Linux Audio

Check our new training course

In-person Linux kernel drivers training

Jun 16-20, 2025
Register
Loading...
v4.17
  1/*
  2 *  linux/fs/nfs/file.c
  3 *
  4 *  Copyright (C) 1992  Rick Sladkey
  5 *
  6 *  Changes Copyright (C) 1994 by Florian La Roche
  7 *   - Do not copy data too often around in the kernel.
  8 *   - In nfs_file_read the return value of kmalloc wasn't checked.
  9 *   - Put in a better version of read look-ahead buffering. Original idea
 10 *     and implementation by Wai S Kok elekokws@ee.nus.sg.
 11 *
 12 *  Expire cache on write to a file by Wai S Kok (Oct 1994).
 13 *
 14 *  Total rewrite of read side for new NFS buffer cache.. Linus.
 15 *
 16 *  nfs regular file handling functions
 17 */
 18
 19#include <linux/module.h>
 20#include <linux/time.h>
 21#include <linux/kernel.h>
 22#include <linux/errno.h>
 23#include <linux/fcntl.h>
 24#include <linux/stat.h>
 25#include <linux/nfs_fs.h>
 26#include <linux/nfs_mount.h>
 27#include <linux/mm.h>
 28#include <linux/pagemap.h>
 
 29#include <linux/gfp.h>
 30#include <linux/swap.h>
 31
 32#include <linux/uaccess.h>
 33
 34#include "delegation.h"
 35#include "internal.h"
 36#include "iostat.h"
 37#include "fscache.h"
 38#include "pnfs.h"
 39
 40#include "nfstrace.h"
 41
 42#define NFSDBG_FACILITY		NFSDBG_FILE
 43
 44static const struct vm_operations_struct nfs_file_vm_ops;
 45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 46/* Hack for future NFS swap support */
 47#ifndef IS_SWAPFILE
 48# define IS_SWAPFILE(inode)	(0)
 49#endif
 50
 51int nfs_check_flags(int flags)
 52{
 53	if ((flags & (O_APPEND | O_DIRECT)) == (O_APPEND | O_DIRECT))
 54		return -EINVAL;
 55
 56	return 0;
 57}
 58EXPORT_SYMBOL_GPL(nfs_check_flags);
 59
 60/*
 61 * Open file
 62 */
 63static int
 64nfs_file_open(struct inode *inode, struct file *filp)
 65{
 66	int res;
 67
 68	dprintk("NFS: open file(%pD2)\n", filp);
 
 
 69
 70	nfs_inc_stats(inode, NFSIOS_VFSOPEN);
 71	res = nfs_check_flags(filp->f_flags);
 72	if (res)
 73		return res;
 74
 75	res = nfs_open(inode, filp);
 76	return res;
 77}
 78
 79int
 80nfs_file_release(struct inode *inode, struct file *filp)
 81{
 82	dprintk("NFS: release(%pD2)\n", filp);
 
 
 83
 84	nfs_inc_stats(inode, NFSIOS_VFSRELEASE);
 85	nfs_file_clear_open_context(filp);
 86	return 0;
 87}
 88EXPORT_SYMBOL_GPL(nfs_file_release);
 89
 90/**
 91 * nfs_revalidate_size - Revalidate the file size
 92 * @inode - pointer to inode struct
 93 * @file - pointer to struct file
 94 *
 95 * Revalidates the file length. This is basically a wrapper around
 96 * nfs_revalidate_inode() that takes into account the fact that we may
 97 * have cached writes (in which case we don't care about the server's
 98 * idea of what the file length is), or O_DIRECT (in which case we
 99 * shouldn't trust the cache).
100 */
101static int nfs_revalidate_file_size(struct inode *inode, struct file *filp)
102{
103	struct nfs_server *server = NFS_SERVER(inode);
 
 
 
 
104
105	if (filp->f_flags & O_DIRECT)
106		goto force_reval;
107	if (nfs_check_cache_invalid(inode, NFS_INO_REVAL_PAGECACHE))
 
 
108		goto force_reval;
 
109	return 0;
110force_reval:
111	return __nfs_revalidate_inode(server, inode);
112}
113
114loff_t nfs_file_llseek(struct file *filp, loff_t offset, int whence)
115{
116	dprintk("NFS: llseek file(%pD2, %lld, %d)\n",
117			filp, offset, whence);
 
 
118
119	/*
120	 * whence == SEEK_END || SEEK_DATA || SEEK_HOLE => we must revalidate
121	 * the cached file length
122	 */
123	if (whence != SEEK_SET && whence != SEEK_CUR) {
124		struct inode *inode = filp->f_mapping->host;
125
126		int retval = nfs_revalidate_file_size(inode, filp);
127		if (retval < 0)
128			return (loff_t)retval;
129	}
130
131	return generic_file_llseek(filp, offset, whence);
132}
133EXPORT_SYMBOL_GPL(nfs_file_llseek);
134
135/*
136 * Flush all dirty pages, and check for write errors.
137 */
138static int
139nfs_file_flush(struct file *file, fl_owner_t id)
140{
141	struct inode	*inode = file_inode(file);
 
142
143	dprintk("NFS: flush(%pD2)\n", file);
 
 
144
145	nfs_inc_stats(inode, NFSIOS_VFSFLUSH);
146	if ((file->f_mode & FMODE_WRITE) == 0)
147		return 0;
148
 
 
 
 
 
 
 
149	/* Flush writes to the server and return any errors */
150	return vfs_fsync(file, 0);
151}
152
153ssize_t
154nfs_file_read(struct kiocb *iocb, struct iov_iter *to)
 
155{
156	struct inode *inode = file_inode(iocb->ki_filp);
 
157	ssize_t result;
158
159	if (iocb->ki_flags & IOCB_DIRECT)
160		return nfs_file_direct_read(iocb, to);
161
162	dprintk("NFS: read(%pD2, %zu@%lu)\n",
163		iocb->ki_filp,
164		iov_iter_count(to), (unsigned long) iocb->ki_pos);
165
166	nfs_start_io_read(inode);
167	result = nfs_revalidate_mapping(inode, iocb->ki_filp->f_mapping);
168	if (!result) {
169		result = generic_file_read_iter(iocb, to);
170		if (result > 0)
171			nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, result);
172	}
173	nfs_end_io_read(inode);
174	return result;
175}
176EXPORT_SYMBOL_GPL(nfs_file_read);
177
178int
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
179nfs_file_mmap(struct file * file, struct vm_area_struct * vma)
180{
181	struct inode *inode = file_inode(file);
 
182	int	status;
183
184	dprintk("NFS: mmap(%pD2)\n", file);
 
185
186	/* Note: generic_file_mmap() returns ENOSYS on nommu systems
187	 *       so we call that before revalidating the mapping
188	 */
189	status = generic_file_mmap(file, vma);
190	if (!status) {
191		vma->vm_ops = &nfs_file_vm_ops;
192		status = nfs_revalidate_mapping(inode, file->f_mapping);
193	}
194	return status;
195}
196EXPORT_SYMBOL_GPL(nfs_file_mmap);
197
198/*
199 * Flush any dirty pages for this process, and check for write errors.
200 * The return status from this call provides a reliable indication of
201 * whether any write errors occurred for this process.
202 *
203 * Notice that it clears the NFS_CONTEXT_ERROR_WRITE before synching to
204 * disk, but it retrieves and clears ctx->error after synching, despite
205 * the two being set at the same time in nfs_context_set_write_error().
206 * This is because the former is used to notify the _next_ call to
207 * nfs_file_write() that a write error occurred, and hence cause it to
208 * fall back to doing a synchronous write.
209 */
210static int
211nfs_file_fsync_commit(struct file *file, int datasync)
212{
 
213	struct nfs_open_context *ctx = nfs_file_open_context(file);
214	struct inode *inode = file_inode(file);
215	int do_resend, status;
216	int ret = 0;
217
218	dprintk("NFS: fsync file(%pD2) datasync %d\n", file, datasync);
 
 
 
 
 
219
220	nfs_inc_stats(inode, NFSIOS_VFSFSYNC);
221	do_resend = test_and_clear_bit(NFS_CONTEXT_RESEND_WRITES, &ctx->flags);
222	status = nfs_commit_inode(inode, FLUSH_SYNC);
223	if (test_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags)) {
 
 
 
224		ret = xchg(&ctx->error, 0);
225		if (ret)
226			goto out;
227	}
228	if (status < 0) {
229		ret = status;
230		goto out;
231	}
232	do_resend |= test_bit(NFS_CONTEXT_RESEND_WRITES, &ctx->flags);
233	if (do_resend)
234		ret = -EAGAIN;
235out:
236	return ret;
237}
238
239int
240nfs_file_fsync(struct file *file, loff_t start, loff_t end, int datasync)
241{
242	int ret;
243	struct inode *inode = file_inode(file);
244
245	trace_nfs_fsync_enter(inode);
246
247	do {
248		struct nfs_open_context *ctx = nfs_file_open_context(file);
249		ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
250		if (test_and_clear_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags)) {
251			int ret2 = xchg(&ctx->error, 0);
252			if (ret2)
253				ret = ret2;
254		}
255		if (ret != 0)
256			break;
257		ret = nfs_file_fsync_commit(file, datasync);
258		if (!ret)
259			ret = pnfs_sync_inode(inode, !!datasync);
260		/*
261		 * If nfs_file_fsync_commit detected a server reboot, then
262		 * resend all dirty pages that might have been covered by
263		 * the NFS_CONTEXT_RESEND_WRITES flag
264		 */
265		start = 0;
266		end = LLONG_MAX;
267	} while (ret == -EAGAIN);
268
269	trace_nfs_fsync_exit(inode, ret);
270	return ret;
271}
272EXPORT_SYMBOL_GPL(nfs_file_fsync);
273
274/*
275 * Decide whether a read/modify/write cycle may be more efficient
276 * then a modify/write/read cycle when writing to a page in the
277 * page cache.
278 *
279 * The modify/write/read cycle may occur if a page is read before
280 * being completely filled by the writer.  In this situation, the
281 * page must be completely written to stable storage on the server
282 * before it can be refilled by reading in the page from the server.
283 * This can lead to expensive, small, FILE_SYNC mode writes being
284 * done.
285 *
286 * It may be more efficient to read the page first if the file is
287 * open for reading in addition to writing, the page is not marked
288 * as Uptodate, it is not dirty or waiting to be committed,
289 * indicating that it was previously allocated and then modified,
290 * that there were valid bytes of data in that range of the file,
291 * and that the new data won't completely replace the old data in
292 * that range of the file.
293 */
294static int nfs_want_read_modify_write(struct file *file, struct page *page,
295			loff_t pos, unsigned len)
296{
297	unsigned int pglen = nfs_page_length(page);
298	unsigned int offset = pos & (PAGE_SIZE - 1);
299	unsigned int end = offset + len;
300
301	if (pnfs_ld_read_whole_page(file->f_mapping->host)) {
302		if (!PageUptodate(page))
303			return 1;
304		return 0;
305	}
306
307	if ((file->f_mode & FMODE_READ) &&	/* open for read? */
308	    !PageUptodate(page) &&		/* Uptodate? */
309	    !PagePrivate(page) &&		/* i/o request already? */
310	    pglen &&				/* valid bytes of file? */
311	    (end < pglen || offset))		/* replace all valid bytes? */
312		return 1;
313	return 0;
314}
315
316/*
317 * This does the "real" work of the write. We must allocate and lock the
318 * page to be sent back to the generic routine, which then copies the
319 * data from user space.
320 *
321 * If the writer ends up delaying the write, the writer needs to
322 * increment the page use counts until he is done with the page.
323 */
324static int nfs_write_begin(struct file *file, struct address_space *mapping,
325			loff_t pos, unsigned len, unsigned flags,
326			struct page **pagep, void **fsdata)
327{
328	int ret;
329	pgoff_t index = pos >> PAGE_SHIFT;
330	struct page *page;
331	int once_thru = 0;
332
333	dfprintk(PAGECACHE, "NFS: write_begin(%pD2(%lu), %u@%lld)\n",
334		file, mapping->host->i_ino, len, (long long) pos);
 
 
335
336start:
 
 
 
 
 
 
 
 
 
337	page = grab_cache_page_write_begin(mapping, index, flags);
338	if (!page)
339		return -ENOMEM;
340	*pagep = page;
341
342	ret = nfs_flush_incompatible(file, page);
343	if (ret) {
344		unlock_page(page);
345		put_page(page);
346	} else if (!once_thru &&
347		   nfs_want_read_modify_write(file, page, pos, len)) {
348		once_thru = 1;
349		ret = nfs_readpage(file, page);
350		put_page(page);
351		if (!ret)
352			goto start;
353	}
354	return ret;
355}
356
357static int nfs_write_end(struct file *file, struct address_space *mapping,
358			loff_t pos, unsigned len, unsigned copied,
359			struct page *page, void *fsdata)
360{
361	unsigned offset = pos & (PAGE_SIZE - 1);
362	struct nfs_open_context *ctx = nfs_file_open_context(file);
363	int status;
364
365	dfprintk(PAGECACHE, "NFS: write_end(%pD2(%lu), %u@%lld)\n",
366		file, mapping->host->i_ino, len, (long long) pos);
 
 
367
368	/*
369	 * Zero any uninitialised parts of the page, and then mark the page
370	 * as up to date if it turns out that we're extending the file.
371	 */
372	if (!PageUptodate(page)) {
373		unsigned pglen = nfs_page_length(page);
374		unsigned end = offset + copied;
375
376		if (pglen == 0) {
377			zero_user_segments(page, 0, offset,
378					end, PAGE_SIZE);
379			SetPageUptodate(page);
380		} else if (end >= pglen) {
381			zero_user_segment(page, end, PAGE_SIZE);
382			if (offset == 0)
383				SetPageUptodate(page);
384		} else
385			zero_user_segment(page, pglen, PAGE_SIZE);
386	}
387
388	status = nfs_updatepage(file, page, offset, copied);
389
390	unlock_page(page);
391	put_page(page);
392
393	if (status < 0)
394		return status;
395	NFS_I(mapping->host)->write_io += copied;
396
397	if (nfs_ctx_key_to_expire(ctx, mapping->host)) {
398		status = nfs_wb_all(mapping->host);
399		if (status < 0)
400			return status;
401	}
402
403	return copied;
404}
405
406/*
407 * Partially or wholly invalidate a page
408 * - Release the private state associated with a page if undergoing complete
409 *   page invalidation
410 * - Called if either PG_private or PG_fscache is set on the page
411 * - Caller holds page lock
412 */
413static void nfs_invalidate_page(struct page *page, unsigned int offset,
414				unsigned int length)
415{
416	dfprintk(PAGECACHE, "NFS: invalidate_page(%p, %u, %u)\n",
417		 page, offset, length);
418
419	if (offset != 0 || length < PAGE_SIZE)
420		return;
421	/* Cancel any unstarted writes on this page */
422	nfs_wb_page_cancel(page_file_mapping(page)->host, page);
423
424	nfs_fscache_invalidate_page(page, page->mapping->host);
425}
426
427/*
428 * Attempt to release the private state associated with a page
429 * - Called if either PG_private or PG_fscache is set on the page
430 * - Caller holds page lock
431 * - Return true (may release page) or false (may not)
432 */
433static int nfs_release_page(struct page *page, gfp_t gfp)
434{
 
 
435	dfprintk(PAGECACHE, "NFS: release_page(%p)\n", page);
436
 
 
 
 
 
 
 
 
 
 
 
 
437	/* If PagePrivate() is set, then the page is not freeable */
438	if (PagePrivate(page))
439		return 0;
440	return nfs_fscache_release_page(page, gfp);
441}
442
443static void nfs_check_dirty_writeback(struct page *page,
444				bool *dirty, bool *writeback)
445{
446	struct nfs_inode *nfsi;
447	struct address_space *mapping = page_file_mapping(page);
448
449	if (!mapping || PageSwapCache(page))
450		return;
451
452	/*
453	 * Check if an unstable page is currently being committed and
454	 * if so, have the VM treat it as if the page is under writeback
455	 * so it will not block due to pages that will shortly be freeable.
456	 */
457	nfsi = NFS_I(mapping->host);
458	if (atomic_read(&nfsi->commit_info.rpcs_out)) {
459		*writeback = true;
460		return;
461	}
462
463	/*
464	 * If PagePrivate() is set, then the page is not freeable and as the
465	 * inode is not being committed, it's not going to be cleaned in the
466	 * near future so treat it as dirty
467	 */
468	if (PagePrivate(page))
469		*dirty = true;
470}
471
472/*
473 * Attempt to clear the private state associated with a page when an error
474 * occurs that requires the cached contents of an inode to be written back or
475 * destroyed
476 * - Called if either PG_private or fscache is set on the page
477 * - Caller holds page lock
478 * - Return 0 if successful, -error otherwise
479 */
480static int nfs_launder_page(struct page *page)
481{
482	struct inode *inode = page_file_mapping(page)->host;
483	struct nfs_inode *nfsi = NFS_I(inode);
484
485	dfprintk(PAGECACHE, "NFS: launder_page(%ld, %llu)\n",
486		inode->i_ino, (long long)page_offset(page));
487
488	nfs_fscache_wait_on_page_write(nfsi, page);
489	return nfs_wb_page(inode, page);
490}
491
492static int nfs_swap_activate(struct swap_info_struct *sis, struct file *file,
493						sector_t *span)
494{
495	struct rpc_clnt *clnt = NFS_CLIENT(file->f_mapping->host);
496
497	*span = sis->pages;
498
499	return rpc_clnt_swap_activate(clnt);
500}
501
502static void nfs_swap_deactivate(struct file *file)
503{
504	struct rpc_clnt *clnt = NFS_CLIENT(file->f_mapping->host);
505
506	rpc_clnt_swap_deactivate(clnt);
507}
508
509const struct address_space_operations nfs_file_aops = {
510	.readpage = nfs_readpage,
511	.readpages = nfs_readpages,
512	.set_page_dirty = __set_page_dirty_nobuffers,
513	.writepage = nfs_writepage,
514	.writepages = nfs_writepages,
515	.write_begin = nfs_write_begin,
516	.write_end = nfs_write_end,
517	.invalidatepage = nfs_invalidate_page,
518	.releasepage = nfs_release_page,
519	.direct_IO = nfs_direct_IO,
520#ifdef CONFIG_MIGRATION
521	.migratepage = nfs_migrate_page,
522#endif
523	.launder_page = nfs_launder_page,
524	.is_dirty_writeback = nfs_check_dirty_writeback,
525	.error_remove_page = generic_error_remove_page,
526	.swap_activate = nfs_swap_activate,
527	.swap_deactivate = nfs_swap_deactivate,
528};
529
530/*
531 * Notification that a PTE pointing to an NFS page is about to be made
532 * writable, implying that someone is about to modify the page through a
533 * shared-writable mapping
534 */
535static int nfs_vm_page_mkwrite(struct vm_fault *vmf)
536{
537	struct page *page = vmf->page;
538	struct file *filp = vmf->vma->vm_file;
539	struct inode *inode = file_inode(filp);
540	unsigned pagelen;
541	int ret = VM_FAULT_NOPAGE;
542	struct address_space *mapping;
543
544	dfprintk(PAGECACHE, "NFS: vm_page_mkwrite(%pD2(%lu), offset %lld)\n",
545		filp, filp->f_mapping->host->i_ino,
 
546		(long long)page_offset(page));
547
548	sb_start_pagefault(inode->i_sb);
549
550	/* make sure the cache has finished storing the page */
551	nfs_fscache_wait_on_page_write(NFS_I(inode), page);
552
553	wait_on_bit_action(&NFS_I(inode)->flags, NFS_INO_INVALIDATING,
554			nfs_wait_bit_killable, TASK_KILLABLE);
555
556	lock_page(page);
557	mapping = page_file_mapping(page);
558	if (mapping != inode->i_mapping)
559		goto out_unlock;
560
561	wait_on_page_writeback(page);
562
563	pagelen = nfs_page_length(page);
564	if (pagelen == 0)
565		goto out_unlock;
566
567	ret = VM_FAULT_LOCKED;
568	if (nfs_flush_incompatible(filp, page) == 0 &&
569	    nfs_updatepage(filp, page, 0, pagelen) == 0)
570		goto out;
571
572	ret = VM_FAULT_SIGBUS;
573out_unlock:
574	unlock_page(page);
575out:
576	sb_end_pagefault(inode->i_sb);
577	return ret;
578}
579
580static const struct vm_operations_struct nfs_file_vm_ops = {
581	.fault = filemap_fault,
582	.map_pages = filemap_map_pages,
583	.page_mkwrite = nfs_vm_page_mkwrite,
584};
585
586static int nfs_need_check_write(struct file *filp, struct inode *inode)
587{
588	struct nfs_open_context *ctx;
589
 
 
590	ctx = nfs_file_open_context(filp);
591	if (test_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags) ||
592	    nfs_ctx_key_to_expire(ctx, inode))
593		return 1;
594	return 0;
595}
596
597ssize_t nfs_file_write(struct kiocb *iocb, struct iov_iter *from)
 
598{
599	struct file *file = iocb->ki_filp;
600	struct inode *inode = file_inode(file);
601	unsigned long written = 0;
602	ssize_t result;
 
603
604	result = nfs_key_timeout_notify(file, inode);
605	if (result)
606		return result;
607
608	if (iocb->ki_flags & IOCB_DIRECT)
609		return nfs_file_direct_write(iocb, from);
610
611	dprintk("NFS: write(%pD2, %zu@%Ld)\n",
612		file, iov_iter_count(from), (long long) iocb->ki_pos);
 
613
 
614	if (IS_SWAPFILE(inode))
615		goto out_swapfile;
616	/*
617	 * O_APPEND implies that we must revalidate the file length.
618	 */
619	if (iocb->ki_flags & IOCB_APPEND) {
620		result = nfs_revalidate_file_size(inode, file);
621		if (result)
622			goto out;
623	}
624	if (iocb->ki_pos > i_size_read(inode))
625		nfs_revalidate_mapping(inode, file->f_mapping);
626
627	nfs_start_io_write(inode);
628	result = generic_write_checks(iocb, from);
629	if (result > 0) {
630		current->backing_dev_info = inode_to_bdi(inode);
631		result = generic_perform_write(file, from, iocb->ki_pos);
632		current->backing_dev_info = NULL;
633	}
634	nfs_end_io_write(inode);
635	if (result <= 0)
636		goto out;
637
638	written = result;
639	iocb->ki_pos += written;
640	result = generic_write_sync(iocb, written);
641	if (result < 0)
642		goto out;
643
644	/* Return error values */
645	if (nfs_need_check_write(file, inode)) {
646		int err = vfs_fsync(file, 0);
 
 
 
 
647		if (err < 0)
648			result = err;
649	}
650	nfs_add_stats(inode, NFSIOS_NORMALWRITTENBYTES, written);
 
651out:
652	return result;
653
654out_swapfile:
655	printk(KERN_INFO "NFS: attempt to write to active swap file!\n");
656	return -EBUSY;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
657}
658EXPORT_SYMBOL_GPL(nfs_file_write);
659
660static int
661do_getlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
662{
663	struct inode *inode = filp->f_mapping->host;
664	int status = 0;
665	unsigned int saved_type = fl->fl_type;
666
667	/* Try local locking first */
668	posix_test_lock(filp, fl);
669	if (fl->fl_type != F_UNLCK) {
670		/* found a conflict */
671		goto out;
672	}
673	fl->fl_type = saved_type;
674
675	if (NFS_PROTO(inode)->have_delegation(inode, FMODE_READ))
676		goto out_noconflict;
677
678	if (is_local)
679		goto out_noconflict;
680
681	status = NFS_PROTO(inode)->lock(filp, cmd, fl);
682out:
683	return status;
684out_noconflict:
685	fl->fl_type = F_UNLCK;
686	goto out;
687}
688
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
689static int
690do_unlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
691{
692	struct inode *inode = filp->f_mapping->host;
693	struct nfs_lock_context *l_ctx;
694	int status;
695
696	/*
697	 * Flush all pending writes before doing anything
698	 * with locks..
699	 */
700	vfs_fsync(filp, 0);
701
702	l_ctx = nfs_get_lock_context(nfs_file_open_context(filp));
703	if (!IS_ERR(l_ctx)) {
704		status = nfs_iocounter_wait(l_ctx);
705		nfs_put_lock_context(l_ctx);
706		/*  NOTE: special case
707		 * 	If we're signalled while cleaning up locks on process exit, we
708		 * 	still need to complete the unlock.
709		 */
710		if (status < 0 && !(fl->fl_flags & FL_CLOSE))
711			return status;
712	}
713
 
 
 
 
714	/*
715	 * Use local locking if mounted with "-onolock" or with appropriate
716	 * "-olocal_lock="
717	 */
718	if (!is_local)
719		status = NFS_PROTO(inode)->lock(filp, cmd, fl);
720	else
721		status = locks_lock_file_wait(filp, fl);
722	return status;
723}
724
725static int
 
 
 
 
 
726do_setlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
727{
728	struct inode *inode = filp->f_mapping->host;
729	int status;
730
731	/*
732	 * Flush all pending writes before doing anything
733	 * with locks..
734	 */
735	status = nfs_sync_mapping(filp->f_mapping);
736	if (status != 0)
737		goto out;
738
739	/*
740	 * Use local locking if mounted with "-onolock" or with appropriate
741	 * "-olocal_lock="
742	 */
743	if (!is_local)
744		status = NFS_PROTO(inode)->lock(filp, cmd, fl);
745	else
746		status = locks_lock_file_wait(filp, fl);
747	if (status < 0)
748		goto out;
749
750	/*
751	 * Invalidate cache to prevent missing any changes.  If
752	 * the file is mapped, clear the page cache as well so
753	 * those mappings will be loaded.
754	 *
755	 * This makes locking act as a cache coherency point.
756	 */
757	nfs_sync_mapping(filp->f_mapping);
758	if (!NFS_PROTO(inode)->have_delegation(inode, FMODE_READ)) {
759		nfs_zap_caches(inode);
760		if (mapping_mapped(filp->f_mapping))
761			nfs_revalidate_mapping(inode, filp->f_mapping);
 
762	}
763out:
764	return status;
765}
766
767/*
768 * Lock a (portion of) a file
769 */
770int nfs_lock(struct file *filp, int cmd, struct file_lock *fl)
771{
772	struct inode *inode = filp->f_mapping->host;
773	int ret = -ENOLCK;
774	int is_local = 0;
775
776	dprintk("NFS: lock(%pD2, t=%x, fl=%x, r=%lld:%lld)\n",
777			filp, fl->fl_type, fl->fl_flags,
 
 
778			(long long)fl->fl_start, (long long)fl->fl_end);
779
780	nfs_inc_stats(inode, NFSIOS_VFSLOCK);
781
782	/* No mandatory locks over NFS */
783	if (__mandatory_lock(inode) && fl->fl_type != F_UNLCK)
784		goto out_err;
785
786	if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FCNTL)
787		is_local = 1;
788
789	if (NFS_PROTO(inode)->lock_check_bounds != NULL) {
790		ret = NFS_PROTO(inode)->lock_check_bounds(fl);
791		if (ret < 0)
792			goto out_err;
793	}
794
795	if (IS_GETLK(cmd))
796		ret = do_getlk(filp, cmd, fl, is_local);
797	else if (fl->fl_type == F_UNLCK)
798		ret = do_unlk(filp, cmd, fl, is_local);
799	else
800		ret = do_setlk(filp, cmd, fl, is_local);
801out_err:
802	return ret;
803}
804EXPORT_SYMBOL_GPL(nfs_lock);
805
806/*
807 * Lock a (portion of) a file
808 */
809int nfs_flock(struct file *filp, int cmd, struct file_lock *fl)
810{
811	struct inode *inode = filp->f_mapping->host;
812	int is_local = 0;
813
814	dprintk("NFS: flock(%pD2, t=%x, fl=%x)\n",
815			filp, fl->fl_type, fl->fl_flags);
 
 
816
817	if (!(fl->fl_flags & FL_FLOCK))
818		return -ENOLCK;
819
820	/*
821	 * The NFSv4 protocol doesn't support LOCK_MAND, which is not part of
822	 * any standard. In principle we might be able to support LOCK_MAND
823	 * on NFSv2/3 since NLMv3/4 support DOS share modes, but for now the
824	 * NFS code is not set up for it.
825	 */
826	if (fl->fl_type & LOCK_MAND)
827		return -EINVAL;
828
829	if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FLOCK)
830		is_local = 1;
831
832	/* We're simulating flock() locks using posix locks on the server */
 
 
 
 
833	if (fl->fl_type == F_UNLCK)
834		return do_unlk(filp, cmd, fl, is_local);
835	return do_setlk(filp, cmd, fl, is_local);
836}
837EXPORT_SYMBOL_GPL(nfs_flock);
 
 
 
 
 
 
 
 
 
 
 
838
839const struct file_operations nfs_file_operations = {
840	.llseek		= nfs_file_llseek,
841	.read_iter	= nfs_file_read,
842	.write_iter	= nfs_file_write,
 
 
843	.mmap		= nfs_file_mmap,
844	.open		= nfs_file_open,
845	.flush		= nfs_file_flush,
846	.release	= nfs_file_release,
847	.fsync		= nfs_file_fsync,
848	.lock		= nfs_lock,
849	.flock		= nfs_flock,
850	.splice_read	= generic_file_splice_read,
851	.splice_write	= iter_file_splice_write,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
852	.check_flags	= nfs_check_flags,
853	.setlease	= simple_nosetlease,
854};
855EXPORT_SYMBOL_GPL(nfs_file_operations);
v3.5.6
  1/*
  2 *  linux/fs/nfs/file.c
  3 *
  4 *  Copyright (C) 1992  Rick Sladkey
  5 *
  6 *  Changes Copyright (C) 1994 by Florian La Roche
  7 *   - Do not copy data too often around in the kernel.
  8 *   - In nfs_file_read the return value of kmalloc wasn't checked.
  9 *   - Put in a better version of read look-ahead buffering. Original idea
 10 *     and implementation by Wai S Kok elekokws@ee.nus.sg.
 11 *
 12 *  Expire cache on write to a file by Wai S Kok (Oct 1994).
 13 *
 14 *  Total rewrite of read side for new NFS buffer cache.. Linus.
 15 *
 16 *  nfs regular file handling functions
 17 */
 18
 
 19#include <linux/time.h>
 20#include <linux/kernel.h>
 21#include <linux/errno.h>
 22#include <linux/fcntl.h>
 23#include <linux/stat.h>
 24#include <linux/nfs_fs.h>
 25#include <linux/nfs_mount.h>
 26#include <linux/mm.h>
 27#include <linux/pagemap.h>
 28#include <linux/aio.h>
 29#include <linux/gfp.h>
 30#include <linux/swap.h>
 31
 32#include <asm/uaccess.h>
 33
 34#include "delegation.h"
 35#include "internal.h"
 36#include "iostat.h"
 37#include "fscache.h"
 38#include "pnfs.h"
 39
 
 
 40#define NFSDBG_FACILITY		NFSDBG_FILE
 41
 42static const struct vm_operations_struct nfs_file_vm_ops;
 43
 44const struct inode_operations nfs_file_inode_operations = {
 45	.permission	= nfs_permission,
 46	.getattr	= nfs_getattr,
 47	.setattr	= nfs_setattr,
 48};
 49
 50#ifdef CONFIG_NFS_V3
 51const struct inode_operations nfs3_file_inode_operations = {
 52	.permission	= nfs_permission,
 53	.getattr	= nfs_getattr,
 54	.setattr	= nfs_setattr,
 55	.listxattr	= nfs3_listxattr,
 56	.getxattr	= nfs3_getxattr,
 57	.setxattr	= nfs3_setxattr,
 58	.removexattr	= nfs3_removexattr,
 59};
 60#endif  /* CONFIG_NFS_v3 */
 61
 62/* Hack for future NFS swap support */
 63#ifndef IS_SWAPFILE
 64# define IS_SWAPFILE(inode)	(0)
 65#endif
 66
 67static int nfs_check_flags(int flags)
 68{
 69	if ((flags & (O_APPEND | O_DIRECT)) == (O_APPEND | O_DIRECT))
 70		return -EINVAL;
 71
 72	return 0;
 73}
 
 74
 75/*
 76 * Open file
 77 */
 78static int
 79nfs_file_open(struct inode *inode, struct file *filp)
 80{
 81	int res;
 82
 83	dprintk("NFS: open file(%s/%s)\n",
 84			filp->f_path.dentry->d_parent->d_name.name,
 85			filp->f_path.dentry->d_name.name);
 86
 87	nfs_inc_stats(inode, NFSIOS_VFSOPEN);
 88	res = nfs_check_flags(filp->f_flags);
 89	if (res)
 90		return res;
 91
 92	res = nfs_open(inode, filp);
 93	return res;
 94}
 95
 96static int
 97nfs_file_release(struct inode *inode, struct file *filp)
 98{
 99	dprintk("NFS: release(%s/%s)\n",
100			filp->f_path.dentry->d_parent->d_name.name,
101			filp->f_path.dentry->d_name.name);
102
103	nfs_inc_stats(inode, NFSIOS_VFSRELEASE);
104	return nfs_release(inode, filp);
 
105}
 
106
107/**
108 * nfs_revalidate_size - Revalidate the file size
109 * @inode - pointer to inode struct
110 * @file - pointer to struct file
111 *
112 * Revalidates the file length. This is basically a wrapper around
113 * nfs_revalidate_inode() that takes into account the fact that we may
114 * have cached writes (in which case we don't care about the server's
115 * idea of what the file length is), or O_DIRECT (in which case we
116 * shouldn't trust the cache).
117 */
118static int nfs_revalidate_file_size(struct inode *inode, struct file *filp)
119{
120	struct nfs_server *server = NFS_SERVER(inode);
121	struct nfs_inode *nfsi = NFS_I(inode);
122
123	if (nfs_have_delegated_attributes(inode))
124		goto out_noreval;
125
126	if (filp->f_flags & O_DIRECT)
127		goto force_reval;
128	if (nfsi->cache_validity & NFS_INO_REVAL_PAGECACHE)
129		goto force_reval;
130	if (nfs_attribute_timeout(inode))
131		goto force_reval;
132out_noreval:
133	return 0;
134force_reval:
135	return __nfs_revalidate_inode(server, inode);
136}
137
138static loff_t nfs_file_llseek(struct file *filp, loff_t offset, int origin)
139{
140	dprintk("NFS: llseek file(%s/%s, %lld, %d)\n",
141			filp->f_path.dentry->d_parent->d_name.name,
142			filp->f_path.dentry->d_name.name,
143			offset, origin);
144
145	/*
146	 * origin == SEEK_END || SEEK_DATA || SEEK_HOLE => we must revalidate
147	 * the cached file length
148	 */
149	if (origin != SEEK_SET && origin != SEEK_CUR) {
150		struct inode *inode = filp->f_mapping->host;
151
152		int retval = nfs_revalidate_file_size(inode, filp);
153		if (retval < 0)
154			return (loff_t)retval;
155	}
156
157	return generic_file_llseek(filp, offset, origin);
158}
 
159
160/*
161 * Flush all dirty pages, and check for write errors.
162 */
163static int
164nfs_file_flush(struct file *file, fl_owner_t id)
165{
166	struct dentry	*dentry = file->f_path.dentry;
167	struct inode	*inode = dentry->d_inode;
168
169	dprintk("NFS: flush(%s/%s)\n",
170			dentry->d_parent->d_name.name,
171			dentry->d_name.name);
172
173	nfs_inc_stats(inode, NFSIOS_VFSFLUSH);
174	if ((file->f_mode & FMODE_WRITE) == 0)
175		return 0;
176
177	/*
178	 * If we're holding a write delegation, then just start the i/o
179	 * but don't wait for completion (or send a commit).
180	 */
181	if (nfs_have_delegation(inode, FMODE_WRITE))
182		return filemap_fdatawrite(file->f_mapping);
183
184	/* Flush writes to the server and return any errors */
185	return vfs_fsync(file, 0);
186}
187
188static ssize_t
189nfs_file_read(struct kiocb *iocb, const struct iovec *iov,
190		unsigned long nr_segs, loff_t pos)
191{
192	struct dentry * dentry = iocb->ki_filp->f_path.dentry;
193	struct inode * inode = dentry->d_inode;
194	ssize_t result;
195
196	if (iocb->ki_filp->f_flags & O_DIRECT)
197		return nfs_file_direct_read(iocb, iov, nr_segs, pos);
198
199	dprintk("NFS: read(%s/%s, %lu@%lu)\n",
200		dentry->d_parent->d_name.name, dentry->d_name.name,
201		(unsigned long) iov_length(iov, nr_segs), (unsigned long) pos);
202
 
203	result = nfs_revalidate_mapping(inode, iocb->ki_filp->f_mapping);
204	if (!result) {
205		result = generic_file_aio_read(iocb, iov, nr_segs, pos);
206		if (result > 0)
207			nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, result);
208	}
 
209	return result;
210}
 
211
212static ssize_t
213nfs_file_splice_read(struct file *filp, loff_t *ppos,
214		     struct pipe_inode_info *pipe, size_t count,
215		     unsigned int flags)
216{
217	struct dentry *dentry = filp->f_path.dentry;
218	struct inode *inode = dentry->d_inode;
219	ssize_t res;
220
221	dprintk("NFS: splice_read(%s/%s, %lu@%Lu)\n",
222		dentry->d_parent->d_name.name, dentry->d_name.name,
223		(unsigned long) count, (unsigned long long) *ppos);
224
225	res = nfs_revalidate_mapping(inode, filp->f_mapping);
226	if (!res) {
227		res = generic_file_splice_read(filp, ppos, pipe, count, flags);
228		if (res > 0)
229			nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, res);
230	}
231	return res;
232}
233
234static int
235nfs_file_mmap(struct file * file, struct vm_area_struct * vma)
236{
237	struct dentry *dentry = file->f_path.dentry;
238	struct inode *inode = dentry->d_inode;
239	int	status;
240
241	dprintk("NFS: mmap(%s/%s)\n",
242		dentry->d_parent->d_name.name, dentry->d_name.name);
243
244	/* Note: generic_file_mmap() returns ENOSYS on nommu systems
245	 *       so we call that before revalidating the mapping
246	 */
247	status = generic_file_mmap(file, vma);
248	if (!status) {
249		vma->vm_ops = &nfs_file_vm_ops;
250		status = nfs_revalidate_mapping(inode, file->f_mapping);
251	}
252	return status;
253}
 
254
255/*
256 * Flush any dirty pages for this process, and check for write errors.
257 * The return status from this call provides a reliable indication of
258 * whether any write errors occurred for this process.
259 *
260 * Notice that it clears the NFS_CONTEXT_ERROR_WRITE before synching to
261 * disk, but it retrieves and clears ctx->error after synching, despite
262 * the two being set at the same time in nfs_context_set_write_error().
263 * This is because the former is used to notify the _next_ call to
264 * nfs_file_write() that a write error occurred, and hence cause it to
265 * fall back to doing a synchronous write.
266 */
267static int
268nfs_file_fsync(struct file *file, loff_t start, loff_t end, int datasync)
269{
270	struct dentry *dentry = file->f_path.dentry;
271	struct nfs_open_context *ctx = nfs_file_open_context(file);
272	struct inode *inode = dentry->d_inode;
273	int have_error, status;
274	int ret = 0;
275
276	dprintk("NFS: fsync file(%s/%s) datasync %d\n",
277			dentry->d_parent->d_name.name, dentry->d_name.name,
278			datasync);
279
280	ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
281	mutex_lock(&inode->i_mutex);
282
283	nfs_inc_stats(inode, NFSIOS_VFSFSYNC);
284	have_error = test_and_clear_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags);
285	status = nfs_commit_inode(inode, FLUSH_SYNC);
286	if (status >= 0 && ret < 0)
287		status = ret;
288	have_error |= test_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags);
289	if (have_error)
290		ret = xchg(&ctx->error, 0);
291	if (!ret && status < 0)
 
 
 
292		ret = status;
293	if (!ret && !datasync)
294		/* application has asked for meta-data sync */
295		ret = pnfs_layoutcommit_inode(inode, true);
296	mutex_unlock(&inode->i_mutex);
 
 
297	return ret;
298}
299
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
300/*
301 * Decide whether a read/modify/write cycle may be more efficient
302 * then a modify/write/read cycle when writing to a page in the
303 * page cache.
304 *
305 * The modify/write/read cycle may occur if a page is read before
306 * being completely filled by the writer.  In this situation, the
307 * page must be completely written to stable storage on the server
308 * before it can be refilled by reading in the page from the server.
309 * This can lead to expensive, small, FILE_SYNC mode writes being
310 * done.
311 *
312 * It may be more efficient to read the page first if the file is
313 * open for reading in addition to writing, the page is not marked
314 * as Uptodate, it is not dirty or waiting to be committed,
315 * indicating that it was previously allocated and then modified,
316 * that there were valid bytes of data in that range of the file,
317 * and that the new data won't completely replace the old data in
318 * that range of the file.
319 */
320static int nfs_want_read_modify_write(struct file *file, struct page *page,
321			loff_t pos, unsigned len)
322{
323	unsigned int pglen = nfs_page_length(page);
324	unsigned int offset = pos & (PAGE_CACHE_SIZE - 1);
325	unsigned int end = offset + len;
326
 
 
 
 
 
 
327	if ((file->f_mode & FMODE_READ) &&	/* open for read? */
328	    !PageUptodate(page) &&		/* Uptodate? */
329	    !PagePrivate(page) &&		/* i/o request already? */
330	    pglen &&				/* valid bytes of file? */
331	    (end < pglen || offset))		/* replace all valid bytes? */
332		return 1;
333	return 0;
334}
335
336/*
337 * This does the "real" work of the write. We must allocate and lock the
338 * page to be sent back to the generic routine, which then copies the
339 * data from user space.
340 *
341 * If the writer ends up delaying the write, the writer needs to
342 * increment the page use counts until he is done with the page.
343 */
344static int nfs_write_begin(struct file *file, struct address_space *mapping,
345			loff_t pos, unsigned len, unsigned flags,
346			struct page **pagep, void **fsdata)
347{
348	int ret;
349	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
350	struct page *page;
351	int once_thru = 0;
352
353	dfprintk(PAGECACHE, "NFS: write_begin(%s/%s(%ld), %u@%lld)\n",
354		file->f_path.dentry->d_parent->d_name.name,
355		file->f_path.dentry->d_name.name,
356		mapping->host->i_ino, len, (long long) pos);
357
358start:
359	/*
360	 * Prevent starvation issues if someone is doing a consistency
361	 * sync-to-disk
362	 */
363	ret = wait_on_bit(&NFS_I(mapping->host)->flags, NFS_INO_FLUSHING,
364			nfs_wait_bit_killable, TASK_KILLABLE);
365	if (ret)
366		return ret;
367
368	page = grab_cache_page_write_begin(mapping, index, flags);
369	if (!page)
370		return -ENOMEM;
371	*pagep = page;
372
373	ret = nfs_flush_incompatible(file, page);
374	if (ret) {
375		unlock_page(page);
376		page_cache_release(page);
377	} else if (!once_thru &&
378		   nfs_want_read_modify_write(file, page, pos, len)) {
379		once_thru = 1;
380		ret = nfs_readpage(file, page);
381		page_cache_release(page);
382		if (!ret)
383			goto start;
384	}
385	return ret;
386}
387
388static int nfs_write_end(struct file *file, struct address_space *mapping,
389			loff_t pos, unsigned len, unsigned copied,
390			struct page *page, void *fsdata)
391{
392	unsigned offset = pos & (PAGE_CACHE_SIZE - 1);
 
393	int status;
394
395	dfprintk(PAGECACHE, "NFS: write_end(%s/%s(%ld), %u@%lld)\n",
396		file->f_path.dentry->d_parent->d_name.name,
397		file->f_path.dentry->d_name.name,
398		mapping->host->i_ino, len, (long long) pos);
399
400	/*
401	 * Zero any uninitialised parts of the page, and then mark the page
402	 * as up to date if it turns out that we're extending the file.
403	 */
404	if (!PageUptodate(page)) {
405		unsigned pglen = nfs_page_length(page);
406		unsigned end = offset + len;
407
408		if (pglen == 0) {
409			zero_user_segments(page, 0, offset,
410					end, PAGE_CACHE_SIZE);
411			SetPageUptodate(page);
412		} else if (end >= pglen) {
413			zero_user_segment(page, end, PAGE_CACHE_SIZE);
414			if (offset == 0)
415				SetPageUptodate(page);
416		} else
417			zero_user_segment(page, pglen, PAGE_CACHE_SIZE);
418	}
419
420	status = nfs_updatepage(file, page, offset, copied);
421
422	unlock_page(page);
423	page_cache_release(page);
424
425	if (status < 0)
426		return status;
427	NFS_I(mapping->host)->write_io += copied;
 
 
 
 
 
 
 
428	return copied;
429}
430
431/*
432 * Partially or wholly invalidate a page
433 * - Release the private state associated with a page if undergoing complete
434 *   page invalidation
435 * - Called if either PG_private or PG_fscache is set on the page
436 * - Caller holds page lock
437 */
438static void nfs_invalidate_page(struct page *page, unsigned long offset)
 
439{
440	dfprintk(PAGECACHE, "NFS: invalidate_page(%p, %lu)\n", page, offset);
 
441
442	if (offset != 0)
443		return;
444	/* Cancel any unstarted writes on this page */
445	nfs_wb_page_cancel(page->mapping->host, page);
446
447	nfs_fscache_invalidate_page(page, page->mapping->host);
448}
449
450/*
451 * Attempt to release the private state associated with a page
452 * - Called if either PG_private or PG_fscache is set on the page
453 * - Caller holds page lock
454 * - Return true (may release page) or false (may not)
455 */
456static int nfs_release_page(struct page *page, gfp_t gfp)
457{
458	struct address_space *mapping = page->mapping;
459
460	dfprintk(PAGECACHE, "NFS: release_page(%p)\n", page);
461
462	/* Only do I/O if gfp is a superset of GFP_KERNEL, and we're not
463	 * doing this memory reclaim for a fs-related allocation.
464	 */
465	if (mapping && (gfp & GFP_KERNEL) == GFP_KERNEL &&
466	    !(current->flags & PF_FSTRANS)) {
467		int how = FLUSH_SYNC;
468
469		/* Don't let kswapd deadlock waiting for OOM RPC calls */
470		if (current_is_kswapd())
471			how = 0;
472		nfs_commit_inode(mapping->host, how);
473	}
474	/* If PagePrivate() is set, then the page is not freeable */
475	if (PagePrivate(page))
476		return 0;
477	return nfs_fscache_release_page(page, gfp);
478}
479
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
480/*
481 * Attempt to clear the private state associated with a page when an error
482 * occurs that requires the cached contents of an inode to be written back or
483 * destroyed
484 * - Called if either PG_private or fscache is set on the page
485 * - Caller holds page lock
486 * - Return 0 if successful, -error otherwise
487 */
488static int nfs_launder_page(struct page *page)
489{
490	struct inode *inode = page->mapping->host;
491	struct nfs_inode *nfsi = NFS_I(inode);
492
493	dfprintk(PAGECACHE, "NFS: launder_page(%ld, %llu)\n",
494		inode->i_ino, (long long)page_offset(page));
495
496	nfs_fscache_wait_on_page_write(nfsi, page);
497	return nfs_wb_page(inode, page);
498}
499
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
500const struct address_space_operations nfs_file_aops = {
501	.readpage = nfs_readpage,
502	.readpages = nfs_readpages,
503	.set_page_dirty = __set_page_dirty_nobuffers,
504	.writepage = nfs_writepage,
505	.writepages = nfs_writepages,
506	.write_begin = nfs_write_begin,
507	.write_end = nfs_write_end,
508	.invalidatepage = nfs_invalidate_page,
509	.releasepage = nfs_release_page,
510	.direct_IO = nfs_direct_IO,
 
511	.migratepage = nfs_migrate_page,
 
512	.launder_page = nfs_launder_page,
 
513	.error_remove_page = generic_error_remove_page,
 
 
514};
515
516/*
517 * Notification that a PTE pointing to an NFS page is about to be made
518 * writable, implying that someone is about to modify the page through a
519 * shared-writable mapping
520 */
521static int nfs_vm_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
522{
523	struct page *page = vmf->page;
524	struct file *filp = vma->vm_file;
525	struct dentry *dentry = filp->f_path.dentry;
526	unsigned pagelen;
527	int ret = VM_FAULT_NOPAGE;
528	struct address_space *mapping;
529
530	dfprintk(PAGECACHE, "NFS: vm_page_mkwrite(%s/%s(%ld), offset %lld)\n",
531		dentry->d_parent->d_name.name, dentry->d_name.name,
532		filp->f_mapping->host->i_ino,
533		(long long)page_offset(page));
534
 
 
535	/* make sure the cache has finished storing the page */
536	nfs_fscache_wait_on_page_write(NFS_I(dentry->d_inode), page);
 
 
 
537
538	lock_page(page);
539	mapping = page->mapping;
540	if (mapping != dentry->d_inode->i_mapping)
541		goto out_unlock;
542
543	wait_on_page_writeback(page);
544
545	pagelen = nfs_page_length(page);
546	if (pagelen == 0)
547		goto out_unlock;
548
549	ret = VM_FAULT_LOCKED;
550	if (nfs_flush_incompatible(filp, page) == 0 &&
551	    nfs_updatepage(filp, page, 0, pagelen) == 0)
552		goto out;
553
554	ret = VM_FAULT_SIGBUS;
555out_unlock:
556	unlock_page(page);
557out:
 
558	return ret;
559}
560
561static const struct vm_operations_struct nfs_file_vm_ops = {
562	.fault = filemap_fault,
 
563	.page_mkwrite = nfs_vm_page_mkwrite,
564};
565
566static int nfs_need_sync_write(struct file *filp, struct inode *inode)
567{
568	struct nfs_open_context *ctx;
569
570	if (IS_SYNC(inode) || (filp->f_flags & O_DSYNC))
571		return 1;
572	ctx = nfs_file_open_context(filp);
573	if (test_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags))
 
574		return 1;
575	return 0;
576}
577
578static ssize_t nfs_file_write(struct kiocb *iocb, const struct iovec *iov,
579				unsigned long nr_segs, loff_t pos)
580{
581	struct dentry * dentry = iocb->ki_filp->f_path.dentry;
582	struct inode * inode = dentry->d_inode;
583	unsigned long written = 0;
584	ssize_t result;
585	size_t count = iov_length(iov, nr_segs);
586
587	if (iocb->ki_filp->f_flags & O_DIRECT)
588		return nfs_file_direct_write(iocb, iov, nr_segs, pos);
 
 
 
 
589
590	dprintk("NFS: write(%s/%s, %lu@%Ld)\n",
591		dentry->d_parent->d_name.name, dentry->d_name.name,
592		(unsigned long) count, (long long) pos);
593
594	result = -EBUSY;
595	if (IS_SWAPFILE(inode))
596		goto out_swapfile;
597	/*
598	 * O_APPEND implies that we must revalidate the file length.
599	 */
600	if (iocb->ki_filp->f_flags & O_APPEND) {
601		result = nfs_revalidate_file_size(inode, iocb->ki_filp);
602		if (result)
603			goto out;
604	}
 
 
 
 
 
 
 
 
 
 
 
 
 
605
606	result = count;
607	if (!count)
 
 
608		goto out;
609
610	result = generic_file_aio_write(iocb, iov, nr_segs, pos);
611	if (result > 0)
612		written = result;
613
614	/* Return error values for O_DSYNC and IS_SYNC() */
615	if (result >= 0 && nfs_need_sync_write(iocb->ki_filp, inode)) {
616		int err = vfs_fsync(iocb->ki_filp, 0);
617		if (err < 0)
618			result = err;
619	}
620	if (result > 0)
621		nfs_add_stats(inode, NFSIOS_NORMALWRITTENBYTES, written);
622out:
623	return result;
624
625out_swapfile:
626	printk(KERN_INFO "NFS: attempt to write to active swap file!\n");
627	goto out;
628}
629
630static ssize_t nfs_file_splice_write(struct pipe_inode_info *pipe,
631				     struct file *filp, loff_t *ppos,
632				     size_t count, unsigned int flags)
633{
634	struct dentry *dentry = filp->f_path.dentry;
635	struct inode *inode = dentry->d_inode;
636	unsigned long written = 0;
637	ssize_t ret;
638
639	dprintk("NFS splice_write(%s/%s, %lu@%llu)\n",
640		dentry->d_parent->d_name.name, dentry->d_name.name,
641		(unsigned long) count, (unsigned long long) *ppos);
642
643	/*
644	 * The combination of splice and an O_APPEND destination is disallowed.
645	 */
646
647	ret = generic_file_splice_write(pipe, filp, ppos, count, flags);
648	if (ret > 0)
649		written = ret;
650
651	if (ret >= 0 && nfs_need_sync_write(filp, inode)) {
652		int err = vfs_fsync(filp, 0);
653		if (err < 0)
654			ret = err;
655	}
656	if (ret > 0)
657		nfs_add_stats(inode, NFSIOS_NORMALWRITTENBYTES, written);
658	return ret;
659}
 
660
661static int
662do_getlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
663{
664	struct inode *inode = filp->f_mapping->host;
665	int status = 0;
666	unsigned int saved_type = fl->fl_type;
667
668	/* Try local locking first */
669	posix_test_lock(filp, fl);
670	if (fl->fl_type != F_UNLCK) {
671		/* found a conflict */
672		goto out;
673	}
674	fl->fl_type = saved_type;
675
676	if (nfs_have_delegation(inode, FMODE_READ))
677		goto out_noconflict;
678
679	if (is_local)
680		goto out_noconflict;
681
682	status = NFS_PROTO(inode)->lock(filp, cmd, fl);
683out:
684	return status;
685out_noconflict:
686	fl->fl_type = F_UNLCK;
687	goto out;
688}
689
690static int do_vfs_lock(struct file *file, struct file_lock *fl)
691{
692	int res = 0;
693	switch (fl->fl_flags & (FL_POSIX|FL_FLOCK)) {
694		case FL_POSIX:
695			res = posix_lock_file_wait(file, fl);
696			break;
697		case FL_FLOCK:
698			res = flock_lock_file_wait(file, fl);
699			break;
700		default:
701			BUG();
702	}
703	return res;
704}
705
706static int
707do_unlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
708{
709	struct inode *inode = filp->f_mapping->host;
 
710	int status;
711
712	/*
713	 * Flush all pending writes before doing anything
714	 * with locks..
715	 */
716	nfs_sync_mapping(filp->f_mapping);
 
 
 
 
 
 
 
 
 
 
 
 
717
718	/* NOTE: special case
719	 * 	If we're signalled while cleaning up locks on process exit, we
720	 * 	still need to complete the unlock.
721	 */
722	/*
723	 * Use local locking if mounted with "-onolock" or with appropriate
724	 * "-olocal_lock="
725	 */
726	if (!is_local)
727		status = NFS_PROTO(inode)->lock(filp, cmd, fl);
728	else
729		status = do_vfs_lock(filp, fl);
730	return status;
731}
732
733static int
734is_time_granular(struct timespec *ts) {
735	return ((ts->tv_sec == 0) && (ts->tv_nsec <= 1000));
736}
737
738static int
739do_setlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
740{
741	struct inode *inode = filp->f_mapping->host;
742	int status;
743
744	/*
745	 * Flush all pending writes before doing anything
746	 * with locks..
747	 */
748	status = nfs_sync_mapping(filp->f_mapping);
749	if (status != 0)
750		goto out;
751
752	/*
753	 * Use local locking if mounted with "-onolock" or with appropriate
754	 * "-olocal_lock="
755	 */
756	if (!is_local)
757		status = NFS_PROTO(inode)->lock(filp, cmd, fl);
758	else
759		status = do_vfs_lock(filp, fl);
760	if (status < 0)
761		goto out;
762
763	/*
764	 * Revalidate the cache if the server has time stamps granular
765	 * enough to detect subsecond changes.  Otherwise, clear the
766	 * cache to prevent missing any changes.
767	 *
768	 * This makes locking act as a cache coherency point.
769	 */
770	nfs_sync_mapping(filp->f_mapping);
771	if (!nfs_have_delegation(inode, FMODE_READ)) {
772		if (is_time_granular(&NFS_SERVER(inode)->time_delta))
773			__nfs_revalidate_inode(NFS_SERVER(inode), inode);
774		else
775			nfs_zap_caches(inode);
776	}
777out:
778	return status;
779}
780
781/*
782 * Lock a (portion of) a file
783 */
784static int nfs_lock(struct file *filp, int cmd, struct file_lock *fl)
785{
786	struct inode *inode = filp->f_mapping->host;
787	int ret = -ENOLCK;
788	int is_local = 0;
789
790	dprintk("NFS: lock(%s/%s, t=%x, fl=%x, r=%lld:%lld)\n",
791			filp->f_path.dentry->d_parent->d_name.name,
792			filp->f_path.dentry->d_name.name,
793			fl->fl_type, fl->fl_flags,
794			(long long)fl->fl_start, (long long)fl->fl_end);
795
796	nfs_inc_stats(inode, NFSIOS_VFSLOCK);
797
798	/* No mandatory locks over NFS */
799	if (__mandatory_lock(inode) && fl->fl_type != F_UNLCK)
800		goto out_err;
801
802	if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FCNTL)
803		is_local = 1;
804
805	if (NFS_PROTO(inode)->lock_check_bounds != NULL) {
806		ret = NFS_PROTO(inode)->lock_check_bounds(fl);
807		if (ret < 0)
808			goto out_err;
809	}
810
811	if (IS_GETLK(cmd))
812		ret = do_getlk(filp, cmd, fl, is_local);
813	else if (fl->fl_type == F_UNLCK)
814		ret = do_unlk(filp, cmd, fl, is_local);
815	else
816		ret = do_setlk(filp, cmd, fl, is_local);
817out_err:
818	return ret;
819}
 
820
821/*
822 * Lock a (portion of) a file
823 */
824static int nfs_flock(struct file *filp, int cmd, struct file_lock *fl)
825{
826	struct inode *inode = filp->f_mapping->host;
827	int is_local = 0;
828
829	dprintk("NFS: flock(%s/%s, t=%x, fl=%x)\n",
830			filp->f_path.dentry->d_parent->d_name.name,
831			filp->f_path.dentry->d_name.name,
832			fl->fl_type, fl->fl_flags);
833
834	if (!(fl->fl_flags & FL_FLOCK))
835		return -ENOLCK;
836
 
 
 
 
 
 
 
 
 
837	if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FLOCK)
838		is_local = 1;
839
840	/* We're simulating flock() locks using posix locks on the server */
841	fl->fl_owner = (fl_owner_t)filp;
842	fl->fl_start = 0;
843	fl->fl_end = OFFSET_MAX;
844
845	if (fl->fl_type == F_UNLCK)
846		return do_unlk(filp, cmd, fl, is_local);
847	return do_setlk(filp, cmd, fl, is_local);
848}
849
850/*
851 * There is no protocol support for leases, so we have no way to implement
852 * them correctly in the face of opens by other clients.
853 */
854static int nfs_setlease(struct file *file, long arg, struct file_lock **fl)
855{
856	dprintk("NFS: setlease(%s/%s, arg=%ld)\n",
857			file->f_path.dentry->d_parent->d_name.name,
858			file->f_path.dentry->d_name.name, arg);
859	return -EINVAL;
860}
861
862const struct file_operations nfs_file_operations = {
863	.llseek		= nfs_file_llseek,
864	.read		= do_sync_read,
865	.write		= do_sync_write,
866	.aio_read	= nfs_file_read,
867	.aio_write	= nfs_file_write,
868	.mmap		= nfs_file_mmap,
869	.open		= nfs_file_open,
870	.flush		= nfs_file_flush,
871	.release	= nfs_file_release,
872	.fsync		= nfs_file_fsync,
873	.lock		= nfs_lock,
874	.flock		= nfs_flock,
875	.splice_read	= nfs_file_splice_read,
876	.splice_write	= nfs_file_splice_write,
877	.check_flags	= nfs_check_flags,
878	.setlease	= nfs_setlease,
879};
880
881#ifdef CONFIG_NFS_V4
882static int
883nfs4_file_open(struct inode *inode, struct file *filp)
884{
885	struct nfs_open_context *ctx;
886	struct dentry *dentry = filp->f_path.dentry;
887	struct dentry *parent = NULL;
888	struct inode *dir;
889	unsigned openflags = filp->f_flags;
890	struct iattr attr;
891	int err;
892
893	BUG_ON(inode != dentry->d_inode);
894	/*
895	 * If no cached dentry exists or if it's negative, NFSv4 handled the
896	 * opens in ->lookup() or ->create().
897	 *
898	 * We only get this far for a cached positive dentry.  We skipped
899	 * revalidation, so handle it here by dropping the dentry and returning
900	 * -EOPENSTALE.  The VFS will retry the lookup/create/open.
901	 */
902
903	dprintk("NFS: open file(%s/%s)\n",
904		dentry->d_parent->d_name.name,
905		dentry->d_name.name);
906
907	if ((openflags & O_ACCMODE) == 3)
908		openflags--;
909
910	/* We can't create new files here */
911	openflags &= ~(O_CREAT|O_EXCL);
912
913	parent = dget_parent(dentry);
914	dir = parent->d_inode;
915
916	ctx = alloc_nfs_open_context(filp->f_path.dentry, filp->f_mode);
917	err = PTR_ERR(ctx);
918	if (IS_ERR(ctx))
919		goto out;
920
921	attr.ia_valid = ATTR_OPEN;
922	if (openflags & O_TRUNC) {
923		attr.ia_valid |= ATTR_SIZE;
924		attr.ia_size = 0;
925		nfs_wb_all(inode);
926	}
927
928	inode = NFS_PROTO(dir)->open_context(dir, ctx, openflags, &attr);
929	if (IS_ERR(inode)) {
930		err = PTR_ERR(inode);
931		switch (err) {
932		case -EPERM:
933		case -EACCES:
934		case -EDQUOT:
935		case -ENOSPC:
936		case -EROFS:
937			goto out_put_ctx;
938		default:
939			goto out_drop;
940		}
941	}
942	iput(inode);
943	if (inode != dentry->d_inode)
944		goto out_drop;
945
946	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
947	nfs_file_set_open_context(filp, ctx);
948	err = 0;
949
950out_put_ctx:
951	put_nfs_open_context(ctx);
952out:
953	dput(parent);
954	return err;
955
956out_drop:
957	d_drop(dentry);
958	err = -EOPENSTALE;
959	goto out_put_ctx;
960}
961
962const struct file_operations nfs4_file_operations = {
963	.llseek		= nfs_file_llseek,
964	.read		= do_sync_read,
965	.write		= do_sync_write,
966	.aio_read	= nfs_file_read,
967	.aio_write	= nfs_file_write,
968	.mmap		= nfs_file_mmap,
969	.open		= nfs4_file_open,
970	.flush		= nfs_file_flush,
971	.release	= nfs_file_release,
972	.fsync		= nfs_file_fsync,
973	.lock		= nfs_lock,
974	.flock		= nfs_flock,
975	.splice_read	= nfs_file_splice_read,
976	.splice_write	= nfs_file_splice_write,
977	.check_flags	= nfs_check_flags,
978	.setlease	= nfs_setlease,
979};
980#endif /* CONFIG_NFS_V4 */