Linux Audio

Check our new training course

Loading...
v4.17
  1/*
  2 *  linux/fs/nfs/file.c
  3 *
  4 *  Copyright (C) 1992  Rick Sladkey
  5 *
  6 *  Changes Copyright (C) 1994 by Florian La Roche
  7 *   - Do not copy data too often around in the kernel.
  8 *   - In nfs_file_read the return value of kmalloc wasn't checked.
  9 *   - Put in a better version of read look-ahead buffering. Original idea
 10 *     and implementation by Wai S Kok elekokws@ee.nus.sg.
 11 *
 12 *  Expire cache on write to a file by Wai S Kok (Oct 1994).
 13 *
 14 *  Total rewrite of read side for new NFS buffer cache.. Linus.
 15 *
 16 *  nfs regular file handling functions
 17 */
 18
 19#include <linux/module.h>
 20#include <linux/time.h>
 21#include <linux/kernel.h>
 22#include <linux/errno.h>
 23#include <linux/fcntl.h>
 24#include <linux/stat.h>
 25#include <linux/nfs_fs.h>
 26#include <linux/nfs_mount.h>
 27#include <linux/mm.h>
 28#include <linux/pagemap.h>
 29#include <linux/gfp.h>
 30#include <linux/swap.h>
 31
 32#include <linux/uaccess.h>
 33
 34#include "delegation.h"
 35#include "internal.h"
 36#include "iostat.h"
 37#include "fscache.h"
 38#include "pnfs.h"
 39
 40#include "nfstrace.h"
 41
 42#define NFSDBG_FACILITY		NFSDBG_FILE
 43
 44static const struct vm_operations_struct nfs_file_vm_ops;
 45
 46/* Hack for future NFS swap support */
 47#ifndef IS_SWAPFILE
 48# define IS_SWAPFILE(inode)	(0)
 49#endif
 50
 51int nfs_check_flags(int flags)
 52{
 53	if ((flags & (O_APPEND | O_DIRECT)) == (O_APPEND | O_DIRECT))
 54		return -EINVAL;
 55
 56	return 0;
 57}
 58EXPORT_SYMBOL_GPL(nfs_check_flags);
 59
 60/*
 61 * Open file
 62 */
 63static int
 64nfs_file_open(struct inode *inode, struct file *filp)
 65{
 66	int res;
 67
 68	dprintk("NFS: open file(%pD2)\n", filp);
 69
 70	nfs_inc_stats(inode, NFSIOS_VFSOPEN);
 71	res = nfs_check_flags(filp->f_flags);
 72	if (res)
 73		return res;
 74
 75	res = nfs_open(inode, filp);
 76	return res;
 77}
 78
 79int
 80nfs_file_release(struct inode *inode, struct file *filp)
 81{
 82	dprintk("NFS: release(%pD2)\n", filp);
 83
 84	nfs_inc_stats(inode, NFSIOS_VFSRELEASE);
 85	nfs_file_clear_open_context(filp);
 86	return 0;
 87}
 88EXPORT_SYMBOL_GPL(nfs_file_release);
 89
 90/**
 91 * nfs_revalidate_size - Revalidate the file size
 92 * @inode - pointer to inode struct
 93 * @file - pointer to struct file
 94 *
 95 * Revalidates the file length. This is basically a wrapper around
 96 * nfs_revalidate_inode() that takes into account the fact that we may
 97 * have cached writes (in which case we don't care about the server's
 98 * idea of what the file length is), or O_DIRECT (in which case we
 99 * shouldn't trust the cache).
100 */
101static int nfs_revalidate_file_size(struct inode *inode, struct file *filp)
102{
103	struct nfs_server *server = NFS_SERVER(inode);
 
 
 
 
104
105	if (filp->f_flags & O_DIRECT)
106		goto force_reval;
107	if (nfs_check_cache_invalid(inode, NFS_INO_REVAL_PAGECACHE))
 
 
108		goto force_reval;
 
109	return 0;
110force_reval:
111	return __nfs_revalidate_inode(server, inode);
112}
113
114loff_t nfs_file_llseek(struct file *filp, loff_t offset, int whence)
115{
116	dprintk("NFS: llseek file(%pD2, %lld, %d)\n",
117			filp, offset, whence);
118
119	/*
120	 * whence == SEEK_END || SEEK_DATA || SEEK_HOLE => we must revalidate
121	 * the cached file length
122	 */
123	if (whence != SEEK_SET && whence != SEEK_CUR) {
124		struct inode *inode = filp->f_mapping->host;
125
126		int retval = nfs_revalidate_file_size(inode, filp);
127		if (retval < 0)
128			return (loff_t)retval;
129	}
130
131	return generic_file_llseek(filp, offset, whence);
132}
133EXPORT_SYMBOL_GPL(nfs_file_llseek);
134
135/*
136 * Flush all dirty pages, and check for write errors.
137 */
138static int
139nfs_file_flush(struct file *file, fl_owner_t id)
140{
141	struct inode	*inode = file_inode(file);
142
143	dprintk("NFS: flush(%pD2)\n", file);
144
145	nfs_inc_stats(inode, NFSIOS_VFSFLUSH);
146	if ((file->f_mode & FMODE_WRITE) == 0)
147		return 0;
148
149	/* Flush writes to the server and return any errors */
150	return vfs_fsync(file, 0);
151}
152
153ssize_t
154nfs_file_read(struct kiocb *iocb, struct iov_iter *to)
155{
156	struct inode *inode = file_inode(iocb->ki_filp);
157	ssize_t result;
158
159	if (iocb->ki_flags & IOCB_DIRECT)
160		return nfs_file_direct_read(iocb, to);
161
162	dprintk("NFS: read(%pD2, %zu@%lu)\n",
163		iocb->ki_filp,
164		iov_iter_count(to), (unsigned long) iocb->ki_pos);
165
166	nfs_start_io_read(inode);
167	result = nfs_revalidate_mapping(inode, iocb->ki_filp->f_mapping);
168	if (!result) {
169		result = generic_file_read_iter(iocb, to);
170		if (result > 0)
171			nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, result);
172	}
173	nfs_end_io_read(inode);
174	return result;
175}
176EXPORT_SYMBOL_GPL(nfs_file_read);
177
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
178int
179nfs_file_mmap(struct file * file, struct vm_area_struct * vma)
180{
181	struct inode *inode = file_inode(file);
182	int	status;
183
184	dprintk("NFS: mmap(%pD2)\n", file);
185
186	/* Note: generic_file_mmap() returns ENOSYS on nommu systems
187	 *       so we call that before revalidating the mapping
188	 */
189	status = generic_file_mmap(file, vma);
190	if (!status) {
191		vma->vm_ops = &nfs_file_vm_ops;
192		status = nfs_revalidate_mapping(inode, file->f_mapping);
193	}
194	return status;
195}
196EXPORT_SYMBOL_GPL(nfs_file_mmap);
197
198/*
199 * Flush any dirty pages for this process, and check for write errors.
200 * The return status from this call provides a reliable indication of
201 * whether any write errors occurred for this process.
202 *
203 * Notice that it clears the NFS_CONTEXT_ERROR_WRITE before synching to
204 * disk, but it retrieves and clears ctx->error after synching, despite
205 * the two being set at the same time in nfs_context_set_write_error().
206 * This is because the former is used to notify the _next_ call to
207 * nfs_file_write() that a write error occurred, and hence cause it to
208 * fall back to doing a synchronous write.
209 */
210static int
211nfs_file_fsync_commit(struct file *file, int datasync)
212{
213	struct nfs_open_context *ctx = nfs_file_open_context(file);
214	struct inode *inode = file_inode(file);
215	int do_resend, status;
216	int ret = 0;
217
218	dprintk("NFS: fsync file(%pD2) datasync %d\n", file, datasync);
219
220	nfs_inc_stats(inode, NFSIOS_VFSFSYNC);
221	do_resend = test_and_clear_bit(NFS_CONTEXT_RESEND_WRITES, &ctx->flags);
 
222	status = nfs_commit_inode(inode, FLUSH_SYNC);
223	if (test_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags)) {
 
224		ret = xchg(&ctx->error, 0);
225		if (ret)
226			goto out;
227	}
228	if (status < 0) {
229		ret = status;
230		goto out;
231	}
232	do_resend |= test_bit(NFS_CONTEXT_RESEND_WRITES, &ctx->flags);
233	if (do_resend)
234		ret = -EAGAIN;
235out:
236	return ret;
237}
238
239int
240nfs_file_fsync(struct file *file, loff_t start, loff_t end, int datasync)
241{
242	int ret;
243	struct inode *inode = file_inode(file);
244
245	trace_nfs_fsync_enter(inode);
246
 
247	do {
248		struct nfs_open_context *ctx = nfs_file_open_context(file);
249		ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
250		if (test_and_clear_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags)) {
251			int ret2 = xchg(&ctx->error, 0);
252			if (ret2)
253				ret = ret2;
254		}
255		if (ret != 0)
256			break;
257		ret = nfs_file_fsync_commit(file, datasync);
 
258		if (!ret)
259			ret = pnfs_sync_inode(inode, !!datasync);
 
260		/*
261		 * If nfs_file_fsync_commit detected a server reboot, then
262		 * resend all dirty pages that might have been covered by
263		 * the NFS_CONTEXT_RESEND_WRITES flag
264		 */
265		start = 0;
266		end = LLONG_MAX;
267	} while (ret == -EAGAIN);
268
269	trace_nfs_fsync_exit(inode, ret);
270	return ret;
271}
272EXPORT_SYMBOL_GPL(nfs_file_fsync);
273
274/*
275 * Decide whether a read/modify/write cycle may be more efficient
276 * then a modify/write/read cycle when writing to a page in the
277 * page cache.
278 *
279 * The modify/write/read cycle may occur if a page is read before
280 * being completely filled by the writer.  In this situation, the
281 * page must be completely written to stable storage on the server
282 * before it can be refilled by reading in the page from the server.
283 * This can lead to expensive, small, FILE_SYNC mode writes being
284 * done.
285 *
286 * It may be more efficient to read the page first if the file is
287 * open for reading in addition to writing, the page is not marked
288 * as Uptodate, it is not dirty or waiting to be committed,
289 * indicating that it was previously allocated and then modified,
290 * that there were valid bytes of data in that range of the file,
291 * and that the new data won't completely replace the old data in
292 * that range of the file.
293 */
294static int nfs_want_read_modify_write(struct file *file, struct page *page,
295			loff_t pos, unsigned len)
296{
297	unsigned int pglen = nfs_page_length(page);
298	unsigned int offset = pos & (PAGE_SIZE - 1);
299	unsigned int end = offset + len;
300
301	if (pnfs_ld_read_whole_page(file->f_mapping->host)) {
302		if (!PageUptodate(page))
303			return 1;
304		return 0;
305	}
306
307	if ((file->f_mode & FMODE_READ) &&	/* open for read? */
308	    !PageUptodate(page) &&		/* Uptodate? */
309	    !PagePrivate(page) &&		/* i/o request already? */
310	    pglen &&				/* valid bytes of file? */
311	    (end < pglen || offset))		/* replace all valid bytes? */
312		return 1;
313	return 0;
314}
315
316/*
317 * This does the "real" work of the write. We must allocate and lock the
318 * page to be sent back to the generic routine, which then copies the
319 * data from user space.
320 *
321 * If the writer ends up delaying the write, the writer needs to
322 * increment the page use counts until he is done with the page.
323 */
324static int nfs_write_begin(struct file *file, struct address_space *mapping,
325			loff_t pos, unsigned len, unsigned flags,
326			struct page **pagep, void **fsdata)
327{
328	int ret;
329	pgoff_t index = pos >> PAGE_SHIFT;
330	struct page *page;
331	int once_thru = 0;
332
333	dfprintk(PAGECACHE, "NFS: write_begin(%pD2(%lu), %u@%lld)\n",
334		file, mapping->host->i_ino, len, (long long) pos);
335
336start:
 
 
 
 
 
 
 
 
 
 
 
 
 
337	page = grab_cache_page_write_begin(mapping, index, flags);
338	if (!page)
339		return -ENOMEM;
340	*pagep = page;
341
342	ret = nfs_flush_incompatible(file, page);
343	if (ret) {
344		unlock_page(page);
345		put_page(page);
346	} else if (!once_thru &&
347		   nfs_want_read_modify_write(file, page, pos, len)) {
348		once_thru = 1;
349		ret = nfs_readpage(file, page);
350		put_page(page);
351		if (!ret)
352			goto start;
353	}
354	return ret;
355}
356
357static int nfs_write_end(struct file *file, struct address_space *mapping,
358			loff_t pos, unsigned len, unsigned copied,
359			struct page *page, void *fsdata)
360{
361	unsigned offset = pos & (PAGE_SIZE - 1);
362	struct nfs_open_context *ctx = nfs_file_open_context(file);
363	int status;
364
365	dfprintk(PAGECACHE, "NFS: write_end(%pD2(%lu), %u@%lld)\n",
366		file, mapping->host->i_ino, len, (long long) pos);
367
368	/*
369	 * Zero any uninitialised parts of the page, and then mark the page
370	 * as up to date if it turns out that we're extending the file.
371	 */
372	if (!PageUptodate(page)) {
373		unsigned pglen = nfs_page_length(page);
374		unsigned end = offset + copied;
375
376		if (pglen == 0) {
377			zero_user_segments(page, 0, offset,
378					end, PAGE_SIZE);
379			SetPageUptodate(page);
380		} else if (end >= pglen) {
381			zero_user_segment(page, end, PAGE_SIZE);
382			if (offset == 0)
383				SetPageUptodate(page);
384		} else
385			zero_user_segment(page, pglen, PAGE_SIZE);
386	}
387
388	status = nfs_updatepage(file, page, offset, copied);
389
390	unlock_page(page);
391	put_page(page);
392
393	if (status < 0)
394		return status;
395	NFS_I(mapping->host)->write_io += copied;
396
397	if (nfs_ctx_key_to_expire(ctx, mapping->host)) {
398		status = nfs_wb_all(mapping->host);
399		if (status < 0)
400			return status;
401	}
402
403	return copied;
404}
405
406/*
407 * Partially or wholly invalidate a page
408 * - Release the private state associated with a page if undergoing complete
409 *   page invalidation
410 * - Called if either PG_private or PG_fscache is set on the page
411 * - Caller holds page lock
412 */
413static void nfs_invalidate_page(struct page *page, unsigned int offset,
414				unsigned int length)
415{
416	dfprintk(PAGECACHE, "NFS: invalidate_page(%p, %u, %u)\n",
417		 page, offset, length);
418
419	if (offset != 0 || length < PAGE_SIZE)
420		return;
421	/* Cancel any unstarted writes on this page */
422	nfs_wb_page_cancel(page_file_mapping(page)->host, page);
423
424	nfs_fscache_invalidate_page(page, page->mapping->host);
425}
426
427/*
428 * Attempt to release the private state associated with a page
429 * - Called if either PG_private or PG_fscache is set on the page
430 * - Caller holds page lock
431 * - Return true (may release page) or false (may not)
432 */
433static int nfs_release_page(struct page *page, gfp_t gfp)
434{
 
 
435	dfprintk(PAGECACHE, "NFS: release_page(%p)\n", page);
436
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
437	/* If PagePrivate() is set, then the page is not freeable */
438	if (PagePrivate(page))
439		return 0;
440	return nfs_fscache_release_page(page, gfp);
441}
442
443static void nfs_check_dirty_writeback(struct page *page,
444				bool *dirty, bool *writeback)
445{
446	struct nfs_inode *nfsi;
447	struct address_space *mapping = page_file_mapping(page);
448
449	if (!mapping || PageSwapCache(page))
450		return;
451
452	/*
453	 * Check if an unstable page is currently being committed and
454	 * if so, have the VM treat it as if the page is under writeback
455	 * so it will not block due to pages that will shortly be freeable.
456	 */
457	nfsi = NFS_I(mapping->host);
458	if (atomic_read(&nfsi->commit_info.rpcs_out)) {
459		*writeback = true;
460		return;
461	}
462
463	/*
464	 * If PagePrivate() is set, then the page is not freeable and as the
465	 * inode is not being committed, it's not going to be cleaned in the
466	 * near future so treat it as dirty
467	 */
468	if (PagePrivate(page))
469		*dirty = true;
470}
471
472/*
473 * Attempt to clear the private state associated with a page when an error
474 * occurs that requires the cached contents of an inode to be written back or
475 * destroyed
476 * - Called if either PG_private or fscache is set on the page
477 * - Caller holds page lock
478 * - Return 0 if successful, -error otherwise
479 */
480static int nfs_launder_page(struct page *page)
481{
482	struct inode *inode = page_file_mapping(page)->host;
483	struct nfs_inode *nfsi = NFS_I(inode);
484
485	dfprintk(PAGECACHE, "NFS: launder_page(%ld, %llu)\n",
486		inode->i_ino, (long long)page_offset(page));
487
488	nfs_fscache_wait_on_page_write(nfsi, page);
489	return nfs_wb_page(inode, page);
490}
491
492static int nfs_swap_activate(struct swap_info_struct *sis, struct file *file,
493						sector_t *span)
494{
495	struct rpc_clnt *clnt = NFS_CLIENT(file->f_mapping->host);
496
497	*span = sis->pages;
498
499	return rpc_clnt_swap_activate(clnt);
500}
501
502static void nfs_swap_deactivate(struct file *file)
503{
504	struct rpc_clnt *clnt = NFS_CLIENT(file->f_mapping->host);
505
506	rpc_clnt_swap_deactivate(clnt);
507}
508
509const struct address_space_operations nfs_file_aops = {
510	.readpage = nfs_readpage,
511	.readpages = nfs_readpages,
512	.set_page_dirty = __set_page_dirty_nobuffers,
513	.writepage = nfs_writepage,
514	.writepages = nfs_writepages,
515	.write_begin = nfs_write_begin,
516	.write_end = nfs_write_end,
517	.invalidatepage = nfs_invalidate_page,
518	.releasepage = nfs_release_page,
519	.direct_IO = nfs_direct_IO,
520#ifdef CONFIG_MIGRATION
521	.migratepage = nfs_migrate_page,
522#endif
523	.launder_page = nfs_launder_page,
524	.is_dirty_writeback = nfs_check_dirty_writeback,
525	.error_remove_page = generic_error_remove_page,
526	.swap_activate = nfs_swap_activate,
527	.swap_deactivate = nfs_swap_deactivate,
528};
529
530/*
531 * Notification that a PTE pointing to an NFS page is about to be made
532 * writable, implying that someone is about to modify the page through a
533 * shared-writable mapping
534 */
535static int nfs_vm_page_mkwrite(struct vm_fault *vmf)
536{
537	struct page *page = vmf->page;
538	struct file *filp = vmf->vma->vm_file;
539	struct inode *inode = file_inode(filp);
540	unsigned pagelen;
541	int ret = VM_FAULT_NOPAGE;
542	struct address_space *mapping;
543
544	dfprintk(PAGECACHE, "NFS: vm_page_mkwrite(%pD2(%lu), offset %lld)\n",
545		filp, filp->f_mapping->host->i_ino,
546		(long long)page_offset(page));
547
548	sb_start_pagefault(inode->i_sb);
549
550	/* make sure the cache has finished storing the page */
551	nfs_fscache_wait_on_page_write(NFS_I(inode), page);
552
553	wait_on_bit_action(&NFS_I(inode)->flags, NFS_INO_INVALIDATING,
554			nfs_wait_bit_killable, TASK_KILLABLE);
555
556	lock_page(page);
557	mapping = page_file_mapping(page);
558	if (mapping != inode->i_mapping)
559		goto out_unlock;
560
561	wait_on_page_writeback(page);
562
563	pagelen = nfs_page_length(page);
564	if (pagelen == 0)
565		goto out_unlock;
566
567	ret = VM_FAULT_LOCKED;
568	if (nfs_flush_incompatible(filp, page) == 0 &&
569	    nfs_updatepage(filp, page, 0, pagelen) == 0)
570		goto out;
571
572	ret = VM_FAULT_SIGBUS;
573out_unlock:
574	unlock_page(page);
575out:
576	sb_end_pagefault(inode->i_sb);
577	return ret;
578}
579
580static const struct vm_operations_struct nfs_file_vm_ops = {
581	.fault = filemap_fault,
582	.map_pages = filemap_map_pages,
583	.page_mkwrite = nfs_vm_page_mkwrite,
584};
585
586static int nfs_need_check_write(struct file *filp, struct inode *inode)
587{
588	struct nfs_open_context *ctx;
589
590	ctx = nfs_file_open_context(filp);
591	if (test_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags) ||
592	    nfs_ctx_key_to_expire(ctx, inode))
593		return 1;
594	return 0;
595}
596
597ssize_t nfs_file_write(struct kiocb *iocb, struct iov_iter *from)
598{
599	struct file *file = iocb->ki_filp;
600	struct inode *inode = file_inode(file);
601	unsigned long written = 0;
602	ssize_t result;
 
603
604	result = nfs_key_timeout_notify(file, inode);
605	if (result)
606		return result;
607
608	if (iocb->ki_flags & IOCB_DIRECT)
 
 
 
609		return nfs_file_direct_write(iocb, from);
 
610
611	dprintk("NFS: write(%pD2, %zu@%Ld)\n",
612		file, iov_iter_count(from), (long long) iocb->ki_pos);
613
 
614	if (IS_SWAPFILE(inode))
615		goto out_swapfile;
616	/*
617	 * O_APPEND implies that we must revalidate the file length.
618	 */
619	if (iocb->ki_flags & IOCB_APPEND) {
620		result = nfs_revalidate_file_size(inode, file);
621		if (result)
622			goto out;
623	}
624	if (iocb->ki_pos > i_size_read(inode))
625		nfs_revalidate_mapping(inode, file->f_mapping);
626
627	nfs_start_io_write(inode);
628	result = generic_write_checks(iocb, from);
629	if (result > 0) {
630		current->backing_dev_info = inode_to_bdi(inode);
631		result = generic_perform_write(file, from, iocb->ki_pos);
632		current->backing_dev_info = NULL;
633	}
634	nfs_end_io_write(inode);
635	if (result <= 0)
636		goto out;
637
638	written = result;
639	iocb->ki_pos += written;
640	result = generic_write_sync(iocb, written);
641	if (result < 0)
642		goto out;
643
644	/* Return error values */
645	if (nfs_need_check_write(file, inode)) {
646		int err = vfs_fsync(file, 0);
647		if (err < 0)
648			result = err;
649	}
650	nfs_add_stats(inode, NFSIOS_NORMALWRITTENBYTES, written);
 
651out:
652	return result;
653
654out_swapfile:
655	printk(KERN_INFO "NFS: attempt to write to active swap file!\n");
656	return -EBUSY;
657}
658EXPORT_SYMBOL_GPL(nfs_file_write);
659
660static int
661do_getlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
662{
663	struct inode *inode = filp->f_mapping->host;
664	int status = 0;
665	unsigned int saved_type = fl->fl_type;
666
667	/* Try local locking first */
668	posix_test_lock(filp, fl);
669	if (fl->fl_type != F_UNLCK) {
670		/* found a conflict */
671		goto out;
672	}
673	fl->fl_type = saved_type;
674
675	if (NFS_PROTO(inode)->have_delegation(inode, FMODE_READ))
676		goto out_noconflict;
677
678	if (is_local)
679		goto out_noconflict;
680
681	status = NFS_PROTO(inode)->lock(filp, cmd, fl);
682out:
683	return status;
684out_noconflict:
685	fl->fl_type = F_UNLCK;
686	goto out;
687}
688
 
 
 
 
 
689static int
690do_unlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
691{
692	struct inode *inode = filp->f_mapping->host;
693	struct nfs_lock_context *l_ctx;
694	int status;
695
696	/*
697	 * Flush all pending writes before doing anything
698	 * with locks..
699	 */
700	vfs_fsync(filp, 0);
701
702	l_ctx = nfs_get_lock_context(nfs_file_open_context(filp));
703	if (!IS_ERR(l_ctx)) {
704		status = nfs_iocounter_wait(l_ctx);
705		nfs_put_lock_context(l_ctx);
706		/*  NOTE: special case
707		 * 	If we're signalled while cleaning up locks on process exit, we
708		 * 	still need to complete the unlock.
709		 */
710		if (status < 0 && !(fl->fl_flags & FL_CLOSE))
711			return status;
712	}
713
 
 
 
 
714	/*
715	 * Use local locking if mounted with "-onolock" or with appropriate
716	 * "-olocal_lock="
717	 */
718	if (!is_local)
719		status = NFS_PROTO(inode)->lock(filp, cmd, fl);
720	else
721		status = locks_lock_file_wait(filp, fl);
722	return status;
723}
724
725static int
 
 
 
 
 
726do_setlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
727{
728	struct inode *inode = filp->f_mapping->host;
729	int status;
730
731	/*
732	 * Flush all pending writes before doing anything
733	 * with locks..
734	 */
735	status = nfs_sync_mapping(filp->f_mapping);
736	if (status != 0)
737		goto out;
738
739	/*
740	 * Use local locking if mounted with "-onolock" or with appropriate
741	 * "-olocal_lock="
742	 */
743	if (!is_local)
744		status = NFS_PROTO(inode)->lock(filp, cmd, fl);
745	else
746		status = locks_lock_file_wait(filp, fl);
747	if (status < 0)
748		goto out;
749
750	/*
751	 * Invalidate cache to prevent missing any changes.  If
752	 * the file is mapped, clear the page cache as well so
753	 * those mappings will be loaded.
754	 *
755	 * This makes locking act as a cache coherency point.
756	 */
757	nfs_sync_mapping(filp->f_mapping);
758	if (!NFS_PROTO(inode)->have_delegation(inode, FMODE_READ)) {
759		nfs_zap_caches(inode);
760		if (mapping_mapped(filp->f_mapping))
761			nfs_revalidate_mapping(inode, filp->f_mapping);
 
762	}
763out:
764	return status;
765}
766
767/*
768 * Lock a (portion of) a file
769 */
770int nfs_lock(struct file *filp, int cmd, struct file_lock *fl)
771{
772	struct inode *inode = filp->f_mapping->host;
773	int ret = -ENOLCK;
774	int is_local = 0;
775
776	dprintk("NFS: lock(%pD2, t=%x, fl=%x, r=%lld:%lld)\n",
777			filp, fl->fl_type, fl->fl_flags,
778			(long long)fl->fl_start, (long long)fl->fl_end);
779
780	nfs_inc_stats(inode, NFSIOS_VFSLOCK);
781
782	/* No mandatory locks over NFS */
783	if (__mandatory_lock(inode) && fl->fl_type != F_UNLCK)
784		goto out_err;
785
786	if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FCNTL)
787		is_local = 1;
788
789	if (NFS_PROTO(inode)->lock_check_bounds != NULL) {
790		ret = NFS_PROTO(inode)->lock_check_bounds(fl);
791		if (ret < 0)
792			goto out_err;
793	}
794
795	if (IS_GETLK(cmd))
796		ret = do_getlk(filp, cmd, fl, is_local);
797	else if (fl->fl_type == F_UNLCK)
798		ret = do_unlk(filp, cmd, fl, is_local);
799	else
800		ret = do_setlk(filp, cmd, fl, is_local);
801out_err:
802	return ret;
803}
804EXPORT_SYMBOL_GPL(nfs_lock);
805
806/*
807 * Lock a (portion of) a file
808 */
809int nfs_flock(struct file *filp, int cmd, struct file_lock *fl)
810{
811	struct inode *inode = filp->f_mapping->host;
812	int is_local = 0;
813
814	dprintk("NFS: flock(%pD2, t=%x, fl=%x)\n",
815			filp, fl->fl_type, fl->fl_flags);
816
817	if (!(fl->fl_flags & FL_FLOCK))
818		return -ENOLCK;
819
820	/*
821	 * The NFSv4 protocol doesn't support LOCK_MAND, which is not part of
822	 * any standard. In principle we might be able to support LOCK_MAND
823	 * on NFSv2/3 since NLMv3/4 support DOS share modes, but for now the
824	 * NFS code is not set up for it.
825	 */
826	if (fl->fl_type & LOCK_MAND)
827		return -EINVAL;
828
829	if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FLOCK)
830		is_local = 1;
831
832	/* We're simulating flock() locks using posix locks on the server */
833	if (fl->fl_type == F_UNLCK)
834		return do_unlk(filp, cmd, fl, is_local);
835	return do_setlk(filp, cmd, fl, is_local);
836}
837EXPORT_SYMBOL_GPL(nfs_flock);
838
839const struct file_operations nfs_file_operations = {
840	.llseek		= nfs_file_llseek,
841	.read_iter	= nfs_file_read,
842	.write_iter	= nfs_file_write,
843	.mmap		= nfs_file_mmap,
844	.open		= nfs_file_open,
845	.flush		= nfs_file_flush,
846	.release	= nfs_file_release,
847	.fsync		= nfs_file_fsync,
848	.lock		= nfs_lock,
849	.flock		= nfs_flock,
850	.splice_read	= generic_file_splice_read,
851	.splice_write	= iter_file_splice_write,
852	.check_flags	= nfs_check_flags,
853	.setlease	= simple_nosetlease,
854};
855EXPORT_SYMBOL_GPL(nfs_file_operations);
v4.6
  1/*
  2 *  linux/fs/nfs/file.c
  3 *
  4 *  Copyright (C) 1992  Rick Sladkey
  5 *
  6 *  Changes Copyright (C) 1994 by Florian La Roche
  7 *   - Do not copy data too often around in the kernel.
  8 *   - In nfs_file_read the return value of kmalloc wasn't checked.
  9 *   - Put in a better version of read look-ahead buffering. Original idea
 10 *     and implementation by Wai S Kok elekokws@ee.nus.sg.
 11 *
 12 *  Expire cache on write to a file by Wai S Kok (Oct 1994).
 13 *
 14 *  Total rewrite of read side for new NFS buffer cache.. Linus.
 15 *
 16 *  nfs regular file handling functions
 17 */
 18
 19#include <linux/module.h>
 20#include <linux/time.h>
 21#include <linux/kernel.h>
 22#include <linux/errno.h>
 23#include <linux/fcntl.h>
 24#include <linux/stat.h>
 25#include <linux/nfs_fs.h>
 26#include <linux/nfs_mount.h>
 27#include <linux/mm.h>
 28#include <linux/pagemap.h>
 29#include <linux/gfp.h>
 30#include <linux/swap.h>
 31
 32#include <asm/uaccess.h>
 33
 34#include "delegation.h"
 35#include "internal.h"
 36#include "iostat.h"
 37#include "fscache.h"
 38#include "pnfs.h"
 39
 40#include "nfstrace.h"
 41
 42#define NFSDBG_FACILITY		NFSDBG_FILE
 43
 44static const struct vm_operations_struct nfs_file_vm_ops;
 45
 46/* Hack for future NFS swap support */
 47#ifndef IS_SWAPFILE
 48# define IS_SWAPFILE(inode)	(0)
 49#endif
 50
 51int nfs_check_flags(int flags)
 52{
 53	if ((flags & (O_APPEND | O_DIRECT)) == (O_APPEND | O_DIRECT))
 54		return -EINVAL;
 55
 56	return 0;
 57}
 58EXPORT_SYMBOL_GPL(nfs_check_flags);
 59
 60/*
 61 * Open file
 62 */
 63static int
 64nfs_file_open(struct inode *inode, struct file *filp)
 65{
 66	int res;
 67
 68	dprintk("NFS: open file(%pD2)\n", filp);
 69
 70	nfs_inc_stats(inode, NFSIOS_VFSOPEN);
 71	res = nfs_check_flags(filp->f_flags);
 72	if (res)
 73		return res;
 74
 75	res = nfs_open(inode, filp);
 76	return res;
 77}
 78
 79int
 80nfs_file_release(struct inode *inode, struct file *filp)
 81{
 82	dprintk("NFS: release(%pD2)\n", filp);
 83
 84	nfs_inc_stats(inode, NFSIOS_VFSRELEASE);
 85	nfs_file_clear_open_context(filp);
 86	return 0;
 87}
 88EXPORT_SYMBOL_GPL(nfs_file_release);
 89
 90/**
 91 * nfs_revalidate_size - Revalidate the file size
 92 * @inode - pointer to inode struct
 93 * @file - pointer to struct file
 94 *
 95 * Revalidates the file length. This is basically a wrapper around
 96 * nfs_revalidate_inode() that takes into account the fact that we may
 97 * have cached writes (in which case we don't care about the server's
 98 * idea of what the file length is), or O_DIRECT (in which case we
 99 * shouldn't trust the cache).
100 */
101static int nfs_revalidate_file_size(struct inode *inode, struct file *filp)
102{
103	struct nfs_server *server = NFS_SERVER(inode);
104	struct nfs_inode *nfsi = NFS_I(inode);
105
106	if (nfs_have_delegated_attributes(inode))
107		goto out_noreval;
108
109	if (filp->f_flags & O_DIRECT)
110		goto force_reval;
111	if (nfsi->cache_validity & NFS_INO_REVAL_PAGECACHE)
112		goto force_reval;
113	if (nfs_attribute_timeout(inode))
114		goto force_reval;
115out_noreval:
116	return 0;
117force_reval:
118	return __nfs_revalidate_inode(server, inode);
119}
120
121loff_t nfs_file_llseek(struct file *filp, loff_t offset, int whence)
122{
123	dprintk("NFS: llseek file(%pD2, %lld, %d)\n",
124			filp, offset, whence);
125
126	/*
127	 * whence == SEEK_END || SEEK_DATA || SEEK_HOLE => we must revalidate
128	 * the cached file length
129	 */
130	if (whence != SEEK_SET && whence != SEEK_CUR) {
131		struct inode *inode = filp->f_mapping->host;
132
133		int retval = nfs_revalidate_file_size(inode, filp);
134		if (retval < 0)
135			return (loff_t)retval;
136	}
137
138	return generic_file_llseek(filp, offset, whence);
139}
140EXPORT_SYMBOL_GPL(nfs_file_llseek);
141
142/*
143 * Flush all dirty pages, and check for write errors.
144 */
145static int
146nfs_file_flush(struct file *file, fl_owner_t id)
147{
148	struct inode	*inode = file_inode(file);
149
150	dprintk("NFS: flush(%pD2)\n", file);
151
152	nfs_inc_stats(inode, NFSIOS_VFSFLUSH);
153	if ((file->f_mode & FMODE_WRITE) == 0)
154		return 0;
155
156	/* Flush writes to the server and return any errors */
157	return vfs_fsync(file, 0);
158}
159
160ssize_t
161nfs_file_read(struct kiocb *iocb, struct iov_iter *to)
162{
163	struct inode *inode = file_inode(iocb->ki_filp);
164	ssize_t result;
165
166	if (iocb->ki_flags & IOCB_DIRECT)
167		return nfs_file_direct_read(iocb, to, iocb->ki_pos);
168
169	dprintk("NFS: read(%pD2, %zu@%lu)\n",
170		iocb->ki_filp,
171		iov_iter_count(to), (unsigned long) iocb->ki_pos);
172
173	result = nfs_revalidate_mapping_protected(inode, iocb->ki_filp->f_mapping);
 
174	if (!result) {
175		result = generic_file_read_iter(iocb, to);
176		if (result > 0)
177			nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, result);
178	}
 
179	return result;
180}
181EXPORT_SYMBOL_GPL(nfs_file_read);
182
183ssize_t
184nfs_file_splice_read(struct file *filp, loff_t *ppos,
185		     struct pipe_inode_info *pipe, size_t count,
186		     unsigned int flags)
187{
188	struct inode *inode = file_inode(filp);
189	ssize_t res;
190
191	dprintk("NFS: splice_read(%pD2, %lu@%Lu)\n",
192		filp, (unsigned long) count, (unsigned long long) *ppos);
193
194	res = nfs_revalidate_mapping_protected(inode, filp->f_mapping);
195	if (!res) {
196		res = generic_file_splice_read(filp, ppos, pipe, count, flags);
197		if (res > 0)
198			nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, res);
199	}
200	return res;
201}
202EXPORT_SYMBOL_GPL(nfs_file_splice_read);
203
204int
205nfs_file_mmap(struct file * file, struct vm_area_struct * vma)
206{
207	struct inode *inode = file_inode(file);
208	int	status;
209
210	dprintk("NFS: mmap(%pD2)\n", file);
211
212	/* Note: generic_file_mmap() returns ENOSYS on nommu systems
213	 *       so we call that before revalidating the mapping
214	 */
215	status = generic_file_mmap(file, vma);
216	if (!status) {
217		vma->vm_ops = &nfs_file_vm_ops;
218		status = nfs_revalidate_mapping(inode, file->f_mapping);
219	}
220	return status;
221}
222EXPORT_SYMBOL_GPL(nfs_file_mmap);
223
224/*
225 * Flush any dirty pages for this process, and check for write errors.
226 * The return status from this call provides a reliable indication of
227 * whether any write errors occurred for this process.
228 *
229 * Notice that it clears the NFS_CONTEXT_ERROR_WRITE before synching to
230 * disk, but it retrieves and clears ctx->error after synching, despite
231 * the two being set at the same time in nfs_context_set_write_error().
232 * This is because the former is used to notify the _next_ call to
233 * nfs_file_write() that a write error occurred, and hence cause it to
234 * fall back to doing a synchronous write.
235 */
236static int
237nfs_file_fsync_commit(struct file *file, loff_t start, loff_t end, int datasync)
238{
239	struct nfs_open_context *ctx = nfs_file_open_context(file);
240	struct inode *inode = file_inode(file);
241	int have_error, do_resend, status;
242	int ret = 0;
243
244	dprintk("NFS: fsync file(%pD2) datasync %d\n", file, datasync);
245
246	nfs_inc_stats(inode, NFSIOS_VFSFSYNC);
247	do_resend = test_and_clear_bit(NFS_CONTEXT_RESEND_WRITES, &ctx->flags);
248	have_error = test_and_clear_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags);
249	status = nfs_commit_inode(inode, FLUSH_SYNC);
250	have_error |= test_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags);
251	if (have_error) {
252		ret = xchg(&ctx->error, 0);
253		if (ret)
254			goto out;
255	}
256	if (status < 0) {
257		ret = status;
258		goto out;
259	}
260	do_resend |= test_bit(NFS_CONTEXT_RESEND_WRITES, &ctx->flags);
261	if (do_resend)
262		ret = -EAGAIN;
263out:
264	return ret;
265}
266
267int
268nfs_file_fsync(struct file *file, loff_t start, loff_t end, int datasync)
269{
270	int ret;
271	struct inode *inode = file_inode(file);
272
273	trace_nfs_fsync_enter(inode);
274
275	inode_dio_wait(inode);
276	do {
 
277		ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
 
 
 
 
 
278		if (ret != 0)
279			break;
280		inode_lock(inode);
281		ret = nfs_file_fsync_commit(file, start, end, datasync);
282		if (!ret)
283			ret = pnfs_sync_inode(inode, !!datasync);
284		inode_unlock(inode);
285		/*
286		 * If nfs_file_fsync_commit detected a server reboot, then
287		 * resend all dirty pages that might have been covered by
288		 * the NFS_CONTEXT_RESEND_WRITES flag
289		 */
290		start = 0;
291		end = LLONG_MAX;
292	} while (ret == -EAGAIN);
293
294	trace_nfs_fsync_exit(inode, ret);
295	return ret;
296}
297EXPORT_SYMBOL_GPL(nfs_file_fsync);
298
299/*
300 * Decide whether a read/modify/write cycle may be more efficient
301 * then a modify/write/read cycle when writing to a page in the
302 * page cache.
303 *
304 * The modify/write/read cycle may occur if a page is read before
305 * being completely filled by the writer.  In this situation, the
306 * page must be completely written to stable storage on the server
307 * before it can be refilled by reading in the page from the server.
308 * This can lead to expensive, small, FILE_SYNC mode writes being
309 * done.
310 *
311 * It may be more efficient to read the page first if the file is
312 * open for reading in addition to writing, the page is not marked
313 * as Uptodate, it is not dirty or waiting to be committed,
314 * indicating that it was previously allocated and then modified,
315 * that there were valid bytes of data in that range of the file,
316 * and that the new data won't completely replace the old data in
317 * that range of the file.
318 */
319static int nfs_want_read_modify_write(struct file *file, struct page *page,
320			loff_t pos, unsigned len)
321{
322	unsigned int pglen = nfs_page_length(page);
323	unsigned int offset = pos & (PAGE_SIZE - 1);
324	unsigned int end = offset + len;
325
326	if (pnfs_ld_read_whole_page(file->f_mapping->host)) {
327		if (!PageUptodate(page))
328			return 1;
329		return 0;
330	}
331
332	if ((file->f_mode & FMODE_READ) &&	/* open for read? */
333	    !PageUptodate(page) &&		/* Uptodate? */
334	    !PagePrivate(page) &&		/* i/o request already? */
335	    pglen &&				/* valid bytes of file? */
336	    (end < pglen || offset))		/* replace all valid bytes? */
337		return 1;
338	return 0;
339}
340
341/*
342 * This does the "real" work of the write. We must allocate and lock the
343 * page to be sent back to the generic routine, which then copies the
344 * data from user space.
345 *
346 * If the writer ends up delaying the write, the writer needs to
347 * increment the page use counts until he is done with the page.
348 */
349static int nfs_write_begin(struct file *file, struct address_space *mapping,
350			loff_t pos, unsigned len, unsigned flags,
351			struct page **pagep, void **fsdata)
352{
353	int ret;
354	pgoff_t index = pos >> PAGE_SHIFT;
355	struct page *page;
356	int once_thru = 0;
357
358	dfprintk(PAGECACHE, "NFS: write_begin(%pD2(%lu), %u@%lld)\n",
359		file, mapping->host->i_ino, len, (long long) pos);
360
361start:
362	/*
363	 * Prevent starvation issues if someone is doing a consistency
364	 * sync-to-disk
365	 */
366	ret = wait_on_bit_action(&NFS_I(mapping->host)->flags, NFS_INO_FLUSHING,
367				 nfs_wait_bit_killable, TASK_KILLABLE);
368	if (ret)
369		return ret;
370	/*
371	 * Wait for O_DIRECT to complete
372	 */
373	inode_dio_wait(mapping->host);
374
375	page = grab_cache_page_write_begin(mapping, index, flags);
376	if (!page)
377		return -ENOMEM;
378	*pagep = page;
379
380	ret = nfs_flush_incompatible(file, page);
381	if (ret) {
382		unlock_page(page);
383		put_page(page);
384	} else if (!once_thru &&
385		   nfs_want_read_modify_write(file, page, pos, len)) {
386		once_thru = 1;
387		ret = nfs_readpage(file, page);
388		put_page(page);
389		if (!ret)
390			goto start;
391	}
392	return ret;
393}
394
395static int nfs_write_end(struct file *file, struct address_space *mapping,
396			loff_t pos, unsigned len, unsigned copied,
397			struct page *page, void *fsdata)
398{
399	unsigned offset = pos & (PAGE_SIZE - 1);
400	struct nfs_open_context *ctx = nfs_file_open_context(file);
401	int status;
402
403	dfprintk(PAGECACHE, "NFS: write_end(%pD2(%lu), %u@%lld)\n",
404		file, mapping->host->i_ino, len, (long long) pos);
405
406	/*
407	 * Zero any uninitialised parts of the page, and then mark the page
408	 * as up to date if it turns out that we're extending the file.
409	 */
410	if (!PageUptodate(page)) {
411		unsigned pglen = nfs_page_length(page);
412		unsigned end = offset + len;
413
414		if (pglen == 0) {
415			zero_user_segments(page, 0, offset,
416					end, PAGE_SIZE);
417			SetPageUptodate(page);
418		} else if (end >= pglen) {
419			zero_user_segment(page, end, PAGE_SIZE);
420			if (offset == 0)
421				SetPageUptodate(page);
422		} else
423			zero_user_segment(page, pglen, PAGE_SIZE);
424	}
425
426	status = nfs_updatepage(file, page, offset, copied);
427
428	unlock_page(page);
429	put_page(page);
430
431	if (status < 0)
432		return status;
433	NFS_I(mapping->host)->write_io += copied;
434
435	if (nfs_ctx_key_to_expire(ctx)) {
436		status = nfs_wb_all(mapping->host);
437		if (status < 0)
438			return status;
439	}
440
441	return copied;
442}
443
444/*
445 * Partially or wholly invalidate a page
446 * - Release the private state associated with a page if undergoing complete
447 *   page invalidation
448 * - Called if either PG_private or PG_fscache is set on the page
449 * - Caller holds page lock
450 */
451static void nfs_invalidate_page(struct page *page, unsigned int offset,
452				unsigned int length)
453{
454	dfprintk(PAGECACHE, "NFS: invalidate_page(%p, %u, %u)\n",
455		 page, offset, length);
456
457	if (offset != 0 || length < PAGE_SIZE)
458		return;
459	/* Cancel any unstarted writes on this page */
460	nfs_wb_page_cancel(page_file_mapping(page)->host, page);
461
462	nfs_fscache_invalidate_page(page, page->mapping->host);
463}
464
465/*
466 * Attempt to release the private state associated with a page
467 * - Called if either PG_private or PG_fscache is set on the page
468 * - Caller holds page lock
469 * - Return true (may release page) or false (may not)
470 */
471static int nfs_release_page(struct page *page, gfp_t gfp)
472{
473	struct address_space *mapping = page->mapping;
474
475	dfprintk(PAGECACHE, "NFS: release_page(%p)\n", page);
476
477	/* Always try to initiate a 'commit' if relevant, but only
478	 * wait for it if the caller allows blocking.  Even then,
479	 * only wait 1 second and only if the 'bdi' is not congested.
480	 * Waiting indefinitely can cause deadlocks when the NFS
481	 * server is on this machine, when a new TCP connection is
482	 * needed and in other rare cases.  There is no particular
483	 * need to wait extensively here.  A short wait has the
484	 * benefit that someone else can worry about the freezer.
485	 */
486	if (mapping) {
487		struct nfs_server *nfss = NFS_SERVER(mapping->host);
488		nfs_commit_inode(mapping->host, 0);
489		if (gfpflags_allow_blocking(gfp) &&
490		    !bdi_write_congested(&nfss->backing_dev_info)) {
491			wait_on_page_bit_killable_timeout(page, PG_private,
492							  HZ);
493			if (PagePrivate(page))
494				set_bdi_congested(&nfss->backing_dev_info,
495						  BLK_RW_ASYNC);
496		}
497	}
498	/* If PagePrivate() is set, then the page is not freeable */
499	if (PagePrivate(page))
500		return 0;
501	return nfs_fscache_release_page(page, gfp);
502}
503
504static void nfs_check_dirty_writeback(struct page *page,
505				bool *dirty, bool *writeback)
506{
507	struct nfs_inode *nfsi;
508	struct address_space *mapping = page_file_mapping(page);
509
510	if (!mapping || PageSwapCache(page))
511		return;
512
513	/*
514	 * Check if an unstable page is currently being committed and
515	 * if so, have the VM treat it as if the page is under writeback
516	 * so it will not block due to pages that will shortly be freeable.
517	 */
518	nfsi = NFS_I(mapping->host);
519	if (atomic_read(&nfsi->commit_info.rpcs_out)) {
520		*writeback = true;
521		return;
522	}
523
524	/*
525	 * If PagePrivate() is set, then the page is not freeable and as the
526	 * inode is not being committed, it's not going to be cleaned in the
527	 * near future so treat it as dirty
528	 */
529	if (PagePrivate(page))
530		*dirty = true;
531}
532
533/*
534 * Attempt to clear the private state associated with a page when an error
535 * occurs that requires the cached contents of an inode to be written back or
536 * destroyed
537 * - Called if either PG_private or fscache is set on the page
538 * - Caller holds page lock
539 * - Return 0 if successful, -error otherwise
540 */
541static int nfs_launder_page(struct page *page)
542{
543	struct inode *inode = page_file_mapping(page)->host;
544	struct nfs_inode *nfsi = NFS_I(inode);
545
546	dfprintk(PAGECACHE, "NFS: launder_page(%ld, %llu)\n",
547		inode->i_ino, (long long)page_offset(page));
548
549	nfs_fscache_wait_on_page_write(nfsi, page);
550	return nfs_wb_launder_page(inode, page);
551}
552
553static int nfs_swap_activate(struct swap_info_struct *sis, struct file *file,
554						sector_t *span)
555{
556	struct rpc_clnt *clnt = NFS_CLIENT(file->f_mapping->host);
557
558	*span = sis->pages;
559
560	return rpc_clnt_swap_activate(clnt);
561}
562
563static void nfs_swap_deactivate(struct file *file)
564{
565	struct rpc_clnt *clnt = NFS_CLIENT(file->f_mapping->host);
566
567	rpc_clnt_swap_deactivate(clnt);
568}
569
570const struct address_space_operations nfs_file_aops = {
571	.readpage = nfs_readpage,
572	.readpages = nfs_readpages,
573	.set_page_dirty = __set_page_dirty_nobuffers,
574	.writepage = nfs_writepage,
575	.writepages = nfs_writepages,
576	.write_begin = nfs_write_begin,
577	.write_end = nfs_write_end,
578	.invalidatepage = nfs_invalidate_page,
579	.releasepage = nfs_release_page,
580	.direct_IO = nfs_direct_IO,
 
581	.migratepage = nfs_migrate_page,
 
582	.launder_page = nfs_launder_page,
583	.is_dirty_writeback = nfs_check_dirty_writeback,
584	.error_remove_page = generic_error_remove_page,
585	.swap_activate = nfs_swap_activate,
586	.swap_deactivate = nfs_swap_deactivate,
587};
588
589/*
590 * Notification that a PTE pointing to an NFS page is about to be made
591 * writable, implying that someone is about to modify the page through a
592 * shared-writable mapping
593 */
594static int nfs_vm_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
595{
596	struct page *page = vmf->page;
597	struct file *filp = vma->vm_file;
598	struct inode *inode = file_inode(filp);
599	unsigned pagelen;
600	int ret = VM_FAULT_NOPAGE;
601	struct address_space *mapping;
602
603	dfprintk(PAGECACHE, "NFS: vm_page_mkwrite(%pD2(%lu), offset %lld)\n",
604		filp, filp->f_mapping->host->i_ino,
605		(long long)page_offset(page));
606
 
 
607	/* make sure the cache has finished storing the page */
608	nfs_fscache_wait_on_page_write(NFS_I(inode), page);
609
610	wait_on_bit_action(&NFS_I(inode)->flags, NFS_INO_INVALIDATING,
611			nfs_wait_bit_killable, TASK_KILLABLE);
612
613	lock_page(page);
614	mapping = page_file_mapping(page);
615	if (mapping != inode->i_mapping)
616		goto out_unlock;
617
618	wait_on_page_writeback(page);
619
620	pagelen = nfs_page_length(page);
621	if (pagelen == 0)
622		goto out_unlock;
623
624	ret = VM_FAULT_LOCKED;
625	if (nfs_flush_incompatible(filp, page) == 0 &&
626	    nfs_updatepage(filp, page, 0, pagelen) == 0)
627		goto out;
628
629	ret = VM_FAULT_SIGBUS;
630out_unlock:
631	unlock_page(page);
632out:
 
633	return ret;
634}
635
636static const struct vm_operations_struct nfs_file_vm_ops = {
637	.fault = filemap_fault,
638	.map_pages = filemap_map_pages,
639	.page_mkwrite = nfs_vm_page_mkwrite,
640};
641
642static int nfs_need_check_write(struct file *filp, struct inode *inode)
643{
644	struct nfs_open_context *ctx;
645
646	ctx = nfs_file_open_context(filp);
647	if (test_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags) ||
648	    nfs_ctx_key_to_expire(ctx))
649		return 1;
650	return 0;
651}
652
653ssize_t nfs_file_write(struct kiocb *iocb, struct iov_iter *from)
654{
655	struct file *file = iocb->ki_filp;
656	struct inode *inode = file_inode(file);
657	unsigned long written = 0;
658	ssize_t result;
659	size_t count = iov_iter_count(from);
660
661	result = nfs_key_timeout_notify(file, inode);
662	if (result)
663		return result;
664
665	if (iocb->ki_flags & IOCB_DIRECT) {
666		result = generic_write_checks(iocb, from);
667		if (result <= 0)
668			return result;
669		return nfs_file_direct_write(iocb, from);
670	}
671
672	dprintk("NFS: write(%pD2, %zu@%Ld)\n",
673		file, count, (long long) iocb->ki_pos);
674
675	result = -EBUSY;
676	if (IS_SWAPFILE(inode))
677		goto out_swapfile;
678	/*
679	 * O_APPEND implies that we must revalidate the file length.
680	 */
681	if (iocb->ki_flags & IOCB_APPEND) {
682		result = nfs_revalidate_file_size(inode, file);
683		if (result)
684			goto out;
685	}
 
 
686
687	result = count;
688	if (!count)
 
 
 
 
 
 
 
689		goto out;
690
691	result = generic_file_write_iter(iocb, from);
692	if (result > 0)
693		written = result;
 
 
694
695	/* Return error values */
696	if (result >= 0 && nfs_need_check_write(file, inode)) {
697		int err = vfs_fsync(file, 0);
698		if (err < 0)
699			result = err;
700	}
701	if (result > 0)
702		nfs_add_stats(inode, NFSIOS_NORMALWRITTENBYTES, written);
703out:
704	return result;
705
706out_swapfile:
707	printk(KERN_INFO "NFS: attempt to write to active swap file!\n");
708	goto out;
709}
710EXPORT_SYMBOL_GPL(nfs_file_write);
711
712static int
713do_getlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
714{
715	struct inode *inode = filp->f_mapping->host;
716	int status = 0;
717	unsigned int saved_type = fl->fl_type;
718
719	/* Try local locking first */
720	posix_test_lock(filp, fl);
721	if (fl->fl_type != F_UNLCK) {
722		/* found a conflict */
723		goto out;
724	}
725	fl->fl_type = saved_type;
726
727	if (NFS_PROTO(inode)->have_delegation(inode, FMODE_READ))
728		goto out_noconflict;
729
730	if (is_local)
731		goto out_noconflict;
732
733	status = NFS_PROTO(inode)->lock(filp, cmd, fl);
734out:
735	return status;
736out_noconflict:
737	fl->fl_type = F_UNLCK;
738	goto out;
739}
740
741static int do_vfs_lock(struct file *file, struct file_lock *fl)
742{
743	return locks_lock_file_wait(file, fl);
744}
745
746static int
747do_unlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
748{
749	struct inode *inode = filp->f_mapping->host;
750	struct nfs_lock_context *l_ctx;
751	int status;
752
753	/*
754	 * Flush all pending writes before doing anything
755	 * with locks..
756	 */
757	vfs_fsync(filp, 0);
758
759	l_ctx = nfs_get_lock_context(nfs_file_open_context(filp));
760	if (!IS_ERR(l_ctx)) {
761		status = nfs_iocounter_wait(l_ctx);
762		nfs_put_lock_context(l_ctx);
763		if (status < 0)
 
 
 
 
764			return status;
765	}
766
767	/* NOTE: special case
768	 * 	If we're signalled while cleaning up locks on process exit, we
769	 * 	still need to complete the unlock.
770	 */
771	/*
772	 * Use local locking if mounted with "-onolock" or with appropriate
773	 * "-olocal_lock="
774	 */
775	if (!is_local)
776		status = NFS_PROTO(inode)->lock(filp, cmd, fl);
777	else
778		status = do_vfs_lock(filp, fl);
779	return status;
780}
781
782static int
783is_time_granular(struct timespec *ts) {
784	return ((ts->tv_sec == 0) && (ts->tv_nsec <= 1000));
785}
786
787static int
788do_setlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
789{
790	struct inode *inode = filp->f_mapping->host;
791	int status;
792
793	/*
794	 * Flush all pending writes before doing anything
795	 * with locks..
796	 */
797	status = nfs_sync_mapping(filp->f_mapping);
798	if (status != 0)
799		goto out;
800
801	/*
802	 * Use local locking if mounted with "-onolock" or with appropriate
803	 * "-olocal_lock="
804	 */
805	if (!is_local)
806		status = NFS_PROTO(inode)->lock(filp, cmd, fl);
807	else
808		status = do_vfs_lock(filp, fl);
809	if (status < 0)
810		goto out;
811
812	/*
813	 * Revalidate the cache if the server has time stamps granular
814	 * enough to detect subsecond changes.  Otherwise, clear the
815	 * cache to prevent missing any changes.
816	 *
817	 * This makes locking act as a cache coherency point.
818	 */
819	nfs_sync_mapping(filp->f_mapping);
820	if (!NFS_PROTO(inode)->have_delegation(inode, FMODE_READ)) {
821		if (is_time_granular(&NFS_SERVER(inode)->time_delta))
822			__nfs_revalidate_inode(NFS_SERVER(inode), inode);
823		else
824			nfs_zap_caches(inode);
825	}
826out:
827	return status;
828}
829
830/*
831 * Lock a (portion of) a file
832 */
833int nfs_lock(struct file *filp, int cmd, struct file_lock *fl)
834{
835	struct inode *inode = filp->f_mapping->host;
836	int ret = -ENOLCK;
837	int is_local = 0;
838
839	dprintk("NFS: lock(%pD2, t=%x, fl=%x, r=%lld:%lld)\n",
840			filp, fl->fl_type, fl->fl_flags,
841			(long long)fl->fl_start, (long long)fl->fl_end);
842
843	nfs_inc_stats(inode, NFSIOS_VFSLOCK);
844
845	/* No mandatory locks over NFS */
846	if (__mandatory_lock(inode) && fl->fl_type != F_UNLCK)
847		goto out_err;
848
849	if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FCNTL)
850		is_local = 1;
851
852	if (NFS_PROTO(inode)->lock_check_bounds != NULL) {
853		ret = NFS_PROTO(inode)->lock_check_bounds(fl);
854		if (ret < 0)
855			goto out_err;
856	}
857
858	if (IS_GETLK(cmd))
859		ret = do_getlk(filp, cmd, fl, is_local);
860	else if (fl->fl_type == F_UNLCK)
861		ret = do_unlk(filp, cmd, fl, is_local);
862	else
863		ret = do_setlk(filp, cmd, fl, is_local);
864out_err:
865	return ret;
866}
867EXPORT_SYMBOL_GPL(nfs_lock);
868
869/*
870 * Lock a (portion of) a file
871 */
872int nfs_flock(struct file *filp, int cmd, struct file_lock *fl)
873{
874	struct inode *inode = filp->f_mapping->host;
875	int is_local = 0;
876
877	dprintk("NFS: flock(%pD2, t=%x, fl=%x)\n",
878			filp, fl->fl_type, fl->fl_flags);
879
880	if (!(fl->fl_flags & FL_FLOCK))
881		return -ENOLCK;
882
883	/*
884	 * The NFSv4 protocol doesn't support LOCK_MAND, which is not part of
885	 * any standard. In principle we might be able to support LOCK_MAND
886	 * on NFSv2/3 since NLMv3/4 support DOS share modes, but for now the
887	 * NFS code is not set up for it.
888	 */
889	if (fl->fl_type & LOCK_MAND)
890		return -EINVAL;
891
892	if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FLOCK)
893		is_local = 1;
894
895	/* We're simulating flock() locks using posix locks on the server */
896	if (fl->fl_type == F_UNLCK)
897		return do_unlk(filp, cmd, fl, is_local);
898	return do_setlk(filp, cmd, fl, is_local);
899}
900EXPORT_SYMBOL_GPL(nfs_flock);
901
902const struct file_operations nfs_file_operations = {
903	.llseek		= nfs_file_llseek,
904	.read_iter	= nfs_file_read,
905	.write_iter	= nfs_file_write,
906	.mmap		= nfs_file_mmap,
907	.open		= nfs_file_open,
908	.flush		= nfs_file_flush,
909	.release	= nfs_file_release,
910	.fsync		= nfs_file_fsync,
911	.lock		= nfs_lock,
912	.flock		= nfs_flock,
913	.splice_read	= nfs_file_splice_read,
914	.splice_write	= iter_file_splice_write,
915	.check_flags	= nfs_check_flags,
916	.setlease	= simple_nosetlease,
917};
918EXPORT_SYMBOL_GPL(nfs_file_operations);