Linux Audio

Check our new training course

Loading...
v4.10.11
 
   1/*
   2 *  linux/fs/buffer.c
   3 *
   4 *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
   5 */
   6
   7/*
   8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
   9 *
  10 * Removed a lot of unnecessary code and simplified things now that
  11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
  12 *
  13 * Speed up hash, lru, and free list operations.  Use gfp() for allocating
  14 * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
  15 *
  16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
  17 *
  18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
  19 */
  20
  21#include <linux/kernel.h>
 
  22#include <linux/syscalls.h>
  23#include <linux/fs.h>
  24#include <linux/iomap.h>
  25#include <linux/mm.h>
  26#include <linux/percpu.h>
  27#include <linux/slab.h>
  28#include <linux/capability.h>
  29#include <linux/blkdev.h>
  30#include <linux/file.h>
  31#include <linux/quotaops.h>
  32#include <linux/highmem.h>
  33#include <linux/export.h>
  34#include <linux/backing-dev.h>
  35#include <linux/writeback.h>
  36#include <linux/hash.h>
  37#include <linux/suspend.h>
  38#include <linux/buffer_head.h>
  39#include <linux/task_io_accounting_ops.h>
  40#include <linux/bio.h>
  41#include <linux/notifier.h>
  42#include <linux/cpu.h>
  43#include <linux/bitops.h>
  44#include <linux/mpage.h>
  45#include <linux/bit_spinlock.h>
  46#include <linux/pagevec.h>
 
  47#include <trace/events/block.h>
 
 
 
  48
  49static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
  50static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
  51			 unsigned long bio_flags,
  52			 struct writeback_control *wbc);
  53
  54#define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
  55
  56void init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
  57{
  58	bh->b_end_io = handler;
  59	bh->b_private = private;
  60}
  61EXPORT_SYMBOL(init_buffer);
  62
  63inline void touch_buffer(struct buffer_head *bh)
  64{
  65	trace_block_touch_buffer(bh);
  66	mark_page_accessed(bh->b_page);
  67}
  68EXPORT_SYMBOL(touch_buffer);
  69
  70void __lock_buffer(struct buffer_head *bh)
  71{
  72	wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
  73}
  74EXPORT_SYMBOL(__lock_buffer);
  75
  76void unlock_buffer(struct buffer_head *bh)
  77{
  78	clear_bit_unlock(BH_Lock, &bh->b_state);
  79	smp_mb__after_atomic();
  80	wake_up_bit(&bh->b_state, BH_Lock);
  81}
  82EXPORT_SYMBOL(unlock_buffer);
  83
  84/*
  85 * Returns if the page has dirty or writeback buffers. If all the buffers
  86 * are unlocked and clean then the PageDirty information is stale. If
  87 * any of the pages are locked, it is assumed they are locked for IO.
  88 */
  89void buffer_check_dirty_writeback(struct page *page,
  90				     bool *dirty, bool *writeback)
  91{
  92	struct buffer_head *head, *bh;
  93	*dirty = false;
  94	*writeback = false;
  95
  96	BUG_ON(!PageLocked(page));
  97
  98	if (!page_has_buffers(page))
 
  99		return;
 100
 101	if (PageWriteback(page))
 102		*writeback = true;
 103
 104	head = page_buffers(page);
 105	bh = head;
 106	do {
 107		if (buffer_locked(bh))
 108			*writeback = true;
 109
 110		if (buffer_dirty(bh))
 111			*dirty = true;
 112
 113		bh = bh->b_this_page;
 114	} while (bh != head);
 115}
 116EXPORT_SYMBOL(buffer_check_dirty_writeback);
 117
 118/*
 119 * Block until a buffer comes unlocked.  This doesn't stop it
 120 * from becoming locked again - you have to lock it yourself
 121 * if you want to preserve its state.
 122 */
 123void __wait_on_buffer(struct buffer_head * bh)
 124{
 125	wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
 126}
 127EXPORT_SYMBOL(__wait_on_buffer);
 128
 129static void
 130__clear_page_buffers(struct page *page)
 131{
 132	ClearPagePrivate(page);
 133	set_page_private(page, 0);
 134	put_page(page);
 135}
 136
 137static void buffer_io_error(struct buffer_head *bh, char *msg)
 138{
 139	if (!test_bit(BH_Quiet, &bh->b_state))
 140		printk_ratelimited(KERN_ERR
 141			"Buffer I/O error on dev %pg, logical block %llu%s\n",
 142			bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
 143}
 144
 145/*
 146 * End-of-IO handler helper function which does not touch the bh after
 147 * unlocking it.
 148 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
 149 * a race there is benign: unlock_buffer() only use the bh's address for
 150 * hashing after unlocking the buffer, so it doesn't actually touch the bh
 151 * itself.
 152 */
 153static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
 154{
 155	if (uptodate) {
 156		set_buffer_uptodate(bh);
 157	} else {
 158		/* This happens, due to failed read-ahead attempts. */
 159		clear_buffer_uptodate(bh);
 160	}
 161	unlock_buffer(bh);
 162}
 163
 164/*
 165 * Default synchronous end-of-IO handler..  Just mark it up-to-date and
 166 * unlock the buffer. This is what ll_rw_block uses too.
 167 */
 168void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
 169{
 170	__end_buffer_read_notouch(bh, uptodate);
 171	put_bh(bh);
 172}
 173EXPORT_SYMBOL(end_buffer_read_sync);
 174
 175void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
 176{
 177	if (uptodate) {
 178		set_buffer_uptodate(bh);
 179	} else {
 180		buffer_io_error(bh, ", lost sync page write");
 181		set_buffer_write_io_error(bh);
 182		clear_buffer_uptodate(bh);
 183	}
 184	unlock_buffer(bh);
 185	put_bh(bh);
 186}
 187EXPORT_SYMBOL(end_buffer_write_sync);
 188
 189/*
 190 * Various filesystems appear to want __find_get_block to be non-blocking.
 191 * But it's the page lock which protects the buffers.  To get around this,
 192 * we get exclusion from try_to_free_buffers with the blockdev mapping's
 193 * private_lock.
 194 *
 195 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
 196 * may be quite high.  This code could TryLock the page, and if that
 197 * succeeds, there is no need to take private_lock. (But if
 198 * private_lock is contended then so is mapping->tree_lock).
 199 */
 200static struct buffer_head *
 201__find_get_block_slow(struct block_device *bdev, sector_t block)
 202{
 203	struct inode *bd_inode = bdev->bd_inode;
 204	struct address_space *bd_mapping = bd_inode->i_mapping;
 205	struct buffer_head *ret = NULL;
 206	pgoff_t index;
 207	struct buffer_head *bh;
 208	struct buffer_head *head;
 209	struct page *page;
 210	int all_mapped = 1;
 
 211
 212	index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
 213	page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED);
 214	if (!page)
 215		goto out;
 216
 217	spin_lock(&bd_mapping->private_lock);
 218	if (!page_has_buffers(page))
 219		goto out_unlock;
 220	head = page_buffers(page);
 221	bh = head;
 222	do {
 223		if (!buffer_mapped(bh))
 224			all_mapped = 0;
 225		else if (bh->b_blocknr == block) {
 226			ret = bh;
 227			get_bh(bh);
 228			goto out_unlock;
 229		}
 230		bh = bh->b_this_page;
 231	} while (bh != head);
 232
 233	/* we might be here because some of the buffers on this page are
 234	 * not mapped.  This is due to various races between
 235	 * file io on the block device and getblk.  It gets dealt with
 236	 * elsewhere, don't buffer_error if we had some unmapped buffers
 237	 */
 238	if (all_mapped) {
 239		printk("__find_get_block_slow() failed. "
 240			"block=%llu, b_blocknr=%llu\n",
 241			(unsigned long long)block,
 242			(unsigned long long)bh->b_blocknr);
 243		printk("b_state=0x%08lx, b_size=%zu\n",
 244			bh->b_state, bh->b_size);
 245		printk("device %pg blocksize: %d\n", bdev,
 246			1 << bd_inode->i_blkbits);
 247	}
 248out_unlock:
 249	spin_unlock(&bd_mapping->private_lock);
 250	put_page(page);
 251out:
 252	return ret;
 253}
 254
 255/*
 256 * Kick the writeback threads then try to free up some ZONE_NORMAL memory.
 257 */
 258static void free_more_memory(void)
 259{
 260	struct zoneref *z;
 261	int nid;
 262
 263	wakeup_flusher_threads(1024, WB_REASON_FREE_MORE_MEM);
 264	yield();
 265
 266	for_each_online_node(nid) {
 267
 268		z = first_zones_zonelist(node_zonelist(nid, GFP_NOFS),
 269						gfp_zone(GFP_NOFS), NULL);
 270		if (z->zone)
 271			try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0,
 272						GFP_NOFS, NULL);
 273	}
 274}
 275
 276/*
 277 * I/O completion handler for block_read_full_page() - pages
 278 * which come unlocked at the end of I/O.
 279 */
 280static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
 281{
 282	unsigned long flags;
 283	struct buffer_head *first;
 284	struct buffer_head *tmp;
 285	struct page *page;
 286	int page_uptodate = 1;
 287
 288	BUG_ON(!buffer_async_read(bh));
 289
 290	page = bh->b_page;
 291	if (uptodate) {
 292		set_buffer_uptodate(bh);
 293	} else {
 294		clear_buffer_uptodate(bh);
 295		buffer_io_error(bh, ", async page read");
 296		SetPageError(page);
 297	}
 298
 299	/*
 300	 * Be _very_ careful from here on. Bad things can happen if
 301	 * two buffer heads end IO at almost the same time and both
 302	 * decide that the page is now completely done.
 303	 */
 304	first = page_buffers(page);
 305	local_irq_save(flags);
 306	bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
 307	clear_buffer_async_read(bh);
 308	unlock_buffer(bh);
 309	tmp = bh;
 310	do {
 311		if (!buffer_uptodate(tmp))
 312			page_uptodate = 0;
 313		if (buffer_async_read(tmp)) {
 314			BUG_ON(!buffer_locked(tmp));
 315			goto still_busy;
 316		}
 317		tmp = tmp->b_this_page;
 318	} while (tmp != bh);
 319	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
 320	local_irq_restore(flags);
 321
 322	/*
 323	 * If none of the buffers had errors and they are all
 324	 * uptodate then we can set the page uptodate.
 325	 */
 326	if (page_uptodate && !PageError(page))
 327		SetPageUptodate(page);
 328	unlock_page(page);
 329	return;
 330
 331still_busy:
 332	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
 333	local_irq_restore(flags);
 334	return;
 335}
 336
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 337/*
 338 * Completion handler for block_write_full_page() - pages which are unlocked
 339 * during I/O, and which have PageWriteback cleared upon I/O completion.
 340 */
 341void end_buffer_async_write(struct buffer_head *bh, int uptodate)
 342{
 343	unsigned long flags;
 344	struct buffer_head *first;
 345	struct buffer_head *tmp;
 346	struct page *page;
 347
 348	BUG_ON(!buffer_async_write(bh));
 349
 350	page = bh->b_page;
 351	if (uptodate) {
 352		set_buffer_uptodate(bh);
 353	} else {
 354		buffer_io_error(bh, ", lost async page write");
 355		mapping_set_error(page->mapping, -EIO);
 356		set_buffer_write_io_error(bh);
 357		clear_buffer_uptodate(bh);
 358		SetPageError(page);
 359	}
 360
 361	first = page_buffers(page);
 362	local_irq_save(flags);
 363	bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
 364
 365	clear_buffer_async_write(bh);
 366	unlock_buffer(bh);
 367	tmp = bh->b_this_page;
 368	while (tmp != bh) {
 369		if (buffer_async_write(tmp)) {
 370			BUG_ON(!buffer_locked(tmp));
 371			goto still_busy;
 372		}
 373		tmp = tmp->b_this_page;
 374	}
 375	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
 376	local_irq_restore(flags);
 377	end_page_writeback(page);
 378	return;
 379
 380still_busy:
 381	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
 382	local_irq_restore(flags);
 383	return;
 384}
 385EXPORT_SYMBOL(end_buffer_async_write);
 386
 387/*
 388 * If a page's buffers are under async readin (end_buffer_async_read
 389 * completion) then there is a possibility that another thread of
 390 * control could lock one of the buffers after it has completed
 391 * but while some of the other buffers have not completed.  This
 392 * locked buffer would confuse end_buffer_async_read() into not unlocking
 393 * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
 394 * that this buffer is not under async I/O.
 395 *
 396 * The page comes unlocked when it has no locked buffer_async buffers
 397 * left.
 398 *
 399 * PageLocked prevents anyone starting new async I/O reads any of
 400 * the buffers.
 401 *
 402 * PageWriteback is used to prevent simultaneous writeout of the same
 403 * page.
 404 *
 405 * PageLocked prevents anyone from starting writeback of a page which is
 406 * under read I/O (PageWriteback is only ever set against a locked page).
 407 */
 408static void mark_buffer_async_read(struct buffer_head *bh)
 409{
 410	bh->b_end_io = end_buffer_async_read;
 411	set_buffer_async_read(bh);
 412}
 413
 414static void mark_buffer_async_write_endio(struct buffer_head *bh,
 415					  bh_end_io_t *handler)
 416{
 417	bh->b_end_io = handler;
 418	set_buffer_async_write(bh);
 419}
 420
 421void mark_buffer_async_write(struct buffer_head *bh)
 422{
 423	mark_buffer_async_write_endio(bh, end_buffer_async_write);
 424}
 425EXPORT_SYMBOL(mark_buffer_async_write);
 426
 427
 428/*
 429 * fs/buffer.c contains helper functions for buffer-backed address space's
 430 * fsync functions.  A common requirement for buffer-based filesystems is
 431 * that certain data from the backing blockdev needs to be written out for
 432 * a successful fsync().  For example, ext2 indirect blocks need to be
 433 * written back and waited upon before fsync() returns.
 434 *
 435 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
 436 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
 437 * management of a list of dependent buffers at ->i_mapping->private_list.
 438 *
 439 * Locking is a little subtle: try_to_free_buffers() will remove buffers
 440 * from their controlling inode's queue when they are being freed.  But
 441 * try_to_free_buffers() will be operating against the *blockdev* mapping
 442 * at the time, not against the S_ISREG file which depends on those buffers.
 443 * So the locking for private_list is via the private_lock in the address_space
 444 * which backs the buffers.  Which is different from the address_space 
 445 * against which the buffers are listed.  So for a particular address_space,
 446 * mapping->private_lock does *not* protect mapping->private_list!  In fact,
 447 * mapping->private_list will always be protected by the backing blockdev's
 448 * ->private_lock.
 449 *
 450 * Which introduces a requirement: all buffers on an address_space's
 451 * ->private_list must be from the same address_space: the blockdev's.
 452 *
 453 * address_spaces which do not place buffers at ->private_list via these
 454 * utility functions are free to use private_lock and private_list for
 455 * whatever they want.  The only requirement is that list_empty(private_list)
 456 * be true at clear_inode() time.
 457 *
 458 * FIXME: clear_inode should not call invalidate_inode_buffers().  The
 459 * filesystems should do that.  invalidate_inode_buffers() should just go
 460 * BUG_ON(!list_empty).
 461 *
 462 * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
 463 * take an address_space, not an inode.  And it should be called
 464 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
 465 * queued up.
 466 *
 467 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
 468 * list if it is already on a list.  Because if the buffer is on a list,
 469 * it *must* already be on the right one.  If not, the filesystem is being
 470 * silly.  This will save a ton of locking.  But first we have to ensure
 471 * that buffers are taken *off* the old inode's list when they are freed
 472 * (presumably in truncate).  That requires careful auditing of all
 473 * filesystems (do it inside bforget()).  It could also be done by bringing
 474 * b_inode back.
 475 */
 476
 477/*
 478 * The buffer's backing address_space's private_lock must be held
 479 */
 480static void __remove_assoc_queue(struct buffer_head *bh)
 481{
 482	list_del_init(&bh->b_assoc_buffers);
 483	WARN_ON(!bh->b_assoc_map);
 484	if (buffer_write_io_error(bh))
 485		set_bit(AS_EIO, &bh->b_assoc_map->flags);
 486	bh->b_assoc_map = NULL;
 487}
 488
 489int inode_has_buffers(struct inode *inode)
 490{
 491	return !list_empty(&inode->i_data.private_list);
 492}
 493
 494/*
 495 * osync is designed to support O_SYNC io.  It waits synchronously for
 496 * all already-submitted IO to complete, but does not queue any new
 497 * writes to the disk.
 498 *
 499 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
 500 * you dirty the buffers, and then use osync_inode_buffers to wait for
 501 * completion.  Any other dirty buffers which are not yet queued for
 502 * write will not be flushed to disk by the osync.
 503 */
 504static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
 505{
 506	struct buffer_head *bh;
 507	struct list_head *p;
 508	int err = 0;
 509
 510	spin_lock(lock);
 511repeat:
 512	list_for_each_prev(p, list) {
 513		bh = BH_ENTRY(p);
 514		if (buffer_locked(bh)) {
 515			get_bh(bh);
 516			spin_unlock(lock);
 517			wait_on_buffer(bh);
 518			if (!buffer_uptodate(bh))
 519				err = -EIO;
 520			brelse(bh);
 521			spin_lock(lock);
 522			goto repeat;
 523		}
 524	}
 525	spin_unlock(lock);
 526	return err;
 527}
 528
 529static void do_thaw_one(struct super_block *sb, void *unused)
 530{
 531	while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
 532		printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev);
 533}
 534
 535static void do_thaw_all(struct work_struct *work)
 536{
 537	iterate_supers(do_thaw_one, NULL);
 538	kfree(work);
 539	printk(KERN_WARNING "Emergency Thaw complete\n");
 540}
 541
 542/**
 543 * emergency_thaw_all -- forcibly thaw every frozen filesystem
 544 *
 545 * Used for emergency unfreeze of all filesystems via SysRq
 546 */
 547void emergency_thaw_all(void)
 548{
 549	struct work_struct *work;
 550
 551	work = kmalloc(sizeof(*work), GFP_ATOMIC);
 552	if (work) {
 553		INIT_WORK(work, do_thaw_all);
 554		schedule_work(work);
 555	}
 556}
 557
 558/**
 559 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
 560 * @mapping: the mapping which wants those buffers written
 561 *
 562 * Starts I/O against the buffers at mapping->private_list, and waits upon
 563 * that I/O.
 564 *
 565 * Basically, this is a convenience function for fsync().
 566 * @mapping is a file or directory which needs those buffers to be written for
 567 * a successful fsync().
 568 */
 569int sync_mapping_buffers(struct address_space *mapping)
 570{
 571	struct address_space *buffer_mapping = mapping->private_data;
 572
 573	if (buffer_mapping == NULL || list_empty(&mapping->private_list))
 574		return 0;
 575
 576	return fsync_buffers_list(&buffer_mapping->private_lock,
 577					&mapping->private_list);
 578}
 579EXPORT_SYMBOL(sync_mapping_buffers);
 580
 581/*
 582 * Called when we've recently written block `bblock', and it is known that
 583 * `bblock' was for a buffer_boundary() buffer.  This means that the block at
 584 * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
 585 * dirty, schedule it for IO.  So that indirects merge nicely with their data.
 586 */
 587void write_boundary_block(struct block_device *bdev,
 588			sector_t bblock, unsigned blocksize)
 589{
 590	struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
 591	if (bh) {
 592		if (buffer_dirty(bh))
 593			ll_rw_block(REQ_OP_WRITE, 0, 1, &bh);
 594		put_bh(bh);
 595	}
 596}
 597
 598void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
 599{
 600	struct address_space *mapping = inode->i_mapping;
 601	struct address_space *buffer_mapping = bh->b_page->mapping;
 602
 603	mark_buffer_dirty(bh);
 604	if (!mapping->private_data) {
 605		mapping->private_data = buffer_mapping;
 606	} else {
 607		BUG_ON(mapping->private_data != buffer_mapping);
 608	}
 609	if (!bh->b_assoc_map) {
 610		spin_lock(&buffer_mapping->private_lock);
 611		list_move_tail(&bh->b_assoc_buffers,
 612				&mapping->private_list);
 613		bh->b_assoc_map = mapping;
 614		spin_unlock(&buffer_mapping->private_lock);
 615	}
 616}
 617EXPORT_SYMBOL(mark_buffer_dirty_inode);
 618
 619/*
 620 * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
 621 * dirty.
 622 *
 623 * If warn is true, then emit a warning if the page is not uptodate and has
 624 * not been truncated.
 625 *
 626 * The caller must hold lock_page_memcg().
 627 */
 628static void __set_page_dirty(struct page *page, struct address_space *mapping,
 629			     int warn)
 630{
 631	unsigned long flags;
 632
 633	spin_lock_irqsave(&mapping->tree_lock, flags);
 634	if (page->mapping) {	/* Race with truncate? */
 635		WARN_ON_ONCE(warn && !PageUptodate(page));
 636		account_page_dirtied(page, mapping);
 637		radix_tree_tag_set(&mapping->page_tree,
 638				page_index(page), PAGECACHE_TAG_DIRTY);
 639	}
 640	spin_unlock_irqrestore(&mapping->tree_lock, flags);
 641}
 642
 643/*
 644 * Add a page to the dirty page list.
 645 *
 646 * It is a sad fact of life that this function is called from several places
 647 * deeply under spinlocking.  It may not sleep.
 648 *
 649 * If the page has buffers, the uptodate buffers are set dirty, to preserve
 650 * dirty-state coherency between the page and the buffers.  It the page does
 651 * not have buffers then when they are later attached they will all be set
 652 * dirty.
 653 *
 654 * The buffers are dirtied before the page is dirtied.  There's a small race
 655 * window in which a writepage caller may see the page cleanness but not the
 656 * buffer dirtiness.  That's fine.  If this code were to set the page dirty
 657 * before the buffers, a concurrent writepage caller could clear the page dirty
 658 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
 659 * page on the dirty page list.
 660 *
 661 * We use private_lock to lock against try_to_free_buffers while using the
 662 * page's buffer list.  Also use this to protect against clean buffers being
 663 * added to the page after it was set dirty.
 664 *
 665 * FIXME: may need to call ->reservepage here as well.  That's rather up to the
 666 * address_space though.
 667 */
 668int __set_page_dirty_buffers(struct page *page)
 669{
 670	int newly_dirty;
 671	struct address_space *mapping = page_mapping(page);
 672
 673	if (unlikely(!mapping))
 674		return !TestSetPageDirty(page);
 675
 676	spin_lock(&mapping->private_lock);
 677	if (page_has_buffers(page)) {
 678		struct buffer_head *head = page_buffers(page);
 679		struct buffer_head *bh = head;
 680
 681		do {
 682			set_buffer_dirty(bh);
 683			bh = bh->b_this_page;
 684		} while (bh != head);
 685	}
 686	/*
 687	 * Lock out page->mem_cgroup migration to keep PageDirty
 688	 * synchronized with per-memcg dirty page counters.
 689	 */
 690	lock_page_memcg(page);
 691	newly_dirty = !TestSetPageDirty(page);
 692	spin_unlock(&mapping->private_lock);
 693
 694	if (newly_dirty)
 695		__set_page_dirty(page, mapping, 1);
 696
 697	unlock_page_memcg(page);
 698
 699	if (newly_dirty)
 700		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
 701
 702	return newly_dirty;
 703}
 704EXPORT_SYMBOL(__set_page_dirty_buffers);
 705
 706/*
 707 * Write out and wait upon a list of buffers.
 708 *
 709 * We have conflicting pressures: we want to make sure that all
 710 * initially dirty buffers get waited on, but that any subsequently
 711 * dirtied buffers don't.  After all, we don't want fsync to last
 712 * forever if somebody is actively writing to the file.
 713 *
 714 * Do this in two main stages: first we copy dirty buffers to a
 715 * temporary inode list, queueing the writes as we go.  Then we clean
 716 * up, waiting for those writes to complete.
 717 * 
 718 * During this second stage, any subsequent updates to the file may end
 719 * up refiling the buffer on the original inode's dirty list again, so
 720 * there is a chance we will end up with a buffer queued for write but
 721 * not yet completed on that list.  So, as a final cleanup we go through
 722 * the osync code to catch these locked, dirty buffers without requeuing
 723 * any newly dirty buffers for write.
 724 */
 725static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
 726{
 727	struct buffer_head *bh;
 728	struct list_head tmp;
 729	struct address_space *mapping;
 730	int err = 0, err2;
 731	struct blk_plug plug;
 732
 733	INIT_LIST_HEAD(&tmp);
 734	blk_start_plug(&plug);
 735
 736	spin_lock(lock);
 737	while (!list_empty(list)) {
 738		bh = BH_ENTRY(list->next);
 739		mapping = bh->b_assoc_map;
 740		__remove_assoc_queue(bh);
 741		/* Avoid race with mark_buffer_dirty_inode() which does
 742		 * a lockless check and we rely on seeing the dirty bit */
 743		smp_mb();
 744		if (buffer_dirty(bh) || buffer_locked(bh)) {
 745			list_add(&bh->b_assoc_buffers, &tmp);
 746			bh->b_assoc_map = mapping;
 747			if (buffer_dirty(bh)) {
 748				get_bh(bh);
 749				spin_unlock(lock);
 750				/*
 751				 * Ensure any pending I/O completes so that
 752				 * write_dirty_buffer() actually writes the
 753				 * current contents - it is a noop if I/O is
 754				 * still in flight on potentially older
 755				 * contents.
 756				 */
 757				write_dirty_buffer(bh, REQ_SYNC);
 758
 759				/*
 760				 * Kick off IO for the previous mapping. Note
 761				 * that we will not run the very last mapping,
 762				 * wait_on_buffer() will do that for us
 763				 * through sync_buffer().
 764				 */
 765				brelse(bh);
 766				spin_lock(lock);
 767			}
 768		}
 769	}
 770
 771	spin_unlock(lock);
 772	blk_finish_plug(&plug);
 773	spin_lock(lock);
 774
 775	while (!list_empty(&tmp)) {
 776		bh = BH_ENTRY(tmp.prev);
 777		get_bh(bh);
 778		mapping = bh->b_assoc_map;
 779		__remove_assoc_queue(bh);
 780		/* Avoid race with mark_buffer_dirty_inode() which does
 781		 * a lockless check and we rely on seeing the dirty bit */
 782		smp_mb();
 783		if (buffer_dirty(bh)) {
 784			list_add(&bh->b_assoc_buffers,
 785				 &mapping->private_list);
 786			bh->b_assoc_map = mapping;
 787		}
 788		spin_unlock(lock);
 789		wait_on_buffer(bh);
 790		if (!buffer_uptodate(bh))
 791			err = -EIO;
 792		brelse(bh);
 793		spin_lock(lock);
 794	}
 795	
 796	spin_unlock(lock);
 797	err2 = osync_buffers_list(lock, list);
 798	if (err)
 799		return err;
 800	else
 801		return err2;
 802}
 803
 804/*
 805 * Invalidate any and all dirty buffers on a given inode.  We are
 806 * probably unmounting the fs, but that doesn't mean we have already
 807 * done a sync().  Just drop the buffers from the inode list.
 808 *
 809 * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
 810 * assumes that all the buffers are against the blockdev.  Not true
 811 * for reiserfs.
 812 */
 813void invalidate_inode_buffers(struct inode *inode)
 814{
 815	if (inode_has_buffers(inode)) {
 816		struct address_space *mapping = &inode->i_data;
 817		struct list_head *list = &mapping->private_list;
 818		struct address_space *buffer_mapping = mapping->private_data;
 819
 820		spin_lock(&buffer_mapping->private_lock);
 821		while (!list_empty(list))
 822			__remove_assoc_queue(BH_ENTRY(list->next));
 823		spin_unlock(&buffer_mapping->private_lock);
 824	}
 825}
 826EXPORT_SYMBOL(invalidate_inode_buffers);
 827
 828/*
 829 * Remove any clean buffers from the inode's buffer list.  This is called
 830 * when we're trying to free the inode itself.  Those buffers can pin it.
 831 *
 832 * Returns true if all buffers were removed.
 833 */
 834int remove_inode_buffers(struct inode *inode)
 835{
 836	int ret = 1;
 837
 838	if (inode_has_buffers(inode)) {
 839		struct address_space *mapping = &inode->i_data;
 840		struct list_head *list = &mapping->private_list;
 841		struct address_space *buffer_mapping = mapping->private_data;
 842
 843		spin_lock(&buffer_mapping->private_lock);
 844		while (!list_empty(list)) {
 845			struct buffer_head *bh = BH_ENTRY(list->next);
 846			if (buffer_dirty(bh)) {
 847				ret = 0;
 848				break;
 849			}
 850			__remove_assoc_queue(bh);
 851		}
 852		spin_unlock(&buffer_mapping->private_lock);
 853	}
 854	return ret;
 855}
 856
 857/*
 858 * Create the appropriate buffers when given a page for data area and
 859 * the size of each buffer.. Use the bh->b_this_page linked list to
 860 * follow the buffers created.  Return NULL if unable to create more
 861 * buffers.
 862 *
 863 * The retry flag is used to differentiate async IO (paging, swapping)
 864 * which may not fail from ordinary buffer allocations.
 865 */
 866struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
 867		int retry)
 868{
 869	struct buffer_head *bh, *head;
 
 870	long offset;
 
 
 
 
 
 
 
 
 871
 872try_again:
 873	head = NULL;
 874	offset = PAGE_SIZE;
 875	while ((offset -= size) >= 0) {
 876		bh = alloc_buffer_head(GFP_NOFS);
 877		if (!bh)
 878			goto no_grow;
 879
 880		bh->b_this_page = head;
 881		bh->b_blocknr = -1;
 882		head = bh;
 883
 884		bh->b_size = size;
 885
 886		/* Link the buffer to its page */
 887		set_bh_page(bh, page, offset);
 888	}
 
 
 889	return head;
 890/*
 891 * In case anything failed, we just free everything we got.
 892 */
 893no_grow:
 894	if (head) {
 895		do {
 896			bh = head;
 897			head = head->b_this_page;
 898			free_buffer_head(bh);
 899		} while (head);
 900	}
 901
 902	/*
 903	 * Return failure for non-async IO requests.  Async IO requests
 904	 * are not allowed to fail, so we have to wait until buffer heads
 905	 * become available.  But we don't want tasks sleeping with 
 906	 * partially complete buffers, so all were released above.
 907	 */
 908	if (!retry)
 909		return NULL;
 910
 911	/* We're _really_ low on memory. Now we just
 912	 * wait for old buffer heads to become free due to
 913	 * finishing IO.  Since this is an async request and
 914	 * the reserve list is empty, we're sure there are 
 915	 * async buffer heads in use.
 916	 */
 917	free_more_memory();
 918	goto try_again;
 919}
 920EXPORT_SYMBOL_GPL(alloc_page_buffers);
 921
 922static inline void
 923link_dev_buffers(struct page *page, struct buffer_head *head)
 924{
 925	struct buffer_head *bh, *tail;
 926
 927	bh = head;
 928	do {
 929		tail = bh;
 930		bh = bh->b_this_page;
 931	} while (bh);
 932	tail->b_this_page = head;
 933	attach_page_buffers(page, head);
 934}
 935
 936static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
 937{
 938	sector_t retval = ~((sector_t)0);
 939	loff_t sz = i_size_read(bdev->bd_inode);
 940
 941	if (sz) {
 942		unsigned int sizebits = blksize_bits(size);
 943		retval = (sz >> sizebits);
 944	}
 945	return retval;
 946}
 947
 948/*
 949 * Initialise the state of a blockdev page's buffers.
 950 */ 
 951static sector_t
 952init_page_buffers(struct page *page, struct block_device *bdev,
 953			sector_t block, int size)
 954{
 955	struct buffer_head *head = page_buffers(page);
 956	struct buffer_head *bh = head;
 957	int uptodate = PageUptodate(page);
 958	sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size);
 959
 960	do {
 961		if (!buffer_mapped(bh)) {
 962			init_buffer(bh, NULL, NULL);
 
 963			bh->b_bdev = bdev;
 964			bh->b_blocknr = block;
 965			if (uptodate)
 966				set_buffer_uptodate(bh);
 967			if (block < end_block)
 968				set_buffer_mapped(bh);
 969		}
 970		block++;
 971		bh = bh->b_this_page;
 972	} while (bh != head);
 973
 974	/*
 975	 * Caller needs to validate requested block against end of device.
 976	 */
 977	return end_block;
 978}
 979
 980/*
 981 * Create the page-cache page that contains the requested block.
 982 *
 983 * This is used purely for blockdev mappings.
 984 */
 985static int
 986grow_dev_page(struct block_device *bdev, sector_t block,
 987	      pgoff_t index, int size, int sizebits, gfp_t gfp)
 988{
 989	struct inode *inode = bdev->bd_inode;
 990	struct page *page;
 991	struct buffer_head *bh;
 992	sector_t end_block;
 993	int ret = 0;		/* Will call free_more_memory() */
 994	gfp_t gfp_mask;
 995
 996	gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp;
 997
 998	/*
 999	 * XXX: __getblk_slow() can not really deal with failure and
1000	 * will endlessly loop on improvised global reclaim.  Prefer
1001	 * looping in the allocator rather than here, at least that
1002	 * code knows what it's doing.
1003	 */
1004	gfp_mask |= __GFP_NOFAIL;
1005
1006	page = find_or_create_page(inode->i_mapping, index, gfp_mask);
1007	if (!page)
1008		return ret;
1009
1010	BUG_ON(!PageLocked(page));
1011
1012	if (page_has_buffers(page)) {
1013		bh = page_buffers(page);
1014		if (bh->b_size == size) {
1015			end_block = init_page_buffers(page, bdev,
1016						(sector_t)index << sizebits,
1017						size);
1018			goto done;
1019		}
1020		if (!try_to_free_buffers(page))
1021			goto failed;
1022	}
1023
1024	/*
1025	 * Allocate some buffers for this page
1026	 */
1027	bh = alloc_page_buffers(page, size, 0);
1028	if (!bh)
1029		goto failed;
1030
1031	/*
1032	 * Link the page to the buffers and initialise them.  Take the
1033	 * lock to be atomic wrt __find_get_block(), which does not
1034	 * run under the page lock.
1035	 */
1036	spin_lock(&inode->i_mapping->private_lock);
1037	link_dev_buffers(page, bh);
1038	end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits,
1039			size);
1040	spin_unlock(&inode->i_mapping->private_lock);
1041done:
1042	ret = (block < end_block) ? 1 : -ENXIO;
1043failed:
1044	unlock_page(page);
1045	put_page(page);
1046	return ret;
1047}
1048
1049/*
1050 * Create buffers for the specified block device block's page.  If
1051 * that page was dirty, the buffers are set dirty also.
1052 */
1053static int
1054grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp)
1055{
1056	pgoff_t index;
1057	int sizebits;
1058
1059	sizebits = -1;
1060	do {
1061		sizebits++;
1062	} while ((size << sizebits) < PAGE_SIZE);
1063
1064	index = block >> sizebits;
1065
1066	/*
1067	 * Check for a block which wants to lie outside our maximum possible
1068	 * pagecache index.  (this comparison is done using sector_t types).
1069	 */
1070	if (unlikely(index != block >> sizebits)) {
1071		printk(KERN_ERR "%s: requested out-of-range block %llu for "
1072			"device %pg\n",
1073			__func__, (unsigned long long)block,
1074			bdev);
1075		return -EIO;
1076	}
1077
1078	/* Create a page with the proper size buffers.. */
1079	return grow_dev_page(bdev, block, index, size, sizebits, gfp);
1080}
1081
1082static struct buffer_head *
1083__getblk_slow(struct block_device *bdev, sector_t block,
1084	     unsigned size, gfp_t gfp)
1085{
1086	/* Size must be multiple of hard sectorsize */
1087	if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1088			(size < 512 || size > PAGE_SIZE))) {
1089		printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1090					size);
1091		printk(KERN_ERR "logical block size: %d\n",
1092					bdev_logical_block_size(bdev));
1093
1094		dump_stack();
1095		return NULL;
1096	}
1097
1098	for (;;) {
1099		struct buffer_head *bh;
1100		int ret;
1101
1102		bh = __find_get_block(bdev, block, size);
1103		if (bh)
1104			return bh;
1105
1106		ret = grow_buffers(bdev, block, size, gfp);
1107		if (ret < 0)
1108			return NULL;
1109		if (ret == 0)
1110			free_more_memory();
1111	}
1112}
1113
1114/*
1115 * The relationship between dirty buffers and dirty pages:
1116 *
1117 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1118 * the page is tagged dirty in its radix tree.
1119 *
1120 * At all times, the dirtiness of the buffers represents the dirtiness of
1121 * subsections of the page.  If the page has buffers, the page dirty bit is
1122 * merely a hint about the true dirty state.
1123 *
1124 * When a page is set dirty in its entirety, all its buffers are marked dirty
1125 * (if the page has buffers).
1126 *
1127 * When a buffer is marked dirty, its page is dirtied, but the page's other
1128 * buffers are not.
1129 *
1130 * Also.  When blockdev buffers are explicitly read with bread(), they
1131 * individually become uptodate.  But their backing page remains not
1132 * uptodate - even if all of its buffers are uptodate.  A subsequent
1133 * block_read_full_page() against that page will discover all the uptodate
1134 * buffers, will set the page uptodate and will perform no I/O.
1135 */
1136
1137/**
1138 * mark_buffer_dirty - mark a buffer_head as needing writeout
1139 * @bh: the buffer_head to mark dirty
1140 *
1141 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1142 * backing page dirty, then tag the page as dirty in its address_space's radix
1143 * tree and then attach the address_space's inode to its superblock's dirty
1144 * inode list.
1145 *
1146 * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1147 * mapping->tree_lock and mapping->host->i_lock.
1148 */
1149void mark_buffer_dirty(struct buffer_head *bh)
1150{
1151	WARN_ON_ONCE(!buffer_uptodate(bh));
1152
1153	trace_block_dirty_buffer(bh);
1154
1155	/*
1156	 * Very *carefully* optimize the it-is-already-dirty case.
1157	 *
1158	 * Don't let the final "is it dirty" escape to before we
1159	 * perhaps modified the buffer.
1160	 */
1161	if (buffer_dirty(bh)) {
1162		smp_mb();
1163		if (buffer_dirty(bh))
1164			return;
1165	}
1166
1167	if (!test_set_buffer_dirty(bh)) {
1168		struct page *page = bh->b_page;
1169		struct address_space *mapping = NULL;
1170
1171		lock_page_memcg(page);
1172		if (!TestSetPageDirty(page)) {
1173			mapping = page_mapping(page);
1174			if (mapping)
1175				__set_page_dirty(page, mapping, 0);
1176		}
1177		unlock_page_memcg(page);
1178		if (mapping)
1179			__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1180	}
1181}
1182EXPORT_SYMBOL(mark_buffer_dirty);
1183
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1184/*
1185 * Decrement a buffer_head's reference count.  If all buffers against a page
1186 * have zero reference count, are clean and unlocked, and if the page is clean
1187 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1188 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1189 * a page but it ends up not being freed, and buffers may later be reattached).
1190 */
1191void __brelse(struct buffer_head * buf)
1192{
1193	if (atomic_read(&buf->b_count)) {
1194		put_bh(buf);
1195		return;
1196	}
1197	WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1198}
1199EXPORT_SYMBOL(__brelse);
1200
1201/*
1202 * bforget() is like brelse(), except it discards any
1203 * potentially dirty data.
1204 */
1205void __bforget(struct buffer_head *bh)
1206{
1207	clear_buffer_dirty(bh);
1208	if (bh->b_assoc_map) {
1209		struct address_space *buffer_mapping = bh->b_page->mapping;
1210
1211		spin_lock(&buffer_mapping->private_lock);
1212		list_del_init(&bh->b_assoc_buffers);
1213		bh->b_assoc_map = NULL;
1214		spin_unlock(&buffer_mapping->private_lock);
1215	}
1216	__brelse(bh);
1217}
1218EXPORT_SYMBOL(__bforget);
1219
1220static struct buffer_head *__bread_slow(struct buffer_head *bh)
1221{
1222	lock_buffer(bh);
1223	if (buffer_uptodate(bh)) {
1224		unlock_buffer(bh);
1225		return bh;
1226	} else {
1227		get_bh(bh);
1228		bh->b_end_io = end_buffer_read_sync;
1229		submit_bh(REQ_OP_READ, 0, bh);
1230		wait_on_buffer(bh);
1231		if (buffer_uptodate(bh))
1232			return bh;
1233	}
1234	brelse(bh);
1235	return NULL;
1236}
1237
1238/*
1239 * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1240 * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1241 * refcount elevated by one when they're in an LRU.  A buffer can only appear
1242 * once in a particular CPU's LRU.  A single buffer can be present in multiple
1243 * CPU's LRUs at the same time.
1244 *
1245 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1246 * sb_find_get_block().
1247 *
1248 * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1249 * a local interrupt disable for that.
1250 */
1251
1252#define BH_LRU_SIZE	16
1253
1254struct bh_lru {
1255	struct buffer_head *bhs[BH_LRU_SIZE];
1256};
1257
1258static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1259
1260#ifdef CONFIG_SMP
1261#define bh_lru_lock()	local_irq_disable()
1262#define bh_lru_unlock()	local_irq_enable()
1263#else
1264#define bh_lru_lock()	preempt_disable()
1265#define bh_lru_unlock()	preempt_enable()
1266#endif
1267
1268static inline void check_irqs_on(void)
1269{
1270#ifdef irqs_disabled
1271	BUG_ON(irqs_disabled());
1272#endif
1273}
1274
1275/*
1276 * The LRU management algorithm is dopey-but-simple.  Sorry.
 
 
1277 */
1278static void bh_lru_install(struct buffer_head *bh)
1279{
1280	struct buffer_head *evictee = NULL;
 
 
1281
1282	check_irqs_on();
1283	bh_lru_lock();
1284	if (__this_cpu_read(bh_lrus.bhs[0]) != bh) {
1285		struct buffer_head *bhs[BH_LRU_SIZE];
1286		int in;
1287		int out = 0;
1288
1289		get_bh(bh);
1290		bhs[out++] = bh;
1291		for (in = 0; in < BH_LRU_SIZE; in++) {
1292			struct buffer_head *bh2 =
1293				__this_cpu_read(bh_lrus.bhs[in]);
 
 
 
 
 
1294
1295			if (bh2 == bh) {
1296				__brelse(bh2);
1297			} else {
1298				if (out >= BH_LRU_SIZE) {
1299					BUG_ON(evictee != NULL);
1300					evictee = bh2;
1301				} else {
1302					bhs[out++] = bh2;
1303				}
1304			}
1305		}
1306		while (out < BH_LRU_SIZE)
1307			bhs[out++] = NULL;
1308		memcpy(this_cpu_ptr(&bh_lrus.bhs), bhs, sizeof(bhs));
1309	}
1310	bh_lru_unlock();
1311
1312	if (evictee)
1313		__brelse(evictee);
 
1314}
1315
1316/*
1317 * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1318 */
1319static struct buffer_head *
1320lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1321{
1322	struct buffer_head *ret = NULL;
1323	unsigned int i;
1324
1325	check_irqs_on();
1326	bh_lru_lock();
1327	for (i = 0; i < BH_LRU_SIZE; i++) {
1328		struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1329
1330		if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1331		    bh->b_size == size) {
1332			if (i) {
1333				while (i) {
1334					__this_cpu_write(bh_lrus.bhs[i],
1335						__this_cpu_read(bh_lrus.bhs[i - 1]));
1336					i--;
1337				}
1338				__this_cpu_write(bh_lrus.bhs[0], bh);
1339			}
1340			get_bh(bh);
1341			ret = bh;
1342			break;
1343		}
1344	}
1345	bh_lru_unlock();
1346	return ret;
1347}
1348
1349/*
1350 * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1351 * it in the LRU and mark it as accessed.  If it is not present then return
1352 * NULL
1353 */
1354struct buffer_head *
1355__find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1356{
1357	struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1358
1359	if (bh == NULL) {
1360		/* __find_get_block_slow will mark the page accessed */
1361		bh = __find_get_block_slow(bdev, block);
1362		if (bh)
1363			bh_lru_install(bh);
1364	} else
1365		touch_buffer(bh);
1366
1367	return bh;
1368}
1369EXPORT_SYMBOL(__find_get_block);
1370
1371/*
1372 * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1373 * which corresponds to the passed block_device, block and size. The
1374 * returned buffer has its reference count incremented.
1375 *
1376 * __getblk_gfp() will lock up the machine if grow_dev_page's
1377 * try_to_free_buffers() attempt is failing.  FIXME, perhaps?
1378 */
1379struct buffer_head *
1380__getblk_gfp(struct block_device *bdev, sector_t block,
1381	     unsigned size, gfp_t gfp)
1382{
1383	struct buffer_head *bh = __find_get_block(bdev, block, size);
1384
1385	might_sleep();
1386	if (bh == NULL)
1387		bh = __getblk_slow(bdev, block, size, gfp);
1388	return bh;
1389}
1390EXPORT_SYMBOL(__getblk_gfp);
1391
1392/*
1393 * Do async read-ahead on a buffer..
1394 */
1395void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1396{
1397	struct buffer_head *bh = __getblk(bdev, block, size);
1398	if (likely(bh)) {
1399		ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh);
1400		brelse(bh);
1401	}
1402}
1403EXPORT_SYMBOL(__breadahead);
1404
1405/**
1406 *  __bread_gfp() - reads a specified block and returns the bh
1407 *  @bdev: the block_device to read from
1408 *  @block: number of block
1409 *  @size: size (in bytes) to read
1410 *  @gfp: page allocation flag
1411 *
1412 *  Reads a specified block, and returns buffer head that contains it.
1413 *  The page cache can be allocated from non-movable area
1414 *  not to prevent page migration if you set gfp to zero.
1415 *  It returns NULL if the block was unreadable.
1416 */
1417struct buffer_head *
1418__bread_gfp(struct block_device *bdev, sector_t block,
1419		   unsigned size, gfp_t gfp)
1420{
1421	struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1422
1423	if (likely(bh) && !buffer_uptodate(bh))
1424		bh = __bread_slow(bh);
1425	return bh;
1426}
1427EXPORT_SYMBOL(__bread_gfp);
1428
 
 
 
 
 
 
 
 
 
1429/*
1430 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1431 * This doesn't race because it runs in each cpu either in irq
1432 * or with preempt disabled.
1433 */
1434static void invalidate_bh_lru(void *arg)
1435{
1436	struct bh_lru *b = &get_cpu_var(bh_lrus);
1437	int i;
1438
1439	for (i = 0; i < BH_LRU_SIZE; i++) {
1440		brelse(b->bhs[i]);
1441		b->bhs[i] = NULL;
1442	}
1443	put_cpu_var(bh_lrus);
1444}
1445
1446static bool has_bh_in_lru(int cpu, void *dummy)
1447{
1448	struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1449	int i;
1450	
1451	for (i = 0; i < BH_LRU_SIZE; i++) {
1452		if (b->bhs[i])
1453			return 1;
1454	}
1455
1456	return 0;
1457}
1458
1459void invalidate_bh_lrus(void)
1460{
1461	on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL);
1462}
1463EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1464
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1465void set_bh_page(struct buffer_head *bh,
1466		struct page *page, unsigned long offset)
1467{
1468	bh->b_page = page;
1469	BUG_ON(offset >= PAGE_SIZE);
1470	if (PageHighMem(page))
1471		/*
1472		 * This catches illegal uses and preserves the offset:
1473		 */
1474		bh->b_data = (char *)(0 + offset);
1475	else
1476		bh->b_data = page_address(page) + offset;
1477}
1478EXPORT_SYMBOL(set_bh_page);
1479
1480/*
1481 * Called when truncating a buffer on a page completely.
1482 */
1483
1484/* Bits that are cleared during an invalidate */
1485#define BUFFER_FLAGS_DISCARD \
1486	(1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1487	 1 << BH_Delay | 1 << BH_Unwritten)
1488
1489static void discard_buffer(struct buffer_head * bh)
1490{
1491	unsigned long b_state, b_state_old;
1492
1493	lock_buffer(bh);
1494	clear_buffer_dirty(bh);
1495	bh->b_bdev = NULL;
1496	b_state = bh->b_state;
1497	for (;;) {
1498		b_state_old = cmpxchg(&bh->b_state, b_state,
1499				      (b_state & ~BUFFER_FLAGS_DISCARD));
1500		if (b_state_old == b_state)
1501			break;
1502		b_state = b_state_old;
1503	}
1504	unlock_buffer(bh);
1505}
1506
1507/**
1508 * block_invalidatepage - invalidate part or all of a buffer-backed page
1509 *
1510 * @page: the page which is affected
1511 * @offset: start of the range to invalidate
1512 * @length: length of the range to invalidate
1513 *
1514 * block_invalidatepage() is called when all or part of the page has become
1515 * invalidated by a truncate operation.
1516 *
1517 * block_invalidatepage() does not have to release all buffers, but it must
1518 * ensure that no dirty buffer is left outside @offset and that no I/O
1519 * is underway against any of the blocks which are outside the truncation
1520 * point.  Because the caller is about to free (and possibly reuse) those
1521 * blocks on-disk.
1522 */
1523void block_invalidatepage(struct page *page, unsigned int offset,
1524			  unsigned int length)
1525{
1526	struct buffer_head *head, *bh, *next;
1527	unsigned int curr_off = 0;
1528	unsigned int stop = length + offset;
1529
1530	BUG_ON(!PageLocked(page));
1531	if (!page_has_buffers(page))
1532		goto out;
1533
1534	/*
1535	 * Check for overflow
1536	 */
1537	BUG_ON(stop > PAGE_SIZE || stop < length);
 
 
 
 
1538
1539	head = page_buffers(page);
1540	bh = head;
1541	do {
1542		unsigned int next_off = curr_off + bh->b_size;
1543		next = bh->b_this_page;
1544
1545		/*
1546		 * Are we still fully in range ?
1547		 */
1548		if (next_off > stop)
1549			goto out;
1550
1551		/*
1552		 * is this block fully invalidated?
1553		 */
1554		if (offset <= curr_off)
1555			discard_buffer(bh);
1556		curr_off = next_off;
1557		bh = next;
1558	} while (bh != head);
1559
1560	/*
1561	 * We release buffers only if the entire page is being invalidated.
1562	 * The get_block cached value has been unconditionally invalidated,
1563	 * so real IO is not possible anymore.
1564	 */
1565	if (offset == 0)
1566		try_to_release_page(page, 0);
1567out:
1568	return;
1569}
1570EXPORT_SYMBOL(block_invalidatepage);
1571
1572
1573/*
1574 * We attach and possibly dirty the buffers atomically wrt
1575 * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1576 * is already excluded via the page lock.
1577 */
1578void create_empty_buffers(struct page *page,
1579			unsigned long blocksize, unsigned long b_state)
1580{
1581	struct buffer_head *bh, *head, *tail;
1582
1583	head = alloc_page_buffers(page, blocksize, 1);
1584	bh = head;
1585	do {
1586		bh->b_state |= b_state;
1587		tail = bh;
1588		bh = bh->b_this_page;
1589	} while (bh);
1590	tail->b_this_page = head;
1591
1592	spin_lock(&page->mapping->private_lock);
1593	if (PageUptodate(page) || PageDirty(page)) {
1594		bh = head;
1595		do {
1596			if (PageDirty(page))
1597				set_buffer_dirty(bh);
1598			if (PageUptodate(page))
1599				set_buffer_uptodate(bh);
1600			bh = bh->b_this_page;
1601		} while (bh != head);
1602	}
1603	attach_page_buffers(page, head);
1604	spin_unlock(&page->mapping->private_lock);
1605}
1606EXPORT_SYMBOL(create_empty_buffers);
1607
1608/**
1609 * clean_bdev_aliases: clean a range of buffers in block device
1610 * @bdev: Block device to clean buffers in
1611 * @block: Start of a range of blocks to clean
1612 * @len: Number of blocks to clean
1613 *
1614 * We are taking a range of blocks for data and we don't want writeback of any
1615 * buffer-cache aliases starting from return from this function and until the
1616 * moment when something will explicitly mark the buffer dirty (hopefully that
1617 * will not happen until we will free that block ;-) We don't even need to mark
1618 * it not-uptodate - nobody can expect anything from a newly allocated buffer
1619 * anyway. We used to use unmap_buffer() for such invalidation, but that was
1620 * wrong. We definitely don't want to mark the alias unmapped, for example - it
1621 * would confuse anyone who might pick it with bread() afterwards...
1622 *
1623 * Also..  Note that bforget() doesn't lock the buffer.  So there can be
1624 * writeout I/O going on against recently-freed buffers.  We don't wait on that
1625 * I/O in bforget() - it's more efficient to wait on the I/O only if we really
1626 * need to.  That happens here.
1627 */
1628void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len)
1629{
1630	struct inode *bd_inode = bdev->bd_inode;
1631	struct address_space *bd_mapping = bd_inode->i_mapping;
1632	struct pagevec pvec;
1633	pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
1634	pgoff_t end;
1635	int i;
1636	struct buffer_head *bh;
1637	struct buffer_head *head;
1638
1639	end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits);
1640	pagevec_init(&pvec, 0);
1641	while (index <= end && pagevec_lookup(&pvec, bd_mapping, index,
1642			min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1)) {
1643		for (i = 0; i < pagevec_count(&pvec); i++) {
1644			struct page *page = pvec.pages[i];
1645
1646			index = page->index;
1647			if (index > end)
1648				break;
1649			if (!page_has_buffers(page))
1650				continue;
1651			/*
1652			 * We use page lock instead of bd_mapping->private_lock
1653			 * to pin buffers here since we can afford to sleep and
1654			 * it scales better than a global spinlock lock.
1655			 */
1656			lock_page(page);
1657			/* Recheck when the page is locked which pins bhs */
1658			if (!page_has_buffers(page))
 
1659				goto unlock_page;
1660			head = page_buffers(page);
1661			bh = head;
1662			do {
1663				if (!buffer_mapped(bh) || (bh->b_blocknr < block))
1664					goto next;
1665				if (bh->b_blocknr >= block + len)
1666					break;
1667				clear_buffer_dirty(bh);
1668				wait_on_buffer(bh);
1669				clear_buffer_req(bh);
1670next:
1671				bh = bh->b_this_page;
1672			} while (bh != head);
1673unlock_page:
1674			unlock_page(page);
1675		}
1676		pagevec_release(&pvec);
1677		cond_resched();
1678		index++;
 
 
1679	}
1680}
1681EXPORT_SYMBOL(clean_bdev_aliases);
1682
1683/*
1684 * Size is a power-of-two in the range 512..PAGE_SIZE,
1685 * and the case we care about most is PAGE_SIZE.
1686 *
1687 * So this *could* possibly be written with those
1688 * constraints in mind (relevant mostly if some
1689 * architecture has a slow bit-scan instruction)
1690 */
1691static inline int block_size_bits(unsigned int blocksize)
1692{
1693	return ilog2(blocksize);
1694}
1695
1696static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1697{
1698	BUG_ON(!PageLocked(page));
1699
1700	if (!page_has_buffers(page))
1701		create_empty_buffers(page, 1 << ACCESS_ONCE(inode->i_blkbits), b_state);
 
1702	return page_buffers(page);
1703}
1704
1705/*
1706 * NOTE! All mapped/uptodate combinations are valid:
1707 *
1708 *	Mapped	Uptodate	Meaning
1709 *
1710 *	No	No		"unknown" - must do get_block()
1711 *	No	Yes		"hole" - zero-filled
1712 *	Yes	No		"allocated" - allocated on disk, not read in
1713 *	Yes	Yes		"valid" - allocated and up-to-date in memory.
1714 *
1715 * "Dirty" is valid only with the last case (mapped+uptodate).
1716 */
1717
1718/*
1719 * While block_write_full_page is writing back the dirty buffers under
1720 * the page lock, whoever dirtied the buffers may decide to clean them
1721 * again at any time.  We handle that by only looking at the buffer
1722 * state inside lock_buffer().
1723 *
1724 * If block_write_full_page() is called for regular writeback
1725 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1726 * locked buffer.   This only can happen if someone has written the buffer
1727 * directly, with submit_bh().  At the address_space level PageWriteback
1728 * prevents this contention from occurring.
1729 *
1730 * If block_write_full_page() is called with wbc->sync_mode ==
1731 * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
1732 * causes the writes to be flagged as synchronous writes.
1733 */
1734int __block_write_full_page(struct inode *inode, struct page *page,
1735			get_block_t *get_block, struct writeback_control *wbc,
1736			bh_end_io_t *handler)
1737{
1738	int err;
1739	sector_t block;
1740	sector_t last_block;
1741	struct buffer_head *bh, *head;
1742	unsigned int blocksize, bbits;
1743	int nr_underway = 0;
1744	int write_flags = wbc_to_write_flags(wbc);
1745
1746	head = create_page_buffers(page, inode,
1747					(1 << BH_Dirty)|(1 << BH_Uptodate));
1748
1749	/*
1750	 * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1751	 * here, and the (potentially unmapped) buffers may become dirty at
1752	 * any time.  If a buffer becomes dirty here after we've inspected it
1753	 * then we just miss that fact, and the page stays dirty.
1754	 *
1755	 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1756	 * handle that here by just cleaning them.
1757	 */
1758
1759	bh = head;
1760	blocksize = bh->b_size;
1761	bbits = block_size_bits(blocksize);
1762
1763	block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1764	last_block = (i_size_read(inode) - 1) >> bbits;
1765
1766	/*
1767	 * Get all the dirty buffers mapped to disk addresses and
1768	 * handle any aliases from the underlying blockdev's mapping.
1769	 */
1770	do {
1771		if (block > last_block) {
1772			/*
1773			 * mapped buffers outside i_size will occur, because
1774			 * this page can be outside i_size when there is a
1775			 * truncate in progress.
1776			 */
1777			/*
1778			 * The buffer was zeroed by block_write_full_page()
1779			 */
1780			clear_buffer_dirty(bh);
1781			set_buffer_uptodate(bh);
1782		} else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1783			   buffer_dirty(bh)) {
1784			WARN_ON(bh->b_size != blocksize);
1785			err = get_block(inode, block, bh, 1);
1786			if (err)
1787				goto recover;
1788			clear_buffer_delay(bh);
1789			if (buffer_new(bh)) {
1790				/* blockdev mappings never come here */
1791				clear_buffer_new(bh);
1792				clean_bdev_bh_alias(bh);
1793			}
1794		}
1795		bh = bh->b_this_page;
1796		block++;
1797	} while (bh != head);
1798
1799	do {
1800		if (!buffer_mapped(bh))
1801			continue;
1802		/*
1803		 * If it's a fully non-blocking write attempt and we cannot
1804		 * lock the buffer then redirty the page.  Note that this can
1805		 * potentially cause a busy-wait loop from writeback threads
1806		 * and kswapd activity, but those code paths have their own
1807		 * higher-level throttling.
1808		 */
1809		if (wbc->sync_mode != WB_SYNC_NONE) {
1810			lock_buffer(bh);
1811		} else if (!trylock_buffer(bh)) {
1812			redirty_page_for_writepage(wbc, page);
1813			continue;
1814		}
1815		if (test_clear_buffer_dirty(bh)) {
1816			mark_buffer_async_write_endio(bh, handler);
1817		} else {
1818			unlock_buffer(bh);
1819		}
1820	} while ((bh = bh->b_this_page) != head);
1821
1822	/*
1823	 * The page and its buffers are protected by PageWriteback(), so we can
1824	 * drop the bh refcounts early.
1825	 */
1826	BUG_ON(PageWriteback(page));
1827	set_page_writeback(page);
1828
1829	do {
1830		struct buffer_head *next = bh->b_this_page;
1831		if (buffer_async_write(bh)) {
1832			submit_bh_wbc(REQ_OP_WRITE, write_flags, bh, 0, wbc);
1833			nr_underway++;
1834		}
1835		bh = next;
1836	} while (bh != head);
1837	unlock_page(page);
1838
1839	err = 0;
1840done:
1841	if (nr_underway == 0) {
1842		/*
1843		 * The page was marked dirty, but the buffers were
1844		 * clean.  Someone wrote them back by hand with
1845		 * ll_rw_block/submit_bh.  A rare case.
1846		 */
1847		end_page_writeback(page);
1848
1849		/*
1850		 * The page and buffer_heads can be released at any time from
1851		 * here on.
1852		 */
1853	}
1854	return err;
1855
1856recover:
1857	/*
1858	 * ENOSPC, or some other error.  We may already have added some
1859	 * blocks to the file, so we need to write these out to avoid
1860	 * exposing stale data.
1861	 * The page is currently locked and not marked for writeback
1862	 */
1863	bh = head;
1864	/* Recovery: lock and submit the mapped buffers */
1865	do {
1866		if (buffer_mapped(bh) && buffer_dirty(bh) &&
1867		    !buffer_delay(bh)) {
1868			lock_buffer(bh);
1869			mark_buffer_async_write_endio(bh, handler);
1870		} else {
1871			/*
1872			 * The buffer may have been set dirty during
1873			 * attachment to a dirty page.
1874			 */
1875			clear_buffer_dirty(bh);
1876		}
1877	} while ((bh = bh->b_this_page) != head);
1878	SetPageError(page);
1879	BUG_ON(PageWriteback(page));
1880	mapping_set_error(page->mapping, err);
1881	set_page_writeback(page);
1882	do {
1883		struct buffer_head *next = bh->b_this_page;
1884		if (buffer_async_write(bh)) {
1885			clear_buffer_dirty(bh);
1886			submit_bh_wbc(REQ_OP_WRITE, write_flags, bh, 0, wbc);
1887			nr_underway++;
1888		}
1889		bh = next;
1890	} while (bh != head);
1891	unlock_page(page);
1892	goto done;
1893}
1894EXPORT_SYMBOL(__block_write_full_page);
1895
1896/*
1897 * If a page has any new buffers, zero them out here, and mark them uptodate
1898 * and dirty so they'll be written out (in order to prevent uninitialised
1899 * block data from leaking). And clear the new bit.
1900 */
1901void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1902{
1903	unsigned int block_start, block_end;
1904	struct buffer_head *head, *bh;
1905
1906	BUG_ON(!PageLocked(page));
1907	if (!page_has_buffers(page))
1908		return;
1909
1910	bh = head = page_buffers(page);
1911	block_start = 0;
1912	do {
1913		block_end = block_start + bh->b_size;
1914
1915		if (buffer_new(bh)) {
1916			if (block_end > from && block_start < to) {
1917				if (!PageUptodate(page)) {
1918					unsigned start, size;
1919
1920					start = max(from, block_start);
1921					size = min(to, block_end) - start;
1922
1923					zero_user(page, start, size);
1924					set_buffer_uptodate(bh);
1925				}
1926
1927				clear_buffer_new(bh);
1928				mark_buffer_dirty(bh);
1929			}
1930		}
1931
1932		block_start = block_end;
1933		bh = bh->b_this_page;
1934	} while (bh != head);
1935}
1936EXPORT_SYMBOL(page_zero_new_buffers);
1937
1938static void
1939iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
1940		struct iomap *iomap)
1941{
1942	loff_t offset = block << inode->i_blkbits;
1943
1944	bh->b_bdev = iomap->bdev;
1945
1946	/*
1947	 * Block points to offset in file we need to map, iomap contains
1948	 * the offset at which the map starts. If the map ends before the
1949	 * current block, then do not map the buffer and let the caller
1950	 * handle it.
1951	 */
1952	BUG_ON(offset >= iomap->offset + iomap->length);
1953
1954	switch (iomap->type) {
1955	case IOMAP_HOLE:
1956		/*
1957		 * If the buffer is not up to date or beyond the current EOF,
1958		 * we need to mark it as new to ensure sub-block zeroing is
1959		 * executed if necessary.
1960		 */
1961		if (!buffer_uptodate(bh) ||
1962		    (offset >= i_size_read(inode)))
1963			set_buffer_new(bh);
1964		break;
1965	case IOMAP_DELALLOC:
1966		if (!buffer_uptodate(bh) ||
1967		    (offset >= i_size_read(inode)))
1968			set_buffer_new(bh);
1969		set_buffer_uptodate(bh);
1970		set_buffer_mapped(bh);
1971		set_buffer_delay(bh);
1972		break;
1973	case IOMAP_UNWRITTEN:
1974		/*
1975		 * For unwritten regions, we always need to ensure that
1976		 * sub-block writes cause the regions in the block we are not
1977		 * writing to are zeroed. Set the buffer as new to ensure this.
1978		 */
1979		set_buffer_new(bh);
1980		set_buffer_unwritten(bh);
1981		/* FALLTHRU */
1982	case IOMAP_MAPPED:
1983		if (offset >= i_size_read(inode))
 
1984			set_buffer_new(bh);
1985		bh->b_blocknr = (iomap->blkno >> (inode->i_blkbits - 9)) +
1986				((offset - iomap->offset) >> inode->i_blkbits);
1987		set_buffer_mapped(bh);
1988		break;
1989	}
1990}
1991
1992int __block_write_begin_int(struct page *page, loff_t pos, unsigned len,
1993		get_block_t *get_block, struct iomap *iomap)
1994{
1995	unsigned from = pos & (PAGE_SIZE - 1);
1996	unsigned to = from + len;
1997	struct inode *inode = page->mapping->host;
1998	unsigned block_start, block_end;
1999	sector_t block;
2000	int err = 0;
2001	unsigned blocksize, bbits;
2002	struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
2003
2004	BUG_ON(!PageLocked(page));
2005	BUG_ON(from > PAGE_SIZE);
2006	BUG_ON(to > PAGE_SIZE);
2007	BUG_ON(from > to);
2008
2009	head = create_page_buffers(page, inode, 0);
2010	blocksize = head->b_size;
2011	bbits = block_size_bits(blocksize);
2012
2013	block = (sector_t)page->index << (PAGE_SHIFT - bbits);
2014
2015	for(bh = head, block_start = 0; bh != head || !block_start;
2016	    block++, block_start=block_end, bh = bh->b_this_page) {
2017		block_end = block_start + blocksize;
2018		if (block_end <= from || block_start >= to) {
2019			if (PageUptodate(page)) {
2020				if (!buffer_uptodate(bh))
2021					set_buffer_uptodate(bh);
2022			}
2023			continue;
2024		}
2025		if (buffer_new(bh))
2026			clear_buffer_new(bh);
2027		if (!buffer_mapped(bh)) {
2028			WARN_ON(bh->b_size != blocksize);
2029			if (get_block) {
2030				err = get_block(inode, block, bh, 1);
2031				if (err)
2032					break;
2033			} else {
2034				iomap_to_bh(inode, block, bh, iomap);
2035			}
2036
2037			if (buffer_new(bh)) {
2038				clean_bdev_bh_alias(bh);
2039				if (PageUptodate(page)) {
2040					clear_buffer_new(bh);
2041					set_buffer_uptodate(bh);
2042					mark_buffer_dirty(bh);
2043					continue;
2044				}
2045				if (block_end > to || block_start < from)
2046					zero_user_segments(page,
2047						to, block_end,
2048						block_start, from);
2049				continue;
2050			}
2051		}
2052		if (PageUptodate(page)) {
2053			if (!buffer_uptodate(bh))
2054				set_buffer_uptodate(bh);
2055			continue; 
2056		}
2057		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
2058		    !buffer_unwritten(bh) &&
2059		     (block_start < from || block_end > to)) {
2060			ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2061			*wait_bh++=bh;
2062		}
2063	}
2064	/*
2065	 * If we issued read requests - let them complete.
2066	 */
2067	while(wait_bh > wait) {
2068		wait_on_buffer(*--wait_bh);
2069		if (!buffer_uptodate(*wait_bh))
2070			err = -EIO;
2071	}
2072	if (unlikely(err))
2073		page_zero_new_buffers(page, from, to);
2074	return err;
2075}
2076
2077int __block_write_begin(struct page *page, loff_t pos, unsigned len,
2078		get_block_t *get_block)
2079{
2080	return __block_write_begin_int(page, pos, len, get_block, NULL);
 
2081}
2082EXPORT_SYMBOL(__block_write_begin);
2083
2084static int __block_commit_write(struct inode *inode, struct page *page,
2085		unsigned from, unsigned to)
2086{
2087	unsigned block_start, block_end;
2088	int partial = 0;
2089	unsigned blocksize;
2090	struct buffer_head *bh, *head;
2091
2092	bh = head = page_buffers(page);
2093	blocksize = bh->b_size;
2094
2095	block_start = 0;
2096	do {
2097		block_end = block_start + blocksize;
2098		if (block_end <= from || block_start >= to) {
2099			if (!buffer_uptodate(bh))
2100				partial = 1;
2101		} else {
2102			set_buffer_uptodate(bh);
2103			mark_buffer_dirty(bh);
2104		}
2105		clear_buffer_new(bh);
 
2106
2107		block_start = block_end;
2108		bh = bh->b_this_page;
2109	} while (bh != head);
2110
2111	/*
2112	 * If this is a partial write which happened to make all buffers
2113	 * uptodate then we can optimize away a bogus readpage() for
2114	 * the next read(). Here we 'discover' whether the page went
2115	 * uptodate as a result of this (potentially partial) write.
2116	 */
2117	if (!partial)
2118		SetPageUptodate(page);
2119	return 0;
2120}
2121
2122/*
2123 * block_write_begin takes care of the basic task of block allocation and
2124 * bringing partial write blocks uptodate first.
2125 *
2126 * The filesystem needs to handle block truncation upon failure.
2127 */
2128int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2129		unsigned flags, struct page **pagep, get_block_t *get_block)
2130{
2131	pgoff_t index = pos >> PAGE_SHIFT;
2132	struct page *page;
2133	int status;
2134
2135	page = grab_cache_page_write_begin(mapping, index, flags);
2136	if (!page)
2137		return -ENOMEM;
2138
2139	status = __block_write_begin(page, pos, len, get_block);
2140	if (unlikely(status)) {
2141		unlock_page(page);
2142		put_page(page);
2143		page = NULL;
2144	}
2145
2146	*pagep = page;
2147	return status;
2148}
2149EXPORT_SYMBOL(block_write_begin);
2150
2151int block_write_end(struct file *file, struct address_space *mapping,
2152			loff_t pos, unsigned len, unsigned copied,
2153			struct page *page, void *fsdata)
2154{
2155	struct inode *inode = mapping->host;
2156	unsigned start;
2157
2158	start = pos & (PAGE_SIZE - 1);
2159
2160	if (unlikely(copied < len)) {
2161		/*
2162		 * The buffers that were written will now be uptodate, so we
2163		 * don't have to worry about a readpage reading them and
2164		 * overwriting a partial write. However if we have encountered
2165		 * a short write and only partially written into a buffer, it
2166		 * will not be marked uptodate, so a readpage might come in and
2167		 * destroy our partial write.
2168		 *
2169		 * Do the simplest thing, and just treat any short write to a
2170		 * non uptodate page as a zero-length write, and force the
2171		 * caller to redo the whole thing.
2172		 */
2173		if (!PageUptodate(page))
2174			copied = 0;
2175
2176		page_zero_new_buffers(page, start+copied, start+len);
2177	}
2178	flush_dcache_page(page);
2179
2180	/* This could be a short (even 0-length) commit */
2181	__block_commit_write(inode, page, start, start+copied);
2182
2183	return copied;
2184}
2185EXPORT_SYMBOL(block_write_end);
2186
2187int generic_write_end(struct file *file, struct address_space *mapping,
2188			loff_t pos, unsigned len, unsigned copied,
2189			struct page *page, void *fsdata)
2190{
2191	struct inode *inode = mapping->host;
2192	loff_t old_size = inode->i_size;
2193	int i_size_changed = 0;
2194
2195	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2196
2197	/*
2198	 * No need to use i_size_read() here, the i_size
2199	 * cannot change under us because we hold i_mutex.
2200	 *
2201	 * But it's important to update i_size while still holding page lock:
2202	 * page writeout could otherwise come in and zero beyond i_size.
2203	 */
2204	if (pos+copied > inode->i_size) {
2205		i_size_write(inode, pos+copied);
2206		i_size_changed = 1;
2207	}
2208
2209	unlock_page(page);
2210	put_page(page);
2211
2212	if (old_size < pos)
2213		pagecache_isize_extended(inode, old_size, pos);
2214	/*
2215	 * Don't mark the inode dirty under page lock. First, it unnecessarily
2216	 * makes the holding time of page lock longer. Second, it forces lock
2217	 * ordering of page lock and transaction start for journaling
2218	 * filesystems.
2219	 */
2220	if (i_size_changed)
2221		mark_inode_dirty(inode);
2222
2223	return copied;
2224}
2225EXPORT_SYMBOL(generic_write_end);
2226
2227/*
2228 * block_is_partially_uptodate checks whether buffers within a page are
2229 * uptodate or not.
2230 *
2231 * Returns true if all buffers which correspond to a file portion
2232 * we want to read are uptodate.
2233 */
2234int block_is_partially_uptodate(struct page *page, unsigned long from,
2235					unsigned long count)
2236{
2237	unsigned block_start, block_end, blocksize;
2238	unsigned to;
2239	struct buffer_head *bh, *head;
2240	int ret = 1;
2241
2242	if (!page_has_buffers(page))
2243		return 0;
2244
2245	head = page_buffers(page);
 
 
2246	blocksize = head->b_size;
2247	to = min_t(unsigned, PAGE_SIZE - from, count);
2248	to = from + to;
2249	if (from < blocksize && to > PAGE_SIZE - blocksize)
2250		return 0;
2251
2252	bh = head;
2253	block_start = 0;
2254	do {
2255		block_end = block_start + blocksize;
2256		if (block_end > from && block_start < to) {
2257			if (!buffer_uptodate(bh)) {
2258				ret = 0;
2259				break;
2260			}
2261			if (block_end >= to)
2262				break;
2263		}
2264		block_start = block_end;
2265		bh = bh->b_this_page;
2266	} while (bh != head);
2267
2268	return ret;
2269}
2270EXPORT_SYMBOL(block_is_partially_uptodate);
2271
2272/*
2273 * Generic "read page" function for block devices that have the normal
2274 * get_block functionality. This is most of the block device filesystems.
2275 * Reads the page asynchronously --- the unlock_buffer() and
2276 * set/clear_buffer_uptodate() functions propagate buffer state into the
2277 * page struct once IO has completed.
2278 */
2279int block_read_full_page(struct page *page, get_block_t *get_block)
2280{
2281	struct inode *inode = page->mapping->host;
2282	sector_t iblock, lblock;
2283	struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2284	unsigned int blocksize, bbits;
2285	int nr, i;
2286	int fully_mapped = 1;
 
2287
2288	head = create_page_buffers(page, inode, 0);
 
 
2289	blocksize = head->b_size;
2290	bbits = block_size_bits(blocksize);
2291
2292	iblock = (sector_t)page->index << (PAGE_SHIFT - bbits);
2293	lblock = (i_size_read(inode)+blocksize-1) >> bbits;
2294	bh = head;
2295	nr = 0;
2296	i = 0;
2297
2298	do {
2299		if (buffer_uptodate(bh))
2300			continue;
2301
2302		if (!buffer_mapped(bh)) {
2303			int err = 0;
2304
2305			fully_mapped = 0;
2306			if (iblock < lblock) {
2307				WARN_ON(bh->b_size != blocksize);
2308				err = get_block(inode, iblock, bh, 0);
2309				if (err)
2310					SetPageError(page);
 
 
2311			}
2312			if (!buffer_mapped(bh)) {
2313				zero_user(page, i * blocksize, blocksize);
 
2314				if (!err)
2315					set_buffer_uptodate(bh);
2316				continue;
2317			}
2318			/*
2319			 * get_block() might have updated the buffer
2320			 * synchronously
2321			 */
2322			if (buffer_uptodate(bh))
2323				continue;
2324		}
2325		arr[nr++] = bh;
2326	} while (i++, iblock++, (bh = bh->b_this_page) != head);
2327
2328	if (fully_mapped)
2329		SetPageMappedToDisk(page);
2330
2331	if (!nr) {
2332		/*
2333		 * All buffers are uptodate - we can set the page uptodate
2334		 * as well. But not if get_block() returned an error.
2335		 */
2336		if (!PageError(page))
2337			SetPageUptodate(page);
2338		unlock_page(page);
2339		return 0;
2340	}
2341
2342	/* Stage two: lock the buffers */
2343	for (i = 0; i < nr; i++) {
2344		bh = arr[i];
2345		lock_buffer(bh);
2346		mark_buffer_async_read(bh);
2347	}
2348
2349	/*
2350	 * Stage 3: start the IO.  Check for uptodateness
2351	 * inside the buffer lock in case another process reading
2352	 * the underlying blockdev brought it uptodate (the sct fix).
2353	 */
2354	for (i = 0; i < nr; i++) {
2355		bh = arr[i];
2356		if (buffer_uptodate(bh))
2357			end_buffer_async_read(bh, 1);
2358		else
2359			submit_bh(REQ_OP_READ, 0, bh);
2360	}
2361	return 0;
2362}
2363EXPORT_SYMBOL(block_read_full_page);
2364
2365/* utility function for filesystems that need to do work on expanding
2366 * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2367 * deal with the hole.  
2368 */
2369int generic_cont_expand_simple(struct inode *inode, loff_t size)
2370{
2371	struct address_space *mapping = inode->i_mapping;
 
2372	struct page *page;
2373	void *fsdata;
2374	int err;
2375
2376	err = inode_newsize_ok(inode, size);
2377	if (err)
2378		goto out;
2379
2380	err = pagecache_write_begin(NULL, mapping, size, 0,
2381				AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND,
2382				&page, &fsdata);
2383	if (err)
2384		goto out;
2385
2386	err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2387	BUG_ON(err > 0);
2388
2389out:
2390	return err;
2391}
2392EXPORT_SYMBOL(generic_cont_expand_simple);
2393
2394static int cont_expand_zero(struct file *file, struct address_space *mapping,
2395			    loff_t pos, loff_t *bytes)
2396{
2397	struct inode *inode = mapping->host;
2398	unsigned blocksize = 1 << inode->i_blkbits;
 
2399	struct page *page;
2400	void *fsdata;
2401	pgoff_t index, curidx;
2402	loff_t curpos;
2403	unsigned zerofrom, offset, len;
2404	int err = 0;
2405
2406	index = pos >> PAGE_SHIFT;
2407	offset = pos & ~PAGE_MASK;
2408
2409	while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2410		zerofrom = curpos & ~PAGE_MASK;
2411		if (zerofrom & (blocksize-1)) {
2412			*bytes |= (blocksize-1);
2413			(*bytes)++;
2414		}
2415		len = PAGE_SIZE - zerofrom;
2416
2417		err = pagecache_write_begin(file, mapping, curpos, len,
2418						AOP_FLAG_UNINTERRUPTIBLE,
2419						&page, &fsdata);
2420		if (err)
2421			goto out;
2422		zero_user(page, zerofrom, len);
2423		err = pagecache_write_end(file, mapping, curpos, len, len,
2424						page, fsdata);
2425		if (err < 0)
2426			goto out;
2427		BUG_ON(err != len);
2428		err = 0;
2429
2430		balance_dirty_pages_ratelimited(mapping);
2431
2432		if (unlikely(fatal_signal_pending(current))) {
2433			err = -EINTR;
2434			goto out;
2435		}
2436	}
2437
2438	/* page covers the boundary, find the boundary offset */
2439	if (index == curidx) {
2440		zerofrom = curpos & ~PAGE_MASK;
2441		/* if we will expand the thing last block will be filled */
2442		if (offset <= zerofrom) {
2443			goto out;
2444		}
2445		if (zerofrom & (blocksize-1)) {
2446			*bytes |= (blocksize-1);
2447			(*bytes)++;
2448		}
2449		len = offset - zerofrom;
2450
2451		err = pagecache_write_begin(file, mapping, curpos, len,
2452						AOP_FLAG_UNINTERRUPTIBLE,
2453						&page, &fsdata);
2454		if (err)
2455			goto out;
2456		zero_user(page, zerofrom, len);
2457		err = pagecache_write_end(file, mapping, curpos, len, len,
2458						page, fsdata);
2459		if (err < 0)
2460			goto out;
2461		BUG_ON(err != len);
2462		err = 0;
2463	}
2464out:
2465	return err;
2466}
2467
2468/*
2469 * For moronic filesystems that do not allow holes in file.
2470 * We may have to extend the file.
2471 */
2472int cont_write_begin(struct file *file, struct address_space *mapping,
2473			loff_t pos, unsigned len, unsigned flags,
2474			struct page **pagep, void **fsdata,
2475			get_block_t *get_block, loff_t *bytes)
2476{
2477	struct inode *inode = mapping->host;
2478	unsigned blocksize = 1 << inode->i_blkbits;
2479	unsigned zerofrom;
2480	int err;
2481
2482	err = cont_expand_zero(file, mapping, pos, bytes);
2483	if (err)
2484		return err;
2485
2486	zerofrom = *bytes & ~PAGE_MASK;
2487	if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2488		*bytes |= (blocksize-1);
2489		(*bytes)++;
2490	}
2491
2492	return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2493}
2494EXPORT_SYMBOL(cont_write_begin);
2495
2496int block_commit_write(struct page *page, unsigned from, unsigned to)
2497{
2498	struct inode *inode = page->mapping->host;
2499	__block_commit_write(inode,page,from,to);
2500	return 0;
2501}
2502EXPORT_SYMBOL(block_commit_write);
2503
2504/*
2505 * block_page_mkwrite() is not allowed to change the file size as it gets
2506 * called from a page fault handler when a page is first dirtied. Hence we must
2507 * be careful to check for EOF conditions here. We set the page up correctly
2508 * for a written page which means we get ENOSPC checking when writing into
2509 * holes and correct delalloc and unwritten extent mapping on filesystems that
2510 * support these features.
2511 *
2512 * We are not allowed to take the i_mutex here so we have to play games to
2513 * protect against truncate races as the page could now be beyond EOF.  Because
2514 * truncate writes the inode size before removing pages, once we have the
2515 * page lock we can determine safely if the page is beyond EOF. If it is not
2516 * beyond EOF, then the page is guaranteed safe against truncation until we
2517 * unlock the page.
2518 *
2519 * Direct callers of this function should protect against filesystem freezing
2520 * using sb_start_pagefault() - sb_end_pagefault() functions.
2521 */
2522int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2523			 get_block_t get_block)
2524{
2525	struct page *page = vmf->page;
2526	struct inode *inode = file_inode(vma->vm_file);
2527	unsigned long end;
2528	loff_t size;
2529	int ret;
2530
2531	lock_page(page);
2532	size = i_size_read(inode);
2533	if ((page->mapping != inode->i_mapping) ||
2534	    (page_offset(page) > size)) {
2535		/* We overload EFAULT to mean page got truncated */
2536		ret = -EFAULT;
2537		goto out_unlock;
2538	}
2539
2540	/* page is wholly or partially inside EOF */
2541	if (((page->index + 1) << PAGE_SHIFT) > size)
2542		end = size & ~PAGE_MASK;
2543	else
2544		end = PAGE_SIZE;
2545
2546	ret = __block_write_begin(page, 0, end, get_block);
2547	if (!ret)
2548		ret = block_commit_write(page, 0, end);
2549
2550	if (unlikely(ret < 0))
2551		goto out_unlock;
2552	set_page_dirty(page);
2553	wait_for_stable_page(page);
2554	return 0;
2555out_unlock:
2556	unlock_page(page);
2557	return ret;
2558}
2559EXPORT_SYMBOL(block_page_mkwrite);
2560
2561/*
2562 * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2563 * immediately, while under the page lock.  So it needs a special end_io
2564 * handler which does not touch the bh after unlocking it.
2565 */
2566static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2567{
2568	__end_buffer_read_notouch(bh, uptodate);
2569}
2570
2571/*
2572 * Attach the singly-linked list of buffers created by nobh_write_begin, to
2573 * the page (converting it to circular linked list and taking care of page
2574 * dirty races).
2575 */
2576static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2577{
2578	struct buffer_head *bh;
2579
2580	BUG_ON(!PageLocked(page));
2581
2582	spin_lock(&page->mapping->private_lock);
2583	bh = head;
2584	do {
2585		if (PageDirty(page))
2586			set_buffer_dirty(bh);
2587		if (!bh->b_this_page)
2588			bh->b_this_page = head;
2589		bh = bh->b_this_page;
2590	} while (bh != head);
2591	attach_page_buffers(page, head);
2592	spin_unlock(&page->mapping->private_lock);
2593}
2594
2595/*
2596 * On entry, the page is fully not uptodate.
2597 * On exit the page is fully uptodate in the areas outside (from,to)
2598 * The filesystem needs to handle block truncation upon failure.
2599 */
2600int nobh_write_begin(struct address_space *mapping,
2601			loff_t pos, unsigned len, unsigned flags,
2602			struct page **pagep, void **fsdata,
2603			get_block_t *get_block)
2604{
2605	struct inode *inode = mapping->host;
2606	const unsigned blkbits = inode->i_blkbits;
2607	const unsigned blocksize = 1 << blkbits;
2608	struct buffer_head *head, *bh;
2609	struct page *page;
2610	pgoff_t index;
2611	unsigned from, to;
2612	unsigned block_in_page;
2613	unsigned block_start, block_end;
2614	sector_t block_in_file;
2615	int nr_reads = 0;
2616	int ret = 0;
2617	int is_mapped_to_disk = 1;
2618
2619	index = pos >> PAGE_SHIFT;
2620	from = pos & (PAGE_SIZE - 1);
2621	to = from + len;
2622
2623	page = grab_cache_page_write_begin(mapping, index, flags);
2624	if (!page)
2625		return -ENOMEM;
2626	*pagep = page;
2627	*fsdata = NULL;
2628
2629	if (page_has_buffers(page)) {
2630		ret = __block_write_begin(page, pos, len, get_block);
2631		if (unlikely(ret))
2632			goto out_release;
2633		return ret;
2634	}
2635
2636	if (PageMappedToDisk(page))
2637		return 0;
2638
2639	/*
2640	 * Allocate buffers so that we can keep track of state, and potentially
2641	 * attach them to the page if an error occurs. In the common case of
2642	 * no error, they will just be freed again without ever being attached
2643	 * to the page (which is all OK, because we're under the page lock).
2644	 *
2645	 * Be careful: the buffer linked list is a NULL terminated one, rather
2646	 * than the circular one we're used to.
2647	 */
2648	head = alloc_page_buffers(page, blocksize, 0);
2649	if (!head) {
2650		ret = -ENOMEM;
2651		goto out_release;
2652	}
2653
2654	block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
2655
2656	/*
2657	 * We loop across all blocks in the page, whether or not they are
2658	 * part of the affected region.  This is so we can discover if the
2659	 * page is fully mapped-to-disk.
2660	 */
2661	for (block_start = 0, block_in_page = 0, bh = head;
2662		  block_start < PAGE_SIZE;
2663		  block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2664		int create;
2665
2666		block_end = block_start + blocksize;
2667		bh->b_state = 0;
2668		create = 1;
2669		if (block_start >= to)
2670			create = 0;
2671		ret = get_block(inode, block_in_file + block_in_page,
2672					bh, create);
2673		if (ret)
2674			goto failed;
2675		if (!buffer_mapped(bh))
2676			is_mapped_to_disk = 0;
2677		if (buffer_new(bh))
2678			clean_bdev_bh_alias(bh);
2679		if (PageUptodate(page)) {
2680			set_buffer_uptodate(bh);
2681			continue;
2682		}
2683		if (buffer_new(bh) || !buffer_mapped(bh)) {
2684			zero_user_segments(page, block_start, from,
2685							to, block_end);
2686			continue;
2687		}
2688		if (buffer_uptodate(bh))
2689			continue;	/* reiserfs does this */
2690		if (block_start < from || block_end > to) {
2691			lock_buffer(bh);
2692			bh->b_end_io = end_buffer_read_nobh;
2693			submit_bh(REQ_OP_READ, 0, bh);
2694			nr_reads++;
2695		}
2696	}
2697
2698	if (nr_reads) {
2699		/*
2700		 * The page is locked, so these buffers are protected from
2701		 * any VM or truncate activity.  Hence we don't need to care
2702		 * for the buffer_head refcounts.
2703		 */
2704		for (bh = head; bh; bh = bh->b_this_page) {
2705			wait_on_buffer(bh);
2706			if (!buffer_uptodate(bh))
2707				ret = -EIO;
2708		}
2709		if (ret)
2710			goto failed;
2711	}
2712
2713	if (is_mapped_to_disk)
2714		SetPageMappedToDisk(page);
2715
2716	*fsdata = head; /* to be released by nobh_write_end */
2717
2718	return 0;
2719
2720failed:
2721	BUG_ON(!ret);
2722	/*
2723	 * Error recovery is a bit difficult. We need to zero out blocks that
2724	 * were newly allocated, and dirty them to ensure they get written out.
2725	 * Buffers need to be attached to the page at this point, otherwise
2726	 * the handling of potential IO errors during writeout would be hard
2727	 * (could try doing synchronous writeout, but what if that fails too?)
2728	 */
2729	attach_nobh_buffers(page, head);
2730	page_zero_new_buffers(page, from, to);
2731
2732out_release:
2733	unlock_page(page);
2734	put_page(page);
2735	*pagep = NULL;
2736
2737	return ret;
2738}
2739EXPORT_SYMBOL(nobh_write_begin);
2740
2741int nobh_write_end(struct file *file, struct address_space *mapping,
2742			loff_t pos, unsigned len, unsigned copied,
2743			struct page *page, void *fsdata)
2744{
2745	struct inode *inode = page->mapping->host;
2746	struct buffer_head *head = fsdata;
2747	struct buffer_head *bh;
2748	BUG_ON(fsdata != NULL && page_has_buffers(page));
2749
2750	if (unlikely(copied < len) && head)
2751		attach_nobh_buffers(page, head);
2752	if (page_has_buffers(page))
2753		return generic_write_end(file, mapping, pos, len,
2754					copied, page, fsdata);
2755
2756	SetPageUptodate(page);
2757	set_page_dirty(page);
2758	if (pos+copied > inode->i_size) {
2759		i_size_write(inode, pos+copied);
2760		mark_inode_dirty(inode);
2761	}
2762
2763	unlock_page(page);
2764	put_page(page);
2765
2766	while (head) {
2767		bh = head;
2768		head = head->b_this_page;
2769		free_buffer_head(bh);
2770	}
2771
2772	return copied;
2773}
2774EXPORT_SYMBOL(nobh_write_end);
2775
2776/*
2777 * nobh_writepage() - based on block_full_write_page() except
2778 * that it tries to operate without attaching bufferheads to
2779 * the page.
2780 */
2781int nobh_writepage(struct page *page, get_block_t *get_block,
2782			struct writeback_control *wbc)
2783{
2784	struct inode * const inode = page->mapping->host;
2785	loff_t i_size = i_size_read(inode);
2786	const pgoff_t end_index = i_size >> PAGE_SHIFT;
2787	unsigned offset;
2788	int ret;
2789
2790	/* Is the page fully inside i_size? */
2791	if (page->index < end_index)
2792		goto out;
2793
2794	/* Is the page fully outside i_size? (truncate in progress) */
2795	offset = i_size & (PAGE_SIZE-1);
2796	if (page->index >= end_index+1 || !offset) {
2797		/*
2798		 * The page may have dirty, unmapped buffers.  For example,
2799		 * they may have been added in ext3_writepage().  Make them
2800		 * freeable here, so the page does not leak.
2801		 */
2802#if 0
2803		/* Not really sure about this  - do we need this ? */
2804		if (page->mapping->a_ops->invalidatepage)
2805			page->mapping->a_ops->invalidatepage(page, offset);
2806#endif
2807		unlock_page(page);
2808		return 0; /* don't care */
2809	}
2810
2811	/*
2812	 * The page straddles i_size.  It must be zeroed out on each and every
2813	 * writepage invocation because it may be mmapped.  "A file is mapped
2814	 * in multiples of the page size.  For a file that is not a multiple of
2815	 * the  page size, the remaining memory is zeroed when mapped, and
2816	 * writes to that region are not written out to the file."
2817	 */
2818	zero_user_segment(page, offset, PAGE_SIZE);
2819out:
2820	ret = mpage_writepage(page, get_block, wbc);
2821	if (ret == -EAGAIN)
2822		ret = __block_write_full_page(inode, page, get_block, wbc,
2823					      end_buffer_async_write);
2824	return ret;
2825}
2826EXPORT_SYMBOL(nobh_writepage);
2827
2828int nobh_truncate_page(struct address_space *mapping,
2829			loff_t from, get_block_t *get_block)
2830{
2831	pgoff_t index = from >> PAGE_SHIFT;
2832	unsigned offset = from & (PAGE_SIZE-1);
2833	unsigned blocksize;
2834	sector_t iblock;
2835	unsigned length, pos;
2836	struct inode *inode = mapping->host;
2837	struct page *page;
2838	struct buffer_head map_bh;
2839	int err;
2840
2841	blocksize = 1 << inode->i_blkbits;
2842	length = offset & (blocksize - 1);
2843
2844	/* Block boundary? Nothing to do */
2845	if (!length)
2846		return 0;
2847
2848	length = blocksize - length;
2849	iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2850
2851	page = grab_cache_page(mapping, index);
2852	err = -ENOMEM;
2853	if (!page)
2854		goto out;
2855
2856	if (page_has_buffers(page)) {
2857has_buffers:
2858		unlock_page(page);
2859		put_page(page);
2860		return block_truncate_page(mapping, from, get_block);
2861	}
2862
2863	/* Find the buffer that contains "offset" */
2864	pos = blocksize;
2865	while (offset >= pos) {
2866		iblock++;
2867		pos += blocksize;
2868	}
2869
2870	map_bh.b_size = blocksize;
2871	map_bh.b_state = 0;
2872	err = get_block(inode, iblock, &map_bh, 0);
2873	if (err)
2874		goto unlock;
2875	/* unmapped? It's a hole - nothing to do */
2876	if (!buffer_mapped(&map_bh))
2877		goto unlock;
2878
2879	/* Ok, it's mapped. Make sure it's up-to-date */
2880	if (!PageUptodate(page)) {
2881		err = mapping->a_ops->readpage(NULL, page);
2882		if (err) {
2883			put_page(page);
2884			goto out;
2885		}
2886		lock_page(page);
2887		if (!PageUptodate(page)) {
2888			err = -EIO;
2889			goto unlock;
2890		}
2891		if (page_has_buffers(page))
2892			goto has_buffers;
2893	}
2894	zero_user(page, offset, length);
2895	set_page_dirty(page);
2896	err = 0;
2897
2898unlock:
2899	unlock_page(page);
2900	put_page(page);
2901out:
2902	return err;
2903}
2904EXPORT_SYMBOL(nobh_truncate_page);
2905
2906int block_truncate_page(struct address_space *mapping,
2907			loff_t from, get_block_t *get_block)
2908{
2909	pgoff_t index = from >> PAGE_SHIFT;
2910	unsigned offset = from & (PAGE_SIZE-1);
2911	unsigned blocksize;
2912	sector_t iblock;
2913	unsigned length, pos;
2914	struct inode *inode = mapping->host;
2915	struct page *page;
2916	struct buffer_head *bh;
2917	int err;
2918
2919	blocksize = 1 << inode->i_blkbits;
2920	length = offset & (blocksize - 1);
2921
2922	/* Block boundary? Nothing to do */
2923	if (!length)
2924		return 0;
2925
2926	length = blocksize - length;
2927	iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2928	
2929	page = grab_cache_page(mapping, index);
2930	err = -ENOMEM;
2931	if (!page)
2932		goto out;
2933
2934	if (!page_has_buffers(page))
2935		create_empty_buffers(page, blocksize, 0);
2936
2937	/* Find the buffer that contains "offset" */
2938	bh = page_buffers(page);
2939	pos = blocksize;
2940	while (offset >= pos) {
2941		bh = bh->b_this_page;
2942		iblock++;
2943		pos += blocksize;
2944	}
2945
2946	err = 0;
2947	if (!buffer_mapped(bh)) {
2948		WARN_ON(bh->b_size != blocksize);
2949		err = get_block(inode, iblock, bh, 0);
2950		if (err)
2951			goto unlock;
2952		/* unmapped? It's a hole - nothing to do */
2953		if (!buffer_mapped(bh))
2954			goto unlock;
2955	}
2956
2957	/* Ok, it's mapped. Make sure it's up-to-date */
2958	if (PageUptodate(page))
2959		set_buffer_uptodate(bh);
2960
2961	if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2962		err = -EIO;
2963		ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2964		wait_on_buffer(bh);
2965		/* Uhhuh. Read error. Complain and punt. */
2966		if (!buffer_uptodate(bh))
2967			goto unlock;
2968	}
2969
2970	zero_user(page, offset, length);
2971	mark_buffer_dirty(bh);
2972	err = 0;
2973
2974unlock:
2975	unlock_page(page);
2976	put_page(page);
2977out:
2978	return err;
2979}
2980EXPORT_SYMBOL(block_truncate_page);
2981
2982/*
2983 * The generic ->writepage function for buffer-backed address_spaces
2984 */
2985int block_write_full_page(struct page *page, get_block_t *get_block,
2986			struct writeback_control *wbc)
2987{
2988	struct inode * const inode = page->mapping->host;
2989	loff_t i_size = i_size_read(inode);
2990	const pgoff_t end_index = i_size >> PAGE_SHIFT;
2991	unsigned offset;
2992
2993	/* Is the page fully inside i_size? */
2994	if (page->index < end_index)
2995		return __block_write_full_page(inode, page, get_block, wbc,
2996					       end_buffer_async_write);
2997
2998	/* Is the page fully outside i_size? (truncate in progress) */
2999	offset = i_size & (PAGE_SIZE-1);
3000	if (page->index >= end_index+1 || !offset) {
3001		/*
3002		 * The page may have dirty, unmapped buffers.  For example,
3003		 * they may have been added in ext3_writepage().  Make them
3004		 * freeable here, so the page does not leak.
3005		 */
3006		do_invalidatepage(page, 0, PAGE_SIZE);
3007		unlock_page(page);
3008		return 0; /* don't care */
3009	}
3010
3011	/*
3012	 * The page straddles i_size.  It must be zeroed out on each and every
3013	 * writepage invocation because it may be mmapped.  "A file is mapped
3014	 * in multiples of the page size.  For a file that is not a multiple of
3015	 * the  page size, the remaining memory is zeroed when mapped, and
3016	 * writes to that region are not written out to the file."
3017	 */
3018	zero_user_segment(page, offset, PAGE_SIZE);
3019	return __block_write_full_page(inode, page, get_block, wbc,
3020							end_buffer_async_write);
3021}
3022EXPORT_SYMBOL(block_write_full_page);
3023
3024sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
3025			    get_block_t *get_block)
3026{
3027	struct buffer_head tmp;
3028	struct inode *inode = mapping->host;
3029	tmp.b_state = 0;
3030	tmp.b_blocknr = 0;
3031	tmp.b_size = 1 << inode->i_blkbits;
 
3032	get_block(inode, block, &tmp, 0);
3033	return tmp.b_blocknr;
3034}
3035EXPORT_SYMBOL(generic_block_bmap);
3036
3037static void end_bio_bh_io_sync(struct bio *bio)
3038{
3039	struct buffer_head *bh = bio->bi_private;
3040
3041	if (unlikely(bio_flagged(bio, BIO_QUIET)))
3042		set_bit(BH_Quiet, &bh->b_state);
3043
3044	bh->b_end_io(bh, !bio->bi_error);
3045	bio_put(bio);
3046}
3047
3048/*
3049 * This allows us to do IO even on the odd last sectors
3050 * of a device, even if the block size is some multiple
3051 * of the physical sector size.
3052 *
3053 * We'll just truncate the bio to the size of the device,
3054 * and clear the end of the buffer head manually.
3055 *
3056 * Truly out-of-range accesses will turn into actual IO
3057 * errors, this only handles the "we need to be able to
3058 * do IO at the final sector" case.
3059 */
3060void guard_bio_eod(int op, struct bio *bio)
3061{
3062	sector_t maxsector;
3063	struct bio_vec *bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
3064	unsigned truncated_bytes;
3065
3066	maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
3067	if (!maxsector)
3068		return;
3069
3070	/*
3071	 * If the *whole* IO is past the end of the device,
3072	 * let it through, and the IO layer will turn it into
3073	 * an EIO.
3074	 */
3075	if (unlikely(bio->bi_iter.bi_sector >= maxsector))
3076		return;
3077
3078	maxsector -= bio->bi_iter.bi_sector;
3079	if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
3080		return;
3081
3082	/* Uhhuh. We've got a bio that straddles the device size! */
3083	truncated_bytes = bio->bi_iter.bi_size - (maxsector << 9);
3084
3085	/* Truncate the bio.. */
3086	bio->bi_iter.bi_size -= truncated_bytes;
3087	bvec->bv_len -= truncated_bytes;
3088
3089	/* ..and clear the end of the buffer for reads */
3090	if (op == REQ_OP_READ) {
3091		zero_user(bvec->bv_page, bvec->bv_offset + bvec->bv_len,
3092				truncated_bytes);
3093	}
3094}
3095
3096static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
3097			 unsigned long bio_flags, struct writeback_control *wbc)
3098{
 
3099	struct bio *bio;
3100
3101	BUG_ON(!buffer_locked(bh));
3102	BUG_ON(!buffer_mapped(bh));
3103	BUG_ON(!bh->b_end_io);
3104	BUG_ON(buffer_delay(bh));
3105	BUG_ON(buffer_unwritten(bh));
3106
3107	/*
3108	 * Only clear out a write error when rewriting
3109	 */
3110	if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
3111		clear_buffer_write_io_error(bh);
3112
3113	/*
3114	 * from here on down, it's all bio -- do the initial mapping,
3115	 * submit_bio -> generic_make_request may further map this bio around
3116	 */
3117	bio = bio_alloc(GFP_NOIO, 1);
3118
3119	if (wbc) {
3120		wbc_init_bio(wbc, bio);
3121		wbc_account_io(wbc, bh->b_page, bh->b_size);
3122	}
3123
3124	bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
3125	bio->bi_bdev = bh->b_bdev;
3126
3127	bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
3128	BUG_ON(bio->bi_iter.bi_size != bh->b_size);
3129
3130	bio->bi_end_io = end_bio_bh_io_sync;
3131	bio->bi_private = bh;
3132	bio->bi_flags |= bio_flags;
3133
3134	/* Take care of bh's that straddle the end of the device */
3135	guard_bio_eod(op, bio);
3136
3137	if (buffer_meta(bh))
3138		op_flags |= REQ_META;
3139	if (buffer_prio(bh))
3140		op_flags |= REQ_PRIO;
3141	bio_set_op_attrs(bio, op, op_flags);
3142
3143	submit_bio(bio);
3144	return 0;
3145}
3146
3147int _submit_bh(int op, int op_flags, struct buffer_head *bh,
3148	       unsigned long bio_flags)
3149{
3150	return submit_bh_wbc(op, op_flags, bh, bio_flags, NULL);
3151}
3152EXPORT_SYMBOL_GPL(_submit_bh);
3153
3154int submit_bh(int op, int op_flags,  struct buffer_head *bh)
3155{
3156	return submit_bh_wbc(op, op_flags, bh, 0, NULL);
3157}
3158EXPORT_SYMBOL(submit_bh);
3159
3160/**
3161 * ll_rw_block: low-level access to block devices (DEPRECATED)
3162 * @op: whether to %READ or %WRITE
3163 * @op_flags: req_flag_bits
3164 * @nr: number of &struct buffer_heads in the array
3165 * @bhs: array of pointers to &struct buffer_head
3166 *
3167 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3168 * requests an I/O operation on them, either a %REQ_OP_READ or a %REQ_OP_WRITE.
3169 * @op_flags contains flags modifying the detailed I/O behavior, most notably
3170 * %REQ_RAHEAD.
3171 *
3172 * This function drops any buffer that it cannot get a lock on (with the
3173 * BH_Lock state bit), any buffer that appears to be clean when doing a write
3174 * request, and any buffer that appears to be up-to-date when doing read
3175 * request.  Further it marks as clean buffers that are processed for
3176 * writing (the buffer cache won't assume that they are actually clean
3177 * until the buffer gets unlocked).
3178 *
3179 * ll_rw_block sets b_end_io to simple completion handler that marks
3180 * the buffer up-to-date (if appropriate), unlocks the buffer and wakes
3181 * any waiters. 
3182 *
3183 * All of the buffers must be for the same device, and must also be a
3184 * multiple of the current approved size for the device.
3185 */
3186void ll_rw_block(int op, int op_flags,  int nr, struct buffer_head *bhs[])
3187{
3188	int i;
3189
3190	for (i = 0; i < nr; i++) {
3191		struct buffer_head *bh = bhs[i];
3192
3193		if (!trylock_buffer(bh))
3194			continue;
3195		if (op == WRITE) {
3196			if (test_clear_buffer_dirty(bh)) {
3197				bh->b_end_io = end_buffer_write_sync;
3198				get_bh(bh);
3199				submit_bh(op, op_flags, bh);
3200				continue;
3201			}
3202		} else {
3203			if (!buffer_uptodate(bh)) {
3204				bh->b_end_io = end_buffer_read_sync;
3205				get_bh(bh);
3206				submit_bh(op, op_flags, bh);
3207				continue;
3208			}
3209		}
3210		unlock_buffer(bh);
3211	}
3212}
3213EXPORT_SYMBOL(ll_rw_block);
3214
3215void write_dirty_buffer(struct buffer_head *bh, int op_flags)
3216{
3217	lock_buffer(bh);
3218	if (!test_clear_buffer_dirty(bh)) {
3219		unlock_buffer(bh);
3220		return;
3221	}
3222	bh->b_end_io = end_buffer_write_sync;
3223	get_bh(bh);
3224	submit_bh(REQ_OP_WRITE, op_flags, bh);
3225}
3226EXPORT_SYMBOL(write_dirty_buffer);
3227
3228/*
3229 * For a data-integrity writeout, we need to wait upon any in-progress I/O
3230 * and then start new I/O and then wait upon it.  The caller must have a ref on
3231 * the buffer_head.
3232 */
3233int __sync_dirty_buffer(struct buffer_head *bh, int op_flags)
3234{
3235	int ret = 0;
3236
3237	WARN_ON(atomic_read(&bh->b_count) < 1);
3238	lock_buffer(bh);
3239	if (test_clear_buffer_dirty(bh)) {
 
 
 
 
 
 
 
 
 
3240		get_bh(bh);
3241		bh->b_end_io = end_buffer_write_sync;
3242		ret = submit_bh(REQ_OP_WRITE, op_flags, bh);
3243		wait_on_buffer(bh);
3244		if (!ret && !buffer_uptodate(bh))
3245			ret = -EIO;
3246	} else {
3247		unlock_buffer(bh);
3248	}
3249	return ret;
3250}
3251EXPORT_SYMBOL(__sync_dirty_buffer);
3252
3253int sync_dirty_buffer(struct buffer_head *bh)
3254{
3255	return __sync_dirty_buffer(bh, REQ_SYNC);
3256}
3257EXPORT_SYMBOL(sync_dirty_buffer);
3258
3259/*
3260 * try_to_free_buffers() checks if all the buffers on this particular page
3261 * are unused, and releases them if so.
3262 *
3263 * Exclusion against try_to_free_buffers may be obtained by either
3264 * locking the page or by holding its mapping's private_lock.
3265 *
3266 * If the page is dirty but all the buffers are clean then we need to
3267 * be sure to mark the page clean as well.  This is because the page
3268 * may be against a block device, and a later reattachment of buffers
3269 * to a dirty page will set *all* buffers dirty.  Which would corrupt
3270 * filesystem data on the same device.
3271 *
3272 * The same applies to regular filesystem pages: if all the buffers are
3273 * clean then we set the page clean and proceed.  To do that, we require
3274 * total exclusion from __set_page_dirty_buffers().  That is obtained with
3275 * private_lock.
3276 *
3277 * try_to_free_buffers() is non-blocking.
3278 */
3279static inline int buffer_busy(struct buffer_head *bh)
3280{
3281	return atomic_read(&bh->b_count) |
3282		(bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3283}
3284
3285static int
3286drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3287{
3288	struct buffer_head *head = page_buffers(page);
3289	struct buffer_head *bh;
3290
3291	bh = head;
3292	do {
3293		if (buffer_write_io_error(bh) && page->mapping)
3294			mapping_set_error(page->mapping, -EIO);
3295		if (buffer_busy(bh))
3296			goto failed;
3297		bh = bh->b_this_page;
3298	} while (bh != head);
3299
3300	do {
3301		struct buffer_head *next = bh->b_this_page;
3302
3303		if (bh->b_assoc_map)
3304			__remove_assoc_queue(bh);
3305		bh = next;
3306	} while (bh != head);
3307	*buffers_to_free = head;
3308	__clear_page_buffers(page);
3309	return 1;
3310failed:
3311	return 0;
3312}
3313
3314int try_to_free_buffers(struct page *page)
3315{
3316	struct address_space * const mapping = page->mapping;
3317	struct buffer_head *buffers_to_free = NULL;
3318	int ret = 0;
3319
3320	BUG_ON(!PageLocked(page));
3321	if (PageWriteback(page))
3322		return 0;
3323
3324	if (mapping == NULL) {		/* can this still happen? */
3325		ret = drop_buffers(page, &buffers_to_free);
3326		goto out;
3327	}
3328
3329	spin_lock(&mapping->private_lock);
3330	ret = drop_buffers(page, &buffers_to_free);
3331
3332	/*
3333	 * If the filesystem writes its buffers by hand (eg ext3)
3334	 * then we can have clean buffers against a dirty page.  We
3335	 * clean the page here; otherwise the VM will never notice
3336	 * that the filesystem did any IO at all.
3337	 *
3338	 * Also, during truncate, discard_buffer will have marked all
3339	 * the page's buffers clean.  We discover that here and clean
3340	 * the page also.
3341	 *
3342	 * private_lock must be held over this entire operation in order
3343	 * to synchronise against __set_page_dirty_buffers and prevent the
3344	 * dirty bit from being lost.
3345	 */
3346	if (ret)
3347		cancel_dirty_page(page);
3348	spin_unlock(&mapping->private_lock);
3349out:
3350	if (buffers_to_free) {
3351		struct buffer_head *bh = buffers_to_free;
3352
3353		do {
3354			struct buffer_head *next = bh->b_this_page;
3355			free_buffer_head(bh);
3356			bh = next;
3357		} while (bh != buffers_to_free);
3358	}
3359	return ret;
3360}
3361EXPORT_SYMBOL(try_to_free_buffers);
3362
3363/*
3364 * There are no bdflush tunables left.  But distributions are
3365 * still running obsolete flush daemons, so we terminate them here.
3366 *
3367 * Use of bdflush() is deprecated and will be removed in a future kernel.
3368 * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3369 */
3370SYSCALL_DEFINE2(bdflush, int, func, long, data)
3371{
3372	static int msg_count;
3373
3374	if (!capable(CAP_SYS_ADMIN))
3375		return -EPERM;
3376
3377	if (msg_count < 5) {
3378		msg_count++;
3379		printk(KERN_INFO
3380			"warning: process `%s' used the obsolete bdflush"
3381			" system call\n", current->comm);
3382		printk(KERN_INFO "Fix your initscripts?\n");
3383	}
3384
3385	if (func == 1)
3386		do_exit(0);
3387	return 0;
3388}
3389
3390/*
3391 * Buffer-head allocation
3392 */
3393static struct kmem_cache *bh_cachep __read_mostly;
3394
3395/*
3396 * Once the number of bh's in the machine exceeds this level, we start
3397 * stripping them in writeback.
3398 */
3399static unsigned long max_buffer_heads;
3400
3401int buffer_heads_over_limit;
3402
3403struct bh_accounting {
3404	int nr;			/* Number of live bh's */
3405	int ratelimit;		/* Limit cacheline bouncing */
3406};
3407
3408static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3409
3410static void recalc_bh_state(void)
3411{
3412	int i;
3413	int tot = 0;
3414
3415	if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3416		return;
3417	__this_cpu_write(bh_accounting.ratelimit, 0);
3418	for_each_online_cpu(i)
3419		tot += per_cpu(bh_accounting, i).nr;
3420	buffer_heads_over_limit = (tot > max_buffer_heads);
3421}
3422
3423struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3424{
3425	struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3426	if (ret) {
3427		INIT_LIST_HEAD(&ret->b_assoc_buffers);
 
3428		preempt_disable();
3429		__this_cpu_inc(bh_accounting.nr);
3430		recalc_bh_state();
3431		preempt_enable();
3432	}
3433	return ret;
3434}
3435EXPORT_SYMBOL(alloc_buffer_head);
3436
3437void free_buffer_head(struct buffer_head *bh)
3438{
3439	BUG_ON(!list_empty(&bh->b_assoc_buffers));
3440	kmem_cache_free(bh_cachep, bh);
3441	preempt_disable();
3442	__this_cpu_dec(bh_accounting.nr);
3443	recalc_bh_state();
3444	preempt_enable();
3445}
3446EXPORT_SYMBOL(free_buffer_head);
3447
3448static int buffer_exit_cpu_dead(unsigned int cpu)
3449{
3450	int i;
3451	struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3452
3453	for (i = 0; i < BH_LRU_SIZE; i++) {
3454		brelse(b->bhs[i]);
3455		b->bhs[i] = NULL;
3456	}
3457	this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3458	per_cpu(bh_accounting, cpu).nr = 0;
3459	return 0;
3460}
3461
3462/**
3463 * bh_uptodate_or_lock - Test whether the buffer is uptodate
3464 * @bh: struct buffer_head
3465 *
3466 * Return true if the buffer is up-to-date and false,
3467 * with the buffer locked, if not.
3468 */
3469int bh_uptodate_or_lock(struct buffer_head *bh)
3470{
3471	if (!buffer_uptodate(bh)) {
3472		lock_buffer(bh);
3473		if (!buffer_uptodate(bh))
3474			return 0;
3475		unlock_buffer(bh);
3476	}
3477	return 1;
3478}
3479EXPORT_SYMBOL(bh_uptodate_or_lock);
3480
3481/**
3482 * bh_submit_read - Submit a locked buffer for reading
3483 * @bh: struct buffer_head
 
 
3484 *
3485 * Returns zero on success and -EIO on error.
3486 */
3487int bh_submit_read(struct buffer_head *bh)
3488{
3489	BUG_ON(!buffer_locked(bh));
3490
3491	if (buffer_uptodate(bh)) {
3492		unlock_buffer(bh);
3493		return 0;
3494	}
3495
3496	get_bh(bh);
3497	bh->b_end_io = end_buffer_read_sync;
3498	submit_bh(REQ_OP_READ, 0, bh);
3499	wait_on_buffer(bh);
3500	if (buffer_uptodate(bh))
3501		return 0;
3502	return -EIO;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3503}
3504EXPORT_SYMBOL(bh_submit_read);
3505
3506void __init buffer_init(void)
3507{
3508	unsigned long nrpages;
3509	int ret;
3510
3511	bh_cachep = kmem_cache_create("buffer_head",
3512			sizeof(struct buffer_head), 0,
3513				(SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3514				SLAB_MEM_SPREAD),
3515				NULL);
3516
3517	/*
3518	 * Limit the bh occupancy to 10% of ZONE_NORMAL
3519	 */
3520	nrpages = (nr_free_buffer_pages() * 10) / 100;
3521	max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3522	ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead",
3523					NULL, buffer_exit_cpu_dead);
3524	WARN_ON(ret < 0);
3525}
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/fs/buffer.c
   4 *
   5 *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
   6 */
   7
   8/*
   9 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
  10 *
  11 * Removed a lot of unnecessary code and simplified things now that
  12 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
  13 *
  14 * Speed up hash, lru, and free list operations.  Use gfp() for allocating
  15 * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
  16 *
  17 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
  18 *
  19 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
  20 */
  21
  22#include <linux/kernel.h>
  23#include <linux/sched/signal.h>
  24#include <linux/syscalls.h>
  25#include <linux/fs.h>
  26#include <linux/iomap.h>
  27#include <linux/mm.h>
  28#include <linux/percpu.h>
  29#include <linux/slab.h>
  30#include <linux/capability.h>
  31#include <linux/blkdev.h>
  32#include <linux/file.h>
  33#include <linux/quotaops.h>
  34#include <linux/highmem.h>
  35#include <linux/export.h>
  36#include <linux/backing-dev.h>
  37#include <linux/writeback.h>
  38#include <linux/hash.h>
  39#include <linux/suspend.h>
  40#include <linux/buffer_head.h>
  41#include <linux/task_io_accounting_ops.h>
  42#include <linux/bio.h>
 
  43#include <linux/cpu.h>
  44#include <linux/bitops.h>
  45#include <linux/mpage.h>
  46#include <linux/bit_spinlock.h>
  47#include <linux/pagevec.h>
  48#include <linux/sched/mm.h>
  49#include <trace/events/block.h>
  50#include <linux/fscrypt.h>
  51
  52#include "internal.h"
  53
  54static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
  55static void submit_bh_wbc(blk_opf_t opf, struct buffer_head *bh,
  56			  struct writeback_control *wbc);
 
  57
  58#define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
  59
 
 
 
 
 
 
 
  60inline void touch_buffer(struct buffer_head *bh)
  61{
  62	trace_block_touch_buffer(bh);
  63	mark_page_accessed(bh->b_page);
  64}
  65EXPORT_SYMBOL(touch_buffer);
  66
  67void __lock_buffer(struct buffer_head *bh)
  68{
  69	wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
  70}
  71EXPORT_SYMBOL(__lock_buffer);
  72
  73void unlock_buffer(struct buffer_head *bh)
  74{
  75	clear_bit_unlock(BH_Lock, &bh->b_state);
  76	smp_mb__after_atomic();
  77	wake_up_bit(&bh->b_state, BH_Lock);
  78}
  79EXPORT_SYMBOL(unlock_buffer);
  80
  81/*
  82 * Returns if the folio has dirty or writeback buffers. If all the buffers
  83 * are unlocked and clean then the folio_test_dirty information is stale. If
  84 * any of the buffers are locked, it is assumed they are locked for IO.
  85 */
  86void buffer_check_dirty_writeback(struct folio *folio,
  87				     bool *dirty, bool *writeback)
  88{
  89	struct buffer_head *head, *bh;
  90	*dirty = false;
  91	*writeback = false;
  92
  93	BUG_ON(!folio_test_locked(folio));
  94
  95	head = folio_buffers(folio);
  96	if (!head)
  97		return;
  98
  99	if (folio_test_writeback(folio))
 100		*writeback = true;
 101
 
 102	bh = head;
 103	do {
 104		if (buffer_locked(bh))
 105			*writeback = true;
 106
 107		if (buffer_dirty(bh))
 108			*dirty = true;
 109
 110		bh = bh->b_this_page;
 111	} while (bh != head);
 112}
 113EXPORT_SYMBOL(buffer_check_dirty_writeback);
 114
 115/*
 116 * Block until a buffer comes unlocked.  This doesn't stop it
 117 * from becoming locked again - you have to lock it yourself
 118 * if you want to preserve its state.
 119 */
 120void __wait_on_buffer(struct buffer_head * bh)
 121{
 122	wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
 123}
 124EXPORT_SYMBOL(__wait_on_buffer);
 125
 
 
 
 
 
 
 
 
 126static void buffer_io_error(struct buffer_head *bh, char *msg)
 127{
 128	if (!test_bit(BH_Quiet, &bh->b_state))
 129		printk_ratelimited(KERN_ERR
 130			"Buffer I/O error on dev %pg, logical block %llu%s\n",
 131			bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
 132}
 133
 134/*
 135 * End-of-IO handler helper function which does not touch the bh after
 136 * unlocking it.
 137 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
 138 * a race there is benign: unlock_buffer() only use the bh's address for
 139 * hashing after unlocking the buffer, so it doesn't actually touch the bh
 140 * itself.
 141 */
 142static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
 143{
 144	if (uptodate) {
 145		set_buffer_uptodate(bh);
 146	} else {
 147		/* This happens, due to failed read-ahead attempts. */
 148		clear_buffer_uptodate(bh);
 149	}
 150	unlock_buffer(bh);
 151}
 152
 153/*
 154 * Default synchronous end-of-IO handler..  Just mark it up-to-date and
 155 * unlock the buffer.
 156 */
 157void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
 158{
 159	__end_buffer_read_notouch(bh, uptodate);
 160	put_bh(bh);
 161}
 162EXPORT_SYMBOL(end_buffer_read_sync);
 163
 164void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
 165{
 166	if (uptodate) {
 167		set_buffer_uptodate(bh);
 168	} else {
 169		buffer_io_error(bh, ", lost sync page write");
 170		mark_buffer_write_io_error(bh);
 171		clear_buffer_uptodate(bh);
 172	}
 173	unlock_buffer(bh);
 174	put_bh(bh);
 175}
 176EXPORT_SYMBOL(end_buffer_write_sync);
 177
 178/*
 179 * Various filesystems appear to want __find_get_block to be non-blocking.
 180 * But it's the page lock which protects the buffers.  To get around this,
 181 * we get exclusion from try_to_free_buffers with the blockdev mapping's
 182 * private_lock.
 183 *
 184 * Hack idea: for the blockdev mapping, private_lock contention
 185 * may be quite high.  This code could TryLock the page, and if that
 186 * succeeds, there is no need to take private_lock.
 
 187 */
 188static struct buffer_head *
 189__find_get_block_slow(struct block_device *bdev, sector_t block)
 190{
 191	struct inode *bd_inode = bdev->bd_inode;
 192	struct address_space *bd_mapping = bd_inode->i_mapping;
 193	struct buffer_head *ret = NULL;
 194	pgoff_t index;
 195	struct buffer_head *bh;
 196	struct buffer_head *head;
 197	struct page *page;
 198	int all_mapped = 1;
 199	static DEFINE_RATELIMIT_STATE(last_warned, HZ, 1);
 200
 201	index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
 202	page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED);
 203	if (!page)
 204		goto out;
 205
 206	spin_lock(&bd_mapping->private_lock);
 207	if (!page_has_buffers(page))
 208		goto out_unlock;
 209	head = page_buffers(page);
 210	bh = head;
 211	do {
 212		if (!buffer_mapped(bh))
 213			all_mapped = 0;
 214		else if (bh->b_blocknr == block) {
 215			ret = bh;
 216			get_bh(bh);
 217			goto out_unlock;
 218		}
 219		bh = bh->b_this_page;
 220	} while (bh != head);
 221
 222	/* we might be here because some of the buffers on this page are
 223	 * not mapped.  This is due to various races between
 224	 * file io on the block device and getblk.  It gets dealt with
 225	 * elsewhere, don't buffer_error if we had some unmapped buffers
 226	 */
 227	ratelimit_set_flags(&last_warned, RATELIMIT_MSG_ON_RELEASE);
 228	if (all_mapped && __ratelimit(&last_warned)) {
 229		printk("__find_get_block_slow() failed. block=%llu, "
 230		       "b_blocknr=%llu, b_state=0x%08lx, b_size=%zu, "
 231		       "device %pg blocksize: %d\n",
 232		       (unsigned long long)block,
 233		       (unsigned long long)bh->b_blocknr,
 234		       bh->b_state, bh->b_size, bdev,
 235		       1 << bd_inode->i_blkbits);
 236	}
 237out_unlock:
 238	spin_unlock(&bd_mapping->private_lock);
 239	put_page(page);
 240out:
 241	return ret;
 242}
 243
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 244static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
 245{
 246	unsigned long flags;
 247	struct buffer_head *first;
 248	struct buffer_head *tmp;
 249	struct page *page;
 250	int page_uptodate = 1;
 251
 252	BUG_ON(!buffer_async_read(bh));
 253
 254	page = bh->b_page;
 255	if (uptodate) {
 256		set_buffer_uptodate(bh);
 257	} else {
 258		clear_buffer_uptodate(bh);
 259		buffer_io_error(bh, ", async page read");
 260		SetPageError(page);
 261	}
 262
 263	/*
 264	 * Be _very_ careful from here on. Bad things can happen if
 265	 * two buffer heads end IO at almost the same time and both
 266	 * decide that the page is now completely done.
 267	 */
 268	first = page_buffers(page);
 269	spin_lock_irqsave(&first->b_uptodate_lock, flags);
 
 270	clear_buffer_async_read(bh);
 271	unlock_buffer(bh);
 272	tmp = bh;
 273	do {
 274		if (!buffer_uptodate(tmp))
 275			page_uptodate = 0;
 276		if (buffer_async_read(tmp)) {
 277			BUG_ON(!buffer_locked(tmp));
 278			goto still_busy;
 279		}
 280		tmp = tmp->b_this_page;
 281	} while (tmp != bh);
 282	spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
 
 283
 284	/*
 285	 * If all of the buffers are uptodate then we can set the page
 286	 * uptodate.
 287	 */
 288	if (page_uptodate)
 289		SetPageUptodate(page);
 290	unlock_page(page);
 291	return;
 292
 293still_busy:
 294	spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
 
 295	return;
 296}
 297
 298struct decrypt_bh_ctx {
 299	struct work_struct work;
 300	struct buffer_head *bh;
 301};
 302
 303static void decrypt_bh(struct work_struct *work)
 304{
 305	struct decrypt_bh_ctx *ctx =
 306		container_of(work, struct decrypt_bh_ctx, work);
 307	struct buffer_head *bh = ctx->bh;
 308	int err;
 309
 310	err = fscrypt_decrypt_pagecache_blocks(bh->b_page, bh->b_size,
 311					       bh_offset(bh));
 312	end_buffer_async_read(bh, err == 0);
 313	kfree(ctx);
 314}
 315
 316/*
 317 * I/O completion handler for block_read_full_folio() - pages
 318 * which come unlocked at the end of I/O.
 319 */
 320static void end_buffer_async_read_io(struct buffer_head *bh, int uptodate)
 321{
 322	/* Decrypt if needed */
 323	if (uptodate &&
 324	    fscrypt_inode_uses_fs_layer_crypto(bh->b_page->mapping->host)) {
 325		struct decrypt_bh_ctx *ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC);
 326
 327		if (ctx) {
 328			INIT_WORK(&ctx->work, decrypt_bh);
 329			ctx->bh = bh;
 330			fscrypt_enqueue_decrypt_work(&ctx->work);
 331			return;
 332		}
 333		uptodate = 0;
 334	}
 335	end_buffer_async_read(bh, uptodate);
 336}
 337
 338/*
 339 * Completion handler for block_write_full_page() - pages which are unlocked
 340 * during I/O, and which have PageWriteback cleared upon I/O completion.
 341 */
 342void end_buffer_async_write(struct buffer_head *bh, int uptodate)
 343{
 344	unsigned long flags;
 345	struct buffer_head *first;
 346	struct buffer_head *tmp;
 347	struct page *page;
 348
 349	BUG_ON(!buffer_async_write(bh));
 350
 351	page = bh->b_page;
 352	if (uptodate) {
 353		set_buffer_uptodate(bh);
 354	} else {
 355		buffer_io_error(bh, ", lost async page write");
 356		mark_buffer_write_io_error(bh);
 
 357		clear_buffer_uptodate(bh);
 358		SetPageError(page);
 359	}
 360
 361	first = page_buffers(page);
 362	spin_lock_irqsave(&first->b_uptodate_lock, flags);
 
 363
 364	clear_buffer_async_write(bh);
 365	unlock_buffer(bh);
 366	tmp = bh->b_this_page;
 367	while (tmp != bh) {
 368		if (buffer_async_write(tmp)) {
 369			BUG_ON(!buffer_locked(tmp));
 370			goto still_busy;
 371		}
 372		tmp = tmp->b_this_page;
 373	}
 374	spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
 
 375	end_page_writeback(page);
 376	return;
 377
 378still_busy:
 379	spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
 
 380	return;
 381}
 382EXPORT_SYMBOL(end_buffer_async_write);
 383
 384/*
 385 * If a page's buffers are under async readin (end_buffer_async_read
 386 * completion) then there is a possibility that another thread of
 387 * control could lock one of the buffers after it has completed
 388 * but while some of the other buffers have not completed.  This
 389 * locked buffer would confuse end_buffer_async_read() into not unlocking
 390 * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
 391 * that this buffer is not under async I/O.
 392 *
 393 * The page comes unlocked when it has no locked buffer_async buffers
 394 * left.
 395 *
 396 * PageLocked prevents anyone starting new async I/O reads any of
 397 * the buffers.
 398 *
 399 * PageWriteback is used to prevent simultaneous writeout of the same
 400 * page.
 401 *
 402 * PageLocked prevents anyone from starting writeback of a page which is
 403 * under read I/O (PageWriteback is only ever set against a locked page).
 404 */
 405static void mark_buffer_async_read(struct buffer_head *bh)
 406{
 407	bh->b_end_io = end_buffer_async_read_io;
 408	set_buffer_async_read(bh);
 409}
 410
 411static void mark_buffer_async_write_endio(struct buffer_head *bh,
 412					  bh_end_io_t *handler)
 413{
 414	bh->b_end_io = handler;
 415	set_buffer_async_write(bh);
 416}
 417
 418void mark_buffer_async_write(struct buffer_head *bh)
 419{
 420	mark_buffer_async_write_endio(bh, end_buffer_async_write);
 421}
 422EXPORT_SYMBOL(mark_buffer_async_write);
 423
 424
 425/*
 426 * fs/buffer.c contains helper functions for buffer-backed address space's
 427 * fsync functions.  A common requirement for buffer-based filesystems is
 428 * that certain data from the backing blockdev needs to be written out for
 429 * a successful fsync().  For example, ext2 indirect blocks need to be
 430 * written back and waited upon before fsync() returns.
 431 *
 432 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
 433 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
 434 * management of a list of dependent buffers at ->i_mapping->private_list.
 435 *
 436 * Locking is a little subtle: try_to_free_buffers() will remove buffers
 437 * from their controlling inode's queue when they are being freed.  But
 438 * try_to_free_buffers() will be operating against the *blockdev* mapping
 439 * at the time, not against the S_ISREG file which depends on those buffers.
 440 * So the locking for private_list is via the private_lock in the address_space
 441 * which backs the buffers.  Which is different from the address_space 
 442 * against which the buffers are listed.  So for a particular address_space,
 443 * mapping->private_lock does *not* protect mapping->private_list!  In fact,
 444 * mapping->private_list will always be protected by the backing blockdev's
 445 * ->private_lock.
 446 *
 447 * Which introduces a requirement: all buffers on an address_space's
 448 * ->private_list must be from the same address_space: the blockdev's.
 449 *
 450 * address_spaces which do not place buffers at ->private_list via these
 451 * utility functions are free to use private_lock and private_list for
 452 * whatever they want.  The only requirement is that list_empty(private_list)
 453 * be true at clear_inode() time.
 454 *
 455 * FIXME: clear_inode should not call invalidate_inode_buffers().  The
 456 * filesystems should do that.  invalidate_inode_buffers() should just go
 457 * BUG_ON(!list_empty).
 458 *
 459 * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
 460 * take an address_space, not an inode.  And it should be called
 461 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
 462 * queued up.
 463 *
 464 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
 465 * list if it is already on a list.  Because if the buffer is on a list,
 466 * it *must* already be on the right one.  If not, the filesystem is being
 467 * silly.  This will save a ton of locking.  But first we have to ensure
 468 * that buffers are taken *off* the old inode's list when they are freed
 469 * (presumably in truncate).  That requires careful auditing of all
 470 * filesystems (do it inside bforget()).  It could also be done by bringing
 471 * b_inode back.
 472 */
 473
 474/*
 475 * The buffer's backing address_space's private_lock must be held
 476 */
 477static void __remove_assoc_queue(struct buffer_head *bh)
 478{
 479	list_del_init(&bh->b_assoc_buffers);
 480	WARN_ON(!bh->b_assoc_map);
 
 
 481	bh->b_assoc_map = NULL;
 482}
 483
 484int inode_has_buffers(struct inode *inode)
 485{
 486	return !list_empty(&inode->i_data.private_list);
 487}
 488
 489/*
 490 * osync is designed to support O_SYNC io.  It waits synchronously for
 491 * all already-submitted IO to complete, but does not queue any new
 492 * writes to the disk.
 493 *
 494 * To do O_SYNC writes, just queue the buffer writes with write_dirty_buffer
 495 * as you dirty the buffers, and then use osync_inode_buffers to wait for
 496 * completion.  Any other dirty buffers which are not yet queued for
 497 * write will not be flushed to disk by the osync.
 498 */
 499static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
 500{
 501	struct buffer_head *bh;
 502	struct list_head *p;
 503	int err = 0;
 504
 505	spin_lock(lock);
 506repeat:
 507	list_for_each_prev(p, list) {
 508		bh = BH_ENTRY(p);
 509		if (buffer_locked(bh)) {
 510			get_bh(bh);
 511			spin_unlock(lock);
 512			wait_on_buffer(bh);
 513			if (!buffer_uptodate(bh))
 514				err = -EIO;
 515			brelse(bh);
 516			spin_lock(lock);
 517			goto repeat;
 518		}
 519	}
 520	spin_unlock(lock);
 521	return err;
 522}
 523
 524void emergency_thaw_bdev(struct super_block *sb)
 525{
 526	while (sb->s_bdev && !thaw_bdev(sb->s_bdev))
 527		printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev);
 528}
 529
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 530/**
 531 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
 532 * @mapping: the mapping which wants those buffers written
 533 *
 534 * Starts I/O against the buffers at mapping->private_list, and waits upon
 535 * that I/O.
 536 *
 537 * Basically, this is a convenience function for fsync().
 538 * @mapping is a file or directory which needs those buffers to be written for
 539 * a successful fsync().
 540 */
 541int sync_mapping_buffers(struct address_space *mapping)
 542{
 543	struct address_space *buffer_mapping = mapping->private_data;
 544
 545	if (buffer_mapping == NULL || list_empty(&mapping->private_list))
 546		return 0;
 547
 548	return fsync_buffers_list(&buffer_mapping->private_lock,
 549					&mapping->private_list);
 550}
 551EXPORT_SYMBOL(sync_mapping_buffers);
 552
 553/*
 554 * Called when we've recently written block `bblock', and it is known that
 555 * `bblock' was for a buffer_boundary() buffer.  This means that the block at
 556 * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
 557 * dirty, schedule it for IO.  So that indirects merge nicely with their data.
 558 */
 559void write_boundary_block(struct block_device *bdev,
 560			sector_t bblock, unsigned blocksize)
 561{
 562	struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
 563	if (bh) {
 564		if (buffer_dirty(bh))
 565			write_dirty_buffer(bh, 0);
 566		put_bh(bh);
 567	}
 568}
 569
 570void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
 571{
 572	struct address_space *mapping = inode->i_mapping;
 573	struct address_space *buffer_mapping = bh->b_page->mapping;
 574
 575	mark_buffer_dirty(bh);
 576	if (!mapping->private_data) {
 577		mapping->private_data = buffer_mapping;
 578	} else {
 579		BUG_ON(mapping->private_data != buffer_mapping);
 580	}
 581	if (!bh->b_assoc_map) {
 582		spin_lock(&buffer_mapping->private_lock);
 583		list_move_tail(&bh->b_assoc_buffers,
 584				&mapping->private_list);
 585		bh->b_assoc_map = mapping;
 586		spin_unlock(&buffer_mapping->private_lock);
 587	}
 588}
 589EXPORT_SYMBOL(mark_buffer_dirty_inode);
 590
 591/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 592 * Add a page to the dirty page list.
 593 *
 594 * It is a sad fact of life that this function is called from several places
 595 * deeply under spinlocking.  It may not sleep.
 596 *
 597 * If the page has buffers, the uptodate buffers are set dirty, to preserve
 598 * dirty-state coherency between the page and the buffers.  It the page does
 599 * not have buffers then when they are later attached they will all be set
 600 * dirty.
 601 *
 602 * The buffers are dirtied before the page is dirtied.  There's a small race
 603 * window in which a writepage caller may see the page cleanness but not the
 604 * buffer dirtiness.  That's fine.  If this code were to set the page dirty
 605 * before the buffers, a concurrent writepage caller could clear the page dirty
 606 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
 607 * page on the dirty page list.
 608 *
 609 * We use private_lock to lock against try_to_free_buffers while using the
 610 * page's buffer list.  Also use this to protect against clean buffers being
 611 * added to the page after it was set dirty.
 612 *
 613 * FIXME: may need to call ->reservepage here as well.  That's rather up to the
 614 * address_space though.
 615 */
 616bool block_dirty_folio(struct address_space *mapping, struct folio *folio)
 617{
 618	struct buffer_head *head;
 619	bool newly_dirty;
 
 
 
 620
 621	spin_lock(&mapping->private_lock);
 622	head = folio_buffers(folio);
 623	if (head) {
 624		struct buffer_head *bh = head;
 625
 626		do {
 627			set_buffer_dirty(bh);
 628			bh = bh->b_this_page;
 629		} while (bh != head);
 630	}
 631	/*
 632	 * Lock out page's memcg migration to keep PageDirty
 633	 * synchronized with per-memcg dirty page counters.
 634	 */
 635	folio_memcg_lock(folio);
 636	newly_dirty = !folio_test_set_dirty(folio);
 637	spin_unlock(&mapping->private_lock);
 638
 639	if (newly_dirty)
 640		__folio_mark_dirty(folio, mapping, 1);
 641
 642	folio_memcg_unlock(folio);
 643
 644	if (newly_dirty)
 645		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
 646
 647	return newly_dirty;
 648}
 649EXPORT_SYMBOL(block_dirty_folio);
 650
 651/*
 652 * Write out and wait upon a list of buffers.
 653 *
 654 * We have conflicting pressures: we want to make sure that all
 655 * initially dirty buffers get waited on, but that any subsequently
 656 * dirtied buffers don't.  After all, we don't want fsync to last
 657 * forever if somebody is actively writing to the file.
 658 *
 659 * Do this in two main stages: first we copy dirty buffers to a
 660 * temporary inode list, queueing the writes as we go.  Then we clean
 661 * up, waiting for those writes to complete.
 662 * 
 663 * During this second stage, any subsequent updates to the file may end
 664 * up refiling the buffer on the original inode's dirty list again, so
 665 * there is a chance we will end up with a buffer queued for write but
 666 * not yet completed on that list.  So, as a final cleanup we go through
 667 * the osync code to catch these locked, dirty buffers without requeuing
 668 * any newly dirty buffers for write.
 669 */
 670static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
 671{
 672	struct buffer_head *bh;
 673	struct list_head tmp;
 674	struct address_space *mapping;
 675	int err = 0, err2;
 676	struct blk_plug plug;
 677
 678	INIT_LIST_HEAD(&tmp);
 679	blk_start_plug(&plug);
 680
 681	spin_lock(lock);
 682	while (!list_empty(list)) {
 683		bh = BH_ENTRY(list->next);
 684		mapping = bh->b_assoc_map;
 685		__remove_assoc_queue(bh);
 686		/* Avoid race with mark_buffer_dirty_inode() which does
 687		 * a lockless check and we rely on seeing the dirty bit */
 688		smp_mb();
 689		if (buffer_dirty(bh) || buffer_locked(bh)) {
 690			list_add(&bh->b_assoc_buffers, &tmp);
 691			bh->b_assoc_map = mapping;
 692			if (buffer_dirty(bh)) {
 693				get_bh(bh);
 694				spin_unlock(lock);
 695				/*
 696				 * Ensure any pending I/O completes so that
 697				 * write_dirty_buffer() actually writes the
 698				 * current contents - it is a noop if I/O is
 699				 * still in flight on potentially older
 700				 * contents.
 701				 */
 702				write_dirty_buffer(bh, REQ_SYNC);
 703
 704				/*
 705				 * Kick off IO for the previous mapping. Note
 706				 * that we will not run the very last mapping,
 707				 * wait_on_buffer() will do that for us
 708				 * through sync_buffer().
 709				 */
 710				brelse(bh);
 711				spin_lock(lock);
 712			}
 713		}
 714	}
 715
 716	spin_unlock(lock);
 717	blk_finish_plug(&plug);
 718	spin_lock(lock);
 719
 720	while (!list_empty(&tmp)) {
 721		bh = BH_ENTRY(tmp.prev);
 722		get_bh(bh);
 723		mapping = bh->b_assoc_map;
 724		__remove_assoc_queue(bh);
 725		/* Avoid race with mark_buffer_dirty_inode() which does
 726		 * a lockless check and we rely on seeing the dirty bit */
 727		smp_mb();
 728		if (buffer_dirty(bh)) {
 729			list_add(&bh->b_assoc_buffers,
 730				 &mapping->private_list);
 731			bh->b_assoc_map = mapping;
 732		}
 733		spin_unlock(lock);
 734		wait_on_buffer(bh);
 735		if (!buffer_uptodate(bh))
 736			err = -EIO;
 737		brelse(bh);
 738		spin_lock(lock);
 739	}
 740	
 741	spin_unlock(lock);
 742	err2 = osync_buffers_list(lock, list);
 743	if (err)
 744		return err;
 745	else
 746		return err2;
 747}
 748
 749/*
 750 * Invalidate any and all dirty buffers on a given inode.  We are
 751 * probably unmounting the fs, but that doesn't mean we have already
 752 * done a sync().  Just drop the buffers from the inode list.
 753 *
 754 * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
 755 * assumes that all the buffers are against the blockdev.  Not true
 756 * for reiserfs.
 757 */
 758void invalidate_inode_buffers(struct inode *inode)
 759{
 760	if (inode_has_buffers(inode)) {
 761		struct address_space *mapping = &inode->i_data;
 762		struct list_head *list = &mapping->private_list;
 763		struct address_space *buffer_mapping = mapping->private_data;
 764
 765		spin_lock(&buffer_mapping->private_lock);
 766		while (!list_empty(list))
 767			__remove_assoc_queue(BH_ENTRY(list->next));
 768		spin_unlock(&buffer_mapping->private_lock);
 769	}
 770}
 771EXPORT_SYMBOL(invalidate_inode_buffers);
 772
 773/*
 774 * Remove any clean buffers from the inode's buffer list.  This is called
 775 * when we're trying to free the inode itself.  Those buffers can pin it.
 776 *
 777 * Returns true if all buffers were removed.
 778 */
 779int remove_inode_buffers(struct inode *inode)
 780{
 781	int ret = 1;
 782
 783	if (inode_has_buffers(inode)) {
 784		struct address_space *mapping = &inode->i_data;
 785		struct list_head *list = &mapping->private_list;
 786		struct address_space *buffer_mapping = mapping->private_data;
 787
 788		spin_lock(&buffer_mapping->private_lock);
 789		while (!list_empty(list)) {
 790			struct buffer_head *bh = BH_ENTRY(list->next);
 791			if (buffer_dirty(bh)) {
 792				ret = 0;
 793				break;
 794			}
 795			__remove_assoc_queue(bh);
 796		}
 797		spin_unlock(&buffer_mapping->private_lock);
 798	}
 799	return ret;
 800}
 801
 802/*
 803 * Create the appropriate buffers when given a page for data area and
 804 * the size of each buffer.. Use the bh->b_this_page linked list to
 805 * follow the buffers created.  Return NULL if unable to create more
 806 * buffers.
 807 *
 808 * The retry flag is used to differentiate async IO (paging, swapping)
 809 * which may not fail from ordinary buffer allocations.
 810 */
 811struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
 812		bool retry)
 813{
 814	struct buffer_head *bh, *head;
 815	gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT;
 816	long offset;
 817	struct mem_cgroup *memcg, *old_memcg;
 818
 819	if (retry)
 820		gfp |= __GFP_NOFAIL;
 821
 822	/* The page lock pins the memcg */
 823	memcg = page_memcg(page);
 824	old_memcg = set_active_memcg(memcg);
 825
 
 826	head = NULL;
 827	offset = PAGE_SIZE;
 828	while ((offset -= size) >= 0) {
 829		bh = alloc_buffer_head(gfp);
 830		if (!bh)
 831			goto no_grow;
 832
 833		bh->b_this_page = head;
 834		bh->b_blocknr = -1;
 835		head = bh;
 836
 837		bh->b_size = size;
 838
 839		/* Link the buffer to its page */
 840		set_bh_page(bh, page, offset);
 841	}
 842out:
 843	set_active_memcg(old_memcg);
 844	return head;
 845/*
 846 * In case anything failed, we just free everything we got.
 847 */
 848no_grow:
 849	if (head) {
 850		do {
 851			bh = head;
 852			head = head->b_this_page;
 853			free_buffer_head(bh);
 854		} while (head);
 855	}
 856
 857	goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 858}
 859EXPORT_SYMBOL_GPL(alloc_page_buffers);
 860
 861static inline void
 862link_dev_buffers(struct page *page, struct buffer_head *head)
 863{
 864	struct buffer_head *bh, *tail;
 865
 866	bh = head;
 867	do {
 868		tail = bh;
 869		bh = bh->b_this_page;
 870	} while (bh);
 871	tail->b_this_page = head;
 872	attach_page_private(page, head);
 873}
 874
 875static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
 876{
 877	sector_t retval = ~((sector_t)0);
 878	loff_t sz = bdev_nr_bytes(bdev);
 879
 880	if (sz) {
 881		unsigned int sizebits = blksize_bits(size);
 882		retval = (sz >> sizebits);
 883	}
 884	return retval;
 885}
 886
 887/*
 888 * Initialise the state of a blockdev page's buffers.
 889 */ 
 890static sector_t
 891init_page_buffers(struct page *page, struct block_device *bdev,
 892			sector_t block, int size)
 893{
 894	struct buffer_head *head = page_buffers(page);
 895	struct buffer_head *bh = head;
 896	int uptodate = PageUptodate(page);
 897	sector_t end_block = blkdev_max_block(bdev, size);
 898
 899	do {
 900		if (!buffer_mapped(bh)) {
 901			bh->b_end_io = NULL;
 902			bh->b_private = NULL;
 903			bh->b_bdev = bdev;
 904			bh->b_blocknr = block;
 905			if (uptodate)
 906				set_buffer_uptodate(bh);
 907			if (block < end_block)
 908				set_buffer_mapped(bh);
 909		}
 910		block++;
 911		bh = bh->b_this_page;
 912	} while (bh != head);
 913
 914	/*
 915	 * Caller needs to validate requested block against end of device.
 916	 */
 917	return end_block;
 918}
 919
 920/*
 921 * Create the page-cache page that contains the requested block.
 922 *
 923 * This is used purely for blockdev mappings.
 924 */
 925static int
 926grow_dev_page(struct block_device *bdev, sector_t block,
 927	      pgoff_t index, int size, int sizebits, gfp_t gfp)
 928{
 929	struct inode *inode = bdev->bd_inode;
 930	struct page *page;
 931	struct buffer_head *bh;
 932	sector_t end_block;
 933	int ret = 0;
 934	gfp_t gfp_mask;
 935
 936	gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp;
 937
 938	/*
 939	 * XXX: __getblk_slow() can not really deal with failure and
 940	 * will endlessly loop on improvised global reclaim.  Prefer
 941	 * looping in the allocator rather than here, at least that
 942	 * code knows what it's doing.
 943	 */
 944	gfp_mask |= __GFP_NOFAIL;
 945
 946	page = find_or_create_page(inode->i_mapping, index, gfp_mask);
 
 
 947
 948	BUG_ON(!PageLocked(page));
 949
 950	if (page_has_buffers(page)) {
 951		bh = page_buffers(page);
 952		if (bh->b_size == size) {
 953			end_block = init_page_buffers(page, bdev,
 954						(sector_t)index << sizebits,
 955						size);
 956			goto done;
 957		}
 958		if (!try_to_free_buffers(page_folio(page)))
 959			goto failed;
 960	}
 961
 962	/*
 963	 * Allocate some buffers for this page
 964	 */
 965	bh = alloc_page_buffers(page, size, true);
 
 
 966
 967	/*
 968	 * Link the page to the buffers and initialise them.  Take the
 969	 * lock to be atomic wrt __find_get_block(), which does not
 970	 * run under the page lock.
 971	 */
 972	spin_lock(&inode->i_mapping->private_lock);
 973	link_dev_buffers(page, bh);
 974	end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits,
 975			size);
 976	spin_unlock(&inode->i_mapping->private_lock);
 977done:
 978	ret = (block < end_block) ? 1 : -ENXIO;
 979failed:
 980	unlock_page(page);
 981	put_page(page);
 982	return ret;
 983}
 984
 985/*
 986 * Create buffers for the specified block device block's page.  If
 987 * that page was dirty, the buffers are set dirty also.
 988 */
 989static int
 990grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp)
 991{
 992	pgoff_t index;
 993	int sizebits;
 994
 995	sizebits = PAGE_SHIFT - __ffs(size);
 
 
 
 
 996	index = block >> sizebits;
 997
 998	/*
 999	 * Check for a block which wants to lie outside our maximum possible
1000	 * pagecache index.  (this comparison is done using sector_t types).
1001	 */
1002	if (unlikely(index != block >> sizebits)) {
1003		printk(KERN_ERR "%s: requested out-of-range block %llu for "
1004			"device %pg\n",
1005			__func__, (unsigned long long)block,
1006			bdev);
1007		return -EIO;
1008	}
1009
1010	/* Create a page with the proper size buffers.. */
1011	return grow_dev_page(bdev, block, index, size, sizebits, gfp);
1012}
1013
1014static struct buffer_head *
1015__getblk_slow(struct block_device *bdev, sector_t block,
1016	     unsigned size, gfp_t gfp)
1017{
1018	/* Size must be multiple of hard sectorsize */
1019	if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1020			(size < 512 || size > PAGE_SIZE))) {
1021		printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1022					size);
1023		printk(KERN_ERR "logical block size: %d\n",
1024					bdev_logical_block_size(bdev));
1025
1026		dump_stack();
1027		return NULL;
1028	}
1029
1030	for (;;) {
1031		struct buffer_head *bh;
1032		int ret;
1033
1034		bh = __find_get_block(bdev, block, size);
1035		if (bh)
1036			return bh;
1037
1038		ret = grow_buffers(bdev, block, size, gfp);
1039		if (ret < 0)
1040			return NULL;
 
 
1041	}
1042}
1043
1044/*
1045 * The relationship between dirty buffers and dirty pages:
1046 *
1047 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1048 * the page is tagged dirty in the page cache.
1049 *
1050 * At all times, the dirtiness of the buffers represents the dirtiness of
1051 * subsections of the page.  If the page has buffers, the page dirty bit is
1052 * merely a hint about the true dirty state.
1053 *
1054 * When a page is set dirty in its entirety, all its buffers are marked dirty
1055 * (if the page has buffers).
1056 *
1057 * When a buffer is marked dirty, its page is dirtied, but the page's other
1058 * buffers are not.
1059 *
1060 * Also.  When blockdev buffers are explicitly read with bread(), they
1061 * individually become uptodate.  But their backing page remains not
1062 * uptodate - even if all of its buffers are uptodate.  A subsequent
1063 * block_read_full_folio() against that folio will discover all the uptodate
1064 * buffers, will set the folio uptodate and will perform no I/O.
1065 */
1066
1067/**
1068 * mark_buffer_dirty - mark a buffer_head as needing writeout
1069 * @bh: the buffer_head to mark dirty
1070 *
1071 * mark_buffer_dirty() will set the dirty bit against the buffer, then set
1072 * its backing page dirty, then tag the page as dirty in the page cache
1073 * and then attach the address_space's inode to its superblock's dirty
1074 * inode list.
1075 *
1076 * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1077 * i_pages lock and mapping->host->i_lock.
1078 */
1079void mark_buffer_dirty(struct buffer_head *bh)
1080{
1081	WARN_ON_ONCE(!buffer_uptodate(bh));
1082
1083	trace_block_dirty_buffer(bh);
1084
1085	/*
1086	 * Very *carefully* optimize the it-is-already-dirty case.
1087	 *
1088	 * Don't let the final "is it dirty" escape to before we
1089	 * perhaps modified the buffer.
1090	 */
1091	if (buffer_dirty(bh)) {
1092		smp_mb();
1093		if (buffer_dirty(bh))
1094			return;
1095	}
1096
1097	if (!test_set_buffer_dirty(bh)) {
1098		struct page *page = bh->b_page;
1099		struct address_space *mapping = NULL;
1100
1101		lock_page_memcg(page);
1102		if (!TestSetPageDirty(page)) {
1103			mapping = page_mapping(page);
1104			if (mapping)
1105				__set_page_dirty(page, mapping, 0);
1106		}
1107		unlock_page_memcg(page);
1108		if (mapping)
1109			__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1110	}
1111}
1112EXPORT_SYMBOL(mark_buffer_dirty);
1113
1114void mark_buffer_write_io_error(struct buffer_head *bh)
1115{
1116	struct super_block *sb;
1117
1118	set_buffer_write_io_error(bh);
1119	/* FIXME: do we need to set this in both places? */
1120	if (bh->b_page && bh->b_page->mapping)
1121		mapping_set_error(bh->b_page->mapping, -EIO);
1122	if (bh->b_assoc_map)
1123		mapping_set_error(bh->b_assoc_map, -EIO);
1124	rcu_read_lock();
1125	sb = READ_ONCE(bh->b_bdev->bd_super);
1126	if (sb)
1127		errseq_set(&sb->s_wb_err, -EIO);
1128	rcu_read_unlock();
1129}
1130EXPORT_SYMBOL(mark_buffer_write_io_error);
1131
1132/*
1133 * Decrement a buffer_head's reference count.  If all buffers against a page
1134 * have zero reference count, are clean and unlocked, and if the page is clean
1135 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1136 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1137 * a page but it ends up not being freed, and buffers may later be reattached).
1138 */
1139void __brelse(struct buffer_head * buf)
1140{
1141	if (atomic_read(&buf->b_count)) {
1142		put_bh(buf);
1143		return;
1144	}
1145	WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1146}
1147EXPORT_SYMBOL(__brelse);
1148
1149/*
1150 * bforget() is like brelse(), except it discards any
1151 * potentially dirty data.
1152 */
1153void __bforget(struct buffer_head *bh)
1154{
1155	clear_buffer_dirty(bh);
1156	if (bh->b_assoc_map) {
1157		struct address_space *buffer_mapping = bh->b_page->mapping;
1158
1159		spin_lock(&buffer_mapping->private_lock);
1160		list_del_init(&bh->b_assoc_buffers);
1161		bh->b_assoc_map = NULL;
1162		spin_unlock(&buffer_mapping->private_lock);
1163	}
1164	__brelse(bh);
1165}
1166EXPORT_SYMBOL(__bforget);
1167
1168static struct buffer_head *__bread_slow(struct buffer_head *bh)
1169{
1170	lock_buffer(bh);
1171	if (buffer_uptodate(bh)) {
1172		unlock_buffer(bh);
1173		return bh;
1174	} else {
1175		get_bh(bh);
1176		bh->b_end_io = end_buffer_read_sync;
1177		submit_bh(REQ_OP_READ, bh);
1178		wait_on_buffer(bh);
1179		if (buffer_uptodate(bh))
1180			return bh;
1181	}
1182	brelse(bh);
1183	return NULL;
1184}
1185
1186/*
1187 * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1188 * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1189 * refcount elevated by one when they're in an LRU.  A buffer can only appear
1190 * once in a particular CPU's LRU.  A single buffer can be present in multiple
1191 * CPU's LRUs at the same time.
1192 *
1193 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1194 * sb_find_get_block().
1195 *
1196 * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1197 * a local interrupt disable for that.
1198 */
1199
1200#define BH_LRU_SIZE	16
1201
1202struct bh_lru {
1203	struct buffer_head *bhs[BH_LRU_SIZE];
1204};
1205
1206static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1207
1208#ifdef CONFIG_SMP
1209#define bh_lru_lock()	local_irq_disable()
1210#define bh_lru_unlock()	local_irq_enable()
1211#else
1212#define bh_lru_lock()	preempt_disable()
1213#define bh_lru_unlock()	preempt_enable()
1214#endif
1215
1216static inline void check_irqs_on(void)
1217{
1218#ifdef irqs_disabled
1219	BUG_ON(irqs_disabled());
1220#endif
1221}
1222
1223/*
1224 * Install a buffer_head into this cpu's LRU.  If not already in the LRU, it is
1225 * inserted at the front, and the buffer_head at the back if any is evicted.
1226 * Or, if already in the LRU it is moved to the front.
1227 */
1228static void bh_lru_install(struct buffer_head *bh)
1229{
1230	struct buffer_head *evictee = bh;
1231	struct bh_lru *b;
1232	int i;
1233
1234	check_irqs_on();
1235	bh_lru_lock();
 
 
 
 
1236
1237	/*
1238	 * the refcount of buffer_head in bh_lru prevents dropping the
1239	 * attached page(i.e., try_to_free_buffers) so it could cause
1240	 * failing page migration.
1241	 * Skip putting upcoming bh into bh_lru until migration is done.
1242	 */
1243	if (lru_cache_disabled()) {
1244		bh_lru_unlock();
1245		return;
1246	}
1247
1248	b = this_cpu_ptr(&bh_lrus);
1249	for (i = 0; i < BH_LRU_SIZE; i++) {
1250		swap(evictee, b->bhs[i]);
1251		if (evictee == bh) {
1252			bh_lru_unlock();
1253			return;
 
 
 
 
1254		}
 
 
 
1255	}
 
1256
1257	get_bh(bh);
1258	bh_lru_unlock();
1259	brelse(evictee);
1260}
1261
1262/*
1263 * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1264 */
1265static struct buffer_head *
1266lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1267{
1268	struct buffer_head *ret = NULL;
1269	unsigned int i;
1270
1271	check_irqs_on();
1272	bh_lru_lock();
1273	for (i = 0; i < BH_LRU_SIZE; i++) {
1274		struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1275
1276		if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1277		    bh->b_size == size) {
1278			if (i) {
1279				while (i) {
1280					__this_cpu_write(bh_lrus.bhs[i],
1281						__this_cpu_read(bh_lrus.bhs[i - 1]));
1282					i--;
1283				}
1284				__this_cpu_write(bh_lrus.bhs[0], bh);
1285			}
1286			get_bh(bh);
1287			ret = bh;
1288			break;
1289		}
1290	}
1291	bh_lru_unlock();
1292	return ret;
1293}
1294
1295/*
1296 * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1297 * it in the LRU and mark it as accessed.  If it is not present then return
1298 * NULL
1299 */
1300struct buffer_head *
1301__find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1302{
1303	struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1304
1305	if (bh == NULL) {
1306		/* __find_get_block_slow will mark the page accessed */
1307		bh = __find_get_block_slow(bdev, block);
1308		if (bh)
1309			bh_lru_install(bh);
1310	} else
1311		touch_buffer(bh);
1312
1313	return bh;
1314}
1315EXPORT_SYMBOL(__find_get_block);
1316
1317/*
1318 * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1319 * which corresponds to the passed block_device, block and size. The
1320 * returned buffer has its reference count incremented.
1321 *
1322 * __getblk_gfp() will lock up the machine if grow_dev_page's
1323 * try_to_free_buffers() attempt is failing.  FIXME, perhaps?
1324 */
1325struct buffer_head *
1326__getblk_gfp(struct block_device *bdev, sector_t block,
1327	     unsigned size, gfp_t gfp)
1328{
1329	struct buffer_head *bh = __find_get_block(bdev, block, size);
1330
1331	might_sleep();
1332	if (bh == NULL)
1333		bh = __getblk_slow(bdev, block, size, gfp);
1334	return bh;
1335}
1336EXPORT_SYMBOL(__getblk_gfp);
1337
1338/*
1339 * Do async read-ahead on a buffer..
1340 */
1341void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1342{
1343	struct buffer_head *bh = __getblk(bdev, block, size);
1344	if (likely(bh)) {
1345		bh_readahead(bh, REQ_RAHEAD);
1346		brelse(bh);
1347	}
1348}
1349EXPORT_SYMBOL(__breadahead);
1350
1351/**
1352 *  __bread_gfp() - reads a specified block and returns the bh
1353 *  @bdev: the block_device to read from
1354 *  @block: number of block
1355 *  @size: size (in bytes) to read
1356 *  @gfp: page allocation flag
1357 *
1358 *  Reads a specified block, and returns buffer head that contains it.
1359 *  The page cache can be allocated from non-movable area
1360 *  not to prevent page migration if you set gfp to zero.
1361 *  It returns NULL if the block was unreadable.
1362 */
1363struct buffer_head *
1364__bread_gfp(struct block_device *bdev, sector_t block,
1365		   unsigned size, gfp_t gfp)
1366{
1367	struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1368
1369	if (likely(bh) && !buffer_uptodate(bh))
1370		bh = __bread_slow(bh);
1371	return bh;
1372}
1373EXPORT_SYMBOL(__bread_gfp);
1374
1375static void __invalidate_bh_lrus(struct bh_lru *b)
1376{
1377	int i;
1378
1379	for (i = 0; i < BH_LRU_SIZE; i++) {
1380		brelse(b->bhs[i]);
1381		b->bhs[i] = NULL;
1382	}
1383}
1384/*
1385 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1386 * This doesn't race because it runs in each cpu either in irq
1387 * or with preempt disabled.
1388 */
1389static void invalidate_bh_lru(void *arg)
1390{
1391	struct bh_lru *b = &get_cpu_var(bh_lrus);
 
1392
1393	__invalidate_bh_lrus(b);
 
 
 
1394	put_cpu_var(bh_lrus);
1395}
1396
1397bool has_bh_in_lru(int cpu, void *dummy)
1398{
1399	struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1400	int i;
1401	
1402	for (i = 0; i < BH_LRU_SIZE; i++) {
1403		if (b->bhs[i])
1404			return true;
1405	}
1406
1407	return false;
1408}
1409
1410void invalidate_bh_lrus(void)
1411{
1412	on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1);
1413}
1414EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1415
1416/*
1417 * It's called from workqueue context so we need a bh_lru_lock to close
1418 * the race with preemption/irq.
1419 */
1420void invalidate_bh_lrus_cpu(void)
1421{
1422	struct bh_lru *b;
1423
1424	bh_lru_lock();
1425	b = this_cpu_ptr(&bh_lrus);
1426	__invalidate_bh_lrus(b);
1427	bh_lru_unlock();
1428}
1429
1430void set_bh_page(struct buffer_head *bh,
1431		struct page *page, unsigned long offset)
1432{
1433	bh->b_page = page;
1434	BUG_ON(offset >= PAGE_SIZE);
1435	if (PageHighMem(page))
1436		/*
1437		 * This catches illegal uses and preserves the offset:
1438		 */
1439		bh->b_data = (char *)(0 + offset);
1440	else
1441		bh->b_data = page_address(page) + offset;
1442}
1443EXPORT_SYMBOL(set_bh_page);
1444
1445/*
1446 * Called when truncating a buffer on a page completely.
1447 */
1448
1449/* Bits that are cleared during an invalidate */
1450#define BUFFER_FLAGS_DISCARD \
1451	(1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1452	 1 << BH_Delay | 1 << BH_Unwritten)
1453
1454static void discard_buffer(struct buffer_head * bh)
1455{
1456	unsigned long b_state;
1457
1458	lock_buffer(bh);
1459	clear_buffer_dirty(bh);
1460	bh->b_bdev = NULL;
1461	b_state = READ_ONCE(bh->b_state);
1462	do {
1463	} while (!try_cmpxchg(&bh->b_state, &b_state,
1464			      b_state & ~BUFFER_FLAGS_DISCARD));
 
 
 
 
1465	unlock_buffer(bh);
1466}
1467
1468/**
1469 * block_invalidate_folio - Invalidate part or all of a buffer-backed folio.
1470 * @folio: The folio which is affected.
 
1471 * @offset: start of the range to invalidate
1472 * @length: length of the range to invalidate
1473 *
1474 * block_invalidate_folio() is called when all or part of the folio has been
1475 * invalidated by a truncate operation.
1476 *
1477 * block_invalidate_folio() does not have to release all buffers, but it must
1478 * ensure that no dirty buffer is left outside @offset and that no I/O
1479 * is underway against any of the blocks which are outside the truncation
1480 * point.  Because the caller is about to free (and possibly reuse) those
1481 * blocks on-disk.
1482 */
1483void block_invalidate_folio(struct folio *folio, size_t offset, size_t length)
 
1484{
1485	struct buffer_head *head, *bh, *next;
1486	size_t curr_off = 0;
1487	size_t stop = length + offset;
1488
1489	BUG_ON(!folio_test_locked(folio));
 
 
1490
1491	/*
1492	 * Check for overflow
1493	 */
1494	BUG_ON(stop > folio_size(folio) || stop < length);
1495
1496	head = folio_buffers(folio);
1497	if (!head)
1498		return;
1499
 
1500	bh = head;
1501	do {
1502		size_t next_off = curr_off + bh->b_size;
1503		next = bh->b_this_page;
1504
1505		/*
1506		 * Are we still fully in range ?
1507		 */
1508		if (next_off > stop)
1509			goto out;
1510
1511		/*
1512		 * is this block fully invalidated?
1513		 */
1514		if (offset <= curr_off)
1515			discard_buffer(bh);
1516		curr_off = next_off;
1517		bh = next;
1518	} while (bh != head);
1519
1520	/*
1521	 * We release buffers only if the entire folio is being invalidated.
1522	 * The get_block cached value has been unconditionally invalidated,
1523	 * so real IO is not possible anymore.
1524	 */
1525	if (length == folio_size(folio))
1526		filemap_release_folio(folio, 0);
1527out:
1528	return;
1529}
1530EXPORT_SYMBOL(block_invalidate_folio);
1531
1532
1533/*
1534 * We attach and possibly dirty the buffers atomically wrt
1535 * block_dirty_folio() via private_lock.  try_to_free_buffers
1536 * is already excluded via the page lock.
1537 */
1538void create_empty_buffers(struct page *page,
1539			unsigned long blocksize, unsigned long b_state)
1540{
1541	struct buffer_head *bh, *head, *tail;
1542
1543	head = alloc_page_buffers(page, blocksize, true);
1544	bh = head;
1545	do {
1546		bh->b_state |= b_state;
1547		tail = bh;
1548		bh = bh->b_this_page;
1549	} while (bh);
1550	tail->b_this_page = head;
1551
1552	spin_lock(&page->mapping->private_lock);
1553	if (PageUptodate(page) || PageDirty(page)) {
1554		bh = head;
1555		do {
1556			if (PageDirty(page))
1557				set_buffer_dirty(bh);
1558			if (PageUptodate(page))
1559				set_buffer_uptodate(bh);
1560			bh = bh->b_this_page;
1561		} while (bh != head);
1562	}
1563	attach_page_private(page, head);
1564	spin_unlock(&page->mapping->private_lock);
1565}
1566EXPORT_SYMBOL(create_empty_buffers);
1567
1568/**
1569 * clean_bdev_aliases: clean a range of buffers in block device
1570 * @bdev: Block device to clean buffers in
1571 * @block: Start of a range of blocks to clean
1572 * @len: Number of blocks to clean
1573 *
1574 * We are taking a range of blocks for data and we don't want writeback of any
1575 * buffer-cache aliases starting from return from this function and until the
1576 * moment when something will explicitly mark the buffer dirty (hopefully that
1577 * will not happen until we will free that block ;-) We don't even need to mark
1578 * it not-uptodate - nobody can expect anything from a newly allocated buffer
1579 * anyway. We used to use unmap_buffer() for such invalidation, but that was
1580 * wrong. We definitely don't want to mark the alias unmapped, for example - it
1581 * would confuse anyone who might pick it with bread() afterwards...
1582 *
1583 * Also..  Note that bforget() doesn't lock the buffer.  So there can be
1584 * writeout I/O going on against recently-freed buffers.  We don't wait on that
1585 * I/O in bforget() - it's more efficient to wait on the I/O only if we really
1586 * need to.  That happens here.
1587 */
1588void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len)
1589{
1590	struct inode *bd_inode = bdev->bd_inode;
1591	struct address_space *bd_mapping = bd_inode->i_mapping;
1592	struct folio_batch fbatch;
1593	pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
1594	pgoff_t end;
1595	int i, count;
1596	struct buffer_head *bh;
1597	struct buffer_head *head;
1598
1599	end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits);
1600	folio_batch_init(&fbatch);
1601	while (filemap_get_folios(bd_mapping, &index, end, &fbatch)) {
1602		count = folio_batch_count(&fbatch);
1603		for (i = 0; i < count; i++) {
1604			struct folio *folio = fbatch.folios[i];
1605
1606			if (!folio_buffers(folio))
 
 
 
1607				continue;
1608			/*
1609			 * We use folio lock instead of bd_mapping->private_lock
1610			 * to pin buffers here since we can afford to sleep and
1611			 * it scales better than a global spinlock lock.
1612			 */
1613			folio_lock(folio);
1614			/* Recheck when the folio is locked which pins bhs */
1615			head = folio_buffers(folio);
1616			if (!head)
1617				goto unlock_page;
 
1618			bh = head;
1619			do {
1620				if (!buffer_mapped(bh) || (bh->b_blocknr < block))
1621					goto next;
1622				if (bh->b_blocknr >= block + len)
1623					break;
1624				clear_buffer_dirty(bh);
1625				wait_on_buffer(bh);
1626				clear_buffer_req(bh);
1627next:
1628				bh = bh->b_this_page;
1629			} while (bh != head);
1630unlock_page:
1631			folio_unlock(folio);
1632		}
1633		folio_batch_release(&fbatch);
1634		cond_resched();
1635		/* End of range already reached? */
1636		if (index > end || !index)
1637			break;
1638	}
1639}
1640EXPORT_SYMBOL(clean_bdev_aliases);
1641
1642/*
1643 * Size is a power-of-two in the range 512..PAGE_SIZE,
1644 * and the case we care about most is PAGE_SIZE.
1645 *
1646 * So this *could* possibly be written with those
1647 * constraints in mind (relevant mostly if some
1648 * architecture has a slow bit-scan instruction)
1649 */
1650static inline int block_size_bits(unsigned int blocksize)
1651{
1652	return ilog2(blocksize);
1653}
1654
1655static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1656{
1657	BUG_ON(!PageLocked(page));
1658
1659	if (!page_has_buffers(page))
1660		create_empty_buffers(page, 1 << READ_ONCE(inode->i_blkbits),
1661				     b_state);
1662	return page_buffers(page);
1663}
1664
1665/*
1666 * NOTE! All mapped/uptodate combinations are valid:
1667 *
1668 *	Mapped	Uptodate	Meaning
1669 *
1670 *	No	No		"unknown" - must do get_block()
1671 *	No	Yes		"hole" - zero-filled
1672 *	Yes	No		"allocated" - allocated on disk, not read in
1673 *	Yes	Yes		"valid" - allocated and up-to-date in memory.
1674 *
1675 * "Dirty" is valid only with the last case (mapped+uptodate).
1676 */
1677
1678/*
1679 * While block_write_full_page is writing back the dirty buffers under
1680 * the page lock, whoever dirtied the buffers may decide to clean them
1681 * again at any time.  We handle that by only looking at the buffer
1682 * state inside lock_buffer().
1683 *
1684 * If block_write_full_page() is called for regular writeback
1685 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1686 * locked buffer.   This only can happen if someone has written the buffer
1687 * directly, with submit_bh().  At the address_space level PageWriteback
1688 * prevents this contention from occurring.
1689 *
1690 * If block_write_full_page() is called with wbc->sync_mode ==
1691 * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
1692 * causes the writes to be flagged as synchronous writes.
1693 */
1694int __block_write_full_page(struct inode *inode, struct page *page,
1695			get_block_t *get_block, struct writeback_control *wbc,
1696			bh_end_io_t *handler)
1697{
1698	int err;
1699	sector_t block;
1700	sector_t last_block;
1701	struct buffer_head *bh, *head;
1702	unsigned int blocksize, bbits;
1703	int nr_underway = 0;
1704	blk_opf_t write_flags = wbc_to_write_flags(wbc);
1705
1706	head = create_page_buffers(page, inode,
1707					(1 << BH_Dirty)|(1 << BH_Uptodate));
1708
1709	/*
1710	 * Be very careful.  We have no exclusion from block_dirty_folio
1711	 * here, and the (potentially unmapped) buffers may become dirty at
1712	 * any time.  If a buffer becomes dirty here after we've inspected it
1713	 * then we just miss that fact, and the page stays dirty.
1714	 *
1715	 * Buffers outside i_size may be dirtied by block_dirty_folio;
1716	 * handle that here by just cleaning them.
1717	 */
1718
1719	bh = head;
1720	blocksize = bh->b_size;
1721	bbits = block_size_bits(blocksize);
1722
1723	block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1724	last_block = (i_size_read(inode) - 1) >> bbits;
1725
1726	/*
1727	 * Get all the dirty buffers mapped to disk addresses and
1728	 * handle any aliases from the underlying blockdev's mapping.
1729	 */
1730	do {
1731		if (block > last_block) {
1732			/*
1733			 * mapped buffers outside i_size will occur, because
1734			 * this page can be outside i_size when there is a
1735			 * truncate in progress.
1736			 */
1737			/*
1738			 * The buffer was zeroed by block_write_full_page()
1739			 */
1740			clear_buffer_dirty(bh);
1741			set_buffer_uptodate(bh);
1742		} else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1743			   buffer_dirty(bh)) {
1744			WARN_ON(bh->b_size != blocksize);
1745			err = get_block(inode, block, bh, 1);
1746			if (err)
1747				goto recover;
1748			clear_buffer_delay(bh);
1749			if (buffer_new(bh)) {
1750				/* blockdev mappings never come here */
1751				clear_buffer_new(bh);
1752				clean_bdev_bh_alias(bh);
1753			}
1754		}
1755		bh = bh->b_this_page;
1756		block++;
1757	} while (bh != head);
1758
1759	do {
1760		if (!buffer_mapped(bh))
1761			continue;
1762		/*
1763		 * If it's a fully non-blocking write attempt and we cannot
1764		 * lock the buffer then redirty the page.  Note that this can
1765		 * potentially cause a busy-wait loop from writeback threads
1766		 * and kswapd activity, but those code paths have their own
1767		 * higher-level throttling.
1768		 */
1769		if (wbc->sync_mode != WB_SYNC_NONE) {
1770			lock_buffer(bh);
1771		} else if (!trylock_buffer(bh)) {
1772			redirty_page_for_writepage(wbc, page);
1773			continue;
1774		}
1775		if (test_clear_buffer_dirty(bh)) {
1776			mark_buffer_async_write_endio(bh, handler);
1777		} else {
1778			unlock_buffer(bh);
1779		}
1780	} while ((bh = bh->b_this_page) != head);
1781
1782	/*
1783	 * The page and its buffers are protected by PageWriteback(), so we can
1784	 * drop the bh refcounts early.
1785	 */
1786	BUG_ON(PageWriteback(page));
1787	set_page_writeback(page);
1788
1789	do {
1790		struct buffer_head *next = bh->b_this_page;
1791		if (buffer_async_write(bh)) {
1792			submit_bh_wbc(REQ_OP_WRITE | write_flags, bh, wbc);
1793			nr_underway++;
1794		}
1795		bh = next;
1796	} while (bh != head);
1797	unlock_page(page);
1798
1799	err = 0;
1800done:
1801	if (nr_underway == 0) {
1802		/*
1803		 * The page was marked dirty, but the buffers were
1804		 * clean.  Someone wrote them back by hand with
1805		 * write_dirty_buffer/submit_bh.  A rare case.
1806		 */
1807		end_page_writeback(page);
1808
1809		/*
1810		 * The page and buffer_heads can be released at any time from
1811		 * here on.
1812		 */
1813	}
1814	return err;
1815
1816recover:
1817	/*
1818	 * ENOSPC, or some other error.  We may already have added some
1819	 * blocks to the file, so we need to write these out to avoid
1820	 * exposing stale data.
1821	 * The page is currently locked and not marked for writeback
1822	 */
1823	bh = head;
1824	/* Recovery: lock and submit the mapped buffers */
1825	do {
1826		if (buffer_mapped(bh) && buffer_dirty(bh) &&
1827		    !buffer_delay(bh)) {
1828			lock_buffer(bh);
1829			mark_buffer_async_write_endio(bh, handler);
1830		} else {
1831			/*
1832			 * The buffer may have been set dirty during
1833			 * attachment to a dirty page.
1834			 */
1835			clear_buffer_dirty(bh);
1836		}
1837	} while ((bh = bh->b_this_page) != head);
1838	SetPageError(page);
1839	BUG_ON(PageWriteback(page));
1840	mapping_set_error(page->mapping, err);
1841	set_page_writeback(page);
1842	do {
1843		struct buffer_head *next = bh->b_this_page;
1844		if (buffer_async_write(bh)) {
1845			clear_buffer_dirty(bh);
1846			submit_bh_wbc(REQ_OP_WRITE | write_flags, bh, wbc);
1847			nr_underway++;
1848		}
1849		bh = next;
1850	} while (bh != head);
1851	unlock_page(page);
1852	goto done;
1853}
1854EXPORT_SYMBOL(__block_write_full_page);
1855
1856/*
1857 * If a page has any new buffers, zero them out here, and mark them uptodate
1858 * and dirty so they'll be written out (in order to prevent uninitialised
1859 * block data from leaking). And clear the new bit.
1860 */
1861void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1862{
1863	unsigned int block_start, block_end;
1864	struct buffer_head *head, *bh;
1865
1866	BUG_ON(!PageLocked(page));
1867	if (!page_has_buffers(page))
1868		return;
1869
1870	bh = head = page_buffers(page);
1871	block_start = 0;
1872	do {
1873		block_end = block_start + bh->b_size;
1874
1875		if (buffer_new(bh)) {
1876			if (block_end > from && block_start < to) {
1877				if (!PageUptodate(page)) {
1878					unsigned start, size;
1879
1880					start = max(from, block_start);
1881					size = min(to, block_end) - start;
1882
1883					zero_user(page, start, size);
1884					set_buffer_uptodate(bh);
1885				}
1886
1887				clear_buffer_new(bh);
1888				mark_buffer_dirty(bh);
1889			}
1890		}
1891
1892		block_start = block_end;
1893		bh = bh->b_this_page;
1894	} while (bh != head);
1895}
1896EXPORT_SYMBOL(page_zero_new_buffers);
1897
1898static void
1899iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
1900		const struct iomap *iomap)
1901{
1902	loff_t offset = block << inode->i_blkbits;
1903
1904	bh->b_bdev = iomap->bdev;
1905
1906	/*
1907	 * Block points to offset in file we need to map, iomap contains
1908	 * the offset at which the map starts. If the map ends before the
1909	 * current block, then do not map the buffer and let the caller
1910	 * handle it.
1911	 */
1912	BUG_ON(offset >= iomap->offset + iomap->length);
1913
1914	switch (iomap->type) {
1915	case IOMAP_HOLE:
1916		/*
1917		 * If the buffer is not up to date or beyond the current EOF,
1918		 * we need to mark it as new to ensure sub-block zeroing is
1919		 * executed if necessary.
1920		 */
1921		if (!buffer_uptodate(bh) ||
1922		    (offset >= i_size_read(inode)))
1923			set_buffer_new(bh);
1924		break;
1925	case IOMAP_DELALLOC:
1926		if (!buffer_uptodate(bh) ||
1927		    (offset >= i_size_read(inode)))
1928			set_buffer_new(bh);
1929		set_buffer_uptodate(bh);
1930		set_buffer_mapped(bh);
1931		set_buffer_delay(bh);
1932		break;
1933	case IOMAP_UNWRITTEN:
1934		/*
1935		 * For unwritten regions, we always need to ensure that regions
1936		 * in the block we are not writing to are zeroed. Mark the
1937		 * buffer as new to ensure this.
1938		 */
1939		set_buffer_new(bh);
1940		set_buffer_unwritten(bh);
1941		fallthrough;
1942	case IOMAP_MAPPED:
1943		if ((iomap->flags & IOMAP_F_NEW) ||
1944		    offset >= i_size_read(inode))
1945			set_buffer_new(bh);
1946		bh->b_blocknr = (iomap->addr + offset - iomap->offset) >>
1947				inode->i_blkbits;
1948		set_buffer_mapped(bh);
1949		break;
1950	}
1951}
1952
1953int __block_write_begin_int(struct folio *folio, loff_t pos, unsigned len,
1954		get_block_t *get_block, const struct iomap *iomap)
1955{
1956	unsigned from = pos & (PAGE_SIZE - 1);
1957	unsigned to = from + len;
1958	struct inode *inode = folio->mapping->host;
1959	unsigned block_start, block_end;
1960	sector_t block;
1961	int err = 0;
1962	unsigned blocksize, bbits;
1963	struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1964
1965	BUG_ON(!folio_test_locked(folio));
1966	BUG_ON(from > PAGE_SIZE);
1967	BUG_ON(to > PAGE_SIZE);
1968	BUG_ON(from > to);
1969
1970	head = create_page_buffers(&folio->page, inode, 0);
1971	blocksize = head->b_size;
1972	bbits = block_size_bits(blocksize);
1973
1974	block = (sector_t)folio->index << (PAGE_SHIFT - bbits);
1975
1976	for(bh = head, block_start = 0; bh != head || !block_start;
1977	    block++, block_start=block_end, bh = bh->b_this_page) {
1978		block_end = block_start + blocksize;
1979		if (block_end <= from || block_start >= to) {
1980			if (folio_test_uptodate(folio)) {
1981				if (!buffer_uptodate(bh))
1982					set_buffer_uptodate(bh);
1983			}
1984			continue;
1985		}
1986		if (buffer_new(bh))
1987			clear_buffer_new(bh);
1988		if (!buffer_mapped(bh)) {
1989			WARN_ON(bh->b_size != blocksize);
1990			if (get_block) {
1991				err = get_block(inode, block, bh, 1);
1992				if (err)
1993					break;
1994			} else {
1995				iomap_to_bh(inode, block, bh, iomap);
1996			}
1997
1998			if (buffer_new(bh)) {
1999				clean_bdev_bh_alias(bh);
2000				if (folio_test_uptodate(folio)) {
2001					clear_buffer_new(bh);
2002					set_buffer_uptodate(bh);
2003					mark_buffer_dirty(bh);
2004					continue;
2005				}
2006				if (block_end > to || block_start < from)
2007					folio_zero_segments(folio,
2008						to, block_end,
2009						block_start, from);
2010				continue;
2011			}
2012		}
2013		if (folio_test_uptodate(folio)) {
2014			if (!buffer_uptodate(bh))
2015				set_buffer_uptodate(bh);
2016			continue; 
2017		}
2018		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
2019		    !buffer_unwritten(bh) &&
2020		     (block_start < from || block_end > to)) {
2021			bh_read_nowait(bh, 0);
2022			*wait_bh++=bh;
2023		}
2024	}
2025	/*
2026	 * If we issued read requests - let them complete.
2027	 */
2028	while(wait_bh > wait) {
2029		wait_on_buffer(*--wait_bh);
2030		if (!buffer_uptodate(*wait_bh))
2031			err = -EIO;
2032	}
2033	if (unlikely(err))
2034		page_zero_new_buffers(&folio->page, from, to);
2035	return err;
2036}
2037
2038int __block_write_begin(struct page *page, loff_t pos, unsigned len,
2039		get_block_t *get_block)
2040{
2041	return __block_write_begin_int(page_folio(page), pos, len, get_block,
2042				       NULL);
2043}
2044EXPORT_SYMBOL(__block_write_begin);
2045
2046static int __block_commit_write(struct inode *inode, struct page *page,
2047		unsigned from, unsigned to)
2048{
2049	unsigned block_start, block_end;
2050	int partial = 0;
2051	unsigned blocksize;
2052	struct buffer_head *bh, *head;
2053
2054	bh = head = page_buffers(page);
2055	blocksize = bh->b_size;
2056
2057	block_start = 0;
2058	do {
2059		block_end = block_start + blocksize;
2060		if (block_end <= from || block_start >= to) {
2061			if (!buffer_uptodate(bh))
2062				partial = 1;
2063		} else {
2064			set_buffer_uptodate(bh);
2065			mark_buffer_dirty(bh);
2066		}
2067		if (buffer_new(bh))
2068			clear_buffer_new(bh);
2069
2070		block_start = block_end;
2071		bh = bh->b_this_page;
2072	} while (bh != head);
2073
2074	/*
2075	 * If this is a partial write which happened to make all buffers
2076	 * uptodate then we can optimize away a bogus read_folio() for
2077	 * the next read(). Here we 'discover' whether the page went
2078	 * uptodate as a result of this (potentially partial) write.
2079	 */
2080	if (!partial)
2081		SetPageUptodate(page);
2082	return 0;
2083}
2084
2085/*
2086 * block_write_begin takes care of the basic task of block allocation and
2087 * bringing partial write blocks uptodate first.
2088 *
2089 * The filesystem needs to handle block truncation upon failure.
2090 */
2091int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2092		struct page **pagep, get_block_t *get_block)
2093{
2094	pgoff_t index = pos >> PAGE_SHIFT;
2095	struct page *page;
2096	int status;
2097
2098	page = grab_cache_page_write_begin(mapping, index);
2099	if (!page)
2100		return -ENOMEM;
2101
2102	status = __block_write_begin(page, pos, len, get_block);
2103	if (unlikely(status)) {
2104		unlock_page(page);
2105		put_page(page);
2106		page = NULL;
2107	}
2108
2109	*pagep = page;
2110	return status;
2111}
2112EXPORT_SYMBOL(block_write_begin);
2113
2114int block_write_end(struct file *file, struct address_space *mapping,
2115			loff_t pos, unsigned len, unsigned copied,
2116			struct page *page, void *fsdata)
2117{
2118	struct inode *inode = mapping->host;
2119	unsigned start;
2120
2121	start = pos & (PAGE_SIZE - 1);
2122
2123	if (unlikely(copied < len)) {
2124		/*
2125		 * The buffers that were written will now be uptodate, so
2126		 * we don't have to worry about a read_folio reading them
2127		 * and overwriting a partial write. However if we have
2128		 * encountered a short write and only partially written
2129		 * into a buffer, it will not be marked uptodate, so a
2130		 * read_folio might come in and destroy our partial write.
2131		 *
2132		 * Do the simplest thing, and just treat any short write to a
2133		 * non uptodate page as a zero-length write, and force the
2134		 * caller to redo the whole thing.
2135		 */
2136		if (!PageUptodate(page))
2137			copied = 0;
2138
2139		page_zero_new_buffers(page, start+copied, start+len);
2140	}
2141	flush_dcache_page(page);
2142
2143	/* This could be a short (even 0-length) commit */
2144	__block_commit_write(inode, page, start, start+copied);
2145
2146	return copied;
2147}
2148EXPORT_SYMBOL(block_write_end);
2149
2150int generic_write_end(struct file *file, struct address_space *mapping,
2151			loff_t pos, unsigned len, unsigned copied,
2152			struct page *page, void *fsdata)
2153{
2154	struct inode *inode = mapping->host;
2155	loff_t old_size = inode->i_size;
2156	bool i_size_changed = false;
2157
2158	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2159
2160	/*
2161	 * No need to use i_size_read() here, the i_size cannot change under us
2162	 * because we hold i_rwsem.
2163	 *
2164	 * But it's important to update i_size while still holding page lock:
2165	 * page writeout could otherwise come in and zero beyond i_size.
2166	 */
2167	if (pos + copied > inode->i_size) {
2168		i_size_write(inode, pos + copied);
2169		i_size_changed = true;
2170	}
2171
2172	unlock_page(page);
2173	put_page(page);
2174
2175	if (old_size < pos)
2176		pagecache_isize_extended(inode, old_size, pos);
2177	/*
2178	 * Don't mark the inode dirty under page lock. First, it unnecessarily
2179	 * makes the holding time of page lock longer. Second, it forces lock
2180	 * ordering of page lock and transaction start for journaling
2181	 * filesystems.
2182	 */
2183	if (i_size_changed)
2184		mark_inode_dirty(inode);
 
2185	return copied;
2186}
2187EXPORT_SYMBOL(generic_write_end);
2188
2189/*
2190 * block_is_partially_uptodate checks whether buffers within a folio are
2191 * uptodate or not.
2192 *
2193 * Returns true if all buffers which correspond to the specified part
2194 * of the folio are uptodate.
2195 */
2196bool block_is_partially_uptodate(struct folio *folio, size_t from, size_t count)
 
2197{
2198	unsigned block_start, block_end, blocksize;
2199	unsigned to;
2200	struct buffer_head *bh, *head;
2201	bool ret = true;
 
 
 
2202
2203	head = folio_buffers(folio);
2204	if (!head)
2205		return false;
2206	blocksize = head->b_size;
2207	to = min_t(unsigned, folio_size(folio) - from, count);
2208	to = from + to;
2209	if (from < blocksize && to > folio_size(folio) - blocksize)
2210		return false;
2211
2212	bh = head;
2213	block_start = 0;
2214	do {
2215		block_end = block_start + blocksize;
2216		if (block_end > from && block_start < to) {
2217			if (!buffer_uptodate(bh)) {
2218				ret = false;
2219				break;
2220			}
2221			if (block_end >= to)
2222				break;
2223		}
2224		block_start = block_end;
2225		bh = bh->b_this_page;
2226	} while (bh != head);
2227
2228	return ret;
2229}
2230EXPORT_SYMBOL(block_is_partially_uptodate);
2231
2232/*
2233 * Generic "read_folio" function for block devices that have the normal
2234 * get_block functionality. This is most of the block device filesystems.
2235 * Reads the folio asynchronously --- the unlock_buffer() and
2236 * set/clear_buffer_uptodate() functions propagate buffer state into the
2237 * folio once IO has completed.
2238 */
2239int block_read_full_folio(struct folio *folio, get_block_t *get_block)
2240{
2241	struct inode *inode = folio->mapping->host;
2242	sector_t iblock, lblock;
2243	struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2244	unsigned int blocksize, bbits;
2245	int nr, i;
2246	int fully_mapped = 1;
2247	bool page_error = false;
2248
2249	VM_BUG_ON_FOLIO(folio_test_large(folio), folio);
2250
2251	head = create_page_buffers(&folio->page, inode, 0);
2252	blocksize = head->b_size;
2253	bbits = block_size_bits(blocksize);
2254
2255	iblock = (sector_t)folio->index << (PAGE_SHIFT - bbits);
2256	lblock = (i_size_read(inode)+blocksize-1) >> bbits;
2257	bh = head;
2258	nr = 0;
2259	i = 0;
2260
2261	do {
2262		if (buffer_uptodate(bh))
2263			continue;
2264
2265		if (!buffer_mapped(bh)) {
2266			int err = 0;
2267
2268			fully_mapped = 0;
2269			if (iblock < lblock) {
2270				WARN_ON(bh->b_size != blocksize);
2271				err = get_block(inode, iblock, bh, 0);
2272				if (err) {
2273					folio_set_error(folio);
2274					page_error = true;
2275				}
2276			}
2277			if (!buffer_mapped(bh)) {
2278				folio_zero_range(folio, i * blocksize,
2279						blocksize);
2280				if (!err)
2281					set_buffer_uptodate(bh);
2282				continue;
2283			}
2284			/*
2285			 * get_block() might have updated the buffer
2286			 * synchronously
2287			 */
2288			if (buffer_uptodate(bh))
2289				continue;
2290		}
2291		arr[nr++] = bh;
2292	} while (i++, iblock++, (bh = bh->b_this_page) != head);
2293
2294	if (fully_mapped)
2295		folio_set_mappedtodisk(folio);
2296
2297	if (!nr) {
2298		/*
2299		 * All buffers are uptodate - we can set the folio uptodate
2300		 * as well. But not if get_block() returned an error.
2301		 */
2302		if (!page_error)
2303			folio_mark_uptodate(folio);
2304		folio_unlock(folio);
2305		return 0;
2306	}
2307
2308	/* Stage two: lock the buffers */
2309	for (i = 0; i < nr; i++) {
2310		bh = arr[i];
2311		lock_buffer(bh);
2312		mark_buffer_async_read(bh);
2313	}
2314
2315	/*
2316	 * Stage 3: start the IO.  Check for uptodateness
2317	 * inside the buffer lock in case another process reading
2318	 * the underlying blockdev brought it uptodate (the sct fix).
2319	 */
2320	for (i = 0; i < nr; i++) {
2321		bh = arr[i];
2322		if (buffer_uptodate(bh))
2323			end_buffer_async_read(bh, 1);
2324		else
2325			submit_bh(REQ_OP_READ, bh);
2326	}
2327	return 0;
2328}
2329EXPORT_SYMBOL(block_read_full_folio);
2330
2331/* utility function for filesystems that need to do work on expanding
2332 * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2333 * deal with the hole.  
2334 */
2335int generic_cont_expand_simple(struct inode *inode, loff_t size)
2336{
2337	struct address_space *mapping = inode->i_mapping;
2338	const struct address_space_operations *aops = mapping->a_ops;
2339	struct page *page;
2340	void *fsdata = NULL;
2341	int err;
2342
2343	err = inode_newsize_ok(inode, size);
2344	if (err)
2345		goto out;
2346
2347	err = aops->write_begin(NULL, mapping, size, 0, &page, &fsdata);
 
 
2348	if (err)
2349		goto out;
2350
2351	err = aops->write_end(NULL, mapping, size, 0, 0, page, fsdata);
2352	BUG_ON(err > 0);
2353
2354out:
2355	return err;
2356}
2357EXPORT_SYMBOL(generic_cont_expand_simple);
2358
2359static int cont_expand_zero(struct file *file, struct address_space *mapping,
2360			    loff_t pos, loff_t *bytes)
2361{
2362	struct inode *inode = mapping->host;
2363	const struct address_space_operations *aops = mapping->a_ops;
2364	unsigned int blocksize = i_blocksize(inode);
2365	struct page *page;
2366	void *fsdata = NULL;
2367	pgoff_t index, curidx;
2368	loff_t curpos;
2369	unsigned zerofrom, offset, len;
2370	int err = 0;
2371
2372	index = pos >> PAGE_SHIFT;
2373	offset = pos & ~PAGE_MASK;
2374
2375	while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2376		zerofrom = curpos & ~PAGE_MASK;
2377		if (zerofrom & (blocksize-1)) {
2378			*bytes |= (blocksize-1);
2379			(*bytes)++;
2380		}
2381		len = PAGE_SIZE - zerofrom;
2382
2383		err = aops->write_begin(file, mapping, curpos, len,
2384					    &page, &fsdata);
 
2385		if (err)
2386			goto out;
2387		zero_user(page, zerofrom, len);
2388		err = aops->write_end(file, mapping, curpos, len, len,
2389						page, fsdata);
2390		if (err < 0)
2391			goto out;
2392		BUG_ON(err != len);
2393		err = 0;
2394
2395		balance_dirty_pages_ratelimited(mapping);
2396
2397		if (fatal_signal_pending(current)) {
2398			err = -EINTR;
2399			goto out;
2400		}
2401	}
2402
2403	/* page covers the boundary, find the boundary offset */
2404	if (index == curidx) {
2405		zerofrom = curpos & ~PAGE_MASK;
2406		/* if we will expand the thing last block will be filled */
2407		if (offset <= zerofrom) {
2408			goto out;
2409		}
2410		if (zerofrom & (blocksize-1)) {
2411			*bytes |= (blocksize-1);
2412			(*bytes)++;
2413		}
2414		len = offset - zerofrom;
2415
2416		err = aops->write_begin(file, mapping, curpos, len,
2417					    &page, &fsdata);
 
2418		if (err)
2419			goto out;
2420		zero_user(page, zerofrom, len);
2421		err = aops->write_end(file, mapping, curpos, len, len,
2422						page, fsdata);
2423		if (err < 0)
2424			goto out;
2425		BUG_ON(err != len);
2426		err = 0;
2427	}
2428out:
2429	return err;
2430}
2431
2432/*
2433 * For moronic filesystems that do not allow holes in file.
2434 * We may have to extend the file.
2435 */
2436int cont_write_begin(struct file *file, struct address_space *mapping,
2437			loff_t pos, unsigned len,
2438			struct page **pagep, void **fsdata,
2439			get_block_t *get_block, loff_t *bytes)
2440{
2441	struct inode *inode = mapping->host;
2442	unsigned int blocksize = i_blocksize(inode);
2443	unsigned int zerofrom;
2444	int err;
2445
2446	err = cont_expand_zero(file, mapping, pos, bytes);
2447	if (err)
2448		return err;
2449
2450	zerofrom = *bytes & ~PAGE_MASK;
2451	if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2452		*bytes |= (blocksize-1);
2453		(*bytes)++;
2454	}
2455
2456	return block_write_begin(mapping, pos, len, pagep, get_block);
2457}
2458EXPORT_SYMBOL(cont_write_begin);
2459
2460int block_commit_write(struct page *page, unsigned from, unsigned to)
2461{
2462	struct inode *inode = page->mapping->host;
2463	__block_commit_write(inode,page,from,to);
2464	return 0;
2465}
2466EXPORT_SYMBOL(block_commit_write);
2467
2468/*
2469 * block_page_mkwrite() is not allowed to change the file size as it gets
2470 * called from a page fault handler when a page is first dirtied. Hence we must
2471 * be careful to check for EOF conditions here. We set the page up correctly
2472 * for a written page which means we get ENOSPC checking when writing into
2473 * holes and correct delalloc and unwritten extent mapping on filesystems that
2474 * support these features.
2475 *
2476 * We are not allowed to take the i_mutex here so we have to play games to
2477 * protect against truncate races as the page could now be beyond EOF.  Because
2478 * truncate writes the inode size before removing pages, once we have the
2479 * page lock we can determine safely if the page is beyond EOF. If it is not
2480 * beyond EOF, then the page is guaranteed safe against truncation until we
2481 * unlock the page.
2482 *
2483 * Direct callers of this function should protect against filesystem freezing
2484 * using sb_start_pagefault() - sb_end_pagefault() functions.
2485 */
2486int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2487			 get_block_t get_block)
2488{
2489	struct page *page = vmf->page;
2490	struct inode *inode = file_inode(vma->vm_file);
2491	unsigned long end;
2492	loff_t size;
2493	int ret;
2494
2495	lock_page(page);
2496	size = i_size_read(inode);
2497	if ((page->mapping != inode->i_mapping) ||
2498	    (page_offset(page) > size)) {
2499		/* We overload EFAULT to mean page got truncated */
2500		ret = -EFAULT;
2501		goto out_unlock;
2502	}
2503
2504	/* page is wholly or partially inside EOF */
2505	if (((page->index + 1) << PAGE_SHIFT) > size)
2506		end = size & ~PAGE_MASK;
2507	else
2508		end = PAGE_SIZE;
2509
2510	ret = __block_write_begin(page, 0, end, get_block);
2511	if (!ret)
2512		ret = block_commit_write(page, 0, end);
2513
2514	if (unlikely(ret < 0))
2515		goto out_unlock;
2516	set_page_dirty(page);
2517	wait_for_stable_page(page);
2518	return 0;
2519out_unlock:
2520	unlock_page(page);
2521	return ret;
2522}
2523EXPORT_SYMBOL(block_page_mkwrite);
2524
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2525int block_truncate_page(struct address_space *mapping,
2526			loff_t from, get_block_t *get_block)
2527{
2528	pgoff_t index = from >> PAGE_SHIFT;
2529	unsigned offset = from & (PAGE_SIZE-1);
2530	unsigned blocksize;
2531	sector_t iblock;
2532	unsigned length, pos;
2533	struct inode *inode = mapping->host;
2534	struct page *page;
2535	struct buffer_head *bh;
2536	int err;
2537
2538	blocksize = i_blocksize(inode);
2539	length = offset & (blocksize - 1);
2540
2541	/* Block boundary? Nothing to do */
2542	if (!length)
2543		return 0;
2544
2545	length = blocksize - length;
2546	iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2547	
2548	page = grab_cache_page(mapping, index);
2549	err = -ENOMEM;
2550	if (!page)
2551		goto out;
2552
2553	if (!page_has_buffers(page))
2554		create_empty_buffers(page, blocksize, 0);
2555
2556	/* Find the buffer that contains "offset" */
2557	bh = page_buffers(page);
2558	pos = blocksize;
2559	while (offset >= pos) {
2560		bh = bh->b_this_page;
2561		iblock++;
2562		pos += blocksize;
2563	}
2564
2565	err = 0;
2566	if (!buffer_mapped(bh)) {
2567		WARN_ON(bh->b_size != blocksize);
2568		err = get_block(inode, iblock, bh, 0);
2569		if (err)
2570			goto unlock;
2571		/* unmapped? It's a hole - nothing to do */
2572		if (!buffer_mapped(bh))
2573			goto unlock;
2574	}
2575
2576	/* Ok, it's mapped. Make sure it's up-to-date */
2577	if (PageUptodate(page))
2578		set_buffer_uptodate(bh);
2579
2580	if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2581		err = bh_read(bh, 0);
 
 
2582		/* Uhhuh. Read error. Complain and punt. */
2583		if (err < 0)
2584			goto unlock;
2585	}
2586
2587	zero_user(page, offset, length);
2588	mark_buffer_dirty(bh);
2589	err = 0;
2590
2591unlock:
2592	unlock_page(page);
2593	put_page(page);
2594out:
2595	return err;
2596}
2597EXPORT_SYMBOL(block_truncate_page);
2598
2599/*
2600 * The generic ->writepage function for buffer-backed address_spaces
2601 */
2602int block_write_full_page(struct page *page, get_block_t *get_block,
2603			struct writeback_control *wbc)
2604{
2605	struct inode * const inode = page->mapping->host;
2606	loff_t i_size = i_size_read(inode);
2607	const pgoff_t end_index = i_size >> PAGE_SHIFT;
2608	unsigned offset;
2609
2610	/* Is the page fully inside i_size? */
2611	if (page->index < end_index)
2612		return __block_write_full_page(inode, page, get_block, wbc,
2613					       end_buffer_async_write);
2614
2615	/* Is the page fully outside i_size? (truncate in progress) */
2616	offset = i_size & (PAGE_SIZE-1);
2617	if (page->index >= end_index+1 || !offset) {
 
 
 
 
 
 
2618		unlock_page(page);
2619		return 0; /* don't care */
2620	}
2621
2622	/*
2623	 * The page straddles i_size.  It must be zeroed out on each and every
2624	 * writepage invocation because it may be mmapped.  "A file is mapped
2625	 * in multiples of the page size.  For a file that is not a multiple of
2626	 * the  page size, the remaining memory is zeroed when mapped, and
2627	 * writes to that region are not written out to the file."
2628	 */
2629	zero_user_segment(page, offset, PAGE_SIZE);
2630	return __block_write_full_page(inode, page, get_block, wbc,
2631							end_buffer_async_write);
2632}
2633EXPORT_SYMBOL(block_write_full_page);
2634
2635sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2636			    get_block_t *get_block)
2637{
 
2638	struct inode *inode = mapping->host;
2639	struct buffer_head tmp = {
2640		.b_size = i_blocksize(inode),
2641	};
2642
2643	get_block(inode, block, &tmp, 0);
2644	return tmp.b_blocknr;
2645}
2646EXPORT_SYMBOL(generic_block_bmap);
2647
2648static void end_bio_bh_io_sync(struct bio *bio)
2649{
2650	struct buffer_head *bh = bio->bi_private;
2651
2652	if (unlikely(bio_flagged(bio, BIO_QUIET)))
2653		set_bit(BH_Quiet, &bh->b_state);
2654
2655	bh->b_end_io(bh, !bio->bi_status);
2656	bio_put(bio);
2657}
2658
2659static void submit_bh_wbc(blk_opf_t opf, struct buffer_head *bh,
2660			  struct writeback_control *wbc)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2661{
2662	const enum req_op op = opf & REQ_OP_MASK;
2663	struct bio *bio;
2664
2665	BUG_ON(!buffer_locked(bh));
2666	BUG_ON(!buffer_mapped(bh));
2667	BUG_ON(!bh->b_end_io);
2668	BUG_ON(buffer_delay(bh));
2669	BUG_ON(buffer_unwritten(bh));
2670
2671	/*
2672	 * Only clear out a write error when rewriting
2673	 */
2674	if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
2675		clear_buffer_write_io_error(bh);
2676
2677	if (buffer_meta(bh))
2678		opf |= REQ_META;
2679	if (buffer_prio(bh))
2680		opf |= REQ_PRIO;
 
2681
2682	bio = bio_alloc(bh->b_bdev, 1, opf, GFP_NOIO);
2683
2684	fscrypt_set_bio_crypt_ctx_bh(bio, bh, GFP_NOIO);
 
2685
2686	bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
 
2687
2688	bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
2689	BUG_ON(bio->bi_iter.bi_size != bh->b_size);
2690
2691	bio->bi_end_io = end_bio_bh_io_sync;
2692	bio->bi_private = bh;
 
2693
2694	/* Take care of bh's that straddle the end of the device */
2695	guard_bio_eod(bio);
2696
2697	if (wbc) {
2698		wbc_init_bio(wbc, bio);
2699		wbc_account_cgroup_owner(wbc, bh->b_page, bh->b_size);
2700	}
 
2701
2702	submit_bio(bio);
 
 
 
 
 
 
 
2703}
 
2704
2705void submit_bh(blk_opf_t opf, struct buffer_head *bh)
2706{
2707	submit_bh_wbc(opf, bh, NULL);
2708}
2709EXPORT_SYMBOL(submit_bh);
2710
2711void write_dirty_buffer(struct buffer_head *bh, blk_opf_t op_flags)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2712{
2713	lock_buffer(bh);
2714	if (!test_clear_buffer_dirty(bh)) {
2715		unlock_buffer(bh);
2716		return;
2717	}
2718	bh->b_end_io = end_buffer_write_sync;
2719	get_bh(bh);
2720	submit_bh(REQ_OP_WRITE | op_flags, bh);
2721}
2722EXPORT_SYMBOL(write_dirty_buffer);
2723
2724/*
2725 * For a data-integrity writeout, we need to wait upon any in-progress I/O
2726 * and then start new I/O and then wait upon it.  The caller must have a ref on
2727 * the buffer_head.
2728 */
2729int __sync_dirty_buffer(struct buffer_head *bh, blk_opf_t op_flags)
2730{
 
 
2731	WARN_ON(atomic_read(&bh->b_count) < 1);
2732	lock_buffer(bh);
2733	if (test_clear_buffer_dirty(bh)) {
2734		/*
2735		 * The bh should be mapped, but it might not be if the
2736		 * device was hot-removed. Not much we can do but fail the I/O.
2737		 */
2738		if (!buffer_mapped(bh)) {
2739			unlock_buffer(bh);
2740			return -EIO;
2741		}
2742
2743		get_bh(bh);
2744		bh->b_end_io = end_buffer_write_sync;
2745		submit_bh(REQ_OP_WRITE | op_flags, bh);
2746		wait_on_buffer(bh);
2747		if (!buffer_uptodate(bh))
2748			return -EIO;
2749	} else {
2750		unlock_buffer(bh);
2751	}
2752	return 0;
2753}
2754EXPORT_SYMBOL(__sync_dirty_buffer);
2755
2756int sync_dirty_buffer(struct buffer_head *bh)
2757{
2758	return __sync_dirty_buffer(bh, REQ_SYNC);
2759}
2760EXPORT_SYMBOL(sync_dirty_buffer);
2761
2762/*
2763 * try_to_free_buffers() checks if all the buffers on this particular folio
2764 * are unused, and releases them if so.
2765 *
2766 * Exclusion against try_to_free_buffers may be obtained by either
2767 * locking the folio or by holding its mapping's private_lock.
2768 *
2769 * If the folio is dirty but all the buffers are clean then we need to
2770 * be sure to mark the folio clean as well.  This is because the folio
2771 * may be against a block device, and a later reattachment of buffers
2772 * to a dirty folio will set *all* buffers dirty.  Which would corrupt
2773 * filesystem data on the same device.
2774 *
2775 * The same applies to regular filesystem folios: if all the buffers are
2776 * clean then we set the folio clean and proceed.  To do that, we require
2777 * total exclusion from block_dirty_folio().  That is obtained with
2778 * private_lock.
2779 *
2780 * try_to_free_buffers() is non-blocking.
2781 */
2782static inline int buffer_busy(struct buffer_head *bh)
2783{
2784	return atomic_read(&bh->b_count) |
2785		(bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
2786}
2787
2788static bool
2789drop_buffers(struct folio *folio, struct buffer_head **buffers_to_free)
2790{
2791	struct buffer_head *head = folio_buffers(folio);
2792	struct buffer_head *bh;
2793
2794	bh = head;
2795	do {
 
 
2796		if (buffer_busy(bh))
2797			goto failed;
2798		bh = bh->b_this_page;
2799	} while (bh != head);
2800
2801	do {
2802		struct buffer_head *next = bh->b_this_page;
2803
2804		if (bh->b_assoc_map)
2805			__remove_assoc_queue(bh);
2806		bh = next;
2807	} while (bh != head);
2808	*buffers_to_free = head;
2809	folio_detach_private(folio);
2810	return true;
2811failed:
2812	return false;
2813}
2814
2815bool try_to_free_buffers(struct folio *folio)
2816{
2817	struct address_space * const mapping = folio->mapping;
2818	struct buffer_head *buffers_to_free = NULL;
2819	bool ret = 0;
2820
2821	BUG_ON(!folio_test_locked(folio));
2822	if (folio_test_writeback(folio))
2823		return false;
2824
2825	if (mapping == NULL) {		/* can this still happen? */
2826		ret = drop_buffers(folio, &buffers_to_free);
2827		goto out;
2828	}
2829
2830	spin_lock(&mapping->private_lock);
2831	ret = drop_buffers(folio, &buffers_to_free);
2832
2833	/*
2834	 * If the filesystem writes its buffers by hand (eg ext3)
2835	 * then we can have clean buffers against a dirty folio.  We
2836	 * clean the folio here; otherwise the VM will never notice
2837	 * that the filesystem did any IO at all.
2838	 *
2839	 * Also, during truncate, discard_buffer will have marked all
2840	 * the folio's buffers clean.  We discover that here and clean
2841	 * the folio also.
2842	 *
2843	 * private_lock must be held over this entire operation in order
2844	 * to synchronise against block_dirty_folio and prevent the
2845	 * dirty bit from being lost.
2846	 */
2847	if (ret)
2848		folio_cancel_dirty(folio);
2849	spin_unlock(&mapping->private_lock);
2850out:
2851	if (buffers_to_free) {
2852		struct buffer_head *bh = buffers_to_free;
2853
2854		do {
2855			struct buffer_head *next = bh->b_this_page;
2856			free_buffer_head(bh);
2857			bh = next;
2858		} while (bh != buffers_to_free);
2859	}
2860	return ret;
2861}
2862EXPORT_SYMBOL(try_to_free_buffers);
2863
2864/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2865 * Buffer-head allocation
2866 */
2867static struct kmem_cache *bh_cachep __read_mostly;
2868
2869/*
2870 * Once the number of bh's in the machine exceeds this level, we start
2871 * stripping them in writeback.
2872 */
2873static unsigned long max_buffer_heads;
2874
2875int buffer_heads_over_limit;
2876
2877struct bh_accounting {
2878	int nr;			/* Number of live bh's */
2879	int ratelimit;		/* Limit cacheline bouncing */
2880};
2881
2882static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
2883
2884static void recalc_bh_state(void)
2885{
2886	int i;
2887	int tot = 0;
2888
2889	if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
2890		return;
2891	__this_cpu_write(bh_accounting.ratelimit, 0);
2892	for_each_online_cpu(i)
2893		tot += per_cpu(bh_accounting, i).nr;
2894	buffer_heads_over_limit = (tot > max_buffer_heads);
2895}
2896
2897struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
2898{
2899	struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
2900	if (ret) {
2901		INIT_LIST_HEAD(&ret->b_assoc_buffers);
2902		spin_lock_init(&ret->b_uptodate_lock);
2903		preempt_disable();
2904		__this_cpu_inc(bh_accounting.nr);
2905		recalc_bh_state();
2906		preempt_enable();
2907	}
2908	return ret;
2909}
2910EXPORT_SYMBOL(alloc_buffer_head);
2911
2912void free_buffer_head(struct buffer_head *bh)
2913{
2914	BUG_ON(!list_empty(&bh->b_assoc_buffers));
2915	kmem_cache_free(bh_cachep, bh);
2916	preempt_disable();
2917	__this_cpu_dec(bh_accounting.nr);
2918	recalc_bh_state();
2919	preempt_enable();
2920}
2921EXPORT_SYMBOL(free_buffer_head);
2922
2923static int buffer_exit_cpu_dead(unsigned int cpu)
2924{
2925	int i;
2926	struct bh_lru *b = &per_cpu(bh_lrus, cpu);
2927
2928	for (i = 0; i < BH_LRU_SIZE; i++) {
2929		brelse(b->bhs[i]);
2930		b->bhs[i] = NULL;
2931	}
2932	this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
2933	per_cpu(bh_accounting, cpu).nr = 0;
2934	return 0;
2935}
2936
2937/**
2938 * bh_uptodate_or_lock - Test whether the buffer is uptodate
2939 * @bh: struct buffer_head
2940 *
2941 * Return true if the buffer is up-to-date and false,
2942 * with the buffer locked, if not.
2943 */
2944int bh_uptodate_or_lock(struct buffer_head *bh)
2945{
2946	if (!buffer_uptodate(bh)) {
2947		lock_buffer(bh);
2948		if (!buffer_uptodate(bh))
2949			return 0;
2950		unlock_buffer(bh);
2951	}
2952	return 1;
2953}
2954EXPORT_SYMBOL(bh_uptodate_or_lock);
2955
2956/**
2957 * __bh_read - Submit read for a locked buffer
2958 * @bh: struct buffer_head
2959 * @op_flags: appending REQ_OP_* flags besides REQ_OP_READ
2960 * @wait: wait until reading finish
2961 *
2962 * Returns zero on success or don't wait, and -EIO on error.
2963 */
2964int __bh_read(struct buffer_head *bh, blk_opf_t op_flags, bool wait)
2965{
2966	int ret = 0;
2967
2968	BUG_ON(!buffer_locked(bh));
 
 
 
2969
2970	get_bh(bh);
2971	bh->b_end_io = end_buffer_read_sync;
2972	submit_bh(REQ_OP_READ | op_flags, bh);
2973	if (wait) {
2974		wait_on_buffer(bh);
2975		if (!buffer_uptodate(bh))
2976			ret = -EIO;
2977	}
2978	return ret;
2979}
2980EXPORT_SYMBOL(__bh_read);
2981
2982/**
2983 * __bh_read_batch - Submit read for a batch of unlocked buffers
2984 * @nr: entry number of the buffer batch
2985 * @bhs: a batch of struct buffer_head
2986 * @op_flags: appending REQ_OP_* flags besides REQ_OP_READ
2987 * @force_lock: force to get a lock on the buffer if set, otherwise drops any
2988 *              buffer that cannot lock.
2989 *
2990 * Returns zero on success or don't wait, and -EIO on error.
2991 */
2992void __bh_read_batch(int nr, struct buffer_head *bhs[],
2993		     blk_opf_t op_flags, bool force_lock)
2994{
2995	int i;
2996
2997	for (i = 0; i < nr; i++) {
2998		struct buffer_head *bh = bhs[i];
2999
3000		if (buffer_uptodate(bh))
3001			continue;
3002
3003		if (force_lock)
3004			lock_buffer(bh);
3005		else
3006			if (!trylock_buffer(bh))
3007				continue;
3008
3009		if (buffer_uptodate(bh)) {
3010			unlock_buffer(bh);
3011			continue;
3012		}
3013
3014		bh->b_end_io = end_buffer_read_sync;
3015		get_bh(bh);
3016		submit_bh(REQ_OP_READ | op_flags, bh);
3017	}
3018}
3019EXPORT_SYMBOL(__bh_read_batch);
3020
3021void __init buffer_init(void)
3022{
3023	unsigned long nrpages;
3024	int ret;
3025
3026	bh_cachep = kmem_cache_create("buffer_head",
3027			sizeof(struct buffer_head), 0,
3028				(SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3029				SLAB_MEM_SPREAD),
3030				NULL);
3031
3032	/*
3033	 * Limit the bh occupancy to 10% of ZONE_NORMAL
3034	 */
3035	nrpages = (nr_free_buffer_pages() * 10) / 100;
3036	max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3037	ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead",
3038					NULL, buffer_exit_cpu_dead);
3039	WARN_ON(ret < 0);
3040}