Linux Audio

Check our new training course

Open-source upstreaming

Need help get the support for your hardware in upstream Linux?
Loading...
v4.17
 
  1/*
  2 *  linux/fs/nfs/file.c
  3 *
  4 *  Copyright (C) 1992  Rick Sladkey
  5 *
  6 *  Changes Copyright (C) 1994 by Florian La Roche
  7 *   - Do not copy data too often around in the kernel.
  8 *   - In nfs_file_read the return value of kmalloc wasn't checked.
  9 *   - Put in a better version of read look-ahead buffering. Original idea
 10 *     and implementation by Wai S Kok elekokws@ee.nus.sg.
 11 *
 12 *  Expire cache on write to a file by Wai S Kok (Oct 1994).
 13 *
 14 *  Total rewrite of read side for new NFS buffer cache.. Linus.
 15 *
 16 *  nfs regular file handling functions
 17 */
 18
 19#include <linux/module.h>
 20#include <linux/time.h>
 21#include <linux/kernel.h>
 22#include <linux/errno.h>
 23#include <linux/fcntl.h>
 24#include <linux/stat.h>
 25#include <linux/nfs_fs.h>
 26#include <linux/nfs_mount.h>
 27#include <linux/mm.h>
 28#include <linux/pagemap.h>
 29#include <linux/gfp.h>
 30#include <linux/swap.h>
 31
 32#include <linux/uaccess.h>
 
 33
 34#include "delegation.h"
 35#include "internal.h"
 36#include "iostat.h"
 37#include "fscache.h"
 38#include "pnfs.h"
 39
 40#include "nfstrace.h"
 41
 42#define NFSDBG_FACILITY		NFSDBG_FILE
 43
 44static const struct vm_operations_struct nfs_file_vm_ops;
 45
 46/* Hack for future NFS swap support */
 47#ifndef IS_SWAPFILE
 48# define IS_SWAPFILE(inode)	(0)
 49#endif
 50
 51int nfs_check_flags(int flags)
 52{
 53	if ((flags & (O_APPEND | O_DIRECT)) == (O_APPEND | O_DIRECT))
 54		return -EINVAL;
 55
 56	return 0;
 57}
 58EXPORT_SYMBOL_GPL(nfs_check_flags);
 59
 60/*
 61 * Open file
 62 */
 63static int
 64nfs_file_open(struct inode *inode, struct file *filp)
 65{
 66	int res;
 67
 68	dprintk("NFS: open file(%pD2)\n", filp);
 69
 70	nfs_inc_stats(inode, NFSIOS_VFSOPEN);
 71	res = nfs_check_flags(filp->f_flags);
 72	if (res)
 73		return res;
 74
 75	res = nfs_open(inode, filp);
 
 
 76	return res;
 77}
 78
 79int
 80nfs_file_release(struct inode *inode, struct file *filp)
 81{
 82	dprintk("NFS: release(%pD2)\n", filp);
 83
 84	nfs_inc_stats(inode, NFSIOS_VFSRELEASE);
 85	nfs_file_clear_open_context(filp);
 
 86	return 0;
 87}
 88EXPORT_SYMBOL_GPL(nfs_file_release);
 89
 90/**
 91 * nfs_revalidate_size - Revalidate the file size
 92 * @inode - pointer to inode struct
 93 * @file - pointer to struct file
 94 *
 95 * Revalidates the file length. This is basically a wrapper around
 96 * nfs_revalidate_inode() that takes into account the fact that we may
 97 * have cached writes (in which case we don't care about the server's
 98 * idea of what the file length is), or O_DIRECT (in which case we
 99 * shouldn't trust the cache).
100 */
101static int nfs_revalidate_file_size(struct inode *inode, struct file *filp)
102{
103	struct nfs_server *server = NFS_SERVER(inode);
104
105	if (filp->f_flags & O_DIRECT)
106		goto force_reval;
107	if (nfs_check_cache_invalid(inode, NFS_INO_REVAL_PAGECACHE))
108		goto force_reval;
109	return 0;
110force_reval:
111	return __nfs_revalidate_inode(server, inode);
112}
113
114loff_t nfs_file_llseek(struct file *filp, loff_t offset, int whence)
115{
116	dprintk("NFS: llseek file(%pD2, %lld, %d)\n",
117			filp, offset, whence);
118
119	/*
120	 * whence == SEEK_END || SEEK_DATA || SEEK_HOLE => we must revalidate
121	 * the cached file length
122	 */
123	if (whence != SEEK_SET && whence != SEEK_CUR) {
124		struct inode *inode = filp->f_mapping->host;
125
126		int retval = nfs_revalidate_file_size(inode, filp);
127		if (retval < 0)
128			return (loff_t)retval;
129	}
130
131	return generic_file_llseek(filp, offset, whence);
132}
133EXPORT_SYMBOL_GPL(nfs_file_llseek);
134
135/*
136 * Flush all dirty pages, and check for write errors.
137 */
138static int
139nfs_file_flush(struct file *file, fl_owner_t id)
140{
141	struct inode	*inode = file_inode(file);
 
142
143	dprintk("NFS: flush(%pD2)\n", file);
144
145	nfs_inc_stats(inode, NFSIOS_VFSFLUSH);
146	if ((file->f_mode & FMODE_WRITE) == 0)
147		return 0;
148
149	/* Flush writes to the server and return any errors */
150	return vfs_fsync(file, 0);
 
 
151}
152
153ssize_t
154nfs_file_read(struct kiocb *iocb, struct iov_iter *to)
155{
156	struct inode *inode = file_inode(iocb->ki_filp);
157	ssize_t result;
158
159	if (iocb->ki_flags & IOCB_DIRECT)
160		return nfs_file_direct_read(iocb, to);
161
162	dprintk("NFS: read(%pD2, %zu@%lu)\n",
163		iocb->ki_filp,
164		iov_iter_count(to), (unsigned long) iocb->ki_pos);
165
166	nfs_start_io_read(inode);
167	result = nfs_revalidate_mapping(inode, iocb->ki_filp->f_mapping);
168	if (!result) {
169		result = generic_file_read_iter(iocb, to);
170		if (result > 0)
171			nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, result);
172	}
173	nfs_end_io_read(inode);
174	return result;
175}
176EXPORT_SYMBOL_GPL(nfs_file_read);
177
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
178int
179nfs_file_mmap(struct file * file, struct vm_area_struct * vma)
180{
181	struct inode *inode = file_inode(file);
182	int	status;
183
184	dprintk("NFS: mmap(%pD2)\n", file);
185
186	/* Note: generic_file_mmap() returns ENOSYS on nommu systems
187	 *       so we call that before revalidating the mapping
188	 */
189	status = generic_file_mmap(file, vma);
190	if (!status) {
191		vma->vm_ops = &nfs_file_vm_ops;
192		status = nfs_revalidate_mapping(inode, file->f_mapping);
193	}
194	return status;
195}
196EXPORT_SYMBOL_GPL(nfs_file_mmap);
197
198/*
199 * Flush any dirty pages for this process, and check for write errors.
200 * The return status from this call provides a reliable indication of
201 * whether any write errors occurred for this process.
202 *
203 * Notice that it clears the NFS_CONTEXT_ERROR_WRITE before synching to
204 * disk, but it retrieves and clears ctx->error after synching, despite
205 * the two being set at the same time in nfs_context_set_write_error().
206 * This is because the former is used to notify the _next_ call to
207 * nfs_file_write() that a write error occurred, and hence cause it to
208 * fall back to doing a synchronous write.
209 */
210static int
211nfs_file_fsync_commit(struct file *file, int datasync)
212{
213	struct nfs_open_context *ctx = nfs_file_open_context(file);
214	struct inode *inode = file_inode(file);
215	int do_resend, status;
216	int ret = 0;
217
218	dprintk("NFS: fsync file(%pD2) datasync %d\n", file, datasync);
219
220	nfs_inc_stats(inode, NFSIOS_VFSFSYNC);
221	do_resend = test_and_clear_bit(NFS_CONTEXT_RESEND_WRITES, &ctx->flags);
222	status = nfs_commit_inode(inode, FLUSH_SYNC);
223	if (test_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags)) {
224		ret = xchg(&ctx->error, 0);
225		if (ret)
226			goto out;
227	}
228	if (status < 0) {
229		ret = status;
230		goto out;
231	}
232	do_resend |= test_bit(NFS_CONTEXT_RESEND_WRITES, &ctx->flags);
233	if (do_resend)
234		ret = -EAGAIN;
235out:
236	return ret;
237}
238
239int
240nfs_file_fsync(struct file *file, loff_t start, loff_t end, int datasync)
241{
242	int ret;
243	struct inode *inode = file_inode(file);
 
 
 
 
244
245	trace_nfs_fsync_enter(inode);
246
247	do {
248		struct nfs_open_context *ctx = nfs_file_open_context(file);
249		ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
250		if (test_and_clear_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags)) {
251			int ret2 = xchg(&ctx->error, 0);
252			if (ret2)
253				ret = ret2;
254		}
255		if (ret != 0)
256			break;
257		ret = nfs_file_fsync_commit(file, datasync);
258		if (!ret)
259			ret = pnfs_sync_inode(inode, !!datasync);
260		/*
261		 * If nfs_file_fsync_commit detected a server reboot, then
262		 * resend all dirty pages that might have been covered by
263		 * the NFS_CONTEXT_RESEND_WRITES flag
264		 */
265		start = 0;
266		end = LLONG_MAX;
267	} while (ret == -EAGAIN);
268
269	trace_nfs_fsync_exit(inode, ret);
270	return ret;
271}
272EXPORT_SYMBOL_GPL(nfs_file_fsync);
273
274/*
275 * Decide whether a read/modify/write cycle may be more efficient
276 * then a modify/write/read cycle when writing to a page in the
277 * page cache.
278 *
 
 
 
 
 
 
279 * The modify/write/read cycle may occur if a page is read before
280 * being completely filled by the writer.  In this situation, the
281 * page must be completely written to stable storage on the server
282 * before it can be refilled by reading in the page from the server.
283 * This can lead to expensive, small, FILE_SYNC mode writes being
284 * done.
285 *
286 * It may be more efficient to read the page first if the file is
287 * open for reading in addition to writing, the page is not marked
288 * as Uptodate, it is not dirty or waiting to be committed,
289 * indicating that it was previously allocated and then modified,
290 * that there were valid bytes of data in that range of the file,
291 * and that the new data won't completely replace the old data in
292 * that range of the file.
293 */
294static int nfs_want_read_modify_write(struct file *file, struct page *page,
295			loff_t pos, unsigned len)
296{
297	unsigned int pglen = nfs_page_length(page);
298	unsigned int offset = pos & (PAGE_SIZE - 1);
299	unsigned int end = offset + len;
300
301	if (pnfs_ld_read_whole_page(file->f_mapping->host)) {
302		if (!PageUptodate(page))
303			return 1;
304		return 0;
305	}
306
307	if ((file->f_mode & FMODE_READ) &&	/* open for read? */
308	    !PageUptodate(page) &&		/* Uptodate? */
309	    !PagePrivate(page) &&		/* i/o request already? */
310	    pglen &&				/* valid bytes of file? */
311	    (end < pglen || offset))		/* replace all valid bytes? */
312		return 1;
313	return 0;
 
 
 
 
 
 
 
 
 
 
314}
315
316/*
317 * This does the "real" work of the write. We must allocate and lock the
318 * page to be sent back to the generic routine, which then copies the
319 * data from user space.
320 *
321 * If the writer ends up delaying the write, the writer needs to
322 * increment the page use counts until he is done with the page.
323 */
324static int nfs_write_begin(struct file *file, struct address_space *mapping,
325			loff_t pos, unsigned len, unsigned flags,
326			struct page **pagep, void **fsdata)
327{
328	int ret;
329	pgoff_t index = pos >> PAGE_SHIFT;
330	struct page *page;
331	int once_thru = 0;
 
332
333	dfprintk(PAGECACHE, "NFS: write_begin(%pD2(%lu), %u@%lld)\n",
334		file, mapping->host->i_ino, len, (long long) pos);
335
336start:
337	page = grab_cache_page_write_begin(mapping, index, flags);
338	if (!page)
339		return -ENOMEM;
340	*pagep = page;
 
341
342	ret = nfs_flush_incompatible(file, page);
343	if (ret) {
344		unlock_page(page);
345		put_page(page);
346	} else if (!once_thru &&
347		   nfs_want_read_modify_write(file, page, pos, len)) {
348		once_thru = 1;
349		ret = nfs_readpage(file, page);
350		put_page(page);
351		if (!ret)
352			goto start;
353	}
354	return ret;
355}
356
357static int nfs_write_end(struct file *file, struct address_space *mapping,
358			loff_t pos, unsigned len, unsigned copied,
359			struct page *page, void *fsdata)
360{
361	unsigned offset = pos & (PAGE_SIZE - 1);
362	struct nfs_open_context *ctx = nfs_file_open_context(file);
 
 
363	int status;
364
365	dfprintk(PAGECACHE, "NFS: write_end(%pD2(%lu), %u@%lld)\n",
366		file, mapping->host->i_ino, len, (long long) pos);
367
368	/*
369	 * Zero any uninitialised parts of the page, and then mark the page
370	 * as up to date if it turns out that we're extending the file.
371	 */
372	if (!PageUptodate(page)) {
373		unsigned pglen = nfs_page_length(page);
 
374		unsigned end = offset + copied;
375
376		if (pglen == 0) {
377			zero_user_segments(page, 0, offset,
378					end, PAGE_SIZE);
379			SetPageUptodate(page);
380		} else if (end >= pglen) {
381			zero_user_segment(page, end, PAGE_SIZE);
382			if (offset == 0)
383				SetPageUptodate(page);
384		} else
385			zero_user_segment(page, pglen, PAGE_SIZE);
386	}
387
388	status = nfs_updatepage(file, page, offset, copied);
389
390	unlock_page(page);
391	put_page(page);
392
393	if (status < 0)
394		return status;
395	NFS_I(mapping->host)->write_io += copied;
396
397	if (nfs_ctx_key_to_expire(ctx, mapping->host)) {
398		status = nfs_wb_all(mapping->host);
399		if (status < 0)
400			return status;
401	}
402
403	return copied;
404}
405
406/*
407 * Partially or wholly invalidate a page
408 * - Release the private state associated with a page if undergoing complete
409 *   page invalidation
410 * - Called if either PG_private or PG_fscache is set on the page
411 * - Caller holds page lock
412 */
413static void nfs_invalidate_page(struct page *page, unsigned int offset,
414				unsigned int length)
415{
416	dfprintk(PAGECACHE, "NFS: invalidate_page(%p, %u, %u)\n",
417		 page, offset, length);
 
418
419	if (offset != 0 || length < PAGE_SIZE)
420		return;
421	/* Cancel any unstarted writes on this page */
422	nfs_wb_page_cancel(page_file_mapping(page)->host, page);
423
424	nfs_fscache_invalidate_page(page, page->mapping->host);
425}
426
427/*
428 * Attempt to release the private state associated with a page
429 * - Called if either PG_private or PG_fscache is set on the page
430 * - Caller holds page lock
431 * - Return true (may release page) or false (may not)
432 */
433static int nfs_release_page(struct page *page, gfp_t gfp)
434{
435	dfprintk(PAGECACHE, "NFS: release_page(%p)\n", page);
436
437	/* If PagePrivate() is set, then the page is not freeable */
438	if (PagePrivate(page))
439		return 0;
440	return nfs_fscache_release_page(page, gfp);
 
 
 
 
 
441}
442
443static void nfs_check_dirty_writeback(struct page *page,
444				bool *dirty, bool *writeback)
445{
446	struct nfs_inode *nfsi;
447	struct address_space *mapping = page_file_mapping(page);
448
449	if (!mapping || PageSwapCache(page))
450		return;
451
452	/*
453	 * Check if an unstable page is currently being committed and
454	 * if so, have the VM treat it as if the page is under writeback
455	 * so it will not block due to pages that will shortly be freeable.
456	 */
457	nfsi = NFS_I(mapping->host);
458	if (atomic_read(&nfsi->commit_info.rpcs_out)) {
459		*writeback = true;
460		return;
461	}
462
463	/*
464	 * If PagePrivate() is set, then the page is not freeable and as the
465	 * inode is not being committed, it's not going to be cleaned in the
466	 * near future so treat it as dirty
467	 */
468	if (PagePrivate(page))
469		*dirty = true;
470}
471
472/*
473 * Attempt to clear the private state associated with a page when an error
474 * occurs that requires the cached contents of an inode to be written back or
475 * destroyed
476 * - Called if either PG_private or fscache is set on the page
477 * - Caller holds page lock
478 * - Return 0 if successful, -error otherwise
479 */
480static int nfs_launder_page(struct page *page)
481{
482	struct inode *inode = page_file_mapping(page)->host;
483	struct nfs_inode *nfsi = NFS_I(inode);
484
485	dfprintk(PAGECACHE, "NFS: launder_page(%ld, %llu)\n",
486		inode->i_ino, (long long)page_offset(page));
487
488	nfs_fscache_wait_on_page_write(nfsi, page);
489	return nfs_wb_page(inode, page);
 
 
490}
491
492static int nfs_swap_activate(struct swap_info_struct *sis, struct file *file,
493						sector_t *span)
494{
495	struct rpc_clnt *clnt = NFS_CLIENT(file->f_mapping->host);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
496
497	*span = sis->pages;
498
499	return rpc_clnt_swap_activate(clnt);
 
 
 
 
500}
501
502static void nfs_swap_deactivate(struct file *file)
503{
504	struct rpc_clnt *clnt = NFS_CLIENT(file->f_mapping->host);
 
 
505
506	rpc_clnt_swap_deactivate(clnt);
 
 
507}
508
509const struct address_space_operations nfs_file_aops = {
510	.readpage = nfs_readpage,
511	.readpages = nfs_readpages,
512	.set_page_dirty = __set_page_dirty_nobuffers,
513	.writepage = nfs_writepage,
514	.writepages = nfs_writepages,
515	.write_begin = nfs_write_begin,
516	.write_end = nfs_write_end,
517	.invalidatepage = nfs_invalidate_page,
518	.releasepage = nfs_release_page,
519	.direct_IO = nfs_direct_IO,
520#ifdef CONFIG_MIGRATION
521	.migratepage = nfs_migrate_page,
522#endif
523	.launder_page = nfs_launder_page,
524	.is_dirty_writeback = nfs_check_dirty_writeback,
525	.error_remove_page = generic_error_remove_page,
526	.swap_activate = nfs_swap_activate,
527	.swap_deactivate = nfs_swap_deactivate,
 
528};
529
530/*
531 * Notification that a PTE pointing to an NFS page is about to be made
532 * writable, implying that someone is about to modify the page through a
533 * shared-writable mapping
534 */
535static int nfs_vm_page_mkwrite(struct vm_fault *vmf)
536{
537	struct page *page = vmf->page;
538	struct file *filp = vmf->vma->vm_file;
539	struct inode *inode = file_inode(filp);
540	unsigned pagelen;
541	int ret = VM_FAULT_NOPAGE;
542	struct address_space *mapping;
 
543
544	dfprintk(PAGECACHE, "NFS: vm_page_mkwrite(%pD2(%lu), offset %lld)\n",
545		filp, filp->f_mapping->host->i_ino,
546		(long long)page_offset(page));
547
548	sb_start_pagefault(inode->i_sb);
549
550	/* make sure the cache has finished storing the page */
551	nfs_fscache_wait_on_page_write(NFS_I(inode), page);
 
 
 
 
552
553	wait_on_bit_action(&NFS_I(inode)->flags, NFS_INO_INVALIDATING,
554			nfs_wait_bit_killable, TASK_KILLABLE);
 
555
556	lock_page(page);
557	mapping = page_file_mapping(page);
558	if (mapping != inode->i_mapping)
559		goto out_unlock;
560
561	wait_on_page_writeback(page);
562
563	pagelen = nfs_page_length(page);
564	if (pagelen == 0)
565		goto out_unlock;
566
567	ret = VM_FAULT_LOCKED;
568	if (nfs_flush_incompatible(filp, page) == 0 &&
569	    nfs_updatepage(filp, page, 0, pagelen) == 0)
570		goto out;
571
572	ret = VM_FAULT_SIGBUS;
573out_unlock:
574	unlock_page(page);
575out:
576	sb_end_pagefault(inode->i_sb);
577	return ret;
578}
579
580static const struct vm_operations_struct nfs_file_vm_ops = {
581	.fault = filemap_fault,
582	.map_pages = filemap_map_pages,
583	.page_mkwrite = nfs_vm_page_mkwrite,
584};
585
586static int nfs_need_check_write(struct file *filp, struct inode *inode)
587{
588	struct nfs_open_context *ctx;
589
590	ctx = nfs_file_open_context(filp);
591	if (test_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags) ||
592	    nfs_ctx_key_to_expire(ctx, inode))
593		return 1;
594	return 0;
595}
596
597ssize_t nfs_file_write(struct kiocb *iocb, struct iov_iter *from)
598{
599	struct file *file = iocb->ki_filp;
600	struct inode *inode = file_inode(file);
601	unsigned long written = 0;
602	ssize_t result;
 
 
603
604	result = nfs_key_timeout_notify(file, inode);
605	if (result)
606		return result;
607
608	if (iocb->ki_flags & IOCB_DIRECT)
609		return nfs_file_direct_write(iocb, from);
610
611	dprintk("NFS: write(%pD2, %zu@%Ld)\n",
612		file, iov_iter_count(from), (long long) iocb->ki_pos);
613
614	if (IS_SWAPFILE(inode))
615		goto out_swapfile;
616	/*
617	 * O_APPEND implies that we must revalidate the file length.
618	 */
619	if (iocb->ki_flags & IOCB_APPEND) {
620		result = nfs_revalidate_file_size(inode, file);
621		if (result)
622			goto out;
623	}
624	if (iocb->ki_pos > i_size_read(inode))
625		nfs_revalidate_mapping(inode, file->f_mapping);
626
 
 
 
627	nfs_start_io_write(inode);
628	result = generic_write_checks(iocb, from);
629	if (result > 0) {
630		current->backing_dev_info = inode_to_bdi(inode);
631		result = generic_perform_write(file, from, iocb->ki_pos);
632		current->backing_dev_info = NULL;
633	}
634	nfs_end_io_write(inode);
635	if (result <= 0)
636		goto out;
637
638	written = result;
639	iocb->ki_pos += written;
 
 
 
 
 
 
 
 
 
 
 
 
 
640	result = generic_write_sync(iocb, written);
641	if (result < 0)
642		goto out;
643
 
644	/* Return error values */
645	if (nfs_need_check_write(file, inode)) {
646		int err = vfs_fsync(file, 0);
647		if (err < 0)
648			result = err;
 
 
 
 
 
 
 
649	}
650	nfs_add_stats(inode, NFSIOS_NORMALWRITTENBYTES, written);
651out:
652	return result;
653
654out_swapfile:
655	printk(KERN_INFO "NFS: attempt to write to active swap file!\n");
656	return -EBUSY;
657}
658EXPORT_SYMBOL_GPL(nfs_file_write);
659
660static int
661do_getlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
662{
663	struct inode *inode = filp->f_mapping->host;
664	int status = 0;
665	unsigned int saved_type = fl->fl_type;
666
667	/* Try local locking first */
668	posix_test_lock(filp, fl);
669	if (fl->fl_type != F_UNLCK) {
670		/* found a conflict */
671		goto out;
672	}
673	fl->fl_type = saved_type;
674
675	if (NFS_PROTO(inode)->have_delegation(inode, FMODE_READ))
676		goto out_noconflict;
677
678	if (is_local)
679		goto out_noconflict;
680
681	status = NFS_PROTO(inode)->lock(filp, cmd, fl);
682out:
683	return status;
684out_noconflict:
685	fl->fl_type = F_UNLCK;
686	goto out;
687}
688
689static int
690do_unlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
691{
692	struct inode *inode = filp->f_mapping->host;
693	struct nfs_lock_context *l_ctx;
694	int status;
695
696	/*
697	 * Flush all pending writes before doing anything
698	 * with locks..
699	 */
700	vfs_fsync(filp, 0);
701
702	l_ctx = nfs_get_lock_context(nfs_file_open_context(filp));
703	if (!IS_ERR(l_ctx)) {
704		status = nfs_iocounter_wait(l_ctx);
705		nfs_put_lock_context(l_ctx);
706		/*  NOTE: special case
707		 * 	If we're signalled while cleaning up locks on process exit, we
708		 * 	still need to complete the unlock.
709		 */
710		if (status < 0 && !(fl->fl_flags & FL_CLOSE))
711			return status;
712	}
713
714	/*
715	 * Use local locking if mounted with "-onolock" or with appropriate
716	 * "-olocal_lock="
717	 */
718	if (!is_local)
719		status = NFS_PROTO(inode)->lock(filp, cmd, fl);
720	else
721		status = locks_lock_file_wait(filp, fl);
722	return status;
723}
724
725static int
726do_setlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
727{
728	struct inode *inode = filp->f_mapping->host;
729	int status;
730
731	/*
732	 * Flush all pending writes before doing anything
733	 * with locks..
734	 */
735	status = nfs_sync_mapping(filp->f_mapping);
736	if (status != 0)
737		goto out;
738
739	/*
740	 * Use local locking if mounted with "-onolock" or with appropriate
741	 * "-olocal_lock="
742	 */
743	if (!is_local)
744		status = NFS_PROTO(inode)->lock(filp, cmd, fl);
745	else
746		status = locks_lock_file_wait(filp, fl);
747	if (status < 0)
748		goto out;
749
750	/*
751	 * Invalidate cache to prevent missing any changes.  If
752	 * the file is mapped, clear the page cache as well so
753	 * those mappings will be loaded.
754	 *
755	 * This makes locking act as a cache coherency point.
756	 */
757	nfs_sync_mapping(filp->f_mapping);
758	if (!NFS_PROTO(inode)->have_delegation(inode, FMODE_READ)) {
759		nfs_zap_caches(inode);
760		if (mapping_mapped(filp->f_mapping))
761			nfs_revalidate_mapping(inode, filp->f_mapping);
762	}
763out:
764	return status;
765}
766
767/*
768 * Lock a (portion of) a file
769 */
770int nfs_lock(struct file *filp, int cmd, struct file_lock *fl)
771{
772	struct inode *inode = filp->f_mapping->host;
773	int ret = -ENOLCK;
774	int is_local = 0;
775
776	dprintk("NFS: lock(%pD2, t=%x, fl=%x, r=%lld:%lld)\n",
777			filp, fl->fl_type, fl->fl_flags,
778			(long long)fl->fl_start, (long long)fl->fl_end);
779
780	nfs_inc_stats(inode, NFSIOS_VFSLOCK);
781
782	/* No mandatory locks over NFS */
783	if (__mandatory_lock(inode) && fl->fl_type != F_UNLCK)
784		goto out_err;
785
786	if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FCNTL)
787		is_local = 1;
788
789	if (NFS_PROTO(inode)->lock_check_bounds != NULL) {
790		ret = NFS_PROTO(inode)->lock_check_bounds(fl);
791		if (ret < 0)
792			goto out_err;
793	}
794
795	if (IS_GETLK(cmd))
796		ret = do_getlk(filp, cmd, fl, is_local);
797	else if (fl->fl_type == F_UNLCK)
798		ret = do_unlk(filp, cmd, fl, is_local);
799	else
800		ret = do_setlk(filp, cmd, fl, is_local);
801out_err:
802	return ret;
803}
804EXPORT_SYMBOL_GPL(nfs_lock);
805
806/*
807 * Lock a (portion of) a file
808 */
809int nfs_flock(struct file *filp, int cmd, struct file_lock *fl)
810{
811	struct inode *inode = filp->f_mapping->host;
812	int is_local = 0;
813
814	dprintk("NFS: flock(%pD2, t=%x, fl=%x)\n",
815			filp, fl->fl_type, fl->fl_flags);
816
817	if (!(fl->fl_flags & FL_FLOCK))
818		return -ENOLCK;
819
820	/*
821	 * The NFSv4 protocol doesn't support LOCK_MAND, which is not part of
822	 * any standard. In principle we might be able to support LOCK_MAND
823	 * on NFSv2/3 since NLMv3/4 support DOS share modes, but for now the
824	 * NFS code is not set up for it.
825	 */
826	if (fl->fl_type & LOCK_MAND)
827		return -EINVAL;
828
829	if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FLOCK)
830		is_local = 1;
831
832	/* We're simulating flock() locks using posix locks on the server */
833	if (fl->fl_type == F_UNLCK)
834		return do_unlk(filp, cmd, fl, is_local);
835	return do_setlk(filp, cmd, fl, is_local);
836}
837EXPORT_SYMBOL_GPL(nfs_flock);
838
839const struct file_operations nfs_file_operations = {
840	.llseek		= nfs_file_llseek,
841	.read_iter	= nfs_file_read,
842	.write_iter	= nfs_file_write,
843	.mmap		= nfs_file_mmap,
844	.open		= nfs_file_open,
845	.flush		= nfs_file_flush,
846	.release	= nfs_file_release,
847	.fsync		= nfs_file_fsync,
848	.lock		= nfs_lock,
849	.flock		= nfs_flock,
850	.splice_read	= generic_file_splice_read,
851	.splice_write	= iter_file_splice_write,
852	.check_flags	= nfs_check_flags,
853	.setlease	= simple_nosetlease,
854};
855EXPORT_SYMBOL_GPL(nfs_file_operations);
v6.8
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 *  linux/fs/nfs/file.c
  4 *
  5 *  Copyright (C) 1992  Rick Sladkey
  6 *
  7 *  Changes Copyright (C) 1994 by Florian La Roche
  8 *   - Do not copy data too often around in the kernel.
  9 *   - In nfs_file_read the return value of kmalloc wasn't checked.
 10 *   - Put in a better version of read look-ahead buffering. Original idea
 11 *     and implementation by Wai S Kok elekokws@ee.nus.sg.
 12 *
 13 *  Expire cache on write to a file by Wai S Kok (Oct 1994).
 14 *
 15 *  Total rewrite of read side for new NFS buffer cache.. Linus.
 16 *
 17 *  nfs regular file handling functions
 18 */
 19
 20#include <linux/module.h>
 21#include <linux/time.h>
 22#include <linux/kernel.h>
 23#include <linux/errno.h>
 24#include <linux/fcntl.h>
 25#include <linux/stat.h>
 26#include <linux/nfs_fs.h>
 27#include <linux/nfs_mount.h>
 28#include <linux/mm.h>
 29#include <linux/pagemap.h>
 30#include <linux/gfp.h>
 31#include <linux/swap.h>
 32
 33#include <linux/uaccess.h>
 34#include <linux/filelock.h>
 35
 36#include "delegation.h"
 37#include "internal.h"
 38#include "iostat.h"
 39#include "fscache.h"
 40#include "pnfs.h"
 41
 42#include "nfstrace.h"
 43
 44#define NFSDBG_FACILITY		NFSDBG_FILE
 45
 46static const struct vm_operations_struct nfs_file_vm_ops;
 47
 
 
 
 
 
 48int nfs_check_flags(int flags)
 49{
 50	if ((flags & (O_APPEND | O_DIRECT)) == (O_APPEND | O_DIRECT))
 51		return -EINVAL;
 52
 53	return 0;
 54}
 55EXPORT_SYMBOL_GPL(nfs_check_flags);
 56
 57/*
 58 * Open file
 59 */
 60static int
 61nfs_file_open(struct inode *inode, struct file *filp)
 62{
 63	int res;
 64
 65	dprintk("NFS: open file(%pD2)\n", filp);
 66
 67	nfs_inc_stats(inode, NFSIOS_VFSOPEN);
 68	res = nfs_check_flags(filp->f_flags);
 69	if (res)
 70		return res;
 71
 72	res = nfs_open(inode, filp);
 73	if (res == 0)
 74		filp->f_mode |= FMODE_CAN_ODIRECT;
 75	return res;
 76}
 77
 78int
 79nfs_file_release(struct inode *inode, struct file *filp)
 80{
 81	dprintk("NFS: release(%pD2)\n", filp);
 82
 83	nfs_inc_stats(inode, NFSIOS_VFSRELEASE);
 84	nfs_file_clear_open_context(filp);
 85	nfs_fscache_release_file(inode, filp);
 86	return 0;
 87}
 88EXPORT_SYMBOL_GPL(nfs_file_release);
 89
 90/**
 91 * nfs_revalidate_file_size - Revalidate the file size
 92 * @inode: pointer to inode struct
 93 * @filp: pointer to struct file
 94 *
 95 * Revalidates the file length. This is basically a wrapper around
 96 * nfs_revalidate_inode() that takes into account the fact that we may
 97 * have cached writes (in which case we don't care about the server's
 98 * idea of what the file length is), or O_DIRECT (in which case we
 99 * shouldn't trust the cache).
100 */
101static int nfs_revalidate_file_size(struct inode *inode, struct file *filp)
102{
103	struct nfs_server *server = NFS_SERVER(inode);
104
105	if (filp->f_flags & O_DIRECT)
106		goto force_reval;
107	if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_SIZE))
108		goto force_reval;
109	return 0;
110force_reval:
111	return __nfs_revalidate_inode(server, inode);
112}
113
114loff_t nfs_file_llseek(struct file *filp, loff_t offset, int whence)
115{
116	dprintk("NFS: llseek file(%pD2, %lld, %d)\n",
117			filp, offset, whence);
118
119	/*
120	 * whence == SEEK_END || SEEK_DATA || SEEK_HOLE => we must revalidate
121	 * the cached file length
122	 */
123	if (whence != SEEK_SET && whence != SEEK_CUR) {
124		struct inode *inode = filp->f_mapping->host;
125
126		int retval = nfs_revalidate_file_size(inode, filp);
127		if (retval < 0)
128			return (loff_t)retval;
129	}
130
131	return generic_file_llseek(filp, offset, whence);
132}
133EXPORT_SYMBOL_GPL(nfs_file_llseek);
134
135/*
136 * Flush all dirty pages, and check for write errors.
137 */
138static int
139nfs_file_flush(struct file *file, fl_owner_t id)
140{
141	struct inode	*inode = file_inode(file);
142	errseq_t since;
143
144	dprintk("NFS: flush(%pD2)\n", file);
145
146	nfs_inc_stats(inode, NFSIOS_VFSFLUSH);
147	if ((file->f_mode & FMODE_WRITE) == 0)
148		return 0;
149
150	/* Flush writes to the server and return any errors */
151	since = filemap_sample_wb_err(file->f_mapping);
152	nfs_wb_all(inode);
153	return filemap_check_wb_err(file->f_mapping, since);
154}
155
156ssize_t
157nfs_file_read(struct kiocb *iocb, struct iov_iter *to)
158{
159	struct inode *inode = file_inode(iocb->ki_filp);
160	ssize_t result;
161
162	if (iocb->ki_flags & IOCB_DIRECT)
163		return nfs_file_direct_read(iocb, to, false);
164
165	dprintk("NFS: read(%pD2, %zu@%lu)\n",
166		iocb->ki_filp,
167		iov_iter_count(to), (unsigned long) iocb->ki_pos);
168
169	nfs_start_io_read(inode);
170	result = nfs_revalidate_mapping(inode, iocb->ki_filp->f_mapping);
171	if (!result) {
172		result = generic_file_read_iter(iocb, to);
173		if (result > 0)
174			nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, result);
175	}
176	nfs_end_io_read(inode);
177	return result;
178}
179EXPORT_SYMBOL_GPL(nfs_file_read);
180
181ssize_t
182nfs_file_splice_read(struct file *in, loff_t *ppos, struct pipe_inode_info *pipe,
183		     size_t len, unsigned int flags)
184{
185	struct inode *inode = file_inode(in);
186	ssize_t result;
187
188	dprintk("NFS: splice_read(%pD2, %zu@%llu)\n", in, len, *ppos);
189
190	nfs_start_io_read(inode);
191	result = nfs_revalidate_mapping(inode, in->f_mapping);
192	if (!result) {
193		result = filemap_splice_read(in, ppos, pipe, len, flags);
194		if (result > 0)
195			nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, result);
196	}
197	nfs_end_io_read(inode);
198	return result;
199}
200EXPORT_SYMBOL_GPL(nfs_file_splice_read);
201
202int
203nfs_file_mmap(struct file *file, struct vm_area_struct *vma)
204{
205	struct inode *inode = file_inode(file);
206	int	status;
207
208	dprintk("NFS: mmap(%pD2)\n", file);
209
210	/* Note: generic_file_mmap() returns ENOSYS on nommu systems
211	 *       so we call that before revalidating the mapping
212	 */
213	status = generic_file_mmap(file, vma);
214	if (!status) {
215		vma->vm_ops = &nfs_file_vm_ops;
216		status = nfs_revalidate_mapping(inode, file->f_mapping);
217	}
218	return status;
219}
220EXPORT_SYMBOL_GPL(nfs_file_mmap);
221
222/*
223 * Flush any dirty pages for this process, and check for write errors.
224 * The return status from this call provides a reliable indication of
225 * whether any write errors occurred for this process.
 
 
 
 
 
 
 
226 */
227static int
228nfs_file_fsync_commit(struct file *file, int datasync)
229{
 
230	struct inode *inode = file_inode(file);
231	int ret, ret2;
 
232
233	dprintk("NFS: fsync file(%pD2) datasync %d\n", file, datasync);
234
235	nfs_inc_stats(inode, NFSIOS_VFSFSYNC);
236	ret = nfs_commit_inode(inode, FLUSH_SYNC);
237	ret2 = file_check_and_advance_wb_err(file);
238	if (ret2 < 0)
239		return ret2;
 
 
 
 
 
 
 
 
 
 
 
240	return ret;
241}
242
243int
244nfs_file_fsync(struct file *file, loff_t start, loff_t end, int datasync)
245{
 
246	struct inode *inode = file_inode(file);
247	struct nfs_inode *nfsi = NFS_I(inode);
248	long save_nredirtied = atomic_long_read(&nfsi->redirtied_pages);
249	long nredirtied;
250	int ret;
251
252	trace_nfs_fsync_enter(inode);
253
254	for (;;) {
255		ret = file_write_and_wait_range(file, start, end);
 
 
 
 
 
 
256		if (ret != 0)
257			break;
258		ret = nfs_file_fsync_commit(file, datasync);
259		if (ret != 0)
260			break;
261		ret = pnfs_sync_inode(inode, !!datasync);
262		if (ret != 0)
263			break;
264		nredirtied = atomic_long_read(&nfsi->redirtied_pages);
265		if (nredirtied == save_nredirtied)
266			break;
267		save_nredirtied = nredirtied;
268	}
269
270	trace_nfs_fsync_exit(inode, ret);
271	return ret;
272}
273EXPORT_SYMBOL_GPL(nfs_file_fsync);
274
275/*
276 * Decide whether a read/modify/write cycle may be more efficient
277 * then a modify/write/read cycle when writing to a page in the
278 * page cache.
279 *
280 * Some pNFS layout drivers can only read/write at a certain block
281 * granularity like all block devices and therefore we must perform
282 * read/modify/write whenever a page hasn't read yet and the data
283 * to be written there is not aligned to a block boundary and/or
284 * smaller than the block size.
285 *
286 * The modify/write/read cycle may occur if a page is read before
287 * being completely filled by the writer.  In this situation, the
288 * page must be completely written to stable storage on the server
289 * before it can be refilled by reading in the page from the server.
290 * This can lead to expensive, small, FILE_SYNC mode writes being
291 * done.
292 *
293 * It may be more efficient to read the page first if the file is
294 * open for reading in addition to writing, the page is not marked
295 * as Uptodate, it is not dirty or waiting to be committed,
296 * indicating that it was previously allocated and then modified,
297 * that there were valid bytes of data in that range of the file,
298 * and that the new data won't completely replace the old data in
299 * that range of the file.
300 */
301static bool nfs_folio_is_full_write(struct folio *folio, loff_t pos,
302				    unsigned int len)
303{
304	unsigned int pglen = nfs_folio_length(folio);
305	unsigned int offset = offset_in_folio(folio, pos);
306	unsigned int end = offset + len;
307
308	return !pglen || (end >= pglen && !offset);
309}
 
 
 
310
311static bool nfs_want_read_modify_write(struct file *file, struct folio *folio,
312				       loff_t pos, unsigned int len)
313{
314	/*
315	 * Up-to-date pages, those with ongoing or full-page write
316	 * don't need read/modify/write
317	 */
318	if (folio_test_uptodate(folio) || folio_test_private(folio) ||
319	    nfs_folio_is_full_write(folio, pos, len))
320		return false;
321
322	if (pnfs_ld_read_whole_page(file_inode(file)))
323		return true;
324	/* Open for reading too? */
325	if (file->f_mode & FMODE_READ)
326		return true;
327	return false;
328}
329
330/*
331 * This does the "real" work of the write. We must allocate and lock the
332 * page to be sent back to the generic routine, which then copies the
333 * data from user space.
334 *
335 * If the writer ends up delaying the write, the writer needs to
336 * increment the page use counts until he is done with the page.
337 */
338static int nfs_write_begin(struct file *file, struct address_space *mapping,
339			   loff_t pos, unsigned len, struct page **pagep,
340			   void **fsdata)
341{
342	struct folio *folio;
 
 
343	int once_thru = 0;
344	int ret;
345
346	dfprintk(PAGECACHE, "NFS: write_begin(%pD2(%lu), %u@%lld)\n",
347		file, mapping->host->i_ino, len, (long long) pos);
348
349start:
350	folio = __filemap_get_folio(mapping, pos >> PAGE_SHIFT, FGP_WRITEBEGIN,
351				    mapping_gfp_mask(mapping));
352	if (IS_ERR(folio))
353		return PTR_ERR(folio);
354	*pagep = &folio->page;
355
356	ret = nfs_flush_incompatible(file, folio);
357	if (ret) {
358		folio_unlock(folio);
359		folio_put(folio);
360	} else if (!once_thru &&
361		   nfs_want_read_modify_write(file, folio, pos, len)) {
362		once_thru = 1;
363		ret = nfs_read_folio(file, folio);
364		folio_put(folio);
365		if (!ret)
366			goto start;
367	}
368	return ret;
369}
370
371static int nfs_write_end(struct file *file, struct address_space *mapping,
372			 loff_t pos, unsigned len, unsigned copied,
373			 struct page *page, void *fsdata)
374{
 
375	struct nfs_open_context *ctx = nfs_file_open_context(file);
376	struct folio *folio = page_folio(page);
377	unsigned offset = offset_in_folio(folio, pos);
378	int status;
379
380	dfprintk(PAGECACHE, "NFS: write_end(%pD2(%lu), %u@%lld)\n",
381		file, mapping->host->i_ino, len, (long long) pos);
382
383	/*
384	 * Zero any uninitialised parts of the page, and then mark the page
385	 * as up to date if it turns out that we're extending the file.
386	 */
387	if (!folio_test_uptodate(folio)) {
388		size_t fsize = folio_size(folio);
389		unsigned pglen = nfs_folio_length(folio);
390		unsigned end = offset + copied;
391
392		if (pglen == 0) {
393			folio_zero_segments(folio, 0, offset, end, fsize);
394			folio_mark_uptodate(folio);
 
395		} else if (end >= pglen) {
396			folio_zero_segment(folio, end, fsize);
397			if (offset == 0)
398				folio_mark_uptodate(folio);
399		} else
400			folio_zero_segment(folio, pglen, fsize);
401	}
402
403	status = nfs_update_folio(file, folio, offset, copied);
404
405	folio_unlock(folio);
406	folio_put(folio);
407
408	if (status < 0)
409		return status;
410	NFS_I(mapping->host)->write_io += copied;
411
412	if (nfs_ctx_key_to_expire(ctx, mapping->host))
413		nfs_wb_all(mapping->host);
 
 
 
414
415	return copied;
416}
417
418/*
419 * Partially or wholly invalidate a page
420 * - Release the private state associated with a page if undergoing complete
421 *   page invalidation
422 * - Called if either PG_private or PG_fscache is set on the page
423 * - Caller holds page lock
424 */
425static void nfs_invalidate_folio(struct folio *folio, size_t offset,
426				size_t length)
427{
428	struct inode *inode = folio_file_mapping(folio)->host;
429	dfprintk(PAGECACHE, "NFS: invalidate_folio(%lu, %zu, %zu)\n",
430		 folio->index, offset, length);
431
432	if (offset != 0 || length < folio_size(folio))
433		return;
434	/* Cancel any unstarted writes on this page */
435	nfs_wb_folio_cancel(inode, folio);
436	folio_wait_fscache(folio);
437	trace_nfs_invalidate_folio(inode, folio);
438}
439
440/*
441 * Attempt to release the private state associated with a folio
442 * - Called if either private or fscache flags are set on the folio
443 * - Caller holds folio lock
444 * - Return true (may release folio) or false (may not)
445 */
446static bool nfs_release_folio(struct folio *folio, gfp_t gfp)
447{
448	dfprintk(PAGECACHE, "NFS: release_folio(%p)\n", folio);
449
450	/* If the private flag is set, then the folio is not freeable */
451	if (folio_test_private(folio)) {
452		if ((current_gfp_context(gfp) & GFP_KERNEL) != GFP_KERNEL ||
453		    current_is_kswapd())
454			return false;
455		if (nfs_wb_folio(folio_file_mapping(folio)->host, folio) < 0)
456			return false;
457	}
458	return nfs_fscache_release_folio(folio, gfp);
459}
460
461static void nfs_check_dirty_writeback(struct folio *folio,
462				bool *dirty, bool *writeback)
463{
464	struct nfs_inode *nfsi;
465	struct address_space *mapping = folio->mapping;
 
 
 
466
467	/*
468	 * Check if an unstable folio is currently being committed and
469	 * if so, have the VM treat it as if the folio is under writeback
470	 * so it will not block due to folios that will shortly be freeable.
471	 */
472	nfsi = NFS_I(mapping->host);
473	if (atomic_read(&nfsi->commit_info.rpcs_out)) {
474		*writeback = true;
475		return;
476	}
477
478	/*
479	 * If the private flag is set, then the folio is not freeable
480	 * and as the inode is not being committed, it's not going to
481	 * be cleaned in the near future so treat it as dirty
482	 */
483	if (folio_test_private(folio))
484		*dirty = true;
485}
486
487/*
488 * Attempt to clear the private state associated with a page when an error
489 * occurs that requires the cached contents of an inode to be written back or
490 * destroyed
491 * - Called if either PG_private or fscache is set on the page
492 * - Caller holds page lock
493 * - Return 0 if successful, -error otherwise
494 */
495static int nfs_launder_folio(struct folio *folio)
496{
497	struct inode *inode = folio->mapping->host;
498	int ret;
499
500	dfprintk(PAGECACHE, "NFS: launder_folio(%ld, %llu)\n",
501		inode->i_ino, folio_pos(folio));
502
503	folio_wait_fscache(folio);
504	ret = nfs_wb_folio(inode, folio);
505	trace_nfs_launder_folio_done(inode, folio, ret);
506	return ret;
507}
508
509static int nfs_swap_activate(struct swap_info_struct *sis, struct file *file,
510						sector_t *span)
511{
512	unsigned long blocks;
513	long long isize;
514	int ret;
515	struct inode *inode = file_inode(file);
516	struct rpc_clnt *clnt = NFS_CLIENT(inode);
517	struct nfs_client *cl = NFS_SERVER(inode)->nfs_client;
518
519	spin_lock(&inode->i_lock);
520	blocks = inode->i_blocks;
521	isize = inode->i_size;
522	spin_unlock(&inode->i_lock);
523	if (blocks*512 < isize) {
524		pr_warn("swap activate: swapfile has holes\n");
525		return -EINVAL;
526	}
527
528	ret = rpc_clnt_swap_activate(clnt);
529	if (ret)
530		return ret;
531	ret = add_swap_extent(sis, 0, sis->max, 0);
532	if (ret < 0) {
533		rpc_clnt_swap_deactivate(clnt);
534		return ret;
535	}
536
537	*span = sis->pages;
538
539	if (cl->rpc_ops->enable_swap)
540		cl->rpc_ops->enable_swap(inode);
541
542	sis->flags |= SWP_FS_OPS;
543	return ret;
544}
545
546static void nfs_swap_deactivate(struct file *file)
547{
548	struct inode *inode = file_inode(file);
549	struct rpc_clnt *clnt = NFS_CLIENT(inode);
550	struct nfs_client *cl = NFS_SERVER(inode)->nfs_client;
551
552	rpc_clnt_swap_deactivate(clnt);
553	if (cl->rpc_ops->disable_swap)
554		cl->rpc_ops->disable_swap(file_inode(file));
555}
556
557const struct address_space_operations nfs_file_aops = {
558	.read_folio = nfs_read_folio,
559	.readahead = nfs_readahead,
560	.dirty_folio = filemap_dirty_folio,
 
561	.writepages = nfs_writepages,
562	.write_begin = nfs_write_begin,
563	.write_end = nfs_write_end,
564	.invalidate_folio = nfs_invalidate_folio,
565	.release_folio = nfs_release_folio,
566	.migrate_folio = nfs_migrate_folio,
567	.launder_folio = nfs_launder_folio,
 
 
 
568	.is_dirty_writeback = nfs_check_dirty_writeback,
569	.error_remove_folio = generic_error_remove_folio,
570	.swap_activate = nfs_swap_activate,
571	.swap_deactivate = nfs_swap_deactivate,
572	.swap_rw = nfs_swap_rw,
573};
574
575/*
576 * Notification that a PTE pointing to an NFS page is about to be made
577 * writable, implying that someone is about to modify the page through a
578 * shared-writable mapping
579 */
580static vm_fault_t nfs_vm_page_mkwrite(struct vm_fault *vmf)
581{
 
582	struct file *filp = vmf->vma->vm_file;
583	struct inode *inode = file_inode(filp);
584	unsigned pagelen;
585	vm_fault_t ret = VM_FAULT_NOPAGE;
586	struct address_space *mapping;
587	struct folio *folio = page_folio(vmf->page);
588
589	dfprintk(PAGECACHE, "NFS: vm_page_mkwrite(%pD2(%lu), offset %lld)\n",
590		 filp, filp->f_mapping->host->i_ino,
591		 (long long)folio_file_pos(folio));
592
593	sb_start_pagefault(inode->i_sb);
594
595	/* make sure the cache has finished storing the page */
596	if (folio_test_fscache(folio) &&
597	    folio_wait_fscache_killable(folio) < 0) {
598		ret = VM_FAULT_RETRY;
599		goto out;
600	}
601
602	wait_on_bit_action(&NFS_I(inode)->flags, NFS_INO_INVALIDATING,
603			   nfs_wait_bit_killable,
604			   TASK_KILLABLE|TASK_FREEZABLE_UNSAFE);
605
606	folio_lock(folio);
607	mapping = folio_file_mapping(folio);
608	if (mapping != inode->i_mapping)
609		goto out_unlock;
610
611	folio_wait_writeback(folio);
612
613	pagelen = nfs_folio_length(folio);
614	if (pagelen == 0)
615		goto out_unlock;
616
617	ret = VM_FAULT_LOCKED;
618	if (nfs_flush_incompatible(filp, folio) == 0 &&
619	    nfs_update_folio(filp, folio, 0, pagelen) == 0)
620		goto out;
621
622	ret = VM_FAULT_SIGBUS;
623out_unlock:
624	folio_unlock(folio);
625out:
626	sb_end_pagefault(inode->i_sb);
627	return ret;
628}
629
630static const struct vm_operations_struct nfs_file_vm_ops = {
631	.fault = filemap_fault,
632	.map_pages = filemap_map_pages,
633	.page_mkwrite = nfs_vm_page_mkwrite,
634};
635
 
 
 
 
 
 
 
 
 
 
 
636ssize_t nfs_file_write(struct kiocb *iocb, struct iov_iter *from)
637{
638	struct file *file = iocb->ki_filp;
639	struct inode *inode = file_inode(file);
640	unsigned int mntflags = NFS_SERVER(inode)->flags;
641	ssize_t result, written;
642	errseq_t since;
643	int error;
644
645	result = nfs_key_timeout_notify(file, inode);
646	if (result)
647		return result;
648
649	if (iocb->ki_flags & IOCB_DIRECT)
650		return nfs_file_direct_write(iocb, from, false);
651
652	dprintk("NFS: write(%pD2, %zu@%Ld)\n",
653		file, iov_iter_count(from), (long long) iocb->ki_pos);
654
655	if (IS_SWAPFILE(inode))
656		goto out_swapfile;
657	/*
658	 * O_APPEND implies that we must revalidate the file length.
659	 */
660	if (iocb->ki_flags & IOCB_APPEND || iocb->ki_pos > i_size_read(inode)) {
661		result = nfs_revalidate_file_size(inode, file);
662		if (result)
663			return result;
664	}
 
 
665
666	nfs_clear_invalid_mapping(file->f_mapping);
667
668	since = filemap_sample_wb_err(file->f_mapping);
669	nfs_start_io_write(inode);
670	result = generic_write_checks(iocb, from);
671	if (result > 0)
672		result = generic_perform_write(iocb, from);
 
 
 
673	nfs_end_io_write(inode);
674	if (result <= 0)
675		goto out;
676
677	written = result;
678	nfs_add_stats(inode, NFSIOS_NORMALWRITTENBYTES, written);
679
680	if (mntflags & NFS_MOUNT_WRITE_EAGER) {
681		result = filemap_fdatawrite_range(file->f_mapping,
682						  iocb->ki_pos - written,
683						  iocb->ki_pos - 1);
684		if (result < 0)
685			goto out;
686	}
687	if (mntflags & NFS_MOUNT_WRITE_WAIT) {
688		filemap_fdatawait_range(file->f_mapping,
689					iocb->ki_pos - written,
690					iocb->ki_pos - 1);
691	}
692	result = generic_write_sync(iocb, written);
693	if (result < 0)
694		return result;
695
696out:
697	/* Return error values */
698	error = filemap_check_wb_err(file->f_mapping, since);
699	switch (error) {
700	default:
701		break;
702	case -EDQUOT:
703	case -EFBIG:
704	case -ENOSPC:
705		nfs_wb_all(inode);
706		error = file_check_and_advance_wb_err(file);
707		if (error < 0)
708			result = error;
709	}
 
 
710	return result;
711
712out_swapfile:
713	printk(KERN_INFO "NFS: attempt to write to active swap file!\n");
714	return -ETXTBSY;
715}
716EXPORT_SYMBOL_GPL(nfs_file_write);
717
718static int
719do_getlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
720{
721	struct inode *inode = filp->f_mapping->host;
722	int status = 0;
723	unsigned int saved_type = fl->fl_type;
724
725	/* Try local locking first */
726	posix_test_lock(filp, fl);
727	if (fl->fl_type != F_UNLCK) {
728		/* found a conflict */
729		goto out;
730	}
731	fl->fl_type = saved_type;
732
733	if (NFS_PROTO(inode)->have_delegation(inode, FMODE_READ))
734		goto out_noconflict;
735
736	if (is_local)
737		goto out_noconflict;
738
739	status = NFS_PROTO(inode)->lock(filp, cmd, fl);
740out:
741	return status;
742out_noconflict:
743	fl->fl_type = F_UNLCK;
744	goto out;
745}
746
747static int
748do_unlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
749{
750	struct inode *inode = filp->f_mapping->host;
751	struct nfs_lock_context *l_ctx;
752	int status;
753
754	/*
755	 * Flush all pending writes before doing anything
756	 * with locks..
757	 */
758	nfs_wb_all(inode);
759
760	l_ctx = nfs_get_lock_context(nfs_file_open_context(filp));
761	if (!IS_ERR(l_ctx)) {
762		status = nfs_iocounter_wait(l_ctx);
763		nfs_put_lock_context(l_ctx);
764		/*  NOTE: special case
765		 * 	If we're signalled while cleaning up locks on process exit, we
766		 * 	still need to complete the unlock.
767		 */
768		if (status < 0 && !(fl->fl_flags & FL_CLOSE))
769			return status;
770	}
771
772	/*
773	 * Use local locking if mounted with "-onolock" or with appropriate
774	 * "-olocal_lock="
775	 */
776	if (!is_local)
777		status = NFS_PROTO(inode)->lock(filp, cmd, fl);
778	else
779		status = locks_lock_file_wait(filp, fl);
780	return status;
781}
782
783static int
784do_setlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
785{
786	struct inode *inode = filp->f_mapping->host;
787	int status;
788
789	/*
790	 * Flush all pending writes before doing anything
791	 * with locks..
792	 */
793	status = nfs_sync_mapping(filp->f_mapping);
794	if (status != 0)
795		goto out;
796
797	/*
798	 * Use local locking if mounted with "-onolock" or with appropriate
799	 * "-olocal_lock="
800	 */
801	if (!is_local)
802		status = NFS_PROTO(inode)->lock(filp, cmd, fl);
803	else
804		status = locks_lock_file_wait(filp, fl);
805	if (status < 0)
806		goto out;
807
808	/*
809	 * Invalidate cache to prevent missing any changes.  If
810	 * the file is mapped, clear the page cache as well so
811	 * those mappings will be loaded.
812	 *
813	 * This makes locking act as a cache coherency point.
814	 */
815	nfs_sync_mapping(filp->f_mapping);
816	if (!NFS_PROTO(inode)->have_delegation(inode, FMODE_READ)) {
817		nfs_zap_caches(inode);
818		if (mapping_mapped(filp->f_mapping))
819			nfs_revalidate_mapping(inode, filp->f_mapping);
820	}
821out:
822	return status;
823}
824
825/*
826 * Lock a (portion of) a file
827 */
828int nfs_lock(struct file *filp, int cmd, struct file_lock *fl)
829{
830	struct inode *inode = filp->f_mapping->host;
831	int ret = -ENOLCK;
832	int is_local = 0;
833
834	dprintk("NFS: lock(%pD2, t=%x, fl=%x, r=%lld:%lld)\n",
835			filp, fl->fl_type, fl->fl_flags,
836			(long long)fl->fl_start, (long long)fl->fl_end);
837
838	nfs_inc_stats(inode, NFSIOS_VFSLOCK);
839
840	if (fl->fl_flags & FL_RECLAIM)
841		return -ENOGRACE;
 
842
843	if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FCNTL)
844		is_local = 1;
845
846	if (NFS_PROTO(inode)->lock_check_bounds != NULL) {
847		ret = NFS_PROTO(inode)->lock_check_bounds(fl);
848		if (ret < 0)
849			goto out_err;
850	}
851
852	if (IS_GETLK(cmd))
853		ret = do_getlk(filp, cmd, fl, is_local);
854	else if (fl->fl_type == F_UNLCK)
855		ret = do_unlk(filp, cmd, fl, is_local);
856	else
857		ret = do_setlk(filp, cmd, fl, is_local);
858out_err:
859	return ret;
860}
861EXPORT_SYMBOL_GPL(nfs_lock);
862
863/*
864 * Lock a (portion of) a file
865 */
866int nfs_flock(struct file *filp, int cmd, struct file_lock *fl)
867{
868	struct inode *inode = filp->f_mapping->host;
869	int is_local = 0;
870
871	dprintk("NFS: flock(%pD2, t=%x, fl=%x)\n",
872			filp, fl->fl_type, fl->fl_flags);
873
874	if (!(fl->fl_flags & FL_FLOCK))
875		return -ENOLCK;
876
 
 
 
 
 
 
 
 
 
877	if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FLOCK)
878		is_local = 1;
879
880	/* We're simulating flock() locks using posix locks on the server */
881	if (fl->fl_type == F_UNLCK)
882		return do_unlk(filp, cmd, fl, is_local);
883	return do_setlk(filp, cmd, fl, is_local);
884}
885EXPORT_SYMBOL_GPL(nfs_flock);
886
887const struct file_operations nfs_file_operations = {
888	.llseek		= nfs_file_llseek,
889	.read_iter	= nfs_file_read,
890	.write_iter	= nfs_file_write,
891	.mmap		= nfs_file_mmap,
892	.open		= nfs_file_open,
893	.flush		= nfs_file_flush,
894	.release	= nfs_file_release,
895	.fsync		= nfs_file_fsync,
896	.lock		= nfs_lock,
897	.flock		= nfs_flock,
898	.splice_read	= nfs_file_splice_read,
899	.splice_write	= iter_file_splice_write,
900	.check_flags	= nfs_check_flags,
901	.setlease	= simple_nosetlease,
902};
903EXPORT_SYMBOL_GPL(nfs_file_operations);