Linux Audio

Check our new training course

Loading...
v3.5.6
 
   1/*
   2 * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com>
   3 * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org>
   4 *
   5 * This program is free software; you can redistribute it and/or modify
   6 * it under the terms of the GNU General Public License version 2 as
   7 * published by the Free Software Foundation.
   8 *
   9 * Standard functionality for the common clock API.  See Documentation/clk.txt
  10 */
  11
  12#include <linux/clk-private.h>
 
 
  13#include <linux/module.h>
  14#include <linux/mutex.h>
  15#include <linux/spinlock.h>
  16#include <linux/err.h>
  17#include <linux/list.h>
  18#include <linux/slab.h>
 
 
 
 
 
 
 
 
  19
  20static DEFINE_SPINLOCK(enable_lock);
  21static DEFINE_MUTEX(prepare_lock);
  22
 
 
 
 
 
 
  23static HLIST_HEAD(clk_root_list);
  24static HLIST_HEAD(clk_orphan_list);
  25static LIST_HEAD(clk_notifier_list);
  26
  27/***        debugfs support        ***/
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  28
  29#ifdef CONFIG_COMMON_CLK_DEBUG
  30#include <linux/debugfs.h>
  31
  32static struct dentry *rootdir;
  33static struct dentry *orphandir;
  34static int inited = 0;
 
 
 
 
 
 
 
  35
  36/* caller must hold prepare_lock */
  37static int clk_debug_create_one(struct clk *clk, struct dentry *pdentry)
  38{
  39	struct dentry *d;
  40	int ret = -ENOMEM;
  41
  42	if (!clk || !pdentry) {
  43		ret = -EINVAL;
  44		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  45	}
  46
  47	d = debugfs_create_dir(clk->name, pdentry);
  48	if (!d)
  49		goto out;
  50
  51	clk->dentry = d;
 
 
 
  52
  53	d = debugfs_create_u32("clk_rate", S_IRUGO, clk->dentry,
  54			(u32 *)&clk->rate);
  55	if (!d)
  56		goto err_out;
  57
  58	d = debugfs_create_x32("clk_flags", S_IRUGO, clk->dentry,
  59			(u32 *)&clk->flags);
  60	if (!d)
  61		goto err_out;
  62
  63	d = debugfs_create_u32("clk_prepare_count", S_IRUGO, clk->dentry,
  64			(u32 *)&clk->prepare_count);
  65	if (!d)
  66		goto err_out;
  67
  68	d = debugfs_create_u32("clk_enable_count", S_IRUGO, clk->dentry,
  69			(u32 *)&clk->enable_count);
  70	if (!d)
  71		goto err_out;
  72
  73	d = debugfs_create_u32("clk_notifier_count", S_IRUGO, clk->dentry,
  74			(u32 *)&clk->notifier_count);
  75	if (!d)
  76		goto err_out;
  77
  78	ret = 0;
  79	goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  80
  81err_out:
  82	debugfs_remove(clk->dentry);
  83out:
  84	return ret;
  85}
  86
  87/* caller must hold prepare_lock */
  88static int clk_debug_create_subtree(struct clk *clk, struct dentry *pdentry)
  89{
  90	struct clk *child;
  91	struct hlist_node *tmp;
  92	int ret = -EINVAL;;
  93
  94	if (!clk || !pdentry)
  95		goto out;
 
 
 
 
  96
  97	ret = clk_debug_create_one(clk, pdentry);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  98
  99	if (ret)
 100		goto out;
 
 
 
 
 
 
 
 
 101
 102	hlist_for_each_entry(child, tmp, &clk->children, child_node)
 103		clk_debug_create_subtree(child, clk->dentry);
 
 
 104
 105	ret = 0;
 106out:
 107	return ret;
 108}
 109
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 110/**
 111 * clk_debug_register - add a clk node to the debugfs clk tree
 112 * @clk: the clk being added to the debugfs clk tree
 
 113 *
 114 * Dynamically adds a clk to the debugfs clk tree if debugfs has been
 115 * initialized.  Otherwise it bails out early since the debugfs clk tree
 116 * will be created lazily by clk_debug_init as part of a late_initcall.
 
 
 
 
 
 
 
 
 
 117 *
 118 * Caller must hold prepare_lock.  Only clk_init calls this function (so
 119 * far) so this is taken care.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 120 */
 121static int clk_debug_register(struct clk *clk)
 122{
 123	struct clk *parent;
 124	struct dentry *pdentry;
 125	int ret = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 126
 127	if (!inited)
 128		goto out;
 129
 130	parent = clk->parent;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 131
 132	/*
 133	 * Check to see if a clk is a root clk.  Also check that it is
 134	 * safe to add this clk to debugfs
 
 135	 */
 136	if (!parent)
 137		if (clk->flags & CLK_IS_ROOT)
 138			pdentry = rootdir;
 139		else
 140			pdentry = orphandir;
 141	else
 142		if (parent->dentry)
 143			pdentry = parent->dentry;
 144		else
 145			goto out;
 146
 147	ret = clk_debug_create_subtree(clk, pdentry);
 
 
 
 148
 149out:
 150	return ret;
 
 
 
 
 
 
 
 
 151}
 152
 153/**
 154 * clk_debug_init - lazily create the debugfs clk tree visualization
 155 *
 156 * clks are often initialized very early during boot before memory can
 157 * be dynamically allocated and well before debugfs is setup.
 158 * clk_debug_init walks the clk tree hierarchy while holding
 159 * prepare_lock and creates the topology as part of a late_initcall,
 160 * thus insuring that clks initialized very early will still be
 161 * represented in the debugfs clk tree.  This function should only be
 162 * called once at boot-time, and all other clks added dynamically will
 163 * be done so with clk_debug_register.
 164 */
 165static int __init clk_debug_init(void)
 166{
 167	struct clk *clk;
 168	struct hlist_node *tmp;
 169
 170	rootdir = debugfs_create_dir("clk", NULL);
 171
 172	if (!rootdir)
 173		return -ENOMEM;
 
 174
 175	orphandir = debugfs_create_dir("orphans", rootdir);
 
 
 
 176
 177	if (!orphandir)
 178		return -ENOMEM;
 
 
 179
 180	mutex_lock(&prepare_lock);
 
 181
 182	hlist_for_each_entry(clk, tmp, &clk_root_list, child_node)
 183		clk_debug_create_subtree(clk, rootdir);
 
 
 
 
 
 184
 185	hlist_for_each_entry(clk, tmp, &clk_orphan_list, child_node)
 186		clk_debug_create_subtree(clk, orphandir);
 
 
 
 187
 188	inited = 1;
 
 
 
 189
 190	mutex_unlock(&prepare_lock);
 
 191
 192	return 0;
 
 
 193}
 194late_initcall(clk_debug_init);
 195#else
 196static inline int clk_debug_register(struct clk *clk) { return 0; }
 197#endif
 198
 199/* caller must hold prepare_lock */
 200static void clk_disable_unused_subtree(struct clk *clk)
 201{
 202	struct clk *child;
 203	struct hlist_node *tmp;
 204	unsigned long flags;
 
 
 
 
 
 
 205
 
 
 206	if (!clk)
 207		goto out;
 208
 209	hlist_for_each_entry(child, tmp, &clk->children, child_node)
 210		clk_disable_unused_subtree(child);
 
 211
 212	spin_lock_irqsave(&enable_lock, flags);
 
 
 
 
 213
 214	if (clk->enable_count)
 215		goto unlock_out;
 216
 217	if (clk->flags & CLK_IGNORE_UNUSED)
 218		goto unlock_out;
 
 219
 220	if (__clk_is_enabled(clk) && clk->ops->disable)
 221		clk->ops->disable(clk->hw);
 222
 223unlock_out:
 224	spin_unlock_irqrestore(&enable_lock, flags);
 
 
 225
 226out:
 227	return;
 
 
 
 
 
 
 
 
 
 
 
 
 228}
 229
 230static int clk_disable_unused(void)
 
 
 
 
 
 231{
 232	struct clk *clk;
 233	struct hlist_node *tmp;
 
 
 234
 235	mutex_lock(&prepare_lock);
 
 236
 237	hlist_for_each_entry(clk, tmp, &clk_root_list, child_node)
 238		clk_disable_unused_subtree(clk);
 
 239
 240	hlist_for_each_entry(clk, tmp, &clk_orphan_list, child_node)
 241		clk_disable_unused_subtree(clk);
 
 
 
 
 
 
 242
 243	mutex_unlock(&prepare_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 244
 245	return 0;
 246}
 247late_initcall(clk_disable_unused);
 248
 249/***    helper functions   ***/
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 250
 251inline const char *__clk_get_name(struct clk *clk)
 
 
 
 
 
 
 
 
 252{
 253	return !clk ? NULL : clk->name;
 
 
 254}
 255
 256inline struct clk_hw *__clk_get_hw(struct clk *clk)
 
 
 257{
 258	return !clk ? NULL : clk->hw;
 
 
 
 
 
 
 
 
 
 
 
 259}
 260
 261inline u8 __clk_get_num_parents(struct clk *clk)
 
 
 
 
 
 
 
 
 
 
 262{
 263	return !clk ? -EINVAL : clk->num_parents;
 264}
 
 265
 266inline struct clk *__clk_get_parent(struct clk *clk)
 
 
 267{
 268	return !clk ? NULL : clk->parent;
 
 
 
 
 
 
 
 
 
 
 
 269}
 270
 271inline int __clk_get_enable_count(struct clk *clk)
 
 272{
 273	return !clk ? -EINVAL : clk->enable_count;
 
 274}
 
 275
 276inline int __clk_get_prepare_count(struct clk *clk)
 
 
 
 
 
 
 
 
 
 
 
 
 277{
 278	return !clk ? -EINVAL : clk->prepare_count;
 279}
 
 280
 281unsigned long __clk_get_rate(struct clk *clk)
 
 282{
 283	unsigned long ret;
 
 
 284
 285	if (!clk) {
 286		ret = 0;
 287		goto out;
 288	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 289
 290	ret = clk->rate;
 291
 292	if (clk->flags & CLK_IS_ROOT)
 293		goto out;
 
 294
 295	if (!clk->parent)
 296		ret = 0;
 297
 298out:
 299	return ret;
 300}
 301
 302inline unsigned long __clk_get_flags(struct clk *clk)
 303{
 304	return !clk ? -EINVAL : clk->flags;
 
 305}
 306
 307int __clk_is_enabled(struct clk *clk)
 308{
 309	int ret;
 310
 311	if (!clk)
 
 
 312		return -EINVAL;
 313
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 314	/*
 315	 * .is_enabled is only mandatory for clocks that gate
 316	 * fall back to software usage counter if .is_enabled is missing
 317	 */
 318	if (!clk->ops->is_enabled) {
 319		ret = clk->enable_count ? 1 : 0;
 320		goto out;
 321	}
 322
 323	ret = clk->ops->is_enabled(clk->hw);
 
 324out:
 325	return ret;
 326}
 
 327
 328static struct clk *__clk_lookup_subtree(const char *name, struct clk *clk)
 329{
 330	struct clk *child;
 331	struct clk *ret;
 332	struct hlist_node *tmp;
 333
 334	if (!strcmp(clk->name, name))
 335		return clk;
 336
 337	hlist_for_each_entry(child, tmp, &clk->children, child_node) {
 338		ret = __clk_lookup_subtree(name, child);
 339		if (ret)
 340			return ret;
 341	}
 342
 343	return NULL;
 344}
 345
 346struct clk *__clk_lookup(const char *name)
 347{
 348	struct clk *root_clk;
 349	struct clk *ret;
 350	struct hlist_node *tmp;
 351
 352	if (!name)
 353		return NULL;
 354
 355	/* search the 'proper' clk tree first */
 356	hlist_for_each_entry(root_clk, tmp, &clk_root_list, child_node) {
 357		ret = __clk_lookup_subtree(name, root_clk);
 358		if (ret)
 359			return ret;
 360	}
 361
 362	/* if not found, then search the orphan tree */
 363	hlist_for_each_entry(root_clk, tmp, &clk_orphan_list, child_node) {
 364		ret = __clk_lookup_subtree(name, root_clk);
 365		if (ret)
 366			return ret;
 367	}
 368
 369	return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 370}
 
 371
 372/***        clk api        ***/
 
 
 
 
 
 373
 374void __clk_unprepare(struct clk *clk)
 375{
 376	if (!clk)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 377		return;
 378
 379	if (WARN_ON(clk->prepare_count == 0))
 
 380		return;
 381
 382	if (--clk->prepare_count > 0)
 
 383		return;
 384
 385	WARN_ON(clk->enable_count > 0);
 
 386
 387	if (clk->ops->unprepare)
 388		clk->ops->unprepare(clk->hw);
 
 
 
 
 389
 390	__clk_unprepare(clk->parent);
 
 
 
 
 
 
 
 
 
 
 
 
 391}
 392
 393/**
 394 * clk_unprepare - undo preparation of a clock source
 395 * @clk: the clk being unprepare
 396 *
 397 * clk_unprepare may sleep, which differentiates it from clk_disable.  In a
 398 * simple case, clk_unprepare can be used instead of clk_disable to gate a clk
 399 * if the operation may sleep.  One example is a clk which is accessed over
 400 * I2c.  In the complex case a clk gate operation may require a fast and a slow
 401 * part.  It is this reason that clk_unprepare and clk_disable are not mutually
 402 * exclusive.  In fact clk_disable must be called before clk_unprepare.
 403 */
 404void clk_unprepare(struct clk *clk)
 405{
 406	mutex_lock(&prepare_lock);
 407	__clk_unprepare(clk);
 408	mutex_unlock(&prepare_lock);
 
 409}
 410EXPORT_SYMBOL_GPL(clk_unprepare);
 411
 412int __clk_prepare(struct clk *clk)
 413{
 414	int ret = 0;
 415
 416	if (!clk)
 
 
 417		return 0;
 418
 419	if (clk->prepare_count == 0) {
 420		ret = __clk_prepare(clk->parent);
 421		if (ret)
 422			return ret;
 423
 424		if (clk->ops->prepare) {
 425			ret = clk->ops->prepare(clk->hw);
 426			if (ret) {
 427				__clk_unprepare(clk->parent);
 428				return ret;
 429			}
 430		}
 
 
 
 
 
 
 431	}
 432
 433	clk->prepare_count++;
 
 
 
 
 
 
 
 
 
 
 434
 435	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 436}
 437
 438/**
 439 * clk_prepare - prepare a clock source
 440 * @clk: the clk being prepared
 441 *
 442 * clk_prepare may sleep, which differentiates it from clk_enable.  In a simple
 443 * case, clk_prepare can be used instead of clk_enable to ungate a clk if the
 444 * operation may sleep.  One example is a clk which is accessed over I2c.  In
 445 * the complex case a clk ungate operation may require a fast and a slow part.
 446 * It is this reason that clk_prepare and clk_enable are not mutually
 447 * exclusive.  In fact clk_prepare must be called before clk_enable.
 448 * Returns 0 on success, -EERROR otherwise.
 449 */
 450int clk_prepare(struct clk *clk)
 451{
 452	int ret;
 453
 454	mutex_lock(&prepare_lock);
 455	ret = __clk_prepare(clk);
 456	mutex_unlock(&prepare_lock);
 457
 458	return ret;
 459}
 460EXPORT_SYMBOL_GPL(clk_prepare);
 461
 462static void __clk_disable(struct clk *clk)
 463{
 464	if (!clk)
 
 
 465		return;
 466
 467	if (WARN_ON(clk->enable_count == 0))
 468		return;
 469
 470	if (--clk->enable_count > 0)
 
 471		return;
 472
 473	if (clk->ops->disable)
 474		clk->ops->disable(clk->hw);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 475
 476	__clk_disable(clk->parent);
 
 
 477}
 478
 479/**
 480 * clk_disable - gate a clock
 481 * @clk: the clk being gated
 482 *
 483 * clk_disable must not sleep, which differentiates it from clk_unprepare.  In
 484 * a simple case, clk_disable can be used instead of clk_unprepare to gate a
 485 * clk if the operation is fast and will never sleep.  One example is a
 486 * SoC-internal clk which is controlled via simple register writes.  In the
 487 * complex case a clk gate operation may require a fast and a slow part.  It is
 488 * this reason that clk_unprepare and clk_disable are not mutually exclusive.
 489 * In fact clk_disable must be called before clk_unprepare.
 490 */
 491void clk_disable(struct clk *clk)
 492{
 493	unsigned long flags;
 
 494
 495	spin_lock_irqsave(&enable_lock, flags);
 496	__clk_disable(clk);
 497	spin_unlock_irqrestore(&enable_lock, flags);
 498}
 499EXPORT_SYMBOL_GPL(clk_disable);
 500
 501static int __clk_enable(struct clk *clk)
 502{
 503	int ret = 0;
 504
 505	if (!clk)
 
 
 506		return 0;
 507
 508	if (WARN_ON(clk->prepare_count == 0))
 
 509		return -ESHUTDOWN;
 510
 511	if (clk->enable_count == 0) {
 512		ret = __clk_enable(clk->parent);
 513
 514		if (ret)
 515			return ret;
 516
 517		if (clk->ops->enable) {
 518			ret = clk->ops->enable(clk->hw);
 519			if (ret) {
 520				__clk_disable(clk->parent);
 521				return ret;
 522			}
 
 
 
 
 523		}
 524	}
 525
 526	clk->enable_count++;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 527	return 0;
 528}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 529
 530/**
 531 * clk_enable - ungate a clock
 532 * @clk: the clk being ungated
 533 *
 534 * clk_enable must not sleep, which differentiates it from clk_prepare.  In a
 535 * simple case, clk_enable can be used instead of clk_prepare to ungate a clk
 536 * if the operation will never sleep.  One example is a SoC-internal clk which
 537 * is controlled via simple register writes.  In the complex case a clk ungate
 538 * operation may require a fast and a slow part.  It is this reason that
 539 * clk_enable and clk_prepare are not mutually exclusive.  In fact clk_prepare
 540 * must be called before clk_enable.  Returns 0 on success, -EERROR
 541 * otherwise.
 542 */
 543int clk_enable(struct clk *clk)
 544{
 545	unsigned long flags;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 546	int ret;
 547
 548	spin_lock_irqsave(&enable_lock, flags);
 549	ret = __clk_enable(clk);
 550	spin_unlock_irqrestore(&enable_lock, flags);
 
 
 
 
 551
 552	return ret;
 553}
 554EXPORT_SYMBOL_GPL(clk_enable);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 555
 556/**
 557 * clk_get_rate - return the rate of clk
 558 * @clk: the clk whose rate is being returned
 
 
 559 *
 560 * Simply returns the cached rate of the clk.  Does not query the hardware.  If
 561 * clk is NULL then returns 0.
 562 */
 563unsigned long clk_get_rate(struct clk *clk)
 
 
 564{
 565	unsigned long rate;
 566
 567	mutex_lock(&prepare_lock);
 568	rate = __clk_get_rate(clk);
 569	mutex_unlock(&prepare_lock);
 570
 571	return rate;
 572}
 573EXPORT_SYMBOL_GPL(clk_get_rate);
 574
 575/**
 576 * __clk_round_rate - round the given rate for a clk
 577 * @clk: round the rate of this clock
 
 
 
 
 578 *
 579 * Caller must hold prepare_lock.  Useful for clk_ops such as .set_rate
 
 580 */
 581unsigned long __clk_round_rate(struct clk *clk, unsigned long rate)
 
 
 
 
 582{
 583	unsigned long parent_rate = 0;
 
 584
 585	if (!clk)
 586		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 587
 588	if (!clk->ops->round_rate) {
 589		if (clk->flags & CLK_SET_RATE_PARENT)
 590			return __clk_round_rate(clk->parent, rate);
 591		else
 592			return clk->rate;
 
 
 
 
 
 
 
 
 
 
 
 593	}
 594
 595	if (clk->parent)
 596		parent_rate = clk->parent->rate;
 
 597
 598	return clk->ops->round_rate(clk->hw, rate, &parent_rate);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 599}
 
 600
 601/**
 602 * clk_round_rate - round the given rate for a clk
 603 * @clk: the clk for which we are rounding a rate
 604 * @rate: the rate which is to be rounded
 605 *
 606 * Takes in a rate as input and rounds it to a rate that the clk can actually
 607 * use which is then returned.  If clk doesn't support round_rate operation
 608 * then the parent rate is returned.
 609 */
 610long clk_round_rate(struct clk *clk, unsigned long rate)
 611{
 612	unsigned long ret;
 
 613
 614	mutex_lock(&prepare_lock);
 615	ret = __clk_round_rate(clk, rate);
 616	mutex_unlock(&prepare_lock);
 617
 618	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 619}
 620EXPORT_SYMBOL_GPL(clk_round_rate);
 621
 622/**
 623 * __clk_notify - call clk notifier chain
 624 * @clk: struct clk * that is changing rate
 625 * @msg: clk notifier type (see include/linux/clk.h)
 626 * @old_rate: old clk rate
 627 * @new_rate: new clk rate
 628 *
 629 * Triggers a notifier call chain on the clk rate-change notification
 630 * for 'clk'.  Passes a pointer to the struct clk and the previous
 631 * and current rates to the notifier callback.  Intended to be called by
 632 * internal clock code only.  Returns NOTIFY_DONE from the last driver
 633 * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if
 634 * a driver returns that.
 635 */
 636static int __clk_notify(struct clk *clk, unsigned long msg,
 637		unsigned long old_rate, unsigned long new_rate)
 638{
 639	struct clk_notifier *cn;
 640	struct clk_notifier_data cnd;
 641	int ret = NOTIFY_DONE;
 642
 643	cnd.clk = clk;
 644	cnd.old_rate = old_rate;
 645	cnd.new_rate = new_rate;
 646
 647	list_for_each_entry(cn, &clk_notifier_list, node) {
 648		if (cn->clk == clk) {
 
 649			ret = srcu_notifier_call_chain(&cn->notifier_head, msg,
 650					&cnd);
 651			break;
 
 652		}
 653	}
 654
 655	return ret;
 656}
 657
 658/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 659 * __clk_recalc_rates
 660 * @clk: first clk in the subtree
 
 661 * @msg: notification type (see include/linux/clk.h)
 662 *
 663 * Walks the subtree of clks starting with clk and recalculates rates as it
 664 * goes.  Note that if a clk does not implement the .recalc_rate callback then
 665 * it is assumed that the clock will take on the rate of it's parent.
 666 *
 667 * clk_recalc_rates also propagates the POST_RATE_CHANGE notification,
 668 * if necessary.
 669 *
 670 * Caller must hold prepare_lock.
 671 */
 672static void __clk_recalc_rates(struct clk *clk, unsigned long msg)
 
 673{
 674	unsigned long old_rate;
 675	unsigned long parent_rate = 0;
 676	struct hlist_node *tmp;
 677	struct clk *child;
 678
 679	old_rate = clk->rate;
 680
 681	if (clk->parent)
 682		parent_rate = clk->parent->rate;
 683
 684	if (clk->ops->recalc_rate)
 685		clk->rate = clk->ops->recalc_rate(clk->hw, parent_rate);
 686	else
 687		clk->rate = parent_rate;
 
 
 688
 689	/*
 690	 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE
 691	 * & ABORT_RATE_CHANGE notifiers
 692	 */
 693	if (clk->notifier_count && msg)
 694		__clk_notify(clk, msg, old_rate, clk->rate);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 695
 696	hlist_for_each_entry(child, tmp, &clk->children, child_node)
 697		__clk_recalc_rates(child, msg);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 698}
 699
 700/**
 701 * __clk_speculate_rates
 702 * @clk: first clk in the subtree
 703 * @parent_rate: the "future" rate of clk's parent
 704 *
 705 * Walks the subtree of clks starting with clk, speculating rates as it
 706 * goes and firing off PRE_RATE_CHANGE notifications as necessary.
 707 *
 708 * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending
 709 * pre-rate change notifications and returns early if no clks in the
 710 * subtree have subscribed to the notifications.  Note that if a clk does not
 711 * implement the .recalc_rate callback then it is assumed that the clock will
 712 * take on the rate of it's parent.
 713 *
 714 * Caller must hold prepare_lock.
 715 */
 716static int __clk_speculate_rates(struct clk *clk, unsigned long parent_rate)
 
 717{
 718	struct hlist_node *tmp;
 719	struct clk *child;
 720	unsigned long new_rate;
 721	int ret = NOTIFY_DONE;
 722
 723	if (clk->ops->recalc_rate)
 724		new_rate = clk->ops->recalc_rate(clk->hw, parent_rate);
 725	else
 726		new_rate = parent_rate;
 727
 728	/* abort the rate change if a driver returns NOTIFY_BAD */
 729	if (clk->notifier_count)
 730		ret = __clk_notify(clk, PRE_RATE_CHANGE, clk->rate, new_rate);
 731
 732	if (ret == NOTIFY_BAD)
 
 
 733		goto out;
 
 734
 735	hlist_for_each_entry(child, tmp, &clk->children, child_node) {
 736		ret = __clk_speculate_rates(child, new_rate);
 737		if (ret == NOTIFY_BAD)
 738			break;
 739	}
 740
 741out:
 742	return ret;
 743}
 744
 745static void clk_calc_subtree(struct clk *clk, unsigned long new_rate)
 
 746{
 747	struct clk *child;
 748	struct hlist_node *tmp;
 749
 750	clk->new_rate = new_rate;
 751
 752	hlist_for_each_entry(child, tmp, &clk->children, child_node) {
 753		if (child->ops->recalc_rate)
 754			child->new_rate = child->ops->recalc_rate(child->hw, new_rate);
 755		else
 756			child->new_rate = new_rate;
 757		clk_calc_subtree(child, child->new_rate);
 
 
 
 758	}
 759}
 760
 761/*
 762 * calculate the new rates returning the topmost clock that has to be
 763 * changed.
 764 */
 765static struct clk *clk_calc_new_rates(struct clk *clk, unsigned long rate)
 
 766{
 767	struct clk *top = clk;
 
 768	unsigned long best_parent_rate = 0;
 769	unsigned long new_rate;
 
 
 
 
 770
 771	/* sanity */
 772	if (IS_ERR_OR_NULL(clk))
 773		return NULL;
 774
 775	/* save parent rate, if it exists */
 776	if (clk->parent)
 777		best_parent_rate = clk->parent->rate;
 
 
 
 
 
 
 
 
 
 778
 779	/* never propagate up to the parent */
 780	if (!(clk->flags & CLK_SET_RATE_PARENT)) {
 781		if (!clk->ops->round_rate) {
 782			clk->new_rate = clk->rate;
 783			return NULL;
 784		}
 785		new_rate = clk->ops->round_rate(clk->hw, rate, &best_parent_rate);
 786		goto out;
 787	}
 788
 789	/* need clk->parent from here on out */
 790	if (!clk->parent) {
 791		pr_debug("%s: %s has NULL parent\n", __func__, clk->name);
 792		return NULL;
 793	}
 794
 795	if (!clk->ops->round_rate) {
 796		top = clk_calc_new_rates(clk->parent, rate);
 797		new_rate = clk->parent->new_rate;
 798
 
 
 
 
 
 
 
 
 
 
 799		goto out;
 800	}
 801
 802	new_rate = clk->ops->round_rate(clk->hw, rate, &best_parent_rate);
 803
 804	if (best_parent_rate != clk->parent->rate) {
 805		top = clk_calc_new_rates(clk->parent, best_parent_rate);
 
 
 
 806
 807		goto out;
 
 
 
 
 
 
 
 808	}
 809
 
 
 
 
 810out:
 811	clk_calc_subtree(clk, new_rate);
 812
 813	return top;
 814}
 815
 816/*
 817 * Notify about rate changes in a subtree. Always walk down the whole tree
 818 * so that in case of an error we can walk down the whole tree again and
 819 * abort the change.
 820 */
 821static struct clk *clk_propagate_rate_change(struct clk *clk, unsigned long event)
 
 822{
 823	struct hlist_node *tmp;
 824	struct clk *child, *fail_clk = NULL;
 825	int ret = NOTIFY_DONE;
 826
 827	if (clk->rate == clk->new_rate)
 828		return 0;
 
 
 
 
 
 
 829
 830	if (clk->notifier_count) {
 831		ret = __clk_notify(clk, event, clk->rate, clk->new_rate);
 832		if (ret == NOTIFY_BAD)
 833			fail_clk = clk;
 
 
 
 834	}
 835
 836	hlist_for_each_entry(child, tmp, &clk->children, child_node) {
 837		clk = clk_propagate_rate_change(child, event);
 838		if (clk)
 839			fail_clk = clk;
 
 840	}
 841
 842	return fail_clk;
 843}
 844
 845/*
 846 * walk down a subtree and set the new rates notifying the rate
 847 * change on the way
 848 */
 849static void clk_change_rate(struct clk *clk)
 850{
 851	struct clk *child;
 
 852	unsigned long old_rate;
 853	unsigned long best_parent_rate = 0;
 854	struct hlist_node *tmp;
 
 
 
 
 
 
 
 
 
 
 
 
 855
 856	old_rate = clk->rate;
 
 857
 858	if (clk->parent)
 859		best_parent_rate = clk->parent->rate;
 
 
 860
 861	if (clk->ops->set_rate)
 862		clk->ops->set_rate(clk->hw, clk->new_rate, best_parent_rate);
 
 
 
 
 
 
 
 
 
 
 863
 864	if (clk->ops->recalc_rate)
 865		clk->rate = clk->ops->recalc_rate(clk->hw, best_parent_rate);
 866	else
 867		clk->rate = best_parent_rate;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 868
 869	if (clk->notifier_count && old_rate != clk->rate)
 870		__clk_notify(clk, POST_RATE_CHANGE, old_rate, clk->rate);
 871
 872	hlist_for_each_entry(child, tmp, &clk->children, child_node)
 
 
 
 
 
 
 
 
 
 
 
 
 
 873		clk_change_rate(child);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 874}
 875
 876/**
 877 * clk_set_rate - specify a new rate for clk
 878 * @clk: the clk whose rate is being changed
 879 * @rate: the new rate for clk
 880 *
 881 * In the simplest case clk_set_rate will only adjust the rate of clk.
 882 *
 883 * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to
 884 * propagate up to clk's parent; whether or not this happens depends on the
 885 * outcome of clk's .round_rate implementation.  If *parent_rate is unchanged
 886 * after calling .round_rate then upstream parent propagation is ignored.  If
 887 * *parent_rate comes back with a new rate for clk's parent then we propagate
 888 * up to clk's parent and set it's rate.  Upward propagation will continue
 889 * until either a clk does not support the CLK_SET_RATE_PARENT flag or
 890 * .round_rate stops requesting changes to clk's parent_rate.
 891 *
 892 * Rate changes are accomplished via tree traversal that also recalculates the
 893 * rates for the clocks and fires off POST_RATE_CHANGE notifiers.
 894 *
 895 * Returns 0 on success, -EERROR otherwise.
 896 */
 897int clk_set_rate(struct clk *clk, unsigned long rate)
 898{
 899	struct clk *top, *fail_clk;
 900	int ret = 0;
 
 
 901
 902	/* prevent racing with updates to the clock topology */
 903	mutex_lock(&prepare_lock);
 904
 905	/* bail early if nothing to do */
 906	if (rate == clk->rate)
 907		goto out;
 908
 909	if ((clk->flags & CLK_SET_RATE_GATE) && clk->prepare_count) {
 910		ret = -EBUSY;
 911		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 912	}
 913
 914	/* calculate new rates and get the topmost changed clock */
 915	top = clk_calc_new_rates(clk, rate);
 916	if (!top) {
 917		ret = -EINVAL;
 918		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 919	}
 920
 921	/* notify that we are about to change rates */
 922	fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE);
 923	if (fail_clk) {
 924		pr_warn("%s: failed to set %s rate\n", __func__,
 925				fail_clk->name);
 926		clk_propagate_rate_change(top, ABORT_RATE_CHANGE);
 927		ret = -EBUSY;
 
 
 
 
 928		goto out;
 929	}
 930
 931	/* change the rates */
 932	clk_change_rate(top);
 
 933
 934	mutex_unlock(&prepare_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 935
 936	return 0;
 937out:
 938	mutex_unlock(&prepare_lock);
 
 939
 940	return ret;
 941}
 942EXPORT_SYMBOL_GPL(clk_set_rate);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 943
 944/**
 945 * clk_get_parent - return the parent of a clk
 946 * @clk: the clk whose parent gets returned
 947 *
 948 * Simply returns clk->parent.  Returns NULL if clk is NULL.
 949 */
 950struct clk *clk_get_parent(struct clk *clk)
 951{
 952	struct clk *parent;
 953
 954	mutex_lock(&prepare_lock);
 955	parent = __clk_get_parent(clk);
 956	mutex_unlock(&prepare_lock);
 
 
 
 
 957
 958	return parent;
 959}
 960EXPORT_SYMBOL_GPL(clk_get_parent);
 961
 962/*
 963 * .get_parent is mandatory for clocks with multiple possible parents.  It is
 964 * optional for single-parent clocks.  Always call .get_parent if it is
 965 * available and WARN if it is missing for multi-parent clocks.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 966 *
 967 * For single-parent clocks without .get_parent, first check to see if the
 968 * .parents array exists, and if so use it to avoid an expensive tree
 969 * traversal.  If .parents does not exist then walk the tree with __clk_lookup.
 
 970 */
 971static struct clk *__clk_init_parent(struct clk *clk)
 972{
 973	struct clk *ret = NULL;
 974	u8 index;
 
 975
 976	/* handle the trivial cases */
 
 
 977
 978	if (!clk->num_parents)
 979		goto out;
 
 
 
 
 980
 981	if (clk->num_parents == 1) {
 982		if (IS_ERR_OR_NULL(clk->parent))
 983			ret = clk->parent = __clk_lookup(clk->parent_names[0]);
 984		ret = clk->parent;
 985		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 986	}
 987
 988	if (!clk->ops->get_parent) {
 989		WARN(!clk->ops->get_parent,
 990			"%s: multi-parent clocks must implement .get_parent\n",
 991			__func__);
 992		goto out;
 993	};
 994
 995	/*
 996	 * Do our best to cache parent clocks in clk->parents.  This prevents
 997	 * unnecessary and expensive calls to __clk_lookup.  We don't set
 998	 * clk->parent here; that is done by the calling function
 999	 */
1000
1001	index = clk->ops->get_parent(clk->hw);
 
 
1002
1003	if (!clk->parents)
1004		clk->parents =
1005			kzalloc((sizeof(struct clk*) * clk->num_parents),
1006					GFP_KERNEL);
1007
1008	if (!clk->parents)
1009		ret = __clk_lookup(clk->parent_names[index]);
1010	else if (!clk->parents[index])
1011		ret = clk->parents[index] =
1012			__clk_lookup(clk->parent_names[index]);
1013	else
1014		ret = clk->parents[index];
 
 
 
1015
1016out:
1017	return ret;
1018}
1019
1020void __clk_reparent(struct clk *clk, struct clk *new_parent)
1021{
1022#ifdef CONFIG_COMMON_CLK_DEBUG
1023	struct dentry *d;
1024	struct dentry *new_parent_d;
1025#endif
1026
1027	if (!clk || !new_parent)
1028		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1029
1030	hlist_del(&clk->child_node);
 
1031
1032	if (new_parent)
1033		hlist_add_head(&clk->child_node, &new_parent->children);
1034	else
1035		hlist_add_head(&clk->child_node, &clk_orphan_list);
1036
1037#ifdef CONFIG_COMMON_CLK_DEBUG
1038	if (!inited)
1039		goto out;
1040
1041	if (new_parent)
1042		new_parent_d = new_parent->dentry;
1043	else
1044		new_parent_d = orphandir;
1045
1046	d = debugfs_rename(clk->dentry->d_parent, clk->dentry,
1047			new_parent_d, clk->name);
1048	if (d)
1049		clk->dentry = d;
1050	else
1051		pr_debug("%s: failed to rename debugfs entry for %s\n",
1052				__func__, clk->name);
1053out:
1054#endif
1055
1056	clk->parent = new_parent;
1057
1058	__clk_recalc_rates(clk, POST_RATE_CHANGE);
1059}
 
1060
1061static int __clk_set_parent(struct clk *clk, struct clk *parent)
1062{
1063	struct clk *old_parent;
1064	unsigned long flags;
1065	int ret = -EINVAL;
1066	u8 i;
1067
1068	old_parent = clk->parent;
1069
1070	if (!clk->parents)
1071		clk->parents = kzalloc((sizeof(struct clk*) * clk->num_parents),
1072								GFP_KERNEL);
1073
1074	/*
1075	 * find index of new parent clock using cached parent ptrs,
1076	 * or if not yet cached, use string name comparison and cache
1077	 * them now to avoid future calls to __clk_lookup.
1078	 */
1079	for (i = 0; i < clk->num_parents; i++) {
1080		if (clk->parents && clk->parents[i] == parent)
1081			break;
1082		else if (!strcmp(clk->parent_names[i], parent->name)) {
1083			if (clk->parents)
1084				clk->parents[i] = __clk_lookup(parent->name);
1085			break;
1086		}
1087	}
1088
1089	if (i == clk->num_parents) {
1090		pr_debug("%s: clock %s is not a possible parent of clock %s\n",
1091				__func__, parent->name, clk->name);
1092		goto out;
 
 
1093	}
1094
1095	/* migrate prepare and enable */
1096	if (clk->prepare_count)
1097		__clk_prepare(parent);
1098
1099	/* FIXME replace with clk_is_enabled(clk) someday */
1100	spin_lock_irqsave(&enable_lock, flags);
1101	if (clk->enable_count)
1102		__clk_enable(parent);
1103	spin_unlock_irqrestore(&enable_lock, flags);
1104
1105	/* change clock input source */
1106	ret = clk->ops->set_parent(clk->hw, i);
1107
1108	/* clean up old prepare and enable */
1109	spin_lock_irqsave(&enable_lock, flags);
1110	if (clk->enable_count)
1111		__clk_disable(old_parent);
1112	spin_unlock_irqrestore(&enable_lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1113
1114	if (clk->prepare_count)
1115		__clk_unprepare(old_parent);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1116
1117out:
1118	return ret;
1119}
1120
1121/**
1122 * clk_set_parent - switch the parent of a mux clk
1123 * @clk: the mux clk whose input we are switching
1124 * @parent: the new input to clk
1125 *
1126 * Re-parent clk to use parent as it's new input source.  If clk has the
1127 * CLK_SET_PARENT_GATE flag set then clk must be gated for this
1128 * operation to succeed.  After successfully changing clk's parent
1129 * clk_set_parent will update the clk topology, sysfs topology and
1130 * propagate rate recalculation via __clk_recalc_rates.  Returns 0 on
1131 * success, -EERROR otherwise.
1132 */
1133int clk_set_parent(struct clk *clk, struct clk *parent)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1134{
 
 
 
 
 
 
 
 
 
 
1135	int ret = 0;
1136
1137	if (!clk || !clk->ops)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1138		return -EINVAL;
1139
1140	if (!clk->ops->set_parent)
1141		return -ENOSYS;
1142
1143	/* prevent racing with updates to the clock topology */
1144	mutex_lock(&prepare_lock);
1145
1146	if (clk->parent == parent)
1147		goto out;
1148
1149	/* propagate PRE_RATE_CHANGE notifications */
1150	if (clk->notifier_count)
1151		ret = __clk_speculate_rates(clk, parent->rate);
1152
1153	/* abort if a driver objects */
1154	if (ret == NOTIFY_STOP)
1155		goto out;
1156
1157	/* only re-parent if the clock is not in use */
1158	if ((clk->flags & CLK_SET_PARENT_GATE) && clk->prepare_count)
1159		ret = -EBUSY;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1160	else
1161		ret = __clk_set_parent(clk, parent);
1162
1163	/* propagate ABORT_RATE_CHANGE if .set_parent failed */
1164	if (ret) {
1165		__clk_recalc_rates(clk, ABORT_RATE_CHANGE);
1166		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
1167	}
1168
1169	/* propagate rate recalculation downstream */
1170	__clk_reparent(clk, parent);
1171
1172out:
1173	mutex_unlock(&prepare_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1174
1175	return ret;
1176}
1177EXPORT_SYMBOL_GPL(clk_set_parent);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1178
1179/**
1180 * __clk_init - initialize the data structures in a struct clk
1181 * @dev:	device initializing this clk, placeholder for now
1182 * @clk:	clk being initialized
1183 *
1184 * Initializes the lists in struct clk, queries the hardware for the
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1185 * parent and rate and sets them both.
1186 */
1187int __clk_init(struct device *dev, struct clk *clk)
1188{
1189	int i, ret = 0;
1190	struct clk *orphan;
1191	struct hlist_node *tmp, *tmp2;
 
1192
1193	if (!clk)
1194		return -EINVAL;
 
 
 
 
 
 
 
1195
1196	mutex_lock(&prepare_lock);
 
 
1197
1198	/* check to see if a clock with this name is already registered */
1199	if (__clk_lookup(clk->name)) {
1200		pr_debug("%s: clk %s already initialized\n",
1201				__func__, clk->name);
1202		ret = -EEXIST;
1203		goto out;
1204	}
1205
1206	/* check that clk_ops are sane.  See Documentation/clk.txt */
1207	if (clk->ops->set_rate &&
1208			!(clk->ops->round_rate && clk->ops->recalc_rate)) {
1209		pr_warning("%s: %s must implement .round_rate & .recalc_rate\n",
1210				__func__, clk->name);
 
1211		ret = -EINVAL;
1212		goto out;
1213	}
1214
1215	if (clk->ops->set_parent && !clk->ops->get_parent) {
1216		pr_warning("%s: %s must implement .get_parent & .set_parent\n",
1217				__func__, clk->name);
1218		ret = -EINVAL;
1219		goto out;
1220	}
1221
1222	/* throw a WARN if any entries in parent_names are NULL */
1223	for (i = 0; i < clk->num_parents; i++)
1224		WARN(!clk->parent_names[i],
1225				"%s: invalid NULL in %s's .parent_names\n",
1226				__func__, clk->name);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1227
1228	/*
1229	 * Allocate an array of struct clk *'s to avoid unnecessary string
1230	 * look-ups of clk's possible parents.  This can fail for clocks passed
1231	 * in to clk_init during early boot; thus any access to clk->parents[]
1232	 * must always check for a NULL pointer and try to populate it if
1233	 * necessary.
1234	 *
1235	 * If clk->parents is not NULL we skip this entire block.  This allows
1236	 * for clock drivers to statically initialize clk->parents.
 
 
 
 
 
 
 
 
1237	 */
1238	if (clk->num_parents && !clk->parents) {
1239		clk->parents = kmalloc((sizeof(struct clk*) * clk->num_parents),
1240				GFP_KERNEL);
1241		/*
1242		 * __clk_lookup returns NULL for parents that have not been
1243		 * clk_init'd; thus any access to clk->parents[] must check
1244		 * for a NULL pointer.  We can always perform lazy lookups for
1245		 * missing parents later on.
1246		 */
1247		if (clk->parents)
1248			for (i = 0; i < clk->num_parents; i++)
1249				clk->parents[i] =
1250					__clk_lookup(clk->parent_names[i]);
1251	}
1252
1253	clk->parent = __clk_init_parent(clk);
1254
1255	/*
1256	 * Populate clk->parent if parent has already been __clk_init'd.  If
1257	 * parent has not yet been __clk_init'd then place clk in the orphan
1258	 * list.  If clk has set the CLK_IS_ROOT flag then place it in the root
1259	 * clk list.
1260	 *
1261	 * Every time a new clk is clk_init'd then we walk the list of orphan
1262	 * clocks and re-parent any that are children of the clock currently
1263	 * being clk_init'd.
1264	 */
1265	if (clk->parent)
1266		hlist_add_head(&clk->child_node,
1267				&clk->parent->children);
1268	else if (clk->flags & CLK_IS_ROOT)
1269		hlist_add_head(&clk->child_node, &clk_root_list);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1270	else
1271		hlist_add_head(&clk->child_node, &clk_orphan_list);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1272
1273	/*
1274	 * Set clk's rate.  The preferred method is to use .recalc_rate.  For
1275	 * simple clocks and lazy developers the default fallback is to use the
1276	 * parent's rate.  If a clock doesn't have a parent (or is orphaned)
1277	 * then rate is set to zero.
1278	 */
1279	if (clk->ops->recalc_rate)
1280		clk->rate = clk->ops->recalc_rate(clk->hw,
1281				__clk_get_rate(clk->parent));
1282	else if (clk->parent)
1283		clk->rate = clk->parent->rate;
1284	else
1285		clk->rate = 0;
1286
1287	/*
1288	 * walk the list of orphan clocks and reparent any that are children of
1289	 * this clock
1290	 */
1291	hlist_for_each_entry_safe(orphan, tmp, tmp2, &clk_orphan_list, child_node)
1292		for (i = 0; i < orphan->num_parents; i++)
1293			if (!strcmp(clk->name, orphan->parent_names[i])) {
1294				__clk_reparent(orphan, clk);
1295				break;
1296			}
1297
1298	/*
1299	 * optional platform-specific magic
1300	 *
1301	 * The .init callback is not used by any of the basic clock types, but
1302	 * exists for weird hardware that must perform initialization magic.
1303	 * Please consider other ways of solving initialization problems before
1304	 * using this callback, as it's use is discouraged.
1305	 */
1306	if (clk->ops->init)
1307		clk->ops->init(clk->hw);
 
 
 
 
 
1308
1309	clk_debug_register(clk);
 
 
 
 
 
 
 
1310
 
1311out:
1312	mutex_unlock(&prepare_lock);
 
 
 
 
 
 
 
 
 
 
1313
1314	return ret;
1315}
1316
1317/**
1318 * __clk_register - register a clock and return a cookie.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1319 *
1320 * Same as clk_register, except that the .clk field inside hw shall point to a
1321 * preallocated (generally statically allocated) struct clk. None of the fields
1322 * of the struct clk need to be initialized.
1323 *
1324 * The data pointed to by .init and .clk field shall NOT be marked as init
1325 * data.
1326 *
1327 * __clk_register is only exposed via clk-private.h and is intended for use with
1328 * very large numbers of clocks that need to be statically initialized.  It is
1329 * a layering violation to include clk-private.h from any code which implements
1330 * a clock's .ops; as such any statically initialized clock data MUST be in a
1331 * separate C file from the logic that implements it's operations.  Returns 0
1332 * on success, otherwise an error code.
1333 */
1334struct clk *__clk_register(struct device *dev, struct clk_hw *hw)
 
1335{
1336	int ret;
1337	struct clk *clk;
1338
1339	clk = hw->clk;
1340	clk->name = hw->init->name;
1341	clk->ops = hw->init->ops;
1342	clk->hw = hw;
1343	clk->flags = hw->init->flags;
1344	clk->parent_names = hw->init->parent_names;
1345	clk->num_parents = hw->init->num_parents;
1346
1347	ret = __clk_init(dev, clk);
1348	if (ret)
1349		return ERR_PTR(ret);
 
1350
1351	return clk;
1352}
1353EXPORT_SYMBOL_GPL(__clk_register);
1354
1355/**
1356 * clk_register - allocate a new clock, register it and return an opaque cookie
1357 * @dev: device that is registering this clock
1358 * @hw: link to hardware-specific clock data
1359 *
1360 * clk_register is the primary interface for populating the clock tree with new
1361 * clock nodes.  It returns a pointer to the newly allocated struct clk which
1362 * cannot be dereferenced by driver code but may be used in conjuction with the
1363 * rest of the clock API.  In the event of an error clk_register will return an
1364 * error code; drivers must test for an error code after calling clk_register.
1365 */
1366struct clk *clk_register(struct device *dev, struct clk_hw *hw)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1367{
1368	int i, ret;
1369	struct clk *clk;
 
1370
1371	clk = kzalloc(sizeof(*clk), GFP_KERNEL);
1372	if (!clk) {
1373		pr_err("%s: could not allocate clk\n", __func__);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1374		ret = -ENOMEM;
1375		goto fail_out;
1376	}
1377
1378	clk->name = kstrdup(hw->init->name, GFP_KERNEL);
1379	if (!clk->name) {
1380		pr_err("%s: could not allocate clk->name\n", __func__);
 
1381		ret = -ENOMEM;
1382		goto fail_name;
1383	}
1384	clk->ops = hw->init->ops;
1385	clk->hw = hw;
1386	clk->flags = hw->init->flags;
1387	clk->num_parents = hw->init->num_parents;
1388	hw->clk = clk;
1389
1390	/* allocate local copy in case parent_names is __initdata */
1391	clk->parent_names = kzalloc((sizeof(char*) * clk->num_parents),
1392			GFP_KERNEL);
1393
1394	if (!clk->parent_names) {
1395		pr_err("%s: could not allocate clk->parent_names\n", __func__);
1396		ret = -ENOMEM;
1397		goto fail_parent_names;
1398	}
 
1399
 
 
 
 
 
 
 
 
 
 
1400
1401	/* copy each string name in case parent_names is __initdata */
1402	for (i = 0; i < clk->num_parents; i++) {
1403		clk->parent_names[i] = kstrdup(hw->init->parent_names[i],
1404						GFP_KERNEL);
1405		if (!clk->parent_names[i]) {
1406			pr_err("%s: could not copy parent_names\n", __func__);
1407			ret = -ENOMEM;
1408			goto fail_parent_names_copy;
1409		}
 
 
 
 
 
1410	}
1411
1412	ret = __clk_init(dev, clk);
 
 
1413	if (!ret)
1414		return clk;
1415
1416fail_parent_names_copy:
1417	while (--i >= 0)
1418		kfree(clk->parent_names[i]);
1419	kfree(clk->parent_names);
1420fail_parent_names:
1421	kfree(clk->name);
 
 
 
 
1422fail_name:
1423	kfree(clk);
1424fail_out:
1425	return ERR_PTR(ret);
1426}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1427EXPORT_SYMBOL_GPL(clk_register);
1428
1429/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1430 * clk_unregister - unregister a currently registered clock
1431 * @clk: clock to unregister
1432 *
1433 * Currently unimplemented.
1434 */
1435void clk_unregister(struct clk *clk) {}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1436EXPORT_SYMBOL_GPL(clk_unregister);
1437
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1438/***        clk rate change notifiers        ***/
1439
1440/**
1441 * clk_notifier_register - add a clk rate change notifier
1442 * @clk: struct clk * to watch
1443 * @nb: struct notifier_block * with callback info
1444 *
1445 * Request notification when clk's rate changes.  This uses an SRCU
1446 * notifier because we want it to block and notifier unregistrations are
1447 * uncommon.  The callbacks associated with the notifier must not
1448 * re-enter into the clk framework by calling any top-level clk APIs;
1449 * this will cause a nested prepare_lock mutex.
1450 *
1451 * Pre-change notifier callbacks will be passed the current, pre-change
1452 * rate of the clk via struct clk_notifier_data.old_rate.  The new,
1453 * post-change rate of the clk is passed via struct
1454 * clk_notifier_data.new_rate.
1455 *
1456 * Post-change notifiers will pass the now-current, post-change rate of
1457 * the clk in both struct clk_notifier_data.old_rate and struct
1458 * clk_notifier_data.new_rate.
1459 *
1460 * Abort-change notifiers are effectively the opposite of pre-change
1461 * notifiers: the original pre-change clk rate is passed in via struct
1462 * clk_notifier_data.new_rate and the failed post-change rate is passed
1463 * in via struct clk_notifier_data.old_rate.
1464 *
1465 * clk_notifier_register() must be called from non-atomic context.
1466 * Returns -EINVAL if called with null arguments, -ENOMEM upon
1467 * allocation failure; otherwise, passes along the return value of
1468 * srcu_notifier_chain_register().
1469 */
1470int clk_notifier_register(struct clk *clk, struct notifier_block *nb)
1471{
1472	struct clk_notifier *cn;
1473	int ret = -ENOMEM;
1474
1475	if (!clk || !nb)
1476		return -EINVAL;
1477
1478	mutex_lock(&prepare_lock);
1479
1480	/* search the list of notifiers for this clk */
1481	list_for_each_entry(cn, &clk_notifier_list, node)
1482		if (cn->clk == clk)
1483			break;
1484
1485	/* if clk wasn't in the notifier list, allocate new clk_notifier */
1486	if (cn->clk != clk) {
1487		cn = kzalloc(sizeof(struct clk_notifier), GFP_KERNEL);
1488		if (!cn)
1489			goto out;
1490
1491		cn->clk = clk;
1492		srcu_init_notifier_head(&cn->notifier_head);
1493
1494		list_add(&cn->node, &clk_notifier_list);
1495	}
1496
 
1497	ret = srcu_notifier_chain_register(&cn->notifier_head, nb);
1498
1499	clk->notifier_count++;
1500
1501out:
1502	mutex_unlock(&prepare_lock);
1503
1504	return ret;
1505}
1506EXPORT_SYMBOL_GPL(clk_notifier_register);
1507
1508/**
1509 * clk_notifier_unregister - remove a clk rate change notifier
1510 * @clk: struct clk *
1511 * @nb: struct notifier_block * with callback info
1512 *
1513 * Request no further notification for changes to 'clk' and frees memory
1514 * allocated in clk_notifier_register.
1515 *
1516 * Returns -EINVAL if called with null arguments; otherwise, passes
1517 * along the return value of srcu_notifier_chain_unregister().
1518 */
1519int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb)
1520{
1521	struct clk_notifier *cn = NULL;
1522	int ret = -EINVAL;
1523
1524	if (!clk || !nb)
1525		return -EINVAL;
1526
1527	mutex_lock(&prepare_lock);
1528
1529	list_for_each_entry(cn, &clk_notifier_list, node)
1530		if (cn->clk == clk)
 
 
 
 
 
 
 
 
 
 
1531			break;
 
 
 
 
 
 
 
 
1532
1533	if (cn->clk == clk) {
1534		ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb);
 
 
1535
1536		clk->notifier_count--;
 
 
1537
1538		/* XXX the notifier code should handle this better */
1539		if (!cn->notifier_head.head) {
1540			srcu_cleanup_notifier_head(&cn->notifier_head);
1541			kfree(cn);
1542		}
1543
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1544	} else {
1545		ret = -ENOENT;
1546	}
1547
1548	mutex_unlock(&prepare_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1549
1550	return ret;
1551}
1552EXPORT_SYMBOL_GPL(clk_notifier_unregister);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com>
   4 * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org>
   5 *
   6 * Standard functionality for the common clock API.  See Documentation/driver-api/clk.rst
 
 
 
 
   7 */
   8
   9#include <linux/clk.h>
  10#include <linux/clk-provider.h>
  11#include <linux/clk/clk-conf.h>
  12#include <linux/module.h>
  13#include <linux/mutex.h>
  14#include <linux/spinlock.h>
  15#include <linux/err.h>
  16#include <linux/list.h>
  17#include <linux/slab.h>
  18#include <linux/of.h>
  19#include <linux/device.h>
  20#include <linux/init.h>
  21#include <linux/pm_runtime.h>
  22#include <linux/sched.h>
  23#include <linux/clkdev.h>
  24
  25#include "clk.h"
  26
  27static DEFINE_SPINLOCK(enable_lock);
  28static DEFINE_MUTEX(prepare_lock);
  29
  30static struct task_struct *prepare_owner;
  31static struct task_struct *enable_owner;
  32
  33static int prepare_refcnt;
  34static int enable_refcnt;
  35
  36static HLIST_HEAD(clk_root_list);
  37static HLIST_HEAD(clk_orphan_list);
  38static LIST_HEAD(clk_notifier_list);
  39
  40/* List of registered clks that use runtime PM */
  41static HLIST_HEAD(clk_rpm_list);
  42static DEFINE_MUTEX(clk_rpm_list_lock);
  43
  44static const struct hlist_head *all_lists[] = {
  45	&clk_root_list,
  46	&clk_orphan_list,
  47	NULL,
  48};
  49
  50/***    private data structures    ***/
  51
  52struct clk_parent_map {
  53	const struct clk_hw	*hw;
  54	struct clk_core		*core;
  55	const char		*fw_name;
  56	const char		*name;
  57	int			index;
  58};
  59
  60struct clk_core {
  61	const char		*name;
  62	const struct clk_ops	*ops;
  63	struct clk_hw		*hw;
  64	struct module		*owner;
  65	struct device		*dev;
  66	struct hlist_node	rpm_node;
  67	struct device_node	*of_node;
  68	struct clk_core		*parent;
  69	struct clk_parent_map	*parents;
  70	u8			num_parents;
  71	u8			new_parent_index;
  72	unsigned long		rate;
  73	unsigned long		req_rate;
  74	unsigned long		new_rate;
  75	struct clk_core		*new_parent;
  76	struct clk_core		*new_child;
  77	unsigned long		flags;
  78	bool			orphan;
  79	bool			rpm_enabled;
  80	unsigned int		enable_count;
  81	unsigned int		prepare_count;
  82	unsigned int		protect_count;
  83	unsigned long		min_rate;
  84	unsigned long		max_rate;
  85	unsigned long		accuracy;
  86	int			phase;
  87	struct clk_duty		duty;
  88	struct hlist_head	children;
  89	struct hlist_node	child_node;
  90	struct hlist_head	clks;
  91	unsigned int		notifier_count;
  92#ifdef CONFIG_DEBUG_FS
  93	struct dentry		*dentry;
  94	struct hlist_node	debug_node;
  95#endif
  96	struct kref		ref;
  97};
  98
  99#define CREATE_TRACE_POINTS
 100#include <trace/events/clk.h>
 101
 102struct clk {
 103	struct clk_core	*core;
 104	struct device *dev;
 105	const char *dev_id;
 106	const char *con_id;
 107	unsigned long min_rate;
 108	unsigned long max_rate;
 109	unsigned int exclusive_count;
 110	struct hlist_node clks_node;
 111};
 112
 113/***           runtime pm          ***/
 114static int clk_pm_runtime_get(struct clk_core *core)
 115{
 116	if (!core->rpm_enabled)
 117		return 0;
 118
 119	return pm_runtime_resume_and_get(core->dev);
 120}
 121
 122static void clk_pm_runtime_put(struct clk_core *core)
 123{
 124	if (!core->rpm_enabled)
 125		return;
 126
 127	pm_runtime_put_sync(core->dev);
 128}
 129
 130/**
 131 * clk_pm_runtime_get_all() - Runtime "get" all clk provider devices
 132 *
 133 * Call clk_pm_runtime_get() on all runtime PM enabled clks in the clk tree so
 134 * that disabling unused clks avoids a deadlock where a device is runtime PM
 135 * resuming/suspending and the runtime PM callback is trying to grab the
 136 * prepare_lock for something like clk_prepare_enable() while
 137 * clk_disable_unused_subtree() holds the prepare_lock and is trying to runtime
 138 * PM resume/suspend the device as well.
 139 *
 140 * Context: Acquires the 'clk_rpm_list_lock' and returns with the lock held on
 141 * success. Otherwise the lock is released on failure.
 142 *
 143 * Return: 0 on success, negative errno otherwise.
 144 */
 145static int clk_pm_runtime_get_all(void)
 146{
 147	int ret;
 148	struct clk_core *core, *failed;
 149
 150	/*
 151	 * Grab the list lock to prevent any new clks from being registered
 152	 * or unregistered until clk_pm_runtime_put_all().
 153	 */
 154	mutex_lock(&clk_rpm_list_lock);
 155
 156	/*
 157	 * Runtime PM "get" all the devices that are needed for the clks
 158	 * currently registered. Do this without holding the prepare_lock, to
 159	 * avoid the deadlock.
 160	 */
 161	hlist_for_each_entry(core, &clk_rpm_list, rpm_node) {
 162		ret = clk_pm_runtime_get(core);
 163		if (ret) {
 164			failed = core;
 165			pr_err("clk: Failed to runtime PM get '%s' for clk '%s'\n",
 166			       dev_name(failed->dev), failed->name);
 167			goto err;
 168		}
 169	}
 170
 171	return 0;
 
 
 172
 173err:
 174	hlist_for_each_entry(core, &clk_rpm_list, rpm_node) {
 175		if (core == failed)
 176			break;
 177
 178		clk_pm_runtime_put(core);
 179	}
 180	mutex_unlock(&clk_rpm_list_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 181
 182	return ret;
 183}
 184
 185/**
 186 * clk_pm_runtime_put_all() - Runtime "put" all clk provider devices
 187 *
 188 * Put the runtime PM references taken in clk_pm_runtime_get_all() and release
 189 * the 'clk_rpm_list_lock'.
 190 */
 191static void clk_pm_runtime_put_all(void)
 192{
 193	struct clk_core *core;
 194
 195	hlist_for_each_entry(core, &clk_rpm_list, rpm_node)
 196		clk_pm_runtime_put(core);
 197	mutex_unlock(&clk_rpm_list_lock);
 198}
 199
 200static void clk_pm_runtime_init(struct clk_core *core)
 201{
 202	struct device *dev = core->dev;
 203
 204	if (dev && pm_runtime_enabled(dev)) {
 205		core->rpm_enabled = true;
 206
 207		mutex_lock(&clk_rpm_list_lock);
 208		hlist_add_head(&core->rpm_node, &clk_rpm_list);
 209		mutex_unlock(&clk_rpm_list_lock);
 210	}
 211}
 212
 213/***           locking             ***/
 214static void clk_prepare_lock(void)
 215{
 216	if (!mutex_trylock(&prepare_lock)) {
 217		if (prepare_owner == current) {
 218			prepare_refcnt++;
 219			return;
 220		}
 221		mutex_lock(&prepare_lock);
 222	}
 223	WARN_ON_ONCE(prepare_owner != NULL);
 224	WARN_ON_ONCE(prepare_refcnt != 0);
 225	prepare_owner = current;
 226	prepare_refcnt = 1;
 227}
 228
 229static void clk_prepare_unlock(void)
 230{
 231	WARN_ON_ONCE(prepare_owner != current);
 232	WARN_ON_ONCE(prepare_refcnt == 0);
 233
 234	if (--prepare_refcnt)
 235		return;
 236	prepare_owner = NULL;
 237	mutex_unlock(&prepare_lock);
 238}
 239
 240static unsigned long clk_enable_lock(void)
 241	__acquires(enable_lock)
 242{
 243	unsigned long flags;
 244
 245	/*
 246	 * On UP systems, spin_trylock_irqsave() always returns true, even if
 247	 * we already hold the lock. So, in that case, we rely only on
 248	 * reference counting.
 249	 */
 250	if (!IS_ENABLED(CONFIG_SMP) ||
 251	    !spin_trylock_irqsave(&enable_lock, flags)) {
 252		if (enable_owner == current) {
 253			enable_refcnt++;
 254			__acquire(enable_lock);
 255			if (!IS_ENABLED(CONFIG_SMP))
 256				local_save_flags(flags);
 257			return flags;
 258		}
 259		spin_lock_irqsave(&enable_lock, flags);
 260	}
 261	WARN_ON_ONCE(enable_owner != NULL);
 262	WARN_ON_ONCE(enable_refcnt != 0);
 263	enable_owner = current;
 264	enable_refcnt = 1;
 265	return flags;
 266}
 267
 268static void clk_enable_unlock(unsigned long flags)
 269	__releases(enable_lock)
 270{
 271	WARN_ON_ONCE(enable_owner != current);
 272	WARN_ON_ONCE(enable_refcnt == 0);
 273
 274	if (--enable_refcnt) {
 275		__release(enable_lock);
 276		return;
 277	}
 278	enable_owner = NULL;
 279	spin_unlock_irqrestore(&enable_lock, flags);
 280}
 281
 282static bool clk_core_rate_is_protected(struct clk_core *core)
 283{
 284	return core->protect_count;
 285}
 286
 287static bool clk_core_is_prepared(struct clk_core *core)
 288{
 289	bool ret = false;
 290
 291	/*
 292	 * .is_prepared is optional for clocks that can prepare
 293	 * fall back to software usage counter if it is missing
 294	 */
 295	if (!core->ops->is_prepared)
 296		return core->prepare_count;
 297
 298	if (!clk_pm_runtime_get(core)) {
 299		ret = core->ops->is_prepared(core->hw);
 300		clk_pm_runtime_put(core);
 301	}
 302
 
 
 
 303	return ret;
 304}
 305
 306static bool clk_core_is_enabled(struct clk_core *core)
 
 307{
 308	bool ret = false;
 
 
 309
 310	/*
 311	 * .is_enabled is only mandatory for clocks that gate
 312	 * fall back to software usage counter if .is_enabled is missing
 313	 */
 314	if (!core->ops->is_enabled)
 315		return core->enable_count;
 316
 317	/*
 318	 * Check if clock controller's device is runtime active before
 319	 * calling .is_enabled callback. If not, assume that clock is
 320	 * disabled, because we might be called from atomic context, from
 321	 * which pm_runtime_get() is not allowed.
 322	 * This function is called mainly from clk_disable_unused_subtree,
 323	 * which ensures proper runtime pm activation of controller before
 324	 * taking enable spinlock, but the below check is needed if one tries
 325	 * to call it from other places.
 326	 */
 327	if (core->rpm_enabled) {
 328		pm_runtime_get_noresume(core->dev);
 329		if (!pm_runtime_active(core->dev)) {
 330			ret = false;
 331			goto done;
 332		}
 333	}
 334
 335	/*
 336	 * This could be called with the enable lock held, or from atomic
 337	 * context. If the parent isn't enabled already, we can't do
 338	 * anything here. We can also assume this clock isn't enabled.
 339	 */
 340	if ((core->flags & CLK_OPS_PARENT_ENABLE) && core->parent)
 341		if (!clk_core_is_enabled(core->parent)) {
 342			ret = false;
 343			goto done;
 344		}
 345
 346	ret = core->ops->is_enabled(core->hw);
 347done:
 348	if (core->rpm_enabled)
 349		pm_runtime_put(core->dev);
 350
 
 
 351	return ret;
 352}
 353
 354/***    helper functions   ***/
 355
 356const char *__clk_get_name(const struct clk *clk)
 357{
 358	return !clk ? NULL : clk->core->name;
 359}
 360EXPORT_SYMBOL_GPL(__clk_get_name);
 361
 362const char *clk_hw_get_name(const struct clk_hw *hw)
 363{
 364	return hw->core->name;
 365}
 366EXPORT_SYMBOL_GPL(clk_hw_get_name);
 367
 368struct clk_hw *__clk_get_hw(struct clk *clk)
 369{
 370	return !clk ? NULL : clk->core->hw;
 371}
 372EXPORT_SYMBOL_GPL(__clk_get_hw);
 373
 374unsigned int clk_hw_get_num_parents(const struct clk_hw *hw)
 375{
 376	return hw->core->num_parents;
 377}
 378EXPORT_SYMBOL_GPL(clk_hw_get_num_parents);
 379
 380struct clk_hw *clk_hw_get_parent(const struct clk_hw *hw)
 381{
 382	return hw->core->parent ? hw->core->parent->hw : NULL;
 383}
 384EXPORT_SYMBOL_GPL(clk_hw_get_parent);
 385
 386static struct clk_core *__clk_lookup_subtree(const char *name,
 387					     struct clk_core *core)
 388{
 389	struct clk_core *child;
 390	struct clk_core *ret;
 391
 392	if (!strcmp(core->name, name))
 393		return core;
 394
 395	hlist_for_each_entry(child, &core->children, child_node) {
 396		ret = __clk_lookup_subtree(name, child);
 397		if (ret)
 398			return ret;
 399	}
 400
 401	return NULL;
 402}
 403
 404static struct clk_core *clk_core_lookup(const char *name)
 405{
 406	struct clk_core *root_clk;
 407	struct clk_core *ret;
 408
 409	if (!name)
 410		return NULL;
 411
 412	/* search the 'proper' clk tree first */
 413	hlist_for_each_entry(root_clk, &clk_root_list, child_node) {
 414		ret = __clk_lookup_subtree(name, root_clk);
 415		if (ret)
 416			return ret;
 417	}
 418
 419	/* if not found, then search the orphan tree */
 420	hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) {
 421		ret = __clk_lookup_subtree(name, root_clk);
 422		if (ret)
 423			return ret;
 424	}
 425
 426	return NULL;
 427}
 428
 429#ifdef CONFIG_OF
 430static int of_parse_clkspec(const struct device_node *np, int index,
 431			    const char *name, struct of_phandle_args *out_args);
 432static struct clk_hw *
 433of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec);
 434#else
 435static inline int of_parse_clkspec(const struct device_node *np, int index,
 436				   const char *name,
 437				   struct of_phandle_args *out_args)
 438{
 439	return -ENOENT;
 440}
 441static inline struct clk_hw *
 442of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec)
 443{
 444	return ERR_PTR(-ENOENT);
 445}
 446#endif
 447
 448/**
 449 * clk_core_get - Find the clk_core parent of a clk
 450 * @core: clk to find parent of
 451 * @p_index: parent index to search for
 452 *
 453 * This is the preferred method for clk providers to find the parent of a
 454 * clk when that parent is external to the clk controller. The parent_names
 455 * array is indexed and treated as a local name matching a string in the device
 456 * node's 'clock-names' property or as the 'con_id' matching the device's
 457 * dev_name() in a clk_lookup. This allows clk providers to use their own
 458 * namespace instead of looking for a globally unique parent string.
 459 *
 460 * For example the following DT snippet would allow a clock registered by the
 461 * clock-controller@c001 that has a clk_init_data::parent_data array
 462 * with 'xtal' in the 'name' member to find the clock provided by the
 463 * clock-controller@f00abcd without needing to get the globally unique name of
 464 * the xtal clk.
 465 *
 466 *      parent: clock-controller@f00abcd {
 467 *              reg = <0xf00abcd 0xabcd>;
 468 *              #clock-cells = <0>;
 469 *      };
 470 *
 471 *      clock-controller@c001 {
 472 *              reg = <0xc001 0xf00d>;
 473 *              clocks = <&parent>;
 474 *              clock-names = "xtal";
 475 *              #clock-cells = <1>;
 476 *      };
 477 *
 478 * Returns: -ENOENT when the provider can't be found or the clk doesn't
 479 * exist in the provider or the name can't be found in the DT node or
 480 * in a clkdev lookup. NULL when the provider knows about the clk but it
 481 * isn't provided on this system.
 482 * A valid clk_core pointer when the clk can be found in the provider.
 483 */
 484static struct clk_core *clk_core_get(struct clk_core *core, u8 p_index)
 485{
 486	const char *name = core->parents[p_index].fw_name;
 487	int index = core->parents[p_index].index;
 488	struct clk_hw *hw = ERR_PTR(-ENOENT);
 489	struct device *dev = core->dev;
 490	const char *dev_id = dev ? dev_name(dev) : NULL;
 491	struct device_node *np = core->of_node;
 492	struct of_phandle_args clkspec;
 493
 494	if (np && (name || index >= 0) &&
 495	    !of_parse_clkspec(np, index, name, &clkspec)) {
 496		hw = of_clk_get_hw_from_clkspec(&clkspec);
 497		of_node_put(clkspec.np);
 498	} else if (name) {
 499		/*
 500		 * If the DT search above couldn't find the provider fallback to
 501		 * looking up via clkdev based clk_lookups.
 502		 */
 503		hw = clk_find_hw(dev_id, name);
 504	}
 505
 506	if (IS_ERR(hw))
 507		return ERR_CAST(hw);
 508
 509	if (!hw)
 510		return NULL;
 511
 512	return hw->core;
 513}
 514
 515static void clk_core_fill_parent_index(struct clk_core *core, u8 index)
 516{
 517	struct clk_parent_map *entry = &core->parents[index];
 518	struct clk_core *parent;
 519
 520	if (entry->hw) {
 521		parent = entry->hw->core;
 522	} else {
 523		parent = clk_core_get(core, index);
 524		if (PTR_ERR(parent) == -ENOENT && entry->name)
 525			parent = clk_core_lookup(entry->name);
 526	}
 527
 528	/*
 529	 * We have a direct reference but it isn't registered yet?
 530	 * Orphan it and let clk_reparent() update the orphan status
 531	 * when the parent is registered.
 532	 */
 533	if (!parent)
 534		parent = ERR_PTR(-EPROBE_DEFER);
 
 
 
 
 
 
 
 
 535
 536	/* Only cache it if it's not an error */
 537	if (!IS_ERR(parent))
 538		entry->core = parent;
 539}
 540
 541static struct clk_core *clk_core_get_parent_by_index(struct clk_core *core,
 542							 u8 index)
 543{
 544	if (!core || index >= core->num_parents || !core->parents)
 545		return NULL;
 546
 547	if (!core->parents[index].core)
 548		clk_core_fill_parent_index(core, index);
 549
 550	return core->parents[index].core;
 551}
 552
 553struct clk_hw *
 554clk_hw_get_parent_by_index(const struct clk_hw *hw, unsigned int index)
 
 
 
 
 
 
 
 
 
 
 
 555{
 556	struct clk_core *parent;
 
 557
 558	parent = clk_core_get_parent_by_index(hw->core, index);
 559
 560	return !parent ? NULL : parent->hw;
 561}
 562EXPORT_SYMBOL_GPL(clk_hw_get_parent_by_index);
 563
 564unsigned int __clk_get_enable_count(struct clk *clk)
 565{
 566	return !clk ? 0 : clk->core->enable_count;
 567}
 568
 569static unsigned long clk_core_get_rate_nolock(struct clk_core *core)
 570{
 571	if (!core)
 572		return 0;
 573
 574	if (!core->num_parents || core->parent)
 575		return core->rate;
 576
 577	/*
 578	 * Clk must have a parent because num_parents > 0 but the parent isn't
 579	 * known yet. Best to return 0 as the rate of this clk until we can
 580	 * properly recalc the rate based on the parent's rate.
 581	 */
 582	return 0;
 583}
 584
 585unsigned long clk_hw_get_rate(const struct clk_hw *hw)
 586{
 587	return clk_core_get_rate_nolock(hw->core);
 588}
 589EXPORT_SYMBOL_GPL(clk_hw_get_rate);
 590
 591static unsigned long clk_core_get_accuracy_no_lock(struct clk_core *core)
 592{
 593	if (!core)
 594		return 0;
 595
 596	return core->accuracy;
 597}
 598
 599unsigned long clk_hw_get_flags(const struct clk_hw *hw)
 600{
 601	return hw->core->flags;
 602}
 603EXPORT_SYMBOL_GPL(clk_hw_get_flags);
 
 
 
 604
 605bool clk_hw_is_prepared(const struct clk_hw *hw)
 
 606{
 607	return clk_core_is_prepared(hw->core);
 608}
 609EXPORT_SYMBOL_GPL(clk_hw_is_prepared);
 610
 611bool clk_hw_is_enabled(const struct clk_hw *hw)
 612{
 613	return clk_core_is_enabled(hw->core);
 614}
 615EXPORT_SYMBOL_GPL(clk_hw_is_enabled);
 616
 617bool __clk_is_enabled(struct clk *clk)
 618{
 619	if (!clk)
 620		return false;
 621
 622	return clk_core_is_enabled(clk->core);
 623}
 624EXPORT_SYMBOL_GPL(__clk_is_enabled);
 625
 626static bool mux_is_better_rate(unsigned long rate, unsigned long now,
 627			   unsigned long best, unsigned long flags)
 628{
 629	if (flags & CLK_MUX_ROUND_CLOSEST)
 630		return abs(now - rate) < abs(best - rate);
 631
 632	return now <= rate && now > best;
 633}
 634
 635static void clk_core_init_rate_req(struct clk_core * const core,
 636				   struct clk_rate_request *req,
 637				   unsigned long rate);
 638
 639static int clk_core_round_rate_nolock(struct clk_core *core,
 640				      struct clk_rate_request *req);
 641
 642static bool clk_core_has_parent(struct clk_core *core, const struct clk_core *parent)
 643{
 644	struct clk_core *tmp;
 645	unsigned int i;
 646
 647	/* Optimize for the case where the parent is already the parent. */
 648	if (core->parent == parent)
 649		return true;
 650
 651	for (i = 0; i < core->num_parents; i++) {
 652		tmp = clk_core_get_parent_by_index(core, i);
 653		if (!tmp)
 654			continue;
 655
 656		if (tmp == parent)
 657			return true;
 658	}
 659
 660	return false;
 661}
 662
 663static void
 664clk_core_forward_rate_req(struct clk_core *core,
 665			  const struct clk_rate_request *old_req,
 666			  struct clk_core *parent,
 667			  struct clk_rate_request *req,
 668			  unsigned long parent_rate)
 669{
 670	if (WARN_ON(!clk_core_has_parent(core, parent)))
 671		return;
 672
 673	clk_core_init_rate_req(parent, req, parent_rate);
 674
 675	if (req->min_rate < old_req->min_rate)
 676		req->min_rate = old_req->min_rate;
 677
 678	if (req->max_rate > old_req->max_rate)
 679		req->max_rate = old_req->max_rate;
 680}
 681
 682static int
 683clk_core_determine_rate_no_reparent(struct clk_hw *hw,
 684				    struct clk_rate_request *req)
 685{
 686	struct clk_core *core = hw->core;
 687	struct clk_core *parent = core->parent;
 688	unsigned long best;
 689	int ret;
 690
 691	if (core->flags & CLK_SET_RATE_PARENT) {
 692		struct clk_rate_request parent_req;
 693
 694		if (!parent) {
 695			req->rate = 0;
 696			return 0;
 697		}
 698
 699		clk_core_forward_rate_req(core, req, parent, &parent_req,
 700					  req->rate);
 701
 702		trace_clk_rate_request_start(&parent_req);
 703
 704		ret = clk_core_round_rate_nolock(parent, &parent_req);
 705		if (ret)
 706			return ret;
 707
 708		trace_clk_rate_request_done(&parent_req);
 709
 710		best = parent_req.rate;
 711	} else if (parent) {
 712		best = clk_core_get_rate_nolock(parent);
 713	} else {
 714		best = clk_core_get_rate_nolock(core);
 715	}
 716
 717	req->best_parent_rate = best;
 718	req->rate = best;
 719
 720	return 0;
 721}
 
 722
 723int clk_mux_determine_rate_flags(struct clk_hw *hw,
 724				 struct clk_rate_request *req,
 725				 unsigned long flags)
 726{
 727	struct clk_core *core = hw->core, *parent, *best_parent = NULL;
 728	int i, num_parents, ret;
 729	unsigned long best = 0;
 730
 731	/* if NO_REPARENT flag set, pass through to current parent */
 732	if (core->flags & CLK_SET_RATE_NO_REPARENT)
 733		return clk_core_determine_rate_no_reparent(hw, req);
 734
 735	/* find the parent that can provide the fastest rate <= rate */
 736	num_parents = core->num_parents;
 737	for (i = 0; i < num_parents; i++) {
 738		unsigned long parent_rate;
 739
 740		parent = clk_core_get_parent_by_index(core, i);
 741		if (!parent)
 742			continue;
 743
 744		if (core->flags & CLK_SET_RATE_PARENT) {
 745			struct clk_rate_request parent_req;
 746
 747			clk_core_forward_rate_req(core, req, parent, &parent_req, req->rate);
 748
 749			trace_clk_rate_request_start(&parent_req);
 750
 751			ret = clk_core_round_rate_nolock(parent, &parent_req);
 752			if (ret)
 753				continue;
 754
 755			trace_clk_rate_request_done(&parent_req);
 756
 757			parent_rate = parent_req.rate;
 758		} else {
 759			parent_rate = clk_core_get_rate_nolock(parent);
 760		}
 761
 762		if (mux_is_better_rate(req->rate, parent_rate,
 763				       best, flags)) {
 764			best_parent = parent;
 765			best = parent_rate;
 766		}
 767	}
 768
 769	if (!best_parent)
 770		return -EINVAL;
 771
 772	req->best_parent_hw = best_parent->hw;
 773	req->best_parent_rate = best;
 774	req->rate = best;
 775
 776	return 0;
 777}
 778EXPORT_SYMBOL_GPL(clk_mux_determine_rate_flags);
 779
 780struct clk *__clk_lookup(const char *name)
 781{
 782	struct clk_core *core = clk_core_lookup(name);
 783
 784	return !core ? NULL : core->hw->clk;
 785}
 786
 787static void clk_core_get_boundaries(struct clk_core *core,
 788				    unsigned long *min_rate,
 789				    unsigned long *max_rate)
 790{
 791	struct clk *clk_user;
 792
 793	lockdep_assert_held(&prepare_lock);
 794
 795	*min_rate = core->min_rate;
 796	*max_rate = core->max_rate;
 797
 798	hlist_for_each_entry(clk_user, &core->clks, clks_node)
 799		*min_rate = max(*min_rate, clk_user->min_rate);
 800
 801	hlist_for_each_entry(clk_user, &core->clks, clks_node)
 802		*max_rate = min(*max_rate, clk_user->max_rate);
 803}
 804
 805/*
 806 * clk_hw_get_rate_range() - returns the clock rate range for a hw clk
 807 * @hw: the hw clk we want to get the range from
 808 * @min_rate: pointer to the variable that will hold the minimum
 809 * @max_rate: pointer to the variable that will hold the maximum
 810 *
 811 * Fills the @min_rate and @max_rate variables with the minimum and
 812 * maximum that clock can reach.
 813 */
 814void clk_hw_get_rate_range(struct clk_hw *hw, unsigned long *min_rate,
 815			   unsigned long *max_rate)
 816{
 817	clk_core_get_boundaries(hw->core, min_rate, max_rate);
 818}
 819EXPORT_SYMBOL_GPL(clk_hw_get_rate_range);
 820
 821static bool clk_core_check_boundaries(struct clk_core *core,
 822				      unsigned long min_rate,
 823				      unsigned long max_rate)
 824{
 825	struct clk *user;
 826
 827	lockdep_assert_held(&prepare_lock);
 828
 829	if (min_rate > core->max_rate || max_rate < core->min_rate)
 830		return false;
 831
 832	hlist_for_each_entry(user, &core->clks, clks_node)
 833		if (min_rate > user->max_rate || max_rate < user->min_rate)
 834			return false;
 835
 836	return true;
 837}
 838
 839void clk_hw_set_rate_range(struct clk_hw *hw, unsigned long min_rate,
 840			   unsigned long max_rate)
 841{
 842	hw->core->min_rate = min_rate;
 843	hw->core->max_rate = max_rate;
 844}
 845EXPORT_SYMBOL_GPL(clk_hw_set_rate_range);
 846
 847/*
 848 * __clk_mux_determine_rate - clk_ops::determine_rate implementation for a mux type clk
 849 * @hw: mux type clk to determine rate on
 850 * @req: rate request, also used to return preferred parent and frequencies
 851 *
 852 * Helper for finding best parent to provide a given frequency. This can be used
 853 * directly as a determine_rate callback (e.g. for a mux), or from a more
 854 * complex clock that may combine a mux with other operations.
 855 *
 856 * Returns: 0 on success, -EERROR value on error
 857 */
 858int __clk_mux_determine_rate(struct clk_hw *hw,
 859			     struct clk_rate_request *req)
 860{
 861	return clk_mux_determine_rate_flags(hw, req, 0);
 862}
 863EXPORT_SYMBOL_GPL(__clk_mux_determine_rate);
 864
 865int __clk_mux_determine_rate_closest(struct clk_hw *hw,
 866				     struct clk_rate_request *req)
 867{
 868	return clk_mux_determine_rate_flags(hw, req, CLK_MUX_ROUND_CLOSEST);
 869}
 870EXPORT_SYMBOL_GPL(__clk_mux_determine_rate_closest);
 871
 872/*
 873 * clk_hw_determine_rate_no_reparent - clk_ops::determine_rate implementation for a clk that doesn't reparent
 874 * @hw: mux type clk to determine rate on
 875 * @req: rate request, also used to return preferred frequency
 876 *
 877 * Helper for finding best parent rate to provide a given frequency.
 878 * This can be used directly as a determine_rate callback (e.g. for a
 879 * mux), or from a more complex clock that may combine a mux with other
 880 * operations.
 881 *
 882 * Returns: 0 on success, -EERROR value on error
 883 */
 884int clk_hw_determine_rate_no_reparent(struct clk_hw *hw,
 885				      struct clk_rate_request *req)
 886{
 887	return clk_core_determine_rate_no_reparent(hw, req);
 888}
 889EXPORT_SYMBOL_GPL(clk_hw_determine_rate_no_reparent);
 890
 891/***        clk api        ***/
 892
 893static void clk_core_rate_unprotect(struct clk_core *core)
 894{
 895	lockdep_assert_held(&prepare_lock);
 896
 897	if (!core)
 898		return;
 899
 900	if (WARN(core->protect_count == 0,
 901	    "%s already unprotected\n", core->name))
 902		return;
 903
 904	if (--core->protect_count > 0)
 905		return;
 906
 907	clk_core_rate_unprotect(core->parent);
 908}
 909
 910static int clk_core_rate_nuke_protect(struct clk_core *core)
 911{
 912	int ret;
 913
 914	lockdep_assert_held(&prepare_lock);
 915
 916	if (!core)
 917		return -EINVAL;
 918
 919	if (core->protect_count == 0)
 920		return 0;
 921
 922	ret = core->protect_count;
 923	core->protect_count = 1;
 924	clk_core_rate_unprotect(core);
 925
 926	return ret;
 927}
 928
 929/**
 930 * clk_rate_exclusive_put - release exclusivity over clock rate control
 931 * @clk: the clk over which the exclusivity is released
 932 *
 933 * clk_rate_exclusive_put() completes a critical section during which a clock
 934 * consumer cannot tolerate any other consumer making any operation on the
 935 * clock which could result in a rate change or rate glitch. Exclusive clocks
 936 * cannot have their rate changed, either directly or indirectly due to changes
 937 * further up the parent chain of clocks. As a result, clocks up parent chain
 938 * also get under exclusive control of the calling consumer.
 939 *
 940 * If exlusivity is claimed more than once on clock, even by the same consumer,
 941 * the rate effectively gets locked as exclusivity can't be preempted.
 942 *
 943 * Calls to clk_rate_exclusive_put() must be balanced with calls to
 944 * clk_rate_exclusive_get(). Calls to this function may sleep, and do not return
 945 * error status.
 946 */
 947void clk_rate_exclusive_put(struct clk *clk)
 948{
 949	if (!clk)
 950		return;
 951
 952	clk_prepare_lock();
 953
 954	/*
 955	 * if there is something wrong with this consumer protect count, stop
 956	 * here before messing with the provider
 957	 */
 958	if (WARN_ON(clk->exclusive_count <= 0))
 
 959		goto out;
 
 960
 961	clk_core_rate_unprotect(clk->core);
 962	clk->exclusive_count--;
 963out:
 964	clk_prepare_unlock();
 965}
 966EXPORT_SYMBOL_GPL(clk_rate_exclusive_put);
 967
 968static void clk_core_rate_protect(struct clk_core *core)
 969{
 970	lockdep_assert_held(&prepare_lock);
 
 
 971
 972	if (!core)
 973		return;
 974
 975	if (core->protect_count == 0)
 976		clk_core_rate_protect(core->parent);
 
 
 
 977
 978	core->protect_count++;
 979}
 980
 981static void clk_core_rate_restore_protect(struct clk_core *core, int count)
 982{
 983	lockdep_assert_held(&prepare_lock);
 
 
 984
 985	if (!core)
 986		return;
 987
 988	if (count == 0)
 989		return;
 
 
 
 
 990
 991	clk_core_rate_protect(core);
 992	core->protect_count = count;
 993}
 
 
 
 994
 995/**
 996 * clk_rate_exclusive_get - get exclusivity over the clk rate control
 997 * @clk: the clk over which the exclusity of rate control is requested
 998 *
 999 * clk_rate_exclusive_get() begins a critical section during which a clock
1000 * consumer cannot tolerate any other consumer making any operation on the
1001 * clock which could result in a rate change or rate glitch. Exclusive clocks
1002 * cannot have their rate changed, either directly or indirectly due to changes
1003 * further up the parent chain of clocks. As a result, clocks up parent chain
1004 * also get under exclusive control of the calling consumer.
1005 *
1006 * If exlusivity is claimed more than once on clock, even by the same consumer,
1007 * the rate effectively gets locked as exclusivity can't be preempted.
1008 *
1009 * Calls to clk_rate_exclusive_get() should be balanced with calls to
1010 * clk_rate_exclusive_put(). Calls to this function may sleep.
1011 * Returns 0 on success, -EERROR otherwise
1012 */
1013int clk_rate_exclusive_get(struct clk *clk)
1014{
1015	if (!clk)
1016		return 0;
1017
1018	clk_prepare_lock();
1019	clk_core_rate_protect(clk->core);
1020	clk->exclusive_count++;
1021	clk_prepare_unlock();
1022
1023	return 0;
1024}
1025EXPORT_SYMBOL_GPL(clk_rate_exclusive_get);
1026
1027static void devm_clk_rate_exclusive_put(void *data)
1028{
1029	struct clk *clk = data;
1030
1031	clk_rate_exclusive_put(clk);
1032}
1033
1034int devm_clk_rate_exclusive_get(struct device *dev, struct clk *clk)
1035{
1036	int ret;
1037
1038	ret = clk_rate_exclusive_get(clk);
1039	if (ret)
1040		return ret;
1041
1042	return devm_add_action_or_reset(dev, devm_clk_rate_exclusive_put, clk);
1043}
1044EXPORT_SYMBOL_GPL(devm_clk_rate_exclusive_get);
1045
1046static void clk_core_unprepare(struct clk_core *core)
1047{
1048	lockdep_assert_held(&prepare_lock);
1049
1050	if (!core)
1051		return;
1052
1053	if (WARN(core->prepare_count == 0,
1054	    "%s already unprepared\n", core->name))
1055		return;
1056
1057	if (WARN(core->prepare_count == 1 && core->flags & CLK_IS_CRITICAL,
1058	    "Unpreparing critical %s\n", core->name))
1059		return;
1060
1061	if (core->flags & CLK_SET_RATE_GATE)
1062		clk_core_rate_unprotect(core);
1063
1064	if (--core->prepare_count > 0)
1065		return;
1066
1067	WARN(core->enable_count > 0, "Unpreparing enabled %s\n", core->name);
1068
1069	trace_clk_unprepare(core);
1070
1071	if (core->ops->unprepare)
1072		core->ops->unprepare(core->hw);
1073
1074	trace_clk_unprepare_complete(core);
1075	clk_core_unprepare(core->parent);
1076	clk_pm_runtime_put(core);
1077}
1078
1079static void clk_core_unprepare_lock(struct clk_core *core)
1080{
1081	clk_prepare_lock();
1082	clk_core_unprepare(core);
1083	clk_prepare_unlock();
1084}
1085
1086/**
1087 * clk_unprepare - undo preparation of a clock source
1088 * @clk: the clk being unprepared
1089 *
1090 * clk_unprepare may sleep, which differentiates it from clk_disable.  In a
1091 * simple case, clk_unprepare can be used instead of clk_disable to gate a clk
1092 * if the operation may sleep.  One example is a clk which is accessed over
1093 * I2c.  In the complex case a clk gate operation may require a fast and a slow
1094 * part.  It is this reason that clk_unprepare and clk_disable are not mutually
1095 * exclusive.  In fact clk_disable must be called before clk_unprepare.
1096 */
1097void clk_unprepare(struct clk *clk)
1098{
1099	if (IS_ERR_OR_NULL(clk))
1100		return;
1101
1102	clk_core_unprepare_lock(clk->core);
1103}
1104EXPORT_SYMBOL_GPL(clk_unprepare);
1105
1106static int clk_core_prepare(struct clk_core *core)
1107{
1108	int ret = 0;
1109
1110	lockdep_assert_held(&prepare_lock);
1111
1112	if (!core)
1113		return 0;
1114
1115	if (core->prepare_count == 0) {
1116		ret = clk_pm_runtime_get(core);
1117		if (ret)
1118			return ret;
1119
1120		ret = clk_core_prepare(core->parent);
1121		if (ret)
1122			goto runtime_put;
1123
1124		trace_clk_prepare(core);
1125
1126		if (core->ops->prepare)
1127			ret = core->ops->prepare(core->hw);
1128
1129		trace_clk_prepare_complete(core);
1130
1131		if (ret)
1132			goto unprepare;
1133	}
1134
1135	core->prepare_count++;
1136
1137	/*
1138	 * CLK_SET_RATE_GATE is a special case of clock protection
1139	 * Instead of a consumer claiming exclusive rate control, it is
1140	 * actually the provider which prevents any consumer from making any
1141	 * operation which could result in a rate change or rate glitch while
1142	 * the clock is prepared.
1143	 */
1144	if (core->flags & CLK_SET_RATE_GATE)
1145		clk_core_rate_protect(core);
1146
1147	return 0;
1148unprepare:
1149	clk_core_unprepare(core->parent);
1150runtime_put:
1151	clk_pm_runtime_put(core);
1152	return ret;
1153}
1154
1155static int clk_core_prepare_lock(struct clk_core *core)
1156{
1157	int ret;
1158
1159	clk_prepare_lock();
1160	ret = clk_core_prepare(core);
1161	clk_prepare_unlock();
1162
1163	return ret;
1164}
1165
1166/**
1167 * clk_prepare - prepare a clock source
1168 * @clk: the clk being prepared
1169 *
1170 * clk_prepare may sleep, which differentiates it from clk_enable.  In a simple
1171 * case, clk_prepare can be used instead of clk_enable to ungate a clk if the
1172 * operation may sleep.  One example is a clk which is accessed over I2c.  In
1173 * the complex case a clk ungate operation may require a fast and a slow part.
1174 * It is this reason that clk_prepare and clk_enable are not mutually
1175 * exclusive.  In fact clk_prepare must be called before clk_enable.
1176 * Returns 0 on success, -EERROR otherwise.
1177 */
1178int clk_prepare(struct clk *clk)
1179{
1180	if (!clk)
1181		return 0;
 
 
 
1182
1183	return clk_core_prepare_lock(clk->core);
1184}
1185EXPORT_SYMBOL_GPL(clk_prepare);
1186
1187static void clk_core_disable(struct clk_core *core)
1188{
1189	lockdep_assert_held(&enable_lock);
1190
1191	if (!core)
1192		return;
1193
1194	if (WARN(core->enable_count == 0, "%s already disabled\n", core->name))
1195		return;
1196
1197	if (WARN(core->enable_count == 1 && core->flags & CLK_IS_CRITICAL,
1198	    "Disabling critical %s\n", core->name))
1199		return;
1200
1201	if (--core->enable_count > 0)
1202		return;
1203
1204	trace_clk_disable(core);
1205
1206	if (core->ops->disable)
1207		core->ops->disable(core->hw);
1208
1209	trace_clk_disable_complete(core);
1210
1211	clk_core_disable(core->parent);
1212}
1213
1214static void clk_core_disable_lock(struct clk_core *core)
1215{
1216	unsigned long flags;
1217
1218	flags = clk_enable_lock();
1219	clk_core_disable(core);
1220	clk_enable_unlock(flags);
1221}
1222
1223/**
1224 * clk_disable - gate a clock
1225 * @clk: the clk being gated
1226 *
1227 * clk_disable must not sleep, which differentiates it from clk_unprepare.  In
1228 * a simple case, clk_disable can be used instead of clk_unprepare to gate a
1229 * clk if the operation is fast and will never sleep.  One example is a
1230 * SoC-internal clk which is controlled via simple register writes.  In the
1231 * complex case a clk gate operation may require a fast and a slow part.  It is
1232 * this reason that clk_unprepare and clk_disable are not mutually exclusive.
1233 * In fact clk_disable must be called before clk_unprepare.
1234 */
1235void clk_disable(struct clk *clk)
1236{
1237	if (IS_ERR_OR_NULL(clk))
1238		return;
1239
1240	clk_core_disable_lock(clk->core);
 
 
1241}
1242EXPORT_SYMBOL_GPL(clk_disable);
1243
1244static int clk_core_enable(struct clk_core *core)
1245{
1246	int ret = 0;
1247
1248	lockdep_assert_held(&enable_lock);
1249
1250	if (!core)
1251		return 0;
1252
1253	if (WARN(core->prepare_count == 0,
1254	    "Enabling unprepared %s\n", core->name))
1255		return -ESHUTDOWN;
1256
1257	if (core->enable_count == 0) {
1258		ret = clk_core_enable(core->parent);
1259
1260		if (ret)
1261			return ret;
1262
1263		trace_clk_enable(core);
1264
1265		if (core->ops->enable)
1266			ret = core->ops->enable(core->hw);
1267
1268		trace_clk_enable_complete(core);
1269
1270		if (ret) {
1271			clk_core_disable(core->parent);
1272			return ret;
1273		}
1274	}
1275
1276	core->enable_count++;
1277	return 0;
1278}
1279
1280static int clk_core_enable_lock(struct clk_core *core)
1281{
1282	unsigned long flags;
1283	int ret;
1284
1285	flags = clk_enable_lock();
1286	ret = clk_core_enable(core);
1287	clk_enable_unlock(flags);
1288
1289	return ret;
1290}
1291
1292/**
1293 * clk_gate_restore_context - restore context for poweroff
1294 * @hw: the clk_hw pointer of clock whose state is to be restored
1295 *
1296 * The clock gate restore context function enables or disables
1297 * the gate clocks based on the enable_count. This is done in cases
1298 * where the clock context is lost and based on the enable_count
1299 * the clock either needs to be enabled/disabled. This
1300 * helps restore the state of gate clocks.
1301 */
1302void clk_gate_restore_context(struct clk_hw *hw)
1303{
1304	struct clk_core *core = hw->core;
1305
1306	if (core->enable_count)
1307		core->ops->enable(hw);
1308	else
1309		core->ops->disable(hw);
1310}
1311EXPORT_SYMBOL_GPL(clk_gate_restore_context);
1312
1313static int clk_core_save_context(struct clk_core *core)
1314{
1315	struct clk_core *child;
1316	int ret = 0;
1317
1318	hlist_for_each_entry(child, &core->children, child_node) {
1319		ret = clk_core_save_context(child);
1320		if (ret < 0)
1321			return ret;
1322	}
1323
1324	if (core->ops && core->ops->save_context)
1325		ret = core->ops->save_context(core->hw);
1326
1327	return ret;
1328}
1329
1330static void clk_core_restore_context(struct clk_core *core)
1331{
1332	struct clk_core *child;
1333
1334	if (core->ops && core->ops->restore_context)
1335		core->ops->restore_context(core->hw);
1336
1337	hlist_for_each_entry(child, &core->children, child_node)
1338		clk_core_restore_context(child);
1339}
1340
1341/**
1342 * clk_save_context - save clock context for poweroff
1343 *
1344 * Saves the context of the clock register for powerstates in which the
1345 * contents of the registers will be lost. Occurs deep within the suspend
1346 * code.  Returns 0 on success.
1347 */
1348int clk_save_context(void)
1349{
1350	struct clk_core *clk;
1351	int ret;
1352
1353	hlist_for_each_entry(clk, &clk_root_list, child_node) {
1354		ret = clk_core_save_context(clk);
1355		if (ret < 0)
1356			return ret;
1357	}
1358
1359	hlist_for_each_entry(clk, &clk_orphan_list, child_node) {
1360		ret = clk_core_save_context(clk);
1361		if (ret < 0)
1362			return ret;
1363	}
1364
1365	return 0;
1366}
1367EXPORT_SYMBOL_GPL(clk_save_context);
1368
1369/**
1370 * clk_restore_context - restore clock context after poweroff
1371 *
1372 * Restore the saved clock context upon resume.
1373 *
1374 */
1375void clk_restore_context(void)
1376{
1377	struct clk_core *core;
1378
1379	hlist_for_each_entry(core, &clk_root_list, child_node)
1380		clk_core_restore_context(core);
1381
1382	hlist_for_each_entry(core, &clk_orphan_list, child_node)
1383		clk_core_restore_context(core);
1384}
1385EXPORT_SYMBOL_GPL(clk_restore_context);
1386
1387/**
1388 * clk_enable - ungate a clock
1389 * @clk: the clk being ungated
1390 *
1391 * clk_enable must not sleep, which differentiates it from clk_prepare.  In a
1392 * simple case, clk_enable can be used instead of clk_prepare to ungate a clk
1393 * if the operation will never sleep.  One example is a SoC-internal clk which
1394 * is controlled via simple register writes.  In the complex case a clk ungate
1395 * operation may require a fast and a slow part.  It is this reason that
1396 * clk_enable and clk_prepare are not mutually exclusive.  In fact clk_prepare
1397 * must be called before clk_enable.  Returns 0 on success, -EERROR
1398 * otherwise.
1399 */
1400int clk_enable(struct clk *clk)
1401{
1402	if (!clk)
1403		return 0;
1404
1405	return clk_core_enable_lock(clk->core);
1406}
1407EXPORT_SYMBOL_GPL(clk_enable);
1408
1409/**
1410 * clk_is_enabled_when_prepared - indicate if preparing a clock also enables it.
1411 * @clk: clock source
1412 *
1413 * Returns true if clk_prepare() implicitly enables the clock, effectively
1414 * making clk_enable()/clk_disable() no-ops, false otherwise.
1415 *
1416 * This is of interest mainly to power management code where actually
1417 * disabling the clock also requires unpreparing it to have any material
1418 * effect.
1419 *
1420 * Regardless of the value returned here, the caller must always invoke
1421 * clk_enable() or clk_prepare_enable()  and counterparts for usage counts
1422 * to be right.
1423 */
1424bool clk_is_enabled_when_prepared(struct clk *clk)
1425{
1426	return clk && !(clk->core->ops->enable && clk->core->ops->disable);
1427}
1428EXPORT_SYMBOL_GPL(clk_is_enabled_when_prepared);
1429
1430static int clk_core_prepare_enable(struct clk_core *core)
1431{
1432	int ret;
1433
1434	ret = clk_core_prepare_lock(core);
1435	if (ret)
1436		return ret;
1437
1438	ret = clk_core_enable_lock(core);
1439	if (ret)
1440		clk_core_unprepare_lock(core);
1441
1442	return ret;
1443}
1444
1445static void clk_core_disable_unprepare(struct clk_core *core)
1446{
1447	clk_core_disable_lock(core);
1448	clk_core_unprepare_lock(core);
1449}
1450
1451static void __init clk_unprepare_unused_subtree(struct clk_core *core)
1452{
1453	struct clk_core *child;
1454
1455	lockdep_assert_held(&prepare_lock);
1456
1457	hlist_for_each_entry(child, &core->children, child_node)
1458		clk_unprepare_unused_subtree(child);
1459
1460	if (core->prepare_count)
1461		return;
1462
1463	if (core->flags & CLK_IGNORE_UNUSED)
1464		return;
1465
1466	if (clk_core_is_prepared(core)) {
1467		trace_clk_unprepare(core);
1468		if (core->ops->unprepare_unused)
1469			core->ops->unprepare_unused(core->hw);
1470		else if (core->ops->unprepare)
1471			core->ops->unprepare(core->hw);
1472		trace_clk_unprepare_complete(core);
1473	}
1474}
1475
1476static void __init clk_disable_unused_subtree(struct clk_core *core)
1477{
1478	struct clk_core *child;
1479	unsigned long flags;
1480
1481	lockdep_assert_held(&prepare_lock);
1482
1483	hlist_for_each_entry(child, &core->children, child_node)
1484		clk_disable_unused_subtree(child);
1485
1486	if (core->flags & CLK_OPS_PARENT_ENABLE)
1487		clk_core_prepare_enable(core->parent);
1488
1489	flags = clk_enable_lock();
1490
1491	if (core->enable_count)
1492		goto unlock_out;
1493
1494	if (core->flags & CLK_IGNORE_UNUSED)
1495		goto unlock_out;
1496
1497	/*
1498	 * some gate clocks have special needs during the disable-unused
1499	 * sequence.  call .disable_unused if available, otherwise fall
1500	 * back to .disable
1501	 */
1502	if (clk_core_is_enabled(core)) {
1503		trace_clk_disable(core);
1504		if (core->ops->disable_unused)
1505			core->ops->disable_unused(core->hw);
1506		else if (core->ops->disable)
1507			core->ops->disable(core->hw);
1508		trace_clk_disable_complete(core);
1509	}
1510
1511unlock_out:
1512	clk_enable_unlock(flags);
1513	if (core->flags & CLK_OPS_PARENT_ENABLE)
1514		clk_core_disable_unprepare(core->parent);
1515}
1516
1517static bool clk_ignore_unused __initdata;
1518static int __init clk_ignore_unused_setup(char *__unused)
1519{
1520	clk_ignore_unused = true;
1521	return 1;
1522}
1523__setup("clk_ignore_unused", clk_ignore_unused_setup);
1524
1525static int __init clk_disable_unused(void)
1526{
1527	struct clk_core *core;
1528	int ret;
1529
1530	if (clk_ignore_unused) {
1531		pr_warn("clk: Not disabling unused clocks\n");
1532		return 0;
1533	}
1534
1535	pr_info("clk: Disabling unused clocks\n");
1536
1537	ret = clk_pm_runtime_get_all();
1538	if (ret)
1539		return ret;
1540	/*
1541	 * Grab the prepare lock to keep the clk topology stable while iterating
1542	 * over clks.
1543	 */
1544	clk_prepare_lock();
1545
1546	hlist_for_each_entry(core, &clk_root_list, child_node)
1547		clk_disable_unused_subtree(core);
1548
1549	hlist_for_each_entry(core, &clk_orphan_list, child_node)
1550		clk_disable_unused_subtree(core);
1551
1552	hlist_for_each_entry(core, &clk_root_list, child_node)
1553		clk_unprepare_unused_subtree(core);
1554
1555	hlist_for_each_entry(core, &clk_orphan_list, child_node)
1556		clk_unprepare_unused_subtree(core);
1557
1558	clk_prepare_unlock();
1559
1560	clk_pm_runtime_put_all();
1561
1562	return 0;
1563}
1564late_initcall_sync(clk_disable_unused);
1565
1566static int clk_core_determine_round_nolock(struct clk_core *core,
1567					   struct clk_rate_request *req)
1568{
1569	long rate;
1570
1571	lockdep_assert_held(&prepare_lock);
1572
1573	if (!core)
1574		return 0;
1575
1576	/*
1577	 * Some clock providers hand-craft their clk_rate_requests and
1578	 * might not fill min_rate and max_rate.
1579	 *
1580	 * If it's the case, clamping the rate is equivalent to setting
1581	 * the rate to 0 which is bad. Skip the clamping but complain so
1582	 * that it gets fixed, hopefully.
1583	 */
1584	if (!req->min_rate && !req->max_rate)
1585		pr_warn("%s: %s: clk_rate_request has initialized min or max rate.\n",
1586			__func__, core->name);
1587	else
1588		req->rate = clamp(req->rate, req->min_rate, req->max_rate);
1589
1590	/*
1591	 * At this point, core protection will be disabled
1592	 * - if the provider is not protected at all
1593	 * - if the calling consumer is the only one which has exclusivity
1594	 *   over the provider
1595	 */
1596	if (clk_core_rate_is_protected(core)) {
1597		req->rate = core->rate;
1598	} else if (core->ops->determine_rate) {
1599		return core->ops->determine_rate(core->hw, req);
1600	} else if (core->ops->round_rate) {
1601		rate = core->ops->round_rate(core->hw, req->rate,
1602					     &req->best_parent_rate);
1603		if (rate < 0)
1604			return rate;
1605
1606		req->rate = rate;
1607	} else {
1608		return -EINVAL;
1609	}
1610
1611	return 0;
1612}
1613
1614static void clk_core_init_rate_req(struct clk_core * const core,
1615				   struct clk_rate_request *req,
1616				   unsigned long rate)
1617{
1618	struct clk_core *parent;
1619
1620	if (WARN_ON(!req))
1621		return;
1622
1623	memset(req, 0, sizeof(*req));
1624	req->max_rate = ULONG_MAX;
1625
1626	if (!core)
1627		return;
1628
1629	req->core = core;
1630	req->rate = rate;
1631	clk_core_get_boundaries(core, &req->min_rate, &req->max_rate);
1632
1633	parent = core->parent;
1634	if (parent) {
1635		req->best_parent_hw = parent->hw;
1636		req->best_parent_rate = parent->rate;
1637	} else {
1638		req->best_parent_hw = NULL;
1639		req->best_parent_rate = 0;
1640	}
1641}
1642
1643/**
1644 * clk_hw_init_rate_request - Initializes a clk_rate_request
1645 * @hw: the clk for which we want to submit a rate request
1646 * @req: the clk_rate_request structure we want to initialise
1647 * @rate: the rate which is to be requested
1648 *
1649 * Initializes a clk_rate_request structure to submit to
1650 * __clk_determine_rate() or similar functions.
1651 */
1652void clk_hw_init_rate_request(const struct clk_hw *hw,
1653			      struct clk_rate_request *req,
1654			      unsigned long rate)
1655{
1656	if (WARN_ON(!hw || !req))
1657		return;
 
 
 
1658
1659	clk_core_init_rate_req(hw->core, req, rate);
1660}
1661EXPORT_SYMBOL_GPL(clk_hw_init_rate_request);
1662
1663/**
1664 * clk_hw_forward_rate_request - Forwards a clk_rate_request to a clock's parent
1665 * @hw: the original clock that got the rate request
1666 * @old_req: the original clk_rate_request structure we want to forward
1667 * @parent: the clk we want to forward @old_req to
1668 * @req: the clk_rate_request structure we want to initialise
1669 * @parent_rate: The rate which is to be requested to @parent
1670 *
1671 * Initializes a clk_rate_request structure to submit to a clock parent
1672 * in __clk_determine_rate() or similar functions.
1673 */
1674void clk_hw_forward_rate_request(const struct clk_hw *hw,
1675				 const struct clk_rate_request *old_req,
1676				 const struct clk_hw *parent,
1677				 struct clk_rate_request *req,
1678				 unsigned long parent_rate)
1679{
1680	if (WARN_ON(!hw || !old_req || !parent || !req))
1681		return;
1682
1683	clk_core_forward_rate_req(hw->core, old_req,
1684				  parent->core, req,
1685				  parent_rate);
1686}
1687EXPORT_SYMBOL_GPL(clk_hw_forward_rate_request);
1688
1689static bool clk_core_can_round(struct clk_core * const core)
1690{
1691	return core->ops->determine_rate || core->ops->round_rate;
1692}
1693
1694static int clk_core_round_rate_nolock(struct clk_core *core,
1695				      struct clk_rate_request *req)
1696{
1697	int ret;
1698
1699	lockdep_assert_held(&prepare_lock);
1700
1701	if (!core) {
1702		req->rate = 0;
1703		return 0;
1704	}
1705
1706	if (clk_core_can_round(core))
1707		return clk_core_determine_round_nolock(core, req);
1708
1709	if (core->flags & CLK_SET_RATE_PARENT) {
1710		struct clk_rate_request parent_req;
1711
1712		clk_core_forward_rate_req(core, req, core->parent, &parent_req, req->rate);
1713
1714		trace_clk_rate_request_start(&parent_req);
1715
1716		ret = clk_core_round_rate_nolock(core->parent, &parent_req);
1717		if (ret)
1718			return ret;
1719
1720		trace_clk_rate_request_done(&parent_req);
1721
1722		req->best_parent_rate = parent_req.rate;
1723		req->rate = parent_req.rate;
1724
1725		return 0;
1726	}
1727
1728	req->rate = core->rate;
1729	return 0;
1730}
1731
1732/**
1733 * __clk_determine_rate - get the closest rate actually supported by a clock
1734 * @hw: determine the rate of this clock
1735 * @req: target rate request
1736 *
1737 * Useful for clk_ops such as .set_rate and .determine_rate.
1738 */
1739int __clk_determine_rate(struct clk_hw *hw, struct clk_rate_request *req)
1740{
1741	if (!hw) {
1742		req->rate = 0;
1743		return 0;
1744	}
1745
1746	return clk_core_round_rate_nolock(hw->core, req);
1747}
1748EXPORT_SYMBOL_GPL(__clk_determine_rate);
1749
1750/**
1751 * clk_hw_round_rate() - round the given rate for a hw clk
1752 * @hw: the hw clk for which we are rounding a rate
1753 * @rate: the rate which is to be rounded
1754 *
1755 * Takes in a rate as input and rounds it to a rate that the clk can actually
1756 * use.
1757 *
1758 * Context: prepare_lock must be held.
1759 *          For clk providers to call from within clk_ops such as .round_rate,
1760 *          .determine_rate.
1761 *
1762 * Return: returns rounded rate of hw clk if clk supports round_rate operation
1763 *         else returns the parent rate.
1764 */
1765unsigned long clk_hw_round_rate(struct clk_hw *hw, unsigned long rate)
1766{
1767	int ret;
1768	struct clk_rate_request req;
1769
1770	clk_core_init_rate_req(hw->core, &req, rate);
1771
1772	trace_clk_rate_request_start(&req);
1773
1774	ret = clk_core_round_rate_nolock(hw->core, &req);
1775	if (ret)
1776		return 0;
1777
1778	trace_clk_rate_request_done(&req);
1779
1780	return req.rate;
1781}
1782EXPORT_SYMBOL_GPL(clk_hw_round_rate);
1783
1784/**
1785 * clk_round_rate - round the given rate for a clk
1786 * @clk: the clk for which we are rounding a rate
1787 * @rate: the rate which is to be rounded
1788 *
1789 * Takes in a rate as input and rounds it to a rate that the clk can actually
1790 * use which is then returned.  If clk doesn't support round_rate operation
1791 * then the parent rate is returned.
1792 */
1793long clk_round_rate(struct clk *clk, unsigned long rate)
1794{
1795	struct clk_rate_request req;
1796	int ret;
1797
1798	if (!clk)
1799		return 0;
 
1800
1801	clk_prepare_lock();
1802
1803	if (clk->exclusive_count)
1804		clk_core_rate_unprotect(clk->core);
1805
1806	clk_core_init_rate_req(clk->core, &req, rate);
1807
1808	trace_clk_rate_request_start(&req);
1809
1810	ret = clk_core_round_rate_nolock(clk->core, &req);
1811
1812	trace_clk_rate_request_done(&req);
1813
1814	if (clk->exclusive_count)
1815		clk_core_rate_protect(clk->core);
1816
1817	clk_prepare_unlock();
1818
1819	if (ret)
1820		return ret;
1821
1822	return req.rate;
1823}
1824EXPORT_SYMBOL_GPL(clk_round_rate);
1825
1826/**
1827 * __clk_notify - call clk notifier chain
1828 * @core: clk that is changing rate
1829 * @msg: clk notifier type (see include/linux/clk.h)
1830 * @old_rate: old clk rate
1831 * @new_rate: new clk rate
1832 *
1833 * Triggers a notifier call chain on the clk rate-change notification
1834 * for 'clk'.  Passes a pointer to the struct clk and the previous
1835 * and current rates to the notifier callback.  Intended to be called by
1836 * internal clock code only.  Returns NOTIFY_DONE from the last driver
1837 * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if
1838 * a driver returns that.
1839 */
1840static int __clk_notify(struct clk_core *core, unsigned long msg,
1841		unsigned long old_rate, unsigned long new_rate)
1842{
1843	struct clk_notifier *cn;
1844	struct clk_notifier_data cnd;
1845	int ret = NOTIFY_DONE;
1846
 
1847	cnd.old_rate = old_rate;
1848	cnd.new_rate = new_rate;
1849
1850	list_for_each_entry(cn, &clk_notifier_list, node) {
1851		if (cn->clk->core == core) {
1852			cnd.clk = cn->clk;
1853			ret = srcu_notifier_call_chain(&cn->notifier_head, msg,
1854					&cnd);
1855			if (ret & NOTIFY_STOP_MASK)
1856				return ret;
1857		}
1858	}
1859
1860	return ret;
1861}
1862
1863/**
1864 * __clk_recalc_accuracies
1865 * @core: first clk in the subtree
1866 *
1867 * Walks the subtree of clks starting with clk and recalculates accuracies as
1868 * it goes.  Note that if a clk does not implement the .recalc_accuracy
1869 * callback then it is assumed that the clock will take on the accuracy of its
1870 * parent.
1871 */
1872static void __clk_recalc_accuracies(struct clk_core *core)
1873{
1874	unsigned long parent_accuracy = 0;
1875	struct clk_core *child;
1876
1877	lockdep_assert_held(&prepare_lock);
1878
1879	if (core->parent)
1880		parent_accuracy = core->parent->accuracy;
1881
1882	if (core->ops->recalc_accuracy)
1883		core->accuracy = core->ops->recalc_accuracy(core->hw,
1884							  parent_accuracy);
1885	else
1886		core->accuracy = parent_accuracy;
1887
1888	hlist_for_each_entry(child, &core->children, child_node)
1889		__clk_recalc_accuracies(child);
1890}
1891
1892static long clk_core_get_accuracy_recalc(struct clk_core *core)
1893{
1894	if (core && (core->flags & CLK_GET_ACCURACY_NOCACHE))
1895		__clk_recalc_accuracies(core);
1896
1897	return clk_core_get_accuracy_no_lock(core);
1898}
1899
1900/**
1901 * clk_get_accuracy - return the accuracy of clk
1902 * @clk: the clk whose accuracy is being returned
1903 *
1904 * Simply returns the cached accuracy of the clk, unless
1905 * CLK_GET_ACCURACY_NOCACHE flag is set, which means a recalc_rate will be
1906 * issued.
1907 * If clk is NULL then returns 0.
1908 */
1909long clk_get_accuracy(struct clk *clk)
1910{
1911	long accuracy;
1912
1913	if (!clk)
1914		return 0;
1915
1916	clk_prepare_lock();
1917	accuracy = clk_core_get_accuracy_recalc(clk->core);
1918	clk_prepare_unlock();
1919
1920	return accuracy;
1921}
1922EXPORT_SYMBOL_GPL(clk_get_accuracy);
1923
1924static unsigned long clk_recalc(struct clk_core *core,
1925				unsigned long parent_rate)
1926{
1927	unsigned long rate = parent_rate;
1928
1929	if (core->ops->recalc_rate && !clk_pm_runtime_get(core)) {
1930		rate = core->ops->recalc_rate(core->hw, parent_rate);
1931		clk_pm_runtime_put(core);
1932	}
1933	return rate;
1934}
1935
1936/**
1937 * __clk_recalc_rates
1938 * @core: first clk in the subtree
1939 * @update_req: Whether req_rate should be updated with the new rate
1940 * @msg: notification type (see include/linux/clk.h)
1941 *
1942 * Walks the subtree of clks starting with clk and recalculates rates as it
1943 * goes.  Note that if a clk does not implement the .recalc_rate callback then
1944 * it is assumed that the clock will take on the rate of its parent.
1945 *
1946 * clk_recalc_rates also propagates the POST_RATE_CHANGE notification,
1947 * if necessary.
 
 
1948 */
1949static void __clk_recalc_rates(struct clk_core *core, bool update_req,
1950			       unsigned long msg)
1951{
1952	unsigned long old_rate;
1953	unsigned long parent_rate = 0;
1954	struct clk_core *child;
 
1955
1956	lockdep_assert_held(&prepare_lock);
1957
1958	old_rate = core->rate;
 
1959
1960	if (core->parent)
1961		parent_rate = core->parent->rate;
1962
1963	core->rate = clk_recalc(core, parent_rate);
1964	if (update_req)
1965		core->req_rate = core->rate;
1966
1967	/*
1968	 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE
1969	 * & ABORT_RATE_CHANGE notifiers
1970	 */
1971	if (core->notifier_count && msg)
1972		__clk_notify(core, msg, old_rate, core->rate);
1973
1974	hlist_for_each_entry(child, &core->children, child_node)
1975		__clk_recalc_rates(child, update_req, msg);
1976}
1977
1978static unsigned long clk_core_get_rate_recalc(struct clk_core *core)
1979{
1980	if (core && (core->flags & CLK_GET_RATE_NOCACHE))
1981		__clk_recalc_rates(core, false, 0);
1982
1983	return clk_core_get_rate_nolock(core);
1984}
1985
1986/**
1987 * clk_get_rate - return the rate of clk
1988 * @clk: the clk whose rate is being returned
1989 *
1990 * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag
1991 * is set, which means a recalc_rate will be issued. Can be called regardless of
1992 * the clock enabledness. If clk is NULL, or if an error occurred, then returns
1993 * 0.
1994 */
1995unsigned long clk_get_rate(struct clk *clk)
1996{
1997	unsigned long rate;
1998
1999	if (!clk)
2000		return 0;
2001
2002	clk_prepare_lock();
2003	rate = clk_core_get_rate_recalc(clk->core);
2004	clk_prepare_unlock();
2005
2006	return rate;
2007}
2008EXPORT_SYMBOL_GPL(clk_get_rate);
2009
2010static int clk_fetch_parent_index(struct clk_core *core,
2011				  struct clk_core *parent)
2012{
2013	int i;
2014
2015	if (!parent)
2016		return -EINVAL;
2017
2018	for (i = 0; i < core->num_parents; i++) {
2019		/* Found it first try! */
2020		if (core->parents[i].core == parent)
2021			return i;
2022
2023		/* Something else is here, so keep looking */
2024		if (core->parents[i].core)
2025			continue;
2026
2027		/* Maybe core hasn't been cached but the hw is all we know? */
2028		if (core->parents[i].hw) {
2029			if (core->parents[i].hw == parent->hw)
2030				break;
2031
2032			/* Didn't match, but we're expecting a clk_hw */
2033			continue;
2034		}
2035
2036		/* Maybe it hasn't been cached (clk_set_parent() path) */
2037		if (parent == clk_core_get(core, i))
2038			break;
2039
2040		/* Fallback to comparing globally unique names */
2041		if (core->parents[i].name &&
2042		    !strcmp(parent->name, core->parents[i].name))
2043			break;
2044	}
2045
2046	if (i == core->num_parents)
2047		return -EINVAL;
2048
2049	core->parents[i].core = parent;
2050	return i;
2051}
2052
2053/**
2054 * clk_hw_get_parent_index - return the index of the parent clock
2055 * @hw: clk_hw associated with the clk being consumed
2056 *
2057 * Fetches and returns the index of parent clock. Returns -EINVAL if the given
2058 * clock does not have a current parent.
2059 */
2060int clk_hw_get_parent_index(struct clk_hw *hw)
2061{
2062	struct clk_hw *parent = clk_hw_get_parent(hw);
2063
2064	if (WARN_ON(parent == NULL))
2065		return -EINVAL;
2066
2067	return clk_fetch_parent_index(hw->core, parent->core);
2068}
2069EXPORT_SYMBOL_GPL(clk_hw_get_parent_index);
2070
2071/*
2072 * Update the orphan status of @core and all its children.
2073 */
2074static void clk_core_update_orphan_status(struct clk_core *core, bool is_orphan)
2075{
2076	struct clk_core *child;
2077
2078	core->orphan = is_orphan;
2079
2080	hlist_for_each_entry(child, &core->children, child_node)
2081		clk_core_update_orphan_status(child, is_orphan);
2082}
2083
2084static void clk_reparent(struct clk_core *core, struct clk_core *new_parent)
2085{
2086	bool was_orphan = core->orphan;
2087
2088	hlist_del(&core->child_node);
2089
2090	if (new_parent) {
2091		bool becomes_orphan = new_parent->orphan;
2092
2093		/* avoid duplicate POST_RATE_CHANGE notifications */
2094		if (new_parent->new_child == core)
2095			new_parent->new_child = NULL;
2096
2097		hlist_add_head(&core->child_node, &new_parent->children);
2098
2099		if (was_orphan != becomes_orphan)
2100			clk_core_update_orphan_status(core, becomes_orphan);
2101	} else {
2102		hlist_add_head(&core->child_node, &clk_orphan_list);
2103		if (!was_orphan)
2104			clk_core_update_orphan_status(core, true);
2105	}
2106
2107	core->parent = new_parent;
2108}
2109
2110static struct clk_core *__clk_set_parent_before(struct clk_core *core,
2111					   struct clk_core *parent)
2112{
2113	unsigned long flags;
2114	struct clk_core *old_parent = core->parent;
2115
2116	/*
2117	 * 1. enable parents for CLK_OPS_PARENT_ENABLE clock
2118	 *
2119	 * 2. Migrate prepare state between parents and prevent race with
2120	 * clk_enable().
2121	 *
2122	 * If the clock is not prepared, then a race with
2123	 * clk_enable/disable() is impossible since we already have the
2124	 * prepare lock (future calls to clk_enable() need to be preceded by
2125	 * a clk_prepare()).
2126	 *
2127	 * If the clock is prepared, migrate the prepared state to the new
2128	 * parent and also protect against a race with clk_enable() by
2129	 * forcing the clock and the new parent on.  This ensures that all
2130	 * future calls to clk_enable() are practically NOPs with respect to
2131	 * hardware and software states.
2132	 *
2133	 * See also: Comment for clk_set_parent() below.
2134	 */
2135
2136	/* enable old_parent & parent if CLK_OPS_PARENT_ENABLE is set */
2137	if (core->flags & CLK_OPS_PARENT_ENABLE) {
2138		clk_core_prepare_enable(old_parent);
2139		clk_core_prepare_enable(parent);
2140	}
2141
2142	/* migrate prepare count if > 0 */
2143	if (core->prepare_count) {
2144		clk_core_prepare_enable(parent);
2145		clk_core_enable_lock(core);
2146	}
2147
2148	/* update the clk tree topology */
2149	flags = clk_enable_lock();
2150	clk_reparent(core, parent);
2151	clk_enable_unlock(flags);
2152
2153	return old_parent;
2154}
2155
2156static void __clk_set_parent_after(struct clk_core *core,
2157				   struct clk_core *parent,
2158				   struct clk_core *old_parent)
2159{
2160	/*
2161	 * Finish the migration of prepare state and undo the changes done
2162	 * for preventing a race with clk_enable().
2163	 */
2164	if (core->prepare_count) {
2165		clk_core_disable_lock(core);
2166		clk_core_disable_unprepare(old_parent);
2167	}
2168
2169	/* re-balance ref counting if CLK_OPS_PARENT_ENABLE is set */
2170	if (core->flags & CLK_OPS_PARENT_ENABLE) {
2171		clk_core_disable_unprepare(parent);
2172		clk_core_disable_unprepare(old_parent);
2173	}
2174}
2175
2176static int __clk_set_parent(struct clk_core *core, struct clk_core *parent,
2177			    u8 p_index)
2178{
2179	unsigned long flags;
2180	int ret = 0;
2181	struct clk_core *old_parent;
2182
2183	old_parent = __clk_set_parent_before(core, parent);
2184
2185	trace_clk_set_parent(core, parent);
2186
2187	/* change clock input source */
2188	if (parent && core->ops->set_parent)
2189		ret = core->ops->set_parent(core->hw, p_index);
2190
2191	trace_clk_set_parent_complete(core, parent);
2192
2193	if (ret) {
2194		flags = clk_enable_lock();
2195		clk_reparent(core, old_parent);
2196		clk_enable_unlock(flags);
2197
2198		__clk_set_parent_after(core, old_parent, parent);
2199
2200		return ret;
2201	}
2202
2203	__clk_set_parent_after(core, parent, old_parent);
2204
2205	return 0;
2206}
2207
2208/**
2209 * __clk_speculate_rates
2210 * @core: first clk in the subtree
2211 * @parent_rate: the "future" rate of clk's parent
2212 *
2213 * Walks the subtree of clks starting with clk, speculating rates as it
2214 * goes and firing off PRE_RATE_CHANGE notifications as necessary.
2215 *
2216 * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending
2217 * pre-rate change notifications and returns early if no clks in the
2218 * subtree have subscribed to the notifications.  Note that if a clk does not
2219 * implement the .recalc_rate callback then it is assumed that the clock will
2220 * take on the rate of its parent.
 
 
2221 */
2222static int __clk_speculate_rates(struct clk_core *core,
2223				 unsigned long parent_rate)
2224{
2225	struct clk_core *child;
 
2226	unsigned long new_rate;
2227	int ret = NOTIFY_DONE;
2228
2229	lockdep_assert_held(&prepare_lock);
2230
2231	new_rate = clk_recalc(core, parent_rate);
 
2232
2233	/* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */
2234	if (core->notifier_count)
2235		ret = __clk_notify(core, PRE_RATE_CHANGE, core->rate, new_rate);
2236
2237	if (ret & NOTIFY_STOP_MASK) {
2238		pr_debug("%s: clk notifier callback for clock %s aborted with error %d\n",
2239				__func__, core->name, ret);
2240		goto out;
2241	}
2242
2243	hlist_for_each_entry(child, &core->children, child_node) {
2244		ret = __clk_speculate_rates(child, new_rate);
2245		if (ret & NOTIFY_STOP_MASK)
2246			break;
2247	}
2248
2249out:
2250	return ret;
2251}
2252
2253static void clk_calc_subtree(struct clk_core *core, unsigned long new_rate,
2254			     struct clk_core *new_parent, u8 p_index)
2255{
2256	struct clk_core *child;
 
2257
2258	core->new_rate = new_rate;
2259	core->new_parent = new_parent;
2260	core->new_parent_index = p_index;
2261	/* include clk in new parent's PRE_RATE_CHANGE notifications */
2262	core->new_child = NULL;
2263	if (new_parent && new_parent != core->parent)
2264		new_parent->new_child = core;
2265
2266	hlist_for_each_entry(child, &core->children, child_node) {
2267		child->new_rate = clk_recalc(child, new_rate);
2268		clk_calc_subtree(child, child->new_rate, NULL, 0);
2269	}
2270}
2271
2272/*
2273 * calculate the new rates returning the topmost clock that has to be
2274 * changed.
2275 */
2276static struct clk_core *clk_calc_new_rates(struct clk_core *core,
2277					   unsigned long rate)
2278{
2279	struct clk_core *top = core;
2280	struct clk_core *old_parent, *parent;
2281	unsigned long best_parent_rate = 0;
2282	unsigned long new_rate;
2283	unsigned long min_rate;
2284	unsigned long max_rate;
2285	int p_index = 0;
2286	long ret;
2287
2288	/* sanity */
2289	if (IS_ERR_OR_NULL(core))
2290		return NULL;
2291
2292	/* save parent rate, if it exists */
2293	parent = old_parent = core->parent;
2294	if (parent)
2295		best_parent_rate = parent->rate;
2296
2297	clk_core_get_boundaries(core, &min_rate, &max_rate);
2298
2299	/* find the closest rate and parent clk/rate */
2300	if (clk_core_can_round(core)) {
2301		struct clk_rate_request req;
2302
2303		clk_core_init_rate_req(core, &req, rate);
2304
2305		trace_clk_rate_request_start(&req);
2306
2307		ret = clk_core_determine_round_nolock(core, &req);
2308		if (ret < 0)
2309			return NULL;
 
 
 
 
2310
2311		trace_clk_rate_request_done(&req);
 
 
 
 
2312
2313		best_parent_rate = req.best_parent_rate;
2314		new_rate = req.rate;
2315		parent = req.best_parent_hw ? req.best_parent_hw->core : NULL;
2316
2317		if (new_rate < min_rate || new_rate > max_rate)
2318			return NULL;
2319	} else if (!parent || !(core->flags & CLK_SET_RATE_PARENT)) {
2320		/* pass-through clock without adjustable parent */
2321		core->new_rate = core->rate;
2322		return NULL;
2323	} else {
2324		/* pass-through clock with adjustable parent */
2325		top = clk_calc_new_rates(parent, rate);
2326		new_rate = parent->new_rate;
2327		goto out;
2328	}
2329
2330	/* some clocks must be gated to change parent */
2331	if (parent != old_parent &&
2332	    (core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) {
2333		pr_debug("%s: %s not gated but wants to reparent\n",
2334			 __func__, core->name);
2335		return NULL;
2336	}
2337
2338	/* try finding the new parent index */
2339	if (parent && core->num_parents > 1) {
2340		p_index = clk_fetch_parent_index(core, parent);
2341		if (p_index < 0) {
2342			pr_debug("%s: clk %s can not be parent of clk %s\n",
2343				 __func__, parent->name, core->name);
2344			return NULL;
2345		}
2346	}
2347
2348	if ((core->flags & CLK_SET_RATE_PARENT) && parent &&
2349	    best_parent_rate != parent->rate)
2350		top = clk_calc_new_rates(parent, best_parent_rate);
2351
2352out:
2353	clk_calc_subtree(core, new_rate, parent, p_index);
2354
2355	return top;
2356}
2357
2358/*
2359 * Notify about rate changes in a subtree. Always walk down the whole tree
2360 * so that in case of an error we can walk down the whole tree again and
2361 * abort the change.
2362 */
2363static struct clk_core *clk_propagate_rate_change(struct clk_core *core,
2364						  unsigned long event)
2365{
2366	struct clk_core *child, *tmp_clk, *fail_clk = NULL;
 
2367	int ret = NOTIFY_DONE;
2368
2369	if (core->rate == core->new_rate)
2370		return NULL;
2371
2372	if (core->notifier_count) {
2373		ret = __clk_notify(core, event, core->rate, core->new_rate);
2374		if (ret & NOTIFY_STOP_MASK)
2375			fail_clk = core;
2376	}
2377
2378	hlist_for_each_entry(child, &core->children, child_node) {
2379		/* Skip children who will be reparented to another clock */
2380		if (child->new_parent && child->new_parent != core)
2381			continue;
2382		tmp_clk = clk_propagate_rate_change(child, event);
2383		if (tmp_clk)
2384			fail_clk = tmp_clk;
2385	}
2386
2387	/* handle the new child who might not be in core->children yet */
2388	if (core->new_child) {
2389		tmp_clk = clk_propagate_rate_change(core->new_child, event);
2390		if (tmp_clk)
2391			fail_clk = tmp_clk;
2392	}
2393
2394	return fail_clk;
2395}
2396
2397/*
2398 * walk down a subtree and set the new rates notifying the rate
2399 * change on the way
2400 */
2401static void clk_change_rate(struct clk_core *core)
2402{
2403	struct clk_core *child;
2404	struct hlist_node *tmp;
2405	unsigned long old_rate;
2406	unsigned long best_parent_rate = 0;
2407	bool skip_set_rate = false;
2408	struct clk_core *old_parent;
2409	struct clk_core *parent = NULL;
2410
2411	old_rate = core->rate;
2412
2413	if (core->new_parent) {
2414		parent = core->new_parent;
2415		best_parent_rate = core->new_parent->rate;
2416	} else if (core->parent) {
2417		parent = core->parent;
2418		best_parent_rate = core->parent->rate;
2419	}
2420
2421	if (clk_pm_runtime_get(core))
2422		return;
2423
2424	if (core->flags & CLK_SET_RATE_UNGATE) {
2425		clk_core_prepare(core);
2426		clk_core_enable_lock(core);
2427	}
2428
2429	if (core->new_parent && core->new_parent != core->parent) {
2430		old_parent = __clk_set_parent_before(core, core->new_parent);
2431		trace_clk_set_parent(core, core->new_parent);
2432
2433		if (core->ops->set_rate_and_parent) {
2434			skip_set_rate = true;
2435			core->ops->set_rate_and_parent(core->hw, core->new_rate,
2436					best_parent_rate,
2437					core->new_parent_index);
2438		} else if (core->ops->set_parent) {
2439			core->ops->set_parent(core->hw, core->new_parent_index);
2440		}
2441
2442		trace_clk_set_parent_complete(core, core->new_parent);
2443		__clk_set_parent_after(core, core->new_parent, old_parent);
2444	}
2445
2446	if (core->flags & CLK_OPS_PARENT_ENABLE)
2447		clk_core_prepare_enable(parent);
2448
2449	trace_clk_set_rate(core, core->new_rate);
2450
2451	if (!skip_set_rate && core->ops->set_rate)
2452		core->ops->set_rate(core->hw, core->new_rate, best_parent_rate);
2453
2454	trace_clk_set_rate_complete(core, core->new_rate);
2455
2456	core->rate = clk_recalc(core, best_parent_rate);
2457
2458	if (core->flags & CLK_SET_RATE_UNGATE) {
2459		clk_core_disable_lock(core);
2460		clk_core_unprepare(core);
2461	}
2462
2463	if (core->flags & CLK_OPS_PARENT_ENABLE)
2464		clk_core_disable_unprepare(parent);
2465
2466	if (core->notifier_count && old_rate != core->rate)
2467		__clk_notify(core, POST_RATE_CHANGE, old_rate, core->rate);
2468
2469	if (core->flags & CLK_RECALC_NEW_RATES)
2470		(void)clk_calc_new_rates(core, core->new_rate);
2471
2472	/*
2473	 * Use safe iteration, as change_rate can actually swap parents
2474	 * for certain clock types.
2475	 */
2476	hlist_for_each_entry_safe(child, tmp, &core->children, child_node) {
2477		/* Skip children who will be reparented to another clock */
2478		if (child->new_parent && child->new_parent != core)
2479			continue;
2480		clk_change_rate(child);
2481	}
2482
2483	/* handle the new child who might not be in core->children yet */
2484	if (core->new_child)
2485		clk_change_rate(core->new_child);
2486
2487	clk_pm_runtime_put(core);
2488}
2489
2490static unsigned long clk_core_req_round_rate_nolock(struct clk_core *core,
2491						     unsigned long req_rate)
2492{
2493	int ret, cnt;
2494	struct clk_rate_request req;
2495
2496	lockdep_assert_held(&prepare_lock);
2497
2498	if (!core)
2499		return 0;
2500
2501	/* simulate what the rate would be if it could be freely set */
2502	cnt = clk_core_rate_nuke_protect(core);
2503	if (cnt < 0)
2504		return cnt;
2505
2506	clk_core_init_rate_req(core, &req, req_rate);
2507
2508	trace_clk_rate_request_start(&req);
2509
2510	ret = clk_core_round_rate_nolock(core, &req);
2511
2512	trace_clk_rate_request_done(&req);
2513
2514	/* restore the protection */
2515	clk_core_rate_restore_protect(core, cnt);
2516
2517	return ret ? 0 : req.rate;
2518}
2519
2520static int clk_core_set_rate_nolock(struct clk_core *core,
2521				    unsigned long req_rate)
2522{
2523	struct clk_core *top, *fail_clk;
2524	unsigned long rate;
2525	int ret;
2526
2527	if (!core)
2528		return 0;
2529
2530	rate = clk_core_req_round_rate_nolock(core, req_rate);
2531
2532	/* bail early if nothing to do */
2533	if (rate == clk_core_get_rate_nolock(core))
2534		return 0;
2535
2536	/* fail on a direct rate set of a protected provider */
2537	if (clk_core_rate_is_protected(core))
2538		return -EBUSY;
2539
2540	/* calculate new rates and get the topmost changed clock */
2541	top = clk_calc_new_rates(core, req_rate);
2542	if (!top)
2543		return -EINVAL;
2544
2545	ret = clk_pm_runtime_get(core);
2546	if (ret)
2547		return ret;
2548
2549	/* notify that we are about to change rates */
2550	fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE);
2551	if (fail_clk) {
2552		pr_debug("%s: failed to set %s rate\n", __func__,
2553				fail_clk->name);
2554		clk_propagate_rate_change(top, ABORT_RATE_CHANGE);
2555		ret = -EBUSY;
2556		goto err;
2557	}
2558
2559	/* change the rates */
2560	clk_change_rate(top);
2561
2562	core->req_rate = req_rate;
2563err:
2564	clk_pm_runtime_put(core);
2565
2566	return ret;
2567}
2568
2569/**
2570 * clk_set_rate - specify a new rate for clk
2571 * @clk: the clk whose rate is being changed
2572 * @rate: the new rate for clk
2573 *
2574 * In the simplest case clk_set_rate will only adjust the rate of clk.
2575 *
2576 * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to
2577 * propagate up to clk's parent; whether or not this happens depends on the
2578 * outcome of clk's .round_rate implementation.  If *parent_rate is unchanged
2579 * after calling .round_rate then upstream parent propagation is ignored.  If
2580 * *parent_rate comes back with a new rate for clk's parent then we propagate
2581 * up to clk's parent and set its rate.  Upward propagation will continue
2582 * until either a clk does not support the CLK_SET_RATE_PARENT flag or
2583 * .round_rate stops requesting changes to clk's parent_rate.
2584 *
2585 * Rate changes are accomplished via tree traversal that also recalculates the
2586 * rates for the clocks and fires off POST_RATE_CHANGE notifiers.
2587 *
2588 * Returns 0 on success, -EERROR otherwise.
2589 */
2590int clk_set_rate(struct clk *clk, unsigned long rate)
2591{
2592	int ret;
2593
2594	if (!clk)
2595		return 0;
2596
2597	/* prevent racing with updates to the clock topology */
2598	clk_prepare_lock();
2599
2600	if (clk->exclusive_count)
2601		clk_core_rate_unprotect(clk->core);
 
2602
2603	ret = clk_core_set_rate_nolock(clk->core, rate);
2604
2605	if (clk->exclusive_count)
2606		clk_core_rate_protect(clk->core);
2607
2608	clk_prepare_unlock();
2609
2610	return ret;
2611}
2612EXPORT_SYMBOL_GPL(clk_set_rate);
2613
2614/**
2615 * clk_set_rate_exclusive - specify a new rate and get exclusive control
2616 * @clk: the clk whose rate is being changed
2617 * @rate: the new rate for clk
2618 *
2619 * This is a combination of clk_set_rate() and clk_rate_exclusive_get()
2620 * within a critical section
2621 *
2622 * This can be used initially to ensure that at least 1 consumer is
2623 * satisfied when several consumers are competing for exclusivity over the
2624 * same clock provider.
2625 *
2626 * The exclusivity is not applied if setting the rate failed.
2627 *
2628 * Calls to clk_rate_exclusive_get() should be balanced with calls to
2629 * clk_rate_exclusive_put().
2630 *
2631 * Returns 0 on success, -EERROR otherwise.
2632 */
2633int clk_set_rate_exclusive(struct clk *clk, unsigned long rate)
2634{
2635	int ret;
2636
2637	if (!clk)
2638		return 0;
2639
2640	/* prevent racing with updates to the clock topology */
2641	clk_prepare_lock();
2642
2643	/*
2644	 * The temporary protection removal is not here, on purpose
2645	 * This function is meant to be used instead of clk_rate_protect,
2646	 * so before the consumer code path protect the clock provider
2647	 */
2648
2649	ret = clk_core_set_rate_nolock(clk->core, rate);
2650	if (!ret) {
2651		clk_core_rate_protect(clk->core);
2652		clk->exclusive_count++;
2653	}
2654
2655	clk_prepare_unlock();
2656
2657	return ret;
2658}
2659EXPORT_SYMBOL_GPL(clk_set_rate_exclusive);
2660
2661static int clk_set_rate_range_nolock(struct clk *clk,
2662				     unsigned long min,
2663				     unsigned long max)
2664{
2665	int ret = 0;
2666	unsigned long old_min, old_max, rate;
2667
2668	lockdep_assert_held(&prepare_lock);
2669
2670	if (!clk)
2671		return 0;
2672
2673	trace_clk_set_rate_range(clk->core, min, max);
2674
2675	if (min > max) {
2676		pr_err("%s: clk %s dev %s con %s: invalid range [%lu, %lu]\n",
2677		       __func__, clk->core->name, clk->dev_id, clk->con_id,
2678		       min, max);
2679		return -EINVAL;
2680	}
2681
2682	if (clk->exclusive_count)
2683		clk_core_rate_unprotect(clk->core);
2684
2685	/* Save the current values in case we need to rollback the change */
2686	old_min = clk->min_rate;
2687	old_max = clk->max_rate;
2688	clk->min_rate = min;
2689	clk->max_rate = max;
2690
2691	if (!clk_core_check_boundaries(clk->core, min, max)) {
2692		ret = -EINVAL;
2693		goto out;
2694	}
2695
2696	rate = clk->core->req_rate;
2697	if (clk->core->flags & CLK_GET_RATE_NOCACHE)
2698		rate = clk_core_get_rate_recalc(clk->core);
2699
2700	/*
2701	 * Since the boundaries have been changed, let's give the
2702	 * opportunity to the provider to adjust the clock rate based on
2703	 * the new boundaries.
2704	 *
2705	 * We also need to handle the case where the clock is currently
2706	 * outside of the boundaries. Clamping the last requested rate
2707	 * to the current minimum and maximum will also handle this.
2708	 *
2709	 * FIXME:
2710	 * There is a catch. It may fail for the usual reason (clock
2711	 * broken, clock protected, etc) but also because:
2712	 * - round_rate() was not favorable and fell on the wrong
2713	 *   side of the boundary
2714	 * - the determine_rate() callback does not really check for
2715	 *   this corner case when determining the rate
2716	 */
2717	rate = clamp(rate, min, max);
2718	ret = clk_core_set_rate_nolock(clk->core, rate);
2719	if (ret) {
2720		/* rollback the changes */
2721		clk->min_rate = old_min;
2722		clk->max_rate = old_max;
2723	}
2724
 
2725out:
2726	if (clk->exclusive_count)
2727		clk_core_rate_protect(clk->core);
2728
2729	return ret;
2730}
2731
2732/**
2733 * clk_set_rate_range - set a rate range for a clock source
2734 * @clk: clock source
2735 * @min: desired minimum clock rate in Hz, inclusive
2736 * @max: desired maximum clock rate in Hz, inclusive
2737 *
2738 * Return: 0 for success or negative errno on failure.
2739 */
2740int clk_set_rate_range(struct clk *clk, unsigned long min, unsigned long max)
2741{
2742	int ret;
2743
2744	if (!clk)
2745		return 0;
2746
2747	clk_prepare_lock();
2748
2749	ret = clk_set_rate_range_nolock(clk, min, max);
2750
2751	clk_prepare_unlock();
2752
2753	return ret;
2754}
2755EXPORT_SYMBOL_GPL(clk_set_rate_range);
2756
2757/**
2758 * clk_set_min_rate - set a minimum clock rate for a clock source
2759 * @clk: clock source
2760 * @rate: desired minimum clock rate in Hz, inclusive
2761 *
2762 * Returns success (0) or negative errno.
2763 */
2764int clk_set_min_rate(struct clk *clk, unsigned long rate)
2765{
2766	if (!clk)
2767		return 0;
2768
2769	trace_clk_set_min_rate(clk->core, rate);
2770
2771	return clk_set_rate_range(clk, rate, clk->max_rate);
2772}
2773EXPORT_SYMBOL_GPL(clk_set_min_rate);
2774
2775/**
2776 * clk_set_max_rate - set a maximum clock rate for a clock source
2777 * @clk: clock source
2778 * @rate: desired maximum clock rate in Hz, inclusive
2779 *
2780 * Returns success (0) or negative errno.
2781 */
2782int clk_set_max_rate(struct clk *clk, unsigned long rate)
2783{
2784	if (!clk)
2785		return 0;
2786
2787	trace_clk_set_max_rate(clk->core, rate);
2788
2789	return clk_set_rate_range(clk, clk->min_rate, rate);
2790}
2791EXPORT_SYMBOL_GPL(clk_set_max_rate);
2792
2793/**
2794 * clk_get_parent - return the parent of a clk
2795 * @clk: the clk whose parent gets returned
2796 *
2797 * Simply returns clk->parent.  Returns NULL if clk is NULL.
2798 */
2799struct clk *clk_get_parent(struct clk *clk)
2800{
2801	struct clk *parent;
2802
2803	if (!clk)
2804		return NULL;
2805
2806	clk_prepare_lock();
2807	/* TODO: Create a per-user clk and change callers to call clk_put */
2808	parent = !clk->core->parent ? NULL : clk->core->parent->hw->clk;
2809	clk_prepare_unlock();
2810
2811	return parent;
2812}
2813EXPORT_SYMBOL_GPL(clk_get_parent);
2814
2815static struct clk_core *__clk_init_parent(struct clk_core *core)
2816{
2817	u8 index = 0;
2818
2819	if (core->num_parents > 1 && core->ops->get_parent)
2820		index = core->ops->get_parent(core->hw);
2821
2822	return clk_core_get_parent_by_index(core, index);
2823}
2824
2825static void clk_core_reparent(struct clk_core *core,
2826				  struct clk_core *new_parent)
2827{
2828	clk_reparent(core, new_parent);
2829	__clk_recalc_accuracies(core);
2830	__clk_recalc_rates(core, true, POST_RATE_CHANGE);
2831}
2832
2833void clk_hw_reparent(struct clk_hw *hw, struct clk_hw *new_parent)
2834{
2835	if (!hw)
2836		return;
2837
2838	clk_core_reparent(hw->core, !new_parent ? NULL : new_parent->core);
2839}
2840
2841/**
2842 * clk_has_parent - check if a clock is a possible parent for another
2843 * @clk: clock source
2844 * @parent: parent clock source
2845 *
2846 * This function can be used in drivers that need to check that a clock can be
2847 * the parent of another without actually changing the parent.
2848 *
2849 * Returns true if @parent is a possible parent for @clk, false otherwise.
2850 */
2851bool clk_has_parent(const struct clk *clk, const struct clk *parent)
2852{
2853	/* NULL clocks should be nops, so return success if either is NULL. */
2854	if (!clk || !parent)
2855		return true;
2856
2857	return clk_core_has_parent(clk->core, parent->core);
2858}
2859EXPORT_SYMBOL_GPL(clk_has_parent);
2860
2861static int clk_core_set_parent_nolock(struct clk_core *core,
2862				      struct clk_core *parent)
2863{
2864	int ret = 0;
2865	int p_index = 0;
2866	unsigned long p_rate = 0;
2867
2868	lockdep_assert_held(&prepare_lock);
2869
2870	if (!core)
2871		return 0;
2872
2873	if (core->parent == parent)
2874		return 0;
2875
2876	/* verify ops for multi-parent clks */
2877	if (core->num_parents > 1 && !core->ops->set_parent)
2878		return -EPERM;
2879
2880	/* check that we are allowed to re-parent if the clock is in use */
2881	if ((core->flags & CLK_SET_PARENT_GATE) && core->prepare_count)
2882		return -EBUSY;
2883
2884	if (clk_core_rate_is_protected(core))
2885		return -EBUSY;
2886
2887	/* try finding the new parent index */
2888	if (parent) {
2889		p_index = clk_fetch_parent_index(core, parent);
2890		if (p_index < 0) {
2891			pr_debug("%s: clk %s can not be parent of clk %s\n",
2892					__func__, parent->name, core->name);
2893			return p_index;
2894		}
2895		p_rate = parent->rate;
2896	}
2897
2898	ret = clk_pm_runtime_get(core);
2899	if (ret)
2900		return ret;
 
 
 
2901
2902	/* propagate PRE_RATE_CHANGE notifications */
2903	ret = __clk_speculate_rates(core, p_rate);
 
 
 
2904
2905	/* abort if a driver objects */
2906	if (ret & NOTIFY_STOP_MASK)
2907		goto runtime_put;
2908
2909	/* do the re-parent */
2910	ret = __clk_set_parent(core, parent, p_index);
 
 
2911
2912	/* propagate rate an accuracy recalculation accordingly */
2913	if (ret) {
2914		__clk_recalc_rates(core, true, ABORT_RATE_CHANGE);
2915	} else {
2916		__clk_recalc_rates(core, true, POST_RATE_CHANGE);
2917		__clk_recalc_accuracies(core);
2918	}
2919
2920runtime_put:
2921	clk_pm_runtime_put(core);
2922
 
2923	return ret;
2924}
2925
2926int clk_hw_set_parent(struct clk_hw *hw, struct clk_hw *parent)
2927{
2928	return clk_core_set_parent_nolock(hw->core, parent->core);
2929}
2930EXPORT_SYMBOL_GPL(clk_hw_set_parent);
 
2931
2932/**
2933 * clk_set_parent - switch the parent of a mux clk
2934 * @clk: the mux clk whose input we are switching
2935 * @parent: the new input to clk
2936 *
2937 * Re-parent clk to use parent as its new input source.  If clk is in
2938 * prepared state, the clk will get enabled for the duration of this call. If
2939 * that's not acceptable for a specific clk (Eg: the consumer can't handle
2940 * that, the reparenting is glitchy in hardware, etc), use the
2941 * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared.
2942 *
2943 * After successfully changing clk's parent clk_set_parent will update the
2944 * clk topology, sysfs topology and propagate rate recalculation via
2945 * __clk_recalc_rates.
2946 *
2947 * Returns 0 on success, -EERROR otherwise.
2948 */
2949int clk_set_parent(struct clk *clk, struct clk *parent)
2950{
2951	int ret;
2952
2953	if (!clk)
2954		return 0;
2955
2956	clk_prepare_lock();
 
 
 
2957
2958	if (clk->exclusive_count)
2959		clk_core_rate_unprotect(clk->core);
 
2960
2961	ret = clk_core_set_parent_nolock(clk->core,
2962					 parent ? parent->core : NULL);
 
 
2963
2964	if (clk->exclusive_count)
2965		clk_core_rate_protect(clk->core);
 
 
 
 
 
 
 
2966
2967	clk_prepare_unlock();
2968
2969	return ret;
2970}
2971EXPORT_SYMBOL_GPL(clk_set_parent);
2972
2973static int clk_core_set_phase_nolock(struct clk_core *core, int degrees)
2974{
 
 
2975	int ret = -EINVAL;
 
2976
2977	lockdep_assert_held(&prepare_lock);
2978
2979	if (!core)
2980		return 0;
 
2981
2982	if (clk_core_rate_is_protected(core))
2983		return -EBUSY;
 
 
 
 
 
 
 
 
 
 
 
 
2984
2985	trace_clk_set_phase(core, degrees);
2986
2987	if (core->ops->set_phase) {
2988		ret = core->ops->set_phase(core->hw, degrees);
2989		if (!ret)
2990			core->phase = degrees;
2991	}
2992
2993	trace_clk_set_phase_complete(core, degrees);
 
 
 
 
 
 
 
 
2994
2995	return ret;
2996}
2997
2998/**
2999 * clk_set_phase - adjust the phase shift of a clock signal
3000 * @clk: clock signal source
3001 * @degrees: number of degrees the signal is shifted
3002 *
3003 * Shifts the phase of a clock signal by the specified
3004 * degrees. Returns 0 on success, -EERROR otherwise.
3005 *
3006 * This function makes no distinction about the input or reference
3007 * signal that we adjust the clock signal phase against. For example
3008 * phase locked-loop clock signal generators we may shift phase with
3009 * respect to feedback clock signal input, but for other cases the
3010 * clock phase may be shifted with respect to some other, unspecified
3011 * signal.
3012 *
3013 * Additionally the concept of phase shift does not propagate through
3014 * the clock tree hierarchy, which sets it apart from clock rates and
3015 * clock accuracy. A parent clock phase attribute does not have an
3016 * impact on the phase attribute of a child clock.
3017 */
3018int clk_set_phase(struct clk *clk, int degrees)
3019{
3020	int ret;
3021
3022	if (!clk)
3023		return 0;
3024
3025	/* sanity check degrees */
3026	degrees %= 360;
3027	if (degrees < 0)
3028		degrees += 360;
3029
3030	clk_prepare_lock();
3031
3032	if (clk->exclusive_count)
3033		clk_core_rate_unprotect(clk->core);
3034
3035	ret = clk_core_set_phase_nolock(clk->core, degrees);
3036
3037	if (clk->exclusive_count)
3038		clk_core_rate_protect(clk->core);
3039
3040	clk_prepare_unlock();
3041
3042	return ret;
3043}
3044EXPORT_SYMBOL_GPL(clk_set_phase);
3045
3046static int clk_core_get_phase(struct clk_core *core)
3047{
3048	int ret;
3049
3050	lockdep_assert_held(&prepare_lock);
3051	if (!core->ops->get_phase)
3052		return 0;
3053
3054	/* Always try to update cached phase if possible */
3055	ret = core->ops->get_phase(core->hw);
3056	if (ret >= 0)
3057		core->phase = ret;
3058
 
3059	return ret;
3060}
3061
3062/**
3063 * clk_get_phase - return the phase shift of a clock signal
3064 * @clk: clock signal source
 
3065 *
3066 * Returns the phase shift of a clock node in degrees, otherwise returns
3067 * -EERROR.
 
 
 
 
3068 */
3069int clk_get_phase(struct clk *clk)
3070{
3071	int ret;
3072
3073	if (!clk)
3074		return 0;
3075
3076	clk_prepare_lock();
3077	ret = clk_core_get_phase(clk->core);
3078	clk_prepare_unlock();
3079
3080	return ret;
3081}
3082EXPORT_SYMBOL_GPL(clk_get_phase);
3083
3084static void clk_core_reset_duty_cycle_nolock(struct clk_core *core)
3085{
3086	/* Assume a default value of 50% */
3087	core->duty.num = 1;
3088	core->duty.den = 2;
3089}
3090
3091static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core);
3092
3093static int clk_core_update_duty_cycle_nolock(struct clk_core *core)
3094{
3095	struct clk_duty *duty = &core->duty;
3096	int ret = 0;
3097
3098	if (!core->ops->get_duty_cycle)
3099		return clk_core_update_duty_cycle_parent_nolock(core);
3100
3101	ret = core->ops->get_duty_cycle(core->hw, duty);
3102	if (ret)
3103		goto reset;
3104
3105	/* Don't trust the clock provider too much */
3106	if (duty->den == 0 || duty->num > duty->den) {
3107		ret = -EINVAL;
3108		goto reset;
3109	}
3110
3111	return 0;
3112
3113reset:
3114	clk_core_reset_duty_cycle_nolock(core);
3115	return ret;
3116}
3117
3118static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core)
3119{
3120	int ret = 0;
3121
3122	if (core->parent &&
3123	    core->flags & CLK_DUTY_CYCLE_PARENT) {
3124		ret = clk_core_update_duty_cycle_nolock(core->parent);
3125		memcpy(&core->duty, &core->parent->duty, sizeof(core->duty));
3126	} else {
3127		clk_core_reset_duty_cycle_nolock(core);
3128	}
3129
3130	return ret;
3131}
3132
3133static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core,
3134						 struct clk_duty *duty);
3135
3136static int clk_core_set_duty_cycle_nolock(struct clk_core *core,
3137					  struct clk_duty *duty)
3138{
3139	int ret;
3140
3141	lockdep_assert_held(&prepare_lock);
3142
3143	if (clk_core_rate_is_protected(core))
3144		return -EBUSY;
3145
3146	trace_clk_set_duty_cycle(core, duty);
3147
3148	if (!core->ops->set_duty_cycle)
3149		return clk_core_set_duty_cycle_parent_nolock(core, duty);
3150
3151	ret = core->ops->set_duty_cycle(core->hw, duty);
3152	if (!ret)
3153		memcpy(&core->duty, duty, sizeof(*duty));
3154
3155	trace_clk_set_duty_cycle_complete(core, duty);
3156
3157	return ret;
3158}
3159
3160static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core,
3161						 struct clk_duty *duty)
3162{
3163	int ret = 0;
3164
3165	if (core->parent &&
3166	    core->flags & (CLK_DUTY_CYCLE_PARENT | CLK_SET_RATE_PARENT)) {
3167		ret = clk_core_set_duty_cycle_nolock(core->parent, duty);
3168		memcpy(&core->duty, &core->parent->duty, sizeof(core->duty));
3169	}
3170
3171	return ret;
3172}
3173
3174/**
3175 * clk_set_duty_cycle - adjust the duty cycle ratio of a clock signal
3176 * @clk: clock signal source
3177 * @num: numerator of the duty cycle ratio to be applied
3178 * @den: denominator of the duty cycle ratio to be applied
3179 *
3180 * Apply the duty cycle ratio if the ratio is valid and the clock can
3181 * perform this operation
3182 *
3183 * Returns (0) on success, a negative errno otherwise.
3184 */
3185int clk_set_duty_cycle(struct clk *clk, unsigned int num, unsigned int den)
3186{
3187	int ret;
3188	struct clk_duty duty;
3189
3190	if (!clk)
3191		return 0;
3192
3193	/* sanity check the ratio */
3194	if (den == 0 || num > den)
3195		return -EINVAL;
3196
3197	duty.num = num;
3198	duty.den = den;
3199
3200	clk_prepare_lock();
 
3201
3202	if (clk->exclusive_count)
3203		clk_core_rate_unprotect(clk->core);
3204
3205	ret = clk_core_set_duty_cycle_nolock(clk->core, &duty);
 
 
3206
3207	if (clk->exclusive_count)
3208		clk_core_rate_protect(clk->core);
 
3209
3210	clk_prepare_unlock();
3211
3212	return ret;
3213}
3214EXPORT_SYMBOL_GPL(clk_set_duty_cycle);
3215
3216static int clk_core_get_scaled_duty_cycle(struct clk_core *core,
3217					  unsigned int scale)
3218{
3219	struct clk_duty *duty = &core->duty;
3220	int ret;
3221
3222	clk_prepare_lock();
3223
3224	ret = clk_core_update_duty_cycle_nolock(core);
3225	if (!ret)
3226		ret = mult_frac(scale, duty->num, duty->den);
3227
3228	clk_prepare_unlock();
3229
3230	return ret;
3231}
3232
3233/**
3234 * clk_get_scaled_duty_cycle - return the duty cycle ratio of a clock signal
3235 * @clk: clock signal source
3236 * @scale: scaling factor to be applied to represent the ratio as an integer
3237 *
3238 * Returns the duty cycle ratio of a clock node multiplied by the provided
3239 * scaling factor, or negative errno on error.
3240 */
3241int clk_get_scaled_duty_cycle(struct clk *clk, unsigned int scale)
3242{
3243	if (!clk)
3244		return 0;
3245
3246	return clk_core_get_scaled_duty_cycle(clk->core, scale);
3247}
3248EXPORT_SYMBOL_GPL(clk_get_scaled_duty_cycle);
3249
3250/**
3251 * clk_is_match - check if two clk's point to the same hardware clock
3252 * @p: clk compared against q
3253 * @q: clk compared against p
3254 *
3255 * Returns true if the two struct clk pointers both point to the same hardware
3256 * clock node. Put differently, returns true if struct clk *p and struct clk *q
3257 * share the same struct clk_core object.
3258 *
3259 * Returns false otherwise. Note that two NULL clks are treated as matching.
3260 */
3261bool clk_is_match(const struct clk *p, const struct clk *q)
3262{
3263	/* trivial case: identical struct clk's or both NULL */
3264	if (p == q)
3265		return true;
3266
3267	/* true if clk->core pointers match. Avoid dereferencing garbage */
3268	if (!IS_ERR_OR_NULL(p) && !IS_ERR_OR_NULL(q))
3269		if (p->core == q->core)
3270			return true;
3271
3272	return false;
3273}
3274EXPORT_SYMBOL_GPL(clk_is_match);
3275
3276/***        debugfs support        ***/
3277
3278#ifdef CONFIG_DEBUG_FS
3279#include <linux/debugfs.h>
3280
3281static struct dentry *rootdir;
3282static int inited = 0;
3283static DEFINE_MUTEX(clk_debug_lock);
3284static HLIST_HEAD(clk_debug_list);
3285
3286static struct hlist_head *orphan_list[] = {
3287	&clk_orphan_list,
3288	NULL,
3289};
3290
3291static void clk_summary_show_one(struct seq_file *s, struct clk_core *c,
3292				 int level)
3293{
3294	int phase;
3295	struct clk *clk_user;
3296	int multi_node = 0;
3297
3298	seq_printf(s, "%*s%-*s %-7d %-8d %-8d %-11lu %-10lu ",
3299		   level * 3 + 1, "",
3300		   35 - level * 3, c->name,
3301		   c->enable_count, c->prepare_count, c->protect_count,
3302		   clk_core_get_rate_recalc(c),
3303		   clk_core_get_accuracy_recalc(c));
3304
3305	phase = clk_core_get_phase(c);
3306	if (phase >= 0)
3307		seq_printf(s, "%-5d", phase);
3308	else
3309		seq_puts(s, "-----");
3310
3311	seq_printf(s, " %-6d", clk_core_get_scaled_duty_cycle(c, 100000));
3312
3313	if (c->ops->is_enabled)
3314		seq_printf(s, " %5c ", clk_core_is_enabled(c) ? 'Y' : 'N');
3315	else if (!c->ops->enable)
3316		seq_printf(s, " %5c ", 'Y');
3317	else
3318		seq_printf(s, " %5c ", '?');
3319
3320	hlist_for_each_entry(clk_user, &c->clks, clks_node) {
3321		seq_printf(s, "%*s%-*s  %-25s\n",
3322			   level * 3 + 2 + 105 * multi_node, "",
3323			   30,
3324			   clk_user->dev_id ? clk_user->dev_id : "deviceless",
3325			   clk_user->con_id ? clk_user->con_id : "no_connection_id");
3326
3327		multi_node = 1;
3328	}
3329
3330}
 
3331
3332static void clk_summary_show_subtree(struct seq_file *s, struct clk_core *c,
3333				     int level)
3334{
3335	struct clk_core *child;
3336
3337	clk_summary_show_one(s, c, level);
3338
3339	hlist_for_each_entry(child, &c->children, child_node)
3340		clk_summary_show_subtree(s, child, level + 1);
3341}
3342
3343static int clk_summary_show(struct seq_file *s, void *data)
3344{
3345	struct clk_core *c;
3346	struct hlist_head **lists = s->private;
3347	int ret;
3348
3349	seq_puts(s, "                                 enable  prepare  protect                                duty  hardware                            connection\n");
3350	seq_puts(s, "   clock                          count    count    count        rate   accuracy phase  cycle    enable   consumer                         id\n");
3351	seq_puts(s, "---------------------------------------------------------------------------------------------------------------------------------------------\n");
3352
3353	ret = clk_pm_runtime_get_all();
3354	if (ret)
3355		return ret;
3356
3357	clk_prepare_lock();
3358
3359	for (; *lists; lists++)
3360		hlist_for_each_entry(c, *lists, child_node)
3361			clk_summary_show_subtree(s, c, 0);
3362
3363	clk_prepare_unlock();
3364	clk_pm_runtime_put_all();
3365
3366	return 0;
3367}
3368DEFINE_SHOW_ATTRIBUTE(clk_summary);
3369
3370static void clk_dump_one(struct seq_file *s, struct clk_core *c, int level)
3371{
3372	int phase;
3373	unsigned long min_rate, max_rate;
3374
3375	clk_core_get_boundaries(c, &min_rate, &max_rate);
3376
3377	/* This should be JSON format, i.e. elements separated with a comma */
3378	seq_printf(s, "\"%s\": { ", c->name);
3379	seq_printf(s, "\"enable_count\": %d,", c->enable_count);
3380	seq_printf(s, "\"prepare_count\": %d,", c->prepare_count);
3381	seq_printf(s, "\"protect_count\": %d,", c->protect_count);
3382	seq_printf(s, "\"rate\": %lu,", clk_core_get_rate_recalc(c));
3383	seq_printf(s, "\"min_rate\": %lu,", min_rate);
3384	seq_printf(s, "\"max_rate\": %lu,", max_rate);
3385	seq_printf(s, "\"accuracy\": %lu,", clk_core_get_accuracy_recalc(c));
3386	phase = clk_core_get_phase(c);
3387	if (phase >= 0)
3388		seq_printf(s, "\"phase\": %d,", phase);
3389	seq_printf(s, "\"duty_cycle\": %u",
3390		   clk_core_get_scaled_duty_cycle(c, 100000));
3391}
3392
3393static void clk_dump_subtree(struct seq_file *s, struct clk_core *c, int level)
3394{
3395	struct clk_core *child;
3396
3397	clk_dump_one(s, c, level);
3398
3399	hlist_for_each_entry(child, &c->children, child_node) {
3400		seq_putc(s, ',');
3401		clk_dump_subtree(s, child, level + 1);
3402	}
3403
3404	seq_putc(s, '}');
3405}
3406
3407static int clk_dump_show(struct seq_file *s, void *data)
3408{
3409	struct clk_core *c;
3410	bool first_node = true;
3411	struct hlist_head **lists = s->private;
3412	int ret;
3413
3414	ret = clk_pm_runtime_get_all();
3415	if (ret)
3416		return ret;
3417
3418	seq_putc(s, '{');
3419
3420	clk_prepare_lock();
3421
3422	for (; *lists; lists++) {
3423		hlist_for_each_entry(c, *lists, child_node) {
3424			if (!first_node)
3425				seq_putc(s, ',');
3426			first_node = false;
3427			clk_dump_subtree(s, c, 0);
3428		}
3429	}
3430
3431	clk_prepare_unlock();
3432	clk_pm_runtime_put_all();
3433
3434	seq_puts(s, "}\n");
3435	return 0;
3436}
3437DEFINE_SHOW_ATTRIBUTE(clk_dump);
3438
3439#undef CLOCK_ALLOW_WRITE_DEBUGFS
3440#ifdef CLOCK_ALLOW_WRITE_DEBUGFS
3441/*
3442 * This can be dangerous, therefore don't provide any real compile time
3443 * configuration option for this feature.
3444 * People who want to use this will need to modify the source code directly.
3445 */
3446static int clk_rate_set(void *data, u64 val)
3447{
3448	struct clk_core *core = data;
3449	int ret;
3450
3451	clk_prepare_lock();
3452	ret = clk_core_set_rate_nolock(core, val);
3453	clk_prepare_unlock();
3454
3455	return ret;
3456}
3457
3458#define clk_rate_mode	0644
3459
3460static int clk_phase_set(void *data, u64 val)
3461{
3462	struct clk_core *core = data;
3463	int degrees = do_div(val, 360);
3464	int ret;
3465
3466	clk_prepare_lock();
3467	ret = clk_core_set_phase_nolock(core, degrees);
3468	clk_prepare_unlock();
3469
3470	return ret;
3471}
3472
3473#define clk_phase_mode	0644
3474
3475static int clk_prepare_enable_set(void *data, u64 val)
3476{
3477	struct clk_core *core = data;
3478	int ret = 0;
3479
3480	if (val)
3481		ret = clk_prepare_enable(core->hw->clk);
3482	else
3483		clk_disable_unprepare(core->hw->clk);
3484
3485	return ret;
3486}
3487
3488static int clk_prepare_enable_get(void *data, u64 *val)
3489{
3490	struct clk_core *core = data;
3491
3492	*val = core->enable_count && core->prepare_count;
3493	return 0;
3494}
3495
3496DEFINE_DEBUGFS_ATTRIBUTE(clk_prepare_enable_fops, clk_prepare_enable_get,
3497			 clk_prepare_enable_set, "%llu\n");
3498
3499#else
3500#define clk_rate_set	NULL
3501#define clk_rate_mode	0444
3502
3503#define clk_phase_set	NULL
3504#define clk_phase_mode	0644
3505#endif
3506
3507static int clk_rate_get(void *data, u64 *val)
3508{
3509	struct clk_core *core = data;
3510
3511	clk_prepare_lock();
3512	*val = clk_core_get_rate_recalc(core);
3513	clk_prepare_unlock();
3514
3515	return 0;
3516}
3517
3518DEFINE_DEBUGFS_ATTRIBUTE(clk_rate_fops, clk_rate_get, clk_rate_set, "%llu\n");
3519
3520static int clk_phase_get(void *data, u64 *val)
3521{
3522	struct clk_core *core = data;
3523
3524	*val = core->phase;
3525	return 0;
3526}
3527
3528DEFINE_DEBUGFS_ATTRIBUTE(clk_phase_fops, clk_phase_get, clk_phase_set, "%llu\n");
3529
3530static const struct {
3531	unsigned long flag;
3532	const char *name;
3533} clk_flags[] = {
3534#define ENTRY(f) { f, #f }
3535	ENTRY(CLK_SET_RATE_GATE),
3536	ENTRY(CLK_SET_PARENT_GATE),
3537	ENTRY(CLK_SET_RATE_PARENT),
3538	ENTRY(CLK_IGNORE_UNUSED),
3539	ENTRY(CLK_GET_RATE_NOCACHE),
3540	ENTRY(CLK_SET_RATE_NO_REPARENT),
3541	ENTRY(CLK_GET_ACCURACY_NOCACHE),
3542	ENTRY(CLK_RECALC_NEW_RATES),
3543	ENTRY(CLK_SET_RATE_UNGATE),
3544	ENTRY(CLK_IS_CRITICAL),
3545	ENTRY(CLK_OPS_PARENT_ENABLE),
3546	ENTRY(CLK_DUTY_CYCLE_PARENT),
3547#undef ENTRY
3548};
3549
3550static int clk_flags_show(struct seq_file *s, void *data)
3551{
3552	struct clk_core *core = s->private;
3553	unsigned long flags = core->flags;
3554	unsigned int i;
3555
3556	for (i = 0; flags && i < ARRAY_SIZE(clk_flags); i++) {
3557		if (flags & clk_flags[i].flag) {
3558			seq_printf(s, "%s\n", clk_flags[i].name);
3559			flags &= ~clk_flags[i].flag;
3560		}
3561	}
3562	if (flags) {
3563		/* Unknown flags */
3564		seq_printf(s, "0x%lx\n", flags);
3565	}
3566
3567	return 0;
3568}
3569DEFINE_SHOW_ATTRIBUTE(clk_flags);
3570
3571static void possible_parent_show(struct seq_file *s, struct clk_core *core,
3572				 unsigned int i, char terminator)
3573{
3574	struct clk_core *parent;
3575	const char *name = NULL;
3576
3577	/*
3578	 * Go through the following options to fetch a parent's name.
3579	 *
3580	 * 1. Fetch the registered parent clock and use its name
3581	 * 2. Use the global (fallback) name if specified
3582	 * 3. Use the local fw_name if provided
3583	 * 4. Fetch parent clock's clock-output-name if DT index was set
3584	 *
3585	 * This may still fail in some cases, such as when the parent is
3586	 * specified directly via a struct clk_hw pointer, but it isn't
3587	 * registered (yet).
3588	 */
3589	parent = clk_core_get_parent_by_index(core, i);
3590	if (parent) {
3591		seq_puts(s, parent->name);
3592	} else if (core->parents[i].name) {
3593		seq_puts(s, core->parents[i].name);
3594	} else if (core->parents[i].fw_name) {
3595		seq_printf(s, "<%s>(fw)", core->parents[i].fw_name);
3596	} else {
3597		if (core->parents[i].index >= 0)
3598			name = of_clk_get_parent_name(core->of_node, core->parents[i].index);
3599		if (!name)
3600			name = "(missing)";
3601
3602		seq_puts(s, name);
3603	}
3604
3605	seq_putc(s, terminator);
3606}
3607
3608static int possible_parents_show(struct seq_file *s, void *data)
3609{
3610	struct clk_core *core = s->private;
3611	int i;
3612
3613	for (i = 0; i < core->num_parents - 1; i++)
3614		possible_parent_show(s, core, i, ' ');
3615
3616	possible_parent_show(s, core, i, '\n');
3617
3618	return 0;
3619}
3620DEFINE_SHOW_ATTRIBUTE(possible_parents);
3621
3622static int current_parent_show(struct seq_file *s, void *data)
3623{
3624	struct clk_core *core = s->private;
3625
3626	if (core->parent)
3627		seq_printf(s, "%s\n", core->parent->name);
3628
3629	return 0;
3630}
3631DEFINE_SHOW_ATTRIBUTE(current_parent);
3632
3633#ifdef CLOCK_ALLOW_WRITE_DEBUGFS
3634static ssize_t current_parent_write(struct file *file, const char __user *ubuf,
3635				    size_t count, loff_t *ppos)
3636{
3637	struct seq_file *s = file->private_data;
3638	struct clk_core *core = s->private;
3639	struct clk_core *parent;
3640	u8 idx;
3641	int err;
3642
3643	err = kstrtou8_from_user(ubuf, count, 0, &idx);
3644	if (err < 0)
3645		return err;
3646
3647	parent = clk_core_get_parent_by_index(core, idx);
3648	if (!parent)
3649		return -ENOENT;
3650
3651	clk_prepare_lock();
3652	err = clk_core_set_parent_nolock(core, parent);
3653	clk_prepare_unlock();
3654	if (err)
3655		return err;
3656
3657	return count;
3658}
3659
3660static const struct file_operations current_parent_rw_fops = {
3661	.open		= current_parent_open,
3662	.write		= current_parent_write,
3663	.read		= seq_read,
3664	.llseek		= seq_lseek,
3665	.release	= single_release,
3666};
3667#endif
3668
3669static int clk_duty_cycle_show(struct seq_file *s, void *data)
3670{
3671	struct clk_core *core = s->private;
3672	struct clk_duty *duty = &core->duty;
3673
3674	seq_printf(s, "%u/%u\n", duty->num, duty->den);
3675
3676	return 0;
3677}
3678DEFINE_SHOW_ATTRIBUTE(clk_duty_cycle);
3679
3680static int clk_min_rate_show(struct seq_file *s, void *data)
3681{
3682	struct clk_core *core = s->private;
3683	unsigned long min_rate, max_rate;
3684
3685	clk_prepare_lock();
3686	clk_core_get_boundaries(core, &min_rate, &max_rate);
3687	clk_prepare_unlock();
3688	seq_printf(s, "%lu\n", min_rate);
3689
3690	return 0;
3691}
3692DEFINE_SHOW_ATTRIBUTE(clk_min_rate);
3693
3694static int clk_max_rate_show(struct seq_file *s, void *data)
3695{
3696	struct clk_core *core = s->private;
3697	unsigned long min_rate, max_rate;
3698
3699	clk_prepare_lock();
3700	clk_core_get_boundaries(core, &min_rate, &max_rate);
3701	clk_prepare_unlock();
3702	seq_printf(s, "%lu\n", max_rate);
3703
3704	return 0;
3705}
3706DEFINE_SHOW_ATTRIBUTE(clk_max_rate);
3707
3708static void clk_debug_create_one(struct clk_core *core, struct dentry *pdentry)
3709{
3710	struct dentry *root;
3711
3712	if (!core || !pdentry)
3713		return;
3714
3715	root = debugfs_create_dir(core->name, pdentry);
3716	core->dentry = root;
3717
3718	debugfs_create_file("clk_rate", clk_rate_mode, root, core,
3719			    &clk_rate_fops);
3720	debugfs_create_file("clk_min_rate", 0444, root, core, &clk_min_rate_fops);
3721	debugfs_create_file("clk_max_rate", 0444, root, core, &clk_max_rate_fops);
3722	debugfs_create_ulong("clk_accuracy", 0444, root, &core->accuracy);
3723	debugfs_create_file("clk_phase", clk_phase_mode, root, core,
3724			    &clk_phase_fops);
3725	debugfs_create_file("clk_flags", 0444, root, core, &clk_flags_fops);
3726	debugfs_create_u32("clk_prepare_count", 0444, root, &core->prepare_count);
3727	debugfs_create_u32("clk_enable_count", 0444, root, &core->enable_count);
3728	debugfs_create_u32("clk_protect_count", 0444, root, &core->protect_count);
3729	debugfs_create_u32("clk_notifier_count", 0444, root, &core->notifier_count);
3730	debugfs_create_file("clk_duty_cycle", 0444, root, core,
3731			    &clk_duty_cycle_fops);
3732#ifdef CLOCK_ALLOW_WRITE_DEBUGFS
3733	debugfs_create_file("clk_prepare_enable", 0644, root, core,
3734			    &clk_prepare_enable_fops);
3735
3736	if (core->num_parents > 1)
3737		debugfs_create_file("clk_parent", 0644, root, core,
3738				    &current_parent_rw_fops);
3739	else
3740#endif
3741	if (core->num_parents > 0)
3742		debugfs_create_file("clk_parent", 0444, root, core,
3743				    &current_parent_fops);
3744
3745	if (core->num_parents > 1)
3746		debugfs_create_file("clk_possible_parents", 0444, root, core,
3747				    &possible_parents_fops);
3748
3749	if (core->ops->debug_init)
3750		core->ops->debug_init(core->hw, core->dentry);
3751}
3752
3753/**
3754 * clk_debug_register - add a clk node to the debugfs clk directory
3755 * @core: the clk being added to the debugfs clk directory
 
3756 *
3757 * Dynamically adds a clk to the debugfs clk directory if debugfs has been
3758 * initialized.  Otherwise it bails out early since the debugfs clk directory
3759 * will be created lazily by clk_debug_init as part of a late_initcall.
3760 */
3761static void clk_debug_register(struct clk_core *core)
3762{
3763	mutex_lock(&clk_debug_lock);
3764	hlist_add_head(&core->debug_node, &clk_debug_list);
3765	if (inited)
3766		clk_debug_create_one(core, rootdir);
3767	mutex_unlock(&clk_debug_lock);
3768}
3769
3770 /**
3771 * clk_debug_unregister - remove a clk node from the debugfs clk directory
3772 * @core: the clk being removed from the debugfs clk directory
3773 *
3774 * Dynamically removes a clk and all its child nodes from the
3775 * debugfs clk directory if clk->dentry points to debugfs created by
3776 * clk_debug_register in __clk_core_init.
3777 */
3778static void clk_debug_unregister(struct clk_core *core)
3779{
3780	mutex_lock(&clk_debug_lock);
3781	hlist_del_init(&core->debug_node);
3782	debugfs_remove_recursive(core->dentry);
3783	core->dentry = NULL;
3784	mutex_unlock(&clk_debug_lock);
3785}
3786
3787/**
3788 * clk_debug_init - lazily populate the debugfs clk directory
3789 *
3790 * clks are often initialized very early during boot before memory can be
3791 * dynamically allocated and well before debugfs is setup. This function
3792 * populates the debugfs clk directory once at boot-time when we know that
3793 * debugfs is setup. It should only be called once at boot-time, all other clks
3794 * added dynamically will be done so with clk_debug_register.
3795 */
3796static int __init clk_debug_init(void)
3797{
3798	struct clk_core *core;
3799
3800#ifdef CLOCK_ALLOW_WRITE_DEBUGFS
3801	pr_warn("\n");
3802	pr_warn("********************************************************************\n");
3803	pr_warn("**     NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE           **\n");
3804	pr_warn("**                                                                **\n");
3805	pr_warn("**  WRITEABLE clk DebugFS SUPPORT HAS BEEN ENABLED IN THIS KERNEL **\n");
3806	pr_warn("**                                                                **\n");
3807	pr_warn("** This means that this kernel is built to expose clk operations  **\n");
3808	pr_warn("** such as parent or rate setting, enabling, disabling, etc.      **\n");
3809	pr_warn("** to userspace, which may compromise security on your system.    **\n");
3810	pr_warn("**                                                                **\n");
3811	pr_warn("** If you see this message and you are not debugging the          **\n");
3812	pr_warn("** kernel, report this immediately to your vendor!                **\n");
3813	pr_warn("**                                                                **\n");
3814	pr_warn("**     NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE           **\n");
3815	pr_warn("********************************************************************\n");
3816#endif
3817
3818	rootdir = debugfs_create_dir("clk", NULL);
3819
3820	debugfs_create_file("clk_summary", 0444, rootdir, &all_lists,
3821			    &clk_summary_fops);
3822	debugfs_create_file("clk_dump", 0444, rootdir, &all_lists,
3823			    &clk_dump_fops);
3824	debugfs_create_file("clk_orphan_summary", 0444, rootdir, &orphan_list,
3825			    &clk_summary_fops);
3826	debugfs_create_file("clk_orphan_dump", 0444, rootdir, &orphan_list,
3827			    &clk_dump_fops);
3828
3829	mutex_lock(&clk_debug_lock);
3830	hlist_for_each_entry(core, &clk_debug_list, debug_node)
3831		clk_debug_create_one(core, rootdir);
3832
3833	inited = 1;
3834	mutex_unlock(&clk_debug_lock);
3835
3836	return 0;
3837}
3838late_initcall(clk_debug_init);
3839#else
3840static inline void clk_debug_register(struct clk_core *core) { }
3841static inline void clk_debug_unregister(struct clk_core *core)
3842{
3843}
3844#endif
3845
3846static void clk_core_reparent_orphans_nolock(void)
3847{
3848	struct clk_core *orphan;
3849	struct hlist_node *tmp2;
3850
3851	/*
3852	 * walk the list of orphan clocks and reparent any that newly finds a
3853	 * parent.
3854	 */
3855	hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) {
3856		struct clk_core *parent = __clk_init_parent(orphan);
3857
3858		/*
3859		 * We need to use __clk_set_parent_before() and _after() to
3860		 * properly migrate any prepare/enable count of the orphan
3861		 * clock. This is important for CLK_IS_CRITICAL clocks, which
3862		 * are enabled during init but might not have a parent yet.
3863		 */
3864		if (parent) {
3865			/* update the clk tree topology */
3866			__clk_set_parent_before(orphan, parent);
3867			__clk_set_parent_after(orphan, parent, NULL);
3868			__clk_recalc_accuracies(orphan);
3869			__clk_recalc_rates(orphan, true, 0);
3870
3871			/*
3872			 * __clk_init_parent() will set the initial req_rate to
3873			 * 0 if the clock doesn't have clk_ops::recalc_rate and
3874			 * is an orphan when it's registered.
3875			 *
3876			 * 'req_rate' is used by clk_set_rate_range() and
3877			 * clk_put() to trigger a clk_set_rate() call whenever
3878			 * the boundaries are modified. Let's make sure
3879			 * 'req_rate' is set to something non-zero so that
3880			 * clk_set_rate_range() doesn't drop the frequency.
3881			 */
3882			orphan->req_rate = orphan->rate;
3883		}
3884	}
3885}
3886
3887/**
3888 * __clk_core_init - initialize the data structures in a struct clk_core
3889 * @core:	clk_core being initialized
3890 *
3891 * Initializes the lists in struct clk_core, queries the hardware for the
3892 * parent and rate and sets them both.
3893 */
3894static int __clk_core_init(struct clk_core *core)
3895{
3896	int ret;
3897	struct clk_core *parent;
3898	unsigned long rate;
3899	int phase;
3900
3901	clk_prepare_lock();
3902
3903	/*
3904	 * Set hw->core after grabbing the prepare_lock to synchronize with
3905	 * callers of clk_core_fill_parent_index() where we treat hw->core
3906	 * being NULL as the clk not being registered yet. This is crucial so
3907	 * that clks aren't parented until their parent is fully registered.
3908	 */
3909	core->hw->core = core;
3910
3911	ret = clk_pm_runtime_get(core);
3912	if (ret)
3913		goto unlock;
3914
3915	/* check to see if a clock with this name is already registered */
3916	if (clk_core_lookup(core->name)) {
3917		pr_debug("%s: clk %s already initialized\n",
3918				__func__, core->name);
3919		ret = -EEXIST;
3920		goto out;
3921	}
3922
3923	/* check that clk_ops are sane.  See Documentation/driver-api/clk.rst */
3924	if (core->ops->set_rate &&
3925	    !((core->ops->round_rate || core->ops->determine_rate) &&
3926	      core->ops->recalc_rate)) {
3927		pr_err("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n",
3928		       __func__, core->name);
3929		ret = -EINVAL;
3930		goto out;
3931	}
3932
3933	if (core->ops->set_parent && !core->ops->get_parent) {
3934		pr_err("%s: %s must implement .get_parent & .set_parent\n",
3935		       __func__, core->name);
3936		ret = -EINVAL;
3937		goto out;
3938	}
3939
3940	if (core->ops->set_parent && !core->ops->determine_rate) {
3941		pr_err("%s: %s must implement .set_parent & .determine_rate\n",
3942			__func__, core->name);
3943		ret = -EINVAL;
3944		goto out;
3945	}
3946
3947	if (core->num_parents > 1 && !core->ops->get_parent) {
3948		pr_err("%s: %s must implement .get_parent as it has multi parents\n",
3949		       __func__, core->name);
3950		ret = -EINVAL;
3951		goto out;
3952	}
3953
3954	if (core->ops->set_rate_and_parent &&
3955			!(core->ops->set_parent && core->ops->set_rate)) {
3956		pr_err("%s: %s must implement .set_parent & .set_rate\n",
3957				__func__, core->name);
3958		ret = -EINVAL;
3959		goto out;
3960	}
3961
3962	/*
3963	 * optional platform-specific magic
 
 
 
 
3964	 *
3965	 * The .init callback is not used by any of the basic clock types, but
3966	 * exists for weird hardware that must perform initialization magic for
3967	 * CCF to get an accurate view of clock for any other callbacks. It may
3968	 * also be used needs to perform dynamic allocations. Such allocation
3969	 * must be freed in the terminate() callback.
3970	 * This callback shall not be used to initialize the parameters state,
3971	 * such as rate, parent, etc ...
3972	 *
3973	 * If it exist, this callback should called before any other callback of
3974	 * the clock
3975	 */
3976	if (core->ops->init) {
3977		ret = core->ops->init(core->hw);
3978		if (ret)
3979			goto out;
 
 
 
 
 
 
 
 
 
3980	}
3981
3982	parent = core->parent = __clk_init_parent(core);
3983
3984	/*
3985	 * Populate core->parent if parent has already been clk_core_init'd. If
3986	 * parent has not yet been clk_core_init'd then place clk in the orphan
3987	 * list.  If clk doesn't have any parents then place it in the root
3988	 * clk list.
3989	 *
3990	 * Every time a new clk is clk_init'd then we walk the list of orphan
3991	 * clocks and re-parent any that are children of the clock currently
3992	 * being clk_init'd.
3993	 */
3994	if (parent) {
3995		hlist_add_head(&core->child_node, &parent->children);
3996		core->orphan = parent->orphan;
3997	} else if (!core->num_parents) {
3998		hlist_add_head(&core->child_node, &clk_root_list);
3999		core->orphan = false;
4000	} else {
4001		hlist_add_head(&core->child_node, &clk_orphan_list);
4002		core->orphan = true;
4003	}
4004
4005	/*
4006	 * Set clk's accuracy.  The preferred method is to use
4007	 * .recalc_accuracy. For simple clocks and lazy developers the default
4008	 * fallback is to use the parent's accuracy.  If a clock doesn't have a
4009	 * parent (or is orphaned) then accuracy is set to zero (perfect
4010	 * clock).
4011	 */
4012	if (core->ops->recalc_accuracy)
4013		core->accuracy = core->ops->recalc_accuracy(core->hw,
4014					clk_core_get_accuracy_no_lock(parent));
4015	else if (parent)
4016		core->accuracy = parent->accuracy;
4017	else
4018		core->accuracy = 0;
4019
4020	/*
4021	 * Set clk's phase by clk_core_get_phase() caching the phase.
4022	 * Since a phase is by definition relative to its parent, just
4023	 * query the current clock phase, or just assume it's in phase.
4024	 */
4025	phase = clk_core_get_phase(core);
4026	if (phase < 0) {
4027		ret = phase;
4028		pr_warn("%s: Failed to get phase for clk '%s'\n", __func__,
4029			core->name);
4030		goto out;
4031	}
4032
4033	/*
4034	 * Set clk's duty cycle.
4035	 */
4036	clk_core_update_duty_cycle_nolock(core);
4037
4038	/*
4039	 * Set clk's rate.  The preferred method is to use .recalc_rate.  For
4040	 * simple clocks and lazy developers the default fallback is to use the
4041	 * parent's rate.  If a clock doesn't have a parent (or is orphaned)
4042	 * then rate is set to zero.
4043	 */
4044	if (core->ops->recalc_rate)
4045		rate = core->ops->recalc_rate(core->hw,
4046				clk_core_get_rate_nolock(parent));
4047	else if (parent)
4048		rate = parent->rate;
4049	else
4050		rate = 0;
4051	core->rate = core->req_rate = rate;
 
 
 
 
 
 
 
 
 
 
4052
4053	/*
4054	 * Enable CLK_IS_CRITICAL clocks so newly added critical clocks
4055	 * don't get accidentally disabled when walking the orphan tree and
4056	 * reparenting clocks
 
 
 
4057	 */
4058	if (core->flags & CLK_IS_CRITICAL) {
4059		ret = clk_core_prepare(core);
4060		if (ret) {
4061			pr_warn("%s: critical clk '%s' failed to prepare\n",
4062			       __func__, core->name);
4063			goto out;
4064		}
4065
4066		ret = clk_core_enable_lock(core);
4067		if (ret) {
4068			pr_warn("%s: critical clk '%s' failed to enable\n",
4069			       __func__, core->name);
4070			clk_core_unprepare(core);
4071			goto out;
4072		}
4073	}
4074
4075	clk_core_reparent_orphans_nolock();
4076out:
4077	clk_pm_runtime_put(core);
4078unlock:
4079	if (ret) {
4080		hlist_del_init(&core->child_node);
4081		core->hw->core = NULL;
4082	}
4083
4084	clk_prepare_unlock();
4085
4086	if (!ret)
4087		clk_debug_register(core);
4088
4089	return ret;
4090}
4091
4092/**
4093 * clk_core_link_consumer - Add a clk consumer to the list of consumers in a clk_core
4094 * @core: clk to add consumer to
4095 * @clk: consumer to link to a clk
4096 */
4097static void clk_core_link_consumer(struct clk_core *core, struct clk *clk)
4098{
4099	clk_prepare_lock();
4100	hlist_add_head(&clk->clks_node, &core->clks);
4101	clk_prepare_unlock();
4102}
4103
4104/**
4105 * clk_core_unlink_consumer - Remove a clk consumer from the list of consumers in a clk_core
4106 * @clk: consumer to unlink
4107 */
4108static void clk_core_unlink_consumer(struct clk *clk)
4109{
4110	lockdep_assert_held(&prepare_lock);
4111	hlist_del(&clk->clks_node);
4112}
4113
4114/**
4115 * alloc_clk - Allocate a clk consumer, but leave it unlinked to the clk_core
4116 * @core: clk to allocate a consumer for
4117 * @dev_id: string describing device name
4118 * @con_id: connection ID string on device
4119 *
4120 * Returns: clk consumer left unlinked from the consumer list
 
 
 
 
 
 
 
 
 
 
 
 
4121 */
4122static struct clk *alloc_clk(struct clk_core *core, const char *dev_id,
4123			     const char *con_id)
4124{
 
4125	struct clk *clk;
4126
4127	clk = kzalloc(sizeof(*clk), GFP_KERNEL);
4128	if (!clk)
4129		return ERR_PTR(-ENOMEM);
 
 
 
 
4130
4131	clk->core = core;
4132	clk->dev_id = dev_id;
4133	clk->con_id = kstrdup_const(con_id, GFP_KERNEL);
4134	clk->max_rate = ULONG_MAX;
4135
4136	return clk;
4137}
 
4138
4139/**
4140 * free_clk - Free a clk consumer
4141 * @clk: clk consumer to free
 
4142 *
4143 * Note, this assumes the clk has been unlinked from the clk_core consumer
4144 * list.
 
 
 
4145 */
4146static void free_clk(struct clk *clk)
4147{
4148	kfree_const(clk->con_id);
4149	kfree(clk);
4150}
4151
4152/**
4153 * clk_hw_create_clk: Allocate and link a clk consumer to a clk_core given
4154 * a clk_hw
4155 * @dev: clk consumer device
4156 * @hw: clk_hw associated with the clk being consumed
4157 * @dev_id: string describing device name
4158 * @con_id: connection ID string on device
4159 *
4160 * This is the main function used to create a clk pointer for use by clk
4161 * consumers. It connects a consumer to the clk_core and clk_hw structures
4162 * used by the framework and clk provider respectively.
4163 */
4164struct clk *clk_hw_create_clk(struct device *dev, struct clk_hw *hw,
4165			      const char *dev_id, const char *con_id)
4166{
 
4167	struct clk *clk;
4168	struct clk_core *core;
4169
4170	/* This is to allow this function to be chained to others */
4171	if (IS_ERR_OR_NULL(hw))
4172		return ERR_CAST(hw);
4173
4174	core = hw->core;
4175	clk = alloc_clk(core, dev_id, con_id);
4176	if (IS_ERR(clk))
4177		return clk;
4178	clk->dev = dev;
4179
4180	if (!try_module_get(core->owner)) {
4181		free_clk(clk);
4182		return ERR_PTR(-ENOENT);
4183	}
4184
4185	kref_get(&core->ref);
4186	clk_core_link_consumer(core, clk);
4187
4188	return clk;
4189}
4190
4191/**
4192 * clk_hw_get_clk - get clk consumer given an clk_hw
4193 * @hw: clk_hw associated with the clk being consumed
4194 * @con_id: connection ID string on device
4195 *
4196 * Returns: new clk consumer
4197 * This is the function to be used by providers which need
4198 * to get a consumer clk and act on the clock element
4199 * Calls to this function must be balanced with calls clk_put()
4200 */
4201struct clk *clk_hw_get_clk(struct clk_hw *hw, const char *con_id)
4202{
4203	struct device *dev = hw->core->dev;
4204	const char *name = dev ? dev_name(dev) : NULL;
4205
4206	return clk_hw_create_clk(dev, hw, name, con_id);
4207}
4208EXPORT_SYMBOL(clk_hw_get_clk);
4209
4210static int clk_cpy_name(const char **dst_p, const char *src, bool must_exist)
4211{
4212	const char *dst;
4213
4214	if (!src) {
4215		if (must_exist)
4216			return -EINVAL;
4217		return 0;
4218	}
4219
4220	*dst_p = dst = kstrdup_const(src, GFP_KERNEL);
4221	if (!dst)
4222		return -ENOMEM;
4223
4224	return 0;
4225}
4226
4227static int clk_core_populate_parent_map(struct clk_core *core,
4228					const struct clk_init_data *init)
4229{
4230	u8 num_parents = init->num_parents;
4231	const char * const *parent_names = init->parent_names;
4232	const struct clk_hw **parent_hws = init->parent_hws;
4233	const struct clk_parent_data *parent_data = init->parent_data;
4234	int i, ret = 0;
4235	struct clk_parent_map *parents, *parent;
4236
4237	if (!num_parents)
4238		return 0;
4239
4240	/*
4241	 * Avoid unnecessary string look-ups of clk_core's possible parents by
4242	 * having a cache of names/clk_hw pointers to clk_core pointers.
4243	 */
4244	parents = kcalloc(num_parents, sizeof(*parents), GFP_KERNEL);
4245	core->parents = parents;
4246	if (!parents)
4247		return -ENOMEM;
4248
4249	/* Copy everything over because it might be __initdata */
4250	for (i = 0, parent = parents; i < num_parents; i++, parent++) {
4251		parent->index = -1;
4252		if (parent_names) {
4253			/* throw a WARN if any entries are NULL */
4254			WARN(!parent_names[i],
4255				"%s: invalid NULL in %s's .parent_names\n",
4256				__func__, core->name);
4257			ret = clk_cpy_name(&parent->name, parent_names[i],
4258					   true);
4259		} else if (parent_data) {
4260			parent->hw = parent_data[i].hw;
4261			parent->index = parent_data[i].index;
4262			ret = clk_cpy_name(&parent->fw_name,
4263					   parent_data[i].fw_name, false);
4264			if (!ret)
4265				ret = clk_cpy_name(&parent->name,
4266						   parent_data[i].name,
4267						   false);
4268		} else if (parent_hws) {
4269			parent->hw = parent_hws[i];
4270		} else {
4271			ret = -EINVAL;
4272			WARN(1, "Must specify parents if num_parents > 0\n");
4273		}
4274
4275		if (ret) {
4276			do {
4277				kfree_const(parents[i].name);
4278				kfree_const(parents[i].fw_name);
4279			} while (--i >= 0);
4280			kfree(parents);
4281
4282			return ret;
4283		}
4284	}
4285
4286	return 0;
4287}
4288
4289static void clk_core_free_parent_map(struct clk_core *core)
4290{
4291	int i = core->num_parents;
4292
4293	if (!core->num_parents)
4294		return;
4295
4296	while (--i >= 0) {
4297		kfree_const(core->parents[i].name);
4298		kfree_const(core->parents[i].fw_name);
4299	}
4300
4301	kfree(core->parents);
4302}
4303
4304/* Free memory allocated for a struct clk_core */
4305static void __clk_release(struct kref *ref)
4306{
4307	struct clk_core *core = container_of(ref, struct clk_core, ref);
4308
4309	if (core->rpm_enabled) {
4310		mutex_lock(&clk_rpm_list_lock);
4311		hlist_del(&core->rpm_node);
4312		mutex_unlock(&clk_rpm_list_lock);
4313	}
4314
4315	clk_core_free_parent_map(core);
4316	kfree_const(core->name);
4317	kfree(core);
4318}
4319
4320static struct clk *
4321__clk_register(struct device *dev, struct device_node *np, struct clk_hw *hw)
4322{
4323	int ret;
4324	struct clk_core *core;
4325	const struct clk_init_data *init = hw->init;
4326
4327	/*
4328	 * The init data is not supposed to be used outside of registration path.
4329	 * Set it to NULL so that provider drivers can't use it either and so that
4330	 * we catch use of hw->init early on in the core.
4331	 */
4332	hw->init = NULL;
4333
4334	core = kzalloc(sizeof(*core), GFP_KERNEL);
4335	if (!core) {
4336		ret = -ENOMEM;
4337		goto fail_out;
4338	}
4339
4340	kref_init(&core->ref);
4341
4342	core->name = kstrdup_const(init->name, GFP_KERNEL);
4343	if (!core->name) {
4344		ret = -ENOMEM;
4345		goto fail_name;
4346	}
 
 
 
 
 
 
 
 
 
4347
4348	if (WARN_ON(!init->ops)) {
4349		ret = -EINVAL;
4350		goto fail_ops;
 
4351	}
4352	core->ops = init->ops;
4353
4354	core->dev = dev;
4355	clk_pm_runtime_init(core);
4356	core->of_node = np;
4357	if (dev && dev->driver)
4358		core->owner = dev->driver->owner;
4359	core->hw = hw;
4360	core->flags = init->flags;
4361	core->num_parents = init->num_parents;
4362	core->min_rate = 0;
4363	core->max_rate = ULONG_MAX;
4364
4365	ret = clk_core_populate_parent_map(core, init);
4366	if (ret)
4367		goto fail_parents;
4368
4369	INIT_HLIST_HEAD(&core->clks);
4370
4371	/*
4372	 * Don't call clk_hw_create_clk() here because that would pin the
4373	 * provider module to itself and prevent it from ever being removed.
4374	 */
4375	hw->clk = alloc_clk(core, NULL, NULL);
4376	if (IS_ERR(hw->clk)) {
4377		ret = PTR_ERR(hw->clk);
4378		goto fail_create_clk;
4379	}
4380
4381	clk_core_link_consumer(core, hw->clk);
4382
4383	ret = __clk_core_init(core);
4384	if (!ret)
4385		return hw->clk;
4386
4387	clk_prepare_lock();
4388	clk_core_unlink_consumer(hw->clk);
4389	clk_prepare_unlock();
4390
4391	free_clk(hw->clk);
4392	hw->clk = NULL;
4393
4394fail_create_clk:
4395fail_parents:
4396fail_ops:
4397fail_name:
4398	kref_put(&core->ref, __clk_release);
4399fail_out:
4400	return ERR_PTR(ret);
4401}
4402
4403/**
4404 * dev_or_parent_of_node() - Get device node of @dev or @dev's parent
4405 * @dev: Device to get device node of
4406 *
4407 * Return: device node pointer of @dev, or the device node pointer of
4408 * @dev->parent if dev doesn't have a device node, or NULL if neither
4409 * @dev or @dev->parent have a device node.
4410 */
4411static struct device_node *dev_or_parent_of_node(struct device *dev)
4412{
4413	struct device_node *np;
4414
4415	if (!dev)
4416		return NULL;
4417
4418	np = dev_of_node(dev);
4419	if (!np)
4420		np = dev_of_node(dev->parent);
4421
4422	return np;
4423}
4424
4425/**
4426 * clk_register - allocate a new clock, register it and return an opaque cookie
4427 * @dev: device that is registering this clock
4428 * @hw: link to hardware-specific clock data
4429 *
4430 * clk_register is the *deprecated* interface for populating the clock tree with
4431 * new clock nodes. Use clk_hw_register() instead.
4432 *
4433 * Returns: a pointer to the newly allocated struct clk which
4434 * cannot be dereferenced by driver code but may be used in conjunction with the
4435 * rest of the clock API.  In the event of an error clk_register will return an
4436 * error code; drivers must test for an error code after calling clk_register.
4437 */
4438struct clk *clk_register(struct device *dev, struct clk_hw *hw)
4439{
4440	return __clk_register(dev, dev_or_parent_of_node(dev), hw);
4441}
4442EXPORT_SYMBOL_GPL(clk_register);
4443
4444/**
4445 * clk_hw_register - register a clk_hw and return an error code
4446 * @dev: device that is registering this clock
4447 * @hw: link to hardware-specific clock data
4448 *
4449 * clk_hw_register is the primary interface for populating the clock tree with
4450 * new clock nodes. It returns an integer equal to zero indicating success or
4451 * less than zero indicating failure. Drivers must test for an error code after
4452 * calling clk_hw_register().
4453 */
4454int clk_hw_register(struct device *dev, struct clk_hw *hw)
4455{
4456	return PTR_ERR_OR_ZERO(__clk_register(dev, dev_or_parent_of_node(dev),
4457			       hw));
4458}
4459EXPORT_SYMBOL_GPL(clk_hw_register);
4460
4461/*
4462 * of_clk_hw_register - register a clk_hw and return an error code
4463 * @node: device_node of device that is registering this clock
4464 * @hw: link to hardware-specific clock data
4465 *
4466 * of_clk_hw_register() is the primary interface for populating the clock tree
4467 * with new clock nodes when a struct device is not available, but a struct
4468 * device_node is. It returns an integer equal to zero indicating success or
4469 * less than zero indicating failure. Drivers must test for an error code after
4470 * calling of_clk_hw_register().
4471 */
4472int of_clk_hw_register(struct device_node *node, struct clk_hw *hw)
4473{
4474	return PTR_ERR_OR_ZERO(__clk_register(NULL, node, hw));
4475}
4476EXPORT_SYMBOL_GPL(of_clk_hw_register);
4477
4478/*
4479 * Empty clk_ops for unregistered clocks. These are used temporarily
4480 * after clk_unregister() was called on a clock and until last clock
4481 * consumer calls clk_put() and the struct clk object is freed.
4482 */
4483static int clk_nodrv_prepare_enable(struct clk_hw *hw)
4484{
4485	return -ENXIO;
4486}
4487
4488static void clk_nodrv_disable_unprepare(struct clk_hw *hw)
4489{
4490	WARN_ON_ONCE(1);
4491}
4492
4493static int clk_nodrv_set_rate(struct clk_hw *hw, unsigned long rate,
4494					unsigned long parent_rate)
4495{
4496	return -ENXIO;
4497}
4498
4499static int clk_nodrv_set_parent(struct clk_hw *hw, u8 index)
4500{
4501	return -ENXIO;
4502}
4503
4504static int clk_nodrv_determine_rate(struct clk_hw *hw,
4505				    struct clk_rate_request *req)
4506{
4507	return -ENXIO;
4508}
4509
4510static const struct clk_ops clk_nodrv_ops = {
4511	.enable		= clk_nodrv_prepare_enable,
4512	.disable	= clk_nodrv_disable_unprepare,
4513	.prepare	= clk_nodrv_prepare_enable,
4514	.unprepare	= clk_nodrv_disable_unprepare,
4515	.determine_rate	= clk_nodrv_determine_rate,
4516	.set_rate	= clk_nodrv_set_rate,
4517	.set_parent	= clk_nodrv_set_parent,
4518};
4519
4520static void clk_core_evict_parent_cache_subtree(struct clk_core *root,
4521						const struct clk_core *target)
4522{
4523	int i;
4524	struct clk_core *child;
4525
4526	for (i = 0; i < root->num_parents; i++)
4527		if (root->parents[i].core == target)
4528			root->parents[i].core = NULL;
4529
4530	hlist_for_each_entry(child, &root->children, child_node)
4531		clk_core_evict_parent_cache_subtree(child, target);
4532}
4533
4534/* Remove this clk from all parent caches */
4535static void clk_core_evict_parent_cache(struct clk_core *core)
4536{
4537	const struct hlist_head **lists;
4538	struct clk_core *root;
4539
4540	lockdep_assert_held(&prepare_lock);
4541
4542	for (lists = all_lists; *lists; lists++)
4543		hlist_for_each_entry(root, *lists, child_node)
4544			clk_core_evict_parent_cache_subtree(root, core);
4545
4546}
4547
4548/**
4549 * clk_unregister - unregister a currently registered clock
4550 * @clk: clock to unregister
 
 
4551 */
4552void clk_unregister(struct clk *clk)
4553{
4554	unsigned long flags;
4555	const struct clk_ops *ops;
4556
4557	if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
4558		return;
4559
4560	clk_debug_unregister(clk->core);
4561
4562	clk_prepare_lock();
4563
4564	ops = clk->core->ops;
4565	if (ops == &clk_nodrv_ops) {
4566		pr_err("%s: unregistered clock: %s\n", __func__,
4567		       clk->core->name);
4568		clk_prepare_unlock();
4569		return;
4570	}
4571	/*
4572	 * Assign empty clock ops for consumers that might still hold
4573	 * a reference to this clock.
4574	 */
4575	flags = clk_enable_lock();
4576	clk->core->ops = &clk_nodrv_ops;
4577	clk_enable_unlock(flags);
4578
4579	if (ops->terminate)
4580		ops->terminate(clk->core->hw);
4581
4582	if (!hlist_empty(&clk->core->children)) {
4583		struct clk_core *child;
4584		struct hlist_node *t;
4585
4586		/* Reparent all children to the orphan list. */
4587		hlist_for_each_entry_safe(child, t, &clk->core->children,
4588					  child_node)
4589			clk_core_set_parent_nolock(child, NULL);
4590	}
4591
4592	clk_core_evict_parent_cache(clk->core);
4593
4594	hlist_del_init(&clk->core->child_node);
4595
4596	if (clk->core->prepare_count)
4597		pr_warn("%s: unregistering prepared clock: %s\n",
4598					__func__, clk->core->name);
4599
4600	if (clk->core->protect_count)
4601		pr_warn("%s: unregistering protected clock: %s\n",
4602					__func__, clk->core->name);
4603	clk_prepare_unlock();
4604
4605	kref_put(&clk->core->ref, __clk_release);
4606	free_clk(clk);
4607}
4608EXPORT_SYMBOL_GPL(clk_unregister);
4609
4610/**
4611 * clk_hw_unregister - unregister a currently registered clk_hw
4612 * @hw: hardware-specific clock data to unregister
4613 */
4614void clk_hw_unregister(struct clk_hw *hw)
4615{
4616	clk_unregister(hw->clk);
4617}
4618EXPORT_SYMBOL_GPL(clk_hw_unregister);
4619
4620static void devm_clk_unregister_cb(struct device *dev, void *res)
4621{
4622	clk_unregister(*(struct clk **)res);
4623}
4624
4625static void devm_clk_hw_unregister_cb(struct device *dev, void *res)
4626{
4627	clk_hw_unregister(*(struct clk_hw **)res);
4628}
4629
4630/**
4631 * devm_clk_register - resource managed clk_register()
4632 * @dev: device that is registering this clock
4633 * @hw: link to hardware-specific clock data
4634 *
4635 * Managed clk_register(). This function is *deprecated*, use devm_clk_hw_register() instead.
4636 *
4637 * Clocks returned from this function are automatically clk_unregister()ed on
4638 * driver detach. See clk_register() for more information.
4639 */
4640struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw)
4641{
4642	struct clk *clk;
4643	struct clk **clkp;
4644
4645	clkp = devres_alloc(devm_clk_unregister_cb, sizeof(*clkp), GFP_KERNEL);
4646	if (!clkp)
4647		return ERR_PTR(-ENOMEM);
4648
4649	clk = clk_register(dev, hw);
4650	if (!IS_ERR(clk)) {
4651		*clkp = clk;
4652		devres_add(dev, clkp);
4653	} else {
4654		devres_free(clkp);
4655	}
4656
4657	return clk;
4658}
4659EXPORT_SYMBOL_GPL(devm_clk_register);
4660
4661/**
4662 * devm_clk_hw_register - resource managed clk_hw_register()
4663 * @dev: device that is registering this clock
4664 * @hw: link to hardware-specific clock data
4665 *
4666 * Managed clk_hw_register(). Clocks registered by this function are
4667 * automatically clk_hw_unregister()ed on driver detach. See clk_hw_register()
4668 * for more information.
4669 */
4670int devm_clk_hw_register(struct device *dev, struct clk_hw *hw)
4671{
4672	struct clk_hw **hwp;
4673	int ret;
4674
4675	hwp = devres_alloc(devm_clk_hw_unregister_cb, sizeof(*hwp), GFP_KERNEL);
4676	if (!hwp)
4677		return -ENOMEM;
4678
4679	ret = clk_hw_register(dev, hw);
4680	if (!ret) {
4681		*hwp = hw;
4682		devres_add(dev, hwp);
4683	} else {
4684		devres_free(hwp);
4685	}
4686
4687	return ret;
4688}
4689EXPORT_SYMBOL_GPL(devm_clk_hw_register);
4690
4691static void devm_clk_release(struct device *dev, void *res)
4692{
4693	clk_put(*(struct clk **)res);
4694}
4695
4696/**
4697 * devm_clk_hw_get_clk - resource managed clk_hw_get_clk()
4698 * @dev: device that is registering this clock
4699 * @hw: clk_hw associated with the clk being consumed
4700 * @con_id: connection ID string on device
4701 *
4702 * Managed clk_hw_get_clk(). Clocks got with this function are
4703 * automatically clk_put() on driver detach. See clk_put()
4704 * for more information.
4705 */
4706struct clk *devm_clk_hw_get_clk(struct device *dev, struct clk_hw *hw,
4707				const char *con_id)
4708{
4709	struct clk *clk;
4710	struct clk **clkp;
4711
4712	/* This should not happen because it would mean we have drivers
4713	 * passing around clk_hw pointers instead of having the caller use
4714	 * proper clk_get() style APIs
4715	 */
4716	WARN_ON_ONCE(dev != hw->core->dev);
4717
4718	clkp = devres_alloc(devm_clk_release, sizeof(*clkp), GFP_KERNEL);
4719	if (!clkp)
4720		return ERR_PTR(-ENOMEM);
4721
4722	clk = clk_hw_get_clk(hw, con_id);
4723	if (!IS_ERR(clk)) {
4724		*clkp = clk;
4725		devres_add(dev, clkp);
4726	} else {
4727		devres_free(clkp);
4728	}
4729
4730	return clk;
4731}
4732EXPORT_SYMBOL_GPL(devm_clk_hw_get_clk);
4733
4734/*
4735 * clkdev helpers
4736 */
4737
4738void __clk_put(struct clk *clk)
4739{
4740	struct module *owner;
4741
4742	if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
4743		return;
4744
4745	clk_prepare_lock();
4746
4747	/*
4748	 * Before calling clk_put, all calls to clk_rate_exclusive_get() from a
4749	 * given user should be balanced with calls to clk_rate_exclusive_put()
4750	 * and by that same consumer
4751	 */
4752	if (WARN_ON(clk->exclusive_count)) {
4753		/* We voiced our concern, let's sanitize the situation */
4754		clk->core->protect_count -= (clk->exclusive_count - 1);
4755		clk_core_rate_unprotect(clk->core);
4756		clk->exclusive_count = 0;
4757	}
4758
4759	clk_core_unlink_consumer(clk);
4760
4761	/* If we had any boundaries on that clock, let's drop them. */
4762	if (clk->min_rate > 0 || clk->max_rate < ULONG_MAX)
4763		clk_set_rate_range_nolock(clk, 0, ULONG_MAX);
4764
4765	clk_prepare_unlock();
4766
4767	owner = clk->core->owner;
4768	kref_put(&clk->core->ref, __clk_release);
4769	module_put(owner);
4770	free_clk(clk);
4771}
4772
4773/***        clk rate change notifiers        ***/
4774
4775/**
4776 * clk_notifier_register - add a clk rate change notifier
4777 * @clk: struct clk * to watch
4778 * @nb: struct notifier_block * with callback info
4779 *
4780 * Request notification when clk's rate changes.  This uses an SRCU
4781 * notifier because we want it to block and notifier unregistrations are
4782 * uncommon.  The callbacks associated with the notifier must not
4783 * re-enter into the clk framework by calling any top-level clk APIs;
4784 * this will cause a nested prepare_lock mutex.
4785 *
4786 * In all notification cases (pre, post and abort rate change) the original
4787 * clock rate is passed to the callback via struct clk_notifier_data.old_rate
4788 * and the new frequency is passed via struct clk_notifier_data.new_rate.
 
 
 
 
 
 
 
 
 
 
4789 *
4790 * clk_notifier_register() must be called from non-atomic context.
4791 * Returns -EINVAL if called with null arguments, -ENOMEM upon
4792 * allocation failure; otherwise, passes along the return value of
4793 * srcu_notifier_chain_register().
4794 */
4795int clk_notifier_register(struct clk *clk, struct notifier_block *nb)
4796{
4797	struct clk_notifier *cn;
4798	int ret = -ENOMEM;
4799
4800	if (!clk || !nb)
4801		return -EINVAL;
4802
4803	clk_prepare_lock();
4804
4805	/* search the list of notifiers for this clk */
4806	list_for_each_entry(cn, &clk_notifier_list, node)
4807		if (cn->clk == clk)
4808			goto found;
4809
4810	/* if clk wasn't in the notifier list, allocate new clk_notifier */
4811	cn = kzalloc(sizeof(*cn), GFP_KERNEL);
4812	if (!cn)
4813		goto out;
 
4814
4815	cn->clk = clk;
4816	srcu_init_notifier_head(&cn->notifier_head);
4817
4818	list_add(&cn->node, &clk_notifier_list);
 
4819
4820found:
4821	ret = srcu_notifier_chain_register(&cn->notifier_head, nb);
4822
4823	clk->core->notifier_count++;
4824
4825out:
4826	clk_prepare_unlock();
4827
4828	return ret;
4829}
4830EXPORT_SYMBOL_GPL(clk_notifier_register);
4831
4832/**
4833 * clk_notifier_unregister - remove a clk rate change notifier
4834 * @clk: struct clk *
4835 * @nb: struct notifier_block * with callback info
4836 *
4837 * Request no further notification for changes to 'clk' and frees memory
4838 * allocated in clk_notifier_register.
4839 *
4840 * Returns -EINVAL if called with null arguments; otherwise, passes
4841 * along the return value of srcu_notifier_chain_unregister().
4842 */
4843int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb)
4844{
4845	struct clk_notifier *cn;
4846	int ret = -ENOENT;
4847
4848	if (!clk || !nb)
4849		return -EINVAL;
4850
4851	clk_prepare_lock();
4852
4853	list_for_each_entry(cn, &clk_notifier_list, node) {
4854		if (cn->clk == clk) {
4855			ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb);
4856
4857			clk->core->notifier_count--;
4858
4859			/* XXX the notifier code should handle this better */
4860			if (!cn->notifier_head.head) {
4861				srcu_cleanup_notifier_head(&cn->notifier_head);
4862				list_del(&cn->node);
4863				kfree(cn);
4864			}
4865			break;
4866		}
4867	}
4868
4869	clk_prepare_unlock();
4870
4871	return ret;
4872}
4873EXPORT_SYMBOL_GPL(clk_notifier_unregister);
4874
4875struct clk_notifier_devres {
4876	struct clk *clk;
4877	struct notifier_block *nb;
4878};
4879
4880static void devm_clk_notifier_release(struct device *dev, void *res)
4881{
4882	struct clk_notifier_devres *devres = res;
4883
4884	clk_notifier_unregister(devres->clk, devres->nb);
4885}
 
 
 
4886
4887int devm_clk_notifier_register(struct device *dev, struct clk *clk,
4888			       struct notifier_block *nb)
4889{
4890	struct clk_notifier_devres *devres;
4891	int ret;
4892
4893	devres = devres_alloc(devm_clk_notifier_release,
4894			      sizeof(*devres), GFP_KERNEL);
4895
4896	if (!devres)
4897		return -ENOMEM;
4898
4899	ret = clk_notifier_register(clk, nb);
4900	if (!ret) {
4901		devres->clk = clk;
4902		devres->nb = nb;
4903		devres_add(dev, devres);
4904	} else {
4905		devres_free(devres);
4906	}
4907
4908	return ret;
4909}
4910EXPORT_SYMBOL_GPL(devm_clk_notifier_register);
4911
4912#ifdef CONFIG_OF
4913static void clk_core_reparent_orphans(void)
4914{
4915	clk_prepare_lock();
4916	clk_core_reparent_orphans_nolock();
4917	clk_prepare_unlock();
4918}
4919
4920/**
4921 * struct of_clk_provider - Clock provider registration structure
4922 * @link: Entry in global list of clock providers
4923 * @node: Pointer to device tree node of clock provider
4924 * @get: Get clock callback.  Returns NULL or a struct clk for the
4925 *       given clock specifier
4926 * @get_hw: Get clk_hw callback.  Returns NULL, ERR_PTR or a
4927 *       struct clk_hw for the given clock specifier
4928 * @data: context pointer to be passed into @get callback
4929 */
4930struct of_clk_provider {
4931	struct list_head link;
4932
4933	struct device_node *node;
4934	struct clk *(*get)(struct of_phandle_args *clkspec, void *data);
4935	struct clk_hw *(*get_hw)(struct of_phandle_args *clkspec, void *data);
4936	void *data;
4937};
4938
4939extern struct of_device_id __clk_of_table;
4940static const struct of_device_id __clk_of_table_sentinel
4941	__used __section("__clk_of_table_end");
4942
4943static LIST_HEAD(of_clk_providers);
4944static DEFINE_MUTEX(of_clk_mutex);
4945
4946struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec,
4947				     void *data)
4948{
4949	return data;
4950}
4951EXPORT_SYMBOL_GPL(of_clk_src_simple_get);
4952
4953struct clk_hw *of_clk_hw_simple_get(struct of_phandle_args *clkspec, void *data)
4954{
4955	return data;
4956}
4957EXPORT_SYMBOL_GPL(of_clk_hw_simple_get);
4958
4959struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data)
4960{
4961	struct clk_onecell_data *clk_data = data;
4962	unsigned int idx = clkspec->args[0];
4963
4964	if (idx >= clk_data->clk_num) {
4965		pr_err("%s: invalid clock index %u\n", __func__, idx);
4966		return ERR_PTR(-EINVAL);
4967	}
4968
4969	return clk_data->clks[idx];
4970}
4971EXPORT_SYMBOL_GPL(of_clk_src_onecell_get);
4972
4973struct clk_hw *
4974of_clk_hw_onecell_get(struct of_phandle_args *clkspec, void *data)
4975{
4976	struct clk_hw_onecell_data *hw_data = data;
4977	unsigned int idx = clkspec->args[0];
4978
4979	if (idx >= hw_data->num) {
4980		pr_err("%s: invalid index %u\n", __func__, idx);
4981		return ERR_PTR(-EINVAL);
4982	}
4983
4984	return hw_data->hws[idx];
4985}
4986EXPORT_SYMBOL_GPL(of_clk_hw_onecell_get);
4987
4988/**
4989 * of_clk_add_provider() - Register a clock provider for a node
4990 * @np: Device node pointer associated with clock provider
4991 * @clk_src_get: callback for decoding clock
4992 * @data: context pointer for @clk_src_get callback.
4993 *
4994 * This function is *deprecated*. Use of_clk_add_hw_provider() instead.
4995 */
4996int of_clk_add_provider(struct device_node *np,
4997			struct clk *(*clk_src_get)(struct of_phandle_args *clkspec,
4998						   void *data),
4999			void *data)
5000{
5001	struct of_clk_provider *cp;
5002	int ret;
5003
5004	if (!np)
5005		return 0;
5006
5007	cp = kzalloc(sizeof(*cp), GFP_KERNEL);
5008	if (!cp)
5009		return -ENOMEM;
5010
5011	cp->node = of_node_get(np);
5012	cp->data = data;
5013	cp->get = clk_src_get;
5014
5015	mutex_lock(&of_clk_mutex);
5016	list_add(&cp->link, &of_clk_providers);
5017	mutex_unlock(&of_clk_mutex);
5018	pr_debug("Added clock from %pOF\n", np);
5019
5020	clk_core_reparent_orphans();
5021
5022	ret = of_clk_set_defaults(np, true);
5023	if (ret < 0)
5024		of_clk_del_provider(np);
5025
5026	fwnode_dev_initialized(&np->fwnode, true);
5027
5028	return ret;
5029}
5030EXPORT_SYMBOL_GPL(of_clk_add_provider);
5031
5032/**
5033 * of_clk_add_hw_provider() - Register a clock provider for a node
5034 * @np: Device node pointer associated with clock provider
5035 * @get: callback for decoding clk_hw
5036 * @data: context pointer for @get callback.
5037 */
5038int of_clk_add_hw_provider(struct device_node *np,
5039			   struct clk_hw *(*get)(struct of_phandle_args *clkspec,
5040						 void *data),
5041			   void *data)
5042{
5043	struct of_clk_provider *cp;
5044	int ret;
5045
5046	if (!np)
5047		return 0;
5048
5049	cp = kzalloc(sizeof(*cp), GFP_KERNEL);
5050	if (!cp)
5051		return -ENOMEM;
5052
5053	cp->node = of_node_get(np);
5054	cp->data = data;
5055	cp->get_hw = get;
5056
5057	mutex_lock(&of_clk_mutex);
5058	list_add(&cp->link, &of_clk_providers);
5059	mutex_unlock(&of_clk_mutex);
5060	pr_debug("Added clk_hw provider from %pOF\n", np);
5061
5062	clk_core_reparent_orphans();
5063
5064	ret = of_clk_set_defaults(np, true);
5065	if (ret < 0)
5066		of_clk_del_provider(np);
5067
5068	fwnode_dev_initialized(&np->fwnode, true);
5069
5070	return ret;
5071}
5072EXPORT_SYMBOL_GPL(of_clk_add_hw_provider);
5073
5074static void devm_of_clk_release_provider(struct device *dev, void *res)
5075{
5076	of_clk_del_provider(*(struct device_node **)res);
5077}
5078
5079/*
5080 * We allow a child device to use its parent device as the clock provider node
5081 * for cases like MFD sub-devices where the child device driver wants to use
5082 * devm_*() APIs but not list the device in DT as a sub-node.
5083 */
5084static struct device_node *get_clk_provider_node(struct device *dev)
5085{
5086	struct device_node *np, *parent_np;
5087
5088	np = dev->of_node;
5089	parent_np = dev->parent ? dev->parent->of_node : NULL;
5090
5091	if (!of_property_present(np, "#clock-cells"))
5092		if (of_property_present(parent_np, "#clock-cells"))
5093			np = parent_np;
5094
5095	return np;
5096}
5097
5098/**
5099 * devm_of_clk_add_hw_provider() - Managed clk provider node registration
5100 * @dev: Device acting as the clock provider (used for DT node and lifetime)
5101 * @get: callback for decoding clk_hw
5102 * @data: context pointer for @get callback
5103 *
5104 * Registers clock provider for given device's node. If the device has no DT
5105 * node or if the device node lacks of clock provider information (#clock-cells)
5106 * then the parent device's node is scanned for this information. If parent node
5107 * has the #clock-cells then it is used in registration. Provider is
5108 * automatically released at device exit.
5109 *
5110 * Return: 0 on success or an errno on failure.
5111 */
5112int devm_of_clk_add_hw_provider(struct device *dev,
5113			struct clk_hw *(*get)(struct of_phandle_args *clkspec,
5114					      void *data),
5115			void *data)
5116{
5117	struct device_node **ptr, *np;
5118	int ret;
5119
5120	ptr = devres_alloc(devm_of_clk_release_provider, sizeof(*ptr),
5121			   GFP_KERNEL);
5122	if (!ptr)
5123		return -ENOMEM;
5124
5125	np = get_clk_provider_node(dev);
5126	ret = of_clk_add_hw_provider(np, get, data);
5127	if (!ret) {
5128		*ptr = np;
5129		devres_add(dev, ptr);
5130	} else {
5131		devres_free(ptr);
5132	}
5133
5134	return ret;
5135}
5136EXPORT_SYMBOL_GPL(devm_of_clk_add_hw_provider);
5137
5138/**
5139 * of_clk_del_provider() - Remove a previously registered clock provider
5140 * @np: Device node pointer associated with clock provider
5141 */
5142void of_clk_del_provider(struct device_node *np)
5143{
5144	struct of_clk_provider *cp;
5145
5146	if (!np)
5147		return;
5148
5149	mutex_lock(&of_clk_mutex);
5150	list_for_each_entry(cp, &of_clk_providers, link) {
5151		if (cp->node == np) {
5152			list_del(&cp->link);
5153			fwnode_dev_initialized(&np->fwnode, false);
5154			of_node_put(cp->node);
5155			kfree(cp);
5156			break;
5157		}
5158	}
5159	mutex_unlock(&of_clk_mutex);
5160}
5161EXPORT_SYMBOL_GPL(of_clk_del_provider);
5162
5163/**
5164 * of_parse_clkspec() - Parse a DT clock specifier for a given device node
5165 * @np: device node to parse clock specifier from
5166 * @index: index of phandle to parse clock out of. If index < 0, @name is used
5167 * @name: clock name to find and parse. If name is NULL, the index is used
5168 * @out_args: Result of parsing the clock specifier
5169 *
5170 * Parses a device node's "clocks" and "clock-names" properties to find the
5171 * phandle and cells for the index or name that is desired. The resulting clock
5172 * specifier is placed into @out_args, or an errno is returned when there's a
5173 * parsing error. The @index argument is ignored if @name is non-NULL.
5174 *
5175 * Example:
5176 *
5177 * phandle1: clock-controller@1 {
5178 *	#clock-cells = <2>;
5179 * }
5180 *
5181 * phandle2: clock-controller@2 {
5182 *	#clock-cells = <1>;
5183 * }
5184 *
5185 * clock-consumer@3 {
5186 *	clocks = <&phandle1 1 2 &phandle2 3>;
5187 *	clock-names = "name1", "name2";
5188 * }
5189 *
5190 * To get a device_node for `clock-controller@2' node you may call this
5191 * function a few different ways:
5192 *
5193 *   of_parse_clkspec(clock-consumer@3, -1, "name2", &args);
5194 *   of_parse_clkspec(clock-consumer@3, 1, NULL, &args);
5195 *   of_parse_clkspec(clock-consumer@3, 1, "name2", &args);
5196 *
5197 * Return: 0 upon successfully parsing the clock specifier. Otherwise, -ENOENT
5198 * if @name is NULL or -EINVAL if @name is non-NULL and it can't be found in
5199 * the "clock-names" property of @np.
5200 */
5201static int of_parse_clkspec(const struct device_node *np, int index,
5202			    const char *name, struct of_phandle_args *out_args)
5203{
5204	int ret = -ENOENT;
5205
5206	/* Walk up the tree of devices looking for a clock property that matches */
5207	while (np) {
5208		/*
5209		 * For named clocks, first look up the name in the
5210		 * "clock-names" property.  If it cannot be found, then index
5211		 * will be an error code and of_parse_phandle_with_args() will
5212		 * return -EINVAL.
5213		 */
5214		if (name)
5215			index = of_property_match_string(np, "clock-names", name);
5216		ret = of_parse_phandle_with_args(np, "clocks", "#clock-cells",
5217						 index, out_args);
5218		if (!ret)
5219			break;
5220		if (name && index >= 0)
5221			break;
5222
5223		/*
5224		 * No matching clock found on this node.  If the parent node
5225		 * has a "clock-ranges" property, then we can try one of its
5226		 * clocks.
5227		 */
5228		np = np->parent;
5229		if (np && !of_property_present(np, "clock-ranges"))
5230			break;
5231		index = 0;
5232	}
5233
5234	return ret;
5235}
5236
5237static struct clk_hw *
5238__of_clk_get_hw_from_provider(struct of_clk_provider *provider,
5239			      struct of_phandle_args *clkspec)
5240{
5241	struct clk *clk;
5242
5243	if (provider->get_hw)
5244		return provider->get_hw(clkspec, provider->data);
5245
5246	clk = provider->get(clkspec, provider->data);
5247	if (IS_ERR(clk))
5248		return ERR_CAST(clk);
5249	return __clk_get_hw(clk);
5250}
5251
5252static struct clk_hw *
5253of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec)
5254{
5255	struct of_clk_provider *provider;
5256	struct clk_hw *hw = ERR_PTR(-EPROBE_DEFER);
5257
5258	if (!clkspec)
5259		return ERR_PTR(-EINVAL);
5260
5261	mutex_lock(&of_clk_mutex);
5262	list_for_each_entry(provider, &of_clk_providers, link) {
5263		if (provider->node == clkspec->np) {
5264			hw = __of_clk_get_hw_from_provider(provider, clkspec);
5265			if (!IS_ERR(hw))
5266				break;
5267		}
5268	}
5269	mutex_unlock(&of_clk_mutex);
5270
5271	return hw;
5272}
5273
5274/**
5275 * of_clk_get_from_provider() - Lookup a clock from a clock provider
5276 * @clkspec: pointer to a clock specifier data structure
5277 *
5278 * This function looks up a struct clk from the registered list of clock
5279 * providers, an input is a clock specifier data structure as returned
5280 * from the of_parse_phandle_with_args() function call.
5281 */
5282struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec)
5283{
5284	struct clk_hw *hw = of_clk_get_hw_from_clkspec(clkspec);
5285
5286	return clk_hw_create_clk(NULL, hw, NULL, __func__);
5287}
5288EXPORT_SYMBOL_GPL(of_clk_get_from_provider);
5289
5290struct clk_hw *of_clk_get_hw(struct device_node *np, int index,
5291			     const char *con_id)
5292{
5293	int ret;
5294	struct clk_hw *hw;
5295	struct of_phandle_args clkspec;
5296
5297	ret = of_parse_clkspec(np, index, con_id, &clkspec);
5298	if (ret)
5299		return ERR_PTR(ret);
5300
5301	hw = of_clk_get_hw_from_clkspec(&clkspec);
5302	of_node_put(clkspec.np);
5303
5304	return hw;
5305}
5306
5307static struct clk *__of_clk_get(struct device_node *np,
5308				int index, const char *dev_id,
5309				const char *con_id)
5310{
5311	struct clk_hw *hw = of_clk_get_hw(np, index, con_id);
5312
5313	return clk_hw_create_clk(NULL, hw, dev_id, con_id);
5314}
5315
5316struct clk *of_clk_get(struct device_node *np, int index)
5317{
5318	return __of_clk_get(np, index, np->full_name, NULL);
5319}
5320EXPORT_SYMBOL(of_clk_get);
5321
5322/**
5323 * of_clk_get_by_name() - Parse and lookup a clock referenced by a device node
5324 * @np: pointer to clock consumer node
5325 * @name: name of consumer's clock input, or NULL for the first clock reference
5326 *
5327 * This function parses the clocks and clock-names properties,
5328 * and uses them to look up the struct clk from the registered list of clock
5329 * providers.
5330 */
5331struct clk *of_clk_get_by_name(struct device_node *np, const char *name)
5332{
5333	if (!np)
5334		return ERR_PTR(-ENOENT);
5335
5336	return __of_clk_get(np, 0, np->full_name, name);
5337}
5338EXPORT_SYMBOL(of_clk_get_by_name);
5339
5340/**
5341 * of_clk_get_parent_count() - Count the number of clocks a device node has
5342 * @np: device node to count
5343 *
5344 * Returns: The number of clocks that are possible parents of this node
5345 */
5346unsigned int of_clk_get_parent_count(const struct device_node *np)
5347{
5348	int count;
5349
5350	count = of_count_phandle_with_args(np, "clocks", "#clock-cells");
5351	if (count < 0)
5352		return 0;
5353
5354	return count;
5355}
5356EXPORT_SYMBOL_GPL(of_clk_get_parent_count);
5357
5358const char *of_clk_get_parent_name(const struct device_node *np, int index)
5359{
5360	struct of_phandle_args clkspec;
5361	const char *clk_name;
5362	bool found = false;
5363	u32 pv;
5364	int rc;
5365	int count;
5366	struct clk *clk;
5367
5368	rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index,
5369					&clkspec);
5370	if (rc)
5371		return NULL;
5372
5373	index = clkspec.args_count ? clkspec.args[0] : 0;
5374	count = 0;
5375
5376	/* if there is an indices property, use it to transfer the index
5377	 * specified into an array offset for the clock-output-names property.
5378	 */
5379	of_property_for_each_u32(clkspec.np, "clock-indices", pv) {
5380		if (index == pv) {
5381			index = count;
5382			found = true;
5383			break;
5384		}
5385		count++;
5386	}
5387	/* We went off the end of 'clock-indices' without finding it */
5388	if (of_property_present(clkspec.np, "clock-indices") && !found) {
5389		of_node_put(clkspec.np);
5390		return NULL;
5391	}
5392
5393	if (of_property_read_string_index(clkspec.np, "clock-output-names",
5394					  index,
5395					  &clk_name) < 0) {
5396		/*
5397		 * Best effort to get the name if the clock has been
5398		 * registered with the framework. If the clock isn't
5399		 * registered, we return the node name as the name of
5400		 * the clock as long as #clock-cells = 0.
5401		 */
5402		clk = of_clk_get_from_provider(&clkspec);
5403		if (IS_ERR(clk)) {
5404			if (clkspec.args_count == 0)
5405				clk_name = clkspec.np->name;
5406			else
5407				clk_name = NULL;
5408		} else {
5409			clk_name = __clk_get_name(clk);
5410			clk_put(clk);
5411		}
5412	}
5413
5414
5415	of_node_put(clkspec.np);
5416	return clk_name;
5417}
5418EXPORT_SYMBOL_GPL(of_clk_get_parent_name);
5419
5420/**
5421 * of_clk_parent_fill() - Fill @parents with names of @np's parents and return
5422 * number of parents
5423 * @np: Device node pointer associated with clock provider
5424 * @parents: pointer to char array that hold the parents' names
5425 * @size: size of the @parents array
5426 *
5427 * Return: number of parents for the clock node.
5428 */
5429int of_clk_parent_fill(struct device_node *np, const char **parents,
5430		       unsigned int size)
5431{
5432	unsigned int i = 0;
5433
5434	while (i < size && (parents[i] = of_clk_get_parent_name(np, i)) != NULL)
5435		i++;
5436
5437	return i;
5438}
5439EXPORT_SYMBOL_GPL(of_clk_parent_fill);
5440
5441struct clock_provider {
5442	void (*clk_init_cb)(struct device_node *);
5443	struct device_node *np;
5444	struct list_head node;
5445};
5446
5447/*
5448 * This function looks for a parent clock. If there is one, then it
5449 * checks that the provider for this parent clock was initialized, in
5450 * this case the parent clock will be ready.
5451 */
5452static int parent_ready(struct device_node *np)
5453{
5454	int i = 0;
5455
5456	while (true) {
5457		struct clk *clk = of_clk_get(np, i);
5458
5459		/* this parent is ready we can check the next one */
5460		if (!IS_ERR(clk)) {
5461			clk_put(clk);
5462			i++;
5463			continue;
5464		}
5465
5466		/* at least one parent is not ready, we exit now */
5467		if (PTR_ERR(clk) == -EPROBE_DEFER)
5468			return 0;
5469
5470		/*
5471		 * Here we make assumption that the device tree is
5472		 * written correctly. So an error means that there is
5473		 * no more parent. As we didn't exit yet, then the
5474		 * previous parent are ready. If there is no clock
5475		 * parent, no need to wait for them, then we can
5476		 * consider their absence as being ready
5477		 */
5478		return 1;
5479	}
5480}
5481
5482/**
5483 * of_clk_detect_critical() - set CLK_IS_CRITICAL flag from Device Tree
5484 * @np: Device node pointer associated with clock provider
5485 * @index: clock index
5486 * @flags: pointer to top-level framework flags
5487 *
5488 * Detects if the clock-critical property exists and, if so, sets the
5489 * corresponding CLK_IS_CRITICAL flag.
5490 *
5491 * Do not use this function. It exists only for legacy Device Tree
5492 * bindings, such as the one-clock-per-node style that are outdated.
5493 * Those bindings typically put all clock data into .dts and the Linux
5494 * driver has no clock data, thus making it impossible to set this flag
5495 * correctly from the driver. Only those drivers may call
5496 * of_clk_detect_critical from their setup functions.
5497 *
5498 * Return: error code or zero on success
5499 */
5500int of_clk_detect_critical(struct device_node *np, int index,
5501			   unsigned long *flags)
5502{
5503	uint32_t idx;
5504
5505	if (!np || !flags)
5506		return -EINVAL;
5507
5508	of_property_for_each_u32(np, "clock-critical", idx)
5509		if (index == idx)
5510			*flags |= CLK_IS_CRITICAL;
5511
5512	return 0;
5513}
5514
5515/**
5516 * of_clk_init() - Scan and init clock providers from the DT
5517 * @matches: array of compatible values and init functions for providers.
5518 *
5519 * This function scans the device tree for matching clock providers
5520 * and calls their initialization functions. It also does it by trying
5521 * to follow the dependencies.
5522 */
5523void __init of_clk_init(const struct of_device_id *matches)
5524{
5525	const struct of_device_id *match;
5526	struct device_node *np;
5527	struct clock_provider *clk_provider, *next;
5528	bool is_init_done;
5529	bool force = false;
5530	LIST_HEAD(clk_provider_list);
5531
5532	if (!matches)
5533		matches = &__clk_of_table;
5534
5535	/* First prepare the list of the clocks providers */
5536	for_each_matching_node_and_match(np, matches, &match) {
5537		struct clock_provider *parent;
5538
5539		if (!of_device_is_available(np))
5540			continue;
5541
5542		parent = kzalloc(sizeof(*parent), GFP_KERNEL);
5543		if (!parent) {
5544			list_for_each_entry_safe(clk_provider, next,
5545						 &clk_provider_list, node) {
5546				list_del(&clk_provider->node);
5547				of_node_put(clk_provider->np);
5548				kfree(clk_provider);
5549			}
5550			of_node_put(np);
5551			return;
5552		}
5553
5554		parent->clk_init_cb = match->data;
5555		parent->np = of_node_get(np);
5556		list_add_tail(&parent->node, &clk_provider_list);
5557	}
5558
5559	while (!list_empty(&clk_provider_list)) {
5560		is_init_done = false;
5561		list_for_each_entry_safe(clk_provider, next,
5562					&clk_provider_list, node) {
5563			if (force || parent_ready(clk_provider->np)) {
5564
5565				/* Don't populate platform devices */
5566				of_node_set_flag(clk_provider->np,
5567						 OF_POPULATED);
5568
5569				clk_provider->clk_init_cb(clk_provider->np);
5570				of_clk_set_defaults(clk_provider->np, true);
5571
5572				list_del(&clk_provider->node);
5573				of_node_put(clk_provider->np);
5574				kfree(clk_provider);
5575				is_init_done = true;
5576			}
5577		}
5578
5579		/*
5580		 * We didn't manage to initialize any of the
5581		 * remaining providers during the last loop, so now we
5582		 * initialize all the remaining ones unconditionally
5583		 * in case the clock parent was not mandatory
5584		 */
5585		if (!is_init_done)
5586			force = true;
5587	}
5588}
5589#endif