Linux Audio

Check our new training course

Loading...
v3.5.6
   1/*
   2 * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com>
   3 * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org>
   4 *
   5 * This program is free software; you can redistribute it and/or modify
   6 * it under the terms of the GNU General Public License version 2 as
   7 * published by the Free Software Foundation.
   8 *
   9 * Standard functionality for the common clock API.  See Documentation/clk.txt
  10 */
  11
  12#include <linux/clk-private.h>
  13#include <linux/module.h>
  14#include <linux/mutex.h>
  15#include <linux/spinlock.h>
  16#include <linux/err.h>
  17#include <linux/list.h>
  18#include <linux/slab.h>
 
 
 
 
 
 
  19
  20static DEFINE_SPINLOCK(enable_lock);
  21static DEFINE_MUTEX(prepare_lock);
  22
 
 
 
 
 
 
  23static HLIST_HEAD(clk_root_list);
  24static HLIST_HEAD(clk_orphan_list);
  25static LIST_HEAD(clk_notifier_list);
  26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  27/***        debugfs support        ***/
  28
  29#ifdef CONFIG_COMMON_CLK_DEBUG
  30#include <linux/debugfs.h>
  31
  32static struct dentry *rootdir;
  33static struct dentry *orphandir;
  34static int inited = 0;
  35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  36/* caller must hold prepare_lock */
  37static int clk_debug_create_one(struct clk *clk, struct dentry *pdentry)
  38{
  39	struct dentry *d;
  40	int ret = -ENOMEM;
  41
  42	if (!clk || !pdentry) {
  43		ret = -EINVAL;
  44		goto out;
  45	}
  46
  47	d = debugfs_create_dir(clk->name, pdentry);
  48	if (!d)
  49		goto out;
  50
  51	clk->dentry = d;
  52
  53	d = debugfs_create_u32("clk_rate", S_IRUGO, clk->dentry,
  54			(u32 *)&clk->rate);
  55	if (!d)
  56		goto err_out;
  57
 
 
 
 
 
  58	d = debugfs_create_x32("clk_flags", S_IRUGO, clk->dentry,
  59			(u32 *)&clk->flags);
  60	if (!d)
  61		goto err_out;
  62
  63	d = debugfs_create_u32("clk_prepare_count", S_IRUGO, clk->dentry,
  64			(u32 *)&clk->prepare_count);
  65	if (!d)
  66		goto err_out;
  67
  68	d = debugfs_create_u32("clk_enable_count", S_IRUGO, clk->dentry,
  69			(u32 *)&clk->enable_count);
  70	if (!d)
  71		goto err_out;
  72
  73	d = debugfs_create_u32("clk_notifier_count", S_IRUGO, clk->dentry,
  74			(u32 *)&clk->notifier_count);
  75	if (!d)
  76		goto err_out;
  77
 
 
 
 
  78	ret = 0;
  79	goto out;
  80
  81err_out:
  82	debugfs_remove(clk->dentry);
 
  83out:
  84	return ret;
  85}
  86
  87/* caller must hold prepare_lock */
  88static int clk_debug_create_subtree(struct clk *clk, struct dentry *pdentry)
  89{
  90	struct clk *child;
  91	struct hlist_node *tmp;
  92	int ret = -EINVAL;;
  93
  94	if (!clk || !pdentry)
  95		goto out;
  96
  97	ret = clk_debug_create_one(clk, pdentry);
  98
  99	if (ret)
 100		goto out;
 101
 102	hlist_for_each_entry(child, tmp, &clk->children, child_node)
 103		clk_debug_create_subtree(child, clk->dentry);
 104
 105	ret = 0;
 106out:
 107	return ret;
 108}
 109
 110/**
 111 * clk_debug_register - add a clk node to the debugfs clk tree
 112 * @clk: the clk being added to the debugfs clk tree
 113 *
 114 * Dynamically adds a clk to the debugfs clk tree if debugfs has been
 115 * initialized.  Otherwise it bails out early since the debugfs clk tree
 116 * will be created lazily by clk_debug_init as part of a late_initcall.
 117 *
 118 * Caller must hold prepare_lock.  Only clk_init calls this function (so
 119 * far) so this is taken care.
 120 */
 121static int clk_debug_register(struct clk *clk)
 122{
 123	struct clk *parent;
 124	struct dentry *pdentry;
 125	int ret = 0;
 126
 127	if (!inited)
 128		goto out;
 129
 130	parent = clk->parent;
 131
 132	/*
 133	 * Check to see if a clk is a root clk.  Also check that it is
 134	 * safe to add this clk to debugfs
 135	 */
 136	if (!parent)
 137		if (clk->flags & CLK_IS_ROOT)
 138			pdentry = rootdir;
 139		else
 140			pdentry = orphandir;
 141	else
 142		if (parent->dentry)
 143			pdentry = parent->dentry;
 144		else
 145			goto out;
 146
 147	ret = clk_debug_create_subtree(clk, pdentry);
 148
 149out:
 150	return ret;
 151}
 152
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 153/**
 154 * clk_debug_init - lazily create the debugfs clk tree visualization
 155 *
 156 * clks are often initialized very early during boot before memory can
 157 * be dynamically allocated and well before debugfs is setup.
 158 * clk_debug_init walks the clk tree hierarchy while holding
 159 * prepare_lock and creates the topology as part of a late_initcall,
 160 * thus insuring that clks initialized very early will still be
 161 * represented in the debugfs clk tree.  This function should only be
 162 * called once at boot-time, and all other clks added dynamically will
 163 * be done so with clk_debug_register.
 164 */
 165static int __init clk_debug_init(void)
 166{
 167	struct clk *clk;
 168	struct hlist_node *tmp;
 169
 170	rootdir = debugfs_create_dir("clk", NULL);
 171
 172	if (!rootdir)
 173		return -ENOMEM;
 174
 
 
 
 
 
 
 
 
 
 
 175	orphandir = debugfs_create_dir("orphans", rootdir);
 176
 177	if (!orphandir)
 178		return -ENOMEM;
 179
 180	mutex_lock(&prepare_lock);
 181
 182	hlist_for_each_entry(clk, tmp, &clk_root_list, child_node)
 183		clk_debug_create_subtree(clk, rootdir);
 184
 185	hlist_for_each_entry(clk, tmp, &clk_orphan_list, child_node)
 186		clk_debug_create_subtree(clk, orphandir);
 187
 188	inited = 1;
 189
 190	mutex_unlock(&prepare_lock);
 191
 192	return 0;
 193}
 194late_initcall(clk_debug_init);
 195#else
 196static inline int clk_debug_register(struct clk *clk) { return 0; }
 
 
 
 
 
 
 197#endif
 198
 199/* caller must hold prepare_lock */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 200static void clk_disable_unused_subtree(struct clk *clk)
 201{
 202	struct clk *child;
 203	struct hlist_node *tmp;
 204	unsigned long flags;
 205
 206	if (!clk)
 207		goto out;
 208
 209	hlist_for_each_entry(child, tmp, &clk->children, child_node)
 210		clk_disable_unused_subtree(child);
 211
 212	spin_lock_irqsave(&enable_lock, flags);
 213
 214	if (clk->enable_count)
 215		goto unlock_out;
 216
 217	if (clk->flags & CLK_IGNORE_UNUSED)
 218		goto unlock_out;
 219
 220	if (__clk_is_enabled(clk) && clk->ops->disable)
 221		clk->ops->disable(clk->hw);
 
 
 
 
 
 
 
 
 
 222
 223unlock_out:
 224	spin_unlock_irqrestore(&enable_lock, flags);
 225
 226out:
 227	return;
 228}
 229
 
 
 
 
 
 
 
 
 230static int clk_disable_unused(void)
 231{
 232	struct clk *clk;
 233	struct hlist_node *tmp;
 234
 235	mutex_lock(&prepare_lock);
 
 
 
 236
 237	hlist_for_each_entry(clk, tmp, &clk_root_list, child_node)
 
 
 238		clk_disable_unused_subtree(clk);
 239
 240	hlist_for_each_entry(clk, tmp, &clk_orphan_list, child_node)
 241		clk_disable_unused_subtree(clk);
 242
 243	mutex_unlock(&prepare_lock);
 
 
 
 
 
 
 244
 245	return 0;
 246}
 247late_initcall(clk_disable_unused);
 248
 249/***    helper functions   ***/
 250
 251inline const char *__clk_get_name(struct clk *clk)
 252{
 253	return !clk ? NULL : clk->name;
 254}
 
 255
 256inline struct clk_hw *__clk_get_hw(struct clk *clk)
 257{
 258	return !clk ? NULL : clk->hw;
 259}
 
 260
 261inline u8 __clk_get_num_parents(struct clk *clk)
 262{
 263	return !clk ? -EINVAL : clk->num_parents;
 264}
 
 265
 266inline struct clk *__clk_get_parent(struct clk *clk)
 267{
 268	return !clk ? NULL : clk->parent;
 269}
 
 270
 271inline int __clk_get_enable_count(struct clk *clk)
 272{
 273	return !clk ? -EINVAL : clk->enable_count;
 
 
 
 
 
 
 
 
 274}
 
 275
 276inline int __clk_get_prepare_count(struct clk *clk)
 277{
 278	return !clk ? -EINVAL : clk->prepare_count;
 
 
 
 
 
 279}
 280
 281unsigned long __clk_get_rate(struct clk *clk)
 282{
 283	unsigned long ret;
 284
 285	if (!clk) {
 286		ret = 0;
 287		goto out;
 288	}
 289
 290	ret = clk->rate;
 291
 292	if (clk->flags & CLK_IS_ROOT)
 293		goto out;
 294
 295	if (!clk->parent)
 296		ret = 0;
 297
 298out:
 299	return ret;
 300}
 
 
 
 
 
 
 
 
 
 301
 302inline unsigned long __clk_get_flags(struct clk *clk)
 303{
 304	return !clk ? -EINVAL : clk->flags;
 305}
 
 306
 307int __clk_is_enabled(struct clk *clk)
 308{
 309	int ret;
 310
 311	if (!clk)
 312		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 313
 314	/*
 315	 * .is_enabled is only mandatory for clocks that gate
 316	 * fall back to software usage counter if .is_enabled is missing
 317	 */
 318	if (!clk->ops->is_enabled) {
 319		ret = clk->enable_count ? 1 : 0;
 320		goto out;
 321	}
 322
 323	ret = clk->ops->is_enabled(clk->hw);
 324out:
 325	return ret;
 326}
 
 327
 328static struct clk *__clk_lookup_subtree(const char *name, struct clk *clk)
 329{
 330	struct clk *child;
 331	struct clk *ret;
 332	struct hlist_node *tmp;
 333
 334	if (!strcmp(clk->name, name))
 335		return clk;
 336
 337	hlist_for_each_entry(child, tmp, &clk->children, child_node) {
 338		ret = __clk_lookup_subtree(name, child);
 339		if (ret)
 340			return ret;
 341	}
 342
 343	return NULL;
 344}
 345
 346struct clk *__clk_lookup(const char *name)
 347{
 348	struct clk *root_clk;
 349	struct clk *ret;
 350	struct hlist_node *tmp;
 351
 352	if (!name)
 353		return NULL;
 354
 355	/* search the 'proper' clk tree first */
 356	hlist_for_each_entry(root_clk, tmp, &clk_root_list, child_node) {
 357		ret = __clk_lookup_subtree(name, root_clk);
 358		if (ret)
 359			return ret;
 360	}
 361
 362	/* if not found, then search the orphan tree */
 363	hlist_for_each_entry(root_clk, tmp, &clk_orphan_list, child_node) {
 364		ret = __clk_lookup_subtree(name, root_clk);
 365		if (ret)
 366			return ret;
 367	}
 368
 369	return NULL;
 370}
 371
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 372/***        clk api        ***/
 373
 374void __clk_unprepare(struct clk *clk)
 375{
 376	if (!clk)
 377		return;
 378
 379	if (WARN_ON(clk->prepare_count == 0))
 380		return;
 381
 382	if (--clk->prepare_count > 0)
 383		return;
 384
 385	WARN_ON(clk->enable_count > 0);
 386
 387	if (clk->ops->unprepare)
 388		clk->ops->unprepare(clk->hw);
 389
 390	__clk_unprepare(clk->parent);
 391}
 392
 393/**
 394 * clk_unprepare - undo preparation of a clock source
 395 * @clk: the clk being unprepare
 396 *
 397 * clk_unprepare may sleep, which differentiates it from clk_disable.  In a
 398 * simple case, clk_unprepare can be used instead of clk_disable to gate a clk
 399 * if the operation may sleep.  One example is a clk which is accessed over
 400 * I2c.  In the complex case a clk gate operation may require a fast and a slow
 401 * part.  It is this reason that clk_unprepare and clk_disable are not mutually
 402 * exclusive.  In fact clk_disable must be called before clk_unprepare.
 403 */
 404void clk_unprepare(struct clk *clk)
 405{
 406	mutex_lock(&prepare_lock);
 407	__clk_unprepare(clk);
 408	mutex_unlock(&prepare_lock);
 409}
 410EXPORT_SYMBOL_GPL(clk_unprepare);
 411
 412int __clk_prepare(struct clk *clk)
 413{
 414	int ret = 0;
 415
 416	if (!clk)
 417		return 0;
 418
 419	if (clk->prepare_count == 0) {
 420		ret = __clk_prepare(clk->parent);
 421		if (ret)
 422			return ret;
 423
 424		if (clk->ops->prepare) {
 425			ret = clk->ops->prepare(clk->hw);
 426			if (ret) {
 427				__clk_unprepare(clk->parent);
 428				return ret;
 429			}
 430		}
 431	}
 432
 433	clk->prepare_count++;
 434
 435	return 0;
 436}
 437
 438/**
 439 * clk_prepare - prepare a clock source
 440 * @clk: the clk being prepared
 441 *
 442 * clk_prepare may sleep, which differentiates it from clk_enable.  In a simple
 443 * case, clk_prepare can be used instead of clk_enable to ungate a clk if the
 444 * operation may sleep.  One example is a clk which is accessed over I2c.  In
 445 * the complex case a clk ungate operation may require a fast and a slow part.
 446 * It is this reason that clk_prepare and clk_enable are not mutually
 447 * exclusive.  In fact clk_prepare must be called before clk_enable.
 448 * Returns 0 on success, -EERROR otherwise.
 449 */
 450int clk_prepare(struct clk *clk)
 451{
 452	int ret;
 453
 454	mutex_lock(&prepare_lock);
 455	ret = __clk_prepare(clk);
 456	mutex_unlock(&prepare_lock);
 457
 458	return ret;
 459}
 460EXPORT_SYMBOL_GPL(clk_prepare);
 461
 462static void __clk_disable(struct clk *clk)
 463{
 464	if (!clk)
 465		return;
 466
 
 
 
 467	if (WARN_ON(clk->enable_count == 0))
 468		return;
 469
 470	if (--clk->enable_count > 0)
 471		return;
 472
 473	if (clk->ops->disable)
 474		clk->ops->disable(clk->hw);
 475
 476	__clk_disable(clk->parent);
 477}
 478
 479/**
 480 * clk_disable - gate a clock
 481 * @clk: the clk being gated
 482 *
 483 * clk_disable must not sleep, which differentiates it from clk_unprepare.  In
 484 * a simple case, clk_disable can be used instead of clk_unprepare to gate a
 485 * clk if the operation is fast and will never sleep.  One example is a
 486 * SoC-internal clk which is controlled via simple register writes.  In the
 487 * complex case a clk gate operation may require a fast and a slow part.  It is
 488 * this reason that clk_unprepare and clk_disable are not mutually exclusive.
 489 * In fact clk_disable must be called before clk_unprepare.
 490 */
 491void clk_disable(struct clk *clk)
 492{
 493	unsigned long flags;
 494
 495	spin_lock_irqsave(&enable_lock, flags);
 496	__clk_disable(clk);
 497	spin_unlock_irqrestore(&enable_lock, flags);
 498}
 499EXPORT_SYMBOL_GPL(clk_disable);
 500
 501static int __clk_enable(struct clk *clk)
 502{
 503	int ret = 0;
 504
 505	if (!clk)
 506		return 0;
 507
 508	if (WARN_ON(clk->prepare_count == 0))
 509		return -ESHUTDOWN;
 510
 511	if (clk->enable_count == 0) {
 512		ret = __clk_enable(clk->parent);
 513
 514		if (ret)
 515			return ret;
 516
 517		if (clk->ops->enable) {
 518			ret = clk->ops->enable(clk->hw);
 519			if (ret) {
 520				__clk_disable(clk->parent);
 521				return ret;
 522			}
 523		}
 524	}
 525
 526	clk->enable_count++;
 527	return 0;
 528}
 529
 530/**
 531 * clk_enable - ungate a clock
 532 * @clk: the clk being ungated
 533 *
 534 * clk_enable must not sleep, which differentiates it from clk_prepare.  In a
 535 * simple case, clk_enable can be used instead of clk_prepare to ungate a clk
 536 * if the operation will never sleep.  One example is a SoC-internal clk which
 537 * is controlled via simple register writes.  In the complex case a clk ungate
 538 * operation may require a fast and a slow part.  It is this reason that
 539 * clk_enable and clk_prepare are not mutually exclusive.  In fact clk_prepare
 540 * must be called before clk_enable.  Returns 0 on success, -EERROR
 541 * otherwise.
 542 */
 543int clk_enable(struct clk *clk)
 544{
 545	unsigned long flags;
 546	int ret;
 547
 548	spin_lock_irqsave(&enable_lock, flags);
 549	ret = __clk_enable(clk);
 550	spin_unlock_irqrestore(&enable_lock, flags);
 551
 552	return ret;
 553}
 554EXPORT_SYMBOL_GPL(clk_enable);
 555
 556/**
 557 * clk_get_rate - return the rate of clk
 558 * @clk: the clk whose rate is being returned
 559 *
 560 * Simply returns the cached rate of the clk.  Does not query the hardware.  If
 561 * clk is NULL then returns 0.
 562 */
 563unsigned long clk_get_rate(struct clk *clk)
 564{
 565	unsigned long rate;
 566
 567	mutex_lock(&prepare_lock);
 568	rate = __clk_get_rate(clk);
 569	mutex_unlock(&prepare_lock);
 570
 571	return rate;
 572}
 573EXPORT_SYMBOL_GPL(clk_get_rate);
 574
 575/**
 576 * __clk_round_rate - round the given rate for a clk
 577 * @clk: round the rate of this clock
 
 578 *
 579 * Caller must hold prepare_lock.  Useful for clk_ops such as .set_rate
 580 */
 581unsigned long __clk_round_rate(struct clk *clk, unsigned long rate)
 582{
 583	unsigned long parent_rate = 0;
 
 584
 585	if (!clk)
 586		return -EINVAL;
 587
 588	if (!clk->ops->round_rate) {
 589		if (clk->flags & CLK_SET_RATE_PARENT)
 590			return __clk_round_rate(clk->parent, rate);
 591		else
 592			return clk->rate;
 593	}
 594
 595	if (clk->parent)
 596		parent_rate = clk->parent->rate;
 
 597
 598	return clk->ops->round_rate(clk->hw, rate, &parent_rate);
 
 
 
 
 
 
 
 
 599}
 600
 601/**
 602 * clk_round_rate - round the given rate for a clk
 603 * @clk: the clk for which we are rounding a rate
 604 * @rate: the rate which is to be rounded
 605 *
 606 * Takes in a rate as input and rounds it to a rate that the clk can actually
 607 * use which is then returned.  If clk doesn't support round_rate operation
 608 * then the parent rate is returned.
 609 */
 610long clk_round_rate(struct clk *clk, unsigned long rate)
 611{
 612	unsigned long ret;
 613
 614	mutex_lock(&prepare_lock);
 615	ret = __clk_round_rate(clk, rate);
 616	mutex_unlock(&prepare_lock);
 617
 618	return ret;
 619}
 620EXPORT_SYMBOL_GPL(clk_round_rate);
 621
 622/**
 623 * __clk_notify - call clk notifier chain
 624 * @clk: struct clk * that is changing rate
 625 * @msg: clk notifier type (see include/linux/clk.h)
 626 * @old_rate: old clk rate
 627 * @new_rate: new clk rate
 628 *
 629 * Triggers a notifier call chain on the clk rate-change notification
 630 * for 'clk'.  Passes a pointer to the struct clk and the previous
 631 * and current rates to the notifier callback.  Intended to be called by
 632 * internal clock code only.  Returns NOTIFY_DONE from the last driver
 633 * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if
 634 * a driver returns that.
 635 */
 636static int __clk_notify(struct clk *clk, unsigned long msg,
 637		unsigned long old_rate, unsigned long new_rate)
 638{
 639	struct clk_notifier *cn;
 640	struct clk_notifier_data cnd;
 641	int ret = NOTIFY_DONE;
 642
 643	cnd.clk = clk;
 644	cnd.old_rate = old_rate;
 645	cnd.new_rate = new_rate;
 646
 647	list_for_each_entry(cn, &clk_notifier_list, node) {
 648		if (cn->clk == clk) {
 649			ret = srcu_notifier_call_chain(&cn->notifier_head, msg,
 650					&cnd);
 651			break;
 652		}
 653	}
 654
 655	return ret;
 656}
 657
 658/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 659 * __clk_recalc_rates
 660 * @clk: first clk in the subtree
 661 * @msg: notification type (see include/linux/clk.h)
 662 *
 663 * Walks the subtree of clks starting with clk and recalculates rates as it
 664 * goes.  Note that if a clk does not implement the .recalc_rate callback then
 665 * it is assumed that the clock will take on the rate of it's parent.
 666 *
 667 * clk_recalc_rates also propagates the POST_RATE_CHANGE notification,
 668 * if necessary.
 669 *
 670 * Caller must hold prepare_lock.
 671 */
 672static void __clk_recalc_rates(struct clk *clk, unsigned long msg)
 673{
 674	unsigned long old_rate;
 675	unsigned long parent_rate = 0;
 676	struct hlist_node *tmp;
 677	struct clk *child;
 678
 679	old_rate = clk->rate;
 680
 681	if (clk->parent)
 682		parent_rate = clk->parent->rate;
 683
 684	if (clk->ops->recalc_rate)
 685		clk->rate = clk->ops->recalc_rate(clk->hw, parent_rate);
 686	else
 687		clk->rate = parent_rate;
 688
 689	/*
 690	 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE
 691	 * & ABORT_RATE_CHANGE notifiers
 692	 */
 693	if (clk->notifier_count && msg)
 694		__clk_notify(clk, msg, old_rate, clk->rate);
 695
 696	hlist_for_each_entry(child, tmp, &clk->children, child_node)
 697		__clk_recalc_rates(child, msg);
 698}
 699
 700/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 701 * __clk_speculate_rates
 702 * @clk: first clk in the subtree
 703 * @parent_rate: the "future" rate of clk's parent
 704 *
 705 * Walks the subtree of clks starting with clk, speculating rates as it
 706 * goes and firing off PRE_RATE_CHANGE notifications as necessary.
 707 *
 708 * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending
 709 * pre-rate change notifications and returns early if no clks in the
 710 * subtree have subscribed to the notifications.  Note that if a clk does not
 711 * implement the .recalc_rate callback then it is assumed that the clock will
 712 * take on the rate of it's parent.
 713 *
 714 * Caller must hold prepare_lock.
 715 */
 716static int __clk_speculate_rates(struct clk *clk, unsigned long parent_rate)
 717{
 718	struct hlist_node *tmp;
 719	struct clk *child;
 720	unsigned long new_rate;
 721	int ret = NOTIFY_DONE;
 722
 723	if (clk->ops->recalc_rate)
 724		new_rate = clk->ops->recalc_rate(clk->hw, parent_rate);
 725	else
 726		new_rate = parent_rate;
 727
 728	/* abort the rate change if a driver returns NOTIFY_BAD */
 729	if (clk->notifier_count)
 730		ret = __clk_notify(clk, PRE_RATE_CHANGE, clk->rate, new_rate);
 731
 732	if (ret == NOTIFY_BAD)
 
 
 733		goto out;
 
 734
 735	hlist_for_each_entry(child, tmp, &clk->children, child_node) {
 736		ret = __clk_speculate_rates(child, new_rate);
 737		if (ret == NOTIFY_BAD)
 738			break;
 739	}
 740
 741out:
 742	return ret;
 743}
 744
 745static void clk_calc_subtree(struct clk *clk, unsigned long new_rate)
 
 746{
 747	struct clk *child;
 748	struct hlist_node *tmp;
 749
 750	clk->new_rate = new_rate;
 
 
 
 
 
 
 751
 752	hlist_for_each_entry(child, tmp, &clk->children, child_node) {
 753		if (child->ops->recalc_rate)
 754			child->new_rate = child->ops->recalc_rate(child->hw, new_rate);
 755		else
 756			child->new_rate = new_rate;
 757		clk_calc_subtree(child, child->new_rate);
 758	}
 759}
 760
 761/*
 762 * calculate the new rates returning the topmost clock that has to be
 763 * changed.
 764 */
 765static struct clk *clk_calc_new_rates(struct clk *clk, unsigned long rate)
 766{
 767	struct clk *top = clk;
 
 768	unsigned long best_parent_rate = 0;
 769	unsigned long new_rate;
 
 770
 771	/* sanity */
 772	if (IS_ERR_OR_NULL(clk))
 773		return NULL;
 774
 775	/* save parent rate, if it exists */
 776	if (clk->parent)
 777		best_parent_rate = clk->parent->rate;
 778
 779	/* never propagate up to the parent */
 780	if (!(clk->flags & CLK_SET_RATE_PARENT)) {
 781		if (!clk->ops->round_rate) {
 782			clk->new_rate = clk->rate;
 783			return NULL;
 784		}
 785		new_rate = clk->ops->round_rate(clk->hw, rate, &best_parent_rate);
 
 
 
 
 
 
 
 
 
 
 786		goto out;
 787	}
 788
 789	/* need clk->parent from here on out */
 790	if (!clk->parent) {
 791		pr_debug("%s: %s has NULL parent\n", __func__, clk->name);
 
 
 792		return NULL;
 793	}
 794
 795	if (!clk->ops->round_rate) {
 796		top = clk_calc_new_rates(clk->parent, rate);
 797		new_rate = clk->parent->new_rate;
 798
 799		goto out;
 
 
 
 800	}
 801
 802	new_rate = clk->ops->round_rate(clk->hw, rate, &best_parent_rate);
 803
 804	if (best_parent_rate != clk->parent->rate) {
 805		top = clk_calc_new_rates(clk->parent, best_parent_rate);
 806
 807		goto out;
 808	}
 809
 810out:
 811	clk_calc_subtree(clk, new_rate);
 812
 813	return top;
 814}
 815
 816/*
 817 * Notify about rate changes in a subtree. Always walk down the whole tree
 818 * so that in case of an error we can walk down the whole tree again and
 819 * abort the change.
 820 */
 821static struct clk *clk_propagate_rate_change(struct clk *clk, unsigned long event)
 822{
 823	struct hlist_node *tmp;
 824	struct clk *child, *fail_clk = NULL;
 825	int ret = NOTIFY_DONE;
 826
 827	if (clk->rate == clk->new_rate)
 828		return 0;
 829
 830	if (clk->notifier_count) {
 831		ret = __clk_notify(clk, event, clk->rate, clk->new_rate);
 832		if (ret == NOTIFY_BAD)
 833			fail_clk = clk;
 834	}
 835
 836	hlist_for_each_entry(child, tmp, &clk->children, child_node) {
 837		clk = clk_propagate_rate_change(child, event);
 838		if (clk)
 839			fail_clk = clk;
 
 
 
 
 
 
 
 
 
 
 840	}
 841
 842	return fail_clk;
 843}
 844
 845/*
 846 * walk down a subtree and set the new rates notifying the rate
 847 * change on the way
 848 */
 849static void clk_change_rate(struct clk *clk)
 850{
 851	struct clk *child;
 852	unsigned long old_rate;
 853	unsigned long best_parent_rate = 0;
 854	struct hlist_node *tmp;
 
 855
 856	old_rate = clk->rate;
 857
 858	if (clk->parent)
 
 
 859		best_parent_rate = clk->parent->rate;
 860
 861	if (clk->ops->set_rate)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 862		clk->ops->set_rate(clk->hw, clk->new_rate, best_parent_rate);
 863
 864	if (clk->ops->recalc_rate)
 865		clk->rate = clk->ops->recalc_rate(clk->hw, best_parent_rate);
 866	else
 867		clk->rate = best_parent_rate;
 868
 869	if (clk->notifier_count && old_rate != clk->rate)
 870		__clk_notify(clk, POST_RATE_CHANGE, old_rate, clk->rate);
 871
 872	hlist_for_each_entry(child, tmp, &clk->children, child_node)
 
 
 
 873		clk_change_rate(child);
 
 
 
 
 
 874}
 875
 876/**
 877 * clk_set_rate - specify a new rate for clk
 878 * @clk: the clk whose rate is being changed
 879 * @rate: the new rate for clk
 880 *
 881 * In the simplest case clk_set_rate will only adjust the rate of clk.
 882 *
 883 * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to
 884 * propagate up to clk's parent; whether or not this happens depends on the
 885 * outcome of clk's .round_rate implementation.  If *parent_rate is unchanged
 886 * after calling .round_rate then upstream parent propagation is ignored.  If
 887 * *parent_rate comes back with a new rate for clk's parent then we propagate
 888 * up to clk's parent and set it's rate.  Upward propagation will continue
 889 * until either a clk does not support the CLK_SET_RATE_PARENT flag or
 890 * .round_rate stops requesting changes to clk's parent_rate.
 891 *
 892 * Rate changes are accomplished via tree traversal that also recalculates the
 893 * rates for the clocks and fires off POST_RATE_CHANGE notifiers.
 894 *
 895 * Returns 0 on success, -EERROR otherwise.
 896 */
 897int clk_set_rate(struct clk *clk, unsigned long rate)
 898{
 899	struct clk *top, *fail_clk;
 900	int ret = 0;
 901
 
 
 
 902	/* prevent racing with updates to the clock topology */
 903	mutex_lock(&prepare_lock);
 904
 905	/* bail early if nothing to do */
 906	if (rate == clk->rate)
 907		goto out;
 908
 909	if ((clk->flags & CLK_SET_RATE_GATE) && clk->prepare_count) {
 910		ret = -EBUSY;
 911		goto out;
 912	}
 913
 914	/* calculate new rates and get the topmost changed clock */
 915	top = clk_calc_new_rates(clk, rate);
 916	if (!top) {
 917		ret = -EINVAL;
 918		goto out;
 919	}
 920
 921	/* notify that we are about to change rates */
 922	fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE);
 923	if (fail_clk) {
 924		pr_warn("%s: failed to set %s rate\n", __func__,
 925				fail_clk->name);
 926		clk_propagate_rate_change(top, ABORT_RATE_CHANGE);
 927		ret = -EBUSY;
 928		goto out;
 929	}
 930
 931	/* change the rates */
 932	clk_change_rate(top);
 933
 934	mutex_unlock(&prepare_lock);
 935
 936	return 0;
 937out:
 938	mutex_unlock(&prepare_lock);
 939
 940	return ret;
 941}
 942EXPORT_SYMBOL_GPL(clk_set_rate);
 943
 944/**
 945 * clk_get_parent - return the parent of a clk
 946 * @clk: the clk whose parent gets returned
 947 *
 948 * Simply returns clk->parent.  Returns NULL if clk is NULL.
 949 */
 950struct clk *clk_get_parent(struct clk *clk)
 951{
 952	struct clk *parent;
 953
 954	mutex_lock(&prepare_lock);
 955	parent = __clk_get_parent(clk);
 956	mutex_unlock(&prepare_lock);
 957
 958	return parent;
 959}
 960EXPORT_SYMBOL_GPL(clk_get_parent);
 961
 962/*
 963 * .get_parent is mandatory for clocks with multiple possible parents.  It is
 964 * optional for single-parent clocks.  Always call .get_parent if it is
 965 * available and WARN if it is missing for multi-parent clocks.
 966 *
 967 * For single-parent clocks without .get_parent, first check to see if the
 968 * .parents array exists, and if so use it to avoid an expensive tree
 969 * traversal.  If .parents does not exist then walk the tree with __clk_lookup.
 970 */
 971static struct clk *__clk_init_parent(struct clk *clk)
 972{
 973	struct clk *ret = NULL;
 974	u8 index;
 975
 976	/* handle the trivial cases */
 977
 978	if (!clk->num_parents)
 979		goto out;
 980
 981	if (clk->num_parents == 1) {
 982		if (IS_ERR_OR_NULL(clk->parent))
 983			ret = clk->parent = __clk_lookup(clk->parent_names[0]);
 984		ret = clk->parent;
 985		goto out;
 986	}
 987
 988	if (!clk->ops->get_parent) {
 989		WARN(!clk->ops->get_parent,
 990			"%s: multi-parent clocks must implement .get_parent\n",
 991			__func__);
 992		goto out;
 993	};
 994
 995	/*
 996	 * Do our best to cache parent clocks in clk->parents.  This prevents
 997	 * unnecessary and expensive calls to __clk_lookup.  We don't set
 998	 * clk->parent here; that is done by the calling function
 999	 */
1000
1001	index = clk->ops->get_parent(clk->hw);
1002
1003	if (!clk->parents)
1004		clk->parents =
1005			kzalloc((sizeof(struct clk*) * clk->num_parents),
1006					GFP_KERNEL);
1007
1008	if (!clk->parents)
1009		ret = __clk_lookup(clk->parent_names[index]);
1010	else if (!clk->parents[index])
1011		ret = clk->parents[index] =
1012			__clk_lookup(clk->parent_names[index]);
1013	else
1014		ret = clk->parents[index];
1015
1016out:
1017	return ret;
1018}
1019
1020void __clk_reparent(struct clk *clk, struct clk *new_parent)
1021{
1022#ifdef CONFIG_COMMON_CLK_DEBUG
1023	struct dentry *d;
1024	struct dentry *new_parent_d;
1025#endif
1026
1027	if (!clk || !new_parent)
1028		return;
1029
1030	hlist_del(&clk->child_node);
1031
1032	if (new_parent)
1033		hlist_add_head(&clk->child_node, &new_parent->children);
1034	else
1035		hlist_add_head(&clk->child_node, &clk_orphan_list);
1036
1037#ifdef CONFIG_COMMON_CLK_DEBUG
1038	if (!inited)
1039		goto out;
1040
1041	if (new_parent)
1042		new_parent_d = new_parent->dentry;
1043	else
1044		new_parent_d = orphandir;
1045
1046	d = debugfs_rename(clk->dentry->d_parent, clk->dentry,
1047			new_parent_d, clk->name);
1048	if (d)
1049		clk->dentry = d;
1050	else
1051		pr_debug("%s: failed to rename debugfs entry for %s\n",
1052				__func__, clk->name);
1053out:
1054#endif
1055
1056	clk->parent = new_parent;
1057
1058	__clk_recalc_rates(clk, POST_RATE_CHANGE);
1059}
1060
1061static int __clk_set_parent(struct clk *clk, struct clk *parent)
1062{
1063	struct clk *old_parent;
1064	unsigned long flags;
1065	int ret = -EINVAL;
1066	u8 i;
1067
1068	old_parent = clk->parent;
1069
1070	if (!clk->parents)
1071		clk->parents = kzalloc((sizeof(struct clk*) * clk->num_parents),
1072								GFP_KERNEL);
1073
1074	/*
1075	 * find index of new parent clock using cached parent ptrs,
1076	 * or if not yet cached, use string name comparison and cache
1077	 * them now to avoid future calls to __clk_lookup.
1078	 */
1079	for (i = 0; i < clk->num_parents; i++) {
1080		if (clk->parents && clk->parents[i] == parent)
1081			break;
1082		else if (!strcmp(clk->parent_names[i], parent->name)) {
1083			if (clk->parents)
1084				clk->parents[i] = __clk_lookup(parent->name);
1085			break;
1086		}
1087	}
1088
1089	if (i == clk->num_parents) {
1090		pr_debug("%s: clock %s is not a possible parent of clock %s\n",
1091				__func__, parent->name, clk->name);
1092		goto out;
1093	}
1094
1095	/* migrate prepare and enable */
1096	if (clk->prepare_count)
1097		__clk_prepare(parent);
1098
1099	/* FIXME replace with clk_is_enabled(clk) someday */
1100	spin_lock_irqsave(&enable_lock, flags);
1101	if (clk->enable_count)
1102		__clk_enable(parent);
1103	spin_unlock_irqrestore(&enable_lock, flags);
1104
1105	/* change clock input source */
1106	ret = clk->ops->set_parent(clk->hw, i);
1107
1108	/* clean up old prepare and enable */
1109	spin_lock_irqsave(&enable_lock, flags);
1110	if (clk->enable_count)
1111		__clk_disable(old_parent);
1112	spin_unlock_irqrestore(&enable_lock, flags);
1113
1114	if (clk->prepare_count)
1115		__clk_unprepare(old_parent);
1116
1117out:
1118	return ret;
1119}
1120
1121/**
1122 * clk_set_parent - switch the parent of a mux clk
1123 * @clk: the mux clk whose input we are switching
1124 * @parent: the new input to clk
1125 *
1126 * Re-parent clk to use parent as it's new input source.  If clk has the
1127 * CLK_SET_PARENT_GATE flag set then clk must be gated for this
1128 * operation to succeed.  After successfully changing clk's parent
1129 * clk_set_parent will update the clk topology, sysfs topology and
1130 * propagate rate recalculation via __clk_recalc_rates.  Returns 0 on
1131 * success, -EERROR otherwise.
 
 
 
 
 
1132 */
1133int clk_set_parent(struct clk *clk, struct clk *parent)
1134{
1135	int ret = 0;
 
 
1136
1137	if (!clk || !clk->ops)
 
 
 
1138		return -EINVAL;
1139
1140	if (!clk->ops->set_parent)
 
1141		return -ENOSYS;
1142
1143	/* prevent racing with updates to the clock topology */
1144	mutex_lock(&prepare_lock);
1145
1146	if (clk->parent == parent)
1147		goto out;
1148
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1149	/* propagate PRE_RATE_CHANGE notifications */
1150	if (clk->notifier_count)
1151		ret = __clk_speculate_rates(clk, parent->rate);
1152
1153	/* abort if a driver objects */
1154	if (ret == NOTIFY_STOP)
1155		goto out;
1156
1157	/* only re-parent if the clock is not in use */
1158	if ((clk->flags & CLK_SET_PARENT_GATE) && clk->prepare_count)
1159		ret = -EBUSY;
1160	else
1161		ret = __clk_set_parent(clk, parent);
1162
1163	/* propagate ABORT_RATE_CHANGE if .set_parent failed */
1164	if (ret) {
1165		__clk_recalc_rates(clk, ABORT_RATE_CHANGE);
1166		goto out;
 
 
1167	}
1168
1169	/* propagate rate recalculation downstream */
1170	__clk_reparent(clk, parent);
1171
1172out:
1173	mutex_unlock(&prepare_lock);
1174
1175	return ret;
1176}
1177EXPORT_SYMBOL_GPL(clk_set_parent);
1178
1179/**
1180 * __clk_init - initialize the data structures in a struct clk
1181 * @dev:	device initializing this clk, placeholder for now
1182 * @clk:	clk being initialized
1183 *
1184 * Initializes the lists in struct clk, queries the hardware for the
1185 * parent and rate and sets them both.
1186 */
1187int __clk_init(struct device *dev, struct clk *clk)
1188{
1189	int i, ret = 0;
1190	struct clk *orphan;
1191	struct hlist_node *tmp, *tmp2;
1192
1193	if (!clk)
1194		return -EINVAL;
1195
1196	mutex_lock(&prepare_lock);
1197
1198	/* check to see if a clock with this name is already registered */
1199	if (__clk_lookup(clk->name)) {
1200		pr_debug("%s: clk %s already initialized\n",
1201				__func__, clk->name);
1202		ret = -EEXIST;
1203		goto out;
1204	}
1205
1206	/* check that clk_ops are sane.  See Documentation/clk.txt */
1207	if (clk->ops->set_rate &&
1208			!(clk->ops->round_rate && clk->ops->recalc_rate)) {
1209		pr_warning("%s: %s must implement .round_rate & .recalc_rate\n",
 
1210				__func__, clk->name);
1211		ret = -EINVAL;
1212		goto out;
1213	}
1214
1215	if (clk->ops->set_parent && !clk->ops->get_parent) {
1216		pr_warning("%s: %s must implement .get_parent & .set_parent\n",
1217				__func__, clk->name);
1218		ret = -EINVAL;
1219		goto out;
1220	}
1221
 
 
 
 
 
 
 
 
1222	/* throw a WARN if any entries in parent_names are NULL */
1223	for (i = 0; i < clk->num_parents; i++)
1224		WARN(!clk->parent_names[i],
1225				"%s: invalid NULL in %s's .parent_names\n",
1226				__func__, clk->name);
1227
1228	/*
1229	 * Allocate an array of struct clk *'s to avoid unnecessary string
1230	 * look-ups of clk's possible parents.  This can fail for clocks passed
1231	 * in to clk_init during early boot; thus any access to clk->parents[]
1232	 * must always check for a NULL pointer and try to populate it if
1233	 * necessary.
1234	 *
1235	 * If clk->parents is not NULL we skip this entire block.  This allows
1236	 * for clock drivers to statically initialize clk->parents.
1237	 */
1238	if (clk->num_parents && !clk->parents) {
1239		clk->parents = kmalloc((sizeof(struct clk*) * clk->num_parents),
1240				GFP_KERNEL);
1241		/*
1242		 * __clk_lookup returns NULL for parents that have not been
1243		 * clk_init'd; thus any access to clk->parents[] must check
1244		 * for a NULL pointer.  We can always perform lazy lookups for
1245		 * missing parents later on.
1246		 */
1247		if (clk->parents)
1248			for (i = 0; i < clk->num_parents; i++)
1249				clk->parents[i] =
1250					__clk_lookup(clk->parent_names[i]);
1251	}
1252
1253	clk->parent = __clk_init_parent(clk);
1254
1255	/*
1256	 * Populate clk->parent if parent has already been __clk_init'd.  If
1257	 * parent has not yet been __clk_init'd then place clk in the orphan
1258	 * list.  If clk has set the CLK_IS_ROOT flag then place it in the root
1259	 * clk list.
1260	 *
1261	 * Every time a new clk is clk_init'd then we walk the list of orphan
1262	 * clocks and re-parent any that are children of the clock currently
1263	 * being clk_init'd.
1264	 */
1265	if (clk->parent)
1266		hlist_add_head(&clk->child_node,
1267				&clk->parent->children);
1268	else if (clk->flags & CLK_IS_ROOT)
1269		hlist_add_head(&clk->child_node, &clk_root_list);
1270	else
1271		hlist_add_head(&clk->child_node, &clk_orphan_list);
1272
1273	/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1274	 * Set clk's rate.  The preferred method is to use .recalc_rate.  For
1275	 * simple clocks and lazy developers the default fallback is to use the
1276	 * parent's rate.  If a clock doesn't have a parent (or is orphaned)
1277	 * then rate is set to zero.
1278	 */
1279	if (clk->ops->recalc_rate)
1280		clk->rate = clk->ops->recalc_rate(clk->hw,
1281				__clk_get_rate(clk->parent));
1282	else if (clk->parent)
1283		clk->rate = clk->parent->rate;
1284	else
1285		clk->rate = 0;
1286
 
1287	/*
1288	 * walk the list of orphan clocks and reparent any that are children of
1289	 * this clock
1290	 */
1291	hlist_for_each_entry_safe(orphan, tmp, tmp2, &clk_orphan_list, child_node)
 
 
 
 
 
 
 
1292		for (i = 0; i < orphan->num_parents; i++)
1293			if (!strcmp(clk->name, orphan->parent_names[i])) {
1294				__clk_reparent(orphan, clk);
1295				break;
1296			}
 
1297
1298	/*
1299	 * optional platform-specific magic
1300	 *
1301	 * The .init callback is not used by any of the basic clock types, but
1302	 * exists for weird hardware that must perform initialization magic.
1303	 * Please consider other ways of solving initialization problems before
1304	 * using this callback, as it's use is discouraged.
1305	 */
1306	if (clk->ops->init)
1307		clk->ops->init(clk->hw);
1308
1309	clk_debug_register(clk);
1310
1311out:
1312	mutex_unlock(&prepare_lock);
1313
1314	return ret;
1315}
1316
1317/**
1318 * __clk_register - register a clock and return a cookie.
1319 *
1320 * Same as clk_register, except that the .clk field inside hw shall point to a
1321 * preallocated (generally statically allocated) struct clk. None of the fields
1322 * of the struct clk need to be initialized.
1323 *
1324 * The data pointed to by .init and .clk field shall NOT be marked as init
1325 * data.
1326 *
1327 * __clk_register is only exposed via clk-private.h and is intended for use with
1328 * very large numbers of clocks that need to be statically initialized.  It is
1329 * a layering violation to include clk-private.h from any code which implements
1330 * a clock's .ops; as such any statically initialized clock data MUST be in a
1331 * separate C file from the logic that implements it's operations.  Returns 0
1332 * on success, otherwise an error code.
1333 */
1334struct clk *__clk_register(struct device *dev, struct clk_hw *hw)
1335{
1336	int ret;
1337	struct clk *clk;
1338
1339	clk = hw->clk;
1340	clk->name = hw->init->name;
1341	clk->ops = hw->init->ops;
1342	clk->hw = hw;
1343	clk->flags = hw->init->flags;
1344	clk->parent_names = hw->init->parent_names;
1345	clk->num_parents = hw->init->num_parents;
 
 
 
 
1346
1347	ret = __clk_init(dev, clk);
1348	if (ret)
1349		return ERR_PTR(ret);
1350
1351	return clk;
1352}
1353EXPORT_SYMBOL_GPL(__clk_register);
1354
1355/**
1356 * clk_register - allocate a new clock, register it and return an opaque cookie
1357 * @dev: device that is registering this clock
1358 * @hw: link to hardware-specific clock data
1359 *
1360 * clk_register is the primary interface for populating the clock tree with new
1361 * clock nodes.  It returns a pointer to the newly allocated struct clk which
1362 * cannot be dereferenced by driver code but may be used in conjuction with the
1363 * rest of the clock API.  In the event of an error clk_register will return an
1364 * error code; drivers must test for an error code after calling clk_register.
1365 */
1366struct clk *clk_register(struct device *dev, struct clk_hw *hw)
1367{
1368	int i, ret;
1369	struct clk *clk;
1370
1371	clk = kzalloc(sizeof(*clk), GFP_KERNEL);
1372	if (!clk) {
1373		pr_err("%s: could not allocate clk\n", __func__);
1374		ret = -ENOMEM;
1375		goto fail_out;
1376	}
1377
1378	clk->name = kstrdup(hw->init->name, GFP_KERNEL);
1379	if (!clk->name) {
1380		pr_err("%s: could not allocate clk->name\n", __func__);
1381		ret = -ENOMEM;
1382		goto fail_name;
1383	}
1384	clk->ops = hw->init->ops;
 
 
1385	clk->hw = hw;
1386	clk->flags = hw->init->flags;
1387	clk->num_parents = hw->init->num_parents;
1388	hw->clk = clk;
1389
1390	/* allocate local copy in case parent_names is __initdata */
1391	clk->parent_names = kzalloc((sizeof(char*) * clk->num_parents),
1392			GFP_KERNEL);
1393
1394	if (!clk->parent_names) {
1395		pr_err("%s: could not allocate clk->parent_names\n", __func__);
1396		ret = -ENOMEM;
1397		goto fail_parent_names;
1398	}
1399
1400
1401	/* copy each string name in case parent_names is __initdata */
1402	for (i = 0; i < clk->num_parents; i++) {
1403		clk->parent_names[i] = kstrdup(hw->init->parent_names[i],
1404						GFP_KERNEL);
1405		if (!clk->parent_names[i]) {
1406			pr_err("%s: could not copy parent_names\n", __func__);
1407			ret = -ENOMEM;
1408			goto fail_parent_names_copy;
1409		}
1410	}
1411
1412	ret = __clk_init(dev, clk);
1413	if (!ret)
1414		return clk;
1415
1416fail_parent_names_copy:
1417	while (--i >= 0)
1418		kfree(clk->parent_names[i]);
1419	kfree(clk->parent_names);
1420fail_parent_names:
1421	kfree(clk->name);
1422fail_name:
1423	kfree(clk);
1424fail_out:
1425	return ERR_PTR(ret);
1426}
1427EXPORT_SYMBOL_GPL(clk_register);
1428
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1429/**
1430 * clk_unregister - unregister a currently registered clock
1431 * @clk: clock to unregister
1432 *
1433 * Currently unimplemented.
1434 */
1435void clk_unregister(struct clk *clk) {}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1436EXPORT_SYMBOL_GPL(clk_unregister);
1437
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1438/***        clk rate change notifiers        ***/
1439
1440/**
1441 * clk_notifier_register - add a clk rate change notifier
1442 * @clk: struct clk * to watch
1443 * @nb: struct notifier_block * with callback info
1444 *
1445 * Request notification when clk's rate changes.  This uses an SRCU
1446 * notifier because we want it to block and notifier unregistrations are
1447 * uncommon.  The callbacks associated with the notifier must not
1448 * re-enter into the clk framework by calling any top-level clk APIs;
1449 * this will cause a nested prepare_lock mutex.
1450 *
1451 * Pre-change notifier callbacks will be passed the current, pre-change
1452 * rate of the clk via struct clk_notifier_data.old_rate.  The new,
1453 * post-change rate of the clk is passed via struct
1454 * clk_notifier_data.new_rate.
1455 *
1456 * Post-change notifiers will pass the now-current, post-change rate of
1457 * the clk in both struct clk_notifier_data.old_rate and struct
1458 * clk_notifier_data.new_rate.
1459 *
1460 * Abort-change notifiers are effectively the opposite of pre-change
1461 * notifiers: the original pre-change clk rate is passed in via struct
1462 * clk_notifier_data.new_rate and the failed post-change rate is passed
1463 * in via struct clk_notifier_data.old_rate.
1464 *
1465 * clk_notifier_register() must be called from non-atomic context.
1466 * Returns -EINVAL if called with null arguments, -ENOMEM upon
1467 * allocation failure; otherwise, passes along the return value of
1468 * srcu_notifier_chain_register().
1469 */
1470int clk_notifier_register(struct clk *clk, struct notifier_block *nb)
1471{
1472	struct clk_notifier *cn;
1473	int ret = -ENOMEM;
1474
1475	if (!clk || !nb)
1476		return -EINVAL;
1477
1478	mutex_lock(&prepare_lock);
1479
1480	/* search the list of notifiers for this clk */
1481	list_for_each_entry(cn, &clk_notifier_list, node)
1482		if (cn->clk == clk)
1483			break;
1484
1485	/* if clk wasn't in the notifier list, allocate new clk_notifier */
1486	if (cn->clk != clk) {
1487		cn = kzalloc(sizeof(struct clk_notifier), GFP_KERNEL);
1488		if (!cn)
1489			goto out;
1490
1491		cn->clk = clk;
1492		srcu_init_notifier_head(&cn->notifier_head);
1493
1494		list_add(&cn->node, &clk_notifier_list);
1495	}
1496
1497	ret = srcu_notifier_chain_register(&cn->notifier_head, nb);
1498
1499	clk->notifier_count++;
1500
1501out:
1502	mutex_unlock(&prepare_lock);
1503
1504	return ret;
1505}
1506EXPORT_SYMBOL_GPL(clk_notifier_register);
1507
1508/**
1509 * clk_notifier_unregister - remove a clk rate change notifier
1510 * @clk: struct clk *
1511 * @nb: struct notifier_block * with callback info
1512 *
1513 * Request no further notification for changes to 'clk' and frees memory
1514 * allocated in clk_notifier_register.
1515 *
1516 * Returns -EINVAL if called with null arguments; otherwise, passes
1517 * along the return value of srcu_notifier_chain_unregister().
1518 */
1519int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb)
1520{
1521	struct clk_notifier *cn = NULL;
1522	int ret = -EINVAL;
1523
1524	if (!clk || !nb)
1525		return -EINVAL;
1526
1527	mutex_lock(&prepare_lock);
1528
1529	list_for_each_entry(cn, &clk_notifier_list, node)
1530		if (cn->clk == clk)
1531			break;
1532
1533	if (cn->clk == clk) {
1534		ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb);
1535
1536		clk->notifier_count--;
1537
1538		/* XXX the notifier code should handle this better */
1539		if (!cn->notifier_head.head) {
1540			srcu_cleanup_notifier_head(&cn->notifier_head);
 
1541			kfree(cn);
1542		}
1543
1544	} else {
1545		ret = -ENOENT;
1546	}
1547
1548	mutex_unlock(&prepare_lock);
1549
1550	return ret;
1551}
1552EXPORT_SYMBOL_GPL(clk_notifier_unregister);
v3.15
   1/*
   2 * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com>
   3 * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org>
   4 *
   5 * This program is free software; you can redistribute it and/or modify
   6 * it under the terms of the GNU General Public License version 2 as
   7 * published by the Free Software Foundation.
   8 *
   9 * Standard functionality for the common clock API.  See Documentation/clk.txt
  10 */
  11
  12#include <linux/clk-private.h>
  13#include <linux/module.h>
  14#include <linux/mutex.h>
  15#include <linux/spinlock.h>
  16#include <linux/err.h>
  17#include <linux/list.h>
  18#include <linux/slab.h>
  19#include <linux/of.h>
  20#include <linux/device.h>
  21#include <linux/init.h>
  22#include <linux/sched.h>
  23
  24#include "clk.h"
  25
  26static DEFINE_SPINLOCK(enable_lock);
  27static DEFINE_MUTEX(prepare_lock);
  28
  29static struct task_struct *prepare_owner;
  30static struct task_struct *enable_owner;
  31
  32static int prepare_refcnt;
  33static int enable_refcnt;
  34
  35static HLIST_HEAD(clk_root_list);
  36static HLIST_HEAD(clk_orphan_list);
  37static LIST_HEAD(clk_notifier_list);
  38
  39/***           locking             ***/
  40static void clk_prepare_lock(void)
  41{
  42	if (!mutex_trylock(&prepare_lock)) {
  43		if (prepare_owner == current) {
  44			prepare_refcnt++;
  45			return;
  46		}
  47		mutex_lock(&prepare_lock);
  48	}
  49	WARN_ON_ONCE(prepare_owner != NULL);
  50	WARN_ON_ONCE(prepare_refcnt != 0);
  51	prepare_owner = current;
  52	prepare_refcnt = 1;
  53}
  54
  55static void clk_prepare_unlock(void)
  56{
  57	WARN_ON_ONCE(prepare_owner != current);
  58	WARN_ON_ONCE(prepare_refcnt == 0);
  59
  60	if (--prepare_refcnt)
  61		return;
  62	prepare_owner = NULL;
  63	mutex_unlock(&prepare_lock);
  64}
  65
  66static unsigned long clk_enable_lock(void)
  67{
  68	unsigned long flags;
  69
  70	if (!spin_trylock_irqsave(&enable_lock, flags)) {
  71		if (enable_owner == current) {
  72			enable_refcnt++;
  73			return flags;
  74		}
  75		spin_lock_irqsave(&enable_lock, flags);
  76	}
  77	WARN_ON_ONCE(enable_owner != NULL);
  78	WARN_ON_ONCE(enable_refcnt != 0);
  79	enable_owner = current;
  80	enable_refcnt = 1;
  81	return flags;
  82}
  83
  84static void clk_enable_unlock(unsigned long flags)
  85{
  86	WARN_ON_ONCE(enable_owner != current);
  87	WARN_ON_ONCE(enable_refcnt == 0);
  88
  89	if (--enable_refcnt)
  90		return;
  91	enable_owner = NULL;
  92	spin_unlock_irqrestore(&enable_lock, flags);
  93}
  94
  95/***        debugfs support        ***/
  96
  97#ifdef CONFIG_DEBUG_FS
  98#include <linux/debugfs.h>
  99
 100static struct dentry *rootdir;
 101static struct dentry *orphandir;
 102static int inited = 0;
 103
 104static void clk_summary_show_one(struct seq_file *s, struct clk *c, int level)
 105{
 106	if (!c)
 107		return;
 108
 109	seq_printf(s, "%*s%-*s %-11d %-12d %-10lu %-11lu",
 110		   level * 3 + 1, "",
 111		   30 - level * 3, c->name,
 112		   c->enable_count, c->prepare_count, clk_get_rate(c),
 113		   clk_get_accuracy(c));
 114	seq_printf(s, "\n");
 115}
 116
 117static void clk_summary_show_subtree(struct seq_file *s, struct clk *c,
 118				     int level)
 119{
 120	struct clk *child;
 121
 122	if (!c)
 123		return;
 124
 125	clk_summary_show_one(s, c, level);
 126
 127	hlist_for_each_entry(child, &c->children, child_node)
 128		clk_summary_show_subtree(s, child, level + 1);
 129}
 130
 131static int clk_summary_show(struct seq_file *s, void *data)
 132{
 133	struct clk *c;
 134
 135	seq_printf(s, "   clock                        enable_cnt  prepare_cnt  rate        accuracy\n");
 136	seq_printf(s, "---------------------------------------------------------------------------------\n");
 137
 138	clk_prepare_lock();
 139
 140	hlist_for_each_entry(c, &clk_root_list, child_node)
 141		clk_summary_show_subtree(s, c, 0);
 142
 143	hlist_for_each_entry(c, &clk_orphan_list, child_node)
 144		clk_summary_show_subtree(s, c, 0);
 145
 146	clk_prepare_unlock();
 147
 148	return 0;
 149}
 150
 151
 152static int clk_summary_open(struct inode *inode, struct file *file)
 153{
 154	return single_open(file, clk_summary_show, inode->i_private);
 155}
 156
 157static const struct file_operations clk_summary_fops = {
 158	.open		= clk_summary_open,
 159	.read		= seq_read,
 160	.llseek		= seq_lseek,
 161	.release	= single_release,
 162};
 163
 164static void clk_dump_one(struct seq_file *s, struct clk *c, int level)
 165{
 166	if (!c)
 167		return;
 168
 169	seq_printf(s, "\"%s\": { ", c->name);
 170	seq_printf(s, "\"enable_count\": %d,", c->enable_count);
 171	seq_printf(s, "\"prepare_count\": %d,", c->prepare_count);
 172	seq_printf(s, "\"rate\": %lu", clk_get_rate(c));
 173	seq_printf(s, "\"accuracy\": %lu", clk_get_accuracy(c));
 174}
 175
 176static void clk_dump_subtree(struct seq_file *s, struct clk *c, int level)
 177{
 178	struct clk *child;
 179
 180	if (!c)
 181		return;
 182
 183	clk_dump_one(s, c, level);
 184
 185	hlist_for_each_entry(child, &c->children, child_node) {
 186		seq_printf(s, ",");
 187		clk_dump_subtree(s, child, level + 1);
 188	}
 189
 190	seq_printf(s, "}");
 191}
 192
 193static int clk_dump(struct seq_file *s, void *data)
 194{
 195	struct clk *c;
 196	bool first_node = true;
 197
 198	seq_printf(s, "{");
 199
 200	clk_prepare_lock();
 201
 202	hlist_for_each_entry(c, &clk_root_list, child_node) {
 203		if (!first_node)
 204			seq_printf(s, ",");
 205		first_node = false;
 206		clk_dump_subtree(s, c, 0);
 207	}
 208
 209	hlist_for_each_entry(c, &clk_orphan_list, child_node) {
 210		seq_printf(s, ",");
 211		clk_dump_subtree(s, c, 0);
 212	}
 213
 214	clk_prepare_unlock();
 215
 216	seq_printf(s, "}");
 217	return 0;
 218}
 219
 220
 221static int clk_dump_open(struct inode *inode, struct file *file)
 222{
 223	return single_open(file, clk_dump, inode->i_private);
 224}
 225
 226static const struct file_operations clk_dump_fops = {
 227	.open		= clk_dump_open,
 228	.read		= seq_read,
 229	.llseek		= seq_lseek,
 230	.release	= single_release,
 231};
 232
 233/* caller must hold prepare_lock */
 234static int clk_debug_create_one(struct clk *clk, struct dentry *pdentry)
 235{
 236	struct dentry *d;
 237	int ret = -ENOMEM;
 238
 239	if (!clk || !pdentry) {
 240		ret = -EINVAL;
 241		goto out;
 242	}
 243
 244	d = debugfs_create_dir(clk->name, pdentry);
 245	if (!d)
 246		goto out;
 247
 248	clk->dentry = d;
 249
 250	d = debugfs_create_u32("clk_rate", S_IRUGO, clk->dentry,
 251			(u32 *)&clk->rate);
 252	if (!d)
 253		goto err_out;
 254
 255	d = debugfs_create_u32("clk_accuracy", S_IRUGO, clk->dentry,
 256			(u32 *)&clk->accuracy);
 257	if (!d)
 258		goto err_out;
 259
 260	d = debugfs_create_x32("clk_flags", S_IRUGO, clk->dentry,
 261			(u32 *)&clk->flags);
 262	if (!d)
 263		goto err_out;
 264
 265	d = debugfs_create_u32("clk_prepare_count", S_IRUGO, clk->dentry,
 266			(u32 *)&clk->prepare_count);
 267	if (!d)
 268		goto err_out;
 269
 270	d = debugfs_create_u32("clk_enable_count", S_IRUGO, clk->dentry,
 271			(u32 *)&clk->enable_count);
 272	if (!d)
 273		goto err_out;
 274
 275	d = debugfs_create_u32("clk_notifier_count", S_IRUGO, clk->dentry,
 276			(u32 *)&clk->notifier_count);
 277	if (!d)
 278		goto err_out;
 279
 280	if (clk->ops->debug_init)
 281		if (clk->ops->debug_init(clk->hw, clk->dentry))
 282			goto err_out;
 283
 284	ret = 0;
 285	goto out;
 286
 287err_out:
 288	debugfs_remove_recursive(clk->dentry);
 289	clk->dentry = NULL;
 290out:
 291	return ret;
 292}
 293
 294/* caller must hold prepare_lock */
 295static int clk_debug_create_subtree(struct clk *clk, struct dentry *pdentry)
 296{
 297	struct clk *child;
 
 298	int ret = -EINVAL;;
 299
 300	if (!clk || !pdentry)
 301		goto out;
 302
 303	ret = clk_debug_create_one(clk, pdentry);
 304
 305	if (ret)
 306		goto out;
 307
 308	hlist_for_each_entry(child, &clk->children, child_node)
 309		clk_debug_create_subtree(child, clk->dentry);
 310
 311	ret = 0;
 312out:
 313	return ret;
 314}
 315
 316/**
 317 * clk_debug_register - add a clk node to the debugfs clk tree
 318 * @clk: the clk being added to the debugfs clk tree
 319 *
 320 * Dynamically adds a clk to the debugfs clk tree if debugfs has been
 321 * initialized.  Otherwise it bails out early since the debugfs clk tree
 322 * will be created lazily by clk_debug_init as part of a late_initcall.
 323 *
 324 * Caller must hold prepare_lock.  Only clk_init calls this function (so
 325 * far) so this is taken care.
 326 */
 327static int clk_debug_register(struct clk *clk)
 328{
 329	struct clk *parent;
 330	struct dentry *pdentry;
 331	int ret = 0;
 332
 333	if (!inited)
 334		goto out;
 335
 336	parent = clk->parent;
 337
 338	/*
 339	 * Check to see if a clk is a root clk.  Also check that it is
 340	 * safe to add this clk to debugfs
 341	 */
 342	if (!parent)
 343		if (clk->flags & CLK_IS_ROOT)
 344			pdentry = rootdir;
 345		else
 346			pdentry = orphandir;
 347	else
 348		if (parent->dentry)
 349			pdentry = parent->dentry;
 350		else
 351			goto out;
 352
 353	ret = clk_debug_create_subtree(clk, pdentry);
 354
 355out:
 356	return ret;
 357}
 358
 359 /**
 360 * clk_debug_unregister - remove a clk node from the debugfs clk tree
 361 * @clk: the clk being removed from the debugfs clk tree
 362 *
 363 * Dynamically removes a clk and all it's children clk nodes from the
 364 * debugfs clk tree if clk->dentry points to debugfs created by
 365 * clk_debug_register in __clk_init.
 366 *
 367 * Caller must hold prepare_lock.
 368 */
 369static void clk_debug_unregister(struct clk *clk)
 370{
 371	debugfs_remove_recursive(clk->dentry);
 372}
 373
 374/**
 375 * clk_debug_reparent - reparent clk node in the debugfs clk tree
 376 * @clk: the clk being reparented
 377 * @new_parent: the new clk parent, may be NULL
 378 *
 379 * Rename clk entry in the debugfs clk tree if debugfs has been
 380 * initialized.  Otherwise it bails out early since the debugfs clk tree
 381 * will be created lazily by clk_debug_init as part of a late_initcall.
 382 *
 383 * Caller must hold prepare_lock.
 384 */
 385static void clk_debug_reparent(struct clk *clk, struct clk *new_parent)
 386{
 387	struct dentry *d;
 388	struct dentry *new_parent_d;
 389
 390	if (!inited)
 391		return;
 392
 393	if (new_parent)
 394		new_parent_d = new_parent->dentry;
 395	else
 396		new_parent_d = orphandir;
 397
 398	d = debugfs_rename(clk->dentry->d_parent, clk->dentry,
 399			new_parent_d, clk->name);
 400	if (d)
 401		clk->dentry = d;
 402	else
 403		pr_debug("%s: failed to rename debugfs entry for %s\n",
 404				__func__, clk->name);
 405}
 406
 407/**
 408 * clk_debug_init - lazily create the debugfs clk tree visualization
 409 *
 410 * clks are often initialized very early during boot before memory can
 411 * be dynamically allocated and well before debugfs is setup.
 412 * clk_debug_init walks the clk tree hierarchy while holding
 413 * prepare_lock and creates the topology as part of a late_initcall,
 414 * thus insuring that clks initialized very early will still be
 415 * represented in the debugfs clk tree.  This function should only be
 416 * called once at boot-time, and all other clks added dynamically will
 417 * be done so with clk_debug_register.
 418 */
 419static int __init clk_debug_init(void)
 420{
 421	struct clk *clk;
 422	struct dentry *d;
 423
 424	rootdir = debugfs_create_dir("clk", NULL);
 425
 426	if (!rootdir)
 427		return -ENOMEM;
 428
 429	d = debugfs_create_file("clk_summary", S_IRUGO, rootdir, NULL,
 430				&clk_summary_fops);
 431	if (!d)
 432		return -ENOMEM;
 433
 434	d = debugfs_create_file("clk_dump", S_IRUGO, rootdir, NULL,
 435				&clk_dump_fops);
 436	if (!d)
 437		return -ENOMEM;
 438
 439	orphandir = debugfs_create_dir("orphans", rootdir);
 440
 441	if (!orphandir)
 442		return -ENOMEM;
 443
 444	clk_prepare_lock();
 445
 446	hlist_for_each_entry(clk, &clk_root_list, child_node)
 447		clk_debug_create_subtree(clk, rootdir);
 448
 449	hlist_for_each_entry(clk, &clk_orphan_list, child_node)
 450		clk_debug_create_subtree(clk, orphandir);
 451
 452	inited = 1;
 453
 454	clk_prepare_unlock();
 455
 456	return 0;
 457}
 458late_initcall(clk_debug_init);
 459#else
 460static inline int clk_debug_register(struct clk *clk) { return 0; }
 461static inline void clk_debug_reparent(struct clk *clk, struct clk *new_parent)
 462{
 463}
 464static inline void clk_debug_unregister(struct clk *clk)
 465{
 466}
 467#endif
 468
 469/* caller must hold prepare_lock */
 470static void clk_unprepare_unused_subtree(struct clk *clk)
 471{
 472	struct clk *child;
 473
 474	if (!clk)
 475		return;
 476
 477	hlist_for_each_entry(child, &clk->children, child_node)
 478		clk_unprepare_unused_subtree(child);
 479
 480	if (clk->prepare_count)
 481		return;
 482
 483	if (clk->flags & CLK_IGNORE_UNUSED)
 484		return;
 485
 486	if (__clk_is_prepared(clk)) {
 487		if (clk->ops->unprepare_unused)
 488			clk->ops->unprepare_unused(clk->hw);
 489		else if (clk->ops->unprepare)
 490			clk->ops->unprepare(clk->hw);
 491	}
 492}
 493
 494/* caller must hold prepare_lock */
 495static void clk_disable_unused_subtree(struct clk *clk)
 496{
 497	struct clk *child;
 
 498	unsigned long flags;
 499
 500	if (!clk)
 501		goto out;
 502
 503	hlist_for_each_entry(child, &clk->children, child_node)
 504		clk_disable_unused_subtree(child);
 505
 506	flags = clk_enable_lock();
 507
 508	if (clk->enable_count)
 509		goto unlock_out;
 510
 511	if (clk->flags & CLK_IGNORE_UNUSED)
 512		goto unlock_out;
 513
 514	/*
 515	 * some gate clocks have special needs during the disable-unused
 516	 * sequence.  call .disable_unused if available, otherwise fall
 517	 * back to .disable
 518	 */
 519	if (__clk_is_enabled(clk)) {
 520		if (clk->ops->disable_unused)
 521			clk->ops->disable_unused(clk->hw);
 522		else if (clk->ops->disable)
 523			clk->ops->disable(clk->hw);
 524	}
 525
 526unlock_out:
 527	clk_enable_unlock(flags);
 528
 529out:
 530	return;
 531}
 532
 533static bool clk_ignore_unused;
 534static int __init clk_ignore_unused_setup(char *__unused)
 535{
 536	clk_ignore_unused = true;
 537	return 1;
 538}
 539__setup("clk_ignore_unused", clk_ignore_unused_setup);
 540
 541static int clk_disable_unused(void)
 542{
 543	struct clk *clk;
 
 544
 545	if (clk_ignore_unused) {
 546		pr_warn("clk: Not disabling unused clocks\n");
 547		return 0;
 548	}
 549
 550	clk_prepare_lock();
 551
 552	hlist_for_each_entry(clk, &clk_root_list, child_node)
 553		clk_disable_unused_subtree(clk);
 554
 555	hlist_for_each_entry(clk, &clk_orphan_list, child_node)
 556		clk_disable_unused_subtree(clk);
 557
 558	hlist_for_each_entry(clk, &clk_root_list, child_node)
 559		clk_unprepare_unused_subtree(clk);
 560
 561	hlist_for_each_entry(clk, &clk_orphan_list, child_node)
 562		clk_unprepare_unused_subtree(clk);
 563
 564	clk_prepare_unlock();
 565
 566	return 0;
 567}
 568late_initcall_sync(clk_disable_unused);
 569
 570/***    helper functions   ***/
 571
 572const char *__clk_get_name(struct clk *clk)
 573{
 574	return !clk ? NULL : clk->name;
 575}
 576EXPORT_SYMBOL_GPL(__clk_get_name);
 577
 578struct clk_hw *__clk_get_hw(struct clk *clk)
 579{
 580	return !clk ? NULL : clk->hw;
 581}
 582EXPORT_SYMBOL_GPL(__clk_get_hw);
 583
 584u8 __clk_get_num_parents(struct clk *clk)
 585{
 586	return !clk ? 0 : clk->num_parents;
 587}
 588EXPORT_SYMBOL_GPL(__clk_get_num_parents);
 589
 590struct clk *__clk_get_parent(struct clk *clk)
 591{
 592	return !clk ? NULL : clk->parent;
 593}
 594EXPORT_SYMBOL_GPL(__clk_get_parent);
 595
 596struct clk *clk_get_parent_by_index(struct clk *clk, u8 index)
 597{
 598	if (!clk || index >= clk->num_parents)
 599		return NULL;
 600	else if (!clk->parents)
 601		return __clk_lookup(clk->parent_names[index]);
 602	else if (!clk->parents[index])
 603		return clk->parents[index] =
 604			__clk_lookup(clk->parent_names[index]);
 605	else
 606		return clk->parents[index];
 607}
 608EXPORT_SYMBOL_GPL(clk_get_parent_by_index);
 609
 610unsigned int __clk_get_enable_count(struct clk *clk)
 611{
 612	return !clk ? 0 : clk->enable_count;
 613}
 614
 615unsigned int __clk_get_prepare_count(struct clk *clk)
 616{
 617	return !clk ? 0 : clk->prepare_count;
 618}
 619
 620unsigned long __clk_get_rate(struct clk *clk)
 621{
 622	unsigned long ret;
 623
 624	if (!clk) {
 625		ret = 0;
 626		goto out;
 627	}
 628
 629	ret = clk->rate;
 630
 631	if (clk->flags & CLK_IS_ROOT)
 632		goto out;
 633
 634	if (!clk->parent)
 635		ret = 0;
 636
 637out:
 638	return ret;
 639}
 640EXPORT_SYMBOL_GPL(__clk_get_rate);
 641
 642unsigned long __clk_get_accuracy(struct clk *clk)
 643{
 644	if (!clk)
 645		return 0;
 646
 647	return clk->accuracy;
 648}
 649
 650unsigned long __clk_get_flags(struct clk *clk)
 651{
 652	return !clk ? 0 : clk->flags;
 653}
 654EXPORT_SYMBOL_GPL(__clk_get_flags);
 655
 656bool __clk_is_prepared(struct clk *clk)
 657{
 658	int ret;
 659
 660	if (!clk)
 661		return false;
 662
 663	/*
 664	 * .is_prepared is optional for clocks that can prepare
 665	 * fall back to software usage counter if it is missing
 666	 */
 667	if (!clk->ops->is_prepared) {
 668		ret = clk->prepare_count ? 1 : 0;
 669		goto out;
 670	}
 671
 672	ret = clk->ops->is_prepared(clk->hw);
 673out:
 674	return !!ret;
 675}
 676
 677bool __clk_is_enabled(struct clk *clk)
 678{
 679	int ret;
 680
 681	if (!clk)
 682		return false;
 683
 684	/*
 685	 * .is_enabled is only mandatory for clocks that gate
 686	 * fall back to software usage counter if .is_enabled is missing
 687	 */
 688	if (!clk->ops->is_enabled) {
 689		ret = clk->enable_count ? 1 : 0;
 690		goto out;
 691	}
 692
 693	ret = clk->ops->is_enabled(clk->hw);
 694out:
 695	return !!ret;
 696}
 697EXPORT_SYMBOL_GPL(__clk_is_enabled);
 698
 699static struct clk *__clk_lookup_subtree(const char *name, struct clk *clk)
 700{
 701	struct clk *child;
 702	struct clk *ret;
 
 703
 704	if (!strcmp(clk->name, name))
 705		return clk;
 706
 707	hlist_for_each_entry(child, &clk->children, child_node) {
 708		ret = __clk_lookup_subtree(name, child);
 709		if (ret)
 710			return ret;
 711	}
 712
 713	return NULL;
 714}
 715
 716struct clk *__clk_lookup(const char *name)
 717{
 718	struct clk *root_clk;
 719	struct clk *ret;
 
 720
 721	if (!name)
 722		return NULL;
 723
 724	/* search the 'proper' clk tree first */
 725	hlist_for_each_entry(root_clk, &clk_root_list, child_node) {
 726		ret = __clk_lookup_subtree(name, root_clk);
 727		if (ret)
 728			return ret;
 729	}
 730
 731	/* if not found, then search the orphan tree */
 732	hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) {
 733		ret = __clk_lookup_subtree(name, root_clk);
 734		if (ret)
 735			return ret;
 736	}
 737
 738	return NULL;
 739}
 740
 741/*
 742 * Helper for finding best parent to provide a given frequency. This can be used
 743 * directly as a determine_rate callback (e.g. for a mux), or from a more
 744 * complex clock that may combine a mux with other operations.
 745 */
 746long __clk_mux_determine_rate(struct clk_hw *hw, unsigned long rate,
 747			      unsigned long *best_parent_rate,
 748			      struct clk **best_parent_p)
 749{
 750	struct clk *clk = hw->clk, *parent, *best_parent = NULL;
 751	int i, num_parents;
 752	unsigned long parent_rate, best = 0;
 753
 754	/* if NO_REPARENT flag set, pass through to current parent */
 755	if (clk->flags & CLK_SET_RATE_NO_REPARENT) {
 756		parent = clk->parent;
 757		if (clk->flags & CLK_SET_RATE_PARENT)
 758			best = __clk_round_rate(parent, rate);
 759		else if (parent)
 760			best = __clk_get_rate(parent);
 761		else
 762			best = __clk_get_rate(clk);
 763		goto out;
 764	}
 765
 766	/* find the parent that can provide the fastest rate <= rate */
 767	num_parents = clk->num_parents;
 768	for (i = 0; i < num_parents; i++) {
 769		parent = clk_get_parent_by_index(clk, i);
 770		if (!parent)
 771			continue;
 772		if (clk->flags & CLK_SET_RATE_PARENT)
 773			parent_rate = __clk_round_rate(parent, rate);
 774		else
 775			parent_rate = __clk_get_rate(parent);
 776		if (parent_rate <= rate && parent_rate > best) {
 777			best_parent = parent;
 778			best = parent_rate;
 779		}
 780	}
 781
 782out:
 783	if (best_parent)
 784		*best_parent_p = best_parent;
 785	*best_parent_rate = best;
 786
 787	return best;
 788}
 789EXPORT_SYMBOL_GPL(__clk_mux_determine_rate);
 790
 791/***        clk api        ***/
 792
 793void __clk_unprepare(struct clk *clk)
 794{
 795	if (!clk)
 796		return;
 797
 798	if (WARN_ON(clk->prepare_count == 0))
 799		return;
 800
 801	if (--clk->prepare_count > 0)
 802		return;
 803
 804	WARN_ON(clk->enable_count > 0);
 805
 806	if (clk->ops->unprepare)
 807		clk->ops->unprepare(clk->hw);
 808
 809	__clk_unprepare(clk->parent);
 810}
 811
 812/**
 813 * clk_unprepare - undo preparation of a clock source
 814 * @clk: the clk being unprepared
 815 *
 816 * clk_unprepare may sleep, which differentiates it from clk_disable.  In a
 817 * simple case, clk_unprepare can be used instead of clk_disable to gate a clk
 818 * if the operation may sleep.  One example is a clk which is accessed over
 819 * I2c.  In the complex case a clk gate operation may require a fast and a slow
 820 * part.  It is this reason that clk_unprepare and clk_disable are not mutually
 821 * exclusive.  In fact clk_disable must be called before clk_unprepare.
 822 */
 823void clk_unprepare(struct clk *clk)
 824{
 825	clk_prepare_lock();
 826	__clk_unprepare(clk);
 827	clk_prepare_unlock();
 828}
 829EXPORT_SYMBOL_GPL(clk_unprepare);
 830
 831int __clk_prepare(struct clk *clk)
 832{
 833	int ret = 0;
 834
 835	if (!clk)
 836		return 0;
 837
 838	if (clk->prepare_count == 0) {
 839		ret = __clk_prepare(clk->parent);
 840		if (ret)
 841			return ret;
 842
 843		if (clk->ops->prepare) {
 844			ret = clk->ops->prepare(clk->hw);
 845			if (ret) {
 846				__clk_unprepare(clk->parent);
 847				return ret;
 848			}
 849		}
 850	}
 851
 852	clk->prepare_count++;
 853
 854	return 0;
 855}
 856
 857/**
 858 * clk_prepare - prepare a clock source
 859 * @clk: the clk being prepared
 860 *
 861 * clk_prepare may sleep, which differentiates it from clk_enable.  In a simple
 862 * case, clk_prepare can be used instead of clk_enable to ungate a clk if the
 863 * operation may sleep.  One example is a clk which is accessed over I2c.  In
 864 * the complex case a clk ungate operation may require a fast and a slow part.
 865 * It is this reason that clk_prepare and clk_enable are not mutually
 866 * exclusive.  In fact clk_prepare must be called before clk_enable.
 867 * Returns 0 on success, -EERROR otherwise.
 868 */
 869int clk_prepare(struct clk *clk)
 870{
 871	int ret;
 872
 873	clk_prepare_lock();
 874	ret = __clk_prepare(clk);
 875	clk_prepare_unlock();
 876
 877	return ret;
 878}
 879EXPORT_SYMBOL_GPL(clk_prepare);
 880
 881static void __clk_disable(struct clk *clk)
 882{
 883	if (!clk)
 884		return;
 885
 886	if (WARN_ON(IS_ERR(clk)))
 887		return;
 888
 889	if (WARN_ON(clk->enable_count == 0))
 890		return;
 891
 892	if (--clk->enable_count > 0)
 893		return;
 894
 895	if (clk->ops->disable)
 896		clk->ops->disable(clk->hw);
 897
 898	__clk_disable(clk->parent);
 899}
 900
 901/**
 902 * clk_disable - gate a clock
 903 * @clk: the clk being gated
 904 *
 905 * clk_disable must not sleep, which differentiates it from clk_unprepare.  In
 906 * a simple case, clk_disable can be used instead of clk_unprepare to gate a
 907 * clk if the operation is fast and will never sleep.  One example is a
 908 * SoC-internal clk which is controlled via simple register writes.  In the
 909 * complex case a clk gate operation may require a fast and a slow part.  It is
 910 * this reason that clk_unprepare and clk_disable are not mutually exclusive.
 911 * In fact clk_disable must be called before clk_unprepare.
 912 */
 913void clk_disable(struct clk *clk)
 914{
 915	unsigned long flags;
 916
 917	flags = clk_enable_lock();
 918	__clk_disable(clk);
 919	clk_enable_unlock(flags);
 920}
 921EXPORT_SYMBOL_GPL(clk_disable);
 922
 923static int __clk_enable(struct clk *clk)
 924{
 925	int ret = 0;
 926
 927	if (!clk)
 928		return 0;
 929
 930	if (WARN_ON(clk->prepare_count == 0))
 931		return -ESHUTDOWN;
 932
 933	if (clk->enable_count == 0) {
 934		ret = __clk_enable(clk->parent);
 935
 936		if (ret)
 937			return ret;
 938
 939		if (clk->ops->enable) {
 940			ret = clk->ops->enable(clk->hw);
 941			if (ret) {
 942				__clk_disable(clk->parent);
 943				return ret;
 944			}
 945		}
 946	}
 947
 948	clk->enable_count++;
 949	return 0;
 950}
 951
 952/**
 953 * clk_enable - ungate a clock
 954 * @clk: the clk being ungated
 955 *
 956 * clk_enable must not sleep, which differentiates it from clk_prepare.  In a
 957 * simple case, clk_enable can be used instead of clk_prepare to ungate a clk
 958 * if the operation will never sleep.  One example is a SoC-internal clk which
 959 * is controlled via simple register writes.  In the complex case a clk ungate
 960 * operation may require a fast and a slow part.  It is this reason that
 961 * clk_enable and clk_prepare are not mutually exclusive.  In fact clk_prepare
 962 * must be called before clk_enable.  Returns 0 on success, -EERROR
 963 * otherwise.
 964 */
 965int clk_enable(struct clk *clk)
 966{
 967	unsigned long flags;
 968	int ret;
 969
 970	flags = clk_enable_lock();
 971	ret = __clk_enable(clk);
 972	clk_enable_unlock(flags);
 973
 974	return ret;
 975}
 976EXPORT_SYMBOL_GPL(clk_enable);
 977
 978/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 979 * __clk_round_rate - round the given rate for a clk
 980 * @clk: round the rate of this clock
 981 * @rate: the rate which is to be rounded
 982 *
 983 * Caller must hold prepare_lock.  Useful for clk_ops such as .set_rate
 984 */
 985unsigned long __clk_round_rate(struct clk *clk, unsigned long rate)
 986{
 987	unsigned long parent_rate = 0;
 988	struct clk *parent;
 989
 990	if (!clk)
 991		return 0;
 
 
 
 
 
 
 
 992
 993	parent = clk->parent;
 994	if (parent)
 995		parent_rate = parent->rate;
 996
 997	if (clk->ops->determine_rate)
 998		return clk->ops->determine_rate(clk->hw, rate, &parent_rate,
 999						&parent);
1000	else if (clk->ops->round_rate)
1001		return clk->ops->round_rate(clk->hw, rate, &parent_rate);
1002	else if (clk->flags & CLK_SET_RATE_PARENT)
1003		return __clk_round_rate(clk->parent, rate);
1004	else
1005		return clk->rate;
1006}
1007
1008/**
1009 * clk_round_rate - round the given rate for a clk
1010 * @clk: the clk for which we are rounding a rate
1011 * @rate: the rate which is to be rounded
1012 *
1013 * Takes in a rate as input and rounds it to a rate that the clk can actually
1014 * use which is then returned.  If clk doesn't support round_rate operation
1015 * then the parent rate is returned.
1016 */
1017long clk_round_rate(struct clk *clk, unsigned long rate)
1018{
1019	unsigned long ret;
1020
1021	clk_prepare_lock();
1022	ret = __clk_round_rate(clk, rate);
1023	clk_prepare_unlock();
1024
1025	return ret;
1026}
1027EXPORT_SYMBOL_GPL(clk_round_rate);
1028
1029/**
1030 * __clk_notify - call clk notifier chain
1031 * @clk: struct clk * that is changing rate
1032 * @msg: clk notifier type (see include/linux/clk.h)
1033 * @old_rate: old clk rate
1034 * @new_rate: new clk rate
1035 *
1036 * Triggers a notifier call chain on the clk rate-change notification
1037 * for 'clk'.  Passes a pointer to the struct clk and the previous
1038 * and current rates to the notifier callback.  Intended to be called by
1039 * internal clock code only.  Returns NOTIFY_DONE from the last driver
1040 * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if
1041 * a driver returns that.
1042 */
1043static int __clk_notify(struct clk *clk, unsigned long msg,
1044		unsigned long old_rate, unsigned long new_rate)
1045{
1046	struct clk_notifier *cn;
1047	struct clk_notifier_data cnd;
1048	int ret = NOTIFY_DONE;
1049
1050	cnd.clk = clk;
1051	cnd.old_rate = old_rate;
1052	cnd.new_rate = new_rate;
1053
1054	list_for_each_entry(cn, &clk_notifier_list, node) {
1055		if (cn->clk == clk) {
1056			ret = srcu_notifier_call_chain(&cn->notifier_head, msg,
1057					&cnd);
1058			break;
1059		}
1060	}
1061
1062	return ret;
1063}
1064
1065/**
1066 * __clk_recalc_accuracies
1067 * @clk: first clk in the subtree
1068 *
1069 * Walks the subtree of clks starting with clk and recalculates accuracies as
1070 * it goes.  Note that if a clk does not implement the .recalc_accuracy
1071 * callback then it is assumed that the clock will take on the accuracy of it's
1072 * parent.
1073 *
1074 * Caller must hold prepare_lock.
1075 */
1076static void __clk_recalc_accuracies(struct clk *clk)
1077{
1078	unsigned long parent_accuracy = 0;
1079	struct clk *child;
1080
1081	if (clk->parent)
1082		parent_accuracy = clk->parent->accuracy;
1083
1084	if (clk->ops->recalc_accuracy)
1085		clk->accuracy = clk->ops->recalc_accuracy(clk->hw,
1086							  parent_accuracy);
1087	else
1088		clk->accuracy = parent_accuracy;
1089
1090	hlist_for_each_entry(child, &clk->children, child_node)
1091		__clk_recalc_accuracies(child);
1092}
1093
1094/**
1095 * clk_get_accuracy - return the accuracy of clk
1096 * @clk: the clk whose accuracy is being returned
1097 *
1098 * Simply returns the cached accuracy of the clk, unless
1099 * CLK_GET_ACCURACY_NOCACHE flag is set, which means a recalc_rate will be
1100 * issued.
1101 * If clk is NULL then returns 0.
1102 */
1103long clk_get_accuracy(struct clk *clk)
1104{
1105	unsigned long accuracy;
1106
1107	clk_prepare_lock();
1108	if (clk && (clk->flags & CLK_GET_ACCURACY_NOCACHE))
1109		__clk_recalc_accuracies(clk);
1110
1111	accuracy = __clk_get_accuracy(clk);
1112	clk_prepare_unlock();
1113
1114	return accuracy;
1115}
1116EXPORT_SYMBOL_GPL(clk_get_accuracy);
1117
1118/**
1119 * __clk_recalc_rates
1120 * @clk: first clk in the subtree
1121 * @msg: notification type (see include/linux/clk.h)
1122 *
1123 * Walks the subtree of clks starting with clk and recalculates rates as it
1124 * goes.  Note that if a clk does not implement the .recalc_rate callback then
1125 * it is assumed that the clock will take on the rate of its parent.
1126 *
1127 * clk_recalc_rates also propagates the POST_RATE_CHANGE notification,
1128 * if necessary.
1129 *
1130 * Caller must hold prepare_lock.
1131 */
1132static void __clk_recalc_rates(struct clk *clk, unsigned long msg)
1133{
1134	unsigned long old_rate;
1135	unsigned long parent_rate = 0;
 
1136	struct clk *child;
1137
1138	old_rate = clk->rate;
1139
1140	if (clk->parent)
1141		parent_rate = clk->parent->rate;
1142
1143	if (clk->ops->recalc_rate)
1144		clk->rate = clk->ops->recalc_rate(clk->hw, parent_rate);
1145	else
1146		clk->rate = parent_rate;
1147
1148	/*
1149	 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE
1150	 * & ABORT_RATE_CHANGE notifiers
1151	 */
1152	if (clk->notifier_count && msg)
1153		__clk_notify(clk, msg, old_rate, clk->rate);
1154
1155	hlist_for_each_entry(child, &clk->children, child_node)
1156		__clk_recalc_rates(child, msg);
1157}
1158
1159/**
1160 * clk_get_rate - return the rate of clk
1161 * @clk: the clk whose rate is being returned
1162 *
1163 * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag
1164 * is set, which means a recalc_rate will be issued.
1165 * If clk is NULL then returns 0.
1166 */
1167unsigned long clk_get_rate(struct clk *clk)
1168{
1169	unsigned long rate;
1170
1171	clk_prepare_lock();
1172
1173	if (clk && (clk->flags & CLK_GET_RATE_NOCACHE))
1174		__clk_recalc_rates(clk, 0);
1175
1176	rate = __clk_get_rate(clk);
1177	clk_prepare_unlock();
1178
1179	return rate;
1180}
1181EXPORT_SYMBOL_GPL(clk_get_rate);
1182
1183static int clk_fetch_parent_index(struct clk *clk, struct clk *parent)
1184{
1185	int i;
1186
1187	if (!clk->parents) {
1188		clk->parents = kcalloc(clk->num_parents,
1189					sizeof(struct clk *), GFP_KERNEL);
1190		if (!clk->parents)
1191			return -ENOMEM;
1192	}
1193
1194	/*
1195	 * find index of new parent clock using cached parent ptrs,
1196	 * or if not yet cached, use string name comparison and cache
1197	 * them now to avoid future calls to __clk_lookup.
1198	 */
1199	for (i = 0; i < clk->num_parents; i++) {
1200		if (clk->parents[i] == parent)
1201			return i;
1202
1203		if (clk->parents[i])
1204			continue;
1205
1206		if (!strcmp(clk->parent_names[i], parent->name)) {
1207			clk->parents[i] = __clk_lookup(parent->name);
1208			return i;
1209		}
1210	}
1211
1212	return -EINVAL;
1213}
1214
1215static void clk_reparent(struct clk *clk, struct clk *new_parent)
1216{
1217	hlist_del(&clk->child_node);
1218
1219	if (new_parent) {
1220		/* avoid duplicate POST_RATE_CHANGE notifications */
1221		if (new_parent->new_child == clk)
1222			new_parent->new_child = NULL;
1223
1224		hlist_add_head(&clk->child_node, &new_parent->children);
1225	} else {
1226		hlist_add_head(&clk->child_node, &clk_orphan_list);
1227	}
1228
1229	clk->parent = new_parent;
1230}
1231
1232static struct clk *__clk_set_parent_before(struct clk *clk, struct clk *parent)
1233{
1234	unsigned long flags;
1235	struct clk *old_parent = clk->parent;
1236
1237	/*
1238	 * Migrate prepare state between parents and prevent race with
1239	 * clk_enable().
1240	 *
1241	 * If the clock is not prepared, then a race with
1242	 * clk_enable/disable() is impossible since we already have the
1243	 * prepare lock (future calls to clk_enable() need to be preceded by
1244	 * a clk_prepare()).
1245	 *
1246	 * If the clock is prepared, migrate the prepared state to the new
1247	 * parent and also protect against a race with clk_enable() by
1248	 * forcing the clock and the new parent on.  This ensures that all
1249	 * future calls to clk_enable() are practically NOPs with respect to
1250	 * hardware and software states.
1251	 *
1252	 * See also: Comment for clk_set_parent() below.
1253	 */
1254	if (clk->prepare_count) {
1255		__clk_prepare(parent);
1256		clk_enable(parent);
1257		clk_enable(clk);
1258	}
1259
1260	/* update the clk tree topology */
1261	flags = clk_enable_lock();
1262	clk_reparent(clk, parent);
1263	clk_enable_unlock(flags);
1264
1265	return old_parent;
1266}
1267
1268static void __clk_set_parent_after(struct clk *clk, struct clk *parent,
1269		struct clk *old_parent)
1270{
1271	/*
1272	 * Finish the migration of prepare state and undo the changes done
1273	 * for preventing a race with clk_enable().
1274	 */
1275	if (clk->prepare_count) {
1276		clk_disable(clk);
1277		clk_disable(old_parent);
1278		__clk_unprepare(old_parent);
1279	}
1280
1281	/* update debugfs with new clk tree topology */
1282	clk_debug_reparent(clk, parent);
1283}
1284
1285static int __clk_set_parent(struct clk *clk, struct clk *parent, u8 p_index)
1286{
1287	unsigned long flags;
1288	int ret = 0;
1289	struct clk *old_parent;
1290
1291	old_parent = __clk_set_parent_before(clk, parent);
1292
1293	/* change clock input source */
1294	if (parent && clk->ops->set_parent)
1295		ret = clk->ops->set_parent(clk->hw, p_index);
1296
1297	if (ret) {
1298		flags = clk_enable_lock();
1299		clk_reparent(clk, old_parent);
1300		clk_enable_unlock(flags);
1301
1302		if (clk->prepare_count) {
1303			clk_disable(clk);
1304			clk_disable(parent);
1305			__clk_unprepare(parent);
1306		}
1307		return ret;
1308	}
1309
1310	__clk_set_parent_after(clk, parent, old_parent);
1311
1312	return 0;
1313}
1314
1315/**
1316 * __clk_speculate_rates
1317 * @clk: first clk in the subtree
1318 * @parent_rate: the "future" rate of clk's parent
1319 *
1320 * Walks the subtree of clks starting with clk, speculating rates as it
1321 * goes and firing off PRE_RATE_CHANGE notifications as necessary.
1322 *
1323 * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending
1324 * pre-rate change notifications and returns early if no clks in the
1325 * subtree have subscribed to the notifications.  Note that if a clk does not
1326 * implement the .recalc_rate callback then it is assumed that the clock will
1327 * take on the rate of its parent.
1328 *
1329 * Caller must hold prepare_lock.
1330 */
1331static int __clk_speculate_rates(struct clk *clk, unsigned long parent_rate)
1332{
 
1333	struct clk *child;
1334	unsigned long new_rate;
1335	int ret = NOTIFY_DONE;
1336
1337	if (clk->ops->recalc_rate)
1338		new_rate = clk->ops->recalc_rate(clk->hw, parent_rate);
1339	else
1340		new_rate = parent_rate;
1341
1342	/* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */
1343	if (clk->notifier_count)
1344		ret = __clk_notify(clk, PRE_RATE_CHANGE, clk->rate, new_rate);
1345
1346	if (ret & NOTIFY_STOP_MASK) {
1347		pr_debug("%s: clk notifier callback for clock %s aborted with error %d\n",
1348				__func__, clk->name, ret);
1349		goto out;
1350	}
1351
1352	hlist_for_each_entry(child, &clk->children, child_node) {
1353		ret = __clk_speculate_rates(child, new_rate);
1354		if (ret & NOTIFY_STOP_MASK)
1355			break;
1356	}
1357
1358out:
1359	return ret;
1360}
1361
1362static void clk_calc_subtree(struct clk *clk, unsigned long new_rate,
1363			     struct clk *new_parent, u8 p_index)
1364{
1365	struct clk *child;
 
1366
1367	clk->new_rate = new_rate;
1368	clk->new_parent = new_parent;
1369	clk->new_parent_index = p_index;
1370	/* include clk in new parent's PRE_RATE_CHANGE notifications */
1371	clk->new_child = NULL;
1372	if (new_parent && new_parent != clk->parent)
1373		new_parent->new_child = clk;
1374
1375	hlist_for_each_entry(child, &clk->children, child_node) {
1376		if (child->ops->recalc_rate)
1377			child->new_rate = child->ops->recalc_rate(child->hw, new_rate);
1378		else
1379			child->new_rate = new_rate;
1380		clk_calc_subtree(child, child->new_rate, NULL, 0);
1381	}
1382}
1383
1384/*
1385 * calculate the new rates returning the topmost clock that has to be
1386 * changed.
1387 */
1388static struct clk *clk_calc_new_rates(struct clk *clk, unsigned long rate)
1389{
1390	struct clk *top = clk;
1391	struct clk *old_parent, *parent;
1392	unsigned long best_parent_rate = 0;
1393	unsigned long new_rate;
1394	int p_index = 0;
1395
1396	/* sanity */
1397	if (IS_ERR_OR_NULL(clk))
1398		return NULL;
1399
1400	/* save parent rate, if it exists */
1401	parent = old_parent = clk->parent;
1402	if (parent)
1403		best_parent_rate = parent->rate;
1404
1405	/* find the closest rate and parent clk/rate */
1406	if (clk->ops->determine_rate) {
1407		new_rate = clk->ops->determine_rate(clk->hw, rate,
1408						    &best_parent_rate,
1409						    &parent);
1410	} else if (clk->ops->round_rate) {
1411		new_rate = clk->ops->round_rate(clk->hw, rate,
1412						&best_parent_rate);
1413	} else if (!parent || !(clk->flags & CLK_SET_RATE_PARENT)) {
1414		/* pass-through clock without adjustable parent */
1415		clk->new_rate = clk->rate;
1416		return NULL;
1417	} else {
1418		/* pass-through clock with adjustable parent */
1419		top = clk_calc_new_rates(parent, rate);
1420		new_rate = parent->new_rate;
1421		goto out;
1422	}
1423
1424	/* some clocks must be gated to change parent */
1425	if (parent != old_parent &&
1426	    (clk->flags & CLK_SET_PARENT_GATE) && clk->prepare_count) {
1427		pr_debug("%s: %s not gated but wants to reparent\n",
1428			 __func__, clk->name);
1429		return NULL;
1430	}
1431
1432	/* try finding the new parent index */
1433	if (parent) {
1434		p_index = clk_fetch_parent_index(clk, parent);
1435		if (p_index < 0) {
1436			pr_debug("%s: clk %s can not be parent of clk %s\n",
1437				 __func__, parent->name, clk->name);
1438			return NULL;
1439		}
1440	}
1441
1442	if ((clk->flags & CLK_SET_RATE_PARENT) && parent &&
1443	    best_parent_rate != parent->rate)
1444		top = clk_calc_new_rates(parent, best_parent_rate);
 
 
 
 
1445
1446out:
1447	clk_calc_subtree(clk, new_rate, parent, p_index);
1448
1449	return top;
1450}
1451
1452/*
1453 * Notify about rate changes in a subtree. Always walk down the whole tree
1454 * so that in case of an error we can walk down the whole tree again and
1455 * abort the change.
1456 */
1457static struct clk *clk_propagate_rate_change(struct clk *clk, unsigned long event)
1458{
1459	struct clk *child, *tmp_clk, *fail_clk = NULL;
 
1460	int ret = NOTIFY_DONE;
1461
1462	if (clk->rate == clk->new_rate)
1463		return NULL;
1464
1465	if (clk->notifier_count) {
1466		ret = __clk_notify(clk, event, clk->rate, clk->new_rate);
1467		if (ret & NOTIFY_STOP_MASK)
1468			fail_clk = clk;
1469	}
1470
1471	hlist_for_each_entry(child, &clk->children, child_node) {
1472		/* Skip children who will be reparented to another clock */
1473		if (child->new_parent && child->new_parent != clk)
1474			continue;
1475		tmp_clk = clk_propagate_rate_change(child, event);
1476		if (tmp_clk)
1477			fail_clk = tmp_clk;
1478	}
1479
1480	/* handle the new child who might not be in clk->children yet */
1481	if (clk->new_child) {
1482		tmp_clk = clk_propagate_rate_change(clk->new_child, event);
1483		if (tmp_clk)
1484			fail_clk = tmp_clk;
1485	}
1486
1487	return fail_clk;
1488}
1489
1490/*
1491 * walk down a subtree and set the new rates notifying the rate
1492 * change on the way
1493 */
1494static void clk_change_rate(struct clk *clk)
1495{
1496	struct clk *child;
1497	unsigned long old_rate;
1498	unsigned long best_parent_rate = 0;
1499	bool skip_set_rate = false;
1500	struct clk *old_parent;
1501
1502	old_rate = clk->rate;
1503
1504	if (clk->new_parent)
1505		best_parent_rate = clk->new_parent->rate;
1506	else if (clk->parent)
1507		best_parent_rate = clk->parent->rate;
1508
1509	if (clk->new_parent && clk->new_parent != clk->parent) {
1510		old_parent = __clk_set_parent_before(clk, clk->new_parent);
1511
1512		if (clk->ops->set_rate_and_parent) {
1513			skip_set_rate = true;
1514			clk->ops->set_rate_and_parent(clk->hw, clk->new_rate,
1515					best_parent_rate,
1516					clk->new_parent_index);
1517		} else if (clk->ops->set_parent) {
1518			clk->ops->set_parent(clk->hw, clk->new_parent_index);
1519		}
1520
1521		__clk_set_parent_after(clk, clk->new_parent, old_parent);
1522	}
1523
1524	if (!skip_set_rate && clk->ops->set_rate)
1525		clk->ops->set_rate(clk->hw, clk->new_rate, best_parent_rate);
1526
1527	if (clk->ops->recalc_rate)
1528		clk->rate = clk->ops->recalc_rate(clk->hw, best_parent_rate);
1529	else
1530		clk->rate = best_parent_rate;
1531
1532	if (clk->notifier_count && old_rate != clk->rate)
1533		__clk_notify(clk, POST_RATE_CHANGE, old_rate, clk->rate);
1534
1535	hlist_for_each_entry(child, &clk->children, child_node) {
1536		/* Skip children who will be reparented to another clock */
1537		if (child->new_parent && child->new_parent != clk)
1538			continue;
1539		clk_change_rate(child);
1540	}
1541
1542	/* handle the new child who might not be in clk->children yet */
1543	if (clk->new_child)
1544		clk_change_rate(clk->new_child);
1545}
1546
1547/**
1548 * clk_set_rate - specify a new rate for clk
1549 * @clk: the clk whose rate is being changed
1550 * @rate: the new rate for clk
1551 *
1552 * In the simplest case clk_set_rate will only adjust the rate of clk.
1553 *
1554 * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to
1555 * propagate up to clk's parent; whether or not this happens depends on the
1556 * outcome of clk's .round_rate implementation.  If *parent_rate is unchanged
1557 * after calling .round_rate then upstream parent propagation is ignored.  If
1558 * *parent_rate comes back with a new rate for clk's parent then we propagate
1559 * up to clk's parent and set its rate.  Upward propagation will continue
1560 * until either a clk does not support the CLK_SET_RATE_PARENT flag or
1561 * .round_rate stops requesting changes to clk's parent_rate.
1562 *
1563 * Rate changes are accomplished via tree traversal that also recalculates the
1564 * rates for the clocks and fires off POST_RATE_CHANGE notifiers.
1565 *
1566 * Returns 0 on success, -EERROR otherwise.
1567 */
1568int clk_set_rate(struct clk *clk, unsigned long rate)
1569{
1570	struct clk *top, *fail_clk;
1571	int ret = 0;
1572
1573	if (!clk)
1574		return 0;
1575
1576	/* prevent racing with updates to the clock topology */
1577	clk_prepare_lock();
1578
1579	/* bail early if nothing to do */
1580	if (rate == clk_get_rate(clk))
1581		goto out;
1582
1583	if ((clk->flags & CLK_SET_RATE_GATE) && clk->prepare_count) {
1584		ret = -EBUSY;
1585		goto out;
1586	}
1587
1588	/* calculate new rates and get the topmost changed clock */
1589	top = clk_calc_new_rates(clk, rate);
1590	if (!top) {
1591		ret = -EINVAL;
1592		goto out;
1593	}
1594
1595	/* notify that we are about to change rates */
1596	fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE);
1597	if (fail_clk) {
1598		pr_debug("%s: failed to set %s rate\n", __func__,
1599				fail_clk->name);
1600		clk_propagate_rate_change(top, ABORT_RATE_CHANGE);
1601		ret = -EBUSY;
1602		goto out;
1603	}
1604
1605	/* change the rates */
1606	clk_change_rate(top);
1607
 
 
 
1608out:
1609	clk_prepare_unlock();
1610
1611	return ret;
1612}
1613EXPORT_SYMBOL_GPL(clk_set_rate);
1614
1615/**
1616 * clk_get_parent - return the parent of a clk
1617 * @clk: the clk whose parent gets returned
1618 *
1619 * Simply returns clk->parent.  Returns NULL if clk is NULL.
1620 */
1621struct clk *clk_get_parent(struct clk *clk)
1622{
1623	struct clk *parent;
1624
1625	clk_prepare_lock();
1626	parent = __clk_get_parent(clk);
1627	clk_prepare_unlock();
1628
1629	return parent;
1630}
1631EXPORT_SYMBOL_GPL(clk_get_parent);
1632
1633/*
1634 * .get_parent is mandatory for clocks with multiple possible parents.  It is
1635 * optional for single-parent clocks.  Always call .get_parent if it is
1636 * available and WARN if it is missing for multi-parent clocks.
1637 *
1638 * For single-parent clocks without .get_parent, first check to see if the
1639 * .parents array exists, and if so use it to avoid an expensive tree
1640 * traversal.  If .parents does not exist then walk the tree with __clk_lookup.
1641 */
1642static struct clk *__clk_init_parent(struct clk *clk)
1643{
1644	struct clk *ret = NULL;
1645	u8 index;
1646
1647	/* handle the trivial cases */
1648
1649	if (!clk->num_parents)
1650		goto out;
1651
1652	if (clk->num_parents == 1) {
1653		if (IS_ERR_OR_NULL(clk->parent))
1654			ret = clk->parent = __clk_lookup(clk->parent_names[0]);
1655		ret = clk->parent;
1656		goto out;
1657	}
1658
1659	if (!clk->ops->get_parent) {
1660		WARN(!clk->ops->get_parent,
1661			"%s: multi-parent clocks must implement .get_parent\n",
1662			__func__);
1663		goto out;
1664	};
1665
1666	/*
1667	 * Do our best to cache parent clocks in clk->parents.  This prevents
1668	 * unnecessary and expensive calls to __clk_lookup.  We don't set
1669	 * clk->parent here; that is done by the calling function
1670	 */
1671
1672	index = clk->ops->get_parent(clk->hw);
1673
1674	if (!clk->parents)
1675		clk->parents =
1676			kcalloc(clk->num_parents, sizeof(struct clk *),
1677					GFP_KERNEL);
1678
1679	ret = clk_get_parent_by_index(clk, index);
 
 
 
 
 
 
1680
1681out:
1682	return ret;
1683}
1684
1685void __clk_reparent(struct clk *clk, struct clk *new_parent)
1686{
1687	clk_reparent(clk, new_parent);
1688	clk_debug_reparent(clk, new_parent);
1689	__clk_recalc_accuracies(clk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1690	__clk_recalc_rates(clk, POST_RATE_CHANGE);
1691}
1692
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1693/**
1694 * clk_set_parent - switch the parent of a mux clk
1695 * @clk: the mux clk whose input we are switching
1696 * @parent: the new input to clk
1697 *
1698 * Re-parent clk to use parent as its new input source.  If clk is in
1699 * prepared state, the clk will get enabled for the duration of this call. If
1700 * that's not acceptable for a specific clk (Eg: the consumer can't handle
1701 * that, the reparenting is glitchy in hardware, etc), use the
1702 * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared.
1703 *
1704 * After successfully changing clk's parent clk_set_parent will update the
1705 * clk topology, sysfs topology and propagate rate recalculation via
1706 * __clk_recalc_rates.
1707 *
1708 * Returns 0 on success, -EERROR otherwise.
1709 */
1710int clk_set_parent(struct clk *clk, struct clk *parent)
1711{
1712	int ret = 0;
1713	int p_index = 0;
1714	unsigned long p_rate = 0;
1715
1716	if (!clk)
1717		return 0;
1718
1719	if (!clk->ops)
1720		return -EINVAL;
1721
1722	/* verify ops for for multi-parent clks */
1723	if ((clk->num_parents > 1) && (!clk->ops->set_parent))
1724		return -ENOSYS;
1725
1726	/* prevent racing with updates to the clock topology */
1727	clk_prepare_lock();
1728
1729	if (clk->parent == parent)
1730		goto out;
1731
1732	/* check that we are allowed to re-parent if the clock is in use */
1733	if ((clk->flags & CLK_SET_PARENT_GATE) && clk->prepare_count) {
1734		ret = -EBUSY;
1735		goto out;
1736	}
1737
1738	/* try finding the new parent index */
1739	if (parent) {
1740		p_index = clk_fetch_parent_index(clk, parent);
1741		p_rate = parent->rate;
1742		if (p_index < 0) {
1743			pr_debug("%s: clk %s can not be parent of clk %s\n",
1744					__func__, parent->name, clk->name);
1745			ret = p_index;
1746			goto out;
1747		}
1748	}
1749
1750	/* propagate PRE_RATE_CHANGE notifications */
1751	ret = __clk_speculate_rates(clk, p_rate);
 
1752
1753	/* abort if a driver objects */
1754	if (ret & NOTIFY_STOP_MASK)
1755		goto out;
1756
1757	/* do the re-parent */
1758	ret = __clk_set_parent(clk, parent, p_index);
 
 
 
1759
1760	/* propagate rate an accuracy recalculation accordingly */
1761	if (ret) {
1762		__clk_recalc_rates(clk, ABORT_RATE_CHANGE);
1763	} else {
1764		__clk_recalc_rates(clk, POST_RATE_CHANGE);
1765		__clk_recalc_accuracies(clk);
1766	}
1767
 
 
 
1768out:
1769	clk_prepare_unlock();
1770
1771	return ret;
1772}
1773EXPORT_SYMBOL_GPL(clk_set_parent);
1774
1775/**
1776 * __clk_init - initialize the data structures in a struct clk
1777 * @dev:	device initializing this clk, placeholder for now
1778 * @clk:	clk being initialized
1779 *
1780 * Initializes the lists in struct clk, queries the hardware for the
1781 * parent and rate and sets them both.
1782 */
1783int __clk_init(struct device *dev, struct clk *clk)
1784{
1785	int i, ret = 0;
1786	struct clk *orphan;
1787	struct hlist_node *tmp2;
1788
1789	if (!clk)
1790		return -EINVAL;
1791
1792	clk_prepare_lock();
1793
1794	/* check to see if a clock with this name is already registered */
1795	if (__clk_lookup(clk->name)) {
1796		pr_debug("%s: clk %s already initialized\n",
1797				__func__, clk->name);
1798		ret = -EEXIST;
1799		goto out;
1800	}
1801
1802	/* check that clk_ops are sane.  See Documentation/clk.txt */
1803	if (clk->ops->set_rate &&
1804	    !((clk->ops->round_rate || clk->ops->determine_rate) &&
1805	      clk->ops->recalc_rate)) {
1806		pr_warning("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n",
1807				__func__, clk->name);
1808		ret = -EINVAL;
1809		goto out;
1810	}
1811
1812	if (clk->ops->set_parent && !clk->ops->get_parent) {
1813		pr_warning("%s: %s must implement .get_parent & .set_parent\n",
1814				__func__, clk->name);
1815		ret = -EINVAL;
1816		goto out;
1817	}
1818
1819	if (clk->ops->set_rate_and_parent &&
1820			!(clk->ops->set_parent && clk->ops->set_rate)) {
1821		pr_warn("%s: %s must implement .set_parent & .set_rate\n",
1822				__func__, clk->name);
1823		ret = -EINVAL;
1824		goto out;
1825	}
1826
1827	/* throw a WARN if any entries in parent_names are NULL */
1828	for (i = 0; i < clk->num_parents; i++)
1829		WARN(!clk->parent_names[i],
1830				"%s: invalid NULL in %s's .parent_names\n",
1831				__func__, clk->name);
1832
1833	/*
1834	 * Allocate an array of struct clk *'s to avoid unnecessary string
1835	 * look-ups of clk's possible parents.  This can fail for clocks passed
1836	 * in to clk_init during early boot; thus any access to clk->parents[]
1837	 * must always check for a NULL pointer and try to populate it if
1838	 * necessary.
1839	 *
1840	 * If clk->parents is not NULL we skip this entire block.  This allows
1841	 * for clock drivers to statically initialize clk->parents.
1842	 */
1843	if (clk->num_parents > 1 && !clk->parents) {
1844		clk->parents = kcalloc(clk->num_parents, sizeof(struct clk *),
1845					GFP_KERNEL);
1846		/*
1847		 * __clk_lookup returns NULL for parents that have not been
1848		 * clk_init'd; thus any access to clk->parents[] must check
1849		 * for a NULL pointer.  We can always perform lazy lookups for
1850		 * missing parents later on.
1851		 */
1852		if (clk->parents)
1853			for (i = 0; i < clk->num_parents; i++)
1854				clk->parents[i] =
1855					__clk_lookup(clk->parent_names[i]);
1856	}
1857
1858	clk->parent = __clk_init_parent(clk);
1859
1860	/*
1861	 * Populate clk->parent if parent has already been __clk_init'd.  If
1862	 * parent has not yet been __clk_init'd then place clk in the orphan
1863	 * list.  If clk has set the CLK_IS_ROOT flag then place it in the root
1864	 * clk list.
1865	 *
1866	 * Every time a new clk is clk_init'd then we walk the list of orphan
1867	 * clocks and re-parent any that are children of the clock currently
1868	 * being clk_init'd.
1869	 */
1870	if (clk->parent)
1871		hlist_add_head(&clk->child_node,
1872				&clk->parent->children);
1873	else if (clk->flags & CLK_IS_ROOT)
1874		hlist_add_head(&clk->child_node, &clk_root_list);
1875	else
1876		hlist_add_head(&clk->child_node, &clk_orphan_list);
1877
1878	/*
1879	 * Set clk's accuracy.  The preferred method is to use
1880	 * .recalc_accuracy. For simple clocks and lazy developers the default
1881	 * fallback is to use the parent's accuracy.  If a clock doesn't have a
1882	 * parent (or is orphaned) then accuracy is set to zero (perfect
1883	 * clock).
1884	 */
1885	if (clk->ops->recalc_accuracy)
1886		clk->accuracy = clk->ops->recalc_accuracy(clk->hw,
1887					__clk_get_accuracy(clk->parent));
1888	else if (clk->parent)
1889		clk->accuracy = clk->parent->accuracy;
1890	else
1891		clk->accuracy = 0;
1892
1893	/*
1894	 * Set clk's rate.  The preferred method is to use .recalc_rate.  For
1895	 * simple clocks and lazy developers the default fallback is to use the
1896	 * parent's rate.  If a clock doesn't have a parent (or is orphaned)
1897	 * then rate is set to zero.
1898	 */
1899	if (clk->ops->recalc_rate)
1900		clk->rate = clk->ops->recalc_rate(clk->hw,
1901				__clk_get_rate(clk->parent));
1902	else if (clk->parent)
1903		clk->rate = clk->parent->rate;
1904	else
1905		clk->rate = 0;
1906
1907	clk_debug_register(clk);
1908	/*
1909	 * walk the list of orphan clocks and reparent any that are children of
1910	 * this clock
1911	 */
1912	hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) {
1913		if (orphan->num_parents && orphan->ops->get_parent) {
1914			i = orphan->ops->get_parent(orphan->hw);
1915			if (!strcmp(clk->name, orphan->parent_names[i]))
1916				__clk_reparent(orphan, clk);
1917			continue;
1918		}
1919
1920		for (i = 0; i < orphan->num_parents; i++)
1921			if (!strcmp(clk->name, orphan->parent_names[i])) {
1922				__clk_reparent(orphan, clk);
1923				break;
1924			}
1925	 }
1926
1927	/*
1928	 * optional platform-specific magic
1929	 *
1930	 * The .init callback is not used by any of the basic clock types, but
1931	 * exists for weird hardware that must perform initialization magic.
1932	 * Please consider other ways of solving initialization problems before
1933	 * using this callback, as its use is discouraged.
1934	 */
1935	if (clk->ops->init)
1936		clk->ops->init(clk->hw);
1937
1938	kref_init(&clk->ref);
 
1939out:
1940	clk_prepare_unlock();
1941
1942	return ret;
1943}
1944
1945/**
1946 * __clk_register - register a clock and return a cookie.
1947 *
1948 * Same as clk_register, except that the .clk field inside hw shall point to a
1949 * preallocated (generally statically allocated) struct clk. None of the fields
1950 * of the struct clk need to be initialized.
1951 *
1952 * The data pointed to by .init and .clk field shall NOT be marked as init
1953 * data.
1954 *
1955 * __clk_register is only exposed via clk-private.h and is intended for use with
1956 * very large numbers of clocks that need to be statically initialized.  It is
1957 * a layering violation to include clk-private.h from any code which implements
1958 * a clock's .ops; as such any statically initialized clock data MUST be in a
1959 * separate C file from the logic that implements its operations.  Returns 0
1960 * on success, otherwise an error code.
1961 */
1962struct clk *__clk_register(struct device *dev, struct clk_hw *hw)
1963{
1964	int ret;
1965	struct clk *clk;
1966
1967	clk = hw->clk;
1968	clk->name = hw->init->name;
1969	clk->ops = hw->init->ops;
1970	clk->hw = hw;
1971	clk->flags = hw->init->flags;
1972	clk->parent_names = hw->init->parent_names;
1973	clk->num_parents = hw->init->num_parents;
1974	if (dev && dev->driver)
1975		clk->owner = dev->driver->owner;
1976	else
1977		clk->owner = NULL;
1978
1979	ret = __clk_init(dev, clk);
1980	if (ret)
1981		return ERR_PTR(ret);
1982
1983	return clk;
1984}
1985EXPORT_SYMBOL_GPL(__clk_register);
1986
1987/**
1988 * clk_register - allocate a new clock, register it and return an opaque cookie
1989 * @dev: device that is registering this clock
1990 * @hw: link to hardware-specific clock data
1991 *
1992 * clk_register is the primary interface for populating the clock tree with new
1993 * clock nodes.  It returns a pointer to the newly allocated struct clk which
1994 * cannot be dereferenced by driver code but may be used in conjuction with the
1995 * rest of the clock API.  In the event of an error clk_register will return an
1996 * error code; drivers must test for an error code after calling clk_register.
1997 */
1998struct clk *clk_register(struct device *dev, struct clk_hw *hw)
1999{
2000	int i, ret;
2001	struct clk *clk;
2002
2003	clk = kzalloc(sizeof(*clk), GFP_KERNEL);
2004	if (!clk) {
2005		pr_err("%s: could not allocate clk\n", __func__);
2006		ret = -ENOMEM;
2007		goto fail_out;
2008	}
2009
2010	clk->name = kstrdup(hw->init->name, GFP_KERNEL);
2011	if (!clk->name) {
2012		pr_err("%s: could not allocate clk->name\n", __func__);
2013		ret = -ENOMEM;
2014		goto fail_name;
2015	}
2016	clk->ops = hw->init->ops;
2017	if (dev && dev->driver)
2018		clk->owner = dev->driver->owner;
2019	clk->hw = hw;
2020	clk->flags = hw->init->flags;
2021	clk->num_parents = hw->init->num_parents;
2022	hw->clk = clk;
2023
2024	/* allocate local copy in case parent_names is __initdata */
2025	clk->parent_names = kcalloc(clk->num_parents, sizeof(char *),
2026					GFP_KERNEL);
2027
2028	if (!clk->parent_names) {
2029		pr_err("%s: could not allocate clk->parent_names\n", __func__);
2030		ret = -ENOMEM;
2031		goto fail_parent_names;
2032	}
2033
2034
2035	/* copy each string name in case parent_names is __initdata */
2036	for (i = 0; i < clk->num_parents; i++) {
2037		clk->parent_names[i] = kstrdup(hw->init->parent_names[i],
2038						GFP_KERNEL);
2039		if (!clk->parent_names[i]) {
2040			pr_err("%s: could not copy parent_names\n", __func__);
2041			ret = -ENOMEM;
2042			goto fail_parent_names_copy;
2043		}
2044	}
2045
2046	ret = __clk_init(dev, clk);
2047	if (!ret)
2048		return clk;
2049
2050fail_parent_names_copy:
2051	while (--i >= 0)
2052		kfree(clk->parent_names[i]);
2053	kfree(clk->parent_names);
2054fail_parent_names:
2055	kfree(clk->name);
2056fail_name:
2057	kfree(clk);
2058fail_out:
2059	return ERR_PTR(ret);
2060}
2061EXPORT_SYMBOL_GPL(clk_register);
2062
2063/*
2064 * Free memory allocated for a clock.
2065 * Caller must hold prepare_lock.
2066 */
2067static void __clk_release(struct kref *ref)
2068{
2069	struct clk *clk = container_of(ref, struct clk, ref);
2070	int i = clk->num_parents;
2071
2072	kfree(clk->parents);
2073	while (--i >= 0)
2074		kfree(clk->parent_names[i]);
2075
2076	kfree(clk->parent_names);
2077	kfree(clk->name);
2078	kfree(clk);
2079}
2080
2081/*
2082 * Empty clk_ops for unregistered clocks. These are used temporarily
2083 * after clk_unregister() was called on a clock and until last clock
2084 * consumer calls clk_put() and the struct clk object is freed.
2085 */
2086static int clk_nodrv_prepare_enable(struct clk_hw *hw)
2087{
2088	return -ENXIO;
2089}
2090
2091static void clk_nodrv_disable_unprepare(struct clk_hw *hw)
2092{
2093	WARN_ON_ONCE(1);
2094}
2095
2096static int clk_nodrv_set_rate(struct clk_hw *hw, unsigned long rate,
2097					unsigned long parent_rate)
2098{
2099	return -ENXIO;
2100}
2101
2102static int clk_nodrv_set_parent(struct clk_hw *hw, u8 index)
2103{
2104	return -ENXIO;
2105}
2106
2107static const struct clk_ops clk_nodrv_ops = {
2108	.enable		= clk_nodrv_prepare_enable,
2109	.disable	= clk_nodrv_disable_unprepare,
2110	.prepare	= clk_nodrv_prepare_enable,
2111	.unprepare	= clk_nodrv_disable_unprepare,
2112	.set_rate	= clk_nodrv_set_rate,
2113	.set_parent	= clk_nodrv_set_parent,
2114};
2115
2116/**
2117 * clk_unregister - unregister a currently registered clock
2118 * @clk: clock to unregister
 
 
2119 */
2120void clk_unregister(struct clk *clk)
2121{
2122	unsigned long flags;
2123
2124       if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
2125               return;
2126
2127	clk_prepare_lock();
2128
2129	if (clk->ops == &clk_nodrv_ops) {
2130		pr_err("%s: unregistered clock: %s\n", __func__, clk->name);
2131		goto out;
2132	}
2133	/*
2134	 * Assign empty clock ops for consumers that might still hold
2135	 * a reference to this clock.
2136	 */
2137	flags = clk_enable_lock();
2138	clk->ops = &clk_nodrv_ops;
2139	clk_enable_unlock(flags);
2140
2141	if (!hlist_empty(&clk->children)) {
2142		struct clk *child;
2143		struct hlist_node *t;
2144
2145		/* Reparent all children to the orphan list. */
2146		hlist_for_each_entry_safe(child, t, &clk->children, child_node)
2147			clk_set_parent(child, NULL);
2148	}
2149
2150	clk_debug_unregister(clk);
2151
2152	hlist_del_init(&clk->child_node);
2153
2154	if (clk->prepare_count)
2155		pr_warn("%s: unregistering prepared clock: %s\n",
2156					__func__, clk->name);
2157
2158	kref_put(&clk->ref, __clk_release);
2159out:
2160	clk_prepare_unlock();
2161}
2162EXPORT_SYMBOL_GPL(clk_unregister);
2163
2164static void devm_clk_release(struct device *dev, void *res)
2165{
2166	clk_unregister(*(struct clk **)res);
2167}
2168
2169/**
2170 * devm_clk_register - resource managed clk_register()
2171 * @dev: device that is registering this clock
2172 * @hw: link to hardware-specific clock data
2173 *
2174 * Managed clk_register(). Clocks returned from this function are
2175 * automatically clk_unregister()ed on driver detach. See clk_register() for
2176 * more information.
2177 */
2178struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw)
2179{
2180	struct clk *clk;
2181	struct clk **clkp;
2182
2183	clkp = devres_alloc(devm_clk_release, sizeof(*clkp), GFP_KERNEL);
2184	if (!clkp)
2185		return ERR_PTR(-ENOMEM);
2186
2187	clk = clk_register(dev, hw);
2188	if (!IS_ERR(clk)) {
2189		*clkp = clk;
2190		devres_add(dev, clkp);
2191	} else {
2192		devres_free(clkp);
2193	}
2194
2195	return clk;
2196}
2197EXPORT_SYMBOL_GPL(devm_clk_register);
2198
2199static int devm_clk_match(struct device *dev, void *res, void *data)
2200{
2201	struct clk *c = res;
2202	if (WARN_ON(!c))
2203		return 0;
2204	return c == data;
2205}
2206
2207/**
2208 * devm_clk_unregister - resource managed clk_unregister()
2209 * @clk: clock to unregister
2210 *
2211 * Deallocate a clock allocated with devm_clk_register(). Normally
2212 * this function will not need to be called and the resource management
2213 * code will ensure that the resource is freed.
2214 */
2215void devm_clk_unregister(struct device *dev, struct clk *clk)
2216{
2217	WARN_ON(devres_release(dev, devm_clk_release, devm_clk_match, clk));
2218}
2219EXPORT_SYMBOL_GPL(devm_clk_unregister);
2220
2221/*
2222 * clkdev helpers
2223 */
2224int __clk_get(struct clk *clk)
2225{
2226	if (clk) {
2227		if (!try_module_get(clk->owner))
2228			return 0;
2229
2230		kref_get(&clk->ref);
2231	}
2232	return 1;
2233}
2234
2235void __clk_put(struct clk *clk)
2236{
2237	if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
2238		return;
2239
2240	clk_prepare_lock();
2241	kref_put(&clk->ref, __clk_release);
2242	clk_prepare_unlock();
2243
2244	module_put(clk->owner);
2245}
2246
2247/***        clk rate change notifiers        ***/
2248
2249/**
2250 * clk_notifier_register - add a clk rate change notifier
2251 * @clk: struct clk * to watch
2252 * @nb: struct notifier_block * with callback info
2253 *
2254 * Request notification when clk's rate changes.  This uses an SRCU
2255 * notifier because we want it to block and notifier unregistrations are
2256 * uncommon.  The callbacks associated with the notifier must not
2257 * re-enter into the clk framework by calling any top-level clk APIs;
2258 * this will cause a nested prepare_lock mutex.
2259 *
2260 * In all notification cases cases (pre, post and abort rate change) the
2261 * original clock rate is passed to the callback via struct
2262 * clk_notifier_data.old_rate and the new frequency is passed via struct
 
 
 
 
2263 * clk_notifier_data.new_rate.
2264 *
 
 
 
 
 
2265 * clk_notifier_register() must be called from non-atomic context.
2266 * Returns -EINVAL if called with null arguments, -ENOMEM upon
2267 * allocation failure; otherwise, passes along the return value of
2268 * srcu_notifier_chain_register().
2269 */
2270int clk_notifier_register(struct clk *clk, struct notifier_block *nb)
2271{
2272	struct clk_notifier *cn;
2273	int ret = -ENOMEM;
2274
2275	if (!clk || !nb)
2276		return -EINVAL;
2277
2278	clk_prepare_lock();
2279
2280	/* search the list of notifiers for this clk */
2281	list_for_each_entry(cn, &clk_notifier_list, node)
2282		if (cn->clk == clk)
2283			break;
2284
2285	/* if clk wasn't in the notifier list, allocate new clk_notifier */
2286	if (cn->clk != clk) {
2287		cn = kzalloc(sizeof(struct clk_notifier), GFP_KERNEL);
2288		if (!cn)
2289			goto out;
2290
2291		cn->clk = clk;
2292		srcu_init_notifier_head(&cn->notifier_head);
2293
2294		list_add(&cn->node, &clk_notifier_list);
2295	}
2296
2297	ret = srcu_notifier_chain_register(&cn->notifier_head, nb);
2298
2299	clk->notifier_count++;
2300
2301out:
2302	clk_prepare_unlock();
2303
2304	return ret;
2305}
2306EXPORT_SYMBOL_GPL(clk_notifier_register);
2307
2308/**
2309 * clk_notifier_unregister - remove a clk rate change notifier
2310 * @clk: struct clk *
2311 * @nb: struct notifier_block * with callback info
2312 *
2313 * Request no further notification for changes to 'clk' and frees memory
2314 * allocated in clk_notifier_register.
2315 *
2316 * Returns -EINVAL if called with null arguments; otherwise, passes
2317 * along the return value of srcu_notifier_chain_unregister().
2318 */
2319int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb)
2320{
2321	struct clk_notifier *cn = NULL;
2322	int ret = -EINVAL;
2323
2324	if (!clk || !nb)
2325		return -EINVAL;
2326
2327	clk_prepare_lock();
2328
2329	list_for_each_entry(cn, &clk_notifier_list, node)
2330		if (cn->clk == clk)
2331			break;
2332
2333	if (cn->clk == clk) {
2334		ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb);
2335
2336		clk->notifier_count--;
2337
2338		/* XXX the notifier code should handle this better */
2339		if (!cn->notifier_head.head) {
2340			srcu_cleanup_notifier_head(&cn->notifier_head);
2341			list_del(&cn->node);
2342			kfree(cn);
2343		}
2344
2345	} else {
2346		ret = -ENOENT;
2347	}
2348
2349	clk_prepare_unlock();
2350
2351	return ret;
2352}
2353EXPORT_SYMBOL_GPL(clk_notifier_unregister);
2354
2355#ifdef CONFIG_OF
2356/**
2357 * struct of_clk_provider - Clock provider registration structure
2358 * @link: Entry in global list of clock providers
2359 * @node: Pointer to device tree node of clock provider
2360 * @get: Get clock callback.  Returns NULL or a struct clk for the
2361 *       given clock specifier
2362 * @data: context pointer to be passed into @get callback
2363 */
2364struct of_clk_provider {
2365	struct list_head link;
2366
2367	struct device_node *node;
2368	struct clk *(*get)(struct of_phandle_args *clkspec, void *data);
2369	void *data;
2370};
2371
2372static const struct of_device_id __clk_of_table_sentinel
2373	__used __section(__clk_of_table_end);
2374
2375static LIST_HEAD(of_clk_providers);
2376static DEFINE_MUTEX(of_clk_mutex);
2377
2378/* of_clk_provider list locking helpers */
2379void of_clk_lock(void)
2380{
2381	mutex_lock(&of_clk_mutex);
2382}
2383
2384void of_clk_unlock(void)
2385{
2386	mutex_unlock(&of_clk_mutex);
2387}
2388
2389struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec,
2390				     void *data)
2391{
2392	return data;
2393}
2394EXPORT_SYMBOL_GPL(of_clk_src_simple_get);
2395
2396struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data)
2397{
2398	struct clk_onecell_data *clk_data = data;
2399	unsigned int idx = clkspec->args[0];
2400
2401	if (idx >= clk_data->clk_num) {
2402		pr_err("%s: invalid clock index %d\n", __func__, idx);
2403		return ERR_PTR(-EINVAL);
2404	}
2405
2406	return clk_data->clks[idx];
2407}
2408EXPORT_SYMBOL_GPL(of_clk_src_onecell_get);
2409
2410/**
2411 * of_clk_add_provider() - Register a clock provider for a node
2412 * @np: Device node pointer associated with clock provider
2413 * @clk_src_get: callback for decoding clock
2414 * @data: context pointer for @clk_src_get callback.
2415 */
2416int of_clk_add_provider(struct device_node *np,
2417			struct clk *(*clk_src_get)(struct of_phandle_args *clkspec,
2418						   void *data),
2419			void *data)
2420{
2421	struct of_clk_provider *cp;
2422
2423	cp = kzalloc(sizeof(struct of_clk_provider), GFP_KERNEL);
2424	if (!cp)
2425		return -ENOMEM;
2426
2427	cp->node = of_node_get(np);
2428	cp->data = data;
2429	cp->get = clk_src_get;
2430
2431	mutex_lock(&of_clk_mutex);
2432	list_add(&cp->link, &of_clk_providers);
2433	mutex_unlock(&of_clk_mutex);
2434	pr_debug("Added clock from %s\n", np->full_name);
2435
2436	return 0;
2437}
2438EXPORT_SYMBOL_GPL(of_clk_add_provider);
2439
2440/**
2441 * of_clk_del_provider() - Remove a previously registered clock provider
2442 * @np: Device node pointer associated with clock provider
2443 */
2444void of_clk_del_provider(struct device_node *np)
2445{
2446	struct of_clk_provider *cp;
2447
2448	mutex_lock(&of_clk_mutex);
2449	list_for_each_entry(cp, &of_clk_providers, link) {
2450		if (cp->node == np) {
2451			list_del(&cp->link);
2452			of_node_put(cp->node);
2453			kfree(cp);
2454			break;
2455		}
2456	}
2457	mutex_unlock(&of_clk_mutex);
2458}
2459EXPORT_SYMBOL_GPL(of_clk_del_provider);
2460
2461struct clk *__of_clk_get_from_provider(struct of_phandle_args *clkspec)
2462{
2463	struct of_clk_provider *provider;
2464	struct clk *clk = ERR_PTR(-EPROBE_DEFER);
2465
2466	/* Check if we have such a provider in our array */
2467	list_for_each_entry(provider, &of_clk_providers, link) {
2468		if (provider->node == clkspec->np)
2469			clk = provider->get(clkspec, provider->data);
2470		if (!IS_ERR(clk))
2471			break;
2472	}
2473
2474	return clk;
2475}
2476
2477struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec)
2478{
2479	struct clk *clk;
2480
2481	mutex_lock(&of_clk_mutex);
2482	clk = __of_clk_get_from_provider(clkspec);
2483	mutex_unlock(&of_clk_mutex);
2484
2485	return clk;
2486}
2487
2488int of_clk_get_parent_count(struct device_node *np)
2489{
2490	return of_count_phandle_with_args(np, "clocks", "#clock-cells");
2491}
2492EXPORT_SYMBOL_GPL(of_clk_get_parent_count);
2493
2494const char *of_clk_get_parent_name(struct device_node *np, int index)
2495{
2496	struct of_phandle_args clkspec;
2497	struct property *prop;
2498	const char *clk_name;
2499	const __be32 *vp;
2500	u32 pv;
2501	int rc;
2502	int count;
2503
2504	if (index < 0)
2505		return NULL;
2506
2507	rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index,
2508					&clkspec);
2509	if (rc)
2510		return NULL;
2511
2512	index = clkspec.args_count ? clkspec.args[0] : 0;
2513	count = 0;
2514
2515	/* if there is an indices property, use it to transfer the index
2516	 * specified into an array offset for the clock-output-names property.
2517	 */
2518	of_property_for_each_u32(clkspec.np, "clock-indices", prop, vp, pv) {
2519		if (index == pv) {
2520			index = count;
2521			break;
2522		}
2523		count++;
2524	}
2525
2526	if (of_property_read_string_index(clkspec.np, "clock-output-names",
2527					  index,
2528					  &clk_name) < 0)
2529		clk_name = clkspec.np->name;
2530
2531	of_node_put(clkspec.np);
2532	return clk_name;
2533}
2534EXPORT_SYMBOL_GPL(of_clk_get_parent_name);
2535
2536struct clock_provider {
2537	of_clk_init_cb_t clk_init_cb;
2538	struct device_node *np;
2539	struct list_head node;
2540};
2541
2542static LIST_HEAD(clk_provider_list);
2543
2544/*
2545 * This function looks for a parent clock. If there is one, then it
2546 * checks that the provider for this parent clock was initialized, in
2547 * this case the parent clock will be ready.
2548 */
2549static int parent_ready(struct device_node *np)
2550{
2551	int i = 0;
2552
2553	while (true) {
2554		struct clk *clk = of_clk_get(np, i);
2555
2556		/* this parent is ready we can check the next one */
2557		if (!IS_ERR(clk)) {
2558			clk_put(clk);
2559			i++;
2560			continue;
2561		}
2562
2563		/* at least one parent is not ready, we exit now */
2564		if (PTR_ERR(clk) == -EPROBE_DEFER)
2565			return 0;
2566
2567		/*
2568		 * Here we make assumption that the device tree is
2569		 * written correctly. So an error means that there is
2570		 * no more parent. As we didn't exit yet, then the
2571		 * previous parent are ready. If there is no clock
2572		 * parent, no need to wait for them, then we can
2573		 * consider their absence as being ready
2574		 */
2575		return 1;
2576	}
2577}
2578
2579/**
2580 * of_clk_init() - Scan and init clock providers from the DT
2581 * @matches: array of compatible values and init functions for providers.
2582 *
2583 * This function scans the device tree for matching clock providers
2584 * and calls their initialization functions. It also does it by trying
2585 * to follow the dependencies.
2586 */
2587void __init of_clk_init(const struct of_device_id *matches)
2588{
2589	const struct of_device_id *match;
2590	struct device_node *np;
2591	struct clock_provider *clk_provider, *next;
2592	bool is_init_done;
2593	bool force = false;
2594
2595	if (!matches)
2596		matches = &__clk_of_table;
2597
2598	/* First prepare the list of the clocks providers */
2599	for_each_matching_node_and_match(np, matches, &match) {
2600		struct clock_provider *parent =
2601			kzalloc(sizeof(struct clock_provider),	GFP_KERNEL);
2602
2603		parent->clk_init_cb = match->data;
2604		parent->np = np;
2605		list_add_tail(&parent->node, &clk_provider_list);
2606	}
2607
2608	while (!list_empty(&clk_provider_list)) {
2609		is_init_done = false;
2610		list_for_each_entry_safe(clk_provider, next,
2611					&clk_provider_list, node) {
2612			if (force || parent_ready(clk_provider->np)) {
2613				clk_provider->clk_init_cb(clk_provider->np);
2614				list_del(&clk_provider->node);
2615				kfree(clk_provider);
2616				is_init_done = true;
2617			}
2618		}
2619
2620		/*
2621		 * We didn't manage to initialize any of the
2622		 * remaining providers during the last loop, so now we
2623		 * initialize all the remaining ones unconditionally
2624		 * in case the clock parent was not mandatory
2625		 */
2626		if (!is_init_done)
2627			force = true;
2628
2629	}
2630}
2631#endif