Linux Audio

Check our new training course

Loading...
v4.10.11
   1/*
   2 *  linux/fs/buffer.c
   3 *
   4 *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
   5 */
   6
   7/*
   8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
   9 *
  10 * Removed a lot of unnecessary code and simplified things now that
  11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
  12 *
  13 * Speed up hash, lru, and free list operations.  Use gfp() for allocating
  14 * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
  15 *
  16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
  17 *
  18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
  19 */
  20
  21#include <linux/kernel.h>
  22#include <linux/syscalls.h>
  23#include <linux/fs.h>
  24#include <linux/iomap.h>
  25#include <linux/mm.h>
  26#include <linux/percpu.h>
  27#include <linux/slab.h>
  28#include <linux/capability.h>
  29#include <linux/blkdev.h>
  30#include <linux/file.h>
  31#include <linux/quotaops.h>
  32#include <linux/highmem.h>
  33#include <linux/export.h>
  34#include <linux/backing-dev.h>
  35#include <linux/writeback.h>
  36#include <linux/hash.h>
  37#include <linux/suspend.h>
  38#include <linux/buffer_head.h>
  39#include <linux/task_io_accounting_ops.h>
  40#include <linux/bio.h>
  41#include <linux/notifier.h>
  42#include <linux/cpu.h>
  43#include <linux/bitops.h>
  44#include <linux/mpage.h>
  45#include <linux/bit_spinlock.h>
  46#include <linux/pagevec.h>
  47#include <trace/events/block.h>
  48
  49static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
  50static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
  51			 unsigned long bio_flags,
  52			 struct writeback_control *wbc);
  53
  54#define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
  55
  56void init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
  57{
  58	bh->b_end_io = handler;
  59	bh->b_private = private;
  60}
  61EXPORT_SYMBOL(init_buffer);
  62
  63inline void touch_buffer(struct buffer_head *bh)
  64{
  65	trace_block_touch_buffer(bh);
  66	mark_page_accessed(bh->b_page);
  67}
  68EXPORT_SYMBOL(touch_buffer);
  69
 
 
 
 
 
 
  70void __lock_buffer(struct buffer_head *bh)
  71{
  72	wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
 
  73}
  74EXPORT_SYMBOL(__lock_buffer);
  75
  76void unlock_buffer(struct buffer_head *bh)
  77{
  78	clear_bit_unlock(BH_Lock, &bh->b_state);
  79	smp_mb__after_atomic();
  80	wake_up_bit(&bh->b_state, BH_Lock);
  81}
  82EXPORT_SYMBOL(unlock_buffer);
  83
  84/*
  85 * Returns if the page has dirty or writeback buffers. If all the buffers
  86 * are unlocked and clean then the PageDirty information is stale. If
  87 * any of the pages are locked, it is assumed they are locked for IO.
  88 */
  89void buffer_check_dirty_writeback(struct page *page,
  90				     bool *dirty, bool *writeback)
  91{
  92	struct buffer_head *head, *bh;
  93	*dirty = false;
  94	*writeback = false;
  95
  96	BUG_ON(!PageLocked(page));
  97
  98	if (!page_has_buffers(page))
  99		return;
 100
 101	if (PageWriteback(page))
 102		*writeback = true;
 103
 104	head = page_buffers(page);
 105	bh = head;
 106	do {
 107		if (buffer_locked(bh))
 108			*writeback = true;
 109
 110		if (buffer_dirty(bh))
 111			*dirty = true;
 112
 113		bh = bh->b_this_page;
 114	} while (bh != head);
 115}
 116EXPORT_SYMBOL(buffer_check_dirty_writeback);
 117
 118/*
 119 * Block until a buffer comes unlocked.  This doesn't stop it
 120 * from becoming locked again - you have to lock it yourself
 121 * if you want to preserve its state.
 122 */
 123void __wait_on_buffer(struct buffer_head * bh)
 124{
 125	wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
 126}
 127EXPORT_SYMBOL(__wait_on_buffer);
 128
 129static void
 130__clear_page_buffers(struct page *page)
 131{
 132	ClearPagePrivate(page);
 133	set_page_private(page, 0);
 134	put_page(page);
 135}
 136
 137static void buffer_io_error(struct buffer_head *bh, char *msg)
 
 138{
 139	if (!test_bit(BH_Quiet, &bh->b_state))
 140		printk_ratelimited(KERN_ERR
 141			"Buffer I/O error on dev %pg, logical block %llu%s\n",
 142			bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
 
 
 
 
 
 
 
 
 143}
 144
 145/*
 146 * End-of-IO handler helper function which does not touch the bh after
 147 * unlocking it.
 148 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
 149 * a race there is benign: unlock_buffer() only use the bh's address for
 150 * hashing after unlocking the buffer, so it doesn't actually touch the bh
 151 * itself.
 152 */
 153static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
 154{
 155	if (uptodate) {
 156		set_buffer_uptodate(bh);
 157	} else {
 158		/* This happens, due to failed read-ahead attempts. */
 159		clear_buffer_uptodate(bh);
 160	}
 161	unlock_buffer(bh);
 162}
 163
 164/*
 165 * Default synchronous end-of-IO handler..  Just mark it up-to-date and
 166 * unlock the buffer. This is what ll_rw_block uses too.
 167 */
 168void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
 169{
 170	__end_buffer_read_notouch(bh, uptodate);
 171	put_bh(bh);
 172}
 173EXPORT_SYMBOL(end_buffer_read_sync);
 174
 175void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
 176{
 
 
 177	if (uptodate) {
 178		set_buffer_uptodate(bh);
 179	} else {
 180		buffer_io_error(bh, ", lost sync page write");
 
 
 
 
 
 181		set_buffer_write_io_error(bh);
 182		clear_buffer_uptodate(bh);
 183	}
 184	unlock_buffer(bh);
 185	put_bh(bh);
 186}
 187EXPORT_SYMBOL(end_buffer_write_sync);
 188
 189/*
 190 * Various filesystems appear to want __find_get_block to be non-blocking.
 191 * But it's the page lock which protects the buffers.  To get around this,
 192 * we get exclusion from try_to_free_buffers with the blockdev mapping's
 193 * private_lock.
 194 *
 195 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
 196 * may be quite high.  This code could TryLock the page, and if that
 197 * succeeds, there is no need to take private_lock. (But if
 198 * private_lock is contended then so is mapping->tree_lock).
 199 */
 200static struct buffer_head *
 201__find_get_block_slow(struct block_device *bdev, sector_t block)
 202{
 203	struct inode *bd_inode = bdev->bd_inode;
 204	struct address_space *bd_mapping = bd_inode->i_mapping;
 205	struct buffer_head *ret = NULL;
 206	pgoff_t index;
 207	struct buffer_head *bh;
 208	struct buffer_head *head;
 209	struct page *page;
 210	int all_mapped = 1;
 211
 212	index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
 213	page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED);
 214	if (!page)
 215		goto out;
 216
 217	spin_lock(&bd_mapping->private_lock);
 218	if (!page_has_buffers(page))
 219		goto out_unlock;
 220	head = page_buffers(page);
 221	bh = head;
 222	do {
 223		if (!buffer_mapped(bh))
 224			all_mapped = 0;
 225		else if (bh->b_blocknr == block) {
 226			ret = bh;
 227			get_bh(bh);
 228			goto out_unlock;
 229		}
 230		bh = bh->b_this_page;
 231	} while (bh != head);
 232
 233	/* we might be here because some of the buffers on this page are
 234	 * not mapped.  This is due to various races between
 235	 * file io on the block device and getblk.  It gets dealt with
 236	 * elsewhere, don't buffer_error if we had some unmapped buffers
 237	 */
 238	if (all_mapped) {
 
 
 239		printk("__find_get_block_slow() failed. "
 240			"block=%llu, b_blocknr=%llu\n",
 241			(unsigned long long)block,
 242			(unsigned long long)bh->b_blocknr);
 243		printk("b_state=0x%08lx, b_size=%zu\n",
 244			bh->b_state, bh->b_size);
 245		printk("device %pg blocksize: %d\n", bdev,
 246			1 << bd_inode->i_blkbits);
 247	}
 248out_unlock:
 249	spin_unlock(&bd_mapping->private_lock);
 250	put_page(page);
 251out:
 252	return ret;
 253}
 254
 255/*
 256 * Kick the writeback threads then try to free up some ZONE_NORMAL memory.
 257 */
 258static void free_more_memory(void)
 259{
 260	struct zoneref *z;
 261	int nid;
 262
 263	wakeup_flusher_threads(1024, WB_REASON_FREE_MORE_MEM);
 264	yield();
 265
 266	for_each_online_node(nid) {
 267
 268		z = first_zones_zonelist(node_zonelist(nid, GFP_NOFS),
 269						gfp_zone(GFP_NOFS), NULL);
 270		if (z->zone)
 271			try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0,
 272						GFP_NOFS, NULL);
 273	}
 274}
 275
 276/*
 277 * I/O completion handler for block_read_full_page() - pages
 278 * which come unlocked at the end of I/O.
 279 */
 280static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
 281{
 282	unsigned long flags;
 283	struct buffer_head *first;
 284	struct buffer_head *tmp;
 285	struct page *page;
 286	int page_uptodate = 1;
 287
 288	BUG_ON(!buffer_async_read(bh));
 289
 290	page = bh->b_page;
 291	if (uptodate) {
 292		set_buffer_uptodate(bh);
 293	} else {
 294		clear_buffer_uptodate(bh);
 295		buffer_io_error(bh, ", async page read");
 
 296		SetPageError(page);
 297	}
 298
 299	/*
 300	 * Be _very_ careful from here on. Bad things can happen if
 301	 * two buffer heads end IO at almost the same time and both
 302	 * decide that the page is now completely done.
 303	 */
 304	first = page_buffers(page);
 305	local_irq_save(flags);
 306	bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
 307	clear_buffer_async_read(bh);
 308	unlock_buffer(bh);
 309	tmp = bh;
 310	do {
 311		if (!buffer_uptodate(tmp))
 312			page_uptodate = 0;
 313		if (buffer_async_read(tmp)) {
 314			BUG_ON(!buffer_locked(tmp));
 315			goto still_busy;
 316		}
 317		tmp = tmp->b_this_page;
 318	} while (tmp != bh);
 319	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
 320	local_irq_restore(flags);
 321
 322	/*
 323	 * If none of the buffers had errors and they are all
 324	 * uptodate then we can set the page uptodate.
 325	 */
 326	if (page_uptodate && !PageError(page))
 327		SetPageUptodate(page);
 328	unlock_page(page);
 329	return;
 330
 331still_busy:
 332	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
 333	local_irq_restore(flags);
 334	return;
 335}
 336
 337/*
 338 * Completion handler for block_write_full_page() - pages which are unlocked
 339 * during I/O, and which have PageWriteback cleared upon I/O completion.
 340 */
 341void end_buffer_async_write(struct buffer_head *bh, int uptodate)
 342{
 
 343	unsigned long flags;
 344	struct buffer_head *first;
 345	struct buffer_head *tmp;
 346	struct page *page;
 347
 348	BUG_ON(!buffer_async_write(bh));
 349
 350	page = bh->b_page;
 351	if (uptodate) {
 352		set_buffer_uptodate(bh);
 353	} else {
 354		buffer_io_error(bh, ", lost async page write");
 355		mapping_set_error(page->mapping, -EIO);
 
 
 
 
 
 356		set_buffer_write_io_error(bh);
 357		clear_buffer_uptodate(bh);
 358		SetPageError(page);
 359	}
 360
 361	first = page_buffers(page);
 362	local_irq_save(flags);
 363	bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
 364
 365	clear_buffer_async_write(bh);
 366	unlock_buffer(bh);
 367	tmp = bh->b_this_page;
 368	while (tmp != bh) {
 369		if (buffer_async_write(tmp)) {
 370			BUG_ON(!buffer_locked(tmp));
 371			goto still_busy;
 372		}
 373		tmp = tmp->b_this_page;
 374	}
 375	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
 376	local_irq_restore(flags);
 377	end_page_writeback(page);
 378	return;
 379
 380still_busy:
 381	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
 382	local_irq_restore(flags);
 383	return;
 384}
 385EXPORT_SYMBOL(end_buffer_async_write);
 386
 387/*
 388 * If a page's buffers are under async readin (end_buffer_async_read
 389 * completion) then there is a possibility that another thread of
 390 * control could lock one of the buffers after it has completed
 391 * but while some of the other buffers have not completed.  This
 392 * locked buffer would confuse end_buffer_async_read() into not unlocking
 393 * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
 394 * that this buffer is not under async I/O.
 395 *
 396 * The page comes unlocked when it has no locked buffer_async buffers
 397 * left.
 398 *
 399 * PageLocked prevents anyone starting new async I/O reads any of
 400 * the buffers.
 401 *
 402 * PageWriteback is used to prevent simultaneous writeout of the same
 403 * page.
 404 *
 405 * PageLocked prevents anyone from starting writeback of a page which is
 406 * under read I/O (PageWriteback is only ever set against a locked page).
 407 */
 408static void mark_buffer_async_read(struct buffer_head *bh)
 409{
 410	bh->b_end_io = end_buffer_async_read;
 411	set_buffer_async_read(bh);
 412}
 413
 414static void mark_buffer_async_write_endio(struct buffer_head *bh,
 415					  bh_end_io_t *handler)
 416{
 417	bh->b_end_io = handler;
 418	set_buffer_async_write(bh);
 419}
 420
 421void mark_buffer_async_write(struct buffer_head *bh)
 422{
 423	mark_buffer_async_write_endio(bh, end_buffer_async_write);
 424}
 425EXPORT_SYMBOL(mark_buffer_async_write);
 426
 427
 428/*
 429 * fs/buffer.c contains helper functions for buffer-backed address space's
 430 * fsync functions.  A common requirement for buffer-based filesystems is
 431 * that certain data from the backing blockdev needs to be written out for
 432 * a successful fsync().  For example, ext2 indirect blocks need to be
 433 * written back and waited upon before fsync() returns.
 434 *
 435 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
 436 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
 437 * management of a list of dependent buffers at ->i_mapping->private_list.
 438 *
 439 * Locking is a little subtle: try_to_free_buffers() will remove buffers
 440 * from their controlling inode's queue when they are being freed.  But
 441 * try_to_free_buffers() will be operating against the *blockdev* mapping
 442 * at the time, not against the S_ISREG file which depends on those buffers.
 443 * So the locking for private_list is via the private_lock in the address_space
 444 * which backs the buffers.  Which is different from the address_space 
 445 * against which the buffers are listed.  So for a particular address_space,
 446 * mapping->private_lock does *not* protect mapping->private_list!  In fact,
 447 * mapping->private_list will always be protected by the backing blockdev's
 448 * ->private_lock.
 449 *
 450 * Which introduces a requirement: all buffers on an address_space's
 451 * ->private_list must be from the same address_space: the blockdev's.
 452 *
 453 * address_spaces which do not place buffers at ->private_list via these
 454 * utility functions are free to use private_lock and private_list for
 455 * whatever they want.  The only requirement is that list_empty(private_list)
 456 * be true at clear_inode() time.
 457 *
 458 * FIXME: clear_inode should not call invalidate_inode_buffers().  The
 459 * filesystems should do that.  invalidate_inode_buffers() should just go
 460 * BUG_ON(!list_empty).
 461 *
 462 * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
 463 * take an address_space, not an inode.  And it should be called
 464 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
 465 * queued up.
 466 *
 467 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
 468 * list if it is already on a list.  Because if the buffer is on a list,
 469 * it *must* already be on the right one.  If not, the filesystem is being
 470 * silly.  This will save a ton of locking.  But first we have to ensure
 471 * that buffers are taken *off* the old inode's list when they are freed
 472 * (presumably in truncate).  That requires careful auditing of all
 473 * filesystems (do it inside bforget()).  It could also be done by bringing
 474 * b_inode back.
 475 */
 476
 477/*
 478 * The buffer's backing address_space's private_lock must be held
 479 */
 480static void __remove_assoc_queue(struct buffer_head *bh)
 481{
 482	list_del_init(&bh->b_assoc_buffers);
 483	WARN_ON(!bh->b_assoc_map);
 484	if (buffer_write_io_error(bh))
 485		set_bit(AS_EIO, &bh->b_assoc_map->flags);
 486	bh->b_assoc_map = NULL;
 487}
 488
 489int inode_has_buffers(struct inode *inode)
 490{
 491	return !list_empty(&inode->i_data.private_list);
 492}
 493
 494/*
 495 * osync is designed to support O_SYNC io.  It waits synchronously for
 496 * all already-submitted IO to complete, but does not queue any new
 497 * writes to the disk.
 498 *
 499 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
 500 * you dirty the buffers, and then use osync_inode_buffers to wait for
 501 * completion.  Any other dirty buffers which are not yet queued for
 502 * write will not be flushed to disk by the osync.
 503 */
 504static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
 505{
 506	struct buffer_head *bh;
 507	struct list_head *p;
 508	int err = 0;
 509
 510	spin_lock(lock);
 511repeat:
 512	list_for_each_prev(p, list) {
 513		bh = BH_ENTRY(p);
 514		if (buffer_locked(bh)) {
 515			get_bh(bh);
 516			spin_unlock(lock);
 517			wait_on_buffer(bh);
 518			if (!buffer_uptodate(bh))
 519				err = -EIO;
 520			brelse(bh);
 521			spin_lock(lock);
 522			goto repeat;
 523		}
 524	}
 525	spin_unlock(lock);
 526	return err;
 527}
 528
 529static void do_thaw_one(struct super_block *sb, void *unused)
 530{
 
 531	while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
 532		printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev);
 
 533}
 534
 535static void do_thaw_all(struct work_struct *work)
 536{
 537	iterate_supers(do_thaw_one, NULL);
 538	kfree(work);
 539	printk(KERN_WARNING "Emergency Thaw complete\n");
 540}
 541
 542/**
 543 * emergency_thaw_all -- forcibly thaw every frozen filesystem
 544 *
 545 * Used for emergency unfreeze of all filesystems via SysRq
 546 */
 547void emergency_thaw_all(void)
 548{
 549	struct work_struct *work;
 550
 551	work = kmalloc(sizeof(*work), GFP_ATOMIC);
 552	if (work) {
 553		INIT_WORK(work, do_thaw_all);
 554		schedule_work(work);
 555	}
 556}
 557
 558/**
 559 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
 560 * @mapping: the mapping which wants those buffers written
 561 *
 562 * Starts I/O against the buffers at mapping->private_list, and waits upon
 563 * that I/O.
 564 *
 565 * Basically, this is a convenience function for fsync().
 566 * @mapping is a file or directory which needs those buffers to be written for
 567 * a successful fsync().
 568 */
 569int sync_mapping_buffers(struct address_space *mapping)
 570{
 571	struct address_space *buffer_mapping = mapping->private_data;
 572
 573	if (buffer_mapping == NULL || list_empty(&mapping->private_list))
 574		return 0;
 575
 576	return fsync_buffers_list(&buffer_mapping->private_lock,
 577					&mapping->private_list);
 578}
 579EXPORT_SYMBOL(sync_mapping_buffers);
 580
 581/*
 582 * Called when we've recently written block `bblock', and it is known that
 583 * `bblock' was for a buffer_boundary() buffer.  This means that the block at
 584 * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
 585 * dirty, schedule it for IO.  So that indirects merge nicely with their data.
 586 */
 587void write_boundary_block(struct block_device *bdev,
 588			sector_t bblock, unsigned blocksize)
 589{
 590	struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
 591	if (bh) {
 592		if (buffer_dirty(bh))
 593			ll_rw_block(REQ_OP_WRITE, 0, 1, &bh);
 594		put_bh(bh);
 595	}
 596}
 597
 598void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
 599{
 600	struct address_space *mapping = inode->i_mapping;
 601	struct address_space *buffer_mapping = bh->b_page->mapping;
 602
 603	mark_buffer_dirty(bh);
 604	if (!mapping->private_data) {
 605		mapping->private_data = buffer_mapping;
 606	} else {
 607		BUG_ON(mapping->private_data != buffer_mapping);
 608	}
 609	if (!bh->b_assoc_map) {
 610		spin_lock(&buffer_mapping->private_lock);
 611		list_move_tail(&bh->b_assoc_buffers,
 612				&mapping->private_list);
 613		bh->b_assoc_map = mapping;
 614		spin_unlock(&buffer_mapping->private_lock);
 615	}
 616}
 617EXPORT_SYMBOL(mark_buffer_dirty_inode);
 618
 619/*
 620 * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
 621 * dirty.
 622 *
 623 * If warn is true, then emit a warning if the page is not uptodate and has
 624 * not been truncated.
 625 *
 626 * The caller must hold lock_page_memcg().
 627 */
 628static void __set_page_dirty(struct page *page, struct address_space *mapping,
 629			     int warn)
 630{
 631	unsigned long flags;
 632
 633	spin_lock_irqsave(&mapping->tree_lock, flags);
 634	if (page->mapping) {	/* Race with truncate? */
 635		WARN_ON_ONCE(warn && !PageUptodate(page));
 636		account_page_dirtied(page, mapping);
 637		radix_tree_tag_set(&mapping->page_tree,
 638				page_index(page), PAGECACHE_TAG_DIRTY);
 639	}
 640	spin_unlock_irqrestore(&mapping->tree_lock, flags);
 
 641}
 642
 643/*
 644 * Add a page to the dirty page list.
 645 *
 646 * It is a sad fact of life that this function is called from several places
 647 * deeply under spinlocking.  It may not sleep.
 648 *
 649 * If the page has buffers, the uptodate buffers are set dirty, to preserve
 650 * dirty-state coherency between the page and the buffers.  It the page does
 651 * not have buffers then when they are later attached they will all be set
 652 * dirty.
 653 *
 654 * The buffers are dirtied before the page is dirtied.  There's a small race
 655 * window in which a writepage caller may see the page cleanness but not the
 656 * buffer dirtiness.  That's fine.  If this code were to set the page dirty
 657 * before the buffers, a concurrent writepage caller could clear the page dirty
 658 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
 659 * page on the dirty page list.
 660 *
 661 * We use private_lock to lock against try_to_free_buffers while using the
 662 * page's buffer list.  Also use this to protect against clean buffers being
 663 * added to the page after it was set dirty.
 664 *
 665 * FIXME: may need to call ->reservepage here as well.  That's rather up to the
 666 * address_space though.
 667 */
 668int __set_page_dirty_buffers(struct page *page)
 669{
 670	int newly_dirty;
 671	struct address_space *mapping = page_mapping(page);
 672
 673	if (unlikely(!mapping))
 674		return !TestSetPageDirty(page);
 675
 676	spin_lock(&mapping->private_lock);
 677	if (page_has_buffers(page)) {
 678		struct buffer_head *head = page_buffers(page);
 679		struct buffer_head *bh = head;
 680
 681		do {
 682			set_buffer_dirty(bh);
 683			bh = bh->b_this_page;
 684		} while (bh != head);
 685	}
 686	/*
 687	 * Lock out page->mem_cgroup migration to keep PageDirty
 688	 * synchronized with per-memcg dirty page counters.
 689	 */
 690	lock_page_memcg(page);
 691	newly_dirty = !TestSetPageDirty(page);
 692	spin_unlock(&mapping->private_lock);
 693
 694	if (newly_dirty)
 695		__set_page_dirty(page, mapping, 1);
 696
 697	unlock_page_memcg(page);
 698
 699	if (newly_dirty)
 700		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
 701
 702	return newly_dirty;
 703}
 704EXPORT_SYMBOL(__set_page_dirty_buffers);
 705
 706/*
 707 * Write out and wait upon a list of buffers.
 708 *
 709 * We have conflicting pressures: we want to make sure that all
 710 * initially dirty buffers get waited on, but that any subsequently
 711 * dirtied buffers don't.  After all, we don't want fsync to last
 712 * forever if somebody is actively writing to the file.
 713 *
 714 * Do this in two main stages: first we copy dirty buffers to a
 715 * temporary inode list, queueing the writes as we go.  Then we clean
 716 * up, waiting for those writes to complete.
 717 * 
 718 * During this second stage, any subsequent updates to the file may end
 719 * up refiling the buffer on the original inode's dirty list again, so
 720 * there is a chance we will end up with a buffer queued for write but
 721 * not yet completed on that list.  So, as a final cleanup we go through
 722 * the osync code to catch these locked, dirty buffers without requeuing
 723 * any newly dirty buffers for write.
 724 */
 725static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
 726{
 727	struct buffer_head *bh;
 728	struct list_head tmp;
 729	struct address_space *mapping;
 730	int err = 0, err2;
 731	struct blk_plug plug;
 732
 733	INIT_LIST_HEAD(&tmp);
 734	blk_start_plug(&plug);
 735
 736	spin_lock(lock);
 737	while (!list_empty(list)) {
 738		bh = BH_ENTRY(list->next);
 739		mapping = bh->b_assoc_map;
 740		__remove_assoc_queue(bh);
 741		/* Avoid race with mark_buffer_dirty_inode() which does
 742		 * a lockless check and we rely on seeing the dirty bit */
 743		smp_mb();
 744		if (buffer_dirty(bh) || buffer_locked(bh)) {
 745			list_add(&bh->b_assoc_buffers, &tmp);
 746			bh->b_assoc_map = mapping;
 747			if (buffer_dirty(bh)) {
 748				get_bh(bh);
 749				spin_unlock(lock);
 750				/*
 751				 * Ensure any pending I/O completes so that
 752				 * write_dirty_buffer() actually writes the
 753				 * current contents - it is a noop if I/O is
 754				 * still in flight on potentially older
 755				 * contents.
 756				 */
 757				write_dirty_buffer(bh, REQ_SYNC);
 758
 759				/*
 760				 * Kick off IO for the previous mapping. Note
 761				 * that we will not run the very last mapping,
 762				 * wait_on_buffer() will do that for us
 763				 * through sync_buffer().
 764				 */
 765				brelse(bh);
 766				spin_lock(lock);
 767			}
 768		}
 769	}
 770
 771	spin_unlock(lock);
 772	blk_finish_plug(&plug);
 773	spin_lock(lock);
 774
 775	while (!list_empty(&tmp)) {
 776		bh = BH_ENTRY(tmp.prev);
 777		get_bh(bh);
 778		mapping = bh->b_assoc_map;
 779		__remove_assoc_queue(bh);
 780		/* Avoid race with mark_buffer_dirty_inode() which does
 781		 * a lockless check and we rely on seeing the dirty bit */
 782		smp_mb();
 783		if (buffer_dirty(bh)) {
 784			list_add(&bh->b_assoc_buffers,
 785				 &mapping->private_list);
 786			bh->b_assoc_map = mapping;
 787		}
 788		spin_unlock(lock);
 789		wait_on_buffer(bh);
 790		if (!buffer_uptodate(bh))
 791			err = -EIO;
 792		brelse(bh);
 793		spin_lock(lock);
 794	}
 795	
 796	spin_unlock(lock);
 797	err2 = osync_buffers_list(lock, list);
 798	if (err)
 799		return err;
 800	else
 801		return err2;
 802}
 803
 804/*
 805 * Invalidate any and all dirty buffers on a given inode.  We are
 806 * probably unmounting the fs, but that doesn't mean we have already
 807 * done a sync().  Just drop the buffers from the inode list.
 808 *
 809 * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
 810 * assumes that all the buffers are against the blockdev.  Not true
 811 * for reiserfs.
 812 */
 813void invalidate_inode_buffers(struct inode *inode)
 814{
 815	if (inode_has_buffers(inode)) {
 816		struct address_space *mapping = &inode->i_data;
 817		struct list_head *list = &mapping->private_list;
 818		struct address_space *buffer_mapping = mapping->private_data;
 819
 820		spin_lock(&buffer_mapping->private_lock);
 821		while (!list_empty(list))
 822			__remove_assoc_queue(BH_ENTRY(list->next));
 823		spin_unlock(&buffer_mapping->private_lock);
 824	}
 825}
 826EXPORT_SYMBOL(invalidate_inode_buffers);
 827
 828/*
 829 * Remove any clean buffers from the inode's buffer list.  This is called
 830 * when we're trying to free the inode itself.  Those buffers can pin it.
 831 *
 832 * Returns true if all buffers were removed.
 833 */
 834int remove_inode_buffers(struct inode *inode)
 835{
 836	int ret = 1;
 837
 838	if (inode_has_buffers(inode)) {
 839		struct address_space *mapping = &inode->i_data;
 840		struct list_head *list = &mapping->private_list;
 841		struct address_space *buffer_mapping = mapping->private_data;
 842
 843		spin_lock(&buffer_mapping->private_lock);
 844		while (!list_empty(list)) {
 845			struct buffer_head *bh = BH_ENTRY(list->next);
 846			if (buffer_dirty(bh)) {
 847				ret = 0;
 848				break;
 849			}
 850			__remove_assoc_queue(bh);
 851		}
 852		spin_unlock(&buffer_mapping->private_lock);
 853	}
 854	return ret;
 855}
 856
 857/*
 858 * Create the appropriate buffers when given a page for data area and
 859 * the size of each buffer.. Use the bh->b_this_page linked list to
 860 * follow the buffers created.  Return NULL if unable to create more
 861 * buffers.
 862 *
 863 * The retry flag is used to differentiate async IO (paging, swapping)
 864 * which may not fail from ordinary buffer allocations.
 865 */
 866struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
 867		int retry)
 868{
 869	struct buffer_head *bh, *head;
 870	long offset;
 871
 872try_again:
 873	head = NULL;
 874	offset = PAGE_SIZE;
 875	while ((offset -= size) >= 0) {
 876		bh = alloc_buffer_head(GFP_NOFS);
 877		if (!bh)
 878			goto no_grow;
 879
 880		bh->b_this_page = head;
 881		bh->b_blocknr = -1;
 882		head = bh;
 883
 884		bh->b_size = size;
 885
 886		/* Link the buffer to its page */
 887		set_bh_page(bh, page, offset);
 888	}
 889	return head;
 890/*
 891 * In case anything failed, we just free everything we got.
 892 */
 893no_grow:
 894	if (head) {
 895		do {
 896			bh = head;
 897			head = head->b_this_page;
 898			free_buffer_head(bh);
 899		} while (head);
 900	}
 901
 902	/*
 903	 * Return failure for non-async IO requests.  Async IO requests
 904	 * are not allowed to fail, so we have to wait until buffer heads
 905	 * become available.  But we don't want tasks sleeping with 
 906	 * partially complete buffers, so all were released above.
 907	 */
 908	if (!retry)
 909		return NULL;
 910
 911	/* We're _really_ low on memory. Now we just
 912	 * wait for old buffer heads to become free due to
 913	 * finishing IO.  Since this is an async request and
 914	 * the reserve list is empty, we're sure there are 
 915	 * async buffer heads in use.
 916	 */
 917	free_more_memory();
 918	goto try_again;
 919}
 920EXPORT_SYMBOL_GPL(alloc_page_buffers);
 921
 922static inline void
 923link_dev_buffers(struct page *page, struct buffer_head *head)
 924{
 925	struct buffer_head *bh, *tail;
 926
 927	bh = head;
 928	do {
 929		tail = bh;
 930		bh = bh->b_this_page;
 931	} while (bh);
 932	tail->b_this_page = head;
 933	attach_page_buffers(page, head);
 934}
 935
 936static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
 937{
 938	sector_t retval = ~((sector_t)0);
 939	loff_t sz = i_size_read(bdev->bd_inode);
 940
 941	if (sz) {
 942		unsigned int sizebits = blksize_bits(size);
 943		retval = (sz >> sizebits);
 944	}
 945	return retval;
 946}
 947
 948/*
 949 * Initialise the state of a blockdev page's buffers.
 950 */ 
 951static sector_t
 952init_page_buffers(struct page *page, struct block_device *bdev,
 953			sector_t block, int size)
 954{
 955	struct buffer_head *head = page_buffers(page);
 956	struct buffer_head *bh = head;
 957	int uptodate = PageUptodate(page);
 958	sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size);
 959
 960	do {
 961		if (!buffer_mapped(bh)) {
 962			init_buffer(bh, NULL, NULL);
 963			bh->b_bdev = bdev;
 964			bh->b_blocknr = block;
 965			if (uptodate)
 966				set_buffer_uptodate(bh);
 967			if (block < end_block)
 968				set_buffer_mapped(bh);
 969		}
 970		block++;
 971		bh = bh->b_this_page;
 972	} while (bh != head);
 973
 974	/*
 975	 * Caller needs to validate requested block against end of device.
 976	 */
 977	return end_block;
 978}
 979
 980/*
 981 * Create the page-cache page that contains the requested block.
 982 *
 983 * This is used purely for blockdev mappings.
 984 */
 985static int
 986grow_dev_page(struct block_device *bdev, sector_t block,
 987	      pgoff_t index, int size, int sizebits, gfp_t gfp)
 988{
 989	struct inode *inode = bdev->bd_inode;
 990	struct page *page;
 991	struct buffer_head *bh;
 992	sector_t end_block;
 993	int ret = 0;		/* Will call free_more_memory() */
 994	gfp_t gfp_mask;
 995
 996	gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp;
 997
 998	/*
 999	 * XXX: __getblk_slow() can not really deal with failure and
1000	 * will endlessly loop on improvised global reclaim.  Prefer
1001	 * looping in the allocator rather than here, at least that
1002	 * code knows what it's doing.
1003	 */
1004	gfp_mask |= __GFP_NOFAIL;
1005
1006	page = find_or_create_page(inode->i_mapping, index, gfp_mask);
1007	if (!page)
1008		return ret;
1009
1010	BUG_ON(!PageLocked(page));
1011
1012	if (page_has_buffers(page)) {
1013		bh = page_buffers(page);
1014		if (bh->b_size == size) {
1015			end_block = init_page_buffers(page, bdev,
1016						(sector_t)index << sizebits,
1017						size);
1018			goto done;
1019		}
1020		if (!try_to_free_buffers(page))
1021			goto failed;
1022	}
1023
1024	/*
1025	 * Allocate some buffers for this page
1026	 */
1027	bh = alloc_page_buffers(page, size, 0);
1028	if (!bh)
1029		goto failed;
1030
1031	/*
1032	 * Link the page to the buffers and initialise them.  Take the
1033	 * lock to be atomic wrt __find_get_block(), which does not
1034	 * run under the page lock.
1035	 */
1036	spin_lock(&inode->i_mapping->private_lock);
1037	link_dev_buffers(page, bh);
1038	end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits,
1039			size);
1040	spin_unlock(&inode->i_mapping->private_lock);
1041done:
1042	ret = (block < end_block) ? 1 : -ENXIO;
1043failed:
1044	unlock_page(page);
1045	put_page(page);
1046	return ret;
1047}
1048
1049/*
1050 * Create buffers for the specified block device block's page.  If
1051 * that page was dirty, the buffers are set dirty also.
1052 */
1053static int
1054grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp)
1055{
1056	pgoff_t index;
1057	int sizebits;
1058
1059	sizebits = -1;
1060	do {
1061		sizebits++;
1062	} while ((size << sizebits) < PAGE_SIZE);
1063
1064	index = block >> sizebits;
1065
1066	/*
1067	 * Check for a block which wants to lie outside our maximum possible
1068	 * pagecache index.  (this comparison is done using sector_t types).
1069	 */
1070	if (unlikely(index != block >> sizebits)) {
 
 
1071		printk(KERN_ERR "%s: requested out-of-range block %llu for "
1072			"device %pg\n",
1073			__func__, (unsigned long long)block,
1074			bdev);
1075		return -EIO;
1076	}
1077
1078	/* Create a page with the proper size buffers.. */
1079	return grow_dev_page(bdev, block, index, size, sizebits, gfp);
1080}
1081
1082static struct buffer_head *
1083__getblk_slow(struct block_device *bdev, sector_t block,
1084	     unsigned size, gfp_t gfp)
1085{
1086	/* Size must be multiple of hard sectorsize */
1087	if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1088			(size < 512 || size > PAGE_SIZE))) {
1089		printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1090					size);
1091		printk(KERN_ERR "logical block size: %d\n",
1092					bdev_logical_block_size(bdev));
1093
1094		dump_stack();
1095		return NULL;
1096	}
1097
1098	for (;;) {
1099		struct buffer_head *bh;
1100		int ret;
1101
1102		bh = __find_get_block(bdev, block, size);
1103		if (bh)
1104			return bh;
1105
1106		ret = grow_buffers(bdev, block, size, gfp);
1107		if (ret < 0)
1108			return NULL;
1109		if (ret == 0)
1110			free_more_memory();
1111	}
1112}
1113
1114/*
1115 * The relationship between dirty buffers and dirty pages:
1116 *
1117 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1118 * the page is tagged dirty in its radix tree.
1119 *
1120 * At all times, the dirtiness of the buffers represents the dirtiness of
1121 * subsections of the page.  If the page has buffers, the page dirty bit is
1122 * merely a hint about the true dirty state.
1123 *
1124 * When a page is set dirty in its entirety, all its buffers are marked dirty
1125 * (if the page has buffers).
1126 *
1127 * When a buffer is marked dirty, its page is dirtied, but the page's other
1128 * buffers are not.
1129 *
1130 * Also.  When blockdev buffers are explicitly read with bread(), they
1131 * individually become uptodate.  But their backing page remains not
1132 * uptodate - even if all of its buffers are uptodate.  A subsequent
1133 * block_read_full_page() against that page will discover all the uptodate
1134 * buffers, will set the page uptodate and will perform no I/O.
1135 */
1136
1137/**
1138 * mark_buffer_dirty - mark a buffer_head as needing writeout
1139 * @bh: the buffer_head to mark dirty
1140 *
1141 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1142 * backing page dirty, then tag the page as dirty in its address_space's radix
1143 * tree and then attach the address_space's inode to its superblock's dirty
1144 * inode list.
1145 *
1146 * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1147 * mapping->tree_lock and mapping->host->i_lock.
1148 */
1149void mark_buffer_dirty(struct buffer_head *bh)
1150{
1151	WARN_ON_ONCE(!buffer_uptodate(bh));
1152
1153	trace_block_dirty_buffer(bh);
1154
1155	/*
1156	 * Very *carefully* optimize the it-is-already-dirty case.
1157	 *
1158	 * Don't let the final "is it dirty" escape to before we
1159	 * perhaps modified the buffer.
1160	 */
1161	if (buffer_dirty(bh)) {
1162		smp_mb();
1163		if (buffer_dirty(bh))
1164			return;
1165	}
1166
1167	if (!test_set_buffer_dirty(bh)) {
1168		struct page *page = bh->b_page;
1169		struct address_space *mapping = NULL;
1170
1171		lock_page_memcg(page);
1172		if (!TestSetPageDirty(page)) {
1173			mapping = page_mapping(page);
1174			if (mapping)
1175				__set_page_dirty(page, mapping, 0);
1176		}
1177		unlock_page_memcg(page);
1178		if (mapping)
1179			__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1180	}
1181}
1182EXPORT_SYMBOL(mark_buffer_dirty);
1183
1184/*
1185 * Decrement a buffer_head's reference count.  If all buffers against a page
1186 * have zero reference count, are clean and unlocked, and if the page is clean
1187 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1188 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1189 * a page but it ends up not being freed, and buffers may later be reattached).
1190 */
1191void __brelse(struct buffer_head * buf)
1192{
1193	if (atomic_read(&buf->b_count)) {
1194		put_bh(buf);
1195		return;
1196	}
1197	WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1198}
1199EXPORT_SYMBOL(__brelse);
1200
1201/*
1202 * bforget() is like brelse(), except it discards any
1203 * potentially dirty data.
1204 */
1205void __bforget(struct buffer_head *bh)
1206{
1207	clear_buffer_dirty(bh);
1208	if (bh->b_assoc_map) {
1209		struct address_space *buffer_mapping = bh->b_page->mapping;
1210
1211		spin_lock(&buffer_mapping->private_lock);
1212		list_del_init(&bh->b_assoc_buffers);
1213		bh->b_assoc_map = NULL;
1214		spin_unlock(&buffer_mapping->private_lock);
1215	}
1216	__brelse(bh);
1217}
1218EXPORT_SYMBOL(__bforget);
1219
1220static struct buffer_head *__bread_slow(struct buffer_head *bh)
1221{
1222	lock_buffer(bh);
1223	if (buffer_uptodate(bh)) {
1224		unlock_buffer(bh);
1225		return bh;
1226	} else {
1227		get_bh(bh);
1228		bh->b_end_io = end_buffer_read_sync;
1229		submit_bh(REQ_OP_READ, 0, bh);
1230		wait_on_buffer(bh);
1231		if (buffer_uptodate(bh))
1232			return bh;
1233	}
1234	brelse(bh);
1235	return NULL;
1236}
1237
1238/*
1239 * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1240 * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1241 * refcount elevated by one when they're in an LRU.  A buffer can only appear
1242 * once in a particular CPU's LRU.  A single buffer can be present in multiple
1243 * CPU's LRUs at the same time.
1244 *
1245 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1246 * sb_find_get_block().
1247 *
1248 * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1249 * a local interrupt disable for that.
1250 */
1251
1252#define BH_LRU_SIZE	16
1253
1254struct bh_lru {
1255	struct buffer_head *bhs[BH_LRU_SIZE];
1256};
1257
1258static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1259
1260#ifdef CONFIG_SMP
1261#define bh_lru_lock()	local_irq_disable()
1262#define bh_lru_unlock()	local_irq_enable()
1263#else
1264#define bh_lru_lock()	preempt_disable()
1265#define bh_lru_unlock()	preempt_enable()
1266#endif
1267
1268static inline void check_irqs_on(void)
1269{
1270#ifdef irqs_disabled
1271	BUG_ON(irqs_disabled());
1272#endif
1273}
1274
1275/*
1276 * The LRU management algorithm is dopey-but-simple.  Sorry.
1277 */
1278static void bh_lru_install(struct buffer_head *bh)
1279{
1280	struct buffer_head *evictee = NULL;
1281
1282	check_irqs_on();
1283	bh_lru_lock();
1284	if (__this_cpu_read(bh_lrus.bhs[0]) != bh) {
1285		struct buffer_head *bhs[BH_LRU_SIZE];
1286		int in;
1287		int out = 0;
1288
1289		get_bh(bh);
1290		bhs[out++] = bh;
1291		for (in = 0; in < BH_LRU_SIZE; in++) {
1292			struct buffer_head *bh2 =
1293				__this_cpu_read(bh_lrus.bhs[in]);
1294
1295			if (bh2 == bh) {
1296				__brelse(bh2);
1297			} else {
1298				if (out >= BH_LRU_SIZE) {
1299					BUG_ON(evictee != NULL);
1300					evictee = bh2;
1301				} else {
1302					bhs[out++] = bh2;
1303				}
1304			}
1305		}
1306		while (out < BH_LRU_SIZE)
1307			bhs[out++] = NULL;
1308		memcpy(this_cpu_ptr(&bh_lrus.bhs), bhs, sizeof(bhs));
1309	}
1310	bh_lru_unlock();
1311
1312	if (evictee)
1313		__brelse(evictee);
1314}
1315
1316/*
1317 * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1318 */
1319static struct buffer_head *
1320lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1321{
1322	struct buffer_head *ret = NULL;
1323	unsigned int i;
1324
1325	check_irqs_on();
1326	bh_lru_lock();
1327	for (i = 0; i < BH_LRU_SIZE; i++) {
1328		struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1329
1330		if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1331		    bh->b_size == size) {
1332			if (i) {
1333				while (i) {
1334					__this_cpu_write(bh_lrus.bhs[i],
1335						__this_cpu_read(bh_lrus.bhs[i - 1]));
1336					i--;
1337				}
1338				__this_cpu_write(bh_lrus.bhs[0], bh);
1339			}
1340			get_bh(bh);
1341			ret = bh;
1342			break;
1343		}
1344	}
1345	bh_lru_unlock();
1346	return ret;
1347}
1348
1349/*
1350 * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1351 * it in the LRU and mark it as accessed.  If it is not present then return
1352 * NULL
1353 */
1354struct buffer_head *
1355__find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1356{
1357	struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1358
1359	if (bh == NULL) {
1360		/* __find_get_block_slow will mark the page accessed */
1361		bh = __find_get_block_slow(bdev, block);
1362		if (bh)
1363			bh_lru_install(bh);
1364	} else
 
1365		touch_buffer(bh);
1366
1367	return bh;
1368}
1369EXPORT_SYMBOL(__find_get_block);
1370
1371/*
1372 * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1373 * which corresponds to the passed block_device, block and size. The
1374 * returned buffer has its reference count incremented.
1375 *
1376 * __getblk_gfp() will lock up the machine if grow_dev_page's
1377 * try_to_free_buffers() attempt is failing.  FIXME, perhaps?
1378 */
1379struct buffer_head *
1380__getblk_gfp(struct block_device *bdev, sector_t block,
1381	     unsigned size, gfp_t gfp)
1382{
1383	struct buffer_head *bh = __find_get_block(bdev, block, size);
1384
1385	might_sleep();
1386	if (bh == NULL)
1387		bh = __getblk_slow(bdev, block, size, gfp);
1388	return bh;
1389}
1390EXPORT_SYMBOL(__getblk_gfp);
1391
1392/*
1393 * Do async read-ahead on a buffer..
1394 */
1395void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1396{
1397	struct buffer_head *bh = __getblk(bdev, block, size);
1398	if (likely(bh)) {
1399		ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh);
1400		brelse(bh);
1401	}
1402}
1403EXPORT_SYMBOL(__breadahead);
1404
1405/**
1406 *  __bread_gfp() - reads a specified block and returns the bh
1407 *  @bdev: the block_device to read from
1408 *  @block: number of block
1409 *  @size: size (in bytes) to read
1410 *  @gfp: page allocation flag
1411 *
1412 *  Reads a specified block, and returns buffer head that contains it.
1413 *  The page cache can be allocated from non-movable area
1414 *  not to prevent page migration if you set gfp to zero.
1415 *  It returns NULL if the block was unreadable.
1416 */
1417struct buffer_head *
1418__bread_gfp(struct block_device *bdev, sector_t block,
1419		   unsigned size, gfp_t gfp)
1420{
1421	struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1422
1423	if (likely(bh) && !buffer_uptodate(bh))
1424		bh = __bread_slow(bh);
1425	return bh;
1426}
1427EXPORT_SYMBOL(__bread_gfp);
1428
1429/*
1430 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1431 * This doesn't race because it runs in each cpu either in irq
1432 * or with preempt disabled.
1433 */
1434static void invalidate_bh_lru(void *arg)
1435{
1436	struct bh_lru *b = &get_cpu_var(bh_lrus);
1437	int i;
1438
1439	for (i = 0; i < BH_LRU_SIZE; i++) {
1440		brelse(b->bhs[i]);
1441		b->bhs[i] = NULL;
1442	}
1443	put_cpu_var(bh_lrus);
1444}
1445
1446static bool has_bh_in_lru(int cpu, void *dummy)
1447{
1448	struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1449	int i;
1450	
1451	for (i = 0; i < BH_LRU_SIZE; i++) {
1452		if (b->bhs[i])
1453			return 1;
1454	}
1455
1456	return 0;
1457}
1458
1459void invalidate_bh_lrus(void)
1460{
1461	on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL);
1462}
1463EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1464
1465void set_bh_page(struct buffer_head *bh,
1466		struct page *page, unsigned long offset)
1467{
1468	bh->b_page = page;
1469	BUG_ON(offset >= PAGE_SIZE);
1470	if (PageHighMem(page))
1471		/*
1472		 * This catches illegal uses and preserves the offset:
1473		 */
1474		bh->b_data = (char *)(0 + offset);
1475	else
1476		bh->b_data = page_address(page) + offset;
1477}
1478EXPORT_SYMBOL(set_bh_page);
1479
1480/*
1481 * Called when truncating a buffer on a page completely.
1482 */
1483
1484/* Bits that are cleared during an invalidate */
1485#define BUFFER_FLAGS_DISCARD \
1486	(1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1487	 1 << BH_Delay | 1 << BH_Unwritten)
1488
1489static void discard_buffer(struct buffer_head * bh)
1490{
1491	unsigned long b_state, b_state_old;
1492
1493	lock_buffer(bh);
1494	clear_buffer_dirty(bh);
1495	bh->b_bdev = NULL;
1496	b_state = bh->b_state;
1497	for (;;) {
1498		b_state_old = cmpxchg(&bh->b_state, b_state,
1499				      (b_state & ~BUFFER_FLAGS_DISCARD));
1500		if (b_state_old == b_state)
1501			break;
1502		b_state = b_state_old;
1503	}
1504	unlock_buffer(bh);
1505}
1506
1507/**
1508 * block_invalidatepage - invalidate part or all of a buffer-backed page
1509 *
1510 * @page: the page which is affected
1511 * @offset: start of the range to invalidate
1512 * @length: length of the range to invalidate
1513 *
1514 * block_invalidatepage() is called when all or part of the page has become
1515 * invalidated by a truncate operation.
1516 *
1517 * block_invalidatepage() does not have to release all buffers, but it must
1518 * ensure that no dirty buffer is left outside @offset and that no I/O
1519 * is underway against any of the blocks which are outside the truncation
1520 * point.  Because the caller is about to free (and possibly reuse) those
1521 * blocks on-disk.
1522 */
1523void block_invalidatepage(struct page *page, unsigned int offset,
1524			  unsigned int length)
1525{
1526	struct buffer_head *head, *bh, *next;
1527	unsigned int curr_off = 0;
1528	unsigned int stop = length + offset;
1529
1530	BUG_ON(!PageLocked(page));
1531	if (!page_has_buffers(page))
1532		goto out;
1533
1534	/*
1535	 * Check for overflow
1536	 */
1537	BUG_ON(stop > PAGE_SIZE || stop < length);
1538
1539	head = page_buffers(page);
1540	bh = head;
1541	do {
1542		unsigned int next_off = curr_off + bh->b_size;
1543		next = bh->b_this_page;
1544
1545		/*
1546		 * Are we still fully in range ?
1547		 */
1548		if (next_off > stop)
1549			goto out;
1550
1551		/*
1552		 * is this block fully invalidated?
1553		 */
1554		if (offset <= curr_off)
1555			discard_buffer(bh);
1556		curr_off = next_off;
1557		bh = next;
1558	} while (bh != head);
1559
1560	/*
1561	 * We release buffers only if the entire page is being invalidated.
1562	 * The get_block cached value has been unconditionally invalidated,
1563	 * so real IO is not possible anymore.
1564	 */
1565	if (offset == 0)
1566		try_to_release_page(page, 0);
1567out:
1568	return;
1569}
1570EXPORT_SYMBOL(block_invalidatepage);
1571
1572
1573/*
1574 * We attach and possibly dirty the buffers atomically wrt
1575 * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1576 * is already excluded via the page lock.
1577 */
1578void create_empty_buffers(struct page *page,
1579			unsigned long blocksize, unsigned long b_state)
1580{
1581	struct buffer_head *bh, *head, *tail;
1582
1583	head = alloc_page_buffers(page, blocksize, 1);
1584	bh = head;
1585	do {
1586		bh->b_state |= b_state;
1587		tail = bh;
1588		bh = bh->b_this_page;
1589	} while (bh);
1590	tail->b_this_page = head;
1591
1592	spin_lock(&page->mapping->private_lock);
1593	if (PageUptodate(page) || PageDirty(page)) {
1594		bh = head;
1595		do {
1596			if (PageDirty(page))
1597				set_buffer_dirty(bh);
1598			if (PageUptodate(page))
1599				set_buffer_uptodate(bh);
1600			bh = bh->b_this_page;
1601		} while (bh != head);
1602	}
1603	attach_page_buffers(page, head);
1604	spin_unlock(&page->mapping->private_lock);
1605}
1606EXPORT_SYMBOL(create_empty_buffers);
1607
1608/**
1609 * clean_bdev_aliases: clean a range of buffers in block device
1610 * @bdev: Block device to clean buffers in
1611 * @block: Start of a range of blocks to clean
1612 * @len: Number of blocks to clean
1613 *
1614 * We are taking a range of blocks for data and we don't want writeback of any
1615 * buffer-cache aliases starting from return from this function and until the
1616 * moment when something will explicitly mark the buffer dirty (hopefully that
1617 * will not happen until we will free that block ;-) We don't even need to mark
1618 * it not-uptodate - nobody can expect anything from a newly allocated buffer
1619 * anyway. We used to use unmap_buffer() for such invalidation, but that was
1620 * wrong. We definitely don't want to mark the alias unmapped, for example - it
1621 * would confuse anyone who might pick it with bread() afterwards...
1622 *
1623 * Also..  Note that bforget() doesn't lock the buffer.  So there can be
1624 * writeout I/O going on against recently-freed buffers.  We don't wait on that
1625 * I/O in bforget() - it's more efficient to wait on the I/O only if we really
1626 * need to.  That happens here.
1627 */
1628void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len)
1629{
1630	struct inode *bd_inode = bdev->bd_inode;
1631	struct address_space *bd_mapping = bd_inode->i_mapping;
1632	struct pagevec pvec;
1633	pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
1634	pgoff_t end;
1635	int i;
1636	struct buffer_head *bh;
1637	struct buffer_head *head;
1638
1639	end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits);
1640	pagevec_init(&pvec, 0);
1641	while (index <= end && pagevec_lookup(&pvec, bd_mapping, index,
1642			min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1)) {
1643		for (i = 0; i < pagevec_count(&pvec); i++) {
1644			struct page *page = pvec.pages[i];
1645
1646			index = page->index;
1647			if (index > end)
1648				break;
1649			if (!page_has_buffers(page))
1650				continue;
1651			/*
1652			 * We use page lock instead of bd_mapping->private_lock
1653			 * to pin buffers here since we can afford to sleep and
1654			 * it scales better than a global spinlock lock.
1655			 */
1656			lock_page(page);
1657			/* Recheck when the page is locked which pins bhs */
1658			if (!page_has_buffers(page))
1659				goto unlock_page;
1660			head = page_buffers(page);
1661			bh = head;
1662			do {
1663				if (!buffer_mapped(bh) || (bh->b_blocknr < block))
1664					goto next;
1665				if (bh->b_blocknr >= block + len)
1666					break;
1667				clear_buffer_dirty(bh);
1668				wait_on_buffer(bh);
1669				clear_buffer_req(bh);
1670next:
1671				bh = bh->b_this_page;
1672			} while (bh != head);
1673unlock_page:
1674			unlock_page(page);
1675		}
1676		pagevec_release(&pvec);
1677		cond_resched();
1678		index++;
1679	}
1680}
1681EXPORT_SYMBOL(clean_bdev_aliases);
1682
1683/*
1684 * Size is a power-of-two in the range 512..PAGE_SIZE,
1685 * and the case we care about most is PAGE_SIZE.
1686 *
1687 * So this *could* possibly be written with those
1688 * constraints in mind (relevant mostly if some
1689 * architecture has a slow bit-scan instruction)
1690 */
1691static inline int block_size_bits(unsigned int blocksize)
1692{
1693	return ilog2(blocksize);
1694}
1695
1696static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1697{
1698	BUG_ON(!PageLocked(page));
1699
1700	if (!page_has_buffers(page))
1701		create_empty_buffers(page, 1 << ACCESS_ONCE(inode->i_blkbits), b_state);
1702	return page_buffers(page);
1703}
1704
1705/*
1706 * NOTE! All mapped/uptodate combinations are valid:
1707 *
1708 *	Mapped	Uptodate	Meaning
1709 *
1710 *	No	No		"unknown" - must do get_block()
1711 *	No	Yes		"hole" - zero-filled
1712 *	Yes	No		"allocated" - allocated on disk, not read in
1713 *	Yes	Yes		"valid" - allocated and up-to-date in memory.
1714 *
1715 * "Dirty" is valid only with the last case (mapped+uptodate).
1716 */
1717
1718/*
1719 * While block_write_full_page is writing back the dirty buffers under
1720 * the page lock, whoever dirtied the buffers may decide to clean them
1721 * again at any time.  We handle that by only looking at the buffer
1722 * state inside lock_buffer().
1723 *
1724 * If block_write_full_page() is called for regular writeback
1725 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1726 * locked buffer.   This only can happen if someone has written the buffer
1727 * directly, with submit_bh().  At the address_space level PageWriteback
1728 * prevents this contention from occurring.
1729 *
1730 * If block_write_full_page() is called with wbc->sync_mode ==
1731 * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
1732 * causes the writes to be flagged as synchronous writes.
1733 */
1734int __block_write_full_page(struct inode *inode, struct page *page,
1735			get_block_t *get_block, struct writeback_control *wbc,
1736			bh_end_io_t *handler)
1737{
1738	int err;
1739	sector_t block;
1740	sector_t last_block;
1741	struct buffer_head *bh, *head;
1742	unsigned int blocksize, bbits;
1743	int nr_underway = 0;
1744	int write_flags = wbc_to_write_flags(wbc);
 
1745
1746	head = create_page_buffers(page, inode,
1747					(1 << BH_Dirty)|(1 << BH_Uptodate));
1748
1749	/*
1750	 * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1751	 * here, and the (potentially unmapped) buffers may become dirty at
1752	 * any time.  If a buffer becomes dirty here after we've inspected it
1753	 * then we just miss that fact, and the page stays dirty.
1754	 *
1755	 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1756	 * handle that here by just cleaning them.
1757	 */
1758
1759	bh = head;
1760	blocksize = bh->b_size;
1761	bbits = block_size_bits(blocksize);
1762
1763	block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1764	last_block = (i_size_read(inode) - 1) >> bbits;
1765
1766	/*
1767	 * Get all the dirty buffers mapped to disk addresses and
1768	 * handle any aliases from the underlying blockdev's mapping.
1769	 */
1770	do {
1771		if (block > last_block) {
1772			/*
1773			 * mapped buffers outside i_size will occur, because
1774			 * this page can be outside i_size when there is a
1775			 * truncate in progress.
1776			 */
1777			/*
1778			 * The buffer was zeroed by block_write_full_page()
1779			 */
1780			clear_buffer_dirty(bh);
1781			set_buffer_uptodate(bh);
1782		} else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1783			   buffer_dirty(bh)) {
1784			WARN_ON(bh->b_size != blocksize);
1785			err = get_block(inode, block, bh, 1);
1786			if (err)
1787				goto recover;
1788			clear_buffer_delay(bh);
1789			if (buffer_new(bh)) {
1790				/* blockdev mappings never come here */
1791				clear_buffer_new(bh);
1792				clean_bdev_bh_alias(bh);
 
1793			}
1794		}
1795		bh = bh->b_this_page;
1796		block++;
1797	} while (bh != head);
1798
1799	do {
1800		if (!buffer_mapped(bh))
1801			continue;
1802		/*
1803		 * If it's a fully non-blocking write attempt and we cannot
1804		 * lock the buffer then redirty the page.  Note that this can
1805		 * potentially cause a busy-wait loop from writeback threads
1806		 * and kswapd activity, but those code paths have their own
1807		 * higher-level throttling.
1808		 */
1809		if (wbc->sync_mode != WB_SYNC_NONE) {
1810			lock_buffer(bh);
1811		} else if (!trylock_buffer(bh)) {
1812			redirty_page_for_writepage(wbc, page);
1813			continue;
1814		}
1815		if (test_clear_buffer_dirty(bh)) {
1816			mark_buffer_async_write_endio(bh, handler);
1817		} else {
1818			unlock_buffer(bh);
1819		}
1820	} while ((bh = bh->b_this_page) != head);
1821
1822	/*
1823	 * The page and its buffers are protected by PageWriteback(), so we can
1824	 * drop the bh refcounts early.
1825	 */
1826	BUG_ON(PageWriteback(page));
1827	set_page_writeback(page);
1828
1829	do {
1830		struct buffer_head *next = bh->b_this_page;
1831		if (buffer_async_write(bh)) {
1832			submit_bh_wbc(REQ_OP_WRITE, write_flags, bh, 0, wbc);
1833			nr_underway++;
1834		}
1835		bh = next;
1836	} while (bh != head);
1837	unlock_page(page);
1838
1839	err = 0;
1840done:
1841	if (nr_underway == 0) {
1842		/*
1843		 * The page was marked dirty, but the buffers were
1844		 * clean.  Someone wrote them back by hand with
1845		 * ll_rw_block/submit_bh.  A rare case.
1846		 */
1847		end_page_writeback(page);
1848
1849		/*
1850		 * The page and buffer_heads can be released at any time from
1851		 * here on.
1852		 */
1853	}
1854	return err;
1855
1856recover:
1857	/*
1858	 * ENOSPC, or some other error.  We may already have added some
1859	 * blocks to the file, so we need to write these out to avoid
1860	 * exposing stale data.
1861	 * The page is currently locked and not marked for writeback
1862	 */
1863	bh = head;
1864	/* Recovery: lock and submit the mapped buffers */
1865	do {
1866		if (buffer_mapped(bh) && buffer_dirty(bh) &&
1867		    !buffer_delay(bh)) {
1868			lock_buffer(bh);
1869			mark_buffer_async_write_endio(bh, handler);
1870		} else {
1871			/*
1872			 * The buffer may have been set dirty during
1873			 * attachment to a dirty page.
1874			 */
1875			clear_buffer_dirty(bh);
1876		}
1877	} while ((bh = bh->b_this_page) != head);
1878	SetPageError(page);
1879	BUG_ON(PageWriteback(page));
1880	mapping_set_error(page->mapping, err);
1881	set_page_writeback(page);
1882	do {
1883		struct buffer_head *next = bh->b_this_page;
1884		if (buffer_async_write(bh)) {
1885			clear_buffer_dirty(bh);
1886			submit_bh_wbc(REQ_OP_WRITE, write_flags, bh, 0, wbc);
1887			nr_underway++;
1888		}
1889		bh = next;
1890	} while (bh != head);
1891	unlock_page(page);
1892	goto done;
1893}
1894EXPORT_SYMBOL(__block_write_full_page);
1895
1896/*
1897 * If a page has any new buffers, zero them out here, and mark them uptodate
1898 * and dirty so they'll be written out (in order to prevent uninitialised
1899 * block data from leaking). And clear the new bit.
1900 */
1901void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1902{
1903	unsigned int block_start, block_end;
1904	struct buffer_head *head, *bh;
1905
1906	BUG_ON(!PageLocked(page));
1907	if (!page_has_buffers(page))
1908		return;
1909
1910	bh = head = page_buffers(page);
1911	block_start = 0;
1912	do {
1913		block_end = block_start + bh->b_size;
1914
1915		if (buffer_new(bh)) {
1916			if (block_end > from && block_start < to) {
1917				if (!PageUptodate(page)) {
1918					unsigned start, size;
1919
1920					start = max(from, block_start);
1921					size = min(to, block_end) - start;
1922
1923					zero_user(page, start, size);
1924					set_buffer_uptodate(bh);
1925				}
1926
1927				clear_buffer_new(bh);
1928				mark_buffer_dirty(bh);
1929			}
1930		}
1931
1932		block_start = block_end;
1933		bh = bh->b_this_page;
1934	} while (bh != head);
1935}
1936EXPORT_SYMBOL(page_zero_new_buffers);
1937
1938static void
1939iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
1940		struct iomap *iomap)
1941{
1942	loff_t offset = block << inode->i_blkbits;
1943
1944	bh->b_bdev = iomap->bdev;
1945
1946	/*
1947	 * Block points to offset in file we need to map, iomap contains
1948	 * the offset at which the map starts. If the map ends before the
1949	 * current block, then do not map the buffer and let the caller
1950	 * handle it.
1951	 */
1952	BUG_ON(offset >= iomap->offset + iomap->length);
1953
1954	switch (iomap->type) {
1955	case IOMAP_HOLE:
1956		/*
1957		 * If the buffer is not up to date or beyond the current EOF,
1958		 * we need to mark it as new to ensure sub-block zeroing is
1959		 * executed if necessary.
1960		 */
1961		if (!buffer_uptodate(bh) ||
1962		    (offset >= i_size_read(inode)))
1963			set_buffer_new(bh);
1964		break;
1965	case IOMAP_DELALLOC:
1966		if (!buffer_uptodate(bh) ||
1967		    (offset >= i_size_read(inode)))
1968			set_buffer_new(bh);
1969		set_buffer_uptodate(bh);
1970		set_buffer_mapped(bh);
1971		set_buffer_delay(bh);
1972		break;
1973	case IOMAP_UNWRITTEN:
1974		/*
1975		 * For unwritten regions, we always need to ensure that
1976		 * sub-block writes cause the regions in the block we are not
1977		 * writing to are zeroed. Set the buffer as new to ensure this.
1978		 */
1979		set_buffer_new(bh);
1980		set_buffer_unwritten(bh);
1981		/* FALLTHRU */
1982	case IOMAP_MAPPED:
1983		if (offset >= i_size_read(inode))
1984			set_buffer_new(bh);
1985		bh->b_blocknr = (iomap->blkno >> (inode->i_blkbits - 9)) +
1986				((offset - iomap->offset) >> inode->i_blkbits);
1987		set_buffer_mapped(bh);
1988		break;
1989	}
1990}
1991
1992int __block_write_begin_int(struct page *page, loff_t pos, unsigned len,
1993		get_block_t *get_block, struct iomap *iomap)
1994{
1995	unsigned from = pos & (PAGE_SIZE - 1);
1996	unsigned to = from + len;
1997	struct inode *inode = page->mapping->host;
1998	unsigned block_start, block_end;
1999	sector_t block;
2000	int err = 0;
2001	unsigned blocksize, bbits;
2002	struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
2003
2004	BUG_ON(!PageLocked(page));
2005	BUG_ON(from > PAGE_SIZE);
2006	BUG_ON(to > PAGE_SIZE);
2007	BUG_ON(from > to);
2008
2009	head = create_page_buffers(page, inode, 0);
2010	blocksize = head->b_size;
2011	bbits = block_size_bits(blocksize);
2012
2013	block = (sector_t)page->index << (PAGE_SHIFT - bbits);
2014
2015	for(bh = head, block_start = 0; bh != head || !block_start;
2016	    block++, block_start=block_end, bh = bh->b_this_page) {
2017		block_end = block_start + blocksize;
2018		if (block_end <= from || block_start >= to) {
2019			if (PageUptodate(page)) {
2020				if (!buffer_uptodate(bh))
2021					set_buffer_uptodate(bh);
2022			}
2023			continue;
2024		}
2025		if (buffer_new(bh))
2026			clear_buffer_new(bh);
2027		if (!buffer_mapped(bh)) {
2028			WARN_ON(bh->b_size != blocksize);
2029			if (get_block) {
2030				err = get_block(inode, block, bh, 1);
2031				if (err)
2032					break;
2033			} else {
2034				iomap_to_bh(inode, block, bh, iomap);
2035			}
2036
2037			if (buffer_new(bh)) {
2038				clean_bdev_bh_alias(bh);
 
2039				if (PageUptodate(page)) {
2040					clear_buffer_new(bh);
2041					set_buffer_uptodate(bh);
2042					mark_buffer_dirty(bh);
2043					continue;
2044				}
2045				if (block_end > to || block_start < from)
2046					zero_user_segments(page,
2047						to, block_end,
2048						block_start, from);
2049				continue;
2050			}
2051		}
2052		if (PageUptodate(page)) {
2053			if (!buffer_uptodate(bh))
2054				set_buffer_uptodate(bh);
2055			continue; 
2056		}
2057		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
2058		    !buffer_unwritten(bh) &&
2059		     (block_start < from || block_end > to)) {
2060			ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2061			*wait_bh++=bh;
2062		}
2063	}
2064	/*
2065	 * If we issued read requests - let them complete.
2066	 */
2067	while(wait_bh > wait) {
2068		wait_on_buffer(*--wait_bh);
2069		if (!buffer_uptodate(*wait_bh))
2070			err = -EIO;
2071	}
2072	if (unlikely(err))
2073		page_zero_new_buffers(page, from, to);
2074	return err;
2075}
2076
2077int __block_write_begin(struct page *page, loff_t pos, unsigned len,
2078		get_block_t *get_block)
2079{
2080	return __block_write_begin_int(page, pos, len, get_block, NULL);
2081}
2082EXPORT_SYMBOL(__block_write_begin);
2083
2084static int __block_commit_write(struct inode *inode, struct page *page,
2085		unsigned from, unsigned to)
2086{
2087	unsigned block_start, block_end;
2088	int partial = 0;
2089	unsigned blocksize;
2090	struct buffer_head *bh, *head;
2091
2092	bh = head = page_buffers(page);
2093	blocksize = bh->b_size;
2094
2095	block_start = 0;
2096	do {
2097		block_end = block_start + blocksize;
2098		if (block_end <= from || block_start >= to) {
2099			if (!buffer_uptodate(bh))
2100				partial = 1;
2101		} else {
2102			set_buffer_uptodate(bh);
2103			mark_buffer_dirty(bh);
2104		}
2105		clear_buffer_new(bh);
2106
2107		block_start = block_end;
2108		bh = bh->b_this_page;
2109	} while (bh != head);
2110
2111	/*
2112	 * If this is a partial write which happened to make all buffers
2113	 * uptodate then we can optimize away a bogus readpage() for
2114	 * the next read(). Here we 'discover' whether the page went
2115	 * uptodate as a result of this (potentially partial) write.
2116	 */
2117	if (!partial)
2118		SetPageUptodate(page);
2119	return 0;
2120}
2121
2122/*
2123 * block_write_begin takes care of the basic task of block allocation and
2124 * bringing partial write blocks uptodate first.
2125 *
2126 * The filesystem needs to handle block truncation upon failure.
2127 */
2128int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2129		unsigned flags, struct page **pagep, get_block_t *get_block)
2130{
2131	pgoff_t index = pos >> PAGE_SHIFT;
2132	struct page *page;
2133	int status;
2134
2135	page = grab_cache_page_write_begin(mapping, index, flags);
2136	if (!page)
2137		return -ENOMEM;
2138
2139	status = __block_write_begin(page, pos, len, get_block);
2140	if (unlikely(status)) {
2141		unlock_page(page);
2142		put_page(page);
2143		page = NULL;
2144	}
2145
2146	*pagep = page;
2147	return status;
2148}
2149EXPORT_SYMBOL(block_write_begin);
2150
2151int block_write_end(struct file *file, struct address_space *mapping,
2152			loff_t pos, unsigned len, unsigned copied,
2153			struct page *page, void *fsdata)
2154{
2155	struct inode *inode = mapping->host;
2156	unsigned start;
2157
2158	start = pos & (PAGE_SIZE - 1);
2159
2160	if (unlikely(copied < len)) {
2161		/*
2162		 * The buffers that were written will now be uptodate, so we
2163		 * don't have to worry about a readpage reading them and
2164		 * overwriting a partial write. However if we have encountered
2165		 * a short write and only partially written into a buffer, it
2166		 * will not be marked uptodate, so a readpage might come in and
2167		 * destroy our partial write.
2168		 *
2169		 * Do the simplest thing, and just treat any short write to a
2170		 * non uptodate page as a zero-length write, and force the
2171		 * caller to redo the whole thing.
2172		 */
2173		if (!PageUptodate(page))
2174			copied = 0;
2175
2176		page_zero_new_buffers(page, start+copied, start+len);
2177	}
2178	flush_dcache_page(page);
2179
2180	/* This could be a short (even 0-length) commit */
2181	__block_commit_write(inode, page, start, start+copied);
2182
2183	return copied;
2184}
2185EXPORT_SYMBOL(block_write_end);
2186
2187int generic_write_end(struct file *file, struct address_space *mapping,
2188			loff_t pos, unsigned len, unsigned copied,
2189			struct page *page, void *fsdata)
2190{
2191	struct inode *inode = mapping->host;
2192	loff_t old_size = inode->i_size;
2193	int i_size_changed = 0;
2194
2195	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2196
2197	/*
2198	 * No need to use i_size_read() here, the i_size
2199	 * cannot change under us because we hold i_mutex.
2200	 *
2201	 * But it's important to update i_size while still holding page lock:
2202	 * page writeout could otherwise come in and zero beyond i_size.
2203	 */
2204	if (pos+copied > inode->i_size) {
2205		i_size_write(inode, pos+copied);
2206		i_size_changed = 1;
2207	}
2208
2209	unlock_page(page);
2210	put_page(page);
2211
2212	if (old_size < pos)
2213		pagecache_isize_extended(inode, old_size, pos);
2214	/*
2215	 * Don't mark the inode dirty under page lock. First, it unnecessarily
2216	 * makes the holding time of page lock longer. Second, it forces lock
2217	 * ordering of page lock and transaction start for journaling
2218	 * filesystems.
2219	 */
2220	if (i_size_changed)
2221		mark_inode_dirty(inode);
2222
2223	return copied;
2224}
2225EXPORT_SYMBOL(generic_write_end);
2226
2227/*
2228 * block_is_partially_uptodate checks whether buffers within a page are
2229 * uptodate or not.
2230 *
2231 * Returns true if all buffers which correspond to a file portion
2232 * we want to read are uptodate.
2233 */
2234int block_is_partially_uptodate(struct page *page, unsigned long from,
2235					unsigned long count)
2236{
2237	unsigned block_start, block_end, blocksize;
2238	unsigned to;
2239	struct buffer_head *bh, *head;
2240	int ret = 1;
2241
2242	if (!page_has_buffers(page))
2243		return 0;
2244
2245	head = page_buffers(page);
2246	blocksize = head->b_size;
2247	to = min_t(unsigned, PAGE_SIZE - from, count);
2248	to = from + to;
2249	if (from < blocksize && to > PAGE_SIZE - blocksize)
2250		return 0;
2251
2252	bh = head;
2253	block_start = 0;
2254	do {
2255		block_end = block_start + blocksize;
2256		if (block_end > from && block_start < to) {
2257			if (!buffer_uptodate(bh)) {
2258				ret = 0;
2259				break;
2260			}
2261			if (block_end >= to)
2262				break;
2263		}
2264		block_start = block_end;
2265		bh = bh->b_this_page;
2266	} while (bh != head);
2267
2268	return ret;
2269}
2270EXPORT_SYMBOL(block_is_partially_uptodate);
2271
2272/*
2273 * Generic "read page" function for block devices that have the normal
2274 * get_block functionality. This is most of the block device filesystems.
2275 * Reads the page asynchronously --- the unlock_buffer() and
2276 * set/clear_buffer_uptodate() functions propagate buffer state into the
2277 * page struct once IO has completed.
2278 */
2279int block_read_full_page(struct page *page, get_block_t *get_block)
2280{
2281	struct inode *inode = page->mapping->host;
2282	sector_t iblock, lblock;
2283	struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2284	unsigned int blocksize, bbits;
2285	int nr, i;
2286	int fully_mapped = 1;
2287
2288	head = create_page_buffers(page, inode, 0);
2289	blocksize = head->b_size;
2290	bbits = block_size_bits(blocksize);
2291
2292	iblock = (sector_t)page->index << (PAGE_SHIFT - bbits);
2293	lblock = (i_size_read(inode)+blocksize-1) >> bbits;
2294	bh = head;
2295	nr = 0;
2296	i = 0;
2297
2298	do {
2299		if (buffer_uptodate(bh))
2300			continue;
2301
2302		if (!buffer_mapped(bh)) {
2303			int err = 0;
2304
2305			fully_mapped = 0;
2306			if (iblock < lblock) {
2307				WARN_ON(bh->b_size != blocksize);
2308				err = get_block(inode, iblock, bh, 0);
2309				if (err)
2310					SetPageError(page);
2311			}
2312			if (!buffer_mapped(bh)) {
2313				zero_user(page, i * blocksize, blocksize);
2314				if (!err)
2315					set_buffer_uptodate(bh);
2316				continue;
2317			}
2318			/*
2319			 * get_block() might have updated the buffer
2320			 * synchronously
2321			 */
2322			if (buffer_uptodate(bh))
2323				continue;
2324		}
2325		arr[nr++] = bh;
2326	} while (i++, iblock++, (bh = bh->b_this_page) != head);
2327
2328	if (fully_mapped)
2329		SetPageMappedToDisk(page);
2330
2331	if (!nr) {
2332		/*
2333		 * All buffers are uptodate - we can set the page uptodate
2334		 * as well. But not if get_block() returned an error.
2335		 */
2336		if (!PageError(page))
2337			SetPageUptodate(page);
2338		unlock_page(page);
2339		return 0;
2340	}
2341
2342	/* Stage two: lock the buffers */
2343	for (i = 0; i < nr; i++) {
2344		bh = arr[i];
2345		lock_buffer(bh);
2346		mark_buffer_async_read(bh);
2347	}
2348
2349	/*
2350	 * Stage 3: start the IO.  Check for uptodateness
2351	 * inside the buffer lock in case another process reading
2352	 * the underlying blockdev brought it uptodate (the sct fix).
2353	 */
2354	for (i = 0; i < nr; i++) {
2355		bh = arr[i];
2356		if (buffer_uptodate(bh))
2357			end_buffer_async_read(bh, 1);
2358		else
2359			submit_bh(REQ_OP_READ, 0, bh);
2360	}
2361	return 0;
2362}
2363EXPORT_SYMBOL(block_read_full_page);
2364
2365/* utility function for filesystems that need to do work on expanding
2366 * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2367 * deal with the hole.  
2368 */
2369int generic_cont_expand_simple(struct inode *inode, loff_t size)
2370{
2371	struct address_space *mapping = inode->i_mapping;
2372	struct page *page;
2373	void *fsdata;
2374	int err;
2375
2376	err = inode_newsize_ok(inode, size);
2377	if (err)
2378		goto out;
2379
2380	err = pagecache_write_begin(NULL, mapping, size, 0,
2381				AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND,
2382				&page, &fsdata);
2383	if (err)
2384		goto out;
2385
2386	err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2387	BUG_ON(err > 0);
2388
2389out:
2390	return err;
2391}
2392EXPORT_SYMBOL(generic_cont_expand_simple);
2393
2394static int cont_expand_zero(struct file *file, struct address_space *mapping,
2395			    loff_t pos, loff_t *bytes)
2396{
2397	struct inode *inode = mapping->host;
2398	unsigned blocksize = 1 << inode->i_blkbits;
2399	struct page *page;
2400	void *fsdata;
2401	pgoff_t index, curidx;
2402	loff_t curpos;
2403	unsigned zerofrom, offset, len;
2404	int err = 0;
2405
2406	index = pos >> PAGE_SHIFT;
2407	offset = pos & ~PAGE_MASK;
2408
2409	while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2410		zerofrom = curpos & ~PAGE_MASK;
2411		if (zerofrom & (blocksize-1)) {
2412			*bytes |= (blocksize-1);
2413			(*bytes)++;
2414		}
2415		len = PAGE_SIZE - zerofrom;
2416
2417		err = pagecache_write_begin(file, mapping, curpos, len,
2418						AOP_FLAG_UNINTERRUPTIBLE,
2419						&page, &fsdata);
2420		if (err)
2421			goto out;
2422		zero_user(page, zerofrom, len);
2423		err = pagecache_write_end(file, mapping, curpos, len, len,
2424						page, fsdata);
2425		if (err < 0)
2426			goto out;
2427		BUG_ON(err != len);
2428		err = 0;
2429
2430		balance_dirty_pages_ratelimited(mapping);
2431
2432		if (unlikely(fatal_signal_pending(current))) {
2433			err = -EINTR;
2434			goto out;
2435		}
2436	}
2437
2438	/* page covers the boundary, find the boundary offset */
2439	if (index == curidx) {
2440		zerofrom = curpos & ~PAGE_MASK;
2441		/* if we will expand the thing last block will be filled */
2442		if (offset <= zerofrom) {
2443			goto out;
2444		}
2445		if (zerofrom & (blocksize-1)) {
2446			*bytes |= (blocksize-1);
2447			(*bytes)++;
2448		}
2449		len = offset - zerofrom;
2450
2451		err = pagecache_write_begin(file, mapping, curpos, len,
2452						AOP_FLAG_UNINTERRUPTIBLE,
2453						&page, &fsdata);
2454		if (err)
2455			goto out;
2456		zero_user(page, zerofrom, len);
2457		err = pagecache_write_end(file, mapping, curpos, len, len,
2458						page, fsdata);
2459		if (err < 0)
2460			goto out;
2461		BUG_ON(err != len);
2462		err = 0;
2463	}
2464out:
2465	return err;
2466}
2467
2468/*
2469 * For moronic filesystems that do not allow holes in file.
2470 * We may have to extend the file.
2471 */
2472int cont_write_begin(struct file *file, struct address_space *mapping,
2473			loff_t pos, unsigned len, unsigned flags,
2474			struct page **pagep, void **fsdata,
2475			get_block_t *get_block, loff_t *bytes)
2476{
2477	struct inode *inode = mapping->host;
2478	unsigned blocksize = 1 << inode->i_blkbits;
2479	unsigned zerofrom;
2480	int err;
2481
2482	err = cont_expand_zero(file, mapping, pos, bytes);
2483	if (err)
2484		return err;
2485
2486	zerofrom = *bytes & ~PAGE_MASK;
2487	if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2488		*bytes |= (blocksize-1);
2489		(*bytes)++;
2490	}
2491
2492	return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2493}
2494EXPORT_SYMBOL(cont_write_begin);
2495
2496int block_commit_write(struct page *page, unsigned from, unsigned to)
2497{
2498	struct inode *inode = page->mapping->host;
2499	__block_commit_write(inode,page,from,to);
2500	return 0;
2501}
2502EXPORT_SYMBOL(block_commit_write);
2503
2504/*
2505 * block_page_mkwrite() is not allowed to change the file size as it gets
2506 * called from a page fault handler when a page is first dirtied. Hence we must
2507 * be careful to check for EOF conditions here. We set the page up correctly
2508 * for a written page which means we get ENOSPC checking when writing into
2509 * holes and correct delalloc and unwritten extent mapping on filesystems that
2510 * support these features.
2511 *
2512 * We are not allowed to take the i_mutex here so we have to play games to
2513 * protect against truncate races as the page could now be beyond EOF.  Because
2514 * truncate writes the inode size before removing pages, once we have the
2515 * page lock we can determine safely if the page is beyond EOF. If it is not
2516 * beyond EOF, then the page is guaranteed safe against truncation until we
2517 * unlock the page.
2518 *
2519 * Direct callers of this function should protect against filesystem freezing
2520 * using sb_start_pagefault() - sb_end_pagefault() functions.
2521 */
2522int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2523			 get_block_t get_block)
2524{
2525	struct page *page = vmf->page;
2526	struct inode *inode = file_inode(vma->vm_file);
2527	unsigned long end;
2528	loff_t size;
2529	int ret;
2530
2531	lock_page(page);
2532	size = i_size_read(inode);
2533	if ((page->mapping != inode->i_mapping) ||
2534	    (page_offset(page) > size)) {
2535		/* We overload EFAULT to mean page got truncated */
2536		ret = -EFAULT;
2537		goto out_unlock;
2538	}
2539
2540	/* page is wholly or partially inside EOF */
2541	if (((page->index + 1) << PAGE_SHIFT) > size)
2542		end = size & ~PAGE_MASK;
2543	else
2544		end = PAGE_SIZE;
2545
2546	ret = __block_write_begin(page, 0, end, get_block);
2547	if (!ret)
2548		ret = block_commit_write(page, 0, end);
2549
2550	if (unlikely(ret < 0))
2551		goto out_unlock;
2552	set_page_dirty(page);
2553	wait_for_stable_page(page);
2554	return 0;
2555out_unlock:
2556	unlock_page(page);
2557	return ret;
2558}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2559EXPORT_SYMBOL(block_page_mkwrite);
2560
2561/*
2562 * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2563 * immediately, while under the page lock.  So it needs a special end_io
2564 * handler which does not touch the bh after unlocking it.
2565 */
2566static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2567{
2568	__end_buffer_read_notouch(bh, uptodate);
2569}
2570
2571/*
2572 * Attach the singly-linked list of buffers created by nobh_write_begin, to
2573 * the page (converting it to circular linked list and taking care of page
2574 * dirty races).
2575 */
2576static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2577{
2578	struct buffer_head *bh;
2579
2580	BUG_ON(!PageLocked(page));
2581
2582	spin_lock(&page->mapping->private_lock);
2583	bh = head;
2584	do {
2585		if (PageDirty(page))
2586			set_buffer_dirty(bh);
2587		if (!bh->b_this_page)
2588			bh->b_this_page = head;
2589		bh = bh->b_this_page;
2590	} while (bh != head);
2591	attach_page_buffers(page, head);
2592	spin_unlock(&page->mapping->private_lock);
2593}
2594
2595/*
2596 * On entry, the page is fully not uptodate.
2597 * On exit the page is fully uptodate in the areas outside (from,to)
2598 * The filesystem needs to handle block truncation upon failure.
2599 */
2600int nobh_write_begin(struct address_space *mapping,
2601			loff_t pos, unsigned len, unsigned flags,
2602			struct page **pagep, void **fsdata,
2603			get_block_t *get_block)
2604{
2605	struct inode *inode = mapping->host;
2606	const unsigned blkbits = inode->i_blkbits;
2607	const unsigned blocksize = 1 << blkbits;
2608	struct buffer_head *head, *bh;
2609	struct page *page;
2610	pgoff_t index;
2611	unsigned from, to;
2612	unsigned block_in_page;
2613	unsigned block_start, block_end;
2614	sector_t block_in_file;
2615	int nr_reads = 0;
2616	int ret = 0;
2617	int is_mapped_to_disk = 1;
2618
2619	index = pos >> PAGE_SHIFT;
2620	from = pos & (PAGE_SIZE - 1);
2621	to = from + len;
2622
2623	page = grab_cache_page_write_begin(mapping, index, flags);
2624	if (!page)
2625		return -ENOMEM;
2626	*pagep = page;
2627	*fsdata = NULL;
2628
2629	if (page_has_buffers(page)) {
2630		ret = __block_write_begin(page, pos, len, get_block);
2631		if (unlikely(ret))
2632			goto out_release;
2633		return ret;
2634	}
2635
2636	if (PageMappedToDisk(page))
2637		return 0;
2638
2639	/*
2640	 * Allocate buffers so that we can keep track of state, and potentially
2641	 * attach them to the page if an error occurs. In the common case of
2642	 * no error, they will just be freed again without ever being attached
2643	 * to the page (which is all OK, because we're under the page lock).
2644	 *
2645	 * Be careful: the buffer linked list is a NULL terminated one, rather
2646	 * than the circular one we're used to.
2647	 */
2648	head = alloc_page_buffers(page, blocksize, 0);
2649	if (!head) {
2650		ret = -ENOMEM;
2651		goto out_release;
2652	}
2653
2654	block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
2655
2656	/*
2657	 * We loop across all blocks in the page, whether or not they are
2658	 * part of the affected region.  This is so we can discover if the
2659	 * page is fully mapped-to-disk.
2660	 */
2661	for (block_start = 0, block_in_page = 0, bh = head;
2662		  block_start < PAGE_SIZE;
2663		  block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2664		int create;
2665
2666		block_end = block_start + blocksize;
2667		bh->b_state = 0;
2668		create = 1;
2669		if (block_start >= to)
2670			create = 0;
2671		ret = get_block(inode, block_in_file + block_in_page,
2672					bh, create);
2673		if (ret)
2674			goto failed;
2675		if (!buffer_mapped(bh))
2676			is_mapped_to_disk = 0;
2677		if (buffer_new(bh))
2678			clean_bdev_bh_alias(bh);
2679		if (PageUptodate(page)) {
2680			set_buffer_uptodate(bh);
2681			continue;
2682		}
2683		if (buffer_new(bh) || !buffer_mapped(bh)) {
2684			zero_user_segments(page, block_start, from,
2685							to, block_end);
2686			continue;
2687		}
2688		if (buffer_uptodate(bh))
2689			continue;	/* reiserfs does this */
2690		if (block_start < from || block_end > to) {
2691			lock_buffer(bh);
2692			bh->b_end_io = end_buffer_read_nobh;
2693			submit_bh(REQ_OP_READ, 0, bh);
2694			nr_reads++;
2695		}
2696	}
2697
2698	if (nr_reads) {
2699		/*
2700		 * The page is locked, so these buffers are protected from
2701		 * any VM or truncate activity.  Hence we don't need to care
2702		 * for the buffer_head refcounts.
2703		 */
2704		for (bh = head; bh; bh = bh->b_this_page) {
2705			wait_on_buffer(bh);
2706			if (!buffer_uptodate(bh))
2707				ret = -EIO;
2708		}
2709		if (ret)
2710			goto failed;
2711	}
2712
2713	if (is_mapped_to_disk)
2714		SetPageMappedToDisk(page);
2715
2716	*fsdata = head; /* to be released by nobh_write_end */
2717
2718	return 0;
2719
2720failed:
2721	BUG_ON(!ret);
2722	/*
2723	 * Error recovery is a bit difficult. We need to zero out blocks that
2724	 * were newly allocated, and dirty them to ensure they get written out.
2725	 * Buffers need to be attached to the page at this point, otherwise
2726	 * the handling of potential IO errors during writeout would be hard
2727	 * (could try doing synchronous writeout, but what if that fails too?)
2728	 */
2729	attach_nobh_buffers(page, head);
2730	page_zero_new_buffers(page, from, to);
2731
2732out_release:
2733	unlock_page(page);
2734	put_page(page);
2735	*pagep = NULL;
2736
2737	return ret;
2738}
2739EXPORT_SYMBOL(nobh_write_begin);
2740
2741int nobh_write_end(struct file *file, struct address_space *mapping,
2742			loff_t pos, unsigned len, unsigned copied,
2743			struct page *page, void *fsdata)
2744{
2745	struct inode *inode = page->mapping->host;
2746	struct buffer_head *head = fsdata;
2747	struct buffer_head *bh;
2748	BUG_ON(fsdata != NULL && page_has_buffers(page));
2749
2750	if (unlikely(copied < len) && head)
2751		attach_nobh_buffers(page, head);
2752	if (page_has_buffers(page))
2753		return generic_write_end(file, mapping, pos, len,
2754					copied, page, fsdata);
2755
2756	SetPageUptodate(page);
2757	set_page_dirty(page);
2758	if (pos+copied > inode->i_size) {
2759		i_size_write(inode, pos+copied);
2760		mark_inode_dirty(inode);
2761	}
2762
2763	unlock_page(page);
2764	put_page(page);
2765
2766	while (head) {
2767		bh = head;
2768		head = head->b_this_page;
2769		free_buffer_head(bh);
2770	}
2771
2772	return copied;
2773}
2774EXPORT_SYMBOL(nobh_write_end);
2775
2776/*
2777 * nobh_writepage() - based on block_full_write_page() except
2778 * that it tries to operate without attaching bufferheads to
2779 * the page.
2780 */
2781int nobh_writepage(struct page *page, get_block_t *get_block,
2782			struct writeback_control *wbc)
2783{
2784	struct inode * const inode = page->mapping->host;
2785	loff_t i_size = i_size_read(inode);
2786	const pgoff_t end_index = i_size >> PAGE_SHIFT;
2787	unsigned offset;
2788	int ret;
2789
2790	/* Is the page fully inside i_size? */
2791	if (page->index < end_index)
2792		goto out;
2793
2794	/* Is the page fully outside i_size? (truncate in progress) */
2795	offset = i_size & (PAGE_SIZE-1);
2796	if (page->index >= end_index+1 || !offset) {
2797		/*
2798		 * The page may have dirty, unmapped buffers.  For example,
2799		 * they may have been added in ext3_writepage().  Make them
2800		 * freeable here, so the page does not leak.
2801		 */
2802#if 0
2803		/* Not really sure about this  - do we need this ? */
2804		if (page->mapping->a_ops->invalidatepage)
2805			page->mapping->a_ops->invalidatepage(page, offset);
2806#endif
2807		unlock_page(page);
2808		return 0; /* don't care */
2809	}
2810
2811	/*
2812	 * The page straddles i_size.  It must be zeroed out on each and every
2813	 * writepage invocation because it may be mmapped.  "A file is mapped
2814	 * in multiples of the page size.  For a file that is not a multiple of
2815	 * the  page size, the remaining memory is zeroed when mapped, and
2816	 * writes to that region are not written out to the file."
2817	 */
2818	zero_user_segment(page, offset, PAGE_SIZE);
2819out:
2820	ret = mpage_writepage(page, get_block, wbc);
2821	if (ret == -EAGAIN)
2822		ret = __block_write_full_page(inode, page, get_block, wbc,
2823					      end_buffer_async_write);
2824	return ret;
2825}
2826EXPORT_SYMBOL(nobh_writepage);
2827
2828int nobh_truncate_page(struct address_space *mapping,
2829			loff_t from, get_block_t *get_block)
2830{
2831	pgoff_t index = from >> PAGE_SHIFT;
2832	unsigned offset = from & (PAGE_SIZE-1);
2833	unsigned blocksize;
2834	sector_t iblock;
2835	unsigned length, pos;
2836	struct inode *inode = mapping->host;
2837	struct page *page;
2838	struct buffer_head map_bh;
2839	int err;
2840
2841	blocksize = 1 << inode->i_blkbits;
2842	length = offset & (blocksize - 1);
2843
2844	/* Block boundary? Nothing to do */
2845	if (!length)
2846		return 0;
2847
2848	length = blocksize - length;
2849	iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2850
2851	page = grab_cache_page(mapping, index);
2852	err = -ENOMEM;
2853	if (!page)
2854		goto out;
2855
2856	if (page_has_buffers(page)) {
2857has_buffers:
2858		unlock_page(page);
2859		put_page(page);
2860		return block_truncate_page(mapping, from, get_block);
2861	}
2862
2863	/* Find the buffer that contains "offset" */
2864	pos = blocksize;
2865	while (offset >= pos) {
2866		iblock++;
2867		pos += blocksize;
2868	}
2869
2870	map_bh.b_size = blocksize;
2871	map_bh.b_state = 0;
2872	err = get_block(inode, iblock, &map_bh, 0);
2873	if (err)
2874		goto unlock;
2875	/* unmapped? It's a hole - nothing to do */
2876	if (!buffer_mapped(&map_bh))
2877		goto unlock;
2878
2879	/* Ok, it's mapped. Make sure it's up-to-date */
2880	if (!PageUptodate(page)) {
2881		err = mapping->a_ops->readpage(NULL, page);
2882		if (err) {
2883			put_page(page);
2884			goto out;
2885		}
2886		lock_page(page);
2887		if (!PageUptodate(page)) {
2888			err = -EIO;
2889			goto unlock;
2890		}
2891		if (page_has_buffers(page))
2892			goto has_buffers;
2893	}
2894	zero_user(page, offset, length);
2895	set_page_dirty(page);
2896	err = 0;
2897
2898unlock:
2899	unlock_page(page);
2900	put_page(page);
2901out:
2902	return err;
2903}
2904EXPORT_SYMBOL(nobh_truncate_page);
2905
2906int block_truncate_page(struct address_space *mapping,
2907			loff_t from, get_block_t *get_block)
2908{
2909	pgoff_t index = from >> PAGE_SHIFT;
2910	unsigned offset = from & (PAGE_SIZE-1);
2911	unsigned blocksize;
2912	sector_t iblock;
2913	unsigned length, pos;
2914	struct inode *inode = mapping->host;
2915	struct page *page;
2916	struct buffer_head *bh;
2917	int err;
2918
2919	blocksize = 1 << inode->i_blkbits;
2920	length = offset & (blocksize - 1);
2921
2922	/* Block boundary? Nothing to do */
2923	if (!length)
2924		return 0;
2925
2926	length = blocksize - length;
2927	iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2928	
2929	page = grab_cache_page(mapping, index);
2930	err = -ENOMEM;
2931	if (!page)
2932		goto out;
2933
2934	if (!page_has_buffers(page))
2935		create_empty_buffers(page, blocksize, 0);
2936
2937	/* Find the buffer that contains "offset" */
2938	bh = page_buffers(page);
2939	pos = blocksize;
2940	while (offset >= pos) {
2941		bh = bh->b_this_page;
2942		iblock++;
2943		pos += blocksize;
2944	}
2945
2946	err = 0;
2947	if (!buffer_mapped(bh)) {
2948		WARN_ON(bh->b_size != blocksize);
2949		err = get_block(inode, iblock, bh, 0);
2950		if (err)
2951			goto unlock;
2952		/* unmapped? It's a hole - nothing to do */
2953		if (!buffer_mapped(bh))
2954			goto unlock;
2955	}
2956
2957	/* Ok, it's mapped. Make sure it's up-to-date */
2958	if (PageUptodate(page))
2959		set_buffer_uptodate(bh);
2960
2961	if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2962		err = -EIO;
2963		ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2964		wait_on_buffer(bh);
2965		/* Uhhuh. Read error. Complain and punt. */
2966		if (!buffer_uptodate(bh))
2967			goto unlock;
2968	}
2969
2970	zero_user(page, offset, length);
2971	mark_buffer_dirty(bh);
2972	err = 0;
2973
2974unlock:
2975	unlock_page(page);
2976	put_page(page);
2977out:
2978	return err;
2979}
2980EXPORT_SYMBOL(block_truncate_page);
2981
2982/*
2983 * The generic ->writepage function for buffer-backed address_spaces
 
2984 */
2985int block_write_full_page(struct page *page, get_block_t *get_block,
2986			struct writeback_control *wbc)
2987{
2988	struct inode * const inode = page->mapping->host;
2989	loff_t i_size = i_size_read(inode);
2990	const pgoff_t end_index = i_size >> PAGE_SHIFT;
2991	unsigned offset;
2992
2993	/* Is the page fully inside i_size? */
2994	if (page->index < end_index)
2995		return __block_write_full_page(inode, page, get_block, wbc,
2996					       end_buffer_async_write);
2997
2998	/* Is the page fully outside i_size? (truncate in progress) */
2999	offset = i_size & (PAGE_SIZE-1);
3000	if (page->index >= end_index+1 || !offset) {
3001		/*
3002		 * The page may have dirty, unmapped buffers.  For example,
3003		 * they may have been added in ext3_writepage().  Make them
3004		 * freeable here, so the page does not leak.
3005		 */
3006		do_invalidatepage(page, 0, PAGE_SIZE);
3007		unlock_page(page);
3008		return 0; /* don't care */
3009	}
3010
3011	/*
3012	 * The page straddles i_size.  It must be zeroed out on each and every
3013	 * writepage invocation because it may be mmapped.  "A file is mapped
3014	 * in multiples of the page size.  For a file that is not a multiple of
3015	 * the  page size, the remaining memory is zeroed when mapped, and
3016	 * writes to that region are not written out to the file."
3017	 */
3018	zero_user_segment(page, offset, PAGE_SIZE);
3019	return __block_write_full_page(inode, page, get_block, wbc,
3020							end_buffer_async_write);
 
 
 
 
 
 
 
 
 
 
3021}
3022EXPORT_SYMBOL(block_write_full_page);
3023
3024sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
3025			    get_block_t *get_block)
3026{
3027	struct buffer_head tmp;
3028	struct inode *inode = mapping->host;
3029	tmp.b_state = 0;
3030	tmp.b_blocknr = 0;
3031	tmp.b_size = 1 << inode->i_blkbits;
3032	get_block(inode, block, &tmp, 0);
3033	return tmp.b_blocknr;
3034}
3035EXPORT_SYMBOL(generic_block_bmap);
3036
3037static void end_bio_bh_io_sync(struct bio *bio)
3038{
3039	struct buffer_head *bh = bio->bi_private;
3040
3041	if (unlikely(bio_flagged(bio, BIO_QUIET)))
 
 
 
 
3042		set_bit(BH_Quiet, &bh->b_state);
3043
3044	bh->b_end_io(bh, !bio->bi_error);
3045	bio_put(bio);
3046}
3047
3048/*
3049 * This allows us to do IO even on the odd last sectors
3050 * of a device, even if the block size is some multiple
3051 * of the physical sector size.
3052 *
3053 * We'll just truncate the bio to the size of the device,
3054 * and clear the end of the buffer head manually.
3055 *
3056 * Truly out-of-range accesses will turn into actual IO
3057 * errors, this only handles the "we need to be able to
3058 * do IO at the final sector" case.
3059 */
3060void guard_bio_eod(int op, struct bio *bio)
3061{
3062	sector_t maxsector;
3063	struct bio_vec *bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
3064	unsigned truncated_bytes;
3065
3066	maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
3067	if (!maxsector)
3068		return;
3069
3070	/*
3071	 * If the *whole* IO is past the end of the device,
3072	 * let it through, and the IO layer will turn it into
3073	 * an EIO.
3074	 */
3075	if (unlikely(bio->bi_iter.bi_sector >= maxsector))
3076		return;
3077
3078	maxsector -= bio->bi_iter.bi_sector;
3079	if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
 
3080		return;
3081
3082	/* Uhhuh. We've got a bio that straddles the device size! */
3083	truncated_bytes = bio->bi_iter.bi_size - (maxsector << 9);
3084
3085	/* Truncate the bio.. */
3086	bio->bi_iter.bi_size -= truncated_bytes;
3087	bvec->bv_len -= truncated_bytes;
3088
3089	/* ..and clear the end of the buffer for reads */
3090	if (op == REQ_OP_READ) {
3091		zero_user(bvec->bv_page, bvec->bv_offset + bvec->bv_len,
3092				truncated_bytes);
 
 
3093	}
3094}
3095
3096static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
3097			 unsigned long bio_flags, struct writeback_control *wbc)
3098{
3099	struct bio *bio;
 
3100
3101	BUG_ON(!buffer_locked(bh));
3102	BUG_ON(!buffer_mapped(bh));
3103	BUG_ON(!bh->b_end_io);
3104	BUG_ON(buffer_delay(bh));
3105	BUG_ON(buffer_unwritten(bh));
3106
3107	/*
3108	 * Only clear out a write error when rewriting
3109	 */
3110	if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
3111		clear_buffer_write_io_error(bh);
3112
3113	/*
3114	 * from here on down, it's all bio -- do the initial mapping,
3115	 * submit_bio -> generic_make_request may further map this bio around
3116	 */
3117	bio = bio_alloc(GFP_NOIO, 1);
3118
3119	if (wbc) {
3120		wbc_init_bio(wbc, bio);
3121		wbc_account_io(wbc, bh->b_page, bh->b_size);
3122	}
3123
3124	bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
3125	bio->bi_bdev = bh->b_bdev;
 
 
 
3126
3127	bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
3128	BUG_ON(bio->bi_iter.bi_size != bh->b_size);
3129
3130	bio->bi_end_io = end_bio_bh_io_sync;
3131	bio->bi_private = bh;
3132	bio->bi_flags |= bio_flags;
3133
3134	/* Take care of bh's that straddle the end of the device */
3135	guard_bio_eod(op, bio);
3136
3137	if (buffer_meta(bh))
3138		op_flags |= REQ_META;
3139	if (buffer_prio(bh))
3140		op_flags |= REQ_PRIO;
3141	bio_set_op_attrs(bio, op, op_flags);
3142
3143	submit_bio(bio);
3144	return 0;
3145}
3146
3147int _submit_bh(int op, int op_flags, struct buffer_head *bh,
3148	       unsigned long bio_flags)
3149{
3150	return submit_bh_wbc(op, op_flags, bh, bio_flags, NULL);
 
3151}
3152EXPORT_SYMBOL_GPL(_submit_bh);
3153
3154int submit_bh(int op, int op_flags,  struct buffer_head *bh)
3155{
3156	return submit_bh_wbc(op, op_flags, bh, 0, NULL);
3157}
3158EXPORT_SYMBOL(submit_bh);
3159
3160/**
3161 * ll_rw_block: low-level access to block devices (DEPRECATED)
3162 * @op: whether to %READ or %WRITE
3163 * @op_flags: req_flag_bits
3164 * @nr: number of &struct buffer_heads in the array
3165 * @bhs: array of pointers to &struct buffer_head
3166 *
3167 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3168 * requests an I/O operation on them, either a %REQ_OP_READ or a %REQ_OP_WRITE.
3169 * @op_flags contains flags modifying the detailed I/O behavior, most notably
3170 * %REQ_RAHEAD.
3171 *
3172 * This function drops any buffer that it cannot get a lock on (with the
3173 * BH_Lock state bit), any buffer that appears to be clean when doing a write
3174 * request, and any buffer that appears to be up-to-date when doing read
3175 * request.  Further it marks as clean buffers that are processed for
3176 * writing (the buffer cache won't assume that they are actually clean
3177 * until the buffer gets unlocked).
3178 *
3179 * ll_rw_block sets b_end_io to simple completion handler that marks
3180 * the buffer up-to-date (if appropriate), unlocks the buffer and wakes
3181 * any waiters. 
3182 *
3183 * All of the buffers must be for the same device, and must also be a
3184 * multiple of the current approved size for the device.
3185 */
3186void ll_rw_block(int op, int op_flags,  int nr, struct buffer_head *bhs[])
3187{
3188	int i;
3189
3190	for (i = 0; i < nr; i++) {
3191		struct buffer_head *bh = bhs[i];
3192
3193		if (!trylock_buffer(bh))
3194			continue;
3195		if (op == WRITE) {
3196			if (test_clear_buffer_dirty(bh)) {
3197				bh->b_end_io = end_buffer_write_sync;
3198				get_bh(bh);
3199				submit_bh(op, op_flags, bh);
3200				continue;
3201			}
3202		} else {
3203			if (!buffer_uptodate(bh)) {
3204				bh->b_end_io = end_buffer_read_sync;
3205				get_bh(bh);
3206				submit_bh(op, op_flags, bh);
3207				continue;
3208			}
3209		}
3210		unlock_buffer(bh);
3211	}
3212}
3213EXPORT_SYMBOL(ll_rw_block);
3214
3215void write_dirty_buffer(struct buffer_head *bh, int op_flags)
3216{
3217	lock_buffer(bh);
3218	if (!test_clear_buffer_dirty(bh)) {
3219		unlock_buffer(bh);
3220		return;
3221	}
3222	bh->b_end_io = end_buffer_write_sync;
3223	get_bh(bh);
3224	submit_bh(REQ_OP_WRITE, op_flags, bh);
3225}
3226EXPORT_SYMBOL(write_dirty_buffer);
3227
3228/*
3229 * For a data-integrity writeout, we need to wait upon any in-progress I/O
3230 * and then start new I/O and then wait upon it.  The caller must have a ref on
3231 * the buffer_head.
3232 */
3233int __sync_dirty_buffer(struct buffer_head *bh, int op_flags)
3234{
3235	int ret = 0;
3236
3237	WARN_ON(atomic_read(&bh->b_count) < 1);
3238	lock_buffer(bh);
3239	if (test_clear_buffer_dirty(bh)) {
3240		get_bh(bh);
3241		bh->b_end_io = end_buffer_write_sync;
3242		ret = submit_bh(REQ_OP_WRITE, op_flags, bh);
3243		wait_on_buffer(bh);
3244		if (!ret && !buffer_uptodate(bh))
3245			ret = -EIO;
3246	} else {
3247		unlock_buffer(bh);
3248	}
3249	return ret;
3250}
3251EXPORT_SYMBOL(__sync_dirty_buffer);
3252
3253int sync_dirty_buffer(struct buffer_head *bh)
3254{
3255	return __sync_dirty_buffer(bh, REQ_SYNC);
3256}
3257EXPORT_SYMBOL(sync_dirty_buffer);
3258
3259/*
3260 * try_to_free_buffers() checks if all the buffers on this particular page
3261 * are unused, and releases them if so.
3262 *
3263 * Exclusion against try_to_free_buffers may be obtained by either
3264 * locking the page or by holding its mapping's private_lock.
3265 *
3266 * If the page is dirty but all the buffers are clean then we need to
3267 * be sure to mark the page clean as well.  This is because the page
3268 * may be against a block device, and a later reattachment of buffers
3269 * to a dirty page will set *all* buffers dirty.  Which would corrupt
3270 * filesystem data on the same device.
3271 *
3272 * The same applies to regular filesystem pages: if all the buffers are
3273 * clean then we set the page clean and proceed.  To do that, we require
3274 * total exclusion from __set_page_dirty_buffers().  That is obtained with
3275 * private_lock.
3276 *
3277 * try_to_free_buffers() is non-blocking.
3278 */
3279static inline int buffer_busy(struct buffer_head *bh)
3280{
3281	return atomic_read(&bh->b_count) |
3282		(bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3283}
3284
3285static int
3286drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3287{
3288	struct buffer_head *head = page_buffers(page);
3289	struct buffer_head *bh;
3290
3291	bh = head;
3292	do {
3293		if (buffer_write_io_error(bh) && page->mapping)
3294			mapping_set_error(page->mapping, -EIO);
3295		if (buffer_busy(bh))
3296			goto failed;
3297		bh = bh->b_this_page;
3298	} while (bh != head);
3299
3300	do {
3301		struct buffer_head *next = bh->b_this_page;
3302
3303		if (bh->b_assoc_map)
3304			__remove_assoc_queue(bh);
3305		bh = next;
3306	} while (bh != head);
3307	*buffers_to_free = head;
3308	__clear_page_buffers(page);
3309	return 1;
3310failed:
3311	return 0;
3312}
3313
3314int try_to_free_buffers(struct page *page)
3315{
3316	struct address_space * const mapping = page->mapping;
3317	struct buffer_head *buffers_to_free = NULL;
3318	int ret = 0;
3319
3320	BUG_ON(!PageLocked(page));
3321	if (PageWriteback(page))
3322		return 0;
3323
3324	if (mapping == NULL) {		/* can this still happen? */
3325		ret = drop_buffers(page, &buffers_to_free);
3326		goto out;
3327	}
3328
3329	spin_lock(&mapping->private_lock);
3330	ret = drop_buffers(page, &buffers_to_free);
3331
3332	/*
3333	 * If the filesystem writes its buffers by hand (eg ext3)
3334	 * then we can have clean buffers against a dirty page.  We
3335	 * clean the page here; otherwise the VM will never notice
3336	 * that the filesystem did any IO at all.
3337	 *
3338	 * Also, during truncate, discard_buffer will have marked all
3339	 * the page's buffers clean.  We discover that here and clean
3340	 * the page also.
3341	 *
3342	 * private_lock must be held over this entire operation in order
3343	 * to synchronise against __set_page_dirty_buffers and prevent the
3344	 * dirty bit from being lost.
3345	 */
3346	if (ret)
3347		cancel_dirty_page(page);
3348	spin_unlock(&mapping->private_lock);
3349out:
3350	if (buffers_to_free) {
3351		struct buffer_head *bh = buffers_to_free;
3352
3353		do {
3354			struct buffer_head *next = bh->b_this_page;
3355			free_buffer_head(bh);
3356			bh = next;
3357		} while (bh != buffers_to_free);
3358	}
3359	return ret;
3360}
3361EXPORT_SYMBOL(try_to_free_buffers);
3362
3363/*
3364 * There are no bdflush tunables left.  But distributions are
3365 * still running obsolete flush daemons, so we terminate them here.
3366 *
3367 * Use of bdflush() is deprecated and will be removed in a future kernel.
3368 * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3369 */
3370SYSCALL_DEFINE2(bdflush, int, func, long, data)
3371{
3372	static int msg_count;
3373
3374	if (!capable(CAP_SYS_ADMIN))
3375		return -EPERM;
3376
3377	if (msg_count < 5) {
3378		msg_count++;
3379		printk(KERN_INFO
3380			"warning: process `%s' used the obsolete bdflush"
3381			" system call\n", current->comm);
3382		printk(KERN_INFO "Fix your initscripts?\n");
3383	}
3384
3385	if (func == 1)
3386		do_exit(0);
3387	return 0;
3388}
3389
3390/*
3391 * Buffer-head allocation
3392 */
3393static struct kmem_cache *bh_cachep __read_mostly;
3394
3395/*
3396 * Once the number of bh's in the machine exceeds this level, we start
3397 * stripping them in writeback.
3398 */
3399static unsigned long max_buffer_heads;
3400
3401int buffer_heads_over_limit;
3402
3403struct bh_accounting {
3404	int nr;			/* Number of live bh's */
3405	int ratelimit;		/* Limit cacheline bouncing */
3406};
3407
3408static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3409
3410static void recalc_bh_state(void)
3411{
3412	int i;
3413	int tot = 0;
3414
3415	if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3416		return;
3417	__this_cpu_write(bh_accounting.ratelimit, 0);
3418	for_each_online_cpu(i)
3419		tot += per_cpu(bh_accounting, i).nr;
3420	buffer_heads_over_limit = (tot > max_buffer_heads);
3421}
3422
3423struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3424{
3425	struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3426	if (ret) {
3427		INIT_LIST_HEAD(&ret->b_assoc_buffers);
3428		preempt_disable();
3429		__this_cpu_inc(bh_accounting.nr);
3430		recalc_bh_state();
3431		preempt_enable();
3432	}
3433	return ret;
3434}
3435EXPORT_SYMBOL(alloc_buffer_head);
3436
3437void free_buffer_head(struct buffer_head *bh)
3438{
3439	BUG_ON(!list_empty(&bh->b_assoc_buffers));
3440	kmem_cache_free(bh_cachep, bh);
3441	preempt_disable();
3442	__this_cpu_dec(bh_accounting.nr);
3443	recalc_bh_state();
3444	preempt_enable();
3445}
3446EXPORT_SYMBOL(free_buffer_head);
3447
3448static int buffer_exit_cpu_dead(unsigned int cpu)
3449{
3450	int i;
3451	struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3452
3453	for (i = 0; i < BH_LRU_SIZE; i++) {
3454		brelse(b->bhs[i]);
3455		b->bhs[i] = NULL;
3456	}
3457	this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3458	per_cpu(bh_accounting, cpu).nr = 0;
3459	return 0;
 
 
 
 
 
 
 
3460}
3461
3462/**
3463 * bh_uptodate_or_lock - Test whether the buffer is uptodate
3464 * @bh: struct buffer_head
3465 *
3466 * Return true if the buffer is up-to-date and false,
3467 * with the buffer locked, if not.
3468 */
3469int bh_uptodate_or_lock(struct buffer_head *bh)
3470{
3471	if (!buffer_uptodate(bh)) {
3472		lock_buffer(bh);
3473		if (!buffer_uptodate(bh))
3474			return 0;
3475		unlock_buffer(bh);
3476	}
3477	return 1;
3478}
3479EXPORT_SYMBOL(bh_uptodate_or_lock);
3480
3481/**
3482 * bh_submit_read - Submit a locked buffer for reading
3483 * @bh: struct buffer_head
3484 *
3485 * Returns zero on success and -EIO on error.
3486 */
3487int bh_submit_read(struct buffer_head *bh)
3488{
3489	BUG_ON(!buffer_locked(bh));
3490
3491	if (buffer_uptodate(bh)) {
3492		unlock_buffer(bh);
3493		return 0;
3494	}
3495
3496	get_bh(bh);
3497	bh->b_end_io = end_buffer_read_sync;
3498	submit_bh(REQ_OP_READ, 0, bh);
3499	wait_on_buffer(bh);
3500	if (buffer_uptodate(bh))
3501		return 0;
3502	return -EIO;
3503}
3504EXPORT_SYMBOL(bh_submit_read);
3505
3506void __init buffer_init(void)
3507{
3508	unsigned long nrpages;
3509	int ret;
3510
3511	bh_cachep = kmem_cache_create("buffer_head",
3512			sizeof(struct buffer_head), 0,
3513				(SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3514				SLAB_MEM_SPREAD),
3515				NULL);
3516
3517	/*
3518	 * Limit the bh occupancy to 10% of ZONE_NORMAL
3519	 */
3520	nrpages = (nr_free_buffer_pages() * 10) / 100;
3521	max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3522	ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead",
3523					NULL, buffer_exit_cpu_dead);
3524	WARN_ON(ret < 0);
3525}
v3.15
   1/*
   2 *  linux/fs/buffer.c
   3 *
   4 *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
   5 */
   6
   7/*
   8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
   9 *
  10 * Removed a lot of unnecessary code and simplified things now that
  11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
  12 *
  13 * Speed up hash, lru, and free list operations.  Use gfp() for allocating
  14 * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
  15 *
  16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
  17 *
  18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
  19 */
  20
  21#include <linux/kernel.h>
  22#include <linux/syscalls.h>
  23#include <linux/fs.h>
 
  24#include <linux/mm.h>
  25#include <linux/percpu.h>
  26#include <linux/slab.h>
  27#include <linux/capability.h>
  28#include <linux/blkdev.h>
  29#include <linux/file.h>
  30#include <linux/quotaops.h>
  31#include <linux/highmem.h>
  32#include <linux/export.h>
 
  33#include <linux/writeback.h>
  34#include <linux/hash.h>
  35#include <linux/suspend.h>
  36#include <linux/buffer_head.h>
  37#include <linux/task_io_accounting_ops.h>
  38#include <linux/bio.h>
  39#include <linux/notifier.h>
  40#include <linux/cpu.h>
  41#include <linux/bitops.h>
  42#include <linux/mpage.h>
  43#include <linux/bit_spinlock.h>
 
  44#include <trace/events/block.h>
  45
  46static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
 
 
 
  47
  48#define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
  49
  50void init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
  51{
  52	bh->b_end_io = handler;
  53	bh->b_private = private;
  54}
  55EXPORT_SYMBOL(init_buffer);
  56
  57inline void touch_buffer(struct buffer_head *bh)
  58{
  59	trace_block_touch_buffer(bh);
  60	mark_page_accessed(bh->b_page);
  61}
  62EXPORT_SYMBOL(touch_buffer);
  63
  64static int sleep_on_buffer(void *word)
  65{
  66	io_schedule();
  67	return 0;
  68}
  69
  70void __lock_buffer(struct buffer_head *bh)
  71{
  72	wait_on_bit_lock(&bh->b_state, BH_Lock, sleep_on_buffer,
  73							TASK_UNINTERRUPTIBLE);
  74}
  75EXPORT_SYMBOL(__lock_buffer);
  76
  77void unlock_buffer(struct buffer_head *bh)
  78{
  79	clear_bit_unlock(BH_Lock, &bh->b_state);
  80	smp_mb__after_clear_bit();
  81	wake_up_bit(&bh->b_state, BH_Lock);
  82}
  83EXPORT_SYMBOL(unlock_buffer);
  84
  85/*
  86 * Returns if the page has dirty or writeback buffers. If all the buffers
  87 * are unlocked and clean then the PageDirty information is stale. If
  88 * any of the pages are locked, it is assumed they are locked for IO.
  89 */
  90void buffer_check_dirty_writeback(struct page *page,
  91				     bool *dirty, bool *writeback)
  92{
  93	struct buffer_head *head, *bh;
  94	*dirty = false;
  95	*writeback = false;
  96
  97	BUG_ON(!PageLocked(page));
  98
  99	if (!page_has_buffers(page))
 100		return;
 101
 102	if (PageWriteback(page))
 103		*writeback = true;
 104
 105	head = page_buffers(page);
 106	bh = head;
 107	do {
 108		if (buffer_locked(bh))
 109			*writeback = true;
 110
 111		if (buffer_dirty(bh))
 112			*dirty = true;
 113
 114		bh = bh->b_this_page;
 115	} while (bh != head);
 116}
 117EXPORT_SYMBOL(buffer_check_dirty_writeback);
 118
 119/*
 120 * Block until a buffer comes unlocked.  This doesn't stop it
 121 * from becoming locked again - you have to lock it yourself
 122 * if you want to preserve its state.
 123 */
 124void __wait_on_buffer(struct buffer_head * bh)
 125{
 126	wait_on_bit(&bh->b_state, BH_Lock, sleep_on_buffer, TASK_UNINTERRUPTIBLE);
 127}
 128EXPORT_SYMBOL(__wait_on_buffer);
 129
 130static void
 131__clear_page_buffers(struct page *page)
 132{
 133	ClearPagePrivate(page);
 134	set_page_private(page, 0);
 135	page_cache_release(page);
 136}
 137
 138
 139static int quiet_error(struct buffer_head *bh)
 140{
 141	if (!test_bit(BH_Quiet, &bh->b_state) && printk_ratelimit())
 142		return 0;
 143	return 1;
 144}
 145
 146
 147static void buffer_io_error(struct buffer_head *bh)
 148{
 149	char b[BDEVNAME_SIZE];
 150	printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
 151			bdevname(bh->b_bdev, b),
 152			(unsigned long long)bh->b_blocknr);
 153}
 154
 155/*
 156 * End-of-IO handler helper function which does not touch the bh after
 157 * unlocking it.
 158 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
 159 * a race there is benign: unlock_buffer() only use the bh's address for
 160 * hashing after unlocking the buffer, so it doesn't actually touch the bh
 161 * itself.
 162 */
 163static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
 164{
 165	if (uptodate) {
 166		set_buffer_uptodate(bh);
 167	} else {
 168		/* This happens, due to failed READA attempts. */
 169		clear_buffer_uptodate(bh);
 170	}
 171	unlock_buffer(bh);
 172}
 173
 174/*
 175 * Default synchronous end-of-IO handler..  Just mark it up-to-date and
 176 * unlock the buffer. This is what ll_rw_block uses too.
 177 */
 178void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
 179{
 180	__end_buffer_read_notouch(bh, uptodate);
 181	put_bh(bh);
 182}
 183EXPORT_SYMBOL(end_buffer_read_sync);
 184
 185void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
 186{
 187	char b[BDEVNAME_SIZE];
 188
 189	if (uptodate) {
 190		set_buffer_uptodate(bh);
 191	} else {
 192		if (!quiet_error(bh)) {
 193			buffer_io_error(bh);
 194			printk(KERN_WARNING "lost page write due to "
 195					"I/O error on %s\n",
 196				       bdevname(bh->b_bdev, b));
 197		}
 198		set_buffer_write_io_error(bh);
 199		clear_buffer_uptodate(bh);
 200	}
 201	unlock_buffer(bh);
 202	put_bh(bh);
 203}
 204EXPORT_SYMBOL(end_buffer_write_sync);
 205
 206/*
 207 * Various filesystems appear to want __find_get_block to be non-blocking.
 208 * But it's the page lock which protects the buffers.  To get around this,
 209 * we get exclusion from try_to_free_buffers with the blockdev mapping's
 210 * private_lock.
 211 *
 212 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
 213 * may be quite high.  This code could TryLock the page, and if that
 214 * succeeds, there is no need to take private_lock. (But if
 215 * private_lock is contended then so is mapping->tree_lock).
 216 */
 217static struct buffer_head *
 218__find_get_block_slow(struct block_device *bdev, sector_t block)
 219{
 220	struct inode *bd_inode = bdev->bd_inode;
 221	struct address_space *bd_mapping = bd_inode->i_mapping;
 222	struct buffer_head *ret = NULL;
 223	pgoff_t index;
 224	struct buffer_head *bh;
 225	struct buffer_head *head;
 226	struct page *page;
 227	int all_mapped = 1;
 228
 229	index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
 230	page = find_get_page(bd_mapping, index);
 231	if (!page)
 232		goto out;
 233
 234	spin_lock(&bd_mapping->private_lock);
 235	if (!page_has_buffers(page))
 236		goto out_unlock;
 237	head = page_buffers(page);
 238	bh = head;
 239	do {
 240		if (!buffer_mapped(bh))
 241			all_mapped = 0;
 242		else if (bh->b_blocknr == block) {
 243			ret = bh;
 244			get_bh(bh);
 245			goto out_unlock;
 246		}
 247		bh = bh->b_this_page;
 248	} while (bh != head);
 249
 250	/* we might be here because some of the buffers on this page are
 251	 * not mapped.  This is due to various races between
 252	 * file io on the block device and getblk.  It gets dealt with
 253	 * elsewhere, don't buffer_error if we had some unmapped buffers
 254	 */
 255	if (all_mapped) {
 256		char b[BDEVNAME_SIZE];
 257
 258		printk("__find_get_block_slow() failed. "
 259			"block=%llu, b_blocknr=%llu\n",
 260			(unsigned long long)block,
 261			(unsigned long long)bh->b_blocknr);
 262		printk("b_state=0x%08lx, b_size=%zu\n",
 263			bh->b_state, bh->b_size);
 264		printk("device %s blocksize: %d\n", bdevname(bdev, b),
 265			1 << bd_inode->i_blkbits);
 266	}
 267out_unlock:
 268	spin_unlock(&bd_mapping->private_lock);
 269	page_cache_release(page);
 270out:
 271	return ret;
 272}
 273
 274/*
 275 * Kick the writeback threads then try to free up some ZONE_NORMAL memory.
 276 */
 277static void free_more_memory(void)
 278{
 279	struct zone *zone;
 280	int nid;
 281
 282	wakeup_flusher_threads(1024, WB_REASON_FREE_MORE_MEM);
 283	yield();
 284
 285	for_each_online_node(nid) {
 286		(void)first_zones_zonelist(node_zonelist(nid, GFP_NOFS),
 287						gfp_zone(GFP_NOFS), NULL,
 288						&zone);
 289		if (zone)
 290			try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0,
 291						GFP_NOFS, NULL);
 292	}
 293}
 294
 295/*
 296 * I/O completion handler for block_read_full_page() - pages
 297 * which come unlocked at the end of I/O.
 298 */
 299static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
 300{
 301	unsigned long flags;
 302	struct buffer_head *first;
 303	struct buffer_head *tmp;
 304	struct page *page;
 305	int page_uptodate = 1;
 306
 307	BUG_ON(!buffer_async_read(bh));
 308
 309	page = bh->b_page;
 310	if (uptodate) {
 311		set_buffer_uptodate(bh);
 312	} else {
 313		clear_buffer_uptodate(bh);
 314		if (!quiet_error(bh))
 315			buffer_io_error(bh);
 316		SetPageError(page);
 317	}
 318
 319	/*
 320	 * Be _very_ careful from here on. Bad things can happen if
 321	 * two buffer heads end IO at almost the same time and both
 322	 * decide that the page is now completely done.
 323	 */
 324	first = page_buffers(page);
 325	local_irq_save(flags);
 326	bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
 327	clear_buffer_async_read(bh);
 328	unlock_buffer(bh);
 329	tmp = bh;
 330	do {
 331		if (!buffer_uptodate(tmp))
 332			page_uptodate = 0;
 333		if (buffer_async_read(tmp)) {
 334			BUG_ON(!buffer_locked(tmp));
 335			goto still_busy;
 336		}
 337		tmp = tmp->b_this_page;
 338	} while (tmp != bh);
 339	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
 340	local_irq_restore(flags);
 341
 342	/*
 343	 * If none of the buffers had errors and they are all
 344	 * uptodate then we can set the page uptodate.
 345	 */
 346	if (page_uptodate && !PageError(page))
 347		SetPageUptodate(page);
 348	unlock_page(page);
 349	return;
 350
 351still_busy:
 352	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
 353	local_irq_restore(flags);
 354	return;
 355}
 356
 357/*
 358 * Completion handler for block_write_full_page() - pages which are unlocked
 359 * during I/O, and which have PageWriteback cleared upon I/O completion.
 360 */
 361void end_buffer_async_write(struct buffer_head *bh, int uptodate)
 362{
 363	char b[BDEVNAME_SIZE];
 364	unsigned long flags;
 365	struct buffer_head *first;
 366	struct buffer_head *tmp;
 367	struct page *page;
 368
 369	BUG_ON(!buffer_async_write(bh));
 370
 371	page = bh->b_page;
 372	if (uptodate) {
 373		set_buffer_uptodate(bh);
 374	} else {
 375		if (!quiet_error(bh)) {
 376			buffer_io_error(bh);
 377			printk(KERN_WARNING "lost page write due to "
 378					"I/O error on %s\n",
 379			       bdevname(bh->b_bdev, b));
 380		}
 381		set_bit(AS_EIO, &page->mapping->flags);
 382		set_buffer_write_io_error(bh);
 383		clear_buffer_uptodate(bh);
 384		SetPageError(page);
 385	}
 386
 387	first = page_buffers(page);
 388	local_irq_save(flags);
 389	bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
 390
 391	clear_buffer_async_write(bh);
 392	unlock_buffer(bh);
 393	tmp = bh->b_this_page;
 394	while (tmp != bh) {
 395		if (buffer_async_write(tmp)) {
 396			BUG_ON(!buffer_locked(tmp));
 397			goto still_busy;
 398		}
 399		tmp = tmp->b_this_page;
 400	}
 401	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
 402	local_irq_restore(flags);
 403	end_page_writeback(page);
 404	return;
 405
 406still_busy:
 407	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
 408	local_irq_restore(flags);
 409	return;
 410}
 411EXPORT_SYMBOL(end_buffer_async_write);
 412
 413/*
 414 * If a page's buffers are under async readin (end_buffer_async_read
 415 * completion) then there is a possibility that another thread of
 416 * control could lock one of the buffers after it has completed
 417 * but while some of the other buffers have not completed.  This
 418 * locked buffer would confuse end_buffer_async_read() into not unlocking
 419 * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
 420 * that this buffer is not under async I/O.
 421 *
 422 * The page comes unlocked when it has no locked buffer_async buffers
 423 * left.
 424 *
 425 * PageLocked prevents anyone starting new async I/O reads any of
 426 * the buffers.
 427 *
 428 * PageWriteback is used to prevent simultaneous writeout of the same
 429 * page.
 430 *
 431 * PageLocked prevents anyone from starting writeback of a page which is
 432 * under read I/O (PageWriteback is only ever set against a locked page).
 433 */
 434static void mark_buffer_async_read(struct buffer_head *bh)
 435{
 436	bh->b_end_io = end_buffer_async_read;
 437	set_buffer_async_read(bh);
 438}
 439
 440static void mark_buffer_async_write_endio(struct buffer_head *bh,
 441					  bh_end_io_t *handler)
 442{
 443	bh->b_end_io = handler;
 444	set_buffer_async_write(bh);
 445}
 446
 447void mark_buffer_async_write(struct buffer_head *bh)
 448{
 449	mark_buffer_async_write_endio(bh, end_buffer_async_write);
 450}
 451EXPORT_SYMBOL(mark_buffer_async_write);
 452
 453
 454/*
 455 * fs/buffer.c contains helper functions for buffer-backed address space's
 456 * fsync functions.  A common requirement for buffer-based filesystems is
 457 * that certain data from the backing blockdev needs to be written out for
 458 * a successful fsync().  For example, ext2 indirect blocks need to be
 459 * written back and waited upon before fsync() returns.
 460 *
 461 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
 462 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
 463 * management of a list of dependent buffers at ->i_mapping->private_list.
 464 *
 465 * Locking is a little subtle: try_to_free_buffers() will remove buffers
 466 * from their controlling inode's queue when they are being freed.  But
 467 * try_to_free_buffers() will be operating against the *blockdev* mapping
 468 * at the time, not against the S_ISREG file which depends on those buffers.
 469 * So the locking for private_list is via the private_lock in the address_space
 470 * which backs the buffers.  Which is different from the address_space 
 471 * against which the buffers are listed.  So for a particular address_space,
 472 * mapping->private_lock does *not* protect mapping->private_list!  In fact,
 473 * mapping->private_list will always be protected by the backing blockdev's
 474 * ->private_lock.
 475 *
 476 * Which introduces a requirement: all buffers on an address_space's
 477 * ->private_list must be from the same address_space: the blockdev's.
 478 *
 479 * address_spaces which do not place buffers at ->private_list via these
 480 * utility functions are free to use private_lock and private_list for
 481 * whatever they want.  The only requirement is that list_empty(private_list)
 482 * be true at clear_inode() time.
 483 *
 484 * FIXME: clear_inode should not call invalidate_inode_buffers().  The
 485 * filesystems should do that.  invalidate_inode_buffers() should just go
 486 * BUG_ON(!list_empty).
 487 *
 488 * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
 489 * take an address_space, not an inode.  And it should be called
 490 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
 491 * queued up.
 492 *
 493 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
 494 * list if it is already on a list.  Because if the buffer is on a list,
 495 * it *must* already be on the right one.  If not, the filesystem is being
 496 * silly.  This will save a ton of locking.  But first we have to ensure
 497 * that buffers are taken *off* the old inode's list when they are freed
 498 * (presumably in truncate).  That requires careful auditing of all
 499 * filesystems (do it inside bforget()).  It could also be done by bringing
 500 * b_inode back.
 501 */
 502
 503/*
 504 * The buffer's backing address_space's private_lock must be held
 505 */
 506static void __remove_assoc_queue(struct buffer_head *bh)
 507{
 508	list_del_init(&bh->b_assoc_buffers);
 509	WARN_ON(!bh->b_assoc_map);
 510	if (buffer_write_io_error(bh))
 511		set_bit(AS_EIO, &bh->b_assoc_map->flags);
 512	bh->b_assoc_map = NULL;
 513}
 514
 515int inode_has_buffers(struct inode *inode)
 516{
 517	return !list_empty(&inode->i_data.private_list);
 518}
 519
 520/*
 521 * osync is designed to support O_SYNC io.  It waits synchronously for
 522 * all already-submitted IO to complete, but does not queue any new
 523 * writes to the disk.
 524 *
 525 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
 526 * you dirty the buffers, and then use osync_inode_buffers to wait for
 527 * completion.  Any other dirty buffers which are not yet queued for
 528 * write will not be flushed to disk by the osync.
 529 */
 530static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
 531{
 532	struct buffer_head *bh;
 533	struct list_head *p;
 534	int err = 0;
 535
 536	spin_lock(lock);
 537repeat:
 538	list_for_each_prev(p, list) {
 539		bh = BH_ENTRY(p);
 540		if (buffer_locked(bh)) {
 541			get_bh(bh);
 542			spin_unlock(lock);
 543			wait_on_buffer(bh);
 544			if (!buffer_uptodate(bh))
 545				err = -EIO;
 546			brelse(bh);
 547			spin_lock(lock);
 548			goto repeat;
 549		}
 550	}
 551	spin_unlock(lock);
 552	return err;
 553}
 554
 555static void do_thaw_one(struct super_block *sb, void *unused)
 556{
 557	char b[BDEVNAME_SIZE];
 558	while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
 559		printk(KERN_WARNING "Emergency Thaw on %s\n",
 560		       bdevname(sb->s_bdev, b));
 561}
 562
 563static void do_thaw_all(struct work_struct *work)
 564{
 565	iterate_supers(do_thaw_one, NULL);
 566	kfree(work);
 567	printk(KERN_WARNING "Emergency Thaw complete\n");
 568}
 569
 570/**
 571 * emergency_thaw_all -- forcibly thaw every frozen filesystem
 572 *
 573 * Used for emergency unfreeze of all filesystems via SysRq
 574 */
 575void emergency_thaw_all(void)
 576{
 577	struct work_struct *work;
 578
 579	work = kmalloc(sizeof(*work), GFP_ATOMIC);
 580	if (work) {
 581		INIT_WORK(work, do_thaw_all);
 582		schedule_work(work);
 583	}
 584}
 585
 586/**
 587 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
 588 * @mapping: the mapping which wants those buffers written
 589 *
 590 * Starts I/O against the buffers at mapping->private_list, and waits upon
 591 * that I/O.
 592 *
 593 * Basically, this is a convenience function for fsync().
 594 * @mapping is a file or directory which needs those buffers to be written for
 595 * a successful fsync().
 596 */
 597int sync_mapping_buffers(struct address_space *mapping)
 598{
 599	struct address_space *buffer_mapping = mapping->private_data;
 600
 601	if (buffer_mapping == NULL || list_empty(&mapping->private_list))
 602		return 0;
 603
 604	return fsync_buffers_list(&buffer_mapping->private_lock,
 605					&mapping->private_list);
 606}
 607EXPORT_SYMBOL(sync_mapping_buffers);
 608
 609/*
 610 * Called when we've recently written block `bblock', and it is known that
 611 * `bblock' was for a buffer_boundary() buffer.  This means that the block at
 612 * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
 613 * dirty, schedule it for IO.  So that indirects merge nicely with their data.
 614 */
 615void write_boundary_block(struct block_device *bdev,
 616			sector_t bblock, unsigned blocksize)
 617{
 618	struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
 619	if (bh) {
 620		if (buffer_dirty(bh))
 621			ll_rw_block(WRITE, 1, &bh);
 622		put_bh(bh);
 623	}
 624}
 625
 626void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
 627{
 628	struct address_space *mapping = inode->i_mapping;
 629	struct address_space *buffer_mapping = bh->b_page->mapping;
 630
 631	mark_buffer_dirty(bh);
 632	if (!mapping->private_data) {
 633		mapping->private_data = buffer_mapping;
 634	} else {
 635		BUG_ON(mapping->private_data != buffer_mapping);
 636	}
 637	if (!bh->b_assoc_map) {
 638		spin_lock(&buffer_mapping->private_lock);
 639		list_move_tail(&bh->b_assoc_buffers,
 640				&mapping->private_list);
 641		bh->b_assoc_map = mapping;
 642		spin_unlock(&buffer_mapping->private_lock);
 643	}
 644}
 645EXPORT_SYMBOL(mark_buffer_dirty_inode);
 646
 647/*
 648 * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
 649 * dirty.
 650 *
 651 * If warn is true, then emit a warning if the page is not uptodate and has
 652 * not been truncated.
 
 
 653 */
 654static void __set_page_dirty(struct page *page,
 655		struct address_space *mapping, int warn)
 656{
 657	unsigned long flags;
 658
 659	spin_lock_irqsave(&mapping->tree_lock, flags);
 660	if (page->mapping) {	/* Race with truncate? */
 661		WARN_ON_ONCE(warn && !PageUptodate(page));
 662		account_page_dirtied(page, mapping);
 663		radix_tree_tag_set(&mapping->page_tree,
 664				page_index(page), PAGECACHE_TAG_DIRTY);
 665	}
 666	spin_unlock_irqrestore(&mapping->tree_lock, flags);
 667	__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
 668}
 669
 670/*
 671 * Add a page to the dirty page list.
 672 *
 673 * It is a sad fact of life that this function is called from several places
 674 * deeply under spinlocking.  It may not sleep.
 675 *
 676 * If the page has buffers, the uptodate buffers are set dirty, to preserve
 677 * dirty-state coherency between the page and the buffers.  It the page does
 678 * not have buffers then when they are later attached they will all be set
 679 * dirty.
 680 *
 681 * The buffers are dirtied before the page is dirtied.  There's a small race
 682 * window in which a writepage caller may see the page cleanness but not the
 683 * buffer dirtiness.  That's fine.  If this code were to set the page dirty
 684 * before the buffers, a concurrent writepage caller could clear the page dirty
 685 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
 686 * page on the dirty page list.
 687 *
 688 * We use private_lock to lock against try_to_free_buffers while using the
 689 * page's buffer list.  Also use this to protect against clean buffers being
 690 * added to the page after it was set dirty.
 691 *
 692 * FIXME: may need to call ->reservepage here as well.  That's rather up to the
 693 * address_space though.
 694 */
 695int __set_page_dirty_buffers(struct page *page)
 696{
 697	int newly_dirty;
 698	struct address_space *mapping = page_mapping(page);
 699
 700	if (unlikely(!mapping))
 701		return !TestSetPageDirty(page);
 702
 703	spin_lock(&mapping->private_lock);
 704	if (page_has_buffers(page)) {
 705		struct buffer_head *head = page_buffers(page);
 706		struct buffer_head *bh = head;
 707
 708		do {
 709			set_buffer_dirty(bh);
 710			bh = bh->b_this_page;
 711		} while (bh != head);
 712	}
 
 
 
 
 
 713	newly_dirty = !TestSetPageDirty(page);
 714	spin_unlock(&mapping->private_lock);
 715
 716	if (newly_dirty)
 717		__set_page_dirty(page, mapping, 1);
 
 
 
 
 
 
 718	return newly_dirty;
 719}
 720EXPORT_SYMBOL(__set_page_dirty_buffers);
 721
 722/*
 723 * Write out and wait upon a list of buffers.
 724 *
 725 * We have conflicting pressures: we want to make sure that all
 726 * initially dirty buffers get waited on, but that any subsequently
 727 * dirtied buffers don't.  After all, we don't want fsync to last
 728 * forever if somebody is actively writing to the file.
 729 *
 730 * Do this in two main stages: first we copy dirty buffers to a
 731 * temporary inode list, queueing the writes as we go.  Then we clean
 732 * up, waiting for those writes to complete.
 733 * 
 734 * During this second stage, any subsequent updates to the file may end
 735 * up refiling the buffer on the original inode's dirty list again, so
 736 * there is a chance we will end up with a buffer queued for write but
 737 * not yet completed on that list.  So, as a final cleanup we go through
 738 * the osync code to catch these locked, dirty buffers without requeuing
 739 * any newly dirty buffers for write.
 740 */
 741static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
 742{
 743	struct buffer_head *bh;
 744	struct list_head tmp;
 745	struct address_space *mapping;
 746	int err = 0, err2;
 747	struct blk_plug plug;
 748
 749	INIT_LIST_HEAD(&tmp);
 750	blk_start_plug(&plug);
 751
 752	spin_lock(lock);
 753	while (!list_empty(list)) {
 754		bh = BH_ENTRY(list->next);
 755		mapping = bh->b_assoc_map;
 756		__remove_assoc_queue(bh);
 757		/* Avoid race with mark_buffer_dirty_inode() which does
 758		 * a lockless check and we rely on seeing the dirty bit */
 759		smp_mb();
 760		if (buffer_dirty(bh) || buffer_locked(bh)) {
 761			list_add(&bh->b_assoc_buffers, &tmp);
 762			bh->b_assoc_map = mapping;
 763			if (buffer_dirty(bh)) {
 764				get_bh(bh);
 765				spin_unlock(lock);
 766				/*
 767				 * Ensure any pending I/O completes so that
 768				 * write_dirty_buffer() actually writes the
 769				 * current contents - it is a noop if I/O is
 770				 * still in flight on potentially older
 771				 * contents.
 772				 */
 773				write_dirty_buffer(bh, WRITE_SYNC);
 774
 775				/*
 776				 * Kick off IO for the previous mapping. Note
 777				 * that we will not run the very last mapping,
 778				 * wait_on_buffer() will do that for us
 779				 * through sync_buffer().
 780				 */
 781				brelse(bh);
 782				spin_lock(lock);
 783			}
 784		}
 785	}
 786
 787	spin_unlock(lock);
 788	blk_finish_plug(&plug);
 789	spin_lock(lock);
 790
 791	while (!list_empty(&tmp)) {
 792		bh = BH_ENTRY(tmp.prev);
 793		get_bh(bh);
 794		mapping = bh->b_assoc_map;
 795		__remove_assoc_queue(bh);
 796		/* Avoid race with mark_buffer_dirty_inode() which does
 797		 * a lockless check and we rely on seeing the dirty bit */
 798		smp_mb();
 799		if (buffer_dirty(bh)) {
 800			list_add(&bh->b_assoc_buffers,
 801				 &mapping->private_list);
 802			bh->b_assoc_map = mapping;
 803		}
 804		spin_unlock(lock);
 805		wait_on_buffer(bh);
 806		if (!buffer_uptodate(bh))
 807			err = -EIO;
 808		brelse(bh);
 809		spin_lock(lock);
 810	}
 811	
 812	spin_unlock(lock);
 813	err2 = osync_buffers_list(lock, list);
 814	if (err)
 815		return err;
 816	else
 817		return err2;
 818}
 819
 820/*
 821 * Invalidate any and all dirty buffers on a given inode.  We are
 822 * probably unmounting the fs, but that doesn't mean we have already
 823 * done a sync().  Just drop the buffers from the inode list.
 824 *
 825 * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
 826 * assumes that all the buffers are against the blockdev.  Not true
 827 * for reiserfs.
 828 */
 829void invalidate_inode_buffers(struct inode *inode)
 830{
 831	if (inode_has_buffers(inode)) {
 832		struct address_space *mapping = &inode->i_data;
 833		struct list_head *list = &mapping->private_list;
 834		struct address_space *buffer_mapping = mapping->private_data;
 835
 836		spin_lock(&buffer_mapping->private_lock);
 837		while (!list_empty(list))
 838			__remove_assoc_queue(BH_ENTRY(list->next));
 839		spin_unlock(&buffer_mapping->private_lock);
 840	}
 841}
 842EXPORT_SYMBOL(invalidate_inode_buffers);
 843
 844/*
 845 * Remove any clean buffers from the inode's buffer list.  This is called
 846 * when we're trying to free the inode itself.  Those buffers can pin it.
 847 *
 848 * Returns true if all buffers were removed.
 849 */
 850int remove_inode_buffers(struct inode *inode)
 851{
 852	int ret = 1;
 853
 854	if (inode_has_buffers(inode)) {
 855		struct address_space *mapping = &inode->i_data;
 856		struct list_head *list = &mapping->private_list;
 857		struct address_space *buffer_mapping = mapping->private_data;
 858
 859		spin_lock(&buffer_mapping->private_lock);
 860		while (!list_empty(list)) {
 861			struct buffer_head *bh = BH_ENTRY(list->next);
 862			if (buffer_dirty(bh)) {
 863				ret = 0;
 864				break;
 865			}
 866			__remove_assoc_queue(bh);
 867		}
 868		spin_unlock(&buffer_mapping->private_lock);
 869	}
 870	return ret;
 871}
 872
 873/*
 874 * Create the appropriate buffers when given a page for data area and
 875 * the size of each buffer.. Use the bh->b_this_page linked list to
 876 * follow the buffers created.  Return NULL if unable to create more
 877 * buffers.
 878 *
 879 * The retry flag is used to differentiate async IO (paging, swapping)
 880 * which may not fail from ordinary buffer allocations.
 881 */
 882struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
 883		int retry)
 884{
 885	struct buffer_head *bh, *head;
 886	long offset;
 887
 888try_again:
 889	head = NULL;
 890	offset = PAGE_SIZE;
 891	while ((offset -= size) >= 0) {
 892		bh = alloc_buffer_head(GFP_NOFS);
 893		if (!bh)
 894			goto no_grow;
 895
 896		bh->b_this_page = head;
 897		bh->b_blocknr = -1;
 898		head = bh;
 899
 900		bh->b_size = size;
 901
 902		/* Link the buffer to its page */
 903		set_bh_page(bh, page, offset);
 904	}
 905	return head;
 906/*
 907 * In case anything failed, we just free everything we got.
 908 */
 909no_grow:
 910	if (head) {
 911		do {
 912			bh = head;
 913			head = head->b_this_page;
 914			free_buffer_head(bh);
 915		} while (head);
 916	}
 917
 918	/*
 919	 * Return failure for non-async IO requests.  Async IO requests
 920	 * are not allowed to fail, so we have to wait until buffer heads
 921	 * become available.  But we don't want tasks sleeping with 
 922	 * partially complete buffers, so all were released above.
 923	 */
 924	if (!retry)
 925		return NULL;
 926
 927	/* We're _really_ low on memory. Now we just
 928	 * wait for old buffer heads to become free due to
 929	 * finishing IO.  Since this is an async request and
 930	 * the reserve list is empty, we're sure there are 
 931	 * async buffer heads in use.
 932	 */
 933	free_more_memory();
 934	goto try_again;
 935}
 936EXPORT_SYMBOL_GPL(alloc_page_buffers);
 937
 938static inline void
 939link_dev_buffers(struct page *page, struct buffer_head *head)
 940{
 941	struct buffer_head *bh, *tail;
 942
 943	bh = head;
 944	do {
 945		tail = bh;
 946		bh = bh->b_this_page;
 947	} while (bh);
 948	tail->b_this_page = head;
 949	attach_page_buffers(page, head);
 950}
 951
 952static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
 953{
 954	sector_t retval = ~((sector_t)0);
 955	loff_t sz = i_size_read(bdev->bd_inode);
 956
 957	if (sz) {
 958		unsigned int sizebits = blksize_bits(size);
 959		retval = (sz >> sizebits);
 960	}
 961	return retval;
 962}
 963
 964/*
 965 * Initialise the state of a blockdev page's buffers.
 966 */ 
 967static sector_t
 968init_page_buffers(struct page *page, struct block_device *bdev,
 969			sector_t block, int size)
 970{
 971	struct buffer_head *head = page_buffers(page);
 972	struct buffer_head *bh = head;
 973	int uptodate = PageUptodate(page);
 974	sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size);
 975
 976	do {
 977		if (!buffer_mapped(bh)) {
 978			init_buffer(bh, NULL, NULL);
 979			bh->b_bdev = bdev;
 980			bh->b_blocknr = block;
 981			if (uptodate)
 982				set_buffer_uptodate(bh);
 983			if (block < end_block)
 984				set_buffer_mapped(bh);
 985		}
 986		block++;
 987		bh = bh->b_this_page;
 988	} while (bh != head);
 989
 990	/*
 991	 * Caller needs to validate requested block against end of device.
 992	 */
 993	return end_block;
 994}
 995
 996/*
 997 * Create the page-cache page that contains the requested block.
 998 *
 999 * This is used purely for blockdev mappings.
1000 */
1001static int
1002grow_dev_page(struct block_device *bdev, sector_t block,
1003		pgoff_t index, int size, int sizebits)
1004{
1005	struct inode *inode = bdev->bd_inode;
1006	struct page *page;
1007	struct buffer_head *bh;
1008	sector_t end_block;
1009	int ret = 0;		/* Will call free_more_memory() */
1010	gfp_t gfp_mask;
1011
1012	gfp_mask = mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS;
1013	gfp_mask |= __GFP_MOVABLE;
1014	/*
1015	 * XXX: __getblk_slow() can not really deal with failure and
1016	 * will endlessly loop on improvised global reclaim.  Prefer
1017	 * looping in the allocator rather than here, at least that
1018	 * code knows what it's doing.
1019	 */
1020	gfp_mask |= __GFP_NOFAIL;
1021
1022	page = find_or_create_page(inode->i_mapping, index, gfp_mask);
1023	if (!page)
1024		return ret;
1025
1026	BUG_ON(!PageLocked(page));
1027
1028	if (page_has_buffers(page)) {
1029		bh = page_buffers(page);
1030		if (bh->b_size == size) {
1031			end_block = init_page_buffers(page, bdev,
1032						index << sizebits, size);
 
1033			goto done;
1034		}
1035		if (!try_to_free_buffers(page))
1036			goto failed;
1037	}
1038
1039	/*
1040	 * Allocate some buffers for this page
1041	 */
1042	bh = alloc_page_buffers(page, size, 0);
1043	if (!bh)
1044		goto failed;
1045
1046	/*
1047	 * Link the page to the buffers and initialise them.  Take the
1048	 * lock to be atomic wrt __find_get_block(), which does not
1049	 * run under the page lock.
1050	 */
1051	spin_lock(&inode->i_mapping->private_lock);
1052	link_dev_buffers(page, bh);
1053	end_block = init_page_buffers(page, bdev, index << sizebits, size);
 
1054	spin_unlock(&inode->i_mapping->private_lock);
1055done:
1056	ret = (block < end_block) ? 1 : -ENXIO;
1057failed:
1058	unlock_page(page);
1059	page_cache_release(page);
1060	return ret;
1061}
1062
1063/*
1064 * Create buffers for the specified block device block's page.  If
1065 * that page was dirty, the buffers are set dirty also.
1066 */
1067static int
1068grow_buffers(struct block_device *bdev, sector_t block, int size)
1069{
1070	pgoff_t index;
1071	int sizebits;
1072
1073	sizebits = -1;
1074	do {
1075		sizebits++;
1076	} while ((size << sizebits) < PAGE_SIZE);
1077
1078	index = block >> sizebits;
1079
1080	/*
1081	 * Check for a block which wants to lie outside our maximum possible
1082	 * pagecache index.  (this comparison is done using sector_t types).
1083	 */
1084	if (unlikely(index != block >> sizebits)) {
1085		char b[BDEVNAME_SIZE];
1086
1087		printk(KERN_ERR "%s: requested out-of-range block %llu for "
1088			"device %s\n",
1089			__func__, (unsigned long long)block,
1090			bdevname(bdev, b));
1091		return -EIO;
1092	}
1093
1094	/* Create a page with the proper size buffers.. */
1095	return grow_dev_page(bdev, block, index, size, sizebits);
1096}
1097
1098static struct buffer_head *
1099__getblk_slow(struct block_device *bdev, sector_t block, int size)
 
1100{
1101	/* Size must be multiple of hard sectorsize */
1102	if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1103			(size < 512 || size > PAGE_SIZE))) {
1104		printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1105					size);
1106		printk(KERN_ERR "logical block size: %d\n",
1107					bdev_logical_block_size(bdev));
1108
1109		dump_stack();
1110		return NULL;
1111	}
1112
1113	for (;;) {
1114		struct buffer_head *bh;
1115		int ret;
1116
1117		bh = __find_get_block(bdev, block, size);
1118		if (bh)
1119			return bh;
1120
1121		ret = grow_buffers(bdev, block, size);
1122		if (ret < 0)
1123			return NULL;
1124		if (ret == 0)
1125			free_more_memory();
1126	}
1127}
1128
1129/*
1130 * The relationship between dirty buffers and dirty pages:
1131 *
1132 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1133 * the page is tagged dirty in its radix tree.
1134 *
1135 * At all times, the dirtiness of the buffers represents the dirtiness of
1136 * subsections of the page.  If the page has buffers, the page dirty bit is
1137 * merely a hint about the true dirty state.
1138 *
1139 * When a page is set dirty in its entirety, all its buffers are marked dirty
1140 * (if the page has buffers).
1141 *
1142 * When a buffer is marked dirty, its page is dirtied, but the page's other
1143 * buffers are not.
1144 *
1145 * Also.  When blockdev buffers are explicitly read with bread(), they
1146 * individually become uptodate.  But their backing page remains not
1147 * uptodate - even if all of its buffers are uptodate.  A subsequent
1148 * block_read_full_page() against that page will discover all the uptodate
1149 * buffers, will set the page uptodate and will perform no I/O.
1150 */
1151
1152/**
1153 * mark_buffer_dirty - mark a buffer_head as needing writeout
1154 * @bh: the buffer_head to mark dirty
1155 *
1156 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1157 * backing page dirty, then tag the page as dirty in its address_space's radix
1158 * tree and then attach the address_space's inode to its superblock's dirty
1159 * inode list.
1160 *
1161 * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1162 * mapping->tree_lock and mapping->host->i_lock.
1163 */
1164void mark_buffer_dirty(struct buffer_head *bh)
1165{
1166	WARN_ON_ONCE(!buffer_uptodate(bh));
1167
1168	trace_block_dirty_buffer(bh);
1169
1170	/*
1171	 * Very *carefully* optimize the it-is-already-dirty case.
1172	 *
1173	 * Don't let the final "is it dirty" escape to before we
1174	 * perhaps modified the buffer.
1175	 */
1176	if (buffer_dirty(bh)) {
1177		smp_mb();
1178		if (buffer_dirty(bh))
1179			return;
1180	}
1181
1182	if (!test_set_buffer_dirty(bh)) {
1183		struct page *page = bh->b_page;
 
 
 
1184		if (!TestSetPageDirty(page)) {
1185			struct address_space *mapping = page_mapping(page);
1186			if (mapping)
1187				__set_page_dirty(page, mapping, 0);
1188		}
 
 
 
1189	}
1190}
1191EXPORT_SYMBOL(mark_buffer_dirty);
1192
1193/*
1194 * Decrement a buffer_head's reference count.  If all buffers against a page
1195 * have zero reference count, are clean and unlocked, and if the page is clean
1196 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1197 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1198 * a page but it ends up not being freed, and buffers may later be reattached).
1199 */
1200void __brelse(struct buffer_head * buf)
1201{
1202	if (atomic_read(&buf->b_count)) {
1203		put_bh(buf);
1204		return;
1205	}
1206	WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1207}
1208EXPORT_SYMBOL(__brelse);
1209
1210/*
1211 * bforget() is like brelse(), except it discards any
1212 * potentially dirty data.
1213 */
1214void __bforget(struct buffer_head *bh)
1215{
1216	clear_buffer_dirty(bh);
1217	if (bh->b_assoc_map) {
1218		struct address_space *buffer_mapping = bh->b_page->mapping;
1219
1220		spin_lock(&buffer_mapping->private_lock);
1221		list_del_init(&bh->b_assoc_buffers);
1222		bh->b_assoc_map = NULL;
1223		spin_unlock(&buffer_mapping->private_lock);
1224	}
1225	__brelse(bh);
1226}
1227EXPORT_SYMBOL(__bforget);
1228
1229static struct buffer_head *__bread_slow(struct buffer_head *bh)
1230{
1231	lock_buffer(bh);
1232	if (buffer_uptodate(bh)) {
1233		unlock_buffer(bh);
1234		return bh;
1235	} else {
1236		get_bh(bh);
1237		bh->b_end_io = end_buffer_read_sync;
1238		submit_bh(READ, bh);
1239		wait_on_buffer(bh);
1240		if (buffer_uptodate(bh))
1241			return bh;
1242	}
1243	brelse(bh);
1244	return NULL;
1245}
1246
1247/*
1248 * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1249 * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1250 * refcount elevated by one when they're in an LRU.  A buffer can only appear
1251 * once in a particular CPU's LRU.  A single buffer can be present in multiple
1252 * CPU's LRUs at the same time.
1253 *
1254 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1255 * sb_find_get_block().
1256 *
1257 * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1258 * a local interrupt disable for that.
1259 */
1260
1261#define BH_LRU_SIZE	8
1262
1263struct bh_lru {
1264	struct buffer_head *bhs[BH_LRU_SIZE];
1265};
1266
1267static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1268
1269#ifdef CONFIG_SMP
1270#define bh_lru_lock()	local_irq_disable()
1271#define bh_lru_unlock()	local_irq_enable()
1272#else
1273#define bh_lru_lock()	preempt_disable()
1274#define bh_lru_unlock()	preempt_enable()
1275#endif
1276
1277static inline void check_irqs_on(void)
1278{
1279#ifdef irqs_disabled
1280	BUG_ON(irqs_disabled());
1281#endif
1282}
1283
1284/*
1285 * The LRU management algorithm is dopey-but-simple.  Sorry.
1286 */
1287static void bh_lru_install(struct buffer_head *bh)
1288{
1289	struct buffer_head *evictee = NULL;
1290
1291	check_irqs_on();
1292	bh_lru_lock();
1293	if (__this_cpu_read(bh_lrus.bhs[0]) != bh) {
1294		struct buffer_head *bhs[BH_LRU_SIZE];
1295		int in;
1296		int out = 0;
1297
1298		get_bh(bh);
1299		bhs[out++] = bh;
1300		for (in = 0; in < BH_LRU_SIZE; in++) {
1301			struct buffer_head *bh2 =
1302				__this_cpu_read(bh_lrus.bhs[in]);
1303
1304			if (bh2 == bh) {
1305				__brelse(bh2);
1306			} else {
1307				if (out >= BH_LRU_SIZE) {
1308					BUG_ON(evictee != NULL);
1309					evictee = bh2;
1310				} else {
1311					bhs[out++] = bh2;
1312				}
1313			}
1314		}
1315		while (out < BH_LRU_SIZE)
1316			bhs[out++] = NULL;
1317		memcpy(this_cpu_ptr(&bh_lrus.bhs), bhs, sizeof(bhs));
1318	}
1319	bh_lru_unlock();
1320
1321	if (evictee)
1322		__brelse(evictee);
1323}
1324
1325/*
1326 * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1327 */
1328static struct buffer_head *
1329lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1330{
1331	struct buffer_head *ret = NULL;
1332	unsigned int i;
1333
1334	check_irqs_on();
1335	bh_lru_lock();
1336	for (i = 0; i < BH_LRU_SIZE; i++) {
1337		struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1338
1339		if (bh && bh->b_bdev == bdev &&
1340				bh->b_blocknr == block && bh->b_size == size) {
1341			if (i) {
1342				while (i) {
1343					__this_cpu_write(bh_lrus.bhs[i],
1344						__this_cpu_read(bh_lrus.bhs[i - 1]));
1345					i--;
1346				}
1347				__this_cpu_write(bh_lrus.bhs[0], bh);
1348			}
1349			get_bh(bh);
1350			ret = bh;
1351			break;
1352		}
1353	}
1354	bh_lru_unlock();
1355	return ret;
1356}
1357
1358/*
1359 * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1360 * it in the LRU and mark it as accessed.  If it is not present then return
1361 * NULL
1362 */
1363struct buffer_head *
1364__find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1365{
1366	struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1367
1368	if (bh == NULL) {
 
1369		bh = __find_get_block_slow(bdev, block);
1370		if (bh)
1371			bh_lru_install(bh);
1372	}
1373	if (bh)
1374		touch_buffer(bh);
 
1375	return bh;
1376}
1377EXPORT_SYMBOL(__find_get_block);
1378
1379/*
1380 * __getblk will locate (and, if necessary, create) the buffer_head
1381 * which corresponds to the passed block_device, block and size. The
1382 * returned buffer has its reference count incremented.
1383 *
1384 * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1385 * attempt is failing.  FIXME, perhaps?
1386 */
1387struct buffer_head *
1388__getblk(struct block_device *bdev, sector_t block, unsigned size)
 
1389{
1390	struct buffer_head *bh = __find_get_block(bdev, block, size);
1391
1392	might_sleep();
1393	if (bh == NULL)
1394		bh = __getblk_slow(bdev, block, size);
1395	return bh;
1396}
1397EXPORT_SYMBOL(__getblk);
1398
1399/*
1400 * Do async read-ahead on a buffer..
1401 */
1402void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1403{
1404	struct buffer_head *bh = __getblk(bdev, block, size);
1405	if (likely(bh)) {
1406		ll_rw_block(READA, 1, &bh);
1407		brelse(bh);
1408	}
1409}
1410EXPORT_SYMBOL(__breadahead);
1411
1412/**
1413 *  __bread() - reads a specified block and returns the bh
1414 *  @bdev: the block_device to read from
1415 *  @block: number of block
1416 *  @size: size (in bytes) to read
1417 * 
 
1418 *  Reads a specified block, and returns buffer head that contains it.
 
 
1419 *  It returns NULL if the block was unreadable.
1420 */
1421struct buffer_head *
1422__bread(struct block_device *bdev, sector_t block, unsigned size)
 
1423{
1424	struct buffer_head *bh = __getblk(bdev, block, size);
1425
1426	if (likely(bh) && !buffer_uptodate(bh))
1427		bh = __bread_slow(bh);
1428	return bh;
1429}
1430EXPORT_SYMBOL(__bread);
1431
1432/*
1433 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1434 * This doesn't race because it runs in each cpu either in irq
1435 * or with preempt disabled.
1436 */
1437static void invalidate_bh_lru(void *arg)
1438{
1439	struct bh_lru *b = &get_cpu_var(bh_lrus);
1440	int i;
1441
1442	for (i = 0; i < BH_LRU_SIZE; i++) {
1443		brelse(b->bhs[i]);
1444		b->bhs[i] = NULL;
1445	}
1446	put_cpu_var(bh_lrus);
1447}
1448
1449static bool has_bh_in_lru(int cpu, void *dummy)
1450{
1451	struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1452	int i;
1453	
1454	for (i = 0; i < BH_LRU_SIZE; i++) {
1455		if (b->bhs[i])
1456			return 1;
1457	}
1458
1459	return 0;
1460}
1461
1462void invalidate_bh_lrus(void)
1463{
1464	on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL);
1465}
1466EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1467
1468void set_bh_page(struct buffer_head *bh,
1469		struct page *page, unsigned long offset)
1470{
1471	bh->b_page = page;
1472	BUG_ON(offset >= PAGE_SIZE);
1473	if (PageHighMem(page))
1474		/*
1475		 * This catches illegal uses and preserves the offset:
1476		 */
1477		bh->b_data = (char *)(0 + offset);
1478	else
1479		bh->b_data = page_address(page) + offset;
1480}
1481EXPORT_SYMBOL(set_bh_page);
1482
1483/*
1484 * Called when truncating a buffer on a page completely.
1485 */
 
 
 
 
 
 
1486static void discard_buffer(struct buffer_head * bh)
1487{
 
 
1488	lock_buffer(bh);
1489	clear_buffer_dirty(bh);
1490	bh->b_bdev = NULL;
1491	clear_buffer_mapped(bh);
1492	clear_buffer_req(bh);
1493	clear_buffer_new(bh);
1494	clear_buffer_delay(bh);
1495	clear_buffer_unwritten(bh);
 
 
 
1496	unlock_buffer(bh);
1497}
1498
1499/**
1500 * block_invalidatepage - invalidate part or all of a buffer-backed page
1501 *
1502 * @page: the page which is affected
1503 * @offset: start of the range to invalidate
1504 * @length: length of the range to invalidate
1505 *
1506 * block_invalidatepage() is called when all or part of the page has become
1507 * invalidated by a truncate operation.
1508 *
1509 * block_invalidatepage() does not have to release all buffers, but it must
1510 * ensure that no dirty buffer is left outside @offset and that no I/O
1511 * is underway against any of the blocks which are outside the truncation
1512 * point.  Because the caller is about to free (and possibly reuse) those
1513 * blocks on-disk.
1514 */
1515void block_invalidatepage(struct page *page, unsigned int offset,
1516			  unsigned int length)
1517{
1518	struct buffer_head *head, *bh, *next;
1519	unsigned int curr_off = 0;
1520	unsigned int stop = length + offset;
1521
1522	BUG_ON(!PageLocked(page));
1523	if (!page_has_buffers(page))
1524		goto out;
1525
1526	/*
1527	 * Check for overflow
1528	 */
1529	BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1530
1531	head = page_buffers(page);
1532	bh = head;
1533	do {
1534		unsigned int next_off = curr_off + bh->b_size;
1535		next = bh->b_this_page;
1536
1537		/*
1538		 * Are we still fully in range ?
1539		 */
1540		if (next_off > stop)
1541			goto out;
1542
1543		/*
1544		 * is this block fully invalidated?
1545		 */
1546		if (offset <= curr_off)
1547			discard_buffer(bh);
1548		curr_off = next_off;
1549		bh = next;
1550	} while (bh != head);
1551
1552	/*
1553	 * We release buffers only if the entire page is being invalidated.
1554	 * The get_block cached value has been unconditionally invalidated,
1555	 * so real IO is not possible anymore.
1556	 */
1557	if (offset == 0)
1558		try_to_release_page(page, 0);
1559out:
1560	return;
1561}
1562EXPORT_SYMBOL(block_invalidatepage);
1563
1564
1565/*
1566 * We attach and possibly dirty the buffers atomically wrt
1567 * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1568 * is already excluded via the page lock.
1569 */
1570void create_empty_buffers(struct page *page,
1571			unsigned long blocksize, unsigned long b_state)
1572{
1573	struct buffer_head *bh, *head, *tail;
1574
1575	head = alloc_page_buffers(page, blocksize, 1);
1576	bh = head;
1577	do {
1578		bh->b_state |= b_state;
1579		tail = bh;
1580		bh = bh->b_this_page;
1581	} while (bh);
1582	tail->b_this_page = head;
1583
1584	spin_lock(&page->mapping->private_lock);
1585	if (PageUptodate(page) || PageDirty(page)) {
1586		bh = head;
1587		do {
1588			if (PageDirty(page))
1589				set_buffer_dirty(bh);
1590			if (PageUptodate(page))
1591				set_buffer_uptodate(bh);
1592			bh = bh->b_this_page;
1593		} while (bh != head);
1594	}
1595	attach_page_buffers(page, head);
1596	spin_unlock(&page->mapping->private_lock);
1597}
1598EXPORT_SYMBOL(create_empty_buffers);
1599
1600/*
1601 * We are taking a block for data and we don't want any output from any
1602 * buffer-cache aliases starting from return from that function and
1603 * until the moment when something will explicitly mark the buffer
1604 * dirty (hopefully that will not happen until we will free that block ;-)
1605 * We don't even need to mark it not-uptodate - nobody can expect
1606 * anything from a newly allocated buffer anyway. We used to used
1607 * unmap_buffer() for such invalidation, but that was wrong. We definitely
1608 * don't want to mark the alias unmapped, for example - it would confuse
1609 * anyone who might pick it with bread() afterwards...
1610 *
1611 * Also..  Note that bforget() doesn't lock the buffer.  So there can
1612 * be writeout I/O going on against recently-freed buffers.  We don't
1613 * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1614 * only if we really need to.  That happens here.
 
 
 
 
1615 */
1616void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1617{
1618	struct buffer_head *old_bh;
 
 
 
 
 
 
 
1619
1620	might_sleep();
 
 
 
 
 
1621
1622	old_bh = __find_get_block_slow(bdev, block);
1623	if (old_bh) {
1624		clear_buffer_dirty(old_bh);
1625		wait_on_buffer(old_bh);
1626		clear_buffer_req(old_bh);
1627		__brelse(old_bh);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1628	}
1629}
1630EXPORT_SYMBOL(unmap_underlying_metadata);
1631
1632/*
1633 * Size is a power-of-two in the range 512..PAGE_SIZE,
1634 * and the case we care about most is PAGE_SIZE.
1635 *
1636 * So this *could* possibly be written with those
1637 * constraints in mind (relevant mostly if some
1638 * architecture has a slow bit-scan instruction)
1639 */
1640static inline int block_size_bits(unsigned int blocksize)
1641{
1642	return ilog2(blocksize);
1643}
1644
1645static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1646{
1647	BUG_ON(!PageLocked(page));
1648
1649	if (!page_has_buffers(page))
1650		create_empty_buffers(page, 1 << ACCESS_ONCE(inode->i_blkbits), b_state);
1651	return page_buffers(page);
1652}
1653
1654/*
1655 * NOTE! All mapped/uptodate combinations are valid:
1656 *
1657 *	Mapped	Uptodate	Meaning
1658 *
1659 *	No	No		"unknown" - must do get_block()
1660 *	No	Yes		"hole" - zero-filled
1661 *	Yes	No		"allocated" - allocated on disk, not read in
1662 *	Yes	Yes		"valid" - allocated and up-to-date in memory.
1663 *
1664 * "Dirty" is valid only with the last case (mapped+uptodate).
1665 */
1666
1667/*
1668 * While block_write_full_page is writing back the dirty buffers under
1669 * the page lock, whoever dirtied the buffers may decide to clean them
1670 * again at any time.  We handle that by only looking at the buffer
1671 * state inside lock_buffer().
1672 *
1673 * If block_write_full_page() is called for regular writeback
1674 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1675 * locked buffer.   This only can happen if someone has written the buffer
1676 * directly, with submit_bh().  At the address_space level PageWriteback
1677 * prevents this contention from occurring.
1678 *
1679 * If block_write_full_page() is called with wbc->sync_mode ==
1680 * WB_SYNC_ALL, the writes are posted using WRITE_SYNC; this
1681 * causes the writes to be flagged as synchronous writes.
1682 */
1683static int __block_write_full_page(struct inode *inode, struct page *page,
1684			get_block_t *get_block, struct writeback_control *wbc,
1685			bh_end_io_t *handler)
1686{
1687	int err;
1688	sector_t block;
1689	sector_t last_block;
1690	struct buffer_head *bh, *head;
1691	unsigned int blocksize, bbits;
1692	int nr_underway = 0;
1693	int write_op = (wbc->sync_mode == WB_SYNC_ALL ?
1694			WRITE_SYNC : WRITE);
1695
1696	head = create_page_buffers(page, inode,
1697					(1 << BH_Dirty)|(1 << BH_Uptodate));
1698
1699	/*
1700	 * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1701	 * here, and the (potentially unmapped) buffers may become dirty at
1702	 * any time.  If a buffer becomes dirty here after we've inspected it
1703	 * then we just miss that fact, and the page stays dirty.
1704	 *
1705	 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1706	 * handle that here by just cleaning them.
1707	 */
1708
1709	bh = head;
1710	blocksize = bh->b_size;
1711	bbits = block_size_bits(blocksize);
1712
1713	block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1714	last_block = (i_size_read(inode) - 1) >> bbits;
1715
1716	/*
1717	 * Get all the dirty buffers mapped to disk addresses and
1718	 * handle any aliases from the underlying blockdev's mapping.
1719	 */
1720	do {
1721		if (block > last_block) {
1722			/*
1723			 * mapped buffers outside i_size will occur, because
1724			 * this page can be outside i_size when there is a
1725			 * truncate in progress.
1726			 */
1727			/*
1728			 * The buffer was zeroed by block_write_full_page()
1729			 */
1730			clear_buffer_dirty(bh);
1731			set_buffer_uptodate(bh);
1732		} else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1733			   buffer_dirty(bh)) {
1734			WARN_ON(bh->b_size != blocksize);
1735			err = get_block(inode, block, bh, 1);
1736			if (err)
1737				goto recover;
1738			clear_buffer_delay(bh);
1739			if (buffer_new(bh)) {
1740				/* blockdev mappings never come here */
1741				clear_buffer_new(bh);
1742				unmap_underlying_metadata(bh->b_bdev,
1743							bh->b_blocknr);
1744			}
1745		}
1746		bh = bh->b_this_page;
1747		block++;
1748	} while (bh != head);
1749
1750	do {
1751		if (!buffer_mapped(bh))
1752			continue;
1753		/*
1754		 * If it's a fully non-blocking write attempt and we cannot
1755		 * lock the buffer then redirty the page.  Note that this can
1756		 * potentially cause a busy-wait loop from writeback threads
1757		 * and kswapd activity, but those code paths have their own
1758		 * higher-level throttling.
1759		 */
1760		if (wbc->sync_mode != WB_SYNC_NONE) {
1761			lock_buffer(bh);
1762		} else if (!trylock_buffer(bh)) {
1763			redirty_page_for_writepage(wbc, page);
1764			continue;
1765		}
1766		if (test_clear_buffer_dirty(bh)) {
1767			mark_buffer_async_write_endio(bh, handler);
1768		} else {
1769			unlock_buffer(bh);
1770		}
1771	} while ((bh = bh->b_this_page) != head);
1772
1773	/*
1774	 * The page and its buffers are protected by PageWriteback(), so we can
1775	 * drop the bh refcounts early.
1776	 */
1777	BUG_ON(PageWriteback(page));
1778	set_page_writeback(page);
1779
1780	do {
1781		struct buffer_head *next = bh->b_this_page;
1782		if (buffer_async_write(bh)) {
1783			submit_bh(write_op, bh);
1784			nr_underway++;
1785		}
1786		bh = next;
1787	} while (bh != head);
1788	unlock_page(page);
1789
1790	err = 0;
1791done:
1792	if (nr_underway == 0) {
1793		/*
1794		 * The page was marked dirty, but the buffers were
1795		 * clean.  Someone wrote them back by hand with
1796		 * ll_rw_block/submit_bh.  A rare case.
1797		 */
1798		end_page_writeback(page);
1799
1800		/*
1801		 * The page and buffer_heads can be released at any time from
1802		 * here on.
1803		 */
1804	}
1805	return err;
1806
1807recover:
1808	/*
1809	 * ENOSPC, or some other error.  We may already have added some
1810	 * blocks to the file, so we need to write these out to avoid
1811	 * exposing stale data.
1812	 * The page is currently locked and not marked for writeback
1813	 */
1814	bh = head;
1815	/* Recovery: lock and submit the mapped buffers */
1816	do {
1817		if (buffer_mapped(bh) && buffer_dirty(bh) &&
1818		    !buffer_delay(bh)) {
1819			lock_buffer(bh);
1820			mark_buffer_async_write_endio(bh, handler);
1821		} else {
1822			/*
1823			 * The buffer may have been set dirty during
1824			 * attachment to a dirty page.
1825			 */
1826			clear_buffer_dirty(bh);
1827		}
1828	} while ((bh = bh->b_this_page) != head);
1829	SetPageError(page);
1830	BUG_ON(PageWriteback(page));
1831	mapping_set_error(page->mapping, err);
1832	set_page_writeback(page);
1833	do {
1834		struct buffer_head *next = bh->b_this_page;
1835		if (buffer_async_write(bh)) {
1836			clear_buffer_dirty(bh);
1837			submit_bh(write_op, bh);
1838			nr_underway++;
1839		}
1840		bh = next;
1841	} while (bh != head);
1842	unlock_page(page);
1843	goto done;
1844}
 
1845
1846/*
1847 * If a page has any new buffers, zero them out here, and mark them uptodate
1848 * and dirty so they'll be written out (in order to prevent uninitialised
1849 * block data from leaking). And clear the new bit.
1850 */
1851void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1852{
1853	unsigned int block_start, block_end;
1854	struct buffer_head *head, *bh;
1855
1856	BUG_ON(!PageLocked(page));
1857	if (!page_has_buffers(page))
1858		return;
1859
1860	bh = head = page_buffers(page);
1861	block_start = 0;
1862	do {
1863		block_end = block_start + bh->b_size;
1864
1865		if (buffer_new(bh)) {
1866			if (block_end > from && block_start < to) {
1867				if (!PageUptodate(page)) {
1868					unsigned start, size;
1869
1870					start = max(from, block_start);
1871					size = min(to, block_end) - start;
1872
1873					zero_user(page, start, size);
1874					set_buffer_uptodate(bh);
1875				}
1876
1877				clear_buffer_new(bh);
1878				mark_buffer_dirty(bh);
1879			}
1880		}
1881
1882		block_start = block_end;
1883		bh = bh->b_this_page;
1884	} while (bh != head);
1885}
1886EXPORT_SYMBOL(page_zero_new_buffers);
1887
1888int __block_write_begin(struct page *page, loff_t pos, unsigned len,
1889		get_block_t *get_block)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1890{
1891	unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1892	unsigned to = from + len;
1893	struct inode *inode = page->mapping->host;
1894	unsigned block_start, block_end;
1895	sector_t block;
1896	int err = 0;
1897	unsigned blocksize, bbits;
1898	struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1899
1900	BUG_ON(!PageLocked(page));
1901	BUG_ON(from > PAGE_CACHE_SIZE);
1902	BUG_ON(to > PAGE_CACHE_SIZE);
1903	BUG_ON(from > to);
1904
1905	head = create_page_buffers(page, inode, 0);
1906	blocksize = head->b_size;
1907	bbits = block_size_bits(blocksize);
1908
1909	block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1910
1911	for(bh = head, block_start = 0; bh != head || !block_start;
1912	    block++, block_start=block_end, bh = bh->b_this_page) {
1913		block_end = block_start + blocksize;
1914		if (block_end <= from || block_start >= to) {
1915			if (PageUptodate(page)) {
1916				if (!buffer_uptodate(bh))
1917					set_buffer_uptodate(bh);
1918			}
1919			continue;
1920		}
1921		if (buffer_new(bh))
1922			clear_buffer_new(bh);
1923		if (!buffer_mapped(bh)) {
1924			WARN_ON(bh->b_size != blocksize);
1925			err = get_block(inode, block, bh, 1);
1926			if (err)
1927				break;
 
 
 
 
 
1928			if (buffer_new(bh)) {
1929				unmap_underlying_metadata(bh->b_bdev,
1930							bh->b_blocknr);
1931				if (PageUptodate(page)) {
1932					clear_buffer_new(bh);
1933					set_buffer_uptodate(bh);
1934					mark_buffer_dirty(bh);
1935					continue;
1936				}
1937				if (block_end > to || block_start < from)
1938					zero_user_segments(page,
1939						to, block_end,
1940						block_start, from);
1941				continue;
1942			}
1943		}
1944		if (PageUptodate(page)) {
1945			if (!buffer_uptodate(bh))
1946				set_buffer_uptodate(bh);
1947			continue; 
1948		}
1949		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1950		    !buffer_unwritten(bh) &&
1951		     (block_start < from || block_end > to)) {
1952			ll_rw_block(READ, 1, &bh);
1953			*wait_bh++=bh;
1954		}
1955	}
1956	/*
1957	 * If we issued read requests - let them complete.
1958	 */
1959	while(wait_bh > wait) {
1960		wait_on_buffer(*--wait_bh);
1961		if (!buffer_uptodate(*wait_bh))
1962			err = -EIO;
1963	}
1964	if (unlikely(err))
1965		page_zero_new_buffers(page, from, to);
1966	return err;
1967}
 
 
 
 
 
 
1968EXPORT_SYMBOL(__block_write_begin);
1969
1970static int __block_commit_write(struct inode *inode, struct page *page,
1971		unsigned from, unsigned to)
1972{
1973	unsigned block_start, block_end;
1974	int partial = 0;
1975	unsigned blocksize;
1976	struct buffer_head *bh, *head;
1977
1978	bh = head = page_buffers(page);
1979	blocksize = bh->b_size;
1980
1981	block_start = 0;
1982	do {
1983		block_end = block_start + blocksize;
1984		if (block_end <= from || block_start >= to) {
1985			if (!buffer_uptodate(bh))
1986				partial = 1;
1987		} else {
1988			set_buffer_uptodate(bh);
1989			mark_buffer_dirty(bh);
1990		}
1991		clear_buffer_new(bh);
1992
1993		block_start = block_end;
1994		bh = bh->b_this_page;
1995	} while (bh != head);
1996
1997	/*
1998	 * If this is a partial write which happened to make all buffers
1999	 * uptodate then we can optimize away a bogus readpage() for
2000	 * the next read(). Here we 'discover' whether the page went
2001	 * uptodate as a result of this (potentially partial) write.
2002	 */
2003	if (!partial)
2004		SetPageUptodate(page);
2005	return 0;
2006}
2007
2008/*
2009 * block_write_begin takes care of the basic task of block allocation and
2010 * bringing partial write blocks uptodate first.
2011 *
2012 * The filesystem needs to handle block truncation upon failure.
2013 */
2014int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2015		unsigned flags, struct page **pagep, get_block_t *get_block)
2016{
2017	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
2018	struct page *page;
2019	int status;
2020
2021	page = grab_cache_page_write_begin(mapping, index, flags);
2022	if (!page)
2023		return -ENOMEM;
2024
2025	status = __block_write_begin(page, pos, len, get_block);
2026	if (unlikely(status)) {
2027		unlock_page(page);
2028		page_cache_release(page);
2029		page = NULL;
2030	}
2031
2032	*pagep = page;
2033	return status;
2034}
2035EXPORT_SYMBOL(block_write_begin);
2036
2037int block_write_end(struct file *file, struct address_space *mapping,
2038			loff_t pos, unsigned len, unsigned copied,
2039			struct page *page, void *fsdata)
2040{
2041	struct inode *inode = mapping->host;
2042	unsigned start;
2043
2044	start = pos & (PAGE_CACHE_SIZE - 1);
2045
2046	if (unlikely(copied < len)) {
2047		/*
2048		 * The buffers that were written will now be uptodate, so we
2049		 * don't have to worry about a readpage reading them and
2050		 * overwriting a partial write. However if we have encountered
2051		 * a short write and only partially written into a buffer, it
2052		 * will not be marked uptodate, so a readpage might come in and
2053		 * destroy our partial write.
2054		 *
2055		 * Do the simplest thing, and just treat any short write to a
2056		 * non uptodate page as a zero-length write, and force the
2057		 * caller to redo the whole thing.
2058		 */
2059		if (!PageUptodate(page))
2060			copied = 0;
2061
2062		page_zero_new_buffers(page, start+copied, start+len);
2063	}
2064	flush_dcache_page(page);
2065
2066	/* This could be a short (even 0-length) commit */
2067	__block_commit_write(inode, page, start, start+copied);
2068
2069	return copied;
2070}
2071EXPORT_SYMBOL(block_write_end);
2072
2073int generic_write_end(struct file *file, struct address_space *mapping,
2074			loff_t pos, unsigned len, unsigned copied,
2075			struct page *page, void *fsdata)
2076{
2077	struct inode *inode = mapping->host;
 
2078	int i_size_changed = 0;
2079
2080	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2081
2082	/*
2083	 * No need to use i_size_read() here, the i_size
2084	 * cannot change under us because we hold i_mutex.
2085	 *
2086	 * But it's important to update i_size while still holding page lock:
2087	 * page writeout could otherwise come in and zero beyond i_size.
2088	 */
2089	if (pos+copied > inode->i_size) {
2090		i_size_write(inode, pos+copied);
2091		i_size_changed = 1;
2092	}
2093
2094	unlock_page(page);
2095	page_cache_release(page);
2096
 
 
2097	/*
2098	 * Don't mark the inode dirty under page lock. First, it unnecessarily
2099	 * makes the holding time of page lock longer. Second, it forces lock
2100	 * ordering of page lock and transaction start for journaling
2101	 * filesystems.
2102	 */
2103	if (i_size_changed)
2104		mark_inode_dirty(inode);
2105
2106	return copied;
2107}
2108EXPORT_SYMBOL(generic_write_end);
2109
2110/*
2111 * block_is_partially_uptodate checks whether buffers within a page are
2112 * uptodate or not.
2113 *
2114 * Returns true if all buffers which correspond to a file portion
2115 * we want to read are uptodate.
2116 */
2117int block_is_partially_uptodate(struct page *page, unsigned long from,
2118					unsigned long count)
2119{
2120	unsigned block_start, block_end, blocksize;
2121	unsigned to;
2122	struct buffer_head *bh, *head;
2123	int ret = 1;
2124
2125	if (!page_has_buffers(page))
2126		return 0;
2127
2128	head = page_buffers(page);
2129	blocksize = head->b_size;
2130	to = min_t(unsigned, PAGE_CACHE_SIZE - from, count);
2131	to = from + to;
2132	if (from < blocksize && to > PAGE_CACHE_SIZE - blocksize)
2133		return 0;
2134
2135	bh = head;
2136	block_start = 0;
2137	do {
2138		block_end = block_start + blocksize;
2139		if (block_end > from && block_start < to) {
2140			if (!buffer_uptodate(bh)) {
2141				ret = 0;
2142				break;
2143			}
2144			if (block_end >= to)
2145				break;
2146		}
2147		block_start = block_end;
2148		bh = bh->b_this_page;
2149	} while (bh != head);
2150
2151	return ret;
2152}
2153EXPORT_SYMBOL(block_is_partially_uptodate);
2154
2155/*
2156 * Generic "read page" function for block devices that have the normal
2157 * get_block functionality. This is most of the block device filesystems.
2158 * Reads the page asynchronously --- the unlock_buffer() and
2159 * set/clear_buffer_uptodate() functions propagate buffer state into the
2160 * page struct once IO has completed.
2161 */
2162int block_read_full_page(struct page *page, get_block_t *get_block)
2163{
2164	struct inode *inode = page->mapping->host;
2165	sector_t iblock, lblock;
2166	struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2167	unsigned int blocksize, bbits;
2168	int nr, i;
2169	int fully_mapped = 1;
2170
2171	head = create_page_buffers(page, inode, 0);
2172	blocksize = head->b_size;
2173	bbits = block_size_bits(blocksize);
2174
2175	iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
2176	lblock = (i_size_read(inode)+blocksize-1) >> bbits;
2177	bh = head;
2178	nr = 0;
2179	i = 0;
2180
2181	do {
2182		if (buffer_uptodate(bh))
2183			continue;
2184
2185		if (!buffer_mapped(bh)) {
2186			int err = 0;
2187
2188			fully_mapped = 0;
2189			if (iblock < lblock) {
2190				WARN_ON(bh->b_size != blocksize);
2191				err = get_block(inode, iblock, bh, 0);
2192				if (err)
2193					SetPageError(page);
2194			}
2195			if (!buffer_mapped(bh)) {
2196				zero_user(page, i * blocksize, blocksize);
2197				if (!err)
2198					set_buffer_uptodate(bh);
2199				continue;
2200			}
2201			/*
2202			 * get_block() might have updated the buffer
2203			 * synchronously
2204			 */
2205			if (buffer_uptodate(bh))
2206				continue;
2207		}
2208		arr[nr++] = bh;
2209	} while (i++, iblock++, (bh = bh->b_this_page) != head);
2210
2211	if (fully_mapped)
2212		SetPageMappedToDisk(page);
2213
2214	if (!nr) {
2215		/*
2216		 * All buffers are uptodate - we can set the page uptodate
2217		 * as well. But not if get_block() returned an error.
2218		 */
2219		if (!PageError(page))
2220			SetPageUptodate(page);
2221		unlock_page(page);
2222		return 0;
2223	}
2224
2225	/* Stage two: lock the buffers */
2226	for (i = 0; i < nr; i++) {
2227		bh = arr[i];
2228		lock_buffer(bh);
2229		mark_buffer_async_read(bh);
2230	}
2231
2232	/*
2233	 * Stage 3: start the IO.  Check for uptodateness
2234	 * inside the buffer lock in case another process reading
2235	 * the underlying blockdev brought it uptodate (the sct fix).
2236	 */
2237	for (i = 0; i < nr; i++) {
2238		bh = arr[i];
2239		if (buffer_uptodate(bh))
2240			end_buffer_async_read(bh, 1);
2241		else
2242			submit_bh(READ, bh);
2243	}
2244	return 0;
2245}
2246EXPORT_SYMBOL(block_read_full_page);
2247
2248/* utility function for filesystems that need to do work on expanding
2249 * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2250 * deal with the hole.  
2251 */
2252int generic_cont_expand_simple(struct inode *inode, loff_t size)
2253{
2254	struct address_space *mapping = inode->i_mapping;
2255	struct page *page;
2256	void *fsdata;
2257	int err;
2258
2259	err = inode_newsize_ok(inode, size);
2260	if (err)
2261		goto out;
2262
2263	err = pagecache_write_begin(NULL, mapping, size, 0,
2264				AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND,
2265				&page, &fsdata);
2266	if (err)
2267		goto out;
2268
2269	err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2270	BUG_ON(err > 0);
2271
2272out:
2273	return err;
2274}
2275EXPORT_SYMBOL(generic_cont_expand_simple);
2276
2277static int cont_expand_zero(struct file *file, struct address_space *mapping,
2278			    loff_t pos, loff_t *bytes)
2279{
2280	struct inode *inode = mapping->host;
2281	unsigned blocksize = 1 << inode->i_blkbits;
2282	struct page *page;
2283	void *fsdata;
2284	pgoff_t index, curidx;
2285	loff_t curpos;
2286	unsigned zerofrom, offset, len;
2287	int err = 0;
2288
2289	index = pos >> PAGE_CACHE_SHIFT;
2290	offset = pos & ~PAGE_CACHE_MASK;
2291
2292	while (index > (curidx = (curpos = *bytes)>>PAGE_CACHE_SHIFT)) {
2293		zerofrom = curpos & ~PAGE_CACHE_MASK;
2294		if (zerofrom & (blocksize-1)) {
2295			*bytes |= (blocksize-1);
2296			(*bytes)++;
2297		}
2298		len = PAGE_CACHE_SIZE - zerofrom;
2299
2300		err = pagecache_write_begin(file, mapping, curpos, len,
2301						AOP_FLAG_UNINTERRUPTIBLE,
2302						&page, &fsdata);
2303		if (err)
2304			goto out;
2305		zero_user(page, zerofrom, len);
2306		err = pagecache_write_end(file, mapping, curpos, len, len,
2307						page, fsdata);
2308		if (err < 0)
2309			goto out;
2310		BUG_ON(err != len);
2311		err = 0;
2312
2313		balance_dirty_pages_ratelimited(mapping);
 
 
 
 
 
2314	}
2315
2316	/* page covers the boundary, find the boundary offset */
2317	if (index == curidx) {
2318		zerofrom = curpos & ~PAGE_CACHE_MASK;
2319		/* if we will expand the thing last block will be filled */
2320		if (offset <= zerofrom) {
2321			goto out;
2322		}
2323		if (zerofrom & (blocksize-1)) {
2324			*bytes |= (blocksize-1);
2325			(*bytes)++;
2326		}
2327		len = offset - zerofrom;
2328
2329		err = pagecache_write_begin(file, mapping, curpos, len,
2330						AOP_FLAG_UNINTERRUPTIBLE,
2331						&page, &fsdata);
2332		if (err)
2333			goto out;
2334		zero_user(page, zerofrom, len);
2335		err = pagecache_write_end(file, mapping, curpos, len, len,
2336						page, fsdata);
2337		if (err < 0)
2338			goto out;
2339		BUG_ON(err != len);
2340		err = 0;
2341	}
2342out:
2343	return err;
2344}
2345
2346/*
2347 * For moronic filesystems that do not allow holes in file.
2348 * We may have to extend the file.
2349 */
2350int cont_write_begin(struct file *file, struct address_space *mapping,
2351			loff_t pos, unsigned len, unsigned flags,
2352			struct page **pagep, void **fsdata,
2353			get_block_t *get_block, loff_t *bytes)
2354{
2355	struct inode *inode = mapping->host;
2356	unsigned blocksize = 1 << inode->i_blkbits;
2357	unsigned zerofrom;
2358	int err;
2359
2360	err = cont_expand_zero(file, mapping, pos, bytes);
2361	if (err)
2362		return err;
2363
2364	zerofrom = *bytes & ~PAGE_CACHE_MASK;
2365	if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2366		*bytes |= (blocksize-1);
2367		(*bytes)++;
2368	}
2369
2370	return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2371}
2372EXPORT_SYMBOL(cont_write_begin);
2373
2374int block_commit_write(struct page *page, unsigned from, unsigned to)
2375{
2376	struct inode *inode = page->mapping->host;
2377	__block_commit_write(inode,page,from,to);
2378	return 0;
2379}
2380EXPORT_SYMBOL(block_commit_write);
2381
2382/*
2383 * block_page_mkwrite() is not allowed to change the file size as it gets
2384 * called from a page fault handler when a page is first dirtied. Hence we must
2385 * be careful to check for EOF conditions here. We set the page up correctly
2386 * for a written page which means we get ENOSPC checking when writing into
2387 * holes and correct delalloc and unwritten extent mapping on filesystems that
2388 * support these features.
2389 *
2390 * We are not allowed to take the i_mutex here so we have to play games to
2391 * protect against truncate races as the page could now be beyond EOF.  Because
2392 * truncate writes the inode size before removing pages, once we have the
2393 * page lock we can determine safely if the page is beyond EOF. If it is not
2394 * beyond EOF, then the page is guaranteed safe against truncation until we
2395 * unlock the page.
2396 *
2397 * Direct callers of this function should protect against filesystem freezing
2398 * using sb_start_write() - sb_end_write() functions.
2399 */
2400int __block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2401			 get_block_t get_block)
2402{
2403	struct page *page = vmf->page;
2404	struct inode *inode = file_inode(vma->vm_file);
2405	unsigned long end;
2406	loff_t size;
2407	int ret;
2408
2409	lock_page(page);
2410	size = i_size_read(inode);
2411	if ((page->mapping != inode->i_mapping) ||
2412	    (page_offset(page) > size)) {
2413		/* We overload EFAULT to mean page got truncated */
2414		ret = -EFAULT;
2415		goto out_unlock;
2416	}
2417
2418	/* page is wholly or partially inside EOF */
2419	if (((page->index + 1) << PAGE_CACHE_SHIFT) > size)
2420		end = size & ~PAGE_CACHE_MASK;
2421	else
2422		end = PAGE_CACHE_SIZE;
2423
2424	ret = __block_write_begin(page, 0, end, get_block);
2425	if (!ret)
2426		ret = block_commit_write(page, 0, end);
2427
2428	if (unlikely(ret < 0))
2429		goto out_unlock;
2430	set_page_dirty(page);
2431	wait_for_stable_page(page);
2432	return 0;
2433out_unlock:
2434	unlock_page(page);
2435	return ret;
2436}
2437EXPORT_SYMBOL(__block_page_mkwrite);
2438
2439int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2440		   get_block_t get_block)
2441{
2442	int ret;
2443	struct super_block *sb = file_inode(vma->vm_file)->i_sb;
2444
2445	sb_start_pagefault(sb);
2446
2447	/*
2448	 * Update file times before taking page lock. We may end up failing the
2449	 * fault so this update may be superfluous but who really cares...
2450	 */
2451	file_update_time(vma->vm_file);
2452
2453	ret = __block_page_mkwrite(vma, vmf, get_block);
2454	sb_end_pagefault(sb);
2455	return block_page_mkwrite_return(ret);
2456}
2457EXPORT_SYMBOL(block_page_mkwrite);
2458
2459/*
2460 * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2461 * immediately, while under the page lock.  So it needs a special end_io
2462 * handler which does not touch the bh after unlocking it.
2463 */
2464static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2465{
2466	__end_buffer_read_notouch(bh, uptodate);
2467}
2468
2469/*
2470 * Attach the singly-linked list of buffers created by nobh_write_begin, to
2471 * the page (converting it to circular linked list and taking care of page
2472 * dirty races).
2473 */
2474static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2475{
2476	struct buffer_head *bh;
2477
2478	BUG_ON(!PageLocked(page));
2479
2480	spin_lock(&page->mapping->private_lock);
2481	bh = head;
2482	do {
2483		if (PageDirty(page))
2484			set_buffer_dirty(bh);
2485		if (!bh->b_this_page)
2486			bh->b_this_page = head;
2487		bh = bh->b_this_page;
2488	} while (bh != head);
2489	attach_page_buffers(page, head);
2490	spin_unlock(&page->mapping->private_lock);
2491}
2492
2493/*
2494 * On entry, the page is fully not uptodate.
2495 * On exit the page is fully uptodate in the areas outside (from,to)
2496 * The filesystem needs to handle block truncation upon failure.
2497 */
2498int nobh_write_begin(struct address_space *mapping,
2499			loff_t pos, unsigned len, unsigned flags,
2500			struct page **pagep, void **fsdata,
2501			get_block_t *get_block)
2502{
2503	struct inode *inode = mapping->host;
2504	const unsigned blkbits = inode->i_blkbits;
2505	const unsigned blocksize = 1 << blkbits;
2506	struct buffer_head *head, *bh;
2507	struct page *page;
2508	pgoff_t index;
2509	unsigned from, to;
2510	unsigned block_in_page;
2511	unsigned block_start, block_end;
2512	sector_t block_in_file;
2513	int nr_reads = 0;
2514	int ret = 0;
2515	int is_mapped_to_disk = 1;
2516
2517	index = pos >> PAGE_CACHE_SHIFT;
2518	from = pos & (PAGE_CACHE_SIZE - 1);
2519	to = from + len;
2520
2521	page = grab_cache_page_write_begin(mapping, index, flags);
2522	if (!page)
2523		return -ENOMEM;
2524	*pagep = page;
2525	*fsdata = NULL;
2526
2527	if (page_has_buffers(page)) {
2528		ret = __block_write_begin(page, pos, len, get_block);
2529		if (unlikely(ret))
2530			goto out_release;
2531		return ret;
2532	}
2533
2534	if (PageMappedToDisk(page))
2535		return 0;
2536
2537	/*
2538	 * Allocate buffers so that we can keep track of state, and potentially
2539	 * attach them to the page if an error occurs. In the common case of
2540	 * no error, they will just be freed again without ever being attached
2541	 * to the page (which is all OK, because we're under the page lock).
2542	 *
2543	 * Be careful: the buffer linked list is a NULL terminated one, rather
2544	 * than the circular one we're used to.
2545	 */
2546	head = alloc_page_buffers(page, blocksize, 0);
2547	if (!head) {
2548		ret = -ENOMEM;
2549		goto out_release;
2550	}
2551
2552	block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2553
2554	/*
2555	 * We loop across all blocks in the page, whether or not they are
2556	 * part of the affected region.  This is so we can discover if the
2557	 * page is fully mapped-to-disk.
2558	 */
2559	for (block_start = 0, block_in_page = 0, bh = head;
2560		  block_start < PAGE_CACHE_SIZE;
2561		  block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2562		int create;
2563
2564		block_end = block_start + blocksize;
2565		bh->b_state = 0;
2566		create = 1;
2567		if (block_start >= to)
2568			create = 0;
2569		ret = get_block(inode, block_in_file + block_in_page,
2570					bh, create);
2571		if (ret)
2572			goto failed;
2573		if (!buffer_mapped(bh))
2574			is_mapped_to_disk = 0;
2575		if (buffer_new(bh))
2576			unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
2577		if (PageUptodate(page)) {
2578			set_buffer_uptodate(bh);
2579			continue;
2580		}
2581		if (buffer_new(bh) || !buffer_mapped(bh)) {
2582			zero_user_segments(page, block_start, from,
2583							to, block_end);
2584			continue;
2585		}
2586		if (buffer_uptodate(bh))
2587			continue;	/* reiserfs does this */
2588		if (block_start < from || block_end > to) {
2589			lock_buffer(bh);
2590			bh->b_end_io = end_buffer_read_nobh;
2591			submit_bh(READ, bh);
2592			nr_reads++;
2593		}
2594	}
2595
2596	if (nr_reads) {
2597		/*
2598		 * The page is locked, so these buffers are protected from
2599		 * any VM or truncate activity.  Hence we don't need to care
2600		 * for the buffer_head refcounts.
2601		 */
2602		for (bh = head; bh; bh = bh->b_this_page) {
2603			wait_on_buffer(bh);
2604			if (!buffer_uptodate(bh))
2605				ret = -EIO;
2606		}
2607		if (ret)
2608			goto failed;
2609	}
2610
2611	if (is_mapped_to_disk)
2612		SetPageMappedToDisk(page);
2613
2614	*fsdata = head; /* to be released by nobh_write_end */
2615
2616	return 0;
2617
2618failed:
2619	BUG_ON(!ret);
2620	/*
2621	 * Error recovery is a bit difficult. We need to zero out blocks that
2622	 * were newly allocated, and dirty them to ensure they get written out.
2623	 * Buffers need to be attached to the page at this point, otherwise
2624	 * the handling of potential IO errors during writeout would be hard
2625	 * (could try doing synchronous writeout, but what if that fails too?)
2626	 */
2627	attach_nobh_buffers(page, head);
2628	page_zero_new_buffers(page, from, to);
2629
2630out_release:
2631	unlock_page(page);
2632	page_cache_release(page);
2633	*pagep = NULL;
2634
2635	return ret;
2636}
2637EXPORT_SYMBOL(nobh_write_begin);
2638
2639int nobh_write_end(struct file *file, struct address_space *mapping,
2640			loff_t pos, unsigned len, unsigned copied,
2641			struct page *page, void *fsdata)
2642{
2643	struct inode *inode = page->mapping->host;
2644	struct buffer_head *head = fsdata;
2645	struct buffer_head *bh;
2646	BUG_ON(fsdata != NULL && page_has_buffers(page));
2647
2648	if (unlikely(copied < len) && head)
2649		attach_nobh_buffers(page, head);
2650	if (page_has_buffers(page))
2651		return generic_write_end(file, mapping, pos, len,
2652					copied, page, fsdata);
2653
2654	SetPageUptodate(page);
2655	set_page_dirty(page);
2656	if (pos+copied > inode->i_size) {
2657		i_size_write(inode, pos+copied);
2658		mark_inode_dirty(inode);
2659	}
2660
2661	unlock_page(page);
2662	page_cache_release(page);
2663
2664	while (head) {
2665		bh = head;
2666		head = head->b_this_page;
2667		free_buffer_head(bh);
2668	}
2669
2670	return copied;
2671}
2672EXPORT_SYMBOL(nobh_write_end);
2673
2674/*
2675 * nobh_writepage() - based on block_full_write_page() except
2676 * that it tries to operate without attaching bufferheads to
2677 * the page.
2678 */
2679int nobh_writepage(struct page *page, get_block_t *get_block,
2680			struct writeback_control *wbc)
2681{
2682	struct inode * const inode = page->mapping->host;
2683	loff_t i_size = i_size_read(inode);
2684	const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2685	unsigned offset;
2686	int ret;
2687
2688	/* Is the page fully inside i_size? */
2689	if (page->index < end_index)
2690		goto out;
2691
2692	/* Is the page fully outside i_size? (truncate in progress) */
2693	offset = i_size & (PAGE_CACHE_SIZE-1);
2694	if (page->index >= end_index+1 || !offset) {
2695		/*
2696		 * The page may have dirty, unmapped buffers.  For example,
2697		 * they may have been added in ext3_writepage().  Make them
2698		 * freeable here, so the page does not leak.
2699		 */
2700#if 0
2701		/* Not really sure about this  - do we need this ? */
2702		if (page->mapping->a_ops->invalidatepage)
2703			page->mapping->a_ops->invalidatepage(page, offset);
2704#endif
2705		unlock_page(page);
2706		return 0; /* don't care */
2707	}
2708
2709	/*
2710	 * The page straddles i_size.  It must be zeroed out on each and every
2711	 * writepage invocation because it may be mmapped.  "A file is mapped
2712	 * in multiples of the page size.  For a file that is not a multiple of
2713	 * the  page size, the remaining memory is zeroed when mapped, and
2714	 * writes to that region are not written out to the file."
2715	 */
2716	zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2717out:
2718	ret = mpage_writepage(page, get_block, wbc);
2719	if (ret == -EAGAIN)
2720		ret = __block_write_full_page(inode, page, get_block, wbc,
2721					      end_buffer_async_write);
2722	return ret;
2723}
2724EXPORT_SYMBOL(nobh_writepage);
2725
2726int nobh_truncate_page(struct address_space *mapping,
2727			loff_t from, get_block_t *get_block)
2728{
2729	pgoff_t index = from >> PAGE_CACHE_SHIFT;
2730	unsigned offset = from & (PAGE_CACHE_SIZE-1);
2731	unsigned blocksize;
2732	sector_t iblock;
2733	unsigned length, pos;
2734	struct inode *inode = mapping->host;
2735	struct page *page;
2736	struct buffer_head map_bh;
2737	int err;
2738
2739	blocksize = 1 << inode->i_blkbits;
2740	length = offset & (blocksize - 1);
2741
2742	/* Block boundary? Nothing to do */
2743	if (!length)
2744		return 0;
2745
2746	length = blocksize - length;
2747	iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2748
2749	page = grab_cache_page(mapping, index);
2750	err = -ENOMEM;
2751	if (!page)
2752		goto out;
2753
2754	if (page_has_buffers(page)) {
2755has_buffers:
2756		unlock_page(page);
2757		page_cache_release(page);
2758		return block_truncate_page(mapping, from, get_block);
2759	}
2760
2761	/* Find the buffer that contains "offset" */
2762	pos = blocksize;
2763	while (offset >= pos) {
2764		iblock++;
2765		pos += blocksize;
2766	}
2767
2768	map_bh.b_size = blocksize;
2769	map_bh.b_state = 0;
2770	err = get_block(inode, iblock, &map_bh, 0);
2771	if (err)
2772		goto unlock;
2773	/* unmapped? It's a hole - nothing to do */
2774	if (!buffer_mapped(&map_bh))
2775		goto unlock;
2776
2777	/* Ok, it's mapped. Make sure it's up-to-date */
2778	if (!PageUptodate(page)) {
2779		err = mapping->a_ops->readpage(NULL, page);
2780		if (err) {
2781			page_cache_release(page);
2782			goto out;
2783		}
2784		lock_page(page);
2785		if (!PageUptodate(page)) {
2786			err = -EIO;
2787			goto unlock;
2788		}
2789		if (page_has_buffers(page))
2790			goto has_buffers;
2791	}
2792	zero_user(page, offset, length);
2793	set_page_dirty(page);
2794	err = 0;
2795
2796unlock:
2797	unlock_page(page);
2798	page_cache_release(page);
2799out:
2800	return err;
2801}
2802EXPORT_SYMBOL(nobh_truncate_page);
2803
2804int block_truncate_page(struct address_space *mapping,
2805			loff_t from, get_block_t *get_block)
2806{
2807	pgoff_t index = from >> PAGE_CACHE_SHIFT;
2808	unsigned offset = from & (PAGE_CACHE_SIZE-1);
2809	unsigned blocksize;
2810	sector_t iblock;
2811	unsigned length, pos;
2812	struct inode *inode = mapping->host;
2813	struct page *page;
2814	struct buffer_head *bh;
2815	int err;
2816
2817	blocksize = 1 << inode->i_blkbits;
2818	length = offset & (blocksize - 1);
2819
2820	/* Block boundary? Nothing to do */
2821	if (!length)
2822		return 0;
2823
2824	length = blocksize - length;
2825	iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2826	
2827	page = grab_cache_page(mapping, index);
2828	err = -ENOMEM;
2829	if (!page)
2830		goto out;
2831
2832	if (!page_has_buffers(page))
2833		create_empty_buffers(page, blocksize, 0);
2834
2835	/* Find the buffer that contains "offset" */
2836	bh = page_buffers(page);
2837	pos = blocksize;
2838	while (offset >= pos) {
2839		bh = bh->b_this_page;
2840		iblock++;
2841		pos += blocksize;
2842	}
2843
2844	err = 0;
2845	if (!buffer_mapped(bh)) {
2846		WARN_ON(bh->b_size != blocksize);
2847		err = get_block(inode, iblock, bh, 0);
2848		if (err)
2849			goto unlock;
2850		/* unmapped? It's a hole - nothing to do */
2851		if (!buffer_mapped(bh))
2852			goto unlock;
2853	}
2854
2855	/* Ok, it's mapped. Make sure it's up-to-date */
2856	if (PageUptodate(page))
2857		set_buffer_uptodate(bh);
2858
2859	if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2860		err = -EIO;
2861		ll_rw_block(READ, 1, &bh);
2862		wait_on_buffer(bh);
2863		/* Uhhuh. Read error. Complain and punt. */
2864		if (!buffer_uptodate(bh))
2865			goto unlock;
2866	}
2867
2868	zero_user(page, offset, length);
2869	mark_buffer_dirty(bh);
2870	err = 0;
2871
2872unlock:
2873	unlock_page(page);
2874	page_cache_release(page);
2875out:
2876	return err;
2877}
2878EXPORT_SYMBOL(block_truncate_page);
2879
2880/*
2881 * The generic ->writepage function for buffer-backed address_spaces
2882 * this form passes in the end_io handler used to finish the IO.
2883 */
2884int block_write_full_page_endio(struct page *page, get_block_t *get_block,
2885			struct writeback_control *wbc, bh_end_io_t *handler)
2886{
2887	struct inode * const inode = page->mapping->host;
2888	loff_t i_size = i_size_read(inode);
2889	const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2890	unsigned offset;
2891
2892	/* Is the page fully inside i_size? */
2893	if (page->index < end_index)
2894		return __block_write_full_page(inode, page, get_block, wbc,
2895					       handler);
2896
2897	/* Is the page fully outside i_size? (truncate in progress) */
2898	offset = i_size & (PAGE_CACHE_SIZE-1);
2899	if (page->index >= end_index+1 || !offset) {
2900		/*
2901		 * The page may have dirty, unmapped buffers.  For example,
2902		 * they may have been added in ext3_writepage().  Make them
2903		 * freeable here, so the page does not leak.
2904		 */
2905		do_invalidatepage(page, 0, PAGE_CACHE_SIZE);
2906		unlock_page(page);
2907		return 0; /* don't care */
2908	}
2909
2910	/*
2911	 * The page straddles i_size.  It must be zeroed out on each and every
2912	 * writepage invocation because it may be mmapped.  "A file is mapped
2913	 * in multiples of the page size.  For a file that is not a multiple of
2914	 * the  page size, the remaining memory is zeroed when mapped, and
2915	 * writes to that region are not written out to the file."
2916	 */
2917	zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2918	return __block_write_full_page(inode, page, get_block, wbc, handler);
2919}
2920EXPORT_SYMBOL(block_write_full_page_endio);
2921
2922/*
2923 * The generic ->writepage function for buffer-backed address_spaces
2924 */
2925int block_write_full_page(struct page *page, get_block_t *get_block,
2926			struct writeback_control *wbc)
2927{
2928	return block_write_full_page_endio(page, get_block, wbc,
2929					   end_buffer_async_write);
2930}
2931EXPORT_SYMBOL(block_write_full_page);
2932
2933sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2934			    get_block_t *get_block)
2935{
2936	struct buffer_head tmp;
2937	struct inode *inode = mapping->host;
2938	tmp.b_state = 0;
2939	tmp.b_blocknr = 0;
2940	tmp.b_size = 1 << inode->i_blkbits;
2941	get_block(inode, block, &tmp, 0);
2942	return tmp.b_blocknr;
2943}
2944EXPORT_SYMBOL(generic_block_bmap);
2945
2946static void end_bio_bh_io_sync(struct bio *bio, int err)
2947{
2948	struct buffer_head *bh = bio->bi_private;
2949
2950	if (err == -EOPNOTSUPP) {
2951		set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2952	}
2953
2954	if (unlikely (test_bit(BIO_QUIET,&bio->bi_flags)))
2955		set_bit(BH_Quiet, &bh->b_state);
2956
2957	bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2958	bio_put(bio);
2959}
2960
2961/*
2962 * This allows us to do IO even on the odd last sectors
2963 * of a device, even if the bh block size is some multiple
2964 * of the physical sector size.
2965 *
2966 * We'll just truncate the bio to the size of the device,
2967 * and clear the end of the buffer head manually.
2968 *
2969 * Truly out-of-range accesses will turn into actual IO
2970 * errors, this only handles the "we need to be able to
2971 * do IO at the final sector" case.
2972 */
2973static void guard_bh_eod(int rw, struct bio *bio, struct buffer_head *bh)
2974{
2975	sector_t maxsector;
2976	unsigned bytes;
 
2977
2978	maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
2979	if (!maxsector)
2980		return;
2981
2982	/*
2983	 * If the *whole* IO is past the end of the device,
2984	 * let it through, and the IO layer will turn it into
2985	 * an EIO.
2986	 */
2987	if (unlikely(bio->bi_iter.bi_sector >= maxsector))
2988		return;
2989
2990	maxsector -= bio->bi_iter.bi_sector;
2991	bytes = bio->bi_iter.bi_size;
2992	if (likely((bytes >> 9) <= maxsector))
2993		return;
2994
2995	/* Uhhuh. We've got a bh that straddles the device size! */
2996	bytes = maxsector << 9;
2997
2998	/* Truncate the bio.. */
2999	bio->bi_iter.bi_size = bytes;
3000	bio->bi_io_vec[0].bv_len = bytes;
3001
3002	/* ..and clear the end of the buffer for reads */
3003	if ((rw & RW_MASK) == READ) {
3004		void *kaddr = kmap_atomic(bh->b_page);
3005		memset(kaddr + bh_offset(bh) + bytes, 0, bh->b_size - bytes);
3006		kunmap_atomic(kaddr);
3007		flush_dcache_page(bh->b_page);
3008	}
3009}
3010
3011int _submit_bh(int rw, struct buffer_head *bh, unsigned long bio_flags)
 
3012{
3013	struct bio *bio;
3014	int ret = 0;
3015
3016	BUG_ON(!buffer_locked(bh));
3017	BUG_ON(!buffer_mapped(bh));
3018	BUG_ON(!bh->b_end_io);
3019	BUG_ON(buffer_delay(bh));
3020	BUG_ON(buffer_unwritten(bh));
3021
3022	/*
3023	 * Only clear out a write error when rewriting
3024	 */
3025	if (test_set_buffer_req(bh) && (rw & WRITE))
3026		clear_buffer_write_io_error(bh);
3027
3028	/*
3029	 * from here on down, it's all bio -- do the initial mapping,
3030	 * submit_bio -> generic_make_request may further map this bio around
3031	 */
3032	bio = bio_alloc(GFP_NOIO, 1);
3033
 
 
 
 
 
3034	bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
3035	bio->bi_bdev = bh->b_bdev;
3036	bio->bi_io_vec[0].bv_page = bh->b_page;
3037	bio->bi_io_vec[0].bv_len = bh->b_size;
3038	bio->bi_io_vec[0].bv_offset = bh_offset(bh);
3039
3040	bio->bi_vcnt = 1;
3041	bio->bi_iter.bi_size = bh->b_size;
3042
3043	bio->bi_end_io = end_bio_bh_io_sync;
3044	bio->bi_private = bh;
3045	bio->bi_flags |= bio_flags;
3046
3047	/* Take care of bh's that straddle the end of the device */
3048	guard_bh_eod(rw, bio, bh);
3049
3050	if (buffer_meta(bh))
3051		rw |= REQ_META;
3052	if (buffer_prio(bh))
3053		rw |= REQ_PRIO;
 
3054
3055	bio_get(bio);
3056	submit_bio(rw, bio);
 
3057
3058	if (bio_flagged(bio, BIO_EOPNOTSUPP))
3059		ret = -EOPNOTSUPP;
3060
3061	bio_put(bio);
3062	return ret;
3063}
3064EXPORT_SYMBOL_GPL(_submit_bh);
3065
3066int submit_bh(int rw, struct buffer_head *bh)
3067{
3068	return _submit_bh(rw, bh, 0);
3069}
3070EXPORT_SYMBOL(submit_bh);
3071
3072/**
3073 * ll_rw_block: low-level access to block devices (DEPRECATED)
3074 * @rw: whether to %READ or %WRITE or maybe %READA (readahead)
 
3075 * @nr: number of &struct buffer_heads in the array
3076 * @bhs: array of pointers to &struct buffer_head
3077 *
3078 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3079 * requests an I/O operation on them, either a %READ or a %WRITE.  The third
3080 * %READA option is described in the documentation for generic_make_request()
3081 * which ll_rw_block() calls.
3082 *
3083 * This function drops any buffer that it cannot get a lock on (with the
3084 * BH_Lock state bit), any buffer that appears to be clean when doing a write
3085 * request, and any buffer that appears to be up-to-date when doing read
3086 * request.  Further it marks as clean buffers that are processed for
3087 * writing (the buffer cache won't assume that they are actually clean
3088 * until the buffer gets unlocked).
3089 *
3090 * ll_rw_block sets b_end_io to simple completion handler that marks
3091 * the buffer up-to-date (if appropriate), unlocks the buffer and wakes
3092 * any waiters. 
3093 *
3094 * All of the buffers must be for the same device, and must also be a
3095 * multiple of the current approved size for the device.
3096 */
3097void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
3098{
3099	int i;
3100
3101	for (i = 0; i < nr; i++) {
3102		struct buffer_head *bh = bhs[i];
3103
3104		if (!trylock_buffer(bh))
3105			continue;
3106		if (rw == WRITE) {
3107			if (test_clear_buffer_dirty(bh)) {
3108				bh->b_end_io = end_buffer_write_sync;
3109				get_bh(bh);
3110				submit_bh(WRITE, bh);
3111				continue;
3112			}
3113		} else {
3114			if (!buffer_uptodate(bh)) {
3115				bh->b_end_io = end_buffer_read_sync;
3116				get_bh(bh);
3117				submit_bh(rw, bh);
3118				continue;
3119			}
3120		}
3121		unlock_buffer(bh);
3122	}
3123}
3124EXPORT_SYMBOL(ll_rw_block);
3125
3126void write_dirty_buffer(struct buffer_head *bh, int rw)
3127{
3128	lock_buffer(bh);
3129	if (!test_clear_buffer_dirty(bh)) {
3130		unlock_buffer(bh);
3131		return;
3132	}
3133	bh->b_end_io = end_buffer_write_sync;
3134	get_bh(bh);
3135	submit_bh(rw, bh);
3136}
3137EXPORT_SYMBOL(write_dirty_buffer);
3138
3139/*
3140 * For a data-integrity writeout, we need to wait upon any in-progress I/O
3141 * and then start new I/O and then wait upon it.  The caller must have a ref on
3142 * the buffer_head.
3143 */
3144int __sync_dirty_buffer(struct buffer_head *bh, int rw)
3145{
3146	int ret = 0;
3147
3148	WARN_ON(atomic_read(&bh->b_count) < 1);
3149	lock_buffer(bh);
3150	if (test_clear_buffer_dirty(bh)) {
3151		get_bh(bh);
3152		bh->b_end_io = end_buffer_write_sync;
3153		ret = submit_bh(rw, bh);
3154		wait_on_buffer(bh);
3155		if (!ret && !buffer_uptodate(bh))
3156			ret = -EIO;
3157	} else {
3158		unlock_buffer(bh);
3159	}
3160	return ret;
3161}
3162EXPORT_SYMBOL(__sync_dirty_buffer);
3163
3164int sync_dirty_buffer(struct buffer_head *bh)
3165{
3166	return __sync_dirty_buffer(bh, WRITE_SYNC);
3167}
3168EXPORT_SYMBOL(sync_dirty_buffer);
3169
3170/*
3171 * try_to_free_buffers() checks if all the buffers on this particular page
3172 * are unused, and releases them if so.
3173 *
3174 * Exclusion against try_to_free_buffers may be obtained by either
3175 * locking the page or by holding its mapping's private_lock.
3176 *
3177 * If the page is dirty but all the buffers are clean then we need to
3178 * be sure to mark the page clean as well.  This is because the page
3179 * may be against a block device, and a later reattachment of buffers
3180 * to a dirty page will set *all* buffers dirty.  Which would corrupt
3181 * filesystem data on the same device.
3182 *
3183 * The same applies to regular filesystem pages: if all the buffers are
3184 * clean then we set the page clean and proceed.  To do that, we require
3185 * total exclusion from __set_page_dirty_buffers().  That is obtained with
3186 * private_lock.
3187 *
3188 * try_to_free_buffers() is non-blocking.
3189 */
3190static inline int buffer_busy(struct buffer_head *bh)
3191{
3192	return atomic_read(&bh->b_count) |
3193		(bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3194}
3195
3196static int
3197drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3198{
3199	struct buffer_head *head = page_buffers(page);
3200	struct buffer_head *bh;
3201
3202	bh = head;
3203	do {
3204		if (buffer_write_io_error(bh) && page->mapping)
3205			set_bit(AS_EIO, &page->mapping->flags);
3206		if (buffer_busy(bh))
3207			goto failed;
3208		bh = bh->b_this_page;
3209	} while (bh != head);
3210
3211	do {
3212		struct buffer_head *next = bh->b_this_page;
3213
3214		if (bh->b_assoc_map)
3215			__remove_assoc_queue(bh);
3216		bh = next;
3217	} while (bh != head);
3218	*buffers_to_free = head;
3219	__clear_page_buffers(page);
3220	return 1;
3221failed:
3222	return 0;
3223}
3224
3225int try_to_free_buffers(struct page *page)
3226{
3227	struct address_space * const mapping = page->mapping;
3228	struct buffer_head *buffers_to_free = NULL;
3229	int ret = 0;
3230
3231	BUG_ON(!PageLocked(page));
3232	if (PageWriteback(page))
3233		return 0;
3234
3235	if (mapping == NULL) {		/* can this still happen? */
3236		ret = drop_buffers(page, &buffers_to_free);
3237		goto out;
3238	}
3239
3240	spin_lock(&mapping->private_lock);
3241	ret = drop_buffers(page, &buffers_to_free);
3242
3243	/*
3244	 * If the filesystem writes its buffers by hand (eg ext3)
3245	 * then we can have clean buffers against a dirty page.  We
3246	 * clean the page here; otherwise the VM will never notice
3247	 * that the filesystem did any IO at all.
3248	 *
3249	 * Also, during truncate, discard_buffer will have marked all
3250	 * the page's buffers clean.  We discover that here and clean
3251	 * the page also.
3252	 *
3253	 * private_lock must be held over this entire operation in order
3254	 * to synchronise against __set_page_dirty_buffers and prevent the
3255	 * dirty bit from being lost.
3256	 */
3257	if (ret)
3258		cancel_dirty_page(page, PAGE_CACHE_SIZE);
3259	spin_unlock(&mapping->private_lock);
3260out:
3261	if (buffers_to_free) {
3262		struct buffer_head *bh = buffers_to_free;
3263
3264		do {
3265			struct buffer_head *next = bh->b_this_page;
3266			free_buffer_head(bh);
3267			bh = next;
3268		} while (bh != buffers_to_free);
3269	}
3270	return ret;
3271}
3272EXPORT_SYMBOL(try_to_free_buffers);
3273
3274/*
3275 * There are no bdflush tunables left.  But distributions are
3276 * still running obsolete flush daemons, so we terminate them here.
3277 *
3278 * Use of bdflush() is deprecated and will be removed in a future kernel.
3279 * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3280 */
3281SYSCALL_DEFINE2(bdflush, int, func, long, data)
3282{
3283	static int msg_count;
3284
3285	if (!capable(CAP_SYS_ADMIN))
3286		return -EPERM;
3287
3288	if (msg_count < 5) {
3289		msg_count++;
3290		printk(KERN_INFO
3291			"warning: process `%s' used the obsolete bdflush"
3292			" system call\n", current->comm);
3293		printk(KERN_INFO "Fix your initscripts?\n");
3294	}
3295
3296	if (func == 1)
3297		do_exit(0);
3298	return 0;
3299}
3300
3301/*
3302 * Buffer-head allocation
3303 */
3304static struct kmem_cache *bh_cachep __read_mostly;
3305
3306/*
3307 * Once the number of bh's in the machine exceeds this level, we start
3308 * stripping them in writeback.
3309 */
3310static unsigned long max_buffer_heads;
3311
3312int buffer_heads_over_limit;
3313
3314struct bh_accounting {
3315	int nr;			/* Number of live bh's */
3316	int ratelimit;		/* Limit cacheline bouncing */
3317};
3318
3319static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3320
3321static void recalc_bh_state(void)
3322{
3323	int i;
3324	int tot = 0;
3325
3326	if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3327		return;
3328	__this_cpu_write(bh_accounting.ratelimit, 0);
3329	for_each_online_cpu(i)
3330		tot += per_cpu(bh_accounting, i).nr;
3331	buffer_heads_over_limit = (tot > max_buffer_heads);
3332}
3333
3334struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3335{
3336	struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3337	if (ret) {
3338		INIT_LIST_HEAD(&ret->b_assoc_buffers);
3339		preempt_disable();
3340		__this_cpu_inc(bh_accounting.nr);
3341		recalc_bh_state();
3342		preempt_enable();
3343	}
3344	return ret;
3345}
3346EXPORT_SYMBOL(alloc_buffer_head);
3347
3348void free_buffer_head(struct buffer_head *bh)
3349{
3350	BUG_ON(!list_empty(&bh->b_assoc_buffers));
3351	kmem_cache_free(bh_cachep, bh);
3352	preempt_disable();
3353	__this_cpu_dec(bh_accounting.nr);
3354	recalc_bh_state();
3355	preempt_enable();
3356}
3357EXPORT_SYMBOL(free_buffer_head);
3358
3359static void buffer_exit_cpu(int cpu)
3360{
3361	int i;
3362	struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3363
3364	for (i = 0; i < BH_LRU_SIZE; i++) {
3365		brelse(b->bhs[i]);
3366		b->bhs[i] = NULL;
3367	}
3368	this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3369	per_cpu(bh_accounting, cpu).nr = 0;
3370}
3371
3372static int buffer_cpu_notify(struct notifier_block *self,
3373			      unsigned long action, void *hcpu)
3374{
3375	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
3376		buffer_exit_cpu((unsigned long)hcpu);
3377	return NOTIFY_OK;
3378}
3379
3380/**
3381 * bh_uptodate_or_lock - Test whether the buffer is uptodate
3382 * @bh: struct buffer_head
3383 *
3384 * Return true if the buffer is up-to-date and false,
3385 * with the buffer locked, if not.
3386 */
3387int bh_uptodate_or_lock(struct buffer_head *bh)
3388{
3389	if (!buffer_uptodate(bh)) {
3390		lock_buffer(bh);
3391		if (!buffer_uptodate(bh))
3392			return 0;
3393		unlock_buffer(bh);
3394	}
3395	return 1;
3396}
3397EXPORT_SYMBOL(bh_uptodate_or_lock);
3398
3399/**
3400 * bh_submit_read - Submit a locked buffer for reading
3401 * @bh: struct buffer_head
3402 *
3403 * Returns zero on success and -EIO on error.
3404 */
3405int bh_submit_read(struct buffer_head *bh)
3406{
3407	BUG_ON(!buffer_locked(bh));
3408
3409	if (buffer_uptodate(bh)) {
3410		unlock_buffer(bh);
3411		return 0;
3412	}
3413
3414	get_bh(bh);
3415	bh->b_end_io = end_buffer_read_sync;
3416	submit_bh(READ, bh);
3417	wait_on_buffer(bh);
3418	if (buffer_uptodate(bh))
3419		return 0;
3420	return -EIO;
3421}
3422EXPORT_SYMBOL(bh_submit_read);
3423
3424void __init buffer_init(void)
3425{
3426	unsigned long nrpages;
 
3427
3428	bh_cachep = kmem_cache_create("buffer_head",
3429			sizeof(struct buffer_head), 0,
3430				(SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3431				SLAB_MEM_SPREAD),
3432				NULL);
3433
3434	/*
3435	 * Limit the bh occupancy to 10% of ZONE_NORMAL
3436	 */
3437	nrpages = (nr_free_buffer_pages() * 10) / 100;
3438	max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3439	hotcpu_notifier(buffer_cpu_notify, 0);
 
 
3440}