Linux Audio

Check our new training course

Loading...
v4.6
   1/*
   2   BlueZ - Bluetooth protocol stack for Linux
   3   Copyright (C) 2000-2001 Qualcomm Incorporated
   4   Copyright (C) 2011 ProFUSION Embedded Systems
   5
   6   Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
   7
   8   This program is free software; you can redistribute it and/or modify
   9   it under the terms of the GNU General Public License version 2 as
  10   published by the Free Software Foundation;
  11
  12   THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
  13   OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  14   FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
  15   IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
  16   CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
  17   WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  18   ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  19   OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  20
  21   ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
  22   COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
  23   SOFTWARE IS DISCLAIMED.
  24*/
  25
  26/* Bluetooth HCI core. */
  27
  28#include <linux/export.h>
  29#include <linux/idr.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  30#include <linux/rfkill.h>
  31#include <linux/debugfs.h>
  32#include <linux/crypto.h>
 
 
 
 
  33#include <asm/unaligned.h>
  34
  35#include <net/bluetooth/bluetooth.h>
  36#include <net/bluetooth/hci_core.h>
  37#include <net/bluetooth/l2cap.h>
  38#include <net/bluetooth/mgmt.h>
  39
  40#include "hci_request.h"
  41#include "hci_debugfs.h"
  42#include "smp.h"
  43#include "leds.h"
  44
  45static void hci_rx_work(struct work_struct *work);
  46static void hci_cmd_work(struct work_struct *work);
  47static void hci_tx_work(struct work_struct *work);
  48
  49/* HCI device list */
  50LIST_HEAD(hci_dev_list);
  51DEFINE_RWLOCK(hci_dev_list_lock);
  52
  53/* HCI callback list */
  54LIST_HEAD(hci_cb_list);
  55DEFINE_MUTEX(hci_cb_list_lock);
  56
  57/* HCI ID Numbering */
  58static DEFINE_IDA(hci_index_ida);
 
  59
  60/* ---- HCI debugfs entries ---- */
  61
  62static ssize_t dut_mode_read(struct file *file, char __user *user_buf,
  63			     size_t count, loff_t *ppos)
  64{
  65	struct hci_dev *hdev = file->private_data;
  66	char buf[3];
  67
  68	buf[0] = hci_dev_test_flag(hdev, HCI_DUT_MODE) ? 'Y' : 'N';
  69	buf[1] = '\n';
  70	buf[2] = '\0';
  71	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
  72}
  73
  74static ssize_t dut_mode_write(struct file *file, const char __user *user_buf,
  75			      size_t count, loff_t *ppos)
  76{
  77	struct hci_dev *hdev = file->private_data;
  78	struct sk_buff *skb;
  79	char buf[32];
  80	size_t buf_size = min(count, (sizeof(buf)-1));
  81	bool enable;
  82
  83	if (!test_bit(HCI_UP, &hdev->flags))
  84		return -ENETDOWN;
  85
  86	if (copy_from_user(buf, user_buf, buf_size))
  87		return -EFAULT;
  88
  89	buf[buf_size] = '\0';
  90	if (strtobool(buf, &enable))
  91		return -EINVAL;
  92
  93	if (enable == hci_dev_test_flag(hdev, HCI_DUT_MODE))
  94		return -EALREADY;
  95
  96	hci_req_sync_lock(hdev);
  97	if (enable)
  98		skb = __hci_cmd_sync(hdev, HCI_OP_ENABLE_DUT_MODE, 0, NULL,
  99				     HCI_CMD_TIMEOUT);
 100	else
 101		skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL,
 102				     HCI_CMD_TIMEOUT);
 103	hci_req_sync_unlock(hdev);
 104
 105	if (IS_ERR(skb))
 106		return PTR_ERR(skb);
 107
 108	kfree_skb(skb);
 109
 110	hci_dev_change_flag(hdev, HCI_DUT_MODE);
 111
 112	return count;
 113}
 114
 115static const struct file_operations dut_mode_fops = {
 116	.open		= simple_open,
 117	.read		= dut_mode_read,
 118	.write		= dut_mode_write,
 119	.llseek		= default_llseek,
 120};
 121
 122static ssize_t vendor_diag_read(struct file *file, char __user *user_buf,
 123				size_t count, loff_t *ppos)
 124{
 125	struct hci_dev *hdev = file->private_data;
 126	char buf[3];
 127
 128	buf[0] = hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) ? 'Y' : 'N';
 129	buf[1] = '\n';
 130	buf[2] = '\0';
 131	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
 132}
 133
 134static ssize_t vendor_diag_write(struct file *file, const char __user *user_buf,
 135				 size_t count, loff_t *ppos)
 136{
 137	struct hci_dev *hdev = file->private_data;
 138	char buf[32];
 139	size_t buf_size = min(count, (sizeof(buf)-1));
 140	bool enable;
 141	int err;
 142
 143	if (copy_from_user(buf, user_buf, buf_size))
 144		return -EFAULT;
 145
 146	buf[buf_size] = '\0';
 147	if (strtobool(buf, &enable))
 148		return -EINVAL;
 149
 150	/* When the diagnostic flags are not persistent and the transport
 151	 * is not active, then there is no need for the vendor callback.
 152	 *
 153	 * Instead just store the desired value. If needed the setting
 154	 * will be programmed when the controller gets powered on.
 155	 */
 156	if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) &&
 157	    !test_bit(HCI_RUNNING, &hdev->flags))
 158		goto done;
 159
 160	hci_req_sync_lock(hdev);
 161	err = hdev->set_diag(hdev, enable);
 162	hci_req_sync_unlock(hdev);
 163
 164	if (err < 0)
 165		return err;
 166
 167done:
 168	if (enable)
 169		hci_dev_set_flag(hdev, HCI_VENDOR_DIAG);
 170	else
 171		hci_dev_clear_flag(hdev, HCI_VENDOR_DIAG);
 172
 173	return count;
 174}
 175
 176static const struct file_operations vendor_diag_fops = {
 177	.open		= simple_open,
 178	.read		= vendor_diag_read,
 179	.write		= vendor_diag_write,
 180	.llseek		= default_llseek,
 181};
 182
 183static void hci_debugfs_create_basic(struct hci_dev *hdev)
 184{
 185	debugfs_create_file("dut_mode", 0644, hdev->debugfs, hdev,
 186			    &dut_mode_fops);
 187
 188	if (hdev->set_diag)
 189		debugfs_create_file("vendor_diag", 0644, hdev->debugfs, hdev,
 190				    &vendor_diag_fops);
 191}
 192
 193static int hci_reset_req(struct hci_request *req, unsigned long opt)
 194{
 195	BT_DBG("%s %ld", req->hdev->name, opt);
 196
 197	/* Reset device */
 198	set_bit(HCI_RESET, &req->hdev->flags);
 199	hci_req_add(req, HCI_OP_RESET, 0, NULL);
 200	return 0;
 
 201}
 202
 203static void bredr_init(struct hci_request *req)
 204{
 205	req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_PACKET_BASED;
 206
 207	/* Read Local Supported Features */
 208	hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
 209
 210	/* Read Local Version */
 211	hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
 212
 213	/* Read BD Address */
 214	hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL);
 215}
 216
 217static void amp_init1(struct hci_request *req)
 
 
 218{
 219	req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_BLOCK_BASED;
 220
 221	/* Read Local Version */
 222	hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
 223
 224	/* Read Local Supported Commands */
 225	hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL);
 226
 227	/* Read Local AMP Info */
 228	hci_req_add(req, HCI_OP_READ_LOCAL_AMP_INFO, 0, NULL);
 229
 230	/* Read Data Blk size */
 231	hci_req_add(req, HCI_OP_READ_DATA_BLOCK_SIZE, 0, NULL);
 232
 233	/* Read Flow Control Mode */
 234	hci_req_add(req, HCI_OP_READ_FLOW_CONTROL_MODE, 0, NULL);
 235
 236	/* Read Location Data */
 237	hci_req_add(req, HCI_OP_READ_LOCATION_DATA, 0, NULL);
 238}
 239
 240static int amp_init2(struct hci_request *req)
 241{
 242	/* Read Local Supported Features. Not all AMP controllers
 243	 * support this so it's placed conditionally in the second
 244	 * stage init.
 245	 */
 246	if (req->hdev->commands[14] & 0x20)
 247		hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
 248
 249	return 0;
 250}
 251
 252static int hci_init1_req(struct hci_request *req, unsigned long opt)
 253{
 254	struct hci_dev *hdev = req->hdev;
 255
 256	BT_DBG("%s %ld", hdev->name, opt);
 257
 258	/* Reset */
 259	if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks))
 260		hci_reset_req(req, 0);
 261
 262	switch (hdev->dev_type) {
 263	case HCI_BREDR:
 264		bredr_init(req);
 265		break;
 266
 267	case HCI_AMP:
 268		amp_init1(req);
 269		break;
 270
 271	default:
 272		BT_ERR("Unknown device type %d", hdev->dev_type);
 273		break;
 274	}
 275
 276	return 0;
 277}
 278
 279static void bredr_setup(struct hci_request *req)
 280{
 281	__le16 param;
 282	__u8 flt_type;
 283
 284	/* Read Buffer Size (ACL mtu, max pkt, etc.) */
 285	hci_req_add(req, HCI_OP_READ_BUFFER_SIZE, 0, NULL);
 286
 287	/* Read Class of Device */
 288	hci_req_add(req, HCI_OP_READ_CLASS_OF_DEV, 0, NULL);
 289
 290	/* Read Local Name */
 291	hci_req_add(req, HCI_OP_READ_LOCAL_NAME, 0, NULL);
 292
 293	/* Read Voice Setting */
 294	hci_req_add(req, HCI_OP_READ_VOICE_SETTING, 0, NULL);
 295
 296	/* Read Number of Supported IAC */
 297	hci_req_add(req, HCI_OP_READ_NUM_SUPPORTED_IAC, 0, NULL);
 298
 299	/* Read Current IAC LAP */
 300	hci_req_add(req, HCI_OP_READ_CURRENT_IAC_LAP, 0, NULL);
 301
 302	/* Clear Event Filters */
 303	flt_type = HCI_FLT_CLEAR_ALL;
 304	hci_req_add(req, HCI_OP_SET_EVENT_FLT, 1, &flt_type);
 305
 306	/* Connection accept timeout ~20 secs */
 307	param = cpu_to_le16(0x7d00);
 308	hci_req_add(req, HCI_OP_WRITE_CA_TIMEOUT, 2, &param);
 309}
 310
 311static void le_setup(struct hci_request *req)
 312{
 313	struct hci_dev *hdev = req->hdev;
 314
 315	/* Read LE Buffer Size */
 316	hci_req_add(req, HCI_OP_LE_READ_BUFFER_SIZE, 0, NULL);
 317
 318	/* Read LE Local Supported Features */
 319	hci_req_add(req, HCI_OP_LE_READ_LOCAL_FEATURES, 0, NULL);
 320
 321	/* Read LE Supported States */
 322	hci_req_add(req, HCI_OP_LE_READ_SUPPORTED_STATES, 0, NULL);
 323
 324	/* LE-only controllers have LE implicitly enabled */
 325	if (!lmp_bredr_capable(hdev))
 326		hci_dev_set_flag(hdev, HCI_LE_ENABLED);
 327}
 328
 329static void hci_setup_event_mask(struct hci_request *req)
 330{
 331	struct hci_dev *hdev = req->hdev;
 332
 333	/* The second byte is 0xff instead of 0x9f (two reserved bits
 334	 * disabled) since a Broadcom 1.2 dongle doesn't respond to the
 335	 * command otherwise.
 336	 */
 337	u8 events[8] = { 0xff, 0xff, 0xfb, 0xff, 0x00, 0x00, 0x00, 0x00 };
 338
 339	/* CSR 1.1 dongles does not accept any bitfield so don't try to set
 340	 * any event mask for pre 1.2 devices.
 341	 */
 342	if (hdev->hci_ver < BLUETOOTH_VER_1_2)
 343		return;
 344
 345	if (lmp_bredr_capable(hdev)) {
 346		events[4] |= 0x01; /* Flow Specification Complete */
 347	} else {
 348		/* Use a different default for LE-only devices */
 349		memset(events, 0, sizeof(events));
 350		events[1] |= 0x20; /* Command Complete */
 351		events[1] |= 0x40; /* Command Status */
 352		events[1] |= 0x80; /* Hardware Error */
 353
 354		/* If the controller supports the Disconnect command, enable
 355		 * the corresponding event. In addition enable packet flow
 356		 * control related events.
 357		 */
 358		if (hdev->commands[0] & 0x20) {
 359			events[0] |= 0x10; /* Disconnection Complete */
 360			events[2] |= 0x04; /* Number of Completed Packets */
 361			events[3] |= 0x02; /* Data Buffer Overflow */
 362		}
 363
 364		/* If the controller supports the Read Remote Version
 365		 * Information command, enable the corresponding event.
 366		 */
 367		if (hdev->commands[2] & 0x80)
 368			events[1] |= 0x08; /* Read Remote Version Information
 369					    * Complete
 370					    */
 371
 372		if (hdev->le_features[0] & HCI_LE_ENCRYPTION) {
 373			events[0] |= 0x80; /* Encryption Change */
 374			events[5] |= 0x80; /* Encryption Key Refresh Complete */
 375		}
 376	}
 377
 378	if (lmp_inq_rssi_capable(hdev) ||
 379	    test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks))
 380		events[4] |= 0x02; /* Inquiry Result with RSSI */
 381
 382	if (lmp_ext_feat_capable(hdev))
 383		events[4] |= 0x04; /* Read Remote Extended Features Complete */
 384
 385	if (lmp_esco_capable(hdev)) {
 386		events[5] |= 0x08; /* Synchronous Connection Complete */
 387		events[5] |= 0x10; /* Synchronous Connection Changed */
 388	}
 389
 390	if (lmp_sniffsubr_capable(hdev))
 391		events[5] |= 0x20; /* Sniff Subrating */
 392
 393	if (lmp_pause_enc_capable(hdev))
 394		events[5] |= 0x80; /* Encryption Key Refresh Complete */
 395
 396	if (lmp_ext_inq_capable(hdev))
 397		events[5] |= 0x40; /* Extended Inquiry Result */
 398
 399	if (lmp_no_flush_capable(hdev))
 400		events[7] |= 0x01; /* Enhanced Flush Complete */
 401
 402	if (lmp_lsto_capable(hdev))
 403		events[6] |= 0x80; /* Link Supervision Timeout Changed */
 404
 405	if (lmp_ssp_capable(hdev)) {
 406		events[6] |= 0x01;	/* IO Capability Request */
 407		events[6] |= 0x02;	/* IO Capability Response */
 408		events[6] |= 0x04;	/* User Confirmation Request */
 409		events[6] |= 0x08;	/* User Passkey Request */
 410		events[6] |= 0x10;	/* Remote OOB Data Request */
 411		events[6] |= 0x20;	/* Simple Pairing Complete */
 412		events[7] |= 0x04;	/* User Passkey Notification */
 413		events[7] |= 0x08;	/* Keypress Notification */
 414		events[7] |= 0x10;	/* Remote Host Supported
 415					 * Features Notification
 416					 */
 417	}
 418
 419	if (lmp_le_capable(hdev))
 420		events[7] |= 0x20;	/* LE Meta-Event */
 421
 422	hci_req_add(req, HCI_OP_SET_EVENT_MASK, sizeof(events), events);
 423}
 424
 425static int hci_init2_req(struct hci_request *req, unsigned long opt)
 426{
 427	struct hci_dev *hdev = req->hdev;
 428
 429	if (hdev->dev_type == HCI_AMP)
 430		return amp_init2(req);
 431
 432	if (lmp_bredr_capable(hdev))
 433		bredr_setup(req);
 434	else
 435		hci_dev_clear_flag(hdev, HCI_BREDR_ENABLED);
 436
 437	if (lmp_le_capable(hdev))
 438		le_setup(req);
 439
 440	/* All Bluetooth 1.2 and later controllers should support the
 441	 * HCI command for reading the local supported commands.
 442	 *
 443	 * Unfortunately some controllers indicate Bluetooth 1.2 support,
 444	 * but do not have support for this command. If that is the case,
 445	 * the driver can quirk the behavior and skip reading the local
 446	 * supported commands.
 447	 */
 448	if (hdev->hci_ver > BLUETOOTH_VER_1_1 &&
 449	    !test_bit(HCI_QUIRK_BROKEN_LOCAL_COMMANDS, &hdev->quirks))
 450		hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL);
 451
 452	if (lmp_ssp_capable(hdev)) {
 453		/* When SSP is available, then the host features page
 454		 * should also be available as well. However some
 455		 * controllers list the max_page as 0 as long as SSP
 456		 * has not been enabled. To achieve proper debugging
 457		 * output, force the minimum max_page to 1 at least.
 458		 */
 459		hdev->max_page = 0x01;
 460
 461		if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) {
 462			u8 mode = 0x01;
 463
 464			hci_req_add(req, HCI_OP_WRITE_SSP_MODE,
 465				    sizeof(mode), &mode);
 466		} else {
 467			struct hci_cp_write_eir cp;
 468
 469			memset(hdev->eir, 0, sizeof(hdev->eir));
 470			memset(&cp, 0, sizeof(cp));
 471
 472			hci_req_add(req, HCI_OP_WRITE_EIR, sizeof(cp), &cp);
 473		}
 474	}
 475
 476	if (lmp_inq_rssi_capable(hdev) ||
 477	    test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks)) {
 478		u8 mode;
 479
 480		/* If Extended Inquiry Result events are supported, then
 481		 * they are clearly preferred over Inquiry Result with RSSI
 482		 * events.
 483		 */
 484		mode = lmp_ext_inq_capable(hdev) ? 0x02 : 0x01;
 485
 486		hci_req_add(req, HCI_OP_WRITE_INQUIRY_MODE, 1, &mode);
 487	}
 488
 489	if (lmp_inq_tx_pwr_capable(hdev))
 490		hci_req_add(req, HCI_OP_READ_INQ_RSP_TX_POWER, 0, NULL);
 491
 492	if (lmp_ext_feat_capable(hdev)) {
 493		struct hci_cp_read_local_ext_features cp;
 494
 495		cp.page = 0x01;
 496		hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES,
 497			    sizeof(cp), &cp);
 498	}
 499
 500	if (hci_dev_test_flag(hdev, HCI_LINK_SECURITY)) {
 501		u8 enable = 1;
 502		hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, sizeof(enable),
 503			    &enable);
 504	}
 505
 506	return 0;
 507}
 508
 509static void hci_setup_link_policy(struct hci_request *req)
 510{
 511	struct hci_dev *hdev = req->hdev;
 512	struct hci_cp_write_def_link_policy cp;
 513	u16 link_policy = 0;
 514
 515	if (lmp_rswitch_capable(hdev))
 516		link_policy |= HCI_LP_RSWITCH;
 517	if (lmp_hold_capable(hdev))
 518		link_policy |= HCI_LP_HOLD;
 519	if (lmp_sniff_capable(hdev))
 520		link_policy |= HCI_LP_SNIFF;
 521	if (lmp_park_capable(hdev))
 522		link_policy |= HCI_LP_PARK;
 523
 524	cp.policy = cpu_to_le16(link_policy);
 525	hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, sizeof(cp), &cp);
 526}
 527
 528static void hci_set_le_support(struct hci_request *req)
 
 529{
 530	struct hci_dev *hdev = req->hdev;
 531	struct hci_cp_write_le_host_supported cp;
 532
 533	/* LE-only devices do not support explicit enablement */
 534	if (!lmp_bredr_capable(hdev))
 535		return;
 536
 537	memset(&cp, 0, sizeof(cp));
 
 538
 539	if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
 540		cp.le = 0x01;
 541		cp.simul = 0x00;
 542	}
 543
 544	if (cp.le != lmp_host_le_capable(hdev))
 545		hci_req_add(req, HCI_OP_WRITE_LE_HOST_SUPPORTED, sizeof(cp),
 546			    &cp);
 547}
 548
 549static void hci_set_event_mask_page_2(struct hci_request *req)
 550{
 551	struct hci_dev *hdev = req->hdev;
 552	u8 events[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
 553
 554	/* If Connectionless Slave Broadcast master role is supported
 555	 * enable all necessary events for it.
 556	 */
 557	if (lmp_csb_master_capable(hdev)) {
 558		events[1] |= 0x40;	/* Triggered Clock Capture */
 559		events[1] |= 0x80;	/* Synchronization Train Complete */
 560		events[2] |= 0x10;	/* Slave Page Response Timeout */
 561		events[2] |= 0x20;	/* CSB Channel Map Change */
 562	}
 563
 564	/* If Connectionless Slave Broadcast slave role is supported
 565	 * enable all necessary events for it.
 566	 */
 567	if (lmp_csb_slave_capable(hdev)) {
 568		events[2] |= 0x01;	/* Synchronization Train Received */
 569		events[2] |= 0x02;	/* CSB Receive */
 570		events[2] |= 0x04;	/* CSB Timeout */
 571		events[2] |= 0x08;	/* Truncated Page Complete */
 572	}
 573
 574	/* Enable Authenticated Payload Timeout Expired event if supported */
 575	if (lmp_ping_capable(hdev) || hdev->le_features[0] & HCI_LE_PING)
 576		events[2] |= 0x80;
 577
 578	hci_req_add(req, HCI_OP_SET_EVENT_MASK_PAGE_2, sizeof(events), events);
 
 
 579}
 580
 581static int hci_init3_req(struct hci_request *req, unsigned long opt)
 582{
 583	struct hci_dev *hdev = req->hdev;
 584	u8 p;
 585
 586	hci_setup_event_mask(req);
 587
 588	if (hdev->commands[6] & 0x20 &&
 589	    !test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) {
 590		struct hci_cp_read_stored_link_key cp;
 591
 592		bacpy(&cp.bdaddr, BDADDR_ANY);
 593		cp.read_all = 0x01;
 594		hci_req_add(req, HCI_OP_READ_STORED_LINK_KEY, sizeof(cp), &cp);
 595	}
 596
 597	if (hdev->commands[5] & 0x10)
 598		hci_setup_link_policy(req);
 599
 600	if (hdev->commands[8] & 0x01)
 601		hci_req_add(req, HCI_OP_READ_PAGE_SCAN_ACTIVITY, 0, NULL);
 602
 603	/* Some older Broadcom based Bluetooth 1.2 controllers do not
 604	 * support the Read Page Scan Type command. Check support for
 605	 * this command in the bit mask of supported commands.
 606	 */
 607	if (hdev->commands[13] & 0x01)
 608		hci_req_add(req, HCI_OP_READ_PAGE_SCAN_TYPE, 0, NULL);
 609
 610	if (lmp_le_capable(hdev)) {
 611		u8 events[8];
 612
 613		memset(events, 0, sizeof(events));
 614
 615		if (hdev->le_features[0] & HCI_LE_ENCRYPTION)
 616			events[0] |= 0x10;	/* LE Long Term Key Request */
 617
 618		/* If controller supports the Connection Parameters Request
 619		 * Link Layer Procedure, enable the corresponding event.
 620		 */
 621		if (hdev->le_features[0] & HCI_LE_CONN_PARAM_REQ_PROC)
 622			events[0] |= 0x20;	/* LE Remote Connection
 623						 * Parameter Request
 624						 */
 625
 626		/* If the controller supports the Data Length Extension
 627		 * feature, enable the corresponding event.
 628		 */
 629		if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)
 630			events[0] |= 0x40;	/* LE Data Length Change */
 631
 632		/* If the controller supports Extended Scanner Filter
 633		 * Policies, enable the correspondig event.
 634		 */
 635		if (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY)
 636			events[1] |= 0x04;	/* LE Direct Advertising
 637						 * Report
 638						 */
 639
 640		/* If the controller supports the LE Set Scan Enable command,
 641		 * enable the corresponding advertising report event.
 642		 */
 643		if (hdev->commands[26] & 0x08)
 644			events[0] |= 0x02;	/* LE Advertising Report */
 645
 646		/* If the controller supports the LE Create Connection
 647		 * command, enable the corresponding event.
 648		 */
 649		if (hdev->commands[26] & 0x10)
 650			events[0] |= 0x01;	/* LE Connection Complete */
 651
 652		/* If the controller supports the LE Connection Update
 653		 * command, enable the corresponding event.
 654		 */
 655		if (hdev->commands[27] & 0x04)
 656			events[0] |= 0x04;	/* LE Connection Update
 657						 * Complete
 658						 */
 659
 660		/* If the controller supports the LE Read Remote Used Features
 661		 * command, enable the corresponding event.
 662		 */
 663		if (hdev->commands[27] & 0x20)
 664			events[0] |= 0x08;	/* LE Read Remote Used
 665						 * Features Complete
 666						 */
 667
 668		/* If the controller supports the LE Read Local P-256
 669		 * Public Key command, enable the corresponding event.
 670		 */
 671		if (hdev->commands[34] & 0x02)
 672			events[0] |= 0x80;	/* LE Read Local P-256
 673						 * Public Key Complete
 674						 */
 675
 676		/* If the controller supports the LE Generate DHKey
 677		 * command, enable the corresponding event.
 678		 */
 679		if (hdev->commands[34] & 0x04)
 680			events[1] |= 0x01;	/* LE Generate DHKey Complete */
 681
 682		hci_req_add(req, HCI_OP_LE_SET_EVENT_MASK, sizeof(events),
 683			    events);
 684
 685		if (hdev->commands[25] & 0x40) {
 686			/* Read LE Advertising Channel TX Power */
 687			hci_req_add(req, HCI_OP_LE_READ_ADV_TX_POWER, 0, NULL);
 688		}
 689
 690		if (hdev->commands[26] & 0x40) {
 691			/* Read LE White List Size */
 692			hci_req_add(req, HCI_OP_LE_READ_WHITE_LIST_SIZE,
 693				    0, NULL);
 694		}
 695
 696		if (hdev->commands[26] & 0x80) {
 697			/* Clear LE White List */
 698			hci_req_add(req, HCI_OP_LE_CLEAR_WHITE_LIST, 0, NULL);
 699		}
 700
 701		if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) {
 702			/* Read LE Maximum Data Length */
 703			hci_req_add(req, HCI_OP_LE_READ_MAX_DATA_LEN, 0, NULL);
 704
 705			/* Read LE Suggested Default Data Length */
 706			hci_req_add(req, HCI_OP_LE_READ_DEF_DATA_LEN, 0, NULL);
 707		}
 
 708
 709		hci_set_le_support(req);
 
 710	}
 
 711
 712	/* Read features beyond page 1 if available */
 713	for (p = 2; p < HCI_MAX_PAGES && p <= hdev->max_page; p++) {
 714		struct hci_cp_read_local_ext_features cp;
 715
 716		cp.page = p;
 717		hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES,
 718			    sizeof(cp), &cp);
 
 719	}
 720
 721	return 0;
 722}
 723
 724static int hci_init4_req(struct hci_request *req, unsigned long opt)
 725{
 726	struct hci_dev *hdev = req->hdev;
 727
 728	/* Some Broadcom based Bluetooth controllers do not support the
 729	 * Delete Stored Link Key command. They are clearly indicating its
 730	 * absence in the bit mask of supported commands.
 731	 *
 732	 * Check the supported commands and only if the the command is marked
 733	 * as supported send it. If not supported assume that the controller
 734	 * does not have actual support for stored link keys which makes this
 735	 * command redundant anyway.
 736	 *
 737	 * Some controllers indicate that they support handling deleting
 738	 * stored link keys, but they don't. The quirk lets a driver
 739	 * just disable this command.
 740	 */
 741	if (hdev->commands[6] & 0x80 &&
 742	    !test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) {
 743		struct hci_cp_delete_stored_link_key cp;
 744
 745		bacpy(&cp.bdaddr, BDADDR_ANY);
 746		cp.delete_all = 0x01;
 747		hci_req_add(req, HCI_OP_DELETE_STORED_LINK_KEY,
 748			    sizeof(cp), &cp);
 749	}
 750
 751	/* Set event mask page 2 if the HCI command for it is supported */
 752	if (hdev->commands[22] & 0x04)
 753		hci_set_event_mask_page_2(req);
 754
 755	/* Read local codec list if the HCI command is supported */
 756	if (hdev->commands[29] & 0x20)
 757		hci_req_add(req, HCI_OP_READ_LOCAL_CODECS, 0, NULL);
 758
 759	/* Get MWS transport configuration if the HCI command is supported */
 760	if (hdev->commands[30] & 0x08)
 761		hci_req_add(req, HCI_OP_GET_MWS_TRANSPORT_CONFIG, 0, NULL);
 762
 763	/* Check for Synchronization Train support */
 764	if (lmp_sync_train_capable(hdev))
 765		hci_req_add(req, HCI_OP_READ_SYNC_TRAIN_PARAMS, 0, NULL);
 766
 767	/* Enable Secure Connections if supported and configured */
 768	if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED) &&
 769	    bredr_sc_enabled(hdev)) {
 770		u8 support = 0x01;
 771
 772		hci_req_add(req, HCI_OP_WRITE_SC_SUPPORT,
 773			    sizeof(support), &support);
 
 
 
 
 
 
 
 774	}
 
 775
 776	return 0;
 777}
 778
 779static int __hci_init(struct hci_dev *hdev)
 780{
 781	int err;
 782
 783	err = __hci_req_sync(hdev, hci_init1_req, 0, HCI_INIT_TIMEOUT, NULL);
 784	if (err < 0)
 785		return err;
 786
 787	if (hci_dev_test_flag(hdev, HCI_SETUP))
 788		hci_debugfs_create_basic(hdev);
 789
 790	err = __hci_req_sync(hdev, hci_init2_req, 0, HCI_INIT_TIMEOUT, NULL);
 791	if (err < 0)
 792		return err;
 793
 794	/* HCI_BREDR covers both single-mode LE, BR/EDR and dual-mode
 795	 * BR/EDR/LE type controllers. AMP controllers only need the
 796	 * first two stages of init.
 797	 */
 798	if (hdev->dev_type != HCI_BREDR)
 799		return 0;
 800
 801	err = __hci_req_sync(hdev, hci_init3_req, 0, HCI_INIT_TIMEOUT, NULL);
 802	if (err < 0)
 803		return err;
 804
 805	err = __hci_req_sync(hdev, hci_init4_req, 0, HCI_INIT_TIMEOUT, NULL);
 806	if (err < 0)
 807		return err;
 808
 809	/* This function is only called when the controller is actually in
 810	 * configured state. When the controller is marked as unconfigured,
 811	 * this initialization procedure is not run.
 812	 *
 813	 * It means that it is possible that a controller runs through its
 814	 * setup phase and then discovers missing settings. If that is the
 815	 * case, then this function will not be called. It then will only
 816	 * be called during the config phase.
 817	 *
 818	 * So only when in setup phase or config phase, create the debugfs
 819	 * entries and register the SMP channels.
 820	 */
 821	if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
 822	    !hci_dev_test_flag(hdev, HCI_CONFIG))
 823		return 0;
 824
 825	hci_debugfs_create_common(hdev);
 826
 827	if (lmp_bredr_capable(hdev))
 828		hci_debugfs_create_bredr(hdev);
 829
 830	if (lmp_le_capable(hdev))
 831		hci_debugfs_create_le(hdev);
 832
 833	return 0;
 834}
 835
 836static int hci_init0_req(struct hci_request *req, unsigned long opt)
 837{
 838	struct hci_dev *hdev = req->hdev;
 839
 840	BT_DBG("%s %ld", hdev->name, opt);
 
 841
 842	/* Reset */
 843	if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks))
 844		hci_reset_req(req, 0);
 845
 846	/* Read Local Version */
 847	hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
 
 848
 849	/* Read BD Address */
 850	if (hdev->set_bdaddr)
 851		hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL);
 852
 853	return 0;
 
 
 854}
 855
 856static int __hci_unconf_init(struct hci_dev *hdev)
 857{
 858	int err;
 859
 860	if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
 861		return 0;
 862
 863	err = __hci_req_sync(hdev, hci_init0_req, 0, HCI_INIT_TIMEOUT, NULL);
 864	if (err < 0)
 865		return err;
 866
 867	if (hci_dev_test_flag(hdev, HCI_SETUP))
 868		hci_debugfs_create_basic(hdev);
 869
 870	return 0;
 
 871}
 872
 873static int hci_scan_req(struct hci_request *req, unsigned long opt)
 874{
 875	__u8 scan = opt;
 876
 877	BT_DBG("%s %x", req->hdev->name, scan);
 878
 879	/* Inquiry and Page scans */
 880	hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
 881	return 0;
 882}
 883
 884static int hci_auth_req(struct hci_request *req, unsigned long opt)
 885{
 886	__u8 auth = opt;
 887
 888	BT_DBG("%s %x", req->hdev->name, auth);
 889
 890	/* Authentication */
 891	hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, 1, &auth);
 892	return 0;
 893}
 894
 895static int hci_encrypt_req(struct hci_request *req, unsigned long opt)
 896{
 897	__u8 encrypt = opt;
 898
 899	BT_DBG("%s %x", req->hdev->name, encrypt);
 900
 901	/* Encryption */
 902	hci_req_add(req, HCI_OP_WRITE_ENCRYPT_MODE, 1, &encrypt);
 903	return 0;
 904}
 905
 906static int hci_linkpol_req(struct hci_request *req, unsigned long opt)
 907{
 908	__le16 policy = cpu_to_le16(opt);
 909
 910	BT_DBG("%s %x", req->hdev->name, policy);
 911
 912	/* Default link policy */
 913	hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, 2, &policy);
 914	return 0;
 915}
 916
 917/* Get HCI device by index.
 918 * Device is held on return. */
 919struct hci_dev *hci_dev_get(int index)
 920{
 921	struct hci_dev *hdev = NULL, *d;
 
 922
 923	BT_DBG("%d", index);
 924
 925	if (index < 0)
 926		return NULL;
 927
 928	read_lock(&hci_dev_list_lock);
 929	list_for_each_entry(d, &hci_dev_list, list) {
 
 930		if (d->id == index) {
 931			hdev = hci_dev_hold(d);
 932			break;
 933		}
 934	}
 935	read_unlock(&hci_dev_list_lock);
 936	return hdev;
 937}
 938
 939/* ---- Inquiry support ---- */
 940
 941bool hci_discovery_active(struct hci_dev *hdev)
 942{
 943	struct discovery_state *discov = &hdev->discovery;
 944
 945	switch (discov->state) {
 946	case DISCOVERY_FINDING:
 947	case DISCOVERY_RESOLVING:
 948		return true;
 949
 950	default:
 951		return false;
 952	}
 953}
 954
 955void hci_discovery_set_state(struct hci_dev *hdev, int state)
 956{
 957	int old_state = hdev->discovery.state;
 958
 959	BT_DBG("%s state %u -> %u", hdev->name, hdev->discovery.state, state);
 960
 961	if (old_state == state)
 962		return;
 963
 964	hdev->discovery.state = state;
 965
 966	switch (state) {
 967	case DISCOVERY_STOPPED:
 968		hci_update_background_scan(hdev);
 969
 970		if (old_state != DISCOVERY_STARTING)
 971			mgmt_discovering(hdev, 0);
 972		break;
 973	case DISCOVERY_STARTING:
 974		break;
 975	case DISCOVERY_FINDING:
 976		mgmt_discovering(hdev, 1);
 977		break;
 978	case DISCOVERY_RESOLVING:
 979		break;
 980	case DISCOVERY_STOPPING:
 981		break;
 982	}
 983}
 984
 985void hci_inquiry_cache_flush(struct hci_dev *hdev)
 986{
 987	struct discovery_state *cache = &hdev->discovery;
 988	struct inquiry_entry *p, *n;
 989
 990	list_for_each_entry_safe(p, n, &cache->all, all) {
 991		list_del(&p->all);
 992		kfree(p);
 993	}
 994
 995	INIT_LIST_HEAD(&cache->unknown);
 996	INIT_LIST_HEAD(&cache->resolve);
 997}
 998
 999struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev,
1000					       bdaddr_t *bdaddr)
1001{
1002	struct discovery_state *cache = &hdev->discovery;
1003	struct inquiry_entry *e;
1004
1005	BT_DBG("cache %p, %pMR", cache, bdaddr);
1006
1007	list_for_each_entry(e, &cache->all, all) {
1008		if (!bacmp(&e->data.bdaddr, bdaddr))
1009			return e;
1010	}
1011
1012	return NULL;
1013}
1014
1015struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev,
1016						       bdaddr_t *bdaddr)
1017{
1018	struct discovery_state *cache = &hdev->discovery;
1019	struct inquiry_entry *e;
1020
1021	BT_DBG("cache %p, %pMR", cache, bdaddr);
1022
1023	list_for_each_entry(e, &cache->unknown, list) {
1024		if (!bacmp(&e->data.bdaddr, bdaddr))
1025			return e;
1026	}
1027
1028	return NULL;
1029}
1030
1031struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev,
1032						       bdaddr_t *bdaddr,
1033						       int state)
1034{
1035	struct discovery_state *cache = &hdev->discovery;
1036	struct inquiry_entry *e;
1037
1038	BT_DBG("cache %p bdaddr %pMR state %d", cache, bdaddr, state);
1039
1040	list_for_each_entry(e, &cache->resolve, list) {
1041		if (!bacmp(bdaddr, BDADDR_ANY) && e->name_state == state)
1042			return e;
1043		if (!bacmp(&e->data.bdaddr, bdaddr))
1044			return e;
1045	}
1046
1047	return NULL;
1048}
1049
1050void hci_inquiry_cache_update_resolve(struct hci_dev *hdev,
1051				      struct inquiry_entry *ie)
1052{
1053	struct discovery_state *cache = &hdev->discovery;
1054	struct list_head *pos = &cache->resolve;
1055	struct inquiry_entry *p;
1056
1057	list_del(&ie->list);
1058
1059	list_for_each_entry(p, &cache->resolve, list) {
1060		if (p->name_state != NAME_PENDING &&
1061		    abs(p->data.rssi) >= abs(ie->data.rssi))
1062			break;
1063		pos = &p->list;
1064	}
1065
1066	list_add(&ie->list, pos);
1067}
1068
1069u32 hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data,
1070			     bool name_known)
1071{
1072	struct discovery_state *cache = &hdev->discovery;
1073	struct inquiry_entry *ie;
1074	u32 flags = 0;
1075
1076	BT_DBG("cache %p, %pMR", cache, &data->bdaddr);
1077
1078	hci_remove_remote_oob_data(hdev, &data->bdaddr, BDADDR_BREDR);
1079
1080	if (!data->ssp_mode)
1081		flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
1082
1083	ie = hci_inquiry_cache_lookup(hdev, &data->bdaddr);
1084	if (ie) {
1085		if (!ie->data.ssp_mode)
1086			flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
1087
1088		if (ie->name_state == NAME_NEEDED &&
1089		    data->rssi != ie->data.rssi) {
1090			ie->data.rssi = data->rssi;
1091			hci_inquiry_cache_update_resolve(hdev, ie);
1092		}
1093
1094		goto update;
1095	}
1096
1097	/* Entry not in the cache. Add new one. */
1098	ie = kzalloc(sizeof(*ie), GFP_KERNEL);
1099	if (!ie) {
1100		flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
1101		goto done;
1102	}
1103
1104	list_add(&ie->all, &cache->all);
1105
1106	if (name_known) {
1107		ie->name_state = NAME_KNOWN;
1108	} else {
1109		ie->name_state = NAME_NOT_KNOWN;
1110		list_add(&ie->list, &cache->unknown);
1111	}
1112
1113update:
1114	if (name_known && ie->name_state != NAME_KNOWN &&
1115	    ie->name_state != NAME_PENDING) {
1116		ie->name_state = NAME_KNOWN;
1117		list_del(&ie->list);
1118	}
1119
1120	memcpy(&ie->data, data, sizeof(*data));
1121	ie->timestamp = jiffies;
1122	cache->timestamp = jiffies;
1123
1124	if (ie->name_state == NAME_NOT_KNOWN)
1125		flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
1126
1127done:
1128	return flags;
1129}
1130
1131static int inquiry_cache_dump(struct hci_dev *hdev, int num, __u8 *buf)
1132{
1133	struct discovery_state *cache = &hdev->discovery;
1134	struct inquiry_info *info = (struct inquiry_info *) buf;
1135	struct inquiry_entry *e;
1136	int copied = 0;
1137
1138	list_for_each_entry(e, &cache->all, all) {
1139		struct inquiry_data *data = &e->data;
1140
1141		if (copied >= num)
1142			break;
1143
1144		bacpy(&info->bdaddr, &data->bdaddr);
1145		info->pscan_rep_mode	= data->pscan_rep_mode;
1146		info->pscan_period_mode	= data->pscan_period_mode;
1147		info->pscan_mode	= data->pscan_mode;
1148		memcpy(info->dev_class, data->dev_class, 3);
1149		info->clock_offset	= data->clock_offset;
1150
1151		info++;
1152		copied++;
1153	}
1154
1155	BT_DBG("cache %p, copied %d", cache, copied);
1156	return copied;
1157}
1158
1159static int hci_inq_req(struct hci_request *req, unsigned long opt)
1160{
1161	struct hci_inquiry_req *ir = (struct hci_inquiry_req *) opt;
1162	struct hci_dev *hdev = req->hdev;
1163	struct hci_cp_inquiry cp;
1164
1165	BT_DBG("%s", hdev->name);
1166
1167	if (test_bit(HCI_INQUIRY, &hdev->flags))
1168		return 0;
1169
1170	/* Start Inquiry */
1171	memcpy(&cp.lap, &ir->lap, 3);
1172	cp.length  = ir->length;
1173	cp.num_rsp = ir->num_rsp;
1174	hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp);
1175
1176	return 0;
1177}
1178
1179int hci_inquiry(void __user *arg)
1180{
1181	__u8 __user *ptr = arg;
1182	struct hci_inquiry_req ir;
1183	struct hci_dev *hdev;
1184	int err = 0, do_inquiry = 0, max_rsp;
1185	long timeo;
1186	__u8 *buf;
1187
1188	if (copy_from_user(&ir, ptr, sizeof(ir)))
1189		return -EFAULT;
1190
1191	hdev = hci_dev_get(ir.dev_id);
1192	if (!hdev)
1193		return -ENODEV;
1194
1195	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1196		err = -EBUSY;
1197		goto done;
1198	}
1199
1200	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1201		err = -EOPNOTSUPP;
1202		goto done;
1203	}
1204
1205	if (hdev->dev_type != HCI_BREDR) {
1206		err = -EOPNOTSUPP;
1207		goto done;
1208	}
1209
1210	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
1211		err = -EOPNOTSUPP;
1212		goto done;
1213	}
1214
1215	hci_dev_lock(hdev);
1216	if (inquiry_cache_age(hdev) > INQUIRY_CACHE_AGE_MAX ||
1217	    inquiry_cache_empty(hdev) || ir.flags & IREQ_CACHE_FLUSH) {
1218		hci_inquiry_cache_flush(hdev);
 
1219		do_inquiry = 1;
1220	}
1221	hci_dev_unlock(hdev);
1222
1223	timeo = ir.length * msecs_to_jiffies(2000);
1224
1225	if (do_inquiry) {
1226		err = hci_req_sync(hdev, hci_inq_req, (unsigned long) &ir,
1227				   timeo, NULL);
1228		if (err < 0)
1229			goto done;
1230
1231		/* Wait until Inquiry procedure finishes (HCI_INQUIRY flag is
1232		 * cleared). If it is interrupted by a signal, return -EINTR.
1233		 */
1234		if (wait_on_bit(&hdev->flags, HCI_INQUIRY,
1235				TASK_INTERRUPTIBLE))
1236			return -EINTR;
1237	}
1238
1239	/* for unlimited number of responses we will use buffer with
1240	 * 255 entries
1241	 */
1242	max_rsp = (ir.num_rsp == 0) ? 255 : ir.num_rsp;
1243
1244	/* cache_dump can't sleep. Therefore we allocate temp buffer and then
1245	 * copy it to the user space.
1246	 */
1247	buf = kmalloc(sizeof(struct inquiry_info) * max_rsp, GFP_KERNEL);
1248	if (!buf) {
1249		err = -ENOMEM;
1250		goto done;
1251	}
1252
1253	hci_dev_lock(hdev);
1254	ir.num_rsp = inquiry_cache_dump(hdev, max_rsp, buf);
1255	hci_dev_unlock(hdev);
1256
1257	BT_DBG("num_rsp %d", ir.num_rsp);
1258
1259	if (!copy_to_user(ptr, &ir, sizeof(ir))) {
1260		ptr += sizeof(ir);
1261		if (copy_to_user(ptr, buf, sizeof(struct inquiry_info) *
1262				 ir.num_rsp))
1263			err = -EFAULT;
1264	} else
1265		err = -EFAULT;
1266
1267	kfree(buf);
1268
1269done:
1270	hci_dev_put(hdev);
1271	return err;
1272}
1273
1274static int hci_dev_do_open(struct hci_dev *hdev)
 
 
1275{
 
1276	int ret = 0;
1277
 
 
 
 
1278	BT_DBG("%s %p", hdev->name, hdev);
1279
1280	hci_req_sync_lock(hdev);
1281
1282	if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) {
1283		ret = -ENODEV;
1284		goto done;
1285	}
1286
1287	if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
1288	    !hci_dev_test_flag(hdev, HCI_CONFIG)) {
1289		/* Check for rfkill but allow the HCI setup stage to
1290		 * proceed (which in itself doesn't cause any RF activity).
1291		 */
1292		if (hci_dev_test_flag(hdev, HCI_RFKILLED)) {
1293			ret = -ERFKILL;
1294			goto done;
1295		}
1296
1297		/* Check for valid public address or a configured static
1298		 * random adddress, but let the HCI setup proceed to
1299		 * be able to determine if there is a public address
1300		 * or not.
1301		 *
1302		 * In case of user channel usage, it is not important
1303		 * if a public address or static random address is
1304		 * available.
1305		 *
1306		 * This check is only valid for BR/EDR controllers
1307		 * since AMP controllers do not have an address.
1308		 */
1309		if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1310		    hdev->dev_type == HCI_BREDR &&
1311		    !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
1312		    !bacmp(&hdev->static_addr, BDADDR_ANY)) {
1313			ret = -EADDRNOTAVAIL;
1314			goto done;
1315		}
1316	}
1317
1318	if (test_bit(HCI_UP, &hdev->flags)) {
1319		ret = -EALREADY;
1320		goto done;
1321	}
1322
 
 
 
 
 
 
 
1323	if (hdev->open(hdev)) {
1324		ret = -EIO;
1325		goto done;
1326	}
1327
1328	set_bit(HCI_RUNNING, &hdev->flags);
1329	hci_sock_dev_event(hdev, HCI_DEV_OPEN);
1330
1331	atomic_set(&hdev->cmd_cnt, 1);
1332	set_bit(HCI_INIT, &hdev->flags);
1333
1334	if (hci_dev_test_flag(hdev, HCI_SETUP)) {
1335		hci_sock_dev_event(hdev, HCI_DEV_SETUP);
1336
1337		if (hdev->setup)
1338			ret = hdev->setup(hdev);
1339
1340		/* The transport driver can set these quirks before
1341		 * creating the HCI device or in its setup callback.
1342		 *
1343		 * In case any of them is set, the controller has to
1344		 * start up as unconfigured.
1345		 */
1346		if (test_bit(HCI_QUIRK_EXTERNAL_CONFIG, &hdev->quirks) ||
1347		    test_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks))
1348			hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
1349
1350		/* For an unconfigured controller it is required to
1351		 * read at least the version information provided by
1352		 * the Read Local Version Information command.
1353		 *
1354		 * If the set_bdaddr driver callback is provided, then
1355		 * also the original Bluetooth public device address
1356		 * will be read using the Read BD Address command.
1357		 */
1358		if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
1359			ret = __hci_unconf_init(hdev);
1360	}
1361
1362	if (hci_dev_test_flag(hdev, HCI_CONFIG)) {
1363		/* If public address change is configured, ensure that
1364		 * the address gets programmed. If the driver does not
1365		 * support changing the public address, fail the power
1366		 * on procedure.
1367		 */
1368		if (bacmp(&hdev->public_addr, BDADDR_ANY) &&
1369		    hdev->set_bdaddr)
1370			ret = hdev->set_bdaddr(hdev, &hdev->public_addr);
1371		else
1372			ret = -EADDRNOTAVAIL;
1373	}
1374
1375	if (!ret) {
1376		if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1377		    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1378			ret = __hci_init(hdev);
1379			if (!ret && hdev->post_init)
1380				ret = hdev->post_init(hdev);
1381		}
1382	}
1383
1384	/* If the HCI Reset command is clearing all diagnostic settings,
1385	 * then they need to be reprogrammed after the init procedure
1386	 * completed.
1387	 */
1388	if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) &&
1389	    hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) && hdev->set_diag)
1390		ret = hdev->set_diag(hdev, true);
1391
1392	clear_bit(HCI_INIT, &hdev->flags);
1393
1394	if (!ret) {
1395		hci_dev_hold(hdev);
1396		hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
1397		set_bit(HCI_UP, &hdev->flags);
1398		hci_sock_dev_event(hdev, HCI_DEV_UP);
1399		hci_leds_update_powered(hdev, true);
1400		if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
1401		    !hci_dev_test_flag(hdev, HCI_CONFIG) &&
1402		    !hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1403		    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1404		    hci_dev_test_flag(hdev, HCI_MGMT) &&
1405		    hdev->dev_type == HCI_BREDR) {
1406			ret = __hci_req_hci_power_on(hdev);
1407			mgmt_power_on(hdev, ret);
1408		}
1409	} else {
1410		/* Init failed, cleanup */
1411		flush_work(&hdev->tx_work);
1412		flush_work(&hdev->cmd_work);
1413		flush_work(&hdev->rx_work);
1414
1415		skb_queue_purge(&hdev->cmd_q);
1416		skb_queue_purge(&hdev->rx_q);
1417
1418		if (hdev->flush)
1419			hdev->flush(hdev);
1420
1421		if (hdev->sent_cmd) {
1422			kfree_skb(hdev->sent_cmd);
1423			hdev->sent_cmd = NULL;
1424		}
1425
1426		clear_bit(HCI_RUNNING, &hdev->flags);
1427		hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
1428
1429		hdev->close(hdev);
1430		hdev->flags &= BIT(HCI_RAW);
1431	}
1432
1433done:
1434	hci_req_sync_unlock(hdev);
1435	return ret;
1436}
1437
1438/* ---- HCI ioctl helpers ---- */
1439
1440int hci_dev_open(__u16 dev)
1441{
1442	struct hci_dev *hdev;
1443	int err;
1444
1445	hdev = hci_dev_get(dev);
1446	if (!hdev)
1447		return -ENODEV;
1448
1449	/* Devices that are marked as unconfigured can only be powered
1450	 * up as user channel. Trying to bring them up as normal devices
1451	 * will result into a failure. Only user channel operation is
1452	 * possible.
1453	 *
1454	 * When this function is called for a user channel, the flag
1455	 * HCI_USER_CHANNEL will be set first before attempting to
1456	 * open the device.
1457	 */
1458	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1459	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1460		err = -EOPNOTSUPP;
1461		goto done;
1462	}
1463
1464	/* We need to ensure that no other power on/off work is pending
1465	 * before proceeding to call hci_dev_do_open. This is
1466	 * particularly important if the setup procedure has not yet
1467	 * completed.
1468	 */
1469	if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
1470		cancel_delayed_work(&hdev->power_off);
1471
1472	/* After this call it is guaranteed that the setup procedure
1473	 * has finished. This means that error conditions like RFKILL
1474	 * or no valid public or static random address apply.
1475	 */
1476	flush_workqueue(hdev->req_workqueue);
1477
1478	/* For controllers not using the management interface and that
1479	 * are brought up using legacy ioctl, set the HCI_BONDABLE bit
1480	 * so that pairing works for them. Once the management interface
1481	 * is in use this bit will be cleared again and userspace has
1482	 * to explicitly enable it.
1483	 */
1484	if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1485	    !hci_dev_test_flag(hdev, HCI_MGMT))
1486		hci_dev_set_flag(hdev, HCI_BONDABLE);
1487
1488	err = hci_dev_do_open(hdev);
1489
1490done:
1491	hci_dev_put(hdev);
1492	return err;
1493}
1494
1495/* This function requires the caller holds hdev->lock */
1496static void hci_pend_le_actions_clear(struct hci_dev *hdev)
1497{
1498	struct hci_conn_params *p;
1499
1500	list_for_each_entry(p, &hdev->le_conn_params, list) {
1501		if (p->conn) {
1502			hci_conn_drop(p->conn);
1503			hci_conn_put(p->conn);
1504			p->conn = NULL;
1505		}
1506		list_del_init(&p->action);
1507	}
1508
1509	BT_DBG("All LE pending actions cleared");
1510}
1511
1512int hci_dev_do_close(struct hci_dev *hdev)
1513{
1514	bool auto_off;
1515
1516	BT_DBG("%s %p", hdev->name, hdev);
1517
1518	if (!hci_dev_test_flag(hdev, HCI_UNREGISTER) &&
1519	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1520	    test_bit(HCI_UP, &hdev->flags)) {
1521		/* Execute vendor specific shutdown routine */
1522		if (hdev->shutdown)
1523			hdev->shutdown(hdev);
1524	}
1525
1526	cancel_delayed_work(&hdev->power_off);
1527
1528	hci_request_cancel_all(hdev);
1529	hci_req_sync_lock(hdev);
1530
1531	if (!test_and_clear_bit(HCI_UP, &hdev->flags)) {
1532		cancel_delayed_work_sync(&hdev->cmd_timer);
1533		hci_req_sync_unlock(hdev);
1534		return 0;
1535	}
1536
1537	hci_leds_update_powered(hdev, false);
1538
1539	/* Flush RX and TX works */
1540	flush_work(&hdev->tx_work);
1541	flush_work(&hdev->rx_work);
1542
1543	if (hdev->discov_timeout > 0) {
1544		hdev->discov_timeout = 0;
1545		hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
1546		hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
1547	}
1548
1549	if (hci_dev_test_and_clear_flag(hdev, HCI_SERVICE_CACHE))
1550		cancel_delayed_work(&hdev->service_cache);
1551
1552	if (hci_dev_test_flag(hdev, HCI_MGMT))
1553		cancel_delayed_work_sync(&hdev->rpa_expired);
1554
1555	/* Avoid potential lockdep warnings from the *_flush() calls by
1556	 * ensuring the workqueue is empty up front.
1557	 */
1558	drain_workqueue(hdev->workqueue);
1559
1560	hci_dev_lock(hdev);
1561
1562	hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
1563
1564	auto_off = hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF);
1565
1566	if (!auto_off && hdev->dev_type == HCI_BREDR &&
1567	    hci_dev_test_flag(hdev, HCI_MGMT))
1568		__mgmt_power_off(hdev);
1569
1570	hci_inquiry_cache_flush(hdev);
1571	hci_pend_le_actions_clear(hdev);
1572	hci_conn_hash_flush(hdev);
1573	hci_dev_unlock(hdev);
1574
1575	smp_unregister(hdev);
1576
1577	hci_sock_dev_event(hdev, HCI_DEV_DOWN);
1578
1579	if (hdev->flush)
1580		hdev->flush(hdev);
1581
1582	/* Reset device */
1583	skb_queue_purge(&hdev->cmd_q);
1584	atomic_set(&hdev->cmd_cnt, 1);
1585	if (test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks) &&
1586	    !auto_off && !hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1587		set_bit(HCI_INIT, &hdev->flags);
1588		__hci_req_sync(hdev, hci_reset_req, 0, HCI_CMD_TIMEOUT, NULL);
 
1589		clear_bit(HCI_INIT, &hdev->flags);
1590	}
1591
1592	/* flush cmd  work */
1593	flush_work(&hdev->cmd_work);
1594
1595	/* Drop queues */
1596	skb_queue_purge(&hdev->rx_q);
1597	skb_queue_purge(&hdev->cmd_q);
1598	skb_queue_purge(&hdev->raw_q);
1599
1600	/* Drop last sent command */
1601	if (hdev->sent_cmd) {
1602		cancel_delayed_work_sync(&hdev->cmd_timer);
1603		kfree_skb(hdev->sent_cmd);
1604		hdev->sent_cmd = NULL;
1605	}
1606
1607	clear_bit(HCI_RUNNING, &hdev->flags);
1608	hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
1609
1610	/* After this point our queues are empty
1611	 * and no tasks are scheduled. */
1612	hdev->close(hdev);
1613
1614	/* Clear flags */
1615	hdev->flags &= BIT(HCI_RAW);
1616	hci_dev_clear_volatile_flags(hdev);
1617
1618	/* Controller radio is available but is currently powered down */
1619	hdev->amp_status = AMP_STATUS_POWERED_DOWN;
1620
1621	memset(hdev->eir, 0, sizeof(hdev->eir));
1622	memset(hdev->dev_class, 0, sizeof(hdev->dev_class));
1623	bacpy(&hdev->random_addr, BDADDR_ANY);
1624
1625	hci_req_sync_unlock(hdev);
1626
1627	hci_dev_put(hdev);
1628	return 0;
1629}
1630
1631int hci_dev_close(__u16 dev)
1632{
1633	struct hci_dev *hdev;
1634	int err;
1635
1636	hdev = hci_dev_get(dev);
1637	if (!hdev)
1638		return -ENODEV;
1639
1640	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1641		err = -EBUSY;
1642		goto done;
1643	}
1644
1645	if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
1646		cancel_delayed_work(&hdev->power_off);
1647
1648	err = hci_dev_do_close(hdev);
1649
1650done:
1651	hci_dev_put(hdev);
1652	return err;
1653}
1654
1655static int hci_dev_do_reset(struct hci_dev *hdev)
1656{
1657	int ret;
 
1658
1659	BT_DBG("%s %p", hdev->name, hdev);
 
 
 
 
 
1660
1661	hci_req_sync_lock(hdev);
 
1662
1663	/* Drop queues */
1664	skb_queue_purge(&hdev->rx_q);
1665	skb_queue_purge(&hdev->cmd_q);
1666
1667	/* Avoid potential lockdep warnings from the *_flush() calls by
1668	 * ensuring the workqueue is empty up front.
1669	 */
1670	drain_workqueue(hdev->workqueue);
1671
1672	hci_dev_lock(hdev);
1673	hci_inquiry_cache_flush(hdev);
1674	hci_conn_hash_flush(hdev);
1675	hci_dev_unlock(hdev);
1676
1677	if (hdev->flush)
1678		hdev->flush(hdev);
1679
1680	atomic_set(&hdev->cmd_cnt, 1);
1681	hdev->acl_cnt = 0; hdev->sco_cnt = 0; hdev->le_cnt = 0;
1682
1683	ret = __hci_req_sync(hdev, hci_reset_req, 0, HCI_INIT_TIMEOUT, NULL);
1684
1685	hci_req_sync_unlock(hdev);
1686	return ret;
1687}
1688
1689int hci_dev_reset(__u16 dev)
1690{
1691	struct hci_dev *hdev;
1692	int err;
1693
1694	hdev = hci_dev_get(dev);
1695	if (!hdev)
1696		return -ENODEV;
1697
1698	if (!test_bit(HCI_UP, &hdev->flags)) {
1699		err = -ENETDOWN;
1700		goto done;
1701	}
1702
1703	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1704		err = -EBUSY;
1705		goto done;
1706	}
1707
1708	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1709		err = -EOPNOTSUPP;
1710		goto done;
1711	}
1712
1713	err = hci_dev_do_reset(hdev);
1714
1715done:
 
 
1716	hci_dev_put(hdev);
1717	return err;
1718}
1719
1720int hci_dev_reset_stat(__u16 dev)
1721{
1722	struct hci_dev *hdev;
1723	int ret = 0;
1724
1725	hdev = hci_dev_get(dev);
1726	if (!hdev)
1727		return -ENODEV;
1728
1729	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1730		ret = -EBUSY;
1731		goto done;
1732	}
1733
1734	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1735		ret = -EOPNOTSUPP;
1736		goto done;
1737	}
1738
1739	memset(&hdev->stat, 0, sizeof(struct hci_dev_stats));
1740
1741done:
1742	hci_dev_put(hdev);
1743	return ret;
1744}
1745
1746static void hci_update_scan_state(struct hci_dev *hdev, u8 scan)
1747{
1748	bool conn_changed, discov_changed;
1749
1750	BT_DBG("%s scan 0x%02x", hdev->name, scan);
1751
1752	if ((scan & SCAN_PAGE))
1753		conn_changed = !hci_dev_test_and_set_flag(hdev,
1754							  HCI_CONNECTABLE);
1755	else
1756		conn_changed = hci_dev_test_and_clear_flag(hdev,
1757							   HCI_CONNECTABLE);
1758
1759	if ((scan & SCAN_INQUIRY)) {
1760		discov_changed = !hci_dev_test_and_set_flag(hdev,
1761							    HCI_DISCOVERABLE);
1762	} else {
1763		hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
1764		discov_changed = hci_dev_test_and_clear_flag(hdev,
1765							     HCI_DISCOVERABLE);
1766	}
1767
1768	if (!hci_dev_test_flag(hdev, HCI_MGMT))
1769		return;
1770
1771	if (conn_changed || discov_changed) {
1772		/* In case this was disabled through mgmt */
1773		hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
1774
1775		if (hci_dev_test_flag(hdev, HCI_LE_ENABLED))
1776			hci_req_update_adv_data(hdev, hdev->cur_adv_instance);
1777
1778		mgmt_new_settings(hdev);
1779	}
1780}
1781
1782int hci_dev_cmd(unsigned int cmd, void __user *arg)
1783{
1784	struct hci_dev *hdev;
1785	struct hci_dev_req dr;
1786	int err = 0;
1787
1788	if (copy_from_user(&dr, arg, sizeof(dr)))
1789		return -EFAULT;
1790
1791	hdev = hci_dev_get(dr.dev_id);
1792	if (!hdev)
1793		return -ENODEV;
1794
1795	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1796		err = -EBUSY;
1797		goto done;
1798	}
1799
1800	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1801		err = -EOPNOTSUPP;
1802		goto done;
1803	}
1804
1805	if (hdev->dev_type != HCI_BREDR) {
1806		err = -EOPNOTSUPP;
1807		goto done;
1808	}
1809
1810	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
1811		err = -EOPNOTSUPP;
1812		goto done;
1813	}
1814
1815	switch (cmd) {
1816	case HCISETAUTH:
1817		err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
1818				   HCI_INIT_TIMEOUT, NULL);
1819		break;
1820
1821	case HCISETENCRYPT:
1822		if (!lmp_encrypt_capable(hdev)) {
1823			err = -EOPNOTSUPP;
1824			break;
1825		}
1826
1827		if (!test_bit(HCI_AUTH, &hdev->flags)) {
1828			/* Auth must be enabled first */
1829			err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
1830					   HCI_INIT_TIMEOUT, NULL);
1831			if (err)
1832				break;
1833		}
1834
1835		err = hci_req_sync(hdev, hci_encrypt_req, dr.dev_opt,
1836				   HCI_INIT_TIMEOUT, NULL);
1837		break;
1838
1839	case HCISETSCAN:
1840		err = hci_req_sync(hdev, hci_scan_req, dr.dev_opt,
1841				   HCI_INIT_TIMEOUT, NULL);
1842
1843		/* Ensure that the connectable and discoverable states
1844		 * get correctly modified as this was a non-mgmt change.
1845		 */
1846		if (!err)
1847			hci_update_scan_state(hdev, dr.dev_opt);
1848		break;
1849
1850	case HCISETLINKPOL:
1851		err = hci_req_sync(hdev, hci_linkpol_req, dr.dev_opt,
1852				   HCI_INIT_TIMEOUT, NULL);
1853		break;
1854
1855	case HCISETLINKMODE:
1856		hdev->link_mode = ((__u16) dr.dev_opt) &
1857					(HCI_LM_MASTER | HCI_LM_ACCEPT);
1858		break;
1859
1860	case HCISETPTYPE:
1861		hdev->pkt_type = (__u16) dr.dev_opt;
1862		break;
1863
1864	case HCISETACLMTU:
1865		hdev->acl_mtu  = *((__u16 *) &dr.dev_opt + 1);
1866		hdev->acl_pkts = *((__u16 *) &dr.dev_opt + 0);
1867		break;
1868
1869	case HCISETSCOMTU:
1870		hdev->sco_mtu  = *((__u16 *) &dr.dev_opt + 1);
1871		hdev->sco_pkts = *((__u16 *) &dr.dev_opt + 0);
1872		break;
1873
1874	default:
1875		err = -EINVAL;
1876		break;
1877	}
1878
1879done:
1880	hci_dev_put(hdev);
1881	return err;
1882}
1883
1884int hci_get_dev_list(void __user *arg)
1885{
1886	struct hci_dev *hdev;
1887	struct hci_dev_list_req *dl;
1888	struct hci_dev_req *dr;
 
1889	int n = 0, size, err;
1890	__u16 dev_num;
1891
1892	if (get_user(dev_num, (__u16 __user *) arg))
1893		return -EFAULT;
1894
1895	if (!dev_num || dev_num > (PAGE_SIZE * 2) / sizeof(*dr))
1896		return -EINVAL;
1897
1898	size = sizeof(*dl) + dev_num * sizeof(*dr);
1899
1900	dl = kzalloc(size, GFP_KERNEL);
1901	if (!dl)
1902		return -ENOMEM;
1903
1904	dr = dl->dev_req;
1905
1906	read_lock(&hci_dev_list_lock);
1907	list_for_each_entry(hdev, &hci_dev_list, list) {
1908		unsigned long flags = hdev->flags;
 
 
1909
1910		/* When the auto-off is configured it means the transport
1911		 * is running, but in that case still indicate that the
1912		 * device is actually down.
1913		 */
1914		if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
1915			flags &= ~BIT(HCI_UP);
1916
1917		(dr + n)->dev_id  = hdev->id;
1918		(dr + n)->dev_opt = flags;
1919
1920		if (++n >= dev_num)
1921			break;
1922	}
1923	read_unlock(&hci_dev_list_lock);
1924
1925	dl->dev_num = n;
1926	size = sizeof(*dl) + n * sizeof(*dr);
1927
1928	err = copy_to_user(arg, dl, size);
1929	kfree(dl);
1930
1931	return err ? -EFAULT : 0;
1932}
1933
1934int hci_get_dev_info(void __user *arg)
1935{
1936	struct hci_dev *hdev;
1937	struct hci_dev_info di;
1938	unsigned long flags;
1939	int err = 0;
1940
1941	if (copy_from_user(&di, arg, sizeof(di)))
1942		return -EFAULT;
1943
1944	hdev = hci_dev_get(di.dev_id);
1945	if (!hdev)
1946		return -ENODEV;
1947
1948	/* When the auto-off is configured it means the transport
1949	 * is running, but in that case still indicate that the
1950	 * device is actually down.
1951	 */
1952	if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
1953		flags = hdev->flags & ~BIT(HCI_UP);
1954	else
1955		flags = hdev->flags;
1956
1957	strcpy(di.name, hdev->name);
1958	di.bdaddr   = hdev->bdaddr;
1959	di.type     = (hdev->bus & 0x0f) | ((hdev->dev_type & 0x03) << 4);
1960	di.flags    = flags;
1961	di.pkt_type = hdev->pkt_type;
1962	if (lmp_bredr_capable(hdev)) {
1963		di.acl_mtu  = hdev->acl_mtu;
1964		di.acl_pkts = hdev->acl_pkts;
1965		di.sco_mtu  = hdev->sco_mtu;
1966		di.sco_pkts = hdev->sco_pkts;
1967	} else {
1968		di.acl_mtu  = hdev->le_mtu;
1969		di.acl_pkts = hdev->le_pkts;
1970		di.sco_mtu  = 0;
1971		di.sco_pkts = 0;
1972	}
1973	di.link_policy = hdev->link_policy;
1974	di.link_mode   = hdev->link_mode;
1975
1976	memcpy(&di.stat, &hdev->stat, sizeof(di.stat));
1977	memcpy(&di.features, &hdev->features, sizeof(di.features));
1978
1979	if (copy_to_user(arg, &di, sizeof(di)))
1980		err = -EFAULT;
1981
1982	hci_dev_put(hdev);
1983
1984	return err;
1985}
1986
1987/* ---- Interface to HCI drivers ---- */
1988
1989static int hci_rfkill_set_block(void *data, bool blocked)
1990{
1991	struct hci_dev *hdev = data;
1992
1993	BT_DBG("%p name %s blocked %d", hdev, hdev->name, blocked);
1994
1995	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL))
1996		return -EBUSY;
1997
1998	if (blocked) {
1999		hci_dev_set_flag(hdev, HCI_RFKILLED);
2000		if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
2001		    !hci_dev_test_flag(hdev, HCI_CONFIG))
2002			hci_dev_do_close(hdev);
2003	} else {
2004		hci_dev_clear_flag(hdev, HCI_RFKILLED);
2005	}
2006
2007	return 0;
2008}
2009
2010static const struct rfkill_ops hci_rfkill_ops = {
2011	.set_block = hci_rfkill_set_block,
2012};
2013
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2014static void hci_power_on(struct work_struct *work)
2015{
2016	struct hci_dev *hdev = container_of(work, struct hci_dev, power_on);
2017	int err;
2018
2019	BT_DBG("%s", hdev->name);
2020
2021	if (test_bit(HCI_UP, &hdev->flags) &&
2022	    hci_dev_test_flag(hdev, HCI_MGMT) &&
2023	    hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) {
2024		cancel_delayed_work(&hdev->power_off);
2025		hci_req_sync_lock(hdev);
2026		err = __hci_req_hci_power_on(hdev);
2027		hci_req_sync_unlock(hdev);
2028		mgmt_power_on(hdev, err);
2029		return;
2030	}
2031
2032	err = hci_dev_do_open(hdev);
2033	if (err < 0) {
2034		hci_dev_lock(hdev);
2035		mgmt_set_powered_failed(hdev, err);
2036		hci_dev_unlock(hdev);
2037		return;
2038	}
2039
2040	/* During the HCI setup phase, a few error conditions are
2041	 * ignored and they need to be checked now. If they are still
2042	 * valid, it is important to turn the device back off.
2043	 */
2044	if (hci_dev_test_flag(hdev, HCI_RFKILLED) ||
2045	    hci_dev_test_flag(hdev, HCI_UNCONFIGURED) ||
2046	    (hdev->dev_type == HCI_BREDR &&
2047	     !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
2048	     !bacmp(&hdev->static_addr, BDADDR_ANY))) {
2049		hci_dev_clear_flag(hdev, HCI_AUTO_OFF);
2050		hci_dev_do_close(hdev);
2051	} else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) {
2052		queue_delayed_work(hdev->req_workqueue, &hdev->power_off,
2053				   HCI_AUTO_OFF_TIMEOUT);
2054	}
2055
2056	if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) {
2057		/* For unconfigured devices, set the HCI_RAW flag
2058		 * so that userspace can easily identify them.
2059		 */
2060		if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
2061			set_bit(HCI_RAW, &hdev->flags);
2062
2063		/* For fully configured devices, this will send
2064		 * the Index Added event. For unconfigured devices,
2065		 * it will send Unconfigued Index Added event.
2066		 *
2067		 * Devices with HCI_QUIRK_RAW_DEVICE are ignored
2068		 * and no event will be send.
2069		 */
2070		mgmt_index_added(hdev);
2071	} else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) {
2072		/* When the controller is now configured, then it
2073		 * is important to clear the HCI_RAW flag.
2074		 */
2075		if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
2076			clear_bit(HCI_RAW, &hdev->flags);
2077
2078		/* Powering on the controller with HCI_CONFIG set only
2079		 * happens with the transition from unconfigured to
2080		 * configured. This will send the Index Added event.
2081		 */
2082		mgmt_index_added(hdev);
2083	}
2084}
2085
2086static void hci_power_off(struct work_struct *work)
2087{
2088	struct hci_dev *hdev = container_of(work, struct hci_dev,
2089					    power_off.work);
2090
2091	BT_DBG("%s", hdev->name);
2092
2093	hci_dev_do_close(hdev);
2094}
2095
2096static void hci_error_reset(struct work_struct *work)
2097{
2098	struct hci_dev *hdev = container_of(work, struct hci_dev, error_reset);
2099
2100	BT_DBG("%s", hdev->name);
2101
2102	if (hdev->hw_error)
2103		hdev->hw_error(hdev, hdev->hw_error_code);
2104	else
2105		BT_ERR("%s hardware error 0x%2.2x", hdev->name,
2106		       hdev->hw_error_code);
2107
2108	if (hci_dev_do_close(hdev))
2109		return;
2110
2111	hci_dev_do_open(hdev);
2112}
2113
2114void hci_uuids_clear(struct hci_dev *hdev)
2115{
2116	struct bt_uuid *uuid, *tmp;
2117
2118	list_for_each_entry_safe(uuid, tmp, &hdev->uuids, list) {
2119		list_del(&uuid->list);
2120		kfree(uuid);
2121	}
2122}
2123
2124void hci_link_keys_clear(struct hci_dev *hdev)
2125{
2126	struct link_key *key;
2127
2128	list_for_each_entry_rcu(key, &hdev->link_keys, list) {
2129		list_del_rcu(&key->list);
2130		kfree_rcu(key, rcu);
2131	}
2132}
2133
2134void hci_smp_ltks_clear(struct hci_dev *hdev)
2135{
2136	struct smp_ltk *k;
2137
2138	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2139		list_del_rcu(&k->list);
2140		kfree_rcu(k, rcu);
2141	}
 
 
2142}
2143
2144void hci_smp_irks_clear(struct hci_dev *hdev)
2145{
2146	struct smp_irk *k;
2147
2148	list_for_each_entry_rcu(k, &hdev->identity_resolving_keys, list) {
2149		list_del_rcu(&k->list);
2150		kfree_rcu(k, rcu);
 
 
 
 
2151	}
 
 
2152}
2153
2154struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
2155{
2156	struct link_key *k;
2157
2158	rcu_read_lock();
2159	list_for_each_entry_rcu(k, &hdev->link_keys, list) {
2160		if (bacmp(bdaddr, &k->bdaddr) == 0) {
2161			rcu_read_unlock();
 
 
2162			return k;
2163		}
2164	}
2165	rcu_read_unlock();
2166
2167	return NULL;
2168}
2169
2170static bool hci_persistent_key(struct hci_dev *hdev, struct hci_conn *conn,
2171			       u8 key_type, u8 old_key_type)
2172{
2173	/* Legacy key */
2174	if (key_type < 0x03)
2175		return true;
2176
2177	/* Debug keys are insecure so don't store them persistently */
2178	if (key_type == HCI_LK_DEBUG_COMBINATION)
2179		return false;
2180
2181	/* Changed combination key and there's no previous one */
2182	if (key_type == HCI_LK_CHANGED_COMBINATION && old_key_type == 0xff)
2183		return false;
2184
2185	/* Security mode 3 case */
2186	if (!conn)
2187		return true;
2188
2189	/* BR/EDR key derived using SC from an LE link */
2190	if (conn->type == LE_LINK)
2191		return true;
2192
2193	/* Neither local nor remote side had no-bonding as requirement */
2194	if (conn->auth_type > 0x01 && conn->remote_auth > 0x01)
2195		return true;
2196
2197	/* Local side had dedicated bonding as requirement */
2198	if (conn->auth_type == 0x02 || conn->auth_type == 0x03)
2199		return true;
2200
2201	/* Remote side had dedicated bonding as requirement */
2202	if (conn->remote_auth == 0x02 || conn->remote_auth == 0x03)
2203		return true;
2204
2205	/* If none of the above criteria match, then don't store the key
2206	 * persistently */
2207	return false;
2208}
2209
2210static u8 ltk_role(u8 type)
2211{
2212	if (type == SMP_LTK)
2213		return HCI_ROLE_MASTER;
2214
2215	return HCI_ROLE_SLAVE;
2216}
2217
2218struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2219			     u8 addr_type, u8 role)
2220{
2221	struct smp_ltk *k;
2222
2223	rcu_read_lock();
2224	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2225		if (addr_type != k->bdaddr_type || bacmp(bdaddr, &k->bdaddr))
2226			continue;
2227
2228		if (smp_ltk_is_sc(k) || ltk_role(k->type) == role) {
2229			rcu_read_unlock();
 
2230			return k;
2231		}
2232	}
2233	rcu_read_unlock();
2234
2235	return NULL;
2236}
2237
2238struct smp_irk *hci_find_irk_by_rpa(struct hci_dev *hdev, bdaddr_t *rpa)
2239{
2240	struct smp_irk *irk;
2241
2242	rcu_read_lock();
2243	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2244		if (!bacmp(&irk->rpa, rpa)) {
2245			rcu_read_unlock();
2246			return irk;
2247		}
2248	}
2249
2250	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2251		if (smp_irk_matches(hdev, irk->val, rpa)) {
2252			bacpy(&irk->rpa, rpa);
2253			rcu_read_unlock();
2254			return irk;
2255		}
2256	}
2257	rcu_read_unlock();
2258
2259	return NULL;
2260}
 
2261
2262struct smp_irk *hci_find_irk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr,
2263				     u8 addr_type)
2264{
2265	struct smp_irk *irk;
2266
2267	/* Identity Address must be public or static random */
2268	if (addr_type == ADDR_LE_DEV_RANDOM && (bdaddr->b[5] & 0xc0) != 0xc0)
2269		return NULL;
2270
2271	rcu_read_lock();
2272	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2273		if (addr_type == irk->addr_type &&
2274		    bacmp(bdaddr, &irk->bdaddr) == 0) {
2275			rcu_read_unlock();
2276			return irk;
2277		}
2278	}
2279	rcu_read_unlock();
2280
2281	return NULL;
2282}
 
2283
2284struct link_key *hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn,
2285				  bdaddr_t *bdaddr, u8 *val, u8 type,
2286				  u8 pin_len, bool *persistent)
2287{
2288	struct link_key *key, *old_key;
2289	u8 old_key_type;
2290
2291	old_key = hci_find_link_key(hdev, bdaddr);
2292	if (old_key) {
2293		old_key_type = old_key->type;
2294		key = old_key;
2295	} else {
2296		old_key_type = conn ? conn->key_type : 0xff;
2297		key = kzalloc(sizeof(*key), GFP_KERNEL);
2298		if (!key)
2299			return NULL;
2300		list_add_rcu(&key->list, &hdev->link_keys);
2301	}
2302
2303	BT_DBG("%s key for %pMR type %u", hdev->name, bdaddr, type);
2304
2305	/* Some buggy controller combinations generate a changed
2306	 * combination key for legacy pairing even when there's no
2307	 * previous key */
2308	if (type == HCI_LK_CHANGED_COMBINATION &&
2309	    (!conn || conn->remote_auth == 0xff) && old_key_type == 0xff) {
 
2310		type = HCI_LK_COMBINATION;
2311		if (conn)
2312			conn->key_type = type;
2313	}
2314
2315	bacpy(&key->bdaddr, bdaddr);
2316	memcpy(key->val, val, HCI_LINK_KEY_SIZE);
2317	key->pin_len = pin_len;
2318
2319	if (type == HCI_LK_CHANGED_COMBINATION)
2320		key->type = old_key_type;
2321	else
2322		key->type = type;
2323
2324	if (persistent)
2325		*persistent = hci_persistent_key(hdev, conn, type,
2326						 old_key_type);
2327
2328	return key;
2329}
2330
2331struct smp_ltk *hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2332			    u8 addr_type, u8 type, u8 authenticated,
2333			    u8 tk[16], u8 enc_size, __le16 ediv, __le64 rand)
2334{
2335	struct smp_ltk *key, *old_key;
2336	u8 role = ltk_role(type);
2337
2338	old_key = hci_find_ltk(hdev, bdaddr, addr_type, role);
2339	if (old_key)
2340		key = old_key;
2341	else {
2342		key = kzalloc(sizeof(*key), GFP_KERNEL);
2343		if (!key)
2344			return NULL;
2345		list_add_rcu(&key->list, &hdev->long_term_keys);
2346	}
2347
2348	bacpy(&key->bdaddr, bdaddr);
2349	key->bdaddr_type = addr_type;
2350	memcpy(key->val, tk, sizeof(key->val));
2351	key->authenticated = authenticated;
2352	key->ediv = ediv;
2353	key->rand = rand;
2354	key->enc_size = enc_size;
2355	key->type = type;
2356
2357	return key;
2358}
2359
2360struct smp_irk *hci_add_irk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2361			    u8 addr_type, u8 val[16], bdaddr_t *rpa)
2362{
2363	struct smp_irk *irk;
2364
2365	irk = hci_find_irk_by_addr(hdev, bdaddr, addr_type);
2366	if (!irk) {
2367		irk = kzalloc(sizeof(*irk), GFP_KERNEL);
2368		if (!irk)
2369			return NULL;
2370
2371		bacpy(&irk->bdaddr, bdaddr);
2372		irk->addr_type = addr_type;
2373
2374		list_add_rcu(&irk->list, &hdev->identity_resolving_keys);
 
 
 
 
 
 
 
 
 
2375	}
2376
2377	memcpy(irk->val, val, 16);
2378	bacpy(&irk->rpa, rpa);
 
 
 
 
 
 
 
 
 
 
 
2379
2380	return irk;
2381}
2382
2383int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
2384{
2385	struct link_key *key;
2386
2387	key = hci_find_link_key(hdev, bdaddr);
2388	if (!key)
2389		return -ENOENT;
2390
2391	BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2392
2393	list_del_rcu(&key->list);
2394	kfree_rcu(key, rcu);
2395
2396	return 0;
2397}
2398
2399int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type)
2400{
2401	struct smp_ltk *k;
2402	int removed = 0;
2403
2404	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2405		if (bacmp(bdaddr, &k->bdaddr) || k->bdaddr_type != bdaddr_type)
2406			continue;
2407
2408		BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2409
2410		list_del_rcu(&k->list);
2411		kfree_rcu(k, rcu);
2412		removed++;
2413	}
2414
2415	return removed ? 0 : -ENOENT;
2416}
2417
2418void hci_remove_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type)
2419{
2420	struct smp_irk *k;
2421
2422	list_for_each_entry_rcu(k, &hdev->identity_resolving_keys, list) {
2423		if (bacmp(bdaddr, &k->bdaddr) || k->addr_type != addr_type)
2424			continue;
2425
2426		BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2427
2428		list_del_rcu(&k->list);
2429		kfree_rcu(k, rcu);
2430	}
2431}
2432
2433bool hci_bdaddr_is_paired(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type)
2434{
2435	struct smp_ltk *k;
2436	struct smp_irk *irk;
2437	u8 addr_type;
2438
2439	if (type == BDADDR_BREDR) {
2440		if (hci_find_link_key(hdev, bdaddr))
2441			return true;
2442		return false;
2443	}
2444
2445	/* Convert to HCI addr type which struct smp_ltk uses */
2446	if (type == BDADDR_LE_PUBLIC)
2447		addr_type = ADDR_LE_DEV_PUBLIC;
2448	else
2449		addr_type = ADDR_LE_DEV_RANDOM;
2450
2451	irk = hci_get_irk(hdev, bdaddr, addr_type);
2452	if (irk) {
2453		bdaddr = &irk->bdaddr;
2454		addr_type = irk->addr_type;
2455	}
2456
2457	rcu_read_lock();
2458	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2459		if (k->bdaddr_type == addr_type && !bacmp(bdaddr, &k->bdaddr)) {
2460			rcu_read_unlock();
2461			return true;
2462		}
2463	}
2464	rcu_read_unlock();
2465
2466	return false;
2467}
2468
2469/* HCI command timer function */
2470static void hci_cmd_timeout(struct work_struct *work)
2471{
2472	struct hci_dev *hdev = container_of(work, struct hci_dev,
2473					    cmd_timer.work);
2474
2475	if (hdev->sent_cmd) {
2476		struct hci_command_hdr *sent = (void *) hdev->sent_cmd->data;
2477		u16 opcode = __le16_to_cpu(sent->opcode);
2478
2479		BT_ERR("%s command 0x%4.4x tx timeout", hdev->name, opcode);
2480	} else {
2481		BT_ERR("%s command tx timeout", hdev->name);
2482	}
2483
 
2484	atomic_set(&hdev->cmd_cnt, 1);
2485	queue_work(hdev->workqueue, &hdev->cmd_work);
2486}
2487
2488struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev,
2489					  bdaddr_t *bdaddr, u8 bdaddr_type)
2490{
2491	struct oob_data *data;
2492
2493	list_for_each_entry(data, &hdev->remote_oob_data, list) {
2494		if (bacmp(bdaddr, &data->bdaddr) != 0)
2495			continue;
2496		if (data->bdaddr_type != bdaddr_type)
2497			continue;
2498		return data;
2499	}
2500
2501	return NULL;
2502}
2503
2504int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
2505			       u8 bdaddr_type)
2506{
2507	struct oob_data *data;
2508
2509	data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
2510	if (!data)
2511		return -ENOENT;
2512
2513	BT_DBG("%s removing %pMR (%u)", hdev->name, bdaddr, bdaddr_type);
2514
2515	list_del(&data->list);
2516	kfree(data);
2517
2518	return 0;
2519}
2520
2521void hci_remote_oob_data_clear(struct hci_dev *hdev)
2522{
2523	struct oob_data *data, *n;
2524
2525	list_for_each_entry_safe(data, n, &hdev->remote_oob_data, list) {
2526		list_del(&data->list);
2527		kfree(data);
2528	}
 
 
2529}
2530
2531int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
2532			    u8 bdaddr_type, u8 *hash192, u8 *rand192,
2533			    u8 *hash256, u8 *rand256)
2534{
2535	struct oob_data *data;
2536
2537	data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
 
2538	if (!data) {
2539		data = kmalloc(sizeof(*data), GFP_KERNEL);
2540		if (!data)
2541			return -ENOMEM;
2542
2543		bacpy(&data->bdaddr, bdaddr);
2544		data->bdaddr_type = bdaddr_type;
2545		list_add(&data->list, &hdev->remote_oob_data);
2546	}
2547
2548	if (hash192 && rand192) {
2549		memcpy(data->hash192, hash192, sizeof(data->hash192));
2550		memcpy(data->rand192, rand192, sizeof(data->rand192));
2551		if (hash256 && rand256)
2552			data->present = 0x03;
2553	} else {
2554		memset(data->hash192, 0, sizeof(data->hash192));
2555		memset(data->rand192, 0, sizeof(data->rand192));
2556		if (hash256 && rand256)
2557			data->present = 0x02;
2558		else
2559			data->present = 0x00;
2560	}
2561
2562	if (hash256 && rand256) {
2563		memcpy(data->hash256, hash256, sizeof(data->hash256));
2564		memcpy(data->rand256, rand256, sizeof(data->rand256));
2565	} else {
2566		memset(data->hash256, 0, sizeof(data->hash256));
2567		memset(data->rand256, 0, sizeof(data->rand256));
2568		if (hash192 && rand192)
2569			data->present = 0x01;
2570	}
2571
2572	BT_DBG("%s for %pMR", hdev->name, bdaddr);
2573
2574	return 0;
2575}
2576
2577/* This function requires the caller holds hdev->lock */
2578struct adv_info *hci_find_adv_instance(struct hci_dev *hdev, u8 instance)
2579{
2580	struct adv_info *adv_instance;
2581
2582	list_for_each_entry(adv_instance, &hdev->adv_instances, list) {
2583		if (adv_instance->instance == instance)
2584			return adv_instance;
2585	}
2586
2587	return NULL;
2588}
2589
2590/* This function requires the caller holds hdev->lock */
2591struct adv_info *hci_get_next_instance(struct hci_dev *hdev, u8 instance)
2592{
2593	struct adv_info *cur_instance;
2594
2595	cur_instance = hci_find_adv_instance(hdev, instance);
2596	if (!cur_instance)
2597		return NULL;
2598
2599	if (cur_instance == list_last_entry(&hdev->adv_instances,
2600					    struct adv_info, list))
2601		return list_first_entry(&hdev->adv_instances,
2602						 struct adv_info, list);
2603	else
2604		return list_next_entry(cur_instance, list);
2605}
2606
2607/* This function requires the caller holds hdev->lock */
2608int hci_remove_adv_instance(struct hci_dev *hdev, u8 instance)
2609{
2610	struct adv_info *adv_instance;
2611
2612	adv_instance = hci_find_adv_instance(hdev, instance);
2613	if (!adv_instance)
2614		return -ENOENT;
2615
2616	BT_DBG("%s removing %dMR", hdev->name, instance);
2617
2618	if (hdev->cur_adv_instance == instance) {
2619		if (hdev->adv_instance_timeout) {
2620			cancel_delayed_work(&hdev->adv_instance_expire);
2621			hdev->adv_instance_timeout = 0;
2622		}
2623		hdev->cur_adv_instance = 0x00;
2624	}
2625
2626	list_del(&adv_instance->list);
2627	kfree(adv_instance);
2628
2629	hdev->adv_instance_cnt--;
2630
2631	return 0;
2632}
2633
2634/* This function requires the caller holds hdev->lock */
2635void hci_adv_instances_clear(struct hci_dev *hdev)
2636{
2637	struct adv_info *adv_instance, *n;
2638
2639	if (hdev->adv_instance_timeout) {
2640		cancel_delayed_work(&hdev->adv_instance_expire);
2641		hdev->adv_instance_timeout = 0;
2642	}
2643
2644	list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list) {
2645		list_del(&adv_instance->list);
2646		kfree(adv_instance);
2647	}
2648
2649	hdev->adv_instance_cnt = 0;
2650	hdev->cur_adv_instance = 0x00;
2651}
2652
2653/* This function requires the caller holds hdev->lock */
2654int hci_add_adv_instance(struct hci_dev *hdev, u8 instance, u32 flags,
2655			 u16 adv_data_len, u8 *adv_data,
2656			 u16 scan_rsp_len, u8 *scan_rsp_data,
2657			 u16 timeout, u16 duration)
2658{
2659	struct adv_info *adv_instance;
 
2660
2661	adv_instance = hci_find_adv_instance(hdev, instance);
2662	if (adv_instance) {
2663		memset(adv_instance->adv_data, 0,
2664		       sizeof(adv_instance->adv_data));
2665		memset(adv_instance->scan_rsp_data, 0,
2666		       sizeof(adv_instance->scan_rsp_data));
2667	} else {
2668		if (hdev->adv_instance_cnt >= HCI_MAX_ADV_INSTANCES ||
2669		    instance < 1 || instance > HCI_MAX_ADV_INSTANCES)
2670			return -EOVERFLOW;
2671
2672		adv_instance = kzalloc(sizeof(*adv_instance), GFP_KERNEL);
2673		if (!adv_instance)
2674			return -ENOMEM;
2675
2676		adv_instance->pending = true;
2677		adv_instance->instance = instance;
2678		list_add(&adv_instance->list, &hdev->adv_instances);
2679		hdev->adv_instance_cnt++;
2680	}
2681
2682	adv_instance->flags = flags;
2683	adv_instance->adv_data_len = adv_data_len;
2684	adv_instance->scan_rsp_len = scan_rsp_len;
2685
2686	if (adv_data_len)
2687		memcpy(adv_instance->adv_data, adv_data, adv_data_len);
2688
2689	if (scan_rsp_len)
2690		memcpy(adv_instance->scan_rsp_data,
2691		       scan_rsp_data, scan_rsp_len);
2692
2693	adv_instance->timeout = timeout;
2694	adv_instance->remaining_time = timeout;
2695
2696	if (duration == 0)
2697		adv_instance->duration = HCI_DEFAULT_ADV_DURATION;
2698	else
2699		adv_instance->duration = duration;
2700
2701	BT_DBG("%s for %dMR", hdev->name, instance);
2702
2703	return 0;
 
 
2704}
2705
2706struct bdaddr_list *hci_bdaddr_list_lookup(struct list_head *bdaddr_list,
2707					 bdaddr_t *bdaddr, u8 type)
2708{
2709	struct bdaddr_list *b;
 
2710
2711	list_for_each_entry(b, bdaddr_list, list) {
2712		if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2713			return b;
 
 
2714	}
2715
2716	return NULL;
2717}
 
 
 
2718
2719void hci_bdaddr_list_clear(struct list_head *bdaddr_list)
2720{
2721	struct bdaddr_list *b, *n;
2722
2723	list_for_each_entry_safe(b, n, bdaddr_list, list) {
2724		list_del(&b->list);
2725		kfree(b);
2726	}
2727}
2728
2729int hci_bdaddr_list_add(struct list_head *list, bdaddr_t *bdaddr, u8 type)
2730{
2731	struct bdaddr_list *entry;
2732
2733	if (!bacmp(bdaddr, BDADDR_ANY))
2734		return -EBADF;
2735
2736	if (hci_bdaddr_list_lookup(list, bdaddr, type))
2737		return -EEXIST;
2738
2739	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
2740	if (!entry)
2741		return -ENOMEM;
2742
2743	bacpy(&entry->bdaddr, bdaddr);
2744	entry->bdaddr_type = type;
2745
2746	list_add(&entry->list, list);
2747
2748	return 0;
2749}
2750
2751int hci_bdaddr_list_del(struct list_head *list, bdaddr_t *bdaddr, u8 type)
2752{
2753	struct bdaddr_list *entry;
2754
2755	if (!bacmp(bdaddr, BDADDR_ANY)) {
2756		hci_bdaddr_list_clear(list);
2757		return 0;
2758	}
2759
2760	entry = hci_bdaddr_list_lookup(list, bdaddr, type);
2761	if (!entry)
2762		return -ENOENT;
2763
2764	list_del(&entry->list);
2765	kfree(entry);
2766
2767	return 0;
2768}
2769
2770/* This function requires the caller holds hdev->lock */
2771struct hci_conn_params *hci_conn_params_lookup(struct hci_dev *hdev,
2772					       bdaddr_t *addr, u8 addr_type)
2773{
2774	struct hci_conn_params *params;
2775
2776	list_for_each_entry(params, &hdev->le_conn_params, list) {
2777		if (bacmp(&params->addr, addr) == 0 &&
2778		    params->addr_type == addr_type) {
2779			return params;
2780		}
2781	}
2782
2783	return NULL;
2784}
2785
2786/* This function requires the caller holds hdev->lock */
2787struct hci_conn_params *hci_pend_le_action_lookup(struct list_head *list,
2788						  bdaddr_t *addr, u8 addr_type)
2789{
2790	struct hci_conn_params *param;
2791
2792	list_for_each_entry(param, list, action) {
2793		if (bacmp(&param->addr, addr) == 0 &&
2794		    param->addr_type == addr_type)
2795			return param;
2796	}
2797
2798	return NULL;
2799}
2800
2801/* This function requires the caller holds hdev->lock */
2802struct hci_conn_params *hci_conn_params_add(struct hci_dev *hdev,
2803					    bdaddr_t *addr, u8 addr_type)
2804{
2805	struct hci_conn_params *params;
2806
2807	params = hci_conn_params_lookup(hdev, addr, addr_type);
2808	if (params)
2809		return params;
2810
2811	params = kzalloc(sizeof(*params), GFP_KERNEL);
2812	if (!params) {
2813		BT_ERR("Out of memory");
2814		return NULL;
2815	}
2816
2817	bacpy(&params->addr, addr);
2818	params->addr_type = addr_type;
2819
2820	list_add(&params->list, &hdev->le_conn_params);
2821	INIT_LIST_HEAD(&params->action);
2822
2823	params->conn_min_interval = hdev->le_conn_min_interval;
2824	params->conn_max_interval = hdev->le_conn_max_interval;
2825	params->conn_latency = hdev->le_conn_latency;
2826	params->supervision_timeout = hdev->le_supv_timeout;
2827	params->auto_connect = HCI_AUTO_CONN_DISABLED;
2828
2829	BT_DBG("addr %pMR (type %u)", addr, addr_type);
2830
2831	return params;
2832}
2833
2834static void hci_conn_params_free(struct hci_conn_params *params)
 
2835{
2836	if (params->conn) {
2837		hci_conn_drop(params->conn);
2838		hci_conn_put(params->conn);
2839	}
2840
2841	list_del(&params->action);
2842	list_del(&params->list);
2843	kfree(params);
2844}
2845
2846/* This function requires the caller holds hdev->lock */
2847void hci_conn_params_del(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type)
2848{
2849	struct hci_conn_params *params;
2850
2851	params = hci_conn_params_lookup(hdev, addr, addr_type);
2852	if (!params)
2853		return;
 
 
 
2854
2855	hci_conn_params_free(params);
2856
2857	hci_update_background_scan(hdev);
 
2858
2859	BT_DBG("addr %pMR (type %u)", addr, addr_type);
2860}
2861
2862/* This function requires the caller holds hdev->lock */
2863void hci_conn_params_clear_disabled(struct hci_dev *hdev)
2864{
2865	struct hci_conn_params *params, *tmp;
2866
2867	list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list) {
2868		if (params->auto_connect != HCI_AUTO_CONN_DISABLED)
2869			continue;
2870
2871		/* If trying to estabilish one time connection to disabled
2872		 * device, leave the params, but mark them as just once.
2873		 */
2874		if (params->explicit_connect) {
2875			params->auto_connect = HCI_AUTO_CONN_EXPLICIT;
2876			continue;
2877		}
2878
2879		list_del(&params->list);
2880		kfree(params);
2881	}
2882
2883	BT_DBG("All LE disabled connection parameters were removed");
2884}
2885
2886/* This function requires the caller holds hdev->lock */
2887static void hci_conn_params_clear_all(struct hci_dev *hdev)
2888{
2889	struct hci_conn_params *params, *tmp;
2890
2891	list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list)
2892		hci_conn_params_free(params);
2893
2894	BT_DBG("All LE connection parameters were removed");
2895}
2896
2897/* Copy the Identity Address of the controller.
2898 *
2899 * If the controller has a public BD_ADDR, then by default use that one.
2900 * If this is a LE only controller without a public address, default to
2901 * the static random address.
2902 *
2903 * For debugging purposes it is possible to force controllers with a
2904 * public address to use the static random address instead.
2905 *
2906 * In case BR/EDR has been disabled on a dual-mode controller and
2907 * userspace has configured a static address, then that address
2908 * becomes the identity address instead of the public BR/EDR address.
2909 */
2910void hci_copy_identity_address(struct hci_dev *hdev, bdaddr_t *bdaddr,
2911			       u8 *bdaddr_type)
2912{
2913	if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
2914	    !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
2915	    (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
2916	     bacmp(&hdev->static_addr, BDADDR_ANY))) {
2917		bacpy(bdaddr, &hdev->static_addr);
2918		*bdaddr_type = ADDR_LE_DEV_RANDOM;
2919	} else {
2920		bacpy(bdaddr, &hdev->bdaddr);
2921		*bdaddr_type = ADDR_LE_DEV_PUBLIC;
2922	}
2923}
2924
2925/* Alloc HCI device */
2926struct hci_dev *hci_alloc_dev(void)
2927{
2928	struct hci_dev *hdev;
2929
2930	hdev = kzalloc(sizeof(*hdev), GFP_KERNEL);
2931	if (!hdev)
2932		return NULL;
2933
 
2934	hdev->pkt_type  = (HCI_DM1 | HCI_DH1 | HCI_HV1);
2935	hdev->esco_type = (ESCO_HV1);
2936	hdev->link_mode = (HCI_LM_ACCEPT);
2937	hdev->num_iac = 0x01;		/* One IAC support is mandatory */
2938	hdev->io_capability = 0x03;	/* No Input No Output */
2939	hdev->manufacturer = 0xffff;	/* Default to internal use */
2940	hdev->inq_tx_power = HCI_TX_POWER_INVALID;
2941	hdev->adv_tx_power = HCI_TX_POWER_INVALID;
2942	hdev->adv_instance_cnt = 0;
2943	hdev->cur_adv_instance = 0x00;
2944	hdev->adv_instance_timeout = 0;
2945
 
2946	hdev->sniff_max_interval = 800;
2947	hdev->sniff_min_interval = 80;
2948
2949	hdev->le_adv_channel_map = 0x07;
2950	hdev->le_adv_min_interval = 0x0800;
2951	hdev->le_adv_max_interval = 0x0800;
2952	hdev->le_scan_interval = 0x0060;
2953	hdev->le_scan_window = 0x0030;
2954	hdev->le_conn_min_interval = 0x0028;
2955	hdev->le_conn_max_interval = 0x0038;
2956	hdev->le_conn_latency = 0x0000;
2957	hdev->le_supv_timeout = 0x002a;
2958	hdev->le_def_tx_len = 0x001b;
2959	hdev->le_def_tx_time = 0x0148;
2960	hdev->le_max_tx_len = 0x001b;
2961	hdev->le_max_tx_time = 0x0148;
2962	hdev->le_max_rx_len = 0x001b;
2963	hdev->le_max_rx_time = 0x0148;
2964
2965	hdev->rpa_timeout = HCI_DEFAULT_RPA_TIMEOUT;
2966	hdev->discov_interleaved_timeout = DISCOV_INTERLEAVED_TIMEOUT;
2967	hdev->conn_info_min_age = DEFAULT_CONN_INFO_MIN_AGE;
2968	hdev->conn_info_max_age = DEFAULT_CONN_INFO_MAX_AGE;
2969
2970	mutex_init(&hdev->lock);
2971	mutex_init(&hdev->req_lock);
2972
2973	INIT_LIST_HEAD(&hdev->mgmt_pending);
2974	INIT_LIST_HEAD(&hdev->blacklist);
2975	INIT_LIST_HEAD(&hdev->whitelist);
2976	INIT_LIST_HEAD(&hdev->uuids);
2977	INIT_LIST_HEAD(&hdev->link_keys);
2978	INIT_LIST_HEAD(&hdev->long_term_keys);
2979	INIT_LIST_HEAD(&hdev->identity_resolving_keys);
2980	INIT_LIST_HEAD(&hdev->remote_oob_data);
2981	INIT_LIST_HEAD(&hdev->le_white_list);
2982	INIT_LIST_HEAD(&hdev->le_conn_params);
2983	INIT_LIST_HEAD(&hdev->pend_le_conns);
2984	INIT_LIST_HEAD(&hdev->pend_le_reports);
2985	INIT_LIST_HEAD(&hdev->conn_hash.list);
2986	INIT_LIST_HEAD(&hdev->adv_instances);
2987
2988	INIT_WORK(&hdev->rx_work, hci_rx_work);
2989	INIT_WORK(&hdev->cmd_work, hci_cmd_work);
2990	INIT_WORK(&hdev->tx_work, hci_tx_work);
2991	INIT_WORK(&hdev->power_on, hci_power_on);
2992	INIT_WORK(&hdev->error_reset, hci_error_reset);
2993
2994	INIT_DELAYED_WORK(&hdev->power_off, hci_power_off);
2995
2996	skb_queue_head_init(&hdev->rx_q);
2997	skb_queue_head_init(&hdev->cmd_q);
2998	skb_queue_head_init(&hdev->raw_q);
2999
3000	init_waitqueue_head(&hdev->req_wait_q);
3001
3002	INIT_DELAYED_WORK(&hdev->cmd_timer, hci_cmd_timeout);
 
3003
3004	hci_request_setup(hdev);
 
3005
3006	hci_init_sysfs(hdev);
3007	discovery_init(hdev);
3008
3009	return hdev;
3010}
3011EXPORT_SYMBOL(hci_alloc_dev);
3012
3013/* Free HCI device */
3014void hci_free_dev(struct hci_dev *hdev)
3015{
3016	/* will free via device release */
3017	put_device(&hdev->dev);
3018}
3019EXPORT_SYMBOL(hci_free_dev);
3020
3021/* Register HCI device */
3022int hci_register_dev(struct hci_dev *hdev)
3023{
3024	int id, error;
3025
3026	if (!hdev->open || !hdev->close || !hdev->send)
3027		return -EINVAL;
3028
3029	/* Do not allow HCI_AMP devices to register at index 0,
3030	 * so the index can be used as the AMP controller ID.
3031	 */
3032	switch (hdev->dev_type) {
3033	case HCI_BREDR:
3034		id = ida_simple_get(&hci_index_ida, 0, 0, GFP_KERNEL);
3035		break;
3036	case HCI_AMP:
3037		id = ida_simple_get(&hci_index_ida, 1, 0, GFP_KERNEL);
3038		break;
3039	default:
3040		return -EINVAL;
3041	}
3042
3043	if (id < 0)
3044		return id;
3045
3046	sprintf(hdev->name, "hci%d", id);
3047	hdev->id = id;
 
3048
3049	BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
 
 
3050
3051	hdev->workqueue = alloc_workqueue("%s", WQ_HIGHPRI | WQ_UNBOUND |
3052					  WQ_MEM_RECLAIM, 1, hdev->name);
3053	if (!hdev->workqueue) {
3054		error = -ENOMEM;
3055		goto err;
3056	}
3057
3058	hdev->req_workqueue = alloc_workqueue("%s", WQ_HIGHPRI | WQ_UNBOUND |
3059					      WQ_MEM_RECLAIM, 1, hdev->name);
3060	if (!hdev->req_workqueue) {
3061		destroy_workqueue(hdev->workqueue);
3062		error = -ENOMEM;
3063		goto err;
3064	}
3065
3066	if (!IS_ERR_OR_NULL(bt_debugfs))
3067		hdev->debugfs = debugfs_create_dir(hdev->name, bt_debugfs);
3068
3069	dev_set_name(&hdev->dev, "%s", hdev->name);
 
 
3070
3071	error = device_add(&hdev->dev);
3072	if (error < 0)
3073		goto err_wqueue;
 
3074
3075	hci_leds_init(hdev);
3076
3077	hdev->rfkill = rfkill_alloc(hdev->name, &hdev->dev,
3078				    RFKILL_TYPE_BLUETOOTH, &hci_rfkill_ops,
3079				    hdev);
3080	if (hdev->rfkill) {
3081		if (rfkill_register(hdev->rfkill) < 0) {
3082			rfkill_destroy(hdev->rfkill);
3083			hdev->rfkill = NULL;
3084		}
3085	}
3086
3087	if (hdev->rfkill && rfkill_blocked(hdev->rfkill))
3088		hci_dev_set_flag(hdev, HCI_RFKILLED);
3089
3090	hci_dev_set_flag(hdev, HCI_SETUP);
3091	hci_dev_set_flag(hdev, HCI_AUTO_OFF);
3092
3093	if (hdev->dev_type == HCI_BREDR) {
3094		/* Assume BR/EDR support until proven otherwise (such as
3095		 * through reading supported features during init.
3096		 */
3097		hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
3098	}
3099
3100	write_lock(&hci_dev_list_lock);
3101	list_add(&hdev->list, &hci_dev_list);
3102	write_unlock(&hci_dev_list_lock);
3103
3104	/* Devices that are marked for raw-only usage are unconfigured
3105	 * and should not be included in normal operation.
3106	 */
3107	if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
3108		hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
3109
3110	hci_sock_dev_event(hdev, HCI_DEV_REG);
3111	hci_dev_hold(hdev);
3112
3113	queue_work(hdev->req_workqueue, &hdev->power_on);
3114
3115	return id;
3116
3117err_wqueue:
3118	destroy_workqueue(hdev->workqueue);
3119	destroy_workqueue(hdev->req_workqueue);
3120err:
3121	ida_simple_remove(&hci_index_ida, hdev->id);
3122
3123	return error;
3124}
3125EXPORT_SYMBOL(hci_register_dev);
3126
3127/* Unregister HCI device */
3128void hci_unregister_dev(struct hci_dev *hdev)
3129{
3130	int id;
3131
3132	BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
3133
3134	hci_dev_set_flag(hdev, HCI_UNREGISTER);
3135
3136	id = hdev->id;
3137
3138	write_lock(&hci_dev_list_lock);
3139	list_del(&hdev->list);
3140	write_unlock(&hci_dev_list_lock);
3141
3142	hci_dev_do_close(hdev);
3143
3144	cancel_work_sync(&hdev->power_on);
 
3145
3146	if (!test_bit(HCI_INIT, &hdev->flags) &&
3147	    !hci_dev_test_flag(hdev, HCI_SETUP) &&
3148	    !hci_dev_test_flag(hdev, HCI_CONFIG)) {
3149		hci_dev_lock(hdev);
3150		mgmt_index_removed(hdev);
3151		hci_dev_unlock(hdev);
3152	}
3153
3154	/* mgmt_index_removed should take care of emptying the
3155	 * pending list */
3156	BUG_ON(!list_empty(&hdev->mgmt_pending));
3157
3158	hci_sock_dev_event(hdev, HCI_DEV_UNREG);
3159
3160	if (hdev->rfkill) {
3161		rfkill_unregister(hdev->rfkill);
3162		rfkill_destroy(hdev->rfkill);
3163	}
3164
3165	device_del(&hdev->dev);
3166
3167	debugfs_remove_recursive(hdev->debugfs);
 
3168
3169	destroy_workqueue(hdev->workqueue);
3170	destroy_workqueue(hdev->req_workqueue);
3171
3172	hci_dev_lock(hdev);
3173	hci_bdaddr_list_clear(&hdev->blacklist);
3174	hci_bdaddr_list_clear(&hdev->whitelist);
3175	hci_uuids_clear(hdev);
3176	hci_link_keys_clear(hdev);
3177	hci_smp_ltks_clear(hdev);
3178	hci_smp_irks_clear(hdev);
3179	hci_remote_oob_data_clear(hdev);
3180	hci_adv_instances_clear(hdev);
3181	hci_bdaddr_list_clear(&hdev->le_white_list);
3182	hci_conn_params_clear_all(hdev);
3183	hci_discovery_filter_clear(hdev);
3184	hci_dev_unlock(hdev);
3185
3186	hci_dev_put(hdev);
3187
3188	ida_simple_remove(&hci_index_ida, id);
3189}
3190EXPORT_SYMBOL(hci_unregister_dev);
3191
3192/* Suspend HCI device */
3193int hci_suspend_dev(struct hci_dev *hdev)
3194{
3195	hci_sock_dev_event(hdev, HCI_DEV_SUSPEND);
3196	return 0;
3197}
3198EXPORT_SYMBOL(hci_suspend_dev);
3199
3200/* Resume HCI device */
3201int hci_resume_dev(struct hci_dev *hdev)
3202{
3203	hci_sock_dev_event(hdev, HCI_DEV_RESUME);
3204	return 0;
3205}
3206EXPORT_SYMBOL(hci_resume_dev);
3207
3208/* Reset HCI device */
3209int hci_reset_dev(struct hci_dev *hdev)
3210{
3211	const u8 hw_err[] = { HCI_EV_HARDWARE_ERROR, 0x01, 0x00 };
3212	struct sk_buff *skb;
3213
3214	skb = bt_skb_alloc(3, GFP_ATOMIC);
3215	if (!skb)
3216		return -ENOMEM;
3217
3218	hci_skb_pkt_type(skb) = HCI_EVENT_PKT;
3219	memcpy(skb_put(skb, 3), hw_err, 3);
3220
3221	/* Send Hardware Error to upper stack */
3222	return hci_recv_frame(hdev, skb);
3223}
3224EXPORT_SYMBOL(hci_reset_dev);
3225
3226/* Receive frame from HCI drivers */
3227int hci_recv_frame(struct hci_dev *hdev, struct sk_buff *skb)
3228{
 
3229	if (!hdev || (!test_bit(HCI_UP, &hdev->flags)
3230		      && !test_bit(HCI_INIT, &hdev->flags))) {
3231		kfree_skb(skb);
3232		return -ENXIO;
3233	}
3234
3235	if (hci_skb_pkt_type(skb) != HCI_EVENT_PKT &&
3236	    hci_skb_pkt_type(skb) != HCI_ACLDATA_PKT &&
3237	    hci_skb_pkt_type(skb) != HCI_SCODATA_PKT) {
3238		kfree_skb(skb);
3239		return -EINVAL;
3240	}
3241
3242	/* Incoming skb */
3243	bt_cb(skb)->incoming = 1;
3244
3245	/* Time stamp */
3246	__net_timestamp(skb);
3247
 
3248	skb_queue_tail(&hdev->rx_q, skb);
3249	queue_work(hdev->workqueue, &hdev->rx_work);
3250
3251	return 0;
3252}
3253EXPORT_SYMBOL(hci_recv_frame);
3254
3255/* Receive diagnostic message from HCI drivers */
3256int hci_recv_diag(struct hci_dev *hdev, struct sk_buff *skb)
3257{
3258	/* Mark as diagnostic packet */
3259	hci_skb_pkt_type(skb) = HCI_DIAG_PKT;
 
 
 
3260
3261	/* Time stamp */
3262	__net_timestamp(skb);
 
3263
3264	skb_queue_tail(&hdev->rx_q, skb);
3265	queue_work(hdev->workqueue, &hdev->rx_work);
3266
3267	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3268}
3269EXPORT_SYMBOL(hci_recv_diag);
3270
3271/* ---- Interface to upper protocols ---- */
3272
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3273int hci_register_cb(struct hci_cb *cb)
3274{
3275	BT_DBG("%p name %s", cb, cb->name);
3276
3277	mutex_lock(&hci_cb_list_lock);
3278	list_add_tail(&cb->list, &hci_cb_list);
3279	mutex_unlock(&hci_cb_list_lock);
3280
3281	return 0;
3282}
3283EXPORT_SYMBOL(hci_register_cb);
3284
3285int hci_unregister_cb(struct hci_cb *cb)
3286{
3287	BT_DBG("%p name %s", cb, cb->name);
3288
3289	mutex_lock(&hci_cb_list_lock);
3290	list_del(&cb->list);
3291	mutex_unlock(&hci_cb_list_lock);
3292
3293	return 0;
3294}
3295EXPORT_SYMBOL(hci_unregister_cb);
3296
3297static void hci_send_frame(struct hci_dev *hdev, struct sk_buff *skb)
3298{
3299	int err;
3300
3301	BT_DBG("%s type %d len %d", hdev->name, hci_skb_pkt_type(skb),
3302	       skb->len);
3303
3304	/* Time stamp */
3305	__net_timestamp(skb);
3306
3307	/* Send copy to monitor */
3308	hci_send_to_monitor(hdev, skb);
3309
3310	if (atomic_read(&hdev->promisc)) {
3311		/* Send copy to the sockets */
3312		hci_send_to_sock(hdev, skb);
 
 
3313	}
3314
3315	/* Get rid of skb owner, prior to sending to the driver. */
3316	skb_orphan(skb);
3317
3318	if (!test_bit(HCI_RUNNING, &hdev->flags)) {
3319		kfree_skb(skb);
3320		return;
3321	}
3322
3323	err = hdev->send(hdev, skb);
3324	if (err < 0) {
3325		BT_ERR("%s sending frame failed (%d)", hdev->name, err);
3326		kfree_skb(skb);
3327	}
3328}
3329
3330/* Send HCI command */
3331int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen,
3332		 const void *param)
3333{
 
 
3334	struct sk_buff *skb;
3335
3336	BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen);
3337
3338	skb = hci_prepare_cmd(hdev, opcode, plen, param);
3339	if (!skb) {
3340		BT_ERR("%s no memory for command", hdev->name);
3341		return -ENOMEM;
3342	}
3343
3344	/* Stand-alone HCI commands must be flagged as
3345	 * single-command requests.
3346	 */
3347	bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
 
 
 
 
 
 
 
 
 
 
3348
3349	skb_queue_tail(&hdev->cmd_q, skb);
3350	queue_work(hdev->workqueue, &hdev->cmd_work);
3351
3352	return 0;
3353}
3354
3355/* Get data from the previously sent command */
3356void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode)
3357{
3358	struct hci_command_hdr *hdr;
3359
3360	if (!hdev->sent_cmd)
3361		return NULL;
3362
3363	hdr = (void *) hdev->sent_cmd->data;
3364
3365	if (hdr->opcode != cpu_to_le16(opcode))
3366		return NULL;
3367
3368	BT_DBG("%s opcode 0x%4.4x", hdev->name, opcode);
3369
3370	return hdev->sent_cmd->data + HCI_COMMAND_HDR_SIZE;
3371}
3372
3373/* Send HCI command and wait for command commplete event */
3374struct sk_buff *hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
3375			     const void *param, u32 timeout)
3376{
3377	struct sk_buff *skb;
3378
3379	if (!test_bit(HCI_UP, &hdev->flags))
3380		return ERR_PTR(-ENETDOWN);
3381
3382	bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen);
3383
3384	hci_req_sync_lock(hdev);
3385	skb = __hci_cmd_sync(hdev, opcode, plen, param, timeout);
3386	hci_req_sync_unlock(hdev);
3387
3388	return skb;
3389}
3390EXPORT_SYMBOL(hci_cmd_sync);
3391
3392/* Send ACL data */
3393static void hci_add_acl_hdr(struct sk_buff *skb, __u16 handle, __u16 flags)
3394{
3395	struct hci_acl_hdr *hdr;
3396	int len = skb->len;
3397
3398	skb_push(skb, HCI_ACL_HDR_SIZE);
3399	skb_reset_transport_header(skb);
3400	hdr = (struct hci_acl_hdr *)skb_transport_header(skb);
3401	hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
3402	hdr->dlen   = cpu_to_le16(len);
3403}
3404
3405static void hci_queue_acl(struct hci_chan *chan, struct sk_buff_head *queue,
3406			  struct sk_buff *skb, __u16 flags)
3407{
3408	struct hci_conn *conn = chan->conn;
3409	struct hci_dev *hdev = conn->hdev;
3410	struct sk_buff *list;
3411
3412	skb->len = skb_headlen(skb);
3413	skb->data_len = 0;
3414
3415	hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
3416
3417	switch (hdev->dev_type) {
3418	case HCI_BREDR:
3419		hci_add_acl_hdr(skb, conn->handle, flags);
3420		break;
3421	case HCI_AMP:
3422		hci_add_acl_hdr(skb, chan->handle, flags);
3423		break;
3424	default:
3425		BT_ERR("%s unknown dev_type %d", hdev->name, hdev->dev_type);
3426		return;
3427	}
3428
3429	list = skb_shinfo(skb)->frag_list;
3430	if (!list) {
3431		/* Non fragmented */
3432		BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
3433
3434		skb_queue_tail(queue, skb);
3435	} else {
3436		/* Fragmented */
3437		BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3438
3439		skb_shinfo(skb)->frag_list = NULL;
3440
3441		/* Queue all fragments atomically. We need to use spin_lock_bh
3442		 * here because of 6LoWPAN links, as there this function is
3443		 * called from softirq and using normal spin lock could cause
3444		 * deadlocks.
3445		 */
3446		spin_lock_bh(&queue->lock);
3447
3448		__skb_queue_tail(queue, skb);
3449
3450		flags &= ~ACL_START;
3451		flags |= ACL_CONT;
3452		do {
3453			skb = list; list = list->next;
3454
3455			hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
 
3456			hci_add_acl_hdr(skb, conn->handle, flags);
3457
3458			BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3459
3460			__skb_queue_tail(queue, skb);
3461		} while (list);
3462
3463		spin_unlock_bh(&queue->lock);
3464	}
3465}
3466
3467void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags)
3468{
3469	struct hci_dev *hdev = chan->conn->hdev;
3470
3471	BT_DBG("%s chan %p flags 0x%4.4x", hdev->name, chan, flags);
3472
3473	hci_queue_acl(chan, &chan->data_q, skb, flags);
3474
3475	queue_work(hdev->workqueue, &hdev->tx_work);
3476}
 
3477
3478/* Send SCO data */
3479void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb)
3480{
3481	struct hci_dev *hdev = conn->hdev;
3482	struct hci_sco_hdr hdr;
3483
3484	BT_DBG("%s len %d", hdev->name, skb->len);
3485
3486	hdr.handle = cpu_to_le16(conn->handle);
3487	hdr.dlen   = skb->len;
3488
3489	skb_push(skb, HCI_SCO_HDR_SIZE);
3490	skb_reset_transport_header(skb);
3491	memcpy(skb_transport_header(skb), &hdr, HCI_SCO_HDR_SIZE);
3492
3493	hci_skb_pkt_type(skb) = HCI_SCODATA_PKT;
 
3494
3495	skb_queue_tail(&conn->data_q, skb);
3496	queue_work(hdev->workqueue, &hdev->tx_work);
3497}
 
3498
3499/* ---- HCI TX task (outgoing data) ---- */
3500
3501/* HCI Connection scheduler */
3502static struct hci_conn *hci_low_sent(struct hci_dev *hdev, __u8 type,
3503				     int *quote)
3504{
3505	struct hci_conn_hash *h = &hdev->conn_hash;
3506	struct hci_conn *conn = NULL, *c;
3507	unsigned int num = 0, min = ~0;
 
3508
3509	/* We don't have to lock device here. Connections are always
3510	 * added and removed with TX task disabled. */
 
 
 
3511
3512	rcu_read_lock();
3513
3514	list_for_each_entry_rcu(c, &h->list, list) {
3515		if (c->type != type || skb_queue_empty(&c->data_q))
3516			continue;
3517
3518		if (c->state != BT_CONNECTED && c->state != BT_CONFIG)
3519			continue;
3520
3521		num++;
3522
3523		if (c->sent < min) {
3524			min  = c->sent;
3525			conn = c;
3526		}
3527
3528		if (hci_conn_num(hdev, type) == num)
3529			break;
3530	}
3531
3532	rcu_read_unlock();
3533
3534	if (conn) {
3535		int cnt, q;
3536
3537		switch (conn->type) {
3538		case ACL_LINK:
3539			cnt = hdev->acl_cnt;
3540			break;
3541		case SCO_LINK:
3542		case ESCO_LINK:
3543			cnt = hdev->sco_cnt;
3544			break;
3545		case LE_LINK:
3546			cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3547			break;
3548		default:
3549			cnt = 0;
3550			BT_ERR("Unknown link type");
3551		}
3552
3553		q = cnt / num;
3554		*quote = q ? q : 1;
3555	} else
3556		*quote = 0;
3557
3558	BT_DBG("conn %p quote %d", conn, *quote);
3559	return conn;
3560}
3561
3562static void hci_link_tx_to(struct hci_dev *hdev, __u8 type)
3563{
3564	struct hci_conn_hash *h = &hdev->conn_hash;
3565	struct hci_conn *c;
 
3566
3567	BT_ERR("%s link tx timeout", hdev->name);
3568
3569	rcu_read_lock();
3570
3571	/* Kill stalled connections */
3572	list_for_each_entry_rcu(c, &h->list, list) {
 
3573		if (c->type == type && c->sent) {
3574			BT_ERR("%s killing stalled connection %pMR",
3575			       hdev->name, &c->dst);
3576			hci_disconnect(c, HCI_ERROR_REMOTE_USER_TERM);
3577		}
3578	}
3579
3580	rcu_read_unlock();
3581}
3582
3583static struct hci_chan *hci_chan_sent(struct hci_dev *hdev, __u8 type,
3584				      int *quote)
3585{
3586	struct hci_conn_hash *h = &hdev->conn_hash;
3587	struct hci_chan *chan = NULL;
3588	unsigned int num = 0, min = ~0, cur_prio = 0;
3589	struct hci_conn *conn;
3590	int cnt, q, conn_num = 0;
3591
3592	BT_DBG("%s", hdev->name);
3593
3594	rcu_read_lock();
3595
3596	list_for_each_entry_rcu(conn, &h->list, list) {
3597		struct hci_chan *tmp;
3598
3599		if (conn->type != type)
3600			continue;
3601
3602		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3603			continue;
3604
3605		conn_num++;
3606
3607		list_for_each_entry_rcu(tmp, &conn->chan_list, list) {
3608			struct sk_buff *skb;
3609
3610			if (skb_queue_empty(&tmp->data_q))
3611				continue;
3612
3613			skb = skb_peek(&tmp->data_q);
3614			if (skb->priority < cur_prio)
3615				continue;
3616
3617			if (skb->priority > cur_prio) {
3618				num = 0;
3619				min = ~0;
3620				cur_prio = skb->priority;
3621			}
3622
3623			num++;
3624
3625			if (conn->sent < min) {
3626				min  = conn->sent;
3627				chan = tmp;
3628			}
3629		}
3630
3631		if (hci_conn_num(hdev, type) == conn_num)
3632			break;
3633	}
3634
3635	rcu_read_unlock();
3636
3637	if (!chan)
3638		return NULL;
3639
3640	switch (chan->conn->type) {
3641	case ACL_LINK:
3642		cnt = hdev->acl_cnt;
3643		break;
3644	case AMP_LINK:
3645		cnt = hdev->block_cnt;
3646		break;
3647	case SCO_LINK:
3648	case ESCO_LINK:
3649		cnt = hdev->sco_cnt;
3650		break;
3651	case LE_LINK:
3652		cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3653		break;
3654	default:
3655		cnt = 0;
3656		BT_ERR("Unknown link type");
3657	}
3658
3659	q = cnt / num;
3660	*quote = q ? q : 1;
3661	BT_DBG("chan %p quote %d", chan, *quote);
3662	return chan;
3663}
3664
3665static void hci_prio_recalculate(struct hci_dev *hdev, __u8 type)
3666{
3667	struct hci_conn_hash *h = &hdev->conn_hash;
3668	struct hci_conn *conn;
3669	int num = 0;
 
3670
3671	BT_DBG("%s", hdev->name);
3672
3673	rcu_read_lock();
3674
3675	list_for_each_entry_rcu(conn, &h->list, list) {
3676		struct hci_chan *chan;
3677
3678		if (conn->type != type)
3679			continue;
3680
3681		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3682			continue;
3683
3684		num++;
3685
3686		list_for_each_entry_rcu(chan, &conn->chan_list, list) {
3687			struct sk_buff *skb;
3688
3689			if (chan->sent) {
3690				chan->sent = 0;
3691				continue;
3692			}
3693
3694			if (skb_queue_empty(&chan->data_q))
3695				continue;
3696
3697			skb = skb_peek(&chan->data_q);
3698			if (skb->priority >= HCI_PRIO_MAX - 1)
3699				continue;
3700
3701			skb->priority = HCI_PRIO_MAX - 1;
3702
3703			BT_DBG("chan %p skb %p promoted to %d", chan, skb,
3704			       skb->priority);
3705		}
3706
3707		if (hci_conn_num(hdev, type) == num)
3708			break;
3709	}
3710
3711	rcu_read_unlock();
3712
3713}
3714
3715static inline int __get_blocks(struct hci_dev *hdev, struct sk_buff *skb)
3716{
3717	/* Calculate count of blocks used by this packet */
3718	return DIV_ROUND_UP(skb->len - HCI_ACL_HDR_SIZE, hdev->block_len);
3719}
3720
3721static void __check_timeout(struct hci_dev *hdev, unsigned int cnt)
3722{
3723	if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
3724		/* ACL tx timeout must be longer than maximum
3725		 * link supervision timeout (40.9 seconds) */
3726		if (!cnt && time_after(jiffies, hdev->acl_last_tx +
3727				       HCI_ACL_TX_TIMEOUT))
3728			hci_link_tx_to(hdev, ACL_LINK);
3729	}
3730}
3731
3732static void hci_sched_acl_pkt(struct hci_dev *hdev)
3733{
3734	unsigned int cnt = hdev->acl_cnt;
3735	struct hci_chan *chan;
3736	struct sk_buff *skb;
3737	int quote;
3738
3739	__check_timeout(hdev, cnt);
3740
3741	while (hdev->acl_cnt &&
3742	       (chan = hci_chan_sent(hdev, ACL_LINK, &quote))) {
3743		u32 priority = (skb_peek(&chan->data_q))->priority;
3744		while (quote-- && (skb = skb_peek(&chan->data_q))) {
3745			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3746			       skb->len, skb->priority);
3747
3748			/* Stop if priority has changed */
3749			if (skb->priority < priority)
3750				break;
3751
3752			skb = skb_dequeue(&chan->data_q);
3753
3754			hci_conn_enter_active_mode(chan->conn,
3755						   bt_cb(skb)->force_active);
3756
3757			hci_send_frame(hdev, skb);
3758			hdev->acl_last_tx = jiffies;
3759
3760			hdev->acl_cnt--;
3761			chan->sent++;
3762			chan->conn->sent++;
3763		}
3764	}
3765
3766	if (cnt != hdev->acl_cnt)
3767		hci_prio_recalculate(hdev, ACL_LINK);
3768}
3769
3770static void hci_sched_acl_blk(struct hci_dev *hdev)
3771{
3772	unsigned int cnt = hdev->block_cnt;
3773	struct hci_chan *chan;
3774	struct sk_buff *skb;
3775	int quote;
3776	u8 type;
3777
3778	__check_timeout(hdev, cnt);
3779
3780	BT_DBG("%s", hdev->name);
3781
3782	if (hdev->dev_type == HCI_AMP)
3783		type = AMP_LINK;
3784	else
3785		type = ACL_LINK;
3786
3787	while (hdev->block_cnt > 0 &&
3788	       (chan = hci_chan_sent(hdev, type, &quote))) {
3789		u32 priority = (skb_peek(&chan->data_q))->priority;
3790		while (quote > 0 && (skb = skb_peek(&chan->data_q))) {
3791			int blocks;
3792
3793			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3794			       skb->len, skb->priority);
3795
3796			/* Stop if priority has changed */
3797			if (skb->priority < priority)
3798				break;
3799
3800			skb = skb_dequeue(&chan->data_q);
3801
3802			blocks = __get_blocks(hdev, skb);
3803			if (blocks > hdev->block_cnt)
3804				return;
3805
3806			hci_conn_enter_active_mode(chan->conn,
3807						   bt_cb(skb)->force_active);
3808
3809			hci_send_frame(hdev, skb);
3810			hdev->acl_last_tx = jiffies;
3811
3812			hdev->block_cnt -= blocks;
3813			quote -= blocks;
3814
3815			chan->sent += blocks;
3816			chan->conn->sent += blocks;
3817		}
3818	}
3819
3820	if (cnt != hdev->block_cnt)
3821		hci_prio_recalculate(hdev, type);
3822}
3823
3824static void hci_sched_acl(struct hci_dev *hdev)
3825{
3826	BT_DBG("%s", hdev->name);
3827
3828	/* No ACL link over BR/EDR controller */
3829	if (!hci_conn_num(hdev, ACL_LINK) && hdev->dev_type == HCI_BREDR)
3830		return;
3831
3832	/* No AMP link over AMP controller */
3833	if (!hci_conn_num(hdev, AMP_LINK) && hdev->dev_type == HCI_AMP)
3834		return;
3835
3836	switch (hdev->flow_ctl_mode) {
3837	case HCI_FLOW_CTL_MODE_PACKET_BASED:
3838		hci_sched_acl_pkt(hdev);
3839		break;
3840
3841	case HCI_FLOW_CTL_MODE_BLOCK_BASED:
3842		hci_sched_acl_blk(hdev);
3843		break;
3844	}
3845}
3846
3847/* Schedule SCO */
3848static void hci_sched_sco(struct hci_dev *hdev)
3849{
3850	struct hci_conn *conn;
3851	struct sk_buff *skb;
3852	int quote;
3853
3854	BT_DBG("%s", hdev->name);
3855
3856	if (!hci_conn_num(hdev, SCO_LINK))
3857		return;
3858
3859	while (hdev->sco_cnt && (conn = hci_low_sent(hdev, SCO_LINK, &quote))) {
3860		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3861			BT_DBG("skb %p len %d", skb, skb->len);
3862			hci_send_frame(hdev, skb);
3863
3864			conn->sent++;
3865			if (conn->sent == ~0)
3866				conn->sent = 0;
3867		}
3868	}
3869}
3870
3871static void hci_sched_esco(struct hci_dev *hdev)
3872{
3873	struct hci_conn *conn;
3874	struct sk_buff *skb;
3875	int quote;
3876
3877	BT_DBG("%s", hdev->name);
3878
3879	if (!hci_conn_num(hdev, ESCO_LINK))
3880		return;
3881
3882	while (hdev->sco_cnt && (conn = hci_low_sent(hdev, ESCO_LINK,
3883						     &quote))) {
3884		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3885			BT_DBG("skb %p len %d", skb, skb->len);
3886			hci_send_frame(hdev, skb);
3887
3888			conn->sent++;
3889			if (conn->sent == ~0)
3890				conn->sent = 0;
3891		}
3892	}
3893}
3894
3895static void hci_sched_le(struct hci_dev *hdev)
3896{
3897	struct hci_chan *chan;
3898	struct sk_buff *skb;
3899	int quote, cnt, tmp;
3900
3901	BT_DBG("%s", hdev->name);
3902
3903	if (!hci_conn_num(hdev, LE_LINK))
3904		return;
3905
3906	if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
3907		/* LE tx timeout must be longer than maximum
3908		 * link supervision timeout (40.9 seconds) */
3909		if (!hdev->le_cnt && hdev->le_pkts &&
3910		    time_after(jiffies, hdev->le_last_tx + HZ * 45))
3911			hci_link_tx_to(hdev, LE_LINK);
3912	}
3913
3914	cnt = hdev->le_pkts ? hdev->le_cnt : hdev->acl_cnt;
3915	tmp = cnt;
3916	while (cnt && (chan = hci_chan_sent(hdev, LE_LINK, &quote))) {
3917		u32 priority = (skb_peek(&chan->data_q))->priority;
3918		while (quote-- && (skb = skb_peek(&chan->data_q))) {
3919			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3920			       skb->len, skb->priority);
3921
3922			/* Stop if priority has changed */
3923			if (skb->priority < priority)
3924				break;
3925
3926			skb = skb_dequeue(&chan->data_q);
3927
3928			hci_send_frame(hdev, skb);
3929			hdev->le_last_tx = jiffies;
3930
3931			cnt--;
3932			chan->sent++;
3933			chan->conn->sent++;
3934		}
3935	}
3936
3937	if (hdev->le_pkts)
3938		hdev->le_cnt = cnt;
3939	else
3940		hdev->acl_cnt = cnt;
3941
3942	if (cnt != tmp)
3943		hci_prio_recalculate(hdev, LE_LINK);
3944}
3945
3946static void hci_tx_work(struct work_struct *work)
3947{
3948	struct hci_dev *hdev = container_of(work, struct hci_dev, tx_work);
3949	struct sk_buff *skb;
3950
 
 
3951	BT_DBG("%s acl %d sco %d le %d", hdev->name, hdev->acl_cnt,
3952	       hdev->sco_cnt, hdev->le_cnt);
3953
3954	if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
3955		/* Schedule queues and send stuff to HCI driver */
3956		hci_sched_acl(hdev);
3957		hci_sched_sco(hdev);
3958		hci_sched_esco(hdev);
3959		hci_sched_le(hdev);
3960	}
 
 
3961
3962	/* Send next queued raw (unknown type) packet */
3963	while ((skb = skb_dequeue(&hdev->raw_q)))
3964		hci_send_frame(hdev, skb);
 
 
3965}
3966
3967/* ----- HCI RX task (incoming data processing) ----- */
3968
3969/* ACL data packet */
3970static void hci_acldata_packet(struct hci_dev *hdev, struct sk_buff *skb)
3971{
3972	struct hci_acl_hdr *hdr = (void *) skb->data;
3973	struct hci_conn *conn;
3974	__u16 handle, flags;
3975
3976	skb_pull(skb, HCI_ACL_HDR_SIZE);
3977
3978	handle = __le16_to_cpu(hdr->handle);
3979	flags  = hci_flags(handle);
3980	handle = hci_handle(handle);
3981
3982	BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len,
3983	       handle, flags);
3984
3985	hdev->stat.acl_rx++;
3986
3987	hci_dev_lock(hdev);
3988	conn = hci_conn_hash_lookup_handle(hdev, handle);
3989	hci_dev_unlock(hdev);
3990
3991	if (conn) {
3992		hci_conn_enter_active_mode(conn, BT_POWER_FORCE_ACTIVE_OFF);
 
 
3993
3994		/* Send to upper protocol */
3995		l2cap_recv_acldata(conn, skb, flags);
3996		return;
 
 
 
3997	} else {
3998		BT_ERR("%s ACL packet for unknown connection handle %d",
3999		       hdev->name, handle);
4000	}
4001
4002	kfree_skb(skb);
4003}
4004
4005/* SCO data packet */
4006static void hci_scodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
4007{
4008	struct hci_sco_hdr *hdr = (void *) skb->data;
4009	struct hci_conn *conn;
4010	__u16 handle;
4011
4012	skb_pull(skb, HCI_SCO_HDR_SIZE);
4013
4014	handle = __le16_to_cpu(hdr->handle);
4015
4016	BT_DBG("%s len %d handle 0x%4.4x", hdev->name, skb->len, handle);
4017
4018	hdev->stat.sco_rx++;
4019
4020	hci_dev_lock(hdev);
4021	conn = hci_conn_hash_lookup_handle(hdev, handle);
4022	hci_dev_unlock(hdev);
4023
4024	if (conn) {
 
 
4025		/* Send to upper protocol */
4026		sco_recv_scodata(conn, skb);
4027		return;
 
 
 
4028	} else {
4029		BT_ERR("%s SCO packet for unknown connection handle %d",
4030		       hdev->name, handle);
4031	}
4032
4033	kfree_skb(skb);
4034}
4035
4036static bool hci_req_is_complete(struct hci_dev *hdev)
4037{
4038	struct sk_buff *skb;
4039
4040	skb = skb_peek(&hdev->cmd_q);
4041	if (!skb)
4042		return true;
4043
4044	return (bt_cb(skb)->hci.req_flags & HCI_REQ_START);
4045}
4046
4047static void hci_resend_last(struct hci_dev *hdev)
4048{
4049	struct hci_command_hdr *sent;
4050	struct sk_buff *skb;
4051	u16 opcode;
4052
4053	if (!hdev->sent_cmd)
4054		return;
4055
4056	sent = (void *) hdev->sent_cmd->data;
4057	opcode = __le16_to_cpu(sent->opcode);
4058	if (opcode == HCI_OP_RESET)
4059		return;
4060
4061	skb = skb_clone(hdev->sent_cmd, GFP_KERNEL);
4062	if (!skb)
4063		return;
4064
4065	skb_queue_head(&hdev->cmd_q, skb);
4066	queue_work(hdev->workqueue, &hdev->cmd_work);
4067}
4068
4069void hci_req_cmd_complete(struct hci_dev *hdev, u16 opcode, u8 status,
4070			  hci_req_complete_t *req_complete,
4071			  hci_req_complete_skb_t *req_complete_skb)
4072{
4073	struct sk_buff *skb;
4074	unsigned long flags;
4075
4076	BT_DBG("opcode 0x%04x status 0x%02x", opcode, status);
4077
4078	/* If the completed command doesn't match the last one that was
4079	 * sent we need to do special handling of it.
4080	 */
4081	if (!hci_sent_cmd_data(hdev, opcode)) {
4082		/* Some CSR based controllers generate a spontaneous
4083		 * reset complete event during init and any pending
4084		 * command will never be completed. In such a case we
4085		 * need to resend whatever was the last sent
4086		 * command.
4087		 */
4088		if (test_bit(HCI_INIT, &hdev->flags) && opcode == HCI_OP_RESET)
4089			hci_resend_last(hdev);
4090
4091		return;
4092	}
4093
4094	/* If the command succeeded and there's still more commands in
4095	 * this request the request is not yet complete.
4096	 */
4097	if (!status && !hci_req_is_complete(hdev))
4098		return;
4099
4100	/* If this was the last command in a request the complete
4101	 * callback would be found in hdev->sent_cmd instead of the
4102	 * command queue (hdev->cmd_q).
4103	 */
4104	if (bt_cb(hdev->sent_cmd)->hci.req_flags & HCI_REQ_SKB) {
4105		*req_complete_skb = bt_cb(hdev->sent_cmd)->hci.req_complete_skb;
4106		return;
4107	}
4108
4109	if (bt_cb(hdev->sent_cmd)->hci.req_complete) {
4110		*req_complete = bt_cb(hdev->sent_cmd)->hci.req_complete;
4111		return;
4112	}
4113
4114	/* Remove all pending commands belonging to this request */
4115	spin_lock_irqsave(&hdev->cmd_q.lock, flags);
4116	while ((skb = __skb_dequeue(&hdev->cmd_q))) {
4117		if (bt_cb(skb)->hci.req_flags & HCI_REQ_START) {
4118			__skb_queue_head(&hdev->cmd_q, skb);
4119			break;
4120		}
4121
4122		if (bt_cb(skb)->hci.req_flags & HCI_REQ_SKB)
4123			*req_complete_skb = bt_cb(skb)->hci.req_complete_skb;
4124		else
4125			*req_complete = bt_cb(skb)->hci.req_complete;
4126		kfree_skb(skb);
4127	}
4128	spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
4129}
4130
4131static void hci_rx_work(struct work_struct *work)
4132{
4133	struct hci_dev *hdev = container_of(work, struct hci_dev, rx_work);
4134	struct sk_buff *skb;
4135
4136	BT_DBG("%s", hdev->name);
4137
4138	while ((skb = skb_dequeue(&hdev->rx_q))) {
4139		/* Send copy to monitor */
4140		hci_send_to_monitor(hdev, skb);
4141
 
4142		if (atomic_read(&hdev->promisc)) {
4143			/* Send copy to the sockets */
4144			hci_send_to_sock(hdev, skb);
4145		}
4146
4147		if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
4148			kfree_skb(skb);
4149			continue;
4150		}
4151
4152		if (test_bit(HCI_INIT, &hdev->flags)) {
4153			/* Don't process data packets in this states. */
4154			switch (hci_skb_pkt_type(skb)) {
4155			case HCI_ACLDATA_PKT:
4156			case HCI_SCODATA_PKT:
4157				kfree_skb(skb);
4158				continue;
4159			}
4160		}
4161
4162		/* Process frame */
4163		switch (hci_skb_pkt_type(skb)) {
4164		case HCI_EVENT_PKT:
4165			BT_DBG("%s Event packet", hdev->name);
4166			hci_event_packet(hdev, skb);
4167			break;
4168
4169		case HCI_ACLDATA_PKT:
4170			BT_DBG("%s ACL data packet", hdev->name);
4171			hci_acldata_packet(hdev, skb);
4172			break;
4173
4174		case HCI_SCODATA_PKT:
4175			BT_DBG("%s SCO data packet", hdev->name);
4176			hci_scodata_packet(hdev, skb);
4177			break;
4178
4179		default:
4180			kfree_skb(skb);
4181			break;
4182		}
4183	}
 
 
4184}
4185
4186static void hci_cmd_work(struct work_struct *work)
4187{
4188	struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_work);
4189	struct sk_buff *skb;
4190
4191	BT_DBG("%s cmd_cnt %d cmd queued %d", hdev->name,
4192	       atomic_read(&hdev->cmd_cnt), skb_queue_len(&hdev->cmd_q));
4193
4194	/* Send queued commands */
4195	if (atomic_read(&hdev->cmd_cnt)) {
4196		skb = skb_dequeue(&hdev->cmd_q);
4197		if (!skb)
4198			return;
4199
4200		kfree_skb(hdev->sent_cmd);
4201
4202		hdev->sent_cmd = skb_clone(skb, GFP_KERNEL);
4203		if (hdev->sent_cmd) {
4204			atomic_dec(&hdev->cmd_cnt);
4205			hci_send_frame(hdev, skb);
4206			if (test_bit(HCI_RESET, &hdev->flags))
4207				cancel_delayed_work(&hdev->cmd_timer);
4208			else
4209				schedule_delayed_work(&hdev->cmd_timer,
4210						      HCI_CMD_TIMEOUT);
4211		} else {
4212			skb_queue_head(&hdev->cmd_q, skb);
4213			queue_work(hdev->workqueue, &hdev->cmd_work);
4214		}
4215	}
4216}
v3.1
   1/*
   2   BlueZ - Bluetooth protocol stack for Linux
   3   Copyright (C) 2000-2001 Qualcomm Incorporated
 
   4
   5   Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
   6
   7   This program is free software; you can redistribute it and/or modify
   8   it under the terms of the GNU General Public License version 2 as
   9   published by the Free Software Foundation;
  10
  11   THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
  12   OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  13   FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
  14   IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
  15   CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
  16   WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  17   ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  18   OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  19
  20   ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
  21   COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
  22   SOFTWARE IS DISCLAIMED.
  23*/
  24
  25/* Bluetooth HCI core. */
  26
  27#include <linux/jiffies.h>
  28#include <linux/module.h>
  29#include <linux/kmod.h>
  30
  31#include <linux/types.h>
  32#include <linux/errno.h>
  33#include <linux/kernel.h>
  34#include <linux/sched.h>
  35#include <linux/slab.h>
  36#include <linux/poll.h>
  37#include <linux/fcntl.h>
  38#include <linux/init.h>
  39#include <linux/skbuff.h>
  40#include <linux/workqueue.h>
  41#include <linux/interrupt.h>
  42#include <linux/notifier.h>
  43#include <linux/rfkill.h>
  44#include <linux/timer.h>
  45#include <linux/crypto.h>
  46#include <net/sock.h>
  47
  48#include <asm/system.h>
  49#include <linux/uaccess.h>
  50#include <asm/unaligned.h>
  51
  52#include <net/bluetooth/bluetooth.h>
  53#include <net/bluetooth/hci_core.h>
 
 
  54
  55#define AUTO_OFF_TIMEOUT 2000
  56
  57static void hci_cmd_task(unsigned long arg);
  58static void hci_rx_task(unsigned long arg);
  59static void hci_tx_task(unsigned long arg);
  60
  61static DEFINE_RWLOCK(hci_task_lock);
 
  62
  63/* HCI device list */
  64LIST_HEAD(hci_dev_list);
  65DEFINE_RWLOCK(hci_dev_list_lock);
  66
  67/* HCI callback list */
  68LIST_HEAD(hci_cb_list);
  69DEFINE_RWLOCK(hci_cb_list_lock);
  70
  71/* HCI protocols */
  72#define HCI_MAX_PROTO	2
  73struct hci_proto *hci_proto[HCI_MAX_PROTO];
  74
  75/* HCI notifiers list */
  76static ATOMIC_NOTIFIER_HEAD(hci_notifier);
 
 
 
 
 
  77
  78/* ---- HCI notifications ---- */
 
 
 
 
  79
  80int hci_register_notifier(struct notifier_block *nb)
 
  81{
  82	return atomic_notifier_chain_register(&hci_notifier, nb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  83}
  84
  85int hci_unregister_notifier(struct notifier_block *nb)
 
 
 
 
 
 
 
 
  86{
  87	return atomic_notifier_chain_unregister(&hci_notifier, nb);
 
 
 
 
 
 
  88}
  89
  90static void hci_notify(struct hci_dev *hdev, int event)
 
  91{
  92	atomic_notifier_call_chain(&hci_notifier, event, hdev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  93}
  94
  95/* ---- HCI requests ---- */
 
 
 
 
 
  96
  97void hci_req_complete(struct hci_dev *hdev, __u16 cmd, int result)
  98{
  99	BT_DBG("%s command 0x%04x result 0x%2.2x", hdev->name, cmd, result);
 
 100
 101	/* If this is the init phase check if the completed command matches
 102	 * the last init command, and if not just return.
 103	 */
 104	if (test_bit(HCI_INIT, &hdev->flags) && hdev->init_last_cmd != cmd)
 105		return;
 
 
 
 106
 107	if (hdev->req_status == HCI_REQ_PEND) {
 108		hdev->req_result = result;
 109		hdev->req_status = HCI_REQ_DONE;
 110		wake_up_interruptible(&hdev->req_wait_q);
 111	}
 112}
 113
 114static void hci_req_cancel(struct hci_dev *hdev, int err)
 115{
 116	BT_DBG("%s err 0x%2.2x", hdev->name, err);
 117
 118	if (hdev->req_status == HCI_REQ_PEND) {
 119		hdev->req_result = err;
 120		hdev->req_status = HCI_REQ_CANCELED;
 121		wake_up_interruptible(&hdev->req_wait_q);
 122	}
 
 
 
 123}
 124
 125/* Execute request and wait for completion. */
 126static int __hci_request(struct hci_dev *hdev, void (*req)(struct hci_dev *hdev, unsigned long opt),
 127					unsigned long opt, __u32 timeout)
 128{
 129	DECLARE_WAITQUEUE(wait, current);
 130	int err = 0;
 
 
 
 
 
 
 
 
 131
 132	BT_DBG("%s start", hdev->name);
 
 133
 134	hdev->req_status = HCI_REQ_PEND;
 
 135
 136	add_wait_queue(&hdev->req_wait_q, &wait);
 137	set_current_state(TASK_INTERRUPTIBLE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 138
 139	req(hdev, opt);
 140	schedule_timeout(timeout);
 
 141
 142	remove_wait_queue(&hdev->req_wait_q, &wait);
 143
 144	if (signal_pending(current))
 145		return -EINTR;
 
 146
 147	switch (hdev->req_status) {
 148	case HCI_REQ_DONE:
 149		err = -bt_to_errno(hdev->req_result);
 150		break;
 151
 152	case HCI_REQ_CANCELED:
 153		err = -hdev->req_result;
 154		break;
 155
 156	default:
 157		err = -ETIMEDOUT;
 158		break;
 159	}
 160
 161	hdev->req_status = hdev->req_result = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 162
 163	BT_DBG("%s end: err %d", hdev->name, err);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 164
 165	return err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 166}
 167
 168static inline int hci_request(struct hci_dev *hdev, void (*req)(struct hci_dev *hdev, unsigned long opt),
 169					unsigned long opt, __u32 timeout)
 170{
 171	int ret;
 
 
 
 
 
 172
 173	if (!test_bit(HCI_UP, &hdev->flags))
 174		return -ENETDOWN;
 175
 176	/* Serialize all requests */
 177	hci_req_lock(hdev);
 178	ret = __hci_request(hdev, req, opt, timeout);
 179	hci_req_unlock(hdev);
 180
 181	return ret;
 
 
 182}
 183
 184static void hci_reset_req(struct hci_dev *hdev, unsigned long opt)
 185{
 186	BT_DBG("%s %ld", hdev->name, opt);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 187
 188	/* Reset device */
 189	set_bit(HCI_RESET, &hdev->flags);
 190	hci_send_cmd(hdev, HCI_OP_RESET, 0, NULL);
 191}
 192
 193static void hci_init_req(struct hci_dev *hdev, unsigned long opt)
 194{
 195	struct hci_cp_delete_stored_link_key cp;
 196	struct sk_buff *skb;
 197	__le16 param;
 198	__u8 flt_type;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 199
 200	BT_DBG("%s %ld", hdev->name, opt);
 
 
 
 201
 202	/* Driver initialization */
 
 
 203
 204	/* Special commands */
 205	while ((skb = skb_dequeue(&hdev->driver_init))) {
 206		bt_cb(skb)->pkt_type = HCI_COMMAND_PKT;
 207		skb->dev = (void *) hdev;
 208
 209		skb_queue_tail(&hdev->cmd_q, skb);
 210		tasklet_schedule(&hdev->cmd_task);
 211	}
 212	skb_queue_purge(&hdev->driver_init);
 213
 214	/* Mandatory initialization */
 
 
 215
 216	/* Reset */
 217	if (!test_bit(HCI_QUIRK_NO_RESET, &hdev->quirks)) {
 218			set_bit(HCI_RESET, &hdev->flags);
 219			hci_send_cmd(hdev, HCI_OP_RESET, 0, NULL);
 220	}
 221
 222	/* Read Local Supported Features */
 223	hci_send_cmd(hdev, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
 224
 225	/* Read Local Version */
 226	hci_send_cmd(hdev, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
 
 227
 228	/* Read Buffer Size (ACL mtu, max pkt, etc.) */
 229	hci_send_cmd(hdev, HCI_OP_READ_BUFFER_SIZE, 0, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 230
 231#if 0
 232	/* Host buffer size */
 233	{
 234		struct hci_cp_host_buffer_size cp;
 235		cp.acl_mtu = cpu_to_le16(HCI_MAX_ACL_SIZE);
 236		cp.sco_mtu = HCI_MAX_SCO_SIZE;
 237		cp.acl_max_pkt = cpu_to_le16(0xffff);
 238		cp.sco_max_pkt = cpu_to_le16(0xffff);
 239		hci_send_cmd(hdev, HCI_OP_HOST_BUFFER_SIZE, sizeof(cp), &cp);
 240	}
 241#endif
 242
 243	/* Read BD Address */
 244	hci_send_cmd(hdev, HCI_OP_READ_BD_ADDR, 0, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 245
 246	/* Read Class of Device */
 247	hci_send_cmd(hdev, HCI_OP_READ_CLASS_OF_DEV, 0, NULL);
 248
 249	/* Read Local Name */
 250	hci_send_cmd(hdev, HCI_OP_READ_LOCAL_NAME, 0, NULL);
 
 251
 252	/* Read Voice Setting */
 253	hci_send_cmd(hdev, HCI_OP_READ_VOICE_SETTING, 0, NULL);
 254
 255	/* Optional initialization */
 
 
 256
 257	/* Clear Event Filters */
 258	flt_type = HCI_FLT_CLEAR_ALL;
 259	hci_send_cmd(hdev, HCI_OP_SET_EVENT_FLT, 1, &flt_type);
 260
 261	/* Connection accept timeout ~20 secs */
 262	param = cpu_to_le16(0x7d00);
 263	hci_send_cmd(hdev, HCI_OP_WRITE_CA_TIMEOUT, 2, &param);
 264
 265	bacpy(&cp.bdaddr, BDADDR_ANY);
 266	cp.delete_all = 1;
 267	hci_send_cmd(hdev, HCI_OP_DELETE_STORED_LINK_KEY, sizeof(cp), &cp);
 268}
 269
 270static void hci_le_init_req(struct hci_dev *hdev, unsigned long opt)
 271{
 272	BT_DBG("%s", hdev->name);
 
 
 
 
 
 
 
 
 
 
 273
 274	/* Read LE buffer size */
 275	hci_send_cmd(hdev, HCI_OP_LE_READ_BUFFER_SIZE, 0, NULL);
 276}
 277
 278static void hci_scan_req(struct hci_dev *hdev, unsigned long opt)
 279{
 280	__u8 scan = opt;
 281
 282	BT_DBG("%s %x", hdev->name, scan);
 283
 284	/* Inquiry and Page scans */
 285	hci_send_cmd(hdev, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
 
 286}
 287
 288static void hci_auth_req(struct hci_dev *hdev, unsigned long opt)
 289{
 290	__u8 auth = opt;
 291
 292	BT_DBG("%s %x", hdev->name, auth);
 293
 294	/* Authentication */
 295	hci_send_cmd(hdev, HCI_OP_WRITE_AUTH_ENABLE, 1, &auth);
 
 296}
 297
 298static void hci_encrypt_req(struct hci_dev *hdev, unsigned long opt)
 299{
 300	__u8 encrypt = opt;
 301
 302	BT_DBG("%s %x", hdev->name, encrypt);
 303
 304	/* Encryption */
 305	hci_send_cmd(hdev, HCI_OP_WRITE_ENCRYPT_MODE, 1, &encrypt);
 
 306}
 307
 308static void hci_linkpol_req(struct hci_dev *hdev, unsigned long opt)
 309{
 310	__le16 policy = cpu_to_le16(opt);
 311
 312	BT_DBG("%s %x", hdev->name, policy);
 313
 314	/* Default link policy */
 315	hci_send_cmd(hdev, HCI_OP_WRITE_DEF_LINK_POLICY, 2, &policy);
 
 316}
 317
 318/* Get HCI device by index.
 319 * Device is held on return. */
 320struct hci_dev *hci_dev_get(int index)
 321{
 322	struct hci_dev *hdev = NULL;
 323	struct list_head *p;
 324
 325	BT_DBG("%d", index);
 326
 327	if (index < 0)
 328		return NULL;
 329
 330	read_lock(&hci_dev_list_lock);
 331	list_for_each(p, &hci_dev_list) {
 332		struct hci_dev *d = list_entry(p, struct hci_dev, list);
 333		if (d->id == index) {
 334			hdev = hci_dev_hold(d);
 335			break;
 336		}
 337	}
 338	read_unlock(&hci_dev_list_lock);
 339	return hdev;
 340}
 341
 342/* ---- Inquiry support ---- */
 343static void inquiry_cache_flush(struct hci_dev *hdev)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 344{
 345	struct inquiry_cache *cache = &hdev->inq_cache;
 346	struct inquiry_entry *next  = cache->list, *e;
 347
 348	BT_DBG("cache %p", cache);
 
 
 
 
 
 
 
 349
 350	cache->list = NULL;
 351	while ((e = next)) {
 352		next = e->next;
 353		kfree(e);
 
 
 
 
 
 
 
 354	}
 
 
 355}
 356
 357struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev, bdaddr_t *bdaddr)
 
 358{
 359	struct inquiry_cache *cache = &hdev->inq_cache;
 360	struct inquiry_entry *e;
 361
 362	BT_DBG("cache %p, %s", cache, batostr(bdaddr));
 363
 364	for (e = cache->list; e; e = e->next)
 365		if (!bacmp(&e->data.bdaddr, bdaddr))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 366			break;
 367	return e;
 
 
 
 368}
 369
 370void hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data)
 
 371{
 372	struct inquiry_cache *cache = &hdev->inq_cache;
 373	struct inquiry_entry *ie;
 
 374
 375	BT_DBG("cache %p, %s", cache, batostr(&data->bdaddr));
 
 
 
 
 
 376
 377	ie = hci_inquiry_cache_lookup(hdev, &data->bdaddr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 378	if (!ie) {
 379		/* Entry not in the cache. Add new one. */
 380		ie = kzalloc(sizeof(struct inquiry_entry), GFP_ATOMIC);
 381		if (!ie)
 382			return;
 
 
 
 
 
 
 
 
 383
 384		ie->next = cache->list;
 385		cache->list = ie;
 
 
 
 386	}
 387
 388	memcpy(&ie->data, data, sizeof(*data));
 389	ie->timestamp = jiffies;
 390	cache->timestamp = jiffies;
 
 
 
 
 
 
 391}
 392
 393static int inquiry_cache_dump(struct hci_dev *hdev, int num, __u8 *buf)
 394{
 395	struct inquiry_cache *cache = &hdev->inq_cache;
 396	struct inquiry_info *info = (struct inquiry_info *) buf;
 397	struct inquiry_entry *e;
 398	int copied = 0;
 399
 400	for (e = cache->list; e && copied < num; e = e->next, copied++) {
 401		struct inquiry_data *data = &e->data;
 
 
 
 
 402		bacpy(&info->bdaddr, &data->bdaddr);
 403		info->pscan_rep_mode	= data->pscan_rep_mode;
 404		info->pscan_period_mode	= data->pscan_period_mode;
 405		info->pscan_mode	= data->pscan_mode;
 406		memcpy(info->dev_class, data->dev_class, 3);
 407		info->clock_offset	= data->clock_offset;
 
 408		info++;
 
 409	}
 410
 411	BT_DBG("cache %p, copied %d", cache, copied);
 412	return copied;
 413}
 414
 415static void hci_inq_req(struct hci_dev *hdev, unsigned long opt)
 416{
 417	struct hci_inquiry_req *ir = (struct hci_inquiry_req *) opt;
 
 418	struct hci_cp_inquiry cp;
 419
 420	BT_DBG("%s", hdev->name);
 421
 422	if (test_bit(HCI_INQUIRY, &hdev->flags))
 423		return;
 424
 425	/* Start Inquiry */
 426	memcpy(&cp.lap, &ir->lap, 3);
 427	cp.length  = ir->length;
 428	cp.num_rsp = ir->num_rsp;
 429	hci_send_cmd(hdev, HCI_OP_INQUIRY, sizeof(cp), &cp);
 
 
 430}
 431
 432int hci_inquiry(void __user *arg)
 433{
 434	__u8 __user *ptr = arg;
 435	struct hci_inquiry_req ir;
 436	struct hci_dev *hdev;
 437	int err = 0, do_inquiry = 0, max_rsp;
 438	long timeo;
 439	__u8 *buf;
 440
 441	if (copy_from_user(&ir, ptr, sizeof(ir)))
 442		return -EFAULT;
 443
 444	hdev = hci_dev_get(ir.dev_id);
 445	if (!hdev)
 446		return -ENODEV;
 447
 448	hci_dev_lock_bh(hdev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 449	if (inquiry_cache_age(hdev) > INQUIRY_CACHE_AGE_MAX ||
 450				inquiry_cache_empty(hdev) ||
 451				ir.flags & IREQ_CACHE_FLUSH) {
 452		inquiry_cache_flush(hdev);
 453		do_inquiry = 1;
 454	}
 455	hci_dev_unlock_bh(hdev);
 456
 457	timeo = ir.length * msecs_to_jiffies(2000);
 458
 459	if (do_inquiry) {
 460		err = hci_request(hdev, hci_inq_req, (unsigned long)&ir, timeo);
 
 461		if (err < 0)
 462			goto done;
 
 
 
 
 
 
 
 463	}
 464
 465	/* for unlimited number of responses we will use buffer with 255 entries */
 
 
 466	max_rsp = (ir.num_rsp == 0) ? 255 : ir.num_rsp;
 467
 468	/* cache_dump can't sleep. Therefore we allocate temp buffer and then
 469	 * copy it to the user space.
 470	 */
 471	buf = kmalloc(sizeof(struct inquiry_info) * max_rsp, GFP_KERNEL);
 472	if (!buf) {
 473		err = -ENOMEM;
 474		goto done;
 475	}
 476
 477	hci_dev_lock_bh(hdev);
 478	ir.num_rsp = inquiry_cache_dump(hdev, max_rsp, buf);
 479	hci_dev_unlock_bh(hdev);
 480
 481	BT_DBG("num_rsp %d", ir.num_rsp);
 482
 483	if (!copy_to_user(ptr, &ir, sizeof(ir))) {
 484		ptr += sizeof(ir);
 485		if (copy_to_user(ptr, buf, sizeof(struct inquiry_info) *
 486					ir.num_rsp))
 487			err = -EFAULT;
 488	} else
 489		err = -EFAULT;
 490
 491	kfree(buf);
 492
 493done:
 494	hci_dev_put(hdev);
 495	return err;
 496}
 497
 498/* ---- HCI ioctl helpers ---- */
 499
 500int hci_dev_open(__u16 dev)
 501{
 502	struct hci_dev *hdev;
 503	int ret = 0;
 504
 505	hdev = hci_dev_get(dev);
 506	if (!hdev)
 507		return -ENODEV;
 508
 509	BT_DBG("%s %p", hdev->name, hdev);
 510
 511	hci_req_lock(hdev);
 512
 513	if (hdev->rfkill && rfkill_blocked(hdev->rfkill)) {
 514		ret = -ERFKILL;
 515		goto done;
 516	}
 517
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 518	if (test_bit(HCI_UP, &hdev->flags)) {
 519		ret = -EALREADY;
 520		goto done;
 521	}
 522
 523	if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
 524		set_bit(HCI_RAW, &hdev->flags);
 525
 526	/* Treat all non BR/EDR controllers as raw devices for now */
 527	if (hdev->dev_type != HCI_BREDR)
 528		set_bit(HCI_RAW, &hdev->flags);
 529
 530	if (hdev->open(hdev)) {
 531		ret = -EIO;
 532		goto done;
 533	}
 534
 535	if (!test_bit(HCI_RAW, &hdev->flags)) {
 536		atomic_set(&hdev->cmd_cnt, 1);
 537		set_bit(HCI_INIT, &hdev->flags);
 538		hdev->init_last_cmd = 0;
 
 
 
 
 539
 540		ret = __hci_request(hdev, hci_init_req, 0,
 541					msecs_to_jiffies(HCI_INIT_TIMEOUT));
 542
 543		if (lmp_host_le_capable(hdev))
 544			ret = __hci_request(hdev, hci_le_init_req, 0,
 545					msecs_to_jiffies(HCI_INIT_TIMEOUT));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 546
 547		clear_bit(HCI_INIT, &hdev->flags);
 
 
 
 
 
 
 548	}
 549
 
 
 
 
 
 
 
 
 
 
 550	if (!ret) {
 551		hci_dev_hold(hdev);
 
 552		set_bit(HCI_UP, &hdev->flags);
 553		hci_notify(hdev, HCI_DEV_UP);
 554		if (!test_bit(HCI_SETUP, &hdev->flags))
 555			mgmt_powered(hdev->id, 1);
 
 
 
 
 
 
 
 
 556	} else {
 557		/* Init failed, cleanup */
 558		tasklet_kill(&hdev->rx_task);
 559		tasklet_kill(&hdev->tx_task);
 560		tasklet_kill(&hdev->cmd_task);
 561
 562		skb_queue_purge(&hdev->cmd_q);
 563		skb_queue_purge(&hdev->rx_q);
 564
 565		if (hdev->flush)
 566			hdev->flush(hdev);
 567
 568		if (hdev->sent_cmd) {
 569			kfree_skb(hdev->sent_cmd);
 570			hdev->sent_cmd = NULL;
 571		}
 572
 
 
 
 573		hdev->close(hdev);
 574		hdev->flags = 0;
 575	}
 576
 577done:
 578	hci_req_unlock(hdev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 579	hci_dev_put(hdev);
 580	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 581}
 582
 583static int hci_dev_do_close(struct hci_dev *hdev)
 584{
 
 
 585	BT_DBG("%s %p", hdev->name, hdev);
 586
 587	hci_req_cancel(hdev, ENODEV);
 588	hci_req_lock(hdev);
 
 
 
 
 
 
 
 
 
 
 589
 590	if (!test_and_clear_bit(HCI_UP, &hdev->flags)) {
 591		del_timer_sync(&hdev->cmd_timer);
 592		hci_req_unlock(hdev);
 593		return 0;
 594	}
 595
 596	/* Kill RX and TX tasks */
 597	tasklet_kill(&hdev->rx_task);
 598	tasklet_kill(&hdev->tx_task);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 599
 600	hci_dev_lock_bh(hdev);
 601	inquiry_cache_flush(hdev);
 
 
 
 
 602	hci_conn_hash_flush(hdev);
 603	hci_dev_unlock_bh(hdev);
 604
 605	hci_notify(hdev, HCI_DEV_DOWN);
 
 
 606
 607	if (hdev->flush)
 608		hdev->flush(hdev);
 609
 610	/* Reset device */
 611	skb_queue_purge(&hdev->cmd_q);
 612	atomic_set(&hdev->cmd_cnt, 1);
 613	if (!test_bit(HCI_RAW, &hdev->flags)) {
 
 614		set_bit(HCI_INIT, &hdev->flags);
 615		__hci_request(hdev, hci_reset_req, 0,
 616					msecs_to_jiffies(250));
 617		clear_bit(HCI_INIT, &hdev->flags);
 618	}
 619
 620	/* Kill cmd task */
 621	tasklet_kill(&hdev->cmd_task);
 622
 623	/* Drop queues */
 624	skb_queue_purge(&hdev->rx_q);
 625	skb_queue_purge(&hdev->cmd_q);
 626	skb_queue_purge(&hdev->raw_q);
 627
 628	/* Drop last sent command */
 629	if (hdev->sent_cmd) {
 630		del_timer_sync(&hdev->cmd_timer);
 631		kfree_skb(hdev->sent_cmd);
 632		hdev->sent_cmd = NULL;
 633	}
 634
 
 
 
 635	/* After this point our queues are empty
 636	 * and no tasks are scheduled. */
 637	hdev->close(hdev);
 638
 639	mgmt_powered(hdev->id, 0);
 
 
 640
 641	/* Clear flags */
 642	hdev->flags = 0;
 
 
 
 
 643
 644	hci_req_unlock(hdev);
 645
 646	hci_dev_put(hdev);
 647	return 0;
 648}
 649
 650int hci_dev_close(__u16 dev)
 651{
 652	struct hci_dev *hdev;
 653	int err;
 654
 655	hdev = hci_dev_get(dev);
 656	if (!hdev)
 657		return -ENODEV;
 
 
 
 
 
 
 
 
 
 658	err = hci_dev_do_close(hdev);
 
 
 659	hci_dev_put(hdev);
 660	return err;
 661}
 662
 663int hci_dev_reset(__u16 dev)
 664{
 665	struct hci_dev *hdev;
 666	int ret = 0;
 667
 668	hdev = hci_dev_get(dev);
 669	if (!hdev)
 670		return -ENODEV;
 671
 672	hci_req_lock(hdev);
 673	tasklet_disable(&hdev->tx_task);
 674
 675	if (!test_bit(HCI_UP, &hdev->flags))
 676		goto done;
 677
 678	/* Drop queues */
 679	skb_queue_purge(&hdev->rx_q);
 680	skb_queue_purge(&hdev->cmd_q);
 681
 682	hci_dev_lock_bh(hdev);
 683	inquiry_cache_flush(hdev);
 
 
 
 
 
 684	hci_conn_hash_flush(hdev);
 685	hci_dev_unlock_bh(hdev);
 686
 687	if (hdev->flush)
 688		hdev->flush(hdev);
 689
 690	atomic_set(&hdev->cmd_cnt, 1);
 691	hdev->acl_cnt = 0; hdev->sco_cnt = 0; hdev->le_cnt = 0;
 692
 693	if (!test_bit(HCI_RAW, &hdev->flags))
 694		ret = __hci_request(hdev, hci_reset_req, 0,
 695					msecs_to_jiffies(HCI_INIT_TIMEOUT));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 696
 697done:
 698	tasklet_enable(&hdev->tx_task);
 699	hci_req_unlock(hdev);
 700	hci_dev_put(hdev);
 701	return ret;
 702}
 703
 704int hci_dev_reset_stat(__u16 dev)
 705{
 706	struct hci_dev *hdev;
 707	int ret = 0;
 708
 709	hdev = hci_dev_get(dev);
 710	if (!hdev)
 711		return -ENODEV;
 712
 
 
 
 
 
 
 
 
 
 
 713	memset(&hdev->stat, 0, sizeof(struct hci_dev_stats));
 714
 
 715	hci_dev_put(hdev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 716
 717	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 718}
 719
 720int hci_dev_cmd(unsigned int cmd, void __user *arg)
 721{
 722	struct hci_dev *hdev;
 723	struct hci_dev_req dr;
 724	int err = 0;
 725
 726	if (copy_from_user(&dr, arg, sizeof(dr)))
 727		return -EFAULT;
 728
 729	hdev = hci_dev_get(dr.dev_id);
 730	if (!hdev)
 731		return -ENODEV;
 732
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 733	switch (cmd) {
 734	case HCISETAUTH:
 735		err = hci_request(hdev, hci_auth_req, dr.dev_opt,
 736					msecs_to_jiffies(HCI_INIT_TIMEOUT));
 737		break;
 738
 739	case HCISETENCRYPT:
 740		if (!lmp_encrypt_capable(hdev)) {
 741			err = -EOPNOTSUPP;
 742			break;
 743		}
 744
 745		if (!test_bit(HCI_AUTH, &hdev->flags)) {
 746			/* Auth must be enabled first */
 747			err = hci_request(hdev, hci_auth_req, dr.dev_opt,
 748					msecs_to_jiffies(HCI_INIT_TIMEOUT));
 749			if (err)
 750				break;
 751		}
 752
 753		err = hci_request(hdev, hci_encrypt_req, dr.dev_opt,
 754					msecs_to_jiffies(HCI_INIT_TIMEOUT));
 755		break;
 756
 757	case HCISETSCAN:
 758		err = hci_request(hdev, hci_scan_req, dr.dev_opt,
 759					msecs_to_jiffies(HCI_INIT_TIMEOUT));
 
 
 
 
 
 
 760		break;
 761
 762	case HCISETLINKPOL:
 763		err = hci_request(hdev, hci_linkpol_req, dr.dev_opt,
 764					msecs_to_jiffies(HCI_INIT_TIMEOUT));
 765		break;
 766
 767	case HCISETLINKMODE:
 768		hdev->link_mode = ((__u16) dr.dev_opt) &
 769					(HCI_LM_MASTER | HCI_LM_ACCEPT);
 770		break;
 771
 772	case HCISETPTYPE:
 773		hdev->pkt_type = (__u16) dr.dev_opt;
 774		break;
 775
 776	case HCISETACLMTU:
 777		hdev->acl_mtu  = *((__u16 *) &dr.dev_opt + 1);
 778		hdev->acl_pkts = *((__u16 *) &dr.dev_opt + 0);
 779		break;
 780
 781	case HCISETSCOMTU:
 782		hdev->sco_mtu  = *((__u16 *) &dr.dev_opt + 1);
 783		hdev->sco_pkts = *((__u16 *) &dr.dev_opt + 0);
 784		break;
 785
 786	default:
 787		err = -EINVAL;
 788		break;
 789	}
 790
 
 791	hci_dev_put(hdev);
 792	return err;
 793}
 794
 795int hci_get_dev_list(void __user *arg)
 796{
 
 797	struct hci_dev_list_req *dl;
 798	struct hci_dev_req *dr;
 799	struct list_head *p;
 800	int n = 0, size, err;
 801	__u16 dev_num;
 802
 803	if (get_user(dev_num, (__u16 __user *) arg))
 804		return -EFAULT;
 805
 806	if (!dev_num || dev_num > (PAGE_SIZE * 2) / sizeof(*dr))
 807		return -EINVAL;
 808
 809	size = sizeof(*dl) + dev_num * sizeof(*dr);
 810
 811	dl = kzalloc(size, GFP_KERNEL);
 812	if (!dl)
 813		return -ENOMEM;
 814
 815	dr = dl->dev_req;
 816
 817	read_lock_bh(&hci_dev_list_lock);
 818	list_for_each(p, &hci_dev_list) {
 819		struct hci_dev *hdev;
 820
 821		hdev = list_entry(p, struct hci_dev, list);
 822
 823		hci_del_off_timer(hdev);
 824
 825		if (!test_bit(HCI_MGMT, &hdev->flags))
 826			set_bit(HCI_PAIRABLE, &hdev->flags);
 
 
 827
 828		(dr + n)->dev_id  = hdev->id;
 829		(dr + n)->dev_opt = hdev->flags;
 830
 831		if (++n >= dev_num)
 832			break;
 833	}
 834	read_unlock_bh(&hci_dev_list_lock);
 835
 836	dl->dev_num = n;
 837	size = sizeof(*dl) + n * sizeof(*dr);
 838
 839	err = copy_to_user(arg, dl, size);
 840	kfree(dl);
 841
 842	return err ? -EFAULT : 0;
 843}
 844
 845int hci_get_dev_info(void __user *arg)
 846{
 847	struct hci_dev *hdev;
 848	struct hci_dev_info di;
 
 849	int err = 0;
 850
 851	if (copy_from_user(&di, arg, sizeof(di)))
 852		return -EFAULT;
 853
 854	hdev = hci_dev_get(di.dev_id);
 855	if (!hdev)
 856		return -ENODEV;
 857
 858	hci_del_off_timer(hdev);
 859
 860	if (!test_bit(HCI_MGMT, &hdev->flags))
 861		set_bit(HCI_PAIRABLE, &hdev->flags);
 
 
 
 
 862
 863	strcpy(di.name, hdev->name);
 864	di.bdaddr   = hdev->bdaddr;
 865	di.type     = (hdev->bus & 0x0f) | (hdev->dev_type << 4);
 866	di.flags    = hdev->flags;
 867	di.pkt_type = hdev->pkt_type;
 868	di.acl_mtu  = hdev->acl_mtu;
 869	di.acl_pkts = hdev->acl_pkts;
 870	di.sco_mtu  = hdev->sco_mtu;
 871	di.sco_pkts = hdev->sco_pkts;
 
 
 
 
 
 
 
 872	di.link_policy = hdev->link_policy;
 873	di.link_mode   = hdev->link_mode;
 874
 875	memcpy(&di.stat, &hdev->stat, sizeof(di.stat));
 876	memcpy(&di.features, &hdev->features, sizeof(di.features));
 877
 878	if (copy_to_user(arg, &di, sizeof(di)))
 879		err = -EFAULT;
 880
 881	hci_dev_put(hdev);
 882
 883	return err;
 884}
 885
 886/* ---- Interface to HCI drivers ---- */
 887
 888static int hci_rfkill_set_block(void *data, bool blocked)
 889{
 890	struct hci_dev *hdev = data;
 891
 892	BT_DBG("%p name %s blocked %d", hdev, hdev->name, blocked);
 893
 894	if (!blocked)
 895		return 0;
 896
 897	hci_dev_do_close(hdev);
 
 
 
 
 
 
 
 898
 899	return 0;
 900}
 901
 902static const struct rfkill_ops hci_rfkill_ops = {
 903	.set_block = hci_rfkill_set_block,
 904};
 905
 906/* Alloc HCI device */
 907struct hci_dev *hci_alloc_dev(void)
 908{
 909	struct hci_dev *hdev;
 910
 911	hdev = kzalloc(sizeof(struct hci_dev), GFP_KERNEL);
 912	if (!hdev)
 913		return NULL;
 914
 915	skb_queue_head_init(&hdev->driver_init);
 916
 917	return hdev;
 918}
 919EXPORT_SYMBOL(hci_alloc_dev);
 920
 921/* Free HCI device */
 922void hci_free_dev(struct hci_dev *hdev)
 923{
 924	skb_queue_purge(&hdev->driver_init);
 925
 926	/* will free via device release */
 927	put_device(&hdev->dev);
 928}
 929EXPORT_SYMBOL(hci_free_dev);
 930
 931static void hci_power_on(struct work_struct *work)
 932{
 933	struct hci_dev *hdev = container_of(work, struct hci_dev, power_on);
 
 934
 935	BT_DBG("%s", hdev->name);
 936
 937	if (hci_dev_open(hdev->id) < 0)
 
 
 
 
 
 
 
 938		return;
 
 939
 940	if (test_bit(HCI_AUTO_OFF, &hdev->flags))
 941		mod_timer(&hdev->off_timer,
 942				jiffies + msecs_to_jiffies(AUTO_OFF_TIMEOUT));
 
 
 
 
 943
 944	if (test_and_clear_bit(HCI_SETUP, &hdev->flags))
 945		mgmt_index_added(hdev->id);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 946}
 947
 948static void hci_power_off(struct work_struct *work)
 949{
 950	struct hci_dev *hdev = container_of(work, struct hci_dev, power_off);
 
 951
 952	BT_DBG("%s", hdev->name);
 953
 954	hci_dev_close(hdev->id);
 955}
 956
 957static void hci_auto_off(unsigned long data)
 958{
 959	struct hci_dev *hdev = (struct hci_dev *) data;
 960
 961	BT_DBG("%s", hdev->name);
 962
 963	clear_bit(HCI_AUTO_OFF, &hdev->flags);
 
 
 
 
 964
 965	queue_work(hdev->workqueue, &hdev->power_off);
 
 
 
 966}
 967
 968void hci_del_off_timer(struct hci_dev *hdev)
 969{
 970	BT_DBG("%s", hdev->name);
 971
 972	clear_bit(HCI_AUTO_OFF, &hdev->flags);
 973	del_timer(&hdev->off_timer);
 
 
 974}
 975
 976int hci_uuids_clear(struct hci_dev *hdev)
 977{
 978	struct list_head *p, *n;
 979
 980	list_for_each_safe(p, n, &hdev->uuids) {
 981		struct bt_uuid *uuid;
 
 
 
 982
 983		uuid = list_entry(p, struct bt_uuid, list);
 
 
 984
 985		list_del(p);
 986		kfree(uuid);
 
 987	}
 988
 989	return 0;
 990}
 991
 992int hci_link_keys_clear(struct hci_dev *hdev)
 993{
 994	struct list_head *p, *n;
 995
 996	list_for_each_safe(p, n, &hdev->link_keys) {
 997		struct link_key *key;
 998
 999		key = list_entry(p, struct link_key, list);
1000
1001		list_del(p);
1002		kfree(key);
1003	}
1004
1005	return 0;
1006}
1007
1008struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
1009{
1010	struct list_head *p;
1011
1012	list_for_each(p, &hdev->link_keys) {
1013		struct link_key *k;
1014
1015		k = list_entry(p, struct link_key, list);
1016
1017		if (bacmp(bdaddr, &k->bdaddr) == 0)
1018			return k;
 
1019	}
 
1020
1021	return NULL;
1022}
1023
1024static int hci_persistent_key(struct hci_dev *hdev, struct hci_conn *conn,
1025						u8 key_type, u8 old_key_type)
1026{
1027	/* Legacy key */
1028	if (key_type < 0x03)
1029		return 1;
1030
1031	/* Debug keys are insecure so don't store them persistently */
1032	if (key_type == HCI_LK_DEBUG_COMBINATION)
1033		return 0;
1034
1035	/* Changed combination key and there's no previous one */
1036	if (key_type == HCI_LK_CHANGED_COMBINATION && old_key_type == 0xff)
1037		return 0;
1038
1039	/* Security mode 3 case */
1040	if (!conn)
1041		return 1;
 
 
 
 
1042
1043	/* Neither local nor remote side had no-bonding as requirement */
1044	if (conn->auth_type > 0x01 && conn->remote_auth > 0x01)
1045		return 1;
1046
1047	/* Local side had dedicated bonding as requirement */
1048	if (conn->auth_type == 0x02 || conn->auth_type == 0x03)
1049		return 1;
1050
1051	/* Remote side had dedicated bonding as requirement */
1052	if (conn->remote_auth == 0x02 || conn->remote_auth == 0x03)
1053		return 1;
1054
1055	/* If none of the above criteria match, then don't store the key
1056	 * persistently */
1057	return 0;
1058}
1059
1060struct link_key *hci_find_ltk(struct hci_dev *hdev, __le16 ediv, u8 rand[8])
1061{
1062	struct link_key *k;
 
1063
1064	list_for_each_entry(k, &hdev->link_keys, list) {
1065		struct key_master_id *id;
1066
1067		if (k->type != HCI_LK_SMP_LTK)
1068			continue;
 
 
1069
1070		if (k->dlen != sizeof(*id))
 
 
1071			continue;
1072
1073		id = (void *) &k->data;
1074		if (id->ediv == ediv &&
1075				(memcmp(rand, id->rand, sizeof(id->rand)) == 0))
1076			return k;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1077	}
 
1078
1079	return NULL;
1080}
1081EXPORT_SYMBOL(hci_find_ltk);
1082
1083struct link_key *hci_find_link_key_type(struct hci_dev *hdev,
1084					bdaddr_t *bdaddr, u8 type)
1085{
1086	struct link_key *k;
 
 
 
 
1087
1088	list_for_each_entry(k, &hdev->link_keys, list)
1089		if (k->type == type && bacmp(bdaddr, &k->bdaddr) == 0)
1090			return k;
 
 
 
 
 
 
1091
1092	return NULL;
1093}
1094EXPORT_SYMBOL(hci_find_link_key_type);
1095
1096int hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn, int new_key,
1097				bdaddr_t *bdaddr, u8 *val, u8 type, u8 pin_len)
 
1098{
1099	struct link_key *key, *old_key;
1100	u8 old_key_type, persistent;
1101
1102	old_key = hci_find_link_key(hdev, bdaddr);
1103	if (old_key) {
1104		old_key_type = old_key->type;
1105		key = old_key;
1106	} else {
1107		old_key_type = conn ? conn->key_type : 0xff;
1108		key = kzalloc(sizeof(*key), GFP_ATOMIC);
1109		if (!key)
1110			return -ENOMEM;
1111		list_add(&key->list, &hdev->link_keys);
1112	}
1113
1114	BT_DBG("%s key for %s type %u", hdev->name, batostr(bdaddr), type);
1115
1116	/* Some buggy controller combinations generate a changed
1117	 * combination key for legacy pairing even when there's no
1118	 * previous key */
1119	if (type == HCI_LK_CHANGED_COMBINATION &&
1120					(!conn || conn->remote_auth == 0xff) &&
1121					old_key_type == 0xff) {
1122		type = HCI_LK_COMBINATION;
1123		if (conn)
1124			conn->key_type = type;
1125	}
1126
1127	bacpy(&key->bdaddr, bdaddr);
1128	memcpy(key->val, val, 16);
1129	key->pin_len = pin_len;
1130
1131	if (type == HCI_LK_CHANGED_COMBINATION)
1132		key->type = old_key_type;
1133	else
1134		key->type = type;
1135
1136	if (!new_key)
1137		return 0;
 
1138
1139	persistent = hci_persistent_key(hdev, conn, type, old_key_type);
 
1140
1141	mgmt_new_key(hdev->id, key, persistent);
 
 
 
 
 
1142
1143	if (!persistent) {
1144		list_del(&key->list);
1145		kfree(key);
 
 
 
 
 
1146	}
1147
1148	return 0;
 
 
 
 
 
 
 
 
 
1149}
1150
1151int hci_add_ltk(struct hci_dev *hdev, int new_key, bdaddr_t *bdaddr,
1152			u8 key_size, __le16 ediv, u8 rand[8], u8 ltk[16])
1153{
1154	struct link_key *key, *old_key;
1155	struct key_master_id *id;
1156	u8 old_key_type;
 
 
 
 
1157
1158	BT_DBG("%s addr %s", hdev->name, batostr(bdaddr));
 
1159
1160	old_key = hci_find_link_key_type(hdev, bdaddr, HCI_LK_SMP_LTK);
1161	if (old_key) {
1162		key = old_key;
1163		old_key_type = old_key->type;
1164	} else {
1165		key = kzalloc(sizeof(*key) + sizeof(*id), GFP_ATOMIC);
1166		if (!key)
1167			return -ENOMEM;
1168		list_add(&key->list, &hdev->link_keys);
1169		old_key_type = 0xff;
1170	}
1171
1172	key->dlen = sizeof(*id);
1173
1174	bacpy(&key->bdaddr, bdaddr);
1175	memcpy(key->val, ltk, sizeof(key->val));
1176	key->type = HCI_LK_SMP_LTK;
1177	key->pin_len = key_size;
1178
1179	id = (void *) &key->data;
1180	id->ediv = ediv;
1181	memcpy(id->rand, rand, sizeof(id->rand));
1182
1183	if (new_key)
1184		mgmt_new_key(hdev->id, key, old_key_type);
1185
1186	return 0;
1187}
1188
1189int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
1190{
1191	struct link_key *key;
1192
1193	key = hci_find_link_key(hdev, bdaddr);
1194	if (!key)
1195		return -ENOENT;
1196
1197	BT_DBG("%s removing %s", hdev->name, batostr(bdaddr));
1198
1199	list_del(&key->list);
1200	kfree(key);
1201
1202	return 0;
1203}
1204
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1205/* HCI command timer function */
1206static void hci_cmd_timer(unsigned long arg)
1207{
1208	struct hci_dev *hdev = (void *) arg;
 
 
 
 
 
 
 
 
 
 
1209
1210	BT_ERR("%s command tx timeout", hdev->name);
1211	atomic_set(&hdev->cmd_cnt, 1);
1212	tasklet_schedule(&hdev->cmd_task);
1213}
1214
1215struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev,
1216							bdaddr_t *bdaddr)
1217{
1218	struct oob_data *data;
1219
1220	list_for_each_entry(data, &hdev->remote_oob_data, list)
1221		if (bacmp(bdaddr, &data->bdaddr) == 0)
1222			return data;
 
 
 
 
1223
1224	return NULL;
1225}
1226
1227int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr)
 
1228{
1229	struct oob_data *data;
1230
1231	data = hci_find_remote_oob_data(hdev, bdaddr);
1232	if (!data)
1233		return -ENOENT;
1234
1235	BT_DBG("%s removing %s", hdev->name, batostr(bdaddr));
1236
1237	list_del(&data->list);
1238	kfree(data);
1239
1240	return 0;
1241}
1242
1243int hci_remote_oob_data_clear(struct hci_dev *hdev)
1244{
1245	struct oob_data *data, *n;
1246
1247	list_for_each_entry_safe(data, n, &hdev->remote_oob_data, list) {
1248		list_del(&data->list);
1249		kfree(data);
1250	}
1251
1252	return 0;
1253}
1254
1255int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 *hash,
1256								u8 *randomizer)
 
1257{
1258	struct oob_data *data;
1259
1260	data = hci_find_remote_oob_data(hdev, bdaddr);
1261
1262	if (!data) {
1263		data = kmalloc(sizeof(*data), GFP_ATOMIC);
1264		if (!data)
1265			return -ENOMEM;
1266
1267		bacpy(&data->bdaddr, bdaddr);
 
1268		list_add(&data->list, &hdev->remote_oob_data);
1269	}
1270
1271	memcpy(data->hash, hash, sizeof(data->hash));
1272	memcpy(data->randomizer, randomizer, sizeof(data->randomizer));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1273
1274	BT_DBG("%s for %s", hdev->name, batostr(bdaddr));
1275
1276	return 0;
1277}
1278
1279struct bdaddr_list *hci_blacklist_lookup(struct hci_dev *hdev,
1280						bdaddr_t *bdaddr)
1281{
1282	struct list_head *p;
1283
1284	list_for_each(p, &hdev->blacklist) {
1285		struct bdaddr_list *b;
 
 
1286
1287		b = list_entry(p, struct bdaddr_list, list);
 
1288
1289		if (bacmp(bdaddr, &b->bdaddr) == 0)
1290			return b;
1291	}
 
 
 
 
 
1292
1293	return NULL;
 
 
 
 
 
1294}
1295
1296int hci_blacklist_clear(struct hci_dev *hdev)
 
1297{
1298	struct list_head *p, *n;
1299
1300	list_for_each_safe(p, n, &hdev->blacklist) {
1301		struct bdaddr_list *b;
 
1302
1303		b = list_entry(p, struct bdaddr_list, list);
1304
1305		list_del(p);
1306		kfree(b);
 
 
 
 
1307	}
1308
 
 
 
 
 
1309	return 0;
1310}
1311
1312int hci_blacklist_add(struct hci_dev *hdev, bdaddr_t *bdaddr)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1313{
1314	struct bdaddr_list *entry;
1315	int err;
1316
1317	if (bacmp(bdaddr, BDADDR_ANY) == 0)
1318		return -EBADF;
 
 
 
 
 
 
 
 
1319
1320	hci_dev_lock_bh(hdev);
 
 
1321
1322	if (hci_blacklist_lookup(hdev, bdaddr)) {
1323		err = -EEXIST;
1324		goto err;
 
1325	}
1326
1327	entry = kzalloc(sizeof(struct bdaddr_list), GFP_KERNEL);
1328	if (!entry) {
1329		err = -ENOMEM;
1330		goto err;
1331	}
 
 
 
 
 
1332
1333	bacpy(&entry->bdaddr, bdaddr);
 
1334
1335	list_add(&entry->list, &hdev->blacklist);
 
 
 
1336
1337	err = 0;
1338
1339err:
1340	hci_dev_unlock_bh(hdev);
1341	return err;
1342}
1343
1344int hci_blacklist_del(struct hci_dev *hdev, bdaddr_t *bdaddr)
 
1345{
1346	struct bdaddr_list *entry;
1347	int err = 0;
1348
1349	hci_dev_lock_bh(hdev);
1350
1351	if (bacmp(bdaddr, BDADDR_ANY) == 0) {
1352		hci_blacklist_clear(hdev);
1353		goto done;
1354	}
1355
1356	entry = hci_blacklist_lookup(hdev, bdaddr);
1357	if (!entry) {
1358		err = -ENOENT;
1359		goto done;
1360	}
1361
1362	list_del(&entry->list);
1363	kfree(entry);
 
1364
1365done:
1366	hci_dev_unlock_bh(hdev);
1367	return err;
 
1368}
1369
1370static void hci_clear_adv_cache(unsigned long arg)
1371{
1372	struct hci_dev *hdev = (void *) arg;
1373
1374	hci_dev_lock(hdev);
 
 
 
 
 
 
 
 
 
 
 
1375
1376	hci_adv_entries_clear(hdev);
1377
1378	hci_dev_unlock(hdev);
1379}
1380
1381int hci_adv_entries_clear(struct hci_dev *hdev)
1382{
1383	struct adv_entry *entry, *tmp;
1384
1385	list_for_each_entry_safe(entry, tmp, &hdev->adv_entries, list) {
1386		list_del(&entry->list);
1387		kfree(entry);
1388	}
1389
1390	BT_DBG("%s adv cache cleared", hdev->name);
 
 
 
 
 
1391
1392	return 0;
1393}
1394
1395struct adv_entry *hci_find_adv_entry(struct hci_dev *hdev, bdaddr_t *bdaddr)
1396{
1397	struct adv_entry *entry;
 
 
 
 
 
 
 
 
 
 
 
 
1398
1399	list_for_each_entry(entry, &hdev->adv_entries, list)
1400		if (bacmp(bdaddr, &entry->bdaddr) == 0)
1401			return entry;
 
 
 
 
 
 
 
 
1402
1403	return NULL;
1404}
1405
1406static inline int is_connectable_adv(u8 evt_type)
1407{
1408	if (evt_type == ADV_IND || evt_type == ADV_DIRECT_IND)
1409		return 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1410
1411	return 0;
1412}
1413
1414int hci_add_adv_entry(struct hci_dev *hdev,
1415					struct hci_ev_le_advertising_info *ev)
1416{
1417	struct adv_entry *entry;
 
 
 
1418
1419	if (!is_connectable_adv(ev->evt_type))
1420		return -EINVAL;
 
 
1421
1422	/* Only new entries should be added to adv_entries. So, if
1423	 * bdaddr was found, don't add it. */
1424	if (hci_find_adv_entry(hdev, &ev->bdaddr))
1425		return 0;
1426
1427	entry = kzalloc(sizeof(*entry), GFP_ATOMIC);
1428	if (!entry)
1429		return -ENOMEM;
1430
1431	bacpy(&entry->bdaddr, &ev->bdaddr);
1432	entry->bdaddr_type = ev->bdaddr_type;
1433
1434	list_add(&entry->list, &hdev->adv_entries);
1435
1436	BT_DBG("%s adv entry added: address %s type %u", hdev->name,
1437				batostr(&entry->bdaddr), entry->bdaddr_type);
1438
1439	return 0;
1440}
1441
1442/* Register HCI device */
1443int hci_register_dev(struct hci_dev *hdev)
1444{
1445	struct list_head *head = &hci_dev_list, *p;
1446	int i, id = 0;
 
 
 
1447
1448	BT_DBG("%p name %s bus %d owner %p", hdev, hdev->name,
1449						hdev->bus, hdev->owner);
 
 
 
 
 
1450
1451	if (!hdev->open || !hdev->close || !hdev->destruct)
1452		return -EINVAL;
 
1453
1454	write_lock_bh(&hci_dev_list_lock);
 
1455
1456	/* Find first available device id */
1457	list_for_each(p, &hci_dev_list) {
1458		if (list_entry(p, struct hci_dev, list)->id != id)
1459			break;
1460		head = p; id++;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1461	}
 
1462
1463	sprintf(hdev->name, "hci%d", id);
1464	hdev->id = id;
1465	list_add(&hdev->list, head);
 
1466
1467	atomic_set(&hdev->refcnt, 1);
1468	spin_lock_init(&hdev->lock);
 
1469
1470	hdev->flags = 0;
1471	hdev->pkt_type  = (HCI_DM1 | HCI_DH1 | HCI_HV1);
1472	hdev->esco_type = (ESCO_HV1);
1473	hdev->link_mode = (HCI_LM_ACCEPT);
1474	hdev->io_capability = 0x03; /* No Input No Output */
 
 
 
 
 
 
 
1475
1476	hdev->idle_timeout = 0;
1477	hdev->sniff_max_interval = 800;
1478	hdev->sniff_min_interval = 80;
1479
1480	tasklet_init(&hdev->cmd_task, hci_cmd_task, (unsigned long) hdev);
1481	tasklet_init(&hdev->rx_task, hci_rx_task, (unsigned long) hdev);
1482	tasklet_init(&hdev->tx_task, hci_tx_task, (unsigned long) hdev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1483
1484	skb_queue_head_init(&hdev->rx_q);
1485	skb_queue_head_init(&hdev->cmd_q);
1486	skb_queue_head_init(&hdev->raw_q);
1487
1488	setup_timer(&hdev->cmd_timer, hci_cmd_timer, (unsigned long) hdev);
1489
1490	for (i = 0; i < NUM_REASSEMBLY; i++)
1491		hdev->reassembly[i] = NULL;
1492
1493	init_waitqueue_head(&hdev->req_wait_q);
1494	mutex_init(&hdev->req_lock);
1495
1496	inquiry_cache_init(hdev);
 
1497
1498	hci_conn_hash_init(hdev);
 
 
1499
1500	INIT_LIST_HEAD(&hdev->blacklist);
 
 
 
 
 
 
 
 
 
 
 
1501
1502	INIT_LIST_HEAD(&hdev->uuids);
 
1503
1504	INIT_LIST_HEAD(&hdev->link_keys);
 
 
 
 
 
 
 
 
 
 
 
 
1505
1506	INIT_LIST_HEAD(&hdev->remote_oob_data);
 
1507
1508	INIT_LIST_HEAD(&hdev->adv_entries);
1509	setup_timer(&hdev->adv_timer, hci_clear_adv_cache,
1510						(unsigned long) hdev);
1511
1512	INIT_WORK(&hdev->power_on, hci_power_on);
1513	INIT_WORK(&hdev->power_off, hci_power_off);
1514	setup_timer(&hdev->off_timer, hci_auto_off, (unsigned long) hdev);
1515
1516	memset(&hdev->stat, 0, sizeof(struct hci_dev_stats));
 
 
 
 
 
1517
1518	atomic_set(&hdev->promisc, 0);
 
 
 
 
 
 
1519
1520	write_unlock_bh(&hci_dev_list_lock);
 
1521
1522	hdev->workqueue = create_singlethread_workqueue(hdev->name);
1523	if (!hdev->workqueue)
1524		goto nomem;
1525
1526	hdev->tfm = crypto_alloc_blkcipher("ecb(aes)", 0, CRYPTO_ALG_ASYNC);
1527	if (IS_ERR(hdev->tfm))
1528		BT_INFO("Failed to load transform for ecb(aes): %ld",
1529							PTR_ERR(hdev->tfm));
1530
1531	hci_register_sysfs(hdev);
1532
1533	hdev->rfkill = rfkill_alloc(hdev->name, &hdev->dev,
1534				RFKILL_TYPE_BLUETOOTH, &hci_rfkill_ops, hdev);
 
1535	if (hdev->rfkill) {
1536		if (rfkill_register(hdev->rfkill) < 0) {
1537			rfkill_destroy(hdev->rfkill);
1538			hdev->rfkill = NULL;
1539		}
1540	}
1541
1542	set_bit(HCI_AUTO_OFF, &hdev->flags);
1543	set_bit(HCI_SETUP, &hdev->flags);
1544	queue_work(hdev->workqueue, &hdev->power_on);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1545
1546	hci_notify(hdev, HCI_DEV_REG);
1547
1548	return id;
1549
1550nomem:
1551	write_lock_bh(&hci_dev_list_lock);
1552	list_del(&hdev->list);
1553	write_unlock_bh(&hci_dev_list_lock);
 
1554
1555	return -ENOMEM;
1556}
1557EXPORT_SYMBOL(hci_register_dev);
1558
1559/* Unregister HCI device */
1560int hci_unregister_dev(struct hci_dev *hdev)
1561{
1562	int i;
1563
1564	BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
1565
1566	write_lock_bh(&hci_dev_list_lock);
 
 
 
 
1567	list_del(&hdev->list);
1568	write_unlock_bh(&hci_dev_list_lock);
1569
1570	hci_dev_do_close(hdev);
1571
1572	for (i = 0; i < NUM_REASSEMBLY; i++)
1573		kfree_skb(hdev->reassembly[i]);
1574
1575	if (!test_bit(HCI_INIT, &hdev->flags) &&
1576					!test_bit(HCI_SETUP, &hdev->flags))
1577		mgmt_index_removed(hdev->id);
 
 
 
 
1578
1579	if (!IS_ERR(hdev->tfm))
1580		crypto_free_blkcipher(hdev->tfm);
 
1581
1582	hci_notify(hdev, HCI_DEV_UNREG);
1583
1584	if (hdev->rfkill) {
1585		rfkill_unregister(hdev->rfkill);
1586		rfkill_destroy(hdev->rfkill);
1587	}
1588
1589	hci_unregister_sysfs(hdev);
1590
1591	hci_del_off_timer(hdev);
1592	del_timer(&hdev->adv_timer);
1593
1594	destroy_workqueue(hdev->workqueue);
 
1595
1596	hci_dev_lock_bh(hdev);
1597	hci_blacklist_clear(hdev);
 
1598	hci_uuids_clear(hdev);
1599	hci_link_keys_clear(hdev);
 
 
1600	hci_remote_oob_data_clear(hdev);
1601	hci_adv_entries_clear(hdev);
1602	hci_dev_unlock_bh(hdev);
 
 
 
1603
1604	__hci_dev_put(hdev);
1605
1606	return 0;
1607}
1608EXPORT_SYMBOL(hci_unregister_dev);
1609
1610/* Suspend HCI device */
1611int hci_suspend_dev(struct hci_dev *hdev)
1612{
1613	hci_notify(hdev, HCI_DEV_SUSPEND);
1614	return 0;
1615}
1616EXPORT_SYMBOL(hci_suspend_dev);
1617
1618/* Resume HCI device */
1619int hci_resume_dev(struct hci_dev *hdev)
1620{
1621	hci_notify(hdev, HCI_DEV_RESUME);
1622	return 0;
1623}
1624EXPORT_SYMBOL(hci_resume_dev);
1625
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1626/* Receive frame from HCI drivers */
1627int hci_recv_frame(struct sk_buff *skb)
1628{
1629	struct hci_dev *hdev = (struct hci_dev *) skb->dev;
1630	if (!hdev || (!test_bit(HCI_UP, &hdev->flags)
1631				&& !test_bit(HCI_INIT, &hdev->flags))) {
1632		kfree_skb(skb);
1633		return -ENXIO;
1634	}
1635
1636	/* Incomming skb */
 
 
 
 
 
 
 
1637	bt_cb(skb)->incoming = 1;
1638
1639	/* Time stamp */
1640	__net_timestamp(skb);
1641
1642	/* Queue frame for rx task */
1643	skb_queue_tail(&hdev->rx_q, skb);
1644	tasklet_schedule(&hdev->rx_task);
1645
1646	return 0;
1647}
1648EXPORT_SYMBOL(hci_recv_frame);
1649
1650static int hci_reassembly(struct hci_dev *hdev, int type, void *data,
1651						  int count, __u8 index)
1652{
1653	int len = 0;
1654	int hlen = 0;
1655	int remain = count;
1656	struct sk_buff *skb;
1657	struct bt_skb_cb *scb;
1658
1659	if ((type < HCI_ACLDATA_PKT || type > HCI_EVENT_PKT) ||
1660				index >= NUM_REASSEMBLY)
1661		return -EILSEQ;
1662
1663	skb = hdev->reassembly[index];
 
1664
1665	if (!skb) {
1666		switch (type) {
1667		case HCI_ACLDATA_PKT:
1668			len = HCI_MAX_FRAME_SIZE;
1669			hlen = HCI_ACL_HDR_SIZE;
1670			break;
1671		case HCI_EVENT_PKT:
1672			len = HCI_MAX_EVENT_SIZE;
1673			hlen = HCI_EVENT_HDR_SIZE;
1674			break;
1675		case HCI_SCODATA_PKT:
1676			len = HCI_MAX_SCO_SIZE;
1677			hlen = HCI_SCO_HDR_SIZE;
1678			break;
1679		}
1680
1681		skb = bt_skb_alloc(len, GFP_ATOMIC);
1682		if (!skb)
1683			return -ENOMEM;
1684
1685		scb = (void *) skb->cb;
1686		scb->expect = hlen;
1687		scb->pkt_type = type;
1688
1689		skb->dev = (void *) hdev;
1690		hdev->reassembly[index] = skb;
1691	}
1692
1693	while (count) {
1694		scb = (void *) skb->cb;
1695		len = min(scb->expect, (__u16)count);
1696
1697		memcpy(skb_put(skb, len), data, len);
1698
1699		count -= len;
1700		data += len;
1701		scb->expect -= len;
1702		remain = count;
1703
1704		switch (type) {
1705		case HCI_EVENT_PKT:
1706			if (skb->len == HCI_EVENT_HDR_SIZE) {
1707				struct hci_event_hdr *h = hci_event_hdr(skb);
1708				scb->expect = h->plen;
1709
1710				if (skb_tailroom(skb) < scb->expect) {
1711					kfree_skb(skb);
1712					hdev->reassembly[index] = NULL;
1713					return -ENOMEM;
1714				}
1715			}
1716			break;
1717
1718		case HCI_ACLDATA_PKT:
1719			if (skb->len  == HCI_ACL_HDR_SIZE) {
1720				struct hci_acl_hdr *h = hci_acl_hdr(skb);
1721				scb->expect = __le16_to_cpu(h->dlen);
1722
1723				if (skb_tailroom(skb) < scb->expect) {
1724					kfree_skb(skb);
1725					hdev->reassembly[index] = NULL;
1726					return -ENOMEM;
1727				}
1728			}
1729			break;
1730
1731		case HCI_SCODATA_PKT:
1732			if (skb->len == HCI_SCO_HDR_SIZE) {
1733				struct hci_sco_hdr *h = hci_sco_hdr(skb);
1734				scb->expect = h->dlen;
1735
1736				if (skb_tailroom(skb) < scb->expect) {
1737					kfree_skb(skb);
1738					hdev->reassembly[index] = NULL;
1739					return -ENOMEM;
1740				}
1741			}
1742			break;
1743		}
1744
1745		if (scb->expect == 0) {
1746			/* Complete frame */
1747
1748			bt_cb(skb)->pkt_type = type;
1749			hci_recv_frame(skb);
1750
1751			hdev->reassembly[index] = NULL;
1752			return remain;
1753		}
1754	}
1755
1756	return remain;
1757}
1758
1759int hci_recv_fragment(struct hci_dev *hdev, int type, void *data, int count)
1760{
1761	int rem = 0;
1762
1763	if (type < HCI_ACLDATA_PKT || type > HCI_EVENT_PKT)
1764		return -EILSEQ;
1765
1766	while (count) {
1767		rem = hci_reassembly(hdev, type, data, count, type - 1);
1768		if (rem < 0)
1769			return rem;
1770
1771		data += (count - rem);
1772		count = rem;
1773	}
1774
1775	return rem;
1776}
1777EXPORT_SYMBOL(hci_recv_fragment);
1778
1779#define STREAM_REASSEMBLY 0
1780
1781int hci_recv_stream_fragment(struct hci_dev *hdev, void *data, int count)
1782{
1783	int type;
1784	int rem = 0;
1785
1786	while (count) {
1787		struct sk_buff *skb = hdev->reassembly[STREAM_REASSEMBLY];
1788
1789		if (!skb) {
1790			struct { char type; } *pkt;
1791
1792			/* Start of the frame */
1793			pkt = data;
1794			type = pkt->type;
1795
1796			data++;
1797			count--;
1798		} else
1799			type = bt_cb(skb)->pkt_type;
1800
1801		rem = hci_reassembly(hdev, type, data, count,
1802							STREAM_REASSEMBLY);
1803		if (rem < 0)
1804			return rem;
1805
1806		data += (count - rem);
1807		count = rem;
1808	}
1809
1810	return rem;
1811}
1812EXPORT_SYMBOL(hci_recv_stream_fragment);
1813
1814/* ---- Interface to upper protocols ---- */
1815
1816/* Register/Unregister protocols.
1817 * hci_task_lock is used to ensure that no tasks are running. */
1818int hci_register_proto(struct hci_proto *hp)
1819{
1820	int err = 0;
1821
1822	BT_DBG("%p name %s id %d", hp, hp->name, hp->id);
1823
1824	if (hp->id >= HCI_MAX_PROTO)
1825		return -EINVAL;
1826
1827	write_lock_bh(&hci_task_lock);
1828
1829	if (!hci_proto[hp->id])
1830		hci_proto[hp->id] = hp;
1831	else
1832		err = -EEXIST;
1833
1834	write_unlock_bh(&hci_task_lock);
1835
1836	return err;
1837}
1838EXPORT_SYMBOL(hci_register_proto);
1839
1840int hci_unregister_proto(struct hci_proto *hp)
1841{
1842	int err = 0;
1843
1844	BT_DBG("%p name %s id %d", hp, hp->name, hp->id);
1845
1846	if (hp->id >= HCI_MAX_PROTO)
1847		return -EINVAL;
1848
1849	write_lock_bh(&hci_task_lock);
1850
1851	if (hci_proto[hp->id])
1852		hci_proto[hp->id] = NULL;
1853	else
1854		err = -ENOENT;
1855
1856	write_unlock_bh(&hci_task_lock);
1857
1858	return err;
1859}
1860EXPORT_SYMBOL(hci_unregister_proto);
1861
1862int hci_register_cb(struct hci_cb *cb)
1863{
1864	BT_DBG("%p name %s", cb, cb->name);
1865
1866	write_lock_bh(&hci_cb_list_lock);
1867	list_add(&cb->list, &hci_cb_list);
1868	write_unlock_bh(&hci_cb_list_lock);
1869
1870	return 0;
1871}
1872EXPORT_SYMBOL(hci_register_cb);
1873
1874int hci_unregister_cb(struct hci_cb *cb)
1875{
1876	BT_DBG("%p name %s", cb, cb->name);
1877
1878	write_lock_bh(&hci_cb_list_lock);
1879	list_del(&cb->list);
1880	write_unlock_bh(&hci_cb_list_lock);
1881
1882	return 0;
1883}
1884EXPORT_SYMBOL(hci_unregister_cb);
1885
1886static int hci_send_frame(struct sk_buff *skb)
1887{
1888	struct hci_dev *hdev = (struct hci_dev *) skb->dev;
1889
1890	if (!hdev) {
1891		kfree_skb(skb);
1892		return -ENODEV;
1893	}
 
1894
1895	BT_DBG("%s type %d len %d", hdev->name, bt_cb(skb)->pkt_type, skb->len);
 
1896
1897	if (atomic_read(&hdev->promisc)) {
1898		/* Time stamp */
1899		__net_timestamp(skb);
1900
1901		hci_send_to_sock(hdev, skb, NULL);
1902	}
1903
1904	/* Get rid of skb owner, prior to sending to the driver. */
1905	skb_orphan(skb);
1906
1907	return hdev->send(skb);
 
 
 
 
 
 
 
 
 
1908}
1909
1910/* Send HCI command */
1911int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen, void *param)
 
1912{
1913	int len = HCI_COMMAND_HDR_SIZE + plen;
1914	struct hci_command_hdr *hdr;
1915	struct sk_buff *skb;
1916
1917	BT_DBG("%s opcode 0x%x plen %d", hdev->name, opcode, plen);
1918
1919	skb = bt_skb_alloc(len, GFP_ATOMIC);
1920	if (!skb) {
1921		BT_ERR("%s no memory for command", hdev->name);
1922		return -ENOMEM;
1923	}
1924
1925	hdr = (struct hci_command_hdr *) skb_put(skb, HCI_COMMAND_HDR_SIZE);
1926	hdr->opcode = cpu_to_le16(opcode);
1927	hdr->plen   = plen;
1928
1929	if (plen)
1930		memcpy(skb_put(skb, plen), param, plen);
1931
1932	BT_DBG("skb len %d", skb->len);
1933
1934	bt_cb(skb)->pkt_type = HCI_COMMAND_PKT;
1935	skb->dev = (void *) hdev;
1936
1937	if (test_bit(HCI_INIT, &hdev->flags))
1938		hdev->init_last_cmd = opcode;
1939
1940	skb_queue_tail(&hdev->cmd_q, skb);
1941	tasklet_schedule(&hdev->cmd_task);
1942
1943	return 0;
1944}
1945
1946/* Get data from the previously sent command */
1947void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode)
1948{
1949	struct hci_command_hdr *hdr;
1950
1951	if (!hdev->sent_cmd)
1952		return NULL;
1953
1954	hdr = (void *) hdev->sent_cmd->data;
1955
1956	if (hdr->opcode != cpu_to_le16(opcode))
1957		return NULL;
1958
1959	BT_DBG("%s opcode 0x%x", hdev->name, opcode);
1960
1961	return hdev->sent_cmd->data + HCI_COMMAND_HDR_SIZE;
1962}
1963
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1964/* Send ACL data */
1965static void hci_add_acl_hdr(struct sk_buff *skb, __u16 handle, __u16 flags)
1966{
1967	struct hci_acl_hdr *hdr;
1968	int len = skb->len;
1969
1970	skb_push(skb, HCI_ACL_HDR_SIZE);
1971	skb_reset_transport_header(skb);
1972	hdr = (struct hci_acl_hdr *)skb_transport_header(skb);
1973	hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
1974	hdr->dlen   = cpu_to_le16(len);
1975}
1976
1977void hci_send_acl(struct hci_conn *conn, struct sk_buff *skb, __u16 flags)
 
1978{
 
1979	struct hci_dev *hdev = conn->hdev;
1980	struct sk_buff *list;
1981
1982	BT_DBG("%s conn %p flags 0x%x", hdev->name, conn, flags);
 
1983
1984	skb->dev = (void *) hdev;
1985	bt_cb(skb)->pkt_type = HCI_ACLDATA_PKT;
1986	hci_add_acl_hdr(skb, conn->handle, flags);
 
 
 
 
 
 
 
 
 
 
1987
1988	list = skb_shinfo(skb)->frag_list;
1989	if (!list) {
1990		/* Non fragmented */
1991		BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
1992
1993		skb_queue_tail(&conn->data_q, skb);
1994	} else {
1995		/* Fragmented */
1996		BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
1997
1998		skb_shinfo(skb)->frag_list = NULL;
1999
2000		/* Queue all fragments atomically */
2001		spin_lock_bh(&conn->data_q.lock);
 
 
 
 
2002
2003		__skb_queue_tail(&conn->data_q, skb);
2004
2005		flags &= ~ACL_START;
2006		flags |= ACL_CONT;
2007		do {
2008			skb = list; list = list->next;
2009
2010			skb->dev = (void *) hdev;
2011			bt_cb(skb)->pkt_type = HCI_ACLDATA_PKT;
2012			hci_add_acl_hdr(skb, conn->handle, flags);
2013
2014			BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
2015
2016			__skb_queue_tail(&conn->data_q, skb);
2017		} while (list);
2018
2019		spin_unlock_bh(&conn->data_q.lock);
2020	}
 
 
 
 
 
 
 
 
 
2021
2022	tasklet_schedule(&hdev->tx_task);
2023}
2024EXPORT_SYMBOL(hci_send_acl);
2025
2026/* Send SCO data */
2027void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb)
2028{
2029	struct hci_dev *hdev = conn->hdev;
2030	struct hci_sco_hdr hdr;
2031
2032	BT_DBG("%s len %d", hdev->name, skb->len);
2033
2034	hdr.handle = cpu_to_le16(conn->handle);
2035	hdr.dlen   = skb->len;
2036
2037	skb_push(skb, HCI_SCO_HDR_SIZE);
2038	skb_reset_transport_header(skb);
2039	memcpy(skb_transport_header(skb), &hdr, HCI_SCO_HDR_SIZE);
2040
2041	skb->dev = (void *) hdev;
2042	bt_cb(skb)->pkt_type = HCI_SCODATA_PKT;
2043
2044	skb_queue_tail(&conn->data_q, skb);
2045	tasklet_schedule(&hdev->tx_task);
2046}
2047EXPORT_SYMBOL(hci_send_sco);
2048
2049/* ---- HCI TX task (outgoing data) ---- */
2050
2051/* HCI Connection scheduler */
2052static inline struct hci_conn *hci_low_sent(struct hci_dev *hdev, __u8 type, int *quote)
 
2053{
2054	struct hci_conn_hash *h = &hdev->conn_hash;
2055	struct hci_conn *conn = NULL;
2056	int num = 0, min = ~0;
2057	struct list_head *p;
2058
2059	/* We don't have to lock device here. Connections are always
2060	 * added and removed with TX task disabled. */
2061	list_for_each(p, &h->list) {
2062		struct hci_conn *c;
2063		c = list_entry(p, struct hci_conn, list);
2064
 
 
 
2065		if (c->type != type || skb_queue_empty(&c->data_q))
2066			continue;
2067
2068		if (c->state != BT_CONNECTED && c->state != BT_CONFIG)
2069			continue;
2070
2071		num++;
2072
2073		if (c->sent < min) {
2074			min  = c->sent;
2075			conn = c;
2076		}
 
 
 
2077	}
2078
 
 
2079	if (conn) {
2080		int cnt, q;
2081
2082		switch (conn->type) {
2083		case ACL_LINK:
2084			cnt = hdev->acl_cnt;
2085			break;
2086		case SCO_LINK:
2087		case ESCO_LINK:
2088			cnt = hdev->sco_cnt;
2089			break;
2090		case LE_LINK:
2091			cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
2092			break;
2093		default:
2094			cnt = 0;
2095			BT_ERR("Unknown link type");
2096		}
2097
2098		q = cnt / num;
2099		*quote = q ? q : 1;
2100	} else
2101		*quote = 0;
2102
2103	BT_DBG("conn %p quote %d", conn, *quote);
2104	return conn;
2105}
2106
2107static inline void hci_link_tx_to(struct hci_dev *hdev, __u8 type)
2108{
2109	struct hci_conn_hash *h = &hdev->conn_hash;
2110	struct list_head *p;
2111	struct hci_conn  *c;
2112
2113	BT_ERR("%s link tx timeout", hdev->name);
2114
 
 
2115	/* Kill stalled connections */
2116	list_for_each(p, &h->list) {
2117		c = list_entry(p, struct hci_conn, list);
2118		if (c->type == type && c->sent) {
2119			BT_ERR("%s killing stalled connection %s",
2120				hdev->name, batostr(&c->dst));
2121			hci_acl_disconn(c, 0x13);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2122		}
 
 
 
2123	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2124}
2125
2126static inline void hci_sched_acl(struct hci_dev *hdev)
2127{
 
2128	struct hci_conn *conn;
2129	struct sk_buff *skb;
2130	int quote;
2131
2132	BT_DBG("%s", hdev->name);
2133
2134	if (!test_bit(HCI_RAW, &hdev->flags)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2135		/* ACL tx timeout must be longer than maximum
2136		 * link supervision timeout (40.9 seconds) */
2137		if (!hdev->acl_cnt && time_after(jiffies, hdev->acl_last_tx + HZ * 45))
 
2138			hci_link_tx_to(hdev, ACL_LINK);
2139	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2140
2141	while (hdev->acl_cnt && (conn = hci_low_sent(hdev, ACL_LINK, &quote))) {
2142		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
2143			BT_DBG("skb %p len %d", skb, skb->len);
 
 
2144
2145			hci_conn_enter_active_mode(conn, bt_cb(skb)->force_active);
 
2146
2147			hci_send_frame(skb);
2148			hdev->acl_last_tx = jiffies;
2149
2150			hdev->acl_cnt--;
2151			conn->sent++;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2152		}
2153	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2154}
2155
2156/* Schedule SCO */
2157static inline void hci_sched_sco(struct hci_dev *hdev)
2158{
2159	struct hci_conn *conn;
2160	struct sk_buff *skb;
2161	int quote;
2162
2163	BT_DBG("%s", hdev->name);
2164
 
 
 
2165	while (hdev->sco_cnt && (conn = hci_low_sent(hdev, SCO_LINK, &quote))) {
2166		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
2167			BT_DBG("skb %p len %d", skb, skb->len);
2168			hci_send_frame(skb);
2169
2170			conn->sent++;
2171			if (conn->sent == ~0)
2172				conn->sent = 0;
2173		}
2174	}
2175}
2176
2177static inline void hci_sched_esco(struct hci_dev *hdev)
2178{
2179	struct hci_conn *conn;
2180	struct sk_buff *skb;
2181	int quote;
2182
2183	BT_DBG("%s", hdev->name);
2184
2185	while (hdev->sco_cnt && (conn = hci_low_sent(hdev, ESCO_LINK, &quote))) {
 
 
 
 
2186		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
2187			BT_DBG("skb %p len %d", skb, skb->len);
2188			hci_send_frame(skb);
2189
2190			conn->sent++;
2191			if (conn->sent == ~0)
2192				conn->sent = 0;
2193		}
2194	}
2195}
2196
2197static inline void hci_sched_le(struct hci_dev *hdev)
2198{
2199	struct hci_conn *conn;
2200	struct sk_buff *skb;
2201	int quote, cnt;
2202
2203	BT_DBG("%s", hdev->name);
2204
2205	if (!test_bit(HCI_RAW, &hdev->flags)) {
 
 
 
2206		/* LE tx timeout must be longer than maximum
2207		 * link supervision timeout (40.9 seconds) */
2208		if (!hdev->le_cnt && hdev->le_pkts &&
2209				time_after(jiffies, hdev->le_last_tx + HZ * 45))
2210			hci_link_tx_to(hdev, LE_LINK);
2211	}
2212
2213	cnt = hdev->le_pkts ? hdev->le_cnt : hdev->acl_cnt;
2214	while (cnt && (conn = hci_low_sent(hdev, LE_LINK, &quote))) {
2215		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
2216			BT_DBG("skb %p len %d", skb, skb->len);
 
 
 
 
 
 
 
 
 
2217
2218			hci_send_frame(skb);
2219			hdev->le_last_tx = jiffies;
2220
2221			cnt--;
2222			conn->sent++;
 
2223		}
2224	}
 
2225	if (hdev->le_pkts)
2226		hdev->le_cnt = cnt;
2227	else
2228		hdev->acl_cnt = cnt;
 
 
 
2229}
2230
2231static void hci_tx_task(unsigned long arg)
2232{
2233	struct hci_dev *hdev = (struct hci_dev *) arg;
2234	struct sk_buff *skb;
2235
2236	read_lock(&hci_task_lock);
2237
2238	BT_DBG("%s acl %d sco %d le %d", hdev->name, hdev->acl_cnt,
2239		hdev->sco_cnt, hdev->le_cnt);
2240
2241	/* Schedule queues and send stuff to HCI driver */
2242
2243	hci_sched_acl(hdev);
2244
2245	hci_sched_sco(hdev);
2246
2247	hci_sched_esco(hdev);
2248
2249	hci_sched_le(hdev);
2250
2251	/* Send next queued raw (unknown type) packet */
2252	while ((skb = skb_dequeue(&hdev->raw_q)))
2253		hci_send_frame(skb);
2254
2255	read_unlock(&hci_task_lock);
2256}
2257
2258/* ----- HCI RX task (incoming data processing) ----- */
2259
2260/* ACL data packet */
2261static inline void hci_acldata_packet(struct hci_dev *hdev, struct sk_buff *skb)
2262{
2263	struct hci_acl_hdr *hdr = (void *) skb->data;
2264	struct hci_conn *conn;
2265	__u16 handle, flags;
2266
2267	skb_pull(skb, HCI_ACL_HDR_SIZE);
2268
2269	handle = __le16_to_cpu(hdr->handle);
2270	flags  = hci_flags(handle);
2271	handle = hci_handle(handle);
2272
2273	BT_DBG("%s len %d handle 0x%x flags 0x%x", hdev->name, skb->len, handle, flags);
 
2274
2275	hdev->stat.acl_rx++;
2276
2277	hci_dev_lock(hdev);
2278	conn = hci_conn_hash_lookup_handle(hdev, handle);
2279	hci_dev_unlock(hdev);
2280
2281	if (conn) {
2282		register struct hci_proto *hp;
2283
2284		hci_conn_enter_active_mode(conn, bt_cb(skb)->force_active);
2285
2286		/* Send to upper protocol */
2287		hp = hci_proto[HCI_PROTO_L2CAP];
2288		if (hp && hp->recv_acldata) {
2289			hp->recv_acldata(conn, skb, flags);
2290			return;
2291		}
2292	} else {
2293		BT_ERR("%s ACL packet for unknown connection handle %d",
2294			hdev->name, handle);
2295	}
2296
2297	kfree_skb(skb);
2298}
2299
2300/* SCO data packet */
2301static inline void hci_scodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
2302{
2303	struct hci_sco_hdr *hdr = (void *) skb->data;
2304	struct hci_conn *conn;
2305	__u16 handle;
2306
2307	skb_pull(skb, HCI_SCO_HDR_SIZE);
2308
2309	handle = __le16_to_cpu(hdr->handle);
2310
2311	BT_DBG("%s len %d handle 0x%x", hdev->name, skb->len, handle);
2312
2313	hdev->stat.sco_rx++;
2314
2315	hci_dev_lock(hdev);
2316	conn = hci_conn_hash_lookup_handle(hdev, handle);
2317	hci_dev_unlock(hdev);
2318
2319	if (conn) {
2320		register struct hci_proto *hp;
2321
2322		/* Send to upper protocol */
2323		hp = hci_proto[HCI_PROTO_SCO];
2324		if (hp && hp->recv_scodata) {
2325			hp->recv_scodata(conn, skb);
2326			return;
2327		}
2328	} else {
2329		BT_ERR("%s SCO packet for unknown connection handle %d",
2330			hdev->name, handle);
2331	}
2332
2333	kfree_skb(skb);
2334}
2335
2336static void hci_rx_task(unsigned long arg)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2337{
2338	struct hci_dev *hdev = (struct hci_dev *) arg;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2339	struct sk_buff *skb;
2340
2341	BT_DBG("%s", hdev->name);
2342
2343	read_lock(&hci_task_lock);
 
 
2344
2345	while ((skb = skb_dequeue(&hdev->rx_q))) {
2346		if (atomic_read(&hdev->promisc)) {
2347			/* Send copy to the sockets */
2348			hci_send_to_sock(hdev, skb, NULL);
2349		}
2350
2351		if (test_bit(HCI_RAW, &hdev->flags)) {
2352			kfree_skb(skb);
2353			continue;
2354		}
2355
2356		if (test_bit(HCI_INIT, &hdev->flags)) {
2357			/* Don't process data packets in this states. */
2358			switch (bt_cb(skb)->pkt_type) {
2359			case HCI_ACLDATA_PKT:
2360			case HCI_SCODATA_PKT:
2361				kfree_skb(skb);
2362				continue;
2363			}
2364		}
2365
2366		/* Process frame */
2367		switch (bt_cb(skb)->pkt_type) {
2368		case HCI_EVENT_PKT:
 
2369			hci_event_packet(hdev, skb);
2370			break;
2371
2372		case HCI_ACLDATA_PKT:
2373			BT_DBG("%s ACL data packet", hdev->name);
2374			hci_acldata_packet(hdev, skb);
2375			break;
2376
2377		case HCI_SCODATA_PKT:
2378			BT_DBG("%s SCO data packet", hdev->name);
2379			hci_scodata_packet(hdev, skb);
2380			break;
2381
2382		default:
2383			kfree_skb(skb);
2384			break;
2385		}
2386	}
2387
2388	read_unlock(&hci_task_lock);
2389}
2390
2391static void hci_cmd_task(unsigned long arg)
2392{
2393	struct hci_dev *hdev = (struct hci_dev *) arg;
2394	struct sk_buff *skb;
2395
2396	BT_DBG("%s cmd %d", hdev->name, atomic_read(&hdev->cmd_cnt));
 
2397
2398	/* Send queued commands */
2399	if (atomic_read(&hdev->cmd_cnt)) {
2400		skb = skb_dequeue(&hdev->cmd_q);
2401		if (!skb)
2402			return;
2403
2404		kfree_skb(hdev->sent_cmd);
2405
2406		hdev->sent_cmd = skb_clone(skb, GFP_ATOMIC);
2407		if (hdev->sent_cmd) {
2408			atomic_dec(&hdev->cmd_cnt);
2409			hci_send_frame(skb);
2410			if (test_bit(HCI_RESET, &hdev->flags))
2411				del_timer(&hdev->cmd_timer);
2412			else
2413				mod_timer(&hdev->cmd_timer,
2414				  jiffies + msecs_to_jiffies(HCI_CMD_TIMEOUT));
2415		} else {
2416			skb_queue_head(&hdev->cmd_q, skb);
2417			tasklet_schedule(&hdev->cmd_task);
2418		}
2419	}
2420}