Linux Audio

Check our new training course

Loading...
v4.17
 
  1/*
  2 *  linux/fs/nfs/file.c
  3 *
  4 *  Copyright (C) 1992  Rick Sladkey
  5 *
  6 *  Changes Copyright (C) 1994 by Florian La Roche
  7 *   - Do not copy data too often around in the kernel.
  8 *   - In nfs_file_read the return value of kmalloc wasn't checked.
  9 *   - Put in a better version of read look-ahead buffering. Original idea
 10 *     and implementation by Wai S Kok elekokws@ee.nus.sg.
 11 *
 12 *  Expire cache on write to a file by Wai S Kok (Oct 1994).
 13 *
 14 *  Total rewrite of read side for new NFS buffer cache.. Linus.
 15 *
 16 *  nfs regular file handling functions
 17 */
 18
 19#include <linux/module.h>
 20#include <linux/time.h>
 21#include <linux/kernel.h>
 22#include <linux/errno.h>
 23#include <linux/fcntl.h>
 24#include <linux/stat.h>
 25#include <linux/nfs_fs.h>
 26#include <linux/nfs_mount.h>
 27#include <linux/mm.h>
 28#include <linux/pagemap.h>
 29#include <linux/gfp.h>
 30#include <linux/swap.h>
 31
 32#include <linux/uaccess.h>
 33
 34#include "delegation.h"
 35#include "internal.h"
 36#include "iostat.h"
 37#include "fscache.h"
 38#include "pnfs.h"
 39
 40#include "nfstrace.h"
 41
 42#define NFSDBG_FACILITY		NFSDBG_FILE
 43
 44static const struct vm_operations_struct nfs_file_vm_ops;
 45
 46/* Hack for future NFS swap support */
 47#ifndef IS_SWAPFILE
 48# define IS_SWAPFILE(inode)	(0)
 49#endif
 50
 51int nfs_check_flags(int flags)
 52{
 53	if ((flags & (O_APPEND | O_DIRECT)) == (O_APPEND | O_DIRECT))
 54		return -EINVAL;
 55
 56	return 0;
 57}
 58EXPORT_SYMBOL_GPL(nfs_check_flags);
 59
 60/*
 61 * Open file
 62 */
 63static int
 64nfs_file_open(struct inode *inode, struct file *filp)
 65{
 66	int res;
 67
 68	dprintk("NFS: open file(%pD2)\n", filp);
 69
 70	nfs_inc_stats(inode, NFSIOS_VFSOPEN);
 71	res = nfs_check_flags(filp->f_flags);
 72	if (res)
 73		return res;
 74
 75	res = nfs_open(inode, filp);
 76	return res;
 77}
 78
 79int
 80nfs_file_release(struct inode *inode, struct file *filp)
 81{
 82	dprintk("NFS: release(%pD2)\n", filp);
 83
 84	nfs_inc_stats(inode, NFSIOS_VFSRELEASE);
 85	nfs_file_clear_open_context(filp);
 86	return 0;
 87}
 88EXPORT_SYMBOL_GPL(nfs_file_release);
 89
 90/**
 91 * nfs_revalidate_size - Revalidate the file size
 92 * @inode - pointer to inode struct
 93 * @file - pointer to struct file
 94 *
 95 * Revalidates the file length. This is basically a wrapper around
 96 * nfs_revalidate_inode() that takes into account the fact that we may
 97 * have cached writes (in which case we don't care about the server's
 98 * idea of what the file length is), or O_DIRECT (in which case we
 99 * shouldn't trust the cache).
100 */
101static int nfs_revalidate_file_size(struct inode *inode, struct file *filp)
102{
103	struct nfs_server *server = NFS_SERVER(inode);
104
105	if (filp->f_flags & O_DIRECT)
106		goto force_reval;
107	if (nfs_check_cache_invalid(inode, NFS_INO_REVAL_PAGECACHE))
108		goto force_reval;
109	return 0;
110force_reval:
111	return __nfs_revalidate_inode(server, inode);
112}
113
114loff_t nfs_file_llseek(struct file *filp, loff_t offset, int whence)
115{
116	dprintk("NFS: llseek file(%pD2, %lld, %d)\n",
117			filp, offset, whence);
118
119	/*
120	 * whence == SEEK_END || SEEK_DATA || SEEK_HOLE => we must revalidate
121	 * the cached file length
122	 */
123	if (whence != SEEK_SET && whence != SEEK_CUR) {
124		struct inode *inode = filp->f_mapping->host;
125
126		int retval = nfs_revalidate_file_size(inode, filp);
127		if (retval < 0)
128			return (loff_t)retval;
129	}
130
131	return generic_file_llseek(filp, offset, whence);
132}
133EXPORT_SYMBOL_GPL(nfs_file_llseek);
134
135/*
136 * Flush all dirty pages, and check for write errors.
137 */
138static int
139nfs_file_flush(struct file *file, fl_owner_t id)
140{
141	struct inode	*inode = file_inode(file);
 
142
143	dprintk("NFS: flush(%pD2)\n", file);
144
145	nfs_inc_stats(inode, NFSIOS_VFSFLUSH);
146	if ((file->f_mode & FMODE_WRITE) == 0)
147		return 0;
148
149	/* Flush writes to the server and return any errors */
150	return vfs_fsync(file, 0);
 
 
151}
152
153ssize_t
154nfs_file_read(struct kiocb *iocb, struct iov_iter *to)
155{
156	struct inode *inode = file_inode(iocb->ki_filp);
157	ssize_t result;
158
159	if (iocb->ki_flags & IOCB_DIRECT)
160		return nfs_file_direct_read(iocb, to);
161
162	dprintk("NFS: read(%pD2, %zu@%lu)\n",
163		iocb->ki_filp,
164		iov_iter_count(to), (unsigned long) iocb->ki_pos);
165
166	nfs_start_io_read(inode);
167	result = nfs_revalidate_mapping(inode, iocb->ki_filp->f_mapping);
168	if (!result) {
169		result = generic_file_read_iter(iocb, to);
170		if (result > 0)
171			nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, result);
172	}
173	nfs_end_io_read(inode);
174	return result;
175}
176EXPORT_SYMBOL_GPL(nfs_file_read);
177
178int
179nfs_file_mmap(struct file * file, struct vm_area_struct * vma)
180{
181	struct inode *inode = file_inode(file);
182	int	status;
183
184	dprintk("NFS: mmap(%pD2)\n", file);
185
186	/* Note: generic_file_mmap() returns ENOSYS on nommu systems
187	 *       so we call that before revalidating the mapping
188	 */
189	status = generic_file_mmap(file, vma);
190	if (!status) {
191		vma->vm_ops = &nfs_file_vm_ops;
192		status = nfs_revalidate_mapping(inode, file->f_mapping);
193	}
194	return status;
195}
196EXPORT_SYMBOL_GPL(nfs_file_mmap);
197
198/*
199 * Flush any dirty pages for this process, and check for write errors.
200 * The return status from this call provides a reliable indication of
201 * whether any write errors occurred for this process.
202 *
203 * Notice that it clears the NFS_CONTEXT_ERROR_WRITE before synching to
204 * disk, but it retrieves and clears ctx->error after synching, despite
205 * the two being set at the same time in nfs_context_set_write_error().
206 * This is because the former is used to notify the _next_ call to
207 * nfs_file_write() that a write error occurred, and hence cause it to
208 * fall back to doing a synchronous write.
209 */
210static int
211nfs_file_fsync_commit(struct file *file, int datasync)
212{
213	struct nfs_open_context *ctx = nfs_file_open_context(file);
214	struct inode *inode = file_inode(file);
215	int do_resend, status;
216	int ret = 0;
217
218	dprintk("NFS: fsync file(%pD2) datasync %d\n", file, datasync);
219
220	nfs_inc_stats(inode, NFSIOS_VFSFSYNC);
221	do_resend = test_and_clear_bit(NFS_CONTEXT_RESEND_WRITES, &ctx->flags);
222	status = nfs_commit_inode(inode, FLUSH_SYNC);
223	if (test_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags)) {
224		ret = xchg(&ctx->error, 0);
225		if (ret)
226			goto out;
227	}
228	if (status < 0) {
229		ret = status;
230		goto out;
231	}
232	do_resend |= test_bit(NFS_CONTEXT_RESEND_WRITES, &ctx->flags);
233	if (do_resend)
234		ret = -EAGAIN;
235out:
236	return ret;
237}
238
239int
240nfs_file_fsync(struct file *file, loff_t start, loff_t end, int datasync)
241{
242	int ret;
243	struct inode *inode = file_inode(file);
 
244
245	trace_nfs_fsync_enter(inode);
246
247	do {
248		struct nfs_open_context *ctx = nfs_file_open_context(file);
249		ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
250		if (test_and_clear_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags)) {
251			int ret2 = xchg(&ctx->error, 0);
252			if (ret2)
253				ret = ret2;
254		}
255		if (ret != 0)
256			break;
257		ret = nfs_file_fsync_commit(file, datasync);
258		if (!ret)
259			ret = pnfs_sync_inode(inode, !!datasync);
 
 
 
 
 
260		/*
261		 * If nfs_file_fsync_commit detected a server reboot, then
262		 * resend all dirty pages that might have been covered by
263		 * the NFS_CONTEXT_RESEND_WRITES flag
264		 */
265		start = 0;
266		end = LLONG_MAX;
267	} while (ret == -EAGAIN);
268
269	trace_nfs_fsync_exit(inode, ret);
270	return ret;
271}
272EXPORT_SYMBOL_GPL(nfs_file_fsync);
273
274/*
275 * Decide whether a read/modify/write cycle may be more efficient
276 * then a modify/write/read cycle when writing to a page in the
277 * page cache.
278 *
 
 
 
 
 
 
279 * The modify/write/read cycle may occur if a page is read before
280 * being completely filled by the writer.  In this situation, the
281 * page must be completely written to stable storage on the server
282 * before it can be refilled by reading in the page from the server.
283 * This can lead to expensive, small, FILE_SYNC mode writes being
284 * done.
285 *
286 * It may be more efficient to read the page first if the file is
287 * open for reading in addition to writing, the page is not marked
288 * as Uptodate, it is not dirty or waiting to be committed,
289 * indicating that it was previously allocated and then modified,
290 * that there were valid bytes of data in that range of the file,
291 * and that the new data won't completely replace the old data in
292 * that range of the file.
293 */
294static int nfs_want_read_modify_write(struct file *file, struct page *page,
295			loff_t pos, unsigned len)
296{
297	unsigned int pglen = nfs_page_length(page);
298	unsigned int offset = pos & (PAGE_SIZE - 1);
299	unsigned int end = offset + len;
300
301	if (pnfs_ld_read_whole_page(file->f_mapping->host)) {
302		if (!PageUptodate(page))
303			return 1;
304		return 0;
305	}
306
307	if ((file->f_mode & FMODE_READ) &&	/* open for read? */
308	    !PageUptodate(page) &&		/* Uptodate? */
309	    !PagePrivate(page) &&		/* i/o request already? */
310	    pglen &&				/* valid bytes of file? */
311	    (end < pglen || offset))		/* replace all valid bytes? */
312		return 1;
313	return 0;
 
 
 
 
 
 
 
 
 
 
314}
315
316/*
317 * This does the "real" work of the write. We must allocate and lock the
318 * page to be sent back to the generic routine, which then copies the
319 * data from user space.
320 *
321 * If the writer ends up delaying the write, the writer needs to
322 * increment the page use counts until he is done with the page.
323 */
324static int nfs_write_begin(struct file *file, struct address_space *mapping,
325			loff_t pos, unsigned len, unsigned flags,
326			struct page **pagep, void **fsdata)
327{
328	int ret;
329	pgoff_t index = pos >> PAGE_SHIFT;
330	struct page *page;
331	int once_thru = 0;
332
333	dfprintk(PAGECACHE, "NFS: write_begin(%pD2(%lu), %u@%lld)\n",
334		file, mapping->host->i_ino, len, (long long) pos);
335
336start:
337	page = grab_cache_page_write_begin(mapping, index, flags);
338	if (!page)
339		return -ENOMEM;
340	*pagep = page;
341
342	ret = nfs_flush_incompatible(file, page);
343	if (ret) {
344		unlock_page(page);
345		put_page(page);
346	} else if (!once_thru &&
347		   nfs_want_read_modify_write(file, page, pos, len)) {
348		once_thru = 1;
349		ret = nfs_readpage(file, page);
350		put_page(page);
351		if (!ret)
352			goto start;
353	}
354	return ret;
355}
356
357static int nfs_write_end(struct file *file, struct address_space *mapping,
358			loff_t pos, unsigned len, unsigned copied,
359			struct page *page, void *fsdata)
360{
361	unsigned offset = pos & (PAGE_SIZE - 1);
362	struct nfs_open_context *ctx = nfs_file_open_context(file);
363	int status;
364
365	dfprintk(PAGECACHE, "NFS: write_end(%pD2(%lu), %u@%lld)\n",
366		file, mapping->host->i_ino, len, (long long) pos);
367
368	/*
369	 * Zero any uninitialised parts of the page, and then mark the page
370	 * as up to date if it turns out that we're extending the file.
371	 */
372	if (!PageUptodate(page)) {
373		unsigned pglen = nfs_page_length(page);
374		unsigned end = offset + copied;
375
376		if (pglen == 0) {
377			zero_user_segments(page, 0, offset,
378					end, PAGE_SIZE);
379			SetPageUptodate(page);
380		} else if (end >= pglen) {
381			zero_user_segment(page, end, PAGE_SIZE);
382			if (offset == 0)
383				SetPageUptodate(page);
384		} else
385			zero_user_segment(page, pglen, PAGE_SIZE);
386	}
387
388	status = nfs_updatepage(file, page, offset, copied);
389
390	unlock_page(page);
391	put_page(page);
392
393	if (status < 0)
394		return status;
395	NFS_I(mapping->host)->write_io += copied;
396
397	if (nfs_ctx_key_to_expire(ctx, mapping->host)) {
398		status = nfs_wb_all(mapping->host);
399		if (status < 0)
400			return status;
401	}
402
403	return copied;
404}
405
406/*
407 * Partially or wholly invalidate a page
408 * - Release the private state associated with a page if undergoing complete
409 *   page invalidation
410 * - Called if either PG_private or PG_fscache is set on the page
411 * - Caller holds page lock
412 */
413static void nfs_invalidate_page(struct page *page, unsigned int offset,
414				unsigned int length)
415{
416	dfprintk(PAGECACHE, "NFS: invalidate_page(%p, %u, %u)\n",
417		 page, offset, length);
418
419	if (offset != 0 || length < PAGE_SIZE)
420		return;
421	/* Cancel any unstarted writes on this page */
422	nfs_wb_page_cancel(page_file_mapping(page)->host, page);
423
424	nfs_fscache_invalidate_page(page, page->mapping->host);
425}
426
427/*
428 * Attempt to release the private state associated with a page
429 * - Called if either PG_private or PG_fscache is set on the page
430 * - Caller holds page lock
431 * - Return true (may release page) or false (may not)
432 */
433static int nfs_release_page(struct page *page, gfp_t gfp)
434{
435	dfprintk(PAGECACHE, "NFS: release_page(%p)\n", page);
436
437	/* If PagePrivate() is set, then the page is not freeable */
438	if (PagePrivate(page))
439		return 0;
440	return nfs_fscache_release_page(page, gfp);
441}
442
443static void nfs_check_dirty_writeback(struct page *page,
444				bool *dirty, bool *writeback)
445{
446	struct nfs_inode *nfsi;
447	struct address_space *mapping = page_file_mapping(page);
448
449	if (!mapping || PageSwapCache(page))
450		return;
451
452	/*
453	 * Check if an unstable page is currently being committed and
454	 * if so, have the VM treat it as if the page is under writeback
455	 * so it will not block due to pages that will shortly be freeable.
456	 */
457	nfsi = NFS_I(mapping->host);
458	if (atomic_read(&nfsi->commit_info.rpcs_out)) {
459		*writeback = true;
460		return;
461	}
462
463	/*
464	 * If PagePrivate() is set, then the page is not freeable and as the
465	 * inode is not being committed, it's not going to be cleaned in the
466	 * near future so treat it as dirty
467	 */
468	if (PagePrivate(page))
469		*dirty = true;
470}
471
472/*
473 * Attempt to clear the private state associated with a page when an error
474 * occurs that requires the cached contents of an inode to be written back or
475 * destroyed
476 * - Called if either PG_private or fscache is set on the page
477 * - Caller holds page lock
478 * - Return 0 if successful, -error otherwise
479 */
480static int nfs_launder_page(struct page *page)
481{
482	struct inode *inode = page_file_mapping(page)->host;
483	struct nfs_inode *nfsi = NFS_I(inode);
484
485	dfprintk(PAGECACHE, "NFS: launder_page(%ld, %llu)\n",
486		inode->i_ino, (long long)page_offset(page));
487
488	nfs_fscache_wait_on_page_write(nfsi, page);
489	return nfs_wb_page(inode, page);
490}
491
492static int nfs_swap_activate(struct swap_info_struct *sis, struct file *file,
493						sector_t *span)
494{
 
 
495	struct rpc_clnt *clnt = NFS_CLIENT(file->f_mapping->host);
 
 
 
 
 
 
 
 
 
 
496
497	*span = sis->pages;
498
499	return rpc_clnt_swap_activate(clnt);
500}
501
502static void nfs_swap_deactivate(struct file *file)
503{
504	struct rpc_clnt *clnt = NFS_CLIENT(file->f_mapping->host);
505
506	rpc_clnt_swap_deactivate(clnt);
507}
508
509const struct address_space_operations nfs_file_aops = {
510	.readpage = nfs_readpage,
511	.readpages = nfs_readpages,
512	.set_page_dirty = __set_page_dirty_nobuffers,
513	.writepage = nfs_writepage,
514	.writepages = nfs_writepages,
515	.write_begin = nfs_write_begin,
516	.write_end = nfs_write_end,
517	.invalidatepage = nfs_invalidate_page,
518	.releasepage = nfs_release_page,
519	.direct_IO = nfs_direct_IO,
520#ifdef CONFIG_MIGRATION
521	.migratepage = nfs_migrate_page,
522#endif
523	.launder_page = nfs_launder_page,
524	.is_dirty_writeback = nfs_check_dirty_writeback,
525	.error_remove_page = generic_error_remove_page,
526	.swap_activate = nfs_swap_activate,
527	.swap_deactivate = nfs_swap_deactivate,
528};
529
530/*
531 * Notification that a PTE pointing to an NFS page is about to be made
532 * writable, implying that someone is about to modify the page through a
533 * shared-writable mapping
534 */
535static int nfs_vm_page_mkwrite(struct vm_fault *vmf)
536{
537	struct page *page = vmf->page;
538	struct file *filp = vmf->vma->vm_file;
539	struct inode *inode = file_inode(filp);
540	unsigned pagelen;
541	int ret = VM_FAULT_NOPAGE;
542	struct address_space *mapping;
543
544	dfprintk(PAGECACHE, "NFS: vm_page_mkwrite(%pD2(%lu), offset %lld)\n",
545		filp, filp->f_mapping->host->i_ino,
546		(long long)page_offset(page));
547
548	sb_start_pagefault(inode->i_sb);
549
550	/* make sure the cache has finished storing the page */
551	nfs_fscache_wait_on_page_write(NFS_I(inode), page);
552
553	wait_on_bit_action(&NFS_I(inode)->flags, NFS_INO_INVALIDATING,
554			nfs_wait_bit_killable, TASK_KILLABLE);
555
556	lock_page(page);
557	mapping = page_file_mapping(page);
558	if (mapping != inode->i_mapping)
559		goto out_unlock;
560
561	wait_on_page_writeback(page);
562
563	pagelen = nfs_page_length(page);
564	if (pagelen == 0)
565		goto out_unlock;
566
567	ret = VM_FAULT_LOCKED;
568	if (nfs_flush_incompatible(filp, page) == 0 &&
569	    nfs_updatepage(filp, page, 0, pagelen) == 0)
570		goto out;
571
572	ret = VM_FAULT_SIGBUS;
573out_unlock:
574	unlock_page(page);
575out:
576	sb_end_pagefault(inode->i_sb);
577	return ret;
578}
579
580static const struct vm_operations_struct nfs_file_vm_ops = {
581	.fault = filemap_fault,
582	.map_pages = filemap_map_pages,
583	.page_mkwrite = nfs_vm_page_mkwrite,
584};
585
586static int nfs_need_check_write(struct file *filp, struct inode *inode)
 
587{
588	struct nfs_open_context *ctx;
589
590	ctx = nfs_file_open_context(filp);
591	if (test_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags) ||
592	    nfs_ctx_key_to_expire(ctx, inode))
593		return 1;
594	return 0;
595}
596
597ssize_t nfs_file_write(struct kiocb *iocb, struct iov_iter *from)
598{
599	struct file *file = iocb->ki_filp;
600	struct inode *inode = file_inode(file);
601	unsigned long written = 0;
602	ssize_t result;
 
 
603
604	result = nfs_key_timeout_notify(file, inode);
605	if (result)
606		return result;
607
608	if (iocb->ki_flags & IOCB_DIRECT)
609		return nfs_file_direct_write(iocb, from);
610
611	dprintk("NFS: write(%pD2, %zu@%Ld)\n",
612		file, iov_iter_count(from), (long long) iocb->ki_pos);
613
614	if (IS_SWAPFILE(inode))
615		goto out_swapfile;
616	/*
617	 * O_APPEND implies that we must revalidate the file length.
618	 */
619	if (iocb->ki_flags & IOCB_APPEND) {
620		result = nfs_revalidate_file_size(inode, file);
621		if (result)
622			goto out;
623	}
624	if (iocb->ki_pos > i_size_read(inode))
625		nfs_revalidate_mapping(inode, file->f_mapping);
626
 
627	nfs_start_io_write(inode);
628	result = generic_write_checks(iocb, from);
629	if (result > 0) {
630		current->backing_dev_info = inode_to_bdi(inode);
631		result = generic_perform_write(file, from, iocb->ki_pos);
632		current->backing_dev_info = NULL;
633	}
634	nfs_end_io_write(inode);
635	if (result <= 0)
636		goto out;
637
638	written = result;
639	iocb->ki_pos += written;
640	result = generic_write_sync(iocb, written);
641	if (result < 0)
642		goto out;
643
644	/* Return error values */
645	if (nfs_need_check_write(file, inode)) {
646		int err = vfs_fsync(file, 0);
 
647		if (err < 0)
648			result = err;
649	}
650	nfs_add_stats(inode, NFSIOS_NORMALWRITTENBYTES, written);
651out:
652	return result;
653
654out_swapfile:
655	printk(KERN_INFO "NFS: attempt to write to active swap file!\n");
656	return -EBUSY;
657}
658EXPORT_SYMBOL_GPL(nfs_file_write);
659
660static int
661do_getlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
662{
663	struct inode *inode = filp->f_mapping->host;
664	int status = 0;
665	unsigned int saved_type = fl->fl_type;
666
667	/* Try local locking first */
668	posix_test_lock(filp, fl);
669	if (fl->fl_type != F_UNLCK) {
670		/* found a conflict */
671		goto out;
672	}
673	fl->fl_type = saved_type;
674
675	if (NFS_PROTO(inode)->have_delegation(inode, FMODE_READ))
676		goto out_noconflict;
677
678	if (is_local)
679		goto out_noconflict;
680
681	status = NFS_PROTO(inode)->lock(filp, cmd, fl);
682out:
683	return status;
684out_noconflict:
685	fl->fl_type = F_UNLCK;
686	goto out;
687}
688
689static int
690do_unlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
691{
692	struct inode *inode = filp->f_mapping->host;
693	struct nfs_lock_context *l_ctx;
694	int status;
695
696	/*
697	 * Flush all pending writes before doing anything
698	 * with locks..
699	 */
700	vfs_fsync(filp, 0);
701
702	l_ctx = nfs_get_lock_context(nfs_file_open_context(filp));
703	if (!IS_ERR(l_ctx)) {
704		status = nfs_iocounter_wait(l_ctx);
705		nfs_put_lock_context(l_ctx);
706		/*  NOTE: special case
707		 * 	If we're signalled while cleaning up locks on process exit, we
708		 * 	still need to complete the unlock.
709		 */
710		if (status < 0 && !(fl->fl_flags & FL_CLOSE))
711			return status;
712	}
713
714	/*
715	 * Use local locking if mounted with "-onolock" or with appropriate
716	 * "-olocal_lock="
717	 */
718	if (!is_local)
719		status = NFS_PROTO(inode)->lock(filp, cmd, fl);
720	else
721		status = locks_lock_file_wait(filp, fl);
722	return status;
723}
724
725static int
726do_setlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
727{
728	struct inode *inode = filp->f_mapping->host;
729	int status;
730
731	/*
732	 * Flush all pending writes before doing anything
733	 * with locks..
734	 */
735	status = nfs_sync_mapping(filp->f_mapping);
736	if (status != 0)
737		goto out;
738
739	/*
740	 * Use local locking if mounted with "-onolock" or with appropriate
741	 * "-olocal_lock="
742	 */
743	if (!is_local)
744		status = NFS_PROTO(inode)->lock(filp, cmd, fl);
745	else
746		status = locks_lock_file_wait(filp, fl);
747	if (status < 0)
748		goto out;
749
750	/*
751	 * Invalidate cache to prevent missing any changes.  If
752	 * the file is mapped, clear the page cache as well so
753	 * those mappings will be loaded.
754	 *
755	 * This makes locking act as a cache coherency point.
756	 */
757	nfs_sync_mapping(filp->f_mapping);
758	if (!NFS_PROTO(inode)->have_delegation(inode, FMODE_READ)) {
759		nfs_zap_caches(inode);
760		if (mapping_mapped(filp->f_mapping))
761			nfs_revalidate_mapping(inode, filp->f_mapping);
762	}
763out:
764	return status;
765}
766
767/*
768 * Lock a (portion of) a file
769 */
770int nfs_lock(struct file *filp, int cmd, struct file_lock *fl)
771{
772	struct inode *inode = filp->f_mapping->host;
773	int ret = -ENOLCK;
774	int is_local = 0;
775
776	dprintk("NFS: lock(%pD2, t=%x, fl=%x, r=%lld:%lld)\n",
777			filp, fl->fl_type, fl->fl_flags,
778			(long long)fl->fl_start, (long long)fl->fl_end);
779
780	nfs_inc_stats(inode, NFSIOS_VFSLOCK);
781
782	/* No mandatory locks over NFS */
783	if (__mandatory_lock(inode) && fl->fl_type != F_UNLCK)
784		goto out_err;
785
786	if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FCNTL)
787		is_local = 1;
788
789	if (NFS_PROTO(inode)->lock_check_bounds != NULL) {
790		ret = NFS_PROTO(inode)->lock_check_bounds(fl);
791		if (ret < 0)
792			goto out_err;
793	}
794
795	if (IS_GETLK(cmd))
796		ret = do_getlk(filp, cmd, fl, is_local);
797	else if (fl->fl_type == F_UNLCK)
798		ret = do_unlk(filp, cmd, fl, is_local);
799	else
800		ret = do_setlk(filp, cmd, fl, is_local);
801out_err:
802	return ret;
803}
804EXPORT_SYMBOL_GPL(nfs_lock);
805
806/*
807 * Lock a (portion of) a file
808 */
809int nfs_flock(struct file *filp, int cmd, struct file_lock *fl)
810{
811	struct inode *inode = filp->f_mapping->host;
812	int is_local = 0;
813
814	dprintk("NFS: flock(%pD2, t=%x, fl=%x)\n",
815			filp, fl->fl_type, fl->fl_flags);
816
817	if (!(fl->fl_flags & FL_FLOCK))
818		return -ENOLCK;
819
820	/*
821	 * The NFSv4 protocol doesn't support LOCK_MAND, which is not part of
822	 * any standard. In principle we might be able to support LOCK_MAND
823	 * on NFSv2/3 since NLMv3/4 support DOS share modes, but for now the
824	 * NFS code is not set up for it.
825	 */
826	if (fl->fl_type & LOCK_MAND)
827		return -EINVAL;
828
829	if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FLOCK)
830		is_local = 1;
831
832	/* We're simulating flock() locks using posix locks on the server */
833	if (fl->fl_type == F_UNLCK)
834		return do_unlk(filp, cmd, fl, is_local);
835	return do_setlk(filp, cmd, fl, is_local);
836}
837EXPORT_SYMBOL_GPL(nfs_flock);
838
839const struct file_operations nfs_file_operations = {
840	.llseek		= nfs_file_llseek,
841	.read_iter	= nfs_file_read,
842	.write_iter	= nfs_file_write,
843	.mmap		= nfs_file_mmap,
844	.open		= nfs_file_open,
845	.flush		= nfs_file_flush,
846	.release	= nfs_file_release,
847	.fsync		= nfs_file_fsync,
848	.lock		= nfs_lock,
849	.flock		= nfs_flock,
850	.splice_read	= generic_file_splice_read,
851	.splice_write	= iter_file_splice_write,
852	.check_flags	= nfs_check_flags,
853	.setlease	= simple_nosetlease,
854};
855EXPORT_SYMBOL_GPL(nfs_file_operations);
v5.9
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 *  linux/fs/nfs/file.c
  4 *
  5 *  Copyright (C) 1992  Rick Sladkey
  6 *
  7 *  Changes Copyright (C) 1994 by Florian La Roche
  8 *   - Do not copy data too often around in the kernel.
  9 *   - In nfs_file_read the return value of kmalloc wasn't checked.
 10 *   - Put in a better version of read look-ahead buffering. Original idea
 11 *     and implementation by Wai S Kok elekokws@ee.nus.sg.
 12 *
 13 *  Expire cache on write to a file by Wai S Kok (Oct 1994).
 14 *
 15 *  Total rewrite of read side for new NFS buffer cache.. Linus.
 16 *
 17 *  nfs regular file handling functions
 18 */
 19
 20#include <linux/module.h>
 21#include <linux/time.h>
 22#include <linux/kernel.h>
 23#include <linux/errno.h>
 24#include <linux/fcntl.h>
 25#include <linux/stat.h>
 26#include <linux/nfs_fs.h>
 27#include <linux/nfs_mount.h>
 28#include <linux/mm.h>
 29#include <linux/pagemap.h>
 30#include <linux/gfp.h>
 31#include <linux/swap.h>
 32
 33#include <linux/uaccess.h>
 34
 35#include "delegation.h"
 36#include "internal.h"
 37#include "iostat.h"
 38#include "fscache.h"
 39#include "pnfs.h"
 40
 41#include "nfstrace.h"
 42
 43#define NFSDBG_FACILITY		NFSDBG_FILE
 44
 45static const struct vm_operations_struct nfs_file_vm_ops;
 46
 47/* Hack for future NFS swap support */
 48#ifndef IS_SWAPFILE
 49# define IS_SWAPFILE(inode)	(0)
 50#endif
 51
 52int nfs_check_flags(int flags)
 53{
 54	if ((flags & (O_APPEND | O_DIRECT)) == (O_APPEND | O_DIRECT))
 55		return -EINVAL;
 56
 57	return 0;
 58}
 59EXPORT_SYMBOL_GPL(nfs_check_flags);
 60
 61/*
 62 * Open file
 63 */
 64static int
 65nfs_file_open(struct inode *inode, struct file *filp)
 66{
 67	int res;
 68
 69	dprintk("NFS: open file(%pD2)\n", filp);
 70
 71	nfs_inc_stats(inode, NFSIOS_VFSOPEN);
 72	res = nfs_check_flags(filp->f_flags);
 73	if (res)
 74		return res;
 75
 76	res = nfs_open(inode, filp);
 77	return res;
 78}
 79
 80int
 81nfs_file_release(struct inode *inode, struct file *filp)
 82{
 83	dprintk("NFS: release(%pD2)\n", filp);
 84
 85	nfs_inc_stats(inode, NFSIOS_VFSRELEASE);
 86	nfs_file_clear_open_context(filp);
 87	return 0;
 88}
 89EXPORT_SYMBOL_GPL(nfs_file_release);
 90
 91/**
 92 * nfs_revalidate_size - Revalidate the file size
 93 * @inode: pointer to inode struct
 94 * @filp: pointer to struct file
 95 *
 96 * Revalidates the file length. This is basically a wrapper around
 97 * nfs_revalidate_inode() that takes into account the fact that we may
 98 * have cached writes (in which case we don't care about the server's
 99 * idea of what the file length is), or O_DIRECT (in which case we
100 * shouldn't trust the cache).
101 */
102static int nfs_revalidate_file_size(struct inode *inode, struct file *filp)
103{
104	struct nfs_server *server = NFS_SERVER(inode);
105
106	if (filp->f_flags & O_DIRECT)
107		goto force_reval;
108	if (nfs_check_cache_invalid(inode, NFS_INO_REVAL_PAGECACHE))
109		goto force_reval;
110	return 0;
111force_reval:
112	return __nfs_revalidate_inode(server, inode);
113}
114
115loff_t nfs_file_llseek(struct file *filp, loff_t offset, int whence)
116{
117	dprintk("NFS: llseek file(%pD2, %lld, %d)\n",
118			filp, offset, whence);
119
120	/*
121	 * whence == SEEK_END || SEEK_DATA || SEEK_HOLE => we must revalidate
122	 * the cached file length
123	 */
124	if (whence != SEEK_SET && whence != SEEK_CUR) {
125		struct inode *inode = filp->f_mapping->host;
126
127		int retval = nfs_revalidate_file_size(inode, filp);
128		if (retval < 0)
129			return (loff_t)retval;
130	}
131
132	return generic_file_llseek(filp, offset, whence);
133}
134EXPORT_SYMBOL_GPL(nfs_file_llseek);
135
136/*
137 * Flush all dirty pages, and check for write errors.
138 */
139static int
140nfs_file_flush(struct file *file, fl_owner_t id)
141{
142	struct inode	*inode = file_inode(file);
143	errseq_t since;
144
145	dprintk("NFS: flush(%pD2)\n", file);
146
147	nfs_inc_stats(inode, NFSIOS_VFSFLUSH);
148	if ((file->f_mode & FMODE_WRITE) == 0)
149		return 0;
150
151	/* Flush writes to the server and return any errors */
152	since = filemap_sample_wb_err(file->f_mapping);
153	nfs_wb_all(inode);
154	return filemap_check_wb_err(file->f_mapping, since);
155}
156
157ssize_t
158nfs_file_read(struct kiocb *iocb, struct iov_iter *to)
159{
160	struct inode *inode = file_inode(iocb->ki_filp);
161	ssize_t result;
162
163	if (iocb->ki_flags & IOCB_DIRECT)
164		return nfs_file_direct_read(iocb, to);
165
166	dprintk("NFS: read(%pD2, %zu@%lu)\n",
167		iocb->ki_filp,
168		iov_iter_count(to), (unsigned long) iocb->ki_pos);
169
170	nfs_start_io_read(inode);
171	result = nfs_revalidate_mapping(inode, iocb->ki_filp->f_mapping);
172	if (!result) {
173		result = generic_file_read_iter(iocb, to);
174		if (result > 0)
175			nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, result);
176	}
177	nfs_end_io_read(inode);
178	return result;
179}
180EXPORT_SYMBOL_GPL(nfs_file_read);
181
182int
183nfs_file_mmap(struct file * file, struct vm_area_struct * vma)
184{
185	struct inode *inode = file_inode(file);
186	int	status;
187
188	dprintk("NFS: mmap(%pD2)\n", file);
189
190	/* Note: generic_file_mmap() returns ENOSYS on nommu systems
191	 *       so we call that before revalidating the mapping
192	 */
193	status = generic_file_mmap(file, vma);
194	if (!status) {
195		vma->vm_ops = &nfs_file_vm_ops;
196		status = nfs_revalidate_mapping(inode, file->f_mapping);
197	}
198	return status;
199}
200EXPORT_SYMBOL_GPL(nfs_file_mmap);
201
202/*
203 * Flush any dirty pages for this process, and check for write errors.
204 * The return status from this call provides a reliable indication of
205 * whether any write errors occurred for this process.
 
 
 
 
 
 
 
206 */
207static int
208nfs_file_fsync_commit(struct file *file, int datasync)
209{
 
210	struct inode *inode = file_inode(file);
211	int ret;
 
212
213	dprintk("NFS: fsync file(%pD2) datasync %d\n", file, datasync);
214
215	nfs_inc_stats(inode, NFSIOS_VFSFSYNC);
216	ret = nfs_commit_inode(inode, FLUSH_SYNC);
217	if (ret < 0)
218		return ret;
219	return file_check_and_advance_wb_err(file);
 
 
 
 
 
 
 
 
 
 
 
 
220}
221
222int
223nfs_file_fsync(struct file *file, loff_t start, loff_t end, int datasync)
224{
225	struct nfs_open_context *ctx = nfs_file_open_context(file);
226	struct inode *inode = file_inode(file);
227	int ret;
228
229	trace_nfs_fsync_enter(inode);
230
231	for (;;) {
232		ret = file_write_and_wait_range(file, start, end);
 
 
 
 
 
 
233		if (ret != 0)
234			break;
235		ret = nfs_file_fsync_commit(file, datasync);
236		if (ret != 0)
237			break;
238		ret = pnfs_sync_inode(inode, !!datasync);
239		if (ret != 0)
240			break;
241		if (!test_and_clear_bit(NFS_CONTEXT_RESEND_WRITES, &ctx->flags))
242			break;
243		/*
244		 * If nfs_file_fsync_commit detected a server reboot, then
245		 * resend all dirty pages that might have been covered by
246		 * the NFS_CONTEXT_RESEND_WRITES flag
247		 */
248		start = 0;
249		end = LLONG_MAX;
250	}
251
252	trace_nfs_fsync_exit(inode, ret);
253	return ret;
254}
255EXPORT_SYMBOL_GPL(nfs_file_fsync);
256
257/*
258 * Decide whether a read/modify/write cycle may be more efficient
259 * then a modify/write/read cycle when writing to a page in the
260 * page cache.
261 *
262 * Some pNFS layout drivers can only read/write at a certain block
263 * granularity like all block devices and therefore we must perform
264 * read/modify/write whenever a page hasn't read yet and the data
265 * to be written there is not aligned to a block boundary and/or
266 * smaller than the block size.
267 *
268 * The modify/write/read cycle may occur if a page is read before
269 * being completely filled by the writer.  In this situation, the
270 * page must be completely written to stable storage on the server
271 * before it can be refilled by reading in the page from the server.
272 * This can lead to expensive, small, FILE_SYNC mode writes being
273 * done.
274 *
275 * It may be more efficient to read the page first if the file is
276 * open for reading in addition to writing, the page is not marked
277 * as Uptodate, it is not dirty or waiting to be committed,
278 * indicating that it was previously allocated and then modified,
279 * that there were valid bytes of data in that range of the file,
280 * and that the new data won't completely replace the old data in
281 * that range of the file.
282 */
283static bool nfs_full_page_write(struct page *page, loff_t pos, unsigned int len)
 
284{
285	unsigned int pglen = nfs_page_length(page);
286	unsigned int offset = pos & (PAGE_SIZE - 1);
287	unsigned int end = offset + len;
288
289	return !pglen || (end >= pglen && !offset);
290}
 
 
 
291
292static bool nfs_want_read_modify_write(struct file *file, struct page *page,
293			loff_t pos, unsigned int len)
294{
295	/*
296	 * Up-to-date pages, those with ongoing or full-page write
297	 * don't need read/modify/write
298	 */
299	if (PageUptodate(page) || PagePrivate(page) ||
300	    nfs_full_page_write(page, pos, len))
301		return false;
302
303	if (pnfs_ld_read_whole_page(file->f_mapping->host))
304		return true;
305	/* Open for reading too? */
306	if (file->f_mode & FMODE_READ)
307		return true;
308	return false;
309}
310
311/*
312 * This does the "real" work of the write. We must allocate and lock the
313 * page to be sent back to the generic routine, which then copies the
314 * data from user space.
315 *
316 * If the writer ends up delaying the write, the writer needs to
317 * increment the page use counts until he is done with the page.
318 */
319static int nfs_write_begin(struct file *file, struct address_space *mapping,
320			loff_t pos, unsigned len, unsigned flags,
321			struct page **pagep, void **fsdata)
322{
323	int ret;
324	pgoff_t index = pos >> PAGE_SHIFT;
325	struct page *page;
326	int once_thru = 0;
327
328	dfprintk(PAGECACHE, "NFS: write_begin(%pD2(%lu), %u@%lld)\n",
329		file, mapping->host->i_ino, len, (long long) pos);
330
331start:
332	page = grab_cache_page_write_begin(mapping, index, flags);
333	if (!page)
334		return -ENOMEM;
335	*pagep = page;
336
337	ret = nfs_flush_incompatible(file, page);
338	if (ret) {
339		unlock_page(page);
340		put_page(page);
341	} else if (!once_thru &&
342		   nfs_want_read_modify_write(file, page, pos, len)) {
343		once_thru = 1;
344		ret = nfs_readpage(file, page);
345		put_page(page);
346		if (!ret)
347			goto start;
348	}
349	return ret;
350}
351
352static int nfs_write_end(struct file *file, struct address_space *mapping,
353			loff_t pos, unsigned len, unsigned copied,
354			struct page *page, void *fsdata)
355{
356	unsigned offset = pos & (PAGE_SIZE - 1);
357	struct nfs_open_context *ctx = nfs_file_open_context(file);
358	int status;
359
360	dfprintk(PAGECACHE, "NFS: write_end(%pD2(%lu), %u@%lld)\n",
361		file, mapping->host->i_ino, len, (long long) pos);
362
363	/*
364	 * Zero any uninitialised parts of the page, and then mark the page
365	 * as up to date if it turns out that we're extending the file.
366	 */
367	if (!PageUptodate(page)) {
368		unsigned pglen = nfs_page_length(page);
369		unsigned end = offset + copied;
370
371		if (pglen == 0) {
372			zero_user_segments(page, 0, offset,
373					end, PAGE_SIZE);
374			SetPageUptodate(page);
375		} else if (end >= pglen) {
376			zero_user_segment(page, end, PAGE_SIZE);
377			if (offset == 0)
378				SetPageUptodate(page);
379		} else
380			zero_user_segment(page, pglen, PAGE_SIZE);
381	}
382
383	status = nfs_updatepage(file, page, offset, copied);
384
385	unlock_page(page);
386	put_page(page);
387
388	if (status < 0)
389		return status;
390	NFS_I(mapping->host)->write_io += copied;
391
392	if (nfs_ctx_key_to_expire(ctx, mapping->host)) {
393		status = nfs_wb_all(mapping->host);
394		if (status < 0)
395			return status;
396	}
397
398	return copied;
399}
400
401/*
402 * Partially or wholly invalidate a page
403 * - Release the private state associated with a page if undergoing complete
404 *   page invalidation
405 * - Called if either PG_private or PG_fscache is set on the page
406 * - Caller holds page lock
407 */
408static void nfs_invalidate_page(struct page *page, unsigned int offset,
409				unsigned int length)
410{
411	dfprintk(PAGECACHE, "NFS: invalidate_page(%p, %u, %u)\n",
412		 page, offset, length);
413
414	if (offset != 0 || length < PAGE_SIZE)
415		return;
416	/* Cancel any unstarted writes on this page */
417	nfs_wb_page_cancel(page_file_mapping(page)->host, page);
418
419	nfs_fscache_invalidate_page(page, page->mapping->host);
420}
421
422/*
423 * Attempt to release the private state associated with a page
424 * - Called if either PG_private or PG_fscache is set on the page
425 * - Caller holds page lock
426 * - Return true (may release page) or false (may not)
427 */
428static int nfs_release_page(struct page *page, gfp_t gfp)
429{
430	dfprintk(PAGECACHE, "NFS: release_page(%p)\n", page);
431
432	/* If PagePrivate() is set, then the page is not freeable */
433	if (PagePrivate(page))
434		return 0;
435	return nfs_fscache_release_page(page, gfp);
436}
437
438static void nfs_check_dirty_writeback(struct page *page,
439				bool *dirty, bool *writeback)
440{
441	struct nfs_inode *nfsi;
442	struct address_space *mapping = page_file_mapping(page);
443
444	if (!mapping || PageSwapCache(page))
445		return;
446
447	/*
448	 * Check if an unstable page is currently being committed and
449	 * if so, have the VM treat it as if the page is under writeback
450	 * so it will not block due to pages that will shortly be freeable.
451	 */
452	nfsi = NFS_I(mapping->host);
453	if (atomic_read(&nfsi->commit_info.rpcs_out)) {
454		*writeback = true;
455		return;
456	}
457
458	/*
459	 * If PagePrivate() is set, then the page is not freeable and as the
460	 * inode is not being committed, it's not going to be cleaned in the
461	 * near future so treat it as dirty
462	 */
463	if (PagePrivate(page))
464		*dirty = true;
465}
466
467/*
468 * Attempt to clear the private state associated with a page when an error
469 * occurs that requires the cached contents of an inode to be written back or
470 * destroyed
471 * - Called if either PG_private or fscache is set on the page
472 * - Caller holds page lock
473 * - Return 0 if successful, -error otherwise
474 */
475static int nfs_launder_page(struct page *page)
476{
477	struct inode *inode = page_file_mapping(page)->host;
478	struct nfs_inode *nfsi = NFS_I(inode);
479
480	dfprintk(PAGECACHE, "NFS: launder_page(%ld, %llu)\n",
481		inode->i_ino, (long long)page_offset(page));
482
483	nfs_fscache_wait_on_page_write(nfsi, page);
484	return nfs_wb_page(inode, page);
485}
486
487static int nfs_swap_activate(struct swap_info_struct *sis, struct file *file,
488						sector_t *span)
489{
490	unsigned long blocks;
491	long long isize;
492	struct rpc_clnt *clnt = NFS_CLIENT(file->f_mapping->host);
493	struct inode *inode = file->f_mapping->host;
494
495	spin_lock(&inode->i_lock);
496	blocks = inode->i_blocks;
497	isize = inode->i_size;
498	spin_unlock(&inode->i_lock);
499	if (blocks*512 < isize) {
500		pr_warn("swap activate: swapfile has holes\n");
501		return -EINVAL;
502	}
503
504	*span = sis->pages;
505
506	return rpc_clnt_swap_activate(clnt);
507}
508
509static void nfs_swap_deactivate(struct file *file)
510{
511	struct rpc_clnt *clnt = NFS_CLIENT(file->f_mapping->host);
512
513	rpc_clnt_swap_deactivate(clnt);
514}
515
516const struct address_space_operations nfs_file_aops = {
517	.readpage = nfs_readpage,
518	.readpages = nfs_readpages,
519	.set_page_dirty = __set_page_dirty_nobuffers,
520	.writepage = nfs_writepage,
521	.writepages = nfs_writepages,
522	.write_begin = nfs_write_begin,
523	.write_end = nfs_write_end,
524	.invalidatepage = nfs_invalidate_page,
525	.releasepage = nfs_release_page,
526	.direct_IO = nfs_direct_IO,
527#ifdef CONFIG_MIGRATION
528	.migratepage = nfs_migrate_page,
529#endif
530	.launder_page = nfs_launder_page,
531	.is_dirty_writeback = nfs_check_dirty_writeback,
532	.error_remove_page = generic_error_remove_page,
533	.swap_activate = nfs_swap_activate,
534	.swap_deactivate = nfs_swap_deactivate,
535};
536
537/*
538 * Notification that a PTE pointing to an NFS page is about to be made
539 * writable, implying that someone is about to modify the page through a
540 * shared-writable mapping
541 */
542static vm_fault_t nfs_vm_page_mkwrite(struct vm_fault *vmf)
543{
544	struct page *page = vmf->page;
545	struct file *filp = vmf->vma->vm_file;
546	struct inode *inode = file_inode(filp);
547	unsigned pagelen;
548	vm_fault_t ret = VM_FAULT_NOPAGE;
549	struct address_space *mapping;
550
551	dfprintk(PAGECACHE, "NFS: vm_page_mkwrite(%pD2(%lu), offset %lld)\n",
552		filp, filp->f_mapping->host->i_ino,
553		(long long)page_offset(page));
554
555	sb_start_pagefault(inode->i_sb);
556
557	/* make sure the cache has finished storing the page */
558	nfs_fscache_wait_on_page_write(NFS_I(inode), page);
559
560	wait_on_bit_action(&NFS_I(inode)->flags, NFS_INO_INVALIDATING,
561			nfs_wait_bit_killable, TASK_KILLABLE);
562
563	lock_page(page);
564	mapping = page_file_mapping(page);
565	if (mapping != inode->i_mapping)
566		goto out_unlock;
567
568	wait_on_page_writeback(page);
569
570	pagelen = nfs_page_length(page);
571	if (pagelen == 0)
572		goto out_unlock;
573
574	ret = VM_FAULT_LOCKED;
575	if (nfs_flush_incompatible(filp, page) == 0 &&
576	    nfs_updatepage(filp, page, 0, pagelen) == 0)
577		goto out;
578
579	ret = VM_FAULT_SIGBUS;
580out_unlock:
581	unlock_page(page);
582out:
583	sb_end_pagefault(inode->i_sb);
584	return ret;
585}
586
587static const struct vm_operations_struct nfs_file_vm_ops = {
588	.fault = filemap_fault,
589	.map_pages = filemap_map_pages,
590	.page_mkwrite = nfs_vm_page_mkwrite,
591};
592
593static int nfs_need_check_write(struct file *filp, struct inode *inode,
594				int error)
595{
596	struct nfs_open_context *ctx;
597
598	ctx = nfs_file_open_context(filp);
599	if (nfs_error_is_fatal_on_server(error) ||
600	    nfs_ctx_key_to_expire(ctx, inode))
601		return 1;
602	return 0;
603}
604
605ssize_t nfs_file_write(struct kiocb *iocb, struct iov_iter *from)
606{
607	struct file *file = iocb->ki_filp;
608	struct inode *inode = file_inode(file);
609	unsigned long written = 0;
610	ssize_t result;
611	errseq_t since;
612	int error;
613
614	result = nfs_key_timeout_notify(file, inode);
615	if (result)
616		return result;
617
618	if (iocb->ki_flags & IOCB_DIRECT)
619		return nfs_file_direct_write(iocb, from);
620
621	dprintk("NFS: write(%pD2, %zu@%Ld)\n",
622		file, iov_iter_count(from), (long long) iocb->ki_pos);
623
624	if (IS_SWAPFILE(inode))
625		goto out_swapfile;
626	/*
627	 * O_APPEND implies that we must revalidate the file length.
628	 */
629	if (iocb->ki_flags & IOCB_APPEND) {
630		result = nfs_revalidate_file_size(inode, file);
631		if (result)
632			goto out;
633	}
634	if (iocb->ki_pos > i_size_read(inode))
635		nfs_revalidate_mapping(inode, file->f_mapping);
636
637	since = filemap_sample_wb_err(file->f_mapping);
638	nfs_start_io_write(inode);
639	result = generic_write_checks(iocb, from);
640	if (result > 0) {
641		current->backing_dev_info = inode_to_bdi(inode);
642		result = generic_perform_write(file, from, iocb->ki_pos);
643		current->backing_dev_info = NULL;
644	}
645	nfs_end_io_write(inode);
646	if (result <= 0)
647		goto out;
648
649	written = result;
650	iocb->ki_pos += written;
651	result = generic_write_sync(iocb, written);
652	if (result < 0)
653		goto out;
654
655	/* Return error values */
656	error = filemap_check_wb_err(file->f_mapping, since);
657	if (nfs_need_check_write(file, inode, error)) {
658		int err = nfs_wb_all(inode);
659		if (err < 0)
660			result = err;
661	}
662	nfs_add_stats(inode, NFSIOS_NORMALWRITTENBYTES, written);
663out:
664	return result;
665
666out_swapfile:
667	printk(KERN_INFO "NFS: attempt to write to active swap file!\n");
668	return -ETXTBSY;
669}
670EXPORT_SYMBOL_GPL(nfs_file_write);
671
672static int
673do_getlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
674{
675	struct inode *inode = filp->f_mapping->host;
676	int status = 0;
677	unsigned int saved_type = fl->fl_type;
678
679	/* Try local locking first */
680	posix_test_lock(filp, fl);
681	if (fl->fl_type != F_UNLCK) {
682		/* found a conflict */
683		goto out;
684	}
685	fl->fl_type = saved_type;
686
687	if (NFS_PROTO(inode)->have_delegation(inode, FMODE_READ))
688		goto out_noconflict;
689
690	if (is_local)
691		goto out_noconflict;
692
693	status = NFS_PROTO(inode)->lock(filp, cmd, fl);
694out:
695	return status;
696out_noconflict:
697	fl->fl_type = F_UNLCK;
698	goto out;
699}
700
701static int
702do_unlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
703{
704	struct inode *inode = filp->f_mapping->host;
705	struct nfs_lock_context *l_ctx;
706	int status;
707
708	/*
709	 * Flush all pending writes before doing anything
710	 * with locks..
711	 */
712	nfs_wb_all(inode);
713
714	l_ctx = nfs_get_lock_context(nfs_file_open_context(filp));
715	if (!IS_ERR(l_ctx)) {
716		status = nfs_iocounter_wait(l_ctx);
717		nfs_put_lock_context(l_ctx);
718		/*  NOTE: special case
719		 * 	If we're signalled while cleaning up locks on process exit, we
720		 * 	still need to complete the unlock.
721		 */
722		if (status < 0 && !(fl->fl_flags & FL_CLOSE))
723			return status;
724	}
725
726	/*
727	 * Use local locking if mounted with "-onolock" or with appropriate
728	 * "-olocal_lock="
729	 */
730	if (!is_local)
731		status = NFS_PROTO(inode)->lock(filp, cmd, fl);
732	else
733		status = locks_lock_file_wait(filp, fl);
734	return status;
735}
736
737static int
738do_setlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
739{
740	struct inode *inode = filp->f_mapping->host;
741	int status;
742
743	/*
744	 * Flush all pending writes before doing anything
745	 * with locks..
746	 */
747	status = nfs_sync_mapping(filp->f_mapping);
748	if (status != 0)
749		goto out;
750
751	/*
752	 * Use local locking if mounted with "-onolock" or with appropriate
753	 * "-olocal_lock="
754	 */
755	if (!is_local)
756		status = NFS_PROTO(inode)->lock(filp, cmd, fl);
757	else
758		status = locks_lock_file_wait(filp, fl);
759	if (status < 0)
760		goto out;
761
762	/*
763	 * Invalidate cache to prevent missing any changes.  If
764	 * the file is mapped, clear the page cache as well so
765	 * those mappings will be loaded.
766	 *
767	 * This makes locking act as a cache coherency point.
768	 */
769	nfs_sync_mapping(filp->f_mapping);
770	if (!NFS_PROTO(inode)->have_delegation(inode, FMODE_READ)) {
771		nfs_zap_caches(inode);
772		if (mapping_mapped(filp->f_mapping))
773			nfs_revalidate_mapping(inode, filp->f_mapping);
774	}
775out:
776	return status;
777}
778
779/*
780 * Lock a (portion of) a file
781 */
782int nfs_lock(struct file *filp, int cmd, struct file_lock *fl)
783{
784	struct inode *inode = filp->f_mapping->host;
785	int ret = -ENOLCK;
786	int is_local = 0;
787
788	dprintk("NFS: lock(%pD2, t=%x, fl=%x, r=%lld:%lld)\n",
789			filp, fl->fl_type, fl->fl_flags,
790			(long long)fl->fl_start, (long long)fl->fl_end);
791
792	nfs_inc_stats(inode, NFSIOS_VFSLOCK);
793
794	/* No mandatory locks over NFS */
795	if (__mandatory_lock(inode) && fl->fl_type != F_UNLCK)
796		goto out_err;
797
798	if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FCNTL)
799		is_local = 1;
800
801	if (NFS_PROTO(inode)->lock_check_bounds != NULL) {
802		ret = NFS_PROTO(inode)->lock_check_bounds(fl);
803		if (ret < 0)
804			goto out_err;
805	}
806
807	if (IS_GETLK(cmd))
808		ret = do_getlk(filp, cmd, fl, is_local);
809	else if (fl->fl_type == F_UNLCK)
810		ret = do_unlk(filp, cmd, fl, is_local);
811	else
812		ret = do_setlk(filp, cmd, fl, is_local);
813out_err:
814	return ret;
815}
816EXPORT_SYMBOL_GPL(nfs_lock);
817
818/*
819 * Lock a (portion of) a file
820 */
821int nfs_flock(struct file *filp, int cmd, struct file_lock *fl)
822{
823	struct inode *inode = filp->f_mapping->host;
824	int is_local = 0;
825
826	dprintk("NFS: flock(%pD2, t=%x, fl=%x)\n",
827			filp, fl->fl_type, fl->fl_flags);
828
829	if (!(fl->fl_flags & FL_FLOCK))
830		return -ENOLCK;
831
832	/*
833	 * The NFSv4 protocol doesn't support LOCK_MAND, which is not part of
834	 * any standard. In principle we might be able to support LOCK_MAND
835	 * on NFSv2/3 since NLMv3/4 support DOS share modes, but for now the
836	 * NFS code is not set up for it.
837	 */
838	if (fl->fl_type & LOCK_MAND)
839		return -EINVAL;
840
841	if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FLOCK)
842		is_local = 1;
843
844	/* We're simulating flock() locks using posix locks on the server */
845	if (fl->fl_type == F_UNLCK)
846		return do_unlk(filp, cmd, fl, is_local);
847	return do_setlk(filp, cmd, fl, is_local);
848}
849EXPORT_SYMBOL_GPL(nfs_flock);
850
851const struct file_operations nfs_file_operations = {
852	.llseek		= nfs_file_llseek,
853	.read_iter	= nfs_file_read,
854	.write_iter	= nfs_file_write,
855	.mmap		= nfs_file_mmap,
856	.open		= nfs_file_open,
857	.flush		= nfs_file_flush,
858	.release	= nfs_file_release,
859	.fsync		= nfs_file_fsync,
860	.lock		= nfs_lock,
861	.flock		= nfs_flock,
862	.splice_read	= generic_file_splice_read,
863	.splice_write	= iter_file_splice_write,
864	.check_flags	= nfs_check_flags,
865	.setlease	= simple_nosetlease,
866};
867EXPORT_SYMBOL_GPL(nfs_file_operations);