Linux Audio

Check our new training course

Loading...
v4.10.11
 
   1/*
   2 *  linux/fs/buffer.c
   3 *
   4 *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
   5 */
   6
   7/*
   8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
   9 *
  10 * Removed a lot of unnecessary code and simplified things now that
  11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
  12 *
  13 * Speed up hash, lru, and free list operations.  Use gfp() for allocating
  14 * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
  15 *
  16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
  17 *
  18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
  19 */
  20
  21#include <linux/kernel.h>
 
  22#include <linux/syscalls.h>
  23#include <linux/fs.h>
  24#include <linux/iomap.h>
  25#include <linux/mm.h>
  26#include <linux/percpu.h>
  27#include <linux/slab.h>
  28#include <linux/capability.h>
  29#include <linux/blkdev.h>
  30#include <linux/file.h>
  31#include <linux/quotaops.h>
  32#include <linux/highmem.h>
  33#include <linux/export.h>
  34#include <linux/backing-dev.h>
  35#include <linux/writeback.h>
  36#include <linux/hash.h>
  37#include <linux/suspend.h>
  38#include <linux/buffer_head.h>
  39#include <linux/task_io_accounting_ops.h>
  40#include <linux/bio.h>
  41#include <linux/notifier.h>
  42#include <linux/cpu.h>
  43#include <linux/bitops.h>
  44#include <linux/mpage.h>
  45#include <linux/bit_spinlock.h>
  46#include <linux/pagevec.h>
 
  47#include <trace/events/block.h>
 
 
 
  48
  49static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
  50static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
  51			 unsigned long bio_flags,
  52			 struct writeback_control *wbc);
  53
  54#define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
  55
  56void init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
  57{
  58	bh->b_end_io = handler;
  59	bh->b_private = private;
  60}
  61EXPORT_SYMBOL(init_buffer);
  62
  63inline void touch_buffer(struct buffer_head *bh)
  64{
  65	trace_block_touch_buffer(bh);
  66	mark_page_accessed(bh->b_page);
  67}
  68EXPORT_SYMBOL(touch_buffer);
  69
  70void __lock_buffer(struct buffer_head *bh)
  71{
  72	wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
  73}
  74EXPORT_SYMBOL(__lock_buffer);
  75
  76void unlock_buffer(struct buffer_head *bh)
  77{
  78	clear_bit_unlock(BH_Lock, &bh->b_state);
  79	smp_mb__after_atomic();
  80	wake_up_bit(&bh->b_state, BH_Lock);
  81}
  82EXPORT_SYMBOL(unlock_buffer);
  83
  84/*
  85 * Returns if the page has dirty or writeback buffers. If all the buffers
  86 * are unlocked and clean then the PageDirty information is stale. If
  87 * any of the pages are locked, it is assumed they are locked for IO.
  88 */
  89void buffer_check_dirty_writeback(struct page *page,
  90				     bool *dirty, bool *writeback)
  91{
  92	struct buffer_head *head, *bh;
  93	*dirty = false;
  94	*writeback = false;
  95
  96	BUG_ON(!PageLocked(page));
  97
  98	if (!page_has_buffers(page))
  99		return;
 100
 101	if (PageWriteback(page))
 102		*writeback = true;
 103
 104	head = page_buffers(page);
 105	bh = head;
 106	do {
 107		if (buffer_locked(bh))
 108			*writeback = true;
 109
 110		if (buffer_dirty(bh))
 111			*dirty = true;
 112
 113		bh = bh->b_this_page;
 114	} while (bh != head);
 115}
 116EXPORT_SYMBOL(buffer_check_dirty_writeback);
 117
 118/*
 119 * Block until a buffer comes unlocked.  This doesn't stop it
 120 * from becoming locked again - you have to lock it yourself
 121 * if you want to preserve its state.
 122 */
 123void __wait_on_buffer(struct buffer_head * bh)
 124{
 125	wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
 126}
 127EXPORT_SYMBOL(__wait_on_buffer);
 128
 129static void
 130__clear_page_buffers(struct page *page)
 131{
 132	ClearPagePrivate(page);
 133	set_page_private(page, 0);
 134	put_page(page);
 135}
 136
 137static void buffer_io_error(struct buffer_head *bh, char *msg)
 138{
 139	if (!test_bit(BH_Quiet, &bh->b_state))
 140		printk_ratelimited(KERN_ERR
 141			"Buffer I/O error on dev %pg, logical block %llu%s\n",
 142			bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
 143}
 144
 145/*
 146 * End-of-IO handler helper function which does not touch the bh after
 147 * unlocking it.
 148 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
 149 * a race there is benign: unlock_buffer() only use the bh's address for
 150 * hashing after unlocking the buffer, so it doesn't actually touch the bh
 151 * itself.
 152 */
 153static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
 154{
 155	if (uptodate) {
 156		set_buffer_uptodate(bh);
 157	} else {
 158		/* This happens, due to failed read-ahead attempts. */
 159		clear_buffer_uptodate(bh);
 160	}
 161	unlock_buffer(bh);
 162}
 163
 164/*
 165 * Default synchronous end-of-IO handler..  Just mark it up-to-date and
 166 * unlock the buffer. This is what ll_rw_block uses too.
 167 */
 168void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
 169{
 170	__end_buffer_read_notouch(bh, uptodate);
 171	put_bh(bh);
 172}
 173EXPORT_SYMBOL(end_buffer_read_sync);
 174
 175void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
 176{
 177	if (uptodate) {
 178		set_buffer_uptodate(bh);
 179	} else {
 180		buffer_io_error(bh, ", lost sync page write");
 181		set_buffer_write_io_error(bh);
 182		clear_buffer_uptodate(bh);
 183	}
 184	unlock_buffer(bh);
 185	put_bh(bh);
 186}
 187EXPORT_SYMBOL(end_buffer_write_sync);
 188
 189/*
 190 * Various filesystems appear to want __find_get_block to be non-blocking.
 191 * But it's the page lock which protects the buffers.  To get around this,
 192 * we get exclusion from try_to_free_buffers with the blockdev mapping's
 193 * private_lock.
 194 *
 195 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
 196 * may be quite high.  This code could TryLock the page, and if that
 197 * succeeds, there is no need to take private_lock. (But if
 198 * private_lock is contended then so is mapping->tree_lock).
 199 */
 200static struct buffer_head *
 201__find_get_block_slow(struct block_device *bdev, sector_t block)
 202{
 203	struct inode *bd_inode = bdev->bd_inode;
 204	struct address_space *bd_mapping = bd_inode->i_mapping;
 205	struct buffer_head *ret = NULL;
 206	pgoff_t index;
 207	struct buffer_head *bh;
 208	struct buffer_head *head;
 209	struct page *page;
 210	int all_mapped = 1;
 
 211
 212	index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
 213	page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED);
 214	if (!page)
 215		goto out;
 216
 217	spin_lock(&bd_mapping->private_lock);
 218	if (!page_has_buffers(page))
 219		goto out_unlock;
 220	head = page_buffers(page);
 221	bh = head;
 222	do {
 223		if (!buffer_mapped(bh))
 224			all_mapped = 0;
 225		else if (bh->b_blocknr == block) {
 226			ret = bh;
 227			get_bh(bh);
 228			goto out_unlock;
 229		}
 230		bh = bh->b_this_page;
 231	} while (bh != head);
 232
 233	/* we might be here because some of the buffers on this page are
 234	 * not mapped.  This is due to various races between
 235	 * file io on the block device and getblk.  It gets dealt with
 236	 * elsewhere, don't buffer_error if we had some unmapped buffers
 237	 */
 238	if (all_mapped) {
 239		printk("__find_get_block_slow() failed. "
 240			"block=%llu, b_blocknr=%llu\n",
 241			(unsigned long long)block,
 242			(unsigned long long)bh->b_blocknr);
 243		printk("b_state=0x%08lx, b_size=%zu\n",
 244			bh->b_state, bh->b_size);
 245		printk("device %pg blocksize: %d\n", bdev,
 246			1 << bd_inode->i_blkbits);
 247	}
 248out_unlock:
 249	spin_unlock(&bd_mapping->private_lock);
 250	put_page(page);
 251out:
 252	return ret;
 253}
 254
 255/*
 256 * Kick the writeback threads then try to free up some ZONE_NORMAL memory.
 257 */
 258static void free_more_memory(void)
 259{
 260	struct zoneref *z;
 261	int nid;
 262
 263	wakeup_flusher_threads(1024, WB_REASON_FREE_MORE_MEM);
 264	yield();
 265
 266	for_each_online_node(nid) {
 267
 268		z = first_zones_zonelist(node_zonelist(nid, GFP_NOFS),
 269						gfp_zone(GFP_NOFS), NULL);
 270		if (z->zone)
 271			try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0,
 272						GFP_NOFS, NULL);
 273	}
 274}
 275
 276/*
 277 * I/O completion handler for block_read_full_page() - pages
 278 * which come unlocked at the end of I/O.
 279 */
 280static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
 281{
 282	unsigned long flags;
 283	struct buffer_head *first;
 284	struct buffer_head *tmp;
 285	struct page *page;
 286	int page_uptodate = 1;
 287
 288	BUG_ON(!buffer_async_read(bh));
 289
 290	page = bh->b_page;
 291	if (uptodate) {
 292		set_buffer_uptodate(bh);
 293	} else {
 294		clear_buffer_uptodate(bh);
 295		buffer_io_error(bh, ", async page read");
 296		SetPageError(page);
 297	}
 298
 299	/*
 300	 * Be _very_ careful from here on. Bad things can happen if
 301	 * two buffer heads end IO at almost the same time and both
 302	 * decide that the page is now completely done.
 303	 */
 304	first = page_buffers(page);
 305	local_irq_save(flags);
 306	bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
 307	clear_buffer_async_read(bh);
 308	unlock_buffer(bh);
 309	tmp = bh;
 310	do {
 311		if (!buffer_uptodate(tmp))
 312			page_uptodate = 0;
 313		if (buffer_async_read(tmp)) {
 314			BUG_ON(!buffer_locked(tmp));
 315			goto still_busy;
 316		}
 317		tmp = tmp->b_this_page;
 318	} while (tmp != bh);
 319	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
 320	local_irq_restore(flags);
 321
 322	/*
 323	 * If none of the buffers had errors and they are all
 324	 * uptodate then we can set the page uptodate.
 325	 */
 326	if (page_uptodate && !PageError(page))
 327		SetPageUptodate(page);
 328	unlock_page(page);
 329	return;
 330
 331still_busy:
 332	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
 333	local_irq_restore(flags);
 334	return;
 335}
 336
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 337/*
 338 * Completion handler for block_write_full_page() - pages which are unlocked
 339 * during I/O, and which have PageWriteback cleared upon I/O completion.
 340 */
 341void end_buffer_async_write(struct buffer_head *bh, int uptodate)
 342{
 343	unsigned long flags;
 344	struct buffer_head *first;
 345	struct buffer_head *tmp;
 346	struct page *page;
 347
 348	BUG_ON(!buffer_async_write(bh));
 349
 350	page = bh->b_page;
 351	if (uptodate) {
 352		set_buffer_uptodate(bh);
 353	} else {
 354		buffer_io_error(bh, ", lost async page write");
 355		mapping_set_error(page->mapping, -EIO);
 356		set_buffer_write_io_error(bh);
 357		clear_buffer_uptodate(bh);
 358		SetPageError(page);
 359	}
 360
 361	first = page_buffers(page);
 362	local_irq_save(flags);
 363	bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
 364
 365	clear_buffer_async_write(bh);
 366	unlock_buffer(bh);
 367	tmp = bh->b_this_page;
 368	while (tmp != bh) {
 369		if (buffer_async_write(tmp)) {
 370			BUG_ON(!buffer_locked(tmp));
 371			goto still_busy;
 372		}
 373		tmp = tmp->b_this_page;
 374	}
 375	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
 376	local_irq_restore(flags);
 377	end_page_writeback(page);
 378	return;
 379
 380still_busy:
 381	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
 382	local_irq_restore(flags);
 383	return;
 384}
 385EXPORT_SYMBOL(end_buffer_async_write);
 386
 387/*
 388 * If a page's buffers are under async readin (end_buffer_async_read
 389 * completion) then there is a possibility that another thread of
 390 * control could lock one of the buffers after it has completed
 391 * but while some of the other buffers have not completed.  This
 392 * locked buffer would confuse end_buffer_async_read() into not unlocking
 393 * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
 394 * that this buffer is not under async I/O.
 395 *
 396 * The page comes unlocked when it has no locked buffer_async buffers
 397 * left.
 398 *
 399 * PageLocked prevents anyone starting new async I/O reads any of
 400 * the buffers.
 401 *
 402 * PageWriteback is used to prevent simultaneous writeout of the same
 403 * page.
 404 *
 405 * PageLocked prevents anyone from starting writeback of a page which is
 406 * under read I/O (PageWriteback is only ever set against a locked page).
 407 */
 408static void mark_buffer_async_read(struct buffer_head *bh)
 409{
 410	bh->b_end_io = end_buffer_async_read;
 411	set_buffer_async_read(bh);
 412}
 413
 414static void mark_buffer_async_write_endio(struct buffer_head *bh,
 415					  bh_end_io_t *handler)
 416{
 417	bh->b_end_io = handler;
 418	set_buffer_async_write(bh);
 419}
 420
 421void mark_buffer_async_write(struct buffer_head *bh)
 422{
 423	mark_buffer_async_write_endio(bh, end_buffer_async_write);
 424}
 425EXPORT_SYMBOL(mark_buffer_async_write);
 426
 427
 428/*
 429 * fs/buffer.c contains helper functions for buffer-backed address space's
 430 * fsync functions.  A common requirement for buffer-based filesystems is
 431 * that certain data from the backing blockdev needs to be written out for
 432 * a successful fsync().  For example, ext2 indirect blocks need to be
 433 * written back and waited upon before fsync() returns.
 434 *
 435 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
 436 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
 437 * management of a list of dependent buffers at ->i_mapping->private_list.
 438 *
 439 * Locking is a little subtle: try_to_free_buffers() will remove buffers
 440 * from their controlling inode's queue when they are being freed.  But
 441 * try_to_free_buffers() will be operating against the *blockdev* mapping
 442 * at the time, not against the S_ISREG file which depends on those buffers.
 443 * So the locking for private_list is via the private_lock in the address_space
 444 * which backs the buffers.  Which is different from the address_space 
 445 * against which the buffers are listed.  So for a particular address_space,
 446 * mapping->private_lock does *not* protect mapping->private_list!  In fact,
 447 * mapping->private_list will always be protected by the backing blockdev's
 448 * ->private_lock.
 449 *
 450 * Which introduces a requirement: all buffers on an address_space's
 451 * ->private_list must be from the same address_space: the blockdev's.
 452 *
 453 * address_spaces which do not place buffers at ->private_list via these
 454 * utility functions are free to use private_lock and private_list for
 455 * whatever they want.  The only requirement is that list_empty(private_list)
 456 * be true at clear_inode() time.
 457 *
 458 * FIXME: clear_inode should not call invalidate_inode_buffers().  The
 459 * filesystems should do that.  invalidate_inode_buffers() should just go
 460 * BUG_ON(!list_empty).
 461 *
 462 * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
 463 * take an address_space, not an inode.  And it should be called
 464 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
 465 * queued up.
 466 *
 467 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
 468 * list if it is already on a list.  Because if the buffer is on a list,
 469 * it *must* already be on the right one.  If not, the filesystem is being
 470 * silly.  This will save a ton of locking.  But first we have to ensure
 471 * that buffers are taken *off* the old inode's list when they are freed
 472 * (presumably in truncate).  That requires careful auditing of all
 473 * filesystems (do it inside bforget()).  It could also be done by bringing
 474 * b_inode back.
 475 */
 476
 477/*
 478 * The buffer's backing address_space's private_lock must be held
 479 */
 480static void __remove_assoc_queue(struct buffer_head *bh)
 481{
 482	list_del_init(&bh->b_assoc_buffers);
 483	WARN_ON(!bh->b_assoc_map);
 484	if (buffer_write_io_error(bh))
 485		set_bit(AS_EIO, &bh->b_assoc_map->flags);
 486	bh->b_assoc_map = NULL;
 487}
 488
 489int inode_has_buffers(struct inode *inode)
 490{
 491	return !list_empty(&inode->i_data.private_list);
 492}
 493
 494/*
 495 * osync is designed to support O_SYNC io.  It waits synchronously for
 496 * all already-submitted IO to complete, but does not queue any new
 497 * writes to the disk.
 498 *
 499 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
 500 * you dirty the buffers, and then use osync_inode_buffers to wait for
 501 * completion.  Any other dirty buffers which are not yet queued for
 502 * write will not be flushed to disk by the osync.
 503 */
 504static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
 505{
 506	struct buffer_head *bh;
 507	struct list_head *p;
 508	int err = 0;
 509
 510	spin_lock(lock);
 511repeat:
 512	list_for_each_prev(p, list) {
 513		bh = BH_ENTRY(p);
 514		if (buffer_locked(bh)) {
 515			get_bh(bh);
 516			spin_unlock(lock);
 517			wait_on_buffer(bh);
 518			if (!buffer_uptodate(bh))
 519				err = -EIO;
 520			brelse(bh);
 521			spin_lock(lock);
 522			goto repeat;
 523		}
 524	}
 525	spin_unlock(lock);
 526	return err;
 527}
 528
 529static void do_thaw_one(struct super_block *sb, void *unused)
 530{
 531	while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
 532		printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev);
 533}
 534
 535static void do_thaw_all(struct work_struct *work)
 536{
 537	iterate_supers(do_thaw_one, NULL);
 538	kfree(work);
 539	printk(KERN_WARNING "Emergency Thaw complete\n");
 540}
 541
 542/**
 543 * emergency_thaw_all -- forcibly thaw every frozen filesystem
 544 *
 545 * Used for emergency unfreeze of all filesystems via SysRq
 546 */
 547void emergency_thaw_all(void)
 548{
 549	struct work_struct *work;
 550
 551	work = kmalloc(sizeof(*work), GFP_ATOMIC);
 552	if (work) {
 553		INIT_WORK(work, do_thaw_all);
 554		schedule_work(work);
 555	}
 556}
 557
 558/**
 559 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
 560 * @mapping: the mapping which wants those buffers written
 561 *
 562 * Starts I/O against the buffers at mapping->private_list, and waits upon
 563 * that I/O.
 564 *
 565 * Basically, this is a convenience function for fsync().
 566 * @mapping is a file or directory which needs those buffers to be written for
 567 * a successful fsync().
 568 */
 569int sync_mapping_buffers(struct address_space *mapping)
 570{
 571	struct address_space *buffer_mapping = mapping->private_data;
 572
 573	if (buffer_mapping == NULL || list_empty(&mapping->private_list))
 574		return 0;
 575
 576	return fsync_buffers_list(&buffer_mapping->private_lock,
 577					&mapping->private_list);
 578}
 579EXPORT_SYMBOL(sync_mapping_buffers);
 580
 581/*
 582 * Called when we've recently written block `bblock', and it is known that
 583 * `bblock' was for a buffer_boundary() buffer.  This means that the block at
 584 * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
 585 * dirty, schedule it for IO.  So that indirects merge nicely with their data.
 586 */
 587void write_boundary_block(struct block_device *bdev,
 588			sector_t bblock, unsigned blocksize)
 589{
 590	struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
 591	if (bh) {
 592		if (buffer_dirty(bh))
 593			ll_rw_block(REQ_OP_WRITE, 0, 1, &bh);
 594		put_bh(bh);
 595	}
 596}
 597
 598void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
 599{
 600	struct address_space *mapping = inode->i_mapping;
 601	struct address_space *buffer_mapping = bh->b_page->mapping;
 602
 603	mark_buffer_dirty(bh);
 604	if (!mapping->private_data) {
 605		mapping->private_data = buffer_mapping;
 606	} else {
 607		BUG_ON(mapping->private_data != buffer_mapping);
 608	}
 609	if (!bh->b_assoc_map) {
 610		spin_lock(&buffer_mapping->private_lock);
 611		list_move_tail(&bh->b_assoc_buffers,
 612				&mapping->private_list);
 613		bh->b_assoc_map = mapping;
 614		spin_unlock(&buffer_mapping->private_lock);
 615	}
 616}
 617EXPORT_SYMBOL(mark_buffer_dirty_inode);
 618
 619/*
 620 * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
 621 * dirty.
 622 *
 623 * If warn is true, then emit a warning if the page is not uptodate and has
 624 * not been truncated.
 625 *
 626 * The caller must hold lock_page_memcg().
 627 */
 628static void __set_page_dirty(struct page *page, struct address_space *mapping,
 629			     int warn)
 630{
 631	unsigned long flags;
 632
 633	spin_lock_irqsave(&mapping->tree_lock, flags);
 634	if (page->mapping) {	/* Race with truncate? */
 635		WARN_ON_ONCE(warn && !PageUptodate(page));
 636		account_page_dirtied(page, mapping);
 637		radix_tree_tag_set(&mapping->page_tree,
 638				page_index(page), PAGECACHE_TAG_DIRTY);
 639	}
 640	spin_unlock_irqrestore(&mapping->tree_lock, flags);
 641}
 
 642
 643/*
 644 * Add a page to the dirty page list.
 645 *
 646 * It is a sad fact of life that this function is called from several places
 647 * deeply under spinlocking.  It may not sleep.
 648 *
 649 * If the page has buffers, the uptodate buffers are set dirty, to preserve
 650 * dirty-state coherency between the page and the buffers.  It the page does
 651 * not have buffers then when they are later attached they will all be set
 652 * dirty.
 653 *
 654 * The buffers are dirtied before the page is dirtied.  There's a small race
 655 * window in which a writepage caller may see the page cleanness but not the
 656 * buffer dirtiness.  That's fine.  If this code were to set the page dirty
 657 * before the buffers, a concurrent writepage caller could clear the page dirty
 658 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
 659 * page on the dirty page list.
 660 *
 661 * We use private_lock to lock against try_to_free_buffers while using the
 662 * page's buffer list.  Also use this to protect against clean buffers being
 663 * added to the page after it was set dirty.
 664 *
 665 * FIXME: may need to call ->reservepage here as well.  That's rather up to the
 666 * address_space though.
 667 */
 668int __set_page_dirty_buffers(struct page *page)
 669{
 670	int newly_dirty;
 671	struct address_space *mapping = page_mapping(page);
 672
 673	if (unlikely(!mapping))
 674		return !TestSetPageDirty(page);
 675
 676	spin_lock(&mapping->private_lock);
 677	if (page_has_buffers(page)) {
 678		struct buffer_head *head = page_buffers(page);
 679		struct buffer_head *bh = head;
 680
 681		do {
 682			set_buffer_dirty(bh);
 683			bh = bh->b_this_page;
 684		} while (bh != head);
 685	}
 686	/*
 687	 * Lock out page->mem_cgroup migration to keep PageDirty
 688	 * synchronized with per-memcg dirty page counters.
 689	 */
 690	lock_page_memcg(page);
 691	newly_dirty = !TestSetPageDirty(page);
 692	spin_unlock(&mapping->private_lock);
 693
 694	if (newly_dirty)
 695		__set_page_dirty(page, mapping, 1);
 696
 697	unlock_page_memcg(page);
 698
 699	if (newly_dirty)
 700		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
 701
 702	return newly_dirty;
 703}
 704EXPORT_SYMBOL(__set_page_dirty_buffers);
 705
 706/*
 707 * Write out and wait upon a list of buffers.
 708 *
 709 * We have conflicting pressures: we want to make sure that all
 710 * initially dirty buffers get waited on, but that any subsequently
 711 * dirtied buffers don't.  After all, we don't want fsync to last
 712 * forever if somebody is actively writing to the file.
 713 *
 714 * Do this in two main stages: first we copy dirty buffers to a
 715 * temporary inode list, queueing the writes as we go.  Then we clean
 716 * up, waiting for those writes to complete.
 717 * 
 718 * During this second stage, any subsequent updates to the file may end
 719 * up refiling the buffer on the original inode's dirty list again, so
 720 * there is a chance we will end up with a buffer queued for write but
 721 * not yet completed on that list.  So, as a final cleanup we go through
 722 * the osync code to catch these locked, dirty buffers without requeuing
 723 * any newly dirty buffers for write.
 724 */
 725static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
 726{
 727	struct buffer_head *bh;
 728	struct list_head tmp;
 729	struct address_space *mapping;
 730	int err = 0, err2;
 731	struct blk_plug plug;
 732
 733	INIT_LIST_HEAD(&tmp);
 734	blk_start_plug(&plug);
 735
 736	spin_lock(lock);
 737	while (!list_empty(list)) {
 738		bh = BH_ENTRY(list->next);
 739		mapping = bh->b_assoc_map;
 740		__remove_assoc_queue(bh);
 741		/* Avoid race with mark_buffer_dirty_inode() which does
 742		 * a lockless check and we rely on seeing the dirty bit */
 743		smp_mb();
 744		if (buffer_dirty(bh) || buffer_locked(bh)) {
 745			list_add(&bh->b_assoc_buffers, &tmp);
 746			bh->b_assoc_map = mapping;
 747			if (buffer_dirty(bh)) {
 748				get_bh(bh);
 749				spin_unlock(lock);
 750				/*
 751				 * Ensure any pending I/O completes so that
 752				 * write_dirty_buffer() actually writes the
 753				 * current contents - it is a noop if I/O is
 754				 * still in flight on potentially older
 755				 * contents.
 756				 */
 757				write_dirty_buffer(bh, REQ_SYNC);
 758
 759				/*
 760				 * Kick off IO for the previous mapping. Note
 761				 * that we will not run the very last mapping,
 762				 * wait_on_buffer() will do that for us
 763				 * through sync_buffer().
 764				 */
 765				brelse(bh);
 766				spin_lock(lock);
 767			}
 768		}
 769	}
 770
 771	spin_unlock(lock);
 772	blk_finish_plug(&plug);
 773	spin_lock(lock);
 774
 775	while (!list_empty(&tmp)) {
 776		bh = BH_ENTRY(tmp.prev);
 777		get_bh(bh);
 778		mapping = bh->b_assoc_map;
 779		__remove_assoc_queue(bh);
 780		/* Avoid race with mark_buffer_dirty_inode() which does
 781		 * a lockless check and we rely on seeing the dirty bit */
 782		smp_mb();
 783		if (buffer_dirty(bh)) {
 784			list_add(&bh->b_assoc_buffers,
 785				 &mapping->private_list);
 786			bh->b_assoc_map = mapping;
 787		}
 788		spin_unlock(lock);
 789		wait_on_buffer(bh);
 790		if (!buffer_uptodate(bh))
 791			err = -EIO;
 792		brelse(bh);
 793		spin_lock(lock);
 794	}
 795	
 796	spin_unlock(lock);
 797	err2 = osync_buffers_list(lock, list);
 798	if (err)
 799		return err;
 800	else
 801		return err2;
 802}
 803
 804/*
 805 * Invalidate any and all dirty buffers on a given inode.  We are
 806 * probably unmounting the fs, but that doesn't mean we have already
 807 * done a sync().  Just drop the buffers from the inode list.
 808 *
 809 * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
 810 * assumes that all the buffers are against the blockdev.  Not true
 811 * for reiserfs.
 812 */
 813void invalidate_inode_buffers(struct inode *inode)
 814{
 815	if (inode_has_buffers(inode)) {
 816		struct address_space *mapping = &inode->i_data;
 817		struct list_head *list = &mapping->private_list;
 818		struct address_space *buffer_mapping = mapping->private_data;
 819
 820		spin_lock(&buffer_mapping->private_lock);
 821		while (!list_empty(list))
 822			__remove_assoc_queue(BH_ENTRY(list->next));
 823		spin_unlock(&buffer_mapping->private_lock);
 824	}
 825}
 826EXPORT_SYMBOL(invalidate_inode_buffers);
 827
 828/*
 829 * Remove any clean buffers from the inode's buffer list.  This is called
 830 * when we're trying to free the inode itself.  Those buffers can pin it.
 831 *
 832 * Returns true if all buffers were removed.
 833 */
 834int remove_inode_buffers(struct inode *inode)
 835{
 836	int ret = 1;
 837
 838	if (inode_has_buffers(inode)) {
 839		struct address_space *mapping = &inode->i_data;
 840		struct list_head *list = &mapping->private_list;
 841		struct address_space *buffer_mapping = mapping->private_data;
 842
 843		spin_lock(&buffer_mapping->private_lock);
 844		while (!list_empty(list)) {
 845			struct buffer_head *bh = BH_ENTRY(list->next);
 846			if (buffer_dirty(bh)) {
 847				ret = 0;
 848				break;
 849			}
 850			__remove_assoc_queue(bh);
 851		}
 852		spin_unlock(&buffer_mapping->private_lock);
 853	}
 854	return ret;
 855}
 856
 857/*
 858 * Create the appropriate buffers when given a page for data area and
 859 * the size of each buffer.. Use the bh->b_this_page linked list to
 860 * follow the buffers created.  Return NULL if unable to create more
 861 * buffers.
 862 *
 863 * The retry flag is used to differentiate async IO (paging, swapping)
 864 * which may not fail from ordinary buffer allocations.
 865 */
 866struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
 867		int retry)
 868{
 869	struct buffer_head *bh, *head;
 
 870	long offset;
 
 
 
 
 
 
 
 871
 872try_again:
 873	head = NULL;
 874	offset = PAGE_SIZE;
 875	while ((offset -= size) >= 0) {
 876		bh = alloc_buffer_head(GFP_NOFS);
 877		if (!bh)
 878			goto no_grow;
 879
 880		bh->b_this_page = head;
 881		bh->b_blocknr = -1;
 882		head = bh;
 883
 884		bh->b_size = size;
 885
 886		/* Link the buffer to its page */
 887		set_bh_page(bh, page, offset);
 888	}
 
 
 
 889	return head;
 890/*
 891 * In case anything failed, we just free everything we got.
 892 */
 893no_grow:
 894	if (head) {
 895		do {
 896			bh = head;
 897			head = head->b_this_page;
 898			free_buffer_head(bh);
 899		} while (head);
 900	}
 901
 902	/*
 903	 * Return failure for non-async IO requests.  Async IO requests
 904	 * are not allowed to fail, so we have to wait until buffer heads
 905	 * become available.  But we don't want tasks sleeping with 
 906	 * partially complete buffers, so all were released above.
 907	 */
 908	if (!retry)
 909		return NULL;
 910
 911	/* We're _really_ low on memory. Now we just
 912	 * wait for old buffer heads to become free due to
 913	 * finishing IO.  Since this is an async request and
 914	 * the reserve list is empty, we're sure there are 
 915	 * async buffer heads in use.
 916	 */
 917	free_more_memory();
 918	goto try_again;
 919}
 920EXPORT_SYMBOL_GPL(alloc_page_buffers);
 921
 922static inline void
 923link_dev_buffers(struct page *page, struct buffer_head *head)
 924{
 925	struct buffer_head *bh, *tail;
 926
 927	bh = head;
 928	do {
 929		tail = bh;
 930		bh = bh->b_this_page;
 931	} while (bh);
 932	tail->b_this_page = head;
 933	attach_page_buffers(page, head);
 934}
 935
 936static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
 937{
 938	sector_t retval = ~((sector_t)0);
 939	loff_t sz = i_size_read(bdev->bd_inode);
 940
 941	if (sz) {
 942		unsigned int sizebits = blksize_bits(size);
 943		retval = (sz >> sizebits);
 944	}
 945	return retval;
 946}
 947
 948/*
 949 * Initialise the state of a blockdev page's buffers.
 950 */ 
 951static sector_t
 952init_page_buffers(struct page *page, struct block_device *bdev,
 953			sector_t block, int size)
 954{
 955	struct buffer_head *head = page_buffers(page);
 956	struct buffer_head *bh = head;
 957	int uptodate = PageUptodate(page);
 958	sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size);
 959
 960	do {
 961		if (!buffer_mapped(bh)) {
 962			init_buffer(bh, NULL, NULL);
 
 963			bh->b_bdev = bdev;
 964			bh->b_blocknr = block;
 965			if (uptodate)
 966				set_buffer_uptodate(bh);
 967			if (block < end_block)
 968				set_buffer_mapped(bh);
 969		}
 970		block++;
 971		bh = bh->b_this_page;
 972	} while (bh != head);
 973
 974	/*
 975	 * Caller needs to validate requested block against end of device.
 976	 */
 977	return end_block;
 978}
 979
 980/*
 981 * Create the page-cache page that contains the requested block.
 982 *
 983 * This is used purely for blockdev mappings.
 984 */
 985static int
 986grow_dev_page(struct block_device *bdev, sector_t block,
 987	      pgoff_t index, int size, int sizebits, gfp_t gfp)
 988{
 989	struct inode *inode = bdev->bd_inode;
 990	struct page *page;
 991	struct buffer_head *bh;
 992	sector_t end_block;
 993	int ret = 0;		/* Will call free_more_memory() */
 994	gfp_t gfp_mask;
 995
 996	gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp;
 997
 998	/*
 999	 * XXX: __getblk_slow() can not really deal with failure and
1000	 * will endlessly loop on improvised global reclaim.  Prefer
1001	 * looping in the allocator rather than here, at least that
1002	 * code knows what it's doing.
1003	 */
1004	gfp_mask |= __GFP_NOFAIL;
1005
1006	page = find_or_create_page(inode->i_mapping, index, gfp_mask);
1007	if (!page)
1008		return ret;
1009
1010	BUG_ON(!PageLocked(page));
1011
1012	if (page_has_buffers(page)) {
1013		bh = page_buffers(page);
1014		if (bh->b_size == size) {
1015			end_block = init_page_buffers(page, bdev,
1016						(sector_t)index << sizebits,
1017						size);
1018			goto done;
1019		}
1020		if (!try_to_free_buffers(page))
1021			goto failed;
1022	}
1023
1024	/*
1025	 * Allocate some buffers for this page
1026	 */
1027	bh = alloc_page_buffers(page, size, 0);
1028	if (!bh)
1029		goto failed;
1030
1031	/*
1032	 * Link the page to the buffers and initialise them.  Take the
1033	 * lock to be atomic wrt __find_get_block(), which does not
1034	 * run under the page lock.
1035	 */
1036	spin_lock(&inode->i_mapping->private_lock);
1037	link_dev_buffers(page, bh);
1038	end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits,
1039			size);
1040	spin_unlock(&inode->i_mapping->private_lock);
1041done:
1042	ret = (block < end_block) ? 1 : -ENXIO;
1043failed:
1044	unlock_page(page);
1045	put_page(page);
1046	return ret;
1047}
1048
1049/*
1050 * Create buffers for the specified block device block's page.  If
1051 * that page was dirty, the buffers are set dirty also.
1052 */
1053static int
1054grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp)
1055{
1056	pgoff_t index;
1057	int sizebits;
1058
1059	sizebits = -1;
1060	do {
1061		sizebits++;
1062	} while ((size << sizebits) < PAGE_SIZE);
1063
1064	index = block >> sizebits;
1065
1066	/*
1067	 * Check for a block which wants to lie outside our maximum possible
1068	 * pagecache index.  (this comparison is done using sector_t types).
1069	 */
1070	if (unlikely(index != block >> sizebits)) {
1071		printk(KERN_ERR "%s: requested out-of-range block %llu for "
1072			"device %pg\n",
1073			__func__, (unsigned long long)block,
1074			bdev);
1075		return -EIO;
1076	}
1077
1078	/* Create a page with the proper size buffers.. */
1079	return grow_dev_page(bdev, block, index, size, sizebits, gfp);
1080}
1081
1082static struct buffer_head *
1083__getblk_slow(struct block_device *bdev, sector_t block,
1084	     unsigned size, gfp_t gfp)
1085{
1086	/* Size must be multiple of hard sectorsize */
1087	if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1088			(size < 512 || size > PAGE_SIZE))) {
1089		printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1090					size);
1091		printk(KERN_ERR "logical block size: %d\n",
1092					bdev_logical_block_size(bdev));
1093
1094		dump_stack();
1095		return NULL;
1096	}
1097
1098	for (;;) {
1099		struct buffer_head *bh;
1100		int ret;
1101
1102		bh = __find_get_block(bdev, block, size);
1103		if (bh)
1104			return bh;
1105
1106		ret = grow_buffers(bdev, block, size, gfp);
1107		if (ret < 0)
1108			return NULL;
1109		if (ret == 0)
1110			free_more_memory();
1111	}
1112}
1113
1114/*
1115 * The relationship between dirty buffers and dirty pages:
1116 *
1117 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1118 * the page is tagged dirty in its radix tree.
1119 *
1120 * At all times, the dirtiness of the buffers represents the dirtiness of
1121 * subsections of the page.  If the page has buffers, the page dirty bit is
1122 * merely a hint about the true dirty state.
1123 *
1124 * When a page is set dirty in its entirety, all its buffers are marked dirty
1125 * (if the page has buffers).
1126 *
1127 * When a buffer is marked dirty, its page is dirtied, but the page's other
1128 * buffers are not.
1129 *
1130 * Also.  When blockdev buffers are explicitly read with bread(), they
1131 * individually become uptodate.  But their backing page remains not
1132 * uptodate - even if all of its buffers are uptodate.  A subsequent
1133 * block_read_full_page() against that page will discover all the uptodate
1134 * buffers, will set the page uptodate and will perform no I/O.
1135 */
1136
1137/**
1138 * mark_buffer_dirty - mark a buffer_head as needing writeout
1139 * @bh: the buffer_head to mark dirty
1140 *
1141 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1142 * backing page dirty, then tag the page as dirty in its address_space's radix
1143 * tree and then attach the address_space's inode to its superblock's dirty
1144 * inode list.
1145 *
1146 * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1147 * mapping->tree_lock and mapping->host->i_lock.
1148 */
1149void mark_buffer_dirty(struct buffer_head *bh)
1150{
1151	WARN_ON_ONCE(!buffer_uptodate(bh));
1152
1153	trace_block_dirty_buffer(bh);
1154
1155	/*
1156	 * Very *carefully* optimize the it-is-already-dirty case.
1157	 *
1158	 * Don't let the final "is it dirty" escape to before we
1159	 * perhaps modified the buffer.
1160	 */
1161	if (buffer_dirty(bh)) {
1162		smp_mb();
1163		if (buffer_dirty(bh))
1164			return;
1165	}
1166
1167	if (!test_set_buffer_dirty(bh)) {
1168		struct page *page = bh->b_page;
1169		struct address_space *mapping = NULL;
1170
1171		lock_page_memcg(page);
1172		if (!TestSetPageDirty(page)) {
1173			mapping = page_mapping(page);
1174			if (mapping)
1175				__set_page_dirty(page, mapping, 0);
1176		}
1177		unlock_page_memcg(page);
1178		if (mapping)
1179			__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1180	}
1181}
1182EXPORT_SYMBOL(mark_buffer_dirty);
1183
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1184/*
1185 * Decrement a buffer_head's reference count.  If all buffers against a page
1186 * have zero reference count, are clean and unlocked, and if the page is clean
1187 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1188 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1189 * a page but it ends up not being freed, and buffers may later be reattached).
1190 */
1191void __brelse(struct buffer_head * buf)
1192{
1193	if (atomic_read(&buf->b_count)) {
1194		put_bh(buf);
1195		return;
1196	}
1197	WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1198}
1199EXPORT_SYMBOL(__brelse);
1200
1201/*
1202 * bforget() is like brelse(), except it discards any
1203 * potentially dirty data.
1204 */
1205void __bforget(struct buffer_head *bh)
1206{
1207	clear_buffer_dirty(bh);
1208	if (bh->b_assoc_map) {
1209		struct address_space *buffer_mapping = bh->b_page->mapping;
1210
1211		spin_lock(&buffer_mapping->private_lock);
1212		list_del_init(&bh->b_assoc_buffers);
1213		bh->b_assoc_map = NULL;
1214		spin_unlock(&buffer_mapping->private_lock);
1215	}
1216	__brelse(bh);
1217}
1218EXPORT_SYMBOL(__bforget);
1219
1220static struct buffer_head *__bread_slow(struct buffer_head *bh)
1221{
1222	lock_buffer(bh);
1223	if (buffer_uptodate(bh)) {
1224		unlock_buffer(bh);
1225		return bh;
1226	} else {
1227		get_bh(bh);
1228		bh->b_end_io = end_buffer_read_sync;
1229		submit_bh(REQ_OP_READ, 0, bh);
1230		wait_on_buffer(bh);
1231		if (buffer_uptodate(bh))
1232			return bh;
1233	}
1234	brelse(bh);
1235	return NULL;
1236}
1237
1238/*
1239 * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1240 * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1241 * refcount elevated by one when they're in an LRU.  A buffer can only appear
1242 * once in a particular CPU's LRU.  A single buffer can be present in multiple
1243 * CPU's LRUs at the same time.
1244 *
1245 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1246 * sb_find_get_block().
1247 *
1248 * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1249 * a local interrupt disable for that.
1250 */
1251
1252#define BH_LRU_SIZE	16
1253
1254struct bh_lru {
1255	struct buffer_head *bhs[BH_LRU_SIZE];
1256};
1257
1258static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1259
1260#ifdef CONFIG_SMP
1261#define bh_lru_lock()	local_irq_disable()
1262#define bh_lru_unlock()	local_irq_enable()
1263#else
1264#define bh_lru_lock()	preempt_disable()
1265#define bh_lru_unlock()	preempt_enable()
1266#endif
1267
1268static inline void check_irqs_on(void)
1269{
1270#ifdef irqs_disabled
1271	BUG_ON(irqs_disabled());
1272#endif
1273}
1274
1275/*
1276 * The LRU management algorithm is dopey-but-simple.  Sorry.
 
 
1277 */
1278static void bh_lru_install(struct buffer_head *bh)
1279{
1280	struct buffer_head *evictee = NULL;
 
 
1281
1282	check_irqs_on();
1283	bh_lru_lock();
1284	if (__this_cpu_read(bh_lrus.bhs[0]) != bh) {
1285		struct buffer_head *bhs[BH_LRU_SIZE];
1286		int in;
1287		int out = 0;
1288
1289		get_bh(bh);
1290		bhs[out++] = bh;
1291		for (in = 0; in < BH_LRU_SIZE; in++) {
1292			struct buffer_head *bh2 =
1293				__this_cpu_read(bh_lrus.bhs[in]);
1294
1295			if (bh2 == bh) {
1296				__brelse(bh2);
1297			} else {
1298				if (out >= BH_LRU_SIZE) {
1299					BUG_ON(evictee != NULL);
1300					evictee = bh2;
1301				} else {
1302					bhs[out++] = bh2;
1303				}
1304			}
1305		}
1306		while (out < BH_LRU_SIZE)
1307			bhs[out++] = NULL;
1308		memcpy(this_cpu_ptr(&bh_lrus.bhs), bhs, sizeof(bhs));
1309	}
1310	bh_lru_unlock();
1311
1312	if (evictee)
1313		__brelse(evictee);
 
1314}
1315
1316/*
1317 * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1318 */
1319static struct buffer_head *
1320lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1321{
1322	struct buffer_head *ret = NULL;
1323	unsigned int i;
1324
1325	check_irqs_on();
1326	bh_lru_lock();
1327	for (i = 0; i < BH_LRU_SIZE; i++) {
1328		struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1329
1330		if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1331		    bh->b_size == size) {
1332			if (i) {
1333				while (i) {
1334					__this_cpu_write(bh_lrus.bhs[i],
1335						__this_cpu_read(bh_lrus.bhs[i - 1]));
1336					i--;
1337				}
1338				__this_cpu_write(bh_lrus.bhs[0], bh);
1339			}
1340			get_bh(bh);
1341			ret = bh;
1342			break;
1343		}
1344	}
1345	bh_lru_unlock();
1346	return ret;
1347}
1348
1349/*
1350 * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1351 * it in the LRU and mark it as accessed.  If it is not present then return
1352 * NULL
1353 */
1354struct buffer_head *
1355__find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1356{
1357	struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1358
1359	if (bh == NULL) {
1360		/* __find_get_block_slow will mark the page accessed */
1361		bh = __find_get_block_slow(bdev, block);
1362		if (bh)
1363			bh_lru_install(bh);
1364	} else
1365		touch_buffer(bh);
1366
1367	return bh;
1368}
1369EXPORT_SYMBOL(__find_get_block);
1370
1371/*
1372 * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1373 * which corresponds to the passed block_device, block and size. The
1374 * returned buffer has its reference count incremented.
1375 *
1376 * __getblk_gfp() will lock up the machine if grow_dev_page's
1377 * try_to_free_buffers() attempt is failing.  FIXME, perhaps?
1378 */
1379struct buffer_head *
1380__getblk_gfp(struct block_device *bdev, sector_t block,
1381	     unsigned size, gfp_t gfp)
1382{
1383	struct buffer_head *bh = __find_get_block(bdev, block, size);
1384
1385	might_sleep();
1386	if (bh == NULL)
1387		bh = __getblk_slow(bdev, block, size, gfp);
1388	return bh;
1389}
1390EXPORT_SYMBOL(__getblk_gfp);
1391
1392/*
1393 * Do async read-ahead on a buffer..
1394 */
1395void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1396{
1397	struct buffer_head *bh = __getblk(bdev, block, size);
1398	if (likely(bh)) {
1399		ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh);
1400		brelse(bh);
1401	}
1402}
1403EXPORT_SYMBOL(__breadahead);
1404
 
 
 
 
 
 
 
 
 
 
 
1405/**
1406 *  __bread_gfp() - reads a specified block and returns the bh
1407 *  @bdev: the block_device to read from
1408 *  @block: number of block
1409 *  @size: size (in bytes) to read
1410 *  @gfp: page allocation flag
1411 *
1412 *  Reads a specified block, and returns buffer head that contains it.
1413 *  The page cache can be allocated from non-movable area
1414 *  not to prevent page migration if you set gfp to zero.
1415 *  It returns NULL if the block was unreadable.
1416 */
1417struct buffer_head *
1418__bread_gfp(struct block_device *bdev, sector_t block,
1419		   unsigned size, gfp_t gfp)
1420{
1421	struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1422
1423	if (likely(bh) && !buffer_uptodate(bh))
1424		bh = __bread_slow(bh);
1425	return bh;
1426}
1427EXPORT_SYMBOL(__bread_gfp);
1428
1429/*
1430 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1431 * This doesn't race because it runs in each cpu either in irq
1432 * or with preempt disabled.
1433 */
1434static void invalidate_bh_lru(void *arg)
1435{
1436	struct bh_lru *b = &get_cpu_var(bh_lrus);
1437	int i;
1438
1439	for (i = 0; i < BH_LRU_SIZE; i++) {
1440		brelse(b->bhs[i]);
1441		b->bhs[i] = NULL;
1442	}
1443	put_cpu_var(bh_lrus);
1444}
1445
1446static bool has_bh_in_lru(int cpu, void *dummy)
1447{
1448	struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1449	int i;
1450	
1451	for (i = 0; i < BH_LRU_SIZE; i++) {
1452		if (b->bhs[i])
1453			return 1;
1454	}
1455
1456	return 0;
1457}
1458
1459void invalidate_bh_lrus(void)
1460{
1461	on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL);
1462}
1463EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1464
1465void set_bh_page(struct buffer_head *bh,
1466		struct page *page, unsigned long offset)
1467{
1468	bh->b_page = page;
1469	BUG_ON(offset >= PAGE_SIZE);
1470	if (PageHighMem(page))
1471		/*
1472		 * This catches illegal uses and preserves the offset:
1473		 */
1474		bh->b_data = (char *)(0 + offset);
1475	else
1476		bh->b_data = page_address(page) + offset;
1477}
1478EXPORT_SYMBOL(set_bh_page);
1479
1480/*
1481 * Called when truncating a buffer on a page completely.
1482 */
1483
1484/* Bits that are cleared during an invalidate */
1485#define BUFFER_FLAGS_DISCARD \
1486	(1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1487	 1 << BH_Delay | 1 << BH_Unwritten)
1488
1489static void discard_buffer(struct buffer_head * bh)
1490{
1491	unsigned long b_state, b_state_old;
1492
1493	lock_buffer(bh);
1494	clear_buffer_dirty(bh);
1495	bh->b_bdev = NULL;
1496	b_state = bh->b_state;
1497	for (;;) {
1498		b_state_old = cmpxchg(&bh->b_state, b_state,
1499				      (b_state & ~BUFFER_FLAGS_DISCARD));
1500		if (b_state_old == b_state)
1501			break;
1502		b_state = b_state_old;
1503	}
1504	unlock_buffer(bh);
1505}
1506
1507/**
1508 * block_invalidatepage - invalidate part or all of a buffer-backed page
1509 *
1510 * @page: the page which is affected
1511 * @offset: start of the range to invalidate
1512 * @length: length of the range to invalidate
1513 *
1514 * block_invalidatepage() is called when all or part of the page has become
1515 * invalidated by a truncate operation.
1516 *
1517 * block_invalidatepage() does not have to release all buffers, but it must
1518 * ensure that no dirty buffer is left outside @offset and that no I/O
1519 * is underway against any of the blocks which are outside the truncation
1520 * point.  Because the caller is about to free (and possibly reuse) those
1521 * blocks on-disk.
1522 */
1523void block_invalidatepage(struct page *page, unsigned int offset,
1524			  unsigned int length)
1525{
1526	struct buffer_head *head, *bh, *next;
1527	unsigned int curr_off = 0;
1528	unsigned int stop = length + offset;
1529
1530	BUG_ON(!PageLocked(page));
1531	if (!page_has_buffers(page))
1532		goto out;
1533
1534	/*
1535	 * Check for overflow
1536	 */
1537	BUG_ON(stop > PAGE_SIZE || stop < length);
1538
1539	head = page_buffers(page);
1540	bh = head;
1541	do {
1542		unsigned int next_off = curr_off + bh->b_size;
1543		next = bh->b_this_page;
1544
1545		/*
1546		 * Are we still fully in range ?
1547		 */
1548		if (next_off > stop)
1549			goto out;
1550
1551		/*
1552		 * is this block fully invalidated?
1553		 */
1554		if (offset <= curr_off)
1555			discard_buffer(bh);
1556		curr_off = next_off;
1557		bh = next;
1558	} while (bh != head);
1559
1560	/*
1561	 * We release buffers only if the entire page is being invalidated.
1562	 * The get_block cached value has been unconditionally invalidated,
1563	 * so real IO is not possible anymore.
1564	 */
1565	if (offset == 0)
1566		try_to_release_page(page, 0);
1567out:
1568	return;
1569}
1570EXPORT_SYMBOL(block_invalidatepage);
1571
1572
1573/*
1574 * We attach and possibly dirty the buffers atomically wrt
1575 * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1576 * is already excluded via the page lock.
1577 */
1578void create_empty_buffers(struct page *page,
1579			unsigned long blocksize, unsigned long b_state)
1580{
1581	struct buffer_head *bh, *head, *tail;
1582
1583	head = alloc_page_buffers(page, blocksize, 1);
1584	bh = head;
1585	do {
1586		bh->b_state |= b_state;
1587		tail = bh;
1588		bh = bh->b_this_page;
1589	} while (bh);
1590	tail->b_this_page = head;
1591
1592	spin_lock(&page->mapping->private_lock);
1593	if (PageUptodate(page) || PageDirty(page)) {
1594		bh = head;
1595		do {
1596			if (PageDirty(page))
1597				set_buffer_dirty(bh);
1598			if (PageUptodate(page))
1599				set_buffer_uptodate(bh);
1600			bh = bh->b_this_page;
1601		} while (bh != head);
1602	}
1603	attach_page_buffers(page, head);
1604	spin_unlock(&page->mapping->private_lock);
1605}
1606EXPORT_SYMBOL(create_empty_buffers);
1607
1608/**
1609 * clean_bdev_aliases: clean a range of buffers in block device
1610 * @bdev: Block device to clean buffers in
1611 * @block: Start of a range of blocks to clean
1612 * @len: Number of blocks to clean
1613 *
1614 * We are taking a range of blocks for data and we don't want writeback of any
1615 * buffer-cache aliases starting from return from this function and until the
1616 * moment when something will explicitly mark the buffer dirty (hopefully that
1617 * will not happen until we will free that block ;-) We don't even need to mark
1618 * it not-uptodate - nobody can expect anything from a newly allocated buffer
1619 * anyway. We used to use unmap_buffer() for such invalidation, but that was
1620 * wrong. We definitely don't want to mark the alias unmapped, for example - it
1621 * would confuse anyone who might pick it with bread() afterwards...
1622 *
1623 * Also..  Note that bforget() doesn't lock the buffer.  So there can be
1624 * writeout I/O going on against recently-freed buffers.  We don't wait on that
1625 * I/O in bforget() - it's more efficient to wait on the I/O only if we really
1626 * need to.  That happens here.
1627 */
1628void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len)
1629{
1630	struct inode *bd_inode = bdev->bd_inode;
1631	struct address_space *bd_mapping = bd_inode->i_mapping;
1632	struct pagevec pvec;
1633	pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
1634	pgoff_t end;
1635	int i;
1636	struct buffer_head *bh;
1637	struct buffer_head *head;
1638
1639	end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits);
1640	pagevec_init(&pvec, 0);
1641	while (index <= end && pagevec_lookup(&pvec, bd_mapping, index,
1642			min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1)) {
1643		for (i = 0; i < pagevec_count(&pvec); i++) {
1644			struct page *page = pvec.pages[i];
1645
1646			index = page->index;
1647			if (index > end)
1648				break;
1649			if (!page_has_buffers(page))
1650				continue;
1651			/*
1652			 * We use page lock instead of bd_mapping->private_lock
1653			 * to pin buffers here since we can afford to sleep and
1654			 * it scales better than a global spinlock lock.
1655			 */
1656			lock_page(page);
1657			/* Recheck when the page is locked which pins bhs */
1658			if (!page_has_buffers(page))
1659				goto unlock_page;
1660			head = page_buffers(page);
1661			bh = head;
1662			do {
1663				if (!buffer_mapped(bh) || (bh->b_blocknr < block))
1664					goto next;
1665				if (bh->b_blocknr >= block + len)
1666					break;
1667				clear_buffer_dirty(bh);
1668				wait_on_buffer(bh);
1669				clear_buffer_req(bh);
1670next:
1671				bh = bh->b_this_page;
1672			} while (bh != head);
1673unlock_page:
1674			unlock_page(page);
1675		}
1676		pagevec_release(&pvec);
1677		cond_resched();
1678		index++;
 
 
1679	}
1680}
1681EXPORT_SYMBOL(clean_bdev_aliases);
1682
1683/*
1684 * Size is a power-of-two in the range 512..PAGE_SIZE,
1685 * and the case we care about most is PAGE_SIZE.
1686 *
1687 * So this *could* possibly be written with those
1688 * constraints in mind (relevant mostly if some
1689 * architecture has a slow bit-scan instruction)
1690 */
1691static inline int block_size_bits(unsigned int blocksize)
1692{
1693	return ilog2(blocksize);
1694}
1695
1696static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1697{
1698	BUG_ON(!PageLocked(page));
1699
1700	if (!page_has_buffers(page))
1701		create_empty_buffers(page, 1 << ACCESS_ONCE(inode->i_blkbits), b_state);
 
1702	return page_buffers(page);
1703}
1704
1705/*
1706 * NOTE! All mapped/uptodate combinations are valid:
1707 *
1708 *	Mapped	Uptodate	Meaning
1709 *
1710 *	No	No		"unknown" - must do get_block()
1711 *	No	Yes		"hole" - zero-filled
1712 *	Yes	No		"allocated" - allocated on disk, not read in
1713 *	Yes	Yes		"valid" - allocated and up-to-date in memory.
1714 *
1715 * "Dirty" is valid only with the last case (mapped+uptodate).
1716 */
1717
1718/*
1719 * While block_write_full_page is writing back the dirty buffers under
1720 * the page lock, whoever dirtied the buffers may decide to clean them
1721 * again at any time.  We handle that by only looking at the buffer
1722 * state inside lock_buffer().
1723 *
1724 * If block_write_full_page() is called for regular writeback
1725 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1726 * locked buffer.   This only can happen if someone has written the buffer
1727 * directly, with submit_bh().  At the address_space level PageWriteback
1728 * prevents this contention from occurring.
1729 *
1730 * If block_write_full_page() is called with wbc->sync_mode ==
1731 * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
1732 * causes the writes to be flagged as synchronous writes.
1733 */
1734int __block_write_full_page(struct inode *inode, struct page *page,
1735			get_block_t *get_block, struct writeback_control *wbc,
1736			bh_end_io_t *handler)
1737{
1738	int err;
1739	sector_t block;
1740	sector_t last_block;
1741	struct buffer_head *bh, *head;
1742	unsigned int blocksize, bbits;
1743	int nr_underway = 0;
1744	int write_flags = wbc_to_write_flags(wbc);
1745
1746	head = create_page_buffers(page, inode,
1747					(1 << BH_Dirty)|(1 << BH_Uptodate));
1748
1749	/*
1750	 * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1751	 * here, and the (potentially unmapped) buffers may become dirty at
1752	 * any time.  If a buffer becomes dirty here after we've inspected it
1753	 * then we just miss that fact, and the page stays dirty.
1754	 *
1755	 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1756	 * handle that here by just cleaning them.
1757	 */
1758
1759	bh = head;
1760	blocksize = bh->b_size;
1761	bbits = block_size_bits(blocksize);
1762
1763	block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1764	last_block = (i_size_read(inode) - 1) >> bbits;
1765
1766	/*
1767	 * Get all the dirty buffers mapped to disk addresses and
1768	 * handle any aliases from the underlying blockdev's mapping.
1769	 */
1770	do {
1771		if (block > last_block) {
1772			/*
1773			 * mapped buffers outside i_size will occur, because
1774			 * this page can be outside i_size when there is a
1775			 * truncate in progress.
1776			 */
1777			/*
1778			 * The buffer was zeroed by block_write_full_page()
1779			 */
1780			clear_buffer_dirty(bh);
1781			set_buffer_uptodate(bh);
1782		} else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1783			   buffer_dirty(bh)) {
1784			WARN_ON(bh->b_size != blocksize);
1785			err = get_block(inode, block, bh, 1);
1786			if (err)
1787				goto recover;
1788			clear_buffer_delay(bh);
1789			if (buffer_new(bh)) {
1790				/* blockdev mappings never come here */
1791				clear_buffer_new(bh);
1792				clean_bdev_bh_alias(bh);
1793			}
1794		}
1795		bh = bh->b_this_page;
1796		block++;
1797	} while (bh != head);
1798
1799	do {
1800		if (!buffer_mapped(bh))
1801			continue;
1802		/*
1803		 * If it's a fully non-blocking write attempt and we cannot
1804		 * lock the buffer then redirty the page.  Note that this can
1805		 * potentially cause a busy-wait loop from writeback threads
1806		 * and kswapd activity, but those code paths have their own
1807		 * higher-level throttling.
1808		 */
1809		if (wbc->sync_mode != WB_SYNC_NONE) {
1810			lock_buffer(bh);
1811		} else if (!trylock_buffer(bh)) {
1812			redirty_page_for_writepage(wbc, page);
1813			continue;
1814		}
1815		if (test_clear_buffer_dirty(bh)) {
1816			mark_buffer_async_write_endio(bh, handler);
1817		} else {
1818			unlock_buffer(bh);
1819		}
1820	} while ((bh = bh->b_this_page) != head);
1821
1822	/*
1823	 * The page and its buffers are protected by PageWriteback(), so we can
1824	 * drop the bh refcounts early.
1825	 */
1826	BUG_ON(PageWriteback(page));
1827	set_page_writeback(page);
1828
1829	do {
1830		struct buffer_head *next = bh->b_this_page;
1831		if (buffer_async_write(bh)) {
1832			submit_bh_wbc(REQ_OP_WRITE, write_flags, bh, 0, wbc);
 
1833			nr_underway++;
1834		}
1835		bh = next;
1836	} while (bh != head);
1837	unlock_page(page);
1838
1839	err = 0;
1840done:
1841	if (nr_underway == 0) {
1842		/*
1843		 * The page was marked dirty, but the buffers were
1844		 * clean.  Someone wrote them back by hand with
1845		 * ll_rw_block/submit_bh.  A rare case.
1846		 */
1847		end_page_writeback(page);
1848
1849		/*
1850		 * The page and buffer_heads can be released at any time from
1851		 * here on.
1852		 */
1853	}
1854	return err;
1855
1856recover:
1857	/*
1858	 * ENOSPC, or some other error.  We may already have added some
1859	 * blocks to the file, so we need to write these out to avoid
1860	 * exposing stale data.
1861	 * The page is currently locked and not marked for writeback
1862	 */
1863	bh = head;
1864	/* Recovery: lock and submit the mapped buffers */
1865	do {
1866		if (buffer_mapped(bh) && buffer_dirty(bh) &&
1867		    !buffer_delay(bh)) {
1868			lock_buffer(bh);
1869			mark_buffer_async_write_endio(bh, handler);
1870		} else {
1871			/*
1872			 * The buffer may have been set dirty during
1873			 * attachment to a dirty page.
1874			 */
1875			clear_buffer_dirty(bh);
1876		}
1877	} while ((bh = bh->b_this_page) != head);
1878	SetPageError(page);
1879	BUG_ON(PageWriteback(page));
1880	mapping_set_error(page->mapping, err);
1881	set_page_writeback(page);
1882	do {
1883		struct buffer_head *next = bh->b_this_page;
1884		if (buffer_async_write(bh)) {
1885			clear_buffer_dirty(bh);
1886			submit_bh_wbc(REQ_OP_WRITE, write_flags, bh, 0, wbc);
 
1887			nr_underway++;
1888		}
1889		bh = next;
1890	} while (bh != head);
1891	unlock_page(page);
1892	goto done;
1893}
1894EXPORT_SYMBOL(__block_write_full_page);
1895
1896/*
1897 * If a page has any new buffers, zero them out here, and mark them uptodate
1898 * and dirty so they'll be written out (in order to prevent uninitialised
1899 * block data from leaking). And clear the new bit.
1900 */
1901void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1902{
1903	unsigned int block_start, block_end;
1904	struct buffer_head *head, *bh;
1905
1906	BUG_ON(!PageLocked(page));
1907	if (!page_has_buffers(page))
1908		return;
1909
1910	bh = head = page_buffers(page);
1911	block_start = 0;
1912	do {
1913		block_end = block_start + bh->b_size;
1914
1915		if (buffer_new(bh)) {
1916			if (block_end > from && block_start < to) {
1917				if (!PageUptodate(page)) {
1918					unsigned start, size;
1919
1920					start = max(from, block_start);
1921					size = min(to, block_end) - start;
1922
1923					zero_user(page, start, size);
1924					set_buffer_uptodate(bh);
1925				}
1926
1927				clear_buffer_new(bh);
1928				mark_buffer_dirty(bh);
1929			}
1930		}
1931
1932		block_start = block_end;
1933		bh = bh->b_this_page;
1934	} while (bh != head);
1935}
1936EXPORT_SYMBOL(page_zero_new_buffers);
1937
1938static void
1939iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
1940		struct iomap *iomap)
1941{
1942	loff_t offset = block << inode->i_blkbits;
1943
1944	bh->b_bdev = iomap->bdev;
1945
1946	/*
1947	 * Block points to offset in file we need to map, iomap contains
1948	 * the offset at which the map starts. If the map ends before the
1949	 * current block, then do not map the buffer and let the caller
1950	 * handle it.
1951	 */
1952	BUG_ON(offset >= iomap->offset + iomap->length);
1953
1954	switch (iomap->type) {
1955	case IOMAP_HOLE:
1956		/*
1957		 * If the buffer is not up to date or beyond the current EOF,
1958		 * we need to mark it as new to ensure sub-block zeroing is
1959		 * executed if necessary.
1960		 */
1961		if (!buffer_uptodate(bh) ||
1962		    (offset >= i_size_read(inode)))
1963			set_buffer_new(bh);
1964		break;
1965	case IOMAP_DELALLOC:
1966		if (!buffer_uptodate(bh) ||
1967		    (offset >= i_size_read(inode)))
1968			set_buffer_new(bh);
1969		set_buffer_uptodate(bh);
1970		set_buffer_mapped(bh);
1971		set_buffer_delay(bh);
1972		break;
1973	case IOMAP_UNWRITTEN:
1974		/*
1975		 * For unwritten regions, we always need to ensure that
1976		 * sub-block writes cause the regions in the block we are not
1977		 * writing to are zeroed. Set the buffer as new to ensure this.
1978		 */
1979		set_buffer_new(bh);
1980		set_buffer_unwritten(bh);
1981		/* FALLTHRU */
1982	case IOMAP_MAPPED:
1983		if (offset >= i_size_read(inode))
 
1984			set_buffer_new(bh);
1985		bh->b_blocknr = (iomap->blkno >> (inode->i_blkbits - 9)) +
1986				((offset - iomap->offset) >> inode->i_blkbits);
1987		set_buffer_mapped(bh);
1988		break;
1989	}
1990}
1991
1992int __block_write_begin_int(struct page *page, loff_t pos, unsigned len,
1993		get_block_t *get_block, struct iomap *iomap)
1994{
1995	unsigned from = pos & (PAGE_SIZE - 1);
1996	unsigned to = from + len;
1997	struct inode *inode = page->mapping->host;
1998	unsigned block_start, block_end;
1999	sector_t block;
2000	int err = 0;
2001	unsigned blocksize, bbits;
2002	struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
2003
2004	BUG_ON(!PageLocked(page));
2005	BUG_ON(from > PAGE_SIZE);
2006	BUG_ON(to > PAGE_SIZE);
2007	BUG_ON(from > to);
2008
2009	head = create_page_buffers(page, inode, 0);
2010	blocksize = head->b_size;
2011	bbits = block_size_bits(blocksize);
2012
2013	block = (sector_t)page->index << (PAGE_SHIFT - bbits);
2014
2015	for(bh = head, block_start = 0; bh != head || !block_start;
2016	    block++, block_start=block_end, bh = bh->b_this_page) {
2017		block_end = block_start + blocksize;
2018		if (block_end <= from || block_start >= to) {
2019			if (PageUptodate(page)) {
2020				if (!buffer_uptodate(bh))
2021					set_buffer_uptodate(bh);
2022			}
2023			continue;
2024		}
2025		if (buffer_new(bh))
2026			clear_buffer_new(bh);
2027		if (!buffer_mapped(bh)) {
2028			WARN_ON(bh->b_size != blocksize);
2029			if (get_block) {
2030				err = get_block(inode, block, bh, 1);
2031				if (err)
2032					break;
2033			} else {
2034				iomap_to_bh(inode, block, bh, iomap);
2035			}
2036
2037			if (buffer_new(bh)) {
2038				clean_bdev_bh_alias(bh);
2039				if (PageUptodate(page)) {
2040					clear_buffer_new(bh);
2041					set_buffer_uptodate(bh);
2042					mark_buffer_dirty(bh);
2043					continue;
2044				}
2045				if (block_end > to || block_start < from)
2046					zero_user_segments(page,
2047						to, block_end,
2048						block_start, from);
2049				continue;
2050			}
2051		}
2052		if (PageUptodate(page)) {
2053			if (!buffer_uptodate(bh))
2054				set_buffer_uptodate(bh);
2055			continue; 
2056		}
2057		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
2058		    !buffer_unwritten(bh) &&
2059		     (block_start < from || block_end > to)) {
2060			ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2061			*wait_bh++=bh;
2062		}
2063	}
2064	/*
2065	 * If we issued read requests - let them complete.
2066	 */
2067	while(wait_bh > wait) {
2068		wait_on_buffer(*--wait_bh);
2069		if (!buffer_uptodate(*wait_bh))
2070			err = -EIO;
2071	}
2072	if (unlikely(err))
2073		page_zero_new_buffers(page, from, to);
2074	return err;
2075}
2076
2077int __block_write_begin(struct page *page, loff_t pos, unsigned len,
2078		get_block_t *get_block)
2079{
2080	return __block_write_begin_int(page, pos, len, get_block, NULL);
2081}
2082EXPORT_SYMBOL(__block_write_begin);
2083
2084static int __block_commit_write(struct inode *inode, struct page *page,
2085		unsigned from, unsigned to)
2086{
2087	unsigned block_start, block_end;
2088	int partial = 0;
2089	unsigned blocksize;
2090	struct buffer_head *bh, *head;
2091
2092	bh = head = page_buffers(page);
2093	blocksize = bh->b_size;
2094
2095	block_start = 0;
2096	do {
2097		block_end = block_start + blocksize;
2098		if (block_end <= from || block_start >= to) {
2099			if (!buffer_uptodate(bh))
2100				partial = 1;
2101		} else {
2102			set_buffer_uptodate(bh);
2103			mark_buffer_dirty(bh);
2104		}
2105		clear_buffer_new(bh);
2106
2107		block_start = block_end;
2108		bh = bh->b_this_page;
2109	} while (bh != head);
2110
2111	/*
2112	 * If this is a partial write which happened to make all buffers
2113	 * uptodate then we can optimize away a bogus readpage() for
2114	 * the next read(). Here we 'discover' whether the page went
2115	 * uptodate as a result of this (potentially partial) write.
2116	 */
2117	if (!partial)
2118		SetPageUptodate(page);
2119	return 0;
2120}
2121
2122/*
2123 * block_write_begin takes care of the basic task of block allocation and
2124 * bringing partial write blocks uptodate first.
2125 *
2126 * The filesystem needs to handle block truncation upon failure.
2127 */
2128int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2129		unsigned flags, struct page **pagep, get_block_t *get_block)
2130{
2131	pgoff_t index = pos >> PAGE_SHIFT;
2132	struct page *page;
2133	int status;
2134
2135	page = grab_cache_page_write_begin(mapping, index, flags);
2136	if (!page)
2137		return -ENOMEM;
2138
2139	status = __block_write_begin(page, pos, len, get_block);
2140	if (unlikely(status)) {
2141		unlock_page(page);
2142		put_page(page);
2143		page = NULL;
2144	}
2145
2146	*pagep = page;
2147	return status;
2148}
2149EXPORT_SYMBOL(block_write_begin);
2150
2151int block_write_end(struct file *file, struct address_space *mapping,
2152			loff_t pos, unsigned len, unsigned copied,
2153			struct page *page, void *fsdata)
2154{
2155	struct inode *inode = mapping->host;
2156	unsigned start;
2157
2158	start = pos & (PAGE_SIZE - 1);
2159
2160	if (unlikely(copied < len)) {
2161		/*
2162		 * The buffers that were written will now be uptodate, so we
2163		 * don't have to worry about a readpage reading them and
2164		 * overwriting a partial write. However if we have encountered
2165		 * a short write and only partially written into a buffer, it
2166		 * will not be marked uptodate, so a readpage might come in and
2167		 * destroy our partial write.
2168		 *
2169		 * Do the simplest thing, and just treat any short write to a
2170		 * non uptodate page as a zero-length write, and force the
2171		 * caller to redo the whole thing.
2172		 */
2173		if (!PageUptodate(page))
2174			copied = 0;
2175
2176		page_zero_new_buffers(page, start+copied, start+len);
2177	}
2178	flush_dcache_page(page);
2179
2180	/* This could be a short (even 0-length) commit */
2181	__block_commit_write(inode, page, start, start+copied);
2182
2183	return copied;
2184}
2185EXPORT_SYMBOL(block_write_end);
2186
2187int generic_write_end(struct file *file, struct address_space *mapping,
2188			loff_t pos, unsigned len, unsigned copied,
2189			struct page *page, void *fsdata)
2190{
2191	struct inode *inode = mapping->host;
2192	loff_t old_size = inode->i_size;
2193	int i_size_changed = 0;
2194
2195	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2196
2197	/*
2198	 * No need to use i_size_read() here, the i_size
2199	 * cannot change under us because we hold i_mutex.
2200	 *
2201	 * But it's important to update i_size while still holding page lock:
2202	 * page writeout could otherwise come in and zero beyond i_size.
2203	 */
2204	if (pos+copied > inode->i_size) {
2205		i_size_write(inode, pos+copied);
2206		i_size_changed = 1;
2207	}
2208
2209	unlock_page(page);
2210	put_page(page);
2211
2212	if (old_size < pos)
2213		pagecache_isize_extended(inode, old_size, pos);
2214	/*
2215	 * Don't mark the inode dirty under page lock. First, it unnecessarily
2216	 * makes the holding time of page lock longer. Second, it forces lock
2217	 * ordering of page lock and transaction start for journaling
2218	 * filesystems.
2219	 */
2220	if (i_size_changed)
2221		mark_inode_dirty(inode);
2222
2223	return copied;
2224}
2225EXPORT_SYMBOL(generic_write_end);
2226
2227/*
2228 * block_is_partially_uptodate checks whether buffers within a page are
2229 * uptodate or not.
2230 *
2231 * Returns true if all buffers which correspond to a file portion
2232 * we want to read are uptodate.
2233 */
2234int block_is_partially_uptodate(struct page *page, unsigned long from,
2235					unsigned long count)
2236{
2237	unsigned block_start, block_end, blocksize;
2238	unsigned to;
2239	struct buffer_head *bh, *head;
2240	int ret = 1;
2241
2242	if (!page_has_buffers(page))
2243		return 0;
2244
2245	head = page_buffers(page);
2246	blocksize = head->b_size;
2247	to = min_t(unsigned, PAGE_SIZE - from, count);
2248	to = from + to;
2249	if (from < blocksize && to > PAGE_SIZE - blocksize)
2250		return 0;
2251
2252	bh = head;
2253	block_start = 0;
2254	do {
2255		block_end = block_start + blocksize;
2256		if (block_end > from && block_start < to) {
2257			if (!buffer_uptodate(bh)) {
2258				ret = 0;
2259				break;
2260			}
2261			if (block_end >= to)
2262				break;
2263		}
2264		block_start = block_end;
2265		bh = bh->b_this_page;
2266	} while (bh != head);
2267
2268	return ret;
2269}
2270EXPORT_SYMBOL(block_is_partially_uptodate);
2271
2272/*
2273 * Generic "read page" function for block devices that have the normal
2274 * get_block functionality. This is most of the block device filesystems.
2275 * Reads the page asynchronously --- the unlock_buffer() and
2276 * set/clear_buffer_uptodate() functions propagate buffer state into the
2277 * page struct once IO has completed.
2278 */
2279int block_read_full_page(struct page *page, get_block_t *get_block)
2280{
2281	struct inode *inode = page->mapping->host;
2282	sector_t iblock, lblock;
2283	struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2284	unsigned int blocksize, bbits;
2285	int nr, i;
2286	int fully_mapped = 1;
2287
2288	head = create_page_buffers(page, inode, 0);
2289	blocksize = head->b_size;
2290	bbits = block_size_bits(blocksize);
2291
2292	iblock = (sector_t)page->index << (PAGE_SHIFT - bbits);
2293	lblock = (i_size_read(inode)+blocksize-1) >> bbits;
2294	bh = head;
2295	nr = 0;
2296	i = 0;
2297
2298	do {
2299		if (buffer_uptodate(bh))
2300			continue;
2301
2302		if (!buffer_mapped(bh)) {
2303			int err = 0;
2304
2305			fully_mapped = 0;
2306			if (iblock < lblock) {
2307				WARN_ON(bh->b_size != blocksize);
2308				err = get_block(inode, iblock, bh, 0);
2309				if (err)
2310					SetPageError(page);
2311			}
2312			if (!buffer_mapped(bh)) {
2313				zero_user(page, i * blocksize, blocksize);
2314				if (!err)
2315					set_buffer_uptodate(bh);
2316				continue;
2317			}
2318			/*
2319			 * get_block() might have updated the buffer
2320			 * synchronously
2321			 */
2322			if (buffer_uptodate(bh))
2323				continue;
2324		}
2325		arr[nr++] = bh;
2326	} while (i++, iblock++, (bh = bh->b_this_page) != head);
2327
2328	if (fully_mapped)
2329		SetPageMappedToDisk(page);
2330
2331	if (!nr) {
2332		/*
2333		 * All buffers are uptodate - we can set the page uptodate
2334		 * as well. But not if get_block() returned an error.
2335		 */
2336		if (!PageError(page))
2337			SetPageUptodate(page);
2338		unlock_page(page);
2339		return 0;
2340	}
2341
2342	/* Stage two: lock the buffers */
2343	for (i = 0; i < nr; i++) {
2344		bh = arr[i];
2345		lock_buffer(bh);
2346		mark_buffer_async_read(bh);
2347	}
2348
2349	/*
2350	 * Stage 3: start the IO.  Check for uptodateness
2351	 * inside the buffer lock in case another process reading
2352	 * the underlying blockdev brought it uptodate (the sct fix).
2353	 */
2354	for (i = 0; i < nr; i++) {
2355		bh = arr[i];
2356		if (buffer_uptodate(bh))
2357			end_buffer_async_read(bh, 1);
2358		else
2359			submit_bh(REQ_OP_READ, 0, bh);
2360	}
2361	return 0;
2362}
2363EXPORT_SYMBOL(block_read_full_page);
2364
2365/* utility function for filesystems that need to do work on expanding
2366 * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2367 * deal with the hole.  
2368 */
2369int generic_cont_expand_simple(struct inode *inode, loff_t size)
2370{
2371	struct address_space *mapping = inode->i_mapping;
2372	struct page *page;
2373	void *fsdata;
2374	int err;
2375
2376	err = inode_newsize_ok(inode, size);
2377	if (err)
2378		goto out;
2379
2380	err = pagecache_write_begin(NULL, mapping, size, 0,
2381				AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND,
2382				&page, &fsdata);
2383	if (err)
2384		goto out;
2385
2386	err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2387	BUG_ON(err > 0);
2388
2389out:
2390	return err;
2391}
2392EXPORT_SYMBOL(generic_cont_expand_simple);
2393
2394static int cont_expand_zero(struct file *file, struct address_space *mapping,
2395			    loff_t pos, loff_t *bytes)
2396{
2397	struct inode *inode = mapping->host;
2398	unsigned blocksize = 1 << inode->i_blkbits;
2399	struct page *page;
2400	void *fsdata;
2401	pgoff_t index, curidx;
2402	loff_t curpos;
2403	unsigned zerofrom, offset, len;
2404	int err = 0;
2405
2406	index = pos >> PAGE_SHIFT;
2407	offset = pos & ~PAGE_MASK;
2408
2409	while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2410		zerofrom = curpos & ~PAGE_MASK;
2411		if (zerofrom & (blocksize-1)) {
2412			*bytes |= (blocksize-1);
2413			(*bytes)++;
2414		}
2415		len = PAGE_SIZE - zerofrom;
2416
2417		err = pagecache_write_begin(file, mapping, curpos, len,
2418						AOP_FLAG_UNINTERRUPTIBLE,
2419						&page, &fsdata);
2420		if (err)
2421			goto out;
2422		zero_user(page, zerofrom, len);
2423		err = pagecache_write_end(file, mapping, curpos, len, len,
2424						page, fsdata);
2425		if (err < 0)
2426			goto out;
2427		BUG_ON(err != len);
2428		err = 0;
2429
2430		balance_dirty_pages_ratelimited(mapping);
2431
2432		if (unlikely(fatal_signal_pending(current))) {
2433			err = -EINTR;
2434			goto out;
2435		}
2436	}
2437
2438	/* page covers the boundary, find the boundary offset */
2439	if (index == curidx) {
2440		zerofrom = curpos & ~PAGE_MASK;
2441		/* if we will expand the thing last block will be filled */
2442		if (offset <= zerofrom) {
2443			goto out;
2444		}
2445		if (zerofrom & (blocksize-1)) {
2446			*bytes |= (blocksize-1);
2447			(*bytes)++;
2448		}
2449		len = offset - zerofrom;
2450
2451		err = pagecache_write_begin(file, mapping, curpos, len,
2452						AOP_FLAG_UNINTERRUPTIBLE,
2453						&page, &fsdata);
2454		if (err)
2455			goto out;
2456		zero_user(page, zerofrom, len);
2457		err = pagecache_write_end(file, mapping, curpos, len, len,
2458						page, fsdata);
2459		if (err < 0)
2460			goto out;
2461		BUG_ON(err != len);
2462		err = 0;
2463	}
2464out:
2465	return err;
2466}
2467
2468/*
2469 * For moronic filesystems that do not allow holes in file.
2470 * We may have to extend the file.
2471 */
2472int cont_write_begin(struct file *file, struct address_space *mapping,
2473			loff_t pos, unsigned len, unsigned flags,
2474			struct page **pagep, void **fsdata,
2475			get_block_t *get_block, loff_t *bytes)
2476{
2477	struct inode *inode = mapping->host;
2478	unsigned blocksize = 1 << inode->i_blkbits;
2479	unsigned zerofrom;
2480	int err;
2481
2482	err = cont_expand_zero(file, mapping, pos, bytes);
2483	if (err)
2484		return err;
2485
2486	zerofrom = *bytes & ~PAGE_MASK;
2487	if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2488		*bytes |= (blocksize-1);
2489		(*bytes)++;
2490	}
2491
2492	return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2493}
2494EXPORT_SYMBOL(cont_write_begin);
2495
2496int block_commit_write(struct page *page, unsigned from, unsigned to)
2497{
2498	struct inode *inode = page->mapping->host;
2499	__block_commit_write(inode,page,from,to);
2500	return 0;
2501}
2502EXPORT_SYMBOL(block_commit_write);
2503
2504/*
2505 * block_page_mkwrite() is not allowed to change the file size as it gets
2506 * called from a page fault handler when a page is first dirtied. Hence we must
2507 * be careful to check for EOF conditions here. We set the page up correctly
2508 * for a written page which means we get ENOSPC checking when writing into
2509 * holes and correct delalloc and unwritten extent mapping on filesystems that
2510 * support these features.
2511 *
2512 * We are not allowed to take the i_mutex here so we have to play games to
2513 * protect against truncate races as the page could now be beyond EOF.  Because
2514 * truncate writes the inode size before removing pages, once we have the
2515 * page lock we can determine safely if the page is beyond EOF. If it is not
2516 * beyond EOF, then the page is guaranteed safe against truncation until we
2517 * unlock the page.
2518 *
2519 * Direct callers of this function should protect against filesystem freezing
2520 * using sb_start_pagefault() - sb_end_pagefault() functions.
2521 */
2522int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2523			 get_block_t get_block)
2524{
2525	struct page *page = vmf->page;
2526	struct inode *inode = file_inode(vma->vm_file);
2527	unsigned long end;
2528	loff_t size;
2529	int ret;
2530
2531	lock_page(page);
2532	size = i_size_read(inode);
2533	if ((page->mapping != inode->i_mapping) ||
2534	    (page_offset(page) > size)) {
2535		/* We overload EFAULT to mean page got truncated */
2536		ret = -EFAULT;
2537		goto out_unlock;
2538	}
2539
2540	/* page is wholly or partially inside EOF */
2541	if (((page->index + 1) << PAGE_SHIFT) > size)
2542		end = size & ~PAGE_MASK;
2543	else
2544		end = PAGE_SIZE;
2545
2546	ret = __block_write_begin(page, 0, end, get_block);
2547	if (!ret)
2548		ret = block_commit_write(page, 0, end);
2549
2550	if (unlikely(ret < 0))
2551		goto out_unlock;
2552	set_page_dirty(page);
2553	wait_for_stable_page(page);
2554	return 0;
2555out_unlock:
2556	unlock_page(page);
2557	return ret;
2558}
2559EXPORT_SYMBOL(block_page_mkwrite);
2560
2561/*
2562 * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2563 * immediately, while under the page lock.  So it needs a special end_io
2564 * handler which does not touch the bh after unlocking it.
2565 */
2566static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2567{
2568	__end_buffer_read_notouch(bh, uptodate);
2569}
2570
2571/*
2572 * Attach the singly-linked list of buffers created by nobh_write_begin, to
2573 * the page (converting it to circular linked list and taking care of page
2574 * dirty races).
2575 */
2576static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2577{
2578	struct buffer_head *bh;
2579
2580	BUG_ON(!PageLocked(page));
2581
2582	spin_lock(&page->mapping->private_lock);
2583	bh = head;
2584	do {
2585		if (PageDirty(page))
2586			set_buffer_dirty(bh);
2587		if (!bh->b_this_page)
2588			bh->b_this_page = head;
2589		bh = bh->b_this_page;
2590	} while (bh != head);
2591	attach_page_buffers(page, head);
2592	spin_unlock(&page->mapping->private_lock);
2593}
2594
2595/*
2596 * On entry, the page is fully not uptodate.
2597 * On exit the page is fully uptodate in the areas outside (from,to)
2598 * The filesystem needs to handle block truncation upon failure.
2599 */
2600int nobh_write_begin(struct address_space *mapping,
2601			loff_t pos, unsigned len, unsigned flags,
2602			struct page **pagep, void **fsdata,
2603			get_block_t *get_block)
2604{
2605	struct inode *inode = mapping->host;
2606	const unsigned blkbits = inode->i_blkbits;
2607	const unsigned blocksize = 1 << blkbits;
2608	struct buffer_head *head, *bh;
2609	struct page *page;
2610	pgoff_t index;
2611	unsigned from, to;
2612	unsigned block_in_page;
2613	unsigned block_start, block_end;
2614	sector_t block_in_file;
2615	int nr_reads = 0;
2616	int ret = 0;
2617	int is_mapped_to_disk = 1;
2618
2619	index = pos >> PAGE_SHIFT;
2620	from = pos & (PAGE_SIZE - 1);
2621	to = from + len;
2622
2623	page = grab_cache_page_write_begin(mapping, index, flags);
2624	if (!page)
2625		return -ENOMEM;
2626	*pagep = page;
2627	*fsdata = NULL;
2628
2629	if (page_has_buffers(page)) {
2630		ret = __block_write_begin(page, pos, len, get_block);
2631		if (unlikely(ret))
2632			goto out_release;
2633		return ret;
2634	}
2635
2636	if (PageMappedToDisk(page))
2637		return 0;
2638
2639	/*
2640	 * Allocate buffers so that we can keep track of state, and potentially
2641	 * attach them to the page if an error occurs. In the common case of
2642	 * no error, they will just be freed again without ever being attached
2643	 * to the page (which is all OK, because we're under the page lock).
2644	 *
2645	 * Be careful: the buffer linked list is a NULL terminated one, rather
2646	 * than the circular one we're used to.
2647	 */
2648	head = alloc_page_buffers(page, blocksize, 0);
2649	if (!head) {
2650		ret = -ENOMEM;
2651		goto out_release;
2652	}
2653
2654	block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
2655
2656	/*
2657	 * We loop across all blocks in the page, whether or not they are
2658	 * part of the affected region.  This is so we can discover if the
2659	 * page is fully mapped-to-disk.
2660	 */
2661	for (block_start = 0, block_in_page = 0, bh = head;
2662		  block_start < PAGE_SIZE;
2663		  block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2664		int create;
2665
2666		block_end = block_start + blocksize;
2667		bh->b_state = 0;
2668		create = 1;
2669		if (block_start >= to)
2670			create = 0;
2671		ret = get_block(inode, block_in_file + block_in_page,
2672					bh, create);
2673		if (ret)
2674			goto failed;
2675		if (!buffer_mapped(bh))
2676			is_mapped_to_disk = 0;
2677		if (buffer_new(bh))
2678			clean_bdev_bh_alias(bh);
2679		if (PageUptodate(page)) {
2680			set_buffer_uptodate(bh);
2681			continue;
2682		}
2683		if (buffer_new(bh) || !buffer_mapped(bh)) {
2684			zero_user_segments(page, block_start, from,
2685							to, block_end);
2686			continue;
2687		}
2688		if (buffer_uptodate(bh))
2689			continue;	/* reiserfs does this */
2690		if (block_start < from || block_end > to) {
2691			lock_buffer(bh);
2692			bh->b_end_io = end_buffer_read_nobh;
2693			submit_bh(REQ_OP_READ, 0, bh);
2694			nr_reads++;
2695		}
2696	}
2697
2698	if (nr_reads) {
2699		/*
2700		 * The page is locked, so these buffers are protected from
2701		 * any VM or truncate activity.  Hence we don't need to care
2702		 * for the buffer_head refcounts.
2703		 */
2704		for (bh = head; bh; bh = bh->b_this_page) {
2705			wait_on_buffer(bh);
2706			if (!buffer_uptodate(bh))
2707				ret = -EIO;
2708		}
2709		if (ret)
2710			goto failed;
2711	}
2712
2713	if (is_mapped_to_disk)
2714		SetPageMappedToDisk(page);
2715
2716	*fsdata = head; /* to be released by nobh_write_end */
2717
2718	return 0;
2719
2720failed:
2721	BUG_ON(!ret);
2722	/*
2723	 * Error recovery is a bit difficult. We need to zero out blocks that
2724	 * were newly allocated, and dirty them to ensure they get written out.
2725	 * Buffers need to be attached to the page at this point, otherwise
2726	 * the handling of potential IO errors during writeout would be hard
2727	 * (could try doing synchronous writeout, but what if that fails too?)
2728	 */
2729	attach_nobh_buffers(page, head);
2730	page_zero_new_buffers(page, from, to);
2731
2732out_release:
2733	unlock_page(page);
2734	put_page(page);
2735	*pagep = NULL;
2736
2737	return ret;
2738}
2739EXPORT_SYMBOL(nobh_write_begin);
2740
2741int nobh_write_end(struct file *file, struct address_space *mapping,
2742			loff_t pos, unsigned len, unsigned copied,
2743			struct page *page, void *fsdata)
2744{
2745	struct inode *inode = page->mapping->host;
2746	struct buffer_head *head = fsdata;
2747	struct buffer_head *bh;
2748	BUG_ON(fsdata != NULL && page_has_buffers(page));
2749
2750	if (unlikely(copied < len) && head)
2751		attach_nobh_buffers(page, head);
2752	if (page_has_buffers(page))
2753		return generic_write_end(file, mapping, pos, len,
2754					copied, page, fsdata);
2755
2756	SetPageUptodate(page);
2757	set_page_dirty(page);
2758	if (pos+copied > inode->i_size) {
2759		i_size_write(inode, pos+copied);
2760		mark_inode_dirty(inode);
2761	}
2762
2763	unlock_page(page);
2764	put_page(page);
2765
2766	while (head) {
2767		bh = head;
2768		head = head->b_this_page;
2769		free_buffer_head(bh);
2770	}
2771
2772	return copied;
2773}
2774EXPORT_SYMBOL(nobh_write_end);
2775
2776/*
2777 * nobh_writepage() - based on block_full_write_page() except
2778 * that it tries to operate without attaching bufferheads to
2779 * the page.
2780 */
2781int nobh_writepage(struct page *page, get_block_t *get_block,
2782			struct writeback_control *wbc)
2783{
2784	struct inode * const inode = page->mapping->host;
2785	loff_t i_size = i_size_read(inode);
2786	const pgoff_t end_index = i_size >> PAGE_SHIFT;
2787	unsigned offset;
2788	int ret;
2789
2790	/* Is the page fully inside i_size? */
2791	if (page->index < end_index)
2792		goto out;
2793
2794	/* Is the page fully outside i_size? (truncate in progress) */
2795	offset = i_size & (PAGE_SIZE-1);
2796	if (page->index >= end_index+1 || !offset) {
2797		/*
2798		 * The page may have dirty, unmapped buffers.  For example,
2799		 * they may have been added in ext3_writepage().  Make them
2800		 * freeable here, so the page does not leak.
2801		 */
2802#if 0
2803		/* Not really sure about this  - do we need this ? */
2804		if (page->mapping->a_ops->invalidatepage)
2805			page->mapping->a_ops->invalidatepage(page, offset);
2806#endif
2807		unlock_page(page);
2808		return 0; /* don't care */
2809	}
2810
2811	/*
2812	 * The page straddles i_size.  It must be zeroed out on each and every
2813	 * writepage invocation because it may be mmapped.  "A file is mapped
2814	 * in multiples of the page size.  For a file that is not a multiple of
2815	 * the  page size, the remaining memory is zeroed when mapped, and
2816	 * writes to that region are not written out to the file."
2817	 */
2818	zero_user_segment(page, offset, PAGE_SIZE);
2819out:
2820	ret = mpage_writepage(page, get_block, wbc);
2821	if (ret == -EAGAIN)
2822		ret = __block_write_full_page(inode, page, get_block, wbc,
2823					      end_buffer_async_write);
2824	return ret;
2825}
2826EXPORT_SYMBOL(nobh_writepage);
2827
2828int nobh_truncate_page(struct address_space *mapping,
2829			loff_t from, get_block_t *get_block)
2830{
2831	pgoff_t index = from >> PAGE_SHIFT;
2832	unsigned offset = from & (PAGE_SIZE-1);
2833	unsigned blocksize;
2834	sector_t iblock;
2835	unsigned length, pos;
2836	struct inode *inode = mapping->host;
2837	struct page *page;
2838	struct buffer_head map_bh;
2839	int err;
2840
2841	blocksize = 1 << inode->i_blkbits;
2842	length = offset & (blocksize - 1);
2843
2844	/* Block boundary? Nothing to do */
2845	if (!length)
2846		return 0;
2847
2848	length = blocksize - length;
2849	iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2850
2851	page = grab_cache_page(mapping, index);
2852	err = -ENOMEM;
2853	if (!page)
2854		goto out;
2855
2856	if (page_has_buffers(page)) {
2857has_buffers:
2858		unlock_page(page);
2859		put_page(page);
2860		return block_truncate_page(mapping, from, get_block);
2861	}
2862
2863	/* Find the buffer that contains "offset" */
2864	pos = blocksize;
2865	while (offset >= pos) {
2866		iblock++;
2867		pos += blocksize;
2868	}
2869
2870	map_bh.b_size = blocksize;
2871	map_bh.b_state = 0;
2872	err = get_block(inode, iblock, &map_bh, 0);
2873	if (err)
2874		goto unlock;
2875	/* unmapped? It's a hole - nothing to do */
2876	if (!buffer_mapped(&map_bh))
2877		goto unlock;
2878
2879	/* Ok, it's mapped. Make sure it's up-to-date */
2880	if (!PageUptodate(page)) {
2881		err = mapping->a_ops->readpage(NULL, page);
2882		if (err) {
2883			put_page(page);
2884			goto out;
2885		}
2886		lock_page(page);
2887		if (!PageUptodate(page)) {
2888			err = -EIO;
2889			goto unlock;
2890		}
2891		if (page_has_buffers(page))
2892			goto has_buffers;
2893	}
2894	zero_user(page, offset, length);
2895	set_page_dirty(page);
2896	err = 0;
2897
2898unlock:
2899	unlock_page(page);
2900	put_page(page);
2901out:
2902	return err;
2903}
2904EXPORT_SYMBOL(nobh_truncate_page);
2905
2906int block_truncate_page(struct address_space *mapping,
2907			loff_t from, get_block_t *get_block)
2908{
2909	pgoff_t index = from >> PAGE_SHIFT;
2910	unsigned offset = from & (PAGE_SIZE-1);
2911	unsigned blocksize;
2912	sector_t iblock;
2913	unsigned length, pos;
2914	struct inode *inode = mapping->host;
2915	struct page *page;
2916	struct buffer_head *bh;
2917	int err;
2918
2919	blocksize = 1 << inode->i_blkbits;
2920	length = offset & (blocksize - 1);
2921
2922	/* Block boundary? Nothing to do */
2923	if (!length)
2924		return 0;
2925
2926	length = blocksize - length;
2927	iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2928	
2929	page = grab_cache_page(mapping, index);
2930	err = -ENOMEM;
2931	if (!page)
2932		goto out;
2933
2934	if (!page_has_buffers(page))
2935		create_empty_buffers(page, blocksize, 0);
2936
2937	/* Find the buffer that contains "offset" */
2938	bh = page_buffers(page);
2939	pos = blocksize;
2940	while (offset >= pos) {
2941		bh = bh->b_this_page;
2942		iblock++;
2943		pos += blocksize;
2944	}
2945
2946	err = 0;
2947	if (!buffer_mapped(bh)) {
2948		WARN_ON(bh->b_size != blocksize);
2949		err = get_block(inode, iblock, bh, 0);
2950		if (err)
2951			goto unlock;
2952		/* unmapped? It's a hole - nothing to do */
2953		if (!buffer_mapped(bh))
2954			goto unlock;
2955	}
2956
2957	/* Ok, it's mapped. Make sure it's up-to-date */
2958	if (PageUptodate(page))
2959		set_buffer_uptodate(bh);
2960
2961	if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2962		err = -EIO;
2963		ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2964		wait_on_buffer(bh);
2965		/* Uhhuh. Read error. Complain and punt. */
2966		if (!buffer_uptodate(bh))
2967			goto unlock;
2968	}
2969
2970	zero_user(page, offset, length);
2971	mark_buffer_dirty(bh);
2972	err = 0;
2973
2974unlock:
2975	unlock_page(page);
2976	put_page(page);
2977out:
2978	return err;
2979}
2980EXPORT_SYMBOL(block_truncate_page);
2981
2982/*
2983 * The generic ->writepage function for buffer-backed address_spaces
2984 */
2985int block_write_full_page(struct page *page, get_block_t *get_block,
2986			struct writeback_control *wbc)
2987{
2988	struct inode * const inode = page->mapping->host;
2989	loff_t i_size = i_size_read(inode);
2990	const pgoff_t end_index = i_size >> PAGE_SHIFT;
2991	unsigned offset;
2992
2993	/* Is the page fully inside i_size? */
2994	if (page->index < end_index)
2995		return __block_write_full_page(inode, page, get_block, wbc,
2996					       end_buffer_async_write);
2997
2998	/* Is the page fully outside i_size? (truncate in progress) */
2999	offset = i_size & (PAGE_SIZE-1);
3000	if (page->index >= end_index+1 || !offset) {
3001		/*
3002		 * The page may have dirty, unmapped buffers.  For example,
3003		 * they may have been added in ext3_writepage().  Make them
3004		 * freeable here, so the page does not leak.
3005		 */
3006		do_invalidatepage(page, 0, PAGE_SIZE);
3007		unlock_page(page);
3008		return 0; /* don't care */
3009	}
3010
3011	/*
3012	 * The page straddles i_size.  It must be zeroed out on each and every
3013	 * writepage invocation because it may be mmapped.  "A file is mapped
3014	 * in multiples of the page size.  For a file that is not a multiple of
3015	 * the  page size, the remaining memory is zeroed when mapped, and
3016	 * writes to that region are not written out to the file."
3017	 */
3018	zero_user_segment(page, offset, PAGE_SIZE);
3019	return __block_write_full_page(inode, page, get_block, wbc,
3020							end_buffer_async_write);
3021}
3022EXPORT_SYMBOL(block_write_full_page);
3023
3024sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
3025			    get_block_t *get_block)
3026{
3027	struct buffer_head tmp;
3028	struct inode *inode = mapping->host;
3029	tmp.b_state = 0;
3030	tmp.b_blocknr = 0;
3031	tmp.b_size = 1 << inode->i_blkbits;
 
3032	get_block(inode, block, &tmp, 0);
3033	return tmp.b_blocknr;
3034}
3035EXPORT_SYMBOL(generic_block_bmap);
3036
3037static void end_bio_bh_io_sync(struct bio *bio)
3038{
3039	struct buffer_head *bh = bio->bi_private;
3040
3041	if (unlikely(bio_flagged(bio, BIO_QUIET)))
3042		set_bit(BH_Quiet, &bh->b_state);
3043
3044	bh->b_end_io(bh, !bio->bi_error);
3045	bio_put(bio);
3046}
3047
3048/*
3049 * This allows us to do IO even on the odd last sectors
3050 * of a device, even if the block size is some multiple
3051 * of the physical sector size.
3052 *
3053 * We'll just truncate the bio to the size of the device,
3054 * and clear the end of the buffer head manually.
3055 *
3056 * Truly out-of-range accesses will turn into actual IO
3057 * errors, this only handles the "we need to be able to
3058 * do IO at the final sector" case.
3059 */
3060void guard_bio_eod(int op, struct bio *bio)
3061{
3062	sector_t maxsector;
3063	struct bio_vec *bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
3064	unsigned truncated_bytes;
3065
3066	maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
3067	if (!maxsector)
3068		return;
3069
3070	/*
3071	 * If the *whole* IO is past the end of the device,
3072	 * let it through, and the IO layer will turn it into
3073	 * an EIO.
3074	 */
3075	if (unlikely(bio->bi_iter.bi_sector >= maxsector))
3076		return;
3077
3078	maxsector -= bio->bi_iter.bi_sector;
3079	if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
3080		return;
3081
3082	/* Uhhuh. We've got a bio that straddles the device size! */
3083	truncated_bytes = bio->bi_iter.bi_size - (maxsector << 9);
3084
3085	/* Truncate the bio.. */
3086	bio->bi_iter.bi_size -= truncated_bytes;
3087	bvec->bv_len -= truncated_bytes;
3088
3089	/* ..and clear the end of the buffer for reads */
3090	if (op == REQ_OP_READ) {
3091		zero_user(bvec->bv_page, bvec->bv_offset + bvec->bv_len,
3092				truncated_bytes);
3093	}
3094}
3095
3096static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
3097			 unsigned long bio_flags, struct writeback_control *wbc)
3098{
3099	struct bio *bio;
3100
3101	BUG_ON(!buffer_locked(bh));
3102	BUG_ON(!buffer_mapped(bh));
3103	BUG_ON(!bh->b_end_io);
3104	BUG_ON(buffer_delay(bh));
3105	BUG_ON(buffer_unwritten(bh));
3106
3107	/*
3108	 * Only clear out a write error when rewriting
3109	 */
3110	if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
3111		clear_buffer_write_io_error(bh);
3112
3113	/*
3114	 * from here on down, it's all bio -- do the initial mapping,
3115	 * submit_bio -> generic_make_request may further map this bio around
3116	 */
3117	bio = bio_alloc(GFP_NOIO, 1);
3118
3119	if (wbc) {
3120		wbc_init_bio(wbc, bio);
3121		wbc_account_io(wbc, bh->b_page, bh->b_size);
3122	}
3123
3124	bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
3125	bio->bi_bdev = bh->b_bdev;
 
3126
3127	bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
3128	BUG_ON(bio->bi_iter.bi_size != bh->b_size);
3129
3130	bio->bi_end_io = end_bio_bh_io_sync;
3131	bio->bi_private = bh;
3132	bio->bi_flags |= bio_flags;
3133
3134	/* Take care of bh's that straddle the end of the device */
3135	guard_bio_eod(op, bio);
3136
3137	if (buffer_meta(bh))
3138		op_flags |= REQ_META;
3139	if (buffer_prio(bh))
3140		op_flags |= REQ_PRIO;
3141	bio_set_op_attrs(bio, op, op_flags);
3142
 
 
 
 
 
 
 
 
3143	submit_bio(bio);
3144	return 0;
3145}
3146
3147int _submit_bh(int op, int op_flags, struct buffer_head *bh,
3148	       unsigned long bio_flags)
3149{
3150	return submit_bh_wbc(op, op_flags, bh, bio_flags, NULL);
3151}
3152EXPORT_SYMBOL_GPL(_submit_bh);
3153
3154int submit_bh(int op, int op_flags,  struct buffer_head *bh)
3155{
3156	return submit_bh_wbc(op, op_flags, bh, 0, NULL);
3157}
3158EXPORT_SYMBOL(submit_bh);
3159
3160/**
3161 * ll_rw_block: low-level access to block devices (DEPRECATED)
3162 * @op: whether to %READ or %WRITE
3163 * @op_flags: req_flag_bits
3164 * @nr: number of &struct buffer_heads in the array
3165 * @bhs: array of pointers to &struct buffer_head
3166 *
3167 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3168 * requests an I/O operation on them, either a %REQ_OP_READ or a %REQ_OP_WRITE.
3169 * @op_flags contains flags modifying the detailed I/O behavior, most notably
3170 * %REQ_RAHEAD.
3171 *
3172 * This function drops any buffer that it cannot get a lock on (with the
3173 * BH_Lock state bit), any buffer that appears to be clean when doing a write
3174 * request, and any buffer that appears to be up-to-date when doing read
3175 * request.  Further it marks as clean buffers that are processed for
3176 * writing (the buffer cache won't assume that they are actually clean
3177 * until the buffer gets unlocked).
3178 *
3179 * ll_rw_block sets b_end_io to simple completion handler that marks
3180 * the buffer up-to-date (if appropriate), unlocks the buffer and wakes
3181 * any waiters. 
3182 *
3183 * All of the buffers must be for the same device, and must also be a
3184 * multiple of the current approved size for the device.
3185 */
3186void ll_rw_block(int op, int op_flags,  int nr, struct buffer_head *bhs[])
3187{
3188	int i;
3189
3190	for (i = 0; i < nr; i++) {
3191		struct buffer_head *bh = bhs[i];
3192
3193		if (!trylock_buffer(bh))
3194			continue;
3195		if (op == WRITE) {
3196			if (test_clear_buffer_dirty(bh)) {
3197				bh->b_end_io = end_buffer_write_sync;
3198				get_bh(bh);
3199				submit_bh(op, op_flags, bh);
3200				continue;
3201			}
3202		} else {
3203			if (!buffer_uptodate(bh)) {
3204				bh->b_end_io = end_buffer_read_sync;
3205				get_bh(bh);
3206				submit_bh(op, op_flags, bh);
3207				continue;
3208			}
3209		}
3210		unlock_buffer(bh);
3211	}
3212}
3213EXPORT_SYMBOL(ll_rw_block);
3214
3215void write_dirty_buffer(struct buffer_head *bh, int op_flags)
3216{
3217	lock_buffer(bh);
3218	if (!test_clear_buffer_dirty(bh)) {
3219		unlock_buffer(bh);
3220		return;
3221	}
3222	bh->b_end_io = end_buffer_write_sync;
3223	get_bh(bh);
3224	submit_bh(REQ_OP_WRITE, op_flags, bh);
3225}
3226EXPORT_SYMBOL(write_dirty_buffer);
3227
3228/*
3229 * For a data-integrity writeout, we need to wait upon any in-progress I/O
3230 * and then start new I/O and then wait upon it.  The caller must have a ref on
3231 * the buffer_head.
3232 */
3233int __sync_dirty_buffer(struct buffer_head *bh, int op_flags)
3234{
3235	int ret = 0;
3236
3237	WARN_ON(atomic_read(&bh->b_count) < 1);
3238	lock_buffer(bh);
3239	if (test_clear_buffer_dirty(bh)) {
 
 
 
 
 
 
 
 
 
3240		get_bh(bh);
3241		bh->b_end_io = end_buffer_write_sync;
3242		ret = submit_bh(REQ_OP_WRITE, op_flags, bh);
3243		wait_on_buffer(bh);
3244		if (!ret && !buffer_uptodate(bh))
3245			ret = -EIO;
3246	} else {
3247		unlock_buffer(bh);
3248	}
3249	return ret;
3250}
3251EXPORT_SYMBOL(__sync_dirty_buffer);
3252
3253int sync_dirty_buffer(struct buffer_head *bh)
3254{
3255	return __sync_dirty_buffer(bh, REQ_SYNC);
3256}
3257EXPORT_SYMBOL(sync_dirty_buffer);
3258
3259/*
3260 * try_to_free_buffers() checks if all the buffers on this particular page
3261 * are unused, and releases them if so.
3262 *
3263 * Exclusion against try_to_free_buffers may be obtained by either
3264 * locking the page or by holding its mapping's private_lock.
3265 *
3266 * If the page is dirty but all the buffers are clean then we need to
3267 * be sure to mark the page clean as well.  This is because the page
3268 * may be against a block device, and a later reattachment of buffers
3269 * to a dirty page will set *all* buffers dirty.  Which would corrupt
3270 * filesystem data on the same device.
3271 *
3272 * The same applies to regular filesystem pages: if all the buffers are
3273 * clean then we set the page clean and proceed.  To do that, we require
3274 * total exclusion from __set_page_dirty_buffers().  That is obtained with
3275 * private_lock.
3276 *
3277 * try_to_free_buffers() is non-blocking.
3278 */
3279static inline int buffer_busy(struct buffer_head *bh)
3280{
3281	return atomic_read(&bh->b_count) |
3282		(bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3283}
3284
3285static int
3286drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3287{
3288	struct buffer_head *head = page_buffers(page);
3289	struct buffer_head *bh;
3290
3291	bh = head;
3292	do {
3293		if (buffer_write_io_error(bh) && page->mapping)
3294			mapping_set_error(page->mapping, -EIO);
3295		if (buffer_busy(bh))
3296			goto failed;
3297		bh = bh->b_this_page;
3298	} while (bh != head);
3299
3300	do {
3301		struct buffer_head *next = bh->b_this_page;
3302
3303		if (bh->b_assoc_map)
3304			__remove_assoc_queue(bh);
3305		bh = next;
3306	} while (bh != head);
3307	*buffers_to_free = head;
3308	__clear_page_buffers(page);
3309	return 1;
3310failed:
3311	return 0;
3312}
3313
3314int try_to_free_buffers(struct page *page)
3315{
3316	struct address_space * const mapping = page->mapping;
3317	struct buffer_head *buffers_to_free = NULL;
3318	int ret = 0;
3319
3320	BUG_ON(!PageLocked(page));
3321	if (PageWriteback(page))
3322		return 0;
3323
3324	if (mapping == NULL) {		/* can this still happen? */
3325		ret = drop_buffers(page, &buffers_to_free);
3326		goto out;
3327	}
3328
3329	spin_lock(&mapping->private_lock);
3330	ret = drop_buffers(page, &buffers_to_free);
3331
3332	/*
3333	 * If the filesystem writes its buffers by hand (eg ext3)
3334	 * then we can have clean buffers against a dirty page.  We
3335	 * clean the page here; otherwise the VM will never notice
3336	 * that the filesystem did any IO at all.
3337	 *
3338	 * Also, during truncate, discard_buffer will have marked all
3339	 * the page's buffers clean.  We discover that here and clean
3340	 * the page also.
3341	 *
3342	 * private_lock must be held over this entire operation in order
3343	 * to synchronise against __set_page_dirty_buffers and prevent the
3344	 * dirty bit from being lost.
3345	 */
3346	if (ret)
3347		cancel_dirty_page(page);
3348	spin_unlock(&mapping->private_lock);
3349out:
3350	if (buffers_to_free) {
3351		struct buffer_head *bh = buffers_to_free;
3352
3353		do {
3354			struct buffer_head *next = bh->b_this_page;
3355			free_buffer_head(bh);
3356			bh = next;
3357		} while (bh != buffers_to_free);
3358	}
3359	return ret;
3360}
3361EXPORT_SYMBOL(try_to_free_buffers);
3362
3363/*
3364 * There are no bdflush tunables left.  But distributions are
3365 * still running obsolete flush daemons, so we terminate them here.
3366 *
3367 * Use of bdflush() is deprecated and will be removed in a future kernel.
3368 * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3369 */
3370SYSCALL_DEFINE2(bdflush, int, func, long, data)
3371{
3372	static int msg_count;
3373
3374	if (!capable(CAP_SYS_ADMIN))
3375		return -EPERM;
3376
3377	if (msg_count < 5) {
3378		msg_count++;
3379		printk(KERN_INFO
3380			"warning: process `%s' used the obsolete bdflush"
3381			" system call\n", current->comm);
3382		printk(KERN_INFO "Fix your initscripts?\n");
3383	}
3384
3385	if (func == 1)
3386		do_exit(0);
3387	return 0;
3388}
3389
3390/*
3391 * Buffer-head allocation
3392 */
3393static struct kmem_cache *bh_cachep __read_mostly;
3394
3395/*
3396 * Once the number of bh's in the machine exceeds this level, we start
3397 * stripping them in writeback.
3398 */
3399static unsigned long max_buffer_heads;
3400
3401int buffer_heads_over_limit;
3402
3403struct bh_accounting {
3404	int nr;			/* Number of live bh's */
3405	int ratelimit;		/* Limit cacheline bouncing */
3406};
3407
3408static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3409
3410static void recalc_bh_state(void)
3411{
3412	int i;
3413	int tot = 0;
3414
3415	if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3416		return;
3417	__this_cpu_write(bh_accounting.ratelimit, 0);
3418	for_each_online_cpu(i)
3419		tot += per_cpu(bh_accounting, i).nr;
3420	buffer_heads_over_limit = (tot > max_buffer_heads);
3421}
3422
3423struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3424{
3425	struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3426	if (ret) {
3427		INIT_LIST_HEAD(&ret->b_assoc_buffers);
 
3428		preempt_disable();
3429		__this_cpu_inc(bh_accounting.nr);
3430		recalc_bh_state();
3431		preempt_enable();
3432	}
3433	return ret;
3434}
3435EXPORT_SYMBOL(alloc_buffer_head);
3436
3437void free_buffer_head(struct buffer_head *bh)
3438{
3439	BUG_ON(!list_empty(&bh->b_assoc_buffers));
3440	kmem_cache_free(bh_cachep, bh);
3441	preempt_disable();
3442	__this_cpu_dec(bh_accounting.nr);
3443	recalc_bh_state();
3444	preempt_enable();
3445}
3446EXPORT_SYMBOL(free_buffer_head);
3447
3448static int buffer_exit_cpu_dead(unsigned int cpu)
3449{
3450	int i;
3451	struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3452
3453	for (i = 0; i < BH_LRU_SIZE; i++) {
3454		brelse(b->bhs[i]);
3455		b->bhs[i] = NULL;
3456	}
3457	this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3458	per_cpu(bh_accounting, cpu).nr = 0;
3459	return 0;
3460}
3461
3462/**
3463 * bh_uptodate_or_lock - Test whether the buffer is uptodate
3464 * @bh: struct buffer_head
3465 *
3466 * Return true if the buffer is up-to-date and false,
3467 * with the buffer locked, if not.
3468 */
3469int bh_uptodate_or_lock(struct buffer_head *bh)
3470{
3471	if (!buffer_uptodate(bh)) {
3472		lock_buffer(bh);
3473		if (!buffer_uptodate(bh))
3474			return 0;
3475		unlock_buffer(bh);
3476	}
3477	return 1;
3478}
3479EXPORT_SYMBOL(bh_uptodate_or_lock);
3480
3481/**
3482 * bh_submit_read - Submit a locked buffer for reading
3483 * @bh: struct buffer_head
3484 *
3485 * Returns zero on success and -EIO on error.
3486 */
3487int bh_submit_read(struct buffer_head *bh)
3488{
3489	BUG_ON(!buffer_locked(bh));
3490
3491	if (buffer_uptodate(bh)) {
3492		unlock_buffer(bh);
3493		return 0;
3494	}
3495
3496	get_bh(bh);
3497	bh->b_end_io = end_buffer_read_sync;
3498	submit_bh(REQ_OP_READ, 0, bh);
3499	wait_on_buffer(bh);
3500	if (buffer_uptodate(bh))
3501		return 0;
3502	return -EIO;
3503}
3504EXPORT_SYMBOL(bh_submit_read);
3505
3506void __init buffer_init(void)
3507{
3508	unsigned long nrpages;
3509	int ret;
3510
3511	bh_cachep = kmem_cache_create("buffer_head",
3512			sizeof(struct buffer_head), 0,
3513				(SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3514				SLAB_MEM_SPREAD),
3515				NULL);
3516
3517	/*
3518	 * Limit the bh occupancy to 10% of ZONE_NORMAL
3519	 */
3520	nrpages = (nr_free_buffer_pages() * 10) / 100;
3521	max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3522	ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead",
3523					NULL, buffer_exit_cpu_dead);
3524	WARN_ON(ret < 0);
3525}
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/fs/buffer.c
   4 *
   5 *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
   6 */
   7
   8/*
   9 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
  10 *
  11 * Removed a lot of unnecessary code and simplified things now that
  12 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
  13 *
  14 * Speed up hash, lru, and free list operations.  Use gfp() for allocating
  15 * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
  16 *
  17 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
  18 *
  19 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
  20 */
  21
  22#include <linux/kernel.h>
  23#include <linux/sched/signal.h>
  24#include <linux/syscalls.h>
  25#include <linux/fs.h>
  26#include <linux/iomap.h>
  27#include <linux/mm.h>
  28#include <linux/percpu.h>
  29#include <linux/slab.h>
  30#include <linux/capability.h>
  31#include <linux/blkdev.h>
  32#include <linux/file.h>
  33#include <linux/quotaops.h>
  34#include <linux/highmem.h>
  35#include <linux/export.h>
  36#include <linux/backing-dev.h>
  37#include <linux/writeback.h>
  38#include <linux/hash.h>
  39#include <linux/suspend.h>
  40#include <linux/buffer_head.h>
  41#include <linux/task_io_accounting_ops.h>
  42#include <linux/bio.h>
 
  43#include <linux/cpu.h>
  44#include <linux/bitops.h>
  45#include <linux/mpage.h>
  46#include <linux/bit_spinlock.h>
  47#include <linux/pagevec.h>
  48#include <linux/sched/mm.h>
  49#include <trace/events/block.h>
  50#include <linux/fscrypt.h>
  51
  52#include "internal.h"
  53
  54static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
  55static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
  56			 enum rw_hint hint, struct writeback_control *wbc);
 
  57
  58#define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
  59
 
 
 
 
 
 
 
  60inline void touch_buffer(struct buffer_head *bh)
  61{
  62	trace_block_touch_buffer(bh);
  63	mark_page_accessed(bh->b_page);
  64}
  65EXPORT_SYMBOL(touch_buffer);
  66
  67void __lock_buffer(struct buffer_head *bh)
  68{
  69	wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
  70}
  71EXPORT_SYMBOL(__lock_buffer);
  72
  73void unlock_buffer(struct buffer_head *bh)
  74{
  75	clear_bit_unlock(BH_Lock, &bh->b_state);
  76	smp_mb__after_atomic();
  77	wake_up_bit(&bh->b_state, BH_Lock);
  78}
  79EXPORT_SYMBOL(unlock_buffer);
  80
  81/*
  82 * Returns if the page has dirty or writeback buffers. If all the buffers
  83 * are unlocked and clean then the PageDirty information is stale. If
  84 * any of the pages are locked, it is assumed they are locked for IO.
  85 */
  86void buffer_check_dirty_writeback(struct page *page,
  87				     bool *dirty, bool *writeback)
  88{
  89	struct buffer_head *head, *bh;
  90	*dirty = false;
  91	*writeback = false;
  92
  93	BUG_ON(!PageLocked(page));
  94
  95	if (!page_has_buffers(page))
  96		return;
  97
  98	if (PageWriteback(page))
  99		*writeback = true;
 100
 101	head = page_buffers(page);
 102	bh = head;
 103	do {
 104		if (buffer_locked(bh))
 105			*writeback = true;
 106
 107		if (buffer_dirty(bh))
 108			*dirty = true;
 109
 110		bh = bh->b_this_page;
 111	} while (bh != head);
 112}
 113EXPORT_SYMBOL(buffer_check_dirty_writeback);
 114
 115/*
 116 * Block until a buffer comes unlocked.  This doesn't stop it
 117 * from becoming locked again - you have to lock it yourself
 118 * if you want to preserve its state.
 119 */
 120void __wait_on_buffer(struct buffer_head * bh)
 121{
 122	wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
 123}
 124EXPORT_SYMBOL(__wait_on_buffer);
 125
 
 
 
 
 
 
 
 
 126static void buffer_io_error(struct buffer_head *bh, char *msg)
 127{
 128	if (!test_bit(BH_Quiet, &bh->b_state))
 129		printk_ratelimited(KERN_ERR
 130			"Buffer I/O error on dev %pg, logical block %llu%s\n",
 131			bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
 132}
 133
 134/*
 135 * End-of-IO handler helper function which does not touch the bh after
 136 * unlocking it.
 137 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
 138 * a race there is benign: unlock_buffer() only use the bh's address for
 139 * hashing after unlocking the buffer, so it doesn't actually touch the bh
 140 * itself.
 141 */
 142static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
 143{
 144	if (uptodate) {
 145		set_buffer_uptodate(bh);
 146	} else {
 147		/* This happens, due to failed read-ahead attempts. */
 148		clear_buffer_uptodate(bh);
 149	}
 150	unlock_buffer(bh);
 151}
 152
 153/*
 154 * Default synchronous end-of-IO handler..  Just mark it up-to-date and
 155 * unlock the buffer. This is what ll_rw_block uses too.
 156 */
 157void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
 158{
 159	__end_buffer_read_notouch(bh, uptodate);
 160	put_bh(bh);
 161}
 162EXPORT_SYMBOL(end_buffer_read_sync);
 163
 164void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
 165{
 166	if (uptodate) {
 167		set_buffer_uptodate(bh);
 168	} else {
 169		buffer_io_error(bh, ", lost sync page write");
 170		mark_buffer_write_io_error(bh);
 171		clear_buffer_uptodate(bh);
 172	}
 173	unlock_buffer(bh);
 174	put_bh(bh);
 175}
 176EXPORT_SYMBOL(end_buffer_write_sync);
 177
 178/*
 179 * Various filesystems appear to want __find_get_block to be non-blocking.
 180 * But it's the page lock which protects the buffers.  To get around this,
 181 * we get exclusion from try_to_free_buffers with the blockdev mapping's
 182 * private_lock.
 183 *
 184 * Hack idea: for the blockdev mapping, private_lock contention
 185 * may be quite high.  This code could TryLock the page, and if that
 186 * succeeds, there is no need to take private_lock.
 
 187 */
 188static struct buffer_head *
 189__find_get_block_slow(struct block_device *bdev, sector_t block)
 190{
 191	struct inode *bd_inode = bdev->bd_inode;
 192	struct address_space *bd_mapping = bd_inode->i_mapping;
 193	struct buffer_head *ret = NULL;
 194	pgoff_t index;
 195	struct buffer_head *bh;
 196	struct buffer_head *head;
 197	struct page *page;
 198	int all_mapped = 1;
 199	static DEFINE_RATELIMIT_STATE(last_warned, HZ, 1);
 200
 201	index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
 202	page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED);
 203	if (!page)
 204		goto out;
 205
 206	spin_lock(&bd_mapping->private_lock);
 207	if (!page_has_buffers(page))
 208		goto out_unlock;
 209	head = page_buffers(page);
 210	bh = head;
 211	do {
 212		if (!buffer_mapped(bh))
 213			all_mapped = 0;
 214		else if (bh->b_blocknr == block) {
 215			ret = bh;
 216			get_bh(bh);
 217			goto out_unlock;
 218		}
 219		bh = bh->b_this_page;
 220	} while (bh != head);
 221
 222	/* we might be here because some of the buffers on this page are
 223	 * not mapped.  This is due to various races between
 224	 * file io on the block device and getblk.  It gets dealt with
 225	 * elsewhere, don't buffer_error if we had some unmapped buffers
 226	 */
 227	ratelimit_set_flags(&last_warned, RATELIMIT_MSG_ON_RELEASE);
 228	if (all_mapped && __ratelimit(&last_warned)) {
 229		printk("__find_get_block_slow() failed. block=%llu, "
 230		       "b_blocknr=%llu, b_state=0x%08lx, b_size=%zu, "
 231		       "device %pg blocksize: %d\n",
 232		       (unsigned long long)block,
 233		       (unsigned long long)bh->b_blocknr,
 234		       bh->b_state, bh->b_size, bdev,
 235		       1 << bd_inode->i_blkbits);
 236	}
 237out_unlock:
 238	spin_unlock(&bd_mapping->private_lock);
 239	put_page(page);
 240out:
 241	return ret;
 242}
 243
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 244static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
 245{
 246	unsigned long flags;
 247	struct buffer_head *first;
 248	struct buffer_head *tmp;
 249	struct page *page;
 250	int page_uptodate = 1;
 251
 252	BUG_ON(!buffer_async_read(bh));
 253
 254	page = bh->b_page;
 255	if (uptodate) {
 256		set_buffer_uptodate(bh);
 257	} else {
 258		clear_buffer_uptodate(bh);
 259		buffer_io_error(bh, ", async page read");
 260		SetPageError(page);
 261	}
 262
 263	/*
 264	 * Be _very_ careful from here on. Bad things can happen if
 265	 * two buffer heads end IO at almost the same time and both
 266	 * decide that the page is now completely done.
 267	 */
 268	first = page_buffers(page);
 269	spin_lock_irqsave(&first->b_uptodate_lock, flags);
 
 270	clear_buffer_async_read(bh);
 271	unlock_buffer(bh);
 272	tmp = bh;
 273	do {
 274		if (!buffer_uptodate(tmp))
 275			page_uptodate = 0;
 276		if (buffer_async_read(tmp)) {
 277			BUG_ON(!buffer_locked(tmp));
 278			goto still_busy;
 279		}
 280		tmp = tmp->b_this_page;
 281	} while (tmp != bh);
 282	spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
 
 283
 284	/*
 285	 * If none of the buffers had errors and they are all
 286	 * uptodate then we can set the page uptodate.
 287	 */
 288	if (page_uptodate && !PageError(page))
 289		SetPageUptodate(page);
 290	unlock_page(page);
 291	return;
 292
 293still_busy:
 294	spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
 
 295	return;
 296}
 297
 298struct decrypt_bh_ctx {
 299	struct work_struct work;
 300	struct buffer_head *bh;
 301};
 302
 303static void decrypt_bh(struct work_struct *work)
 304{
 305	struct decrypt_bh_ctx *ctx =
 306		container_of(work, struct decrypt_bh_ctx, work);
 307	struct buffer_head *bh = ctx->bh;
 308	int err;
 309
 310	err = fscrypt_decrypt_pagecache_blocks(bh->b_page, bh->b_size,
 311					       bh_offset(bh));
 312	end_buffer_async_read(bh, err == 0);
 313	kfree(ctx);
 314}
 315
 316/*
 317 * I/O completion handler for block_read_full_page() - pages
 318 * which come unlocked at the end of I/O.
 319 */
 320static void end_buffer_async_read_io(struct buffer_head *bh, int uptodate)
 321{
 322	/* Decrypt if needed */
 323	if (uptodate &&
 324	    fscrypt_inode_uses_fs_layer_crypto(bh->b_page->mapping->host)) {
 325		struct decrypt_bh_ctx *ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC);
 326
 327		if (ctx) {
 328			INIT_WORK(&ctx->work, decrypt_bh);
 329			ctx->bh = bh;
 330			fscrypt_enqueue_decrypt_work(&ctx->work);
 331			return;
 332		}
 333		uptodate = 0;
 334	}
 335	end_buffer_async_read(bh, uptodate);
 336}
 337
 338/*
 339 * Completion handler for block_write_full_page() - pages which are unlocked
 340 * during I/O, and which have PageWriteback cleared upon I/O completion.
 341 */
 342void end_buffer_async_write(struct buffer_head *bh, int uptodate)
 343{
 344	unsigned long flags;
 345	struct buffer_head *first;
 346	struct buffer_head *tmp;
 347	struct page *page;
 348
 349	BUG_ON(!buffer_async_write(bh));
 350
 351	page = bh->b_page;
 352	if (uptodate) {
 353		set_buffer_uptodate(bh);
 354	} else {
 355		buffer_io_error(bh, ", lost async page write");
 356		mark_buffer_write_io_error(bh);
 
 357		clear_buffer_uptodate(bh);
 358		SetPageError(page);
 359	}
 360
 361	first = page_buffers(page);
 362	spin_lock_irqsave(&first->b_uptodate_lock, flags);
 
 363
 364	clear_buffer_async_write(bh);
 365	unlock_buffer(bh);
 366	tmp = bh->b_this_page;
 367	while (tmp != bh) {
 368		if (buffer_async_write(tmp)) {
 369			BUG_ON(!buffer_locked(tmp));
 370			goto still_busy;
 371		}
 372		tmp = tmp->b_this_page;
 373	}
 374	spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
 
 375	end_page_writeback(page);
 376	return;
 377
 378still_busy:
 379	spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
 
 380	return;
 381}
 382EXPORT_SYMBOL(end_buffer_async_write);
 383
 384/*
 385 * If a page's buffers are under async readin (end_buffer_async_read
 386 * completion) then there is a possibility that another thread of
 387 * control could lock one of the buffers after it has completed
 388 * but while some of the other buffers have not completed.  This
 389 * locked buffer would confuse end_buffer_async_read() into not unlocking
 390 * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
 391 * that this buffer is not under async I/O.
 392 *
 393 * The page comes unlocked when it has no locked buffer_async buffers
 394 * left.
 395 *
 396 * PageLocked prevents anyone starting new async I/O reads any of
 397 * the buffers.
 398 *
 399 * PageWriteback is used to prevent simultaneous writeout of the same
 400 * page.
 401 *
 402 * PageLocked prevents anyone from starting writeback of a page which is
 403 * under read I/O (PageWriteback is only ever set against a locked page).
 404 */
 405static void mark_buffer_async_read(struct buffer_head *bh)
 406{
 407	bh->b_end_io = end_buffer_async_read_io;
 408	set_buffer_async_read(bh);
 409}
 410
 411static void mark_buffer_async_write_endio(struct buffer_head *bh,
 412					  bh_end_io_t *handler)
 413{
 414	bh->b_end_io = handler;
 415	set_buffer_async_write(bh);
 416}
 417
 418void mark_buffer_async_write(struct buffer_head *bh)
 419{
 420	mark_buffer_async_write_endio(bh, end_buffer_async_write);
 421}
 422EXPORT_SYMBOL(mark_buffer_async_write);
 423
 424
 425/*
 426 * fs/buffer.c contains helper functions for buffer-backed address space's
 427 * fsync functions.  A common requirement for buffer-based filesystems is
 428 * that certain data from the backing blockdev needs to be written out for
 429 * a successful fsync().  For example, ext2 indirect blocks need to be
 430 * written back and waited upon before fsync() returns.
 431 *
 432 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
 433 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
 434 * management of a list of dependent buffers at ->i_mapping->private_list.
 435 *
 436 * Locking is a little subtle: try_to_free_buffers() will remove buffers
 437 * from their controlling inode's queue when they are being freed.  But
 438 * try_to_free_buffers() will be operating against the *blockdev* mapping
 439 * at the time, not against the S_ISREG file which depends on those buffers.
 440 * So the locking for private_list is via the private_lock in the address_space
 441 * which backs the buffers.  Which is different from the address_space 
 442 * against which the buffers are listed.  So for a particular address_space,
 443 * mapping->private_lock does *not* protect mapping->private_list!  In fact,
 444 * mapping->private_list will always be protected by the backing blockdev's
 445 * ->private_lock.
 446 *
 447 * Which introduces a requirement: all buffers on an address_space's
 448 * ->private_list must be from the same address_space: the blockdev's.
 449 *
 450 * address_spaces which do not place buffers at ->private_list via these
 451 * utility functions are free to use private_lock and private_list for
 452 * whatever they want.  The only requirement is that list_empty(private_list)
 453 * be true at clear_inode() time.
 454 *
 455 * FIXME: clear_inode should not call invalidate_inode_buffers().  The
 456 * filesystems should do that.  invalidate_inode_buffers() should just go
 457 * BUG_ON(!list_empty).
 458 *
 459 * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
 460 * take an address_space, not an inode.  And it should be called
 461 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
 462 * queued up.
 463 *
 464 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
 465 * list if it is already on a list.  Because if the buffer is on a list,
 466 * it *must* already be on the right one.  If not, the filesystem is being
 467 * silly.  This will save a ton of locking.  But first we have to ensure
 468 * that buffers are taken *off* the old inode's list when they are freed
 469 * (presumably in truncate).  That requires careful auditing of all
 470 * filesystems (do it inside bforget()).  It could also be done by bringing
 471 * b_inode back.
 472 */
 473
 474/*
 475 * The buffer's backing address_space's private_lock must be held
 476 */
 477static void __remove_assoc_queue(struct buffer_head *bh)
 478{
 479	list_del_init(&bh->b_assoc_buffers);
 480	WARN_ON(!bh->b_assoc_map);
 
 
 481	bh->b_assoc_map = NULL;
 482}
 483
 484int inode_has_buffers(struct inode *inode)
 485{
 486	return !list_empty(&inode->i_data.private_list);
 487}
 488
 489/*
 490 * osync is designed to support O_SYNC io.  It waits synchronously for
 491 * all already-submitted IO to complete, but does not queue any new
 492 * writes to the disk.
 493 *
 494 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
 495 * you dirty the buffers, and then use osync_inode_buffers to wait for
 496 * completion.  Any other dirty buffers which are not yet queued for
 497 * write will not be flushed to disk by the osync.
 498 */
 499static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
 500{
 501	struct buffer_head *bh;
 502	struct list_head *p;
 503	int err = 0;
 504
 505	spin_lock(lock);
 506repeat:
 507	list_for_each_prev(p, list) {
 508		bh = BH_ENTRY(p);
 509		if (buffer_locked(bh)) {
 510			get_bh(bh);
 511			spin_unlock(lock);
 512			wait_on_buffer(bh);
 513			if (!buffer_uptodate(bh))
 514				err = -EIO;
 515			brelse(bh);
 516			spin_lock(lock);
 517			goto repeat;
 518		}
 519	}
 520	spin_unlock(lock);
 521	return err;
 522}
 523
 524void emergency_thaw_bdev(struct super_block *sb)
 525{
 526	while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
 527		printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev);
 528}
 529
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 530/**
 531 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
 532 * @mapping: the mapping which wants those buffers written
 533 *
 534 * Starts I/O against the buffers at mapping->private_list, and waits upon
 535 * that I/O.
 536 *
 537 * Basically, this is a convenience function for fsync().
 538 * @mapping is a file or directory which needs those buffers to be written for
 539 * a successful fsync().
 540 */
 541int sync_mapping_buffers(struct address_space *mapping)
 542{
 543	struct address_space *buffer_mapping = mapping->private_data;
 544
 545	if (buffer_mapping == NULL || list_empty(&mapping->private_list))
 546		return 0;
 547
 548	return fsync_buffers_list(&buffer_mapping->private_lock,
 549					&mapping->private_list);
 550}
 551EXPORT_SYMBOL(sync_mapping_buffers);
 552
 553/*
 554 * Called when we've recently written block `bblock', and it is known that
 555 * `bblock' was for a buffer_boundary() buffer.  This means that the block at
 556 * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
 557 * dirty, schedule it for IO.  So that indirects merge nicely with their data.
 558 */
 559void write_boundary_block(struct block_device *bdev,
 560			sector_t bblock, unsigned blocksize)
 561{
 562	struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
 563	if (bh) {
 564		if (buffer_dirty(bh))
 565			ll_rw_block(REQ_OP_WRITE, 0, 1, &bh);
 566		put_bh(bh);
 567	}
 568}
 569
 570void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
 571{
 572	struct address_space *mapping = inode->i_mapping;
 573	struct address_space *buffer_mapping = bh->b_page->mapping;
 574
 575	mark_buffer_dirty(bh);
 576	if (!mapping->private_data) {
 577		mapping->private_data = buffer_mapping;
 578	} else {
 579		BUG_ON(mapping->private_data != buffer_mapping);
 580	}
 581	if (!bh->b_assoc_map) {
 582		spin_lock(&buffer_mapping->private_lock);
 583		list_move_tail(&bh->b_assoc_buffers,
 584				&mapping->private_list);
 585		bh->b_assoc_map = mapping;
 586		spin_unlock(&buffer_mapping->private_lock);
 587	}
 588}
 589EXPORT_SYMBOL(mark_buffer_dirty_inode);
 590
 591/*
 592 * Mark the page dirty, and set it dirty in the page cache, and mark the inode
 593 * dirty.
 594 *
 595 * If warn is true, then emit a warning if the page is not uptodate and has
 596 * not been truncated.
 597 *
 598 * The caller must hold lock_page_memcg().
 599 */
 600void __set_page_dirty(struct page *page, struct address_space *mapping,
 601			     int warn)
 602{
 603	unsigned long flags;
 604
 605	xa_lock_irqsave(&mapping->i_pages, flags);
 606	if (page->mapping) {	/* Race with truncate? */
 607		WARN_ON_ONCE(warn && !PageUptodate(page));
 608		account_page_dirtied(page, mapping);
 609		__xa_set_mark(&mapping->i_pages, page_index(page),
 610				PAGECACHE_TAG_DIRTY);
 611	}
 612	xa_unlock_irqrestore(&mapping->i_pages, flags);
 613}
 614EXPORT_SYMBOL_GPL(__set_page_dirty);
 615
 616/*
 617 * Add a page to the dirty page list.
 618 *
 619 * It is a sad fact of life that this function is called from several places
 620 * deeply under spinlocking.  It may not sleep.
 621 *
 622 * If the page has buffers, the uptodate buffers are set dirty, to preserve
 623 * dirty-state coherency between the page and the buffers.  It the page does
 624 * not have buffers then when they are later attached they will all be set
 625 * dirty.
 626 *
 627 * The buffers are dirtied before the page is dirtied.  There's a small race
 628 * window in which a writepage caller may see the page cleanness but not the
 629 * buffer dirtiness.  That's fine.  If this code were to set the page dirty
 630 * before the buffers, a concurrent writepage caller could clear the page dirty
 631 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
 632 * page on the dirty page list.
 633 *
 634 * We use private_lock to lock against try_to_free_buffers while using the
 635 * page's buffer list.  Also use this to protect against clean buffers being
 636 * added to the page after it was set dirty.
 637 *
 638 * FIXME: may need to call ->reservepage here as well.  That's rather up to the
 639 * address_space though.
 640 */
 641int __set_page_dirty_buffers(struct page *page)
 642{
 643	int newly_dirty;
 644	struct address_space *mapping = page_mapping(page);
 645
 646	if (unlikely(!mapping))
 647		return !TestSetPageDirty(page);
 648
 649	spin_lock(&mapping->private_lock);
 650	if (page_has_buffers(page)) {
 651		struct buffer_head *head = page_buffers(page);
 652		struct buffer_head *bh = head;
 653
 654		do {
 655			set_buffer_dirty(bh);
 656			bh = bh->b_this_page;
 657		} while (bh != head);
 658	}
 659	/*
 660	 * Lock out page->mem_cgroup migration to keep PageDirty
 661	 * synchronized with per-memcg dirty page counters.
 662	 */
 663	lock_page_memcg(page);
 664	newly_dirty = !TestSetPageDirty(page);
 665	spin_unlock(&mapping->private_lock);
 666
 667	if (newly_dirty)
 668		__set_page_dirty(page, mapping, 1);
 669
 670	unlock_page_memcg(page);
 671
 672	if (newly_dirty)
 673		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
 674
 675	return newly_dirty;
 676}
 677EXPORT_SYMBOL(__set_page_dirty_buffers);
 678
 679/*
 680 * Write out and wait upon a list of buffers.
 681 *
 682 * We have conflicting pressures: we want to make sure that all
 683 * initially dirty buffers get waited on, but that any subsequently
 684 * dirtied buffers don't.  After all, we don't want fsync to last
 685 * forever if somebody is actively writing to the file.
 686 *
 687 * Do this in two main stages: first we copy dirty buffers to a
 688 * temporary inode list, queueing the writes as we go.  Then we clean
 689 * up, waiting for those writes to complete.
 690 * 
 691 * During this second stage, any subsequent updates to the file may end
 692 * up refiling the buffer on the original inode's dirty list again, so
 693 * there is a chance we will end up with a buffer queued for write but
 694 * not yet completed on that list.  So, as a final cleanup we go through
 695 * the osync code to catch these locked, dirty buffers without requeuing
 696 * any newly dirty buffers for write.
 697 */
 698static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
 699{
 700	struct buffer_head *bh;
 701	struct list_head tmp;
 702	struct address_space *mapping;
 703	int err = 0, err2;
 704	struct blk_plug plug;
 705
 706	INIT_LIST_HEAD(&tmp);
 707	blk_start_plug(&plug);
 708
 709	spin_lock(lock);
 710	while (!list_empty(list)) {
 711		bh = BH_ENTRY(list->next);
 712		mapping = bh->b_assoc_map;
 713		__remove_assoc_queue(bh);
 714		/* Avoid race with mark_buffer_dirty_inode() which does
 715		 * a lockless check and we rely on seeing the dirty bit */
 716		smp_mb();
 717		if (buffer_dirty(bh) || buffer_locked(bh)) {
 718			list_add(&bh->b_assoc_buffers, &tmp);
 719			bh->b_assoc_map = mapping;
 720			if (buffer_dirty(bh)) {
 721				get_bh(bh);
 722				spin_unlock(lock);
 723				/*
 724				 * Ensure any pending I/O completes so that
 725				 * write_dirty_buffer() actually writes the
 726				 * current contents - it is a noop if I/O is
 727				 * still in flight on potentially older
 728				 * contents.
 729				 */
 730				write_dirty_buffer(bh, REQ_SYNC);
 731
 732				/*
 733				 * Kick off IO for the previous mapping. Note
 734				 * that we will not run the very last mapping,
 735				 * wait_on_buffer() will do that for us
 736				 * through sync_buffer().
 737				 */
 738				brelse(bh);
 739				spin_lock(lock);
 740			}
 741		}
 742	}
 743
 744	spin_unlock(lock);
 745	blk_finish_plug(&plug);
 746	spin_lock(lock);
 747
 748	while (!list_empty(&tmp)) {
 749		bh = BH_ENTRY(tmp.prev);
 750		get_bh(bh);
 751		mapping = bh->b_assoc_map;
 752		__remove_assoc_queue(bh);
 753		/* Avoid race with mark_buffer_dirty_inode() which does
 754		 * a lockless check and we rely on seeing the dirty bit */
 755		smp_mb();
 756		if (buffer_dirty(bh)) {
 757			list_add(&bh->b_assoc_buffers,
 758				 &mapping->private_list);
 759			bh->b_assoc_map = mapping;
 760		}
 761		spin_unlock(lock);
 762		wait_on_buffer(bh);
 763		if (!buffer_uptodate(bh))
 764			err = -EIO;
 765		brelse(bh);
 766		spin_lock(lock);
 767	}
 768	
 769	spin_unlock(lock);
 770	err2 = osync_buffers_list(lock, list);
 771	if (err)
 772		return err;
 773	else
 774		return err2;
 775}
 776
 777/*
 778 * Invalidate any and all dirty buffers on a given inode.  We are
 779 * probably unmounting the fs, but that doesn't mean we have already
 780 * done a sync().  Just drop the buffers from the inode list.
 781 *
 782 * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
 783 * assumes that all the buffers are against the blockdev.  Not true
 784 * for reiserfs.
 785 */
 786void invalidate_inode_buffers(struct inode *inode)
 787{
 788	if (inode_has_buffers(inode)) {
 789		struct address_space *mapping = &inode->i_data;
 790		struct list_head *list = &mapping->private_list;
 791		struct address_space *buffer_mapping = mapping->private_data;
 792
 793		spin_lock(&buffer_mapping->private_lock);
 794		while (!list_empty(list))
 795			__remove_assoc_queue(BH_ENTRY(list->next));
 796		spin_unlock(&buffer_mapping->private_lock);
 797	}
 798}
 799EXPORT_SYMBOL(invalidate_inode_buffers);
 800
 801/*
 802 * Remove any clean buffers from the inode's buffer list.  This is called
 803 * when we're trying to free the inode itself.  Those buffers can pin it.
 804 *
 805 * Returns true if all buffers were removed.
 806 */
 807int remove_inode_buffers(struct inode *inode)
 808{
 809	int ret = 1;
 810
 811	if (inode_has_buffers(inode)) {
 812		struct address_space *mapping = &inode->i_data;
 813		struct list_head *list = &mapping->private_list;
 814		struct address_space *buffer_mapping = mapping->private_data;
 815
 816		spin_lock(&buffer_mapping->private_lock);
 817		while (!list_empty(list)) {
 818			struct buffer_head *bh = BH_ENTRY(list->next);
 819			if (buffer_dirty(bh)) {
 820				ret = 0;
 821				break;
 822			}
 823			__remove_assoc_queue(bh);
 824		}
 825		spin_unlock(&buffer_mapping->private_lock);
 826	}
 827	return ret;
 828}
 829
 830/*
 831 * Create the appropriate buffers when given a page for data area and
 832 * the size of each buffer.. Use the bh->b_this_page linked list to
 833 * follow the buffers created.  Return NULL if unable to create more
 834 * buffers.
 835 *
 836 * The retry flag is used to differentiate async IO (paging, swapping)
 837 * which may not fail from ordinary buffer allocations.
 838 */
 839struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
 840		bool retry)
 841{
 842	struct buffer_head *bh, *head;
 843	gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT;
 844	long offset;
 845	struct mem_cgroup *memcg;
 846
 847	if (retry)
 848		gfp |= __GFP_NOFAIL;
 849
 850	memcg = get_mem_cgroup_from_page(page);
 851	memalloc_use_memcg(memcg);
 852
 
 853	head = NULL;
 854	offset = PAGE_SIZE;
 855	while ((offset -= size) >= 0) {
 856		bh = alloc_buffer_head(gfp);
 857		if (!bh)
 858			goto no_grow;
 859
 860		bh->b_this_page = head;
 861		bh->b_blocknr = -1;
 862		head = bh;
 863
 864		bh->b_size = size;
 865
 866		/* Link the buffer to its page */
 867		set_bh_page(bh, page, offset);
 868	}
 869out:
 870	memalloc_unuse_memcg();
 871	mem_cgroup_put(memcg);
 872	return head;
 873/*
 874 * In case anything failed, we just free everything we got.
 875 */
 876no_grow:
 877	if (head) {
 878		do {
 879			bh = head;
 880			head = head->b_this_page;
 881			free_buffer_head(bh);
 882		} while (head);
 883	}
 884
 885	goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 886}
 887EXPORT_SYMBOL_GPL(alloc_page_buffers);
 888
 889static inline void
 890link_dev_buffers(struct page *page, struct buffer_head *head)
 891{
 892	struct buffer_head *bh, *tail;
 893
 894	bh = head;
 895	do {
 896		tail = bh;
 897		bh = bh->b_this_page;
 898	} while (bh);
 899	tail->b_this_page = head;
 900	attach_page_private(page, head);
 901}
 902
 903static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
 904{
 905	sector_t retval = ~((sector_t)0);
 906	loff_t sz = i_size_read(bdev->bd_inode);
 907
 908	if (sz) {
 909		unsigned int sizebits = blksize_bits(size);
 910		retval = (sz >> sizebits);
 911	}
 912	return retval;
 913}
 914
 915/*
 916 * Initialise the state of a blockdev page's buffers.
 917 */ 
 918static sector_t
 919init_page_buffers(struct page *page, struct block_device *bdev,
 920			sector_t block, int size)
 921{
 922	struct buffer_head *head = page_buffers(page);
 923	struct buffer_head *bh = head;
 924	int uptodate = PageUptodate(page);
 925	sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size);
 926
 927	do {
 928		if (!buffer_mapped(bh)) {
 929			bh->b_end_io = NULL;
 930			bh->b_private = NULL;
 931			bh->b_bdev = bdev;
 932			bh->b_blocknr = block;
 933			if (uptodate)
 934				set_buffer_uptodate(bh);
 935			if (block < end_block)
 936				set_buffer_mapped(bh);
 937		}
 938		block++;
 939		bh = bh->b_this_page;
 940	} while (bh != head);
 941
 942	/*
 943	 * Caller needs to validate requested block against end of device.
 944	 */
 945	return end_block;
 946}
 947
 948/*
 949 * Create the page-cache page that contains the requested block.
 950 *
 951 * This is used purely for blockdev mappings.
 952 */
 953static int
 954grow_dev_page(struct block_device *bdev, sector_t block,
 955	      pgoff_t index, int size, int sizebits, gfp_t gfp)
 956{
 957	struct inode *inode = bdev->bd_inode;
 958	struct page *page;
 959	struct buffer_head *bh;
 960	sector_t end_block;
 961	int ret = 0;
 962	gfp_t gfp_mask;
 963
 964	gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp;
 965
 966	/*
 967	 * XXX: __getblk_slow() can not really deal with failure and
 968	 * will endlessly loop on improvised global reclaim.  Prefer
 969	 * looping in the allocator rather than here, at least that
 970	 * code knows what it's doing.
 971	 */
 972	gfp_mask |= __GFP_NOFAIL;
 973
 974	page = find_or_create_page(inode->i_mapping, index, gfp_mask);
 
 
 975
 976	BUG_ON(!PageLocked(page));
 977
 978	if (page_has_buffers(page)) {
 979		bh = page_buffers(page);
 980		if (bh->b_size == size) {
 981			end_block = init_page_buffers(page, bdev,
 982						(sector_t)index << sizebits,
 983						size);
 984			goto done;
 985		}
 986		if (!try_to_free_buffers(page))
 987			goto failed;
 988	}
 989
 990	/*
 991	 * Allocate some buffers for this page
 992	 */
 993	bh = alloc_page_buffers(page, size, true);
 
 
 994
 995	/*
 996	 * Link the page to the buffers and initialise them.  Take the
 997	 * lock to be atomic wrt __find_get_block(), which does not
 998	 * run under the page lock.
 999	 */
1000	spin_lock(&inode->i_mapping->private_lock);
1001	link_dev_buffers(page, bh);
1002	end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits,
1003			size);
1004	spin_unlock(&inode->i_mapping->private_lock);
1005done:
1006	ret = (block < end_block) ? 1 : -ENXIO;
1007failed:
1008	unlock_page(page);
1009	put_page(page);
1010	return ret;
1011}
1012
1013/*
1014 * Create buffers for the specified block device block's page.  If
1015 * that page was dirty, the buffers are set dirty also.
1016 */
1017static int
1018grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp)
1019{
1020	pgoff_t index;
1021	int sizebits;
1022
1023	sizebits = -1;
1024	do {
1025		sizebits++;
1026	} while ((size << sizebits) < PAGE_SIZE);
1027
1028	index = block >> sizebits;
1029
1030	/*
1031	 * Check for a block which wants to lie outside our maximum possible
1032	 * pagecache index.  (this comparison is done using sector_t types).
1033	 */
1034	if (unlikely(index != block >> sizebits)) {
1035		printk(KERN_ERR "%s: requested out-of-range block %llu for "
1036			"device %pg\n",
1037			__func__, (unsigned long long)block,
1038			bdev);
1039		return -EIO;
1040	}
1041
1042	/* Create a page with the proper size buffers.. */
1043	return grow_dev_page(bdev, block, index, size, sizebits, gfp);
1044}
1045
1046static struct buffer_head *
1047__getblk_slow(struct block_device *bdev, sector_t block,
1048	     unsigned size, gfp_t gfp)
1049{
1050	/* Size must be multiple of hard sectorsize */
1051	if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1052			(size < 512 || size > PAGE_SIZE))) {
1053		printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1054					size);
1055		printk(KERN_ERR "logical block size: %d\n",
1056					bdev_logical_block_size(bdev));
1057
1058		dump_stack();
1059		return NULL;
1060	}
1061
1062	for (;;) {
1063		struct buffer_head *bh;
1064		int ret;
1065
1066		bh = __find_get_block(bdev, block, size);
1067		if (bh)
1068			return bh;
1069
1070		ret = grow_buffers(bdev, block, size, gfp);
1071		if (ret < 0)
1072			return NULL;
 
 
1073	}
1074}
1075
1076/*
1077 * The relationship between dirty buffers and dirty pages:
1078 *
1079 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1080 * the page is tagged dirty in the page cache.
1081 *
1082 * At all times, the dirtiness of the buffers represents the dirtiness of
1083 * subsections of the page.  If the page has buffers, the page dirty bit is
1084 * merely a hint about the true dirty state.
1085 *
1086 * When a page is set dirty in its entirety, all its buffers are marked dirty
1087 * (if the page has buffers).
1088 *
1089 * When a buffer is marked dirty, its page is dirtied, but the page's other
1090 * buffers are not.
1091 *
1092 * Also.  When blockdev buffers are explicitly read with bread(), they
1093 * individually become uptodate.  But their backing page remains not
1094 * uptodate - even if all of its buffers are uptodate.  A subsequent
1095 * block_read_full_page() against that page will discover all the uptodate
1096 * buffers, will set the page uptodate and will perform no I/O.
1097 */
1098
1099/**
1100 * mark_buffer_dirty - mark a buffer_head as needing writeout
1101 * @bh: the buffer_head to mark dirty
1102 *
1103 * mark_buffer_dirty() will set the dirty bit against the buffer, then set
1104 * its backing page dirty, then tag the page as dirty in the page cache
1105 * and then attach the address_space's inode to its superblock's dirty
1106 * inode list.
1107 *
1108 * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1109 * i_pages lock and mapping->host->i_lock.
1110 */
1111void mark_buffer_dirty(struct buffer_head *bh)
1112{
1113	WARN_ON_ONCE(!buffer_uptodate(bh));
1114
1115	trace_block_dirty_buffer(bh);
1116
1117	/*
1118	 * Very *carefully* optimize the it-is-already-dirty case.
1119	 *
1120	 * Don't let the final "is it dirty" escape to before we
1121	 * perhaps modified the buffer.
1122	 */
1123	if (buffer_dirty(bh)) {
1124		smp_mb();
1125		if (buffer_dirty(bh))
1126			return;
1127	}
1128
1129	if (!test_set_buffer_dirty(bh)) {
1130		struct page *page = bh->b_page;
1131		struct address_space *mapping = NULL;
1132
1133		lock_page_memcg(page);
1134		if (!TestSetPageDirty(page)) {
1135			mapping = page_mapping(page);
1136			if (mapping)
1137				__set_page_dirty(page, mapping, 0);
1138		}
1139		unlock_page_memcg(page);
1140		if (mapping)
1141			__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1142	}
1143}
1144EXPORT_SYMBOL(mark_buffer_dirty);
1145
1146void mark_buffer_write_io_error(struct buffer_head *bh)
1147{
1148	struct super_block *sb;
1149
1150	set_buffer_write_io_error(bh);
1151	/* FIXME: do we need to set this in both places? */
1152	if (bh->b_page && bh->b_page->mapping)
1153		mapping_set_error(bh->b_page->mapping, -EIO);
1154	if (bh->b_assoc_map)
1155		mapping_set_error(bh->b_assoc_map, -EIO);
1156	rcu_read_lock();
1157	sb = READ_ONCE(bh->b_bdev->bd_super);
1158	if (sb)
1159		errseq_set(&sb->s_wb_err, -EIO);
1160	rcu_read_unlock();
1161}
1162EXPORT_SYMBOL(mark_buffer_write_io_error);
1163
1164/*
1165 * Decrement a buffer_head's reference count.  If all buffers against a page
1166 * have zero reference count, are clean and unlocked, and if the page is clean
1167 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1168 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1169 * a page but it ends up not being freed, and buffers may later be reattached).
1170 */
1171void __brelse(struct buffer_head * buf)
1172{
1173	if (atomic_read(&buf->b_count)) {
1174		put_bh(buf);
1175		return;
1176	}
1177	WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1178}
1179EXPORT_SYMBOL(__brelse);
1180
1181/*
1182 * bforget() is like brelse(), except it discards any
1183 * potentially dirty data.
1184 */
1185void __bforget(struct buffer_head *bh)
1186{
1187	clear_buffer_dirty(bh);
1188	if (bh->b_assoc_map) {
1189		struct address_space *buffer_mapping = bh->b_page->mapping;
1190
1191		spin_lock(&buffer_mapping->private_lock);
1192		list_del_init(&bh->b_assoc_buffers);
1193		bh->b_assoc_map = NULL;
1194		spin_unlock(&buffer_mapping->private_lock);
1195	}
1196	__brelse(bh);
1197}
1198EXPORT_SYMBOL(__bforget);
1199
1200static struct buffer_head *__bread_slow(struct buffer_head *bh)
1201{
1202	lock_buffer(bh);
1203	if (buffer_uptodate(bh)) {
1204		unlock_buffer(bh);
1205		return bh;
1206	} else {
1207		get_bh(bh);
1208		bh->b_end_io = end_buffer_read_sync;
1209		submit_bh(REQ_OP_READ, 0, bh);
1210		wait_on_buffer(bh);
1211		if (buffer_uptodate(bh))
1212			return bh;
1213	}
1214	brelse(bh);
1215	return NULL;
1216}
1217
1218/*
1219 * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1220 * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1221 * refcount elevated by one when they're in an LRU.  A buffer can only appear
1222 * once in a particular CPU's LRU.  A single buffer can be present in multiple
1223 * CPU's LRUs at the same time.
1224 *
1225 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1226 * sb_find_get_block().
1227 *
1228 * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1229 * a local interrupt disable for that.
1230 */
1231
1232#define BH_LRU_SIZE	16
1233
1234struct bh_lru {
1235	struct buffer_head *bhs[BH_LRU_SIZE];
1236};
1237
1238static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1239
1240#ifdef CONFIG_SMP
1241#define bh_lru_lock()	local_irq_disable()
1242#define bh_lru_unlock()	local_irq_enable()
1243#else
1244#define bh_lru_lock()	preempt_disable()
1245#define bh_lru_unlock()	preempt_enable()
1246#endif
1247
1248static inline void check_irqs_on(void)
1249{
1250#ifdef irqs_disabled
1251	BUG_ON(irqs_disabled());
1252#endif
1253}
1254
1255/*
1256 * Install a buffer_head into this cpu's LRU.  If not already in the LRU, it is
1257 * inserted at the front, and the buffer_head at the back if any is evicted.
1258 * Or, if already in the LRU it is moved to the front.
1259 */
1260static void bh_lru_install(struct buffer_head *bh)
1261{
1262	struct buffer_head *evictee = bh;
1263	struct bh_lru *b;
1264	int i;
1265
1266	check_irqs_on();
1267	bh_lru_lock();
 
 
 
 
 
 
 
 
 
 
1268
1269	b = this_cpu_ptr(&bh_lrus);
1270	for (i = 0; i < BH_LRU_SIZE; i++) {
1271		swap(evictee, b->bhs[i]);
1272		if (evictee == bh) {
1273			bh_lru_unlock();
1274			return;
 
 
 
 
1275		}
 
 
 
1276	}
 
1277
1278	get_bh(bh);
1279	bh_lru_unlock();
1280	brelse(evictee);
1281}
1282
1283/*
1284 * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1285 */
1286static struct buffer_head *
1287lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1288{
1289	struct buffer_head *ret = NULL;
1290	unsigned int i;
1291
1292	check_irqs_on();
1293	bh_lru_lock();
1294	for (i = 0; i < BH_LRU_SIZE; i++) {
1295		struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1296
1297		if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1298		    bh->b_size == size) {
1299			if (i) {
1300				while (i) {
1301					__this_cpu_write(bh_lrus.bhs[i],
1302						__this_cpu_read(bh_lrus.bhs[i - 1]));
1303					i--;
1304				}
1305				__this_cpu_write(bh_lrus.bhs[0], bh);
1306			}
1307			get_bh(bh);
1308			ret = bh;
1309			break;
1310		}
1311	}
1312	bh_lru_unlock();
1313	return ret;
1314}
1315
1316/*
1317 * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1318 * it in the LRU and mark it as accessed.  If it is not present then return
1319 * NULL
1320 */
1321struct buffer_head *
1322__find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1323{
1324	struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1325
1326	if (bh == NULL) {
1327		/* __find_get_block_slow will mark the page accessed */
1328		bh = __find_get_block_slow(bdev, block);
1329		if (bh)
1330			bh_lru_install(bh);
1331	} else
1332		touch_buffer(bh);
1333
1334	return bh;
1335}
1336EXPORT_SYMBOL(__find_get_block);
1337
1338/*
1339 * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1340 * which corresponds to the passed block_device, block and size. The
1341 * returned buffer has its reference count incremented.
1342 *
1343 * __getblk_gfp() will lock up the machine if grow_dev_page's
1344 * try_to_free_buffers() attempt is failing.  FIXME, perhaps?
1345 */
1346struct buffer_head *
1347__getblk_gfp(struct block_device *bdev, sector_t block,
1348	     unsigned size, gfp_t gfp)
1349{
1350	struct buffer_head *bh = __find_get_block(bdev, block, size);
1351
1352	might_sleep();
1353	if (bh == NULL)
1354		bh = __getblk_slow(bdev, block, size, gfp);
1355	return bh;
1356}
1357EXPORT_SYMBOL(__getblk_gfp);
1358
1359/*
1360 * Do async read-ahead on a buffer..
1361 */
1362void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1363{
1364	struct buffer_head *bh = __getblk(bdev, block, size);
1365	if (likely(bh)) {
1366		ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh);
1367		brelse(bh);
1368	}
1369}
1370EXPORT_SYMBOL(__breadahead);
1371
1372void __breadahead_gfp(struct block_device *bdev, sector_t block, unsigned size,
1373		      gfp_t gfp)
1374{
1375	struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1376	if (likely(bh)) {
1377		ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh);
1378		brelse(bh);
1379	}
1380}
1381EXPORT_SYMBOL(__breadahead_gfp);
1382
1383/**
1384 *  __bread_gfp() - reads a specified block and returns the bh
1385 *  @bdev: the block_device to read from
1386 *  @block: number of block
1387 *  @size: size (in bytes) to read
1388 *  @gfp: page allocation flag
1389 *
1390 *  Reads a specified block, and returns buffer head that contains it.
1391 *  The page cache can be allocated from non-movable area
1392 *  not to prevent page migration if you set gfp to zero.
1393 *  It returns NULL if the block was unreadable.
1394 */
1395struct buffer_head *
1396__bread_gfp(struct block_device *bdev, sector_t block,
1397		   unsigned size, gfp_t gfp)
1398{
1399	struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1400
1401	if (likely(bh) && !buffer_uptodate(bh))
1402		bh = __bread_slow(bh);
1403	return bh;
1404}
1405EXPORT_SYMBOL(__bread_gfp);
1406
1407/*
1408 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1409 * This doesn't race because it runs in each cpu either in irq
1410 * or with preempt disabled.
1411 */
1412static void invalidate_bh_lru(void *arg)
1413{
1414	struct bh_lru *b = &get_cpu_var(bh_lrus);
1415	int i;
1416
1417	for (i = 0; i < BH_LRU_SIZE; i++) {
1418		brelse(b->bhs[i]);
1419		b->bhs[i] = NULL;
1420	}
1421	put_cpu_var(bh_lrus);
1422}
1423
1424static bool has_bh_in_lru(int cpu, void *dummy)
1425{
1426	struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1427	int i;
1428	
1429	for (i = 0; i < BH_LRU_SIZE; i++) {
1430		if (b->bhs[i])
1431			return true;
1432	}
1433
1434	return false;
1435}
1436
1437void invalidate_bh_lrus(void)
1438{
1439	on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1);
1440}
1441EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1442
1443void set_bh_page(struct buffer_head *bh,
1444		struct page *page, unsigned long offset)
1445{
1446	bh->b_page = page;
1447	BUG_ON(offset >= PAGE_SIZE);
1448	if (PageHighMem(page))
1449		/*
1450		 * This catches illegal uses and preserves the offset:
1451		 */
1452		bh->b_data = (char *)(0 + offset);
1453	else
1454		bh->b_data = page_address(page) + offset;
1455}
1456EXPORT_SYMBOL(set_bh_page);
1457
1458/*
1459 * Called when truncating a buffer on a page completely.
1460 */
1461
1462/* Bits that are cleared during an invalidate */
1463#define BUFFER_FLAGS_DISCARD \
1464	(1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1465	 1 << BH_Delay | 1 << BH_Unwritten)
1466
1467static void discard_buffer(struct buffer_head * bh)
1468{
1469	unsigned long b_state, b_state_old;
1470
1471	lock_buffer(bh);
1472	clear_buffer_dirty(bh);
1473	bh->b_bdev = NULL;
1474	b_state = bh->b_state;
1475	for (;;) {
1476		b_state_old = cmpxchg(&bh->b_state, b_state,
1477				      (b_state & ~BUFFER_FLAGS_DISCARD));
1478		if (b_state_old == b_state)
1479			break;
1480		b_state = b_state_old;
1481	}
1482	unlock_buffer(bh);
1483}
1484
1485/**
1486 * block_invalidatepage - invalidate part or all of a buffer-backed page
1487 *
1488 * @page: the page which is affected
1489 * @offset: start of the range to invalidate
1490 * @length: length of the range to invalidate
1491 *
1492 * block_invalidatepage() is called when all or part of the page has become
1493 * invalidated by a truncate operation.
1494 *
1495 * block_invalidatepage() does not have to release all buffers, but it must
1496 * ensure that no dirty buffer is left outside @offset and that no I/O
1497 * is underway against any of the blocks which are outside the truncation
1498 * point.  Because the caller is about to free (and possibly reuse) those
1499 * blocks on-disk.
1500 */
1501void block_invalidatepage(struct page *page, unsigned int offset,
1502			  unsigned int length)
1503{
1504	struct buffer_head *head, *bh, *next;
1505	unsigned int curr_off = 0;
1506	unsigned int stop = length + offset;
1507
1508	BUG_ON(!PageLocked(page));
1509	if (!page_has_buffers(page))
1510		goto out;
1511
1512	/*
1513	 * Check for overflow
1514	 */
1515	BUG_ON(stop > PAGE_SIZE || stop < length);
1516
1517	head = page_buffers(page);
1518	bh = head;
1519	do {
1520		unsigned int next_off = curr_off + bh->b_size;
1521		next = bh->b_this_page;
1522
1523		/*
1524		 * Are we still fully in range ?
1525		 */
1526		if (next_off > stop)
1527			goto out;
1528
1529		/*
1530		 * is this block fully invalidated?
1531		 */
1532		if (offset <= curr_off)
1533			discard_buffer(bh);
1534		curr_off = next_off;
1535		bh = next;
1536	} while (bh != head);
1537
1538	/*
1539	 * We release buffers only if the entire page is being invalidated.
1540	 * The get_block cached value has been unconditionally invalidated,
1541	 * so real IO is not possible anymore.
1542	 */
1543	if (length == PAGE_SIZE)
1544		try_to_release_page(page, 0);
1545out:
1546	return;
1547}
1548EXPORT_SYMBOL(block_invalidatepage);
1549
1550
1551/*
1552 * We attach and possibly dirty the buffers atomically wrt
1553 * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1554 * is already excluded via the page lock.
1555 */
1556void create_empty_buffers(struct page *page,
1557			unsigned long blocksize, unsigned long b_state)
1558{
1559	struct buffer_head *bh, *head, *tail;
1560
1561	head = alloc_page_buffers(page, blocksize, true);
1562	bh = head;
1563	do {
1564		bh->b_state |= b_state;
1565		tail = bh;
1566		bh = bh->b_this_page;
1567	} while (bh);
1568	tail->b_this_page = head;
1569
1570	spin_lock(&page->mapping->private_lock);
1571	if (PageUptodate(page) || PageDirty(page)) {
1572		bh = head;
1573		do {
1574			if (PageDirty(page))
1575				set_buffer_dirty(bh);
1576			if (PageUptodate(page))
1577				set_buffer_uptodate(bh);
1578			bh = bh->b_this_page;
1579		} while (bh != head);
1580	}
1581	attach_page_private(page, head);
1582	spin_unlock(&page->mapping->private_lock);
1583}
1584EXPORT_SYMBOL(create_empty_buffers);
1585
1586/**
1587 * clean_bdev_aliases: clean a range of buffers in block device
1588 * @bdev: Block device to clean buffers in
1589 * @block: Start of a range of blocks to clean
1590 * @len: Number of blocks to clean
1591 *
1592 * We are taking a range of blocks for data and we don't want writeback of any
1593 * buffer-cache aliases starting from return from this function and until the
1594 * moment when something will explicitly mark the buffer dirty (hopefully that
1595 * will not happen until we will free that block ;-) We don't even need to mark
1596 * it not-uptodate - nobody can expect anything from a newly allocated buffer
1597 * anyway. We used to use unmap_buffer() for such invalidation, but that was
1598 * wrong. We definitely don't want to mark the alias unmapped, for example - it
1599 * would confuse anyone who might pick it with bread() afterwards...
1600 *
1601 * Also..  Note that bforget() doesn't lock the buffer.  So there can be
1602 * writeout I/O going on against recently-freed buffers.  We don't wait on that
1603 * I/O in bforget() - it's more efficient to wait on the I/O only if we really
1604 * need to.  That happens here.
1605 */
1606void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len)
1607{
1608	struct inode *bd_inode = bdev->bd_inode;
1609	struct address_space *bd_mapping = bd_inode->i_mapping;
1610	struct pagevec pvec;
1611	pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
1612	pgoff_t end;
1613	int i, count;
1614	struct buffer_head *bh;
1615	struct buffer_head *head;
1616
1617	end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits);
1618	pagevec_init(&pvec);
1619	while (pagevec_lookup_range(&pvec, bd_mapping, &index, end)) {
1620		count = pagevec_count(&pvec);
1621		for (i = 0; i < count; i++) {
1622			struct page *page = pvec.pages[i];
1623
 
 
 
1624			if (!page_has_buffers(page))
1625				continue;
1626			/*
1627			 * We use page lock instead of bd_mapping->private_lock
1628			 * to pin buffers here since we can afford to sleep and
1629			 * it scales better than a global spinlock lock.
1630			 */
1631			lock_page(page);
1632			/* Recheck when the page is locked which pins bhs */
1633			if (!page_has_buffers(page))
1634				goto unlock_page;
1635			head = page_buffers(page);
1636			bh = head;
1637			do {
1638				if (!buffer_mapped(bh) || (bh->b_blocknr < block))
1639					goto next;
1640				if (bh->b_blocknr >= block + len)
1641					break;
1642				clear_buffer_dirty(bh);
1643				wait_on_buffer(bh);
1644				clear_buffer_req(bh);
1645next:
1646				bh = bh->b_this_page;
1647			} while (bh != head);
1648unlock_page:
1649			unlock_page(page);
1650		}
1651		pagevec_release(&pvec);
1652		cond_resched();
1653		/* End of range already reached? */
1654		if (index > end || !index)
1655			break;
1656	}
1657}
1658EXPORT_SYMBOL(clean_bdev_aliases);
1659
1660/*
1661 * Size is a power-of-two in the range 512..PAGE_SIZE,
1662 * and the case we care about most is PAGE_SIZE.
1663 *
1664 * So this *could* possibly be written with those
1665 * constraints in mind (relevant mostly if some
1666 * architecture has a slow bit-scan instruction)
1667 */
1668static inline int block_size_bits(unsigned int blocksize)
1669{
1670	return ilog2(blocksize);
1671}
1672
1673static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1674{
1675	BUG_ON(!PageLocked(page));
1676
1677	if (!page_has_buffers(page))
1678		create_empty_buffers(page, 1 << READ_ONCE(inode->i_blkbits),
1679				     b_state);
1680	return page_buffers(page);
1681}
1682
1683/*
1684 * NOTE! All mapped/uptodate combinations are valid:
1685 *
1686 *	Mapped	Uptodate	Meaning
1687 *
1688 *	No	No		"unknown" - must do get_block()
1689 *	No	Yes		"hole" - zero-filled
1690 *	Yes	No		"allocated" - allocated on disk, not read in
1691 *	Yes	Yes		"valid" - allocated and up-to-date in memory.
1692 *
1693 * "Dirty" is valid only with the last case (mapped+uptodate).
1694 */
1695
1696/*
1697 * While block_write_full_page is writing back the dirty buffers under
1698 * the page lock, whoever dirtied the buffers may decide to clean them
1699 * again at any time.  We handle that by only looking at the buffer
1700 * state inside lock_buffer().
1701 *
1702 * If block_write_full_page() is called for regular writeback
1703 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1704 * locked buffer.   This only can happen if someone has written the buffer
1705 * directly, with submit_bh().  At the address_space level PageWriteback
1706 * prevents this contention from occurring.
1707 *
1708 * If block_write_full_page() is called with wbc->sync_mode ==
1709 * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
1710 * causes the writes to be flagged as synchronous writes.
1711 */
1712int __block_write_full_page(struct inode *inode, struct page *page,
1713			get_block_t *get_block, struct writeback_control *wbc,
1714			bh_end_io_t *handler)
1715{
1716	int err;
1717	sector_t block;
1718	sector_t last_block;
1719	struct buffer_head *bh, *head;
1720	unsigned int blocksize, bbits;
1721	int nr_underway = 0;
1722	int write_flags = wbc_to_write_flags(wbc);
1723
1724	head = create_page_buffers(page, inode,
1725					(1 << BH_Dirty)|(1 << BH_Uptodate));
1726
1727	/*
1728	 * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1729	 * here, and the (potentially unmapped) buffers may become dirty at
1730	 * any time.  If a buffer becomes dirty here after we've inspected it
1731	 * then we just miss that fact, and the page stays dirty.
1732	 *
1733	 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1734	 * handle that here by just cleaning them.
1735	 */
1736
1737	bh = head;
1738	blocksize = bh->b_size;
1739	bbits = block_size_bits(blocksize);
1740
1741	block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1742	last_block = (i_size_read(inode) - 1) >> bbits;
1743
1744	/*
1745	 * Get all the dirty buffers mapped to disk addresses and
1746	 * handle any aliases from the underlying blockdev's mapping.
1747	 */
1748	do {
1749		if (block > last_block) {
1750			/*
1751			 * mapped buffers outside i_size will occur, because
1752			 * this page can be outside i_size when there is a
1753			 * truncate in progress.
1754			 */
1755			/*
1756			 * The buffer was zeroed by block_write_full_page()
1757			 */
1758			clear_buffer_dirty(bh);
1759			set_buffer_uptodate(bh);
1760		} else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1761			   buffer_dirty(bh)) {
1762			WARN_ON(bh->b_size != blocksize);
1763			err = get_block(inode, block, bh, 1);
1764			if (err)
1765				goto recover;
1766			clear_buffer_delay(bh);
1767			if (buffer_new(bh)) {
1768				/* blockdev mappings never come here */
1769				clear_buffer_new(bh);
1770				clean_bdev_bh_alias(bh);
1771			}
1772		}
1773		bh = bh->b_this_page;
1774		block++;
1775	} while (bh != head);
1776
1777	do {
1778		if (!buffer_mapped(bh))
1779			continue;
1780		/*
1781		 * If it's a fully non-blocking write attempt and we cannot
1782		 * lock the buffer then redirty the page.  Note that this can
1783		 * potentially cause a busy-wait loop from writeback threads
1784		 * and kswapd activity, but those code paths have their own
1785		 * higher-level throttling.
1786		 */
1787		if (wbc->sync_mode != WB_SYNC_NONE) {
1788			lock_buffer(bh);
1789		} else if (!trylock_buffer(bh)) {
1790			redirty_page_for_writepage(wbc, page);
1791			continue;
1792		}
1793		if (test_clear_buffer_dirty(bh)) {
1794			mark_buffer_async_write_endio(bh, handler);
1795		} else {
1796			unlock_buffer(bh);
1797		}
1798	} while ((bh = bh->b_this_page) != head);
1799
1800	/*
1801	 * The page and its buffers are protected by PageWriteback(), so we can
1802	 * drop the bh refcounts early.
1803	 */
1804	BUG_ON(PageWriteback(page));
1805	set_page_writeback(page);
1806
1807	do {
1808		struct buffer_head *next = bh->b_this_page;
1809		if (buffer_async_write(bh)) {
1810			submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
1811					inode->i_write_hint, wbc);
1812			nr_underway++;
1813		}
1814		bh = next;
1815	} while (bh != head);
1816	unlock_page(page);
1817
1818	err = 0;
1819done:
1820	if (nr_underway == 0) {
1821		/*
1822		 * The page was marked dirty, but the buffers were
1823		 * clean.  Someone wrote them back by hand with
1824		 * ll_rw_block/submit_bh.  A rare case.
1825		 */
1826		end_page_writeback(page);
1827
1828		/*
1829		 * The page and buffer_heads can be released at any time from
1830		 * here on.
1831		 */
1832	}
1833	return err;
1834
1835recover:
1836	/*
1837	 * ENOSPC, or some other error.  We may already have added some
1838	 * blocks to the file, so we need to write these out to avoid
1839	 * exposing stale data.
1840	 * The page is currently locked and not marked for writeback
1841	 */
1842	bh = head;
1843	/* Recovery: lock and submit the mapped buffers */
1844	do {
1845		if (buffer_mapped(bh) && buffer_dirty(bh) &&
1846		    !buffer_delay(bh)) {
1847			lock_buffer(bh);
1848			mark_buffer_async_write_endio(bh, handler);
1849		} else {
1850			/*
1851			 * The buffer may have been set dirty during
1852			 * attachment to a dirty page.
1853			 */
1854			clear_buffer_dirty(bh);
1855		}
1856	} while ((bh = bh->b_this_page) != head);
1857	SetPageError(page);
1858	BUG_ON(PageWriteback(page));
1859	mapping_set_error(page->mapping, err);
1860	set_page_writeback(page);
1861	do {
1862		struct buffer_head *next = bh->b_this_page;
1863		if (buffer_async_write(bh)) {
1864			clear_buffer_dirty(bh);
1865			submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
1866					inode->i_write_hint, wbc);
1867			nr_underway++;
1868		}
1869		bh = next;
1870	} while (bh != head);
1871	unlock_page(page);
1872	goto done;
1873}
1874EXPORT_SYMBOL(__block_write_full_page);
1875
1876/*
1877 * If a page has any new buffers, zero them out here, and mark them uptodate
1878 * and dirty so they'll be written out (in order to prevent uninitialised
1879 * block data from leaking). And clear the new bit.
1880 */
1881void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1882{
1883	unsigned int block_start, block_end;
1884	struct buffer_head *head, *bh;
1885
1886	BUG_ON(!PageLocked(page));
1887	if (!page_has_buffers(page))
1888		return;
1889
1890	bh = head = page_buffers(page);
1891	block_start = 0;
1892	do {
1893		block_end = block_start + bh->b_size;
1894
1895		if (buffer_new(bh)) {
1896			if (block_end > from && block_start < to) {
1897				if (!PageUptodate(page)) {
1898					unsigned start, size;
1899
1900					start = max(from, block_start);
1901					size = min(to, block_end) - start;
1902
1903					zero_user(page, start, size);
1904					set_buffer_uptodate(bh);
1905				}
1906
1907				clear_buffer_new(bh);
1908				mark_buffer_dirty(bh);
1909			}
1910		}
1911
1912		block_start = block_end;
1913		bh = bh->b_this_page;
1914	} while (bh != head);
1915}
1916EXPORT_SYMBOL(page_zero_new_buffers);
1917
1918static void
1919iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
1920		struct iomap *iomap)
1921{
1922	loff_t offset = block << inode->i_blkbits;
1923
1924	bh->b_bdev = iomap->bdev;
1925
1926	/*
1927	 * Block points to offset in file we need to map, iomap contains
1928	 * the offset at which the map starts. If the map ends before the
1929	 * current block, then do not map the buffer and let the caller
1930	 * handle it.
1931	 */
1932	BUG_ON(offset >= iomap->offset + iomap->length);
1933
1934	switch (iomap->type) {
1935	case IOMAP_HOLE:
1936		/*
1937		 * If the buffer is not up to date or beyond the current EOF,
1938		 * we need to mark it as new to ensure sub-block zeroing is
1939		 * executed if necessary.
1940		 */
1941		if (!buffer_uptodate(bh) ||
1942		    (offset >= i_size_read(inode)))
1943			set_buffer_new(bh);
1944		break;
1945	case IOMAP_DELALLOC:
1946		if (!buffer_uptodate(bh) ||
1947		    (offset >= i_size_read(inode)))
1948			set_buffer_new(bh);
1949		set_buffer_uptodate(bh);
1950		set_buffer_mapped(bh);
1951		set_buffer_delay(bh);
1952		break;
1953	case IOMAP_UNWRITTEN:
1954		/*
1955		 * For unwritten regions, we always need to ensure that regions
1956		 * in the block we are not writing to are zeroed. Mark the
1957		 * buffer as new to ensure this.
1958		 */
1959		set_buffer_new(bh);
1960		set_buffer_unwritten(bh);
1961		fallthrough;
1962	case IOMAP_MAPPED:
1963		if ((iomap->flags & IOMAP_F_NEW) ||
1964		    offset >= i_size_read(inode))
1965			set_buffer_new(bh);
1966		bh->b_blocknr = (iomap->addr + offset - iomap->offset) >>
1967				inode->i_blkbits;
1968		set_buffer_mapped(bh);
1969		break;
1970	}
1971}
1972
1973int __block_write_begin_int(struct page *page, loff_t pos, unsigned len,
1974		get_block_t *get_block, struct iomap *iomap)
1975{
1976	unsigned from = pos & (PAGE_SIZE - 1);
1977	unsigned to = from + len;
1978	struct inode *inode = page->mapping->host;
1979	unsigned block_start, block_end;
1980	sector_t block;
1981	int err = 0;
1982	unsigned blocksize, bbits;
1983	struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1984
1985	BUG_ON(!PageLocked(page));
1986	BUG_ON(from > PAGE_SIZE);
1987	BUG_ON(to > PAGE_SIZE);
1988	BUG_ON(from > to);
1989
1990	head = create_page_buffers(page, inode, 0);
1991	blocksize = head->b_size;
1992	bbits = block_size_bits(blocksize);
1993
1994	block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1995
1996	for(bh = head, block_start = 0; bh != head || !block_start;
1997	    block++, block_start=block_end, bh = bh->b_this_page) {
1998		block_end = block_start + blocksize;
1999		if (block_end <= from || block_start >= to) {
2000			if (PageUptodate(page)) {
2001				if (!buffer_uptodate(bh))
2002					set_buffer_uptodate(bh);
2003			}
2004			continue;
2005		}
2006		if (buffer_new(bh))
2007			clear_buffer_new(bh);
2008		if (!buffer_mapped(bh)) {
2009			WARN_ON(bh->b_size != blocksize);
2010			if (get_block) {
2011				err = get_block(inode, block, bh, 1);
2012				if (err)
2013					break;
2014			} else {
2015				iomap_to_bh(inode, block, bh, iomap);
2016			}
2017
2018			if (buffer_new(bh)) {
2019				clean_bdev_bh_alias(bh);
2020				if (PageUptodate(page)) {
2021					clear_buffer_new(bh);
2022					set_buffer_uptodate(bh);
2023					mark_buffer_dirty(bh);
2024					continue;
2025				}
2026				if (block_end > to || block_start < from)
2027					zero_user_segments(page,
2028						to, block_end,
2029						block_start, from);
2030				continue;
2031			}
2032		}
2033		if (PageUptodate(page)) {
2034			if (!buffer_uptodate(bh))
2035				set_buffer_uptodate(bh);
2036			continue; 
2037		}
2038		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
2039		    !buffer_unwritten(bh) &&
2040		     (block_start < from || block_end > to)) {
2041			ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2042			*wait_bh++=bh;
2043		}
2044	}
2045	/*
2046	 * If we issued read requests - let them complete.
2047	 */
2048	while(wait_bh > wait) {
2049		wait_on_buffer(*--wait_bh);
2050		if (!buffer_uptodate(*wait_bh))
2051			err = -EIO;
2052	}
2053	if (unlikely(err))
2054		page_zero_new_buffers(page, from, to);
2055	return err;
2056}
2057
2058int __block_write_begin(struct page *page, loff_t pos, unsigned len,
2059		get_block_t *get_block)
2060{
2061	return __block_write_begin_int(page, pos, len, get_block, NULL);
2062}
2063EXPORT_SYMBOL(__block_write_begin);
2064
2065static int __block_commit_write(struct inode *inode, struct page *page,
2066		unsigned from, unsigned to)
2067{
2068	unsigned block_start, block_end;
2069	int partial = 0;
2070	unsigned blocksize;
2071	struct buffer_head *bh, *head;
2072
2073	bh = head = page_buffers(page);
2074	blocksize = bh->b_size;
2075
2076	block_start = 0;
2077	do {
2078		block_end = block_start + blocksize;
2079		if (block_end <= from || block_start >= to) {
2080			if (!buffer_uptodate(bh))
2081				partial = 1;
2082		} else {
2083			set_buffer_uptodate(bh);
2084			mark_buffer_dirty(bh);
2085		}
2086		clear_buffer_new(bh);
2087
2088		block_start = block_end;
2089		bh = bh->b_this_page;
2090	} while (bh != head);
2091
2092	/*
2093	 * If this is a partial write which happened to make all buffers
2094	 * uptodate then we can optimize away a bogus readpage() for
2095	 * the next read(). Here we 'discover' whether the page went
2096	 * uptodate as a result of this (potentially partial) write.
2097	 */
2098	if (!partial)
2099		SetPageUptodate(page);
2100	return 0;
2101}
2102
2103/*
2104 * block_write_begin takes care of the basic task of block allocation and
2105 * bringing partial write blocks uptodate first.
2106 *
2107 * The filesystem needs to handle block truncation upon failure.
2108 */
2109int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2110		unsigned flags, struct page **pagep, get_block_t *get_block)
2111{
2112	pgoff_t index = pos >> PAGE_SHIFT;
2113	struct page *page;
2114	int status;
2115
2116	page = grab_cache_page_write_begin(mapping, index, flags);
2117	if (!page)
2118		return -ENOMEM;
2119
2120	status = __block_write_begin(page, pos, len, get_block);
2121	if (unlikely(status)) {
2122		unlock_page(page);
2123		put_page(page);
2124		page = NULL;
2125	}
2126
2127	*pagep = page;
2128	return status;
2129}
2130EXPORT_SYMBOL(block_write_begin);
2131
2132int block_write_end(struct file *file, struct address_space *mapping,
2133			loff_t pos, unsigned len, unsigned copied,
2134			struct page *page, void *fsdata)
2135{
2136	struct inode *inode = mapping->host;
2137	unsigned start;
2138
2139	start = pos & (PAGE_SIZE - 1);
2140
2141	if (unlikely(copied < len)) {
2142		/*
2143		 * The buffers that were written will now be uptodate, so we
2144		 * don't have to worry about a readpage reading them and
2145		 * overwriting a partial write. However if we have encountered
2146		 * a short write and only partially written into a buffer, it
2147		 * will not be marked uptodate, so a readpage might come in and
2148		 * destroy our partial write.
2149		 *
2150		 * Do the simplest thing, and just treat any short write to a
2151		 * non uptodate page as a zero-length write, and force the
2152		 * caller to redo the whole thing.
2153		 */
2154		if (!PageUptodate(page))
2155			copied = 0;
2156
2157		page_zero_new_buffers(page, start+copied, start+len);
2158	}
2159	flush_dcache_page(page);
2160
2161	/* This could be a short (even 0-length) commit */
2162	__block_commit_write(inode, page, start, start+copied);
2163
2164	return copied;
2165}
2166EXPORT_SYMBOL(block_write_end);
2167
2168int generic_write_end(struct file *file, struct address_space *mapping,
2169			loff_t pos, unsigned len, unsigned copied,
2170			struct page *page, void *fsdata)
2171{
2172	struct inode *inode = mapping->host;
2173	loff_t old_size = inode->i_size;
2174	bool i_size_changed = false;
2175
2176	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2177
2178	/*
2179	 * No need to use i_size_read() here, the i_size cannot change under us
2180	 * because we hold i_rwsem.
2181	 *
2182	 * But it's important to update i_size while still holding page lock:
2183	 * page writeout could otherwise come in and zero beyond i_size.
2184	 */
2185	if (pos + copied > inode->i_size) {
2186		i_size_write(inode, pos + copied);
2187		i_size_changed = true;
2188	}
2189
2190	unlock_page(page);
2191	put_page(page);
2192
2193	if (old_size < pos)
2194		pagecache_isize_extended(inode, old_size, pos);
2195	/*
2196	 * Don't mark the inode dirty under page lock. First, it unnecessarily
2197	 * makes the holding time of page lock longer. Second, it forces lock
2198	 * ordering of page lock and transaction start for journaling
2199	 * filesystems.
2200	 */
2201	if (i_size_changed)
2202		mark_inode_dirty(inode);
 
2203	return copied;
2204}
2205EXPORT_SYMBOL(generic_write_end);
2206
2207/*
2208 * block_is_partially_uptodate checks whether buffers within a page are
2209 * uptodate or not.
2210 *
2211 * Returns true if all buffers which correspond to a file portion
2212 * we want to read are uptodate.
2213 */
2214int block_is_partially_uptodate(struct page *page, unsigned long from,
2215					unsigned long count)
2216{
2217	unsigned block_start, block_end, blocksize;
2218	unsigned to;
2219	struct buffer_head *bh, *head;
2220	int ret = 1;
2221
2222	if (!page_has_buffers(page))
2223		return 0;
2224
2225	head = page_buffers(page);
2226	blocksize = head->b_size;
2227	to = min_t(unsigned, PAGE_SIZE - from, count);
2228	to = from + to;
2229	if (from < blocksize && to > PAGE_SIZE - blocksize)
2230		return 0;
2231
2232	bh = head;
2233	block_start = 0;
2234	do {
2235		block_end = block_start + blocksize;
2236		if (block_end > from && block_start < to) {
2237			if (!buffer_uptodate(bh)) {
2238				ret = 0;
2239				break;
2240			}
2241			if (block_end >= to)
2242				break;
2243		}
2244		block_start = block_end;
2245		bh = bh->b_this_page;
2246	} while (bh != head);
2247
2248	return ret;
2249}
2250EXPORT_SYMBOL(block_is_partially_uptodate);
2251
2252/*
2253 * Generic "read page" function for block devices that have the normal
2254 * get_block functionality. This is most of the block device filesystems.
2255 * Reads the page asynchronously --- the unlock_buffer() and
2256 * set/clear_buffer_uptodate() functions propagate buffer state into the
2257 * page struct once IO has completed.
2258 */
2259int block_read_full_page(struct page *page, get_block_t *get_block)
2260{
2261	struct inode *inode = page->mapping->host;
2262	sector_t iblock, lblock;
2263	struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2264	unsigned int blocksize, bbits;
2265	int nr, i;
2266	int fully_mapped = 1;
2267
2268	head = create_page_buffers(page, inode, 0);
2269	blocksize = head->b_size;
2270	bbits = block_size_bits(blocksize);
2271
2272	iblock = (sector_t)page->index << (PAGE_SHIFT - bbits);
2273	lblock = (i_size_read(inode)+blocksize-1) >> bbits;
2274	bh = head;
2275	nr = 0;
2276	i = 0;
2277
2278	do {
2279		if (buffer_uptodate(bh))
2280			continue;
2281
2282		if (!buffer_mapped(bh)) {
2283			int err = 0;
2284
2285			fully_mapped = 0;
2286			if (iblock < lblock) {
2287				WARN_ON(bh->b_size != blocksize);
2288				err = get_block(inode, iblock, bh, 0);
2289				if (err)
2290					SetPageError(page);
2291			}
2292			if (!buffer_mapped(bh)) {
2293				zero_user(page, i * blocksize, blocksize);
2294				if (!err)
2295					set_buffer_uptodate(bh);
2296				continue;
2297			}
2298			/*
2299			 * get_block() might have updated the buffer
2300			 * synchronously
2301			 */
2302			if (buffer_uptodate(bh))
2303				continue;
2304		}
2305		arr[nr++] = bh;
2306	} while (i++, iblock++, (bh = bh->b_this_page) != head);
2307
2308	if (fully_mapped)
2309		SetPageMappedToDisk(page);
2310
2311	if (!nr) {
2312		/*
2313		 * All buffers are uptodate - we can set the page uptodate
2314		 * as well. But not if get_block() returned an error.
2315		 */
2316		if (!PageError(page))
2317			SetPageUptodate(page);
2318		unlock_page(page);
2319		return 0;
2320	}
2321
2322	/* Stage two: lock the buffers */
2323	for (i = 0; i < nr; i++) {
2324		bh = arr[i];
2325		lock_buffer(bh);
2326		mark_buffer_async_read(bh);
2327	}
2328
2329	/*
2330	 * Stage 3: start the IO.  Check for uptodateness
2331	 * inside the buffer lock in case another process reading
2332	 * the underlying blockdev brought it uptodate (the sct fix).
2333	 */
2334	for (i = 0; i < nr; i++) {
2335		bh = arr[i];
2336		if (buffer_uptodate(bh))
2337			end_buffer_async_read(bh, 1);
2338		else
2339			submit_bh(REQ_OP_READ, 0, bh);
2340	}
2341	return 0;
2342}
2343EXPORT_SYMBOL(block_read_full_page);
2344
2345/* utility function for filesystems that need to do work on expanding
2346 * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2347 * deal with the hole.  
2348 */
2349int generic_cont_expand_simple(struct inode *inode, loff_t size)
2350{
2351	struct address_space *mapping = inode->i_mapping;
2352	struct page *page;
2353	void *fsdata;
2354	int err;
2355
2356	err = inode_newsize_ok(inode, size);
2357	if (err)
2358		goto out;
2359
2360	err = pagecache_write_begin(NULL, mapping, size, 0,
2361				    AOP_FLAG_CONT_EXPAND, &page, &fsdata);
 
2362	if (err)
2363		goto out;
2364
2365	err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2366	BUG_ON(err > 0);
2367
2368out:
2369	return err;
2370}
2371EXPORT_SYMBOL(generic_cont_expand_simple);
2372
2373static int cont_expand_zero(struct file *file, struct address_space *mapping,
2374			    loff_t pos, loff_t *bytes)
2375{
2376	struct inode *inode = mapping->host;
2377	unsigned int blocksize = i_blocksize(inode);
2378	struct page *page;
2379	void *fsdata;
2380	pgoff_t index, curidx;
2381	loff_t curpos;
2382	unsigned zerofrom, offset, len;
2383	int err = 0;
2384
2385	index = pos >> PAGE_SHIFT;
2386	offset = pos & ~PAGE_MASK;
2387
2388	while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2389		zerofrom = curpos & ~PAGE_MASK;
2390		if (zerofrom & (blocksize-1)) {
2391			*bytes |= (blocksize-1);
2392			(*bytes)++;
2393		}
2394		len = PAGE_SIZE - zerofrom;
2395
2396		err = pagecache_write_begin(file, mapping, curpos, len, 0,
2397					    &page, &fsdata);
 
2398		if (err)
2399			goto out;
2400		zero_user(page, zerofrom, len);
2401		err = pagecache_write_end(file, mapping, curpos, len, len,
2402						page, fsdata);
2403		if (err < 0)
2404			goto out;
2405		BUG_ON(err != len);
2406		err = 0;
2407
2408		balance_dirty_pages_ratelimited(mapping);
2409
2410		if (fatal_signal_pending(current)) {
2411			err = -EINTR;
2412			goto out;
2413		}
2414	}
2415
2416	/* page covers the boundary, find the boundary offset */
2417	if (index == curidx) {
2418		zerofrom = curpos & ~PAGE_MASK;
2419		/* if we will expand the thing last block will be filled */
2420		if (offset <= zerofrom) {
2421			goto out;
2422		}
2423		if (zerofrom & (blocksize-1)) {
2424			*bytes |= (blocksize-1);
2425			(*bytes)++;
2426		}
2427		len = offset - zerofrom;
2428
2429		err = pagecache_write_begin(file, mapping, curpos, len, 0,
2430					    &page, &fsdata);
 
2431		if (err)
2432			goto out;
2433		zero_user(page, zerofrom, len);
2434		err = pagecache_write_end(file, mapping, curpos, len, len,
2435						page, fsdata);
2436		if (err < 0)
2437			goto out;
2438		BUG_ON(err != len);
2439		err = 0;
2440	}
2441out:
2442	return err;
2443}
2444
2445/*
2446 * For moronic filesystems that do not allow holes in file.
2447 * We may have to extend the file.
2448 */
2449int cont_write_begin(struct file *file, struct address_space *mapping,
2450			loff_t pos, unsigned len, unsigned flags,
2451			struct page **pagep, void **fsdata,
2452			get_block_t *get_block, loff_t *bytes)
2453{
2454	struct inode *inode = mapping->host;
2455	unsigned int blocksize = i_blocksize(inode);
2456	unsigned int zerofrom;
2457	int err;
2458
2459	err = cont_expand_zero(file, mapping, pos, bytes);
2460	if (err)
2461		return err;
2462
2463	zerofrom = *bytes & ~PAGE_MASK;
2464	if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2465		*bytes |= (blocksize-1);
2466		(*bytes)++;
2467	}
2468
2469	return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2470}
2471EXPORT_SYMBOL(cont_write_begin);
2472
2473int block_commit_write(struct page *page, unsigned from, unsigned to)
2474{
2475	struct inode *inode = page->mapping->host;
2476	__block_commit_write(inode,page,from,to);
2477	return 0;
2478}
2479EXPORT_SYMBOL(block_commit_write);
2480
2481/*
2482 * block_page_mkwrite() is not allowed to change the file size as it gets
2483 * called from a page fault handler when a page is first dirtied. Hence we must
2484 * be careful to check for EOF conditions here. We set the page up correctly
2485 * for a written page which means we get ENOSPC checking when writing into
2486 * holes and correct delalloc and unwritten extent mapping on filesystems that
2487 * support these features.
2488 *
2489 * We are not allowed to take the i_mutex here so we have to play games to
2490 * protect against truncate races as the page could now be beyond EOF.  Because
2491 * truncate writes the inode size before removing pages, once we have the
2492 * page lock we can determine safely if the page is beyond EOF. If it is not
2493 * beyond EOF, then the page is guaranteed safe against truncation until we
2494 * unlock the page.
2495 *
2496 * Direct callers of this function should protect against filesystem freezing
2497 * using sb_start_pagefault() - sb_end_pagefault() functions.
2498 */
2499int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2500			 get_block_t get_block)
2501{
2502	struct page *page = vmf->page;
2503	struct inode *inode = file_inode(vma->vm_file);
2504	unsigned long end;
2505	loff_t size;
2506	int ret;
2507
2508	lock_page(page);
2509	size = i_size_read(inode);
2510	if ((page->mapping != inode->i_mapping) ||
2511	    (page_offset(page) > size)) {
2512		/* We overload EFAULT to mean page got truncated */
2513		ret = -EFAULT;
2514		goto out_unlock;
2515	}
2516
2517	/* page is wholly or partially inside EOF */
2518	if (((page->index + 1) << PAGE_SHIFT) > size)
2519		end = size & ~PAGE_MASK;
2520	else
2521		end = PAGE_SIZE;
2522
2523	ret = __block_write_begin(page, 0, end, get_block);
2524	if (!ret)
2525		ret = block_commit_write(page, 0, end);
2526
2527	if (unlikely(ret < 0))
2528		goto out_unlock;
2529	set_page_dirty(page);
2530	wait_for_stable_page(page);
2531	return 0;
2532out_unlock:
2533	unlock_page(page);
2534	return ret;
2535}
2536EXPORT_SYMBOL(block_page_mkwrite);
2537
2538/*
2539 * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2540 * immediately, while under the page lock.  So it needs a special end_io
2541 * handler which does not touch the bh after unlocking it.
2542 */
2543static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2544{
2545	__end_buffer_read_notouch(bh, uptodate);
2546}
2547
2548/*
2549 * Attach the singly-linked list of buffers created by nobh_write_begin, to
2550 * the page (converting it to circular linked list and taking care of page
2551 * dirty races).
2552 */
2553static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2554{
2555	struct buffer_head *bh;
2556
2557	BUG_ON(!PageLocked(page));
2558
2559	spin_lock(&page->mapping->private_lock);
2560	bh = head;
2561	do {
2562		if (PageDirty(page))
2563			set_buffer_dirty(bh);
2564		if (!bh->b_this_page)
2565			bh->b_this_page = head;
2566		bh = bh->b_this_page;
2567	} while (bh != head);
2568	attach_page_private(page, head);
2569	spin_unlock(&page->mapping->private_lock);
2570}
2571
2572/*
2573 * On entry, the page is fully not uptodate.
2574 * On exit the page is fully uptodate in the areas outside (from,to)
2575 * The filesystem needs to handle block truncation upon failure.
2576 */
2577int nobh_write_begin(struct address_space *mapping,
2578			loff_t pos, unsigned len, unsigned flags,
2579			struct page **pagep, void **fsdata,
2580			get_block_t *get_block)
2581{
2582	struct inode *inode = mapping->host;
2583	const unsigned blkbits = inode->i_blkbits;
2584	const unsigned blocksize = 1 << blkbits;
2585	struct buffer_head *head, *bh;
2586	struct page *page;
2587	pgoff_t index;
2588	unsigned from, to;
2589	unsigned block_in_page;
2590	unsigned block_start, block_end;
2591	sector_t block_in_file;
2592	int nr_reads = 0;
2593	int ret = 0;
2594	int is_mapped_to_disk = 1;
2595
2596	index = pos >> PAGE_SHIFT;
2597	from = pos & (PAGE_SIZE - 1);
2598	to = from + len;
2599
2600	page = grab_cache_page_write_begin(mapping, index, flags);
2601	if (!page)
2602		return -ENOMEM;
2603	*pagep = page;
2604	*fsdata = NULL;
2605
2606	if (page_has_buffers(page)) {
2607		ret = __block_write_begin(page, pos, len, get_block);
2608		if (unlikely(ret))
2609			goto out_release;
2610		return ret;
2611	}
2612
2613	if (PageMappedToDisk(page))
2614		return 0;
2615
2616	/*
2617	 * Allocate buffers so that we can keep track of state, and potentially
2618	 * attach them to the page if an error occurs. In the common case of
2619	 * no error, they will just be freed again without ever being attached
2620	 * to the page (which is all OK, because we're under the page lock).
2621	 *
2622	 * Be careful: the buffer linked list is a NULL terminated one, rather
2623	 * than the circular one we're used to.
2624	 */
2625	head = alloc_page_buffers(page, blocksize, false);
2626	if (!head) {
2627		ret = -ENOMEM;
2628		goto out_release;
2629	}
2630
2631	block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
2632
2633	/*
2634	 * We loop across all blocks in the page, whether or not they are
2635	 * part of the affected region.  This is so we can discover if the
2636	 * page is fully mapped-to-disk.
2637	 */
2638	for (block_start = 0, block_in_page = 0, bh = head;
2639		  block_start < PAGE_SIZE;
2640		  block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2641		int create;
2642
2643		block_end = block_start + blocksize;
2644		bh->b_state = 0;
2645		create = 1;
2646		if (block_start >= to)
2647			create = 0;
2648		ret = get_block(inode, block_in_file + block_in_page,
2649					bh, create);
2650		if (ret)
2651			goto failed;
2652		if (!buffer_mapped(bh))
2653			is_mapped_to_disk = 0;
2654		if (buffer_new(bh))
2655			clean_bdev_bh_alias(bh);
2656		if (PageUptodate(page)) {
2657			set_buffer_uptodate(bh);
2658			continue;
2659		}
2660		if (buffer_new(bh) || !buffer_mapped(bh)) {
2661			zero_user_segments(page, block_start, from,
2662							to, block_end);
2663			continue;
2664		}
2665		if (buffer_uptodate(bh))
2666			continue;	/* reiserfs does this */
2667		if (block_start < from || block_end > to) {
2668			lock_buffer(bh);
2669			bh->b_end_io = end_buffer_read_nobh;
2670			submit_bh(REQ_OP_READ, 0, bh);
2671			nr_reads++;
2672		}
2673	}
2674
2675	if (nr_reads) {
2676		/*
2677		 * The page is locked, so these buffers are protected from
2678		 * any VM or truncate activity.  Hence we don't need to care
2679		 * for the buffer_head refcounts.
2680		 */
2681		for (bh = head; bh; bh = bh->b_this_page) {
2682			wait_on_buffer(bh);
2683			if (!buffer_uptodate(bh))
2684				ret = -EIO;
2685		}
2686		if (ret)
2687			goto failed;
2688	}
2689
2690	if (is_mapped_to_disk)
2691		SetPageMappedToDisk(page);
2692
2693	*fsdata = head; /* to be released by nobh_write_end */
2694
2695	return 0;
2696
2697failed:
2698	BUG_ON(!ret);
2699	/*
2700	 * Error recovery is a bit difficult. We need to zero out blocks that
2701	 * were newly allocated, and dirty them to ensure they get written out.
2702	 * Buffers need to be attached to the page at this point, otherwise
2703	 * the handling of potential IO errors during writeout would be hard
2704	 * (could try doing synchronous writeout, but what if that fails too?)
2705	 */
2706	attach_nobh_buffers(page, head);
2707	page_zero_new_buffers(page, from, to);
2708
2709out_release:
2710	unlock_page(page);
2711	put_page(page);
2712	*pagep = NULL;
2713
2714	return ret;
2715}
2716EXPORT_SYMBOL(nobh_write_begin);
2717
2718int nobh_write_end(struct file *file, struct address_space *mapping,
2719			loff_t pos, unsigned len, unsigned copied,
2720			struct page *page, void *fsdata)
2721{
2722	struct inode *inode = page->mapping->host;
2723	struct buffer_head *head = fsdata;
2724	struct buffer_head *bh;
2725	BUG_ON(fsdata != NULL && page_has_buffers(page));
2726
2727	if (unlikely(copied < len) && head)
2728		attach_nobh_buffers(page, head);
2729	if (page_has_buffers(page))
2730		return generic_write_end(file, mapping, pos, len,
2731					copied, page, fsdata);
2732
2733	SetPageUptodate(page);
2734	set_page_dirty(page);
2735	if (pos+copied > inode->i_size) {
2736		i_size_write(inode, pos+copied);
2737		mark_inode_dirty(inode);
2738	}
2739
2740	unlock_page(page);
2741	put_page(page);
2742
2743	while (head) {
2744		bh = head;
2745		head = head->b_this_page;
2746		free_buffer_head(bh);
2747	}
2748
2749	return copied;
2750}
2751EXPORT_SYMBOL(nobh_write_end);
2752
2753/*
2754 * nobh_writepage() - based on block_full_write_page() except
2755 * that it tries to operate without attaching bufferheads to
2756 * the page.
2757 */
2758int nobh_writepage(struct page *page, get_block_t *get_block,
2759			struct writeback_control *wbc)
2760{
2761	struct inode * const inode = page->mapping->host;
2762	loff_t i_size = i_size_read(inode);
2763	const pgoff_t end_index = i_size >> PAGE_SHIFT;
2764	unsigned offset;
2765	int ret;
2766
2767	/* Is the page fully inside i_size? */
2768	if (page->index < end_index)
2769		goto out;
2770
2771	/* Is the page fully outside i_size? (truncate in progress) */
2772	offset = i_size & (PAGE_SIZE-1);
2773	if (page->index >= end_index+1 || !offset) {
2774		/*
2775		 * The page may have dirty, unmapped buffers.  For example,
2776		 * they may have been added in ext3_writepage().  Make them
2777		 * freeable here, so the page does not leak.
2778		 */
2779#if 0
2780		/* Not really sure about this  - do we need this ? */
2781		if (page->mapping->a_ops->invalidatepage)
2782			page->mapping->a_ops->invalidatepage(page, offset);
2783#endif
2784		unlock_page(page);
2785		return 0; /* don't care */
2786	}
2787
2788	/*
2789	 * The page straddles i_size.  It must be zeroed out on each and every
2790	 * writepage invocation because it may be mmapped.  "A file is mapped
2791	 * in multiples of the page size.  For a file that is not a multiple of
2792	 * the  page size, the remaining memory is zeroed when mapped, and
2793	 * writes to that region are not written out to the file."
2794	 */
2795	zero_user_segment(page, offset, PAGE_SIZE);
2796out:
2797	ret = mpage_writepage(page, get_block, wbc);
2798	if (ret == -EAGAIN)
2799		ret = __block_write_full_page(inode, page, get_block, wbc,
2800					      end_buffer_async_write);
2801	return ret;
2802}
2803EXPORT_SYMBOL(nobh_writepage);
2804
2805int nobh_truncate_page(struct address_space *mapping,
2806			loff_t from, get_block_t *get_block)
2807{
2808	pgoff_t index = from >> PAGE_SHIFT;
2809	unsigned offset = from & (PAGE_SIZE-1);
2810	unsigned blocksize;
2811	sector_t iblock;
2812	unsigned length, pos;
2813	struct inode *inode = mapping->host;
2814	struct page *page;
2815	struct buffer_head map_bh;
2816	int err;
2817
2818	blocksize = i_blocksize(inode);
2819	length = offset & (blocksize - 1);
2820
2821	/* Block boundary? Nothing to do */
2822	if (!length)
2823		return 0;
2824
2825	length = blocksize - length;
2826	iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2827
2828	page = grab_cache_page(mapping, index);
2829	err = -ENOMEM;
2830	if (!page)
2831		goto out;
2832
2833	if (page_has_buffers(page)) {
2834has_buffers:
2835		unlock_page(page);
2836		put_page(page);
2837		return block_truncate_page(mapping, from, get_block);
2838	}
2839
2840	/* Find the buffer that contains "offset" */
2841	pos = blocksize;
2842	while (offset >= pos) {
2843		iblock++;
2844		pos += blocksize;
2845	}
2846
2847	map_bh.b_size = blocksize;
2848	map_bh.b_state = 0;
2849	err = get_block(inode, iblock, &map_bh, 0);
2850	if (err)
2851		goto unlock;
2852	/* unmapped? It's a hole - nothing to do */
2853	if (!buffer_mapped(&map_bh))
2854		goto unlock;
2855
2856	/* Ok, it's mapped. Make sure it's up-to-date */
2857	if (!PageUptodate(page)) {
2858		err = mapping->a_ops->readpage(NULL, page);
2859		if (err) {
2860			put_page(page);
2861			goto out;
2862		}
2863		lock_page(page);
2864		if (!PageUptodate(page)) {
2865			err = -EIO;
2866			goto unlock;
2867		}
2868		if (page_has_buffers(page))
2869			goto has_buffers;
2870	}
2871	zero_user(page, offset, length);
2872	set_page_dirty(page);
2873	err = 0;
2874
2875unlock:
2876	unlock_page(page);
2877	put_page(page);
2878out:
2879	return err;
2880}
2881EXPORT_SYMBOL(nobh_truncate_page);
2882
2883int block_truncate_page(struct address_space *mapping,
2884			loff_t from, get_block_t *get_block)
2885{
2886	pgoff_t index = from >> PAGE_SHIFT;
2887	unsigned offset = from & (PAGE_SIZE-1);
2888	unsigned blocksize;
2889	sector_t iblock;
2890	unsigned length, pos;
2891	struct inode *inode = mapping->host;
2892	struct page *page;
2893	struct buffer_head *bh;
2894	int err;
2895
2896	blocksize = i_blocksize(inode);
2897	length = offset & (blocksize - 1);
2898
2899	/* Block boundary? Nothing to do */
2900	if (!length)
2901		return 0;
2902
2903	length = blocksize - length;
2904	iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2905	
2906	page = grab_cache_page(mapping, index);
2907	err = -ENOMEM;
2908	if (!page)
2909		goto out;
2910
2911	if (!page_has_buffers(page))
2912		create_empty_buffers(page, blocksize, 0);
2913
2914	/* Find the buffer that contains "offset" */
2915	bh = page_buffers(page);
2916	pos = blocksize;
2917	while (offset >= pos) {
2918		bh = bh->b_this_page;
2919		iblock++;
2920		pos += blocksize;
2921	}
2922
2923	err = 0;
2924	if (!buffer_mapped(bh)) {
2925		WARN_ON(bh->b_size != blocksize);
2926		err = get_block(inode, iblock, bh, 0);
2927		if (err)
2928			goto unlock;
2929		/* unmapped? It's a hole - nothing to do */
2930		if (!buffer_mapped(bh))
2931			goto unlock;
2932	}
2933
2934	/* Ok, it's mapped. Make sure it's up-to-date */
2935	if (PageUptodate(page))
2936		set_buffer_uptodate(bh);
2937
2938	if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2939		err = -EIO;
2940		ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2941		wait_on_buffer(bh);
2942		/* Uhhuh. Read error. Complain and punt. */
2943		if (!buffer_uptodate(bh))
2944			goto unlock;
2945	}
2946
2947	zero_user(page, offset, length);
2948	mark_buffer_dirty(bh);
2949	err = 0;
2950
2951unlock:
2952	unlock_page(page);
2953	put_page(page);
2954out:
2955	return err;
2956}
2957EXPORT_SYMBOL(block_truncate_page);
2958
2959/*
2960 * The generic ->writepage function for buffer-backed address_spaces
2961 */
2962int block_write_full_page(struct page *page, get_block_t *get_block,
2963			struct writeback_control *wbc)
2964{
2965	struct inode * const inode = page->mapping->host;
2966	loff_t i_size = i_size_read(inode);
2967	const pgoff_t end_index = i_size >> PAGE_SHIFT;
2968	unsigned offset;
2969
2970	/* Is the page fully inside i_size? */
2971	if (page->index < end_index)
2972		return __block_write_full_page(inode, page, get_block, wbc,
2973					       end_buffer_async_write);
2974
2975	/* Is the page fully outside i_size? (truncate in progress) */
2976	offset = i_size & (PAGE_SIZE-1);
2977	if (page->index >= end_index+1 || !offset) {
2978		/*
2979		 * The page may have dirty, unmapped buffers.  For example,
2980		 * they may have been added in ext3_writepage().  Make them
2981		 * freeable here, so the page does not leak.
2982		 */
2983		do_invalidatepage(page, 0, PAGE_SIZE);
2984		unlock_page(page);
2985		return 0; /* don't care */
2986	}
2987
2988	/*
2989	 * The page straddles i_size.  It must be zeroed out on each and every
2990	 * writepage invocation because it may be mmapped.  "A file is mapped
2991	 * in multiples of the page size.  For a file that is not a multiple of
2992	 * the  page size, the remaining memory is zeroed when mapped, and
2993	 * writes to that region are not written out to the file."
2994	 */
2995	zero_user_segment(page, offset, PAGE_SIZE);
2996	return __block_write_full_page(inode, page, get_block, wbc,
2997							end_buffer_async_write);
2998}
2999EXPORT_SYMBOL(block_write_full_page);
3000
3001sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
3002			    get_block_t *get_block)
3003{
 
3004	struct inode *inode = mapping->host;
3005	struct buffer_head tmp = {
3006		.b_size = i_blocksize(inode),
3007	};
3008
3009	get_block(inode, block, &tmp, 0);
3010	return tmp.b_blocknr;
3011}
3012EXPORT_SYMBOL(generic_block_bmap);
3013
3014static void end_bio_bh_io_sync(struct bio *bio)
3015{
3016	struct buffer_head *bh = bio->bi_private;
3017
3018	if (unlikely(bio_flagged(bio, BIO_QUIET)))
3019		set_bit(BH_Quiet, &bh->b_state);
3020
3021	bh->b_end_io(bh, !bio->bi_status);
3022	bio_put(bio);
3023}
3024
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3025static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
3026			 enum rw_hint write_hint, struct writeback_control *wbc)
3027{
3028	struct bio *bio;
3029
3030	BUG_ON(!buffer_locked(bh));
3031	BUG_ON(!buffer_mapped(bh));
3032	BUG_ON(!bh->b_end_io);
3033	BUG_ON(buffer_delay(bh));
3034	BUG_ON(buffer_unwritten(bh));
3035
3036	/*
3037	 * Only clear out a write error when rewriting
3038	 */
3039	if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
3040		clear_buffer_write_io_error(bh);
3041
 
 
 
 
3042	bio = bio_alloc(GFP_NOIO, 1);
3043
3044	fscrypt_set_bio_crypt_ctx_bh(bio, bh, GFP_NOIO);
 
 
 
3045
3046	bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
3047	bio_set_dev(bio, bh->b_bdev);
3048	bio->bi_write_hint = write_hint;
3049
3050	bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
3051	BUG_ON(bio->bi_iter.bi_size != bh->b_size);
3052
3053	bio->bi_end_io = end_bio_bh_io_sync;
3054	bio->bi_private = bh;
 
 
 
 
3055
3056	if (buffer_meta(bh))
3057		op_flags |= REQ_META;
3058	if (buffer_prio(bh))
3059		op_flags |= REQ_PRIO;
3060	bio_set_op_attrs(bio, op, op_flags);
3061
3062	/* Take care of bh's that straddle the end of the device */
3063	guard_bio_eod(bio);
3064
3065	if (wbc) {
3066		wbc_init_bio(wbc, bio);
3067		wbc_account_cgroup_owner(wbc, bh->b_page, bh->b_size);
3068	}
3069
3070	submit_bio(bio);
3071	return 0;
3072}
3073
3074int submit_bh(int op, int op_flags, struct buffer_head *bh)
 
 
 
 
 
 
 
3075{
3076	return submit_bh_wbc(op, op_flags, bh, 0, NULL);
3077}
3078EXPORT_SYMBOL(submit_bh);
3079
3080/**
3081 * ll_rw_block: low-level access to block devices (DEPRECATED)
3082 * @op: whether to %READ or %WRITE
3083 * @op_flags: req_flag_bits
3084 * @nr: number of &struct buffer_heads in the array
3085 * @bhs: array of pointers to &struct buffer_head
3086 *
3087 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3088 * requests an I/O operation on them, either a %REQ_OP_READ or a %REQ_OP_WRITE.
3089 * @op_flags contains flags modifying the detailed I/O behavior, most notably
3090 * %REQ_RAHEAD.
3091 *
3092 * This function drops any buffer that it cannot get a lock on (with the
3093 * BH_Lock state bit), any buffer that appears to be clean when doing a write
3094 * request, and any buffer that appears to be up-to-date when doing read
3095 * request.  Further it marks as clean buffers that are processed for
3096 * writing (the buffer cache won't assume that they are actually clean
3097 * until the buffer gets unlocked).
3098 *
3099 * ll_rw_block sets b_end_io to simple completion handler that marks
3100 * the buffer up-to-date (if appropriate), unlocks the buffer and wakes
3101 * any waiters. 
3102 *
3103 * All of the buffers must be for the same device, and must also be a
3104 * multiple of the current approved size for the device.
3105 */
3106void ll_rw_block(int op, int op_flags,  int nr, struct buffer_head *bhs[])
3107{
3108	int i;
3109
3110	for (i = 0; i < nr; i++) {
3111		struct buffer_head *bh = bhs[i];
3112
3113		if (!trylock_buffer(bh))
3114			continue;
3115		if (op == WRITE) {
3116			if (test_clear_buffer_dirty(bh)) {
3117				bh->b_end_io = end_buffer_write_sync;
3118				get_bh(bh);
3119				submit_bh(op, op_flags, bh);
3120				continue;
3121			}
3122		} else {
3123			if (!buffer_uptodate(bh)) {
3124				bh->b_end_io = end_buffer_read_sync;
3125				get_bh(bh);
3126				submit_bh(op, op_flags, bh);
3127				continue;
3128			}
3129		}
3130		unlock_buffer(bh);
3131	}
3132}
3133EXPORT_SYMBOL(ll_rw_block);
3134
3135void write_dirty_buffer(struct buffer_head *bh, int op_flags)
3136{
3137	lock_buffer(bh);
3138	if (!test_clear_buffer_dirty(bh)) {
3139		unlock_buffer(bh);
3140		return;
3141	}
3142	bh->b_end_io = end_buffer_write_sync;
3143	get_bh(bh);
3144	submit_bh(REQ_OP_WRITE, op_flags, bh);
3145}
3146EXPORT_SYMBOL(write_dirty_buffer);
3147
3148/*
3149 * For a data-integrity writeout, we need to wait upon any in-progress I/O
3150 * and then start new I/O and then wait upon it.  The caller must have a ref on
3151 * the buffer_head.
3152 */
3153int __sync_dirty_buffer(struct buffer_head *bh, int op_flags)
3154{
3155	int ret = 0;
3156
3157	WARN_ON(atomic_read(&bh->b_count) < 1);
3158	lock_buffer(bh);
3159	if (test_clear_buffer_dirty(bh)) {
3160		/*
3161		 * The bh should be mapped, but it might not be if the
3162		 * device was hot-removed. Not much we can do but fail the I/O.
3163		 */
3164		if (!buffer_mapped(bh)) {
3165			unlock_buffer(bh);
3166			return -EIO;
3167		}
3168
3169		get_bh(bh);
3170		bh->b_end_io = end_buffer_write_sync;
3171		ret = submit_bh(REQ_OP_WRITE, op_flags, bh);
3172		wait_on_buffer(bh);
3173		if (!ret && !buffer_uptodate(bh))
3174			ret = -EIO;
3175	} else {
3176		unlock_buffer(bh);
3177	}
3178	return ret;
3179}
3180EXPORT_SYMBOL(__sync_dirty_buffer);
3181
3182int sync_dirty_buffer(struct buffer_head *bh)
3183{
3184	return __sync_dirty_buffer(bh, REQ_SYNC);
3185}
3186EXPORT_SYMBOL(sync_dirty_buffer);
3187
3188/*
3189 * try_to_free_buffers() checks if all the buffers on this particular page
3190 * are unused, and releases them if so.
3191 *
3192 * Exclusion against try_to_free_buffers may be obtained by either
3193 * locking the page or by holding its mapping's private_lock.
3194 *
3195 * If the page is dirty but all the buffers are clean then we need to
3196 * be sure to mark the page clean as well.  This is because the page
3197 * may be against a block device, and a later reattachment of buffers
3198 * to a dirty page will set *all* buffers dirty.  Which would corrupt
3199 * filesystem data on the same device.
3200 *
3201 * The same applies to regular filesystem pages: if all the buffers are
3202 * clean then we set the page clean and proceed.  To do that, we require
3203 * total exclusion from __set_page_dirty_buffers().  That is obtained with
3204 * private_lock.
3205 *
3206 * try_to_free_buffers() is non-blocking.
3207 */
3208static inline int buffer_busy(struct buffer_head *bh)
3209{
3210	return atomic_read(&bh->b_count) |
3211		(bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3212}
3213
3214static int
3215drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3216{
3217	struct buffer_head *head = page_buffers(page);
3218	struct buffer_head *bh;
3219
3220	bh = head;
3221	do {
 
 
3222		if (buffer_busy(bh))
3223			goto failed;
3224		bh = bh->b_this_page;
3225	} while (bh != head);
3226
3227	do {
3228		struct buffer_head *next = bh->b_this_page;
3229
3230		if (bh->b_assoc_map)
3231			__remove_assoc_queue(bh);
3232		bh = next;
3233	} while (bh != head);
3234	*buffers_to_free = head;
3235	detach_page_private(page);
3236	return 1;
3237failed:
3238	return 0;
3239}
3240
3241int try_to_free_buffers(struct page *page)
3242{
3243	struct address_space * const mapping = page->mapping;
3244	struct buffer_head *buffers_to_free = NULL;
3245	int ret = 0;
3246
3247	BUG_ON(!PageLocked(page));
3248	if (PageWriteback(page))
3249		return 0;
3250
3251	if (mapping == NULL) {		/* can this still happen? */
3252		ret = drop_buffers(page, &buffers_to_free);
3253		goto out;
3254	}
3255
3256	spin_lock(&mapping->private_lock);
3257	ret = drop_buffers(page, &buffers_to_free);
3258
3259	/*
3260	 * If the filesystem writes its buffers by hand (eg ext3)
3261	 * then we can have clean buffers against a dirty page.  We
3262	 * clean the page here; otherwise the VM will never notice
3263	 * that the filesystem did any IO at all.
3264	 *
3265	 * Also, during truncate, discard_buffer will have marked all
3266	 * the page's buffers clean.  We discover that here and clean
3267	 * the page also.
3268	 *
3269	 * private_lock must be held over this entire operation in order
3270	 * to synchronise against __set_page_dirty_buffers and prevent the
3271	 * dirty bit from being lost.
3272	 */
3273	if (ret)
3274		cancel_dirty_page(page);
3275	spin_unlock(&mapping->private_lock);
3276out:
3277	if (buffers_to_free) {
3278		struct buffer_head *bh = buffers_to_free;
3279
3280		do {
3281			struct buffer_head *next = bh->b_this_page;
3282			free_buffer_head(bh);
3283			bh = next;
3284		} while (bh != buffers_to_free);
3285	}
3286	return ret;
3287}
3288EXPORT_SYMBOL(try_to_free_buffers);
3289
3290/*
3291 * There are no bdflush tunables left.  But distributions are
3292 * still running obsolete flush daemons, so we terminate them here.
3293 *
3294 * Use of bdflush() is deprecated and will be removed in a future kernel.
3295 * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3296 */
3297SYSCALL_DEFINE2(bdflush, int, func, long, data)
3298{
3299	static int msg_count;
3300
3301	if (!capable(CAP_SYS_ADMIN))
3302		return -EPERM;
3303
3304	if (msg_count < 5) {
3305		msg_count++;
3306		printk(KERN_INFO
3307			"warning: process `%s' used the obsolete bdflush"
3308			" system call\n", current->comm);
3309		printk(KERN_INFO "Fix your initscripts?\n");
3310	}
3311
3312	if (func == 1)
3313		do_exit(0);
3314	return 0;
3315}
3316
3317/*
3318 * Buffer-head allocation
3319 */
3320static struct kmem_cache *bh_cachep __read_mostly;
3321
3322/*
3323 * Once the number of bh's in the machine exceeds this level, we start
3324 * stripping them in writeback.
3325 */
3326static unsigned long max_buffer_heads;
3327
3328int buffer_heads_over_limit;
3329
3330struct bh_accounting {
3331	int nr;			/* Number of live bh's */
3332	int ratelimit;		/* Limit cacheline bouncing */
3333};
3334
3335static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3336
3337static void recalc_bh_state(void)
3338{
3339	int i;
3340	int tot = 0;
3341
3342	if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3343		return;
3344	__this_cpu_write(bh_accounting.ratelimit, 0);
3345	for_each_online_cpu(i)
3346		tot += per_cpu(bh_accounting, i).nr;
3347	buffer_heads_over_limit = (tot > max_buffer_heads);
3348}
3349
3350struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3351{
3352	struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3353	if (ret) {
3354		INIT_LIST_HEAD(&ret->b_assoc_buffers);
3355		spin_lock_init(&ret->b_uptodate_lock);
3356		preempt_disable();
3357		__this_cpu_inc(bh_accounting.nr);
3358		recalc_bh_state();
3359		preempt_enable();
3360	}
3361	return ret;
3362}
3363EXPORT_SYMBOL(alloc_buffer_head);
3364
3365void free_buffer_head(struct buffer_head *bh)
3366{
3367	BUG_ON(!list_empty(&bh->b_assoc_buffers));
3368	kmem_cache_free(bh_cachep, bh);
3369	preempt_disable();
3370	__this_cpu_dec(bh_accounting.nr);
3371	recalc_bh_state();
3372	preempt_enable();
3373}
3374EXPORT_SYMBOL(free_buffer_head);
3375
3376static int buffer_exit_cpu_dead(unsigned int cpu)
3377{
3378	int i;
3379	struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3380
3381	for (i = 0; i < BH_LRU_SIZE; i++) {
3382		brelse(b->bhs[i]);
3383		b->bhs[i] = NULL;
3384	}
3385	this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3386	per_cpu(bh_accounting, cpu).nr = 0;
3387	return 0;
3388}
3389
3390/**
3391 * bh_uptodate_or_lock - Test whether the buffer is uptodate
3392 * @bh: struct buffer_head
3393 *
3394 * Return true if the buffer is up-to-date and false,
3395 * with the buffer locked, if not.
3396 */
3397int bh_uptodate_or_lock(struct buffer_head *bh)
3398{
3399	if (!buffer_uptodate(bh)) {
3400		lock_buffer(bh);
3401		if (!buffer_uptodate(bh))
3402			return 0;
3403		unlock_buffer(bh);
3404	}
3405	return 1;
3406}
3407EXPORT_SYMBOL(bh_uptodate_or_lock);
3408
3409/**
3410 * bh_submit_read - Submit a locked buffer for reading
3411 * @bh: struct buffer_head
3412 *
3413 * Returns zero on success and -EIO on error.
3414 */
3415int bh_submit_read(struct buffer_head *bh)
3416{
3417	BUG_ON(!buffer_locked(bh));
3418
3419	if (buffer_uptodate(bh)) {
3420		unlock_buffer(bh);
3421		return 0;
3422	}
3423
3424	get_bh(bh);
3425	bh->b_end_io = end_buffer_read_sync;
3426	submit_bh(REQ_OP_READ, 0, bh);
3427	wait_on_buffer(bh);
3428	if (buffer_uptodate(bh))
3429		return 0;
3430	return -EIO;
3431}
3432EXPORT_SYMBOL(bh_submit_read);
3433
3434void __init buffer_init(void)
3435{
3436	unsigned long nrpages;
3437	int ret;
3438
3439	bh_cachep = kmem_cache_create("buffer_head",
3440			sizeof(struct buffer_head), 0,
3441				(SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3442				SLAB_MEM_SPREAD),
3443				NULL);
3444
3445	/*
3446	 * Limit the bh occupancy to 10% of ZONE_NORMAL
3447	 */
3448	nrpages = (nr_free_buffer_pages() * 10) / 100;
3449	max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3450	ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead",
3451					NULL, buffer_exit_cpu_dead);
3452	WARN_ON(ret < 0);
3453}