Linux Audio

Check our new training course

Loading...
v4.10.11
 
   1/*
   2 *  linux/fs/buffer.c
   3 *
   4 *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
   5 */
   6
   7/*
   8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
   9 *
  10 * Removed a lot of unnecessary code and simplified things now that
  11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
  12 *
  13 * Speed up hash, lru, and free list operations.  Use gfp() for allocating
  14 * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
  15 *
  16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
  17 *
  18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
  19 */
  20
  21#include <linux/kernel.h>
 
  22#include <linux/syscalls.h>
  23#include <linux/fs.h>
  24#include <linux/iomap.h>
  25#include <linux/mm.h>
  26#include <linux/percpu.h>
  27#include <linux/slab.h>
  28#include <linux/capability.h>
  29#include <linux/blkdev.h>
  30#include <linux/file.h>
  31#include <linux/quotaops.h>
  32#include <linux/highmem.h>
  33#include <linux/export.h>
  34#include <linux/backing-dev.h>
  35#include <linux/writeback.h>
  36#include <linux/hash.h>
  37#include <linux/suspend.h>
  38#include <linux/buffer_head.h>
  39#include <linux/task_io_accounting_ops.h>
  40#include <linux/bio.h>
  41#include <linux/notifier.h>
  42#include <linux/cpu.h>
  43#include <linux/bitops.h>
  44#include <linux/mpage.h>
  45#include <linux/bit_spinlock.h>
  46#include <linux/pagevec.h>
 
  47#include <trace/events/block.h>
  48
  49static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
  50static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
  51			 unsigned long bio_flags,
  52			 struct writeback_control *wbc);
  53
  54#define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
  55
  56void init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
  57{
  58	bh->b_end_io = handler;
  59	bh->b_private = private;
  60}
  61EXPORT_SYMBOL(init_buffer);
  62
  63inline void touch_buffer(struct buffer_head *bh)
  64{
  65	trace_block_touch_buffer(bh);
  66	mark_page_accessed(bh->b_page);
  67}
  68EXPORT_SYMBOL(touch_buffer);
  69
  70void __lock_buffer(struct buffer_head *bh)
  71{
  72	wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
  73}
  74EXPORT_SYMBOL(__lock_buffer);
  75
  76void unlock_buffer(struct buffer_head *bh)
  77{
  78	clear_bit_unlock(BH_Lock, &bh->b_state);
  79	smp_mb__after_atomic();
  80	wake_up_bit(&bh->b_state, BH_Lock);
  81}
  82EXPORT_SYMBOL(unlock_buffer);
  83
  84/*
  85 * Returns if the page has dirty or writeback buffers. If all the buffers
  86 * are unlocked and clean then the PageDirty information is stale. If
  87 * any of the pages are locked, it is assumed they are locked for IO.
  88 */
  89void buffer_check_dirty_writeback(struct page *page,
  90				     bool *dirty, bool *writeback)
  91{
  92	struct buffer_head *head, *bh;
  93	*dirty = false;
  94	*writeback = false;
  95
  96	BUG_ON(!PageLocked(page));
  97
  98	if (!page_has_buffers(page))
  99		return;
 100
 101	if (PageWriteback(page))
 102		*writeback = true;
 103
 104	head = page_buffers(page);
 105	bh = head;
 106	do {
 107		if (buffer_locked(bh))
 108			*writeback = true;
 109
 110		if (buffer_dirty(bh))
 111			*dirty = true;
 112
 113		bh = bh->b_this_page;
 114	} while (bh != head);
 115}
 116EXPORT_SYMBOL(buffer_check_dirty_writeback);
 117
 118/*
 119 * Block until a buffer comes unlocked.  This doesn't stop it
 120 * from becoming locked again - you have to lock it yourself
 121 * if you want to preserve its state.
 122 */
 123void __wait_on_buffer(struct buffer_head * bh)
 124{
 125	wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
 126}
 127EXPORT_SYMBOL(__wait_on_buffer);
 128
 129static void
 130__clear_page_buffers(struct page *page)
 131{
 132	ClearPagePrivate(page);
 133	set_page_private(page, 0);
 134	put_page(page);
 135}
 136
 137static void buffer_io_error(struct buffer_head *bh, char *msg)
 138{
 139	if (!test_bit(BH_Quiet, &bh->b_state))
 140		printk_ratelimited(KERN_ERR
 141			"Buffer I/O error on dev %pg, logical block %llu%s\n",
 142			bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
 143}
 144
 145/*
 146 * End-of-IO handler helper function which does not touch the bh after
 147 * unlocking it.
 148 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
 149 * a race there is benign: unlock_buffer() only use the bh's address for
 150 * hashing after unlocking the buffer, so it doesn't actually touch the bh
 151 * itself.
 152 */
 153static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
 154{
 155	if (uptodate) {
 156		set_buffer_uptodate(bh);
 157	} else {
 158		/* This happens, due to failed read-ahead attempts. */
 159		clear_buffer_uptodate(bh);
 160	}
 161	unlock_buffer(bh);
 162}
 163
 164/*
 165 * Default synchronous end-of-IO handler..  Just mark it up-to-date and
 166 * unlock the buffer. This is what ll_rw_block uses too.
 167 */
 168void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
 169{
 170	__end_buffer_read_notouch(bh, uptodate);
 171	put_bh(bh);
 172}
 173EXPORT_SYMBOL(end_buffer_read_sync);
 174
 175void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
 176{
 177	if (uptodate) {
 178		set_buffer_uptodate(bh);
 179	} else {
 180		buffer_io_error(bh, ", lost sync page write");
 181		set_buffer_write_io_error(bh);
 182		clear_buffer_uptodate(bh);
 183	}
 184	unlock_buffer(bh);
 185	put_bh(bh);
 186}
 187EXPORT_SYMBOL(end_buffer_write_sync);
 188
 189/*
 190 * Various filesystems appear to want __find_get_block to be non-blocking.
 191 * But it's the page lock which protects the buffers.  To get around this,
 192 * we get exclusion from try_to_free_buffers with the blockdev mapping's
 193 * private_lock.
 194 *
 195 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
 196 * may be quite high.  This code could TryLock the page, and if that
 197 * succeeds, there is no need to take private_lock. (But if
 198 * private_lock is contended then so is mapping->tree_lock).
 199 */
 200static struct buffer_head *
 201__find_get_block_slow(struct block_device *bdev, sector_t block)
 202{
 203	struct inode *bd_inode = bdev->bd_inode;
 204	struct address_space *bd_mapping = bd_inode->i_mapping;
 205	struct buffer_head *ret = NULL;
 206	pgoff_t index;
 207	struct buffer_head *bh;
 208	struct buffer_head *head;
 209	struct page *page;
 210	int all_mapped = 1;
 
 211
 212	index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
 213	page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED);
 214	if (!page)
 215		goto out;
 216
 217	spin_lock(&bd_mapping->private_lock);
 218	if (!page_has_buffers(page))
 219		goto out_unlock;
 220	head = page_buffers(page);
 221	bh = head;
 222	do {
 223		if (!buffer_mapped(bh))
 224			all_mapped = 0;
 225		else if (bh->b_blocknr == block) {
 226			ret = bh;
 227			get_bh(bh);
 228			goto out_unlock;
 229		}
 230		bh = bh->b_this_page;
 231	} while (bh != head);
 232
 233	/* we might be here because some of the buffers on this page are
 234	 * not mapped.  This is due to various races between
 235	 * file io on the block device and getblk.  It gets dealt with
 236	 * elsewhere, don't buffer_error if we had some unmapped buffers
 237	 */
 238	if (all_mapped) {
 239		printk("__find_get_block_slow() failed. "
 240			"block=%llu, b_blocknr=%llu\n",
 241			(unsigned long long)block,
 242			(unsigned long long)bh->b_blocknr);
 243		printk("b_state=0x%08lx, b_size=%zu\n",
 244			bh->b_state, bh->b_size);
 245		printk("device %pg blocksize: %d\n", bdev,
 246			1 << bd_inode->i_blkbits);
 247	}
 248out_unlock:
 249	spin_unlock(&bd_mapping->private_lock);
 250	put_page(page);
 251out:
 252	return ret;
 253}
 254
 255/*
 256 * Kick the writeback threads then try to free up some ZONE_NORMAL memory.
 257 */
 258static void free_more_memory(void)
 259{
 260	struct zoneref *z;
 261	int nid;
 262
 263	wakeup_flusher_threads(1024, WB_REASON_FREE_MORE_MEM);
 264	yield();
 265
 266	for_each_online_node(nid) {
 267
 268		z = first_zones_zonelist(node_zonelist(nid, GFP_NOFS),
 269						gfp_zone(GFP_NOFS), NULL);
 270		if (z->zone)
 271			try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0,
 272						GFP_NOFS, NULL);
 273	}
 274}
 275
 276/*
 277 * I/O completion handler for block_read_full_page() - pages
 278 * which come unlocked at the end of I/O.
 279 */
 280static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
 281{
 282	unsigned long flags;
 283	struct buffer_head *first;
 284	struct buffer_head *tmp;
 285	struct page *page;
 286	int page_uptodate = 1;
 287
 288	BUG_ON(!buffer_async_read(bh));
 289
 290	page = bh->b_page;
 291	if (uptodate) {
 292		set_buffer_uptodate(bh);
 293	} else {
 294		clear_buffer_uptodate(bh);
 295		buffer_io_error(bh, ", async page read");
 296		SetPageError(page);
 297	}
 298
 299	/*
 300	 * Be _very_ careful from here on. Bad things can happen if
 301	 * two buffer heads end IO at almost the same time and both
 302	 * decide that the page is now completely done.
 303	 */
 304	first = page_buffers(page);
 305	local_irq_save(flags);
 306	bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
 307	clear_buffer_async_read(bh);
 308	unlock_buffer(bh);
 309	tmp = bh;
 310	do {
 311		if (!buffer_uptodate(tmp))
 312			page_uptodate = 0;
 313		if (buffer_async_read(tmp)) {
 314			BUG_ON(!buffer_locked(tmp));
 315			goto still_busy;
 316		}
 317		tmp = tmp->b_this_page;
 318	} while (tmp != bh);
 319	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
 320	local_irq_restore(flags);
 321
 322	/*
 323	 * If none of the buffers had errors and they are all
 324	 * uptodate then we can set the page uptodate.
 325	 */
 326	if (page_uptodate && !PageError(page))
 327		SetPageUptodate(page);
 328	unlock_page(page);
 329	return;
 330
 331still_busy:
 332	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
 333	local_irq_restore(flags);
 334	return;
 335}
 336
 337/*
 338 * Completion handler for block_write_full_page() - pages which are unlocked
 339 * during I/O, and which have PageWriteback cleared upon I/O completion.
 340 */
 341void end_buffer_async_write(struct buffer_head *bh, int uptodate)
 342{
 343	unsigned long flags;
 344	struct buffer_head *first;
 345	struct buffer_head *tmp;
 346	struct page *page;
 347
 348	BUG_ON(!buffer_async_write(bh));
 349
 350	page = bh->b_page;
 351	if (uptodate) {
 352		set_buffer_uptodate(bh);
 353	} else {
 354		buffer_io_error(bh, ", lost async page write");
 355		mapping_set_error(page->mapping, -EIO);
 356		set_buffer_write_io_error(bh);
 357		clear_buffer_uptodate(bh);
 358		SetPageError(page);
 359	}
 360
 361	first = page_buffers(page);
 362	local_irq_save(flags);
 363	bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
 364
 365	clear_buffer_async_write(bh);
 366	unlock_buffer(bh);
 367	tmp = bh->b_this_page;
 368	while (tmp != bh) {
 369		if (buffer_async_write(tmp)) {
 370			BUG_ON(!buffer_locked(tmp));
 371			goto still_busy;
 372		}
 373		tmp = tmp->b_this_page;
 374	}
 375	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
 376	local_irq_restore(flags);
 377	end_page_writeback(page);
 378	return;
 379
 380still_busy:
 381	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
 382	local_irq_restore(flags);
 383	return;
 384}
 385EXPORT_SYMBOL(end_buffer_async_write);
 386
 387/*
 388 * If a page's buffers are under async readin (end_buffer_async_read
 389 * completion) then there is a possibility that another thread of
 390 * control could lock one of the buffers after it has completed
 391 * but while some of the other buffers have not completed.  This
 392 * locked buffer would confuse end_buffer_async_read() into not unlocking
 393 * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
 394 * that this buffer is not under async I/O.
 395 *
 396 * The page comes unlocked when it has no locked buffer_async buffers
 397 * left.
 398 *
 399 * PageLocked prevents anyone starting new async I/O reads any of
 400 * the buffers.
 401 *
 402 * PageWriteback is used to prevent simultaneous writeout of the same
 403 * page.
 404 *
 405 * PageLocked prevents anyone from starting writeback of a page which is
 406 * under read I/O (PageWriteback is only ever set against a locked page).
 407 */
 408static void mark_buffer_async_read(struct buffer_head *bh)
 409{
 410	bh->b_end_io = end_buffer_async_read;
 411	set_buffer_async_read(bh);
 412}
 413
 414static void mark_buffer_async_write_endio(struct buffer_head *bh,
 415					  bh_end_io_t *handler)
 416{
 417	bh->b_end_io = handler;
 418	set_buffer_async_write(bh);
 419}
 420
 421void mark_buffer_async_write(struct buffer_head *bh)
 422{
 423	mark_buffer_async_write_endio(bh, end_buffer_async_write);
 424}
 425EXPORT_SYMBOL(mark_buffer_async_write);
 426
 427
 428/*
 429 * fs/buffer.c contains helper functions for buffer-backed address space's
 430 * fsync functions.  A common requirement for buffer-based filesystems is
 431 * that certain data from the backing blockdev needs to be written out for
 432 * a successful fsync().  For example, ext2 indirect blocks need to be
 433 * written back and waited upon before fsync() returns.
 434 *
 435 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
 436 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
 437 * management of a list of dependent buffers at ->i_mapping->private_list.
 438 *
 439 * Locking is a little subtle: try_to_free_buffers() will remove buffers
 440 * from their controlling inode's queue when they are being freed.  But
 441 * try_to_free_buffers() will be operating against the *blockdev* mapping
 442 * at the time, not against the S_ISREG file which depends on those buffers.
 443 * So the locking for private_list is via the private_lock in the address_space
 444 * which backs the buffers.  Which is different from the address_space 
 445 * against which the buffers are listed.  So for a particular address_space,
 446 * mapping->private_lock does *not* protect mapping->private_list!  In fact,
 447 * mapping->private_list will always be protected by the backing blockdev's
 448 * ->private_lock.
 449 *
 450 * Which introduces a requirement: all buffers on an address_space's
 451 * ->private_list must be from the same address_space: the blockdev's.
 452 *
 453 * address_spaces which do not place buffers at ->private_list via these
 454 * utility functions are free to use private_lock and private_list for
 455 * whatever they want.  The only requirement is that list_empty(private_list)
 456 * be true at clear_inode() time.
 457 *
 458 * FIXME: clear_inode should not call invalidate_inode_buffers().  The
 459 * filesystems should do that.  invalidate_inode_buffers() should just go
 460 * BUG_ON(!list_empty).
 461 *
 462 * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
 463 * take an address_space, not an inode.  And it should be called
 464 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
 465 * queued up.
 466 *
 467 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
 468 * list if it is already on a list.  Because if the buffer is on a list,
 469 * it *must* already be on the right one.  If not, the filesystem is being
 470 * silly.  This will save a ton of locking.  But first we have to ensure
 471 * that buffers are taken *off* the old inode's list when they are freed
 472 * (presumably in truncate).  That requires careful auditing of all
 473 * filesystems (do it inside bforget()).  It could also be done by bringing
 474 * b_inode back.
 475 */
 476
 477/*
 478 * The buffer's backing address_space's private_lock must be held
 479 */
 480static void __remove_assoc_queue(struct buffer_head *bh)
 481{
 482	list_del_init(&bh->b_assoc_buffers);
 483	WARN_ON(!bh->b_assoc_map);
 484	if (buffer_write_io_error(bh))
 485		set_bit(AS_EIO, &bh->b_assoc_map->flags);
 486	bh->b_assoc_map = NULL;
 487}
 488
 489int inode_has_buffers(struct inode *inode)
 490{
 491	return !list_empty(&inode->i_data.private_list);
 492}
 493
 494/*
 495 * osync is designed to support O_SYNC io.  It waits synchronously for
 496 * all already-submitted IO to complete, but does not queue any new
 497 * writes to the disk.
 498 *
 499 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
 500 * you dirty the buffers, and then use osync_inode_buffers to wait for
 501 * completion.  Any other dirty buffers which are not yet queued for
 502 * write will not be flushed to disk by the osync.
 503 */
 504static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
 505{
 506	struct buffer_head *bh;
 507	struct list_head *p;
 508	int err = 0;
 509
 510	spin_lock(lock);
 511repeat:
 512	list_for_each_prev(p, list) {
 513		bh = BH_ENTRY(p);
 514		if (buffer_locked(bh)) {
 515			get_bh(bh);
 516			spin_unlock(lock);
 517			wait_on_buffer(bh);
 518			if (!buffer_uptodate(bh))
 519				err = -EIO;
 520			brelse(bh);
 521			spin_lock(lock);
 522			goto repeat;
 523		}
 524	}
 525	spin_unlock(lock);
 526	return err;
 527}
 528
 529static void do_thaw_one(struct super_block *sb, void *unused)
 530{
 531	while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
 532		printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev);
 533}
 534
 535static void do_thaw_all(struct work_struct *work)
 536{
 537	iterate_supers(do_thaw_one, NULL);
 538	kfree(work);
 539	printk(KERN_WARNING "Emergency Thaw complete\n");
 540}
 541
 542/**
 543 * emergency_thaw_all -- forcibly thaw every frozen filesystem
 544 *
 545 * Used for emergency unfreeze of all filesystems via SysRq
 546 */
 547void emergency_thaw_all(void)
 548{
 549	struct work_struct *work;
 550
 551	work = kmalloc(sizeof(*work), GFP_ATOMIC);
 552	if (work) {
 553		INIT_WORK(work, do_thaw_all);
 554		schedule_work(work);
 555	}
 556}
 557
 558/**
 559 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
 560 * @mapping: the mapping which wants those buffers written
 561 *
 562 * Starts I/O against the buffers at mapping->private_list, and waits upon
 563 * that I/O.
 564 *
 565 * Basically, this is a convenience function for fsync().
 566 * @mapping is a file or directory which needs those buffers to be written for
 567 * a successful fsync().
 568 */
 569int sync_mapping_buffers(struct address_space *mapping)
 570{
 571	struct address_space *buffer_mapping = mapping->private_data;
 572
 573	if (buffer_mapping == NULL || list_empty(&mapping->private_list))
 574		return 0;
 575
 576	return fsync_buffers_list(&buffer_mapping->private_lock,
 577					&mapping->private_list);
 578}
 579EXPORT_SYMBOL(sync_mapping_buffers);
 580
 581/*
 582 * Called when we've recently written block `bblock', and it is known that
 583 * `bblock' was for a buffer_boundary() buffer.  This means that the block at
 584 * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
 585 * dirty, schedule it for IO.  So that indirects merge nicely with their data.
 586 */
 587void write_boundary_block(struct block_device *bdev,
 588			sector_t bblock, unsigned blocksize)
 589{
 590	struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
 591	if (bh) {
 592		if (buffer_dirty(bh))
 593			ll_rw_block(REQ_OP_WRITE, 0, 1, &bh);
 594		put_bh(bh);
 595	}
 596}
 597
 598void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
 599{
 600	struct address_space *mapping = inode->i_mapping;
 601	struct address_space *buffer_mapping = bh->b_page->mapping;
 602
 603	mark_buffer_dirty(bh);
 604	if (!mapping->private_data) {
 605		mapping->private_data = buffer_mapping;
 606	} else {
 607		BUG_ON(mapping->private_data != buffer_mapping);
 608	}
 609	if (!bh->b_assoc_map) {
 610		spin_lock(&buffer_mapping->private_lock);
 611		list_move_tail(&bh->b_assoc_buffers,
 612				&mapping->private_list);
 613		bh->b_assoc_map = mapping;
 614		spin_unlock(&buffer_mapping->private_lock);
 615	}
 616}
 617EXPORT_SYMBOL(mark_buffer_dirty_inode);
 618
 619/*
 620 * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
 621 * dirty.
 622 *
 623 * If warn is true, then emit a warning if the page is not uptodate and has
 624 * not been truncated.
 625 *
 626 * The caller must hold lock_page_memcg().
 627 */
 628static void __set_page_dirty(struct page *page, struct address_space *mapping,
 629			     int warn)
 630{
 631	unsigned long flags;
 632
 633	spin_lock_irqsave(&mapping->tree_lock, flags);
 634	if (page->mapping) {	/* Race with truncate? */
 635		WARN_ON_ONCE(warn && !PageUptodate(page));
 636		account_page_dirtied(page, mapping);
 637		radix_tree_tag_set(&mapping->page_tree,
 638				page_index(page), PAGECACHE_TAG_DIRTY);
 639	}
 640	spin_unlock_irqrestore(&mapping->tree_lock, flags);
 641}
 
 642
 643/*
 644 * Add a page to the dirty page list.
 645 *
 646 * It is a sad fact of life that this function is called from several places
 647 * deeply under spinlocking.  It may not sleep.
 648 *
 649 * If the page has buffers, the uptodate buffers are set dirty, to preserve
 650 * dirty-state coherency between the page and the buffers.  It the page does
 651 * not have buffers then when they are later attached they will all be set
 652 * dirty.
 653 *
 654 * The buffers are dirtied before the page is dirtied.  There's a small race
 655 * window in which a writepage caller may see the page cleanness but not the
 656 * buffer dirtiness.  That's fine.  If this code were to set the page dirty
 657 * before the buffers, a concurrent writepage caller could clear the page dirty
 658 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
 659 * page on the dirty page list.
 660 *
 661 * We use private_lock to lock against try_to_free_buffers while using the
 662 * page's buffer list.  Also use this to protect against clean buffers being
 663 * added to the page after it was set dirty.
 664 *
 665 * FIXME: may need to call ->reservepage here as well.  That's rather up to the
 666 * address_space though.
 667 */
 668int __set_page_dirty_buffers(struct page *page)
 669{
 670	int newly_dirty;
 671	struct address_space *mapping = page_mapping(page);
 672
 673	if (unlikely(!mapping))
 674		return !TestSetPageDirty(page);
 675
 676	spin_lock(&mapping->private_lock);
 677	if (page_has_buffers(page)) {
 678		struct buffer_head *head = page_buffers(page);
 679		struct buffer_head *bh = head;
 680
 681		do {
 682			set_buffer_dirty(bh);
 683			bh = bh->b_this_page;
 684		} while (bh != head);
 685	}
 686	/*
 687	 * Lock out page->mem_cgroup migration to keep PageDirty
 688	 * synchronized with per-memcg dirty page counters.
 689	 */
 690	lock_page_memcg(page);
 691	newly_dirty = !TestSetPageDirty(page);
 692	spin_unlock(&mapping->private_lock);
 693
 694	if (newly_dirty)
 695		__set_page_dirty(page, mapping, 1);
 696
 697	unlock_page_memcg(page);
 698
 699	if (newly_dirty)
 700		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
 701
 702	return newly_dirty;
 703}
 704EXPORT_SYMBOL(__set_page_dirty_buffers);
 705
 706/*
 707 * Write out and wait upon a list of buffers.
 708 *
 709 * We have conflicting pressures: we want to make sure that all
 710 * initially dirty buffers get waited on, but that any subsequently
 711 * dirtied buffers don't.  After all, we don't want fsync to last
 712 * forever if somebody is actively writing to the file.
 713 *
 714 * Do this in two main stages: first we copy dirty buffers to a
 715 * temporary inode list, queueing the writes as we go.  Then we clean
 716 * up, waiting for those writes to complete.
 717 * 
 718 * During this second stage, any subsequent updates to the file may end
 719 * up refiling the buffer on the original inode's dirty list again, so
 720 * there is a chance we will end up with a buffer queued for write but
 721 * not yet completed on that list.  So, as a final cleanup we go through
 722 * the osync code to catch these locked, dirty buffers without requeuing
 723 * any newly dirty buffers for write.
 724 */
 725static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
 726{
 727	struct buffer_head *bh;
 728	struct list_head tmp;
 729	struct address_space *mapping;
 730	int err = 0, err2;
 731	struct blk_plug plug;
 732
 733	INIT_LIST_HEAD(&tmp);
 734	blk_start_plug(&plug);
 735
 736	spin_lock(lock);
 737	while (!list_empty(list)) {
 738		bh = BH_ENTRY(list->next);
 739		mapping = bh->b_assoc_map;
 740		__remove_assoc_queue(bh);
 741		/* Avoid race with mark_buffer_dirty_inode() which does
 742		 * a lockless check and we rely on seeing the dirty bit */
 743		smp_mb();
 744		if (buffer_dirty(bh) || buffer_locked(bh)) {
 745			list_add(&bh->b_assoc_buffers, &tmp);
 746			bh->b_assoc_map = mapping;
 747			if (buffer_dirty(bh)) {
 748				get_bh(bh);
 749				spin_unlock(lock);
 750				/*
 751				 * Ensure any pending I/O completes so that
 752				 * write_dirty_buffer() actually writes the
 753				 * current contents - it is a noop if I/O is
 754				 * still in flight on potentially older
 755				 * contents.
 756				 */
 757				write_dirty_buffer(bh, REQ_SYNC);
 758
 759				/*
 760				 * Kick off IO for the previous mapping. Note
 761				 * that we will not run the very last mapping,
 762				 * wait_on_buffer() will do that for us
 763				 * through sync_buffer().
 764				 */
 765				brelse(bh);
 766				spin_lock(lock);
 767			}
 768		}
 769	}
 770
 771	spin_unlock(lock);
 772	blk_finish_plug(&plug);
 773	spin_lock(lock);
 774
 775	while (!list_empty(&tmp)) {
 776		bh = BH_ENTRY(tmp.prev);
 777		get_bh(bh);
 778		mapping = bh->b_assoc_map;
 779		__remove_assoc_queue(bh);
 780		/* Avoid race with mark_buffer_dirty_inode() which does
 781		 * a lockless check and we rely on seeing the dirty bit */
 782		smp_mb();
 783		if (buffer_dirty(bh)) {
 784			list_add(&bh->b_assoc_buffers,
 785				 &mapping->private_list);
 786			bh->b_assoc_map = mapping;
 787		}
 788		spin_unlock(lock);
 789		wait_on_buffer(bh);
 790		if (!buffer_uptodate(bh))
 791			err = -EIO;
 792		brelse(bh);
 793		spin_lock(lock);
 794	}
 795	
 796	spin_unlock(lock);
 797	err2 = osync_buffers_list(lock, list);
 798	if (err)
 799		return err;
 800	else
 801		return err2;
 802}
 803
 804/*
 805 * Invalidate any and all dirty buffers on a given inode.  We are
 806 * probably unmounting the fs, but that doesn't mean we have already
 807 * done a sync().  Just drop the buffers from the inode list.
 808 *
 809 * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
 810 * assumes that all the buffers are against the blockdev.  Not true
 811 * for reiserfs.
 812 */
 813void invalidate_inode_buffers(struct inode *inode)
 814{
 815	if (inode_has_buffers(inode)) {
 816		struct address_space *mapping = &inode->i_data;
 817		struct list_head *list = &mapping->private_list;
 818		struct address_space *buffer_mapping = mapping->private_data;
 819
 820		spin_lock(&buffer_mapping->private_lock);
 821		while (!list_empty(list))
 822			__remove_assoc_queue(BH_ENTRY(list->next));
 823		spin_unlock(&buffer_mapping->private_lock);
 824	}
 825}
 826EXPORT_SYMBOL(invalidate_inode_buffers);
 827
 828/*
 829 * Remove any clean buffers from the inode's buffer list.  This is called
 830 * when we're trying to free the inode itself.  Those buffers can pin it.
 831 *
 832 * Returns true if all buffers were removed.
 833 */
 834int remove_inode_buffers(struct inode *inode)
 835{
 836	int ret = 1;
 837
 838	if (inode_has_buffers(inode)) {
 839		struct address_space *mapping = &inode->i_data;
 840		struct list_head *list = &mapping->private_list;
 841		struct address_space *buffer_mapping = mapping->private_data;
 842
 843		spin_lock(&buffer_mapping->private_lock);
 844		while (!list_empty(list)) {
 845			struct buffer_head *bh = BH_ENTRY(list->next);
 846			if (buffer_dirty(bh)) {
 847				ret = 0;
 848				break;
 849			}
 850			__remove_assoc_queue(bh);
 851		}
 852		spin_unlock(&buffer_mapping->private_lock);
 853	}
 854	return ret;
 855}
 856
 857/*
 858 * Create the appropriate buffers when given a page for data area and
 859 * the size of each buffer.. Use the bh->b_this_page linked list to
 860 * follow the buffers created.  Return NULL if unable to create more
 861 * buffers.
 862 *
 863 * The retry flag is used to differentiate async IO (paging, swapping)
 864 * which may not fail from ordinary buffer allocations.
 865 */
 866struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
 867		int retry)
 868{
 869	struct buffer_head *bh, *head;
 
 870	long offset;
 
 
 
 
 
 
 
 871
 872try_again:
 873	head = NULL;
 874	offset = PAGE_SIZE;
 875	while ((offset -= size) >= 0) {
 876		bh = alloc_buffer_head(GFP_NOFS);
 877		if (!bh)
 878			goto no_grow;
 879
 880		bh->b_this_page = head;
 881		bh->b_blocknr = -1;
 882		head = bh;
 883
 884		bh->b_size = size;
 885
 886		/* Link the buffer to its page */
 887		set_bh_page(bh, page, offset);
 888	}
 
 
 
 889	return head;
 890/*
 891 * In case anything failed, we just free everything we got.
 892 */
 893no_grow:
 894	if (head) {
 895		do {
 896			bh = head;
 897			head = head->b_this_page;
 898			free_buffer_head(bh);
 899		} while (head);
 900	}
 901
 902	/*
 903	 * Return failure for non-async IO requests.  Async IO requests
 904	 * are not allowed to fail, so we have to wait until buffer heads
 905	 * become available.  But we don't want tasks sleeping with 
 906	 * partially complete buffers, so all were released above.
 907	 */
 908	if (!retry)
 909		return NULL;
 910
 911	/* We're _really_ low on memory. Now we just
 912	 * wait for old buffer heads to become free due to
 913	 * finishing IO.  Since this is an async request and
 914	 * the reserve list is empty, we're sure there are 
 915	 * async buffer heads in use.
 916	 */
 917	free_more_memory();
 918	goto try_again;
 919}
 920EXPORT_SYMBOL_GPL(alloc_page_buffers);
 921
 922static inline void
 923link_dev_buffers(struct page *page, struct buffer_head *head)
 924{
 925	struct buffer_head *bh, *tail;
 926
 927	bh = head;
 928	do {
 929		tail = bh;
 930		bh = bh->b_this_page;
 931	} while (bh);
 932	tail->b_this_page = head;
 933	attach_page_buffers(page, head);
 934}
 935
 936static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
 937{
 938	sector_t retval = ~((sector_t)0);
 939	loff_t sz = i_size_read(bdev->bd_inode);
 940
 941	if (sz) {
 942		unsigned int sizebits = blksize_bits(size);
 943		retval = (sz >> sizebits);
 944	}
 945	return retval;
 946}
 947
 948/*
 949 * Initialise the state of a blockdev page's buffers.
 950 */ 
 951static sector_t
 952init_page_buffers(struct page *page, struct block_device *bdev,
 953			sector_t block, int size)
 954{
 955	struct buffer_head *head = page_buffers(page);
 956	struct buffer_head *bh = head;
 957	int uptodate = PageUptodate(page);
 958	sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size);
 959
 960	do {
 961		if (!buffer_mapped(bh)) {
 962			init_buffer(bh, NULL, NULL);
 
 963			bh->b_bdev = bdev;
 964			bh->b_blocknr = block;
 965			if (uptodate)
 966				set_buffer_uptodate(bh);
 967			if (block < end_block)
 968				set_buffer_mapped(bh);
 969		}
 970		block++;
 971		bh = bh->b_this_page;
 972	} while (bh != head);
 973
 974	/*
 975	 * Caller needs to validate requested block against end of device.
 976	 */
 977	return end_block;
 978}
 979
 980/*
 981 * Create the page-cache page that contains the requested block.
 982 *
 983 * This is used purely for blockdev mappings.
 984 */
 985static int
 986grow_dev_page(struct block_device *bdev, sector_t block,
 987	      pgoff_t index, int size, int sizebits, gfp_t gfp)
 988{
 989	struct inode *inode = bdev->bd_inode;
 990	struct page *page;
 991	struct buffer_head *bh;
 992	sector_t end_block;
 993	int ret = 0;		/* Will call free_more_memory() */
 994	gfp_t gfp_mask;
 995
 996	gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp;
 997
 998	/*
 999	 * XXX: __getblk_slow() can not really deal with failure and
1000	 * will endlessly loop on improvised global reclaim.  Prefer
1001	 * looping in the allocator rather than here, at least that
1002	 * code knows what it's doing.
1003	 */
1004	gfp_mask |= __GFP_NOFAIL;
1005
1006	page = find_or_create_page(inode->i_mapping, index, gfp_mask);
1007	if (!page)
1008		return ret;
1009
1010	BUG_ON(!PageLocked(page));
1011
1012	if (page_has_buffers(page)) {
1013		bh = page_buffers(page);
1014		if (bh->b_size == size) {
1015			end_block = init_page_buffers(page, bdev,
1016						(sector_t)index << sizebits,
1017						size);
1018			goto done;
1019		}
1020		if (!try_to_free_buffers(page))
1021			goto failed;
1022	}
1023
1024	/*
1025	 * Allocate some buffers for this page
1026	 */
1027	bh = alloc_page_buffers(page, size, 0);
1028	if (!bh)
1029		goto failed;
1030
1031	/*
1032	 * Link the page to the buffers and initialise them.  Take the
1033	 * lock to be atomic wrt __find_get_block(), which does not
1034	 * run under the page lock.
1035	 */
1036	spin_lock(&inode->i_mapping->private_lock);
1037	link_dev_buffers(page, bh);
1038	end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits,
1039			size);
1040	spin_unlock(&inode->i_mapping->private_lock);
1041done:
1042	ret = (block < end_block) ? 1 : -ENXIO;
1043failed:
1044	unlock_page(page);
1045	put_page(page);
1046	return ret;
1047}
1048
1049/*
1050 * Create buffers for the specified block device block's page.  If
1051 * that page was dirty, the buffers are set dirty also.
1052 */
1053static int
1054grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp)
1055{
1056	pgoff_t index;
1057	int sizebits;
1058
1059	sizebits = -1;
1060	do {
1061		sizebits++;
1062	} while ((size << sizebits) < PAGE_SIZE);
1063
1064	index = block >> sizebits;
1065
1066	/*
1067	 * Check for a block which wants to lie outside our maximum possible
1068	 * pagecache index.  (this comparison is done using sector_t types).
1069	 */
1070	if (unlikely(index != block >> sizebits)) {
1071		printk(KERN_ERR "%s: requested out-of-range block %llu for "
1072			"device %pg\n",
1073			__func__, (unsigned long long)block,
1074			bdev);
1075		return -EIO;
1076	}
1077
1078	/* Create a page with the proper size buffers.. */
1079	return grow_dev_page(bdev, block, index, size, sizebits, gfp);
1080}
1081
1082static struct buffer_head *
1083__getblk_slow(struct block_device *bdev, sector_t block,
1084	     unsigned size, gfp_t gfp)
1085{
1086	/* Size must be multiple of hard sectorsize */
1087	if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1088			(size < 512 || size > PAGE_SIZE))) {
1089		printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1090					size);
1091		printk(KERN_ERR "logical block size: %d\n",
1092					bdev_logical_block_size(bdev));
1093
1094		dump_stack();
1095		return NULL;
1096	}
1097
1098	for (;;) {
1099		struct buffer_head *bh;
1100		int ret;
1101
1102		bh = __find_get_block(bdev, block, size);
1103		if (bh)
1104			return bh;
1105
1106		ret = grow_buffers(bdev, block, size, gfp);
1107		if (ret < 0)
1108			return NULL;
1109		if (ret == 0)
1110			free_more_memory();
1111	}
1112}
1113
1114/*
1115 * The relationship between dirty buffers and dirty pages:
1116 *
1117 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1118 * the page is tagged dirty in its radix tree.
1119 *
1120 * At all times, the dirtiness of the buffers represents the dirtiness of
1121 * subsections of the page.  If the page has buffers, the page dirty bit is
1122 * merely a hint about the true dirty state.
1123 *
1124 * When a page is set dirty in its entirety, all its buffers are marked dirty
1125 * (if the page has buffers).
1126 *
1127 * When a buffer is marked dirty, its page is dirtied, but the page's other
1128 * buffers are not.
1129 *
1130 * Also.  When blockdev buffers are explicitly read with bread(), they
1131 * individually become uptodate.  But their backing page remains not
1132 * uptodate - even if all of its buffers are uptodate.  A subsequent
1133 * block_read_full_page() against that page will discover all the uptodate
1134 * buffers, will set the page uptodate and will perform no I/O.
1135 */
1136
1137/**
1138 * mark_buffer_dirty - mark a buffer_head as needing writeout
1139 * @bh: the buffer_head to mark dirty
1140 *
1141 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1142 * backing page dirty, then tag the page as dirty in its address_space's radix
1143 * tree and then attach the address_space's inode to its superblock's dirty
1144 * inode list.
1145 *
1146 * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1147 * mapping->tree_lock and mapping->host->i_lock.
1148 */
1149void mark_buffer_dirty(struct buffer_head *bh)
1150{
1151	WARN_ON_ONCE(!buffer_uptodate(bh));
1152
1153	trace_block_dirty_buffer(bh);
1154
1155	/*
1156	 * Very *carefully* optimize the it-is-already-dirty case.
1157	 *
1158	 * Don't let the final "is it dirty" escape to before we
1159	 * perhaps modified the buffer.
1160	 */
1161	if (buffer_dirty(bh)) {
1162		smp_mb();
1163		if (buffer_dirty(bh))
1164			return;
1165	}
1166
1167	if (!test_set_buffer_dirty(bh)) {
1168		struct page *page = bh->b_page;
1169		struct address_space *mapping = NULL;
1170
1171		lock_page_memcg(page);
1172		if (!TestSetPageDirty(page)) {
1173			mapping = page_mapping(page);
1174			if (mapping)
1175				__set_page_dirty(page, mapping, 0);
1176		}
1177		unlock_page_memcg(page);
1178		if (mapping)
1179			__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1180	}
1181}
1182EXPORT_SYMBOL(mark_buffer_dirty);
1183
 
 
 
 
 
 
 
 
 
 
 
1184/*
1185 * Decrement a buffer_head's reference count.  If all buffers against a page
1186 * have zero reference count, are clean and unlocked, and if the page is clean
1187 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1188 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1189 * a page but it ends up not being freed, and buffers may later be reattached).
1190 */
1191void __brelse(struct buffer_head * buf)
1192{
1193	if (atomic_read(&buf->b_count)) {
1194		put_bh(buf);
1195		return;
1196	}
1197	WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1198}
1199EXPORT_SYMBOL(__brelse);
1200
1201/*
1202 * bforget() is like brelse(), except it discards any
1203 * potentially dirty data.
1204 */
1205void __bforget(struct buffer_head *bh)
1206{
1207	clear_buffer_dirty(bh);
1208	if (bh->b_assoc_map) {
1209		struct address_space *buffer_mapping = bh->b_page->mapping;
1210
1211		spin_lock(&buffer_mapping->private_lock);
1212		list_del_init(&bh->b_assoc_buffers);
1213		bh->b_assoc_map = NULL;
1214		spin_unlock(&buffer_mapping->private_lock);
1215	}
1216	__brelse(bh);
1217}
1218EXPORT_SYMBOL(__bforget);
1219
1220static struct buffer_head *__bread_slow(struct buffer_head *bh)
1221{
1222	lock_buffer(bh);
1223	if (buffer_uptodate(bh)) {
1224		unlock_buffer(bh);
1225		return bh;
1226	} else {
1227		get_bh(bh);
1228		bh->b_end_io = end_buffer_read_sync;
1229		submit_bh(REQ_OP_READ, 0, bh);
1230		wait_on_buffer(bh);
1231		if (buffer_uptodate(bh))
1232			return bh;
1233	}
1234	brelse(bh);
1235	return NULL;
1236}
1237
1238/*
1239 * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1240 * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1241 * refcount elevated by one when they're in an LRU.  A buffer can only appear
1242 * once in a particular CPU's LRU.  A single buffer can be present in multiple
1243 * CPU's LRUs at the same time.
1244 *
1245 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1246 * sb_find_get_block().
1247 *
1248 * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1249 * a local interrupt disable for that.
1250 */
1251
1252#define BH_LRU_SIZE	16
1253
1254struct bh_lru {
1255	struct buffer_head *bhs[BH_LRU_SIZE];
1256};
1257
1258static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1259
1260#ifdef CONFIG_SMP
1261#define bh_lru_lock()	local_irq_disable()
1262#define bh_lru_unlock()	local_irq_enable()
1263#else
1264#define bh_lru_lock()	preempt_disable()
1265#define bh_lru_unlock()	preempt_enable()
1266#endif
1267
1268static inline void check_irqs_on(void)
1269{
1270#ifdef irqs_disabled
1271	BUG_ON(irqs_disabled());
1272#endif
1273}
1274
1275/*
1276 * The LRU management algorithm is dopey-but-simple.  Sorry.
 
 
1277 */
1278static void bh_lru_install(struct buffer_head *bh)
1279{
1280	struct buffer_head *evictee = NULL;
 
 
1281
1282	check_irqs_on();
1283	bh_lru_lock();
1284	if (__this_cpu_read(bh_lrus.bhs[0]) != bh) {
1285		struct buffer_head *bhs[BH_LRU_SIZE];
1286		int in;
1287		int out = 0;
1288
1289		get_bh(bh);
1290		bhs[out++] = bh;
1291		for (in = 0; in < BH_LRU_SIZE; in++) {
1292			struct buffer_head *bh2 =
1293				__this_cpu_read(bh_lrus.bhs[in]);
1294
1295			if (bh2 == bh) {
1296				__brelse(bh2);
1297			} else {
1298				if (out >= BH_LRU_SIZE) {
1299					BUG_ON(evictee != NULL);
1300					evictee = bh2;
1301				} else {
1302					bhs[out++] = bh2;
1303				}
1304			}
1305		}
1306		while (out < BH_LRU_SIZE)
1307			bhs[out++] = NULL;
1308		memcpy(this_cpu_ptr(&bh_lrus.bhs), bhs, sizeof(bhs));
1309	}
1310	bh_lru_unlock();
1311
1312	if (evictee)
1313		__brelse(evictee);
 
1314}
1315
1316/*
1317 * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1318 */
1319static struct buffer_head *
1320lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1321{
1322	struct buffer_head *ret = NULL;
1323	unsigned int i;
1324
1325	check_irqs_on();
1326	bh_lru_lock();
1327	for (i = 0; i < BH_LRU_SIZE; i++) {
1328		struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1329
1330		if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1331		    bh->b_size == size) {
1332			if (i) {
1333				while (i) {
1334					__this_cpu_write(bh_lrus.bhs[i],
1335						__this_cpu_read(bh_lrus.bhs[i - 1]));
1336					i--;
1337				}
1338				__this_cpu_write(bh_lrus.bhs[0], bh);
1339			}
1340			get_bh(bh);
1341			ret = bh;
1342			break;
1343		}
1344	}
1345	bh_lru_unlock();
1346	return ret;
1347}
1348
1349/*
1350 * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1351 * it in the LRU and mark it as accessed.  If it is not present then return
1352 * NULL
1353 */
1354struct buffer_head *
1355__find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1356{
1357	struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1358
1359	if (bh == NULL) {
1360		/* __find_get_block_slow will mark the page accessed */
1361		bh = __find_get_block_slow(bdev, block);
1362		if (bh)
1363			bh_lru_install(bh);
1364	} else
1365		touch_buffer(bh);
1366
1367	return bh;
1368}
1369EXPORT_SYMBOL(__find_get_block);
1370
1371/*
1372 * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1373 * which corresponds to the passed block_device, block and size. The
1374 * returned buffer has its reference count incremented.
1375 *
1376 * __getblk_gfp() will lock up the machine if grow_dev_page's
1377 * try_to_free_buffers() attempt is failing.  FIXME, perhaps?
1378 */
1379struct buffer_head *
1380__getblk_gfp(struct block_device *bdev, sector_t block,
1381	     unsigned size, gfp_t gfp)
1382{
1383	struct buffer_head *bh = __find_get_block(bdev, block, size);
1384
1385	might_sleep();
1386	if (bh == NULL)
1387		bh = __getblk_slow(bdev, block, size, gfp);
1388	return bh;
1389}
1390EXPORT_SYMBOL(__getblk_gfp);
1391
1392/*
1393 * Do async read-ahead on a buffer..
1394 */
1395void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1396{
1397	struct buffer_head *bh = __getblk(bdev, block, size);
1398	if (likely(bh)) {
1399		ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh);
1400		brelse(bh);
1401	}
1402}
1403EXPORT_SYMBOL(__breadahead);
1404
1405/**
1406 *  __bread_gfp() - reads a specified block and returns the bh
1407 *  @bdev: the block_device to read from
1408 *  @block: number of block
1409 *  @size: size (in bytes) to read
1410 *  @gfp: page allocation flag
1411 *
1412 *  Reads a specified block, and returns buffer head that contains it.
1413 *  The page cache can be allocated from non-movable area
1414 *  not to prevent page migration if you set gfp to zero.
1415 *  It returns NULL if the block was unreadable.
1416 */
1417struct buffer_head *
1418__bread_gfp(struct block_device *bdev, sector_t block,
1419		   unsigned size, gfp_t gfp)
1420{
1421	struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1422
1423	if (likely(bh) && !buffer_uptodate(bh))
1424		bh = __bread_slow(bh);
1425	return bh;
1426}
1427EXPORT_SYMBOL(__bread_gfp);
1428
1429/*
1430 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1431 * This doesn't race because it runs in each cpu either in irq
1432 * or with preempt disabled.
1433 */
1434static void invalidate_bh_lru(void *arg)
1435{
1436	struct bh_lru *b = &get_cpu_var(bh_lrus);
1437	int i;
1438
1439	for (i = 0; i < BH_LRU_SIZE; i++) {
1440		brelse(b->bhs[i]);
1441		b->bhs[i] = NULL;
1442	}
1443	put_cpu_var(bh_lrus);
1444}
1445
1446static bool has_bh_in_lru(int cpu, void *dummy)
1447{
1448	struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1449	int i;
1450	
1451	for (i = 0; i < BH_LRU_SIZE; i++) {
1452		if (b->bhs[i])
1453			return 1;
1454	}
1455
1456	return 0;
1457}
1458
1459void invalidate_bh_lrus(void)
1460{
1461	on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL);
1462}
1463EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1464
1465void set_bh_page(struct buffer_head *bh,
1466		struct page *page, unsigned long offset)
1467{
1468	bh->b_page = page;
1469	BUG_ON(offset >= PAGE_SIZE);
1470	if (PageHighMem(page))
1471		/*
1472		 * This catches illegal uses and preserves the offset:
1473		 */
1474		bh->b_data = (char *)(0 + offset);
1475	else
1476		bh->b_data = page_address(page) + offset;
1477}
1478EXPORT_SYMBOL(set_bh_page);
1479
1480/*
1481 * Called when truncating a buffer on a page completely.
1482 */
1483
1484/* Bits that are cleared during an invalidate */
1485#define BUFFER_FLAGS_DISCARD \
1486	(1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1487	 1 << BH_Delay | 1 << BH_Unwritten)
1488
1489static void discard_buffer(struct buffer_head * bh)
1490{
1491	unsigned long b_state, b_state_old;
1492
1493	lock_buffer(bh);
1494	clear_buffer_dirty(bh);
1495	bh->b_bdev = NULL;
1496	b_state = bh->b_state;
1497	for (;;) {
1498		b_state_old = cmpxchg(&bh->b_state, b_state,
1499				      (b_state & ~BUFFER_FLAGS_DISCARD));
1500		if (b_state_old == b_state)
1501			break;
1502		b_state = b_state_old;
1503	}
1504	unlock_buffer(bh);
1505}
1506
1507/**
1508 * block_invalidatepage - invalidate part or all of a buffer-backed page
1509 *
1510 * @page: the page which is affected
1511 * @offset: start of the range to invalidate
1512 * @length: length of the range to invalidate
1513 *
1514 * block_invalidatepage() is called when all or part of the page has become
1515 * invalidated by a truncate operation.
1516 *
1517 * block_invalidatepage() does not have to release all buffers, but it must
1518 * ensure that no dirty buffer is left outside @offset and that no I/O
1519 * is underway against any of the blocks which are outside the truncation
1520 * point.  Because the caller is about to free (and possibly reuse) those
1521 * blocks on-disk.
1522 */
1523void block_invalidatepage(struct page *page, unsigned int offset,
1524			  unsigned int length)
1525{
1526	struct buffer_head *head, *bh, *next;
1527	unsigned int curr_off = 0;
1528	unsigned int stop = length + offset;
1529
1530	BUG_ON(!PageLocked(page));
1531	if (!page_has_buffers(page))
1532		goto out;
1533
1534	/*
1535	 * Check for overflow
1536	 */
1537	BUG_ON(stop > PAGE_SIZE || stop < length);
1538
1539	head = page_buffers(page);
1540	bh = head;
1541	do {
1542		unsigned int next_off = curr_off + bh->b_size;
1543		next = bh->b_this_page;
1544
1545		/*
1546		 * Are we still fully in range ?
1547		 */
1548		if (next_off > stop)
1549			goto out;
1550
1551		/*
1552		 * is this block fully invalidated?
1553		 */
1554		if (offset <= curr_off)
1555			discard_buffer(bh);
1556		curr_off = next_off;
1557		bh = next;
1558	} while (bh != head);
1559
1560	/*
1561	 * We release buffers only if the entire page is being invalidated.
1562	 * The get_block cached value has been unconditionally invalidated,
1563	 * so real IO is not possible anymore.
1564	 */
1565	if (offset == 0)
1566		try_to_release_page(page, 0);
1567out:
1568	return;
1569}
1570EXPORT_SYMBOL(block_invalidatepage);
1571
1572
1573/*
1574 * We attach and possibly dirty the buffers atomically wrt
1575 * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1576 * is already excluded via the page lock.
1577 */
1578void create_empty_buffers(struct page *page,
1579			unsigned long blocksize, unsigned long b_state)
1580{
1581	struct buffer_head *bh, *head, *tail;
1582
1583	head = alloc_page_buffers(page, blocksize, 1);
1584	bh = head;
1585	do {
1586		bh->b_state |= b_state;
1587		tail = bh;
1588		bh = bh->b_this_page;
1589	} while (bh);
1590	tail->b_this_page = head;
1591
1592	spin_lock(&page->mapping->private_lock);
1593	if (PageUptodate(page) || PageDirty(page)) {
1594		bh = head;
1595		do {
1596			if (PageDirty(page))
1597				set_buffer_dirty(bh);
1598			if (PageUptodate(page))
1599				set_buffer_uptodate(bh);
1600			bh = bh->b_this_page;
1601		} while (bh != head);
1602	}
1603	attach_page_buffers(page, head);
1604	spin_unlock(&page->mapping->private_lock);
1605}
1606EXPORT_SYMBOL(create_empty_buffers);
1607
1608/**
1609 * clean_bdev_aliases: clean a range of buffers in block device
1610 * @bdev: Block device to clean buffers in
1611 * @block: Start of a range of blocks to clean
1612 * @len: Number of blocks to clean
1613 *
1614 * We are taking a range of blocks for data and we don't want writeback of any
1615 * buffer-cache aliases starting from return from this function and until the
1616 * moment when something will explicitly mark the buffer dirty (hopefully that
1617 * will not happen until we will free that block ;-) We don't even need to mark
1618 * it not-uptodate - nobody can expect anything from a newly allocated buffer
1619 * anyway. We used to use unmap_buffer() for such invalidation, but that was
1620 * wrong. We definitely don't want to mark the alias unmapped, for example - it
1621 * would confuse anyone who might pick it with bread() afterwards...
1622 *
1623 * Also..  Note that bforget() doesn't lock the buffer.  So there can be
1624 * writeout I/O going on against recently-freed buffers.  We don't wait on that
1625 * I/O in bforget() - it's more efficient to wait on the I/O only if we really
1626 * need to.  That happens here.
1627 */
1628void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len)
1629{
1630	struct inode *bd_inode = bdev->bd_inode;
1631	struct address_space *bd_mapping = bd_inode->i_mapping;
1632	struct pagevec pvec;
1633	pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
1634	pgoff_t end;
1635	int i;
1636	struct buffer_head *bh;
1637	struct buffer_head *head;
1638
1639	end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits);
1640	pagevec_init(&pvec, 0);
1641	while (index <= end && pagevec_lookup(&pvec, bd_mapping, index,
1642			min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1)) {
1643		for (i = 0; i < pagevec_count(&pvec); i++) {
1644			struct page *page = pvec.pages[i];
1645
1646			index = page->index;
1647			if (index > end)
1648				break;
1649			if (!page_has_buffers(page))
1650				continue;
1651			/*
1652			 * We use page lock instead of bd_mapping->private_lock
1653			 * to pin buffers here since we can afford to sleep and
1654			 * it scales better than a global spinlock lock.
1655			 */
1656			lock_page(page);
1657			/* Recheck when the page is locked which pins bhs */
1658			if (!page_has_buffers(page))
1659				goto unlock_page;
1660			head = page_buffers(page);
1661			bh = head;
1662			do {
1663				if (!buffer_mapped(bh) || (bh->b_blocknr < block))
1664					goto next;
1665				if (bh->b_blocknr >= block + len)
1666					break;
1667				clear_buffer_dirty(bh);
1668				wait_on_buffer(bh);
1669				clear_buffer_req(bh);
1670next:
1671				bh = bh->b_this_page;
1672			} while (bh != head);
1673unlock_page:
1674			unlock_page(page);
1675		}
1676		pagevec_release(&pvec);
1677		cond_resched();
1678		index++;
 
 
1679	}
1680}
1681EXPORT_SYMBOL(clean_bdev_aliases);
1682
1683/*
1684 * Size is a power-of-two in the range 512..PAGE_SIZE,
1685 * and the case we care about most is PAGE_SIZE.
1686 *
1687 * So this *could* possibly be written with those
1688 * constraints in mind (relevant mostly if some
1689 * architecture has a slow bit-scan instruction)
1690 */
1691static inline int block_size_bits(unsigned int blocksize)
1692{
1693	return ilog2(blocksize);
1694}
1695
1696static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1697{
1698	BUG_ON(!PageLocked(page));
1699
1700	if (!page_has_buffers(page))
1701		create_empty_buffers(page, 1 << ACCESS_ONCE(inode->i_blkbits), b_state);
 
1702	return page_buffers(page);
1703}
1704
1705/*
1706 * NOTE! All mapped/uptodate combinations are valid:
1707 *
1708 *	Mapped	Uptodate	Meaning
1709 *
1710 *	No	No		"unknown" - must do get_block()
1711 *	No	Yes		"hole" - zero-filled
1712 *	Yes	No		"allocated" - allocated on disk, not read in
1713 *	Yes	Yes		"valid" - allocated and up-to-date in memory.
1714 *
1715 * "Dirty" is valid only with the last case (mapped+uptodate).
1716 */
1717
1718/*
1719 * While block_write_full_page is writing back the dirty buffers under
1720 * the page lock, whoever dirtied the buffers may decide to clean them
1721 * again at any time.  We handle that by only looking at the buffer
1722 * state inside lock_buffer().
1723 *
1724 * If block_write_full_page() is called for regular writeback
1725 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1726 * locked buffer.   This only can happen if someone has written the buffer
1727 * directly, with submit_bh().  At the address_space level PageWriteback
1728 * prevents this contention from occurring.
1729 *
1730 * If block_write_full_page() is called with wbc->sync_mode ==
1731 * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
1732 * causes the writes to be flagged as synchronous writes.
1733 */
1734int __block_write_full_page(struct inode *inode, struct page *page,
1735			get_block_t *get_block, struct writeback_control *wbc,
1736			bh_end_io_t *handler)
1737{
1738	int err;
1739	sector_t block;
1740	sector_t last_block;
1741	struct buffer_head *bh, *head;
1742	unsigned int blocksize, bbits;
1743	int nr_underway = 0;
1744	int write_flags = wbc_to_write_flags(wbc);
1745
1746	head = create_page_buffers(page, inode,
1747					(1 << BH_Dirty)|(1 << BH_Uptodate));
1748
1749	/*
1750	 * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1751	 * here, and the (potentially unmapped) buffers may become dirty at
1752	 * any time.  If a buffer becomes dirty here after we've inspected it
1753	 * then we just miss that fact, and the page stays dirty.
1754	 *
1755	 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1756	 * handle that here by just cleaning them.
1757	 */
1758
1759	bh = head;
1760	blocksize = bh->b_size;
1761	bbits = block_size_bits(blocksize);
1762
1763	block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1764	last_block = (i_size_read(inode) - 1) >> bbits;
1765
1766	/*
1767	 * Get all the dirty buffers mapped to disk addresses and
1768	 * handle any aliases from the underlying blockdev's mapping.
1769	 */
1770	do {
1771		if (block > last_block) {
1772			/*
1773			 * mapped buffers outside i_size will occur, because
1774			 * this page can be outside i_size when there is a
1775			 * truncate in progress.
1776			 */
1777			/*
1778			 * The buffer was zeroed by block_write_full_page()
1779			 */
1780			clear_buffer_dirty(bh);
1781			set_buffer_uptodate(bh);
1782		} else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1783			   buffer_dirty(bh)) {
1784			WARN_ON(bh->b_size != blocksize);
1785			err = get_block(inode, block, bh, 1);
1786			if (err)
1787				goto recover;
1788			clear_buffer_delay(bh);
1789			if (buffer_new(bh)) {
1790				/* blockdev mappings never come here */
1791				clear_buffer_new(bh);
1792				clean_bdev_bh_alias(bh);
1793			}
1794		}
1795		bh = bh->b_this_page;
1796		block++;
1797	} while (bh != head);
1798
1799	do {
1800		if (!buffer_mapped(bh))
1801			continue;
1802		/*
1803		 * If it's a fully non-blocking write attempt and we cannot
1804		 * lock the buffer then redirty the page.  Note that this can
1805		 * potentially cause a busy-wait loop from writeback threads
1806		 * and kswapd activity, but those code paths have their own
1807		 * higher-level throttling.
1808		 */
1809		if (wbc->sync_mode != WB_SYNC_NONE) {
1810			lock_buffer(bh);
1811		} else if (!trylock_buffer(bh)) {
1812			redirty_page_for_writepage(wbc, page);
1813			continue;
1814		}
1815		if (test_clear_buffer_dirty(bh)) {
1816			mark_buffer_async_write_endio(bh, handler);
1817		} else {
1818			unlock_buffer(bh);
1819		}
1820	} while ((bh = bh->b_this_page) != head);
1821
1822	/*
1823	 * The page and its buffers are protected by PageWriteback(), so we can
1824	 * drop the bh refcounts early.
1825	 */
1826	BUG_ON(PageWriteback(page));
1827	set_page_writeback(page);
1828
1829	do {
1830		struct buffer_head *next = bh->b_this_page;
1831		if (buffer_async_write(bh)) {
1832			submit_bh_wbc(REQ_OP_WRITE, write_flags, bh, 0, wbc);
 
1833			nr_underway++;
1834		}
1835		bh = next;
1836	} while (bh != head);
1837	unlock_page(page);
1838
1839	err = 0;
1840done:
1841	if (nr_underway == 0) {
1842		/*
1843		 * The page was marked dirty, but the buffers were
1844		 * clean.  Someone wrote them back by hand with
1845		 * ll_rw_block/submit_bh.  A rare case.
1846		 */
1847		end_page_writeback(page);
1848
1849		/*
1850		 * The page and buffer_heads can be released at any time from
1851		 * here on.
1852		 */
1853	}
1854	return err;
1855
1856recover:
1857	/*
1858	 * ENOSPC, or some other error.  We may already have added some
1859	 * blocks to the file, so we need to write these out to avoid
1860	 * exposing stale data.
1861	 * The page is currently locked and not marked for writeback
1862	 */
1863	bh = head;
1864	/* Recovery: lock and submit the mapped buffers */
1865	do {
1866		if (buffer_mapped(bh) && buffer_dirty(bh) &&
1867		    !buffer_delay(bh)) {
1868			lock_buffer(bh);
1869			mark_buffer_async_write_endio(bh, handler);
1870		} else {
1871			/*
1872			 * The buffer may have been set dirty during
1873			 * attachment to a dirty page.
1874			 */
1875			clear_buffer_dirty(bh);
1876		}
1877	} while ((bh = bh->b_this_page) != head);
1878	SetPageError(page);
1879	BUG_ON(PageWriteback(page));
1880	mapping_set_error(page->mapping, err);
1881	set_page_writeback(page);
1882	do {
1883		struct buffer_head *next = bh->b_this_page;
1884		if (buffer_async_write(bh)) {
1885			clear_buffer_dirty(bh);
1886			submit_bh_wbc(REQ_OP_WRITE, write_flags, bh, 0, wbc);
 
1887			nr_underway++;
1888		}
1889		bh = next;
1890	} while (bh != head);
1891	unlock_page(page);
1892	goto done;
1893}
1894EXPORT_SYMBOL(__block_write_full_page);
1895
1896/*
1897 * If a page has any new buffers, zero them out here, and mark them uptodate
1898 * and dirty so they'll be written out (in order to prevent uninitialised
1899 * block data from leaking). And clear the new bit.
1900 */
1901void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1902{
1903	unsigned int block_start, block_end;
1904	struct buffer_head *head, *bh;
1905
1906	BUG_ON(!PageLocked(page));
1907	if (!page_has_buffers(page))
1908		return;
1909
1910	bh = head = page_buffers(page);
1911	block_start = 0;
1912	do {
1913		block_end = block_start + bh->b_size;
1914
1915		if (buffer_new(bh)) {
1916			if (block_end > from && block_start < to) {
1917				if (!PageUptodate(page)) {
1918					unsigned start, size;
1919
1920					start = max(from, block_start);
1921					size = min(to, block_end) - start;
1922
1923					zero_user(page, start, size);
1924					set_buffer_uptodate(bh);
1925				}
1926
1927				clear_buffer_new(bh);
1928				mark_buffer_dirty(bh);
1929			}
1930		}
1931
1932		block_start = block_end;
1933		bh = bh->b_this_page;
1934	} while (bh != head);
1935}
1936EXPORT_SYMBOL(page_zero_new_buffers);
1937
1938static void
1939iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
1940		struct iomap *iomap)
1941{
1942	loff_t offset = block << inode->i_blkbits;
1943
1944	bh->b_bdev = iomap->bdev;
1945
1946	/*
1947	 * Block points to offset in file we need to map, iomap contains
1948	 * the offset at which the map starts. If the map ends before the
1949	 * current block, then do not map the buffer and let the caller
1950	 * handle it.
1951	 */
1952	BUG_ON(offset >= iomap->offset + iomap->length);
1953
1954	switch (iomap->type) {
1955	case IOMAP_HOLE:
1956		/*
1957		 * If the buffer is not up to date or beyond the current EOF,
1958		 * we need to mark it as new to ensure sub-block zeroing is
1959		 * executed if necessary.
1960		 */
1961		if (!buffer_uptodate(bh) ||
1962		    (offset >= i_size_read(inode)))
1963			set_buffer_new(bh);
1964		break;
1965	case IOMAP_DELALLOC:
1966		if (!buffer_uptodate(bh) ||
1967		    (offset >= i_size_read(inode)))
1968			set_buffer_new(bh);
1969		set_buffer_uptodate(bh);
1970		set_buffer_mapped(bh);
1971		set_buffer_delay(bh);
1972		break;
1973	case IOMAP_UNWRITTEN:
1974		/*
1975		 * For unwritten regions, we always need to ensure that
1976		 * sub-block writes cause the regions in the block we are not
1977		 * writing to are zeroed. Set the buffer as new to ensure this.
1978		 */
1979		set_buffer_new(bh);
1980		set_buffer_unwritten(bh);
1981		/* FALLTHRU */
1982	case IOMAP_MAPPED:
1983		if (offset >= i_size_read(inode))
 
1984			set_buffer_new(bh);
1985		bh->b_blocknr = (iomap->blkno >> (inode->i_blkbits - 9)) +
1986				((offset - iomap->offset) >> inode->i_blkbits);
1987		set_buffer_mapped(bh);
1988		break;
1989	}
1990}
1991
1992int __block_write_begin_int(struct page *page, loff_t pos, unsigned len,
1993		get_block_t *get_block, struct iomap *iomap)
1994{
1995	unsigned from = pos & (PAGE_SIZE - 1);
1996	unsigned to = from + len;
1997	struct inode *inode = page->mapping->host;
1998	unsigned block_start, block_end;
1999	sector_t block;
2000	int err = 0;
2001	unsigned blocksize, bbits;
2002	struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
2003
2004	BUG_ON(!PageLocked(page));
2005	BUG_ON(from > PAGE_SIZE);
2006	BUG_ON(to > PAGE_SIZE);
2007	BUG_ON(from > to);
2008
2009	head = create_page_buffers(page, inode, 0);
2010	blocksize = head->b_size;
2011	bbits = block_size_bits(blocksize);
2012
2013	block = (sector_t)page->index << (PAGE_SHIFT - bbits);
2014
2015	for(bh = head, block_start = 0; bh != head || !block_start;
2016	    block++, block_start=block_end, bh = bh->b_this_page) {
2017		block_end = block_start + blocksize;
2018		if (block_end <= from || block_start >= to) {
2019			if (PageUptodate(page)) {
2020				if (!buffer_uptodate(bh))
2021					set_buffer_uptodate(bh);
2022			}
2023			continue;
2024		}
2025		if (buffer_new(bh))
2026			clear_buffer_new(bh);
2027		if (!buffer_mapped(bh)) {
2028			WARN_ON(bh->b_size != blocksize);
2029			if (get_block) {
2030				err = get_block(inode, block, bh, 1);
2031				if (err)
2032					break;
2033			} else {
2034				iomap_to_bh(inode, block, bh, iomap);
2035			}
2036
2037			if (buffer_new(bh)) {
2038				clean_bdev_bh_alias(bh);
2039				if (PageUptodate(page)) {
2040					clear_buffer_new(bh);
2041					set_buffer_uptodate(bh);
2042					mark_buffer_dirty(bh);
2043					continue;
2044				}
2045				if (block_end > to || block_start < from)
2046					zero_user_segments(page,
2047						to, block_end,
2048						block_start, from);
2049				continue;
2050			}
2051		}
2052		if (PageUptodate(page)) {
2053			if (!buffer_uptodate(bh))
2054				set_buffer_uptodate(bh);
2055			continue; 
2056		}
2057		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
2058		    !buffer_unwritten(bh) &&
2059		     (block_start < from || block_end > to)) {
2060			ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2061			*wait_bh++=bh;
2062		}
2063	}
2064	/*
2065	 * If we issued read requests - let them complete.
2066	 */
2067	while(wait_bh > wait) {
2068		wait_on_buffer(*--wait_bh);
2069		if (!buffer_uptodate(*wait_bh))
2070			err = -EIO;
2071	}
2072	if (unlikely(err))
2073		page_zero_new_buffers(page, from, to);
2074	return err;
2075}
2076
2077int __block_write_begin(struct page *page, loff_t pos, unsigned len,
2078		get_block_t *get_block)
2079{
2080	return __block_write_begin_int(page, pos, len, get_block, NULL);
2081}
2082EXPORT_SYMBOL(__block_write_begin);
2083
2084static int __block_commit_write(struct inode *inode, struct page *page,
2085		unsigned from, unsigned to)
2086{
2087	unsigned block_start, block_end;
2088	int partial = 0;
2089	unsigned blocksize;
2090	struct buffer_head *bh, *head;
2091
2092	bh = head = page_buffers(page);
2093	blocksize = bh->b_size;
2094
2095	block_start = 0;
2096	do {
2097		block_end = block_start + blocksize;
2098		if (block_end <= from || block_start >= to) {
2099			if (!buffer_uptodate(bh))
2100				partial = 1;
2101		} else {
2102			set_buffer_uptodate(bh);
2103			mark_buffer_dirty(bh);
2104		}
2105		clear_buffer_new(bh);
2106
2107		block_start = block_end;
2108		bh = bh->b_this_page;
2109	} while (bh != head);
2110
2111	/*
2112	 * If this is a partial write which happened to make all buffers
2113	 * uptodate then we can optimize away a bogus readpage() for
2114	 * the next read(). Here we 'discover' whether the page went
2115	 * uptodate as a result of this (potentially partial) write.
2116	 */
2117	if (!partial)
2118		SetPageUptodate(page);
2119	return 0;
2120}
2121
2122/*
2123 * block_write_begin takes care of the basic task of block allocation and
2124 * bringing partial write blocks uptodate first.
2125 *
2126 * The filesystem needs to handle block truncation upon failure.
2127 */
2128int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2129		unsigned flags, struct page **pagep, get_block_t *get_block)
2130{
2131	pgoff_t index = pos >> PAGE_SHIFT;
2132	struct page *page;
2133	int status;
2134
2135	page = grab_cache_page_write_begin(mapping, index, flags);
2136	if (!page)
2137		return -ENOMEM;
2138
2139	status = __block_write_begin(page, pos, len, get_block);
2140	if (unlikely(status)) {
2141		unlock_page(page);
2142		put_page(page);
2143		page = NULL;
2144	}
2145
2146	*pagep = page;
2147	return status;
2148}
2149EXPORT_SYMBOL(block_write_begin);
2150
2151int block_write_end(struct file *file, struct address_space *mapping,
2152			loff_t pos, unsigned len, unsigned copied,
2153			struct page *page, void *fsdata)
2154{
2155	struct inode *inode = mapping->host;
2156	unsigned start;
2157
2158	start = pos & (PAGE_SIZE - 1);
2159
2160	if (unlikely(copied < len)) {
2161		/*
2162		 * The buffers that were written will now be uptodate, so we
2163		 * don't have to worry about a readpage reading them and
2164		 * overwriting a partial write. However if we have encountered
2165		 * a short write and only partially written into a buffer, it
2166		 * will not be marked uptodate, so a readpage might come in and
2167		 * destroy our partial write.
2168		 *
2169		 * Do the simplest thing, and just treat any short write to a
2170		 * non uptodate page as a zero-length write, and force the
2171		 * caller to redo the whole thing.
2172		 */
2173		if (!PageUptodate(page))
2174			copied = 0;
2175
2176		page_zero_new_buffers(page, start+copied, start+len);
2177	}
2178	flush_dcache_page(page);
2179
2180	/* This could be a short (even 0-length) commit */
2181	__block_commit_write(inode, page, start, start+copied);
2182
2183	return copied;
2184}
2185EXPORT_SYMBOL(block_write_end);
2186
2187int generic_write_end(struct file *file, struct address_space *mapping,
2188			loff_t pos, unsigned len, unsigned copied,
2189			struct page *page, void *fsdata)
2190{
2191	struct inode *inode = mapping->host;
2192	loff_t old_size = inode->i_size;
2193	int i_size_changed = 0;
2194
2195	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2196
2197	/*
2198	 * No need to use i_size_read() here, the i_size
2199	 * cannot change under us because we hold i_mutex.
2200	 *
2201	 * But it's important to update i_size while still holding page lock:
2202	 * page writeout could otherwise come in and zero beyond i_size.
2203	 */
2204	if (pos+copied > inode->i_size) {
2205		i_size_write(inode, pos+copied);
2206		i_size_changed = 1;
2207	}
2208
2209	unlock_page(page);
2210	put_page(page);
2211
2212	if (old_size < pos)
2213		pagecache_isize_extended(inode, old_size, pos);
2214	/*
2215	 * Don't mark the inode dirty under page lock. First, it unnecessarily
2216	 * makes the holding time of page lock longer. Second, it forces lock
2217	 * ordering of page lock and transaction start for journaling
2218	 * filesystems.
2219	 */
2220	if (i_size_changed)
2221		mark_inode_dirty(inode);
2222
2223	return copied;
2224}
2225EXPORT_SYMBOL(generic_write_end);
2226
2227/*
2228 * block_is_partially_uptodate checks whether buffers within a page are
2229 * uptodate or not.
2230 *
2231 * Returns true if all buffers which correspond to a file portion
2232 * we want to read are uptodate.
2233 */
2234int block_is_partially_uptodate(struct page *page, unsigned long from,
2235					unsigned long count)
2236{
2237	unsigned block_start, block_end, blocksize;
2238	unsigned to;
2239	struct buffer_head *bh, *head;
2240	int ret = 1;
2241
2242	if (!page_has_buffers(page))
2243		return 0;
2244
2245	head = page_buffers(page);
2246	blocksize = head->b_size;
2247	to = min_t(unsigned, PAGE_SIZE - from, count);
2248	to = from + to;
2249	if (from < blocksize && to > PAGE_SIZE - blocksize)
2250		return 0;
2251
2252	bh = head;
2253	block_start = 0;
2254	do {
2255		block_end = block_start + blocksize;
2256		if (block_end > from && block_start < to) {
2257			if (!buffer_uptodate(bh)) {
2258				ret = 0;
2259				break;
2260			}
2261			if (block_end >= to)
2262				break;
2263		}
2264		block_start = block_end;
2265		bh = bh->b_this_page;
2266	} while (bh != head);
2267
2268	return ret;
2269}
2270EXPORT_SYMBOL(block_is_partially_uptodate);
2271
2272/*
2273 * Generic "read page" function for block devices that have the normal
2274 * get_block functionality. This is most of the block device filesystems.
2275 * Reads the page asynchronously --- the unlock_buffer() and
2276 * set/clear_buffer_uptodate() functions propagate buffer state into the
2277 * page struct once IO has completed.
2278 */
2279int block_read_full_page(struct page *page, get_block_t *get_block)
2280{
2281	struct inode *inode = page->mapping->host;
2282	sector_t iblock, lblock;
2283	struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2284	unsigned int blocksize, bbits;
2285	int nr, i;
2286	int fully_mapped = 1;
2287
2288	head = create_page_buffers(page, inode, 0);
2289	blocksize = head->b_size;
2290	bbits = block_size_bits(blocksize);
2291
2292	iblock = (sector_t)page->index << (PAGE_SHIFT - bbits);
2293	lblock = (i_size_read(inode)+blocksize-1) >> bbits;
2294	bh = head;
2295	nr = 0;
2296	i = 0;
2297
2298	do {
2299		if (buffer_uptodate(bh))
2300			continue;
2301
2302		if (!buffer_mapped(bh)) {
2303			int err = 0;
2304
2305			fully_mapped = 0;
2306			if (iblock < lblock) {
2307				WARN_ON(bh->b_size != blocksize);
2308				err = get_block(inode, iblock, bh, 0);
2309				if (err)
2310					SetPageError(page);
2311			}
2312			if (!buffer_mapped(bh)) {
2313				zero_user(page, i * blocksize, blocksize);
2314				if (!err)
2315					set_buffer_uptodate(bh);
2316				continue;
2317			}
2318			/*
2319			 * get_block() might have updated the buffer
2320			 * synchronously
2321			 */
2322			if (buffer_uptodate(bh))
2323				continue;
2324		}
2325		arr[nr++] = bh;
2326	} while (i++, iblock++, (bh = bh->b_this_page) != head);
2327
2328	if (fully_mapped)
2329		SetPageMappedToDisk(page);
2330
2331	if (!nr) {
2332		/*
2333		 * All buffers are uptodate - we can set the page uptodate
2334		 * as well. But not if get_block() returned an error.
2335		 */
2336		if (!PageError(page))
2337			SetPageUptodate(page);
2338		unlock_page(page);
2339		return 0;
2340	}
2341
2342	/* Stage two: lock the buffers */
2343	for (i = 0; i < nr; i++) {
2344		bh = arr[i];
2345		lock_buffer(bh);
2346		mark_buffer_async_read(bh);
2347	}
2348
2349	/*
2350	 * Stage 3: start the IO.  Check for uptodateness
2351	 * inside the buffer lock in case another process reading
2352	 * the underlying blockdev brought it uptodate (the sct fix).
2353	 */
2354	for (i = 0; i < nr; i++) {
2355		bh = arr[i];
2356		if (buffer_uptodate(bh))
2357			end_buffer_async_read(bh, 1);
2358		else
2359			submit_bh(REQ_OP_READ, 0, bh);
2360	}
2361	return 0;
2362}
2363EXPORT_SYMBOL(block_read_full_page);
2364
2365/* utility function for filesystems that need to do work on expanding
2366 * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2367 * deal with the hole.  
2368 */
2369int generic_cont_expand_simple(struct inode *inode, loff_t size)
2370{
2371	struct address_space *mapping = inode->i_mapping;
2372	struct page *page;
2373	void *fsdata;
2374	int err;
2375
2376	err = inode_newsize_ok(inode, size);
2377	if (err)
2378		goto out;
2379
2380	err = pagecache_write_begin(NULL, mapping, size, 0,
2381				AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND,
2382				&page, &fsdata);
2383	if (err)
2384		goto out;
2385
2386	err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2387	BUG_ON(err > 0);
2388
2389out:
2390	return err;
2391}
2392EXPORT_SYMBOL(generic_cont_expand_simple);
2393
2394static int cont_expand_zero(struct file *file, struct address_space *mapping,
2395			    loff_t pos, loff_t *bytes)
2396{
2397	struct inode *inode = mapping->host;
2398	unsigned blocksize = 1 << inode->i_blkbits;
2399	struct page *page;
2400	void *fsdata;
2401	pgoff_t index, curidx;
2402	loff_t curpos;
2403	unsigned zerofrom, offset, len;
2404	int err = 0;
2405
2406	index = pos >> PAGE_SHIFT;
2407	offset = pos & ~PAGE_MASK;
2408
2409	while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2410		zerofrom = curpos & ~PAGE_MASK;
2411		if (zerofrom & (blocksize-1)) {
2412			*bytes |= (blocksize-1);
2413			(*bytes)++;
2414		}
2415		len = PAGE_SIZE - zerofrom;
2416
2417		err = pagecache_write_begin(file, mapping, curpos, len,
2418						AOP_FLAG_UNINTERRUPTIBLE,
2419						&page, &fsdata);
2420		if (err)
2421			goto out;
2422		zero_user(page, zerofrom, len);
2423		err = pagecache_write_end(file, mapping, curpos, len, len,
2424						page, fsdata);
2425		if (err < 0)
2426			goto out;
2427		BUG_ON(err != len);
2428		err = 0;
2429
2430		balance_dirty_pages_ratelimited(mapping);
2431
2432		if (unlikely(fatal_signal_pending(current))) {
2433			err = -EINTR;
2434			goto out;
2435		}
2436	}
2437
2438	/* page covers the boundary, find the boundary offset */
2439	if (index == curidx) {
2440		zerofrom = curpos & ~PAGE_MASK;
2441		/* if we will expand the thing last block will be filled */
2442		if (offset <= zerofrom) {
2443			goto out;
2444		}
2445		if (zerofrom & (blocksize-1)) {
2446			*bytes |= (blocksize-1);
2447			(*bytes)++;
2448		}
2449		len = offset - zerofrom;
2450
2451		err = pagecache_write_begin(file, mapping, curpos, len,
2452						AOP_FLAG_UNINTERRUPTIBLE,
2453						&page, &fsdata);
2454		if (err)
2455			goto out;
2456		zero_user(page, zerofrom, len);
2457		err = pagecache_write_end(file, mapping, curpos, len, len,
2458						page, fsdata);
2459		if (err < 0)
2460			goto out;
2461		BUG_ON(err != len);
2462		err = 0;
2463	}
2464out:
2465	return err;
2466}
2467
2468/*
2469 * For moronic filesystems that do not allow holes in file.
2470 * We may have to extend the file.
2471 */
2472int cont_write_begin(struct file *file, struct address_space *mapping,
2473			loff_t pos, unsigned len, unsigned flags,
2474			struct page **pagep, void **fsdata,
2475			get_block_t *get_block, loff_t *bytes)
2476{
2477	struct inode *inode = mapping->host;
2478	unsigned blocksize = 1 << inode->i_blkbits;
2479	unsigned zerofrom;
2480	int err;
2481
2482	err = cont_expand_zero(file, mapping, pos, bytes);
2483	if (err)
2484		return err;
2485
2486	zerofrom = *bytes & ~PAGE_MASK;
2487	if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2488		*bytes |= (blocksize-1);
2489		(*bytes)++;
2490	}
2491
2492	return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2493}
2494EXPORT_SYMBOL(cont_write_begin);
2495
2496int block_commit_write(struct page *page, unsigned from, unsigned to)
2497{
2498	struct inode *inode = page->mapping->host;
2499	__block_commit_write(inode,page,from,to);
2500	return 0;
2501}
2502EXPORT_SYMBOL(block_commit_write);
2503
2504/*
2505 * block_page_mkwrite() is not allowed to change the file size as it gets
2506 * called from a page fault handler when a page is first dirtied. Hence we must
2507 * be careful to check for EOF conditions here. We set the page up correctly
2508 * for a written page which means we get ENOSPC checking when writing into
2509 * holes and correct delalloc and unwritten extent mapping on filesystems that
2510 * support these features.
2511 *
2512 * We are not allowed to take the i_mutex here so we have to play games to
2513 * protect against truncate races as the page could now be beyond EOF.  Because
2514 * truncate writes the inode size before removing pages, once we have the
2515 * page lock we can determine safely if the page is beyond EOF. If it is not
2516 * beyond EOF, then the page is guaranteed safe against truncation until we
2517 * unlock the page.
2518 *
2519 * Direct callers of this function should protect against filesystem freezing
2520 * using sb_start_pagefault() - sb_end_pagefault() functions.
2521 */
2522int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2523			 get_block_t get_block)
2524{
2525	struct page *page = vmf->page;
2526	struct inode *inode = file_inode(vma->vm_file);
2527	unsigned long end;
2528	loff_t size;
2529	int ret;
2530
2531	lock_page(page);
2532	size = i_size_read(inode);
2533	if ((page->mapping != inode->i_mapping) ||
2534	    (page_offset(page) > size)) {
2535		/* We overload EFAULT to mean page got truncated */
2536		ret = -EFAULT;
2537		goto out_unlock;
2538	}
2539
2540	/* page is wholly or partially inside EOF */
2541	if (((page->index + 1) << PAGE_SHIFT) > size)
2542		end = size & ~PAGE_MASK;
2543	else
2544		end = PAGE_SIZE;
2545
2546	ret = __block_write_begin(page, 0, end, get_block);
2547	if (!ret)
2548		ret = block_commit_write(page, 0, end);
2549
2550	if (unlikely(ret < 0))
2551		goto out_unlock;
2552	set_page_dirty(page);
2553	wait_for_stable_page(page);
2554	return 0;
2555out_unlock:
2556	unlock_page(page);
2557	return ret;
2558}
2559EXPORT_SYMBOL(block_page_mkwrite);
2560
2561/*
2562 * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2563 * immediately, while under the page lock.  So it needs a special end_io
2564 * handler which does not touch the bh after unlocking it.
2565 */
2566static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2567{
2568	__end_buffer_read_notouch(bh, uptodate);
2569}
2570
2571/*
2572 * Attach the singly-linked list of buffers created by nobh_write_begin, to
2573 * the page (converting it to circular linked list and taking care of page
2574 * dirty races).
2575 */
2576static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2577{
2578	struct buffer_head *bh;
2579
2580	BUG_ON(!PageLocked(page));
2581
2582	spin_lock(&page->mapping->private_lock);
2583	bh = head;
2584	do {
2585		if (PageDirty(page))
2586			set_buffer_dirty(bh);
2587		if (!bh->b_this_page)
2588			bh->b_this_page = head;
2589		bh = bh->b_this_page;
2590	} while (bh != head);
2591	attach_page_buffers(page, head);
2592	spin_unlock(&page->mapping->private_lock);
2593}
2594
2595/*
2596 * On entry, the page is fully not uptodate.
2597 * On exit the page is fully uptodate in the areas outside (from,to)
2598 * The filesystem needs to handle block truncation upon failure.
2599 */
2600int nobh_write_begin(struct address_space *mapping,
2601			loff_t pos, unsigned len, unsigned flags,
2602			struct page **pagep, void **fsdata,
2603			get_block_t *get_block)
2604{
2605	struct inode *inode = mapping->host;
2606	const unsigned blkbits = inode->i_blkbits;
2607	const unsigned blocksize = 1 << blkbits;
2608	struct buffer_head *head, *bh;
2609	struct page *page;
2610	pgoff_t index;
2611	unsigned from, to;
2612	unsigned block_in_page;
2613	unsigned block_start, block_end;
2614	sector_t block_in_file;
2615	int nr_reads = 0;
2616	int ret = 0;
2617	int is_mapped_to_disk = 1;
2618
2619	index = pos >> PAGE_SHIFT;
2620	from = pos & (PAGE_SIZE - 1);
2621	to = from + len;
2622
2623	page = grab_cache_page_write_begin(mapping, index, flags);
2624	if (!page)
2625		return -ENOMEM;
2626	*pagep = page;
2627	*fsdata = NULL;
2628
2629	if (page_has_buffers(page)) {
2630		ret = __block_write_begin(page, pos, len, get_block);
2631		if (unlikely(ret))
2632			goto out_release;
2633		return ret;
2634	}
2635
2636	if (PageMappedToDisk(page))
2637		return 0;
2638
2639	/*
2640	 * Allocate buffers so that we can keep track of state, and potentially
2641	 * attach them to the page if an error occurs. In the common case of
2642	 * no error, they will just be freed again without ever being attached
2643	 * to the page (which is all OK, because we're under the page lock).
2644	 *
2645	 * Be careful: the buffer linked list is a NULL terminated one, rather
2646	 * than the circular one we're used to.
2647	 */
2648	head = alloc_page_buffers(page, blocksize, 0);
2649	if (!head) {
2650		ret = -ENOMEM;
2651		goto out_release;
2652	}
2653
2654	block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
2655
2656	/*
2657	 * We loop across all blocks in the page, whether or not they are
2658	 * part of the affected region.  This is so we can discover if the
2659	 * page is fully mapped-to-disk.
2660	 */
2661	for (block_start = 0, block_in_page = 0, bh = head;
2662		  block_start < PAGE_SIZE;
2663		  block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2664		int create;
2665
2666		block_end = block_start + blocksize;
2667		bh->b_state = 0;
2668		create = 1;
2669		if (block_start >= to)
2670			create = 0;
2671		ret = get_block(inode, block_in_file + block_in_page,
2672					bh, create);
2673		if (ret)
2674			goto failed;
2675		if (!buffer_mapped(bh))
2676			is_mapped_to_disk = 0;
2677		if (buffer_new(bh))
2678			clean_bdev_bh_alias(bh);
2679		if (PageUptodate(page)) {
2680			set_buffer_uptodate(bh);
2681			continue;
2682		}
2683		if (buffer_new(bh) || !buffer_mapped(bh)) {
2684			zero_user_segments(page, block_start, from,
2685							to, block_end);
2686			continue;
2687		}
2688		if (buffer_uptodate(bh))
2689			continue;	/* reiserfs does this */
2690		if (block_start < from || block_end > to) {
2691			lock_buffer(bh);
2692			bh->b_end_io = end_buffer_read_nobh;
2693			submit_bh(REQ_OP_READ, 0, bh);
2694			nr_reads++;
2695		}
2696	}
2697
2698	if (nr_reads) {
2699		/*
2700		 * The page is locked, so these buffers are protected from
2701		 * any VM or truncate activity.  Hence we don't need to care
2702		 * for the buffer_head refcounts.
2703		 */
2704		for (bh = head; bh; bh = bh->b_this_page) {
2705			wait_on_buffer(bh);
2706			if (!buffer_uptodate(bh))
2707				ret = -EIO;
2708		}
2709		if (ret)
2710			goto failed;
2711	}
2712
2713	if (is_mapped_to_disk)
2714		SetPageMappedToDisk(page);
2715
2716	*fsdata = head; /* to be released by nobh_write_end */
2717
2718	return 0;
2719
2720failed:
2721	BUG_ON(!ret);
2722	/*
2723	 * Error recovery is a bit difficult. We need to zero out blocks that
2724	 * were newly allocated, and dirty them to ensure they get written out.
2725	 * Buffers need to be attached to the page at this point, otherwise
2726	 * the handling of potential IO errors during writeout would be hard
2727	 * (could try doing synchronous writeout, but what if that fails too?)
2728	 */
2729	attach_nobh_buffers(page, head);
2730	page_zero_new_buffers(page, from, to);
2731
2732out_release:
2733	unlock_page(page);
2734	put_page(page);
2735	*pagep = NULL;
2736
2737	return ret;
2738}
2739EXPORT_SYMBOL(nobh_write_begin);
2740
2741int nobh_write_end(struct file *file, struct address_space *mapping,
2742			loff_t pos, unsigned len, unsigned copied,
2743			struct page *page, void *fsdata)
2744{
2745	struct inode *inode = page->mapping->host;
2746	struct buffer_head *head = fsdata;
2747	struct buffer_head *bh;
2748	BUG_ON(fsdata != NULL && page_has_buffers(page));
2749
2750	if (unlikely(copied < len) && head)
2751		attach_nobh_buffers(page, head);
2752	if (page_has_buffers(page))
2753		return generic_write_end(file, mapping, pos, len,
2754					copied, page, fsdata);
2755
2756	SetPageUptodate(page);
2757	set_page_dirty(page);
2758	if (pos+copied > inode->i_size) {
2759		i_size_write(inode, pos+copied);
2760		mark_inode_dirty(inode);
2761	}
2762
2763	unlock_page(page);
2764	put_page(page);
2765
2766	while (head) {
2767		bh = head;
2768		head = head->b_this_page;
2769		free_buffer_head(bh);
2770	}
2771
2772	return copied;
2773}
2774EXPORT_SYMBOL(nobh_write_end);
2775
2776/*
2777 * nobh_writepage() - based on block_full_write_page() except
2778 * that it tries to operate without attaching bufferheads to
2779 * the page.
2780 */
2781int nobh_writepage(struct page *page, get_block_t *get_block,
2782			struct writeback_control *wbc)
2783{
2784	struct inode * const inode = page->mapping->host;
2785	loff_t i_size = i_size_read(inode);
2786	const pgoff_t end_index = i_size >> PAGE_SHIFT;
2787	unsigned offset;
2788	int ret;
2789
2790	/* Is the page fully inside i_size? */
2791	if (page->index < end_index)
2792		goto out;
2793
2794	/* Is the page fully outside i_size? (truncate in progress) */
2795	offset = i_size & (PAGE_SIZE-1);
2796	if (page->index >= end_index+1 || !offset) {
2797		/*
2798		 * The page may have dirty, unmapped buffers.  For example,
2799		 * they may have been added in ext3_writepage().  Make them
2800		 * freeable here, so the page does not leak.
2801		 */
2802#if 0
2803		/* Not really sure about this  - do we need this ? */
2804		if (page->mapping->a_ops->invalidatepage)
2805			page->mapping->a_ops->invalidatepage(page, offset);
2806#endif
2807		unlock_page(page);
2808		return 0; /* don't care */
2809	}
2810
2811	/*
2812	 * The page straddles i_size.  It must be zeroed out on each and every
2813	 * writepage invocation because it may be mmapped.  "A file is mapped
2814	 * in multiples of the page size.  For a file that is not a multiple of
2815	 * the  page size, the remaining memory is zeroed when mapped, and
2816	 * writes to that region are not written out to the file."
2817	 */
2818	zero_user_segment(page, offset, PAGE_SIZE);
2819out:
2820	ret = mpage_writepage(page, get_block, wbc);
2821	if (ret == -EAGAIN)
2822		ret = __block_write_full_page(inode, page, get_block, wbc,
2823					      end_buffer_async_write);
2824	return ret;
2825}
2826EXPORT_SYMBOL(nobh_writepage);
2827
2828int nobh_truncate_page(struct address_space *mapping,
2829			loff_t from, get_block_t *get_block)
2830{
2831	pgoff_t index = from >> PAGE_SHIFT;
2832	unsigned offset = from & (PAGE_SIZE-1);
2833	unsigned blocksize;
2834	sector_t iblock;
2835	unsigned length, pos;
2836	struct inode *inode = mapping->host;
2837	struct page *page;
2838	struct buffer_head map_bh;
2839	int err;
2840
2841	blocksize = 1 << inode->i_blkbits;
2842	length = offset & (blocksize - 1);
2843
2844	/* Block boundary? Nothing to do */
2845	if (!length)
2846		return 0;
2847
2848	length = blocksize - length;
2849	iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2850
2851	page = grab_cache_page(mapping, index);
2852	err = -ENOMEM;
2853	if (!page)
2854		goto out;
2855
2856	if (page_has_buffers(page)) {
2857has_buffers:
2858		unlock_page(page);
2859		put_page(page);
2860		return block_truncate_page(mapping, from, get_block);
2861	}
2862
2863	/* Find the buffer that contains "offset" */
2864	pos = blocksize;
2865	while (offset >= pos) {
2866		iblock++;
2867		pos += blocksize;
2868	}
2869
2870	map_bh.b_size = blocksize;
2871	map_bh.b_state = 0;
2872	err = get_block(inode, iblock, &map_bh, 0);
2873	if (err)
2874		goto unlock;
2875	/* unmapped? It's a hole - nothing to do */
2876	if (!buffer_mapped(&map_bh))
2877		goto unlock;
2878
2879	/* Ok, it's mapped. Make sure it's up-to-date */
2880	if (!PageUptodate(page)) {
2881		err = mapping->a_ops->readpage(NULL, page);
2882		if (err) {
2883			put_page(page);
2884			goto out;
2885		}
2886		lock_page(page);
2887		if (!PageUptodate(page)) {
2888			err = -EIO;
2889			goto unlock;
2890		}
2891		if (page_has_buffers(page))
2892			goto has_buffers;
2893	}
2894	zero_user(page, offset, length);
2895	set_page_dirty(page);
2896	err = 0;
2897
2898unlock:
2899	unlock_page(page);
2900	put_page(page);
2901out:
2902	return err;
2903}
2904EXPORT_SYMBOL(nobh_truncate_page);
2905
2906int block_truncate_page(struct address_space *mapping,
2907			loff_t from, get_block_t *get_block)
2908{
2909	pgoff_t index = from >> PAGE_SHIFT;
2910	unsigned offset = from & (PAGE_SIZE-1);
2911	unsigned blocksize;
2912	sector_t iblock;
2913	unsigned length, pos;
2914	struct inode *inode = mapping->host;
2915	struct page *page;
2916	struct buffer_head *bh;
2917	int err;
2918
2919	blocksize = 1 << inode->i_blkbits;
2920	length = offset & (blocksize - 1);
2921
2922	/* Block boundary? Nothing to do */
2923	if (!length)
2924		return 0;
2925
2926	length = blocksize - length;
2927	iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2928	
2929	page = grab_cache_page(mapping, index);
2930	err = -ENOMEM;
2931	if (!page)
2932		goto out;
2933
2934	if (!page_has_buffers(page))
2935		create_empty_buffers(page, blocksize, 0);
2936
2937	/* Find the buffer that contains "offset" */
2938	bh = page_buffers(page);
2939	pos = blocksize;
2940	while (offset >= pos) {
2941		bh = bh->b_this_page;
2942		iblock++;
2943		pos += blocksize;
2944	}
2945
2946	err = 0;
2947	if (!buffer_mapped(bh)) {
2948		WARN_ON(bh->b_size != blocksize);
2949		err = get_block(inode, iblock, bh, 0);
2950		if (err)
2951			goto unlock;
2952		/* unmapped? It's a hole - nothing to do */
2953		if (!buffer_mapped(bh))
2954			goto unlock;
2955	}
2956
2957	/* Ok, it's mapped. Make sure it's up-to-date */
2958	if (PageUptodate(page))
2959		set_buffer_uptodate(bh);
2960
2961	if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2962		err = -EIO;
2963		ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2964		wait_on_buffer(bh);
2965		/* Uhhuh. Read error. Complain and punt. */
2966		if (!buffer_uptodate(bh))
2967			goto unlock;
2968	}
2969
2970	zero_user(page, offset, length);
2971	mark_buffer_dirty(bh);
2972	err = 0;
2973
2974unlock:
2975	unlock_page(page);
2976	put_page(page);
2977out:
2978	return err;
2979}
2980EXPORT_SYMBOL(block_truncate_page);
2981
2982/*
2983 * The generic ->writepage function for buffer-backed address_spaces
2984 */
2985int block_write_full_page(struct page *page, get_block_t *get_block,
2986			struct writeback_control *wbc)
2987{
2988	struct inode * const inode = page->mapping->host;
2989	loff_t i_size = i_size_read(inode);
2990	const pgoff_t end_index = i_size >> PAGE_SHIFT;
2991	unsigned offset;
2992
2993	/* Is the page fully inside i_size? */
2994	if (page->index < end_index)
2995		return __block_write_full_page(inode, page, get_block, wbc,
2996					       end_buffer_async_write);
2997
2998	/* Is the page fully outside i_size? (truncate in progress) */
2999	offset = i_size & (PAGE_SIZE-1);
3000	if (page->index >= end_index+1 || !offset) {
3001		/*
3002		 * The page may have dirty, unmapped buffers.  For example,
3003		 * they may have been added in ext3_writepage().  Make them
3004		 * freeable here, so the page does not leak.
3005		 */
3006		do_invalidatepage(page, 0, PAGE_SIZE);
3007		unlock_page(page);
3008		return 0; /* don't care */
3009	}
3010
3011	/*
3012	 * The page straddles i_size.  It must be zeroed out on each and every
3013	 * writepage invocation because it may be mmapped.  "A file is mapped
3014	 * in multiples of the page size.  For a file that is not a multiple of
3015	 * the  page size, the remaining memory is zeroed when mapped, and
3016	 * writes to that region are not written out to the file."
3017	 */
3018	zero_user_segment(page, offset, PAGE_SIZE);
3019	return __block_write_full_page(inode, page, get_block, wbc,
3020							end_buffer_async_write);
3021}
3022EXPORT_SYMBOL(block_write_full_page);
3023
3024sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
3025			    get_block_t *get_block)
3026{
3027	struct buffer_head tmp;
3028	struct inode *inode = mapping->host;
3029	tmp.b_state = 0;
3030	tmp.b_blocknr = 0;
3031	tmp.b_size = 1 << inode->i_blkbits;
 
3032	get_block(inode, block, &tmp, 0);
3033	return tmp.b_blocknr;
3034}
3035EXPORT_SYMBOL(generic_block_bmap);
3036
3037static void end_bio_bh_io_sync(struct bio *bio)
3038{
3039	struct buffer_head *bh = bio->bi_private;
3040
3041	if (unlikely(bio_flagged(bio, BIO_QUIET)))
3042		set_bit(BH_Quiet, &bh->b_state);
3043
3044	bh->b_end_io(bh, !bio->bi_error);
3045	bio_put(bio);
3046}
3047
3048/*
3049 * This allows us to do IO even on the odd last sectors
3050 * of a device, even if the block size is some multiple
3051 * of the physical sector size.
3052 *
3053 * We'll just truncate the bio to the size of the device,
3054 * and clear the end of the buffer head manually.
3055 *
3056 * Truly out-of-range accesses will turn into actual IO
3057 * errors, this only handles the "we need to be able to
3058 * do IO at the final sector" case.
3059 */
3060void guard_bio_eod(int op, struct bio *bio)
3061{
3062	sector_t maxsector;
3063	struct bio_vec *bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
3064	unsigned truncated_bytes;
 
 
 
 
 
 
 
 
 
3065
3066	maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
3067	if (!maxsector)
3068		return;
3069
3070	/*
3071	 * If the *whole* IO is past the end of the device,
3072	 * let it through, and the IO layer will turn it into
3073	 * an EIO.
3074	 */
3075	if (unlikely(bio->bi_iter.bi_sector >= maxsector))
3076		return;
3077
3078	maxsector -= bio->bi_iter.bi_sector;
3079	if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
3080		return;
3081
3082	/* Uhhuh. We've got a bio that straddles the device size! */
3083	truncated_bytes = bio->bi_iter.bi_size - (maxsector << 9);
3084
 
 
 
 
 
 
 
3085	/* Truncate the bio.. */
3086	bio->bi_iter.bi_size -= truncated_bytes;
3087	bvec->bv_len -= truncated_bytes;
3088
3089	/* ..and clear the end of the buffer for reads */
3090	if (op == REQ_OP_READ) {
3091		zero_user(bvec->bv_page, bvec->bv_offset + bvec->bv_len,
 
 
 
3092				truncated_bytes);
3093	}
3094}
3095
3096static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
3097			 unsigned long bio_flags, struct writeback_control *wbc)
3098{
3099	struct bio *bio;
3100
3101	BUG_ON(!buffer_locked(bh));
3102	BUG_ON(!buffer_mapped(bh));
3103	BUG_ON(!bh->b_end_io);
3104	BUG_ON(buffer_delay(bh));
3105	BUG_ON(buffer_unwritten(bh));
3106
3107	/*
3108	 * Only clear out a write error when rewriting
3109	 */
3110	if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
3111		clear_buffer_write_io_error(bh);
3112
3113	/*
3114	 * from here on down, it's all bio -- do the initial mapping,
3115	 * submit_bio -> generic_make_request may further map this bio around
3116	 */
3117	bio = bio_alloc(GFP_NOIO, 1);
3118
3119	if (wbc) {
3120		wbc_init_bio(wbc, bio);
3121		wbc_account_io(wbc, bh->b_page, bh->b_size);
3122	}
3123
3124	bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
3125	bio->bi_bdev = bh->b_bdev;
 
3126
3127	bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
3128	BUG_ON(bio->bi_iter.bi_size != bh->b_size);
3129
3130	bio->bi_end_io = end_bio_bh_io_sync;
3131	bio->bi_private = bh;
3132	bio->bi_flags |= bio_flags;
3133
3134	/* Take care of bh's that straddle the end of the device */
3135	guard_bio_eod(op, bio);
3136
3137	if (buffer_meta(bh))
3138		op_flags |= REQ_META;
3139	if (buffer_prio(bh))
3140		op_flags |= REQ_PRIO;
3141	bio_set_op_attrs(bio, op, op_flags);
3142
 
 
 
 
 
3143	submit_bio(bio);
3144	return 0;
3145}
3146
3147int _submit_bh(int op, int op_flags, struct buffer_head *bh,
3148	       unsigned long bio_flags)
3149{
3150	return submit_bh_wbc(op, op_flags, bh, bio_flags, NULL);
3151}
3152EXPORT_SYMBOL_GPL(_submit_bh);
3153
3154int submit_bh(int op, int op_flags,  struct buffer_head *bh)
3155{
3156	return submit_bh_wbc(op, op_flags, bh, 0, NULL);
3157}
3158EXPORT_SYMBOL(submit_bh);
3159
3160/**
3161 * ll_rw_block: low-level access to block devices (DEPRECATED)
3162 * @op: whether to %READ or %WRITE
3163 * @op_flags: req_flag_bits
3164 * @nr: number of &struct buffer_heads in the array
3165 * @bhs: array of pointers to &struct buffer_head
3166 *
3167 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3168 * requests an I/O operation on them, either a %REQ_OP_READ or a %REQ_OP_WRITE.
3169 * @op_flags contains flags modifying the detailed I/O behavior, most notably
3170 * %REQ_RAHEAD.
3171 *
3172 * This function drops any buffer that it cannot get a lock on (with the
3173 * BH_Lock state bit), any buffer that appears to be clean when doing a write
3174 * request, and any buffer that appears to be up-to-date when doing read
3175 * request.  Further it marks as clean buffers that are processed for
3176 * writing (the buffer cache won't assume that they are actually clean
3177 * until the buffer gets unlocked).
3178 *
3179 * ll_rw_block sets b_end_io to simple completion handler that marks
3180 * the buffer up-to-date (if appropriate), unlocks the buffer and wakes
3181 * any waiters. 
3182 *
3183 * All of the buffers must be for the same device, and must also be a
3184 * multiple of the current approved size for the device.
3185 */
3186void ll_rw_block(int op, int op_flags,  int nr, struct buffer_head *bhs[])
3187{
3188	int i;
3189
3190	for (i = 0; i < nr; i++) {
3191		struct buffer_head *bh = bhs[i];
3192
3193		if (!trylock_buffer(bh))
3194			continue;
3195		if (op == WRITE) {
3196			if (test_clear_buffer_dirty(bh)) {
3197				bh->b_end_io = end_buffer_write_sync;
3198				get_bh(bh);
3199				submit_bh(op, op_flags, bh);
3200				continue;
3201			}
3202		} else {
3203			if (!buffer_uptodate(bh)) {
3204				bh->b_end_io = end_buffer_read_sync;
3205				get_bh(bh);
3206				submit_bh(op, op_flags, bh);
3207				continue;
3208			}
3209		}
3210		unlock_buffer(bh);
3211	}
3212}
3213EXPORT_SYMBOL(ll_rw_block);
3214
3215void write_dirty_buffer(struct buffer_head *bh, int op_flags)
3216{
3217	lock_buffer(bh);
3218	if (!test_clear_buffer_dirty(bh)) {
3219		unlock_buffer(bh);
3220		return;
3221	}
3222	bh->b_end_io = end_buffer_write_sync;
3223	get_bh(bh);
3224	submit_bh(REQ_OP_WRITE, op_flags, bh);
3225}
3226EXPORT_SYMBOL(write_dirty_buffer);
3227
3228/*
3229 * For a data-integrity writeout, we need to wait upon any in-progress I/O
3230 * and then start new I/O and then wait upon it.  The caller must have a ref on
3231 * the buffer_head.
3232 */
3233int __sync_dirty_buffer(struct buffer_head *bh, int op_flags)
3234{
3235	int ret = 0;
3236
3237	WARN_ON(atomic_read(&bh->b_count) < 1);
3238	lock_buffer(bh);
3239	if (test_clear_buffer_dirty(bh)) {
3240		get_bh(bh);
3241		bh->b_end_io = end_buffer_write_sync;
3242		ret = submit_bh(REQ_OP_WRITE, op_flags, bh);
3243		wait_on_buffer(bh);
3244		if (!ret && !buffer_uptodate(bh))
3245			ret = -EIO;
3246	} else {
3247		unlock_buffer(bh);
3248	}
3249	return ret;
3250}
3251EXPORT_SYMBOL(__sync_dirty_buffer);
3252
3253int sync_dirty_buffer(struct buffer_head *bh)
3254{
3255	return __sync_dirty_buffer(bh, REQ_SYNC);
3256}
3257EXPORT_SYMBOL(sync_dirty_buffer);
3258
3259/*
3260 * try_to_free_buffers() checks if all the buffers on this particular page
3261 * are unused, and releases them if so.
3262 *
3263 * Exclusion against try_to_free_buffers may be obtained by either
3264 * locking the page or by holding its mapping's private_lock.
3265 *
3266 * If the page is dirty but all the buffers are clean then we need to
3267 * be sure to mark the page clean as well.  This is because the page
3268 * may be against a block device, and a later reattachment of buffers
3269 * to a dirty page will set *all* buffers dirty.  Which would corrupt
3270 * filesystem data on the same device.
3271 *
3272 * The same applies to regular filesystem pages: if all the buffers are
3273 * clean then we set the page clean and proceed.  To do that, we require
3274 * total exclusion from __set_page_dirty_buffers().  That is obtained with
3275 * private_lock.
3276 *
3277 * try_to_free_buffers() is non-blocking.
3278 */
3279static inline int buffer_busy(struct buffer_head *bh)
3280{
3281	return atomic_read(&bh->b_count) |
3282		(bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3283}
3284
3285static int
3286drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3287{
3288	struct buffer_head *head = page_buffers(page);
3289	struct buffer_head *bh;
3290
3291	bh = head;
3292	do {
3293		if (buffer_write_io_error(bh) && page->mapping)
3294			mapping_set_error(page->mapping, -EIO);
3295		if (buffer_busy(bh))
3296			goto failed;
3297		bh = bh->b_this_page;
3298	} while (bh != head);
3299
3300	do {
3301		struct buffer_head *next = bh->b_this_page;
3302
3303		if (bh->b_assoc_map)
3304			__remove_assoc_queue(bh);
3305		bh = next;
3306	} while (bh != head);
3307	*buffers_to_free = head;
3308	__clear_page_buffers(page);
3309	return 1;
3310failed:
3311	return 0;
3312}
3313
3314int try_to_free_buffers(struct page *page)
3315{
3316	struct address_space * const mapping = page->mapping;
3317	struct buffer_head *buffers_to_free = NULL;
3318	int ret = 0;
3319
3320	BUG_ON(!PageLocked(page));
3321	if (PageWriteback(page))
3322		return 0;
3323
3324	if (mapping == NULL) {		/* can this still happen? */
3325		ret = drop_buffers(page, &buffers_to_free);
3326		goto out;
3327	}
3328
3329	spin_lock(&mapping->private_lock);
3330	ret = drop_buffers(page, &buffers_to_free);
3331
3332	/*
3333	 * If the filesystem writes its buffers by hand (eg ext3)
3334	 * then we can have clean buffers against a dirty page.  We
3335	 * clean the page here; otherwise the VM will never notice
3336	 * that the filesystem did any IO at all.
3337	 *
3338	 * Also, during truncate, discard_buffer will have marked all
3339	 * the page's buffers clean.  We discover that here and clean
3340	 * the page also.
3341	 *
3342	 * private_lock must be held over this entire operation in order
3343	 * to synchronise against __set_page_dirty_buffers and prevent the
3344	 * dirty bit from being lost.
3345	 */
3346	if (ret)
3347		cancel_dirty_page(page);
3348	spin_unlock(&mapping->private_lock);
3349out:
3350	if (buffers_to_free) {
3351		struct buffer_head *bh = buffers_to_free;
3352
3353		do {
3354			struct buffer_head *next = bh->b_this_page;
3355			free_buffer_head(bh);
3356			bh = next;
3357		} while (bh != buffers_to_free);
3358	}
3359	return ret;
3360}
3361EXPORT_SYMBOL(try_to_free_buffers);
3362
3363/*
3364 * There are no bdflush tunables left.  But distributions are
3365 * still running obsolete flush daemons, so we terminate them here.
3366 *
3367 * Use of bdflush() is deprecated and will be removed in a future kernel.
3368 * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3369 */
3370SYSCALL_DEFINE2(bdflush, int, func, long, data)
3371{
3372	static int msg_count;
3373
3374	if (!capable(CAP_SYS_ADMIN))
3375		return -EPERM;
3376
3377	if (msg_count < 5) {
3378		msg_count++;
3379		printk(KERN_INFO
3380			"warning: process `%s' used the obsolete bdflush"
3381			" system call\n", current->comm);
3382		printk(KERN_INFO "Fix your initscripts?\n");
3383	}
3384
3385	if (func == 1)
3386		do_exit(0);
3387	return 0;
3388}
3389
3390/*
3391 * Buffer-head allocation
3392 */
3393static struct kmem_cache *bh_cachep __read_mostly;
3394
3395/*
3396 * Once the number of bh's in the machine exceeds this level, we start
3397 * stripping them in writeback.
3398 */
3399static unsigned long max_buffer_heads;
3400
3401int buffer_heads_over_limit;
3402
3403struct bh_accounting {
3404	int nr;			/* Number of live bh's */
3405	int ratelimit;		/* Limit cacheline bouncing */
3406};
3407
3408static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3409
3410static void recalc_bh_state(void)
3411{
3412	int i;
3413	int tot = 0;
3414
3415	if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3416		return;
3417	__this_cpu_write(bh_accounting.ratelimit, 0);
3418	for_each_online_cpu(i)
3419		tot += per_cpu(bh_accounting, i).nr;
3420	buffer_heads_over_limit = (tot > max_buffer_heads);
3421}
3422
3423struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3424{
3425	struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3426	if (ret) {
3427		INIT_LIST_HEAD(&ret->b_assoc_buffers);
3428		preempt_disable();
3429		__this_cpu_inc(bh_accounting.nr);
3430		recalc_bh_state();
3431		preempt_enable();
3432	}
3433	return ret;
3434}
3435EXPORT_SYMBOL(alloc_buffer_head);
3436
3437void free_buffer_head(struct buffer_head *bh)
3438{
3439	BUG_ON(!list_empty(&bh->b_assoc_buffers));
3440	kmem_cache_free(bh_cachep, bh);
3441	preempt_disable();
3442	__this_cpu_dec(bh_accounting.nr);
3443	recalc_bh_state();
3444	preempt_enable();
3445}
3446EXPORT_SYMBOL(free_buffer_head);
3447
3448static int buffer_exit_cpu_dead(unsigned int cpu)
3449{
3450	int i;
3451	struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3452
3453	for (i = 0; i < BH_LRU_SIZE; i++) {
3454		brelse(b->bhs[i]);
3455		b->bhs[i] = NULL;
3456	}
3457	this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3458	per_cpu(bh_accounting, cpu).nr = 0;
3459	return 0;
3460}
3461
3462/**
3463 * bh_uptodate_or_lock - Test whether the buffer is uptodate
3464 * @bh: struct buffer_head
3465 *
3466 * Return true if the buffer is up-to-date and false,
3467 * with the buffer locked, if not.
3468 */
3469int bh_uptodate_or_lock(struct buffer_head *bh)
3470{
3471	if (!buffer_uptodate(bh)) {
3472		lock_buffer(bh);
3473		if (!buffer_uptodate(bh))
3474			return 0;
3475		unlock_buffer(bh);
3476	}
3477	return 1;
3478}
3479EXPORT_SYMBOL(bh_uptodate_or_lock);
3480
3481/**
3482 * bh_submit_read - Submit a locked buffer for reading
3483 * @bh: struct buffer_head
3484 *
3485 * Returns zero on success and -EIO on error.
3486 */
3487int bh_submit_read(struct buffer_head *bh)
3488{
3489	BUG_ON(!buffer_locked(bh));
3490
3491	if (buffer_uptodate(bh)) {
3492		unlock_buffer(bh);
3493		return 0;
3494	}
3495
3496	get_bh(bh);
3497	bh->b_end_io = end_buffer_read_sync;
3498	submit_bh(REQ_OP_READ, 0, bh);
3499	wait_on_buffer(bh);
3500	if (buffer_uptodate(bh))
3501		return 0;
3502	return -EIO;
3503}
3504EXPORT_SYMBOL(bh_submit_read);
3505
3506void __init buffer_init(void)
3507{
3508	unsigned long nrpages;
3509	int ret;
3510
3511	bh_cachep = kmem_cache_create("buffer_head",
3512			sizeof(struct buffer_head), 0,
3513				(SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3514				SLAB_MEM_SPREAD),
3515				NULL);
3516
3517	/*
3518	 * Limit the bh occupancy to 10% of ZONE_NORMAL
3519	 */
3520	nrpages = (nr_free_buffer_pages() * 10) / 100;
3521	max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3522	ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead",
3523					NULL, buffer_exit_cpu_dead);
3524	WARN_ON(ret < 0);
3525}
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/fs/buffer.c
   4 *
   5 *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
   6 */
   7
   8/*
   9 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
  10 *
  11 * Removed a lot of unnecessary code and simplified things now that
  12 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
  13 *
  14 * Speed up hash, lru, and free list operations.  Use gfp() for allocating
  15 * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
  16 *
  17 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
  18 *
  19 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
  20 */
  21
  22#include <linux/kernel.h>
  23#include <linux/sched/signal.h>
  24#include <linux/syscalls.h>
  25#include <linux/fs.h>
  26#include <linux/iomap.h>
  27#include <linux/mm.h>
  28#include <linux/percpu.h>
  29#include <linux/slab.h>
  30#include <linux/capability.h>
  31#include <linux/blkdev.h>
  32#include <linux/file.h>
  33#include <linux/quotaops.h>
  34#include <linux/highmem.h>
  35#include <linux/export.h>
  36#include <linux/backing-dev.h>
  37#include <linux/writeback.h>
  38#include <linux/hash.h>
  39#include <linux/suspend.h>
  40#include <linux/buffer_head.h>
  41#include <linux/task_io_accounting_ops.h>
  42#include <linux/bio.h>
 
  43#include <linux/cpu.h>
  44#include <linux/bitops.h>
  45#include <linux/mpage.h>
  46#include <linux/bit_spinlock.h>
  47#include <linux/pagevec.h>
  48#include <linux/sched/mm.h>
  49#include <trace/events/block.h>
  50
  51static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
  52static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
  53			 enum rw_hint hint, struct writeback_control *wbc);
 
  54
  55#define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
  56
 
 
 
 
 
 
 
  57inline void touch_buffer(struct buffer_head *bh)
  58{
  59	trace_block_touch_buffer(bh);
  60	mark_page_accessed(bh->b_page);
  61}
  62EXPORT_SYMBOL(touch_buffer);
  63
  64void __lock_buffer(struct buffer_head *bh)
  65{
  66	wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
  67}
  68EXPORT_SYMBOL(__lock_buffer);
  69
  70void unlock_buffer(struct buffer_head *bh)
  71{
  72	clear_bit_unlock(BH_Lock, &bh->b_state);
  73	smp_mb__after_atomic();
  74	wake_up_bit(&bh->b_state, BH_Lock);
  75}
  76EXPORT_SYMBOL(unlock_buffer);
  77
  78/*
  79 * Returns if the page has dirty or writeback buffers. If all the buffers
  80 * are unlocked and clean then the PageDirty information is stale. If
  81 * any of the pages are locked, it is assumed they are locked for IO.
  82 */
  83void buffer_check_dirty_writeback(struct page *page,
  84				     bool *dirty, bool *writeback)
  85{
  86	struct buffer_head *head, *bh;
  87	*dirty = false;
  88	*writeback = false;
  89
  90	BUG_ON(!PageLocked(page));
  91
  92	if (!page_has_buffers(page))
  93		return;
  94
  95	if (PageWriteback(page))
  96		*writeback = true;
  97
  98	head = page_buffers(page);
  99	bh = head;
 100	do {
 101		if (buffer_locked(bh))
 102			*writeback = true;
 103
 104		if (buffer_dirty(bh))
 105			*dirty = true;
 106
 107		bh = bh->b_this_page;
 108	} while (bh != head);
 109}
 110EXPORT_SYMBOL(buffer_check_dirty_writeback);
 111
 112/*
 113 * Block until a buffer comes unlocked.  This doesn't stop it
 114 * from becoming locked again - you have to lock it yourself
 115 * if you want to preserve its state.
 116 */
 117void __wait_on_buffer(struct buffer_head * bh)
 118{
 119	wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
 120}
 121EXPORT_SYMBOL(__wait_on_buffer);
 122
 123static void
 124__clear_page_buffers(struct page *page)
 125{
 126	ClearPagePrivate(page);
 127	set_page_private(page, 0);
 128	put_page(page);
 129}
 130
 131static void buffer_io_error(struct buffer_head *bh, char *msg)
 132{
 133	if (!test_bit(BH_Quiet, &bh->b_state))
 134		printk_ratelimited(KERN_ERR
 135			"Buffer I/O error on dev %pg, logical block %llu%s\n",
 136			bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
 137}
 138
 139/*
 140 * End-of-IO handler helper function which does not touch the bh after
 141 * unlocking it.
 142 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
 143 * a race there is benign: unlock_buffer() only use the bh's address for
 144 * hashing after unlocking the buffer, so it doesn't actually touch the bh
 145 * itself.
 146 */
 147static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
 148{
 149	if (uptodate) {
 150		set_buffer_uptodate(bh);
 151	} else {
 152		/* This happens, due to failed read-ahead attempts. */
 153		clear_buffer_uptodate(bh);
 154	}
 155	unlock_buffer(bh);
 156}
 157
 158/*
 159 * Default synchronous end-of-IO handler..  Just mark it up-to-date and
 160 * unlock the buffer. This is what ll_rw_block uses too.
 161 */
 162void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
 163{
 164	__end_buffer_read_notouch(bh, uptodate);
 165	put_bh(bh);
 166}
 167EXPORT_SYMBOL(end_buffer_read_sync);
 168
 169void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
 170{
 171	if (uptodate) {
 172		set_buffer_uptodate(bh);
 173	} else {
 174		buffer_io_error(bh, ", lost sync page write");
 175		mark_buffer_write_io_error(bh);
 176		clear_buffer_uptodate(bh);
 177	}
 178	unlock_buffer(bh);
 179	put_bh(bh);
 180}
 181EXPORT_SYMBOL(end_buffer_write_sync);
 182
 183/*
 184 * Various filesystems appear to want __find_get_block to be non-blocking.
 185 * But it's the page lock which protects the buffers.  To get around this,
 186 * we get exclusion from try_to_free_buffers with the blockdev mapping's
 187 * private_lock.
 188 *
 189 * Hack idea: for the blockdev mapping, private_lock contention
 190 * may be quite high.  This code could TryLock the page, and if that
 191 * succeeds, there is no need to take private_lock.
 
 192 */
 193static struct buffer_head *
 194__find_get_block_slow(struct block_device *bdev, sector_t block)
 195{
 196	struct inode *bd_inode = bdev->bd_inode;
 197	struct address_space *bd_mapping = bd_inode->i_mapping;
 198	struct buffer_head *ret = NULL;
 199	pgoff_t index;
 200	struct buffer_head *bh;
 201	struct buffer_head *head;
 202	struct page *page;
 203	int all_mapped = 1;
 204	static DEFINE_RATELIMIT_STATE(last_warned, HZ, 1);
 205
 206	index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
 207	page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED);
 208	if (!page)
 209		goto out;
 210
 211	spin_lock(&bd_mapping->private_lock);
 212	if (!page_has_buffers(page))
 213		goto out_unlock;
 214	head = page_buffers(page);
 215	bh = head;
 216	do {
 217		if (!buffer_mapped(bh))
 218			all_mapped = 0;
 219		else if (bh->b_blocknr == block) {
 220			ret = bh;
 221			get_bh(bh);
 222			goto out_unlock;
 223		}
 224		bh = bh->b_this_page;
 225	} while (bh != head);
 226
 227	/* we might be here because some of the buffers on this page are
 228	 * not mapped.  This is due to various races between
 229	 * file io on the block device and getblk.  It gets dealt with
 230	 * elsewhere, don't buffer_error if we had some unmapped buffers
 231	 */
 232	ratelimit_set_flags(&last_warned, RATELIMIT_MSG_ON_RELEASE);
 233	if (all_mapped && __ratelimit(&last_warned)) {
 234		printk("__find_get_block_slow() failed. block=%llu, "
 235		       "b_blocknr=%llu, b_state=0x%08lx, b_size=%zu, "
 236		       "device %pg blocksize: %d\n",
 237		       (unsigned long long)block,
 238		       (unsigned long long)bh->b_blocknr,
 239		       bh->b_state, bh->b_size, bdev,
 240		       1 << bd_inode->i_blkbits);
 241	}
 242out_unlock:
 243	spin_unlock(&bd_mapping->private_lock);
 244	put_page(page);
 245out:
 246	return ret;
 247}
 248
 249/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 250 * I/O completion handler for block_read_full_page() - pages
 251 * which come unlocked at the end of I/O.
 252 */
 253static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
 254{
 255	unsigned long flags;
 256	struct buffer_head *first;
 257	struct buffer_head *tmp;
 258	struct page *page;
 259	int page_uptodate = 1;
 260
 261	BUG_ON(!buffer_async_read(bh));
 262
 263	page = bh->b_page;
 264	if (uptodate) {
 265		set_buffer_uptodate(bh);
 266	} else {
 267		clear_buffer_uptodate(bh);
 268		buffer_io_error(bh, ", async page read");
 269		SetPageError(page);
 270	}
 271
 272	/*
 273	 * Be _very_ careful from here on. Bad things can happen if
 274	 * two buffer heads end IO at almost the same time and both
 275	 * decide that the page is now completely done.
 276	 */
 277	first = page_buffers(page);
 278	local_irq_save(flags);
 279	bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
 280	clear_buffer_async_read(bh);
 281	unlock_buffer(bh);
 282	tmp = bh;
 283	do {
 284		if (!buffer_uptodate(tmp))
 285			page_uptodate = 0;
 286		if (buffer_async_read(tmp)) {
 287			BUG_ON(!buffer_locked(tmp));
 288			goto still_busy;
 289		}
 290		tmp = tmp->b_this_page;
 291	} while (tmp != bh);
 292	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
 293	local_irq_restore(flags);
 294
 295	/*
 296	 * If none of the buffers had errors and they are all
 297	 * uptodate then we can set the page uptodate.
 298	 */
 299	if (page_uptodate && !PageError(page))
 300		SetPageUptodate(page);
 301	unlock_page(page);
 302	return;
 303
 304still_busy:
 305	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
 306	local_irq_restore(flags);
 307	return;
 308}
 309
 310/*
 311 * Completion handler for block_write_full_page() - pages which are unlocked
 312 * during I/O, and which have PageWriteback cleared upon I/O completion.
 313 */
 314void end_buffer_async_write(struct buffer_head *bh, int uptodate)
 315{
 316	unsigned long flags;
 317	struct buffer_head *first;
 318	struct buffer_head *tmp;
 319	struct page *page;
 320
 321	BUG_ON(!buffer_async_write(bh));
 322
 323	page = bh->b_page;
 324	if (uptodate) {
 325		set_buffer_uptodate(bh);
 326	} else {
 327		buffer_io_error(bh, ", lost async page write");
 328		mark_buffer_write_io_error(bh);
 
 329		clear_buffer_uptodate(bh);
 330		SetPageError(page);
 331	}
 332
 333	first = page_buffers(page);
 334	local_irq_save(flags);
 335	bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
 336
 337	clear_buffer_async_write(bh);
 338	unlock_buffer(bh);
 339	tmp = bh->b_this_page;
 340	while (tmp != bh) {
 341		if (buffer_async_write(tmp)) {
 342			BUG_ON(!buffer_locked(tmp));
 343			goto still_busy;
 344		}
 345		tmp = tmp->b_this_page;
 346	}
 347	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
 348	local_irq_restore(flags);
 349	end_page_writeback(page);
 350	return;
 351
 352still_busy:
 353	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
 354	local_irq_restore(flags);
 355	return;
 356}
 357EXPORT_SYMBOL(end_buffer_async_write);
 358
 359/*
 360 * If a page's buffers are under async readin (end_buffer_async_read
 361 * completion) then there is a possibility that another thread of
 362 * control could lock one of the buffers after it has completed
 363 * but while some of the other buffers have not completed.  This
 364 * locked buffer would confuse end_buffer_async_read() into not unlocking
 365 * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
 366 * that this buffer is not under async I/O.
 367 *
 368 * The page comes unlocked when it has no locked buffer_async buffers
 369 * left.
 370 *
 371 * PageLocked prevents anyone starting new async I/O reads any of
 372 * the buffers.
 373 *
 374 * PageWriteback is used to prevent simultaneous writeout of the same
 375 * page.
 376 *
 377 * PageLocked prevents anyone from starting writeback of a page which is
 378 * under read I/O (PageWriteback is only ever set against a locked page).
 379 */
 380static void mark_buffer_async_read(struct buffer_head *bh)
 381{
 382	bh->b_end_io = end_buffer_async_read;
 383	set_buffer_async_read(bh);
 384}
 385
 386static void mark_buffer_async_write_endio(struct buffer_head *bh,
 387					  bh_end_io_t *handler)
 388{
 389	bh->b_end_io = handler;
 390	set_buffer_async_write(bh);
 391}
 392
 393void mark_buffer_async_write(struct buffer_head *bh)
 394{
 395	mark_buffer_async_write_endio(bh, end_buffer_async_write);
 396}
 397EXPORT_SYMBOL(mark_buffer_async_write);
 398
 399
 400/*
 401 * fs/buffer.c contains helper functions for buffer-backed address space's
 402 * fsync functions.  A common requirement for buffer-based filesystems is
 403 * that certain data from the backing blockdev needs to be written out for
 404 * a successful fsync().  For example, ext2 indirect blocks need to be
 405 * written back and waited upon before fsync() returns.
 406 *
 407 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
 408 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
 409 * management of a list of dependent buffers at ->i_mapping->private_list.
 410 *
 411 * Locking is a little subtle: try_to_free_buffers() will remove buffers
 412 * from their controlling inode's queue when they are being freed.  But
 413 * try_to_free_buffers() will be operating against the *blockdev* mapping
 414 * at the time, not against the S_ISREG file which depends on those buffers.
 415 * So the locking for private_list is via the private_lock in the address_space
 416 * which backs the buffers.  Which is different from the address_space 
 417 * against which the buffers are listed.  So for a particular address_space,
 418 * mapping->private_lock does *not* protect mapping->private_list!  In fact,
 419 * mapping->private_list will always be protected by the backing blockdev's
 420 * ->private_lock.
 421 *
 422 * Which introduces a requirement: all buffers on an address_space's
 423 * ->private_list must be from the same address_space: the blockdev's.
 424 *
 425 * address_spaces which do not place buffers at ->private_list via these
 426 * utility functions are free to use private_lock and private_list for
 427 * whatever they want.  The only requirement is that list_empty(private_list)
 428 * be true at clear_inode() time.
 429 *
 430 * FIXME: clear_inode should not call invalidate_inode_buffers().  The
 431 * filesystems should do that.  invalidate_inode_buffers() should just go
 432 * BUG_ON(!list_empty).
 433 *
 434 * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
 435 * take an address_space, not an inode.  And it should be called
 436 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
 437 * queued up.
 438 *
 439 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
 440 * list if it is already on a list.  Because if the buffer is on a list,
 441 * it *must* already be on the right one.  If not, the filesystem is being
 442 * silly.  This will save a ton of locking.  But first we have to ensure
 443 * that buffers are taken *off* the old inode's list when they are freed
 444 * (presumably in truncate).  That requires careful auditing of all
 445 * filesystems (do it inside bforget()).  It could also be done by bringing
 446 * b_inode back.
 447 */
 448
 449/*
 450 * The buffer's backing address_space's private_lock must be held
 451 */
 452static void __remove_assoc_queue(struct buffer_head *bh)
 453{
 454	list_del_init(&bh->b_assoc_buffers);
 455	WARN_ON(!bh->b_assoc_map);
 
 
 456	bh->b_assoc_map = NULL;
 457}
 458
 459int inode_has_buffers(struct inode *inode)
 460{
 461	return !list_empty(&inode->i_data.private_list);
 462}
 463
 464/*
 465 * osync is designed to support O_SYNC io.  It waits synchronously for
 466 * all already-submitted IO to complete, but does not queue any new
 467 * writes to the disk.
 468 *
 469 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
 470 * you dirty the buffers, and then use osync_inode_buffers to wait for
 471 * completion.  Any other dirty buffers which are not yet queued for
 472 * write will not be flushed to disk by the osync.
 473 */
 474static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
 475{
 476	struct buffer_head *bh;
 477	struct list_head *p;
 478	int err = 0;
 479
 480	spin_lock(lock);
 481repeat:
 482	list_for_each_prev(p, list) {
 483		bh = BH_ENTRY(p);
 484		if (buffer_locked(bh)) {
 485			get_bh(bh);
 486			spin_unlock(lock);
 487			wait_on_buffer(bh);
 488			if (!buffer_uptodate(bh))
 489				err = -EIO;
 490			brelse(bh);
 491			spin_lock(lock);
 492			goto repeat;
 493		}
 494	}
 495	spin_unlock(lock);
 496	return err;
 497}
 498
 499void emergency_thaw_bdev(struct super_block *sb)
 500{
 501	while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
 502		printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev);
 503}
 504
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 505/**
 506 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
 507 * @mapping: the mapping which wants those buffers written
 508 *
 509 * Starts I/O against the buffers at mapping->private_list, and waits upon
 510 * that I/O.
 511 *
 512 * Basically, this is a convenience function for fsync().
 513 * @mapping is a file or directory which needs those buffers to be written for
 514 * a successful fsync().
 515 */
 516int sync_mapping_buffers(struct address_space *mapping)
 517{
 518	struct address_space *buffer_mapping = mapping->private_data;
 519
 520	if (buffer_mapping == NULL || list_empty(&mapping->private_list))
 521		return 0;
 522
 523	return fsync_buffers_list(&buffer_mapping->private_lock,
 524					&mapping->private_list);
 525}
 526EXPORT_SYMBOL(sync_mapping_buffers);
 527
 528/*
 529 * Called when we've recently written block `bblock', and it is known that
 530 * `bblock' was for a buffer_boundary() buffer.  This means that the block at
 531 * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
 532 * dirty, schedule it for IO.  So that indirects merge nicely with their data.
 533 */
 534void write_boundary_block(struct block_device *bdev,
 535			sector_t bblock, unsigned blocksize)
 536{
 537	struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
 538	if (bh) {
 539		if (buffer_dirty(bh))
 540			ll_rw_block(REQ_OP_WRITE, 0, 1, &bh);
 541		put_bh(bh);
 542	}
 543}
 544
 545void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
 546{
 547	struct address_space *mapping = inode->i_mapping;
 548	struct address_space *buffer_mapping = bh->b_page->mapping;
 549
 550	mark_buffer_dirty(bh);
 551	if (!mapping->private_data) {
 552		mapping->private_data = buffer_mapping;
 553	} else {
 554		BUG_ON(mapping->private_data != buffer_mapping);
 555	}
 556	if (!bh->b_assoc_map) {
 557		spin_lock(&buffer_mapping->private_lock);
 558		list_move_tail(&bh->b_assoc_buffers,
 559				&mapping->private_list);
 560		bh->b_assoc_map = mapping;
 561		spin_unlock(&buffer_mapping->private_lock);
 562	}
 563}
 564EXPORT_SYMBOL(mark_buffer_dirty_inode);
 565
 566/*
 567 * Mark the page dirty, and set it dirty in the page cache, and mark the inode
 568 * dirty.
 569 *
 570 * If warn is true, then emit a warning if the page is not uptodate and has
 571 * not been truncated.
 572 *
 573 * The caller must hold lock_page_memcg().
 574 */
 575void __set_page_dirty(struct page *page, struct address_space *mapping,
 576			     int warn)
 577{
 578	unsigned long flags;
 579
 580	xa_lock_irqsave(&mapping->i_pages, flags);
 581	if (page->mapping) {	/* Race with truncate? */
 582		WARN_ON_ONCE(warn && !PageUptodate(page));
 583		account_page_dirtied(page, mapping);
 584		__xa_set_mark(&mapping->i_pages, page_index(page),
 585				PAGECACHE_TAG_DIRTY);
 586	}
 587	xa_unlock_irqrestore(&mapping->i_pages, flags);
 588}
 589EXPORT_SYMBOL_GPL(__set_page_dirty);
 590
 591/*
 592 * Add a page to the dirty page list.
 593 *
 594 * It is a sad fact of life that this function is called from several places
 595 * deeply under spinlocking.  It may not sleep.
 596 *
 597 * If the page has buffers, the uptodate buffers are set dirty, to preserve
 598 * dirty-state coherency between the page and the buffers.  It the page does
 599 * not have buffers then when they are later attached they will all be set
 600 * dirty.
 601 *
 602 * The buffers are dirtied before the page is dirtied.  There's a small race
 603 * window in which a writepage caller may see the page cleanness but not the
 604 * buffer dirtiness.  That's fine.  If this code were to set the page dirty
 605 * before the buffers, a concurrent writepage caller could clear the page dirty
 606 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
 607 * page on the dirty page list.
 608 *
 609 * We use private_lock to lock against try_to_free_buffers while using the
 610 * page's buffer list.  Also use this to protect against clean buffers being
 611 * added to the page after it was set dirty.
 612 *
 613 * FIXME: may need to call ->reservepage here as well.  That's rather up to the
 614 * address_space though.
 615 */
 616int __set_page_dirty_buffers(struct page *page)
 617{
 618	int newly_dirty;
 619	struct address_space *mapping = page_mapping(page);
 620
 621	if (unlikely(!mapping))
 622		return !TestSetPageDirty(page);
 623
 624	spin_lock(&mapping->private_lock);
 625	if (page_has_buffers(page)) {
 626		struct buffer_head *head = page_buffers(page);
 627		struct buffer_head *bh = head;
 628
 629		do {
 630			set_buffer_dirty(bh);
 631			bh = bh->b_this_page;
 632		} while (bh != head);
 633	}
 634	/*
 635	 * Lock out page->mem_cgroup migration to keep PageDirty
 636	 * synchronized with per-memcg dirty page counters.
 637	 */
 638	lock_page_memcg(page);
 639	newly_dirty = !TestSetPageDirty(page);
 640	spin_unlock(&mapping->private_lock);
 641
 642	if (newly_dirty)
 643		__set_page_dirty(page, mapping, 1);
 644
 645	unlock_page_memcg(page);
 646
 647	if (newly_dirty)
 648		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
 649
 650	return newly_dirty;
 651}
 652EXPORT_SYMBOL(__set_page_dirty_buffers);
 653
 654/*
 655 * Write out and wait upon a list of buffers.
 656 *
 657 * We have conflicting pressures: we want to make sure that all
 658 * initially dirty buffers get waited on, but that any subsequently
 659 * dirtied buffers don't.  After all, we don't want fsync to last
 660 * forever if somebody is actively writing to the file.
 661 *
 662 * Do this in two main stages: first we copy dirty buffers to a
 663 * temporary inode list, queueing the writes as we go.  Then we clean
 664 * up, waiting for those writes to complete.
 665 * 
 666 * During this second stage, any subsequent updates to the file may end
 667 * up refiling the buffer on the original inode's dirty list again, so
 668 * there is a chance we will end up with a buffer queued for write but
 669 * not yet completed on that list.  So, as a final cleanup we go through
 670 * the osync code to catch these locked, dirty buffers without requeuing
 671 * any newly dirty buffers for write.
 672 */
 673static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
 674{
 675	struct buffer_head *bh;
 676	struct list_head tmp;
 677	struct address_space *mapping;
 678	int err = 0, err2;
 679	struct blk_plug plug;
 680
 681	INIT_LIST_HEAD(&tmp);
 682	blk_start_plug(&plug);
 683
 684	spin_lock(lock);
 685	while (!list_empty(list)) {
 686		bh = BH_ENTRY(list->next);
 687		mapping = bh->b_assoc_map;
 688		__remove_assoc_queue(bh);
 689		/* Avoid race with mark_buffer_dirty_inode() which does
 690		 * a lockless check and we rely on seeing the dirty bit */
 691		smp_mb();
 692		if (buffer_dirty(bh) || buffer_locked(bh)) {
 693			list_add(&bh->b_assoc_buffers, &tmp);
 694			bh->b_assoc_map = mapping;
 695			if (buffer_dirty(bh)) {
 696				get_bh(bh);
 697				spin_unlock(lock);
 698				/*
 699				 * Ensure any pending I/O completes so that
 700				 * write_dirty_buffer() actually writes the
 701				 * current contents - it is a noop if I/O is
 702				 * still in flight on potentially older
 703				 * contents.
 704				 */
 705				write_dirty_buffer(bh, REQ_SYNC);
 706
 707				/*
 708				 * Kick off IO for the previous mapping. Note
 709				 * that we will not run the very last mapping,
 710				 * wait_on_buffer() will do that for us
 711				 * through sync_buffer().
 712				 */
 713				brelse(bh);
 714				spin_lock(lock);
 715			}
 716		}
 717	}
 718
 719	spin_unlock(lock);
 720	blk_finish_plug(&plug);
 721	spin_lock(lock);
 722
 723	while (!list_empty(&tmp)) {
 724		bh = BH_ENTRY(tmp.prev);
 725		get_bh(bh);
 726		mapping = bh->b_assoc_map;
 727		__remove_assoc_queue(bh);
 728		/* Avoid race with mark_buffer_dirty_inode() which does
 729		 * a lockless check and we rely on seeing the dirty bit */
 730		smp_mb();
 731		if (buffer_dirty(bh)) {
 732			list_add(&bh->b_assoc_buffers,
 733				 &mapping->private_list);
 734			bh->b_assoc_map = mapping;
 735		}
 736		spin_unlock(lock);
 737		wait_on_buffer(bh);
 738		if (!buffer_uptodate(bh))
 739			err = -EIO;
 740		brelse(bh);
 741		spin_lock(lock);
 742	}
 743	
 744	spin_unlock(lock);
 745	err2 = osync_buffers_list(lock, list);
 746	if (err)
 747		return err;
 748	else
 749		return err2;
 750}
 751
 752/*
 753 * Invalidate any and all dirty buffers on a given inode.  We are
 754 * probably unmounting the fs, but that doesn't mean we have already
 755 * done a sync().  Just drop the buffers from the inode list.
 756 *
 757 * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
 758 * assumes that all the buffers are against the blockdev.  Not true
 759 * for reiserfs.
 760 */
 761void invalidate_inode_buffers(struct inode *inode)
 762{
 763	if (inode_has_buffers(inode)) {
 764		struct address_space *mapping = &inode->i_data;
 765		struct list_head *list = &mapping->private_list;
 766		struct address_space *buffer_mapping = mapping->private_data;
 767
 768		spin_lock(&buffer_mapping->private_lock);
 769		while (!list_empty(list))
 770			__remove_assoc_queue(BH_ENTRY(list->next));
 771		spin_unlock(&buffer_mapping->private_lock);
 772	}
 773}
 774EXPORT_SYMBOL(invalidate_inode_buffers);
 775
 776/*
 777 * Remove any clean buffers from the inode's buffer list.  This is called
 778 * when we're trying to free the inode itself.  Those buffers can pin it.
 779 *
 780 * Returns true if all buffers were removed.
 781 */
 782int remove_inode_buffers(struct inode *inode)
 783{
 784	int ret = 1;
 785
 786	if (inode_has_buffers(inode)) {
 787		struct address_space *mapping = &inode->i_data;
 788		struct list_head *list = &mapping->private_list;
 789		struct address_space *buffer_mapping = mapping->private_data;
 790
 791		spin_lock(&buffer_mapping->private_lock);
 792		while (!list_empty(list)) {
 793			struct buffer_head *bh = BH_ENTRY(list->next);
 794			if (buffer_dirty(bh)) {
 795				ret = 0;
 796				break;
 797			}
 798			__remove_assoc_queue(bh);
 799		}
 800		spin_unlock(&buffer_mapping->private_lock);
 801	}
 802	return ret;
 803}
 804
 805/*
 806 * Create the appropriate buffers when given a page for data area and
 807 * the size of each buffer.. Use the bh->b_this_page linked list to
 808 * follow the buffers created.  Return NULL if unable to create more
 809 * buffers.
 810 *
 811 * The retry flag is used to differentiate async IO (paging, swapping)
 812 * which may not fail from ordinary buffer allocations.
 813 */
 814struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
 815		bool retry)
 816{
 817	struct buffer_head *bh, *head;
 818	gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT;
 819	long offset;
 820	struct mem_cgroup *memcg;
 821
 822	if (retry)
 823		gfp |= __GFP_NOFAIL;
 824
 825	memcg = get_mem_cgroup_from_page(page);
 826	memalloc_use_memcg(memcg);
 827
 
 828	head = NULL;
 829	offset = PAGE_SIZE;
 830	while ((offset -= size) >= 0) {
 831		bh = alloc_buffer_head(gfp);
 832		if (!bh)
 833			goto no_grow;
 834
 835		bh->b_this_page = head;
 836		bh->b_blocknr = -1;
 837		head = bh;
 838
 839		bh->b_size = size;
 840
 841		/* Link the buffer to its page */
 842		set_bh_page(bh, page, offset);
 843	}
 844out:
 845	memalloc_unuse_memcg();
 846	mem_cgroup_put(memcg);
 847	return head;
 848/*
 849 * In case anything failed, we just free everything we got.
 850 */
 851no_grow:
 852	if (head) {
 853		do {
 854			bh = head;
 855			head = head->b_this_page;
 856			free_buffer_head(bh);
 857		} while (head);
 858	}
 859
 860	goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 861}
 862EXPORT_SYMBOL_GPL(alloc_page_buffers);
 863
 864static inline void
 865link_dev_buffers(struct page *page, struct buffer_head *head)
 866{
 867	struct buffer_head *bh, *tail;
 868
 869	bh = head;
 870	do {
 871		tail = bh;
 872		bh = bh->b_this_page;
 873	} while (bh);
 874	tail->b_this_page = head;
 875	attach_page_buffers(page, head);
 876}
 877
 878static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
 879{
 880	sector_t retval = ~((sector_t)0);
 881	loff_t sz = i_size_read(bdev->bd_inode);
 882
 883	if (sz) {
 884		unsigned int sizebits = blksize_bits(size);
 885		retval = (sz >> sizebits);
 886	}
 887	return retval;
 888}
 889
 890/*
 891 * Initialise the state of a blockdev page's buffers.
 892 */ 
 893static sector_t
 894init_page_buffers(struct page *page, struct block_device *bdev,
 895			sector_t block, int size)
 896{
 897	struct buffer_head *head = page_buffers(page);
 898	struct buffer_head *bh = head;
 899	int uptodate = PageUptodate(page);
 900	sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size);
 901
 902	do {
 903		if (!buffer_mapped(bh)) {
 904			bh->b_end_io = NULL;
 905			bh->b_private = NULL;
 906			bh->b_bdev = bdev;
 907			bh->b_blocknr = block;
 908			if (uptodate)
 909				set_buffer_uptodate(bh);
 910			if (block < end_block)
 911				set_buffer_mapped(bh);
 912		}
 913		block++;
 914		bh = bh->b_this_page;
 915	} while (bh != head);
 916
 917	/*
 918	 * Caller needs to validate requested block against end of device.
 919	 */
 920	return end_block;
 921}
 922
 923/*
 924 * Create the page-cache page that contains the requested block.
 925 *
 926 * This is used purely for blockdev mappings.
 927 */
 928static int
 929grow_dev_page(struct block_device *bdev, sector_t block,
 930	      pgoff_t index, int size, int sizebits, gfp_t gfp)
 931{
 932	struct inode *inode = bdev->bd_inode;
 933	struct page *page;
 934	struct buffer_head *bh;
 935	sector_t end_block;
 936	int ret = 0;		/* Will call free_more_memory() */
 937	gfp_t gfp_mask;
 938
 939	gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp;
 940
 941	/*
 942	 * XXX: __getblk_slow() can not really deal with failure and
 943	 * will endlessly loop on improvised global reclaim.  Prefer
 944	 * looping in the allocator rather than here, at least that
 945	 * code knows what it's doing.
 946	 */
 947	gfp_mask |= __GFP_NOFAIL;
 948
 949	page = find_or_create_page(inode->i_mapping, index, gfp_mask);
 
 
 950
 951	BUG_ON(!PageLocked(page));
 952
 953	if (page_has_buffers(page)) {
 954		bh = page_buffers(page);
 955		if (bh->b_size == size) {
 956			end_block = init_page_buffers(page, bdev,
 957						(sector_t)index << sizebits,
 958						size);
 959			goto done;
 960		}
 961		if (!try_to_free_buffers(page))
 962			goto failed;
 963	}
 964
 965	/*
 966	 * Allocate some buffers for this page
 967	 */
 968	bh = alloc_page_buffers(page, size, true);
 
 
 969
 970	/*
 971	 * Link the page to the buffers and initialise them.  Take the
 972	 * lock to be atomic wrt __find_get_block(), which does not
 973	 * run under the page lock.
 974	 */
 975	spin_lock(&inode->i_mapping->private_lock);
 976	link_dev_buffers(page, bh);
 977	end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits,
 978			size);
 979	spin_unlock(&inode->i_mapping->private_lock);
 980done:
 981	ret = (block < end_block) ? 1 : -ENXIO;
 982failed:
 983	unlock_page(page);
 984	put_page(page);
 985	return ret;
 986}
 987
 988/*
 989 * Create buffers for the specified block device block's page.  If
 990 * that page was dirty, the buffers are set dirty also.
 991 */
 992static int
 993grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp)
 994{
 995	pgoff_t index;
 996	int sizebits;
 997
 998	sizebits = -1;
 999	do {
1000		sizebits++;
1001	} while ((size << sizebits) < PAGE_SIZE);
1002
1003	index = block >> sizebits;
1004
1005	/*
1006	 * Check for a block which wants to lie outside our maximum possible
1007	 * pagecache index.  (this comparison is done using sector_t types).
1008	 */
1009	if (unlikely(index != block >> sizebits)) {
1010		printk(KERN_ERR "%s: requested out-of-range block %llu for "
1011			"device %pg\n",
1012			__func__, (unsigned long long)block,
1013			bdev);
1014		return -EIO;
1015	}
1016
1017	/* Create a page with the proper size buffers.. */
1018	return grow_dev_page(bdev, block, index, size, sizebits, gfp);
1019}
1020
1021static struct buffer_head *
1022__getblk_slow(struct block_device *bdev, sector_t block,
1023	     unsigned size, gfp_t gfp)
1024{
1025	/* Size must be multiple of hard sectorsize */
1026	if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1027			(size < 512 || size > PAGE_SIZE))) {
1028		printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1029					size);
1030		printk(KERN_ERR "logical block size: %d\n",
1031					bdev_logical_block_size(bdev));
1032
1033		dump_stack();
1034		return NULL;
1035	}
1036
1037	for (;;) {
1038		struct buffer_head *bh;
1039		int ret;
1040
1041		bh = __find_get_block(bdev, block, size);
1042		if (bh)
1043			return bh;
1044
1045		ret = grow_buffers(bdev, block, size, gfp);
1046		if (ret < 0)
1047			return NULL;
 
 
1048	}
1049}
1050
1051/*
1052 * The relationship between dirty buffers and dirty pages:
1053 *
1054 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1055 * the page is tagged dirty in the page cache.
1056 *
1057 * At all times, the dirtiness of the buffers represents the dirtiness of
1058 * subsections of the page.  If the page has buffers, the page dirty bit is
1059 * merely a hint about the true dirty state.
1060 *
1061 * When a page is set dirty in its entirety, all its buffers are marked dirty
1062 * (if the page has buffers).
1063 *
1064 * When a buffer is marked dirty, its page is dirtied, but the page's other
1065 * buffers are not.
1066 *
1067 * Also.  When blockdev buffers are explicitly read with bread(), they
1068 * individually become uptodate.  But their backing page remains not
1069 * uptodate - even if all of its buffers are uptodate.  A subsequent
1070 * block_read_full_page() against that page will discover all the uptodate
1071 * buffers, will set the page uptodate and will perform no I/O.
1072 */
1073
1074/**
1075 * mark_buffer_dirty - mark a buffer_head as needing writeout
1076 * @bh: the buffer_head to mark dirty
1077 *
1078 * mark_buffer_dirty() will set the dirty bit against the buffer, then set
1079 * its backing page dirty, then tag the page as dirty in the page cache
1080 * and then attach the address_space's inode to its superblock's dirty
1081 * inode list.
1082 *
1083 * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1084 * i_pages lock and mapping->host->i_lock.
1085 */
1086void mark_buffer_dirty(struct buffer_head *bh)
1087{
1088	WARN_ON_ONCE(!buffer_uptodate(bh));
1089
1090	trace_block_dirty_buffer(bh);
1091
1092	/*
1093	 * Very *carefully* optimize the it-is-already-dirty case.
1094	 *
1095	 * Don't let the final "is it dirty" escape to before we
1096	 * perhaps modified the buffer.
1097	 */
1098	if (buffer_dirty(bh)) {
1099		smp_mb();
1100		if (buffer_dirty(bh))
1101			return;
1102	}
1103
1104	if (!test_set_buffer_dirty(bh)) {
1105		struct page *page = bh->b_page;
1106		struct address_space *mapping = NULL;
1107
1108		lock_page_memcg(page);
1109		if (!TestSetPageDirty(page)) {
1110			mapping = page_mapping(page);
1111			if (mapping)
1112				__set_page_dirty(page, mapping, 0);
1113		}
1114		unlock_page_memcg(page);
1115		if (mapping)
1116			__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1117	}
1118}
1119EXPORT_SYMBOL(mark_buffer_dirty);
1120
1121void mark_buffer_write_io_error(struct buffer_head *bh)
1122{
1123	set_buffer_write_io_error(bh);
1124	/* FIXME: do we need to set this in both places? */
1125	if (bh->b_page && bh->b_page->mapping)
1126		mapping_set_error(bh->b_page->mapping, -EIO);
1127	if (bh->b_assoc_map)
1128		mapping_set_error(bh->b_assoc_map, -EIO);
1129}
1130EXPORT_SYMBOL(mark_buffer_write_io_error);
1131
1132/*
1133 * Decrement a buffer_head's reference count.  If all buffers against a page
1134 * have zero reference count, are clean and unlocked, and if the page is clean
1135 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1136 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1137 * a page but it ends up not being freed, and buffers may later be reattached).
1138 */
1139void __brelse(struct buffer_head * buf)
1140{
1141	if (atomic_read(&buf->b_count)) {
1142		put_bh(buf);
1143		return;
1144	}
1145	WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1146}
1147EXPORT_SYMBOL(__brelse);
1148
1149/*
1150 * bforget() is like brelse(), except it discards any
1151 * potentially dirty data.
1152 */
1153void __bforget(struct buffer_head *bh)
1154{
1155	clear_buffer_dirty(bh);
1156	if (bh->b_assoc_map) {
1157		struct address_space *buffer_mapping = bh->b_page->mapping;
1158
1159		spin_lock(&buffer_mapping->private_lock);
1160		list_del_init(&bh->b_assoc_buffers);
1161		bh->b_assoc_map = NULL;
1162		spin_unlock(&buffer_mapping->private_lock);
1163	}
1164	__brelse(bh);
1165}
1166EXPORT_SYMBOL(__bforget);
1167
1168static struct buffer_head *__bread_slow(struct buffer_head *bh)
1169{
1170	lock_buffer(bh);
1171	if (buffer_uptodate(bh)) {
1172		unlock_buffer(bh);
1173		return bh;
1174	} else {
1175		get_bh(bh);
1176		bh->b_end_io = end_buffer_read_sync;
1177		submit_bh(REQ_OP_READ, 0, bh);
1178		wait_on_buffer(bh);
1179		if (buffer_uptodate(bh))
1180			return bh;
1181	}
1182	brelse(bh);
1183	return NULL;
1184}
1185
1186/*
1187 * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1188 * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1189 * refcount elevated by one when they're in an LRU.  A buffer can only appear
1190 * once in a particular CPU's LRU.  A single buffer can be present in multiple
1191 * CPU's LRUs at the same time.
1192 *
1193 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1194 * sb_find_get_block().
1195 *
1196 * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1197 * a local interrupt disable for that.
1198 */
1199
1200#define BH_LRU_SIZE	16
1201
1202struct bh_lru {
1203	struct buffer_head *bhs[BH_LRU_SIZE];
1204};
1205
1206static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1207
1208#ifdef CONFIG_SMP
1209#define bh_lru_lock()	local_irq_disable()
1210#define bh_lru_unlock()	local_irq_enable()
1211#else
1212#define bh_lru_lock()	preempt_disable()
1213#define bh_lru_unlock()	preempt_enable()
1214#endif
1215
1216static inline void check_irqs_on(void)
1217{
1218#ifdef irqs_disabled
1219	BUG_ON(irqs_disabled());
1220#endif
1221}
1222
1223/*
1224 * Install a buffer_head into this cpu's LRU.  If not already in the LRU, it is
1225 * inserted at the front, and the buffer_head at the back if any is evicted.
1226 * Or, if already in the LRU it is moved to the front.
1227 */
1228static void bh_lru_install(struct buffer_head *bh)
1229{
1230	struct buffer_head *evictee = bh;
1231	struct bh_lru *b;
1232	int i;
1233
1234	check_irqs_on();
1235	bh_lru_lock();
 
 
 
 
 
 
 
 
 
 
1236
1237	b = this_cpu_ptr(&bh_lrus);
1238	for (i = 0; i < BH_LRU_SIZE; i++) {
1239		swap(evictee, b->bhs[i]);
1240		if (evictee == bh) {
1241			bh_lru_unlock();
1242			return;
 
 
 
 
1243		}
 
 
 
1244	}
 
1245
1246	get_bh(bh);
1247	bh_lru_unlock();
1248	brelse(evictee);
1249}
1250
1251/*
1252 * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1253 */
1254static struct buffer_head *
1255lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1256{
1257	struct buffer_head *ret = NULL;
1258	unsigned int i;
1259
1260	check_irqs_on();
1261	bh_lru_lock();
1262	for (i = 0; i < BH_LRU_SIZE; i++) {
1263		struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1264
1265		if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1266		    bh->b_size == size) {
1267			if (i) {
1268				while (i) {
1269					__this_cpu_write(bh_lrus.bhs[i],
1270						__this_cpu_read(bh_lrus.bhs[i - 1]));
1271					i--;
1272				}
1273				__this_cpu_write(bh_lrus.bhs[0], bh);
1274			}
1275			get_bh(bh);
1276			ret = bh;
1277			break;
1278		}
1279	}
1280	bh_lru_unlock();
1281	return ret;
1282}
1283
1284/*
1285 * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1286 * it in the LRU and mark it as accessed.  If it is not present then return
1287 * NULL
1288 */
1289struct buffer_head *
1290__find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1291{
1292	struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1293
1294	if (bh == NULL) {
1295		/* __find_get_block_slow will mark the page accessed */
1296		bh = __find_get_block_slow(bdev, block);
1297		if (bh)
1298			bh_lru_install(bh);
1299	} else
1300		touch_buffer(bh);
1301
1302	return bh;
1303}
1304EXPORT_SYMBOL(__find_get_block);
1305
1306/*
1307 * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1308 * which corresponds to the passed block_device, block and size. The
1309 * returned buffer has its reference count incremented.
1310 *
1311 * __getblk_gfp() will lock up the machine if grow_dev_page's
1312 * try_to_free_buffers() attempt is failing.  FIXME, perhaps?
1313 */
1314struct buffer_head *
1315__getblk_gfp(struct block_device *bdev, sector_t block,
1316	     unsigned size, gfp_t gfp)
1317{
1318	struct buffer_head *bh = __find_get_block(bdev, block, size);
1319
1320	might_sleep();
1321	if (bh == NULL)
1322		bh = __getblk_slow(bdev, block, size, gfp);
1323	return bh;
1324}
1325EXPORT_SYMBOL(__getblk_gfp);
1326
1327/*
1328 * Do async read-ahead on a buffer..
1329 */
1330void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1331{
1332	struct buffer_head *bh = __getblk(bdev, block, size);
1333	if (likely(bh)) {
1334		ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh);
1335		brelse(bh);
1336	}
1337}
1338EXPORT_SYMBOL(__breadahead);
1339
1340/**
1341 *  __bread_gfp() - reads a specified block and returns the bh
1342 *  @bdev: the block_device to read from
1343 *  @block: number of block
1344 *  @size: size (in bytes) to read
1345 *  @gfp: page allocation flag
1346 *
1347 *  Reads a specified block, and returns buffer head that contains it.
1348 *  The page cache can be allocated from non-movable area
1349 *  not to prevent page migration if you set gfp to zero.
1350 *  It returns NULL if the block was unreadable.
1351 */
1352struct buffer_head *
1353__bread_gfp(struct block_device *bdev, sector_t block,
1354		   unsigned size, gfp_t gfp)
1355{
1356	struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1357
1358	if (likely(bh) && !buffer_uptodate(bh))
1359		bh = __bread_slow(bh);
1360	return bh;
1361}
1362EXPORT_SYMBOL(__bread_gfp);
1363
1364/*
1365 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1366 * This doesn't race because it runs in each cpu either in irq
1367 * or with preempt disabled.
1368 */
1369static void invalidate_bh_lru(void *arg)
1370{
1371	struct bh_lru *b = &get_cpu_var(bh_lrus);
1372	int i;
1373
1374	for (i = 0; i < BH_LRU_SIZE; i++) {
1375		brelse(b->bhs[i]);
1376		b->bhs[i] = NULL;
1377	}
1378	put_cpu_var(bh_lrus);
1379}
1380
1381static bool has_bh_in_lru(int cpu, void *dummy)
1382{
1383	struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1384	int i;
1385	
1386	for (i = 0; i < BH_LRU_SIZE; i++) {
1387		if (b->bhs[i])
1388			return 1;
1389	}
1390
1391	return 0;
1392}
1393
1394void invalidate_bh_lrus(void)
1395{
1396	on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL);
1397}
1398EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1399
1400void set_bh_page(struct buffer_head *bh,
1401		struct page *page, unsigned long offset)
1402{
1403	bh->b_page = page;
1404	BUG_ON(offset >= PAGE_SIZE);
1405	if (PageHighMem(page))
1406		/*
1407		 * This catches illegal uses and preserves the offset:
1408		 */
1409		bh->b_data = (char *)(0 + offset);
1410	else
1411		bh->b_data = page_address(page) + offset;
1412}
1413EXPORT_SYMBOL(set_bh_page);
1414
1415/*
1416 * Called when truncating a buffer on a page completely.
1417 */
1418
1419/* Bits that are cleared during an invalidate */
1420#define BUFFER_FLAGS_DISCARD \
1421	(1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1422	 1 << BH_Delay | 1 << BH_Unwritten)
1423
1424static void discard_buffer(struct buffer_head * bh)
1425{
1426	unsigned long b_state, b_state_old;
1427
1428	lock_buffer(bh);
1429	clear_buffer_dirty(bh);
1430	bh->b_bdev = NULL;
1431	b_state = bh->b_state;
1432	for (;;) {
1433		b_state_old = cmpxchg(&bh->b_state, b_state,
1434				      (b_state & ~BUFFER_FLAGS_DISCARD));
1435		if (b_state_old == b_state)
1436			break;
1437		b_state = b_state_old;
1438	}
1439	unlock_buffer(bh);
1440}
1441
1442/**
1443 * block_invalidatepage - invalidate part or all of a buffer-backed page
1444 *
1445 * @page: the page which is affected
1446 * @offset: start of the range to invalidate
1447 * @length: length of the range to invalidate
1448 *
1449 * block_invalidatepage() is called when all or part of the page has become
1450 * invalidated by a truncate operation.
1451 *
1452 * block_invalidatepage() does not have to release all buffers, but it must
1453 * ensure that no dirty buffer is left outside @offset and that no I/O
1454 * is underway against any of the blocks which are outside the truncation
1455 * point.  Because the caller is about to free (and possibly reuse) those
1456 * blocks on-disk.
1457 */
1458void block_invalidatepage(struct page *page, unsigned int offset,
1459			  unsigned int length)
1460{
1461	struct buffer_head *head, *bh, *next;
1462	unsigned int curr_off = 0;
1463	unsigned int stop = length + offset;
1464
1465	BUG_ON(!PageLocked(page));
1466	if (!page_has_buffers(page))
1467		goto out;
1468
1469	/*
1470	 * Check for overflow
1471	 */
1472	BUG_ON(stop > PAGE_SIZE || stop < length);
1473
1474	head = page_buffers(page);
1475	bh = head;
1476	do {
1477		unsigned int next_off = curr_off + bh->b_size;
1478		next = bh->b_this_page;
1479
1480		/*
1481		 * Are we still fully in range ?
1482		 */
1483		if (next_off > stop)
1484			goto out;
1485
1486		/*
1487		 * is this block fully invalidated?
1488		 */
1489		if (offset <= curr_off)
1490			discard_buffer(bh);
1491		curr_off = next_off;
1492		bh = next;
1493	} while (bh != head);
1494
1495	/*
1496	 * We release buffers only if the entire page is being invalidated.
1497	 * The get_block cached value has been unconditionally invalidated,
1498	 * so real IO is not possible anymore.
1499	 */
1500	if (length == PAGE_SIZE)
1501		try_to_release_page(page, 0);
1502out:
1503	return;
1504}
1505EXPORT_SYMBOL(block_invalidatepage);
1506
1507
1508/*
1509 * We attach and possibly dirty the buffers atomically wrt
1510 * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1511 * is already excluded via the page lock.
1512 */
1513void create_empty_buffers(struct page *page,
1514			unsigned long blocksize, unsigned long b_state)
1515{
1516	struct buffer_head *bh, *head, *tail;
1517
1518	head = alloc_page_buffers(page, blocksize, true);
1519	bh = head;
1520	do {
1521		bh->b_state |= b_state;
1522		tail = bh;
1523		bh = bh->b_this_page;
1524	} while (bh);
1525	tail->b_this_page = head;
1526
1527	spin_lock(&page->mapping->private_lock);
1528	if (PageUptodate(page) || PageDirty(page)) {
1529		bh = head;
1530		do {
1531			if (PageDirty(page))
1532				set_buffer_dirty(bh);
1533			if (PageUptodate(page))
1534				set_buffer_uptodate(bh);
1535			bh = bh->b_this_page;
1536		} while (bh != head);
1537	}
1538	attach_page_buffers(page, head);
1539	spin_unlock(&page->mapping->private_lock);
1540}
1541EXPORT_SYMBOL(create_empty_buffers);
1542
1543/**
1544 * clean_bdev_aliases: clean a range of buffers in block device
1545 * @bdev: Block device to clean buffers in
1546 * @block: Start of a range of blocks to clean
1547 * @len: Number of blocks to clean
1548 *
1549 * We are taking a range of blocks for data and we don't want writeback of any
1550 * buffer-cache aliases starting from return from this function and until the
1551 * moment when something will explicitly mark the buffer dirty (hopefully that
1552 * will not happen until we will free that block ;-) We don't even need to mark
1553 * it not-uptodate - nobody can expect anything from a newly allocated buffer
1554 * anyway. We used to use unmap_buffer() for such invalidation, but that was
1555 * wrong. We definitely don't want to mark the alias unmapped, for example - it
1556 * would confuse anyone who might pick it with bread() afterwards...
1557 *
1558 * Also..  Note that bforget() doesn't lock the buffer.  So there can be
1559 * writeout I/O going on against recently-freed buffers.  We don't wait on that
1560 * I/O in bforget() - it's more efficient to wait on the I/O only if we really
1561 * need to.  That happens here.
1562 */
1563void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len)
1564{
1565	struct inode *bd_inode = bdev->bd_inode;
1566	struct address_space *bd_mapping = bd_inode->i_mapping;
1567	struct pagevec pvec;
1568	pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
1569	pgoff_t end;
1570	int i, count;
1571	struct buffer_head *bh;
1572	struct buffer_head *head;
1573
1574	end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits);
1575	pagevec_init(&pvec);
1576	while (pagevec_lookup_range(&pvec, bd_mapping, &index, end)) {
1577		count = pagevec_count(&pvec);
1578		for (i = 0; i < count; i++) {
1579			struct page *page = pvec.pages[i];
1580
 
 
 
1581			if (!page_has_buffers(page))
1582				continue;
1583			/*
1584			 * We use page lock instead of bd_mapping->private_lock
1585			 * to pin buffers here since we can afford to sleep and
1586			 * it scales better than a global spinlock lock.
1587			 */
1588			lock_page(page);
1589			/* Recheck when the page is locked which pins bhs */
1590			if (!page_has_buffers(page))
1591				goto unlock_page;
1592			head = page_buffers(page);
1593			bh = head;
1594			do {
1595				if (!buffer_mapped(bh) || (bh->b_blocknr < block))
1596					goto next;
1597				if (bh->b_blocknr >= block + len)
1598					break;
1599				clear_buffer_dirty(bh);
1600				wait_on_buffer(bh);
1601				clear_buffer_req(bh);
1602next:
1603				bh = bh->b_this_page;
1604			} while (bh != head);
1605unlock_page:
1606			unlock_page(page);
1607		}
1608		pagevec_release(&pvec);
1609		cond_resched();
1610		/* End of range already reached? */
1611		if (index > end || !index)
1612			break;
1613	}
1614}
1615EXPORT_SYMBOL(clean_bdev_aliases);
1616
1617/*
1618 * Size is a power-of-two in the range 512..PAGE_SIZE,
1619 * and the case we care about most is PAGE_SIZE.
1620 *
1621 * So this *could* possibly be written with those
1622 * constraints in mind (relevant mostly if some
1623 * architecture has a slow bit-scan instruction)
1624 */
1625static inline int block_size_bits(unsigned int blocksize)
1626{
1627	return ilog2(blocksize);
1628}
1629
1630static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1631{
1632	BUG_ON(!PageLocked(page));
1633
1634	if (!page_has_buffers(page))
1635		create_empty_buffers(page, 1 << READ_ONCE(inode->i_blkbits),
1636				     b_state);
1637	return page_buffers(page);
1638}
1639
1640/*
1641 * NOTE! All mapped/uptodate combinations are valid:
1642 *
1643 *	Mapped	Uptodate	Meaning
1644 *
1645 *	No	No		"unknown" - must do get_block()
1646 *	No	Yes		"hole" - zero-filled
1647 *	Yes	No		"allocated" - allocated on disk, not read in
1648 *	Yes	Yes		"valid" - allocated and up-to-date in memory.
1649 *
1650 * "Dirty" is valid only with the last case (mapped+uptodate).
1651 */
1652
1653/*
1654 * While block_write_full_page is writing back the dirty buffers under
1655 * the page lock, whoever dirtied the buffers may decide to clean them
1656 * again at any time.  We handle that by only looking at the buffer
1657 * state inside lock_buffer().
1658 *
1659 * If block_write_full_page() is called for regular writeback
1660 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1661 * locked buffer.   This only can happen if someone has written the buffer
1662 * directly, with submit_bh().  At the address_space level PageWriteback
1663 * prevents this contention from occurring.
1664 *
1665 * If block_write_full_page() is called with wbc->sync_mode ==
1666 * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
1667 * causes the writes to be flagged as synchronous writes.
1668 */
1669int __block_write_full_page(struct inode *inode, struct page *page,
1670			get_block_t *get_block, struct writeback_control *wbc,
1671			bh_end_io_t *handler)
1672{
1673	int err;
1674	sector_t block;
1675	sector_t last_block;
1676	struct buffer_head *bh, *head;
1677	unsigned int blocksize, bbits;
1678	int nr_underway = 0;
1679	int write_flags = wbc_to_write_flags(wbc);
1680
1681	head = create_page_buffers(page, inode,
1682					(1 << BH_Dirty)|(1 << BH_Uptodate));
1683
1684	/*
1685	 * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1686	 * here, and the (potentially unmapped) buffers may become dirty at
1687	 * any time.  If a buffer becomes dirty here after we've inspected it
1688	 * then we just miss that fact, and the page stays dirty.
1689	 *
1690	 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1691	 * handle that here by just cleaning them.
1692	 */
1693
1694	bh = head;
1695	blocksize = bh->b_size;
1696	bbits = block_size_bits(blocksize);
1697
1698	block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1699	last_block = (i_size_read(inode) - 1) >> bbits;
1700
1701	/*
1702	 * Get all the dirty buffers mapped to disk addresses and
1703	 * handle any aliases from the underlying blockdev's mapping.
1704	 */
1705	do {
1706		if (block > last_block) {
1707			/*
1708			 * mapped buffers outside i_size will occur, because
1709			 * this page can be outside i_size when there is a
1710			 * truncate in progress.
1711			 */
1712			/*
1713			 * The buffer was zeroed by block_write_full_page()
1714			 */
1715			clear_buffer_dirty(bh);
1716			set_buffer_uptodate(bh);
1717		} else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1718			   buffer_dirty(bh)) {
1719			WARN_ON(bh->b_size != blocksize);
1720			err = get_block(inode, block, bh, 1);
1721			if (err)
1722				goto recover;
1723			clear_buffer_delay(bh);
1724			if (buffer_new(bh)) {
1725				/* blockdev mappings never come here */
1726				clear_buffer_new(bh);
1727				clean_bdev_bh_alias(bh);
1728			}
1729		}
1730		bh = bh->b_this_page;
1731		block++;
1732	} while (bh != head);
1733
1734	do {
1735		if (!buffer_mapped(bh))
1736			continue;
1737		/*
1738		 * If it's a fully non-blocking write attempt and we cannot
1739		 * lock the buffer then redirty the page.  Note that this can
1740		 * potentially cause a busy-wait loop from writeback threads
1741		 * and kswapd activity, but those code paths have their own
1742		 * higher-level throttling.
1743		 */
1744		if (wbc->sync_mode != WB_SYNC_NONE) {
1745			lock_buffer(bh);
1746		} else if (!trylock_buffer(bh)) {
1747			redirty_page_for_writepage(wbc, page);
1748			continue;
1749		}
1750		if (test_clear_buffer_dirty(bh)) {
1751			mark_buffer_async_write_endio(bh, handler);
1752		} else {
1753			unlock_buffer(bh);
1754		}
1755	} while ((bh = bh->b_this_page) != head);
1756
1757	/*
1758	 * The page and its buffers are protected by PageWriteback(), so we can
1759	 * drop the bh refcounts early.
1760	 */
1761	BUG_ON(PageWriteback(page));
1762	set_page_writeback(page);
1763
1764	do {
1765		struct buffer_head *next = bh->b_this_page;
1766		if (buffer_async_write(bh)) {
1767			submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
1768					inode->i_write_hint, wbc);
1769			nr_underway++;
1770		}
1771		bh = next;
1772	} while (bh != head);
1773	unlock_page(page);
1774
1775	err = 0;
1776done:
1777	if (nr_underway == 0) {
1778		/*
1779		 * The page was marked dirty, but the buffers were
1780		 * clean.  Someone wrote them back by hand with
1781		 * ll_rw_block/submit_bh.  A rare case.
1782		 */
1783		end_page_writeback(page);
1784
1785		/*
1786		 * The page and buffer_heads can be released at any time from
1787		 * here on.
1788		 */
1789	}
1790	return err;
1791
1792recover:
1793	/*
1794	 * ENOSPC, or some other error.  We may already have added some
1795	 * blocks to the file, so we need to write these out to avoid
1796	 * exposing stale data.
1797	 * The page is currently locked and not marked for writeback
1798	 */
1799	bh = head;
1800	/* Recovery: lock and submit the mapped buffers */
1801	do {
1802		if (buffer_mapped(bh) && buffer_dirty(bh) &&
1803		    !buffer_delay(bh)) {
1804			lock_buffer(bh);
1805			mark_buffer_async_write_endio(bh, handler);
1806		} else {
1807			/*
1808			 * The buffer may have been set dirty during
1809			 * attachment to a dirty page.
1810			 */
1811			clear_buffer_dirty(bh);
1812		}
1813	} while ((bh = bh->b_this_page) != head);
1814	SetPageError(page);
1815	BUG_ON(PageWriteback(page));
1816	mapping_set_error(page->mapping, err);
1817	set_page_writeback(page);
1818	do {
1819		struct buffer_head *next = bh->b_this_page;
1820		if (buffer_async_write(bh)) {
1821			clear_buffer_dirty(bh);
1822			submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
1823					inode->i_write_hint, wbc);
1824			nr_underway++;
1825		}
1826		bh = next;
1827	} while (bh != head);
1828	unlock_page(page);
1829	goto done;
1830}
1831EXPORT_SYMBOL(__block_write_full_page);
1832
1833/*
1834 * If a page has any new buffers, zero them out here, and mark them uptodate
1835 * and dirty so they'll be written out (in order to prevent uninitialised
1836 * block data from leaking). And clear the new bit.
1837 */
1838void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1839{
1840	unsigned int block_start, block_end;
1841	struct buffer_head *head, *bh;
1842
1843	BUG_ON(!PageLocked(page));
1844	if (!page_has_buffers(page))
1845		return;
1846
1847	bh = head = page_buffers(page);
1848	block_start = 0;
1849	do {
1850		block_end = block_start + bh->b_size;
1851
1852		if (buffer_new(bh)) {
1853			if (block_end > from && block_start < to) {
1854				if (!PageUptodate(page)) {
1855					unsigned start, size;
1856
1857					start = max(from, block_start);
1858					size = min(to, block_end) - start;
1859
1860					zero_user(page, start, size);
1861					set_buffer_uptodate(bh);
1862				}
1863
1864				clear_buffer_new(bh);
1865				mark_buffer_dirty(bh);
1866			}
1867		}
1868
1869		block_start = block_end;
1870		bh = bh->b_this_page;
1871	} while (bh != head);
1872}
1873EXPORT_SYMBOL(page_zero_new_buffers);
1874
1875static void
1876iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
1877		struct iomap *iomap)
1878{
1879	loff_t offset = block << inode->i_blkbits;
1880
1881	bh->b_bdev = iomap->bdev;
1882
1883	/*
1884	 * Block points to offset in file we need to map, iomap contains
1885	 * the offset at which the map starts. If the map ends before the
1886	 * current block, then do not map the buffer and let the caller
1887	 * handle it.
1888	 */
1889	BUG_ON(offset >= iomap->offset + iomap->length);
1890
1891	switch (iomap->type) {
1892	case IOMAP_HOLE:
1893		/*
1894		 * If the buffer is not up to date or beyond the current EOF,
1895		 * we need to mark it as new to ensure sub-block zeroing is
1896		 * executed if necessary.
1897		 */
1898		if (!buffer_uptodate(bh) ||
1899		    (offset >= i_size_read(inode)))
1900			set_buffer_new(bh);
1901		break;
1902	case IOMAP_DELALLOC:
1903		if (!buffer_uptodate(bh) ||
1904		    (offset >= i_size_read(inode)))
1905			set_buffer_new(bh);
1906		set_buffer_uptodate(bh);
1907		set_buffer_mapped(bh);
1908		set_buffer_delay(bh);
1909		break;
1910	case IOMAP_UNWRITTEN:
1911		/*
1912		 * For unwritten regions, we always need to ensure that regions
1913		 * in the block we are not writing to are zeroed. Mark the
1914		 * buffer as new to ensure this.
1915		 */
1916		set_buffer_new(bh);
1917		set_buffer_unwritten(bh);
1918		/* FALLTHRU */
1919	case IOMAP_MAPPED:
1920		if ((iomap->flags & IOMAP_F_NEW) ||
1921		    offset >= i_size_read(inode))
1922			set_buffer_new(bh);
1923		bh->b_blocknr = (iomap->addr + offset - iomap->offset) >>
1924				inode->i_blkbits;
1925		set_buffer_mapped(bh);
1926		break;
1927	}
1928}
1929
1930int __block_write_begin_int(struct page *page, loff_t pos, unsigned len,
1931		get_block_t *get_block, struct iomap *iomap)
1932{
1933	unsigned from = pos & (PAGE_SIZE - 1);
1934	unsigned to = from + len;
1935	struct inode *inode = page->mapping->host;
1936	unsigned block_start, block_end;
1937	sector_t block;
1938	int err = 0;
1939	unsigned blocksize, bbits;
1940	struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1941
1942	BUG_ON(!PageLocked(page));
1943	BUG_ON(from > PAGE_SIZE);
1944	BUG_ON(to > PAGE_SIZE);
1945	BUG_ON(from > to);
1946
1947	head = create_page_buffers(page, inode, 0);
1948	blocksize = head->b_size;
1949	bbits = block_size_bits(blocksize);
1950
1951	block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1952
1953	for(bh = head, block_start = 0; bh != head || !block_start;
1954	    block++, block_start=block_end, bh = bh->b_this_page) {
1955		block_end = block_start + blocksize;
1956		if (block_end <= from || block_start >= to) {
1957			if (PageUptodate(page)) {
1958				if (!buffer_uptodate(bh))
1959					set_buffer_uptodate(bh);
1960			}
1961			continue;
1962		}
1963		if (buffer_new(bh))
1964			clear_buffer_new(bh);
1965		if (!buffer_mapped(bh)) {
1966			WARN_ON(bh->b_size != blocksize);
1967			if (get_block) {
1968				err = get_block(inode, block, bh, 1);
1969				if (err)
1970					break;
1971			} else {
1972				iomap_to_bh(inode, block, bh, iomap);
1973			}
1974
1975			if (buffer_new(bh)) {
1976				clean_bdev_bh_alias(bh);
1977				if (PageUptodate(page)) {
1978					clear_buffer_new(bh);
1979					set_buffer_uptodate(bh);
1980					mark_buffer_dirty(bh);
1981					continue;
1982				}
1983				if (block_end > to || block_start < from)
1984					zero_user_segments(page,
1985						to, block_end,
1986						block_start, from);
1987				continue;
1988			}
1989		}
1990		if (PageUptodate(page)) {
1991			if (!buffer_uptodate(bh))
1992				set_buffer_uptodate(bh);
1993			continue; 
1994		}
1995		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1996		    !buffer_unwritten(bh) &&
1997		     (block_start < from || block_end > to)) {
1998			ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1999			*wait_bh++=bh;
2000		}
2001	}
2002	/*
2003	 * If we issued read requests - let them complete.
2004	 */
2005	while(wait_bh > wait) {
2006		wait_on_buffer(*--wait_bh);
2007		if (!buffer_uptodate(*wait_bh))
2008			err = -EIO;
2009	}
2010	if (unlikely(err))
2011		page_zero_new_buffers(page, from, to);
2012	return err;
2013}
2014
2015int __block_write_begin(struct page *page, loff_t pos, unsigned len,
2016		get_block_t *get_block)
2017{
2018	return __block_write_begin_int(page, pos, len, get_block, NULL);
2019}
2020EXPORT_SYMBOL(__block_write_begin);
2021
2022static int __block_commit_write(struct inode *inode, struct page *page,
2023		unsigned from, unsigned to)
2024{
2025	unsigned block_start, block_end;
2026	int partial = 0;
2027	unsigned blocksize;
2028	struct buffer_head *bh, *head;
2029
2030	bh = head = page_buffers(page);
2031	blocksize = bh->b_size;
2032
2033	block_start = 0;
2034	do {
2035		block_end = block_start + blocksize;
2036		if (block_end <= from || block_start >= to) {
2037			if (!buffer_uptodate(bh))
2038				partial = 1;
2039		} else {
2040			set_buffer_uptodate(bh);
2041			mark_buffer_dirty(bh);
2042		}
2043		clear_buffer_new(bh);
2044
2045		block_start = block_end;
2046		bh = bh->b_this_page;
2047	} while (bh != head);
2048
2049	/*
2050	 * If this is a partial write which happened to make all buffers
2051	 * uptodate then we can optimize away a bogus readpage() for
2052	 * the next read(). Here we 'discover' whether the page went
2053	 * uptodate as a result of this (potentially partial) write.
2054	 */
2055	if (!partial)
2056		SetPageUptodate(page);
2057	return 0;
2058}
2059
2060/*
2061 * block_write_begin takes care of the basic task of block allocation and
2062 * bringing partial write blocks uptodate first.
2063 *
2064 * The filesystem needs to handle block truncation upon failure.
2065 */
2066int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2067		unsigned flags, struct page **pagep, get_block_t *get_block)
2068{
2069	pgoff_t index = pos >> PAGE_SHIFT;
2070	struct page *page;
2071	int status;
2072
2073	page = grab_cache_page_write_begin(mapping, index, flags);
2074	if (!page)
2075		return -ENOMEM;
2076
2077	status = __block_write_begin(page, pos, len, get_block);
2078	if (unlikely(status)) {
2079		unlock_page(page);
2080		put_page(page);
2081		page = NULL;
2082	}
2083
2084	*pagep = page;
2085	return status;
2086}
2087EXPORT_SYMBOL(block_write_begin);
2088
2089int block_write_end(struct file *file, struct address_space *mapping,
2090			loff_t pos, unsigned len, unsigned copied,
2091			struct page *page, void *fsdata)
2092{
2093	struct inode *inode = mapping->host;
2094	unsigned start;
2095
2096	start = pos & (PAGE_SIZE - 1);
2097
2098	if (unlikely(copied < len)) {
2099		/*
2100		 * The buffers that were written will now be uptodate, so we
2101		 * don't have to worry about a readpage reading them and
2102		 * overwriting a partial write. However if we have encountered
2103		 * a short write and only partially written into a buffer, it
2104		 * will not be marked uptodate, so a readpage might come in and
2105		 * destroy our partial write.
2106		 *
2107		 * Do the simplest thing, and just treat any short write to a
2108		 * non uptodate page as a zero-length write, and force the
2109		 * caller to redo the whole thing.
2110		 */
2111		if (!PageUptodate(page))
2112			copied = 0;
2113
2114		page_zero_new_buffers(page, start+copied, start+len);
2115	}
2116	flush_dcache_page(page);
2117
2118	/* This could be a short (even 0-length) commit */
2119	__block_commit_write(inode, page, start, start+copied);
2120
2121	return copied;
2122}
2123EXPORT_SYMBOL(block_write_end);
2124
2125int generic_write_end(struct file *file, struct address_space *mapping,
2126			loff_t pos, unsigned len, unsigned copied,
2127			struct page *page, void *fsdata)
2128{
2129	struct inode *inode = mapping->host;
2130	loff_t old_size = inode->i_size;
2131	bool i_size_changed = false;
2132
2133	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2134
2135	/*
2136	 * No need to use i_size_read() here, the i_size cannot change under us
2137	 * because we hold i_rwsem.
2138	 *
2139	 * But it's important to update i_size while still holding page lock:
2140	 * page writeout could otherwise come in and zero beyond i_size.
2141	 */
2142	if (pos + copied > inode->i_size) {
2143		i_size_write(inode, pos + copied);
2144		i_size_changed = true;
2145	}
2146
2147	unlock_page(page);
2148	put_page(page);
2149
2150	if (old_size < pos)
2151		pagecache_isize_extended(inode, old_size, pos);
2152	/*
2153	 * Don't mark the inode dirty under page lock. First, it unnecessarily
2154	 * makes the holding time of page lock longer. Second, it forces lock
2155	 * ordering of page lock and transaction start for journaling
2156	 * filesystems.
2157	 */
2158	if (i_size_changed)
2159		mark_inode_dirty(inode);
 
2160	return copied;
2161}
2162EXPORT_SYMBOL(generic_write_end);
2163
2164/*
2165 * block_is_partially_uptodate checks whether buffers within a page are
2166 * uptodate or not.
2167 *
2168 * Returns true if all buffers which correspond to a file portion
2169 * we want to read are uptodate.
2170 */
2171int block_is_partially_uptodate(struct page *page, unsigned long from,
2172					unsigned long count)
2173{
2174	unsigned block_start, block_end, blocksize;
2175	unsigned to;
2176	struct buffer_head *bh, *head;
2177	int ret = 1;
2178
2179	if (!page_has_buffers(page))
2180		return 0;
2181
2182	head = page_buffers(page);
2183	blocksize = head->b_size;
2184	to = min_t(unsigned, PAGE_SIZE - from, count);
2185	to = from + to;
2186	if (from < blocksize && to > PAGE_SIZE - blocksize)
2187		return 0;
2188
2189	bh = head;
2190	block_start = 0;
2191	do {
2192		block_end = block_start + blocksize;
2193		if (block_end > from && block_start < to) {
2194			if (!buffer_uptodate(bh)) {
2195				ret = 0;
2196				break;
2197			}
2198			if (block_end >= to)
2199				break;
2200		}
2201		block_start = block_end;
2202		bh = bh->b_this_page;
2203	} while (bh != head);
2204
2205	return ret;
2206}
2207EXPORT_SYMBOL(block_is_partially_uptodate);
2208
2209/*
2210 * Generic "read page" function for block devices that have the normal
2211 * get_block functionality. This is most of the block device filesystems.
2212 * Reads the page asynchronously --- the unlock_buffer() and
2213 * set/clear_buffer_uptodate() functions propagate buffer state into the
2214 * page struct once IO has completed.
2215 */
2216int block_read_full_page(struct page *page, get_block_t *get_block)
2217{
2218	struct inode *inode = page->mapping->host;
2219	sector_t iblock, lblock;
2220	struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2221	unsigned int blocksize, bbits;
2222	int nr, i;
2223	int fully_mapped = 1;
2224
2225	head = create_page_buffers(page, inode, 0);
2226	blocksize = head->b_size;
2227	bbits = block_size_bits(blocksize);
2228
2229	iblock = (sector_t)page->index << (PAGE_SHIFT - bbits);
2230	lblock = (i_size_read(inode)+blocksize-1) >> bbits;
2231	bh = head;
2232	nr = 0;
2233	i = 0;
2234
2235	do {
2236		if (buffer_uptodate(bh))
2237			continue;
2238
2239		if (!buffer_mapped(bh)) {
2240			int err = 0;
2241
2242			fully_mapped = 0;
2243			if (iblock < lblock) {
2244				WARN_ON(bh->b_size != blocksize);
2245				err = get_block(inode, iblock, bh, 0);
2246				if (err)
2247					SetPageError(page);
2248			}
2249			if (!buffer_mapped(bh)) {
2250				zero_user(page, i * blocksize, blocksize);
2251				if (!err)
2252					set_buffer_uptodate(bh);
2253				continue;
2254			}
2255			/*
2256			 * get_block() might have updated the buffer
2257			 * synchronously
2258			 */
2259			if (buffer_uptodate(bh))
2260				continue;
2261		}
2262		arr[nr++] = bh;
2263	} while (i++, iblock++, (bh = bh->b_this_page) != head);
2264
2265	if (fully_mapped)
2266		SetPageMappedToDisk(page);
2267
2268	if (!nr) {
2269		/*
2270		 * All buffers are uptodate - we can set the page uptodate
2271		 * as well. But not if get_block() returned an error.
2272		 */
2273		if (!PageError(page))
2274			SetPageUptodate(page);
2275		unlock_page(page);
2276		return 0;
2277	}
2278
2279	/* Stage two: lock the buffers */
2280	for (i = 0; i < nr; i++) {
2281		bh = arr[i];
2282		lock_buffer(bh);
2283		mark_buffer_async_read(bh);
2284	}
2285
2286	/*
2287	 * Stage 3: start the IO.  Check for uptodateness
2288	 * inside the buffer lock in case another process reading
2289	 * the underlying blockdev brought it uptodate (the sct fix).
2290	 */
2291	for (i = 0; i < nr; i++) {
2292		bh = arr[i];
2293		if (buffer_uptodate(bh))
2294			end_buffer_async_read(bh, 1);
2295		else
2296			submit_bh(REQ_OP_READ, 0, bh);
2297	}
2298	return 0;
2299}
2300EXPORT_SYMBOL(block_read_full_page);
2301
2302/* utility function for filesystems that need to do work on expanding
2303 * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2304 * deal with the hole.  
2305 */
2306int generic_cont_expand_simple(struct inode *inode, loff_t size)
2307{
2308	struct address_space *mapping = inode->i_mapping;
2309	struct page *page;
2310	void *fsdata;
2311	int err;
2312
2313	err = inode_newsize_ok(inode, size);
2314	if (err)
2315		goto out;
2316
2317	err = pagecache_write_begin(NULL, mapping, size, 0,
2318				    AOP_FLAG_CONT_EXPAND, &page, &fsdata);
 
2319	if (err)
2320		goto out;
2321
2322	err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2323	BUG_ON(err > 0);
2324
2325out:
2326	return err;
2327}
2328EXPORT_SYMBOL(generic_cont_expand_simple);
2329
2330static int cont_expand_zero(struct file *file, struct address_space *mapping,
2331			    loff_t pos, loff_t *bytes)
2332{
2333	struct inode *inode = mapping->host;
2334	unsigned int blocksize = i_blocksize(inode);
2335	struct page *page;
2336	void *fsdata;
2337	pgoff_t index, curidx;
2338	loff_t curpos;
2339	unsigned zerofrom, offset, len;
2340	int err = 0;
2341
2342	index = pos >> PAGE_SHIFT;
2343	offset = pos & ~PAGE_MASK;
2344
2345	while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2346		zerofrom = curpos & ~PAGE_MASK;
2347		if (zerofrom & (blocksize-1)) {
2348			*bytes |= (blocksize-1);
2349			(*bytes)++;
2350		}
2351		len = PAGE_SIZE - zerofrom;
2352
2353		err = pagecache_write_begin(file, mapping, curpos, len, 0,
2354					    &page, &fsdata);
 
2355		if (err)
2356			goto out;
2357		zero_user(page, zerofrom, len);
2358		err = pagecache_write_end(file, mapping, curpos, len, len,
2359						page, fsdata);
2360		if (err < 0)
2361			goto out;
2362		BUG_ON(err != len);
2363		err = 0;
2364
2365		balance_dirty_pages_ratelimited(mapping);
2366
2367		if (fatal_signal_pending(current)) {
2368			err = -EINTR;
2369			goto out;
2370		}
2371	}
2372
2373	/* page covers the boundary, find the boundary offset */
2374	if (index == curidx) {
2375		zerofrom = curpos & ~PAGE_MASK;
2376		/* if we will expand the thing last block will be filled */
2377		if (offset <= zerofrom) {
2378			goto out;
2379		}
2380		if (zerofrom & (blocksize-1)) {
2381			*bytes |= (blocksize-1);
2382			(*bytes)++;
2383		}
2384		len = offset - zerofrom;
2385
2386		err = pagecache_write_begin(file, mapping, curpos, len, 0,
2387					    &page, &fsdata);
 
2388		if (err)
2389			goto out;
2390		zero_user(page, zerofrom, len);
2391		err = pagecache_write_end(file, mapping, curpos, len, len,
2392						page, fsdata);
2393		if (err < 0)
2394			goto out;
2395		BUG_ON(err != len);
2396		err = 0;
2397	}
2398out:
2399	return err;
2400}
2401
2402/*
2403 * For moronic filesystems that do not allow holes in file.
2404 * We may have to extend the file.
2405 */
2406int cont_write_begin(struct file *file, struct address_space *mapping,
2407			loff_t pos, unsigned len, unsigned flags,
2408			struct page **pagep, void **fsdata,
2409			get_block_t *get_block, loff_t *bytes)
2410{
2411	struct inode *inode = mapping->host;
2412	unsigned int blocksize = i_blocksize(inode);
2413	unsigned int zerofrom;
2414	int err;
2415
2416	err = cont_expand_zero(file, mapping, pos, bytes);
2417	if (err)
2418		return err;
2419
2420	zerofrom = *bytes & ~PAGE_MASK;
2421	if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2422		*bytes |= (blocksize-1);
2423		(*bytes)++;
2424	}
2425
2426	return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2427}
2428EXPORT_SYMBOL(cont_write_begin);
2429
2430int block_commit_write(struct page *page, unsigned from, unsigned to)
2431{
2432	struct inode *inode = page->mapping->host;
2433	__block_commit_write(inode,page,from,to);
2434	return 0;
2435}
2436EXPORT_SYMBOL(block_commit_write);
2437
2438/*
2439 * block_page_mkwrite() is not allowed to change the file size as it gets
2440 * called from a page fault handler when a page is first dirtied. Hence we must
2441 * be careful to check for EOF conditions here. We set the page up correctly
2442 * for a written page which means we get ENOSPC checking when writing into
2443 * holes and correct delalloc and unwritten extent mapping on filesystems that
2444 * support these features.
2445 *
2446 * We are not allowed to take the i_mutex here so we have to play games to
2447 * protect against truncate races as the page could now be beyond EOF.  Because
2448 * truncate writes the inode size before removing pages, once we have the
2449 * page lock we can determine safely if the page is beyond EOF. If it is not
2450 * beyond EOF, then the page is guaranteed safe against truncation until we
2451 * unlock the page.
2452 *
2453 * Direct callers of this function should protect against filesystem freezing
2454 * using sb_start_pagefault() - sb_end_pagefault() functions.
2455 */
2456int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2457			 get_block_t get_block)
2458{
2459	struct page *page = vmf->page;
2460	struct inode *inode = file_inode(vma->vm_file);
2461	unsigned long end;
2462	loff_t size;
2463	int ret;
2464
2465	lock_page(page);
2466	size = i_size_read(inode);
2467	if ((page->mapping != inode->i_mapping) ||
2468	    (page_offset(page) > size)) {
2469		/* We overload EFAULT to mean page got truncated */
2470		ret = -EFAULT;
2471		goto out_unlock;
2472	}
2473
2474	/* page is wholly or partially inside EOF */
2475	if (((page->index + 1) << PAGE_SHIFT) > size)
2476		end = size & ~PAGE_MASK;
2477	else
2478		end = PAGE_SIZE;
2479
2480	ret = __block_write_begin(page, 0, end, get_block);
2481	if (!ret)
2482		ret = block_commit_write(page, 0, end);
2483
2484	if (unlikely(ret < 0))
2485		goto out_unlock;
2486	set_page_dirty(page);
2487	wait_for_stable_page(page);
2488	return 0;
2489out_unlock:
2490	unlock_page(page);
2491	return ret;
2492}
2493EXPORT_SYMBOL(block_page_mkwrite);
2494
2495/*
2496 * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2497 * immediately, while under the page lock.  So it needs a special end_io
2498 * handler which does not touch the bh after unlocking it.
2499 */
2500static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2501{
2502	__end_buffer_read_notouch(bh, uptodate);
2503}
2504
2505/*
2506 * Attach the singly-linked list of buffers created by nobh_write_begin, to
2507 * the page (converting it to circular linked list and taking care of page
2508 * dirty races).
2509 */
2510static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2511{
2512	struct buffer_head *bh;
2513
2514	BUG_ON(!PageLocked(page));
2515
2516	spin_lock(&page->mapping->private_lock);
2517	bh = head;
2518	do {
2519		if (PageDirty(page))
2520			set_buffer_dirty(bh);
2521		if (!bh->b_this_page)
2522			bh->b_this_page = head;
2523		bh = bh->b_this_page;
2524	} while (bh != head);
2525	attach_page_buffers(page, head);
2526	spin_unlock(&page->mapping->private_lock);
2527}
2528
2529/*
2530 * On entry, the page is fully not uptodate.
2531 * On exit the page is fully uptodate in the areas outside (from,to)
2532 * The filesystem needs to handle block truncation upon failure.
2533 */
2534int nobh_write_begin(struct address_space *mapping,
2535			loff_t pos, unsigned len, unsigned flags,
2536			struct page **pagep, void **fsdata,
2537			get_block_t *get_block)
2538{
2539	struct inode *inode = mapping->host;
2540	const unsigned blkbits = inode->i_blkbits;
2541	const unsigned blocksize = 1 << blkbits;
2542	struct buffer_head *head, *bh;
2543	struct page *page;
2544	pgoff_t index;
2545	unsigned from, to;
2546	unsigned block_in_page;
2547	unsigned block_start, block_end;
2548	sector_t block_in_file;
2549	int nr_reads = 0;
2550	int ret = 0;
2551	int is_mapped_to_disk = 1;
2552
2553	index = pos >> PAGE_SHIFT;
2554	from = pos & (PAGE_SIZE - 1);
2555	to = from + len;
2556
2557	page = grab_cache_page_write_begin(mapping, index, flags);
2558	if (!page)
2559		return -ENOMEM;
2560	*pagep = page;
2561	*fsdata = NULL;
2562
2563	if (page_has_buffers(page)) {
2564		ret = __block_write_begin(page, pos, len, get_block);
2565		if (unlikely(ret))
2566			goto out_release;
2567		return ret;
2568	}
2569
2570	if (PageMappedToDisk(page))
2571		return 0;
2572
2573	/*
2574	 * Allocate buffers so that we can keep track of state, and potentially
2575	 * attach them to the page if an error occurs. In the common case of
2576	 * no error, they will just be freed again without ever being attached
2577	 * to the page (which is all OK, because we're under the page lock).
2578	 *
2579	 * Be careful: the buffer linked list is a NULL terminated one, rather
2580	 * than the circular one we're used to.
2581	 */
2582	head = alloc_page_buffers(page, blocksize, false);
2583	if (!head) {
2584		ret = -ENOMEM;
2585		goto out_release;
2586	}
2587
2588	block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
2589
2590	/*
2591	 * We loop across all blocks in the page, whether or not they are
2592	 * part of the affected region.  This is so we can discover if the
2593	 * page is fully mapped-to-disk.
2594	 */
2595	for (block_start = 0, block_in_page = 0, bh = head;
2596		  block_start < PAGE_SIZE;
2597		  block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2598		int create;
2599
2600		block_end = block_start + blocksize;
2601		bh->b_state = 0;
2602		create = 1;
2603		if (block_start >= to)
2604			create = 0;
2605		ret = get_block(inode, block_in_file + block_in_page,
2606					bh, create);
2607		if (ret)
2608			goto failed;
2609		if (!buffer_mapped(bh))
2610			is_mapped_to_disk = 0;
2611		if (buffer_new(bh))
2612			clean_bdev_bh_alias(bh);
2613		if (PageUptodate(page)) {
2614			set_buffer_uptodate(bh);
2615			continue;
2616		}
2617		if (buffer_new(bh) || !buffer_mapped(bh)) {
2618			zero_user_segments(page, block_start, from,
2619							to, block_end);
2620			continue;
2621		}
2622		if (buffer_uptodate(bh))
2623			continue;	/* reiserfs does this */
2624		if (block_start < from || block_end > to) {
2625			lock_buffer(bh);
2626			bh->b_end_io = end_buffer_read_nobh;
2627			submit_bh(REQ_OP_READ, 0, bh);
2628			nr_reads++;
2629		}
2630	}
2631
2632	if (nr_reads) {
2633		/*
2634		 * The page is locked, so these buffers are protected from
2635		 * any VM or truncate activity.  Hence we don't need to care
2636		 * for the buffer_head refcounts.
2637		 */
2638		for (bh = head; bh; bh = bh->b_this_page) {
2639			wait_on_buffer(bh);
2640			if (!buffer_uptodate(bh))
2641				ret = -EIO;
2642		}
2643		if (ret)
2644			goto failed;
2645	}
2646
2647	if (is_mapped_to_disk)
2648		SetPageMappedToDisk(page);
2649
2650	*fsdata = head; /* to be released by nobh_write_end */
2651
2652	return 0;
2653
2654failed:
2655	BUG_ON(!ret);
2656	/*
2657	 * Error recovery is a bit difficult. We need to zero out blocks that
2658	 * were newly allocated, and dirty them to ensure they get written out.
2659	 * Buffers need to be attached to the page at this point, otherwise
2660	 * the handling of potential IO errors during writeout would be hard
2661	 * (could try doing synchronous writeout, but what if that fails too?)
2662	 */
2663	attach_nobh_buffers(page, head);
2664	page_zero_new_buffers(page, from, to);
2665
2666out_release:
2667	unlock_page(page);
2668	put_page(page);
2669	*pagep = NULL;
2670
2671	return ret;
2672}
2673EXPORT_SYMBOL(nobh_write_begin);
2674
2675int nobh_write_end(struct file *file, struct address_space *mapping,
2676			loff_t pos, unsigned len, unsigned copied,
2677			struct page *page, void *fsdata)
2678{
2679	struct inode *inode = page->mapping->host;
2680	struct buffer_head *head = fsdata;
2681	struct buffer_head *bh;
2682	BUG_ON(fsdata != NULL && page_has_buffers(page));
2683
2684	if (unlikely(copied < len) && head)
2685		attach_nobh_buffers(page, head);
2686	if (page_has_buffers(page))
2687		return generic_write_end(file, mapping, pos, len,
2688					copied, page, fsdata);
2689
2690	SetPageUptodate(page);
2691	set_page_dirty(page);
2692	if (pos+copied > inode->i_size) {
2693		i_size_write(inode, pos+copied);
2694		mark_inode_dirty(inode);
2695	}
2696
2697	unlock_page(page);
2698	put_page(page);
2699
2700	while (head) {
2701		bh = head;
2702		head = head->b_this_page;
2703		free_buffer_head(bh);
2704	}
2705
2706	return copied;
2707}
2708EXPORT_SYMBOL(nobh_write_end);
2709
2710/*
2711 * nobh_writepage() - based on block_full_write_page() except
2712 * that it tries to operate without attaching bufferheads to
2713 * the page.
2714 */
2715int nobh_writepage(struct page *page, get_block_t *get_block,
2716			struct writeback_control *wbc)
2717{
2718	struct inode * const inode = page->mapping->host;
2719	loff_t i_size = i_size_read(inode);
2720	const pgoff_t end_index = i_size >> PAGE_SHIFT;
2721	unsigned offset;
2722	int ret;
2723
2724	/* Is the page fully inside i_size? */
2725	if (page->index < end_index)
2726		goto out;
2727
2728	/* Is the page fully outside i_size? (truncate in progress) */
2729	offset = i_size & (PAGE_SIZE-1);
2730	if (page->index >= end_index+1 || !offset) {
2731		/*
2732		 * The page may have dirty, unmapped buffers.  For example,
2733		 * they may have been added in ext3_writepage().  Make them
2734		 * freeable here, so the page does not leak.
2735		 */
2736#if 0
2737		/* Not really sure about this  - do we need this ? */
2738		if (page->mapping->a_ops->invalidatepage)
2739			page->mapping->a_ops->invalidatepage(page, offset);
2740#endif
2741		unlock_page(page);
2742		return 0; /* don't care */
2743	}
2744
2745	/*
2746	 * The page straddles i_size.  It must be zeroed out on each and every
2747	 * writepage invocation because it may be mmapped.  "A file is mapped
2748	 * in multiples of the page size.  For a file that is not a multiple of
2749	 * the  page size, the remaining memory is zeroed when mapped, and
2750	 * writes to that region are not written out to the file."
2751	 */
2752	zero_user_segment(page, offset, PAGE_SIZE);
2753out:
2754	ret = mpage_writepage(page, get_block, wbc);
2755	if (ret == -EAGAIN)
2756		ret = __block_write_full_page(inode, page, get_block, wbc,
2757					      end_buffer_async_write);
2758	return ret;
2759}
2760EXPORT_SYMBOL(nobh_writepage);
2761
2762int nobh_truncate_page(struct address_space *mapping,
2763			loff_t from, get_block_t *get_block)
2764{
2765	pgoff_t index = from >> PAGE_SHIFT;
2766	unsigned offset = from & (PAGE_SIZE-1);
2767	unsigned blocksize;
2768	sector_t iblock;
2769	unsigned length, pos;
2770	struct inode *inode = mapping->host;
2771	struct page *page;
2772	struct buffer_head map_bh;
2773	int err;
2774
2775	blocksize = i_blocksize(inode);
2776	length = offset & (blocksize - 1);
2777
2778	/* Block boundary? Nothing to do */
2779	if (!length)
2780		return 0;
2781
2782	length = blocksize - length;
2783	iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2784
2785	page = grab_cache_page(mapping, index);
2786	err = -ENOMEM;
2787	if (!page)
2788		goto out;
2789
2790	if (page_has_buffers(page)) {
2791has_buffers:
2792		unlock_page(page);
2793		put_page(page);
2794		return block_truncate_page(mapping, from, get_block);
2795	}
2796
2797	/* Find the buffer that contains "offset" */
2798	pos = blocksize;
2799	while (offset >= pos) {
2800		iblock++;
2801		pos += blocksize;
2802	}
2803
2804	map_bh.b_size = blocksize;
2805	map_bh.b_state = 0;
2806	err = get_block(inode, iblock, &map_bh, 0);
2807	if (err)
2808		goto unlock;
2809	/* unmapped? It's a hole - nothing to do */
2810	if (!buffer_mapped(&map_bh))
2811		goto unlock;
2812
2813	/* Ok, it's mapped. Make sure it's up-to-date */
2814	if (!PageUptodate(page)) {
2815		err = mapping->a_ops->readpage(NULL, page);
2816		if (err) {
2817			put_page(page);
2818			goto out;
2819		}
2820		lock_page(page);
2821		if (!PageUptodate(page)) {
2822			err = -EIO;
2823			goto unlock;
2824		}
2825		if (page_has_buffers(page))
2826			goto has_buffers;
2827	}
2828	zero_user(page, offset, length);
2829	set_page_dirty(page);
2830	err = 0;
2831
2832unlock:
2833	unlock_page(page);
2834	put_page(page);
2835out:
2836	return err;
2837}
2838EXPORT_SYMBOL(nobh_truncate_page);
2839
2840int block_truncate_page(struct address_space *mapping,
2841			loff_t from, get_block_t *get_block)
2842{
2843	pgoff_t index = from >> PAGE_SHIFT;
2844	unsigned offset = from & (PAGE_SIZE-1);
2845	unsigned blocksize;
2846	sector_t iblock;
2847	unsigned length, pos;
2848	struct inode *inode = mapping->host;
2849	struct page *page;
2850	struct buffer_head *bh;
2851	int err;
2852
2853	blocksize = i_blocksize(inode);
2854	length = offset & (blocksize - 1);
2855
2856	/* Block boundary? Nothing to do */
2857	if (!length)
2858		return 0;
2859
2860	length = blocksize - length;
2861	iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2862	
2863	page = grab_cache_page(mapping, index);
2864	err = -ENOMEM;
2865	if (!page)
2866		goto out;
2867
2868	if (!page_has_buffers(page))
2869		create_empty_buffers(page, blocksize, 0);
2870
2871	/* Find the buffer that contains "offset" */
2872	bh = page_buffers(page);
2873	pos = blocksize;
2874	while (offset >= pos) {
2875		bh = bh->b_this_page;
2876		iblock++;
2877		pos += blocksize;
2878	}
2879
2880	err = 0;
2881	if (!buffer_mapped(bh)) {
2882		WARN_ON(bh->b_size != blocksize);
2883		err = get_block(inode, iblock, bh, 0);
2884		if (err)
2885			goto unlock;
2886		/* unmapped? It's a hole - nothing to do */
2887		if (!buffer_mapped(bh))
2888			goto unlock;
2889	}
2890
2891	/* Ok, it's mapped. Make sure it's up-to-date */
2892	if (PageUptodate(page))
2893		set_buffer_uptodate(bh);
2894
2895	if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2896		err = -EIO;
2897		ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2898		wait_on_buffer(bh);
2899		/* Uhhuh. Read error. Complain and punt. */
2900		if (!buffer_uptodate(bh))
2901			goto unlock;
2902	}
2903
2904	zero_user(page, offset, length);
2905	mark_buffer_dirty(bh);
2906	err = 0;
2907
2908unlock:
2909	unlock_page(page);
2910	put_page(page);
2911out:
2912	return err;
2913}
2914EXPORT_SYMBOL(block_truncate_page);
2915
2916/*
2917 * The generic ->writepage function for buffer-backed address_spaces
2918 */
2919int block_write_full_page(struct page *page, get_block_t *get_block,
2920			struct writeback_control *wbc)
2921{
2922	struct inode * const inode = page->mapping->host;
2923	loff_t i_size = i_size_read(inode);
2924	const pgoff_t end_index = i_size >> PAGE_SHIFT;
2925	unsigned offset;
2926
2927	/* Is the page fully inside i_size? */
2928	if (page->index < end_index)
2929		return __block_write_full_page(inode, page, get_block, wbc,
2930					       end_buffer_async_write);
2931
2932	/* Is the page fully outside i_size? (truncate in progress) */
2933	offset = i_size & (PAGE_SIZE-1);
2934	if (page->index >= end_index+1 || !offset) {
2935		/*
2936		 * The page may have dirty, unmapped buffers.  For example,
2937		 * they may have been added in ext3_writepage().  Make them
2938		 * freeable here, so the page does not leak.
2939		 */
2940		do_invalidatepage(page, 0, PAGE_SIZE);
2941		unlock_page(page);
2942		return 0; /* don't care */
2943	}
2944
2945	/*
2946	 * The page straddles i_size.  It must be zeroed out on each and every
2947	 * writepage invocation because it may be mmapped.  "A file is mapped
2948	 * in multiples of the page size.  For a file that is not a multiple of
2949	 * the  page size, the remaining memory is zeroed when mapped, and
2950	 * writes to that region are not written out to the file."
2951	 */
2952	zero_user_segment(page, offset, PAGE_SIZE);
2953	return __block_write_full_page(inode, page, get_block, wbc,
2954							end_buffer_async_write);
2955}
2956EXPORT_SYMBOL(block_write_full_page);
2957
2958sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2959			    get_block_t *get_block)
2960{
 
2961	struct inode *inode = mapping->host;
2962	struct buffer_head tmp = {
2963		.b_size = i_blocksize(inode),
2964	};
2965
2966	get_block(inode, block, &tmp, 0);
2967	return tmp.b_blocknr;
2968}
2969EXPORT_SYMBOL(generic_block_bmap);
2970
2971static void end_bio_bh_io_sync(struct bio *bio)
2972{
2973	struct buffer_head *bh = bio->bi_private;
2974
2975	if (unlikely(bio_flagged(bio, BIO_QUIET)))
2976		set_bit(BH_Quiet, &bh->b_state);
2977
2978	bh->b_end_io(bh, !bio->bi_status);
2979	bio_put(bio);
2980}
2981
2982/*
2983 * This allows us to do IO even on the odd last sectors
2984 * of a device, even if the block size is some multiple
2985 * of the physical sector size.
2986 *
2987 * We'll just truncate the bio to the size of the device,
2988 * and clear the end of the buffer head manually.
2989 *
2990 * Truly out-of-range accesses will turn into actual IO
2991 * errors, this only handles the "we need to be able to
2992 * do IO at the final sector" case.
2993 */
2994void guard_bio_eod(int op, struct bio *bio)
2995{
2996	sector_t maxsector;
2997	struct bio_vec *bvec = bio_last_bvec_all(bio);
2998	unsigned truncated_bytes;
2999	struct hd_struct *part;
3000
3001	rcu_read_lock();
3002	part = __disk_get_part(bio->bi_disk, bio->bi_partno);
3003	if (part)
3004		maxsector = part_nr_sects_read(part);
3005	else
3006		maxsector = get_capacity(bio->bi_disk);
3007	rcu_read_unlock();
3008
 
3009	if (!maxsector)
3010		return;
3011
3012	/*
3013	 * If the *whole* IO is past the end of the device,
3014	 * let it through, and the IO layer will turn it into
3015	 * an EIO.
3016	 */
3017	if (unlikely(bio->bi_iter.bi_sector >= maxsector))
3018		return;
3019
3020	maxsector -= bio->bi_iter.bi_sector;
3021	if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
3022		return;
3023
3024	/* Uhhuh. We've got a bio that straddles the device size! */
3025	truncated_bytes = bio->bi_iter.bi_size - (maxsector << 9);
3026
3027	/*
3028	 * The bio contains more than one segment which spans EOD, just return
3029	 * and let IO layer turn it into an EIO
3030	 */
3031	if (truncated_bytes > bvec->bv_len)
3032		return;
3033
3034	/* Truncate the bio.. */
3035	bio->bi_iter.bi_size -= truncated_bytes;
3036	bvec->bv_len -= truncated_bytes;
3037
3038	/* ..and clear the end of the buffer for reads */
3039	if (op == REQ_OP_READ) {
3040		struct bio_vec bv;
3041
3042		mp_bvec_last_segment(bvec, &bv);
3043		zero_user(bv.bv_page, bv.bv_offset + bv.bv_len,
3044				truncated_bytes);
3045	}
3046}
3047
3048static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
3049			 enum rw_hint write_hint, struct writeback_control *wbc)
3050{
3051	struct bio *bio;
3052
3053	BUG_ON(!buffer_locked(bh));
3054	BUG_ON(!buffer_mapped(bh));
3055	BUG_ON(!bh->b_end_io);
3056	BUG_ON(buffer_delay(bh));
3057	BUG_ON(buffer_unwritten(bh));
3058
3059	/*
3060	 * Only clear out a write error when rewriting
3061	 */
3062	if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
3063		clear_buffer_write_io_error(bh);
3064
3065	/*
3066	 * from here on down, it's all bio -- do the initial mapping,
3067	 * submit_bio -> generic_make_request may further map this bio around
3068	 */
3069	bio = bio_alloc(GFP_NOIO, 1);
3070
 
 
 
 
 
3071	bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
3072	bio_set_dev(bio, bh->b_bdev);
3073	bio->bi_write_hint = write_hint;
3074
3075	bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
3076	BUG_ON(bio->bi_iter.bi_size != bh->b_size);
3077
3078	bio->bi_end_io = end_bio_bh_io_sync;
3079	bio->bi_private = bh;
 
3080
3081	/* Take care of bh's that straddle the end of the device */
3082	guard_bio_eod(op, bio);
3083
3084	if (buffer_meta(bh))
3085		op_flags |= REQ_META;
3086	if (buffer_prio(bh))
3087		op_flags |= REQ_PRIO;
3088	bio_set_op_attrs(bio, op, op_flags);
3089
3090	if (wbc) {
3091		wbc_init_bio(wbc, bio);
3092		wbc_account_cgroup_owner(wbc, bh->b_page, bh->b_size);
3093	}
3094
3095	submit_bio(bio);
3096	return 0;
3097}
3098
3099int submit_bh(int op, int op_flags, struct buffer_head *bh)
 
 
 
 
 
 
 
3100{
3101	return submit_bh_wbc(op, op_flags, bh, 0, NULL);
3102}
3103EXPORT_SYMBOL(submit_bh);
3104
3105/**
3106 * ll_rw_block: low-level access to block devices (DEPRECATED)
3107 * @op: whether to %READ or %WRITE
3108 * @op_flags: req_flag_bits
3109 * @nr: number of &struct buffer_heads in the array
3110 * @bhs: array of pointers to &struct buffer_head
3111 *
3112 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3113 * requests an I/O operation on them, either a %REQ_OP_READ or a %REQ_OP_WRITE.
3114 * @op_flags contains flags modifying the detailed I/O behavior, most notably
3115 * %REQ_RAHEAD.
3116 *
3117 * This function drops any buffer that it cannot get a lock on (with the
3118 * BH_Lock state bit), any buffer that appears to be clean when doing a write
3119 * request, and any buffer that appears to be up-to-date when doing read
3120 * request.  Further it marks as clean buffers that are processed for
3121 * writing (the buffer cache won't assume that they are actually clean
3122 * until the buffer gets unlocked).
3123 *
3124 * ll_rw_block sets b_end_io to simple completion handler that marks
3125 * the buffer up-to-date (if appropriate), unlocks the buffer and wakes
3126 * any waiters. 
3127 *
3128 * All of the buffers must be for the same device, and must also be a
3129 * multiple of the current approved size for the device.
3130 */
3131void ll_rw_block(int op, int op_flags,  int nr, struct buffer_head *bhs[])
3132{
3133	int i;
3134
3135	for (i = 0; i < nr; i++) {
3136		struct buffer_head *bh = bhs[i];
3137
3138		if (!trylock_buffer(bh))
3139			continue;
3140		if (op == WRITE) {
3141			if (test_clear_buffer_dirty(bh)) {
3142				bh->b_end_io = end_buffer_write_sync;
3143				get_bh(bh);
3144				submit_bh(op, op_flags, bh);
3145				continue;
3146			}
3147		} else {
3148			if (!buffer_uptodate(bh)) {
3149				bh->b_end_io = end_buffer_read_sync;
3150				get_bh(bh);
3151				submit_bh(op, op_flags, bh);
3152				continue;
3153			}
3154		}
3155		unlock_buffer(bh);
3156	}
3157}
3158EXPORT_SYMBOL(ll_rw_block);
3159
3160void write_dirty_buffer(struct buffer_head *bh, int op_flags)
3161{
3162	lock_buffer(bh);
3163	if (!test_clear_buffer_dirty(bh)) {
3164		unlock_buffer(bh);
3165		return;
3166	}
3167	bh->b_end_io = end_buffer_write_sync;
3168	get_bh(bh);
3169	submit_bh(REQ_OP_WRITE, op_flags, bh);
3170}
3171EXPORT_SYMBOL(write_dirty_buffer);
3172
3173/*
3174 * For a data-integrity writeout, we need to wait upon any in-progress I/O
3175 * and then start new I/O and then wait upon it.  The caller must have a ref on
3176 * the buffer_head.
3177 */
3178int __sync_dirty_buffer(struct buffer_head *bh, int op_flags)
3179{
3180	int ret = 0;
3181
3182	WARN_ON(atomic_read(&bh->b_count) < 1);
3183	lock_buffer(bh);
3184	if (test_clear_buffer_dirty(bh)) {
3185		get_bh(bh);
3186		bh->b_end_io = end_buffer_write_sync;
3187		ret = submit_bh(REQ_OP_WRITE, op_flags, bh);
3188		wait_on_buffer(bh);
3189		if (!ret && !buffer_uptodate(bh))
3190			ret = -EIO;
3191	} else {
3192		unlock_buffer(bh);
3193	}
3194	return ret;
3195}
3196EXPORT_SYMBOL(__sync_dirty_buffer);
3197
3198int sync_dirty_buffer(struct buffer_head *bh)
3199{
3200	return __sync_dirty_buffer(bh, REQ_SYNC);
3201}
3202EXPORT_SYMBOL(sync_dirty_buffer);
3203
3204/*
3205 * try_to_free_buffers() checks if all the buffers on this particular page
3206 * are unused, and releases them if so.
3207 *
3208 * Exclusion against try_to_free_buffers may be obtained by either
3209 * locking the page or by holding its mapping's private_lock.
3210 *
3211 * If the page is dirty but all the buffers are clean then we need to
3212 * be sure to mark the page clean as well.  This is because the page
3213 * may be against a block device, and a later reattachment of buffers
3214 * to a dirty page will set *all* buffers dirty.  Which would corrupt
3215 * filesystem data on the same device.
3216 *
3217 * The same applies to regular filesystem pages: if all the buffers are
3218 * clean then we set the page clean and proceed.  To do that, we require
3219 * total exclusion from __set_page_dirty_buffers().  That is obtained with
3220 * private_lock.
3221 *
3222 * try_to_free_buffers() is non-blocking.
3223 */
3224static inline int buffer_busy(struct buffer_head *bh)
3225{
3226	return atomic_read(&bh->b_count) |
3227		(bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3228}
3229
3230static int
3231drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3232{
3233	struct buffer_head *head = page_buffers(page);
3234	struct buffer_head *bh;
3235
3236	bh = head;
3237	do {
 
 
3238		if (buffer_busy(bh))
3239			goto failed;
3240		bh = bh->b_this_page;
3241	} while (bh != head);
3242
3243	do {
3244		struct buffer_head *next = bh->b_this_page;
3245
3246		if (bh->b_assoc_map)
3247			__remove_assoc_queue(bh);
3248		bh = next;
3249	} while (bh != head);
3250	*buffers_to_free = head;
3251	__clear_page_buffers(page);
3252	return 1;
3253failed:
3254	return 0;
3255}
3256
3257int try_to_free_buffers(struct page *page)
3258{
3259	struct address_space * const mapping = page->mapping;
3260	struct buffer_head *buffers_to_free = NULL;
3261	int ret = 0;
3262
3263	BUG_ON(!PageLocked(page));
3264	if (PageWriteback(page))
3265		return 0;
3266
3267	if (mapping == NULL) {		/* can this still happen? */
3268		ret = drop_buffers(page, &buffers_to_free);
3269		goto out;
3270	}
3271
3272	spin_lock(&mapping->private_lock);
3273	ret = drop_buffers(page, &buffers_to_free);
3274
3275	/*
3276	 * If the filesystem writes its buffers by hand (eg ext3)
3277	 * then we can have clean buffers against a dirty page.  We
3278	 * clean the page here; otherwise the VM will never notice
3279	 * that the filesystem did any IO at all.
3280	 *
3281	 * Also, during truncate, discard_buffer will have marked all
3282	 * the page's buffers clean.  We discover that here and clean
3283	 * the page also.
3284	 *
3285	 * private_lock must be held over this entire operation in order
3286	 * to synchronise against __set_page_dirty_buffers and prevent the
3287	 * dirty bit from being lost.
3288	 */
3289	if (ret)
3290		cancel_dirty_page(page);
3291	spin_unlock(&mapping->private_lock);
3292out:
3293	if (buffers_to_free) {
3294		struct buffer_head *bh = buffers_to_free;
3295
3296		do {
3297			struct buffer_head *next = bh->b_this_page;
3298			free_buffer_head(bh);
3299			bh = next;
3300		} while (bh != buffers_to_free);
3301	}
3302	return ret;
3303}
3304EXPORT_SYMBOL(try_to_free_buffers);
3305
3306/*
3307 * There are no bdflush tunables left.  But distributions are
3308 * still running obsolete flush daemons, so we terminate them here.
3309 *
3310 * Use of bdflush() is deprecated and will be removed in a future kernel.
3311 * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3312 */
3313SYSCALL_DEFINE2(bdflush, int, func, long, data)
3314{
3315	static int msg_count;
3316
3317	if (!capable(CAP_SYS_ADMIN))
3318		return -EPERM;
3319
3320	if (msg_count < 5) {
3321		msg_count++;
3322		printk(KERN_INFO
3323			"warning: process `%s' used the obsolete bdflush"
3324			" system call\n", current->comm);
3325		printk(KERN_INFO "Fix your initscripts?\n");
3326	}
3327
3328	if (func == 1)
3329		do_exit(0);
3330	return 0;
3331}
3332
3333/*
3334 * Buffer-head allocation
3335 */
3336static struct kmem_cache *bh_cachep __read_mostly;
3337
3338/*
3339 * Once the number of bh's in the machine exceeds this level, we start
3340 * stripping them in writeback.
3341 */
3342static unsigned long max_buffer_heads;
3343
3344int buffer_heads_over_limit;
3345
3346struct bh_accounting {
3347	int nr;			/* Number of live bh's */
3348	int ratelimit;		/* Limit cacheline bouncing */
3349};
3350
3351static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3352
3353static void recalc_bh_state(void)
3354{
3355	int i;
3356	int tot = 0;
3357
3358	if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3359		return;
3360	__this_cpu_write(bh_accounting.ratelimit, 0);
3361	for_each_online_cpu(i)
3362		tot += per_cpu(bh_accounting, i).nr;
3363	buffer_heads_over_limit = (tot > max_buffer_heads);
3364}
3365
3366struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3367{
3368	struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3369	if (ret) {
3370		INIT_LIST_HEAD(&ret->b_assoc_buffers);
3371		preempt_disable();
3372		__this_cpu_inc(bh_accounting.nr);
3373		recalc_bh_state();
3374		preempt_enable();
3375	}
3376	return ret;
3377}
3378EXPORT_SYMBOL(alloc_buffer_head);
3379
3380void free_buffer_head(struct buffer_head *bh)
3381{
3382	BUG_ON(!list_empty(&bh->b_assoc_buffers));
3383	kmem_cache_free(bh_cachep, bh);
3384	preempt_disable();
3385	__this_cpu_dec(bh_accounting.nr);
3386	recalc_bh_state();
3387	preempt_enable();
3388}
3389EXPORT_SYMBOL(free_buffer_head);
3390
3391static int buffer_exit_cpu_dead(unsigned int cpu)
3392{
3393	int i;
3394	struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3395
3396	for (i = 0; i < BH_LRU_SIZE; i++) {
3397		brelse(b->bhs[i]);
3398		b->bhs[i] = NULL;
3399	}
3400	this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3401	per_cpu(bh_accounting, cpu).nr = 0;
3402	return 0;
3403}
3404
3405/**
3406 * bh_uptodate_or_lock - Test whether the buffer is uptodate
3407 * @bh: struct buffer_head
3408 *
3409 * Return true if the buffer is up-to-date and false,
3410 * with the buffer locked, if not.
3411 */
3412int bh_uptodate_or_lock(struct buffer_head *bh)
3413{
3414	if (!buffer_uptodate(bh)) {
3415		lock_buffer(bh);
3416		if (!buffer_uptodate(bh))
3417			return 0;
3418		unlock_buffer(bh);
3419	}
3420	return 1;
3421}
3422EXPORT_SYMBOL(bh_uptodate_or_lock);
3423
3424/**
3425 * bh_submit_read - Submit a locked buffer for reading
3426 * @bh: struct buffer_head
3427 *
3428 * Returns zero on success and -EIO on error.
3429 */
3430int bh_submit_read(struct buffer_head *bh)
3431{
3432	BUG_ON(!buffer_locked(bh));
3433
3434	if (buffer_uptodate(bh)) {
3435		unlock_buffer(bh);
3436		return 0;
3437	}
3438
3439	get_bh(bh);
3440	bh->b_end_io = end_buffer_read_sync;
3441	submit_bh(REQ_OP_READ, 0, bh);
3442	wait_on_buffer(bh);
3443	if (buffer_uptodate(bh))
3444		return 0;
3445	return -EIO;
3446}
3447EXPORT_SYMBOL(bh_submit_read);
3448
3449void __init buffer_init(void)
3450{
3451	unsigned long nrpages;
3452	int ret;
3453
3454	bh_cachep = kmem_cache_create("buffer_head",
3455			sizeof(struct buffer_head), 0,
3456				(SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3457				SLAB_MEM_SPREAD),
3458				NULL);
3459
3460	/*
3461	 * Limit the bh occupancy to 10% of ZONE_NORMAL
3462	 */
3463	nrpages = (nr_free_buffer_pages() * 10) / 100;
3464	max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3465	ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead",
3466					NULL, buffer_exit_cpu_dead);
3467	WARN_ON(ret < 0);
3468}