Linux Audio

Check our new training course

Loading...
v4.10.11
   1/*
   2 *  linux/fs/buffer.c
   3 *
   4 *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
   5 */
   6
   7/*
   8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
   9 *
  10 * Removed a lot of unnecessary code and simplified things now that
  11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
  12 *
  13 * Speed up hash, lru, and free list operations.  Use gfp() for allocating
  14 * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
  15 *
  16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
  17 *
  18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
  19 */
  20
  21#include <linux/kernel.h>
 
  22#include <linux/syscalls.h>
  23#include <linux/fs.h>
  24#include <linux/iomap.h>
  25#include <linux/mm.h>
  26#include <linux/percpu.h>
  27#include <linux/slab.h>
  28#include <linux/capability.h>
  29#include <linux/blkdev.h>
  30#include <linux/file.h>
  31#include <linux/quotaops.h>
  32#include <linux/highmem.h>
  33#include <linux/export.h>
  34#include <linux/backing-dev.h>
  35#include <linux/writeback.h>
  36#include <linux/hash.h>
  37#include <linux/suspend.h>
  38#include <linux/buffer_head.h>
  39#include <linux/task_io_accounting_ops.h>
  40#include <linux/bio.h>
  41#include <linux/notifier.h>
  42#include <linux/cpu.h>
  43#include <linux/bitops.h>
  44#include <linux/mpage.h>
  45#include <linux/bit_spinlock.h>
  46#include <linux/pagevec.h>
  47#include <trace/events/block.h>
  48
  49static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
  50static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
  51			 unsigned long bio_flags,
  52			 struct writeback_control *wbc);
  53
  54#define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
  55
  56void init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
  57{
  58	bh->b_end_io = handler;
  59	bh->b_private = private;
  60}
  61EXPORT_SYMBOL(init_buffer);
  62
  63inline void touch_buffer(struct buffer_head *bh)
  64{
  65	trace_block_touch_buffer(bh);
  66	mark_page_accessed(bh->b_page);
  67}
  68EXPORT_SYMBOL(touch_buffer);
  69
  70void __lock_buffer(struct buffer_head *bh)
  71{
  72	wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
  73}
  74EXPORT_SYMBOL(__lock_buffer);
  75
  76void unlock_buffer(struct buffer_head *bh)
  77{
  78	clear_bit_unlock(BH_Lock, &bh->b_state);
  79	smp_mb__after_atomic();
  80	wake_up_bit(&bh->b_state, BH_Lock);
  81}
  82EXPORT_SYMBOL(unlock_buffer);
  83
  84/*
  85 * Returns if the page has dirty or writeback buffers. If all the buffers
  86 * are unlocked and clean then the PageDirty information is stale. If
  87 * any of the pages are locked, it is assumed they are locked for IO.
  88 */
  89void buffer_check_dirty_writeback(struct page *page,
  90				     bool *dirty, bool *writeback)
  91{
  92	struct buffer_head *head, *bh;
  93	*dirty = false;
  94	*writeback = false;
  95
  96	BUG_ON(!PageLocked(page));
  97
  98	if (!page_has_buffers(page))
  99		return;
 100
 101	if (PageWriteback(page))
 102		*writeback = true;
 103
 104	head = page_buffers(page);
 105	bh = head;
 106	do {
 107		if (buffer_locked(bh))
 108			*writeback = true;
 109
 110		if (buffer_dirty(bh))
 111			*dirty = true;
 112
 113		bh = bh->b_this_page;
 114	} while (bh != head);
 115}
 116EXPORT_SYMBOL(buffer_check_dirty_writeback);
 117
 118/*
 119 * Block until a buffer comes unlocked.  This doesn't stop it
 120 * from becoming locked again - you have to lock it yourself
 121 * if you want to preserve its state.
 122 */
 123void __wait_on_buffer(struct buffer_head * bh)
 124{
 125	wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
 126}
 127EXPORT_SYMBOL(__wait_on_buffer);
 128
 129static void
 130__clear_page_buffers(struct page *page)
 131{
 132	ClearPagePrivate(page);
 133	set_page_private(page, 0);
 134	put_page(page);
 135}
 136
 137static void buffer_io_error(struct buffer_head *bh, char *msg)
 138{
 139	if (!test_bit(BH_Quiet, &bh->b_state))
 140		printk_ratelimited(KERN_ERR
 141			"Buffer I/O error on dev %pg, logical block %llu%s\n",
 142			bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
 143}
 144
 145/*
 146 * End-of-IO handler helper function which does not touch the bh after
 147 * unlocking it.
 148 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
 149 * a race there is benign: unlock_buffer() only use the bh's address for
 150 * hashing after unlocking the buffer, so it doesn't actually touch the bh
 151 * itself.
 152 */
 153static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
 154{
 155	if (uptodate) {
 156		set_buffer_uptodate(bh);
 157	} else {
 158		/* This happens, due to failed read-ahead attempts. */
 159		clear_buffer_uptodate(bh);
 160	}
 161	unlock_buffer(bh);
 162}
 163
 164/*
 165 * Default synchronous end-of-IO handler..  Just mark it up-to-date and
 166 * unlock the buffer. This is what ll_rw_block uses too.
 167 */
 168void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
 169{
 170	__end_buffer_read_notouch(bh, uptodate);
 171	put_bh(bh);
 172}
 173EXPORT_SYMBOL(end_buffer_read_sync);
 174
 175void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
 176{
 177	if (uptodate) {
 178		set_buffer_uptodate(bh);
 179	} else {
 180		buffer_io_error(bh, ", lost sync page write");
 181		set_buffer_write_io_error(bh);
 182		clear_buffer_uptodate(bh);
 183	}
 184	unlock_buffer(bh);
 185	put_bh(bh);
 186}
 187EXPORT_SYMBOL(end_buffer_write_sync);
 188
 189/*
 190 * Various filesystems appear to want __find_get_block to be non-blocking.
 191 * But it's the page lock which protects the buffers.  To get around this,
 192 * we get exclusion from try_to_free_buffers with the blockdev mapping's
 193 * private_lock.
 194 *
 195 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
 196 * may be quite high.  This code could TryLock the page, and if that
 197 * succeeds, there is no need to take private_lock. (But if
 198 * private_lock is contended then so is mapping->tree_lock).
 199 */
 200static struct buffer_head *
 201__find_get_block_slow(struct block_device *bdev, sector_t block)
 202{
 203	struct inode *bd_inode = bdev->bd_inode;
 204	struct address_space *bd_mapping = bd_inode->i_mapping;
 205	struct buffer_head *ret = NULL;
 206	pgoff_t index;
 207	struct buffer_head *bh;
 208	struct buffer_head *head;
 209	struct page *page;
 210	int all_mapped = 1;
 211
 212	index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
 213	page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED);
 214	if (!page)
 215		goto out;
 216
 217	spin_lock(&bd_mapping->private_lock);
 218	if (!page_has_buffers(page))
 219		goto out_unlock;
 220	head = page_buffers(page);
 221	bh = head;
 222	do {
 223		if (!buffer_mapped(bh))
 224			all_mapped = 0;
 225		else if (bh->b_blocknr == block) {
 226			ret = bh;
 227			get_bh(bh);
 228			goto out_unlock;
 229		}
 230		bh = bh->b_this_page;
 231	} while (bh != head);
 232
 233	/* we might be here because some of the buffers on this page are
 234	 * not mapped.  This is due to various races between
 235	 * file io on the block device and getblk.  It gets dealt with
 236	 * elsewhere, don't buffer_error if we had some unmapped buffers
 237	 */
 238	if (all_mapped) {
 239		printk("__find_get_block_slow() failed. "
 240			"block=%llu, b_blocknr=%llu\n",
 241			(unsigned long long)block,
 242			(unsigned long long)bh->b_blocknr);
 243		printk("b_state=0x%08lx, b_size=%zu\n",
 244			bh->b_state, bh->b_size);
 245		printk("device %pg blocksize: %d\n", bdev,
 246			1 << bd_inode->i_blkbits);
 247	}
 248out_unlock:
 249	spin_unlock(&bd_mapping->private_lock);
 250	put_page(page);
 251out:
 252	return ret;
 253}
 254
 255/*
 256 * Kick the writeback threads then try to free up some ZONE_NORMAL memory.
 257 */
 258static void free_more_memory(void)
 259{
 260	struct zoneref *z;
 261	int nid;
 262
 263	wakeup_flusher_threads(1024, WB_REASON_FREE_MORE_MEM);
 264	yield();
 265
 266	for_each_online_node(nid) {
 267
 268		z = first_zones_zonelist(node_zonelist(nid, GFP_NOFS),
 269						gfp_zone(GFP_NOFS), NULL);
 270		if (z->zone)
 271			try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0,
 272						GFP_NOFS, NULL);
 273	}
 274}
 275
 276/*
 277 * I/O completion handler for block_read_full_page() - pages
 278 * which come unlocked at the end of I/O.
 279 */
 280static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
 281{
 282	unsigned long flags;
 283	struct buffer_head *first;
 284	struct buffer_head *tmp;
 285	struct page *page;
 286	int page_uptodate = 1;
 287
 288	BUG_ON(!buffer_async_read(bh));
 289
 290	page = bh->b_page;
 291	if (uptodate) {
 292		set_buffer_uptodate(bh);
 293	} else {
 294		clear_buffer_uptodate(bh);
 295		buffer_io_error(bh, ", async page read");
 296		SetPageError(page);
 297	}
 298
 299	/*
 300	 * Be _very_ careful from here on. Bad things can happen if
 301	 * two buffer heads end IO at almost the same time and both
 302	 * decide that the page is now completely done.
 303	 */
 304	first = page_buffers(page);
 305	local_irq_save(flags);
 306	bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
 307	clear_buffer_async_read(bh);
 308	unlock_buffer(bh);
 309	tmp = bh;
 310	do {
 311		if (!buffer_uptodate(tmp))
 312			page_uptodate = 0;
 313		if (buffer_async_read(tmp)) {
 314			BUG_ON(!buffer_locked(tmp));
 315			goto still_busy;
 316		}
 317		tmp = tmp->b_this_page;
 318	} while (tmp != bh);
 319	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
 320	local_irq_restore(flags);
 321
 322	/*
 323	 * If none of the buffers had errors and they are all
 324	 * uptodate then we can set the page uptodate.
 325	 */
 326	if (page_uptodate && !PageError(page))
 327		SetPageUptodate(page);
 328	unlock_page(page);
 329	return;
 330
 331still_busy:
 332	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
 333	local_irq_restore(flags);
 334	return;
 335}
 336
 337/*
 338 * Completion handler for block_write_full_page() - pages which are unlocked
 339 * during I/O, and which have PageWriteback cleared upon I/O completion.
 340 */
 341void end_buffer_async_write(struct buffer_head *bh, int uptodate)
 342{
 343	unsigned long flags;
 344	struct buffer_head *first;
 345	struct buffer_head *tmp;
 346	struct page *page;
 347
 348	BUG_ON(!buffer_async_write(bh));
 349
 350	page = bh->b_page;
 351	if (uptodate) {
 352		set_buffer_uptodate(bh);
 353	} else {
 354		buffer_io_error(bh, ", lost async page write");
 355		mapping_set_error(page->mapping, -EIO);
 356		set_buffer_write_io_error(bh);
 357		clear_buffer_uptodate(bh);
 358		SetPageError(page);
 359	}
 360
 361	first = page_buffers(page);
 362	local_irq_save(flags);
 363	bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
 364
 365	clear_buffer_async_write(bh);
 366	unlock_buffer(bh);
 367	tmp = bh->b_this_page;
 368	while (tmp != bh) {
 369		if (buffer_async_write(tmp)) {
 370			BUG_ON(!buffer_locked(tmp));
 371			goto still_busy;
 372		}
 373		tmp = tmp->b_this_page;
 374	}
 375	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
 376	local_irq_restore(flags);
 377	end_page_writeback(page);
 378	return;
 379
 380still_busy:
 381	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
 382	local_irq_restore(flags);
 383	return;
 384}
 385EXPORT_SYMBOL(end_buffer_async_write);
 386
 387/*
 388 * If a page's buffers are under async readin (end_buffer_async_read
 389 * completion) then there is a possibility that another thread of
 390 * control could lock one of the buffers after it has completed
 391 * but while some of the other buffers have not completed.  This
 392 * locked buffer would confuse end_buffer_async_read() into not unlocking
 393 * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
 394 * that this buffer is not under async I/O.
 395 *
 396 * The page comes unlocked when it has no locked buffer_async buffers
 397 * left.
 398 *
 399 * PageLocked prevents anyone starting new async I/O reads any of
 400 * the buffers.
 401 *
 402 * PageWriteback is used to prevent simultaneous writeout of the same
 403 * page.
 404 *
 405 * PageLocked prevents anyone from starting writeback of a page which is
 406 * under read I/O (PageWriteback is only ever set against a locked page).
 407 */
 408static void mark_buffer_async_read(struct buffer_head *bh)
 409{
 410	bh->b_end_io = end_buffer_async_read;
 411	set_buffer_async_read(bh);
 412}
 413
 414static void mark_buffer_async_write_endio(struct buffer_head *bh,
 415					  bh_end_io_t *handler)
 416{
 417	bh->b_end_io = handler;
 418	set_buffer_async_write(bh);
 419}
 420
 421void mark_buffer_async_write(struct buffer_head *bh)
 422{
 423	mark_buffer_async_write_endio(bh, end_buffer_async_write);
 424}
 425EXPORT_SYMBOL(mark_buffer_async_write);
 426
 427
 428/*
 429 * fs/buffer.c contains helper functions for buffer-backed address space's
 430 * fsync functions.  A common requirement for buffer-based filesystems is
 431 * that certain data from the backing blockdev needs to be written out for
 432 * a successful fsync().  For example, ext2 indirect blocks need to be
 433 * written back and waited upon before fsync() returns.
 434 *
 435 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
 436 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
 437 * management of a list of dependent buffers at ->i_mapping->private_list.
 438 *
 439 * Locking is a little subtle: try_to_free_buffers() will remove buffers
 440 * from their controlling inode's queue when they are being freed.  But
 441 * try_to_free_buffers() will be operating against the *blockdev* mapping
 442 * at the time, not against the S_ISREG file which depends on those buffers.
 443 * So the locking for private_list is via the private_lock in the address_space
 444 * which backs the buffers.  Which is different from the address_space 
 445 * against which the buffers are listed.  So for a particular address_space,
 446 * mapping->private_lock does *not* protect mapping->private_list!  In fact,
 447 * mapping->private_list will always be protected by the backing blockdev's
 448 * ->private_lock.
 449 *
 450 * Which introduces a requirement: all buffers on an address_space's
 451 * ->private_list must be from the same address_space: the blockdev's.
 452 *
 453 * address_spaces which do not place buffers at ->private_list via these
 454 * utility functions are free to use private_lock and private_list for
 455 * whatever they want.  The only requirement is that list_empty(private_list)
 456 * be true at clear_inode() time.
 457 *
 458 * FIXME: clear_inode should not call invalidate_inode_buffers().  The
 459 * filesystems should do that.  invalidate_inode_buffers() should just go
 460 * BUG_ON(!list_empty).
 461 *
 462 * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
 463 * take an address_space, not an inode.  And it should be called
 464 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
 465 * queued up.
 466 *
 467 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
 468 * list if it is already on a list.  Because if the buffer is on a list,
 469 * it *must* already be on the right one.  If not, the filesystem is being
 470 * silly.  This will save a ton of locking.  But first we have to ensure
 471 * that buffers are taken *off* the old inode's list when they are freed
 472 * (presumably in truncate).  That requires careful auditing of all
 473 * filesystems (do it inside bforget()).  It could also be done by bringing
 474 * b_inode back.
 475 */
 476
 477/*
 478 * The buffer's backing address_space's private_lock must be held
 479 */
 480static void __remove_assoc_queue(struct buffer_head *bh)
 481{
 482	list_del_init(&bh->b_assoc_buffers);
 483	WARN_ON(!bh->b_assoc_map);
 484	if (buffer_write_io_error(bh))
 485		set_bit(AS_EIO, &bh->b_assoc_map->flags);
 486	bh->b_assoc_map = NULL;
 487}
 488
 489int inode_has_buffers(struct inode *inode)
 490{
 491	return !list_empty(&inode->i_data.private_list);
 492}
 493
 494/*
 495 * osync is designed to support O_SYNC io.  It waits synchronously for
 496 * all already-submitted IO to complete, but does not queue any new
 497 * writes to the disk.
 498 *
 499 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
 500 * you dirty the buffers, and then use osync_inode_buffers to wait for
 501 * completion.  Any other dirty buffers which are not yet queued for
 502 * write will not be flushed to disk by the osync.
 503 */
 504static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
 505{
 506	struct buffer_head *bh;
 507	struct list_head *p;
 508	int err = 0;
 509
 510	spin_lock(lock);
 511repeat:
 512	list_for_each_prev(p, list) {
 513		bh = BH_ENTRY(p);
 514		if (buffer_locked(bh)) {
 515			get_bh(bh);
 516			spin_unlock(lock);
 517			wait_on_buffer(bh);
 518			if (!buffer_uptodate(bh))
 519				err = -EIO;
 520			brelse(bh);
 521			spin_lock(lock);
 522			goto repeat;
 523		}
 524	}
 525	spin_unlock(lock);
 526	return err;
 527}
 528
 529static void do_thaw_one(struct super_block *sb, void *unused)
 530{
 531	while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
 532		printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev);
 533}
 534
 535static void do_thaw_all(struct work_struct *work)
 536{
 537	iterate_supers(do_thaw_one, NULL);
 538	kfree(work);
 539	printk(KERN_WARNING "Emergency Thaw complete\n");
 540}
 541
 542/**
 543 * emergency_thaw_all -- forcibly thaw every frozen filesystem
 544 *
 545 * Used for emergency unfreeze of all filesystems via SysRq
 546 */
 547void emergency_thaw_all(void)
 548{
 549	struct work_struct *work;
 550
 551	work = kmalloc(sizeof(*work), GFP_ATOMIC);
 552	if (work) {
 553		INIT_WORK(work, do_thaw_all);
 554		schedule_work(work);
 555	}
 556}
 557
 558/**
 559 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
 560 * @mapping: the mapping which wants those buffers written
 561 *
 562 * Starts I/O against the buffers at mapping->private_list, and waits upon
 563 * that I/O.
 564 *
 565 * Basically, this is a convenience function for fsync().
 566 * @mapping is a file or directory which needs those buffers to be written for
 567 * a successful fsync().
 568 */
 569int sync_mapping_buffers(struct address_space *mapping)
 570{
 571	struct address_space *buffer_mapping = mapping->private_data;
 572
 573	if (buffer_mapping == NULL || list_empty(&mapping->private_list))
 574		return 0;
 575
 576	return fsync_buffers_list(&buffer_mapping->private_lock,
 577					&mapping->private_list);
 578}
 579EXPORT_SYMBOL(sync_mapping_buffers);
 580
 581/*
 582 * Called when we've recently written block `bblock', and it is known that
 583 * `bblock' was for a buffer_boundary() buffer.  This means that the block at
 584 * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
 585 * dirty, schedule it for IO.  So that indirects merge nicely with their data.
 586 */
 587void write_boundary_block(struct block_device *bdev,
 588			sector_t bblock, unsigned blocksize)
 589{
 590	struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
 591	if (bh) {
 592		if (buffer_dirty(bh))
 593			ll_rw_block(REQ_OP_WRITE, 0, 1, &bh);
 594		put_bh(bh);
 595	}
 596}
 597
 598void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
 599{
 600	struct address_space *mapping = inode->i_mapping;
 601	struct address_space *buffer_mapping = bh->b_page->mapping;
 602
 603	mark_buffer_dirty(bh);
 604	if (!mapping->private_data) {
 605		mapping->private_data = buffer_mapping;
 606	} else {
 607		BUG_ON(mapping->private_data != buffer_mapping);
 608	}
 609	if (!bh->b_assoc_map) {
 610		spin_lock(&buffer_mapping->private_lock);
 611		list_move_tail(&bh->b_assoc_buffers,
 612				&mapping->private_list);
 613		bh->b_assoc_map = mapping;
 614		spin_unlock(&buffer_mapping->private_lock);
 615	}
 616}
 617EXPORT_SYMBOL(mark_buffer_dirty_inode);
 618
 619/*
 620 * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
 621 * dirty.
 622 *
 623 * If warn is true, then emit a warning if the page is not uptodate and has
 624 * not been truncated.
 625 *
 626 * The caller must hold lock_page_memcg().
 627 */
 628static void __set_page_dirty(struct page *page, struct address_space *mapping,
 629			     int warn)
 630{
 631	unsigned long flags;
 632
 633	spin_lock_irqsave(&mapping->tree_lock, flags);
 634	if (page->mapping) {	/* Race with truncate? */
 635		WARN_ON_ONCE(warn && !PageUptodate(page));
 636		account_page_dirtied(page, mapping);
 637		radix_tree_tag_set(&mapping->page_tree,
 638				page_index(page), PAGECACHE_TAG_DIRTY);
 639	}
 640	spin_unlock_irqrestore(&mapping->tree_lock, flags);
 641}
 
 642
 643/*
 644 * Add a page to the dirty page list.
 645 *
 646 * It is a sad fact of life that this function is called from several places
 647 * deeply under spinlocking.  It may not sleep.
 648 *
 649 * If the page has buffers, the uptodate buffers are set dirty, to preserve
 650 * dirty-state coherency between the page and the buffers.  It the page does
 651 * not have buffers then when they are later attached they will all be set
 652 * dirty.
 653 *
 654 * The buffers are dirtied before the page is dirtied.  There's a small race
 655 * window in which a writepage caller may see the page cleanness but not the
 656 * buffer dirtiness.  That's fine.  If this code were to set the page dirty
 657 * before the buffers, a concurrent writepage caller could clear the page dirty
 658 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
 659 * page on the dirty page list.
 660 *
 661 * We use private_lock to lock against try_to_free_buffers while using the
 662 * page's buffer list.  Also use this to protect against clean buffers being
 663 * added to the page after it was set dirty.
 664 *
 665 * FIXME: may need to call ->reservepage here as well.  That's rather up to the
 666 * address_space though.
 667 */
 668int __set_page_dirty_buffers(struct page *page)
 669{
 670	int newly_dirty;
 671	struct address_space *mapping = page_mapping(page);
 672
 673	if (unlikely(!mapping))
 674		return !TestSetPageDirty(page);
 675
 676	spin_lock(&mapping->private_lock);
 677	if (page_has_buffers(page)) {
 678		struct buffer_head *head = page_buffers(page);
 679		struct buffer_head *bh = head;
 680
 681		do {
 682			set_buffer_dirty(bh);
 683			bh = bh->b_this_page;
 684		} while (bh != head);
 685	}
 686	/*
 687	 * Lock out page->mem_cgroup migration to keep PageDirty
 688	 * synchronized with per-memcg dirty page counters.
 689	 */
 690	lock_page_memcg(page);
 691	newly_dirty = !TestSetPageDirty(page);
 692	spin_unlock(&mapping->private_lock);
 693
 694	if (newly_dirty)
 695		__set_page_dirty(page, mapping, 1);
 696
 697	unlock_page_memcg(page);
 698
 699	if (newly_dirty)
 700		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
 701
 702	return newly_dirty;
 703}
 704EXPORT_SYMBOL(__set_page_dirty_buffers);
 705
 706/*
 707 * Write out and wait upon a list of buffers.
 708 *
 709 * We have conflicting pressures: we want to make sure that all
 710 * initially dirty buffers get waited on, but that any subsequently
 711 * dirtied buffers don't.  After all, we don't want fsync to last
 712 * forever if somebody is actively writing to the file.
 713 *
 714 * Do this in two main stages: first we copy dirty buffers to a
 715 * temporary inode list, queueing the writes as we go.  Then we clean
 716 * up, waiting for those writes to complete.
 717 * 
 718 * During this second stage, any subsequent updates to the file may end
 719 * up refiling the buffer on the original inode's dirty list again, so
 720 * there is a chance we will end up with a buffer queued for write but
 721 * not yet completed on that list.  So, as a final cleanup we go through
 722 * the osync code to catch these locked, dirty buffers without requeuing
 723 * any newly dirty buffers for write.
 724 */
 725static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
 726{
 727	struct buffer_head *bh;
 728	struct list_head tmp;
 729	struct address_space *mapping;
 730	int err = 0, err2;
 731	struct blk_plug plug;
 732
 733	INIT_LIST_HEAD(&tmp);
 734	blk_start_plug(&plug);
 735
 736	spin_lock(lock);
 737	while (!list_empty(list)) {
 738		bh = BH_ENTRY(list->next);
 739		mapping = bh->b_assoc_map;
 740		__remove_assoc_queue(bh);
 741		/* Avoid race with mark_buffer_dirty_inode() which does
 742		 * a lockless check and we rely on seeing the dirty bit */
 743		smp_mb();
 744		if (buffer_dirty(bh) || buffer_locked(bh)) {
 745			list_add(&bh->b_assoc_buffers, &tmp);
 746			bh->b_assoc_map = mapping;
 747			if (buffer_dirty(bh)) {
 748				get_bh(bh);
 749				spin_unlock(lock);
 750				/*
 751				 * Ensure any pending I/O completes so that
 752				 * write_dirty_buffer() actually writes the
 753				 * current contents - it is a noop if I/O is
 754				 * still in flight on potentially older
 755				 * contents.
 756				 */
 757				write_dirty_buffer(bh, REQ_SYNC);
 758
 759				/*
 760				 * Kick off IO for the previous mapping. Note
 761				 * that we will not run the very last mapping,
 762				 * wait_on_buffer() will do that for us
 763				 * through sync_buffer().
 764				 */
 765				brelse(bh);
 766				spin_lock(lock);
 767			}
 768		}
 769	}
 770
 771	spin_unlock(lock);
 772	blk_finish_plug(&plug);
 773	spin_lock(lock);
 774
 775	while (!list_empty(&tmp)) {
 776		bh = BH_ENTRY(tmp.prev);
 777		get_bh(bh);
 778		mapping = bh->b_assoc_map;
 779		__remove_assoc_queue(bh);
 780		/* Avoid race with mark_buffer_dirty_inode() which does
 781		 * a lockless check and we rely on seeing the dirty bit */
 782		smp_mb();
 783		if (buffer_dirty(bh)) {
 784			list_add(&bh->b_assoc_buffers,
 785				 &mapping->private_list);
 786			bh->b_assoc_map = mapping;
 787		}
 788		spin_unlock(lock);
 789		wait_on_buffer(bh);
 790		if (!buffer_uptodate(bh))
 791			err = -EIO;
 792		brelse(bh);
 793		spin_lock(lock);
 794	}
 795	
 796	spin_unlock(lock);
 797	err2 = osync_buffers_list(lock, list);
 798	if (err)
 799		return err;
 800	else
 801		return err2;
 802}
 803
 804/*
 805 * Invalidate any and all dirty buffers on a given inode.  We are
 806 * probably unmounting the fs, but that doesn't mean we have already
 807 * done a sync().  Just drop the buffers from the inode list.
 808 *
 809 * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
 810 * assumes that all the buffers are against the blockdev.  Not true
 811 * for reiserfs.
 812 */
 813void invalidate_inode_buffers(struct inode *inode)
 814{
 815	if (inode_has_buffers(inode)) {
 816		struct address_space *mapping = &inode->i_data;
 817		struct list_head *list = &mapping->private_list;
 818		struct address_space *buffer_mapping = mapping->private_data;
 819
 820		spin_lock(&buffer_mapping->private_lock);
 821		while (!list_empty(list))
 822			__remove_assoc_queue(BH_ENTRY(list->next));
 823		spin_unlock(&buffer_mapping->private_lock);
 824	}
 825}
 826EXPORT_SYMBOL(invalidate_inode_buffers);
 827
 828/*
 829 * Remove any clean buffers from the inode's buffer list.  This is called
 830 * when we're trying to free the inode itself.  Those buffers can pin it.
 831 *
 832 * Returns true if all buffers were removed.
 833 */
 834int remove_inode_buffers(struct inode *inode)
 835{
 836	int ret = 1;
 837
 838	if (inode_has_buffers(inode)) {
 839		struct address_space *mapping = &inode->i_data;
 840		struct list_head *list = &mapping->private_list;
 841		struct address_space *buffer_mapping = mapping->private_data;
 842
 843		spin_lock(&buffer_mapping->private_lock);
 844		while (!list_empty(list)) {
 845			struct buffer_head *bh = BH_ENTRY(list->next);
 846			if (buffer_dirty(bh)) {
 847				ret = 0;
 848				break;
 849			}
 850			__remove_assoc_queue(bh);
 851		}
 852		spin_unlock(&buffer_mapping->private_lock);
 853	}
 854	return ret;
 855}
 856
 857/*
 858 * Create the appropriate buffers when given a page for data area and
 859 * the size of each buffer.. Use the bh->b_this_page linked list to
 860 * follow the buffers created.  Return NULL if unable to create more
 861 * buffers.
 862 *
 863 * The retry flag is used to differentiate async IO (paging, swapping)
 864 * which may not fail from ordinary buffer allocations.
 865 */
 866struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
 867		int retry)
 868{
 869	struct buffer_head *bh, *head;
 
 870	long offset;
 871
 872try_again:
 
 
 873	head = NULL;
 874	offset = PAGE_SIZE;
 875	while ((offset -= size) >= 0) {
 876		bh = alloc_buffer_head(GFP_NOFS);
 877		if (!bh)
 878			goto no_grow;
 879
 880		bh->b_this_page = head;
 881		bh->b_blocknr = -1;
 882		head = bh;
 883
 884		bh->b_size = size;
 885
 886		/* Link the buffer to its page */
 887		set_bh_page(bh, page, offset);
 888	}
 889	return head;
 890/*
 891 * In case anything failed, we just free everything we got.
 892 */
 893no_grow:
 894	if (head) {
 895		do {
 896			bh = head;
 897			head = head->b_this_page;
 898			free_buffer_head(bh);
 899		} while (head);
 900	}
 901
 902	/*
 903	 * Return failure for non-async IO requests.  Async IO requests
 904	 * are not allowed to fail, so we have to wait until buffer heads
 905	 * become available.  But we don't want tasks sleeping with 
 906	 * partially complete buffers, so all were released above.
 907	 */
 908	if (!retry)
 909		return NULL;
 910
 911	/* We're _really_ low on memory. Now we just
 912	 * wait for old buffer heads to become free due to
 913	 * finishing IO.  Since this is an async request and
 914	 * the reserve list is empty, we're sure there are 
 915	 * async buffer heads in use.
 916	 */
 917	free_more_memory();
 918	goto try_again;
 919}
 920EXPORT_SYMBOL_GPL(alloc_page_buffers);
 921
 922static inline void
 923link_dev_buffers(struct page *page, struct buffer_head *head)
 924{
 925	struct buffer_head *bh, *tail;
 926
 927	bh = head;
 928	do {
 929		tail = bh;
 930		bh = bh->b_this_page;
 931	} while (bh);
 932	tail->b_this_page = head;
 933	attach_page_buffers(page, head);
 934}
 935
 936static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
 937{
 938	sector_t retval = ~((sector_t)0);
 939	loff_t sz = i_size_read(bdev->bd_inode);
 940
 941	if (sz) {
 942		unsigned int sizebits = blksize_bits(size);
 943		retval = (sz >> sizebits);
 944	}
 945	return retval;
 946}
 947
 948/*
 949 * Initialise the state of a blockdev page's buffers.
 950 */ 
 951static sector_t
 952init_page_buffers(struct page *page, struct block_device *bdev,
 953			sector_t block, int size)
 954{
 955	struct buffer_head *head = page_buffers(page);
 956	struct buffer_head *bh = head;
 957	int uptodate = PageUptodate(page);
 958	sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size);
 959
 960	do {
 961		if (!buffer_mapped(bh)) {
 962			init_buffer(bh, NULL, NULL);
 
 963			bh->b_bdev = bdev;
 964			bh->b_blocknr = block;
 965			if (uptodate)
 966				set_buffer_uptodate(bh);
 967			if (block < end_block)
 968				set_buffer_mapped(bh);
 969		}
 970		block++;
 971		bh = bh->b_this_page;
 972	} while (bh != head);
 973
 974	/*
 975	 * Caller needs to validate requested block against end of device.
 976	 */
 977	return end_block;
 978}
 979
 980/*
 981 * Create the page-cache page that contains the requested block.
 982 *
 983 * This is used purely for blockdev mappings.
 984 */
 985static int
 986grow_dev_page(struct block_device *bdev, sector_t block,
 987	      pgoff_t index, int size, int sizebits, gfp_t gfp)
 988{
 989	struct inode *inode = bdev->bd_inode;
 990	struct page *page;
 991	struct buffer_head *bh;
 992	sector_t end_block;
 993	int ret = 0;		/* Will call free_more_memory() */
 994	gfp_t gfp_mask;
 995
 996	gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp;
 997
 998	/*
 999	 * XXX: __getblk_slow() can not really deal with failure and
1000	 * will endlessly loop on improvised global reclaim.  Prefer
1001	 * looping in the allocator rather than here, at least that
1002	 * code knows what it's doing.
1003	 */
1004	gfp_mask |= __GFP_NOFAIL;
1005
1006	page = find_or_create_page(inode->i_mapping, index, gfp_mask);
1007	if (!page)
1008		return ret;
1009
1010	BUG_ON(!PageLocked(page));
1011
1012	if (page_has_buffers(page)) {
1013		bh = page_buffers(page);
1014		if (bh->b_size == size) {
1015			end_block = init_page_buffers(page, bdev,
1016						(sector_t)index << sizebits,
1017						size);
1018			goto done;
1019		}
1020		if (!try_to_free_buffers(page))
1021			goto failed;
1022	}
1023
1024	/*
1025	 * Allocate some buffers for this page
1026	 */
1027	bh = alloc_page_buffers(page, size, 0);
1028	if (!bh)
1029		goto failed;
1030
1031	/*
1032	 * Link the page to the buffers and initialise them.  Take the
1033	 * lock to be atomic wrt __find_get_block(), which does not
1034	 * run under the page lock.
1035	 */
1036	spin_lock(&inode->i_mapping->private_lock);
1037	link_dev_buffers(page, bh);
1038	end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits,
1039			size);
1040	spin_unlock(&inode->i_mapping->private_lock);
1041done:
1042	ret = (block < end_block) ? 1 : -ENXIO;
1043failed:
1044	unlock_page(page);
1045	put_page(page);
1046	return ret;
1047}
1048
1049/*
1050 * Create buffers for the specified block device block's page.  If
1051 * that page was dirty, the buffers are set dirty also.
1052 */
1053static int
1054grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp)
1055{
1056	pgoff_t index;
1057	int sizebits;
1058
1059	sizebits = -1;
1060	do {
1061		sizebits++;
1062	} while ((size << sizebits) < PAGE_SIZE);
1063
1064	index = block >> sizebits;
1065
1066	/*
1067	 * Check for a block which wants to lie outside our maximum possible
1068	 * pagecache index.  (this comparison is done using sector_t types).
1069	 */
1070	if (unlikely(index != block >> sizebits)) {
1071		printk(KERN_ERR "%s: requested out-of-range block %llu for "
1072			"device %pg\n",
1073			__func__, (unsigned long long)block,
1074			bdev);
1075		return -EIO;
1076	}
1077
1078	/* Create a page with the proper size buffers.. */
1079	return grow_dev_page(bdev, block, index, size, sizebits, gfp);
1080}
1081
1082static struct buffer_head *
1083__getblk_slow(struct block_device *bdev, sector_t block,
1084	     unsigned size, gfp_t gfp)
1085{
1086	/* Size must be multiple of hard sectorsize */
1087	if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1088			(size < 512 || size > PAGE_SIZE))) {
1089		printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1090					size);
1091		printk(KERN_ERR "logical block size: %d\n",
1092					bdev_logical_block_size(bdev));
1093
1094		dump_stack();
1095		return NULL;
1096	}
1097
1098	for (;;) {
1099		struct buffer_head *bh;
1100		int ret;
1101
1102		bh = __find_get_block(bdev, block, size);
1103		if (bh)
1104			return bh;
1105
1106		ret = grow_buffers(bdev, block, size, gfp);
1107		if (ret < 0)
1108			return NULL;
1109		if (ret == 0)
1110			free_more_memory();
1111	}
1112}
1113
1114/*
1115 * The relationship between dirty buffers and dirty pages:
1116 *
1117 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1118 * the page is tagged dirty in its radix tree.
1119 *
1120 * At all times, the dirtiness of the buffers represents the dirtiness of
1121 * subsections of the page.  If the page has buffers, the page dirty bit is
1122 * merely a hint about the true dirty state.
1123 *
1124 * When a page is set dirty in its entirety, all its buffers are marked dirty
1125 * (if the page has buffers).
1126 *
1127 * When a buffer is marked dirty, its page is dirtied, but the page's other
1128 * buffers are not.
1129 *
1130 * Also.  When blockdev buffers are explicitly read with bread(), they
1131 * individually become uptodate.  But their backing page remains not
1132 * uptodate - even if all of its buffers are uptodate.  A subsequent
1133 * block_read_full_page() against that page will discover all the uptodate
1134 * buffers, will set the page uptodate and will perform no I/O.
1135 */
1136
1137/**
1138 * mark_buffer_dirty - mark a buffer_head as needing writeout
1139 * @bh: the buffer_head to mark dirty
1140 *
1141 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1142 * backing page dirty, then tag the page as dirty in its address_space's radix
1143 * tree and then attach the address_space's inode to its superblock's dirty
1144 * inode list.
1145 *
1146 * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1147 * mapping->tree_lock and mapping->host->i_lock.
1148 */
1149void mark_buffer_dirty(struct buffer_head *bh)
1150{
1151	WARN_ON_ONCE(!buffer_uptodate(bh));
1152
1153	trace_block_dirty_buffer(bh);
1154
1155	/*
1156	 * Very *carefully* optimize the it-is-already-dirty case.
1157	 *
1158	 * Don't let the final "is it dirty" escape to before we
1159	 * perhaps modified the buffer.
1160	 */
1161	if (buffer_dirty(bh)) {
1162		smp_mb();
1163		if (buffer_dirty(bh))
1164			return;
1165	}
1166
1167	if (!test_set_buffer_dirty(bh)) {
1168		struct page *page = bh->b_page;
1169		struct address_space *mapping = NULL;
1170
1171		lock_page_memcg(page);
1172		if (!TestSetPageDirty(page)) {
1173			mapping = page_mapping(page);
1174			if (mapping)
1175				__set_page_dirty(page, mapping, 0);
1176		}
1177		unlock_page_memcg(page);
1178		if (mapping)
1179			__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1180	}
1181}
1182EXPORT_SYMBOL(mark_buffer_dirty);
1183
 
 
 
 
 
 
 
 
 
 
 
1184/*
1185 * Decrement a buffer_head's reference count.  If all buffers against a page
1186 * have zero reference count, are clean and unlocked, and if the page is clean
1187 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1188 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1189 * a page but it ends up not being freed, and buffers may later be reattached).
1190 */
1191void __brelse(struct buffer_head * buf)
1192{
1193	if (atomic_read(&buf->b_count)) {
1194		put_bh(buf);
1195		return;
1196	}
1197	WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1198}
1199EXPORT_SYMBOL(__brelse);
1200
1201/*
1202 * bforget() is like brelse(), except it discards any
1203 * potentially dirty data.
1204 */
1205void __bforget(struct buffer_head *bh)
1206{
1207	clear_buffer_dirty(bh);
1208	if (bh->b_assoc_map) {
1209		struct address_space *buffer_mapping = bh->b_page->mapping;
1210
1211		spin_lock(&buffer_mapping->private_lock);
1212		list_del_init(&bh->b_assoc_buffers);
1213		bh->b_assoc_map = NULL;
1214		spin_unlock(&buffer_mapping->private_lock);
1215	}
1216	__brelse(bh);
1217}
1218EXPORT_SYMBOL(__bforget);
1219
1220static struct buffer_head *__bread_slow(struct buffer_head *bh)
1221{
1222	lock_buffer(bh);
1223	if (buffer_uptodate(bh)) {
1224		unlock_buffer(bh);
1225		return bh;
1226	} else {
1227		get_bh(bh);
1228		bh->b_end_io = end_buffer_read_sync;
1229		submit_bh(REQ_OP_READ, 0, bh);
1230		wait_on_buffer(bh);
1231		if (buffer_uptodate(bh))
1232			return bh;
1233	}
1234	brelse(bh);
1235	return NULL;
1236}
1237
1238/*
1239 * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1240 * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1241 * refcount elevated by one when they're in an LRU.  A buffer can only appear
1242 * once in a particular CPU's LRU.  A single buffer can be present in multiple
1243 * CPU's LRUs at the same time.
1244 *
1245 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1246 * sb_find_get_block().
1247 *
1248 * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1249 * a local interrupt disable for that.
1250 */
1251
1252#define BH_LRU_SIZE	16
1253
1254struct bh_lru {
1255	struct buffer_head *bhs[BH_LRU_SIZE];
1256};
1257
1258static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1259
1260#ifdef CONFIG_SMP
1261#define bh_lru_lock()	local_irq_disable()
1262#define bh_lru_unlock()	local_irq_enable()
1263#else
1264#define bh_lru_lock()	preempt_disable()
1265#define bh_lru_unlock()	preempt_enable()
1266#endif
1267
1268static inline void check_irqs_on(void)
1269{
1270#ifdef irqs_disabled
1271	BUG_ON(irqs_disabled());
1272#endif
1273}
1274
1275/*
1276 * The LRU management algorithm is dopey-but-simple.  Sorry.
 
 
1277 */
1278static void bh_lru_install(struct buffer_head *bh)
1279{
1280	struct buffer_head *evictee = NULL;
 
 
1281
1282	check_irqs_on();
1283	bh_lru_lock();
1284	if (__this_cpu_read(bh_lrus.bhs[0]) != bh) {
1285		struct buffer_head *bhs[BH_LRU_SIZE];
1286		int in;
1287		int out = 0;
1288
1289		get_bh(bh);
1290		bhs[out++] = bh;
1291		for (in = 0; in < BH_LRU_SIZE; in++) {
1292			struct buffer_head *bh2 =
1293				__this_cpu_read(bh_lrus.bhs[in]);
1294
1295			if (bh2 == bh) {
1296				__brelse(bh2);
1297			} else {
1298				if (out >= BH_LRU_SIZE) {
1299					BUG_ON(evictee != NULL);
1300					evictee = bh2;
1301				} else {
1302					bhs[out++] = bh2;
1303				}
1304			}
1305		}
1306		while (out < BH_LRU_SIZE)
1307			bhs[out++] = NULL;
1308		memcpy(this_cpu_ptr(&bh_lrus.bhs), bhs, sizeof(bhs));
1309	}
1310	bh_lru_unlock();
1311
1312	if (evictee)
1313		__brelse(evictee);
 
1314}
1315
1316/*
1317 * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1318 */
1319static struct buffer_head *
1320lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1321{
1322	struct buffer_head *ret = NULL;
1323	unsigned int i;
1324
1325	check_irqs_on();
1326	bh_lru_lock();
1327	for (i = 0; i < BH_LRU_SIZE; i++) {
1328		struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1329
1330		if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1331		    bh->b_size == size) {
1332			if (i) {
1333				while (i) {
1334					__this_cpu_write(bh_lrus.bhs[i],
1335						__this_cpu_read(bh_lrus.bhs[i - 1]));
1336					i--;
1337				}
1338				__this_cpu_write(bh_lrus.bhs[0], bh);
1339			}
1340			get_bh(bh);
1341			ret = bh;
1342			break;
1343		}
1344	}
1345	bh_lru_unlock();
1346	return ret;
1347}
1348
1349/*
1350 * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1351 * it in the LRU and mark it as accessed.  If it is not present then return
1352 * NULL
1353 */
1354struct buffer_head *
1355__find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1356{
1357	struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1358
1359	if (bh == NULL) {
1360		/* __find_get_block_slow will mark the page accessed */
1361		bh = __find_get_block_slow(bdev, block);
1362		if (bh)
1363			bh_lru_install(bh);
1364	} else
1365		touch_buffer(bh);
1366
1367	return bh;
1368}
1369EXPORT_SYMBOL(__find_get_block);
1370
1371/*
1372 * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1373 * which corresponds to the passed block_device, block and size. The
1374 * returned buffer has its reference count incremented.
1375 *
1376 * __getblk_gfp() will lock up the machine if grow_dev_page's
1377 * try_to_free_buffers() attempt is failing.  FIXME, perhaps?
1378 */
1379struct buffer_head *
1380__getblk_gfp(struct block_device *bdev, sector_t block,
1381	     unsigned size, gfp_t gfp)
1382{
1383	struct buffer_head *bh = __find_get_block(bdev, block, size);
1384
1385	might_sleep();
1386	if (bh == NULL)
1387		bh = __getblk_slow(bdev, block, size, gfp);
1388	return bh;
1389}
1390EXPORT_SYMBOL(__getblk_gfp);
1391
1392/*
1393 * Do async read-ahead on a buffer..
1394 */
1395void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1396{
1397	struct buffer_head *bh = __getblk(bdev, block, size);
1398	if (likely(bh)) {
1399		ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh);
1400		brelse(bh);
1401	}
1402}
1403EXPORT_SYMBOL(__breadahead);
1404
1405/**
1406 *  __bread_gfp() - reads a specified block and returns the bh
1407 *  @bdev: the block_device to read from
1408 *  @block: number of block
1409 *  @size: size (in bytes) to read
1410 *  @gfp: page allocation flag
1411 *
1412 *  Reads a specified block, and returns buffer head that contains it.
1413 *  The page cache can be allocated from non-movable area
1414 *  not to prevent page migration if you set gfp to zero.
1415 *  It returns NULL if the block was unreadable.
1416 */
1417struct buffer_head *
1418__bread_gfp(struct block_device *bdev, sector_t block,
1419		   unsigned size, gfp_t gfp)
1420{
1421	struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1422
1423	if (likely(bh) && !buffer_uptodate(bh))
1424		bh = __bread_slow(bh);
1425	return bh;
1426}
1427EXPORT_SYMBOL(__bread_gfp);
1428
1429/*
1430 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1431 * This doesn't race because it runs in each cpu either in irq
1432 * or with preempt disabled.
1433 */
1434static void invalidate_bh_lru(void *arg)
1435{
1436	struct bh_lru *b = &get_cpu_var(bh_lrus);
1437	int i;
1438
1439	for (i = 0; i < BH_LRU_SIZE; i++) {
1440		brelse(b->bhs[i]);
1441		b->bhs[i] = NULL;
1442	}
1443	put_cpu_var(bh_lrus);
1444}
1445
1446static bool has_bh_in_lru(int cpu, void *dummy)
1447{
1448	struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1449	int i;
1450	
1451	for (i = 0; i < BH_LRU_SIZE; i++) {
1452		if (b->bhs[i])
1453			return 1;
1454	}
1455
1456	return 0;
1457}
1458
1459void invalidate_bh_lrus(void)
1460{
1461	on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL);
1462}
1463EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1464
1465void set_bh_page(struct buffer_head *bh,
1466		struct page *page, unsigned long offset)
1467{
1468	bh->b_page = page;
1469	BUG_ON(offset >= PAGE_SIZE);
1470	if (PageHighMem(page))
1471		/*
1472		 * This catches illegal uses and preserves the offset:
1473		 */
1474		bh->b_data = (char *)(0 + offset);
1475	else
1476		bh->b_data = page_address(page) + offset;
1477}
1478EXPORT_SYMBOL(set_bh_page);
1479
1480/*
1481 * Called when truncating a buffer on a page completely.
1482 */
1483
1484/* Bits that are cleared during an invalidate */
1485#define BUFFER_FLAGS_DISCARD \
1486	(1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1487	 1 << BH_Delay | 1 << BH_Unwritten)
1488
1489static void discard_buffer(struct buffer_head * bh)
1490{
1491	unsigned long b_state, b_state_old;
1492
1493	lock_buffer(bh);
1494	clear_buffer_dirty(bh);
1495	bh->b_bdev = NULL;
1496	b_state = bh->b_state;
1497	for (;;) {
1498		b_state_old = cmpxchg(&bh->b_state, b_state,
1499				      (b_state & ~BUFFER_FLAGS_DISCARD));
1500		if (b_state_old == b_state)
1501			break;
1502		b_state = b_state_old;
1503	}
1504	unlock_buffer(bh);
1505}
1506
1507/**
1508 * block_invalidatepage - invalidate part or all of a buffer-backed page
1509 *
1510 * @page: the page which is affected
1511 * @offset: start of the range to invalidate
1512 * @length: length of the range to invalidate
1513 *
1514 * block_invalidatepage() is called when all or part of the page has become
1515 * invalidated by a truncate operation.
1516 *
1517 * block_invalidatepage() does not have to release all buffers, but it must
1518 * ensure that no dirty buffer is left outside @offset and that no I/O
1519 * is underway against any of the blocks which are outside the truncation
1520 * point.  Because the caller is about to free (and possibly reuse) those
1521 * blocks on-disk.
1522 */
1523void block_invalidatepage(struct page *page, unsigned int offset,
1524			  unsigned int length)
1525{
1526	struct buffer_head *head, *bh, *next;
1527	unsigned int curr_off = 0;
1528	unsigned int stop = length + offset;
1529
1530	BUG_ON(!PageLocked(page));
1531	if (!page_has_buffers(page))
1532		goto out;
1533
1534	/*
1535	 * Check for overflow
1536	 */
1537	BUG_ON(stop > PAGE_SIZE || stop < length);
1538
1539	head = page_buffers(page);
1540	bh = head;
1541	do {
1542		unsigned int next_off = curr_off + bh->b_size;
1543		next = bh->b_this_page;
1544
1545		/*
1546		 * Are we still fully in range ?
1547		 */
1548		if (next_off > stop)
1549			goto out;
1550
1551		/*
1552		 * is this block fully invalidated?
1553		 */
1554		if (offset <= curr_off)
1555			discard_buffer(bh);
1556		curr_off = next_off;
1557		bh = next;
1558	} while (bh != head);
1559
1560	/*
1561	 * We release buffers only if the entire page is being invalidated.
1562	 * The get_block cached value has been unconditionally invalidated,
1563	 * so real IO is not possible anymore.
1564	 */
1565	if (offset == 0)
1566		try_to_release_page(page, 0);
1567out:
1568	return;
1569}
1570EXPORT_SYMBOL(block_invalidatepage);
1571
1572
1573/*
1574 * We attach and possibly dirty the buffers atomically wrt
1575 * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1576 * is already excluded via the page lock.
1577 */
1578void create_empty_buffers(struct page *page,
1579			unsigned long blocksize, unsigned long b_state)
1580{
1581	struct buffer_head *bh, *head, *tail;
1582
1583	head = alloc_page_buffers(page, blocksize, 1);
1584	bh = head;
1585	do {
1586		bh->b_state |= b_state;
1587		tail = bh;
1588		bh = bh->b_this_page;
1589	} while (bh);
1590	tail->b_this_page = head;
1591
1592	spin_lock(&page->mapping->private_lock);
1593	if (PageUptodate(page) || PageDirty(page)) {
1594		bh = head;
1595		do {
1596			if (PageDirty(page))
1597				set_buffer_dirty(bh);
1598			if (PageUptodate(page))
1599				set_buffer_uptodate(bh);
1600			bh = bh->b_this_page;
1601		} while (bh != head);
1602	}
1603	attach_page_buffers(page, head);
1604	spin_unlock(&page->mapping->private_lock);
1605}
1606EXPORT_SYMBOL(create_empty_buffers);
1607
1608/**
1609 * clean_bdev_aliases: clean a range of buffers in block device
1610 * @bdev: Block device to clean buffers in
1611 * @block: Start of a range of blocks to clean
1612 * @len: Number of blocks to clean
1613 *
1614 * We are taking a range of blocks for data and we don't want writeback of any
1615 * buffer-cache aliases starting from return from this function and until the
1616 * moment when something will explicitly mark the buffer dirty (hopefully that
1617 * will not happen until we will free that block ;-) We don't even need to mark
1618 * it not-uptodate - nobody can expect anything from a newly allocated buffer
1619 * anyway. We used to use unmap_buffer() for such invalidation, but that was
1620 * wrong. We definitely don't want to mark the alias unmapped, for example - it
1621 * would confuse anyone who might pick it with bread() afterwards...
1622 *
1623 * Also..  Note that bforget() doesn't lock the buffer.  So there can be
1624 * writeout I/O going on against recently-freed buffers.  We don't wait on that
1625 * I/O in bforget() - it's more efficient to wait on the I/O only if we really
1626 * need to.  That happens here.
1627 */
1628void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len)
1629{
1630	struct inode *bd_inode = bdev->bd_inode;
1631	struct address_space *bd_mapping = bd_inode->i_mapping;
1632	struct pagevec pvec;
1633	pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
1634	pgoff_t end;
1635	int i;
1636	struct buffer_head *bh;
1637	struct buffer_head *head;
1638
1639	end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits);
1640	pagevec_init(&pvec, 0);
1641	while (index <= end && pagevec_lookup(&pvec, bd_mapping, index,
1642			min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1)) {
1643		for (i = 0; i < pagevec_count(&pvec); i++) {
1644			struct page *page = pvec.pages[i];
1645
1646			index = page->index;
1647			if (index > end)
1648				break;
1649			if (!page_has_buffers(page))
1650				continue;
1651			/*
1652			 * We use page lock instead of bd_mapping->private_lock
1653			 * to pin buffers here since we can afford to sleep and
1654			 * it scales better than a global spinlock lock.
1655			 */
1656			lock_page(page);
1657			/* Recheck when the page is locked which pins bhs */
1658			if (!page_has_buffers(page))
1659				goto unlock_page;
1660			head = page_buffers(page);
1661			bh = head;
1662			do {
1663				if (!buffer_mapped(bh) || (bh->b_blocknr < block))
1664					goto next;
1665				if (bh->b_blocknr >= block + len)
1666					break;
1667				clear_buffer_dirty(bh);
1668				wait_on_buffer(bh);
1669				clear_buffer_req(bh);
1670next:
1671				bh = bh->b_this_page;
1672			} while (bh != head);
1673unlock_page:
1674			unlock_page(page);
1675		}
1676		pagevec_release(&pvec);
1677		cond_resched();
1678		index++;
 
 
1679	}
1680}
1681EXPORT_SYMBOL(clean_bdev_aliases);
1682
1683/*
1684 * Size is a power-of-two in the range 512..PAGE_SIZE,
1685 * and the case we care about most is PAGE_SIZE.
1686 *
1687 * So this *could* possibly be written with those
1688 * constraints in mind (relevant mostly if some
1689 * architecture has a slow bit-scan instruction)
1690 */
1691static inline int block_size_bits(unsigned int blocksize)
1692{
1693	return ilog2(blocksize);
1694}
1695
1696static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1697{
1698	BUG_ON(!PageLocked(page));
1699
1700	if (!page_has_buffers(page))
1701		create_empty_buffers(page, 1 << ACCESS_ONCE(inode->i_blkbits), b_state);
 
1702	return page_buffers(page);
1703}
1704
1705/*
1706 * NOTE! All mapped/uptodate combinations are valid:
1707 *
1708 *	Mapped	Uptodate	Meaning
1709 *
1710 *	No	No		"unknown" - must do get_block()
1711 *	No	Yes		"hole" - zero-filled
1712 *	Yes	No		"allocated" - allocated on disk, not read in
1713 *	Yes	Yes		"valid" - allocated and up-to-date in memory.
1714 *
1715 * "Dirty" is valid only with the last case (mapped+uptodate).
1716 */
1717
1718/*
1719 * While block_write_full_page is writing back the dirty buffers under
1720 * the page lock, whoever dirtied the buffers may decide to clean them
1721 * again at any time.  We handle that by only looking at the buffer
1722 * state inside lock_buffer().
1723 *
1724 * If block_write_full_page() is called for regular writeback
1725 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1726 * locked buffer.   This only can happen if someone has written the buffer
1727 * directly, with submit_bh().  At the address_space level PageWriteback
1728 * prevents this contention from occurring.
1729 *
1730 * If block_write_full_page() is called with wbc->sync_mode ==
1731 * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
1732 * causes the writes to be flagged as synchronous writes.
1733 */
1734int __block_write_full_page(struct inode *inode, struct page *page,
1735			get_block_t *get_block, struct writeback_control *wbc,
1736			bh_end_io_t *handler)
1737{
1738	int err;
1739	sector_t block;
1740	sector_t last_block;
1741	struct buffer_head *bh, *head;
1742	unsigned int blocksize, bbits;
1743	int nr_underway = 0;
1744	int write_flags = wbc_to_write_flags(wbc);
1745
1746	head = create_page_buffers(page, inode,
1747					(1 << BH_Dirty)|(1 << BH_Uptodate));
1748
1749	/*
1750	 * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1751	 * here, and the (potentially unmapped) buffers may become dirty at
1752	 * any time.  If a buffer becomes dirty here after we've inspected it
1753	 * then we just miss that fact, and the page stays dirty.
1754	 *
1755	 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1756	 * handle that here by just cleaning them.
1757	 */
1758
1759	bh = head;
1760	blocksize = bh->b_size;
1761	bbits = block_size_bits(blocksize);
1762
1763	block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1764	last_block = (i_size_read(inode) - 1) >> bbits;
1765
1766	/*
1767	 * Get all the dirty buffers mapped to disk addresses and
1768	 * handle any aliases from the underlying blockdev's mapping.
1769	 */
1770	do {
1771		if (block > last_block) {
1772			/*
1773			 * mapped buffers outside i_size will occur, because
1774			 * this page can be outside i_size when there is a
1775			 * truncate in progress.
1776			 */
1777			/*
1778			 * The buffer was zeroed by block_write_full_page()
1779			 */
1780			clear_buffer_dirty(bh);
1781			set_buffer_uptodate(bh);
1782		} else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1783			   buffer_dirty(bh)) {
1784			WARN_ON(bh->b_size != blocksize);
1785			err = get_block(inode, block, bh, 1);
1786			if (err)
1787				goto recover;
1788			clear_buffer_delay(bh);
1789			if (buffer_new(bh)) {
1790				/* blockdev mappings never come here */
1791				clear_buffer_new(bh);
1792				clean_bdev_bh_alias(bh);
1793			}
1794		}
1795		bh = bh->b_this_page;
1796		block++;
1797	} while (bh != head);
1798
1799	do {
1800		if (!buffer_mapped(bh))
1801			continue;
1802		/*
1803		 * If it's a fully non-blocking write attempt and we cannot
1804		 * lock the buffer then redirty the page.  Note that this can
1805		 * potentially cause a busy-wait loop from writeback threads
1806		 * and kswapd activity, but those code paths have their own
1807		 * higher-level throttling.
1808		 */
1809		if (wbc->sync_mode != WB_SYNC_NONE) {
1810			lock_buffer(bh);
1811		} else if (!trylock_buffer(bh)) {
1812			redirty_page_for_writepage(wbc, page);
1813			continue;
1814		}
1815		if (test_clear_buffer_dirty(bh)) {
1816			mark_buffer_async_write_endio(bh, handler);
1817		} else {
1818			unlock_buffer(bh);
1819		}
1820	} while ((bh = bh->b_this_page) != head);
1821
1822	/*
1823	 * The page and its buffers are protected by PageWriteback(), so we can
1824	 * drop the bh refcounts early.
1825	 */
1826	BUG_ON(PageWriteback(page));
1827	set_page_writeback(page);
1828
1829	do {
1830		struct buffer_head *next = bh->b_this_page;
1831		if (buffer_async_write(bh)) {
1832			submit_bh_wbc(REQ_OP_WRITE, write_flags, bh, 0, wbc);
 
1833			nr_underway++;
1834		}
1835		bh = next;
1836	} while (bh != head);
1837	unlock_page(page);
1838
1839	err = 0;
1840done:
1841	if (nr_underway == 0) {
1842		/*
1843		 * The page was marked dirty, but the buffers were
1844		 * clean.  Someone wrote them back by hand with
1845		 * ll_rw_block/submit_bh.  A rare case.
1846		 */
1847		end_page_writeback(page);
1848
1849		/*
1850		 * The page and buffer_heads can be released at any time from
1851		 * here on.
1852		 */
1853	}
1854	return err;
1855
1856recover:
1857	/*
1858	 * ENOSPC, or some other error.  We may already have added some
1859	 * blocks to the file, so we need to write these out to avoid
1860	 * exposing stale data.
1861	 * The page is currently locked and not marked for writeback
1862	 */
1863	bh = head;
1864	/* Recovery: lock and submit the mapped buffers */
1865	do {
1866		if (buffer_mapped(bh) && buffer_dirty(bh) &&
1867		    !buffer_delay(bh)) {
1868			lock_buffer(bh);
1869			mark_buffer_async_write_endio(bh, handler);
1870		} else {
1871			/*
1872			 * The buffer may have been set dirty during
1873			 * attachment to a dirty page.
1874			 */
1875			clear_buffer_dirty(bh);
1876		}
1877	} while ((bh = bh->b_this_page) != head);
1878	SetPageError(page);
1879	BUG_ON(PageWriteback(page));
1880	mapping_set_error(page->mapping, err);
1881	set_page_writeback(page);
1882	do {
1883		struct buffer_head *next = bh->b_this_page;
1884		if (buffer_async_write(bh)) {
1885			clear_buffer_dirty(bh);
1886			submit_bh_wbc(REQ_OP_WRITE, write_flags, bh, 0, wbc);
 
1887			nr_underway++;
1888		}
1889		bh = next;
1890	} while (bh != head);
1891	unlock_page(page);
1892	goto done;
1893}
1894EXPORT_SYMBOL(__block_write_full_page);
1895
1896/*
1897 * If a page has any new buffers, zero them out here, and mark them uptodate
1898 * and dirty so they'll be written out (in order to prevent uninitialised
1899 * block data from leaking). And clear the new bit.
1900 */
1901void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1902{
1903	unsigned int block_start, block_end;
1904	struct buffer_head *head, *bh;
1905
1906	BUG_ON(!PageLocked(page));
1907	if (!page_has_buffers(page))
1908		return;
1909
1910	bh = head = page_buffers(page);
1911	block_start = 0;
1912	do {
1913		block_end = block_start + bh->b_size;
1914
1915		if (buffer_new(bh)) {
1916			if (block_end > from && block_start < to) {
1917				if (!PageUptodate(page)) {
1918					unsigned start, size;
1919
1920					start = max(from, block_start);
1921					size = min(to, block_end) - start;
1922
1923					zero_user(page, start, size);
1924					set_buffer_uptodate(bh);
1925				}
1926
1927				clear_buffer_new(bh);
1928				mark_buffer_dirty(bh);
1929			}
1930		}
1931
1932		block_start = block_end;
1933		bh = bh->b_this_page;
1934	} while (bh != head);
1935}
1936EXPORT_SYMBOL(page_zero_new_buffers);
1937
1938static void
1939iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
1940		struct iomap *iomap)
1941{
1942	loff_t offset = block << inode->i_blkbits;
1943
1944	bh->b_bdev = iomap->bdev;
1945
1946	/*
1947	 * Block points to offset in file we need to map, iomap contains
1948	 * the offset at which the map starts. If the map ends before the
1949	 * current block, then do not map the buffer and let the caller
1950	 * handle it.
1951	 */
1952	BUG_ON(offset >= iomap->offset + iomap->length);
1953
1954	switch (iomap->type) {
1955	case IOMAP_HOLE:
1956		/*
1957		 * If the buffer is not up to date or beyond the current EOF,
1958		 * we need to mark it as new to ensure sub-block zeroing is
1959		 * executed if necessary.
1960		 */
1961		if (!buffer_uptodate(bh) ||
1962		    (offset >= i_size_read(inode)))
1963			set_buffer_new(bh);
1964		break;
1965	case IOMAP_DELALLOC:
1966		if (!buffer_uptodate(bh) ||
1967		    (offset >= i_size_read(inode)))
1968			set_buffer_new(bh);
1969		set_buffer_uptodate(bh);
1970		set_buffer_mapped(bh);
1971		set_buffer_delay(bh);
1972		break;
1973	case IOMAP_UNWRITTEN:
1974		/*
1975		 * For unwritten regions, we always need to ensure that
1976		 * sub-block writes cause the regions in the block we are not
1977		 * writing to are zeroed. Set the buffer as new to ensure this.
1978		 */
1979		set_buffer_new(bh);
1980		set_buffer_unwritten(bh);
1981		/* FALLTHRU */
1982	case IOMAP_MAPPED:
1983		if (offset >= i_size_read(inode))
1984			set_buffer_new(bh);
1985		bh->b_blocknr = (iomap->blkno >> (inode->i_blkbits - 9)) +
1986				((offset - iomap->offset) >> inode->i_blkbits);
1987		set_buffer_mapped(bh);
1988		break;
1989	}
1990}
1991
1992int __block_write_begin_int(struct page *page, loff_t pos, unsigned len,
1993		get_block_t *get_block, struct iomap *iomap)
1994{
1995	unsigned from = pos & (PAGE_SIZE - 1);
1996	unsigned to = from + len;
1997	struct inode *inode = page->mapping->host;
1998	unsigned block_start, block_end;
1999	sector_t block;
2000	int err = 0;
2001	unsigned blocksize, bbits;
2002	struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
2003
2004	BUG_ON(!PageLocked(page));
2005	BUG_ON(from > PAGE_SIZE);
2006	BUG_ON(to > PAGE_SIZE);
2007	BUG_ON(from > to);
2008
2009	head = create_page_buffers(page, inode, 0);
2010	blocksize = head->b_size;
2011	bbits = block_size_bits(blocksize);
2012
2013	block = (sector_t)page->index << (PAGE_SHIFT - bbits);
2014
2015	for(bh = head, block_start = 0; bh != head || !block_start;
2016	    block++, block_start=block_end, bh = bh->b_this_page) {
2017		block_end = block_start + blocksize;
2018		if (block_end <= from || block_start >= to) {
2019			if (PageUptodate(page)) {
2020				if (!buffer_uptodate(bh))
2021					set_buffer_uptodate(bh);
2022			}
2023			continue;
2024		}
2025		if (buffer_new(bh))
2026			clear_buffer_new(bh);
2027		if (!buffer_mapped(bh)) {
2028			WARN_ON(bh->b_size != blocksize);
2029			if (get_block) {
2030				err = get_block(inode, block, bh, 1);
2031				if (err)
2032					break;
2033			} else {
2034				iomap_to_bh(inode, block, bh, iomap);
2035			}
2036
2037			if (buffer_new(bh)) {
2038				clean_bdev_bh_alias(bh);
2039				if (PageUptodate(page)) {
2040					clear_buffer_new(bh);
2041					set_buffer_uptodate(bh);
2042					mark_buffer_dirty(bh);
2043					continue;
2044				}
2045				if (block_end > to || block_start < from)
2046					zero_user_segments(page,
2047						to, block_end,
2048						block_start, from);
2049				continue;
2050			}
2051		}
2052		if (PageUptodate(page)) {
2053			if (!buffer_uptodate(bh))
2054				set_buffer_uptodate(bh);
2055			continue; 
2056		}
2057		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
2058		    !buffer_unwritten(bh) &&
2059		     (block_start < from || block_end > to)) {
2060			ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2061			*wait_bh++=bh;
2062		}
2063	}
2064	/*
2065	 * If we issued read requests - let them complete.
2066	 */
2067	while(wait_bh > wait) {
2068		wait_on_buffer(*--wait_bh);
2069		if (!buffer_uptodate(*wait_bh))
2070			err = -EIO;
2071	}
2072	if (unlikely(err))
2073		page_zero_new_buffers(page, from, to);
2074	return err;
2075}
2076
2077int __block_write_begin(struct page *page, loff_t pos, unsigned len,
2078		get_block_t *get_block)
2079{
2080	return __block_write_begin_int(page, pos, len, get_block, NULL);
2081}
2082EXPORT_SYMBOL(__block_write_begin);
2083
2084static int __block_commit_write(struct inode *inode, struct page *page,
2085		unsigned from, unsigned to)
2086{
2087	unsigned block_start, block_end;
2088	int partial = 0;
2089	unsigned blocksize;
2090	struct buffer_head *bh, *head;
2091
2092	bh = head = page_buffers(page);
2093	blocksize = bh->b_size;
2094
2095	block_start = 0;
2096	do {
2097		block_end = block_start + blocksize;
2098		if (block_end <= from || block_start >= to) {
2099			if (!buffer_uptodate(bh))
2100				partial = 1;
2101		} else {
2102			set_buffer_uptodate(bh);
2103			mark_buffer_dirty(bh);
2104		}
2105		clear_buffer_new(bh);
2106
2107		block_start = block_end;
2108		bh = bh->b_this_page;
2109	} while (bh != head);
2110
2111	/*
2112	 * If this is a partial write which happened to make all buffers
2113	 * uptodate then we can optimize away a bogus readpage() for
2114	 * the next read(). Here we 'discover' whether the page went
2115	 * uptodate as a result of this (potentially partial) write.
2116	 */
2117	if (!partial)
2118		SetPageUptodate(page);
2119	return 0;
2120}
2121
2122/*
2123 * block_write_begin takes care of the basic task of block allocation and
2124 * bringing partial write blocks uptodate first.
2125 *
2126 * The filesystem needs to handle block truncation upon failure.
2127 */
2128int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2129		unsigned flags, struct page **pagep, get_block_t *get_block)
2130{
2131	pgoff_t index = pos >> PAGE_SHIFT;
2132	struct page *page;
2133	int status;
2134
2135	page = grab_cache_page_write_begin(mapping, index, flags);
2136	if (!page)
2137		return -ENOMEM;
2138
2139	status = __block_write_begin(page, pos, len, get_block);
2140	if (unlikely(status)) {
2141		unlock_page(page);
2142		put_page(page);
2143		page = NULL;
2144	}
2145
2146	*pagep = page;
2147	return status;
2148}
2149EXPORT_SYMBOL(block_write_begin);
2150
2151int block_write_end(struct file *file, struct address_space *mapping,
2152			loff_t pos, unsigned len, unsigned copied,
2153			struct page *page, void *fsdata)
2154{
2155	struct inode *inode = mapping->host;
2156	unsigned start;
2157
2158	start = pos & (PAGE_SIZE - 1);
2159
2160	if (unlikely(copied < len)) {
2161		/*
2162		 * The buffers that were written will now be uptodate, so we
2163		 * don't have to worry about a readpage reading them and
2164		 * overwriting a partial write. However if we have encountered
2165		 * a short write and only partially written into a buffer, it
2166		 * will not be marked uptodate, so a readpage might come in and
2167		 * destroy our partial write.
2168		 *
2169		 * Do the simplest thing, and just treat any short write to a
2170		 * non uptodate page as a zero-length write, and force the
2171		 * caller to redo the whole thing.
2172		 */
2173		if (!PageUptodate(page))
2174			copied = 0;
2175
2176		page_zero_new_buffers(page, start+copied, start+len);
2177	}
2178	flush_dcache_page(page);
2179
2180	/* This could be a short (even 0-length) commit */
2181	__block_commit_write(inode, page, start, start+copied);
2182
2183	return copied;
2184}
2185EXPORT_SYMBOL(block_write_end);
2186
2187int generic_write_end(struct file *file, struct address_space *mapping,
2188			loff_t pos, unsigned len, unsigned copied,
2189			struct page *page, void *fsdata)
2190{
2191	struct inode *inode = mapping->host;
2192	loff_t old_size = inode->i_size;
2193	int i_size_changed = 0;
2194
2195	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2196
2197	/*
2198	 * No need to use i_size_read() here, the i_size
2199	 * cannot change under us because we hold i_mutex.
2200	 *
2201	 * But it's important to update i_size while still holding page lock:
2202	 * page writeout could otherwise come in and zero beyond i_size.
2203	 */
2204	if (pos+copied > inode->i_size) {
2205		i_size_write(inode, pos+copied);
2206		i_size_changed = 1;
2207	}
2208
2209	unlock_page(page);
2210	put_page(page);
2211
2212	if (old_size < pos)
2213		pagecache_isize_extended(inode, old_size, pos);
2214	/*
2215	 * Don't mark the inode dirty under page lock. First, it unnecessarily
2216	 * makes the holding time of page lock longer. Second, it forces lock
2217	 * ordering of page lock and transaction start for journaling
2218	 * filesystems.
2219	 */
2220	if (i_size_changed)
2221		mark_inode_dirty(inode);
2222
2223	return copied;
2224}
2225EXPORT_SYMBOL(generic_write_end);
2226
2227/*
2228 * block_is_partially_uptodate checks whether buffers within a page are
2229 * uptodate or not.
2230 *
2231 * Returns true if all buffers which correspond to a file portion
2232 * we want to read are uptodate.
2233 */
2234int block_is_partially_uptodate(struct page *page, unsigned long from,
2235					unsigned long count)
2236{
2237	unsigned block_start, block_end, blocksize;
2238	unsigned to;
2239	struct buffer_head *bh, *head;
2240	int ret = 1;
2241
2242	if (!page_has_buffers(page))
2243		return 0;
2244
2245	head = page_buffers(page);
2246	blocksize = head->b_size;
2247	to = min_t(unsigned, PAGE_SIZE - from, count);
2248	to = from + to;
2249	if (from < blocksize && to > PAGE_SIZE - blocksize)
2250		return 0;
2251
2252	bh = head;
2253	block_start = 0;
2254	do {
2255		block_end = block_start + blocksize;
2256		if (block_end > from && block_start < to) {
2257			if (!buffer_uptodate(bh)) {
2258				ret = 0;
2259				break;
2260			}
2261			if (block_end >= to)
2262				break;
2263		}
2264		block_start = block_end;
2265		bh = bh->b_this_page;
2266	} while (bh != head);
2267
2268	return ret;
2269}
2270EXPORT_SYMBOL(block_is_partially_uptodate);
2271
2272/*
2273 * Generic "read page" function for block devices that have the normal
2274 * get_block functionality. This is most of the block device filesystems.
2275 * Reads the page asynchronously --- the unlock_buffer() and
2276 * set/clear_buffer_uptodate() functions propagate buffer state into the
2277 * page struct once IO has completed.
2278 */
2279int block_read_full_page(struct page *page, get_block_t *get_block)
2280{
2281	struct inode *inode = page->mapping->host;
2282	sector_t iblock, lblock;
2283	struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2284	unsigned int blocksize, bbits;
2285	int nr, i;
2286	int fully_mapped = 1;
2287
2288	head = create_page_buffers(page, inode, 0);
2289	blocksize = head->b_size;
2290	bbits = block_size_bits(blocksize);
2291
2292	iblock = (sector_t)page->index << (PAGE_SHIFT - bbits);
2293	lblock = (i_size_read(inode)+blocksize-1) >> bbits;
2294	bh = head;
2295	nr = 0;
2296	i = 0;
2297
2298	do {
2299		if (buffer_uptodate(bh))
2300			continue;
2301
2302		if (!buffer_mapped(bh)) {
2303			int err = 0;
2304
2305			fully_mapped = 0;
2306			if (iblock < lblock) {
2307				WARN_ON(bh->b_size != blocksize);
2308				err = get_block(inode, iblock, bh, 0);
2309				if (err)
2310					SetPageError(page);
2311			}
2312			if (!buffer_mapped(bh)) {
2313				zero_user(page, i * blocksize, blocksize);
2314				if (!err)
2315					set_buffer_uptodate(bh);
2316				continue;
2317			}
2318			/*
2319			 * get_block() might have updated the buffer
2320			 * synchronously
2321			 */
2322			if (buffer_uptodate(bh))
2323				continue;
2324		}
2325		arr[nr++] = bh;
2326	} while (i++, iblock++, (bh = bh->b_this_page) != head);
2327
2328	if (fully_mapped)
2329		SetPageMappedToDisk(page);
2330
2331	if (!nr) {
2332		/*
2333		 * All buffers are uptodate - we can set the page uptodate
2334		 * as well. But not if get_block() returned an error.
2335		 */
2336		if (!PageError(page))
2337			SetPageUptodate(page);
2338		unlock_page(page);
2339		return 0;
2340	}
2341
2342	/* Stage two: lock the buffers */
2343	for (i = 0; i < nr; i++) {
2344		bh = arr[i];
2345		lock_buffer(bh);
2346		mark_buffer_async_read(bh);
2347	}
2348
2349	/*
2350	 * Stage 3: start the IO.  Check for uptodateness
2351	 * inside the buffer lock in case another process reading
2352	 * the underlying blockdev brought it uptodate (the sct fix).
2353	 */
2354	for (i = 0; i < nr; i++) {
2355		bh = arr[i];
2356		if (buffer_uptodate(bh))
2357			end_buffer_async_read(bh, 1);
2358		else
2359			submit_bh(REQ_OP_READ, 0, bh);
2360	}
2361	return 0;
2362}
2363EXPORT_SYMBOL(block_read_full_page);
2364
2365/* utility function for filesystems that need to do work on expanding
2366 * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2367 * deal with the hole.  
2368 */
2369int generic_cont_expand_simple(struct inode *inode, loff_t size)
2370{
2371	struct address_space *mapping = inode->i_mapping;
2372	struct page *page;
2373	void *fsdata;
2374	int err;
2375
2376	err = inode_newsize_ok(inode, size);
2377	if (err)
2378		goto out;
2379
2380	err = pagecache_write_begin(NULL, mapping, size, 0,
2381				AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND,
2382				&page, &fsdata);
2383	if (err)
2384		goto out;
2385
2386	err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2387	BUG_ON(err > 0);
2388
2389out:
2390	return err;
2391}
2392EXPORT_SYMBOL(generic_cont_expand_simple);
2393
2394static int cont_expand_zero(struct file *file, struct address_space *mapping,
2395			    loff_t pos, loff_t *bytes)
2396{
2397	struct inode *inode = mapping->host;
2398	unsigned blocksize = 1 << inode->i_blkbits;
2399	struct page *page;
2400	void *fsdata;
2401	pgoff_t index, curidx;
2402	loff_t curpos;
2403	unsigned zerofrom, offset, len;
2404	int err = 0;
2405
2406	index = pos >> PAGE_SHIFT;
2407	offset = pos & ~PAGE_MASK;
2408
2409	while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2410		zerofrom = curpos & ~PAGE_MASK;
2411		if (zerofrom & (blocksize-1)) {
2412			*bytes |= (blocksize-1);
2413			(*bytes)++;
2414		}
2415		len = PAGE_SIZE - zerofrom;
2416
2417		err = pagecache_write_begin(file, mapping, curpos, len,
2418						AOP_FLAG_UNINTERRUPTIBLE,
2419						&page, &fsdata);
2420		if (err)
2421			goto out;
2422		zero_user(page, zerofrom, len);
2423		err = pagecache_write_end(file, mapping, curpos, len, len,
2424						page, fsdata);
2425		if (err < 0)
2426			goto out;
2427		BUG_ON(err != len);
2428		err = 0;
2429
2430		balance_dirty_pages_ratelimited(mapping);
2431
2432		if (unlikely(fatal_signal_pending(current))) {
2433			err = -EINTR;
2434			goto out;
2435		}
2436	}
2437
2438	/* page covers the boundary, find the boundary offset */
2439	if (index == curidx) {
2440		zerofrom = curpos & ~PAGE_MASK;
2441		/* if we will expand the thing last block will be filled */
2442		if (offset <= zerofrom) {
2443			goto out;
2444		}
2445		if (zerofrom & (blocksize-1)) {
2446			*bytes |= (blocksize-1);
2447			(*bytes)++;
2448		}
2449		len = offset - zerofrom;
2450
2451		err = pagecache_write_begin(file, mapping, curpos, len,
2452						AOP_FLAG_UNINTERRUPTIBLE,
2453						&page, &fsdata);
2454		if (err)
2455			goto out;
2456		zero_user(page, zerofrom, len);
2457		err = pagecache_write_end(file, mapping, curpos, len, len,
2458						page, fsdata);
2459		if (err < 0)
2460			goto out;
2461		BUG_ON(err != len);
2462		err = 0;
2463	}
2464out:
2465	return err;
2466}
2467
2468/*
2469 * For moronic filesystems that do not allow holes in file.
2470 * We may have to extend the file.
2471 */
2472int cont_write_begin(struct file *file, struct address_space *mapping,
2473			loff_t pos, unsigned len, unsigned flags,
2474			struct page **pagep, void **fsdata,
2475			get_block_t *get_block, loff_t *bytes)
2476{
2477	struct inode *inode = mapping->host;
2478	unsigned blocksize = 1 << inode->i_blkbits;
2479	unsigned zerofrom;
2480	int err;
2481
2482	err = cont_expand_zero(file, mapping, pos, bytes);
2483	if (err)
2484		return err;
2485
2486	zerofrom = *bytes & ~PAGE_MASK;
2487	if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2488		*bytes |= (blocksize-1);
2489		(*bytes)++;
2490	}
2491
2492	return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2493}
2494EXPORT_SYMBOL(cont_write_begin);
2495
2496int block_commit_write(struct page *page, unsigned from, unsigned to)
2497{
2498	struct inode *inode = page->mapping->host;
2499	__block_commit_write(inode,page,from,to);
2500	return 0;
2501}
2502EXPORT_SYMBOL(block_commit_write);
2503
2504/*
2505 * block_page_mkwrite() is not allowed to change the file size as it gets
2506 * called from a page fault handler when a page is first dirtied. Hence we must
2507 * be careful to check for EOF conditions here. We set the page up correctly
2508 * for a written page which means we get ENOSPC checking when writing into
2509 * holes and correct delalloc and unwritten extent mapping on filesystems that
2510 * support these features.
2511 *
2512 * We are not allowed to take the i_mutex here so we have to play games to
2513 * protect against truncate races as the page could now be beyond EOF.  Because
2514 * truncate writes the inode size before removing pages, once we have the
2515 * page lock we can determine safely if the page is beyond EOF. If it is not
2516 * beyond EOF, then the page is guaranteed safe against truncation until we
2517 * unlock the page.
2518 *
2519 * Direct callers of this function should protect against filesystem freezing
2520 * using sb_start_pagefault() - sb_end_pagefault() functions.
2521 */
2522int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2523			 get_block_t get_block)
2524{
2525	struct page *page = vmf->page;
2526	struct inode *inode = file_inode(vma->vm_file);
2527	unsigned long end;
2528	loff_t size;
2529	int ret;
2530
2531	lock_page(page);
2532	size = i_size_read(inode);
2533	if ((page->mapping != inode->i_mapping) ||
2534	    (page_offset(page) > size)) {
2535		/* We overload EFAULT to mean page got truncated */
2536		ret = -EFAULT;
2537		goto out_unlock;
2538	}
2539
2540	/* page is wholly or partially inside EOF */
2541	if (((page->index + 1) << PAGE_SHIFT) > size)
2542		end = size & ~PAGE_MASK;
2543	else
2544		end = PAGE_SIZE;
2545
2546	ret = __block_write_begin(page, 0, end, get_block);
2547	if (!ret)
2548		ret = block_commit_write(page, 0, end);
2549
2550	if (unlikely(ret < 0))
2551		goto out_unlock;
2552	set_page_dirty(page);
2553	wait_for_stable_page(page);
2554	return 0;
2555out_unlock:
2556	unlock_page(page);
2557	return ret;
2558}
2559EXPORT_SYMBOL(block_page_mkwrite);
2560
2561/*
2562 * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2563 * immediately, while under the page lock.  So it needs a special end_io
2564 * handler which does not touch the bh after unlocking it.
2565 */
2566static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2567{
2568	__end_buffer_read_notouch(bh, uptodate);
2569}
2570
2571/*
2572 * Attach the singly-linked list of buffers created by nobh_write_begin, to
2573 * the page (converting it to circular linked list and taking care of page
2574 * dirty races).
2575 */
2576static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2577{
2578	struct buffer_head *bh;
2579
2580	BUG_ON(!PageLocked(page));
2581
2582	spin_lock(&page->mapping->private_lock);
2583	bh = head;
2584	do {
2585		if (PageDirty(page))
2586			set_buffer_dirty(bh);
2587		if (!bh->b_this_page)
2588			bh->b_this_page = head;
2589		bh = bh->b_this_page;
2590	} while (bh != head);
2591	attach_page_buffers(page, head);
2592	spin_unlock(&page->mapping->private_lock);
2593}
2594
2595/*
2596 * On entry, the page is fully not uptodate.
2597 * On exit the page is fully uptodate in the areas outside (from,to)
2598 * The filesystem needs to handle block truncation upon failure.
2599 */
2600int nobh_write_begin(struct address_space *mapping,
2601			loff_t pos, unsigned len, unsigned flags,
2602			struct page **pagep, void **fsdata,
2603			get_block_t *get_block)
2604{
2605	struct inode *inode = mapping->host;
2606	const unsigned blkbits = inode->i_blkbits;
2607	const unsigned blocksize = 1 << blkbits;
2608	struct buffer_head *head, *bh;
2609	struct page *page;
2610	pgoff_t index;
2611	unsigned from, to;
2612	unsigned block_in_page;
2613	unsigned block_start, block_end;
2614	sector_t block_in_file;
2615	int nr_reads = 0;
2616	int ret = 0;
2617	int is_mapped_to_disk = 1;
2618
2619	index = pos >> PAGE_SHIFT;
2620	from = pos & (PAGE_SIZE - 1);
2621	to = from + len;
2622
2623	page = grab_cache_page_write_begin(mapping, index, flags);
2624	if (!page)
2625		return -ENOMEM;
2626	*pagep = page;
2627	*fsdata = NULL;
2628
2629	if (page_has_buffers(page)) {
2630		ret = __block_write_begin(page, pos, len, get_block);
2631		if (unlikely(ret))
2632			goto out_release;
2633		return ret;
2634	}
2635
2636	if (PageMappedToDisk(page))
2637		return 0;
2638
2639	/*
2640	 * Allocate buffers so that we can keep track of state, and potentially
2641	 * attach them to the page if an error occurs. In the common case of
2642	 * no error, they will just be freed again without ever being attached
2643	 * to the page (which is all OK, because we're under the page lock).
2644	 *
2645	 * Be careful: the buffer linked list is a NULL terminated one, rather
2646	 * than the circular one we're used to.
2647	 */
2648	head = alloc_page_buffers(page, blocksize, 0);
2649	if (!head) {
2650		ret = -ENOMEM;
2651		goto out_release;
2652	}
2653
2654	block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
2655
2656	/*
2657	 * We loop across all blocks in the page, whether or not they are
2658	 * part of the affected region.  This is so we can discover if the
2659	 * page is fully mapped-to-disk.
2660	 */
2661	for (block_start = 0, block_in_page = 0, bh = head;
2662		  block_start < PAGE_SIZE;
2663		  block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2664		int create;
2665
2666		block_end = block_start + blocksize;
2667		bh->b_state = 0;
2668		create = 1;
2669		if (block_start >= to)
2670			create = 0;
2671		ret = get_block(inode, block_in_file + block_in_page,
2672					bh, create);
2673		if (ret)
2674			goto failed;
2675		if (!buffer_mapped(bh))
2676			is_mapped_to_disk = 0;
2677		if (buffer_new(bh))
2678			clean_bdev_bh_alias(bh);
2679		if (PageUptodate(page)) {
2680			set_buffer_uptodate(bh);
2681			continue;
2682		}
2683		if (buffer_new(bh) || !buffer_mapped(bh)) {
2684			zero_user_segments(page, block_start, from,
2685							to, block_end);
2686			continue;
2687		}
2688		if (buffer_uptodate(bh))
2689			continue;	/* reiserfs does this */
2690		if (block_start < from || block_end > to) {
2691			lock_buffer(bh);
2692			bh->b_end_io = end_buffer_read_nobh;
2693			submit_bh(REQ_OP_READ, 0, bh);
2694			nr_reads++;
2695		}
2696	}
2697
2698	if (nr_reads) {
2699		/*
2700		 * The page is locked, so these buffers are protected from
2701		 * any VM or truncate activity.  Hence we don't need to care
2702		 * for the buffer_head refcounts.
2703		 */
2704		for (bh = head; bh; bh = bh->b_this_page) {
2705			wait_on_buffer(bh);
2706			if (!buffer_uptodate(bh))
2707				ret = -EIO;
2708		}
2709		if (ret)
2710			goto failed;
2711	}
2712
2713	if (is_mapped_to_disk)
2714		SetPageMappedToDisk(page);
2715
2716	*fsdata = head; /* to be released by nobh_write_end */
2717
2718	return 0;
2719
2720failed:
2721	BUG_ON(!ret);
2722	/*
2723	 * Error recovery is a bit difficult. We need to zero out blocks that
2724	 * were newly allocated, and dirty them to ensure they get written out.
2725	 * Buffers need to be attached to the page at this point, otherwise
2726	 * the handling of potential IO errors during writeout would be hard
2727	 * (could try doing synchronous writeout, but what if that fails too?)
2728	 */
2729	attach_nobh_buffers(page, head);
2730	page_zero_new_buffers(page, from, to);
2731
2732out_release:
2733	unlock_page(page);
2734	put_page(page);
2735	*pagep = NULL;
2736
2737	return ret;
2738}
2739EXPORT_SYMBOL(nobh_write_begin);
2740
2741int nobh_write_end(struct file *file, struct address_space *mapping,
2742			loff_t pos, unsigned len, unsigned copied,
2743			struct page *page, void *fsdata)
2744{
2745	struct inode *inode = page->mapping->host;
2746	struct buffer_head *head = fsdata;
2747	struct buffer_head *bh;
2748	BUG_ON(fsdata != NULL && page_has_buffers(page));
2749
2750	if (unlikely(copied < len) && head)
2751		attach_nobh_buffers(page, head);
2752	if (page_has_buffers(page))
2753		return generic_write_end(file, mapping, pos, len,
2754					copied, page, fsdata);
2755
2756	SetPageUptodate(page);
2757	set_page_dirty(page);
2758	if (pos+copied > inode->i_size) {
2759		i_size_write(inode, pos+copied);
2760		mark_inode_dirty(inode);
2761	}
2762
2763	unlock_page(page);
2764	put_page(page);
2765
2766	while (head) {
2767		bh = head;
2768		head = head->b_this_page;
2769		free_buffer_head(bh);
2770	}
2771
2772	return copied;
2773}
2774EXPORT_SYMBOL(nobh_write_end);
2775
2776/*
2777 * nobh_writepage() - based on block_full_write_page() except
2778 * that it tries to operate without attaching bufferheads to
2779 * the page.
2780 */
2781int nobh_writepage(struct page *page, get_block_t *get_block,
2782			struct writeback_control *wbc)
2783{
2784	struct inode * const inode = page->mapping->host;
2785	loff_t i_size = i_size_read(inode);
2786	const pgoff_t end_index = i_size >> PAGE_SHIFT;
2787	unsigned offset;
2788	int ret;
2789
2790	/* Is the page fully inside i_size? */
2791	if (page->index < end_index)
2792		goto out;
2793
2794	/* Is the page fully outside i_size? (truncate in progress) */
2795	offset = i_size & (PAGE_SIZE-1);
2796	if (page->index >= end_index+1 || !offset) {
2797		/*
2798		 * The page may have dirty, unmapped buffers.  For example,
2799		 * they may have been added in ext3_writepage().  Make them
2800		 * freeable here, so the page does not leak.
2801		 */
2802#if 0
2803		/* Not really sure about this  - do we need this ? */
2804		if (page->mapping->a_ops->invalidatepage)
2805			page->mapping->a_ops->invalidatepage(page, offset);
2806#endif
2807		unlock_page(page);
2808		return 0; /* don't care */
2809	}
2810
2811	/*
2812	 * The page straddles i_size.  It must be zeroed out on each and every
2813	 * writepage invocation because it may be mmapped.  "A file is mapped
2814	 * in multiples of the page size.  For a file that is not a multiple of
2815	 * the  page size, the remaining memory is zeroed when mapped, and
2816	 * writes to that region are not written out to the file."
2817	 */
2818	zero_user_segment(page, offset, PAGE_SIZE);
2819out:
2820	ret = mpage_writepage(page, get_block, wbc);
2821	if (ret == -EAGAIN)
2822		ret = __block_write_full_page(inode, page, get_block, wbc,
2823					      end_buffer_async_write);
2824	return ret;
2825}
2826EXPORT_SYMBOL(nobh_writepage);
2827
2828int nobh_truncate_page(struct address_space *mapping,
2829			loff_t from, get_block_t *get_block)
2830{
2831	pgoff_t index = from >> PAGE_SHIFT;
2832	unsigned offset = from & (PAGE_SIZE-1);
2833	unsigned blocksize;
2834	sector_t iblock;
2835	unsigned length, pos;
2836	struct inode *inode = mapping->host;
2837	struct page *page;
2838	struct buffer_head map_bh;
2839	int err;
2840
2841	blocksize = 1 << inode->i_blkbits;
2842	length = offset & (blocksize - 1);
2843
2844	/* Block boundary? Nothing to do */
2845	if (!length)
2846		return 0;
2847
2848	length = blocksize - length;
2849	iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2850
2851	page = grab_cache_page(mapping, index);
2852	err = -ENOMEM;
2853	if (!page)
2854		goto out;
2855
2856	if (page_has_buffers(page)) {
2857has_buffers:
2858		unlock_page(page);
2859		put_page(page);
2860		return block_truncate_page(mapping, from, get_block);
2861	}
2862
2863	/* Find the buffer that contains "offset" */
2864	pos = blocksize;
2865	while (offset >= pos) {
2866		iblock++;
2867		pos += blocksize;
2868	}
2869
2870	map_bh.b_size = blocksize;
2871	map_bh.b_state = 0;
2872	err = get_block(inode, iblock, &map_bh, 0);
2873	if (err)
2874		goto unlock;
2875	/* unmapped? It's a hole - nothing to do */
2876	if (!buffer_mapped(&map_bh))
2877		goto unlock;
2878
2879	/* Ok, it's mapped. Make sure it's up-to-date */
2880	if (!PageUptodate(page)) {
2881		err = mapping->a_ops->readpage(NULL, page);
2882		if (err) {
2883			put_page(page);
2884			goto out;
2885		}
2886		lock_page(page);
2887		if (!PageUptodate(page)) {
2888			err = -EIO;
2889			goto unlock;
2890		}
2891		if (page_has_buffers(page))
2892			goto has_buffers;
2893	}
2894	zero_user(page, offset, length);
2895	set_page_dirty(page);
2896	err = 0;
2897
2898unlock:
2899	unlock_page(page);
2900	put_page(page);
2901out:
2902	return err;
2903}
2904EXPORT_SYMBOL(nobh_truncate_page);
2905
2906int block_truncate_page(struct address_space *mapping,
2907			loff_t from, get_block_t *get_block)
2908{
2909	pgoff_t index = from >> PAGE_SHIFT;
2910	unsigned offset = from & (PAGE_SIZE-1);
2911	unsigned blocksize;
2912	sector_t iblock;
2913	unsigned length, pos;
2914	struct inode *inode = mapping->host;
2915	struct page *page;
2916	struct buffer_head *bh;
2917	int err;
2918
2919	blocksize = 1 << inode->i_blkbits;
2920	length = offset & (blocksize - 1);
2921
2922	/* Block boundary? Nothing to do */
2923	if (!length)
2924		return 0;
2925
2926	length = blocksize - length;
2927	iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2928	
2929	page = grab_cache_page(mapping, index);
2930	err = -ENOMEM;
2931	if (!page)
2932		goto out;
2933
2934	if (!page_has_buffers(page))
2935		create_empty_buffers(page, blocksize, 0);
2936
2937	/* Find the buffer that contains "offset" */
2938	bh = page_buffers(page);
2939	pos = blocksize;
2940	while (offset >= pos) {
2941		bh = bh->b_this_page;
2942		iblock++;
2943		pos += blocksize;
2944	}
2945
2946	err = 0;
2947	if (!buffer_mapped(bh)) {
2948		WARN_ON(bh->b_size != blocksize);
2949		err = get_block(inode, iblock, bh, 0);
2950		if (err)
2951			goto unlock;
2952		/* unmapped? It's a hole - nothing to do */
2953		if (!buffer_mapped(bh))
2954			goto unlock;
2955	}
2956
2957	/* Ok, it's mapped. Make sure it's up-to-date */
2958	if (PageUptodate(page))
2959		set_buffer_uptodate(bh);
2960
2961	if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2962		err = -EIO;
2963		ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2964		wait_on_buffer(bh);
2965		/* Uhhuh. Read error. Complain and punt. */
2966		if (!buffer_uptodate(bh))
2967			goto unlock;
2968	}
2969
2970	zero_user(page, offset, length);
2971	mark_buffer_dirty(bh);
2972	err = 0;
2973
2974unlock:
2975	unlock_page(page);
2976	put_page(page);
2977out:
2978	return err;
2979}
2980EXPORT_SYMBOL(block_truncate_page);
2981
2982/*
2983 * The generic ->writepage function for buffer-backed address_spaces
2984 */
2985int block_write_full_page(struct page *page, get_block_t *get_block,
2986			struct writeback_control *wbc)
2987{
2988	struct inode * const inode = page->mapping->host;
2989	loff_t i_size = i_size_read(inode);
2990	const pgoff_t end_index = i_size >> PAGE_SHIFT;
2991	unsigned offset;
2992
2993	/* Is the page fully inside i_size? */
2994	if (page->index < end_index)
2995		return __block_write_full_page(inode, page, get_block, wbc,
2996					       end_buffer_async_write);
2997
2998	/* Is the page fully outside i_size? (truncate in progress) */
2999	offset = i_size & (PAGE_SIZE-1);
3000	if (page->index >= end_index+1 || !offset) {
3001		/*
3002		 * The page may have dirty, unmapped buffers.  For example,
3003		 * they may have been added in ext3_writepage().  Make them
3004		 * freeable here, so the page does not leak.
3005		 */
3006		do_invalidatepage(page, 0, PAGE_SIZE);
3007		unlock_page(page);
3008		return 0; /* don't care */
3009	}
3010
3011	/*
3012	 * The page straddles i_size.  It must be zeroed out on each and every
3013	 * writepage invocation because it may be mmapped.  "A file is mapped
3014	 * in multiples of the page size.  For a file that is not a multiple of
3015	 * the  page size, the remaining memory is zeroed when mapped, and
3016	 * writes to that region are not written out to the file."
3017	 */
3018	zero_user_segment(page, offset, PAGE_SIZE);
3019	return __block_write_full_page(inode, page, get_block, wbc,
3020							end_buffer_async_write);
3021}
3022EXPORT_SYMBOL(block_write_full_page);
3023
3024sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
3025			    get_block_t *get_block)
3026{
3027	struct buffer_head tmp;
3028	struct inode *inode = mapping->host;
3029	tmp.b_state = 0;
3030	tmp.b_blocknr = 0;
3031	tmp.b_size = 1 << inode->i_blkbits;
 
3032	get_block(inode, block, &tmp, 0);
3033	return tmp.b_blocknr;
3034}
3035EXPORT_SYMBOL(generic_block_bmap);
3036
3037static void end_bio_bh_io_sync(struct bio *bio)
3038{
3039	struct buffer_head *bh = bio->bi_private;
3040
3041	if (unlikely(bio_flagged(bio, BIO_QUIET)))
3042		set_bit(BH_Quiet, &bh->b_state);
3043
3044	bh->b_end_io(bh, !bio->bi_error);
3045	bio_put(bio);
3046}
3047
3048/*
3049 * This allows us to do IO even on the odd last sectors
3050 * of a device, even if the block size is some multiple
3051 * of the physical sector size.
3052 *
3053 * We'll just truncate the bio to the size of the device,
3054 * and clear the end of the buffer head manually.
3055 *
3056 * Truly out-of-range accesses will turn into actual IO
3057 * errors, this only handles the "we need to be able to
3058 * do IO at the final sector" case.
3059 */
3060void guard_bio_eod(int op, struct bio *bio)
3061{
3062	sector_t maxsector;
3063	struct bio_vec *bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
3064	unsigned truncated_bytes;
 
 
 
 
 
 
 
 
 
3065
3066	maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
3067	if (!maxsector)
3068		return;
3069
3070	/*
3071	 * If the *whole* IO is past the end of the device,
3072	 * let it through, and the IO layer will turn it into
3073	 * an EIO.
3074	 */
3075	if (unlikely(bio->bi_iter.bi_sector >= maxsector))
3076		return;
3077
3078	maxsector -= bio->bi_iter.bi_sector;
3079	if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
3080		return;
3081
3082	/* Uhhuh. We've got a bio that straddles the device size! */
3083	truncated_bytes = bio->bi_iter.bi_size - (maxsector << 9);
3084
3085	/* Truncate the bio.. */
3086	bio->bi_iter.bi_size -= truncated_bytes;
3087	bvec->bv_len -= truncated_bytes;
3088
3089	/* ..and clear the end of the buffer for reads */
3090	if (op == REQ_OP_READ) {
3091		zero_user(bvec->bv_page, bvec->bv_offset + bvec->bv_len,
3092				truncated_bytes);
3093	}
3094}
3095
3096static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
3097			 unsigned long bio_flags, struct writeback_control *wbc)
3098{
3099	struct bio *bio;
3100
3101	BUG_ON(!buffer_locked(bh));
3102	BUG_ON(!buffer_mapped(bh));
3103	BUG_ON(!bh->b_end_io);
3104	BUG_ON(buffer_delay(bh));
3105	BUG_ON(buffer_unwritten(bh));
3106
3107	/*
3108	 * Only clear out a write error when rewriting
3109	 */
3110	if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
3111		clear_buffer_write_io_error(bh);
3112
3113	/*
3114	 * from here on down, it's all bio -- do the initial mapping,
3115	 * submit_bio -> generic_make_request may further map this bio around
3116	 */
3117	bio = bio_alloc(GFP_NOIO, 1);
3118
3119	if (wbc) {
3120		wbc_init_bio(wbc, bio);
3121		wbc_account_io(wbc, bh->b_page, bh->b_size);
3122	}
3123
3124	bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
3125	bio->bi_bdev = bh->b_bdev;
 
3126
3127	bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
3128	BUG_ON(bio->bi_iter.bi_size != bh->b_size);
3129
3130	bio->bi_end_io = end_bio_bh_io_sync;
3131	bio->bi_private = bh;
3132	bio->bi_flags |= bio_flags;
3133
3134	/* Take care of bh's that straddle the end of the device */
3135	guard_bio_eod(op, bio);
3136
3137	if (buffer_meta(bh))
3138		op_flags |= REQ_META;
3139	if (buffer_prio(bh))
3140		op_flags |= REQ_PRIO;
3141	bio_set_op_attrs(bio, op, op_flags);
3142
3143	submit_bio(bio);
3144	return 0;
3145}
3146
3147int _submit_bh(int op, int op_flags, struct buffer_head *bh,
3148	       unsigned long bio_flags)
3149{
3150	return submit_bh_wbc(op, op_flags, bh, bio_flags, NULL);
3151}
3152EXPORT_SYMBOL_GPL(_submit_bh);
3153
3154int submit_bh(int op, int op_flags,  struct buffer_head *bh)
3155{
3156	return submit_bh_wbc(op, op_flags, bh, 0, NULL);
3157}
3158EXPORT_SYMBOL(submit_bh);
3159
3160/**
3161 * ll_rw_block: low-level access to block devices (DEPRECATED)
3162 * @op: whether to %READ or %WRITE
3163 * @op_flags: req_flag_bits
3164 * @nr: number of &struct buffer_heads in the array
3165 * @bhs: array of pointers to &struct buffer_head
3166 *
3167 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3168 * requests an I/O operation on them, either a %REQ_OP_READ or a %REQ_OP_WRITE.
3169 * @op_flags contains flags modifying the detailed I/O behavior, most notably
3170 * %REQ_RAHEAD.
3171 *
3172 * This function drops any buffer that it cannot get a lock on (with the
3173 * BH_Lock state bit), any buffer that appears to be clean when doing a write
3174 * request, and any buffer that appears to be up-to-date when doing read
3175 * request.  Further it marks as clean buffers that are processed for
3176 * writing (the buffer cache won't assume that they are actually clean
3177 * until the buffer gets unlocked).
3178 *
3179 * ll_rw_block sets b_end_io to simple completion handler that marks
3180 * the buffer up-to-date (if appropriate), unlocks the buffer and wakes
3181 * any waiters. 
3182 *
3183 * All of the buffers must be for the same device, and must also be a
3184 * multiple of the current approved size for the device.
3185 */
3186void ll_rw_block(int op, int op_flags,  int nr, struct buffer_head *bhs[])
3187{
3188	int i;
3189
3190	for (i = 0; i < nr; i++) {
3191		struct buffer_head *bh = bhs[i];
3192
3193		if (!trylock_buffer(bh))
3194			continue;
3195		if (op == WRITE) {
3196			if (test_clear_buffer_dirty(bh)) {
3197				bh->b_end_io = end_buffer_write_sync;
3198				get_bh(bh);
3199				submit_bh(op, op_flags, bh);
3200				continue;
3201			}
3202		} else {
3203			if (!buffer_uptodate(bh)) {
3204				bh->b_end_io = end_buffer_read_sync;
3205				get_bh(bh);
3206				submit_bh(op, op_flags, bh);
3207				continue;
3208			}
3209		}
3210		unlock_buffer(bh);
3211	}
3212}
3213EXPORT_SYMBOL(ll_rw_block);
3214
3215void write_dirty_buffer(struct buffer_head *bh, int op_flags)
3216{
3217	lock_buffer(bh);
3218	if (!test_clear_buffer_dirty(bh)) {
3219		unlock_buffer(bh);
3220		return;
3221	}
3222	bh->b_end_io = end_buffer_write_sync;
3223	get_bh(bh);
3224	submit_bh(REQ_OP_WRITE, op_flags, bh);
3225}
3226EXPORT_SYMBOL(write_dirty_buffer);
3227
3228/*
3229 * For a data-integrity writeout, we need to wait upon any in-progress I/O
3230 * and then start new I/O and then wait upon it.  The caller must have a ref on
3231 * the buffer_head.
3232 */
3233int __sync_dirty_buffer(struct buffer_head *bh, int op_flags)
3234{
3235	int ret = 0;
3236
3237	WARN_ON(atomic_read(&bh->b_count) < 1);
3238	lock_buffer(bh);
3239	if (test_clear_buffer_dirty(bh)) {
3240		get_bh(bh);
3241		bh->b_end_io = end_buffer_write_sync;
3242		ret = submit_bh(REQ_OP_WRITE, op_flags, bh);
3243		wait_on_buffer(bh);
3244		if (!ret && !buffer_uptodate(bh))
3245			ret = -EIO;
3246	} else {
3247		unlock_buffer(bh);
3248	}
3249	return ret;
3250}
3251EXPORT_SYMBOL(__sync_dirty_buffer);
3252
3253int sync_dirty_buffer(struct buffer_head *bh)
3254{
3255	return __sync_dirty_buffer(bh, REQ_SYNC);
3256}
3257EXPORT_SYMBOL(sync_dirty_buffer);
3258
3259/*
3260 * try_to_free_buffers() checks if all the buffers on this particular page
3261 * are unused, and releases them if so.
3262 *
3263 * Exclusion against try_to_free_buffers may be obtained by either
3264 * locking the page or by holding its mapping's private_lock.
3265 *
3266 * If the page is dirty but all the buffers are clean then we need to
3267 * be sure to mark the page clean as well.  This is because the page
3268 * may be against a block device, and a later reattachment of buffers
3269 * to a dirty page will set *all* buffers dirty.  Which would corrupt
3270 * filesystem data on the same device.
3271 *
3272 * The same applies to regular filesystem pages: if all the buffers are
3273 * clean then we set the page clean and proceed.  To do that, we require
3274 * total exclusion from __set_page_dirty_buffers().  That is obtained with
3275 * private_lock.
3276 *
3277 * try_to_free_buffers() is non-blocking.
3278 */
3279static inline int buffer_busy(struct buffer_head *bh)
3280{
3281	return atomic_read(&bh->b_count) |
3282		(bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3283}
3284
3285static int
3286drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3287{
3288	struct buffer_head *head = page_buffers(page);
3289	struct buffer_head *bh;
3290
3291	bh = head;
3292	do {
3293		if (buffer_write_io_error(bh) && page->mapping)
3294			mapping_set_error(page->mapping, -EIO);
3295		if (buffer_busy(bh))
3296			goto failed;
3297		bh = bh->b_this_page;
3298	} while (bh != head);
3299
3300	do {
3301		struct buffer_head *next = bh->b_this_page;
3302
3303		if (bh->b_assoc_map)
3304			__remove_assoc_queue(bh);
3305		bh = next;
3306	} while (bh != head);
3307	*buffers_to_free = head;
3308	__clear_page_buffers(page);
3309	return 1;
3310failed:
3311	return 0;
3312}
3313
3314int try_to_free_buffers(struct page *page)
3315{
3316	struct address_space * const mapping = page->mapping;
3317	struct buffer_head *buffers_to_free = NULL;
3318	int ret = 0;
3319
3320	BUG_ON(!PageLocked(page));
3321	if (PageWriteback(page))
3322		return 0;
3323
3324	if (mapping == NULL) {		/* can this still happen? */
3325		ret = drop_buffers(page, &buffers_to_free);
3326		goto out;
3327	}
3328
3329	spin_lock(&mapping->private_lock);
3330	ret = drop_buffers(page, &buffers_to_free);
3331
3332	/*
3333	 * If the filesystem writes its buffers by hand (eg ext3)
3334	 * then we can have clean buffers against a dirty page.  We
3335	 * clean the page here; otherwise the VM will never notice
3336	 * that the filesystem did any IO at all.
3337	 *
3338	 * Also, during truncate, discard_buffer will have marked all
3339	 * the page's buffers clean.  We discover that here and clean
3340	 * the page also.
3341	 *
3342	 * private_lock must be held over this entire operation in order
3343	 * to synchronise against __set_page_dirty_buffers and prevent the
3344	 * dirty bit from being lost.
3345	 */
3346	if (ret)
3347		cancel_dirty_page(page);
3348	spin_unlock(&mapping->private_lock);
3349out:
3350	if (buffers_to_free) {
3351		struct buffer_head *bh = buffers_to_free;
3352
3353		do {
3354			struct buffer_head *next = bh->b_this_page;
3355			free_buffer_head(bh);
3356			bh = next;
3357		} while (bh != buffers_to_free);
3358	}
3359	return ret;
3360}
3361EXPORT_SYMBOL(try_to_free_buffers);
3362
3363/*
3364 * There are no bdflush tunables left.  But distributions are
3365 * still running obsolete flush daemons, so we terminate them here.
3366 *
3367 * Use of bdflush() is deprecated and will be removed in a future kernel.
3368 * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3369 */
3370SYSCALL_DEFINE2(bdflush, int, func, long, data)
3371{
3372	static int msg_count;
3373
3374	if (!capable(CAP_SYS_ADMIN))
3375		return -EPERM;
3376
3377	if (msg_count < 5) {
3378		msg_count++;
3379		printk(KERN_INFO
3380			"warning: process `%s' used the obsolete bdflush"
3381			" system call\n", current->comm);
3382		printk(KERN_INFO "Fix your initscripts?\n");
3383	}
3384
3385	if (func == 1)
3386		do_exit(0);
3387	return 0;
3388}
3389
3390/*
3391 * Buffer-head allocation
3392 */
3393static struct kmem_cache *bh_cachep __read_mostly;
3394
3395/*
3396 * Once the number of bh's in the machine exceeds this level, we start
3397 * stripping them in writeback.
3398 */
3399static unsigned long max_buffer_heads;
3400
3401int buffer_heads_over_limit;
3402
3403struct bh_accounting {
3404	int nr;			/* Number of live bh's */
3405	int ratelimit;		/* Limit cacheline bouncing */
3406};
3407
3408static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3409
3410static void recalc_bh_state(void)
3411{
3412	int i;
3413	int tot = 0;
3414
3415	if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3416		return;
3417	__this_cpu_write(bh_accounting.ratelimit, 0);
3418	for_each_online_cpu(i)
3419		tot += per_cpu(bh_accounting, i).nr;
3420	buffer_heads_over_limit = (tot > max_buffer_heads);
3421}
3422
3423struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3424{
3425	struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3426	if (ret) {
3427		INIT_LIST_HEAD(&ret->b_assoc_buffers);
3428		preempt_disable();
3429		__this_cpu_inc(bh_accounting.nr);
3430		recalc_bh_state();
3431		preempt_enable();
3432	}
3433	return ret;
3434}
3435EXPORT_SYMBOL(alloc_buffer_head);
3436
3437void free_buffer_head(struct buffer_head *bh)
3438{
3439	BUG_ON(!list_empty(&bh->b_assoc_buffers));
3440	kmem_cache_free(bh_cachep, bh);
3441	preempt_disable();
3442	__this_cpu_dec(bh_accounting.nr);
3443	recalc_bh_state();
3444	preempt_enable();
3445}
3446EXPORT_SYMBOL(free_buffer_head);
3447
3448static int buffer_exit_cpu_dead(unsigned int cpu)
3449{
3450	int i;
3451	struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3452
3453	for (i = 0; i < BH_LRU_SIZE; i++) {
3454		brelse(b->bhs[i]);
3455		b->bhs[i] = NULL;
3456	}
3457	this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3458	per_cpu(bh_accounting, cpu).nr = 0;
3459	return 0;
3460}
3461
3462/**
3463 * bh_uptodate_or_lock - Test whether the buffer is uptodate
3464 * @bh: struct buffer_head
3465 *
3466 * Return true if the buffer is up-to-date and false,
3467 * with the buffer locked, if not.
3468 */
3469int bh_uptodate_or_lock(struct buffer_head *bh)
3470{
3471	if (!buffer_uptodate(bh)) {
3472		lock_buffer(bh);
3473		if (!buffer_uptodate(bh))
3474			return 0;
3475		unlock_buffer(bh);
3476	}
3477	return 1;
3478}
3479EXPORT_SYMBOL(bh_uptodate_or_lock);
3480
3481/**
3482 * bh_submit_read - Submit a locked buffer for reading
3483 * @bh: struct buffer_head
3484 *
3485 * Returns zero on success and -EIO on error.
3486 */
3487int bh_submit_read(struct buffer_head *bh)
3488{
3489	BUG_ON(!buffer_locked(bh));
3490
3491	if (buffer_uptodate(bh)) {
3492		unlock_buffer(bh);
3493		return 0;
3494	}
3495
3496	get_bh(bh);
3497	bh->b_end_io = end_buffer_read_sync;
3498	submit_bh(REQ_OP_READ, 0, bh);
3499	wait_on_buffer(bh);
3500	if (buffer_uptodate(bh))
3501		return 0;
3502	return -EIO;
3503}
3504EXPORT_SYMBOL(bh_submit_read);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3505
3506void __init buffer_init(void)
3507{
3508	unsigned long nrpages;
3509	int ret;
3510
3511	bh_cachep = kmem_cache_create("buffer_head",
3512			sizeof(struct buffer_head), 0,
3513				(SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3514				SLAB_MEM_SPREAD),
3515				NULL);
3516
3517	/*
3518	 * Limit the bh occupancy to 10% of ZONE_NORMAL
3519	 */
3520	nrpages = (nr_free_buffer_pages() * 10) / 100;
3521	max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3522	ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead",
3523					NULL, buffer_exit_cpu_dead);
3524	WARN_ON(ret < 0);
3525}
v4.17
   1/*
   2 *  linux/fs/buffer.c
   3 *
   4 *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
   5 */
   6
   7/*
   8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
   9 *
  10 * Removed a lot of unnecessary code and simplified things now that
  11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
  12 *
  13 * Speed up hash, lru, and free list operations.  Use gfp() for allocating
  14 * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
  15 *
  16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
  17 *
  18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
  19 */
  20
  21#include <linux/kernel.h>
  22#include <linux/sched/signal.h>
  23#include <linux/syscalls.h>
  24#include <linux/fs.h>
  25#include <linux/iomap.h>
  26#include <linux/mm.h>
  27#include <linux/percpu.h>
  28#include <linux/slab.h>
  29#include <linux/capability.h>
  30#include <linux/blkdev.h>
  31#include <linux/file.h>
  32#include <linux/quotaops.h>
  33#include <linux/highmem.h>
  34#include <linux/export.h>
  35#include <linux/backing-dev.h>
  36#include <linux/writeback.h>
  37#include <linux/hash.h>
  38#include <linux/suspend.h>
  39#include <linux/buffer_head.h>
  40#include <linux/task_io_accounting_ops.h>
  41#include <linux/bio.h>
  42#include <linux/notifier.h>
  43#include <linux/cpu.h>
  44#include <linux/bitops.h>
  45#include <linux/mpage.h>
  46#include <linux/bit_spinlock.h>
  47#include <linux/pagevec.h>
  48#include <trace/events/block.h>
  49
  50static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
  51static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
  52			 enum rw_hint hint, struct writeback_control *wbc);
 
  53
  54#define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
  55
 
 
 
 
 
 
 
  56inline void touch_buffer(struct buffer_head *bh)
  57{
  58	trace_block_touch_buffer(bh);
  59	mark_page_accessed(bh->b_page);
  60}
  61EXPORT_SYMBOL(touch_buffer);
  62
  63void __lock_buffer(struct buffer_head *bh)
  64{
  65	wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
  66}
  67EXPORT_SYMBOL(__lock_buffer);
  68
  69void unlock_buffer(struct buffer_head *bh)
  70{
  71	clear_bit_unlock(BH_Lock, &bh->b_state);
  72	smp_mb__after_atomic();
  73	wake_up_bit(&bh->b_state, BH_Lock);
  74}
  75EXPORT_SYMBOL(unlock_buffer);
  76
  77/*
  78 * Returns if the page has dirty or writeback buffers. If all the buffers
  79 * are unlocked and clean then the PageDirty information is stale. If
  80 * any of the pages are locked, it is assumed they are locked for IO.
  81 */
  82void buffer_check_dirty_writeback(struct page *page,
  83				     bool *dirty, bool *writeback)
  84{
  85	struct buffer_head *head, *bh;
  86	*dirty = false;
  87	*writeback = false;
  88
  89	BUG_ON(!PageLocked(page));
  90
  91	if (!page_has_buffers(page))
  92		return;
  93
  94	if (PageWriteback(page))
  95		*writeback = true;
  96
  97	head = page_buffers(page);
  98	bh = head;
  99	do {
 100		if (buffer_locked(bh))
 101			*writeback = true;
 102
 103		if (buffer_dirty(bh))
 104			*dirty = true;
 105
 106		bh = bh->b_this_page;
 107	} while (bh != head);
 108}
 109EXPORT_SYMBOL(buffer_check_dirty_writeback);
 110
 111/*
 112 * Block until a buffer comes unlocked.  This doesn't stop it
 113 * from becoming locked again - you have to lock it yourself
 114 * if you want to preserve its state.
 115 */
 116void __wait_on_buffer(struct buffer_head * bh)
 117{
 118	wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
 119}
 120EXPORT_SYMBOL(__wait_on_buffer);
 121
 122static void
 123__clear_page_buffers(struct page *page)
 124{
 125	ClearPagePrivate(page);
 126	set_page_private(page, 0);
 127	put_page(page);
 128}
 129
 130static void buffer_io_error(struct buffer_head *bh, char *msg)
 131{
 132	if (!test_bit(BH_Quiet, &bh->b_state))
 133		printk_ratelimited(KERN_ERR
 134			"Buffer I/O error on dev %pg, logical block %llu%s\n",
 135			bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
 136}
 137
 138/*
 139 * End-of-IO handler helper function which does not touch the bh after
 140 * unlocking it.
 141 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
 142 * a race there is benign: unlock_buffer() only use the bh's address for
 143 * hashing after unlocking the buffer, so it doesn't actually touch the bh
 144 * itself.
 145 */
 146static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
 147{
 148	if (uptodate) {
 149		set_buffer_uptodate(bh);
 150	} else {
 151		/* This happens, due to failed read-ahead attempts. */
 152		clear_buffer_uptodate(bh);
 153	}
 154	unlock_buffer(bh);
 155}
 156
 157/*
 158 * Default synchronous end-of-IO handler..  Just mark it up-to-date and
 159 * unlock the buffer. This is what ll_rw_block uses too.
 160 */
 161void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
 162{
 163	__end_buffer_read_notouch(bh, uptodate);
 164	put_bh(bh);
 165}
 166EXPORT_SYMBOL(end_buffer_read_sync);
 167
 168void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
 169{
 170	if (uptodate) {
 171		set_buffer_uptodate(bh);
 172	} else {
 173		buffer_io_error(bh, ", lost sync page write");
 174		mark_buffer_write_io_error(bh);
 175		clear_buffer_uptodate(bh);
 176	}
 177	unlock_buffer(bh);
 178	put_bh(bh);
 179}
 180EXPORT_SYMBOL(end_buffer_write_sync);
 181
 182/*
 183 * Various filesystems appear to want __find_get_block to be non-blocking.
 184 * But it's the page lock which protects the buffers.  To get around this,
 185 * we get exclusion from try_to_free_buffers with the blockdev mapping's
 186 * private_lock.
 187 *
 188 * Hack idea: for the blockdev mapping, private_lock contention
 189 * may be quite high.  This code could TryLock the page, and if that
 190 * succeeds, there is no need to take private_lock.
 
 191 */
 192static struct buffer_head *
 193__find_get_block_slow(struct block_device *bdev, sector_t block)
 194{
 195	struct inode *bd_inode = bdev->bd_inode;
 196	struct address_space *bd_mapping = bd_inode->i_mapping;
 197	struct buffer_head *ret = NULL;
 198	pgoff_t index;
 199	struct buffer_head *bh;
 200	struct buffer_head *head;
 201	struct page *page;
 202	int all_mapped = 1;
 203
 204	index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
 205	page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED);
 206	if (!page)
 207		goto out;
 208
 209	spin_lock(&bd_mapping->private_lock);
 210	if (!page_has_buffers(page))
 211		goto out_unlock;
 212	head = page_buffers(page);
 213	bh = head;
 214	do {
 215		if (!buffer_mapped(bh))
 216			all_mapped = 0;
 217		else if (bh->b_blocknr == block) {
 218			ret = bh;
 219			get_bh(bh);
 220			goto out_unlock;
 221		}
 222		bh = bh->b_this_page;
 223	} while (bh != head);
 224
 225	/* we might be here because some of the buffers on this page are
 226	 * not mapped.  This is due to various races between
 227	 * file io on the block device and getblk.  It gets dealt with
 228	 * elsewhere, don't buffer_error if we had some unmapped buffers
 229	 */
 230	if (all_mapped) {
 231		printk("__find_get_block_slow() failed. "
 232			"block=%llu, b_blocknr=%llu\n",
 233			(unsigned long long)block,
 234			(unsigned long long)bh->b_blocknr);
 235		printk("b_state=0x%08lx, b_size=%zu\n",
 236			bh->b_state, bh->b_size);
 237		printk("device %pg blocksize: %d\n", bdev,
 238			1 << bd_inode->i_blkbits);
 239	}
 240out_unlock:
 241	spin_unlock(&bd_mapping->private_lock);
 242	put_page(page);
 243out:
 244	return ret;
 245}
 246
 247/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 248 * I/O completion handler for block_read_full_page() - pages
 249 * which come unlocked at the end of I/O.
 250 */
 251static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
 252{
 253	unsigned long flags;
 254	struct buffer_head *first;
 255	struct buffer_head *tmp;
 256	struct page *page;
 257	int page_uptodate = 1;
 258
 259	BUG_ON(!buffer_async_read(bh));
 260
 261	page = bh->b_page;
 262	if (uptodate) {
 263		set_buffer_uptodate(bh);
 264	} else {
 265		clear_buffer_uptodate(bh);
 266		buffer_io_error(bh, ", async page read");
 267		SetPageError(page);
 268	}
 269
 270	/*
 271	 * Be _very_ careful from here on. Bad things can happen if
 272	 * two buffer heads end IO at almost the same time and both
 273	 * decide that the page is now completely done.
 274	 */
 275	first = page_buffers(page);
 276	local_irq_save(flags);
 277	bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
 278	clear_buffer_async_read(bh);
 279	unlock_buffer(bh);
 280	tmp = bh;
 281	do {
 282		if (!buffer_uptodate(tmp))
 283			page_uptodate = 0;
 284		if (buffer_async_read(tmp)) {
 285			BUG_ON(!buffer_locked(tmp));
 286			goto still_busy;
 287		}
 288		tmp = tmp->b_this_page;
 289	} while (tmp != bh);
 290	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
 291	local_irq_restore(flags);
 292
 293	/*
 294	 * If none of the buffers had errors and they are all
 295	 * uptodate then we can set the page uptodate.
 296	 */
 297	if (page_uptodate && !PageError(page))
 298		SetPageUptodate(page);
 299	unlock_page(page);
 300	return;
 301
 302still_busy:
 303	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
 304	local_irq_restore(flags);
 305	return;
 306}
 307
 308/*
 309 * Completion handler for block_write_full_page() - pages which are unlocked
 310 * during I/O, and which have PageWriteback cleared upon I/O completion.
 311 */
 312void end_buffer_async_write(struct buffer_head *bh, int uptodate)
 313{
 314	unsigned long flags;
 315	struct buffer_head *first;
 316	struct buffer_head *tmp;
 317	struct page *page;
 318
 319	BUG_ON(!buffer_async_write(bh));
 320
 321	page = bh->b_page;
 322	if (uptodate) {
 323		set_buffer_uptodate(bh);
 324	} else {
 325		buffer_io_error(bh, ", lost async page write");
 326		mark_buffer_write_io_error(bh);
 
 327		clear_buffer_uptodate(bh);
 328		SetPageError(page);
 329	}
 330
 331	first = page_buffers(page);
 332	local_irq_save(flags);
 333	bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
 334
 335	clear_buffer_async_write(bh);
 336	unlock_buffer(bh);
 337	tmp = bh->b_this_page;
 338	while (tmp != bh) {
 339		if (buffer_async_write(tmp)) {
 340			BUG_ON(!buffer_locked(tmp));
 341			goto still_busy;
 342		}
 343		tmp = tmp->b_this_page;
 344	}
 345	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
 346	local_irq_restore(flags);
 347	end_page_writeback(page);
 348	return;
 349
 350still_busy:
 351	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
 352	local_irq_restore(flags);
 353	return;
 354}
 355EXPORT_SYMBOL(end_buffer_async_write);
 356
 357/*
 358 * If a page's buffers are under async readin (end_buffer_async_read
 359 * completion) then there is a possibility that another thread of
 360 * control could lock one of the buffers after it has completed
 361 * but while some of the other buffers have not completed.  This
 362 * locked buffer would confuse end_buffer_async_read() into not unlocking
 363 * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
 364 * that this buffer is not under async I/O.
 365 *
 366 * The page comes unlocked when it has no locked buffer_async buffers
 367 * left.
 368 *
 369 * PageLocked prevents anyone starting new async I/O reads any of
 370 * the buffers.
 371 *
 372 * PageWriteback is used to prevent simultaneous writeout of the same
 373 * page.
 374 *
 375 * PageLocked prevents anyone from starting writeback of a page which is
 376 * under read I/O (PageWriteback is only ever set against a locked page).
 377 */
 378static void mark_buffer_async_read(struct buffer_head *bh)
 379{
 380	bh->b_end_io = end_buffer_async_read;
 381	set_buffer_async_read(bh);
 382}
 383
 384static void mark_buffer_async_write_endio(struct buffer_head *bh,
 385					  bh_end_io_t *handler)
 386{
 387	bh->b_end_io = handler;
 388	set_buffer_async_write(bh);
 389}
 390
 391void mark_buffer_async_write(struct buffer_head *bh)
 392{
 393	mark_buffer_async_write_endio(bh, end_buffer_async_write);
 394}
 395EXPORT_SYMBOL(mark_buffer_async_write);
 396
 397
 398/*
 399 * fs/buffer.c contains helper functions for buffer-backed address space's
 400 * fsync functions.  A common requirement for buffer-based filesystems is
 401 * that certain data from the backing blockdev needs to be written out for
 402 * a successful fsync().  For example, ext2 indirect blocks need to be
 403 * written back and waited upon before fsync() returns.
 404 *
 405 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
 406 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
 407 * management of a list of dependent buffers at ->i_mapping->private_list.
 408 *
 409 * Locking is a little subtle: try_to_free_buffers() will remove buffers
 410 * from their controlling inode's queue when they are being freed.  But
 411 * try_to_free_buffers() will be operating against the *blockdev* mapping
 412 * at the time, not against the S_ISREG file which depends on those buffers.
 413 * So the locking for private_list is via the private_lock in the address_space
 414 * which backs the buffers.  Which is different from the address_space 
 415 * against which the buffers are listed.  So for a particular address_space,
 416 * mapping->private_lock does *not* protect mapping->private_list!  In fact,
 417 * mapping->private_list will always be protected by the backing blockdev's
 418 * ->private_lock.
 419 *
 420 * Which introduces a requirement: all buffers on an address_space's
 421 * ->private_list must be from the same address_space: the blockdev's.
 422 *
 423 * address_spaces which do not place buffers at ->private_list via these
 424 * utility functions are free to use private_lock and private_list for
 425 * whatever they want.  The only requirement is that list_empty(private_list)
 426 * be true at clear_inode() time.
 427 *
 428 * FIXME: clear_inode should not call invalidate_inode_buffers().  The
 429 * filesystems should do that.  invalidate_inode_buffers() should just go
 430 * BUG_ON(!list_empty).
 431 *
 432 * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
 433 * take an address_space, not an inode.  And it should be called
 434 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
 435 * queued up.
 436 *
 437 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
 438 * list if it is already on a list.  Because if the buffer is on a list,
 439 * it *must* already be on the right one.  If not, the filesystem is being
 440 * silly.  This will save a ton of locking.  But first we have to ensure
 441 * that buffers are taken *off* the old inode's list when they are freed
 442 * (presumably in truncate).  That requires careful auditing of all
 443 * filesystems (do it inside bforget()).  It could also be done by bringing
 444 * b_inode back.
 445 */
 446
 447/*
 448 * The buffer's backing address_space's private_lock must be held
 449 */
 450static void __remove_assoc_queue(struct buffer_head *bh)
 451{
 452	list_del_init(&bh->b_assoc_buffers);
 453	WARN_ON(!bh->b_assoc_map);
 
 
 454	bh->b_assoc_map = NULL;
 455}
 456
 457int inode_has_buffers(struct inode *inode)
 458{
 459	return !list_empty(&inode->i_data.private_list);
 460}
 461
 462/*
 463 * osync is designed to support O_SYNC io.  It waits synchronously for
 464 * all already-submitted IO to complete, but does not queue any new
 465 * writes to the disk.
 466 *
 467 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
 468 * you dirty the buffers, and then use osync_inode_buffers to wait for
 469 * completion.  Any other dirty buffers which are not yet queued for
 470 * write will not be flushed to disk by the osync.
 471 */
 472static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
 473{
 474	struct buffer_head *bh;
 475	struct list_head *p;
 476	int err = 0;
 477
 478	spin_lock(lock);
 479repeat:
 480	list_for_each_prev(p, list) {
 481		bh = BH_ENTRY(p);
 482		if (buffer_locked(bh)) {
 483			get_bh(bh);
 484			spin_unlock(lock);
 485			wait_on_buffer(bh);
 486			if (!buffer_uptodate(bh))
 487				err = -EIO;
 488			brelse(bh);
 489			spin_lock(lock);
 490			goto repeat;
 491		}
 492	}
 493	spin_unlock(lock);
 494	return err;
 495}
 496
 497void emergency_thaw_bdev(struct super_block *sb)
 498{
 499	while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
 500		printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev);
 501}
 502
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 503/**
 504 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
 505 * @mapping: the mapping which wants those buffers written
 506 *
 507 * Starts I/O against the buffers at mapping->private_list, and waits upon
 508 * that I/O.
 509 *
 510 * Basically, this is a convenience function for fsync().
 511 * @mapping is a file or directory which needs those buffers to be written for
 512 * a successful fsync().
 513 */
 514int sync_mapping_buffers(struct address_space *mapping)
 515{
 516	struct address_space *buffer_mapping = mapping->private_data;
 517
 518	if (buffer_mapping == NULL || list_empty(&mapping->private_list))
 519		return 0;
 520
 521	return fsync_buffers_list(&buffer_mapping->private_lock,
 522					&mapping->private_list);
 523}
 524EXPORT_SYMBOL(sync_mapping_buffers);
 525
 526/*
 527 * Called when we've recently written block `bblock', and it is known that
 528 * `bblock' was for a buffer_boundary() buffer.  This means that the block at
 529 * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
 530 * dirty, schedule it for IO.  So that indirects merge nicely with their data.
 531 */
 532void write_boundary_block(struct block_device *bdev,
 533			sector_t bblock, unsigned blocksize)
 534{
 535	struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
 536	if (bh) {
 537		if (buffer_dirty(bh))
 538			ll_rw_block(REQ_OP_WRITE, 0, 1, &bh);
 539		put_bh(bh);
 540	}
 541}
 542
 543void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
 544{
 545	struct address_space *mapping = inode->i_mapping;
 546	struct address_space *buffer_mapping = bh->b_page->mapping;
 547
 548	mark_buffer_dirty(bh);
 549	if (!mapping->private_data) {
 550		mapping->private_data = buffer_mapping;
 551	} else {
 552		BUG_ON(mapping->private_data != buffer_mapping);
 553	}
 554	if (!bh->b_assoc_map) {
 555		spin_lock(&buffer_mapping->private_lock);
 556		list_move_tail(&bh->b_assoc_buffers,
 557				&mapping->private_list);
 558		bh->b_assoc_map = mapping;
 559		spin_unlock(&buffer_mapping->private_lock);
 560	}
 561}
 562EXPORT_SYMBOL(mark_buffer_dirty_inode);
 563
 564/*
 565 * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
 566 * dirty.
 567 *
 568 * If warn is true, then emit a warning if the page is not uptodate and has
 569 * not been truncated.
 570 *
 571 * The caller must hold lock_page_memcg().
 572 */
 573void __set_page_dirty(struct page *page, struct address_space *mapping,
 574			     int warn)
 575{
 576	unsigned long flags;
 577
 578	xa_lock_irqsave(&mapping->i_pages, flags);
 579	if (page->mapping) {	/* Race with truncate? */
 580		WARN_ON_ONCE(warn && !PageUptodate(page));
 581		account_page_dirtied(page, mapping);
 582		radix_tree_tag_set(&mapping->i_pages,
 583				page_index(page), PAGECACHE_TAG_DIRTY);
 584	}
 585	xa_unlock_irqrestore(&mapping->i_pages, flags);
 586}
 587EXPORT_SYMBOL_GPL(__set_page_dirty);
 588
 589/*
 590 * Add a page to the dirty page list.
 591 *
 592 * It is a sad fact of life that this function is called from several places
 593 * deeply under spinlocking.  It may not sleep.
 594 *
 595 * If the page has buffers, the uptodate buffers are set dirty, to preserve
 596 * dirty-state coherency between the page and the buffers.  It the page does
 597 * not have buffers then when they are later attached they will all be set
 598 * dirty.
 599 *
 600 * The buffers are dirtied before the page is dirtied.  There's a small race
 601 * window in which a writepage caller may see the page cleanness but not the
 602 * buffer dirtiness.  That's fine.  If this code were to set the page dirty
 603 * before the buffers, a concurrent writepage caller could clear the page dirty
 604 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
 605 * page on the dirty page list.
 606 *
 607 * We use private_lock to lock against try_to_free_buffers while using the
 608 * page's buffer list.  Also use this to protect against clean buffers being
 609 * added to the page after it was set dirty.
 610 *
 611 * FIXME: may need to call ->reservepage here as well.  That's rather up to the
 612 * address_space though.
 613 */
 614int __set_page_dirty_buffers(struct page *page)
 615{
 616	int newly_dirty;
 617	struct address_space *mapping = page_mapping(page);
 618
 619	if (unlikely(!mapping))
 620		return !TestSetPageDirty(page);
 621
 622	spin_lock(&mapping->private_lock);
 623	if (page_has_buffers(page)) {
 624		struct buffer_head *head = page_buffers(page);
 625		struct buffer_head *bh = head;
 626
 627		do {
 628			set_buffer_dirty(bh);
 629			bh = bh->b_this_page;
 630		} while (bh != head);
 631	}
 632	/*
 633	 * Lock out page->mem_cgroup migration to keep PageDirty
 634	 * synchronized with per-memcg dirty page counters.
 635	 */
 636	lock_page_memcg(page);
 637	newly_dirty = !TestSetPageDirty(page);
 638	spin_unlock(&mapping->private_lock);
 639
 640	if (newly_dirty)
 641		__set_page_dirty(page, mapping, 1);
 642
 643	unlock_page_memcg(page);
 644
 645	if (newly_dirty)
 646		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
 647
 648	return newly_dirty;
 649}
 650EXPORT_SYMBOL(__set_page_dirty_buffers);
 651
 652/*
 653 * Write out and wait upon a list of buffers.
 654 *
 655 * We have conflicting pressures: we want to make sure that all
 656 * initially dirty buffers get waited on, but that any subsequently
 657 * dirtied buffers don't.  After all, we don't want fsync to last
 658 * forever if somebody is actively writing to the file.
 659 *
 660 * Do this in two main stages: first we copy dirty buffers to a
 661 * temporary inode list, queueing the writes as we go.  Then we clean
 662 * up, waiting for those writes to complete.
 663 * 
 664 * During this second stage, any subsequent updates to the file may end
 665 * up refiling the buffer on the original inode's dirty list again, so
 666 * there is a chance we will end up with a buffer queued for write but
 667 * not yet completed on that list.  So, as a final cleanup we go through
 668 * the osync code to catch these locked, dirty buffers without requeuing
 669 * any newly dirty buffers for write.
 670 */
 671static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
 672{
 673	struct buffer_head *bh;
 674	struct list_head tmp;
 675	struct address_space *mapping;
 676	int err = 0, err2;
 677	struct blk_plug plug;
 678
 679	INIT_LIST_HEAD(&tmp);
 680	blk_start_plug(&plug);
 681
 682	spin_lock(lock);
 683	while (!list_empty(list)) {
 684		bh = BH_ENTRY(list->next);
 685		mapping = bh->b_assoc_map;
 686		__remove_assoc_queue(bh);
 687		/* Avoid race with mark_buffer_dirty_inode() which does
 688		 * a lockless check and we rely on seeing the dirty bit */
 689		smp_mb();
 690		if (buffer_dirty(bh) || buffer_locked(bh)) {
 691			list_add(&bh->b_assoc_buffers, &tmp);
 692			bh->b_assoc_map = mapping;
 693			if (buffer_dirty(bh)) {
 694				get_bh(bh);
 695				spin_unlock(lock);
 696				/*
 697				 * Ensure any pending I/O completes so that
 698				 * write_dirty_buffer() actually writes the
 699				 * current contents - it is a noop if I/O is
 700				 * still in flight on potentially older
 701				 * contents.
 702				 */
 703				write_dirty_buffer(bh, REQ_SYNC);
 704
 705				/*
 706				 * Kick off IO for the previous mapping. Note
 707				 * that we will not run the very last mapping,
 708				 * wait_on_buffer() will do that for us
 709				 * through sync_buffer().
 710				 */
 711				brelse(bh);
 712				spin_lock(lock);
 713			}
 714		}
 715	}
 716
 717	spin_unlock(lock);
 718	blk_finish_plug(&plug);
 719	spin_lock(lock);
 720
 721	while (!list_empty(&tmp)) {
 722		bh = BH_ENTRY(tmp.prev);
 723		get_bh(bh);
 724		mapping = bh->b_assoc_map;
 725		__remove_assoc_queue(bh);
 726		/* Avoid race with mark_buffer_dirty_inode() which does
 727		 * a lockless check and we rely on seeing the dirty bit */
 728		smp_mb();
 729		if (buffer_dirty(bh)) {
 730			list_add(&bh->b_assoc_buffers,
 731				 &mapping->private_list);
 732			bh->b_assoc_map = mapping;
 733		}
 734		spin_unlock(lock);
 735		wait_on_buffer(bh);
 736		if (!buffer_uptodate(bh))
 737			err = -EIO;
 738		brelse(bh);
 739		spin_lock(lock);
 740	}
 741	
 742	spin_unlock(lock);
 743	err2 = osync_buffers_list(lock, list);
 744	if (err)
 745		return err;
 746	else
 747		return err2;
 748}
 749
 750/*
 751 * Invalidate any and all dirty buffers on a given inode.  We are
 752 * probably unmounting the fs, but that doesn't mean we have already
 753 * done a sync().  Just drop the buffers from the inode list.
 754 *
 755 * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
 756 * assumes that all the buffers are against the blockdev.  Not true
 757 * for reiserfs.
 758 */
 759void invalidate_inode_buffers(struct inode *inode)
 760{
 761	if (inode_has_buffers(inode)) {
 762		struct address_space *mapping = &inode->i_data;
 763		struct list_head *list = &mapping->private_list;
 764		struct address_space *buffer_mapping = mapping->private_data;
 765
 766		spin_lock(&buffer_mapping->private_lock);
 767		while (!list_empty(list))
 768			__remove_assoc_queue(BH_ENTRY(list->next));
 769		spin_unlock(&buffer_mapping->private_lock);
 770	}
 771}
 772EXPORT_SYMBOL(invalidate_inode_buffers);
 773
 774/*
 775 * Remove any clean buffers from the inode's buffer list.  This is called
 776 * when we're trying to free the inode itself.  Those buffers can pin it.
 777 *
 778 * Returns true if all buffers were removed.
 779 */
 780int remove_inode_buffers(struct inode *inode)
 781{
 782	int ret = 1;
 783
 784	if (inode_has_buffers(inode)) {
 785		struct address_space *mapping = &inode->i_data;
 786		struct list_head *list = &mapping->private_list;
 787		struct address_space *buffer_mapping = mapping->private_data;
 788
 789		spin_lock(&buffer_mapping->private_lock);
 790		while (!list_empty(list)) {
 791			struct buffer_head *bh = BH_ENTRY(list->next);
 792			if (buffer_dirty(bh)) {
 793				ret = 0;
 794				break;
 795			}
 796			__remove_assoc_queue(bh);
 797		}
 798		spin_unlock(&buffer_mapping->private_lock);
 799	}
 800	return ret;
 801}
 802
 803/*
 804 * Create the appropriate buffers when given a page for data area and
 805 * the size of each buffer.. Use the bh->b_this_page linked list to
 806 * follow the buffers created.  Return NULL if unable to create more
 807 * buffers.
 808 *
 809 * The retry flag is used to differentiate async IO (paging, swapping)
 810 * which may not fail from ordinary buffer allocations.
 811 */
 812struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
 813		bool retry)
 814{
 815	struct buffer_head *bh, *head;
 816	gfp_t gfp = GFP_NOFS;
 817	long offset;
 818
 819	if (retry)
 820		gfp |= __GFP_NOFAIL;
 821
 822	head = NULL;
 823	offset = PAGE_SIZE;
 824	while ((offset -= size) >= 0) {
 825		bh = alloc_buffer_head(gfp);
 826		if (!bh)
 827			goto no_grow;
 828
 829		bh->b_this_page = head;
 830		bh->b_blocknr = -1;
 831		head = bh;
 832
 833		bh->b_size = size;
 834
 835		/* Link the buffer to its page */
 836		set_bh_page(bh, page, offset);
 837	}
 838	return head;
 839/*
 840 * In case anything failed, we just free everything we got.
 841 */
 842no_grow:
 843	if (head) {
 844		do {
 845			bh = head;
 846			head = head->b_this_page;
 847			free_buffer_head(bh);
 848		} while (head);
 849	}
 850
 851	return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 852}
 853EXPORT_SYMBOL_GPL(alloc_page_buffers);
 854
 855static inline void
 856link_dev_buffers(struct page *page, struct buffer_head *head)
 857{
 858	struct buffer_head *bh, *tail;
 859
 860	bh = head;
 861	do {
 862		tail = bh;
 863		bh = bh->b_this_page;
 864	} while (bh);
 865	tail->b_this_page = head;
 866	attach_page_buffers(page, head);
 867}
 868
 869static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
 870{
 871	sector_t retval = ~((sector_t)0);
 872	loff_t sz = i_size_read(bdev->bd_inode);
 873
 874	if (sz) {
 875		unsigned int sizebits = blksize_bits(size);
 876		retval = (sz >> sizebits);
 877	}
 878	return retval;
 879}
 880
 881/*
 882 * Initialise the state of a blockdev page's buffers.
 883 */ 
 884static sector_t
 885init_page_buffers(struct page *page, struct block_device *bdev,
 886			sector_t block, int size)
 887{
 888	struct buffer_head *head = page_buffers(page);
 889	struct buffer_head *bh = head;
 890	int uptodate = PageUptodate(page);
 891	sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size);
 892
 893	do {
 894		if (!buffer_mapped(bh)) {
 895			bh->b_end_io = NULL;
 896			bh->b_private = NULL;
 897			bh->b_bdev = bdev;
 898			bh->b_blocknr = block;
 899			if (uptodate)
 900				set_buffer_uptodate(bh);
 901			if (block < end_block)
 902				set_buffer_mapped(bh);
 903		}
 904		block++;
 905		bh = bh->b_this_page;
 906	} while (bh != head);
 907
 908	/*
 909	 * Caller needs to validate requested block against end of device.
 910	 */
 911	return end_block;
 912}
 913
 914/*
 915 * Create the page-cache page that contains the requested block.
 916 *
 917 * This is used purely for blockdev mappings.
 918 */
 919static int
 920grow_dev_page(struct block_device *bdev, sector_t block,
 921	      pgoff_t index, int size, int sizebits, gfp_t gfp)
 922{
 923	struct inode *inode = bdev->bd_inode;
 924	struct page *page;
 925	struct buffer_head *bh;
 926	sector_t end_block;
 927	int ret = 0;		/* Will call free_more_memory() */
 928	gfp_t gfp_mask;
 929
 930	gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp;
 931
 932	/*
 933	 * XXX: __getblk_slow() can not really deal with failure and
 934	 * will endlessly loop on improvised global reclaim.  Prefer
 935	 * looping in the allocator rather than here, at least that
 936	 * code knows what it's doing.
 937	 */
 938	gfp_mask |= __GFP_NOFAIL;
 939
 940	page = find_or_create_page(inode->i_mapping, index, gfp_mask);
 
 
 941
 942	BUG_ON(!PageLocked(page));
 943
 944	if (page_has_buffers(page)) {
 945		bh = page_buffers(page);
 946		if (bh->b_size == size) {
 947			end_block = init_page_buffers(page, bdev,
 948						(sector_t)index << sizebits,
 949						size);
 950			goto done;
 951		}
 952		if (!try_to_free_buffers(page))
 953			goto failed;
 954	}
 955
 956	/*
 957	 * Allocate some buffers for this page
 958	 */
 959	bh = alloc_page_buffers(page, size, true);
 
 
 960
 961	/*
 962	 * Link the page to the buffers and initialise them.  Take the
 963	 * lock to be atomic wrt __find_get_block(), which does not
 964	 * run under the page lock.
 965	 */
 966	spin_lock(&inode->i_mapping->private_lock);
 967	link_dev_buffers(page, bh);
 968	end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits,
 969			size);
 970	spin_unlock(&inode->i_mapping->private_lock);
 971done:
 972	ret = (block < end_block) ? 1 : -ENXIO;
 973failed:
 974	unlock_page(page);
 975	put_page(page);
 976	return ret;
 977}
 978
 979/*
 980 * Create buffers for the specified block device block's page.  If
 981 * that page was dirty, the buffers are set dirty also.
 982 */
 983static int
 984grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp)
 985{
 986	pgoff_t index;
 987	int sizebits;
 988
 989	sizebits = -1;
 990	do {
 991		sizebits++;
 992	} while ((size << sizebits) < PAGE_SIZE);
 993
 994	index = block >> sizebits;
 995
 996	/*
 997	 * Check for a block which wants to lie outside our maximum possible
 998	 * pagecache index.  (this comparison is done using sector_t types).
 999	 */
1000	if (unlikely(index != block >> sizebits)) {
1001		printk(KERN_ERR "%s: requested out-of-range block %llu for "
1002			"device %pg\n",
1003			__func__, (unsigned long long)block,
1004			bdev);
1005		return -EIO;
1006	}
1007
1008	/* Create a page with the proper size buffers.. */
1009	return grow_dev_page(bdev, block, index, size, sizebits, gfp);
1010}
1011
1012static struct buffer_head *
1013__getblk_slow(struct block_device *bdev, sector_t block,
1014	     unsigned size, gfp_t gfp)
1015{
1016	/* Size must be multiple of hard sectorsize */
1017	if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1018			(size < 512 || size > PAGE_SIZE))) {
1019		printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1020					size);
1021		printk(KERN_ERR "logical block size: %d\n",
1022					bdev_logical_block_size(bdev));
1023
1024		dump_stack();
1025		return NULL;
1026	}
1027
1028	for (;;) {
1029		struct buffer_head *bh;
1030		int ret;
1031
1032		bh = __find_get_block(bdev, block, size);
1033		if (bh)
1034			return bh;
1035
1036		ret = grow_buffers(bdev, block, size, gfp);
1037		if (ret < 0)
1038			return NULL;
 
 
1039	}
1040}
1041
1042/*
1043 * The relationship between dirty buffers and dirty pages:
1044 *
1045 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1046 * the page is tagged dirty in its radix tree.
1047 *
1048 * At all times, the dirtiness of the buffers represents the dirtiness of
1049 * subsections of the page.  If the page has buffers, the page dirty bit is
1050 * merely a hint about the true dirty state.
1051 *
1052 * When a page is set dirty in its entirety, all its buffers are marked dirty
1053 * (if the page has buffers).
1054 *
1055 * When a buffer is marked dirty, its page is dirtied, but the page's other
1056 * buffers are not.
1057 *
1058 * Also.  When blockdev buffers are explicitly read with bread(), they
1059 * individually become uptodate.  But their backing page remains not
1060 * uptodate - even if all of its buffers are uptodate.  A subsequent
1061 * block_read_full_page() against that page will discover all the uptodate
1062 * buffers, will set the page uptodate and will perform no I/O.
1063 */
1064
1065/**
1066 * mark_buffer_dirty - mark a buffer_head as needing writeout
1067 * @bh: the buffer_head to mark dirty
1068 *
1069 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1070 * backing page dirty, then tag the page as dirty in its address_space's radix
1071 * tree and then attach the address_space's inode to its superblock's dirty
1072 * inode list.
1073 *
1074 * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1075 * i_pages lock and mapping->host->i_lock.
1076 */
1077void mark_buffer_dirty(struct buffer_head *bh)
1078{
1079	WARN_ON_ONCE(!buffer_uptodate(bh));
1080
1081	trace_block_dirty_buffer(bh);
1082
1083	/*
1084	 * Very *carefully* optimize the it-is-already-dirty case.
1085	 *
1086	 * Don't let the final "is it dirty" escape to before we
1087	 * perhaps modified the buffer.
1088	 */
1089	if (buffer_dirty(bh)) {
1090		smp_mb();
1091		if (buffer_dirty(bh))
1092			return;
1093	}
1094
1095	if (!test_set_buffer_dirty(bh)) {
1096		struct page *page = bh->b_page;
1097		struct address_space *mapping = NULL;
1098
1099		lock_page_memcg(page);
1100		if (!TestSetPageDirty(page)) {
1101			mapping = page_mapping(page);
1102			if (mapping)
1103				__set_page_dirty(page, mapping, 0);
1104		}
1105		unlock_page_memcg(page);
1106		if (mapping)
1107			__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1108	}
1109}
1110EXPORT_SYMBOL(mark_buffer_dirty);
1111
1112void mark_buffer_write_io_error(struct buffer_head *bh)
1113{
1114	set_buffer_write_io_error(bh);
1115	/* FIXME: do we need to set this in both places? */
1116	if (bh->b_page && bh->b_page->mapping)
1117		mapping_set_error(bh->b_page->mapping, -EIO);
1118	if (bh->b_assoc_map)
1119		mapping_set_error(bh->b_assoc_map, -EIO);
1120}
1121EXPORT_SYMBOL(mark_buffer_write_io_error);
1122
1123/*
1124 * Decrement a buffer_head's reference count.  If all buffers against a page
1125 * have zero reference count, are clean and unlocked, and if the page is clean
1126 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1127 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1128 * a page but it ends up not being freed, and buffers may later be reattached).
1129 */
1130void __brelse(struct buffer_head * buf)
1131{
1132	if (atomic_read(&buf->b_count)) {
1133		put_bh(buf);
1134		return;
1135	}
1136	WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1137}
1138EXPORT_SYMBOL(__brelse);
1139
1140/*
1141 * bforget() is like brelse(), except it discards any
1142 * potentially dirty data.
1143 */
1144void __bforget(struct buffer_head *bh)
1145{
1146	clear_buffer_dirty(bh);
1147	if (bh->b_assoc_map) {
1148		struct address_space *buffer_mapping = bh->b_page->mapping;
1149
1150		spin_lock(&buffer_mapping->private_lock);
1151		list_del_init(&bh->b_assoc_buffers);
1152		bh->b_assoc_map = NULL;
1153		spin_unlock(&buffer_mapping->private_lock);
1154	}
1155	__brelse(bh);
1156}
1157EXPORT_SYMBOL(__bforget);
1158
1159static struct buffer_head *__bread_slow(struct buffer_head *bh)
1160{
1161	lock_buffer(bh);
1162	if (buffer_uptodate(bh)) {
1163		unlock_buffer(bh);
1164		return bh;
1165	} else {
1166		get_bh(bh);
1167		bh->b_end_io = end_buffer_read_sync;
1168		submit_bh(REQ_OP_READ, 0, bh);
1169		wait_on_buffer(bh);
1170		if (buffer_uptodate(bh))
1171			return bh;
1172	}
1173	brelse(bh);
1174	return NULL;
1175}
1176
1177/*
1178 * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1179 * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1180 * refcount elevated by one when they're in an LRU.  A buffer can only appear
1181 * once in a particular CPU's LRU.  A single buffer can be present in multiple
1182 * CPU's LRUs at the same time.
1183 *
1184 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1185 * sb_find_get_block().
1186 *
1187 * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1188 * a local interrupt disable for that.
1189 */
1190
1191#define BH_LRU_SIZE	16
1192
1193struct bh_lru {
1194	struct buffer_head *bhs[BH_LRU_SIZE];
1195};
1196
1197static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1198
1199#ifdef CONFIG_SMP
1200#define bh_lru_lock()	local_irq_disable()
1201#define bh_lru_unlock()	local_irq_enable()
1202#else
1203#define bh_lru_lock()	preempt_disable()
1204#define bh_lru_unlock()	preempt_enable()
1205#endif
1206
1207static inline void check_irqs_on(void)
1208{
1209#ifdef irqs_disabled
1210	BUG_ON(irqs_disabled());
1211#endif
1212}
1213
1214/*
1215 * Install a buffer_head into this cpu's LRU.  If not already in the LRU, it is
1216 * inserted at the front, and the buffer_head at the back if any is evicted.
1217 * Or, if already in the LRU it is moved to the front.
1218 */
1219static void bh_lru_install(struct buffer_head *bh)
1220{
1221	struct buffer_head *evictee = bh;
1222	struct bh_lru *b;
1223	int i;
1224
1225	check_irqs_on();
1226	bh_lru_lock();
 
 
 
 
 
 
 
 
 
 
1227
1228	b = this_cpu_ptr(&bh_lrus);
1229	for (i = 0; i < BH_LRU_SIZE; i++) {
1230		swap(evictee, b->bhs[i]);
1231		if (evictee == bh) {
1232			bh_lru_unlock();
1233			return;
 
 
 
 
1234		}
 
 
 
1235	}
 
1236
1237	get_bh(bh);
1238	bh_lru_unlock();
1239	brelse(evictee);
1240}
1241
1242/*
1243 * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1244 */
1245static struct buffer_head *
1246lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1247{
1248	struct buffer_head *ret = NULL;
1249	unsigned int i;
1250
1251	check_irqs_on();
1252	bh_lru_lock();
1253	for (i = 0; i < BH_LRU_SIZE; i++) {
1254		struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1255
1256		if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1257		    bh->b_size == size) {
1258			if (i) {
1259				while (i) {
1260					__this_cpu_write(bh_lrus.bhs[i],
1261						__this_cpu_read(bh_lrus.bhs[i - 1]));
1262					i--;
1263				}
1264				__this_cpu_write(bh_lrus.bhs[0], bh);
1265			}
1266			get_bh(bh);
1267			ret = bh;
1268			break;
1269		}
1270	}
1271	bh_lru_unlock();
1272	return ret;
1273}
1274
1275/*
1276 * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1277 * it in the LRU and mark it as accessed.  If it is not present then return
1278 * NULL
1279 */
1280struct buffer_head *
1281__find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1282{
1283	struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1284
1285	if (bh == NULL) {
1286		/* __find_get_block_slow will mark the page accessed */
1287		bh = __find_get_block_slow(bdev, block);
1288		if (bh)
1289			bh_lru_install(bh);
1290	} else
1291		touch_buffer(bh);
1292
1293	return bh;
1294}
1295EXPORT_SYMBOL(__find_get_block);
1296
1297/*
1298 * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1299 * which corresponds to the passed block_device, block and size. The
1300 * returned buffer has its reference count incremented.
1301 *
1302 * __getblk_gfp() will lock up the machine if grow_dev_page's
1303 * try_to_free_buffers() attempt is failing.  FIXME, perhaps?
1304 */
1305struct buffer_head *
1306__getblk_gfp(struct block_device *bdev, sector_t block,
1307	     unsigned size, gfp_t gfp)
1308{
1309	struct buffer_head *bh = __find_get_block(bdev, block, size);
1310
1311	might_sleep();
1312	if (bh == NULL)
1313		bh = __getblk_slow(bdev, block, size, gfp);
1314	return bh;
1315}
1316EXPORT_SYMBOL(__getblk_gfp);
1317
1318/*
1319 * Do async read-ahead on a buffer..
1320 */
1321void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1322{
1323	struct buffer_head *bh = __getblk(bdev, block, size);
1324	if (likely(bh)) {
1325		ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh);
1326		brelse(bh);
1327	}
1328}
1329EXPORT_SYMBOL(__breadahead);
1330
1331/**
1332 *  __bread_gfp() - reads a specified block and returns the bh
1333 *  @bdev: the block_device to read from
1334 *  @block: number of block
1335 *  @size: size (in bytes) to read
1336 *  @gfp: page allocation flag
1337 *
1338 *  Reads a specified block, and returns buffer head that contains it.
1339 *  The page cache can be allocated from non-movable area
1340 *  not to prevent page migration if you set gfp to zero.
1341 *  It returns NULL if the block was unreadable.
1342 */
1343struct buffer_head *
1344__bread_gfp(struct block_device *bdev, sector_t block,
1345		   unsigned size, gfp_t gfp)
1346{
1347	struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1348
1349	if (likely(bh) && !buffer_uptodate(bh))
1350		bh = __bread_slow(bh);
1351	return bh;
1352}
1353EXPORT_SYMBOL(__bread_gfp);
1354
1355/*
1356 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1357 * This doesn't race because it runs in each cpu either in irq
1358 * or with preempt disabled.
1359 */
1360static void invalidate_bh_lru(void *arg)
1361{
1362	struct bh_lru *b = &get_cpu_var(bh_lrus);
1363	int i;
1364
1365	for (i = 0; i < BH_LRU_SIZE; i++) {
1366		brelse(b->bhs[i]);
1367		b->bhs[i] = NULL;
1368	}
1369	put_cpu_var(bh_lrus);
1370}
1371
1372static bool has_bh_in_lru(int cpu, void *dummy)
1373{
1374	struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1375	int i;
1376	
1377	for (i = 0; i < BH_LRU_SIZE; i++) {
1378		if (b->bhs[i])
1379			return 1;
1380	}
1381
1382	return 0;
1383}
1384
1385void invalidate_bh_lrus(void)
1386{
1387	on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL);
1388}
1389EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1390
1391void set_bh_page(struct buffer_head *bh,
1392		struct page *page, unsigned long offset)
1393{
1394	bh->b_page = page;
1395	BUG_ON(offset >= PAGE_SIZE);
1396	if (PageHighMem(page))
1397		/*
1398		 * This catches illegal uses and preserves the offset:
1399		 */
1400		bh->b_data = (char *)(0 + offset);
1401	else
1402		bh->b_data = page_address(page) + offset;
1403}
1404EXPORT_SYMBOL(set_bh_page);
1405
1406/*
1407 * Called when truncating a buffer on a page completely.
1408 */
1409
1410/* Bits that are cleared during an invalidate */
1411#define BUFFER_FLAGS_DISCARD \
1412	(1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1413	 1 << BH_Delay | 1 << BH_Unwritten)
1414
1415static void discard_buffer(struct buffer_head * bh)
1416{
1417	unsigned long b_state, b_state_old;
1418
1419	lock_buffer(bh);
1420	clear_buffer_dirty(bh);
1421	bh->b_bdev = NULL;
1422	b_state = bh->b_state;
1423	for (;;) {
1424		b_state_old = cmpxchg(&bh->b_state, b_state,
1425				      (b_state & ~BUFFER_FLAGS_DISCARD));
1426		if (b_state_old == b_state)
1427			break;
1428		b_state = b_state_old;
1429	}
1430	unlock_buffer(bh);
1431}
1432
1433/**
1434 * block_invalidatepage - invalidate part or all of a buffer-backed page
1435 *
1436 * @page: the page which is affected
1437 * @offset: start of the range to invalidate
1438 * @length: length of the range to invalidate
1439 *
1440 * block_invalidatepage() is called when all or part of the page has become
1441 * invalidated by a truncate operation.
1442 *
1443 * block_invalidatepage() does not have to release all buffers, but it must
1444 * ensure that no dirty buffer is left outside @offset and that no I/O
1445 * is underway against any of the blocks which are outside the truncation
1446 * point.  Because the caller is about to free (and possibly reuse) those
1447 * blocks on-disk.
1448 */
1449void block_invalidatepage(struct page *page, unsigned int offset,
1450			  unsigned int length)
1451{
1452	struct buffer_head *head, *bh, *next;
1453	unsigned int curr_off = 0;
1454	unsigned int stop = length + offset;
1455
1456	BUG_ON(!PageLocked(page));
1457	if (!page_has_buffers(page))
1458		goto out;
1459
1460	/*
1461	 * Check for overflow
1462	 */
1463	BUG_ON(stop > PAGE_SIZE || stop < length);
1464
1465	head = page_buffers(page);
1466	bh = head;
1467	do {
1468		unsigned int next_off = curr_off + bh->b_size;
1469		next = bh->b_this_page;
1470
1471		/*
1472		 * Are we still fully in range ?
1473		 */
1474		if (next_off > stop)
1475			goto out;
1476
1477		/*
1478		 * is this block fully invalidated?
1479		 */
1480		if (offset <= curr_off)
1481			discard_buffer(bh);
1482		curr_off = next_off;
1483		bh = next;
1484	} while (bh != head);
1485
1486	/*
1487	 * We release buffers only if the entire page is being invalidated.
1488	 * The get_block cached value has been unconditionally invalidated,
1489	 * so real IO is not possible anymore.
1490	 */
1491	if (length == PAGE_SIZE)
1492		try_to_release_page(page, 0);
1493out:
1494	return;
1495}
1496EXPORT_SYMBOL(block_invalidatepage);
1497
1498
1499/*
1500 * We attach and possibly dirty the buffers atomically wrt
1501 * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1502 * is already excluded via the page lock.
1503 */
1504void create_empty_buffers(struct page *page,
1505			unsigned long blocksize, unsigned long b_state)
1506{
1507	struct buffer_head *bh, *head, *tail;
1508
1509	head = alloc_page_buffers(page, blocksize, true);
1510	bh = head;
1511	do {
1512		bh->b_state |= b_state;
1513		tail = bh;
1514		bh = bh->b_this_page;
1515	} while (bh);
1516	tail->b_this_page = head;
1517
1518	spin_lock(&page->mapping->private_lock);
1519	if (PageUptodate(page) || PageDirty(page)) {
1520		bh = head;
1521		do {
1522			if (PageDirty(page))
1523				set_buffer_dirty(bh);
1524			if (PageUptodate(page))
1525				set_buffer_uptodate(bh);
1526			bh = bh->b_this_page;
1527		} while (bh != head);
1528	}
1529	attach_page_buffers(page, head);
1530	spin_unlock(&page->mapping->private_lock);
1531}
1532EXPORT_SYMBOL(create_empty_buffers);
1533
1534/**
1535 * clean_bdev_aliases: clean a range of buffers in block device
1536 * @bdev: Block device to clean buffers in
1537 * @block: Start of a range of blocks to clean
1538 * @len: Number of blocks to clean
1539 *
1540 * We are taking a range of blocks for data and we don't want writeback of any
1541 * buffer-cache aliases starting from return from this function and until the
1542 * moment when something will explicitly mark the buffer dirty (hopefully that
1543 * will not happen until we will free that block ;-) We don't even need to mark
1544 * it not-uptodate - nobody can expect anything from a newly allocated buffer
1545 * anyway. We used to use unmap_buffer() for such invalidation, but that was
1546 * wrong. We definitely don't want to mark the alias unmapped, for example - it
1547 * would confuse anyone who might pick it with bread() afterwards...
1548 *
1549 * Also..  Note that bforget() doesn't lock the buffer.  So there can be
1550 * writeout I/O going on against recently-freed buffers.  We don't wait on that
1551 * I/O in bforget() - it's more efficient to wait on the I/O only if we really
1552 * need to.  That happens here.
1553 */
1554void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len)
1555{
1556	struct inode *bd_inode = bdev->bd_inode;
1557	struct address_space *bd_mapping = bd_inode->i_mapping;
1558	struct pagevec pvec;
1559	pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
1560	pgoff_t end;
1561	int i, count;
1562	struct buffer_head *bh;
1563	struct buffer_head *head;
1564
1565	end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits);
1566	pagevec_init(&pvec);
1567	while (pagevec_lookup_range(&pvec, bd_mapping, &index, end)) {
1568		count = pagevec_count(&pvec);
1569		for (i = 0; i < count; i++) {
1570			struct page *page = pvec.pages[i];
1571
 
 
 
1572			if (!page_has_buffers(page))
1573				continue;
1574			/*
1575			 * We use page lock instead of bd_mapping->private_lock
1576			 * to pin buffers here since we can afford to sleep and
1577			 * it scales better than a global spinlock lock.
1578			 */
1579			lock_page(page);
1580			/* Recheck when the page is locked which pins bhs */
1581			if (!page_has_buffers(page))
1582				goto unlock_page;
1583			head = page_buffers(page);
1584			bh = head;
1585			do {
1586				if (!buffer_mapped(bh) || (bh->b_blocknr < block))
1587					goto next;
1588				if (bh->b_blocknr >= block + len)
1589					break;
1590				clear_buffer_dirty(bh);
1591				wait_on_buffer(bh);
1592				clear_buffer_req(bh);
1593next:
1594				bh = bh->b_this_page;
1595			} while (bh != head);
1596unlock_page:
1597			unlock_page(page);
1598		}
1599		pagevec_release(&pvec);
1600		cond_resched();
1601		/* End of range already reached? */
1602		if (index > end || !index)
1603			break;
1604	}
1605}
1606EXPORT_SYMBOL(clean_bdev_aliases);
1607
1608/*
1609 * Size is a power-of-two in the range 512..PAGE_SIZE,
1610 * and the case we care about most is PAGE_SIZE.
1611 *
1612 * So this *could* possibly be written with those
1613 * constraints in mind (relevant mostly if some
1614 * architecture has a slow bit-scan instruction)
1615 */
1616static inline int block_size_bits(unsigned int blocksize)
1617{
1618	return ilog2(blocksize);
1619}
1620
1621static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1622{
1623	BUG_ON(!PageLocked(page));
1624
1625	if (!page_has_buffers(page))
1626		create_empty_buffers(page, 1 << READ_ONCE(inode->i_blkbits),
1627				     b_state);
1628	return page_buffers(page);
1629}
1630
1631/*
1632 * NOTE! All mapped/uptodate combinations are valid:
1633 *
1634 *	Mapped	Uptodate	Meaning
1635 *
1636 *	No	No		"unknown" - must do get_block()
1637 *	No	Yes		"hole" - zero-filled
1638 *	Yes	No		"allocated" - allocated on disk, not read in
1639 *	Yes	Yes		"valid" - allocated and up-to-date in memory.
1640 *
1641 * "Dirty" is valid only with the last case (mapped+uptodate).
1642 */
1643
1644/*
1645 * While block_write_full_page is writing back the dirty buffers under
1646 * the page lock, whoever dirtied the buffers may decide to clean them
1647 * again at any time.  We handle that by only looking at the buffer
1648 * state inside lock_buffer().
1649 *
1650 * If block_write_full_page() is called for regular writeback
1651 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1652 * locked buffer.   This only can happen if someone has written the buffer
1653 * directly, with submit_bh().  At the address_space level PageWriteback
1654 * prevents this contention from occurring.
1655 *
1656 * If block_write_full_page() is called with wbc->sync_mode ==
1657 * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
1658 * causes the writes to be flagged as synchronous writes.
1659 */
1660int __block_write_full_page(struct inode *inode, struct page *page,
1661			get_block_t *get_block, struct writeback_control *wbc,
1662			bh_end_io_t *handler)
1663{
1664	int err;
1665	sector_t block;
1666	sector_t last_block;
1667	struct buffer_head *bh, *head;
1668	unsigned int blocksize, bbits;
1669	int nr_underway = 0;
1670	int write_flags = wbc_to_write_flags(wbc);
1671
1672	head = create_page_buffers(page, inode,
1673					(1 << BH_Dirty)|(1 << BH_Uptodate));
1674
1675	/*
1676	 * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1677	 * here, and the (potentially unmapped) buffers may become dirty at
1678	 * any time.  If a buffer becomes dirty here after we've inspected it
1679	 * then we just miss that fact, and the page stays dirty.
1680	 *
1681	 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1682	 * handle that here by just cleaning them.
1683	 */
1684
1685	bh = head;
1686	blocksize = bh->b_size;
1687	bbits = block_size_bits(blocksize);
1688
1689	block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1690	last_block = (i_size_read(inode) - 1) >> bbits;
1691
1692	/*
1693	 * Get all the dirty buffers mapped to disk addresses and
1694	 * handle any aliases from the underlying blockdev's mapping.
1695	 */
1696	do {
1697		if (block > last_block) {
1698			/*
1699			 * mapped buffers outside i_size will occur, because
1700			 * this page can be outside i_size when there is a
1701			 * truncate in progress.
1702			 */
1703			/*
1704			 * The buffer was zeroed by block_write_full_page()
1705			 */
1706			clear_buffer_dirty(bh);
1707			set_buffer_uptodate(bh);
1708		} else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1709			   buffer_dirty(bh)) {
1710			WARN_ON(bh->b_size != blocksize);
1711			err = get_block(inode, block, bh, 1);
1712			if (err)
1713				goto recover;
1714			clear_buffer_delay(bh);
1715			if (buffer_new(bh)) {
1716				/* blockdev mappings never come here */
1717				clear_buffer_new(bh);
1718				clean_bdev_bh_alias(bh);
1719			}
1720		}
1721		bh = bh->b_this_page;
1722		block++;
1723	} while (bh != head);
1724
1725	do {
1726		if (!buffer_mapped(bh))
1727			continue;
1728		/*
1729		 * If it's a fully non-blocking write attempt and we cannot
1730		 * lock the buffer then redirty the page.  Note that this can
1731		 * potentially cause a busy-wait loop from writeback threads
1732		 * and kswapd activity, but those code paths have their own
1733		 * higher-level throttling.
1734		 */
1735		if (wbc->sync_mode != WB_SYNC_NONE) {
1736			lock_buffer(bh);
1737		} else if (!trylock_buffer(bh)) {
1738			redirty_page_for_writepage(wbc, page);
1739			continue;
1740		}
1741		if (test_clear_buffer_dirty(bh)) {
1742			mark_buffer_async_write_endio(bh, handler);
1743		} else {
1744			unlock_buffer(bh);
1745		}
1746	} while ((bh = bh->b_this_page) != head);
1747
1748	/*
1749	 * The page and its buffers are protected by PageWriteback(), so we can
1750	 * drop the bh refcounts early.
1751	 */
1752	BUG_ON(PageWriteback(page));
1753	set_page_writeback(page);
1754
1755	do {
1756		struct buffer_head *next = bh->b_this_page;
1757		if (buffer_async_write(bh)) {
1758			submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
1759					inode->i_write_hint, wbc);
1760			nr_underway++;
1761		}
1762		bh = next;
1763	} while (bh != head);
1764	unlock_page(page);
1765
1766	err = 0;
1767done:
1768	if (nr_underway == 0) {
1769		/*
1770		 * The page was marked dirty, but the buffers were
1771		 * clean.  Someone wrote them back by hand with
1772		 * ll_rw_block/submit_bh.  A rare case.
1773		 */
1774		end_page_writeback(page);
1775
1776		/*
1777		 * The page and buffer_heads can be released at any time from
1778		 * here on.
1779		 */
1780	}
1781	return err;
1782
1783recover:
1784	/*
1785	 * ENOSPC, or some other error.  We may already have added some
1786	 * blocks to the file, so we need to write these out to avoid
1787	 * exposing stale data.
1788	 * The page is currently locked and not marked for writeback
1789	 */
1790	bh = head;
1791	/* Recovery: lock and submit the mapped buffers */
1792	do {
1793		if (buffer_mapped(bh) && buffer_dirty(bh) &&
1794		    !buffer_delay(bh)) {
1795			lock_buffer(bh);
1796			mark_buffer_async_write_endio(bh, handler);
1797		} else {
1798			/*
1799			 * The buffer may have been set dirty during
1800			 * attachment to a dirty page.
1801			 */
1802			clear_buffer_dirty(bh);
1803		}
1804	} while ((bh = bh->b_this_page) != head);
1805	SetPageError(page);
1806	BUG_ON(PageWriteback(page));
1807	mapping_set_error(page->mapping, err);
1808	set_page_writeback(page);
1809	do {
1810		struct buffer_head *next = bh->b_this_page;
1811		if (buffer_async_write(bh)) {
1812			clear_buffer_dirty(bh);
1813			submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
1814					inode->i_write_hint, wbc);
1815			nr_underway++;
1816		}
1817		bh = next;
1818	} while (bh != head);
1819	unlock_page(page);
1820	goto done;
1821}
1822EXPORT_SYMBOL(__block_write_full_page);
1823
1824/*
1825 * If a page has any new buffers, zero them out here, and mark them uptodate
1826 * and dirty so they'll be written out (in order to prevent uninitialised
1827 * block data from leaking). And clear the new bit.
1828 */
1829void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1830{
1831	unsigned int block_start, block_end;
1832	struct buffer_head *head, *bh;
1833
1834	BUG_ON(!PageLocked(page));
1835	if (!page_has_buffers(page))
1836		return;
1837
1838	bh = head = page_buffers(page);
1839	block_start = 0;
1840	do {
1841		block_end = block_start + bh->b_size;
1842
1843		if (buffer_new(bh)) {
1844			if (block_end > from && block_start < to) {
1845				if (!PageUptodate(page)) {
1846					unsigned start, size;
1847
1848					start = max(from, block_start);
1849					size = min(to, block_end) - start;
1850
1851					zero_user(page, start, size);
1852					set_buffer_uptodate(bh);
1853				}
1854
1855				clear_buffer_new(bh);
1856				mark_buffer_dirty(bh);
1857			}
1858		}
1859
1860		block_start = block_end;
1861		bh = bh->b_this_page;
1862	} while (bh != head);
1863}
1864EXPORT_SYMBOL(page_zero_new_buffers);
1865
1866static void
1867iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
1868		struct iomap *iomap)
1869{
1870	loff_t offset = block << inode->i_blkbits;
1871
1872	bh->b_bdev = iomap->bdev;
1873
1874	/*
1875	 * Block points to offset in file we need to map, iomap contains
1876	 * the offset at which the map starts. If the map ends before the
1877	 * current block, then do not map the buffer and let the caller
1878	 * handle it.
1879	 */
1880	BUG_ON(offset >= iomap->offset + iomap->length);
1881
1882	switch (iomap->type) {
1883	case IOMAP_HOLE:
1884		/*
1885		 * If the buffer is not up to date or beyond the current EOF,
1886		 * we need to mark it as new to ensure sub-block zeroing is
1887		 * executed if necessary.
1888		 */
1889		if (!buffer_uptodate(bh) ||
1890		    (offset >= i_size_read(inode)))
1891			set_buffer_new(bh);
1892		break;
1893	case IOMAP_DELALLOC:
1894		if (!buffer_uptodate(bh) ||
1895		    (offset >= i_size_read(inode)))
1896			set_buffer_new(bh);
1897		set_buffer_uptodate(bh);
1898		set_buffer_mapped(bh);
1899		set_buffer_delay(bh);
1900		break;
1901	case IOMAP_UNWRITTEN:
1902		/*
1903		 * For unwritten regions, we always need to ensure that
1904		 * sub-block writes cause the regions in the block we are not
1905		 * writing to are zeroed. Set the buffer as new to ensure this.
1906		 */
1907		set_buffer_new(bh);
1908		set_buffer_unwritten(bh);
1909		/* FALLTHRU */
1910	case IOMAP_MAPPED:
1911		if (offset >= i_size_read(inode))
1912			set_buffer_new(bh);
1913		bh->b_blocknr = (iomap->addr + offset - iomap->offset) >>
1914				inode->i_blkbits;
1915		set_buffer_mapped(bh);
1916		break;
1917	}
1918}
1919
1920int __block_write_begin_int(struct page *page, loff_t pos, unsigned len,
1921		get_block_t *get_block, struct iomap *iomap)
1922{
1923	unsigned from = pos & (PAGE_SIZE - 1);
1924	unsigned to = from + len;
1925	struct inode *inode = page->mapping->host;
1926	unsigned block_start, block_end;
1927	sector_t block;
1928	int err = 0;
1929	unsigned blocksize, bbits;
1930	struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1931
1932	BUG_ON(!PageLocked(page));
1933	BUG_ON(from > PAGE_SIZE);
1934	BUG_ON(to > PAGE_SIZE);
1935	BUG_ON(from > to);
1936
1937	head = create_page_buffers(page, inode, 0);
1938	blocksize = head->b_size;
1939	bbits = block_size_bits(blocksize);
1940
1941	block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1942
1943	for(bh = head, block_start = 0; bh != head || !block_start;
1944	    block++, block_start=block_end, bh = bh->b_this_page) {
1945		block_end = block_start + blocksize;
1946		if (block_end <= from || block_start >= to) {
1947			if (PageUptodate(page)) {
1948				if (!buffer_uptodate(bh))
1949					set_buffer_uptodate(bh);
1950			}
1951			continue;
1952		}
1953		if (buffer_new(bh))
1954			clear_buffer_new(bh);
1955		if (!buffer_mapped(bh)) {
1956			WARN_ON(bh->b_size != blocksize);
1957			if (get_block) {
1958				err = get_block(inode, block, bh, 1);
1959				if (err)
1960					break;
1961			} else {
1962				iomap_to_bh(inode, block, bh, iomap);
1963			}
1964
1965			if (buffer_new(bh)) {
1966				clean_bdev_bh_alias(bh);
1967				if (PageUptodate(page)) {
1968					clear_buffer_new(bh);
1969					set_buffer_uptodate(bh);
1970					mark_buffer_dirty(bh);
1971					continue;
1972				}
1973				if (block_end > to || block_start < from)
1974					zero_user_segments(page,
1975						to, block_end,
1976						block_start, from);
1977				continue;
1978			}
1979		}
1980		if (PageUptodate(page)) {
1981			if (!buffer_uptodate(bh))
1982				set_buffer_uptodate(bh);
1983			continue; 
1984		}
1985		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1986		    !buffer_unwritten(bh) &&
1987		     (block_start < from || block_end > to)) {
1988			ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1989			*wait_bh++=bh;
1990		}
1991	}
1992	/*
1993	 * If we issued read requests - let them complete.
1994	 */
1995	while(wait_bh > wait) {
1996		wait_on_buffer(*--wait_bh);
1997		if (!buffer_uptodate(*wait_bh))
1998			err = -EIO;
1999	}
2000	if (unlikely(err))
2001		page_zero_new_buffers(page, from, to);
2002	return err;
2003}
2004
2005int __block_write_begin(struct page *page, loff_t pos, unsigned len,
2006		get_block_t *get_block)
2007{
2008	return __block_write_begin_int(page, pos, len, get_block, NULL);
2009}
2010EXPORT_SYMBOL(__block_write_begin);
2011
2012static int __block_commit_write(struct inode *inode, struct page *page,
2013		unsigned from, unsigned to)
2014{
2015	unsigned block_start, block_end;
2016	int partial = 0;
2017	unsigned blocksize;
2018	struct buffer_head *bh, *head;
2019
2020	bh = head = page_buffers(page);
2021	blocksize = bh->b_size;
2022
2023	block_start = 0;
2024	do {
2025		block_end = block_start + blocksize;
2026		if (block_end <= from || block_start >= to) {
2027			if (!buffer_uptodate(bh))
2028				partial = 1;
2029		} else {
2030			set_buffer_uptodate(bh);
2031			mark_buffer_dirty(bh);
2032		}
2033		clear_buffer_new(bh);
2034
2035		block_start = block_end;
2036		bh = bh->b_this_page;
2037	} while (bh != head);
2038
2039	/*
2040	 * If this is a partial write which happened to make all buffers
2041	 * uptodate then we can optimize away a bogus readpage() for
2042	 * the next read(). Here we 'discover' whether the page went
2043	 * uptodate as a result of this (potentially partial) write.
2044	 */
2045	if (!partial)
2046		SetPageUptodate(page);
2047	return 0;
2048}
2049
2050/*
2051 * block_write_begin takes care of the basic task of block allocation and
2052 * bringing partial write blocks uptodate first.
2053 *
2054 * The filesystem needs to handle block truncation upon failure.
2055 */
2056int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2057		unsigned flags, struct page **pagep, get_block_t *get_block)
2058{
2059	pgoff_t index = pos >> PAGE_SHIFT;
2060	struct page *page;
2061	int status;
2062
2063	page = grab_cache_page_write_begin(mapping, index, flags);
2064	if (!page)
2065		return -ENOMEM;
2066
2067	status = __block_write_begin(page, pos, len, get_block);
2068	if (unlikely(status)) {
2069		unlock_page(page);
2070		put_page(page);
2071		page = NULL;
2072	}
2073
2074	*pagep = page;
2075	return status;
2076}
2077EXPORT_SYMBOL(block_write_begin);
2078
2079int block_write_end(struct file *file, struct address_space *mapping,
2080			loff_t pos, unsigned len, unsigned copied,
2081			struct page *page, void *fsdata)
2082{
2083	struct inode *inode = mapping->host;
2084	unsigned start;
2085
2086	start = pos & (PAGE_SIZE - 1);
2087
2088	if (unlikely(copied < len)) {
2089		/*
2090		 * The buffers that were written will now be uptodate, so we
2091		 * don't have to worry about a readpage reading them and
2092		 * overwriting a partial write. However if we have encountered
2093		 * a short write and only partially written into a buffer, it
2094		 * will not be marked uptodate, so a readpage might come in and
2095		 * destroy our partial write.
2096		 *
2097		 * Do the simplest thing, and just treat any short write to a
2098		 * non uptodate page as a zero-length write, and force the
2099		 * caller to redo the whole thing.
2100		 */
2101		if (!PageUptodate(page))
2102			copied = 0;
2103
2104		page_zero_new_buffers(page, start+copied, start+len);
2105	}
2106	flush_dcache_page(page);
2107
2108	/* This could be a short (even 0-length) commit */
2109	__block_commit_write(inode, page, start, start+copied);
2110
2111	return copied;
2112}
2113EXPORT_SYMBOL(block_write_end);
2114
2115int generic_write_end(struct file *file, struct address_space *mapping,
2116			loff_t pos, unsigned len, unsigned copied,
2117			struct page *page, void *fsdata)
2118{
2119	struct inode *inode = mapping->host;
2120	loff_t old_size = inode->i_size;
2121	int i_size_changed = 0;
2122
2123	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2124
2125	/*
2126	 * No need to use i_size_read() here, the i_size
2127	 * cannot change under us because we hold i_mutex.
2128	 *
2129	 * But it's important to update i_size while still holding page lock:
2130	 * page writeout could otherwise come in and zero beyond i_size.
2131	 */
2132	if (pos+copied > inode->i_size) {
2133		i_size_write(inode, pos+copied);
2134		i_size_changed = 1;
2135	}
2136
2137	unlock_page(page);
2138	put_page(page);
2139
2140	if (old_size < pos)
2141		pagecache_isize_extended(inode, old_size, pos);
2142	/*
2143	 * Don't mark the inode dirty under page lock. First, it unnecessarily
2144	 * makes the holding time of page lock longer. Second, it forces lock
2145	 * ordering of page lock and transaction start for journaling
2146	 * filesystems.
2147	 */
2148	if (i_size_changed)
2149		mark_inode_dirty(inode);
2150
2151	return copied;
2152}
2153EXPORT_SYMBOL(generic_write_end);
2154
2155/*
2156 * block_is_partially_uptodate checks whether buffers within a page are
2157 * uptodate or not.
2158 *
2159 * Returns true if all buffers which correspond to a file portion
2160 * we want to read are uptodate.
2161 */
2162int block_is_partially_uptodate(struct page *page, unsigned long from,
2163					unsigned long count)
2164{
2165	unsigned block_start, block_end, blocksize;
2166	unsigned to;
2167	struct buffer_head *bh, *head;
2168	int ret = 1;
2169
2170	if (!page_has_buffers(page))
2171		return 0;
2172
2173	head = page_buffers(page);
2174	blocksize = head->b_size;
2175	to = min_t(unsigned, PAGE_SIZE - from, count);
2176	to = from + to;
2177	if (from < blocksize && to > PAGE_SIZE - blocksize)
2178		return 0;
2179
2180	bh = head;
2181	block_start = 0;
2182	do {
2183		block_end = block_start + blocksize;
2184		if (block_end > from && block_start < to) {
2185			if (!buffer_uptodate(bh)) {
2186				ret = 0;
2187				break;
2188			}
2189			if (block_end >= to)
2190				break;
2191		}
2192		block_start = block_end;
2193		bh = bh->b_this_page;
2194	} while (bh != head);
2195
2196	return ret;
2197}
2198EXPORT_SYMBOL(block_is_partially_uptodate);
2199
2200/*
2201 * Generic "read page" function for block devices that have the normal
2202 * get_block functionality. This is most of the block device filesystems.
2203 * Reads the page asynchronously --- the unlock_buffer() and
2204 * set/clear_buffer_uptodate() functions propagate buffer state into the
2205 * page struct once IO has completed.
2206 */
2207int block_read_full_page(struct page *page, get_block_t *get_block)
2208{
2209	struct inode *inode = page->mapping->host;
2210	sector_t iblock, lblock;
2211	struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2212	unsigned int blocksize, bbits;
2213	int nr, i;
2214	int fully_mapped = 1;
2215
2216	head = create_page_buffers(page, inode, 0);
2217	blocksize = head->b_size;
2218	bbits = block_size_bits(blocksize);
2219
2220	iblock = (sector_t)page->index << (PAGE_SHIFT - bbits);
2221	lblock = (i_size_read(inode)+blocksize-1) >> bbits;
2222	bh = head;
2223	nr = 0;
2224	i = 0;
2225
2226	do {
2227		if (buffer_uptodate(bh))
2228			continue;
2229
2230		if (!buffer_mapped(bh)) {
2231			int err = 0;
2232
2233			fully_mapped = 0;
2234			if (iblock < lblock) {
2235				WARN_ON(bh->b_size != blocksize);
2236				err = get_block(inode, iblock, bh, 0);
2237				if (err)
2238					SetPageError(page);
2239			}
2240			if (!buffer_mapped(bh)) {
2241				zero_user(page, i * blocksize, blocksize);
2242				if (!err)
2243					set_buffer_uptodate(bh);
2244				continue;
2245			}
2246			/*
2247			 * get_block() might have updated the buffer
2248			 * synchronously
2249			 */
2250			if (buffer_uptodate(bh))
2251				continue;
2252		}
2253		arr[nr++] = bh;
2254	} while (i++, iblock++, (bh = bh->b_this_page) != head);
2255
2256	if (fully_mapped)
2257		SetPageMappedToDisk(page);
2258
2259	if (!nr) {
2260		/*
2261		 * All buffers are uptodate - we can set the page uptodate
2262		 * as well. But not if get_block() returned an error.
2263		 */
2264		if (!PageError(page))
2265			SetPageUptodate(page);
2266		unlock_page(page);
2267		return 0;
2268	}
2269
2270	/* Stage two: lock the buffers */
2271	for (i = 0; i < nr; i++) {
2272		bh = arr[i];
2273		lock_buffer(bh);
2274		mark_buffer_async_read(bh);
2275	}
2276
2277	/*
2278	 * Stage 3: start the IO.  Check for uptodateness
2279	 * inside the buffer lock in case another process reading
2280	 * the underlying blockdev brought it uptodate (the sct fix).
2281	 */
2282	for (i = 0; i < nr; i++) {
2283		bh = arr[i];
2284		if (buffer_uptodate(bh))
2285			end_buffer_async_read(bh, 1);
2286		else
2287			submit_bh(REQ_OP_READ, 0, bh);
2288	}
2289	return 0;
2290}
2291EXPORT_SYMBOL(block_read_full_page);
2292
2293/* utility function for filesystems that need to do work on expanding
2294 * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2295 * deal with the hole.  
2296 */
2297int generic_cont_expand_simple(struct inode *inode, loff_t size)
2298{
2299	struct address_space *mapping = inode->i_mapping;
2300	struct page *page;
2301	void *fsdata;
2302	int err;
2303
2304	err = inode_newsize_ok(inode, size);
2305	if (err)
2306		goto out;
2307
2308	err = pagecache_write_begin(NULL, mapping, size, 0,
2309				    AOP_FLAG_CONT_EXPAND, &page, &fsdata);
 
2310	if (err)
2311		goto out;
2312
2313	err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2314	BUG_ON(err > 0);
2315
2316out:
2317	return err;
2318}
2319EXPORT_SYMBOL(generic_cont_expand_simple);
2320
2321static int cont_expand_zero(struct file *file, struct address_space *mapping,
2322			    loff_t pos, loff_t *bytes)
2323{
2324	struct inode *inode = mapping->host;
2325	unsigned int blocksize = i_blocksize(inode);
2326	struct page *page;
2327	void *fsdata;
2328	pgoff_t index, curidx;
2329	loff_t curpos;
2330	unsigned zerofrom, offset, len;
2331	int err = 0;
2332
2333	index = pos >> PAGE_SHIFT;
2334	offset = pos & ~PAGE_MASK;
2335
2336	while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2337		zerofrom = curpos & ~PAGE_MASK;
2338		if (zerofrom & (blocksize-1)) {
2339			*bytes |= (blocksize-1);
2340			(*bytes)++;
2341		}
2342		len = PAGE_SIZE - zerofrom;
2343
2344		err = pagecache_write_begin(file, mapping, curpos, len, 0,
2345					    &page, &fsdata);
 
2346		if (err)
2347			goto out;
2348		zero_user(page, zerofrom, len);
2349		err = pagecache_write_end(file, mapping, curpos, len, len,
2350						page, fsdata);
2351		if (err < 0)
2352			goto out;
2353		BUG_ON(err != len);
2354		err = 0;
2355
2356		balance_dirty_pages_ratelimited(mapping);
2357
2358		if (unlikely(fatal_signal_pending(current))) {
2359			err = -EINTR;
2360			goto out;
2361		}
2362	}
2363
2364	/* page covers the boundary, find the boundary offset */
2365	if (index == curidx) {
2366		zerofrom = curpos & ~PAGE_MASK;
2367		/* if we will expand the thing last block will be filled */
2368		if (offset <= zerofrom) {
2369			goto out;
2370		}
2371		if (zerofrom & (blocksize-1)) {
2372			*bytes |= (blocksize-1);
2373			(*bytes)++;
2374		}
2375		len = offset - zerofrom;
2376
2377		err = pagecache_write_begin(file, mapping, curpos, len, 0,
2378					    &page, &fsdata);
 
2379		if (err)
2380			goto out;
2381		zero_user(page, zerofrom, len);
2382		err = pagecache_write_end(file, mapping, curpos, len, len,
2383						page, fsdata);
2384		if (err < 0)
2385			goto out;
2386		BUG_ON(err != len);
2387		err = 0;
2388	}
2389out:
2390	return err;
2391}
2392
2393/*
2394 * For moronic filesystems that do not allow holes in file.
2395 * We may have to extend the file.
2396 */
2397int cont_write_begin(struct file *file, struct address_space *mapping,
2398			loff_t pos, unsigned len, unsigned flags,
2399			struct page **pagep, void **fsdata,
2400			get_block_t *get_block, loff_t *bytes)
2401{
2402	struct inode *inode = mapping->host;
2403	unsigned int blocksize = i_blocksize(inode);
2404	unsigned int zerofrom;
2405	int err;
2406
2407	err = cont_expand_zero(file, mapping, pos, bytes);
2408	if (err)
2409		return err;
2410
2411	zerofrom = *bytes & ~PAGE_MASK;
2412	if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2413		*bytes |= (blocksize-1);
2414		(*bytes)++;
2415	}
2416
2417	return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2418}
2419EXPORT_SYMBOL(cont_write_begin);
2420
2421int block_commit_write(struct page *page, unsigned from, unsigned to)
2422{
2423	struct inode *inode = page->mapping->host;
2424	__block_commit_write(inode,page,from,to);
2425	return 0;
2426}
2427EXPORT_SYMBOL(block_commit_write);
2428
2429/*
2430 * block_page_mkwrite() is not allowed to change the file size as it gets
2431 * called from a page fault handler when a page is first dirtied. Hence we must
2432 * be careful to check for EOF conditions here. We set the page up correctly
2433 * for a written page which means we get ENOSPC checking when writing into
2434 * holes and correct delalloc and unwritten extent mapping on filesystems that
2435 * support these features.
2436 *
2437 * We are not allowed to take the i_mutex here so we have to play games to
2438 * protect against truncate races as the page could now be beyond EOF.  Because
2439 * truncate writes the inode size before removing pages, once we have the
2440 * page lock we can determine safely if the page is beyond EOF. If it is not
2441 * beyond EOF, then the page is guaranteed safe against truncation until we
2442 * unlock the page.
2443 *
2444 * Direct callers of this function should protect against filesystem freezing
2445 * using sb_start_pagefault() - sb_end_pagefault() functions.
2446 */
2447int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2448			 get_block_t get_block)
2449{
2450	struct page *page = vmf->page;
2451	struct inode *inode = file_inode(vma->vm_file);
2452	unsigned long end;
2453	loff_t size;
2454	int ret;
2455
2456	lock_page(page);
2457	size = i_size_read(inode);
2458	if ((page->mapping != inode->i_mapping) ||
2459	    (page_offset(page) > size)) {
2460		/* We overload EFAULT to mean page got truncated */
2461		ret = -EFAULT;
2462		goto out_unlock;
2463	}
2464
2465	/* page is wholly or partially inside EOF */
2466	if (((page->index + 1) << PAGE_SHIFT) > size)
2467		end = size & ~PAGE_MASK;
2468	else
2469		end = PAGE_SIZE;
2470
2471	ret = __block_write_begin(page, 0, end, get_block);
2472	if (!ret)
2473		ret = block_commit_write(page, 0, end);
2474
2475	if (unlikely(ret < 0))
2476		goto out_unlock;
2477	set_page_dirty(page);
2478	wait_for_stable_page(page);
2479	return 0;
2480out_unlock:
2481	unlock_page(page);
2482	return ret;
2483}
2484EXPORT_SYMBOL(block_page_mkwrite);
2485
2486/*
2487 * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2488 * immediately, while under the page lock.  So it needs a special end_io
2489 * handler which does not touch the bh after unlocking it.
2490 */
2491static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2492{
2493	__end_buffer_read_notouch(bh, uptodate);
2494}
2495
2496/*
2497 * Attach the singly-linked list of buffers created by nobh_write_begin, to
2498 * the page (converting it to circular linked list and taking care of page
2499 * dirty races).
2500 */
2501static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2502{
2503	struct buffer_head *bh;
2504
2505	BUG_ON(!PageLocked(page));
2506
2507	spin_lock(&page->mapping->private_lock);
2508	bh = head;
2509	do {
2510		if (PageDirty(page))
2511			set_buffer_dirty(bh);
2512		if (!bh->b_this_page)
2513			bh->b_this_page = head;
2514		bh = bh->b_this_page;
2515	} while (bh != head);
2516	attach_page_buffers(page, head);
2517	spin_unlock(&page->mapping->private_lock);
2518}
2519
2520/*
2521 * On entry, the page is fully not uptodate.
2522 * On exit the page is fully uptodate in the areas outside (from,to)
2523 * The filesystem needs to handle block truncation upon failure.
2524 */
2525int nobh_write_begin(struct address_space *mapping,
2526			loff_t pos, unsigned len, unsigned flags,
2527			struct page **pagep, void **fsdata,
2528			get_block_t *get_block)
2529{
2530	struct inode *inode = mapping->host;
2531	const unsigned blkbits = inode->i_blkbits;
2532	const unsigned blocksize = 1 << blkbits;
2533	struct buffer_head *head, *bh;
2534	struct page *page;
2535	pgoff_t index;
2536	unsigned from, to;
2537	unsigned block_in_page;
2538	unsigned block_start, block_end;
2539	sector_t block_in_file;
2540	int nr_reads = 0;
2541	int ret = 0;
2542	int is_mapped_to_disk = 1;
2543
2544	index = pos >> PAGE_SHIFT;
2545	from = pos & (PAGE_SIZE - 1);
2546	to = from + len;
2547
2548	page = grab_cache_page_write_begin(mapping, index, flags);
2549	if (!page)
2550		return -ENOMEM;
2551	*pagep = page;
2552	*fsdata = NULL;
2553
2554	if (page_has_buffers(page)) {
2555		ret = __block_write_begin(page, pos, len, get_block);
2556		if (unlikely(ret))
2557			goto out_release;
2558		return ret;
2559	}
2560
2561	if (PageMappedToDisk(page))
2562		return 0;
2563
2564	/*
2565	 * Allocate buffers so that we can keep track of state, and potentially
2566	 * attach them to the page if an error occurs. In the common case of
2567	 * no error, they will just be freed again without ever being attached
2568	 * to the page (which is all OK, because we're under the page lock).
2569	 *
2570	 * Be careful: the buffer linked list is a NULL terminated one, rather
2571	 * than the circular one we're used to.
2572	 */
2573	head = alloc_page_buffers(page, blocksize, false);
2574	if (!head) {
2575		ret = -ENOMEM;
2576		goto out_release;
2577	}
2578
2579	block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
2580
2581	/*
2582	 * We loop across all blocks in the page, whether or not they are
2583	 * part of the affected region.  This is so we can discover if the
2584	 * page is fully mapped-to-disk.
2585	 */
2586	for (block_start = 0, block_in_page = 0, bh = head;
2587		  block_start < PAGE_SIZE;
2588		  block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2589		int create;
2590
2591		block_end = block_start + blocksize;
2592		bh->b_state = 0;
2593		create = 1;
2594		if (block_start >= to)
2595			create = 0;
2596		ret = get_block(inode, block_in_file + block_in_page,
2597					bh, create);
2598		if (ret)
2599			goto failed;
2600		if (!buffer_mapped(bh))
2601			is_mapped_to_disk = 0;
2602		if (buffer_new(bh))
2603			clean_bdev_bh_alias(bh);
2604		if (PageUptodate(page)) {
2605			set_buffer_uptodate(bh);
2606			continue;
2607		}
2608		if (buffer_new(bh) || !buffer_mapped(bh)) {
2609			zero_user_segments(page, block_start, from,
2610							to, block_end);
2611			continue;
2612		}
2613		if (buffer_uptodate(bh))
2614			continue;	/* reiserfs does this */
2615		if (block_start < from || block_end > to) {
2616			lock_buffer(bh);
2617			bh->b_end_io = end_buffer_read_nobh;
2618			submit_bh(REQ_OP_READ, 0, bh);
2619			nr_reads++;
2620		}
2621	}
2622
2623	if (nr_reads) {
2624		/*
2625		 * The page is locked, so these buffers are protected from
2626		 * any VM or truncate activity.  Hence we don't need to care
2627		 * for the buffer_head refcounts.
2628		 */
2629		for (bh = head; bh; bh = bh->b_this_page) {
2630			wait_on_buffer(bh);
2631			if (!buffer_uptodate(bh))
2632				ret = -EIO;
2633		}
2634		if (ret)
2635			goto failed;
2636	}
2637
2638	if (is_mapped_to_disk)
2639		SetPageMappedToDisk(page);
2640
2641	*fsdata = head; /* to be released by nobh_write_end */
2642
2643	return 0;
2644
2645failed:
2646	BUG_ON(!ret);
2647	/*
2648	 * Error recovery is a bit difficult. We need to zero out blocks that
2649	 * were newly allocated, and dirty them to ensure they get written out.
2650	 * Buffers need to be attached to the page at this point, otherwise
2651	 * the handling of potential IO errors during writeout would be hard
2652	 * (could try doing synchronous writeout, but what if that fails too?)
2653	 */
2654	attach_nobh_buffers(page, head);
2655	page_zero_new_buffers(page, from, to);
2656
2657out_release:
2658	unlock_page(page);
2659	put_page(page);
2660	*pagep = NULL;
2661
2662	return ret;
2663}
2664EXPORT_SYMBOL(nobh_write_begin);
2665
2666int nobh_write_end(struct file *file, struct address_space *mapping,
2667			loff_t pos, unsigned len, unsigned copied,
2668			struct page *page, void *fsdata)
2669{
2670	struct inode *inode = page->mapping->host;
2671	struct buffer_head *head = fsdata;
2672	struct buffer_head *bh;
2673	BUG_ON(fsdata != NULL && page_has_buffers(page));
2674
2675	if (unlikely(copied < len) && head)
2676		attach_nobh_buffers(page, head);
2677	if (page_has_buffers(page))
2678		return generic_write_end(file, mapping, pos, len,
2679					copied, page, fsdata);
2680
2681	SetPageUptodate(page);
2682	set_page_dirty(page);
2683	if (pos+copied > inode->i_size) {
2684		i_size_write(inode, pos+copied);
2685		mark_inode_dirty(inode);
2686	}
2687
2688	unlock_page(page);
2689	put_page(page);
2690
2691	while (head) {
2692		bh = head;
2693		head = head->b_this_page;
2694		free_buffer_head(bh);
2695	}
2696
2697	return copied;
2698}
2699EXPORT_SYMBOL(nobh_write_end);
2700
2701/*
2702 * nobh_writepage() - based on block_full_write_page() except
2703 * that it tries to operate without attaching bufferheads to
2704 * the page.
2705 */
2706int nobh_writepage(struct page *page, get_block_t *get_block,
2707			struct writeback_control *wbc)
2708{
2709	struct inode * const inode = page->mapping->host;
2710	loff_t i_size = i_size_read(inode);
2711	const pgoff_t end_index = i_size >> PAGE_SHIFT;
2712	unsigned offset;
2713	int ret;
2714
2715	/* Is the page fully inside i_size? */
2716	if (page->index < end_index)
2717		goto out;
2718
2719	/* Is the page fully outside i_size? (truncate in progress) */
2720	offset = i_size & (PAGE_SIZE-1);
2721	if (page->index >= end_index+1 || !offset) {
2722		/*
2723		 * The page may have dirty, unmapped buffers.  For example,
2724		 * they may have been added in ext3_writepage().  Make them
2725		 * freeable here, so the page does not leak.
2726		 */
2727#if 0
2728		/* Not really sure about this  - do we need this ? */
2729		if (page->mapping->a_ops->invalidatepage)
2730			page->mapping->a_ops->invalidatepage(page, offset);
2731#endif
2732		unlock_page(page);
2733		return 0; /* don't care */
2734	}
2735
2736	/*
2737	 * The page straddles i_size.  It must be zeroed out on each and every
2738	 * writepage invocation because it may be mmapped.  "A file is mapped
2739	 * in multiples of the page size.  For a file that is not a multiple of
2740	 * the  page size, the remaining memory is zeroed when mapped, and
2741	 * writes to that region are not written out to the file."
2742	 */
2743	zero_user_segment(page, offset, PAGE_SIZE);
2744out:
2745	ret = mpage_writepage(page, get_block, wbc);
2746	if (ret == -EAGAIN)
2747		ret = __block_write_full_page(inode, page, get_block, wbc,
2748					      end_buffer_async_write);
2749	return ret;
2750}
2751EXPORT_SYMBOL(nobh_writepage);
2752
2753int nobh_truncate_page(struct address_space *mapping,
2754			loff_t from, get_block_t *get_block)
2755{
2756	pgoff_t index = from >> PAGE_SHIFT;
2757	unsigned offset = from & (PAGE_SIZE-1);
2758	unsigned blocksize;
2759	sector_t iblock;
2760	unsigned length, pos;
2761	struct inode *inode = mapping->host;
2762	struct page *page;
2763	struct buffer_head map_bh;
2764	int err;
2765
2766	blocksize = i_blocksize(inode);
2767	length = offset & (blocksize - 1);
2768
2769	/* Block boundary? Nothing to do */
2770	if (!length)
2771		return 0;
2772
2773	length = blocksize - length;
2774	iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2775
2776	page = grab_cache_page(mapping, index);
2777	err = -ENOMEM;
2778	if (!page)
2779		goto out;
2780
2781	if (page_has_buffers(page)) {
2782has_buffers:
2783		unlock_page(page);
2784		put_page(page);
2785		return block_truncate_page(mapping, from, get_block);
2786	}
2787
2788	/* Find the buffer that contains "offset" */
2789	pos = blocksize;
2790	while (offset >= pos) {
2791		iblock++;
2792		pos += blocksize;
2793	}
2794
2795	map_bh.b_size = blocksize;
2796	map_bh.b_state = 0;
2797	err = get_block(inode, iblock, &map_bh, 0);
2798	if (err)
2799		goto unlock;
2800	/* unmapped? It's a hole - nothing to do */
2801	if (!buffer_mapped(&map_bh))
2802		goto unlock;
2803
2804	/* Ok, it's mapped. Make sure it's up-to-date */
2805	if (!PageUptodate(page)) {
2806		err = mapping->a_ops->readpage(NULL, page);
2807		if (err) {
2808			put_page(page);
2809			goto out;
2810		}
2811		lock_page(page);
2812		if (!PageUptodate(page)) {
2813			err = -EIO;
2814			goto unlock;
2815		}
2816		if (page_has_buffers(page))
2817			goto has_buffers;
2818	}
2819	zero_user(page, offset, length);
2820	set_page_dirty(page);
2821	err = 0;
2822
2823unlock:
2824	unlock_page(page);
2825	put_page(page);
2826out:
2827	return err;
2828}
2829EXPORT_SYMBOL(nobh_truncate_page);
2830
2831int block_truncate_page(struct address_space *mapping,
2832			loff_t from, get_block_t *get_block)
2833{
2834	pgoff_t index = from >> PAGE_SHIFT;
2835	unsigned offset = from & (PAGE_SIZE-1);
2836	unsigned blocksize;
2837	sector_t iblock;
2838	unsigned length, pos;
2839	struct inode *inode = mapping->host;
2840	struct page *page;
2841	struct buffer_head *bh;
2842	int err;
2843
2844	blocksize = i_blocksize(inode);
2845	length = offset & (blocksize - 1);
2846
2847	/* Block boundary? Nothing to do */
2848	if (!length)
2849		return 0;
2850
2851	length = blocksize - length;
2852	iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2853	
2854	page = grab_cache_page(mapping, index);
2855	err = -ENOMEM;
2856	if (!page)
2857		goto out;
2858
2859	if (!page_has_buffers(page))
2860		create_empty_buffers(page, blocksize, 0);
2861
2862	/* Find the buffer that contains "offset" */
2863	bh = page_buffers(page);
2864	pos = blocksize;
2865	while (offset >= pos) {
2866		bh = bh->b_this_page;
2867		iblock++;
2868		pos += blocksize;
2869	}
2870
2871	err = 0;
2872	if (!buffer_mapped(bh)) {
2873		WARN_ON(bh->b_size != blocksize);
2874		err = get_block(inode, iblock, bh, 0);
2875		if (err)
2876			goto unlock;
2877		/* unmapped? It's a hole - nothing to do */
2878		if (!buffer_mapped(bh))
2879			goto unlock;
2880	}
2881
2882	/* Ok, it's mapped. Make sure it's up-to-date */
2883	if (PageUptodate(page))
2884		set_buffer_uptodate(bh);
2885
2886	if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2887		err = -EIO;
2888		ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2889		wait_on_buffer(bh);
2890		/* Uhhuh. Read error. Complain and punt. */
2891		if (!buffer_uptodate(bh))
2892			goto unlock;
2893	}
2894
2895	zero_user(page, offset, length);
2896	mark_buffer_dirty(bh);
2897	err = 0;
2898
2899unlock:
2900	unlock_page(page);
2901	put_page(page);
2902out:
2903	return err;
2904}
2905EXPORT_SYMBOL(block_truncate_page);
2906
2907/*
2908 * The generic ->writepage function for buffer-backed address_spaces
2909 */
2910int block_write_full_page(struct page *page, get_block_t *get_block,
2911			struct writeback_control *wbc)
2912{
2913	struct inode * const inode = page->mapping->host;
2914	loff_t i_size = i_size_read(inode);
2915	const pgoff_t end_index = i_size >> PAGE_SHIFT;
2916	unsigned offset;
2917
2918	/* Is the page fully inside i_size? */
2919	if (page->index < end_index)
2920		return __block_write_full_page(inode, page, get_block, wbc,
2921					       end_buffer_async_write);
2922
2923	/* Is the page fully outside i_size? (truncate in progress) */
2924	offset = i_size & (PAGE_SIZE-1);
2925	if (page->index >= end_index+1 || !offset) {
2926		/*
2927		 * The page may have dirty, unmapped buffers.  For example,
2928		 * they may have been added in ext3_writepage().  Make them
2929		 * freeable here, so the page does not leak.
2930		 */
2931		do_invalidatepage(page, 0, PAGE_SIZE);
2932		unlock_page(page);
2933		return 0; /* don't care */
2934	}
2935
2936	/*
2937	 * The page straddles i_size.  It must be zeroed out on each and every
2938	 * writepage invocation because it may be mmapped.  "A file is mapped
2939	 * in multiples of the page size.  For a file that is not a multiple of
2940	 * the  page size, the remaining memory is zeroed when mapped, and
2941	 * writes to that region are not written out to the file."
2942	 */
2943	zero_user_segment(page, offset, PAGE_SIZE);
2944	return __block_write_full_page(inode, page, get_block, wbc,
2945							end_buffer_async_write);
2946}
2947EXPORT_SYMBOL(block_write_full_page);
2948
2949sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2950			    get_block_t *get_block)
2951{
 
2952	struct inode *inode = mapping->host;
2953	struct buffer_head tmp = {
2954		.b_size = i_blocksize(inode),
2955	};
2956
2957	get_block(inode, block, &tmp, 0);
2958	return tmp.b_blocknr;
2959}
2960EXPORT_SYMBOL(generic_block_bmap);
2961
2962static void end_bio_bh_io_sync(struct bio *bio)
2963{
2964	struct buffer_head *bh = bio->bi_private;
2965
2966	if (unlikely(bio_flagged(bio, BIO_QUIET)))
2967		set_bit(BH_Quiet, &bh->b_state);
2968
2969	bh->b_end_io(bh, !bio->bi_status);
2970	bio_put(bio);
2971}
2972
2973/*
2974 * This allows us to do IO even on the odd last sectors
2975 * of a device, even if the block size is some multiple
2976 * of the physical sector size.
2977 *
2978 * We'll just truncate the bio to the size of the device,
2979 * and clear the end of the buffer head manually.
2980 *
2981 * Truly out-of-range accesses will turn into actual IO
2982 * errors, this only handles the "we need to be able to
2983 * do IO at the final sector" case.
2984 */
2985void guard_bio_eod(int op, struct bio *bio)
2986{
2987	sector_t maxsector;
2988	struct bio_vec *bvec = bio_last_bvec_all(bio);
2989	unsigned truncated_bytes;
2990	struct hd_struct *part;
2991
2992	rcu_read_lock();
2993	part = __disk_get_part(bio->bi_disk, bio->bi_partno);
2994	if (part)
2995		maxsector = part_nr_sects_read(part);
2996	else
2997		maxsector = get_capacity(bio->bi_disk);
2998	rcu_read_unlock();
2999
 
3000	if (!maxsector)
3001		return;
3002
3003	/*
3004	 * If the *whole* IO is past the end of the device,
3005	 * let it through, and the IO layer will turn it into
3006	 * an EIO.
3007	 */
3008	if (unlikely(bio->bi_iter.bi_sector >= maxsector))
3009		return;
3010
3011	maxsector -= bio->bi_iter.bi_sector;
3012	if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
3013		return;
3014
3015	/* Uhhuh. We've got a bio that straddles the device size! */
3016	truncated_bytes = bio->bi_iter.bi_size - (maxsector << 9);
3017
3018	/* Truncate the bio.. */
3019	bio->bi_iter.bi_size -= truncated_bytes;
3020	bvec->bv_len -= truncated_bytes;
3021
3022	/* ..and clear the end of the buffer for reads */
3023	if (op == REQ_OP_READ) {
3024		zero_user(bvec->bv_page, bvec->bv_offset + bvec->bv_len,
3025				truncated_bytes);
3026	}
3027}
3028
3029static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
3030			 enum rw_hint write_hint, struct writeback_control *wbc)
3031{
3032	struct bio *bio;
3033
3034	BUG_ON(!buffer_locked(bh));
3035	BUG_ON(!buffer_mapped(bh));
3036	BUG_ON(!bh->b_end_io);
3037	BUG_ON(buffer_delay(bh));
3038	BUG_ON(buffer_unwritten(bh));
3039
3040	/*
3041	 * Only clear out a write error when rewriting
3042	 */
3043	if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
3044		clear_buffer_write_io_error(bh);
3045
3046	/*
3047	 * from here on down, it's all bio -- do the initial mapping,
3048	 * submit_bio -> generic_make_request may further map this bio around
3049	 */
3050	bio = bio_alloc(GFP_NOIO, 1);
3051
3052	if (wbc) {
3053		wbc_init_bio(wbc, bio);
3054		wbc_account_io(wbc, bh->b_page, bh->b_size);
3055	}
3056
3057	bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
3058	bio_set_dev(bio, bh->b_bdev);
3059	bio->bi_write_hint = write_hint;
3060
3061	bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
3062	BUG_ON(bio->bi_iter.bi_size != bh->b_size);
3063
3064	bio->bi_end_io = end_bio_bh_io_sync;
3065	bio->bi_private = bh;
 
3066
3067	/* Take care of bh's that straddle the end of the device */
3068	guard_bio_eod(op, bio);
3069
3070	if (buffer_meta(bh))
3071		op_flags |= REQ_META;
3072	if (buffer_prio(bh))
3073		op_flags |= REQ_PRIO;
3074	bio_set_op_attrs(bio, op, op_flags);
3075
3076	submit_bio(bio);
3077	return 0;
3078}
3079
3080int submit_bh(int op, int op_flags, struct buffer_head *bh)
 
 
 
 
 
 
 
3081{
3082	return submit_bh_wbc(op, op_flags, bh, 0, NULL);
3083}
3084EXPORT_SYMBOL(submit_bh);
3085
3086/**
3087 * ll_rw_block: low-level access to block devices (DEPRECATED)
3088 * @op: whether to %READ or %WRITE
3089 * @op_flags: req_flag_bits
3090 * @nr: number of &struct buffer_heads in the array
3091 * @bhs: array of pointers to &struct buffer_head
3092 *
3093 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3094 * requests an I/O operation on them, either a %REQ_OP_READ or a %REQ_OP_WRITE.
3095 * @op_flags contains flags modifying the detailed I/O behavior, most notably
3096 * %REQ_RAHEAD.
3097 *
3098 * This function drops any buffer that it cannot get a lock on (with the
3099 * BH_Lock state bit), any buffer that appears to be clean when doing a write
3100 * request, and any buffer that appears to be up-to-date when doing read
3101 * request.  Further it marks as clean buffers that are processed for
3102 * writing (the buffer cache won't assume that they are actually clean
3103 * until the buffer gets unlocked).
3104 *
3105 * ll_rw_block sets b_end_io to simple completion handler that marks
3106 * the buffer up-to-date (if appropriate), unlocks the buffer and wakes
3107 * any waiters. 
3108 *
3109 * All of the buffers must be for the same device, and must also be a
3110 * multiple of the current approved size for the device.
3111 */
3112void ll_rw_block(int op, int op_flags,  int nr, struct buffer_head *bhs[])
3113{
3114	int i;
3115
3116	for (i = 0; i < nr; i++) {
3117		struct buffer_head *bh = bhs[i];
3118
3119		if (!trylock_buffer(bh))
3120			continue;
3121		if (op == WRITE) {
3122			if (test_clear_buffer_dirty(bh)) {
3123				bh->b_end_io = end_buffer_write_sync;
3124				get_bh(bh);
3125				submit_bh(op, op_flags, bh);
3126				continue;
3127			}
3128		} else {
3129			if (!buffer_uptodate(bh)) {
3130				bh->b_end_io = end_buffer_read_sync;
3131				get_bh(bh);
3132				submit_bh(op, op_flags, bh);
3133				continue;
3134			}
3135		}
3136		unlock_buffer(bh);
3137	}
3138}
3139EXPORT_SYMBOL(ll_rw_block);
3140
3141void write_dirty_buffer(struct buffer_head *bh, int op_flags)
3142{
3143	lock_buffer(bh);
3144	if (!test_clear_buffer_dirty(bh)) {
3145		unlock_buffer(bh);
3146		return;
3147	}
3148	bh->b_end_io = end_buffer_write_sync;
3149	get_bh(bh);
3150	submit_bh(REQ_OP_WRITE, op_flags, bh);
3151}
3152EXPORT_SYMBOL(write_dirty_buffer);
3153
3154/*
3155 * For a data-integrity writeout, we need to wait upon any in-progress I/O
3156 * and then start new I/O and then wait upon it.  The caller must have a ref on
3157 * the buffer_head.
3158 */
3159int __sync_dirty_buffer(struct buffer_head *bh, int op_flags)
3160{
3161	int ret = 0;
3162
3163	WARN_ON(atomic_read(&bh->b_count) < 1);
3164	lock_buffer(bh);
3165	if (test_clear_buffer_dirty(bh)) {
3166		get_bh(bh);
3167		bh->b_end_io = end_buffer_write_sync;
3168		ret = submit_bh(REQ_OP_WRITE, op_flags, bh);
3169		wait_on_buffer(bh);
3170		if (!ret && !buffer_uptodate(bh))
3171			ret = -EIO;
3172	} else {
3173		unlock_buffer(bh);
3174	}
3175	return ret;
3176}
3177EXPORT_SYMBOL(__sync_dirty_buffer);
3178
3179int sync_dirty_buffer(struct buffer_head *bh)
3180{
3181	return __sync_dirty_buffer(bh, REQ_SYNC);
3182}
3183EXPORT_SYMBOL(sync_dirty_buffer);
3184
3185/*
3186 * try_to_free_buffers() checks if all the buffers on this particular page
3187 * are unused, and releases them if so.
3188 *
3189 * Exclusion against try_to_free_buffers may be obtained by either
3190 * locking the page or by holding its mapping's private_lock.
3191 *
3192 * If the page is dirty but all the buffers are clean then we need to
3193 * be sure to mark the page clean as well.  This is because the page
3194 * may be against a block device, and a later reattachment of buffers
3195 * to a dirty page will set *all* buffers dirty.  Which would corrupt
3196 * filesystem data on the same device.
3197 *
3198 * The same applies to regular filesystem pages: if all the buffers are
3199 * clean then we set the page clean and proceed.  To do that, we require
3200 * total exclusion from __set_page_dirty_buffers().  That is obtained with
3201 * private_lock.
3202 *
3203 * try_to_free_buffers() is non-blocking.
3204 */
3205static inline int buffer_busy(struct buffer_head *bh)
3206{
3207	return atomic_read(&bh->b_count) |
3208		(bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3209}
3210
3211static int
3212drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3213{
3214	struct buffer_head *head = page_buffers(page);
3215	struct buffer_head *bh;
3216
3217	bh = head;
3218	do {
 
 
3219		if (buffer_busy(bh))
3220			goto failed;
3221		bh = bh->b_this_page;
3222	} while (bh != head);
3223
3224	do {
3225		struct buffer_head *next = bh->b_this_page;
3226
3227		if (bh->b_assoc_map)
3228			__remove_assoc_queue(bh);
3229		bh = next;
3230	} while (bh != head);
3231	*buffers_to_free = head;
3232	__clear_page_buffers(page);
3233	return 1;
3234failed:
3235	return 0;
3236}
3237
3238int try_to_free_buffers(struct page *page)
3239{
3240	struct address_space * const mapping = page->mapping;
3241	struct buffer_head *buffers_to_free = NULL;
3242	int ret = 0;
3243
3244	BUG_ON(!PageLocked(page));
3245	if (PageWriteback(page))
3246		return 0;
3247
3248	if (mapping == NULL) {		/* can this still happen? */
3249		ret = drop_buffers(page, &buffers_to_free);
3250		goto out;
3251	}
3252
3253	spin_lock(&mapping->private_lock);
3254	ret = drop_buffers(page, &buffers_to_free);
3255
3256	/*
3257	 * If the filesystem writes its buffers by hand (eg ext3)
3258	 * then we can have clean buffers against a dirty page.  We
3259	 * clean the page here; otherwise the VM will never notice
3260	 * that the filesystem did any IO at all.
3261	 *
3262	 * Also, during truncate, discard_buffer will have marked all
3263	 * the page's buffers clean.  We discover that here and clean
3264	 * the page also.
3265	 *
3266	 * private_lock must be held over this entire operation in order
3267	 * to synchronise against __set_page_dirty_buffers and prevent the
3268	 * dirty bit from being lost.
3269	 */
3270	if (ret)
3271		cancel_dirty_page(page);
3272	spin_unlock(&mapping->private_lock);
3273out:
3274	if (buffers_to_free) {
3275		struct buffer_head *bh = buffers_to_free;
3276
3277		do {
3278			struct buffer_head *next = bh->b_this_page;
3279			free_buffer_head(bh);
3280			bh = next;
3281		} while (bh != buffers_to_free);
3282	}
3283	return ret;
3284}
3285EXPORT_SYMBOL(try_to_free_buffers);
3286
3287/*
3288 * There are no bdflush tunables left.  But distributions are
3289 * still running obsolete flush daemons, so we terminate them here.
3290 *
3291 * Use of bdflush() is deprecated and will be removed in a future kernel.
3292 * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3293 */
3294SYSCALL_DEFINE2(bdflush, int, func, long, data)
3295{
3296	static int msg_count;
3297
3298	if (!capable(CAP_SYS_ADMIN))
3299		return -EPERM;
3300
3301	if (msg_count < 5) {
3302		msg_count++;
3303		printk(KERN_INFO
3304			"warning: process `%s' used the obsolete bdflush"
3305			" system call\n", current->comm);
3306		printk(KERN_INFO "Fix your initscripts?\n");
3307	}
3308
3309	if (func == 1)
3310		do_exit(0);
3311	return 0;
3312}
3313
3314/*
3315 * Buffer-head allocation
3316 */
3317static struct kmem_cache *bh_cachep __read_mostly;
3318
3319/*
3320 * Once the number of bh's in the machine exceeds this level, we start
3321 * stripping them in writeback.
3322 */
3323static unsigned long max_buffer_heads;
3324
3325int buffer_heads_over_limit;
3326
3327struct bh_accounting {
3328	int nr;			/* Number of live bh's */
3329	int ratelimit;		/* Limit cacheline bouncing */
3330};
3331
3332static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3333
3334static void recalc_bh_state(void)
3335{
3336	int i;
3337	int tot = 0;
3338
3339	if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3340		return;
3341	__this_cpu_write(bh_accounting.ratelimit, 0);
3342	for_each_online_cpu(i)
3343		tot += per_cpu(bh_accounting, i).nr;
3344	buffer_heads_over_limit = (tot > max_buffer_heads);
3345}
3346
3347struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3348{
3349	struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3350	if (ret) {
3351		INIT_LIST_HEAD(&ret->b_assoc_buffers);
3352		preempt_disable();
3353		__this_cpu_inc(bh_accounting.nr);
3354		recalc_bh_state();
3355		preempt_enable();
3356	}
3357	return ret;
3358}
3359EXPORT_SYMBOL(alloc_buffer_head);
3360
3361void free_buffer_head(struct buffer_head *bh)
3362{
3363	BUG_ON(!list_empty(&bh->b_assoc_buffers));
3364	kmem_cache_free(bh_cachep, bh);
3365	preempt_disable();
3366	__this_cpu_dec(bh_accounting.nr);
3367	recalc_bh_state();
3368	preempt_enable();
3369}
3370EXPORT_SYMBOL(free_buffer_head);
3371
3372static int buffer_exit_cpu_dead(unsigned int cpu)
3373{
3374	int i;
3375	struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3376
3377	for (i = 0; i < BH_LRU_SIZE; i++) {
3378		brelse(b->bhs[i]);
3379		b->bhs[i] = NULL;
3380	}
3381	this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3382	per_cpu(bh_accounting, cpu).nr = 0;
3383	return 0;
3384}
3385
3386/**
3387 * bh_uptodate_or_lock - Test whether the buffer is uptodate
3388 * @bh: struct buffer_head
3389 *
3390 * Return true if the buffer is up-to-date and false,
3391 * with the buffer locked, if not.
3392 */
3393int bh_uptodate_or_lock(struct buffer_head *bh)
3394{
3395	if (!buffer_uptodate(bh)) {
3396		lock_buffer(bh);
3397		if (!buffer_uptodate(bh))
3398			return 0;
3399		unlock_buffer(bh);
3400	}
3401	return 1;
3402}
3403EXPORT_SYMBOL(bh_uptodate_or_lock);
3404
3405/**
3406 * bh_submit_read - Submit a locked buffer for reading
3407 * @bh: struct buffer_head
3408 *
3409 * Returns zero on success and -EIO on error.
3410 */
3411int bh_submit_read(struct buffer_head *bh)
3412{
3413	BUG_ON(!buffer_locked(bh));
3414
3415	if (buffer_uptodate(bh)) {
3416		unlock_buffer(bh);
3417		return 0;
3418	}
3419
3420	get_bh(bh);
3421	bh->b_end_io = end_buffer_read_sync;
3422	submit_bh(REQ_OP_READ, 0, bh);
3423	wait_on_buffer(bh);
3424	if (buffer_uptodate(bh))
3425		return 0;
3426	return -EIO;
3427}
3428EXPORT_SYMBOL(bh_submit_read);
3429
3430/*
3431 * Seek for SEEK_DATA / SEEK_HOLE within @page, starting at @lastoff.
3432 *
3433 * Returns the offset within the file on success, and -ENOENT otherwise.
3434 */
3435static loff_t
3436page_seek_hole_data(struct page *page, loff_t lastoff, int whence)
3437{
3438	loff_t offset = page_offset(page);
3439	struct buffer_head *bh, *head;
3440	bool seek_data = whence == SEEK_DATA;
3441
3442	if (lastoff < offset)
3443		lastoff = offset;
3444
3445	bh = head = page_buffers(page);
3446	do {
3447		offset += bh->b_size;
3448		if (lastoff >= offset)
3449			continue;
3450
3451		/*
3452		 * Unwritten extents that have data in the page cache covering
3453		 * them can be identified by the BH_Unwritten state flag.
3454		 * Pages with multiple buffers might have a mix of holes, data
3455		 * and unwritten extents - any buffer with valid data in it
3456		 * should have BH_Uptodate flag set on it.
3457		 */
3458
3459		if ((buffer_unwritten(bh) || buffer_uptodate(bh)) == seek_data)
3460			return lastoff;
3461
3462		lastoff = offset;
3463	} while ((bh = bh->b_this_page) != head);
3464	return -ENOENT;
3465}
3466
3467/*
3468 * Seek for SEEK_DATA / SEEK_HOLE in the page cache.
3469 *
3470 * Within unwritten extents, the page cache determines which parts are holes
3471 * and which are data: unwritten and uptodate buffer heads count as data;
3472 * everything else counts as a hole.
3473 *
3474 * Returns the resulting offset on successs, and -ENOENT otherwise.
3475 */
3476loff_t
3477page_cache_seek_hole_data(struct inode *inode, loff_t offset, loff_t length,
3478			  int whence)
3479{
3480	pgoff_t index = offset >> PAGE_SHIFT;
3481	pgoff_t end = DIV_ROUND_UP(offset + length, PAGE_SIZE);
3482	loff_t lastoff = offset;
3483	struct pagevec pvec;
3484
3485	if (length <= 0)
3486		return -ENOENT;
3487
3488	pagevec_init(&pvec);
3489
3490	do {
3491		unsigned nr_pages, i;
3492
3493		nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping, &index,
3494						end - 1);
3495		if (nr_pages == 0)
3496			break;
3497
3498		for (i = 0; i < nr_pages; i++) {
3499			struct page *page = pvec.pages[i];
3500
3501			/*
3502			 * At this point, the page may be truncated or
3503			 * invalidated (changing page->mapping to NULL), or
3504			 * even swizzled back from swapper_space to tmpfs file
3505			 * mapping.  However, page->index will not change
3506			 * because we have a reference on the page.
3507                         *
3508			 * If current page offset is beyond where we've ended,
3509			 * we've found a hole.
3510                         */
3511			if (whence == SEEK_HOLE &&
3512			    lastoff < page_offset(page))
3513				goto check_range;
3514
3515			lock_page(page);
3516			if (likely(page->mapping == inode->i_mapping) &&
3517			    page_has_buffers(page)) {
3518				lastoff = page_seek_hole_data(page, lastoff, whence);
3519				if (lastoff >= 0) {
3520					unlock_page(page);
3521					goto check_range;
3522				}
3523			}
3524			unlock_page(page);
3525			lastoff = page_offset(page) + PAGE_SIZE;
3526		}
3527		pagevec_release(&pvec);
3528	} while (index < end);
3529
3530	/* When no page at lastoff and we are not done, we found a hole. */
3531	if (whence != SEEK_HOLE)
3532		goto not_found;
3533
3534check_range:
3535	if (lastoff < offset + length)
3536		goto out;
3537not_found:
3538	lastoff = -ENOENT;
3539out:
3540	pagevec_release(&pvec);
3541	return lastoff;
3542}
3543
3544void __init buffer_init(void)
3545{
3546	unsigned long nrpages;
3547	int ret;
3548
3549	bh_cachep = kmem_cache_create("buffer_head",
3550			sizeof(struct buffer_head), 0,
3551				(SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3552				SLAB_MEM_SPREAD),
3553				NULL);
3554
3555	/*
3556	 * Limit the bh occupancy to 10% of ZONE_NORMAL
3557	 */
3558	nrpages = (nr_free_buffer_pages() * 10) / 100;
3559	max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3560	ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead",
3561					NULL, buffer_exit_cpu_dead);
3562	WARN_ON(ret < 0);
3563}