Linux Audio

Check our new training course

Loading...
v4.17
 
  1/*
  2 *  linux/fs/nfs/file.c
  3 *
  4 *  Copyright (C) 1992  Rick Sladkey
  5 *
  6 *  Changes Copyright (C) 1994 by Florian La Roche
  7 *   - Do not copy data too often around in the kernel.
  8 *   - In nfs_file_read the return value of kmalloc wasn't checked.
  9 *   - Put in a better version of read look-ahead buffering. Original idea
 10 *     and implementation by Wai S Kok elekokws@ee.nus.sg.
 11 *
 12 *  Expire cache on write to a file by Wai S Kok (Oct 1994).
 13 *
 14 *  Total rewrite of read side for new NFS buffer cache.. Linus.
 15 *
 16 *  nfs regular file handling functions
 17 */
 18
 19#include <linux/module.h>
 20#include <linux/time.h>
 21#include <linux/kernel.h>
 22#include <linux/errno.h>
 23#include <linux/fcntl.h>
 24#include <linux/stat.h>
 25#include <linux/nfs_fs.h>
 26#include <linux/nfs_mount.h>
 27#include <linux/mm.h>
 28#include <linux/pagemap.h>
 29#include <linux/gfp.h>
 30#include <linux/swap.h>
 31
 32#include <linux/uaccess.h>
 33
 34#include "delegation.h"
 35#include "internal.h"
 36#include "iostat.h"
 37#include "fscache.h"
 38#include "pnfs.h"
 39
 40#include "nfstrace.h"
 41
 42#define NFSDBG_FACILITY		NFSDBG_FILE
 43
 44static const struct vm_operations_struct nfs_file_vm_ops;
 45
 46/* Hack for future NFS swap support */
 47#ifndef IS_SWAPFILE
 48# define IS_SWAPFILE(inode)	(0)
 49#endif
 50
 51int nfs_check_flags(int flags)
 52{
 53	if ((flags & (O_APPEND | O_DIRECT)) == (O_APPEND | O_DIRECT))
 54		return -EINVAL;
 55
 56	return 0;
 57}
 58EXPORT_SYMBOL_GPL(nfs_check_flags);
 59
 60/*
 61 * Open file
 62 */
 63static int
 64nfs_file_open(struct inode *inode, struct file *filp)
 65{
 66	int res;
 67
 68	dprintk("NFS: open file(%pD2)\n", filp);
 69
 70	nfs_inc_stats(inode, NFSIOS_VFSOPEN);
 71	res = nfs_check_flags(filp->f_flags);
 72	if (res)
 73		return res;
 74
 75	res = nfs_open(inode, filp);
 76	return res;
 77}
 78
 79int
 80nfs_file_release(struct inode *inode, struct file *filp)
 81{
 82	dprintk("NFS: release(%pD2)\n", filp);
 83
 84	nfs_inc_stats(inode, NFSIOS_VFSRELEASE);
 85	nfs_file_clear_open_context(filp);
 86	return 0;
 87}
 88EXPORT_SYMBOL_GPL(nfs_file_release);
 89
 90/**
 91 * nfs_revalidate_size - Revalidate the file size
 92 * @inode - pointer to inode struct
 93 * @file - pointer to struct file
 94 *
 95 * Revalidates the file length. This is basically a wrapper around
 96 * nfs_revalidate_inode() that takes into account the fact that we may
 97 * have cached writes (in which case we don't care about the server's
 98 * idea of what the file length is), or O_DIRECT (in which case we
 99 * shouldn't trust the cache).
100 */
101static int nfs_revalidate_file_size(struct inode *inode, struct file *filp)
102{
103	struct nfs_server *server = NFS_SERVER(inode);
104
105	if (filp->f_flags & O_DIRECT)
106		goto force_reval;
107	if (nfs_check_cache_invalid(inode, NFS_INO_REVAL_PAGECACHE))
108		goto force_reval;
109	return 0;
110force_reval:
111	return __nfs_revalidate_inode(server, inode);
112}
113
114loff_t nfs_file_llseek(struct file *filp, loff_t offset, int whence)
115{
116	dprintk("NFS: llseek file(%pD2, %lld, %d)\n",
117			filp, offset, whence);
118
119	/*
120	 * whence == SEEK_END || SEEK_DATA || SEEK_HOLE => we must revalidate
121	 * the cached file length
122	 */
123	if (whence != SEEK_SET && whence != SEEK_CUR) {
124		struct inode *inode = filp->f_mapping->host;
125
126		int retval = nfs_revalidate_file_size(inode, filp);
127		if (retval < 0)
128			return (loff_t)retval;
129	}
130
131	return generic_file_llseek(filp, offset, whence);
132}
133EXPORT_SYMBOL_GPL(nfs_file_llseek);
134
135/*
136 * Flush all dirty pages, and check for write errors.
137 */
138static int
139nfs_file_flush(struct file *file, fl_owner_t id)
140{
141	struct inode	*inode = file_inode(file);
142
143	dprintk("NFS: flush(%pD2)\n", file);
144
145	nfs_inc_stats(inode, NFSIOS_VFSFLUSH);
146	if ((file->f_mode & FMODE_WRITE) == 0)
147		return 0;
148
149	/* Flush writes to the server and return any errors */
150	return vfs_fsync(file, 0);
151}
152
153ssize_t
154nfs_file_read(struct kiocb *iocb, struct iov_iter *to)
155{
156	struct inode *inode = file_inode(iocb->ki_filp);
157	ssize_t result;
158
159	if (iocb->ki_flags & IOCB_DIRECT)
160		return nfs_file_direct_read(iocb, to);
161
162	dprintk("NFS: read(%pD2, %zu@%lu)\n",
163		iocb->ki_filp,
164		iov_iter_count(to), (unsigned long) iocb->ki_pos);
165
166	nfs_start_io_read(inode);
167	result = nfs_revalidate_mapping(inode, iocb->ki_filp->f_mapping);
168	if (!result) {
169		result = generic_file_read_iter(iocb, to);
170		if (result > 0)
171			nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, result);
172	}
173	nfs_end_io_read(inode);
174	return result;
175}
176EXPORT_SYMBOL_GPL(nfs_file_read);
177
178int
179nfs_file_mmap(struct file * file, struct vm_area_struct * vma)
180{
181	struct inode *inode = file_inode(file);
182	int	status;
183
184	dprintk("NFS: mmap(%pD2)\n", file);
185
186	/* Note: generic_file_mmap() returns ENOSYS on nommu systems
187	 *       so we call that before revalidating the mapping
188	 */
189	status = generic_file_mmap(file, vma);
190	if (!status) {
191		vma->vm_ops = &nfs_file_vm_ops;
192		status = nfs_revalidate_mapping(inode, file->f_mapping);
193	}
194	return status;
195}
196EXPORT_SYMBOL_GPL(nfs_file_mmap);
197
198/*
199 * Flush any dirty pages for this process, and check for write errors.
200 * The return status from this call provides a reliable indication of
201 * whether any write errors occurred for this process.
202 *
203 * Notice that it clears the NFS_CONTEXT_ERROR_WRITE before synching to
204 * disk, but it retrieves and clears ctx->error after synching, despite
205 * the two being set at the same time in nfs_context_set_write_error().
206 * This is because the former is used to notify the _next_ call to
207 * nfs_file_write() that a write error occurred, and hence cause it to
208 * fall back to doing a synchronous write.
209 */
210static int
211nfs_file_fsync_commit(struct file *file, int datasync)
212{
213	struct nfs_open_context *ctx = nfs_file_open_context(file);
214	struct inode *inode = file_inode(file);
215	int do_resend, status;
216	int ret = 0;
217
218	dprintk("NFS: fsync file(%pD2) datasync %d\n", file, datasync);
219
220	nfs_inc_stats(inode, NFSIOS_VFSFSYNC);
221	do_resend = test_and_clear_bit(NFS_CONTEXT_RESEND_WRITES, &ctx->flags);
222	status = nfs_commit_inode(inode, FLUSH_SYNC);
223	if (test_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags)) {
224		ret = xchg(&ctx->error, 0);
225		if (ret)
226			goto out;
227	}
228	if (status < 0) {
229		ret = status;
230		goto out;
231	}
232	do_resend |= test_bit(NFS_CONTEXT_RESEND_WRITES, &ctx->flags);
233	if (do_resend)
234		ret = -EAGAIN;
235out:
236	return ret;
237}
238
239int
240nfs_file_fsync(struct file *file, loff_t start, loff_t end, int datasync)
241{
242	int ret;
243	struct inode *inode = file_inode(file);
244
245	trace_nfs_fsync_enter(inode);
246
247	do {
248		struct nfs_open_context *ctx = nfs_file_open_context(file);
249		ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
250		if (test_and_clear_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags)) {
251			int ret2 = xchg(&ctx->error, 0);
252			if (ret2)
253				ret = ret2;
254		}
255		if (ret != 0)
256			break;
257		ret = nfs_file_fsync_commit(file, datasync);
258		if (!ret)
259			ret = pnfs_sync_inode(inode, !!datasync);
260		/*
261		 * If nfs_file_fsync_commit detected a server reboot, then
262		 * resend all dirty pages that might have been covered by
263		 * the NFS_CONTEXT_RESEND_WRITES flag
264		 */
265		start = 0;
266		end = LLONG_MAX;
267	} while (ret == -EAGAIN);
268
269	trace_nfs_fsync_exit(inode, ret);
270	return ret;
271}
272EXPORT_SYMBOL_GPL(nfs_file_fsync);
273
274/*
275 * Decide whether a read/modify/write cycle may be more efficient
276 * then a modify/write/read cycle when writing to a page in the
277 * page cache.
278 *
 
 
 
 
 
 
279 * The modify/write/read cycle may occur if a page is read before
280 * being completely filled by the writer.  In this situation, the
281 * page must be completely written to stable storage on the server
282 * before it can be refilled by reading in the page from the server.
283 * This can lead to expensive, small, FILE_SYNC mode writes being
284 * done.
285 *
286 * It may be more efficient to read the page first if the file is
287 * open for reading in addition to writing, the page is not marked
288 * as Uptodate, it is not dirty or waiting to be committed,
289 * indicating that it was previously allocated and then modified,
290 * that there were valid bytes of data in that range of the file,
291 * and that the new data won't completely replace the old data in
292 * that range of the file.
293 */
294static int nfs_want_read_modify_write(struct file *file, struct page *page,
295			loff_t pos, unsigned len)
296{
297	unsigned int pglen = nfs_page_length(page);
298	unsigned int offset = pos & (PAGE_SIZE - 1);
299	unsigned int end = offset + len;
300
301	if (pnfs_ld_read_whole_page(file->f_mapping->host)) {
302		if (!PageUptodate(page))
303			return 1;
304		return 0;
305	}
306
307	if ((file->f_mode & FMODE_READ) &&	/* open for read? */
308	    !PageUptodate(page) &&		/* Uptodate? */
309	    !PagePrivate(page) &&		/* i/o request already? */
310	    pglen &&				/* valid bytes of file? */
311	    (end < pglen || offset))		/* replace all valid bytes? */
312		return 1;
313	return 0;
 
 
 
 
 
 
 
 
 
 
314}
315
316/*
317 * This does the "real" work of the write. We must allocate and lock the
318 * page to be sent back to the generic routine, which then copies the
319 * data from user space.
320 *
321 * If the writer ends up delaying the write, the writer needs to
322 * increment the page use counts until he is done with the page.
323 */
324static int nfs_write_begin(struct file *file, struct address_space *mapping,
325			loff_t pos, unsigned len, unsigned flags,
326			struct page **pagep, void **fsdata)
327{
328	int ret;
329	pgoff_t index = pos >> PAGE_SHIFT;
330	struct page *page;
331	int once_thru = 0;
332
333	dfprintk(PAGECACHE, "NFS: write_begin(%pD2(%lu), %u@%lld)\n",
334		file, mapping->host->i_ino, len, (long long) pos);
335
336start:
337	page = grab_cache_page_write_begin(mapping, index, flags);
338	if (!page)
339		return -ENOMEM;
340	*pagep = page;
341
342	ret = nfs_flush_incompatible(file, page);
343	if (ret) {
344		unlock_page(page);
345		put_page(page);
346	} else if (!once_thru &&
347		   nfs_want_read_modify_write(file, page, pos, len)) {
348		once_thru = 1;
349		ret = nfs_readpage(file, page);
350		put_page(page);
351		if (!ret)
352			goto start;
353	}
354	return ret;
355}
356
357static int nfs_write_end(struct file *file, struct address_space *mapping,
358			loff_t pos, unsigned len, unsigned copied,
359			struct page *page, void *fsdata)
360{
361	unsigned offset = pos & (PAGE_SIZE - 1);
362	struct nfs_open_context *ctx = nfs_file_open_context(file);
363	int status;
364
365	dfprintk(PAGECACHE, "NFS: write_end(%pD2(%lu), %u@%lld)\n",
366		file, mapping->host->i_ino, len, (long long) pos);
367
368	/*
369	 * Zero any uninitialised parts of the page, and then mark the page
370	 * as up to date if it turns out that we're extending the file.
371	 */
372	if (!PageUptodate(page)) {
373		unsigned pglen = nfs_page_length(page);
374		unsigned end = offset + copied;
375
376		if (pglen == 0) {
377			zero_user_segments(page, 0, offset,
378					end, PAGE_SIZE);
379			SetPageUptodate(page);
380		} else if (end >= pglen) {
381			zero_user_segment(page, end, PAGE_SIZE);
382			if (offset == 0)
383				SetPageUptodate(page);
384		} else
385			zero_user_segment(page, pglen, PAGE_SIZE);
386	}
387
388	status = nfs_updatepage(file, page, offset, copied);
389
390	unlock_page(page);
391	put_page(page);
392
393	if (status < 0)
394		return status;
395	NFS_I(mapping->host)->write_io += copied;
396
397	if (nfs_ctx_key_to_expire(ctx, mapping->host)) {
398		status = nfs_wb_all(mapping->host);
399		if (status < 0)
400			return status;
401	}
402
403	return copied;
404}
405
406/*
407 * Partially or wholly invalidate a page
408 * - Release the private state associated with a page if undergoing complete
409 *   page invalidation
410 * - Called if either PG_private or PG_fscache is set on the page
411 * - Caller holds page lock
412 */
413static void nfs_invalidate_page(struct page *page, unsigned int offset,
414				unsigned int length)
415{
416	dfprintk(PAGECACHE, "NFS: invalidate_page(%p, %u, %u)\n",
417		 page, offset, length);
418
419	if (offset != 0 || length < PAGE_SIZE)
420		return;
421	/* Cancel any unstarted writes on this page */
422	nfs_wb_page_cancel(page_file_mapping(page)->host, page);
423
424	nfs_fscache_invalidate_page(page, page->mapping->host);
425}
426
427/*
428 * Attempt to release the private state associated with a page
429 * - Called if either PG_private or PG_fscache is set on the page
430 * - Caller holds page lock
431 * - Return true (may release page) or false (may not)
432 */
433static int nfs_release_page(struct page *page, gfp_t gfp)
434{
435	dfprintk(PAGECACHE, "NFS: release_page(%p)\n", page);
436
437	/* If PagePrivate() is set, then the page is not freeable */
438	if (PagePrivate(page))
439		return 0;
440	return nfs_fscache_release_page(page, gfp);
441}
442
443static void nfs_check_dirty_writeback(struct page *page,
444				bool *dirty, bool *writeback)
445{
446	struct nfs_inode *nfsi;
447	struct address_space *mapping = page_file_mapping(page);
448
449	if (!mapping || PageSwapCache(page))
450		return;
451
452	/*
453	 * Check if an unstable page is currently being committed and
454	 * if so, have the VM treat it as if the page is under writeback
455	 * so it will not block due to pages that will shortly be freeable.
456	 */
457	nfsi = NFS_I(mapping->host);
458	if (atomic_read(&nfsi->commit_info.rpcs_out)) {
459		*writeback = true;
460		return;
461	}
462
463	/*
464	 * If PagePrivate() is set, then the page is not freeable and as the
465	 * inode is not being committed, it's not going to be cleaned in the
466	 * near future so treat it as dirty
467	 */
468	if (PagePrivate(page))
469		*dirty = true;
470}
471
472/*
473 * Attempt to clear the private state associated with a page when an error
474 * occurs that requires the cached contents of an inode to be written back or
475 * destroyed
476 * - Called if either PG_private or fscache is set on the page
477 * - Caller holds page lock
478 * - Return 0 if successful, -error otherwise
479 */
480static int nfs_launder_page(struct page *page)
481{
482	struct inode *inode = page_file_mapping(page)->host;
483	struct nfs_inode *nfsi = NFS_I(inode);
484
485	dfprintk(PAGECACHE, "NFS: launder_page(%ld, %llu)\n",
486		inode->i_ino, (long long)page_offset(page));
487
488	nfs_fscache_wait_on_page_write(nfsi, page);
489	return nfs_wb_page(inode, page);
490}
491
492static int nfs_swap_activate(struct swap_info_struct *sis, struct file *file,
493						sector_t *span)
494{
495	struct rpc_clnt *clnt = NFS_CLIENT(file->f_mapping->host);
496
497	*span = sis->pages;
498
499	return rpc_clnt_swap_activate(clnt);
500}
501
502static void nfs_swap_deactivate(struct file *file)
503{
504	struct rpc_clnt *clnt = NFS_CLIENT(file->f_mapping->host);
505
506	rpc_clnt_swap_deactivate(clnt);
507}
508
509const struct address_space_operations nfs_file_aops = {
510	.readpage = nfs_readpage,
511	.readpages = nfs_readpages,
512	.set_page_dirty = __set_page_dirty_nobuffers,
513	.writepage = nfs_writepage,
514	.writepages = nfs_writepages,
515	.write_begin = nfs_write_begin,
516	.write_end = nfs_write_end,
517	.invalidatepage = nfs_invalidate_page,
518	.releasepage = nfs_release_page,
519	.direct_IO = nfs_direct_IO,
520#ifdef CONFIG_MIGRATION
521	.migratepage = nfs_migrate_page,
522#endif
523	.launder_page = nfs_launder_page,
524	.is_dirty_writeback = nfs_check_dirty_writeback,
525	.error_remove_page = generic_error_remove_page,
526	.swap_activate = nfs_swap_activate,
527	.swap_deactivate = nfs_swap_deactivate,
528};
529
530/*
531 * Notification that a PTE pointing to an NFS page is about to be made
532 * writable, implying that someone is about to modify the page through a
533 * shared-writable mapping
534 */
535static int nfs_vm_page_mkwrite(struct vm_fault *vmf)
536{
537	struct page *page = vmf->page;
538	struct file *filp = vmf->vma->vm_file;
539	struct inode *inode = file_inode(filp);
540	unsigned pagelen;
541	int ret = VM_FAULT_NOPAGE;
542	struct address_space *mapping;
543
544	dfprintk(PAGECACHE, "NFS: vm_page_mkwrite(%pD2(%lu), offset %lld)\n",
545		filp, filp->f_mapping->host->i_ino,
546		(long long)page_offset(page));
547
548	sb_start_pagefault(inode->i_sb);
549
550	/* make sure the cache has finished storing the page */
551	nfs_fscache_wait_on_page_write(NFS_I(inode), page);
552
553	wait_on_bit_action(&NFS_I(inode)->flags, NFS_INO_INVALIDATING,
554			nfs_wait_bit_killable, TASK_KILLABLE);
555
556	lock_page(page);
557	mapping = page_file_mapping(page);
558	if (mapping != inode->i_mapping)
559		goto out_unlock;
560
561	wait_on_page_writeback(page);
562
563	pagelen = nfs_page_length(page);
564	if (pagelen == 0)
565		goto out_unlock;
566
567	ret = VM_FAULT_LOCKED;
568	if (nfs_flush_incompatible(filp, page) == 0 &&
569	    nfs_updatepage(filp, page, 0, pagelen) == 0)
570		goto out;
571
572	ret = VM_FAULT_SIGBUS;
573out_unlock:
574	unlock_page(page);
575out:
576	sb_end_pagefault(inode->i_sb);
577	return ret;
578}
579
580static const struct vm_operations_struct nfs_file_vm_ops = {
581	.fault = filemap_fault,
582	.map_pages = filemap_map_pages,
583	.page_mkwrite = nfs_vm_page_mkwrite,
584};
585
586static int nfs_need_check_write(struct file *filp, struct inode *inode)
587{
588	struct nfs_open_context *ctx;
589
590	ctx = nfs_file_open_context(filp);
591	if (test_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags) ||
592	    nfs_ctx_key_to_expire(ctx, inode))
593		return 1;
594	return 0;
595}
596
597ssize_t nfs_file_write(struct kiocb *iocb, struct iov_iter *from)
598{
599	struct file *file = iocb->ki_filp;
600	struct inode *inode = file_inode(file);
601	unsigned long written = 0;
602	ssize_t result;
603
604	result = nfs_key_timeout_notify(file, inode);
605	if (result)
606		return result;
607
608	if (iocb->ki_flags & IOCB_DIRECT)
609		return nfs_file_direct_write(iocb, from);
610
611	dprintk("NFS: write(%pD2, %zu@%Ld)\n",
612		file, iov_iter_count(from), (long long) iocb->ki_pos);
613
614	if (IS_SWAPFILE(inode))
615		goto out_swapfile;
616	/*
617	 * O_APPEND implies that we must revalidate the file length.
618	 */
619	if (iocb->ki_flags & IOCB_APPEND) {
620		result = nfs_revalidate_file_size(inode, file);
621		if (result)
622			goto out;
623	}
624	if (iocb->ki_pos > i_size_read(inode))
625		nfs_revalidate_mapping(inode, file->f_mapping);
626
627	nfs_start_io_write(inode);
628	result = generic_write_checks(iocb, from);
629	if (result > 0) {
630		current->backing_dev_info = inode_to_bdi(inode);
631		result = generic_perform_write(file, from, iocb->ki_pos);
632		current->backing_dev_info = NULL;
633	}
634	nfs_end_io_write(inode);
635	if (result <= 0)
636		goto out;
637
638	written = result;
639	iocb->ki_pos += written;
640	result = generic_write_sync(iocb, written);
641	if (result < 0)
642		goto out;
643
644	/* Return error values */
645	if (nfs_need_check_write(file, inode)) {
646		int err = vfs_fsync(file, 0);
647		if (err < 0)
648			result = err;
649	}
650	nfs_add_stats(inode, NFSIOS_NORMALWRITTENBYTES, written);
651out:
652	return result;
653
654out_swapfile:
655	printk(KERN_INFO "NFS: attempt to write to active swap file!\n");
656	return -EBUSY;
657}
658EXPORT_SYMBOL_GPL(nfs_file_write);
659
660static int
661do_getlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
662{
663	struct inode *inode = filp->f_mapping->host;
664	int status = 0;
665	unsigned int saved_type = fl->fl_type;
666
667	/* Try local locking first */
668	posix_test_lock(filp, fl);
669	if (fl->fl_type != F_UNLCK) {
670		/* found a conflict */
671		goto out;
672	}
673	fl->fl_type = saved_type;
674
675	if (NFS_PROTO(inode)->have_delegation(inode, FMODE_READ))
676		goto out_noconflict;
677
678	if (is_local)
679		goto out_noconflict;
680
681	status = NFS_PROTO(inode)->lock(filp, cmd, fl);
682out:
683	return status;
684out_noconflict:
685	fl->fl_type = F_UNLCK;
686	goto out;
687}
688
689static int
690do_unlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
691{
692	struct inode *inode = filp->f_mapping->host;
693	struct nfs_lock_context *l_ctx;
694	int status;
695
696	/*
697	 * Flush all pending writes before doing anything
698	 * with locks..
699	 */
700	vfs_fsync(filp, 0);
701
702	l_ctx = nfs_get_lock_context(nfs_file_open_context(filp));
703	if (!IS_ERR(l_ctx)) {
704		status = nfs_iocounter_wait(l_ctx);
705		nfs_put_lock_context(l_ctx);
706		/*  NOTE: special case
707		 * 	If we're signalled while cleaning up locks on process exit, we
708		 * 	still need to complete the unlock.
709		 */
710		if (status < 0 && !(fl->fl_flags & FL_CLOSE))
711			return status;
712	}
713
714	/*
715	 * Use local locking if mounted with "-onolock" or with appropriate
716	 * "-olocal_lock="
717	 */
718	if (!is_local)
719		status = NFS_PROTO(inode)->lock(filp, cmd, fl);
720	else
721		status = locks_lock_file_wait(filp, fl);
722	return status;
723}
724
725static int
726do_setlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
727{
728	struct inode *inode = filp->f_mapping->host;
729	int status;
730
731	/*
732	 * Flush all pending writes before doing anything
733	 * with locks..
734	 */
735	status = nfs_sync_mapping(filp->f_mapping);
736	if (status != 0)
737		goto out;
738
739	/*
740	 * Use local locking if mounted with "-onolock" or with appropriate
741	 * "-olocal_lock="
742	 */
743	if (!is_local)
744		status = NFS_PROTO(inode)->lock(filp, cmd, fl);
745	else
746		status = locks_lock_file_wait(filp, fl);
747	if (status < 0)
748		goto out;
749
750	/*
751	 * Invalidate cache to prevent missing any changes.  If
752	 * the file is mapped, clear the page cache as well so
753	 * those mappings will be loaded.
754	 *
755	 * This makes locking act as a cache coherency point.
756	 */
757	nfs_sync_mapping(filp->f_mapping);
758	if (!NFS_PROTO(inode)->have_delegation(inode, FMODE_READ)) {
759		nfs_zap_caches(inode);
760		if (mapping_mapped(filp->f_mapping))
761			nfs_revalidate_mapping(inode, filp->f_mapping);
762	}
763out:
764	return status;
765}
766
767/*
768 * Lock a (portion of) a file
769 */
770int nfs_lock(struct file *filp, int cmd, struct file_lock *fl)
771{
772	struct inode *inode = filp->f_mapping->host;
773	int ret = -ENOLCK;
774	int is_local = 0;
775
776	dprintk("NFS: lock(%pD2, t=%x, fl=%x, r=%lld:%lld)\n",
777			filp, fl->fl_type, fl->fl_flags,
778			(long long)fl->fl_start, (long long)fl->fl_end);
779
780	nfs_inc_stats(inode, NFSIOS_VFSLOCK);
781
782	/* No mandatory locks over NFS */
783	if (__mandatory_lock(inode) && fl->fl_type != F_UNLCK)
784		goto out_err;
785
786	if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FCNTL)
787		is_local = 1;
788
789	if (NFS_PROTO(inode)->lock_check_bounds != NULL) {
790		ret = NFS_PROTO(inode)->lock_check_bounds(fl);
791		if (ret < 0)
792			goto out_err;
793	}
794
795	if (IS_GETLK(cmd))
796		ret = do_getlk(filp, cmd, fl, is_local);
797	else if (fl->fl_type == F_UNLCK)
798		ret = do_unlk(filp, cmd, fl, is_local);
799	else
800		ret = do_setlk(filp, cmd, fl, is_local);
801out_err:
802	return ret;
803}
804EXPORT_SYMBOL_GPL(nfs_lock);
805
806/*
807 * Lock a (portion of) a file
808 */
809int nfs_flock(struct file *filp, int cmd, struct file_lock *fl)
810{
811	struct inode *inode = filp->f_mapping->host;
812	int is_local = 0;
813
814	dprintk("NFS: flock(%pD2, t=%x, fl=%x)\n",
815			filp, fl->fl_type, fl->fl_flags);
816
817	if (!(fl->fl_flags & FL_FLOCK))
818		return -ENOLCK;
819
820	/*
821	 * The NFSv4 protocol doesn't support LOCK_MAND, which is not part of
822	 * any standard. In principle we might be able to support LOCK_MAND
823	 * on NFSv2/3 since NLMv3/4 support DOS share modes, but for now the
824	 * NFS code is not set up for it.
825	 */
826	if (fl->fl_type & LOCK_MAND)
827		return -EINVAL;
828
829	if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FLOCK)
830		is_local = 1;
831
832	/* We're simulating flock() locks using posix locks on the server */
833	if (fl->fl_type == F_UNLCK)
834		return do_unlk(filp, cmd, fl, is_local);
835	return do_setlk(filp, cmd, fl, is_local);
836}
837EXPORT_SYMBOL_GPL(nfs_flock);
838
839const struct file_operations nfs_file_operations = {
840	.llseek		= nfs_file_llseek,
841	.read_iter	= nfs_file_read,
842	.write_iter	= nfs_file_write,
843	.mmap		= nfs_file_mmap,
844	.open		= nfs_file_open,
845	.flush		= nfs_file_flush,
846	.release	= nfs_file_release,
847	.fsync		= nfs_file_fsync,
848	.lock		= nfs_lock,
849	.flock		= nfs_flock,
850	.splice_read	= generic_file_splice_read,
851	.splice_write	= iter_file_splice_write,
852	.check_flags	= nfs_check_flags,
853	.setlease	= simple_nosetlease,
854};
855EXPORT_SYMBOL_GPL(nfs_file_operations);
v5.4
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 *  linux/fs/nfs/file.c
  4 *
  5 *  Copyright (C) 1992  Rick Sladkey
  6 *
  7 *  Changes Copyright (C) 1994 by Florian La Roche
  8 *   - Do not copy data too often around in the kernel.
  9 *   - In nfs_file_read the return value of kmalloc wasn't checked.
 10 *   - Put in a better version of read look-ahead buffering. Original idea
 11 *     and implementation by Wai S Kok elekokws@ee.nus.sg.
 12 *
 13 *  Expire cache on write to a file by Wai S Kok (Oct 1994).
 14 *
 15 *  Total rewrite of read side for new NFS buffer cache.. Linus.
 16 *
 17 *  nfs regular file handling functions
 18 */
 19
 20#include <linux/module.h>
 21#include <linux/time.h>
 22#include <linux/kernel.h>
 23#include <linux/errno.h>
 24#include <linux/fcntl.h>
 25#include <linux/stat.h>
 26#include <linux/nfs_fs.h>
 27#include <linux/nfs_mount.h>
 28#include <linux/mm.h>
 29#include <linux/pagemap.h>
 30#include <linux/gfp.h>
 31#include <linux/swap.h>
 32
 33#include <linux/uaccess.h>
 34
 35#include "delegation.h"
 36#include "internal.h"
 37#include "iostat.h"
 38#include "fscache.h"
 39#include "pnfs.h"
 40
 41#include "nfstrace.h"
 42
 43#define NFSDBG_FACILITY		NFSDBG_FILE
 44
 45static const struct vm_operations_struct nfs_file_vm_ops;
 46
 47/* Hack for future NFS swap support */
 48#ifndef IS_SWAPFILE
 49# define IS_SWAPFILE(inode)	(0)
 50#endif
 51
 52int nfs_check_flags(int flags)
 53{
 54	if ((flags & (O_APPEND | O_DIRECT)) == (O_APPEND | O_DIRECT))
 55		return -EINVAL;
 56
 57	return 0;
 58}
 59EXPORT_SYMBOL_GPL(nfs_check_flags);
 60
 61/*
 62 * Open file
 63 */
 64static int
 65nfs_file_open(struct inode *inode, struct file *filp)
 66{
 67	int res;
 68
 69	dprintk("NFS: open file(%pD2)\n", filp);
 70
 71	nfs_inc_stats(inode, NFSIOS_VFSOPEN);
 72	res = nfs_check_flags(filp->f_flags);
 73	if (res)
 74		return res;
 75
 76	res = nfs_open(inode, filp);
 77	return res;
 78}
 79
 80int
 81nfs_file_release(struct inode *inode, struct file *filp)
 82{
 83	dprintk("NFS: release(%pD2)\n", filp);
 84
 85	nfs_inc_stats(inode, NFSIOS_VFSRELEASE);
 86	nfs_file_clear_open_context(filp);
 87	return 0;
 88}
 89EXPORT_SYMBOL_GPL(nfs_file_release);
 90
 91/**
 92 * nfs_revalidate_size - Revalidate the file size
 93 * @inode: pointer to inode struct
 94 * @filp: pointer to struct file
 95 *
 96 * Revalidates the file length. This is basically a wrapper around
 97 * nfs_revalidate_inode() that takes into account the fact that we may
 98 * have cached writes (in which case we don't care about the server's
 99 * idea of what the file length is), or O_DIRECT (in which case we
100 * shouldn't trust the cache).
101 */
102static int nfs_revalidate_file_size(struct inode *inode, struct file *filp)
103{
104	struct nfs_server *server = NFS_SERVER(inode);
105
106	if (filp->f_flags & O_DIRECT)
107		goto force_reval;
108	if (nfs_check_cache_invalid(inode, NFS_INO_REVAL_PAGECACHE))
109		goto force_reval;
110	return 0;
111force_reval:
112	return __nfs_revalidate_inode(server, inode);
113}
114
115loff_t nfs_file_llseek(struct file *filp, loff_t offset, int whence)
116{
117	dprintk("NFS: llseek file(%pD2, %lld, %d)\n",
118			filp, offset, whence);
119
120	/*
121	 * whence == SEEK_END || SEEK_DATA || SEEK_HOLE => we must revalidate
122	 * the cached file length
123	 */
124	if (whence != SEEK_SET && whence != SEEK_CUR) {
125		struct inode *inode = filp->f_mapping->host;
126
127		int retval = nfs_revalidate_file_size(inode, filp);
128		if (retval < 0)
129			return (loff_t)retval;
130	}
131
132	return generic_file_llseek(filp, offset, whence);
133}
134EXPORT_SYMBOL_GPL(nfs_file_llseek);
135
136/*
137 * Flush all dirty pages, and check for write errors.
138 */
139static int
140nfs_file_flush(struct file *file, fl_owner_t id)
141{
142	struct inode	*inode = file_inode(file);
143
144	dprintk("NFS: flush(%pD2)\n", file);
145
146	nfs_inc_stats(inode, NFSIOS_VFSFLUSH);
147	if ((file->f_mode & FMODE_WRITE) == 0)
148		return 0;
149
150	/* Flush writes to the server and return any errors */
151	return nfs_wb_all(inode);
152}
153
154ssize_t
155nfs_file_read(struct kiocb *iocb, struct iov_iter *to)
156{
157	struct inode *inode = file_inode(iocb->ki_filp);
158	ssize_t result;
159
160	if (iocb->ki_flags & IOCB_DIRECT)
161		return nfs_file_direct_read(iocb, to);
162
163	dprintk("NFS: read(%pD2, %zu@%lu)\n",
164		iocb->ki_filp,
165		iov_iter_count(to), (unsigned long) iocb->ki_pos);
166
167	nfs_start_io_read(inode);
168	result = nfs_revalidate_mapping(inode, iocb->ki_filp->f_mapping);
169	if (!result) {
170		result = generic_file_read_iter(iocb, to);
171		if (result > 0)
172			nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, result);
173	}
174	nfs_end_io_read(inode);
175	return result;
176}
177EXPORT_SYMBOL_GPL(nfs_file_read);
178
179int
180nfs_file_mmap(struct file * file, struct vm_area_struct * vma)
181{
182	struct inode *inode = file_inode(file);
183	int	status;
184
185	dprintk("NFS: mmap(%pD2)\n", file);
186
187	/* Note: generic_file_mmap() returns ENOSYS on nommu systems
188	 *       so we call that before revalidating the mapping
189	 */
190	status = generic_file_mmap(file, vma);
191	if (!status) {
192		vma->vm_ops = &nfs_file_vm_ops;
193		status = nfs_revalidate_mapping(inode, file->f_mapping);
194	}
195	return status;
196}
197EXPORT_SYMBOL_GPL(nfs_file_mmap);
198
199/*
200 * Flush any dirty pages for this process, and check for write errors.
201 * The return status from this call provides a reliable indication of
202 * whether any write errors occurred for this process.
 
 
 
 
 
 
 
203 */
204static int
205nfs_file_fsync_commit(struct file *file, int datasync)
206{
207	struct nfs_open_context *ctx = nfs_file_open_context(file);
208	struct inode *inode = file_inode(file);
209	int do_resend, status;
210	int ret = 0;
211
212	dprintk("NFS: fsync file(%pD2) datasync %d\n", file, datasync);
213
214	nfs_inc_stats(inode, NFSIOS_VFSFSYNC);
215	do_resend = test_and_clear_bit(NFS_CONTEXT_RESEND_WRITES, &ctx->flags);
216	status = nfs_commit_inode(inode, FLUSH_SYNC);
217	if (status == 0)
218		status = file_check_and_advance_wb_err(file);
 
 
 
219	if (status < 0) {
220		ret = status;
221		goto out;
222	}
223	do_resend |= test_bit(NFS_CONTEXT_RESEND_WRITES, &ctx->flags);
224	if (do_resend)
225		ret = -EAGAIN;
226out:
227	return ret;
228}
229
230int
231nfs_file_fsync(struct file *file, loff_t start, loff_t end, int datasync)
232{
233	int ret;
234	struct inode *inode = file_inode(file);
235
236	trace_nfs_fsync_enter(inode);
237
238	do {
239		ret = file_write_and_wait_range(file, start, end);
 
 
 
 
 
 
240		if (ret != 0)
241			break;
242		ret = nfs_file_fsync_commit(file, datasync);
243		if (!ret)
244			ret = pnfs_sync_inode(inode, !!datasync);
245		/*
246		 * If nfs_file_fsync_commit detected a server reboot, then
247		 * resend all dirty pages that might have been covered by
248		 * the NFS_CONTEXT_RESEND_WRITES flag
249		 */
250		start = 0;
251		end = LLONG_MAX;
252	} while (ret == -EAGAIN);
253
254	trace_nfs_fsync_exit(inode, ret);
255	return ret;
256}
257EXPORT_SYMBOL_GPL(nfs_file_fsync);
258
259/*
260 * Decide whether a read/modify/write cycle may be more efficient
261 * then a modify/write/read cycle when writing to a page in the
262 * page cache.
263 *
264 * Some pNFS layout drivers can only read/write at a certain block
265 * granularity like all block devices and therefore we must perform
266 * read/modify/write whenever a page hasn't read yet and the data
267 * to be written there is not aligned to a block boundary and/or
268 * smaller than the block size.
269 *
270 * The modify/write/read cycle may occur if a page is read before
271 * being completely filled by the writer.  In this situation, the
272 * page must be completely written to stable storage on the server
273 * before it can be refilled by reading in the page from the server.
274 * This can lead to expensive, small, FILE_SYNC mode writes being
275 * done.
276 *
277 * It may be more efficient to read the page first if the file is
278 * open for reading in addition to writing, the page is not marked
279 * as Uptodate, it is not dirty or waiting to be committed,
280 * indicating that it was previously allocated and then modified,
281 * that there were valid bytes of data in that range of the file,
282 * and that the new data won't completely replace the old data in
283 * that range of the file.
284 */
285static bool nfs_full_page_write(struct page *page, loff_t pos, unsigned int len)
 
286{
287	unsigned int pglen = nfs_page_length(page);
288	unsigned int offset = pos & (PAGE_SIZE - 1);
289	unsigned int end = offset + len;
290
291	return !pglen || (end >= pglen && !offset);
292}
 
 
 
293
294static bool nfs_want_read_modify_write(struct file *file, struct page *page,
295			loff_t pos, unsigned int len)
296{
297	/*
298	 * Up-to-date pages, those with ongoing or full-page write
299	 * don't need read/modify/write
300	 */
301	if (PageUptodate(page) || PagePrivate(page) ||
302	    nfs_full_page_write(page, pos, len))
303		return false;
304
305	if (pnfs_ld_read_whole_page(file->f_mapping->host))
306		return true;
307	/* Open for reading too? */
308	if (file->f_mode & FMODE_READ)
309		return true;
310	return false;
311}
312
313/*
314 * This does the "real" work of the write. We must allocate and lock the
315 * page to be sent back to the generic routine, which then copies the
316 * data from user space.
317 *
318 * If the writer ends up delaying the write, the writer needs to
319 * increment the page use counts until he is done with the page.
320 */
321static int nfs_write_begin(struct file *file, struct address_space *mapping,
322			loff_t pos, unsigned len, unsigned flags,
323			struct page **pagep, void **fsdata)
324{
325	int ret;
326	pgoff_t index = pos >> PAGE_SHIFT;
327	struct page *page;
328	int once_thru = 0;
329
330	dfprintk(PAGECACHE, "NFS: write_begin(%pD2(%lu), %u@%lld)\n",
331		file, mapping->host->i_ino, len, (long long) pos);
332
333start:
334	page = grab_cache_page_write_begin(mapping, index, flags);
335	if (!page)
336		return -ENOMEM;
337	*pagep = page;
338
339	ret = nfs_flush_incompatible(file, page);
340	if (ret) {
341		unlock_page(page);
342		put_page(page);
343	} else if (!once_thru &&
344		   nfs_want_read_modify_write(file, page, pos, len)) {
345		once_thru = 1;
346		ret = nfs_readpage(file, page);
347		put_page(page);
348		if (!ret)
349			goto start;
350	}
351	return ret;
352}
353
354static int nfs_write_end(struct file *file, struct address_space *mapping,
355			loff_t pos, unsigned len, unsigned copied,
356			struct page *page, void *fsdata)
357{
358	unsigned offset = pos & (PAGE_SIZE - 1);
359	struct nfs_open_context *ctx = nfs_file_open_context(file);
360	int status;
361
362	dfprintk(PAGECACHE, "NFS: write_end(%pD2(%lu), %u@%lld)\n",
363		file, mapping->host->i_ino, len, (long long) pos);
364
365	/*
366	 * Zero any uninitialised parts of the page, and then mark the page
367	 * as up to date if it turns out that we're extending the file.
368	 */
369	if (!PageUptodate(page)) {
370		unsigned pglen = nfs_page_length(page);
371		unsigned end = offset + copied;
372
373		if (pglen == 0) {
374			zero_user_segments(page, 0, offset,
375					end, PAGE_SIZE);
376			SetPageUptodate(page);
377		} else if (end >= pglen) {
378			zero_user_segment(page, end, PAGE_SIZE);
379			if (offset == 0)
380				SetPageUptodate(page);
381		} else
382			zero_user_segment(page, pglen, PAGE_SIZE);
383	}
384
385	status = nfs_updatepage(file, page, offset, copied);
386
387	unlock_page(page);
388	put_page(page);
389
390	if (status < 0)
391		return status;
392	NFS_I(mapping->host)->write_io += copied;
393
394	if (nfs_ctx_key_to_expire(ctx, mapping->host)) {
395		status = nfs_wb_all(mapping->host);
396		if (status < 0)
397			return status;
398	}
399
400	return copied;
401}
402
403/*
404 * Partially or wholly invalidate a page
405 * - Release the private state associated with a page if undergoing complete
406 *   page invalidation
407 * - Called if either PG_private or PG_fscache is set on the page
408 * - Caller holds page lock
409 */
410static void nfs_invalidate_page(struct page *page, unsigned int offset,
411				unsigned int length)
412{
413	dfprintk(PAGECACHE, "NFS: invalidate_page(%p, %u, %u)\n",
414		 page, offset, length);
415
416	if (offset != 0 || length < PAGE_SIZE)
417		return;
418	/* Cancel any unstarted writes on this page */
419	nfs_wb_page_cancel(page_file_mapping(page)->host, page);
420
421	nfs_fscache_invalidate_page(page, page->mapping->host);
422}
423
424/*
425 * Attempt to release the private state associated with a page
426 * - Called if either PG_private or PG_fscache is set on the page
427 * - Caller holds page lock
428 * - Return true (may release page) or false (may not)
429 */
430static int nfs_release_page(struct page *page, gfp_t gfp)
431{
432	dfprintk(PAGECACHE, "NFS: release_page(%p)\n", page);
433
434	/* If PagePrivate() is set, then the page is not freeable */
435	if (PagePrivate(page))
436		return 0;
437	return nfs_fscache_release_page(page, gfp);
438}
439
440static void nfs_check_dirty_writeback(struct page *page,
441				bool *dirty, bool *writeback)
442{
443	struct nfs_inode *nfsi;
444	struct address_space *mapping = page_file_mapping(page);
445
446	if (!mapping || PageSwapCache(page))
447		return;
448
449	/*
450	 * Check if an unstable page is currently being committed and
451	 * if so, have the VM treat it as if the page is under writeback
452	 * so it will not block due to pages that will shortly be freeable.
453	 */
454	nfsi = NFS_I(mapping->host);
455	if (atomic_read(&nfsi->commit_info.rpcs_out)) {
456		*writeback = true;
457		return;
458	}
459
460	/*
461	 * If PagePrivate() is set, then the page is not freeable and as the
462	 * inode is not being committed, it's not going to be cleaned in the
463	 * near future so treat it as dirty
464	 */
465	if (PagePrivate(page))
466		*dirty = true;
467}
468
469/*
470 * Attempt to clear the private state associated with a page when an error
471 * occurs that requires the cached contents of an inode to be written back or
472 * destroyed
473 * - Called if either PG_private or fscache is set on the page
474 * - Caller holds page lock
475 * - Return 0 if successful, -error otherwise
476 */
477static int nfs_launder_page(struct page *page)
478{
479	struct inode *inode = page_file_mapping(page)->host;
480	struct nfs_inode *nfsi = NFS_I(inode);
481
482	dfprintk(PAGECACHE, "NFS: launder_page(%ld, %llu)\n",
483		inode->i_ino, (long long)page_offset(page));
484
485	nfs_fscache_wait_on_page_write(nfsi, page);
486	return nfs_wb_page(inode, page);
487}
488
489static int nfs_swap_activate(struct swap_info_struct *sis, struct file *file,
490						sector_t *span)
491{
492	struct rpc_clnt *clnt = NFS_CLIENT(file->f_mapping->host);
493
494	*span = sis->pages;
495
496	return rpc_clnt_swap_activate(clnt);
497}
498
499static void nfs_swap_deactivate(struct file *file)
500{
501	struct rpc_clnt *clnt = NFS_CLIENT(file->f_mapping->host);
502
503	rpc_clnt_swap_deactivate(clnt);
504}
505
506const struct address_space_operations nfs_file_aops = {
507	.readpage = nfs_readpage,
508	.readpages = nfs_readpages,
509	.set_page_dirty = __set_page_dirty_nobuffers,
510	.writepage = nfs_writepage,
511	.writepages = nfs_writepages,
512	.write_begin = nfs_write_begin,
513	.write_end = nfs_write_end,
514	.invalidatepage = nfs_invalidate_page,
515	.releasepage = nfs_release_page,
516	.direct_IO = nfs_direct_IO,
517#ifdef CONFIG_MIGRATION
518	.migratepage = nfs_migrate_page,
519#endif
520	.launder_page = nfs_launder_page,
521	.is_dirty_writeback = nfs_check_dirty_writeback,
522	.error_remove_page = generic_error_remove_page,
523	.swap_activate = nfs_swap_activate,
524	.swap_deactivate = nfs_swap_deactivate,
525};
526
527/*
528 * Notification that a PTE pointing to an NFS page is about to be made
529 * writable, implying that someone is about to modify the page through a
530 * shared-writable mapping
531 */
532static vm_fault_t nfs_vm_page_mkwrite(struct vm_fault *vmf)
533{
534	struct page *page = vmf->page;
535	struct file *filp = vmf->vma->vm_file;
536	struct inode *inode = file_inode(filp);
537	unsigned pagelen;
538	vm_fault_t ret = VM_FAULT_NOPAGE;
539	struct address_space *mapping;
540
541	dfprintk(PAGECACHE, "NFS: vm_page_mkwrite(%pD2(%lu), offset %lld)\n",
542		filp, filp->f_mapping->host->i_ino,
543		(long long)page_offset(page));
544
545	sb_start_pagefault(inode->i_sb);
546
547	/* make sure the cache has finished storing the page */
548	nfs_fscache_wait_on_page_write(NFS_I(inode), page);
549
550	wait_on_bit_action(&NFS_I(inode)->flags, NFS_INO_INVALIDATING,
551			nfs_wait_bit_killable, TASK_KILLABLE);
552
553	lock_page(page);
554	mapping = page_file_mapping(page);
555	if (mapping != inode->i_mapping)
556		goto out_unlock;
557
558	wait_on_page_writeback(page);
559
560	pagelen = nfs_page_length(page);
561	if (pagelen == 0)
562		goto out_unlock;
563
564	ret = VM_FAULT_LOCKED;
565	if (nfs_flush_incompatible(filp, page) == 0 &&
566	    nfs_updatepage(filp, page, 0, pagelen) == 0)
567		goto out;
568
569	ret = VM_FAULT_SIGBUS;
570out_unlock:
571	unlock_page(page);
572out:
573	sb_end_pagefault(inode->i_sb);
574	return ret;
575}
576
577static const struct vm_operations_struct nfs_file_vm_ops = {
578	.fault = filemap_fault,
579	.map_pages = filemap_map_pages,
580	.page_mkwrite = nfs_vm_page_mkwrite,
581};
582
583static int nfs_need_check_write(struct file *filp, struct inode *inode)
584{
585	struct nfs_open_context *ctx;
586
587	ctx = nfs_file_open_context(filp);
588	if (nfs_ctx_key_to_expire(ctx, inode))
 
589		return 1;
590	return 0;
591}
592
593ssize_t nfs_file_write(struct kiocb *iocb, struct iov_iter *from)
594{
595	struct file *file = iocb->ki_filp;
596	struct inode *inode = file_inode(file);
597	unsigned long written = 0;
598	ssize_t result;
599
600	result = nfs_key_timeout_notify(file, inode);
601	if (result)
602		return result;
603
604	if (iocb->ki_flags & IOCB_DIRECT)
605		return nfs_file_direct_write(iocb, from);
606
607	dprintk("NFS: write(%pD2, %zu@%Ld)\n",
608		file, iov_iter_count(from), (long long) iocb->ki_pos);
609
610	if (IS_SWAPFILE(inode))
611		goto out_swapfile;
612	/*
613	 * O_APPEND implies that we must revalidate the file length.
614	 */
615	if (iocb->ki_flags & IOCB_APPEND) {
616		result = nfs_revalidate_file_size(inode, file);
617		if (result)
618			goto out;
619	}
620	if (iocb->ki_pos > i_size_read(inode))
621		nfs_revalidate_mapping(inode, file->f_mapping);
622
623	nfs_start_io_write(inode);
624	result = generic_write_checks(iocb, from);
625	if (result > 0) {
626		current->backing_dev_info = inode_to_bdi(inode);
627		result = generic_perform_write(file, from, iocb->ki_pos);
628		current->backing_dev_info = NULL;
629	}
630	nfs_end_io_write(inode);
631	if (result <= 0)
632		goto out;
633
634	written = result;
635	iocb->ki_pos += written;
636	result = generic_write_sync(iocb, written);
637	if (result < 0)
638		goto out;
639
640	/* Return error values */
641	if (nfs_need_check_write(file, inode)) {
642		int err = nfs_wb_all(inode);
643		if (err < 0)
644			result = err;
645	}
646	nfs_add_stats(inode, NFSIOS_NORMALWRITTENBYTES, written);
647out:
648	return result;
649
650out_swapfile:
651	printk(KERN_INFO "NFS: attempt to write to active swap file!\n");
652	return -EBUSY;
653}
654EXPORT_SYMBOL_GPL(nfs_file_write);
655
656static int
657do_getlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
658{
659	struct inode *inode = filp->f_mapping->host;
660	int status = 0;
661	unsigned int saved_type = fl->fl_type;
662
663	/* Try local locking first */
664	posix_test_lock(filp, fl);
665	if (fl->fl_type != F_UNLCK) {
666		/* found a conflict */
667		goto out;
668	}
669	fl->fl_type = saved_type;
670
671	if (NFS_PROTO(inode)->have_delegation(inode, FMODE_READ))
672		goto out_noconflict;
673
674	if (is_local)
675		goto out_noconflict;
676
677	status = NFS_PROTO(inode)->lock(filp, cmd, fl);
678out:
679	return status;
680out_noconflict:
681	fl->fl_type = F_UNLCK;
682	goto out;
683}
684
685static int
686do_unlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
687{
688	struct inode *inode = filp->f_mapping->host;
689	struct nfs_lock_context *l_ctx;
690	int status;
691
692	/*
693	 * Flush all pending writes before doing anything
694	 * with locks..
695	 */
696	nfs_wb_all(inode);
697
698	l_ctx = nfs_get_lock_context(nfs_file_open_context(filp));
699	if (!IS_ERR(l_ctx)) {
700		status = nfs_iocounter_wait(l_ctx);
701		nfs_put_lock_context(l_ctx);
702		/*  NOTE: special case
703		 * 	If we're signalled while cleaning up locks on process exit, we
704		 * 	still need to complete the unlock.
705		 */
706		if (status < 0 && !(fl->fl_flags & FL_CLOSE))
707			return status;
708	}
709
710	/*
711	 * Use local locking if mounted with "-onolock" or with appropriate
712	 * "-olocal_lock="
713	 */
714	if (!is_local)
715		status = NFS_PROTO(inode)->lock(filp, cmd, fl);
716	else
717		status = locks_lock_file_wait(filp, fl);
718	return status;
719}
720
721static int
722do_setlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
723{
724	struct inode *inode = filp->f_mapping->host;
725	int status;
726
727	/*
728	 * Flush all pending writes before doing anything
729	 * with locks..
730	 */
731	status = nfs_sync_mapping(filp->f_mapping);
732	if (status != 0)
733		goto out;
734
735	/*
736	 * Use local locking if mounted with "-onolock" or with appropriate
737	 * "-olocal_lock="
738	 */
739	if (!is_local)
740		status = NFS_PROTO(inode)->lock(filp, cmd, fl);
741	else
742		status = locks_lock_file_wait(filp, fl);
743	if (status < 0)
744		goto out;
745
746	/*
747	 * Invalidate cache to prevent missing any changes.  If
748	 * the file is mapped, clear the page cache as well so
749	 * those mappings will be loaded.
750	 *
751	 * This makes locking act as a cache coherency point.
752	 */
753	nfs_sync_mapping(filp->f_mapping);
754	if (!NFS_PROTO(inode)->have_delegation(inode, FMODE_READ)) {
755		nfs_zap_caches(inode);
756		if (mapping_mapped(filp->f_mapping))
757			nfs_revalidate_mapping(inode, filp->f_mapping);
758	}
759out:
760	return status;
761}
762
763/*
764 * Lock a (portion of) a file
765 */
766int nfs_lock(struct file *filp, int cmd, struct file_lock *fl)
767{
768	struct inode *inode = filp->f_mapping->host;
769	int ret = -ENOLCK;
770	int is_local = 0;
771
772	dprintk("NFS: lock(%pD2, t=%x, fl=%x, r=%lld:%lld)\n",
773			filp, fl->fl_type, fl->fl_flags,
774			(long long)fl->fl_start, (long long)fl->fl_end);
775
776	nfs_inc_stats(inode, NFSIOS_VFSLOCK);
777
778	/* No mandatory locks over NFS */
779	if (__mandatory_lock(inode) && fl->fl_type != F_UNLCK)
780		goto out_err;
781
782	if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FCNTL)
783		is_local = 1;
784
785	if (NFS_PROTO(inode)->lock_check_bounds != NULL) {
786		ret = NFS_PROTO(inode)->lock_check_bounds(fl);
787		if (ret < 0)
788			goto out_err;
789	}
790
791	if (IS_GETLK(cmd))
792		ret = do_getlk(filp, cmd, fl, is_local);
793	else if (fl->fl_type == F_UNLCK)
794		ret = do_unlk(filp, cmd, fl, is_local);
795	else
796		ret = do_setlk(filp, cmd, fl, is_local);
797out_err:
798	return ret;
799}
800EXPORT_SYMBOL_GPL(nfs_lock);
801
802/*
803 * Lock a (portion of) a file
804 */
805int nfs_flock(struct file *filp, int cmd, struct file_lock *fl)
806{
807	struct inode *inode = filp->f_mapping->host;
808	int is_local = 0;
809
810	dprintk("NFS: flock(%pD2, t=%x, fl=%x)\n",
811			filp, fl->fl_type, fl->fl_flags);
812
813	if (!(fl->fl_flags & FL_FLOCK))
814		return -ENOLCK;
815
816	/*
817	 * The NFSv4 protocol doesn't support LOCK_MAND, which is not part of
818	 * any standard. In principle we might be able to support LOCK_MAND
819	 * on NFSv2/3 since NLMv3/4 support DOS share modes, but for now the
820	 * NFS code is not set up for it.
821	 */
822	if (fl->fl_type & LOCK_MAND)
823		return -EINVAL;
824
825	if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FLOCK)
826		is_local = 1;
827
828	/* We're simulating flock() locks using posix locks on the server */
829	if (fl->fl_type == F_UNLCK)
830		return do_unlk(filp, cmd, fl, is_local);
831	return do_setlk(filp, cmd, fl, is_local);
832}
833EXPORT_SYMBOL_GPL(nfs_flock);
834
835const struct file_operations nfs_file_operations = {
836	.llseek		= nfs_file_llseek,
837	.read_iter	= nfs_file_read,
838	.write_iter	= nfs_file_write,
839	.mmap		= nfs_file_mmap,
840	.open		= nfs_file_open,
841	.flush		= nfs_file_flush,
842	.release	= nfs_file_release,
843	.fsync		= nfs_file_fsync,
844	.lock		= nfs_lock,
845	.flock		= nfs_flock,
846	.splice_read	= generic_file_splice_read,
847	.splice_write	= iter_file_splice_write,
848	.check_flags	= nfs_check_flags,
849	.setlease	= simple_nosetlease,
850};
851EXPORT_SYMBOL_GPL(nfs_file_operations);