Linux Audio

Check our new training course

Loading...
v4.17
 
  1/*
  2 * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
  3 * All Rights Reserved.
  4 *
  5 * This program is free software; you can redistribute it and/or
  6 * modify it under the terms of the GNU General Public License as
  7 * published by the Free Software Foundation.
  8 *
  9 * This program is distributed in the hope that it would be useful,
 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 12 * GNU General Public License for more details.
 13 *
 14 * You should have received a copy of the GNU General Public License
 15 * along with this program; if not, write the Free Software Foundation,
 16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 17 */
 18#include "xfs.h"
 19#include "xfs_fs.h"
 20#include "xfs_shared.h"
 21#include "xfs_format.h"
 22#include "xfs_log_format.h"
 23#include "xfs_trans_resv.h"
 24#include "xfs_sb.h"
 25#include "xfs_mount.h"
 26#include "xfs_btree.h"
 
 27#include "xfs_alloc_btree.h"
 28#include "xfs_alloc.h"
 29#include "xfs_extent_busy.h"
 30#include "xfs_error.h"
 31#include "xfs_trace.h"
 32#include "xfs_cksum.h"
 33#include "xfs_trans.h"
 
 34
 
 35
 36STATIC struct xfs_btree_cur *
 37xfs_allocbt_dup_cursor(
 38	struct xfs_btree_cur	*cur)
 39{
 40	return xfs_allocbt_init_cursor(cur->bc_mp, cur->bc_tp,
 41			cur->bc_private.a.agbp, cur->bc_private.a.agno,
 42			cur->bc_btnum);
 43}
 44
 45STATIC void
 46xfs_allocbt_set_root(
 47	struct xfs_btree_cur	*cur,
 48	union xfs_btree_ptr	*ptr,
 49	int			inc)
 50{
 51	struct xfs_buf		*agbp = cur->bc_private.a.agbp;
 52	struct xfs_agf		*agf = XFS_BUF_TO_AGF(agbp);
 53	xfs_agnumber_t		seqno = be32_to_cpu(agf->agf_seqno);
 54	int			btnum = cur->bc_btnum;
 55	struct xfs_perag	*pag = xfs_perag_get(cur->bc_mp, seqno);
 56
 57	ASSERT(ptr->s != 0);
 58
 59	agf->agf_roots[btnum] = ptr->s;
 60	be32_add_cpu(&agf->agf_levels[btnum], inc);
 61	pag->pagf_levels[btnum] += inc;
 62	xfs_perag_put(pag);
 63
 64	xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_ROOTS | XFS_AGF_LEVELS);
 65}
 66
 67STATIC int
 68xfs_allocbt_alloc_block(
 69	struct xfs_btree_cur	*cur,
 70	union xfs_btree_ptr	*start,
 71	union xfs_btree_ptr	*new,
 72	int			*stat)
 73{
 74	int			error;
 75	xfs_agblock_t		bno;
 76
 77	/* Allocate the new block from the freelist. If we can't, give up.  */
 78	error = xfs_alloc_get_freelist(cur->bc_tp, cur->bc_private.a.agbp,
 79				       &bno, 1);
 80	if (error)
 81		return error;
 82
 83	if (bno == NULLAGBLOCK) {
 84		*stat = 0;
 85		return 0;
 86	}
 87
 88	xfs_extent_busy_reuse(cur->bc_mp, cur->bc_private.a.agno, bno, 1, false);
 
 89
 90	xfs_trans_agbtree_delta(cur->bc_tp, 1);
 91	new->s = cpu_to_be32(bno);
 92
 93	*stat = 1;
 94	return 0;
 95}
 96
 97STATIC int
 98xfs_allocbt_free_block(
 99	struct xfs_btree_cur	*cur,
100	struct xfs_buf		*bp)
101{
102	struct xfs_buf		*agbp = cur->bc_private.a.agbp;
103	struct xfs_agf		*agf = XFS_BUF_TO_AGF(agbp);
104	xfs_agblock_t		bno;
105	int			error;
106
107	bno = xfs_daddr_to_agbno(cur->bc_mp, XFS_BUF_ADDR(bp));
108	error = xfs_alloc_put_freelist(cur->bc_tp, agbp, NULL, bno, 1);
 
109	if (error)
110		return error;
111
112	xfs_extent_busy_insert(cur->bc_tp, be32_to_cpu(agf->agf_seqno), bno, 1,
 
113			      XFS_EXTENT_BUSY_SKIP_DISCARD);
114	xfs_trans_agbtree_delta(cur->bc_tp, -1);
115	return 0;
116}
117
118/*
119 * Update the longest extent in the AGF
120 */
121STATIC void
122xfs_allocbt_update_lastrec(
123	struct xfs_btree_cur	*cur,
124	struct xfs_btree_block	*block,
125	union xfs_btree_rec	*rec,
126	int			ptr,
127	int			reason)
128{
129	struct xfs_agf		*agf = XFS_BUF_TO_AGF(cur->bc_private.a.agbp);
130	xfs_agnumber_t		seqno = be32_to_cpu(agf->agf_seqno);
131	struct xfs_perag	*pag;
132	__be32			len;
133	int			numrecs;
134
135	ASSERT(cur->bc_btnum == XFS_BTNUM_CNT);
136
137	switch (reason) {
138	case LASTREC_UPDATE:
139		/*
140		 * If this is the last leaf block and it's the last record,
141		 * then update the size of the longest extent in the AG.
142		 */
143		if (ptr != xfs_btree_get_numrecs(block))
144			return;
145		len = rec->alloc.ar_blockcount;
146		break;
147	case LASTREC_INSREC:
148		if (be32_to_cpu(rec->alloc.ar_blockcount) <=
149		    be32_to_cpu(agf->agf_longest))
150			return;
151		len = rec->alloc.ar_blockcount;
152		break;
153	case LASTREC_DELREC:
154		numrecs = xfs_btree_get_numrecs(block);
155		if (ptr <= numrecs)
156			return;
157		ASSERT(ptr == numrecs + 1);
158
159		if (numrecs) {
160			xfs_alloc_rec_t *rrp;
161
162			rrp = XFS_ALLOC_REC_ADDR(cur->bc_mp, block, numrecs);
163			len = rrp->ar_blockcount;
164		} else {
165			len = 0;
166		}
167
168		break;
169	default:
170		ASSERT(0);
171		return;
172	}
173
174	agf->agf_longest = len;
175	pag = xfs_perag_get(cur->bc_mp, seqno);
176	pag->pagf_longest = be32_to_cpu(len);
177	xfs_perag_put(pag);
178	xfs_alloc_log_agf(cur->bc_tp, cur->bc_private.a.agbp, XFS_AGF_LONGEST);
179}
180
181STATIC int
182xfs_allocbt_get_minrecs(
183	struct xfs_btree_cur	*cur,
184	int			level)
185{
186	return cur->bc_mp->m_alloc_mnr[level != 0];
187}
188
189STATIC int
190xfs_allocbt_get_maxrecs(
191	struct xfs_btree_cur	*cur,
192	int			level)
193{
194	return cur->bc_mp->m_alloc_mxr[level != 0];
195}
196
197STATIC void
198xfs_allocbt_init_key_from_rec(
199	union xfs_btree_key	*key,
200	union xfs_btree_rec	*rec)
201{
202	key->alloc.ar_startblock = rec->alloc.ar_startblock;
203	key->alloc.ar_blockcount = rec->alloc.ar_blockcount;
204}
205
206STATIC void
207xfs_bnobt_init_high_key_from_rec(
208	union xfs_btree_key	*key,
209	union xfs_btree_rec	*rec)
210{
211	__u32			x;
212
213	x = be32_to_cpu(rec->alloc.ar_startblock);
214	x += be32_to_cpu(rec->alloc.ar_blockcount) - 1;
215	key->alloc.ar_startblock = cpu_to_be32(x);
216	key->alloc.ar_blockcount = 0;
217}
218
219STATIC void
220xfs_cntbt_init_high_key_from_rec(
221	union xfs_btree_key	*key,
222	union xfs_btree_rec	*rec)
223{
224	key->alloc.ar_blockcount = rec->alloc.ar_blockcount;
225	key->alloc.ar_startblock = 0;
226}
227
228STATIC void
229xfs_allocbt_init_rec_from_cur(
230	struct xfs_btree_cur	*cur,
231	union xfs_btree_rec	*rec)
232{
233	rec->alloc.ar_startblock = cpu_to_be32(cur->bc_rec.a.ar_startblock);
234	rec->alloc.ar_blockcount = cpu_to_be32(cur->bc_rec.a.ar_blockcount);
235}
236
237STATIC void
238xfs_allocbt_init_ptr_from_cur(
239	struct xfs_btree_cur	*cur,
240	union xfs_btree_ptr	*ptr)
241{
242	struct xfs_agf		*agf = XFS_BUF_TO_AGF(cur->bc_private.a.agbp);
243
244	ASSERT(cur->bc_private.a.agno == be32_to_cpu(agf->agf_seqno));
245	ASSERT(agf->agf_roots[cur->bc_btnum] != 0);
246
247	ptr->s = agf->agf_roots[cur->bc_btnum];
248}
249
250STATIC int64_t
251xfs_bnobt_key_diff(
252	struct xfs_btree_cur	*cur,
253	union xfs_btree_key	*key)
254{
255	xfs_alloc_rec_incore_t	*rec = &cur->bc_rec.a;
256	xfs_alloc_key_t		*kp = &key->alloc;
257
258	return (int64_t)be32_to_cpu(kp->ar_startblock) - rec->ar_startblock;
259}
260
261STATIC int64_t
262xfs_cntbt_key_diff(
263	struct xfs_btree_cur	*cur,
264	union xfs_btree_key	*key)
265{
266	xfs_alloc_rec_incore_t	*rec = &cur->bc_rec.a;
267	xfs_alloc_key_t		*kp = &key->alloc;
268	int64_t			diff;
269
270	diff = (int64_t)be32_to_cpu(kp->ar_blockcount) - rec->ar_blockcount;
271	if (diff)
272		return diff;
273
274	return (int64_t)be32_to_cpu(kp->ar_startblock) - rec->ar_startblock;
275}
276
277STATIC int64_t
278xfs_bnobt_diff_two_keys(
279	struct xfs_btree_cur	*cur,
280	union xfs_btree_key	*k1,
281	union xfs_btree_key	*k2)
282{
283	return (int64_t)be32_to_cpu(k1->alloc.ar_startblock) -
284			  be32_to_cpu(k2->alloc.ar_startblock);
285}
286
287STATIC int64_t
288xfs_cntbt_diff_two_keys(
289	struct xfs_btree_cur	*cur,
290	union xfs_btree_key	*k1,
291	union xfs_btree_key	*k2)
292{
293	int64_t			diff;
294
295	diff =  be32_to_cpu(k1->alloc.ar_blockcount) -
296		be32_to_cpu(k2->alloc.ar_blockcount);
297	if (diff)
298		return diff;
299
300	return  be32_to_cpu(k1->alloc.ar_startblock) -
301		be32_to_cpu(k2->alloc.ar_startblock);
302}
303
304static xfs_failaddr_t
305xfs_allocbt_verify(
306	struct xfs_buf		*bp)
307{
308	struct xfs_mount	*mp = bp->b_target->bt_mount;
309	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
310	struct xfs_perag	*pag = bp->b_pag;
311	xfs_failaddr_t		fa;
312	unsigned int		level;
 
 
 
 
 
 
 
 
 
 
313
314	/*
315	 * magic number and level verification
 
 
316	 *
317	 * During growfs operations, we can't verify the exact level or owner as
318	 * the perag is not fully initialised and hence not attached to the
319	 * buffer.  In this case, check against the maximum tree depth.
320	 *
321	 * Similarly, during log recovery we will have a perag structure
322	 * attached, but the agf information will not yet have been initialised
323	 * from the on disk AGF. Again, we can only check against maximum limits
324	 * in this case.
325	 */
326	level = be16_to_cpu(block->bb_level);
327	switch (block->bb_magic) {
328	case cpu_to_be32(XFS_ABTB_CRC_MAGIC):
329		fa = xfs_btree_sblock_v5hdr_verify(bp);
330		if (fa)
331			return fa;
332		/* fall through */
333	case cpu_to_be32(XFS_ABTB_MAGIC):
334		if (pag && pag->pagf_init) {
335			if (level >= pag->pagf_levels[XFS_BTNUM_BNOi])
336				return __this_address;
337		} else if (level >= mp->m_ag_maxlevels)
338			return __this_address;
339		break;
340	case cpu_to_be32(XFS_ABTC_CRC_MAGIC):
341		fa = xfs_btree_sblock_v5hdr_verify(bp);
342		if (fa)
343			return fa;
344		/* fall through */
345	case cpu_to_be32(XFS_ABTC_MAGIC):
346		if (pag && pag->pagf_init) {
347			if (level >= pag->pagf_levels[XFS_BTNUM_CNTi])
348				return __this_address;
349		} else if (level >= mp->m_ag_maxlevels)
350			return __this_address;
351		break;
352	default:
353		return __this_address;
354	}
355
356	return xfs_btree_sblock_verify(bp, mp->m_alloc_mxr[level != 0]);
357}
358
359static void
360xfs_allocbt_read_verify(
361	struct xfs_buf	*bp)
362{
363	xfs_failaddr_t	fa;
364
365	if (!xfs_btree_sblock_verify_crc(bp))
366		xfs_verifier_error(bp, -EFSBADCRC, __this_address);
367	else {
368		fa = xfs_allocbt_verify(bp);
369		if (fa)
370			xfs_verifier_error(bp, -EFSCORRUPTED, fa);
371	}
372
373	if (bp->b_error)
374		trace_xfs_btree_corrupt(bp, _RET_IP_);
375}
376
377static void
378xfs_allocbt_write_verify(
379	struct xfs_buf	*bp)
380{
381	xfs_failaddr_t	fa;
382
383	fa = xfs_allocbt_verify(bp);
384	if (fa) {
385		trace_xfs_btree_corrupt(bp, _RET_IP_);
386		xfs_verifier_error(bp, -EFSCORRUPTED, fa);
387		return;
388	}
389	xfs_btree_sblock_calc_crc(bp);
390
391}
392
393const struct xfs_buf_ops xfs_allocbt_buf_ops = {
394	.name = "xfs_allocbt",
 
 
395	.verify_read = xfs_allocbt_read_verify,
396	.verify_write = xfs_allocbt_write_verify,
397	.verify_struct = xfs_allocbt_verify,
398};
399
 
 
 
 
 
 
 
 
400
401STATIC int
402xfs_bnobt_keys_inorder(
403	struct xfs_btree_cur	*cur,
404	union xfs_btree_key	*k1,
405	union xfs_btree_key	*k2)
406{
407	return be32_to_cpu(k1->alloc.ar_startblock) <
408	       be32_to_cpu(k2->alloc.ar_startblock);
409}
410
411STATIC int
412xfs_bnobt_recs_inorder(
413	struct xfs_btree_cur	*cur,
414	union xfs_btree_rec	*r1,
415	union xfs_btree_rec	*r2)
416{
417	return be32_to_cpu(r1->alloc.ar_startblock) +
418		be32_to_cpu(r1->alloc.ar_blockcount) <=
419		be32_to_cpu(r2->alloc.ar_startblock);
420}
421
422STATIC int
423xfs_cntbt_keys_inorder(
424	struct xfs_btree_cur	*cur,
425	union xfs_btree_key	*k1,
426	union xfs_btree_key	*k2)
427{
428	return be32_to_cpu(k1->alloc.ar_blockcount) <
429		be32_to_cpu(k2->alloc.ar_blockcount) ||
430		(k1->alloc.ar_blockcount == k2->alloc.ar_blockcount &&
431		 be32_to_cpu(k1->alloc.ar_startblock) <
432		 be32_to_cpu(k2->alloc.ar_startblock));
433}
434
435STATIC int
436xfs_cntbt_recs_inorder(
437	struct xfs_btree_cur	*cur,
438	union xfs_btree_rec	*r1,
439	union xfs_btree_rec	*r2)
440{
441	return be32_to_cpu(r1->alloc.ar_blockcount) <
442		be32_to_cpu(r2->alloc.ar_blockcount) ||
443		(r1->alloc.ar_blockcount == r2->alloc.ar_blockcount &&
444		 be32_to_cpu(r1->alloc.ar_startblock) <
445		 be32_to_cpu(r2->alloc.ar_startblock));
446}
447
448static const struct xfs_btree_ops xfs_bnobt_ops = {
449	.rec_len		= sizeof(xfs_alloc_rec_t),
450	.key_len		= sizeof(xfs_alloc_key_t),
451
452	.dup_cursor		= xfs_allocbt_dup_cursor,
453	.set_root		= xfs_allocbt_set_root,
454	.alloc_block		= xfs_allocbt_alloc_block,
455	.free_block		= xfs_allocbt_free_block,
456	.update_lastrec		= xfs_allocbt_update_lastrec,
457	.get_minrecs		= xfs_allocbt_get_minrecs,
458	.get_maxrecs		= xfs_allocbt_get_maxrecs,
459	.init_key_from_rec	= xfs_allocbt_init_key_from_rec,
460	.init_high_key_from_rec	= xfs_bnobt_init_high_key_from_rec,
461	.init_rec_from_cur	= xfs_allocbt_init_rec_from_cur,
462	.init_ptr_from_cur	= xfs_allocbt_init_ptr_from_cur,
463	.key_diff		= xfs_bnobt_key_diff,
464	.buf_ops		= &xfs_allocbt_buf_ops,
465	.diff_two_keys		= xfs_bnobt_diff_two_keys,
466	.keys_inorder		= xfs_bnobt_keys_inorder,
467	.recs_inorder		= xfs_bnobt_recs_inorder,
468};
469
470static const struct xfs_btree_ops xfs_cntbt_ops = {
471	.rec_len		= sizeof(xfs_alloc_rec_t),
472	.key_len		= sizeof(xfs_alloc_key_t),
473
474	.dup_cursor		= xfs_allocbt_dup_cursor,
475	.set_root		= xfs_allocbt_set_root,
476	.alloc_block		= xfs_allocbt_alloc_block,
477	.free_block		= xfs_allocbt_free_block,
478	.update_lastrec		= xfs_allocbt_update_lastrec,
479	.get_minrecs		= xfs_allocbt_get_minrecs,
480	.get_maxrecs		= xfs_allocbt_get_maxrecs,
481	.init_key_from_rec	= xfs_allocbt_init_key_from_rec,
482	.init_high_key_from_rec	= xfs_cntbt_init_high_key_from_rec,
483	.init_rec_from_cur	= xfs_allocbt_init_rec_from_cur,
484	.init_ptr_from_cur	= xfs_allocbt_init_ptr_from_cur,
485	.key_diff		= xfs_cntbt_key_diff,
486	.buf_ops		= &xfs_allocbt_buf_ops,
487	.diff_two_keys		= xfs_cntbt_diff_two_keys,
488	.keys_inorder		= xfs_cntbt_keys_inorder,
489	.recs_inorder		= xfs_cntbt_recs_inorder,
490};
491
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
492/*
493 * Allocate a new allocation btree cursor.
494 */
495struct xfs_btree_cur *			/* new alloc btree cursor */
496xfs_allocbt_init_cursor(
497	struct xfs_mount	*mp,		/* file system mount point */
498	struct xfs_trans	*tp,		/* transaction pointer */
499	struct xfs_buf		*agbp,		/* buffer for agf structure */
500	xfs_agnumber_t		agno,		/* allocation group number */
501	xfs_btnum_t		btnum)		/* btree identifier */
502{
503	struct xfs_agf		*agf = XFS_BUF_TO_AGF(agbp);
504	struct xfs_btree_cur	*cur;
505
506	ASSERT(btnum == XFS_BTNUM_BNO || btnum == XFS_BTNUM_CNT);
507
508	cur = kmem_zone_zalloc(xfs_btree_cur_zone, KM_NOFS);
509
510	cur->bc_tp = tp;
511	cur->bc_mp = mp;
512	cur->bc_btnum = btnum;
513	cur->bc_blocklog = mp->m_sb.sb_blocklog;
514
515	if (btnum == XFS_BTNUM_CNT) {
516		cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_abtc_2);
517		cur->bc_ops = &xfs_cntbt_ops;
518		cur->bc_nlevels = be32_to_cpu(agf->agf_levels[XFS_BTNUM_CNT]);
519		cur->bc_flags = XFS_BTREE_LASTREC_UPDATE;
520	} else {
521		cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_abtb_2);
522		cur->bc_ops = &xfs_bnobt_ops;
523		cur->bc_nlevels = be32_to_cpu(agf->agf_levels[XFS_BTNUM_BNO]);
524	}
525
526	cur->bc_private.a.agbp = agbp;
527	cur->bc_private.a.agno = agno;
528
529	if (xfs_sb_version_hascrc(&mp->m_sb))
530		cur->bc_flags |= XFS_BTREE_CRC_BLOCKS;
531
 
 
 
 
 
 
 
 
 
 
 
 
532	return cur;
533}
534
535/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
536 * Calculate number of records in an alloc btree block.
537 */
538int
539xfs_allocbt_maxrecs(
540	struct xfs_mount	*mp,
541	int			blocklen,
542	int			leaf)
543{
544	blocklen -= XFS_ALLOC_BLOCK_LEN(mp);
 
 
545
546	if (leaf)
547		return blocklen / sizeof(xfs_alloc_rec_t);
548	return blocklen / (sizeof(xfs_alloc_key_t) + sizeof(xfs_alloc_ptr_t));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
549}
v6.2
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
  4 * All Rights Reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
  5 */
  6#include "xfs.h"
  7#include "xfs_fs.h"
  8#include "xfs_shared.h"
  9#include "xfs_format.h"
 10#include "xfs_log_format.h"
 11#include "xfs_trans_resv.h"
 
 12#include "xfs_mount.h"
 13#include "xfs_btree.h"
 14#include "xfs_btree_staging.h"
 15#include "xfs_alloc_btree.h"
 16#include "xfs_alloc.h"
 17#include "xfs_extent_busy.h"
 18#include "xfs_error.h"
 19#include "xfs_trace.h"
 
 20#include "xfs_trans.h"
 21#include "xfs_ag.h"
 22
 23static struct kmem_cache	*xfs_allocbt_cur_cache;
 24
 25STATIC struct xfs_btree_cur *
 26xfs_allocbt_dup_cursor(
 27	struct xfs_btree_cur	*cur)
 28{
 29	return xfs_allocbt_init_cursor(cur->bc_mp, cur->bc_tp,
 30			cur->bc_ag.agbp, cur->bc_ag.pag, cur->bc_btnum);
 
 31}
 32
 33STATIC void
 34xfs_allocbt_set_root(
 35	struct xfs_btree_cur		*cur,
 36	const union xfs_btree_ptr	*ptr,
 37	int				inc)
 38{
 39	struct xfs_buf		*agbp = cur->bc_ag.agbp;
 40	struct xfs_agf		*agf = agbp->b_addr;
 
 41	int			btnum = cur->bc_btnum;
 
 42
 43	ASSERT(ptr->s != 0);
 44
 45	agf->agf_roots[btnum] = ptr->s;
 46	be32_add_cpu(&agf->agf_levels[btnum], inc);
 47	cur->bc_ag.pag->pagf_levels[btnum] += inc;
 
 48
 49	xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_ROOTS | XFS_AGF_LEVELS);
 50}
 51
 52STATIC int
 53xfs_allocbt_alloc_block(
 54	struct xfs_btree_cur		*cur,
 55	const union xfs_btree_ptr	*start,
 56	union xfs_btree_ptr		*new,
 57	int				*stat)
 58{
 59	int			error;
 60	xfs_agblock_t		bno;
 61
 62	/* Allocate the new block from the freelist. If we can't, give up.  */
 63	error = xfs_alloc_get_freelist(cur->bc_ag.pag, cur->bc_tp,
 64			cur->bc_ag.agbp, &bno, 1);
 65	if (error)
 66		return error;
 67
 68	if (bno == NULLAGBLOCK) {
 69		*stat = 0;
 70		return 0;
 71	}
 72
 73	atomic64_inc(&cur->bc_mp->m_allocbt_blks);
 74	xfs_extent_busy_reuse(cur->bc_mp, cur->bc_ag.pag, bno, 1, false);
 75
 
 76	new->s = cpu_to_be32(bno);
 77
 78	*stat = 1;
 79	return 0;
 80}
 81
 82STATIC int
 83xfs_allocbt_free_block(
 84	struct xfs_btree_cur	*cur,
 85	struct xfs_buf		*bp)
 86{
 87	struct xfs_buf		*agbp = cur->bc_ag.agbp;
 
 88	xfs_agblock_t		bno;
 89	int			error;
 90
 91	bno = xfs_daddr_to_agbno(cur->bc_mp, xfs_buf_daddr(bp));
 92	error = xfs_alloc_put_freelist(cur->bc_ag.pag, cur->bc_tp, agbp, NULL,
 93			bno, 1);
 94	if (error)
 95		return error;
 96
 97	atomic64_dec(&cur->bc_mp->m_allocbt_blks);
 98	xfs_extent_busy_insert(cur->bc_tp, agbp->b_pag, bno, 1,
 99			      XFS_EXTENT_BUSY_SKIP_DISCARD);
 
100	return 0;
101}
102
103/*
104 * Update the longest extent in the AGF
105 */
106STATIC void
107xfs_allocbt_update_lastrec(
108	struct xfs_btree_cur		*cur,
109	const struct xfs_btree_block	*block,
110	const union xfs_btree_rec	*rec,
111	int				ptr,
112	int				reason)
113{
114	struct xfs_agf		*agf = cur->bc_ag.agbp->b_addr;
 
115	struct xfs_perag	*pag;
116	__be32			len;
117	int			numrecs;
118
119	ASSERT(cur->bc_btnum == XFS_BTNUM_CNT);
120
121	switch (reason) {
122	case LASTREC_UPDATE:
123		/*
124		 * If this is the last leaf block and it's the last record,
125		 * then update the size of the longest extent in the AG.
126		 */
127		if (ptr != xfs_btree_get_numrecs(block))
128			return;
129		len = rec->alloc.ar_blockcount;
130		break;
131	case LASTREC_INSREC:
132		if (be32_to_cpu(rec->alloc.ar_blockcount) <=
133		    be32_to_cpu(agf->agf_longest))
134			return;
135		len = rec->alloc.ar_blockcount;
136		break;
137	case LASTREC_DELREC:
138		numrecs = xfs_btree_get_numrecs(block);
139		if (ptr <= numrecs)
140			return;
141		ASSERT(ptr == numrecs + 1);
142
143		if (numrecs) {
144			xfs_alloc_rec_t *rrp;
145
146			rrp = XFS_ALLOC_REC_ADDR(cur->bc_mp, block, numrecs);
147			len = rrp->ar_blockcount;
148		} else {
149			len = 0;
150		}
151
152		break;
153	default:
154		ASSERT(0);
155		return;
156	}
157
158	agf->agf_longest = len;
159	pag = cur->bc_ag.agbp->b_pag;
160	pag->pagf_longest = be32_to_cpu(len);
161	xfs_alloc_log_agf(cur->bc_tp, cur->bc_ag.agbp, XFS_AGF_LONGEST);
 
162}
163
164STATIC int
165xfs_allocbt_get_minrecs(
166	struct xfs_btree_cur	*cur,
167	int			level)
168{
169	return cur->bc_mp->m_alloc_mnr[level != 0];
170}
171
172STATIC int
173xfs_allocbt_get_maxrecs(
174	struct xfs_btree_cur	*cur,
175	int			level)
176{
177	return cur->bc_mp->m_alloc_mxr[level != 0];
178}
179
180STATIC void
181xfs_allocbt_init_key_from_rec(
182	union xfs_btree_key		*key,
183	const union xfs_btree_rec	*rec)
184{
185	key->alloc.ar_startblock = rec->alloc.ar_startblock;
186	key->alloc.ar_blockcount = rec->alloc.ar_blockcount;
187}
188
189STATIC void
190xfs_bnobt_init_high_key_from_rec(
191	union xfs_btree_key		*key,
192	const union xfs_btree_rec	*rec)
193{
194	__u32				x;
195
196	x = be32_to_cpu(rec->alloc.ar_startblock);
197	x += be32_to_cpu(rec->alloc.ar_blockcount) - 1;
198	key->alloc.ar_startblock = cpu_to_be32(x);
199	key->alloc.ar_blockcount = 0;
200}
201
202STATIC void
203xfs_cntbt_init_high_key_from_rec(
204	union xfs_btree_key		*key,
205	const union xfs_btree_rec	*rec)
206{
207	key->alloc.ar_blockcount = rec->alloc.ar_blockcount;
208	key->alloc.ar_startblock = 0;
209}
210
211STATIC void
212xfs_allocbt_init_rec_from_cur(
213	struct xfs_btree_cur	*cur,
214	union xfs_btree_rec	*rec)
215{
216	rec->alloc.ar_startblock = cpu_to_be32(cur->bc_rec.a.ar_startblock);
217	rec->alloc.ar_blockcount = cpu_to_be32(cur->bc_rec.a.ar_blockcount);
218}
219
220STATIC void
221xfs_allocbt_init_ptr_from_cur(
222	struct xfs_btree_cur	*cur,
223	union xfs_btree_ptr	*ptr)
224{
225	struct xfs_agf		*agf = cur->bc_ag.agbp->b_addr;
226
227	ASSERT(cur->bc_ag.pag->pag_agno == be32_to_cpu(agf->agf_seqno));
 
228
229	ptr->s = agf->agf_roots[cur->bc_btnum];
230}
231
232STATIC int64_t
233xfs_bnobt_key_diff(
234	struct xfs_btree_cur		*cur,
235	const union xfs_btree_key	*key)
236{
237	struct xfs_alloc_rec_incore	*rec = &cur->bc_rec.a;
238	const struct xfs_alloc_rec	*kp = &key->alloc;
239
240	return (int64_t)be32_to_cpu(kp->ar_startblock) - rec->ar_startblock;
241}
242
243STATIC int64_t
244xfs_cntbt_key_diff(
245	struct xfs_btree_cur		*cur,
246	const union xfs_btree_key	*key)
247{
248	struct xfs_alloc_rec_incore	*rec = &cur->bc_rec.a;
249	const struct xfs_alloc_rec	*kp = &key->alloc;
250	int64_t				diff;
251
252	diff = (int64_t)be32_to_cpu(kp->ar_blockcount) - rec->ar_blockcount;
253	if (diff)
254		return diff;
255
256	return (int64_t)be32_to_cpu(kp->ar_startblock) - rec->ar_startblock;
257}
258
259STATIC int64_t
260xfs_bnobt_diff_two_keys(
261	struct xfs_btree_cur		*cur,
262	const union xfs_btree_key	*k1,
263	const union xfs_btree_key	*k2)
264{
265	return (int64_t)be32_to_cpu(k1->alloc.ar_startblock) -
266			  be32_to_cpu(k2->alloc.ar_startblock);
267}
268
269STATIC int64_t
270xfs_cntbt_diff_two_keys(
271	struct xfs_btree_cur		*cur,
272	const union xfs_btree_key	*k1,
273	const union xfs_btree_key	*k2)
274{
275	int64_t				diff;
276
277	diff =  be32_to_cpu(k1->alloc.ar_blockcount) -
278		be32_to_cpu(k2->alloc.ar_blockcount);
279	if (diff)
280		return diff;
281
282	return  be32_to_cpu(k1->alloc.ar_startblock) -
283		be32_to_cpu(k2->alloc.ar_startblock);
284}
285
286static xfs_failaddr_t
287xfs_allocbt_verify(
288	struct xfs_buf		*bp)
289{
290	struct xfs_mount	*mp = bp->b_mount;
291	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
292	struct xfs_perag	*pag = bp->b_pag;
293	xfs_failaddr_t		fa;
294	unsigned int		level;
295	xfs_btnum_t		btnum = XFS_BTNUM_BNOi;
296
297	if (!xfs_verify_magic(bp, block->bb_magic))
298		return __this_address;
299
300	if (xfs_has_crc(mp)) {
301		fa = xfs_btree_sblock_v5hdr_verify(bp);
302		if (fa)
303			return fa;
304	}
305
306	/*
307	 * The perag may not be attached during grow operations or fully
308	 * initialized from the AGF during log recovery. Therefore we can only
309	 * check against maximum tree depth from those contexts.
310	 *
311	 * Otherwise check against the per-tree limit. Peek at one of the
312	 * verifier magic values to determine the type of tree we're verifying
313	 * against.
 
 
 
 
 
314	 */
315	level = be16_to_cpu(block->bb_level);
316	if (bp->b_ops->magic[0] == cpu_to_be32(XFS_ABTC_MAGIC))
317		btnum = XFS_BTNUM_CNTi;
318	if (pag && pag->pagf_init) {
319		if (level >= pag->pagf_levels[btnum])
 
 
 
 
 
 
 
320			return __this_address;
321	} else if (level >= mp->m_alloc_maxlevels)
 
 
 
 
 
 
 
 
 
 
 
 
 
322		return __this_address;
 
323
324	return xfs_btree_sblock_verify(bp, mp->m_alloc_mxr[level != 0]);
325}
326
327static void
328xfs_allocbt_read_verify(
329	struct xfs_buf	*bp)
330{
331	xfs_failaddr_t	fa;
332
333	if (!xfs_btree_sblock_verify_crc(bp))
334		xfs_verifier_error(bp, -EFSBADCRC, __this_address);
335	else {
336		fa = xfs_allocbt_verify(bp);
337		if (fa)
338			xfs_verifier_error(bp, -EFSCORRUPTED, fa);
339	}
340
341	if (bp->b_error)
342		trace_xfs_btree_corrupt(bp, _RET_IP_);
343}
344
345static void
346xfs_allocbt_write_verify(
347	struct xfs_buf	*bp)
348{
349	xfs_failaddr_t	fa;
350
351	fa = xfs_allocbt_verify(bp);
352	if (fa) {
353		trace_xfs_btree_corrupt(bp, _RET_IP_);
354		xfs_verifier_error(bp, -EFSCORRUPTED, fa);
355		return;
356	}
357	xfs_btree_sblock_calc_crc(bp);
358
359}
360
361const struct xfs_buf_ops xfs_bnobt_buf_ops = {
362	.name = "xfs_bnobt",
363	.magic = { cpu_to_be32(XFS_ABTB_MAGIC),
364		   cpu_to_be32(XFS_ABTB_CRC_MAGIC) },
365	.verify_read = xfs_allocbt_read_verify,
366	.verify_write = xfs_allocbt_write_verify,
367	.verify_struct = xfs_allocbt_verify,
368};
369
370const struct xfs_buf_ops xfs_cntbt_buf_ops = {
371	.name = "xfs_cntbt",
372	.magic = { cpu_to_be32(XFS_ABTC_MAGIC),
373		   cpu_to_be32(XFS_ABTC_CRC_MAGIC) },
374	.verify_read = xfs_allocbt_read_verify,
375	.verify_write = xfs_allocbt_write_verify,
376	.verify_struct = xfs_allocbt_verify,
377};
378
379STATIC int
380xfs_bnobt_keys_inorder(
381	struct xfs_btree_cur		*cur,
382	const union xfs_btree_key	*k1,
383	const union xfs_btree_key	*k2)
384{
385	return be32_to_cpu(k1->alloc.ar_startblock) <
386	       be32_to_cpu(k2->alloc.ar_startblock);
387}
388
389STATIC int
390xfs_bnobt_recs_inorder(
391	struct xfs_btree_cur		*cur,
392	const union xfs_btree_rec	*r1,
393	const union xfs_btree_rec	*r2)
394{
395	return be32_to_cpu(r1->alloc.ar_startblock) +
396		be32_to_cpu(r1->alloc.ar_blockcount) <=
397		be32_to_cpu(r2->alloc.ar_startblock);
398}
399
400STATIC int
401xfs_cntbt_keys_inorder(
402	struct xfs_btree_cur		*cur,
403	const union xfs_btree_key	*k1,
404	const union xfs_btree_key	*k2)
405{
406	return be32_to_cpu(k1->alloc.ar_blockcount) <
407		be32_to_cpu(k2->alloc.ar_blockcount) ||
408		(k1->alloc.ar_blockcount == k2->alloc.ar_blockcount &&
409		 be32_to_cpu(k1->alloc.ar_startblock) <
410		 be32_to_cpu(k2->alloc.ar_startblock));
411}
412
413STATIC int
414xfs_cntbt_recs_inorder(
415	struct xfs_btree_cur		*cur,
416	const union xfs_btree_rec	*r1,
417	const union xfs_btree_rec	*r2)
418{
419	return be32_to_cpu(r1->alloc.ar_blockcount) <
420		be32_to_cpu(r2->alloc.ar_blockcount) ||
421		(r1->alloc.ar_blockcount == r2->alloc.ar_blockcount &&
422		 be32_to_cpu(r1->alloc.ar_startblock) <
423		 be32_to_cpu(r2->alloc.ar_startblock));
424}
425
426static const struct xfs_btree_ops xfs_bnobt_ops = {
427	.rec_len		= sizeof(xfs_alloc_rec_t),
428	.key_len		= sizeof(xfs_alloc_key_t),
429
430	.dup_cursor		= xfs_allocbt_dup_cursor,
431	.set_root		= xfs_allocbt_set_root,
432	.alloc_block		= xfs_allocbt_alloc_block,
433	.free_block		= xfs_allocbt_free_block,
434	.update_lastrec		= xfs_allocbt_update_lastrec,
435	.get_minrecs		= xfs_allocbt_get_minrecs,
436	.get_maxrecs		= xfs_allocbt_get_maxrecs,
437	.init_key_from_rec	= xfs_allocbt_init_key_from_rec,
438	.init_high_key_from_rec	= xfs_bnobt_init_high_key_from_rec,
439	.init_rec_from_cur	= xfs_allocbt_init_rec_from_cur,
440	.init_ptr_from_cur	= xfs_allocbt_init_ptr_from_cur,
441	.key_diff		= xfs_bnobt_key_diff,
442	.buf_ops		= &xfs_bnobt_buf_ops,
443	.diff_two_keys		= xfs_bnobt_diff_two_keys,
444	.keys_inorder		= xfs_bnobt_keys_inorder,
445	.recs_inorder		= xfs_bnobt_recs_inorder,
446};
447
448static const struct xfs_btree_ops xfs_cntbt_ops = {
449	.rec_len		= sizeof(xfs_alloc_rec_t),
450	.key_len		= sizeof(xfs_alloc_key_t),
451
452	.dup_cursor		= xfs_allocbt_dup_cursor,
453	.set_root		= xfs_allocbt_set_root,
454	.alloc_block		= xfs_allocbt_alloc_block,
455	.free_block		= xfs_allocbt_free_block,
456	.update_lastrec		= xfs_allocbt_update_lastrec,
457	.get_minrecs		= xfs_allocbt_get_minrecs,
458	.get_maxrecs		= xfs_allocbt_get_maxrecs,
459	.init_key_from_rec	= xfs_allocbt_init_key_from_rec,
460	.init_high_key_from_rec	= xfs_cntbt_init_high_key_from_rec,
461	.init_rec_from_cur	= xfs_allocbt_init_rec_from_cur,
462	.init_ptr_from_cur	= xfs_allocbt_init_ptr_from_cur,
463	.key_diff		= xfs_cntbt_key_diff,
464	.buf_ops		= &xfs_cntbt_buf_ops,
465	.diff_two_keys		= xfs_cntbt_diff_two_keys,
466	.keys_inorder		= xfs_cntbt_keys_inorder,
467	.recs_inorder		= xfs_cntbt_recs_inorder,
468};
469
470/* Allocate most of a new allocation btree cursor. */
471STATIC struct xfs_btree_cur *
472xfs_allocbt_init_common(
473	struct xfs_mount	*mp,
474	struct xfs_trans	*tp,
475	struct xfs_perag	*pag,
476	xfs_btnum_t		btnum)
477{
478	struct xfs_btree_cur	*cur;
479
480	ASSERT(btnum == XFS_BTNUM_BNO || btnum == XFS_BTNUM_CNT);
481
482	cur = xfs_btree_alloc_cursor(mp, tp, btnum, mp->m_alloc_maxlevels,
483			xfs_allocbt_cur_cache);
484	cur->bc_ag.abt.active = false;
485
486	if (btnum == XFS_BTNUM_CNT) {
487		cur->bc_ops = &xfs_cntbt_ops;
488		cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_abtc_2);
489		cur->bc_flags = XFS_BTREE_LASTREC_UPDATE;
490	} else {
491		cur->bc_ops = &xfs_bnobt_ops;
492		cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_abtb_2);
493	}
494
495	/* take a reference for the cursor */
496	atomic_inc(&pag->pag_ref);
497	cur->bc_ag.pag = pag;
498
499	if (xfs_has_crc(mp))
500		cur->bc_flags |= XFS_BTREE_CRC_BLOCKS;
501
502	return cur;
503}
504
505/*
506 * Allocate a new allocation btree cursor.
507 */
508struct xfs_btree_cur *			/* new alloc btree cursor */
509xfs_allocbt_init_cursor(
510	struct xfs_mount	*mp,		/* file system mount point */
511	struct xfs_trans	*tp,		/* transaction pointer */
512	struct xfs_buf		*agbp,		/* buffer for agf structure */
513	struct xfs_perag	*pag,
514	xfs_btnum_t		btnum)		/* btree identifier */
515{
516	struct xfs_agf		*agf = agbp->b_addr;
517	struct xfs_btree_cur	*cur;
518
519	cur = xfs_allocbt_init_common(mp, tp, pag, btnum);
520	if (btnum == XFS_BTNUM_CNT)
 
 
 
 
 
 
 
 
 
 
521		cur->bc_nlevels = be32_to_cpu(agf->agf_levels[XFS_BTNUM_CNT]);
522	else
 
 
 
523		cur->bc_nlevels = be32_to_cpu(agf->agf_levels[XFS_BTNUM_BNO]);
 
524
525	cur->bc_ag.agbp = agbp;
 
526
527	return cur;
528}
529
530/* Create a free space btree cursor with a fake root for staging. */
531struct xfs_btree_cur *
532xfs_allocbt_stage_cursor(
533	struct xfs_mount	*mp,
534	struct xbtree_afakeroot	*afake,
535	struct xfs_perag	*pag,
536	xfs_btnum_t		btnum)
537{
538	struct xfs_btree_cur	*cur;
539
540	cur = xfs_allocbt_init_common(mp, NULL, pag, btnum);
541	xfs_btree_stage_afakeroot(cur, afake);
542	return cur;
543}
544
545/*
546 * Install a new free space btree root.  Caller is responsible for invalidating
547 * and freeing the old btree blocks.
548 */
549void
550xfs_allocbt_commit_staged_btree(
551	struct xfs_btree_cur	*cur,
552	struct xfs_trans	*tp,
553	struct xfs_buf		*agbp)
554{
555	struct xfs_agf		*agf = agbp->b_addr;
556	struct xbtree_afakeroot	*afake = cur->bc_ag.afake;
557
558	ASSERT(cur->bc_flags & XFS_BTREE_STAGING);
559
560	agf->agf_roots[cur->bc_btnum] = cpu_to_be32(afake->af_root);
561	agf->agf_levels[cur->bc_btnum] = cpu_to_be32(afake->af_levels);
562	xfs_alloc_log_agf(tp, agbp, XFS_AGF_ROOTS | XFS_AGF_LEVELS);
563
564	if (cur->bc_btnum == XFS_BTNUM_BNO) {
565		xfs_btree_commit_afakeroot(cur, tp, agbp, &xfs_bnobt_ops);
566	} else {
567		cur->bc_flags |= XFS_BTREE_LASTREC_UPDATE;
568		xfs_btree_commit_afakeroot(cur, tp, agbp, &xfs_cntbt_ops);
569	}
570}
571
572/* Calculate number of records in an alloc btree block. */
573static inline unsigned int
574xfs_allocbt_block_maxrecs(
575	unsigned int		blocklen,
576	bool			leaf)
577{
578	if (leaf)
579		return blocklen / sizeof(xfs_alloc_rec_t);
580	return blocklen / (sizeof(xfs_alloc_key_t) + sizeof(xfs_alloc_ptr_t));
581}
582
583/*
584 * Calculate number of records in an alloc btree block.
585 */
586int
587xfs_allocbt_maxrecs(
588	struct xfs_mount	*mp,
589	int			blocklen,
590	int			leaf)
591{
592	blocklen -= XFS_ALLOC_BLOCK_LEN(mp);
593	return xfs_allocbt_block_maxrecs(blocklen, leaf);
594}
595
596/* Free space btrees are at their largest when every other block is free. */
597#define XFS_MAX_FREESP_RECORDS	((XFS_MAX_AG_BLOCKS + 1) / 2)
598
599/* Compute the max possible height for free space btrees. */
600unsigned int
601xfs_allocbt_maxlevels_ondisk(void)
602{
603	unsigned int		minrecs[2];
604	unsigned int		blocklen;
605
606	blocklen = min(XFS_MIN_BLOCKSIZE - XFS_BTREE_SBLOCK_LEN,
607		       XFS_MIN_CRC_BLOCKSIZE - XFS_BTREE_SBLOCK_CRC_LEN);
608
609	minrecs[0] = xfs_allocbt_block_maxrecs(blocklen, true) / 2;
610	minrecs[1] = xfs_allocbt_block_maxrecs(blocklen, false) / 2;
611
612	return xfs_btree_compute_maxlevels(minrecs, XFS_MAX_FREESP_RECORDS);
613}
614
615/* Calculate the freespace btree size for some records. */
616xfs_extlen_t
617xfs_allocbt_calc_size(
618	struct xfs_mount	*mp,
619	unsigned long long	len)
620{
621	return xfs_btree_calc_size(mp->m_alloc_mnr, len);
622}
623
624int __init
625xfs_allocbt_init_cur_cache(void)
626{
627	xfs_allocbt_cur_cache = kmem_cache_create("xfs_bnobt_cur",
628			xfs_btree_cur_sizeof(xfs_allocbt_maxlevels_ondisk()),
629			0, 0, NULL);
630
631	if (!xfs_allocbt_cur_cache)
632		return -ENOMEM;
633	return 0;
634}
635
636void
637xfs_allocbt_destroy_cur_cache(void)
638{
639	kmem_cache_destroy(xfs_allocbt_cur_cache);
640	xfs_allocbt_cur_cache = NULL;
641}