Linux Audio

Check our new training course

Linux kernel drivers training

Mar 31-Apr 9, 2025, special US time zones
Register
Loading...
v4.17
 
  1/*
  2 *  linux/fs/nfs/file.c
  3 *
  4 *  Copyright (C) 1992  Rick Sladkey
  5 *
  6 *  Changes Copyright (C) 1994 by Florian La Roche
  7 *   - Do not copy data too often around in the kernel.
  8 *   - In nfs_file_read the return value of kmalloc wasn't checked.
  9 *   - Put in a better version of read look-ahead buffering. Original idea
 10 *     and implementation by Wai S Kok elekokws@ee.nus.sg.
 11 *
 12 *  Expire cache on write to a file by Wai S Kok (Oct 1994).
 13 *
 14 *  Total rewrite of read side for new NFS buffer cache.. Linus.
 15 *
 16 *  nfs regular file handling functions
 17 */
 18
 19#include <linux/module.h>
 20#include <linux/time.h>
 21#include <linux/kernel.h>
 22#include <linux/errno.h>
 23#include <linux/fcntl.h>
 24#include <linux/stat.h>
 25#include <linux/nfs_fs.h>
 26#include <linux/nfs_mount.h>
 27#include <linux/mm.h>
 28#include <linux/pagemap.h>
 29#include <linux/gfp.h>
 30#include <linux/swap.h>
 
 31
 32#include <linux/uaccess.h>
 
 33
 34#include "delegation.h"
 35#include "internal.h"
 36#include "iostat.h"
 37#include "fscache.h"
 38#include "pnfs.h"
 39
 40#include "nfstrace.h"
 41
 42#define NFSDBG_FACILITY		NFSDBG_FILE
 43
 44static const struct vm_operations_struct nfs_file_vm_ops;
 45
 46/* Hack for future NFS swap support */
 47#ifndef IS_SWAPFILE
 48# define IS_SWAPFILE(inode)	(0)
 49#endif
 50
 51int nfs_check_flags(int flags)
 52{
 53	if ((flags & (O_APPEND | O_DIRECT)) == (O_APPEND | O_DIRECT))
 54		return -EINVAL;
 55
 56	return 0;
 57}
 58EXPORT_SYMBOL_GPL(nfs_check_flags);
 59
 60/*
 61 * Open file
 62 */
 63static int
 64nfs_file_open(struct inode *inode, struct file *filp)
 65{
 66	int res;
 67
 68	dprintk("NFS: open file(%pD2)\n", filp);
 69
 70	nfs_inc_stats(inode, NFSIOS_VFSOPEN);
 71	res = nfs_check_flags(filp->f_flags);
 72	if (res)
 73		return res;
 74
 75	res = nfs_open(inode, filp);
 
 
 76	return res;
 77}
 78
 79int
 80nfs_file_release(struct inode *inode, struct file *filp)
 81{
 82	dprintk("NFS: release(%pD2)\n", filp);
 83
 84	nfs_inc_stats(inode, NFSIOS_VFSRELEASE);
 85	nfs_file_clear_open_context(filp);
 
 86	return 0;
 87}
 88EXPORT_SYMBOL_GPL(nfs_file_release);
 89
 90/**
 91 * nfs_revalidate_size - Revalidate the file size
 92 * @inode - pointer to inode struct
 93 * @file - pointer to struct file
 94 *
 95 * Revalidates the file length. This is basically a wrapper around
 96 * nfs_revalidate_inode() that takes into account the fact that we may
 97 * have cached writes (in which case we don't care about the server's
 98 * idea of what the file length is), or O_DIRECT (in which case we
 99 * shouldn't trust the cache).
100 */
101static int nfs_revalidate_file_size(struct inode *inode, struct file *filp)
102{
103	struct nfs_server *server = NFS_SERVER(inode);
104
105	if (filp->f_flags & O_DIRECT)
106		goto force_reval;
107	if (nfs_check_cache_invalid(inode, NFS_INO_REVAL_PAGECACHE))
108		goto force_reval;
109	return 0;
110force_reval:
111	return __nfs_revalidate_inode(server, inode);
112}
113
114loff_t nfs_file_llseek(struct file *filp, loff_t offset, int whence)
115{
116	dprintk("NFS: llseek file(%pD2, %lld, %d)\n",
117			filp, offset, whence);
118
119	/*
120	 * whence == SEEK_END || SEEK_DATA || SEEK_HOLE => we must revalidate
121	 * the cached file length
122	 */
123	if (whence != SEEK_SET && whence != SEEK_CUR) {
124		struct inode *inode = filp->f_mapping->host;
125
126		int retval = nfs_revalidate_file_size(inode, filp);
127		if (retval < 0)
128			return (loff_t)retval;
129	}
130
131	return generic_file_llseek(filp, offset, whence);
132}
133EXPORT_SYMBOL_GPL(nfs_file_llseek);
134
135/*
136 * Flush all dirty pages, and check for write errors.
137 */
138static int
139nfs_file_flush(struct file *file, fl_owner_t id)
140{
141	struct inode	*inode = file_inode(file);
 
142
143	dprintk("NFS: flush(%pD2)\n", file);
144
145	nfs_inc_stats(inode, NFSIOS_VFSFLUSH);
146	if ((file->f_mode & FMODE_WRITE) == 0)
147		return 0;
148
149	/* Flush writes to the server and return any errors */
150	return vfs_fsync(file, 0);
 
 
151}
152
153ssize_t
154nfs_file_read(struct kiocb *iocb, struct iov_iter *to)
155{
156	struct inode *inode = file_inode(iocb->ki_filp);
157	ssize_t result;
158
159	if (iocb->ki_flags & IOCB_DIRECT)
160		return nfs_file_direct_read(iocb, to);
161
162	dprintk("NFS: read(%pD2, %zu@%lu)\n",
163		iocb->ki_filp,
164		iov_iter_count(to), (unsigned long) iocb->ki_pos);
165
166	nfs_start_io_read(inode);
 
 
 
167	result = nfs_revalidate_mapping(inode, iocb->ki_filp->f_mapping);
168	if (!result) {
169		result = generic_file_read_iter(iocb, to);
170		if (result > 0)
171			nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, result);
172	}
173	nfs_end_io_read(inode);
174	return result;
175}
176EXPORT_SYMBOL_GPL(nfs_file_read);
177
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
178int
179nfs_file_mmap(struct file * file, struct vm_area_struct * vma)
180{
181	struct inode *inode = file_inode(file);
182	int	status;
183
184	dprintk("NFS: mmap(%pD2)\n", file);
185
186	/* Note: generic_file_mmap() returns ENOSYS on nommu systems
187	 *       so we call that before revalidating the mapping
188	 */
189	status = generic_file_mmap(file, vma);
190	if (!status) {
191		vma->vm_ops = &nfs_file_vm_ops;
192		status = nfs_revalidate_mapping(inode, file->f_mapping);
193	}
194	return status;
195}
196EXPORT_SYMBOL_GPL(nfs_file_mmap);
197
198/*
199 * Flush any dirty pages for this process, and check for write errors.
200 * The return status from this call provides a reliable indication of
201 * whether any write errors occurred for this process.
202 *
203 * Notice that it clears the NFS_CONTEXT_ERROR_WRITE before synching to
204 * disk, but it retrieves and clears ctx->error after synching, despite
205 * the two being set at the same time in nfs_context_set_write_error().
206 * This is because the former is used to notify the _next_ call to
207 * nfs_file_write() that a write error occurred, and hence cause it to
208 * fall back to doing a synchronous write.
209 */
210static int
211nfs_file_fsync_commit(struct file *file, int datasync)
212{
213	struct nfs_open_context *ctx = nfs_file_open_context(file);
214	struct inode *inode = file_inode(file);
215	int do_resend, status;
216	int ret = 0;
217
218	dprintk("NFS: fsync file(%pD2) datasync %d\n", file, datasync);
219
220	nfs_inc_stats(inode, NFSIOS_VFSFSYNC);
221	do_resend = test_and_clear_bit(NFS_CONTEXT_RESEND_WRITES, &ctx->flags);
222	status = nfs_commit_inode(inode, FLUSH_SYNC);
223	if (test_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags)) {
224		ret = xchg(&ctx->error, 0);
225		if (ret)
226			goto out;
227	}
228	if (status < 0) {
229		ret = status;
230		goto out;
231	}
232	do_resend |= test_bit(NFS_CONTEXT_RESEND_WRITES, &ctx->flags);
233	if (do_resend)
234		ret = -EAGAIN;
235out:
236	return ret;
237}
238
239int
240nfs_file_fsync(struct file *file, loff_t start, loff_t end, int datasync)
241{
242	int ret;
243	struct inode *inode = file_inode(file);
 
 
 
 
244
245	trace_nfs_fsync_enter(inode);
246
247	do {
248		struct nfs_open_context *ctx = nfs_file_open_context(file);
249		ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
250		if (test_and_clear_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags)) {
251			int ret2 = xchg(&ctx->error, 0);
252			if (ret2)
253				ret = ret2;
254		}
255		if (ret != 0)
256			break;
257		ret = nfs_file_fsync_commit(file, datasync);
258		if (!ret)
259			ret = pnfs_sync_inode(inode, !!datasync);
260		/*
261		 * If nfs_file_fsync_commit detected a server reboot, then
262		 * resend all dirty pages that might have been covered by
263		 * the NFS_CONTEXT_RESEND_WRITES flag
264		 */
265		start = 0;
266		end = LLONG_MAX;
267	} while (ret == -EAGAIN);
268
269	trace_nfs_fsync_exit(inode, ret);
270	return ret;
271}
272EXPORT_SYMBOL_GPL(nfs_file_fsync);
273
274/*
275 * Decide whether a read/modify/write cycle may be more efficient
276 * then a modify/write/read cycle when writing to a page in the
277 * page cache.
278 *
 
 
 
 
 
 
279 * The modify/write/read cycle may occur if a page is read before
280 * being completely filled by the writer.  In this situation, the
281 * page must be completely written to stable storage on the server
282 * before it can be refilled by reading in the page from the server.
283 * This can lead to expensive, small, FILE_SYNC mode writes being
284 * done.
285 *
286 * It may be more efficient to read the page first if the file is
287 * open for reading in addition to writing, the page is not marked
288 * as Uptodate, it is not dirty or waiting to be committed,
289 * indicating that it was previously allocated and then modified,
290 * that there were valid bytes of data in that range of the file,
291 * and that the new data won't completely replace the old data in
292 * that range of the file.
293 */
294static int nfs_want_read_modify_write(struct file *file, struct page *page,
295			loff_t pos, unsigned len)
296{
297	unsigned int pglen = nfs_page_length(page);
298	unsigned int offset = pos & (PAGE_SIZE - 1);
299	unsigned int end = offset + len;
300
301	if (pnfs_ld_read_whole_page(file->f_mapping->host)) {
302		if (!PageUptodate(page))
303			return 1;
304		return 0;
305	}
306
307	if ((file->f_mode & FMODE_READ) &&	/* open for read? */
308	    !PageUptodate(page) &&		/* Uptodate? */
309	    !PagePrivate(page) &&		/* i/o request already? */
310	    pglen &&				/* valid bytes of file? */
311	    (end < pglen || offset))		/* replace all valid bytes? */
312		return 1;
313	return 0;
 
 
 
 
 
 
 
 
 
 
314}
315
316/*
317 * This does the "real" work of the write. We must allocate and lock the
318 * page to be sent back to the generic routine, which then copies the
319 * data from user space.
320 *
321 * If the writer ends up delaying the write, the writer needs to
322 * increment the page use counts until he is done with the page.
323 */
324static int nfs_write_begin(struct file *file, struct address_space *mapping,
325			loff_t pos, unsigned len, unsigned flags,
326			struct page **pagep, void **fsdata)
327{
328	int ret;
329	pgoff_t index = pos >> PAGE_SHIFT;
330	struct page *page;
331	int once_thru = 0;
 
332
333	dfprintk(PAGECACHE, "NFS: write_begin(%pD2(%lu), %u@%lld)\n",
334		file, mapping->host->i_ino, len, (long long) pos);
335
 
336start:
337	page = grab_cache_page_write_begin(mapping, index, flags);
338	if (!page)
339		return -ENOMEM;
340	*pagep = page;
 
341
342	ret = nfs_flush_incompatible(file, page);
343	if (ret) {
344		unlock_page(page);
345		put_page(page);
346	} else if (!once_thru &&
347		   nfs_want_read_modify_write(file, page, pos, len)) {
348		once_thru = 1;
349		ret = nfs_readpage(file, page);
350		put_page(page);
351		if (!ret)
352			goto start;
353	}
354	return ret;
355}
356
357static int nfs_write_end(struct file *file, struct address_space *mapping,
358			loff_t pos, unsigned len, unsigned copied,
359			struct page *page, void *fsdata)
360{
361	unsigned offset = pos & (PAGE_SIZE - 1);
362	struct nfs_open_context *ctx = nfs_file_open_context(file);
 
363	int status;
364
365	dfprintk(PAGECACHE, "NFS: write_end(%pD2(%lu), %u@%lld)\n",
366		file, mapping->host->i_ino, len, (long long) pos);
367
368	/*
369	 * Zero any uninitialised parts of the page, and then mark the page
370	 * as up to date if it turns out that we're extending the file.
371	 */
372	if (!PageUptodate(page)) {
373		unsigned pglen = nfs_page_length(page);
 
374		unsigned end = offset + copied;
375
376		if (pglen == 0) {
377			zero_user_segments(page, 0, offset,
378					end, PAGE_SIZE);
379			SetPageUptodate(page);
380		} else if (end >= pglen) {
381			zero_user_segment(page, end, PAGE_SIZE);
382			if (offset == 0)
383				SetPageUptodate(page);
384		} else
385			zero_user_segment(page, pglen, PAGE_SIZE);
386	}
387
388	status = nfs_updatepage(file, page, offset, copied);
389
390	unlock_page(page);
391	put_page(page);
392
393	if (status < 0)
394		return status;
395	NFS_I(mapping->host)->write_io += copied;
396
397	if (nfs_ctx_key_to_expire(ctx, mapping->host)) {
398		status = nfs_wb_all(mapping->host);
399		if (status < 0)
400			return status;
401	}
402
403	return copied;
404}
405
406/*
407 * Partially or wholly invalidate a page
408 * - Release the private state associated with a page if undergoing complete
409 *   page invalidation
410 * - Called if either PG_private or PG_fscache is set on the page
411 * - Caller holds page lock
412 */
413static void nfs_invalidate_page(struct page *page, unsigned int offset,
414				unsigned int length)
415{
416	dfprintk(PAGECACHE, "NFS: invalidate_page(%p, %u, %u)\n",
417		 page, offset, length);
 
418
419	if (offset != 0 || length < PAGE_SIZE)
420		return;
421	/* Cancel any unstarted writes on this page */
422	nfs_wb_page_cancel(page_file_mapping(page)->host, page);
423
424	nfs_fscache_invalidate_page(page, page->mapping->host);
425}
426
427/*
428 * Attempt to release the private state associated with a page
429 * - Called if either PG_private or PG_fscache is set on the page
430 * - Caller holds page lock
431 * - Return true (may release page) or false (may not)
432 */
433static int nfs_release_page(struct page *page, gfp_t gfp)
434{
435	dfprintk(PAGECACHE, "NFS: release_page(%p)\n", page);
436
437	/* If PagePrivate() is set, then the page is not freeable */
438	if (PagePrivate(page))
439		return 0;
440	return nfs_fscache_release_page(page, gfp);
 
 
 
 
 
441}
442
443static void nfs_check_dirty_writeback(struct page *page,
444				bool *dirty, bool *writeback)
445{
446	struct nfs_inode *nfsi;
447	struct address_space *mapping = page_file_mapping(page);
448
449	if (!mapping || PageSwapCache(page))
450		return;
451
452	/*
453	 * Check if an unstable page is currently being committed and
454	 * if so, have the VM treat it as if the page is under writeback
455	 * so it will not block due to pages that will shortly be freeable.
456	 */
457	nfsi = NFS_I(mapping->host);
458	if (atomic_read(&nfsi->commit_info.rpcs_out)) {
459		*writeback = true;
460		return;
461	}
462
463	/*
464	 * If PagePrivate() is set, then the page is not freeable and as the
465	 * inode is not being committed, it's not going to be cleaned in the
466	 * near future so treat it as dirty
467	 */
468	if (PagePrivate(page))
469		*dirty = true;
470}
471
472/*
473 * Attempt to clear the private state associated with a page when an error
474 * occurs that requires the cached contents of an inode to be written back or
475 * destroyed
476 * - Called if either PG_private or fscache is set on the page
477 * - Caller holds page lock
478 * - Return 0 if successful, -error otherwise
479 */
480static int nfs_launder_page(struct page *page)
481{
482	struct inode *inode = page_file_mapping(page)->host;
483	struct nfs_inode *nfsi = NFS_I(inode);
484
485	dfprintk(PAGECACHE, "NFS: launder_page(%ld, %llu)\n",
486		inode->i_ino, (long long)page_offset(page));
487
488	nfs_fscache_wait_on_page_write(nfsi, page);
489	return nfs_wb_page(inode, page);
 
 
 
490}
491
492static int nfs_swap_activate(struct swap_info_struct *sis, struct file *file,
493						sector_t *span)
494{
495	struct rpc_clnt *clnt = NFS_CLIENT(file->f_mapping->host);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
496
497	*span = sis->pages;
498
499	return rpc_clnt_swap_activate(clnt);
 
 
 
 
500}
501
502static void nfs_swap_deactivate(struct file *file)
503{
504	struct rpc_clnt *clnt = NFS_CLIENT(file->f_mapping->host);
 
 
505
506	rpc_clnt_swap_deactivate(clnt);
 
 
507}
508
509const struct address_space_operations nfs_file_aops = {
510	.readpage = nfs_readpage,
511	.readpages = nfs_readpages,
512	.set_page_dirty = __set_page_dirty_nobuffers,
513	.writepage = nfs_writepage,
514	.writepages = nfs_writepages,
515	.write_begin = nfs_write_begin,
516	.write_end = nfs_write_end,
517	.invalidatepage = nfs_invalidate_page,
518	.releasepage = nfs_release_page,
519	.direct_IO = nfs_direct_IO,
520#ifdef CONFIG_MIGRATION
521	.migratepage = nfs_migrate_page,
522#endif
523	.launder_page = nfs_launder_page,
524	.is_dirty_writeback = nfs_check_dirty_writeback,
525	.error_remove_page = generic_error_remove_page,
526	.swap_activate = nfs_swap_activate,
527	.swap_deactivate = nfs_swap_deactivate,
 
528};
529
530/*
531 * Notification that a PTE pointing to an NFS page is about to be made
532 * writable, implying that someone is about to modify the page through a
533 * shared-writable mapping
534 */
535static int nfs_vm_page_mkwrite(struct vm_fault *vmf)
536{
537	struct page *page = vmf->page;
538	struct file *filp = vmf->vma->vm_file;
539	struct inode *inode = file_inode(filp);
540	unsigned pagelen;
541	int ret = VM_FAULT_NOPAGE;
542	struct address_space *mapping;
 
543
544	dfprintk(PAGECACHE, "NFS: vm_page_mkwrite(%pD2(%lu), offset %lld)\n",
545		filp, filp->f_mapping->host->i_ino,
546		(long long)page_offset(page));
547
548	sb_start_pagefault(inode->i_sb);
549
550	/* make sure the cache has finished storing the page */
551	nfs_fscache_wait_on_page_write(NFS_I(inode), page);
 
 
 
 
552
553	wait_on_bit_action(&NFS_I(inode)->flags, NFS_INO_INVALIDATING,
554			nfs_wait_bit_killable, TASK_KILLABLE);
 
555
556	lock_page(page);
557	mapping = page_file_mapping(page);
558	if (mapping != inode->i_mapping)
559		goto out_unlock;
560
561	wait_on_page_writeback(page);
562
563	pagelen = nfs_page_length(page);
564	if (pagelen == 0)
565		goto out_unlock;
566
567	ret = VM_FAULT_LOCKED;
568	if (nfs_flush_incompatible(filp, page) == 0 &&
569	    nfs_updatepage(filp, page, 0, pagelen) == 0)
570		goto out;
571
572	ret = VM_FAULT_SIGBUS;
573out_unlock:
574	unlock_page(page);
575out:
576	sb_end_pagefault(inode->i_sb);
577	return ret;
578}
579
580static const struct vm_operations_struct nfs_file_vm_ops = {
581	.fault = filemap_fault,
582	.map_pages = filemap_map_pages,
583	.page_mkwrite = nfs_vm_page_mkwrite,
584};
585
586static int nfs_need_check_write(struct file *filp, struct inode *inode)
587{
588	struct nfs_open_context *ctx;
589
590	ctx = nfs_file_open_context(filp);
591	if (test_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags) ||
592	    nfs_ctx_key_to_expire(ctx, inode))
593		return 1;
594	return 0;
595}
596
597ssize_t nfs_file_write(struct kiocb *iocb, struct iov_iter *from)
598{
599	struct file *file = iocb->ki_filp;
600	struct inode *inode = file_inode(file);
601	unsigned long written = 0;
602	ssize_t result;
 
 
603
604	result = nfs_key_timeout_notify(file, inode);
605	if (result)
606		return result;
607
608	if (iocb->ki_flags & IOCB_DIRECT)
609		return nfs_file_direct_write(iocb, from);
610
611	dprintk("NFS: write(%pD2, %zu@%Ld)\n",
612		file, iov_iter_count(from), (long long) iocb->ki_pos);
613
614	if (IS_SWAPFILE(inode))
615		goto out_swapfile;
616	/*
617	 * O_APPEND implies that we must revalidate the file length.
618	 */
619	if (iocb->ki_flags & IOCB_APPEND) {
620		result = nfs_revalidate_file_size(inode, file);
621		if (result)
622			goto out;
623	}
624	if (iocb->ki_pos > i_size_read(inode))
625		nfs_revalidate_mapping(inode, file->f_mapping);
626
627	nfs_start_io_write(inode);
 
 
 
 
 
628	result = generic_write_checks(iocb, from);
629	if (result > 0) {
630		current->backing_dev_info = inode_to_bdi(inode);
631		result = generic_perform_write(file, from, iocb->ki_pos);
632		current->backing_dev_info = NULL;
633	}
634	nfs_end_io_write(inode);
635	if (result <= 0)
636		goto out;
637
638	written = result;
639	iocb->ki_pos += written;
 
 
 
 
 
 
 
 
 
 
 
 
 
640	result = generic_write_sync(iocb, written);
641	if (result < 0)
642		goto out;
643
 
644	/* Return error values */
645	if (nfs_need_check_write(file, inode)) {
646		int err = vfs_fsync(file, 0);
647		if (err < 0)
648			result = err;
 
 
 
 
 
 
 
649	}
650	nfs_add_stats(inode, NFSIOS_NORMALWRITTENBYTES, written);
651out:
652	return result;
653
654out_swapfile:
655	printk(KERN_INFO "NFS: attempt to write to active swap file!\n");
656	return -EBUSY;
657}
658EXPORT_SYMBOL_GPL(nfs_file_write);
659
660static int
661do_getlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
662{
663	struct inode *inode = filp->f_mapping->host;
664	int status = 0;
665	unsigned int saved_type = fl->fl_type;
666
667	/* Try local locking first */
668	posix_test_lock(filp, fl);
669	if (fl->fl_type != F_UNLCK) {
670		/* found a conflict */
671		goto out;
672	}
673	fl->fl_type = saved_type;
674
675	if (NFS_PROTO(inode)->have_delegation(inode, FMODE_READ))
676		goto out_noconflict;
677
678	if (is_local)
679		goto out_noconflict;
680
681	status = NFS_PROTO(inode)->lock(filp, cmd, fl);
682out:
683	return status;
684out_noconflict:
685	fl->fl_type = F_UNLCK;
686	goto out;
687}
688
689static int
690do_unlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
691{
692	struct inode *inode = filp->f_mapping->host;
693	struct nfs_lock_context *l_ctx;
694	int status;
695
696	/*
697	 * Flush all pending writes before doing anything
698	 * with locks..
699	 */
700	vfs_fsync(filp, 0);
701
702	l_ctx = nfs_get_lock_context(nfs_file_open_context(filp));
703	if (!IS_ERR(l_ctx)) {
704		status = nfs_iocounter_wait(l_ctx);
705		nfs_put_lock_context(l_ctx);
706		/*  NOTE: special case
707		 * 	If we're signalled while cleaning up locks on process exit, we
708		 * 	still need to complete the unlock.
709		 */
710		if (status < 0 && !(fl->fl_flags & FL_CLOSE))
711			return status;
712	}
713
714	/*
715	 * Use local locking if mounted with "-onolock" or with appropriate
716	 * "-olocal_lock="
717	 */
718	if (!is_local)
719		status = NFS_PROTO(inode)->lock(filp, cmd, fl);
720	else
721		status = locks_lock_file_wait(filp, fl);
722	return status;
723}
724
725static int
726do_setlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
727{
728	struct inode *inode = filp->f_mapping->host;
729	int status;
730
731	/*
732	 * Flush all pending writes before doing anything
733	 * with locks..
734	 */
735	status = nfs_sync_mapping(filp->f_mapping);
736	if (status != 0)
737		goto out;
738
739	/*
740	 * Use local locking if mounted with "-onolock" or with appropriate
741	 * "-olocal_lock="
742	 */
743	if (!is_local)
744		status = NFS_PROTO(inode)->lock(filp, cmd, fl);
745	else
746		status = locks_lock_file_wait(filp, fl);
747	if (status < 0)
748		goto out;
749
750	/*
751	 * Invalidate cache to prevent missing any changes.  If
752	 * the file is mapped, clear the page cache as well so
753	 * those mappings will be loaded.
754	 *
755	 * This makes locking act as a cache coherency point.
756	 */
757	nfs_sync_mapping(filp->f_mapping);
758	if (!NFS_PROTO(inode)->have_delegation(inode, FMODE_READ)) {
759		nfs_zap_caches(inode);
760		if (mapping_mapped(filp->f_mapping))
761			nfs_revalidate_mapping(inode, filp->f_mapping);
762	}
763out:
764	return status;
765}
766
767/*
768 * Lock a (portion of) a file
769 */
770int nfs_lock(struct file *filp, int cmd, struct file_lock *fl)
771{
772	struct inode *inode = filp->f_mapping->host;
773	int ret = -ENOLCK;
774	int is_local = 0;
775
776	dprintk("NFS: lock(%pD2, t=%x, fl=%x, r=%lld:%lld)\n",
777			filp, fl->fl_type, fl->fl_flags,
778			(long long)fl->fl_start, (long long)fl->fl_end);
779
780	nfs_inc_stats(inode, NFSIOS_VFSLOCK);
781
782	/* No mandatory locks over NFS */
783	if (__mandatory_lock(inode) && fl->fl_type != F_UNLCK)
784		goto out_err;
785
786	if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FCNTL)
787		is_local = 1;
788
789	if (NFS_PROTO(inode)->lock_check_bounds != NULL) {
790		ret = NFS_PROTO(inode)->lock_check_bounds(fl);
791		if (ret < 0)
792			goto out_err;
793	}
794
795	if (IS_GETLK(cmd))
796		ret = do_getlk(filp, cmd, fl, is_local);
797	else if (fl->fl_type == F_UNLCK)
798		ret = do_unlk(filp, cmd, fl, is_local);
799	else
800		ret = do_setlk(filp, cmd, fl, is_local);
801out_err:
802	return ret;
803}
804EXPORT_SYMBOL_GPL(nfs_lock);
805
806/*
807 * Lock a (portion of) a file
808 */
809int nfs_flock(struct file *filp, int cmd, struct file_lock *fl)
810{
811	struct inode *inode = filp->f_mapping->host;
812	int is_local = 0;
813
814	dprintk("NFS: flock(%pD2, t=%x, fl=%x)\n",
815			filp, fl->fl_type, fl->fl_flags);
816
817	if (!(fl->fl_flags & FL_FLOCK))
818		return -ENOLCK;
819
820	/*
821	 * The NFSv4 protocol doesn't support LOCK_MAND, which is not part of
822	 * any standard. In principle we might be able to support LOCK_MAND
823	 * on NFSv2/3 since NLMv3/4 support DOS share modes, but for now the
824	 * NFS code is not set up for it.
825	 */
826	if (fl->fl_type & LOCK_MAND)
827		return -EINVAL;
828
829	if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FLOCK)
830		is_local = 1;
831
832	/* We're simulating flock() locks using posix locks on the server */
833	if (fl->fl_type == F_UNLCK)
834		return do_unlk(filp, cmd, fl, is_local);
835	return do_setlk(filp, cmd, fl, is_local);
836}
837EXPORT_SYMBOL_GPL(nfs_flock);
838
839const struct file_operations nfs_file_operations = {
840	.llseek		= nfs_file_llseek,
841	.read_iter	= nfs_file_read,
842	.write_iter	= nfs_file_write,
843	.mmap		= nfs_file_mmap,
844	.open		= nfs_file_open,
845	.flush		= nfs_file_flush,
846	.release	= nfs_file_release,
847	.fsync		= nfs_file_fsync,
848	.lock		= nfs_lock,
849	.flock		= nfs_flock,
850	.splice_read	= generic_file_splice_read,
851	.splice_write	= iter_file_splice_write,
852	.check_flags	= nfs_check_flags,
853	.setlease	= simple_nosetlease,
854};
855EXPORT_SYMBOL_GPL(nfs_file_operations);
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 *  linux/fs/nfs/file.c
  4 *
  5 *  Copyright (C) 1992  Rick Sladkey
  6 *
  7 *  Changes Copyright (C) 1994 by Florian La Roche
  8 *   - Do not copy data too often around in the kernel.
  9 *   - In nfs_file_read the return value of kmalloc wasn't checked.
 10 *   - Put in a better version of read look-ahead buffering. Original idea
 11 *     and implementation by Wai S Kok elekokws@ee.nus.sg.
 12 *
 13 *  Expire cache on write to a file by Wai S Kok (Oct 1994).
 14 *
 15 *  Total rewrite of read side for new NFS buffer cache.. Linus.
 16 *
 17 *  nfs regular file handling functions
 18 */
 19
 20#include <linux/module.h>
 21#include <linux/time.h>
 22#include <linux/kernel.h>
 23#include <linux/errno.h>
 24#include <linux/fcntl.h>
 25#include <linux/stat.h>
 26#include <linux/nfs_fs.h>
 27#include <linux/nfs_mount.h>
 28#include <linux/mm.h>
 29#include <linux/pagemap.h>
 30#include <linux/gfp.h>
 31#include <linux/swap.h>
 32#include <linux/compaction.h>
 33
 34#include <linux/uaccess.h>
 35#include <linux/filelock.h>
 36
 37#include "delegation.h"
 38#include "internal.h"
 39#include "iostat.h"
 40#include "fscache.h"
 41#include "pnfs.h"
 42
 43#include "nfstrace.h"
 44
 45#define NFSDBG_FACILITY		NFSDBG_FILE
 46
 47static const struct vm_operations_struct nfs_file_vm_ops;
 48
 
 
 
 
 
 49int nfs_check_flags(int flags)
 50{
 51	if ((flags & (O_APPEND | O_DIRECT)) == (O_APPEND | O_DIRECT))
 52		return -EINVAL;
 53
 54	return 0;
 55}
 56EXPORT_SYMBOL_GPL(nfs_check_flags);
 57
 58/*
 59 * Open file
 60 */
 61static int
 62nfs_file_open(struct inode *inode, struct file *filp)
 63{
 64	int res;
 65
 66	dprintk("NFS: open file(%pD2)\n", filp);
 67
 68	nfs_inc_stats(inode, NFSIOS_VFSOPEN);
 69	res = nfs_check_flags(filp->f_flags);
 70	if (res)
 71		return res;
 72
 73	res = nfs_open(inode, filp);
 74	if (res == 0)
 75		filp->f_mode |= FMODE_CAN_ODIRECT;
 76	return res;
 77}
 78
 79int
 80nfs_file_release(struct inode *inode, struct file *filp)
 81{
 82	dprintk("NFS: release(%pD2)\n", filp);
 83
 84	nfs_inc_stats(inode, NFSIOS_VFSRELEASE);
 85	nfs_file_clear_open_context(filp);
 86	nfs_fscache_release_file(inode, filp);
 87	return 0;
 88}
 89EXPORT_SYMBOL_GPL(nfs_file_release);
 90
 91/**
 92 * nfs_revalidate_file_size - Revalidate the file size
 93 * @inode: pointer to inode struct
 94 * @filp: pointer to struct file
 95 *
 96 * Revalidates the file length. This is basically a wrapper around
 97 * nfs_revalidate_inode() that takes into account the fact that we may
 98 * have cached writes (in which case we don't care about the server's
 99 * idea of what the file length is), or O_DIRECT (in which case we
100 * shouldn't trust the cache).
101 */
102static int nfs_revalidate_file_size(struct inode *inode, struct file *filp)
103{
104	struct nfs_server *server = NFS_SERVER(inode);
105
106	if (filp->f_flags & O_DIRECT)
107		goto force_reval;
108	if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_SIZE))
109		goto force_reval;
110	return 0;
111force_reval:
112	return __nfs_revalidate_inode(server, inode);
113}
114
115loff_t nfs_file_llseek(struct file *filp, loff_t offset, int whence)
116{
117	dprintk("NFS: llseek file(%pD2, %lld, %d)\n",
118			filp, offset, whence);
119
120	/*
121	 * whence == SEEK_END || SEEK_DATA || SEEK_HOLE => we must revalidate
122	 * the cached file length
123	 */
124	if (whence != SEEK_SET && whence != SEEK_CUR) {
125		struct inode *inode = filp->f_mapping->host;
126
127		int retval = nfs_revalidate_file_size(inode, filp);
128		if (retval < 0)
129			return (loff_t)retval;
130	}
131
132	return generic_file_llseek(filp, offset, whence);
133}
134EXPORT_SYMBOL_GPL(nfs_file_llseek);
135
136/*
137 * Flush all dirty pages, and check for write errors.
138 */
139static int
140nfs_file_flush(struct file *file, fl_owner_t id)
141{
142	struct inode	*inode = file_inode(file);
143	errseq_t since;
144
145	dprintk("NFS: flush(%pD2)\n", file);
146
147	nfs_inc_stats(inode, NFSIOS_VFSFLUSH);
148	if ((file->f_mode & FMODE_WRITE) == 0)
149		return 0;
150
151	/* Flush writes to the server and return any errors */
152	since = filemap_sample_wb_err(file->f_mapping);
153	nfs_wb_all(inode);
154	return filemap_check_wb_err(file->f_mapping, since);
155}
156
157ssize_t
158nfs_file_read(struct kiocb *iocb, struct iov_iter *to)
159{
160	struct inode *inode = file_inode(iocb->ki_filp);
161	ssize_t result;
162
163	if (iocb->ki_flags & IOCB_DIRECT)
164		return nfs_file_direct_read(iocb, to, false);
165
166	dprintk("NFS: read(%pD2, %zu@%lu)\n",
167		iocb->ki_filp,
168		iov_iter_count(to), (unsigned long) iocb->ki_pos);
169
170	result = nfs_start_io_read(inode);
171	if (result)
172		return result;
173
174	result = nfs_revalidate_mapping(inode, iocb->ki_filp->f_mapping);
175	if (!result) {
176		result = generic_file_read_iter(iocb, to);
177		if (result > 0)
178			nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, result);
179	}
180	nfs_end_io_read(inode);
181	return result;
182}
183EXPORT_SYMBOL_GPL(nfs_file_read);
184
185ssize_t
186nfs_file_splice_read(struct file *in, loff_t *ppos, struct pipe_inode_info *pipe,
187		     size_t len, unsigned int flags)
188{
189	struct inode *inode = file_inode(in);
190	ssize_t result;
191
192	dprintk("NFS: splice_read(%pD2, %zu@%llu)\n", in, len, *ppos);
193
194	result = nfs_start_io_read(inode);
195	if (result)
196		return result;
197
198	result = nfs_revalidate_mapping(inode, in->f_mapping);
199	if (!result) {
200		result = filemap_splice_read(in, ppos, pipe, len, flags);
201		if (result > 0)
202			nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, result);
203	}
204	nfs_end_io_read(inode);
205	return result;
206}
207EXPORT_SYMBOL_GPL(nfs_file_splice_read);
208
209int
210nfs_file_mmap(struct file *file, struct vm_area_struct *vma)
211{
212	struct inode *inode = file_inode(file);
213	int	status;
214
215	dprintk("NFS: mmap(%pD2)\n", file);
216
217	/* Note: generic_file_mmap() returns ENOSYS on nommu systems
218	 *       so we call that before revalidating the mapping
219	 */
220	status = generic_file_mmap(file, vma);
221	if (!status) {
222		vma->vm_ops = &nfs_file_vm_ops;
223		status = nfs_revalidate_mapping(inode, file->f_mapping);
224	}
225	return status;
226}
227EXPORT_SYMBOL_GPL(nfs_file_mmap);
228
229/*
230 * Flush any dirty pages for this process, and check for write errors.
231 * The return status from this call provides a reliable indication of
232 * whether any write errors occurred for this process.
 
 
 
 
 
 
 
233 */
234static int
235nfs_file_fsync_commit(struct file *file, int datasync)
236{
 
237	struct inode *inode = file_inode(file);
238	int ret, ret2;
 
239
240	dprintk("NFS: fsync file(%pD2) datasync %d\n", file, datasync);
241
242	nfs_inc_stats(inode, NFSIOS_VFSFSYNC);
243	ret = nfs_commit_inode(inode, FLUSH_SYNC);
244	ret2 = file_check_and_advance_wb_err(file);
245	if (ret2 < 0)
246		return ret2;
 
 
 
 
 
 
 
 
 
 
 
247	return ret;
248}
249
250int
251nfs_file_fsync(struct file *file, loff_t start, loff_t end, int datasync)
252{
 
253	struct inode *inode = file_inode(file);
254	struct nfs_inode *nfsi = NFS_I(inode);
255	long save_nredirtied = atomic_long_read(&nfsi->redirtied_pages);
256	long nredirtied;
257	int ret;
258
259	trace_nfs_fsync_enter(inode);
260
261	for (;;) {
262		ret = file_write_and_wait_range(file, start, end);
 
 
 
 
 
 
263		if (ret != 0)
264			break;
265		ret = nfs_file_fsync_commit(file, datasync);
266		if (ret != 0)
267			break;
268		ret = pnfs_sync_inode(inode, !!datasync);
269		if (ret != 0)
270			break;
271		nredirtied = atomic_long_read(&nfsi->redirtied_pages);
272		if (nredirtied == save_nredirtied)
273			break;
274		save_nredirtied = nredirtied;
275	}
276
277	trace_nfs_fsync_exit(inode, ret);
278	return ret;
279}
280EXPORT_SYMBOL_GPL(nfs_file_fsync);
281
282/*
283 * Decide whether a read/modify/write cycle may be more efficient
284 * then a modify/write/read cycle when writing to a page in the
285 * page cache.
286 *
287 * Some pNFS layout drivers can only read/write at a certain block
288 * granularity like all block devices and therefore we must perform
289 * read/modify/write whenever a page hasn't read yet and the data
290 * to be written there is not aligned to a block boundary and/or
291 * smaller than the block size.
292 *
293 * The modify/write/read cycle may occur if a page is read before
294 * being completely filled by the writer.  In this situation, the
295 * page must be completely written to stable storage on the server
296 * before it can be refilled by reading in the page from the server.
297 * This can lead to expensive, small, FILE_SYNC mode writes being
298 * done.
299 *
300 * It may be more efficient to read the page first if the file is
301 * open for reading in addition to writing, the page is not marked
302 * as Uptodate, it is not dirty or waiting to be committed,
303 * indicating that it was previously allocated and then modified,
304 * that there were valid bytes of data in that range of the file,
305 * and that the new data won't completely replace the old data in
306 * that range of the file.
307 */
308static bool nfs_folio_is_full_write(struct folio *folio, loff_t pos,
309				    unsigned int len)
310{
311	unsigned int pglen = nfs_folio_length(folio);
312	unsigned int offset = offset_in_folio(folio, pos);
313	unsigned int end = offset + len;
314
315	return !pglen || (end >= pglen && !offset);
316}
 
 
 
317
318static bool nfs_want_read_modify_write(struct file *file, struct folio *folio,
319				       loff_t pos, unsigned int len)
320{
321	/*
322	 * Up-to-date pages, those with ongoing or full-page write
323	 * don't need read/modify/write
324	 */
325	if (folio_test_uptodate(folio) || folio_test_private(folio) ||
326	    nfs_folio_is_full_write(folio, pos, len))
327		return false;
328
329	if (pnfs_ld_read_whole_page(file_inode(file)))
330		return true;
331	/* Open for reading too? */
332	if (file->f_mode & FMODE_READ)
333		return true;
334	return false;
335}
336
337/*
338 * This does the "real" work of the write. We must allocate and lock the
339 * page to be sent back to the generic routine, which then copies the
340 * data from user space.
341 *
342 * If the writer ends up delaying the write, the writer needs to
343 * increment the page use counts until he is done with the page.
344 */
345static int nfs_write_begin(struct file *file, struct address_space *mapping,
346			   loff_t pos, unsigned len, struct folio **foliop,
347			   void **fsdata)
348{
349	fgf_t fgp = FGP_WRITEBEGIN;
350	struct folio *folio;
 
351	int once_thru = 0;
352	int ret;
353
354	dfprintk(PAGECACHE, "NFS: write_begin(%pD2(%lu), %u@%lld)\n",
355		file, mapping->host->i_ino, len, (long long) pos);
356
357	fgp |= fgf_set_order(len);
358start:
359	folio = __filemap_get_folio(mapping, pos >> PAGE_SHIFT, fgp,
360				    mapping_gfp_mask(mapping));
361	if (IS_ERR(folio))
362		return PTR_ERR(folio);
363	*foliop = folio;
364
365	ret = nfs_flush_incompatible(file, folio);
366	if (ret) {
367		folio_unlock(folio);
368		folio_put(folio);
369	} else if (!once_thru &&
370		   nfs_want_read_modify_write(file, folio, pos, len)) {
371		once_thru = 1;
372		ret = nfs_read_folio(file, folio);
373		folio_put(folio);
374		if (!ret)
375			goto start;
376	}
377	return ret;
378}
379
380static int nfs_write_end(struct file *file, struct address_space *mapping,
381			 loff_t pos, unsigned len, unsigned copied,
382			 struct folio *folio, void *fsdata)
383{
 
384	struct nfs_open_context *ctx = nfs_file_open_context(file);
385	unsigned offset = offset_in_folio(folio, pos);
386	int status;
387
388	dfprintk(PAGECACHE, "NFS: write_end(%pD2(%lu), %u@%lld)\n",
389		file, mapping->host->i_ino, len, (long long) pos);
390
391	/*
392	 * Zero any uninitialised parts of the page, and then mark the page
393	 * as up to date if it turns out that we're extending the file.
394	 */
395	if (!folio_test_uptodate(folio)) {
396		size_t fsize = folio_size(folio);
397		unsigned pglen = nfs_folio_length(folio);
398		unsigned end = offset + copied;
399
400		if (pglen == 0) {
401			folio_zero_segments(folio, 0, offset, end, fsize);
402			folio_mark_uptodate(folio);
 
403		} else if (end >= pglen) {
404			folio_zero_segment(folio, end, fsize);
405			if (offset == 0)
406				folio_mark_uptodate(folio);
407		} else
408			folio_zero_segment(folio, pglen, fsize);
409	}
410
411	status = nfs_update_folio(file, folio, offset, copied);
412
413	folio_unlock(folio);
414	folio_put(folio);
415
416	if (status < 0)
417		return status;
418	NFS_I(mapping->host)->write_io += copied;
419
420	if (nfs_ctx_key_to_expire(ctx, mapping->host))
421		nfs_wb_all(mapping->host);
 
 
 
422
423	return copied;
424}
425
426/*
427 * Partially or wholly invalidate a page
428 * - Release the private state associated with a page if undergoing complete
429 *   page invalidation
430 * - Called if either PG_private or PG_fscache is set on the page
431 * - Caller holds page lock
432 */
433static void nfs_invalidate_folio(struct folio *folio, size_t offset,
434				size_t length)
435{
436	struct inode *inode = folio->mapping->host;
437	dfprintk(PAGECACHE, "NFS: invalidate_folio(%lu, %zu, %zu)\n",
438		 folio->index, offset, length);
439
440	if (offset != 0 || length < folio_size(folio))
441		return;
442	/* Cancel any unstarted writes on this page */
443	nfs_wb_folio_cancel(inode, folio);
444	folio_wait_private_2(folio); /* [DEPRECATED] */
445	trace_nfs_invalidate_folio(inode, folio_pos(folio) + offset, length);
446}
447
448/*
449 * Attempt to release the private state associated with a folio
450 * - Called if either private or fscache flags are set on the folio
451 * - Caller holds folio lock
452 * - Return true (may release folio) or false (may not)
453 */
454static bool nfs_release_folio(struct folio *folio, gfp_t gfp)
455{
456	dfprintk(PAGECACHE, "NFS: release_folio(%p)\n", folio);
457
458	/* If the private flag is set, then the folio is not freeable */
459	if (folio_test_private(folio)) {
460		if ((current_gfp_context(gfp) & GFP_KERNEL) != GFP_KERNEL ||
461		    current_is_kswapd() || current_is_kcompactd())
462			return false;
463		if (nfs_wb_folio(folio->mapping->host, folio) < 0)
464			return false;
465	}
466	return nfs_fscache_release_folio(folio, gfp);
467}
468
469static void nfs_check_dirty_writeback(struct folio *folio,
470				bool *dirty, bool *writeback)
471{
472	struct nfs_inode *nfsi;
473	struct address_space *mapping = folio->mapping;
 
 
 
474
475	/*
476	 * Check if an unstable folio is currently being committed and
477	 * if so, have the VM treat it as if the folio is under writeback
478	 * so it will not block due to folios that will shortly be freeable.
479	 */
480	nfsi = NFS_I(mapping->host);
481	if (atomic_read(&nfsi->commit_info.rpcs_out)) {
482		*writeback = true;
483		return;
484	}
485
486	/*
487	 * If the private flag is set, then the folio is not freeable
488	 * and as the inode is not being committed, it's not going to
489	 * be cleaned in the near future so treat it as dirty
490	 */
491	if (folio_test_private(folio))
492		*dirty = true;
493}
494
495/*
496 * Attempt to clear the private state associated with a page when an error
497 * occurs that requires the cached contents of an inode to be written back or
498 * destroyed
499 * - Called if either PG_private or fscache is set on the page
500 * - Caller holds page lock
501 * - Return 0 if successful, -error otherwise
502 */
503static int nfs_launder_folio(struct folio *folio)
504{
505	struct inode *inode = folio->mapping->host;
506	int ret;
507
508	dfprintk(PAGECACHE, "NFS: launder_folio(%ld, %llu)\n",
509		inode->i_ino, folio_pos(folio));
510
511	folio_wait_private_2(folio); /* [DEPRECATED] */
512	ret = nfs_wb_folio(inode, folio);
513	trace_nfs_launder_folio_done(inode, folio_pos(folio),
514			folio_size(folio), ret);
515	return ret;
516}
517
518static int nfs_swap_activate(struct swap_info_struct *sis, struct file *file,
519						sector_t *span)
520{
521	unsigned long blocks;
522	long long isize;
523	int ret;
524	struct inode *inode = file_inode(file);
525	struct rpc_clnt *clnt = NFS_CLIENT(inode);
526	struct nfs_client *cl = NFS_SERVER(inode)->nfs_client;
527
528	spin_lock(&inode->i_lock);
529	blocks = inode->i_blocks;
530	isize = inode->i_size;
531	spin_unlock(&inode->i_lock);
532	if (blocks*512 < isize) {
533		pr_warn("swap activate: swapfile has holes\n");
534		return -EINVAL;
535	}
536
537	ret = rpc_clnt_swap_activate(clnt);
538	if (ret)
539		return ret;
540	ret = add_swap_extent(sis, 0, sis->max, 0);
541	if (ret < 0) {
542		rpc_clnt_swap_deactivate(clnt);
543		return ret;
544	}
545
546	*span = sis->pages;
547
548	if (cl->rpc_ops->enable_swap)
549		cl->rpc_ops->enable_swap(inode);
550
551	sis->flags |= SWP_FS_OPS;
552	return ret;
553}
554
555static void nfs_swap_deactivate(struct file *file)
556{
557	struct inode *inode = file_inode(file);
558	struct rpc_clnt *clnt = NFS_CLIENT(inode);
559	struct nfs_client *cl = NFS_SERVER(inode)->nfs_client;
560
561	rpc_clnt_swap_deactivate(clnt);
562	if (cl->rpc_ops->disable_swap)
563		cl->rpc_ops->disable_swap(file_inode(file));
564}
565
566const struct address_space_operations nfs_file_aops = {
567	.read_folio = nfs_read_folio,
568	.readahead = nfs_readahead,
569	.dirty_folio = filemap_dirty_folio,
 
570	.writepages = nfs_writepages,
571	.write_begin = nfs_write_begin,
572	.write_end = nfs_write_end,
573	.invalidate_folio = nfs_invalidate_folio,
574	.release_folio = nfs_release_folio,
575	.migrate_folio = nfs_migrate_folio,
576	.launder_folio = nfs_launder_folio,
 
 
 
577	.is_dirty_writeback = nfs_check_dirty_writeback,
578	.error_remove_folio = generic_error_remove_folio,
579	.swap_activate = nfs_swap_activate,
580	.swap_deactivate = nfs_swap_deactivate,
581	.swap_rw = nfs_swap_rw,
582};
583
584/*
585 * Notification that a PTE pointing to an NFS page is about to be made
586 * writable, implying that someone is about to modify the page through a
587 * shared-writable mapping
588 */
589static vm_fault_t nfs_vm_page_mkwrite(struct vm_fault *vmf)
590{
 
591	struct file *filp = vmf->vma->vm_file;
592	struct inode *inode = file_inode(filp);
593	unsigned pagelen;
594	vm_fault_t ret = VM_FAULT_NOPAGE;
595	struct address_space *mapping;
596	struct folio *folio = page_folio(vmf->page);
597
598	dfprintk(PAGECACHE, "NFS: vm_page_mkwrite(%pD2(%lu), offset %lld)\n",
599		 filp, filp->f_mapping->host->i_ino,
600		 (long long)folio_pos(folio));
601
602	sb_start_pagefault(inode->i_sb);
603
604	/* make sure the cache has finished storing the page */
605	if (folio_test_private_2(folio) && /* [DEPRECATED] */
606	    folio_wait_private_2_killable(folio) < 0) {
607		ret = VM_FAULT_RETRY;
608		goto out;
609	}
610
611	wait_on_bit_action(&NFS_I(inode)->flags, NFS_INO_INVALIDATING,
612			   nfs_wait_bit_killable,
613			   TASK_KILLABLE|TASK_FREEZABLE_UNSAFE);
614
615	folio_lock(folio);
616	mapping = folio->mapping;
617	if (mapping != inode->i_mapping)
618		goto out_unlock;
619
620	folio_wait_writeback(folio);
621
622	pagelen = nfs_folio_length(folio);
623	if (pagelen == 0)
624		goto out_unlock;
625
626	ret = VM_FAULT_LOCKED;
627	if (nfs_flush_incompatible(filp, folio) == 0 &&
628	    nfs_update_folio(filp, folio, 0, pagelen) == 0)
629		goto out;
630
631	ret = VM_FAULT_SIGBUS;
632out_unlock:
633	folio_unlock(folio);
634out:
635	sb_end_pagefault(inode->i_sb);
636	return ret;
637}
638
639static const struct vm_operations_struct nfs_file_vm_ops = {
640	.fault = filemap_fault,
641	.map_pages = filemap_map_pages,
642	.page_mkwrite = nfs_vm_page_mkwrite,
643};
644
 
 
 
 
 
 
 
 
 
 
 
645ssize_t nfs_file_write(struct kiocb *iocb, struct iov_iter *from)
646{
647	struct file *file = iocb->ki_filp;
648	struct inode *inode = file_inode(file);
649	unsigned int mntflags = NFS_SERVER(inode)->flags;
650	ssize_t result, written;
651	errseq_t since;
652	int error;
653
654	result = nfs_key_timeout_notify(file, inode);
655	if (result)
656		return result;
657
658	if (iocb->ki_flags & IOCB_DIRECT)
659		return nfs_file_direct_write(iocb, from, false);
660
661	dprintk("NFS: write(%pD2, %zu@%Ld)\n",
662		file, iov_iter_count(from), (long long) iocb->ki_pos);
663
664	if (IS_SWAPFILE(inode))
665		goto out_swapfile;
666	/*
667	 * O_APPEND implies that we must revalidate the file length.
668	 */
669	if (iocb->ki_flags & IOCB_APPEND || iocb->ki_pos > i_size_read(inode)) {
670		result = nfs_revalidate_file_size(inode, file);
671		if (result)
672			return result;
673	}
 
 
674
675	nfs_clear_invalid_mapping(file->f_mapping);
676
677	since = filemap_sample_wb_err(file->f_mapping);
678	error = nfs_start_io_write(inode);
679	if (error)
680		return error;
681	result = generic_write_checks(iocb, from);
682	if (result > 0)
683		result = generic_perform_write(iocb, from);
 
 
 
684	nfs_end_io_write(inode);
685	if (result <= 0)
686		goto out;
687
688	written = result;
689	nfs_add_stats(inode, NFSIOS_NORMALWRITTENBYTES, written);
690
691	if (mntflags & NFS_MOUNT_WRITE_EAGER) {
692		result = filemap_fdatawrite_range(file->f_mapping,
693						  iocb->ki_pos - written,
694						  iocb->ki_pos - 1);
695		if (result < 0)
696			goto out;
697	}
698	if (mntflags & NFS_MOUNT_WRITE_WAIT) {
699		filemap_fdatawait_range(file->f_mapping,
700					iocb->ki_pos - written,
701					iocb->ki_pos - 1);
702	}
703	result = generic_write_sync(iocb, written);
704	if (result < 0)
705		return result;
706
707out:
708	/* Return error values */
709	error = filemap_check_wb_err(file->f_mapping, since);
710	switch (error) {
711	default:
712		break;
713	case -EDQUOT:
714	case -EFBIG:
715	case -ENOSPC:
716		nfs_wb_all(inode);
717		error = file_check_and_advance_wb_err(file);
718		if (error < 0)
719			result = error;
720	}
 
 
721	return result;
722
723out_swapfile:
724	printk(KERN_INFO "NFS: attempt to write to active swap file!\n");
725	return -ETXTBSY;
726}
727EXPORT_SYMBOL_GPL(nfs_file_write);
728
729static int
730do_getlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
731{
732	struct inode *inode = filp->f_mapping->host;
733	int status = 0;
734	unsigned int saved_type = fl->c.flc_type;
735
736	/* Try local locking first */
737	posix_test_lock(filp, fl);
738	if (fl->c.flc_type != F_UNLCK) {
739		/* found a conflict */
740		goto out;
741	}
742	fl->c.flc_type = saved_type;
743
744	if (nfs_have_read_or_write_delegation(inode))
745		goto out_noconflict;
746
747	if (is_local)
748		goto out_noconflict;
749
750	status = NFS_PROTO(inode)->lock(filp, cmd, fl);
751out:
752	return status;
753out_noconflict:
754	fl->c.flc_type = F_UNLCK;
755	goto out;
756}
757
758static int
759do_unlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
760{
761	struct inode *inode = filp->f_mapping->host;
762	struct nfs_lock_context *l_ctx;
763	int status;
764
765	/*
766	 * Flush all pending writes before doing anything
767	 * with locks..
768	 */
769	nfs_wb_all(inode);
770
771	l_ctx = nfs_get_lock_context(nfs_file_open_context(filp));
772	if (!IS_ERR(l_ctx)) {
773		status = nfs_iocounter_wait(l_ctx);
774		nfs_put_lock_context(l_ctx);
775		/*  NOTE: special case
776		 * 	If we're signalled while cleaning up locks on process exit, we
777		 * 	still need to complete the unlock.
778		 */
779		if (status < 0 && !(fl->c.flc_flags & FL_CLOSE))
780			return status;
781	}
782
783	/*
784	 * Use local locking if mounted with "-onolock" or with appropriate
785	 * "-olocal_lock="
786	 */
787	if (!is_local)
788		status = NFS_PROTO(inode)->lock(filp, cmd, fl);
789	else
790		status = locks_lock_file_wait(filp, fl);
791	return status;
792}
793
794static int
795do_setlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
796{
797	struct inode *inode = filp->f_mapping->host;
798	int status;
799
800	/*
801	 * Flush all pending writes before doing anything
802	 * with locks..
803	 */
804	status = nfs_sync_mapping(filp->f_mapping);
805	if (status != 0)
806		goto out;
807
808	/*
809	 * Use local locking if mounted with "-onolock" or with appropriate
810	 * "-olocal_lock="
811	 */
812	if (!is_local)
813		status = NFS_PROTO(inode)->lock(filp, cmd, fl);
814	else
815		status = locks_lock_file_wait(filp, fl);
816	if (status < 0)
817		goto out;
818
819	/*
820	 * Invalidate cache to prevent missing any changes.  If
821	 * the file is mapped, clear the page cache as well so
822	 * those mappings will be loaded.
823	 *
824	 * This makes locking act as a cache coherency point.
825	 */
826	nfs_sync_mapping(filp->f_mapping);
827	if (!nfs_have_read_or_write_delegation(inode)) {
828		nfs_zap_caches(inode);
829		if (mapping_mapped(filp->f_mapping))
830			nfs_revalidate_mapping(inode, filp->f_mapping);
831	}
832out:
833	return status;
834}
835
836/*
837 * Lock a (portion of) a file
838 */
839int nfs_lock(struct file *filp, int cmd, struct file_lock *fl)
840{
841	struct inode *inode = filp->f_mapping->host;
842	int ret = -ENOLCK;
843	int is_local = 0;
844
845	dprintk("NFS: lock(%pD2, t=%x, fl=%x, r=%lld:%lld)\n",
846			filp, fl->c.flc_type, fl->c.flc_flags,
847			(long long)fl->fl_start, (long long)fl->fl_end);
848
849	nfs_inc_stats(inode, NFSIOS_VFSLOCK);
850
851	if (fl->c.flc_flags & FL_RECLAIM)
852		return -ENOGRACE;
 
853
854	if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FCNTL)
855		is_local = 1;
856
857	if (NFS_PROTO(inode)->lock_check_bounds != NULL) {
858		ret = NFS_PROTO(inode)->lock_check_bounds(fl);
859		if (ret < 0)
860			goto out_err;
861	}
862
863	if (IS_GETLK(cmd))
864		ret = do_getlk(filp, cmd, fl, is_local);
865	else if (lock_is_unlock(fl))
866		ret = do_unlk(filp, cmd, fl, is_local);
867	else
868		ret = do_setlk(filp, cmd, fl, is_local);
869out_err:
870	return ret;
871}
872EXPORT_SYMBOL_GPL(nfs_lock);
873
874/*
875 * Lock a (portion of) a file
876 */
877int nfs_flock(struct file *filp, int cmd, struct file_lock *fl)
878{
879	struct inode *inode = filp->f_mapping->host;
880	int is_local = 0;
881
882	dprintk("NFS: flock(%pD2, t=%x, fl=%x)\n",
883			filp, fl->c.flc_type, fl->c.flc_flags);
884
885	if (!(fl->c.flc_flags & FL_FLOCK))
886		return -ENOLCK;
887
 
 
 
 
 
 
 
 
 
888	if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FLOCK)
889		is_local = 1;
890
891	/* We're simulating flock() locks using posix locks on the server */
892	if (lock_is_unlock(fl))
893		return do_unlk(filp, cmd, fl, is_local);
894	return do_setlk(filp, cmd, fl, is_local);
895}
896EXPORT_SYMBOL_GPL(nfs_flock);
897
898const struct file_operations nfs_file_operations = {
899	.llseek		= nfs_file_llseek,
900	.read_iter	= nfs_file_read,
901	.write_iter	= nfs_file_write,
902	.mmap		= nfs_file_mmap,
903	.open		= nfs_file_open,
904	.flush		= nfs_file_flush,
905	.release	= nfs_file_release,
906	.fsync		= nfs_file_fsync,
907	.lock		= nfs_lock,
908	.flock		= nfs_flock,
909	.splice_read	= nfs_file_splice_read,
910	.splice_write	= iter_file_splice_write,
911	.check_flags	= nfs_check_flags,
912	.setlease	= simple_nosetlease,
913};
914EXPORT_SYMBOL_GPL(nfs_file_operations);