Loading...
1/*
2 * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18#include "xfs.h"
19#include "xfs_fs.h"
20#include "xfs_shared.h"
21#include "xfs_format.h"
22#include "xfs_log_format.h"
23#include "xfs_trans_resv.h"
24#include "xfs_sb.h"
25#include "xfs_mount.h"
26#include "xfs_btree.h"
27#include "xfs_alloc_btree.h"
28#include "xfs_alloc.h"
29#include "xfs_extent_busy.h"
30#include "xfs_error.h"
31#include "xfs_trace.h"
32#include "xfs_cksum.h"
33#include "xfs_trans.h"
34
35
36STATIC struct xfs_btree_cur *
37xfs_allocbt_dup_cursor(
38 struct xfs_btree_cur *cur)
39{
40 return xfs_allocbt_init_cursor(cur->bc_mp, cur->bc_tp,
41 cur->bc_private.a.agbp, cur->bc_private.a.agno,
42 cur->bc_btnum);
43}
44
45STATIC void
46xfs_allocbt_set_root(
47 struct xfs_btree_cur *cur,
48 union xfs_btree_ptr *ptr,
49 int inc)
50{
51 struct xfs_buf *agbp = cur->bc_private.a.agbp;
52 struct xfs_agf *agf = XFS_BUF_TO_AGF(agbp);
53 xfs_agnumber_t seqno = be32_to_cpu(agf->agf_seqno);
54 int btnum = cur->bc_btnum;
55 struct xfs_perag *pag = xfs_perag_get(cur->bc_mp, seqno);
56
57 ASSERT(ptr->s != 0);
58
59 agf->agf_roots[btnum] = ptr->s;
60 be32_add_cpu(&agf->agf_levels[btnum], inc);
61 pag->pagf_levels[btnum] += inc;
62 xfs_perag_put(pag);
63
64 xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_ROOTS | XFS_AGF_LEVELS);
65}
66
67STATIC int
68xfs_allocbt_alloc_block(
69 struct xfs_btree_cur *cur,
70 union xfs_btree_ptr *start,
71 union xfs_btree_ptr *new,
72 int *stat)
73{
74 int error;
75 xfs_agblock_t bno;
76
77 /* Allocate the new block from the freelist. If we can't, give up. */
78 error = xfs_alloc_get_freelist(cur->bc_tp, cur->bc_private.a.agbp,
79 &bno, 1);
80 if (error)
81 return error;
82
83 if (bno == NULLAGBLOCK) {
84 *stat = 0;
85 return 0;
86 }
87
88 xfs_extent_busy_reuse(cur->bc_mp, cur->bc_private.a.agno, bno, 1, false);
89
90 xfs_trans_agbtree_delta(cur->bc_tp, 1);
91 new->s = cpu_to_be32(bno);
92
93 *stat = 1;
94 return 0;
95}
96
97STATIC int
98xfs_allocbt_free_block(
99 struct xfs_btree_cur *cur,
100 struct xfs_buf *bp)
101{
102 struct xfs_buf *agbp = cur->bc_private.a.agbp;
103 struct xfs_agf *agf = XFS_BUF_TO_AGF(agbp);
104 xfs_agblock_t bno;
105 int error;
106
107 bno = xfs_daddr_to_agbno(cur->bc_mp, XFS_BUF_ADDR(bp));
108 error = xfs_alloc_put_freelist(cur->bc_tp, agbp, NULL, bno, 1);
109 if (error)
110 return error;
111
112 xfs_extent_busy_insert(cur->bc_tp, be32_to_cpu(agf->agf_seqno), bno, 1,
113 XFS_EXTENT_BUSY_SKIP_DISCARD);
114 xfs_trans_agbtree_delta(cur->bc_tp, -1);
115 return 0;
116}
117
118/*
119 * Update the longest extent in the AGF
120 */
121STATIC void
122xfs_allocbt_update_lastrec(
123 struct xfs_btree_cur *cur,
124 struct xfs_btree_block *block,
125 union xfs_btree_rec *rec,
126 int ptr,
127 int reason)
128{
129 struct xfs_agf *agf = XFS_BUF_TO_AGF(cur->bc_private.a.agbp);
130 xfs_agnumber_t seqno = be32_to_cpu(agf->agf_seqno);
131 struct xfs_perag *pag;
132 __be32 len;
133 int numrecs;
134
135 ASSERT(cur->bc_btnum == XFS_BTNUM_CNT);
136
137 switch (reason) {
138 case LASTREC_UPDATE:
139 /*
140 * If this is the last leaf block and it's the last record,
141 * then update the size of the longest extent in the AG.
142 */
143 if (ptr != xfs_btree_get_numrecs(block))
144 return;
145 len = rec->alloc.ar_blockcount;
146 break;
147 case LASTREC_INSREC:
148 if (be32_to_cpu(rec->alloc.ar_blockcount) <=
149 be32_to_cpu(agf->agf_longest))
150 return;
151 len = rec->alloc.ar_blockcount;
152 break;
153 case LASTREC_DELREC:
154 numrecs = xfs_btree_get_numrecs(block);
155 if (ptr <= numrecs)
156 return;
157 ASSERT(ptr == numrecs + 1);
158
159 if (numrecs) {
160 xfs_alloc_rec_t *rrp;
161
162 rrp = XFS_ALLOC_REC_ADDR(cur->bc_mp, block, numrecs);
163 len = rrp->ar_blockcount;
164 } else {
165 len = 0;
166 }
167
168 break;
169 default:
170 ASSERT(0);
171 return;
172 }
173
174 agf->agf_longest = len;
175 pag = xfs_perag_get(cur->bc_mp, seqno);
176 pag->pagf_longest = be32_to_cpu(len);
177 xfs_perag_put(pag);
178 xfs_alloc_log_agf(cur->bc_tp, cur->bc_private.a.agbp, XFS_AGF_LONGEST);
179}
180
181STATIC int
182xfs_allocbt_get_minrecs(
183 struct xfs_btree_cur *cur,
184 int level)
185{
186 return cur->bc_mp->m_alloc_mnr[level != 0];
187}
188
189STATIC int
190xfs_allocbt_get_maxrecs(
191 struct xfs_btree_cur *cur,
192 int level)
193{
194 return cur->bc_mp->m_alloc_mxr[level != 0];
195}
196
197STATIC void
198xfs_allocbt_init_key_from_rec(
199 union xfs_btree_key *key,
200 union xfs_btree_rec *rec)
201{
202 key->alloc.ar_startblock = rec->alloc.ar_startblock;
203 key->alloc.ar_blockcount = rec->alloc.ar_blockcount;
204}
205
206STATIC void
207xfs_bnobt_init_high_key_from_rec(
208 union xfs_btree_key *key,
209 union xfs_btree_rec *rec)
210{
211 __u32 x;
212
213 x = be32_to_cpu(rec->alloc.ar_startblock);
214 x += be32_to_cpu(rec->alloc.ar_blockcount) - 1;
215 key->alloc.ar_startblock = cpu_to_be32(x);
216 key->alloc.ar_blockcount = 0;
217}
218
219STATIC void
220xfs_cntbt_init_high_key_from_rec(
221 union xfs_btree_key *key,
222 union xfs_btree_rec *rec)
223{
224 key->alloc.ar_blockcount = rec->alloc.ar_blockcount;
225 key->alloc.ar_startblock = 0;
226}
227
228STATIC void
229xfs_allocbt_init_rec_from_cur(
230 struct xfs_btree_cur *cur,
231 union xfs_btree_rec *rec)
232{
233 rec->alloc.ar_startblock = cpu_to_be32(cur->bc_rec.a.ar_startblock);
234 rec->alloc.ar_blockcount = cpu_to_be32(cur->bc_rec.a.ar_blockcount);
235}
236
237STATIC void
238xfs_allocbt_init_ptr_from_cur(
239 struct xfs_btree_cur *cur,
240 union xfs_btree_ptr *ptr)
241{
242 struct xfs_agf *agf = XFS_BUF_TO_AGF(cur->bc_private.a.agbp);
243
244 ASSERT(cur->bc_private.a.agno == be32_to_cpu(agf->agf_seqno));
245 ASSERT(agf->agf_roots[cur->bc_btnum] != 0);
246
247 ptr->s = agf->agf_roots[cur->bc_btnum];
248}
249
250STATIC int64_t
251xfs_bnobt_key_diff(
252 struct xfs_btree_cur *cur,
253 union xfs_btree_key *key)
254{
255 xfs_alloc_rec_incore_t *rec = &cur->bc_rec.a;
256 xfs_alloc_key_t *kp = &key->alloc;
257
258 return (int64_t)be32_to_cpu(kp->ar_startblock) - rec->ar_startblock;
259}
260
261STATIC int64_t
262xfs_cntbt_key_diff(
263 struct xfs_btree_cur *cur,
264 union xfs_btree_key *key)
265{
266 xfs_alloc_rec_incore_t *rec = &cur->bc_rec.a;
267 xfs_alloc_key_t *kp = &key->alloc;
268 int64_t diff;
269
270 diff = (int64_t)be32_to_cpu(kp->ar_blockcount) - rec->ar_blockcount;
271 if (diff)
272 return diff;
273
274 return (int64_t)be32_to_cpu(kp->ar_startblock) - rec->ar_startblock;
275}
276
277STATIC int64_t
278xfs_bnobt_diff_two_keys(
279 struct xfs_btree_cur *cur,
280 union xfs_btree_key *k1,
281 union xfs_btree_key *k2)
282{
283 return (int64_t)be32_to_cpu(k1->alloc.ar_startblock) -
284 be32_to_cpu(k2->alloc.ar_startblock);
285}
286
287STATIC int64_t
288xfs_cntbt_diff_two_keys(
289 struct xfs_btree_cur *cur,
290 union xfs_btree_key *k1,
291 union xfs_btree_key *k2)
292{
293 int64_t diff;
294
295 diff = be32_to_cpu(k1->alloc.ar_blockcount) -
296 be32_to_cpu(k2->alloc.ar_blockcount);
297 if (diff)
298 return diff;
299
300 return be32_to_cpu(k1->alloc.ar_startblock) -
301 be32_to_cpu(k2->alloc.ar_startblock);
302}
303
304static xfs_failaddr_t
305xfs_allocbt_verify(
306 struct xfs_buf *bp)
307{
308 struct xfs_mount *mp = bp->b_target->bt_mount;
309 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
310 struct xfs_perag *pag = bp->b_pag;
311 xfs_failaddr_t fa;
312 unsigned int level;
313
314 /*
315 * magic number and level verification
316 *
317 * During growfs operations, we can't verify the exact level or owner as
318 * the perag is not fully initialised and hence not attached to the
319 * buffer. In this case, check against the maximum tree depth.
320 *
321 * Similarly, during log recovery we will have a perag structure
322 * attached, but the agf information will not yet have been initialised
323 * from the on disk AGF. Again, we can only check against maximum limits
324 * in this case.
325 */
326 level = be16_to_cpu(block->bb_level);
327 switch (block->bb_magic) {
328 case cpu_to_be32(XFS_ABTB_CRC_MAGIC):
329 fa = xfs_btree_sblock_v5hdr_verify(bp);
330 if (fa)
331 return fa;
332 /* fall through */
333 case cpu_to_be32(XFS_ABTB_MAGIC):
334 if (pag && pag->pagf_init) {
335 if (level >= pag->pagf_levels[XFS_BTNUM_BNOi])
336 return __this_address;
337 } else if (level >= mp->m_ag_maxlevels)
338 return __this_address;
339 break;
340 case cpu_to_be32(XFS_ABTC_CRC_MAGIC):
341 fa = xfs_btree_sblock_v5hdr_verify(bp);
342 if (fa)
343 return fa;
344 /* fall through */
345 case cpu_to_be32(XFS_ABTC_MAGIC):
346 if (pag && pag->pagf_init) {
347 if (level >= pag->pagf_levels[XFS_BTNUM_CNTi])
348 return __this_address;
349 } else if (level >= mp->m_ag_maxlevels)
350 return __this_address;
351 break;
352 default:
353 return __this_address;
354 }
355
356 return xfs_btree_sblock_verify(bp, mp->m_alloc_mxr[level != 0]);
357}
358
359static void
360xfs_allocbt_read_verify(
361 struct xfs_buf *bp)
362{
363 xfs_failaddr_t fa;
364
365 if (!xfs_btree_sblock_verify_crc(bp))
366 xfs_verifier_error(bp, -EFSBADCRC, __this_address);
367 else {
368 fa = xfs_allocbt_verify(bp);
369 if (fa)
370 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
371 }
372
373 if (bp->b_error)
374 trace_xfs_btree_corrupt(bp, _RET_IP_);
375}
376
377static void
378xfs_allocbt_write_verify(
379 struct xfs_buf *bp)
380{
381 xfs_failaddr_t fa;
382
383 fa = xfs_allocbt_verify(bp);
384 if (fa) {
385 trace_xfs_btree_corrupt(bp, _RET_IP_);
386 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
387 return;
388 }
389 xfs_btree_sblock_calc_crc(bp);
390
391}
392
393const struct xfs_buf_ops xfs_allocbt_buf_ops = {
394 .name = "xfs_allocbt",
395 .verify_read = xfs_allocbt_read_verify,
396 .verify_write = xfs_allocbt_write_verify,
397 .verify_struct = xfs_allocbt_verify,
398};
399
400
401STATIC int
402xfs_bnobt_keys_inorder(
403 struct xfs_btree_cur *cur,
404 union xfs_btree_key *k1,
405 union xfs_btree_key *k2)
406{
407 return be32_to_cpu(k1->alloc.ar_startblock) <
408 be32_to_cpu(k2->alloc.ar_startblock);
409}
410
411STATIC int
412xfs_bnobt_recs_inorder(
413 struct xfs_btree_cur *cur,
414 union xfs_btree_rec *r1,
415 union xfs_btree_rec *r2)
416{
417 return be32_to_cpu(r1->alloc.ar_startblock) +
418 be32_to_cpu(r1->alloc.ar_blockcount) <=
419 be32_to_cpu(r2->alloc.ar_startblock);
420}
421
422STATIC int
423xfs_cntbt_keys_inorder(
424 struct xfs_btree_cur *cur,
425 union xfs_btree_key *k1,
426 union xfs_btree_key *k2)
427{
428 return be32_to_cpu(k1->alloc.ar_blockcount) <
429 be32_to_cpu(k2->alloc.ar_blockcount) ||
430 (k1->alloc.ar_blockcount == k2->alloc.ar_blockcount &&
431 be32_to_cpu(k1->alloc.ar_startblock) <
432 be32_to_cpu(k2->alloc.ar_startblock));
433}
434
435STATIC int
436xfs_cntbt_recs_inorder(
437 struct xfs_btree_cur *cur,
438 union xfs_btree_rec *r1,
439 union xfs_btree_rec *r2)
440{
441 return be32_to_cpu(r1->alloc.ar_blockcount) <
442 be32_to_cpu(r2->alloc.ar_blockcount) ||
443 (r1->alloc.ar_blockcount == r2->alloc.ar_blockcount &&
444 be32_to_cpu(r1->alloc.ar_startblock) <
445 be32_to_cpu(r2->alloc.ar_startblock));
446}
447
448static const struct xfs_btree_ops xfs_bnobt_ops = {
449 .rec_len = sizeof(xfs_alloc_rec_t),
450 .key_len = sizeof(xfs_alloc_key_t),
451
452 .dup_cursor = xfs_allocbt_dup_cursor,
453 .set_root = xfs_allocbt_set_root,
454 .alloc_block = xfs_allocbt_alloc_block,
455 .free_block = xfs_allocbt_free_block,
456 .update_lastrec = xfs_allocbt_update_lastrec,
457 .get_minrecs = xfs_allocbt_get_minrecs,
458 .get_maxrecs = xfs_allocbt_get_maxrecs,
459 .init_key_from_rec = xfs_allocbt_init_key_from_rec,
460 .init_high_key_from_rec = xfs_bnobt_init_high_key_from_rec,
461 .init_rec_from_cur = xfs_allocbt_init_rec_from_cur,
462 .init_ptr_from_cur = xfs_allocbt_init_ptr_from_cur,
463 .key_diff = xfs_bnobt_key_diff,
464 .buf_ops = &xfs_allocbt_buf_ops,
465 .diff_two_keys = xfs_bnobt_diff_two_keys,
466 .keys_inorder = xfs_bnobt_keys_inorder,
467 .recs_inorder = xfs_bnobt_recs_inorder,
468};
469
470static const struct xfs_btree_ops xfs_cntbt_ops = {
471 .rec_len = sizeof(xfs_alloc_rec_t),
472 .key_len = sizeof(xfs_alloc_key_t),
473
474 .dup_cursor = xfs_allocbt_dup_cursor,
475 .set_root = xfs_allocbt_set_root,
476 .alloc_block = xfs_allocbt_alloc_block,
477 .free_block = xfs_allocbt_free_block,
478 .update_lastrec = xfs_allocbt_update_lastrec,
479 .get_minrecs = xfs_allocbt_get_minrecs,
480 .get_maxrecs = xfs_allocbt_get_maxrecs,
481 .init_key_from_rec = xfs_allocbt_init_key_from_rec,
482 .init_high_key_from_rec = xfs_cntbt_init_high_key_from_rec,
483 .init_rec_from_cur = xfs_allocbt_init_rec_from_cur,
484 .init_ptr_from_cur = xfs_allocbt_init_ptr_from_cur,
485 .key_diff = xfs_cntbt_key_diff,
486 .buf_ops = &xfs_allocbt_buf_ops,
487 .diff_two_keys = xfs_cntbt_diff_two_keys,
488 .keys_inorder = xfs_cntbt_keys_inorder,
489 .recs_inorder = xfs_cntbt_recs_inorder,
490};
491
492/*
493 * Allocate a new allocation btree cursor.
494 */
495struct xfs_btree_cur * /* new alloc btree cursor */
496xfs_allocbt_init_cursor(
497 struct xfs_mount *mp, /* file system mount point */
498 struct xfs_trans *tp, /* transaction pointer */
499 struct xfs_buf *agbp, /* buffer for agf structure */
500 xfs_agnumber_t agno, /* allocation group number */
501 xfs_btnum_t btnum) /* btree identifier */
502{
503 struct xfs_agf *agf = XFS_BUF_TO_AGF(agbp);
504 struct xfs_btree_cur *cur;
505
506 ASSERT(btnum == XFS_BTNUM_BNO || btnum == XFS_BTNUM_CNT);
507
508 cur = kmem_zone_zalloc(xfs_btree_cur_zone, KM_NOFS);
509
510 cur->bc_tp = tp;
511 cur->bc_mp = mp;
512 cur->bc_btnum = btnum;
513 cur->bc_blocklog = mp->m_sb.sb_blocklog;
514
515 if (btnum == XFS_BTNUM_CNT) {
516 cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_abtc_2);
517 cur->bc_ops = &xfs_cntbt_ops;
518 cur->bc_nlevels = be32_to_cpu(agf->agf_levels[XFS_BTNUM_CNT]);
519 cur->bc_flags = XFS_BTREE_LASTREC_UPDATE;
520 } else {
521 cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_abtb_2);
522 cur->bc_ops = &xfs_bnobt_ops;
523 cur->bc_nlevels = be32_to_cpu(agf->agf_levels[XFS_BTNUM_BNO]);
524 }
525
526 cur->bc_private.a.agbp = agbp;
527 cur->bc_private.a.agno = agno;
528
529 if (xfs_sb_version_hascrc(&mp->m_sb))
530 cur->bc_flags |= XFS_BTREE_CRC_BLOCKS;
531
532 return cur;
533}
534
535/*
536 * Calculate number of records in an alloc btree block.
537 */
538int
539xfs_allocbt_maxrecs(
540 struct xfs_mount *mp,
541 int blocklen,
542 int leaf)
543{
544 blocklen -= XFS_ALLOC_BLOCK_LEN(mp);
545
546 if (leaf)
547 return blocklen / sizeof(xfs_alloc_rec_t);
548 return blocklen / (sizeof(xfs_alloc_key_t) + sizeof(xfs_alloc_ptr_t));
549}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6#include "xfs.h"
7#include "xfs_fs.h"
8#include "xfs_shared.h"
9#include "xfs_format.h"
10#include "xfs_log_format.h"
11#include "xfs_trans_resv.h"
12#include "xfs_mount.h"
13#include "xfs_btree.h"
14#include "xfs_btree_staging.h"
15#include "xfs_alloc_btree.h"
16#include "xfs_alloc.h"
17#include "xfs_extent_busy.h"
18#include "xfs_error.h"
19#include "xfs_trace.h"
20#include "xfs_trans.h"
21#include "xfs_ag.h"
22
23
24STATIC struct xfs_btree_cur *
25xfs_allocbt_dup_cursor(
26 struct xfs_btree_cur *cur)
27{
28 return xfs_allocbt_init_cursor(cur->bc_mp, cur->bc_tp,
29 cur->bc_ag.agbp, cur->bc_ag.pag, cur->bc_btnum);
30}
31
32STATIC void
33xfs_allocbt_set_root(
34 struct xfs_btree_cur *cur,
35 union xfs_btree_ptr *ptr,
36 int inc)
37{
38 struct xfs_buf *agbp = cur->bc_ag.agbp;
39 struct xfs_agf *agf = agbp->b_addr;
40 int btnum = cur->bc_btnum;
41
42 ASSERT(ptr->s != 0);
43
44 agf->agf_roots[btnum] = ptr->s;
45 be32_add_cpu(&agf->agf_levels[btnum], inc);
46 cur->bc_ag.pag->pagf_levels[btnum] += inc;
47
48 xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_ROOTS | XFS_AGF_LEVELS);
49}
50
51STATIC int
52xfs_allocbt_alloc_block(
53 struct xfs_btree_cur *cur,
54 union xfs_btree_ptr *start,
55 union xfs_btree_ptr *new,
56 int *stat)
57{
58 int error;
59 xfs_agblock_t bno;
60
61 /* Allocate the new block from the freelist. If we can't, give up. */
62 error = xfs_alloc_get_freelist(cur->bc_tp, cur->bc_ag.agbp,
63 &bno, 1);
64 if (error)
65 return error;
66
67 if (bno == NULLAGBLOCK) {
68 *stat = 0;
69 return 0;
70 }
71
72 atomic64_inc(&cur->bc_mp->m_allocbt_blks);
73 xfs_extent_busy_reuse(cur->bc_mp, cur->bc_ag.agbp->b_pag, bno, 1, false);
74
75 new->s = cpu_to_be32(bno);
76
77 *stat = 1;
78 return 0;
79}
80
81STATIC int
82xfs_allocbt_free_block(
83 struct xfs_btree_cur *cur,
84 struct xfs_buf *bp)
85{
86 struct xfs_buf *agbp = cur->bc_ag.agbp;
87 xfs_agblock_t bno;
88 int error;
89
90 bno = xfs_daddr_to_agbno(cur->bc_mp, XFS_BUF_ADDR(bp));
91 error = xfs_alloc_put_freelist(cur->bc_tp, agbp, NULL, bno, 1);
92 if (error)
93 return error;
94
95 atomic64_dec(&cur->bc_mp->m_allocbt_blks);
96 xfs_extent_busy_insert(cur->bc_tp, agbp->b_pag, bno, 1,
97 XFS_EXTENT_BUSY_SKIP_DISCARD);
98 return 0;
99}
100
101/*
102 * Update the longest extent in the AGF
103 */
104STATIC void
105xfs_allocbt_update_lastrec(
106 struct xfs_btree_cur *cur,
107 struct xfs_btree_block *block,
108 union xfs_btree_rec *rec,
109 int ptr,
110 int reason)
111{
112 struct xfs_agf *agf = cur->bc_ag.agbp->b_addr;
113 struct xfs_perag *pag;
114 __be32 len;
115 int numrecs;
116
117 ASSERT(cur->bc_btnum == XFS_BTNUM_CNT);
118
119 switch (reason) {
120 case LASTREC_UPDATE:
121 /*
122 * If this is the last leaf block and it's the last record,
123 * then update the size of the longest extent in the AG.
124 */
125 if (ptr != xfs_btree_get_numrecs(block))
126 return;
127 len = rec->alloc.ar_blockcount;
128 break;
129 case LASTREC_INSREC:
130 if (be32_to_cpu(rec->alloc.ar_blockcount) <=
131 be32_to_cpu(agf->agf_longest))
132 return;
133 len = rec->alloc.ar_blockcount;
134 break;
135 case LASTREC_DELREC:
136 numrecs = xfs_btree_get_numrecs(block);
137 if (ptr <= numrecs)
138 return;
139 ASSERT(ptr == numrecs + 1);
140
141 if (numrecs) {
142 xfs_alloc_rec_t *rrp;
143
144 rrp = XFS_ALLOC_REC_ADDR(cur->bc_mp, block, numrecs);
145 len = rrp->ar_blockcount;
146 } else {
147 len = 0;
148 }
149
150 break;
151 default:
152 ASSERT(0);
153 return;
154 }
155
156 agf->agf_longest = len;
157 pag = cur->bc_ag.agbp->b_pag;
158 pag->pagf_longest = be32_to_cpu(len);
159 xfs_alloc_log_agf(cur->bc_tp, cur->bc_ag.agbp, XFS_AGF_LONGEST);
160}
161
162STATIC int
163xfs_allocbt_get_minrecs(
164 struct xfs_btree_cur *cur,
165 int level)
166{
167 return cur->bc_mp->m_alloc_mnr[level != 0];
168}
169
170STATIC int
171xfs_allocbt_get_maxrecs(
172 struct xfs_btree_cur *cur,
173 int level)
174{
175 return cur->bc_mp->m_alloc_mxr[level != 0];
176}
177
178STATIC void
179xfs_allocbt_init_key_from_rec(
180 union xfs_btree_key *key,
181 union xfs_btree_rec *rec)
182{
183 key->alloc.ar_startblock = rec->alloc.ar_startblock;
184 key->alloc.ar_blockcount = rec->alloc.ar_blockcount;
185}
186
187STATIC void
188xfs_bnobt_init_high_key_from_rec(
189 union xfs_btree_key *key,
190 union xfs_btree_rec *rec)
191{
192 __u32 x;
193
194 x = be32_to_cpu(rec->alloc.ar_startblock);
195 x += be32_to_cpu(rec->alloc.ar_blockcount) - 1;
196 key->alloc.ar_startblock = cpu_to_be32(x);
197 key->alloc.ar_blockcount = 0;
198}
199
200STATIC void
201xfs_cntbt_init_high_key_from_rec(
202 union xfs_btree_key *key,
203 union xfs_btree_rec *rec)
204{
205 key->alloc.ar_blockcount = rec->alloc.ar_blockcount;
206 key->alloc.ar_startblock = 0;
207}
208
209STATIC void
210xfs_allocbt_init_rec_from_cur(
211 struct xfs_btree_cur *cur,
212 union xfs_btree_rec *rec)
213{
214 rec->alloc.ar_startblock = cpu_to_be32(cur->bc_rec.a.ar_startblock);
215 rec->alloc.ar_blockcount = cpu_to_be32(cur->bc_rec.a.ar_blockcount);
216}
217
218STATIC void
219xfs_allocbt_init_ptr_from_cur(
220 struct xfs_btree_cur *cur,
221 union xfs_btree_ptr *ptr)
222{
223 struct xfs_agf *agf = cur->bc_ag.agbp->b_addr;
224
225 ASSERT(cur->bc_ag.pag->pag_agno == be32_to_cpu(agf->agf_seqno));
226
227 ptr->s = agf->agf_roots[cur->bc_btnum];
228}
229
230STATIC int64_t
231xfs_bnobt_key_diff(
232 struct xfs_btree_cur *cur,
233 union xfs_btree_key *key)
234{
235 xfs_alloc_rec_incore_t *rec = &cur->bc_rec.a;
236 xfs_alloc_key_t *kp = &key->alloc;
237
238 return (int64_t)be32_to_cpu(kp->ar_startblock) - rec->ar_startblock;
239}
240
241STATIC int64_t
242xfs_cntbt_key_diff(
243 struct xfs_btree_cur *cur,
244 union xfs_btree_key *key)
245{
246 xfs_alloc_rec_incore_t *rec = &cur->bc_rec.a;
247 xfs_alloc_key_t *kp = &key->alloc;
248 int64_t diff;
249
250 diff = (int64_t)be32_to_cpu(kp->ar_blockcount) - rec->ar_blockcount;
251 if (diff)
252 return diff;
253
254 return (int64_t)be32_to_cpu(kp->ar_startblock) - rec->ar_startblock;
255}
256
257STATIC int64_t
258xfs_bnobt_diff_two_keys(
259 struct xfs_btree_cur *cur,
260 union xfs_btree_key *k1,
261 union xfs_btree_key *k2)
262{
263 return (int64_t)be32_to_cpu(k1->alloc.ar_startblock) -
264 be32_to_cpu(k2->alloc.ar_startblock);
265}
266
267STATIC int64_t
268xfs_cntbt_diff_two_keys(
269 struct xfs_btree_cur *cur,
270 union xfs_btree_key *k1,
271 union xfs_btree_key *k2)
272{
273 int64_t diff;
274
275 diff = be32_to_cpu(k1->alloc.ar_blockcount) -
276 be32_to_cpu(k2->alloc.ar_blockcount);
277 if (diff)
278 return diff;
279
280 return be32_to_cpu(k1->alloc.ar_startblock) -
281 be32_to_cpu(k2->alloc.ar_startblock);
282}
283
284static xfs_failaddr_t
285xfs_allocbt_verify(
286 struct xfs_buf *bp)
287{
288 struct xfs_mount *mp = bp->b_mount;
289 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
290 struct xfs_perag *pag = bp->b_pag;
291 xfs_failaddr_t fa;
292 unsigned int level;
293 xfs_btnum_t btnum = XFS_BTNUM_BNOi;
294
295 if (!xfs_verify_magic(bp, block->bb_magic))
296 return __this_address;
297
298 if (xfs_sb_version_hascrc(&mp->m_sb)) {
299 fa = xfs_btree_sblock_v5hdr_verify(bp);
300 if (fa)
301 return fa;
302 }
303
304 /*
305 * The perag may not be attached during grow operations or fully
306 * initialized from the AGF during log recovery. Therefore we can only
307 * check against maximum tree depth from those contexts.
308 *
309 * Otherwise check against the per-tree limit. Peek at one of the
310 * verifier magic values to determine the type of tree we're verifying
311 * against.
312 */
313 level = be16_to_cpu(block->bb_level);
314 if (bp->b_ops->magic[0] == cpu_to_be32(XFS_ABTC_MAGIC))
315 btnum = XFS_BTNUM_CNTi;
316 if (pag && pag->pagf_init) {
317 if (level >= pag->pagf_levels[btnum])
318 return __this_address;
319 } else if (level >= mp->m_ag_maxlevels)
320 return __this_address;
321
322 return xfs_btree_sblock_verify(bp, mp->m_alloc_mxr[level != 0]);
323}
324
325static void
326xfs_allocbt_read_verify(
327 struct xfs_buf *bp)
328{
329 xfs_failaddr_t fa;
330
331 if (!xfs_btree_sblock_verify_crc(bp))
332 xfs_verifier_error(bp, -EFSBADCRC, __this_address);
333 else {
334 fa = xfs_allocbt_verify(bp);
335 if (fa)
336 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
337 }
338
339 if (bp->b_error)
340 trace_xfs_btree_corrupt(bp, _RET_IP_);
341}
342
343static void
344xfs_allocbt_write_verify(
345 struct xfs_buf *bp)
346{
347 xfs_failaddr_t fa;
348
349 fa = xfs_allocbt_verify(bp);
350 if (fa) {
351 trace_xfs_btree_corrupt(bp, _RET_IP_);
352 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
353 return;
354 }
355 xfs_btree_sblock_calc_crc(bp);
356
357}
358
359const struct xfs_buf_ops xfs_bnobt_buf_ops = {
360 .name = "xfs_bnobt",
361 .magic = { cpu_to_be32(XFS_ABTB_MAGIC),
362 cpu_to_be32(XFS_ABTB_CRC_MAGIC) },
363 .verify_read = xfs_allocbt_read_verify,
364 .verify_write = xfs_allocbt_write_verify,
365 .verify_struct = xfs_allocbt_verify,
366};
367
368const struct xfs_buf_ops xfs_cntbt_buf_ops = {
369 .name = "xfs_cntbt",
370 .magic = { cpu_to_be32(XFS_ABTC_MAGIC),
371 cpu_to_be32(XFS_ABTC_CRC_MAGIC) },
372 .verify_read = xfs_allocbt_read_verify,
373 .verify_write = xfs_allocbt_write_verify,
374 .verify_struct = xfs_allocbt_verify,
375};
376
377STATIC int
378xfs_bnobt_keys_inorder(
379 struct xfs_btree_cur *cur,
380 union xfs_btree_key *k1,
381 union xfs_btree_key *k2)
382{
383 return be32_to_cpu(k1->alloc.ar_startblock) <
384 be32_to_cpu(k2->alloc.ar_startblock);
385}
386
387STATIC int
388xfs_bnobt_recs_inorder(
389 struct xfs_btree_cur *cur,
390 union xfs_btree_rec *r1,
391 union xfs_btree_rec *r2)
392{
393 return be32_to_cpu(r1->alloc.ar_startblock) +
394 be32_to_cpu(r1->alloc.ar_blockcount) <=
395 be32_to_cpu(r2->alloc.ar_startblock);
396}
397
398STATIC int
399xfs_cntbt_keys_inorder(
400 struct xfs_btree_cur *cur,
401 union xfs_btree_key *k1,
402 union xfs_btree_key *k2)
403{
404 return be32_to_cpu(k1->alloc.ar_blockcount) <
405 be32_to_cpu(k2->alloc.ar_blockcount) ||
406 (k1->alloc.ar_blockcount == k2->alloc.ar_blockcount &&
407 be32_to_cpu(k1->alloc.ar_startblock) <
408 be32_to_cpu(k2->alloc.ar_startblock));
409}
410
411STATIC int
412xfs_cntbt_recs_inorder(
413 struct xfs_btree_cur *cur,
414 union xfs_btree_rec *r1,
415 union xfs_btree_rec *r2)
416{
417 return be32_to_cpu(r1->alloc.ar_blockcount) <
418 be32_to_cpu(r2->alloc.ar_blockcount) ||
419 (r1->alloc.ar_blockcount == r2->alloc.ar_blockcount &&
420 be32_to_cpu(r1->alloc.ar_startblock) <
421 be32_to_cpu(r2->alloc.ar_startblock));
422}
423
424static const struct xfs_btree_ops xfs_bnobt_ops = {
425 .rec_len = sizeof(xfs_alloc_rec_t),
426 .key_len = sizeof(xfs_alloc_key_t),
427
428 .dup_cursor = xfs_allocbt_dup_cursor,
429 .set_root = xfs_allocbt_set_root,
430 .alloc_block = xfs_allocbt_alloc_block,
431 .free_block = xfs_allocbt_free_block,
432 .update_lastrec = xfs_allocbt_update_lastrec,
433 .get_minrecs = xfs_allocbt_get_minrecs,
434 .get_maxrecs = xfs_allocbt_get_maxrecs,
435 .init_key_from_rec = xfs_allocbt_init_key_from_rec,
436 .init_high_key_from_rec = xfs_bnobt_init_high_key_from_rec,
437 .init_rec_from_cur = xfs_allocbt_init_rec_from_cur,
438 .init_ptr_from_cur = xfs_allocbt_init_ptr_from_cur,
439 .key_diff = xfs_bnobt_key_diff,
440 .buf_ops = &xfs_bnobt_buf_ops,
441 .diff_two_keys = xfs_bnobt_diff_two_keys,
442 .keys_inorder = xfs_bnobt_keys_inorder,
443 .recs_inorder = xfs_bnobt_recs_inorder,
444};
445
446static const struct xfs_btree_ops xfs_cntbt_ops = {
447 .rec_len = sizeof(xfs_alloc_rec_t),
448 .key_len = sizeof(xfs_alloc_key_t),
449
450 .dup_cursor = xfs_allocbt_dup_cursor,
451 .set_root = xfs_allocbt_set_root,
452 .alloc_block = xfs_allocbt_alloc_block,
453 .free_block = xfs_allocbt_free_block,
454 .update_lastrec = xfs_allocbt_update_lastrec,
455 .get_minrecs = xfs_allocbt_get_minrecs,
456 .get_maxrecs = xfs_allocbt_get_maxrecs,
457 .init_key_from_rec = xfs_allocbt_init_key_from_rec,
458 .init_high_key_from_rec = xfs_cntbt_init_high_key_from_rec,
459 .init_rec_from_cur = xfs_allocbt_init_rec_from_cur,
460 .init_ptr_from_cur = xfs_allocbt_init_ptr_from_cur,
461 .key_diff = xfs_cntbt_key_diff,
462 .buf_ops = &xfs_cntbt_buf_ops,
463 .diff_two_keys = xfs_cntbt_diff_two_keys,
464 .keys_inorder = xfs_cntbt_keys_inorder,
465 .recs_inorder = xfs_cntbt_recs_inorder,
466};
467
468/* Allocate most of a new allocation btree cursor. */
469STATIC struct xfs_btree_cur *
470xfs_allocbt_init_common(
471 struct xfs_mount *mp,
472 struct xfs_trans *tp,
473 struct xfs_perag *pag,
474 xfs_btnum_t btnum)
475{
476 struct xfs_btree_cur *cur;
477
478 ASSERT(btnum == XFS_BTNUM_BNO || btnum == XFS_BTNUM_CNT);
479
480 cur = kmem_cache_zalloc(xfs_btree_cur_zone, GFP_NOFS | __GFP_NOFAIL);
481
482 cur->bc_tp = tp;
483 cur->bc_mp = mp;
484 cur->bc_btnum = btnum;
485 cur->bc_blocklog = mp->m_sb.sb_blocklog;
486 cur->bc_ag.abt.active = false;
487
488 if (btnum == XFS_BTNUM_CNT) {
489 cur->bc_ops = &xfs_cntbt_ops;
490 cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_abtc_2);
491 cur->bc_flags = XFS_BTREE_LASTREC_UPDATE;
492 } else {
493 cur->bc_ops = &xfs_bnobt_ops;
494 cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_abtb_2);
495 }
496
497 /* take a reference for the cursor */
498 atomic_inc(&pag->pag_ref);
499 cur->bc_ag.pag = pag;
500
501 if (xfs_sb_version_hascrc(&mp->m_sb))
502 cur->bc_flags |= XFS_BTREE_CRC_BLOCKS;
503
504 return cur;
505}
506
507/*
508 * Allocate a new allocation btree cursor.
509 */
510struct xfs_btree_cur * /* new alloc btree cursor */
511xfs_allocbt_init_cursor(
512 struct xfs_mount *mp, /* file system mount point */
513 struct xfs_trans *tp, /* transaction pointer */
514 struct xfs_buf *agbp, /* buffer for agf structure */
515 struct xfs_perag *pag,
516 xfs_btnum_t btnum) /* btree identifier */
517{
518 struct xfs_agf *agf = agbp->b_addr;
519 struct xfs_btree_cur *cur;
520
521 cur = xfs_allocbt_init_common(mp, tp, pag, btnum);
522 if (btnum == XFS_BTNUM_CNT)
523 cur->bc_nlevels = be32_to_cpu(agf->agf_levels[XFS_BTNUM_CNT]);
524 else
525 cur->bc_nlevels = be32_to_cpu(agf->agf_levels[XFS_BTNUM_BNO]);
526
527 cur->bc_ag.agbp = agbp;
528
529 return cur;
530}
531
532/* Create a free space btree cursor with a fake root for staging. */
533struct xfs_btree_cur *
534xfs_allocbt_stage_cursor(
535 struct xfs_mount *mp,
536 struct xbtree_afakeroot *afake,
537 struct xfs_perag *pag,
538 xfs_btnum_t btnum)
539{
540 struct xfs_btree_cur *cur;
541
542 cur = xfs_allocbt_init_common(mp, NULL, pag, btnum);
543 xfs_btree_stage_afakeroot(cur, afake);
544 return cur;
545}
546
547/*
548 * Install a new free space btree root. Caller is responsible for invalidating
549 * and freeing the old btree blocks.
550 */
551void
552xfs_allocbt_commit_staged_btree(
553 struct xfs_btree_cur *cur,
554 struct xfs_trans *tp,
555 struct xfs_buf *agbp)
556{
557 struct xfs_agf *agf = agbp->b_addr;
558 struct xbtree_afakeroot *afake = cur->bc_ag.afake;
559
560 ASSERT(cur->bc_flags & XFS_BTREE_STAGING);
561
562 agf->agf_roots[cur->bc_btnum] = cpu_to_be32(afake->af_root);
563 agf->agf_levels[cur->bc_btnum] = cpu_to_be32(afake->af_levels);
564 xfs_alloc_log_agf(tp, agbp, XFS_AGF_ROOTS | XFS_AGF_LEVELS);
565
566 if (cur->bc_btnum == XFS_BTNUM_BNO) {
567 xfs_btree_commit_afakeroot(cur, tp, agbp, &xfs_bnobt_ops);
568 } else {
569 cur->bc_flags |= XFS_BTREE_LASTREC_UPDATE;
570 xfs_btree_commit_afakeroot(cur, tp, agbp, &xfs_cntbt_ops);
571 }
572}
573
574/*
575 * Calculate number of records in an alloc btree block.
576 */
577int
578xfs_allocbt_maxrecs(
579 struct xfs_mount *mp,
580 int blocklen,
581 int leaf)
582{
583 blocklen -= XFS_ALLOC_BLOCK_LEN(mp);
584
585 if (leaf)
586 return blocklen / sizeof(xfs_alloc_rec_t);
587 return blocklen / (sizeof(xfs_alloc_key_t) + sizeof(xfs_alloc_ptr_t));
588}
589
590/* Calculate the freespace btree size for some records. */
591xfs_extlen_t
592xfs_allocbt_calc_size(
593 struct xfs_mount *mp,
594 unsigned long long len)
595{
596 return xfs_btree_calc_size(mp->m_alloc_mnr, len);
597}