Loading...
1/*
2 * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18#include "xfs.h"
19#include "xfs_fs.h"
20#include "xfs_shared.h"
21#include "xfs_format.h"
22#include "xfs_log_format.h"
23#include "xfs_trans_resv.h"
24#include "xfs_sb.h"
25#include "xfs_mount.h"
26#include "xfs_btree.h"
27#include "xfs_alloc_btree.h"
28#include "xfs_alloc.h"
29#include "xfs_extent_busy.h"
30#include "xfs_error.h"
31#include "xfs_trace.h"
32#include "xfs_cksum.h"
33#include "xfs_trans.h"
34
35
36STATIC struct xfs_btree_cur *
37xfs_allocbt_dup_cursor(
38 struct xfs_btree_cur *cur)
39{
40 return xfs_allocbt_init_cursor(cur->bc_mp, cur->bc_tp,
41 cur->bc_private.a.agbp, cur->bc_private.a.agno,
42 cur->bc_btnum);
43}
44
45STATIC void
46xfs_allocbt_set_root(
47 struct xfs_btree_cur *cur,
48 union xfs_btree_ptr *ptr,
49 int inc)
50{
51 struct xfs_buf *agbp = cur->bc_private.a.agbp;
52 struct xfs_agf *agf = XFS_BUF_TO_AGF(agbp);
53 xfs_agnumber_t seqno = be32_to_cpu(agf->agf_seqno);
54 int btnum = cur->bc_btnum;
55 struct xfs_perag *pag = xfs_perag_get(cur->bc_mp, seqno);
56
57 ASSERT(ptr->s != 0);
58
59 agf->agf_roots[btnum] = ptr->s;
60 be32_add_cpu(&agf->agf_levels[btnum], inc);
61 pag->pagf_levels[btnum] += inc;
62 xfs_perag_put(pag);
63
64 xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_ROOTS | XFS_AGF_LEVELS);
65}
66
67STATIC int
68xfs_allocbt_alloc_block(
69 struct xfs_btree_cur *cur,
70 union xfs_btree_ptr *start,
71 union xfs_btree_ptr *new,
72 int *stat)
73{
74 int error;
75 xfs_agblock_t bno;
76
77 /* Allocate the new block from the freelist. If we can't, give up. */
78 error = xfs_alloc_get_freelist(cur->bc_tp, cur->bc_private.a.agbp,
79 &bno, 1);
80 if (error)
81 return error;
82
83 if (bno == NULLAGBLOCK) {
84 *stat = 0;
85 return 0;
86 }
87
88 xfs_extent_busy_reuse(cur->bc_mp, cur->bc_private.a.agno, bno, 1, false);
89
90 xfs_trans_agbtree_delta(cur->bc_tp, 1);
91 new->s = cpu_to_be32(bno);
92
93 *stat = 1;
94 return 0;
95}
96
97STATIC int
98xfs_allocbt_free_block(
99 struct xfs_btree_cur *cur,
100 struct xfs_buf *bp)
101{
102 struct xfs_buf *agbp = cur->bc_private.a.agbp;
103 struct xfs_agf *agf = XFS_BUF_TO_AGF(agbp);
104 xfs_agblock_t bno;
105 int error;
106
107 bno = xfs_daddr_to_agbno(cur->bc_mp, XFS_BUF_ADDR(bp));
108 error = xfs_alloc_put_freelist(cur->bc_tp, agbp, NULL, bno, 1);
109 if (error)
110 return error;
111
112 xfs_extent_busy_insert(cur->bc_tp, be32_to_cpu(agf->agf_seqno), bno, 1,
113 XFS_EXTENT_BUSY_SKIP_DISCARD);
114 xfs_trans_agbtree_delta(cur->bc_tp, -1);
115 return 0;
116}
117
118/*
119 * Update the longest extent in the AGF
120 */
121STATIC void
122xfs_allocbt_update_lastrec(
123 struct xfs_btree_cur *cur,
124 struct xfs_btree_block *block,
125 union xfs_btree_rec *rec,
126 int ptr,
127 int reason)
128{
129 struct xfs_agf *agf = XFS_BUF_TO_AGF(cur->bc_private.a.agbp);
130 xfs_agnumber_t seqno = be32_to_cpu(agf->agf_seqno);
131 struct xfs_perag *pag;
132 __be32 len;
133 int numrecs;
134
135 ASSERT(cur->bc_btnum == XFS_BTNUM_CNT);
136
137 switch (reason) {
138 case LASTREC_UPDATE:
139 /*
140 * If this is the last leaf block and it's the last record,
141 * then update the size of the longest extent in the AG.
142 */
143 if (ptr != xfs_btree_get_numrecs(block))
144 return;
145 len = rec->alloc.ar_blockcount;
146 break;
147 case LASTREC_INSREC:
148 if (be32_to_cpu(rec->alloc.ar_blockcount) <=
149 be32_to_cpu(agf->agf_longest))
150 return;
151 len = rec->alloc.ar_blockcount;
152 break;
153 case LASTREC_DELREC:
154 numrecs = xfs_btree_get_numrecs(block);
155 if (ptr <= numrecs)
156 return;
157 ASSERT(ptr == numrecs + 1);
158
159 if (numrecs) {
160 xfs_alloc_rec_t *rrp;
161
162 rrp = XFS_ALLOC_REC_ADDR(cur->bc_mp, block, numrecs);
163 len = rrp->ar_blockcount;
164 } else {
165 len = 0;
166 }
167
168 break;
169 default:
170 ASSERT(0);
171 return;
172 }
173
174 agf->agf_longest = len;
175 pag = xfs_perag_get(cur->bc_mp, seqno);
176 pag->pagf_longest = be32_to_cpu(len);
177 xfs_perag_put(pag);
178 xfs_alloc_log_agf(cur->bc_tp, cur->bc_private.a.agbp, XFS_AGF_LONGEST);
179}
180
181STATIC int
182xfs_allocbt_get_minrecs(
183 struct xfs_btree_cur *cur,
184 int level)
185{
186 return cur->bc_mp->m_alloc_mnr[level != 0];
187}
188
189STATIC int
190xfs_allocbt_get_maxrecs(
191 struct xfs_btree_cur *cur,
192 int level)
193{
194 return cur->bc_mp->m_alloc_mxr[level != 0];
195}
196
197STATIC void
198xfs_allocbt_init_key_from_rec(
199 union xfs_btree_key *key,
200 union xfs_btree_rec *rec)
201{
202 key->alloc.ar_startblock = rec->alloc.ar_startblock;
203 key->alloc.ar_blockcount = rec->alloc.ar_blockcount;
204}
205
206STATIC void
207xfs_bnobt_init_high_key_from_rec(
208 union xfs_btree_key *key,
209 union xfs_btree_rec *rec)
210{
211 __u32 x;
212
213 x = be32_to_cpu(rec->alloc.ar_startblock);
214 x += be32_to_cpu(rec->alloc.ar_blockcount) - 1;
215 key->alloc.ar_startblock = cpu_to_be32(x);
216 key->alloc.ar_blockcount = 0;
217}
218
219STATIC void
220xfs_cntbt_init_high_key_from_rec(
221 union xfs_btree_key *key,
222 union xfs_btree_rec *rec)
223{
224 key->alloc.ar_blockcount = rec->alloc.ar_blockcount;
225 key->alloc.ar_startblock = 0;
226}
227
228STATIC void
229xfs_allocbt_init_rec_from_cur(
230 struct xfs_btree_cur *cur,
231 union xfs_btree_rec *rec)
232{
233 rec->alloc.ar_startblock = cpu_to_be32(cur->bc_rec.a.ar_startblock);
234 rec->alloc.ar_blockcount = cpu_to_be32(cur->bc_rec.a.ar_blockcount);
235}
236
237STATIC void
238xfs_allocbt_init_ptr_from_cur(
239 struct xfs_btree_cur *cur,
240 union xfs_btree_ptr *ptr)
241{
242 struct xfs_agf *agf = XFS_BUF_TO_AGF(cur->bc_private.a.agbp);
243
244 ASSERT(cur->bc_private.a.agno == be32_to_cpu(agf->agf_seqno));
245 ASSERT(agf->agf_roots[cur->bc_btnum] != 0);
246
247 ptr->s = agf->agf_roots[cur->bc_btnum];
248}
249
250STATIC int64_t
251xfs_bnobt_key_diff(
252 struct xfs_btree_cur *cur,
253 union xfs_btree_key *key)
254{
255 xfs_alloc_rec_incore_t *rec = &cur->bc_rec.a;
256 xfs_alloc_key_t *kp = &key->alloc;
257
258 return (int64_t)be32_to_cpu(kp->ar_startblock) - rec->ar_startblock;
259}
260
261STATIC int64_t
262xfs_cntbt_key_diff(
263 struct xfs_btree_cur *cur,
264 union xfs_btree_key *key)
265{
266 xfs_alloc_rec_incore_t *rec = &cur->bc_rec.a;
267 xfs_alloc_key_t *kp = &key->alloc;
268 int64_t diff;
269
270 diff = (int64_t)be32_to_cpu(kp->ar_blockcount) - rec->ar_blockcount;
271 if (diff)
272 return diff;
273
274 return (int64_t)be32_to_cpu(kp->ar_startblock) - rec->ar_startblock;
275}
276
277STATIC int64_t
278xfs_bnobt_diff_two_keys(
279 struct xfs_btree_cur *cur,
280 union xfs_btree_key *k1,
281 union xfs_btree_key *k2)
282{
283 return (int64_t)be32_to_cpu(k1->alloc.ar_startblock) -
284 be32_to_cpu(k2->alloc.ar_startblock);
285}
286
287STATIC int64_t
288xfs_cntbt_diff_two_keys(
289 struct xfs_btree_cur *cur,
290 union xfs_btree_key *k1,
291 union xfs_btree_key *k2)
292{
293 int64_t diff;
294
295 diff = be32_to_cpu(k1->alloc.ar_blockcount) -
296 be32_to_cpu(k2->alloc.ar_blockcount);
297 if (diff)
298 return diff;
299
300 return be32_to_cpu(k1->alloc.ar_startblock) -
301 be32_to_cpu(k2->alloc.ar_startblock);
302}
303
304static xfs_failaddr_t
305xfs_allocbt_verify(
306 struct xfs_buf *bp)
307{
308 struct xfs_mount *mp = bp->b_target->bt_mount;
309 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
310 struct xfs_perag *pag = bp->b_pag;
311 xfs_failaddr_t fa;
312 unsigned int level;
313
314 /*
315 * magic number and level verification
316 *
317 * During growfs operations, we can't verify the exact level or owner as
318 * the perag is not fully initialised and hence not attached to the
319 * buffer. In this case, check against the maximum tree depth.
320 *
321 * Similarly, during log recovery we will have a perag structure
322 * attached, but the agf information will not yet have been initialised
323 * from the on disk AGF. Again, we can only check against maximum limits
324 * in this case.
325 */
326 level = be16_to_cpu(block->bb_level);
327 switch (block->bb_magic) {
328 case cpu_to_be32(XFS_ABTB_CRC_MAGIC):
329 fa = xfs_btree_sblock_v5hdr_verify(bp);
330 if (fa)
331 return fa;
332 /* fall through */
333 case cpu_to_be32(XFS_ABTB_MAGIC):
334 if (pag && pag->pagf_init) {
335 if (level >= pag->pagf_levels[XFS_BTNUM_BNOi])
336 return __this_address;
337 } else if (level >= mp->m_ag_maxlevels)
338 return __this_address;
339 break;
340 case cpu_to_be32(XFS_ABTC_CRC_MAGIC):
341 fa = xfs_btree_sblock_v5hdr_verify(bp);
342 if (fa)
343 return fa;
344 /* fall through */
345 case cpu_to_be32(XFS_ABTC_MAGIC):
346 if (pag && pag->pagf_init) {
347 if (level >= pag->pagf_levels[XFS_BTNUM_CNTi])
348 return __this_address;
349 } else if (level >= mp->m_ag_maxlevels)
350 return __this_address;
351 break;
352 default:
353 return __this_address;
354 }
355
356 return xfs_btree_sblock_verify(bp, mp->m_alloc_mxr[level != 0]);
357}
358
359static void
360xfs_allocbt_read_verify(
361 struct xfs_buf *bp)
362{
363 xfs_failaddr_t fa;
364
365 if (!xfs_btree_sblock_verify_crc(bp))
366 xfs_verifier_error(bp, -EFSBADCRC, __this_address);
367 else {
368 fa = xfs_allocbt_verify(bp);
369 if (fa)
370 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
371 }
372
373 if (bp->b_error)
374 trace_xfs_btree_corrupt(bp, _RET_IP_);
375}
376
377static void
378xfs_allocbt_write_verify(
379 struct xfs_buf *bp)
380{
381 xfs_failaddr_t fa;
382
383 fa = xfs_allocbt_verify(bp);
384 if (fa) {
385 trace_xfs_btree_corrupt(bp, _RET_IP_);
386 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
387 return;
388 }
389 xfs_btree_sblock_calc_crc(bp);
390
391}
392
393const struct xfs_buf_ops xfs_allocbt_buf_ops = {
394 .name = "xfs_allocbt",
395 .verify_read = xfs_allocbt_read_verify,
396 .verify_write = xfs_allocbt_write_verify,
397 .verify_struct = xfs_allocbt_verify,
398};
399
400
401STATIC int
402xfs_bnobt_keys_inorder(
403 struct xfs_btree_cur *cur,
404 union xfs_btree_key *k1,
405 union xfs_btree_key *k2)
406{
407 return be32_to_cpu(k1->alloc.ar_startblock) <
408 be32_to_cpu(k2->alloc.ar_startblock);
409}
410
411STATIC int
412xfs_bnobt_recs_inorder(
413 struct xfs_btree_cur *cur,
414 union xfs_btree_rec *r1,
415 union xfs_btree_rec *r2)
416{
417 return be32_to_cpu(r1->alloc.ar_startblock) +
418 be32_to_cpu(r1->alloc.ar_blockcount) <=
419 be32_to_cpu(r2->alloc.ar_startblock);
420}
421
422STATIC int
423xfs_cntbt_keys_inorder(
424 struct xfs_btree_cur *cur,
425 union xfs_btree_key *k1,
426 union xfs_btree_key *k2)
427{
428 return be32_to_cpu(k1->alloc.ar_blockcount) <
429 be32_to_cpu(k2->alloc.ar_blockcount) ||
430 (k1->alloc.ar_blockcount == k2->alloc.ar_blockcount &&
431 be32_to_cpu(k1->alloc.ar_startblock) <
432 be32_to_cpu(k2->alloc.ar_startblock));
433}
434
435STATIC int
436xfs_cntbt_recs_inorder(
437 struct xfs_btree_cur *cur,
438 union xfs_btree_rec *r1,
439 union xfs_btree_rec *r2)
440{
441 return be32_to_cpu(r1->alloc.ar_blockcount) <
442 be32_to_cpu(r2->alloc.ar_blockcount) ||
443 (r1->alloc.ar_blockcount == r2->alloc.ar_blockcount &&
444 be32_to_cpu(r1->alloc.ar_startblock) <
445 be32_to_cpu(r2->alloc.ar_startblock));
446}
447
448static const struct xfs_btree_ops xfs_bnobt_ops = {
449 .rec_len = sizeof(xfs_alloc_rec_t),
450 .key_len = sizeof(xfs_alloc_key_t),
451
452 .dup_cursor = xfs_allocbt_dup_cursor,
453 .set_root = xfs_allocbt_set_root,
454 .alloc_block = xfs_allocbt_alloc_block,
455 .free_block = xfs_allocbt_free_block,
456 .update_lastrec = xfs_allocbt_update_lastrec,
457 .get_minrecs = xfs_allocbt_get_minrecs,
458 .get_maxrecs = xfs_allocbt_get_maxrecs,
459 .init_key_from_rec = xfs_allocbt_init_key_from_rec,
460 .init_high_key_from_rec = xfs_bnobt_init_high_key_from_rec,
461 .init_rec_from_cur = xfs_allocbt_init_rec_from_cur,
462 .init_ptr_from_cur = xfs_allocbt_init_ptr_from_cur,
463 .key_diff = xfs_bnobt_key_diff,
464 .buf_ops = &xfs_allocbt_buf_ops,
465 .diff_two_keys = xfs_bnobt_diff_two_keys,
466 .keys_inorder = xfs_bnobt_keys_inorder,
467 .recs_inorder = xfs_bnobt_recs_inorder,
468};
469
470static const struct xfs_btree_ops xfs_cntbt_ops = {
471 .rec_len = sizeof(xfs_alloc_rec_t),
472 .key_len = sizeof(xfs_alloc_key_t),
473
474 .dup_cursor = xfs_allocbt_dup_cursor,
475 .set_root = xfs_allocbt_set_root,
476 .alloc_block = xfs_allocbt_alloc_block,
477 .free_block = xfs_allocbt_free_block,
478 .update_lastrec = xfs_allocbt_update_lastrec,
479 .get_minrecs = xfs_allocbt_get_minrecs,
480 .get_maxrecs = xfs_allocbt_get_maxrecs,
481 .init_key_from_rec = xfs_allocbt_init_key_from_rec,
482 .init_high_key_from_rec = xfs_cntbt_init_high_key_from_rec,
483 .init_rec_from_cur = xfs_allocbt_init_rec_from_cur,
484 .init_ptr_from_cur = xfs_allocbt_init_ptr_from_cur,
485 .key_diff = xfs_cntbt_key_diff,
486 .buf_ops = &xfs_allocbt_buf_ops,
487 .diff_two_keys = xfs_cntbt_diff_two_keys,
488 .keys_inorder = xfs_cntbt_keys_inorder,
489 .recs_inorder = xfs_cntbt_recs_inorder,
490};
491
492/*
493 * Allocate a new allocation btree cursor.
494 */
495struct xfs_btree_cur * /* new alloc btree cursor */
496xfs_allocbt_init_cursor(
497 struct xfs_mount *mp, /* file system mount point */
498 struct xfs_trans *tp, /* transaction pointer */
499 struct xfs_buf *agbp, /* buffer for agf structure */
500 xfs_agnumber_t agno, /* allocation group number */
501 xfs_btnum_t btnum) /* btree identifier */
502{
503 struct xfs_agf *agf = XFS_BUF_TO_AGF(agbp);
504 struct xfs_btree_cur *cur;
505
506 ASSERT(btnum == XFS_BTNUM_BNO || btnum == XFS_BTNUM_CNT);
507
508 cur = kmem_zone_zalloc(xfs_btree_cur_zone, KM_NOFS);
509
510 cur->bc_tp = tp;
511 cur->bc_mp = mp;
512 cur->bc_btnum = btnum;
513 cur->bc_blocklog = mp->m_sb.sb_blocklog;
514
515 if (btnum == XFS_BTNUM_CNT) {
516 cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_abtc_2);
517 cur->bc_ops = &xfs_cntbt_ops;
518 cur->bc_nlevels = be32_to_cpu(agf->agf_levels[XFS_BTNUM_CNT]);
519 cur->bc_flags = XFS_BTREE_LASTREC_UPDATE;
520 } else {
521 cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_abtb_2);
522 cur->bc_ops = &xfs_bnobt_ops;
523 cur->bc_nlevels = be32_to_cpu(agf->agf_levels[XFS_BTNUM_BNO]);
524 }
525
526 cur->bc_private.a.agbp = agbp;
527 cur->bc_private.a.agno = agno;
528
529 if (xfs_sb_version_hascrc(&mp->m_sb))
530 cur->bc_flags |= XFS_BTREE_CRC_BLOCKS;
531
532 return cur;
533}
534
535/*
536 * Calculate number of records in an alloc btree block.
537 */
538int
539xfs_allocbt_maxrecs(
540 struct xfs_mount *mp,
541 int blocklen,
542 int leaf)
543{
544 blocklen -= XFS_ALLOC_BLOCK_LEN(mp);
545
546 if (leaf)
547 return blocklen / sizeof(xfs_alloc_rec_t);
548 return blocklen / (sizeof(xfs_alloc_key_t) + sizeof(xfs_alloc_ptr_t));
549}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6#include "xfs.h"
7#include "xfs_fs.h"
8#include "xfs_shared.h"
9#include "xfs_format.h"
10#include "xfs_log_format.h"
11#include "xfs_trans_resv.h"
12#include "xfs_sb.h"
13#include "xfs_mount.h"
14#include "xfs_btree.h"
15#include "xfs_alloc_btree.h"
16#include "xfs_alloc.h"
17#include "xfs_extent_busy.h"
18#include "xfs_error.h"
19#include "xfs_trace.h"
20#include "xfs_trans.h"
21
22
23STATIC struct xfs_btree_cur *
24xfs_allocbt_dup_cursor(
25 struct xfs_btree_cur *cur)
26{
27 return xfs_allocbt_init_cursor(cur->bc_mp, cur->bc_tp,
28 cur->bc_private.a.agbp, cur->bc_private.a.agno,
29 cur->bc_btnum);
30}
31
32STATIC void
33xfs_allocbt_set_root(
34 struct xfs_btree_cur *cur,
35 union xfs_btree_ptr *ptr,
36 int inc)
37{
38 struct xfs_buf *agbp = cur->bc_private.a.agbp;
39 struct xfs_agf *agf = XFS_BUF_TO_AGF(agbp);
40 xfs_agnumber_t seqno = be32_to_cpu(agf->agf_seqno);
41 int btnum = cur->bc_btnum;
42 struct xfs_perag *pag = xfs_perag_get(cur->bc_mp, seqno);
43
44 ASSERT(ptr->s != 0);
45
46 agf->agf_roots[btnum] = ptr->s;
47 be32_add_cpu(&agf->agf_levels[btnum], inc);
48 pag->pagf_levels[btnum] += inc;
49 xfs_perag_put(pag);
50
51 xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_ROOTS | XFS_AGF_LEVELS);
52}
53
54STATIC int
55xfs_allocbt_alloc_block(
56 struct xfs_btree_cur *cur,
57 union xfs_btree_ptr *start,
58 union xfs_btree_ptr *new,
59 int *stat)
60{
61 int error;
62 xfs_agblock_t bno;
63
64 /* Allocate the new block from the freelist. If we can't, give up. */
65 error = xfs_alloc_get_freelist(cur->bc_tp, cur->bc_private.a.agbp,
66 &bno, 1);
67 if (error)
68 return error;
69
70 if (bno == NULLAGBLOCK) {
71 *stat = 0;
72 return 0;
73 }
74
75 xfs_extent_busy_reuse(cur->bc_mp, cur->bc_private.a.agno, bno, 1, false);
76
77 xfs_trans_agbtree_delta(cur->bc_tp, 1);
78 new->s = cpu_to_be32(bno);
79
80 *stat = 1;
81 return 0;
82}
83
84STATIC int
85xfs_allocbt_free_block(
86 struct xfs_btree_cur *cur,
87 struct xfs_buf *bp)
88{
89 struct xfs_buf *agbp = cur->bc_private.a.agbp;
90 struct xfs_agf *agf = XFS_BUF_TO_AGF(agbp);
91 xfs_agblock_t bno;
92 int error;
93
94 bno = xfs_daddr_to_agbno(cur->bc_mp, XFS_BUF_ADDR(bp));
95 error = xfs_alloc_put_freelist(cur->bc_tp, agbp, NULL, bno, 1);
96 if (error)
97 return error;
98
99 xfs_extent_busy_insert(cur->bc_tp, be32_to_cpu(agf->agf_seqno), bno, 1,
100 XFS_EXTENT_BUSY_SKIP_DISCARD);
101 xfs_trans_agbtree_delta(cur->bc_tp, -1);
102 return 0;
103}
104
105/*
106 * Update the longest extent in the AGF
107 */
108STATIC void
109xfs_allocbt_update_lastrec(
110 struct xfs_btree_cur *cur,
111 struct xfs_btree_block *block,
112 union xfs_btree_rec *rec,
113 int ptr,
114 int reason)
115{
116 struct xfs_agf *agf = XFS_BUF_TO_AGF(cur->bc_private.a.agbp);
117 xfs_agnumber_t seqno = be32_to_cpu(agf->agf_seqno);
118 struct xfs_perag *pag;
119 __be32 len;
120 int numrecs;
121
122 ASSERT(cur->bc_btnum == XFS_BTNUM_CNT);
123
124 switch (reason) {
125 case LASTREC_UPDATE:
126 /*
127 * If this is the last leaf block and it's the last record,
128 * then update the size of the longest extent in the AG.
129 */
130 if (ptr != xfs_btree_get_numrecs(block))
131 return;
132 len = rec->alloc.ar_blockcount;
133 break;
134 case LASTREC_INSREC:
135 if (be32_to_cpu(rec->alloc.ar_blockcount) <=
136 be32_to_cpu(agf->agf_longest))
137 return;
138 len = rec->alloc.ar_blockcount;
139 break;
140 case LASTREC_DELREC:
141 numrecs = xfs_btree_get_numrecs(block);
142 if (ptr <= numrecs)
143 return;
144 ASSERT(ptr == numrecs + 1);
145
146 if (numrecs) {
147 xfs_alloc_rec_t *rrp;
148
149 rrp = XFS_ALLOC_REC_ADDR(cur->bc_mp, block, numrecs);
150 len = rrp->ar_blockcount;
151 } else {
152 len = 0;
153 }
154
155 break;
156 default:
157 ASSERT(0);
158 return;
159 }
160
161 agf->agf_longest = len;
162 pag = xfs_perag_get(cur->bc_mp, seqno);
163 pag->pagf_longest = be32_to_cpu(len);
164 xfs_perag_put(pag);
165 xfs_alloc_log_agf(cur->bc_tp, cur->bc_private.a.agbp, XFS_AGF_LONGEST);
166}
167
168STATIC int
169xfs_allocbt_get_minrecs(
170 struct xfs_btree_cur *cur,
171 int level)
172{
173 return cur->bc_mp->m_alloc_mnr[level != 0];
174}
175
176STATIC int
177xfs_allocbt_get_maxrecs(
178 struct xfs_btree_cur *cur,
179 int level)
180{
181 return cur->bc_mp->m_alloc_mxr[level != 0];
182}
183
184STATIC void
185xfs_allocbt_init_key_from_rec(
186 union xfs_btree_key *key,
187 union xfs_btree_rec *rec)
188{
189 key->alloc.ar_startblock = rec->alloc.ar_startblock;
190 key->alloc.ar_blockcount = rec->alloc.ar_blockcount;
191}
192
193STATIC void
194xfs_bnobt_init_high_key_from_rec(
195 union xfs_btree_key *key,
196 union xfs_btree_rec *rec)
197{
198 __u32 x;
199
200 x = be32_to_cpu(rec->alloc.ar_startblock);
201 x += be32_to_cpu(rec->alloc.ar_blockcount) - 1;
202 key->alloc.ar_startblock = cpu_to_be32(x);
203 key->alloc.ar_blockcount = 0;
204}
205
206STATIC void
207xfs_cntbt_init_high_key_from_rec(
208 union xfs_btree_key *key,
209 union xfs_btree_rec *rec)
210{
211 key->alloc.ar_blockcount = rec->alloc.ar_blockcount;
212 key->alloc.ar_startblock = 0;
213}
214
215STATIC void
216xfs_allocbt_init_rec_from_cur(
217 struct xfs_btree_cur *cur,
218 union xfs_btree_rec *rec)
219{
220 rec->alloc.ar_startblock = cpu_to_be32(cur->bc_rec.a.ar_startblock);
221 rec->alloc.ar_blockcount = cpu_to_be32(cur->bc_rec.a.ar_blockcount);
222}
223
224STATIC void
225xfs_allocbt_init_ptr_from_cur(
226 struct xfs_btree_cur *cur,
227 union xfs_btree_ptr *ptr)
228{
229 struct xfs_agf *agf = XFS_BUF_TO_AGF(cur->bc_private.a.agbp);
230
231 ASSERT(cur->bc_private.a.agno == be32_to_cpu(agf->agf_seqno));
232
233 ptr->s = agf->agf_roots[cur->bc_btnum];
234}
235
236STATIC int64_t
237xfs_bnobt_key_diff(
238 struct xfs_btree_cur *cur,
239 union xfs_btree_key *key)
240{
241 xfs_alloc_rec_incore_t *rec = &cur->bc_rec.a;
242 xfs_alloc_key_t *kp = &key->alloc;
243
244 return (int64_t)be32_to_cpu(kp->ar_startblock) - rec->ar_startblock;
245}
246
247STATIC int64_t
248xfs_cntbt_key_diff(
249 struct xfs_btree_cur *cur,
250 union xfs_btree_key *key)
251{
252 xfs_alloc_rec_incore_t *rec = &cur->bc_rec.a;
253 xfs_alloc_key_t *kp = &key->alloc;
254 int64_t diff;
255
256 diff = (int64_t)be32_to_cpu(kp->ar_blockcount) - rec->ar_blockcount;
257 if (diff)
258 return diff;
259
260 return (int64_t)be32_to_cpu(kp->ar_startblock) - rec->ar_startblock;
261}
262
263STATIC int64_t
264xfs_bnobt_diff_two_keys(
265 struct xfs_btree_cur *cur,
266 union xfs_btree_key *k1,
267 union xfs_btree_key *k2)
268{
269 return (int64_t)be32_to_cpu(k1->alloc.ar_startblock) -
270 be32_to_cpu(k2->alloc.ar_startblock);
271}
272
273STATIC int64_t
274xfs_cntbt_diff_two_keys(
275 struct xfs_btree_cur *cur,
276 union xfs_btree_key *k1,
277 union xfs_btree_key *k2)
278{
279 int64_t diff;
280
281 diff = be32_to_cpu(k1->alloc.ar_blockcount) -
282 be32_to_cpu(k2->alloc.ar_blockcount);
283 if (diff)
284 return diff;
285
286 return be32_to_cpu(k1->alloc.ar_startblock) -
287 be32_to_cpu(k2->alloc.ar_startblock);
288}
289
290static xfs_failaddr_t
291xfs_allocbt_verify(
292 struct xfs_buf *bp)
293{
294 struct xfs_mount *mp = bp->b_mount;
295 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
296 struct xfs_perag *pag = bp->b_pag;
297 xfs_failaddr_t fa;
298 unsigned int level;
299 xfs_btnum_t btnum = XFS_BTNUM_BNOi;
300
301 if (!xfs_verify_magic(bp, block->bb_magic))
302 return __this_address;
303
304 if (xfs_sb_version_hascrc(&mp->m_sb)) {
305 fa = xfs_btree_sblock_v5hdr_verify(bp);
306 if (fa)
307 return fa;
308 }
309
310 /*
311 * The perag may not be attached during grow operations or fully
312 * initialized from the AGF during log recovery. Therefore we can only
313 * check against maximum tree depth from those contexts.
314 *
315 * Otherwise check against the per-tree limit. Peek at one of the
316 * verifier magic values to determine the type of tree we're verifying
317 * against.
318 */
319 level = be16_to_cpu(block->bb_level);
320 if (bp->b_ops->magic[0] == cpu_to_be32(XFS_ABTC_MAGIC))
321 btnum = XFS_BTNUM_CNTi;
322 if (pag && pag->pagf_init) {
323 if (level >= pag->pagf_levels[btnum])
324 return __this_address;
325 } else if (level >= mp->m_ag_maxlevels)
326 return __this_address;
327
328 return xfs_btree_sblock_verify(bp, mp->m_alloc_mxr[level != 0]);
329}
330
331static void
332xfs_allocbt_read_verify(
333 struct xfs_buf *bp)
334{
335 xfs_failaddr_t fa;
336
337 if (!xfs_btree_sblock_verify_crc(bp))
338 xfs_verifier_error(bp, -EFSBADCRC, __this_address);
339 else {
340 fa = xfs_allocbt_verify(bp);
341 if (fa)
342 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
343 }
344
345 if (bp->b_error)
346 trace_xfs_btree_corrupt(bp, _RET_IP_);
347}
348
349static void
350xfs_allocbt_write_verify(
351 struct xfs_buf *bp)
352{
353 xfs_failaddr_t fa;
354
355 fa = xfs_allocbt_verify(bp);
356 if (fa) {
357 trace_xfs_btree_corrupt(bp, _RET_IP_);
358 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
359 return;
360 }
361 xfs_btree_sblock_calc_crc(bp);
362
363}
364
365const struct xfs_buf_ops xfs_bnobt_buf_ops = {
366 .name = "xfs_bnobt",
367 .magic = { cpu_to_be32(XFS_ABTB_MAGIC),
368 cpu_to_be32(XFS_ABTB_CRC_MAGIC) },
369 .verify_read = xfs_allocbt_read_verify,
370 .verify_write = xfs_allocbt_write_verify,
371 .verify_struct = xfs_allocbt_verify,
372};
373
374const struct xfs_buf_ops xfs_cntbt_buf_ops = {
375 .name = "xfs_cntbt",
376 .magic = { cpu_to_be32(XFS_ABTC_MAGIC),
377 cpu_to_be32(XFS_ABTC_CRC_MAGIC) },
378 .verify_read = xfs_allocbt_read_verify,
379 .verify_write = xfs_allocbt_write_verify,
380 .verify_struct = xfs_allocbt_verify,
381};
382
383STATIC int
384xfs_bnobt_keys_inorder(
385 struct xfs_btree_cur *cur,
386 union xfs_btree_key *k1,
387 union xfs_btree_key *k2)
388{
389 return be32_to_cpu(k1->alloc.ar_startblock) <
390 be32_to_cpu(k2->alloc.ar_startblock);
391}
392
393STATIC int
394xfs_bnobt_recs_inorder(
395 struct xfs_btree_cur *cur,
396 union xfs_btree_rec *r1,
397 union xfs_btree_rec *r2)
398{
399 return be32_to_cpu(r1->alloc.ar_startblock) +
400 be32_to_cpu(r1->alloc.ar_blockcount) <=
401 be32_to_cpu(r2->alloc.ar_startblock);
402}
403
404STATIC int
405xfs_cntbt_keys_inorder(
406 struct xfs_btree_cur *cur,
407 union xfs_btree_key *k1,
408 union xfs_btree_key *k2)
409{
410 return be32_to_cpu(k1->alloc.ar_blockcount) <
411 be32_to_cpu(k2->alloc.ar_blockcount) ||
412 (k1->alloc.ar_blockcount == k2->alloc.ar_blockcount &&
413 be32_to_cpu(k1->alloc.ar_startblock) <
414 be32_to_cpu(k2->alloc.ar_startblock));
415}
416
417STATIC int
418xfs_cntbt_recs_inorder(
419 struct xfs_btree_cur *cur,
420 union xfs_btree_rec *r1,
421 union xfs_btree_rec *r2)
422{
423 return be32_to_cpu(r1->alloc.ar_blockcount) <
424 be32_to_cpu(r2->alloc.ar_blockcount) ||
425 (r1->alloc.ar_blockcount == r2->alloc.ar_blockcount &&
426 be32_to_cpu(r1->alloc.ar_startblock) <
427 be32_to_cpu(r2->alloc.ar_startblock));
428}
429
430static const struct xfs_btree_ops xfs_bnobt_ops = {
431 .rec_len = sizeof(xfs_alloc_rec_t),
432 .key_len = sizeof(xfs_alloc_key_t),
433
434 .dup_cursor = xfs_allocbt_dup_cursor,
435 .set_root = xfs_allocbt_set_root,
436 .alloc_block = xfs_allocbt_alloc_block,
437 .free_block = xfs_allocbt_free_block,
438 .update_lastrec = xfs_allocbt_update_lastrec,
439 .get_minrecs = xfs_allocbt_get_minrecs,
440 .get_maxrecs = xfs_allocbt_get_maxrecs,
441 .init_key_from_rec = xfs_allocbt_init_key_from_rec,
442 .init_high_key_from_rec = xfs_bnobt_init_high_key_from_rec,
443 .init_rec_from_cur = xfs_allocbt_init_rec_from_cur,
444 .init_ptr_from_cur = xfs_allocbt_init_ptr_from_cur,
445 .key_diff = xfs_bnobt_key_diff,
446 .buf_ops = &xfs_bnobt_buf_ops,
447 .diff_two_keys = xfs_bnobt_diff_two_keys,
448 .keys_inorder = xfs_bnobt_keys_inorder,
449 .recs_inorder = xfs_bnobt_recs_inorder,
450};
451
452static const struct xfs_btree_ops xfs_cntbt_ops = {
453 .rec_len = sizeof(xfs_alloc_rec_t),
454 .key_len = sizeof(xfs_alloc_key_t),
455
456 .dup_cursor = xfs_allocbt_dup_cursor,
457 .set_root = xfs_allocbt_set_root,
458 .alloc_block = xfs_allocbt_alloc_block,
459 .free_block = xfs_allocbt_free_block,
460 .update_lastrec = xfs_allocbt_update_lastrec,
461 .get_minrecs = xfs_allocbt_get_minrecs,
462 .get_maxrecs = xfs_allocbt_get_maxrecs,
463 .init_key_from_rec = xfs_allocbt_init_key_from_rec,
464 .init_high_key_from_rec = xfs_cntbt_init_high_key_from_rec,
465 .init_rec_from_cur = xfs_allocbt_init_rec_from_cur,
466 .init_ptr_from_cur = xfs_allocbt_init_ptr_from_cur,
467 .key_diff = xfs_cntbt_key_diff,
468 .buf_ops = &xfs_cntbt_buf_ops,
469 .diff_two_keys = xfs_cntbt_diff_two_keys,
470 .keys_inorder = xfs_cntbt_keys_inorder,
471 .recs_inorder = xfs_cntbt_recs_inorder,
472};
473
474/*
475 * Allocate a new allocation btree cursor.
476 */
477struct xfs_btree_cur * /* new alloc btree cursor */
478xfs_allocbt_init_cursor(
479 struct xfs_mount *mp, /* file system mount point */
480 struct xfs_trans *tp, /* transaction pointer */
481 struct xfs_buf *agbp, /* buffer for agf structure */
482 xfs_agnumber_t agno, /* allocation group number */
483 xfs_btnum_t btnum) /* btree identifier */
484{
485 struct xfs_agf *agf = XFS_BUF_TO_AGF(agbp);
486 struct xfs_btree_cur *cur;
487
488 ASSERT(btnum == XFS_BTNUM_BNO || btnum == XFS_BTNUM_CNT);
489
490 cur = kmem_zone_zalloc(xfs_btree_cur_zone, KM_NOFS);
491
492 cur->bc_tp = tp;
493 cur->bc_mp = mp;
494 cur->bc_btnum = btnum;
495 cur->bc_blocklog = mp->m_sb.sb_blocklog;
496
497 if (btnum == XFS_BTNUM_CNT) {
498 cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_abtc_2);
499 cur->bc_ops = &xfs_cntbt_ops;
500 cur->bc_nlevels = be32_to_cpu(agf->agf_levels[XFS_BTNUM_CNT]);
501 cur->bc_flags = XFS_BTREE_LASTREC_UPDATE;
502 } else {
503 cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_abtb_2);
504 cur->bc_ops = &xfs_bnobt_ops;
505 cur->bc_nlevels = be32_to_cpu(agf->agf_levels[XFS_BTNUM_BNO]);
506 }
507
508 cur->bc_private.a.agbp = agbp;
509 cur->bc_private.a.agno = agno;
510
511 if (xfs_sb_version_hascrc(&mp->m_sb))
512 cur->bc_flags |= XFS_BTREE_CRC_BLOCKS;
513
514 return cur;
515}
516
517/*
518 * Calculate number of records in an alloc btree block.
519 */
520int
521xfs_allocbt_maxrecs(
522 struct xfs_mount *mp,
523 int blocklen,
524 int leaf)
525{
526 blocklen -= XFS_ALLOC_BLOCK_LEN(mp);
527
528 if (leaf)
529 return blocklen / sizeof(xfs_alloc_rec_t);
530 return blocklen / (sizeof(xfs_alloc_key_t) + sizeof(xfs_alloc_ptr_t));
531}
532
533/* Calculate the freespace btree size for some records. */
534xfs_extlen_t
535xfs_allocbt_calc_size(
536 struct xfs_mount *mp,
537 unsigned long long len)
538{
539 return xfs_btree_calc_size(mp->m_alloc_mnr, len);
540}