Linux Audio

Check our new training course

Loading...
v3.5.6
 
   1/*
   2 * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com>
   3 * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org>
   4 *
   5 * This program is free software; you can redistribute it and/or modify
   6 * it under the terms of the GNU General Public License version 2 as
   7 * published by the Free Software Foundation.
   8 *
   9 * Standard functionality for the common clock API.  See Documentation/clk.txt
  10 */
  11
  12#include <linux/clk-private.h>
 
 
  13#include <linux/module.h>
  14#include <linux/mutex.h>
  15#include <linux/spinlock.h>
  16#include <linux/err.h>
  17#include <linux/list.h>
  18#include <linux/slab.h>
 
 
 
 
 
 
 
 
  19
  20static DEFINE_SPINLOCK(enable_lock);
  21static DEFINE_MUTEX(prepare_lock);
  22
 
 
 
 
 
 
  23static HLIST_HEAD(clk_root_list);
  24static HLIST_HEAD(clk_orphan_list);
  25static LIST_HEAD(clk_notifier_list);
  26
  27/***        debugfs support        ***/
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  28
  29#ifdef CONFIG_COMMON_CLK_DEBUG
  30#include <linux/debugfs.h>
  31
  32static struct dentry *rootdir;
  33static struct dentry *orphandir;
  34static int inited = 0;
 
 
 
 
 
 
 
  35
  36/* caller must hold prepare_lock */
  37static int clk_debug_create_one(struct clk *clk, struct dentry *pdentry)
  38{
  39	struct dentry *d;
  40	int ret = -ENOMEM;
  41
  42	if (!clk || !pdentry) {
  43		ret = -EINVAL;
  44		goto out;
  45	}
  46
  47	d = debugfs_create_dir(clk->name, pdentry);
  48	if (!d)
  49		goto out;
  50
  51	clk->dentry = d;
 
 
 
 
 
 
  52
  53	d = debugfs_create_u32("clk_rate", S_IRUGO, clk->dentry,
  54			(u32 *)&clk->rate);
  55	if (!d)
  56		goto err_out;
  57
  58	d = debugfs_create_x32("clk_flags", S_IRUGO, clk->dentry,
  59			(u32 *)&clk->flags);
  60	if (!d)
  61		goto err_out;
  62
  63	d = debugfs_create_u32("clk_prepare_count", S_IRUGO, clk->dentry,
  64			(u32 *)&clk->prepare_count);
  65	if (!d)
  66		goto err_out;
  67
  68	d = debugfs_create_u32("clk_enable_count", S_IRUGO, clk->dentry,
  69			(u32 *)&clk->enable_count);
  70	if (!d)
  71		goto err_out;
  72
  73	d = debugfs_create_u32("clk_notifier_count", S_IRUGO, clk->dentry,
  74			(u32 *)&clk->notifier_count);
  75	if (!d)
  76		goto err_out;
  77
  78	ret = 0;
  79	goto out;
 
 
  80
  81err_out:
  82	debugfs_remove(clk->dentry);
  83out:
  84	return ret;
  85}
  86
  87/* caller must hold prepare_lock */
  88static int clk_debug_create_subtree(struct clk *clk, struct dentry *pdentry)
  89{
  90	struct clk *child;
  91	struct hlist_node *tmp;
  92	int ret = -EINVAL;;
  93
  94	if (!clk || !pdentry)
  95		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  96
  97	ret = clk_debug_create_one(clk, pdentry);
 
 
 
 
  98
  99	if (ret)
 100		goto out;
 
 
 
 
 
 101
 102	hlist_for_each_entry(child, tmp, &clk->children, child_node)
 103		clk_debug_create_subtree(child, clk->dentry);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 104
 105	ret = 0;
 106out:
 107	return ret;
 108}
 109
 110/**
 111 * clk_debug_register - add a clk node to the debugfs clk tree
 112 * @clk: the clk being added to the debugfs clk tree
 113 *
 114 * Dynamically adds a clk to the debugfs clk tree if debugfs has been
 115 * initialized.  Otherwise it bails out early since the debugfs clk tree
 116 * will be created lazily by clk_debug_init as part of a late_initcall.
 117 *
 118 * Caller must hold prepare_lock.  Only clk_init calls this function (so
 119 * far) so this is taken care.
 120 */
 121static int clk_debug_register(struct clk *clk)
 122{
 123	struct clk *parent;
 124	struct dentry *pdentry;
 125	int ret = 0;
 126
 127	if (!inited)
 128		goto out;
 129
 130	parent = clk->parent;
 
 
 
 
 
 131
 132	/*
 133	 * Check to see if a clk is a root clk.  Also check that it is
 134	 * safe to add this clk to debugfs
 
 
 
 
 
 
 135	 */
 136	if (!parent)
 137		if (clk->flags & CLK_IS_ROOT)
 138			pdentry = rootdir;
 139		else
 140			pdentry = orphandir;
 141	else
 142		if (parent->dentry)
 143			pdentry = parent->dentry;
 144		else
 145			goto out;
 146
 147	ret = clk_debug_create_subtree(clk, pdentry);
 
 
 
 148
 149out:
 150	return ret;
 151}
 152
 153/**
 154 * clk_debug_init - lazily create the debugfs clk tree visualization
 155 *
 156 * clks are often initialized very early during boot before memory can
 157 * be dynamically allocated and well before debugfs is setup.
 158 * clk_debug_init walks the clk tree hierarchy while holding
 159 * prepare_lock and creates the topology as part of a late_initcall,
 160 * thus insuring that clks initialized very early will still be
 161 * represented in the debugfs clk tree.  This function should only be
 162 * called once at boot-time, and all other clks added dynamically will
 163 * be done so with clk_debug_register.
 164 */
 165static int __init clk_debug_init(void)
 166{
 167	struct clk *clk;
 168	struct hlist_node *tmp;
 
 169
 170	rootdir = debugfs_create_dir("clk", NULL);
 
 
 
 
 171
 172	if (!rootdir)
 173		return -ENOMEM;
 
 
 
 174
 175	orphandir = debugfs_create_dir("orphans", rootdir);
 
 
 
 
 176
 177	if (!orphandir)
 178		return -ENOMEM;
 
 
 
 
 
 
 
 
 
 179
 180	mutex_lock(&prepare_lock);
 
 181
 182	hlist_for_each_entry(clk, tmp, &clk_root_list, child_node)
 183		clk_debug_create_subtree(clk, rootdir);
 
 
 
 184
 185	hlist_for_each_entry(clk, tmp, &clk_orphan_list, child_node)
 186		clk_debug_create_subtree(clk, orphandir);
 187
 188	inited = 1;
 
 
 
 189
 190	mutex_unlock(&prepare_lock);
 
 191
 192	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 193}
 194late_initcall(clk_debug_init);
 
 
 
 
 
 195#else
 196static inline int clk_debug_register(struct clk *clk) { return 0; }
 
 
 
 
 
 
 
 
 
 
 197#endif
 198
 199/* caller must hold prepare_lock */
 200static void clk_disable_unused_subtree(struct clk *clk)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 201{
 202	struct clk *child;
 203	struct hlist_node *tmp;
 204	unsigned long flags;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 205
 206	if (!clk)
 207		goto out;
 208
 209	hlist_for_each_entry(child, tmp, &clk->children, child_node)
 210		clk_disable_unused_subtree(child);
 211
 212	spin_lock_irqsave(&enable_lock, flags);
 
 
 
 213
 214	if (clk->enable_count)
 215		goto unlock_out;
 
 
 
 
 
 
 
 
 
 
 
 
 216
 217	if (clk->flags & CLK_IGNORE_UNUSED)
 218		goto unlock_out;
 
 
 219
 220	if (__clk_is_enabled(clk) && clk->ops->disable)
 221		clk->ops->disable(clk->hw);
 
 
 
 222
 223unlock_out:
 224	spin_unlock_irqrestore(&enable_lock, flags);
 225
 226out:
 227	return;
 228}
 229
 230static int clk_disable_unused(void)
 
 231{
 232	struct clk *clk;
 233	struct hlist_node *tmp;
 234
 235	mutex_lock(&prepare_lock);
 236
 237	hlist_for_each_entry(clk, tmp, &clk_root_list, child_node)
 238		clk_disable_unused_subtree(clk);
 
 239
 240	hlist_for_each_entry(clk, tmp, &clk_orphan_list, child_node)
 241		clk_disable_unused_subtree(clk);
 
 
 242
 243	mutex_unlock(&prepare_lock);
 
 
 
 
 
 
 244
 
 
 
 
 
 245	return 0;
 246}
 247late_initcall(clk_disable_unused);
 248
 249/***    helper functions   ***/
 
 
 
 
 
 
 
 
 
 
 
 
 250
 251inline const char *__clk_get_name(struct clk *clk)
 252{
 253	return !clk ? NULL : clk->name;
 254}
 
 255
 256inline struct clk_hw *__clk_get_hw(struct clk *clk)
 257{
 258	return !clk ? NULL : clk->hw;
 259}
 
 260
 261inline u8 __clk_get_num_parents(struct clk *clk)
 262{
 263	return !clk ? -EINVAL : clk->num_parents;
 264}
 
 265
 266inline struct clk *__clk_get_parent(struct clk *clk)
 267{
 268	return !clk ? NULL : clk->parent;
 269}
 
 270
 271inline int __clk_get_enable_count(struct clk *clk)
 272{
 273	return !clk ? -EINVAL : clk->enable_count;
 
 
 
 
 
 
 
 
 
 274}
 
 275
 276inline int __clk_get_prepare_count(struct clk *clk)
 
 277{
 278	return !clk ? -EINVAL : clk->prepare_count;
 
 
 
 279}
 280
 281unsigned long __clk_get_rate(struct clk *clk)
 
 
 282{
 283	unsigned long ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 284
 285	if (!clk) {
 286		ret = 0;
 287		goto out;
 288	}
 289
 290	ret = clk->rate;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 291
 292	if (clk->flags & CLK_IS_ROOT)
 293		goto out;
 
 
 
 
 294
 295	if (!clk->parent)
 296		ret = 0;
 297
 298out:
 299	return ret;
 
 
 
 
 
 300}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 301
 302inline unsigned long __clk_get_flags(struct clk *clk)
 303{
 304	return !clk ? -EINVAL : clk->flags;
 
 
 
 
 
 
 
 
 
 
 
 
 305}
 306
 307int __clk_is_enabled(struct clk *clk)
 308{
 309	int ret;
 310
 311	if (!clk)
 
 
 312		return -EINVAL;
 313
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 314	/*
 315	 * .is_enabled is only mandatory for clocks that gate
 316	 * fall back to software usage counter if .is_enabled is missing
 317	 */
 318	if (!clk->ops->is_enabled) {
 319		ret = clk->enable_count ? 1 : 0;
 320		goto out;
 321	}
 322
 323	ret = clk->ops->is_enabled(clk->hw);
 
 324out:
 325	return ret;
 326}
 
 327
 328static struct clk *__clk_lookup_subtree(const char *name, struct clk *clk)
 329{
 330	struct clk *child;
 331	struct clk *ret;
 332	struct hlist_node *tmp;
 333
 334	if (!strcmp(clk->name, name))
 335		return clk;
 336
 337	hlist_for_each_entry(child, tmp, &clk->children, child_node) {
 338		ret = __clk_lookup_subtree(name, child);
 339		if (ret)
 340			return ret;
 341	}
 342
 343	return NULL;
 344}
 345
 346struct clk *__clk_lookup(const char *name)
 347{
 348	struct clk *root_clk;
 349	struct clk *ret;
 350	struct hlist_node *tmp;
 351
 352	if (!name)
 353		return NULL;
 354
 355	/* search the 'proper' clk tree first */
 356	hlist_for_each_entry(root_clk, tmp, &clk_root_list, child_node) {
 357		ret = __clk_lookup_subtree(name, root_clk);
 358		if (ret)
 359			return ret;
 360	}
 361
 362	/* if not found, then search the orphan tree */
 363	hlist_for_each_entry(root_clk, tmp, &clk_orphan_list, child_node) {
 364		ret = __clk_lookup_subtree(name, root_clk);
 365		if (ret)
 366			return ret;
 367	}
 368
 369	return NULL;
 
 370}
 371
 372/***        clk api        ***/
 373
 374void __clk_unprepare(struct clk *clk)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 375{
 376	if (!clk)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 377		return;
 378
 379	if (WARN_ON(clk->prepare_count == 0))
 
 380		return;
 381
 382	if (--clk->prepare_count > 0)
 
 383		return;
 384
 385	WARN_ON(clk->enable_count > 0);
 
 386
 387	if (clk->ops->unprepare)
 388		clk->ops->unprepare(clk->hw);
 
 
 
 
 
 
 
 
 
 
 
 
 
 389
 390	__clk_unprepare(clk->parent);
 
 
 
 
 391}
 392
 393/**
 394 * clk_unprepare - undo preparation of a clock source
 395 * @clk: the clk being unprepare
 396 *
 397 * clk_unprepare may sleep, which differentiates it from clk_disable.  In a
 398 * simple case, clk_unprepare can be used instead of clk_disable to gate a clk
 399 * if the operation may sleep.  One example is a clk which is accessed over
 400 * I2c.  In the complex case a clk gate operation may require a fast and a slow
 401 * part.  It is this reason that clk_unprepare and clk_disable are not mutually
 402 * exclusive.  In fact clk_disable must be called before clk_unprepare.
 403 */
 404void clk_unprepare(struct clk *clk)
 405{
 406	mutex_lock(&prepare_lock);
 407	__clk_unprepare(clk);
 408	mutex_unlock(&prepare_lock);
 
 409}
 410EXPORT_SYMBOL_GPL(clk_unprepare);
 411
 412int __clk_prepare(struct clk *clk)
 413{
 414	int ret = 0;
 415
 416	if (!clk)
 
 
 417		return 0;
 418
 419	if (clk->prepare_count == 0) {
 420		ret = __clk_prepare(clk->parent);
 421		if (ret)
 422			return ret;
 423
 424		if (clk->ops->prepare) {
 425			ret = clk->ops->prepare(clk->hw);
 426			if (ret) {
 427				__clk_unprepare(clk->parent);
 428				return ret;
 429			}
 430		}
 
 
 
 
 
 
 431	}
 432
 433	clk->prepare_count++;
 
 
 
 
 
 
 
 
 
 
 434
 435	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 436}
 437
 438/**
 439 * clk_prepare - prepare a clock source
 440 * @clk: the clk being prepared
 441 *
 442 * clk_prepare may sleep, which differentiates it from clk_enable.  In a simple
 443 * case, clk_prepare can be used instead of clk_enable to ungate a clk if the
 444 * operation may sleep.  One example is a clk which is accessed over I2c.  In
 445 * the complex case a clk ungate operation may require a fast and a slow part.
 446 * It is this reason that clk_prepare and clk_enable are not mutually
 447 * exclusive.  In fact clk_prepare must be called before clk_enable.
 448 * Returns 0 on success, -EERROR otherwise.
 449 */
 450int clk_prepare(struct clk *clk)
 451{
 452	int ret;
 453
 454	mutex_lock(&prepare_lock);
 455	ret = __clk_prepare(clk);
 456	mutex_unlock(&prepare_lock);
 457
 458	return ret;
 459}
 460EXPORT_SYMBOL_GPL(clk_prepare);
 461
 462static void __clk_disable(struct clk *clk)
 463{
 464	if (!clk)
 
 
 465		return;
 466
 467	if (WARN_ON(clk->enable_count == 0))
 468		return;
 469
 470	if (--clk->enable_count > 0)
 
 471		return;
 472
 473	if (clk->ops->disable)
 474		clk->ops->disable(clk->hw);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 475
 476	__clk_disable(clk->parent);
 
 
 477}
 478
 479/**
 480 * clk_disable - gate a clock
 481 * @clk: the clk being gated
 482 *
 483 * clk_disable must not sleep, which differentiates it from clk_unprepare.  In
 484 * a simple case, clk_disable can be used instead of clk_unprepare to gate a
 485 * clk if the operation is fast and will never sleep.  One example is a
 486 * SoC-internal clk which is controlled via simple register writes.  In the
 487 * complex case a clk gate operation may require a fast and a slow part.  It is
 488 * this reason that clk_unprepare and clk_disable are not mutually exclusive.
 489 * In fact clk_disable must be called before clk_unprepare.
 490 */
 491void clk_disable(struct clk *clk)
 492{
 493	unsigned long flags;
 
 494
 495	spin_lock_irqsave(&enable_lock, flags);
 496	__clk_disable(clk);
 497	spin_unlock_irqrestore(&enable_lock, flags);
 498}
 499EXPORT_SYMBOL_GPL(clk_disable);
 500
 501static int __clk_enable(struct clk *clk)
 502{
 503	int ret = 0;
 504
 505	if (!clk)
 
 
 506		return 0;
 507
 508	if (WARN_ON(clk->prepare_count == 0))
 
 509		return -ESHUTDOWN;
 510
 511	if (clk->enable_count == 0) {
 512		ret = __clk_enable(clk->parent);
 513
 514		if (ret)
 515			return ret;
 516
 517		if (clk->ops->enable) {
 518			ret = clk->ops->enable(clk->hw);
 519			if (ret) {
 520				__clk_disable(clk->parent);
 521				return ret;
 522			}
 
 
 
 
 523		}
 524	}
 525
 526	clk->enable_count++;
 527	return 0;
 528}
 529
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 530/**
 531 * clk_enable - ungate a clock
 532 * @clk: the clk being ungated
 533 *
 534 * clk_enable must not sleep, which differentiates it from clk_prepare.  In a
 535 * simple case, clk_enable can be used instead of clk_prepare to ungate a clk
 536 * if the operation will never sleep.  One example is a SoC-internal clk which
 537 * is controlled via simple register writes.  In the complex case a clk ungate
 538 * operation may require a fast and a slow part.  It is this reason that
 539 * clk_enable and clk_prepare are not mutually exclusive.  In fact clk_prepare
 540 * must be called before clk_enable.  Returns 0 on success, -EERROR
 541 * otherwise.
 542 */
 543int clk_enable(struct clk *clk)
 544{
 545	unsigned long flags;
 
 
 
 
 
 
 
 
 546	int ret;
 547
 548	spin_lock_irqsave(&enable_lock, flags);
 549	ret = __clk_enable(clk);
 550	spin_unlock_irqrestore(&enable_lock, flags);
 
 
 
 
 551
 552	return ret;
 553}
 554EXPORT_SYMBOL_GPL(clk_enable);
 555
 556/**
 557 * clk_get_rate - return the rate of clk
 558 * @clk: the clk whose rate is being returned
 559 *
 560 * Simply returns the cached rate of the clk.  Does not query the hardware.  If
 561 * clk is NULL then returns 0.
 562 */
 563unsigned long clk_get_rate(struct clk *clk)
 564{
 565	unsigned long rate;
 
 
 566
 567	mutex_lock(&prepare_lock);
 568	rate = __clk_get_rate(clk);
 569	mutex_unlock(&prepare_lock);
 570
 571	return rate;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 572}
 573EXPORT_SYMBOL_GPL(clk_get_rate);
 574
 575/**
 576 * __clk_round_rate - round the given rate for a clk
 577 * @clk: round the rate of this clock
 
 578 *
 579 * Caller must hold prepare_lock.  Useful for clk_ops such as .set_rate
 580 */
 581unsigned long __clk_round_rate(struct clk *clk, unsigned long rate)
 582{
 583	unsigned long parent_rate = 0;
 
 
 
 584
 585	if (!clk)
 586		return -EINVAL;
 
 587
 588	if (!clk->ops->round_rate) {
 589		if (clk->flags & CLK_SET_RATE_PARENT)
 590			return __clk_round_rate(clk->parent, rate);
 591		else
 592			return clk->rate;
 593	}
 594
 595	if (clk->parent)
 596		parent_rate = clk->parent->rate;
 597
 598	return clk->ops->round_rate(clk->hw, rate, &parent_rate);
 
 
 
 
 599}
 
 600
 601/**
 602 * clk_round_rate - round the given rate for a clk
 603 * @clk: the clk for which we are rounding a rate
 604 * @rate: the rate which is to be rounded
 605 *
 606 * Takes in a rate as input and rounds it to a rate that the clk can actually
 607 * use which is then returned.  If clk doesn't support round_rate operation
 608 * then the parent rate is returned.
 609 */
 610long clk_round_rate(struct clk *clk, unsigned long rate)
 611{
 612	unsigned long ret;
 
 613
 614	mutex_lock(&prepare_lock);
 615	ret = __clk_round_rate(clk, rate);
 616	mutex_unlock(&prepare_lock);
 617
 618	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 619}
 620EXPORT_SYMBOL_GPL(clk_round_rate);
 621
 622/**
 623 * __clk_notify - call clk notifier chain
 624 * @clk: struct clk * that is changing rate
 625 * @msg: clk notifier type (see include/linux/clk.h)
 626 * @old_rate: old clk rate
 627 * @new_rate: new clk rate
 628 *
 629 * Triggers a notifier call chain on the clk rate-change notification
 630 * for 'clk'.  Passes a pointer to the struct clk and the previous
 631 * and current rates to the notifier callback.  Intended to be called by
 632 * internal clock code only.  Returns NOTIFY_DONE from the last driver
 633 * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if
 634 * a driver returns that.
 635 */
 636static int __clk_notify(struct clk *clk, unsigned long msg,
 637		unsigned long old_rate, unsigned long new_rate)
 638{
 639	struct clk_notifier *cn;
 640	struct clk_notifier_data cnd;
 641	int ret = NOTIFY_DONE;
 642
 643	cnd.clk = clk;
 644	cnd.old_rate = old_rate;
 645	cnd.new_rate = new_rate;
 646
 647	list_for_each_entry(cn, &clk_notifier_list, node) {
 648		if (cn->clk == clk) {
 
 649			ret = srcu_notifier_call_chain(&cn->notifier_head, msg,
 650					&cnd);
 651			break;
 
 652		}
 653	}
 654
 655	return ret;
 656}
 657
 658/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 659 * __clk_recalc_rates
 660 * @clk: first clk in the subtree
 661 * @msg: notification type (see include/linux/clk.h)
 662 *
 663 * Walks the subtree of clks starting with clk and recalculates rates as it
 664 * goes.  Note that if a clk does not implement the .recalc_rate callback then
 665 * it is assumed that the clock will take on the rate of it's parent.
 666 *
 667 * clk_recalc_rates also propagates the POST_RATE_CHANGE notification,
 668 * if necessary.
 669 *
 670 * Caller must hold prepare_lock.
 671 */
 672static void __clk_recalc_rates(struct clk *clk, unsigned long msg)
 673{
 674	unsigned long old_rate;
 675	unsigned long parent_rate = 0;
 676	struct hlist_node *tmp;
 677	struct clk *child;
 678
 679	old_rate = clk->rate;
 680
 681	if (clk->parent)
 682		parent_rate = clk->parent->rate;
 683
 684	if (clk->ops->recalc_rate)
 685		clk->rate = clk->ops->recalc_rate(clk->hw, parent_rate);
 686	else
 687		clk->rate = parent_rate;
 688
 689	/*
 690	 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE
 691	 * & ABORT_RATE_CHANGE notifiers
 692	 */
 693	if (clk->notifier_count && msg)
 694		__clk_notify(clk, msg, old_rate, clk->rate);
 695
 696	hlist_for_each_entry(child, tmp, &clk->children, child_node)
 697		__clk_recalc_rates(child, msg);
 698}
 699
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 700/**
 701 * __clk_speculate_rates
 702 * @clk: first clk in the subtree
 703 * @parent_rate: the "future" rate of clk's parent
 704 *
 705 * Walks the subtree of clks starting with clk, speculating rates as it
 706 * goes and firing off PRE_RATE_CHANGE notifications as necessary.
 707 *
 708 * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending
 709 * pre-rate change notifications and returns early if no clks in the
 710 * subtree have subscribed to the notifications.  Note that if a clk does not
 711 * implement the .recalc_rate callback then it is assumed that the clock will
 712 * take on the rate of it's parent.
 713 *
 714 * Caller must hold prepare_lock.
 715 */
 716static int __clk_speculate_rates(struct clk *clk, unsigned long parent_rate)
 
 717{
 718	struct hlist_node *tmp;
 719	struct clk *child;
 720	unsigned long new_rate;
 721	int ret = NOTIFY_DONE;
 722
 723	if (clk->ops->recalc_rate)
 724		new_rate = clk->ops->recalc_rate(clk->hw, parent_rate);
 725	else
 726		new_rate = parent_rate;
 727
 728	/* abort the rate change if a driver returns NOTIFY_BAD */
 729	if (clk->notifier_count)
 730		ret = __clk_notify(clk, PRE_RATE_CHANGE, clk->rate, new_rate);
 731
 732	if (ret == NOTIFY_BAD)
 
 
 
 
 
 
 733		goto out;
 
 734
 735	hlist_for_each_entry(child, tmp, &clk->children, child_node) {
 736		ret = __clk_speculate_rates(child, new_rate);
 737		if (ret == NOTIFY_BAD)
 738			break;
 739	}
 740
 741out:
 742	return ret;
 743}
 744
 745static void clk_calc_subtree(struct clk *clk, unsigned long new_rate)
 
 746{
 747	struct clk *child;
 748	struct hlist_node *tmp;
 749
 750	clk->new_rate = new_rate;
 751
 752	hlist_for_each_entry(child, tmp, &clk->children, child_node) {
 753		if (child->ops->recalc_rate)
 754			child->new_rate = child->ops->recalc_rate(child->hw, new_rate);
 755		else
 756			child->new_rate = new_rate;
 757		clk_calc_subtree(child, child->new_rate);
 
 
 
 758	}
 759}
 760
 761/*
 762 * calculate the new rates returning the topmost clock that has to be
 763 * changed.
 764 */
 765static struct clk *clk_calc_new_rates(struct clk *clk, unsigned long rate)
 
 766{
 767	struct clk *top = clk;
 
 768	unsigned long best_parent_rate = 0;
 769	unsigned long new_rate;
 
 
 
 
 770
 771	/* sanity */
 772	if (IS_ERR_OR_NULL(clk))
 773		return NULL;
 774
 775	/* save parent rate, if it exists */
 776	if (clk->parent)
 777		best_parent_rate = clk->parent->rate;
 
 
 
 
 
 
 
 
 
 
 
 
 
 778
 779	/* never propagate up to the parent */
 780	if (!(clk->flags & CLK_SET_RATE_PARENT)) {
 781		if (!clk->ops->round_rate) {
 782			clk->new_rate = clk->rate;
 783			return NULL;
 784		}
 785		new_rate = clk->ops->round_rate(clk->hw, rate, &best_parent_rate);
 
 
 
 
 
 
 
 
 
 
 
 
 
 786		goto out;
 787	}
 788
 789	/* need clk->parent from here on out */
 790	if (!clk->parent) {
 791		pr_debug("%s: %s has NULL parent\n", __func__, clk->name);
 
 
 792		return NULL;
 793	}
 794
 795	if (!clk->ops->round_rate) {
 796		top = clk_calc_new_rates(clk->parent, rate);
 797		new_rate = clk->parent->new_rate;
 798
 799		goto out;
 
 
 
 800	}
 801
 802	new_rate = clk->ops->round_rate(clk->hw, rate, &best_parent_rate);
 803
 804	if (best_parent_rate != clk->parent->rate) {
 805		top = clk_calc_new_rates(clk->parent, best_parent_rate);
 806
 807		goto out;
 808	}
 809
 810out:
 811	clk_calc_subtree(clk, new_rate);
 812
 813	return top;
 814}
 815
 816/*
 817 * Notify about rate changes in a subtree. Always walk down the whole tree
 818 * so that in case of an error we can walk down the whole tree again and
 819 * abort the change.
 820 */
 821static struct clk *clk_propagate_rate_change(struct clk *clk, unsigned long event)
 
 822{
 823	struct hlist_node *tmp;
 824	struct clk *child, *fail_clk = NULL;
 825	int ret = NOTIFY_DONE;
 826
 827	if (clk->rate == clk->new_rate)
 828		return 0;
 829
 830	if (clk->notifier_count) {
 831		ret = __clk_notify(clk, event, clk->rate, clk->new_rate);
 832		if (ret == NOTIFY_BAD)
 833			fail_clk = clk;
 834	}
 835
 836	hlist_for_each_entry(child, tmp, &clk->children, child_node) {
 837		clk = clk_propagate_rate_change(child, event);
 838		if (clk)
 839			fail_clk = clk;
 
 
 
 
 
 
 
 
 
 
 840	}
 841
 842	return fail_clk;
 843}
 844
 845/*
 846 * walk down a subtree and set the new rates notifying the rate
 847 * change on the way
 848 */
 849static void clk_change_rate(struct clk *clk)
 850{
 851	struct clk *child;
 
 852	unsigned long old_rate;
 853	unsigned long best_parent_rate = 0;
 854	struct hlist_node *tmp;
 
 
 
 
 
 
 
 
 
 
 
 
 855
 856	old_rate = clk->rate;
 
 857
 858	if (clk->parent)
 859		best_parent_rate = clk->parent->rate;
 860
 861	if (clk->ops->set_rate)
 862		clk->ops->set_rate(clk->hw, clk->new_rate, best_parent_rate);
 
 
 
 863
 864	if (clk->ops->recalc_rate)
 865		clk->rate = clk->ops->recalc_rate(clk->hw, best_parent_rate);
 866	else
 867		clk->rate = best_parent_rate;
 
 
 
 
 
 
 
 
 
 
 
 
 868
 869	if (clk->notifier_count && old_rate != clk->rate)
 870		__clk_notify(clk, POST_RATE_CHANGE, old_rate, clk->rate);
 871
 872	hlist_for_each_entry(child, tmp, &clk->children, child_node)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 873		clk_change_rate(child);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 874}
 875
 876/**
 877 * clk_set_rate - specify a new rate for clk
 878 * @clk: the clk whose rate is being changed
 879 * @rate: the new rate for clk
 880 *
 881 * In the simplest case clk_set_rate will only adjust the rate of clk.
 882 *
 883 * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to
 884 * propagate up to clk's parent; whether or not this happens depends on the
 885 * outcome of clk's .round_rate implementation.  If *parent_rate is unchanged
 886 * after calling .round_rate then upstream parent propagation is ignored.  If
 887 * *parent_rate comes back with a new rate for clk's parent then we propagate
 888 * up to clk's parent and set it's rate.  Upward propagation will continue
 889 * until either a clk does not support the CLK_SET_RATE_PARENT flag or
 890 * .round_rate stops requesting changes to clk's parent_rate.
 891 *
 892 * Rate changes are accomplished via tree traversal that also recalculates the
 893 * rates for the clocks and fires off POST_RATE_CHANGE notifiers.
 894 *
 895 * Returns 0 on success, -EERROR otherwise.
 896 */
 897int clk_set_rate(struct clk *clk, unsigned long rate)
 898{
 899	struct clk *top, *fail_clk;
 900	int ret = 0;
 
 
 901
 902	/* prevent racing with updates to the clock topology */
 903	mutex_lock(&prepare_lock);
 904
 905	/* bail early if nothing to do */
 906	if (rate == clk->rate)
 907		goto out;
 908
 909	if ((clk->flags & CLK_SET_RATE_GATE) && clk->prepare_count) {
 910		ret = -EBUSY;
 911		goto out;
 912	}
 913
 914	/* calculate new rates and get the topmost changed clock */
 915	top = clk_calc_new_rates(clk, rate);
 916	if (!top) {
 917		ret = -EINVAL;
 918		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 919	}
 920
 921	/* notify that we are about to change rates */
 922	fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE);
 923	if (fail_clk) {
 924		pr_warn("%s: failed to set %s rate\n", __func__,
 925				fail_clk->name);
 926		clk_propagate_rate_change(top, ABORT_RATE_CHANGE);
 927		ret = -EBUSY;
 928		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 929	}
 930
 931	/* change the rates */
 932	clk_change_rate(top);
 933
 934	mutex_unlock(&prepare_lock);
 
 935
 936	return 0;
 937out:
 938	mutex_unlock(&prepare_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 939
 940	return ret;
 941}
 942EXPORT_SYMBOL_GPL(clk_set_rate);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 943
 944/**
 945 * clk_get_parent - return the parent of a clk
 946 * @clk: the clk whose parent gets returned
 947 *
 948 * Simply returns clk->parent.  Returns NULL if clk is NULL.
 949 */
 950struct clk *clk_get_parent(struct clk *clk)
 951{
 952	struct clk *parent;
 953
 954	mutex_lock(&prepare_lock);
 955	parent = __clk_get_parent(clk);
 956	mutex_unlock(&prepare_lock);
 
 
 
 
 957
 958	return parent;
 959}
 960EXPORT_SYMBOL_GPL(clk_get_parent);
 961
 962/*
 963 * .get_parent is mandatory for clocks with multiple possible parents.  It is
 964 * optional for single-parent clocks.  Always call .get_parent if it is
 965 * available and WARN if it is missing for multi-parent clocks.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 966 *
 967 * For single-parent clocks without .get_parent, first check to see if the
 968 * .parents array exists, and if so use it to avoid an expensive tree
 969 * traversal.  If .parents does not exist then walk the tree with __clk_lookup.
 970 */
 971static struct clk *__clk_init_parent(struct clk *clk)
 972{
 973	struct clk *ret = NULL;
 974	u8 index;
 975
 976	/* handle the trivial cases */
 
 
 977
 978	if (!clk->num_parents)
 979		goto out;
 980
 981	if (clk->num_parents == 1) {
 982		if (IS_ERR_OR_NULL(clk->parent))
 983			ret = clk->parent = __clk_lookup(clk->parent_names[0]);
 984		ret = clk->parent;
 985		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 986	}
 987
 988	if (!clk->ops->get_parent) {
 989		WARN(!clk->ops->get_parent,
 990			"%s: multi-parent clocks must implement .get_parent\n",
 991			__func__);
 992		goto out;
 993	};
 994
 995	/*
 996	 * Do our best to cache parent clocks in clk->parents.  This prevents
 997	 * unnecessary and expensive calls to __clk_lookup.  We don't set
 998	 * clk->parent here; that is done by the calling function
 999	 */
1000
1001	index = clk->ops->get_parent(clk->hw);
 
 
1002
1003	if (!clk->parents)
1004		clk->parents =
1005			kzalloc((sizeof(struct clk*) * clk->num_parents),
1006					GFP_KERNEL);
1007
1008	if (!clk->parents)
1009		ret = __clk_lookup(clk->parent_names[index]);
1010	else if (!clk->parents[index])
1011		ret = clk->parents[index] =
1012			__clk_lookup(clk->parent_names[index]);
1013	else
1014		ret = clk->parents[index];
 
 
 
1015
1016out:
1017	return ret;
1018}
1019
1020void __clk_reparent(struct clk *clk, struct clk *new_parent)
1021{
1022#ifdef CONFIG_COMMON_CLK_DEBUG
1023	struct dentry *d;
1024	struct dentry *new_parent_d;
1025#endif
1026
1027	if (!clk || !new_parent)
1028		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1029
1030	hlist_del(&clk->child_node);
 
1031
1032	if (new_parent)
1033		hlist_add_head(&clk->child_node, &new_parent->children);
1034	else
1035		hlist_add_head(&clk->child_node, &clk_orphan_list);
1036
1037#ifdef CONFIG_COMMON_CLK_DEBUG
1038	if (!inited)
1039		goto out;
1040
1041	if (new_parent)
1042		new_parent_d = new_parent->dentry;
1043	else
1044		new_parent_d = orphandir;
1045
1046	d = debugfs_rename(clk->dentry->d_parent, clk->dentry,
1047			new_parent_d, clk->name);
1048	if (d)
1049		clk->dentry = d;
1050	else
1051		pr_debug("%s: failed to rename debugfs entry for %s\n",
1052				__func__, clk->name);
1053out:
1054#endif
1055
1056	clk->parent = new_parent;
1057
1058	__clk_recalc_rates(clk, POST_RATE_CHANGE);
1059}
 
1060
1061static int __clk_set_parent(struct clk *clk, struct clk *parent)
1062{
1063	struct clk *old_parent;
1064	unsigned long flags;
1065	int ret = -EINVAL;
1066	u8 i;
1067
1068	old_parent = clk->parent;
1069
1070	if (!clk->parents)
1071		clk->parents = kzalloc((sizeof(struct clk*) * clk->num_parents),
1072								GFP_KERNEL);
1073
1074	/*
1075	 * find index of new parent clock using cached parent ptrs,
1076	 * or if not yet cached, use string name comparison and cache
1077	 * them now to avoid future calls to __clk_lookup.
1078	 */
1079	for (i = 0; i < clk->num_parents; i++) {
1080		if (clk->parents && clk->parents[i] == parent)
1081			break;
1082		else if (!strcmp(clk->parent_names[i], parent->name)) {
1083			if (clk->parents)
1084				clk->parents[i] = __clk_lookup(parent->name);
1085			break;
1086		}
1087	}
1088
1089	if (i == clk->num_parents) {
1090		pr_debug("%s: clock %s is not a possible parent of clock %s\n",
1091				__func__, parent->name, clk->name);
1092		goto out;
 
 
1093	}
1094
1095	/* migrate prepare and enable */
1096	if (clk->prepare_count)
1097		__clk_prepare(parent);
1098
1099	/* FIXME replace with clk_is_enabled(clk) someday */
1100	spin_lock_irqsave(&enable_lock, flags);
1101	if (clk->enable_count)
1102		__clk_enable(parent);
1103	spin_unlock_irqrestore(&enable_lock, flags);
1104
1105	/* change clock input source */
1106	ret = clk->ops->set_parent(clk->hw, i);
1107
1108	/* clean up old prepare and enable */
1109	spin_lock_irqsave(&enable_lock, flags);
1110	if (clk->enable_count)
1111		__clk_disable(old_parent);
1112	spin_unlock_irqrestore(&enable_lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1113
1114	if (clk->prepare_count)
1115		__clk_unprepare(old_parent);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1116
1117out:
1118	return ret;
1119}
1120
1121/**
1122 * clk_set_parent - switch the parent of a mux clk
1123 * @clk: the mux clk whose input we are switching
1124 * @parent: the new input to clk
1125 *
1126 * Re-parent clk to use parent as it's new input source.  If clk has the
1127 * CLK_SET_PARENT_GATE flag set then clk must be gated for this
1128 * operation to succeed.  After successfully changing clk's parent
1129 * clk_set_parent will update the clk topology, sysfs topology and
1130 * propagate rate recalculation via __clk_recalc_rates.  Returns 0 on
1131 * success, -EERROR otherwise.
1132 */
1133int clk_set_parent(struct clk *clk, struct clk *parent)
 
 
 
 
 
 
 
 
 
1134{
 
 
 
 
 
 
 
 
 
 
1135	int ret = 0;
1136
1137	if (!clk || !clk->ops)
1138		return -EINVAL;
1139
1140	if (!clk->ops->set_parent)
1141		return -ENOSYS;
 
1142
1143	/* prevent racing with updates to the clock topology */
1144	mutex_lock(&prepare_lock);
 
 
 
1145
1146	if (clk->parent == parent)
1147		goto out;
1148
1149	/* propagate PRE_RATE_CHANGE notifications */
1150	if (clk->notifier_count)
1151		ret = __clk_speculate_rates(clk, parent->rate);
 
1152
1153	/* abort if a driver objects */
1154	if (ret == NOTIFY_STOP)
1155		goto out;
1156
1157	/* only re-parent if the clock is not in use */
1158	if ((clk->flags & CLK_SET_PARENT_GATE) && clk->prepare_count)
1159		ret = -EBUSY;
1160	else
1161		ret = __clk_set_parent(clk, parent);
 
 
1162
1163	/* propagate ABORT_RATE_CHANGE if .set_parent failed */
1164	if (ret) {
1165		__clk_recalc_rates(clk, ABORT_RATE_CHANGE);
1166		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1167	}
1168
1169	/* propagate rate recalculation downstream */
1170	__clk_reparent(clk, parent);
1171
1172out:
1173	mutex_unlock(&prepare_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1174
1175	return ret;
1176}
1177EXPORT_SYMBOL_GPL(clk_set_parent);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1178
1179/**
1180 * __clk_init - initialize the data structures in a struct clk
1181 * @dev:	device initializing this clk, placeholder for now
1182 * @clk:	clk being initialized
1183 *
1184 * Initializes the lists in struct clk, queries the hardware for the
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1185 * parent and rate and sets them both.
1186 */
1187int __clk_init(struct device *dev, struct clk *clk)
1188{
1189	int i, ret = 0;
1190	struct clk *orphan;
1191	struct hlist_node *tmp, *tmp2;
 
1192
1193	if (!clk)
1194		return -EINVAL;
1195
1196	mutex_lock(&prepare_lock);
 
 
 
 
1197
1198	/* check to see if a clock with this name is already registered */
1199	if (__clk_lookup(clk->name)) {
1200		pr_debug("%s: clk %s already initialized\n",
1201				__func__, clk->name);
1202		ret = -EEXIST;
1203		goto out;
1204	}
1205
1206	/* check that clk_ops are sane.  See Documentation/clk.txt */
1207	if (clk->ops->set_rate &&
1208			!(clk->ops->round_rate && clk->ops->recalc_rate)) {
1209		pr_warning("%s: %s must implement .round_rate & .recalc_rate\n",
1210				__func__, clk->name);
 
1211		ret = -EINVAL;
1212		goto out;
1213	}
1214
1215	if (clk->ops->set_parent && !clk->ops->get_parent) {
1216		pr_warning("%s: %s must implement .get_parent & .set_parent\n",
1217				__func__, clk->name);
1218		ret = -EINVAL;
1219		goto out;
1220	}
1221
1222	/* throw a WARN if any entries in parent_names are NULL */
1223	for (i = 0; i < clk->num_parents; i++)
1224		WARN(!clk->parent_names[i],
1225				"%s: invalid NULL in %s's .parent_names\n",
1226				__func__, clk->name);
 
1227
1228	/*
1229	 * Allocate an array of struct clk *'s to avoid unnecessary string
1230	 * look-ups of clk's possible parents.  This can fail for clocks passed
1231	 * in to clk_init during early boot; thus any access to clk->parents[]
1232	 * must always check for a NULL pointer and try to populate it if
1233	 * necessary.
1234	 *
1235	 * If clk->parents is not NULL we skip this entire block.  This allows
1236	 * for clock drivers to statically initialize clk->parents.
1237	 */
1238	if (clk->num_parents && !clk->parents) {
1239		clk->parents = kmalloc((sizeof(struct clk*) * clk->num_parents),
1240				GFP_KERNEL);
1241		/*
1242		 * __clk_lookup returns NULL for parents that have not been
1243		 * clk_init'd; thus any access to clk->parents[] must check
1244		 * for a NULL pointer.  We can always perform lazy lookups for
1245		 * missing parents later on.
1246		 */
1247		if (clk->parents)
1248			for (i = 0; i < clk->num_parents; i++)
1249				clk->parents[i] =
1250					__clk_lookup(clk->parent_names[i]);
1251	}
1252
1253	clk->parent = __clk_init_parent(clk);
1254
1255	/*
1256	 * Populate clk->parent if parent has already been __clk_init'd.  If
1257	 * parent has not yet been __clk_init'd then place clk in the orphan
1258	 * list.  If clk has set the CLK_IS_ROOT flag then place it in the root
1259	 * clk list.
1260	 *
1261	 * Every time a new clk is clk_init'd then we walk the list of orphan
1262	 * clocks and re-parent any that are children of the clock currently
1263	 * being clk_init'd.
1264	 */
1265	if (clk->parent)
1266		hlist_add_head(&clk->child_node,
1267				&clk->parent->children);
1268	else if (clk->flags & CLK_IS_ROOT)
1269		hlist_add_head(&clk->child_node, &clk_root_list);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1270	else
1271		hlist_add_head(&clk->child_node, &clk_orphan_list);
 
 
 
 
 
1272
1273	/*
1274	 * Set clk's rate.  The preferred method is to use .recalc_rate.  For
1275	 * simple clocks and lazy developers the default fallback is to use the
1276	 * parent's rate.  If a clock doesn't have a parent (or is orphaned)
1277	 * then rate is set to zero.
1278	 */
1279	if (clk->ops->recalc_rate)
1280		clk->rate = clk->ops->recalc_rate(clk->hw,
1281				__clk_get_rate(clk->parent));
1282	else if (clk->parent)
1283		clk->rate = clk->parent->rate;
1284	else
1285		clk->rate = 0;
 
1286
1287	/*
1288	 * walk the list of orphan clocks and reparent any that are children of
1289	 * this clock
 
1290	 */
1291	hlist_for_each_entry_safe(orphan, tmp, tmp2, &clk_orphan_list, child_node)
1292		for (i = 0; i < orphan->num_parents; i++)
1293			if (!strcmp(clk->name, orphan->parent_names[i])) {
1294				__clk_reparent(orphan, clk);
1295				break;
1296			}
 
 
 
1297
1298	/*
1299	 * optional platform-specific magic
1300	 *
1301	 * The .init callback is not used by any of the basic clock types, but
1302	 * exists for weird hardware that must perform initialization magic.
1303	 * Please consider other ways of solving initialization problems before
1304	 * using this callback, as it's use is discouraged.
1305	 */
1306	if (clk->ops->init)
1307		clk->ops->init(clk->hw);
1308
1309	clk_debug_register(clk);
 
 
 
 
 
 
 
 
 
 
 
 
 
1310
 
1311out:
1312	mutex_unlock(&prepare_lock);
 
 
 
 
 
1313
1314	return ret;
1315}
1316
1317/**
1318 * __clk_register - register a clock and return a cookie.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1319 *
1320 * Same as clk_register, except that the .clk field inside hw shall point to a
1321 * preallocated (generally statically allocated) struct clk. None of the fields
1322 * of the struct clk need to be initialized.
1323 *
1324 * The data pointed to by .init and .clk field shall NOT be marked as init
1325 * data.
1326 *
1327 * __clk_register is only exposed via clk-private.h and is intended for use with
1328 * very large numbers of clocks that need to be statically initialized.  It is
1329 * a layering violation to include clk-private.h from any code which implements
1330 * a clock's .ops; as such any statically initialized clock data MUST be in a
1331 * separate C file from the logic that implements it's operations.  Returns 0
1332 * on success, otherwise an error code.
1333 */
1334struct clk *__clk_register(struct device *dev, struct clk_hw *hw)
 
1335{
1336	int ret;
1337	struct clk *clk;
1338
1339	clk = hw->clk;
1340	clk->name = hw->init->name;
1341	clk->ops = hw->init->ops;
1342	clk->hw = hw;
1343	clk->flags = hw->init->flags;
1344	clk->parent_names = hw->init->parent_names;
1345	clk->num_parents = hw->init->num_parents;
1346
1347	ret = __clk_init(dev, clk);
1348	if (ret)
1349		return ERR_PTR(ret);
 
1350
1351	return clk;
1352}
1353EXPORT_SYMBOL_GPL(__clk_register);
1354
1355/**
1356 * clk_register - allocate a new clock, register it and return an opaque cookie
1357 * @dev: device that is registering this clock
1358 * @hw: link to hardware-specific clock data
1359 *
1360 * clk_register is the primary interface for populating the clock tree with new
1361 * clock nodes.  It returns a pointer to the newly allocated struct clk which
1362 * cannot be dereferenced by driver code but may be used in conjuction with the
1363 * rest of the clock API.  In the event of an error clk_register will return an
1364 * error code; drivers must test for an error code after calling clk_register.
1365 */
1366struct clk *clk_register(struct device *dev, struct clk_hw *hw)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1367{
1368	int i, ret;
1369	struct clk *clk;
 
1370
1371	clk = kzalloc(sizeof(*clk), GFP_KERNEL);
1372	if (!clk) {
1373		pr_err("%s: could not allocate clk\n", __func__);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1374		ret = -ENOMEM;
1375		goto fail_out;
1376	}
1377
1378	clk->name = kstrdup(hw->init->name, GFP_KERNEL);
1379	if (!clk->name) {
1380		pr_err("%s: could not allocate clk->name\n", __func__);
1381		ret = -ENOMEM;
1382		goto fail_name;
1383	}
1384	clk->ops = hw->init->ops;
1385	clk->hw = hw;
1386	clk->flags = hw->init->flags;
1387	clk->num_parents = hw->init->num_parents;
1388	hw->clk = clk;
1389
1390	/* allocate local copy in case parent_names is __initdata */
1391	clk->parent_names = kzalloc((sizeof(char*) * clk->num_parents),
1392			GFP_KERNEL);
1393
1394	if (!clk->parent_names) {
1395		pr_err("%s: could not allocate clk->parent_names\n", __func__);
1396		ret = -ENOMEM;
1397		goto fail_parent_names;
1398	}
 
1399
 
 
 
 
 
 
 
 
 
 
 
 
1400
1401	/* copy each string name in case parent_names is __initdata */
1402	for (i = 0; i < clk->num_parents; i++) {
1403		clk->parent_names[i] = kstrdup(hw->init->parent_names[i],
1404						GFP_KERNEL);
1405		if (!clk->parent_names[i]) {
1406			pr_err("%s: could not copy parent_names\n", __func__);
1407			ret = -ENOMEM;
1408			goto fail_parent_names_copy;
1409		}
 
 
 
 
 
1410	}
1411
1412	ret = __clk_init(dev, clk);
 
 
1413	if (!ret)
1414		return clk;
1415
1416fail_parent_names_copy:
1417	while (--i >= 0)
1418		kfree(clk->parent_names[i]);
1419	kfree(clk->parent_names);
1420fail_parent_names:
1421	kfree(clk->name);
 
 
 
 
 
 
1422fail_name:
1423	kfree(clk);
1424fail_out:
1425	return ERR_PTR(ret);
1426}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1427EXPORT_SYMBOL_GPL(clk_register);
1428
1429/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1430 * clk_unregister - unregister a currently registered clock
1431 * @clk: clock to unregister
1432 *
1433 * Currently unimplemented.
1434 */
1435void clk_unregister(struct clk *clk) {}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1436EXPORT_SYMBOL_GPL(clk_unregister);
1437
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1438/***        clk rate change notifiers        ***/
1439
1440/**
1441 * clk_notifier_register - add a clk rate change notifier
1442 * @clk: struct clk * to watch
1443 * @nb: struct notifier_block * with callback info
1444 *
1445 * Request notification when clk's rate changes.  This uses an SRCU
1446 * notifier because we want it to block and notifier unregistrations are
1447 * uncommon.  The callbacks associated with the notifier must not
1448 * re-enter into the clk framework by calling any top-level clk APIs;
1449 * this will cause a nested prepare_lock mutex.
1450 *
1451 * Pre-change notifier callbacks will be passed the current, pre-change
1452 * rate of the clk via struct clk_notifier_data.old_rate.  The new,
1453 * post-change rate of the clk is passed via struct
1454 * clk_notifier_data.new_rate.
1455 *
1456 * Post-change notifiers will pass the now-current, post-change rate of
1457 * the clk in both struct clk_notifier_data.old_rate and struct
1458 * clk_notifier_data.new_rate.
1459 *
1460 * Abort-change notifiers are effectively the opposite of pre-change
1461 * notifiers: the original pre-change clk rate is passed in via struct
1462 * clk_notifier_data.new_rate and the failed post-change rate is passed
1463 * in via struct clk_notifier_data.old_rate.
1464 *
1465 * clk_notifier_register() must be called from non-atomic context.
1466 * Returns -EINVAL if called with null arguments, -ENOMEM upon
1467 * allocation failure; otherwise, passes along the return value of
1468 * srcu_notifier_chain_register().
1469 */
1470int clk_notifier_register(struct clk *clk, struct notifier_block *nb)
1471{
1472	struct clk_notifier *cn;
1473	int ret = -ENOMEM;
1474
1475	if (!clk || !nb)
1476		return -EINVAL;
1477
1478	mutex_lock(&prepare_lock);
1479
1480	/* search the list of notifiers for this clk */
1481	list_for_each_entry(cn, &clk_notifier_list, node)
1482		if (cn->clk == clk)
1483			break;
1484
1485	/* if clk wasn't in the notifier list, allocate new clk_notifier */
1486	if (cn->clk != clk) {
1487		cn = kzalloc(sizeof(struct clk_notifier), GFP_KERNEL);
1488		if (!cn)
1489			goto out;
1490
1491		cn->clk = clk;
1492		srcu_init_notifier_head(&cn->notifier_head);
1493
1494		list_add(&cn->node, &clk_notifier_list);
1495	}
1496
1497	ret = srcu_notifier_chain_register(&cn->notifier_head, nb);
1498
1499	clk->notifier_count++;
1500
1501out:
1502	mutex_unlock(&prepare_lock);
1503
1504	return ret;
1505}
1506EXPORT_SYMBOL_GPL(clk_notifier_register);
1507
1508/**
1509 * clk_notifier_unregister - remove a clk rate change notifier
1510 * @clk: struct clk *
1511 * @nb: struct notifier_block * with callback info
1512 *
1513 * Request no further notification for changes to 'clk' and frees memory
1514 * allocated in clk_notifier_register.
1515 *
1516 * Returns -EINVAL if called with null arguments; otherwise, passes
1517 * along the return value of srcu_notifier_chain_unregister().
1518 */
1519int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb)
1520{
1521	struct clk_notifier *cn = NULL;
1522	int ret = -EINVAL;
1523
1524	if (!clk || !nb)
1525		return -EINVAL;
1526
1527	mutex_lock(&prepare_lock);
1528
1529	list_for_each_entry(cn, &clk_notifier_list, node)
1530		if (cn->clk == clk)
1531			break;
1532
1533	if (cn->clk == clk) {
1534		ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb);
1535
1536		clk->notifier_count--;
1537
1538		/* XXX the notifier code should handle this better */
1539		if (!cn->notifier_head.head) {
1540			srcu_cleanup_notifier_head(&cn->notifier_head);
 
1541			kfree(cn);
1542		}
1543
1544	} else {
1545		ret = -ENOENT;
1546	}
1547
1548	mutex_unlock(&prepare_lock);
1549
1550	return ret;
1551}
1552EXPORT_SYMBOL_GPL(clk_notifier_unregister);
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com>
   4 * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org>
   5 *
   6 * Standard functionality for the common clock API.  See Documentation/driver-api/clk.rst
 
 
 
 
   7 */
   8
   9#include <linux/clk.h>
  10#include <linux/clk-provider.h>
  11#include <linux/clk/clk-conf.h>
  12#include <linux/module.h>
  13#include <linux/mutex.h>
  14#include <linux/spinlock.h>
  15#include <linux/err.h>
  16#include <linux/list.h>
  17#include <linux/slab.h>
  18#include <linux/of.h>
  19#include <linux/device.h>
  20#include <linux/init.h>
  21#include <linux/pm_runtime.h>
  22#include <linux/sched.h>
  23#include <linux/clkdev.h>
  24
  25#include "clk.h"
  26
  27static DEFINE_SPINLOCK(enable_lock);
  28static DEFINE_MUTEX(prepare_lock);
  29
  30static struct task_struct *prepare_owner;
  31static struct task_struct *enable_owner;
  32
  33static int prepare_refcnt;
  34static int enable_refcnt;
  35
  36static HLIST_HEAD(clk_root_list);
  37static HLIST_HEAD(clk_orphan_list);
  38static LIST_HEAD(clk_notifier_list);
  39
  40static struct hlist_head *all_lists[] = {
  41	&clk_root_list,
  42	&clk_orphan_list,
  43	NULL,
  44};
  45
  46/***    private data structures    ***/
  47
  48struct clk_parent_map {
  49	const struct clk_hw	*hw;
  50	struct clk_core		*core;
  51	const char		*fw_name;
  52	const char		*name;
  53	int			index;
  54};
  55
  56struct clk_core {
  57	const char		*name;
  58	const struct clk_ops	*ops;
  59	struct clk_hw		*hw;
  60	struct module		*owner;
  61	struct device		*dev;
  62	struct device_node	*of_node;
  63	struct clk_core		*parent;
  64	struct clk_parent_map	*parents;
  65	u8			num_parents;
  66	u8			new_parent_index;
  67	unsigned long		rate;
  68	unsigned long		req_rate;
  69	unsigned long		new_rate;
  70	struct clk_core		*new_parent;
  71	struct clk_core		*new_child;
  72	unsigned long		flags;
  73	bool			orphan;
  74	bool			rpm_enabled;
  75	unsigned int		enable_count;
  76	unsigned int		prepare_count;
  77	unsigned int		protect_count;
  78	unsigned long		min_rate;
  79	unsigned long		max_rate;
  80	unsigned long		accuracy;
  81	int			phase;
  82	struct clk_duty		duty;
  83	struct hlist_head	children;
  84	struct hlist_node	child_node;
  85	struct hlist_head	clks;
  86	unsigned int		notifier_count;
  87#ifdef CONFIG_DEBUG_FS
  88	struct dentry		*dentry;
  89	struct hlist_node	debug_node;
  90#endif
  91	struct kref		ref;
  92};
  93
  94#define CREATE_TRACE_POINTS
  95#include <trace/events/clk.h>
  96
  97struct clk {
  98	struct clk_core	*core;
  99	struct device *dev;
 100	const char *dev_id;
 101	const char *con_id;
 102	unsigned long min_rate;
 103	unsigned long max_rate;
 104	unsigned int exclusive_count;
 105	struct hlist_node clks_node;
 106};
 107
 108/***           runtime pm          ***/
 109static int clk_pm_runtime_get(struct clk_core *core)
 110{
 111	int ret;
 
 112
 113	if (!core->rpm_enabled)
 114		return 0;
 
 
 115
 116	ret = pm_runtime_get_sync(core->dev);
 117	return ret < 0 ? ret : 0;
 118}
 119
 120static void clk_pm_runtime_put(struct clk_core *core)
 121{
 122	if (!core->rpm_enabled)
 123		return;
 124
 125	pm_runtime_put_sync(core->dev);
 126}
 127
 128/***           locking             ***/
 129static void clk_prepare_lock(void)
 130{
 131	if (!mutex_trylock(&prepare_lock)) {
 132		if (prepare_owner == current) {
 133			prepare_refcnt++;
 134			return;
 135		}
 136		mutex_lock(&prepare_lock);
 137	}
 138	WARN_ON_ONCE(prepare_owner != NULL);
 139	WARN_ON_ONCE(prepare_refcnt != 0);
 140	prepare_owner = current;
 141	prepare_refcnt = 1;
 142}
 
 
 
 
 
 
 
 
 
 143
 144static void clk_prepare_unlock(void)
 145{
 146	WARN_ON_ONCE(prepare_owner != current);
 147	WARN_ON_ONCE(prepare_refcnt == 0);
 148
 149	if (--prepare_refcnt)
 150		return;
 151	prepare_owner = NULL;
 152	mutex_unlock(&prepare_lock);
 153}
 154
 155static unsigned long clk_enable_lock(void)
 156	__acquires(enable_lock)
 157{
 158	unsigned long flags;
 
 
 159
 160	/*
 161	 * On UP systems, spin_trylock_irqsave() always returns true, even if
 162	 * we already hold the lock. So, in that case, we rely only on
 163	 * reference counting.
 164	 */
 165	if (!IS_ENABLED(CONFIG_SMP) ||
 166	    !spin_trylock_irqsave(&enable_lock, flags)) {
 167		if (enable_owner == current) {
 168			enable_refcnt++;
 169			__acquire(enable_lock);
 170			if (!IS_ENABLED(CONFIG_SMP))
 171				local_save_flags(flags);
 172			return flags;
 173		}
 174		spin_lock_irqsave(&enable_lock, flags);
 175	}
 176	WARN_ON_ONCE(enable_owner != NULL);
 177	WARN_ON_ONCE(enable_refcnt != 0);
 178	enable_owner = current;
 179	enable_refcnt = 1;
 180	return flags;
 181}
 182
 183static void clk_enable_unlock(unsigned long flags)
 184	__releases(enable_lock)
 185{
 186	WARN_ON_ONCE(enable_owner != current);
 187	WARN_ON_ONCE(enable_refcnt == 0);
 188
 189	if (--enable_refcnt) {
 190		__release(enable_lock);
 191		return;
 192	}
 193	enable_owner = NULL;
 194	spin_unlock_irqrestore(&enable_lock, flags);
 195}
 196
 197static bool clk_core_rate_is_protected(struct clk_core *core)
 198{
 199	return core->protect_count;
 200}
 201
 202static bool clk_core_is_prepared(struct clk_core *core)
 203{
 204	bool ret = false;
 205
 206	/*
 207	 * .is_prepared is optional for clocks that can prepare
 208	 * fall back to software usage counter if it is missing
 209	 */
 210	if (!core->ops->is_prepared)
 211		return core->prepare_count;
 212
 213	if (!clk_pm_runtime_get(core)) {
 214		ret = core->ops->is_prepared(core->hw);
 215		clk_pm_runtime_put(core);
 216	}
 217
 
 
 218	return ret;
 219}
 220
 221static bool clk_core_is_enabled(struct clk_core *core)
 
 
 
 
 
 
 
 
 
 
 
 222{
 223	bool ret = false;
 
 
 
 
 
 224
 225	/*
 226	 * .is_enabled is only mandatory for clocks that gate
 227	 * fall back to software usage counter if .is_enabled is missing
 228	 */
 229	if (!core->ops->is_enabled)
 230		return core->enable_count;
 231
 232	/*
 233	 * Check if clock controller's device is runtime active before
 234	 * calling .is_enabled callback. If not, assume that clock is
 235	 * disabled, because we might be called from atomic context, from
 236	 * which pm_runtime_get() is not allowed.
 237	 * This function is called mainly from clk_disable_unused_subtree,
 238	 * which ensures proper runtime pm activation of controller before
 239	 * taking enable spinlock, but the below check is needed if one tries
 240	 * to call it from other places.
 241	 */
 242	if (core->rpm_enabled) {
 243		pm_runtime_get_noresume(core->dev);
 244		if (!pm_runtime_active(core->dev)) {
 245			ret = false;
 246			goto done;
 247		}
 248	}
 
 
 
 249
 250	ret = core->ops->is_enabled(core->hw);
 251done:
 252	if (core->rpm_enabled)
 253		pm_runtime_put(core->dev);
 254
 
 255	return ret;
 256}
 257
 258/***    helper functions   ***/
 259
 260const char *__clk_get_name(const struct clk *clk)
 
 
 
 
 
 
 
 
 
 
 261{
 262	return !clk ? NULL : clk->core->name;
 263}
 264EXPORT_SYMBOL_GPL(__clk_get_name);
 265
 266const char *clk_hw_get_name(const struct clk_hw *hw)
 267{
 268	return hw->core->name;
 269}
 270EXPORT_SYMBOL_GPL(clk_hw_get_name);
 271
 272struct clk_hw *__clk_get_hw(struct clk *clk)
 273{
 274	return !clk ? NULL : clk->core->hw;
 275}
 276EXPORT_SYMBOL_GPL(__clk_get_hw);
 277
 278unsigned int clk_hw_get_num_parents(const struct clk_hw *hw)
 279{
 280	return hw->core->num_parents;
 281}
 282EXPORT_SYMBOL_GPL(clk_hw_get_num_parents);
 283
 284struct clk_hw *clk_hw_get_parent(const struct clk_hw *hw)
 285{
 286	return hw->core->parent ? hw->core->parent->hw : NULL;
 287}
 288EXPORT_SYMBOL_GPL(clk_hw_get_parent);
 289
 290static struct clk_core *__clk_lookup_subtree(const char *name,
 291					     struct clk_core *core)
 292{
 293	struct clk_core *child;
 294	struct clk_core *ret;
 295
 296	if (!strcmp(core->name, name))
 297		return core;
 298
 299	hlist_for_each_entry(child, &core->children, child_node) {
 300		ret = __clk_lookup_subtree(name, child);
 301		if (ret)
 302			return ret;
 303	}
 304
 305	return NULL;
 306}
 307
 308static struct clk_core *clk_core_lookup(const char *name)
 309{
 310	struct clk_core *root_clk;
 311	struct clk_core *ret;
 312
 313	if (!name)
 314		return NULL;
 315
 316	/* search the 'proper' clk tree first */
 317	hlist_for_each_entry(root_clk, &clk_root_list, child_node) {
 318		ret = __clk_lookup_subtree(name, root_clk);
 319		if (ret)
 320			return ret;
 321	}
 322
 323	/* if not found, then search the orphan tree */
 324	hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) {
 325		ret = __clk_lookup_subtree(name, root_clk);
 326		if (ret)
 327			return ret;
 328	}
 329
 330	return NULL;
 331}
 332
 333#ifdef CONFIG_OF
 334static int of_parse_clkspec(const struct device_node *np, int index,
 335			    const char *name, struct of_phandle_args *out_args);
 336static struct clk_hw *
 337of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec);
 338#else
 339static inline int of_parse_clkspec(const struct device_node *np, int index,
 340				   const char *name,
 341				   struct of_phandle_args *out_args)
 342{
 343	return -ENOENT;
 344}
 345static inline struct clk_hw *
 346of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec)
 347{
 348	return ERR_PTR(-ENOENT);
 349}
 350#endif
 351
 352/**
 353 * clk_core_get - Find the clk_core parent of a clk
 354 * @core: clk to find parent of
 355 * @p_index: parent index to search for
 356 *
 357 * This is the preferred method for clk providers to find the parent of a
 358 * clk when that parent is external to the clk controller. The parent_names
 359 * array is indexed and treated as a local name matching a string in the device
 360 * node's 'clock-names' property or as the 'con_id' matching the device's
 361 * dev_name() in a clk_lookup. This allows clk providers to use their own
 362 * namespace instead of looking for a globally unique parent string.
 363 *
 364 * For example the following DT snippet would allow a clock registered by the
 365 * clock-controller@c001 that has a clk_init_data::parent_data array
 366 * with 'xtal' in the 'name' member to find the clock provided by the
 367 * clock-controller@f00abcd without needing to get the globally unique name of
 368 * the xtal clk.
 369 *
 370 *      parent: clock-controller@f00abcd {
 371 *              reg = <0xf00abcd 0xabcd>;
 372 *              #clock-cells = <0>;
 373 *      };
 374 *
 375 *      clock-controller@c001 {
 376 *              reg = <0xc001 0xf00d>;
 377 *              clocks = <&parent>;
 378 *              clock-names = "xtal";
 379 *              #clock-cells = <1>;
 380 *      };
 381 *
 382 * Returns: -ENOENT when the provider can't be found or the clk doesn't
 383 * exist in the provider or the name can't be found in the DT node or
 384 * in a clkdev lookup. NULL when the provider knows about the clk but it
 385 * isn't provided on this system.
 386 * A valid clk_core pointer when the clk can be found in the provider.
 387 */
 388static struct clk_core *clk_core_get(struct clk_core *core, u8 p_index)
 389{
 390	const char *name = core->parents[p_index].fw_name;
 391	int index = core->parents[p_index].index;
 392	struct clk_hw *hw = ERR_PTR(-ENOENT);
 393	struct device *dev = core->dev;
 394	const char *dev_id = dev ? dev_name(dev) : NULL;
 395	struct device_node *np = core->of_node;
 396	struct of_phandle_args clkspec;
 397
 398	if (np && (name || index >= 0) &&
 399	    !of_parse_clkspec(np, index, name, &clkspec)) {
 400		hw = of_clk_get_hw_from_clkspec(&clkspec);
 401		of_node_put(clkspec.np);
 402	} else if (name) {
 403		/*
 404		 * If the DT search above couldn't find the provider fallback to
 405		 * looking up via clkdev based clk_lookups.
 406		 */
 407		hw = clk_find_hw(dev_id, name);
 408	}
 409
 410	if (IS_ERR(hw))
 411		return ERR_CAST(hw);
 412
 413	return hw->core;
 414}
 415
 416static void clk_core_fill_parent_index(struct clk_core *core, u8 index)
 417{
 418	struct clk_parent_map *entry = &core->parents[index];
 419	struct clk_core *parent = ERR_PTR(-ENOENT);
 420
 421	if (entry->hw) {
 422		parent = entry->hw->core;
 423		/*
 424		 * We have a direct reference but it isn't registered yet?
 425		 * Orphan it and let clk_reparent() update the orphan status
 426		 * when the parent is registered.
 427		 */
 428		if (!parent)
 429			parent = ERR_PTR(-EPROBE_DEFER);
 430	} else {
 431		parent = clk_core_get(core, index);
 432		if (IS_ERR(parent) && PTR_ERR(parent) == -ENOENT && entry->name)
 433			parent = clk_core_lookup(entry->name);
 434	}
 435
 436	/* Only cache it if it's not an error */
 437	if (!IS_ERR(parent))
 438		entry->core = parent;
 439}
 440
 441static struct clk_core *clk_core_get_parent_by_index(struct clk_core *core,
 442							 u8 index)
 443{
 444	if (!core || index >= core->num_parents || !core->parents)
 445		return NULL;
 446
 447	if (!core->parents[index].core)
 448		clk_core_fill_parent_index(core, index);
 449
 450	return core->parents[index].core;
 
 451}
 452
 453struct clk_hw *
 454clk_hw_get_parent_by_index(const struct clk_hw *hw, unsigned int index)
 455{
 456	struct clk_core *parent;
 
 457
 458	parent = clk_core_get_parent_by_index(hw->core, index);
 459
 460	return !parent ? NULL : parent->hw;
 461}
 462EXPORT_SYMBOL_GPL(clk_hw_get_parent_by_index);
 463
 464unsigned int __clk_get_enable_count(struct clk *clk)
 465{
 466	return !clk ? 0 : clk->core->enable_count;
 467}
 468
 469static unsigned long clk_core_get_rate_nolock(struct clk_core *core)
 470{
 471	if (!core)
 472		return 0;
 473
 474	if (!core->num_parents || core->parent)
 475		return core->rate;
 476
 477	/*
 478	 * Clk must have a parent because num_parents > 0 but the parent isn't
 479	 * known yet. Best to return 0 as the rate of this clk until we can
 480	 * properly recalc the rate based on the parent's rate.
 481	 */
 482	return 0;
 483}
 
 484
 485unsigned long clk_hw_get_rate(const struct clk_hw *hw)
 486{
 487	return clk_core_get_rate_nolock(hw->core);
 488}
 489EXPORT_SYMBOL_GPL(clk_hw_get_rate);
 490
 491static unsigned long __clk_get_accuracy(struct clk_core *core)
 492{
 493	if (!core)
 494		return 0;
 495
 496	return core->accuracy;
 497}
 498
 499unsigned long __clk_get_flags(struct clk *clk)
 500{
 501	return !clk ? 0 : clk->core->flags;
 502}
 503EXPORT_SYMBOL_GPL(__clk_get_flags);
 504
 505unsigned long clk_hw_get_flags(const struct clk_hw *hw)
 506{
 507	return hw->core->flags;
 508}
 509EXPORT_SYMBOL_GPL(clk_hw_get_flags);
 510
 511bool clk_hw_is_prepared(const struct clk_hw *hw)
 512{
 513	return clk_core_is_prepared(hw->core);
 514}
 515EXPORT_SYMBOL_GPL(clk_hw_is_prepared);
 516
 517bool clk_hw_rate_is_protected(const struct clk_hw *hw)
 518{
 519	return clk_core_rate_is_protected(hw->core);
 520}
 521EXPORT_SYMBOL_GPL(clk_hw_rate_is_protected);
 522
 523bool clk_hw_is_enabled(const struct clk_hw *hw)
 524{
 525	return clk_core_is_enabled(hw->core);
 526}
 527EXPORT_SYMBOL_GPL(clk_hw_is_enabled);
 528
 529bool __clk_is_enabled(struct clk *clk)
 530{
 531	if (!clk)
 532		return false;
 533
 534	return clk_core_is_enabled(clk->core);
 535}
 536EXPORT_SYMBOL_GPL(__clk_is_enabled);
 537
 538static bool mux_is_better_rate(unsigned long rate, unsigned long now,
 539			   unsigned long best, unsigned long flags)
 540{
 541	if (flags & CLK_MUX_ROUND_CLOSEST)
 542		return abs(now - rate) < abs(best - rate);
 543
 544	return now <= rate && now > best;
 545}
 546
 547int clk_mux_determine_rate_flags(struct clk_hw *hw,
 548				 struct clk_rate_request *req,
 549				 unsigned long flags)
 550{
 551	struct clk_core *core = hw->core, *parent, *best_parent = NULL;
 552	int i, num_parents, ret;
 553	unsigned long best = 0;
 554	struct clk_rate_request parent_req = *req;
 555
 556	/* if NO_REPARENT flag set, pass through to current parent */
 557	if (core->flags & CLK_SET_RATE_NO_REPARENT) {
 558		parent = core->parent;
 559		if (core->flags & CLK_SET_RATE_PARENT) {
 560			ret = __clk_determine_rate(parent ? parent->hw : NULL,
 561						   &parent_req);
 562			if (ret)
 563				return ret;
 564
 565			best = parent_req.rate;
 566		} else if (parent) {
 567			best = clk_core_get_rate_nolock(parent);
 568		} else {
 569			best = clk_core_get_rate_nolock(core);
 570		}
 571
 
 
 572		goto out;
 573	}
 574
 575	/* find the parent that can provide the fastest rate <= rate */
 576	num_parents = core->num_parents;
 577	for (i = 0; i < num_parents; i++) {
 578		parent = clk_core_get_parent_by_index(core, i);
 579		if (!parent)
 580			continue;
 581
 582		if (core->flags & CLK_SET_RATE_PARENT) {
 583			parent_req = *req;
 584			ret = __clk_determine_rate(parent->hw, &parent_req);
 585			if (ret)
 586				continue;
 587		} else {
 588			parent_req.rate = clk_core_get_rate_nolock(parent);
 589		}
 590
 591		if (mux_is_better_rate(req->rate, parent_req.rate,
 592				       best, flags)) {
 593			best_parent = parent;
 594			best = parent_req.rate;
 595		}
 596	}
 597
 598	if (!best_parent)
 599		return -EINVAL;
 600
 601out:
 602	if (best_parent)
 603		req->best_parent_hw = best_parent->hw;
 604	req->best_parent_rate = best;
 605	req->rate = best;
 606
 607	return 0;
 608}
 609EXPORT_SYMBOL_GPL(clk_mux_determine_rate_flags);
 610
 611struct clk *__clk_lookup(const char *name)
 612{
 613	struct clk_core *core = clk_core_lookup(name);
 614
 615	return !core ? NULL : core->hw->clk;
 616}
 617
 618static void clk_core_get_boundaries(struct clk_core *core,
 619				    unsigned long *min_rate,
 620				    unsigned long *max_rate)
 621{
 622	struct clk *clk_user;
 623
 624	lockdep_assert_held(&prepare_lock);
 625
 626	*min_rate = core->min_rate;
 627	*max_rate = core->max_rate;
 628
 629	hlist_for_each_entry(clk_user, &core->clks, clks_node)
 630		*min_rate = max(*min_rate, clk_user->min_rate);
 631
 632	hlist_for_each_entry(clk_user, &core->clks, clks_node)
 633		*max_rate = min(*max_rate, clk_user->max_rate);
 634}
 635
 636void clk_hw_set_rate_range(struct clk_hw *hw, unsigned long min_rate,
 637			   unsigned long max_rate)
 638{
 639	hw->core->min_rate = min_rate;
 640	hw->core->max_rate = max_rate;
 641}
 642EXPORT_SYMBOL_GPL(clk_hw_set_rate_range);
 643
 644/*
 645 * __clk_mux_determine_rate - clk_ops::determine_rate implementation for a mux type clk
 646 * @hw: mux type clk to determine rate on
 647 * @req: rate request, also used to return preferred parent and frequencies
 648 *
 649 * Helper for finding best parent to provide a given frequency. This can be used
 650 * directly as a determine_rate callback (e.g. for a mux), or from a more
 651 * complex clock that may combine a mux with other operations.
 652 *
 653 * Returns: 0 on success, -EERROR value on error
 654 */
 655int __clk_mux_determine_rate(struct clk_hw *hw,
 656			     struct clk_rate_request *req)
 657{
 658	return clk_mux_determine_rate_flags(hw, req, 0);
 659}
 660EXPORT_SYMBOL_GPL(__clk_mux_determine_rate);
 661
 662int __clk_mux_determine_rate_closest(struct clk_hw *hw,
 663				     struct clk_rate_request *req)
 664{
 665	return clk_mux_determine_rate_flags(hw, req, CLK_MUX_ROUND_CLOSEST);
 666}
 667EXPORT_SYMBOL_GPL(__clk_mux_determine_rate_closest);
 668
 669/***        clk api        ***/
 670
 671static void clk_core_rate_unprotect(struct clk_core *core)
 672{
 673	lockdep_assert_held(&prepare_lock);
 674
 675	if (!core)
 676		return;
 677
 678	if (WARN(core->protect_count == 0,
 679	    "%s already unprotected\n", core->name))
 680		return;
 681
 682	if (--core->protect_count > 0)
 683		return;
 684
 685	clk_core_rate_unprotect(core->parent);
 686}
 687
 688static int clk_core_rate_nuke_protect(struct clk_core *core)
 689{
 690	int ret;
 691
 692	lockdep_assert_held(&prepare_lock);
 693
 694	if (!core)
 695		return -EINVAL;
 696
 697	if (core->protect_count == 0)
 698		return 0;
 699
 700	ret = core->protect_count;
 701	core->protect_count = 1;
 702	clk_core_rate_unprotect(core);
 703
 704	return ret;
 705}
 706
 707/**
 708 * clk_rate_exclusive_put - release exclusivity over clock rate control
 709 * @clk: the clk over which the exclusivity is released
 710 *
 711 * clk_rate_exclusive_put() completes a critical section during which a clock
 712 * consumer cannot tolerate any other consumer making any operation on the
 713 * clock which could result in a rate change or rate glitch. Exclusive clocks
 714 * cannot have their rate changed, either directly or indirectly due to changes
 715 * further up the parent chain of clocks. As a result, clocks up parent chain
 716 * also get under exclusive control of the calling consumer.
 717 *
 718 * If exlusivity is claimed more than once on clock, even by the same consumer,
 719 * the rate effectively gets locked as exclusivity can't be preempted.
 720 *
 721 * Calls to clk_rate_exclusive_put() must be balanced with calls to
 722 * clk_rate_exclusive_get(). Calls to this function may sleep, and do not return
 723 * error status.
 724 */
 725void clk_rate_exclusive_put(struct clk *clk)
 726{
 727	if (!clk)
 728		return;
 729
 730	clk_prepare_lock();
 731
 732	/*
 733	 * if there is something wrong with this consumer protect count, stop
 734	 * here before messing with the provider
 735	 */
 736	if (WARN_ON(clk->exclusive_count <= 0))
 
 737		goto out;
 
 738
 739	clk_core_rate_unprotect(clk->core);
 740	clk->exclusive_count--;
 741out:
 742	clk_prepare_unlock();
 743}
 744EXPORT_SYMBOL_GPL(clk_rate_exclusive_put);
 745
 746static void clk_core_rate_protect(struct clk_core *core)
 747{
 748	lockdep_assert_held(&prepare_lock);
 
 
 749
 750	if (!core)
 751		return;
 752
 753	if (core->protect_count == 0)
 754		clk_core_rate_protect(core->parent);
 
 
 
 755
 756	core->protect_count++;
 757}
 758
 759static void clk_core_rate_restore_protect(struct clk_core *core, int count)
 760{
 761	lockdep_assert_held(&prepare_lock);
 
 
 
 
 
 762
 763	if (!core)
 764		return;
 
 
 
 
 765
 766	if (count == 0)
 767		return;
 
 
 
 
 768
 769	clk_core_rate_protect(core);
 770	core->protect_count = count;
 771}
 772
 773/**
 774 * clk_rate_exclusive_get - get exclusivity over the clk rate control
 775 * @clk: the clk over which the exclusity of rate control is requested
 776 *
 777 * clk_rate_exlusive_get() begins a critical section during which a clock
 778 * consumer cannot tolerate any other consumer making any operation on the
 779 * clock which could result in a rate change or rate glitch. Exclusive clocks
 780 * cannot have their rate changed, either directly or indirectly due to changes
 781 * further up the parent chain of clocks. As a result, clocks up parent chain
 782 * also get under exclusive control of the calling consumer.
 783 *
 784 * If exlusivity is claimed more than once on clock, even by the same consumer,
 785 * the rate effectively gets locked as exclusivity can't be preempted.
 786 *
 787 * Calls to clk_rate_exclusive_get() should be balanced with calls to
 788 * clk_rate_exclusive_put(). Calls to this function may sleep.
 789 * Returns 0 on success, -EERROR otherwise
 790 */
 791int clk_rate_exclusive_get(struct clk *clk)
 792{
 793	if (!clk)
 794		return 0;
 795
 796	clk_prepare_lock();
 797	clk_core_rate_protect(clk->core);
 798	clk->exclusive_count++;
 799	clk_prepare_unlock();
 800
 801	return 0;
 802}
 803EXPORT_SYMBOL_GPL(clk_rate_exclusive_get);
 804
 805static void clk_core_unprepare(struct clk_core *core)
 806{
 807	lockdep_assert_held(&prepare_lock);
 808
 809	if (!core)
 810		return;
 811
 812	if (WARN(core->prepare_count == 0,
 813	    "%s already unprepared\n", core->name))
 814		return;
 815
 816	if (WARN(core->prepare_count == 1 && core->flags & CLK_IS_CRITICAL,
 817	    "Unpreparing critical %s\n", core->name))
 818		return;
 819
 820	if (core->flags & CLK_SET_RATE_GATE)
 821		clk_core_rate_unprotect(core);
 822
 823	if (--core->prepare_count > 0)
 824		return;
 825
 826	WARN(core->enable_count > 0, "Unpreparing enabled %s\n", core->name);
 827
 828	trace_clk_unprepare(core);
 829
 830	if (core->ops->unprepare)
 831		core->ops->unprepare(core->hw);
 832
 833	clk_pm_runtime_put(core);
 834
 835	trace_clk_unprepare_complete(core);
 836	clk_core_unprepare(core->parent);
 837}
 838
 839static void clk_core_unprepare_lock(struct clk_core *core)
 840{
 841	clk_prepare_lock();
 842	clk_core_unprepare(core);
 843	clk_prepare_unlock();
 844}
 845
 846/**
 847 * clk_unprepare - undo preparation of a clock source
 848 * @clk: the clk being unprepared
 849 *
 850 * clk_unprepare may sleep, which differentiates it from clk_disable.  In a
 851 * simple case, clk_unprepare can be used instead of clk_disable to gate a clk
 852 * if the operation may sleep.  One example is a clk which is accessed over
 853 * I2c.  In the complex case a clk gate operation may require a fast and a slow
 854 * part.  It is this reason that clk_unprepare and clk_disable are not mutually
 855 * exclusive.  In fact clk_disable must be called before clk_unprepare.
 856 */
 857void clk_unprepare(struct clk *clk)
 858{
 859	if (IS_ERR_OR_NULL(clk))
 860		return;
 861
 862	clk_core_unprepare_lock(clk->core);
 863}
 864EXPORT_SYMBOL_GPL(clk_unprepare);
 865
 866static int clk_core_prepare(struct clk_core *core)
 867{
 868	int ret = 0;
 869
 870	lockdep_assert_held(&prepare_lock);
 871
 872	if (!core)
 873		return 0;
 874
 875	if (core->prepare_count == 0) {
 876		ret = clk_pm_runtime_get(core);
 877		if (ret)
 878			return ret;
 879
 880		ret = clk_core_prepare(core->parent);
 881		if (ret)
 882			goto runtime_put;
 883
 884		trace_clk_prepare(core);
 885
 886		if (core->ops->prepare)
 887			ret = core->ops->prepare(core->hw);
 888
 889		trace_clk_prepare_complete(core);
 890
 891		if (ret)
 892			goto unprepare;
 893	}
 894
 895	core->prepare_count++;
 896
 897	/*
 898	 * CLK_SET_RATE_GATE is a special case of clock protection
 899	 * Instead of a consumer claiming exclusive rate control, it is
 900	 * actually the provider which prevents any consumer from making any
 901	 * operation which could result in a rate change or rate glitch while
 902	 * the clock is prepared.
 903	 */
 904	if (core->flags & CLK_SET_RATE_GATE)
 905		clk_core_rate_protect(core);
 906
 907	return 0;
 908unprepare:
 909	clk_core_unprepare(core->parent);
 910runtime_put:
 911	clk_pm_runtime_put(core);
 912	return ret;
 913}
 914
 915static int clk_core_prepare_lock(struct clk_core *core)
 916{
 917	int ret;
 918
 919	clk_prepare_lock();
 920	ret = clk_core_prepare(core);
 921	clk_prepare_unlock();
 922
 923	return ret;
 924}
 925
 926/**
 927 * clk_prepare - prepare a clock source
 928 * @clk: the clk being prepared
 929 *
 930 * clk_prepare may sleep, which differentiates it from clk_enable.  In a simple
 931 * case, clk_prepare can be used instead of clk_enable to ungate a clk if the
 932 * operation may sleep.  One example is a clk which is accessed over I2c.  In
 933 * the complex case a clk ungate operation may require a fast and a slow part.
 934 * It is this reason that clk_prepare and clk_enable are not mutually
 935 * exclusive.  In fact clk_prepare must be called before clk_enable.
 936 * Returns 0 on success, -EERROR otherwise.
 937 */
 938int clk_prepare(struct clk *clk)
 939{
 940	if (!clk)
 941		return 0;
 
 
 
 942
 943	return clk_core_prepare_lock(clk->core);
 944}
 945EXPORT_SYMBOL_GPL(clk_prepare);
 946
 947static void clk_core_disable(struct clk_core *core)
 948{
 949	lockdep_assert_held(&enable_lock);
 950
 951	if (!core)
 952		return;
 953
 954	if (WARN(core->enable_count == 0, "%s already disabled\n", core->name))
 955		return;
 956
 957	if (WARN(core->enable_count == 1 && core->flags & CLK_IS_CRITICAL,
 958	    "Disabling critical %s\n", core->name))
 959		return;
 960
 961	if (--core->enable_count > 0)
 962		return;
 963
 964	trace_clk_disable_rcuidle(core);
 965
 966	if (core->ops->disable)
 967		core->ops->disable(core->hw);
 968
 969	trace_clk_disable_complete_rcuidle(core);
 970
 971	clk_core_disable(core->parent);
 972}
 973
 974static void clk_core_disable_lock(struct clk_core *core)
 975{
 976	unsigned long flags;
 977
 978	flags = clk_enable_lock();
 979	clk_core_disable(core);
 980	clk_enable_unlock(flags);
 981}
 982
 983/**
 984 * clk_disable - gate a clock
 985 * @clk: the clk being gated
 986 *
 987 * clk_disable must not sleep, which differentiates it from clk_unprepare.  In
 988 * a simple case, clk_disable can be used instead of clk_unprepare to gate a
 989 * clk if the operation is fast and will never sleep.  One example is a
 990 * SoC-internal clk which is controlled via simple register writes.  In the
 991 * complex case a clk gate operation may require a fast and a slow part.  It is
 992 * this reason that clk_unprepare and clk_disable are not mutually exclusive.
 993 * In fact clk_disable must be called before clk_unprepare.
 994 */
 995void clk_disable(struct clk *clk)
 996{
 997	if (IS_ERR_OR_NULL(clk))
 998		return;
 999
1000	clk_core_disable_lock(clk->core);
 
 
1001}
1002EXPORT_SYMBOL_GPL(clk_disable);
1003
1004static int clk_core_enable(struct clk_core *core)
1005{
1006	int ret = 0;
1007
1008	lockdep_assert_held(&enable_lock);
1009
1010	if (!core)
1011		return 0;
1012
1013	if (WARN(core->prepare_count == 0,
1014	    "Enabling unprepared %s\n", core->name))
1015		return -ESHUTDOWN;
1016
1017	if (core->enable_count == 0) {
1018		ret = clk_core_enable(core->parent);
1019
1020		if (ret)
1021			return ret;
1022
1023		trace_clk_enable_rcuidle(core);
1024
1025		if (core->ops->enable)
1026			ret = core->ops->enable(core->hw);
1027
1028		trace_clk_enable_complete_rcuidle(core);
1029
1030		if (ret) {
1031			clk_core_disable(core->parent);
1032			return ret;
1033		}
1034	}
1035
1036	core->enable_count++;
1037	return 0;
1038}
1039
1040static int clk_core_enable_lock(struct clk_core *core)
1041{
1042	unsigned long flags;
1043	int ret;
1044
1045	flags = clk_enable_lock();
1046	ret = clk_core_enable(core);
1047	clk_enable_unlock(flags);
1048
1049	return ret;
1050}
1051
1052/**
1053 * clk_gate_restore_context - restore context for poweroff
1054 * @hw: the clk_hw pointer of clock whose state is to be restored
1055 *
1056 * The clock gate restore context function enables or disables
1057 * the gate clocks based on the enable_count. This is done in cases
1058 * where the clock context is lost and based on the enable_count
1059 * the clock either needs to be enabled/disabled. This
1060 * helps restore the state of gate clocks.
1061 */
1062void clk_gate_restore_context(struct clk_hw *hw)
1063{
1064	struct clk_core *core = hw->core;
1065
1066	if (core->enable_count)
1067		core->ops->enable(hw);
1068	else
1069		core->ops->disable(hw);
1070}
1071EXPORT_SYMBOL_GPL(clk_gate_restore_context);
1072
1073static int clk_core_save_context(struct clk_core *core)
1074{
1075	struct clk_core *child;
1076	int ret = 0;
1077
1078	hlist_for_each_entry(child, &core->children, child_node) {
1079		ret = clk_core_save_context(child);
1080		if (ret < 0)
1081			return ret;
1082	}
1083
1084	if (core->ops && core->ops->save_context)
1085		ret = core->ops->save_context(core->hw);
1086
1087	return ret;
1088}
1089
1090static void clk_core_restore_context(struct clk_core *core)
1091{
1092	struct clk_core *child;
1093
1094	if (core->ops && core->ops->restore_context)
1095		core->ops->restore_context(core->hw);
1096
1097	hlist_for_each_entry(child, &core->children, child_node)
1098		clk_core_restore_context(child);
1099}
1100
1101/**
1102 * clk_save_context - save clock context for poweroff
1103 *
1104 * Saves the context of the clock register for powerstates in which the
1105 * contents of the registers will be lost. Occurs deep within the suspend
1106 * code.  Returns 0 on success.
1107 */
1108int clk_save_context(void)
1109{
1110	struct clk_core *clk;
1111	int ret;
1112
1113	hlist_for_each_entry(clk, &clk_root_list, child_node) {
1114		ret = clk_core_save_context(clk);
1115		if (ret < 0)
1116			return ret;
1117	}
1118
1119	hlist_for_each_entry(clk, &clk_orphan_list, child_node) {
1120		ret = clk_core_save_context(clk);
1121		if (ret < 0)
1122			return ret;
1123	}
1124
1125	return 0;
1126}
1127EXPORT_SYMBOL_GPL(clk_save_context);
1128
1129/**
1130 * clk_restore_context - restore clock context after poweroff
1131 *
1132 * Restore the saved clock context upon resume.
1133 *
1134 */
1135void clk_restore_context(void)
1136{
1137	struct clk_core *core;
1138
1139	hlist_for_each_entry(core, &clk_root_list, child_node)
1140		clk_core_restore_context(core);
1141
1142	hlist_for_each_entry(core, &clk_orphan_list, child_node)
1143		clk_core_restore_context(core);
1144}
1145EXPORT_SYMBOL_GPL(clk_restore_context);
1146
1147/**
1148 * clk_enable - ungate a clock
1149 * @clk: the clk being ungated
1150 *
1151 * clk_enable must not sleep, which differentiates it from clk_prepare.  In a
1152 * simple case, clk_enable can be used instead of clk_prepare to ungate a clk
1153 * if the operation will never sleep.  One example is a SoC-internal clk which
1154 * is controlled via simple register writes.  In the complex case a clk ungate
1155 * operation may require a fast and a slow part.  It is this reason that
1156 * clk_enable and clk_prepare are not mutually exclusive.  In fact clk_prepare
1157 * must be called before clk_enable.  Returns 0 on success, -EERROR
1158 * otherwise.
1159 */
1160int clk_enable(struct clk *clk)
1161{
1162	if (!clk)
1163		return 0;
1164
1165	return clk_core_enable_lock(clk->core);
1166}
1167EXPORT_SYMBOL_GPL(clk_enable);
1168
1169static int clk_core_prepare_enable(struct clk_core *core)
1170{
1171	int ret;
1172
1173	ret = clk_core_prepare_lock(core);
1174	if (ret)
1175		return ret;
1176
1177	ret = clk_core_enable_lock(core);
1178	if (ret)
1179		clk_core_unprepare_lock(core);
1180
1181	return ret;
1182}
 
1183
1184static void clk_core_disable_unprepare(struct clk_core *core)
 
 
 
 
 
 
 
1185{
1186	clk_core_disable_lock(core);
1187	clk_core_unprepare_lock(core);
1188}
1189
1190static void clk_unprepare_unused_subtree(struct clk_core *core)
1191{
1192	struct clk_core *child;
1193
1194	lockdep_assert_held(&prepare_lock);
1195
1196	hlist_for_each_entry(child, &core->children, child_node)
1197		clk_unprepare_unused_subtree(child);
1198
1199	if (core->prepare_count)
1200		return;
1201
1202	if (core->flags & CLK_IGNORE_UNUSED)
1203		return;
1204
1205	if (clk_pm_runtime_get(core))
1206		return;
1207
1208	if (clk_core_is_prepared(core)) {
1209		trace_clk_unprepare(core);
1210		if (core->ops->unprepare_unused)
1211			core->ops->unprepare_unused(core->hw);
1212		else if (core->ops->unprepare)
1213			core->ops->unprepare(core->hw);
1214		trace_clk_unprepare_complete(core);
1215	}
1216
1217	clk_pm_runtime_put(core);
1218}
1219
1220static void clk_disable_unused_subtree(struct clk_core *core)
1221{
1222	struct clk_core *child;
1223	unsigned long flags;
1224
1225	lockdep_assert_held(&prepare_lock);
1226
1227	hlist_for_each_entry(child, &core->children, child_node)
1228		clk_disable_unused_subtree(child);
1229
1230	if (core->flags & CLK_OPS_PARENT_ENABLE)
1231		clk_core_prepare_enable(core->parent);
1232
1233	if (clk_pm_runtime_get(core))
1234		goto unprepare_out;
1235
1236	flags = clk_enable_lock();
1237
1238	if (core->enable_count)
1239		goto unlock_out;
1240
1241	if (core->flags & CLK_IGNORE_UNUSED)
1242		goto unlock_out;
1243
1244	/*
1245	 * some gate clocks have special needs during the disable-unused
1246	 * sequence.  call .disable_unused if available, otherwise fall
1247	 * back to .disable
1248	 */
1249	if (clk_core_is_enabled(core)) {
1250		trace_clk_disable(core);
1251		if (core->ops->disable_unused)
1252			core->ops->disable_unused(core->hw);
1253		else if (core->ops->disable)
1254			core->ops->disable(core->hw);
1255		trace_clk_disable_complete(core);
1256	}
1257
1258unlock_out:
1259	clk_enable_unlock(flags);
1260	clk_pm_runtime_put(core);
1261unprepare_out:
1262	if (core->flags & CLK_OPS_PARENT_ENABLE)
1263		clk_core_disable_unprepare(core->parent);
1264}
1265
1266static bool clk_ignore_unused;
1267static int __init clk_ignore_unused_setup(char *__unused)
1268{
1269	clk_ignore_unused = true;
1270	return 1;
1271}
1272__setup("clk_ignore_unused", clk_ignore_unused_setup);
1273
1274static int clk_disable_unused(void)
1275{
1276	struct clk_core *core;
1277
1278	if (clk_ignore_unused) {
1279		pr_warn("clk: Not disabling unused clocks\n");
1280		return 0;
1281	}
1282
1283	clk_prepare_lock();
1284
1285	hlist_for_each_entry(core, &clk_root_list, child_node)
1286		clk_disable_unused_subtree(core);
1287
1288	hlist_for_each_entry(core, &clk_orphan_list, child_node)
1289		clk_disable_unused_subtree(core);
1290
1291	hlist_for_each_entry(core, &clk_root_list, child_node)
1292		clk_unprepare_unused_subtree(core);
1293
1294	hlist_for_each_entry(core, &clk_orphan_list, child_node)
1295		clk_unprepare_unused_subtree(core);
1296
1297	clk_prepare_unlock();
1298
1299	return 0;
1300}
1301late_initcall_sync(clk_disable_unused);
1302
1303static int clk_core_determine_round_nolock(struct clk_core *core,
1304					   struct clk_rate_request *req)
1305{
1306	long rate;
1307
1308	lockdep_assert_held(&prepare_lock);
1309
1310	if (!core)
1311		return 0;
1312
1313	/*
1314	 * At this point, core protection will be disabled if
1315	 * - if the provider is not protected at all
1316	 * - if the calling consumer is the only one which has exclusivity
1317	 *   over the provider
1318	 */
1319	if (clk_core_rate_is_protected(core)) {
1320		req->rate = core->rate;
1321	} else if (core->ops->determine_rate) {
1322		return core->ops->determine_rate(core->hw, req);
1323	} else if (core->ops->round_rate) {
1324		rate = core->ops->round_rate(core->hw, req->rate,
1325					     &req->best_parent_rate);
1326		if (rate < 0)
1327			return rate;
1328
1329		req->rate = rate;
1330	} else {
1331		return -EINVAL;
1332	}
1333
1334	return 0;
1335}
1336
1337static void clk_core_init_rate_req(struct clk_core * const core,
1338				   struct clk_rate_request *req)
1339{
1340	struct clk_core *parent;
1341
1342	if (WARN_ON(!core || !req))
1343		return;
1344
1345	parent = core->parent;
1346	if (parent) {
1347		req->best_parent_hw = parent->hw;
1348		req->best_parent_rate = parent->rate;
1349	} else {
1350		req->best_parent_hw = NULL;
1351		req->best_parent_rate = 0;
1352	}
1353}
1354
1355static bool clk_core_can_round(struct clk_core * const core)
1356{
1357	return core->ops->determine_rate || core->ops->round_rate;
1358}
1359
1360static int clk_core_round_rate_nolock(struct clk_core *core,
1361				      struct clk_rate_request *req)
1362{
1363	lockdep_assert_held(&prepare_lock);
1364
1365	if (!core) {
1366		req->rate = 0;
1367		return 0;
1368	}
1369
1370	clk_core_init_rate_req(core, req);
1371
1372	if (clk_core_can_round(core))
1373		return clk_core_determine_round_nolock(core, req);
1374	else if (core->flags & CLK_SET_RATE_PARENT)
1375		return clk_core_round_rate_nolock(core->parent, req);
1376
1377	req->rate = core->rate;
1378	return 0;
1379}
 
1380
1381/**
1382 * __clk_determine_rate - get the closest rate actually supported by a clock
1383 * @hw: determine the rate of this clock
1384 * @req: target rate request
1385 *
1386 * Useful for clk_ops such as .set_rate and .determine_rate.
1387 */
1388int __clk_determine_rate(struct clk_hw *hw, struct clk_rate_request *req)
1389{
1390	if (!hw) {
1391		req->rate = 0;
1392		return 0;
1393	}
1394
1395	return clk_core_round_rate_nolock(hw->core, req);
1396}
1397EXPORT_SYMBOL_GPL(__clk_determine_rate);
1398
1399unsigned long clk_hw_round_rate(struct clk_hw *hw, unsigned long rate)
1400{
1401	int ret;
1402	struct clk_rate_request req;
 
 
1403
1404	clk_core_get_boundaries(hw->core, &req.min_rate, &req.max_rate);
1405	req.rate = rate;
1406
1407	ret = clk_core_round_rate_nolock(hw->core, &req);
1408	if (ret)
1409		return 0;
1410
1411	return req.rate;
1412}
1413EXPORT_SYMBOL_GPL(clk_hw_round_rate);
1414
1415/**
1416 * clk_round_rate - round the given rate for a clk
1417 * @clk: the clk for which we are rounding a rate
1418 * @rate: the rate which is to be rounded
1419 *
1420 * Takes in a rate as input and rounds it to a rate that the clk can actually
1421 * use which is then returned.  If clk doesn't support round_rate operation
1422 * then the parent rate is returned.
1423 */
1424long clk_round_rate(struct clk *clk, unsigned long rate)
1425{
1426	struct clk_rate_request req;
1427	int ret;
1428
1429	if (!clk)
1430		return 0;
 
1431
1432	clk_prepare_lock();
1433
1434	if (clk->exclusive_count)
1435		clk_core_rate_unprotect(clk->core);
1436
1437	clk_core_get_boundaries(clk->core, &req.min_rate, &req.max_rate);
1438	req.rate = rate;
1439
1440	ret = clk_core_round_rate_nolock(clk->core, &req);
1441
1442	if (clk->exclusive_count)
1443		clk_core_rate_protect(clk->core);
1444
1445	clk_prepare_unlock();
1446
1447	if (ret)
1448		return ret;
1449
1450	return req.rate;
1451}
1452EXPORT_SYMBOL_GPL(clk_round_rate);
1453
1454/**
1455 * __clk_notify - call clk notifier chain
1456 * @core: clk that is changing rate
1457 * @msg: clk notifier type (see include/linux/clk.h)
1458 * @old_rate: old clk rate
1459 * @new_rate: new clk rate
1460 *
1461 * Triggers a notifier call chain on the clk rate-change notification
1462 * for 'clk'.  Passes a pointer to the struct clk and the previous
1463 * and current rates to the notifier callback.  Intended to be called by
1464 * internal clock code only.  Returns NOTIFY_DONE from the last driver
1465 * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if
1466 * a driver returns that.
1467 */
1468static int __clk_notify(struct clk_core *core, unsigned long msg,
1469		unsigned long old_rate, unsigned long new_rate)
1470{
1471	struct clk_notifier *cn;
1472	struct clk_notifier_data cnd;
1473	int ret = NOTIFY_DONE;
1474
 
1475	cnd.old_rate = old_rate;
1476	cnd.new_rate = new_rate;
1477
1478	list_for_each_entry(cn, &clk_notifier_list, node) {
1479		if (cn->clk->core == core) {
1480			cnd.clk = cn->clk;
1481			ret = srcu_notifier_call_chain(&cn->notifier_head, msg,
1482					&cnd);
1483			if (ret & NOTIFY_STOP_MASK)
1484				return ret;
1485		}
1486	}
1487
1488	return ret;
1489}
1490
1491/**
1492 * __clk_recalc_accuracies
1493 * @core: first clk in the subtree
1494 *
1495 * Walks the subtree of clks starting with clk and recalculates accuracies as
1496 * it goes.  Note that if a clk does not implement the .recalc_accuracy
1497 * callback then it is assumed that the clock will take on the accuracy of its
1498 * parent.
1499 */
1500static void __clk_recalc_accuracies(struct clk_core *core)
1501{
1502	unsigned long parent_accuracy = 0;
1503	struct clk_core *child;
1504
1505	lockdep_assert_held(&prepare_lock);
1506
1507	if (core->parent)
1508		parent_accuracy = core->parent->accuracy;
1509
1510	if (core->ops->recalc_accuracy)
1511		core->accuracy = core->ops->recalc_accuracy(core->hw,
1512							  parent_accuracy);
1513	else
1514		core->accuracy = parent_accuracy;
1515
1516	hlist_for_each_entry(child, &core->children, child_node)
1517		__clk_recalc_accuracies(child);
1518}
1519
1520static long clk_core_get_accuracy(struct clk_core *core)
1521{
1522	unsigned long accuracy;
1523
1524	clk_prepare_lock();
1525	if (core && (core->flags & CLK_GET_ACCURACY_NOCACHE))
1526		__clk_recalc_accuracies(core);
1527
1528	accuracy = __clk_get_accuracy(core);
1529	clk_prepare_unlock();
1530
1531	return accuracy;
1532}
1533
1534/**
1535 * clk_get_accuracy - return the accuracy of clk
1536 * @clk: the clk whose accuracy is being returned
1537 *
1538 * Simply returns the cached accuracy of the clk, unless
1539 * CLK_GET_ACCURACY_NOCACHE flag is set, which means a recalc_rate will be
1540 * issued.
1541 * If clk is NULL then returns 0.
1542 */
1543long clk_get_accuracy(struct clk *clk)
1544{
1545	if (!clk)
1546		return 0;
1547
1548	return clk_core_get_accuracy(clk->core);
1549}
1550EXPORT_SYMBOL_GPL(clk_get_accuracy);
1551
1552static unsigned long clk_recalc(struct clk_core *core,
1553				unsigned long parent_rate)
1554{
1555	unsigned long rate = parent_rate;
1556
1557	if (core->ops->recalc_rate && !clk_pm_runtime_get(core)) {
1558		rate = core->ops->recalc_rate(core->hw, parent_rate);
1559		clk_pm_runtime_put(core);
1560	}
1561	return rate;
1562}
1563
1564/**
1565 * __clk_recalc_rates
1566 * @core: first clk in the subtree
1567 * @msg: notification type (see include/linux/clk.h)
1568 *
1569 * Walks the subtree of clks starting with clk and recalculates rates as it
1570 * goes.  Note that if a clk does not implement the .recalc_rate callback then
1571 * it is assumed that the clock will take on the rate of its parent.
1572 *
1573 * clk_recalc_rates also propagates the POST_RATE_CHANGE notification,
1574 * if necessary.
 
 
1575 */
1576static void __clk_recalc_rates(struct clk_core *core, unsigned long msg)
1577{
1578	unsigned long old_rate;
1579	unsigned long parent_rate = 0;
1580	struct clk_core *child;
 
1581
1582	lockdep_assert_held(&prepare_lock);
1583
1584	old_rate = core->rate;
 
1585
1586	if (core->parent)
1587		parent_rate = core->parent->rate;
1588
1589	core->rate = clk_recalc(core, parent_rate);
1590
1591	/*
1592	 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE
1593	 * & ABORT_RATE_CHANGE notifiers
1594	 */
1595	if (core->notifier_count && msg)
1596		__clk_notify(core, msg, old_rate, core->rate);
1597
1598	hlist_for_each_entry(child, &core->children, child_node)
1599		__clk_recalc_rates(child, msg);
1600}
1601
1602static unsigned long clk_core_get_rate(struct clk_core *core)
1603{
1604	unsigned long rate;
1605
1606	clk_prepare_lock();
1607
1608	if (core && (core->flags & CLK_GET_RATE_NOCACHE))
1609		__clk_recalc_rates(core, 0);
1610
1611	rate = clk_core_get_rate_nolock(core);
1612	clk_prepare_unlock();
1613
1614	return rate;
1615}
1616
1617/**
1618 * clk_get_rate - return the rate of clk
1619 * @clk: the clk whose rate is being returned
1620 *
1621 * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag
1622 * is set, which means a recalc_rate will be issued.
1623 * If clk is NULL then returns 0.
1624 */
1625unsigned long clk_get_rate(struct clk *clk)
1626{
1627	if (!clk)
1628		return 0;
1629
1630	return clk_core_get_rate(clk->core);
1631}
1632EXPORT_SYMBOL_GPL(clk_get_rate);
1633
1634static int clk_fetch_parent_index(struct clk_core *core,
1635				  struct clk_core *parent)
1636{
1637	int i;
1638
1639	if (!parent)
1640		return -EINVAL;
1641
1642	for (i = 0; i < core->num_parents; i++) {
1643		/* Found it first try! */
1644		if (core->parents[i].core == parent)
1645			return i;
1646
1647		/* Something else is here, so keep looking */
1648		if (core->parents[i].core)
1649			continue;
1650
1651		/* Maybe core hasn't been cached but the hw is all we know? */
1652		if (core->parents[i].hw) {
1653			if (core->parents[i].hw == parent->hw)
1654				break;
1655
1656			/* Didn't match, but we're expecting a clk_hw */
1657			continue;
1658		}
1659
1660		/* Maybe it hasn't been cached (clk_set_parent() path) */
1661		if (parent == clk_core_get(core, i))
1662			break;
1663
1664		/* Fallback to comparing globally unique names */
1665		if (core->parents[i].name &&
1666		    !strcmp(parent->name, core->parents[i].name))
1667			break;
1668	}
1669
1670	if (i == core->num_parents)
1671		return -EINVAL;
1672
1673	core->parents[i].core = parent;
1674	return i;
1675}
1676
1677/*
1678 * Update the orphan status of @core and all its children.
1679 */
1680static void clk_core_update_orphan_status(struct clk_core *core, bool is_orphan)
1681{
1682	struct clk_core *child;
1683
1684	core->orphan = is_orphan;
1685
1686	hlist_for_each_entry(child, &core->children, child_node)
1687		clk_core_update_orphan_status(child, is_orphan);
1688}
1689
1690static void clk_reparent(struct clk_core *core, struct clk_core *new_parent)
1691{
1692	bool was_orphan = core->orphan;
1693
1694	hlist_del(&core->child_node);
1695
1696	if (new_parent) {
1697		bool becomes_orphan = new_parent->orphan;
1698
1699		/* avoid duplicate POST_RATE_CHANGE notifications */
1700		if (new_parent->new_child == core)
1701			new_parent->new_child = NULL;
1702
1703		hlist_add_head(&core->child_node, &new_parent->children);
1704
1705		if (was_orphan != becomes_orphan)
1706			clk_core_update_orphan_status(core, becomes_orphan);
1707	} else {
1708		hlist_add_head(&core->child_node, &clk_orphan_list);
1709		if (!was_orphan)
1710			clk_core_update_orphan_status(core, true);
1711	}
1712
1713	core->parent = new_parent;
1714}
1715
1716static struct clk_core *__clk_set_parent_before(struct clk_core *core,
1717					   struct clk_core *parent)
1718{
1719	unsigned long flags;
1720	struct clk_core *old_parent = core->parent;
1721
1722	/*
1723	 * 1. enable parents for CLK_OPS_PARENT_ENABLE clock
1724	 *
1725	 * 2. Migrate prepare state between parents and prevent race with
1726	 * clk_enable().
1727	 *
1728	 * If the clock is not prepared, then a race with
1729	 * clk_enable/disable() is impossible since we already have the
1730	 * prepare lock (future calls to clk_enable() need to be preceded by
1731	 * a clk_prepare()).
1732	 *
1733	 * If the clock is prepared, migrate the prepared state to the new
1734	 * parent and also protect against a race with clk_enable() by
1735	 * forcing the clock and the new parent on.  This ensures that all
1736	 * future calls to clk_enable() are practically NOPs with respect to
1737	 * hardware and software states.
1738	 *
1739	 * See also: Comment for clk_set_parent() below.
1740	 */
1741
1742	/* enable old_parent & parent if CLK_OPS_PARENT_ENABLE is set */
1743	if (core->flags & CLK_OPS_PARENT_ENABLE) {
1744		clk_core_prepare_enable(old_parent);
1745		clk_core_prepare_enable(parent);
1746	}
1747
1748	/* migrate prepare count if > 0 */
1749	if (core->prepare_count) {
1750		clk_core_prepare_enable(parent);
1751		clk_core_enable_lock(core);
1752	}
1753
1754	/* update the clk tree topology */
1755	flags = clk_enable_lock();
1756	clk_reparent(core, parent);
1757	clk_enable_unlock(flags);
1758
1759	return old_parent;
1760}
1761
1762static void __clk_set_parent_after(struct clk_core *core,
1763				   struct clk_core *parent,
1764				   struct clk_core *old_parent)
1765{
1766	/*
1767	 * Finish the migration of prepare state and undo the changes done
1768	 * for preventing a race with clk_enable().
1769	 */
1770	if (core->prepare_count) {
1771		clk_core_disable_lock(core);
1772		clk_core_disable_unprepare(old_parent);
1773	}
1774
1775	/* re-balance ref counting if CLK_OPS_PARENT_ENABLE is set */
1776	if (core->flags & CLK_OPS_PARENT_ENABLE) {
1777		clk_core_disable_unprepare(parent);
1778		clk_core_disable_unprepare(old_parent);
1779	}
1780}
1781
1782static int __clk_set_parent(struct clk_core *core, struct clk_core *parent,
1783			    u8 p_index)
1784{
1785	unsigned long flags;
1786	int ret = 0;
1787	struct clk_core *old_parent;
1788
1789	old_parent = __clk_set_parent_before(core, parent);
1790
1791	trace_clk_set_parent(core, parent);
1792
1793	/* change clock input source */
1794	if (parent && core->ops->set_parent)
1795		ret = core->ops->set_parent(core->hw, p_index);
1796
1797	trace_clk_set_parent_complete(core, parent);
1798
1799	if (ret) {
1800		flags = clk_enable_lock();
1801		clk_reparent(core, old_parent);
1802		clk_enable_unlock(flags);
1803		__clk_set_parent_after(core, old_parent, parent);
1804
1805		return ret;
1806	}
1807
1808	__clk_set_parent_after(core, parent, old_parent);
1809
1810	return 0;
1811}
1812
1813/**
1814 * __clk_speculate_rates
1815 * @core: first clk in the subtree
1816 * @parent_rate: the "future" rate of clk's parent
1817 *
1818 * Walks the subtree of clks starting with clk, speculating rates as it
1819 * goes and firing off PRE_RATE_CHANGE notifications as necessary.
1820 *
1821 * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending
1822 * pre-rate change notifications and returns early if no clks in the
1823 * subtree have subscribed to the notifications.  Note that if a clk does not
1824 * implement the .recalc_rate callback then it is assumed that the clock will
1825 * take on the rate of its parent.
 
 
1826 */
1827static int __clk_speculate_rates(struct clk_core *core,
1828				 unsigned long parent_rate)
1829{
1830	struct clk_core *child;
 
1831	unsigned long new_rate;
1832	int ret = NOTIFY_DONE;
1833
1834	lockdep_assert_held(&prepare_lock);
 
 
 
1835
1836	new_rate = clk_recalc(core, parent_rate);
 
 
1837
1838	/* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */
1839	if (core->notifier_count)
1840		ret = __clk_notify(core, PRE_RATE_CHANGE, core->rate, new_rate);
1841
1842	if (ret & NOTIFY_STOP_MASK) {
1843		pr_debug("%s: clk notifier callback for clock %s aborted with error %d\n",
1844				__func__, core->name, ret);
1845		goto out;
1846	}
1847
1848	hlist_for_each_entry(child, &core->children, child_node) {
1849		ret = __clk_speculate_rates(child, new_rate);
1850		if (ret & NOTIFY_STOP_MASK)
1851			break;
1852	}
1853
1854out:
1855	return ret;
1856}
1857
1858static void clk_calc_subtree(struct clk_core *core, unsigned long new_rate,
1859			     struct clk_core *new_parent, u8 p_index)
1860{
1861	struct clk_core *child;
 
1862
1863	core->new_rate = new_rate;
1864	core->new_parent = new_parent;
1865	core->new_parent_index = p_index;
1866	/* include clk in new parent's PRE_RATE_CHANGE notifications */
1867	core->new_child = NULL;
1868	if (new_parent && new_parent != core->parent)
1869		new_parent->new_child = core;
1870
1871	hlist_for_each_entry(child, &core->children, child_node) {
1872		child->new_rate = clk_recalc(child, new_rate);
1873		clk_calc_subtree(child, child->new_rate, NULL, 0);
1874	}
1875}
1876
1877/*
1878 * calculate the new rates returning the topmost clock that has to be
1879 * changed.
1880 */
1881static struct clk_core *clk_calc_new_rates(struct clk_core *core,
1882					   unsigned long rate)
1883{
1884	struct clk_core *top = core;
1885	struct clk_core *old_parent, *parent;
1886	unsigned long best_parent_rate = 0;
1887	unsigned long new_rate;
1888	unsigned long min_rate;
1889	unsigned long max_rate;
1890	int p_index = 0;
1891	long ret;
1892
1893	/* sanity */
1894	if (IS_ERR_OR_NULL(core))
1895		return NULL;
1896
1897	/* save parent rate, if it exists */
1898	parent = old_parent = core->parent;
1899	if (parent)
1900		best_parent_rate = parent->rate;
1901
1902	clk_core_get_boundaries(core, &min_rate, &max_rate);
1903
1904	/* find the closest rate and parent clk/rate */
1905	if (clk_core_can_round(core)) {
1906		struct clk_rate_request req;
1907
1908		req.rate = rate;
1909		req.min_rate = min_rate;
1910		req.max_rate = max_rate;
1911
1912		clk_core_init_rate_req(core, &req);
1913
1914		ret = clk_core_determine_round_nolock(core, &req);
1915		if (ret < 0)
 
 
1916			return NULL;
1917
1918		best_parent_rate = req.best_parent_rate;
1919		new_rate = req.rate;
1920		parent = req.best_parent_hw ? req.best_parent_hw->core : NULL;
1921
1922		if (new_rate < min_rate || new_rate > max_rate)
1923			return NULL;
1924	} else if (!parent || !(core->flags & CLK_SET_RATE_PARENT)) {
1925		/* pass-through clock without adjustable parent */
1926		core->new_rate = core->rate;
1927		return NULL;
1928	} else {
1929		/* pass-through clock with adjustable parent */
1930		top = clk_calc_new_rates(parent, rate);
1931		new_rate = parent->new_rate;
1932		goto out;
1933	}
1934
1935	/* some clocks must be gated to change parent */
1936	if (parent != old_parent &&
1937	    (core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) {
1938		pr_debug("%s: %s not gated but wants to reparent\n",
1939			 __func__, core->name);
1940		return NULL;
1941	}
1942
1943	/* try finding the new parent index */
1944	if (parent && core->num_parents > 1) {
1945		p_index = clk_fetch_parent_index(core, parent);
1946		if (p_index < 0) {
1947			pr_debug("%s: clk %s can not be parent of clk %s\n",
1948				 __func__, parent->name, core->name);
1949			return NULL;
1950		}
1951	}
1952
1953	if ((core->flags & CLK_SET_RATE_PARENT) && parent &&
1954	    best_parent_rate != parent->rate)
1955		top = clk_calc_new_rates(parent, best_parent_rate);
 
 
 
 
1956
1957out:
1958	clk_calc_subtree(core, new_rate, parent, p_index);
1959
1960	return top;
1961}
1962
1963/*
1964 * Notify about rate changes in a subtree. Always walk down the whole tree
1965 * so that in case of an error we can walk down the whole tree again and
1966 * abort the change.
1967 */
1968static struct clk_core *clk_propagate_rate_change(struct clk_core *core,
1969						  unsigned long event)
1970{
1971	struct clk_core *child, *tmp_clk, *fail_clk = NULL;
 
1972	int ret = NOTIFY_DONE;
1973
1974	if (core->rate == core->new_rate)
1975		return NULL;
1976
1977	if (core->notifier_count) {
1978		ret = __clk_notify(core, event, core->rate, core->new_rate);
1979		if (ret & NOTIFY_STOP_MASK)
1980			fail_clk = core;
1981	}
1982
1983	hlist_for_each_entry(child, &core->children, child_node) {
1984		/* Skip children who will be reparented to another clock */
1985		if (child->new_parent && child->new_parent != core)
1986			continue;
1987		tmp_clk = clk_propagate_rate_change(child, event);
1988		if (tmp_clk)
1989			fail_clk = tmp_clk;
1990	}
1991
1992	/* handle the new child who might not be in core->children yet */
1993	if (core->new_child) {
1994		tmp_clk = clk_propagate_rate_change(core->new_child, event);
1995		if (tmp_clk)
1996			fail_clk = tmp_clk;
1997	}
1998
1999	return fail_clk;
2000}
2001
2002/*
2003 * walk down a subtree and set the new rates notifying the rate
2004 * change on the way
2005 */
2006static void clk_change_rate(struct clk_core *core)
2007{
2008	struct clk_core *child;
2009	struct hlist_node *tmp;
2010	unsigned long old_rate;
2011	unsigned long best_parent_rate = 0;
2012	bool skip_set_rate = false;
2013	struct clk_core *old_parent;
2014	struct clk_core *parent = NULL;
2015
2016	old_rate = core->rate;
2017
2018	if (core->new_parent) {
2019		parent = core->new_parent;
2020		best_parent_rate = core->new_parent->rate;
2021	} else if (core->parent) {
2022		parent = core->parent;
2023		best_parent_rate = core->parent->rate;
2024	}
2025
2026	if (clk_pm_runtime_get(core))
2027		return;
2028
2029	if (core->flags & CLK_SET_RATE_UNGATE) {
2030		unsigned long flags;
2031
2032		clk_core_prepare(core);
2033		flags = clk_enable_lock();
2034		clk_core_enable(core);
2035		clk_enable_unlock(flags);
2036	}
2037
2038	if (core->new_parent && core->new_parent != core->parent) {
2039		old_parent = __clk_set_parent_before(core, core->new_parent);
2040		trace_clk_set_parent(core, core->new_parent);
2041
2042		if (core->ops->set_rate_and_parent) {
2043			skip_set_rate = true;
2044			core->ops->set_rate_and_parent(core->hw, core->new_rate,
2045					best_parent_rate,
2046					core->new_parent_index);
2047		} else if (core->ops->set_parent) {
2048			core->ops->set_parent(core->hw, core->new_parent_index);
2049		}
2050
2051		trace_clk_set_parent_complete(core, core->new_parent);
2052		__clk_set_parent_after(core, core->new_parent, old_parent);
2053	}
2054
2055	if (core->flags & CLK_OPS_PARENT_ENABLE)
2056		clk_core_prepare_enable(parent);
2057
2058	trace_clk_set_rate(core, core->new_rate);
2059
2060	if (!skip_set_rate && core->ops->set_rate)
2061		core->ops->set_rate(core->hw, core->new_rate, best_parent_rate);
2062
2063	trace_clk_set_rate_complete(core, core->new_rate);
2064
2065	core->rate = clk_recalc(core, best_parent_rate);
2066
2067	if (core->flags & CLK_SET_RATE_UNGATE) {
2068		unsigned long flags;
2069
2070		flags = clk_enable_lock();
2071		clk_core_disable(core);
2072		clk_enable_unlock(flags);
2073		clk_core_unprepare(core);
2074	}
2075
2076	if (core->flags & CLK_OPS_PARENT_ENABLE)
2077		clk_core_disable_unprepare(parent);
2078
2079	if (core->notifier_count && old_rate != core->rate)
2080		__clk_notify(core, POST_RATE_CHANGE, old_rate, core->rate);
2081
2082	if (core->flags & CLK_RECALC_NEW_RATES)
2083		(void)clk_calc_new_rates(core, core->new_rate);
2084
2085	/*
2086	 * Use safe iteration, as change_rate can actually swap parents
2087	 * for certain clock types.
2088	 */
2089	hlist_for_each_entry_safe(child, tmp, &core->children, child_node) {
2090		/* Skip children who will be reparented to another clock */
2091		if (child->new_parent && child->new_parent != core)
2092			continue;
2093		clk_change_rate(child);
2094	}
2095
2096	/* handle the new child who might not be in core->children yet */
2097	if (core->new_child)
2098		clk_change_rate(core->new_child);
2099
2100	clk_pm_runtime_put(core);
2101}
2102
2103static unsigned long clk_core_req_round_rate_nolock(struct clk_core *core,
2104						     unsigned long req_rate)
2105{
2106	int ret, cnt;
2107	struct clk_rate_request req;
2108
2109	lockdep_assert_held(&prepare_lock);
2110
2111	if (!core)
2112		return 0;
2113
2114	/* simulate what the rate would be if it could be freely set */
2115	cnt = clk_core_rate_nuke_protect(core);
2116	if (cnt < 0)
2117		return cnt;
2118
2119	clk_core_get_boundaries(core, &req.min_rate, &req.max_rate);
2120	req.rate = req_rate;
2121
2122	ret = clk_core_round_rate_nolock(core, &req);
2123
2124	/* restore the protection */
2125	clk_core_rate_restore_protect(core, cnt);
2126
2127	return ret ? 0 : req.rate;
2128}
2129
2130static int clk_core_set_rate_nolock(struct clk_core *core,
2131				    unsigned long req_rate)
2132{
2133	struct clk_core *top, *fail_clk;
2134	unsigned long rate;
2135	int ret = 0;
2136
2137	if (!core)
2138		return 0;
2139
2140	rate = clk_core_req_round_rate_nolock(core, req_rate);
2141
2142	/* bail early if nothing to do */
2143	if (rate == clk_core_get_rate_nolock(core))
2144		return 0;
2145
2146	/* fail on a direct rate set of a protected provider */
2147	if (clk_core_rate_is_protected(core))
2148		return -EBUSY;
2149
2150	/* calculate new rates and get the topmost changed clock */
2151	top = clk_calc_new_rates(core, req_rate);
2152	if (!top)
2153		return -EINVAL;
2154
2155	ret = clk_pm_runtime_get(core);
2156	if (ret)
2157		return ret;
2158
2159	/* notify that we are about to change rates */
2160	fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE);
2161	if (fail_clk) {
2162		pr_debug("%s: failed to set %s rate\n", __func__,
2163				fail_clk->name);
2164		clk_propagate_rate_change(top, ABORT_RATE_CHANGE);
2165		ret = -EBUSY;
2166		goto err;
2167	}
2168
2169	/* change the rates */
2170	clk_change_rate(top);
2171
2172	core->req_rate = req_rate;
2173err:
2174	clk_pm_runtime_put(core);
2175
2176	return ret;
2177}
2178
2179/**
2180 * clk_set_rate - specify a new rate for clk
2181 * @clk: the clk whose rate is being changed
2182 * @rate: the new rate for clk
2183 *
2184 * In the simplest case clk_set_rate will only adjust the rate of clk.
2185 *
2186 * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to
2187 * propagate up to clk's parent; whether or not this happens depends on the
2188 * outcome of clk's .round_rate implementation.  If *parent_rate is unchanged
2189 * after calling .round_rate then upstream parent propagation is ignored.  If
2190 * *parent_rate comes back with a new rate for clk's parent then we propagate
2191 * up to clk's parent and set its rate.  Upward propagation will continue
2192 * until either a clk does not support the CLK_SET_RATE_PARENT flag or
2193 * .round_rate stops requesting changes to clk's parent_rate.
2194 *
2195 * Rate changes are accomplished via tree traversal that also recalculates the
2196 * rates for the clocks and fires off POST_RATE_CHANGE notifiers.
2197 *
2198 * Returns 0 on success, -EERROR otherwise.
2199 */
2200int clk_set_rate(struct clk *clk, unsigned long rate)
2201{
2202	int ret;
2203
2204	if (!clk)
2205		return 0;
2206
2207	/* prevent racing with updates to the clock topology */
2208	clk_prepare_lock();
2209
2210	if (clk->exclusive_count)
2211		clk_core_rate_unprotect(clk->core);
 
2212
2213	ret = clk_core_set_rate_nolock(clk->core, rate);
 
 
 
2214
2215	if (clk->exclusive_count)
2216		clk_core_rate_protect(clk->core);
2217
2218	clk_prepare_unlock();
2219
2220	return ret;
2221}
2222EXPORT_SYMBOL_GPL(clk_set_rate);
2223
2224/**
2225 * clk_set_rate_exclusive - specify a new rate and get exclusive control
2226 * @clk: the clk whose rate is being changed
2227 * @rate: the new rate for clk
2228 *
2229 * This is a combination of clk_set_rate() and clk_rate_exclusive_get()
2230 * within a critical section
2231 *
2232 * This can be used initially to ensure that at least 1 consumer is
2233 * satisfied when several consumers are competing for exclusivity over the
2234 * same clock provider.
2235 *
2236 * The exclusivity is not applied if setting the rate failed.
2237 *
2238 * Calls to clk_rate_exclusive_get() should be balanced with calls to
2239 * clk_rate_exclusive_put().
2240 *
2241 * Returns 0 on success, -EERROR otherwise.
2242 */
2243int clk_set_rate_exclusive(struct clk *clk, unsigned long rate)
2244{
2245	int ret;
2246
2247	if (!clk)
2248		return 0;
2249
2250	/* prevent racing with updates to the clock topology */
2251	clk_prepare_lock();
2252
2253	/*
2254	 * The temporary protection removal is not here, on purpose
2255	 * This function is meant to be used instead of clk_rate_protect,
2256	 * so before the consumer code path protect the clock provider
2257	 */
2258
2259	ret = clk_core_set_rate_nolock(clk->core, rate);
2260	if (!ret) {
2261		clk_core_rate_protect(clk->core);
2262		clk->exclusive_count++;
2263	}
2264
2265	clk_prepare_unlock();
2266
2267	return ret;
2268}
2269EXPORT_SYMBOL_GPL(clk_set_rate_exclusive);
2270
2271/**
2272 * clk_set_rate_range - set a rate range for a clock source
2273 * @clk: clock source
2274 * @min: desired minimum clock rate in Hz, inclusive
2275 * @max: desired maximum clock rate in Hz, inclusive
2276 *
2277 * Returns success (0) or negative errno.
2278 */
2279int clk_set_rate_range(struct clk *clk, unsigned long min, unsigned long max)
2280{
2281	int ret = 0;
2282	unsigned long old_min, old_max, rate;
2283
2284	if (!clk)
2285		return 0;
2286
2287	if (min > max) {
2288		pr_err("%s: clk %s dev %s con %s: invalid range [%lu, %lu]\n",
2289		       __func__, clk->core->name, clk->dev_id, clk->con_id,
2290		       min, max);
2291		return -EINVAL;
2292	}
2293
2294	clk_prepare_lock();
 
2295
2296	if (clk->exclusive_count)
2297		clk_core_rate_unprotect(clk->core);
2298
2299	/* Save the current values in case we need to rollback the change */
2300	old_min = clk->min_rate;
2301	old_max = clk->max_rate;
2302	clk->min_rate = min;
2303	clk->max_rate = max;
2304
2305	rate = clk_core_get_rate_nolock(clk->core);
2306	if (rate < min || rate > max) {
2307		/*
2308		 * FIXME:
2309		 * We are in bit of trouble here, current rate is outside the
2310		 * the requested range. We are going try to request appropriate
2311		 * range boundary but there is a catch. It may fail for the
2312		 * usual reason (clock broken, clock protected, etc) but also
2313		 * because:
2314		 * - round_rate() was not favorable and fell on the wrong
2315		 *   side of the boundary
2316		 * - the determine_rate() callback does not really check for
2317		 *   this corner case when determining the rate
2318		 */
2319
2320		if (rate < min)
2321			rate = min;
2322		else
2323			rate = max;
2324
2325		ret = clk_core_set_rate_nolock(clk->core, rate);
2326		if (ret) {
2327			/* rollback the changes */
2328			clk->min_rate = old_min;
2329			clk->max_rate = old_max;
2330		}
2331	}
2332
2333	if (clk->exclusive_count)
2334		clk_core_rate_protect(clk->core);
2335
2336	clk_prepare_unlock();
2337
2338	return ret;
2339}
2340EXPORT_SYMBOL_GPL(clk_set_rate_range);
2341
2342/**
2343 * clk_set_min_rate - set a minimum clock rate for a clock source
2344 * @clk: clock source
2345 * @rate: desired minimum clock rate in Hz, inclusive
2346 *
2347 * Returns success (0) or negative errno.
2348 */
2349int clk_set_min_rate(struct clk *clk, unsigned long rate)
2350{
2351	if (!clk)
2352		return 0;
2353
2354	return clk_set_rate_range(clk, rate, clk->max_rate);
2355}
2356EXPORT_SYMBOL_GPL(clk_set_min_rate);
2357
2358/**
2359 * clk_set_max_rate - set a maximum clock rate for a clock source
2360 * @clk: clock source
2361 * @rate: desired maximum clock rate in Hz, inclusive
2362 *
2363 * Returns success (0) or negative errno.
2364 */
2365int clk_set_max_rate(struct clk *clk, unsigned long rate)
2366{
2367	if (!clk)
2368		return 0;
2369
2370	return clk_set_rate_range(clk, clk->min_rate, rate);
2371}
2372EXPORT_SYMBOL_GPL(clk_set_max_rate);
2373
2374/**
2375 * clk_get_parent - return the parent of a clk
2376 * @clk: the clk whose parent gets returned
2377 *
2378 * Simply returns clk->parent.  Returns NULL if clk is NULL.
2379 */
2380struct clk *clk_get_parent(struct clk *clk)
2381{
2382	struct clk *parent;
2383
2384	if (!clk)
2385		return NULL;
2386
2387	clk_prepare_lock();
2388	/* TODO: Create a per-user clk and change callers to call clk_put */
2389	parent = !clk->core->parent ? NULL : clk->core->parent->hw->clk;
2390	clk_prepare_unlock();
2391
2392	return parent;
2393}
2394EXPORT_SYMBOL_GPL(clk_get_parent);
2395
2396static struct clk_core *__clk_init_parent(struct clk_core *core)
2397{
2398	u8 index = 0;
2399
2400	if (core->num_parents > 1 && core->ops->get_parent)
2401		index = core->ops->get_parent(core->hw);
2402
2403	return clk_core_get_parent_by_index(core, index);
2404}
2405
2406static void clk_core_reparent(struct clk_core *core,
2407				  struct clk_core *new_parent)
2408{
2409	clk_reparent(core, new_parent);
2410	__clk_recalc_accuracies(core);
2411	__clk_recalc_rates(core, POST_RATE_CHANGE);
2412}
2413
2414void clk_hw_reparent(struct clk_hw *hw, struct clk_hw *new_parent)
2415{
2416	if (!hw)
2417		return;
2418
2419	clk_core_reparent(hw->core, !new_parent ? NULL : new_parent->core);
2420}
2421
2422/**
2423 * clk_has_parent - check if a clock is a possible parent for another
2424 * @clk: clock source
2425 * @parent: parent clock source
2426 *
2427 * This function can be used in drivers that need to check that a clock can be
2428 * the parent of another without actually changing the parent.
2429 *
2430 * Returns true if @parent is a possible parent for @clk, false otherwise.
 
 
2431 */
2432bool clk_has_parent(struct clk *clk, struct clk *parent)
2433{
2434	struct clk_core *core, *parent_core;
2435	int i;
2436
2437	/* NULL clocks should be nops, so return success if either is NULL. */
2438	if (!clk || !parent)
2439		return true;
2440
2441	core = clk->core;
2442	parent_core = parent->core;
2443
2444	/* Optimize for the case where the parent is already the parent. */
2445	if (core->parent == parent_core)
2446		return true;
2447
2448	for (i = 0; i < core->num_parents; i++)
2449		if (!strcmp(core->parents[i].name, parent_core->name))
2450			return true;
2451
2452	return false;
2453}
2454EXPORT_SYMBOL_GPL(clk_has_parent);
2455
2456static int clk_core_set_parent_nolock(struct clk_core *core,
2457				      struct clk_core *parent)
2458{
2459	int ret = 0;
2460	int p_index = 0;
2461	unsigned long p_rate = 0;
2462
2463	lockdep_assert_held(&prepare_lock);
2464
2465	if (!core)
2466		return 0;
2467
2468	if (core->parent == parent)
2469		return 0;
2470
2471	/* verify ops for multi-parent clks */
2472	if (core->num_parents > 1 && !core->ops->set_parent)
2473		return -EPERM;
2474
2475	/* check that we are allowed to re-parent if the clock is in use */
2476	if ((core->flags & CLK_SET_PARENT_GATE) && core->prepare_count)
2477		return -EBUSY;
2478
2479	if (clk_core_rate_is_protected(core))
2480		return -EBUSY;
2481
2482	/* try finding the new parent index */
2483	if (parent) {
2484		p_index = clk_fetch_parent_index(core, parent);
2485		if (p_index < 0) {
2486			pr_debug("%s: clk %s can not be parent of clk %s\n",
2487					__func__, parent->name, core->name);
2488			return p_index;
2489		}
2490		p_rate = parent->rate;
2491	}
2492
2493	ret = clk_pm_runtime_get(core);
2494	if (ret)
2495		return ret;
 
 
 
2496
2497	/* propagate PRE_RATE_CHANGE notifications */
2498	ret = __clk_speculate_rates(core, p_rate);
 
 
 
2499
2500	/* abort if a driver objects */
2501	if (ret & NOTIFY_STOP_MASK)
2502		goto runtime_put;
2503
2504	/* do the re-parent */
2505	ret = __clk_set_parent(core, parent, p_index);
 
 
2506
2507	/* propagate rate an accuracy recalculation accordingly */
2508	if (ret) {
2509		__clk_recalc_rates(core, ABORT_RATE_CHANGE);
2510	} else {
2511		__clk_recalc_rates(core, POST_RATE_CHANGE);
2512		__clk_recalc_accuracies(core);
2513	}
2514
2515runtime_put:
2516	clk_pm_runtime_put(core);
2517
 
2518	return ret;
2519}
2520
2521int clk_hw_set_parent(struct clk_hw *hw, struct clk_hw *parent)
2522{
2523	return clk_core_set_parent_nolock(hw->core, parent->core);
2524}
2525EXPORT_SYMBOL_GPL(clk_hw_set_parent);
 
2526
2527/**
2528 * clk_set_parent - switch the parent of a mux clk
2529 * @clk: the mux clk whose input we are switching
2530 * @parent: the new input to clk
2531 *
2532 * Re-parent clk to use parent as its new input source.  If clk is in
2533 * prepared state, the clk will get enabled for the duration of this call. If
2534 * that's not acceptable for a specific clk (Eg: the consumer can't handle
2535 * that, the reparenting is glitchy in hardware, etc), use the
2536 * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared.
2537 *
2538 * After successfully changing clk's parent clk_set_parent will update the
2539 * clk topology, sysfs topology and propagate rate recalculation via
2540 * __clk_recalc_rates.
2541 *
2542 * Returns 0 on success, -EERROR otherwise.
2543 */
2544int clk_set_parent(struct clk *clk, struct clk *parent)
2545{
2546	int ret;
2547
2548	if (!clk)
2549		return 0;
2550
2551	clk_prepare_lock();
 
 
 
2552
2553	if (clk->exclusive_count)
2554		clk_core_rate_unprotect(clk->core);
 
2555
2556	ret = clk_core_set_parent_nolock(clk->core,
2557					 parent ? parent->core : NULL);
 
 
2558
2559	if (clk->exclusive_count)
2560		clk_core_rate_protect(clk->core);
 
 
 
 
 
 
 
2561
2562	clk_prepare_unlock();
2563
2564	return ret;
2565}
2566EXPORT_SYMBOL_GPL(clk_set_parent);
2567
2568static int clk_core_set_phase_nolock(struct clk_core *core, int degrees)
2569{
 
 
2570	int ret = -EINVAL;
 
2571
2572	lockdep_assert_held(&prepare_lock);
2573
2574	if (!core)
2575		return 0;
 
2576
2577	if (clk_core_rate_is_protected(core))
2578		return -EBUSY;
 
 
 
 
 
 
 
 
 
 
 
 
2579
2580	trace_clk_set_phase(core, degrees);
2581
2582	if (core->ops->set_phase) {
2583		ret = core->ops->set_phase(core->hw, degrees);
2584		if (!ret)
2585			core->phase = degrees;
2586	}
2587
2588	trace_clk_set_phase_complete(core, degrees);
 
 
 
 
 
 
 
 
2589
2590	return ret;
2591}
2592
2593/**
2594 * clk_set_phase - adjust the phase shift of a clock signal
2595 * @clk: clock signal source
2596 * @degrees: number of degrees the signal is shifted
2597 *
2598 * Shifts the phase of a clock signal by the specified
2599 * degrees. Returns 0 on success, -EERROR otherwise.
2600 *
2601 * This function makes no distinction about the input or reference
2602 * signal that we adjust the clock signal phase against. For example
2603 * phase locked-loop clock signal generators we may shift phase with
2604 * respect to feedback clock signal input, but for other cases the
2605 * clock phase may be shifted with respect to some other, unspecified
2606 * signal.
2607 *
2608 * Additionally the concept of phase shift does not propagate through
2609 * the clock tree hierarchy, which sets it apart from clock rates and
2610 * clock accuracy. A parent clock phase attribute does not have an
2611 * impact on the phase attribute of a child clock.
2612 */
2613int clk_set_phase(struct clk *clk, int degrees)
2614{
2615	int ret;
2616
2617	if (!clk)
2618		return 0;
2619
2620	/* sanity check degrees */
2621	degrees %= 360;
2622	if (degrees < 0)
2623		degrees += 360;
2624
2625	clk_prepare_lock();
2626
2627	if (clk->exclusive_count)
2628		clk_core_rate_unprotect(clk->core);
2629
2630	ret = clk_core_set_phase_nolock(clk->core, degrees);
2631
2632	if (clk->exclusive_count)
2633		clk_core_rate_protect(clk->core);
2634
2635	clk_prepare_unlock();
2636
2637	return ret;
2638}
2639EXPORT_SYMBOL_GPL(clk_set_phase);
2640
2641static int clk_core_get_phase(struct clk_core *core)
2642{
2643	int ret;
2644
2645	clk_prepare_lock();
2646	/* Always try to update cached phase if possible */
2647	if (core->ops->get_phase)
2648		core->phase = core->ops->get_phase(core->hw);
2649	ret = core->phase;
2650	clk_prepare_unlock();
2651
 
2652	return ret;
2653}
2654
2655/**
2656 * clk_get_phase - return the phase shift of a clock signal
2657 * @clk: clock signal source
 
2658 *
2659 * Returns the phase shift of a clock node in degrees, otherwise returns
2660 * -EERROR.
 
 
 
 
2661 */
2662int clk_get_phase(struct clk *clk)
2663{
2664	if (!clk)
2665		return 0;
2666
2667	return clk_core_get_phase(clk->core);
2668}
2669EXPORT_SYMBOL_GPL(clk_get_phase);
2670
2671static void clk_core_reset_duty_cycle_nolock(struct clk_core *core)
2672{
2673	/* Assume a default value of 50% */
2674	core->duty.num = 1;
2675	core->duty.den = 2;
2676}
2677
2678static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core);
2679
2680static int clk_core_update_duty_cycle_nolock(struct clk_core *core)
2681{
2682	struct clk_duty *duty = &core->duty;
2683	int ret = 0;
2684
2685	if (!core->ops->get_duty_cycle)
2686		return clk_core_update_duty_cycle_parent_nolock(core);
2687
2688	ret = core->ops->get_duty_cycle(core->hw, duty);
2689	if (ret)
2690		goto reset;
2691
2692	/* Don't trust the clock provider too much */
2693	if (duty->den == 0 || duty->num > duty->den) {
2694		ret = -EINVAL;
2695		goto reset;
2696	}
2697
2698	return 0;
 
2699
2700reset:
2701	clk_core_reset_duty_cycle_nolock(core);
2702	return ret;
2703}
2704
2705static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core)
2706{
2707	int ret = 0;
2708
2709	if (core->parent &&
2710	    core->flags & CLK_DUTY_CYCLE_PARENT) {
2711		ret = clk_core_update_duty_cycle_nolock(core->parent);
2712		memcpy(&core->duty, &core->parent->duty, sizeof(core->duty));
2713	} else {
2714		clk_core_reset_duty_cycle_nolock(core);
2715	}
2716
2717	return ret;
2718}
2719
2720static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core,
2721						 struct clk_duty *duty);
2722
2723static int clk_core_set_duty_cycle_nolock(struct clk_core *core,
2724					  struct clk_duty *duty)
2725{
2726	int ret;
2727
2728	lockdep_assert_held(&prepare_lock);
2729
2730	if (clk_core_rate_is_protected(core))
2731		return -EBUSY;
2732
2733	trace_clk_set_duty_cycle(core, duty);
2734
2735	if (!core->ops->set_duty_cycle)
2736		return clk_core_set_duty_cycle_parent_nolock(core, duty);
2737
2738	ret = core->ops->set_duty_cycle(core->hw, duty);
2739	if (!ret)
2740		memcpy(&core->duty, duty, sizeof(*duty));
2741
2742	trace_clk_set_duty_cycle_complete(core, duty);
2743
2744	return ret;
2745}
2746
2747static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core,
2748						 struct clk_duty *duty)
2749{
2750	int ret = 0;
2751
2752	if (core->parent &&
2753	    core->flags & (CLK_DUTY_CYCLE_PARENT | CLK_SET_RATE_PARENT)) {
2754		ret = clk_core_set_duty_cycle_nolock(core->parent, duty);
2755		memcpy(&core->duty, &core->parent->duty, sizeof(core->duty));
2756	}
2757
2758	return ret;
2759}
2760
2761/**
2762 * clk_set_duty_cycle - adjust the duty cycle ratio of a clock signal
2763 * @clk: clock signal source
2764 * @num: numerator of the duty cycle ratio to be applied
2765 * @den: denominator of the duty cycle ratio to be applied
2766 *
2767 * Apply the duty cycle ratio if the ratio is valid and the clock can
2768 * perform this operation
2769 *
2770 * Returns (0) on success, a negative errno otherwise.
2771 */
2772int clk_set_duty_cycle(struct clk *clk, unsigned int num, unsigned int den)
2773{
2774	int ret;
2775	struct clk_duty duty;
2776
2777	if (!clk)
2778		return 0;
2779
2780	/* sanity check the ratio */
2781	if (den == 0 || num > den)
2782		return -EINVAL;
2783
2784	duty.num = num;
2785	duty.den = den;
2786
2787	clk_prepare_lock();
2788
2789	if (clk->exclusive_count)
2790		clk_core_rate_unprotect(clk->core);
2791
2792	ret = clk_core_set_duty_cycle_nolock(clk->core, &duty);
2793
2794	if (clk->exclusive_count)
2795		clk_core_rate_protect(clk->core);
2796
2797	clk_prepare_unlock();
2798
2799	return ret;
2800}
2801EXPORT_SYMBOL_GPL(clk_set_duty_cycle);
2802
2803static int clk_core_get_scaled_duty_cycle(struct clk_core *core,
2804					  unsigned int scale)
2805{
2806	struct clk_duty *duty = &core->duty;
2807	int ret;
2808
2809	clk_prepare_lock();
2810
2811	ret = clk_core_update_duty_cycle_nolock(core);
2812	if (!ret)
2813		ret = mult_frac(scale, duty->num, duty->den);
2814
2815	clk_prepare_unlock();
2816
2817	return ret;
2818}
2819
2820/**
2821 * clk_get_scaled_duty_cycle - return the duty cycle ratio of a clock signal
2822 * @clk: clock signal source
2823 * @scale: scaling factor to be applied to represent the ratio as an integer
2824 *
2825 * Returns the duty cycle ratio of a clock node multiplied by the provided
2826 * scaling factor, or negative errno on error.
2827 */
2828int clk_get_scaled_duty_cycle(struct clk *clk, unsigned int scale)
2829{
2830	if (!clk)
2831		return 0;
2832
2833	return clk_core_get_scaled_duty_cycle(clk->core, scale);
2834}
2835EXPORT_SYMBOL_GPL(clk_get_scaled_duty_cycle);
2836
2837/**
2838 * clk_is_match - check if two clk's point to the same hardware clock
2839 * @p: clk compared against q
2840 * @q: clk compared against p
2841 *
2842 * Returns true if the two struct clk pointers both point to the same hardware
2843 * clock node. Put differently, returns true if struct clk *p and struct clk *q
2844 * share the same struct clk_core object.
2845 *
2846 * Returns false otherwise. Note that two NULL clks are treated as matching.
2847 */
2848bool clk_is_match(const struct clk *p, const struct clk *q)
2849{
2850	/* trivial case: identical struct clk's or both NULL */
2851	if (p == q)
2852		return true;
2853
2854	/* true if clk->core pointers match. Avoid dereferencing garbage */
2855	if (!IS_ERR_OR_NULL(p) && !IS_ERR_OR_NULL(q))
2856		if (p->core == q->core)
2857			return true;
2858
2859	return false;
2860}
2861EXPORT_SYMBOL_GPL(clk_is_match);
2862
2863/***        debugfs support        ***/
2864
2865#ifdef CONFIG_DEBUG_FS
2866#include <linux/debugfs.h>
2867
2868static struct dentry *rootdir;
2869static int inited = 0;
2870static DEFINE_MUTEX(clk_debug_lock);
2871static HLIST_HEAD(clk_debug_list);
2872
2873static struct hlist_head *orphan_list[] = {
2874	&clk_orphan_list,
2875	NULL,
2876};
2877
2878static void clk_summary_show_one(struct seq_file *s, struct clk_core *c,
2879				 int level)
2880{
2881	seq_printf(s, "%*s%-*s %7d %8d %8d %11lu %10lu %5d %6d\n",
2882		   level * 3 + 1, "",
2883		   30 - level * 3, c->name,
2884		   c->enable_count, c->prepare_count, c->protect_count,
2885		   clk_core_get_rate(c), clk_core_get_accuracy(c),
2886		   clk_core_get_phase(c),
2887		   clk_core_get_scaled_duty_cycle(c, 100000));
2888}
2889
2890static void clk_summary_show_subtree(struct seq_file *s, struct clk_core *c,
2891				     int level)
2892{
2893	struct clk_core *child;
2894
2895	clk_summary_show_one(s, c, level);
2896
2897	hlist_for_each_entry(child, &c->children, child_node)
2898		clk_summary_show_subtree(s, child, level + 1);
2899}
2900
2901static int clk_summary_show(struct seq_file *s, void *data)
2902{
2903	struct clk_core *c;
2904	struct hlist_head **lists = (struct hlist_head **)s->private;
2905
2906	seq_puts(s, "                                 enable  prepare  protect                                duty\n");
2907	seq_puts(s, "   clock                          count    count    count        rate   accuracy phase  cycle\n");
2908	seq_puts(s, "---------------------------------------------------------------------------------------------\n");
2909
2910	clk_prepare_lock();
2911
2912	for (; *lists; lists++)
2913		hlist_for_each_entry(c, *lists, child_node)
2914			clk_summary_show_subtree(s, c, 0);
2915
2916	clk_prepare_unlock();
2917
2918	return 0;
2919}
2920DEFINE_SHOW_ATTRIBUTE(clk_summary);
2921
2922static void clk_dump_one(struct seq_file *s, struct clk_core *c, int level)
2923{
2924	unsigned long min_rate, max_rate;
2925
2926	clk_core_get_boundaries(c, &min_rate, &max_rate);
2927
2928	/* This should be JSON format, i.e. elements separated with a comma */
2929	seq_printf(s, "\"%s\": { ", c->name);
2930	seq_printf(s, "\"enable_count\": %d,", c->enable_count);
2931	seq_printf(s, "\"prepare_count\": %d,", c->prepare_count);
2932	seq_printf(s, "\"protect_count\": %d,", c->protect_count);
2933	seq_printf(s, "\"rate\": %lu,", clk_core_get_rate(c));
2934	seq_printf(s, "\"min_rate\": %lu,", min_rate);
2935	seq_printf(s, "\"max_rate\": %lu,", max_rate);
2936	seq_printf(s, "\"accuracy\": %lu,", clk_core_get_accuracy(c));
2937	seq_printf(s, "\"phase\": %d,", clk_core_get_phase(c));
2938	seq_printf(s, "\"duty_cycle\": %u",
2939		   clk_core_get_scaled_duty_cycle(c, 100000));
2940}
2941
2942static void clk_dump_subtree(struct seq_file *s, struct clk_core *c, int level)
2943{
2944	struct clk_core *child;
2945
2946	clk_dump_one(s, c, level);
2947
2948	hlist_for_each_entry(child, &c->children, child_node) {
2949		seq_putc(s, ',');
2950		clk_dump_subtree(s, child, level + 1);
2951	}
2952
2953	seq_putc(s, '}');
2954}
2955
2956static int clk_dump_show(struct seq_file *s, void *data)
2957{
2958	struct clk_core *c;
2959	bool first_node = true;
2960	struct hlist_head **lists = (struct hlist_head **)s->private;
2961
2962	seq_putc(s, '{');
2963	clk_prepare_lock();
2964
2965	for (; *lists; lists++) {
2966		hlist_for_each_entry(c, *lists, child_node) {
2967			if (!first_node)
2968				seq_putc(s, ',');
2969			first_node = false;
2970			clk_dump_subtree(s, c, 0);
2971		}
2972	}
2973
2974	clk_prepare_unlock();
2975
2976	seq_puts(s, "}\n");
2977	return 0;
2978}
2979DEFINE_SHOW_ATTRIBUTE(clk_dump);
2980
2981static const struct {
2982	unsigned long flag;
2983	const char *name;
2984} clk_flags[] = {
2985#define ENTRY(f) { f, #f }
2986	ENTRY(CLK_SET_RATE_GATE),
2987	ENTRY(CLK_SET_PARENT_GATE),
2988	ENTRY(CLK_SET_RATE_PARENT),
2989	ENTRY(CLK_IGNORE_UNUSED),
2990	ENTRY(CLK_GET_RATE_NOCACHE),
2991	ENTRY(CLK_SET_RATE_NO_REPARENT),
2992	ENTRY(CLK_GET_ACCURACY_NOCACHE),
2993	ENTRY(CLK_RECALC_NEW_RATES),
2994	ENTRY(CLK_SET_RATE_UNGATE),
2995	ENTRY(CLK_IS_CRITICAL),
2996	ENTRY(CLK_OPS_PARENT_ENABLE),
2997	ENTRY(CLK_DUTY_CYCLE_PARENT),
2998#undef ENTRY
2999};
3000
3001static int clk_flags_show(struct seq_file *s, void *data)
3002{
3003	struct clk_core *core = s->private;
3004	unsigned long flags = core->flags;
3005	unsigned int i;
3006
3007	for (i = 0; flags && i < ARRAY_SIZE(clk_flags); i++) {
3008		if (flags & clk_flags[i].flag) {
3009			seq_printf(s, "%s\n", clk_flags[i].name);
3010			flags &= ~clk_flags[i].flag;
3011		}
3012	}
3013	if (flags) {
3014		/* Unknown flags */
3015		seq_printf(s, "0x%lx\n", flags);
3016	}
3017
3018	return 0;
3019}
3020DEFINE_SHOW_ATTRIBUTE(clk_flags);
3021
3022static void possible_parent_show(struct seq_file *s, struct clk_core *core,
3023				 unsigned int i, char terminator)
3024{
3025	struct clk_core *parent;
3026
3027	/*
3028	 * Go through the following options to fetch a parent's name.
3029	 *
3030	 * 1. Fetch the registered parent clock and use its name
3031	 * 2. Use the global (fallback) name if specified
3032	 * 3. Use the local fw_name if provided
3033	 * 4. Fetch parent clock's clock-output-name if DT index was set
3034	 *
3035	 * This may still fail in some cases, such as when the parent is
3036	 * specified directly via a struct clk_hw pointer, but it isn't
3037	 * registered (yet).
3038	 */
3039	parent = clk_core_get_parent_by_index(core, i);
3040	if (parent)
3041		seq_puts(s, parent->name);
3042	else if (core->parents[i].name)
3043		seq_puts(s, core->parents[i].name);
3044	else if (core->parents[i].fw_name)
3045		seq_printf(s, "<%s>(fw)", core->parents[i].fw_name);
3046	else if (core->parents[i].index >= 0)
3047		seq_puts(s,
3048			 of_clk_get_parent_name(core->of_node,
3049						core->parents[i].index));
3050	else
3051		seq_puts(s, "(missing)");
3052
3053	seq_putc(s, terminator);
3054}
3055
3056static int possible_parents_show(struct seq_file *s, void *data)
3057{
3058	struct clk_core *core = s->private;
3059	int i;
3060
3061	for (i = 0; i < core->num_parents - 1; i++)
3062		possible_parent_show(s, core, i, ' ');
3063
3064	possible_parent_show(s, core, i, '\n');
3065
3066	return 0;
3067}
3068DEFINE_SHOW_ATTRIBUTE(possible_parents);
3069
3070static int current_parent_show(struct seq_file *s, void *data)
3071{
3072	struct clk_core *core = s->private;
3073
3074	if (core->parent)
3075		seq_printf(s, "%s\n", core->parent->name);
3076
3077	return 0;
3078}
3079DEFINE_SHOW_ATTRIBUTE(current_parent);
3080
3081static int clk_duty_cycle_show(struct seq_file *s, void *data)
3082{
3083	struct clk_core *core = s->private;
3084	struct clk_duty *duty = &core->duty;
3085
3086	seq_printf(s, "%u/%u\n", duty->num, duty->den);
3087
3088	return 0;
3089}
3090DEFINE_SHOW_ATTRIBUTE(clk_duty_cycle);
3091
3092static int clk_min_rate_show(struct seq_file *s, void *data)
3093{
3094	struct clk_core *core = s->private;
3095	unsigned long min_rate, max_rate;
3096
3097	clk_prepare_lock();
3098	clk_core_get_boundaries(core, &min_rate, &max_rate);
3099	clk_prepare_unlock();
3100	seq_printf(s, "%lu\n", min_rate);
3101
3102	return 0;
3103}
3104DEFINE_SHOW_ATTRIBUTE(clk_min_rate);
3105
3106static int clk_max_rate_show(struct seq_file *s, void *data)
3107{
3108	struct clk_core *core = s->private;
3109	unsigned long min_rate, max_rate;
3110
3111	clk_prepare_lock();
3112	clk_core_get_boundaries(core, &min_rate, &max_rate);
3113	clk_prepare_unlock();
3114	seq_printf(s, "%lu\n", max_rate);
3115
3116	return 0;
3117}
3118DEFINE_SHOW_ATTRIBUTE(clk_max_rate);
3119
3120static void clk_debug_create_one(struct clk_core *core, struct dentry *pdentry)
3121{
3122	struct dentry *root;
3123
3124	if (!core || !pdentry)
3125		return;
3126
3127	root = debugfs_create_dir(core->name, pdentry);
3128	core->dentry = root;
3129
3130	debugfs_create_ulong("clk_rate", 0444, root, &core->rate);
3131	debugfs_create_file("clk_min_rate", 0444, root, core, &clk_min_rate_fops);
3132	debugfs_create_file("clk_max_rate", 0444, root, core, &clk_max_rate_fops);
3133	debugfs_create_ulong("clk_accuracy", 0444, root, &core->accuracy);
3134	debugfs_create_u32("clk_phase", 0444, root, &core->phase);
3135	debugfs_create_file("clk_flags", 0444, root, core, &clk_flags_fops);
3136	debugfs_create_u32("clk_prepare_count", 0444, root, &core->prepare_count);
3137	debugfs_create_u32("clk_enable_count", 0444, root, &core->enable_count);
3138	debugfs_create_u32("clk_protect_count", 0444, root, &core->protect_count);
3139	debugfs_create_u32("clk_notifier_count", 0444, root, &core->notifier_count);
3140	debugfs_create_file("clk_duty_cycle", 0444, root, core,
3141			    &clk_duty_cycle_fops);
3142
3143	if (core->num_parents > 0)
3144		debugfs_create_file("clk_parent", 0444, root, core,
3145				    &current_parent_fops);
3146
3147	if (core->num_parents > 1)
3148		debugfs_create_file("clk_possible_parents", 0444, root, core,
3149				    &possible_parents_fops);
3150
3151	if (core->ops->debug_init)
3152		core->ops->debug_init(core->hw, core->dentry);
3153}
3154
3155/**
3156 * clk_debug_register - add a clk node to the debugfs clk directory
3157 * @core: the clk being added to the debugfs clk directory
3158 *
3159 * Dynamically adds a clk to the debugfs clk directory if debugfs has been
3160 * initialized.  Otherwise it bails out early since the debugfs clk directory
3161 * will be created lazily by clk_debug_init as part of a late_initcall.
3162 */
3163static void clk_debug_register(struct clk_core *core)
3164{
3165	mutex_lock(&clk_debug_lock);
3166	hlist_add_head(&core->debug_node, &clk_debug_list);
3167	if (inited)
3168		clk_debug_create_one(core, rootdir);
3169	mutex_unlock(&clk_debug_lock);
3170}
3171
3172 /**
3173 * clk_debug_unregister - remove a clk node from the debugfs clk directory
3174 * @core: the clk being removed from the debugfs clk directory
3175 *
3176 * Dynamically removes a clk and all its child nodes from the
3177 * debugfs clk directory if clk->dentry points to debugfs created by
3178 * clk_debug_register in __clk_core_init.
3179 */
3180static void clk_debug_unregister(struct clk_core *core)
3181{
3182	mutex_lock(&clk_debug_lock);
3183	hlist_del_init(&core->debug_node);
3184	debugfs_remove_recursive(core->dentry);
3185	core->dentry = NULL;
3186	mutex_unlock(&clk_debug_lock);
3187}
3188
3189/**
3190 * clk_debug_init - lazily populate the debugfs clk directory
 
 
3191 *
3192 * clks are often initialized very early during boot before memory can be
3193 * dynamically allocated and well before debugfs is setup. This function
3194 * populates the debugfs clk directory once at boot-time when we know that
3195 * debugfs is setup. It should only be called once at boot-time, all other clks
3196 * added dynamically will be done so with clk_debug_register.
3197 */
3198static int __init clk_debug_init(void)
3199{
3200	struct clk_core *core;
3201
3202	rootdir = debugfs_create_dir("clk", NULL);
3203
3204	debugfs_create_file("clk_summary", 0444, rootdir, &all_lists,
3205			    &clk_summary_fops);
3206	debugfs_create_file("clk_dump", 0444, rootdir, &all_lists,
3207			    &clk_dump_fops);
3208	debugfs_create_file("clk_orphan_summary", 0444, rootdir, &orphan_list,
3209			    &clk_summary_fops);
3210	debugfs_create_file("clk_orphan_dump", 0444, rootdir, &orphan_list,
3211			    &clk_dump_fops);
3212
3213	mutex_lock(&clk_debug_lock);
3214	hlist_for_each_entry(core, &clk_debug_list, debug_node)
3215		clk_debug_create_one(core, rootdir);
3216
3217	inited = 1;
3218	mutex_unlock(&clk_debug_lock);
3219
3220	return 0;
3221}
3222late_initcall(clk_debug_init);
3223#else
3224static inline void clk_debug_register(struct clk_core *core) { }
3225static inline void clk_debug_reparent(struct clk_core *core,
3226				      struct clk_core *new_parent)
3227{
3228}
3229static inline void clk_debug_unregister(struct clk_core *core)
3230{
3231}
3232#endif
3233
3234/**
3235 * __clk_core_init - initialize the data structures in a struct clk_core
3236 * @core:	clk_core being initialized
3237 *
3238 * Initializes the lists in struct clk_core, queries the hardware for the
3239 * parent and rate and sets them both.
3240 */
3241static int __clk_core_init(struct clk_core *core)
3242{
3243	int ret;
3244	struct clk_core *orphan;
3245	struct hlist_node *tmp2;
3246	unsigned long rate;
3247
3248	if (!core)
3249		return -EINVAL;
3250
3251	clk_prepare_lock();
3252
3253	ret = clk_pm_runtime_get(core);
3254	if (ret)
3255		goto unlock;
3256
3257	/* check to see if a clock with this name is already registered */
3258	if (clk_core_lookup(core->name)) {
3259		pr_debug("%s: clk %s already initialized\n",
3260				__func__, core->name);
3261		ret = -EEXIST;
3262		goto out;
3263	}
3264
3265	/* check that clk_ops are sane.  See Documentation/driver-api/clk.rst */
3266	if (core->ops->set_rate &&
3267	    !((core->ops->round_rate || core->ops->determine_rate) &&
3268	      core->ops->recalc_rate)) {
3269		pr_err("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n",
3270		       __func__, core->name);
3271		ret = -EINVAL;
3272		goto out;
3273	}
3274
3275	if (core->ops->set_parent && !core->ops->get_parent) {
3276		pr_err("%s: %s must implement .get_parent & .set_parent\n",
3277		       __func__, core->name);
3278		ret = -EINVAL;
3279		goto out;
3280	}
3281
3282	if (core->num_parents > 1 && !core->ops->get_parent) {
3283		pr_err("%s: %s must implement .get_parent as it has multi parents\n",
3284		       __func__, core->name);
3285		ret = -EINVAL;
3286		goto out;
3287	}
3288
3289	if (core->ops->set_rate_and_parent &&
3290			!(core->ops->set_parent && core->ops->set_rate)) {
3291		pr_err("%s: %s must implement .set_parent & .set_rate\n",
3292				__func__, core->name);
3293		ret = -EINVAL;
3294		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3295	}
3296
3297	core->parent = __clk_init_parent(core);
3298
3299	/*
3300	 * Populate core->parent if parent has already been clk_core_init'd. If
3301	 * parent has not yet been clk_core_init'd then place clk in the orphan
3302	 * list.  If clk doesn't have any parents then place it in the root
3303	 * clk list.
3304	 *
3305	 * Every time a new clk is clk_init'd then we walk the list of orphan
3306	 * clocks and re-parent any that are children of the clock currently
3307	 * being clk_init'd.
3308	 */
3309	if (core->parent) {
3310		hlist_add_head(&core->child_node,
3311				&core->parent->children);
3312		core->orphan = core->parent->orphan;
3313	} else if (!core->num_parents) {
3314		hlist_add_head(&core->child_node, &clk_root_list);
3315		core->orphan = false;
3316	} else {
3317		hlist_add_head(&core->child_node, &clk_orphan_list);
3318		core->orphan = true;
3319	}
3320
3321	/*
3322	 * optional platform-specific magic
3323	 *
3324	 * The .init callback is not used by any of the basic clock types, but
3325	 * exists for weird hardware that must perform initialization magic.
3326	 * Please consider other ways of solving initialization problems before
3327	 * using this callback, as its use is discouraged.
3328	 */
3329	if (core->ops->init)
3330		core->ops->init(core->hw);
3331
3332	/*
3333	 * Set clk's accuracy.  The preferred method is to use
3334	 * .recalc_accuracy. For simple clocks and lazy developers the default
3335	 * fallback is to use the parent's accuracy.  If a clock doesn't have a
3336	 * parent (or is orphaned) then accuracy is set to zero (perfect
3337	 * clock).
3338	 */
3339	if (core->ops->recalc_accuracy)
3340		core->accuracy = core->ops->recalc_accuracy(core->hw,
3341					__clk_get_accuracy(core->parent));
3342	else if (core->parent)
3343		core->accuracy = core->parent->accuracy;
3344	else
3345		core->accuracy = 0;
3346
3347	/*
3348	 * Set clk's phase.
3349	 * Since a phase is by definition relative to its parent, just
3350	 * query the current clock phase, or just assume it's in phase.
3351	 */
3352	if (core->ops->get_phase)
3353		core->phase = core->ops->get_phase(core->hw);
3354	else
3355		core->phase = 0;
3356
3357	/*
3358	 * Set clk's duty cycle.
3359	 */
3360	clk_core_update_duty_cycle_nolock(core);
3361
3362	/*
3363	 * Set clk's rate.  The preferred method is to use .recalc_rate.  For
3364	 * simple clocks and lazy developers the default fallback is to use the
3365	 * parent's rate.  If a clock doesn't have a parent (or is orphaned)
3366	 * then rate is set to zero.
3367	 */
3368	if (core->ops->recalc_rate)
3369		rate = core->ops->recalc_rate(core->hw,
3370				clk_core_get_rate_nolock(core->parent));
3371	else if (core->parent)
3372		rate = core->parent->rate;
3373	else
3374		rate = 0;
3375	core->rate = core->req_rate = rate;
3376
3377	/*
3378	 * Enable CLK_IS_CRITICAL clocks so newly added critical clocks
3379	 * don't get accidentally disabled when walking the orphan tree and
3380	 * reparenting clocks
3381	 */
3382	if (core->flags & CLK_IS_CRITICAL) {
3383		unsigned long flags;
3384
3385		clk_core_prepare(core);
3386
3387		flags = clk_enable_lock();
3388		clk_core_enable(core);
3389		clk_enable_unlock(flags);
3390	}
3391
3392	/*
3393	 * walk the list of orphan clocks and reparent any that newly finds a
3394	 * parent.
 
 
 
 
3395	 */
3396	hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) {
3397		struct clk_core *parent = __clk_init_parent(orphan);
3398
3399		/*
3400		 * We need to use __clk_set_parent_before() and _after() to
3401		 * to properly migrate any prepare/enable count of the orphan
3402		 * clock. This is important for CLK_IS_CRITICAL clocks, which
3403		 * are enabled during init but might not have a parent yet.
3404		 */
3405		if (parent) {
3406			/* update the clk tree topology */
3407			__clk_set_parent_before(orphan, parent);
3408			__clk_set_parent_after(orphan, parent, NULL);
3409			__clk_recalc_accuracies(orphan);
3410			__clk_recalc_rates(orphan, 0);
3411		}
3412	}
3413
3414	kref_init(&core->ref);
3415out:
3416	clk_pm_runtime_put(core);
3417unlock:
3418	clk_prepare_unlock();
3419
3420	if (!ret)
3421		clk_debug_register(core);
3422
3423	return ret;
3424}
3425
3426/**
3427 * clk_core_link_consumer - Add a clk consumer to the list of consumers in a clk_core
3428 * @core: clk to add consumer to
3429 * @clk: consumer to link to a clk
3430 */
3431static void clk_core_link_consumer(struct clk_core *core, struct clk *clk)
3432{
3433	clk_prepare_lock();
3434	hlist_add_head(&clk->clks_node, &core->clks);
3435	clk_prepare_unlock();
3436}
3437
3438/**
3439 * clk_core_unlink_consumer - Remove a clk consumer from the list of consumers in a clk_core
3440 * @clk: consumer to unlink
3441 */
3442static void clk_core_unlink_consumer(struct clk *clk)
3443{
3444	lockdep_assert_held(&prepare_lock);
3445	hlist_del(&clk->clks_node);
3446}
3447
3448/**
3449 * alloc_clk - Allocate a clk consumer, but leave it unlinked to the clk_core
3450 * @core: clk to allocate a consumer for
3451 * @dev_id: string describing device name
3452 * @con_id: connection ID string on device
3453 *
3454 * Returns: clk consumer left unlinked from the consumer list
 
 
 
 
 
 
 
 
 
 
 
 
3455 */
3456static struct clk *alloc_clk(struct clk_core *core, const char *dev_id,
3457			     const char *con_id)
3458{
 
3459	struct clk *clk;
3460
3461	clk = kzalloc(sizeof(*clk), GFP_KERNEL);
3462	if (!clk)
3463		return ERR_PTR(-ENOMEM);
 
 
 
 
3464
3465	clk->core = core;
3466	clk->dev_id = dev_id;
3467	clk->con_id = kstrdup_const(con_id, GFP_KERNEL);
3468	clk->max_rate = ULONG_MAX;
3469
3470	return clk;
3471}
 
3472
3473/**
3474 * free_clk - Free a clk consumer
3475 * @clk: clk consumer to free
 
3476 *
3477 * Note, this assumes the clk has been unlinked from the clk_core consumer
3478 * list.
 
 
 
3479 */
3480static void free_clk(struct clk *clk)
3481{
3482	kfree_const(clk->con_id);
3483	kfree(clk);
3484}
3485
3486/**
3487 * clk_hw_create_clk: Allocate and link a clk consumer to a clk_core given
3488 * a clk_hw
3489 * @dev: clk consumer device
3490 * @hw: clk_hw associated with the clk being consumed
3491 * @dev_id: string describing device name
3492 * @con_id: connection ID string on device
3493 *
3494 * This is the main function used to create a clk pointer for use by clk
3495 * consumers. It connects a consumer to the clk_core and clk_hw structures
3496 * used by the framework and clk provider respectively.
3497 */
3498struct clk *clk_hw_create_clk(struct device *dev, struct clk_hw *hw,
3499			      const char *dev_id, const char *con_id)
3500{
 
3501	struct clk *clk;
3502	struct clk_core *core;
3503
3504	/* This is to allow this function to be chained to others */
3505	if (IS_ERR_OR_NULL(hw))
3506		return ERR_CAST(hw);
3507
3508	core = hw->core;
3509	clk = alloc_clk(core, dev_id, con_id);
3510	if (IS_ERR(clk))
3511		return clk;
3512	clk->dev = dev;
3513
3514	if (!try_module_get(core->owner)) {
3515		free_clk(clk);
3516		return ERR_PTR(-ENOENT);
3517	}
3518
3519	kref_get(&core->ref);
3520	clk_core_link_consumer(core, clk);
3521
3522	return clk;
3523}
3524
3525static int clk_cpy_name(const char **dst_p, const char *src, bool must_exist)
3526{
3527	const char *dst;
3528
3529	if (!src) {
3530		if (must_exist)
3531			return -EINVAL;
3532		return 0;
3533	}
3534
3535	*dst_p = dst = kstrdup_const(src, GFP_KERNEL);
3536	if (!dst)
3537		return -ENOMEM;
3538
3539	return 0;
3540}
3541
3542static int clk_core_populate_parent_map(struct clk_core *core,
3543					const struct clk_init_data *init)
3544{
3545	u8 num_parents = init->num_parents;
3546	const char * const *parent_names = init->parent_names;
3547	const struct clk_hw **parent_hws = init->parent_hws;
3548	const struct clk_parent_data *parent_data = init->parent_data;
3549	int i, ret = 0;
3550	struct clk_parent_map *parents, *parent;
3551
3552	if (!num_parents)
3553		return 0;
3554
3555	/*
3556	 * Avoid unnecessary string look-ups of clk_core's possible parents by
3557	 * having a cache of names/clk_hw pointers to clk_core pointers.
3558	 */
3559	parents = kcalloc(num_parents, sizeof(*parents), GFP_KERNEL);
3560	core->parents = parents;
3561	if (!parents)
3562		return -ENOMEM;
3563
3564	/* Copy everything over because it might be __initdata */
3565	for (i = 0, parent = parents; i < num_parents; i++, parent++) {
3566		parent->index = -1;
3567		if (parent_names) {
3568			/* throw a WARN if any entries are NULL */
3569			WARN(!parent_names[i],
3570				"%s: invalid NULL in %s's .parent_names\n",
3571				__func__, core->name);
3572			ret = clk_cpy_name(&parent->name, parent_names[i],
3573					   true);
3574		} else if (parent_data) {
3575			parent->hw = parent_data[i].hw;
3576			parent->index = parent_data[i].index;
3577			ret = clk_cpy_name(&parent->fw_name,
3578					   parent_data[i].fw_name, false);
3579			if (!ret)
3580				ret = clk_cpy_name(&parent->name,
3581						   parent_data[i].name,
3582						   false);
3583		} else if (parent_hws) {
3584			parent->hw = parent_hws[i];
3585		} else {
3586			ret = -EINVAL;
3587			WARN(1, "Must specify parents if num_parents > 0\n");
3588		}
3589
3590		if (ret) {
3591			do {
3592				kfree_const(parents[i].name);
3593				kfree_const(parents[i].fw_name);
3594			} while (--i >= 0);
3595			kfree(parents);
3596
3597			return ret;
3598		}
3599	}
3600
3601	return 0;
3602}
3603
3604static void clk_core_free_parent_map(struct clk_core *core)
3605{
3606	int i = core->num_parents;
3607
3608	if (!core->num_parents)
3609		return;
3610
3611	while (--i >= 0) {
3612		kfree_const(core->parents[i].name);
3613		kfree_const(core->parents[i].fw_name);
3614	}
3615
3616	kfree(core->parents);
3617}
3618
3619static struct clk *
3620__clk_register(struct device *dev, struct device_node *np, struct clk_hw *hw)
3621{
3622	int ret;
3623	struct clk_core *core;
3624	const struct clk_init_data *init = hw->init;
3625
3626	/*
3627	 * The init data is not supposed to be used outside of registration path.
3628	 * Set it to NULL so that provider drivers can't use it either and so that
3629	 * we catch use of hw->init early on in the core.
3630	 */
3631	hw->init = NULL;
3632
3633	core = kzalloc(sizeof(*core), GFP_KERNEL);
3634	if (!core) {
3635		ret = -ENOMEM;
3636		goto fail_out;
3637	}
3638
3639	core->name = kstrdup_const(init->name, GFP_KERNEL);
3640	if (!core->name) {
 
3641		ret = -ENOMEM;
3642		goto fail_name;
3643	}
 
 
 
 
 
 
 
 
 
3644
3645	if (WARN_ON(!init->ops)) {
3646		ret = -EINVAL;
3647		goto fail_ops;
 
3648	}
3649	core->ops = init->ops;
3650
3651	if (dev && pm_runtime_enabled(dev))
3652		core->rpm_enabled = true;
3653	core->dev = dev;
3654	core->of_node = np;
3655	if (dev && dev->driver)
3656		core->owner = dev->driver->owner;
3657	core->hw = hw;
3658	core->flags = init->flags;
3659	core->num_parents = init->num_parents;
3660	core->min_rate = 0;
3661	core->max_rate = ULONG_MAX;
3662	hw->core = core;
3663
3664	ret = clk_core_populate_parent_map(core, init);
3665	if (ret)
3666		goto fail_parents;
3667
3668	INIT_HLIST_HEAD(&core->clks);
3669
3670	/*
3671	 * Don't call clk_hw_create_clk() here because that would pin the
3672	 * provider module to itself and prevent it from ever being removed.
3673	 */
3674	hw->clk = alloc_clk(core, NULL, NULL);
3675	if (IS_ERR(hw->clk)) {
3676		ret = PTR_ERR(hw->clk);
3677		goto fail_create_clk;
3678	}
3679
3680	clk_core_link_consumer(hw->core, hw->clk);
3681
3682	ret = __clk_core_init(core);
3683	if (!ret)
3684		return hw->clk;
3685
3686	clk_prepare_lock();
3687	clk_core_unlink_consumer(hw->clk);
3688	clk_prepare_unlock();
3689
3690	free_clk(hw->clk);
3691	hw->clk = NULL;
3692
3693fail_create_clk:
3694	clk_core_free_parent_map(core);
3695fail_parents:
3696fail_ops:
3697	kfree_const(core->name);
3698fail_name:
3699	kfree(core);
3700fail_out:
3701	return ERR_PTR(ret);
3702}
3703
3704/**
3705 * clk_register - allocate a new clock, register it and return an opaque cookie
3706 * @dev: device that is registering this clock
3707 * @hw: link to hardware-specific clock data
3708 *
3709 * clk_register is the *deprecated* interface for populating the clock tree with
3710 * new clock nodes. Use clk_hw_register() instead.
3711 *
3712 * Returns: a pointer to the newly allocated struct clk which
3713 * cannot be dereferenced by driver code but may be used in conjunction with the
3714 * rest of the clock API.  In the event of an error clk_register will return an
3715 * error code; drivers must test for an error code after calling clk_register.
3716 */
3717struct clk *clk_register(struct device *dev, struct clk_hw *hw)
3718{
3719	return __clk_register(dev, dev_of_node(dev), hw);
3720}
3721EXPORT_SYMBOL_GPL(clk_register);
3722
3723/**
3724 * clk_hw_register - register a clk_hw and return an error code
3725 * @dev: device that is registering this clock
3726 * @hw: link to hardware-specific clock data
3727 *
3728 * clk_hw_register is the primary interface for populating the clock tree with
3729 * new clock nodes. It returns an integer equal to zero indicating success or
3730 * less than zero indicating failure. Drivers must test for an error code after
3731 * calling clk_hw_register().
3732 */
3733int clk_hw_register(struct device *dev, struct clk_hw *hw)
3734{
3735	return PTR_ERR_OR_ZERO(__clk_register(dev, dev_of_node(dev), hw));
3736}
3737EXPORT_SYMBOL_GPL(clk_hw_register);
3738
3739/*
3740 * of_clk_hw_register - register a clk_hw and return an error code
3741 * @node: device_node of device that is registering this clock
3742 * @hw: link to hardware-specific clock data
3743 *
3744 * of_clk_hw_register() is the primary interface for populating the clock tree
3745 * with new clock nodes when a struct device is not available, but a struct
3746 * device_node is. It returns an integer equal to zero indicating success or
3747 * less than zero indicating failure. Drivers must test for an error code after
3748 * calling of_clk_hw_register().
3749 */
3750int of_clk_hw_register(struct device_node *node, struct clk_hw *hw)
3751{
3752	return PTR_ERR_OR_ZERO(__clk_register(NULL, node, hw));
3753}
3754EXPORT_SYMBOL_GPL(of_clk_hw_register);
3755
3756/* Free memory allocated for a clock. */
3757static void __clk_release(struct kref *ref)
3758{
3759	struct clk_core *core = container_of(ref, struct clk_core, ref);
3760
3761	lockdep_assert_held(&prepare_lock);
3762
3763	clk_core_free_parent_map(core);
3764	kfree_const(core->name);
3765	kfree(core);
3766}
3767
3768/*
3769 * Empty clk_ops for unregistered clocks. These are used temporarily
3770 * after clk_unregister() was called on a clock and until last clock
3771 * consumer calls clk_put() and the struct clk object is freed.
3772 */
3773static int clk_nodrv_prepare_enable(struct clk_hw *hw)
3774{
3775	return -ENXIO;
3776}
3777
3778static void clk_nodrv_disable_unprepare(struct clk_hw *hw)
3779{
3780	WARN_ON_ONCE(1);
3781}
3782
3783static int clk_nodrv_set_rate(struct clk_hw *hw, unsigned long rate,
3784					unsigned long parent_rate)
3785{
3786	return -ENXIO;
3787}
3788
3789static int clk_nodrv_set_parent(struct clk_hw *hw, u8 index)
3790{
3791	return -ENXIO;
3792}
3793
3794static const struct clk_ops clk_nodrv_ops = {
3795	.enable		= clk_nodrv_prepare_enable,
3796	.disable	= clk_nodrv_disable_unprepare,
3797	.prepare	= clk_nodrv_prepare_enable,
3798	.unprepare	= clk_nodrv_disable_unprepare,
3799	.set_rate	= clk_nodrv_set_rate,
3800	.set_parent	= clk_nodrv_set_parent,
3801};
3802
3803static void clk_core_evict_parent_cache_subtree(struct clk_core *root,
3804						struct clk_core *target)
3805{
3806	int i;
3807	struct clk_core *child;
3808
3809	for (i = 0; i < root->num_parents; i++)
3810		if (root->parents[i].core == target)
3811			root->parents[i].core = NULL;
3812
3813	hlist_for_each_entry(child, &root->children, child_node)
3814		clk_core_evict_parent_cache_subtree(child, target);
3815}
3816
3817/* Remove this clk from all parent caches */
3818static void clk_core_evict_parent_cache(struct clk_core *core)
3819{
3820	struct hlist_head **lists;
3821	struct clk_core *root;
3822
3823	lockdep_assert_held(&prepare_lock);
3824
3825	for (lists = all_lists; *lists; lists++)
3826		hlist_for_each_entry(root, *lists, child_node)
3827			clk_core_evict_parent_cache_subtree(root, core);
3828
3829}
3830
3831/**
3832 * clk_unregister - unregister a currently registered clock
3833 * @clk: clock to unregister
 
 
3834 */
3835void clk_unregister(struct clk *clk)
3836{
3837	unsigned long flags;
3838
3839	if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
3840		return;
3841
3842	clk_debug_unregister(clk->core);
3843
3844	clk_prepare_lock();
3845
3846	if (clk->core->ops == &clk_nodrv_ops) {
3847		pr_err("%s: unregistered clock: %s\n", __func__,
3848		       clk->core->name);
3849		goto unlock;
3850	}
3851	/*
3852	 * Assign empty clock ops for consumers that might still hold
3853	 * a reference to this clock.
3854	 */
3855	flags = clk_enable_lock();
3856	clk->core->ops = &clk_nodrv_ops;
3857	clk_enable_unlock(flags);
3858
3859	if (!hlist_empty(&clk->core->children)) {
3860		struct clk_core *child;
3861		struct hlist_node *t;
3862
3863		/* Reparent all children to the orphan list. */
3864		hlist_for_each_entry_safe(child, t, &clk->core->children,
3865					  child_node)
3866			clk_core_set_parent_nolock(child, NULL);
3867	}
3868
3869	clk_core_evict_parent_cache(clk->core);
3870
3871	hlist_del_init(&clk->core->child_node);
3872
3873	if (clk->core->prepare_count)
3874		pr_warn("%s: unregistering prepared clock: %s\n",
3875					__func__, clk->core->name);
3876
3877	if (clk->core->protect_count)
3878		pr_warn("%s: unregistering protected clock: %s\n",
3879					__func__, clk->core->name);
3880
3881	kref_put(&clk->core->ref, __clk_release);
3882unlock:
3883	clk_prepare_unlock();
3884}
3885EXPORT_SYMBOL_GPL(clk_unregister);
3886
3887/**
3888 * clk_hw_unregister - unregister a currently registered clk_hw
3889 * @hw: hardware-specific clock data to unregister
3890 */
3891void clk_hw_unregister(struct clk_hw *hw)
3892{
3893	clk_unregister(hw->clk);
3894}
3895EXPORT_SYMBOL_GPL(clk_hw_unregister);
3896
3897static void devm_clk_release(struct device *dev, void *res)
3898{
3899	clk_unregister(*(struct clk **)res);
3900}
3901
3902static void devm_clk_hw_release(struct device *dev, void *res)
3903{
3904	clk_hw_unregister(*(struct clk_hw **)res);
3905}
3906
3907/**
3908 * devm_clk_register - resource managed clk_register()
3909 * @dev: device that is registering this clock
3910 * @hw: link to hardware-specific clock data
3911 *
3912 * Managed clk_register(). This function is *deprecated*, use devm_clk_hw_register() instead.
3913 *
3914 * Clocks returned from this function are automatically clk_unregister()ed on
3915 * driver detach. See clk_register() for more information.
3916 */
3917struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw)
3918{
3919	struct clk *clk;
3920	struct clk **clkp;
3921
3922	clkp = devres_alloc(devm_clk_release, sizeof(*clkp), GFP_KERNEL);
3923	if (!clkp)
3924		return ERR_PTR(-ENOMEM);
3925
3926	clk = clk_register(dev, hw);
3927	if (!IS_ERR(clk)) {
3928		*clkp = clk;
3929		devres_add(dev, clkp);
3930	} else {
3931		devres_free(clkp);
3932	}
3933
3934	return clk;
3935}
3936EXPORT_SYMBOL_GPL(devm_clk_register);
3937
3938/**
3939 * devm_clk_hw_register - resource managed clk_hw_register()
3940 * @dev: device that is registering this clock
3941 * @hw: link to hardware-specific clock data
3942 *
3943 * Managed clk_hw_register(). Clocks registered by this function are
3944 * automatically clk_hw_unregister()ed on driver detach. See clk_hw_register()
3945 * for more information.
3946 */
3947int devm_clk_hw_register(struct device *dev, struct clk_hw *hw)
3948{
3949	struct clk_hw **hwp;
3950	int ret;
3951
3952	hwp = devres_alloc(devm_clk_hw_release, sizeof(*hwp), GFP_KERNEL);
3953	if (!hwp)
3954		return -ENOMEM;
3955
3956	ret = clk_hw_register(dev, hw);
3957	if (!ret) {
3958		*hwp = hw;
3959		devres_add(dev, hwp);
3960	} else {
3961		devres_free(hwp);
3962	}
3963
3964	return ret;
3965}
3966EXPORT_SYMBOL_GPL(devm_clk_hw_register);
3967
3968static int devm_clk_match(struct device *dev, void *res, void *data)
3969{
3970	struct clk *c = res;
3971	if (WARN_ON(!c))
3972		return 0;
3973	return c == data;
3974}
3975
3976static int devm_clk_hw_match(struct device *dev, void *res, void *data)
3977{
3978	struct clk_hw *hw = res;
3979
3980	if (WARN_ON(!hw))
3981		return 0;
3982	return hw == data;
3983}
3984
3985/**
3986 * devm_clk_unregister - resource managed clk_unregister()
3987 * @clk: clock to unregister
3988 *
3989 * Deallocate a clock allocated with devm_clk_register(). Normally
3990 * this function will not need to be called and the resource management
3991 * code will ensure that the resource is freed.
3992 */
3993void devm_clk_unregister(struct device *dev, struct clk *clk)
3994{
3995	WARN_ON(devres_release(dev, devm_clk_release, devm_clk_match, clk));
3996}
3997EXPORT_SYMBOL_GPL(devm_clk_unregister);
3998
3999/**
4000 * devm_clk_hw_unregister - resource managed clk_hw_unregister()
4001 * @dev: device that is unregistering the hardware-specific clock data
4002 * @hw: link to hardware-specific clock data
4003 *
4004 * Unregister a clk_hw registered with devm_clk_hw_register(). Normally
4005 * this function will not need to be called and the resource management
4006 * code will ensure that the resource is freed.
4007 */
4008void devm_clk_hw_unregister(struct device *dev, struct clk_hw *hw)
4009{
4010	WARN_ON(devres_release(dev, devm_clk_hw_release, devm_clk_hw_match,
4011				hw));
4012}
4013EXPORT_SYMBOL_GPL(devm_clk_hw_unregister);
4014
4015/*
4016 * clkdev helpers
4017 */
4018
4019void __clk_put(struct clk *clk)
4020{
4021	struct module *owner;
4022
4023	if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
4024		return;
4025
4026	clk_prepare_lock();
4027
4028	/*
4029	 * Before calling clk_put, all calls to clk_rate_exclusive_get() from a
4030	 * given user should be balanced with calls to clk_rate_exclusive_put()
4031	 * and by that same consumer
4032	 */
4033	if (WARN_ON(clk->exclusive_count)) {
4034		/* We voiced our concern, let's sanitize the situation */
4035		clk->core->protect_count -= (clk->exclusive_count - 1);
4036		clk_core_rate_unprotect(clk->core);
4037		clk->exclusive_count = 0;
4038	}
4039
4040	hlist_del(&clk->clks_node);
4041	if (clk->min_rate > clk->core->req_rate ||
4042	    clk->max_rate < clk->core->req_rate)
4043		clk_core_set_rate_nolock(clk->core, clk->core->req_rate);
4044
4045	owner = clk->core->owner;
4046	kref_put(&clk->core->ref, __clk_release);
4047
4048	clk_prepare_unlock();
4049
4050	module_put(owner);
4051
4052	free_clk(clk);
4053}
4054
4055/***        clk rate change notifiers        ***/
4056
4057/**
4058 * clk_notifier_register - add a clk rate change notifier
4059 * @clk: struct clk * to watch
4060 * @nb: struct notifier_block * with callback info
4061 *
4062 * Request notification when clk's rate changes.  This uses an SRCU
4063 * notifier because we want it to block and notifier unregistrations are
4064 * uncommon.  The callbacks associated with the notifier must not
4065 * re-enter into the clk framework by calling any top-level clk APIs;
4066 * this will cause a nested prepare_lock mutex.
4067 *
4068 * In all notification cases (pre, post and abort rate change) the original
4069 * clock rate is passed to the callback via struct clk_notifier_data.old_rate
4070 * and the new frequency is passed via struct clk_notifier_data.new_rate.
 
 
 
 
 
 
 
 
 
 
4071 *
4072 * clk_notifier_register() must be called from non-atomic context.
4073 * Returns -EINVAL if called with null arguments, -ENOMEM upon
4074 * allocation failure; otherwise, passes along the return value of
4075 * srcu_notifier_chain_register().
4076 */
4077int clk_notifier_register(struct clk *clk, struct notifier_block *nb)
4078{
4079	struct clk_notifier *cn;
4080	int ret = -ENOMEM;
4081
4082	if (!clk || !nb)
4083		return -EINVAL;
4084
4085	clk_prepare_lock();
4086
4087	/* search the list of notifiers for this clk */
4088	list_for_each_entry(cn, &clk_notifier_list, node)
4089		if (cn->clk == clk)
4090			break;
4091
4092	/* if clk wasn't in the notifier list, allocate new clk_notifier */
4093	if (cn->clk != clk) {
4094		cn = kzalloc(sizeof(*cn), GFP_KERNEL);
4095		if (!cn)
4096			goto out;
4097
4098		cn->clk = clk;
4099		srcu_init_notifier_head(&cn->notifier_head);
4100
4101		list_add(&cn->node, &clk_notifier_list);
4102	}
4103
4104	ret = srcu_notifier_chain_register(&cn->notifier_head, nb);
4105
4106	clk->core->notifier_count++;
4107
4108out:
4109	clk_prepare_unlock();
4110
4111	return ret;
4112}
4113EXPORT_SYMBOL_GPL(clk_notifier_register);
4114
4115/**
4116 * clk_notifier_unregister - remove a clk rate change notifier
4117 * @clk: struct clk *
4118 * @nb: struct notifier_block * with callback info
4119 *
4120 * Request no further notification for changes to 'clk' and frees memory
4121 * allocated in clk_notifier_register.
4122 *
4123 * Returns -EINVAL if called with null arguments; otherwise, passes
4124 * along the return value of srcu_notifier_chain_unregister().
4125 */
4126int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb)
4127{
4128	struct clk_notifier *cn = NULL;
4129	int ret = -EINVAL;
4130
4131	if (!clk || !nb)
4132		return -EINVAL;
4133
4134	clk_prepare_lock();
4135
4136	list_for_each_entry(cn, &clk_notifier_list, node)
4137		if (cn->clk == clk)
4138			break;
4139
4140	if (cn->clk == clk) {
4141		ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb);
4142
4143		clk->core->notifier_count--;
4144
4145		/* XXX the notifier code should handle this better */
4146		if (!cn->notifier_head.head) {
4147			srcu_cleanup_notifier_head(&cn->notifier_head);
4148			list_del(&cn->node);
4149			kfree(cn);
4150		}
4151
4152	} else {
4153		ret = -ENOENT;
4154	}
4155
4156	clk_prepare_unlock();
4157
4158	return ret;
4159}
4160EXPORT_SYMBOL_GPL(clk_notifier_unregister);
4161
4162#ifdef CONFIG_OF
4163/**
4164 * struct of_clk_provider - Clock provider registration structure
4165 * @link: Entry in global list of clock providers
4166 * @node: Pointer to device tree node of clock provider
4167 * @get: Get clock callback.  Returns NULL or a struct clk for the
4168 *       given clock specifier
4169 * @data: context pointer to be passed into @get callback
4170 */
4171struct of_clk_provider {
4172	struct list_head link;
4173
4174	struct device_node *node;
4175	struct clk *(*get)(struct of_phandle_args *clkspec, void *data);
4176	struct clk_hw *(*get_hw)(struct of_phandle_args *clkspec, void *data);
4177	void *data;
4178};
4179
4180extern struct of_device_id __clk_of_table;
4181static const struct of_device_id __clk_of_table_sentinel
4182	__used __section(__clk_of_table_end);
4183
4184static LIST_HEAD(of_clk_providers);
4185static DEFINE_MUTEX(of_clk_mutex);
4186
4187struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec,
4188				     void *data)
4189{
4190	return data;
4191}
4192EXPORT_SYMBOL_GPL(of_clk_src_simple_get);
4193
4194struct clk_hw *of_clk_hw_simple_get(struct of_phandle_args *clkspec, void *data)
4195{
4196	return data;
4197}
4198EXPORT_SYMBOL_GPL(of_clk_hw_simple_get);
4199
4200struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data)
4201{
4202	struct clk_onecell_data *clk_data = data;
4203	unsigned int idx = clkspec->args[0];
4204
4205	if (idx >= clk_data->clk_num) {
4206		pr_err("%s: invalid clock index %u\n", __func__, idx);
4207		return ERR_PTR(-EINVAL);
4208	}
4209
4210	return clk_data->clks[idx];
4211}
4212EXPORT_SYMBOL_GPL(of_clk_src_onecell_get);
4213
4214struct clk_hw *
4215of_clk_hw_onecell_get(struct of_phandle_args *clkspec, void *data)
4216{
4217	struct clk_hw_onecell_data *hw_data = data;
4218	unsigned int idx = clkspec->args[0];
4219
4220	if (idx >= hw_data->num) {
4221		pr_err("%s: invalid index %u\n", __func__, idx);
4222		return ERR_PTR(-EINVAL);
4223	}
4224
4225	return hw_data->hws[idx];
4226}
4227EXPORT_SYMBOL_GPL(of_clk_hw_onecell_get);
4228
4229/**
4230 * of_clk_add_provider() - Register a clock provider for a node
4231 * @np: Device node pointer associated with clock provider
4232 * @clk_src_get: callback for decoding clock
4233 * @data: context pointer for @clk_src_get callback.
4234 *
4235 * This function is *deprecated*. Use of_clk_add_hw_provider() instead.
4236 */
4237int of_clk_add_provider(struct device_node *np,
4238			struct clk *(*clk_src_get)(struct of_phandle_args *clkspec,
4239						   void *data),
4240			void *data)
4241{
4242	struct of_clk_provider *cp;
4243	int ret;
4244
4245	cp = kzalloc(sizeof(*cp), GFP_KERNEL);
4246	if (!cp)
4247		return -ENOMEM;
4248
4249	cp->node = of_node_get(np);
4250	cp->data = data;
4251	cp->get = clk_src_get;
4252
4253	mutex_lock(&of_clk_mutex);
4254	list_add(&cp->link, &of_clk_providers);
4255	mutex_unlock(&of_clk_mutex);
4256	pr_debug("Added clock from %pOF\n", np);
4257
4258	ret = of_clk_set_defaults(np, true);
4259	if (ret < 0)
4260		of_clk_del_provider(np);
4261
4262	return ret;
4263}
4264EXPORT_SYMBOL_GPL(of_clk_add_provider);
4265
4266/**
4267 * of_clk_add_hw_provider() - Register a clock provider for a node
4268 * @np: Device node pointer associated with clock provider
4269 * @get: callback for decoding clk_hw
4270 * @data: context pointer for @get callback.
4271 */
4272int of_clk_add_hw_provider(struct device_node *np,
4273			   struct clk_hw *(*get)(struct of_phandle_args *clkspec,
4274						 void *data),
4275			   void *data)
4276{
4277	struct of_clk_provider *cp;
4278	int ret;
4279
4280	cp = kzalloc(sizeof(*cp), GFP_KERNEL);
4281	if (!cp)
4282		return -ENOMEM;
4283
4284	cp->node = of_node_get(np);
4285	cp->data = data;
4286	cp->get_hw = get;
4287
4288	mutex_lock(&of_clk_mutex);
4289	list_add(&cp->link, &of_clk_providers);
4290	mutex_unlock(&of_clk_mutex);
4291	pr_debug("Added clk_hw provider from %pOF\n", np);
4292
4293	ret = of_clk_set_defaults(np, true);
4294	if (ret < 0)
4295		of_clk_del_provider(np);
4296
4297	return ret;
4298}
4299EXPORT_SYMBOL_GPL(of_clk_add_hw_provider);
4300
4301static void devm_of_clk_release_provider(struct device *dev, void *res)
4302{
4303	of_clk_del_provider(*(struct device_node **)res);
4304}
4305
4306/*
4307 * We allow a child device to use its parent device as the clock provider node
4308 * for cases like MFD sub-devices where the child device driver wants to use
4309 * devm_*() APIs but not list the device in DT as a sub-node.
4310 */
4311static struct device_node *get_clk_provider_node(struct device *dev)
4312{
4313	struct device_node *np, *parent_np;
4314
4315	np = dev->of_node;
4316	parent_np = dev->parent ? dev->parent->of_node : NULL;
4317
4318	if (!of_find_property(np, "#clock-cells", NULL))
4319		if (of_find_property(parent_np, "#clock-cells", NULL))
4320			np = parent_np;
4321
4322	return np;
4323}
4324
4325/**
4326 * devm_of_clk_add_hw_provider() - Managed clk provider node registration
4327 * @dev: Device acting as the clock provider (used for DT node and lifetime)
4328 * @get: callback for decoding clk_hw
4329 * @data: context pointer for @get callback
4330 *
4331 * Registers clock provider for given device's node. If the device has no DT
4332 * node or if the device node lacks of clock provider information (#clock-cells)
4333 * then the parent device's node is scanned for this information. If parent node
4334 * has the #clock-cells then it is used in registration. Provider is
4335 * automatically released at device exit.
4336 *
4337 * Return: 0 on success or an errno on failure.
4338 */
4339int devm_of_clk_add_hw_provider(struct device *dev,
4340			struct clk_hw *(*get)(struct of_phandle_args *clkspec,
4341					      void *data),
4342			void *data)
4343{
4344	struct device_node **ptr, *np;
4345	int ret;
4346
4347	ptr = devres_alloc(devm_of_clk_release_provider, sizeof(*ptr),
4348			   GFP_KERNEL);
4349	if (!ptr)
4350		return -ENOMEM;
4351
4352	np = get_clk_provider_node(dev);
4353	ret = of_clk_add_hw_provider(np, get, data);
4354	if (!ret) {
4355		*ptr = np;
4356		devres_add(dev, ptr);
4357	} else {
4358		devres_free(ptr);
4359	}
4360
4361	return ret;
4362}
4363EXPORT_SYMBOL_GPL(devm_of_clk_add_hw_provider);
4364
4365/**
4366 * of_clk_del_provider() - Remove a previously registered clock provider
4367 * @np: Device node pointer associated with clock provider
4368 */
4369void of_clk_del_provider(struct device_node *np)
4370{
4371	struct of_clk_provider *cp;
4372
4373	mutex_lock(&of_clk_mutex);
4374	list_for_each_entry(cp, &of_clk_providers, link) {
4375		if (cp->node == np) {
4376			list_del(&cp->link);
4377			of_node_put(cp->node);
4378			kfree(cp);
4379			break;
4380		}
4381	}
4382	mutex_unlock(&of_clk_mutex);
4383}
4384EXPORT_SYMBOL_GPL(of_clk_del_provider);
4385
4386static int devm_clk_provider_match(struct device *dev, void *res, void *data)
4387{
4388	struct device_node **np = res;
4389
4390	if (WARN_ON(!np || !*np))
4391		return 0;
4392
4393	return *np == data;
4394}
4395
4396/**
4397 * devm_of_clk_del_provider() - Remove clock provider registered using devm
4398 * @dev: Device to whose lifetime the clock provider was bound
4399 */
4400void devm_of_clk_del_provider(struct device *dev)
4401{
4402	int ret;
4403	struct device_node *np = get_clk_provider_node(dev);
4404
4405	ret = devres_release(dev, devm_of_clk_release_provider,
4406			     devm_clk_provider_match, np);
4407
4408	WARN_ON(ret);
4409}
4410EXPORT_SYMBOL(devm_of_clk_del_provider);
4411
4412/**
4413 * of_parse_clkspec() - Parse a DT clock specifier for a given device node
4414 * @np: device node to parse clock specifier from
4415 * @index: index of phandle to parse clock out of. If index < 0, @name is used
4416 * @name: clock name to find and parse. If name is NULL, the index is used
4417 * @out_args: Result of parsing the clock specifier
4418 *
4419 * Parses a device node's "clocks" and "clock-names" properties to find the
4420 * phandle and cells for the index or name that is desired. The resulting clock
4421 * specifier is placed into @out_args, or an errno is returned when there's a
4422 * parsing error. The @index argument is ignored if @name is non-NULL.
4423 *
4424 * Example:
4425 *
4426 * phandle1: clock-controller@1 {
4427 *	#clock-cells = <2>;
4428 * }
4429 *
4430 * phandle2: clock-controller@2 {
4431 *	#clock-cells = <1>;
4432 * }
4433 *
4434 * clock-consumer@3 {
4435 *	clocks = <&phandle1 1 2 &phandle2 3>;
4436 *	clock-names = "name1", "name2";
4437 * }
4438 *
4439 * To get a device_node for `clock-controller@2' node you may call this
4440 * function a few different ways:
4441 *
4442 *   of_parse_clkspec(clock-consumer@3, -1, "name2", &args);
4443 *   of_parse_clkspec(clock-consumer@3, 1, NULL, &args);
4444 *   of_parse_clkspec(clock-consumer@3, 1, "name2", &args);
4445 *
4446 * Return: 0 upon successfully parsing the clock specifier. Otherwise, -ENOENT
4447 * if @name is NULL or -EINVAL if @name is non-NULL and it can't be found in
4448 * the "clock-names" property of @np.
4449 */
4450static int of_parse_clkspec(const struct device_node *np, int index,
4451			    const char *name, struct of_phandle_args *out_args)
4452{
4453	int ret = -ENOENT;
4454
4455	/* Walk up the tree of devices looking for a clock property that matches */
4456	while (np) {
4457		/*
4458		 * For named clocks, first look up the name in the
4459		 * "clock-names" property.  If it cannot be found, then index
4460		 * will be an error code and of_parse_phandle_with_args() will
4461		 * return -EINVAL.
4462		 */
4463		if (name)
4464			index = of_property_match_string(np, "clock-names", name);
4465		ret = of_parse_phandle_with_args(np, "clocks", "#clock-cells",
4466						 index, out_args);
4467		if (!ret)
4468			break;
4469		if (name && index >= 0)
4470			break;
4471
4472		/*
4473		 * No matching clock found on this node.  If the parent node
4474		 * has a "clock-ranges" property, then we can try one of its
4475		 * clocks.
4476		 */
4477		np = np->parent;
4478		if (np && !of_get_property(np, "clock-ranges", NULL))
4479			break;
4480		index = 0;
4481	}
4482
4483	return ret;
4484}
4485
4486static struct clk_hw *
4487__of_clk_get_hw_from_provider(struct of_clk_provider *provider,
4488			      struct of_phandle_args *clkspec)
4489{
4490	struct clk *clk;
4491
4492	if (provider->get_hw)
4493		return provider->get_hw(clkspec, provider->data);
4494
4495	clk = provider->get(clkspec, provider->data);
4496	if (IS_ERR(clk))
4497		return ERR_CAST(clk);
4498	return __clk_get_hw(clk);
4499}
4500
4501static struct clk_hw *
4502of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec)
4503{
4504	struct of_clk_provider *provider;
4505	struct clk_hw *hw = ERR_PTR(-EPROBE_DEFER);
4506
4507	if (!clkspec)
4508		return ERR_PTR(-EINVAL);
4509
4510	mutex_lock(&of_clk_mutex);
4511	list_for_each_entry(provider, &of_clk_providers, link) {
4512		if (provider->node == clkspec->np) {
4513			hw = __of_clk_get_hw_from_provider(provider, clkspec);
4514			if (!IS_ERR(hw))
4515				break;
4516		}
4517	}
4518	mutex_unlock(&of_clk_mutex);
4519
4520	return hw;
4521}
4522
4523/**
4524 * of_clk_get_from_provider() - Lookup a clock from a clock provider
4525 * @clkspec: pointer to a clock specifier data structure
4526 *
4527 * This function looks up a struct clk from the registered list of clock
4528 * providers, an input is a clock specifier data structure as returned
4529 * from the of_parse_phandle_with_args() function call.
4530 */
4531struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec)
4532{
4533	struct clk_hw *hw = of_clk_get_hw_from_clkspec(clkspec);
4534
4535	return clk_hw_create_clk(NULL, hw, NULL, __func__);
4536}
4537EXPORT_SYMBOL_GPL(of_clk_get_from_provider);
4538
4539struct clk_hw *of_clk_get_hw(struct device_node *np, int index,
4540			     const char *con_id)
4541{
4542	int ret;
4543	struct clk_hw *hw;
4544	struct of_phandle_args clkspec;
4545
4546	ret = of_parse_clkspec(np, index, con_id, &clkspec);
4547	if (ret)
4548		return ERR_PTR(ret);
4549
4550	hw = of_clk_get_hw_from_clkspec(&clkspec);
4551	of_node_put(clkspec.np);
4552
4553	return hw;
4554}
4555
4556static struct clk *__of_clk_get(struct device_node *np,
4557				int index, const char *dev_id,
4558				const char *con_id)
4559{
4560	struct clk_hw *hw = of_clk_get_hw(np, index, con_id);
4561
4562	return clk_hw_create_clk(NULL, hw, dev_id, con_id);
4563}
4564
4565struct clk *of_clk_get(struct device_node *np, int index)
4566{
4567	return __of_clk_get(np, index, np->full_name, NULL);
4568}
4569EXPORT_SYMBOL(of_clk_get);
4570
4571/**
4572 * of_clk_get_by_name() - Parse and lookup a clock referenced by a device node
4573 * @np: pointer to clock consumer node
4574 * @name: name of consumer's clock input, or NULL for the first clock reference
4575 *
4576 * This function parses the clocks and clock-names properties,
4577 * and uses them to look up the struct clk from the registered list of clock
4578 * providers.
4579 */
4580struct clk *of_clk_get_by_name(struct device_node *np, const char *name)
4581{
4582	if (!np)
4583		return ERR_PTR(-ENOENT);
4584
4585	return __of_clk_get(np, 0, np->full_name, name);
4586}
4587EXPORT_SYMBOL(of_clk_get_by_name);
4588
4589/**
4590 * of_clk_get_parent_count() - Count the number of clocks a device node has
4591 * @np: device node to count
4592 *
4593 * Returns: The number of clocks that are possible parents of this node
4594 */
4595unsigned int of_clk_get_parent_count(struct device_node *np)
4596{
4597	int count;
4598
4599	count = of_count_phandle_with_args(np, "clocks", "#clock-cells");
4600	if (count < 0)
4601		return 0;
4602
4603	return count;
4604}
4605EXPORT_SYMBOL_GPL(of_clk_get_parent_count);
4606
4607const char *of_clk_get_parent_name(struct device_node *np, int index)
4608{
4609	struct of_phandle_args clkspec;
4610	struct property *prop;
4611	const char *clk_name;
4612	const __be32 *vp;
4613	u32 pv;
4614	int rc;
4615	int count;
4616	struct clk *clk;
4617
4618	rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index,
4619					&clkspec);
4620	if (rc)
4621		return NULL;
4622
4623	index = clkspec.args_count ? clkspec.args[0] : 0;
4624	count = 0;
4625
4626	/* if there is an indices property, use it to transfer the index
4627	 * specified into an array offset for the clock-output-names property.
4628	 */
4629	of_property_for_each_u32(clkspec.np, "clock-indices", prop, vp, pv) {
4630		if (index == pv) {
4631			index = count;
4632			break;
4633		}
4634		count++;
4635	}
4636	/* We went off the end of 'clock-indices' without finding it */
4637	if (prop && !vp)
4638		return NULL;
4639
4640	if (of_property_read_string_index(clkspec.np, "clock-output-names",
4641					  index,
4642					  &clk_name) < 0) {
4643		/*
4644		 * Best effort to get the name if the clock has been
4645		 * registered with the framework. If the clock isn't
4646		 * registered, we return the node name as the name of
4647		 * the clock as long as #clock-cells = 0.
4648		 */
4649		clk = of_clk_get_from_provider(&clkspec);
4650		if (IS_ERR(clk)) {
4651			if (clkspec.args_count == 0)
4652				clk_name = clkspec.np->name;
4653			else
4654				clk_name = NULL;
4655		} else {
4656			clk_name = __clk_get_name(clk);
4657			clk_put(clk);
4658		}
4659	}
4660
4661
4662	of_node_put(clkspec.np);
4663	return clk_name;
4664}
4665EXPORT_SYMBOL_GPL(of_clk_get_parent_name);
4666
4667/**
4668 * of_clk_parent_fill() - Fill @parents with names of @np's parents and return
4669 * number of parents
4670 * @np: Device node pointer associated with clock provider
4671 * @parents: pointer to char array that hold the parents' names
4672 * @size: size of the @parents array
4673 *
4674 * Return: number of parents for the clock node.
4675 */
4676int of_clk_parent_fill(struct device_node *np, const char **parents,
4677		       unsigned int size)
4678{
4679	unsigned int i = 0;
4680
4681	while (i < size && (parents[i] = of_clk_get_parent_name(np, i)) != NULL)
4682		i++;
4683
4684	return i;
4685}
4686EXPORT_SYMBOL_GPL(of_clk_parent_fill);
4687
4688struct clock_provider {
4689	void (*clk_init_cb)(struct device_node *);
4690	struct device_node *np;
4691	struct list_head node;
4692};
4693
4694/*
4695 * This function looks for a parent clock. If there is one, then it
4696 * checks that the provider for this parent clock was initialized, in
4697 * this case the parent clock will be ready.
4698 */
4699static int parent_ready(struct device_node *np)
4700{
4701	int i = 0;
4702
4703	while (true) {
4704		struct clk *clk = of_clk_get(np, i);
4705
4706		/* this parent is ready we can check the next one */
4707		if (!IS_ERR(clk)) {
4708			clk_put(clk);
4709			i++;
4710			continue;
4711		}
4712
4713		/* at least one parent is not ready, we exit now */
4714		if (PTR_ERR(clk) == -EPROBE_DEFER)
4715			return 0;
4716
4717		/*
4718		 * Here we make assumption that the device tree is
4719		 * written correctly. So an error means that there is
4720		 * no more parent. As we didn't exit yet, then the
4721		 * previous parent are ready. If there is no clock
4722		 * parent, no need to wait for them, then we can
4723		 * consider their absence as being ready
4724		 */
4725		return 1;
4726	}
4727}
4728
4729/**
4730 * of_clk_detect_critical() - set CLK_IS_CRITICAL flag from Device Tree
4731 * @np: Device node pointer associated with clock provider
4732 * @index: clock index
4733 * @flags: pointer to top-level framework flags
4734 *
4735 * Detects if the clock-critical property exists and, if so, sets the
4736 * corresponding CLK_IS_CRITICAL flag.
4737 *
4738 * Do not use this function. It exists only for legacy Device Tree
4739 * bindings, such as the one-clock-per-node style that are outdated.
4740 * Those bindings typically put all clock data into .dts and the Linux
4741 * driver has no clock data, thus making it impossible to set this flag
4742 * correctly from the driver. Only those drivers may call
4743 * of_clk_detect_critical from their setup functions.
4744 *
4745 * Return: error code or zero on success
4746 */
4747int of_clk_detect_critical(struct device_node *np,
4748					  int index, unsigned long *flags)
4749{
4750	struct property *prop;
4751	const __be32 *cur;
4752	uint32_t idx;
4753
4754	if (!np || !flags)
4755		return -EINVAL;
4756
4757	of_property_for_each_u32(np, "clock-critical", prop, cur, idx)
4758		if (index == idx)
4759			*flags |= CLK_IS_CRITICAL;
4760
4761	return 0;
4762}
4763
4764/**
4765 * of_clk_init() - Scan and init clock providers from the DT
4766 * @matches: array of compatible values and init functions for providers.
4767 *
4768 * This function scans the device tree for matching clock providers
4769 * and calls their initialization functions. It also does it by trying
4770 * to follow the dependencies.
4771 */
4772void __init of_clk_init(const struct of_device_id *matches)
4773{
4774	const struct of_device_id *match;
4775	struct device_node *np;
4776	struct clock_provider *clk_provider, *next;
4777	bool is_init_done;
4778	bool force = false;
4779	LIST_HEAD(clk_provider_list);
4780
4781	if (!matches)
4782		matches = &__clk_of_table;
4783
4784	/* First prepare the list of the clocks providers */
4785	for_each_matching_node_and_match(np, matches, &match) {
4786		struct clock_provider *parent;
4787
4788		if (!of_device_is_available(np))
4789			continue;
4790
4791		parent = kzalloc(sizeof(*parent), GFP_KERNEL);
4792		if (!parent) {
4793			list_for_each_entry_safe(clk_provider, next,
4794						 &clk_provider_list, node) {
4795				list_del(&clk_provider->node);
4796				of_node_put(clk_provider->np);
4797				kfree(clk_provider);
4798			}
4799			of_node_put(np);
4800			return;
4801		}
4802
4803		parent->clk_init_cb = match->data;
4804		parent->np = of_node_get(np);
4805		list_add_tail(&parent->node, &clk_provider_list);
4806	}
4807
4808	while (!list_empty(&clk_provider_list)) {
4809		is_init_done = false;
4810		list_for_each_entry_safe(clk_provider, next,
4811					&clk_provider_list, node) {
4812			if (force || parent_ready(clk_provider->np)) {
4813
4814				/* Don't populate platform devices */
4815				of_node_set_flag(clk_provider->np,
4816						 OF_POPULATED);
4817
4818				clk_provider->clk_init_cb(clk_provider->np);
4819				of_clk_set_defaults(clk_provider->np, true);
4820
4821				list_del(&clk_provider->node);
4822				of_node_put(clk_provider->np);
4823				kfree(clk_provider);
4824				is_init_done = true;
4825			}
4826		}
4827
4828		/*
4829		 * We didn't manage to initialize any of the
4830		 * remaining providers during the last loop, so now we
4831		 * initialize all the remaining ones unconditionally
4832		 * in case the clock parent was not mandatory
4833		 */
4834		if (!is_init_done)
4835			force = true;
4836	}
4837}
4838#endif