Linux Audio

Check our new training course

Loading...
v4.17
 
  1/*
  2 * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
  3 * All Rights Reserved.
  4 *
  5 * This program is free software; you can redistribute it and/or
  6 * modify it under the terms of the GNU General Public License as
  7 * published by the Free Software Foundation.
  8 *
  9 * This program is distributed in the hope that it would be useful,
 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 12 * GNU General Public License for more details.
 13 *
 14 * You should have received a copy of the GNU General Public License
 15 * along with this program; if not, write the Free Software Foundation,
 16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 17 */
 18#include "xfs.h"
 19#include "xfs_fs.h"
 20#include "xfs_shared.h"
 21#include "xfs_format.h"
 22#include "xfs_log_format.h"
 23#include "xfs_trans_resv.h"
 24#include "xfs_sb.h"
 25#include "xfs_mount.h"
 26#include "xfs_btree.h"
 
 27#include "xfs_alloc_btree.h"
 28#include "xfs_alloc.h"
 29#include "xfs_extent_busy.h"
 30#include "xfs_error.h"
 
 31#include "xfs_trace.h"
 32#include "xfs_cksum.h"
 33#include "xfs_trans.h"
 
 
 
 34
 
 
 
 
 
 
 
 35
 36STATIC struct xfs_btree_cur *
 37xfs_allocbt_dup_cursor(
 38	struct xfs_btree_cur	*cur)
 39{
 40	return xfs_allocbt_init_cursor(cur->bc_mp, cur->bc_tp,
 41			cur->bc_private.a.agbp, cur->bc_private.a.agno,
 42			cur->bc_btnum);
 43}
 44
 
 45STATIC void
 46xfs_allocbt_set_root(
 47	struct xfs_btree_cur	*cur,
 48	union xfs_btree_ptr	*ptr,
 49	int			inc)
 50{
 51	struct xfs_buf		*agbp = cur->bc_private.a.agbp;
 52	struct xfs_agf		*agf = XFS_BUF_TO_AGF(agbp);
 53	xfs_agnumber_t		seqno = be32_to_cpu(agf->agf_seqno);
 54	int			btnum = cur->bc_btnum;
 55	struct xfs_perag	*pag = xfs_perag_get(cur->bc_mp, seqno);
 56
 57	ASSERT(ptr->s != 0);
 58
 59	agf->agf_roots[btnum] = ptr->s;
 60	be32_add_cpu(&agf->agf_levels[btnum], inc);
 61	pag->pagf_levels[btnum] += inc;
 62	xfs_perag_put(pag);
 
 
 
 
 
 63
 64	xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_ROOTS | XFS_AGF_LEVELS);
 65}
 66
 67STATIC int
 68xfs_allocbt_alloc_block(
 69	struct xfs_btree_cur	*cur,
 70	union xfs_btree_ptr	*start,
 71	union xfs_btree_ptr	*new,
 72	int			*stat)
 73{
 74	int			error;
 75	xfs_agblock_t		bno;
 76
 77	/* Allocate the new block from the freelist. If we can't, give up.  */
 78	error = xfs_alloc_get_freelist(cur->bc_tp, cur->bc_private.a.agbp,
 79				       &bno, 1);
 80	if (error)
 81		return error;
 82
 83	if (bno == NULLAGBLOCK) {
 84		*stat = 0;
 85		return 0;
 86	}
 87
 88	xfs_extent_busy_reuse(cur->bc_mp, cur->bc_private.a.agno, bno, 1, false);
 
 89
 90	xfs_trans_agbtree_delta(cur->bc_tp, 1);
 91	new->s = cpu_to_be32(bno);
 92
 93	*stat = 1;
 94	return 0;
 95}
 96
 97STATIC int
 98xfs_allocbt_free_block(
 99	struct xfs_btree_cur	*cur,
100	struct xfs_buf		*bp)
101{
102	struct xfs_buf		*agbp = cur->bc_private.a.agbp;
103	struct xfs_agf		*agf = XFS_BUF_TO_AGF(agbp);
104	xfs_agblock_t		bno;
105	int			error;
106
107	bno = xfs_daddr_to_agbno(cur->bc_mp, XFS_BUF_ADDR(bp));
108	error = xfs_alloc_put_freelist(cur->bc_tp, agbp, NULL, bno, 1);
 
109	if (error)
110		return error;
111
112	xfs_extent_busy_insert(cur->bc_tp, be32_to_cpu(agf->agf_seqno), bno, 1,
 
113			      XFS_EXTENT_BUSY_SKIP_DISCARD);
114	xfs_trans_agbtree_delta(cur->bc_tp, -1);
115	return 0;
116}
117
118/*
119 * Update the longest extent in the AGF
120 */
121STATIC void
122xfs_allocbt_update_lastrec(
123	struct xfs_btree_cur	*cur,
124	struct xfs_btree_block	*block,
125	union xfs_btree_rec	*rec,
126	int			ptr,
127	int			reason)
128{
129	struct xfs_agf		*agf = XFS_BUF_TO_AGF(cur->bc_private.a.agbp);
130	xfs_agnumber_t		seqno = be32_to_cpu(agf->agf_seqno);
131	struct xfs_perag	*pag;
132	__be32			len;
133	int			numrecs;
134
135	ASSERT(cur->bc_btnum == XFS_BTNUM_CNT);
136
137	switch (reason) {
138	case LASTREC_UPDATE:
139		/*
140		 * If this is the last leaf block and it's the last record,
141		 * then update the size of the longest extent in the AG.
142		 */
143		if (ptr != xfs_btree_get_numrecs(block))
144			return;
145		len = rec->alloc.ar_blockcount;
146		break;
147	case LASTREC_INSREC:
148		if (be32_to_cpu(rec->alloc.ar_blockcount) <=
149		    be32_to_cpu(agf->agf_longest))
150			return;
151		len = rec->alloc.ar_blockcount;
152		break;
153	case LASTREC_DELREC:
154		numrecs = xfs_btree_get_numrecs(block);
155		if (ptr <= numrecs)
156			return;
157		ASSERT(ptr == numrecs + 1);
158
159		if (numrecs) {
160			xfs_alloc_rec_t *rrp;
161
162			rrp = XFS_ALLOC_REC_ADDR(cur->bc_mp, block, numrecs);
163			len = rrp->ar_blockcount;
164		} else {
165			len = 0;
166		}
167
168		break;
169	default:
170		ASSERT(0);
171		return;
172	}
173
174	agf->agf_longest = len;
175	pag = xfs_perag_get(cur->bc_mp, seqno);
176	pag->pagf_longest = be32_to_cpu(len);
177	xfs_perag_put(pag);
178	xfs_alloc_log_agf(cur->bc_tp, cur->bc_private.a.agbp, XFS_AGF_LONGEST);
179}
180
181STATIC int
182xfs_allocbt_get_minrecs(
183	struct xfs_btree_cur	*cur,
184	int			level)
185{
186	return cur->bc_mp->m_alloc_mnr[level != 0];
187}
188
189STATIC int
190xfs_allocbt_get_maxrecs(
191	struct xfs_btree_cur	*cur,
192	int			level)
193{
194	return cur->bc_mp->m_alloc_mxr[level != 0];
195}
196
197STATIC void
198xfs_allocbt_init_key_from_rec(
199	union xfs_btree_key	*key,
200	union xfs_btree_rec	*rec)
201{
202	key->alloc.ar_startblock = rec->alloc.ar_startblock;
203	key->alloc.ar_blockcount = rec->alloc.ar_blockcount;
204}
205
206STATIC void
207xfs_bnobt_init_high_key_from_rec(
208	union xfs_btree_key	*key,
209	union xfs_btree_rec	*rec)
210{
211	__u32			x;
212
213	x = be32_to_cpu(rec->alloc.ar_startblock);
214	x += be32_to_cpu(rec->alloc.ar_blockcount) - 1;
215	key->alloc.ar_startblock = cpu_to_be32(x);
216	key->alloc.ar_blockcount = 0;
217}
218
219STATIC void
220xfs_cntbt_init_high_key_from_rec(
221	union xfs_btree_key	*key,
222	union xfs_btree_rec	*rec)
223{
224	key->alloc.ar_blockcount = rec->alloc.ar_blockcount;
225	key->alloc.ar_startblock = 0;
226}
227
228STATIC void
229xfs_allocbt_init_rec_from_cur(
230	struct xfs_btree_cur	*cur,
231	union xfs_btree_rec	*rec)
232{
233	rec->alloc.ar_startblock = cpu_to_be32(cur->bc_rec.a.ar_startblock);
234	rec->alloc.ar_blockcount = cpu_to_be32(cur->bc_rec.a.ar_blockcount);
235}
236
237STATIC void
238xfs_allocbt_init_ptr_from_cur(
239	struct xfs_btree_cur	*cur,
240	union xfs_btree_ptr	*ptr)
241{
242	struct xfs_agf		*agf = XFS_BUF_TO_AGF(cur->bc_private.a.agbp);
243
244	ASSERT(cur->bc_private.a.agno == be32_to_cpu(agf->agf_seqno));
245	ASSERT(agf->agf_roots[cur->bc_btnum] != 0);
246
247	ptr->s = agf->agf_roots[cur->bc_btnum];
 
 
 
248}
249
250STATIC int64_t
251xfs_bnobt_key_diff(
252	struct xfs_btree_cur	*cur,
253	union xfs_btree_key	*key)
254{
255	xfs_alloc_rec_incore_t	*rec = &cur->bc_rec.a;
256	xfs_alloc_key_t		*kp = &key->alloc;
257
258	return (int64_t)be32_to_cpu(kp->ar_startblock) - rec->ar_startblock;
259}
260
261STATIC int64_t
262xfs_cntbt_key_diff(
263	struct xfs_btree_cur	*cur,
264	union xfs_btree_key	*key)
265{
266	xfs_alloc_rec_incore_t	*rec = &cur->bc_rec.a;
267	xfs_alloc_key_t		*kp = &key->alloc;
268	int64_t			diff;
269
270	diff = (int64_t)be32_to_cpu(kp->ar_blockcount) - rec->ar_blockcount;
271	if (diff)
272		return diff;
273
274	return (int64_t)be32_to_cpu(kp->ar_startblock) - rec->ar_startblock;
275}
276
277STATIC int64_t
278xfs_bnobt_diff_two_keys(
279	struct xfs_btree_cur	*cur,
280	union xfs_btree_key	*k1,
281	union xfs_btree_key	*k2)
 
282{
 
 
283	return (int64_t)be32_to_cpu(k1->alloc.ar_startblock) -
284			  be32_to_cpu(k2->alloc.ar_startblock);
285}
286
287STATIC int64_t
288xfs_cntbt_diff_two_keys(
289	struct xfs_btree_cur	*cur,
290	union xfs_btree_key	*k1,
291	union xfs_btree_key	*k2)
 
292{
293	int64_t			diff;
 
 
 
294
295	diff =  be32_to_cpu(k1->alloc.ar_blockcount) -
296		be32_to_cpu(k2->alloc.ar_blockcount);
297	if (diff)
298		return diff;
299
300	return  be32_to_cpu(k1->alloc.ar_startblock) -
301		be32_to_cpu(k2->alloc.ar_startblock);
302}
303
304static xfs_failaddr_t
305xfs_allocbt_verify(
306	struct xfs_buf		*bp)
307{
308	struct xfs_mount	*mp = bp->b_target->bt_mount;
309	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
310	struct xfs_perag	*pag = bp->b_pag;
311	xfs_failaddr_t		fa;
312	unsigned int		level;
313
 
 
 
 
 
 
 
 
 
314	/*
315	 * magic number and level verification
 
 
316	 *
317	 * During growfs operations, we can't verify the exact level or owner as
318	 * the perag is not fully initialised and hence not attached to the
319	 * buffer.  In this case, check against the maximum tree depth.
320	 *
321	 * Similarly, during log recovery we will have a perag structure
322	 * attached, but the agf information will not yet have been initialised
323	 * from the on disk AGF. Again, we can only check against maximum limits
324	 * in this case.
325	 */
326	level = be16_to_cpu(block->bb_level);
327	switch (block->bb_magic) {
328	case cpu_to_be32(XFS_ABTB_CRC_MAGIC):
329		fa = xfs_btree_sblock_v5hdr_verify(bp);
330		if (fa)
331			return fa;
332		/* fall through */
333	case cpu_to_be32(XFS_ABTB_MAGIC):
334		if (pag && pag->pagf_init) {
335			if (level >= pag->pagf_levels[XFS_BTNUM_BNOi])
336				return __this_address;
337		} else if (level >= mp->m_ag_maxlevels)
338			return __this_address;
339		break;
340	case cpu_to_be32(XFS_ABTC_CRC_MAGIC):
341		fa = xfs_btree_sblock_v5hdr_verify(bp);
342		if (fa)
343			return fa;
344		/* fall through */
345	case cpu_to_be32(XFS_ABTC_MAGIC):
346		if (pag && pag->pagf_init) {
347			if (level >= pag->pagf_levels[XFS_BTNUM_CNTi])
348				return __this_address;
349		} else if (level >= mp->m_ag_maxlevels)
350			return __this_address;
351		break;
352	default:
353		return __this_address;
354	}
355
356	return xfs_btree_sblock_verify(bp, mp->m_alloc_mxr[level != 0]);
357}
358
359static void
360xfs_allocbt_read_verify(
361	struct xfs_buf	*bp)
362{
363	xfs_failaddr_t	fa;
364
365	if (!xfs_btree_sblock_verify_crc(bp))
366		xfs_verifier_error(bp, -EFSBADCRC, __this_address);
367	else {
368		fa = xfs_allocbt_verify(bp);
369		if (fa)
370			xfs_verifier_error(bp, -EFSCORRUPTED, fa);
371	}
372
373	if (bp->b_error)
374		trace_xfs_btree_corrupt(bp, _RET_IP_);
375}
376
377static void
378xfs_allocbt_write_verify(
379	struct xfs_buf	*bp)
380{
381	xfs_failaddr_t	fa;
382
383	fa = xfs_allocbt_verify(bp);
384	if (fa) {
385		trace_xfs_btree_corrupt(bp, _RET_IP_);
386		xfs_verifier_error(bp, -EFSCORRUPTED, fa);
387		return;
388	}
389	xfs_btree_sblock_calc_crc(bp);
390
391}
392
393const struct xfs_buf_ops xfs_allocbt_buf_ops = {
394	.name = "xfs_allocbt",
 
 
395	.verify_read = xfs_allocbt_read_verify,
396	.verify_write = xfs_allocbt_write_verify,
397	.verify_struct = xfs_allocbt_verify,
398};
399
 
 
 
 
 
 
 
 
400
401STATIC int
402xfs_bnobt_keys_inorder(
403	struct xfs_btree_cur	*cur,
404	union xfs_btree_key	*k1,
405	union xfs_btree_key	*k2)
406{
407	return be32_to_cpu(k1->alloc.ar_startblock) <
408	       be32_to_cpu(k2->alloc.ar_startblock);
409}
410
411STATIC int
412xfs_bnobt_recs_inorder(
413	struct xfs_btree_cur	*cur,
414	union xfs_btree_rec	*r1,
415	union xfs_btree_rec	*r2)
416{
417	return be32_to_cpu(r1->alloc.ar_startblock) +
418		be32_to_cpu(r1->alloc.ar_blockcount) <=
419		be32_to_cpu(r2->alloc.ar_startblock);
420}
421
422STATIC int
423xfs_cntbt_keys_inorder(
424	struct xfs_btree_cur	*cur,
425	union xfs_btree_key	*k1,
426	union xfs_btree_key	*k2)
427{
428	return be32_to_cpu(k1->alloc.ar_blockcount) <
429		be32_to_cpu(k2->alloc.ar_blockcount) ||
430		(k1->alloc.ar_blockcount == k2->alloc.ar_blockcount &&
431		 be32_to_cpu(k1->alloc.ar_startblock) <
432		 be32_to_cpu(k2->alloc.ar_startblock));
433}
434
435STATIC int
436xfs_cntbt_recs_inorder(
437	struct xfs_btree_cur	*cur,
438	union xfs_btree_rec	*r1,
439	union xfs_btree_rec	*r2)
440{
441	return be32_to_cpu(r1->alloc.ar_blockcount) <
442		be32_to_cpu(r2->alloc.ar_blockcount) ||
443		(r1->alloc.ar_blockcount == r2->alloc.ar_blockcount &&
444		 be32_to_cpu(r1->alloc.ar_startblock) <
445		 be32_to_cpu(r2->alloc.ar_startblock));
446}
447
448static const struct xfs_btree_ops xfs_bnobt_ops = {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
449	.rec_len		= sizeof(xfs_alloc_rec_t),
450	.key_len		= sizeof(xfs_alloc_key_t),
 
451
452	.dup_cursor		= xfs_allocbt_dup_cursor,
 
 
 
 
453	.set_root		= xfs_allocbt_set_root,
454	.alloc_block		= xfs_allocbt_alloc_block,
455	.free_block		= xfs_allocbt_free_block,
456	.update_lastrec		= xfs_allocbt_update_lastrec,
457	.get_minrecs		= xfs_allocbt_get_minrecs,
458	.get_maxrecs		= xfs_allocbt_get_maxrecs,
459	.init_key_from_rec	= xfs_allocbt_init_key_from_rec,
460	.init_high_key_from_rec	= xfs_bnobt_init_high_key_from_rec,
461	.init_rec_from_cur	= xfs_allocbt_init_rec_from_cur,
462	.init_ptr_from_cur	= xfs_allocbt_init_ptr_from_cur,
463	.key_diff		= xfs_bnobt_key_diff,
464	.buf_ops		= &xfs_allocbt_buf_ops,
465	.diff_two_keys		= xfs_bnobt_diff_two_keys,
466	.keys_inorder		= xfs_bnobt_keys_inorder,
467	.recs_inorder		= xfs_bnobt_recs_inorder,
 
468};
469
470static const struct xfs_btree_ops xfs_cntbt_ops = {
 
 
 
 
471	.rec_len		= sizeof(xfs_alloc_rec_t),
472	.key_len		= sizeof(xfs_alloc_key_t),
 
473
474	.dup_cursor		= xfs_allocbt_dup_cursor,
 
 
 
 
475	.set_root		= xfs_allocbt_set_root,
476	.alloc_block		= xfs_allocbt_alloc_block,
477	.free_block		= xfs_allocbt_free_block,
478	.update_lastrec		= xfs_allocbt_update_lastrec,
479	.get_minrecs		= xfs_allocbt_get_minrecs,
480	.get_maxrecs		= xfs_allocbt_get_maxrecs,
481	.init_key_from_rec	= xfs_allocbt_init_key_from_rec,
482	.init_high_key_from_rec	= xfs_cntbt_init_high_key_from_rec,
483	.init_rec_from_cur	= xfs_allocbt_init_rec_from_cur,
484	.init_ptr_from_cur	= xfs_allocbt_init_ptr_from_cur,
485	.key_diff		= xfs_cntbt_key_diff,
486	.buf_ops		= &xfs_allocbt_buf_ops,
487	.diff_two_keys		= xfs_cntbt_diff_two_keys,
488	.keys_inorder		= xfs_cntbt_keys_inorder,
489	.recs_inorder		= xfs_cntbt_recs_inorder,
 
490};
491
492/*
493 * Allocate a new allocation btree cursor.
 
 
494 */
495struct xfs_btree_cur *			/* new alloc btree cursor */
496xfs_allocbt_init_cursor(
497	struct xfs_mount	*mp,		/* file system mount point */
498	struct xfs_trans	*tp,		/* transaction pointer */
499	struct xfs_buf		*agbp,		/* buffer for agf structure */
500	xfs_agnumber_t		agno,		/* allocation group number */
501	xfs_btnum_t		btnum)		/* btree identifier */
502{
503	struct xfs_agf		*agf = XFS_BUF_TO_AGF(agbp);
504	struct xfs_btree_cur	*cur;
505
506	ASSERT(btnum == XFS_BTNUM_BNO || btnum == XFS_BTNUM_CNT);
507
508	cur = kmem_zone_zalloc(xfs_btree_cur_zone, KM_NOFS);
 
 
 
509
510	cur->bc_tp = tp;
511	cur->bc_mp = mp;
512	cur->bc_btnum = btnum;
513	cur->bc_blocklog = mp->m_sb.sb_blocklog;
514
515	if (btnum == XFS_BTNUM_CNT) {
516		cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_abtc_2);
517		cur->bc_ops = &xfs_cntbt_ops;
518		cur->bc_nlevels = be32_to_cpu(agf->agf_levels[XFS_BTNUM_CNT]);
519		cur->bc_flags = XFS_BTREE_LASTREC_UPDATE;
520	} else {
521		cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_abtb_2);
522		cur->bc_ops = &xfs_bnobt_ops;
523		cur->bc_nlevels = be32_to_cpu(agf->agf_levels[XFS_BTNUM_BNO]);
524	}
 
 
525
526	cur->bc_private.a.agbp = agbp;
527	cur->bc_private.a.agno = agno;
 
 
 
 
 
 
 
 
 
 
 
528
529	if (xfs_sb_version_hascrc(&mp->m_sb))
530		cur->bc_flags |= XFS_BTREE_CRC_BLOCKS;
 
 
 
 
531
 
 
532	return cur;
533}
534
535/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
536 * Calculate number of records in an alloc btree block.
537 */
538int
539xfs_allocbt_maxrecs(
540	struct xfs_mount	*mp,
541	int			blocklen,
542	int			leaf)
543{
544	blocklen -= XFS_ALLOC_BLOCK_LEN(mp);
 
 
545
546	if (leaf)
547		return blocklen / sizeof(xfs_alloc_rec_t);
548	return blocklen / (sizeof(xfs_alloc_key_t) + sizeof(xfs_alloc_ptr_t));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
549}
v6.9.4
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
  4 * All Rights Reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
  5 */
  6#include "xfs.h"
  7#include "xfs_fs.h"
  8#include "xfs_shared.h"
  9#include "xfs_format.h"
 10#include "xfs_log_format.h"
 11#include "xfs_trans_resv.h"
 
 12#include "xfs_mount.h"
 13#include "xfs_btree.h"
 14#include "xfs_btree_staging.h"
 15#include "xfs_alloc_btree.h"
 16#include "xfs_alloc.h"
 17#include "xfs_extent_busy.h"
 18#include "xfs_error.h"
 19#include "xfs_health.h"
 20#include "xfs_trace.h"
 
 21#include "xfs_trans.h"
 22#include "xfs_ag.h"
 23
 24static struct kmem_cache	*xfs_allocbt_cur_cache;
 25
 26STATIC struct xfs_btree_cur *
 27xfs_bnobt_dup_cursor(
 28	struct xfs_btree_cur	*cur)
 29{
 30	return xfs_bnobt_init_cursor(cur->bc_mp, cur->bc_tp, cur->bc_ag.agbp,
 31			cur->bc_ag.pag);
 32}
 33
 34STATIC struct xfs_btree_cur *
 35xfs_cntbt_dup_cursor(
 36	struct xfs_btree_cur	*cur)
 37{
 38	return xfs_cntbt_init_cursor(cur->bc_mp, cur->bc_tp, cur->bc_ag.agbp,
 39			cur->bc_ag.pag);
 
 40}
 41
 42
 43STATIC void
 44xfs_allocbt_set_root(
 45	struct xfs_btree_cur		*cur,
 46	const union xfs_btree_ptr	*ptr,
 47	int				inc)
 48{
 49	struct xfs_buf		*agbp = cur->bc_ag.agbp;
 50	struct xfs_agf		*agf = agbp->b_addr;
 
 
 
 51
 52	ASSERT(ptr->s != 0);
 53
 54	if (xfs_btree_is_bno(cur->bc_ops)) {
 55		agf->agf_bno_root = ptr->s;
 56		be32_add_cpu(&agf->agf_bno_level, inc);
 57		cur->bc_ag.pag->pagf_bno_level += inc;
 58	} else {
 59		agf->agf_cnt_root = ptr->s;
 60		be32_add_cpu(&agf->agf_cnt_level, inc);
 61		cur->bc_ag.pag->pagf_cnt_level += inc;
 62	}
 63
 64	xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_ROOTS | XFS_AGF_LEVELS);
 65}
 66
 67STATIC int
 68xfs_allocbt_alloc_block(
 69	struct xfs_btree_cur		*cur,
 70	const union xfs_btree_ptr	*start,
 71	union xfs_btree_ptr		*new,
 72	int				*stat)
 73{
 74	int			error;
 75	xfs_agblock_t		bno;
 76
 77	/* Allocate the new block from the freelist. If we can't, give up.  */
 78	error = xfs_alloc_get_freelist(cur->bc_ag.pag, cur->bc_tp,
 79			cur->bc_ag.agbp, &bno, 1);
 80	if (error)
 81		return error;
 82
 83	if (bno == NULLAGBLOCK) {
 84		*stat = 0;
 85		return 0;
 86	}
 87
 88	atomic64_inc(&cur->bc_mp->m_allocbt_blks);
 89	xfs_extent_busy_reuse(cur->bc_mp, cur->bc_ag.pag, bno, 1, false);
 90
 
 91	new->s = cpu_to_be32(bno);
 92
 93	*stat = 1;
 94	return 0;
 95}
 96
 97STATIC int
 98xfs_allocbt_free_block(
 99	struct xfs_btree_cur	*cur,
100	struct xfs_buf		*bp)
101{
102	struct xfs_buf		*agbp = cur->bc_ag.agbp;
 
103	xfs_agblock_t		bno;
104	int			error;
105
106	bno = xfs_daddr_to_agbno(cur->bc_mp, xfs_buf_daddr(bp));
107	error = xfs_alloc_put_freelist(cur->bc_ag.pag, cur->bc_tp, agbp, NULL,
108			bno, 1);
109	if (error)
110		return error;
111
112	atomic64_dec(&cur->bc_mp->m_allocbt_blks);
113	xfs_extent_busy_insert(cur->bc_tp, agbp->b_pag, bno, 1,
114			      XFS_EXTENT_BUSY_SKIP_DISCARD);
 
115	return 0;
116}
117
118/*
119 * Update the longest extent in the AGF
120 */
121STATIC void
122xfs_allocbt_update_lastrec(
123	struct xfs_btree_cur		*cur,
124	const struct xfs_btree_block	*block,
125	const union xfs_btree_rec	*rec,
126	int				ptr,
127	int				reason)
128{
129	struct xfs_agf		*agf = cur->bc_ag.agbp->b_addr;
 
130	struct xfs_perag	*pag;
131	__be32			len;
132	int			numrecs;
133
134	ASSERT(!xfs_btree_is_bno(cur->bc_ops));
135
136	switch (reason) {
137	case LASTREC_UPDATE:
138		/*
139		 * If this is the last leaf block and it's the last record,
140		 * then update the size of the longest extent in the AG.
141		 */
142		if (ptr != xfs_btree_get_numrecs(block))
143			return;
144		len = rec->alloc.ar_blockcount;
145		break;
146	case LASTREC_INSREC:
147		if (be32_to_cpu(rec->alloc.ar_blockcount) <=
148		    be32_to_cpu(agf->agf_longest))
149			return;
150		len = rec->alloc.ar_blockcount;
151		break;
152	case LASTREC_DELREC:
153		numrecs = xfs_btree_get_numrecs(block);
154		if (ptr <= numrecs)
155			return;
156		ASSERT(ptr == numrecs + 1);
157
158		if (numrecs) {
159			xfs_alloc_rec_t *rrp;
160
161			rrp = XFS_ALLOC_REC_ADDR(cur->bc_mp, block, numrecs);
162			len = rrp->ar_blockcount;
163		} else {
164			len = 0;
165		}
166
167		break;
168	default:
169		ASSERT(0);
170		return;
171	}
172
173	agf->agf_longest = len;
174	pag = cur->bc_ag.agbp->b_pag;
175	pag->pagf_longest = be32_to_cpu(len);
176	xfs_alloc_log_agf(cur->bc_tp, cur->bc_ag.agbp, XFS_AGF_LONGEST);
 
177}
178
179STATIC int
180xfs_allocbt_get_minrecs(
181	struct xfs_btree_cur	*cur,
182	int			level)
183{
184	return cur->bc_mp->m_alloc_mnr[level != 0];
185}
186
187STATIC int
188xfs_allocbt_get_maxrecs(
189	struct xfs_btree_cur	*cur,
190	int			level)
191{
192	return cur->bc_mp->m_alloc_mxr[level != 0];
193}
194
195STATIC void
196xfs_allocbt_init_key_from_rec(
197	union xfs_btree_key		*key,
198	const union xfs_btree_rec	*rec)
199{
200	key->alloc.ar_startblock = rec->alloc.ar_startblock;
201	key->alloc.ar_blockcount = rec->alloc.ar_blockcount;
202}
203
204STATIC void
205xfs_bnobt_init_high_key_from_rec(
206	union xfs_btree_key		*key,
207	const union xfs_btree_rec	*rec)
208{
209	__u32				x;
210
211	x = be32_to_cpu(rec->alloc.ar_startblock);
212	x += be32_to_cpu(rec->alloc.ar_blockcount) - 1;
213	key->alloc.ar_startblock = cpu_to_be32(x);
214	key->alloc.ar_blockcount = 0;
215}
216
217STATIC void
218xfs_cntbt_init_high_key_from_rec(
219	union xfs_btree_key		*key,
220	const union xfs_btree_rec	*rec)
221{
222	key->alloc.ar_blockcount = rec->alloc.ar_blockcount;
223	key->alloc.ar_startblock = 0;
224}
225
226STATIC void
227xfs_allocbt_init_rec_from_cur(
228	struct xfs_btree_cur	*cur,
229	union xfs_btree_rec	*rec)
230{
231	rec->alloc.ar_startblock = cpu_to_be32(cur->bc_rec.a.ar_startblock);
232	rec->alloc.ar_blockcount = cpu_to_be32(cur->bc_rec.a.ar_blockcount);
233}
234
235STATIC void
236xfs_allocbt_init_ptr_from_cur(
237	struct xfs_btree_cur	*cur,
238	union xfs_btree_ptr	*ptr)
239{
240	struct xfs_agf		*agf = cur->bc_ag.agbp->b_addr;
241
242	ASSERT(cur->bc_ag.pag->pag_agno == be32_to_cpu(agf->agf_seqno));
 
243
244	if (xfs_btree_is_bno(cur->bc_ops))
245		ptr->s = agf->agf_bno_root;
246	else
247		ptr->s = agf->agf_cnt_root;
248}
249
250STATIC int64_t
251xfs_bnobt_key_diff(
252	struct xfs_btree_cur		*cur,
253	const union xfs_btree_key	*key)
254{
255	struct xfs_alloc_rec_incore	*rec = &cur->bc_rec.a;
256	const struct xfs_alloc_rec	*kp = &key->alloc;
257
258	return (int64_t)be32_to_cpu(kp->ar_startblock) - rec->ar_startblock;
259}
260
261STATIC int64_t
262xfs_cntbt_key_diff(
263	struct xfs_btree_cur		*cur,
264	const union xfs_btree_key	*key)
265{
266	struct xfs_alloc_rec_incore	*rec = &cur->bc_rec.a;
267	const struct xfs_alloc_rec	*kp = &key->alloc;
268	int64_t				diff;
269
270	diff = (int64_t)be32_to_cpu(kp->ar_blockcount) - rec->ar_blockcount;
271	if (diff)
272		return diff;
273
274	return (int64_t)be32_to_cpu(kp->ar_startblock) - rec->ar_startblock;
275}
276
277STATIC int64_t
278xfs_bnobt_diff_two_keys(
279	struct xfs_btree_cur		*cur,
280	const union xfs_btree_key	*k1,
281	const union xfs_btree_key	*k2,
282	const union xfs_btree_key	*mask)
283{
284	ASSERT(!mask || mask->alloc.ar_startblock);
285
286	return (int64_t)be32_to_cpu(k1->alloc.ar_startblock) -
287			be32_to_cpu(k2->alloc.ar_startblock);
288}
289
290STATIC int64_t
291xfs_cntbt_diff_two_keys(
292	struct xfs_btree_cur		*cur,
293	const union xfs_btree_key	*k1,
294	const union xfs_btree_key	*k2,
295	const union xfs_btree_key	*mask)
296{
297	int64_t				diff;
298
299	ASSERT(!mask || (mask->alloc.ar_blockcount &&
300			 mask->alloc.ar_startblock));
301
302	diff =  be32_to_cpu(k1->alloc.ar_blockcount) -
303		be32_to_cpu(k2->alloc.ar_blockcount);
304	if (diff)
305		return diff;
306
307	return  be32_to_cpu(k1->alloc.ar_startblock) -
308		be32_to_cpu(k2->alloc.ar_startblock);
309}
310
311static xfs_failaddr_t
312xfs_allocbt_verify(
313	struct xfs_buf		*bp)
314{
315	struct xfs_mount	*mp = bp->b_mount;
316	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
317	struct xfs_perag	*pag = bp->b_pag;
318	xfs_failaddr_t		fa;
319	unsigned int		level;
320
321	if (!xfs_verify_magic(bp, block->bb_magic))
322		return __this_address;
323
324	if (xfs_has_crc(mp)) {
325		fa = xfs_btree_agblock_v5hdr_verify(bp);
326		if (fa)
327			return fa;
328	}
329
330	/*
331	 * The perag may not be attached during grow operations or fully
332	 * initialized from the AGF during log recovery. Therefore we can only
333	 * check against maximum tree depth from those contexts.
334	 *
335	 * Otherwise check against the per-tree limit. Peek at one of the
336	 * verifier magic values to determine the type of tree we're verifying
337	 * against.
 
 
 
 
 
338	 */
339	level = be16_to_cpu(block->bb_level);
340	if (pag && xfs_perag_initialised_agf(pag)) {
341		unsigned int	maxlevel, repair_maxlevel = 0;
342
343		/*
344		 * Online repair could be rewriting the free space btrees, so
345		 * we'll validate against the larger of either tree while this
346		 * is going on.
347		 */
348		if (bp->b_ops->magic[0] == cpu_to_be32(XFS_ABTC_MAGIC)) {
349			maxlevel = pag->pagf_cnt_level;
350#ifdef CONFIG_XFS_ONLINE_REPAIR
351			repair_maxlevel = pag->pagf_repair_cnt_level;
352#endif
353		} else {
354			maxlevel = pag->pagf_bno_level;
355#ifdef CONFIG_XFS_ONLINE_REPAIR
356			repair_maxlevel = pag->pagf_repair_bno_level;
357#endif
358		}
359
360		if (level >= max(maxlevel, repair_maxlevel))
 
 
361			return __this_address;
362	} else if (level >= mp->m_alloc_maxlevels)
 
363		return __this_address;
 
364
365	return xfs_btree_agblock_verify(bp, mp->m_alloc_mxr[level != 0]);
366}
367
368static void
369xfs_allocbt_read_verify(
370	struct xfs_buf	*bp)
371{
372	xfs_failaddr_t	fa;
373
374	if (!xfs_btree_agblock_verify_crc(bp))
375		xfs_verifier_error(bp, -EFSBADCRC, __this_address);
376	else {
377		fa = xfs_allocbt_verify(bp);
378		if (fa)
379			xfs_verifier_error(bp, -EFSCORRUPTED, fa);
380	}
381
382	if (bp->b_error)
383		trace_xfs_btree_corrupt(bp, _RET_IP_);
384}
385
386static void
387xfs_allocbt_write_verify(
388	struct xfs_buf	*bp)
389{
390	xfs_failaddr_t	fa;
391
392	fa = xfs_allocbt_verify(bp);
393	if (fa) {
394		trace_xfs_btree_corrupt(bp, _RET_IP_);
395		xfs_verifier_error(bp, -EFSCORRUPTED, fa);
396		return;
397	}
398	xfs_btree_agblock_calc_crc(bp);
399
400}
401
402const struct xfs_buf_ops xfs_bnobt_buf_ops = {
403	.name = "xfs_bnobt",
404	.magic = { cpu_to_be32(XFS_ABTB_MAGIC),
405		   cpu_to_be32(XFS_ABTB_CRC_MAGIC) },
406	.verify_read = xfs_allocbt_read_verify,
407	.verify_write = xfs_allocbt_write_verify,
408	.verify_struct = xfs_allocbt_verify,
409};
410
411const struct xfs_buf_ops xfs_cntbt_buf_ops = {
412	.name = "xfs_cntbt",
413	.magic = { cpu_to_be32(XFS_ABTC_MAGIC),
414		   cpu_to_be32(XFS_ABTC_CRC_MAGIC) },
415	.verify_read = xfs_allocbt_read_verify,
416	.verify_write = xfs_allocbt_write_verify,
417	.verify_struct = xfs_allocbt_verify,
418};
419
420STATIC int
421xfs_bnobt_keys_inorder(
422	struct xfs_btree_cur		*cur,
423	const union xfs_btree_key	*k1,
424	const union xfs_btree_key	*k2)
425{
426	return be32_to_cpu(k1->alloc.ar_startblock) <
427	       be32_to_cpu(k2->alloc.ar_startblock);
428}
429
430STATIC int
431xfs_bnobt_recs_inorder(
432	struct xfs_btree_cur		*cur,
433	const union xfs_btree_rec	*r1,
434	const union xfs_btree_rec	*r2)
435{
436	return be32_to_cpu(r1->alloc.ar_startblock) +
437		be32_to_cpu(r1->alloc.ar_blockcount) <=
438		be32_to_cpu(r2->alloc.ar_startblock);
439}
440
441STATIC int
442xfs_cntbt_keys_inorder(
443	struct xfs_btree_cur		*cur,
444	const union xfs_btree_key	*k1,
445	const union xfs_btree_key	*k2)
446{
447	return be32_to_cpu(k1->alloc.ar_blockcount) <
448		be32_to_cpu(k2->alloc.ar_blockcount) ||
449		(k1->alloc.ar_blockcount == k2->alloc.ar_blockcount &&
450		 be32_to_cpu(k1->alloc.ar_startblock) <
451		 be32_to_cpu(k2->alloc.ar_startblock));
452}
453
454STATIC int
455xfs_cntbt_recs_inorder(
456	struct xfs_btree_cur		*cur,
457	const union xfs_btree_rec	*r1,
458	const union xfs_btree_rec	*r2)
459{
460	return be32_to_cpu(r1->alloc.ar_blockcount) <
461		be32_to_cpu(r2->alloc.ar_blockcount) ||
462		(r1->alloc.ar_blockcount == r2->alloc.ar_blockcount &&
463		 be32_to_cpu(r1->alloc.ar_startblock) <
464		 be32_to_cpu(r2->alloc.ar_startblock));
465}
466
467STATIC enum xbtree_key_contig
468xfs_allocbt_keys_contiguous(
469	struct xfs_btree_cur		*cur,
470	const union xfs_btree_key	*key1,
471	const union xfs_btree_key	*key2,
472	const union xfs_btree_key	*mask)
473{
474	ASSERT(!mask || mask->alloc.ar_startblock);
475
476	return xbtree_key_contig(be32_to_cpu(key1->alloc.ar_startblock),
477				 be32_to_cpu(key2->alloc.ar_startblock));
478}
479
480const struct xfs_btree_ops xfs_bnobt_ops = {
481	.name			= "bno",
482	.type			= XFS_BTREE_TYPE_AG,
483
484	.rec_len		= sizeof(xfs_alloc_rec_t),
485	.key_len		= sizeof(xfs_alloc_key_t),
486	.ptr_len		= XFS_BTREE_SHORT_PTR_LEN,
487
488	.lru_refs		= XFS_ALLOC_BTREE_REF,
489	.statoff		= XFS_STATS_CALC_INDEX(xs_abtb_2),
490	.sick_mask		= XFS_SICK_AG_BNOBT,
491
492	.dup_cursor		= xfs_bnobt_dup_cursor,
493	.set_root		= xfs_allocbt_set_root,
494	.alloc_block		= xfs_allocbt_alloc_block,
495	.free_block		= xfs_allocbt_free_block,
496	.update_lastrec		= xfs_allocbt_update_lastrec,
497	.get_minrecs		= xfs_allocbt_get_minrecs,
498	.get_maxrecs		= xfs_allocbt_get_maxrecs,
499	.init_key_from_rec	= xfs_allocbt_init_key_from_rec,
500	.init_high_key_from_rec	= xfs_bnobt_init_high_key_from_rec,
501	.init_rec_from_cur	= xfs_allocbt_init_rec_from_cur,
502	.init_ptr_from_cur	= xfs_allocbt_init_ptr_from_cur,
503	.key_diff		= xfs_bnobt_key_diff,
504	.buf_ops		= &xfs_bnobt_buf_ops,
505	.diff_two_keys		= xfs_bnobt_diff_two_keys,
506	.keys_inorder		= xfs_bnobt_keys_inorder,
507	.recs_inorder		= xfs_bnobt_recs_inorder,
508	.keys_contiguous	= xfs_allocbt_keys_contiguous,
509};
510
511const struct xfs_btree_ops xfs_cntbt_ops = {
512	.name			= "cnt",
513	.type			= XFS_BTREE_TYPE_AG,
514	.geom_flags		= XFS_BTGEO_LASTREC_UPDATE,
515
516	.rec_len		= sizeof(xfs_alloc_rec_t),
517	.key_len		= sizeof(xfs_alloc_key_t),
518	.ptr_len		= XFS_BTREE_SHORT_PTR_LEN,
519
520	.lru_refs		= XFS_ALLOC_BTREE_REF,
521	.statoff		= XFS_STATS_CALC_INDEX(xs_abtc_2),
522	.sick_mask		= XFS_SICK_AG_CNTBT,
523
524	.dup_cursor		= xfs_cntbt_dup_cursor,
525	.set_root		= xfs_allocbt_set_root,
526	.alloc_block		= xfs_allocbt_alloc_block,
527	.free_block		= xfs_allocbt_free_block,
528	.update_lastrec		= xfs_allocbt_update_lastrec,
529	.get_minrecs		= xfs_allocbt_get_minrecs,
530	.get_maxrecs		= xfs_allocbt_get_maxrecs,
531	.init_key_from_rec	= xfs_allocbt_init_key_from_rec,
532	.init_high_key_from_rec	= xfs_cntbt_init_high_key_from_rec,
533	.init_rec_from_cur	= xfs_allocbt_init_rec_from_cur,
534	.init_ptr_from_cur	= xfs_allocbt_init_ptr_from_cur,
535	.key_diff		= xfs_cntbt_key_diff,
536	.buf_ops		= &xfs_cntbt_buf_ops,
537	.diff_two_keys		= xfs_cntbt_diff_two_keys,
538	.keys_inorder		= xfs_cntbt_keys_inorder,
539	.recs_inorder		= xfs_cntbt_recs_inorder,
540	.keys_contiguous	= NULL, /* not needed right now */
541};
542
543/*
544 * Allocate a new bnobt cursor.
545 *
546 * For staging cursors tp and agbp are NULL.
547 */
548struct xfs_btree_cur *
549xfs_bnobt_init_cursor(
550	struct xfs_mount	*mp,
551	struct xfs_trans	*tp,
552	struct xfs_buf		*agbp,
553	struct xfs_perag	*pag)
 
554{
 
555	struct xfs_btree_cur	*cur;
556
557	cur = xfs_btree_alloc_cursor(mp, tp, &xfs_bnobt_ops,
558			mp->m_alloc_maxlevels, xfs_allocbt_cur_cache);
559	cur->bc_ag.pag = xfs_perag_hold(pag);
560	cur->bc_ag.agbp = agbp;
561	if (agbp) {
562		struct xfs_agf		*agf = agbp->b_addr;
563
564		cur->bc_nlevels = be32_to_cpu(agf->agf_bno_level);
 
 
 
 
 
 
 
 
 
 
 
 
 
565	}
566	return cur;
567}
568
569/*
570 * Allocate a new cntbt cursor.
571 *
572 * For staging cursors tp and agbp are NULL.
573 */
574struct xfs_btree_cur *
575xfs_cntbt_init_cursor(
576	struct xfs_mount	*mp,
577	struct xfs_trans	*tp,
578	struct xfs_buf		*agbp,
579	struct xfs_perag	*pag)
580{
581	struct xfs_btree_cur	*cur;
582
583	cur = xfs_btree_alloc_cursor(mp, tp, &xfs_cntbt_ops,
584			mp->m_alloc_maxlevels, xfs_allocbt_cur_cache);
585	cur->bc_ag.pag = xfs_perag_hold(pag);
586	cur->bc_ag.agbp = agbp;
587	if (agbp) {
588		struct xfs_agf		*agf = agbp->b_addr;
589
590		cur->bc_nlevels = be32_to_cpu(agf->agf_cnt_level);
591	}
592	return cur;
593}
594
595/*
596 * Install a new free space btree root.  Caller is responsible for invalidating
597 * and freeing the old btree blocks.
598 */
599void
600xfs_allocbt_commit_staged_btree(
601	struct xfs_btree_cur	*cur,
602	struct xfs_trans	*tp,
603	struct xfs_buf		*agbp)
604{
605	struct xfs_agf		*agf = agbp->b_addr;
606	struct xbtree_afakeroot	*afake = cur->bc_ag.afake;
607
608	ASSERT(cur->bc_flags & XFS_BTREE_STAGING);
609
610	if (xfs_btree_is_bno(cur->bc_ops)) {
611		agf->agf_bno_root = cpu_to_be32(afake->af_root);
612		agf->agf_bno_level = cpu_to_be32(afake->af_levels);
613	} else {
614		agf->agf_cnt_root = cpu_to_be32(afake->af_root);
615		agf->agf_cnt_level = cpu_to_be32(afake->af_levels);
616	}
617	xfs_alloc_log_agf(tp, agbp, XFS_AGF_ROOTS | XFS_AGF_LEVELS);
618
619	xfs_btree_commit_afakeroot(cur, tp, agbp);
620}
621
622/* Calculate number of records in an alloc btree block. */
623static inline unsigned int
624xfs_allocbt_block_maxrecs(
625	unsigned int		blocklen,
626	bool			leaf)
627{
628	if (leaf)
629		return blocklen / sizeof(xfs_alloc_rec_t);
630	return blocklen / (sizeof(xfs_alloc_key_t) + sizeof(xfs_alloc_ptr_t));
631}
632
633/*
634 * Calculate number of records in an alloc btree block.
635 */
636int
637xfs_allocbt_maxrecs(
638	struct xfs_mount	*mp,
639	int			blocklen,
640	int			leaf)
641{
642	blocklen -= XFS_ALLOC_BLOCK_LEN(mp);
643	return xfs_allocbt_block_maxrecs(blocklen, leaf);
644}
645
646/* Free space btrees are at their largest when every other block is free. */
647#define XFS_MAX_FREESP_RECORDS	((XFS_MAX_AG_BLOCKS + 1) / 2)
648
649/* Compute the max possible height for free space btrees. */
650unsigned int
651xfs_allocbt_maxlevels_ondisk(void)
652{
653	unsigned int		minrecs[2];
654	unsigned int		blocklen;
655
656	blocklen = min(XFS_MIN_BLOCKSIZE - XFS_BTREE_SBLOCK_LEN,
657		       XFS_MIN_CRC_BLOCKSIZE - XFS_BTREE_SBLOCK_CRC_LEN);
658
659	minrecs[0] = xfs_allocbt_block_maxrecs(blocklen, true) / 2;
660	minrecs[1] = xfs_allocbt_block_maxrecs(blocklen, false) / 2;
661
662	return xfs_btree_compute_maxlevels(minrecs, XFS_MAX_FREESP_RECORDS);
663}
664
665/* Calculate the freespace btree size for some records. */
666xfs_extlen_t
667xfs_allocbt_calc_size(
668	struct xfs_mount	*mp,
669	unsigned long long	len)
670{
671	return xfs_btree_calc_size(mp->m_alloc_mnr, len);
672}
673
674int __init
675xfs_allocbt_init_cur_cache(void)
676{
677	xfs_allocbt_cur_cache = kmem_cache_create("xfs_bnobt_cur",
678			xfs_btree_cur_sizeof(xfs_allocbt_maxlevels_ondisk()),
679			0, 0, NULL);
680
681	if (!xfs_allocbt_cur_cache)
682		return -ENOMEM;
683	return 0;
684}
685
686void
687xfs_allocbt_destroy_cur_cache(void)
688{
689	kmem_cache_destroy(xfs_allocbt_cur_cache);
690	xfs_allocbt_cur_cache = NULL;
691}