Linux Audio

Check our new training course

Loading...
v4.17
  1/*
  2 *  linux/fs/nfs/file.c
  3 *
  4 *  Copyright (C) 1992  Rick Sladkey
  5 *
  6 *  Changes Copyright (C) 1994 by Florian La Roche
  7 *   - Do not copy data too often around in the kernel.
  8 *   - In nfs_file_read the return value of kmalloc wasn't checked.
  9 *   - Put in a better version of read look-ahead buffering. Original idea
 10 *     and implementation by Wai S Kok elekokws@ee.nus.sg.
 11 *
 12 *  Expire cache on write to a file by Wai S Kok (Oct 1994).
 13 *
 14 *  Total rewrite of read side for new NFS buffer cache.. Linus.
 15 *
 16 *  nfs regular file handling functions
 17 */
 18
 19#include <linux/module.h>
 20#include <linux/time.h>
 21#include <linux/kernel.h>
 22#include <linux/errno.h>
 23#include <linux/fcntl.h>
 24#include <linux/stat.h>
 25#include <linux/nfs_fs.h>
 26#include <linux/nfs_mount.h>
 27#include <linux/mm.h>
 28#include <linux/pagemap.h>
 
 29#include <linux/gfp.h>
 30#include <linux/swap.h>
 31
 32#include <linux/uaccess.h>
 33
 34#include "delegation.h"
 35#include "internal.h"
 36#include "iostat.h"
 37#include "fscache.h"
 38#include "pnfs.h"
 39
 40#include "nfstrace.h"
 41
 42#define NFSDBG_FACILITY		NFSDBG_FILE
 43
 44static const struct vm_operations_struct nfs_file_vm_ops;
 45
 46/* Hack for future NFS swap support */
 47#ifndef IS_SWAPFILE
 48# define IS_SWAPFILE(inode)	(0)
 49#endif
 50
 51int nfs_check_flags(int flags)
 52{
 53	if ((flags & (O_APPEND | O_DIRECT)) == (O_APPEND | O_DIRECT))
 54		return -EINVAL;
 55
 56	return 0;
 57}
 58EXPORT_SYMBOL_GPL(nfs_check_flags);
 59
 60/*
 61 * Open file
 62 */
 63static int
 64nfs_file_open(struct inode *inode, struct file *filp)
 65{
 66	int res;
 67
 68	dprintk("NFS: open file(%pD2)\n", filp);
 69
 70	nfs_inc_stats(inode, NFSIOS_VFSOPEN);
 71	res = nfs_check_flags(filp->f_flags);
 72	if (res)
 73		return res;
 74
 75	res = nfs_open(inode, filp);
 76	return res;
 77}
 78
 79int
 80nfs_file_release(struct inode *inode, struct file *filp)
 81{
 82	dprintk("NFS: release(%pD2)\n", filp);
 83
 84	nfs_inc_stats(inode, NFSIOS_VFSRELEASE);
 85	nfs_file_clear_open_context(filp);
 86	return 0;
 87}
 88EXPORT_SYMBOL_GPL(nfs_file_release);
 89
 90/**
 91 * nfs_revalidate_size - Revalidate the file size
 92 * @inode - pointer to inode struct
 93 * @file - pointer to struct file
 94 *
 95 * Revalidates the file length. This is basically a wrapper around
 96 * nfs_revalidate_inode() that takes into account the fact that we may
 97 * have cached writes (in which case we don't care about the server's
 98 * idea of what the file length is), or O_DIRECT (in which case we
 99 * shouldn't trust the cache).
100 */
101static int nfs_revalidate_file_size(struct inode *inode, struct file *filp)
102{
103	struct nfs_server *server = NFS_SERVER(inode);
 
 
 
 
104
105	if (filp->f_flags & O_DIRECT)
106		goto force_reval;
107	if (nfs_check_cache_invalid(inode, NFS_INO_REVAL_PAGECACHE))
108		goto force_reval;
 
 
 
109	return 0;
110force_reval:
111	return __nfs_revalidate_inode(server, inode);
112}
113
114loff_t nfs_file_llseek(struct file *filp, loff_t offset, int whence)
115{
116	dprintk("NFS: llseek file(%pD2, %lld, %d)\n",
117			filp, offset, whence);
118
119	/*
120	 * whence == SEEK_END || SEEK_DATA || SEEK_HOLE => we must revalidate
121	 * the cached file length
122	 */
123	if (whence != SEEK_SET && whence != SEEK_CUR) {
124		struct inode *inode = filp->f_mapping->host;
125
126		int retval = nfs_revalidate_file_size(inode, filp);
127		if (retval < 0)
128			return (loff_t)retval;
129	}
130
131	return generic_file_llseek(filp, offset, whence);
132}
133EXPORT_SYMBOL_GPL(nfs_file_llseek);
134
135/*
136 * Flush all dirty pages, and check for write errors.
137 */
138static int
139nfs_file_flush(struct file *file, fl_owner_t id)
140{
141	struct inode	*inode = file_inode(file);
142
143	dprintk("NFS: flush(%pD2)\n", file);
144
145	nfs_inc_stats(inode, NFSIOS_VFSFLUSH);
146	if ((file->f_mode & FMODE_WRITE) == 0)
147		return 0;
148
 
 
 
 
 
 
 
149	/* Flush writes to the server and return any errors */
150	return vfs_fsync(file, 0);
151}
 
152
153ssize_t
154nfs_file_read(struct kiocb *iocb, struct iov_iter *to)
 
155{
156	struct inode *inode = file_inode(iocb->ki_filp);
157	ssize_t result;
158
159	if (iocb->ki_flags & IOCB_DIRECT)
160		return nfs_file_direct_read(iocb, to);
161
162	dprintk("NFS: read(%pD2, %zu@%lu)\n",
163		iocb->ki_filp,
164		iov_iter_count(to), (unsigned long) iocb->ki_pos);
165
166	nfs_start_io_read(inode);
167	result = nfs_revalidate_mapping(inode, iocb->ki_filp->f_mapping);
168	if (!result) {
169		result = generic_file_read_iter(iocb, to);
170		if (result > 0)
171			nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, result);
172	}
173	nfs_end_io_read(inode);
174	return result;
175}
176EXPORT_SYMBOL_GPL(nfs_file_read);
177
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
178int
179nfs_file_mmap(struct file * file, struct vm_area_struct * vma)
180{
181	struct inode *inode = file_inode(file);
182	int	status;
183
184	dprintk("NFS: mmap(%pD2)\n", file);
185
186	/* Note: generic_file_mmap() returns ENOSYS on nommu systems
187	 *       so we call that before revalidating the mapping
188	 */
189	status = generic_file_mmap(file, vma);
190	if (!status) {
191		vma->vm_ops = &nfs_file_vm_ops;
192		status = nfs_revalidate_mapping(inode, file->f_mapping);
193	}
194	return status;
195}
196EXPORT_SYMBOL_GPL(nfs_file_mmap);
197
198/*
199 * Flush any dirty pages for this process, and check for write errors.
200 * The return status from this call provides a reliable indication of
201 * whether any write errors occurred for this process.
202 *
203 * Notice that it clears the NFS_CONTEXT_ERROR_WRITE before synching to
204 * disk, but it retrieves and clears ctx->error after synching, despite
205 * the two being set at the same time in nfs_context_set_write_error().
206 * This is because the former is used to notify the _next_ call to
207 * nfs_file_write() that a write error occurred, and hence cause it to
208 * fall back to doing a synchronous write.
209 */
210static int
211nfs_file_fsync_commit(struct file *file, int datasync)
212{
213	struct nfs_open_context *ctx = nfs_file_open_context(file);
214	struct inode *inode = file_inode(file);
215	int do_resend, status;
216	int ret = 0;
217
218	dprintk("NFS: fsync file(%pD2) datasync %d\n", file, datasync);
219
220	nfs_inc_stats(inode, NFSIOS_VFSFSYNC);
221	do_resend = test_and_clear_bit(NFS_CONTEXT_RESEND_WRITES, &ctx->flags);
 
222	status = nfs_commit_inode(inode, FLUSH_SYNC);
223	if (test_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags)) {
 
224		ret = xchg(&ctx->error, 0);
225		if (ret)
226			goto out;
227	}
228	if (status < 0) {
229		ret = status;
230		goto out;
231	}
232	do_resend |= test_bit(NFS_CONTEXT_RESEND_WRITES, &ctx->flags);
233	if (do_resend)
234		ret = -EAGAIN;
235out:
236	return ret;
237}
 
238
239int
240nfs_file_fsync(struct file *file, loff_t start, loff_t end, int datasync)
241{
242	int ret;
243	struct inode *inode = file_inode(file);
244
245	trace_nfs_fsync_enter(inode);
246
247	do {
248		struct nfs_open_context *ctx = nfs_file_open_context(file);
249		ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
250		if (test_and_clear_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags)) {
251			int ret2 = xchg(&ctx->error, 0);
252			if (ret2)
253				ret = ret2;
254		}
255		if (ret != 0)
256			break;
257		ret = nfs_file_fsync_commit(file, datasync);
258		if (!ret)
259			ret = pnfs_sync_inode(inode, !!datasync);
260		/*
261		 * If nfs_file_fsync_commit detected a server reboot, then
262		 * resend all dirty pages that might have been covered by
263		 * the NFS_CONTEXT_RESEND_WRITES flag
264		 */
265		start = 0;
266		end = LLONG_MAX;
267	} while (ret == -EAGAIN);
268
269	trace_nfs_fsync_exit(inode, ret);
270	return ret;
271}
272EXPORT_SYMBOL_GPL(nfs_file_fsync);
273
274/*
275 * Decide whether a read/modify/write cycle may be more efficient
276 * then a modify/write/read cycle when writing to a page in the
277 * page cache.
278 *
279 * The modify/write/read cycle may occur if a page is read before
280 * being completely filled by the writer.  In this situation, the
281 * page must be completely written to stable storage on the server
282 * before it can be refilled by reading in the page from the server.
283 * This can lead to expensive, small, FILE_SYNC mode writes being
284 * done.
285 *
286 * It may be more efficient to read the page first if the file is
287 * open for reading in addition to writing, the page is not marked
288 * as Uptodate, it is not dirty or waiting to be committed,
289 * indicating that it was previously allocated and then modified,
290 * that there were valid bytes of data in that range of the file,
291 * and that the new data won't completely replace the old data in
292 * that range of the file.
293 */
294static int nfs_want_read_modify_write(struct file *file, struct page *page,
295			loff_t pos, unsigned len)
296{
297	unsigned int pglen = nfs_page_length(page);
298	unsigned int offset = pos & (PAGE_SIZE - 1);
299	unsigned int end = offset + len;
300
301	if (pnfs_ld_read_whole_page(file->f_mapping->host)) {
302		if (!PageUptodate(page))
303			return 1;
304		return 0;
305	}
306
307	if ((file->f_mode & FMODE_READ) &&	/* open for read? */
308	    !PageUptodate(page) &&		/* Uptodate? */
309	    !PagePrivate(page) &&		/* i/o request already? */
310	    pglen &&				/* valid bytes of file? */
311	    (end < pglen || offset))		/* replace all valid bytes? */
312		return 1;
313	return 0;
314}
315
316/*
317 * This does the "real" work of the write. We must allocate and lock the
318 * page to be sent back to the generic routine, which then copies the
319 * data from user space.
320 *
321 * If the writer ends up delaying the write, the writer needs to
322 * increment the page use counts until he is done with the page.
323 */
324static int nfs_write_begin(struct file *file, struct address_space *mapping,
325			loff_t pos, unsigned len, unsigned flags,
326			struct page **pagep, void **fsdata)
327{
328	int ret;
329	pgoff_t index = pos >> PAGE_SHIFT;
330	struct page *page;
331	int once_thru = 0;
332
333	dfprintk(PAGECACHE, "NFS: write_begin(%pD2(%lu), %u@%lld)\n",
334		file, mapping->host->i_ino, len, (long long) pos);
335
336start:
 
 
 
 
 
 
 
 
 
337	page = grab_cache_page_write_begin(mapping, index, flags);
338	if (!page)
339		return -ENOMEM;
340	*pagep = page;
341
342	ret = nfs_flush_incompatible(file, page);
343	if (ret) {
344		unlock_page(page);
345		put_page(page);
346	} else if (!once_thru &&
347		   nfs_want_read_modify_write(file, page, pos, len)) {
348		once_thru = 1;
349		ret = nfs_readpage(file, page);
350		put_page(page);
351		if (!ret)
352			goto start;
353	}
354	return ret;
355}
356
357static int nfs_write_end(struct file *file, struct address_space *mapping,
358			loff_t pos, unsigned len, unsigned copied,
359			struct page *page, void *fsdata)
360{
361	unsigned offset = pos & (PAGE_SIZE - 1);
362	struct nfs_open_context *ctx = nfs_file_open_context(file);
363	int status;
364
365	dfprintk(PAGECACHE, "NFS: write_end(%pD2(%lu), %u@%lld)\n",
366		file, mapping->host->i_ino, len, (long long) pos);
367
368	/*
369	 * Zero any uninitialised parts of the page, and then mark the page
370	 * as up to date if it turns out that we're extending the file.
371	 */
372	if (!PageUptodate(page)) {
373		unsigned pglen = nfs_page_length(page);
374		unsigned end = offset + copied;
375
376		if (pglen == 0) {
377			zero_user_segments(page, 0, offset,
378					end, PAGE_SIZE);
379			SetPageUptodate(page);
380		} else if (end >= pglen) {
381			zero_user_segment(page, end, PAGE_SIZE);
382			if (offset == 0)
383				SetPageUptodate(page);
384		} else
385			zero_user_segment(page, pglen, PAGE_SIZE);
386	}
387
388	status = nfs_updatepage(file, page, offset, copied);
389
390	unlock_page(page);
391	put_page(page);
392
393	if (status < 0)
394		return status;
395	NFS_I(mapping->host)->write_io += copied;
396
397	if (nfs_ctx_key_to_expire(ctx, mapping->host)) {
398		status = nfs_wb_all(mapping->host);
399		if (status < 0)
400			return status;
401	}
402
403	return copied;
404}
405
406/*
407 * Partially or wholly invalidate a page
408 * - Release the private state associated with a page if undergoing complete
409 *   page invalidation
410 * - Called if either PG_private or PG_fscache is set on the page
411 * - Caller holds page lock
412 */
413static void nfs_invalidate_page(struct page *page, unsigned int offset,
414				unsigned int length)
415{
416	dfprintk(PAGECACHE, "NFS: invalidate_page(%p, %u, %u)\n",
417		 page, offset, length);
418
419	if (offset != 0 || length < PAGE_SIZE)
420		return;
421	/* Cancel any unstarted writes on this page */
422	nfs_wb_page_cancel(page_file_mapping(page)->host, page);
423
424	nfs_fscache_invalidate_page(page, page->mapping->host);
425}
426
427/*
428 * Attempt to release the private state associated with a page
429 * - Called if either PG_private or PG_fscache is set on the page
430 * - Caller holds page lock
431 * - Return true (may release page) or false (may not)
432 */
433static int nfs_release_page(struct page *page, gfp_t gfp)
434{
 
 
435	dfprintk(PAGECACHE, "NFS: release_page(%p)\n", page);
436
 
 
 
 
 
 
 
 
 
 
 
 
437	/* If PagePrivate() is set, then the page is not freeable */
438	if (PagePrivate(page))
439		return 0;
440	return nfs_fscache_release_page(page, gfp);
441}
442
443static void nfs_check_dirty_writeback(struct page *page,
444				bool *dirty, bool *writeback)
445{
446	struct nfs_inode *nfsi;
447	struct address_space *mapping = page_file_mapping(page);
448
449	if (!mapping || PageSwapCache(page))
450		return;
451
452	/*
453	 * Check if an unstable page is currently being committed and
454	 * if so, have the VM treat it as if the page is under writeback
455	 * so it will not block due to pages that will shortly be freeable.
456	 */
457	nfsi = NFS_I(mapping->host);
458	if (atomic_read(&nfsi->commit_info.rpcs_out)) {
459		*writeback = true;
460		return;
461	}
462
463	/*
464	 * If PagePrivate() is set, then the page is not freeable and as the
465	 * inode is not being committed, it's not going to be cleaned in the
466	 * near future so treat it as dirty
467	 */
468	if (PagePrivate(page))
469		*dirty = true;
470}
471
472/*
473 * Attempt to clear the private state associated with a page when an error
474 * occurs that requires the cached contents of an inode to be written back or
475 * destroyed
476 * - Called if either PG_private or fscache is set on the page
477 * - Caller holds page lock
478 * - Return 0 if successful, -error otherwise
479 */
480static int nfs_launder_page(struct page *page)
481{
482	struct inode *inode = page_file_mapping(page)->host;
483	struct nfs_inode *nfsi = NFS_I(inode);
484
485	dfprintk(PAGECACHE, "NFS: launder_page(%ld, %llu)\n",
486		inode->i_ino, (long long)page_offset(page));
487
488	nfs_fscache_wait_on_page_write(nfsi, page);
489	return nfs_wb_page(inode, page);
490}
491
 
492static int nfs_swap_activate(struct swap_info_struct *sis, struct file *file,
493						sector_t *span)
494{
495	struct rpc_clnt *clnt = NFS_CLIENT(file->f_mapping->host);
496
497	*span = sis->pages;
498
499	return rpc_clnt_swap_activate(clnt);
500}
501
502static void nfs_swap_deactivate(struct file *file)
503{
504	struct rpc_clnt *clnt = NFS_CLIENT(file->f_mapping->host);
505
506	rpc_clnt_swap_deactivate(clnt);
507}
 
508
509const struct address_space_operations nfs_file_aops = {
510	.readpage = nfs_readpage,
511	.readpages = nfs_readpages,
512	.set_page_dirty = __set_page_dirty_nobuffers,
513	.writepage = nfs_writepage,
514	.writepages = nfs_writepages,
515	.write_begin = nfs_write_begin,
516	.write_end = nfs_write_end,
517	.invalidatepage = nfs_invalidate_page,
518	.releasepage = nfs_release_page,
519	.direct_IO = nfs_direct_IO,
520#ifdef CONFIG_MIGRATION
521	.migratepage = nfs_migrate_page,
522#endif
523	.launder_page = nfs_launder_page,
524	.is_dirty_writeback = nfs_check_dirty_writeback,
525	.error_remove_page = generic_error_remove_page,
 
526	.swap_activate = nfs_swap_activate,
527	.swap_deactivate = nfs_swap_deactivate,
 
528};
529
530/*
531 * Notification that a PTE pointing to an NFS page is about to be made
532 * writable, implying that someone is about to modify the page through a
533 * shared-writable mapping
534 */
535static int nfs_vm_page_mkwrite(struct vm_fault *vmf)
536{
537	struct page *page = vmf->page;
538	struct file *filp = vmf->vma->vm_file;
539	struct inode *inode = file_inode(filp);
540	unsigned pagelen;
541	int ret = VM_FAULT_NOPAGE;
542	struct address_space *mapping;
543
544	dfprintk(PAGECACHE, "NFS: vm_page_mkwrite(%pD2(%lu), offset %lld)\n",
545		filp, filp->f_mapping->host->i_ino,
546		(long long)page_offset(page));
547
548	sb_start_pagefault(inode->i_sb);
549
550	/* make sure the cache has finished storing the page */
551	nfs_fscache_wait_on_page_write(NFS_I(inode), page);
552
553	wait_on_bit_action(&NFS_I(inode)->flags, NFS_INO_INVALIDATING,
554			nfs_wait_bit_killable, TASK_KILLABLE);
555
556	lock_page(page);
557	mapping = page_file_mapping(page);
558	if (mapping != inode->i_mapping)
559		goto out_unlock;
560
561	wait_on_page_writeback(page);
562
563	pagelen = nfs_page_length(page);
564	if (pagelen == 0)
565		goto out_unlock;
566
567	ret = VM_FAULT_LOCKED;
568	if (nfs_flush_incompatible(filp, page) == 0 &&
569	    nfs_updatepage(filp, page, 0, pagelen) == 0)
570		goto out;
571
572	ret = VM_FAULT_SIGBUS;
573out_unlock:
574	unlock_page(page);
575out:
576	sb_end_pagefault(inode->i_sb);
577	return ret;
578}
579
580static const struct vm_operations_struct nfs_file_vm_ops = {
581	.fault = filemap_fault,
582	.map_pages = filemap_map_pages,
583	.page_mkwrite = nfs_vm_page_mkwrite,
 
584};
585
586static int nfs_need_check_write(struct file *filp, struct inode *inode)
587{
588	struct nfs_open_context *ctx;
589
 
 
590	ctx = nfs_file_open_context(filp);
591	if (test_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags) ||
592	    nfs_ctx_key_to_expire(ctx, inode))
593		return 1;
594	return 0;
595}
596
597ssize_t nfs_file_write(struct kiocb *iocb, struct iov_iter *from)
 
598{
599	struct file *file = iocb->ki_filp;
600	struct inode *inode = file_inode(file);
601	unsigned long written = 0;
602	ssize_t result;
 
603
604	result = nfs_key_timeout_notify(file, inode);
605	if (result)
606		return result;
607
608	if (iocb->ki_flags & IOCB_DIRECT)
609		return nfs_file_direct_write(iocb, from);
610
611	dprintk("NFS: write(%pD2, %zu@%Ld)\n",
612		file, iov_iter_count(from), (long long) iocb->ki_pos);
613
 
614	if (IS_SWAPFILE(inode))
615		goto out_swapfile;
616	/*
617	 * O_APPEND implies that we must revalidate the file length.
618	 */
619	if (iocb->ki_flags & IOCB_APPEND) {
620		result = nfs_revalidate_file_size(inode, file);
621		if (result)
622			goto out;
623	}
624	if (iocb->ki_pos > i_size_read(inode))
625		nfs_revalidate_mapping(inode, file->f_mapping);
626
627	nfs_start_io_write(inode);
628	result = generic_write_checks(iocb, from);
629	if (result > 0) {
630		current->backing_dev_info = inode_to_bdi(inode);
631		result = generic_perform_write(file, from, iocb->ki_pos);
632		current->backing_dev_info = NULL;
633	}
634	nfs_end_io_write(inode);
635	if (result <= 0)
636		goto out;
637
638	written = result;
639	iocb->ki_pos += written;
640	result = generic_write_sync(iocb, written);
641	if (result < 0)
642		goto out;
643
644	/* Return error values */
645	if (nfs_need_check_write(file, inode)) {
646		int err = vfs_fsync(file, 0);
647		if (err < 0)
648			result = err;
649	}
650	nfs_add_stats(inode, NFSIOS_NORMALWRITTENBYTES, written);
 
651out:
652	return result;
653
654out_swapfile:
655	printk(KERN_INFO "NFS: attempt to write to active swap file!\n");
656	return -EBUSY;
657}
658EXPORT_SYMBOL_GPL(nfs_file_write);
659
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
660static int
661do_getlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
662{
663	struct inode *inode = filp->f_mapping->host;
664	int status = 0;
665	unsigned int saved_type = fl->fl_type;
666
667	/* Try local locking first */
668	posix_test_lock(filp, fl);
669	if (fl->fl_type != F_UNLCK) {
670		/* found a conflict */
671		goto out;
672	}
673	fl->fl_type = saved_type;
674
675	if (NFS_PROTO(inode)->have_delegation(inode, FMODE_READ))
676		goto out_noconflict;
677
678	if (is_local)
679		goto out_noconflict;
680
681	status = NFS_PROTO(inode)->lock(filp, cmd, fl);
682out:
683	return status;
684out_noconflict:
685	fl->fl_type = F_UNLCK;
686	goto out;
687}
688
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
689static int
690do_unlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
691{
692	struct inode *inode = filp->f_mapping->host;
693	struct nfs_lock_context *l_ctx;
694	int status;
695
696	/*
697	 * Flush all pending writes before doing anything
698	 * with locks..
699	 */
700	vfs_fsync(filp, 0);
701
702	l_ctx = nfs_get_lock_context(nfs_file_open_context(filp));
703	if (!IS_ERR(l_ctx)) {
704		status = nfs_iocounter_wait(l_ctx);
705		nfs_put_lock_context(l_ctx);
706		/*  NOTE: special case
707		 * 	If we're signalled while cleaning up locks on process exit, we
708		 * 	still need to complete the unlock.
709		 */
710		if (status < 0 && !(fl->fl_flags & FL_CLOSE))
711			return status;
712	}
713
 
 
 
 
714	/*
715	 * Use local locking if mounted with "-onolock" or with appropriate
716	 * "-olocal_lock="
717	 */
718	if (!is_local)
719		status = NFS_PROTO(inode)->lock(filp, cmd, fl);
720	else
721		status = locks_lock_file_wait(filp, fl);
722	return status;
723}
724
725static int
 
 
 
 
 
726do_setlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
727{
728	struct inode *inode = filp->f_mapping->host;
729	int status;
730
731	/*
732	 * Flush all pending writes before doing anything
733	 * with locks..
734	 */
735	status = nfs_sync_mapping(filp->f_mapping);
736	if (status != 0)
737		goto out;
738
739	/*
740	 * Use local locking if mounted with "-onolock" or with appropriate
741	 * "-olocal_lock="
742	 */
743	if (!is_local)
744		status = NFS_PROTO(inode)->lock(filp, cmd, fl);
745	else
746		status = locks_lock_file_wait(filp, fl);
747	if (status < 0)
748		goto out;
749
750	/*
751	 * Invalidate cache to prevent missing any changes.  If
752	 * the file is mapped, clear the page cache as well so
753	 * those mappings will be loaded.
754	 *
755	 * This makes locking act as a cache coherency point.
756	 */
757	nfs_sync_mapping(filp->f_mapping);
758	if (!NFS_PROTO(inode)->have_delegation(inode, FMODE_READ)) {
759		nfs_zap_caches(inode);
760		if (mapping_mapped(filp->f_mapping))
761			nfs_revalidate_mapping(inode, filp->f_mapping);
 
762	}
763out:
764	return status;
765}
766
767/*
768 * Lock a (portion of) a file
769 */
770int nfs_lock(struct file *filp, int cmd, struct file_lock *fl)
771{
772	struct inode *inode = filp->f_mapping->host;
773	int ret = -ENOLCK;
774	int is_local = 0;
775
776	dprintk("NFS: lock(%pD2, t=%x, fl=%x, r=%lld:%lld)\n",
777			filp, fl->fl_type, fl->fl_flags,
778			(long long)fl->fl_start, (long long)fl->fl_end);
779
780	nfs_inc_stats(inode, NFSIOS_VFSLOCK);
781
782	/* No mandatory locks over NFS */
783	if (__mandatory_lock(inode) && fl->fl_type != F_UNLCK)
784		goto out_err;
785
786	if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FCNTL)
787		is_local = 1;
788
789	if (NFS_PROTO(inode)->lock_check_bounds != NULL) {
790		ret = NFS_PROTO(inode)->lock_check_bounds(fl);
791		if (ret < 0)
792			goto out_err;
793	}
794
795	if (IS_GETLK(cmd))
796		ret = do_getlk(filp, cmd, fl, is_local);
797	else if (fl->fl_type == F_UNLCK)
798		ret = do_unlk(filp, cmd, fl, is_local);
799	else
800		ret = do_setlk(filp, cmd, fl, is_local);
801out_err:
802	return ret;
803}
804EXPORT_SYMBOL_GPL(nfs_lock);
805
806/*
807 * Lock a (portion of) a file
808 */
809int nfs_flock(struct file *filp, int cmd, struct file_lock *fl)
810{
811	struct inode *inode = filp->f_mapping->host;
812	int is_local = 0;
813
814	dprintk("NFS: flock(%pD2, t=%x, fl=%x)\n",
815			filp, fl->fl_type, fl->fl_flags);
816
817	if (!(fl->fl_flags & FL_FLOCK))
818		return -ENOLCK;
819
820	/*
821	 * The NFSv4 protocol doesn't support LOCK_MAND, which is not part of
822	 * any standard. In principle we might be able to support LOCK_MAND
823	 * on NFSv2/3 since NLMv3/4 support DOS share modes, but for now the
824	 * NFS code is not set up for it.
825	 */
826	if (fl->fl_type & LOCK_MAND)
827		return -EINVAL;
828
829	if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FLOCK)
830		is_local = 1;
831
832	/* We're simulating flock() locks using posix locks on the server */
 
 
 
 
833	if (fl->fl_type == F_UNLCK)
834		return do_unlk(filp, cmd, fl, is_local);
835	return do_setlk(filp, cmd, fl, is_local);
836}
837EXPORT_SYMBOL_GPL(nfs_flock);
838
 
 
 
 
 
 
 
 
 
 
 
839const struct file_operations nfs_file_operations = {
840	.llseek		= nfs_file_llseek,
841	.read_iter	= nfs_file_read,
842	.write_iter	= nfs_file_write,
 
 
843	.mmap		= nfs_file_mmap,
844	.open		= nfs_file_open,
845	.flush		= nfs_file_flush,
846	.release	= nfs_file_release,
847	.fsync		= nfs_file_fsync,
848	.lock		= nfs_lock,
849	.flock		= nfs_flock,
850	.splice_read	= generic_file_splice_read,
851	.splice_write	= iter_file_splice_write,
852	.check_flags	= nfs_check_flags,
853	.setlease	= simple_nosetlease,
854};
855EXPORT_SYMBOL_GPL(nfs_file_operations);
v3.15
  1/*
  2 *  linux/fs/nfs/file.c
  3 *
  4 *  Copyright (C) 1992  Rick Sladkey
  5 *
  6 *  Changes Copyright (C) 1994 by Florian La Roche
  7 *   - Do not copy data too often around in the kernel.
  8 *   - In nfs_file_read the return value of kmalloc wasn't checked.
  9 *   - Put in a better version of read look-ahead buffering. Original idea
 10 *     and implementation by Wai S Kok elekokws@ee.nus.sg.
 11 *
 12 *  Expire cache on write to a file by Wai S Kok (Oct 1994).
 13 *
 14 *  Total rewrite of read side for new NFS buffer cache.. Linus.
 15 *
 16 *  nfs regular file handling functions
 17 */
 18
 19#include <linux/module.h>
 20#include <linux/time.h>
 21#include <linux/kernel.h>
 22#include <linux/errno.h>
 23#include <linux/fcntl.h>
 24#include <linux/stat.h>
 25#include <linux/nfs_fs.h>
 26#include <linux/nfs_mount.h>
 27#include <linux/mm.h>
 28#include <linux/pagemap.h>
 29#include <linux/aio.h>
 30#include <linux/gfp.h>
 31#include <linux/swap.h>
 32
 33#include <asm/uaccess.h>
 34
 35#include "delegation.h"
 36#include "internal.h"
 37#include "iostat.h"
 38#include "fscache.h"
 
 39
 40#include "nfstrace.h"
 41
 42#define NFSDBG_FACILITY		NFSDBG_FILE
 43
 44static const struct vm_operations_struct nfs_file_vm_ops;
 45
 46/* Hack for future NFS swap support */
 47#ifndef IS_SWAPFILE
 48# define IS_SWAPFILE(inode)	(0)
 49#endif
 50
 51int nfs_check_flags(int flags)
 52{
 53	if ((flags & (O_APPEND | O_DIRECT)) == (O_APPEND | O_DIRECT))
 54		return -EINVAL;
 55
 56	return 0;
 57}
 58EXPORT_SYMBOL_GPL(nfs_check_flags);
 59
 60/*
 61 * Open file
 62 */
 63static int
 64nfs_file_open(struct inode *inode, struct file *filp)
 65{
 66	int res;
 67
 68	dprintk("NFS: open file(%pD2)\n", filp);
 69
 70	nfs_inc_stats(inode, NFSIOS_VFSOPEN);
 71	res = nfs_check_flags(filp->f_flags);
 72	if (res)
 73		return res;
 74
 75	res = nfs_open(inode, filp);
 76	return res;
 77}
 78
 79int
 80nfs_file_release(struct inode *inode, struct file *filp)
 81{
 82	dprintk("NFS: release(%pD2)\n", filp);
 83
 84	nfs_inc_stats(inode, NFSIOS_VFSRELEASE);
 85	return nfs_release(inode, filp);
 
 86}
 87EXPORT_SYMBOL_GPL(nfs_file_release);
 88
 89/**
 90 * nfs_revalidate_size - Revalidate the file size
 91 * @inode - pointer to inode struct
 92 * @file - pointer to struct file
 93 *
 94 * Revalidates the file length. This is basically a wrapper around
 95 * nfs_revalidate_inode() that takes into account the fact that we may
 96 * have cached writes (in which case we don't care about the server's
 97 * idea of what the file length is), or O_DIRECT (in which case we
 98 * shouldn't trust the cache).
 99 */
100static int nfs_revalidate_file_size(struct inode *inode, struct file *filp)
101{
102	struct nfs_server *server = NFS_SERVER(inode);
103	struct nfs_inode *nfsi = NFS_I(inode);
104
105	if (nfs_have_delegated_attributes(inode))
106		goto out_noreval;
107
108	if (filp->f_flags & O_DIRECT)
109		goto force_reval;
110	if (nfsi->cache_validity & NFS_INO_REVAL_PAGECACHE)
111		goto force_reval;
112	if (nfs_attribute_timeout(inode))
113		goto force_reval;
114out_noreval:
115	return 0;
116force_reval:
117	return __nfs_revalidate_inode(server, inode);
118}
119
120loff_t nfs_file_llseek(struct file *filp, loff_t offset, int whence)
121{
122	dprintk("NFS: llseek file(%pD2, %lld, %d)\n",
123			filp, offset, whence);
124
125	/*
126	 * whence == SEEK_END || SEEK_DATA || SEEK_HOLE => we must revalidate
127	 * the cached file length
128	 */
129	if (whence != SEEK_SET && whence != SEEK_CUR) {
130		struct inode *inode = filp->f_mapping->host;
131
132		int retval = nfs_revalidate_file_size(inode, filp);
133		if (retval < 0)
134			return (loff_t)retval;
135	}
136
137	return generic_file_llseek(filp, offset, whence);
138}
139EXPORT_SYMBOL_GPL(nfs_file_llseek);
140
141/*
142 * Flush all dirty pages, and check for write errors.
143 */
144int
145nfs_file_flush(struct file *file, fl_owner_t id)
146{
147	struct inode	*inode = file_inode(file);
148
149	dprintk("NFS: flush(%pD2)\n", file);
150
151	nfs_inc_stats(inode, NFSIOS_VFSFLUSH);
152	if ((file->f_mode & FMODE_WRITE) == 0)
153		return 0;
154
155	/*
156	 * If we're holding a write delegation, then just start the i/o
157	 * but don't wait for completion (or send a commit).
158	 */
159	if (NFS_PROTO(inode)->have_delegation(inode, FMODE_WRITE))
160		return filemap_fdatawrite(file->f_mapping);
161
162	/* Flush writes to the server and return any errors */
163	return vfs_fsync(file, 0);
164}
165EXPORT_SYMBOL_GPL(nfs_file_flush);
166
167ssize_t
168nfs_file_read(struct kiocb *iocb, const struct iovec *iov,
169		unsigned long nr_segs, loff_t pos)
170{
171	struct inode *inode = file_inode(iocb->ki_filp);
172	ssize_t result;
173
174	if (iocb->ki_filp->f_flags & O_DIRECT)
175		return nfs_file_direct_read(iocb, iov, nr_segs, pos, true);
176
177	dprintk("NFS: read(%pD2, %lu@%lu)\n",
178		iocb->ki_filp,
179		(unsigned long) iov_length(iov, nr_segs), (unsigned long) pos);
180
 
181	result = nfs_revalidate_mapping(inode, iocb->ki_filp->f_mapping);
182	if (!result) {
183		result = generic_file_aio_read(iocb, iov, nr_segs, pos);
184		if (result > 0)
185			nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, result);
186	}
 
187	return result;
188}
189EXPORT_SYMBOL_GPL(nfs_file_read);
190
191ssize_t
192nfs_file_splice_read(struct file *filp, loff_t *ppos,
193		     struct pipe_inode_info *pipe, size_t count,
194		     unsigned int flags)
195{
196	struct inode *inode = file_inode(filp);
197	ssize_t res;
198
199	dprintk("NFS: splice_read(%pD2, %lu@%Lu)\n",
200		filp, (unsigned long) count, (unsigned long long) *ppos);
201
202	res = nfs_revalidate_mapping(inode, filp->f_mapping);
203	if (!res) {
204		res = generic_file_splice_read(filp, ppos, pipe, count, flags);
205		if (res > 0)
206			nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, res);
207	}
208	return res;
209}
210EXPORT_SYMBOL_GPL(nfs_file_splice_read);
211
212int
213nfs_file_mmap(struct file * file, struct vm_area_struct * vma)
214{
215	struct inode *inode = file_inode(file);
216	int	status;
217
218	dprintk("NFS: mmap(%pD2)\n", file);
219
220	/* Note: generic_file_mmap() returns ENOSYS on nommu systems
221	 *       so we call that before revalidating the mapping
222	 */
223	status = generic_file_mmap(file, vma);
224	if (!status) {
225		vma->vm_ops = &nfs_file_vm_ops;
226		status = nfs_revalidate_mapping(inode, file->f_mapping);
227	}
228	return status;
229}
230EXPORT_SYMBOL_GPL(nfs_file_mmap);
231
232/*
233 * Flush any dirty pages for this process, and check for write errors.
234 * The return status from this call provides a reliable indication of
235 * whether any write errors occurred for this process.
236 *
237 * Notice that it clears the NFS_CONTEXT_ERROR_WRITE before synching to
238 * disk, but it retrieves and clears ctx->error after synching, despite
239 * the two being set at the same time in nfs_context_set_write_error().
240 * This is because the former is used to notify the _next_ call to
241 * nfs_file_write() that a write error occurred, and hence cause it to
242 * fall back to doing a synchronous write.
243 */
244int
245nfs_file_fsync_commit(struct file *file, loff_t start, loff_t end, int datasync)
246{
247	struct nfs_open_context *ctx = nfs_file_open_context(file);
248	struct inode *inode = file_inode(file);
249	int have_error, do_resend, status;
250	int ret = 0;
251
252	dprintk("NFS: fsync file(%pD2) datasync %d\n", file, datasync);
253
254	nfs_inc_stats(inode, NFSIOS_VFSFSYNC);
255	do_resend = test_and_clear_bit(NFS_CONTEXT_RESEND_WRITES, &ctx->flags);
256	have_error = test_and_clear_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags);
257	status = nfs_commit_inode(inode, FLUSH_SYNC);
258	have_error |= test_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags);
259	if (have_error) {
260		ret = xchg(&ctx->error, 0);
261		if (ret)
262			goto out;
263	}
264	if (status < 0) {
265		ret = status;
266		goto out;
267	}
268	do_resend |= test_bit(NFS_CONTEXT_RESEND_WRITES, &ctx->flags);
269	if (do_resend)
270		ret = -EAGAIN;
271out:
272	return ret;
273}
274EXPORT_SYMBOL_GPL(nfs_file_fsync_commit);
275
276static int
277nfs_file_fsync(struct file *file, loff_t start, loff_t end, int datasync)
278{
279	int ret;
280	struct inode *inode = file_inode(file);
281
282	trace_nfs_fsync_enter(inode);
283
284	do {
 
285		ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
 
 
 
 
 
286		if (ret != 0)
287			break;
288		mutex_lock(&inode->i_mutex);
289		ret = nfs_file_fsync_commit(file, start, end, datasync);
290		mutex_unlock(&inode->i_mutex);
291		/*
292		 * If nfs_file_fsync_commit detected a server reboot, then
293		 * resend all dirty pages that might have been covered by
294		 * the NFS_CONTEXT_RESEND_WRITES flag
295		 */
296		start = 0;
297		end = LLONG_MAX;
298	} while (ret == -EAGAIN);
299
300	trace_nfs_fsync_exit(inode, ret);
301	return ret;
302}
 
303
304/*
305 * Decide whether a read/modify/write cycle may be more efficient
306 * then a modify/write/read cycle when writing to a page in the
307 * page cache.
308 *
309 * The modify/write/read cycle may occur if a page is read before
310 * being completely filled by the writer.  In this situation, the
311 * page must be completely written to stable storage on the server
312 * before it can be refilled by reading in the page from the server.
313 * This can lead to expensive, small, FILE_SYNC mode writes being
314 * done.
315 *
316 * It may be more efficient to read the page first if the file is
317 * open for reading in addition to writing, the page is not marked
318 * as Uptodate, it is not dirty or waiting to be committed,
319 * indicating that it was previously allocated and then modified,
320 * that there were valid bytes of data in that range of the file,
321 * and that the new data won't completely replace the old data in
322 * that range of the file.
323 */
324static int nfs_want_read_modify_write(struct file *file, struct page *page,
325			loff_t pos, unsigned len)
326{
327	unsigned int pglen = nfs_page_length(page);
328	unsigned int offset = pos & (PAGE_CACHE_SIZE - 1);
329	unsigned int end = offset + len;
330
 
 
 
 
 
 
331	if ((file->f_mode & FMODE_READ) &&	/* open for read? */
332	    !PageUptodate(page) &&		/* Uptodate? */
333	    !PagePrivate(page) &&		/* i/o request already? */
334	    pglen &&				/* valid bytes of file? */
335	    (end < pglen || offset))		/* replace all valid bytes? */
336		return 1;
337	return 0;
338}
339
340/*
341 * This does the "real" work of the write. We must allocate and lock the
342 * page to be sent back to the generic routine, which then copies the
343 * data from user space.
344 *
345 * If the writer ends up delaying the write, the writer needs to
346 * increment the page use counts until he is done with the page.
347 */
348static int nfs_write_begin(struct file *file, struct address_space *mapping,
349			loff_t pos, unsigned len, unsigned flags,
350			struct page **pagep, void **fsdata)
351{
352	int ret;
353	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
354	struct page *page;
355	int once_thru = 0;
356
357	dfprintk(PAGECACHE, "NFS: write_begin(%pD2(%lu), %u@%lld)\n",
358		file, mapping->host->i_ino, len, (long long) pos);
359
360start:
361	/*
362	 * Prevent starvation issues if someone is doing a consistency
363	 * sync-to-disk
364	 */
365	ret = wait_on_bit(&NFS_I(mapping->host)->flags, NFS_INO_FLUSHING,
366			nfs_wait_bit_killable, TASK_KILLABLE);
367	if (ret)
368		return ret;
369
370	page = grab_cache_page_write_begin(mapping, index, flags);
371	if (!page)
372		return -ENOMEM;
373	*pagep = page;
374
375	ret = nfs_flush_incompatible(file, page);
376	if (ret) {
377		unlock_page(page);
378		page_cache_release(page);
379	} else if (!once_thru &&
380		   nfs_want_read_modify_write(file, page, pos, len)) {
381		once_thru = 1;
382		ret = nfs_readpage(file, page);
383		page_cache_release(page);
384		if (!ret)
385			goto start;
386	}
387	return ret;
388}
389
390static int nfs_write_end(struct file *file, struct address_space *mapping,
391			loff_t pos, unsigned len, unsigned copied,
392			struct page *page, void *fsdata)
393{
394	unsigned offset = pos & (PAGE_CACHE_SIZE - 1);
395	struct nfs_open_context *ctx = nfs_file_open_context(file);
396	int status;
397
398	dfprintk(PAGECACHE, "NFS: write_end(%pD2(%lu), %u@%lld)\n",
399		file, mapping->host->i_ino, len, (long long) pos);
400
401	/*
402	 * Zero any uninitialised parts of the page, and then mark the page
403	 * as up to date if it turns out that we're extending the file.
404	 */
405	if (!PageUptodate(page)) {
406		unsigned pglen = nfs_page_length(page);
407		unsigned end = offset + len;
408
409		if (pglen == 0) {
410			zero_user_segments(page, 0, offset,
411					end, PAGE_CACHE_SIZE);
412			SetPageUptodate(page);
413		} else if (end >= pglen) {
414			zero_user_segment(page, end, PAGE_CACHE_SIZE);
415			if (offset == 0)
416				SetPageUptodate(page);
417		} else
418			zero_user_segment(page, pglen, PAGE_CACHE_SIZE);
419	}
420
421	status = nfs_updatepage(file, page, offset, copied);
422
423	unlock_page(page);
424	page_cache_release(page);
425
426	if (status < 0)
427		return status;
428	NFS_I(mapping->host)->write_io += copied;
429
430	if (nfs_ctx_key_to_expire(ctx)) {
431		status = nfs_wb_all(mapping->host);
432		if (status < 0)
433			return status;
434	}
435
436	return copied;
437}
438
439/*
440 * Partially or wholly invalidate a page
441 * - Release the private state associated with a page if undergoing complete
442 *   page invalidation
443 * - Called if either PG_private or PG_fscache is set on the page
444 * - Caller holds page lock
445 */
446static void nfs_invalidate_page(struct page *page, unsigned int offset,
447				unsigned int length)
448{
449	dfprintk(PAGECACHE, "NFS: invalidate_page(%p, %u, %u)\n",
450		 page, offset, length);
451
452	if (offset != 0 || length < PAGE_CACHE_SIZE)
453		return;
454	/* Cancel any unstarted writes on this page */
455	nfs_wb_page_cancel(page_file_mapping(page)->host, page);
456
457	nfs_fscache_invalidate_page(page, page->mapping->host);
458}
459
460/*
461 * Attempt to release the private state associated with a page
462 * - Called if either PG_private or PG_fscache is set on the page
463 * - Caller holds page lock
464 * - Return true (may release page) or false (may not)
465 */
466static int nfs_release_page(struct page *page, gfp_t gfp)
467{
468	struct address_space *mapping = page->mapping;
469
470	dfprintk(PAGECACHE, "NFS: release_page(%p)\n", page);
471
472	/* Only do I/O if gfp is a superset of GFP_KERNEL, and we're not
473	 * doing this memory reclaim for a fs-related allocation.
474	 */
475	if (mapping && (gfp & GFP_KERNEL) == GFP_KERNEL &&
476	    !(current->flags & PF_FSTRANS)) {
477		int how = FLUSH_SYNC;
478
479		/* Don't let kswapd deadlock waiting for OOM RPC calls */
480		if (current_is_kswapd())
481			how = 0;
482		nfs_commit_inode(mapping->host, how);
483	}
484	/* If PagePrivate() is set, then the page is not freeable */
485	if (PagePrivate(page))
486		return 0;
487	return nfs_fscache_release_page(page, gfp);
488}
489
490static void nfs_check_dirty_writeback(struct page *page,
491				bool *dirty, bool *writeback)
492{
493	struct nfs_inode *nfsi;
494	struct address_space *mapping = page_file_mapping(page);
495
496	if (!mapping || PageSwapCache(page))
497		return;
498
499	/*
500	 * Check if an unstable page is currently being committed and
501	 * if so, have the VM treat it as if the page is under writeback
502	 * so it will not block due to pages that will shortly be freeable.
503	 */
504	nfsi = NFS_I(mapping->host);
505	if (test_bit(NFS_INO_COMMIT, &nfsi->flags)) {
506		*writeback = true;
507		return;
508	}
509
510	/*
511	 * If PagePrivate() is set, then the page is not freeable and as the
512	 * inode is not being committed, it's not going to be cleaned in the
513	 * near future so treat it as dirty
514	 */
515	if (PagePrivate(page))
516		*dirty = true;
517}
518
519/*
520 * Attempt to clear the private state associated with a page when an error
521 * occurs that requires the cached contents of an inode to be written back or
522 * destroyed
523 * - Called if either PG_private or fscache is set on the page
524 * - Caller holds page lock
525 * - Return 0 if successful, -error otherwise
526 */
527static int nfs_launder_page(struct page *page)
528{
529	struct inode *inode = page_file_mapping(page)->host;
530	struct nfs_inode *nfsi = NFS_I(inode);
531
532	dfprintk(PAGECACHE, "NFS: launder_page(%ld, %llu)\n",
533		inode->i_ino, (long long)page_offset(page));
534
535	nfs_fscache_wait_on_page_write(nfsi, page);
536	return nfs_wb_page(inode, page);
537}
538
539#ifdef CONFIG_NFS_SWAP
540static int nfs_swap_activate(struct swap_info_struct *sis, struct file *file,
541						sector_t *span)
542{
 
 
543	*span = sis->pages;
544	return xs_swapper(NFS_CLIENT(file->f_mapping->host)->cl_xprt, 1);
 
545}
546
547static void nfs_swap_deactivate(struct file *file)
548{
549	xs_swapper(NFS_CLIENT(file->f_mapping->host)->cl_xprt, 0);
 
 
550}
551#endif
552
553const struct address_space_operations nfs_file_aops = {
554	.readpage = nfs_readpage,
555	.readpages = nfs_readpages,
556	.set_page_dirty = __set_page_dirty_nobuffers,
557	.writepage = nfs_writepage,
558	.writepages = nfs_writepages,
559	.write_begin = nfs_write_begin,
560	.write_end = nfs_write_end,
561	.invalidatepage = nfs_invalidate_page,
562	.releasepage = nfs_release_page,
563	.direct_IO = nfs_direct_IO,
 
564	.migratepage = nfs_migrate_page,
 
565	.launder_page = nfs_launder_page,
566	.is_dirty_writeback = nfs_check_dirty_writeback,
567	.error_remove_page = generic_error_remove_page,
568#ifdef CONFIG_NFS_SWAP
569	.swap_activate = nfs_swap_activate,
570	.swap_deactivate = nfs_swap_deactivate,
571#endif
572};
573
574/*
575 * Notification that a PTE pointing to an NFS page is about to be made
576 * writable, implying that someone is about to modify the page through a
577 * shared-writable mapping
578 */
579static int nfs_vm_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
580{
581	struct page *page = vmf->page;
582	struct file *filp = vma->vm_file;
583	struct inode *inode = file_inode(filp);
584	unsigned pagelen;
585	int ret = VM_FAULT_NOPAGE;
586	struct address_space *mapping;
587
588	dfprintk(PAGECACHE, "NFS: vm_page_mkwrite(%pD2(%lu), offset %lld)\n",
589		filp, filp->f_mapping->host->i_ino,
590		(long long)page_offset(page));
591
 
 
592	/* make sure the cache has finished storing the page */
593	nfs_fscache_wait_on_page_write(NFS_I(inode), page);
594
 
 
 
595	lock_page(page);
596	mapping = page_file_mapping(page);
597	if (mapping != inode->i_mapping)
598		goto out_unlock;
599
600	wait_on_page_writeback(page);
601
602	pagelen = nfs_page_length(page);
603	if (pagelen == 0)
604		goto out_unlock;
605
606	ret = VM_FAULT_LOCKED;
607	if (nfs_flush_incompatible(filp, page) == 0 &&
608	    nfs_updatepage(filp, page, 0, pagelen) == 0)
609		goto out;
610
611	ret = VM_FAULT_SIGBUS;
612out_unlock:
613	unlock_page(page);
614out:
 
615	return ret;
616}
617
618static const struct vm_operations_struct nfs_file_vm_ops = {
619	.fault = filemap_fault,
620	.map_pages = filemap_map_pages,
621	.page_mkwrite = nfs_vm_page_mkwrite,
622	.remap_pages = generic_file_remap_pages,
623};
624
625static int nfs_need_sync_write(struct file *filp, struct inode *inode)
626{
627	struct nfs_open_context *ctx;
628
629	if (IS_SYNC(inode) || (filp->f_flags & O_DSYNC))
630		return 1;
631	ctx = nfs_file_open_context(filp);
632	if (test_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags) ||
633	    nfs_ctx_key_to_expire(ctx))
634		return 1;
635	return 0;
636}
637
638ssize_t nfs_file_write(struct kiocb *iocb, const struct iovec *iov,
639		       unsigned long nr_segs, loff_t pos)
640{
641	struct file *file = iocb->ki_filp;
642	struct inode *inode = file_inode(file);
643	unsigned long written = 0;
644	ssize_t result;
645	size_t count = iov_length(iov, nr_segs);
646
647	result = nfs_key_timeout_notify(file, inode);
648	if (result)
649		return result;
650
651	if (file->f_flags & O_DIRECT)
652		return nfs_file_direct_write(iocb, iov, nr_segs, pos, true);
653
654	dprintk("NFS: write(%pD2, %lu@%Ld)\n",
655		file, (unsigned long) count, (long long) pos);
656
657	result = -EBUSY;
658	if (IS_SWAPFILE(inode))
659		goto out_swapfile;
660	/*
661	 * O_APPEND implies that we must revalidate the file length.
662	 */
663	if (file->f_flags & O_APPEND) {
664		result = nfs_revalidate_file_size(inode, file);
665		if (result)
666			goto out;
667	}
 
 
668
669	result = count;
670	if (!count)
 
 
 
 
 
 
 
671		goto out;
672
673	result = generic_file_aio_write(iocb, iov, nr_segs, pos);
674	if (result > 0)
675		written = result;
 
 
676
677	/* Return error values for O_DSYNC and IS_SYNC() */
678	if (result >= 0 && nfs_need_sync_write(file, inode)) {
679		int err = vfs_fsync(file, 0);
680		if (err < 0)
681			result = err;
682	}
683	if (result > 0)
684		nfs_add_stats(inode, NFSIOS_NORMALWRITTENBYTES, written);
685out:
686	return result;
687
688out_swapfile:
689	printk(KERN_INFO "NFS: attempt to write to active swap file!\n");
690	goto out;
691}
692EXPORT_SYMBOL_GPL(nfs_file_write);
693
694ssize_t nfs_file_splice_write(struct pipe_inode_info *pipe,
695			      struct file *filp, loff_t *ppos,
696			      size_t count, unsigned int flags)
697{
698	struct inode *inode = file_inode(filp);
699	unsigned long written = 0;
700	ssize_t ret;
701
702	dprintk("NFS splice_write(%pD2, %lu@%llu)\n",
703		filp, (unsigned long) count, (unsigned long long) *ppos);
704
705	/*
706	 * The combination of splice and an O_APPEND destination is disallowed.
707	 */
708
709	ret = generic_file_splice_write(pipe, filp, ppos, count, flags);
710	if (ret > 0)
711		written = ret;
712
713	if (ret >= 0 && nfs_need_sync_write(filp, inode)) {
714		int err = vfs_fsync(filp, 0);
715		if (err < 0)
716			ret = err;
717	}
718	if (ret > 0)
719		nfs_add_stats(inode, NFSIOS_NORMALWRITTENBYTES, written);
720	return ret;
721}
722EXPORT_SYMBOL_GPL(nfs_file_splice_write);
723
724static int
725do_getlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
726{
727	struct inode *inode = filp->f_mapping->host;
728	int status = 0;
729	unsigned int saved_type = fl->fl_type;
730
731	/* Try local locking first */
732	posix_test_lock(filp, fl);
733	if (fl->fl_type != F_UNLCK) {
734		/* found a conflict */
735		goto out;
736	}
737	fl->fl_type = saved_type;
738
739	if (NFS_PROTO(inode)->have_delegation(inode, FMODE_READ))
740		goto out_noconflict;
741
742	if (is_local)
743		goto out_noconflict;
744
745	status = NFS_PROTO(inode)->lock(filp, cmd, fl);
746out:
747	return status;
748out_noconflict:
749	fl->fl_type = F_UNLCK;
750	goto out;
751}
752
753static int do_vfs_lock(struct file *file, struct file_lock *fl)
754{
755	int res = 0;
756	switch (fl->fl_flags & (FL_POSIX|FL_FLOCK)) {
757		case FL_POSIX:
758			res = posix_lock_file_wait(file, fl);
759			break;
760		case FL_FLOCK:
761			res = flock_lock_file_wait(file, fl);
762			break;
763		default:
764			BUG();
765	}
766	return res;
767}
768
769static int
770do_unlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
771{
772	struct inode *inode = filp->f_mapping->host;
773	struct nfs_lock_context *l_ctx;
774	int status;
775
776	/*
777	 * Flush all pending writes before doing anything
778	 * with locks..
779	 */
780	nfs_sync_mapping(filp->f_mapping);
781
782	l_ctx = nfs_get_lock_context(nfs_file_open_context(filp));
783	if (!IS_ERR(l_ctx)) {
784		status = nfs_iocounter_wait(&l_ctx->io_count);
785		nfs_put_lock_context(l_ctx);
786		if (status < 0)
 
 
 
 
787			return status;
788	}
789
790	/* NOTE: special case
791	 * 	If we're signalled while cleaning up locks on process exit, we
792	 * 	still need to complete the unlock.
793	 */
794	/*
795	 * Use local locking if mounted with "-onolock" or with appropriate
796	 * "-olocal_lock="
797	 */
798	if (!is_local)
799		status = NFS_PROTO(inode)->lock(filp, cmd, fl);
800	else
801		status = do_vfs_lock(filp, fl);
802	return status;
803}
804
805static int
806is_time_granular(struct timespec *ts) {
807	return ((ts->tv_sec == 0) && (ts->tv_nsec <= 1000));
808}
809
810static int
811do_setlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
812{
813	struct inode *inode = filp->f_mapping->host;
814	int status;
815
816	/*
817	 * Flush all pending writes before doing anything
818	 * with locks..
819	 */
820	status = nfs_sync_mapping(filp->f_mapping);
821	if (status != 0)
822		goto out;
823
824	/*
825	 * Use local locking if mounted with "-onolock" or with appropriate
826	 * "-olocal_lock="
827	 */
828	if (!is_local)
829		status = NFS_PROTO(inode)->lock(filp, cmd, fl);
830	else
831		status = do_vfs_lock(filp, fl);
832	if (status < 0)
833		goto out;
834
835	/*
836	 * Revalidate the cache if the server has time stamps granular
837	 * enough to detect subsecond changes.  Otherwise, clear the
838	 * cache to prevent missing any changes.
839	 *
840	 * This makes locking act as a cache coherency point.
841	 */
842	nfs_sync_mapping(filp->f_mapping);
843	if (!NFS_PROTO(inode)->have_delegation(inode, FMODE_READ)) {
844		if (is_time_granular(&NFS_SERVER(inode)->time_delta))
845			__nfs_revalidate_inode(NFS_SERVER(inode), inode);
846		else
847			nfs_zap_caches(inode);
848	}
849out:
850	return status;
851}
852
853/*
854 * Lock a (portion of) a file
855 */
856int nfs_lock(struct file *filp, int cmd, struct file_lock *fl)
857{
858	struct inode *inode = filp->f_mapping->host;
859	int ret = -ENOLCK;
860	int is_local = 0;
861
862	dprintk("NFS: lock(%pD2, t=%x, fl=%x, r=%lld:%lld)\n",
863			filp, fl->fl_type, fl->fl_flags,
864			(long long)fl->fl_start, (long long)fl->fl_end);
865
866	nfs_inc_stats(inode, NFSIOS_VFSLOCK);
867
868	/* No mandatory locks over NFS */
869	if (__mandatory_lock(inode) && fl->fl_type != F_UNLCK)
870		goto out_err;
871
872	if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FCNTL)
873		is_local = 1;
874
875	if (NFS_PROTO(inode)->lock_check_bounds != NULL) {
876		ret = NFS_PROTO(inode)->lock_check_bounds(fl);
877		if (ret < 0)
878			goto out_err;
879	}
880
881	if (IS_GETLK(cmd))
882		ret = do_getlk(filp, cmd, fl, is_local);
883	else if (fl->fl_type == F_UNLCK)
884		ret = do_unlk(filp, cmd, fl, is_local);
885	else
886		ret = do_setlk(filp, cmd, fl, is_local);
887out_err:
888	return ret;
889}
890EXPORT_SYMBOL_GPL(nfs_lock);
891
892/*
893 * Lock a (portion of) a file
894 */
895int nfs_flock(struct file *filp, int cmd, struct file_lock *fl)
896{
897	struct inode *inode = filp->f_mapping->host;
898	int is_local = 0;
899
900	dprintk("NFS: flock(%pD2, t=%x, fl=%x)\n",
901			filp, fl->fl_type, fl->fl_flags);
902
903	if (!(fl->fl_flags & FL_FLOCK))
904		return -ENOLCK;
905
906	/*
907	 * The NFSv4 protocol doesn't support LOCK_MAND, which is not part of
908	 * any standard. In principle we might be able to support LOCK_MAND
909	 * on NFSv2/3 since NLMv3/4 support DOS share modes, but for now the
910	 * NFS code is not set up for it.
911	 */
912	if (fl->fl_type & LOCK_MAND)
913		return -EINVAL;
914
915	if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FLOCK)
916		is_local = 1;
917
918	/* We're simulating flock() locks using posix locks on the server */
919	fl->fl_owner = (fl_owner_t)filp;
920	fl->fl_start = 0;
921	fl->fl_end = OFFSET_MAX;
922
923	if (fl->fl_type == F_UNLCK)
924		return do_unlk(filp, cmd, fl, is_local);
925	return do_setlk(filp, cmd, fl, is_local);
926}
927EXPORT_SYMBOL_GPL(nfs_flock);
928
929/*
930 * There is no protocol support for leases, so we have no way to implement
931 * them correctly in the face of opens by other clients.
932 */
933int nfs_setlease(struct file *file, long arg, struct file_lock **fl)
934{
935	dprintk("NFS: setlease(%pD2, arg=%ld)\n", file, arg);
936	return -EINVAL;
937}
938EXPORT_SYMBOL_GPL(nfs_setlease);
939
940const struct file_operations nfs_file_operations = {
941	.llseek		= nfs_file_llseek,
942	.read		= do_sync_read,
943	.write		= do_sync_write,
944	.aio_read	= nfs_file_read,
945	.aio_write	= nfs_file_write,
946	.mmap		= nfs_file_mmap,
947	.open		= nfs_file_open,
948	.flush		= nfs_file_flush,
949	.release	= nfs_file_release,
950	.fsync		= nfs_file_fsync,
951	.lock		= nfs_lock,
952	.flock		= nfs_flock,
953	.splice_read	= nfs_file_splice_read,
954	.splice_write	= nfs_file_splice_write,
955	.check_flags	= nfs_check_flags,
956	.setlease	= nfs_setlease,
957};
958EXPORT_SYMBOL_GPL(nfs_file_operations);