Linux Audio

Check our new training course

Loading...
v4.17
 
  1/*
  2 * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
  3 * All Rights Reserved.
  4 *
  5 * This program is free software; you can redistribute it and/or
  6 * modify it under the terms of the GNU General Public License as
  7 * published by the Free Software Foundation.
  8 *
  9 * This program is distributed in the hope that it would be useful,
 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 12 * GNU General Public License for more details.
 13 *
 14 * You should have received a copy of the GNU General Public License
 15 * along with this program; if not, write the Free Software Foundation,
 16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 17 */
 18#include "xfs.h"
 19#include "xfs_fs.h"
 20#include "xfs_shared.h"
 21#include "xfs_format.h"
 22#include "xfs_log_format.h"
 23#include "xfs_trans_resv.h"
 24#include "xfs_sb.h"
 25#include "xfs_mount.h"
 26#include "xfs_btree.h"
 
 27#include "xfs_alloc_btree.h"
 28#include "xfs_alloc.h"
 29#include "xfs_extent_busy.h"
 30#include "xfs_error.h"
 
 31#include "xfs_trace.h"
 32#include "xfs_cksum.h"
 33#include "xfs_trans.h"
 
 
 
 34
 
 
 
 
 
 
 
 35
 36STATIC struct xfs_btree_cur *
 37xfs_allocbt_dup_cursor(
 38	struct xfs_btree_cur	*cur)
 39{
 40	return xfs_allocbt_init_cursor(cur->bc_mp, cur->bc_tp,
 41			cur->bc_private.a.agbp, cur->bc_private.a.agno,
 42			cur->bc_btnum);
 43}
 44
 45STATIC void
 46xfs_allocbt_set_root(
 47	struct xfs_btree_cur	*cur,
 48	union xfs_btree_ptr	*ptr,
 49	int			inc)
 50{
 51	struct xfs_buf		*agbp = cur->bc_private.a.agbp;
 52	struct xfs_agf		*agf = XFS_BUF_TO_AGF(agbp);
 53	xfs_agnumber_t		seqno = be32_to_cpu(agf->agf_seqno);
 54	int			btnum = cur->bc_btnum;
 55	struct xfs_perag	*pag = xfs_perag_get(cur->bc_mp, seqno);
 56
 57	ASSERT(ptr->s != 0);
 58
 59	agf->agf_roots[btnum] = ptr->s;
 60	be32_add_cpu(&agf->agf_levels[btnum], inc);
 61	pag->pagf_levels[btnum] += inc;
 62	xfs_perag_put(pag);
 
 
 
 
 
 63
 64	xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_ROOTS | XFS_AGF_LEVELS);
 65}
 66
 67STATIC int
 68xfs_allocbt_alloc_block(
 69	struct xfs_btree_cur	*cur,
 70	union xfs_btree_ptr	*start,
 71	union xfs_btree_ptr	*new,
 72	int			*stat)
 73{
 74	int			error;
 75	xfs_agblock_t		bno;
 76
 77	/* Allocate the new block from the freelist. If we can't, give up.  */
 78	error = xfs_alloc_get_freelist(cur->bc_tp, cur->bc_private.a.agbp,
 79				       &bno, 1);
 80	if (error)
 81		return error;
 82
 83	if (bno == NULLAGBLOCK) {
 84		*stat = 0;
 85		return 0;
 86	}
 87
 88	xfs_extent_busy_reuse(cur->bc_mp, cur->bc_private.a.agno, bno, 1, false);
 
 89
 90	xfs_trans_agbtree_delta(cur->bc_tp, 1);
 91	new->s = cpu_to_be32(bno);
 92
 93	*stat = 1;
 94	return 0;
 95}
 96
 97STATIC int
 98xfs_allocbt_free_block(
 99	struct xfs_btree_cur	*cur,
100	struct xfs_buf		*bp)
101{
102	struct xfs_buf		*agbp = cur->bc_private.a.agbp;
103	struct xfs_agf		*agf = XFS_BUF_TO_AGF(agbp);
104	xfs_agblock_t		bno;
105	int			error;
106
107	bno = xfs_daddr_to_agbno(cur->bc_mp, XFS_BUF_ADDR(bp));
108	error = xfs_alloc_put_freelist(cur->bc_tp, agbp, NULL, bno, 1);
 
109	if (error)
110		return error;
111
112	xfs_extent_busy_insert(cur->bc_tp, be32_to_cpu(agf->agf_seqno), bno, 1,
 
113			      XFS_EXTENT_BUSY_SKIP_DISCARD);
114	xfs_trans_agbtree_delta(cur->bc_tp, -1);
115	return 0;
116}
117
118/*
119 * Update the longest extent in the AGF
120 */
121STATIC void
122xfs_allocbt_update_lastrec(
123	struct xfs_btree_cur	*cur,
124	struct xfs_btree_block	*block,
125	union xfs_btree_rec	*rec,
126	int			ptr,
127	int			reason)
128{
129	struct xfs_agf		*agf = XFS_BUF_TO_AGF(cur->bc_private.a.agbp);
130	xfs_agnumber_t		seqno = be32_to_cpu(agf->agf_seqno);
131	struct xfs_perag	*pag;
132	__be32			len;
133	int			numrecs;
134
135	ASSERT(cur->bc_btnum == XFS_BTNUM_CNT);
136
137	switch (reason) {
138	case LASTREC_UPDATE:
139		/*
140		 * If this is the last leaf block and it's the last record,
141		 * then update the size of the longest extent in the AG.
142		 */
143		if (ptr != xfs_btree_get_numrecs(block))
144			return;
145		len = rec->alloc.ar_blockcount;
146		break;
147	case LASTREC_INSREC:
148		if (be32_to_cpu(rec->alloc.ar_blockcount) <=
149		    be32_to_cpu(agf->agf_longest))
150			return;
151		len = rec->alloc.ar_blockcount;
152		break;
153	case LASTREC_DELREC:
154		numrecs = xfs_btree_get_numrecs(block);
155		if (ptr <= numrecs)
156			return;
157		ASSERT(ptr == numrecs + 1);
158
159		if (numrecs) {
160			xfs_alloc_rec_t *rrp;
161
162			rrp = XFS_ALLOC_REC_ADDR(cur->bc_mp, block, numrecs);
163			len = rrp->ar_blockcount;
164		} else {
165			len = 0;
166		}
167
168		break;
169	default:
170		ASSERT(0);
171		return;
172	}
173
174	agf->agf_longest = len;
175	pag = xfs_perag_get(cur->bc_mp, seqno);
176	pag->pagf_longest = be32_to_cpu(len);
177	xfs_perag_put(pag);
178	xfs_alloc_log_agf(cur->bc_tp, cur->bc_private.a.agbp, XFS_AGF_LONGEST);
179}
180
181STATIC int
182xfs_allocbt_get_minrecs(
183	struct xfs_btree_cur	*cur,
184	int			level)
185{
186	return cur->bc_mp->m_alloc_mnr[level != 0];
187}
188
189STATIC int
190xfs_allocbt_get_maxrecs(
191	struct xfs_btree_cur	*cur,
192	int			level)
193{
194	return cur->bc_mp->m_alloc_mxr[level != 0];
195}
196
197STATIC void
198xfs_allocbt_init_key_from_rec(
199	union xfs_btree_key	*key,
200	union xfs_btree_rec	*rec)
201{
202	key->alloc.ar_startblock = rec->alloc.ar_startblock;
203	key->alloc.ar_blockcount = rec->alloc.ar_blockcount;
204}
205
206STATIC void
207xfs_bnobt_init_high_key_from_rec(
208	union xfs_btree_key	*key,
209	union xfs_btree_rec	*rec)
210{
211	__u32			x;
212
213	x = be32_to_cpu(rec->alloc.ar_startblock);
214	x += be32_to_cpu(rec->alloc.ar_blockcount) - 1;
215	key->alloc.ar_startblock = cpu_to_be32(x);
216	key->alloc.ar_blockcount = 0;
217}
218
219STATIC void
220xfs_cntbt_init_high_key_from_rec(
221	union xfs_btree_key	*key,
222	union xfs_btree_rec	*rec)
223{
224	key->alloc.ar_blockcount = rec->alloc.ar_blockcount;
225	key->alloc.ar_startblock = 0;
226}
227
228STATIC void
229xfs_allocbt_init_rec_from_cur(
230	struct xfs_btree_cur	*cur,
231	union xfs_btree_rec	*rec)
232{
233	rec->alloc.ar_startblock = cpu_to_be32(cur->bc_rec.a.ar_startblock);
234	rec->alloc.ar_blockcount = cpu_to_be32(cur->bc_rec.a.ar_blockcount);
235}
236
237STATIC void
238xfs_allocbt_init_ptr_from_cur(
239	struct xfs_btree_cur	*cur,
240	union xfs_btree_ptr	*ptr)
241{
242	struct xfs_agf		*agf = XFS_BUF_TO_AGF(cur->bc_private.a.agbp);
243
244	ASSERT(cur->bc_private.a.agno == be32_to_cpu(agf->agf_seqno));
245	ASSERT(agf->agf_roots[cur->bc_btnum] != 0);
246
247	ptr->s = agf->agf_roots[cur->bc_btnum];
 
 
 
248}
249
250STATIC int64_t
251xfs_bnobt_key_diff(
252	struct xfs_btree_cur	*cur,
253	union xfs_btree_key	*key)
254{
255	xfs_alloc_rec_incore_t	*rec = &cur->bc_rec.a;
256	xfs_alloc_key_t		*kp = &key->alloc;
257
258	return (int64_t)be32_to_cpu(kp->ar_startblock) - rec->ar_startblock;
259}
260
261STATIC int64_t
262xfs_cntbt_key_diff(
263	struct xfs_btree_cur	*cur,
264	union xfs_btree_key	*key)
265{
266	xfs_alloc_rec_incore_t	*rec = &cur->bc_rec.a;
267	xfs_alloc_key_t		*kp = &key->alloc;
268	int64_t			diff;
269
270	diff = (int64_t)be32_to_cpu(kp->ar_blockcount) - rec->ar_blockcount;
271	if (diff)
272		return diff;
273
274	return (int64_t)be32_to_cpu(kp->ar_startblock) - rec->ar_startblock;
275}
276
277STATIC int64_t
278xfs_bnobt_diff_two_keys(
279	struct xfs_btree_cur	*cur,
280	union xfs_btree_key	*k1,
281	union xfs_btree_key	*k2)
 
282{
 
 
283	return (int64_t)be32_to_cpu(k1->alloc.ar_startblock) -
284			  be32_to_cpu(k2->alloc.ar_startblock);
285}
286
287STATIC int64_t
288xfs_cntbt_diff_two_keys(
289	struct xfs_btree_cur	*cur,
290	union xfs_btree_key	*k1,
291	union xfs_btree_key	*k2)
 
292{
293	int64_t			diff;
 
 
 
294
295	diff =  be32_to_cpu(k1->alloc.ar_blockcount) -
296		be32_to_cpu(k2->alloc.ar_blockcount);
297	if (diff)
298		return diff;
299
300	return  be32_to_cpu(k1->alloc.ar_startblock) -
301		be32_to_cpu(k2->alloc.ar_startblock);
302}
303
304static xfs_failaddr_t
305xfs_allocbt_verify(
306	struct xfs_buf		*bp)
307{
308	struct xfs_mount	*mp = bp->b_target->bt_mount;
309	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
310	struct xfs_perag	*pag = bp->b_pag;
311	xfs_failaddr_t		fa;
312	unsigned int		level;
313
 
 
 
 
 
 
 
 
 
314	/*
315	 * magic number and level verification
 
 
316	 *
317	 * During growfs operations, we can't verify the exact level or owner as
318	 * the perag is not fully initialised and hence not attached to the
319	 * buffer.  In this case, check against the maximum tree depth.
320	 *
321	 * Similarly, during log recovery we will have a perag structure
322	 * attached, but the agf information will not yet have been initialised
323	 * from the on disk AGF. Again, we can only check against maximum limits
324	 * in this case.
325	 */
326	level = be16_to_cpu(block->bb_level);
327	switch (block->bb_magic) {
328	case cpu_to_be32(XFS_ABTB_CRC_MAGIC):
329		fa = xfs_btree_sblock_v5hdr_verify(bp);
330		if (fa)
331			return fa;
332		/* fall through */
333	case cpu_to_be32(XFS_ABTB_MAGIC):
334		if (pag && pag->pagf_init) {
335			if (level >= pag->pagf_levels[XFS_BTNUM_BNOi])
336				return __this_address;
337		} else if (level >= mp->m_ag_maxlevels)
338			return __this_address;
339		break;
340	case cpu_to_be32(XFS_ABTC_CRC_MAGIC):
341		fa = xfs_btree_sblock_v5hdr_verify(bp);
342		if (fa)
343			return fa;
344		/* fall through */
345	case cpu_to_be32(XFS_ABTC_MAGIC):
346		if (pag && pag->pagf_init) {
347			if (level >= pag->pagf_levels[XFS_BTNUM_CNTi])
348				return __this_address;
349		} else if (level >= mp->m_ag_maxlevels)
350			return __this_address;
351		break;
352	default:
353		return __this_address;
354	}
355
356	return xfs_btree_sblock_verify(bp, mp->m_alloc_mxr[level != 0]);
357}
358
359static void
360xfs_allocbt_read_verify(
361	struct xfs_buf	*bp)
362{
363	xfs_failaddr_t	fa;
364
365	if (!xfs_btree_sblock_verify_crc(bp))
366		xfs_verifier_error(bp, -EFSBADCRC, __this_address);
367	else {
368		fa = xfs_allocbt_verify(bp);
369		if (fa)
370			xfs_verifier_error(bp, -EFSCORRUPTED, fa);
371	}
372
373	if (bp->b_error)
374		trace_xfs_btree_corrupt(bp, _RET_IP_);
375}
376
377static void
378xfs_allocbt_write_verify(
379	struct xfs_buf	*bp)
380{
381	xfs_failaddr_t	fa;
382
383	fa = xfs_allocbt_verify(bp);
384	if (fa) {
385		trace_xfs_btree_corrupt(bp, _RET_IP_);
386		xfs_verifier_error(bp, -EFSCORRUPTED, fa);
387		return;
388	}
389	xfs_btree_sblock_calc_crc(bp);
390
391}
392
393const struct xfs_buf_ops xfs_allocbt_buf_ops = {
394	.name = "xfs_allocbt",
 
 
395	.verify_read = xfs_allocbt_read_verify,
396	.verify_write = xfs_allocbt_write_verify,
397	.verify_struct = xfs_allocbt_verify,
398};
399
 
 
 
 
 
 
 
 
400
401STATIC int
402xfs_bnobt_keys_inorder(
403	struct xfs_btree_cur	*cur,
404	union xfs_btree_key	*k1,
405	union xfs_btree_key	*k2)
406{
407	return be32_to_cpu(k1->alloc.ar_startblock) <
408	       be32_to_cpu(k2->alloc.ar_startblock);
409}
410
411STATIC int
412xfs_bnobt_recs_inorder(
413	struct xfs_btree_cur	*cur,
414	union xfs_btree_rec	*r1,
415	union xfs_btree_rec	*r2)
416{
417	return be32_to_cpu(r1->alloc.ar_startblock) +
418		be32_to_cpu(r1->alloc.ar_blockcount) <=
419		be32_to_cpu(r2->alloc.ar_startblock);
420}
421
422STATIC int
423xfs_cntbt_keys_inorder(
424	struct xfs_btree_cur	*cur,
425	union xfs_btree_key	*k1,
426	union xfs_btree_key	*k2)
427{
428	return be32_to_cpu(k1->alloc.ar_blockcount) <
429		be32_to_cpu(k2->alloc.ar_blockcount) ||
430		(k1->alloc.ar_blockcount == k2->alloc.ar_blockcount &&
431		 be32_to_cpu(k1->alloc.ar_startblock) <
432		 be32_to_cpu(k2->alloc.ar_startblock));
433}
434
435STATIC int
436xfs_cntbt_recs_inorder(
437	struct xfs_btree_cur	*cur,
438	union xfs_btree_rec	*r1,
439	union xfs_btree_rec	*r2)
440{
441	return be32_to_cpu(r1->alloc.ar_blockcount) <
442		be32_to_cpu(r2->alloc.ar_blockcount) ||
443		(r1->alloc.ar_blockcount == r2->alloc.ar_blockcount &&
444		 be32_to_cpu(r1->alloc.ar_startblock) <
445		 be32_to_cpu(r2->alloc.ar_startblock));
446}
447
448static const struct xfs_btree_ops xfs_bnobt_ops = {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
449	.rec_len		= sizeof(xfs_alloc_rec_t),
450	.key_len		= sizeof(xfs_alloc_key_t),
 
 
 
 
 
451
452	.dup_cursor		= xfs_allocbt_dup_cursor,
453	.set_root		= xfs_allocbt_set_root,
454	.alloc_block		= xfs_allocbt_alloc_block,
455	.free_block		= xfs_allocbt_free_block,
456	.update_lastrec		= xfs_allocbt_update_lastrec,
457	.get_minrecs		= xfs_allocbt_get_minrecs,
458	.get_maxrecs		= xfs_allocbt_get_maxrecs,
459	.init_key_from_rec	= xfs_allocbt_init_key_from_rec,
460	.init_high_key_from_rec	= xfs_bnobt_init_high_key_from_rec,
461	.init_rec_from_cur	= xfs_allocbt_init_rec_from_cur,
462	.init_ptr_from_cur	= xfs_allocbt_init_ptr_from_cur,
463	.key_diff		= xfs_bnobt_key_diff,
464	.buf_ops		= &xfs_allocbt_buf_ops,
465	.diff_two_keys		= xfs_bnobt_diff_two_keys,
466	.keys_inorder		= xfs_bnobt_keys_inorder,
467	.recs_inorder		= xfs_bnobt_recs_inorder,
 
468};
469
470static const struct xfs_btree_ops xfs_cntbt_ops = {
 
 
 
471	.rec_len		= sizeof(xfs_alloc_rec_t),
472	.key_len		= sizeof(xfs_alloc_key_t),
 
 
 
 
 
473
474	.dup_cursor		= xfs_allocbt_dup_cursor,
475	.set_root		= xfs_allocbt_set_root,
476	.alloc_block		= xfs_allocbt_alloc_block,
477	.free_block		= xfs_allocbt_free_block,
478	.update_lastrec		= xfs_allocbt_update_lastrec,
479	.get_minrecs		= xfs_allocbt_get_minrecs,
480	.get_maxrecs		= xfs_allocbt_get_maxrecs,
481	.init_key_from_rec	= xfs_allocbt_init_key_from_rec,
482	.init_high_key_from_rec	= xfs_cntbt_init_high_key_from_rec,
483	.init_rec_from_cur	= xfs_allocbt_init_rec_from_cur,
484	.init_ptr_from_cur	= xfs_allocbt_init_ptr_from_cur,
485	.key_diff		= xfs_cntbt_key_diff,
486	.buf_ops		= &xfs_allocbt_buf_ops,
487	.diff_two_keys		= xfs_cntbt_diff_two_keys,
488	.keys_inorder		= xfs_cntbt_keys_inorder,
489	.recs_inorder		= xfs_cntbt_recs_inorder,
 
490};
491
492/*
493 * Allocate a new allocation btree cursor.
 
 
494 */
495struct xfs_btree_cur *			/* new alloc btree cursor */
496xfs_allocbt_init_cursor(
497	struct xfs_mount	*mp,		/* file system mount point */
498	struct xfs_trans	*tp,		/* transaction pointer */
499	struct xfs_buf		*agbp,		/* buffer for agf structure */
500	xfs_agnumber_t		agno,		/* allocation group number */
501	xfs_btnum_t		btnum)		/* btree identifier */
502{
503	struct xfs_agf		*agf = XFS_BUF_TO_AGF(agbp);
504	struct xfs_btree_cur	*cur;
505
506	ASSERT(btnum == XFS_BTNUM_BNO || btnum == XFS_BTNUM_CNT);
 
 
 
 
 
507
508	cur = kmem_zone_zalloc(xfs_btree_cur_zone, KM_NOFS);
509
510	cur->bc_tp = tp;
511	cur->bc_mp = mp;
512	cur->bc_btnum = btnum;
513	cur->bc_blocklog = mp->m_sb.sb_blocklog;
514
515	if (btnum == XFS_BTNUM_CNT) {
516		cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_abtc_2);
517		cur->bc_ops = &xfs_cntbt_ops;
518		cur->bc_nlevels = be32_to_cpu(agf->agf_levels[XFS_BTNUM_CNT]);
519		cur->bc_flags = XFS_BTREE_LASTREC_UPDATE;
520	} else {
521		cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_abtb_2);
522		cur->bc_ops = &xfs_bnobt_ops;
523		cur->bc_nlevels = be32_to_cpu(agf->agf_levels[XFS_BTNUM_BNO]);
524	}
 
 
525
526	cur->bc_private.a.agbp = agbp;
527	cur->bc_private.a.agno = agno;
 
 
 
 
 
 
 
 
 
 
 
528
529	if (xfs_sb_version_hascrc(&mp->m_sb))
530		cur->bc_flags |= XFS_BTREE_CRC_BLOCKS;
 
 
 
 
531
 
 
532	return cur;
533}
534
535/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
536 * Calculate number of records in an alloc btree block.
537 */
538int
539xfs_allocbt_maxrecs(
540	struct xfs_mount	*mp,
541	int			blocklen,
542	int			leaf)
543{
544	blocklen -= XFS_ALLOC_BLOCK_LEN(mp);
 
 
545
546	if (leaf)
547		return blocklen / sizeof(xfs_alloc_rec_t);
548	return blocklen / (sizeof(xfs_alloc_key_t) + sizeof(xfs_alloc_ptr_t));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
549}
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
  4 * All Rights Reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
  5 */
  6#include "xfs.h"
  7#include "xfs_fs.h"
  8#include "xfs_shared.h"
  9#include "xfs_format.h"
 10#include "xfs_log_format.h"
 11#include "xfs_trans_resv.h"
 
 12#include "xfs_mount.h"
 13#include "xfs_btree.h"
 14#include "xfs_btree_staging.h"
 15#include "xfs_alloc_btree.h"
 16#include "xfs_alloc.h"
 17#include "xfs_extent_busy.h"
 18#include "xfs_error.h"
 19#include "xfs_health.h"
 20#include "xfs_trace.h"
 
 21#include "xfs_trans.h"
 22#include "xfs_ag.h"
 23
 24static struct kmem_cache	*xfs_allocbt_cur_cache;
 25
 26STATIC struct xfs_btree_cur *
 27xfs_bnobt_dup_cursor(
 28	struct xfs_btree_cur	*cur)
 29{
 30	return xfs_bnobt_init_cursor(cur->bc_mp, cur->bc_tp, cur->bc_ag.agbp,
 31			to_perag(cur->bc_group));
 32}
 33
 34STATIC struct xfs_btree_cur *
 35xfs_cntbt_dup_cursor(
 36	struct xfs_btree_cur	*cur)
 37{
 38	return xfs_cntbt_init_cursor(cur->bc_mp, cur->bc_tp, cur->bc_ag.agbp,
 39			to_perag(cur->bc_group));
 
 40}
 41
 42STATIC void
 43xfs_allocbt_set_root(
 44	struct xfs_btree_cur		*cur,
 45	const union xfs_btree_ptr	*ptr,
 46	int				inc)
 47{
 48	struct xfs_perag		*pag = to_perag(cur->bc_group);
 49	struct xfs_buf			*agbp = cur->bc_ag.agbp;
 50	struct xfs_agf			*agf = agbp->b_addr;
 
 
 51
 52	ASSERT(ptr->s != 0);
 53
 54	if (xfs_btree_is_bno(cur->bc_ops)) {
 55		agf->agf_bno_root = ptr->s;
 56		be32_add_cpu(&agf->agf_bno_level, inc);
 57		pag->pagf_bno_level += inc;
 58	} else {
 59		agf->agf_cnt_root = ptr->s;
 60		be32_add_cpu(&agf->agf_cnt_level, inc);
 61		pag->pagf_cnt_level += inc;
 62	}
 63
 64	xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_ROOTS | XFS_AGF_LEVELS);
 65}
 66
 67STATIC int
 68xfs_allocbt_alloc_block(
 69	struct xfs_btree_cur		*cur,
 70	const union xfs_btree_ptr	*start,
 71	union xfs_btree_ptr		*new,
 72	int				*stat)
 73{
 74	int			error;
 75	xfs_agblock_t		bno;
 76
 77	/* Allocate the new block from the freelist. If we can't, give up.  */
 78	error = xfs_alloc_get_freelist(to_perag(cur->bc_group), cur->bc_tp,
 79			cur->bc_ag.agbp, &bno, 1);
 80	if (error)
 81		return error;
 82
 83	if (bno == NULLAGBLOCK) {
 84		*stat = 0;
 85		return 0;
 86	}
 87
 88	atomic64_inc(&cur->bc_mp->m_allocbt_blks);
 89	xfs_extent_busy_reuse(cur->bc_group, bno, 1, false);
 90
 
 91	new->s = cpu_to_be32(bno);
 92
 93	*stat = 1;
 94	return 0;
 95}
 96
 97STATIC int
 98xfs_allocbt_free_block(
 99	struct xfs_btree_cur	*cur,
100	struct xfs_buf		*bp)
101{
102	struct xfs_buf		*agbp = cur->bc_ag.agbp;
 
103	xfs_agblock_t		bno;
104	int			error;
105
106	bno = xfs_daddr_to_agbno(cur->bc_mp, xfs_buf_daddr(bp));
107	error = xfs_alloc_put_freelist(to_perag(cur->bc_group), cur->bc_tp,
108			agbp, NULL, bno, 1);
109	if (error)
110		return error;
111
112	atomic64_dec(&cur->bc_mp->m_allocbt_blks);
113	xfs_extent_busy_insert(cur->bc_tp, pag_group(agbp->b_pag), bno, 1,
114			      XFS_EXTENT_BUSY_SKIP_DISCARD);
 
115	return 0;
116}
117
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
118STATIC int
119xfs_allocbt_get_minrecs(
120	struct xfs_btree_cur	*cur,
121	int			level)
122{
123	return cur->bc_mp->m_alloc_mnr[level != 0];
124}
125
126STATIC int
127xfs_allocbt_get_maxrecs(
128	struct xfs_btree_cur	*cur,
129	int			level)
130{
131	return cur->bc_mp->m_alloc_mxr[level != 0];
132}
133
134STATIC void
135xfs_allocbt_init_key_from_rec(
136	union xfs_btree_key		*key,
137	const union xfs_btree_rec	*rec)
138{
139	key->alloc.ar_startblock = rec->alloc.ar_startblock;
140	key->alloc.ar_blockcount = rec->alloc.ar_blockcount;
141}
142
143STATIC void
144xfs_bnobt_init_high_key_from_rec(
145	union xfs_btree_key		*key,
146	const union xfs_btree_rec	*rec)
147{
148	__u32				x;
149
150	x = be32_to_cpu(rec->alloc.ar_startblock);
151	x += be32_to_cpu(rec->alloc.ar_blockcount) - 1;
152	key->alloc.ar_startblock = cpu_to_be32(x);
153	key->alloc.ar_blockcount = 0;
154}
155
156STATIC void
157xfs_cntbt_init_high_key_from_rec(
158	union xfs_btree_key		*key,
159	const union xfs_btree_rec	*rec)
160{
161	key->alloc.ar_blockcount = rec->alloc.ar_blockcount;
162	key->alloc.ar_startblock = 0;
163}
164
165STATIC void
166xfs_allocbt_init_rec_from_cur(
167	struct xfs_btree_cur	*cur,
168	union xfs_btree_rec	*rec)
169{
170	rec->alloc.ar_startblock = cpu_to_be32(cur->bc_rec.a.ar_startblock);
171	rec->alloc.ar_blockcount = cpu_to_be32(cur->bc_rec.a.ar_blockcount);
172}
173
174STATIC void
175xfs_allocbt_init_ptr_from_cur(
176	struct xfs_btree_cur	*cur,
177	union xfs_btree_ptr	*ptr)
178{
179	struct xfs_agf		*agf = cur->bc_ag.agbp->b_addr;
180
181	ASSERT(cur->bc_group->xg_gno == be32_to_cpu(agf->agf_seqno));
 
182
183	if (xfs_btree_is_bno(cur->bc_ops))
184		ptr->s = agf->agf_bno_root;
185	else
186		ptr->s = agf->agf_cnt_root;
187}
188
189STATIC int64_t
190xfs_bnobt_key_diff(
191	struct xfs_btree_cur		*cur,
192	const union xfs_btree_key	*key)
193{
194	struct xfs_alloc_rec_incore	*rec = &cur->bc_rec.a;
195	const struct xfs_alloc_rec	*kp = &key->alloc;
196
197	return (int64_t)be32_to_cpu(kp->ar_startblock) - rec->ar_startblock;
198}
199
200STATIC int64_t
201xfs_cntbt_key_diff(
202	struct xfs_btree_cur		*cur,
203	const union xfs_btree_key	*key)
204{
205	struct xfs_alloc_rec_incore	*rec = &cur->bc_rec.a;
206	const struct xfs_alloc_rec	*kp = &key->alloc;
207	int64_t				diff;
208
209	diff = (int64_t)be32_to_cpu(kp->ar_blockcount) - rec->ar_blockcount;
210	if (diff)
211		return diff;
212
213	return (int64_t)be32_to_cpu(kp->ar_startblock) - rec->ar_startblock;
214}
215
216STATIC int64_t
217xfs_bnobt_diff_two_keys(
218	struct xfs_btree_cur		*cur,
219	const union xfs_btree_key	*k1,
220	const union xfs_btree_key	*k2,
221	const union xfs_btree_key	*mask)
222{
223	ASSERT(!mask || mask->alloc.ar_startblock);
224
225	return (int64_t)be32_to_cpu(k1->alloc.ar_startblock) -
226			be32_to_cpu(k2->alloc.ar_startblock);
227}
228
229STATIC int64_t
230xfs_cntbt_diff_two_keys(
231	struct xfs_btree_cur		*cur,
232	const union xfs_btree_key	*k1,
233	const union xfs_btree_key	*k2,
234	const union xfs_btree_key	*mask)
235{
236	int64_t				diff;
237
238	ASSERT(!mask || (mask->alloc.ar_blockcount &&
239			 mask->alloc.ar_startblock));
240
241	diff =  be32_to_cpu(k1->alloc.ar_blockcount) -
242		be32_to_cpu(k2->alloc.ar_blockcount);
243	if (diff)
244		return diff;
245
246	return  be32_to_cpu(k1->alloc.ar_startblock) -
247		be32_to_cpu(k2->alloc.ar_startblock);
248}
249
250static xfs_failaddr_t
251xfs_allocbt_verify(
252	struct xfs_buf		*bp)
253{
254	struct xfs_mount	*mp = bp->b_mount;
255	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
256	struct xfs_perag	*pag = bp->b_pag;
257	xfs_failaddr_t		fa;
258	unsigned int		level;
259
260	if (!xfs_verify_magic(bp, block->bb_magic))
261		return __this_address;
262
263	if (xfs_has_crc(mp)) {
264		fa = xfs_btree_agblock_v5hdr_verify(bp);
265		if (fa)
266			return fa;
267	}
268
269	/*
270	 * The perag may not be attached during grow operations or fully
271	 * initialized from the AGF during log recovery. Therefore we can only
272	 * check against maximum tree depth from those contexts.
273	 *
274	 * Otherwise check against the per-tree limit. Peek at one of the
275	 * verifier magic values to determine the type of tree we're verifying
276	 * against.
 
 
 
 
 
277	 */
278	level = be16_to_cpu(block->bb_level);
279	if (pag && xfs_perag_initialised_agf(pag)) {
280		unsigned int	maxlevel, repair_maxlevel = 0;
281
282		/*
283		 * Online repair could be rewriting the free space btrees, so
284		 * we'll validate against the larger of either tree while this
285		 * is going on.
286		 */
287		if (bp->b_ops->magic[0] == cpu_to_be32(XFS_ABTC_MAGIC)) {
288			maxlevel = pag->pagf_cnt_level;
289#ifdef CONFIG_XFS_ONLINE_REPAIR
290			repair_maxlevel = pag->pagf_repair_cnt_level;
291#endif
292		} else {
293			maxlevel = pag->pagf_bno_level;
294#ifdef CONFIG_XFS_ONLINE_REPAIR
295			repair_maxlevel = pag->pagf_repair_bno_level;
296#endif
297		}
298
299		if (level >= max(maxlevel, repair_maxlevel))
 
 
300			return __this_address;
301	} else if (level >= mp->m_alloc_maxlevels)
 
302		return __this_address;
 
303
304	return xfs_btree_agblock_verify(bp, mp->m_alloc_mxr[level != 0]);
305}
306
307static void
308xfs_allocbt_read_verify(
309	struct xfs_buf	*bp)
310{
311	xfs_failaddr_t	fa;
312
313	if (!xfs_btree_agblock_verify_crc(bp))
314		xfs_verifier_error(bp, -EFSBADCRC, __this_address);
315	else {
316		fa = xfs_allocbt_verify(bp);
317		if (fa)
318			xfs_verifier_error(bp, -EFSCORRUPTED, fa);
319	}
320
321	if (bp->b_error)
322		trace_xfs_btree_corrupt(bp, _RET_IP_);
323}
324
325static void
326xfs_allocbt_write_verify(
327	struct xfs_buf	*bp)
328{
329	xfs_failaddr_t	fa;
330
331	fa = xfs_allocbt_verify(bp);
332	if (fa) {
333		trace_xfs_btree_corrupt(bp, _RET_IP_);
334		xfs_verifier_error(bp, -EFSCORRUPTED, fa);
335		return;
336	}
337	xfs_btree_agblock_calc_crc(bp);
338
339}
340
341const struct xfs_buf_ops xfs_bnobt_buf_ops = {
342	.name = "xfs_bnobt",
343	.magic = { cpu_to_be32(XFS_ABTB_MAGIC),
344		   cpu_to_be32(XFS_ABTB_CRC_MAGIC) },
345	.verify_read = xfs_allocbt_read_verify,
346	.verify_write = xfs_allocbt_write_verify,
347	.verify_struct = xfs_allocbt_verify,
348};
349
350const struct xfs_buf_ops xfs_cntbt_buf_ops = {
351	.name = "xfs_cntbt",
352	.magic = { cpu_to_be32(XFS_ABTC_MAGIC),
353		   cpu_to_be32(XFS_ABTC_CRC_MAGIC) },
354	.verify_read = xfs_allocbt_read_verify,
355	.verify_write = xfs_allocbt_write_verify,
356	.verify_struct = xfs_allocbt_verify,
357};
358
359STATIC int
360xfs_bnobt_keys_inorder(
361	struct xfs_btree_cur		*cur,
362	const union xfs_btree_key	*k1,
363	const union xfs_btree_key	*k2)
364{
365	return be32_to_cpu(k1->alloc.ar_startblock) <
366	       be32_to_cpu(k2->alloc.ar_startblock);
367}
368
369STATIC int
370xfs_bnobt_recs_inorder(
371	struct xfs_btree_cur		*cur,
372	const union xfs_btree_rec	*r1,
373	const union xfs_btree_rec	*r2)
374{
375	return be32_to_cpu(r1->alloc.ar_startblock) +
376		be32_to_cpu(r1->alloc.ar_blockcount) <=
377		be32_to_cpu(r2->alloc.ar_startblock);
378}
379
380STATIC int
381xfs_cntbt_keys_inorder(
382	struct xfs_btree_cur		*cur,
383	const union xfs_btree_key	*k1,
384	const union xfs_btree_key	*k2)
385{
386	return be32_to_cpu(k1->alloc.ar_blockcount) <
387		be32_to_cpu(k2->alloc.ar_blockcount) ||
388		(k1->alloc.ar_blockcount == k2->alloc.ar_blockcount &&
389		 be32_to_cpu(k1->alloc.ar_startblock) <
390		 be32_to_cpu(k2->alloc.ar_startblock));
391}
392
393STATIC int
394xfs_cntbt_recs_inorder(
395	struct xfs_btree_cur		*cur,
396	const union xfs_btree_rec	*r1,
397	const union xfs_btree_rec	*r2)
398{
399	return be32_to_cpu(r1->alloc.ar_blockcount) <
400		be32_to_cpu(r2->alloc.ar_blockcount) ||
401		(r1->alloc.ar_blockcount == r2->alloc.ar_blockcount &&
402		 be32_to_cpu(r1->alloc.ar_startblock) <
403		 be32_to_cpu(r2->alloc.ar_startblock));
404}
405
406STATIC enum xbtree_key_contig
407xfs_allocbt_keys_contiguous(
408	struct xfs_btree_cur		*cur,
409	const union xfs_btree_key	*key1,
410	const union xfs_btree_key	*key2,
411	const union xfs_btree_key	*mask)
412{
413	ASSERT(!mask || mask->alloc.ar_startblock);
414
415	return xbtree_key_contig(be32_to_cpu(key1->alloc.ar_startblock),
416				 be32_to_cpu(key2->alloc.ar_startblock));
417}
418
419const struct xfs_btree_ops xfs_bnobt_ops = {
420	.name			= "bno",
421	.type			= XFS_BTREE_TYPE_AG,
422
423	.rec_len		= sizeof(xfs_alloc_rec_t),
424	.key_len		= sizeof(xfs_alloc_key_t),
425	.ptr_len		= XFS_BTREE_SHORT_PTR_LEN,
426
427	.lru_refs		= XFS_ALLOC_BTREE_REF,
428	.statoff		= XFS_STATS_CALC_INDEX(xs_abtb_2),
429	.sick_mask		= XFS_SICK_AG_BNOBT,
430
431	.dup_cursor		= xfs_bnobt_dup_cursor,
432	.set_root		= xfs_allocbt_set_root,
433	.alloc_block		= xfs_allocbt_alloc_block,
434	.free_block		= xfs_allocbt_free_block,
 
435	.get_minrecs		= xfs_allocbt_get_minrecs,
436	.get_maxrecs		= xfs_allocbt_get_maxrecs,
437	.init_key_from_rec	= xfs_allocbt_init_key_from_rec,
438	.init_high_key_from_rec	= xfs_bnobt_init_high_key_from_rec,
439	.init_rec_from_cur	= xfs_allocbt_init_rec_from_cur,
440	.init_ptr_from_cur	= xfs_allocbt_init_ptr_from_cur,
441	.key_diff		= xfs_bnobt_key_diff,
442	.buf_ops		= &xfs_bnobt_buf_ops,
443	.diff_two_keys		= xfs_bnobt_diff_two_keys,
444	.keys_inorder		= xfs_bnobt_keys_inorder,
445	.recs_inorder		= xfs_bnobt_recs_inorder,
446	.keys_contiguous	= xfs_allocbt_keys_contiguous,
447};
448
449const struct xfs_btree_ops xfs_cntbt_ops = {
450	.name			= "cnt",
451	.type			= XFS_BTREE_TYPE_AG,
452
453	.rec_len		= sizeof(xfs_alloc_rec_t),
454	.key_len		= sizeof(xfs_alloc_key_t),
455	.ptr_len		= XFS_BTREE_SHORT_PTR_LEN,
456
457	.lru_refs		= XFS_ALLOC_BTREE_REF,
458	.statoff		= XFS_STATS_CALC_INDEX(xs_abtc_2),
459	.sick_mask		= XFS_SICK_AG_CNTBT,
460
461	.dup_cursor		= xfs_cntbt_dup_cursor,
462	.set_root		= xfs_allocbt_set_root,
463	.alloc_block		= xfs_allocbt_alloc_block,
464	.free_block		= xfs_allocbt_free_block,
 
465	.get_minrecs		= xfs_allocbt_get_minrecs,
466	.get_maxrecs		= xfs_allocbt_get_maxrecs,
467	.init_key_from_rec	= xfs_allocbt_init_key_from_rec,
468	.init_high_key_from_rec	= xfs_cntbt_init_high_key_from_rec,
469	.init_rec_from_cur	= xfs_allocbt_init_rec_from_cur,
470	.init_ptr_from_cur	= xfs_allocbt_init_ptr_from_cur,
471	.key_diff		= xfs_cntbt_key_diff,
472	.buf_ops		= &xfs_cntbt_buf_ops,
473	.diff_two_keys		= xfs_cntbt_diff_two_keys,
474	.keys_inorder		= xfs_cntbt_keys_inorder,
475	.recs_inorder		= xfs_cntbt_recs_inorder,
476	.keys_contiguous	= NULL, /* not needed right now */
477};
478
479/*
480 * Allocate a new bnobt cursor.
481 *
482 * For staging cursors tp and agbp are NULL.
483 */
484struct xfs_btree_cur *
485xfs_bnobt_init_cursor(
486	struct xfs_mount	*mp,
487	struct xfs_trans	*tp,
488	struct xfs_buf		*agbp,
489	struct xfs_perag	*pag)
 
490{
 
491	struct xfs_btree_cur	*cur;
492
493	cur = xfs_btree_alloc_cursor(mp, tp, &xfs_bnobt_ops,
494			mp->m_alloc_maxlevels, xfs_allocbt_cur_cache);
495	cur->bc_group = xfs_group_hold(pag_group(pag));
496	cur->bc_ag.agbp = agbp;
497	if (agbp) {
498		struct xfs_agf		*agf = agbp->b_addr;
499
500		cur->bc_nlevels = be32_to_cpu(agf->agf_bno_level);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
501	}
502	return cur;
503}
504
505/*
506 * Allocate a new cntbt cursor.
507 *
508 * For staging cursors tp and agbp are NULL.
509 */
510struct xfs_btree_cur *
511xfs_cntbt_init_cursor(
512	struct xfs_mount	*mp,
513	struct xfs_trans	*tp,
514	struct xfs_buf		*agbp,
515	struct xfs_perag	*pag)
516{
517	struct xfs_btree_cur	*cur;
518
519	cur = xfs_btree_alloc_cursor(mp, tp, &xfs_cntbt_ops,
520			mp->m_alloc_maxlevels, xfs_allocbt_cur_cache);
521	cur->bc_group = xfs_group_hold(pag_group(pag));
522	cur->bc_ag.agbp = agbp;
523	if (agbp) {
524		struct xfs_agf		*agf = agbp->b_addr;
525
526		cur->bc_nlevels = be32_to_cpu(agf->agf_cnt_level);
527	}
528	return cur;
529}
530
531/*
532 * Install a new free space btree root.  Caller is responsible for invalidating
533 * and freeing the old btree blocks.
534 */
535void
536xfs_allocbt_commit_staged_btree(
537	struct xfs_btree_cur	*cur,
538	struct xfs_trans	*tp,
539	struct xfs_buf		*agbp)
540{
541	struct xfs_agf		*agf = agbp->b_addr;
542	struct xbtree_afakeroot	*afake = cur->bc_ag.afake;
543
544	ASSERT(cur->bc_flags & XFS_BTREE_STAGING);
545
546	if (xfs_btree_is_bno(cur->bc_ops)) {
547		agf->agf_bno_root = cpu_to_be32(afake->af_root);
548		agf->agf_bno_level = cpu_to_be32(afake->af_levels);
549	} else {
550		agf->agf_cnt_root = cpu_to_be32(afake->af_root);
551		agf->agf_cnt_level = cpu_to_be32(afake->af_levels);
552	}
553	xfs_alloc_log_agf(tp, agbp, XFS_AGF_ROOTS | XFS_AGF_LEVELS);
554
555	xfs_btree_commit_afakeroot(cur, tp, agbp);
556}
557
558/* Calculate number of records in an alloc btree block. */
559static inline unsigned int
560xfs_allocbt_block_maxrecs(
561	unsigned int		blocklen,
562	bool			leaf)
563{
564	if (leaf)
565		return blocklen / sizeof(xfs_alloc_rec_t);
566	return blocklen / (sizeof(xfs_alloc_key_t) + sizeof(xfs_alloc_ptr_t));
567}
568
569/*
570 * Calculate number of records in an alloc btree block.
571 */
572unsigned int
573xfs_allocbt_maxrecs(
574	struct xfs_mount	*mp,
575	unsigned int		blocklen,
576	bool			leaf)
577{
578	blocklen -= XFS_ALLOC_BLOCK_LEN(mp);
579	return xfs_allocbt_block_maxrecs(blocklen, leaf);
580}
581
582/* Free space btrees are at their largest when every other block is free. */
583#define XFS_MAX_FREESP_RECORDS	((XFS_MAX_AG_BLOCKS + 1) / 2)
584
585/* Compute the max possible height for free space btrees. */
586unsigned int
587xfs_allocbt_maxlevels_ondisk(void)
588{
589	unsigned int		minrecs[2];
590	unsigned int		blocklen;
591
592	blocklen = min(XFS_MIN_BLOCKSIZE - XFS_BTREE_SBLOCK_LEN,
593		       XFS_MIN_CRC_BLOCKSIZE - XFS_BTREE_SBLOCK_CRC_LEN);
594
595	minrecs[0] = xfs_allocbt_block_maxrecs(blocklen, true) / 2;
596	minrecs[1] = xfs_allocbt_block_maxrecs(blocklen, false) / 2;
597
598	return xfs_btree_compute_maxlevels(minrecs, XFS_MAX_FREESP_RECORDS);
599}
600
601/* Calculate the freespace btree size for some records. */
602xfs_extlen_t
603xfs_allocbt_calc_size(
604	struct xfs_mount	*mp,
605	unsigned long long	len)
606{
607	return xfs_btree_calc_size(mp->m_alloc_mnr, len);
608}
609
610int __init
611xfs_allocbt_init_cur_cache(void)
612{
613	xfs_allocbt_cur_cache = kmem_cache_create("xfs_bnobt_cur",
614			xfs_btree_cur_sizeof(xfs_allocbt_maxlevels_ondisk()),
615			0, 0, NULL);
616
617	if (!xfs_allocbt_cur_cache)
618		return -ENOMEM;
619	return 0;
620}
621
622void
623xfs_allocbt_destroy_cur_cache(void)
624{
625	kmem_cache_destroy(xfs_allocbt_cur_cache);
626	xfs_allocbt_cur_cache = NULL;
627}