Linux Audio

Check our new training course

Loading...
v4.10.11
   1/*
   2 *  linux/fs/buffer.c
   3 *
   4 *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
   5 */
   6
   7/*
   8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
   9 *
  10 * Removed a lot of unnecessary code and simplified things now that
  11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
  12 *
  13 * Speed up hash, lru, and free list operations.  Use gfp() for allocating
  14 * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
  15 *
  16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
  17 *
  18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
  19 */
  20
  21#include <linux/kernel.h>
  22#include <linux/syscalls.h>
  23#include <linux/fs.h>
  24#include <linux/iomap.h>
  25#include <linux/mm.h>
  26#include <linux/percpu.h>
  27#include <linux/slab.h>
  28#include <linux/capability.h>
  29#include <linux/blkdev.h>
  30#include <linux/file.h>
  31#include <linux/quotaops.h>
  32#include <linux/highmem.h>
  33#include <linux/export.h>
  34#include <linux/backing-dev.h>
  35#include <linux/writeback.h>
  36#include <linux/hash.h>
  37#include <linux/suspend.h>
  38#include <linux/buffer_head.h>
  39#include <linux/task_io_accounting_ops.h>
  40#include <linux/bio.h>
  41#include <linux/notifier.h>
  42#include <linux/cpu.h>
  43#include <linux/bitops.h>
  44#include <linux/mpage.h>
  45#include <linux/bit_spinlock.h>
  46#include <linux/pagevec.h>
  47#include <trace/events/block.h>
  48
  49static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
  50static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
  51			 unsigned long bio_flags,
  52			 struct writeback_control *wbc);
  53
  54#define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
  55
  56void init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
 
  57{
  58	bh->b_end_io = handler;
  59	bh->b_private = private;
  60}
  61EXPORT_SYMBOL(init_buffer);
  62
  63inline void touch_buffer(struct buffer_head *bh)
  64{
  65	trace_block_touch_buffer(bh);
  66	mark_page_accessed(bh->b_page);
  67}
  68EXPORT_SYMBOL(touch_buffer);
  69
  70void __lock_buffer(struct buffer_head *bh)
  71{
  72	wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
 
  73}
  74EXPORT_SYMBOL(__lock_buffer);
  75
  76void unlock_buffer(struct buffer_head *bh)
  77{
  78	clear_bit_unlock(BH_Lock, &bh->b_state);
  79	smp_mb__after_atomic();
  80	wake_up_bit(&bh->b_state, BH_Lock);
  81}
  82EXPORT_SYMBOL(unlock_buffer);
  83
  84/*
  85 * Returns if the page has dirty or writeback buffers. If all the buffers
  86 * are unlocked and clean then the PageDirty information is stale. If
  87 * any of the pages are locked, it is assumed they are locked for IO.
  88 */
  89void buffer_check_dirty_writeback(struct page *page,
  90				     bool *dirty, bool *writeback)
  91{
  92	struct buffer_head *head, *bh;
  93	*dirty = false;
  94	*writeback = false;
  95
  96	BUG_ON(!PageLocked(page));
  97
  98	if (!page_has_buffers(page))
  99		return;
 100
 101	if (PageWriteback(page))
 102		*writeback = true;
 103
 104	head = page_buffers(page);
 105	bh = head;
 106	do {
 107		if (buffer_locked(bh))
 108			*writeback = true;
 109
 110		if (buffer_dirty(bh))
 111			*dirty = true;
 112
 113		bh = bh->b_this_page;
 114	} while (bh != head);
 115}
 116EXPORT_SYMBOL(buffer_check_dirty_writeback);
 117
 118/*
 119 * Block until a buffer comes unlocked.  This doesn't stop it
 120 * from becoming locked again - you have to lock it yourself
 121 * if you want to preserve its state.
 122 */
 123void __wait_on_buffer(struct buffer_head * bh)
 124{
 125	wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
 126}
 127EXPORT_SYMBOL(__wait_on_buffer);
 128
 129static void
 130__clear_page_buffers(struct page *page)
 131{
 132	ClearPagePrivate(page);
 133	set_page_private(page, 0);
 134	put_page(page);
 135}
 136
 137static void buffer_io_error(struct buffer_head *bh, char *msg)
 
 138{
 139	if (!test_bit(BH_Quiet, &bh->b_state))
 140		printk_ratelimited(KERN_ERR
 141			"Buffer I/O error on dev %pg, logical block %llu%s\n",
 142			bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
 
 
 
 
 
 
 
 
 143}
 144
 145/*
 146 * End-of-IO handler helper function which does not touch the bh after
 147 * unlocking it.
 148 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
 149 * a race there is benign: unlock_buffer() only use the bh's address for
 150 * hashing after unlocking the buffer, so it doesn't actually touch the bh
 151 * itself.
 152 */
 153static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
 154{
 155	if (uptodate) {
 156		set_buffer_uptodate(bh);
 157	} else {
 158		/* This happens, due to failed read-ahead attempts. */
 159		clear_buffer_uptodate(bh);
 160	}
 161	unlock_buffer(bh);
 162}
 163
 164/*
 165 * Default synchronous end-of-IO handler..  Just mark it up-to-date and
 166 * unlock the buffer. This is what ll_rw_block uses too.
 167 */
 168void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
 169{
 170	__end_buffer_read_notouch(bh, uptodate);
 171	put_bh(bh);
 172}
 173EXPORT_SYMBOL(end_buffer_read_sync);
 174
 175void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
 176{
 
 
 177	if (uptodate) {
 178		set_buffer_uptodate(bh);
 179	} else {
 180		buffer_io_error(bh, ", lost sync page write");
 
 
 
 
 
 181		set_buffer_write_io_error(bh);
 182		clear_buffer_uptodate(bh);
 183	}
 184	unlock_buffer(bh);
 185	put_bh(bh);
 186}
 187EXPORT_SYMBOL(end_buffer_write_sync);
 188
 189/*
 190 * Various filesystems appear to want __find_get_block to be non-blocking.
 191 * But it's the page lock which protects the buffers.  To get around this,
 192 * we get exclusion from try_to_free_buffers with the blockdev mapping's
 193 * private_lock.
 194 *
 195 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
 196 * may be quite high.  This code could TryLock the page, and if that
 197 * succeeds, there is no need to take private_lock. (But if
 198 * private_lock is contended then so is mapping->tree_lock).
 199 */
 200static struct buffer_head *
 201__find_get_block_slow(struct block_device *bdev, sector_t block)
 202{
 203	struct inode *bd_inode = bdev->bd_inode;
 204	struct address_space *bd_mapping = bd_inode->i_mapping;
 205	struct buffer_head *ret = NULL;
 206	pgoff_t index;
 207	struct buffer_head *bh;
 208	struct buffer_head *head;
 209	struct page *page;
 210	int all_mapped = 1;
 211
 212	index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
 213	page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED);
 214	if (!page)
 215		goto out;
 216
 217	spin_lock(&bd_mapping->private_lock);
 218	if (!page_has_buffers(page))
 219		goto out_unlock;
 220	head = page_buffers(page);
 221	bh = head;
 222	do {
 223		if (!buffer_mapped(bh))
 224			all_mapped = 0;
 225		else if (bh->b_blocknr == block) {
 226			ret = bh;
 227			get_bh(bh);
 228			goto out_unlock;
 229		}
 230		bh = bh->b_this_page;
 231	} while (bh != head);
 232
 233	/* we might be here because some of the buffers on this page are
 234	 * not mapped.  This is due to various races between
 235	 * file io on the block device and getblk.  It gets dealt with
 236	 * elsewhere, don't buffer_error if we had some unmapped buffers
 237	 */
 238	if (all_mapped) {
 
 
 239		printk("__find_get_block_slow() failed. "
 240			"block=%llu, b_blocknr=%llu\n",
 241			(unsigned long long)block,
 242			(unsigned long long)bh->b_blocknr);
 243		printk("b_state=0x%08lx, b_size=%zu\n",
 244			bh->b_state, bh->b_size);
 245		printk("device %pg blocksize: %d\n", bdev,
 246			1 << bd_inode->i_blkbits);
 247	}
 248out_unlock:
 249	spin_unlock(&bd_mapping->private_lock);
 250	put_page(page);
 251out:
 252	return ret;
 253}
 254
 255/*
 256 * Kick the writeback threads then try to free up some ZONE_NORMAL memory.
 257 */
 258static void free_more_memory(void)
 259{
 260	struct zoneref *z;
 261	int nid;
 262
 263	wakeup_flusher_threads(1024, WB_REASON_FREE_MORE_MEM);
 264	yield();
 265
 266	for_each_online_node(nid) {
 267
 268		z = first_zones_zonelist(node_zonelist(nid, GFP_NOFS),
 269						gfp_zone(GFP_NOFS), NULL);
 270		if (z->zone)
 271			try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0,
 272						GFP_NOFS, NULL);
 273	}
 274}
 275
 276/*
 277 * I/O completion handler for block_read_full_page() - pages
 278 * which come unlocked at the end of I/O.
 279 */
 280static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
 281{
 282	unsigned long flags;
 283	struct buffer_head *first;
 284	struct buffer_head *tmp;
 285	struct page *page;
 286	int page_uptodate = 1;
 287
 288	BUG_ON(!buffer_async_read(bh));
 289
 290	page = bh->b_page;
 291	if (uptodate) {
 292		set_buffer_uptodate(bh);
 293	} else {
 294		clear_buffer_uptodate(bh);
 295		buffer_io_error(bh, ", async page read");
 
 296		SetPageError(page);
 297	}
 298
 299	/*
 300	 * Be _very_ careful from here on. Bad things can happen if
 301	 * two buffer heads end IO at almost the same time and both
 302	 * decide that the page is now completely done.
 303	 */
 304	first = page_buffers(page);
 305	local_irq_save(flags);
 306	bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
 307	clear_buffer_async_read(bh);
 308	unlock_buffer(bh);
 309	tmp = bh;
 310	do {
 311		if (!buffer_uptodate(tmp))
 312			page_uptodate = 0;
 313		if (buffer_async_read(tmp)) {
 314			BUG_ON(!buffer_locked(tmp));
 315			goto still_busy;
 316		}
 317		tmp = tmp->b_this_page;
 318	} while (tmp != bh);
 319	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
 320	local_irq_restore(flags);
 321
 322	/*
 323	 * If none of the buffers had errors and they are all
 324	 * uptodate then we can set the page uptodate.
 325	 */
 326	if (page_uptodate && !PageError(page))
 327		SetPageUptodate(page);
 328	unlock_page(page);
 329	return;
 330
 331still_busy:
 332	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
 333	local_irq_restore(flags);
 334	return;
 335}
 336
 337/*
 338 * Completion handler for block_write_full_page() - pages which are unlocked
 339 * during I/O, and which have PageWriteback cleared upon I/O completion.
 340 */
 341void end_buffer_async_write(struct buffer_head *bh, int uptodate)
 342{
 
 343	unsigned long flags;
 344	struct buffer_head *first;
 345	struct buffer_head *tmp;
 346	struct page *page;
 347
 348	BUG_ON(!buffer_async_write(bh));
 349
 350	page = bh->b_page;
 351	if (uptodate) {
 352		set_buffer_uptodate(bh);
 353	} else {
 354		buffer_io_error(bh, ", lost async page write");
 355		mapping_set_error(page->mapping, -EIO);
 
 
 
 
 
 356		set_buffer_write_io_error(bh);
 357		clear_buffer_uptodate(bh);
 358		SetPageError(page);
 359	}
 360
 361	first = page_buffers(page);
 362	local_irq_save(flags);
 363	bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
 364
 365	clear_buffer_async_write(bh);
 366	unlock_buffer(bh);
 367	tmp = bh->b_this_page;
 368	while (tmp != bh) {
 369		if (buffer_async_write(tmp)) {
 370			BUG_ON(!buffer_locked(tmp));
 371			goto still_busy;
 372		}
 373		tmp = tmp->b_this_page;
 374	}
 375	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
 376	local_irq_restore(flags);
 377	end_page_writeback(page);
 378	return;
 379
 380still_busy:
 381	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
 382	local_irq_restore(flags);
 383	return;
 384}
 385EXPORT_SYMBOL(end_buffer_async_write);
 386
 387/*
 388 * If a page's buffers are under async readin (end_buffer_async_read
 389 * completion) then there is a possibility that another thread of
 390 * control could lock one of the buffers after it has completed
 391 * but while some of the other buffers have not completed.  This
 392 * locked buffer would confuse end_buffer_async_read() into not unlocking
 393 * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
 394 * that this buffer is not under async I/O.
 395 *
 396 * The page comes unlocked when it has no locked buffer_async buffers
 397 * left.
 398 *
 399 * PageLocked prevents anyone starting new async I/O reads any of
 400 * the buffers.
 401 *
 402 * PageWriteback is used to prevent simultaneous writeout of the same
 403 * page.
 404 *
 405 * PageLocked prevents anyone from starting writeback of a page which is
 406 * under read I/O (PageWriteback is only ever set against a locked page).
 407 */
 408static void mark_buffer_async_read(struct buffer_head *bh)
 409{
 410	bh->b_end_io = end_buffer_async_read;
 411	set_buffer_async_read(bh);
 412}
 413
 414static void mark_buffer_async_write_endio(struct buffer_head *bh,
 415					  bh_end_io_t *handler)
 416{
 417	bh->b_end_io = handler;
 418	set_buffer_async_write(bh);
 419}
 420
 421void mark_buffer_async_write(struct buffer_head *bh)
 422{
 423	mark_buffer_async_write_endio(bh, end_buffer_async_write);
 424}
 425EXPORT_SYMBOL(mark_buffer_async_write);
 426
 427
 428/*
 429 * fs/buffer.c contains helper functions for buffer-backed address space's
 430 * fsync functions.  A common requirement for buffer-based filesystems is
 431 * that certain data from the backing blockdev needs to be written out for
 432 * a successful fsync().  For example, ext2 indirect blocks need to be
 433 * written back and waited upon before fsync() returns.
 434 *
 435 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
 436 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
 437 * management of a list of dependent buffers at ->i_mapping->private_list.
 438 *
 439 * Locking is a little subtle: try_to_free_buffers() will remove buffers
 440 * from their controlling inode's queue when they are being freed.  But
 441 * try_to_free_buffers() will be operating against the *blockdev* mapping
 442 * at the time, not against the S_ISREG file which depends on those buffers.
 443 * So the locking for private_list is via the private_lock in the address_space
 444 * which backs the buffers.  Which is different from the address_space 
 445 * against which the buffers are listed.  So for a particular address_space,
 446 * mapping->private_lock does *not* protect mapping->private_list!  In fact,
 447 * mapping->private_list will always be protected by the backing blockdev's
 448 * ->private_lock.
 449 *
 450 * Which introduces a requirement: all buffers on an address_space's
 451 * ->private_list must be from the same address_space: the blockdev's.
 452 *
 453 * address_spaces which do not place buffers at ->private_list via these
 454 * utility functions are free to use private_lock and private_list for
 455 * whatever they want.  The only requirement is that list_empty(private_list)
 456 * be true at clear_inode() time.
 457 *
 458 * FIXME: clear_inode should not call invalidate_inode_buffers().  The
 459 * filesystems should do that.  invalidate_inode_buffers() should just go
 460 * BUG_ON(!list_empty).
 461 *
 462 * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
 463 * take an address_space, not an inode.  And it should be called
 464 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
 465 * queued up.
 466 *
 467 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
 468 * list if it is already on a list.  Because if the buffer is on a list,
 469 * it *must* already be on the right one.  If not, the filesystem is being
 470 * silly.  This will save a ton of locking.  But first we have to ensure
 471 * that buffers are taken *off* the old inode's list when they are freed
 472 * (presumably in truncate).  That requires careful auditing of all
 473 * filesystems (do it inside bforget()).  It could also be done by bringing
 474 * b_inode back.
 475 */
 476
 477/*
 478 * The buffer's backing address_space's private_lock must be held
 479 */
 480static void __remove_assoc_queue(struct buffer_head *bh)
 481{
 482	list_del_init(&bh->b_assoc_buffers);
 483	WARN_ON(!bh->b_assoc_map);
 484	if (buffer_write_io_error(bh))
 485		set_bit(AS_EIO, &bh->b_assoc_map->flags);
 486	bh->b_assoc_map = NULL;
 487}
 488
 489int inode_has_buffers(struct inode *inode)
 490{
 491	return !list_empty(&inode->i_data.private_list);
 492}
 493
 494/*
 495 * osync is designed to support O_SYNC io.  It waits synchronously for
 496 * all already-submitted IO to complete, but does not queue any new
 497 * writes to the disk.
 498 *
 499 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
 500 * you dirty the buffers, and then use osync_inode_buffers to wait for
 501 * completion.  Any other dirty buffers which are not yet queued for
 502 * write will not be flushed to disk by the osync.
 503 */
 504static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
 505{
 506	struct buffer_head *bh;
 507	struct list_head *p;
 508	int err = 0;
 509
 510	spin_lock(lock);
 511repeat:
 512	list_for_each_prev(p, list) {
 513		bh = BH_ENTRY(p);
 514		if (buffer_locked(bh)) {
 515			get_bh(bh);
 516			spin_unlock(lock);
 517			wait_on_buffer(bh);
 518			if (!buffer_uptodate(bh))
 519				err = -EIO;
 520			brelse(bh);
 521			spin_lock(lock);
 522			goto repeat;
 523		}
 524	}
 525	spin_unlock(lock);
 526	return err;
 527}
 528
 529static void do_thaw_one(struct super_block *sb, void *unused)
 530{
 
 531	while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
 532		printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev);
 
 533}
 534
 535static void do_thaw_all(struct work_struct *work)
 536{
 537	iterate_supers(do_thaw_one, NULL);
 538	kfree(work);
 539	printk(KERN_WARNING "Emergency Thaw complete\n");
 540}
 541
 542/**
 543 * emergency_thaw_all -- forcibly thaw every frozen filesystem
 544 *
 545 * Used for emergency unfreeze of all filesystems via SysRq
 546 */
 547void emergency_thaw_all(void)
 548{
 549	struct work_struct *work;
 550
 551	work = kmalloc(sizeof(*work), GFP_ATOMIC);
 552	if (work) {
 553		INIT_WORK(work, do_thaw_all);
 554		schedule_work(work);
 555	}
 556}
 557
 558/**
 559 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
 560 * @mapping: the mapping which wants those buffers written
 561 *
 562 * Starts I/O against the buffers at mapping->private_list, and waits upon
 563 * that I/O.
 564 *
 565 * Basically, this is a convenience function for fsync().
 566 * @mapping is a file or directory which needs those buffers to be written for
 567 * a successful fsync().
 568 */
 569int sync_mapping_buffers(struct address_space *mapping)
 570{
 571	struct address_space *buffer_mapping = mapping->private_data;
 572
 573	if (buffer_mapping == NULL || list_empty(&mapping->private_list))
 574		return 0;
 575
 576	return fsync_buffers_list(&buffer_mapping->private_lock,
 577					&mapping->private_list);
 578}
 579EXPORT_SYMBOL(sync_mapping_buffers);
 580
 581/*
 582 * Called when we've recently written block `bblock', and it is known that
 583 * `bblock' was for a buffer_boundary() buffer.  This means that the block at
 584 * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
 585 * dirty, schedule it for IO.  So that indirects merge nicely with their data.
 586 */
 587void write_boundary_block(struct block_device *bdev,
 588			sector_t bblock, unsigned blocksize)
 589{
 590	struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
 591	if (bh) {
 592		if (buffer_dirty(bh))
 593			ll_rw_block(REQ_OP_WRITE, 0, 1, &bh);
 594		put_bh(bh);
 595	}
 596}
 597
 598void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
 599{
 600	struct address_space *mapping = inode->i_mapping;
 601	struct address_space *buffer_mapping = bh->b_page->mapping;
 602
 603	mark_buffer_dirty(bh);
 604	if (!mapping->private_data) {
 605		mapping->private_data = buffer_mapping;
 606	} else {
 607		BUG_ON(mapping->private_data != buffer_mapping);
 608	}
 609	if (!bh->b_assoc_map) {
 610		spin_lock(&buffer_mapping->private_lock);
 611		list_move_tail(&bh->b_assoc_buffers,
 612				&mapping->private_list);
 613		bh->b_assoc_map = mapping;
 614		spin_unlock(&buffer_mapping->private_lock);
 615	}
 616}
 617EXPORT_SYMBOL(mark_buffer_dirty_inode);
 618
 619/*
 620 * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
 621 * dirty.
 622 *
 623 * If warn is true, then emit a warning if the page is not uptodate and has
 624 * not been truncated.
 625 *
 626 * The caller must hold lock_page_memcg().
 627 */
 628static void __set_page_dirty(struct page *page, struct address_space *mapping,
 629			     int warn)
 630{
 631	unsigned long flags;
 632
 633	spin_lock_irqsave(&mapping->tree_lock, flags);
 634	if (page->mapping) {	/* Race with truncate? */
 635		WARN_ON_ONCE(warn && !PageUptodate(page));
 636		account_page_dirtied(page, mapping);
 637		radix_tree_tag_set(&mapping->page_tree,
 638				page_index(page), PAGECACHE_TAG_DIRTY);
 639	}
 640	spin_unlock_irqrestore(&mapping->tree_lock, flags);
 
 641}
 642
 643/*
 644 * Add a page to the dirty page list.
 645 *
 646 * It is a sad fact of life that this function is called from several places
 647 * deeply under spinlocking.  It may not sleep.
 648 *
 649 * If the page has buffers, the uptodate buffers are set dirty, to preserve
 650 * dirty-state coherency between the page and the buffers.  It the page does
 651 * not have buffers then when they are later attached they will all be set
 652 * dirty.
 653 *
 654 * The buffers are dirtied before the page is dirtied.  There's a small race
 655 * window in which a writepage caller may see the page cleanness but not the
 656 * buffer dirtiness.  That's fine.  If this code were to set the page dirty
 657 * before the buffers, a concurrent writepage caller could clear the page dirty
 658 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
 659 * page on the dirty page list.
 660 *
 661 * We use private_lock to lock against try_to_free_buffers while using the
 662 * page's buffer list.  Also use this to protect against clean buffers being
 663 * added to the page after it was set dirty.
 664 *
 665 * FIXME: may need to call ->reservepage here as well.  That's rather up to the
 666 * address_space though.
 667 */
 668int __set_page_dirty_buffers(struct page *page)
 669{
 670	int newly_dirty;
 671	struct address_space *mapping = page_mapping(page);
 672
 673	if (unlikely(!mapping))
 674		return !TestSetPageDirty(page);
 675
 676	spin_lock(&mapping->private_lock);
 677	if (page_has_buffers(page)) {
 678		struct buffer_head *head = page_buffers(page);
 679		struct buffer_head *bh = head;
 680
 681		do {
 682			set_buffer_dirty(bh);
 683			bh = bh->b_this_page;
 684		} while (bh != head);
 685	}
 686	/*
 687	 * Lock out page->mem_cgroup migration to keep PageDirty
 688	 * synchronized with per-memcg dirty page counters.
 689	 */
 690	lock_page_memcg(page);
 691	newly_dirty = !TestSetPageDirty(page);
 692	spin_unlock(&mapping->private_lock);
 693
 694	if (newly_dirty)
 695		__set_page_dirty(page, mapping, 1);
 696
 697	unlock_page_memcg(page);
 698
 699	if (newly_dirty)
 700		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
 701
 702	return newly_dirty;
 703}
 704EXPORT_SYMBOL(__set_page_dirty_buffers);
 705
 706/*
 707 * Write out and wait upon a list of buffers.
 708 *
 709 * We have conflicting pressures: we want to make sure that all
 710 * initially dirty buffers get waited on, but that any subsequently
 711 * dirtied buffers don't.  After all, we don't want fsync to last
 712 * forever if somebody is actively writing to the file.
 713 *
 714 * Do this in two main stages: first we copy dirty buffers to a
 715 * temporary inode list, queueing the writes as we go.  Then we clean
 716 * up, waiting for those writes to complete.
 717 * 
 718 * During this second stage, any subsequent updates to the file may end
 719 * up refiling the buffer on the original inode's dirty list again, so
 720 * there is a chance we will end up with a buffer queued for write but
 721 * not yet completed on that list.  So, as a final cleanup we go through
 722 * the osync code to catch these locked, dirty buffers without requeuing
 723 * any newly dirty buffers for write.
 724 */
 725static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
 726{
 727	struct buffer_head *bh;
 728	struct list_head tmp;
 729	struct address_space *mapping;
 730	int err = 0, err2;
 731	struct blk_plug plug;
 732
 733	INIT_LIST_HEAD(&tmp);
 734	blk_start_plug(&plug);
 735
 736	spin_lock(lock);
 737	while (!list_empty(list)) {
 738		bh = BH_ENTRY(list->next);
 739		mapping = bh->b_assoc_map;
 740		__remove_assoc_queue(bh);
 741		/* Avoid race with mark_buffer_dirty_inode() which does
 742		 * a lockless check and we rely on seeing the dirty bit */
 743		smp_mb();
 744		if (buffer_dirty(bh) || buffer_locked(bh)) {
 745			list_add(&bh->b_assoc_buffers, &tmp);
 746			bh->b_assoc_map = mapping;
 747			if (buffer_dirty(bh)) {
 748				get_bh(bh);
 749				spin_unlock(lock);
 750				/*
 751				 * Ensure any pending I/O completes so that
 752				 * write_dirty_buffer() actually writes the
 753				 * current contents - it is a noop if I/O is
 754				 * still in flight on potentially older
 755				 * contents.
 756				 */
 757				write_dirty_buffer(bh, REQ_SYNC);
 758
 759				/*
 760				 * Kick off IO for the previous mapping. Note
 761				 * that we will not run the very last mapping,
 762				 * wait_on_buffer() will do that for us
 763				 * through sync_buffer().
 764				 */
 765				brelse(bh);
 766				spin_lock(lock);
 767			}
 768		}
 769	}
 770
 771	spin_unlock(lock);
 772	blk_finish_plug(&plug);
 773	spin_lock(lock);
 774
 775	while (!list_empty(&tmp)) {
 776		bh = BH_ENTRY(tmp.prev);
 777		get_bh(bh);
 778		mapping = bh->b_assoc_map;
 779		__remove_assoc_queue(bh);
 780		/* Avoid race with mark_buffer_dirty_inode() which does
 781		 * a lockless check and we rely on seeing the dirty bit */
 782		smp_mb();
 783		if (buffer_dirty(bh)) {
 784			list_add(&bh->b_assoc_buffers,
 785				 &mapping->private_list);
 786			bh->b_assoc_map = mapping;
 787		}
 788		spin_unlock(lock);
 789		wait_on_buffer(bh);
 790		if (!buffer_uptodate(bh))
 791			err = -EIO;
 792		brelse(bh);
 793		spin_lock(lock);
 794	}
 795	
 796	spin_unlock(lock);
 797	err2 = osync_buffers_list(lock, list);
 798	if (err)
 799		return err;
 800	else
 801		return err2;
 802}
 803
 804/*
 805 * Invalidate any and all dirty buffers on a given inode.  We are
 806 * probably unmounting the fs, but that doesn't mean we have already
 807 * done a sync().  Just drop the buffers from the inode list.
 808 *
 809 * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
 810 * assumes that all the buffers are against the blockdev.  Not true
 811 * for reiserfs.
 812 */
 813void invalidate_inode_buffers(struct inode *inode)
 814{
 815	if (inode_has_buffers(inode)) {
 816		struct address_space *mapping = &inode->i_data;
 817		struct list_head *list = &mapping->private_list;
 818		struct address_space *buffer_mapping = mapping->private_data;
 819
 820		spin_lock(&buffer_mapping->private_lock);
 821		while (!list_empty(list))
 822			__remove_assoc_queue(BH_ENTRY(list->next));
 823		spin_unlock(&buffer_mapping->private_lock);
 824	}
 825}
 826EXPORT_SYMBOL(invalidate_inode_buffers);
 827
 828/*
 829 * Remove any clean buffers from the inode's buffer list.  This is called
 830 * when we're trying to free the inode itself.  Those buffers can pin it.
 831 *
 832 * Returns true if all buffers were removed.
 833 */
 834int remove_inode_buffers(struct inode *inode)
 835{
 836	int ret = 1;
 837
 838	if (inode_has_buffers(inode)) {
 839		struct address_space *mapping = &inode->i_data;
 840		struct list_head *list = &mapping->private_list;
 841		struct address_space *buffer_mapping = mapping->private_data;
 842
 843		spin_lock(&buffer_mapping->private_lock);
 844		while (!list_empty(list)) {
 845			struct buffer_head *bh = BH_ENTRY(list->next);
 846			if (buffer_dirty(bh)) {
 847				ret = 0;
 848				break;
 849			}
 850			__remove_assoc_queue(bh);
 851		}
 852		spin_unlock(&buffer_mapping->private_lock);
 853	}
 854	return ret;
 855}
 856
 857/*
 858 * Create the appropriate buffers when given a page for data area and
 859 * the size of each buffer.. Use the bh->b_this_page linked list to
 860 * follow the buffers created.  Return NULL if unable to create more
 861 * buffers.
 862 *
 863 * The retry flag is used to differentiate async IO (paging, swapping)
 864 * which may not fail from ordinary buffer allocations.
 865 */
 866struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
 867		int retry)
 868{
 869	struct buffer_head *bh, *head;
 870	long offset;
 871
 872try_again:
 873	head = NULL;
 874	offset = PAGE_SIZE;
 875	while ((offset -= size) >= 0) {
 876		bh = alloc_buffer_head(GFP_NOFS);
 877		if (!bh)
 878			goto no_grow;
 879
 
 880		bh->b_this_page = head;
 881		bh->b_blocknr = -1;
 882		head = bh;
 883
 
 
 884		bh->b_size = size;
 885
 886		/* Link the buffer to its page */
 887		set_bh_page(bh, page, offset);
 
 
 888	}
 889	return head;
 890/*
 891 * In case anything failed, we just free everything we got.
 892 */
 893no_grow:
 894	if (head) {
 895		do {
 896			bh = head;
 897			head = head->b_this_page;
 898			free_buffer_head(bh);
 899		} while (head);
 900	}
 901
 902	/*
 903	 * Return failure for non-async IO requests.  Async IO requests
 904	 * are not allowed to fail, so we have to wait until buffer heads
 905	 * become available.  But we don't want tasks sleeping with 
 906	 * partially complete buffers, so all were released above.
 907	 */
 908	if (!retry)
 909		return NULL;
 910
 911	/* We're _really_ low on memory. Now we just
 912	 * wait for old buffer heads to become free due to
 913	 * finishing IO.  Since this is an async request and
 914	 * the reserve list is empty, we're sure there are 
 915	 * async buffer heads in use.
 916	 */
 917	free_more_memory();
 918	goto try_again;
 919}
 920EXPORT_SYMBOL_GPL(alloc_page_buffers);
 921
 922static inline void
 923link_dev_buffers(struct page *page, struct buffer_head *head)
 924{
 925	struct buffer_head *bh, *tail;
 926
 927	bh = head;
 928	do {
 929		tail = bh;
 930		bh = bh->b_this_page;
 931	} while (bh);
 932	tail->b_this_page = head;
 933	attach_page_buffers(page, head);
 934}
 935
 936static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
 937{
 938	sector_t retval = ~((sector_t)0);
 939	loff_t sz = i_size_read(bdev->bd_inode);
 940
 941	if (sz) {
 942		unsigned int sizebits = blksize_bits(size);
 943		retval = (sz >> sizebits);
 944	}
 945	return retval;
 946}
 947
 948/*
 949 * Initialise the state of a blockdev page's buffers.
 950 */ 
 951static sector_t
 952init_page_buffers(struct page *page, struct block_device *bdev,
 953			sector_t block, int size)
 954{
 955	struct buffer_head *head = page_buffers(page);
 956	struct buffer_head *bh = head;
 957	int uptodate = PageUptodate(page);
 958	sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size);
 959
 960	do {
 961		if (!buffer_mapped(bh)) {
 962			init_buffer(bh, NULL, NULL);
 963			bh->b_bdev = bdev;
 964			bh->b_blocknr = block;
 965			if (uptodate)
 966				set_buffer_uptodate(bh);
 967			if (block < end_block)
 968				set_buffer_mapped(bh);
 969		}
 970		block++;
 971		bh = bh->b_this_page;
 972	} while (bh != head);
 973
 974	/*
 975	 * Caller needs to validate requested block against end of device.
 976	 */
 977	return end_block;
 978}
 979
 980/*
 981 * Create the page-cache page that contains the requested block.
 982 *
 983 * This is used purely for blockdev mappings.
 984 */
 985static int
 986grow_dev_page(struct block_device *bdev, sector_t block,
 987	      pgoff_t index, int size, int sizebits, gfp_t gfp)
 988{
 989	struct inode *inode = bdev->bd_inode;
 990	struct page *page;
 991	struct buffer_head *bh;
 992	sector_t end_block;
 993	int ret = 0;		/* Will call free_more_memory() */
 994	gfp_t gfp_mask;
 995
 996	gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp;
 997
 998	/*
 999	 * XXX: __getblk_slow() can not really deal with failure and
1000	 * will endlessly loop on improvised global reclaim.  Prefer
1001	 * looping in the allocator rather than here, at least that
1002	 * code knows what it's doing.
1003	 */
1004	gfp_mask |= __GFP_NOFAIL;
1005
1006	page = find_or_create_page(inode->i_mapping, index, gfp_mask);
1007	if (!page)
1008		return ret;
1009
1010	BUG_ON(!PageLocked(page));
1011
1012	if (page_has_buffers(page)) {
1013		bh = page_buffers(page);
1014		if (bh->b_size == size) {
1015			end_block = init_page_buffers(page, bdev,
1016						(sector_t)index << sizebits,
1017						size);
1018			goto done;
1019		}
1020		if (!try_to_free_buffers(page))
1021			goto failed;
1022	}
1023
1024	/*
1025	 * Allocate some buffers for this page
1026	 */
1027	bh = alloc_page_buffers(page, size, 0);
1028	if (!bh)
1029		goto failed;
1030
1031	/*
1032	 * Link the page to the buffers and initialise them.  Take the
1033	 * lock to be atomic wrt __find_get_block(), which does not
1034	 * run under the page lock.
1035	 */
1036	spin_lock(&inode->i_mapping->private_lock);
1037	link_dev_buffers(page, bh);
1038	end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits,
1039			size);
1040	spin_unlock(&inode->i_mapping->private_lock);
1041done:
1042	ret = (block < end_block) ? 1 : -ENXIO;
1043failed:
1044	unlock_page(page);
1045	put_page(page);
1046	return ret;
1047}
1048
1049/*
1050 * Create buffers for the specified block device block's page.  If
1051 * that page was dirty, the buffers are set dirty also.
1052 */
1053static int
1054grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp)
1055{
1056	pgoff_t index;
1057	int sizebits;
1058
1059	sizebits = -1;
1060	do {
1061		sizebits++;
1062	} while ((size << sizebits) < PAGE_SIZE);
1063
1064	index = block >> sizebits;
1065
1066	/*
1067	 * Check for a block which wants to lie outside our maximum possible
1068	 * pagecache index.  (this comparison is done using sector_t types).
1069	 */
1070	if (unlikely(index != block >> sizebits)) {
 
 
1071		printk(KERN_ERR "%s: requested out-of-range block %llu for "
1072			"device %pg\n",
1073			__func__, (unsigned long long)block,
1074			bdev);
1075		return -EIO;
1076	}
1077
1078	/* Create a page with the proper size buffers.. */
1079	return grow_dev_page(bdev, block, index, size, sizebits, gfp);
1080}
1081
1082static struct buffer_head *
1083__getblk_slow(struct block_device *bdev, sector_t block,
1084	     unsigned size, gfp_t gfp)
1085{
1086	/* Size must be multiple of hard sectorsize */
1087	if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1088			(size < 512 || size > PAGE_SIZE))) {
1089		printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1090					size);
1091		printk(KERN_ERR "logical block size: %d\n",
1092					bdev_logical_block_size(bdev));
1093
1094		dump_stack();
1095		return NULL;
1096	}
1097
1098	for (;;) {
1099		struct buffer_head *bh;
1100		int ret;
1101
1102		bh = __find_get_block(bdev, block, size);
1103		if (bh)
1104			return bh;
1105
1106		ret = grow_buffers(bdev, block, size, gfp);
1107		if (ret < 0)
1108			return NULL;
1109		if (ret == 0)
1110			free_more_memory();
1111	}
1112}
1113
1114/*
1115 * The relationship between dirty buffers and dirty pages:
1116 *
1117 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1118 * the page is tagged dirty in its radix tree.
1119 *
1120 * At all times, the dirtiness of the buffers represents the dirtiness of
1121 * subsections of the page.  If the page has buffers, the page dirty bit is
1122 * merely a hint about the true dirty state.
1123 *
1124 * When a page is set dirty in its entirety, all its buffers are marked dirty
1125 * (if the page has buffers).
1126 *
1127 * When a buffer is marked dirty, its page is dirtied, but the page's other
1128 * buffers are not.
1129 *
1130 * Also.  When blockdev buffers are explicitly read with bread(), they
1131 * individually become uptodate.  But their backing page remains not
1132 * uptodate - even if all of its buffers are uptodate.  A subsequent
1133 * block_read_full_page() against that page will discover all the uptodate
1134 * buffers, will set the page uptodate and will perform no I/O.
1135 */
1136
1137/**
1138 * mark_buffer_dirty - mark a buffer_head as needing writeout
1139 * @bh: the buffer_head to mark dirty
1140 *
1141 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1142 * backing page dirty, then tag the page as dirty in its address_space's radix
1143 * tree and then attach the address_space's inode to its superblock's dirty
1144 * inode list.
1145 *
1146 * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1147 * mapping->tree_lock and mapping->host->i_lock.
1148 */
1149void mark_buffer_dirty(struct buffer_head *bh)
1150{
1151	WARN_ON_ONCE(!buffer_uptodate(bh));
1152
1153	trace_block_dirty_buffer(bh);
1154
1155	/*
1156	 * Very *carefully* optimize the it-is-already-dirty case.
1157	 *
1158	 * Don't let the final "is it dirty" escape to before we
1159	 * perhaps modified the buffer.
1160	 */
1161	if (buffer_dirty(bh)) {
1162		smp_mb();
1163		if (buffer_dirty(bh))
1164			return;
1165	}
1166
1167	if (!test_set_buffer_dirty(bh)) {
1168		struct page *page = bh->b_page;
1169		struct address_space *mapping = NULL;
1170
1171		lock_page_memcg(page);
1172		if (!TestSetPageDirty(page)) {
1173			mapping = page_mapping(page);
1174			if (mapping)
1175				__set_page_dirty(page, mapping, 0);
1176		}
1177		unlock_page_memcg(page);
1178		if (mapping)
1179			__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1180	}
1181}
1182EXPORT_SYMBOL(mark_buffer_dirty);
1183
1184/*
1185 * Decrement a buffer_head's reference count.  If all buffers against a page
1186 * have zero reference count, are clean and unlocked, and if the page is clean
1187 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1188 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1189 * a page but it ends up not being freed, and buffers may later be reattached).
1190 */
1191void __brelse(struct buffer_head * buf)
1192{
1193	if (atomic_read(&buf->b_count)) {
1194		put_bh(buf);
1195		return;
1196	}
1197	WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1198}
1199EXPORT_SYMBOL(__brelse);
1200
1201/*
1202 * bforget() is like brelse(), except it discards any
1203 * potentially dirty data.
1204 */
1205void __bforget(struct buffer_head *bh)
1206{
1207	clear_buffer_dirty(bh);
1208	if (bh->b_assoc_map) {
1209		struct address_space *buffer_mapping = bh->b_page->mapping;
1210
1211		spin_lock(&buffer_mapping->private_lock);
1212		list_del_init(&bh->b_assoc_buffers);
1213		bh->b_assoc_map = NULL;
1214		spin_unlock(&buffer_mapping->private_lock);
1215	}
1216	__brelse(bh);
1217}
1218EXPORT_SYMBOL(__bforget);
1219
1220static struct buffer_head *__bread_slow(struct buffer_head *bh)
1221{
1222	lock_buffer(bh);
1223	if (buffer_uptodate(bh)) {
1224		unlock_buffer(bh);
1225		return bh;
1226	} else {
1227		get_bh(bh);
1228		bh->b_end_io = end_buffer_read_sync;
1229		submit_bh(REQ_OP_READ, 0, bh);
1230		wait_on_buffer(bh);
1231		if (buffer_uptodate(bh))
1232			return bh;
1233	}
1234	brelse(bh);
1235	return NULL;
1236}
1237
1238/*
1239 * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1240 * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1241 * refcount elevated by one when they're in an LRU.  A buffer can only appear
1242 * once in a particular CPU's LRU.  A single buffer can be present in multiple
1243 * CPU's LRUs at the same time.
1244 *
1245 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1246 * sb_find_get_block().
1247 *
1248 * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1249 * a local interrupt disable for that.
1250 */
1251
1252#define BH_LRU_SIZE	16
1253
1254struct bh_lru {
1255	struct buffer_head *bhs[BH_LRU_SIZE];
1256};
1257
1258static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1259
1260#ifdef CONFIG_SMP
1261#define bh_lru_lock()	local_irq_disable()
1262#define bh_lru_unlock()	local_irq_enable()
1263#else
1264#define bh_lru_lock()	preempt_disable()
1265#define bh_lru_unlock()	preempt_enable()
1266#endif
1267
1268static inline void check_irqs_on(void)
1269{
1270#ifdef irqs_disabled
1271	BUG_ON(irqs_disabled());
1272#endif
1273}
1274
1275/*
1276 * The LRU management algorithm is dopey-but-simple.  Sorry.
1277 */
1278static void bh_lru_install(struct buffer_head *bh)
1279{
1280	struct buffer_head *evictee = NULL;
1281
1282	check_irqs_on();
1283	bh_lru_lock();
1284	if (__this_cpu_read(bh_lrus.bhs[0]) != bh) {
1285		struct buffer_head *bhs[BH_LRU_SIZE];
1286		int in;
1287		int out = 0;
1288
1289		get_bh(bh);
1290		bhs[out++] = bh;
1291		for (in = 0; in < BH_LRU_SIZE; in++) {
1292			struct buffer_head *bh2 =
1293				__this_cpu_read(bh_lrus.bhs[in]);
1294
1295			if (bh2 == bh) {
1296				__brelse(bh2);
1297			} else {
1298				if (out >= BH_LRU_SIZE) {
1299					BUG_ON(evictee != NULL);
1300					evictee = bh2;
1301				} else {
1302					bhs[out++] = bh2;
1303				}
1304			}
1305		}
1306		while (out < BH_LRU_SIZE)
1307			bhs[out++] = NULL;
1308		memcpy(this_cpu_ptr(&bh_lrus.bhs), bhs, sizeof(bhs));
1309	}
1310	bh_lru_unlock();
1311
1312	if (evictee)
1313		__brelse(evictee);
1314}
1315
1316/*
1317 * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1318 */
1319static struct buffer_head *
1320lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1321{
1322	struct buffer_head *ret = NULL;
1323	unsigned int i;
1324
1325	check_irqs_on();
1326	bh_lru_lock();
1327	for (i = 0; i < BH_LRU_SIZE; i++) {
1328		struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1329
1330		if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1331		    bh->b_size == size) {
1332			if (i) {
1333				while (i) {
1334					__this_cpu_write(bh_lrus.bhs[i],
1335						__this_cpu_read(bh_lrus.bhs[i - 1]));
1336					i--;
1337				}
1338				__this_cpu_write(bh_lrus.bhs[0], bh);
1339			}
1340			get_bh(bh);
1341			ret = bh;
1342			break;
1343		}
1344	}
1345	bh_lru_unlock();
1346	return ret;
1347}
1348
1349/*
1350 * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1351 * it in the LRU and mark it as accessed.  If it is not present then return
1352 * NULL
1353 */
1354struct buffer_head *
1355__find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1356{
1357	struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1358
1359	if (bh == NULL) {
1360		/* __find_get_block_slow will mark the page accessed */
1361		bh = __find_get_block_slow(bdev, block);
1362		if (bh)
1363			bh_lru_install(bh);
1364	} else
 
1365		touch_buffer(bh);
1366
1367	return bh;
1368}
1369EXPORT_SYMBOL(__find_get_block);
1370
1371/*
1372 * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1373 * which corresponds to the passed block_device, block and size. The
1374 * returned buffer has its reference count incremented.
1375 *
1376 * __getblk_gfp() will lock up the machine if grow_dev_page's
1377 * try_to_free_buffers() attempt is failing.  FIXME, perhaps?
1378 */
1379struct buffer_head *
1380__getblk_gfp(struct block_device *bdev, sector_t block,
1381	     unsigned size, gfp_t gfp)
1382{
1383	struct buffer_head *bh = __find_get_block(bdev, block, size);
1384
1385	might_sleep();
1386	if (bh == NULL)
1387		bh = __getblk_slow(bdev, block, size, gfp);
1388	return bh;
1389}
1390EXPORT_SYMBOL(__getblk_gfp);
1391
1392/*
1393 * Do async read-ahead on a buffer..
1394 */
1395void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1396{
1397	struct buffer_head *bh = __getblk(bdev, block, size);
1398	if (likely(bh)) {
1399		ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh);
1400		brelse(bh);
1401	}
1402}
1403EXPORT_SYMBOL(__breadahead);
1404
1405/**
1406 *  __bread_gfp() - reads a specified block and returns the bh
1407 *  @bdev: the block_device to read from
1408 *  @block: number of block
1409 *  @size: size (in bytes) to read
1410 *  @gfp: page allocation flag
1411 *
1412 *  Reads a specified block, and returns buffer head that contains it.
1413 *  The page cache can be allocated from non-movable area
1414 *  not to prevent page migration if you set gfp to zero.
1415 *  It returns NULL if the block was unreadable.
1416 */
1417struct buffer_head *
1418__bread_gfp(struct block_device *bdev, sector_t block,
1419		   unsigned size, gfp_t gfp)
1420{
1421	struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1422
1423	if (likely(bh) && !buffer_uptodate(bh))
1424		bh = __bread_slow(bh);
1425	return bh;
1426}
1427EXPORT_SYMBOL(__bread_gfp);
1428
1429/*
1430 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1431 * This doesn't race because it runs in each cpu either in irq
1432 * or with preempt disabled.
1433 */
1434static void invalidate_bh_lru(void *arg)
1435{
1436	struct bh_lru *b = &get_cpu_var(bh_lrus);
1437	int i;
1438
1439	for (i = 0; i < BH_LRU_SIZE; i++) {
1440		brelse(b->bhs[i]);
1441		b->bhs[i] = NULL;
1442	}
1443	put_cpu_var(bh_lrus);
1444}
1445
1446static bool has_bh_in_lru(int cpu, void *dummy)
1447{
1448	struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1449	int i;
1450	
1451	for (i = 0; i < BH_LRU_SIZE; i++) {
1452		if (b->bhs[i])
1453			return 1;
1454	}
1455
1456	return 0;
1457}
1458
1459void invalidate_bh_lrus(void)
1460{
1461	on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL);
1462}
1463EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1464
1465void set_bh_page(struct buffer_head *bh,
1466		struct page *page, unsigned long offset)
1467{
1468	bh->b_page = page;
1469	BUG_ON(offset >= PAGE_SIZE);
1470	if (PageHighMem(page))
1471		/*
1472		 * This catches illegal uses and preserves the offset:
1473		 */
1474		bh->b_data = (char *)(0 + offset);
1475	else
1476		bh->b_data = page_address(page) + offset;
1477}
1478EXPORT_SYMBOL(set_bh_page);
1479
1480/*
1481 * Called when truncating a buffer on a page completely.
1482 */
1483
1484/* Bits that are cleared during an invalidate */
1485#define BUFFER_FLAGS_DISCARD \
1486	(1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1487	 1 << BH_Delay | 1 << BH_Unwritten)
1488
1489static void discard_buffer(struct buffer_head * bh)
1490{
1491	unsigned long b_state, b_state_old;
1492
1493	lock_buffer(bh);
1494	clear_buffer_dirty(bh);
1495	bh->b_bdev = NULL;
1496	b_state = bh->b_state;
1497	for (;;) {
1498		b_state_old = cmpxchg(&bh->b_state, b_state,
1499				      (b_state & ~BUFFER_FLAGS_DISCARD));
1500		if (b_state_old == b_state)
1501			break;
1502		b_state = b_state_old;
1503	}
1504	unlock_buffer(bh);
1505}
1506
1507/**
1508 * block_invalidatepage - invalidate part or all of a buffer-backed page
1509 *
1510 * @page: the page which is affected
1511 * @offset: start of the range to invalidate
1512 * @length: length of the range to invalidate
1513 *
1514 * block_invalidatepage() is called when all or part of the page has become
1515 * invalidated by a truncate operation.
1516 *
1517 * block_invalidatepage() does not have to release all buffers, but it must
1518 * ensure that no dirty buffer is left outside @offset and that no I/O
1519 * is underway against any of the blocks which are outside the truncation
1520 * point.  Because the caller is about to free (and possibly reuse) those
1521 * blocks on-disk.
1522 */
1523void block_invalidatepage(struct page *page, unsigned int offset,
1524			  unsigned int length)
1525{
1526	struct buffer_head *head, *bh, *next;
1527	unsigned int curr_off = 0;
1528	unsigned int stop = length + offset;
1529
1530	BUG_ON(!PageLocked(page));
1531	if (!page_has_buffers(page))
1532		goto out;
1533
1534	/*
1535	 * Check for overflow
1536	 */
1537	BUG_ON(stop > PAGE_SIZE || stop < length);
1538
1539	head = page_buffers(page);
1540	bh = head;
1541	do {
1542		unsigned int next_off = curr_off + bh->b_size;
1543		next = bh->b_this_page;
1544
1545		/*
1546		 * Are we still fully in range ?
1547		 */
1548		if (next_off > stop)
1549			goto out;
1550
1551		/*
1552		 * is this block fully invalidated?
1553		 */
1554		if (offset <= curr_off)
1555			discard_buffer(bh);
1556		curr_off = next_off;
1557		bh = next;
1558	} while (bh != head);
1559
1560	/*
1561	 * We release buffers only if the entire page is being invalidated.
1562	 * The get_block cached value has been unconditionally invalidated,
1563	 * so real IO is not possible anymore.
1564	 */
1565	if (offset == 0)
1566		try_to_release_page(page, 0);
1567out:
1568	return;
1569}
1570EXPORT_SYMBOL(block_invalidatepage);
1571
1572
1573/*
1574 * We attach and possibly dirty the buffers atomically wrt
1575 * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1576 * is already excluded via the page lock.
1577 */
1578void create_empty_buffers(struct page *page,
1579			unsigned long blocksize, unsigned long b_state)
1580{
1581	struct buffer_head *bh, *head, *tail;
1582
1583	head = alloc_page_buffers(page, blocksize, 1);
1584	bh = head;
1585	do {
1586		bh->b_state |= b_state;
1587		tail = bh;
1588		bh = bh->b_this_page;
1589	} while (bh);
1590	tail->b_this_page = head;
1591
1592	spin_lock(&page->mapping->private_lock);
1593	if (PageUptodate(page) || PageDirty(page)) {
1594		bh = head;
1595		do {
1596			if (PageDirty(page))
1597				set_buffer_dirty(bh);
1598			if (PageUptodate(page))
1599				set_buffer_uptodate(bh);
1600			bh = bh->b_this_page;
1601		} while (bh != head);
1602	}
1603	attach_page_buffers(page, head);
1604	spin_unlock(&page->mapping->private_lock);
1605}
1606EXPORT_SYMBOL(create_empty_buffers);
1607
1608/**
1609 * clean_bdev_aliases: clean a range of buffers in block device
1610 * @bdev: Block device to clean buffers in
1611 * @block: Start of a range of blocks to clean
1612 * @len: Number of blocks to clean
1613 *
1614 * We are taking a range of blocks for data and we don't want writeback of any
1615 * buffer-cache aliases starting from return from this function and until the
1616 * moment when something will explicitly mark the buffer dirty (hopefully that
1617 * will not happen until we will free that block ;-) We don't even need to mark
1618 * it not-uptodate - nobody can expect anything from a newly allocated buffer
1619 * anyway. We used to use unmap_buffer() for such invalidation, but that was
1620 * wrong. We definitely don't want to mark the alias unmapped, for example - it
1621 * would confuse anyone who might pick it with bread() afterwards...
1622 *
1623 * Also..  Note that bforget() doesn't lock the buffer.  So there can be
1624 * writeout I/O going on against recently-freed buffers.  We don't wait on that
1625 * I/O in bforget() - it's more efficient to wait on the I/O only if we really
1626 * need to.  That happens here.
1627 */
1628void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len)
1629{
1630	struct inode *bd_inode = bdev->bd_inode;
1631	struct address_space *bd_mapping = bd_inode->i_mapping;
1632	struct pagevec pvec;
1633	pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
1634	pgoff_t end;
1635	int i;
1636	struct buffer_head *bh;
1637	struct buffer_head *head;
1638
1639	end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits);
1640	pagevec_init(&pvec, 0);
1641	while (index <= end && pagevec_lookup(&pvec, bd_mapping, index,
1642			min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1)) {
1643		for (i = 0; i < pagevec_count(&pvec); i++) {
1644			struct page *page = pvec.pages[i];
1645
1646			index = page->index;
1647			if (index > end)
1648				break;
1649			if (!page_has_buffers(page))
1650				continue;
1651			/*
1652			 * We use page lock instead of bd_mapping->private_lock
1653			 * to pin buffers here since we can afford to sleep and
1654			 * it scales better than a global spinlock lock.
1655			 */
1656			lock_page(page);
1657			/* Recheck when the page is locked which pins bhs */
1658			if (!page_has_buffers(page))
1659				goto unlock_page;
1660			head = page_buffers(page);
1661			bh = head;
1662			do {
1663				if (!buffer_mapped(bh) || (bh->b_blocknr < block))
1664					goto next;
1665				if (bh->b_blocknr >= block + len)
1666					break;
1667				clear_buffer_dirty(bh);
1668				wait_on_buffer(bh);
1669				clear_buffer_req(bh);
1670next:
1671				bh = bh->b_this_page;
1672			} while (bh != head);
1673unlock_page:
1674			unlock_page(page);
1675		}
1676		pagevec_release(&pvec);
1677		cond_resched();
1678		index++;
1679	}
1680}
1681EXPORT_SYMBOL(clean_bdev_aliases);
1682
1683/*
1684 * Size is a power-of-two in the range 512..PAGE_SIZE,
1685 * and the case we care about most is PAGE_SIZE.
1686 *
1687 * So this *could* possibly be written with those
1688 * constraints in mind (relevant mostly if some
1689 * architecture has a slow bit-scan instruction)
 
 
 
 
 
 
 
 
1690 */
1691static inline int block_size_bits(unsigned int blocksize)
1692{
1693	return ilog2(blocksize);
1694}
1695
1696static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1697{
1698	BUG_ON(!PageLocked(page));
1699
1700	if (!page_has_buffers(page))
1701		create_empty_buffers(page, 1 << ACCESS_ONCE(inode->i_blkbits), b_state);
1702	return page_buffers(page);
 
 
 
 
1703}
 
1704
1705/*
1706 * NOTE! All mapped/uptodate combinations are valid:
1707 *
1708 *	Mapped	Uptodate	Meaning
1709 *
1710 *	No	No		"unknown" - must do get_block()
1711 *	No	Yes		"hole" - zero-filled
1712 *	Yes	No		"allocated" - allocated on disk, not read in
1713 *	Yes	Yes		"valid" - allocated and up-to-date in memory.
1714 *
1715 * "Dirty" is valid only with the last case (mapped+uptodate).
1716 */
1717
1718/*
1719 * While block_write_full_page is writing back the dirty buffers under
1720 * the page lock, whoever dirtied the buffers may decide to clean them
1721 * again at any time.  We handle that by only looking at the buffer
1722 * state inside lock_buffer().
1723 *
1724 * If block_write_full_page() is called for regular writeback
1725 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1726 * locked buffer.   This only can happen if someone has written the buffer
1727 * directly, with submit_bh().  At the address_space level PageWriteback
1728 * prevents this contention from occurring.
1729 *
1730 * If block_write_full_page() is called with wbc->sync_mode ==
1731 * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
1732 * causes the writes to be flagged as synchronous writes.
1733 */
1734int __block_write_full_page(struct inode *inode, struct page *page,
1735			get_block_t *get_block, struct writeback_control *wbc,
1736			bh_end_io_t *handler)
1737{
1738	int err;
1739	sector_t block;
1740	sector_t last_block;
1741	struct buffer_head *bh, *head;
1742	unsigned int blocksize, bbits;
1743	int nr_underway = 0;
1744	int write_flags = wbc_to_write_flags(wbc);
 
 
 
1745
1746	head = create_page_buffers(page, inode,
 
 
 
1747					(1 << BH_Dirty)|(1 << BH_Uptodate));
 
1748
1749	/*
1750	 * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1751	 * here, and the (potentially unmapped) buffers may become dirty at
1752	 * any time.  If a buffer becomes dirty here after we've inspected it
1753	 * then we just miss that fact, and the page stays dirty.
1754	 *
1755	 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1756	 * handle that here by just cleaning them.
1757	 */
1758
 
 
1759	bh = head;
1760	blocksize = bh->b_size;
1761	bbits = block_size_bits(blocksize);
1762
1763	block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1764	last_block = (i_size_read(inode) - 1) >> bbits;
1765
1766	/*
1767	 * Get all the dirty buffers mapped to disk addresses and
1768	 * handle any aliases from the underlying blockdev's mapping.
1769	 */
1770	do {
1771		if (block > last_block) {
1772			/*
1773			 * mapped buffers outside i_size will occur, because
1774			 * this page can be outside i_size when there is a
1775			 * truncate in progress.
1776			 */
1777			/*
1778			 * The buffer was zeroed by block_write_full_page()
1779			 */
1780			clear_buffer_dirty(bh);
1781			set_buffer_uptodate(bh);
1782		} else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1783			   buffer_dirty(bh)) {
1784			WARN_ON(bh->b_size != blocksize);
1785			err = get_block(inode, block, bh, 1);
1786			if (err)
1787				goto recover;
1788			clear_buffer_delay(bh);
1789			if (buffer_new(bh)) {
1790				/* blockdev mappings never come here */
1791				clear_buffer_new(bh);
1792				clean_bdev_bh_alias(bh);
 
1793			}
1794		}
1795		bh = bh->b_this_page;
1796		block++;
1797	} while (bh != head);
1798
1799	do {
1800		if (!buffer_mapped(bh))
1801			continue;
1802		/*
1803		 * If it's a fully non-blocking write attempt and we cannot
1804		 * lock the buffer then redirty the page.  Note that this can
1805		 * potentially cause a busy-wait loop from writeback threads
1806		 * and kswapd activity, but those code paths have their own
1807		 * higher-level throttling.
1808		 */
1809		if (wbc->sync_mode != WB_SYNC_NONE) {
1810			lock_buffer(bh);
1811		} else if (!trylock_buffer(bh)) {
1812			redirty_page_for_writepage(wbc, page);
1813			continue;
1814		}
1815		if (test_clear_buffer_dirty(bh)) {
1816			mark_buffer_async_write_endio(bh, handler);
1817		} else {
1818			unlock_buffer(bh);
1819		}
1820	} while ((bh = bh->b_this_page) != head);
1821
1822	/*
1823	 * The page and its buffers are protected by PageWriteback(), so we can
1824	 * drop the bh refcounts early.
1825	 */
1826	BUG_ON(PageWriteback(page));
1827	set_page_writeback(page);
1828
1829	do {
1830		struct buffer_head *next = bh->b_this_page;
1831		if (buffer_async_write(bh)) {
1832			submit_bh_wbc(REQ_OP_WRITE, write_flags, bh, 0, wbc);
1833			nr_underway++;
1834		}
1835		bh = next;
1836	} while (bh != head);
1837	unlock_page(page);
1838
1839	err = 0;
1840done:
1841	if (nr_underway == 0) {
1842		/*
1843		 * The page was marked dirty, but the buffers were
1844		 * clean.  Someone wrote them back by hand with
1845		 * ll_rw_block/submit_bh.  A rare case.
1846		 */
1847		end_page_writeback(page);
1848
1849		/*
1850		 * The page and buffer_heads can be released at any time from
1851		 * here on.
1852		 */
1853	}
1854	return err;
1855
1856recover:
1857	/*
1858	 * ENOSPC, or some other error.  We may already have added some
1859	 * blocks to the file, so we need to write these out to avoid
1860	 * exposing stale data.
1861	 * The page is currently locked and not marked for writeback
1862	 */
1863	bh = head;
1864	/* Recovery: lock and submit the mapped buffers */
1865	do {
1866		if (buffer_mapped(bh) && buffer_dirty(bh) &&
1867		    !buffer_delay(bh)) {
1868			lock_buffer(bh);
1869			mark_buffer_async_write_endio(bh, handler);
1870		} else {
1871			/*
1872			 * The buffer may have been set dirty during
1873			 * attachment to a dirty page.
1874			 */
1875			clear_buffer_dirty(bh);
1876		}
1877	} while ((bh = bh->b_this_page) != head);
1878	SetPageError(page);
1879	BUG_ON(PageWriteback(page));
1880	mapping_set_error(page->mapping, err);
1881	set_page_writeback(page);
1882	do {
1883		struct buffer_head *next = bh->b_this_page;
1884		if (buffer_async_write(bh)) {
1885			clear_buffer_dirty(bh);
1886			submit_bh_wbc(REQ_OP_WRITE, write_flags, bh, 0, wbc);
1887			nr_underway++;
1888		}
1889		bh = next;
1890	} while (bh != head);
1891	unlock_page(page);
1892	goto done;
1893}
1894EXPORT_SYMBOL(__block_write_full_page);
1895
1896/*
1897 * If a page has any new buffers, zero them out here, and mark them uptodate
1898 * and dirty so they'll be written out (in order to prevent uninitialised
1899 * block data from leaking). And clear the new bit.
1900 */
1901void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1902{
1903	unsigned int block_start, block_end;
1904	struct buffer_head *head, *bh;
1905
1906	BUG_ON(!PageLocked(page));
1907	if (!page_has_buffers(page))
1908		return;
1909
1910	bh = head = page_buffers(page);
1911	block_start = 0;
1912	do {
1913		block_end = block_start + bh->b_size;
1914
1915		if (buffer_new(bh)) {
1916			if (block_end > from && block_start < to) {
1917				if (!PageUptodate(page)) {
1918					unsigned start, size;
1919
1920					start = max(from, block_start);
1921					size = min(to, block_end) - start;
1922
1923					zero_user(page, start, size);
1924					set_buffer_uptodate(bh);
1925				}
1926
1927				clear_buffer_new(bh);
1928				mark_buffer_dirty(bh);
1929			}
1930		}
1931
1932		block_start = block_end;
1933		bh = bh->b_this_page;
1934	} while (bh != head);
1935}
1936EXPORT_SYMBOL(page_zero_new_buffers);
1937
1938static void
1939iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
1940		struct iomap *iomap)
1941{
1942	loff_t offset = block << inode->i_blkbits;
1943
1944	bh->b_bdev = iomap->bdev;
1945
1946	/*
1947	 * Block points to offset in file we need to map, iomap contains
1948	 * the offset at which the map starts. If the map ends before the
1949	 * current block, then do not map the buffer and let the caller
1950	 * handle it.
1951	 */
1952	BUG_ON(offset >= iomap->offset + iomap->length);
1953
1954	switch (iomap->type) {
1955	case IOMAP_HOLE:
1956		/*
1957		 * If the buffer is not up to date or beyond the current EOF,
1958		 * we need to mark it as new to ensure sub-block zeroing is
1959		 * executed if necessary.
1960		 */
1961		if (!buffer_uptodate(bh) ||
1962		    (offset >= i_size_read(inode)))
1963			set_buffer_new(bh);
1964		break;
1965	case IOMAP_DELALLOC:
1966		if (!buffer_uptodate(bh) ||
1967		    (offset >= i_size_read(inode)))
1968			set_buffer_new(bh);
1969		set_buffer_uptodate(bh);
1970		set_buffer_mapped(bh);
1971		set_buffer_delay(bh);
1972		break;
1973	case IOMAP_UNWRITTEN:
1974		/*
1975		 * For unwritten regions, we always need to ensure that
1976		 * sub-block writes cause the regions in the block we are not
1977		 * writing to are zeroed. Set the buffer as new to ensure this.
1978		 */
1979		set_buffer_new(bh);
1980		set_buffer_unwritten(bh);
1981		/* FALLTHRU */
1982	case IOMAP_MAPPED:
1983		if (offset >= i_size_read(inode))
1984			set_buffer_new(bh);
1985		bh->b_blocknr = (iomap->blkno >> (inode->i_blkbits - 9)) +
1986				((offset - iomap->offset) >> inode->i_blkbits);
1987		set_buffer_mapped(bh);
1988		break;
1989	}
1990}
1991
1992int __block_write_begin_int(struct page *page, loff_t pos, unsigned len,
1993		get_block_t *get_block, struct iomap *iomap)
1994{
1995	unsigned from = pos & (PAGE_SIZE - 1);
1996	unsigned to = from + len;
1997	struct inode *inode = page->mapping->host;
1998	unsigned block_start, block_end;
1999	sector_t block;
2000	int err = 0;
2001	unsigned blocksize, bbits;
2002	struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
2003
2004	BUG_ON(!PageLocked(page));
2005	BUG_ON(from > PAGE_SIZE);
2006	BUG_ON(to > PAGE_SIZE);
2007	BUG_ON(from > to);
2008
2009	head = create_page_buffers(page, inode, 0);
2010	blocksize = head->b_size;
2011	bbits = block_size_bits(blocksize);
 
2012
2013	block = (sector_t)page->index << (PAGE_SHIFT - bbits);
 
2014
2015	for(bh = head, block_start = 0; bh != head || !block_start;
2016	    block++, block_start=block_end, bh = bh->b_this_page) {
2017		block_end = block_start + blocksize;
2018		if (block_end <= from || block_start >= to) {
2019			if (PageUptodate(page)) {
2020				if (!buffer_uptodate(bh))
2021					set_buffer_uptodate(bh);
2022			}
2023			continue;
2024		}
2025		if (buffer_new(bh))
2026			clear_buffer_new(bh);
2027		if (!buffer_mapped(bh)) {
2028			WARN_ON(bh->b_size != blocksize);
2029			if (get_block) {
2030				err = get_block(inode, block, bh, 1);
2031				if (err)
2032					break;
2033			} else {
2034				iomap_to_bh(inode, block, bh, iomap);
2035			}
2036
2037			if (buffer_new(bh)) {
2038				clean_bdev_bh_alias(bh);
 
2039				if (PageUptodate(page)) {
2040					clear_buffer_new(bh);
2041					set_buffer_uptodate(bh);
2042					mark_buffer_dirty(bh);
2043					continue;
2044				}
2045				if (block_end > to || block_start < from)
2046					zero_user_segments(page,
2047						to, block_end,
2048						block_start, from);
2049				continue;
2050			}
2051		}
2052		if (PageUptodate(page)) {
2053			if (!buffer_uptodate(bh))
2054				set_buffer_uptodate(bh);
2055			continue; 
2056		}
2057		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
2058		    !buffer_unwritten(bh) &&
2059		     (block_start < from || block_end > to)) {
2060			ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2061			*wait_bh++=bh;
2062		}
2063	}
2064	/*
2065	 * If we issued read requests - let them complete.
2066	 */
2067	while(wait_bh > wait) {
2068		wait_on_buffer(*--wait_bh);
2069		if (!buffer_uptodate(*wait_bh))
2070			err = -EIO;
2071	}
2072	if (unlikely(err))
2073		page_zero_new_buffers(page, from, to);
2074	return err;
2075}
2076
2077int __block_write_begin(struct page *page, loff_t pos, unsigned len,
2078		get_block_t *get_block)
2079{
2080	return __block_write_begin_int(page, pos, len, get_block, NULL);
2081}
2082EXPORT_SYMBOL(__block_write_begin);
2083
2084static int __block_commit_write(struct inode *inode, struct page *page,
2085		unsigned from, unsigned to)
2086{
2087	unsigned block_start, block_end;
2088	int partial = 0;
2089	unsigned blocksize;
2090	struct buffer_head *bh, *head;
2091
2092	bh = head = page_buffers(page);
2093	blocksize = bh->b_size;
2094
2095	block_start = 0;
2096	do {
 
2097		block_end = block_start + blocksize;
2098		if (block_end <= from || block_start >= to) {
2099			if (!buffer_uptodate(bh))
2100				partial = 1;
2101		} else {
2102			set_buffer_uptodate(bh);
2103			mark_buffer_dirty(bh);
2104		}
2105		clear_buffer_new(bh);
2106
2107		block_start = block_end;
2108		bh = bh->b_this_page;
2109	} while (bh != head);
2110
2111	/*
2112	 * If this is a partial write which happened to make all buffers
2113	 * uptodate then we can optimize away a bogus readpage() for
2114	 * the next read(). Here we 'discover' whether the page went
2115	 * uptodate as a result of this (potentially partial) write.
2116	 */
2117	if (!partial)
2118		SetPageUptodate(page);
2119	return 0;
2120}
2121
2122/*
2123 * block_write_begin takes care of the basic task of block allocation and
2124 * bringing partial write blocks uptodate first.
2125 *
2126 * The filesystem needs to handle block truncation upon failure.
2127 */
2128int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2129		unsigned flags, struct page **pagep, get_block_t *get_block)
2130{
2131	pgoff_t index = pos >> PAGE_SHIFT;
2132	struct page *page;
2133	int status;
2134
2135	page = grab_cache_page_write_begin(mapping, index, flags);
2136	if (!page)
2137		return -ENOMEM;
2138
2139	status = __block_write_begin(page, pos, len, get_block);
2140	if (unlikely(status)) {
2141		unlock_page(page);
2142		put_page(page);
2143		page = NULL;
2144	}
2145
2146	*pagep = page;
2147	return status;
2148}
2149EXPORT_SYMBOL(block_write_begin);
2150
2151int block_write_end(struct file *file, struct address_space *mapping,
2152			loff_t pos, unsigned len, unsigned copied,
2153			struct page *page, void *fsdata)
2154{
2155	struct inode *inode = mapping->host;
2156	unsigned start;
2157
2158	start = pos & (PAGE_SIZE - 1);
2159
2160	if (unlikely(copied < len)) {
2161		/*
2162		 * The buffers that were written will now be uptodate, so we
2163		 * don't have to worry about a readpage reading them and
2164		 * overwriting a partial write. However if we have encountered
2165		 * a short write and only partially written into a buffer, it
2166		 * will not be marked uptodate, so a readpage might come in and
2167		 * destroy our partial write.
2168		 *
2169		 * Do the simplest thing, and just treat any short write to a
2170		 * non uptodate page as a zero-length write, and force the
2171		 * caller to redo the whole thing.
2172		 */
2173		if (!PageUptodate(page))
2174			copied = 0;
2175
2176		page_zero_new_buffers(page, start+copied, start+len);
2177	}
2178	flush_dcache_page(page);
2179
2180	/* This could be a short (even 0-length) commit */
2181	__block_commit_write(inode, page, start, start+copied);
2182
2183	return copied;
2184}
2185EXPORT_SYMBOL(block_write_end);
2186
2187int generic_write_end(struct file *file, struct address_space *mapping,
2188			loff_t pos, unsigned len, unsigned copied,
2189			struct page *page, void *fsdata)
2190{
2191	struct inode *inode = mapping->host;
2192	loff_t old_size = inode->i_size;
2193	int i_size_changed = 0;
2194
2195	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2196
2197	/*
2198	 * No need to use i_size_read() here, the i_size
2199	 * cannot change under us because we hold i_mutex.
2200	 *
2201	 * But it's important to update i_size while still holding page lock:
2202	 * page writeout could otherwise come in and zero beyond i_size.
2203	 */
2204	if (pos+copied > inode->i_size) {
2205		i_size_write(inode, pos+copied);
2206		i_size_changed = 1;
2207	}
2208
2209	unlock_page(page);
2210	put_page(page);
2211
2212	if (old_size < pos)
2213		pagecache_isize_extended(inode, old_size, pos);
2214	/*
2215	 * Don't mark the inode dirty under page lock. First, it unnecessarily
2216	 * makes the holding time of page lock longer. Second, it forces lock
2217	 * ordering of page lock and transaction start for journaling
2218	 * filesystems.
2219	 */
2220	if (i_size_changed)
2221		mark_inode_dirty(inode);
2222
2223	return copied;
2224}
2225EXPORT_SYMBOL(generic_write_end);
2226
2227/*
2228 * block_is_partially_uptodate checks whether buffers within a page are
2229 * uptodate or not.
2230 *
2231 * Returns true if all buffers which correspond to a file portion
2232 * we want to read are uptodate.
2233 */
2234int block_is_partially_uptodate(struct page *page, unsigned long from,
2235					unsigned long count)
2236{
 
2237	unsigned block_start, block_end, blocksize;
2238	unsigned to;
2239	struct buffer_head *bh, *head;
2240	int ret = 1;
2241
2242	if (!page_has_buffers(page))
2243		return 0;
2244
2245	head = page_buffers(page);
2246	blocksize = head->b_size;
2247	to = min_t(unsigned, PAGE_SIZE - from, count);
2248	to = from + to;
2249	if (from < blocksize && to > PAGE_SIZE - blocksize)
2250		return 0;
2251
 
2252	bh = head;
2253	block_start = 0;
2254	do {
2255		block_end = block_start + blocksize;
2256		if (block_end > from && block_start < to) {
2257			if (!buffer_uptodate(bh)) {
2258				ret = 0;
2259				break;
2260			}
2261			if (block_end >= to)
2262				break;
2263		}
2264		block_start = block_end;
2265		bh = bh->b_this_page;
2266	} while (bh != head);
2267
2268	return ret;
2269}
2270EXPORT_SYMBOL(block_is_partially_uptodate);
2271
2272/*
2273 * Generic "read page" function for block devices that have the normal
2274 * get_block functionality. This is most of the block device filesystems.
2275 * Reads the page asynchronously --- the unlock_buffer() and
2276 * set/clear_buffer_uptodate() functions propagate buffer state into the
2277 * page struct once IO has completed.
2278 */
2279int block_read_full_page(struct page *page, get_block_t *get_block)
2280{
2281	struct inode *inode = page->mapping->host;
2282	sector_t iblock, lblock;
2283	struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2284	unsigned int blocksize, bbits;
2285	int nr, i;
2286	int fully_mapped = 1;
2287
2288	head = create_page_buffers(page, inode, 0);
2289	blocksize = head->b_size;
2290	bbits = block_size_bits(blocksize);
 
 
2291
2292	iblock = (sector_t)page->index << (PAGE_SHIFT - bbits);
2293	lblock = (i_size_read(inode)+blocksize-1) >> bbits;
2294	bh = head;
2295	nr = 0;
2296	i = 0;
2297
2298	do {
2299		if (buffer_uptodate(bh))
2300			continue;
2301
2302		if (!buffer_mapped(bh)) {
2303			int err = 0;
2304
2305			fully_mapped = 0;
2306			if (iblock < lblock) {
2307				WARN_ON(bh->b_size != blocksize);
2308				err = get_block(inode, iblock, bh, 0);
2309				if (err)
2310					SetPageError(page);
2311			}
2312			if (!buffer_mapped(bh)) {
2313				zero_user(page, i * blocksize, blocksize);
2314				if (!err)
2315					set_buffer_uptodate(bh);
2316				continue;
2317			}
2318			/*
2319			 * get_block() might have updated the buffer
2320			 * synchronously
2321			 */
2322			if (buffer_uptodate(bh))
2323				continue;
2324		}
2325		arr[nr++] = bh;
2326	} while (i++, iblock++, (bh = bh->b_this_page) != head);
2327
2328	if (fully_mapped)
2329		SetPageMappedToDisk(page);
2330
2331	if (!nr) {
2332		/*
2333		 * All buffers are uptodate - we can set the page uptodate
2334		 * as well. But not if get_block() returned an error.
2335		 */
2336		if (!PageError(page))
2337			SetPageUptodate(page);
2338		unlock_page(page);
2339		return 0;
2340	}
2341
2342	/* Stage two: lock the buffers */
2343	for (i = 0; i < nr; i++) {
2344		bh = arr[i];
2345		lock_buffer(bh);
2346		mark_buffer_async_read(bh);
2347	}
2348
2349	/*
2350	 * Stage 3: start the IO.  Check for uptodateness
2351	 * inside the buffer lock in case another process reading
2352	 * the underlying blockdev brought it uptodate (the sct fix).
2353	 */
2354	for (i = 0; i < nr; i++) {
2355		bh = arr[i];
2356		if (buffer_uptodate(bh))
2357			end_buffer_async_read(bh, 1);
2358		else
2359			submit_bh(REQ_OP_READ, 0, bh);
2360	}
2361	return 0;
2362}
2363EXPORT_SYMBOL(block_read_full_page);
2364
2365/* utility function for filesystems that need to do work on expanding
2366 * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2367 * deal with the hole.  
2368 */
2369int generic_cont_expand_simple(struct inode *inode, loff_t size)
2370{
2371	struct address_space *mapping = inode->i_mapping;
2372	struct page *page;
2373	void *fsdata;
2374	int err;
2375
2376	err = inode_newsize_ok(inode, size);
2377	if (err)
2378		goto out;
2379
2380	err = pagecache_write_begin(NULL, mapping, size, 0,
2381				AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND,
2382				&page, &fsdata);
2383	if (err)
2384		goto out;
2385
2386	err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2387	BUG_ON(err > 0);
2388
2389out:
2390	return err;
2391}
2392EXPORT_SYMBOL(generic_cont_expand_simple);
2393
2394static int cont_expand_zero(struct file *file, struct address_space *mapping,
2395			    loff_t pos, loff_t *bytes)
2396{
2397	struct inode *inode = mapping->host;
2398	unsigned blocksize = 1 << inode->i_blkbits;
2399	struct page *page;
2400	void *fsdata;
2401	pgoff_t index, curidx;
2402	loff_t curpos;
2403	unsigned zerofrom, offset, len;
2404	int err = 0;
2405
2406	index = pos >> PAGE_SHIFT;
2407	offset = pos & ~PAGE_MASK;
2408
2409	while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2410		zerofrom = curpos & ~PAGE_MASK;
2411		if (zerofrom & (blocksize-1)) {
2412			*bytes |= (blocksize-1);
2413			(*bytes)++;
2414		}
2415		len = PAGE_SIZE - zerofrom;
2416
2417		err = pagecache_write_begin(file, mapping, curpos, len,
2418						AOP_FLAG_UNINTERRUPTIBLE,
2419						&page, &fsdata);
2420		if (err)
2421			goto out;
2422		zero_user(page, zerofrom, len);
2423		err = pagecache_write_end(file, mapping, curpos, len, len,
2424						page, fsdata);
2425		if (err < 0)
2426			goto out;
2427		BUG_ON(err != len);
2428		err = 0;
2429
2430		balance_dirty_pages_ratelimited(mapping);
2431
2432		if (unlikely(fatal_signal_pending(current))) {
2433			err = -EINTR;
2434			goto out;
2435		}
2436	}
2437
2438	/* page covers the boundary, find the boundary offset */
2439	if (index == curidx) {
2440		zerofrom = curpos & ~PAGE_MASK;
2441		/* if we will expand the thing last block will be filled */
2442		if (offset <= zerofrom) {
2443			goto out;
2444		}
2445		if (zerofrom & (blocksize-1)) {
2446			*bytes |= (blocksize-1);
2447			(*bytes)++;
2448		}
2449		len = offset - zerofrom;
2450
2451		err = pagecache_write_begin(file, mapping, curpos, len,
2452						AOP_FLAG_UNINTERRUPTIBLE,
2453						&page, &fsdata);
2454		if (err)
2455			goto out;
2456		zero_user(page, zerofrom, len);
2457		err = pagecache_write_end(file, mapping, curpos, len, len,
2458						page, fsdata);
2459		if (err < 0)
2460			goto out;
2461		BUG_ON(err != len);
2462		err = 0;
2463	}
2464out:
2465	return err;
2466}
2467
2468/*
2469 * For moronic filesystems that do not allow holes in file.
2470 * We may have to extend the file.
2471 */
2472int cont_write_begin(struct file *file, struct address_space *mapping,
2473			loff_t pos, unsigned len, unsigned flags,
2474			struct page **pagep, void **fsdata,
2475			get_block_t *get_block, loff_t *bytes)
2476{
2477	struct inode *inode = mapping->host;
2478	unsigned blocksize = 1 << inode->i_blkbits;
2479	unsigned zerofrom;
2480	int err;
2481
2482	err = cont_expand_zero(file, mapping, pos, bytes);
2483	if (err)
2484		return err;
2485
2486	zerofrom = *bytes & ~PAGE_MASK;
2487	if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2488		*bytes |= (blocksize-1);
2489		(*bytes)++;
2490	}
2491
2492	return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2493}
2494EXPORT_SYMBOL(cont_write_begin);
2495
2496int block_commit_write(struct page *page, unsigned from, unsigned to)
2497{
2498	struct inode *inode = page->mapping->host;
2499	__block_commit_write(inode,page,from,to);
2500	return 0;
2501}
2502EXPORT_SYMBOL(block_commit_write);
2503
2504/*
2505 * block_page_mkwrite() is not allowed to change the file size as it gets
2506 * called from a page fault handler when a page is first dirtied. Hence we must
2507 * be careful to check for EOF conditions here. We set the page up correctly
2508 * for a written page which means we get ENOSPC checking when writing into
2509 * holes and correct delalloc and unwritten extent mapping on filesystems that
2510 * support these features.
2511 *
2512 * We are not allowed to take the i_mutex here so we have to play games to
2513 * protect against truncate races as the page could now be beyond EOF.  Because
2514 * truncate writes the inode size before removing pages, once we have the
2515 * page lock we can determine safely if the page is beyond EOF. If it is not
2516 * beyond EOF, then the page is guaranteed safe against truncation until we
2517 * unlock the page.
2518 *
2519 * Direct callers of this function should protect against filesystem freezing
2520 * using sb_start_pagefault() - sb_end_pagefault() functions.
2521 */
2522int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2523			 get_block_t get_block)
2524{
2525	struct page *page = vmf->page;
2526	struct inode *inode = file_inode(vma->vm_file);
2527	unsigned long end;
2528	loff_t size;
2529	int ret;
2530
2531	lock_page(page);
2532	size = i_size_read(inode);
2533	if ((page->mapping != inode->i_mapping) ||
2534	    (page_offset(page) > size)) {
2535		/* We overload EFAULT to mean page got truncated */
2536		ret = -EFAULT;
2537		goto out_unlock;
2538	}
2539
2540	/* page is wholly or partially inside EOF */
2541	if (((page->index + 1) << PAGE_SHIFT) > size)
2542		end = size & ~PAGE_MASK;
2543	else
2544		end = PAGE_SIZE;
2545
2546	ret = __block_write_begin(page, 0, end, get_block);
2547	if (!ret)
2548		ret = block_commit_write(page, 0, end);
2549
2550	if (unlikely(ret < 0))
2551		goto out_unlock;
 
 
 
 
 
 
 
2552	set_page_dirty(page);
2553	wait_for_stable_page(page);
 
 
 
 
2554	return 0;
2555out_unlock:
2556	unlock_page(page);
2557	return ret;
2558}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2559EXPORT_SYMBOL(block_page_mkwrite);
2560
2561/*
2562 * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2563 * immediately, while under the page lock.  So it needs a special end_io
2564 * handler which does not touch the bh after unlocking it.
2565 */
2566static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2567{
2568	__end_buffer_read_notouch(bh, uptodate);
2569}
2570
2571/*
2572 * Attach the singly-linked list of buffers created by nobh_write_begin, to
2573 * the page (converting it to circular linked list and taking care of page
2574 * dirty races).
2575 */
2576static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2577{
2578	struct buffer_head *bh;
2579
2580	BUG_ON(!PageLocked(page));
2581
2582	spin_lock(&page->mapping->private_lock);
2583	bh = head;
2584	do {
2585		if (PageDirty(page))
2586			set_buffer_dirty(bh);
2587		if (!bh->b_this_page)
2588			bh->b_this_page = head;
2589		bh = bh->b_this_page;
2590	} while (bh != head);
2591	attach_page_buffers(page, head);
2592	spin_unlock(&page->mapping->private_lock);
2593}
2594
2595/*
2596 * On entry, the page is fully not uptodate.
2597 * On exit the page is fully uptodate in the areas outside (from,to)
2598 * The filesystem needs to handle block truncation upon failure.
2599 */
2600int nobh_write_begin(struct address_space *mapping,
2601			loff_t pos, unsigned len, unsigned flags,
2602			struct page **pagep, void **fsdata,
2603			get_block_t *get_block)
2604{
2605	struct inode *inode = mapping->host;
2606	const unsigned blkbits = inode->i_blkbits;
2607	const unsigned blocksize = 1 << blkbits;
2608	struct buffer_head *head, *bh;
2609	struct page *page;
2610	pgoff_t index;
2611	unsigned from, to;
2612	unsigned block_in_page;
2613	unsigned block_start, block_end;
2614	sector_t block_in_file;
2615	int nr_reads = 0;
2616	int ret = 0;
2617	int is_mapped_to_disk = 1;
2618
2619	index = pos >> PAGE_SHIFT;
2620	from = pos & (PAGE_SIZE - 1);
2621	to = from + len;
2622
2623	page = grab_cache_page_write_begin(mapping, index, flags);
2624	if (!page)
2625		return -ENOMEM;
2626	*pagep = page;
2627	*fsdata = NULL;
2628
2629	if (page_has_buffers(page)) {
2630		ret = __block_write_begin(page, pos, len, get_block);
2631		if (unlikely(ret))
2632			goto out_release;
2633		return ret;
2634	}
2635
2636	if (PageMappedToDisk(page))
2637		return 0;
2638
2639	/*
2640	 * Allocate buffers so that we can keep track of state, and potentially
2641	 * attach them to the page if an error occurs. In the common case of
2642	 * no error, they will just be freed again without ever being attached
2643	 * to the page (which is all OK, because we're under the page lock).
2644	 *
2645	 * Be careful: the buffer linked list is a NULL terminated one, rather
2646	 * than the circular one we're used to.
2647	 */
2648	head = alloc_page_buffers(page, blocksize, 0);
2649	if (!head) {
2650		ret = -ENOMEM;
2651		goto out_release;
2652	}
2653
2654	block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
2655
2656	/*
2657	 * We loop across all blocks in the page, whether or not they are
2658	 * part of the affected region.  This is so we can discover if the
2659	 * page is fully mapped-to-disk.
2660	 */
2661	for (block_start = 0, block_in_page = 0, bh = head;
2662		  block_start < PAGE_SIZE;
2663		  block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2664		int create;
2665
2666		block_end = block_start + blocksize;
2667		bh->b_state = 0;
2668		create = 1;
2669		if (block_start >= to)
2670			create = 0;
2671		ret = get_block(inode, block_in_file + block_in_page,
2672					bh, create);
2673		if (ret)
2674			goto failed;
2675		if (!buffer_mapped(bh))
2676			is_mapped_to_disk = 0;
2677		if (buffer_new(bh))
2678			clean_bdev_bh_alias(bh);
2679		if (PageUptodate(page)) {
2680			set_buffer_uptodate(bh);
2681			continue;
2682		}
2683		if (buffer_new(bh) || !buffer_mapped(bh)) {
2684			zero_user_segments(page, block_start, from,
2685							to, block_end);
2686			continue;
2687		}
2688		if (buffer_uptodate(bh))
2689			continue;	/* reiserfs does this */
2690		if (block_start < from || block_end > to) {
2691			lock_buffer(bh);
2692			bh->b_end_io = end_buffer_read_nobh;
2693			submit_bh(REQ_OP_READ, 0, bh);
2694			nr_reads++;
2695		}
2696	}
2697
2698	if (nr_reads) {
2699		/*
2700		 * The page is locked, so these buffers are protected from
2701		 * any VM or truncate activity.  Hence we don't need to care
2702		 * for the buffer_head refcounts.
2703		 */
2704		for (bh = head; bh; bh = bh->b_this_page) {
2705			wait_on_buffer(bh);
2706			if (!buffer_uptodate(bh))
2707				ret = -EIO;
2708		}
2709		if (ret)
2710			goto failed;
2711	}
2712
2713	if (is_mapped_to_disk)
2714		SetPageMappedToDisk(page);
2715
2716	*fsdata = head; /* to be released by nobh_write_end */
2717
2718	return 0;
2719
2720failed:
2721	BUG_ON(!ret);
2722	/*
2723	 * Error recovery is a bit difficult. We need to zero out blocks that
2724	 * were newly allocated, and dirty them to ensure they get written out.
2725	 * Buffers need to be attached to the page at this point, otherwise
2726	 * the handling of potential IO errors during writeout would be hard
2727	 * (could try doing synchronous writeout, but what if that fails too?)
2728	 */
2729	attach_nobh_buffers(page, head);
2730	page_zero_new_buffers(page, from, to);
2731
2732out_release:
2733	unlock_page(page);
2734	put_page(page);
2735	*pagep = NULL;
2736
2737	return ret;
2738}
2739EXPORT_SYMBOL(nobh_write_begin);
2740
2741int nobh_write_end(struct file *file, struct address_space *mapping,
2742			loff_t pos, unsigned len, unsigned copied,
2743			struct page *page, void *fsdata)
2744{
2745	struct inode *inode = page->mapping->host;
2746	struct buffer_head *head = fsdata;
2747	struct buffer_head *bh;
2748	BUG_ON(fsdata != NULL && page_has_buffers(page));
2749
2750	if (unlikely(copied < len) && head)
2751		attach_nobh_buffers(page, head);
2752	if (page_has_buffers(page))
2753		return generic_write_end(file, mapping, pos, len,
2754					copied, page, fsdata);
2755
2756	SetPageUptodate(page);
2757	set_page_dirty(page);
2758	if (pos+copied > inode->i_size) {
2759		i_size_write(inode, pos+copied);
2760		mark_inode_dirty(inode);
2761	}
2762
2763	unlock_page(page);
2764	put_page(page);
2765
2766	while (head) {
2767		bh = head;
2768		head = head->b_this_page;
2769		free_buffer_head(bh);
2770	}
2771
2772	return copied;
2773}
2774EXPORT_SYMBOL(nobh_write_end);
2775
2776/*
2777 * nobh_writepage() - based on block_full_write_page() except
2778 * that it tries to operate without attaching bufferheads to
2779 * the page.
2780 */
2781int nobh_writepage(struct page *page, get_block_t *get_block,
2782			struct writeback_control *wbc)
2783{
2784	struct inode * const inode = page->mapping->host;
2785	loff_t i_size = i_size_read(inode);
2786	const pgoff_t end_index = i_size >> PAGE_SHIFT;
2787	unsigned offset;
2788	int ret;
2789
2790	/* Is the page fully inside i_size? */
2791	if (page->index < end_index)
2792		goto out;
2793
2794	/* Is the page fully outside i_size? (truncate in progress) */
2795	offset = i_size & (PAGE_SIZE-1);
2796	if (page->index >= end_index+1 || !offset) {
2797		/*
2798		 * The page may have dirty, unmapped buffers.  For example,
2799		 * they may have been added in ext3_writepage().  Make them
2800		 * freeable here, so the page does not leak.
2801		 */
2802#if 0
2803		/* Not really sure about this  - do we need this ? */
2804		if (page->mapping->a_ops->invalidatepage)
2805			page->mapping->a_ops->invalidatepage(page, offset);
2806#endif
2807		unlock_page(page);
2808		return 0; /* don't care */
2809	}
2810
2811	/*
2812	 * The page straddles i_size.  It must be zeroed out on each and every
2813	 * writepage invocation because it may be mmapped.  "A file is mapped
2814	 * in multiples of the page size.  For a file that is not a multiple of
2815	 * the  page size, the remaining memory is zeroed when mapped, and
2816	 * writes to that region are not written out to the file."
2817	 */
2818	zero_user_segment(page, offset, PAGE_SIZE);
2819out:
2820	ret = mpage_writepage(page, get_block, wbc);
2821	if (ret == -EAGAIN)
2822		ret = __block_write_full_page(inode, page, get_block, wbc,
2823					      end_buffer_async_write);
2824	return ret;
2825}
2826EXPORT_SYMBOL(nobh_writepage);
2827
2828int nobh_truncate_page(struct address_space *mapping,
2829			loff_t from, get_block_t *get_block)
2830{
2831	pgoff_t index = from >> PAGE_SHIFT;
2832	unsigned offset = from & (PAGE_SIZE-1);
2833	unsigned blocksize;
2834	sector_t iblock;
2835	unsigned length, pos;
2836	struct inode *inode = mapping->host;
2837	struct page *page;
2838	struct buffer_head map_bh;
2839	int err;
2840
2841	blocksize = 1 << inode->i_blkbits;
2842	length = offset & (blocksize - 1);
2843
2844	/* Block boundary? Nothing to do */
2845	if (!length)
2846		return 0;
2847
2848	length = blocksize - length;
2849	iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2850
2851	page = grab_cache_page(mapping, index);
2852	err = -ENOMEM;
2853	if (!page)
2854		goto out;
2855
2856	if (page_has_buffers(page)) {
2857has_buffers:
2858		unlock_page(page);
2859		put_page(page);
2860		return block_truncate_page(mapping, from, get_block);
2861	}
2862
2863	/* Find the buffer that contains "offset" */
2864	pos = blocksize;
2865	while (offset >= pos) {
2866		iblock++;
2867		pos += blocksize;
2868	}
2869
2870	map_bh.b_size = blocksize;
2871	map_bh.b_state = 0;
2872	err = get_block(inode, iblock, &map_bh, 0);
2873	if (err)
2874		goto unlock;
2875	/* unmapped? It's a hole - nothing to do */
2876	if (!buffer_mapped(&map_bh))
2877		goto unlock;
2878
2879	/* Ok, it's mapped. Make sure it's up-to-date */
2880	if (!PageUptodate(page)) {
2881		err = mapping->a_ops->readpage(NULL, page);
2882		if (err) {
2883			put_page(page);
2884			goto out;
2885		}
2886		lock_page(page);
2887		if (!PageUptodate(page)) {
2888			err = -EIO;
2889			goto unlock;
2890		}
2891		if (page_has_buffers(page))
2892			goto has_buffers;
2893	}
2894	zero_user(page, offset, length);
2895	set_page_dirty(page);
2896	err = 0;
2897
2898unlock:
2899	unlock_page(page);
2900	put_page(page);
2901out:
2902	return err;
2903}
2904EXPORT_SYMBOL(nobh_truncate_page);
2905
2906int block_truncate_page(struct address_space *mapping,
2907			loff_t from, get_block_t *get_block)
2908{
2909	pgoff_t index = from >> PAGE_SHIFT;
2910	unsigned offset = from & (PAGE_SIZE-1);
2911	unsigned blocksize;
2912	sector_t iblock;
2913	unsigned length, pos;
2914	struct inode *inode = mapping->host;
2915	struct page *page;
2916	struct buffer_head *bh;
2917	int err;
2918
2919	blocksize = 1 << inode->i_blkbits;
2920	length = offset & (blocksize - 1);
2921
2922	/* Block boundary? Nothing to do */
2923	if (!length)
2924		return 0;
2925
2926	length = blocksize - length;
2927	iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2928	
2929	page = grab_cache_page(mapping, index);
2930	err = -ENOMEM;
2931	if (!page)
2932		goto out;
2933
2934	if (!page_has_buffers(page))
2935		create_empty_buffers(page, blocksize, 0);
2936
2937	/* Find the buffer that contains "offset" */
2938	bh = page_buffers(page);
2939	pos = blocksize;
2940	while (offset >= pos) {
2941		bh = bh->b_this_page;
2942		iblock++;
2943		pos += blocksize;
2944	}
2945
2946	err = 0;
2947	if (!buffer_mapped(bh)) {
2948		WARN_ON(bh->b_size != blocksize);
2949		err = get_block(inode, iblock, bh, 0);
2950		if (err)
2951			goto unlock;
2952		/* unmapped? It's a hole - nothing to do */
2953		if (!buffer_mapped(bh))
2954			goto unlock;
2955	}
2956
2957	/* Ok, it's mapped. Make sure it's up-to-date */
2958	if (PageUptodate(page))
2959		set_buffer_uptodate(bh);
2960
2961	if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2962		err = -EIO;
2963		ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2964		wait_on_buffer(bh);
2965		/* Uhhuh. Read error. Complain and punt. */
2966		if (!buffer_uptodate(bh))
2967			goto unlock;
2968	}
2969
2970	zero_user(page, offset, length);
2971	mark_buffer_dirty(bh);
2972	err = 0;
2973
2974unlock:
2975	unlock_page(page);
2976	put_page(page);
2977out:
2978	return err;
2979}
2980EXPORT_SYMBOL(block_truncate_page);
2981
2982/*
2983 * The generic ->writepage function for buffer-backed address_spaces
 
2984 */
2985int block_write_full_page(struct page *page, get_block_t *get_block,
2986			struct writeback_control *wbc)
2987{
2988	struct inode * const inode = page->mapping->host;
2989	loff_t i_size = i_size_read(inode);
2990	const pgoff_t end_index = i_size >> PAGE_SHIFT;
2991	unsigned offset;
2992
2993	/* Is the page fully inside i_size? */
2994	if (page->index < end_index)
2995		return __block_write_full_page(inode, page, get_block, wbc,
2996					       end_buffer_async_write);
2997
2998	/* Is the page fully outside i_size? (truncate in progress) */
2999	offset = i_size & (PAGE_SIZE-1);
3000	if (page->index >= end_index+1 || !offset) {
3001		/*
3002		 * The page may have dirty, unmapped buffers.  For example,
3003		 * they may have been added in ext3_writepage().  Make them
3004		 * freeable here, so the page does not leak.
3005		 */
3006		do_invalidatepage(page, 0, PAGE_SIZE);
3007		unlock_page(page);
3008		return 0; /* don't care */
3009	}
3010
3011	/*
3012	 * The page straddles i_size.  It must be zeroed out on each and every
3013	 * writepage invocation because it may be mmapped.  "A file is mapped
3014	 * in multiples of the page size.  For a file that is not a multiple of
3015	 * the  page size, the remaining memory is zeroed when mapped, and
3016	 * writes to that region are not written out to the file."
3017	 */
3018	zero_user_segment(page, offset, PAGE_SIZE);
3019	return __block_write_full_page(inode, page, get_block, wbc,
3020							end_buffer_async_write);
 
 
 
 
 
 
 
 
 
 
3021}
3022EXPORT_SYMBOL(block_write_full_page);
3023
3024sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
3025			    get_block_t *get_block)
3026{
3027	struct buffer_head tmp;
3028	struct inode *inode = mapping->host;
3029	tmp.b_state = 0;
3030	tmp.b_blocknr = 0;
3031	tmp.b_size = 1 << inode->i_blkbits;
3032	get_block(inode, block, &tmp, 0);
3033	return tmp.b_blocknr;
3034}
3035EXPORT_SYMBOL(generic_block_bmap);
3036
3037static void end_bio_bh_io_sync(struct bio *bio)
3038{
3039	struct buffer_head *bh = bio->bi_private;
3040
3041	if (unlikely(bio_flagged(bio, BIO_QUIET)))
 
 
 
 
3042		set_bit(BH_Quiet, &bh->b_state);
3043
3044	bh->b_end_io(bh, !bio->bi_error);
3045	bio_put(bio);
3046}
3047
3048/*
3049 * This allows us to do IO even on the odd last sectors
3050 * of a device, even if the block size is some multiple
3051 * of the physical sector size.
3052 *
3053 * We'll just truncate the bio to the size of the device,
3054 * and clear the end of the buffer head manually.
3055 *
3056 * Truly out-of-range accesses will turn into actual IO
3057 * errors, this only handles the "we need to be able to
3058 * do IO at the final sector" case.
3059 */
3060void guard_bio_eod(int op, struct bio *bio)
3061{
3062	sector_t maxsector;
3063	struct bio_vec *bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
3064	unsigned truncated_bytes;
3065
3066	maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
3067	if (!maxsector)
3068		return;
3069
3070	/*
3071	 * If the *whole* IO is past the end of the device,
3072	 * let it through, and the IO layer will turn it into
3073	 * an EIO.
3074	 */
3075	if (unlikely(bio->bi_iter.bi_sector >= maxsector))
3076		return;
3077
3078	maxsector -= bio->bi_iter.bi_sector;
3079	if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
3080		return;
3081
3082	/* Uhhuh. We've got a bio that straddles the device size! */
3083	truncated_bytes = bio->bi_iter.bi_size - (maxsector << 9);
3084
3085	/* Truncate the bio.. */
3086	bio->bi_iter.bi_size -= truncated_bytes;
3087	bvec->bv_len -= truncated_bytes;
3088
3089	/* ..and clear the end of the buffer for reads */
3090	if (op == REQ_OP_READ) {
3091		zero_user(bvec->bv_page, bvec->bv_offset + bvec->bv_len,
3092				truncated_bytes);
3093	}
3094}
3095
3096static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
3097			 unsigned long bio_flags, struct writeback_control *wbc)
3098{
3099	struct bio *bio;
 
3100
3101	BUG_ON(!buffer_locked(bh));
3102	BUG_ON(!buffer_mapped(bh));
3103	BUG_ON(!bh->b_end_io);
3104	BUG_ON(buffer_delay(bh));
3105	BUG_ON(buffer_unwritten(bh));
3106
3107	/*
3108	 * Only clear out a write error when rewriting
3109	 */
3110	if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
3111		clear_buffer_write_io_error(bh);
3112
3113	/*
3114	 * from here on down, it's all bio -- do the initial mapping,
3115	 * submit_bio -> generic_make_request may further map this bio around
3116	 */
3117	bio = bio_alloc(GFP_NOIO, 1);
3118
3119	if (wbc) {
3120		wbc_init_bio(wbc, bio);
3121		wbc_account_io(wbc, bh->b_page, bh->b_size);
3122	}
3123
3124	bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
3125	bio->bi_bdev = bh->b_bdev;
3126
3127	bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
3128	BUG_ON(bio->bi_iter.bi_size != bh->b_size);
 
 
 
 
3129
3130	bio->bi_end_io = end_bio_bh_io_sync;
3131	bio->bi_private = bh;
3132	bio->bi_flags |= bio_flags;
3133
3134	/* Take care of bh's that straddle the end of the device */
3135	guard_bio_eod(op, bio);
3136
3137	if (buffer_meta(bh))
3138		op_flags |= REQ_META;
3139	if (buffer_prio(bh))
3140		op_flags |= REQ_PRIO;
3141	bio_set_op_attrs(bio, op, op_flags);
3142
3143	submit_bio(bio);
3144	return 0;
3145}
3146
3147int _submit_bh(int op, int op_flags, struct buffer_head *bh,
3148	       unsigned long bio_flags)
3149{
3150	return submit_bh_wbc(op, op_flags, bh, bio_flags, NULL);
3151}
3152EXPORT_SYMBOL_GPL(_submit_bh);
3153
3154int submit_bh(int op, int op_flags,  struct buffer_head *bh)
3155{
3156	return submit_bh_wbc(op, op_flags, bh, 0, NULL);
3157}
3158EXPORT_SYMBOL(submit_bh);
3159
3160/**
3161 * ll_rw_block: low-level access to block devices (DEPRECATED)
3162 * @op: whether to %READ or %WRITE
3163 * @op_flags: req_flag_bits
3164 * @nr: number of &struct buffer_heads in the array
3165 * @bhs: array of pointers to &struct buffer_head
3166 *
3167 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3168 * requests an I/O operation on them, either a %REQ_OP_READ or a %REQ_OP_WRITE.
3169 * @op_flags contains flags modifying the detailed I/O behavior, most notably
3170 * %REQ_RAHEAD.
3171 *
3172 * This function drops any buffer that it cannot get a lock on (with the
3173 * BH_Lock state bit), any buffer that appears to be clean when doing a write
3174 * request, and any buffer that appears to be up-to-date when doing read
3175 * request.  Further it marks as clean buffers that are processed for
3176 * writing (the buffer cache won't assume that they are actually clean
3177 * until the buffer gets unlocked).
3178 *
3179 * ll_rw_block sets b_end_io to simple completion handler that marks
3180 * the buffer up-to-date (if appropriate), unlocks the buffer and wakes
3181 * any waiters. 
3182 *
3183 * All of the buffers must be for the same device, and must also be a
3184 * multiple of the current approved size for the device.
3185 */
3186void ll_rw_block(int op, int op_flags,  int nr, struct buffer_head *bhs[])
3187{
3188	int i;
3189
3190	for (i = 0; i < nr; i++) {
3191		struct buffer_head *bh = bhs[i];
3192
3193		if (!trylock_buffer(bh))
3194			continue;
3195		if (op == WRITE) {
3196			if (test_clear_buffer_dirty(bh)) {
3197				bh->b_end_io = end_buffer_write_sync;
3198				get_bh(bh);
3199				submit_bh(op, op_flags, bh);
3200				continue;
3201			}
3202		} else {
3203			if (!buffer_uptodate(bh)) {
3204				bh->b_end_io = end_buffer_read_sync;
3205				get_bh(bh);
3206				submit_bh(op, op_flags, bh);
3207				continue;
3208			}
3209		}
3210		unlock_buffer(bh);
3211	}
3212}
3213EXPORT_SYMBOL(ll_rw_block);
3214
3215void write_dirty_buffer(struct buffer_head *bh, int op_flags)
3216{
3217	lock_buffer(bh);
3218	if (!test_clear_buffer_dirty(bh)) {
3219		unlock_buffer(bh);
3220		return;
3221	}
3222	bh->b_end_io = end_buffer_write_sync;
3223	get_bh(bh);
3224	submit_bh(REQ_OP_WRITE, op_flags, bh);
3225}
3226EXPORT_SYMBOL(write_dirty_buffer);
3227
3228/*
3229 * For a data-integrity writeout, we need to wait upon any in-progress I/O
3230 * and then start new I/O and then wait upon it.  The caller must have a ref on
3231 * the buffer_head.
3232 */
3233int __sync_dirty_buffer(struct buffer_head *bh, int op_flags)
3234{
3235	int ret = 0;
3236
3237	WARN_ON(atomic_read(&bh->b_count) < 1);
3238	lock_buffer(bh);
3239	if (test_clear_buffer_dirty(bh)) {
3240		get_bh(bh);
3241		bh->b_end_io = end_buffer_write_sync;
3242		ret = submit_bh(REQ_OP_WRITE, op_flags, bh);
3243		wait_on_buffer(bh);
3244		if (!ret && !buffer_uptodate(bh))
3245			ret = -EIO;
3246	} else {
3247		unlock_buffer(bh);
3248	}
3249	return ret;
3250}
3251EXPORT_SYMBOL(__sync_dirty_buffer);
3252
3253int sync_dirty_buffer(struct buffer_head *bh)
3254{
3255	return __sync_dirty_buffer(bh, REQ_SYNC);
3256}
3257EXPORT_SYMBOL(sync_dirty_buffer);
3258
3259/*
3260 * try_to_free_buffers() checks if all the buffers on this particular page
3261 * are unused, and releases them if so.
3262 *
3263 * Exclusion against try_to_free_buffers may be obtained by either
3264 * locking the page or by holding its mapping's private_lock.
3265 *
3266 * If the page is dirty but all the buffers are clean then we need to
3267 * be sure to mark the page clean as well.  This is because the page
3268 * may be against a block device, and a later reattachment of buffers
3269 * to a dirty page will set *all* buffers dirty.  Which would corrupt
3270 * filesystem data on the same device.
3271 *
3272 * The same applies to regular filesystem pages: if all the buffers are
3273 * clean then we set the page clean and proceed.  To do that, we require
3274 * total exclusion from __set_page_dirty_buffers().  That is obtained with
3275 * private_lock.
3276 *
3277 * try_to_free_buffers() is non-blocking.
3278 */
3279static inline int buffer_busy(struct buffer_head *bh)
3280{
3281	return atomic_read(&bh->b_count) |
3282		(bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3283}
3284
3285static int
3286drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3287{
3288	struct buffer_head *head = page_buffers(page);
3289	struct buffer_head *bh;
3290
3291	bh = head;
3292	do {
3293		if (buffer_write_io_error(bh) && page->mapping)
3294			mapping_set_error(page->mapping, -EIO);
3295		if (buffer_busy(bh))
3296			goto failed;
3297		bh = bh->b_this_page;
3298	} while (bh != head);
3299
3300	do {
3301		struct buffer_head *next = bh->b_this_page;
3302
3303		if (bh->b_assoc_map)
3304			__remove_assoc_queue(bh);
3305		bh = next;
3306	} while (bh != head);
3307	*buffers_to_free = head;
3308	__clear_page_buffers(page);
3309	return 1;
3310failed:
3311	return 0;
3312}
3313
3314int try_to_free_buffers(struct page *page)
3315{
3316	struct address_space * const mapping = page->mapping;
3317	struct buffer_head *buffers_to_free = NULL;
3318	int ret = 0;
3319
3320	BUG_ON(!PageLocked(page));
3321	if (PageWriteback(page))
3322		return 0;
3323
3324	if (mapping == NULL) {		/* can this still happen? */
3325		ret = drop_buffers(page, &buffers_to_free);
3326		goto out;
3327	}
3328
3329	spin_lock(&mapping->private_lock);
3330	ret = drop_buffers(page, &buffers_to_free);
3331
3332	/*
3333	 * If the filesystem writes its buffers by hand (eg ext3)
3334	 * then we can have clean buffers against a dirty page.  We
3335	 * clean the page here; otherwise the VM will never notice
3336	 * that the filesystem did any IO at all.
3337	 *
3338	 * Also, during truncate, discard_buffer will have marked all
3339	 * the page's buffers clean.  We discover that here and clean
3340	 * the page also.
3341	 *
3342	 * private_lock must be held over this entire operation in order
3343	 * to synchronise against __set_page_dirty_buffers and prevent the
3344	 * dirty bit from being lost.
3345	 */
3346	if (ret)
3347		cancel_dirty_page(page);
3348	spin_unlock(&mapping->private_lock);
3349out:
3350	if (buffers_to_free) {
3351		struct buffer_head *bh = buffers_to_free;
3352
3353		do {
3354			struct buffer_head *next = bh->b_this_page;
3355			free_buffer_head(bh);
3356			bh = next;
3357		} while (bh != buffers_to_free);
3358	}
3359	return ret;
3360}
3361EXPORT_SYMBOL(try_to_free_buffers);
3362
3363/*
3364 * There are no bdflush tunables left.  But distributions are
3365 * still running obsolete flush daemons, so we terminate them here.
3366 *
3367 * Use of bdflush() is deprecated and will be removed in a future kernel.
3368 * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3369 */
3370SYSCALL_DEFINE2(bdflush, int, func, long, data)
3371{
3372	static int msg_count;
3373
3374	if (!capable(CAP_SYS_ADMIN))
3375		return -EPERM;
3376
3377	if (msg_count < 5) {
3378		msg_count++;
3379		printk(KERN_INFO
3380			"warning: process `%s' used the obsolete bdflush"
3381			" system call\n", current->comm);
3382		printk(KERN_INFO "Fix your initscripts?\n");
3383	}
3384
3385	if (func == 1)
3386		do_exit(0);
3387	return 0;
3388}
3389
3390/*
3391 * Buffer-head allocation
3392 */
3393static struct kmem_cache *bh_cachep __read_mostly;
3394
3395/*
3396 * Once the number of bh's in the machine exceeds this level, we start
3397 * stripping them in writeback.
3398 */
3399static unsigned long max_buffer_heads;
3400
3401int buffer_heads_over_limit;
3402
3403struct bh_accounting {
3404	int nr;			/* Number of live bh's */
3405	int ratelimit;		/* Limit cacheline bouncing */
3406};
3407
3408static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3409
3410static void recalc_bh_state(void)
3411{
3412	int i;
3413	int tot = 0;
3414
3415	if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3416		return;
3417	__this_cpu_write(bh_accounting.ratelimit, 0);
3418	for_each_online_cpu(i)
3419		tot += per_cpu(bh_accounting, i).nr;
3420	buffer_heads_over_limit = (tot > max_buffer_heads);
3421}
3422
3423struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3424{
3425	struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3426	if (ret) {
3427		INIT_LIST_HEAD(&ret->b_assoc_buffers);
3428		preempt_disable();
3429		__this_cpu_inc(bh_accounting.nr);
3430		recalc_bh_state();
3431		preempt_enable();
3432	}
3433	return ret;
3434}
3435EXPORT_SYMBOL(alloc_buffer_head);
3436
3437void free_buffer_head(struct buffer_head *bh)
3438{
3439	BUG_ON(!list_empty(&bh->b_assoc_buffers));
3440	kmem_cache_free(bh_cachep, bh);
3441	preempt_disable();
3442	__this_cpu_dec(bh_accounting.nr);
3443	recalc_bh_state();
3444	preempt_enable();
3445}
3446EXPORT_SYMBOL(free_buffer_head);
3447
3448static int buffer_exit_cpu_dead(unsigned int cpu)
3449{
3450	int i;
3451	struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3452
3453	for (i = 0; i < BH_LRU_SIZE; i++) {
3454		brelse(b->bhs[i]);
3455		b->bhs[i] = NULL;
3456	}
3457	this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3458	per_cpu(bh_accounting, cpu).nr = 0;
3459	return 0;
 
 
 
 
 
 
 
3460}
3461
3462/**
3463 * bh_uptodate_or_lock - Test whether the buffer is uptodate
3464 * @bh: struct buffer_head
3465 *
3466 * Return true if the buffer is up-to-date and false,
3467 * with the buffer locked, if not.
3468 */
3469int bh_uptodate_or_lock(struct buffer_head *bh)
3470{
3471	if (!buffer_uptodate(bh)) {
3472		lock_buffer(bh);
3473		if (!buffer_uptodate(bh))
3474			return 0;
3475		unlock_buffer(bh);
3476	}
3477	return 1;
3478}
3479EXPORT_SYMBOL(bh_uptodate_or_lock);
3480
3481/**
3482 * bh_submit_read - Submit a locked buffer for reading
3483 * @bh: struct buffer_head
3484 *
3485 * Returns zero on success and -EIO on error.
3486 */
3487int bh_submit_read(struct buffer_head *bh)
3488{
3489	BUG_ON(!buffer_locked(bh));
3490
3491	if (buffer_uptodate(bh)) {
3492		unlock_buffer(bh);
3493		return 0;
3494	}
3495
3496	get_bh(bh);
3497	bh->b_end_io = end_buffer_read_sync;
3498	submit_bh(REQ_OP_READ, 0, bh);
3499	wait_on_buffer(bh);
3500	if (buffer_uptodate(bh))
3501		return 0;
3502	return -EIO;
3503}
3504EXPORT_SYMBOL(bh_submit_read);
3505
3506void __init buffer_init(void)
3507{
3508	unsigned long nrpages;
3509	int ret;
3510
3511	bh_cachep = kmem_cache_create("buffer_head",
3512			sizeof(struct buffer_head), 0,
3513				(SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3514				SLAB_MEM_SPREAD),
3515				NULL);
3516
3517	/*
3518	 * Limit the bh occupancy to 10% of ZONE_NORMAL
3519	 */
3520	nrpages = (nr_free_buffer_pages() * 10) / 100;
3521	max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3522	ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead",
3523					NULL, buffer_exit_cpu_dead);
3524	WARN_ON(ret < 0);
3525}
v3.5.6
   1/*
   2 *  linux/fs/buffer.c
   3 *
   4 *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
   5 */
   6
   7/*
   8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
   9 *
  10 * Removed a lot of unnecessary code and simplified things now that
  11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
  12 *
  13 * Speed up hash, lru, and free list operations.  Use gfp() for allocating
  14 * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
  15 *
  16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
  17 *
  18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
  19 */
  20
  21#include <linux/kernel.h>
  22#include <linux/syscalls.h>
  23#include <linux/fs.h>
 
  24#include <linux/mm.h>
  25#include <linux/percpu.h>
  26#include <linux/slab.h>
  27#include <linux/capability.h>
  28#include <linux/blkdev.h>
  29#include <linux/file.h>
  30#include <linux/quotaops.h>
  31#include <linux/highmem.h>
  32#include <linux/export.h>
 
  33#include <linux/writeback.h>
  34#include <linux/hash.h>
  35#include <linux/suspend.h>
  36#include <linux/buffer_head.h>
  37#include <linux/task_io_accounting_ops.h>
  38#include <linux/bio.h>
  39#include <linux/notifier.h>
  40#include <linux/cpu.h>
  41#include <linux/bitops.h>
  42#include <linux/mpage.h>
  43#include <linux/bit_spinlock.h>
 
 
  44
  45static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
 
 
 
  46
  47#define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
  48
  49inline void
  50init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
  51{
  52	bh->b_end_io = handler;
  53	bh->b_private = private;
  54}
  55EXPORT_SYMBOL(init_buffer);
  56
  57static int sleep_on_buffer(void *word)
  58{
  59	io_schedule();
  60	return 0;
  61}
 
  62
  63void __lock_buffer(struct buffer_head *bh)
  64{
  65	wait_on_bit_lock(&bh->b_state, BH_Lock, sleep_on_buffer,
  66							TASK_UNINTERRUPTIBLE);
  67}
  68EXPORT_SYMBOL(__lock_buffer);
  69
  70void unlock_buffer(struct buffer_head *bh)
  71{
  72	clear_bit_unlock(BH_Lock, &bh->b_state);
  73	smp_mb__after_clear_bit();
  74	wake_up_bit(&bh->b_state, BH_Lock);
  75}
  76EXPORT_SYMBOL(unlock_buffer);
  77
  78/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  79 * Block until a buffer comes unlocked.  This doesn't stop it
  80 * from becoming locked again - you have to lock it yourself
  81 * if you want to preserve its state.
  82 */
  83void __wait_on_buffer(struct buffer_head * bh)
  84{
  85	wait_on_bit(&bh->b_state, BH_Lock, sleep_on_buffer, TASK_UNINTERRUPTIBLE);
  86}
  87EXPORT_SYMBOL(__wait_on_buffer);
  88
  89static void
  90__clear_page_buffers(struct page *page)
  91{
  92	ClearPagePrivate(page);
  93	set_page_private(page, 0);
  94	page_cache_release(page);
  95}
  96
  97
  98static int quiet_error(struct buffer_head *bh)
  99{
 100	if (!test_bit(BH_Quiet, &bh->b_state) && printk_ratelimit())
 101		return 0;
 102	return 1;
 103}
 104
 105
 106static void buffer_io_error(struct buffer_head *bh)
 107{
 108	char b[BDEVNAME_SIZE];
 109	printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
 110			bdevname(bh->b_bdev, b),
 111			(unsigned long long)bh->b_blocknr);
 112}
 113
 114/*
 115 * End-of-IO handler helper function which does not touch the bh after
 116 * unlocking it.
 117 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
 118 * a race there is benign: unlock_buffer() only use the bh's address for
 119 * hashing after unlocking the buffer, so it doesn't actually touch the bh
 120 * itself.
 121 */
 122static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
 123{
 124	if (uptodate) {
 125		set_buffer_uptodate(bh);
 126	} else {
 127		/* This happens, due to failed READA attempts. */
 128		clear_buffer_uptodate(bh);
 129	}
 130	unlock_buffer(bh);
 131}
 132
 133/*
 134 * Default synchronous end-of-IO handler..  Just mark it up-to-date and
 135 * unlock the buffer. This is what ll_rw_block uses too.
 136 */
 137void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
 138{
 139	__end_buffer_read_notouch(bh, uptodate);
 140	put_bh(bh);
 141}
 142EXPORT_SYMBOL(end_buffer_read_sync);
 143
 144void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
 145{
 146	char b[BDEVNAME_SIZE];
 147
 148	if (uptodate) {
 149		set_buffer_uptodate(bh);
 150	} else {
 151		if (!quiet_error(bh)) {
 152			buffer_io_error(bh);
 153			printk(KERN_WARNING "lost page write due to "
 154					"I/O error on %s\n",
 155				       bdevname(bh->b_bdev, b));
 156		}
 157		set_buffer_write_io_error(bh);
 158		clear_buffer_uptodate(bh);
 159	}
 160	unlock_buffer(bh);
 161	put_bh(bh);
 162}
 163EXPORT_SYMBOL(end_buffer_write_sync);
 164
 165/*
 166 * Various filesystems appear to want __find_get_block to be non-blocking.
 167 * But it's the page lock which protects the buffers.  To get around this,
 168 * we get exclusion from try_to_free_buffers with the blockdev mapping's
 169 * private_lock.
 170 *
 171 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
 172 * may be quite high.  This code could TryLock the page, and if that
 173 * succeeds, there is no need to take private_lock. (But if
 174 * private_lock is contended then so is mapping->tree_lock).
 175 */
 176static struct buffer_head *
 177__find_get_block_slow(struct block_device *bdev, sector_t block)
 178{
 179	struct inode *bd_inode = bdev->bd_inode;
 180	struct address_space *bd_mapping = bd_inode->i_mapping;
 181	struct buffer_head *ret = NULL;
 182	pgoff_t index;
 183	struct buffer_head *bh;
 184	struct buffer_head *head;
 185	struct page *page;
 186	int all_mapped = 1;
 187
 188	index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
 189	page = find_get_page(bd_mapping, index);
 190	if (!page)
 191		goto out;
 192
 193	spin_lock(&bd_mapping->private_lock);
 194	if (!page_has_buffers(page))
 195		goto out_unlock;
 196	head = page_buffers(page);
 197	bh = head;
 198	do {
 199		if (!buffer_mapped(bh))
 200			all_mapped = 0;
 201		else if (bh->b_blocknr == block) {
 202			ret = bh;
 203			get_bh(bh);
 204			goto out_unlock;
 205		}
 206		bh = bh->b_this_page;
 207	} while (bh != head);
 208
 209	/* we might be here because some of the buffers on this page are
 210	 * not mapped.  This is due to various races between
 211	 * file io on the block device and getblk.  It gets dealt with
 212	 * elsewhere, don't buffer_error if we had some unmapped buffers
 213	 */
 214	if (all_mapped) {
 215		char b[BDEVNAME_SIZE];
 216
 217		printk("__find_get_block_slow() failed. "
 218			"block=%llu, b_blocknr=%llu\n",
 219			(unsigned long long)block,
 220			(unsigned long long)bh->b_blocknr);
 221		printk("b_state=0x%08lx, b_size=%zu\n",
 222			bh->b_state, bh->b_size);
 223		printk("device %s blocksize: %d\n", bdevname(bdev, b),
 224			1 << bd_inode->i_blkbits);
 225	}
 226out_unlock:
 227	spin_unlock(&bd_mapping->private_lock);
 228	page_cache_release(page);
 229out:
 230	return ret;
 231}
 232
 233/*
 234 * Kick the writeback threads then try to free up some ZONE_NORMAL memory.
 235 */
 236static void free_more_memory(void)
 237{
 238	struct zone *zone;
 239	int nid;
 240
 241	wakeup_flusher_threads(1024, WB_REASON_FREE_MORE_MEM);
 242	yield();
 243
 244	for_each_online_node(nid) {
 245		(void)first_zones_zonelist(node_zonelist(nid, GFP_NOFS),
 246						gfp_zone(GFP_NOFS), NULL,
 247						&zone);
 248		if (zone)
 249			try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0,
 250						GFP_NOFS, NULL);
 251	}
 252}
 253
 254/*
 255 * I/O completion handler for block_read_full_page() - pages
 256 * which come unlocked at the end of I/O.
 257 */
 258static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
 259{
 260	unsigned long flags;
 261	struct buffer_head *first;
 262	struct buffer_head *tmp;
 263	struct page *page;
 264	int page_uptodate = 1;
 265
 266	BUG_ON(!buffer_async_read(bh));
 267
 268	page = bh->b_page;
 269	if (uptodate) {
 270		set_buffer_uptodate(bh);
 271	} else {
 272		clear_buffer_uptodate(bh);
 273		if (!quiet_error(bh))
 274			buffer_io_error(bh);
 275		SetPageError(page);
 276	}
 277
 278	/*
 279	 * Be _very_ careful from here on. Bad things can happen if
 280	 * two buffer heads end IO at almost the same time and both
 281	 * decide that the page is now completely done.
 282	 */
 283	first = page_buffers(page);
 284	local_irq_save(flags);
 285	bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
 286	clear_buffer_async_read(bh);
 287	unlock_buffer(bh);
 288	tmp = bh;
 289	do {
 290		if (!buffer_uptodate(tmp))
 291			page_uptodate = 0;
 292		if (buffer_async_read(tmp)) {
 293			BUG_ON(!buffer_locked(tmp));
 294			goto still_busy;
 295		}
 296		tmp = tmp->b_this_page;
 297	} while (tmp != bh);
 298	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
 299	local_irq_restore(flags);
 300
 301	/*
 302	 * If none of the buffers had errors and they are all
 303	 * uptodate then we can set the page uptodate.
 304	 */
 305	if (page_uptodate && !PageError(page))
 306		SetPageUptodate(page);
 307	unlock_page(page);
 308	return;
 309
 310still_busy:
 311	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
 312	local_irq_restore(flags);
 313	return;
 314}
 315
 316/*
 317 * Completion handler for block_write_full_page() - pages which are unlocked
 318 * during I/O, and which have PageWriteback cleared upon I/O completion.
 319 */
 320void end_buffer_async_write(struct buffer_head *bh, int uptodate)
 321{
 322	char b[BDEVNAME_SIZE];
 323	unsigned long flags;
 324	struct buffer_head *first;
 325	struct buffer_head *tmp;
 326	struct page *page;
 327
 328	BUG_ON(!buffer_async_write(bh));
 329
 330	page = bh->b_page;
 331	if (uptodate) {
 332		set_buffer_uptodate(bh);
 333	} else {
 334		if (!quiet_error(bh)) {
 335			buffer_io_error(bh);
 336			printk(KERN_WARNING "lost page write due to "
 337					"I/O error on %s\n",
 338			       bdevname(bh->b_bdev, b));
 339		}
 340		set_bit(AS_EIO, &page->mapping->flags);
 341		set_buffer_write_io_error(bh);
 342		clear_buffer_uptodate(bh);
 343		SetPageError(page);
 344	}
 345
 346	first = page_buffers(page);
 347	local_irq_save(flags);
 348	bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
 349
 350	clear_buffer_async_write(bh);
 351	unlock_buffer(bh);
 352	tmp = bh->b_this_page;
 353	while (tmp != bh) {
 354		if (buffer_async_write(tmp)) {
 355			BUG_ON(!buffer_locked(tmp));
 356			goto still_busy;
 357		}
 358		tmp = tmp->b_this_page;
 359	}
 360	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
 361	local_irq_restore(flags);
 362	end_page_writeback(page);
 363	return;
 364
 365still_busy:
 366	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
 367	local_irq_restore(flags);
 368	return;
 369}
 370EXPORT_SYMBOL(end_buffer_async_write);
 371
 372/*
 373 * If a page's buffers are under async readin (end_buffer_async_read
 374 * completion) then there is a possibility that another thread of
 375 * control could lock one of the buffers after it has completed
 376 * but while some of the other buffers have not completed.  This
 377 * locked buffer would confuse end_buffer_async_read() into not unlocking
 378 * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
 379 * that this buffer is not under async I/O.
 380 *
 381 * The page comes unlocked when it has no locked buffer_async buffers
 382 * left.
 383 *
 384 * PageLocked prevents anyone starting new async I/O reads any of
 385 * the buffers.
 386 *
 387 * PageWriteback is used to prevent simultaneous writeout of the same
 388 * page.
 389 *
 390 * PageLocked prevents anyone from starting writeback of a page which is
 391 * under read I/O (PageWriteback is only ever set against a locked page).
 392 */
 393static void mark_buffer_async_read(struct buffer_head *bh)
 394{
 395	bh->b_end_io = end_buffer_async_read;
 396	set_buffer_async_read(bh);
 397}
 398
 399static void mark_buffer_async_write_endio(struct buffer_head *bh,
 400					  bh_end_io_t *handler)
 401{
 402	bh->b_end_io = handler;
 403	set_buffer_async_write(bh);
 404}
 405
 406void mark_buffer_async_write(struct buffer_head *bh)
 407{
 408	mark_buffer_async_write_endio(bh, end_buffer_async_write);
 409}
 410EXPORT_SYMBOL(mark_buffer_async_write);
 411
 412
 413/*
 414 * fs/buffer.c contains helper functions for buffer-backed address space's
 415 * fsync functions.  A common requirement for buffer-based filesystems is
 416 * that certain data from the backing blockdev needs to be written out for
 417 * a successful fsync().  For example, ext2 indirect blocks need to be
 418 * written back and waited upon before fsync() returns.
 419 *
 420 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
 421 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
 422 * management of a list of dependent buffers at ->i_mapping->private_list.
 423 *
 424 * Locking is a little subtle: try_to_free_buffers() will remove buffers
 425 * from their controlling inode's queue when they are being freed.  But
 426 * try_to_free_buffers() will be operating against the *blockdev* mapping
 427 * at the time, not against the S_ISREG file which depends on those buffers.
 428 * So the locking for private_list is via the private_lock in the address_space
 429 * which backs the buffers.  Which is different from the address_space 
 430 * against which the buffers are listed.  So for a particular address_space,
 431 * mapping->private_lock does *not* protect mapping->private_list!  In fact,
 432 * mapping->private_list will always be protected by the backing blockdev's
 433 * ->private_lock.
 434 *
 435 * Which introduces a requirement: all buffers on an address_space's
 436 * ->private_list must be from the same address_space: the blockdev's.
 437 *
 438 * address_spaces which do not place buffers at ->private_list via these
 439 * utility functions are free to use private_lock and private_list for
 440 * whatever they want.  The only requirement is that list_empty(private_list)
 441 * be true at clear_inode() time.
 442 *
 443 * FIXME: clear_inode should not call invalidate_inode_buffers().  The
 444 * filesystems should do that.  invalidate_inode_buffers() should just go
 445 * BUG_ON(!list_empty).
 446 *
 447 * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
 448 * take an address_space, not an inode.  And it should be called
 449 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
 450 * queued up.
 451 *
 452 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
 453 * list if it is already on a list.  Because if the buffer is on a list,
 454 * it *must* already be on the right one.  If not, the filesystem is being
 455 * silly.  This will save a ton of locking.  But first we have to ensure
 456 * that buffers are taken *off* the old inode's list when they are freed
 457 * (presumably in truncate).  That requires careful auditing of all
 458 * filesystems (do it inside bforget()).  It could also be done by bringing
 459 * b_inode back.
 460 */
 461
 462/*
 463 * The buffer's backing address_space's private_lock must be held
 464 */
 465static void __remove_assoc_queue(struct buffer_head *bh)
 466{
 467	list_del_init(&bh->b_assoc_buffers);
 468	WARN_ON(!bh->b_assoc_map);
 469	if (buffer_write_io_error(bh))
 470		set_bit(AS_EIO, &bh->b_assoc_map->flags);
 471	bh->b_assoc_map = NULL;
 472}
 473
 474int inode_has_buffers(struct inode *inode)
 475{
 476	return !list_empty(&inode->i_data.private_list);
 477}
 478
 479/*
 480 * osync is designed to support O_SYNC io.  It waits synchronously for
 481 * all already-submitted IO to complete, but does not queue any new
 482 * writes to the disk.
 483 *
 484 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
 485 * you dirty the buffers, and then use osync_inode_buffers to wait for
 486 * completion.  Any other dirty buffers which are not yet queued for
 487 * write will not be flushed to disk by the osync.
 488 */
 489static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
 490{
 491	struct buffer_head *bh;
 492	struct list_head *p;
 493	int err = 0;
 494
 495	spin_lock(lock);
 496repeat:
 497	list_for_each_prev(p, list) {
 498		bh = BH_ENTRY(p);
 499		if (buffer_locked(bh)) {
 500			get_bh(bh);
 501			spin_unlock(lock);
 502			wait_on_buffer(bh);
 503			if (!buffer_uptodate(bh))
 504				err = -EIO;
 505			brelse(bh);
 506			spin_lock(lock);
 507			goto repeat;
 508		}
 509	}
 510	spin_unlock(lock);
 511	return err;
 512}
 513
 514static void do_thaw_one(struct super_block *sb, void *unused)
 515{
 516	char b[BDEVNAME_SIZE];
 517	while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
 518		printk(KERN_WARNING "Emergency Thaw on %s\n",
 519		       bdevname(sb->s_bdev, b));
 520}
 521
 522static void do_thaw_all(struct work_struct *work)
 523{
 524	iterate_supers(do_thaw_one, NULL);
 525	kfree(work);
 526	printk(KERN_WARNING "Emergency Thaw complete\n");
 527}
 528
 529/**
 530 * emergency_thaw_all -- forcibly thaw every frozen filesystem
 531 *
 532 * Used for emergency unfreeze of all filesystems via SysRq
 533 */
 534void emergency_thaw_all(void)
 535{
 536	struct work_struct *work;
 537
 538	work = kmalloc(sizeof(*work), GFP_ATOMIC);
 539	if (work) {
 540		INIT_WORK(work, do_thaw_all);
 541		schedule_work(work);
 542	}
 543}
 544
 545/**
 546 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
 547 * @mapping: the mapping which wants those buffers written
 548 *
 549 * Starts I/O against the buffers at mapping->private_list, and waits upon
 550 * that I/O.
 551 *
 552 * Basically, this is a convenience function for fsync().
 553 * @mapping is a file or directory which needs those buffers to be written for
 554 * a successful fsync().
 555 */
 556int sync_mapping_buffers(struct address_space *mapping)
 557{
 558	struct address_space *buffer_mapping = mapping->assoc_mapping;
 559
 560	if (buffer_mapping == NULL || list_empty(&mapping->private_list))
 561		return 0;
 562
 563	return fsync_buffers_list(&buffer_mapping->private_lock,
 564					&mapping->private_list);
 565}
 566EXPORT_SYMBOL(sync_mapping_buffers);
 567
 568/*
 569 * Called when we've recently written block `bblock', and it is known that
 570 * `bblock' was for a buffer_boundary() buffer.  This means that the block at
 571 * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
 572 * dirty, schedule it for IO.  So that indirects merge nicely with their data.
 573 */
 574void write_boundary_block(struct block_device *bdev,
 575			sector_t bblock, unsigned blocksize)
 576{
 577	struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
 578	if (bh) {
 579		if (buffer_dirty(bh))
 580			ll_rw_block(WRITE, 1, &bh);
 581		put_bh(bh);
 582	}
 583}
 584
 585void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
 586{
 587	struct address_space *mapping = inode->i_mapping;
 588	struct address_space *buffer_mapping = bh->b_page->mapping;
 589
 590	mark_buffer_dirty(bh);
 591	if (!mapping->assoc_mapping) {
 592		mapping->assoc_mapping = buffer_mapping;
 593	} else {
 594		BUG_ON(mapping->assoc_mapping != buffer_mapping);
 595	}
 596	if (!bh->b_assoc_map) {
 597		spin_lock(&buffer_mapping->private_lock);
 598		list_move_tail(&bh->b_assoc_buffers,
 599				&mapping->private_list);
 600		bh->b_assoc_map = mapping;
 601		spin_unlock(&buffer_mapping->private_lock);
 602	}
 603}
 604EXPORT_SYMBOL(mark_buffer_dirty_inode);
 605
 606/*
 607 * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
 608 * dirty.
 609 *
 610 * If warn is true, then emit a warning if the page is not uptodate and has
 611 * not been truncated.
 
 
 612 */
 613static void __set_page_dirty(struct page *page,
 614		struct address_space *mapping, int warn)
 615{
 616	spin_lock_irq(&mapping->tree_lock);
 
 
 617	if (page->mapping) {	/* Race with truncate? */
 618		WARN_ON_ONCE(warn && !PageUptodate(page));
 619		account_page_dirtied(page, mapping);
 620		radix_tree_tag_set(&mapping->page_tree,
 621				page_index(page), PAGECACHE_TAG_DIRTY);
 622	}
 623	spin_unlock_irq(&mapping->tree_lock);
 624	__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
 625}
 626
 627/*
 628 * Add a page to the dirty page list.
 629 *
 630 * It is a sad fact of life that this function is called from several places
 631 * deeply under spinlocking.  It may not sleep.
 632 *
 633 * If the page has buffers, the uptodate buffers are set dirty, to preserve
 634 * dirty-state coherency between the page and the buffers.  It the page does
 635 * not have buffers then when they are later attached they will all be set
 636 * dirty.
 637 *
 638 * The buffers are dirtied before the page is dirtied.  There's a small race
 639 * window in which a writepage caller may see the page cleanness but not the
 640 * buffer dirtiness.  That's fine.  If this code were to set the page dirty
 641 * before the buffers, a concurrent writepage caller could clear the page dirty
 642 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
 643 * page on the dirty page list.
 644 *
 645 * We use private_lock to lock against try_to_free_buffers while using the
 646 * page's buffer list.  Also use this to protect against clean buffers being
 647 * added to the page after it was set dirty.
 648 *
 649 * FIXME: may need to call ->reservepage here as well.  That's rather up to the
 650 * address_space though.
 651 */
 652int __set_page_dirty_buffers(struct page *page)
 653{
 654	int newly_dirty;
 655	struct address_space *mapping = page_mapping(page);
 656
 657	if (unlikely(!mapping))
 658		return !TestSetPageDirty(page);
 659
 660	spin_lock(&mapping->private_lock);
 661	if (page_has_buffers(page)) {
 662		struct buffer_head *head = page_buffers(page);
 663		struct buffer_head *bh = head;
 664
 665		do {
 666			set_buffer_dirty(bh);
 667			bh = bh->b_this_page;
 668		} while (bh != head);
 669	}
 
 
 
 
 
 670	newly_dirty = !TestSetPageDirty(page);
 671	spin_unlock(&mapping->private_lock);
 672
 673	if (newly_dirty)
 674		__set_page_dirty(page, mapping, 1);
 
 
 
 
 
 
 675	return newly_dirty;
 676}
 677EXPORT_SYMBOL(__set_page_dirty_buffers);
 678
 679/*
 680 * Write out and wait upon a list of buffers.
 681 *
 682 * We have conflicting pressures: we want to make sure that all
 683 * initially dirty buffers get waited on, but that any subsequently
 684 * dirtied buffers don't.  After all, we don't want fsync to last
 685 * forever if somebody is actively writing to the file.
 686 *
 687 * Do this in two main stages: first we copy dirty buffers to a
 688 * temporary inode list, queueing the writes as we go.  Then we clean
 689 * up, waiting for those writes to complete.
 690 * 
 691 * During this second stage, any subsequent updates to the file may end
 692 * up refiling the buffer on the original inode's dirty list again, so
 693 * there is a chance we will end up with a buffer queued for write but
 694 * not yet completed on that list.  So, as a final cleanup we go through
 695 * the osync code to catch these locked, dirty buffers without requeuing
 696 * any newly dirty buffers for write.
 697 */
 698static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
 699{
 700	struct buffer_head *bh;
 701	struct list_head tmp;
 702	struct address_space *mapping;
 703	int err = 0, err2;
 704	struct blk_plug plug;
 705
 706	INIT_LIST_HEAD(&tmp);
 707	blk_start_plug(&plug);
 708
 709	spin_lock(lock);
 710	while (!list_empty(list)) {
 711		bh = BH_ENTRY(list->next);
 712		mapping = bh->b_assoc_map;
 713		__remove_assoc_queue(bh);
 714		/* Avoid race with mark_buffer_dirty_inode() which does
 715		 * a lockless check and we rely on seeing the dirty bit */
 716		smp_mb();
 717		if (buffer_dirty(bh) || buffer_locked(bh)) {
 718			list_add(&bh->b_assoc_buffers, &tmp);
 719			bh->b_assoc_map = mapping;
 720			if (buffer_dirty(bh)) {
 721				get_bh(bh);
 722				spin_unlock(lock);
 723				/*
 724				 * Ensure any pending I/O completes so that
 725				 * write_dirty_buffer() actually writes the
 726				 * current contents - it is a noop if I/O is
 727				 * still in flight on potentially older
 728				 * contents.
 729				 */
 730				write_dirty_buffer(bh, WRITE_SYNC);
 731
 732				/*
 733				 * Kick off IO for the previous mapping. Note
 734				 * that we will not run the very last mapping,
 735				 * wait_on_buffer() will do that for us
 736				 * through sync_buffer().
 737				 */
 738				brelse(bh);
 739				spin_lock(lock);
 740			}
 741		}
 742	}
 743
 744	spin_unlock(lock);
 745	blk_finish_plug(&plug);
 746	spin_lock(lock);
 747
 748	while (!list_empty(&tmp)) {
 749		bh = BH_ENTRY(tmp.prev);
 750		get_bh(bh);
 751		mapping = bh->b_assoc_map;
 752		__remove_assoc_queue(bh);
 753		/* Avoid race with mark_buffer_dirty_inode() which does
 754		 * a lockless check and we rely on seeing the dirty bit */
 755		smp_mb();
 756		if (buffer_dirty(bh)) {
 757			list_add(&bh->b_assoc_buffers,
 758				 &mapping->private_list);
 759			bh->b_assoc_map = mapping;
 760		}
 761		spin_unlock(lock);
 762		wait_on_buffer(bh);
 763		if (!buffer_uptodate(bh))
 764			err = -EIO;
 765		brelse(bh);
 766		spin_lock(lock);
 767	}
 768	
 769	spin_unlock(lock);
 770	err2 = osync_buffers_list(lock, list);
 771	if (err)
 772		return err;
 773	else
 774		return err2;
 775}
 776
 777/*
 778 * Invalidate any and all dirty buffers on a given inode.  We are
 779 * probably unmounting the fs, but that doesn't mean we have already
 780 * done a sync().  Just drop the buffers from the inode list.
 781 *
 782 * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
 783 * assumes that all the buffers are against the blockdev.  Not true
 784 * for reiserfs.
 785 */
 786void invalidate_inode_buffers(struct inode *inode)
 787{
 788	if (inode_has_buffers(inode)) {
 789		struct address_space *mapping = &inode->i_data;
 790		struct list_head *list = &mapping->private_list;
 791		struct address_space *buffer_mapping = mapping->assoc_mapping;
 792
 793		spin_lock(&buffer_mapping->private_lock);
 794		while (!list_empty(list))
 795			__remove_assoc_queue(BH_ENTRY(list->next));
 796		spin_unlock(&buffer_mapping->private_lock);
 797	}
 798}
 799EXPORT_SYMBOL(invalidate_inode_buffers);
 800
 801/*
 802 * Remove any clean buffers from the inode's buffer list.  This is called
 803 * when we're trying to free the inode itself.  Those buffers can pin it.
 804 *
 805 * Returns true if all buffers were removed.
 806 */
 807int remove_inode_buffers(struct inode *inode)
 808{
 809	int ret = 1;
 810
 811	if (inode_has_buffers(inode)) {
 812		struct address_space *mapping = &inode->i_data;
 813		struct list_head *list = &mapping->private_list;
 814		struct address_space *buffer_mapping = mapping->assoc_mapping;
 815
 816		spin_lock(&buffer_mapping->private_lock);
 817		while (!list_empty(list)) {
 818			struct buffer_head *bh = BH_ENTRY(list->next);
 819			if (buffer_dirty(bh)) {
 820				ret = 0;
 821				break;
 822			}
 823			__remove_assoc_queue(bh);
 824		}
 825		spin_unlock(&buffer_mapping->private_lock);
 826	}
 827	return ret;
 828}
 829
 830/*
 831 * Create the appropriate buffers when given a page for data area and
 832 * the size of each buffer.. Use the bh->b_this_page linked list to
 833 * follow the buffers created.  Return NULL if unable to create more
 834 * buffers.
 835 *
 836 * The retry flag is used to differentiate async IO (paging, swapping)
 837 * which may not fail from ordinary buffer allocations.
 838 */
 839struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
 840		int retry)
 841{
 842	struct buffer_head *bh, *head;
 843	long offset;
 844
 845try_again:
 846	head = NULL;
 847	offset = PAGE_SIZE;
 848	while ((offset -= size) >= 0) {
 849		bh = alloc_buffer_head(GFP_NOFS);
 850		if (!bh)
 851			goto no_grow;
 852
 853		bh->b_bdev = NULL;
 854		bh->b_this_page = head;
 855		bh->b_blocknr = -1;
 856		head = bh;
 857
 858		bh->b_state = 0;
 859		atomic_set(&bh->b_count, 0);
 860		bh->b_size = size;
 861
 862		/* Link the buffer to its page */
 863		set_bh_page(bh, page, offset);
 864
 865		init_buffer(bh, NULL, NULL);
 866	}
 867	return head;
 868/*
 869 * In case anything failed, we just free everything we got.
 870 */
 871no_grow:
 872	if (head) {
 873		do {
 874			bh = head;
 875			head = head->b_this_page;
 876			free_buffer_head(bh);
 877		} while (head);
 878	}
 879
 880	/*
 881	 * Return failure for non-async IO requests.  Async IO requests
 882	 * are not allowed to fail, so we have to wait until buffer heads
 883	 * become available.  But we don't want tasks sleeping with 
 884	 * partially complete buffers, so all were released above.
 885	 */
 886	if (!retry)
 887		return NULL;
 888
 889	/* We're _really_ low on memory. Now we just
 890	 * wait for old buffer heads to become free due to
 891	 * finishing IO.  Since this is an async request and
 892	 * the reserve list is empty, we're sure there are 
 893	 * async buffer heads in use.
 894	 */
 895	free_more_memory();
 896	goto try_again;
 897}
 898EXPORT_SYMBOL_GPL(alloc_page_buffers);
 899
 900static inline void
 901link_dev_buffers(struct page *page, struct buffer_head *head)
 902{
 903	struct buffer_head *bh, *tail;
 904
 905	bh = head;
 906	do {
 907		tail = bh;
 908		bh = bh->b_this_page;
 909	} while (bh);
 910	tail->b_this_page = head;
 911	attach_page_buffers(page, head);
 912}
 913
 
 
 
 
 
 
 
 
 
 
 
 
 914/*
 915 * Initialise the state of a blockdev page's buffers.
 916 */ 
 917static sector_t
 918init_page_buffers(struct page *page, struct block_device *bdev,
 919			sector_t block, int size)
 920{
 921	struct buffer_head *head = page_buffers(page);
 922	struct buffer_head *bh = head;
 923	int uptodate = PageUptodate(page);
 924	sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode));
 925
 926	do {
 927		if (!buffer_mapped(bh)) {
 928			init_buffer(bh, NULL, NULL);
 929			bh->b_bdev = bdev;
 930			bh->b_blocknr = block;
 931			if (uptodate)
 932				set_buffer_uptodate(bh);
 933			if (block < end_block)
 934				set_buffer_mapped(bh);
 935		}
 936		block++;
 937		bh = bh->b_this_page;
 938	} while (bh != head);
 939
 940	/*
 941	 * Caller needs to validate requested block against end of device.
 942	 */
 943	return end_block;
 944}
 945
 946/*
 947 * Create the page-cache page that contains the requested block.
 948 *
 949 * This is used purely for blockdev mappings.
 950 */
 951static int
 952grow_dev_page(struct block_device *bdev, sector_t block,
 953		pgoff_t index, int size, int sizebits)
 954{
 955	struct inode *inode = bdev->bd_inode;
 956	struct page *page;
 957	struct buffer_head *bh;
 958	sector_t end_block;
 959	int ret = 0;		/* Will call free_more_memory() */
 
 960
 961	page = find_or_create_page(inode->i_mapping, index,
 962		(mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS)|__GFP_MOVABLE);
 
 
 
 
 
 
 
 
 
 963	if (!page)
 964		return ret;
 965
 966	BUG_ON(!PageLocked(page));
 967
 968	if (page_has_buffers(page)) {
 969		bh = page_buffers(page);
 970		if (bh->b_size == size) {
 971			end_block = init_page_buffers(page, bdev,
 972						index << sizebits, size);
 
 973			goto done;
 974		}
 975		if (!try_to_free_buffers(page))
 976			goto failed;
 977	}
 978
 979	/*
 980	 * Allocate some buffers for this page
 981	 */
 982	bh = alloc_page_buffers(page, size, 0);
 983	if (!bh)
 984		goto failed;
 985
 986	/*
 987	 * Link the page to the buffers and initialise them.  Take the
 988	 * lock to be atomic wrt __find_get_block(), which does not
 989	 * run under the page lock.
 990	 */
 991	spin_lock(&inode->i_mapping->private_lock);
 992	link_dev_buffers(page, bh);
 993	end_block = init_page_buffers(page, bdev, index << sizebits, size);
 
 994	spin_unlock(&inode->i_mapping->private_lock);
 995done:
 996	ret = (block < end_block) ? 1 : -ENXIO;
 997failed:
 998	unlock_page(page);
 999	page_cache_release(page);
1000	return ret;
1001}
1002
1003/*
1004 * Create buffers for the specified block device block's page.  If
1005 * that page was dirty, the buffers are set dirty also.
1006 */
1007static int
1008grow_buffers(struct block_device *bdev, sector_t block, int size)
1009{
1010	pgoff_t index;
1011	int sizebits;
1012
1013	sizebits = -1;
1014	do {
1015		sizebits++;
1016	} while ((size << sizebits) < PAGE_SIZE);
1017
1018	index = block >> sizebits;
1019
1020	/*
1021	 * Check for a block which wants to lie outside our maximum possible
1022	 * pagecache index.  (this comparison is done using sector_t types).
1023	 */
1024	if (unlikely(index != block >> sizebits)) {
1025		char b[BDEVNAME_SIZE];
1026
1027		printk(KERN_ERR "%s: requested out-of-range block %llu for "
1028			"device %s\n",
1029			__func__, (unsigned long long)block,
1030			bdevname(bdev, b));
1031		return -EIO;
1032	}
1033
1034	/* Create a page with the proper size buffers.. */
1035	return grow_dev_page(bdev, block, index, size, sizebits);
1036}
1037
1038static struct buffer_head *
1039__getblk_slow(struct block_device *bdev, sector_t block, int size)
 
1040{
1041	/* Size must be multiple of hard sectorsize */
1042	if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1043			(size < 512 || size > PAGE_SIZE))) {
1044		printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1045					size);
1046		printk(KERN_ERR "logical block size: %d\n",
1047					bdev_logical_block_size(bdev));
1048
1049		dump_stack();
1050		return NULL;
1051	}
1052
1053	for (;;) {
1054		struct buffer_head *bh;
1055		int ret;
1056
1057		bh = __find_get_block(bdev, block, size);
1058		if (bh)
1059			return bh;
1060
1061		ret = grow_buffers(bdev, block, size);
1062		if (ret < 0)
1063			return NULL;
1064		if (ret == 0)
1065			free_more_memory();
1066	}
1067}
1068
1069/*
1070 * The relationship between dirty buffers and dirty pages:
1071 *
1072 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1073 * the page is tagged dirty in its radix tree.
1074 *
1075 * At all times, the dirtiness of the buffers represents the dirtiness of
1076 * subsections of the page.  If the page has buffers, the page dirty bit is
1077 * merely a hint about the true dirty state.
1078 *
1079 * When a page is set dirty in its entirety, all its buffers are marked dirty
1080 * (if the page has buffers).
1081 *
1082 * When a buffer is marked dirty, its page is dirtied, but the page's other
1083 * buffers are not.
1084 *
1085 * Also.  When blockdev buffers are explicitly read with bread(), they
1086 * individually become uptodate.  But their backing page remains not
1087 * uptodate - even if all of its buffers are uptodate.  A subsequent
1088 * block_read_full_page() against that page will discover all the uptodate
1089 * buffers, will set the page uptodate and will perform no I/O.
1090 */
1091
1092/**
1093 * mark_buffer_dirty - mark a buffer_head as needing writeout
1094 * @bh: the buffer_head to mark dirty
1095 *
1096 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1097 * backing page dirty, then tag the page as dirty in its address_space's radix
1098 * tree and then attach the address_space's inode to its superblock's dirty
1099 * inode list.
1100 *
1101 * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1102 * mapping->tree_lock and mapping->host->i_lock.
1103 */
1104void mark_buffer_dirty(struct buffer_head *bh)
1105{
1106	WARN_ON_ONCE(!buffer_uptodate(bh));
1107
 
 
1108	/*
1109	 * Very *carefully* optimize the it-is-already-dirty case.
1110	 *
1111	 * Don't let the final "is it dirty" escape to before we
1112	 * perhaps modified the buffer.
1113	 */
1114	if (buffer_dirty(bh)) {
1115		smp_mb();
1116		if (buffer_dirty(bh))
1117			return;
1118	}
1119
1120	if (!test_set_buffer_dirty(bh)) {
1121		struct page *page = bh->b_page;
 
 
 
1122		if (!TestSetPageDirty(page)) {
1123			struct address_space *mapping = page_mapping(page);
1124			if (mapping)
1125				__set_page_dirty(page, mapping, 0);
1126		}
 
 
 
1127	}
1128}
1129EXPORT_SYMBOL(mark_buffer_dirty);
1130
1131/*
1132 * Decrement a buffer_head's reference count.  If all buffers against a page
1133 * have zero reference count, are clean and unlocked, and if the page is clean
1134 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1135 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1136 * a page but it ends up not being freed, and buffers may later be reattached).
1137 */
1138void __brelse(struct buffer_head * buf)
1139{
1140	if (atomic_read(&buf->b_count)) {
1141		put_bh(buf);
1142		return;
1143	}
1144	WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1145}
1146EXPORT_SYMBOL(__brelse);
1147
1148/*
1149 * bforget() is like brelse(), except it discards any
1150 * potentially dirty data.
1151 */
1152void __bforget(struct buffer_head *bh)
1153{
1154	clear_buffer_dirty(bh);
1155	if (bh->b_assoc_map) {
1156		struct address_space *buffer_mapping = bh->b_page->mapping;
1157
1158		spin_lock(&buffer_mapping->private_lock);
1159		list_del_init(&bh->b_assoc_buffers);
1160		bh->b_assoc_map = NULL;
1161		spin_unlock(&buffer_mapping->private_lock);
1162	}
1163	__brelse(bh);
1164}
1165EXPORT_SYMBOL(__bforget);
1166
1167static struct buffer_head *__bread_slow(struct buffer_head *bh)
1168{
1169	lock_buffer(bh);
1170	if (buffer_uptodate(bh)) {
1171		unlock_buffer(bh);
1172		return bh;
1173	} else {
1174		get_bh(bh);
1175		bh->b_end_io = end_buffer_read_sync;
1176		submit_bh(READ, bh);
1177		wait_on_buffer(bh);
1178		if (buffer_uptodate(bh))
1179			return bh;
1180	}
1181	brelse(bh);
1182	return NULL;
1183}
1184
1185/*
1186 * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1187 * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1188 * refcount elevated by one when they're in an LRU.  A buffer can only appear
1189 * once in a particular CPU's LRU.  A single buffer can be present in multiple
1190 * CPU's LRUs at the same time.
1191 *
1192 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1193 * sb_find_get_block().
1194 *
1195 * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1196 * a local interrupt disable for that.
1197 */
1198
1199#define BH_LRU_SIZE	8
1200
1201struct bh_lru {
1202	struct buffer_head *bhs[BH_LRU_SIZE];
1203};
1204
1205static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1206
1207#ifdef CONFIG_SMP
1208#define bh_lru_lock()	local_irq_disable()
1209#define bh_lru_unlock()	local_irq_enable()
1210#else
1211#define bh_lru_lock()	preempt_disable()
1212#define bh_lru_unlock()	preempt_enable()
1213#endif
1214
1215static inline void check_irqs_on(void)
1216{
1217#ifdef irqs_disabled
1218	BUG_ON(irqs_disabled());
1219#endif
1220}
1221
1222/*
1223 * The LRU management algorithm is dopey-but-simple.  Sorry.
1224 */
1225static void bh_lru_install(struct buffer_head *bh)
1226{
1227	struct buffer_head *evictee = NULL;
1228
1229	check_irqs_on();
1230	bh_lru_lock();
1231	if (__this_cpu_read(bh_lrus.bhs[0]) != bh) {
1232		struct buffer_head *bhs[BH_LRU_SIZE];
1233		int in;
1234		int out = 0;
1235
1236		get_bh(bh);
1237		bhs[out++] = bh;
1238		for (in = 0; in < BH_LRU_SIZE; in++) {
1239			struct buffer_head *bh2 =
1240				__this_cpu_read(bh_lrus.bhs[in]);
1241
1242			if (bh2 == bh) {
1243				__brelse(bh2);
1244			} else {
1245				if (out >= BH_LRU_SIZE) {
1246					BUG_ON(evictee != NULL);
1247					evictee = bh2;
1248				} else {
1249					bhs[out++] = bh2;
1250				}
1251			}
1252		}
1253		while (out < BH_LRU_SIZE)
1254			bhs[out++] = NULL;
1255		memcpy(__this_cpu_ptr(&bh_lrus.bhs), bhs, sizeof(bhs));
1256	}
1257	bh_lru_unlock();
1258
1259	if (evictee)
1260		__brelse(evictee);
1261}
1262
1263/*
1264 * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1265 */
1266static struct buffer_head *
1267lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1268{
1269	struct buffer_head *ret = NULL;
1270	unsigned int i;
1271
1272	check_irqs_on();
1273	bh_lru_lock();
1274	for (i = 0; i < BH_LRU_SIZE; i++) {
1275		struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1276
1277		if (bh && bh->b_bdev == bdev &&
1278				bh->b_blocknr == block && bh->b_size == size) {
1279			if (i) {
1280				while (i) {
1281					__this_cpu_write(bh_lrus.bhs[i],
1282						__this_cpu_read(bh_lrus.bhs[i - 1]));
1283					i--;
1284				}
1285				__this_cpu_write(bh_lrus.bhs[0], bh);
1286			}
1287			get_bh(bh);
1288			ret = bh;
1289			break;
1290		}
1291	}
1292	bh_lru_unlock();
1293	return ret;
1294}
1295
1296/*
1297 * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1298 * it in the LRU and mark it as accessed.  If it is not present then return
1299 * NULL
1300 */
1301struct buffer_head *
1302__find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1303{
1304	struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1305
1306	if (bh == NULL) {
 
1307		bh = __find_get_block_slow(bdev, block);
1308		if (bh)
1309			bh_lru_install(bh);
1310	}
1311	if (bh)
1312		touch_buffer(bh);
 
1313	return bh;
1314}
1315EXPORT_SYMBOL(__find_get_block);
1316
1317/*
1318 * __getblk will locate (and, if necessary, create) the buffer_head
1319 * which corresponds to the passed block_device, block and size. The
1320 * returned buffer has its reference count incremented.
1321 *
1322 * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1323 * attempt is failing.  FIXME, perhaps?
1324 */
1325struct buffer_head *
1326__getblk(struct block_device *bdev, sector_t block, unsigned size)
 
1327{
1328	struct buffer_head *bh = __find_get_block(bdev, block, size);
1329
1330	might_sleep();
1331	if (bh == NULL)
1332		bh = __getblk_slow(bdev, block, size);
1333	return bh;
1334}
1335EXPORT_SYMBOL(__getblk);
1336
1337/*
1338 * Do async read-ahead on a buffer..
1339 */
1340void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1341{
1342	struct buffer_head *bh = __getblk(bdev, block, size);
1343	if (likely(bh)) {
1344		ll_rw_block(READA, 1, &bh);
1345		brelse(bh);
1346	}
1347}
1348EXPORT_SYMBOL(__breadahead);
1349
1350/**
1351 *  __bread() - reads a specified block and returns the bh
1352 *  @bdev: the block_device to read from
1353 *  @block: number of block
1354 *  @size: size (in bytes) to read
1355 * 
 
1356 *  Reads a specified block, and returns buffer head that contains it.
 
 
1357 *  It returns NULL if the block was unreadable.
1358 */
1359struct buffer_head *
1360__bread(struct block_device *bdev, sector_t block, unsigned size)
 
1361{
1362	struct buffer_head *bh = __getblk(bdev, block, size);
1363
1364	if (likely(bh) && !buffer_uptodate(bh))
1365		bh = __bread_slow(bh);
1366	return bh;
1367}
1368EXPORT_SYMBOL(__bread);
1369
1370/*
1371 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1372 * This doesn't race because it runs in each cpu either in irq
1373 * or with preempt disabled.
1374 */
1375static void invalidate_bh_lru(void *arg)
1376{
1377	struct bh_lru *b = &get_cpu_var(bh_lrus);
1378	int i;
1379
1380	for (i = 0; i < BH_LRU_SIZE; i++) {
1381		brelse(b->bhs[i]);
1382		b->bhs[i] = NULL;
1383	}
1384	put_cpu_var(bh_lrus);
1385}
1386
1387static bool has_bh_in_lru(int cpu, void *dummy)
1388{
1389	struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1390	int i;
1391	
1392	for (i = 0; i < BH_LRU_SIZE; i++) {
1393		if (b->bhs[i])
1394			return 1;
1395	}
1396
1397	return 0;
1398}
1399
1400void invalidate_bh_lrus(void)
1401{
1402	on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL);
1403}
1404EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1405
1406void set_bh_page(struct buffer_head *bh,
1407		struct page *page, unsigned long offset)
1408{
1409	bh->b_page = page;
1410	BUG_ON(offset >= PAGE_SIZE);
1411	if (PageHighMem(page))
1412		/*
1413		 * This catches illegal uses and preserves the offset:
1414		 */
1415		bh->b_data = (char *)(0 + offset);
1416	else
1417		bh->b_data = page_address(page) + offset;
1418}
1419EXPORT_SYMBOL(set_bh_page);
1420
1421/*
1422 * Called when truncating a buffer on a page completely.
1423 */
 
 
 
 
 
 
1424static void discard_buffer(struct buffer_head * bh)
1425{
 
 
1426	lock_buffer(bh);
1427	clear_buffer_dirty(bh);
1428	bh->b_bdev = NULL;
1429	clear_buffer_mapped(bh);
1430	clear_buffer_req(bh);
1431	clear_buffer_new(bh);
1432	clear_buffer_delay(bh);
1433	clear_buffer_unwritten(bh);
 
 
 
1434	unlock_buffer(bh);
1435}
1436
1437/**
1438 * block_invalidatepage - invalidate part or all of a buffer-backed page
1439 *
1440 * @page: the page which is affected
1441 * @offset: the index of the truncation point
 
1442 *
1443 * block_invalidatepage() is called when all or part of the page has become
1444 * invalidated by a truncate operation.
1445 *
1446 * block_invalidatepage() does not have to release all buffers, but it must
1447 * ensure that no dirty buffer is left outside @offset and that no I/O
1448 * is underway against any of the blocks which are outside the truncation
1449 * point.  Because the caller is about to free (and possibly reuse) those
1450 * blocks on-disk.
1451 */
1452void block_invalidatepage(struct page *page, unsigned long offset)
 
1453{
1454	struct buffer_head *head, *bh, *next;
1455	unsigned int curr_off = 0;
 
1456
1457	BUG_ON(!PageLocked(page));
1458	if (!page_has_buffers(page))
1459		goto out;
1460
 
 
 
 
 
1461	head = page_buffers(page);
1462	bh = head;
1463	do {
1464		unsigned int next_off = curr_off + bh->b_size;
1465		next = bh->b_this_page;
1466
1467		/*
 
 
 
 
 
 
1468		 * is this block fully invalidated?
1469		 */
1470		if (offset <= curr_off)
1471			discard_buffer(bh);
1472		curr_off = next_off;
1473		bh = next;
1474	} while (bh != head);
1475
1476	/*
1477	 * We release buffers only if the entire page is being invalidated.
1478	 * The get_block cached value has been unconditionally invalidated,
1479	 * so real IO is not possible anymore.
1480	 */
1481	if (offset == 0)
1482		try_to_release_page(page, 0);
1483out:
1484	return;
1485}
1486EXPORT_SYMBOL(block_invalidatepage);
1487
 
1488/*
1489 * We attach and possibly dirty the buffers atomically wrt
1490 * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1491 * is already excluded via the page lock.
1492 */
1493void create_empty_buffers(struct page *page,
1494			unsigned long blocksize, unsigned long b_state)
1495{
1496	struct buffer_head *bh, *head, *tail;
1497
1498	head = alloc_page_buffers(page, blocksize, 1);
1499	bh = head;
1500	do {
1501		bh->b_state |= b_state;
1502		tail = bh;
1503		bh = bh->b_this_page;
1504	} while (bh);
1505	tail->b_this_page = head;
1506
1507	spin_lock(&page->mapping->private_lock);
1508	if (PageUptodate(page) || PageDirty(page)) {
1509		bh = head;
1510		do {
1511			if (PageDirty(page))
1512				set_buffer_dirty(bh);
1513			if (PageUptodate(page))
1514				set_buffer_uptodate(bh);
1515			bh = bh->b_this_page;
1516		} while (bh != head);
1517	}
1518	attach_page_buffers(page, head);
1519	spin_unlock(&page->mapping->private_lock);
1520}
1521EXPORT_SYMBOL(create_empty_buffers);
1522
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1523/*
1524 * We are taking a block for data and we don't want any output from any
1525 * buffer-cache aliases starting from return from that function and
1526 * until the moment when something will explicitly mark the buffer
1527 * dirty (hopefully that will not happen until we will free that block ;-)
1528 * We don't even need to mark it not-uptodate - nobody can expect
1529 * anything from a newly allocated buffer anyway. We used to used
1530 * unmap_buffer() for such invalidation, but that was wrong. We definitely
1531 * don't want to mark the alias unmapped, for example - it would confuse
1532 * anyone who might pick it with bread() afterwards...
1533 *
1534 * Also..  Note that bforget() doesn't lock the buffer.  So there can
1535 * be writeout I/O going on against recently-freed buffers.  We don't
1536 * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1537 * only if we really need to.  That happens here.
1538 */
1539void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1540{
1541	struct buffer_head *old_bh;
 
1542
1543	might_sleep();
 
 
1544
1545	old_bh = __find_get_block_slow(bdev, block);
1546	if (old_bh) {
1547		clear_buffer_dirty(old_bh);
1548		wait_on_buffer(old_bh);
1549		clear_buffer_req(old_bh);
1550		__brelse(old_bh);
1551	}
1552}
1553EXPORT_SYMBOL(unmap_underlying_metadata);
1554
1555/*
1556 * NOTE! All mapped/uptodate combinations are valid:
1557 *
1558 *	Mapped	Uptodate	Meaning
1559 *
1560 *	No	No		"unknown" - must do get_block()
1561 *	No	Yes		"hole" - zero-filled
1562 *	Yes	No		"allocated" - allocated on disk, not read in
1563 *	Yes	Yes		"valid" - allocated and up-to-date in memory.
1564 *
1565 * "Dirty" is valid only with the last case (mapped+uptodate).
1566 */
1567
1568/*
1569 * While block_write_full_page is writing back the dirty buffers under
1570 * the page lock, whoever dirtied the buffers may decide to clean them
1571 * again at any time.  We handle that by only looking at the buffer
1572 * state inside lock_buffer().
1573 *
1574 * If block_write_full_page() is called for regular writeback
1575 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1576 * locked buffer.   This only can happen if someone has written the buffer
1577 * directly, with submit_bh().  At the address_space level PageWriteback
1578 * prevents this contention from occurring.
1579 *
1580 * If block_write_full_page() is called with wbc->sync_mode ==
1581 * WB_SYNC_ALL, the writes are posted using WRITE_SYNC; this
1582 * causes the writes to be flagged as synchronous writes.
1583 */
1584static int __block_write_full_page(struct inode *inode, struct page *page,
1585			get_block_t *get_block, struct writeback_control *wbc,
1586			bh_end_io_t *handler)
1587{
1588	int err;
1589	sector_t block;
1590	sector_t last_block;
1591	struct buffer_head *bh, *head;
1592	const unsigned blocksize = 1 << inode->i_blkbits;
1593	int nr_underway = 0;
1594	int write_op = (wbc->sync_mode == WB_SYNC_ALL ?
1595			WRITE_SYNC : WRITE);
1596
1597	BUG_ON(!PageLocked(page));
1598
1599	last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
1600
1601	if (!page_has_buffers(page)) {
1602		create_empty_buffers(page, blocksize,
1603					(1 << BH_Dirty)|(1 << BH_Uptodate));
1604	}
1605
1606	/*
1607	 * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1608	 * here, and the (potentially unmapped) buffers may become dirty at
1609	 * any time.  If a buffer becomes dirty here after we've inspected it
1610	 * then we just miss that fact, and the page stays dirty.
1611	 *
1612	 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1613	 * handle that here by just cleaning them.
1614	 */
1615
1616	block = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1617	head = page_buffers(page);
1618	bh = head;
 
 
 
 
 
1619
1620	/*
1621	 * Get all the dirty buffers mapped to disk addresses and
1622	 * handle any aliases from the underlying blockdev's mapping.
1623	 */
1624	do {
1625		if (block > last_block) {
1626			/*
1627			 * mapped buffers outside i_size will occur, because
1628			 * this page can be outside i_size when there is a
1629			 * truncate in progress.
1630			 */
1631			/*
1632			 * The buffer was zeroed by block_write_full_page()
1633			 */
1634			clear_buffer_dirty(bh);
1635			set_buffer_uptodate(bh);
1636		} else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1637			   buffer_dirty(bh)) {
1638			WARN_ON(bh->b_size != blocksize);
1639			err = get_block(inode, block, bh, 1);
1640			if (err)
1641				goto recover;
1642			clear_buffer_delay(bh);
1643			if (buffer_new(bh)) {
1644				/* blockdev mappings never come here */
1645				clear_buffer_new(bh);
1646				unmap_underlying_metadata(bh->b_bdev,
1647							bh->b_blocknr);
1648			}
1649		}
1650		bh = bh->b_this_page;
1651		block++;
1652	} while (bh != head);
1653
1654	do {
1655		if (!buffer_mapped(bh))
1656			continue;
1657		/*
1658		 * If it's a fully non-blocking write attempt and we cannot
1659		 * lock the buffer then redirty the page.  Note that this can
1660		 * potentially cause a busy-wait loop from writeback threads
1661		 * and kswapd activity, but those code paths have their own
1662		 * higher-level throttling.
1663		 */
1664		if (wbc->sync_mode != WB_SYNC_NONE) {
1665			lock_buffer(bh);
1666		} else if (!trylock_buffer(bh)) {
1667			redirty_page_for_writepage(wbc, page);
1668			continue;
1669		}
1670		if (test_clear_buffer_dirty(bh)) {
1671			mark_buffer_async_write_endio(bh, handler);
1672		} else {
1673			unlock_buffer(bh);
1674		}
1675	} while ((bh = bh->b_this_page) != head);
1676
1677	/*
1678	 * The page and its buffers are protected by PageWriteback(), so we can
1679	 * drop the bh refcounts early.
1680	 */
1681	BUG_ON(PageWriteback(page));
1682	set_page_writeback(page);
1683
1684	do {
1685		struct buffer_head *next = bh->b_this_page;
1686		if (buffer_async_write(bh)) {
1687			submit_bh(write_op, bh);
1688			nr_underway++;
1689		}
1690		bh = next;
1691	} while (bh != head);
1692	unlock_page(page);
1693
1694	err = 0;
1695done:
1696	if (nr_underway == 0) {
1697		/*
1698		 * The page was marked dirty, but the buffers were
1699		 * clean.  Someone wrote them back by hand with
1700		 * ll_rw_block/submit_bh.  A rare case.
1701		 */
1702		end_page_writeback(page);
1703
1704		/*
1705		 * The page and buffer_heads can be released at any time from
1706		 * here on.
1707		 */
1708	}
1709	return err;
1710
1711recover:
1712	/*
1713	 * ENOSPC, or some other error.  We may already have added some
1714	 * blocks to the file, so we need to write these out to avoid
1715	 * exposing stale data.
1716	 * The page is currently locked and not marked for writeback
1717	 */
1718	bh = head;
1719	/* Recovery: lock and submit the mapped buffers */
1720	do {
1721		if (buffer_mapped(bh) && buffer_dirty(bh) &&
1722		    !buffer_delay(bh)) {
1723			lock_buffer(bh);
1724			mark_buffer_async_write_endio(bh, handler);
1725		} else {
1726			/*
1727			 * The buffer may have been set dirty during
1728			 * attachment to a dirty page.
1729			 */
1730			clear_buffer_dirty(bh);
1731		}
1732	} while ((bh = bh->b_this_page) != head);
1733	SetPageError(page);
1734	BUG_ON(PageWriteback(page));
1735	mapping_set_error(page->mapping, err);
1736	set_page_writeback(page);
1737	do {
1738		struct buffer_head *next = bh->b_this_page;
1739		if (buffer_async_write(bh)) {
1740			clear_buffer_dirty(bh);
1741			submit_bh(write_op, bh);
1742			nr_underway++;
1743		}
1744		bh = next;
1745	} while (bh != head);
1746	unlock_page(page);
1747	goto done;
1748}
 
1749
1750/*
1751 * If a page has any new buffers, zero them out here, and mark them uptodate
1752 * and dirty so they'll be written out (in order to prevent uninitialised
1753 * block data from leaking). And clear the new bit.
1754 */
1755void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1756{
1757	unsigned int block_start, block_end;
1758	struct buffer_head *head, *bh;
1759
1760	BUG_ON(!PageLocked(page));
1761	if (!page_has_buffers(page))
1762		return;
1763
1764	bh = head = page_buffers(page);
1765	block_start = 0;
1766	do {
1767		block_end = block_start + bh->b_size;
1768
1769		if (buffer_new(bh)) {
1770			if (block_end > from && block_start < to) {
1771				if (!PageUptodate(page)) {
1772					unsigned start, size;
1773
1774					start = max(from, block_start);
1775					size = min(to, block_end) - start;
1776
1777					zero_user(page, start, size);
1778					set_buffer_uptodate(bh);
1779				}
1780
1781				clear_buffer_new(bh);
1782				mark_buffer_dirty(bh);
1783			}
1784		}
1785
1786		block_start = block_end;
1787		bh = bh->b_this_page;
1788	} while (bh != head);
1789}
1790EXPORT_SYMBOL(page_zero_new_buffers);
1791
1792int __block_write_begin(struct page *page, loff_t pos, unsigned len,
1793		get_block_t *get_block)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1794{
1795	unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1796	unsigned to = from + len;
1797	struct inode *inode = page->mapping->host;
1798	unsigned block_start, block_end;
1799	sector_t block;
1800	int err = 0;
1801	unsigned blocksize, bbits;
1802	struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1803
1804	BUG_ON(!PageLocked(page));
1805	BUG_ON(from > PAGE_CACHE_SIZE);
1806	BUG_ON(to > PAGE_CACHE_SIZE);
1807	BUG_ON(from > to);
1808
1809	blocksize = 1 << inode->i_blkbits;
1810	if (!page_has_buffers(page))
1811		create_empty_buffers(page, blocksize, 0);
1812	head = page_buffers(page);
1813
1814	bbits = inode->i_blkbits;
1815	block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1816
1817	for(bh = head, block_start = 0; bh != head || !block_start;
1818	    block++, block_start=block_end, bh = bh->b_this_page) {
1819		block_end = block_start + blocksize;
1820		if (block_end <= from || block_start >= to) {
1821			if (PageUptodate(page)) {
1822				if (!buffer_uptodate(bh))
1823					set_buffer_uptodate(bh);
1824			}
1825			continue;
1826		}
1827		if (buffer_new(bh))
1828			clear_buffer_new(bh);
1829		if (!buffer_mapped(bh)) {
1830			WARN_ON(bh->b_size != blocksize);
1831			err = get_block(inode, block, bh, 1);
1832			if (err)
1833				break;
 
 
 
 
 
1834			if (buffer_new(bh)) {
1835				unmap_underlying_metadata(bh->b_bdev,
1836							bh->b_blocknr);
1837				if (PageUptodate(page)) {
1838					clear_buffer_new(bh);
1839					set_buffer_uptodate(bh);
1840					mark_buffer_dirty(bh);
1841					continue;
1842				}
1843				if (block_end > to || block_start < from)
1844					zero_user_segments(page,
1845						to, block_end,
1846						block_start, from);
1847				continue;
1848			}
1849		}
1850		if (PageUptodate(page)) {
1851			if (!buffer_uptodate(bh))
1852				set_buffer_uptodate(bh);
1853			continue; 
1854		}
1855		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1856		    !buffer_unwritten(bh) &&
1857		     (block_start < from || block_end > to)) {
1858			ll_rw_block(READ, 1, &bh);
1859			*wait_bh++=bh;
1860		}
1861	}
1862	/*
1863	 * If we issued read requests - let them complete.
1864	 */
1865	while(wait_bh > wait) {
1866		wait_on_buffer(*--wait_bh);
1867		if (!buffer_uptodate(*wait_bh))
1868			err = -EIO;
1869	}
1870	if (unlikely(err))
1871		page_zero_new_buffers(page, from, to);
1872	return err;
1873}
 
 
 
 
 
 
1874EXPORT_SYMBOL(__block_write_begin);
1875
1876static int __block_commit_write(struct inode *inode, struct page *page,
1877		unsigned from, unsigned to)
1878{
1879	unsigned block_start, block_end;
1880	int partial = 0;
1881	unsigned blocksize;
1882	struct buffer_head *bh, *head;
1883
1884	blocksize = 1 << inode->i_blkbits;
 
1885
1886	for(bh = head = page_buffers(page), block_start = 0;
1887	    bh != head || !block_start;
1888	    block_start=block_end, bh = bh->b_this_page) {
1889		block_end = block_start + blocksize;
1890		if (block_end <= from || block_start >= to) {
1891			if (!buffer_uptodate(bh))
1892				partial = 1;
1893		} else {
1894			set_buffer_uptodate(bh);
1895			mark_buffer_dirty(bh);
1896		}
1897		clear_buffer_new(bh);
1898	}
 
 
 
1899
1900	/*
1901	 * If this is a partial write which happened to make all buffers
1902	 * uptodate then we can optimize away a bogus readpage() for
1903	 * the next read(). Here we 'discover' whether the page went
1904	 * uptodate as a result of this (potentially partial) write.
1905	 */
1906	if (!partial)
1907		SetPageUptodate(page);
1908	return 0;
1909}
1910
1911/*
1912 * block_write_begin takes care of the basic task of block allocation and
1913 * bringing partial write blocks uptodate first.
1914 *
1915 * The filesystem needs to handle block truncation upon failure.
1916 */
1917int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
1918		unsigned flags, struct page **pagep, get_block_t *get_block)
1919{
1920	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1921	struct page *page;
1922	int status;
1923
1924	page = grab_cache_page_write_begin(mapping, index, flags);
1925	if (!page)
1926		return -ENOMEM;
1927
1928	status = __block_write_begin(page, pos, len, get_block);
1929	if (unlikely(status)) {
1930		unlock_page(page);
1931		page_cache_release(page);
1932		page = NULL;
1933	}
1934
1935	*pagep = page;
1936	return status;
1937}
1938EXPORT_SYMBOL(block_write_begin);
1939
1940int block_write_end(struct file *file, struct address_space *mapping,
1941			loff_t pos, unsigned len, unsigned copied,
1942			struct page *page, void *fsdata)
1943{
1944	struct inode *inode = mapping->host;
1945	unsigned start;
1946
1947	start = pos & (PAGE_CACHE_SIZE - 1);
1948
1949	if (unlikely(copied < len)) {
1950		/*
1951		 * The buffers that were written will now be uptodate, so we
1952		 * don't have to worry about a readpage reading them and
1953		 * overwriting a partial write. However if we have encountered
1954		 * a short write and only partially written into a buffer, it
1955		 * will not be marked uptodate, so a readpage might come in and
1956		 * destroy our partial write.
1957		 *
1958		 * Do the simplest thing, and just treat any short write to a
1959		 * non uptodate page as a zero-length write, and force the
1960		 * caller to redo the whole thing.
1961		 */
1962		if (!PageUptodate(page))
1963			copied = 0;
1964
1965		page_zero_new_buffers(page, start+copied, start+len);
1966	}
1967	flush_dcache_page(page);
1968
1969	/* This could be a short (even 0-length) commit */
1970	__block_commit_write(inode, page, start, start+copied);
1971
1972	return copied;
1973}
1974EXPORT_SYMBOL(block_write_end);
1975
1976int generic_write_end(struct file *file, struct address_space *mapping,
1977			loff_t pos, unsigned len, unsigned copied,
1978			struct page *page, void *fsdata)
1979{
1980	struct inode *inode = mapping->host;
 
1981	int i_size_changed = 0;
1982
1983	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1984
1985	/*
1986	 * No need to use i_size_read() here, the i_size
1987	 * cannot change under us because we hold i_mutex.
1988	 *
1989	 * But it's important to update i_size while still holding page lock:
1990	 * page writeout could otherwise come in and zero beyond i_size.
1991	 */
1992	if (pos+copied > inode->i_size) {
1993		i_size_write(inode, pos+copied);
1994		i_size_changed = 1;
1995	}
1996
1997	unlock_page(page);
1998	page_cache_release(page);
1999
 
 
2000	/*
2001	 * Don't mark the inode dirty under page lock. First, it unnecessarily
2002	 * makes the holding time of page lock longer. Second, it forces lock
2003	 * ordering of page lock and transaction start for journaling
2004	 * filesystems.
2005	 */
2006	if (i_size_changed)
2007		mark_inode_dirty(inode);
2008
2009	return copied;
2010}
2011EXPORT_SYMBOL(generic_write_end);
2012
2013/*
2014 * block_is_partially_uptodate checks whether buffers within a page are
2015 * uptodate or not.
2016 *
2017 * Returns true if all buffers which correspond to a file portion
2018 * we want to read are uptodate.
2019 */
2020int block_is_partially_uptodate(struct page *page, read_descriptor_t *desc,
2021					unsigned long from)
2022{
2023	struct inode *inode = page->mapping->host;
2024	unsigned block_start, block_end, blocksize;
2025	unsigned to;
2026	struct buffer_head *bh, *head;
2027	int ret = 1;
2028
2029	if (!page_has_buffers(page))
2030		return 0;
2031
2032	blocksize = 1 << inode->i_blkbits;
2033	to = min_t(unsigned, PAGE_CACHE_SIZE - from, desc->count);
 
2034	to = from + to;
2035	if (from < blocksize && to > PAGE_CACHE_SIZE - blocksize)
2036		return 0;
2037
2038	head = page_buffers(page);
2039	bh = head;
2040	block_start = 0;
2041	do {
2042		block_end = block_start + blocksize;
2043		if (block_end > from && block_start < to) {
2044			if (!buffer_uptodate(bh)) {
2045				ret = 0;
2046				break;
2047			}
2048			if (block_end >= to)
2049				break;
2050		}
2051		block_start = block_end;
2052		bh = bh->b_this_page;
2053	} while (bh != head);
2054
2055	return ret;
2056}
2057EXPORT_SYMBOL(block_is_partially_uptodate);
2058
2059/*
2060 * Generic "read page" function for block devices that have the normal
2061 * get_block functionality. This is most of the block device filesystems.
2062 * Reads the page asynchronously --- the unlock_buffer() and
2063 * set/clear_buffer_uptodate() functions propagate buffer state into the
2064 * page struct once IO has completed.
2065 */
2066int block_read_full_page(struct page *page, get_block_t *get_block)
2067{
2068	struct inode *inode = page->mapping->host;
2069	sector_t iblock, lblock;
2070	struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2071	unsigned int blocksize;
2072	int nr, i;
2073	int fully_mapped = 1;
2074
2075	BUG_ON(!PageLocked(page));
2076	blocksize = 1 << inode->i_blkbits;
2077	if (!page_has_buffers(page))
2078		create_empty_buffers(page, blocksize, 0);
2079	head = page_buffers(page);
2080
2081	iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2082	lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits;
2083	bh = head;
2084	nr = 0;
2085	i = 0;
2086
2087	do {
2088		if (buffer_uptodate(bh))
2089			continue;
2090
2091		if (!buffer_mapped(bh)) {
2092			int err = 0;
2093
2094			fully_mapped = 0;
2095			if (iblock < lblock) {
2096				WARN_ON(bh->b_size != blocksize);
2097				err = get_block(inode, iblock, bh, 0);
2098				if (err)
2099					SetPageError(page);
2100			}
2101			if (!buffer_mapped(bh)) {
2102				zero_user(page, i * blocksize, blocksize);
2103				if (!err)
2104					set_buffer_uptodate(bh);
2105				continue;
2106			}
2107			/*
2108			 * get_block() might have updated the buffer
2109			 * synchronously
2110			 */
2111			if (buffer_uptodate(bh))
2112				continue;
2113		}
2114		arr[nr++] = bh;
2115	} while (i++, iblock++, (bh = bh->b_this_page) != head);
2116
2117	if (fully_mapped)
2118		SetPageMappedToDisk(page);
2119
2120	if (!nr) {
2121		/*
2122		 * All buffers are uptodate - we can set the page uptodate
2123		 * as well. But not if get_block() returned an error.
2124		 */
2125		if (!PageError(page))
2126			SetPageUptodate(page);
2127		unlock_page(page);
2128		return 0;
2129	}
2130
2131	/* Stage two: lock the buffers */
2132	for (i = 0; i < nr; i++) {
2133		bh = arr[i];
2134		lock_buffer(bh);
2135		mark_buffer_async_read(bh);
2136	}
2137
2138	/*
2139	 * Stage 3: start the IO.  Check for uptodateness
2140	 * inside the buffer lock in case another process reading
2141	 * the underlying blockdev brought it uptodate (the sct fix).
2142	 */
2143	for (i = 0; i < nr; i++) {
2144		bh = arr[i];
2145		if (buffer_uptodate(bh))
2146			end_buffer_async_read(bh, 1);
2147		else
2148			submit_bh(READ, bh);
2149	}
2150	return 0;
2151}
2152EXPORT_SYMBOL(block_read_full_page);
2153
2154/* utility function for filesystems that need to do work on expanding
2155 * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2156 * deal with the hole.  
2157 */
2158int generic_cont_expand_simple(struct inode *inode, loff_t size)
2159{
2160	struct address_space *mapping = inode->i_mapping;
2161	struct page *page;
2162	void *fsdata;
2163	int err;
2164
2165	err = inode_newsize_ok(inode, size);
2166	if (err)
2167		goto out;
2168
2169	err = pagecache_write_begin(NULL, mapping, size, 0,
2170				AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND,
2171				&page, &fsdata);
2172	if (err)
2173		goto out;
2174
2175	err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2176	BUG_ON(err > 0);
2177
2178out:
2179	return err;
2180}
2181EXPORT_SYMBOL(generic_cont_expand_simple);
2182
2183static int cont_expand_zero(struct file *file, struct address_space *mapping,
2184			    loff_t pos, loff_t *bytes)
2185{
2186	struct inode *inode = mapping->host;
2187	unsigned blocksize = 1 << inode->i_blkbits;
2188	struct page *page;
2189	void *fsdata;
2190	pgoff_t index, curidx;
2191	loff_t curpos;
2192	unsigned zerofrom, offset, len;
2193	int err = 0;
2194
2195	index = pos >> PAGE_CACHE_SHIFT;
2196	offset = pos & ~PAGE_CACHE_MASK;
2197
2198	while (index > (curidx = (curpos = *bytes)>>PAGE_CACHE_SHIFT)) {
2199		zerofrom = curpos & ~PAGE_CACHE_MASK;
2200		if (zerofrom & (blocksize-1)) {
2201			*bytes |= (blocksize-1);
2202			(*bytes)++;
2203		}
2204		len = PAGE_CACHE_SIZE - zerofrom;
2205
2206		err = pagecache_write_begin(file, mapping, curpos, len,
2207						AOP_FLAG_UNINTERRUPTIBLE,
2208						&page, &fsdata);
2209		if (err)
2210			goto out;
2211		zero_user(page, zerofrom, len);
2212		err = pagecache_write_end(file, mapping, curpos, len, len,
2213						page, fsdata);
2214		if (err < 0)
2215			goto out;
2216		BUG_ON(err != len);
2217		err = 0;
2218
2219		balance_dirty_pages_ratelimited(mapping);
 
 
 
 
 
2220	}
2221
2222	/* page covers the boundary, find the boundary offset */
2223	if (index == curidx) {
2224		zerofrom = curpos & ~PAGE_CACHE_MASK;
2225		/* if we will expand the thing last block will be filled */
2226		if (offset <= zerofrom) {
2227			goto out;
2228		}
2229		if (zerofrom & (blocksize-1)) {
2230			*bytes |= (blocksize-1);
2231			(*bytes)++;
2232		}
2233		len = offset - zerofrom;
2234
2235		err = pagecache_write_begin(file, mapping, curpos, len,
2236						AOP_FLAG_UNINTERRUPTIBLE,
2237						&page, &fsdata);
2238		if (err)
2239			goto out;
2240		zero_user(page, zerofrom, len);
2241		err = pagecache_write_end(file, mapping, curpos, len, len,
2242						page, fsdata);
2243		if (err < 0)
2244			goto out;
2245		BUG_ON(err != len);
2246		err = 0;
2247	}
2248out:
2249	return err;
2250}
2251
2252/*
2253 * For moronic filesystems that do not allow holes in file.
2254 * We may have to extend the file.
2255 */
2256int cont_write_begin(struct file *file, struct address_space *mapping,
2257			loff_t pos, unsigned len, unsigned flags,
2258			struct page **pagep, void **fsdata,
2259			get_block_t *get_block, loff_t *bytes)
2260{
2261	struct inode *inode = mapping->host;
2262	unsigned blocksize = 1 << inode->i_blkbits;
2263	unsigned zerofrom;
2264	int err;
2265
2266	err = cont_expand_zero(file, mapping, pos, bytes);
2267	if (err)
2268		return err;
2269
2270	zerofrom = *bytes & ~PAGE_CACHE_MASK;
2271	if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2272		*bytes |= (blocksize-1);
2273		(*bytes)++;
2274	}
2275
2276	return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2277}
2278EXPORT_SYMBOL(cont_write_begin);
2279
2280int block_commit_write(struct page *page, unsigned from, unsigned to)
2281{
2282	struct inode *inode = page->mapping->host;
2283	__block_commit_write(inode,page,from,to);
2284	return 0;
2285}
2286EXPORT_SYMBOL(block_commit_write);
2287
2288/*
2289 * block_page_mkwrite() is not allowed to change the file size as it gets
2290 * called from a page fault handler when a page is first dirtied. Hence we must
2291 * be careful to check for EOF conditions here. We set the page up correctly
2292 * for a written page which means we get ENOSPC checking when writing into
2293 * holes and correct delalloc and unwritten extent mapping on filesystems that
2294 * support these features.
2295 *
2296 * We are not allowed to take the i_mutex here so we have to play games to
2297 * protect against truncate races as the page could now be beyond EOF.  Because
2298 * truncate writes the inode size before removing pages, once we have the
2299 * page lock we can determine safely if the page is beyond EOF. If it is not
2300 * beyond EOF, then the page is guaranteed safe against truncation until we
2301 * unlock the page.
2302 *
2303 * Direct callers of this function should call vfs_check_frozen() so that page
2304 * fault does not busyloop until the fs is thawed.
2305 */
2306int __block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2307			 get_block_t get_block)
2308{
2309	struct page *page = vmf->page;
2310	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
2311	unsigned long end;
2312	loff_t size;
2313	int ret;
2314
2315	lock_page(page);
2316	size = i_size_read(inode);
2317	if ((page->mapping != inode->i_mapping) ||
2318	    (page_offset(page) > size)) {
2319		/* We overload EFAULT to mean page got truncated */
2320		ret = -EFAULT;
2321		goto out_unlock;
2322	}
2323
2324	/* page is wholly or partially inside EOF */
2325	if (((page->index + 1) << PAGE_CACHE_SHIFT) > size)
2326		end = size & ~PAGE_CACHE_MASK;
2327	else
2328		end = PAGE_CACHE_SIZE;
2329
2330	ret = __block_write_begin(page, 0, end, get_block);
2331	if (!ret)
2332		ret = block_commit_write(page, 0, end);
2333
2334	if (unlikely(ret < 0))
2335		goto out_unlock;
2336	/*
2337	 * Freezing in progress? We check after the page is marked dirty and
2338	 * with page lock held so if the test here fails, we are sure freezing
2339	 * code will wait during syncing until the page fault is done - at that
2340	 * point page will be dirty and unlocked so freezing code will write it
2341	 * and writeprotect it again.
2342	 */
2343	set_page_dirty(page);
2344	if (inode->i_sb->s_frozen != SB_UNFROZEN) {
2345		ret = -EAGAIN;
2346		goto out_unlock;
2347	}
2348	wait_on_page_writeback(page);
2349	return 0;
2350out_unlock:
2351	unlock_page(page);
2352	return ret;
2353}
2354EXPORT_SYMBOL(__block_page_mkwrite);
2355
2356int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2357		   get_block_t get_block)
2358{
2359	int ret;
2360	struct super_block *sb = vma->vm_file->f_path.dentry->d_inode->i_sb;
2361
2362	/*
2363	 * This check is racy but catches the common case. The check in
2364	 * __block_page_mkwrite() is reliable.
2365	 */
2366	vfs_check_frozen(sb, SB_FREEZE_WRITE);
2367	ret = __block_page_mkwrite(vma, vmf, get_block);
2368	return block_page_mkwrite_return(ret);
2369}
2370EXPORT_SYMBOL(block_page_mkwrite);
2371
2372/*
2373 * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2374 * immediately, while under the page lock.  So it needs a special end_io
2375 * handler which does not touch the bh after unlocking it.
2376 */
2377static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2378{
2379	__end_buffer_read_notouch(bh, uptodate);
2380}
2381
2382/*
2383 * Attach the singly-linked list of buffers created by nobh_write_begin, to
2384 * the page (converting it to circular linked list and taking care of page
2385 * dirty races).
2386 */
2387static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2388{
2389	struct buffer_head *bh;
2390
2391	BUG_ON(!PageLocked(page));
2392
2393	spin_lock(&page->mapping->private_lock);
2394	bh = head;
2395	do {
2396		if (PageDirty(page))
2397			set_buffer_dirty(bh);
2398		if (!bh->b_this_page)
2399			bh->b_this_page = head;
2400		bh = bh->b_this_page;
2401	} while (bh != head);
2402	attach_page_buffers(page, head);
2403	spin_unlock(&page->mapping->private_lock);
2404}
2405
2406/*
2407 * On entry, the page is fully not uptodate.
2408 * On exit the page is fully uptodate in the areas outside (from,to)
2409 * The filesystem needs to handle block truncation upon failure.
2410 */
2411int nobh_write_begin(struct address_space *mapping,
2412			loff_t pos, unsigned len, unsigned flags,
2413			struct page **pagep, void **fsdata,
2414			get_block_t *get_block)
2415{
2416	struct inode *inode = mapping->host;
2417	const unsigned blkbits = inode->i_blkbits;
2418	const unsigned blocksize = 1 << blkbits;
2419	struct buffer_head *head, *bh;
2420	struct page *page;
2421	pgoff_t index;
2422	unsigned from, to;
2423	unsigned block_in_page;
2424	unsigned block_start, block_end;
2425	sector_t block_in_file;
2426	int nr_reads = 0;
2427	int ret = 0;
2428	int is_mapped_to_disk = 1;
2429
2430	index = pos >> PAGE_CACHE_SHIFT;
2431	from = pos & (PAGE_CACHE_SIZE - 1);
2432	to = from + len;
2433
2434	page = grab_cache_page_write_begin(mapping, index, flags);
2435	if (!page)
2436		return -ENOMEM;
2437	*pagep = page;
2438	*fsdata = NULL;
2439
2440	if (page_has_buffers(page)) {
2441		ret = __block_write_begin(page, pos, len, get_block);
2442		if (unlikely(ret))
2443			goto out_release;
2444		return ret;
2445	}
2446
2447	if (PageMappedToDisk(page))
2448		return 0;
2449
2450	/*
2451	 * Allocate buffers so that we can keep track of state, and potentially
2452	 * attach them to the page if an error occurs. In the common case of
2453	 * no error, they will just be freed again without ever being attached
2454	 * to the page (which is all OK, because we're under the page lock).
2455	 *
2456	 * Be careful: the buffer linked list is a NULL terminated one, rather
2457	 * than the circular one we're used to.
2458	 */
2459	head = alloc_page_buffers(page, blocksize, 0);
2460	if (!head) {
2461		ret = -ENOMEM;
2462		goto out_release;
2463	}
2464
2465	block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2466
2467	/*
2468	 * We loop across all blocks in the page, whether or not they are
2469	 * part of the affected region.  This is so we can discover if the
2470	 * page is fully mapped-to-disk.
2471	 */
2472	for (block_start = 0, block_in_page = 0, bh = head;
2473		  block_start < PAGE_CACHE_SIZE;
2474		  block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2475		int create;
2476
2477		block_end = block_start + blocksize;
2478		bh->b_state = 0;
2479		create = 1;
2480		if (block_start >= to)
2481			create = 0;
2482		ret = get_block(inode, block_in_file + block_in_page,
2483					bh, create);
2484		if (ret)
2485			goto failed;
2486		if (!buffer_mapped(bh))
2487			is_mapped_to_disk = 0;
2488		if (buffer_new(bh))
2489			unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
2490		if (PageUptodate(page)) {
2491			set_buffer_uptodate(bh);
2492			continue;
2493		}
2494		if (buffer_new(bh) || !buffer_mapped(bh)) {
2495			zero_user_segments(page, block_start, from,
2496							to, block_end);
2497			continue;
2498		}
2499		if (buffer_uptodate(bh))
2500			continue;	/* reiserfs does this */
2501		if (block_start < from || block_end > to) {
2502			lock_buffer(bh);
2503			bh->b_end_io = end_buffer_read_nobh;
2504			submit_bh(READ, bh);
2505			nr_reads++;
2506		}
2507	}
2508
2509	if (nr_reads) {
2510		/*
2511		 * The page is locked, so these buffers are protected from
2512		 * any VM or truncate activity.  Hence we don't need to care
2513		 * for the buffer_head refcounts.
2514		 */
2515		for (bh = head; bh; bh = bh->b_this_page) {
2516			wait_on_buffer(bh);
2517			if (!buffer_uptodate(bh))
2518				ret = -EIO;
2519		}
2520		if (ret)
2521			goto failed;
2522	}
2523
2524	if (is_mapped_to_disk)
2525		SetPageMappedToDisk(page);
2526
2527	*fsdata = head; /* to be released by nobh_write_end */
2528
2529	return 0;
2530
2531failed:
2532	BUG_ON(!ret);
2533	/*
2534	 * Error recovery is a bit difficult. We need to zero out blocks that
2535	 * were newly allocated, and dirty them to ensure they get written out.
2536	 * Buffers need to be attached to the page at this point, otherwise
2537	 * the handling of potential IO errors during writeout would be hard
2538	 * (could try doing synchronous writeout, but what if that fails too?)
2539	 */
2540	attach_nobh_buffers(page, head);
2541	page_zero_new_buffers(page, from, to);
2542
2543out_release:
2544	unlock_page(page);
2545	page_cache_release(page);
2546	*pagep = NULL;
2547
2548	return ret;
2549}
2550EXPORT_SYMBOL(nobh_write_begin);
2551
2552int nobh_write_end(struct file *file, struct address_space *mapping,
2553			loff_t pos, unsigned len, unsigned copied,
2554			struct page *page, void *fsdata)
2555{
2556	struct inode *inode = page->mapping->host;
2557	struct buffer_head *head = fsdata;
2558	struct buffer_head *bh;
2559	BUG_ON(fsdata != NULL && page_has_buffers(page));
2560
2561	if (unlikely(copied < len) && head)
2562		attach_nobh_buffers(page, head);
2563	if (page_has_buffers(page))
2564		return generic_write_end(file, mapping, pos, len,
2565					copied, page, fsdata);
2566
2567	SetPageUptodate(page);
2568	set_page_dirty(page);
2569	if (pos+copied > inode->i_size) {
2570		i_size_write(inode, pos+copied);
2571		mark_inode_dirty(inode);
2572	}
2573
2574	unlock_page(page);
2575	page_cache_release(page);
2576
2577	while (head) {
2578		bh = head;
2579		head = head->b_this_page;
2580		free_buffer_head(bh);
2581	}
2582
2583	return copied;
2584}
2585EXPORT_SYMBOL(nobh_write_end);
2586
2587/*
2588 * nobh_writepage() - based on block_full_write_page() except
2589 * that it tries to operate without attaching bufferheads to
2590 * the page.
2591 */
2592int nobh_writepage(struct page *page, get_block_t *get_block,
2593			struct writeback_control *wbc)
2594{
2595	struct inode * const inode = page->mapping->host;
2596	loff_t i_size = i_size_read(inode);
2597	const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2598	unsigned offset;
2599	int ret;
2600
2601	/* Is the page fully inside i_size? */
2602	if (page->index < end_index)
2603		goto out;
2604
2605	/* Is the page fully outside i_size? (truncate in progress) */
2606	offset = i_size & (PAGE_CACHE_SIZE-1);
2607	if (page->index >= end_index+1 || !offset) {
2608		/*
2609		 * The page may have dirty, unmapped buffers.  For example,
2610		 * they may have been added in ext3_writepage().  Make them
2611		 * freeable here, so the page does not leak.
2612		 */
2613#if 0
2614		/* Not really sure about this  - do we need this ? */
2615		if (page->mapping->a_ops->invalidatepage)
2616			page->mapping->a_ops->invalidatepage(page, offset);
2617#endif
2618		unlock_page(page);
2619		return 0; /* don't care */
2620	}
2621
2622	/*
2623	 * The page straddles i_size.  It must be zeroed out on each and every
2624	 * writepage invocation because it may be mmapped.  "A file is mapped
2625	 * in multiples of the page size.  For a file that is not a multiple of
2626	 * the  page size, the remaining memory is zeroed when mapped, and
2627	 * writes to that region are not written out to the file."
2628	 */
2629	zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2630out:
2631	ret = mpage_writepage(page, get_block, wbc);
2632	if (ret == -EAGAIN)
2633		ret = __block_write_full_page(inode, page, get_block, wbc,
2634					      end_buffer_async_write);
2635	return ret;
2636}
2637EXPORT_SYMBOL(nobh_writepage);
2638
2639int nobh_truncate_page(struct address_space *mapping,
2640			loff_t from, get_block_t *get_block)
2641{
2642	pgoff_t index = from >> PAGE_CACHE_SHIFT;
2643	unsigned offset = from & (PAGE_CACHE_SIZE-1);
2644	unsigned blocksize;
2645	sector_t iblock;
2646	unsigned length, pos;
2647	struct inode *inode = mapping->host;
2648	struct page *page;
2649	struct buffer_head map_bh;
2650	int err;
2651
2652	blocksize = 1 << inode->i_blkbits;
2653	length = offset & (blocksize - 1);
2654
2655	/* Block boundary? Nothing to do */
2656	if (!length)
2657		return 0;
2658
2659	length = blocksize - length;
2660	iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2661
2662	page = grab_cache_page(mapping, index);
2663	err = -ENOMEM;
2664	if (!page)
2665		goto out;
2666
2667	if (page_has_buffers(page)) {
2668has_buffers:
2669		unlock_page(page);
2670		page_cache_release(page);
2671		return block_truncate_page(mapping, from, get_block);
2672	}
2673
2674	/* Find the buffer that contains "offset" */
2675	pos = blocksize;
2676	while (offset >= pos) {
2677		iblock++;
2678		pos += blocksize;
2679	}
2680
2681	map_bh.b_size = blocksize;
2682	map_bh.b_state = 0;
2683	err = get_block(inode, iblock, &map_bh, 0);
2684	if (err)
2685		goto unlock;
2686	/* unmapped? It's a hole - nothing to do */
2687	if (!buffer_mapped(&map_bh))
2688		goto unlock;
2689
2690	/* Ok, it's mapped. Make sure it's up-to-date */
2691	if (!PageUptodate(page)) {
2692		err = mapping->a_ops->readpage(NULL, page);
2693		if (err) {
2694			page_cache_release(page);
2695			goto out;
2696		}
2697		lock_page(page);
2698		if (!PageUptodate(page)) {
2699			err = -EIO;
2700			goto unlock;
2701		}
2702		if (page_has_buffers(page))
2703			goto has_buffers;
2704	}
2705	zero_user(page, offset, length);
2706	set_page_dirty(page);
2707	err = 0;
2708
2709unlock:
2710	unlock_page(page);
2711	page_cache_release(page);
2712out:
2713	return err;
2714}
2715EXPORT_SYMBOL(nobh_truncate_page);
2716
2717int block_truncate_page(struct address_space *mapping,
2718			loff_t from, get_block_t *get_block)
2719{
2720	pgoff_t index = from >> PAGE_CACHE_SHIFT;
2721	unsigned offset = from & (PAGE_CACHE_SIZE-1);
2722	unsigned blocksize;
2723	sector_t iblock;
2724	unsigned length, pos;
2725	struct inode *inode = mapping->host;
2726	struct page *page;
2727	struct buffer_head *bh;
2728	int err;
2729
2730	blocksize = 1 << inode->i_blkbits;
2731	length = offset & (blocksize - 1);
2732
2733	/* Block boundary? Nothing to do */
2734	if (!length)
2735		return 0;
2736
2737	length = blocksize - length;
2738	iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2739	
2740	page = grab_cache_page(mapping, index);
2741	err = -ENOMEM;
2742	if (!page)
2743		goto out;
2744
2745	if (!page_has_buffers(page))
2746		create_empty_buffers(page, blocksize, 0);
2747
2748	/* Find the buffer that contains "offset" */
2749	bh = page_buffers(page);
2750	pos = blocksize;
2751	while (offset >= pos) {
2752		bh = bh->b_this_page;
2753		iblock++;
2754		pos += blocksize;
2755	}
2756
2757	err = 0;
2758	if (!buffer_mapped(bh)) {
2759		WARN_ON(bh->b_size != blocksize);
2760		err = get_block(inode, iblock, bh, 0);
2761		if (err)
2762			goto unlock;
2763		/* unmapped? It's a hole - nothing to do */
2764		if (!buffer_mapped(bh))
2765			goto unlock;
2766	}
2767
2768	/* Ok, it's mapped. Make sure it's up-to-date */
2769	if (PageUptodate(page))
2770		set_buffer_uptodate(bh);
2771
2772	if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2773		err = -EIO;
2774		ll_rw_block(READ, 1, &bh);
2775		wait_on_buffer(bh);
2776		/* Uhhuh. Read error. Complain and punt. */
2777		if (!buffer_uptodate(bh))
2778			goto unlock;
2779	}
2780
2781	zero_user(page, offset, length);
2782	mark_buffer_dirty(bh);
2783	err = 0;
2784
2785unlock:
2786	unlock_page(page);
2787	page_cache_release(page);
2788out:
2789	return err;
2790}
2791EXPORT_SYMBOL(block_truncate_page);
2792
2793/*
2794 * The generic ->writepage function for buffer-backed address_spaces
2795 * this form passes in the end_io handler used to finish the IO.
2796 */
2797int block_write_full_page_endio(struct page *page, get_block_t *get_block,
2798			struct writeback_control *wbc, bh_end_io_t *handler)
2799{
2800	struct inode * const inode = page->mapping->host;
2801	loff_t i_size = i_size_read(inode);
2802	const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2803	unsigned offset;
2804
2805	/* Is the page fully inside i_size? */
2806	if (page->index < end_index)
2807		return __block_write_full_page(inode, page, get_block, wbc,
2808					       handler);
2809
2810	/* Is the page fully outside i_size? (truncate in progress) */
2811	offset = i_size & (PAGE_CACHE_SIZE-1);
2812	if (page->index >= end_index+1 || !offset) {
2813		/*
2814		 * The page may have dirty, unmapped buffers.  For example,
2815		 * they may have been added in ext3_writepage().  Make them
2816		 * freeable here, so the page does not leak.
2817		 */
2818		do_invalidatepage(page, 0);
2819		unlock_page(page);
2820		return 0; /* don't care */
2821	}
2822
2823	/*
2824	 * The page straddles i_size.  It must be zeroed out on each and every
2825	 * writepage invocation because it may be mmapped.  "A file is mapped
2826	 * in multiples of the page size.  For a file that is not a multiple of
2827	 * the  page size, the remaining memory is zeroed when mapped, and
2828	 * writes to that region are not written out to the file."
2829	 */
2830	zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2831	return __block_write_full_page(inode, page, get_block, wbc, handler);
2832}
2833EXPORT_SYMBOL(block_write_full_page_endio);
2834
2835/*
2836 * The generic ->writepage function for buffer-backed address_spaces
2837 */
2838int block_write_full_page(struct page *page, get_block_t *get_block,
2839			struct writeback_control *wbc)
2840{
2841	return block_write_full_page_endio(page, get_block, wbc,
2842					   end_buffer_async_write);
2843}
2844EXPORT_SYMBOL(block_write_full_page);
2845
2846sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2847			    get_block_t *get_block)
2848{
2849	struct buffer_head tmp;
2850	struct inode *inode = mapping->host;
2851	tmp.b_state = 0;
2852	tmp.b_blocknr = 0;
2853	tmp.b_size = 1 << inode->i_blkbits;
2854	get_block(inode, block, &tmp, 0);
2855	return tmp.b_blocknr;
2856}
2857EXPORT_SYMBOL(generic_block_bmap);
2858
2859static void end_bio_bh_io_sync(struct bio *bio, int err)
2860{
2861	struct buffer_head *bh = bio->bi_private;
2862
2863	if (err == -EOPNOTSUPP) {
2864		set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2865	}
2866
2867	if (unlikely (test_bit(BIO_QUIET,&bio->bi_flags)))
2868		set_bit(BH_Quiet, &bh->b_state);
2869
2870	bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2871	bio_put(bio);
2872}
2873
2874int submit_bh(int rw, struct buffer_head * bh)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2875{
2876	struct bio *bio;
2877	int ret = 0;
2878
2879	BUG_ON(!buffer_locked(bh));
2880	BUG_ON(!buffer_mapped(bh));
2881	BUG_ON(!bh->b_end_io);
2882	BUG_ON(buffer_delay(bh));
2883	BUG_ON(buffer_unwritten(bh));
2884
2885	/*
2886	 * Only clear out a write error when rewriting
2887	 */
2888	if (test_set_buffer_req(bh) && (rw & WRITE))
2889		clear_buffer_write_io_error(bh);
2890
2891	/*
2892	 * from here on down, it's all bio -- do the initial mapping,
2893	 * submit_bio -> generic_make_request may further map this bio around
2894	 */
2895	bio = bio_alloc(GFP_NOIO, 1);
2896
2897	bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
 
 
 
 
 
2898	bio->bi_bdev = bh->b_bdev;
2899	bio->bi_io_vec[0].bv_page = bh->b_page;
2900	bio->bi_io_vec[0].bv_len = bh->b_size;
2901	bio->bi_io_vec[0].bv_offset = bh_offset(bh);
2902
2903	bio->bi_vcnt = 1;
2904	bio->bi_idx = 0;
2905	bio->bi_size = bh->b_size;
2906
2907	bio->bi_end_io = end_bio_bh_io_sync;
2908	bio->bi_private = bh;
 
2909
2910	bio_get(bio);
2911	submit_bio(rw, bio);
2912
2913	if (bio_flagged(bio, BIO_EOPNOTSUPP))
2914		ret = -EOPNOTSUPP;
 
 
 
2915
2916	bio_put(bio);
2917	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
2918}
2919EXPORT_SYMBOL(submit_bh);
2920
2921/**
2922 * ll_rw_block: low-level access to block devices (DEPRECATED)
2923 * @rw: whether to %READ or %WRITE or maybe %READA (readahead)
 
2924 * @nr: number of &struct buffer_heads in the array
2925 * @bhs: array of pointers to &struct buffer_head
2926 *
2927 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
2928 * requests an I/O operation on them, either a %READ or a %WRITE.  The third
2929 * %READA option is described in the documentation for generic_make_request()
2930 * which ll_rw_block() calls.
2931 *
2932 * This function drops any buffer that it cannot get a lock on (with the
2933 * BH_Lock state bit), any buffer that appears to be clean when doing a write
2934 * request, and any buffer that appears to be up-to-date when doing read
2935 * request.  Further it marks as clean buffers that are processed for
2936 * writing (the buffer cache won't assume that they are actually clean
2937 * until the buffer gets unlocked).
2938 *
2939 * ll_rw_block sets b_end_io to simple completion handler that marks
2940 * the buffer up-to-date (if approriate), unlocks the buffer and wakes
2941 * any waiters. 
2942 *
2943 * All of the buffers must be for the same device, and must also be a
2944 * multiple of the current approved size for the device.
2945 */
2946void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
2947{
2948	int i;
2949
2950	for (i = 0; i < nr; i++) {
2951		struct buffer_head *bh = bhs[i];
2952
2953		if (!trylock_buffer(bh))
2954			continue;
2955		if (rw == WRITE) {
2956			if (test_clear_buffer_dirty(bh)) {
2957				bh->b_end_io = end_buffer_write_sync;
2958				get_bh(bh);
2959				submit_bh(WRITE, bh);
2960				continue;
2961			}
2962		} else {
2963			if (!buffer_uptodate(bh)) {
2964				bh->b_end_io = end_buffer_read_sync;
2965				get_bh(bh);
2966				submit_bh(rw, bh);
2967				continue;
2968			}
2969		}
2970		unlock_buffer(bh);
2971	}
2972}
2973EXPORT_SYMBOL(ll_rw_block);
2974
2975void write_dirty_buffer(struct buffer_head *bh, int rw)
2976{
2977	lock_buffer(bh);
2978	if (!test_clear_buffer_dirty(bh)) {
2979		unlock_buffer(bh);
2980		return;
2981	}
2982	bh->b_end_io = end_buffer_write_sync;
2983	get_bh(bh);
2984	submit_bh(rw, bh);
2985}
2986EXPORT_SYMBOL(write_dirty_buffer);
2987
2988/*
2989 * For a data-integrity writeout, we need to wait upon any in-progress I/O
2990 * and then start new I/O and then wait upon it.  The caller must have a ref on
2991 * the buffer_head.
2992 */
2993int __sync_dirty_buffer(struct buffer_head *bh, int rw)
2994{
2995	int ret = 0;
2996
2997	WARN_ON(atomic_read(&bh->b_count) < 1);
2998	lock_buffer(bh);
2999	if (test_clear_buffer_dirty(bh)) {
3000		get_bh(bh);
3001		bh->b_end_io = end_buffer_write_sync;
3002		ret = submit_bh(rw, bh);
3003		wait_on_buffer(bh);
3004		if (!ret && !buffer_uptodate(bh))
3005			ret = -EIO;
3006	} else {
3007		unlock_buffer(bh);
3008	}
3009	return ret;
3010}
3011EXPORT_SYMBOL(__sync_dirty_buffer);
3012
3013int sync_dirty_buffer(struct buffer_head *bh)
3014{
3015	return __sync_dirty_buffer(bh, WRITE_SYNC);
3016}
3017EXPORT_SYMBOL(sync_dirty_buffer);
3018
3019/*
3020 * try_to_free_buffers() checks if all the buffers on this particular page
3021 * are unused, and releases them if so.
3022 *
3023 * Exclusion against try_to_free_buffers may be obtained by either
3024 * locking the page or by holding its mapping's private_lock.
3025 *
3026 * If the page is dirty but all the buffers are clean then we need to
3027 * be sure to mark the page clean as well.  This is because the page
3028 * may be against a block device, and a later reattachment of buffers
3029 * to a dirty page will set *all* buffers dirty.  Which would corrupt
3030 * filesystem data on the same device.
3031 *
3032 * The same applies to regular filesystem pages: if all the buffers are
3033 * clean then we set the page clean and proceed.  To do that, we require
3034 * total exclusion from __set_page_dirty_buffers().  That is obtained with
3035 * private_lock.
3036 *
3037 * try_to_free_buffers() is non-blocking.
3038 */
3039static inline int buffer_busy(struct buffer_head *bh)
3040{
3041	return atomic_read(&bh->b_count) |
3042		(bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3043}
3044
3045static int
3046drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3047{
3048	struct buffer_head *head = page_buffers(page);
3049	struct buffer_head *bh;
3050
3051	bh = head;
3052	do {
3053		if (buffer_write_io_error(bh) && page->mapping)
3054			set_bit(AS_EIO, &page->mapping->flags);
3055		if (buffer_busy(bh))
3056			goto failed;
3057		bh = bh->b_this_page;
3058	} while (bh != head);
3059
3060	do {
3061		struct buffer_head *next = bh->b_this_page;
3062
3063		if (bh->b_assoc_map)
3064			__remove_assoc_queue(bh);
3065		bh = next;
3066	} while (bh != head);
3067	*buffers_to_free = head;
3068	__clear_page_buffers(page);
3069	return 1;
3070failed:
3071	return 0;
3072}
3073
3074int try_to_free_buffers(struct page *page)
3075{
3076	struct address_space * const mapping = page->mapping;
3077	struct buffer_head *buffers_to_free = NULL;
3078	int ret = 0;
3079
3080	BUG_ON(!PageLocked(page));
3081	if (PageWriteback(page))
3082		return 0;
3083
3084	if (mapping == NULL) {		/* can this still happen? */
3085		ret = drop_buffers(page, &buffers_to_free);
3086		goto out;
3087	}
3088
3089	spin_lock(&mapping->private_lock);
3090	ret = drop_buffers(page, &buffers_to_free);
3091
3092	/*
3093	 * If the filesystem writes its buffers by hand (eg ext3)
3094	 * then we can have clean buffers against a dirty page.  We
3095	 * clean the page here; otherwise the VM will never notice
3096	 * that the filesystem did any IO at all.
3097	 *
3098	 * Also, during truncate, discard_buffer will have marked all
3099	 * the page's buffers clean.  We discover that here and clean
3100	 * the page also.
3101	 *
3102	 * private_lock must be held over this entire operation in order
3103	 * to synchronise against __set_page_dirty_buffers and prevent the
3104	 * dirty bit from being lost.
3105	 */
3106	if (ret)
3107		cancel_dirty_page(page, PAGE_CACHE_SIZE);
3108	spin_unlock(&mapping->private_lock);
3109out:
3110	if (buffers_to_free) {
3111		struct buffer_head *bh = buffers_to_free;
3112
3113		do {
3114			struct buffer_head *next = bh->b_this_page;
3115			free_buffer_head(bh);
3116			bh = next;
3117		} while (bh != buffers_to_free);
3118	}
3119	return ret;
3120}
3121EXPORT_SYMBOL(try_to_free_buffers);
3122
3123/*
3124 * There are no bdflush tunables left.  But distributions are
3125 * still running obsolete flush daemons, so we terminate them here.
3126 *
3127 * Use of bdflush() is deprecated and will be removed in a future kernel.
3128 * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3129 */
3130SYSCALL_DEFINE2(bdflush, int, func, long, data)
3131{
3132	static int msg_count;
3133
3134	if (!capable(CAP_SYS_ADMIN))
3135		return -EPERM;
3136
3137	if (msg_count < 5) {
3138		msg_count++;
3139		printk(KERN_INFO
3140			"warning: process `%s' used the obsolete bdflush"
3141			" system call\n", current->comm);
3142		printk(KERN_INFO "Fix your initscripts?\n");
3143	}
3144
3145	if (func == 1)
3146		do_exit(0);
3147	return 0;
3148}
3149
3150/*
3151 * Buffer-head allocation
3152 */
3153static struct kmem_cache *bh_cachep __read_mostly;
3154
3155/*
3156 * Once the number of bh's in the machine exceeds this level, we start
3157 * stripping them in writeback.
3158 */
3159static int max_buffer_heads;
3160
3161int buffer_heads_over_limit;
3162
3163struct bh_accounting {
3164	int nr;			/* Number of live bh's */
3165	int ratelimit;		/* Limit cacheline bouncing */
3166};
3167
3168static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3169
3170static void recalc_bh_state(void)
3171{
3172	int i;
3173	int tot = 0;
3174
3175	if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3176		return;
3177	__this_cpu_write(bh_accounting.ratelimit, 0);
3178	for_each_online_cpu(i)
3179		tot += per_cpu(bh_accounting, i).nr;
3180	buffer_heads_over_limit = (tot > max_buffer_heads);
3181}
3182
3183struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3184{
3185	struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3186	if (ret) {
3187		INIT_LIST_HEAD(&ret->b_assoc_buffers);
3188		preempt_disable();
3189		__this_cpu_inc(bh_accounting.nr);
3190		recalc_bh_state();
3191		preempt_enable();
3192	}
3193	return ret;
3194}
3195EXPORT_SYMBOL(alloc_buffer_head);
3196
3197void free_buffer_head(struct buffer_head *bh)
3198{
3199	BUG_ON(!list_empty(&bh->b_assoc_buffers));
3200	kmem_cache_free(bh_cachep, bh);
3201	preempt_disable();
3202	__this_cpu_dec(bh_accounting.nr);
3203	recalc_bh_state();
3204	preempt_enable();
3205}
3206EXPORT_SYMBOL(free_buffer_head);
3207
3208static void buffer_exit_cpu(int cpu)
3209{
3210	int i;
3211	struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3212
3213	for (i = 0; i < BH_LRU_SIZE; i++) {
3214		brelse(b->bhs[i]);
3215		b->bhs[i] = NULL;
3216	}
3217	this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3218	per_cpu(bh_accounting, cpu).nr = 0;
3219}
3220
3221static int buffer_cpu_notify(struct notifier_block *self,
3222			      unsigned long action, void *hcpu)
3223{
3224	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
3225		buffer_exit_cpu((unsigned long)hcpu);
3226	return NOTIFY_OK;
3227}
3228
3229/**
3230 * bh_uptodate_or_lock - Test whether the buffer is uptodate
3231 * @bh: struct buffer_head
3232 *
3233 * Return true if the buffer is up-to-date and false,
3234 * with the buffer locked, if not.
3235 */
3236int bh_uptodate_or_lock(struct buffer_head *bh)
3237{
3238	if (!buffer_uptodate(bh)) {
3239		lock_buffer(bh);
3240		if (!buffer_uptodate(bh))
3241			return 0;
3242		unlock_buffer(bh);
3243	}
3244	return 1;
3245}
3246EXPORT_SYMBOL(bh_uptodate_or_lock);
3247
3248/**
3249 * bh_submit_read - Submit a locked buffer for reading
3250 * @bh: struct buffer_head
3251 *
3252 * Returns zero on success and -EIO on error.
3253 */
3254int bh_submit_read(struct buffer_head *bh)
3255{
3256	BUG_ON(!buffer_locked(bh));
3257
3258	if (buffer_uptodate(bh)) {
3259		unlock_buffer(bh);
3260		return 0;
3261	}
3262
3263	get_bh(bh);
3264	bh->b_end_io = end_buffer_read_sync;
3265	submit_bh(READ, bh);
3266	wait_on_buffer(bh);
3267	if (buffer_uptodate(bh))
3268		return 0;
3269	return -EIO;
3270}
3271EXPORT_SYMBOL(bh_submit_read);
3272
3273void __init buffer_init(void)
3274{
3275	int nrpages;
 
3276
3277	bh_cachep = kmem_cache_create("buffer_head",
3278			sizeof(struct buffer_head), 0,
3279				(SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3280				SLAB_MEM_SPREAD),
3281				NULL);
3282
3283	/*
3284	 * Limit the bh occupancy to 10% of ZONE_NORMAL
3285	 */
3286	nrpages = (nr_free_buffer_pages() * 10) / 100;
3287	max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3288	hotcpu_notifier(buffer_cpu_notify, 0);
 
 
3289}