Linux Audio

Check our new training course

Loading...
v4.17
 
  1/*
  2 * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
  3 * All Rights Reserved.
  4 *
  5 * This program is free software; you can redistribute it and/or
  6 * modify it under the terms of the GNU General Public License as
  7 * published by the Free Software Foundation.
  8 *
  9 * This program is distributed in the hope that it would be useful,
 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 12 * GNU General Public License for more details.
 13 *
 14 * You should have received a copy of the GNU General Public License
 15 * along with this program; if not, write the Free Software Foundation,
 16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 17 */
 18#include "xfs.h"
 19#include "xfs_fs.h"
 20#include "xfs_shared.h"
 21#include "xfs_format.h"
 22#include "xfs_log_format.h"
 23#include "xfs_trans_resv.h"
 24#include "xfs_sb.h"
 25#include "xfs_mount.h"
 26#include "xfs_btree.h"
 
 27#include "xfs_alloc_btree.h"
 28#include "xfs_alloc.h"
 29#include "xfs_extent_busy.h"
 30#include "xfs_error.h"
 31#include "xfs_trace.h"
 32#include "xfs_cksum.h"
 33#include "xfs_trans.h"
 34
 35
 36STATIC struct xfs_btree_cur *
 37xfs_allocbt_dup_cursor(
 38	struct xfs_btree_cur	*cur)
 39{
 40	return xfs_allocbt_init_cursor(cur->bc_mp, cur->bc_tp,
 41			cur->bc_private.a.agbp, cur->bc_private.a.agno,
 42			cur->bc_btnum);
 43}
 44
 45STATIC void
 46xfs_allocbt_set_root(
 47	struct xfs_btree_cur	*cur,
 48	union xfs_btree_ptr	*ptr,
 49	int			inc)
 50{
 51	struct xfs_buf		*agbp = cur->bc_private.a.agbp;
 52	struct xfs_agf		*agf = XFS_BUF_TO_AGF(agbp);
 53	xfs_agnumber_t		seqno = be32_to_cpu(agf->agf_seqno);
 54	int			btnum = cur->bc_btnum;
 55	struct xfs_perag	*pag = xfs_perag_get(cur->bc_mp, seqno);
 56
 57	ASSERT(ptr->s != 0);
 58
 59	agf->agf_roots[btnum] = ptr->s;
 60	be32_add_cpu(&agf->agf_levels[btnum], inc);
 61	pag->pagf_levels[btnum] += inc;
 62	xfs_perag_put(pag);
 63
 64	xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_ROOTS | XFS_AGF_LEVELS);
 65}
 66
 67STATIC int
 68xfs_allocbt_alloc_block(
 69	struct xfs_btree_cur	*cur,
 70	union xfs_btree_ptr	*start,
 71	union xfs_btree_ptr	*new,
 72	int			*stat)
 73{
 74	int			error;
 75	xfs_agblock_t		bno;
 76
 77	/* Allocate the new block from the freelist. If we can't, give up.  */
 78	error = xfs_alloc_get_freelist(cur->bc_tp, cur->bc_private.a.agbp,
 79				       &bno, 1);
 80	if (error)
 81		return error;
 82
 83	if (bno == NULLAGBLOCK) {
 84		*stat = 0;
 85		return 0;
 86	}
 87
 88	xfs_extent_busy_reuse(cur->bc_mp, cur->bc_private.a.agno, bno, 1, false);
 89
 90	xfs_trans_agbtree_delta(cur->bc_tp, 1);
 91	new->s = cpu_to_be32(bno);
 92
 93	*stat = 1;
 94	return 0;
 95}
 96
 97STATIC int
 98xfs_allocbt_free_block(
 99	struct xfs_btree_cur	*cur,
100	struct xfs_buf		*bp)
101{
102	struct xfs_buf		*agbp = cur->bc_private.a.agbp;
103	struct xfs_agf		*agf = XFS_BUF_TO_AGF(agbp);
104	xfs_agblock_t		bno;
105	int			error;
106
107	bno = xfs_daddr_to_agbno(cur->bc_mp, XFS_BUF_ADDR(bp));
108	error = xfs_alloc_put_freelist(cur->bc_tp, agbp, NULL, bno, 1);
109	if (error)
110		return error;
111
112	xfs_extent_busy_insert(cur->bc_tp, be32_to_cpu(agf->agf_seqno), bno, 1,
113			      XFS_EXTENT_BUSY_SKIP_DISCARD);
114	xfs_trans_agbtree_delta(cur->bc_tp, -1);
115	return 0;
116}
117
118/*
119 * Update the longest extent in the AGF
120 */
121STATIC void
122xfs_allocbt_update_lastrec(
123	struct xfs_btree_cur	*cur,
124	struct xfs_btree_block	*block,
125	union xfs_btree_rec	*rec,
126	int			ptr,
127	int			reason)
128{
129	struct xfs_agf		*agf = XFS_BUF_TO_AGF(cur->bc_private.a.agbp);
130	xfs_agnumber_t		seqno = be32_to_cpu(agf->agf_seqno);
131	struct xfs_perag	*pag;
132	__be32			len;
133	int			numrecs;
134
135	ASSERT(cur->bc_btnum == XFS_BTNUM_CNT);
136
137	switch (reason) {
138	case LASTREC_UPDATE:
139		/*
140		 * If this is the last leaf block and it's the last record,
141		 * then update the size of the longest extent in the AG.
142		 */
143		if (ptr != xfs_btree_get_numrecs(block))
144			return;
145		len = rec->alloc.ar_blockcount;
146		break;
147	case LASTREC_INSREC:
148		if (be32_to_cpu(rec->alloc.ar_blockcount) <=
149		    be32_to_cpu(agf->agf_longest))
150			return;
151		len = rec->alloc.ar_blockcount;
152		break;
153	case LASTREC_DELREC:
154		numrecs = xfs_btree_get_numrecs(block);
155		if (ptr <= numrecs)
156			return;
157		ASSERT(ptr == numrecs + 1);
158
159		if (numrecs) {
160			xfs_alloc_rec_t *rrp;
161
162			rrp = XFS_ALLOC_REC_ADDR(cur->bc_mp, block, numrecs);
163			len = rrp->ar_blockcount;
164		} else {
165			len = 0;
166		}
167
168		break;
169	default:
170		ASSERT(0);
171		return;
172	}
173
174	agf->agf_longest = len;
175	pag = xfs_perag_get(cur->bc_mp, seqno);
176	pag->pagf_longest = be32_to_cpu(len);
177	xfs_perag_put(pag);
178	xfs_alloc_log_agf(cur->bc_tp, cur->bc_private.a.agbp, XFS_AGF_LONGEST);
179}
180
181STATIC int
182xfs_allocbt_get_minrecs(
183	struct xfs_btree_cur	*cur,
184	int			level)
185{
186	return cur->bc_mp->m_alloc_mnr[level != 0];
187}
188
189STATIC int
190xfs_allocbt_get_maxrecs(
191	struct xfs_btree_cur	*cur,
192	int			level)
193{
194	return cur->bc_mp->m_alloc_mxr[level != 0];
195}
196
197STATIC void
198xfs_allocbt_init_key_from_rec(
199	union xfs_btree_key	*key,
200	union xfs_btree_rec	*rec)
201{
202	key->alloc.ar_startblock = rec->alloc.ar_startblock;
203	key->alloc.ar_blockcount = rec->alloc.ar_blockcount;
204}
205
206STATIC void
207xfs_bnobt_init_high_key_from_rec(
208	union xfs_btree_key	*key,
209	union xfs_btree_rec	*rec)
210{
211	__u32			x;
212
213	x = be32_to_cpu(rec->alloc.ar_startblock);
214	x += be32_to_cpu(rec->alloc.ar_blockcount) - 1;
215	key->alloc.ar_startblock = cpu_to_be32(x);
216	key->alloc.ar_blockcount = 0;
217}
218
219STATIC void
220xfs_cntbt_init_high_key_from_rec(
221	union xfs_btree_key	*key,
222	union xfs_btree_rec	*rec)
223{
224	key->alloc.ar_blockcount = rec->alloc.ar_blockcount;
225	key->alloc.ar_startblock = 0;
226}
227
228STATIC void
229xfs_allocbt_init_rec_from_cur(
230	struct xfs_btree_cur	*cur,
231	union xfs_btree_rec	*rec)
232{
233	rec->alloc.ar_startblock = cpu_to_be32(cur->bc_rec.a.ar_startblock);
234	rec->alloc.ar_blockcount = cpu_to_be32(cur->bc_rec.a.ar_blockcount);
235}
236
237STATIC void
238xfs_allocbt_init_ptr_from_cur(
239	struct xfs_btree_cur	*cur,
240	union xfs_btree_ptr	*ptr)
241{
242	struct xfs_agf		*agf = XFS_BUF_TO_AGF(cur->bc_private.a.agbp);
243
244	ASSERT(cur->bc_private.a.agno == be32_to_cpu(agf->agf_seqno));
245	ASSERT(agf->agf_roots[cur->bc_btnum] != 0);
246
247	ptr->s = agf->agf_roots[cur->bc_btnum];
248}
249
250STATIC int64_t
251xfs_bnobt_key_diff(
252	struct xfs_btree_cur	*cur,
253	union xfs_btree_key	*key)
254{
255	xfs_alloc_rec_incore_t	*rec = &cur->bc_rec.a;
256	xfs_alloc_key_t		*kp = &key->alloc;
257
258	return (int64_t)be32_to_cpu(kp->ar_startblock) - rec->ar_startblock;
259}
260
261STATIC int64_t
262xfs_cntbt_key_diff(
263	struct xfs_btree_cur	*cur,
264	union xfs_btree_key	*key)
265{
266	xfs_alloc_rec_incore_t	*rec = &cur->bc_rec.a;
267	xfs_alloc_key_t		*kp = &key->alloc;
268	int64_t			diff;
269
270	diff = (int64_t)be32_to_cpu(kp->ar_blockcount) - rec->ar_blockcount;
271	if (diff)
272		return diff;
273
274	return (int64_t)be32_to_cpu(kp->ar_startblock) - rec->ar_startblock;
275}
276
277STATIC int64_t
278xfs_bnobt_diff_two_keys(
279	struct xfs_btree_cur	*cur,
280	union xfs_btree_key	*k1,
281	union xfs_btree_key	*k2)
282{
283	return (int64_t)be32_to_cpu(k1->alloc.ar_startblock) -
284			  be32_to_cpu(k2->alloc.ar_startblock);
285}
286
287STATIC int64_t
288xfs_cntbt_diff_two_keys(
289	struct xfs_btree_cur	*cur,
290	union xfs_btree_key	*k1,
291	union xfs_btree_key	*k2)
292{
293	int64_t			diff;
294
295	diff =  be32_to_cpu(k1->alloc.ar_blockcount) -
296		be32_to_cpu(k2->alloc.ar_blockcount);
297	if (diff)
298		return diff;
299
300	return  be32_to_cpu(k1->alloc.ar_startblock) -
301		be32_to_cpu(k2->alloc.ar_startblock);
302}
303
304static xfs_failaddr_t
305xfs_allocbt_verify(
306	struct xfs_buf		*bp)
307{
308	struct xfs_mount	*mp = bp->b_target->bt_mount;
309	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
310	struct xfs_perag	*pag = bp->b_pag;
311	xfs_failaddr_t		fa;
312	unsigned int		level;
 
 
 
 
 
 
 
 
 
 
313
314	/*
315	 * magic number and level verification
316	 *
317	 * During growfs operations, we can't verify the exact level or owner as
318	 * the perag is not fully initialised and hence not attached to the
319	 * buffer.  In this case, check against the maximum tree depth.
320	 *
321	 * Similarly, during log recovery we will have a perag structure
322	 * attached, but the agf information will not yet have been initialised
323	 * from the on disk AGF. Again, we can only check against maximum limits
324	 * in this case.
325	 */
326	level = be16_to_cpu(block->bb_level);
327	switch (block->bb_magic) {
328	case cpu_to_be32(XFS_ABTB_CRC_MAGIC):
329		fa = xfs_btree_sblock_v5hdr_verify(bp);
330		if (fa)
331			return fa;
332		/* fall through */
333	case cpu_to_be32(XFS_ABTB_MAGIC):
334		if (pag && pag->pagf_init) {
335			if (level >= pag->pagf_levels[XFS_BTNUM_BNOi])
336				return __this_address;
337		} else if (level >= mp->m_ag_maxlevels)
338			return __this_address;
339		break;
340	case cpu_to_be32(XFS_ABTC_CRC_MAGIC):
341		fa = xfs_btree_sblock_v5hdr_verify(bp);
342		if (fa)
343			return fa;
344		/* fall through */
345	case cpu_to_be32(XFS_ABTC_MAGIC):
346		if (pag && pag->pagf_init) {
347			if (level >= pag->pagf_levels[XFS_BTNUM_CNTi])
348				return __this_address;
349		} else if (level >= mp->m_ag_maxlevels)
350			return __this_address;
351		break;
352	default:
353		return __this_address;
354	}
355
356	return xfs_btree_sblock_verify(bp, mp->m_alloc_mxr[level != 0]);
357}
358
359static void
360xfs_allocbt_read_verify(
361	struct xfs_buf	*bp)
362{
363	xfs_failaddr_t	fa;
364
365	if (!xfs_btree_sblock_verify_crc(bp))
366		xfs_verifier_error(bp, -EFSBADCRC, __this_address);
367	else {
368		fa = xfs_allocbt_verify(bp);
369		if (fa)
370			xfs_verifier_error(bp, -EFSCORRUPTED, fa);
371	}
372
373	if (bp->b_error)
374		trace_xfs_btree_corrupt(bp, _RET_IP_);
375}
376
377static void
378xfs_allocbt_write_verify(
379	struct xfs_buf	*bp)
380{
381	xfs_failaddr_t	fa;
382
383	fa = xfs_allocbt_verify(bp);
384	if (fa) {
385		trace_xfs_btree_corrupt(bp, _RET_IP_);
386		xfs_verifier_error(bp, -EFSCORRUPTED, fa);
387		return;
388	}
389	xfs_btree_sblock_calc_crc(bp);
390
391}
392
393const struct xfs_buf_ops xfs_allocbt_buf_ops = {
394	.name = "xfs_allocbt",
 
 
395	.verify_read = xfs_allocbt_read_verify,
396	.verify_write = xfs_allocbt_write_verify,
397	.verify_struct = xfs_allocbt_verify,
398};
399
 
 
 
 
 
 
 
 
400
401STATIC int
402xfs_bnobt_keys_inorder(
403	struct xfs_btree_cur	*cur,
404	union xfs_btree_key	*k1,
405	union xfs_btree_key	*k2)
406{
407	return be32_to_cpu(k1->alloc.ar_startblock) <
408	       be32_to_cpu(k2->alloc.ar_startblock);
409}
410
411STATIC int
412xfs_bnobt_recs_inorder(
413	struct xfs_btree_cur	*cur,
414	union xfs_btree_rec	*r1,
415	union xfs_btree_rec	*r2)
416{
417	return be32_to_cpu(r1->alloc.ar_startblock) +
418		be32_to_cpu(r1->alloc.ar_blockcount) <=
419		be32_to_cpu(r2->alloc.ar_startblock);
420}
421
422STATIC int
423xfs_cntbt_keys_inorder(
424	struct xfs_btree_cur	*cur,
425	union xfs_btree_key	*k1,
426	union xfs_btree_key	*k2)
427{
428	return be32_to_cpu(k1->alloc.ar_blockcount) <
429		be32_to_cpu(k2->alloc.ar_blockcount) ||
430		(k1->alloc.ar_blockcount == k2->alloc.ar_blockcount &&
431		 be32_to_cpu(k1->alloc.ar_startblock) <
432		 be32_to_cpu(k2->alloc.ar_startblock));
433}
434
435STATIC int
436xfs_cntbt_recs_inorder(
437	struct xfs_btree_cur	*cur,
438	union xfs_btree_rec	*r1,
439	union xfs_btree_rec	*r2)
440{
441	return be32_to_cpu(r1->alloc.ar_blockcount) <
442		be32_to_cpu(r2->alloc.ar_blockcount) ||
443		(r1->alloc.ar_blockcount == r2->alloc.ar_blockcount &&
444		 be32_to_cpu(r1->alloc.ar_startblock) <
445		 be32_to_cpu(r2->alloc.ar_startblock));
446}
447
448static const struct xfs_btree_ops xfs_bnobt_ops = {
449	.rec_len		= sizeof(xfs_alloc_rec_t),
450	.key_len		= sizeof(xfs_alloc_key_t),
451
452	.dup_cursor		= xfs_allocbt_dup_cursor,
453	.set_root		= xfs_allocbt_set_root,
454	.alloc_block		= xfs_allocbt_alloc_block,
455	.free_block		= xfs_allocbt_free_block,
456	.update_lastrec		= xfs_allocbt_update_lastrec,
457	.get_minrecs		= xfs_allocbt_get_minrecs,
458	.get_maxrecs		= xfs_allocbt_get_maxrecs,
459	.init_key_from_rec	= xfs_allocbt_init_key_from_rec,
460	.init_high_key_from_rec	= xfs_bnobt_init_high_key_from_rec,
461	.init_rec_from_cur	= xfs_allocbt_init_rec_from_cur,
462	.init_ptr_from_cur	= xfs_allocbt_init_ptr_from_cur,
463	.key_diff		= xfs_bnobt_key_diff,
464	.buf_ops		= &xfs_allocbt_buf_ops,
465	.diff_two_keys		= xfs_bnobt_diff_two_keys,
466	.keys_inorder		= xfs_bnobt_keys_inorder,
467	.recs_inorder		= xfs_bnobt_recs_inorder,
468};
469
470static const struct xfs_btree_ops xfs_cntbt_ops = {
471	.rec_len		= sizeof(xfs_alloc_rec_t),
472	.key_len		= sizeof(xfs_alloc_key_t),
473
474	.dup_cursor		= xfs_allocbt_dup_cursor,
475	.set_root		= xfs_allocbt_set_root,
476	.alloc_block		= xfs_allocbt_alloc_block,
477	.free_block		= xfs_allocbt_free_block,
478	.update_lastrec		= xfs_allocbt_update_lastrec,
479	.get_minrecs		= xfs_allocbt_get_minrecs,
480	.get_maxrecs		= xfs_allocbt_get_maxrecs,
481	.init_key_from_rec	= xfs_allocbt_init_key_from_rec,
482	.init_high_key_from_rec	= xfs_cntbt_init_high_key_from_rec,
483	.init_rec_from_cur	= xfs_allocbt_init_rec_from_cur,
484	.init_ptr_from_cur	= xfs_allocbt_init_ptr_from_cur,
485	.key_diff		= xfs_cntbt_key_diff,
486	.buf_ops		= &xfs_allocbt_buf_ops,
487	.diff_two_keys		= xfs_cntbt_diff_two_keys,
488	.keys_inorder		= xfs_cntbt_keys_inorder,
489	.recs_inorder		= xfs_cntbt_recs_inorder,
490};
491
492/*
493 * Allocate a new allocation btree cursor.
494 */
495struct xfs_btree_cur *			/* new alloc btree cursor */
496xfs_allocbt_init_cursor(
497	struct xfs_mount	*mp,		/* file system mount point */
498	struct xfs_trans	*tp,		/* transaction pointer */
499	struct xfs_buf		*agbp,		/* buffer for agf structure */
500	xfs_agnumber_t		agno,		/* allocation group number */
501	xfs_btnum_t		btnum)		/* btree identifier */
502{
503	struct xfs_agf		*agf = XFS_BUF_TO_AGF(agbp);
504	struct xfs_btree_cur	*cur;
505
506	ASSERT(btnum == XFS_BTNUM_BNO || btnum == XFS_BTNUM_CNT);
507
508	cur = kmem_zone_zalloc(xfs_btree_cur_zone, KM_NOFS);
509
510	cur->bc_tp = tp;
511	cur->bc_mp = mp;
512	cur->bc_btnum = btnum;
513	cur->bc_blocklog = mp->m_sb.sb_blocklog;
514
515	if (btnum == XFS_BTNUM_CNT) {
516		cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_abtc_2);
517		cur->bc_ops = &xfs_cntbt_ops;
518		cur->bc_nlevels = be32_to_cpu(agf->agf_levels[XFS_BTNUM_CNT]);
519		cur->bc_flags = XFS_BTREE_LASTREC_UPDATE;
520	} else {
521		cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_abtb_2);
522		cur->bc_ops = &xfs_bnobt_ops;
523		cur->bc_nlevels = be32_to_cpu(agf->agf_levels[XFS_BTNUM_BNO]);
524	}
525
526	cur->bc_private.a.agbp = agbp;
527	cur->bc_private.a.agno = agno;
528
529	if (xfs_sb_version_hascrc(&mp->m_sb))
530		cur->bc_flags |= XFS_BTREE_CRC_BLOCKS;
531
532	return cur;
533}
534
535/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
536 * Calculate number of records in an alloc btree block.
537 */
538int
539xfs_allocbt_maxrecs(
540	struct xfs_mount	*mp,
541	int			blocklen,
542	int			leaf)
543{
544	blocklen -= XFS_ALLOC_BLOCK_LEN(mp);
545
546	if (leaf)
547		return blocklen / sizeof(xfs_alloc_rec_t);
548	return blocklen / (sizeof(xfs_alloc_key_t) + sizeof(xfs_alloc_ptr_t));
 
 
 
 
 
 
 
 
 
549}
v5.9
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
  4 * All Rights Reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
  5 */
  6#include "xfs.h"
  7#include "xfs_fs.h"
  8#include "xfs_shared.h"
  9#include "xfs_format.h"
 10#include "xfs_log_format.h"
 11#include "xfs_trans_resv.h"
 12#include "xfs_sb.h"
 13#include "xfs_mount.h"
 14#include "xfs_btree.h"
 15#include "xfs_btree_staging.h"
 16#include "xfs_alloc_btree.h"
 17#include "xfs_alloc.h"
 18#include "xfs_extent_busy.h"
 19#include "xfs_error.h"
 20#include "xfs_trace.h"
 
 21#include "xfs_trans.h"
 22
 23
 24STATIC struct xfs_btree_cur *
 25xfs_allocbt_dup_cursor(
 26	struct xfs_btree_cur	*cur)
 27{
 28	return xfs_allocbt_init_cursor(cur->bc_mp, cur->bc_tp,
 29			cur->bc_ag.agbp, cur->bc_ag.agno,
 30			cur->bc_btnum);
 31}
 32
 33STATIC void
 34xfs_allocbt_set_root(
 35	struct xfs_btree_cur	*cur,
 36	union xfs_btree_ptr	*ptr,
 37	int			inc)
 38{
 39	struct xfs_buf		*agbp = cur->bc_ag.agbp;
 40	struct xfs_agf		*agf = agbp->b_addr;
 
 41	int			btnum = cur->bc_btnum;
 42	struct xfs_perag	*pag = agbp->b_pag;
 43
 44	ASSERT(ptr->s != 0);
 45
 46	agf->agf_roots[btnum] = ptr->s;
 47	be32_add_cpu(&agf->agf_levels[btnum], inc);
 48	pag->pagf_levels[btnum] += inc;
 
 49
 50	xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_ROOTS | XFS_AGF_LEVELS);
 51}
 52
 53STATIC int
 54xfs_allocbt_alloc_block(
 55	struct xfs_btree_cur	*cur,
 56	union xfs_btree_ptr	*start,
 57	union xfs_btree_ptr	*new,
 58	int			*stat)
 59{
 60	int			error;
 61	xfs_agblock_t		bno;
 62
 63	/* Allocate the new block from the freelist. If we can't, give up.  */
 64	error = xfs_alloc_get_freelist(cur->bc_tp, cur->bc_ag.agbp,
 65				       &bno, 1);
 66	if (error)
 67		return error;
 68
 69	if (bno == NULLAGBLOCK) {
 70		*stat = 0;
 71		return 0;
 72	}
 73
 74	xfs_extent_busy_reuse(cur->bc_mp, cur->bc_ag.agno, bno, 1, false);
 75
 76	xfs_trans_agbtree_delta(cur->bc_tp, 1);
 77	new->s = cpu_to_be32(bno);
 78
 79	*stat = 1;
 80	return 0;
 81}
 82
 83STATIC int
 84xfs_allocbt_free_block(
 85	struct xfs_btree_cur	*cur,
 86	struct xfs_buf		*bp)
 87{
 88	struct xfs_buf		*agbp = cur->bc_ag.agbp;
 89	struct xfs_agf		*agf = agbp->b_addr;
 90	xfs_agblock_t		bno;
 91	int			error;
 92
 93	bno = xfs_daddr_to_agbno(cur->bc_mp, XFS_BUF_ADDR(bp));
 94	error = xfs_alloc_put_freelist(cur->bc_tp, agbp, NULL, bno, 1);
 95	if (error)
 96		return error;
 97
 98	xfs_extent_busy_insert(cur->bc_tp, be32_to_cpu(agf->agf_seqno), bno, 1,
 99			      XFS_EXTENT_BUSY_SKIP_DISCARD);
100	xfs_trans_agbtree_delta(cur->bc_tp, -1);
101	return 0;
102}
103
104/*
105 * Update the longest extent in the AGF
106 */
107STATIC void
108xfs_allocbt_update_lastrec(
109	struct xfs_btree_cur	*cur,
110	struct xfs_btree_block	*block,
111	union xfs_btree_rec	*rec,
112	int			ptr,
113	int			reason)
114{
115	struct xfs_agf		*agf = cur->bc_ag.agbp->b_addr;
 
116	struct xfs_perag	*pag;
117	__be32			len;
118	int			numrecs;
119
120	ASSERT(cur->bc_btnum == XFS_BTNUM_CNT);
121
122	switch (reason) {
123	case LASTREC_UPDATE:
124		/*
125		 * If this is the last leaf block and it's the last record,
126		 * then update the size of the longest extent in the AG.
127		 */
128		if (ptr != xfs_btree_get_numrecs(block))
129			return;
130		len = rec->alloc.ar_blockcount;
131		break;
132	case LASTREC_INSREC:
133		if (be32_to_cpu(rec->alloc.ar_blockcount) <=
134		    be32_to_cpu(agf->agf_longest))
135			return;
136		len = rec->alloc.ar_blockcount;
137		break;
138	case LASTREC_DELREC:
139		numrecs = xfs_btree_get_numrecs(block);
140		if (ptr <= numrecs)
141			return;
142		ASSERT(ptr == numrecs + 1);
143
144		if (numrecs) {
145			xfs_alloc_rec_t *rrp;
146
147			rrp = XFS_ALLOC_REC_ADDR(cur->bc_mp, block, numrecs);
148			len = rrp->ar_blockcount;
149		} else {
150			len = 0;
151		}
152
153		break;
154	default:
155		ASSERT(0);
156		return;
157	}
158
159	agf->agf_longest = len;
160	pag = cur->bc_ag.agbp->b_pag;
161	pag->pagf_longest = be32_to_cpu(len);
162	xfs_alloc_log_agf(cur->bc_tp, cur->bc_ag.agbp, XFS_AGF_LONGEST);
 
163}
164
165STATIC int
166xfs_allocbt_get_minrecs(
167	struct xfs_btree_cur	*cur,
168	int			level)
169{
170	return cur->bc_mp->m_alloc_mnr[level != 0];
171}
172
173STATIC int
174xfs_allocbt_get_maxrecs(
175	struct xfs_btree_cur	*cur,
176	int			level)
177{
178	return cur->bc_mp->m_alloc_mxr[level != 0];
179}
180
181STATIC void
182xfs_allocbt_init_key_from_rec(
183	union xfs_btree_key	*key,
184	union xfs_btree_rec	*rec)
185{
186	key->alloc.ar_startblock = rec->alloc.ar_startblock;
187	key->alloc.ar_blockcount = rec->alloc.ar_blockcount;
188}
189
190STATIC void
191xfs_bnobt_init_high_key_from_rec(
192	union xfs_btree_key	*key,
193	union xfs_btree_rec	*rec)
194{
195	__u32			x;
196
197	x = be32_to_cpu(rec->alloc.ar_startblock);
198	x += be32_to_cpu(rec->alloc.ar_blockcount) - 1;
199	key->alloc.ar_startblock = cpu_to_be32(x);
200	key->alloc.ar_blockcount = 0;
201}
202
203STATIC void
204xfs_cntbt_init_high_key_from_rec(
205	union xfs_btree_key	*key,
206	union xfs_btree_rec	*rec)
207{
208	key->alloc.ar_blockcount = rec->alloc.ar_blockcount;
209	key->alloc.ar_startblock = 0;
210}
211
212STATIC void
213xfs_allocbt_init_rec_from_cur(
214	struct xfs_btree_cur	*cur,
215	union xfs_btree_rec	*rec)
216{
217	rec->alloc.ar_startblock = cpu_to_be32(cur->bc_rec.a.ar_startblock);
218	rec->alloc.ar_blockcount = cpu_to_be32(cur->bc_rec.a.ar_blockcount);
219}
220
221STATIC void
222xfs_allocbt_init_ptr_from_cur(
223	struct xfs_btree_cur	*cur,
224	union xfs_btree_ptr	*ptr)
225{
226	struct xfs_agf		*agf = cur->bc_ag.agbp->b_addr;
227
228	ASSERT(cur->bc_ag.agno == be32_to_cpu(agf->agf_seqno));
 
229
230	ptr->s = agf->agf_roots[cur->bc_btnum];
231}
232
233STATIC int64_t
234xfs_bnobt_key_diff(
235	struct xfs_btree_cur	*cur,
236	union xfs_btree_key	*key)
237{
238	xfs_alloc_rec_incore_t	*rec = &cur->bc_rec.a;
239	xfs_alloc_key_t		*kp = &key->alloc;
240
241	return (int64_t)be32_to_cpu(kp->ar_startblock) - rec->ar_startblock;
242}
243
244STATIC int64_t
245xfs_cntbt_key_diff(
246	struct xfs_btree_cur	*cur,
247	union xfs_btree_key	*key)
248{
249	xfs_alloc_rec_incore_t	*rec = &cur->bc_rec.a;
250	xfs_alloc_key_t		*kp = &key->alloc;
251	int64_t			diff;
252
253	diff = (int64_t)be32_to_cpu(kp->ar_blockcount) - rec->ar_blockcount;
254	if (diff)
255		return diff;
256
257	return (int64_t)be32_to_cpu(kp->ar_startblock) - rec->ar_startblock;
258}
259
260STATIC int64_t
261xfs_bnobt_diff_two_keys(
262	struct xfs_btree_cur	*cur,
263	union xfs_btree_key	*k1,
264	union xfs_btree_key	*k2)
265{
266	return (int64_t)be32_to_cpu(k1->alloc.ar_startblock) -
267			  be32_to_cpu(k2->alloc.ar_startblock);
268}
269
270STATIC int64_t
271xfs_cntbt_diff_two_keys(
272	struct xfs_btree_cur	*cur,
273	union xfs_btree_key	*k1,
274	union xfs_btree_key	*k2)
275{
276	int64_t			diff;
277
278	diff =  be32_to_cpu(k1->alloc.ar_blockcount) -
279		be32_to_cpu(k2->alloc.ar_blockcount);
280	if (diff)
281		return diff;
282
283	return  be32_to_cpu(k1->alloc.ar_startblock) -
284		be32_to_cpu(k2->alloc.ar_startblock);
285}
286
287static xfs_failaddr_t
288xfs_allocbt_verify(
289	struct xfs_buf		*bp)
290{
291	struct xfs_mount	*mp = bp->b_mount;
292	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
293	struct xfs_perag	*pag = bp->b_pag;
294	xfs_failaddr_t		fa;
295	unsigned int		level;
296	xfs_btnum_t		btnum = XFS_BTNUM_BNOi;
297
298	if (!xfs_verify_magic(bp, block->bb_magic))
299		return __this_address;
300
301	if (xfs_sb_version_hascrc(&mp->m_sb)) {
302		fa = xfs_btree_sblock_v5hdr_verify(bp);
303		if (fa)
304			return fa;
305	}
306
307	/*
308	 * The perag may not be attached during grow operations or fully
309	 * initialized from the AGF during log recovery. Therefore we can only
310	 * check against maximum tree depth from those contexts.
 
 
311	 *
312	 * Otherwise check against the per-tree limit. Peek at one of the
313	 * verifier magic values to determine the type of tree we're verifying
314	 * against.
 
315	 */
316	level = be16_to_cpu(block->bb_level);
317	if (bp->b_ops->magic[0] == cpu_to_be32(XFS_ABTC_MAGIC))
318		btnum = XFS_BTNUM_CNTi;
319	if (pag && pag->pagf_init) {
320		if (level >= pag->pagf_levels[btnum])
 
 
 
 
 
 
 
321			return __this_address;
322	} else if (level >= mp->m_ag_maxlevels)
 
 
 
 
 
 
 
 
 
 
 
 
 
323		return __this_address;
 
324
325	return xfs_btree_sblock_verify(bp, mp->m_alloc_mxr[level != 0]);
326}
327
328static void
329xfs_allocbt_read_verify(
330	struct xfs_buf	*bp)
331{
332	xfs_failaddr_t	fa;
333
334	if (!xfs_btree_sblock_verify_crc(bp))
335		xfs_verifier_error(bp, -EFSBADCRC, __this_address);
336	else {
337		fa = xfs_allocbt_verify(bp);
338		if (fa)
339			xfs_verifier_error(bp, -EFSCORRUPTED, fa);
340	}
341
342	if (bp->b_error)
343		trace_xfs_btree_corrupt(bp, _RET_IP_);
344}
345
346static void
347xfs_allocbt_write_verify(
348	struct xfs_buf	*bp)
349{
350	xfs_failaddr_t	fa;
351
352	fa = xfs_allocbt_verify(bp);
353	if (fa) {
354		trace_xfs_btree_corrupt(bp, _RET_IP_);
355		xfs_verifier_error(bp, -EFSCORRUPTED, fa);
356		return;
357	}
358	xfs_btree_sblock_calc_crc(bp);
359
360}
361
362const struct xfs_buf_ops xfs_bnobt_buf_ops = {
363	.name = "xfs_bnobt",
364	.magic = { cpu_to_be32(XFS_ABTB_MAGIC),
365		   cpu_to_be32(XFS_ABTB_CRC_MAGIC) },
366	.verify_read = xfs_allocbt_read_verify,
367	.verify_write = xfs_allocbt_write_verify,
368	.verify_struct = xfs_allocbt_verify,
369};
370
371const struct xfs_buf_ops xfs_cntbt_buf_ops = {
372	.name = "xfs_cntbt",
373	.magic = { cpu_to_be32(XFS_ABTC_MAGIC),
374		   cpu_to_be32(XFS_ABTC_CRC_MAGIC) },
375	.verify_read = xfs_allocbt_read_verify,
376	.verify_write = xfs_allocbt_write_verify,
377	.verify_struct = xfs_allocbt_verify,
378};
379
380STATIC int
381xfs_bnobt_keys_inorder(
382	struct xfs_btree_cur	*cur,
383	union xfs_btree_key	*k1,
384	union xfs_btree_key	*k2)
385{
386	return be32_to_cpu(k1->alloc.ar_startblock) <
387	       be32_to_cpu(k2->alloc.ar_startblock);
388}
389
390STATIC int
391xfs_bnobt_recs_inorder(
392	struct xfs_btree_cur	*cur,
393	union xfs_btree_rec	*r1,
394	union xfs_btree_rec	*r2)
395{
396	return be32_to_cpu(r1->alloc.ar_startblock) +
397		be32_to_cpu(r1->alloc.ar_blockcount) <=
398		be32_to_cpu(r2->alloc.ar_startblock);
399}
400
401STATIC int
402xfs_cntbt_keys_inorder(
403	struct xfs_btree_cur	*cur,
404	union xfs_btree_key	*k1,
405	union xfs_btree_key	*k2)
406{
407	return be32_to_cpu(k1->alloc.ar_blockcount) <
408		be32_to_cpu(k2->alloc.ar_blockcount) ||
409		(k1->alloc.ar_blockcount == k2->alloc.ar_blockcount &&
410		 be32_to_cpu(k1->alloc.ar_startblock) <
411		 be32_to_cpu(k2->alloc.ar_startblock));
412}
413
414STATIC int
415xfs_cntbt_recs_inorder(
416	struct xfs_btree_cur	*cur,
417	union xfs_btree_rec	*r1,
418	union xfs_btree_rec	*r2)
419{
420	return be32_to_cpu(r1->alloc.ar_blockcount) <
421		be32_to_cpu(r2->alloc.ar_blockcount) ||
422		(r1->alloc.ar_blockcount == r2->alloc.ar_blockcount &&
423		 be32_to_cpu(r1->alloc.ar_startblock) <
424		 be32_to_cpu(r2->alloc.ar_startblock));
425}
426
427static const struct xfs_btree_ops xfs_bnobt_ops = {
428	.rec_len		= sizeof(xfs_alloc_rec_t),
429	.key_len		= sizeof(xfs_alloc_key_t),
430
431	.dup_cursor		= xfs_allocbt_dup_cursor,
432	.set_root		= xfs_allocbt_set_root,
433	.alloc_block		= xfs_allocbt_alloc_block,
434	.free_block		= xfs_allocbt_free_block,
435	.update_lastrec		= xfs_allocbt_update_lastrec,
436	.get_minrecs		= xfs_allocbt_get_minrecs,
437	.get_maxrecs		= xfs_allocbt_get_maxrecs,
438	.init_key_from_rec	= xfs_allocbt_init_key_from_rec,
439	.init_high_key_from_rec	= xfs_bnobt_init_high_key_from_rec,
440	.init_rec_from_cur	= xfs_allocbt_init_rec_from_cur,
441	.init_ptr_from_cur	= xfs_allocbt_init_ptr_from_cur,
442	.key_diff		= xfs_bnobt_key_diff,
443	.buf_ops		= &xfs_bnobt_buf_ops,
444	.diff_two_keys		= xfs_bnobt_diff_two_keys,
445	.keys_inorder		= xfs_bnobt_keys_inorder,
446	.recs_inorder		= xfs_bnobt_recs_inorder,
447};
448
449static const struct xfs_btree_ops xfs_cntbt_ops = {
450	.rec_len		= sizeof(xfs_alloc_rec_t),
451	.key_len		= sizeof(xfs_alloc_key_t),
452
453	.dup_cursor		= xfs_allocbt_dup_cursor,
454	.set_root		= xfs_allocbt_set_root,
455	.alloc_block		= xfs_allocbt_alloc_block,
456	.free_block		= xfs_allocbt_free_block,
457	.update_lastrec		= xfs_allocbt_update_lastrec,
458	.get_minrecs		= xfs_allocbt_get_minrecs,
459	.get_maxrecs		= xfs_allocbt_get_maxrecs,
460	.init_key_from_rec	= xfs_allocbt_init_key_from_rec,
461	.init_high_key_from_rec	= xfs_cntbt_init_high_key_from_rec,
462	.init_rec_from_cur	= xfs_allocbt_init_rec_from_cur,
463	.init_ptr_from_cur	= xfs_allocbt_init_ptr_from_cur,
464	.key_diff		= xfs_cntbt_key_diff,
465	.buf_ops		= &xfs_cntbt_buf_ops,
466	.diff_two_keys		= xfs_cntbt_diff_two_keys,
467	.keys_inorder		= xfs_cntbt_keys_inorder,
468	.recs_inorder		= xfs_cntbt_recs_inorder,
469};
470
471/* Allocate most of a new allocation btree cursor. */
472STATIC struct xfs_btree_cur *
473xfs_allocbt_init_common(
474	struct xfs_mount	*mp,
475	struct xfs_trans	*tp,
476	xfs_agnumber_t		agno,
477	xfs_btnum_t		btnum)
 
 
 
478{
 
479	struct xfs_btree_cur	*cur;
480
481	ASSERT(btnum == XFS_BTNUM_BNO || btnum == XFS_BTNUM_CNT);
482
483	cur = kmem_cache_zalloc(xfs_btree_cur_zone, GFP_NOFS | __GFP_NOFAIL);
484
485	cur->bc_tp = tp;
486	cur->bc_mp = mp;
487	cur->bc_btnum = btnum;
488	cur->bc_blocklog = mp->m_sb.sb_blocklog;
489
490	if (btnum == XFS_BTNUM_CNT) {
 
491		cur->bc_ops = &xfs_cntbt_ops;
492		cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_abtc_2);
493		cur->bc_flags = XFS_BTREE_LASTREC_UPDATE;
494	} else {
 
495		cur->bc_ops = &xfs_bnobt_ops;
496		cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_abtb_2);
497	}
498
499	cur->bc_ag.agno = agno;
500	cur->bc_ag.abt.active = false;
501
502	if (xfs_sb_version_hascrc(&mp->m_sb))
503		cur->bc_flags |= XFS_BTREE_CRC_BLOCKS;
504
505	return cur;
506}
507
508/*
509 * Allocate a new allocation btree cursor.
510 */
511struct xfs_btree_cur *			/* new alloc btree cursor */
512xfs_allocbt_init_cursor(
513	struct xfs_mount	*mp,		/* file system mount point */
514	struct xfs_trans	*tp,		/* transaction pointer */
515	struct xfs_buf		*agbp,		/* buffer for agf structure */
516	xfs_agnumber_t		agno,		/* allocation group number */
517	xfs_btnum_t		btnum)		/* btree identifier */
518{
519	struct xfs_agf		*agf = agbp->b_addr;
520	struct xfs_btree_cur	*cur;
521
522	cur = xfs_allocbt_init_common(mp, tp, agno, btnum);
523	if (btnum == XFS_BTNUM_CNT)
524		cur->bc_nlevels = be32_to_cpu(agf->agf_levels[XFS_BTNUM_CNT]);
525	else
526		cur->bc_nlevels = be32_to_cpu(agf->agf_levels[XFS_BTNUM_BNO]);
527
528	cur->bc_ag.agbp = agbp;
529
530	return cur;
531}
532
533/* Create a free space btree cursor with a fake root for staging. */
534struct xfs_btree_cur *
535xfs_allocbt_stage_cursor(
536	struct xfs_mount	*mp,
537	struct xbtree_afakeroot	*afake,
538	xfs_agnumber_t		agno,
539	xfs_btnum_t		btnum)
540{
541	struct xfs_btree_cur	*cur;
542
543	cur = xfs_allocbt_init_common(mp, NULL, agno, btnum);
544	xfs_btree_stage_afakeroot(cur, afake);
545	return cur;
546}
547
548/*
549 * Install a new free space btree root.  Caller is responsible for invalidating
550 * and freeing the old btree blocks.
551 */
552void
553xfs_allocbt_commit_staged_btree(
554	struct xfs_btree_cur	*cur,
555	struct xfs_trans	*tp,
556	struct xfs_buf		*agbp)
557{
558	struct xfs_agf		*agf = agbp->b_addr;
559	struct xbtree_afakeroot	*afake = cur->bc_ag.afake;
560
561	ASSERT(cur->bc_flags & XFS_BTREE_STAGING);
562
563	agf->agf_roots[cur->bc_btnum] = cpu_to_be32(afake->af_root);
564	agf->agf_levels[cur->bc_btnum] = cpu_to_be32(afake->af_levels);
565	xfs_alloc_log_agf(tp, agbp, XFS_AGF_ROOTS | XFS_AGF_LEVELS);
566
567	if (cur->bc_btnum == XFS_BTNUM_BNO) {
568		xfs_btree_commit_afakeroot(cur, tp, agbp, &xfs_bnobt_ops);
569	} else {
570		cur->bc_flags |= XFS_BTREE_LASTREC_UPDATE;
571		xfs_btree_commit_afakeroot(cur, tp, agbp, &xfs_cntbt_ops);
572	}
573}
574
575/*
576 * Calculate number of records in an alloc btree block.
577 */
578int
579xfs_allocbt_maxrecs(
580	struct xfs_mount	*mp,
581	int			blocklen,
582	int			leaf)
583{
584	blocklen -= XFS_ALLOC_BLOCK_LEN(mp);
585
586	if (leaf)
587		return blocklen / sizeof(xfs_alloc_rec_t);
588	return blocklen / (sizeof(xfs_alloc_key_t) + sizeof(xfs_alloc_ptr_t));
589}
590
591/* Calculate the freespace btree size for some records. */
592xfs_extlen_t
593xfs_allocbt_calc_size(
594	struct xfs_mount	*mp,
595	unsigned long long	len)
596{
597	return xfs_btree_calc_size(mp->m_alloc_mnr, len);
598}