Loading...
1/*
2 * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18#include "xfs.h"
19#include "xfs_fs.h"
20#include "xfs_shared.h"
21#include "xfs_format.h"
22#include "xfs_log_format.h"
23#include "xfs_trans_resv.h"
24#include "xfs_sb.h"
25#include "xfs_mount.h"
26#include "xfs_btree.h"
27#include "xfs_alloc_btree.h"
28#include "xfs_alloc.h"
29#include "xfs_extent_busy.h"
30#include "xfs_error.h"
31#include "xfs_trace.h"
32#include "xfs_cksum.h"
33#include "xfs_trans.h"
34
35
36STATIC struct xfs_btree_cur *
37xfs_allocbt_dup_cursor(
38 struct xfs_btree_cur *cur)
39{
40 return xfs_allocbt_init_cursor(cur->bc_mp, cur->bc_tp,
41 cur->bc_private.a.agbp, cur->bc_private.a.agno,
42 cur->bc_btnum);
43}
44
45STATIC void
46xfs_allocbt_set_root(
47 struct xfs_btree_cur *cur,
48 union xfs_btree_ptr *ptr,
49 int inc)
50{
51 struct xfs_buf *agbp = cur->bc_private.a.agbp;
52 struct xfs_agf *agf = XFS_BUF_TO_AGF(agbp);
53 xfs_agnumber_t seqno = be32_to_cpu(agf->agf_seqno);
54 int btnum = cur->bc_btnum;
55 struct xfs_perag *pag = xfs_perag_get(cur->bc_mp, seqno);
56
57 ASSERT(ptr->s != 0);
58
59 agf->agf_roots[btnum] = ptr->s;
60 be32_add_cpu(&agf->agf_levels[btnum], inc);
61 pag->pagf_levels[btnum] += inc;
62 xfs_perag_put(pag);
63
64 xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_ROOTS | XFS_AGF_LEVELS);
65}
66
67STATIC int
68xfs_allocbt_alloc_block(
69 struct xfs_btree_cur *cur,
70 union xfs_btree_ptr *start,
71 union xfs_btree_ptr *new,
72 int *stat)
73{
74 int error;
75 xfs_agblock_t bno;
76
77 /* Allocate the new block from the freelist. If we can't, give up. */
78 error = xfs_alloc_get_freelist(cur->bc_tp, cur->bc_private.a.agbp,
79 &bno, 1);
80 if (error)
81 return error;
82
83 if (bno == NULLAGBLOCK) {
84 *stat = 0;
85 return 0;
86 }
87
88 xfs_extent_busy_reuse(cur->bc_mp, cur->bc_private.a.agno, bno, 1, false);
89
90 xfs_trans_agbtree_delta(cur->bc_tp, 1);
91 new->s = cpu_to_be32(bno);
92
93 *stat = 1;
94 return 0;
95}
96
97STATIC int
98xfs_allocbt_free_block(
99 struct xfs_btree_cur *cur,
100 struct xfs_buf *bp)
101{
102 struct xfs_buf *agbp = cur->bc_private.a.agbp;
103 struct xfs_agf *agf = XFS_BUF_TO_AGF(agbp);
104 xfs_agblock_t bno;
105 int error;
106
107 bno = xfs_daddr_to_agbno(cur->bc_mp, XFS_BUF_ADDR(bp));
108 error = xfs_alloc_put_freelist(cur->bc_tp, agbp, NULL, bno, 1);
109 if (error)
110 return error;
111
112 xfs_extent_busy_insert(cur->bc_tp, be32_to_cpu(agf->agf_seqno), bno, 1,
113 XFS_EXTENT_BUSY_SKIP_DISCARD);
114 xfs_trans_agbtree_delta(cur->bc_tp, -1);
115 return 0;
116}
117
118/*
119 * Update the longest extent in the AGF
120 */
121STATIC void
122xfs_allocbt_update_lastrec(
123 struct xfs_btree_cur *cur,
124 struct xfs_btree_block *block,
125 union xfs_btree_rec *rec,
126 int ptr,
127 int reason)
128{
129 struct xfs_agf *agf = XFS_BUF_TO_AGF(cur->bc_private.a.agbp);
130 xfs_agnumber_t seqno = be32_to_cpu(agf->agf_seqno);
131 struct xfs_perag *pag;
132 __be32 len;
133 int numrecs;
134
135 ASSERT(cur->bc_btnum == XFS_BTNUM_CNT);
136
137 switch (reason) {
138 case LASTREC_UPDATE:
139 /*
140 * If this is the last leaf block and it's the last record,
141 * then update the size of the longest extent in the AG.
142 */
143 if (ptr != xfs_btree_get_numrecs(block))
144 return;
145 len = rec->alloc.ar_blockcount;
146 break;
147 case LASTREC_INSREC:
148 if (be32_to_cpu(rec->alloc.ar_blockcount) <=
149 be32_to_cpu(agf->agf_longest))
150 return;
151 len = rec->alloc.ar_blockcount;
152 break;
153 case LASTREC_DELREC:
154 numrecs = xfs_btree_get_numrecs(block);
155 if (ptr <= numrecs)
156 return;
157 ASSERT(ptr == numrecs + 1);
158
159 if (numrecs) {
160 xfs_alloc_rec_t *rrp;
161
162 rrp = XFS_ALLOC_REC_ADDR(cur->bc_mp, block, numrecs);
163 len = rrp->ar_blockcount;
164 } else {
165 len = 0;
166 }
167
168 break;
169 default:
170 ASSERT(0);
171 return;
172 }
173
174 agf->agf_longest = len;
175 pag = xfs_perag_get(cur->bc_mp, seqno);
176 pag->pagf_longest = be32_to_cpu(len);
177 xfs_perag_put(pag);
178 xfs_alloc_log_agf(cur->bc_tp, cur->bc_private.a.agbp, XFS_AGF_LONGEST);
179}
180
181STATIC int
182xfs_allocbt_get_minrecs(
183 struct xfs_btree_cur *cur,
184 int level)
185{
186 return cur->bc_mp->m_alloc_mnr[level != 0];
187}
188
189STATIC int
190xfs_allocbt_get_maxrecs(
191 struct xfs_btree_cur *cur,
192 int level)
193{
194 return cur->bc_mp->m_alloc_mxr[level != 0];
195}
196
197STATIC void
198xfs_allocbt_init_key_from_rec(
199 union xfs_btree_key *key,
200 union xfs_btree_rec *rec)
201{
202 key->alloc.ar_startblock = rec->alloc.ar_startblock;
203 key->alloc.ar_blockcount = rec->alloc.ar_blockcount;
204}
205
206STATIC void
207xfs_bnobt_init_high_key_from_rec(
208 union xfs_btree_key *key,
209 union xfs_btree_rec *rec)
210{
211 __u32 x;
212
213 x = be32_to_cpu(rec->alloc.ar_startblock);
214 x += be32_to_cpu(rec->alloc.ar_blockcount) - 1;
215 key->alloc.ar_startblock = cpu_to_be32(x);
216 key->alloc.ar_blockcount = 0;
217}
218
219STATIC void
220xfs_cntbt_init_high_key_from_rec(
221 union xfs_btree_key *key,
222 union xfs_btree_rec *rec)
223{
224 key->alloc.ar_blockcount = rec->alloc.ar_blockcount;
225 key->alloc.ar_startblock = 0;
226}
227
228STATIC void
229xfs_allocbt_init_rec_from_cur(
230 struct xfs_btree_cur *cur,
231 union xfs_btree_rec *rec)
232{
233 rec->alloc.ar_startblock = cpu_to_be32(cur->bc_rec.a.ar_startblock);
234 rec->alloc.ar_blockcount = cpu_to_be32(cur->bc_rec.a.ar_blockcount);
235}
236
237STATIC void
238xfs_allocbt_init_ptr_from_cur(
239 struct xfs_btree_cur *cur,
240 union xfs_btree_ptr *ptr)
241{
242 struct xfs_agf *agf = XFS_BUF_TO_AGF(cur->bc_private.a.agbp);
243
244 ASSERT(cur->bc_private.a.agno == be32_to_cpu(agf->agf_seqno));
245 ASSERT(agf->agf_roots[cur->bc_btnum] != 0);
246
247 ptr->s = agf->agf_roots[cur->bc_btnum];
248}
249
250STATIC int64_t
251xfs_bnobt_key_diff(
252 struct xfs_btree_cur *cur,
253 union xfs_btree_key *key)
254{
255 xfs_alloc_rec_incore_t *rec = &cur->bc_rec.a;
256 xfs_alloc_key_t *kp = &key->alloc;
257
258 return (int64_t)be32_to_cpu(kp->ar_startblock) - rec->ar_startblock;
259}
260
261STATIC int64_t
262xfs_cntbt_key_diff(
263 struct xfs_btree_cur *cur,
264 union xfs_btree_key *key)
265{
266 xfs_alloc_rec_incore_t *rec = &cur->bc_rec.a;
267 xfs_alloc_key_t *kp = &key->alloc;
268 int64_t diff;
269
270 diff = (int64_t)be32_to_cpu(kp->ar_blockcount) - rec->ar_blockcount;
271 if (diff)
272 return diff;
273
274 return (int64_t)be32_to_cpu(kp->ar_startblock) - rec->ar_startblock;
275}
276
277STATIC int64_t
278xfs_bnobt_diff_two_keys(
279 struct xfs_btree_cur *cur,
280 union xfs_btree_key *k1,
281 union xfs_btree_key *k2)
282{
283 return (int64_t)be32_to_cpu(k1->alloc.ar_startblock) -
284 be32_to_cpu(k2->alloc.ar_startblock);
285}
286
287STATIC int64_t
288xfs_cntbt_diff_two_keys(
289 struct xfs_btree_cur *cur,
290 union xfs_btree_key *k1,
291 union xfs_btree_key *k2)
292{
293 int64_t diff;
294
295 diff = be32_to_cpu(k1->alloc.ar_blockcount) -
296 be32_to_cpu(k2->alloc.ar_blockcount);
297 if (diff)
298 return diff;
299
300 return be32_to_cpu(k1->alloc.ar_startblock) -
301 be32_to_cpu(k2->alloc.ar_startblock);
302}
303
304static xfs_failaddr_t
305xfs_allocbt_verify(
306 struct xfs_buf *bp)
307{
308 struct xfs_mount *mp = bp->b_target->bt_mount;
309 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
310 struct xfs_perag *pag = bp->b_pag;
311 xfs_failaddr_t fa;
312 unsigned int level;
313
314 /*
315 * magic number and level verification
316 *
317 * During growfs operations, we can't verify the exact level or owner as
318 * the perag is not fully initialised and hence not attached to the
319 * buffer. In this case, check against the maximum tree depth.
320 *
321 * Similarly, during log recovery we will have a perag structure
322 * attached, but the agf information will not yet have been initialised
323 * from the on disk AGF. Again, we can only check against maximum limits
324 * in this case.
325 */
326 level = be16_to_cpu(block->bb_level);
327 switch (block->bb_magic) {
328 case cpu_to_be32(XFS_ABTB_CRC_MAGIC):
329 fa = xfs_btree_sblock_v5hdr_verify(bp);
330 if (fa)
331 return fa;
332 /* fall through */
333 case cpu_to_be32(XFS_ABTB_MAGIC):
334 if (pag && pag->pagf_init) {
335 if (level >= pag->pagf_levels[XFS_BTNUM_BNOi])
336 return __this_address;
337 } else if (level >= mp->m_ag_maxlevels)
338 return __this_address;
339 break;
340 case cpu_to_be32(XFS_ABTC_CRC_MAGIC):
341 fa = xfs_btree_sblock_v5hdr_verify(bp);
342 if (fa)
343 return fa;
344 /* fall through */
345 case cpu_to_be32(XFS_ABTC_MAGIC):
346 if (pag && pag->pagf_init) {
347 if (level >= pag->pagf_levels[XFS_BTNUM_CNTi])
348 return __this_address;
349 } else if (level >= mp->m_ag_maxlevels)
350 return __this_address;
351 break;
352 default:
353 return __this_address;
354 }
355
356 return xfs_btree_sblock_verify(bp, mp->m_alloc_mxr[level != 0]);
357}
358
359static void
360xfs_allocbt_read_verify(
361 struct xfs_buf *bp)
362{
363 xfs_failaddr_t fa;
364
365 if (!xfs_btree_sblock_verify_crc(bp))
366 xfs_verifier_error(bp, -EFSBADCRC, __this_address);
367 else {
368 fa = xfs_allocbt_verify(bp);
369 if (fa)
370 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
371 }
372
373 if (bp->b_error)
374 trace_xfs_btree_corrupt(bp, _RET_IP_);
375}
376
377static void
378xfs_allocbt_write_verify(
379 struct xfs_buf *bp)
380{
381 xfs_failaddr_t fa;
382
383 fa = xfs_allocbt_verify(bp);
384 if (fa) {
385 trace_xfs_btree_corrupt(bp, _RET_IP_);
386 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
387 return;
388 }
389 xfs_btree_sblock_calc_crc(bp);
390
391}
392
393const struct xfs_buf_ops xfs_allocbt_buf_ops = {
394 .name = "xfs_allocbt",
395 .verify_read = xfs_allocbt_read_verify,
396 .verify_write = xfs_allocbt_write_verify,
397 .verify_struct = xfs_allocbt_verify,
398};
399
400
401STATIC int
402xfs_bnobt_keys_inorder(
403 struct xfs_btree_cur *cur,
404 union xfs_btree_key *k1,
405 union xfs_btree_key *k2)
406{
407 return be32_to_cpu(k1->alloc.ar_startblock) <
408 be32_to_cpu(k2->alloc.ar_startblock);
409}
410
411STATIC int
412xfs_bnobt_recs_inorder(
413 struct xfs_btree_cur *cur,
414 union xfs_btree_rec *r1,
415 union xfs_btree_rec *r2)
416{
417 return be32_to_cpu(r1->alloc.ar_startblock) +
418 be32_to_cpu(r1->alloc.ar_blockcount) <=
419 be32_to_cpu(r2->alloc.ar_startblock);
420}
421
422STATIC int
423xfs_cntbt_keys_inorder(
424 struct xfs_btree_cur *cur,
425 union xfs_btree_key *k1,
426 union xfs_btree_key *k2)
427{
428 return be32_to_cpu(k1->alloc.ar_blockcount) <
429 be32_to_cpu(k2->alloc.ar_blockcount) ||
430 (k1->alloc.ar_blockcount == k2->alloc.ar_blockcount &&
431 be32_to_cpu(k1->alloc.ar_startblock) <
432 be32_to_cpu(k2->alloc.ar_startblock));
433}
434
435STATIC int
436xfs_cntbt_recs_inorder(
437 struct xfs_btree_cur *cur,
438 union xfs_btree_rec *r1,
439 union xfs_btree_rec *r2)
440{
441 return be32_to_cpu(r1->alloc.ar_blockcount) <
442 be32_to_cpu(r2->alloc.ar_blockcount) ||
443 (r1->alloc.ar_blockcount == r2->alloc.ar_blockcount &&
444 be32_to_cpu(r1->alloc.ar_startblock) <
445 be32_to_cpu(r2->alloc.ar_startblock));
446}
447
448static const struct xfs_btree_ops xfs_bnobt_ops = {
449 .rec_len = sizeof(xfs_alloc_rec_t),
450 .key_len = sizeof(xfs_alloc_key_t),
451
452 .dup_cursor = xfs_allocbt_dup_cursor,
453 .set_root = xfs_allocbt_set_root,
454 .alloc_block = xfs_allocbt_alloc_block,
455 .free_block = xfs_allocbt_free_block,
456 .update_lastrec = xfs_allocbt_update_lastrec,
457 .get_minrecs = xfs_allocbt_get_minrecs,
458 .get_maxrecs = xfs_allocbt_get_maxrecs,
459 .init_key_from_rec = xfs_allocbt_init_key_from_rec,
460 .init_high_key_from_rec = xfs_bnobt_init_high_key_from_rec,
461 .init_rec_from_cur = xfs_allocbt_init_rec_from_cur,
462 .init_ptr_from_cur = xfs_allocbt_init_ptr_from_cur,
463 .key_diff = xfs_bnobt_key_diff,
464 .buf_ops = &xfs_allocbt_buf_ops,
465 .diff_two_keys = xfs_bnobt_diff_two_keys,
466 .keys_inorder = xfs_bnobt_keys_inorder,
467 .recs_inorder = xfs_bnobt_recs_inorder,
468};
469
470static const struct xfs_btree_ops xfs_cntbt_ops = {
471 .rec_len = sizeof(xfs_alloc_rec_t),
472 .key_len = sizeof(xfs_alloc_key_t),
473
474 .dup_cursor = xfs_allocbt_dup_cursor,
475 .set_root = xfs_allocbt_set_root,
476 .alloc_block = xfs_allocbt_alloc_block,
477 .free_block = xfs_allocbt_free_block,
478 .update_lastrec = xfs_allocbt_update_lastrec,
479 .get_minrecs = xfs_allocbt_get_minrecs,
480 .get_maxrecs = xfs_allocbt_get_maxrecs,
481 .init_key_from_rec = xfs_allocbt_init_key_from_rec,
482 .init_high_key_from_rec = xfs_cntbt_init_high_key_from_rec,
483 .init_rec_from_cur = xfs_allocbt_init_rec_from_cur,
484 .init_ptr_from_cur = xfs_allocbt_init_ptr_from_cur,
485 .key_diff = xfs_cntbt_key_diff,
486 .buf_ops = &xfs_allocbt_buf_ops,
487 .diff_two_keys = xfs_cntbt_diff_two_keys,
488 .keys_inorder = xfs_cntbt_keys_inorder,
489 .recs_inorder = xfs_cntbt_recs_inorder,
490};
491
492/*
493 * Allocate a new allocation btree cursor.
494 */
495struct xfs_btree_cur * /* new alloc btree cursor */
496xfs_allocbt_init_cursor(
497 struct xfs_mount *mp, /* file system mount point */
498 struct xfs_trans *tp, /* transaction pointer */
499 struct xfs_buf *agbp, /* buffer for agf structure */
500 xfs_agnumber_t agno, /* allocation group number */
501 xfs_btnum_t btnum) /* btree identifier */
502{
503 struct xfs_agf *agf = XFS_BUF_TO_AGF(agbp);
504 struct xfs_btree_cur *cur;
505
506 ASSERT(btnum == XFS_BTNUM_BNO || btnum == XFS_BTNUM_CNT);
507
508 cur = kmem_zone_zalloc(xfs_btree_cur_zone, KM_NOFS);
509
510 cur->bc_tp = tp;
511 cur->bc_mp = mp;
512 cur->bc_btnum = btnum;
513 cur->bc_blocklog = mp->m_sb.sb_blocklog;
514
515 if (btnum == XFS_BTNUM_CNT) {
516 cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_abtc_2);
517 cur->bc_ops = &xfs_cntbt_ops;
518 cur->bc_nlevels = be32_to_cpu(agf->agf_levels[XFS_BTNUM_CNT]);
519 cur->bc_flags = XFS_BTREE_LASTREC_UPDATE;
520 } else {
521 cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_abtb_2);
522 cur->bc_ops = &xfs_bnobt_ops;
523 cur->bc_nlevels = be32_to_cpu(agf->agf_levels[XFS_BTNUM_BNO]);
524 }
525
526 cur->bc_private.a.agbp = agbp;
527 cur->bc_private.a.agno = agno;
528
529 if (xfs_sb_version_hascrc(&mp->m_sb))
530 cur->bc_flags |= XFS_BTREE_CRC_BLOCKS;
531
532 return cur;
533}
534
535/*
536 * Calculate number of records in an alloc btree block.
537 */
538int
539xfs_allocbt_maxrecs(
540 struct xfs_mount *mp,
541 int blocklen,
542 int leaf)
543{
544 blocklen -= XFS_ALLOC_BLOCK_LEN(mp);
545
546 if (leaf)
547 return blocklen / sizeof(xfs_alloc_rec_t);
548 return blocklen / (sizeof(xfs_alloc_key_t) + sizeof(xfs_alloc_ptr_t));
549}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6#include "xfs.h"
7#include "xfs_fs.h"
8#include "xfs_shared.h"
9#include "xfs_format.h"
10#include "xfs_log_format.h"
11#include "xfs_trans_resv.h"
12#include "xfs_sb.h"
13#include "xfs_mount.h"
14#include "xfs_btree.h"
15#include "xfs_btree_staging.h"
16#include "xfs_alloc_btree.h"
17#include "xfs_alloc.h"
18#include "xfs_extent_busy.h"
19#include "xfs_error.h"
20#include "xfs_trace.h"
21#include "xfs_trans.h"
22
23
24STATIC struct xfs_btree_cur *
25xfs_allocbt_dup_cursor(
26 struct xfs_btree_cur *cur)
27{
28 return xfs_allocbt_init_cursor(cur->bc_mp, cur->bc_tp,
29 cur->bc_ag.agbp, cur->bc_ag.agno,
30 cur->bc_btnum);
31}
32
33STATIC void
34xfs_allocbt_set_root(
35 struct xfs_btree_cur *cur,
36 union xfs_btree_ptr *ptr,
37 int inc)
38{
39 struct xfs_buf *agbp = cur->bc_ag.agbp;
40 struct xfs_agf *agf = agbp->b_addr;
41 int btnum = cur->bc_btnum;
42 struct xfs_perag *pag = agbp->b_pag;
43
44 ASSERT(ptr->s != 0);
45
46 agf->agf_roots[btnum] = ptr->s;
47 be32_add_cpu(&agf->agf_levels[btnum], inc);
48 pag->pagf_levels[btnum] += inc;
49
50 xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_ROOTS | XFS_AGF_LEVELS);
51}
52
53STATIC int
54xfs_allocbt_alloc_block(
55 struct xfs_btree_cur *cur,
56 union xfs_btree_ptr *start,
57 union xfs_btree_ptr *new,
58 int *stat)
59{
60 int error;
61 xfs_agblock_t bno;
62
63 /* Allocate the new block from the freelist. If we can't, give up. */
64 error = xfs_alloc_get_freelist(cur->bc_tp, cur->bc_ag.agbp,
65 &bno, 1);
66 if (error)
67 return error;
68
69 if (bno == NULLAGBLOCK) {
70 *stat = 0;
71 return 0;
72 }
73
74 xfs_extent_busy_reuse(cur->bc_mp, cur->bc_ag.agno, bno, 1, false);
75
76 xfs_trans_agbtree_delta(cur->bc_tp, 1);
77 new->s = cpu_to_be32(bno);
78
79 *stat = 1;
80 return 0;
81}
82
83STATIC int
84xfs_allocbt_free_block(
85 struct xfs_btree_cur *cur,
86 struct xfs_buf *bp)
87{
88 struct xfs_buf *agbp = cur->bc_ag.agbp;
89 struct xfs_agf *agf = agbp->b_addr;
90 xfs_agblock_t bno;
91 int error;
92
93 bno = xfs_daddr_to_agbno(cur->bc_mp, XFS_BUF_ADDR(bp));
94 error = xfs_alloc_put_freelist(cur->bc_tp, agbp, NULL, bno, 1);
95 if (error)
96 return error;
97
98 xfs_extent_busy_insert(cur->bc_tp, be32_to_cpu(agf->agf_seqno), bno, 1,
99 XFS_EXTENT_BUSY_SKIP_DISCARD);
100 xfs_trans_agbtree_delta(cur->bc_tp, -1);
101 return 0;
102}
103
104/*
105 * Update the longest extent in the AGF
106 */
107STATIC void
108xfs_allocbt_update_lastrec(
109 struct xfs_btree_cur *cur,
110 struct xfs_btree_block *block,
111 union xfs_btree_rec *rec,
112 int ptr,
113 int reason)
114{
115 struct xfs_agf *agf = cur->bc_ag.agbp->b_addr;
116 struct xfs_perag *pag;
117 __be32 len;
118 int numrecs;
119
120 ASSERT(cur->bc_btnum == XFS_BTNUM_CNT);
121
122 switch (reason) {
123 case LASTREC_UPDATE:
124 /*
125 * If this is the last leaf block and it's the last record,
126 * then update the size of the longest extent in the AG.
127 */
128 if (ptr != xfs_btree_get_numrecs(block))
129 return;
130 len = rec->alloc.ar_blockcount;
131 break;
132 case LASTREC_INSREC:
133 if (be32_to_cpu(rec->alloc.ar_blockcount) <=
134 be32_to_cpu(agf->agf_longest))
135 return;
136 len = rec->alloc.ar_blockcount;
137 break;
138 case LASTREC_DELREC:
139 numrecs = xfs_btree_get_numrecs(block);
140 if (ptr <= numrecs)
141 return;
142 ASSERT(ptr == numrecs + 1);
143
144 if (numrecs) {
145 xfs_alloc_rec_t *rrp;
146
147 rrp = XFS_ALLOC_REC_ADDR(cur->bc_mp, block, numrecs);
148 len = rrp->ar_blockcount;
149 } else {
150 len = 0;
151 }
152
153 break;
154 default:
155 ASSERT(0);
156 return;
157 }
158
159 agf->agf_longest = len;
160 pag = cur->bc_ag.agbp->b_pag;
161 pag->pagf_longest = be32_to_cpu(len);
162 xfs_alloc_log_agf(cur->bc_tp, cur->bc_ag.agbp, XFS_AGF_LONGEST);
163}
164
165STATIC int
166xfs_allocbt_get_minrecs(
167 struct xfs_btree_cur *cur,
168 int level)
169{
170 return cur->bc_mp->m_alloc_mnr[level != 0];
171}
172
173STATIC int
174xfs_allocbt_get_maxrecs(
175 struct xfs_btree_cur *cur,
176 int level)
177{
178 return cur->bc_mp->m_alloc_mxr[level != 0];
179}
180
181STATIC void
182xfs_allocbt_init_key_from_rec(
183 union xfs_btree_key *key,
184 union xfs_btree_rec *rec)
185{
186 key->alloc.ar_startblock = rec->alloc.ar_startblock;
187 key->alloc.ar_blockcount = rec->alloc.ar_blockcount;
188}
189
190STATIC void
191xfs_bnobt_init_high_key_from_rec(
192 union xfs_btree_key *key,
193 union xfs_btree_rec *rec)
194{
195 __u32 x;
196
197 x = be32_to_cpu(rec->alloc.ar_startblock);
198 x += be32_to_cpu(rec->alloc.ar_blockcount) - 1;
199 key->alloc.ar_startblock = cpu_to_be32(x);
200 key->alloc.ar_blockcount = 0;
201}
202
203STATIC void
204xfs_cntbt_init_high_key_from_rec(
205 union xfs_btree_key *key,
206 union xfs_btree_rec *rec)
207{
208 key->alloc.ar_blockcount = rec->alloc.ar_blockcount;
209 key->alloc.ar_startblock = 0;
210}
211
212STATIC void
213xfs_allocbt_init_rec_from_cur(
214 struct xfs_btree_cur *cur,
215 union xfs_btree_rec *rec)
216{
217 rec->alloc.ar_startblock = cpu_to_be32(cur->bc_rec.a.ar_startblock);
218 rec->alloc.ar_blockcount = cpu_to_be32(cur->bc_rec.a.ar_blockcount);
219}
220
221STATIC void
222xfs_allocbt_init_ptr_from_cur(
223 struct xfs_btree_cur *cur,
224 union xfs_btree_ptr *ptr)
225{
226 struct xfs_agf *agf = cur->bc_ag.agbp->b_addr;
227
228 ASSERT(cur->bc_ag.agno == be32_to_cpu(agf->agf_seqno));
229
230 ptr->s = agf->agf_roots[cur->bc_btnum];
231}
232
233STATIC int64_t
234xfs_bnobt_key_diff(
235 struct xfs_btree_cur *cur,
236 union xfs_btree_key *key)
237{
238 xfs_alloc_rec_incore_t *rec = &cur->bc_rec.a;
239 xfs_alloc_key_t *kp = &key->alloc;
240
241 return (int64_t)be32_to_cpu(kp->ar_startblock) - rec->ar_startblock;
242}
243
244STATIC int64_t
245xfs_cntbt_key_diff(
246 struct xfs_btree_cur *cur,
247 union xfs_btree_key *key)
248{
249 xfs_alloc_rec_incore_t *rec = &cur->bc_rec.a;
250 xfs_alloc_key_t *kp = &key->alloc;
251 int64_t diff;
252
253 diff = (int64_t)be32_to_cpu(kp->ar_blockcount) - rec->ar_blockcount;
254 if (diff)
255 return diff;
256
257 return (int64_t)be32_to_cpu(kp->ar_startblock) - rec->ar_startblock;
258}
259
260STATIC int64_t
261xfs_bnobt_diff_two_keys(
262 struct xfs_btree_cur *cur,
263 union xfs_btree_key *k1,
264 union xfs_btree_key *k2)
265{
266 return (int64_t)be32_to_cpu(k1->alloc.ar_startblock) -
267 be32_to_cpu(k2->alloc.ar_startblock);
268}
269
270STATIC int64_t
271xfs_cntbt_diff_two_keys(
272 struct xfs_btree_cur *cur,
273 union xfs_btree_key *k1,
274 union xfs_btree_key *k2)
275{
276 int64_t diff;
277
278 diff = be32_to_cpu(k1->alloc.ar_blockcount) -
279 be32_to_cpu(k2->alloc.ar_blockcount);
280 if (diff)
281 return diff;
282
283 return be32_to_cpu(k1->alloc.ar_startblock) -
284 be32_to_cpu(k2->alloc.ar_startblock);
285}
286
287static xfs_failaddr_t
288xfs_allocbt_verify(
289 struct xfs_buf *bp)
290{
291 struct xfs_mount *mp = bp->b_mount;
292 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
293 struct xfs_perag *pag = bp->b_pag;
294 xfs_failaddr_t fa;
295 unsigned int level;
296 xfs_btnum_t btnum = XFS_BTNUM_BNOi;
297
298 if (!xfs_verify_magic(bp, block->bb_magic))
299 return __this_address;
300
301 if (xfs_sb_version_hascrc(&mp->m_sb)) {
302 fa = xfs_btree_sblock_v5hdr_verify(bp);
303 if (fa)
304 return fa;
305 }
306
307 /*
308 * The perag may not be attached during grow operations or fully
309 * initialized from the AGF during log recovery. Therefore we can only
310 * check against maximum tree depth from those contexts.
311 *
312 * Otherwise check against the per-tree limit. Peek at one of the
313 * verifier magic values to determine the type of tree we're verifying
314 * against.
315 */
316 level = be16_to_cpu(block->bb_level);
317 if (bp->b_ops->magic[0] == cpu_to_be32(XFS_ABTC_MAGIC))
318 btnum = XFS_BTNUM_CNTi;
319 if (pag && pag->pagf_init) {
320 if (level >= pag->pagf_levels[btnum])
321 return __this_address;
322 } else if (level >= mp->m_ag_maxlevels)
323 return __this_address;
324
325 return xfs_btree_sblock_verify(bp, mp->m_alloc_mxr[level != 0]);
326}
327
328static void
329xfs_allocbt_read_verify(
330 struct xfs_buf *bp)
331{
332 xfs_failaddr_t fa;
333
334 if (!xfs_btree_sblock_verify_crc(bp))
335 xfs_verifier_error(bp, -EFSBADCRC, __this_address);
336 else {
337 fa = xfs_allocbt_verify(bp);
338 if (fa)
339 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
340 }
341
342 if (bp->b_error)
343 trace_xfs_btree_corrupt(bp, _RET_IP_);
344}
345
346static void
347xfs_allocbt_write_verify(
348 struct xfs_buf *bp)
349{
350 xfs_failaddr_t fa;
351
352 fa = xfs_allocbt_verify(bp);
353 if (fa) {
354 trace_xfs_btree_corrupt(bp, _RET_IP_);
355 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
356 return;
357 }
358 xfs_btree_sblock_calc_crc(bp);
359
360}
361
362const struct xfs_buf_ops xfs_bnobt_buf_ops = {
363 .name = "xfs_bnobt",
364 .magic = { cpu_to_be32(XFS_ABTB_MAGIC),
365 cpu_to_be32(XFS_ABTB_CRC_MAGIC) },
366 .verify_read = xfs_allocbt_read_verify,
367 .verify_write = xfs_allocbt_write_verify,
368 .verify_struct = xfs_allocbt_verify,
369};
370
371const struct xfs_buf_ops xfs_cntbt_buf_ops = {
372 .name = "xfs_cntbt",
373 .magic = { cpu_to_be32(XFS_ABTC_MAGIC),
374 cpu_to_be32(XFS_ABTC_CRC_MAGIC) },
375 .verify_read = xfs_allocbt_read_verify,
376 .verify_write = xfs_allocbt_write_verify,
377 .verify_struct = xfs_allocbt_verify,
378};
379
380STATIC int
381xfs_bnobt_keys_inorder(
382 struct xfs_btree_cur *cur,
383 union xfs_btree_key *k1,
384 union xfs_btree_key *k2)
385{
386 return be32_to_cpu(k1->alloc.ar_startblock) <
387 be32_to_cpu(k2->alloc.ar_startblock);
388}
389
390STATIC int
391xfs_bnobt_recs_inorder(
392 struct xfs_btree_cur *cur,
393 union xfs_btree_rec *r1,
394 union xfs_btree_rec *r2)
395{
396 return be32_to_cpu(r1->alloc.ar_startblock) +
397 be32_to_cpu(r1->alloc.ar_blockcount) <=
398 be32_to_cpu(r2->alloc.ar_startblock);
399}
400
401STATIC int
402xfs_cntbt_keys_inorder(
403 struct xfs_btree_cur *cur,
404 union xfs_btree_key *k1,
405 union xfs_btree_key *k2)
406{
407 return be32_to_cpu(k1->alloc.ar_blockcount) <
408 be32_to_cpu(k2->alloc.ar_blockcount) ||
409 (k1->alloc.ar_blockcount == k2->alloc.ar_blockcount &&
410 be32_to_cpu(k1->alloc.ar_startblock) <
411 be32_to_cpu(k2->alloc.ar_startblock));
412}
413
414STATIC int
415xfs_cntbt_recs_inorder(
416 struct xfs_btree_cur *cur,
417 union xfs_btree_rec *r1,
418 union xfs_btree_rec *r2)
419{
420 return be32_to_cpu(r1->alloc.ar_blockcount) <
421 be32_to_cpu(r2->alloc.ar_blockcount) ||
422 (r1->alloc.ar_blockcount == r2->alloc.ar_blockcount &&
423 be32_to_cpu(r1->alloc.ar_startblock) <
424 be32_to_cpu(r2->alloc.ar_startblock));
425}
426
427static const struct xfs_btree_ops xfs_bnobt_ops = {
428 .rec_len = sizeof(xfs_alloc_rec_t),
429 .key_len = sizeof(xfs_alloc_key_t),
430
431 .dup_cursor = xfs_allocbt_dup_cursor,
432 .set_root = xfs_allocbt_set_root,
433 .alloc_block = xfs_allocbt_alloc_block,
434 .free_block = xfs_allocbt_free_block,
435 .update_lastrec = xfs_allocbt_update_lastrec,
436 .get_minrecs = xfs_allocbt_get_minrecs,
437 .get_maxrecs = xfs_allocbt_get_maxrecs,
438 .init_key_from_rec = xfs_allocbt_init_key_from_rec,
439 .init_high_key_from_rec = xfs_bnobt_init_high_key_from_rec,
440 .init_rec_from_cur = xfs_allocbt_init_rec_from_cur,
441 .init_ptr_from_cur = xfs_allocbt_init_ptr_from_cur,
442 .key_diff = xfs_bnobt_key_diff,
443 .buf_ops = &xfs_bnobt_buf_ops,
444 .diff_two_keys = xfs_bnobt_diff_two_keys,
445 .keys_inorder = xfs_bnobt_keys_inorder,
446 .recs_inorder = xfs_bnobt_recs_inorder,
447};
448
449static const struct xfs_btree_ops xfs_cntbt_ops = {
450 .rec_len = sizeof(xfs_alloc_rec_t),
451 .key_len = sizeof(xfs_alloc_key_t),
452
453 .dup_cursor = xfs_allocbt_dup_cursor,
454 .set_root = xfs_allocbt_set_root,
455 .alloc_block = xfs_allocbt_alloc_block,
456 .free_block = xfs_allocbt_free_block,
457 .update_lastrec = xfs_allocbt_update_lastrec,
458 .get_minrecs = xfs_allocbt_get_minrecs,
459 .get_maxrecs = xfs_allocbt_get_maxrecs,
460 .init_key_from_rec = xfs_allocbt_init_key_from_rec,
461 .init_high_key_from_rec = xfs_cntbt_init_high_key_from_rec,
462 .init_rec_from_cur = xfs_allocbt_init_rec_from_cur,
463 .init_ptr_from_cur = xfs_allocbt_init_ptr_from_cur,
464 .key_diff = xfs_cntbt_key_diff,
465 .buf_ops = &xfs_cntbt_buf_ops,
466 .diff_two_keys = xfs_cntbt_diff_two_keys,
467 .keys_inorder = xfs_cntbt_keys_inorder,
468 .recs_inorder = xfs_cntbt_recs_inorder,
469};
470
471/* Allocate most of a new allocation btree cursor. */
472STATIC struct xfs_btree_cur *
473xfs_allocbt_init_common(
474 struct xfs_mount *mp,
475 struct xfs_trans *tp,
476 xfs_agnumber_t agno,
477 xfs_btnum_t btnum)
478{
479 struct xfs_btree_cur *cur;
480
481 ASSERT(btnum == XFS_BTNUM_BNO || btnum == XFS_BTNUM_CNT);
482
483 cur = kmem_cache_zalloc(xfs_btree_cur_zone, GFP_NOFS | __GFP_NOFAIL);
484
485 cur->bc_tp = tp;
486 cur->bc_mp = mp;
487 cur->bc_btnum = btnum;
488 cur->bc_blocklog = mp->m_sb.sb_blocklog;
489
490 if (btnum == XFS_BTNUM_CNT) {
491 cur->bc_ops = &xfs_cntbt_ops;
492 cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_abtc_2);
493 cur->bc_flags = XFS_BTREE_LASTREC_UPDATE;
494 } else {
495 cur->bc_ops = &xfs_bnobt_ops;
496 cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_abtb_2);
497 }
498
499 cur->bc_ag.agno = agno;
500 cur->bc_ag.abt.active = false;
501
502 if (xfs_sb_version_hascrc(&mp->m_sb))
503 cur->bc_flags |= XFS_BTREE_CRC_BLOCKS;
504
505 return cur;
506}
507
508/*
509 * Allocate a new allocation btree cursor.
510 */
511struct xfs_btree_cur * /* new alloc btree cursor */
512xfs_allocbt_init_cursor(
513 struct xfs_mount *mp, /* file system mount point */
514 struct xfs_trans *tp, /* transaction pointer */
515 struct xfs_buf *agbp, /* buffer for agf structure */
516 xfs_agnumber_t agno, /* allocation group number */
517 xfs_btnum_t btnum) /* btree identifier */
518{
519 struct xfs_agf *agf = agbp->b_addr;
520 struct xfs_btree_cur *cur;
521
522 cur = xfs_allocbt_init_common(mp, tp, agno, btnum);
523 if (btnum == XFS_BTNUM_CNT)
524 cur->bc_nlevels = be32_to_cpu(agf->agf_levels[XFS_BTNUM_CNT]);
525 else
526 cur->bc_nlevels = be32_to_cpu(agf->agf_levels[XFS_BTNUM_BNO]);
527
528 cur->bc_ag.agbp = agbp;
529
530 return cur;
531}
532
533/* Create a free space btree cursor with a fake root for staging. */
534struct xfs_btree_cur *
535xfs_allocbt_stage_cursor(
536 struct xfs_mount *mp,
537 struct xbtree_afakeroot *afake,
538 xfs_agnumber_t agno,
539 xfs_btnum_t btnum)
540{
541 struct xfs_btree_cur *cur;
542
543 cur = xfs_allocbt_init_common(mp, NULL, agno, btnum);
544 xfs_btree_stage_afakeroot(cur, afake);
545 return cur;
546}
547
548/*
549 * Install a new free space btree root. Caller is responsible for invalidating
550 * and freeing the old btree blocks.
551 */
552void
553xfs_allocbt_commit_staged_btree(
554 struct xfs_btree_cur *cur,
555 struct xfs_trans *tp,
556 struct xfs_buf *agbp)
557{
558 struct xfs_agf *agf = agbp->b_addr;
559 struct xbtree_afakeroot *afake = cur->bc_ag.afake;
560
561 ASSERT(cur->bc_flags & XFS_BTREE_STAGING);
562
563 agf->agf_roots[cur->bc_btnum] = cpu_to_be32(afake->af_root);
564 agf->agf_levels[cur->bc_btnum] = cpu_to_be32(afake->af_levels);
565 xfs_alloc_log_agf(tp, agbp, XFS_AGF_ROOTS | XFS_AGF_LEVELS);
566
567 if (cur->bc_btnum == XFS_BTNUM_BNO) {
568 xfs_btree_commit_afakeroot(cur, tp, agbp, &xfs_bnobt_ops);
569 } else {
570 cur->bc_flags |= XFS_BTREE_LASTREC_UPDATE;
571 xfs_btree_commit_afakeroot(cur, tp, agbp, &xfs_cntbt_ops);
572 }
573}
574
575/*
576 * Calculate number of records in an alloc btree block.
577 */
578int
579xfs_allocbt_maxrecs(
580 struct xfs_mount *mp,
581 int blocklen,
582 int leaf)
583{
584 blocklen -= XFS_ALLOC_BLOCK_LEN(mp);
585
586 if (leaf)
587 return blocklen / sizeof(xfs_alloc_rec_t);
588 return blocklen / (sizeof(xfs_alloc_key_t) + sizeof(xfs_alloc_ptr_t));
589}
590
591/* Calculate the freespace btree size for some records. */
592xfs_extlen_t
593xfs_allocbt_calc_size(
594 struct xfs_mount *mp,
595 unsigned long long len)
596{
597 return xfs_btree_calc_size(mp->m_alloc_mnr, len);
598}