Loading...
1/*
2 * linux/fs/buffer.c
3 *
4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
5 */
6
7/*
8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9 *
10 * Removed a lot of unnecessary code and simplified things now that
11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12 *
13 * Speed up hash, lru, and free list operations. Use gfp() for allocating
14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
15 *
16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17 *
18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19 */
20
21#include <linux/kernel.h>
22#include <linux/syscalls.h>
23#include <linux/fs.h>
24#include <linux/iomap.h>
25#include <linux/mm.h>
26#include <linux/percpu.h>
27#include <linux/slab.h>
28#include <linux/capability.h>
29#include <linux/blkdev.h>
30#include <linux/file.h>
31#include <linux/quotaops.h>
32#include <linux/highmem.h>
33#include <linux/export.h>
34#include <linux/backing-dev.h>
35#include <linux/writeback.h>
36#include <linux/hash.h>
37#include <linux/suspend.h>
38#include <linux/buffer_head.h>
39#include <linux/task_io_accounting_ops.h>
40#include <linux/bio.h>
41#include <linux/notifier.h>
42#include <linux/cpu.h>
43#include <linux/bitops.h>
44#include <linux/mpage.h>
45#include <linux/bit_spinlock.h>
46#include <linux/pagevec.h>
47#include <trace/events/block.h>
48
49static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
50static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
51 unsigned long bio_flags,
52 struct writeback_control *wbc);
53
54#define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
55
56void init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
57{
58 bh->b_end_io = handler;
59 bh->b_private = private;
60}
61EXPORT_SYMBOL(init_buffer);
62
63inline void touch_buffer(struct buffer_head *bh)
64{
65 trace_block_touch_buffer(bh);
66 mark_page_accessed(bh->b_page);
67}
68EXPORT_SYMBOL(touch_buffer);
69
70void __lock_buffer(struct buffer_head *bh)
71{
72 wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
73}
74EXPORT_SYMBOL(__lock_buffer);
75
76void unlock_buffer(struct buffer_head *bh)
77{
78 clear_bit_unlock(BH_Lock, &bh->b_state);
79 smp_mb__after_atomic();
80 wake_up_bit(&bh->b_state, BH_Lock);
81}
82EXPORT_SYMBOL(unlock_buffer);
83
84/*
85 * Returns if the page has dirty or writeback buffers. If all the buffers
86 * are unlocked and clean then the PageDirty information is stale. If
87 * any of the pages are locked, it is assumed they are locked for IO.
88 */
89void buffer_check_dirty_writeback(struct page *page,
90 bool *dirty, bool *writeback)
91{
92 struct buffer_head *head, *bh;
93 *dirty = false;
94 *writeback = false;
95
96 BUG_ON(!PageLocked(page));
97
98 if (!page_has_buffers(page))
99 return;
100
101 if (PageWriteback(page))
102 *writeback = true;
103
104 head = page_buffers(page);
105 bh = head;
106 do {
107 if (buffer_locked(bh))
108 *writeback = true;
109
110 if (buffer_dirty(bh))
111 *dirty = true;
112
113 bh = bh->b_this_page;
114 } while (bh != head);
115}
116EXPORT_SYMBOL(buffer_check_dirty_writeback);
117
118/*
119 * Block until a buffer comes unlocked. This doesn't stop it
120 * from becoming locked again - you have to lock it yourself
121 * if you want to preserve its state.
122 */
123void __wait_on_buffer(struct buffer_head * bh)
124{
125 wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
126}
127EXPORT_SYMBOL(__wait_on_buffer);
128
129static void
130__clear_page_buffers(struct page *page)
131{
132 ClearPagePrivate(page);
133 set_page_private(page, 0);
134 put_page(page);
135}
136
137static void buffer_io_error(struct buffer_head *bh, char *msg)
138{
139 if (!test_bit(BH_Quiet, &bh->b_state))
140 printk_ratelimited(KERN_ERR
141 "Buffer I/O error on dev %pg, logical block %llu%s\n",
142 bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
143}
144
145/*
146 * End-of-IO handler helper function which does not touch the bh after
147 * unlocking it.
148 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
149 * a race there is benign: unlock_buffer() only use the bh's address for
150 * hashing after unlocking the buffer, so it doesn't actually touch the bh
151 * itself.
152 */
153static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
154{
155 if (uptodate) {
156 set_buffer_uptodate(bh);
157 } else {
158 /* This happens, due to failed read-ahead attempts. */
159 clear_buffer_uptodate(bh);
160 }
161 unlock_buffer(bh);
162}
163
164/*
165 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
166 * unlock the buffer. This is what ll_rw_block uses too.
167 */
168void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
169{
170 __end_buffer_read_notouch(bh, uptodate);
171 put_bh(bh);
172}
173EXPORT_SYMBOL(end_buffer_read_sync);
174
175void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
176{
177 if (uptodate) {
178 set_buffer_uptodate(bh);
179 } else {
180 buffer_io_error(bh, ", lost sync page write");
181 set_buffer_write_io_error(bh);
182 clear_buffer_uptodate(bh);
183 }
184 unlock_buffer(bh);
185 put_bh(bh);
186}
187EXPORT_SYMBOL(end_buffer_write_sync);
188
189/*
190 * Various filesystems appear to want __find_get_block to be non-blocking.
191 * But it's the page lock which protects the buffers. To get around this,
192 * we get exclusion from try_to_free_buffers with the blockdev mapping's
193 * private_lock.
194 *
195 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
196 * may be quite high. This code could TryLock the page, and if that
197 * succeeds, there is no need to take private_lock. (But if
198 * private_lock is contended then so is mapping->tree_lock).
199 */
200static struct buffer_head *
201__find_get_block_slow(struct block_device *bdev, sector_t block)
202{
203 struct inode *bd_inode = bdev->bd_inode;
204 struct address_space *bd_mapping = bd_inode->i_mapping;
205 struct buffer_head *ret = NULL;
206 pgoff_t index;
207 struct buffer_head *bh;
208 struct buffer_head *head;
209 struct page *page;
210 int all_mapped = 1;
211
212 index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
213 page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED);
214 if (!page)
215 goto out;
216
217 spin_lock(&bd_mapping->private_lock);
218 if (!page_has_buffers(page))
219 goto out_unlock;
220 head = page_buffers(page);
221 bh = head;
222 do {
223 if (!buffer_mapped(bh))
224 all_mapped = 0;
225 else if (bh->b_blocknr == block) {
226 ret = bh;
227 get_bh(bh);
228 goto out_unlock;
229 }
230 bh = bh->b_this_page;
231 } while (bh != head);
232
233 /* we might be here because some of the buffers on this page are
234 * not mapped. This is due to various races between
235 * file io on the block device and getblk. It gets dealt with
236 * elsewhere, don't buffer_error if we had some unmapped buffers
237 */
238 if (all_mapped) {
239 printk("__find_get_block_slow() failed. "
240 "block=%llu, b_blocknr=%llu\n",
241 (unsigned long long)block,
242 (unsigned long long)bh->b_blocknr);
243 printk("b_state=0x%08lx, b_size=%zu\n",
244 bh->b_state, bh->b_size);
245 printk("device %pg blocksize: %d\n", bdev,
246 1 << bd_inode->i_blkbits);
247 }
248out_unlock:
249 spin_unlock(&bd_mapping->private_lock);
250 put_page(page);
251out:
252 return ret;
253}
254
255/*
256 * Kick the writeback threads then try to free up some ZONE_NORMAL memory.
257 */
258static void free_more_memory(void)
259{
260 struct zoneref *z;
261 int nid;
262
263 wakeup_flusher_threads(1024, WB_REASON_FREE_MORE_MEM);
264 yield();
265
266 for_each_online_node(nid) {
267
268 z = first_zones_zonelist(node_zonelist(nid, GFP_NOFS),
269 gfp_zone(GFP_NOFS), NULL);
270 if (z->zone)
271 try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0,
272 GFP_NOFS, NULL);
273 }
274}
275
276/*
277 * I/O completion handler for block_read_full_page() - pages
278 * which come unlocked at the end of I/O.
279 */
280static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
281{
282 unsigned long flags;
283 struct buffer_head *first;
284 struct buffer_head *tmp;
285 struct page *page;
286 int page_uptodate = 1;
287
288 BUG_ON(!buffer_async_read(bh));
289
290 page = bh->b_page;
291 if (uptodate) {
292 set_buffer_uptodate(bh);
293 } else {
294 clear_buffer_uptodate(bh);
295 buffer_io_error(bh, ", async page read");
296 SetPageError(page);
297 }
298
299 /*
300 * Be _very_ careful from here on. Bad things can happen if
301 * two buffer heads end IO at almost the same time and both
302 * decide that the page is now completely done.
303 */
304 first = page_buffers(page);
305 local_irq_save(flags);
306 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
307 clear_buffer_async_read(bh);
308 unlock_buffer(bh);
309 tmp = bh;
310 do {
311 if (!buffer_uptodate(tmp))
312 page_uptodate = 0;
313 if (buffer_async_read(tmp)) {
314 BUG_ON(!buffer_locked(tmp));
315 goto still_busy;
316 }
317 tmp = tmp->b_this_page;
318 } while (tmp != bh);
319 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
320 local_irq_restore(flags);
321
322 /*
323 * If none of the buffers had errors and they are all
324 * uptodate then we can set the page uptodate.
325 */
326 if (page_uptodate && !PageError(page))
327 SetPageUptodate(page);
328 unlock_page(page);
329 return;
330
331still_busy:
332 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
333 local_irq_restore(flags);
334 return;
335}
336
337/*
338 * Completion handler for block_write_full_page() - pages which are unlocked
339 * during I/O, and which have PageWriteback cleared upon I/O completion.
340 */
341void end_buffer_async_write(struct buffer_head *bh, int uptodate)
342{
343 unsigned long flags;
344 struct buffer_head *first;
345 struct buffer_head *tmp;
346 struct page *page;
347
348 BUG_ON(!buffer_async_write(bh));
349
350 page = bh->b_page;
351 if (uptodate) {
352 set_buffer_uptodate(bh);
353 } else {
354 buffer_io_error(bh, ", lost async page write");
355 mapping_set_error(page->mapping, -EIO);
356 set_buffer_write_io_error(bh);
357 clear_buffer_uptodate(bh);
358 SetPageError(page);
359 }
360
361 first = page_buffers(page);
362 local_irq_save(flags);
363 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
364
365 clear_buffer_async_write(bh);
366 unlock_buffer(bh);
367 tmp = bh->b_this_page;
368 while (tmp != bh) {
369 if (buffer_async_write(tmp)) {
370 BUG_ON(!buffer_locked(tmp));
371 goto still_busy;
372 }
373 tmp = tmp->b_this_page;
374 }
375 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
376 local_irq_restore(flags);
377 end_page_writeback(page);
378 return;
379
380still_busy:
381 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
382 local_irq_restore(flags);
383 return;
384}
385EXPORT_SYMBOL(end_buffer_async_write);
386
387/*
388 * If a page's buffers are under async readin (end_buffer_async_read
389 * completion) then there is a possibility that another thread of
390 * control could lock one of the buffers after it has completed
391 * but while some of the other buffers have not completed. This
392 * locked buffer would confuse end_buffer_async_read() into not unlocking
393 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
394 * that this buffer is not under async I/O.
395 *
396 * The page comes unlocked when it has no locked buffer_async buffers
397 * left.
398 *
399 * PageLocked prevents anyone starting new async I/O reads any of
400 * the buffers.
401 *
402 * PageWriteback is used to prevent simultaneous writeout of the same
403 * page.
404 *
405 * PageLocked prevents anyone from starting writeback of a page which is
406 * under read I/O (PageWriteback is only ever set against a locked page).
407 */
408static void mark_buffer_async_read(struct buffer_head *bh)
409{
410 bh->b_end_io = end_buffer_async_read;
411 set_buffer_async_read(bh);
412}
413
414static void mark_buffer_async_write_endio(struct buffer_head *bh,
415 bh_end_io_t *handler)
416{
417 bh->b_end_io = handler;
418 set_buffer_async_write(bh);
419}
420
421void mark_buffer_async_write(struct buffer_head *bh)
422{
423 mark_buffer_async_write_endio(bh, end_buffer_async_write);
424}
425EXPORT_SYMBOL(mark_buffer_async_write);
426
427
428/*
429 * fs/buffer.c contains helper functions for buffer-backed address space's
430 * fsync functions. A common requirement for buffer-based filesystems is
431 * that certain data from the backing blockdev needs to be written out for
432 * a successful fsync(). For example, ext2 indirect blocks need to be
433 * written back and waited upon before fsync() returns.
434 *
435 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
436 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
437 * management of a list of dependent buffers at ->i_mapping->private_list.
438 *
439 * Locking is a little subtle: try_to_free_buffers() will remove buffers
440 * from their controlling inode's queue when they are being freed. But
441 * try_to_free_buffers() will be operating against the *blockdev* mapping
442 * at the time, not against the S_ISREG file which depends on those buffers.
443 * So the locking for private_list is via the private_lock in the address_space
444 * which backs the buffers. Which is different from the address_space
445 * against which the buffers are listed. So for a particular address_space,
446 * mapping->private_lock does *not* protect mapping->private_list! In fact,
447 * mapping->private_list will always be protected by the backing blockdev's
448 * ->private_lock.
449 *
450 * Which introduces a requirement: all buffers on an address_space's
451 * ->private_list must be from the same address_space: the blockdev's.
452 *
453 * address_spaces which do not place buffers at ->private_list via these
454 * utility functions are free to use private_lock and private_list for
455 * whatever they want. The only requirement is that list_empty(private_list)
456 * be true at clear_inode() time.
457 *
458 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
459 * filesystems should do that. invalidate_inode_buffers() should just go
460 * BUG_ON(!list_empty).
461 *
462 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
463 * take an address_space, not an inode. And it should be called
464 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
465 * queued up.
466 *
467 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
468 * list if it is already on a list. Because if the buffer is on a list,
469 * it *must* already be on the right one. If not, the filesystem is being
470 * silly. This will save a ton of locking. But first we have to ensure
471 * that buffers are taken *off* the old inode's list when they are freed
472 * (presumably in truncate). That requires careful auditing of all
473 * filesystems (do it inside bforget()). It could also be done by bringing
474 * b_inode back.
475 */
476
477/*
478 * The buffer's backing address_space's private_lock must be held
479 */
480static void __remove_assoc_queue(struct buffer_head *bh)
481{
482 list_del_init(&bh->b_assoc_buffers);
483 WARN_ON(!bh->b_assoc_map);
484 if (buffer_write_io_error(bh))
485 set_bit(AS_EIO, &bh->b_assoc_map->flags);
486 bh->b_assoc_map = NULL;
487}
488
489int inode_has_buffers(struct inode *inode)
490{
491 return !list_empty(&inode->i_data.private_list);
492}
493
494/*
495 * osync is designed to support O_SYNC io. It waits synchronously for
496 * all already-submitted IO to complete, but does not queue any new
497 * writes to the disk.
498 *
499 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
500 * you dirty the buffers, and then use osync_inode_buffers to wait for
501 * completion. Any other dirty buffers which are not yet queued for
502 * write will not be flushed to disk by the osync.
503 */
504static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
505{
506 struct buffer_head *bh;
507 struct list_head *p;
508 int err = 0;
509
510 spin_lock(lock);
511repeat:
512 list_for_each_prev(p, list) {
513 bh = BH_ENTRY(p);
514 if (buffer_locked(bh)) {
515 get_bh(bh);
516 spin_unlock(lock);
517 wait_on_buffer(bh);
518 if (!buffer_uptodate(bh))
519 err = -EIO;
520 brelse(bh);
521 spin_lock(lock);
522 goto repeat;
523 }
524 }
525 spin_unlock(lock);
526 return err;
527}
528
529static void do_thaw_one(struct super_block *sb, void *unused)
530{
531 while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
532 printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev);
533}
534
535static void do_thaw_all(struct work_struct *work)
536{
537 iterate_supers(do_thaw_one, NULL);
538 kfree(work);
539 printk(KERN_WARNING "Emergency Thaw complete\n");
540}
541
542/**
543 * emergency_thaw_all -- forcibly thaw every frozen filesystem
544 *
545 * Used for emergency unfreeze of all filesystems via SysRq
546 */
547void emergency_thaw_all(void)
548{
549 struct work_struct *work;
550
551 work = kmalloc(sizeof(*work), GFP_ATOMIC);
552 if (work) {
553 INIT_WORK(work, do_thaw_all);
554 schedule_work(work);
555 }
556}
557
558/**
559 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
560 * @mapping: the mapping which wants those buffers written
561 *
562 * Starts I/O against the buffers at mapping->private_list, and waits upon
563 * that I/O.
564 *
565 * Basically, this is a convenience function for fsync().
566 * @mapping is a file or directory which needs those buffers to be written for
567 * a successful fsync().
568 */
569int sync_mapping_buffers(struct address_space *mapping)
570{
571 struct address_space *buffer_mapping = mapping->private_data;
572
573 if (buffer_mapping == NULL || list_empty(&mapping->private_list))
574 return 0;
575
576 return fsync_buffers_list(&buffer_mapping->private_lock,
577 &mapping->private_list);
578}
579EXPORT_SYMBOL(sync_mapping_buffers);
580
581/*
582 * Called when we've recently written block `bblock', and it is known that
583 * `bblock' was for a buffer_boundary() buffer. This means that the block at
584 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
585 * dirty, schedule it for IO. So that indirects merge nicely with their data.
586 */
587void write_boundary_block(struct block_device *bdev,
588 sector_t bblock, unsigned blocksize)
589{
590 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
591 if (bh) {
592 if (buffer_dirty(bh))
593 ll_rw_block(REQ_OP_WRITE, 0, 1, &bh);
594 put_bh(bh);
595 }
596}
597
598void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
599{
600 struct address_space *mapping = inode->i_mapping;
601 struct address_space *buffer_mapping = bh->b_page->mapping;
602
603 mark_buffer_dirty(bh);
604 if (!mapping->private_data) {
605 mapping->private_data = buffer_mapping;
606 } else {
607 BUG_ON(mapping->private_data != buffer_mapping);
608 }
609 if (!bh->b_assoc_map) {
610 spin_lock(&buffer_mapping->private_lock);
611 list_move_tail(&bh->b_assoc_buffers,
612 &mapping->private_list);
613 bh->b_assoc_map = mapping;
614 spin_unlock(&buffer_mapping->private_lock);
615 }
616}
617EXPORT_SYMBOL(mark_buffer_dirty_inode);
618
619/*
620 * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
621 * dirty.
622 *
623 * If warn is true, then emit a warning if the page is not uptodate and has
624 * not been truncated.
625 *
626 * The caller must hold lock_page_memcg().
627 */
628static void __set_page_dirty(struct page *page, struct address_space *mapping,
629 int warn)
630{
631 unsigned long flags;
632
633 spin_lock_irqsave(&mapping->tree_lock, flags);
634 if (page->mapping) { /* Race with truncate? */
635 WARN_ON_ONCE(warn && !PageUptodate(page));
636 account_page_dirtied(page, mapping);
637 radix_tree_tag_set(&mapping->page_tree,
638 page_index(page), PAGECACHE_TAG_DIRTY);
639 }
640 spin_unlock_irqrestore(&mapping->tree_lock, flags);
641}
642
643/*
644 * Add a page to the dirty page list.
645 *
646 * It is a sad fact of life that this function is called from several places
647 * deeply under spinlocking. It may not sleep.
648 *
649 * If the page has buffers, the uptodate buffers are set dirty, to preserve
650 * dirty-state coherency between the page and the buffers. It the page does
651 * not have buffers then when they are later attached they will all be set
652 * dirty.
653 *
654 * The buffers are dirtied before the page is dirtied. There's a small race
655 * window in which a writepage caller may see the page cleanness but not the
656 * buffer dirtiness. That's fine. If this code were to set the page dirty
657 * before the buffers, a concurrent writepage caller could clear the page dirty
658 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
659 * page on the dirty page list.
660 *
661 * We use private_lock to lock against try_to_free_buffers while using the
662 * page's buffer list. Also use this to protect against clean buffers being
663 * added to the page after it was set dirty.
664 *
665 * FIXME: may need to call ->reservepage here as well. That's rather up to the
666 * address_space though.
667 */
668int __set_page_dirty_buffers(struct page *page)
669{
670 int newly_dirty;
671 struct address_space *mapping = page_mapping(page);
672
673 if (unlikely(!mapping))
674 return !TestSetPageDirty(page);
675
676 spin_lock(&mapping->private_lock);
677 if (page_has_buffers(page)) {
678 struct buffer_head *head = page_buffers(page);
679 struct buffer_head *bh = head;
680
681 do {
682 set_buffer_dirty(bh);
683 bh = bh->b_this_page;
684 } while (bh != head);
685 }
686 /*
687 * Lock out page->mem_cgroup migration to keep PageDirty
688 * synchronized with per-memcg dirty page counters.
689 */
690 lock_page_memcg(page);
691 newly_dirty = !TestSetPageDirty(page);
692 spin_unlock(&mapping->private_lock);
693
694 if (newly_dirty)
695 __set_page_dirty(page, mapping, 1);
696
697 unlock_page_memcg(page);
698
699 if (newly_dirty)
700 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
701
702 return newly_dirty;
703}
704EXPORT_SYMBOL(__set_page_dirty_buffers);
705
706/*
707 * Write out and wait upon a list of buffers.
708 *
709 * We have conflicting pressures: we want to make sure that all
710 * initially dirty buffers get waited on, but that any subsequently
711 * dirtied buffers don't. After all, we don't want fsync to last
712 * forever if somebody is actively writing to the file.
713 *
714 * Do this in two main stages: first we copy dirty buffers to a
715 * temporary inode list, queueing the writes as we go. Then we clean
716 * up, waiting for those writes to complete.
717 *
718 * During this second stage, any subsequent updates to the file may end
719 * up refiling the buffer on the original inode's dirty list again, so
720 * there is a chance we will end up with a buffer queued for write but
721 * not yet completed on that list. So, as a final cleanup we go through
722 * the osync code to catch these locked, dirty buffers without requeuing
723 * any newly dirty buffers for write.
724 */
725static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
726{
727 struct buffer_head *bh;
728 struct list_head tmp;
729 struct address_space *mapping;
730 int err = 0, err2;
731 struct blk_plug plug;
732
733 INIT_LIST_HEAD(&tmp);
734 blk_start_plug(&plug);
735
736 spin_lock(lock);
737 while (!list_empty(list)) {
738 bh = BH_ENTRY(list->next);
739 mapping = bh->b_assoc_map;
740 __remove_assoc_queue(bh);
741 /* Avoid race with mark_buffer_dirty_inode() which does
742 * a lockless check and we rely on seeing the dirty bit */
743 smp_mb();
744 if (buffer_dirty(bh) || buffer_locked(bh)) {
745 list_add(&bh->b_assoc_buffers, &tmp);
746 bh->b_assoc_map = mapping;
747 if (buffer_dirty(bh)) {
748 get_bh(bh);
749 spin_unlock(lock);
750 /*
751 * Ensure any pending I/O completes so that
752 * write_dirty_buffer() actually writes the
753 * current contents - it is a noop if I/O is
754 * still in flight on potentially older
755 * contents.
756 */
757 write_dirty_buffer(bh, REQ_SYNC);
758
759 /*
760 * Kick off IO for the previous mapping. Note
761 * that we will not run the very last mapping,
762 * wait_on_buffer() will do that for us
763 * through sync_buffer().
764 */
765 brelse(bh);
766 spin_lock(lock);
767 }
768 }
769 }
770
771 spin_unlock(lock);
772 blk_finish_plug(&plug);
773 spin_lock(lock);
774
775 while (!list_empty(&tmp)) {
776 bh = BH_ENTRY(tmp.prev);
777 get_bh(bh);
778 mapping = bh->b_assoc_map;
779 __remove_assoc_queue(bh);
780 /* Avoid race with mark_buffer_dirty_inode() which does
781 * a lockless check and we rely on seeing the dirty bit */
782 smp_mb();
783 if (buffer_dirty(bh)) {
784 list_add(&bh->b_assoc_buffers,
785 &mapping->private_list);
786 bh->b_assoc_map = mapping;
787 }
788 spin_unlock(lock);
789 wait_on_buffer(bh);
790 if (!buffer_uptodate(bh))
791 err = -EIO;
792 brelse(bh);
793 spin_lock(lock);
794 }
795
796 spin_unlock(lock);
797 err2 = osync_buffers_list(lock, list);
798 if (err)
799 return err;
800 else
801 return err2;
802}
803
804/*
805 * Invalidate any and all dirty buffers on a given inode. We are
806 * probably unmounting the fs, but that doesn't mean we have already
807 * done a sync(). Just drop the buffers from the inode list.
808 *
809 * NOTE: we take the inode's blockdev's mapping's private_lock. Which
810 * assumes that all the buffers are against the blockdev. Not true
811 * for reiserfs.
812 */
813void invalidate_inode_buffers(struct inode *inode)
814{
815 if (inode_has_buffers(inode)) {
816 struct address_space *mapping = &inode->i_data;
817 struct list_head *list = &mapping->private_list;
818 struct address_space *buffer_mapping = mapping->private_data;
819
820 spin_lock(&buffer_mapping->private_lock);
821 while (!list_empty(list))
822 __remove_assoc_queue(BH_ENTRY(list->next));
823 spin_unlock(&buffer_mapping->private_lock);
824 }
825}
826EXPORT_SYMBOL(invalidate_inode_buffers);
827
828/*
829 * Remove any clean buffers from the inode's buffer list. This is called
830 * when we're trying to free the inode itself. Those buffers can pin it.
831 *
832 * Returns true if all buffers were removed.
833 */
834int remove_inode_buffers(struct inode *inode)
835{
836 int ret = 1;
837
838 if (inode_has_buffers(inode)) {
839 struct address_space *mapping = &inode->i_data;
840 struct list_head *list = &mapping->private_list;
841 struct address_space *buffer_mapping = mapping->private_data;
842
843 spin_lock(&buffer_mapping->private_lock);
844 while (!list_empty(list)) {
845 struct buffer_head *bh = BH_ENTRY(list->next);
846 if (buffer_dirty(bh)) {
847 ret = 0;
848 break;
849 }
850 __remove_assoc_queue(bh);
851 }
852 spin_unlock(&buffer_mapping->private_lock);
853 }
854 return ret;
855}
856
857/*
858 * Create the appropriate buffers when given a page for data area and
859 * the size of each buffer.. Use the bh->b_this_page linked list to
860 * follow the buffers created. Return NULL if unable to create more
861 * buffers.
862 *
863 * The retry flag is used to differentiate async IO (paging, swapping)
864 * which may not fail from ordinary buffer allocations.
865 */
866struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
867 int retry)
868{
869 struct buffer_head *bh, *head;
870 long offset;
871
872try_again:
873 head = NULL;
874 offset = PAGE_SIZE;
875 while ((offset -= size) >= 0) {
876 bh = alloc_buffer_head(GFP_NOFS);
877 if (!bh)
878 goto no_grow;
879
880 bh->b_this_page = head;
881 bh->b_blocknr = -1;
882 head = bh;
883
884 bh->b_size = size;
885
886 /* Link the buffer to its page */
887 set_bh_page(bh, page, offset);
888 }
889 return head;
890/*
891 * In case anything failed, we just free everything we got.
892 */
893no_grow:
894 if (head) {
895 do {
896 bh = head;
897 head = head->b_this_page;
898 free_buffer_head(bh);
899 } while (head);
900 }
901
902 /*
903 * Return failure for non-async IO requests. Async IO requests
904 * are not allowed to fail, so we have to wait until buffer heads
905 * become available. But we don't want tasks sleeping with
906 * partially complete buffers, so all were released above.
907 */
908 if (!retry)
909 return NULL;
910
911 /* We're _really_ low on memory. Now we just
912 * wait for old buffer heads to become free due to
913 * finishing IO. Since this is an async request and
914 * the reserve list is empty, we're sure there are
915 * async buffer heads in use.
916 */
917 free_more_memory();
918 goto try_again;
919}
920EXPORT_SYMBOL_GPL(alloc_page_buffers);
921
922static inline void
923link_dev_buffers(struct page *page, struct buffer_head *head)
924{
925 struct buffer_head *bh, *tail;
926
927 bh = head;
928 do {
929 tail = bh;
930 bh = bh->b_this_page;
931 } while (bh);
932 tail->b_this_page = head;
933 attach_page_buffers(page, head);
934}
935
936static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
937{
938 sector_t retval = ~((sector_t)0);
939 loff_t sz = i_size_read(bdev->bd_inode);
940
941 if (sz) {
942 unsigned int sizebits = blksize_bits(size);
943 retval = (sz >> sizebits);
944 }
945 return retval;
946}
947
948/*
949 * Initialise the state of a blockdev page's buffers.
950 */
951static sector_t
952init_page_buffers(struct page *page, struct block_device *bdev,
953 sector_t block, int size)
954{
955 struct buffer_head *head = page_buffers(page);
956 struct buffer_head *bh = head;
957 int uptodate = PageUptodate(page);
958 sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size);
959
960 do {
961 if (!buffer_mapped(bh)) {
962 init_buffer(bh, NULL, NULL);
963 bh->b_bdev = bdev;
964 bh->b_blocknr = block;
965 if (uptodate)
966 set_buffer_uptodate(bh);
967 if (block < end_block)
968 set_buffer_mapped(bh);
969 }
970 block++;
971 bh = bh->b_this_page;
972 } while (bh != head);
973
974 /*
975 * Caller needs to validate requested block against end of device.
976 */
977 return end_block;
978}
979
980/*
981 * Create the page-cache page that contains the requested block.
982 *
983 * This is used purely for blockdev mappings.
984 */
985static int
986grow_dev_page(struct block_device *bdev, sector_t block,
987 pgoff_t index, int size, int sizebits, gfp_t gfp)
988{
989 struct inode *inode = bdev->bd_inode;
990 struct page *page;
991 struct buffer_head *bh;
992 sector_t end_block;
993 int ret = 0; /* Will call free_more_memory() */
994 gfp_t gfp_mask;
995
996 gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp;
997
998 /*
999 * XXX: __getblk_slow() can not really deal with failure and
1000 * will endlessly loop on improvised global reclaim. Prefer
1001 * looping in the allocator rather than here, at least that
1002 * code knows what it's doing.
1003 */
1004 gfp_mask |= __GFP_NOFAIL;
1005
1006 page = find_or_create_page(inode->i_mapping, index, gfp_mask);
1007 if (!page)
1008 return ret;
1009
1010 BUG_ON(!PageLocked(page));
1011
1012 if (page_has_buffers(page)) {
1013 bh = page_buffers(page);
1014 if (bh->b_size == size) {
1015 end_block = init_page_buffers(page, bdev,
1016 (sector_t)index << sizebits,
1017 size);
1018 goto done;
1019 }
1020 if (!try_to_free_buffers(page))
1021 goto failed;
1022 }
1023
1024 /*
1025 * Allocate some buffers for this page
1026 */
1027 bh = alloc_page_buffers(page, size, 0);
1028 if (!bh)
1029 goto failed;
1030
1031 /*
1032 * Link the page to the buffers and initialise them. Take the
1033 * lock to be atomic wrt __find_get_block(), which does not
1034 * run under the page lock.
1035 */
1036 spin_lock(&inode->i_mapping->private_lock);
1037 link_dev_buffers(page, bh);
1038 end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits,
1039 size);
1040 spin_unlock(&inode->i_mapping->private_lock);
1041done:
1042 ret = (block < end_block) ? 1 : -ENXIO;
1043failed:
1044 unlock_page(page);
1045 put_page(page);
1046 return ret;
1047}
1048
1049/*
1050 * Create buffers for the specified block device block's page. If
1051 * that page was dirty, the buffers are set dirty also.
1052 */
1053static int
1054grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp)
1055{
1056 pgoff_t index;
1057 int sizebits;
1058
1059 sizebits = -1;
1060 do {
1061 sizebits++;
1062 } while ((size << sizebits) < PAGE_SIZE);
1063
1064 index = block >> sizebits;
1065
1066 /*
1067 * Check for a block which wants to lie outside our maximum possible
1068 * pagecache index. (this comparison is done using sector_t types).
1069 */
1070 if (unlikely(index != block >> sizebits)) {
1071 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1072 "device %pg\n",
1073 __func__, (unsigned long long)block,
1074 bdev);
1075 return -EIO;
1076 }
1077
1078 /* Create a page with the proper size buffers.. */
1079 return grow_dev_page(bdev, block, index, size, sizebits, gfp);
1080}
1081
1082static struct buffer_head *
1083__getblk_slow(struct block_device *bdev, sector_t block,
1084 unsigned size, gfp_t gfp)
1085{
1086 /* Size must be multiple of hard sectorsize */
1087 if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1088 (size < 512 || size > PAGE_SIZE))) {
1089 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1090 size);
1091 printk(KERN_ERR "logical block size: %d\n",
1092 bdev_logical_block_size(bdev));
1093
1094 dump_stack();
1095 return NULL;
1096 }
1097
1098 for (;;) {
1099 struct buffer_head *bh;
1100 int ret;
1101
1102 bh = __find_get_block(bdev, block, size);
1103 if (bh)
1104 return bh;
1105
1106 ret = grow_buffers(bdev, block, size, gfp);
1107 if (ret < 0)
1108 return NULL;
1109 if (ret == 0)
1110 free_more_memory();
1111 }
1112}
1113
1114/*
1115 * The relationship between dirty buffers and dirty pages:
1116 *
1117 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1118 * the page is tagged dirty in its radix tree.
1119 *
1120 * At all times, the dirtiness of the buffers represents the dirtiness of
1121 * subsections of the page. If the page has buffers, the page dirty bit is
1122 * merely a hint about the true dirty state.
1123 *
1124 * When a page is set dirty in its entirety, all its buffers are marked dirty
1125 * (if the page has buffers).
1126 *
1127 * When a buffer is marked dirty, its page is dirtied, but the page's other
1128 * buffers are not.
1129 *
1130 * Also. When blockdev buffers are explicitly read with bread(), they
1131 * individually become uptodate. But their backing page remains not
1132 * uptodate - even if all of its buffers are uptodate. A subsequent
1133 * block_read_full_page() against that page will discover all the uptodate
1134 * buffers, will set the page uptodate and will perform no I/O.
1135 */
1136
1137/**
1138 * mark_buffer_dirty - mark a buffer_head as needing writeout
1139 * @bh: the buffer_head to mark dirty
1140 *
1141 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1142 * backing page dirty, then tag the page as dirty in its address_space's radix
1143 * tree and then attach the address_space's inode to its superblock's dirty
1144 * inode list.
1145 *
1146 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock,
1147 * mapping->tree_lock and mapping->host->i_lock.
1148 */
1149void mark_buffer_dirty(struct buffer_head *bh)
1150{
1151 WARN_ON_ONCE(!buffer_uptodate(bh));
1152
1153 trace_block_dirty_buffer(bh);
1154
1155 /*
1156 * Very *carefully* optimize the it-is-already-dirty case.
1157 *
1158 * Don't let the final "is it dirty" escape to before we
1159 * perhaps modified the buffer.
1160 */
1161 if (buffer_dirty(bh)) {
1162 smp_mb();
1163 if (buffer_dirty(bh))
1164 return;
1165 }
1166
1167 if (!test_set_buffer_dirty(bh)) {
1168 struct page *page = bh->b_page;
1169 struct address_space *mapping = NULL;
1170
1171 lock_page_memcg(page);
1172 if (!TestSetPageDirty(page)) {
1173 mapping = page_mapping(page);
1174 if (mapping)
1175 __set_page_dirty(page, mapping, 0);
1176 }
1177 unlock_page_memcg(page);
1178 if (mapping)
1179 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1180 }
1181}
1182EXPORT_SYMBOL(mark_buffer_dirty);
1183
1184/*
1185 * Decrement a buffer_head's reference count. If all buffers against a page
1186 * have zero reference count, are clean and unlocked, and if the page is clean
1187 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1188 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1189 * a page but it ends up not being freed, and buffers may later be reattached).
1190 */
1191void __brelse(struct buffer_head * buf)
1192{
1193 if (atomic_read(&buf->b_count)) {
1194 put_bh(buf);
1195 return;
1196 }
1197 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1198}
1199EXPORT_SYMBOL(__brelse);
1200
1201/*
1202 * bforget() is like brelse(), except it discards any
1203 * potentially dirty data.
1204 */
1205void __bforget(struct buffer_head *bh)
1206{
1207 clear_buffer_dirty(bh);
1208 if (bh->b_assoc_map) {
1209 struct address_space *buffer_mapping = bh->b_page->mapping;
1210
1211 spin_lock(&buffer_mapping->private_lock);
1212 list_del_init(&bh->b_assoc_buffers);
1213 bh->b_assoc_map = NULL;
1214 spin_unlock(&buffer_mapping->private_lock);
1215 }
1216 __brelse(bh);
1217}
1218EXPORT_SYMBOL(__bforget);
1219
1220static struct buffer_head *__bread_slow(struct buffer_head *bh)
1221{
1222 lock_buffer(bh);
1223 if (buffer_uptodate(bh)) {
1224 unlock_buffer(bh);
1225 return bh;
1226 } else {
1227 get_bh(bh);
1228 bh->b_end_io = end_buffer_read_sync;
1229 submit_bh(REQ_OP_READ, 0, bh);
1230 wait_on_buffer(bh);
1231 if (buffer_uptodate(bh))
1232 return bh;
1233 }
1234 brelse(bh);
1235 return NULL;
1236}
1237
1238/*
1239 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1240 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1241 * refcount elevated by one when they're in an LRU. A buffer can only appear
1242 * once in a particular CPU's LRU. A single buffer can be present in multiple
1243 * CPU's LRUs at the same time.
1244 *
1245 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1246 * sb_find_get_block().
1247 *
1248 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1249 * a local interrupt disable for that.
1250 */
1251
1252#define BH_LRU_SIZE 16
1253
1254struct bh_lru {
1255 struct buffer_head *bhs[BH_LRU_SIZE];
1256};
1257
1258static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1259
1260#ifdef CONFIG_SMP
1261#define bh_lru_lock() local_irq_disable()
1262#define bh_lru_unlock() local_irq_enable()
1263#else
1264#define bh_lru_lock() preempt_disable()
1265#define bh_lru_unlock() preempt_enable()
1266#endif
1267
1268static inline void check_irqs_on(void)
1269{
1270#ifdef irqs_disabled
1271 BUG_ON(irqs_disabled());
1272#endif
1273}
1274
1275/*
1276 * The LRU management algorithm is dopey-but-simple. Sorry.
1277 */
1278static void bh_lru_install(struct buffer_head *bh)
1279{
1280 struct buffer_head *evictee = NULL;
1281
1282 check_irqs_on();
1283 bh_lru_lock();
1284 if (__this_cpu_read(bh_lrus.bhs[0]) != bh) {
1285 struct buffer_head *bhs[BH_LRU_SIZE];
1286 int in;
1287 int out = 0;
1288
1289 get_bh(bh);
1290 bhs[out++] = bh;
1291 for (in = 0; in < BH_LRU_SIZE; in++) {
1292 struct buffer_head *bh2 =
1293 __this_cpu_read(bh_lrus.bhs[in]);
1294
1295 if (bh2 == bh) {
1296 __brelse(bh2);
1297 } else {
1298 if (out >= BH_LRU_SIZE) {
1299 BUG_ON(evictee != NULL);
1300 evictee = bh2;
1301 } else {
1302 bhs[out++] = bh2;
1303 }
1304 }
1305 }
1306 while (out < BH_LRU_SIZE)
1307 bhs[out++] = NULL;
1308 memcpy(this_cpu_ptr(&bh_lrus.bhs), bhs, sizeof(bhs));
1309 }
1310 bh_lru_unlock();
1311
1312 if (evictee)
1313 __brelse(evictee);
1314}
1315
1316/*
1317 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1318 */
1319static struct buffer_head *
1320lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1321{
1322 struct buffer_head *ret = NULL;
1323 unsigned int i;
1324
1325 check_irqs_on();
1326 bh_lru_lock();
1327 for (i = 0; i < BH_LRU_SIZE; i++) {
1328 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1329
1330 if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1331 bh->b_size == size) {
1332 if (i) {
1333 while (i) {
1334 __this_cpu_write(bh_lrus.bhs[i],
1335 __this_cpu_read(bh_lrus.bhs[i - 1]));
1336 i--;
1337 }
1338 __this_cpu_write(bh_lrus.bhs[0], bh);
1339 }
1340 get_bh(bh);
1341 ret = bh;
1342 break;
1343 }
1344 }
1345 bh_lru_unlock();
1346 return ret;
1347}
1348
1349/*
1350 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1351 * it in the LRU and mark it as accessed. If it is not present then return
1352 * NULL
1353 */
1354struct buffer_head *
1355__find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1356{
1357 struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1358
1359 if (bh == NULL) {
1360 /* __find_get_block_slow will mark the page accessed */
1361 bh = __find_get_block_slow(bdev, block);
1362 if (bh)
1363 bh_lru_install(bh);
1364 } else
1365 touch_buffer(bh);
1366
1367 return bh;
1368}
1369EXPORT_SYMBOL(__find_get_block);
1370
1371/*
1372 * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1373 * which corresponds to the passed block_device, block and size. The
1374 * returned buffer has its reference count incremented.
1375 *
1376 * __getblk_gfp() will lock up the machine if grow_dev_page's
1377 * try_to_free_buffers() attempt is failing. FIXME, perhaps?
1378 */
1379struct buffer_head *
1380__getblk_gfp(struct block_device *bdev, sector_t block,
1381 unsigned size, gfp_t gfp)
1382{
1383 struct buffer_head *bh = __find_get_block(bdev, block, size);
1384
1385 might_sleep();
1386 if (bh == NULL)
1387 bh = __getblk_slow(bdev, block, size, gfp);
1388 return bh;
1389}
1390EXPORT_SYMBOL(__getblk_gfp);
1391
1392/*
1393 * Do async read-ahead on a buffer..
1394 */
1395void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1396{
1397 struct buffer_head *bh = __getblk(bdev, block, size);
1398 if (likely(bh)) {
1399 ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh);
1400 brelse(bh);
1401 }
1402}
1403EXPORT_SYMBOL(__breadahead);
1404
1405/**
1406 * __bread_gfp() - reads a specified block and returns the bh
1407 * @bdev: the block_device to read from
1408 * @block: number of block
1409 * @size: size (in bytes) to read
1410 * @gfp: page allocation flag
1411 *
1412 * Reads a specified block, and returns buffer head that contains it.
1413 * The page cache can be allocated from non-movable area
1414 * not to prevent page migration if you set gfp to zero.
1415 * It returns NULL if the block was unreadable.
1416 */
1417struct buffer_head *
1418__bread_gfp(struct block_device *bdev, sector_t block,
1419 unsigned size, gfp_t gfp)
1420{
1421 struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1422
1423 if (likely(bh) && !buffer_uptodate(bh))
1424 bh = __bread_slow(bh);
1425 return bh;
1426}
1427EXPORT_SYMBOL(__bread_gfp);
1428
1429/*
1430 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1431 * This doesn't race because it runs in each cpu either in irq
1432 * or with preempt disabled.
1433 */
1434static void invalidate_bh_lru(void *arg)
1435{
1436 struct bh_lru *b = &get_cpu_var(bh_lrus);
1437 int i;
1438
1439 for (i = 0; i < BH_LRU_SIZE; i++) {
1440 brelse(b->bhs[i]);
1441 b->bhs[i] = NULL;
1442 }
1443 put_cpu_var(bh_lrus);
1444}
1445
1446static bool has_bh_in_lru(int cpu, void *dummy)
1447{
1448 struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1449 int i;
1450
1451 for (i = 0; i < BH_LRU_SIZE; i++) {
1452 if (b->bhs[i])
1453 return 1;
1454 }
1455
1456 return 0;
1457}
1458
1459void invalidate_bh_lrus(void)
1460{
1461 on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL);
1462}
1463EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1464
1465void set_bh_page(struct buffer_head *bh,
1466 struct page *page, unsigned long offset)
1467{
1468 bh->b_page = page;
1469 BUG_ON(offset >= PAGE_SIZE);
1470 if (PageHighMem(page))
1471 /*
1472 * This catches illegal uses and preserves the offset:
1473 */
1474 bh->b_data = (char *)(0 + offset);
1475 else
1476 bh->b_data = page_address(page) + offset;
1477}
1478EXPORT_SYMBOL(set_bh_page);
1479
1480/*
1481 * Called when truncating a buffer on a page completely.
1482 */
1483
1484/* Bits that are cleared during an invalidate */
1485#define BUFFER_FLAGS_DISCARD \
1486 (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1487 1 << BH_Delay | 1 << BH_Unwritten)
1488
1489static void discard_buffer(struct buffer_head * bh)
1490{
1491 unsigned long b_state, b_state_old;
1492
1493 lock_buffer(bh);
1494 clear_buffer_dirty(bh);
1495 bh->b_bdev = NULL;
1496 b_state = bh->b_state;
1497 for (;;) {
1498 b_state_old = cmpxchg(&bh->b_state, b_state,
1499 (b_state & ~BUFFER_FLAGS_DISCARD));
1500 if (b_state_old == b_state)
1501 break;
1502 b_state = b_state_old;
1503 }
1504 unlock_buffer(bh);
1505}
1506
1507/**
1508 * block_invalidatepage - invalidate part or all of a buffer-backed page
1509 *
1510 * @page: the page which is affected
1511 * @offset: start of the range to invalidate
1512 * @length: length of the range to invalidate
1513 *
1514 * block_invalidatepage() is called when all or part of the page has become
1515 * invalidated by a truncate operation.
1516 *
1517 * block_invalidatepage() does not have to release all buffers, but it must
1518 * ensure that no dirty buffer is left outside @offset and that no I/O
1519 * is underway against any of the blocks which are outside the truncation
1520 * point. Because the caller is about to free (and possibly reuse) those
1521 * blocks on-disk.
1522 */
1523void block_invalidatepage(struct page *page, unsigned int offset,
1524 unsigned int length)
1525{
1526 struct buffer_head *head, *bh, *next;
1527 unsigned int curr_off = 0;
1528 unsigned int stop = length + offset;
1529
1530 BUG_ON(!PageLocked(page));
1531 if (!page_has_buffers(page))
1532 goto out;
1533
1534 /*
1535 * Check for overflow
1536 */
1537 BUG_ON(stop > PAGE_SIZE || stop < length);
1538
1539 head = page_buffers(page);
1540 bh = head;
1541 do {
1542 unsigned int next_off = curr_off + bh->b_size;
1543 next = bh->b_this_page;
1544
1545 /*
1546 * Are we still fully in range ?
1547 */
1548 if (next_off > stop)
1549 goto out;
1550
1551 /*
1552 * is this block fully invalidated?
1553 */
1554 if (offset <= curr_off)
1555 discard_buffer(bh);
1556 curr_off = next_off;
1557 bh = next;
1558 } while (bh != head);
1559
1560 /*
1561 * We release buffers only if the entire page is being invalidated.
1562 * The get_block cached value has been unconditionally invalidated,
1563 * so real IO is not possible anymore.
1564 */
1565 if (offset == 0)
1566 try_to_release_page(page, 0);
1567out:
1568 return;
1569}
1570EXPORT_SYMBOL(block_invalidatepage);
1571
1572
1573/*
1574 * We attach and possibly dirty the buffers atomically wrt
1575 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers
1576 * is already excluded via the page lock.
1577 */
1578void create_empty_buffers(struct page *page,
1579 unsigned long blocksize, unsigned long b_state)
1580{
1581 struct buffer_head *bh, *head, *tail;
1582
1583 head = alloc_page_buffers(page, blocksize, 1);
1584 bh = head;
1585 do {
1586 bh->b_state |= b_state;
1587 tail = bh;
1588 bh = bh->b_this_page;
1589 } while (bh);
1590 tail->b_this_page = head;
1591
1592 spin_lock(&page->mapping->private_lock);
1593 if (PageUptodate(page) || PageDirty(page)) {
1594 bh = head;
1595 do {
1596 if (PageDirty(page))
1597 set_buffer_dirty(bh);
1598 if (PageUptodate(page))
1599 set_buffer_uptodate(bh);
1600 bh = bh->b_this_page;
1601 } while (bh != head);
1602 }
1603 attach_page_buffers(page, head);
1604 spin_unlock(&page->mapping->private_lock);
1605}
1606EXPORT_SYMBOL(create_empty_buffers);
1607
1608/**
1609 * clean_bdev_aliases: clean a range of buffers in block device
1610 * @bdev: Block device to clean buffers in
1611 * @block: Start of a range of blocks to clean
1612 * @len: Number of blocks to clean
1613 *
1614 * We are taking a range of blocks for data and we don't want writeback of any
1615 * buffer-cache aliases starting from return from this function and until the
1616 * moment when something will explicitly mark the buffer dirty (hopefully that
1617 * will not happen until we will free that block ;-) We don't even need to mark
1618 * it not-uptodate - nobody can expect anything from a newly allocated buffer
1619 * anyway. We used to use unmap_buffer() for such invalidation, but that was
1620 * wrong. We definitely don't want to mark the alias unmapped, for example - it
1621 * would confuse anyone who might pick it with bread() afterwards...
1622 *
1623 * Also.. Note that bforget() doesn't lock the buffer. So there can be
1624 * writeout I/O going on against recently-freed buffers. We don't wait on that
1625 * I/O in bforget() - it's more efficient to wait on the I/O only if we really
1626 * need to. That happens here.
1627 */
1628void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len)
1629{
1630 struct inode *bd_inode = bdev->bd_inode;
1631 struct address_space *bd_mapping = bd_inode->i_mapping;
1632 struct pagevec pvec;
1633 pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
1634 pgoff_t end;
1635 int i;
1636 struct buffer_head *bh;
1637 struct buffer_head *head;
1638
1639 end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits);
1640 pagevec_init(&pvec, 0);
1641 while (index <= end && pagevec_lookup(&pvec, bd_mapping, index,
1642 min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1)) {
1643 for (i = 0; i < pagevec_count(&pvec); i++) {
1644 struct page *page = pvec.pages[i];
1645
1646 index = page->index;
1647 if (index > end)
1648 break;
1649 if (!page_has_buffers(page))
1650 continue;
1651 /*
1652 * We use page lock instead of bd_mapping->private_lock
1653 * to pin buffers here since we can afford to sleep and
1654 * it scales better than a global spinlock lock.
1655 */
1656 lock_page(page);
1657 /* Recheck when the page is locked which pins bhs */
1658 if (!page_has_buffers(page))
1659 goto unlock_page;
1660 head = page_buffers(page);
1661 bh = head;
1662 do {
1663 if (!buffer_mapped(bh) || (bh->b_blocknr < block))
1664 goto next;
1665 if (bh->b_blocknr >= block + len)
1666 break;
1667 clear_buffer_dirty(bh);
1668 wait_on_buffer(bh);
1669 clear_buffer_req(bh);
1670next:
1671 bh = bh->b_this_page;
1672 } while (bh != head);
1673unlock_page:
1674 unlock_page(page);
1675 }
1676 pagevec_release(&pvec);
1677 cond_resched();
1678 index++;
1679 }
1680}
1681EXPORT_SYMBOL(clean_bdev_aliases);
1682
1683/*
1684 * Size is a power-of-two in the range 512..PAGE_SIZE,
1685 * and the case we care about most is PAGE_SIZE.
1686 *
1687 * So this *could* possibly be written with those
1688 * constraints in mind (relevant mostly if some
1689 * architecture has a slow bit-scan instruction)
1690 */
1691static inline int block_size_bits(unsigned int blocksize)
1692{
1693 return ilog2(blocksize);
1694}
1695
1696static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1697{
1698 BUG_ON(!PageLocked(page));
1699
1700 if (!page_has_buffers(page))
1701 create_empty_buffers(page, 1 << ACCESS_ONCE(inode->i_blkbits), b_state);
1702 return page_buffers(page);
1703}
1704
1705/*
1706 * NOTE! All mapped/uptodate combinations are valid:
1707 *
1708 * Mapped Uptodate Meaning
1709 *
1710 * No No "unknown" - must do get_block()
1711 * No Yes "hole" - zero-filled
1712 * Yes No "allocated" - allocated on disk, not read in
1713 * Yes Yes "valid" - allocated and up-to-date in memory.
1714 *
1715 * "Dirty" is valid only with the last case (mapped+uptodate).
1716 */
1717
1718/*
1719 * While block_write_full_page is writing back the dirty buffers under
1720 * the page lock, whoever dirtied the buffers may decide to clean them
1721 * again at any time. We handle that by only looking at the buffer
1722 * state inside lock_buffer().
1723 *
1724 * If block_write_full_page() is called for regular writeback
1725 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1726 * locked buffer. This only can happen if someone has written the buffer
1727 * directly, with submit_bh(). At the address_space level PageWriteback
1728 * prevents this contention from occurring.
1729 *
1730 * If block_write_full_page() is called with wbc->sync_mode ==
1731 * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
1732 * causes the writes to be flagged as synchronous writes.
1733 */
1734int __block_write_full_page(struct inode *inode, struct page *page,
1735 get_block_t *get_block, struct writeback_control *wbc,
1736 bh_end_io_t *handler)
1737{
1738 int err;
1739 sector_t block;
1740 sector_t last_block;
1741 struct buffer_head *bh, *head;
1742 unsigned int blocksize, bbits;
1743 int nr_underway = 0;
1744 int write_flags = wbc_to_write_flags(wbc);
1745
1746 head = create_page_buffers(page, inode,
1747 (1 << BH_Dirty)|(1 << BH_Uptodate));
1748
1749 /*
1750 * Be very careful. We have no exclusion from __set_page_dirty_buffers
1751 * here, and the (potentially unmapped) buffers may become dirty at
1752 * any time. If a buffer becomes dirty here after we've inspected it
1753 * then we just miss that fact, and the page stays dirty.
1754 *
1755 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1756 * handle that here by just cleaning them.
1757 */
1758
1759 bh = head;
1760 blocksize = bh->b_size;
1761 bbits = block_size_bits(blocksize);
1762
1763 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1764 last_block = (i_size_read(inode) - 1) >> bbits;
1765
1766 /*
1767 * Get all the dirty buffers mapped to disk addresses and
1768 * handle any aliases from the underlying blockdev's mapping.
1769 */
1770 do {
1771 if (block > last_block) {
1772 /*
1773 * mapped buffers outside i_size will occur, because
1774 * this page can be outside i_size when there is a
1775 * truncate in progress.
1776 */
1777 /*
1778 * The buffer was zeroed by block_write_full_page()
1779 */
1780 clear_buffer_dirty(bh);
1781 set_buffer_uptodate(bh);
1782 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1783 buffer_dirty(bh)) {
1784 WARN_ON(bh->b_size != blocksize);
1785 err = get_block(inode, block, bh, 1);
1786 if (err)
1787 goto recover;
1788 clear_buffer_delay(bh);
1789 if (buffer_new(bh)) {
1790 /* blockdev mappings never come here */
1791 clear_buffer_new(bh);
1792 clean_bdev_bh_alias(bh);
1793 }
1794 }
1795 bh = bh->b_this_page;
1796 block++;
1797 } while (bh != head);
1798
1799 do {
1800 if (!buffer_mapped(bh))
1801 continue;
1802 /*
1803 * If it's a fully non-blocking write attempt and we cannot
1804 * lock the buffer then redirty the page. Note that this can
1805 * potentially cause a busy-wait loop from writeback threads
1806 * and kswapd activity, but those code paths have their own
1807 * higher-level throttling.
1808 */
1809 if (wbc->sync_mode != WB_SYNC_NONE) {
1810 lock_buffer(bh);
1811 } else if (!trylock_buffer(bh)) {
1812 redirty_page_for_writepage(wbc, page);
1813 continue;
1814 }
1815 if (test_clear_buffer_dirty(bh)) {
1816 mark_buffer_async_write_endio(bh, handler);
1817 } else {
1818 unlock_buffer(bh);
1819 }
1820 } while ((bh = bh->b_this_page) != head);
1821
1822 /*
1823 * The page and its buffers are protected by PageWriteback(), so we can
1824 * drop the bh refcounts early.
1825 */
1826 BUG_ON(PageWriteback(page));
1827 set_page_writeback(page);
1828
1829 do {
1830 struct buffer_head *next = bh->b_this_page;
1831 if (buffer_async_write(bh)) {
1832 submit_bh_wbc(REQ_OP_WRITE, write_flags, bh, 0, wbc);
1833 nr_underway++;
1834 }
1835 bh = next;
1836 } while (bh != head);
1837 unlock_page(page);
1838
1839 err = 0;
1840done:
1841 if (nr_underway == 0) {
1842 /*
1843 * The page was marked dirty, but the buffers were
1844 * clean. Someone wrote them back by hand with
1845 * ll_rw_block/submit_bh. A rare case.
1846 */
1847 end_page_writeback(page);
1848
1849 /*
1850 * The page and buffer_heads can be released at any time from
1851 * here on.
1852 */
1853 }
1854 return err;
1855
1856recover:
1857 /*
1858 * ENOSPC, or some other error. We may already have added some
1859 * blocks to the file, so we need to write these out to avoid
1860 * exposing stale data.
1861 * The page is currently locked and not marked for writeback
1862 */
1863 bh = head;
1864 /* Recovery: lock and submit the mapped buffers */
1865 do {
1866 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1867 !buffer_delay(bh)) {
1868 lock_buffer(bh);
1869 mark_buffer_async_write_endio(bh, handler);
1870 } else {
1871 /*
1872 * The buffer may have been set dirty during
1873 * attachment to a dirty page.
1874 */
1875 clear_buffer_dirty(bh);
1876 }
1877 } while ((bh = bh->b_this_page) != head);
1878 SetPageError(page);
1879 BUG_ON(PageWriteback(page));
1880 mapping_set_error(page->mapping, err);
1881 set_page_writeback(page);
1882 do {
1883 struct buffer_head *next = bh->b_this_page;
1884 if (buffer_async_write(bh)) {
1885 clear_buffer_dirty(bh);
1886 submit_bh_wbc(REQ_OP_WRITE, write_flags, bh, 0, wbc);
1887 nr_underway++;
1888 }
1889 bh = next;
1890 } while (bh != head);
1891 unlock_page(page);
1892 goto done;
1893}
1894EXPORT_SYMBOL(__block_write_full_page);
1895
1896/*
1897 * If a page has any new buffers, zero them out here, and mark them uptodate
1898 * and dirty so they'll be written out (in order to prevent uninitialised
1899 * block data from leaking). And clear the new bit.
1900 */
1901void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1902{
1903 unsigned int block_start, block_end;
1904 struct buffer_head *head, *bh;
1905
1906 BUG_ON(!PageLocked(page));
1907 if (!page_has_buffers(page))
1908 return;
1909
1910 bh = head = page_buffers(page);
1911 block_start = 0;
1912 do {
1913 block_end = block_start + bh->b_size;
1914
1915 if (buffer_new(bh)) {
1916 if (block_end > from && block_start < to) {
1917 if (!PageUptodate(page)) {
1918 unsigned start, size;
1919
1920 start = max(from, block_start);
1921 size = min(to, block_end) - start;
1922
1923 zero_user(page, start, size);
1924 set_buffer_uptodate(bh);
1925 }
1926
1927 clear_buffer_new(bh);
1928 mark_buffer_dirty(bh);
1929 }
1930 }
1931
1932 block_start = block_end;
1933 bh = bh->b_this_page;
1934 } while (bh != head);
1935}
1936EXPORT_SYMBOL(page_zero_new_buffers);
1937
1938static void
1939iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
1940 struct iomap *iomap)
1941{
1942 loff_t offset = block << inode->i_blkbits;
1943
1944 bh->b_bdev = iomap->bdev;
1945
1946 /*
1947 * Block points to offset in file we need to map, iomap contains
1948 * the offset at which the map starts. If the map ends before the
1949 * current block, then do not map the buffer and let the caller
1950 * handle it.
1951 */
1952 BUG_ON(offset >= iomap->offset + iomap->length);
1953
1954 switch (iomap->type) {
1955 case IOMAP_HOLE:
1956 /*
1957 * If the buffer is not up to date or beyond the current EOF,
1958 * we need to mark it as new to ensure sub-block zeroing is
1959 * executed if necessary.
1960 */
1961 if (!buffer_uptodate(bh) ||
1962 (offset >= i_size_read(inode)))
1963 set_buffer_new(bh);
1964 break;
1965 case IOMAP_DELALLOC:
1966 if (!buffer_uptodate(bh) ||
1967 (offset >= i_size_read(inode)))
1968 set_buffer_new(bh);
1969 set_buffer_uptodate(bh);
1970 set_buffer_mapped(bh);
1971 set_buffer_delay(bh);
1972 break;
1973 case IOMAP_UNWRITTEN:
1974 /*
1975 * For unwritten regions, we always need to ensure that
1976 * sub-block writes cause the regions in the block we are not
1977 * writing to are zeroed. Set the buffer as new to ensure this.
1978 */
1979 set_buffer_new(bh);
1980 set_buffer_unwritten(bh);
1981 /* FALLTHRU */
1982 case IOMAP_MAPPED:
1983 if (offset >= i_size_read(inode))
1984 set_buffer_new(bh);
1985 bh->b_blocknr = (iomap->blkno >> (inode->i_blkbits - 9)) +
1986 ((offset - iomap->offset) >> inode->i_blkbits);
1987 set_buffer_mapped(bh);
1988 break;
1989 }
1990}
1991
1992int __block_write_begin_int(struct page *page, loff_t pos, unsigned len,
1993 get_block_t *get_block, struct iomap *iomap)
1994{
1995 unsigned from = pos & (PAGE_SIZE - 1);
1996 unsigned to = from + len;
1997 struct inode *inode = page->mapping->host;
1998 unsigned block_start, block_end;
1999 sector_t block;
2000 int err = 0;
2001 unsigned blocksize, bbits;
2002 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
2003
2004 BUG_ON(!PageLocked(page));
2005 BUG_ON(from > PAGE_SIZE);
2006 BUG_ON(to > PAGE_SIZE);
2007 BUG_ON(from > to);
2008
2009 head = create_page_buffers(page, inode, 0);
2010 blocksize = head->b_size;
2011 bbits = block_size_bits(blocksize);
2012
2013 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
2014
2015 for(bh = head, block_start = 0; bh != head || !block_start;
2016 block++, block_start=block_end, bh = bh->b_this_page) {
2017 block_end = block_start + blocksize;
2018 if (block_end <= from || block_start >= to) {
2019 if (PageUptodate(page)) {
2020 if (!buffer_uptodate(bh))
2021 set_buffer_uptodate(bh);
2022 }
2023 continue;
2024 }
2025 if (buffer_new(bh))
2026 clear_buffer_new(bh);
2027 if (!buffer_mapped(bh)) {
2028 WARN_ON(bh->b_size != blocksize);
2029 if (get_block) {
2030 err = get_block(inode, block, bh, 1);
2031 if (err)
2032 break;
2033 } else {
2034 iomap_to_bh(inode, block, bh, iomap);
2035 }
2036
2037 if (buffer_new(bh)) {
2038 clean_bdev_bh_alias(bh);
2039 if (PageUptodate(page)) {
2040 clear_buffer_new(bh);
2041 set_buffer_uptodate(bh);
2042 mark_buffer_dirty(bh);
2043 continue;
2044 }
2045 if (block_end > to || block_start < from)
2046 zero_user_segments(page,
2047 to, block_end,
2048 block_start, from);
2049 continue;
2050 }
2051 }
2052 if (PageUptodate(page)) {
2053 if (!buffer_uptodate(bh))
2054 set_buffer_uptodate(bh);
2055 continue;
2056 }
2057 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
2058 !buffer_unwritten(bh) &&
2059 (block_start < from || block_end > to)) {
2060 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2061 *wait_bh++=bh;
2062 }
2063 }
2064 /*
2065 * If we issued read requests - let them complete.
2066 */
2067 while(wait_bh > wait) {
2068 wait_on_buffer(*--wait_bh);
2069 if (!buffer_uptodate(*wait_bh))
2070 err = -EIO;
2071 }
2072 if (unlikely(err))
2073 page_zero_new_buffers(page, from, to);
2074 return err;
2075}
2076
2077int __block_write_begin(struct page *page, loff_t pos, unsigned len,
2078 get_block_t *get_block)
2079{
2080 return __block_write_begin_int(page, pos, len, get_block, NULL);
2081}
2082EXPORT_SYMBOL(__block_write_begin);
2083
2084static int __block_commit_write(struct inode *inode, struct page *page,
2085 unsigned from, unsigned to)
2086{
2087 unsigned block_start, block_end;
2088 int partial = 0;
2089 unsigned blocksize;
2090 struct buffer_head *bh, *head;
2091
2092 bh = head = page_buffers(page);
2093 blocksize = bh->b_size;
2094
2095 block_start = 0;
2096 do {
2097 block_end = block_start + blocksize;
2098 if (block_end <= from || block_start >= to) {
2099 if (!buffer_uptodate(bh))
2100 partial = 1;
2101 } else {
2102 set_buffer_uptodate(bh);
2103 mark_buffer_dirty(bh);
2104 }
2105 clear_buffer_new(bh);
2106
2107 block_start = block_end;
2108 bh = bh->b_this_page;
2109 } while (bh != head);
2110
2111 /*
2112 * If this is a partial write which happened to make all buffers
2113 * uptodate then we can optimize away a bogus readpage() for
2114 * the next read(). Here we 'discover' whether the page went
2115 * uptodate as a result of this (potentially partial) write.
2116 */
2117 if (!partial)
2118 SetPageUptodate(page);
2119 return 0;
2120}
2121
2122/*
2123 * block_write_begin takes care of the basic task of block allocation and
2124 * bringing partial write blocks uptodate first.
2125 *
2126 * The filesystem needs to handle block truncation upon failure.
2127 */
2128int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2129 unsigned flags, struct page **pagep, get_block_t *get_block)
2130{
2131 pgoff_t index = pos >> PAGE_SHIFT;
2132 struct page *page;
2133 int status;
2134
2135 page = grab_cache_page_write_begin(mapping, index, flags);
2136 if (!page)
2137 return -ENOMEM;
2138
2139 status = __block_write_begin(page, pos, len, get_block);
2140 if (unlikely(status)) {
2141 unlock_page(page);
2142 put_page(page);
2143 page = NULL;
2144 }
2145
2146 *pagep = page;
2147 return status;
2148}
2149EXPORT_SYMBOL(block_write_begin);
2150
2151int block_write_end(struct file *file, struct address_space *mapping,
2152 loff_t pos, unsigned len, unsigned copied,
2153 struct page *page, void *fsdata)
2154{
2155 struct inode *inode = mapping->host;
2156 unsigned start;
2157
2158 start = pos & (PAGE_SIZE - 1);
2159
2160 if (unlikely(copied < len)) {
2161 /*
2162 * The buffers that were written will now be uptodate, so we
2163 * don't have to worry about a readpage reading them and
2164 * overwriting a partial write. However if we have encountered
2165 * a short write and only partially written into a buffer, it
2166 * will not be marked uptodate, so a readpage might come in and
2167 * destroy our partial write.
2168 *
2169 * Do the simplest thing, and just treat any short write to a
2170 * non uptodate page as a zero-length write, and force the
2171 * caller to redo the whole thing.
2172 */
2173 if (!PageUptodate(page))
2174 copied = 0;
2175
2176 page_zero_new_buffers(page, start+copied, start+len);
2177 }
2178 flush_dcache_page(page);
2179
2180 /* This could be a short (even 0-length) commit */
2181 __block_commit_write(inode, page, start, start+copied);
2182
2183 return copied;
2184}
2185EXPORT_SYMBOL(block_write_end);
2186
2187int generic_write_end(struct file *file, struct address_space *mapping,
2188 loff_t pos, unsigned len, unsigned copied,
2189 struct page *page, void *fsdata)
2190{
2191 struct inode *inode = mapping->host;
2192 loff_t old_size = inode->i_size;
2193 int i_size_changed = 0;
2194
2195 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2196
2197 /*
2198 * No need to use i_size_read() here, the i_size
2199 * cannot change under us because we hold i_mutex.
2200 *
2201 * But it's important to update i_size while still holding page lock:
2202 * page writeout could otherwise come in and zero beyond i_size.
2203 */
2204 if (pos+copied > inode->i_size) {
2205 i_size_write(inode, pos+copied);
2206 i_size_changed = 1;
2207 }
2208
2209 unlock_page(page);
2210 put_page(page);
2211
2212 if (old_size < pos)
2213 pagecache_isize_extended(inode, old_size, pos);
2214 /*
2215 * Don't mark the inode dirty under page lock. First, it unnecessarily
2216 * makes the holding time of page lock longer. Second, it forces lock
2217 * ordering of page lock and transaction start for journaling
2218 * filesystems.
2219 */
2220 if (i_size_changed)
2221 mark_inode_dirty(inode);
2222
2223 return copied;
2224}
2225EXPORT_SYMBOL(generic_write_end);
2226
2227/*
2228 * block_is_partially_uptodate checks whether buffers within a page are
2229 * uptodate or not.
2230 *
2231 * Returns true if all buffers which correspond to a file portion
2232 * we want to read are uptodate.
2233 */
2234int block_is_partially_uptodate(struct page *page, unsigned long from,
2235 unsigned long count)
2236{
2237 unsigned block_start, block_end, blocksize;
2238 unsigned to;
2239 struct buffer_head *bh, *head;
2240 int ret = 1;
2241
2242 if (!page_has_buffers(page))
2243 return 0;
2244
2245 head = page_buffers(page);
2246 blocksize = head->b_size;
2247 to = min_t(unsigned, PAGE_SIZE - from, count);
2248 to = from + to;
2249 if (from < blocksize && to > PAGE_SIZE - blocksize)
2250 return 0;
2251
2252 bh = head;
2253 block_start = 0;
2254 do {
2255 block_end = block_start + blocksize;
2256 if (block_end > from && block_start < to) {
2257 if (!buffer_uptodate(bh)) {
2258 ret = 0;
2259 break;
2260 }
2261 if (block_end >= to)
2262 break;
2263 }
2264 block_start = block_end;
2265 bh = bh->b_this_page;
2266 } while (bh != head);
2267
2268 return ret;
2269}
2270EXPORT_SYMBOL(block_is_partially_uptodate);
2271
2272/*
2273 * Generic "read page" function for block devices that have the normal
2274 * get_block functionality. This is most of the block device filesystems.
2275 * Reads the page asynchronously --- the unlock_buffer() and
2276 * set/clear_buffer_uptodate() functions propagate buffer state into the
2277 * page struct once IO has completed.
2278 */
2279int block_read_full_page(struct page *page, get_block_t *get_block)
2280{
2281 struct inode *inode = page->mapping->host;
2282 sector_t iblock, lblock;
2283 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2284 unsigned int blocksize, bbits;
2285 int nr, i;
2286 int fully_mapped = 1;
2287
2288 head = create_page_buffers(page, inode, 0);
2289 blocksize = head->b_size;
2290 bbits = block_size_bits(blocksize);
2291
2292 iblock = (sector_t)page->index << (PAGE_SHIFT - bbits);
2293 lblock = (i_size_read(inode)+blocksize-1) >> bbits;
2294 bh = head;
2295 nr = 0;
2296 i = 0;
2297
2298 do {
2299 if (buffer_uptodate(bh))
2300 continue;
2301
2302 if (!buffer_mapped(bh)) {
2303 int err = 0;
2304
2305 fully_mapped = 0;
2306 if (iblock < lblock) {
2307 WARN_ON(bh->b_size != blocksize);
2308 err = get_block(inode, iblock, bh, 0);
2309 if (err)
2310 SetPageError(page);
2311 }
2312 if (!buffer_mapped(bh)) {
2313 zero_user(page, i * blocksize, blocksize);
2314 if (!err)
2315 set_buffer_uptodate(bh);
2316 continue;
2317 }
2318 /*
2319 * get_block() might have updated the buffer
2320 * synchronously
2321 */
2322 if (buffer_uptodate(bh))
2323 continue;
2324 }
2325 arr[nr++] = bh;
2326 } while (i++, iblock++, (bh = bh->b_this_page) != head);
2327
2328 if (fully_mapped)
2329 SetPageMappedToDisk(page);
2330
2331 if (!nr) {
2332 /*
2333 * All buffers are uptodate - we can set the page uptodate
2334 * as well. But not if get_block() returned an error.
2335 */
2336 if (!PageError(page))
2337 SetPageUptodate(page);
2338 unlock_page(page);
2339 return 0;
2340 }
2341
2342 /* Stage two: lock the buffers */
2343 for (i = 0; i < nr; i++) {
2344 bh = arr[i];
2345 lock_buffer(bh);
2346 mark_buffer_async_read(bh);
2347 }
2348
2349 /*
2350 * Stage 3: start the IO. Check for uptodateness
2351 * inside the buffer lock in case another process reading
2352 * the underlying blockdev brought it uptodate (the sct fix).
2353 */
2354 for (i = 0; i < nr; i++) {
2355 bh = arr[i];
2356 if (buffer_uptodate(bh))
2357 end_buffer_async_read(bh, 1);
2358 else
2359 submit_bh(REQ_OP_READ, 0, bh);
2360 }
2361 return 0;
2362}
2363EXPORT_SYMBOL(block_read_full_page);
2364
2365/* utility function for filesystems that need to do work on expanding
2366 * truncates. Uses filesystem pagecache writes to allow the filesystem to
2367 * deal with the hole.
2368 */
2369int generic_cont_expand_simple(struct inode *inode, loff_t size)
2370{
2371 struct address_space *mapping = inode->i_mapping;
2372 struct page *page;
2373 void *fsdata;
2374 int err;
2375
2376 err = inode_newsize_ok(inode, size);
2377 if (err)
2378 goto out;
2379
2380 err = pagecache_write_begin(NULL, mapping, size, 0,
2381 AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND,
2382 &page, &fsdata);
2383 if (err)
2384 goto out;
2385
2386 err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2387 BUG_ON(err > 0);
2388
2389out:
2390 return err;
2391}
2392EXPORT_SYMBOL(generic_cont_expand_simple);
2393
2394static int cont_expand_zero(struct file *file, struct address_space *mapping,
2395 loff_t pos, loff_t *bytes)
2396{
2397 struct inode *inode = mapping->host;
2398 unsigned blocksize = 1 << inode->i_blkbits;
2399 struct page *page;
2400 void *fsdata;
2401 pgoff_t index, curidx;
2402 loff_t curpos;
2403 unsigned zerofrom, offset, len;
2404 int err = 0;
2405
2406 index = pos >> PAGE_SHIFT;
2407 offset = pos & ~PAGE_MASK;
2408
2409 while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2410 zerofrom = curpos & ~PAGE_MASK;
2411 if (zerofrom & (blocksize-1)) {
2412 *bytes |= (blocksize-1);
2413 (*bytes)++;
2414 }
2415 len = PAGE_SIZE - zerofrom;
2416
2417 err = pagecache_write_begin(file, mapping, curpos, len,
2418 AOP_FLAG_UNINTERRUPTIBLE,
2419 &page, &fsdata);
2420 if (err)
2421 goto out;
2422 zero_user(page, zerofrom, len);
2423 err = pagecache_write_end(file, mapping, curpos, len, len,
2424 page, fsdata);
2425 if (err < 0)
2426 goto out;
2427 BUG_ON(err != len);
2428 err = 0;
2429
2430 balance_dirty_pages_ratelimited(mapping);
2431
2432 if (unlikely(fatal_signal_pending(current))) {
2433 err = -EINTR;
2434 goto out;
2435 }
2436 }
2437
2438 /* page covers the boundary, find the boundary offset */
2439 if (index == curidx) {
2440 zerofrom = curpos & ~PAGE_MASK;
2441 /* if we will expand the thing last block will be filled */
2442 if (offset <= zerofrom) {
2443 goto out;
2444 }
2445 if (zerofrom & (blocksize-1)) {
2446 *bytes |= (blocksize-1);
2447 (*bytes)++;
2448 }
2449 len = offset - zerofrom;
2450
2451 err = pagecache_write_begin(file, mapping, curpos, len,
2452 AOP_FLAG_UNINTERRUPTIBLE,
2453 &page, &fsdata);
2454 if (err)
2455 goto out;
2456 zero_user(page, zerofrom, len);
2457 err = pagecache_write_end(file, mapping, curpos, len, len,
2458 page, fsdata);
2459 if (err < 0)
2460 goto out;
2461 BUG_ON(err != len);
2462 err = 0;
2463 }
2464out:
2465 return err;
2466}
2467
2468/*
2469 * For moronic filesystems that do not allow holes in file.
2470 * We may have to extend the file.
2471 */
2472int cont_write_begin(struct file *file, struct address_space *mapping,
2473 loff_t pos, unsigned len, unsigned flags,
2474 struct page **pagep, void **fsdata,
2475 get_block_t *get_block, loff_t *bytes)
2476{
2477 struct inode *inode = mapping->host;
2478 unsigned blocksize = 1 << inode->i_blkbits;
2479 unsigned zerofrom;
2480 int err;
2481
2482 err = cont_expand_zero(file, mapping, pos, bytes);
2483 if (err)
2484 return err;
2485
2486 zerofrom = *bytes & ~PAGE_MASK;
2487 if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2488 *bytes |= (blocksize-1);
2489 (*bytes)++;
2490 }
2491
2492 return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2493}
2494EXPORT_SYMBOL(cont_write_begin);
2495
2496int block_commit_write(struct page *page, unsigned from, unsigned to)
2497{
2498 struct inode *inode = page->mapping->host;
2499 __block_commit_write(inode,page,from,to);
2500 return 0;
2501}
2502EXPORT_SYMBOL(block_commit_write);
2503
2504/*
2505 * block_page_mkwrite() is not allowed to change the file size as it gets
2506 * called from a page fault handler when a page is first dirtied. Hence we must
2507 * be careful to check for EOF conditions here. We set the page up correctly
2508 * for a written page which means we get ENOSPC checking when writing into
2509 * holes and correct delalloc and unwritten extent mapping on filesystems that
2510 * support these features.
2511 *
2512 * We are not allowed to take the i_mutex here so we have to play games to
2513 * protect against truncate races as the page could now be beyond EOF. Because
2514 * truncate writes the inode size before removing pages, once we have the
2515 * page lock we can determine safely if the page is beyond EOF. If it is not
2516 * beyond EOF, then the page is guaranteed safe against truncation until we
2517 * unlock the page.
2518 *
2519 * Direct callers of this function should protect against filesystem freezing
2520 * using sb_start_pagefault() - sb_end_pagefault() functions.
2521 */
2522int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2523 get_block_t get_block)
2524{
2525 struct page *page = vmf->page;
2526 struct inode *inode = file_inode(vma->vm_file);
2527 unsigned long end;
2528 loff_t size;
2529 int ret;
2530
2531 lock_page(page);
2532 size = i_size_read(inode);
2533 if ((page->mapping != inode->i_mapping) ||
2534 (page_offset(page) > size)) {
2535 /* We overload EFAULT to mean page got truncated */
2536 ret = -EFAULT;
2537 goto out_unlock;
2538 }
2539
2540 /* page is wholly or partially inside EOF */
2541 if (((page->index + 1) << PAGE_SHIFT) > size)
2542 end = size & ~PAGE_MASK;
2543 else
2544 end = PAGE_SIZE;
2545
2546 ret = __block_write_begin(page, 0, end, get_block);
2547 if (!ret)
2548 ret = block_commit_write(page, 0, end);
2549
2550 if (unlikely(ret < 0))
2551 goto out_unlock;
2552 set_page_dirty(page);
2553 wait_for_stable_page(page);
2554 return 0;
2555out_unlock:
2556 unlock_page(page);
2557 return ret;
2558}
2559EXPORT_SYMBOL(block_page_mkwrite);
2560
2561/*
2562 * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2563 * immediately, while under the page lock. So it needs a special end_io
2564 * handler which does not touch the bh after unlocking it.
2565 */
2566static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2567{
2568 __end_buffer_read_notouch(bh, uptodate);
2569}
2570
2571/*
2572 * Attach the singly-linked list of buffers created by nobh_write_begin, to
2573 * the page (converting it to circular linked list and taking care of page
2574 * dirty races).
2575 */
2576static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2577{
2578 struct buffer_head *bh;
2579
2580 BUG_ON(!PageLocked(page));
2581
2582 spin_lock(&page->mapping->private_lock);
2583 bh = head;
2584 do {
2585 if (PageDirty(page))
2586 set_buffer_dirty(bh);
2587 if (!bh->b_this_page)
2588 bh->b_this_page = head;
2589 bh = bh->b_this_page;
2590 } while (bh != head);
2591 attach_page_buffers(page, head);
2592 spin_unlock(&page->mapping->private_lock);
2593}
2594
2595/*
2596 * On entry, the page is fully not uptodate.
2597 * On exit the page is fully uptodate in the areas outside (from,to)
2598 * The filesystem needs to handle block truncation upon failure.
2599 */
2600int nobh_write_begin(struct address_space *mapping,
2601 loff_t pos, unsigned len, unsigned flags,
2602 struct page **pagep, void **fsdata,
2603 get_block_t *get_block)
2604{
2605 struct inode *inode = mapping->host;
2606 const unsigned blkbits = inode->i_blkbits;
2607 const unsigned blocksize = 1 << blkbits;
2608 struct buffer_head *head, *bh;
2609 struct page *page;
2610 pgoff_t index;
2611 unsigned from, to;
2612 unsigned block_in_page;
2613 unsigned block_start, block_end;
2614 sector_t block_in_file;
2615 int nr_reads = 0;
2616 int ret = 0;
2617 int is_mapped_to_disk = 1;
2618
2619 index = pos >> PAGE_SHIFT;
2620 from = pos & (PAGE_SIZE - 1);
2621 to = from + len;
2622
2623 page = grab_cache_page_write_begin(mapping, index, flags);
2624 if (!page)
2625 return -ENOMEM;
2626 *pagep = page;
2627 *fsdata = NULL;
2628
2629 if (page_has_buffers(page)) {
2630 ret = __block_write_begin(page, pos, len, get_block);
2631 if (unlikely(ret))
2632 goto out_release;
2633 return ret;
2634 }
2635
2636 if (PageMappedToDisk(page))
2637 return 0;
2638
2639 /*
2640 * Allocate buffers so that we can keep track of state, and potentially
2641 * attach them to the page if an error occurs. In the common case of
2642 * no error, they will just be freed again without ever being attached
2643 * to the page (which is all OK, because we're under the page lock).
2644 *
2645 * Be careful: the buffer linked list is a NULL terminated one, rather
2646 * than the circular one we're used to.
2647 */
2648 head = alloc_page_buffers(page, blocksize, 0);
2649 if (!head) {
2650 ret = -ENOMEM;
2651 goto out_release;
2652 }
2653
2654 block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
2655
2656 /*
2657 * We loop across all blocks in the page, whether or not they are
2658 * part of the affected region. This is so we can discover if the
2659 * page is fully mapped-to-disk.
2660 */
2661 for (block_start = 0, block_in_page = 0, bh = head;
2662 block_start < PAGE_SIZE;
2663 block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2664 int create;
2665
2666 block_end = block_start + blocksize;
2667 bh->b_state = 0;
2668 create = 1;
2669 if (block_start >= to)
2670 create = 0;
2671 ret = get_block(inode, block_in_file + block_in_page,
2672 bh, create);
2673 if (ret)
2674 goto failed;
2675 if (!buffer_mapped(bh))
2676 is_mapped_to_disk = 0;
2677 if (buffer_new(bh))
2678 clean_bdev_bh_alias(bh);
2679 if (PageUptodate(page)) {
2680 set_buffer_uptodate(bh);
2681 continue;
2682 }
2683 if (buffer_new(bh) || !buffer_mapped(bh)) {
2684 zero_user_segments(page, block_start, from,
2685 to, block_end);
2686 continue;
2687 }
2688 if (buffer_uptodate(bh))
2689 continue; /* reiserfs does this */
2690 if (block_start < from || block_end > to) {
2691 lock_buffer(bh);
2692 bh->b_end_io = end_buffer_read_nobh;
2693 submit_bh(REQ_OP_READ, 0, bh);
2694 nr_reads++;
2695 }
2696 }
2697
2698 if (nr_reads) {
2699 /*
2700 * The page is locked, so these buffers are protected from
2701 * any VM or truncate activity. Hence we don't need to care
2702 * for the buffer_head refcounts.
2703 */
2704 for (bh = head; bh; bh = bh->b_this_page) {
2705 wait_on_buffer(bh);
2706 if (!buffer_uptodate(bh))
2707 ret = -EIO;
2708 }
2709 if (ret)
2710 goto failed;
2711 }
2712
2713 if (is_mapped_to_disk)
2714 SetPageMappedToDisk(page);
2715
2716 *fsdata = head; /* to be released by nobh_write_end */
2717
2718 return 0;
2719
2720failed:
2721 BUG_ON(!ret);
2722 /*
2723 * Error recovery is a bit difficult. We need to zero out blocks that
2724 * were newly allocated, and dirty them to ensure they get written out.
2725 * Buffers need to be attached to the page at this point, otherwise
2726 * the handling of potential IO errors during writeout would be hard
2727 * (could try doing synchronous writeout, but what if that fails too?)
2728 */
2729 attach_nobh_buffers(page, head);
2730 page_zero_new_buffers(page, from, to);
2731
2732out_release:
2733 unlock_page(page);
2734 put_page(page);
2735 *pagep = NULL;
2736
2737 return ret;
2738}
2739EXPORT_SYMBOL(nobh_write_begin);
2740
2741int nobh_write_end(struct file *file, struct address_space *mapping,
2742 loff_t pos, unsigned len, unsigned copied,
2743 struct page *page, void *fsdata)
2744{
2745 struct inode *inode = page->mapping->host;
2746 struct buffer_head *head = fsdata;
2747 struct buffer_head *bh;
2748 BUG_ON(fsdata != NULL && page_has_buffers(page));
2749
2750 if (unlikely(copied < len) && head)
2751 attach_nobh_buffers(page, head);
2752 if (page_has_buffers(page))
2753 return generic_write_end(file, mapping, pos, len,
2754 copied, page, fsdata);
2755
2756 SetPageUptodate(page);
2757 set_page_dirty(page);
2758 if (pos+copied > inode->i_size) {
2759 i_size_write(inode, pos+copied);
2760 mark_inode_dirty(inode);
2761 }
2762
2763 unlock_page(page);
2764 put_page(page);
2765
2766 while (head) {
2767 bh = head;
2768 head = head->b_this_page;
2769 free_buffer_head(bh);
2770 }
2771
2772 return copied;
2773}
2774EXPORT_SYMBOL(nobh_write_end);
2775
2776/*
2777 * nobh_writepage() - based on block_full_write_page() except
2778 * that it tries to operate without attaching bufferheads to
2779 * the page.
2780 */
2781int nobh_writepage(struct page *page, get_block_t *get_block,
2782 struct writeback_control *wbc)
2783{
2784 struct inode * const inode = page->mapping->host;
2785 loff_t i_size = i_size_read(inode);
2786 const pgoff_t end_index = i_size >> PAGE_SHIFT;
2787 unsigned offset;
2788 int ret;
2789
2790 /* Is the page fully inside i_size? */
2791 if (page->index < end_index)
2792 goto out;
2793
2794 /* Is the page fully outside i_size? (truncate in progress) */
2795 offset = i_size & (PAGE_SIZE-1);
2796 if (page->index >= end_index+1 || !offset) {
2797 /*
2798 * The page may have dirty, unmapped buffers. For example,
2799 * they may have been added in ext3_writepage(). Make them
2800 * freeable here, so the page does not leak.
2801 */
2802#if 0
2803 /* Not really sure about this - do we need this ? */
2804 if (page->mapping->a_ops->invalidatepage)
2805 page->mapping->a_ops->invalidatepage(page, offset);
2806#endif
2807 unlock_page(page);
2808 return 0; /* don't care */
2809 }
2810
2811 /*
2812 * The page straddles i_size. It must be zeroed out on each and every
2813 * writepage invocation because it may be mmapped. "A file is mapped
2814 * in multiples of the page size. For a file that is not a multiple of
2815 * the page size, the remaining memory is zeroed when mapped, and
2816 * writes to that region are not written out to the file."
2817 */
2818 zero_user_segment(page, offset, PAGE_SIZE);
2819out:
2820 ret = mpage_writepage(page, get_block, wbc);
2821 if (ret == -EAGAIN)
2822 ret = __block_write_full_page(inode, page, get_block, wbc,
2823 end_buffer_async_write);
2824 return ret;
2825}
2826EXPORT_SYMBOL(nobh_writepage);
2827
2828int nobh_truncate_page(struct address_space *mapping,
2829 loff_t from, get_block_t *get_block)
2830{
2831 pgoff_t index = from >> PAGE_SHIFT;
2832 unsigned offset = from & (PAGE_SIZE-1);
2833 unsigned blocksize;
2834 sector_t iblock;
2835 unsigned length, pos;
2836 struct inode *inode = mapping->host;
2837 struct page *page;
2838 struct buffer_head map_bh;
2839 int err;
2840
2841 blocksize = 1 << inode->i_blkbits;
2842 length = offset & (blocksize - 1);
2843
2844 /* Block boundary? Nothing to do */
2845 if (!length)
2846 return 0;
2847
2848 length = blocksize - length;
2849 iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2850
2851 page = grab_cache_page(mapping, index);
2852 err = -ENOMEM;
2853 if (!page)
2854 goto out;
2855
2856 if (page_has_buffers(page)) {
2857has_buffers:
2858 unlock_page(page);
2859 put_page(page);
2860 return block_truncate_page(mapping, from, get_block);
2861 }
2862
2863 /* Find the buffer that contains "offset" */
2864 pos = blocksize;
2865 while (offset >= pos) {
2866 iblock++;
2867 pos += blocksize;
2868 }
2869
2870 map_bh.b_size = blocksize;
2871 map_bh.b_state = 0;
2872 err = get_block(inode, iblock, &map_bh, 0);
2873 if (err)
2874 goto unlock;
2875 /* unmapped? It's a hole - nothing to do */
2876 if (!buffer_mapped(&map_bh))
2877 goto unlock;
2878
2879 /* Ok, it's mapped. Make sure it's up-to-date */
2880 if (!PageUptodate(page)) {
2881 err = mapping->a_ops->readpage(NULL, page);
2882 if (err) {
2883 put_page(page);
2884 goto out;
2885 }
2886 lock_page(page);
2887 if (!PageUptodate(page)) {
2888 err = -EIO;
2889 goto unlock;
2890 }
2891 if (page_has_buffers(page))
2892 goto has_buffers;
2893 }
2894 zero_user(page, offset, length);
2895 set_page_dirty(page);
2896 err = 0;
2897
2898unlock:
2899 unlock_page(page);
2900 put_page(page);
2901out:
2902 return err;
2903}
2904EXPORT_SYMBOL(nobh_truncate_page);
2905
2906int block_truncate_page(struct address_space *mapping,
2907 loff_t from, get_block_t *get_block)
2908{
2909 pgoff_t index = from >> PAGE_SHIFT;
2910 unsigned offset = from & (PAGE_SIZE-1);
2911 unsigned blocksize;
2912 sector_t iblock;
2913 unsigned length, pos;
2914 struct inode *inode = mapping->host;
2915 struct page *page;
2916 struct buffer_head *bh;
2917 int err;
2918
2919 blocksize = 1 << inode->i_blkbits;
2920 length = offset & (blocksize - 1);
2921
2922 /* Block boundary? Nothing to do */
2923 if (!length)
2924 return 0;
2925
2926 length = blocksize - length;
2927 iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2928
2929 page = grab_cache_page(mapping, index);
2930 err = -ENOMEM;
2931 if (!page)
2932 goto out;
2933
2934 if (!page_has_buffers(page))
2935 create_empty_buffers(page, blocksize, 0);
2936
2937 /* Find the buffer that contains "offset" */
2938 bh = page_buffers(page);
2939 pos = blocksize;
2940 while (offset >= pos) {
2941 bh = bh->b_this_page;
2942 iblock++;
2943 pos += blocksize;
2944 }
2945
2946 err = 0;
2947 if (!buffer_mapped(bh)) {
2948 WARN_ON(bh->b_size != blocksize);
2949 err = get_block(inode, iblock, bh, 0);
2950 if (err)
2951 goto unlock;
2952 /* unmapped? It's a hole - nothing to do */
2953 if (!buffer_mapped(bh))
2954 goto unlock;
2955 }
2956
2957 /* Ok, it's mapped. Make sure it's up-to-date */
2958 if (PageUptodate(page))
2959 set_buffer_uptodate(bh);
2960
2961 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2962 err = -EIO;
2963 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2964 wait_on_buffer(bh);
2965 /* Uhhuh. Read error. Complain and punt. */
2966 if (!buffer_uptodate(bh))
2967 goto unlock;
2968 }
2969
2970 zero_user(page, offset, length);
2971 mark_buffer_dirty(bh);
2972 err = 0;
2973
2974unlock:
2975 unlock_page(page);
2976 put_page(page);
2977out:
2978 return err;
2979}
2980EXPORT_SYMBOL(block_truncate_page);
2981
2982/*
2983 * The generic ->writepage function for buffer-backed address_spaces
2984 */
2985int block_write_full_page(struct page *page, get_block_t *get_block,
2986 struct writeback_control *wbc)
2987{
2988 struct inode * const inode = page->mapping->host;
2989 loff_t i_size = i_size_read(inode);
2990 const pgoff_t end_index = i_size >> PAGE_SHIFT;
2991 unsigned offset;
2992
2993 /* Is the page fully inside i_size? */
2994 if (page->index < end_index)
2995 return __block_write_full_page(inode, page, get_block, wbc,
2996 end_buffer_async_write);
2997
2998 /* Is the page fully outside i_size? (truncate in progress) */
2999 offset = i_size & (PAGE_SIZE-1);
3000 if (page->index >= end_index+1 || !offset) {
3001 /*
3002 * The page may have dirty, unmapped buffers. For example,
3003 * they may have been added in ext3_writepage(). Make them
3004 * freeable here, so the page does not leak.
3005 */
3006 do_invalidatepage(page, 0, PAGE_SIZE);
3007 unlock_page(page);
3008 return 0; /* don't care */
3009 }
3010
3011 /*
3012 * The page straddles i_size. It must be zeroed out on each and every
3013 * writepage invocation because it may be mmapped. "A file is mapped
3014 * in multiples of the page size. For a file that is not a multiple of
3015 * the page size, the remaining memory is zeroed when mapped, and
3016 * writes to that region are not written out to the file."
3017 */
3018 zero_user_segment(page, offset, PAGE_SIZE);
3019 return __block_write_full_page(inode, page, get_block, wbc,
3020 end_buffer_async_write);
3021}
3022EXPORT_SYMBOL(block_write_full_page);
3023
3024sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
3025 get_block_t *get_block)
3026{
3027 struct buffer_head tmp;
3028 struct inode *inode = mapping->host;
3029 tmp.b_state = 0;
3030 tmp.b_blocknr = 0;
3031 tmp.b_size = 1 << inode->i_blkbits;
3032 get_block(inode, block, &tmp, 0);
3033 return tmp.b_blocknr;
3034}
3035EXPORT_SYMBOL(generic_block_bmap);
3036
3037static void end_bio_bh_io_sync(struct bio *bio)
3038{
3039 struct buffer_head *bh = bio->bi_private;
3040
3041 if (unlikely(bio_flagged(bio, BIO_QUIET)))
3042 set_bit(BH_Quiet, &bh->b_state);
3043
3044 bh->b_end_io(bh, !bio->bi_error);
3045 bio_put(bio);
3046}
3047
3048/*
3049 * This allows us to do IO even on the odd last sectors
3050 * of a device, even if the block size is some multiple
3051 * of the physical sector size.
3052 *
3053 * We'll just truncate the bio to the size of the device,
3054 * and clear the end of the buffer head manually.
3055 *
3056 * Truly out-of-range accesses will turn into actual IO
3057 * errors, this only handles the "we need to be able to
3058 * do IO at the final sector" case.
3059 */
3060void guard_bio_eod(int op, struct bio *bio)
3061{
3062 sector_t maxsector;
3063 struct bio_vec *bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
3064 unsigned truncated_bytes;
3065
3066 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
3067 if (!maxsector)
3068 return;
3069
3070 /*
3071 * If the *whole* IO is past the end of the device,
3072 * let it through, and the IO layer will turn it into
3073 * an EIO.
3074 */
3075 if (unlikely(bio->bi_iter.bi_sector >= maxsector))
3076 return;
3077
3078 maxsector -= bio->bi_iter.bi_sector;
3079 if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
3080 return;
3081
3082 /* Uhhuh. We've got a bio that straddles the device size! */
3083 truncated_bytes = bio->bi_iter.bi_size - (maxsector << 9);
3084
3085 /* Truncate the bio.. */
3086 bio->bi_iter.bi_size -= truncated_bytes;
3087 bvec->bv_len -= truncated_bytes;
3088
3089 /* ..and clear the end of the buffer for reads */
3090 if (op == REQ_OP_READ) {
3091 zero_user(bvec->bv_page, bvec->bv_offset + bvec->bv_len,
3092 truncated_bytes);
3093 }
3094}
3095
3096static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
3097 unsigned long bio_flags, struct writeback_control *wbc)
3098{
3099 struct bio *bio;
3100
3101 BUG_ON(!buffer_locked(bh));
3102 BUG_ON(!buffer_mapped(bh));
3103 BUG_ON(!bh->b_end_io);
3104 BUG_ON(buffer_delay(bh));
3105 BUG_ON(buffer_unwritten(bh));
3106
3107 /*
3108 * Only clear out a write error when rewriting
3109 */
3110 if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
3111 clear_buffer_write_io_error(bh);
3112
3113 /*
3114 * from here on down, it's all bio -- do the initial mapping,
3115 * submit_bio -> generic_make_request may further map this bio around
3116 */
3117 bio = bio_alloc(GFP_NOIO, 1);
3118
3119 if (wbc) {
3120 wbc_init_bio(wbc, bio);
3121 wbc_account_io(wbc, bh->b_page, bh->b_size);
3122 }
3123
3124 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
3125 bio->bi_bdev = bh->b_bdev;
3126
3127 bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
3128 BUG_ON(bio->bi_iter.bi_size != bh->b_size);
3129
3130 bio->bi_end_io = end_bio_bh_io_sync;
3131 bio->bi_private = bh;
3132 bio->bi_flags |= bio_flags;
3133
3134 /* Take care of bh's that straddle the end of the device */
3135 guard_bio_eod(op, bio);
3136
3137 if (buffer_meta(bh))
3138 op_flags |= REQ_META;
3139 if (buffer_prio(bh))
3140 op_flags |= REQ_PRIO;
3141 bio_set_op_attrs(bio, op, op_flags);
3142
3143 submit_bio(bio);
3144 return 0;
3145}
3146
3147int _submit_bh(int op, int op_flags, struct buffer_head *bh,
3148 unsigned long bio_flags)
3149{
3150 return submit_bh_wbc(op, op_flags, bh, bio_flags, NULL);
3151}
3152EXPORT_SYMBOL_GPL(_submit_bh);
3153
3154int submit_bh(int op, int op_flags, struct buffer_head *bh)
3155{
3156 return submit_bh_wbc(op, op_flags, bh, 0, NULL);
3157}
3158EXPORT_SYMBOL(submit_bh);
3159
3160/**
3161 * ll_rw_block: low-level access to block devices (DEPRECATED)
3162 * @op: whether to %READ or %WRITE
3163 * @op_flags: req_flag_bits
3164 * @nr: number of &struct buffer_heads in the array
3165 * @bhs: array of pointers to &struct buffer_head
3166 *
3167 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3168 * requests an I/O operation on them, either a %REQ_OP_READ or a %REQ_OP_WRITE.
3169 * @op_flags contains flags modifying the detailed I/O behavior, most notably
3170 * %REQ_RAHEAD.
3171 *
3172 * This function drops any buffer that it cannot get a lock on (with the
3173 * BH_Lock state bit), any buffer that appears to be clean when doing a write
3174 * request, and any buffer that appears to be up-to-date when doing read
3175 * request. Further it marks as clean buffers that are processed for
3176 * writing (the buffer cache won't assume that they are actually clean
3177 * until the buffer gets unlocked).
3178 *
3179 * ll_rw_block sets b_end_io to simple completion handler that marks
3180 * the buffer up-to-date (if appropriate), unlocks the buffer and wakes
3181 * any waiters.
3182 *
3183 * All of the buffers must be for the same device, and must also be a
3184 * multiple of the current approved size for the device.
3185 */
3186void ll_rw_block(int op, int op_flags, int nr, struct buffer_head *bhs[])
3187{
3188 int i;
3189
3190 for (i = 0; i < nr; i++) {
3191 struct buffer_head *bh = bhs[i];
3192
3193 if (!trylock_buffer(bh))
3194 continue;
3195 if (op == WRITE) {
3196 if (test_clear_buffer_dirty(bh)) {
3197 bh->b_end_io = end_buffer_write_sync;
3198 get_bh(bh);
3199 submit_bh(op, op_flags, bh);
3200 continue;
3201 }
3202 } else {
3203 if (!buffer_uptodate(bh)) {
3204 bh->b_end_io = end_buffer_read_sync;
3205 get_bh(bh);
3206 submit_bh(op, op_flags, bh);
3207 continue;
3208 }
3209 }
3210 unlock_buffer(bh);
3211 }
3212}
3213EXPORT_SYMBOL(ll_rw_block);
3214
3215void write_dirty_buffer(struct buffer_head *bh, int op_flags)
3216{
3217 lock_buffer(bh);
3218 if (!test_clear_buffer_dirty(bh)) {
3219 unlock_buffer(bh);
3220 return;
3221 }
3222 bh->b_end_io = end_buffer_write_sync;
3223 get_bh(bh);
3224 submit_bh(REQ_OP_WRITE, op_flags, bh);
3225}
3226EXPORT_SYMBOL(write_dirty_buffer);
3227
3228/*
3229 * For a data-integrity writeout, we need to wait upon any in-progress I/O
3230 * and then start new I/O and then wait upon it. The caller must have a ref on
3231 * the buffer_head.
3232 */
3233int __sync_dirty_buffer(struct buffer_head *bh, int op_flags)
3234{
3235 int ret = 0;
3236
3237 WARN_ON(atomic_read(&bh->b_count) < 1);
3238 lock_buffer(bh);
3239 if (test_clear_buffer_dirty(bh)) {
3240 get_bh(bh);
3241 bh->b_end_io = end_buffer_write_sync;
3242 ret = submit_bh(REQ_OP_WRITE, op_flags, bh);
3243 wait_on_buffer(bh);
3244 if (!ret && !buffer_uptodate(bh))
3245 ret = -EIO;
3246 } else {
3247 unlock_buffer(bh);
3248 }
3249 return ret;
3250}
3251EXPORT_SYMBOL(__sync_dirty_buffer);
3252
3253int sync_dirty_buffer(struct buffer_head *bh)
3254{
3255 return __sync_dirty_buffer(bh, REQ_SYNC);
3256}
3257EXPORT_SYMBOL(sync_dirty_buffer);
3258
3259/*
3260 * try_to_free_buffers() checks if all the buffers on this particular page
3261 * are unused, and releases them if so.
3262 *
3263 * Exclusion against try_to_free_buffers may be obtained by either
3264 * locking the page or by holding its mapping's private_lock.
3265 *
3266 * If the page is dirty but all the buffers are clean then we need to
3267 * be sure to mark the page clean as well. This is because the page
3268 * may be against a block device, and a later reattachment of buffers
3269 * to a dirty page will set *all* buffers dirty. Which would corrupt
3270 * filesystem data on the same device.
3271 *
3272 * The same applies to regular filesystem pages: if all the buffers are
3273 * clean then we set the page clean and proceed. To do that, we require
3274 * total exclusion from __set_page_dirty_buffers(). That is obtained with
3275 * private_lock.
3276 *
3277 * try_to_free_buffers() is non-blocking.
3278 */
3279static inline int buffer_busy(struct buffer_head *bh)
3280{
3281 return atomic_read(&bh->b_count) |
3282 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3283}
3284
3285static int
3286drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3287{
3288 struct buffer_head *head = page_buffers(page);
3289 struct buffer_head *bh;
3290
3291 bh = head;
3292 do {
3293 if (buffer_write_io_error(bh) && page->mapping)
3294 mapping_set_error(page->mapping, -EIO);
3295 if (buffer_busy(bh))
3296 goto failed;
3297 bh = bh->b_this_page;
3298 } while (bh != head);
3299
3300 do {
3301 struct buffer_head *next = bh->b_this_page;
3302
3303 if (bh->b_assoc_map)
3304 __remove_assoc_queue(bh);
3305 bh = next;
3306 } while (bh != head);
3307 *buffers_to_free = head;
3308 __clear_page_buffers(page);
3309 return 1;
3310failed:
3311 return 0;
3312}
3313
3314int try_to_free_buffers(struct page *page)
3315{
3316 struct address_space * const mapping = page->mapping;
3317 struct buffer_head *buffers_to_free = NULL;
3318 int ret = 0;
3319
3320 BUG_ON(!PageLocked(page));
3321 if (PageWriteback(page))
3322 return 0;
3323
3324 if (mapping == NULL) { /* can this still happen? */
3325 ret = drop_buffers(page, &buffers_to_free);
3326 goto out;
3327 }
3328
3329 spin_lock(&mapping->private_lock);
3330 ret = drop_buffers(page, &buffers_to_free);
3331
3332 /*
3333 * If the filesystem writes its buffers by hand (eg ext3)
3334 * then we can have clean buffers against a dirty page. We
3335 * clean the page here; otherwise the VM will never notice
3336 * that the filesystem did any IO at all.
3337 *
3338 * Also, during truncate, discard_buffer will have marked all
3339 * the page's buffers clean. We discover that here and clean
3340 * the page also.
3341 *
3342 * private_lock must be held over this entire operation in order
3343 * to synchronise against __set_page_dirty_buffers and prevent the
3344 * dirty bit from being lost.
3345 */
3346 if (ret)
3347 cancel_dirty_page(page);
3348 spin_unlock(&mapping->private_lock);
3349out:
3350 if (buffers_to_free) {
3351 struct buffer_head *bh = buffers_to_free;
3352
3353 do {
3354 struct buffer_head *next = bh->b_this_page;
3355 free_buffer_head(bh);
3356 bh = next;
3357 } while (bh != buffers_to_free);
3358 }
3359 return ret;
3360}
3361EXPORT_SYMBOL(try_to_free_buffers);
3362
3363/*
3364 * There are no bdflush tunables left. But distributions are
3365 * still running obsolete flush daemons, so we terminate them here.
3366 *
3367 * Use of bdflush() is deprecated and will be removed in a future kernel.
3368 * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3369 */
3370SYSCALL_DEFINE2(bdflush, int, func, long, data)
3371{
3372 static int msg_count;
3373
3374 if (!capable(CAP_SYS_ADMIN))
3375 return -EPERM;
3376
3377 if (msg_count < 5) {
3378 msg_count++;
3379 printk(KERN_INFO
3380 "warning: process `%s' used the obsolete bdflush"
3381 " system call\n", current->comm);
3382 printk(KERN_INFO "Fix your initscripts?\n");
3383 }
3384
3385 if (func == 1)
3386 do_exit(0);
3387 return 0;
3388}
3389
3390/*
3391 * Buffer-head allocation
3392 */
3393static struct kmem_cache *bh_cachep __read_mostly;
3394
3395/*
3396 * Once the number of bh's in the machine exceeds this level, we start
3397 * stripping them in writeback.
3398 */
3399static unsigned long max_buffer_heads;
3400
3401int buffer_heads_over_limit;
3402
3403struct bh_accounting {
3404 int nr; /* Number of live bh's */
3405 int ratelimit; /* Limit cacheline bouncing */
3406};
3407
3408static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3409
3410static void recalc_bh_state(void)
3411{
3412 int i;
3413 int tot = 0;
3414
3415 if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3416 return;
3417 __this_cpu_write(bh_accounting.ratelimit, 0);
3418 for_each_online_cpu(i)
3419 tot += per_cpu(bh_accounting, i).nr;
3420 buffer_heads_over_limit = (tot > max_buffer_heads);
3421}
3422
3423struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3424{
3425 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3426 if (ret) {
3427 INIT_LIST_HEAD(&ret->b_assoc_buffers);
3428 preempt_disable();
3429 __this_cpu_inc(bh_accounting.nr);
3430 recalc_bh_state();
3431 preempt_enable();
3432 }
3433 return ret;
3434}
3435EXPORT_SYMBOL(alloc_buffer_head);
3436
3437void free_buffer_head(struct buffer_head *bh)
3438{
3439 BUG_ON(!list_empty(&bh->b_assoc_buffers));
3440 kmem_cache_free(bh_cachep, bh);
3441 preempt_disable();
3442 __this_cpu_dec(bh_accounting.nr);
3443 recalc_bh_state();
3444 preempt_enable();
3445}
3446EXPORT_SYMBOL(free_buffer_head);
3447
3448static int buffer_exit_cpu_dead(unsigned int cpu)
3449{
3450 int i;
3451 struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3452
3453 for (i = 0; i < BH_LRU_SIZE; i++) {
3454 brelse(b->bhs[i]);
3455 b->bhs[i] = NULL;
3456 }
3457 this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3458 per_cpu(bh_accounting, cpu).nr = 0;
3459 return 0;
3460}
3461
3462/**
3463 * bh_uptodate_or_lock - Test whether the buffer is uptodate
3464 * @bh: struct buffer_head
3465 *
3466 * Return true if the buffer is up-to-date and false,
3467 * with the buffer locked, if not.
3468 */
3469int bh_uptodate_or_lock(struct buffer_head *bh)
3470{
3471 if (!buffer_uptodate(bh)) {
3472 lock_buffer(bh);
3473 if (!buffer_uptodate(bh))
3474 return 0;
3475 unlock_buffer(bh);
3476 }
3477 return 1;
3478}
3479EXPORT_SYMBOL(bh_uptodate_or_lock);
3480
3481/**
3482 * bh_submit_read - Submit a locked buffer for reading
3483 * @bh: struct buffer_head
3484 *
3485 * Returns zero on success and -EIO on error.
3486 */
3487int bh_submit_read(struct buffer_head *bh)
3488{
3489 BUG_ON(!buffer_locked(bh));
3490
3491 if (buffer_uptodate(bh)) {
3492 unlock_buffer(bh);
3493 return 0;
3494 }
3495
3496 get_bh(bh);
3497 bh->b_end_io = end_buffer_read_sync;
3498 submit_bh(REQ_OP_READ, 0, bh);
3499 wait_on_buffer(bh);
3500 if (buffer_uptodate(bh))
3501 return 0;
3502 return -EIO;
3503}
3504EXPORT_SYMBOL(bh_submit_read);
3505
3506void __init buffer_init(void)
3507{
3508 unsigned long nrpages;
3509 int ret;
3510
3511 bh_cachep = kmem_cache_create("buffer_head",
3512 sizeof(struct buffer_head), 0,
3513 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3514 SLAB_MEM_SPREAD),
3515 NULL);
3516
3517 /*
3518 * Limit the bh occupancy to 10% of ZONE_NORMAL
3519 */
3520 nrpages = (nr_free_buffer_pages() * 10) / 100;
3521 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3522 ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead",
3523 NULL, buffer_exit_cpu_dead);
3524 WARN_ON(ret < 0);
3525}
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/fs/buffer.c
4 *
5 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
6 */
7
8/*
9 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
10 *
11 * Removed a lot of unnecessary code and simplified things now that
12 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
13 *
14 * Speed up hash, lru, and free list operations. Use gfp() for allocating
15 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
16 *
17 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
18 *
19 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
20 */
21
22#include <linux/kernel.h>
23#include <linux/sched/signal.h>
24#include <linux/syscalls.h>
25#include <linux/fs.h>
26#include <linux/iomap.h>
27#include <linux/mm.h>
28#include <linux/percpu.h>
29#include <linux/slab.h>
30#include <linux/capability.h>
31#include <linux/blkdev.h>
32#include <linux/file.h>
33#include <linux/quotaops.h>
34#include <linux/highmem.h>
35#include <linux/export.h>
36#include <linux/backing-dev.h>
37#include <linux/writeback.h>
38#include <linux/hash.h>
39#include <linux/suspend.h>
40#include <linux/buffer_head.h>
41#include <linux/task_io_accounting_ops.h>
42#include <linux/bio.h>
43#include <linux/cpu.h>
44#include <linux/bitops.h>
45#include <linux/mpage.h>
46#include <linux/bit_spinlock.h>
47#include <linux/pagevec.h>
48#include <linux/sched/mm.h>
49#include <trace/events/block.h>
50#include <linux/fscrypt.h>
51
52#include "internal.h"
53
54static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
55static void submit_bh_wbc(blk_opf_t opf, struct buffer_head *bh,
56 struct writeback_control *wbc);
57
58#define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
59
60inline void touch_buffer(struct buffer_head *bh)
61{
62 trace_block_touch_buffer(bh);
63 mark_page_accessed(bh->b_page);
64}
65EXPORT_SYMBOL(touch_buffer);
66
67void __lock_buffer(struct buffer_head *bh)
68{
69 wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
70}
71EXPORT_SYMBOL(__lock_buffer);
72
73void unlock_buffer(struct buffer_head *bh)
74{
75 clear_bit_unlock(BH_Lock, &bh->b_state);
76 smp_mb__after_atomic();
77 wake_up_bit(&bh->b_state, BH_Lock);
78}
79EXPORT_SYMBOL(unlock_buffer);
80
81/*
82 * Returns if the folio has dirty or writeback buffers. If all the buffers
83 * are unlocked and clean then the folio_test_dirty information is stale. If
84 * any of the buffers are locked, it is assumed they are locked for IO.
85 */
86void buffer_check_dirty_writeback(struct folio *folio,
87 bool *dirty, bool *writeback)
88{
89 struct buffer_head *head, *bh;
90 *dirty = false;
91 *writeback = false;
92
93 BUG_ON(!folio_test_locked(folio));
94
95 head = folio_buffers(folio);
96 if (!head)
97 return;
98
99 if (folio_test_writeback(folio))
100 *writeback = true;
101
102 bh = head;
103 do {
104 if (buffer_locked(bh))
105 *writeback = true;
106
107 if (buffer_dirty(bh))
108 *dirty = true;
109
110 bh = bh->b_this_page;
111 } while (bh != head);
112}
113EXPORT_SYMBOL(buffer_check_dirty_writeback);
114
115/*
116 * Block until a buffer comes unlocked. This doesn't stop it
117 * from becoming locked again - you have to lock it yourself
118 * if you want to preserve its state.
119 */
120void __wait_on_buffer(struct buffer_head * bh)
121{
122 wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
123}
124EXPORT_SYMBOL(__wait_on_buffer);
125
126static void buffer_io_error(struct buffer_head *bh, char *msg)
127{
128 if (!test_bit(BH_Quiet, &bh->b_state))
129 printk_ratelimited(KERN_ERR
130 "Buffer I/O error on dev %pg, logical block %llu%s\n",
131 bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
132}
133
134/*
135 * End-of-IO handler helper function which does not touch the bh after
136 * unlocking it.
137 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
138 * a race there is benign: unlock_buffer() only use the bh's address for
139 * hashing after unlocking the buffer, so it doesn't actually touch the bh
140 * itself.
141 */
142static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
143{
144 if (uptodate) {
145 set_buffer_uptodate(bh);
146 } else {
147 /* This happens, due to failed read-ahead attempts. */
148 clear_buffer_uptodate(bh);
149 }
150 unlock_buffer(bh);
151}
152
153/*
154 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
155 * unlock the buffer.
156 */
157void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
158{
159 __end_buffer_read_notouch(bh, uptodate);
160 put_bh(bh);
161}
162EXPORT_SYMBOL(end_buffer_read_sync);
163
164void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
165{
166 if (uptodate) {
167 set_buffer_uptodate(bh);
168 } else {
169 buffer_io_error(bh, ", lost sync page write");
170 mark_buffer_write_io_error(bh);
171 clear_buffer_uptodate(bh);
172 }
173 unlock_buffer(bh);
174 put_bh(bh);
175}
176EXPORT_SYMBOL(end_buffer_write_sync);
177
178/*
179 * Various filesystems appear to want __find_get_block to be non-blocking.
180 * But it's the page lock which protects the buffers. To get around this,
181 * we get exclusion from try_to_free_buffers with the blockdev mapping's
182 * private_lock.
183 *
184 * Hack idea: for the blockdev mapping, private_lock contention
185 * may be quite high. This code could TryLock the page, and if that
186 * succeeds, there is no need to take private_lock.
187 */
188static struct buffer_head *
189__find_get_block_slow(struct block_device *bdev, sector_t block)
190{
191 struct inode *bd_inode = bdev->bd_inode;
192 struct address_space *bd_mapping = bd_inode->i_mapping;
193 struct buffer_head *ret = NULL;
194 pgoff_t index;
195 struct buffer_head *bh;
196 struct buffer_head *head;
197 struct page *page;
198 int all_mapped = 1;
199 static DEFINE_RATELIMIT_STATE(last_warned, HZ, 1);
200
201 index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
202 page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED);
203 if (!page)
204 goto out;
205
206 spin_lock(&bd_mapping->private_lock);
207 if (!page_has_buffers(page))
208 goto out_unlock;
209 head = page_buffers(page);
210 bh = head;
211 do {
212 if (!buffer_mapped(bh))
213 all_mapped = 0;
214 else if (bh->b_blocknr == block) {
215 ret = bh;
216 get_bh(bh);
217 goto out_unlock;
218 }
219 bh = bh->b_this_page;
220 } while (bh != head);
221
222 /* we might be here because some of the buffers on this page are
223 * not mapped. This is due to various races between
224 * file io on the block device and getblk. It gets dealt with
225 * elsewhere, don't buffer_error if we had some unmapped buffers
226 */
227 ratelimit_set_flags(&last_warned, RATELIMIT_MSG_ON_RELEASE);
228 if (all_mapped && __ratelimit(&last_warned)) {
229 printk("__find_get_block_slow() failed. block=%llu, "
230 "b_blocknr=%llu, b_state=0x%08lx, b_size=%zu, "
231 "device %pg blocksize: %d\n",
232 (unsigned long long)block,
233 (unsigned long long)bh->b_blocknr,
234 bh->b_state, bh->b_size, bdev,
235 1 << bd_inode->i_blkbits);
236 }
237out_unlock:
238 spin_unlock(&bd_mapping->private_lock);
239 put_page(page);
240out:
241 return ret;
242}
243
244static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
245{
246 unsigned long flags;
247 struct buffer_head *first;
248 struct buffer_head *tmp;
249 struct page *page;
250 int page_uptodate = 1;
251
252 BUG_ON(!buffer_async_read(bh));
253
254 page = bh->b_page;
255 if (uptodate) {
256 set_buffer_uptodate(bh);
257 } else {
258 clear_buffer_uptodate(bh);
259 buffer_io_error(bh, ", async page read");
260 SetPageError(page);
261 }
262
263 /*
264 * Be _very_ careful from here on. Bad things can happen if
265 * two buffer heads end IO at almost the same time and both
266 * decide that the page is now completely done.
267 */
268 first = page_buffers(page);
269 spin_lock_irqsave(&first->b_uptodate_lock, flags);
270 clear_buffer_async_read(bh);
271 unlock_buffer(bh);
272 tmp = bh;
273 do {
274 if (!buffer_uptodate(tmp))
275 page_uptodate = 0;
276 if (buffer_async_read(tmp)) {
277 BUG_ON(!buffer_locked(tmp));
278 goto still_busy;
279 }
280 tmp = tmp->b_this_page;
281 } while (tmp != bh);
282 spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
283
284 /*
285 * If all of the buffers are uptodate then we can set the page
286 * uptodate.
287 */
288 if (page_uptodate)
289 SetPageUptodate(page);
290 unlock_page(page);
291 return;
292
293still_busy:
294 spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
295 return;
296}
297
298struct decrypt_bh_ctx {
299 struct work_struct work;
300 struct buffer_head *bh;
301};
302
303static void decrypt_bh(struct work_struct *work)
304{
305 struct decrypt_bh_ctx *ctx =
306 container_of(work, struct decrypt_bh_ctx, work);
307 struct buffer_head *bh = ctx->bh;
308 int err;
309
310 err = fscrypt_decrypt_pagecache_blocks(bh->b_page, bh->b_size,
311 bh_offset(bh));
312 end_buffer_async_read(bh, err == 0);
313 kfree(ctx);
314}
315
316/*
317 * I/O completion handler for block_read_full_folio() - pages
318 * which come unlocked at the end of I/O.
319 */
320static void end_buffer_async_read_io(struct buffer_head *bh, int uptodate)
321{
322 /* Decrypt if needed */
323 if (uptodate &&
324 fscrypt_inode_uses_fs_layer_crypto(bh->b_page->mapping->host)) {
325 struct decrypt_bh_ctx *ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC);
326
327 if (ctx) {
328 INIT_WORK(&ctx->work, decrypt_bh);
329 ctx->bh = bh;
330 fscrypt_enqueue_decrypt_work(&ctx->work);
331 return;
332 }
333 uptodate = 0;
334 }
335 end_buffer_async_read(bh, uptodate);
336}
337
338/*
339 * Completion handler for block_write_full_page() - pages which are unlocked
340 * during I/O, and which have PageWriteback cleared upon I/O completion.
341 */
342void end_buffer_async_write(struct buffer_head *bh, int uptodate)
343{
344 unsigned long flags;
345 struct buffer_head *first;
346 struct buffer_head *tmp;
347 struct page *page;
348
349 BUG_ON(!buffer_async_write(bh));
350
351 page = bh->b_page;
352 if (uptodate) {
353 set_buffer_uptodate(bh);
354 } else {
355 buffer_io_error(bh, ", lost async page write");
356 mark_buffer_write_io_error(bh);
357 clear_buffer_uptodate(bh);
358 SetPageError(page);
359 }
360
361 first = page_buffers(page);
362 spin_lock_irqsave(&first->b_uptodate_lock, flags);
363
364 clear_buffer_async_write(bh);
365 unlock_buffer(bh);
366 tmp = bh->b_this_page;
367 while (tmp != bh) {
368 if (buffer_async_write(tmp)) {
369 BUG_ON(!buffer_locked(tmp));
370 goto still_busy;
371 }
372 tmp = tmp->b_this_page;
373 }
374 spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
375 end_page_writeback(page);
376 return;
377
378still_busy:
379 spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
380 return;
381}
382EXPORT_SYMBOL(end_buffer_async_write);
383
384/*
385 * If a page's buffers are under async readin (end_buffer_async_read
386 * completion) then there is a possibility that another thread of
387 * control could lock one of the buffers after it has completed
388 * but while some of the other buffers have not completed. This
389 * locked buffer would confuse end_buffer_async_read() into not unlocking
390 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
391 * that this buffer is not under async I/O.
392 *
393 * The page comes unlocked when it has no locked buffer_async buffers
394 * left.
395 *
396 * PageLocked prevents anyone starting new async I/O reads any of
397 * the buffers.
398 *
399 * PageWriteback is used to prevent simultaneous writeout of the same
400 * page.
401 *
402 * PageLocked prevents anyone from starting writeback of a page which is
403 * under read I/O (PageWriteback is only ever set against a locked page).
404 */
405static void mark_buffer_async_read(struct buffer_head *bh)
406{
407 bh->b_end_io = end_buffer_async_read_io;
408 set_buffer_async_read(bh);
409}
410
411static void mark_buffer_async_write_endio(struct buffer_head *bh,
412 bh_end_io_t *handler)
413{
414 bh->b_end_io = handler;
415 set_buffer_async_write(bh);
416}
417
418void mark_buffer_async_write(struct buffer_head *bh)
419{
420 mark_buffer_async_write_endio(bh, end_buffer_async_write);
421}
422EXPORT_SYMBOL(mark_buffer_async_write);
423
424
425/*
426 * fs/buffer.c contains helper functions for buffer-backed address space's
427 * fsync functions. A common requirement for buffer-based filesystems is
428 * that certain data from the backing blockdev needs to be written out for
429 * a successful fsync(). For example, ext2 indirect blocks need to be
430 * written back and waited upon before fsync() returns.
431 *
432 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
433 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
434 * management of a list of dependent buffers at ->i_mapping->private_list.
435 *
436 * Locking is a little subtle: try_to_free_buffers() will remove buffers
437 * from their controlling inode's queue when they are being freed. But
438 * try_to_free_buffers() will be operating against the *blockdev* mapping
439 * at the time, not against the S_ISREG file which depends on those buffers.
440 * So the locking for private_list is via the private_lock in the address_space
441 * which backs the buffers. Which is different from the address_space
442 * against which the buffers are listed. So for a particular address_space,
443 * mapping->private_lock does *not* protect mapping->private_list! In fact,
444 * mapping->private_list will always be protected by the backing blockdev's
445 * ->private_lock.
446 *
447 * Which introduces a requirement: all buffers on an address_space's
448 * ->private_list must be from the same address_space: the blockdev's.
449 *
450 * address_spaces which do not place buffers at ->private_list via these
451 * utility functions are free to use private_lock and private_list for
452 * whatever they want. The only requirement is that list_empty(private_list)
453 * be true at clear_inode() time.
454 *
455 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
456 * filesystems should do that. invalidate_inode_buffers() should just go
457 * BUG_ON(!list_empty).
458 *
459 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
460 * take an address_space, not an inode. And it should be called
461 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
462 * queued up.
463 *
464 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
465 * list if it is already on a list. Because if the buffer is on a list,
466 * it *must* already be on the right one. If not, the filesystem is being
467 * silly. This will save a ton of locking. But first we have to ensure
468 * that buffers are taken *off* the old inode's list when they are freed
469 * (presumably in truncate). That requires careful auditing of all
470 * filesystems (do it inside bforget()). It could also be done by bringing
471 * b_inode back.
472 */
473
474/*
475 * The buffer's backing address_space's private_lock must be held
476 */
477static void __remove_assoc_queue(struct buffer_head *bh)
478{
479 list_del_init(&bh->b_assoc_buffers);
480 WARN_ON(!bh->b_assoc_map);
481 bh->b_assoc_map = NULL;
482}
483
484int inode_has_buffers(struct inode *inode)
485{
486 return !list_empty(&inode->i_data.private_list);
487}
488
489/*
490 * osync is designed to support O_SYNC io. It waits synchronously for
491 * all already-submitted IO to complete, but does not queue any new
492 * writes to the disk.
493 *
494 * To do O_SYNC writes, just queue the buffer writes with write_dirty_buffer
495 * as you dirty the buffers, and then use osync_inode_buffers to wait for
496 * completion. Any other dirty buffers which are not yet queued for
497 * write will not be flushed to disk by the osync.
498 */
499static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
500{
501 struct buffer_head *bh;
502 struct list_head *p;
503 int err = 0;
504
505 spin_lock(lock);
506repeat:
507 list_for_each_prev(p, list) {
508 bh = BH_ENTRY(p);
509 if (buffer_locked(bh)) {
510 get_bh(bh);
511 spin_unlock(lock);
512 wait_on_buffer(bh);
513 if (!buffer_uptodate(bh))
514 err = -EIO;
515 brelse(bh);
516 spin_lock(lock);
517 goto repeat;
518 }
519 }
520 spin_unlock(lock);
521 return err;
522}
523
524void emergency_thaw_bdev(struct super_block *sb)
525{
526 while (sb->s_bdev && !thaw_bdev(sb->s_bdev))
527 printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev);
528}
529
530/**
531 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
532 * @mapping: the mapping which wants those buffers written
533 *
534 * Starts I/O against the buffers at mapping->private_list, and waits upon
535 * that I/O.
536 *
537 * Basically, this is a convenience function for fsync().
538 * @mapping is a file or directory which needs those buffers to be written for
539 * a successful fsync().
540 */
541int sync_mapping_buffers(struct address_space *mapping)
542{
543 struct address_space *buffer_mapping = mapping->private_data;
544
545 if (buffer_mapping == NULL || list_empty(&mapping->private_list))
546 return 0;
547
548 return fsync_buffers_list(&buffer_mapping->private_lock,
549 &mapping->private_list);
550}
551EXPORT_SYMBOL(sync_mapping_buffers);
552
553/*
554 * Called when we've recently written block `bblock', and it is known that
555 * `bblock' was for a buffer_boundary() buffer. This means that the block at
556 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
557 * dirty, schedule it for IO. So that indirects merge nicely with their data.
558 */
559void write_boundary_block(struct block_device *bdev,
560 sector_t bblock, unsigned blocksize)
561{
562 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
563 if (bh) {
564 if (buffer_dirty(bh))
565 write_dirty_buffer(bh, 0);
566 put_bh(bh);
567 }
568}
569
570void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
571{
572 struct address_space *mapping = inode->i_mapping;
573 struct address_space *buffer_mapping = bh->b_page->mapping;
574
575 mark_buffer_dirty(bh);
576 if (!mapping->private_data) {
577 mapping->private_data = buffer_mapping;
578 } else {
579 BUG_ON(mapping->private_data != buffer_mapping);
580 }
581 if (!bh->b_assoc_map) {
582 spin_lock(&buffer_mapping->private_lock);
583 list_move_tail(&bh->b_assoc_buffers,
584 &mapping->private_list);
585 bh->b_assoc_map = mapping;
586 spin_unlock(&buffer_mapping->private_lock);
587 }
588}
589EXPORT_SYMBOL(mark_buffer_dirty_inode);
590
591/*
592 * Add a page to the dirty page list.
593 *
594 * It is a sad fact of life that this function is called from several places
595 * deeply under spinlocking. It may not sleep.
596 *
597 * If the page has buffers, the uptodate buffers are set dirty, to preserve
598 * dirty-state coherency between the page and the buffers. It the page does
599 * not have buffers then when they are later attached they will all be set
600 * dirty.
601 *
602 * The buffers are dirtied before the page is dirtied. There's a small race
603 * window in which a writepage caller may see the page cleanness but not the
604 * buffer dirtiness. That's fine. If this code were to set the page dirty
605 * before the buffers, a concurrent writepage caller could clear the page dirty
606 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
607 * page on the dirty page list.
608 *
609 * We use private_lock to lock against try_to_free_buffers while using the
610 * page's buffer list. Also use this to protect against clean buffers being
611 * added to the page after it was set dirty.
612 *
613 * FIXME: may need to call ->reservepage here as well. That's rather up to the
614 * address_space though.
615 */
616bool block_dirty_folio(struct address_space *mapping, struct folio *folio)
617{
618 struct buffer_head *head;
619 bool newly_dirty;
620
621 spin_lock(&mapping->private_lock);
622 head = folio_buffers(folio);
623 if (head) {
624 struct buffer_head *bh = head;
625
626 do {
627 set_buffer_dirty(bh);
628 bh = bh->b_this_page;
629 } while (bh != head);
630 }
631 /*
632 * Lock out page's memcg migration to keep PageDirty
633 * synchronized with per-memcg dirty page counters.
634 */
635 folio_memcg_lock(folio);
636 newly_dirty = !folio_test_set_dirty(folio);
637 spin_unlock(&mapping->private_lock);
638
639 if (newly_dirty)
640 __folio_mark_dirty(folio, mapping, 1);
641
642 folio_memcg_unlock(folio);
643
644 if (newly_dirty)
645 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
646
647 return newly_dirty;
648}
649EXPORT_SYMBOL(block_dirty_folio);
650
651/*
652 * Write out and wait upon a list of buffers.
653 *
654 * We have conflicting pressures: we want to make sure that all
655 * initially dirty buffers get waited on, but that any subsequently
656 * dirtied buffers don't. After all, we don't want fsync to last
657 * forever if somebody is actively writing to the file.
658 *
659 * Do this in two main stages: first we copy dirty buffers to a
660 * temporary inode list, queueing the writes as we go. Then we clean
661 * up, waiting for those writes to complete.
662 *
663 * During this second stage, any subsequent updates to the file may end
664 * up refiling the buffer on the original inode's dirty list again, so
665 * there is a chance we will end up with a buffer queued for write but
666 * not yet completed on that list. So, as a final cleanup we go through
667 * the osync code to catch these locked, dirty buffers without requeuing
668 * any newly dirty buffers for write.
669 */
670static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
671{
672 struct buffer_head *bh;
673 struct list_head tmp;
674 struct address_space *mapping;
675 int err = 0, err2;
676 struct blk_plug plug;
677
678 INIT_LIST_HEAD(&tmp);
679 blk_start_plug(&plug);
680
681 spin_lock(lock);
682 while (!list_empty(list)) {
683 bh = BH_ENTRY(list->next);
684 mapping = bh->b_assoc_map;
685 __remove_assoc_queue(bh);
686 /* Avoid race with mark_buffer_dirty_inode() which does
687 * a lockless check and we rely on seeing the dirty bit */
688 smp_mb();
689 if (buffer_dirty(bh) || buffer_locked(bh)) {
690 list_add(&bh->b_assoc_buffers, &tmp);
691 bh->b_assoc_map = mapping;
692 if (buffer_dirty(bh)) {
693 get_bh(bh);
694 spin_unlock(lock);
695 /*
696 * Ensure any pending I/O completes so that
697 * write_dirty_buffer() actually writes the
698 * current contents - it is a noop if I/O is
699 * still in flight on potentially older
700 * contents.
701 */
702 write_dirty_buffer(bh, REQ_SYNC);
703
704 /*
705 * Kick off IO for the previous mapping. Note
706 * that we will not run the very last mapping,
707 * wait_on_buffer() will do that for us
708 * through sync_buffer().
709 */
710 brelse(bh);
711 spin_lock(lock);
712 }
713 }
714 }
715
716 spin_unlock(lock);
717 blk_finish_plug(&plug);
718 spin_lock(lock);
719
720 while (!list_empty(&tmp)) {
721 bh = BH_ENTRY(tmp.prev);
722 get_bh(bh);
723 mapping = bh->b_assoc_map;
724 __remove_assoc_queue(bh);
725 /* Avoid race with mark_buffer_dirty_inode() which does
726 * a lockless check and we rely on seeing the dirty bit */
727 smp_mb();
728 if (buffer_dirty(bh)) {
729 list_add(&bh->b_assoc_buffers,
730 &mapping->private_list);
731 bh->b_assoc_map = mapping;
732 }
733 spin_unlock(lock);
734 wait_on_buffer(bh);
735 if (!buffer_uptodate(bh))
736 err = -EIO;
737 brelse(bh);
738 spin_lock(lock);
739 }
740
741 spin_unlock(lock);
742 err2 = osync_buffers_list(lock, list);
743 if (err)
744 return err;
745 else
746 return err2;
747}
748
749/*
750 * Invalidate any and all dirty buffers on a given inode. We are
751 * probably unmounting the fs, but that doesn't mean we have already
752 * done a sync(). Just drop the buffers from the inode list.
753 *
754 * NOTE: we take the inode's blockdev's mapping's private_lock. Which
755 * assumes that all the buffers are against the blockdev. Not true
756 * for reiserfs.
757 */
758void invalidate_inode_buffers(struct inode *inode)
759{
760 if (inode_has_buffers(inode)) {
761 struct address_space *mapping = &inode->i_data;
762 struct list_head *list = &mapping->private_list;
763 struct address_space *buffer_mapping = mapping->private_data;
764
765 spin_lock(&buffer_mapping->private_lock);
766 while (!list_empty(list))
767 __remove_assoc_queue(BH_ENTRY(list->next));
768 spin_unlock(&buffer_mapping->private_lock);
769 }
770}
771EXPORT_SYMBOL(invalidate_inode_buffers);
772
773/*
774 * Remove any clean buffers from the inode's buffer list. This is called
775 * when we're trying to free the inode itself. Those buffers can pin it.
776 *
777 * Returns true if all buffers were removed.
778 */
779int remove_inode_buffers(struct inode *inode)
780{
781 int ret = 1;
782
783 if (inode_has_buffers(inode)) {
784 struct address_space *mapping = &inode->i_data;
785 struct list_head *list = &mapping->private_list;
786 struct address_space *buffer_mapping = mapping->private_data;
787
788 spin_lock(&buffer_mapping->private_lock);
789 while (!list_empty(list)) {
790 struct buffer_head *bh = BH_ENTRY(list->next);
791 if (buffer_dirty(bh)) {
792 ret = 0;
793 break;
794 }
795 __remove_assoc_queue(bh);
796 }
797 spin_unlock(&buffer_mapping->private_lock);
798 }
799 return ret;
800}
801
802/*
803 * Create the appropriate buffers when given a page for data area and
804 * the size of each buffer.. Use the bh->b_this_page linked list to
805 * follow the buffers created. Return NULL if unable to create more
806 * buffers.
807 *
808 * The retry flag is used to differentiate async IO (paging, swapping)
809 * which may not fail from ordinary buffer allocations.
810 */
811struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
812 bool retry)
813{
814 struct buffer_head *bh, *head;
815 gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT;
816 long offset;
817 struct mem_cgroup *memcg, *old_memcg;
818
819 if (retry)
820 gfp |= __GFP_NOFAIL;
821
822 /* The page lock pins the memcg */
823 memcg = page_memcg(page);
824 old_memcg = set_active_memcg(memcg);
825
826 head = NULL;
827 offset = PAGE_SIZE;
828 while ((offset -= size) >= 0) {
829 bh = alloc_buffer_head(gfp);
830 if (!bh)
831 goto no_grow;
832
833 bh->b_this_page = head;
834 bh->b_blocknr = -1;
835 head = bh;
836
837 bh->b_size = size;
838
839 /* Link the buffer to its page */
840 set_bh_page(bh, page, offset);
841 }
842out:
843 set_active_memcg(old_memcg);
844 return head;
845/*
846 * In case anything failed, we just free everything we got.
847 */
848no_grow:
849 if (head) {
850 do {
851 bh = head;
852 head = head->b_this_page;
853 free_buffer_head(bh);
854 } while (head);
855 }
856
857 goto out;
858}
859EXPORT_SYMBOL_GPL(alloc_page_buffers);
860
861static inline void
862link_dev_buffers(struct page *page, struct buffer_head *head)
863{
864 struct buffer_head *bh, *tail;
865
866 bh = head;
867 do {
868 tail = bh;
869 bh = bh->b_this_page;
870 } while (bh);
871 tail->b_this_page = head;
872 attach_page_private(page, head);
873}
874
875static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
876{
877 sector_t retval = ~((sector_t)0);
878 loff_t sz = bdev_nr_bytes(bdev);
879
880 if (sz) {
881 unsigned int sizebits = blksize_bits(size);
882 retval = (sz >> sizebits);
883 }
884 return retval;
885}
886
887/*
888 * Initialise the state of a blockdev page's buffers.
889 */
890static sector_t
891init_page_buffers(struct page *page, struct block_device *bdev,
892 sector_t block, int size)
893{
894 struct buffer_head *head = page_buffers(page);
895 struct buffer_head *bh = head;
896 int uptodate = PageUptodate(page);
897 sector_t end_block = blkdev_max_block(bdev, size);
898
899 do {
900 if (!buffer_mapped(bh)) {
901 bh->b_end_io = NULL;
902 bh->b_private = NULL;
903 bh->b_bdev = bdev;
904 bh->b_blocknr = block;
905 if (uptodate)
906 set_buffer_uptodate(bh);
907 if (block < end_block)
908 set_buffer_mapped(bh);
909 }
910 block++;
911 bh = bh->b_this_page;
912 } while (bh != head);
913
914 /*
915 * Caller needs to validate requested block against end of device.
916 */
917 return end_block;
918}
919
920/*
921 * Create the page-cache page that contains the requested block.
922 *
923 * This is used purely for blockdev mappings.
924 */
925static int
926grow_dev_page(struct block_device *bdev, sector_t block,
927 pgoff_t index, int size, int sizebits, gfp_t gfp)
928{
929 struct inode *inode = bdev->bd_inode;
930 struct page *page;
931 struct buffer_head *bh;
932 sector_t end_block;
933 int ret = 0;
934 gfp_t gfp_mask;
935
936 gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp;
937
938 /*
939 * XXX: __getblk_slow() can not really deal with failure and
940 * will endlessly loop on improvised global reclaim. Prefer
941 * looping in the allocator rather than here, at least that
942 * code knows what it's doing.
943 */
944 gfp_mask |= __GFP_NOFAIL;
945
946 page = find_or_create_page(inode->i_mapping, index, gfp_mask);
947
948 BUG_ON(!PageLocked(page));
949
950 if (page_has_buffers(page)) {
951 bh = page_buffers(page);
952 if (bh->b_size == size) {
953 end_block = init_page_buffers(page, bdev,
954 (sector_t)index << sizebits,
955 size);
956 goto done;
957 }
958 if (!try_to_free_buffers(page_folio(page)))
959 goto failed;
960 }
961
962 /*
963 * Allocate some buffers for this page
964 */
965 bh = alloc_page_buffers(page, size, true);
966
967 /*
968 * Link the page to the buffers and initialise them. Take the
969 * lock to be atomic wrt __find_get_block(), which does not
970 * run under the page lock.
971 */
972 spin_lock(&inode->i_mapping->private_lock);
973 link_dev_buffers(page, bh);
974 end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits,
975 size);
976 spin_unlock(&inode->i_mapping->private_lock);
977done:
978 ret = (block < end_block) ? 1 : -ENXIO;
979failed:
980 unlock_page(page);
981 put_page(page);
982 return ret;
983}
984
985/*
986 * Create buffers for the specified block device block's page. If
987 * that page was dirty, the buffers are set dirty also.
988 */
989static int
990grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp)
991{
992 pgoff_t index;
993 int sizebits;
994
995 sizebits = PAGE_SHIFT - __ffs(size);
996 index = block >> sizebits;
997
998 /*
999 * Check for a block which wants to lie outside our maximum possible
1000 * pagecache index. (this comparison is done using sector_t types).
1001 */
1002 if (unlikely(index != block >> sizebits)) {
1003 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1004 "device %pg\n",
1005 __func__, (unsigned long long)block,
1006 bdev);
1007 return -EIO;
1008 }
1009
1010 /* Create a page with the proper size buffers.. */
1011 return grow_dev_page(bdev, block, index, size, sizebits, gfp);
1012}
1013
1014static struct buffer_head *
1015__getblk_slow(struct block_device *bdev, sector_t block,
1016 unsigned size, gfp_t gfp)
1017{
1018 /* Size must be multiple of hard sectorsize */
1019 if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1020 (size < 512 || size > PAGE_SIZE))) {
1021 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1022 size);
1023 printk(KERN_ERR "logical block size: %d\n",
1024 bdev_logical_block_size(bdev));
1025
1026 dump_stack();
1027 return NULL;
1028 }
1029
1030 for (;;) {
1031 struct buffer_head *bh;
1032 int ret;
1033
1034 bh = __find_get_block(bdev, block, size);
1035 if (bh)
1036 return bh;
1037
1038 ret = grow_buffers(bdev, block, size, gfp);
1039 if (ret < 0)
1040 return NULL;
1041 }
1042}
1043
1044/*
1045 * The relationship between dirty buffers and dirty pages:
1046 *
1047 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1048 * the page is tagged dirty in the page cache.
1049 *
1050 * At all times, the dirtiness of the buffers represents the dirtiness of
1051 * subsections of the page. If the page has buffers, the page dirty bit is
1052 * merely a hint about the true dirty state.
1053 *
1054 * When a page is set dirty in its entirety, all its buffers are marked dirty
1055 * (if the page has buffers).
1056 *
1057 * When a buffer is marked dirty, its page is dirtied, but the page's other
1058 * buffers are not.
1059 *
1060 * Also. When blockdev buffers are explicitly read with bread(), they
1061 * individually become uptodate. But their backing page remains not
1062 * uptodate - even if all of its buffers are uptodate. A subsequent
1063 * block_read_full_folio() against that folio will discover all the uptodate
1064 * buffers, will set the folio uptodate and will perform no I/O.
1065 */
1066
1067/**
1068 * mark_buffer_dirty - mark a buffer_head as needing writeout
1069 * @bh: the buffer_head to mark dirty
1070 *
1071 * mark_buffer_dirty() will set the dirty bit against the buffer, then set
1072 * its backing page dirty, then tag the page as dirty in the page cache
1073 * and then attach the address_space's inode to its superblock's dirty
1074 * inode list.
1075 *
1076 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock,
1077 * i_pages lock and mapping->host->i_lock.
1078 */
1079void mark_buffer_dirty(struct buffer_head *bh)
1080{
1081 WARN_ON_ONCE(!buffer_uptodate(bh));
1082
1083 trace_block_dirty_buffer(bh);
1084
1085 /*
1086 * Very *carefully* optimize the it-is-already-dirty case.
1087 *
1088 * Don't let the final "is it dirty" escape to before we
1089 * perhaps modified the buffer.
1090 */
1091 if (buffer_dirty(bh)) {
1092 smp_mb();
1093 if (buffer_dirty(bh))
1094 return;
1095 }
1096
1097 if (!test_set_buffer_dirty(bh)) {
1098 struct page *page = bh->b_page;
1099 struct address_space *mapping = NULL;
1100
1101 lock_page_memcg(page);
1102 if (!TestSetPageDirty(page)) {
1103 mapping = page_mapping(page);
1104 if (mapping)
1105 __set_page_dirty(page, mapping, 0);
1106 }
1107 unlock_page_memcg(page);
1108 if (mapping)
1109 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1110 }
1111}
1112EXPORT_SYMBOL(mark_buffer_dirty);
1113
1114void mark_buffer_write_io_error(struct buffer_head *bh)
1115{
1116 struct super_block *sb;
1117
1118 set_buffer_write_io_error(bh);
1119 /* FIXME: do we need to set this in both places? */
1120 if (bh->b_page && bh->b_page->mapping)
1121 mapping_set_error(bh->b_page->mapping, -EIO);
1122 if (bh->b_assoc_map)
1123 mapping_set_error(bh->b_assoc_map, -EIO);
1124 rcu_read_lock();
1125 sb = READ_ONCE(bh->b_bdev->bd_super);
1126 if (sb)
1127 errseq_set(&sb->s_wb_err, -EIO);
1128 rcu_read_unlock();
1129}
1130EXPORT_SYMBOL(mark_buffer_write_io_error);
1131
1132/*
1133 * Decrement a buffer_head's reference count. If all buffers against a page
1134 * have zero reference count, are clean and unlocked, and if the page is clean
1135 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1136 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1137 * a page but it ends up not being freed, and buffers may later be reattached).
1138 */
1139void __brelse(struct buffer_head * buf)
1140{
1141 if (atomic_read(&buf->b_count)) {
1142 put_bh(buf);
1143 return;
1144 }
1145 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1146}
1147EXPORT_SYMBOL(__brelse);
1148
1149/*
1150 * bforget() is like brelse(), except it discards any
1151 * potentially dirty data.
1152 */
1153void __bforget(struct buffer_head *bh)
1154{
1155 clear_buffer_dirty(bh);
1156 if (bh->b_assoc_map) {
1157 struct address_space *buffer_mapping = bh->b_page->mapping;
1158
1159 spin_lock(&buffer_mapping->private_lock);
1160 list_del_init(&bh->b_assoc_buffers);
1161 bh->b_assoc_map = NULL;
1162 spin_unlock(&buffer_mapping->private_lock);
1163 }
1164 __brelse(bh);
1165}
1166EXPORT_SYMBOL(__bforget);
1167
1168static struct buffer_head *__bread_slow(struct buffer_head *bh)
1169{
1170 lock_buffer(bh);
1171 if (buffer_uptodate(bh)) {
1172 unlock_buffer(bh);
1173 return bh;
1174 } else {
1175 get_bh(bh);
1176 bh->b_end_io = end_buffer_read_sync;
1177 submit_bh(REQ_OP_READ, bh);
1178 wait_on_buffer(bh);
1179 if (buffer_uptodate(bh))
1180 return bh;
1181 }
1182 brelse(bh);
1183 return NULL;
1184}
1185
1186/*
1187 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1188 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1189 * refcount elevated by one when they're in an LRU. A buffer can only appear
1190 * once in a particular CPU's LRU. A single buffer can be present in multiple
1191 * CPU's LRUs at the same time.
1192 *
1193 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1194 * sb_find_get_block().
1195 *
1196 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1197 * a local interrupt disable for that.
1198 */
1199
1200#define BH_LRU_SIZE 16
1201
1202struct bh_lru {
1203 struct buffer_head *bhs[BH_LRU_SIZE];
1204};
1205
1206static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1207
1208#ifdef CONFIG_SMP
1209#define bh_lru_lock() local_irq_disable()
1210#define bh_lru_unlock() local_irq_enable()
1211#else
1212#define bh_lru_lock() preempt_disable()
1213#define bh_lru_unlock() preempt_enable()
1214#endif
1215
1216static inline void check_irqs_on(void)
1217{
1218#ifdef irqs_disabled
1219 BUG_ON(irqs_disabled());
1220#endif
1221}
1222
1223/*
1224 * Install a buffer_head into this cpu's LRU. If not already in the LRU, it is
1225 * inserted at the front, and the buffer_head at the back if any is evicted.
1226 * Or, if already in the LRU it is moved to the front.
1227 */
1228static void bh_lru_install(struct buffer_head *bh)
1229{
1230 struct buffer_head *evictee = bh;
1231 struct bh_lru *b;
1232 int i;
1233
1234 check_irqs_on();
1235 bh_lru_lock();
1236
1237 /*
1238 * the refcount of buffer_head in bh_lru prevents dropping the
1239 * attached page(i.e., try_to_free_buffers) so it could cause
1240 * failing page migration.
1241 * Skip putting upcoming bh into bh_lru until migration is done.
1242 */
1243 if (lru_cache_disabled()) {
1244 bh_lru_unlock();
1245 return;
1246 }
1247
1248 b = this_cpu_ptr(&bh_lrus);
1249 for (i = 0; i < BH_LRU_SIZE; i++) {
1250 swap(evictee, b->bhs[i]);
1251 if (evictee == bh) {
1252 bh_lru_unlock();
1253 return;
1254 }
1255 }
1256
1257 get_bh(bh);
1258 bh_lru_unlock();
1259 brelse(evictee);
1260}
1261
1262/*
1263 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1264 */
1265static struct buffer_head *
1266lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1267{
1268 struct buffer_head *ret = NULL;
1269 unsigned int i;
1270
1271 check_irqs_on();
1272 bh_lru_lock();
1273 for (i = 0; i < BH_LRU_SIZE; i++) {
1274 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1275
1276 if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1277 bh->b_size == size) {
1278 if (i) {
1279 while (i) {
1280 __this_cpu_write(bh_lrus.bhs[i],
1281 __this_cpu_read(bh_lrus.bhs[i - 1]));
1282 i--;
1283 }
1284 __this_cpu_write(bh_lrus.bhs[0], bh);
1285 }
1286 get_bh(bh);
1287 ret = bh;
1288 break;
1289 }
1290 }
1291 bh_lru_unlock();
1292 return ret;
1293}
1294
1295/*
1296 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1297 * it in the LRU and mark it as accessed. If it is not present then return
1298 * NULL
1299 */
1300struct buffer_head *
1301__find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1302{
1303 struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1304
1305 if (bh == NULL) {
1306 /* __find_get_block_slow will mark the page accessed */
1307 bh = __find_get_block_slow(bdev, block);
1308 if (bh)
1309 bh_lru_install(bh);
1310 } else
1311 touch_buffer(bh);
1312
1313 return bh;
1314}
1315EXPORT_SYMBOL(__find_get_block);
1316
1317/*
1318 * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1319 * which corresponds to the passed block_device, block and size. The
1320 * returned buffer has its reference count incremented.
1321 *
1322 * __getblk_gfp() will lock up the machine if grow_dev_page's
1323 * try_to_free_buffers() attempt is failing. FIXME, perhaps?
1324 */
1325struct buffer_head *
1326__getblk_gfp(struct block_device *bdev, sector_t block,
1327 unsigned size, gfp_t gfp)
1328{
1329 struct buffer_head *bh = __find_get_block(bdev, block, size);
1330
1331 might_sleep();
1332 if (bh == NULL)
1333 bh = __getblk_slow(bdev, block, size, gfp);
1334 return bh;
1335}
1336EXPORT_SYMBOL(__getblk_gfp);
1337
1338/*
1339 * Do async read-ahead on a buffer..
1340 */
1341void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1342{
1343 struct buffer_head *bh = __getblk(bdev, block, size);
1344 if (likely(bh)) {
1345 bh_readahead(bh, REQ_RAHEAD);
1346 brelse(bh);
1347 }
1348}
1349EXPORT_SYMBOL(__breadahead);
1350
1351/**
1352 * __bread_gfp() - reads a specified block and returns the bh
1353 * @bdev: the block_device to read from
1354 * @block: number of block
1355 * @size: size (in bytes) to read
1356 * @gfp: page allocation flag
1357 *
1358 * Reads a specified block, and returns buffer head that contains it.
1359 * The page cache can be allocated from non-movable area
1360 * not to prevent page migration if you set gfp to zero.
1361 * It returns NULL if the block was unreadable.
1362 */
1363struct buffer_head *
1364__bread_gfp(struct block_device *bdev, sector_t block,
1365 unsigned size, gfp_t gfp)
1366{
1367 struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1368
1369 if (likely(bh) && !buffer_uptodate(bh))
1370 bh = __bread_slow(bh);
1371 return bh;
1372}
1373EXPORT_SYMBOL(__bread_gfp);
1374
1375static void __invalidate_bh_lrus(struct bh_lru *b)
1376{
1377 int i;
1378
1379 for (i = 0; i < BH_LRU_SIZE; i++) {
1380 brelse(b->bhs[i]);
1381 b->bhs[i] = NULL;
1382 }
1383}
1384/*
1385 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1386 * This doesn't race because it runs in each cpu either in irq
1387 * or with preempt disabled.
1388 */
1389static void invalidate_bh_lru(void *arg)
1390{
1391 struct bh_lru *b = &get_cpu_var(bh_lrus);
1392
1393 __invalidate_bh_lrus(b);
1394 put_cpu_var(bh_lrus);
1395}
1396
1397bool has_bh_in_lru(int cpu, void *dummy)
1398{
1399 struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1400 int i;
1401
1402 for (i = 0; i < BH_LRU_SIZE; i++) {
1403 if (b->bhs[i])
1404 return true;
1405 }
1406
1407 return false;
1408}
1409
1410void invalidate_bh_lrus(void)
1411{
1412 on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1);
1413}
1414EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1415
1416/*
1417 * It's called from workqueue context so we need a bh_lru_lock to close
1418 * the race with preemption/irq.
1419 */
1420void invalidate_bh_lrus_cpu(void)
1421{
1422 struct bh_lru *b;
1423
1424 bh_lru_lock();
1425 b = this_cpu_ptr(&bh_lrus);
1426 __invalidate_bh_lrus(b);
1427 bh_lru_unlock();
1428}
1429
1430void set_bh_page(struct buffer_head *bh,
1431 struct page *page, unsigned long offset)
1432{
1433 bh->b_page = page;
1434 BUG_ON(offset >= PAGE_SIZE);
1435 if (PageHighMem(page))
1436 /*
1437 * This catches illegal uses and preserves the offset:
1438 */
1439 bh->b_data = (char *)(0 + offset);
1440 else
1441 bh->b_data = page_address(page) + offset;
1442}
1443EXPORT_SYMBOL(set_bh_page);
1444
1445/*
1446 * Called when truncating a buffer on a page completely.
1447 */
1448
1449/* Bits that are cleared during an invalidate */
1450#define BUFFER_FLAGS_DISCARD \
1451 (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1452 1 << BH_Delay | 1 << BH_Unwritten)
1453
1454static void discard_buffer(struct buffer_head * bh)
1455{
1456 unsigned long b_state;
1457
1458 lock_buffer(bh);
1459 clear_buffer_dirty(bh);
1460 bh->b_bdev = NULL;
1461 b_state = READ_ONCE(bh->b_state);
1462 do {
1463 } while (!try_cmpxchg(&bh->b_state, &b_state,
1464 b_state & ~BUFFER_FLAGS_DISCARD));
1465 unlock_buffer(bh);
1466}
1467
1468/**
1469 * block_invalidate_folio - Invalidate part or all of a buffer-backed folio.
1470 * @folio: The folio which is affected.
1471 * @offset: start of the range to invalidate
1472 * @length: length of the range to invalidate
1473 *
1474 * block_invalidate_folio() is called when all or part of the folio has been
1475 * invalidated by a truncate operation.
1476 *
1477 * block_invalidate_folio() does not have to release all buffers, but it must
1478 * ensure that no dirty buffer is left outside @offset and that no I/O
1479 * is underway against any of the blocks which are outside the truncation
1480 * point. Because the caller is about to free (and possibly reuse) those
1481 * blocks on-disk.
1482 */
1483void block_invalidate_folio(struct folio *folio, size_t offset, size_t length)
1484{
1485 struct buffer_head *head, *bh, *next;
1486 size_t curr_off = 0;
1487 size_t stop = length + offset;
1488
1489 BUG_ON(!folio_test_locked(folio));
1490
1491 /*
1492 * Check for overflow
1493 */
1494 BUG_ON(stop > folio_size(folio) || stop < length);
1495
1496 head = folio_buffers(folio);
1497 if (!head)
1498 return;
1499
1500 bh = head;
1501 do {
1502 size_t next_off = curr_off + bh->b_size;
1503 next = bh->b_this_page;
1504
1505 /*
1506 * Are we still fully in range ?
1507 */
1508 if (next_off > stop)
1509 goto out;
1510
1511 /*
1512 * is this block fully invalidated?
1513 */
1514 if (offset <= curr_off)
1515 discard_buffer(bh);
1516 curr_off = next_off;
1517 bh = next;
1518 } while (bh != head);
1519
1520 /*
1521 * We release buffers only if the entire folio is being invalidated.
1522 * The get_block cached value has been unconditionally invalidated,
1523 * so real IO is not possible anymore.
1524 */
1525 if (length == folio_size(folio))
1526 filemap_release_folio(folio, 0);
1527out:
1528 return;
1529}
1530EXPORT_SYMBOL(block_invalidate_folio);
1531
1532
1533/*
1534 * We attach and possibly dirty the buffers atomically wrt
1535 * block_dirty_folio() via private_lock. try_to_free_buffers
1536 * is already excluded via the page lock.
1537 */
1538void create_empty_buffers(struct page *page,
1539 unsigned long blocksize, unsigned long b_state)
1540{
1541 struct buffer_head *bh, *head, *tail;
1542
1543 head = alloc_page_buffers(page, blocksize, true);
1544 bh = head;
1545 do {
1546 bh->b_state |= b_state;
1547 tail = bh;
1548 bh = bh->b_this_page;
1549 } while (bh);
1550 tail->b_this_page = head;
1551
1552 spin_lock(&page->mapping->private_lock);
1553 if (PageUptodate(page) || PageDirty(page)) {
1554 bh = head;
1555 do {
1556 if (PageDirty(page))
1557 set_buffer_dirty(bh);
1558 if (PageUptodate(page))
1559 set_buffer_uptodate(bh);
1560 bh = bh->b_this_page;
1561 } while (bh != head);
1562 }
1563 attach_page_private(page, head);
1564 spin_unlock(&page->mapping->private_lock);
1565}
1566EXPORT_SYMBOL(create_empty_buffers);
1567
1568/**
1569 * clean_bdev_aliases: clean a range of buffers in block device
1570 * @bdev: Block device to clean buffers in
1571 * @block: Start of a range of blocks to clean
1572 * @len: Number of blocks to clean
1573 *
1574 * We are taking a range of blocks for data and we don't want writeback of any
1575 * buffer-cache aliases starting from return from this function and until the
1576 * moment when something will explicitly mark the buffer dirty (hopefully that
1577 * will not happen until we will free that block ;-) We don't even need to mark
1578 * it not-uptodate - nobody can expect anything from a newly allocated buffer
1579 * anyway. We used to use unmap_buffer() for such invalidation, but that was
1580 * wrong. We definitely don't want to mark the alias unmapped, for example - it
1581 * would confuse anyone who might pick it with bread() afterwards...
1582 *
1583 * Also.. Note that bforget() doesn't lock the buffer. So there can be
1584 * writeout I/O going on against recently-freed buffers. We don't wait on that
1585 * I/O in bforget() - it's more efficient to wait on the I/O only if we really
1586 * need to. That happens here.
1587 */
1588void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len)
1589{
1590 struct inode *bd_inode = bdev->bd_inode;
1591 struct address_space *bd_mapping = bd_inode->i_mapping;
1592 struct folio_batch fbatch;
1593 pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
1594 pgoff_t end;
1595 int i, count;
1596 struct buffer_head *bh;
1597 struct buffer_head *head;
1598
1599 end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits);
1600 folio_batch_init(&fbatch);
1601 while (filemap_get_folios(bd_mapping, &index, end, &fbatch)) {
1602 count = folio_batch_count(&fbatch);
1603 for (i = 0; i < count; i++) {
1604 struct folio *folio = fbatch.folios[i];
1605
1606 if (!folio_buffers(folio))
1607 continue;
1608 /*
1609 * We use folio lock instead of bd_mapping->private_lock
1610 * to pin buffers here since we can afford to sleep and
1611 * it scales better than a global spinlock lock.
1612 */
1613 folio_lock(folio);
1614 /* Recheck when the folio is locked which pins bhs */
1615 head = folio_buffers(folio);
1616 if (!head)
1617 goto unlock_page;
1618 bh = head;
1619 do {
1620 if (!buffer_mapped(bh) || (bh->b_blocknr < block))
1621 goto next;
1622 if (bh->b_blocknr >= block + len)
1623 break;
1624 clear_buffer_dirty(bh);
1625 wait_on_buffer(bh);
1626 clear_buffer_req(bh);
1627next:
1628 bh = bh->b_this_page;
1629 } while (bh != head);
1630unlock_page:
1631 folio_unlock(folio);
1632 }
1633 folio_batch_release(&fbatch);
1634 cond_resched();
1635 /* End of range already reached? */
1636 if (index > end || !index)
1637 break;
1638 }
1639}
1640EXPORT_SYMBOL(clean_bdev_aliases);
1641
1642/*
1643 * Size is a power-of-two in the range 512..PAGE_SIZE,
1644 * and the case we care about most is PAGE_SIZE.
1645 *
1646 * So this *could* possibly be written with those
1647 * constraints in mind (relevant mostly if some
1648 * architecture has a slow bit-scan instruction)
1649 */
1650static inline int block_size_bits(unsigned int blocksize)
1651{
1652 return ilog2(blocksize);
1653}
1654
1655static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1656{
1657 BUG_ON(!PageLocked(page));
1658
1659 if (!page_has_buffers(page))
1660 create_empty_buffers(page, 1 << READ_ONCE(inode->i_blkbits),
1661 b_state);
1662 return page_buffers(page);
1663}
1664
1665/*
1666 * NOTE! All mapped/uptodate combinations are valid:
1667 *
1668 * Mapped Uptodate Meaning
1669 *
1670 * No No "unknown" - must do get_block()
1671 * No Yes "hole" - zero-filled
1672 * Yes No "allocated" - allocated on disk, not read in
1673 * Yes Yes "valid" - allocated and up-to-date in memory.
1674 *
1675 * "Dirty" is valid only with the last case (mapped+uptodate).
1676 */
1677
1678/*
1679 * While block_write_full_page is writing back the dirty buffers under
1680 * the page lock, whoever dirtied the buffers may decide to clean them
1681 * again at any time. We handle that by only looking at the buffer
1682 * state inside lock_buffer().
1683 *
1684 * If block_write_full_page() is called for regular writeback
1685 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1686 * locked buffer. This only can happen if someone has written the buffer
1687 * directly, with submit_bh(). At the address_space level PageWriteback
1688 * prevents this contention from occurring.
1689 *
1690 * If block_write_full_page() is called with wbc->sync_mode ==
1691 * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
1692 * causes the writes to be flagged as synchronous writes.
1693 */
1694int __block_write_full_page(struct inode *inode, struct page *page,
1695 get_block_t *get_block, struct writeback_control *wbc,
1696 bh_end_io_t *handler)
1697{
1698 int err;
1699 sector_t block;
1700 sector_t last_block;
1701 struct buffer_head *bh, *head;
1702 unsigned int blocksize, bbits;
1703 int nr_underway = 0;
1704 blk_opf_t write_flags = wbc_to_write_flags(wbc);
1705
1706 head = create_page_buffers(page, inode,
1707 (1 << BH_Dirty)|(1 << BH_Uptodate));
1708
1709 /*
1710 * Be very careful. We have no exclusion from block_dirty_folio
1711 * here, and the (potentially unmapped) buffers may become dirty at
1712 * any time. If a buffer becomes dirty here after we've inspected it
1713 * then we just miss that fact, and the page stays dirty.
1714 *
1715 * Buffers outside i_size may be dirtied by block_dirty_folio;
1716 * handle that here by just cleaning them.
1717 */
1718
1719 bh = head;
1720 blocksize = bh->b_size;
1721 bbits = block_size_bits(blocksize);
1722
1723 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1724 last_block = (i_size_read(inode) - 1) >> bbits;
1725
1726 /*
1727 * Get all the dirty buffers mapped to disk addresses and
1728 * handle any aliases from the underlying blockdev's mapping.
1729 */
1730 do {
1731 if (block > last_block) {
1732 /*
1733 * mapped buffers outside i_size will occur, because
1734 * this page can be outside i_size when there is a
1735 * truncate in progress.
1736 */
1737 /*
1738 * The buffer was zeroed by block_write_full_page()
1739 */
1740 clear_buffer_dirty(bh);
1741 set_buffer_uptodate(bh);
1742 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1743 buffer_dirty(bh)) {
1744 WARN_ON(bh->b_size != blocksize);
1745 err = get_block(inode, block, bh, 1);
1746 if (err)
1747 goto recover;
1748 clear_buffer_delay(bh);
1749 if (buffer_new(bh)) {
1750 /* blockdev mappings never come here */
1751 clear_buffer_new(bh);
1752 clean_bdev_bh_alias(bh);
1753 }
1754 }
1755 bh = bh->b_this_page;
1756 block++;
1757 } while (bh != head);
1758
1759 do {
1760 if (!buffer_mapped(bh))
1761 continue;
1762 /*
1763 * If it's a fully non-blocking write attempt and we cannot
1764 * lock the buffer then redirty the page. Note that this can
1765 * potentially cause a busy-wait loop from writeback threads
1766 * and kswapd activity, but those code paths have their own
1767 * higher-level throttling.
1768 */
1769 if (wbc->sync_mode != WB_SYNC_NONE) {
1770 lock_buffer(bh);
1771 } else if (!trylock_buffer(bh)) {
1772 redirty_page_for_writepage(wbc, page);
1773 continue;
1774 }
1775 if (test_clear_buffer_dirty(bh)) {
1776 mark_buffer_async_write_endio(bh, handler);
1777 } else {
1778 unlock_buffer(bh);
1779 }
1780 } while ((bh = bh->b_this_page) != head);
1781
1782 /*
1783 * The page and its buffers are protected by PageWriteback(), so we can
1784 * drop the bh refcounts early.
1785 */
1786 BUG_ON(PageWriteback(page));
1787 set_page_writeback(page);
1788
1789 do {
1790 struct buffer_head *next = bh->b_this_page;
1791 if (buffer_async_write(bh)) {
1792 submit_bh_wbc(REQ_OP_WRITE | write_flags, bh, wbc);
1793 nr_underway++;
1794 }
1795 bh = next;
1796 } while (bh != head);
1797 unlock_page(page);
1798
1799 err = 0;
1800done:
1801 if (nr_underway == 0) {
1802 /*
1803 * The page was marked dirty, but the buffers were
1804 * clean. Someone wrote them back by hand with
1805 * write_dirty_buffer/submit_bh. A rare case.
1806 */
1807 end_page_writeback(page);
1808
1809 /*
1810 * The page and buffer_heads can be released at any time from
1811 * here on.
1812 */
1813 }
1814 return err;
1815
1816recover:
1817 /*
1818 * ENOSPC, or some other error. We may already have added some
1819 * blocks to the file, so we need to write these out to avoid
1820 * exposing stale data.
1821 * The page is currently locked and not marked for writeback
1822 */
1823 bh = head;
1824 /* Recovery: lock and submit the mapped buffers */
1825 do {
1826 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1827 !buffer_delay(bh)) {
1828 lock_buffer(bh);
1829 mark_buffer_async_write_endio(bh, handler);
1830 } else {
1831 /*
1832 * The buffer may have been set dirty during
1833 * attachment to a dirty page.
1834 */
1835 clear_buffer_dirty(bh);
1836 }
1837 } while ((bh = bh->b_this_page) != head);
1838 SetPageError(page);
1839 BUG_ON(PageWriteback(page));
1840 mapping_set_error(page->mapping, err);
1841 set_page_writeback(page);
1842 do {
1843 struct buffer_head *next = bh->b_this_page;
1844 if (buffer_async_write(bh)) {
1845 clear_buffer_dirty(bh);
1846 submit_bh_wbc(REQ_OP_WRITE | write_flags, bh, wbc);
1847 nr_underway++;
1848 }
1849 bh = next;
1850 } while (bh != head);
1851 unlock_page(page);
1852 goto done;
1853}
1854EXPORT_SYMBOL(__block_write_full_page);
1855
1856/*
1857 * If a page has any new buffers, zero them out here, and mark them uptodate
1858 * and dirty so they'll be written out (in order to prevent uninitialised
1859 * block data from leaking). And clear the new bit.
1860 */
1861void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1862{
1863 unsigned int block_start, block_end;
1864 struct buffer_head *head, *bh;
1865
1866 BUG_ON(!PageLocked(page));
1867 if (!page_has_buffers(page))
1868 return;
1869
1870 bh = head = page_buffers(page);
1871 block_start = 0;
1872 do {
1873 block_end = block_start + bh->b_size;
1874
1875 if (buffer_new(bh)) {
1876 if (block_end > from && block_start < to) {
1877 if (!PageUptodate(page)) {
1878 unsigned start, size;
1879
1880 start = max(from, block_start);
1881 size = min(to, block_end) - start;
1882
1883 zero_user(page, start, size);
1884 set_buffer_uptodate(bh);
1885 }
1886
1887 clear_buffer_new(bh);
1888 mark_buffer_dirty(bh);
1889 }
1890 }
1891
1892 block_start = block_end;
1893 bh = bh->b_this_page;
1894 } while (bh != head);
1895}
1896EXPORT_SYMBOL(page_zero_new_buffers);
1897
1898static void
1899iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
1900 const struct iomap *iomap)
1901{
1902 loff_t offset = block << inode->i_blkbits;
1903
1904 bh->b_bdev = iomap->bdev;
1905
1906 /*
1907 * Block points to offset in file we need to map, iomap contains
1908 * the offset at which the map starts. If the map ends before the
1909 * current block, then do not map the buffer and let the caller
1910 * handle it.
1911 */
1912 BUG_ON(offset >= iomap->offset + iomap->length);
1913
1914 switch (iomap->type) {
1915 case IOMAP_HOLE:
1916 /*
1917 * If the buffer is not up to date or beyond the current EOF,
1918 * we need to mark it as new to ensure sub-block zeroing is
1919 * executed if necessary.
1920 */
1921 if (!buffer_uptodate(bh) ||
1922 (offset >= i_size_read(inode)))
1923 set_buffer_new(bh);
1924 break;
1925 case IOMAP_DELALLOC:
1926 if (!buffer_uptodate(bh) ||
1927 (offset >= i_size_read(inode)))
1928 set_buffer_new(bh);
1929 set_buffer_uptodate(bh);
1930 set_buffer_mapped(bh);
1931 set_buffer_delay(bh);
1932 break;
1933 case IOMAP_UNWRITTEN:
1934 /*
1935 * For unwritten regions, we always need to ensure that regions
1936 * in the block we are not writing to are zeroed. Mark the
1937 * buffer as new to ensure this.
1938 */
1939 set_buffer_new(bh);
1940 set_buffer_unwritten(bh);
1941 fallthrough;
1942 case IOMAP_MAPPED:
1943 if ((iomap->flags & IOMAP_F_NEW) ||
1944 offset >= i_size_read(inode))
1945 set_buffer_new(bh);
1946 bh->b_blocknr = (iomap->addr + offset - iomap->offset) >>
1947 inode->i_blkbits;
1948 set_buffer_mapped(bh);
1949 break;
1950 }
1951}
1952
1953int __block_write_begin_int(struct folio *folio, loff_t pos, unsigned len,
1954 get_block_t *get_block, const struct iomap *iomap)
1955{
1956 unsigned from = pos & (PAGE_SIZE - 1);
1957 unsigned to = from + len;
1958 struct inode *inode = folio->mapping->host;
1959 unsigned block_start, block_end;
1960 sector_t block;
1961 int err = 0;
1962 unsigned blocksize, bbits;
1963 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1964
1965 BUG_ON(!folio_test_locked(folio));
1966 BUG_ON(from > PAGE_SIZE);
1967 BUG_ON(to > PAGE_SIZE);
1968 BUG_ON(from > to);
1969
1970 head = create_page_buffers(&folio->page, inode, 0);
1971 blocksize = head->b_size;
1972 bbits = block_size_bits(blocksize);
1973
1974 block = (sector_t)folio->index << (PAGE_SHIFT - bbits);
1975
1976 for(bh = head, block_start = 0; bh != head || !block_start;
1977 block++, block_start=block_end, bh = bh->b_this_page) {
1978 block_end = block_start + blocksize;
1979 if (block_end <= from || block_start >= to) {
1980 if (folio_test_uptodate(folio)) {
1981 if (!buffer_uptodate(bh))
1982 set_buffer_uptodate(bh);
1983 }
1984 continue;
1985 }
1986 if (buffer_new(bh))
1987 clear_buffer_new(bh);
1988 if (!buffer_mapped(bh)) {
1989 WARN_ON(bh->b_size != blocksize);
1990 if (get_block) {
1991 err = get_block(inode, block, bh, 1);
1992 if (err)
1993 break;
1994 } else {
1995 iomap_to_bh(inode, block, bh, iomap);
1996 }
1997
1998 if (buffer_new(bh)) {
1999 clean_bdev_bh_alias(bh);
2000 if (folio_test_uptodate(folio)) {
2001 clear_buffer_new(bh);
2002 set_buffer_uptodate(bh);
2003 mark_buffer_dirty(bh);
2004 continue;
2005 }
2006 if (block_end > to || block_start < from)
2007 folio_zero_segments(folio,
2008 to, block_end,
2009 block_start, from);
2010 continue;
2011 }
2012 }
2013 if (folio_test_uptodate(folio)) {
2014 if (!buffer_uptodate(bh))
2015 set_buffer_uptodate(bh);
2016 continue;
2017 }
2018 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
2019 !buffer_unwritten(bh) &&
2020 (block_start < from || block_end > to)) {
2021 bh_read_nowait(bh, 0);
2022 *wait_bh++=bh;
2023 }
2024 }
2025 /*
2026 * If we issued read requests - let them complete.
2027 */
2028 while(wait_bh > wait) {
2029 wait_on_buffer(*--wait_bh);
2030 if (!buffer_uptodate(*wait_bh))
2031 err = -EIO;
2032 }
2033 if (unlikely(err))
2034 page_zero_new_buffers(&folio->page, from, to);
2035 return err;
2036}
2037
2038int __block_write_begin(struct page *page, loff_t pos, unsigned len,
2039 get_block_t *get_block)
2040{
2041 return __block_write_begin_int(page_folio(page), pos, len, get_block,
2042 NULL);
2043}
2044EXPORT_SYMBOL(__block_write_begin);
2045
2046static int __block_commit_write(struct inode *inode, struct page *page,
2047 unsigned from, unsigned to)
2048{
2049 unsigned block_start, block_end;
2050 int partial = 0;
2051 unsigned blocksize;
2052 struct buffer_head *bh, *head;
2053
2054 bh = head = page_buffers(page);
2055 blocksize = bh->b_size;
2056
2057 block_start = 0;
2058 do {
2059 block_end = block_start + blocksize;
2060 if (block_end <= from || block_start >= to) {
2061 if (!buffer_uptodate(bh))
2062 partial = 1;
2063 } else {
2064 set_buffer_uptodate(bh);
2065 mark_buffer_dirty(bh);
2066 }
2067 if (buffer_new(bh))
2068 clear_buffer_new(bh);
2069
2070 block_start = block_end;
2071 bh = bh->b_this_page;
2072 } while (bh != head);
2073
2074 /*
2075 * If this is a partial write which happened to make all buffers
2076 * uptodate then we can optimize away a bogus read_folio() for
2077 * the next read(). Here we 'discover' whether the page went
2078 * uptodate as a result of this (potentially partial) write.
2079 */
2080 if (!partial)
2081 SetPageUptodate(page);
2082 return 0;
2083}
2084
2085/*
2086 * block_write_begin takes care of the basic task of block allocation and
2087 * bringing partial write blocks uptodate first.
2088 *
2089 * The filesystem needs to handle block truncation upon failure.
2090 */
2091int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2092 struct page **pagep, get_block_t *get_block)
2093{
2094 pgoff_t index = pos >> PAGE_SHIFT;
2095 struct page *page;
2096 int status;
2097
2098 page = grab_cache_page_write_begin(mapping, index);
2099 if (!page)
2100 return -ENOMEM;
2101
2102 status = __block_write_begin(page, pos, len, get_block);
2103 if (unlikely(status)) {
2104 unlock_page(page);
2105 put_page(page);
2106 page = NULL;
2107 }
2108
2109 *pagep = page;
2110 return status;
2111}
2112EXPORT_SYMBOL(block_write_begin);
2113
2114int block_write_end(struct file *file, struct address_space *mapping,
2115 loff_t pos, unsigned len, unsigned copied,
2116 struct page *page, void *fsdata)
2117{
2118 struct inode *inode = mapping->host;
2119 unsigned start;
2120
2121 start = pos & (PAGE_SIZE - 1);
2122
2123 if (unlikely(copied < len)) {
2124 /*
2125 * The buffers that were written will now be uptodate, so
2126 * we don't have to worry about a read_folio reading them
2127 * and overwriting a partial write. However if we have
2128 * encountered a short write and only partially written
2129 * into a buffer, it will not be marked uptodate, so a
2130 * read_folio might come in and destroy our partial write.
2131 *
2132 * Do the simplest thing, and just treat any short write to a
2133 * non uptodate page as a zero-length write, and force the
2134 * caller to redo the whole thing.
2135 */
2136 if (!PageUptodate(page))
2137 copied = 0;
2138
2139 page_zero_new_buffers(page, start+copied, start+len);
2140 }
2141 flush_dcache_page(page);
2142
2143 /* This could be a short (even 0-length) commit */
2144 __block_commit_write(inode, page, start, start+copied);
2145
2146 return copied;
2147}
2148EXPORT_SYMBOL(block_write_end);
2149
2150int generic_write_end(struct file *file, struct address_space *mapping,
2151 loff_t pos, unsigned len, unsigned copied,
2152 struct page *page, void *fsdata)
2153{
2154 struct inode *inode = mapping->host;
2155 loff_t old_size = inode->i_size;
2156 bool i_size_changed = false;
2157
2158 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2159
2160 /*
2161 * No need to use i_size_read() here, the i_size cannot change under us
2162 * because we hold i_rwsem.
2163 *
2164 * But it's important to update i_size while still holding page lock:
2165 * page writeout could otherwise come in and zero beyond i_size.
2166 */
2167 if (pos + copied > inode->i_size) {
2168 i_size_write(inode, pos + copied);
2169 i_size_changed = true;
2170 }
2171
2172 unlock_page(page);
2173 put_page(page);
2174
2175 if (old_size < pos)
2176 pagecache_isize_extended(inode, old_size, pos);
2177 /*
2178 * Don't mark the inode dirty under page lock. First, it unnecessarily
2179 * makes the holding time of page lock longer. Second, it forces lock
2180 * ordering of page lock and transaction start for journaling
2181 * filesystems.
2182 */
2183 if (i_size_changed)
2184 mark_inode_dirty(inode);
2185 return copied;
2186}
2187EXPORT_SYMBOL(generic_write_end);
2188
2189/*
2190 * block_is_partially_uptodate checks whether buffers within a folio are
2191 * uptodate or not.
2192 *
2193 * Returns true if all buffers which correspond to the specified part
2194 * of the folio are uptodate.
2195 */
2196bool block_is_partially_uptodate(struct folio *folio, size_t from, size_t count)
2197{
2198 unsigned block_start, block_end, blocksize;
2199 unsigned to;
2200 struct buffer_head *bh, *head;
2201 bool ret = true;
2202
2203 head = folio_buffers(folio);
2204 if (!head)
2205 return false;
2206 blocksize = head->b_size;
2207 to = min_t(unsigned, folio_size(folio) - from, count);
2208 to = from + to;
2209 if (from < blocksize && to > folio_size(folio) - blocksize)
2210 return false;
2211
2212 bh = head;
2213 block_start = 0;
2214 do {
2215 block_end = block_start + blocksize;
2216 if (block_end > from && block_start < to) {
2217 if (!buffer_uptodate(bh)) {
2218 ret = false;
2219 break;
2220 }
2221 if (block_end >= to)
2222 break;
2223 }
2224 block_start = block_end;
2225 bh = bh->b_this_page;
2226 } while (bh != head);
2227
2228 return ret;
2229}
2230EXPORT_SYMBOL(block_is_partially_uptodate);
2231
2232/*
2233 * Generic "read_folio" function for block devices that have the normal
2234 * get_block functionality. This is most of the block device filesystems.
2235 * Reads the folio asynchronously --- the unlock_buffer() and
2236 * set/clear_buffer_uptodate() functions propagate buffer state into the
2237 * folio once IO has completed.
2238 */
2239int block_read_full_folio(struct folio *folio, get_block_t *get_block)
2240{
2241 struct inode *inode = folio->mapping->host;
2242 sector_t iblock, lblock;
2243 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2244 unsigned int blocksize, bbits;
2245 int nr, i;
2246 int fully_mapped = 1;
2247 bool page_error = false;
2248
2249 VM_BUG_ON_FOLIO(folio_test_large(folio), folio);
2250
2251 head = create_page_buffers(&folio->page, inode, 0);
2252 blocksize = head->b_size;
2253 bbits = block_size_bits(blocksize);
2254
2255 iblock = (sector_t)folio->index << (PAGE_SHIFT - bbits);
2256 lblock = (i_size_read(inode)+blocksize-1) >> bbits;
2257 bh = head;
2258 nr = 0;
2259 i = 0;
2260
2261 do {
2262 if (buffer_uptodate(bh))
2263 continue;
2264
2265 if (!buffer_mapped(bh)) {
2266 int err = 0;
2267
2268 fully_mapped = 0;
2269 if (iblock < lblock) {
2270 WARN_ON(bh->b_size != blocksize);
2271 err = get_block(inode, iblock, bh, 0);
2272 if (err) {
2273 folio_set_error(folio);
2274 page_error = true;
2275 }
2276 }
2277 if (!buffer_mapped(bh)) {
2278 folio_zero_range(folio, i * blocksize,
2279 blocksize);
2280 if (!err)
2281 set_buffer_uptodate(bh);
2282 continue;
2283 }
2284 /*
2285 * get_block() might have updated the buffer
2286 * synchronously
2287 */
2288 if (buffer_uptodate(bh))
2289 continue;
2290 }
2291 arr[nr++] = bh;
2292 } while (i++, iblock++, (bh = bh->b_this_page) != head);
2293
2294 if (fully_mapped)
2295 folio_set_mappedtodisk(folio);
2296
2297 if (!nr) {
2298 /*
2299 * All buffers are uptodate - we can set the folio uptodate
2300 * as well. But not if get_block() returned an error.
2301 */
2302 if (!page_error)
2303 folio_mark_uptodate(folio);
2304 folio_unlock(folio);
2305 return 0;
2306 }
2307
2308 /* Stage two: lock the buffers */
2309 for (i = 0; i < nr; i++) {
2310 bh = arr[i];
2311 lock_buffer(bh);
2312 mark_buffer_async_read(bh);
2313 }
2314
2315 /*
2316 * Stage 3: start the IO. Check for uptodateness
2317 * inside the buffer lock in case another process reading
2318 * the underlying blockdev brought it uptodate (the sct fix).
2319 */
2320 for (i = 0; i < nr; i++) {
2321 bh = arr[i];
2322 if (buffer_uptodate(bh))
2323 end_buffer_async_read(bh, 1);
2324 else
2325 submit_bh(REQ_OP_READ, bh);
2326 }
2327 return 0;
2328}
2329EXPORT_SYMBOL(block_read_full_folio);
2330
2331/* utility function for filesystems that need to do work on expanding
2332 * truncates. Uses filesystem pagecache writes to allow the filesystem to
2333 * deal with the hole.
2334 */
2335int generic_cont_expand_simple(struct inode *inode, loff_t size)
2336{
2337 struct address_space *mapping = inode->i_mapping;
2338 const struct address_space_operations *aops = mapping->a_ops;
2339 struct page *page;
2340 void *fsdata = NULL;
2341 int err;
2342
2343 err = inode_newsize_ok(inode, size);
2344 if (err)
2345 goto out;
2346
2347 err = aops->write_begin(NULL, mapping, size, 0, &page, &fsdata);
2348 if (err)
2349 goto out;
2350
2351 err = aops->write_end(NULL, mapping, size, 0, 0, page, fsdata);
2352 BUG_ON(err > 0);
2353
2354out:
2355 return err;
2356}
2357EXPORT_SYMBOL(generic_cont_expand_simple);
2358
2359static int cont_expand_zero(struct file *file, struct address_space *mapping,
2360 loff_t pos, loff_t *bytes)
2361{
2362 struct inode *inode = mapping->host;
2363 const struct address_space_operations *aops = mapping->a_ops;
2364 unsigned int blocksize = i_blocksize(inode);
2365 struct page *page;
2366 void *fsdata = NULL;
2367 pgoff_t index, curidx;
2368 loff_t curpos;
2369 unsigned zerofrom, offset, len;
2370 int err = 0;
2371
2372 index = pos >> PAGE_SHIFT;
2373 offset = pos & ~PAGE_MASK;
2374
2375 while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2376 zerofrom = curpos & ~PAGE_MASK;
2377 if (zerofrom & (blocksize-1)) {
2378 *bytes |= (blocksize-1);
2379 (*bytes)++;
2380 }
2381 len = PAGE_SIZE - zerofrom;
2382
2383 err = aops->write_begin(file, mapping, curpos, len,
2384 &page, &fsdata);
2385 if (err)
2386 goto out;
2387 zero_user(page, zerofrom, len);
2388 err = aops->write_end(file, mapping, curpos, len, len,
2389 page, fsdata);
2390 if (err < 0)
2391 goto out;
2392 BUG_ON(err != len);
2393 err = 0;
2394
2395 balance_dirty_pages_ratelimited(mapping);
2396
2397 if (fatal_signal_pending(current)) {
2398 err = -EINTR;
2399 goto out;
2400 }
2401 }
2402
2403 /* page covers the boundary, find the boundary offset */
2404 if (index == curidx) {
2405 zerofrom = curpos & ~PAGE_MASK;
2406 /* if we will expand the thing last block will be filled */
2407 if (offset <= zerofrom) {
2408 goto out;
2409 }
2410 if (zerofrom & (blocksize-1)) {
2411 *bytes |= (blocksize-1);
2412 (*bytes)++;
2413 }
2414 len = offset - zerofrom;
2415
2416 err = aops->write_begin(file, mapping, curpos, len,
2417 &page, &fsdata);
2418 if (err)
2419 goto out;
2420 zero_user(page, zerofrom, len);
2421 err = aops->write_end(file, mapping, curpos, len, len,
2422 page, fsdata);
2423 if (err < 0)
2424 goto out;
2425 BUG_ON(err != len);
2426 err = 0;
2427 }
2428out:
2429 return err;
2430}
2431
2432/*
2433 * For moronic filesystems that do not allow holes in file.
2434 * We may have to extend the file.
2435 */
2436int cont_write_begin(struct file *file, struct address_space *mapping,
2437 loff_t pos, unsigned len,
2438 struct page **pagep, void **fsdata,
2439 get_block_t *get_block, loff_t *bytes)
2440{
2441 struct inode *inode = mapping->host;
2442 unsigned int blocksize = i_blocksize(inode);
2443 unsigned int zerofrom;
2444 int err;
2445
2446 err = cont_expand_zero(file, mapping, pos, bytes);
2447 if (err)
2448 return err;
2449
2450 zerofrom = *bytes & ~PAGE_MASK;
2451 if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2452 *bytes |= (blocksize-1);
2453 (*bytes)++;
2454 }
2455
2456 return block_write_begin(mapping, pos, len, pagep, get_block);
2457}
2458EXPORT_SYMBOL(cont_write_begin);
2459
2460int block_commit_write(struct page *page, unsigned from, unsigned to)
2461{
2462 struct inode *inode = page->mapping->host;
2463 __block_commit_write(inode,page,from,to);
2464 return 0;
2465}
2466EXPORT_SYMBOL(block_commit_write);
2467
2468/*
2469 * block_page_mkwrite() is not allowed to change the file size as it gets
2470 * called from a page fault handler when a page is first dirtied. Hence we must
2471 * be careful to check for EOF conditions here. We set the page up correctly
2472 * for a written page which means we get ENOSPC checking when writing into
2473 * holes and correct delalloc and unwritten extent mapping on filesystems that
2474 * support these features.
2475 *
2476 * We are not allowed to take the i_mutex here so we have to play games to
2477 * protect against truncate races as the page could now be beyond EOF. Because
2478 * truncate writes the inode size before removing pages, once we have the
2479 * page lock we can determine safely if the page is beyond EOF. If it is not
2480 * beyond EOF, then the page is guaranteed safe against truncation until we
2481 * unlock the page.
2482 *
2483 * Direct callers of this function should protect against filesystem freezing
2484 * using sb_start_pagefault() - sb_end_pagefault() functions.
2485 */
2486int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2487 get_block_t get_block)
2488{
2489 struct page *page = vmf->page;
2490 struct inode *inode = file_inode(vma->vm_file);
2491 unsigned long end;
2492 loff_t size;
2493 int ret;
2494
2495 lock_page(page);
2496 size = i_size_read(inode);
2497 if ((page->mapping != inode->i_mapping) ||
2498 (page_offset(page) > size)) {
2499 /* We overload EFAULT to mean page got truncated */
2500 ret = -EFAULT;
2501 goto out_unlock;
2502 }
2503
2504 /* page is wholly or partially inside EOF */
2505 if (((page->index + 1) << PAGE_SHIFT) > size)
2506 end = size & ~PAGE_MASK;
2507 else
2508 end = PAGE_SIZE;
2509
2510 ret = __block_write_begin(page, 0, end, get_block);
2511 if (!ret)
2512 ret = block_commit_write(page, 0, end);
2513
2514 if (unlikely(ret < 0))
2515 goto out_unlock;
2516 set_page_dirty(page);
2517 wait_for_stable_page(page);
2518 return 0;
2519out_unlock:
2520 unlock_page(page);
2521 return ret;
2522}
2523EXPORT_SYMBOL(block_page_mkwrite);
2524
2525int block_truncate_page(struct address_space *mapping,
2526 loff_t from, get_block_t *get_block)
2527{
2528 pgoff_t index = from >> PAGE_SHIFT;
2529 unsigned offset = from & (PAGE_SIZE-1);
2530 unsigned blocksize;
2531 sector_t iblock;
2532 unsigned length, pos;
2533 struct inode *inode = mapping->host;
2534 struct page *page;
2535 struct buffer_head *bh;
2536 int err;
2537
2538 blocksize = i_blocksize(inode);
2539 length = offset & (blocksize - 1);
2540
2541 /* Block boundary? Nothing to do */
2542 if (!length)
2543 return 0;
2544
2545 length = blocksize - length;
2546 iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2547
2548 page = grab_cache_page(mapping, index);
2549 err = -ENOMEM;
2550 if (!page)
2551 goto out;
2552
2553 if (!page_has_buffers(page))
2554 create_empty_buffers(page, blocksize, 0);
2555
2556 /* Find the buffer that contains "offset" */
2557 bh = page_buffers(page);
2558 pos = blocksize;
2559 while (offset >= pos) {
2560 bh = bh->b_this_page;
2561 iblock++;
2562 pos += blocksize;
2563 }
2564
2565 err = 0;
2566 if (!buffer_mapped(bh)) {
2567 WARN_ON(bh->b_size != blocksize);
2568 err = get_block(inode, iblock, bh, 0);
2569 if (err)
2570 goto unlock;
2571 /* unmapped? It's a hole - nothing to do */
2572 if (!buffer_mapped(bh))
2573 goto unlock;
2574 }
2575
2576 /* Ok, it's mapped. Make sure it's up-to-date */
2577 if (PageUptodate(page))
2578 set_buffer_uptodate(bh);
2579
2580 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2581 err = bh_read(bh, 0);
2582 /* Uhhuh. Read error. Complain and punt. */
2583 if (err < 0)
2584 goto unlock;
2585 }
2586
2587 zero_user(page, offset, length);
2588 mark_buffer_dirty(bh);
2589 err = 0;
2590
2591unlock:
2592 unlock_page(page);
2593 put_page(page);
2594out:
2595 return err;
2596}
2597EXPORT_SYMBOL(block_truncate_page);
2598
2599/*
2600 * The generic ->writepage function for buffer-backed address_spaces
2601 */
2602int block_write_full_page(struct page *page, get_block_t *get_block,
2603 struct writeback_control *wbc)
2604{
2605 struct inode * const inode = page->mapping->host;
2606 loff_t i_size = i_size_read(inode);
2607 const pgoff_t end_index = i_size >> PAGE_SHIFT;
2608 unsigned offset;
2609
2610 /* Is the page fully inside i_size? */
2611 if (page->index < end_index)
2612 return __block_write_full_page(inode, page, get_block, wbc,
2613 end_buffer_async_write);
2614
2615 /* Is the page fully outside i_size? (truncate in progress) */
2616 offset = i_size & (PAGE_SIZE-1);
2617 if (page->index >= end_index+1 || !offset) {
2618 unlock_page(page);
2619 return 0; /* don't care */
2620 }
2621
2622 /*
2623 * The page straddles i_size. It must be zeroed out on each and every
2624 * writepage invocation because it may be mmapped. "A file is mapped
2625 * in multiples of the page size. For a file that is not a multiple of
2626 * the page size, the remaining memory is zeroed when mapped, and
2627 * writes to that region are not written out to the file."
2628 */
2629 zero_user_segment(page, offset, PAGE_SIZE);
2630 return __block_write_full_page(inode, page, get_block, wbc,
2631 end_buffer_async_write);
2632}
2633EXPORT_SYMBOL(block_write_full_page);
2634
2635sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2636 get_block_t *get_block)
2637{
2638 struct inode *inode = mapping->host;
2639 struct buffer_head tmp = {
2640 .b_size = i_blocksize(inode),
2641 };
2642
2643 get_block(inode, block, &tmp, 0);
2644 return tmp.b_blocknr;
2645}
2646EXPORT_SYMBOL(generic_block_bmap);
2647
2648static void end_bio_bh_io_sync(struct bio *bio)
2649{
2650 struct buffer_head *bh = bio->bi_private;
2651
2652 if (unlikely(bio_flagged(bio, BIO_QUIET)))
2653 set_bit(BH_Quiet, &bh->b_state);
2654
2655 bh->b_end_io(bh, !bio->bi_status);
2656 bio_put(bio);
2657}
2658
2659static void submit_bh_wbc(blk_opf_t opf, struct buffer_head *bh,
2660 struct writeback_control *wbc)
2661{
2662 const enum req_op op = opf & REQ_OP_MASK;
2663 struct bio *bio;
2664
2665 BUG_ON(!buffer_locked(bh));
2666 BUG_ON(!buffer_mapped(bh));
2667 BUG_ON(!bh->b_end_io);
2668 BUG_ON(buffer_delay(bh));
2669 BUG_ON(buffer_unwritten(bh));
2670
2671 /*
2672 * Only clear out a write error when rewriting
2673 */
2674 if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
2675 clear_buffer_write_io_error(bh);
2676
2677 if (buffer_meta(bh))
2678 opf |= REQ_META;
2679 if (buffer_prio(bh))
2680 opf |= REQ_PRIO;
2681
2682 bio = bio_alloc(bh->b_bdev, 1, opf, GFP_NOIO);
2683
2684 fscrypt_set_bio_crypt_ctx_bh(bio, bh, GFP_NOIO);
2685
2686 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2687
2688 bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
2689 BUG_ON(bio->bi_iter.bi_size != bh->b_size);
2690
2691 bio->bi_end_io = end_bio_bh_io_sync;
2692 bio->bi_private = bh;
2693
2694 /* Take care of bh's that straddle the end of the device */
2695 guard_bio_eod(bio);
2696
2697 if (wbc) {
2698 wbc_init_bio(wbc, bio);
2699 wbc_account_cgroup_owner(wbc, bh->b_page, bh->b_size);
2700 }
2701
2702 submit_bio(bio);
2703}
2704
2705void submit_bh(blk_opf_t opf, struct buffer_head *bh)
2706{
2707 submit_bh_wbc(opf, bh, NULL);
2708}
2709EXPORT_SYMBOL(submit_bh);
2710
2711void write_dirty_buffer(struct buffer_head *bh, blk_opf_t op_flags)
2712{
2713 lock_buffer(bh);
2714 if (!test_clear_buffer_dirty(bh)) {
2715 unlock_buffer(bh);
2716 return;
2717 }
2718 bh->b_end_io = end_buffer_write_sync;
2719 get_bh(bh);
2720 submit_bh(REQ_OP_WRITE | op_flags, bh);
2721}
2722EXPORT_SYMBOL(write_dirty_buffer);
2723
2724/*
2725 * For a data-integrity writeout, we need to wait upon any in-progress I/O
2726 * and then start new I/O and then wait upon it. The caller must have a ref on
2727 * the buffer_head.
2728 */
2729int __sync_dirty_buffer(struct buffer_head *bh, blk_opf_t op_flags)
2730{
2731 WARN_ON(atomic_read(&bh->b_count) < 1);
2732 lock_buffer(bh);
2733 if (test_clear_buffer_dirty(bh)) {
2734 /*
2735 * The bh should be mapped, but it might not be if the
2736 * device was hot-removed. Not much we can do but fail the I/O.
2737 */
2738 if (!buffer_mapped(bh)) {
2739 unlock_buffer(bh);
2740 return -EIO;
2741 }
2742
2743 get_bh(bh);
2744 bh->b_end_io = end_buffer_write_sync;
2745 submit_bh(REQ_OP_WRITE | op_flags, bh);
2746 wait_on_buffer(bh);
2747 if (!buffer_uptodate(bh))
2748 return -EIO;
2749 } else {
2750 unlock_buffer(bh);
2751 }
2752 return 0;
2753}
2754EXPORT_SYMBOL(__sync_dirty_buffer);
2755
2756int sync_dirty_buffer(struct buffer_head *bh)
2757{
2758 return __sync_dirty_buffer(bh, REQ_SYNC);
2759}
2760EXPORT_SYMBOL(sync_dirty_buffer);
2761
2762/*
2763 * try_to_free_buffers() checks if all the buffers on this particular folio
2764 * are unused, and releases them if so.
2765 *
2766 * Exclusion against try_to_free_buffers may be obtained by either
2767 * locking the folio or by holding its mapping's private_lock.
2768 *
2769 * If the folio is dirty but all the buffers are clean then we need to
2770 * be sure to mark the folio clean as well. This is because the folio
2771 * may be against a block device, and a later reattachment of buffers
2772 * to a dirty folio will set *all* buffers dirty. Which would corrupt
2773 * filesystem data on the same device.
2774 *
2775 * The same applies to regular filesystem folios: if all the buffers are
2776 * clean then we set the folio clean and proceed. To do that, we require
2777 * total exclusion from block_dirty_folio(). That is obtained with
2778 * private_lock.
2779 *
2780 * try_to_free_buffers() is non-blocking.
2781 */
2782static inline int buffer_busy(struct buffer_head *bh)
2783{
2784 return atomic_read(&bh->b_count) |
2785 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
2786}
2787
2788static bool
2789drop_buffers(struct folio *folio, struct buffer_head **buffers_to_free)
2790{
2791 struct buffer_head *head = folio_buffers(folio);
2792 struct buffer_head *bh;
2793
2794 bh = head;
2795 do {
2796 if (buffer_busy(bh))
2797 goto failed;
2798 bh = bh->b_this_page;
2799 } while (bh != head);
2800
2801 do {
2802 struct buffer_head *next = bh->b_this_page;
2803
2804 if (bh->b_assoc_map)
2805 __remove_assoc_queue(bh);
2806 bh = next;
2807 } while (bh != head);
2808 *buffers_to_free = head;
2809 folio_detach_private(folio);
2810 return true;
2811failed:
2812 return false;
2813}
2814
2815bool try_to_free_buffers(struct folio *folio)
2816{
2817 struct address_space * const mapping = folio->mapping;
2818 struct buffer_head *buffers_to_free = NULL;
2819 bool ret = 0;
2820
2821 BUG_ON(!folio_test_locked(folio));
2822 if (folio_test_writeback(folio))
2823 return false;
2824
2825 if (mapping == NULL) { /* can this still happen? */
2826 ret = drop_buffers(folio, &buffers_to_free);
2827 goto out;
2828 }
2829
2830 spin_lock(&mapping->private_lock);
2831 ret = drop_buffers(folio, &buffers_to_free);
2832
2833 /*
2834 * If the filesystem writes its buffers by hand (eg ext3)
2835 * then we can have clean buffers against a dirty folio. We
2836 * clean the folio here; otherwise the VM will never notice
2837 * that the filesystem did any IO at all.
2838 *
2839 * Also, during truncate, discard_buffer will have marked all
2840 * the folio's buffers clean. We discover that here and clean
2841 * the folio also.
2842 *
2843 * private_lock must be held over this entire operation in order
2844 * to synchronise against block_dirty_folio and prevent the
2845 * dirty bit from being lost.
2846 */
2847 if (ret)
2848 folio_cancel_dirty(folio);
2849 spin_unlock(&mapping->private_lock);
2850out:
2851 if (buffers_to_free) {
2852 struct buffer_head *bh = buffers_to_free;
2853
2854 do {
2855 struct buffer_head *next = bh->b_this_page;
2856 free_buffer_head(bh);
2857 bh = next;
2858 } while (bh != buffers_to_free);
2859 }
2860 return ret;
2861}
2862EXPORT_SYMBOL(try_to_free_buffers);
2863
2864/*
2865 * Buffer-head allocation
2866 */
2867static struct kmem_cache *bh_cachep __read_mostly;
2868
2869/*
2870 * Once the number of bh's in the machine exceeds this level, we start
2871 * stripping them in writeback.
2872 */
2873static unsigned long max_buffer_heads;
2874
2875int buffer_heads_over_limit;
2876
2877struct bh_accounting {
2878 int nr; /* Number of live bh's */
2879 int ratelimit; /* Limit cacheline bouncing */
2880};
2881
2882static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
2883
2884static void recalc_bh_state(void)
2885{
2886 int i;
2887 int tot = 0;
2888
2889 if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
2890 return;
2891 __this_cpu_write(bh_accounting.ratelimit, 0);
2892 for_each_online_cpu(i)
2893 tot += per_cpu(bh_accounting, i).nr;
2894 buffer_heads_over_limit = (tot > max_buffer_heads);
2895}
2896
2897struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
2898{
2899 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
2900 if (ret) {
2901 INIT_LIST_HEAD(&ret->b_assoc_buffers);
2902 spin_lock_init(&ret->b_uptodate_lock);
2903 preempt_disable();
2904 __this_cpu_inc(bh_accounting.nr);
2905 recalc_bh_state();
2906 preempt_enable();
2907 }
2908 return ret;
2909}
2910EXPORT_SYMBOL(alloc_buffer_head);
2911
2912void free_buffer_head(struct buffer_head *bh)
2913{
2914 BUG_ON(!list_empty(&bh->b_assoc_buffers));
2915 kmem_cache_free(bh_cachep, bh);
2916 preempt_disable();
2917 __this_cpu_dec(bh_accounting.nr);
2918 recalc_bh_state();
2919 preempt_enable();
2920}
2921EXPORT_SYMBOL(free_buffer_head);
2922
2923static int buffer_exit_cpu_dead(unsigned int cpu)
2924{
2925 int i;
2926 struct bh_lru *b = &per_cpu(bh_lrus, cpu);
2927
2928 for (i = 0; i < BH_LRU_SIZE; i++) {
2929 brelse(b->bhs[i]);
2930 b->bhs[i] = NULL;
2931 }
2932 this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
2933 per_cpu(bh_accounting, cpu).nr = 0;
2934 return 0;
2935}
2936
2937/**
2938 * bh_uptodate_or_lock - Test whether the buffer is uptodate
2939 * @bh: struct buffer_head
2940 *
2941 * Return true if the buffer is up-to-date and false,
2942 * with the buffer locked, if not.
2943 */
2944int bh_uptodate_or_lock(struct buffer_head *bh)
2945{
2946 if (!buffer_uptodate(bh)) {
2947 lock_buffer(bh);
2948 if (!buffer_uptodate(bh))
2949 return 0;
2950 unlock_buffer(bh);
2951 }
2952 return 1;
2953}
2954EXPORT_SYMBOL(bh_uptodate_or_lock);
2955
2956/**
2957 * __bh_read - Submit read for a locked buffer
2958 * @bh: struct buffer_head
2959 * @op_flags: appending REQ_OP_* flags besides REQ_OP_READ
2960 * @wait: wait until reading finish
2961 *
2962 * Returns zero on success or don't wait, and -EIO on error.
2963 */
2964int __bh_read(struct buffer_head *bh, blk_opf_t op_flags, bool wait)
2965{
2966 int ret = 0;
2967
2968 BUG_ON(!buffer_locked(bh));
2969
2970 get_bh(bh);
2971 bh->b_end_io = end_buffer_read_sync;
2972 submit_bh(REQ_OP_READ | op_flags, bh);
2973 if (wait) {
2974 wait_on_buffer(bh);
2975 if (!buffer_uptodate(bh))
2976 ret = -EIO;
2977 }
2978 return ret;
2979}
2980EXPORT_SYMBOL(__bh_read);
2981
2982/**
2983 * __bh_read_batch - Submit read for a batch of unlocked buffers
2984 * @nr: entry number of the buffer batch
2985 * @bhs: a batch of struct buffer_head
2986 * @op_flags: appending REQ_OP_* flags besides REQ_OP_READ
2987 * @force_lock: force to get a lock on the buffer if set, otherwise drops any
2988 * buffer that cannot lock.
2989 *
2990 * Returns zero on success or don't wait, and -EIO on error.
2991 */
2992void __bh_read_batch(int nr, struct buffer_head *bhs[],
2993 blk_opf_t op_flags, bool force_lock)
2994{
2995 int i;
2996
2997 for (i = 0; i < nr; i++) {
2998 struct buffer_head *bh = bhs[i];
2999
3000 if (buffer_uptodate(bh))
3001 continue;
3002
3003 if (force_lock)
3004 lock_buffer(bh);
3005 else
3006 if (!trylock_buffer(bh))
3007 continue;
3008
3009 if (buffer_uptodate(bh)) {
3010 unlock_buffer(bh);
3011 continue;
3012 }
3013
3014 bh->b_end_io = end_buffer_read_sync;
3015 get_bh(bh);
3016 submit_bh(REQ_OP_READ | op_flags, bh);
3017 }
3018}
3019EXPORT_SYMBOL(__bh_read_batch);
3020
3021void __init buffer_init(void)
3022{
3023 unsigned long nrpages;
3024 int ret;
3025
3026 bh_cachep = kmem_cache_create("buffer_head",
3027 sizeof(struct buffer_head), 0,
3028 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3029 SLAB_MEM_SPREAD),
3030 NULL);
3031
3032 /*
3033 * Limit the bh occupancy to 10% of ZONE_NORMAL
3034 */
3035 nrpages = (nr_free_buffer_pages() * 10) / 100;
3036 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3037 ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead",
3038 NULL, buffer_exit_cpu_dead);
3039 WARN_ON(ret < 0);
3040}