142	const struct cred *cred = current_cred();
3143	struct common_audit_data ad;
3144	struct inode_security_struct *isec;
3145	u32 sid;
3146
3147	validate_creds(cred);
3148
3149	ad.type = LSM_AUDIT_DATA_DENTRY;
3150	ad.u.dentry = dentry;
3151	sid = cred_sid(cred);
3152	isec = inode_security_rcu(inode, rcu);
3153	if (IS_ERR(isec))
3154		return PTR_ERR(isec);
3155
3156	return avc_has_perm(&selinux_state,
3157				  sid, isec->sid, isec->sclass, FILE__READ, &ad);
3158}
3159
3160static noinline int audit_inode_permission(struct inode *inode,
3161					   u32 perms, u32 audited, u32 denied,
3162					   int result)
 
3163{
3164	struct common_audit_data ad;
3165	struct inode_security_struct *isec = selinux_inode(inode);
 
3166
3167	ad.type = LSM_AUDIT_DATA_INODE;
3168	ad.u.inode = inode;
3169
3170	return slow_avc_audit(&selinux_state,
3171			    current_sid(), isec->sid, isec->sclass, perms,
3172			    audited, denied, result, &ad);
 
 
3173}
3174
3175static int selinux_inode_permission(struct inode *inode, int mask)
3176{
3177	const struct cred *cred = current_cred();
3178	u32 perms;
3179	bool from_access;
3180	bool no_block = mask & MAY_NOT_BLOCK;
3181	struct inode_security_struct *isec;
3182	u32 sid;
3183	struct av_decision avd;
3184	int rc, rc2;
3185	u32 audited, denied;
3186
3187	from_access = mask & MAY_ACCESS;
3188	mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
3189
3190	/* No permission to check.  Existence test. */
3191	if (!mask)
3192		return 0;
3193
3194	validate_creds(cred);
3195
3196	if (unlikely(IS_PRIVATE(inode)))
3197		return 0;
3198
3199	perms = file_mask_to_av(inode->i_mode, mask);
3200
3201	sid = cred_sid(cred);
3202	isec = inode_security_rcu(inode, no_block);
3203	if (IS_ERR(isec))
3204		return PTR_ERR(isec);
3205
3206	rc = avc_has_perm_noaudit(&selinux_state,
3207				  sid, isec->sid, isec->sclass, perms, 0,
3208				  &avd);
3209	audited = avc_audit_required(perms, &avd, rc,
3210				     from_access ? FILE__AUDIT_ACCESS : 0,
3211				     &denied);
3212	if (likely(!audited))
3213		return rc;
3214
3215	rc2 = audit_inode_permission(inode, perms, audited, denied, rc);
3216	if (rc2)
3217		return rc2;
3218	return rc;
3219}
3220
3221static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
3222{
3223	const struct cred *cred = current_cred();
3224	struct inode *inode = d_backing_inode(dentry);
3225	unsigned int ia_valid = iattr->ia_valid;
3226	__u32 av = FILE__WRITE;
3227
3228	/* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
3229	if (ia_valid & ATTR_FORCE) {
3230		ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
3231			      ATTR_FORCE);
3232		if (!ia_valid)
3233			return 0;
3234	}
3235
3236	if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
3237			ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
3238		return dentry_has_perm(cred, dentry, FILE__SETATTR);
3239
3240	if (selinux_policycap_openperm() &&
3241	    inode->i_sb->s_magic != SOCKFS_MAGIC &&
3242	    (ia_valid & ATTR_SIZE) &&
3243	    !(ia_valid & ATTR_FILE))
3244		av |= FILE__OPEN;
3245
3246	return dentry_has_perm(cred, dentry, av);
3247}
3248
3249static int selinux_inode_getattr(const struct path *path)
3250{
3251	return path_has_perm(current_cred(), path, FILE__GETATTR);
3252}
3253
3254static bool has_cap_mac_admin(bool audit)
3255{
3256	const struct cred *cred = current_cred();
3257	unsigned int opts = audit ? CAP_OPT_NONE : CAP_OPT_NOAUDIT;
3258
3259	if (cap_capable(cred, &init_user_ns, CAP_MAC_ADMIN, opts))
3260		return false;
3261	if (cred_has_capability(cred, CAP_MAC_ADMIN, opts, true))
3262		return false;
3263	return true;
 
 
 
 
 
 
 
 
 
 
3264}
3265
3266static int selinux_inode_setxattr(struct user_namespace *mnt_userns,
3267				  struct dentry *dentry, const char *name,
3268				  const void *value, size_t size, int flags)
3269{
3270	struct inode *inode = d_backing_inode(dentry);
3271	struct inode_security_struct *isec;
3272	struct superblock_security_struct *sbsec;
3273	struct common_audit_data ad;
3274	u32 newsid, sid = current_sid();
3275	int rc = 0;
3276
3277	if (strcmp(name, XATTR_NAME_SELINUX)) {
3278		rc = cap_inode_setxattr(dentry, name, value, size, flags);
3279		if (rc)
3280			return rc;
3281
3282		/* Not an attribute we recognize, so just check the
3283		   ordinary setattr permission. */
3284		return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3285	}
3286
3287	if (!selinux_initialized(&selinux_state))
3288		return (inode_owner_or_capable(mnt_userns, inode) ? 0 : -EPERM);
3289
3290	sbsec = selinux_superblock(inode->i_sb);
3291	if (!(sbsec->flags & SBLABEL_MNT))
3292		return -EOPNOTSUPP;
3293
3294	if (!inode_owner_or_capable(mnt_userns, inode))
3295		return -EPERM;
3296
3297	ad.type = LSM_AUDIT_DATA_DENTRY;
3298	ad.u.dentry = dentry;
3299
3300	isec = backing_inode_security(dentry);
3301	rc = avc_has_perm(&selinux_state,
3302			  sid, isec->sid, isec->sclass,
3303			  FILE__RELABELFROM, &ad);
3304	if (rc)
3305		return rc;
3306
3307	rc = security_context_to_sid(&selinux_state, value, size, &newsid,
3308				     GFP_KERNEL);
3309	if (rc == -EINVAL) {
3310		if (!has_cap_mac_admin(true)) {
3311			struct audit_buffer *ab;
3312			size_t audit_size;
 
3313
3314			/* We strip a nul only if it is at the end, otherwise the
3315			 * context contains a nul and we should audit that */
3316			if (value) {
3317				const char *str = value;
3318
3319				if (str[size - 1] == '\0')
3320					audit_size = size - 1;
3321				else
3322					audit_size = size;
3323			} else {
 
3324				audit_size = 0;
3325			}
3326			ab = audit_log_start(audit_context(),
3327					     GFP_ATOMIC, AUDIT_SELINUX_ERR);
3328			audit_log_format(ab, "op=setxattr invalid_context=");
3329			audit_log_n_untrustedstring(ab, value, audit_size);
3330			audit_log_end(ab);
3331
3332			return rc;
3333		}
3334		rc = security_context_to_sid_force(&selinux_state, value,
3335						   size, &newsid);
3336	}
3337	if (rc)
3338		return rc;
3339
3340	rc = avc_has_perm(&selinux_state,
3341			  sid, newsid, isec->sclass,
3342			  FILE__RELABELTO, &ad);
3343	if (rc)
3344		return rc;
3345
3346	rc = security_validate_transition(&selinux_state, isec->sid, newsid,
3347					  sid, isec->sclass);
3348	if (rc)
3349		return rc;
3350
3351	return avc_has_perm(&selinux_state,
3352			    newsid,
3353			    sbsec->sid,
3354			    SECCLASS_FILESYSTEM,
3355			    FILESYSTEM__ASSOCIATE,
3356			    &ad);
3357}
3358
3359static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
3360					const void *value, size_t size,
3361					int flags)
3362{
3363	struct inode *inode = d_backing_inode(dentry);
3364	struct inode_security_struct *isec;
3365	u32 newsid;
3366	int rc;
3367
3368	if (strcmp(name, XATTR_NAME_SELINUX)) {
3369		/* Not an attribute we recognize, so nothing to do. */
3370		return;
3371	}
3372
3373	if (!selinux_initialized(&selinux_state)) {
3374		/* If we haven't even been initialized, then we can't validate
3375		 * against a policy, so leave the label as invalid. It may
3376		 * resolve to a valid label on the next revalidation try if
3377		 * we've since initialized.
3378		 */
3379		return;
3380	}
3381
3382	rc = security_context_to_sid_force(&selinux_state, value, size,
3383					   &newsid);
3384	if (rc) {
3385		pr_err("SELinux:  unable to map context to SID"
3386		       "for (%s, %lu), rc=%d\n",
3387		       inode->i_sb->s_id, inode->i_ino, -rc);
3388		return;
3389	}
3390
3391	isec = backing_inode_security(dentry);
3392	spin_lock(&isec->lock);
3393	isec->sclass = inode_mode_to_security_class(inode->i_mode);
3394	isec->sid = newsid;
3395	isec->initialized = LABEL_INITIALIZED;
3396	spin_unlock(&isec->lock);
3397
3398	return;
3399}
3400
3401static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
3402{
3403	const struct cred *cred = current_cred();
3404
3405	return dentry_has_perm(cred, dentry, FILE__GETATTR);
3406}
3407
3408static int selinux_inode_listxattr(struct dentry *dentry)
3409{
3410	const struct cred *cred = current_cred();
3411
3412	return dentry_has_perm(cred, dentry, FILE__GETATTR);
3413}
3414
3415static int selinux_inode_removexattr(struct user_namespace *mnt_userns,
3416				     struct dentry *dentry, const char *name)
3417{
3418	if (strcmp(name, XATTR_NAME_SELINUX)) {
3419		int rc = cap_inode_removexattr(mnt_userns, dentry, name);
3420		if (rc)
3421			return rc;
3422
3423		/* Not an attribute we recognize, so just check the
3424		   ordinary setattr permission. */
3425		return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3426	}
3427
3428	if (!selinux_initialized(&selinux_state))
3429		return 0;
3430
3431	/* No one is allowed to remove a SELinux security label.
3432	   You can change the label, but all data must be labeled. */
3433	return -EACCES;
3434}
3435
3436static int selinux_path_notify(const struct path *path, u64 mask,
3437						unsigned int obj_type)
3438{
3439	int ret;
3440	u32 perm;
3441
3442	struct common_audit_data ad;
3443
3444	ad.type = LSM_AUDIT_DATA_PATH;
3445	ad.u.path = *path;
3446
3447	/*
3448	 * Set permission needed based on the type of mark being set.
3449	 * Performs an additional check for sb watches.
3450	 */
3451	switch (obj_type) {
3452	case FSNOTIFY_OBJ_TYPE_VFSMOUNT:
3453		perm = FILE__WATCH_MOUNT;
3454		break;
3455	case FSNOTIFY_OBJ_TYPE_SB:
3456		perm = FILE__WATCH_SB;
3457		ret = superblock_has_perm(current_cred(), path->dentry->d_sb,
3458						FILESYSTEM__WATCH, &ad);
3459		if (ret)
3460			return ret;
3461		break;
3462	case FSNOTIFY_OBJ_TYPE_INODE:
3463		perm = FILE__WATCH;
3464		break;
3465	default:
3466		return -EINVAL;
3467	}
3468
3469	/* blocking watches require the file:watch_with_perm permission */
3470	if (mask & (ALL_FSNOTIFY_PERM_EVENTS))
3471		perm |= FILE__WATCH_WITH_PERM;
3472
3473	/* watches on read-like events need the file:watch_reads permission */
3474	if (mask & (FS_ACCESS | FS_ACCESS_PERM | FS_CLOSE_NOWRITE))
3475		perm |= FILE__WATCH_READS;
3476
3477	return path_has_perm(current_cred(), path, perm);
3478}
3479
3480/*
3481 * Copy the inode security context value to the user.
3482 *
3483 * Permission check is handled by selinux_inode_getxattr hook.
3484 */
3485static int selinux_inode_getsecurity(struct user_namespace *mnt_userns,
3486				     struct inode *inode, const char *name,
3487				     void **buffer, bool alloc)
3488{
3489	u32 size;
3490	int error;
3491	char *context = NULL;
3492	struct inode_security_struct *isec;
3493
3494	/*
3495	 * If we're not initialized yet, then we can't validate contexts, so
3496	 * just let vfs_getxattr fall back to using the on-disk xattr.
3497	 */
3498	if (!selinux_initialized(&selinux_state) ||
3499	    strcmp(name, XATTR_SELINUX_SUFFIX))
3500		return -EOPNOTSUPP;
3501
3502	/*
3503	 * If the caller has CAP_MAC_ADMIN, then get the raw context
3504	 * value even if it is not defined by current policy; otherwise,
3505	 * use the in-core value under current policy.
3506	 * Use the non-auditing forms of the permission checks since
3507	 * getxattr may be called by unprivileged processes commonly
3508	 * and lack of permission just means that we fall back to the
3509	 * in-core context value, not a denial.
3510	 */
3511	isec = inode_security(inode);
3512	if (has_cap_mac_admin(false))
3513		error = security_sid_to_context_force(&selinux_state,
3514						      isec->sid, &context,
 
 
 
3515						      &size);
3516	else
3517		error = security_sid_to_context(&selinux_state, isec->sid,
3518						&context, &size);
3519	if (error)
3520		return error;
3521	error = size;
3522	if (alloc) {
3523		*buffer = context;
3524		goto out_nofree;
3525	}
3526	kfree(context);
3527out_nofree:
3528	return error;
3529}
3530
3531static int selinux_inode_setsecurity(struct inode *inode, const char *name,
3532				     const void *value, size_t size, int flags)
3533{
3534	struct inode_security_struct *isec = inode_security_novalidate(inode);
3535	struct superblock_security_struct *sbsec;
3536	u32 newsid;
3537	int rc;
3538
3539	if (strcmp(name, XATTR_SELINUX_SUFFIX))
3540		return -EOPNOTSUPP;
3541
3542	sbsec = selinux_superblock(inode->i_sb);
3543	if (!(sbsec->flags & SBLABEL_MNT))
3544		return -EOPNOTSUPP;
3545
3546	if (!value || !size)
3547		return -EACCES;
3548
3549	rc = security_context_to_sid(&selinux_state, value, size, &newsid,
3550				     GFP_KERNEL);
3551	if (rc)
3552		return rc;
3553
3554	spin_lock(&isec->lock);
3555	isec->sclass = inode_mode_to_security_class(inode->i_mode);
3556	isec->sid = newsid;
3557	isec->initialized = LABEL_INITIALIZED;
3558	spin_unlock(&isec->lock);
3559	return 0;
3560}
3561
3562static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
3563{
3564	const int len = sizeof(XATTR_NAME_SELINUX);
3565
3566	if (!selinux_initialized(&selinux_state))
3567		return 0;
3568
3569	if (buffer && len <= buffer_size)
3570		memcpy(buffer, XATTR_NAME_SELINUX, len);
3571	return len;
3572}
3573
3574static void selinux_inode_getsecid(struct inode *inode, u32 *secid)
3575{
3576	struct inode_security_struct *isec = inode_security_novalidate(inode);
3577	*secid = isec->sid;
3578}
3579
3580static int selinux_inode_copy_up(struct dentry *src, struct cred **new)
3581{
3582	u32 sid;
3583	struct task_security_struct *tsec;
3584	struct cred *new_creds = *new;
3585
3586	if (new_creds == NULL) {
3587		new_creds = prepare_creds();
3588		if (!new_creds)
3589			return -ENOMEM;
3590	}
3591
3592	tsec = selinux_cred(new_creds);
3593	/* Get label from overlay inode and set it in create_sid */
3594	selinux_inode_getsecid(d_inode(src), &sid);
3595	tsec->create_sid = sid;
3596	*new = new_creds;
3597	return 0;
3598}
3599
3600static int selinux_inode_copy_up_xattr(const char *name)
3601{
3602	/* The copy_up hook above sets the initial context on an inode, but we
3603	 * don't then want to overwrite it by blindly copying all the lower
3604	 * xattrs up.  Instead, we have to filter out SELinux-related xattrs.
3605	 */
3606	if (strcmp(name, XATTR_NAME_SELINUX) == 0)
3607		return 1; /* Discard */
3608	/*
3609	 * Any other attribute apart from SELINUX is not claimed, supported
3610	 * by selinux.
3611	 */
3612	return -EOPNOTSUPP;
3613}
3614
3615/* kernfs node operations */
3616
3617static int selinux_kernfs_init_security(struct kernfs_node *kn_dir,
3618					struct kernfs_node *kn)
3619{
3620	const struct task_security_struct *tsec = selinux_cred(current_cred());
3621	u32 parent_sid, newsid, clen;
3622	int rc;
3623	char *context;
3624
3625	rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, NULL, 0);
3626	if (rc == -ENODATA)
3627		return 0;
3628	else if (rc < 0)
3629		return rc;
3630
3631	clen = (u32)rc;
3632	context = kmalloc(clen, GFP_KERNEL);
3633	if (!context)
3634		return -ENOMEM;
3635
3636	rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, context, clen);
3637	if (rc < 0) {
3638		kfree(context);
3639		return rc;
3640	}
3641
3642	rc = security_context_to_sid(&selinux_state, context, clen, &parent_sid,
3643				     GFP_KERNEL);
3644	kfree(context);
3645	if (rc)
3646		return rc;
3647
3648	if (tsec->create_sid) {
3649		newsid = tsec->create_sid;
3650	} else {
3651		u16 secclass = inode_mode_to_security_class(kn->mode);
3652		struct qstr q;
3653
3654		q.name = kn->name;
3655		q.hash_len = hashlen_string(kn_dir, kn->name);
3656
3657		rc = security_transition_sid(&selinux_state, tsec->sid,
3658					     parent_sid, secclass, &q,
3659					     &newsid);
3660		if (rc)
3661			return rc;
3662	}
3663
3664	rc = security_sid_to_context_force(&selinux_state, newsid,
3665					   &context, &clen);
3666	if (rc)
3667		return rc;
3668
3669	rc = kernfs_xattr_set(kn, XATTR_NAME_SELINUX, context, clen,
3670			      XATTR_CREATE);
3671	kfree(context);
3672	return rc;
3673}
3674
3675
3676/* file security operations */
3677
3678static int selinux_revalidate_file_permission(struct file *file, int mask)
3679{
3680	const struct cred *cred = current_cred();
3681	struct inode *inode = file_inode(file);
3682
3683	/* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
3684	if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
3685		mask |= MAY_APPEND;
3686
3687	return file_has_perm(cred, file,
3688			     file_mask_to_av(inode->i_mode, mask));
3689}
3690
3691static int selinux_file_permission(struct file *file, int mask)
3692{
3693	struct inode *inode = file_inode(file);
3694	struct file_security_struct *fsec = selinux_file(file);
3695	struct inode_security_struct *isec;
3696	u32 sid = current_sid();
3697
3698	if (!mask)
3699		/* No permission to check.  Existence test. */
3700		return 0;
3701
3702	isec = inode_security(inode);
3703	if (sid == fsec->sid && fsec->isid == isec->sid &&
3704	    fsec->pseqno == avc_policy_seqno(&selinux_state))
3705		/* No change since file_open check. */
3706		return 0;
3707
3708	return selinux_revalidate_file_permission(file, mask);
3709}
3710
3711static int selinux_file_alloc_security(struct file *file)
3712{
3713	struct file_security_struct *fsec = selinux_file(file);
3714	u32 sid = current_sid();
3715
3716	fsec->sid = sid;
3717	fsec->fown_sid = sid;
3718
3719	return 0;
3720}
3721
3722/*
3723 * Check whether a task has the ioctl permission and cmd
3724 * operation to an inode.
3725 */
3726static int ioctl_has_perm(const struct cred *cred, struct file *file,
3727		u32 requested, u16 cmd)
3728{
3729	struct common_audit_data ad;
3730	struct file_security_struct *fsec = selinux_file(file);
3731	struct inode *inode = file_inode(file);
3732	struct inode_security_struct *isec;
3733	struct lsm_ioctlop_audit ioctl;
3734	u32 ssid = cred_sid(cred);
3735	int rc;
3736	u8 driver = cmd >> 8;
3737	u8 xperm = cmd & 0xff;
3738
3739	ad.type = LSM_AUDIT_DATA_IOCTL_OP;
3740	ad.u.op = &ioctl;
3741	ad.u.op->cmd = cmd;
3742	ad.u.op->path = file->f_path;
3743
3744	if (ssid != fsec->sid) {
3745		rc = avc_has_perm(&selinux_state,
3746				  ssid, fsec->sid,
3747				SECCLASS_FD,
3748				FD__USE,
3749				&ad);
3750		if (rc)
3751			goto out;
3752	}
3753
3754	if (unlikely(IS_PRIVATE(inode)))
3755		return 0;
3756
3757	isec = inode_security(inode);
3758	rc = avc_has_extended_perms(&selinux_state,
3759				    ssid, isec->sid, isec->sclass,
3760				    requested, driver, xperm, &ad);
3761out:
3762	return rc;
3763}
3764
3765static int selinux_file_ioctl(struct file *file, unsigned int cmd,
3766			      unsigned long arg)
3767{
3768	const struct cred *cred = current_cred();
3769	int error = 0;
3770
3771	switch (cmd) {
3772	case FIONREAD:
 
3773	case FIBMAP:
 
3774	case FIGETBSZ:
 
3775	case FS_IOC_GETFLAGS:
 
3776	case FS_IOC_GETVERSION:
3777		error = file_has_perm(cred, file, FILE__GETATTR);
3778		break;
3779
3780	case FS_IOC_SETFLAGS:
 
3781	case FS_IOC_SETVERSION:
3782		error = file_has_perm(cred, file, FILE__SETATTR);
3783		break;
3784
3785	/* sys_ioctl() checks */
3786	case FIONBIO:
 
3787	case FIOASYNC:
3788		error = file_has_perm(cred, file, 0);
3789		break;
3790
3791	case KDSKBENT:
3792	case KDSKBSENT:
3793		error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG,
3794					    CAP_OPT_NONE, true);
3795		break;
3796
3797	/* default case assumes that the command will go
3798	 * to the file's ioctl() function.
3799	 */
3800	default:
3801		error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd);
3802	}
3803	return error;
3804}
3805
3806static int default_noexec __ro_after_init;
3807
3808static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3809{
3810	const struct cred *cred = current_cred();
3811	u32 sid = cred_sid(cred);
3812	int rc = 0;
3813
3814	if (default_noexec &&
3815	    (prot & PROT_EXEC) && (!file || IS_PRIVATE(file_inode(file)) ||
3816				   (!shared && (prot & PROT_WRITE)))) {
3817		/*
3818		 * We are making executable an anonymous mapping or a
3819		 * private file mapping that will also be writable.
3820		 * This has an additional check.
3821		 */
3822		rc = avc_has_perm(&selinux_state,
3823				  sid, sid, SECCLASS_PROCESS,
3824				  PROCESS__EXECMEM, NULL);
3825		if (rc)
3826			goto error;
3827	}
3828
3829	if (file) {
3830		/* read access is always possible with a mapping */
3831		u32 av = FILE__READ;
3832
3833		/* write access only matters if the mapping is shared */
3834		if (shared && (prot & PROT_WRITE))
3835			av |= FILE__WRITE;
3836
3837		if (prot & PROT_EXEC)
3838			av |= FILE__EXECUTE;
3839
3840		return file_has_perm(cred, file, av);
3841	}
3842
3843error:
3844	return rc;
3845}
3846
3847static int selinux_mmap_addr(unsigned long addr)
3848{
3849	int rc = 0;
3850
3851	if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3852		u32 sid = current_sid();
3853		rc = avc_has_perm(&selinux_state,
3854				  sid, sid, SECCLASS_MEMPROTECT,
3855				  MEMPROTECT__MMAP_ZERO, NULL);
3856	}
3857
3858	return rc;
3859}
3860
3861static int selinux_mmap_file(struct file *file, unsigned long reqprot,
3862			     unsigned long prot, unsigned long flags)
3863{
3864	struct common_audit_data ad;
3865	int rc;
3866
3867	if (file) {
3868		ad.type = LSM_AUDIT_DATA_FILE;
3869		ad.u.file = file;
3870		rc = inode_has_perm(current_cred(), file_inode(file),
3871				    FILE__MAP, &ad);
3872		if (rc)
3873			return rc;
3874	}
3875
3876	if (checkreqprot_get(&selinux_state))
3877		prot = reqprot;
3878
3879	return file_map_prot_check(file, prot,
3880				   (flags & MAP_TYPE) == MAP_SHARED);
3881}
3882
3883static int selinux_file_mprotect(struct vm_area_struct *vma,
3884				 unsigned long reqprot,
3885				 unsigned long prot)
3886{
3887	const struct cred *cred = current_cred();
3888	u32 sid = cred_sid(cred);
3889
3890	if (checkreqprot_get(&selinux_state))
3891		prot = reqprot;
3892
3893	if (default_noexec &&
3894	    (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3895		int rc = 0;
3896		if (vma->vm_start >= vma->vm_mm->start_brk &&
3897		    vma->vm_end <= vma->vm_mm->brk) {
3898			rc = avc_has_perm(&selinux_state,
3899					  sid, sid, SECCLASS_PROCESS,
3900					  PROCESS__EXECHEAP, NULL);
3901		} else if (!vma->vm_file &&
3902			   ((vma->vm_start <= vma->vm_mm->start_stack &&
3903			     vma->vm_end >= vma->vm_mm->start_stack) ||
3904			    vma_is_stack_for_current(vma))) {
3905			rc = avc_has_perm(&selinux_state,
3906					  sid, sid, SECCLASS_PROCESS,
3907					  PROCESS__EXECSTACK, NULL);
3908		} else if (vma->vm_file && vma->anon_vma) {
3909			/*
3910			 * We are making executable a file mapping that has
3911			 * had some COW done. Since pages might have been
3912			 * written, check ability to execute the possibly
3913			 * modified content.  This typically should only
3914			 * occur for text relocations.
3915			 */
3916			rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3917		}
3918		if (rc)
3919			return rc;
3920	}
3921
3922	return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3923}
3924
3925static int selinux_file_lock(struct file *file, unsigned int cmd)
3926{
3927	const struct cred *cred = current_cred();
3928
3929	return file_has_perm(cred, file, FILE__LOCK);
3930}
3931
3932static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3933			      unsigned long arg)
3934{
3935	const struct cred *cred = current_cred();
3936	int err = 0;
3937
3938	switch (cmd) {
3939	case F_SETFL:
3940		if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3941			err = file_has_perm(cred, file, FILE__WRITE);
3942			break;
3943		}
3944		fallthrough;
3945	case F_SETOWN:
3946	case F_SETSIG:
3947	case F_GETFL:
3948	case F_GETOWN:
3949	case F_GETSIG:
3950	case F_GETOWNER_UIDS:
3951		/* Just check FD__USE permission */
3952		err = file_has_perm(cred, file, 0);
3953		break;
3954	case F_GETLK:
3955	case F_SETLK:
3956	case F_SETLKW:
3957	case F_OFD_GETLK:
3958	case F_OFD_SETLK:
3959	case F_OFD_SETLKW:
3960#if BITS_PER_LONG == 32
3961	case F_GETLK64:
3962	case F_SETLK64:
3963	case F_SETLKW64:
3964#endif
3965		err = file_has_perm(cred, file, FILE__LOCK);
3966		break;
3967	}
3968
3969	return err;
3970}
3971
3972static void selinux_file_set_fowner(struct file *file)
3973{
3974	struct file_security_struct *fsec;
3975
3976	fsec = selinux_file(file);
3977	fsec->fown_sid = current_sid();
3978}
3979
3980static int selinux_file_send_sigiotask(struct task_struct *tsk,
3981				       struct fown_struct *fown, int signum)
3982{
3983	struct file *file;
3984	u32 sid = task_sid_obj(tsk);
3985	u32 perm;
3986	struct file_security_struct *fsec;
3987
3988	/* struct fown_struct is never outside the context of a struct file */
3989	file = container_of(fown, struct file, f_owner);
3990
3991	fsec = selinux_file(file);
3992
3993	if (!signum)
3994		perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3995	else
3996		perm = signal_to_av(signum);
3997
3998	return avc_has_perm(&selinux_state,
3999			    fsec->fown_sid, sid,
4000			    SECCLASS_PROCESS, perm, NULL);
4001}
4002
4003static int selinux_file_receive(struct file *file)
4004{
4005	const struct cred *cred = current_cred();
4006
4007	return file_has_perm(cred, file, file_to_av(file));
4008}
4009
4010static int selinux_file_open(struct file *file)
4011{
4012	struct file_security_struct *fsec;
4013	struct inode_security_struct *isec;
4014
4015	fsec = selinux_file(file);
4016	isec = inode_security(file_inode(file));
4017	/*
4018	 * Save inode label and policy sequence number
4019	 * at open-time so that selinux_file_permission
4020	 * can determine whether revalidation is necessary.
4021	 * Task label is already saved in the file security
4022	 * struct as its SID.
4023	 */
4024	fsec->isid = isec->sid;
4025	fsec->pseqno = avc_policy_seqno(&selinux_state);
4026	/*
4027	 * Since the inode label or policy seqno may have changed
4028	 * between the selinux_inode_permission check and the saving
4029	 * of state above, recheck that access is still permitted.
4030	 * Otherwise, access might never be revalidated against the
4031	 * new inode label or new policy.
4032	 * This check is not redundant - do not remove.
4033	 */
4034	return file_path_has_perm(file->f_cred, file, open_file_to_av(file));
4035}
4036
4037/* task security operations */
4038
4039static int selinux_task_alloc(struct task_struct *task,
4040			      unsigned long clone_flags)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4041{
4042	u32 sid = current_sid();
4043
4044	return avc_has_perm(&selinux_state,
4045			    sid, sid, SECCLASS_PROCESS, PROCESS__FORK, NULL);
 
 
 
 
 
4046}
4047
4048/*
4049 * prepare a new set of credentials for modification
4050 */
4051static int selinux_cred_prepare(struct cred *new, const struct cred *old,
4052				gfp_t gfp)
4053{
4054	const struct task_security_struct *old_tsec = selinux_cred(old);
4055	struct task_security_struct *tsec = selinux_cred(new);
4056
4057	*tsec = *old_tsec;
 
 
 
 
 
 
4058	return 0;
4059}
4060
4061/*
4062 * transfer the SELinux data to a blank set of creds
4063 */
4064static void selinux_cred_transfer(struct cred *new, const struct cred *old)
4065{
4066	const struct task_security_struct *old_tsec = selinux_cred(old);
4067	struct task_security_struct *tsec = selinux_cred(new);
4068
4069	*tsec = *old_tsec;
4070}
4071
4072static void selinux_cred_getsecid(const struct cred *c, u32 *secid)
4073{
4074	*secid = cred_sid(c);
4075}
4076
4077/*
4078 * set the security data for a kernel service
4079 * - all the creation contexts are set to unlabelled
4080 */
4081static int selinux_kernel_act_as(struct cred *new, u32 secid)
4082{
4083	struct task_security_struct *tsec = selinux_cred(new);
4084	u32 sid = current_sid();
4085	int ret;
4086
4087	ret = avc_has_perm(&selinux_state,
4088			   sid, secid,
4089			   SECCLASS_KERNEL_SERVICE,
4090			   KERNEL_SERVICE__USE_AS_OVERRIDE,
4091			   NULL);
4092	if (ret == 0) {
4093		tsec->sid = secid;
4094		tsec->create_sid = 0;
4095		tsec->keycreate_sid = 0;
4096		tsec->sockcreate_sid = 0;
4097	}
4098	return ret;
4099}
4100
4101/*
4102 * set the file creation context in a security record to the same as the
4103 * objective context of the specified inode
4104 */
4105static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
4106{
4107	struct inode_security_struct *isec = inode_security(inode);
4108	struct task_security_struct *tsec = selinux_cred(new);
4109	u32 sid = current_sid();
4110	int ret;
4111
4112	ret = avc_has_perm(&selinux_state,
4113			   sid, isec->sid,
4114			   SECCLASS_KERNEL_SERVICE,
4115			   KERNEL_SERVICE__CREATE_FILES_AS,
4116			   NULL);
4117
4118	if (ret == 0)
4119		tsec->create_sid = isec->sid;
4120	return ret;
4121}
4122
4123static int selinux_kernel_module_request(char *kmod_name)
4124{
 
4125	struct common_audit_data ad;
4126
 
 
4127	ad.type = LSM_AUDIT_DATA_KMOD;
4128	ad.u.kmod_name = kmod_name;
4129
4130	return avc_has_perm(&selinux_state,
4131			    current_sid(), SECINITSID_KERNEL, SECCLASS_SYSTEM,
4132			    SYSTEM__MODULE_REQUEST, &ad);
4133}
4134
4135static int selinux_kernel_module_from_file(struct file *file)
4136{
4137	struct common_audit_data ad;
4138	struct inode_security_struct *isec;
4139	struct file_security_struct *fsec;
4140	u32 sid = current_sid();
4141	int rc;
4142
4143	/* init_module */
4144	if (file == NULL)
4145		return avc_has_perm(&selinux_state,
4146				    sid, sid, SECCLASS_SYSTEM,
4147					SYSTEM__MODULE_LOAD, NULL);
4148
4149	/* finit_module */
4150
4151	ad.type = LSM_AUDIT_DATA_FILE;
4152	ad.u.file = file;
4153
4154	fsec = selinux_file(file);
4155	if (sid != fsec->sid) {
4156		rc = avc_has_perm(&selinux_state,
4157				  sid, fsec->sid, SECCLASS_FD, FD__USE, &ad);
4158		if (rc)
4159			return rc;
4160	}
4161
4162	isec = inode_security(file_inode(file));
4163	return avc_has_perm(&selinux_state,
4164			    sid, isec->sid, SECCLASS_SYSTEM,
4165				SYSTEM__MODULE_LOAD, &ad);
4166}
4167
4168static int selinux_kernel_read_file(struct file *file,
4169				    enum kernel_read_file_id id,
4170				    bool contents)
4171{
4172	int rc = 0;
4173
4174	switch (id) {
4175	case READING_MODULE:
4176		rc = selinux_kernel_module_from_file(contents ? file : NULL);
4177		break;
4178	default:
4179		break;
4180	}
4181
4182	return rc;
4183}
4184
4185static int selinux_kernel_load_data(enum kernel_load_data_id id, bool contents)
4186{
4187	int rc = 0;
4188
4189	switch (id) {
4190	case LOADING_MODULE:
4191		rc = selinux_kernel_module_from_file(NULL);
4192		break;
4193	default:
4194		break;
4195	}
4196
4197	return rc;
4198}
4199
4200static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
4201{
4202	return avc_has_perm(&selinux_state,
4203			    current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4204			    PROCESS__SETPGID, NULL);
4205}
4206
4207static int selinux_task_getpgid(struct task_struct *p)
4208{
4209	return avc_has_perm(&selinux_state,
4210			    current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4211			    PROCESS__GETPGID, NULL);
4212}
4213
4214static int selinux_task_getsid(struct task_struct *p)
4215{
4216	return avc_has_perm(&selinux_state,
4217			    current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4218			    PROCESS__GETSESSION, NULL);
4219}
4220
4221static void selinux_task_getsecid_subj(struct task_struct *p, u32 *secid)
4222{
4223	*secid = task_sid_subj(p);
4224}
4225
4226static void selinux_task_getsecid_obj(struct task_struct *p, u32 *secid)
4227{
4228	*secid = task_sid_obj(p);
4229}
4230
4231static int selinux_task_setnice(struct task_struct *p, int nice)
4232{
4233	return avc_has_perm(&selinux_state,
4234			    current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4235			    PROCESS__SETSCHED, NULL);
4236}
4237
4238static int selinux_task_setioprio(struct task_struct *p, int ioprio)
4239{
4240	return avc_has_perm(&selinux_state,
4241			    current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4242			    PROCESS__SETSCHED, NULL);
4243}
4244
4245static int selinux_task_getioprio(struct task_struct *p)
4246{
4247	return avc_has_perm(&selinux_state,
4248			    current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4249			    PROCESS__GETSCHED, NULL);
4250}
4251
4252static int selinux_task_prlimit(const struct cred *cred, const struct cred *tcred,
4253				unsigned int flags)
4254{
4255	u32 av = 0;
4256
4257	if (!flags)
4258		return 0;
4259	if (flags & LSM_PRLIMIT_WRITE)
4260		av |= PROCESS__SETRLIMIT;
4261	if (flags & LSM_PRLIMIT_READ)
4262		av |= PROCESS__GETRLIMIT;
4263	return avc_has_perm(&selinux_state,
4264			    cred_sid(cred), cred_sid(tcred),
4265			    SECCLASS_PROCESS, av, NULL);
4266}
4267
4268static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
4269		struct rlimit *new_rlim)
4270{
4271	struct rlimit *old_rlim = p->signal->rlim + resource;
4272
4273	/* Control the ability to change the hard limit (whether
4274	   lowering or raising it), so that the hard limit can
4275	   later be used as a safe reset point for the soft limit
4276	   upon context transitions.  See selinux_bprm_committing_creds. */
4277	if (old_rlim->rlim_max != new_rlim->rlim_max)
4278		return avc_has_perm(&selinux_state,
4279				    current_sid(), task_sid_obj(p),
4280				    SECCLASS_PROCESS, PROCESS__SETRLIMIT, NULL);
4281
4282	return 0;
4283}
4284
4285static int selinux_task_setscheduler(struct task_struct *p)
4286{
4287	return avc_has_perm(&selinux_state,
4288			    current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4289			    PROCESS__SETSCHED, NULL);
4290}
4291
4292static int selinux_task_getscheduler(struct task_struct *p)
4293{
4294	return avc_has_perm(&selinux_state,
4295			    current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4296			    PROCESS__GETSCHED, NULL);
4297}
4298
4299static int selinux_task_movememory(struct task_struct *p)
4300{
4301	return avc_has_perm(&selinux_state,
4302			    current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4303			    PROCESS__SETSCHED, NULL);
4304}
4305
4306static int selinux_task_kill(struct task_struct *p, struct kernel_siginfo *info,
4307				int sig, const struct cred *cred)
4308{
4309	u32 secid;
4310	u32 perm;
 
4311
4312	if (!sig)
4313		perm = PROCESS__SIGNULL; /* null signal; existence test */
4314	else
4315		perm = signal_to_av(sig);
4316	if (!cred)
4317		secid = current_sid();
 
4318	else
4319		secid = cred_sid(cred);
4320	return avc_has_perm(&selinux_state,
4321			    secid, task_sid_obj(p), SECCLASS_PROCESS, perm, NULL);
 
 
 
 
4322}
4323
4324static void selinux_task_to_inode(struct task_struct *p,
4325				  struct inode *inode)
4326{
4327	struct inode_security_struct *isec = selinux_inode(inode);
4328	u32 sid = task_sid_obj(p);
4329
4330	spin_lock(&isec->lock);
4331	isec->sclass = inode_mode_to_security_class(inode->i_mode);
4332	isec->sid = sid;
4333	isec->initialized = LABEL_INITIALIZED;
4334	spin_unlock(&isec->lock);
4335}
4336
4337/* Returns error only if unable to parse addresses */
4338static int selinux_parse_skb_ipv4(struct sk_buff *skb,
4339			struct common_audit_data *ad, u8 *proto)
4340{
4341	int offset, ihlen, ret = -EINVAL;
4342	struct iphdr _iph, *ih;
4343
4344	offset = skb_network_offset(skb);
4345	ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
4346	if (ih == NULL)
4347		goto out;
4348
4349	ihlen = ih->ihl * 4;
4350	if (ihlen < sizeof(_iph))
4351		goto out;
4352
4353	ad->u.net->v4info.saddr = ih->saddr;
4354	ad->u.net->v4info.daddr = ih->daddr;
4355	ret = 0;
4356
4357	if (proto)
4358		*proto = ih->protocol;
4359
4360	switch (ih->protocol) {
4361	case IPPROTO_TCP: {
4362		struct tcphdr _tcph, *th;
4363
4364		if (ntohs(ih->frag_off) & IP_OFFSET)
4365			break;
4366
4367		offset += ihlen;
4368		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4369		if (th == NULL)
4370			break;
4371
4372		ad->u.net->sport = th->source;
4373		ad->u.net->dport = th->dest;
4374		break;
4375	}
4376
4377	case IPPROTO_UDP: {
4378		struct udphdr _udph, *uh;
4379
4380		if (ntohs(ih->frag_off) & IP_OFFSET)
4381			break;
4382
4383		offset += ihlen;
4384		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4385		if (uh == NULL)
4386			break;
4387
4388		ad->u.net->sport = uh->source;
4389		ad->u.net->dport = uh->dest;
4390		break;
4391	}
4392
4393	case IPPROTO_DCCP: {
4394		struct dccp_hdr _dccph, *dh;
4395
4396		if (ntohs(ih->frag_off) & IP_OFFSET)
4397			break;
4398
4399		offset += ihlen;
4400		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4401		if (dh == NULL)
4402			break;
4403
4404		ad->u.net->sport = dh->dccph_sport;
4405		ad->u.net->dport = dh->dccph_dport;
4406		break;
4407	}
4408
4409#if IS_ENABLED(CONFIG_IP_SCTP)
4410	case IPPROTO_SCTP: {
4411		struct sctphdr _sctph, *sh;
4412
4413		if (ntohs(ih->frag_off) & IP_OFFSET)
4414			break;
4415
4416		offset += ihlen;
4417		sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4418		if (sh == NULL)
4419			break;
4420
4421		ad->u.net->sport = sh->source;
4422		ad->u.net->dport = sh->dest;
4423		break;
4424	}
4425#endif
4426	default:
4427		break;
4428	}
4429out:
4430	return ret;
4431}
4432
4433#if IS_ENABLED(CONFIG_IPV6)
4434
4435/* Returns error only if unable to parse addresses */
4436static int selinux_parse_skb_ipv6(struct sk_buff *skb,
4437			struct common_audit_data *ad, u8 *proto)
4438{
4439	u8 nexthdr;
4440	int ret = -EINVAL, offset;
4441	struct ipv6hdr _ipv6h, *ip6;
4442	__be16 frag_off;
4443
4444	offset = skb_network_offset(skb);
4445	ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
4446	if (ip6 == NULL)
4447		goto out;
4448
4449	ad->u.net->v6info.saddr = ip6->saddr;
4450	ad->u.net->v6info.daddr = ip6->daddr;
4451	ret = 0;
4452
4453	nexthdr = ip6->nexthdr;
4454	offset += sizeof(_ipv6h);
4455	offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off);
4456	if (offset < 0)
4457		goto out;
4458
4459	if (proto)
4460		*proto = nexthdr;
4461
4462	switch (nexthdr) {
4463	case IPPROTO_TCP: {
4464		struct tcphdr _tcph, *th;
4465
4466		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4467		if (th == NULL)
4468			break;
4469
4470		ad->u.net->sport = th->source;
4471		ad->u.net->dport = th->dest;
4472		break;
4473	}
4474
4475	case IPPROTO_UDP: {
4476		struct udphdr _udph, *uh;
4477
4478		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4479		if (uh == NULL)
4480			break;
4481
4482		ad->u.net->sport = uh->source;
4483		ad->u.net->dport = uh->dest;
4484		break;
4485	}
4486
4487	case IPPROTO_DCCP: {
4488		struct dccp_hdr _dccph, *dh;
4489
4490		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4491		if (dh == NULL)
4492			break;
4493
4494		ad->u.net->sport = dh->dccph_sport;
4495		ad->u.net->dport = dh->dccph_dport;
4496		break;
4497	}
4498
4499#if IS_ENABLED(CONFIG_IP_SCTP)
4500	case IPPROTO_SCTP: {
4501		struct sctphdr _sctph, *sh;
4502
4503		sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4504		if (sh == NULL)
4505			break;
4506
4507		ad->u.net->sport = sh->source;
4508		ad->u.net->dport = sh->dest;
4509		break;
4510	}
4511#endif
4512	/* includes fragments */
4513	default:
4514		break;
4515	}
4516out:
4517	return ret;
4518}
4519
4520#endif /* IPV6 */
4521
4522static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
4523			     char **_addrp, int src, u8 *proto)
4524{
4525	char *addrp;
4526	int ret;
4527
4528	switch (ad->u.net->family) {
4529	case PF_INET:
4530		ret = selinux_parse_skb_ipv4(skb, ad, proto);
4531		if (ret)
4532			goto parse_error;
4533		addrp = (char *)(src ? &ad->u.net->v4info.saddr :
4534				       &ad->u.net->v4info.daddr);
4535		goto okay;
4536
4537#if IS_ENABLED(CONFIG_IPV6)
4538	case PF_INET6:
4539		ret = selinux_parse_skb_ipv6(skb, ad, proto);
4540		if (ret)
4541			goto parse_error;
4542		addrp = (char *)(src ? &ad->u.net->v6info.saddr :
4543				       &ad->u.net->v6info.daddr);
4544		goto okay;
4545#endif	/* IPV6 */
4546	default:
4547		addrp = NULL;
4548		goto okay;
4549	}
4550
4551parse_error:
4552	pr_warn(
4553	       "SELinux: failure in selinux_parse_skb(),"
4554	       " unable to parse packet\n");
4555	return ret;
4556
4557okay:
4558	if (_addrp)
4559		*_addrp = addrp;
4560	return 0;
4561}
4562
4563/**
4564 * selinux_skb_peerlbl_sid - Determine the peer label of a packet
4565 * @skb: the packet
4566 * @family: protocol family
4567 * @sid: the packet's peer label SID
4568 *
4569 * Description:
4570 * Check the various different forms of network peer labeling and determine
4571 * the peer label/SID for the packet; most of the magic actually occurs in
4572 * the security server function security_net_peersid_cmp().  The function
4573 * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
4574 * or -EACCES if @sid is invalid due to inconsistencies with the different
4575 * peer labels.
4576 *
4577 */
4578static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
4579{
4580	int err;
4581	u32 xfrm_sid;
4582	u32 nlbl_sid;
4583	u32 nlbl_type;
4584
4585	err = selinux_xfrm_skb_sid(skb, &xfrm_sid);
4586	if (unlikely(err))
4587		return -EACCES;
4588	err = selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
4589	if (unlikely(err))
4590		return -EACCES;
4591
4592	err = security_net_peersid_resolve(&selinux_state, nlbl_sid,
4593					   nlbl_type, xfrm_sid, sid);
4594	if (unlikely(err)) {
4595		pr_warn(
4596		       "SELinux: failure in selinux_skb_peerlbl_sid(),"
4597		       " unable to determine packet's peer label\n");
4598		return -EACCES;
4599	}
4600
4601	return 0;
4602}
4603
4604/**
4605 * selinux_conn_sid - Determine the child socket label for a connection
4606 * @sk_sid: the parent socket's SID
4607 * @skb_sid: the packet's SID
4608 * @conn_sid: the resulting connection SID
4609 *
4610 * If @skb_sid is valid then the user:role:type information from @sk_sid is
4611 * combined with the MLS information from @skb_sid in order to create
4612 * @conn_sid.  If @skb_sid is not valid then @conn_sid is simply a copy
4613 * of @sk_sid.  Returns zero on success, negative values on failure.
4614 *
4615 */
4616static int selinux_conn_sid(u32 sk_sid, u32 skb_sid, u32 *conn_sid)
4617{
4618	int err = 0;
4619
4620	if (skb_sid != SECSID_NULL)
4621		err = security_sid_mls_copy(&selinux_state, sk_sid, skb_sid,
4622					    conn_sid);
4623	else
4624		*conn_sid = sk_sid;
4625
4626	return err;
4627}
4628
4629/* socket security operations */
4630
4631static int socket_sockcreate_sid(const struct task_security_struct *tsec,
4632				 u16 secclass, u32 *socksid)
4633{
4634	if (tsec->sockcreate_sid > SECSID_NULL) {
4635		*socksid = tsec->sockcreate_sid;
4636		return 0;
4637	}
4638
4639	return security_transition_sid(&selinux_state, tsec->sid, tsec->sid,
4640				       secclass, NULL, socksid);
4641}
4642
4643static int sock_has_perm(struct sock *sk, u32 perms)
4644{
4645	struct sk_security_struct *sksec = sk->sk_security;
4646	struct common_audit_data ad;
4647	struct lsm_network_audit net = {0,};
 
4648
4649	if (sksec->sid == SECINITSID_KERNEL)
4650		return 0;
4651
4652	ad.type = LSM_AUDIT_DATA_NET;
4653	ad.u.net = &net;
4654	ad.u.net->sk = sk;
4655
4656	return avc_has_perm(&selinux_state,
4657			    current_sid(), sksec->sid, sksec->sclass, perms,
4658			    &ad);
4659}
4660
4661static int selinux_socket_create(int family, int type,
4662				 int protocol, int kern)
4663{
4664	const struct task_security_struct *tsec = selinux_cred(current_cred());
4665	u32 newsid;
4666	u16 secclass;
4667	int rc;
4668
4669	if (kern)
4670		return 0;
4671
4672	secclass = socket_type_to_security_class(family, type, protocol);
4673	rc = socket_sockcreate_sid(tsec, secclass, &newsid);
4674	if (rc)
4675		return rc;
4676
4677	return avc_has_perm(&selinux_state,
4678			    tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
4679}
4680
4681static int selinux_socket_post_create(struct socket *sock, int family,
4682				      int type, int protocol, int kern)
4683{
4684	const struct task_security_struct *tsec = selinux_cred(current_cred());
4685	struct inode_security_struct *isec = inode_security_novalidate(SOCK_INODE(sock));
4686	struct sk_security_struct *sksec;
4687	u16 sclass = socket_type_to_security_class(family, type, protocol);
4688	u32 sid = SECINITSID_KERNEL;
4689	int err = 0;
4690
4691	if (!kern) {
4692		err = socket_sockcreate_sid(tsec, sclass, &sid);
 
 
 
 
4693		if (err)
4694			return err;
4695	}
4696
4697	isec->sclass = sclass;
4698	isec->sid = sid;
4699	isec->initialized = LABEL_INITIALIZED;
4700
4701	if (sock->sk) {
4702		sksec = sock->sk->sk_security;
4703		sksec->sclass = sclass;
4704		sksec->sid = sid;
4705		/* Allows detection of the first association on this socket */
4706		if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4707			sksec->sctp_assoc_state = SCTP_ASSOC_UNSET;
4708
4709		err = selinux_netlbl_socket_post_create(sock->sk, family);
4710	}
4711
4712	return err;
4713}
4714
4715static int selinux_socket_socketpair(struct socket *socka,
4716				     struct socket *sockb)
4717{
4718	struct sk_security_struct *sksec_a = socka->sk->sk_security;
4719	struct sk_security_struct *sksec_b = sockb->sk->sk_security;
4720
4721	sksec_a->peer_sid = sksec_b->sid;
4722	sksec_b->peer_sid = sksec_a->sid;
4723
4724	return 0;
4725}
4726
4727/* Range of port numbers used to automatically bind.
4728   Need to determine whether we should perform a name_bind
4729   permission check between the socket and the port number. */
4730
4731static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
4732{
4733	struct sock *sk = sock->sk;
4734	struct sk_security_struct *sksec = sk->sk_security;
4735	u16 family;
4736	int err;
4737
4738	err = sock_has_perm(sk, SOCKET__BIND);
4739	if (err)
4740		goto out;
4741
4742	/* If PF_INET or PF_INET6, check name_bind permission for the port. */
 
 
 
 
4743	family = sk->sk_family;
4744	if (family == PF_INET || family == PF_INET6) {
4745		char *addrp;
 
4746		struct common_audit_data ad;
4747		struct lsm_network_audit net = {0,};
4748		struct sockaddr_in *addr4 = NULL;
4749		struct sockaddr_in6 *addr6 = NULL;
4750		u16 family_sa;
4751		unsigned short snum;
4752		u32 sid, node_perm;
4753
4754		/*
4755		 * sctp_bindx(3) calls via selinux_sctp_bind_connect()
4756		 * that validates multiple binding addresses. Because of this
4757		 * need to check address->sa_family as it is possible to have
4758		 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4759		 */
4760		if (addrlen < offsetofend(struct sockaddr, sa_family))
4761			return -EINVAL;
4762		family_sa = address->sa_family;
4763		switch (family_sa) {
4764		case AF_UNSPEC:
4765		case AF_INET:
4766			if (addrlen < sizeof(struct sockaddr_in))
4767				return -EINVAL;
4768			addr4 = (struct sockaddr_in *)address;
4769			if (family_sa == AF_UNSPEC) {
4770				/* see __inet_bind(), we only want to allow
4771				 * AF_UNSPEC if the address is INADDR_ANY
4772				 */
4773				if (addr4->sin_addr.s_addr != htonl(INADDR_ANY))
4774					goto err_af;
4775				family_sa = AF_INET;
4776			}
4777			snum = ntohs(addr4->sin_port);
4778			addrp = (char *)&addr4->sin_addr.s_addr;
4779			break;
4780		case AF_INET6:
4781			if (addrlen < SIN6_LEN_RFC2133)
4782				return -EINVAL;
4783			addr6 = (struct sockaddr_in6 *)address;
4784			snum = ntohs(addr6->sin6_port);
4785			addrp = (char *)&addr6->sin6_addr.s6_addr;
4786			break;
4787		default:
4788			goto err_af;
4789		}
4790
4791		ad.type = LSM_AUDIT_DATA_NET;
4792		ad.u.net = &net;
4793		ad.u.net->sport = htons(snum);
4794		ad.u.net->family = family_sa;
4795
4796		if (snum) {
4797			int low, high;
4798
4799			inet_get_local_port_range(sock_net(sk), &low, &high);
4800
4801			if (inet_port_requires_bind_service(sock_net(sk), snum) ||
4802			    snum < low || snum > high) {
4803				err = sel_netport_sid(sk->sk_protocol,
4804						      snum, &sid);
4805				if (err)
4806					goto out;
4807				err = avc_has_perm(&selinux_state,
4808						   sksec->sid, sid,
 
 
 
4809						   sksec->sclass,
4810						   SOCKET__NAME_BIND, &ad);
4811				if (err)
4812					goto out;
4813			}
4814		}
4815
4816		switch (sksec->sclass) {
4817		case SECCLASS_TCP_SOCKET:
4818			node_perm = TCP_SOCKET__NODE_BIND;
4819			break;
4820
4821		case SECCLASS_UDP_SOCKET:
4822			node_perm = UDP_SOCKET__NODE_BIND;
4823			break;
4824
4825		case SECCLASS_DCCP_SOCKET:
4826			node_perm = DCCP_SOCKET__NODE_BIND;
4827			break;
4828
4829		case SECCLASS_SCTP_SOCKET:
4830			node_perm = SCTP_SOCKET__NODE_BIND;
4831			break;
4832
4833		default:
4834			node_perm = RAWIP_SOCKET__NODE_BIND;
4835			break;
4836		}
4837
4838		err = sel_netnode_sid(addrp, family_sa, &sid);
4839		if (err)
4840			goto out;
4841
4842		if (family_sa == AF_INET)
 
 
 
 
 
4843			ad.u.net->v4info.saddr = addr4->sin_addr.s_addr;
4844		else
4845			ad.u.net->v6info.saddr = addr6->sin6_addr;
4846
4847		err = avc_has_perm(&selinux_state,
4848				   sksec->sid, sid,
4849				   sksec->sclass, node_perm, &ad);
4850		if (err)
4851			goto out;
4852	}
4853out:
4854	return err;
4855err_af:
4856	/* Note that SCTP services expect -EINVAL, others -EAFNOSUPPORT. */
4857	if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4858		return -EINVAL;
4859	return -EAFNOSUPPORT;
4860}
4861
4862/* This supports connect(2) and SCTP connect services such as sctp_connectx(3)
4863 * and sctp_sendmsg(3) as described in Documentation/security/SCTP.rst
4864 */
4865static int selinux_socket_connect_helper(struct socket *sock,
4866					 struct sockaddr *address, int addrlen)
4867{
4868	struct sock *sk = sock->sk;
4869	struct sk_security_struct *sksec = sk->sk_security;
4870	int err;
4871
4872	err = sock_has_perm(sk, SOCKET__CONNECT);
4873	if (err)
4874		return err;
4875	if (addrlen < offsetofend(struct sockaddr, sa_family))
4876		return -EINVAL;
4877
4878	/* connect(AF_UNSPEC) has special handling, as it is a documented
4879	 * way to disconnect the socket
4880	 */
4881	if (address->sa_family == AF_UNSPEC)
4882		return 0;
4883
4884	/*
4885	 * If a TCP, DCCP or SCTP socket, check name_connect permission
4886	 * for the port.
4887	 */
4888	if (sksec->sclass == SECCLASS_TCP_SOCKET ||
4889	    sksec->sclass == SECCLASS_DCCP_SOCKET ||
4890	    sksec->sclass == SECCLASS_SCTP_SOCKET) {
4891		struct common_audit_data ad;
4892		struct lsm_network_audit net = {0,};
4893		struct sockaddr_in *addr4 = NULL;
4894		struct sockaddr_in6 *addr6 = NULL;
4895		unsigned short snum;
4896		u32 sid, perm;
4897
4898		/* sctp_connectx(3) calls via selinux_sctp_bind_connect()
4899		 * that validates multiple connect addresses. Because of this
4900		 * need to check address->sa_family as it is possible to have
4901		 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4902		 */
4903		switch (address->sa_family) {
4904		case AF_INET:
4905			addr4 = (struct sockaddr_in *)address;
4906			if (addrlen < sizeof(struct sockaddr_in))
4907				return -EINVAL;
4908			snum = ntohs(addr4->sin_port);
4909			break;
4910		case AF_INET6:
4911			addr6 = (struct sockaddr_in6 *)address;
4912			if (addrlen < SIN6_LEN_RFC2133)
4913				return -EINVAL;
4914			snum = ntohs(addr6->sin6_port);
4915			break;
4916		default:
4917			/* Note that SCTP services expect -EINVAL, whereas
4918			 * others expect -EAFNOSUPPORT.
4919			 */
4920			if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4921				return -EINVAL;
4922			else
4923				return -EAFNOSUPPORT;
4924		}
4925
4926		err = sel_netport_sid(sk->sk_protocol, snum, &sid);
4927		if (err)
4928			return err;
4929
4930		switch (sksec->sclass) {
4931		case SECCLASS_TCP_SOCKET:
4932			perm = TCP_SOCKET__NAME_CONNECT;
4933			break;
4934		case SECCLASS_DCCP_SOCKET:
4935			perm = DCCP_SOCKET__NAME_CONNECT;
4936			break;
4937		case SECCLASS_SCTP_SOCKET:
4938			perm = SCTP_SOCKET__NAME_CONNECT;
4939			break;
4940		}
4941
4942		ad.type = LSM_AUDIT_DATA_NET;
4943		ad.u.net = &net;
4944		ad.u.net->dport = htons(snum);
4945		ad.u.net->family = address->sa_family;
4946		err = avc_has_perm(&selinux_state,
4947				   sksec->sid, sid, sksec->sclass, perm, &ad);
4948		if (err)
4949			return err;
4950	}
4951
4952	return 0;
4953}
4954
4955/* Supports connect(2), see comments in selinux_socket_connect_helper() */
4956static int selinux_socket_connect(struct socket *sock,
4957				  struct sockaddr *address, int addrlen)
4958{
4959	int err;
4960	struct sock *sk = sock->sk;
4961
4962	err = selinux_socket_connect_helper(sock, address, addrlen);
4963	if (err)
4964		return err;
4965
4966	return selinux_netlbl_socket_connect(sk, address);
4967}
4968
4969static int selinux_socket_listen(struct socket *sock, int backlog)
4970{
4971	return sock_has_perm(sock->sk, SOCKET__LISTEN);
4972}
4973
4974static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
4975{
4976	int err;
4977	struct inode_security_struct *isec;
4978	struct inode_security_struct *newisec;
4979	u16 sclass;
4980	u32 sid;
4981
4982	err = sock_has_perm(sock->sk, SOCKET__ACCEPT);
4983	if (err)
4984		return err;
4985
 
 
4986	isec = inode_security_novalidate(SOCK_INODE(sock));
4987	spin_lock(&isec->lock);
4988	sclass = isec->sclass;
4989	sid = isec->sid;
4990	spin_unlock(&isec->lock);
4991
4992	newisec = inode_security_novalidate(SOCK_INODE(newsock));
4993	newisec->sclass = sclass;
4994	newisec->sid = sid;
4995	newisec->initialized = LABEL_INITIALIZED;
4996
4997	return 0;
4998}
4999
5000static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
5001				  int size)
5002{
5003	return sock_has_perm(sock->sk, SOCKET__WRITE);
5004}
5005
5006static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
5007				  int size, int flags)
5008{
5009	return sock_has_perm(sock->sk, SOCKET__READ);
5010}
5011
5012static int selinux_socket_getsockname(struct socket *sock)
5013{
5014	return sock_has_perm(sock->sk, SOCKET__GETATTR);
5015}
5016
5017static int selinux_socket_getpeername(struct socket *sock)
5018{
5019	return sock_has_perm(sock->sk, SOCKET__GETATTR);
5020}
5021
5022static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
5023{
5024	int err;
5025
5026	err = sock_has_perm(sock->sk, SOCKET__SETOPT);
5027	if (err)
5028		return err;
5029
5030	return selinux_netlbl_socket_setsockopt(sock, level, optname);
5031}
5032
5033static int selinux_socket_getsockopt(struct socket *sock, int level,
5034				     int optname)
5035{
5036	return sock_has_perm(sock->sk, SOCKET__GETOPT);
5037}
5038
5039static int selinux_socket_shutdown(struct socket *sock, int how)
5040{
5041	return sock_has_perm(sock->sk, SOCKET__SHUTDOWN);
5042}
5043
5044static int selinux_socket_unix_stream_connect(struct sock *sock,
5045					      struct sock *other,
5046					      struct sock *newsk)
5047{
5048	struct sk_security_struct *sksec_sock = sock->sk_security;
5049	struct sk_security_struct *sksec_other = other->sk_security;
5050	struct sk_security_struct *sksec_new = newsk->sk_security;
5051	struct common_audit_data ad;
5052	struct lsm_network_audit net = {0,};
5053	int err;
5054
5055	ad.type = LSM_AUDIT_DATA_NET;
5056	ad.u.net = &net;
5057	ad.u.net->sk = other;
5058
5059	err = avc_has_perm(&selinux_state,
5060			   sksec_sock->sid, sksec_other->sid,
5061			   sksec_other->sclass,
5062			   UNIX_STREAM_SOCKET__CONNECTTO, &ad);
5063	if (err)
5064		return err;
5065
5066	/* server child socket */
5067	sksec_new->peer_sid = sksec_sock->sid;
5068	err = security_sid_mls_copy(&selinux_state, sksec_other->sid,
5069				    sksec_sock->sid, &sksec_new->sid);
5070	if (err)
5071		return err;
5072
5073	/* connecting socket */
5074	sksec_sock->peer_sid = sksec_new->sid;
5075
5076	return 0;
5077}
5078
5079static int selinux_socket_unix_may_send(struct socket *sock,
5080					struct socket *other)
5081{
5082	struct sk_security_struct *ssec = sock->sk->sk_security;
5083	struct sk_security_struct *osec = other->sk->sk_security;
5084	struct common_audit_data ad;
5085	struct lsm_network_audit net = {0,};
5086
5087	ad.type = LSM_AUDIT_DATA_NET;
5088	ad.u.net = &net;
5089	ad.u.net->sk = other->sk;
5090
5091	return avc_has_perm(&selinux_state,
5092			    ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
5093			    &ad);
5094}
5095
5096static int selinux_inet_sys_rcv_skb(struct net *ns, int ifindex,
5097				    char *addrp, u16 family, u32 peer_sid,
5098				    struct common_audit_data *ad)
5099{
5100	int err;
5101	u32 if_sid;
5102	u32 node_sid;
5103
5104	err = sel_netif_sid(ns, ifindex, &if_sid);
5105	if (err)
5106		return err;
5107	err = avc_has_perm(&selinux_state,
5108			   peer_sid, if_sid,
5109			   SECCLASS_NETIF, NETIF__INGRESS, ad);
5110	if (err)
5111		return err;
5112
5113	err = sel_netnode_sid(addrp, family, &node_sid);
5114	if (err)
5115		return err;
5116	return avc_has_perm(&selinux_state,
5117			    peer_sid, node_sid,
5118			    SECCLASS_NODE, NODE__RECVFROM, ad);
5119}
5120
5121static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
5122				       u16 family)
5123{
5124	int err = 0;
5125	struct sk_security_struct *sksec = sk->sk_security;
5126	u32 sk_sid = sksec->sid;
5127	struct common_audit_data ad;
5128	struct lsm_network_audit net = {0,};
5129	char *addrp;
5130
5131	ad.type = LSM_AUDIT_DATA_NET;
5132	ad.u.net = &net;
5133	ad.u.net->netif = skb->skb_iif;
5134	ad.u.net->family = family;
5135	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
5136	if (err)
5137		return err;
5138
5139	if (selinux_secmark_enabled()) {
5140		err = avc_has_perm(&selinux_state,
5141				   sk_sid, skb->secmark, SECCLASS_PACKET,
5142				   PACKET__RECV, &ad);
5143		if (err)
5144			return err;
5145	}
5146
5147	err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
5148	if (err)
5149		return err;
5150	err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
5151
5152	return err;
5153}
5154
5155static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
5156{
5157	int err;
5158	struct sk_security_struct *sksec = sk->sk_security;
5159	u16 family = sk->sk_family;
5160	u32 sk_sid = sksec->sid;
5161	struct common_audit_data ad;
5162	struct lsm_network_audit net = {0,};
5163	char *addrp;
5164	u8 secmark_active;
5165	u8 peerlbl_active;
5166
5167	if (family != PF_INET && family != PF_INET6)
5168		return 0;
5169
5170	/* Handle mapped IPv4 packets arriving via IPv6 sockets */
5171	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5172		family = PF_INET;
5173
5174	/* If any sort of compatibility mode is enabled then handoff processing
5175	 * to the selinux_sock_rcv_skb_compat() function to deal with the
5176	 * special handling.  We do this in an attempt to keep this function
5177	 * as fast and as clean as possible. */
5178	if (!selinux_policycap_netpeer())
5179		return selinux_sock_rcv_skb_compat(sk, skb, family);
5180
5181	secmark_active = selinux_secmark_enabled();
5182	peerlbl_active = selinux_peerlbl_enabled();
5183	if (!secmark_active && !peerlbl_active)
5184		return 0;
5185
5186	ad.type = LSM_AUDIT_DATA_NET;
5187	ad.u.net = &net;
5188	ad.u.net->netif = skb->skb_iif;
5189	ad.u.net->family = family;
5190	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
5191	if (err)
5192		return err;
5193
5194	if (peerlbl_active) {
5195		u32 peer_sid;
5196
5197		err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
5198		if (err)
5199			return err;
5200		err = selinux_inet_sys_rcv_skb(sock_net(sk), skb->skb_iif,
5201					       addrp, family, peer_sid, &ad);
5202		if (err) {
5203			selinux_netlbl_err(skb, family, err, 0);
5204			return err;
5205		}
5206		err = avc_has_perm(&selinux_state,
5207				   sk_sid, peer_sid, SECCLASS_PEER,
5208				   PEER__RECV, &ad);
5209		if (err) {
5210			selinux_netlbl_err(skb, family, err, 0);
5211			return err;
5212		}
5213	}
5214
5215	if (secmark_active) {
5216		err = avc_has_perm(&selinux_state,
5217				   sk_sid, skb->secmark, SECCLASS_PACKET,
5218				   PACKET__RECV, &ad);
5219		if (err)
5220			return err;
5221	}
5222
5223	return err;
5224}
5225
5226static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
5227					    int __user *optlen, unsigned len)
5228{
5229	int err = 0;
5230	char *scontext;
5231	u32 scontext_len;
5232	struct sk_security_struct *sksec = sock->sk->sk_security;
5233	u32 peer_sid = SECSID_NULL;
5234
5235	if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
5236	    sksec->sclass == SECCLASS_TCP_SOCKET ||
5237	    sksec->sclass == SECCLASS_SCTP_SOCKET)
5238		peer_sid = sksec->peer_sid;
5239	if (peer_sid == SECSID_NULL)
5240		return -ENOPROTOOPT;
5241
5242	err = security_sid_to_context(&selinux_state, peer_sid, &scontext,
5243				      &scontext_len);
5244	if (err)
5245		return err;
5246
5247	if (scontext_len > len) {
5248		err = -ERANGE;
5249		goto out_len;
5250	}
5251
5252	if (copy_to_user(optval, scontext, scontext_len))
5253		err = -EFAULT;
5254
5255out_len:
5256	if (put_user(scontext_len, optlen))
5257		err = -EFAULT;
5258	kfree(scontext);
5259	return err;
5260}
5261
5262static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
5263{
5264	u32 peer_secid = SECSID_NULL;
5265	u16 family;
5266	struct inode_security_struct *isec;
5267
5268	if (skb && skb->protocol == htons(ETH_P_IP))
5269		family = PF_INET;
5270	else if (skb && skb->protocol == htons(ETH_P_IPV6))
5271		family = PF_INET6;
5272	else if (sock)
5273		family = sock->sk->sk_family;
5274	else
5275		goto out;
5276
5277	if (sock && family == PF_UNIX) {
5278		isec = inode_security_novalidate(SOCK_INODE(sock));
5279		peer_secid = isec->sid;
5280	} else if (skb)
5281		selinux_skb_peerlbl_sid(skb, family, &peer_secid);
5282
5283out:
5284	*secid = peer_secid;
5285	if (peer_secid == SECSID_NULL)
5286		return -EINVAL;
5287	return 0;
5288}
5289
5290static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
5291{
5292	struct sk_security_struct *sksec;
5293
5294	sksec = kzalloc(sizeof(*sksec), priority);
5295	if (!sksec)
5296		return -ENOMEM;
5297
5298	sksec->peer_sid = SECINITSID_UNLABELED;
5299	sksec->sid = SECINITSID_UNLABELED;
5300	sksec->sclass = SECCLASS_SOCKET;
5301	selinux_netlbl_sk_security_reset(sksec);
5302	sk->sk_security = sksec;
5303
5304	return 0;
5305}
5306
5307static void selinux_sk_free_security(struct sock *sk)
5308{
5309	struct sk_security_struct *sksec = sk->sk_security;
5310
5311	sk->sk_security = NULL;
5312	selinux_netlbl_sk_security_free(sksec);
5313	kfree(sksec);
5314}
5315
5316static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
5317{
5318	struct sk_security_struct *sksec = sk->sk_security;
5319	struct sk_security_struct *newsksec = newsk->sk_security;
5320
5321	newsksec->sid = sksec->sid;
5322	newsksec->peer_sid = sksec->peer_sid;
5323	newsksec->sclass = sksec->sclass;
5324
5325	selinux_netlbl_sk_security_reset(newsksec);
5326}
5327
5328static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
5329{
5330	if (!sk)
5331		*secid = SECINITSID_ANY_SOCKET;
5332	else {
5333		struct sk_security_struct *sksec = sk->sk_security;
5334
5335		*secid = sksec->sid;
5336	}
5337}
5338
5339static void selinux_sock_graft(struct sock *sk, struct socket *parent)
5340{
5341	struct inode_security_struct *isec =
5342		inode_security_novalidate(SOCK_INODE(parent));
5343	struct sk_security_struct *sksec = sk->sk_security;
5344
5345	if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
5346	    sk->sk_family == PF_UNIX)
5347		isec->sid = sksec->sid;
5348	sksec->sclass = isec->sclass;
5349}
5350
5351/* Called whenever SCTP receives an INIT chunk. This happens when an incoming
5352 * connect(2), sctp_connectx(3) or sctp_sendmsg(3) (with no association
5353 * already present).
5354 */
5355static int selinux_sctp_assoc_request(struct sctp_endpoint *ep,
5356				      struct sk_buff *skb)
5357{
5358	struct sk_security_struct *sksec = ep->base.sk->sk_security;
5359	struct common_audit_data ad;
5360	struct lsm_network_audit net = {0,};
5361	u8 peerlbl_active;
5362	u32 peer_sid = SECINITSID_UNLABELED;
5363	u32 conn_sid;
5364	int err = 0;
5365
5366	if (!selinux_policycap_extsockclass())
5367		return 0;
5368
5369	peerlbl_active = selinux_peerlbl_enabled();
5370
5371	if (peerlbl_active) {
5372		/* This will return peer_sid = SECSID_NULL if there are
5373		 * no peer labels, see security_net_peersid_resolve().
5374		 */
5375		err = selinux_skb_peerlbl_sid(skb, ep->base.sk->sk_family,
5376					      &peer_sid);
5377		if (err)
5378			return err;
5379
5380		if (peer_sid == SECSID_NULL)
5381			peer_sid = SECINITSID_UNLABELED;
5382	}
5383
5384	if (sksec->sctp_assoc_state == SCTP_ASSOC_UNSET) {
5385		sksec->sctp_assoc_state = SCTP_ASSOC_SET;
5386
5387		/* Here as first association on socket. As the peer SID
5388		 * was allowed by peer recv (and the netif/node checks),
5389		 * then it is approved by policy and used as the primary
5390		 * peer SID for getpeercon(3).
5391		 */
5392		sksec->peer_sid = peer_sid;
5393	} else if  (sksec->peer_sid != peer_sid) {
5394		/* Other association peer SIDs are checked to enforce
5395		 * consistency among the peer SIDs.
5396		 */
5397		ad.type = LSM_AUDIT_DATA_NET;
5398		ad.u.net = &net;
5399		ad.u.net->sk = ep->base.sk;
5400		err = avc_has_perm(&selinux_state,
5401				   sksec->peer_sid, peer_sid, sksec->sclass,
5402				   SCTP_SOCKET__ASSOCIATION, &ad);
5403		if (err)
5404			return err;
5405	}
5406
5407	/* Compute the MLS component for the connection and store
5408	 * the information in ep. This will be used by SCTP TCP type
5409	 * sockets and peeled off connections as they cause a new
5410	 * socket to be generated. selinux_sctp_sk_clone() will then
5411	 * plug this into the new socket.
5412	 */
5413	err = selinux_conn_sid(sksec->sid, peer_sid, &conn_sid);
5414	if (err)
5415		return err;
5416
5417	ep->secid = conn_sid;
5418	ep->peer_secid = peer_sid;
5419
5420	/* Set any NetLabel labels including CIPSO/CALIPSO options. */
5421	return selinux_netlbl_sctp_assoc_request(ep, skb);
5422}
5423
5424/* Check if sctp IPv4/IPv6 addresses are valid for binding or connecting
5425 * based on their @optname.
5426 */
5427static int selinux_sctp_bind_connect(struct sock *sk, int optname,
5428				     struct sockaddr *address,
5429				     int addrlen)
5430{
5431	int len, err = 0, walk_size = 0;
5432	void *addr_buf;
5433	struct sockaddr *addr;
5434	struct socket *sock;
5435
5436	if (!selinux_policycap_extsockclass())
5437		return 0;
5438
5439	/* Process one or more addresses that may be IPv4 or IPv6 */
5440	sock = sk->sk_socket;
5441	addr_buf = address;
5442
5443	while (walk_size < addrlen) {
5444		if (walk_size + sizeof(sa_family_t) > addrlen)
5445			return -EINVAL;
5446
5447		addr = addr_buf;
5448		switch (addr->sa_family) {
5449		case AF_UNSPEC:
5450		case AF_INET:
5451			len = sizeof(struct sockaddr_in);
5452			break;
5453		case AF_INET6:
5454			len = sizeof(struct sockaddr_in6);
5455			break;
5456		default:
5457			return -EINVAL;
5458		}
5459
5460		if (walk_size + len > addrlen)
5461			return -EINVAL;
5462
5463		err = -EINVAL;
5464		switch (optname) {
5465		/* Bind checks */
5466		case SCTP_PRIMARY_ADDR:
5467		case SCTP_SET_PEER_PRIMARY_ADDR:
5468		case SCTP_SOCKOPT_BINDX_ADD:
5469			err = selinux_socket_bind(sock, addr, len);
5470			break;
5471		/* Connect checks */
5472		case SCTP_SOCKOPT_CONNECTX:
5473		case SCTP_PARAM_SET_PRIMARY:
5474		case SCTP_PARAM_ADD_IP:
5475		case SCTP_SENDMSG_CONNECT:
5476			err = selinux_socket_connect_helper(sock, addr, len);
5477			if (err)
5478				return err;
5479
5480			/* As selinux_sctp_bind_connect() is called by the
5481			 * SCTP protocol layer, the socket is already locked,
5482			 * therefore selinux_netlbl_socket_connect_locked()
5483			 * is called here. The situations handled are:
5484			 * sctp_connectx(3), sctp_sendmsg(3), sendmsg(2),
5485			 * whenever a new IP address is added or when a new
5486			 * primary address is selected.
5487			 * Note that an SCTP connect(2) call happens before
5488			 * the SCTP protocol layer and is handled via
5489			 * selinux_socket_connect().
5490			 */
5491			err = selinux_netlbl_socket_connect_locked(sk, addr);
5492			break;
5493		}
5494
5495		if (err)
5496			return err;
5497
5498		addr_buf += len;
5499		walk_size += len;
5500	}
5501
5502	return 0;
5503}
5504
5505/* Called whenever a new socket is created by accept(2) or sctp_peeloff(3). */
5506static void selinux_sctp_sk_clone(struct sctp_endpoint *ep, struct sock *sk,
5507				  struct sock *newsk)
5508{
5509	struct sk_security_struct *sksec = sk->sk_security;
5510	struct sk_security_struct *newsksec = newsk->sk_security;
5511
5512	/* If policy does not support SECCLASS_SCTP_SOCKET then call
5513	 * the non-sctp clone version.
5514	 */
5515	if (!selinux_policycap_extsockclass())
5516		return selinux_sk_clone_security(sk, newsk);
5517
5518	newsksec->sid = ep->secid;
5519	newsksec->peer_sid = ep->peer_secid;
5520	newsksec->sclass = sksec->sclass;
5521	selinux_netlbl_sctp_sk_clone(sk, newsk);
5522}
5523
5524static int selinux_inet_conn_request(const struct sock *sk, struct sk_buff *skb,
5525				     struct request_sock *req)
5526{
5527	struct sk_security_struct *sksec = sk->sk_security;
5528	int err;
5529	u16 family = req->rsk_ops->family;
5530	u32 connsid;
5531	u32 peersid;
5532
5533	err = selinux_skb_peerlbl_sid(skb, family, &peersid);
5534	if (err)
5535		return err;
5536	err = selinux_conn_sid(sksec->sid, peersid, &connsid);
5537	if (err)
5538		return err;
5539	req->secid = connsid;
5540	req->peer_secid = peersid;
5541
5542	return selinux_netlbl_inet_conn_request(req, family);
5543}
5544
5545static void selinux_inet_csk_clone(struct sock *newsk,
5546				   const struct request_sock *req)
5547{
5548	struct sk_security_struct *newsksec = newsk->sk_security;
5549
5550	newsksec->sid = req->secid;
5551	newsksec->peer_sid = req->peer_secid;
5552	/* NOTE: Ideally, we should also get the isec->sid for the
5553	   new socket in sync, but we don't have the isec available yet.
5554	   So we will wait until sock_graft to do it, by which
5555	   time it will have been created and available. */
5556
5557	/* We don't need to take any sort of lock here as we are the only
5558	 * thread with access to newsksec */
5559	selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
5560}
5561
5562static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
5563{
5564	u16 family = sk->sk_family;
5565	struct sk_security_struct *sksec = sk->sk_security;
5566
5567	/* handle mapped IPv4 packets arriving via IPv6 sockets */
5568	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5569		family = PF_INET;
5570
5571	selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
5572}
5573
5574static int selinux_secmark_relabel_packet(u32 sid)
5575{
5576	const struct task_security_struct *__tsec;
5577	u32 tsid;
5578
5579	__tsec = selinux_cred(current_cred());
5580	tsid = __tsec->sid;
5581
5582	return avc_has_perm(&selinux_state,
5583			    tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO,
5584			    NULL);
5585}
5586
5587static void selinux_secmark_refcount_inc(void)
5588{
5589	atomic_inc(&selinux_secmark_refcount);
5590}
5591
5592static void selinux_secmark_refcount_dec(void)
5593{
5594	atomic_dec(&selinux_secmark_refcount);
5595}
5596
5597static void selinux_req_classify_flow(const struct request_sock *req,
5598				      struct flowi_common *flic)
5599{
5600	flic->flowic_secid = req->secid;
5601}
5602
5603static int selinux_tun_dev_alloc_security(void **security)
5604{
5605	struct tun_security_struct *tunsec;
5606
5607	tunsec = kzalloc(sizeof(*tunsec), GFP_KERNEL);
5608	if (!tunsec)
5609		return -ENOMEM;
5610	tunsec->sid = current_sid();
5611
5612	*security = tunsec;
5613	return 0;
5614}
5615
5616static void selinux_tun_dev_free_security(void *security)
5617{
5618	kfree(security);
5619}
5620
5621static int selinux_tun_dev_create(void)
5622{
5623	u32 sid = current_sid();
5624
5625	/* we aren't taking into account the "sockcreate" SID since the socket
5626	 * that is being created here is not a socket in the traditional sense,
5627	 * instead it is a private sock, accessible only to the kernel, and
5628	 * representing a wide range of network traffic spanning multiple
5629	 * connections unlike traditional sockets - check the TUN driver to
5630	 * get a better understanding of why this socket is special */
5631
5632	return avc_has_perm(&selinux_state,
5633			    sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
5634			    NULL);
5635}
5636
5637static int selinux_tun_dev_attach_queue(void *security)
5638{
5639	struct tun_security_struct *tunsec = security;
5640
5641	return avc_has_perm(&selinux_state,
5642			    current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET,
5643			    TUN_SOCKET__ATTACH_QUEUE, NULL);
5644}
5645
5646static int selinux_tun_dev_attach(struct sock *sk, void *security)
5647{
5648	struct tun_security_struct *tunsec = security;
5649	struct sk_security_struct *sksec = sk->sk_security;
5650
5651	/* we don't currently perform any NetLabel based labeling here and it
5652	 * isn't clear that we would want to do so anyway; while we could apply
5653	 * labeling without the support of the TUN user the resulting labeled
5654	 * traffic from the other end of the connection would almost certainly
5655	 * cause confusion to the TUN user that had no idea network labeling
5656	 * protocols were being used */
5657
5658	sksec->sid = tunsec->sid;
5659	sksec->sclass = SECCLASS_TUN_SOCKET;
5660
5661	return 0;
5662}
5663
5664static int selinux_tun_dev_open(void *security)
5665{
5666	struct tun_security_struct *tunsec = security;
5667	u32 sid = current_sid();
5668	int err;
5669
5670	err = avc_has_perm(&selinux_state,
5671			   sid, tunsec->sid, SECCLASS_TUN_SOCKET,
5672			   TUN_SOCKET__RELABELFROM, NULL);
5673	if (err)
5674		return err;
5675	err = avc_has_perm(&selinux_state,
5676			   sid, sid, SECCLASS_TUN_SOCKET,
5677			   TUN_SOCKET__RELABELTO, NULL);
5678	if (err)
5679		return err;
5680	tunsec->sid = sid;
5681
5682	return 0;
5683}
5684
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5685#ifdef CONFIG_NETFILTER
5686
5687static unsigned int selinux_ip_forward(struct sk_buff *skb,
5688				       const struct net_device *indev,
5689				       u16 family)
5690{
5691	int err;
5692	char *addrp;
5693	u32 peer_sid;
5694	struct common_audit_data ad;
5695	struct lsm_network_audit net = {0,};
5696	u8 secmark_active;
5697	u8 netlbl_active;
5698	u8 peerlbl_active;
5699
5700	if (!selinux_policycap_netpeer())
5701		return NF_ACCEPT;
5702
5703	secmark_active = selinux_secmark_enabled();
5704	netlbl_active = netlbl_enabled();
5705	peerlbl_active = selinux_peerlbl_enabled();
5706	if (!secmark_active && !peerlbl_active)
5707		return NF_ACCEPT;
5708
5709	if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
5710		return NF_DROP;
5711
5712	ad.type = LSM_AUDIT_DATA_NET;
5713	ad.u.net = &net;
5714	ad.u.net->netif = indev->ifindex;
5715	ad.u.net->family = family;
5716	if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
5717		return NF_DROP;
5718
5719	if (peerlbl_active) {
5720		err = selinux_inet_sys_rcv_skb(dev_net(indev), indev->ifindex,
5721					       addrp, family, peer_sid, &ad);
5722		if (err) {
5723			selinux_netlbl_err(skb, family, err, 1);
5724			return NF_DROP;
5725		}
5726	}
5727
5728	if (secmark_active)
5729		if (avc_has_perm(&selinux_state,
5730				 peer_sid, skb->secmark,
5731				 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
5732			return NF_DROP;
5733
5734	if (netlbl_active)
5735		/* we do this in the FORWARD path and not the POST_ROUTING
5736		 * path because we want to make sure we apply the necessary
5737		 * labeling before IPsec is applied so we can leverage AH
5738		 * protection */
5739		if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
5740			return NF_DROP;
5741
5742	return NF_ACCEPT;
5743}
5744
5745static unsigned int selinux_ipv4_forward(void *priv,
5746					 struct sk_buff *skb,
5747					 const struct nf_hook_state *state)
5748{
5749	return selinux_ip_forward(skb, state->in, PF_INET);
5750}
5751
5752#if IS_ENABLED(CONFIG_IPV6)
5753static unsigned int selinux_ipv6_forward(void *priv,
5754					 struct sk_buff *skb,
5755					 const struct nf_hook_state *state)
5756{
5757	return selinux_ip_forward(skb, state->in, PF_INET6);
5758}
5759#endif	/* IPV6 */
5760
5761static unsigned int selinux_ip_output(struct sk_buff *skb,
5762				      u16 family)
5763{
5764	struct sock *sk;
5765	u32 sid;
5766
5767	if (!netlbl_enabled())
5768		return NF_ACCEPT;
5769
5770	/* we do this in the LOCAL_OUT path and not the POST_ROUTING path
5771	 * because we want to make sure we apply the necessary labeling
5772	 * before IPsec is applied so we can leverage AH protection */
5773	sk = skb->sk;
5774	if (sk) {
5775		struct sk_security_struct *sksec;
5776
5777		if (sk_listener(sk))
5778			/* if the socket is the listening state then this
5779			 * packet is a SYN-ACK packet which means it needs to
5780			 * be labeled based on the connection/request_sock and
5781			 * not the parent socket.  unfortunately, we can't
5782			 * lookup the request_sock yet as it isn't queued on
5783			 * the parent socket until after the SYN-ACK is sent.
5784			 * the "solution" is to simply pass the packet as-is
5785			 * as any IP option based labeling should be copied
5786			 * from the initial connection request (in the IP
5787			 * layer).  it is far from ideal, but until we get a
5788			 * security label in the packet itself this is the
5789			 * best we can do. */
5790			return NF_ACCEPT;
5791
5792		/* standard practice, label using the parent socket */
5793		sksec = sk->sk_security;
5794		sid = sksec->sid;
5795	} else
5796		sid = SECINITSID_KERNEL;
5797	if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
5798		return NF_DROP;
5799
5800	return NF_ACCEPT;
5801}
5802
5803static unsigned int selinux_ipv4_output(void *priv,
5804					struct sk_buff *skb,
5805					const struct nf_hook_state *state)
5806{
5807	return selinux_ip_output(skb, PF_INET);
5808}
5809
5810#if IS_ENABLED(CONFIG_IPV6)
5811static unsigned int selinux_ipv6_output(void *priv,
5812					struct sk_buff *skb,
5813					const struct nf_hook_state *state)
5814{
5815	return selinux_ip_output(skb, PF_INET6);
5816}
5817#endif	/* IPV6 */
5818
5819static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
5820						int ifindex,
5821						u16 family)
5822{
5823	struct sock *sk = skb_to_full_sk(skb);
5824	struct sk_security_struct *sksec;
5825	struct common_audit_data ad;
5826	struct lsm_network_audit net = {0,};
5827	char *addrp;
5828	u8 proto;
5829
5830	if (sk == NULL)
5831		return NF_ACCEPT;
5832	sksec = sk->sk_security;
5833
5834	ad.type = LSM_AUDIT_DATA_NET;
5835	ad.u.net = &net;
5836	ad.u.net->netif = ifindex;
5837	ad.u.net->family = family;
5838	if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
5839		return NF_DROP;
5840
5841	if (selinux_secmark_enabled())
5842		if (avc_has_perm(&selinux_state,
5843				 sksec->sid, skb->secmark,
5844				 SECCLASS_PACKET, PACKET__SEND, &ad))
5845			return NF_DROP_ERR(-ECONNREFUSED);
5846
5847	if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
5848		return NF_DROP_ERR(-ECONNREFUSED);
5849
5850	return NF_ACCEPT;
5851}
5852
5853static unsigned int selinux_ip_postroute(struct sk_buff *skb,
5854					 const struct net_device *outdev,
5855					 u16 family)
5856{
5857	u32 secmark_perm;
5858	u32 peer_sid;
5859	int ifindex = outdev->ifindex;
5860	struct sock *sk;
5861	struct common_audit_data ad;
5862	struct lsm_network_audit net = {0,};
5863	char *addrp;
5864	u8 secmark_active;
5865	u8 peerlbl_active;
5866
5867	/* If any sort of compatibility mode is enabled then handoff processing
5868	 * to the selinux_ip_postroute_compat() function to deal with the
5869	 * special handling.  We do this in an attempt to keep this function
5870	 * as fast and as clean as possible. */
5871	if (!selinux_policycap_netpeer())
5872		return selinux_ip_postroute_compat(skb, ifindex, family);
5873
5874	secmark_active = selinux_secmark_enabled();
5875	peerlbl_active = selinux_peerlbl_enabled();
5876	if (!secmark_active && !peerlbl_active)
5877		return NF_ACCEPT;
5878
5879	sk = skb_to_full_sk(skb);
5880
5881#ifdef CONFIG_XFRM
5882	/* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
5883	 * packet transformation so allow the packet to pass without any checks
5884	 * since we'll have another chance to perform access control checks
5885	 * when the packet is on it's final way out.
5886	 * NOTE: there appear to be some IPv6 multicast cases where skb->dst
5887	 *       is NULL, in this case go ahead and apply access control.
5888	 * NOTE: if this is a local socket (skb->sk != NULL) that is in the
5889	 *       TCP listening state we cannot wait until the XFRM processing
5890	 *       is done as we will miss out on the SA label if we do;
5891	 *       unfortunately, this means more work, but it is only once per
5892	 *       connection. */
5893	if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL &&
5894	    !(sk && sk_listener(sk)))
5895		return NF_ACCEPT;
5896#endif
5897
5898	if (sk == NULL) {
5899		/* Without an associated socket the packet is either coming
5900		 * from the kernel or it is being forwarded; check the packet
5901		 * to determine which and if the packet is being forwarded
5902		 * query the packet directly to determine the security label. */
5903		if (skb->skb_iif) {
5904			secmark_perm = PACKET__FORWARD_OUT;
5905			if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
5906				return NF_DROP;
5907		} else {
5908			secmark_perm = PACKET__SEND;
5909			peer_sid = SECINITSID_KERNEL;
5910		}
5911	} else if (sk_listener(sk)) {
5912		/* Locally generated packet but the associated socket is in the
5913		 * listening state which means this is a SYN-ACK packet.  In
5914		 * this particular case the correct security label is assigned
5915		 * to the connection/request_sock but unfortunately we can't
5916		 * query the request_sock as it isn't queued on the parent
5917		 * socket until after the SYN-ACK packet is sent; the only
5918		 * viable choice is to regenerate the label like we do in
5919		 * selinux_inet_conn_request().  See also selinux_ip_output()
5920		 * for similar problems. */
5921		u32 skb_sid;
5922		struct sk_security_struct *sksec;
5923
5924		sksec = sk->sk_security;
5925		if (selinux_skb_peerlbl_sid(skb, family, &skb_sid))
5926			return NF_DROP;
5927		/* At this point, if the returned skb peerlbl is SECSID_NULL
5928		 * and the packet has been through at least one XFRM
5929		 * transformation then we must be dealing with the "final"
5930		 * form of labeled IPsec packet; since we've already applied
5931		 * all of our access controls on this packet we can safely
5932		 * pass the packet. */
5933		if (skb_sid == SECSID_NULL) {
5934			switch (family) {
5935			case PF_INET:
5936				if (IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
5937					return NF_ACCEPT;
5938				break;
5939			case PF_INET6:
5940				if (IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
5941					return NF_ACCEPT;
5942				break;
5943			default:
5944				return NF_DROP_ERR(-ECONNREFUSED);
5945			}
5946		}
5947		if (selinux_conn_sid(sksec->sid, skb_sid, &peer_sid))
5948			return NF_DROP;
5949		secmark_perm = PACKET__SEND;
5950	} else {
5951		/* Locally generated packet, fetch the security label from the
5952		 * associated socket. */
5953		struct sk_security_struct *sksec = sk->sk_security;
5954		peer_sid = sksec->sid;
5955		secmark_perm = PACKET__SEND;
5956	}
5957
5958	ad.type = LSM_AUDIT_DATA_NET;
5959	ad.u.net = &net;
5960	ad.u.net->netif = ifindex;
5961	ad.u.net->family = family;
5962	if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
5963		return NF_DROP;
5964
5965	if (secmark_active)
5966		if (avc_has_perm(&selinux_state,
5967				 peer_sid, skb->secmark,
5968				 SECCLASS_PACKET, secmark_perm, &ad))
5969			return NF_DROP_ERR(-ECONNREFUSED);
5970
5971	if (peerlbl_active) {
5972		u32 if_sid;
5973		u32 node_sid;
5974
5975		if (sel_netif_sid(dev_net(outdev), ifindex, &if_sid))
5976			return NF_DROP;
5977		if (avc_has_perm(&selinux_state,
5978				 peer_sid, if_sid,
5979				 SECCLASS_NETIF, NETIF__EGRESS, &ad))
5980			return NF_DROP_ERR(-ECONNREFUSED);
5981
5982		if (sel_netnode_sid(addrp, family, &node_sid))
5983			return NF_DROP;
5984		if (avc_has_perm(&selinux_state,
5985				 peer_sid, node_sid,
5986				 SECCLASS_NODE, NODE__SENDTO, &ad))
5987			return NF_DROP_ERR(-ECONNREFUSED);
5988	}
5989
5990	return NF_ACCEPT;
5991}
5992
5993static unsigned int selinux_ipv4_postroute(void *priv,
5994					   struct sk_buff *skb,
5995					   const struct nf_hook_state *state)
5996{
5997	return selinux_ip_postroute(skb, state->out, PF_INET);
5998}
5999
6000#if IS_ENABLED(CONFIG_IPV6)
6001static unsigned int selinux_ipv6_postroute(void *priv,
6002					   struct sk_buff *skb,
6003					   const struct nf_hook_state *state)
6004{
6005	return selinux_ip_postroute(skb, state->out, PF_INET6);
6006}
6007#endif	/* IPV6 */
6008
6009#endif	/* CONFIG_NETFILTER */
6010
6011static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
6012{
6013	int rc = 0;
6014	unsigned int msg_len;
6015	unsigned int data_len = skb->len;
6016	unsigned char *data = skb->data;
6017	struct nlmsghdr *nlh;
6018	struct sk_security_struct *sksec = sk->sk_security;
6019	u16 sclass = sksec->sclass;
6020	u32 perm;
 
 
 
 
 
 
 
 
 
 
 
 
 
6021
6022	while (data_len >= nlmsg_total_size(0)) {
6023		nlh = (struct nlmsghdr *)data;
 
 
 
 
6024
6025		/* NOTE: the nlmsg_len field isn't reliably set by some netlink
6026		 *       users which means we can't reject skb's with bogus
6027		 *       length fields; our solution is to follow what
6028		 *       netlink_rcv_skb() does and simply skip processing at
6029		 *       messages with length fields that are clearly junk
6030		 */
6031		if (nlh->nlmsg_len < NLMSG_HDRLEN || nlh->nlmsg_len > data_len)
6032			return 0;
6033
6034		rc = selinux_nlmsg_lookup(sclass, nlh->nlmsg_type, &perm);
6035		if (rc == 0) {
6036			rc = sock_has_perm(sk, perm);
6037			if (rc)
6038				return rc;
6039		} else if (rc == -EINVAL) {
6040			/* -EINVAL is a missing msg/perm mapping */
6041			pr_warn_ratelimited("SELinux: unrecognized netlink"
6042				" message: protocol=%hu nlmsg_type=%hu sclass=%s"
6043				" pid=%d comm=%s\n",
6044				sk->sk_protocol, nlh->nlmsg_type,
6045				secclass_map[sclass - 1].name,
6046				task_pid_nr(current), current->comm);
6047			if (enforcing_enabled(&selinux_state) &&
6048			    !security_get_allow_unknown(&selinux_state))
6049				return rc;
6050			rc = 0;
6051		} else if (rc == -ENOENT) {
6052			/* -ENOENT is a missing socket/class mapping, ignore */
6053			rc = 0;
6054		} else {
6055			return rc;
6056		}
6057
6058		/* move to the next message after applying netlink padding */
6059		msg_len = NLMSG_ALIGN(nlh->nlmsg_len);
6060		if (msg_len >= data_len)
6061			return 0;
6062		data_len -= msg_len;
6063		data += msg_len;
6064	}
6065
6066	return rc;
6067}
6068
6069static void ipc_init_security(struct ipc_security_struct *isec, u16 sclass)
6070{
6071	isec->sclass = sclass;
6072	isec->sid = current_sid();
 
 
6073}
6074
6075static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
6076			u32 perms)
6077{
6078	struct ipc_security_struct *isec;
6079	struct common_audit_data ad;
6080	u32 sid = current_sid();
6081
6082	isec = selinux_ipc(ipc_perms);
6083
6084	ad.type = LSM_AUDIT_DATA_IPC;
6085	ad.u.ipc_id = ipc_perms->key;
6086
6087	return avc_has_perm(&selinux_state,
6088			    sid, isec->sid, isec->sclass, perms, &ad);
6089}
6090
6091static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
6092{
6093	struct msg_security_struct *msec;
 
6094
6095	msec = selinux_msg_msg(msg);
6096	msec->sid = SECINITSID_UNLABELED;
6097
6098	return 0;
6099}
6100
6101/* message queue security operations */
6102static int selinux_msg_queue_alloc_security(struct kern_ipc_perm *msq)
6103{
6104	struct ipc_security_struct *isec;
6105	struct common_audit_data ad;
6106	u32 sid = current_sid();
6107	int rc;
6108
6109	isec = selinux_ipc(msq);
6110	ipc_init_security(isec, SECCLASS_MSGQ);
 
 
 
6111
6112	ad.type = LSM_AUDIT_DATA_IPC;
6113	ad.u.ipc_id = msq->key;
6114
6115	rc = avc_has_perm(&selinux_state,
6116			  sid, isec->sid, SECCLASS_MSGQ,
6117			  MSGQ__CREATE, &ad);
6118	return rc;
 
 
 
 
 
 
 
 
 
6119}
6120
6121static int selinux_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
6122{
6123	struct ipc_security_struct *isec;
6124	struct common_audit_data ad;
6125	u32 sid = current_sid();
6126
6127	isec = selinux_ipc(msq);
6128
6129	ad.type = LSM_AUDIT_DATA_IPC;
6130	ad.u.ipc_id = msq->key;
6131
6132	return avc_has_perm(&selinux_state,
6133			    sid, isec->sid, SECCLASS_MSGQ,
6134			    MSGQ__ASSOCIATE, &ad);
6135}
6136
6137static int selinux_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
6138{
6139	int err;
6140	int perms;
6141
6142	switch (cmd) {
6143	case IPC_INFO:
6144	case MSG_INFO:
6145		/* No specific object, just general system-wide information. */
6146		return avc_has_perm(&selinux_state,
6147				    current_sid(), SECINITSID_KERNEL,
6148				    SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6149	case IPC_STAT:
6150	case MSG_STAT:
6151	case MSG_STAT_ANY:
6152		perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
6153		break;
6154	case IPC_SET:
6155		perms = MSGQ__SETATTR;
6156		break;
6157	case IPC_RMID:
6158		perms = MSGQ__DESTROY;
6159		break;
6160	default:
6161		return 0;
6162	}
6163
6164	err = ipc_has_perm(msq, perms);
6165	return err;
6166}
6167
6168static int selinux_msg_queue_msgsnd(struct kern_ipc_perm *msq, struct msg_msg *msg, int msqflg)
6169{
6170	struct ipc_security_struct *isec;
6171	struct msg_security_struct *msec;
6172	struct common_audit_data ad;
6173	u32 sid = current_sid();
6174	int rc;
6175
6176	isec = selinux_ipc(msq);
6177	msec = selinux_msg_msg(msg);
6178
6179	/*
6180	 * First time through, need to assign label to the message
6181	 */
6182	if (msec->sid == SECINITSID_UNLABELED) {
6183		/*
6184		 * Compute new sid based on current process and
6185		 * message queue this message will be stored in
6186		 */
6187		rc = security_transition_sid(&selinux_state, sid, isec->sid,
6188					     SECCLASS_MSG, NULL, &msec->sid);
6189		if (rc)
6190			return rc;
6191	}
6192
6193	ad.type = LSM_AUDIT_DATA_IPC;
6194	ad.u.ipc_id = msq->key;
6195
6196	/* Can this process write to the queue? */
6197	rc = avc_has_perm(&selinux_state,
6198			  sid, isec->sid, SECCLASS_MSGQ,
6199			  MSGQ__WRITE, &ad);
6200	if (!rc)
6201		/* Can this process send the message */
6202		rc = avc_has_perm(&selinux_state,
6203				  sid, msec->sid, SECCLASS_MSG,
6204				  MSG__SEND, &ad);
6205	if (!rc)
6206		/* Can the message be put in the queue? */
6207		rc = avc_has_perm(&selinux_state,
6208				  msec->sid, isec->sid, SECCLASS_MSGQ,
6209				  MSGQ__ENQUEUE, &ad);
6210
6211	return rc;
6212}
6213
6214static int selinux_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
6215				    struct task_struct *target,
6216				    long type, int mode)
6217{
6218	struct ipc_security_struct *isec;
6219	struct msg_security_struct *msec;
6220	struct common_audit_data ad;
6221	u32 sid = task_sid_obj(target);
6222	int rc;
6223
6224	isec = selinux_ipc(msq);
6225	msec = selinux_msg_msg(msg);
6226
6227	ad.type = LSM_AUDIT_DATA_IPC;
6228	ad.u.ipc_id = msq->key;
6229
6230	rc = avc_has_perm(&selinux_state,
6231			  sid, isec->sid,
6232			  SECCLASS_MSGQ, MSGQ__READ, &ad);
6233	if (!rc)
6234		rc = avc_has_perm(&selinux_state,
6235				  sid, msec->sid,
6236				  SECCLASS_MSG, MSG__RECEIVE, &ad);
6237	return rc;
6238}
6239
6240/* Shared Memory security operations */
6241static int selinux_shm_alloc_security(struct kern_ipc_perm *shp)
6242{
6243	struct ipc_security_struct *isec;
6244	struct common_audit_data ad;
6245	u32 sid = current_sid();
6246	int rc;
6247
6248	isec = selinux_ipc(shp);
6249	ipc_init_security(isec, SECCLASS_SHM);
 
 
 
6250
6251	ad.type = LSM_AUDIT_DATA_IPC;
6252	ad.u.ipc_id = shp->key;
6253
6254	rc = avc_has_perm(&selinux_state,
6255			  sid, isec->sid, SECCLASS_SHM,
6256			  SHM__CREATE, &ad);
6257	return rc;
 
 
 
 
 
 
 
 
 
6258}
6259
6260static int selinux_shm_associate(struct kern_ipc_perm *shp, int shmflg)
6261{
6262	struct ipc_security_struct *isec;
6263	struct common_audit_data ad;
6264	u32 sid = current_sid();
6265
6266	isec = selinux_ipc(shp);
6267
6268	ad.type = LSM_AUDIT_DATA_IPC;
6269	ad.u.ipc_id = shp->key;
6270
6271	return avc_has_perm(&selinux_state,
6272			    sid, isec->sid, SECCLASS_SHM,
6273			    SHM__ASSOCIATE, &ad);
6274}
6275
6276/* Note, at this point, shp is locked down */
6277static int selinux_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
6278{
6279	int perms;
6280	int err;
6281
6282	switch (cmd) {
6283	case IPC_INFO:
6284	case SHM_INFO:
6285		/* No specific object, just general system-wide information. */
6286		return avc_has_perm(&selinux_state,
6287				    current_sid(), SECINITSID_KERNEL,
6288				    SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6289	case IPC_STAT:
6290	case SHM_STAT:
6291	case SHM_STAT_ANY:
6292		perms = SHM__GETATTR | SHM__ASSOCIATE;
6293		break;
6294	case IPC_SET:
6295		perms = SHM__SETATTR;
6296		break;
6297	case SHM_LOCK:
6298	case SHM_UNLOCK:
6299		perms = SHM__LOCK;
6300		break;
6301	case IPC_RMID:
6302		perms = SHM__DESTROY;
6303		break;
6304	default:
6305		return 0;
6306	}
6307
6308	err = ipc_has_perm(shp, perms);
6309	return err;
6310}
6311
6312static int selinux_shm_shmat(struct kern_ipc_perm *shp,
6313			     char __user *shmaddr, int shmflg)
6314{
6315	u32 perms;
6316
6317	if (shmflg & SHM_RDONLY)
6318		perms = SHM__READ;
6319	else
6320		perms = SHM__READ | SHM__WRITE;
6321
6322	return ipc_has_perm(shp, perms);
6323}
6324
6325/* Semaphore security operations */
6326static int selinux_sem_alloc_security(struct kern_ipc_perm *sma)
6327{
6328	struct ipc_security_struct *isec;
6329	struct common_audit_data ad;
6330	u32 sid = current_sid();
6331	int rc;
6332
6333	isec = selinux_ipc(sma);
6334	ipc_init_security(isec, SECCLASS_SEM);
 
 
 
6335
6336	ad.type = LSM_AUDIT_DATA_IPC;
6337	ad.u.ipc_id = sma->key;
6338
6339	rc = avc_has_perm(&selinux_state,
6340			  sid, isec->sid, SECCLASS_SEM,
6341			  SEM__CREATE, &ad);
6342	return rc;
 
 
 
 
 
 
 
 
 
6343}
6344
6345static int selinux_sem_associate(struct kern_ipc_perm *sma, int semflg)
6346{
6347	struct ipc_security_struct *isec;
6348	struct common_audit_data ad;
6349	u32 sid = current_sid();
6350
6351	isec = selinux_ipc(sma);
6352
6353	ad.type = LSM_AUDIT_DATA_IPC;
6354	ad.u.ipc_id = sma->key;
6355
6356	return avc_has_perm(&selinux_state,
6357			    sid, isec->sid, SECCLASS_SEM,
6358			    SEM__ASSOCIATE, &ad);
6359}
6360
6361/* Note, at this point, sma is locked down */
6362static int selinux_sem_semctl(struct kern_ipc_perm *sma, int cmd)
6363{
6364	int err;
6365	u32 perms;
6366
6367	switch (cmd) {
6368	case IPC_INFO:
6369	case SEM_INFO:
6370		/* No specific object, just general system-wide information. */
6371		return avc_has_perm(&selinux_state,
6372				    current_sid(), SECINITSID_KERNEL,
6373				    SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6374	case GETPID:
6375	case GETNCNT:
6376	case GETZCNT:
6377		perms = SEM__GETATTR;
6378		break;
6379	case GETVAL:
6380	case GETALL:
6381		perms = SEM__READ;
6382		break;
6383	case SETVAL:
6384	case SETALL:
6385		perms = SEM__WRITE;
6386		break;
6387	case IPC_RMID:
6388		perms = SEM__DESTROY;
6389		break;
6390	case IPC_SET:
6391		perms = SEM__SETATTR;
6392		break;
6393	case IPC_STAT:
6394	case SEM_STAT:
6395	case SEM_STAT_ANY:
6396		perms = SEM__GETATTR | SEM__ASSOCIATE;
6397		break;
6398	default:
6399		return 0;
6400	}
6401
6402	err = ipc_has_perm(sma, perms);
6403	return err;
6404}
6405
6406static int selinux_sem_semop(struct kern_ipc_perm *sma,
6407			     struct sembuf *sops, unsigned nsops, int alter)
6408{
6409	u32 perms;
6410
6411	if (alter)
6412		perms = SEM__READ | SEM__WRITE;
6413	else
6414		perms = SEM__READ;
6415
6416	return ipc_has_perm(sma, perms);
6417}
6418
6419static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
6420{
6421	u32 av = 0;
6422
6423	av = 0;
6424	if (flag & S_IRUGO)
6425		av |= IPC__UNIX_READ;
6426	if (flag & S_IWUGO)
6427		av |= IPC__UNIX_WRITE;
6428
6429	if (av == 0)
6430		return 0;
6431
6432	return ipc_has_perm(ipcp, av);
6433}
6434
6435static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
6436{
6437	struct ipc_security_struct *isec = selinux_ipc(ipcp);
6438	*secid = isec->sid;
6439}
6440
6441static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
6442{
6443	if (inode)
6444		inode_doinit_with_dentry(inode, dentry);
6445}
6446
6447static int selinux_getprocattr(struct task_struct *p,
6448			       char *name, char **value)
6449{
6450	const struct task_security_struct *__tsec;
6451	u32 sid;
6452	int error;
6453	unsigned len;
6454
6455	rcu_read_lock();
6456	__tsec = selinux_cred(__task_cred(p));
6457
6458	if (current != p) {
6459		error = avc_has_perm(&selinux_state,
6460				     current_sid(), __tsec->sid,
6461				     SECCLASS_PROCESS, PROCESS__GETATTR, NULL);
6462		if (error)
6463			goto bad;
6464	}
6465
 
 
 
6466	if (!strcmp(name, "current"))
6467		sid = __tsec->sid;
6468	else if (!strcmp(name, "prev"))
6469		sid = __tsec->osid;
6470	else if (!strcmp(name, "exec"))
6471		sid = __tsec->exec_sid;
6472	else if (!strcmp(name, "fscreate"))
6473		sid = __tsec->create_sid;
6474	else if (!strcmp(name, "keycreate"))
6475		sid = __tsec->keycreate_sid;
6476	else if (!strcmp(name, "sockcreate"))
6477		sid = __tsec->sockcreate_sid;
6478	else {
6479		error = -EINVAL;
6480		goto bad;
6481	}
6482	rcu_read_unlock();
6483
6484	if (!sid)
6485		return 0;
6486
6487	error = security_sid_to_context(&selinux_state, sid, value, &len);
6488	if (error)
6489		return error;
6490	return len;
6491
6492bad:
6493	rcu_read_unlock();
6494	return error;
6495}
6496
6497static int selinux_setprocattr(const char *name, void *value, size_t size)
 
6498{
6499	struct task_security_struct *tsec;
 
6500	struct cred *new;
6501	u32 mysid = current_sid(), sid = 0, ptsid;
6502	int error;
6503	char *str = value;
6504
 
 
 
 
 
 
6505	/*
6506	 * Basic control over ability to set these attributes at all.
 
 
6507	 */
6508	if (!strcmp(name, "exec"))
6509		error = avc_has_perm(&selinux_state,
6510				     mysid, mysid, SECCLASS_PROCESS,
6511				     PROCESS__SETEXEC, NULL);
6512	else if (!strcmp(name, "fscreate"))
6513		error = avc_has_perm(&selinux_state,
6514				     mysid, mysid, SECCLASS_PROCESS,
6515				     PROCESS__SETFSCREATE, NULL);
6516	else if (!strcmp(name, "keycreate"))
6517		error = avc_has_perm(&selinux_state,
6518				     mysid, mysid, SECCLASS_PROCESS,
6519				     PROCESS__SETKEYCREATE, NULL);
6520	else if (!strcmp(name, "sockcreate"))
6521		error = avc_has_perm(&selinux_state,
6522				     mysid, mysid, SECCLASS_PROCESS,
6523				     PROCESS__SETSOCKCREATE, NULL);
6524	else if (!strcmp(name, "current"))
6525		error = avc_has_perm(&selinux_state,
6526				     mysid, mysid, SECCLASS_PROCESS,
6527				     PROCESS__SETCURRENT, NULL);
6528	else
6529		error = -EINVAL;
6530	if (error)
6531		return error;
6532
6533	/* Obtain a SID for the context, if one was specified. */
6534	if (size && str[0] && str[0] != '\n') {
6535		if (str[size-1] == '\n') {
6536			str[size-1] = 0;
6537			size--;
6538		}
6539		error = security_context_to_sid(&selinux_state, value, size,
6540						&sid, GFP_KERNEL);
6541		if (error == -EINVAL && !strcmp(name, "fscreate")) {
6542			if (!has_cap_mac_admin(true)) {
6543				struct audit_buffer *ab;
6544				size_t audit_size;
6545
6546				/* We strip a nul only if it is at the end, otherwise the
6547				 * context contains a nul and we should audit that */
6548				if (str[size - 1] == '\0')
6549					audit_size = size - 1;
6550				else
6551					audit_size = size;
6552				ab = audit_log_start(audit_context(),
6553						     GFP_ATOMIC,
6554						     AUDIT_SELINUX_ERR);
6555				audit_log_format(ab, "op=fscreate invalid_context=");
6556				audit_log_n_untrustedstring(ab, value, audit_size);
6557				audit_log_end(ab);
6558
6559				return error;
6560			}
6561			error = security_context_to_sid_force(
6562						      &selinux_state,
6563						      value, size, &sid);
6564		}
6565		if (error)
6566			return error;
6567	}
6568
6569	new = prepare_creds();
6570	if (!new)
6571		return -ENOMEM;
6572
6573	/* Permission checking based on the specified context is
6574	   performed during the actual operation (execve,
6575	   open/mkdir/...), when we know the full context of the
6576	   operation.  See selinux_bprm_creds_for_exec for the execve
6577	   checks and may_create for the file creation checks. The
6578	   operation will then fail if the context is not permitted. */
6579	tsec = selinux_cred(new);
6580	if (!strcmp(name, "exec")) {
6581		tsec->exec_sid = sid;
6582	} else if (!strcmp(name, "fscreate")) {
6583		tsec->create_sid = sid;
6584	} else if (!strcmp(name, "keycreate")) {
6585		if (sid) {
6586			error = avc_has_perm(&selinux_state, mysid, sid,
6587					     SECCLASS_KEY, KEY__CREATE, NULL);
6588			if (error)
6589				goto abort_change;
6590		}
6591		tsec->keycreate_sid = sid;
6592	} else if (!strcmp(name, "sockcreate")) {
6593		tsec->sockcreate_sid = sid;
6594	} else if (!strcmp(name, "current")) {
6595		error = -EINVAL;
6596		if (sid == 0)
6597			goto abort_change;
6598
6599		/* Only allow single threaded processes to change context */
6600		error = -EPERM;
6601		if (!current_is_single_threaded()) {
6602			error = security_bounded_transition(&selinux_state,
6603							    tsec->sid, sid);
6604			if (error)
6605				goto abort_change;
6606		}
6607
6608		/* Check permissions for the transition. */
6609		error = avc_has_perm(&selinux_state,
6610				     tsec->sid, sid, SECCLASS_PROCESS,
6611				     PROCESS__DYNTRANSITION, NULL);
6612		if (error)
6613			goto abort_change;
6614
6615		/* Check for ptracing, and update the task SID if ok.
6616		   Otherwise, leave SID unchanged and fail. */
6617		ptsid = ptrace_parent_sid();
6618		if (ptsid != 0) {
6619			error = avc_has_perm(&selinux_state,
6620					     ptsid, sid, SECCLASS_PROCESS,
 
 
 
 
 
6621					     PROCESS__PTRACE, NULL);
6622			if (error)
6623				goto abort_change;
6624		}
6625
6626		tsec->sid = sid;
6627	} else {
6628		error = -EINVAL;
6629		goto abort_change;
6630	}
6631
6632	commit_creds(new);
6633	return size;
6634
6635abort_change:
6636	abort_creds(new);
6637	return error;
6638}
6639
6640static int selinux_ismaclabel(const char *name)
6641{
6642	return (strcmp(name, XATTR_SELINUX_SUFFIX) == 0);
6643}
6644
6645static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
6646{
6647	return security_sid_to_context(&selinux_state, secid,
6648				       secdata, seclen);
6649}
6650
6651static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
6652{
6653	return security_context_to_sid(&selinux_state, secdata, seclen,
6654				       secid, GFP_KERNEL);
6655}
6656
6657static void selinux_release_secctx(char *secdata, u32 seclen)
6658{
6659	kfree(secdata);
6660}
6661
6662static void selinux_inode_invalidate_secctx(struct inode *inode)
6663{
6664	struct inode_security_struct *isec = selinux_inode(inode);
6665
6666	spin_lock(&isec->lock);
6667	isec->initialized = LABEL_INVALID;
6668	spin_unlock(&isec->lock);
6669}
6670
6671/*
6672 *	called with inode->i_mutex locked
6673 */
6674static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
6675{
6676	int rc = selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX,
6677					   ctx, ctxlen, 0);
6678	/* Do not return error when suppressing label (SBLABEL_MNT not set). */
6679	return rc == -EOPNOTSUPP ? 0 : rc;
6680}
6681
6682/*
6683 *	called with inode->i_mutex locked
6684 */
6685static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
6686{
6687	return __vfs_setxattr_noperm(&init_user_ns, dentry, XATTR_NAME_SELINUX,
6688				     ctx, ctxlen, 0);
6689}
6690
6691static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
6692{
6693	int len = 0;
6694	len = selinux_inode_getsecurity(&init_user_ns, inode,
6695					XATTR_SELINUX_SUFFIX, ctx, true);
6696	if (len < 0)
6697		return len;
6698	*ctxlen = len;
6699	return 0;
6700}
6701#ifdef CONFIG_KEYS
6702
6703static int selinux_key_alloc(struct key *k, const struct cred *cred,
6704			     unsigned long flags)
6705{
6706	const struct task_security_struct *tsec;
6707	struct key_security_struct *ksec;
6708
6709	ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
6710	if (!ksec)
6711		return -ENOMEM;
6712
6713	tsec = selinux_cred(cred);
6714	if (tsec->keycreate_sid)
6715		ksec->sid = tsec->keycreate_sid;
6716	else
6717		ksec->sid = tsec->sid;
6718
6719	k->security = ksec;
6720	return 0;
6721}
6722
6723static void selinux_key_free(struct key *k)
6724{
6725	struct key_security_struct *ksec = k->security;
6726
6727	k->security = NULL;
6728	kfree(ksec);
6729}
6730
6731static int selinux_key_permission(key_ref_t key_ref,
6732				  const struct cred *cred,
6733				  enum key_need_perm need_perm)
6734{
6735	struct key *key;
6736	struct key_security_struct *ksec;
6737	u32 perm, sid;
6738
6739	switch (need_perm) {
6740	case KEY_NEED_VIEW:
6741		perm = KEY__VIEW;
6742		break;
6743	case KEY_NEED_READ:
6744		perm = KEY__READ;
6745		break;
6746	case KEY_NEED_WRITE:
6747		perm = KEY__WRITE;
6748		break;
6749	case KEY_NEED_SEARCH:
6750		perm = KEY__SEARCH;
6751		break;
6752	case KEY_NEED_LINK:
6753		perm = KEY__LINK;
6754		break;
6755	case KEY_NEED_SETATTR:
6756		perm = KEY__SETATTR;
6757		break;
6758	case KEY_NEED_UNLINK:
6759	case KEY_SYSADMIN_OVERRIDE:
6760	case KEY_AUTHTOKEN_OVERRIDE:
6761	case KEY_DEFER_PERM_CHECK:
6762		return 0;
6763	default:
6764		WARN_ON(1);
6765		return -EPERM;
6766
6767	}
6768
6769	sid = cred_sid(cred);
6770	key = key_ref_to_ptr(key_ref);
6771	ksec = key->security;
6772
6773	return avc_has_perm(&selinux_state,
6774			    sid, ksec->sid, SECCLASS_KEY, perm, NULL);
6775}
6776
6777static int selinux_key_getsecurity(struct key *key, char **_buffer)
6778{
6779	struct key_security_struct *ksec = key->security;
6780	char *context = NULL;
6781	unsigned len;
6782	int rc;
6783
6784	rc = security_sid_to_context(&selinux_state, ksec->sid,
6785				     &context, &len);
6786	if (!rc)
6787		rc = len;
6788	*_buffer = context;
6789	return rc;
6790}
6791
6792#ifdef CONFIG_KEY_NOTIFICATIONS
6793static int selinux_watch_key(struct key *key)
6794{
6795	struct key_security_struct *ksec = key->security;
6796	u32 sid = current_sid();
6797
6798	return avc_has_perm(&selinux_state,
6799			    sid, ksec->sid, SECCLASS_KEY, KEY__VIEW, NULL);
6800}
6801#endif
6802#endif
6803
6804#ifdef CONFIG_SECURITY_INFINIBAND
6805static int selinux_ib_pkey_access(void *ib_sec, u64 subnet_prefix, u16 pkey_val)
6806{
6807	struct common_audit_data ad;
6808	int err;
6809	u32 sid = 0;
6810	struct ib_security_struct *sec = ib_sec;
6811	struct lsm_ibpkey_audit ibpkey;
6812
6813	err = sel_ib_pkey_sid(subnet_prefix, pkey_val, &sid);
6814	if (err)
6815		return err;
6816
6817	ad.type = LSM_AUDIT_DATA_IBPKEY;
6818	ibpkey.subnet_prefix = subnet_prefix;
6819	ibpkey.pkey = pkey_val;
6820	ad.u.ibpkey = &ibpkey;
6821	return avc_has_perm(&selinux_state,
6822			    sec->sid, sid,
6823			    SECCLASS_INFINIBAND_PKEY,
6824			    INFINIBAND_PKEY__ACCESS, &ad);
6825}
6826
6827static int selinux_ib_endport_manage_subnet(void *ib_sec, const char *dev_name,
6828					    u8 port_num)
6829{
6830	struct common_audit_data ad;
6831	int err;
6832	u32 sid = 0;
6833	struct ib_security_struct *sec = ib_sec;
6834	struct lsm_ibendport_audit ibendport;
6835
6836	err = security_ib_endport_sid(&selinux_state, dev_name, port_num,
6837				      &sid);
6838
6839	if (err)
6840		return err;
6841
6842	ad.type = LSM_AUDIT_DATA_IBENDPORT;
6843	ibendport.dev_name = dev_name;
6844	ibendport.port = port_num;
6845	ad.u.ibendport = &ibendport;
6846	return avc_has_perm(&selinux_state,
6847			    sec->sid, sid,
6848			    SECCLASS_INFINIBAND_ENDPORT,
6849			    INFINIBAND_ENDPORT__MANAGE_SUBNET, &ad);
6850}
6851
6852static int selinux_ib_alloc_security(void **ib_sec)
6853{
6854	struct ib_security_struct *sec;
6855
6856	sec = kzalloc(sizeof(*sec), GFP_KERNEL);
6857	if (!sec)
6858		return -ENOMEM;
6859	sec->sid = current_sid();
6860
6861	*ib_sec = sec;
6862	return 0;
6863}
6864
6865static void selinux_ib_free_security(void *ib_sec)
6866{
6867	kfree(ib_sec);
6868}
6869#endif
6870
6871#ifdef CONFIG_BPF_SYSCALL
6872static int selinux_bpf(int cmd, union bpf_attr *attr,
6873				     unsigned int size)
6874{
6875	u32 sid = current_sid();
6876	int ret;
6877
6878	switch (cmd) {
6879	case BPF_MAP_CREATE:
6880		ret = avc_has_perm(&selinux_state,
6881				   sid, sid, SECCLASS_BPF, BPF__MAP_CREATE,
6882				   NULL);
6883		break;
6884	case BPF_PROG_LOAD:
6885		ret = avc_has_perm(&selinux_state,
6886				   sid, sid, SECCLASS_BPF, BPF__PROG_LOAD,
6887				   NULL);
6888		break;
6889	default:
6890		ret = 0;
6891		break;
6892	}
6893
6894	return ret;
6895}
6896
6897static u32 bpf_map_fmode_to_av(fmode_t fmode)
6898{
6899	u32 av = 0;
6900
6901	if (fmode & FMODE_READ)
6902		av |= BPF__MAP_READ;
6903	if (fmode & FMODE_WRITE)
6904		av |= BPF__MAP_WRITE;
6905	return av;
6906}
6907
6908/* This function will check the file pass through unix socket or binder to see
6909 * if it is a bpf related object. And apply correspinding checks on the bpf
6910 * object based on the type. The bpf maps and programs, not like other files and
6911 * socket, are using a shared anonymous inode inside the kernel as their inode.
6912 * So checking that inode cannot identify if the process have privilege to
6913 * access the bpf object and that's why we have to add this additional check in
6914 * selinux_file_receive and selinux_binder_transfer_files.
6915 */
6916static int bpf_fd_pass(struct file *file, u32 sid)
6917{
6918	struct bpf_security_struct *bpfsec;
6919	struct bpf_prog *prog;
6920	struct bpf_map *map;
6921	int ret;
6922
6923	if (file->f_op == &bpf_map_fops) {
6924		map = file->private_data;
6925		bpfsec = map->security;
6926		ret = avc_has_perm(&selinux_state,
6927				   sid, bpfsec->sid, SECCLASS_BPF,
6928				   bpf_map_fmode_to_av(file->f_mode), NULL);
6929		if (ret)
6930			return ret;
6931	} else if (file->f_op == &bpf_prog_fops) {
6932		prog = file->private_data;
6933		bpfsec = prog->aux->security;
6934		ret = avc_has_perm(&selinux_state,
6935				   sid, bpfsec->sid, SECCLASS_BPF,
6936				   BPF__PROG_RUN, NULL);
6937		if (ret)
6938			return ret;
6939	}
6940	return 0;
6941}
6942
6943static int selinux_bpf_map(struct bpf_map *map, fmode_t fmode)
6944{
6945	u32 sid = current_sid();
6946	struct bpf_security_struct *bpfsec;
6947
6948	bpfsec = map->security;
6949	return avc_has_perm(&selinux_state,
6950			    sid, bpfsec->sid, SECCLASS_BPF,
6951			    bpf_map_fmode_to_av(fmode), NULL);
6952}
6953
6954static int selinux_bpf_prog(struct bpf_prog *prog)
6955{
6956	u32 sid = current_sid();
6957	struct bpf_security_struct *bpfsec;
6958
6959	bpfsec = prog->aux->security;
6960	return avc_has_perm(&selinux_state,
6961			    sid, bpfsec->sid, SECCLASS_BPF,
6962			    BPF__PROG_RUN, NULL);
6963}
6964
6965static int selinux_bpf_map_alloc(struct bpf_map *map)
6966{
6967	struct bpf_security_struct *bpfsec;
6968
6969	bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6970	if (!bpfsec)
6971		return -ENOMEM;
6972
6973	bpfsec->sid = current_sid();
6974	map->security = bpfsec;
6975
6976	return 0;
6977}
6978
6979static void selinux_bpf_map_free(struct bpf_map *map)
6980{
6981	struct bpf_security_struct *bpfsec = map->security;
6982
6983	map->security = NULL;
6984	kfree(bpfsec);
6985}
6986
6987static int selinux_bpf_prog_alloc(struct bpf_prog_aux *aux)
6988{
6989	struct bpf_security_struct *bpfsec;
6990
6991	bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6992	if (!bpfsec)
6993		return -ENOMEM;
6994
6995	bpfsec->sid = current_sid();
6996	aux->security = bpfsec;
6997
6998	return 0;
6999}
7000
7001static void selinux_bpf_prog_free(struct bpf_prog_aux *aux)
7002{
7003	struct bpf_security_struct *bpfsec = aux->security;
7004
7005	aux->security = NULL;
7006	kfree(bpfsec);
7007}
7008#endif
7009
7010static int selinux_lockdown(enum lockdown_reason what)
7011{
7012	struct common_audit_data ad;
7013	u32 sid = current_sid();
7014	int invalid_reason = (what <= LOCKDOWN_NONE) ||
7015			     (what == LOCKDOWN_INTEGRITY_MAX) ||
7016			     (what >= LOCKDOWN_CONFIDENTIALITY_MAX);
7017
7018	if (WARN(invalid_reason, "Invalid lockdown reason")) {
7019		audit_log(audit_context(),
7020			  GFP_ATOMIC, AUDIT_SELINUX_ERR,
7021			  "lockdown_reason=invalid");
7022		return -EINVAL;
7023	}
7024
7025	ad.type = LSM_AUDIT_DATA_LOCKDOWN;
7026	ad.u.reason = what;
7027
7028	if (what <= LOCKDOWN_INTEGRITY_MAX)
7029		return avc_has_perm(&selinux_state,
7030				    sid, sid, SECCLASS_LOCKDOWN,
7031				    LOCKDOWN__INTEGRITY, &ad);
7032	else
7033		return avc_has_perm(&selinux_state,
7034				    sid, sid, SECCLASS_LOCKDOWN,
7035				    LOCKDOWN__CONFIDENTIALITY, &ad);
7036}
7037
7038struct lsm_blob_sizes selinux_blob_sizes __lsm_ro_after_init = {
7039	.lbs_cred = sizeof(struct task_security_struct),
7040	.lbs_file = sizeof(struct file_security_struct),
7041	.lbs_inode = sizeof(struct inode_security_struct),
7042	.lbs_ipc = sizeof(struct ipc_security_struct),
7043	.lbs_msg_msg = sizeof(struct msg_security_struct),
7044	.lbs_superblock = sizeof(struct superblock_security_struct),
7045};
7046
7047#ifdef CONFIG_PERF_EVENTS
7048static int selinux_perf_event_open(struct perf_event_attr *attr, int type)
7049{
7050	u32 requested, sid = current_sid();
7051
7052	if (type == PERF_SECURITY_OPEN)
7053		requested = PERF_EVENT__OPEN;
7054	else if (type == PERF_SECURITY_CPU)
7055		requested = PERF_EVENT__CPU;
7056	else if (type == PERF_SECURITY_KERNEL)
7057		requested = PERF_EVENT__KERNEL;
7058	else if (type == PERF_SECURITY_TRACEPOINT)
7059		requested = PERF_EVENT__TRACEPOINT;
7060	else
7061		return -EINVAL;
7062
7063	return avc_has_perm(&selinux_state, sid, sid, SECCLASS_PERF_EVENT,
7064			    requested, NULL);
7065}
7066
7067static int selinux_perf_event_alloc(struct perf_event *event)
7068{
7069	struct perf_event_security_struct *perfsec;
7070
7071	perfsec = kzalloc(sizeof(*perfsec), GFP_KERNEL);
7072	if (!perfsec)
7073		return -ENOMEM;
7074
7075	perfsec->sid = current_sid();
7076	event->security = perfsec;
7077
7078	return 0;
7079}
7080
7081static void selinux_perf_event_free(struct perf_event *event)
7082{
7083	struct perf_event_security_struct *perfsec = event->security;
7084
7085	event->security = NULL;
7086	kfree(perfsec);
7087}
7088
7089static int selinux_perf_event_read(struct perf_event *event)
7090{
7091	struct perf_event_security_struct *perfsec = event->security;
7092	u32 sid = current_sid();
7093
7094	return avc_has_perm(&selinux_state, sid, perfsec->sid,
7095			    SECCLASS_PERF_EVENT, PERF_EVENT__READ, NULL);
7096}
7097
7098static int selinux_perf_event_write(struct perf_event *event)
7099{
7100	struct perf_event_security_struct *perfsec = event->security;
7101	u32 sid = current_sid();
7102
7103	return avc_has_perm(&selinux_state, sid, perfsec->sid,
7104			    SECCLASS_PERF_EVENT, PERF_EVENT__WRITE, NULL);
7105}
7106#endif
7107
7108/*
7109 * IMPORTANT NOTE: When adding new hooks, please be careful to keep this order:
7110 * 1. any hooks that don't belong to (2.) or (3.) below,
7111 * 2. hooks that both access structures allocated by other hooks, and allocate
7112 *    structures that can be later accessed by other hooks (mostly "cloning"
7113 *    hooks),
7114 * 3. hooks that only allocate structures that can be later accessed by other
7115 *    hooks ("allocating" hooks).
7116 *
7117 * Please follow block comment delimiters in the list to keep this order.
7118 *
7119 * This ordering is needed for SELinux runtime disable to work at least somewhat
7120 * safely. Breaking the ordering rules above might lead to NULL pointer derefs
7121 * when disabling SELinux at runtime.
7122 */
7123static struct security_hook_list selinux_hooks[] __lsm_ro_after_init = {
7124	LSM_HOOK_INIT(binder_set_context_mgr, selinux_binder_set_context_mgr),
7125	LSM_HOOK_INIT(binder_transaction, selinux_binder_transaction),
7126	LSM_HOOK_INIT(binder_transfer_binder, selinux_binder_transfer_binder),
7127	LSM_HOOK_INIT(binder_transfer_file, selinux_binder_transfer_file),
7128
7129	LSM_HOOK_INIT(ptrace_access_check, selinux_ptrace_access_check),
7130	LSM_HOOK_INIT(ptrace_traceme, selinux_ptrace_traceme),
7131	LSM_HOOK_INIT(capget, selinux_capget),
7132	LSM_HOOK_INIT(capset, selinux_capset),
7133	LSM_HOOK_INIT(capable, selinux_capable),
7134	LSM_HOOK_INIT(quotactl, selinux_quotactl),
7135	LSM_HOOK_INIT(quota_on, selinux_quota_on),
7136	LSM_HOOK_INIT(syslog, selinux_syslog),
7137	LSM_HOOK_INIT(vm_enough_memory, selinux_vm_enough_memory),
7138
7139	LSM_HOOK_INIT(netlink_send, selinux_netlink_send),
7140
7141	LSM_HOOK_INIT(bprm_creds_for_exec, selinux_bprm_creds_for_exec),
7142	LSM_HOOK_INIT(bprm_committing_creds, selinux_bprm_committing_creds),
7143	LSM_HOOK_INIT(bprm_committed_creds, selinux_bprm_committed_creds),
 
7144
7145	LSM_HOOK_INIT(sb_free_mnt_opts, selinux_free_mnt_opts),
7146	LSM_HOOK_INIT(sb_mnt_opts_compat, selinux_sb_mnt_opts_compat),
 
7147	LSM_HOOK_INIT(sb_remount, selinux_sb_remount),
7148	LSM_HOOK_INIT(sb_kern_mount, selinux_sb_kern_mount),
7149	LSM_HOOK_INIT(sb_show_options, selinux_sb_show_options),
7150	LSM_HOOK_INIT(sb_statfs, selinux_sb_statfs),
7151	LSM_HOOK_INIT(sb_mount, selinux_mount),
7152	LSM_HOOK_INIT(sb_umount, selinux_umount),
7153	LSM_HOOK_INIT(sb_set_mnt_opts, selinux_set_mnt_opts),
7154	LSM_HOOK_INIT(sb_clone_mnt_opts, selinux_sb_clone_mnt_opts),
7155
7156	LSM_HOOK_INIT(move_mount, selinux_move_mount),
7157
7158	LSM_HOOK_INIT(dentry_init_security, selinux_dentry_init_security),
7159	LSM_HOOK_INIT(dentry_create_files_as, selinux_dentry_create_files_as),
7160
 
7161	LSM_HOOK_INIT(inode_free_security, selinux_inode_free_security),
7162	LSM_HOOK_INIT(inode_init_security, selinux_inode_init_security),
7163	LSM_HOOK_INIT(inode_init_security_anon, selinux_inode_init_security_anon),
7164	LSM_HOOK_INIT(inode_create, selinux_inode_create),
7165	LSM_HOOK_INIT(inode_link, selinux_inode_link),
7166	LSM_HOOK_INIT(inode_unlink, selinux_inode_unlink),
7167	LSM_HOOK_INIT(inode_symlink, selinux_inode_symlink),
7168	LSM_HOOK_INIT(inode_mkdir, selinux_inode_mkdir),
7169	LSM_HOOK_INIT(inode_rmdir, selinux_inode_rmdir),
7170	LSM_HOOK_INIT(inode_mknod, selinux_inode_mknod),
7171	LSM_HOOK_INIT(inode_rename, selinux_inode_rename),
7172	LSM_HOOK_INIT(inode_readlink, selinux_inode_readlink),
7173	LSM_HOOK_INIT(inode_follow_link, selinux_inode_follow_link),
7174	LSM_HOOK_INIT(inode_permission, selinux_inode_permission),
7175	LSM_HOOK_INIT(inode_setattr, selinux_inode_setattr),
7176	LSM_HOOK_INIT(inode_getattr, selinux_inode_getattr),
7177	LSM_HOOK_INIT(inode_setxattr, selinux_inode_setxattr),
7178	LSM_HOOK_INIT(inode_post_setxattr, selinux_inode_post_setxattr),
7179	LSM_HOOK_INIT(inode_getxattr, selinux_inode_getxattr),
7180	LSM_HOOK_INIT(inode_listxattr, selinux_inode_listxattr),
7181	LSM_HOOK_INIT(inode_removexattr, selinux_inode_removexattr),
7182	LSM_HOOK_INIT(inode_getsecurity, selinux_inode_getsecurity),
7183	LSM_HOOK_INIT(inode_setsecurity, selinux_inode_setsecurity),
7184	LSM_HOOK_INIT(inode_listsecurity, selinux_inode_listsecurity),
7185	LSM_HOOK_INIT(inode_getsecid, selinux_inode_getsecid),
7186	LSM_HOOK_INIT(inode_copy_up, selinux_inode_copy_up),
7187	LSM_HOOK_INIT(inode_copy_up_xattr, selinux_inode_copy_up_xattr),
7188	LSM_HOOK_INIT(path_notify, selinux_path_notify),
7189
7190	LSM_HOOK_INIT(kernfs_init_security, selinux_kernfs_init_security),
7191
7192	LSM_HOOK_INIT(file_permission, selinux_file_permission),
7193	LSM_HOOK_INIT(file_alloc_security, selinux_file_alloc_security),
 
7194	LSM_HOOK_INIT(file_ioctl, selinux_file_ioctl),
7195	LSM_HOOK_INIT(mmap_file, selinux_mmap_file),
7196	LSM_HOOK_INIT(mmap_addr, selinux_mmap_addr),
7197	LSM_HOOK_INIT(file_mprotect, selinux_file_mprotect),
7198	LSM_HOOK_INIT(file_lock, selinux_file_lock),
7199	LSM_HOOK_INIT(file_fcntl, selinux_file_fcntl),
7200	LSM_HOOK_INIT(file_set_fowner, selinux_file_set_fowner),
7201	LSM_HOOK_INIT(file_send_sigiotask, selinux_file_send_sigiotask),
7202	LSM_HOOK_INIT(file_receive, selinux_file_receive),
7203
7204	LSM_HOOK_INIT(file_open, selinux_file_open),
7205
7206	LSM_HOOK_INIT(task_alloc, selinux_task_alloc),
 
 
7207	LSM_HOOK_INIT(cred_prepare, selinux_cred_prepare),
7208	LSM_HOOK_INIT(cred_transfer, selinux_cred_transfer),
7209	LSM_HOOK_INIT(cred_getsecid, selinux_cred_getsecid),
7210	LSM_HOOK_INIT(kernel_act_as, selinux_kernel_act_as),
7211	LSM_HOOK_INIT(kernel_create_files_as, selinux_kernel_create_files_as),
7212	LSM_HOOK_INIT(kernel_module_request, selinux_kernel_module_request),
7213	LSM_HOOK_INIT(kernel_load_data, selinux_kernel_load_data),
7214	LSM_HOOK_INIT(kernel_read_file, selinux_kernel_read_file),
7215	LSM_HOOK_INIT(task_setpgid, selinux_task_setpgid),
7216	LSM_HOOK_INIT(task_getpgid, selinux_task_getpgid),
7217	LSM_HOOK_INIT(task_getsid, selinux_task_getsid),
7218	LSM_HOOK_INIT(task_getsecid_subj, selinux_task_getsecid_subj),
7219	LSM_HOOK_INIT(task_getsecid_obj, selinux_task_getsecid_obj),
7220	LSM_HOOK_INIT(task_setnice, selinux_task_setnice),
7221	LSM_HOOK_INIT(task_setioprio, selinux_task_setioprio),
7222	LSM_HOOK_INIT(task_getioprio, selinux_task_getioprio),
7223	LSM_HOOK_INIT(task_prlimit, selinux_task_prlimit),
7224	LSM_HOOK_INIT(task_setrlimit, selinux_task_setrlimit),
7225	LSM_HOOK_INIT(task_setscheduler, selinux_task_setscheduler),
7226	LSM_HOOK_INIT(task_getscheduler, selinux_task_getscheduler),
7227	LSM_HOOK_INIT(task_movememory, selinux_task_movememory),
7228	LSM_HOOK_INIT(task_kill, selinux_task_kill),
 
7229	LSM_HOOK_INIT(task_to_inode, selinux_task_to_inode),
7230
7231	LSM_HOOK_INIT(ipc_permission, selinux_ipc_permission),
7232	LSM_HOOK_INIT(ipc_getsecid, selinux_ipc_getsecid),
7233
 
 
 
 
 
 
7234	LSM_HOOK_INIT(msg_queue_associate, selinux_msg_queue_associate),
7235	LSM_HOOK_INIT(msg_queue_msgctl, selinux_msg_queue_msgctl),
7236	LSM_HOOK_INIT(msg_queue_msgsnd, selinux_msg_queue_msgsnd),
7237	LSM_HOOK_INIT(msg_queue_msgrcv, selinux_msg_queue_msgrcv),
7238
 
 
7239	LSM_HOOK_INIT(shm_associate, selinux_shm_associate),
7240	LSM_HOOK_INIT(shm_shmctl, selinux_shm_shmctl),
7241	LSM_HOOK_INIT(shm_shmat, selinux_shm_shmat),
7242
 
 
7243	LSM_HOOK_INIT(sem_associate, selinux_sem_associate),
7244	LSM_HOOK_INIT(sem_semctl, selinux_sem_semctl),
7245	LSM_HOOK_INIT(sem_semop, selinux_sem_semop),
7246
7247	LSM_HOOK_INIT(d_instantiate, selinux_d_instantiate),
7248
7249	LSM_HOOK_INIT(getprocattr, selinux_getprocattr),
7250	LSM_HOOK_INIT(setprocattr, selinux_setprocattr),
7251
7252	LSM_HOOK_INIT(ismaclabel, selinux_ismaclabel),
 
7253	LSM_HOOK_INIT(secctx_to_secid, selinux_secctx_to_secid),
7254	LSM_HOOK_INIT(release_secctx, selinux_release_secctx),
7255	LSM_HOOK_INIT(inode_invalidate_secctx, selinux_inode_invalidate_secctx),
7256	LSM_HOOK_INIT(inode_notifysecctx, selinux_inode_notifysecctx),
7257	LSM_HOOK_INIT(inode_setsecctx, selinux_inode_setsecctx),
 
7258
7259	LSM_HOOK_INIT(unix_stream_connect, selinux_socket_unix_stream_connect),
7260	LSM_HOOK_INIT(unix_may_send, selinux_socket_unix_may_send),
7261
7262	LSM_HOOK_INIT(socket_create, selinux_socket_create),
7263	LSM_HOOK_INIT(socket_post_create, selinux_socket_post_create),
7264	LSM_HOOK_INIT(socket_socketpair, selinux_socket_socketpair),
7265	LSM_HOOK_INIT(socket_bind, selinux_socket_bind),
7266	LSM_HOOK_INIT(socket_connect, selinux_socket_connect),
7267	LSM_HOOK_INIT(socket_listen, selinux_socket_listen),
7268	LSM_HOOK_INIT(socket_accept, selinux_socket_accept),
7269	LSM_HOOK_INIT(socket_sendmsg, selinux_socket_sendmsg),
7270	LSM_HOOK_INIT(socket_recvmsg, selinux_socket_recvmsg),
7271	LSM_HOOK_INIT(socket_getsockname, selinux_socket_getsockname),
7272	LSM_HOOK_INIT(socket_getpeername, selinux_socket_getpeername),
7273	LSM_HOOK_INIT(socket_getsockopt, selinux_socket_getsockopt),
7274	LSM_HOOK_INIT(socket_setsockopt, selinux_socket_setsockopt),
7275	LSM_HOOK_INIT(socket_shutdown, selinux_socket_shutdown),
7276	LSM_HOOK_INIT(socket_sock_rcv_skb, selinux_socket_sock_rcv_skb),
7277	LSM_HOOK_INIT(socket_getpeersec_stream,
7278			selinux_socket_getpeersec_stream),
7279	LSM_HOOK_INIT(socket_getpeersec_dgram, selinux_socket_getpeersec_dgram),
 
7280	LSM_HOOK_INIT(sk_free_security, selinux_sk_free_security),
7281	LSM_HOOK_INIT(sk_clone_security, selinux_sk_clone_security),
7282	LSM_HOOK_INIT(sk_getsecid, selinux_sk_getsecid),
7283	LSM_HOOK_INIT(sock_graft, selinux_sock_graft),
7284	LSM_HOOK_INIT(sctp_assoc_request, selinux_sctp_assoc_request),
7285	LSM_HOOK_INIT(sctp_sk_clone, selinux_sctp_sk_clone),
7286	LSM_HOOK_INIT(sctp_bind_connect, selinux_sctp_bind_connect),
7287	LSM_HOOK_INIT(inet_conn_request, selinux_inet_conn_request),
7288	LSM_HOOK_INIT(inet_csk_clone, selinux_inet_csk_clone),
7289	LSM_HOOK_INIT(inet_conn_established, selinux_inet_conn_established),
7290	LSM_HOOK_INIT(secmark_relabel_packet, selinux_secmark_relabel_packet),
7291	LSM_HOOK_INIT(secmark_refcount_inc, selinux_secmark_refcount_inc),
7292	LSM_HOOK_INIT(secmark_refcount_dec, selinux_secmark_refcount_dec),
7293	LSM_HOOK_INIT(req_classify_flow, selinux_req_classify_flow),
 
7294	LSM_HOOK_INIT(tun_dev_free_security, selinux_tun_dev_free_security),
7295	LSM_HOOK_INIT(tun_dev_create, selinux_tun_dev_create),
7296	LSM_HOOK_INIT(tun_dev_attach_queue, selinux_tun_dev_attach_queue),
7297	LSM_HOOK_INIT(tun_dev_attach, selinux_tun_dev_attach),
7298	LSM_HOOK_INIT(tun_dev_open, selinux_tun_dev_open),
7299#ifdef CONFIG_SECURITY_INFINIBAND
7300	LSM_HOOK_INIT(ib_pkey_access, selinux_ib_pkey_access),
7301	LSM_HOOK_INIT(ib_endport_manage_subnet,
7302		      selinux_ib_endport_manage_subnet),
7303	LSM_HOOK_INIT(ib_free_security, selinux_ib_free_security),
7304#endif
7305#ifdef CONFIG_SECURITY_NETWORK_XFRM
 
 
7306	LSM_HOOK_INIT(xfrm_policy_free_security, selinux_xfrm_policy_free),
7307	LSM_HOOK_INIT(xfrm_policy_delete_security, selinux_xfrm_policy_delete),
 
 
 
7308	LSM_HOOK_INIT(xfrm_state_free_security, selinux_xfrm_state_free),
7309	LSM_HOOK_INIT(xfrm_state_delete_security, selinux_xfrm_state_delete),
7310	LSM_HOOK_INIT(xfrm_policy_lookup, selinux_xfrm_policy_lookup),
7311	LSM_HOOK_INIT(xfrm_state_pol_flow_match,
7312			selinux_xfrm_state_pol_flow_match),
7313	LSM_HOOK_INIT(xfrm_decode_session, selinux_xfrm_decode_session),
7314#endif
7315
7316#ifdef CONFIG_KEYS
 
7317	LSM_HOOK_INIT(key_free, selinux_key_free),
7318	LSM_HOOK_INIT(key_permission, selinux_key_permission),
7319	LSM_HOOK_INIT(key_getsecurity, selinux_key_getsecurity),
7320#ifdef CONFIG_KEY_NOTIFICATIONS
7321	LSM_HOOK_INIT(watch_key, selinux_watch_key),
7322#endif
7323#endif
7324
7325#ifdef CONFIG_AUDIT
 
7326	LSM_HOOK_INIT(audit_rule_known, selinux_audit_rule_known),
7327	LSM_HOOK_INIT(audit_rule_match, selinux_audit_rule_match),
7328	LSM_HOOK_INIT(audit_rule_free, selinux_audit_rule_free),
7329#endif
7330
7331#ifdef CONFIG_BPF_SYSCALL
7332	LSM_HOOK_INIT(bpf, selinux_bpf),
7333	LSM_HOOK_INIT(bpf_map, selinux_bpf_map),
7334	LSM_HOOK_INIT(bpf_prog, selinux_bpf_prog),
7335	LSM_HOOK_INIT(bpf_map_free_security, selinux_bpf_map_free),
7336	LSM_HOOK_INIT(bpf_prog_free_security, selinux_bpf_prog_free),
7337#endif
7338
7339#ifdef CONFIG_PERF_EVENTS
7340	LSM_HOOK_INIT(perf_event_open, selinux_perf_event_open),
7341	LSM_HOOK_INIT(perf_event_free, selinux_perf_event_free),
7342	LSM_HOOK_INIT(perf_event_read, selinux_perf_event_read),
7343	LSM_HOOK_INIT(perf_event_write, selinux_perf_event_write),
7344#endif
7345
7346	LSM_HOOK_INIT(locked_down, selinux_lockdown),
7347
7348	/*
7349	 * PUT "CLONING" (ACCESSING + ALLOCATING) HOOKS HERE
7350	 */
7351	LSM_HOOK_INIT(fs_context_dup, selinux_fs_context_dup),
7352	LSM_HOOK_INIT(fs_context_parse_param, selinux_fs_context_parse_param),
7353	LSM_HOOK_INIT(sb_eat_lsm_opts, selinux_sb_eat_lsm_opts),
7354	LSM_HOOK_INIT(sb_add_mnt_opt, selinux_add_mnt_opt),
7355#ifdef CONFIG_SECURITY_NETWORK_XFRM
7356	LSM_HOOK_INIT(xfrm_policy_clone_security, selinux_xfrm_policy_clone),
7357#endif
7358
7359	/*
7360	 * PUT "ALLOCATING" HOOKS HERE
7361	 */
7362	LSM_HOOK_INIT(msg_msg_alloc_security, selinux_msg_msg_alloc_security),
7363	LSM_HOOK_INIT(msg_queue_alloc_security,
7364		      selinux_msg_queue_alloc_security),
7365	LSM_HOOK_INIT(shm_alloc_security, selinux_shm_alloc_security),
7366	LSM_HOOK_INIT(sb_alloc_security, selinux_sb_alloc_security),
7367	LSM_HOOK_INIT(inode_alloc_security, selinux_inode_alloc_security),
7368	LSM_HOOK_INIT(sem_alloc_security, selinux_sem_alloc_security),
7369	LSM_HOOK_INIT(secid_to_secctx, selinux_secid_to_secctx),
7370	LSM_HOOK_INIT(inode_getsecctx, selinux_inode_getsecctx),
7371	LSM_HOOK_INIT(sk_alloc_security, selinux_sk_alloc_security),
7372	LSM_HOOK_INIT(tun_dev_alloc_security, selinux_tun_dev_alloc_security),
7373#ifdef CONFIG_SECURITY_INFINIBAND
7374	LSM_HOOK_INIT(ib_alloc_security, selinux_ib_alloc_security),
7375#endif
7376#ifdef CONFIG_SECURITY_NETWORK_XFRM
7377	LSM_HOOK_INIT(xfrm_policy_alloc_security, selinux_xfrm_policy_alloc),
7378	LSM_HOOK_INIT(xfrm_state_alloc, selinux_xfrm_state_alloc),
7379	LSM_HOOK_INIT(xfrm_state_alloc_acquire,
7380		      selinux_xfrm_state_alloc_acquire),
7381#endif
7382#ifdef CONFIG_KEYS
7383	LSM_HOOK_INIT(key_alloc, selinux_key_alloc),
7384#endif
7385#ifdef CONFIG_AUDIT
7386	LSM_HOOK_INIT(audit_rule_init, selinux_audit_rule_init),
7387#endif
7388#ifdef CONFIG_BPF_SYSCALL
7389	LSM_HOOK_INIT(bpf_map_alloc_security, selinux_bpf_map_alloc),
7390	LSM_HOOK_INIT(bpf_prog_alloc_security, selinux_bpf_prog_alloc),
7391#endif
7392#ifdef CONFIG_PERF_EVENTS
7393	LSM_HOOK_INIT(perf_event_alloc, selinux_perf_event_alloc),
7394#endif
7395};
7396
7397static __init int selinux_init(void)
7398{
7399	pr_info("SELinux:  Initializing.\n");
 
 
 
7400
7401	memset(&selinux_state, 0, sizeof(selinux_state));
7402	enforcing_set(&selinux_state, selinux_enforcing_boot);
7403	checkreqprot_set(&selinux_state, selinux_checkreqprot_boot);
7404	selinux_avc_init(&selinux_state.avc);
7405	mutex_init(&selinux_state.status_lock);
7406	mutex_init(&selinux_state.policy_mutex);
7407
7408	/* Set the security state for the initial task. */
7409	cred_init_security();
7410
7411	default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
7412
 
 
 
 
 
 
7413	avc_init();
7414
7415	avtab_cache_init();
7416
7417	ebitmap_cache_init();
7418
7419	hashtab_cache_init();
7420
7421	security_add_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks), "selinux");
7422
7423	if (avc_add_callback(selinux_netcache_avc_callback, AVC_CALLBACK_RESET))
7424		panic("SELinux: Unable to register AVC netcache callback\n");
7425
7426	if (avc_add_callback(selinux_lsm_notifier_avc_callback, AVC_CALLBACK_RESET))
7427		panic("SELinux: Unable to register AVC LSM notifier callback\n");
7428
7429	if (selinux_enforcing_boot)
7430		pr_debug("SELinux:  Starting in enforcing mode\n");
7431	else
7432		pr_debug("SELinux:  Starting in permissive mode\n");
7433
7434	fs_validate_description("selinux", selinux_fs_parameters);
7435
7436	return 0;
7437}
7438
7439static void delayed_superblock_init(struct super_block *sb, void *unused)
7440{
7441	selinux_set_mnt_opts(sb, NULL, 0, NULL);
7442}
7443
7444void selinux_complete_init(void)
7445{
7446	pr_debug("SELinux:  Completing initialization.\n");
7447
7448	/* Set up any superblocks initialized prior to the policy load. */
7449	pr_debug("SELinux:  Setting up existing superblocks.\n");
7450	iterate_supers(delayed_superblock_init, NULL);
7451}
7452
7453/* SELinux requires early initialization in order to label
7454   all processes and objects when they are created. */
7455DEFINE_LSM(selinux) = {
7456	.name = "selinux",
7457	.flags = LSM_FLAG_LEGACY_MAJOR | LSM_FLAG_EXCLUSIVE,
7458	.enabled = &selinux_enabled_boot,
7459	.blobs = &selinux_blob_sizes,
7460	.init = selinux_init,
7461};
7462
7463#if defined(CONFIG_NETFILTER)
7464
7465static const struct nf_hook_ops selinux_nf_ops[] = {
7466	{
7467		.hook =		selinux_ipv4_postroute,
7468		.pf =		NFPROTO_IPV4,
7469		.hooknum =	NF_INET_POST_ROUTING,
7470		.priority =	NF_IP_PRI_SELINUX_LAST,
7471	},
7472	{
7473		.hook =		selinux_ipv4_forward,
7474		.pf =		NFPROTO_IPV4,
7475		.hooknum =	NF_INET_FORWARD,
7476		.priority =	NF_IP_PRI_SELINUX_FIRST,
7477	},
7478	{
7479		.hook =		selinux_ipv4_output,
7480		.pf =		NFPROTO_IPV4,
7481		.hooknum =	NF_INET_LOCAL_OUT,
7482		.priority =	NF_IP_PRI_SELINUX_FIRST,
7483	},
7484#if IS_ENABLED(CONFIG_IPV6)
7485	{
7486		.hook =		selinux_ipv6_postroute,
7487		.pf =		NFPROTO_IPV6,
7488		.hooknum =	NF_INET_POST_ROUTING,
7489		.priority =	NF_IP6_PRI_SELINUX_LAST,
7490	},
7491	{
7492		.hook =		selinux_ipv6_forward,
7493		.pf =		NFPROTO_IPV6,
7494		.hooknum =	NF_INET_FORWARD,
7495		.priority =	NF_IP6_PRI_SELINUX_FIRST,
7496	},
7497	{
7498		.hook =		selinux_ipv6_output,
7499		.pf =		NFPROTO_IPV6,
7500		.hooknum =	NF_INET_LOCAL_OUT,
7501		.priority =	NF_IP6_PRI_SELINUX_FIRST,
7502	},
7503#endif	/* IPV6 */
7504};
7505
7506static int __net_init selinux_nf_register(struct net *net)
7507{
7508	return nf_register_net_hooks(net, selinux_nf_ops,
7509				     ARRAY_SIZE(selinux_nf_ops));
7510}
7511
7512static void __net_exit selinux_nf_unregister(struct net *net)
7513{
7514	nf_unregister_net_hooks(net, selinux_nf_ops,
7515				ARRAY_SIZE(selinux_nf_ops));
7516}
7517
7518static struct pernet_operations selinux_net_ops = {
7519	.init = selinux_nf_register,
7520	.exit = selinux_nf_unregister,
7521};
7522
7523static int __init selinux_nf_ip_init(void)
7524{
7525	int err;
7526
7527	if (!selinux_enabled_boot)
7528		return 0;
7529
7530	pr_debug("SELinux:  Registering netfilter hooks\n");
7531
7532	err = register_pernet_subsys(&selinux_net_ops);
7533	if (err)
7534		panic("SELinux: register_pernet_subsys: error %d\n", err);
7535
7536	return 0;
7537}
 
7538__initcall(selinux_nf_ip_init);
7539
7540#ifdef CONFIG_SECURITY_SELINUX_DISABLE
7541static void selinux_nf_ip_exit(void)
7542{
7543	pr_debug("SELinux:  Unregistering netfilter hooks\n");
7544
7545	unregister_pernet_subsys(&selinux_net_ops);
7546}
7547#endif
7548
7549#else /* CONFIG_NETFILTER */
7550
7551#ifdef CONFIG_SECURITY_SELINUX_DISABLE
7552#define selinux_nf_ip_exit()
7553#endif
7554
7555#endif /* CONFIG_NETFILTER */
7556
7557#ifdef CONFIG_SECURITY_SELINUX_DISABLE
7558int selinux_disable(struct selinux_state *state)
 
 
7559{
7560	if (selinux_initialized(state)) {
7561		/* Not permitted after initial policy load. */
7562		return -EINVAL;
7563	}
7564
7565	if (selinux_disabled(state)) {
7566		/* Only do this once. */
7567		return -EINVAL;
7568	}
7569
7570	selinux_mark_disabled(state);
7571
7572	pr_info("SELinux:  Disabled at runtime.\n");
7573
7574	/*
7575	 * Unregister netfilter hooks.
7576	 * Must be done before security_delete_hooks() to avoid breaking
7577	 * runtime disable.
7578	 */
7579	selinux_nf_ip_exit();
7580
7581	security_delete_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks));
7582
7583	/* Try to destroy the avc node cache */
7584	avc_disable();
 
 
 
7585
7586	/* Unregister selinuxfs. */
7587	exit_sel_fs();
7588
7589	return 0;
7590}
7591#endif