Linux Audio

Check our new training course

Loading...
v3.5.6
 
   1/*
   2 * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com>
   3 * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org>
   4 *
   5 * This program is free software; you can redistribute it and/or modify
   6 * it under the terms of the GNU General Public License version 2 as
   7 * published by the Free Software Foundation.
   8 *
   9 * Standard functionality for the common clock API.  See Documentation/clk.txt
  10 */
  11
  12#include <linux/clk-private.h>
 
 
  13#include <linux/module.h>
  14#include <linux/mutex.h>
  15#include <linux/spinlock.h>
  16#include <linux/err.h>
  17#include <linux/list.h>
  18#include <linux/slab.h>
 
 
 
 
 
 
 
 
  19
  20static DEFINE_SPINLOCK(enable_lock);
  21static DEFINE_MUTEX(prepare_lock);
  22
 
 
 
 
 
 
  23static HLIST_HEAD(clk_root_list);
  24static HLIST_HEAD(clk_orphan_list);
  25static LIST_HEAD(clk_notifier_list);
  26
  27/***        debugfs support        ***/
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  28
  29#ifdef CONFIG_COMMON_CLK_DEBUG
  30#include <linux/debugfs.h>
  31
  32static struct dentry *rootdir;
  33static struct dentry *orphandir;
  34static int inited = 0;
 
 
 
 
 
 
 
  35
  36/* caller must hold prepare_lock */
  37static int clk_debug_create_one(struct clk *clk, struct dentry *pdentry)
  38{
  39	struct dentry *d;
  40	int ret = -ENOMEM;
  41
  42	if (!clk || !pdentry) {
  43		ret = -EINVAL;
  44		goto out;
 
 
 
 
  45	}
 
 
  46
  47	d = debugfs_create_dir(clk->name, pdentry);
  48	if (!d)
  49		goto out;
 
  50
  51	clk->dentry = d;
 
  52
  53	d = debugfs_create_u32("clk_rate", S_IRUGO, clk->dentry,
  54			(u32 *)&clk->rate);
  55	if (!d)
  56		goto err_out;
  57
  58	d = debugfs_create_x32("clk_flags", S_IRUGO, clk->dentry,
  59			(u32 *)&clk->flags);
  60	if (!d)
  61		goto err_out;
  62
  63	d = debugfs_create_u32("clk_prepare_count", S_IRUGO, clk->dentry,
  64			(u32 *)&clk->prepare_count);
  65	if (!d)
  66		goto err_out;
  67
  68	d = debugfs_create_u32("clk_enable_count", S_IRUGO, clk->dentry,
  69			(u32 *)&clk->enable_count);
  70	if (!d)
  71		goto err_out;
  72
  73	d = debugfs_create_u32("clk_notifier_count", S_IRUGO, clk->dentry,
  74			(u32 *)&clk->notifier_count);
  75	if (!d)
  76		goto err_out;
  77
  78	ret = 0;
  79	goto out;
 
 
  80
  81err_out:
  82	debugfs_remove(clk->dentry);
  83out:
  84	return ret;
  85}
  86
  87/* caller must hold prepare_lock */
  88static int clk_debug_create_subtree(struct clk *clk, struct dentry *pdentry)
  89{
  90	struct clk *child;
  91	struct hlist_node *tmp;
  92	int ret = -EINVAL;;
  93
  94	if (!clk || !pdentry)
  95		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  96
  97	ret = clk_debug_create_one(clk, pdentry);
 
 
 
 
  98
  99	if (ret)
 100		goto out;
 
 
 
 
 
 
 
 
 
 
 101
 102	hlist_for_each_entry(child, tmp, &clk->children, child_node)
 103		clk_debug_create_subtree(child, clk->dentry);
 
 
 
 
 
 
 
 
 
 
 
 
 
 104
 105	ret = 0;
 106out:
 107	return ret;
 108}
 109
 110/**
 111 * clk_debug_register - add a clk node to the debugfs clk tree
 112 * @clk: the clk being added to the debugfs clk tree
 113 *
 114 * Dynamically adds a clk to the debugfs clk tree if debugfs has been
 115 * initialized.  Otherwise it bails out early since the debugfs clk tree
 116 * will be created lazily by clk_debug_init as part of a late_initcall.
 117 *
 118 * Caller must hold prepare_lock.  Only clk_init calls this function (so
 119 * far) so this is taken care.
 120 */
 121static int clk_debug_register(struct clk *clk)
 122{
 123	struct clk *parent;
 124	struct dentry *pdentry;
 125	int ret = 0;
 126
 127	if (!inited)
 128		goto out;
 129
 130	parent = clk->parent;
 
 
 
 
 
 131
 132	/*
 133	 * Check to see if a clk is a root clk.  Also check that it is
 134	 * safe to add this clk to debugfs
 
 
 
 
 
 
 135	 */
 136	if (!parent)
 137		if (clk->flags & CLK_IS_ROOT)
 138			pdentry = rootdir;
 139		else
 140			pdentry = orphandir;
 141	else
 142		if (parent->dentry)
 143			pdentry = parent->dentry;
 144		else
 145			goto out;
 146
 147	ret = clk_debug_create_subtree(clk, pdentry);
 
 
 
 148
 149out:
 150	return ret;
 151}
 152
 153/**
 154 * clk_debug_init - lazily create the debugfs clk tree visualization
 155 *
 156 * clks are often initialized very early during boot before memory can
 157 * be dynamically allocated and well before debugfs is setup.
 158 * clk_debug_init walks the clk tree hierarchy while holding
 159 * prepare_lock and creates the topology as part of a late_initcall,
 160 * thus insuring that clks initialized very early will still be
 161 * represented in the debugfs clk tree.  This function should only be
 162 * called once at boot-time, and all other clks added dynamically will
 163 * be done so with clk_debug_register.
 164 */
 165static int __init clk_debug_init(void)
 166{
 167	struct clk *clk;
 168	struct hlist_node *tmp;
 
 169
 170	rootdir = debugfs_create_dir("clk", NULL);
 
 
 
 
 171
 172	if (!rootdir)
 173		return -ENOMEM;
 
 
 
 174
 175	orphandir = debugfs_create_dir("orphans", rootdir);
 
 
 
 
 176
 177	if (!orphandir)
 178		return -ENOMEM;
 
 
 
 179
 180	mutex_lock(&prepare_lock);
 
 
 
 
 181
 182	hlist_for_each_entry(clk, tmp, &clk_root_list, child_node)
 183		clk_debug_create_subtree(clk, rootdir);
 184
 185	hlist_for_each_entry(clk, tmp, &clk_orphan_list, child_node)
 186		clk_debug_create_subtree(clk, orphandir);
 
 
 
 187
 188	inited = 1;
 
 189
 190	mutex_unlock(&prepare_lock);
 
 
 
 191
 192	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 193}
 194late_initcall(clk_debug_init);
 
 
 
 
 
 195#else
 196static inline int clk_debug_register(struct clk *clk) { return 0; }
 
 
 
 
 
 
 
 
 
 
 197#endif
 198
 199/* caller must hold prepare_lock */
 200static void clk_disable_unused_subtree(struct clk *clk)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 201{
 202	struct clk *child;
 203	struct hlist_node *tmp;
 204	unsigned long flags;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 205
 206	if (!clk)
 207		goto out;
 208
 209	hlist_for_each_entry(child, tmp, &clk->children, child_node)
 210		clk_disable_unused_subtree(child);
 211
 212	spin_lock_irqsave(&enable_lock, flags);
 
 
 
 213
 214	if (clk->enable_count)
 215		goto unlock_out;
 
 
 
 
 
 
 
 
 
 
 
 
 216
 217	if (clk->flags & CLK_IGNORE_UNUSED)
 218		goto unlock_out;
 
 
 219
 220	if (__clk_is_enabled(clk) && clk->ops->disable)
 221		clk->ops->disable(clk->hw);
 
 
 
 222
 223unlock_out:
 224	spin_unlock_irqrestore(&enable_lock, flags);
 225
 226out:
 227	return;
 228}
 229
 230static int clk_disable_unused(void)
 
 231{
 232	struct clk *clk;
 233	struct hlist_node *tmp;
 234
 235	mutex_lock(&prepare_lock);
 236
 237	hlist_for_each_entry(clk, tmp, &clk_root_list, child_node)
 238		clk_disable_unused_subtree(clk);
 
 239
 240	hlist_for_each_entry(clk, tmp, &clk_orphan_list, child_node)
 241		clk_disable_unused_subtree(clk);
 
 
 242
 243	mutex_unlock(&prepare_lock);
 
 
 
 244
 
 
 
 
 
 
 
 
 245	return 0;
 246}
 247late_initcall(clk_disable_unused);
 248
 249/***    helper functions   ***/
 
 
 
 
 250
 251inline const char *__clk_get_name(struct clk *clk)
 252{
 253	return !clk ? NULL : clk->name;
 
 
 
 254}
 255
 256inline struct clk_hw *__clk_get_hw(struct clk *clk)
 257{
 258	return !clk ? NULL : clk->hw;
 259}
 
 260
 261inline u8 __clk_get_num_parents(struct clk *clk)
 262{
 263	return !clk ? -EINVAL : clk->num_parents;
 264}
 
 265
 266inline struct clk *__clk_get_parent(struct clk *clk)
 267{
 268	return !clk ? NULL : clk->parent;
 269}
 
 270
 271inline int __clk_get_enable_count(struct clk *clk)
 272{
 273	return !clk ? -EINVAL : clk->enable_count;
 274}
 
 275
 276inline int __clk_get_prepare_count(struct clk *clk)
 277{
 278	return !clk ? -EINVAL : clk->prepare_count;
 
 
 
 279}
 
 280
 281unsigned long __clk_get_rate(struct clk *clk)
 
 282{
 283	unsigned long ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 284
 285	if (!clk) {
 286		ret = 0;
 287		goto out;
 288	}
 289
 290	ret = clk->rate;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 291
 292	if (clk->flags & CLK_IS_ROOT)
 293		goto out;
 
 
 
 
 294
 295	if (!clk->parent)
 296		ret = 0;
 297
 298out:
 299	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 300}
 
 
 
 301
 302inline unsigned long __clk_get_flags(struct clk *clk)
 303{
 304	return !clk ? -EINVAL : clk->flags;
 
 
 
 
 
 
 
 
 
 
 
 
 305}
 306
 307int __clk_is_enabled(struct clk *clk)
 308{
 309	int ret;
 310
 311	if (!clk)
 
 
 312		return -EINVAL;
 313
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 314	/*
 315	 * .is_enabled is only mandatory for clocks that gate
 316	 * fall back to software usage counter if .is_enabled is missing
 317	 */
 318	if (!clk->ops->is_enabled) {
 319		ret = clk->enable_count ? 1 : 0;
 320		goto out;
 321	}
 322
 323	ret = clk->ops->is_enabled(clk->hw);
 
 324out:
 325	return ret;
 326}
 
 327
 328static struct clk *__clk_lookup_subtree(const char *name, struct clk *clk)
 329{
 330	struct clk *child;
 331	struct clk *ret;
 332	struct hlist_node *tmp;
 333
 334	if (!strcmp(clk->name, name))
 335		return clk;
 336
 337	hlist_for_each_entry(child, tmp, &clk->children, child_node) {
 338		ret = __clk_lookup_subtree(name, child);
 339		if (ret)
 340			return ret;
 341	}
 342
 343	return NULL;
 344}
 345
 346struct clk *__clk_lookup(const char *name)
 347{
 348	struct clk *root_clk;
 349	struct clk *ret;
 350	struct hlist_node *tmp;
 351
 352	if (!name)
 353		return NULL;
 354
 355	/* search the 'proper' clk tree first */
 356	hlist_for_each_entry(root_clk, tmp, &clk_root_list, child_node) {
 357		ret = __clk_lookup_subtree(name, root_clk);
 358		if (ret)
 359			return ret;
 360	}
 361
 362	/* if not found, then search the orphan tree */
 363	hlist_for_each_entry(root_clk, tmp, &clk_orphan_list, child_node) {
 364		ret = __clk_lookup_subtree(name, root_clk);
 365		if (ret)
 366			return ret;
 367	}
 368
 369	return NULL;
 
 370}
 371
 372/***        clk api        ***/
 373
 374void __clk_unprepare(struct clk *clk)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 375{
 376	if (!clk)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 377		return;
 378
 379	if (WARN_ON(clk->prepare_count == 0))
 
 380		return;
 381
 382	if (--clk->prepare_count > 0)
 
 
 
 383		return;
 384
 385	WARN_ON(clk->enable_count > 0);
 
 
 
 
 
 386
 387	if (clk->ops->unprepare)
 388		clk->ops->unprepare(clk->hw);
 389
 390	__clk_unprepare(clk->parent);
 
 
 
 
 
 
 
 
 391}
 392
 393/**
 394 * clk_unprepare - undo preparation of a clock source
 395 * @clk: the clk being unprepare
 396 *
 397 * clk_unprepare may sleep, which differentiates it from clk_disable.  In a
 398 * simple case, clk_unprepare can be used instead of clk_disable to gate a clk
 399 * if the operation may sleep.  One example is a clk which is accessed over
 400 * I2c.  In the complex case a clk gate operation may require a fast and a slow
 401 * part.  It is this reason that clk_unprepare and clk_disable are not mutually
 402 * exclusive.  In fact clk_disable must be called before clk_unprepare.
 403 */
 404void clk_unprepare(struct clk *clk)
 405{
 406	mutex_lock(&prepare_lock);
 407	__clk_unprepare(clk);
 408	mutex_unlock(&prepare_lock);
 
 409}
 410EXPORT_SYMBOL_GPL(clk_unprepare);
 411
 412int __clk_prepare(struct clk *clk)
 413{
 414	int ret = 0;
 415
 416	if (!clk)
 
 
 417		return 0;
 418
 419	if (clk->prepare_count == 0) {
 420		ret = __clk_prepare(clk->parent);
 421		if (ret)
 422			return ret;
 423
 424		if (clk->ops->prepare) {
 425			ret = clk->ops->prepare(clk->hw);
 426			if (ret) {
 427				__clk_unprepare(clk->parent);
 428				return ret;
 429			}
 430		}
 
 
 
 
 
 
 431	}
 432
 433	clk->prepare_count++;
 
 
 
 
 
 
 
 
 
 
 434
 435	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 436}
 437
 438/**
 439 * clk_prepare - prepare a clock source
 440 * @clk: the clk being prepared
 441 *
 442 * clk_prepare may sleep, which differentiates it from clk_enable.  In a simple
 443 * case, clk_prepare can be used instead of clk_enable to ungate a clk if the
 444 * operation may sleep.  One example is a clk which is accessed over I2c.  In
 445 * the complex case a clk ungate operation may require a fast and a slow part.
 446 * It is this reason that clk_prepare and clk_enable are not mutually
 447 * exclusive.  In fact clk_prepare must be called before clk_enable.
 448 * Returns 0 on success, -EERROR otherwise.
 449 */
 450int clk_prepare(struct clk *clk)
 451{
 452	int ret;
 453
 454	mutex_lock(&prepare_lock);
 455	ret = __clk_prepare(clk);
 456	mutex_unlock(&prepare_lock);
 457
 458	return ret;
 459}
 460EXPORT_SYMBOL_GPL(clk_prepare);
 461
 462static void __clk_disable(struct clk *clk)
 463{
 464	if (!clk)
 
 
 465		return;
 466
 467	if (WARN_ON(clk->enable_count == 0))
 468		return;
 469
 470	if (--clk->enable_count > 0)
 
 471		return;
 472
 473	if (clk->ops->disable)
 474		clk->ops->disable(clk->hw);
 
 
 
 
 
 
 
 475
 476	__clk_disable(clk->parent);
 
 
 
 
 
 
 
 
 
 477}
 478
 479/**
 480 * clk_disable - gate a clock
 481 * @clk: the clk being gated
 482 *
 483 * clk_disable must not sleep, which differentiates it from clk_unprepare.  In
 484 * a simple case, clk_disable can be used instead of clk_unprepare to gate a
 485 * clk if the operation is fast and will never sleep.  One example is a
 486 * SoC-internal clk which is controlled via simple register writes.  In the
 487 * complex case a clk gate operation may require a fast and a slow part.  It is
 488 * this reason that clk_unprepare and clk_disable are not mutually exclusive.
 489 * In fact clk_disable must be called before clk_unprepare.
 490 */
 491void clk_disable(struct clk *clk)
 492{
 493	unsigned long flags;
 
 494
 495	spin_lock_irqsave(&enable_lock, flags);
 496	__clk_disable(clk);
 497	spin_unlock_irqrestore(&enable_lock, flags);
 498}
 499EXPORT_SYMBOL_GPL(clk_disable);
 500
 501static int __clk_enable(struct clk *clk)
 502{
 503	int ret = 0;
 504
 505	if (!clk)
 
 
 506		return 0;
 507
 508	if (WARN_ON(clk->prepare_count == 0))
 
 509		return -ESHUTDOWN;
 510
 511	if (clk->enable_count == 0) {
 512		ret = __clk_enable(clk->parent);
 513
 514		if (ret)
 515			return ret;
 516
 517		if (clk->ops->enable) {
 518			ret = clk->ops->enable(clk->hw);
 519			if (ret) {
 520				__clk_disable(clk->parent);
 521				return ret;
 522			}
 
 
 
 
 523		}
 524	}
 525
 526	clk->enable_count++;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 527	return 0;
 528}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 529
 530/**
 531 * clk_enable - ungate a clock
 532 * @clk: the clk being ungated
 533 *
 534 * clk_enable must not sleep, which differentiates it from clk_prepare.  In a
 535 * simple case, clk_enable can be used instead of clk_prepare to ungate a clk
 536 * if the operation will never sleep.  One example is a SoC-internal clk which
 537 * is controlled via simple register writes.  In the complex case a clk ungate
 538 * operation may require a fast and a slow part.  It is this reason that
 539 * clk_enable and clk_prepare are not mutually exclusive.  In fact clk_prepare
 540 * must be called before clk_enable.  Returns 0 on success, -EERROR
 541 * otherwise.
 542 */
 543int clk_enable(struct clk *clk)
 544{
 545	unsigned long flags;
 546	int ret;
 547
 548	spin_lock_irqsave(&enable_lock, flags);
 549	ret = __clk_enable(clk);
 550	spin_unlock_irqrestore(&enable_lock, flags);
 551
 552	return ret;
 553}
 554EXPORT_SYMBOL_GPL(clk_enable);
 555
 556/**
 557 * clk_get_rate - return the rate of clk
 558 * @clk: the clk whose rate is being returned
 
 
 
 
 
 
 
 559 *
 560 * Simply returns the cached rate of the clk.  Does not query the hardware.  If
 561 * clk is NULL then returns 0.
 
 562 */
 563unsigned long clk_get_rate(struct clk *clk)
 564{
 565	unsigned long rate;
 
 
 566
 567	mutex_lock(&prepare_lock);
 568	rate = __clk_get_rate(clk);
 569	mutex_unlock(&prepare_lock);
 570
 571	return rate;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 572}
 573EXPORT_SYMBOL_GPL(clk_get_rate);
 574
 575/**
 576 * __clk_round_rate - round the given rate for a clk
 577 * @clk: round the rate of this clock
 
 578 *
 579 * Caller must hold prepare_lock.  Useful for clk_ops such as .set_rate
 580 */
 581unsigned long __clk_round_rate(struct clk *clk, unsigned long rate)
 582{
 583	unsigned long parent_rate = 0;
 
 
 
 584
 585	if (!clk)
 586		return -EINVAL;
 
 587
 588	if (!clk->ops->round_rate) {
 589		if (clk->flags & CLK_SET_RATE_PARENT)
 590			return __clk_round_rate(clk->parent, rate);
 591		else
 592			return clk->rate;
 593	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 594
 595	if (clk->parent)
 596		parent_rate = clk->parent->rate;
 
 
 
 
 597
 598	return clk->ops->round_rate(clk->hw, rate, &parent_rate);
 599}
 
 600
 601/**
 602 * clk_round_rate - round the given rate for a clk
 603 * @clk: the clk for which we are rounding a rate
 604 * @rate: the rate which is to be rounded
 605 *
 606 * Takes in a rate as input and rounds it to a rate that the clk can actually
 607 * use which is then returned.  If clk doesn't support round_rate operation
 608 * then the parent rate is returned.
 609 */
 610long clk_round_rate(struct clk *clk, unsigned long rate)
 611{
 612	unsigned long ret;
 
 613
 614	mutex_lock(&prepare_lock);
 615	ret = __clk_round_rate(clk, rate);
 616	mutex_unlock(&prepare_lock);
 617
 618	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 619}
 620EXPORT_SYMBOL_GPL(clk_round_rate);
 621
 622/**
 623 * __clk_notify - call clk notifier chain
 624 * @clk: struct clk * that is changing rate
 625 * @msg: clk notifier type (see include/linux/clk.h)
 626 * @old_rate: old clk rate
 627 * @new_rate: new clk rate
 628 *
 629 * Triggers a notifier call chain on the clk rate-change notification
 630 * for 'clk'.  Passes a pointer to the struct clk and the previous
 631 * and current rates to the notifier callback.  Intended to be called by
 632 * internal clock code only.  Returns NOTIFY_DONE from the last driver
 633 * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if
 634 * a driver returns that.
 635 */
 636static int __clk_notify(struct clk *clk, unsigned long msg,
 637		unsigned long old_rate, unsigned long new_rate)
 638{
 639	struct clk_notifier *cn;
 640	struct clk_notifier_data cnd;
 641	int ret = NOTIFY_DONE;
 642
 643	cnd.clk = clk;
 644	cnd.old_rate = old_rate;
 645	cnd.new_rate = new_rate;
 646
 647	list_for_each_entry(cn, &clk_notifier_list, node) {
 648		if (cn->clk == clk) {
 
 649			ret = srcu_notifier_call_chain(&cn->notifier_head, msg,
 650					&cnd);
 651			break;
 
 652		}
 653	}
 654
 655	return ret;
 656}
 657
 658/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 659 * __clk_recalc_rates
 660 * @clk: first clk in the subtree
 661 * @msg: notification type (see include/linux/clk.h)
 662 *
 663 * Walks the subtree of clks starting with clk and recalculates rates as it
 664 * goes.  Note that if a clk does not implement the .recalc_rate callback then
 665 * it is assumed that the clock will take on the rate of it's parent.
 666 *
 667 * clk_recalc_rates also propagates the POST_RATE_CHANGE notification,
 668 * if necessary.
 669 *
 670 * Caller must hold prepare_lock.
 671 */
 672static void __clk_recalc_rates(struct clk *clk, unsigned long msg)
 673{
 674	unsigned long old_rate;
 675	unsigned long parent_rate = 0;
 676	struct hlist_node *tmp;
 677	struct clk *child;
 678
 679	old_rate = clk->rate;
 680
 681	if (clk->parent)
 682		parent_rate = clk->parent->rate;
 683
 684	if (clk->ops->recalc_rate)
 685		clk->rate = clk->ops->recalc_rate(clk->hw, parent_rate);
 686	else
 687		clk->rate = parent_rate;
 688
 689	/*
 690	 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE
 691	 * & ABORT_RATE_CHANGE notifiers
 692	 */
 693	if (clk->notifier_count && msg)
 694		__clk_notify(clk, msg, old_rate, clk->rate);
 695
 696	hlist_for_each_entry(child, tmp, &clk->children, child_node)
 697		__clk_recalc_rates(child, msg);
 698}
 699
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 700/**
 701 * __clk_speculate_rates
 702 * @clk: first clk in the subtree
 703 * @parent_rate: the "future" rate of clk's parent
 704 *
 705 * Walks the subtree of clks starting with clk, speculating rates as it
 706 * goes and firing off PRE_RATE_CHANGE notifications as necessary.
 707 *
 708 * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending
 709 * pre-rate change notifications and returns early if no clks in the
 710 * subtree have subscribed to the notifications.  Note that if a clk does not
 711 * implement the .recalc_rate callback then it is assumed that the clock will
 712 * take on the rate of it's parent.
 713 *
 714 * Caller must hold prepare_lock.
 715 */
 716static int __clk_speculate_rates(struct clk *clk, unsigned long parent_rate)
 
 717{
 718	struct hlist_node *tmp;
 719	struct clk *child;
 720	unsigned long new_rate;
 721	int ret = NOTIFY_DONE;
 722
 723	if (clk->ops->recalc_rate)
 724		new_rate = clk->ops->recalc_rate(clk->hw, parent_rate);
 725	else
 726		new_rate = parent_rate;
 727
 728	/* abort the rate change if a driver returns NOTIFY_BAD */
 729	if (clk->notifier_count)
 730		ret = __clk_notify(clk, PRE_RATE_CHANGE, clk->rate, new_rate);
 731
 732	if (ret == NOTIFY_BAD)
 
 
 733		goto out;
 
 734
 735	hlist_for_each_entry(child, tmp, &clk->children, child_node) {
 736		ret = __clk_speculate_rates(child, new_rate);
 737		if (ret == NOTIFY_BAD)
 738			break;
 739	}
 740
 741out:
 742	return ret;
 743}
 744
 745static void clk_calc_subtree(struct clk *clk, unsigned long new_rate)
 
 746{
 747	struct clk *child;
 748	struct hlist_node *tmp;
 749
 750	clk->new_rate = new_rate;
 751
 752	hlist_for_each_entry(child, tmp, &clk->children, child_node) {
 753		if (child->ops->recalc_rate)
 754			child->new_rate = child->ops->recalc_rate(child->hw, new_rate);
 755		else
 756			child->new_rate = new_rate;
 757		clk_calc_subtree(child, child->new_rate);
 
 
 
 
 
 758	}
 759}
 760
 761/*
 762 * calculate the new rates returning the topmost clock that has to be
 763 * changed.
 764 */
 765static struct clk *clk_calc_new_rates(struct clk *clk, unsigned long rate)
 
 766{
 767	struct clk *top = clk;
 
 768	unsigned long best_parent_rate = 0;
 769	unsigned long new_rate;
 
 
 
 
 770
 771	/* sanity */
 772	if (IS_ERR_OR_NULL(clk))
 773		return NULL;
 774
 775	/* save parent rate, if it exists */
 776	if (clk->parent)
 777		best_parent_rate = clk->parent->rate;
 
 
 
 
 
 
 
 
 
 
 
 
 
 778
 779	/* never propagate up to the parent */
 780	if (!(clk->flags & CLK_SET_RATE_PARENT)) {
 781		if (!clk->ops->round_rate) {
 782			clk->new_rate = clk->rate;
 783			return NULL;
 784		}
 785		new_rate = clk->ops->round_rate(clk->hw, rate, &best_parent_rate);
 
 
 
 
 
 
 
 
 
 
 
 
 
 786		goto out;
 787	}
 788
 789	/* need clk->parent from here on out */
 790	if (!clk->parent) {
 791		pr_debug("%s: %s has NULL parent\n", __func__, clk->name);
 
 
 792		return NULL;
 793	}
 794
 795	if (!clk->ops->round_rate) {
 796		top = clk_calc_new_rates(clk->parent, rate);
 797		new_rate = clk->parent->new_rate;
 798
 799		goto out;
 
 
 
 800	}
 801
 802	new_rate = clk->ops->round_rate(clk->hw, rate, &best_parent_rate);
 803
 804	if (best_parent_rate != clk->parent->rate) {
 805		top = clk_calc_new_rates(clk->parent, best_parent_rate);
 806
 807		goto out;
 808	}
 809
 810out:
 811	clk_calc_subtree(clk, new_rate);
 812
 813	return top;
 814}
 815
 816/*
 817 * Notify about rate changes in a subtree. Always walk down the whole tree
 818 * so that in case of an error we can walk down the whole tree again and
 819 * abort the change.
 820 */
 821static struct clk *clk_propagate_rate_change(struct clk *clk, unsigned long event)
 
 822{
 823	struct hlist_node *tmp;
 824	struct clk *child, *fail_clk = NULL;
 825	int ret = NOTIFY_DONE;
 826
 827	if (clk->rate == clk->new_rate)
 828		return 0;
 
 
 
 
 
 
 829
 830	if (clk->notifier_count) {
 831		ret = __clk_notify(clk, event, clk->rate, clk->new_rate);
 832		if (ret == NOTIFY_BAD)
 833			fail_clk = clk;
 
 
 
 834	}
 835
 836	hlist_for_each_entry(child, tmp, &clk->children, child_node) {
 837		clk = clk_propagate_rate_change(child, event);
 838		if (clk)
 839			fail_clk = clk;
 
 840	}
 841
 842	return fail_clk;
 843}
 844
 845/*
 846 * walk down a subtree and set the new rates notifying the rate
 847 * change on the way
 848 */
 849static void clk_change_rate(struct clk *clk)
 850{
 851	struct clk *child;
 
 852	unsigned long old_rate;
 853	unsigned long best_parent_rate = 0;
 854	struct hlist_node *tmp;
 
 
 
 
 
 
 
 
 
 
 
 
 855
 856	old_rate = clk->rate;
 
 857
 858	if (clk->parent)
 859		best_parent_rate = clk->parent->rate;
 
 
 860
 861	if (clk->ops->set_rate)
 862		clk->ops->set_rate(clk->hw, clk->new_rate, best_parent_rate);
 
 
 
 
 
 
 
 
 
 
 863
 864	if (clk->ops->recalc_rate)
 865		clk->rate = clk->ops->recalc_rate(clk->hw, best_parent_rate);
 866	else
 867		clk->rate = best_parent_rate;
 
 
 
 
 
 
 
 868
 869	if (clk->notifier_count && old_rate != clk->rate)
 870		__clk_notify(clk, POST_RATE_CHANGE, old_rate, clk->rate);
 871
 872	hlist_for_each_entry(child, tmp, &clk->children, child_node)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 873		clk_change_rate(child);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 874}
 875
 876/**
 877 * clk_set_rate - specify a new rate for clk
 878 * @clk: the clk whose rate is being changed
 879 * @rate: the new rate for clk
 880 *
 881 * In the simplest case clk_set_rate will only adjust the rate of clk.
 882 *
 883 * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to
 884 * propagate up to clk's parent; whether or not this happens depends on the
 885 * outcome of clk's .round_rate implementation.  If *parent_rate is unchanged
 886 * after calling .round_rate then upstream parent propagation is ignored.  If
 887 * *parent_rate comes back with a new rate for clk's parent then we propagate
 888 * up to clk's parent and set it's rate.  Upward propagation will continue
 889 * until either a clk does not support the CLK_SET_RATE_PARENT flag or
 890 * .round_rate stops requesting changes to clk's parent_rate.
 891 *
 892 * Rate changes are accomplished via tree traversal that also recalculates the
 893 * rates for the clocks and fires off POST_RATE_CHANGE notifiers.
 894 *
 895 * Returns 0 on success, -EERROR otherwise.
 896 */
 897int clk_set_rate(struct clk *clk, unsigned long rate)
 898{
 899	struct clk *top, *fail_clk;
 900	int ret = 0;
 
 
 901
 902	/* prevent racing with updates to the clock topology */
 903	mutex_lock(&prepare_lock);
 904
 905	/* bail early if nothing to do */
 906	if (rate == clk->rate)
 907		goto out;
 908
 909	if ((clk->flags & CLK_SET_RATE_GATE) && clk->prepare_count) {
 910		ret = -EBUSY;
 911		goto out;
 912	}
 913
 914	/* calculate new rates and get the topmost changed clock */
 915	top = clk_calc_new_rates(clk, rate);
 916	if (!top) {
 917		ret = -EINVAL;
 918		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 919	}
 920
 921	/* notify that we are about to change rates */
 922	fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE);
 923	if (fail_clk) {
 924		pr_warn("%s: failed to set %s rate\n", __func__,
 925				fail_clk->name);
 926		clk_propagate_rate_change(top, ABORT_RATE_CHANGE);
 927		ret = -EBUSY;
 928		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 929	}
 930
 931	/* change the rates */
 932	clk_change_rate(top);
 933
 934	mutex_unlock(&prepare_lock);
 
 935
 936	return 0;
 937out:
 938	mutex_unlock(&prepare_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 939
 940	return ret;
 941}
 942EXPORT_SYMBOL_GPL(clk_set_rate);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 943
 944/**
 945 * clk_get_parent - return the parent of a clk
 946 * @clk: the clk whose parent gets returned
 947 *
 948 * Simply returns clk->parent.  Returns NULL if clk is NULL.
 949 */
 950struct clk *clk_get_parent(struct clk *clk)
 951{
 952	struct clk *parent;
 953
 954	mutex_lock(&prepare_lock);
 955	parent = __clk_get_parent(clk);
 956	mutex_unlock(&prepare_lock);
 
 
 
 
 957
 958	return parent;
 959}
 960EXPORT_SYMBOL_GPL(clk_get_parent);
 961
 962/*
 963 * .get_parent is mandatory for clocks with multiple possible parents.  It is
 964 * optional for single-parent clocks.  Always call .get_parent if it is
 965 * available and WARN if it is missing for multi-parent clocks.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 966 *
 967 * For single-parent clocks without .get_parent, first check to see if the
 968 * .parents array exists, and if so use it to avoid an expensive tree
 969 * traversal.  If .parents does not exist then walk the tree with __clk_lookup.
 970 */
 971static struct clk *__clk_init_parent(struct clk *clk)
 972{
 973	struct clk *ret = NULL;
 974	u8 index;
 975
 976	/* handle the trivial cases */
 
 
 977
 978	if (!clk->num_parents)
 979		goto out;
 980
 981	if (clk->num_parents == 1) {
 982		if (IS_ERR_OR_NULL(clk->parent))
 983			ret = clk->parent = __clk_lookup(clk->parent_names[0]);
 984		ret = clk->parent;
 985		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 986	}
 987
 988	if (!clk->ops->get_parent) {
 989		WARN(!clk->ops->get_parent,
 990			"%s: multi-parent clocks must implement .get_parent\n",
 991			__func__);
 992		goto out;
 993	};
 994
 995	/*
 996	 * Do our best to cache parent clocks in clk->parents.  This prevents
 997	 * unnecessary and expensive calls to __clk_lookup.  We don't set
 998	 * clk->parent here; that is done by the calling function
 999	 */
1000
1001	index = clk->ops->get_parent(clk->hw);
 
 
1002
1003	if (!clk->parents)
1004		clk->parents =
1005			kzalloc((sizeof(struct clk*) * clk->num_parents),
1006					GFP_KERNEL);
1007
1008	if (!clk->parents)
1009		ret = __clk_lookup(clk->parent_names[index]);
1010	else if (!clk->parents[index])
1011		ret = clk->parents[index] =
1012			__clk_lookup(clk->parent_names[index]);
1013	else
1014		ret = clk->parents[index];
 
 
 
1015
1016out:
1017	return ret;
1018}
1019
1020void __clk_reparent(struct clk *clk, struct clk *new_parent)
1021{
1022#ifdef CONFIG_COMMON_CLK_DEBUG
1023	struct dentry *d;
1024	struct dentry *new_parent_d;
1025#endif
1026
1027	if (!clk || !new_parent)
1028		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1029
1030	hlist_del(&clk->child_node);
 
1031
1032	if (new_parent)
1033		hlist_add_head(&clk->child_node, &new_parent->children);
1034	else
1035		hlist_add_head(&clk->child_node, &clk_orphan_list);
1036
1037#ifdef CONFIG_COMMON_CLK_DEBUG
1038	if (!inited)
1039		goto out;
1040
1041	if (new_parent)
1042		new_parent_d = new_parent->dentry;
1043	else
1044		new_parent_d = orphandir;
1045
1046	d = debugfs_rename(clk->dentry->d_parent, clk->dentry,
1047			new_parent_d, clk->name);
1048	if (d)
1049		clk->dentry = d;
1050	else
1051		pr_debug("%s: failed to rename debugfs entry for %s\n",
1052				__func__, clk->name);
1053out:
1054#endif
1055
1056	clk->parent = new_parent;
1057
1058	__clk_recalc_rates(clk, POST_RATE_CHANGE);
1059}
 
1060
1061static int __clk_set_parent(struct clk *clk, struct clk *parent)
1062{
1063	struct clk *old_parent;
1064	unsigned long flags;
1065	int ret = -EINVAL;
1066	u8 i;
1067
1068	old_parent = clk->parent;
1069
1070	if (!clk->parents)
1071		clk->parents = kzalloc((sizeof(struct clk*) * clk->num_parents),
1072								GFP_KERNEL);
1073
1074	/*
1075	 * find index of new parent clock using cached parent ptrs,
1076	 * or if not yet cached, use string name comparison and cache
1077	 * them now to avoid future calls to __clk_lookup.
1078	 */
1079	for (i = 0; i < clk->num_parents; i++) {
1080		if (clk->parents && clk->parents[i] == parent)
1081			break;
1082		else if (!strcmp(clk->parent_names[i], parent->name)) {
1083			if (clk->parents)
1084				clk->parents[i] = __clk_lookup(parent->name);
1085			break;
1086		}
1087	}
1088
1089	if (i == clk->num_parents) {
1090		pr_debug("%s: clock %s is not a possible parent of clock %s\n",
1091				__func__, parent->name, clk->name);
1092		goto out;
 
 
1093	}
1094
1095	/* migrate prepare and enable */
1096	if (clk->prepare_count)
1097		__clk_prepare(parent);
1098
1099	/* FIXME replace with clk_is_enabled(clk) someday */
1100	spin_lock_irqsave(&enable_lock, flags);
1101	if (clk->enable_count)
1102		__clk_enable(parent);
1103	spin_unlock_irqrestore(&enable_lock, flags);
1104
1105	/* change clock input source */
1106	ret = clk->ops->set_parent(clk->hw, i);
1107
1108	/* clean up old prepare and enable */
1109	spin_lock_irqsave(&enable_lock, flags);
1110	if (clk->enable_count)
1111		__clk_disable(old_parent);
1112	spin_unlock_irqrestore(&enable_lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1113
1114	if (clk->prepare_count)
1115		__clk_unprepare(old_parent);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1116
1117out:
1118	return ret;
1119}
1120
1121/**
1122 * clk_set_parent - switch the parent of a mux clk
1123 * @clk: the mux clk whose input we are switching
1124 * @parent: the new input to clk
1125 *
1126 * Re-parent clk to use parent as it's new input source.  If clk has the
1127 * CLK_SET_PARENT_GATE flag set then clk must be gated for this
1128 * operation to succeed.  After successfully changing clk's parent
1129 * clk_set_parent will update the clk topology, sysfs topology and
1130 * propagate rate recalculation via __clk_recalc_rates.  Returns 0 on
1131 * success, -EERROR otherwise.
1132 */
1133int clk_set_parent(struct clk *clk, struct clk *parent)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1134{
1135	int ret = 0;
1136
1137	if (!clk || !clk->ops)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1138		return -EINVAL;
1139
1140	if (!clk->ops->set_parent)
1141		return -ENOSYS;
1142
1143	/* prevent racing with updates to the clock topology */
1144	mutex_lock(&prepare_lock);
1145
1146	if (clk->parent == parent)
1147		goto out;
1148
1149	/* propagate PRE_RATE_CHANGE notifications */
1150	if (clk->notifier_count)
1151		ret = __clk_speculate_rates(clk, parent->rate);
1152
1153	/* abort if a driver objects */
1154	if (ret == NOTIFY_STOP)
1155		goto out;
1156
1157	/* only re-parent if the clock is not in use */
1158	if ((clk->flags & CLK_SET_PARENT_GATE) && clk->prepare_count)
1159		ret = -EBUSY;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1160	else
1161		ret = __clk_set_parent(clk, parent);
1162
1163	/* propagate ABORT_RATE_CHANGE if .set_parent failed */
1164	if (ret) {
1165		__clk_recalc_rates(clk, ABORT_RATE_CHANGE);
1166		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1167	}
1168
1169	/* propagate rate recalculation downstream */
1170	__clk_reparent(clk, parent);
1171
1172out:
1173	mutex_unlock(&prepare_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1174
1175	return ret;
1176}
1177EXPORT_SYMBOL_GPL(clk_set_parent);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1178
1179/**
1180 * __clk_init - initialize the data structures in a struct clk
1181 * @dev:	device initializing this clk, placeholder for now
1182 * @clk:	clk being initialized
1183 *
1184 * Initializes the lists in struct clk, queries the hardware for the
1185 * parent and rate and sets them both.
1186 */
1187int __clk_init(struct device *dev, struct clk *clk)
1188{
1189	int i, ret = 0;
1190	struct clk *orphan;
1191	struct hlist_node *tmp, *tmp2;
 
1192
1193	if (!clk)
1194		return -EINVAL;
1195
1196	mutex_lock(&prepare_lock);
 
 
 
 
1197
1198	/* check to see if a clock with this name is already registered */
1199	if (__clk_lookup(clk->name)) {
1200		pr_debug("%s: clk %s already initialized\n",
1201				__func__, clk->name);
1202		ret = -EEXIST;
1203		goto out;
1204	}
1205
1206	/* check that clk_ops are sane.  See Documentation/clk.txt */
1207	if (clk->ops->set_rate &&
1208			!(clk->ops->round_rate && clk->ops->recalc_rate)) {
1209		pr_warning("%s: %s must implement .round_rate & .recalc_rate\n",
1210				__func__, clk->name);
 
1211		ret = -EINVAL;
1212		goto out;
1213	}
1214
1215	if (clk->ops->set_parent && !clk->ops->get_parent) {
1216		pr_warning("%s: %s must implement .get_parent & .set_parent\n",
1217				__func__, clk->name);
1218		ret = -EINVAL;
1219		goto out;
1220	}
1221
1222	/* throw a WARN if any entries in parent_names are NULL */
1223	for (i = 0; i < clk->num_parents; i++)
1224		WARN(!clk->parent_names[i],
1225				"%s: invalid NULL in %s's .parent_names\n",
1226				__func__, clk->name);
 
 
 
 
 
 
 
 
 
1227
1228	/*
1229	 * Allocate an array of struct clk *'s to avoid unnecessary string
1230	 * look-ups of clk's possible parents.  This can fail for clocks passed
1231	 * in to clk_init during early boot; thus any access to clk->parents[]
1232	 * must always check for a NULL pointer and try to populate it if
1233	 * necessary.
 
 
 
 
1234	 *
1235	 * If clk->parents is not NULL we skip this entire block.  This allows
1236	 * for clock drivers to statically initialize clk->parents.
1237	 */
1238	if (clk->num_parents && !clk->parents) {
1239		clk->parents = kmalloc((sizeof(struct clk*) * clk->num_parents),
1240				GFP_KERNEL);
1241		/*
1242		 * __clk_lookup returns NULL for parents that have not been
1243		 * clk_init'd; thus any access to clk->parents[] must check
1244		 * for a NULL pointer.  We can always perform lazy lookups for
1245		 * missing parents later on.
1246		 */
1247		if (clk->parents)
1248			for (i = 0; i < clk->num_parents; i++)
1249				clk->parents[i] =
1250					__clk_lookup(clk->parent_names[i]);
1251	}
1252
1253	clk->parent = __clk_init_parent(clk);
1254
1255	/*
1256	 * Populate clk->parent if parent has already been __clk_init'd.  If
1257	 * parent has not yet been __clk_init'd then place clk in the orphan
1258	 * list.  If clk has set the CLK_IS_ROOT flag then place it in the root
1259	 * clk list.
1260	 *
1261	 * Every time a new clk is clk_init'd then we walk the list of orphan
1262	 * clocks and re-parent any that are children of the clock currently
1263	 * being clk_init'd.
1264	 */
1265	if (clk->parent)
1266		hlist_add_head(&clk->child_node,
1267				&clk->parent->children);
1268	else if (clk->flags & CLK_IS_ROOT)
1269		hlist_add_head(&clk->child_node, &clk_root_list);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1270	else
1271		hlist_add_head(&clk->child_node, &clk_orphan_list);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1272
1273	/*
1274	 * Set clk's rate.  The preferred method is to use .recalc_rate.  For
1275	 * simple clocks and lazy developers the default fallback is to use the
1276	 * parent's rate.  If a clock doesn't have a parent (or is orphaned)
1277	 * then rate is set to zero.
1278	 */
1279	if (clk->ops->recalc_rate)
1280		clk->rate = clk->ops->recalc_rate(clk->hw,
1281				__clk_get_rate(clk->parent));
1282	else if (clk->parent)
1283		clk->rate = clk->parent->rate;
1284	else
1285		clk->rate = 0;
 
1286
1287	/*
1288	 * walk the list of orphan clocks and reparent any that are children of
1289	 * this clock
 
1290	 */
1291	hlist_for_each_entry_safe(orphan, tmp, tmp2, &clk_orphan_list, child_node)
1292		for (i = 0; i < orphan->num_parents; i++)
1293			if (!strcmp(clk->name, orphan->parent_names[i])) {
1294				__clk_reparent(orphan, clk);
1295				break;
1296			}
 
1297
1298	/*
1299	 * optional platform-specific magic
1300	 *
1301	 * The .init callback is not used by any of the basic clock types, but
1302	 * exists for weird hardware that must perform initialization magic.
1303	 * Please consider other ways of solving initialization problems before
1304	 * using this callback, as it's use is discouraged.
1305	 */
1306	if (clk->ops->init)
1307		clk->ops->init(clk->hw);
1308
1309	clk_debug_register(clk);
1310
 
1311out:
1312	mutex_unlock(&prepare_lock);
 
 
 
 
 
 
 
 
1313
1314	return ret;
1315}
1316
1317/**
1318 * __clk_register - register a clock and return a cookie.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1319 *
1320 * Same as clk_register, except that the .clk field inside hw shall point to a
1321 * preallocated (generally statically allocated) struct clk. None of the fields
1322 * of the struct clk need to be initialized.
1323 *
1324 * The data pointed to by .init and .clk field shall NOT be marked as init
1325 * data.
1326 *
1327 * __clk_register is only exposed via clk-private.h and is intended for use with
1328 * very large numbers of clocks that need to be statically initialized.  It is
1329 * a layering violation to include clk-private.h from any code which implements
1330 * a clock's .ops; as such any statically initialized clock data MUST be in a
1331 * separate C file from the logic that implements it's operations.  Returns 0
1332 * on success, otherwise an error code.
1333 */
1334struct clk *__clk_register(struct device *dev, struct clk_hw *hw)
 
1335{
1336	int ret;
1337	struct clk *clk;
1338
1339	clk = hw->clk;
1340	clk->name = hw->init->name;
1341	clk->ops = hw->init->ops;
1342	clk->hw = hw;
1343	clk->flags = hw->init->flags;
1344	clk->parent_names = hw->init->parent_names;
1345	clk->num_parents = hw->init->num_parents;
1346
1347	ret = __clk_init(dev, clk);
1348	if (ret)
1349		return ERR_PTR(ret);
 
1350
1351	return clk;
1352}
1353EXPORT_SYMBOL_GPL(__clk_register);
1354
1355/**
1356 * clk_register - allocate a new clock, register it and return an opaque cookie
1357 * @dev: device that is registering this clock
1358 * @hw: link to hardware-specific clock data
1359 *
1360 * clk_register is the primary interface for populating the clock tree with new
1361 * clock nodes.  It returns a pointer to the newly allocated struct clk which
1362 * cannot be dereferenced by driver code but may be used in conjuction with the
1363 * rest of the clock API.  In the event of an error clk_register will return an
1364 * error code; drivers must test for an error code after calling clk_register.
1365 */
1366struct clk *clk_register(struct device *dev, struct clk_hw *hw)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1367{
1368	int i, ret;
1369	struct clk *clk;
 
1370
1371	clk = kzalloc(sizeof(*clk), GFP_KERNEL);
1372	if (!clk) {
1373		pr_err("%s: could not allocate clk\n", __func__);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1374		ret = -ENOMEM;
1375		goto fail_out;
1376	}
1377
1378	clk->name = kstrdup(hw->init->name, GFP_KERNEL);
1379	if (!clk->name) {
1380		pr_err("%s: could not allocate clk->name\n", __func__);
1381		ret = -ENOMEM;
1382		goto fail_name;
1383	}
1384	clk->ops = hw->init->ops;
1385	clk->hw = hw;
1386	clk->flags = hw->init->flags;
1387	clk->num_parents = hw->init->num_parents;
1388	hw->clk = clk;
1389
1390	/* allocate local copy in case parent_names is __initdata */
1391	clk->parent_names = kzalloc((sizeof(char*) * clk->num_parents),
1392			GFP_KERNEL);
1393
1394	if (!clk->parent_names) {
1395		pr_err("%s: could not allocate clk->parent_names\n", __func__);
1396		ret = -ENOMEM;
1397		goto fail_parent_names;
1398	}
 
1399
 
 
 
 
 
 
 
 
 
 
 
 
1400
1401	/* copy each string name in case parent_names is __initdata */
1402	for (i = 0; i < clk->num_parents; i++) {
1403		clk->parent_names[i] = kstrdup(hw->init->parent_names[i],
1404						GFP_KERNEL);
1405		if (!clk->parent_names[i]) {
1406			pr_err("%s: could not copy parent_names\n", __func__);
1407			ret = -ENOMEM;
1408			goto fail_parent_names_copy;
1409		}
 
 
 
 
 
1410	}
1411
1412	ret = __clk_init(dev, clk);
 
 
1413	if (!ret)
1414		return clk;
1415
1416fail_parent_names_copy:
1417	while (--i >= 0)
1418		kfree(clk->parent_names[i]);
1419	kfree(clk->parent_names);
1420fail_parent_names:
1421	kfree(clk->name);
 
 
 
 
 
 
1422fail_name:
1423	kfree(clk);
1424fail_out:
1425	return ERR_PTR(ret);
1426}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1427EXPORT_SYMBOL_GPL(clk_register);
1428
1429/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1430 * clk_unregister - unregister a currently registered clock
1431 * @clk: clock to unregister
1432 *
1433 * Currently unimplemented.
1434 */
1435void clk_unregister(struct clk *clk) {}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1436EXPORT_SYMBOL_GPL(clk_unregister);
1437
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1438/***        clk rate change notifiers        ***/
1439
1440/**
1441 * clk_notifier_register - add a clk rate change notifier
1442 * @clk: struct clk * to watch
1443 * @nb: struct notifier_block * with callback info
1444 *
1445 * Request notification when clk's rate changes.  This uses an SRCU
1446 * notifier because we want it to block and notifier unregistrations are
1447 * uncommon.  The callbacks associated with the notifier must not
1448 * re-enter into the clk framework by calling any top-level clk APIs;
1449 * this will cause a nested prepare_lock mutex.
1450 *
1451 * Pre-change notifier callbacks will be passed the current, pre-change
1452 * rate of the clk via struct clk_notifier_data.old_rate.  The new,
1453 * post-change rate of the clk is passed via struct
1454 * clk_notifier_data.new_rate.
1455 *
1456 * Post-change notifiers will pass the now-current, post-change rate of
1457 * the clk in both struct clk_notifier_data.old_rate and struct
1458 * clk_notifier_data.new_rate.
1459 *
1460 * Abort-change notifiers are effectively the opposite of pre-change
1461 * notifiers: the original pre-change clk rate is passed in via struct
1462 * clk_notifier_data.new_rate and the failed post-change rate is passed
1463 * in via struct clk_notifier_data.old_rate.
1464 *
1465 * clk_notifier_register() must be called from non-atomic context.
1466 * Returns -EINVAL if called with null arguments, -ENOMEM upon
1467 * allocation failure; otherwise, passes along the return value of
1468 * srcu_notifier_chain_register().
1469 */
1470int clk_notifier_register(struct clk *clk, struct notifier_block *nb)
1471{
1472	struct clk_notifier *cn;
1473	int ret = -ENOMEM;
1474
1475	if (!clk || !nb)
1476		return -EINVAL;
1477
1478	mutex_lock(&prepare_lock);
1479
1480	/* search the list of notifiers for this clk */
1481	list_for_each_entry(cn, &clk_notifier_list, node)
1482		if (cn->clk == clk)
1483			break;
1484
1485	/* if clk wasn't in the notifier list, allocate new clk_notifier */
1486	if (cn->clk != clk) {
1487		cn = kzalloc(sizeof(struct clk_notifier), GFP_KERNEL);
1488		if (!cn)
1489			goto out;
1490
1491		cn->clk = clk;
1492		srcu_init_notifier_head(&cn->notifier_head);
1493
1494		list_add(&cn->node, &clk_notifier_list);
1495	}
1496
 
1497	ret = srcu_notifier_chain_register(&cn->notifier_head, nb);
1498
1499	clk->notifier_count++;
1500
1501out:
1502	mutex_unlock(&prepare_lock);
1503
1504	return ret;
1505}
1506EXPORT_SYMBOL_GPL(clk_notifier_register);
1507
1508/**
1509 * clk_notifier_unregister - remove a clk rate change notifier
1510 * @clk: struct clk *
1511 * @nb: struct notifier_block * with callback info
1512 *
1513 * Request no further notification for changes to 'clk' and frees memory
1514 * allocated in clk_notifier_register.
1515 *
1516 * Returns -EINVAL if called with null arguments; otherwise, passes
1517 * along the return value of srcu_notifier_chain_unregister().
1518 */
1519int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb)
1520{
1521	struct clk_notifier *cn = NULL;
1522	int ret = -EINVAL;
1523
1524	if (!clk || !nb)
1525		return -EINVAL;
1526
1527	mutex_lock(&prepare_lock);
1528
1529	list_for_each_entry(cn, &clk_notifier_list, node)
1530		if (cn->clk == clk)
 
 
 
 
 
 
 
 
 
 
1531			break;
 
 
1532
1533	if (cn->clk == clk) {
1534		ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb);
1535
1536		clk->notifier_count--;
 
 
1537
1538		/* XXX the notifier code should handle this better */
1539		if (!cn->notifier_head.head) {
1540			srcu_cleanup_notifier_head(&cn->notifier_head);
1541			kfree(cn);
1542		}
1543
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1544	} else {
1545		ret = -ENOENT;
1546	}
1547
1548	mutex_unlock(&prepare_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1549
1550	return ret;
1551}
1552EXPORT_SYMBOL_GPL(clk_notifier_unregister);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com>
   4 * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org>
   5 *
   6 * Standard functionality for the common clock API.  See Documentation/driver-api/clk.rst
 
 
 
 
   7 */
   8
   9#include <linux/clk.h>
  10#include <linux/clk-provider.h>
  11#include <linux/clk/clk-conf.h>
  12#include <linux/module.h>
  13#include <linux/mutex.h>
  14#include <linux/spinlock.h>
  15#include <linux/err.h>
  16#include <linux/list.h>
  17#include <linux/slab.h>
  18#include <linux/of.h>
  19#include <linux/device.h>
  20#include <linux/init.h>
  21#include <linux/pm_runtime.h>
  22#include <linux/sched.h>
  23#include <linux/clkdev.h>
  24
  25#include "clk.h"
  26
  27static DEFINE_SPINLOCK(enable_lock);
  28static DEFINE_MUTEX(prepare_lock);
  29
  30static struct task_struct *prepare_owner;
  31static struct task_struct *enable_owner;
  32
  33static int prepare_refcnt;
  34static int enable_refcnt;
  35
  36static HLIST_HEAD(clk_root_list);
  37static HLIST_HEAD(clk_orphan_list);
  38static LIST_HEAD(clk_notifier_list);
  39
  40static struct hlist_head *all_lists[] = {
  41	&clk_root_list,
  42	&clk_orphan_list,
  43	NULL,
  44};
  45
  46/***    private data structures    ***/
  47
  48struct clk_parent_map {
  49	const struct clk_hw	*hw;
  50	struct clk_core		*core;
  51	const char		*fw_name;
  52	const char		*name;
  53	int			index;
  54};
  55
  56struct clk_core {
  57	const char		*name;
  58	const struct clk_ops	*ops;
  59	struct clk_hw		*hw;
  60	struct module		*owner;
  61	struct device		*dev;
  62	struct device_node	*of_node;
  63	struct clk_core		*parent;
  64	struct clk_parent_map	*parents;
  65	u8			num_parents;
  66	u8			new_parent_index;
  67	unsigned long		rate;
  68	unsigned long		req_rate;
  69	unsigned long		new_rate;
  70	struct clk_core		*new_parent;
  71	struct clk_core		*new_child;
  72	unsigned long		flags;
  73	bool			orphan;
  74	bool			rpm_enabled;
  75	unsigned int		enable_count;
  76	unsigned int		prepare_count;
  77	unsigned int		protect_count;
  78	unsigned long		min_rate;
  79	unsigned long		max_rate;
  80	unsigned long		accuracy;
  81	int			phase;
  82	struct clk_duty		duty;
  83	struct hlist_head	children;
  84	struct hlist_node	child_node;
  85	struct hlist_head	clks;
  86	unsigned int		notifier_count;
  87#ifdef CONFIG_DEBUG_FS
  88	struct dentry		*dentry;
  89	struct hlist_node	debug_node;
  90#endif
  91	struct kref		ref;
  92};
  93
  94#define CREATE_TRACE_POINTS
  95#include <trace/events/clk.h>
  96
  97struct clk {
  98	struct clk_core	*core;
  99	struct device *dev;
 100	const char *dev_id;
 101	const char *con_id;
 102	unsigned long min_rate;
 103	unsigned long max_rate;
 104	unsigned int exclusive_count;
 105	struct hlist_node clks_node;
 106};
 107
 108/***           runtime pm          ***/
 109static int clk_pm_runtime_get(struct clk_core *core)
 110{
 111	int ret;
 
 112
 113	if (!core->rpm_enabled)
 114		return 0;
 115
 116	ret = pm_runtime_get_sync(core->dev);
 117	if (ret < 0) {
 118		pm_runtime_put_noidle(core->dev);
 119		return ret;
 120	}
 121	return 0;
 122}
 123
 124static void clk_pm_runtime_put(struct clk_core *core)
 125{
 126	if (!core->rpm_enabled)
 127		return;
 128
 129	pm_runtime_put_sync(core->dev);
 130}
 131
 132/***           locking             ***/
 133static void clk_prepare_lock(void)
 134{
 135	if (!mutex_trylock(&prepare_lock)) {
 136		if (prepare_owner == current) {
 137			prepare_refcnt++;
 138			return;
 139		}
 140		mutex_lock(&prepare_lock);
 141	}
 142	WARN_ON_ONCE(prepare_owner != NULL);
 143	WARN_ON_ONCE(prepare_refcnt != 0);
 144	prepare_owner = current;
 145	prepare_refcnt = 1;
 146}
 
 
 
 
 
 
 
 
 
 147
 148static void clk_prepare_unlock(void)
 149{
 150	WARN_ON_ONCE(prepare_owner != current);
 151	WARN_ON_ONCE(prepare_refcnt == 0);
 152
 153	if (--prepare_refcnt)
 154		return;
 155	prepare_owner = NULL;
 156	mutex_unlock(&prepare_lock);
 157}
 158
 159static unsigned long clk_enable_lock(void)
 160	__acquires(enable_lock)
 161{
 162	unsigned long flags;
 
 
 163
 164	/*
 165	 * On UP systems, spin_trylock_irqsave() always returns true, even if
 166	 * we already hold the lock. So, in that case, we rely only on
 167	 * reference counting.
 168	 */
 169	if (!IS_ENABLED(CONFIG_SMP) ||
 170	    !spin_trylock_irqsave(&enable_lock, flags)) {
 171		if (enable_owner == current) {
 172			enable_refcnt++;
 173			__acquire(enable_lock);
 174			if (!IS_ENABLED(CONFIG_SMP))
 175				local_save_flags(flags);
 176			return flags;
 177		}
 178		spin_lock_irqsave(&enable_lock, flags);
 179	}
 180	WARN_ON_ONCE(enable_owner != NULL);
 181	WARN_ON_ONCE(enable_refcnt != 0);
 182	enable_owner = current;
 183	enable_refcnt = 1;
 184	return flags;
 185}
 186
 187static void clk_enable_unlock(unsigned long flags)
 188	__releases(enable_lock)
 189{
 190	WARN_ON_ONCE(enable_owner != current);
 191	WARN_ON_ONCE(enable_refcnt == 0);
 192
 193	if (--enable_refcnt) {
 194		__release(enable_lock);
 195		return;
 196	}
 197	enable_owner = NULL;
 198	spin_unlock_irqrestore(&enable_lock, flags);
 199}
 200
 201static bool clk_core_rate_is_protected(struct clk_core *core)
 202{
 203	return core->protect_count;
 204}
 205
 206static bool clk_core_is_prepared(struct clk_core *core)
 207{
 208	bool ret = false;
 209
 210	/*
 211	 * .is_prepared is optional for clocks that can prepare
 212	 * fall back to software usage counter if it is missing
 213	 */
 214	if (!core->ops->is_prepared)
 215		return core->prepare_count;
 216
 217	if (!clk_pm_runtime_get(core)) {
 218		ret = core->ops->is_prepared(core->hw);
 219		clk_pm_runtime_put(core);
 220	}
 221
 
 
 222	return ret;
 223}
 224
 225static bool clk_core_is_enabled(struct clk_core *core)
 
 
 
 
 
 
 
 
 
 
 
 226{
 227	bool ret = false;
 
 
 
 
 
 228
 229	/*
 230	 * .is_enabled is only mandatory for clocks that gate
 231	 * fall back to software usage counter if .is_enabled is missing
 232	 */
 233	if (!core->ops->is_enabled)
 234		return core->enable_count;
 235
 236	/*
 237	 * Check if clock controller's device is runtime active before
 238	 * calling .is_enabled callback. If not, assume that clock is
 239	 * disabled, because we might be called from atomic context, from
 240	 * which pm_runtime_get() is not allowed.
 241	 * This function is called mainly from clk_disable_unused_subtree,
 242	 * which ensures proper runtime pm activation of controller before
 243	 * taking enable spinlock, but the below check is needed if one tries
 244	 * to call it from other places.
 245	 */
 246	if (core->rpm_enabled) {
 247		pm_runtime_get_noresume(core->dev);
 248		if (!pm_runtime_active(core->dev)) {
 249			ret = false;
 250			goto done;
 251		}
 252	}
 
 
 
 253
 254	ret = core->ops->is_enabled(core->hw);
 255done:
 256	if (core->rpm_enabled)
 257		pm_runtime_put(core->dev);
 258
 
 259	return ret;
 260}
 261
 262/***    helper functions   ***/
 263
 264const char *__clk_get_name(const struct clk *clk)
 
 
 
 
 
 
 
 
 
 
 265{
 266	return !clk ? NULL : clk->core->name;
 267}
 268EXPORT_SYMBOL_GPL(__clk_get_name);
 269
 270const char *clk_hw_get_name(const struct clk_hw *hw)
 271{
 272	return hw->core->name;
 273}
 274EXPORT_SYMBOL_GPL(clk_hw_get_name);
 275
 276struct clk_hw *__clk_get_hw(struct clk *clk)
 277{
 278	return !clk ? NULL : clk->core->hw;
 279}
 280EXPORT_SYMBOL_GPL(__clk_get_hw);
 281
 282unsigned int clk_hw_get_num_parents(const struct clk_hw *hw)
 283{
 284	return hw->core->num_parents;
 285}
 286EXPORT_SYMBOL_GPL(clk_hw_get_num_parents);
 287
 288struct clk_hw *clk_hw_get_parent(const struct clk_hw *hw)
 289{
 290	return hw->core->parent ? hw->core->parent->hw : NULL;
 291}
 292EXPORT_SYMBOL_GPL(clk_hw_get_parent);
 293
 294static struct clk_core *__clk_lookup_subtree(const char *name,
 295					     struct clk_core *core)
 296{
 297	struct clk_core *child;
 298	struct clk_core *ret;
 299
 300	if (!strcmp(core->name, name))
 301		return core;
 302
 303	hlist_for_each_entry(child, &core->children, child_node) {
 304		ret = __clk_lookup_subtree(name, child);
 305		if (ret)
 306			return ret;
 307	}
 308
 309	return NULL;
 310}
 311
 312static struct clk_core *clk_core_lookup(const char *name)
 313{
 314	struct clk_core *root_clk;
 315	struct clk_core *ret;
 316
 317	if (!name)
 318		return NULL;
 319
 320	/* search the 'proper' clk tree first */
 321	hlist_for_each_entry(root_clk, &clk_root_list, child_node) {
 322		ret = __clk_lookup_subtree(name, root_clk);
 323		if (ret)
 324			return ret;
 325	}
 326
 327	/* if not found, then search the orphan tree */
 328	hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) {
 329		ret = __clk_lookup_subtree(name, root_clk);
 330		if (ret)
 331			return ret;
 332	}
 333
 334	return NULL;
 335}
 336
 337#ifdef CONFIG_OF
 338static int of_parse_clkspec(const struct device_node *np, int index,
 339			    const char *name, struct of_phandle_args *out_args);
 340static struct clk_hw *
 341of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec);
 342#else
 343static inline int of_parse_clkspec(const struct device_node *np, int index,
 344				   const char *name,
 345				   struct of_phandle_args *out_args)
 346{
 347	return -ENOENT;
 348}
 349static inline struct clk_hw *
 350of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec)
 351{
 352	return ERR_PTR(-ENOENT);
 353}
 354#endif
 355
 356/**
 357 * clk_core_get - Find the clk_core parent of a clk
 358 * @core: clk to find parent of
 359 * @p_index: parent index to search for
 360 *
 361 * This is the preferred method for clk providers to find the parent of a
 362 * clk when that parent is external to the clk controller. The parent_names
 363 * array is indexed and treated as a local name matching a string in the device
 364 * node's 'clock-names' property or as the 'con_id' matching the device's
 365 * dev_name() in a clk_lookup. This allows clk providers to use their own
 366 * namespace instead of looking for a globally unique parent string.
 367 *
 368 * For example the following DT snippet would allow a clock registered by the
 369 * clock-controller@c001 that has a clk_init_data::parent_data array
 370 * with 'xtal' in the 'name' member to find the clock provided by the
 371 * clock-controller@f00abcd without needing to get the globally unique name of
 372 * the xtal clk.
 373 *
 374 *      parent: clock-controller@f00abcd {
 375 *              reg = <0xf00abcd 0xabcd>;
 376 *              #clock-cells = <0>;
 377 *      };
 378 *
 379 *      clock-controller@c001 {
 380 *              reg = <0xc001 0xf00d>;
 381 *              clocks = <&parent>;
 382 *              clock-names = "xtal";
 383 *              #clock-cells = <1>;
 384 *      };
 385 *
 386 * Returns: -ENOENT when the provider can't be found or the clk doesn't
 387 * exist in the provider or the name can't be found in the DT node or
 388 * in a clkdev lookup. NULL when the provider knows about the clk but it
 389 * isn't provided on this system.
 390 * A valid clk_core pointer when the clk can be found in the provider.
 391 */
 392static struct clk_core *clk_core_get(struct clk_core *core, u8 p_index)
 393{
 394	const char *name = core->parents[p_index].fw_name;
 395	int index = core->parents[p_index].index;
 396	struct clk_hw *hw = ERR_PTR(-ENOENT);
 397	struct device *dev = core->dev;
 398	const char *dev_id = dev ? dev_name(dev) : NULL;
 399	struct device_node *np = core->of_node;
 400	struct of_phandle_args clkspec;
 401
 402	if (np && (name || index >= 0) &&
 403	    !of_parse_clkspec(np, index, name, &clkspec)) {
 404		hw = of_clk_get_hw_from_clkspec(&clkspec);
 405		of_node_put(clkspec.np);
 406	} else if (name) {
 407		/*
 408		 * If the DT search above couldn't find the provider fallback to
 409		 * looking up via clkdev based clk_lookups.
 410		 */
 411		hw = clk_find_hw(dev_id, name);
 412	}
 413
 414	if (IS_ERR(hw))
 415		return ERR_CAST(hw);
 416
 417	return hw->core;
 418}
 419
 420static void clk_core_fill_parent_index(struct clk_core *core, u8 index)
 421{
 422	struct clk_parent_map *entry = &core->parents[index];
 423	struct clk_core *parent;
 424
 425	if (entry->hw) {
 426		parent = entry->hw->core;
 427		/*
 428		 * We have a direct reference but it isn't registered yet?
 429		 * Orphan it and let clk_reparent() update the orphan status
 430		 * when the parent is registered.
 431		 */
 432		if (!parent)
 433			parent = ERR_PTR(-EPROBE_DEFER);
 434	} else {
 435		parent = clk_core_get(core, index);
 436		if (PTR_ERR(parent) == -ENOENT && entry->name)
 437			parent = clk_core_lookup(entry->name);
 438	}
 439
 440	/* Only cache it if it's not an error */
 441	if (!IS_ERR(parent))
 442		entry->core = parent;
 443}
 444
 445static struct clk_core *clk_core_get_parent_by_index(struct clk_core *core,
 446							 u8 index)
 447{
 448	if (!core || index >= core->num_parents || !core->parents)
 449		return NULL;
 450
 451	if (!core->parents[index].core)
 452		clk_core_fill_parent_index(core, index);
 453
 454	return core->parents[index].core;
 
 455}
 456
 457struct clk_hw *
 458clk_hw_get_parent_by_index(const struct clk_hw *hw, unsigned int index)
 459{
 460	struct clk_core *parent;
 
 461
 462	parent = clk_core_get_parent_by_index(hw->core, index);
 463
 464	return !parent ? NULL : parent->hw;
 465}
 466EXPORT_SYMBOL_GPL(clk_hw_get_parent_by_index);
 467
 468unsigned int __clk_get_enable_count(struct clk *clk)
 469{
 470	return !clk ? 0 : clk->core->enable_count;
 471}
 472
 473static unsigned long clk_core_get_rate_nolock(struct clk_core *core)
 474{
 475	if (!core)
 476		return 0;
 477
 478	if (!core->num_parents || core->parent)
 479		return core->rate;
 480
 481	/*
 482	 * Clk must have a parent because num_parents > 0 but the parent isn't
 483	 * known yet. Best to return 0 as the rate of this clk until we can
 484	 * properly recalc the rate based on the parent's rate.
 485	 */
 486	return 0;
 487}
 
 488
 489unsigned long clk_hw_get_rate(const struct clk_hw *hw)
 490{
 491	return clk_core_get_rate_nolock(hw->core);
 492}
 493EXPORT_SYMBOL_GPL(clk_hw_get_rate);
 494
 495static unsigned long clk_core_get_accuracy_no_lock(struct clk_core *core)
 496{
 497	if (!core)
 498		return 0;
 499
 500	return core->accuracy;
 501}
 502
 503unsigned long clk_hw_get_flags(const struct clk_hw *hw)
 504{
 505	return hw->core->flags;
 506}
 507EXPORT_SYMBOL_GPL(clk_hw_get_flags);
 508
 509bool clk_hw_is_prepared(const struct clk_hw *hw)
 510{
 511	return clk_core_is_prepared(hw->core);
 512}
 513EXPORT_SYMBOL_GPL(clk_hw_is_prepared);
 514
 515bool clk_hw_rate_is_protected(const struct clk_hw *hw)
 516{
 517	return clk_core_rate_is_protected(hw->core);
 518}
 519EXPORT_SYMBOL_GPL(clk_hw_rate_is_protected);
 520
 521bool clk_hw_is_enabled(const struct clk_hw *hw)
 522{
 523	return clk_core_is_enabled(hw->core);
 524}
 525EXPORT_SYMBOL_GPL(clk_hw_is_enabled);
 526
 527bool __clk_is_enabled(struct clk *clk)
 528{
 529	if (!clk)
 530		return false;
 531
 532	return clk_core_is_enabled(clk->core);
 533}
 534EXPORT_SYMBOL_GPL(__clk_is_enabled);
 535
 536static bool mux_is_better_rate(unsigned long rate, unsigned long now,
 537			   unsigned long best, unsigned long flags)
 538{
 539	if (flags & CLK_MUX_ROUND_CLOSEST)
 540		return abs(now - rate) < abs(best - rate);
 541
 542	return now <= rate && now > best;
 543}
 544
 545int clk_mux_determine_rate_flags(struct clk_hw *hw,
 546				 struct clk_rate_request *req,
 547				 unsigned long flags)
 548{
 549	struct clk_core *core = hw->core, *parent, *best_parent = NULL;
 550	int i, num_parents, ret;
 551	unsigned long best = 0;
 552	struct clk_rate_request parent_req = *req;
 553
 554	/* if NO_REPARENT flag set, pass through to current parent */
 555	if (core->flags & CLK_SET_RATE_NO_REPARENT) {
 556		parent = core->parent;
 557		if (core->flags & CLK_SET_RATE_PARENT) {
 558			ret = __clk_determine_rate(parent ? parent->hw : NULL,
 559						   &parent_req);
 560			if (ret)
 561				return ret;
 562
 563			best = parent_req.rate;
 564		} else if (parent) {
 565			best = clk_core_get_rate_nolock(parent);
 566		} else {
 567			best = clk_core_get_rate_nolock(core);
 568		}
 569
 
 
 570		goto out;
 571	}
 572
 573	/* find the parent that can provide the fastest rate <= rate */
 574	num_parents = core->num_parents;
 575	for (i = 0; i < num_parents; i++) {
 576		parent = clk_core_get_parent_by_index(core, i);
 577		if (!parent)
 578			continue;
 579
 580		if (core->flags & CLK_SET_RATE_PARENT) {
 581			parent_req = *req;
 582			ret = __clk_determine_rate(parent->hw, &parent_req);
 583			if (ret)
 584				continue;
 585		} else {
 586			parent_req.rate = clk_core_get_rate_nolock(parent);
 587		}
 588
 589		if (mux_is_better_rate(req->rate, parent_req.rate,
 590				       best, flags)) {
 591			best_parent = parent;
 592			best = parent_req.rate;
 593		}
 594	}
 595
 596	if (!best_parent)
 597		return -EINVAL;
 598
 599out:
 600	if (best_parent)
 601		req->best_parent_hw = best_parent->hw;
 602	req->best_parent_rate = best;
 603	req->rate = best;
 604
 605	return 0;
 606}
 607EXPORT_SYMBOL_GPL(clk_mux_determine_rate_flags);
 608
 609struct clk *__clk_lookup(const char *name)
 610{
 611	struct clk_core *core = clk_core_lookup(name);
 612
 613	return !core ? NULL : core->hw->clk;
 614}
 615
 616static void clk_core_get_boundaries(struct clk_core *core,
 617				    unsigned long *min_rate,
 618				    unsigned long *max_rate)
 619{
 620	struct clk *clk_user;
 621
 622	lockdep_assert_held(&prepare_lock);
 623
 624	*min_rate = core->min_rate;
 625	*max_rate = core->max_rate;
 626
 627	hlist_for_each_entry(clk_user, &core->clks, clks_node)
 628		*min_rate = max(*min_rate, clk_user->min_rate);
 629
 630	hlist_for_each_entry(clk_user, &core->clks, clks_node)
 631		*max_rate = min(*max_rate, clk_user->max_rate);
 632}
 633
 634void clk_hw_set_rate_range(struct clk_hw *hw, unsigned long min_rate,
 635			   unsigned long max_rate)
 636{
 637	hw->core->min_rate = min_rate;
 638	hw->core->max_rate = max_rate;
 639}
 640EXPORT_SYMBOL_GPL(clk_hw_set_rate_range);
 641
 642/*
 643 * __clk_mux_determine_rate - clk_ops::determine_rate implementation for a mux type clk
 644 * @hw: mux type clk to determine rate on
 645 * @req: rate request, also used to return preferred parent and frequencies
 646 *
 647 * Helper for finding best parent to provide a given frequency. This can be used
 648 * directly as a determine_rate callback (e.g. for a mux), or from a more
 649 * complex clock that may combine a mux with other operations.
 650 *
 651 * Returns: 0 on success, -EERROR value on error
 652 */
 653int __clk_mux_determine_rate(struct clk_hw *hw,
 654			     struct clk_rate_request *req)
 655{
 656	return clk_mux_determine_rate_flags(hw, req, 0);
 657}
 658EXPORT_SYMBOL_GPL(__clk_mux_determine_rate);
 659
 660int __clk_mux_determine_rate_closest(struct clk_hw *hw,
 661				     struct clk_rate_request *req)
 662{
 663	return clk_mux_determine_rate_flags(hw, req, CLK_MUX_ROUND_CLOSEST);
 664}
 665EXPORT_SYMBOL_GPL(__clk_mux_determine_rate_closest);
 666
 667/***        clk api        ***/
 668
 669static void clk_core_rate_unprotect(struct clk_core *core)
 670{
 671	lockdep_assert_held(&prepare_lock);
 672
 673	if (!core)
 674		return;
 675
 676	if (WARN(core->protect_count == 0,
 677	    "%s already unprotected\n", core->name))
 678		return;
 679
 680	if (--core->protect_count > 0)
 681		return;
 682
 683	clk_core_rate_unprotect(core->parent);
 684}
 685
 686static int clk_core_rate_nuke_protect(struct clk_core *core)
 687{
 688	int ret;
 689
 690	lockdep_assert_held(&prepare_lock);
 691
 692	if (!core)
 693		return -EINVAL;
 694
 695	if (core->protect_count == 0)
 696		return 0;
 697
 698	ret = core->protect_count;
 699	core->protect_count = 1;
 700	clk_core_rate_unprotect(core);
 701
 702	return ret;
 703}
 704
 705/**
 706 * clk_rate_exclusive_put - release exclusivity over clock rate control
 707 * @clk: the clk over which the exclusivity is released
 708 *
 709 * clk_rate_exclusive_put() completes a critical section during which a clock
 710 * consumer cannot tolerate any other consumer making any operation on the
 711 * clock which could result in a rate change or rate glitch. Exclusive clocks
 712 * cannot have their rate changed, either directly or indirectly due to changes
 713 * further up the parent chain of clocks. As a result, clocks up parent chain
 714 * also get under exclusive control of the calling consumer.
 715 *
 716 * If exlusivity is claimed more than once on clock, even by the same consumer,
 717 * the rate effectively gets locked as exclusivity can't be preempted.
 718 *
 719 * Calls to clk_rate_exclusive_put() must be balanced with calls to
 720 * clk_rate_exclusive_get(). Calls to this function may sleep, and do not return
 721 * error status.
 722 */
 723void clk_rate_exclusive_put(struct clk *clk)
 724{
 725	if (!clk)
 726		return;
 727
 728	clk_prepare_lock();
 729
 730	/*
 731	 * if there is something wrong with this consumer protect count, stop
 732	 * here before messing with the provider
 733	 */
 734	if (WARN_ON(clk->exclusive_count <= 0))
 
 735		goto out;
 
 736
 737	clk_core_rate_unprotect(clk->core);
 738	clk->exclusive_count--;
 739out:
 740	clk_prepare_unlock();
 741}
 742EXPORT_SYMBOL_GPL(clk_rate_exclusive_put);
 743
 744static void clk_core_rate_protect(struct clk_core *core)
 745{
 746	lockdep_assert_held(&prepare_lock);
 
 
 747
 748	if (!core)
 749		return;
 750
 751	if (core->protect_count == 0)
 752		clk_core_rate_protect(core->parent);
 
 
 
 753
 754	core->protect_count++;
 755}
 756
 757static void clk_core_rate_restore_protect(struct clk_core *core, int count)
 758{
 759	lockdep_assert_held(&prepare_lock);
 
 
 
 
 
 760
 761	if (!core)
 762		return;
 
 
 
 
 763
 764	if (count == 0)
 765		return;
 
 
 
 
 766
 767	clk_core_rate_protect(core);
 768	core->protect_count = count;
 769}
 770
 771/**
 772 * clk_rate_exclusive_get - get exclusivity over the clk rate control
 773 * @clk: the clk over which the exclusity of rate control is requested
 774 *
 775 * clk_rate_exclusive_get() begins a critical section during which a clock
 776 * consumer cannot tolerate any other consumer making any operation on the
 777 * clock which could result in a rate change or rate glitch. Exclusive clocks
 778 * cannot have their rate changed, either directly or indirectly due to changes
 779 * further up the parent chain of clocks. As a result, clocks up parent chain
 780 * also get under exclusive control of the calling consumer.
 781 *
 782 * If exlusivity is claimed more than once on clock, even by the same consumer,
 783 * the rate effectively gets locked as exclusivity can't be preempted.
 784 *
 785 * Calls to clk_rate_exclusive_get() should be balanced with calls to
 786 * clk_rate_exclusive_put(). Calls to this function may sleep.
 787 * Returns 0 on success, -EERROR otherwise
 788 */
 789int clk_rate_exclusive_get(struct clk *clk)
 790{
 791	if (!clk)
 792		return 0;
 793
 794	clk_prepare_lock();
 795	clk_core_rate_protect(clk->core);
 796	clk->exclusive_count++;
 797	clk_prepare_unlock();
 798
 799	return 0;
 800}
 801EXPORT_SYMBOL_GPL(clk_rate_exclusive_get);
 802
 803static void clk_core_unprepare(struct clk_core *core)
 804{
 805	lockdep_assert_held(&prepare_lock);
 806
 807	if (!core)
 808		return;
 809
 810	if (WARN(core->prepare_count == 0,
 811	    "%s already unprepared\n", core->name))
 812		return;
 813
 814	if (WARN(core->prepare_count == 1 && core->flags & CLK_IS_CRITICAL,
 815	    "Unpreparing critical %s\n", core->name))
 816		return;
 817
 818	if (core->flags & CLK_SET_RATE_GATE)
 819		clk_core_rate_unprotect(core);
 820
 821	if (--core->prepare_count > 0)
 822		return;
 823
 824	WARN(core->enable_count > 0, "Unpreparing enabled %s\n", core->name);
 825
 826	trace_clk_unprepare(core);
 827
 828	if (core->ops->unprepare)
 829		core->ops->unprepare(core->hw);
 830
 831	clk_pm_runtime_put(core);
 
 832
 833	trace_clk_unprepare_complete(core);
 834	clk_core_unprepare(core->parent);
 835}
 836
 837static void clk_core_unprepare_lock(struct clk_core *core)
 838{
 839	clk_prepare_lock();
 840	clk_core_unprepare(core);
 841	clk_prepare_unlock();
 842}
 843
 844/**
 845 * clk_unprepare - undo preparation of a clock source
 846 * @clk: the clk being unprepared
 847 *
 848 * clk_unprepare may sleep, which differentiates it from clk_disable.  In a
 849 * simple case, clk_unprepare can be used instead of clk_disable to gate a clk
 850 * if the operation may sleep.  One example is a clk which is accessed over
 851 * I2c.  In the complex case a clk gate operation may require a fast and a slow
 852 * part.  It is this reason that clk_unprepare and clk_disable are not mutually
 853 * exclusive.  In fact clk_disable must be called before clk_unprepare.
 854 */
 855void clk_unprepare(struct clk *clk)
 856{
 857	if (IS_ERR_OR_NULL(clk))
 858		return;
 859
 860	clk_core_unprepare_lock(clk->core);
 861}
 862EXPORT_SYMBOL_GPL(clk_unprepare);
 863
 864static int clk_core_prepare(struct clk_core *core)
 865{
 866	int ret = 0;
 867
 868	lockdep_assert_held(&prepare_lock);
 869
 870	if (!core)
 871		return 0;
 872
 873	if (core->prepare_count == 0) {
 874		ret = clk_pm_runtime_get(core);
 875		if (ret)
 876			return ret;
 877
 878		ret = clk_core_prepare(core->parent);
 879		if (ret)
 880			goto runtime_put;
 881
 882		trace_clk_prepare(core);
 883
 884		if (core->ops->prepare)
 885			ret = core->ops->prepare(core->hw);
 886
 887		trace_clk_prepare_complete(core);
 888
 889		if (ret)
 890			goto unprepare;
 891	}
 892
 893	core->prepare_count++;
 894
 895	/*
 896	 * CLK_SET_RATE_GATE is a special case of clock protection
 897	 * Instead of a consumer claiming exclusive rate control, it is
 898	 * actually the provider which prevents any consumer from making any
 899	 * operation which could result in a rate change or rate glitch while
 900	 * the clock is prepared.
 901	 */
 902	if (core->flags & CLK_SET_RATE_GATE)
 903		clk_core_rate_protect(core);
 904
 905	return 0;
 906unprepare:
 907	clk_core_unprepare(core->parent);
 908runtime_put:
 909	clk_pm_runtime_put(core);
 910	return ret;
 911}
 912
 913static int clk_core_prepare_lock(struct clk_core *core)
 914{
 915	int ret;
 916
 917	clk_prepare_lock();
 918	ret = clk_core_prepare(core);
 919	clk_prepare_unlock();
 920
 921	return ret;
 922}
 923
 924/**
 925 * clk_prepare - prepare a clock source
 926 * @clk: the clk being prepared
 927 *
 928 * clk_prepare may sleep, which differentiates it from clk_enable.  In a simple
 929 * case, clk_prepare can be used instead of clk_enable to ungate a clk if the
 930 * operation may sleep.  One example is a clk which is accessed over I2c.  In
 931 * the complex case a clk ungate operation may require a fast and a slow part.
 932 * It is this reason that clk_prepare and clk_enable are not mutually
 933 * exclusive.  In fact clk_prepare must be called before clk_enable.
 934 * Returns 0 on success, -EERROR otherwise.
 935 */
 936int clk_prepare(struct clk *clk)
 937{
 938	if (!clk)
 939		return 0;
 
 
 
 940
 941	return clk_core_prepare_lock(clk->core);
 942}
 943EXPORT_SYMBOL_GPL(clk_prepare);
 944
 945static void clk_core_disable(struct clk_core *core)
 946{
 947	lockdep_assert_held(&enable_lock);
 948
 949	if (!core)
 950		return;
 951
 952	if (WARN(core->enable_count == 0, "%s already disabled\n", core->name))
 953		return;
 954
 955	if (WARN(core->enable_count == 1 && core->flags & CLK_IS_CRITICAL,
 956	    "Disabling critical %s\n", core->name))
 957		return;
 958
 959	if (--core->enable_count > 0)
 960		return;
 961
 962	trace_clk_disable_rcuidle(core);
 963
 964	if (core->ops->disable)
 965		core->ops->disable(core->hw);
 966
 967	trace_clk_disable_complete_rcuidle(core);
 968
 969	clk_core_disable(core->parent);
 970}
 971
 972static void clk_core_disable_lock(struct clk_core *core)
 973{
 974	unsigned long flags;
 975
 976	flags = clk_enable_lock();
 977	clk_core_disable(core);
 978	clk_enable_unlock(flags);
 979}
 980
 981/**
 982 * clk_disable - gate a clock
 983 * @clk: the clk being gated
 984 *
 985 * clk_disable must not sleep, which differentiates it from clk_unprepare.  In
 986 * a simple case, clk_disable can be used instead of clk_unprepare to gate a
 987 * clk if the operation is fast and will never sleep.  One example is a
 988 * SoC-internal clk which is controlled via simple register writes.  In the
 989 * complex case a clk gate operation may require a fast and a slow part.  It is
 990 * this reason that clk_unprepare and clk_disable are not mutually exclusive.
 991 * In fact clk_disable must be called before clk_unprepare.
 992 */
 993void clk_disable(struct clk *clk)
 994{
 995	if (IS_ERR_OR_NULL(clk))
 996		return;
 997
 998	clk_core_disable_lock(clk->core);
 
 
 999}
1000EXPORT_SYMBOL_GPL(clk_disable);
1001
1002static int clk_core_enable(struct clk_core *core)
1003{
1004	int ret = 0;
1005
1006	lockdep_assert_held(&enable_lock);
1007
1008	if (!core)
1009		return 0;
1010
1011	if (WARN(core->prepare_count == 0,
1012	    "Enabling unprepared %s\n", core->name))
1013		return -ESHUTDOWN;
1014
1015	if (core->enable_count == 0) {
1016		ret = clk_core_enable(core->parent);
1017
1018		if (ret)
1019			return ret;
1020
1021		trace_clk_enable_rcuidle(core);
1022
1023		if (core->ops->enable)
1024			ret = core->ops->enable(core->hw);
1025
1026		trace_clk_enable_complete_rcuidle(core);
1027
1028		if (ret) {
1029			clk_core_disable(core->parent);
1030			return ret;
1031		}
1032	}
1033
1034	core->enable_count++;
1035	return 0;
1036}
1037
1038static int clk_core_enable_lock(struct clk_core *core)
1039{
1040	unsigned long flags;
1041	int ret;
1042
1043	flags = clk_enable_lock();
1044	ret = clk_core_enable(core);
1045	clk_enable_unlock(flags);
1046
1047	return ret;
1048}
1049
1050/**
1051 * clk_gate_restore_context - restore context for poweroff
1052 * @hw: the clk_hw pointer of clock whose state is to be restored
1053 *
1054 * The clock gate restore context function enables or disables
1055 * the gate clocks based on the enable_count. This is done in cases
1056 * where the clock context is lost and based on the enable_count
1057 * the clock either needs to be enabled/disabled. This
1058 * helps restore the state of gate clocks.
1059 */
1060void clk_gate_restore_context(struct clk_hw *hw)
1061{
1062	struct clk_core *core = hw->core;
1063
1064	if (core->enable_count)
1065		core->ops->enable(hw);
1066	else
1067		core->ops->disable(hw);
1068}
1069EXPORT_SYMBOL_GPL(clk_gate_restore_context);
1070
1071static int clk_core_save_context(struct clk_core *core)
1072{
1073	struct clk_core *child;
1074	int ret = 0;
1075
1076	hlist_for_each_entry(child, &core->children, child_node) {
1077		ret = clk_core_save_context(child);
1078		if (ret < 0)
1079			return ret;
1080	}
1081
1082	if (core->ops && core->ops->save_context)
1083		ret = core->ops->save_context(core->hw);
1084
1085	return ret;
1086}
1087
1088static void clk_core_restore_context(struct clk_core *core)
1089{
1090	struct clk_core *child;
1091
1092	if (core->ops && core->ops->restore_context)
1093		core->ops->restore_context(core->hw);
1094
1095	hlist_for_each_entry(child, &core->children, child_node)
1096		clk_core_restore_context(child);
1097}
1098
1099/**
1100 * clk_save_context - save clock context for poweroff
1101 *
1102 * Saves the context of the clock register for powerstates in which the
1103 * contents of the registers will be lost. Occurs deep within the suspend
1104 * code.  Returns 0 on success.
1105 */
1106int clk_save_context(void)
1107{
1108	struct clk_core *clk;
1109	int ret;
1110
1111	hlist_for_each_entry(clk, &clk_root_list, child_node) {
1112		ret = clk_core_save_context(clk);
1113		if (ret < 0)
1114			return ret;
1115	}
1116
1117	hlist_for_each_entry(clk, &clk_orphan_list, child_node) {
1118		ret = clk_core_save_context(clk);
1119		if (ret < 0)
1120			return ret;
1121	}
1122
1123	return 0;
1124}
1125EXPORT_SYMBOL_GPL(clk_save_context);
1126
1127/**
1128 * clk_restore_context - restore clock context after poweroff
1129 *
1130 * Restore the saved clock context upon resume.
1131 *
1132 */
1133void clk_restore_context(void)
1134{
1135	struct clk_core *core;
1136
1137	hlist_for_each_entry(core, &clk_root_list, child_node)
1138		clk_core_restore_context(core);
1139
1140	hlist_for_each_entry(core, &clk_orphan_list, child_node)
1141		clk_core_restore_context(core);
1142}
1143EXPORT_SYMBOL_GPL(clk_restore_context);
1144
1145/**
1146 * clk_enable - ungate a clock
1147 * @clk: the clk being ungated
1148 *
1149 * clk_enable must not sleep, which differentiates it from clk_prepare.  In a
1150 * simple case, clk_enable can be used instead of clk_prepare to ungate a clk
1151 * if the operation will never sleep.  One example is a SoC-internal clk which
1152 * is controlled via simple register writes.  In the complex case a clk ungate
1153 * operation may require a fast and a slow part.  It is this reason that
1154 * clk_enable and clk_prepare are not mutually exclusive.  In fact clk_prepare
1155 * must be called before clk_enable.  Returns 0 on success, -EERROR
1156 * otherwise.
1157 */
1158int clk_enable(struct clk *clk)
1159{
1160	if (!clk)
1161		return 0;
 
 
 
 
1162
1163	return clk_core_enable_lock(clk->core);
1164}
1165EXPORT_SYMBOL_GPL(clk_enable);
1166
1167/**
1168 * clk_is_enabled_when_prepared - indicate if preparing a clock also enables it.
1169 * @clk: clock source
1170 *
1171 * Returns true if clk_prepare() implicitly enables the clock, effectively
1172 * making clk_enable()/clk_disable() no-ops, false otherwise.
1173 *
1174 * This is of interest mainly to power management code where actually
1175 * disabling the clock also requires unpreparing it to have any material
1176 * effect.
1177 *
1178 * Regardless of the value returned here, the caller must always invoke
1179 * clk_enable() or clk_prepare_enable()  and counterparts for usage counts
1180 * to be right.
1181 */
1182bool clk_is_enabled_when_prepared(struct clk *clk)
1183{
1184	return clk && !(clk->core->ops->enable && clk->core->ops->disable);
1185}
1186EXPORT_SYMBOL_GPL(clk_is_enabled_when_prepared);
1187
1188static int clk_core_prepare_enable(struct clk_core *core)
1189{
1190	int ret;
1191
1192	ret = clk_core_prepare_lock(core);
1193	if (ret)
1194		return ret;
1195
1196	ret = clk_core_enable_lock(core);
1197	if (ret)
1198		clk_core_unprepare_lock(core);
1199
1200	return ret;
1201}
1202
1203static void clk_core_disable_unprepare(struct clk_core *core)
1204{
1205	clk_core_disable_lock(core);
1206	clk_core_unprepare_lock(core);
1207}
1208
1209static void __init clk_unprepare_unused_subtree(struct clk_core *core)
1210{
1211	struct clk_core *child;
1212
1213	lockdep_assert_held(&prepare_lock);
1214
1215	hlist_for_each_entry(child, &core->children, child_node)
1216		clk_unprepare_unused_subtree(child);
1217
1218	if (core->prepare_count)
1219		return;
1220
1221	if (core->flags & CLK_IGNORE_UNUSED)
1222		return;
1223
1224	if (clk_pm_runtime_get(core))
1225		return;
1226
1227	if (clk_core_is_prepared(core)) {
1228		trace_clk_unprepare(core);
1229		if (core->ops->unprepare_unused)
1230			core->ops->unprepare_unused(core->hw);
1231		else if (core->ops->unprepare)
1232			core->ops->unprepare(core->hw);
1233		trace_clk_unprepare_complete(core);
1234	}
1235
1236	clk_pm_runtime_put(core);
1237}
1238
1239static void __init clk_disable_unused_subtree(struct clk_core *core)
1240{
1241	struct clk_core *child;
1242	unsigned long flags;
1243
1244	lockdep_assert_held(&prepare_lock);
1245
1246	hlist_for_each_entry(child, &core->children, child_node)
1247		clk_disable_unused_subtree(child);
1248
1249	if (core->flags & CLK_OPS_PARENT_ENABLE)
1250		clk_core_prepare_enable(core->parent);
1251
1252	if (clk_pm_runtime_get(core))
1253		goto unprepare_out;
1254
1255	flags = clk_enable_lock();
1256
1257	if (core->enable_count)
1258		goto unlock_out;
1259
1260	if (core->flags & CLK_IGNORE_UNUSED)
1261		goto unlock_out;
1262
1263	/*
1264	 * some gate clocks have special needs during the disable-unused
1265	 * sequence.  call .disable_unused if available, otherwise fall
1266	 * back to .disable
1267	 */
1268	if (clk_core_is_enabled(core)) {
1269		trace_clk_disable(core);
1270		if (core->ops->disable_unused)
1271			core->ops->disable_unused(core->hw);
1272		else if (core->ops->disable)
1273			core->ops->disable(core->hw);
1274		trace_clk_disable_complete(core);
1275	}
1276
1277unlock_out:
1278	clk_enable_unlock(flags);
1279	clk_pm_runtime_put(core);
1280unprepare_out:
1281	if (core->flags & CLK_OPS_PARENT_ENABLE)
1282		clk_core_disable_unprepare(core->parent);
1283}
1284
1285static bool clk_ignore_unused __initdata;
1286static int __init clk_ignore_unused_setup(char *__unused)
1287{
1288	clk_ignore_unused = true;
1289	return 1;
1290}
1291__setup("clk_ignore_unused", clk_ignore_unused_setup);
1292
1293static int __init clk_disable_unused(void)
1294{
1295	struct clk_core *core;
1296
1297	if (clk_ignore_unused) {
1298		pr_warn("clk: Not disabling unused clocks\n");
1299		return 0;
1300	}
1301
1302	clk_prepare_lock();
1303
1304	hlist_for_each_entry(core, &clk_root_list, child_node)
1305		clk_disable_unused_subtree(core);
1306
1307	hlist_for_each_entry(core, &clk_orphan_list, child_node)
1308		clk_disable_unused_subtree(core);
1309
1310	hlist_for_each_entry(core, &clk_root_list, child_node)
1311		clk_unprepare_unused_subtree(core);
1312
1313	hlist_for_each_entry(core, &clk_orphan_list, child_node)
1314		clk_unprepare_unused_subtree(core);
1315
1316	clk_prepare_unlock();
1317
1318	return 0;
1319}
1320late_initcall_sync(clk_disable_unused);
1321
1322static int clk_core_determine_round_nolock(struct clk_core *core,
1323					   struct clk_rate_request *req)
1324{
1325	long rate;
1326
1327	lockdep_assert_held(&prepare_lock);
1328
1329	if (!core)
1330		return 0;
1331
1332	/*
1333	 * At this point, core protection will be disabled
1334	 * - if the provider is not protected at all
1335	 * - if the calling consumer is the only one which has exclusivity
1336	 *   over the provider
1337	 */
1338	if (clk_core_rate_is_protected(core)) {
1339		req->rate = core->rate;
1340	} else if (core->ops->determine_rate) {
1341		return core->ops->determine_rate(core->hw, req);
1342	} else if (core->ops->round_rate) {
1343		rate = core->ops->round_rate(core->hw, req->rate,
1344					     &req->best_parent_rate);
1345		if (rate < 0)
1346			return rate;
1347
1348		req->rate = rate;
1349	} else {
1350		return -EINVAL;
1351	}
1352
1353	return 0;
1354}
1355
1356static void clk_core_init_rate_req(struct clk_core * const core,
1357				   struct clk_rate_request *req)
1358{
1359	struct clk_core *parent;
1360
1361	if (WARN_ON(!core || !req))
1362		return;
1363
1364	parent = core->parent;
1365	if (parent) {
1366		req->best_parent_hw = parent->hw;
1367		req->best_parent_rate = parent->rate;
1368	} else {
1369		req->best_parent_hw = NULL;
1370		req->best_parent_rate = 0;
1371	}
1372}
1373
1374static bool clk_core_can_round(struct clk_core * const core)
1375{
1376	return core->ops->determine_rate || core->ops->round_rate;
1377}
1378
1379static int clk_core_round_rate_nolock(struct clk_core *core,
1380				      struct clk_rate_request *req)
1381{
1382	lockdep_assert_held(&prepare_lock);
1383
1384	if (!core) {
1385		req->rate = 0;
1386		return 0;
1387	}
1388
1389	clk_core_init_rate_req(core, req);
1390
1391	if (clk_core_can_round(core))
1392		return clk_core_determine_round_nolock(core, req);
1393	else if (core->flags & CLK_SET_RATE_PARENT)
1394		return clk_core_round_rate_nolock(core->parent, req);
1395
1396	req->rate = core->rate;
1397	return 0;
1398}
 
1399
1400/**
1401 * __clk_determine_rate - get the closest rate actually supported by a clock
1402 * @hw: determine the rate of this clock
1403 * @req: target rate request
1404 *
1405 * Useful for clk_ops such as .set_rate and .determine_rate.
1406 */
1407int __clk_determine_rate(struct clk_hw *hw, struct clk_rate_request *req)
1408{
1409	if (!hw) {
1410		req->rate = 0;
1411		return 0;
1412	}
1413
1414	return clk_core_round_rate_nolock(hw->core, req);
1415}
1416EXPORT_SYMBOL_GPL(__clk_determine_rate);
1417
1418/**
1419 * clk_hw_round_rate() - round the given rate for a hw clk
1420 * @hw: the hw clk for which we are rounding a rate
1421 * @rate: the rate which is to be rounded
1422 *
1423 * Takes in a rate as input and rounds it to a rate that the clk can actually
1424 * use.
1425 *
1426 * Context: prepare_lock must be held.
1427 *          For clk providers to call from within clk_ops such as .round_rate,
1428 *          .determine_rate.
1429 *
1430 * Return: returns rounded rate of hw clk if clk supports round_rate operation
1431 *         else returns the parent rate.
1432 */
1433unsigned long clk_hw_round_rate(struct clk_hw *hw, unsigned long rate)
1434{
1435	int ret;
1436	struct clk_rate_request req;
1437
1438	clk_core_get_boundaries(hw->core, &req.min_rate, &req.max_rate);
1439	req.rate = rate;
1440
1441	ret = clk_core_round_rate_nolock(hw->core, &req);
1442	if (ret)
1443		return 0;
1444
1445	return req.rate;
1446}
1447EXPORT_SYMBOL_GPL(clk_hw_round_rate);
1448
1449/**
1450 * clk_round_rate - round the given rate for a clk
1451 * @clk: the clk for which we are rounding a rate
1452 * @rate: the rate which is to be rounded
1453 *
1454 * Takes in a rate as input and rounds it to a rate that the clk can actually
1455 * use which is then returned.  If clk doesn't support round_rate operation
1456 * then the parent rate is returned.
1457 */
1458long clk_round_rate(struct clk *clk, unsigned long rate)
1459{
1460	struct clk_rate_request req;
1461	int ret;
1462
1463	if (!clk)
1464		return 0;
 
1465
1466	clk_prepare_lock();
1467
1468	if (clk->exclusive_count)
1469		clk_core_rate_unprotect(clk->core);
1470
1471	clk_core_get_boundaries(clk->core, &req.min_rate, &req.max_rate);
1472	req.rate = rate;
1473
1474	ret = clk_core_round_rate_nolock(clk->core, &req);
1475
1476	if (clk->exclusive_count)
1477		clk_core_rate_protect(clk->core);
1478
1479	clk_prepare_unlock();
1480
1481	if (ret)
1482		return ret;
1483
1484	return req.rate;
1485}
1486EXPORT_SYMBOL_GPL(clk_round_rate);
1487
1488/**
1489 * __clk_notify - call clk notifier chain
1490 * @core: clk that is changing rate
1491 * @msg: clk notifier type (see include/linux/clk.h)
1492 * @old_rate: old clk rate
1493 * @new_rate: new clk rate
1494 *
1495 * Triggers a notifier call chain on the clk rate-change notification
1496 * for 'clk'.  Passes a pointer to the struct clk and the previous
1497 * and current rates to the notifier callback.  Intended to be called by
1498 * internal clock code only.  Returns NOTIFY_DONE from the last driver
1499 * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if
1500 * a driver returns that.
1501 */
1502static int __clk_notify(struct clk_core *core, unsigned long msg,
1503		unsigned long old_rate, unsigned long new_rate)
1504{
1505	struct clk_notifier *cn;
1506	struct clk_notifier_data cnd;
1507	int ret = NOTIFY_DONE;
1508
 
1509	cnd.old_rate = old_rate;
1510	cnd.new_rate = new_rate;
1511
1512	list_for_each_entry(cn, &clk_notifier_list, node) {
1513		if (cn->clk->core == core) {
1514			cnd.clk = cn->clk;
1515			ret = srcu_notifier_call_chain(&cn->notifier_head, msg,
1516					&cnd);
1517			if (ret & NOTIFY_STOP_MASK)
1518				return ret;
1519		}
1520	}
1521
1522	return ret;
1523}
1524
1525/**
1526 * __clk_recalc_accuracies
1527 * @core: first clk in the subtree
1528 *
1529 * Walks the subtree of clks starting with clk and recalculates accuracies as
1530 * it goes.  Note that if a clk does not implement the .recalc_accuracy
1531 * callback then it is assumed that the clock will take on the accuracy of its
1532 * parent.
1533 */
1534static void __clk_recalc_accuracies(struct clk_core *core)
1535{
1536	unsigned long parent_accuracy = 0;
1537	struct clk_core *child;
1538
1539	lockdep_assert_held(&prepare_lock);
1540
1541	if (core->parent)
1542		parent_accuracy = core->parent->accuracy;
1543
1544	if (core->ops->recalc_accuracy)
1545		core->accuracy = core->ops->recalc_accuracy(core->hw,
1546							  parent_accuracy);
1547	else
1548		core->accuracy = parent_accuracy;
1549
1550	hlist_for_each_entry(child, &core->children, child_node)
1551		__clk_recalc_accuracies(child);
1552}
1553
1554static long clk_core_get_accuracy_recalc(struct clk_core *core)
1555{
1556	if (core && (core->flags & CLK_GET_ACCURACY_NOCACHE))
1557		__clk_recalc_accuracies(core);
1558
1559	return clk_core_get_accuracy_no_lock(core);
1560}
1561
1562/**
1563 * clk_get_accuracy - return the accuracy of clk
1564 * @clk: the clk whose accuracy is being returned
1565 *
1566 * Simply returns the cached accuracy of the clk, unless
1567 * CLK_GET_ACCURACY_NOCACHE flag is set, which means a recalc_rate will be
1568 * issued.
1569 * If clk is NULL then returns 0.
1570 */
1571long clk_get_accuracy(struct clk *clk)
1572{
1573	long accuracy;
1574
1575	if (!clk)
1576		return 0;
1577
1578	clk_prepare_lock();
1579	accuracy = clk_core_get_accuracy_recalc(clk->core);
1580	clk_prepare_unlock();
1581
1582	return accuracy;
1583}
1584EXPORT_SYMBOL_GPL(clk_get_accuracy);
1585
1586static unsigned long clk_recalc(struct clk_core *core,
1587				unsigned long parent_rate)
1588{
1589	unsigned long rate = parent_rate;
1590
1591	if (core->ops->recalc_rate && !clk_pm_runtime_get(core)) {
1592		rate = core->ops->recalc_rate(core->hw, parent_rate);
1593		clk_pm_runtime_put(core);
1594	}
1595	return rate;
1596}
1597
1598/**
1599 * __clk_recalc_rates
1600 * @core: first clk in the subtree
1601 * @msg: notification type (see include/linux/clk.h)
1602 *
1603 * Walks the subtree of clks starting with clk and recalculates rates as it
1604 * goes.  Note that if a clk does not implement the .recalc_rate callback then
1605 * it is assumed that the clock will take on the rate of its parent.
1606 *
1607 * clk_recalc_rates also propagates the POST_RATE_CHANGE notification,
1608 * if necessary.
 
 
1609 */
1610static void __clk_recalc_rates(struct clk_core *core, unsigned long msg)
1611{
1612	unsigned long old_rate;
1613	unsigned long parent_rate = 0;
1614	struct clk_core *child;
 
1615
1616	lockdep_assert_held(&prepare_lock);
1617
1618	old_rate = core->rate;
 
1619
1620	if (core->parent)
1621		parent_rate = core->parent->rate;
1622
1623	core->rate = clk_recalc(core, parent_rate);
1624
1625	/*
1626	 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE
1627	 * & ABORT_RATE_CHANGE notifiers
1628	 */
1629	if (core->notifier_count && msg)
1630		__clk_notify(core, msg, old_rate, core->rate);
1631
1632	hlist_for_each_entry(child, &core->children, child_node)
1633		__clk_recalc_rates(child, msg);
1634}
1635
1636static unsigned long clk_core_get_rate_recalc(struct clk_core *core)
1637{
1638	if (core && (core->flags & CLK_GET_RATE_NOCACHE))
1639		__clk_recalc_rates(core, 0);
1640
1641	return clk_core_get_rate_nolock(core);
1642}
1643
1644/**
1645 * clk_get_rate - return the rate of clk
1646 * @clk: the clk whose rate is being returned
1647 *
1648 * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag
1649 * is set, which means a recalc_rate will be issued.
1650 * If clk is NULL then returns 0.
1651 */
1652unsigned long clk_get_rate(struct clk *clk)
1653{
1654	unsigned long rate;
1655
1656	if (!clk)
1657		return 0;
1658
1659	clk_prepare_lock();
1660	rate = clk_core_get_rate_recalc(clk->core);
1661	clk_prepare_unlock();
1662
1663	return rate;
1664}
1665EXPORT_SYMBOL_GPL(clk_get_rate);
1666
1667static int clk_fetch_parent_index(struct clk_core *core,
1668				  struct clk_core *parent)
1669{
1670	int i;
1671
1672	if (!parent)
1673		return -EINVAL;
1674
1675	for (i = 0; i < core->num_parents; i++) {
1676		/* Found it first try! */
1677		if (core->parents[i].core == parent)
1678			return i;
1679
1680		/* Something else is here, so keep looking */
1681		if (core->parents[i].core)
1682			continue;
1683
1684		/* Maybe core hasn't been cached but the hw is all we know? */
1685		if (core->parents[i].hw) {
1686			if (core->parents[i].hw == parent->hw)
1687				break;
1688
1689			/* Didn't match, but we're expecting a clk_hw */
1690			continue;
1691		}
1692
1693		/* Maybe it hasn't been cached (clk_set_parent() path) */
1694		if (parent == clk_core_get(core, i))
1695			break;
1696
1697		/* Fallback to comparing globally unique names */
1698		if (core->parents[i].name &&
1699		    !strcmp(parent->name, core->parents[i].name))
1700			break;
1701	}
1702
1703	if (i == core->num_parents)
1704		return -EINVAL;
1705
1706	core->parents[i].core = parent;
1707	return i;
1708}
1709
1710/**
1711 * clk_hw_get_parent_index - return the index of the parent clock
1712 * @hw: clk_hw associated with the clk being consumed
1713 *
1714 * Fetches and returns the index of parent clock. Returns -EINVAL if the given
1715 * clock does not have a current parent.
1716 */
1717int clk_hw_get_parent_index(struct clk_hw *hw)
1718{
1719	struct clk_hw *parent = clk_hw_get_parent(hw);
1720
1721	if (WARN_ON(parent == NULL))
1722		return -EINVAL;
1723
1724	return clk_fetch_parent_index(hw->core, parent->core);
1725}
1726EXPORT_SYMBOL_GPL(clk_hw_get_parent_index);
1727
1728/*
1729 * Update the orphan status of @core and all its children.
1730 */
1731static void clk_core_update_orphan_status(struct clk_core *core, bool is_orphan)
1732{
1733	struct clk_core *child;
1734
1735	core->orphan = is_orphan;
1736
1737	hlist_for_each_entry(child, &core->children, child_node)
1738		clk_core_update_orphan_status(child, is_orphan);
1739}
1740
1741static void clk_reparent(struct clk_core *core, struct clk_core *new_parent)
1742{
1743	bool was_orphan = core->orphan;
1744
1745	hlist_del(&core->child_node);
1746
1747	if (new_parent) {
1748		bool becomes_orphan = new_parent->orphan;
1749
1750		/* avoid duplicate POST_RATE_CHANGE notifications */
1751		if (new_parent->new_child == core)
1752			new_parent->new_child = NULL;
1753
1754		hlist_add_head(&core->child_node, &new_parent->children);
1755
1756		if (was_orphan != becomes_orphan)
1757			clk_core_update_orphan_status(core, becomes_orphan);
1758	} else {
1759		hlist_add_head(&core->child_node, &clk_orphan_list);
1760		if (!was_orphan)
1761			clk_core_update_orphan_status(core, true);
1762	}
1763
1764	core->parent = new_parent;
1765}
1766
1767static struct clk_core *__clk_set_parent_before(struct clk_core *core,
1768					   struct clk_core *parent)
1769{
1770	unsigned long flags;
1771	struct clk_core *old_parent = core->parent;
1772
1773	/*
1774	 * 1. enable parents for CLK_OPS_PARENT_ENABLE clock
1775	 *
1776	 * 2. Migrate prepare state between parents and prevent race with
1777	 * clk_enable().
1778	 *
1779	 * If the clock is not prepared, then a race with
1780	 * clk_enable/disable() is impossible since we already have the
1781	 * prepare lock (future calls to clk_enable() need to be preceded by
1782	 * a clk_prepare()).
1783	 *
1784	 * If the clock is prepared, migrate the prepared state to the new
1785	 * parent and also protect against a race with clk_enable() by
1786	 * forcing the clock and the new parent on.  This ensures that all
1787	 * future calls to clk_enable() are practically NOPs with respect to
1788	 * hardware and software states.
1789	 *
1790	 * See also: Comment for clk_set_parent() below.
1791	 */
1792
1793	/* enable old_parent & parent if CLK_OPS_PARENT_ENABLE is set */
1794	if (core->flags & CLK_OPS_PARENT_ENABLE) {
1795		clk_core_prepare_enable(old_parent);
1796		clk_core_prepare_enable(parent);
1797	}
1798
1799	/* migrate prepare count if > 0 */
1800	if (core->prepare_count) {
1801		clk_core_prepare_enable(parent);
1802		clk_core_enable_lock(core);
1803	}
1804
1805	/* update the clk tree topology */
1806	flags = clk_enable_lock();
1807	clk_reparent(core, parent);
1808	clk_enable_unlock(flags);
1809
1810	return old_parent;
1811}
1812
1813static void __clk_set_parent_after(struct clk_core *core,
1814				   struct clk_core *parent,
1815				   struct clk_core *old_parent)
1816{
1817	/*
1818	 * Finish the migration of prepare state and undo the changes done
1819	 * for preventing a race with clk_enable().
1820	 */
1821	if (core->prepare_count) {
1822		clk_core_disable_lock(core);
1823		clk_core_disable_unprepare(old_parent);
1824	}
1825
1826	/* re-balance ref counting if CLK_OPS_PARENT_ENABLE is set */
1827	if (core->flags & CLK_OPS_PARENT_ENABLE) {
1828		clk_core_disable_unprepare(parent);
1829		clk_core_disable_unprepare(old_parent);
1830	}
1831}
1832
1833static int __clk_set_parent(struct clk_core *core, struct clk_core *parent,
1834			    u8 p_index)
1835{
1836	unsigned long flags;
1837	int ret = 0;
1838	struct clk_core *old_parent;
1839
1840	old_parent = __clk_set_parent_before(core, parent);
1841
1842	trace_clk_set_parent(core, parent);
1843
1844	/* change clock input source */
1845	if (parent && core->ops->set_parent)
1846		ret = core->ops->set_parent(core->hw, p_index);
1847
1848	trace_clk_set_parent_complete(core, parent);
1849
1850	if (ret) {
1851		flags = clk_enable_lock();
1852		clk_reparent(core, old_parent);
1853		clk_enable_unlock(flags);
1854		__clk_set_parent_after(core, old_parent, parent);
1855
1856		return ret;
1857	}
1858
1859	__clk_set_parent_after(core, parent, old_parent);
1860
1861	return 0;
1862}
1863
1864/**
1865 * __clk_speculate_rates
1866 * @core: first clk in the subtree
1867 * @parent_rate: the "future" rate of clk's parent
1868 *
1869 * Walks the subtree of clks starting with clk, speculating rates as it
1870 * goes and firing off PRE_RATE_CHANGE notifications as necessary.
1871 *
1872 * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending
1873 * pre-rate change notifications and returns early if no clks in the
1874 * subtree have subscribed to the notifications.  Note that if a clk does not
1875 * implement the .recalc_rate callback then it is assumed that the clock will
1876 * take on the rate of its parent.
 
 
1877 */
1878static int __clk_speculate_rates(struct clk_core *core,
1879				 unsigned long parent_rate)
1880{
1881	struct clk_core *child;
 
1882	unsigned long new_rate;
1883	int ret = NOTIFY_DONE;
1884
1885	lockdep_assert_held(&prepare_lock);
1886
1887	new_rate = clk_recalc(core, parent_rate);
 
1888
1889	/* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */
1890	if (core->notifier_count)
1891		ret = __clk_notify(core, PRE_RATE_CHANGE, core->rate, new_rate);
1892
1893	if (ret & NOTIFY_STOP_MASK) {
1894		pr_debug("%s: clk notifier callback for clock %s aborted with error %d\n",
1895				__func__, core->name, ret);
1896		goto out;
1897	}
1898
1899	hlist_for_each_entry(child, &core->children, child_node) {
1900		ret = __clk_speculate_rates(child, new_rate);
1901		if (ret & NOTIFY_STOP_MASK)
1902			break;
1903	}
1904
1905out:
1906	return ret;
1907}
1908
1909static void clk_calc_subtree(struct clk_core *core, unsigned long new_rate,
1910			     struct clk_core *new_parent, u8 p_index)
1911{
1912	struct clk_core *child;
 
 
 
1913
1914	core->new_rate = new_rate;
1915	core->new_parent = new_parent;
1916	core->new_parent_index = p_index;
1917	/* include clk in new parent's PRE_RATE_CHANGE notifications */
1918	core->new_child = NULL;
1919	if (new_parent && new_parent != core->parent)
1920		new_parent->new_child = core;
1921
1922	hlist_for_each_entry(child, &core->children, child_node) {
1923		child->new_rate = clk_recalc(child, new_rate);
1924		clk_calc_subtree(child, child->new_rate, NULL, 0);
1925	}
1926}
1927
1928/*
1929 * calculate the new rates returning the topmost clock that has to be
1930 * changed.
1931 */
1932static struct clk_core *clk_calc_new_rates(struct clk_core *core,
1933					   unsigned long rate)
1934{
1935	struct clk_core *top = core;
1936	struct clk_core *old_parent, *parent;
1937	unsigned long best_parent_rate = 0;
1938	unsigned long new_rate;
1939	unsigned long min_rate;
1940	unsigned long max_rate;
1941	int p_index = 0;
1942	long ret;
1943
1944	/* sanity */
1945	if (IS_ERR_OR_NULL(core))
1946		return NULL;
1947
1948	/* save parent rate, if it exists */
1949	parent = old_parent = core->parent;
1950	if (parent)
1951		best_parent_rate = parent->rate;
1952
1953	clk_core_get_boundaries(core, &min_rate, &max_rate);
1954
1955	/* find the closest rate and parent clk/rate */
1956	if (clk_core_can_round(core)) {
1957		struct clk_rate_request req;
1958
1959		req.rate = rate;
1960		req.min_rate = min_rate;
1961		req.max_rate = max_rate;
1962
1963		clk_core_init_rate_req(core, &req);
1964
1965		ret = clk_core_determine_round_nolock(core, &req);
1966		if (ret < 0)
 
 
1967			return NULL;
1968
1969		best_parent_rate = req.best_parent_rate;
1970		new_rate = req.rate;
1971		parent = req.best_parent_hw ? req.best_parent_hw->core : NULL;
1972
1973		if (new_rate < min_rate || new_rate > max_rate)
1974			return NULL;
1975	} else if (!parent || !(core->flags & CLK_SET_RATE_PARENT)) {
1976		/* pass-through clock without adjustable parent */
1977		core->new_rate = core->rate;
1978		return NULL;
1979	} else {
1980		/* pass-through clock with adjustable parent */
1981		top = clk_calc_new_rates(parent, rate);
1982		new_rate = parent->new_rate;
1983		goto out;
1984	}
1985
1986	/* some clocks must be gated to change parent */
1987	if (parent != old_parent &&
1988	    (core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) {
1989		pr_debug("%s: %s not gated but wants to reparent\n",
1990			 __func__, core->name);
1991		return NULL;
1992	}
1993
1994	/* try finding the new parent index */
1995	if (parent && core->num_parents > 1) {
1996		p_index = clk_fetch_parent_index(core, parent);
1997		if (p_index < 0) {
1998			pr_debug("%s: clk %s can not be parent of clk %s\n",
1999				 __func__, parent->name, core->name);
2000			return NULL;
2001		}
2002	}
2003
2004	if ((core->flags & CLK_SET_RATE_PARENT) && parent &&
2005	    best_parent_rate != parent->rate)
2006		top = clk_calc_new_rates(parent, best_parent_rate);
 
 
 
 
2007
2008out:
2009	clk_calc_subtree(core, new_rate, parent, p_index);
2010
2011	return top;
2012}
2013
2014/*
2015 * Notify about rate changes in a subtree. Always walk down the whole tree
2016 * so that in case of an error we can walk down the whole tree again and
2017 * abort the change.
2018 */
2019static struct clk_core *clk_propagate_rate_change(struct clk_core *core,
2020						  unsigned long event)
2021{
2022	struct clk_core *child, *tmp_clk, *fail_clk = NULL;
 
2023	int ret = NOTIFY_DONE;
2024
2025	if (core->rate == core->new_rate)
2026		return NULL;
2027
2028	if (core->notifier_count) {
2029		ret = __clk_notify(core, event, core->rate, core->new_rate);
2030		if (ret & NOTIFY_STOP_MASK)
2031			fail_clk = core;
2032	}
2033
2034	hlist_for_each_entry(child, &core->children, child_node) {
2035		/* Skip children who will be reparented to another clock */
2036		if (child->new_parent && child->new_parent != core)
2037			continue;
2038		tmp_clk = clk_propagate_rate_change(child, event);
2039		if (tmp_clk)
2040			fail_clk = tmp_clk;
2041	}
2042
2043	/* handle the new child who might not be in core->children yet */
2044	if (core->new_child) {
2045		tmp_clk = clk_propagate_rate_change(core->new_child, event);
2046		if (tmp_clk)
2047			fail_clk = tmp_clk;
2048	}
2049
2050	return fail_clk;
2051}
2052
2053/*
2054 * walk down a subtree and set the new rates notifying the rate
2055 * change on the way
2056 */
2057static void clk_change_rate(struct clk_core *core)
2058{
2059	struct clk_core *child;
2060	struct hlist_node *tmp;
2061	unsigned long old_rate;
2062	unsigned long best_parent_rate = 0;
2063	bool skip_set_rate = false;
2064	struct clk_core *old_parent;
2065	struct clk_core *parent = NULL;
2066
2067	old_rate = core->rate;
2068
2069	if (core->new_parent) {
2070		parent = core->new_parent;
2071		best_parent_rate = core->new_parent->rate;
2072	} else if (core->parent) {
2073		parent = core->parent;
2074		best_parent_rate = core->parent->rate;
2075	}
2076
2077	if (clk_pm_runtime_get(core))
2078		return;
2079
2080	if (core->flags & CLK_SET_RATE_UNGATE) {
2081		clk_core_prepare(core);
2082		clk_core_enable_lock(core);
2083	}
2084
2085	if (core->new_parent && core->new_parent != core->parent) {
2086		old_parent = __clk_set_parent_before(core, core->new_parent);
2087		trace_clk_set_parent(core, core->new_parent);
2088
2089		if (core->ops->set_rate_and_parent) {
2090			skip_set_rate = true;
2091			core->ops->set_rate_and_parent(core->hw, core->new_rate,
2092					best_parent_rate,
2093					core->new_parent_index);
2094		} else if (core->ops->set_parent) {
2095			core->ops->set_parent(core->hw, core->new_parent_index);
2096		}
2097
2098		trace_clk_set_parent_complete(core, core->new_parent);
2099		__clk_set_parent_after(core, core->new_parent, old_parent);
2100	}
2101
2102	if (core->flags & CLK_OPS_PARENT_ENABLE)
2103		clk_core_prepare_enable(parent);
2104
2105	trace_clk_set_rate(core, core->new_rate);
2106
2107	if (!skip_set_rate && core->ops->set_rate)
2108		core->ops->set_rate(core->hw, core->new_rate, best_parent_rate);
2109
2110	trace_clk_set_rate_complete(core, core->new_rate);
 
2111
2112	core->rate = clk_recalc(core, best_parent_rate);
2113
2114	if (core->flags & CLK_SET_RATE_UNGATE) {
2115		clk_core_disable_lock(core);
2116		clk_core_unprepare(core);
2117	}
2118
2119	if (core->flags & CLK_OPS_PARENT_ENABLE)
2120		clk_core_disable_unprepare(parent);
2121
2122	if (core->notifier_count && old_rate != core->rate)
2123		__clk_notify(core, POST_RATE_CHANGE, old_rate, core->rate);
2124
2125	if (core->flags & CLK_RECALC_NEW_RATES)
2126		(void)clk_calc_new_rates(core, core->new_rate);
2127
2128	/*
2129	 * Use safe iteration, as change_rate can actually swap parents
2130	 * for certain clock types.
2131	 */
2132	hlist_for_each_entry_safe(child, tmp, &core->children, child_node) {
2133		/* Skip children who will be reparented to another clock */
2134		if (child->new_parent && child->new_parent != core)
2135			continue;
2136		clk_change_rate(child);
2137	}
2138
2139	/* handle the new child who might not be in core->children yet */
2140	if (core->new_child)
2141		clk_change_rate(core->new_child);
2142
2143	clk_pm_runtime_put(core);
2144}
2145
2146static unsigned long clk_core_req_round_rate_nolock(struct clk_core *core,
2147						     unsigned long req_rate)
2148{
2149	int ret, cnt;
2150	struct clk_rate_request req;
2151
2152	lockdep_assert_held(&prepare_lock);
2153
2154	if (!core)
2155		return 0;
2156
2157	/* simulate what the rate would be if it could be freely set */
2158	cnt = clk_core_rate_nuke_protect(core);
2159	if (cnt < 0)
2160		return cnt;
2161
2162	clk_core_get_boundaries(core, &req.min_rate, &req.max_rate);
2163	req.rate = req_rate;
2164
2165	ret = clk_core_round_rate_nolock(core, &req);
2166
2167	/* restore the protection */
2168	clk_core_rate_restore_protect(core, cnt);
2169
2170	return ret ? 0 : req.rate;
2171}
2172
2173static int clk_core_set_rate_nolock(struct clk_core *core,
2174				    unsigned long req_rate)
2175{
2176	struct clk_core *top, *fail_clk;
2177	unsigned long rate;
2178	int ret = 0;
2179
2180	if (!core)
2181		return 0;
2182
2183	rate = clk_core_req_round_rate_nolock(core, req_rate);
2184
2185	/* bail early if nothing to do */
2186	if (rate == clk_core_get_rate_nolock(core))
2187		return 0;
2188
2189	/* fail on a direct rate set of a protected provider */
2190	if (clk_core_rate_is_protected(core))
2191		return -EBUSY;
2192
2193	/* calculate new rates and get the topmost changed clock */
2194	top = clk_calc_new_rates(core, req_rate);
2195	if (!top)
2196		return -EINVAL;
2197
2198	ret = clk_pm_runtime_get(core);
2199	if (ret)
2200		return ret;
2201
2202	/* notify that we are about to change rates */
2203	fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE);
2204	if (fail_clk) {
2205		pr_debug("%s: failed to set %s rate\n", __func__,
2206				fail_clk->name);
2207		clk_propagate_rate_change(top, ABORT_RATE_CHANGE);
2208		ret = -EBUSY;
2209		goto err;
2210	}
2211
2212	/* change the rates */
2213	clk_change_rate(top);
2214
2215	core->req_rate = req_rate;
2216err:
2217	clk_pm_runtime_put(core);
2218
2219	return ret;
2220}
2221
2222/**
2223 * clk_set_rate - specify a new rate for clk
2224 * @clk: the clk whose rate is being changed
2225 * @rate: the new rate for clk
2226 *
2227 * In the simplest case clk_set_rate will only adjust the rate of clk.
2228 *
2229 * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to
2230 * propagate up to clk's parent; whether or not this happens depends on the
2231 * outcome of clk's .round_rate implementation.  If *parent_rate is unchanged
2232 * after calling .round_rate then upstream parent propagation is ignored.  If
2233 * *parent_rate comes back with a new rate for clk's parent then we propagate
2234 * up to clk's parent and set its rate.  Upward propagation will continue
2235 * until either a clk does not support the CLK_SET_RATE_PARENT flag or
2236 * .round_rate stops requesting changes to clk's parent_rate.
2237 *
2238 * Rate changes are accomplished via tree traversal that also recalculates the
2239 * rates for the clocks and fires off POST_RATE_CHANGE notifiers.
2240 *
2241 * Returns 0 on success, -EERROR otherwise.
2242 */
2243int clk_set_rate(struct clk *clk, unsigned long rate)
2244{
2245	int ret;
2246
2247	if (!clk)
2248		return 0;
2249
2250	/* prevent racing with updates to the clock topology */
2251	clk_prepare_lock();
2252
2253	if (clk->exclusive_count)
2254		clk_core_rate_unprotect(clk->core);
 
2255
2256	ret = clk_core_set_rate_nolock(clk->core, rate);
 
 
 
2257
2258	if (clk->exclusive_count)
2259		clk_core_rate_protect(clk->core);
2260
2261	clk_prepare_unlock();
2262
2263	return ret;
2264}
2265EXPORT_SYMBOL_GPL(clk_set_rate);
2266
2267/**
2268 * clk_set_rate_exclusive - specify a new rate and get exclusive control
2269 * @clk: the clk whose rate is being changed
2270 * @rate: the new rate for clk
2271 *
2272 * This is a combination of clk_set_rate() and clk_rate_exclusive_get()
2273 * within a critical section
2274 *
2275 * This can be used initially to ensure that at least 1 consumer is
2276 * satisfied when several consumers are competing for exclusivity over the
2277 * same clock provider.
2278 *
2279 * The exclusivity is not applied if setting the rate failed.
2280 *
2281 * Calls to clk_rate_exclusive_get() should be balanced with calls to
2282 * clk_rate_exclusive_put().
2283 *
2284 * Returns 0 on success, -EERROR otherwise.
2285 */
2286int clk_set_rate_exclusive(struct clk *clk, unsigned long rate)
2287{
2288	int ret;
2289
2290	if (!clk)
2291		return 0;
2292
2293	/* prevent racing with updates to the clock topology */
2294	clk_prepare_lock();
2295
2296	/*
2297	 * The temporary protection removal is not here, on purpose
2298	 * This function is meant to be used instead of clk_rate_protect,
2299	 * so before the consumer code path protect the clock provider
2300	 */
2301
2302	ret = clk_core_set_rate_nolock(clk->core, rate);
2303	if (!ret) {
2304		clk_core_rate_protect(clk->core);
2305		clk->exclusive_count++;
2306	}
2307
2308	clk_prepare_unlock();
2309
2310	return ret;
2311}
2312EXPORT_SYMBOL_GPL(clk_set_rate_exclusive);
2313
2314/**
2315 * clk_set_rate_range - set a rate range for a clock source
2316 * @clk: clock source
2317 * @min: desired minimum clock rate in Hz, inclusive
2318 * @max: desired maximum clock rate in Hz, inclusive
2319 *
2320 * Returns success (0) or negative errno.
2321 */
2322int clk_set_rate_range(struct clk *clk, unsigned long min, unsigned long max)
2323{
2324	int ret = 0;
2325	unsigned long old_min, old_max, rate;
2326
2327	if (!clk)
2328		return 0;
2329
2330	trace_clk_set_rate_range(clk->core, min, max);
2331
2332	if (min > max) {
2333		pr_err("%s: clk %s dev %s con %s: invalid range [%lu, %lu]\n",
2334		       __func__, clk->core->name, clk->dev_id, clk->con_id,
2335		       min, max);
2336		return -EINVAL;
2337	}
2338
2339	clk_prepare_lock();
 
2340
2341	if (clk->exclusive_count)
2342		clk_core_rate_unprotect(clk->core);
2343
2344	/* Save the current values in case we need to rollback the change */
2345	old_min = clk->min_rate;
2346	old_max = clk->max_rate;
2347	clk->min_rate = min;
2348	clk->max_rate = max;
2349
2350	rate = clk_core_get_rate_nolock(clk->core);
2351	if (rate < min || rate > max) {
2352		/*
2353		 * FIXME:
2354		 * We are in bit of trouble here, current rate is outside the
2355		 * the requested range. We are going try to request appropriate
2356		 * range boundary but there is a catch. It may fail for the
2357		 * usual reason (clock broken, clock protected, etc) but also
2358		 * because:
2359		 * - round_rate() was not favorable and fell on the wrong
2360		 *   side of the boundary
2361		 * - the determine_rate() callback does not really check for
2362		 *   this corner case when determining the rate
2363		 */
2364
2365		if (rate < min)
2366			rate = min;
2367		else
2368			rate = max;
2369
2370		ret = clk_core_set_rate_nolock(clk->core, rate);
2371		if (ret) {
2372			/* rollback the changes */
2373			clk->min_rate = old_min;
2374			clk->max_rate = old_max;
2375		}
2376	}
2377
2378	if (clk->exclusive_count)
2379		clk_core_rate_protect(clk->core);
2380
2381	clk_prepare_unlock();
2382
2383	return ret;
2384}
2385EXPORT_SYMBOL_GPL(clk_set_rate_range);
2386
2387/**
2388 * clk_set_min_rate - set a minimum clock rate for a clock source
2389 * @clk: clock source
2390 * @rate: desired minimum clock rate in Hz, inclusive
2391 *
2392 * Returns success (0) or negative errno.
2393 */
2394int clk_set_min_rate(struct clk *clk, unsigned long rate)
2395{
2396	if (!clk)
2397		return 0;
2398
2399	trace_clk_set_min_rate(clk->core, rate);
2400
2401	return clk_set_rate_range(clk, rate, clk->max_rate);
2402}
2403EXPORT_SYMBOL_GPL(clk_set_min_rate);
2404
2405/**
2406 * clk_set_max_rate - set a maximum clock rate for a clock source
2407 * @clk: clock source
2408 * @rate: desired maximum clock rate in Hz, inclusive
2409 *
2410 * Returns success (0) or negative errno.
2411 */
2412int clk_set_max_rate(struct clk *clk, unsigned long rate)
2413{
2414	if (!clk)
2415		return 0;
2416
2417	trace_clk_set_max_rate(clk->core, rate);
2418
2419	return clk_set_rate_range(clk, clk->min_rate, rate);
2420}
2421EXPORT_SYMBOL_GPL(clk_set_max_rate);
2422
2423/**
2424 * clk_get_parent - return the parent of a clk
2425 * @clk: the clk whose parent gets returned
2426 *
2427 * Simply returns clk->parent.  Returns NULL if clk is NULL.
2428 */
2429struct clk *clk_get_parent(struct clk *clk)
2430{
2431	struct clk *parent;
2432
2433	if (!clk)
2434		return NULL;
2435
2436	clk_prepare_lock();
2437	/* TODO: Create a per-user clk and change callers to call clk_put */
2438	parent = !clk->core->parent ? NULL : clk->core->parent->hw->clk;
2439	clk_prepare_unlock();
2440
2441	return parent;
2442}
2443EXPORT_SYMBOL_GPL(clk_get_parent);
2444
2445static struct clk_core *__clk_init_parent(struct clk_core *core)
2446{
2447	u8 index = 0;
2448
2449	if (core->num_parents > 1 && core->ops->get_parent)
2450		index = core->ops->get_parent(core->hw);
2451
2452	return clk_core_get_parent_by_index(core, index);
2453}
2454
2455static void clk_core_reparent(struct clk_core *core,
2456				  struct clk_core *new_parent)
2457{
2458	clk_reparent(core, new_parent);
2459	__clk_recalc_accuracies(core);
2460	__clk_recalc_rates(core, POST_RATE_CHANGE);
2461}
2462
2463void clk_hw_reparent(struct clk_hw *hw, struct clk_hw *new_parent)
2464{
2465	if (!hw)
2466		return;
2467
2468	clk_core_reparent(hw->core, !new_parent ? NULL : new_parent->core);
2469}
2470
2471/**
2472 * clk_has_parent - check if a clock is a possible parent for another
2473 * @clk: clock source
2474 * @parent: parent clock source
2475 *
2476 * This function can be used in drivers that need to check that a clock can be
2477 * the parent of another without actually changing the parent.
2478 *
2479 * Returns true if @parent is a possible parent for @clk, false otherwise.
 
 
2480 */
2481bool clk_has_parent(struct clk *clk, struct clk *parent)
2482{
2483	struct clk_core *core, *parent_core;
2484	int i;
2485
2486	/* NULL clocks should be nops, so return success if either is NULL. */
2487	if (!clk || !parent)
2488		return true;
2489
2490	core = clk->core;
2491	parent_core = parent->core;
2492
2493	/* Optimize for the case where the parent is already the parent. */
2494	if (core->parent == parent_core)
2495		return true;
2496
2497	for (i = 0; i < core->num_parents; i++)
2498		if (!strcmp(core->parents[i].name, parent_core->name))
2499			return true;
2500
2501	return false;
2502}
2503EXPORT_SYMBOL_GPL(clk_has_parent);
2504
2505static int clk_core_set_parent_nolock(struct clk_core *core,
2506				      struct clk_core *parent)
2507{
2508	int ret = 0;
2509	int p_index = 0;
2510	unsigned long p_rate = 0;
2511
2512	lockdep_assert_held(&prepare_lock);
2513
2514	if (!core)
2515		return 0;
2516
2517	if (core->parent == parent)
2518		return 0;
2519
2520	/* verify ops for multi-parent clks */
2521	if (core->num_parents > 1 && !core->ops->set_parent)
2522		return -EPERM;
2523
2524	/* check that we are allowed to re-parent if the clock is in use */
2525	if ((core->flags & CLK_SET_PARENT_GATE) && core->prepare_count)
2526		return -EBUSY;
2527
2528	if (clk_core_rate_is_protected(core))
2529		return -EBUSY;
2530
2531	/* try finding the new parent index */
2532	if (parent) {
2533		p_index = clk_fetch_parent_index(core, parent);
2534		if (p_index < 0) {
2535			pr_debug("%s: clk %s can not be parent of clk %s\n",
2536					__func__, parent->name, core->name);
2537			return p_index;
2538		}
2539		p_rate = parent->rate;
2540	}
2541
2542	ret = clk_pm_runtime_get(core);
2543	if (ret)
2544		return ret;
 
 
 
2545
2546	/* propagate PRE_RATE_CHANGE notifications */
2547	ret = __clk_speculate_rates(core, p_rate);
 
 
 
2548
2549	/* abort if a driver objects */
2550	if (ret & NOTIFY_STOP_MASK)
2551		goto runtime_put;
2552
2553	/* do the re-parent */
2554	ret = __clk_set_parent(core, parent, p_index);
 
 
2555
2556	/* propagate rate an accuracy recalculation accordingly */
2557	if (ret) {
2558		__clk_recalc_rates(core, ABORT_RATE_CHANGE);
2559	} else {
2560		__clk_recalc_rates(core, POST_RATE_CHANGE);
2561		__clk_recalc_accuracies(core);
2562	}
2563
2564runtime_put:
2565	clk_pm_runtime_put(core);
2566
 
2567	return ret;
2568}
2569
2570int clk_hw_set_parent(struct clk_hw *hw, struct clk_hw *parent)
2571{
2572	return clk_core_set_parent_nolock(hw->core, parent->core);
2573}
2574EXPORT_SYMBOL_GPL(clk_hw_set_parent);
 
2575
2576/**
2577 * clk_set_parent - switch the parent of a mux clk
2578 * @clk: the mux clk whose input we are switching
2579 * @parent: the new input to clk
2580 *
2581 * Re-parent clk to use parent as its new input source.  If clk is in
2582 * prepared state, the clk will get enabled for the duration of this call. If
2583 * that's not acceptable for a specific clk (Eg: the consumer can't handle
2584 * that, the reparenting is glitchy in hardware, etc), use the
2585 * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared.
2586 *
2587 * After successfully changing clk's parent clk_set_parent will update the
2588 * clk topology, sysfs topology and propagate rate recalculation via
2589 * __clk_recalc_rates.
2590 *
2591 * Returns 0 on success, -EERROR otherwise.
2592 */
2593int clk_set_parent(struct clk *clk, struct clk *parent)
2594{
2595	int ret;
2596
2597	if (!clk)
2598		return 0;
2599
2600	clk_prepare_lock();
 
 
 
2601
2602	if (clk->exclusive_count)
2603		clk_core_rate_unprotect(clk->core);
 
2604
2605	ret = clk_core_set_parent_nolock(clk->core,
2606					 parent ? parent->core : NULL);
 
 
2607
2608	if (clk->exclusive_count)
2609		clk_core_rate_protect(clk->core);
 
 
 
 
 
 
 
2610
2611	clk_prepare_unlock();
2612
2613	return ret;
2614}
2615EXPORT_SYMBOL_GPL(clk_set_parent);
2616
2617static int clk_core_set_phase_nolock(struct clk_core *core, int degrees)
2618{
 
 
2619	int ret = -EINVAL;
 
2620
2621	lockdep_assert_held(&prepare_lock);
2622
2623	if (!core)
2624		return 0;
 
2625
2626	if (clk_core_rate_is_protected(core))
2627		return -EBUSY;
 
 
 
 
 
 
 
 
 
 
 
 
2628
2629	trace_clk_set_phase(core, degrees);
2630
2631	if (core->ops->set_phase) {
2632		ret = core->ops->set_phase(core->hw, degrees);
2633		if (!ret)
2634			core->phase = degrees;
2635	}
2636
2637	trace_clk_set_phase_complete(core, degrees);
 
 
 
 
 
 
 
 
2638
2639	return ret;
2640}
2641
2642/**
2643 * clk_set_phase - adjust the phase shift of a clock signal
2644 * @clk: clock signal source
2645 * @degrees: number of degrees the signal is shifted
2646 *
2647 * Shifts the phase of a clock signal by the specified
2648 * degrees. Returns 0 on success, -EERROR otherwise.
2649 *
2650 * This function makes no distinction about the input or reference
2651 * signal that we adjust the clock signal phase against. For example
2652 * phase locked-loop clock signal generators we may shift phase with
2653 * respect to feedback clock signal input, but for other cases the
2654 * clock phase may be shifted with respect to some other, unspecified
2655 * signal.
2656 *
2657 * Additionally the concept of phase shift does not propagate through
2658 * the clock tree hierarchy, which sets it apart from clock rates and
2659 * clock accuracy. A parent clock phase attribute does not have an
2660 * impact on the phase attribute of a child clock.
2661 */
2662int clk_set_phase(struct clk *clk, int degrees)
2663{
2664	int ret;
2665
2666	if (!clk)
2667		return 0;
2668
2669	/* sanity check degrees */
2670	degrees %= 360;
2671	if (degrees < 0)
2672		degrees += 360;
2673
2674	clk_prepare_lock();
2675
2676	if (clk->exclusive_count)
2677		clk_core_rate_unprotect(clk->core);
2678
2679	ret = clk_core_set_phase_nolock(clk->core, degrees);
2680
2681	if (clk->exclusive_count)
2682		clk_core_rate_protect(clk->core);
2683
2684	clk_prepare_unlock();
2685
2686	return ret;
2687}
2688EXPORT_SYMBOL_GPL(clk_set_phase);
2689
2690static int clk_core_get_phase(struct clk_core *core)
2691{
2692	int ret;
2693
2694	lockdep_assert_held(&prepare_lock);
2695	if (!core->ops->get_phase)
2696		return 0;
2697
2698	/* Always try to update cached phase if possible */
2699	ret = core->ops->get_phase(core->hw);
2700	if (ret >= 0)
2701		core->phase = ret;
2702
 
2703	return ret;
2704}
2705
2706/**
2707 * clk_get_phase - return the phase shift of a clock signal
2708 * @clk: clock signal source
 
2709 *
2710 * Returns the phase shift of a clock node in degrees, otherwise returns
2711 * -EERROR.
 
 
 
 
2712 */
2713int clk_get_phase(struct clk *clk)
2714{
2715	int ret;
2716
2717	if (!clk)
2718		return 0;
2719
2720	clk_prepare_lock();
2721	ret = clk_core_get_phase(clk->core);
2722	clk_prepare_unlock();
2723
2724	return ret;
2725}
2726EXPORT_SYMBOL_GPL(clk_get_phase);
2727
2728static void clk_core_reset_duty_cycle_nolock(struct clk_core *core)
2729{
2730	/* Assume a default value of 50% */
2731	core->duty.num = 1;
2732	core->duty.den = 2;
2733}
2734
2735static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core);
2736
2737static int clk_core_update_duty_cycle_nolock(struct clk_core *core)
2738{
2739	struct clk_duty *duty = &core->duty;
2740	int ret = 0;
2741
2742	if (!core->ops->get_duty_cycle)
2743		return clk_core_update_duty_cycle_parent_nolock(core);
2744
2745	ret = core->ops->get_duty_cycle(core->hw, duty);
2746	if (ret)
2747		goto reset;
2748
2749	/* Don't trust the clock provider too much */
2750	if (duty->den == 0 || duty->num > duty->den) {
2751		ret = -EINVAL;
2752		goto reset;
2753	}
2754
2755	return 0;
2756
2757reset:
2758	clk_core_reset_duty_cycle_nolock(core);
2759	return ret;
2760}
2761
2762static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core)
2763{
2764	int ret = 0;
2765
2766	if (core->parent &&
2767	    core->flags & CLK_DUTY_CYCLE_PARENT) {
2768		ret = clk_core_update_duty_cycle_nolock(core->parent);
2769		memcpy(&core->duty, &core->parent->duty, sizeof(core->duty));
2770	} else {
2771		clk_core_reset_duty_cycle_nolock(core);
2772	}
2773
2774	return ret;
2775}
2776
2777static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core,
2778						 struct clk_duty *duty);
2779
2780static int clk_core_set_duty_cycle_nolock(struct clk_core *core,
2781					  struct clk_duty *duty)
2782{
2783	int ret;
2784
2785	lockdep_assert_held(&prepare_lock);
2786
2787	if (clk_core_rate_is_protected(core))
2788		return -EBUSY;
2789
2790	trace_clk_set_duty_cycle(core, duty);
2791
2792	if (!core->ops->set_duty_cycle)
2793		return clk_core_set_duty_cycle_parent_nolock(core, duty);
2794
2795	ret = core->ops->set_duty_cycle(core->hw, duty);
2796	if (!ret)
2797		memcpy(&core->duty, duty, sizeof(*duty));
2798
2799	trace_clk_set_duty_cycle_complete(core, duty);
2800
2801	return ret;
2802}
2803
2804static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core,
2805						 struct clk_duty *duty)
2806{
2807	int ret = 0;
2808
2809	if (core->parent &&
2810	    core->flags & (CLK_DUTY_CYCLE_PARENT | CLK_SET_RATE_PARENT)) {
2811		ret = clk_core_set_duty_cycle_nolock(core->parent, duty);
2812		memcpy(&core->duty, &core->parent->duty, sizeof(core->duty));
2813	}
2814
2815	return ret;
2816}
2817
2818/**
2819 * clk_set_duty_cycle - adjust the duty cycle ratio of a clock signal
2820 * @clk: clock signal source
2821 * @num: numerator of the duty cycle ratio to be applied
2822 * @den: denominator of the duty cycle ratio to be applied
2823 *
2824 * Apply the duty cycle ratio if the ratio is valid and the clock can
2825 * perform this operation
2826 *
2827 * Returns (0) on success, a negative errno otherwise.
2828 */
2829int clk_set_duty_cycle(struct clk *clk, unsigned int num, unsigned int den)
2830{
2831	int ret;
2832	struct clk_duty duty;
2833
2834	if (!clk)
2835		return 0;
2836
2837	/* sanity check the ratio */
2838	if (den == 0 || num > den)
2839		return -EINVAL;
2840
2841	duty.num = num;
2842	duty.den = den;
2843
2844	clk_prepare_lock();
 
2845
2846	if (clk->exclusive_count)
2847		clk_core_rate_unprotect(clk->core);
2848
2849	ret = clk_core_set_duty_cycle_nolock(clk->core, &duty);
 
 
2850
2851	if (clk->exclusive_count)
2852		clk_core_rate_protect(clk->core);
 
2853
2854	clk_prepare_unlock();
2855
2856	return ret;
2857}
2858EXPORT_SYMBOL_GPL(clk_set_duty_cycle);
2859
2860static int clk_core_get_scaled_duty_cycle(struct clk_core *core,
2861					  unsigned int scale)
2862{
2863	struct clk_duty *duty = &core->duty;
2864	int ret;
2865
2866	clk_prepare_lock();
2867
2868	ret = clk_core_update_duty_cycle_nolock(core);
2869	if (!ret)
2870		ret = mult_frac(scale, duty->num, duty->den);
2871
2872	clk_prepare_unlock();
2873
2874	return ret;
2875}
2876
2877/**
2878 * clk_get_scaled_duty_cycle - return the duty cycle ratio of a clock signal
2879 * @clk: clock signal source
2880 * @scale: scaling factor to be applied to represent the ratio as an integer
2881 *
2882 * Returns the duty cycle ratio of a clock node multiplied by the provided
2883 * scaling factor, or negative errno on error.
2884 */
2885int clk_get_scaled_duty_cycle(struct clk *clk, unsigned int scale)
2886{
2887	if (!clk)
2888		return 0;
2889
2890	return clk_core_get_scaled_duty_cycle(clk->core, scale);
2891}
2892EXPORT_SYMBOL_GPL(clk_get_scaled_duty_cycle);
2893
2894/**
2895 * clk_is_match - check if two clk's point to the same hardware clock
2896 * @p: clk compared against q
2897 * @q: clk compared against p
2898 *
2899 * Returns true if the two struct clk pointers both point to the same hardware
2900 * clock node. Put differently, returns true if struct clk *p and struct clk *q
2901 * share the same struct clk_core object.
2902 *
2903 * Returns false otherwise. Note that two NULL clks are treated as matching.
2904 */
2905bool clk_is_match(const struct clk *p, const struct clk *q)
2906{
2907	/* trivial case: identical struct clk's or both NULL */
2908	if (p == q)
2909		return true;
2910
2911	/* true if clk->core pointers match. Avoid dereferencing garbage */
2912	if (!IS_ERR_OR_NULL(p) && !IS_ERR_OR_NULL(q))
2913		if (p->core == q->core)
2914			return true;
2915
2916	return false;
2917}
2918EXPORT_SYMBOL_GPL(clk_is_match);
2919
2920/***        debugfs support        ***/
2921
2922#ifdef CONFIG_DEBUG_FS
2923#include <linux/debugfs.h>
2924
2925static struct dentry *rootdir;
2926static int inited = 0;
2927static DEFINE_MUTEX(clk_debug_lock);
2928static HLIST_HEAD(clk_debug_list);
2929
2930static struct hlist_head *orphan_list[] = {
2931	&clk_orphan_list,
2932	NULL,
2933};
2934
2935static void clk_summary_show_one(struct seq_file *s, struct clk_core *c,
2936				 int level)
2937{
2938	int phase;
2939
2940	seq_printf(s, "%*s%-*s %7d %8d %8d %11lu %10lu ",
2941		   level * 3 + 1, "",
2942		   30 - level * 3, c->name,
2943		   c->enable_count, c->prepare_count, c->protect_count,
2944		   clk_core_get_rate_recalc(c),
2945		   clk_core_get_accuracy_recalc(c));
2946
2947	phase = clk_core_get_phase(c);
2948	if (phase >= 0)
2949		seq_printf(s, "%5d", phase);
2950	else
2951		seq_puts(s, "-----");
2952
2953	seq_printf(s, " %6d", clk_core_get_scaled_duty_cycle(c, 100000));
2954
2955	if (c->ops->is_enabled)
2956		seq_printf(s, " %9c\n", clk_core_is_enabled(c) ? 'Y' : 'N');
2957	else if (!c->ops->enable)
2958		seq_printf(s, " %9c\n", 'Y');
2959	else
2960		seq_printf(s, " %9c\n", '?');
2961}
2962
2963static void clk_summary_show_subtree(struct seq_file *s, struct clk_core *c,
2964				     int level)
2965{
2966	struct clk_core *child;
2967
2968	clk_summary_show_one(s, c, level);
2969
2970	hlist_for_each_entry(child, &c->children, child_node)
2971		clk_summary_show_subtree(s, child, level + 1);
2972}
2973
2974static int clk_summary_show(struct seq_file *s, void *data)
2975{
2976	struct clk_core *c;
2977	struct hlist_head **lists = (struct hlist_head **)s->private;
2978
2979	seq_puts(s, "                                 enable  prepare  protect                                duty  hardware\n");
2980	seq_puts(s, "   clock                          count    count    count        rate   accuracy phase  cycle    enable\n");
2981	seq_puts(s, "-------------------------------------------------------------------------------------------------------\n");
2982
2983	clk_prepare_lock();
2984
2985	for (; *lists; lists++)
2986		hlist_for_each_entry(c, *lists, child_node)
2987			clk_summary_show_subtree(s, c, 0);
2988
2989	clk_prepare_unlock();
2990
2991	return 0;
2992}
2993DEFINE_SHOW_ATTRIBUTE(clk_summary);
2994
2995static void clk_dump_one(struct seq_file *s, struct clk_core *c, int level)
2996{
2997	int phase;
2998	unsigned long min_rate, max_rate;
2999
3000	clk_core_get_boundaries(c, &min_rate, &max_rate);
3001
3002	/* This should be JSON format, i.e. elements separated with a comma */
3003	seq_printf(s, "\"%s\": { ", c->name);
3004	seq_printf(s, "\"enable_count\": %d,", c->enable_count);
3005	seq_printf(s, "\"prepare_count\": %d,", c->prepare_count);
3006	seq_printf(s, "\"protect_count\": %d,", c->protect_count);
3007	seq_printf(s, "\"rate\": %lu,", clk_core_get_rate_recalc(c));
3008	seq_printf(s, "\"min_rate\": %lu,", min_rate);
3009	seq_printf(s, "\"max_rate\": %lu,", max_rate);
3010	seq_printf(s, "\"accuracy\": %lu,", clk_core_get_accuracy_recalc(c));
3011	phase = clk_core_get_phase(c);
3012	if (phase >= 0)
3013		seq_printf(s, "\"phase\": %d,", phase);
3014	seq_printf(s, "\"duty_cycle\": %u",
3015		   clk_core_get_scaled_duty_cycle(c, 100000));
3016}
3017
3018static void clk_dump_subtree(struct seq_file *s, struct clk_core *c, int level)
3019{
3020	struct clk_core *child;
3021
3022	clk_dump_one(s, c, level);
3023
3024	hlist_for_each_entry(child, &c->children, child_node) {
3025		seq_putc(s, ',');
3026		clk_dump_subtree(s, child, level + 1);
3027	}
3028
3029	seq_putc(s, '}');
3030}
3031
3032static int clk_dump_show(struct seq_file *s, void *data)
3033{
3034	struct clk_core *c;
3035	bool first_node = true;
3036	struct hlist_head **lists = (struct hlist_head **)s->private;
3037
3038	seq_putc(s, '{');
3039	clk_prepare_lock();
3040
3041	for (; *lists; lists++) {
3042		hlist_for_each_entry(c, *lists, child_node) {
3043			if (!first_node)
3044				seq_putc(s, ',');
3045			first_node = false;
3046			clk_dump_subtree(s, c, 0);
3047		}
3048	}
3049
3050	clk_prepare_unlock();
3051
3052	seq_puts(s, "}\n");
3053	return 0;
3054}
3055DEFINE_SHOW_ATTRIBUTE(clk_dump);
3056
3057#undef CLOCK_ALLOW_WRITE_DEBUGFS
3058#ifdef CLOCK_ALLOW_WRITE_DEBUGFS
3059/*
3060 * This can be dangerous, therefore don't provide any real compile time
3061 * configuration option for this feature.
3062 * People who want to use this will need to modify the source code directly.
3063 */
3064static int clk_rate_set(void *data, u64 val)
3065{
3066	struct clk_core *core = data;
3067	int ret;
3068
3069	clk_prepare_lock();
3070	ret = clk_core_set_rate_nolock(core, val);
3071	clk_prepare_unlock();
3072
3073	return ret;
3074}
3075
3076#define clk_rate_mode	0644
3077
3078static int clk_prepare_enable_set(void *data, u64 val)
3079{
3080	struct clk_core *core = data;
3081	int ret = 0;
3082
3083	if (val)
3084		ret = clk_prepare_enable(core->hw->clk);
3085	else
3086		clk_disable_unprepare(core->hw->clk);
3087
3088	return ret;
3089}
3090
3091static int clk_prepare_enable_get(void *data, u64 *val)
3092{
3093	struct clk_core *core = data;
3094
3095	*val = core->enable_count && core->prepare_count;
3096	return 0;
3097}
3098
3099DEFINE_DEBUGFS_ATTRIBUTE(clk_prepare_enable_fops, clk_prepare_enable_get,
3100			 clk_prepare_enable_set, "%llu\n");
3101
3102#else
3103#define clk_rate_set	NULL
3104#define clk_rate_mode	0444
3105#endif
3106
3107static int clk_rate_get(void *data, u64 *val)
3108{
3109	struct clk_core *core = data;
3110
3111	*val = core->rate;
3112	return 0;
3113}
3114
3115DEFINE_DEBUGFS_ATTRIBUTE(clk_rate_fops, clk_rate_get, clk_rate_set, "%llu\n");
3116
3117static const struct {
3118	unsigned long flag;
3119	const char *name;
3120} clk_flags[] = {
3121#define ENTRY(f) { f, #f }
3122	ENTRY(CLK_SET_RATE_GATE),
3123	ENTRY(CLK_SET_PARENT_GATE),
3124	ENTRY(CLK_SET_RATE_PARENT),
3125	ENTRY(CLK_IGNORE_UNUSED),
3126	ENTRY(CLK_GET_RATE_NOCACHE),
3127	ENTRY(CLK_SET_RATE_NO_REPARENT),
3128	ENTRY(CLK_GET_ACCURACY_NOCACHE),
3129	ENTRY(CLK_RECALC_NEW_RATES),
3130	ENTRY(CLK_SET_RATE_UNGATE),
3131	ENTRY(CLK_IS_CRITICAL),
3132	ENTRY(CLK_OPS_PARENT_ENABLE),
3133	ENTRY(CLK_DUTY_CYCLE_PARENT),
3134#undef ENTRY
3135};
3136
3137static int clk_flags_show(struct seq_file *s, void *data)
3138{
3139	struct clk_core *core = s->private;
3140	unsigned long flags = core->flags;
3141	unsigned int i;
3142
3143	for (i = 0; flags && i < ARRAY_SIZE(clk_flags); i++) {
3144		if (flags & clk_flags[i].flag) {
3145			seq_printf(s, "%s\n", clk_flags[i].name);
3146			flags &= ~clk_flags[i].flag;
3147		}
3148	}
3149	if (flags) {
3150		/* Unknown flags */
3151		seq_printf(s, "0x%lx\n", flags);
3152	}
3153
3154	return 0;
3155}
3156DEFINE_SHOW_ATTRIBUTE(clk_flags);
3157
3158static void possible_parent_show(struct seq_file *s, struct clk_core *core,
3159				 unsigned int i, char terminator)
3160{
3161	struct clk_core *parent;
3162
3163	/*
3164	 * Go through the following options to fetch a parent's name.
3165	 *
3166	 * 1. Fetch the registered parent clock and use its name
3167	 * 2. Use the global (fallback) name if specified
3168	 * 3. Use the local fw_name if provided
3169	 * 4. Fetch parent clock's clock-output-name if DT index was set
3170	 *
3171	 * This may still fail in some cases, such as when the parent is
3172	 * specified directly via a struct clk_hw pointer, but it isn't
3173	 * registered (yet).
3174	 */
3175	parent = clk_core_get_parent_by_index(core, i);
3176	if (parent)
3177		seq_puts(s, parent->name);
3178	else if (core->parents[i].name)
3179		seq_puts(s, core->parents[i].name);
3180	else if (core->parents[i].fw_name)
3181		seq_printf(s, "<%s>(fw)", core->parents[i].fw_name);
3182	else if (core->parents[i].index >= 0)
3183		seq_puts(s,
3184			 of_clk_get_parent_name(core->of_node,
3185						core->parents[i].index));
3186	else
3187		seq_puts(s, "(missing)");
3188
3189	seq_putc(s, terminator);
3190}
3191
3192static int possible_parents_show(struct seq_file *s, void *data)
3193{
3194	struct clk_core *core = s->private;
3195	int i;
3196
3197	for (i = 0; i < core->num_parents - 1; i++)
3198		possible_parent_show(s, core, i, ' ');
3199
3200	possible_parent_show(s, core, i, '\n');
3201
3202	return 0;
3203}
3204DEFINE_SHOW_ATTRIBUTE(possible_parents);
3205
3206static int current_parent_show(struct seq_file *s, void *data)
3207{
3208	struct clk_core *core = s->private;
3209
3210	if (core->parent)
3211		seq_printf(s, "%s\n", core->parent->name);
3212
3213	return 0;
3214}
3215DEFINE_SHOW_ATTRIBUTE(current_parent);
3216
3217static int clk_duty_cycle_show(struct seq_file *s, void *data)
3218{
3219	struct clk_core *core = s->private;
3220	struct clk_duty *duty = &core->duty;
3221
3222	seq_printf(s, "%u/%u\n", duty->num, duty->den);
3223
3224	return 0;
3225}
3226DEFINE_SHOW_ATTRIBUTE(clk_duty_cycle);
3227
3228static int clk_min_rate_show(struct seq_file *s, void *data)
3229{
3230	struct clk_core *core = s->private;
3231	unsigned long min_rate, max_rate;
3232
3233	clk_prepare_lock();
3234	clk_core_get_boundaries(core, &min_rate, &max_rate);
3235	clk_prepare_unlock();
3236	seq_printf(s, "%lu\n", min_rate);
3237
3238	return 0;
3239}
3240DEFINE_SHOW_ATTRIBUTE(clk_min_rate);
3241
3242static int clk_max_rate_show(struct seq_file *s, void *data)
3243{
3244	struct clk_core *core = s->private;
3245	unsigned long min_rate, max_rate;
3246
3247	clk_prepare_lock();
3248	clk_core_get_boundaries(core, &min_rate, &max_rate);
3249	clk_prepare_unlock();
3250	seq_printf(s, "%lu\n", max_rate);
3251
3252	return 0;
3253}
3254DEFINE_SHOW_ATTRIBUTE(clk_max_rate);
3255
3256static void clk_debug_create_one(struct clk_core *core, struct dentry *pdentry)
3257{
3258	struct dentry *root;
3259
3260	if (!core || !pdentry)
3261		return;
3262
3263	root = debugfs_create_dir(core->name, pdentry);
3264	core->dentry = root;
3265
3266	debugfs_create_file("clk_rate", clk_rate_mode, root, core,
3267			    &clk_rate_fops);
3268	debugfs_create_file("clk_min_rate", 0444, root, core, &clk_min_rate_fops);
3269	debugfs_create_file("clk_max_rate", 0444, root, core, &clk_max_rate_fops);
3270	debugfs_create_ulong("clk_accuracy", 0444, root, &core->accuracy);
3271	debugfs_create_u32("clk_phase", 0444, root, &core->phase);
3272	debugfs_create_file("clk_flags", 0444, root, core, &clk_flags_fops);
3273	debugfs_create_u32("clk_prepare_count", 0444, root, &core->prepare_count);
3274	debugfs_create_u32("clk_enable_count", 0444, root, &core->enable_count);
3275	debugfs_create_u32("clk_protect_count", 0444, root, &core->protect_count);
3276	debugfs_create_u32("clk_notifier_count", 0444, root, &core->notifier_count);
3277	debugfs_create_file("clk_duty_cycle", 0444, root, core,
3278			    &clk_duty_cycle_fops);
3279#ifdef CLOCK_ALLOW_WRITE_DEBUGFS
3280	debugfs_create_file("clk_prepare_enable", 0644, root, core,
3281			    &clk_prepare_enable_fops);
3282#endif
3283
3284	if (core->num_parents > 0)
3285		debugfs_create_file("clk_parent", 0444, root, core,
3286				    &current_parent_fops);
3287
3288	if (core->num_parents > 1)
3289		debugfs_create_file("clk_possible_parents", 0444, root, core,
3290				    &possible_parents_fops);
3291
3292	if (core->ops->debug_init)
3293		core->ops->debug_init(core->hw, core->dentry);
3294}
3295
3296/**
3297 * clk_debug_register - add a clk node to the debugfs clk directory
3298 * @core: the clk being added to the debugfs clk directory
3299 *
3300 * Dynamically adds a clk to the debugfs clk directory if debugfs has been
3301 * initialized.  Otherwise it bails out early since the debugfs clk directory
3302 * will be created lazily by clk_debug_init as part of a late_initcall.
3303 */
3304static void clk_debug_register(struct clk_core *core)
3305{
3306	mutex_lock(&clk_debug_lock);
3307	hlist_add_head(&core->debug_node, &clk_debug_list);
3308	if (inited)
3309		clk_debug_create_one(core, rootdir);
3310	mutex_unlock(&clk_debug_lock);
3311}
3312
3313 /**
3314 * clk_debug_unregister - remove a clk node from the debugfs clk directory
3315 * @core: the clk being removed from the debugfs clk directory
3316 *
3317 * Dynamically removes a clk and all its child nodes from the
3318 * debugfs clk directory if clk->dentry points to debugfs created by
3319 * clk_debug_register in __clk_core_init.
3320 */
3321static void clk_debug_unregister(struct clk_core *core)
3322{
3323	mutex_lock(&clk_debug_lock);
3324	hlist_del_init(&core->debug_node);
3325	debugfs_remove_recursive(core->dentry);
3326	core->dentry = NULL;
3327	mutex_unlock(&clk_debug_lock);
3328}
3329
3330/**
3331 * clk_debug_init - lazily populate the debugfs clk directory
3332 *
3333 * clks are often initialized very early during boot before memory can be
3334 * dynamically allocated and well before debugfs is setup. This function
3335 * populates the debugfs clk directory once at boot-time when we know that
3336 * debugfs is setup. It should only be called once at boot-time, all other clks
3337 * added dynamically will be done so with clk_debug_register.
3338 */
3339static int __init clk_debug_init(void)
3340{
3341	struct clk_core *core;
3342
3343	rootdir = debugfs_create_dir("clk", NULL);
3344
3345	debugfs_create_file("clk_summary", 0444, rootdir, &all_lists,
3346			    &clk_summary_fops);
3347	debugfs_create_file("clk_dump", 0444, rootdir, &all_lists,
3348			    &clk_dump_fops);
3349	debugfs_create_file("clk_orphan_summary", 0444, rootdir, &orphan_list,
3350			    &clk_summary_fops);
3351	debugfs_create_file("clk_orphan_dump", 0444, rootdir, &orphan_list,
3352			    &clk_dump_fops);
3353
3354	mutex_lock(&clk_debug_lock);
3355	hlist_for_each_entry(core, &clk_debug_list, debug_node)
3356		clk_debug_create_one(core, rootdir);
3357
3358	inited = 1;
3359	mutex_unlock(&clk_debug_lock);
3360
3361	return 0;
3362}
3363late_initcall(clk_debug_init);
3364#else
3365static inline void clk_debug_register(struct clk_core *core) { }
3366static inline void clk_debug_unregister(struct clk_core *core)
3367{
3368}
3369#endif
3370
3371static void clk_core_reparent_orphans_nolock(void)
3372{
3373	struct clk_core *orphan;
3374	struct hlist_node *tmp2;
3375
3376	/*
3377	 * walk the list of orphan clocks and reparent any that newly finds a
3378	 * parent.
3379	 */
3380	hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) {
3381		struct clk_core *parent = __clk_init_parent(orphan);
3382
3383		/*
3384		 * We need to use __clk_set_parent_before() and _after() to
3385		 * to properly migrate any prepare/enable count of the orphan
3386		 * clock. This is important for CLK_IS_CRITICAL clocks, which
3387		 * are enabled during init but might not have a parent yet.
3388		 */
3389		if (parent) {
3390			/* update the clk tree topology */
3391			__clk_set_parent_before(orphan, parent);
3392			__clk_set_parent_after(orphan, parent, NULL);
3393			__clk_recalc_accuracies(orphan);
3394			__clk_recalc_rates(orphan, 0);
3395		}
3396	}
3397}
3398
3399/**
3400 * __clk_core_init - initialize the data structures in a struct clk_core
3401 * @core:	clk_core being initialized
 
3402 *
3403 * Initializes the lists in struct clk_core, queries the hardware for the
3404 * parent and rate and sets them both.
3405 */
3406static int __clk_core_init(struct clk_core *core)
3407{
3408	int ret;
3409	struct clk_core *parent;
3410	unsigned long rate;
3411	int phase;
3412
3413	if (!core)
3414		return -EINVAL;
3415
3416	clk_prepare_lock();
3417
3418	ret = clk_pm_runtime_get(core);
3419	if (ret)
3420		goto unlock;
3421
3422	/* check to see if a clock with this name is already registered */
3423	if (clk_core_lookup(core->name)) {
3424		pr_debug("%s: clk %s already initialized\n",
3425				__func__, core->name);
3426		ret = -EEXIST;
3427		goto out;
3428	}
3429
3430	/* check that clk_ops are sane.  See Documentation/driver-api/clk.rst */
3431	if (core->ops->set_rate &&
3432	    !((core->ops->round_rate || core->ops->determine_rate) &&
3433	      core->ops->recalc_rate)) {
3434		pr_err("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n",
3435		       __func__, core->name);
3436		ret = -EINVAL;
3437		goto out;
3438	}
3439
3440	if (core->ops->set_parent && !core->ops->get_parent) {
3441		pr_err("%s: %s must implement .get_parent & .set_parent\n",
3442		       __func__, core->name);
3443		ret = -EINVAL;
3444		goto out;
3445	}
3446
3447	if (core->num_parents > 1 && !core->ops->get_parent) {
3448		pr_err("%s: %s must implement .get_parent as it has multi parents\n",
3449		       __func__, core->name);
3450		ret = -EINVAL;
3451		goto out;
3452	}
3453
3454	if (core->ops->set_rate_and_parent &&
3455			!(core->ops->set_parent && core->ops->set_rate)) {
3456		pr_err("%s: %s must implement .set_parent & .set_rate\n",
3457				__func__, core->name);
3458		ret = -EINVAL;
3459		goto out;
3460	}
3461
3462	/*
3463	 * optional platform-specific magic
3464	 *
3465	 * The .init callback is not used by any of the basic clock types, but
3466	 * exists for weird hardware that must perform initialization magic for
3467	 * CCF to get an accurate view of clock for any other callbacks. It may
3468	 * also be used needs to perform dynamic allocations. Such allocation
3469	 * must be freed in the terminate() callback.
3470	 * This callback shall not be used to initialize the parameters state,
3471	 * such as rate, parent, etc ...
3472	 *
3473	 * If it exist, this callback should called before any other callback of
3474	 * the clock
3475	 */
3476	if (core->ops->init) {
3477		ret = core->ops->init(core->hw);
3478		if (ret)
3479			goto out;
 
 
 
 
 
 
 
 
 
3480	}
3481
3482	parent = core->parent = __clk_init_parent(core);
3483
3484	/*
3485	 * Populate core->parent if parent has already been clk_core_init'd. If
3486	 * parent has not yet been clk_core_init'd then place clk in the orphan
3487	 * list.  If clk doesn't have any parents then place it in the root
3488	 * clk list.
3489	 *
3490	 * Every time a new clk is clk_init'd then we walk the list of orphan
3491	 * clocks and re-parent any that are children of the clock currently
3492	 * being clk_init'd.
3493	 */
3494	if (parent) {
3495		hlist_add_head(&core->child_node, &parent->children);
3496		core->orphan = parent->orphan;
3497	} else if (!core->num_parents) {
3498		hlist_add_head(&core->child_node, &clk_root_list);
3499		core->orphan = false;
3500	} else {
3501		hlist_add_head(&core->child_node, &clk_orphan_list);
3502		core->orphan = true;
3503	}
3504
3505	/*
3506	 * Set clk's accuracy.  The preferred method is to use
3507	 * .recalc_accuracy. For simple clocks and lazy developers the default
3508	 * fallback is to use the parent's accuracy.  If a clock doesn't have a
3509	 * parent (or is orphaned) then accuracy is set to zero (perfect
3510	 * clock).
3511	 */
3512	if (core->ops->recalc_accuracy)
3513		core->accuracy = core->ops->recalc_accuracy(core->hw,
3514					clk_core_get_accuracy_no_lock(parent));
3515	else if (parent)
3516		core->accuracy = parent->accuracy;
3517	else
3518		core->accuracy = 0;
3519
3520	/*
3521	 * Set clk's phase by clk_core_get_phase() caching the phase.
3522	 * Since a phase is by definition relative to its parent, just
3523	 * query the current clock phase, or just assume it's in phase.
3524	 */
3525	phase = clk_core_get_phase(core);
3526	if (phase < 0) {
3527		ret = phase;
3528		pr_warn("%s: Failed to get phase for clk '%s'\n", __func__,
3529			core->name);
3530		goto out;
3531	}
3532
3533	/*
3534	 * Set clk's duty cycle.
3535	 */
3536	clk_core_update_duty_cycle_nolock(core);
3537
3538	/*
3539	 * Set clk's rate.  The preferred method is to use .recalc_rate.  For
3540	 * simple clocks and lazy developers the default fallback is to use the
3541	 * parent's rate.  If a clock doesn't have a parent (or is orphaned)
3542	 * then rate is set to zero.
3543	 */
3544	if (core->ops->recalc_rate)
3545		rate = core->ops->recalc_rate(core->hw,
3546				clk_core_get_rate_nolock(parent));
3547	else if (parent)
3548		rate = parent->rate;
3549	else
3550		rate = 0;
3551	core->rate = core->req_rate = rate;
3552
3553	/*
3554	 * Enable CLK_IS_CRITICAL clocks so newly added critical clocks
3555	 * don't get accidentally disabled when walking the orphan tree and
3556	 * reparenting clocks
3557	 */
3558	if (core->flags & CLK_IS_CRITICAL) {
3559		ret = clk_core_prepare(core);
3560		if (ret) {
3561			pr_warn("%s: critical clk '%s' failed to prepare\n",
3562			       __func__, core->name);
3563			goto out;
3564		}
3565
3566		ret = clk_core_enable_lock(core);
3567		if (ret) {
3568			pr_warn("%s: critical clk '%s' failed to enable\n",
3569			       __func__, core->name);
3570			clk_core_unprepare(core);
3571			goto out;
3572		}
3573	}
3574
3575	clk_core_reparent_orphans_nolock();
3576
 
3577
3578	kref_init(&core->ref);
3579out:
3580	clk_pm_runtime_put(core);
3581unlock:
3582	if (ret)
3583		hlist_del_init(&core->child_node);
3584
3585	clk_prepare_unlock();
3586
3587	if (!ret)
3588		clk_debug_register(core);
3589
3590	return ret;
3591}
3592
3593/**
3594 * clk_core_link_consumer - Add a clk consumer to the list of consumers in a clk_core
3595 * @core: clk to add consumer to
3596 * @clk: consumer to link to a clk
3597 */
3598static void clk_core_link_consumer(struct clk_core *core, struct clk *clk)
3599{
3600	clk_prepare_lock();
3601	hlist_add_head(&clk->clks_node, &core->clks);
3602	clk_prepare_unlock();
3603}
3604
3605/**
3606 * clk_core_unlink_consumer - Remove a clk consumer from the list of consumers in a clk_core
3607 * @clk: consumer to unlink
3608 */
3609static void clk_core_unlink_consumer(struct clk *clk)
3610{
3611	lockdep_assert_held(&prepare_lock);
3612	hlist_del(&clk->clks_node);
3613}
3614
3615/**
3616 * alloc_clk - Allocate a clk consumer, but leave it unlinked to the clk_core
3617 * @core: clk to allocate a consumer for
3618 * @dev_id: string describing device name
3619 * @con_id: connection ID string on device
3620 *
3621 * Returns: clk consumer left unlinked from the consumer list
 
 
 
 
 
 
 
 
 
 
 
 
3622 */
3623static struct clk *alloc_clk(struct clk_core *core, const char *dev_id,
3624			     const char *con_id)
3625{
 
3626	struct clk *clk;
3627
3628	clk = kzalloc(sizeof(*clk), GFP_KERNEL);
3629	if (!clk)
3630		return ERR_PTR(-ENOMEM);
 
 
 
 
3631
3632	clk->core = core;
3633	clk->dev_id = dev_id;
3634	clk->con_id = kstrdup_const(con_id, GFP_KERNEL);
3635	clk->max_rate = ULONG_MAX;
3636
3637	return clk;
3638}
 
3639
3640/**
3641 * free_clk - Free a clk consumer
3642 * @clk: clk consumer to free
 
3643 *
3644 * Note, this assumes the clk has been unlinked from the clk_core consumer
3645 * list.
 
 
 
3646 */
3647static void free_clk(struct clk *clk)
3648{
3649	kfree_const(clk->con_id);
3650	kfree(clk);
3651}
3652
3653/**
3654 * clk_hw_create_clk: Allocate and link a clk consumer to a clk_core given
3655 * a clk_hw
3656 * @dev: clk consumer device
3657 * @hw: clk_hw associated with the clk being consumed
3658 * @dev_id: string describing device name
3659 * @con_id: connection ID string on device
3660 *
3661 * This is the main function used to create a clk pointer for use by clk
3662 * consumers. It connects a consumer to the clk_core and clk_hw structures
3663 * used by the framework and clk provider respectively.
3664 */
3665struct clk *clk_hw_create_clk(struct device *dev, struct clk_hw *hw,
3666			      const char *dev_id, const char *con_id)
3667{
 
3668	struct clk *clk;
3669	struct clk_core *core;
3670
3671	/* This is to allow this function to be chained to others */
3672	if (IS_ERR_OR_NULL(hw))
3673		return ERR_CAST(hw);
3674
3675	core = hw->core;
3676	clk = alloc_clk(core, dev_id, con_id);
3677	if (IS_ERR(clk))
3678		return clk;
3679	clk->dev = dev;
3680
3681	if (!try_module_get(core->owner)) {
3682		free_clk(clk);
3683		return ERR_PTR(-ENOENT);
3684	}
3685
3686	kref_get(&core->ref);
3687	clk_core_link_consumer(core, clk);
3688
3689	return clk;
3690}
3691
3692/**
3693 * clk_hw_get_clk - get clk consumer given an clk_hw
3694 * @hw: clk_hw associated with the clk being consumed
3695 * @con_id: connection ID string on device
3696 *
3697 * Returns: new clk consumer
3698 * This is the function to be used by providers which need
3699 * to get a consumer clk and act on the clock element
3700 * Calls to this function must be balanced with calls clk_put()
3701 */
3702struct clk *clk_hw_get_clk(struct clk_hw *hw, const char *con_id)
3703{
3704	struct device *dev = hw->core->dev;
3705
3706	return clk_hw_create_clk(dev, hw, dev_name(dev), con_id);
3707}
3708EXPORT_SYMBOL(clk_hw_get_clk);
3709
3710static int clk_cpy_name(const char **dst_p, const char *src, bool must_exist)
3711{
3712	const char *dst;
3713
3714	if (!src) {
3715		if (must_exist)
3716			return -EINVAL;
3717		return 0;
3718	}
3719
3720	*dst_p = dst = kstrdup_const(src, GFP_KERNEL);
3721	if (!dst)
3722		return -ENOMEM;
3723
3724	return 0;
3725}
3726
3727static int clk_core_populate_parent_map(struct clk_core *core,
3728					const struct clk_init_data *init)
3729{
3730	u8 num_parents = init->num_parents;
3731	const char * const *parent_names = init->parent_names;
3732	const struct clk_hw **parent_hws = init->parent_hws;
3733	const struct clk_parent_data *parent_data = init->parent_data;
3734	int i, ret = 0;
3735	struct clk_parent_map *parents, *parent;
3736
3737	if (!num_parents)
3738		return 0;
3739
3740	/*
3741	 * Avoid unnecessary string look-ups of clk_core's possible parents by
3742	 * having a cache of names/clk_hw pointers to clk_core pointers.
3743	 */
3744	parents = kcalloc(num_parents, sizeof(*parents), GFP_KERNEL);
3745	core->parents = parents;
3746	if (!parents)
3747		return -ENOMEM;
3748
3749	/* Copy everything over because it might be __initdata */
3750	for (i = 0, parent = parents; i < num_parents; i++, parent++) {
3751		parent->index = -1;
3752		if (parent_names) {
3753			/* throw a WARN if any entries are NULL */
3754			WARN(!parent_names[i],
3755				"%s: invalid NULL in %s's .parent_names\n",
3756				__func__, core->name);
3757			ret = clk_cpy_name(&parent->name, parent_names[i],
3758					   true);
3759		} else if (parent_data) {
3760			parent->hw = parent_data[i].hw;
3761			parent->index = parent_data[i].index;
3762			ret = clk_cpy_name(&parent->fw_name,
3763					   parent_data[i].fw_name, false);
3764			if (!ret)
3765				ret = clk_cpy_name(&parent->name,
3766						   parent_data[i].name,
3767						   false);
3768		} else if (parent_hws) {
3769			parent->hw = parent_hws[i];
3770		} else {
3771			ret = -EINVAL;
3772			WARN(1, "Must specify parents if num_parents > 0\n");
3773		}
3774
3775		if (ret) {
3776			do {
3777				kfree_const(parents[i].name);
3778				kfree_const(parents[i].fw_name);
3779			} while (--i >= 0);
3780			kfree(parents);
3781
3782			return ret;
3783		}
3784	}
3785
3786	return 0;
3787}
3788
3789static void clk_core_free_parent_map(struct clk_core *core)
3790{
3791	int i = core->num_parents;
3792
3793	if (!core->num_parents)
3794		return;
3795
3796	while (--i >= 0) {
3797		kfree_const(core->parents[i].name);
3798		kfree_const(core->parents[i].fw_name);
3799	}
3800
3801	kfree(core->parents);
3802}
3803
3804static struct clk *
3805__clk_register(struct device *dev, struct device_node *np, struct clk_hw *hw)
3806{
3807	int ret;
3808	struct clk_core *core;
3809	const struct clk_init_data *init = hw->init;
3810
3811	/*
3812	 * The init data is not supposed to be used outside of registration path.
3813	 * Set it to NULL so that provider drivers can't use it either and so that
3814	 * we catch use of hw->init early on in the core.
3815	 */
3816	hw->init = NULL;
3817
3818	core = kzalloc(sizeof(*core), GFP_KERNEL);
3819	if (!core) {
3820		ret = -ENOMEM;
3821		goto fail_out;
3822	}
3823
3824	core->name = kstrdup_const(init->name, GFP_KERNEL);
3825	if (!core->name) {
 
3826		ret = -ENOMEM;
3827		goto fail_name;
3828	}
 
 
 
 
 
 
 
 
 
3829
3830	if (WARN_ON(!init->ops)) {
3831		ret = -EINVAL;
3832		goto fail_ops;
 
3833	}
3834	core->ops = init->ops;
3835
3836	if (dev && pm_runtime_enabled(dev))
3837		core->rpm_enabled = true;
3838	core->dev = dev;
3839	core->of_node = np;
3840	if (dev && dev->driver)
3841		core->owner = dev->driver->owner;
3842	core->hw = hw;
3843	core->flags = init->flags;
3844	core->num_parents = init->num_parents;
3845	core->min_rate = 0;
3846	core->max_rate = ULONG_MAX;
3847	hw->core = core;
3848
3849	ret = clk_core_populate_parent_map(core, init);
3850	if (ret)
3851		goto fail_parents;
3852
3853	INIT_HLIST_HEAD(&core->clks);
3854
3855	/*
3856	 * Don't call clk_hw_create_clk() here because that would pin the
3857	 * provider module to itself and prevent it from ever being removed.
3858	 */
3859	hw->clk = alloc_clk(core, NULL, NULL);
3860	if (IS_ERR(hw->clk)) {
3861		ret = PTR_ERR(hw->clk);
3862		goto fail_create_clk;
3863	}
3864
3865	clk_core_link_consumer(hw->core, hw->clk);
3866
3867	ret = __clk_core_init(core);
3868	if (!ret)
3869		return hw->clk;
3870
3871	clk_prepare_lock();
3872	clk_core_unlink_consumer(hw->clk);
3873	clk_prepare_unlock();
3874
3875	free_clk(hw->clk);
3876	hw->clk = NULL;
3877
3878fail_create_clk:
3879	clk_core_free_parent_map(core);
3880fail_parents:
3881fail_ops:
3882	kfree_const(core->name);
3883fail_name:
3884	kfree(core);
3885fail_out:
3886	return ERR_PTR(ret);
3887}
3888
3889/**
3890 * dev_or_parent_of_node() - Get device node of @dev or @dev's parent
3891 * @dev: Device to get device node of
3892 *
3893 * Return: device node pointer of @dev, or the device node pointer of
3894 * @dev->parent if dev doesn't have a device node, or NULL if neither
3895 * @dev or @dev->parent have a device node.
3896 */
3897static struct device_node *dev_or_parent_of_node(struct device *dev)
3898{
3899	struct device_node *np;
3900
3901	if (!dev)
3902		return NULL;
3903
3904	np = dev_of_node(dev);
3905	if (!np)
3906		np = dev_of_node(dev->parent);
3907
3908	return np;
3909}
3910
3911/**
3912 * clk_register - allocate a new clock, register it and return an opaque cookie
3913 * @dev: device that is registering this clock
3914 * @hw: link to hardware-specific clock data
3915 *
3916 * clk_register is the *deprecated* interface for populating the clock tree with
3917 * new clock nodes. Use clk_hw_register() instead.
3918 *
3919 * Returns: a pointer to the newly allocated struct clk which
3920 * cannot be dereferenced by driver code but may be used in conjunction with the
3921 * rest of the clock API.  In the event of an error clk_register will return an
3922 * error code; drivers must test for an error code after calling clk_register.
3923 */
3924struct clk *clk_register(struct device *dev, struct clk_hw *hw)
3925{
3926	return __clk_register(dev, dev_or_parent_of_node(dev), hw);
3927}
3928EXPORT_SYMBOL_GPL(clk_register);
3929
3930/**
3931 * clk_hw_register - register a clk_hw and return an error code
3932 * @dev: device that is registering this clock
3933 * @hw: link to hardware-specific clock data
3934 *
3935 * clk_hw_register is the primary interface for populating the clock tree with
3936 * new clock nodes. It returns an integer equal to zero indicating success or
3937 * less than zero indicating failure. Drivers must test for an error code after
3938 * calling clk_hw_register().
3939 */
3940int clk_hw_register(struct device *dev, struct clk_hw *hw)
3941{
3942	return PTR_ERR_OR_ZERO(__clk_register(dev, dev_or_parent_of_node(dev),
3943			       hw));
3944}
3945EXPORT_SYMBOL_GPL(clk_hw_register);
3946
3947/*
3948 * of_clk_hw_register - register a clk_hw and return an error code
3949 * @node: device_node of device that is registering this clock
3950 * @hw: link to hardware-specific clock data
3951 *
3952 * of_clk_hw_register() is the primary interface for populating the clock tree
3953 * with new clock nodes when a struct device is not available, but a struct
3954 * device_node is. It returns an integer equal to zero indicating success or
3955 * less than zero indicating failure. Drivers must test for an error code after
3956 * calling of_clk_hw_register().
3957 */
3958int of_clk_hw_register(struct device_node *node, struct clk_hw *hw)
3959{
3960	return PTR_ERR_OR_ZERO(__clk_register(NULL, node, hw));
3961}
3962EXPORT_SYMBOL_GPL(of_clk_hw_register);
3963
3964/* Free memory allocated for a clock. */
3965static void __clk_release(struct kref *ref)
3966{
3967	struct clk_core *core = container_of(ref, struct clk_core, ref);
3968
3969	lockdep_assert_held(&prepare_lock);
3970
3971	clk_core_free_parent_map(core);
3972	kfree_const(core->name);
3973	kfree(core);
3974}
3975
3976/*
3977 * Empty clk_ops for unregistered clocks. These are used temporarily
3978 * after clk_unregister() was called on a clock and until last clock
3979 * consumer calls clk_put() and the struct clk object is freed.
3980 */
3981static int clk_nodrv_prepare_enable(struct clk_hw *hw)
3982{
3983	return -ENXIO;
3984}
3985
3986static void clk_nodrv_disable_unprepare(struct clk_hw *hw)
3987{
3988	WARN_ON_ONCE(1);
3989}
3990
3991static int clk_nodrv_set_rate(struct clk_hw *hw, unsigned long rate,
3992					unsigned long parent_rate)
3993{
3994	return -ENXIO;
3995}
3996
3997static int clk_nodrv_set_parent(struct clk_hw *hw, u8 index)
3998{
3999	return -ENXIO;
4000}
4001
4002static const struct clk_ops clk_nodrv_ops = {
4003	.enable		= clk_nodrv_prepare_enable,
4004	.disable	= clk_nodrv_disable_unprepare,
4005	.prepare	= clk_nodrv_prepare_enable,
4006	.unprepare	= clk_nodrv_disable_unprepare,
4007	.set_rate	= clk_nodrv_set_rate,
4008	.set_parent	= clk_nodrv_set_parent,
4009};
4010
4011static void clk_core_evict_parent_cache_subtree(struct clk_core *root,
4012						struct clk_core *target)
4013{
4014	int i;
4015	struct clk_core *child;
4016
4017	for (i = 0; i < root->num_parents; i++)
4018		if (root->parents[i].core == target)
4019			root->parents[i].core = NULL;
4020
4021	hlist_for_each_entry(child, &root->children, child_node)
4022		clk_core_evict_parent_cache_subtree(child, target);
4023}
4024
4025/* Remove this clk from all parent caches */
4026static void clk_core_evict_parent_cache(struct clk_core *core)
4027{
4028	struct hlist_head **lists;
4029	struct clk_core *root;
4030
4031	lockdep_assert_held(&prepare_lock);
4032
4033	for (lists = all_lists; *lists; lists++)
4034		hlist_for_each_entry(root, *lists, child_node)
4035			clk_core_evict_parent_cache_subtree(root, core);
4036
4037}
4038
4039/**
4040 * clk_unregister - unregister a currently registered clock
4041 * @clk: clock to unregister
 
 
4042 */
4043void clk_unregister(struct clk *clk)
4044{
4045	unsigned long flags;
4046	const struct clk_ops *ops;
4047
4048	if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
4049		return;
4050
4051	clk_debug_unregister(clk->core);
4052
4053	clk_prepare_lock();
4054
4055	ops = clk->core->ops;
4056	if (ops == &clk_nodrv_ops) {
4057		pr_err("%s: unregistered clock: %s\n", __func__,
4058		       clk->core->name);
4059		goto unlock;
4060	}
4061	/*
4062	 * Assign empty clock ops for consumers that might still hold
4063	 * a reference to this clock.
4064	 */
4065	flags = clk_enable_lock();
4066	clk->core->ops = &clk_nodrv_ops;
4067	clk_enable_unlock(flags);
4068
4069	if (ops->terminate)
4070		ops->terminate(clk->core->hw);
4071
4072	if (!hlist_empty(&clk->core->children)) {
4073		struct clk_core *child;
4074		struct hlist_node *t;
4075
4076		/* Reparent all children to the orphan list. */
4077		hlist_for_each_entry_safe(child, t, &clk->core->children,
4078					  child_node)
4079			clk_core_set_parent_nolock(child, NULL);
4080	}
4081
4082	clk_core_evict_parent_cache(clk->core);
4083
4084	hlist_del_init(&clk->core->child_node);
4085
4086	if (clk->core->prepare_count)
4087		pr_warn("%s: unregistering prepared clock: %s\n",
4088					__func__, clk->core->name);
4089
4090	if (clk->core->protect_count)
4091		pr_warn("%s: unregistering protected clock: %s\n",
4092					__func__, clk->core->name);
4093
4094	kref_put(&clk->core->ref, __clk_release);
4095	free_clk(clk);
4096unlock:
4097	clk_prepare_unlock();
4098}
4099EXPORT_SYMBOL_GPL(clk_unregister);
4100
4101/**
4102 * clk_hw_unregister - unregister a currently registered clk_hw
4103 * @hw: hardware-specific clock data to unregister
4104 */
4105void clk_hw_unregister(struct clk_hw *hw)
4106{
4107	clk_unregister(hw->clk);
4108}
4109EXPORT_SYMBOL_GPL(clk_hw_unregister);
4110
4111static void devm_clk_unregister_cb(struct device *dev, void *res)
4112{
4113	clk_unregister(*(struct clk **)res);
4114}
4115
4116static void devm_clk_hw_unregister_cb(struct device *dev, void *res)
4117{
4118	clk_hw_unregister(*(struct clk_hw **)res);
4119}
4120
4121/**
4122 * devm_clk_register - resource managed clk_register()
4123 * @dev: device that is registering this clock
4124 * @hw: link to hardware-specific clock data
4125 *
4126 * Managed clk_register(). This function is *deprecated*, use devm_clk_hw_register() instead.
4127 *
4128 * Clocks returned from this function are automatically clk_unregister()ed on
4129 * driver detach. See clk_register() for more information.
4130 */
4131struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw)
4132{
4133	struct clk *clk;
4134	struct clk **clkp;
4135
4136	clkp = devres_alloc(devm_clk_unregister_cb, sizeof(*clkp), GFP_KERNEL);
4137	if (!clkp)
4138		return ERR_PTR(-ENOMEM);
4139
4140	clk = clk_register(dev, hw);
4141	if (!IS_ERR(clk)) {
4142		*clkp = clk;
4143		devres_add(dev, clkp);
4144	} else {
4145		devres_free(clkp);
4146	}
4147
4148	return clk;
4149}
4150EXPORT_SYMBOL_GPL(devm_clk_register);
4151
4152/**
4153 * devm_clk_hw_register - resource managed clk_hw_register()
4154 * @dev: device that is registering this clock
4155 * @hw: link to hardware-specific clock data
4156 *
4157 * Managed clk_hw_register(). Clocks registered by this function are
4158 * automatically clk_hw_unregister()ed on driver detach. See clk_hw_register()
4159 * for more information.
4160 */
4161int devm_clk_hw_register(struct device *dev, struct clk_hw *hw)
4162{
4163	struct clk_hw **hwp;
4164	int ret;
4165
4166	hwp = devres_alloc(devm_clk_hw_unregister_cb, sizeof(*hwp), GFP_KERNEL);
4167	if (!hwp)
4168		return -ENOMEM;
4169
4170	ret = clk_hw_register(dev, hw);
4171	if (!ret) {
4172		*hwp = hw;
4173		devres_add(dev, hwp);
4174	} else {
4175		devres_free(hwp);
4176	}
4177
4178	return ret;
4179}
4180EXPORT_SYMBOL_GPL(devm_clk_hw_register);
4181
4182static int devm_clk_match(struct device *dev, void *res, void *data)
4183{
4184	struct clk *c = res;
4185	if (WARN_ON(!c))
4186		return 0;
4187	return c == data;
4188}
4189
4190static int devm_clk_hw_match(struct device *dev, void *res, void *data)
4191{
4192	struct clk_hw *hw = res;
4193
4194	if (WARN_ON(!hw))
4195		return 0;
4196	return hw == data;
4197}
4198
4199/**
4200 * devm_clk_unregister - resource managed clk_unregister()
4201 * @dev: device that is unregistering the clock data
4202 * @clk: clock to unregister
4203 *
4204 * Deallocate a clock allocated with devm_clk_register(). Normally
4205 * this function will not need to be called and the resource management
4206 * code will ensure that the resource is freed.
4207 */
4208void devm_clk_unregister(struct device *dev, struct clk *clk)
4209{
4210	WARN_ON(devres_release(dev, devm_clk_unregister_cb, devm_clk_match, clk));
4211}
4212EXPORT_SYMBOL_GPL(devm_clk_unregister);
4213
4214/**
4215 * devm_clk_hw_unregister - resource managed clk_hw_unregister()
4216 * @dev: device that is unregistering the hardware-specific clock data
4217 * @hw: link to hardware-specific clock data
4218 *
4219 * Unregister a clk_hw registered with devm_clk_hw_register(). Normally
4220 * this function will not need to be called and the resource management
4221 * code will ensure that the resource is freed.
4222 */
4223void devm_clk_hw_unregister(struct device *dev, struct clk_hw *hw)
4224{
4225	WARN_ON(devres_release(dev, devm_clk_hw_unregister_cb, devm_clk_hw_match,
4226				hw));
4227}
4228EXPORT_SYMBOL_GPL(devm_clk_hw_unregister);
4229
4230static void devm_clk_release(struct device *dev, void *res)
4231{
4232	clk_put(*(struct clk **)res);
4233}
4234
4235/**
4236 * devm_clk_hw_get_clk - resource managed clk_hw_get_clk()
4237 * @dev: device that is registering this clock
4238 * @hw: clk_hw associated with the clk being consumed
4239 * @con_id: connection ID string on device
4240 *
4241 * Managed clk_hw_get_clk(). Clocks got with this function are
4242 * automatically clk_put() on driver detach. See clk_put()
4243 * for more information.
4244 */
4245struct clk *devm_clk_hw_get_clk(struct device *dev, struct clk_hw *hw,
4246				const char *con_id)
4247{
4248	struct clk *clk;
4249	struct clk **clkp;
4250
4251	/* This should not happen because it would mean we have drivers
4252	 * passing around clk_hw pointers instead of having the caller use
4253	 * proper clk_get() style APIs
4254	 */
4255	WARN_ON_ONCE(dev != hw->core->dev);
4256
4257	clkp = devres_alloc(devm_clk_release, sizeof(*clkp), GFP_KERNEL);
4258	if (!clkp)
4259		return ERR_PTR(-ENOMEM);
4260
4261	clk = clk_hw_get_clk(hw, con_id);
4262	if (!IS_ERR(clk)) {
4263		*clkp = clk;
4264		devres_add(dev, clkp);
4265	} else {
4266		devres_free(clkp);
4267	}
4268
4269	return clk;
4270}
4271EXPORT_SYMBOL_GPL(devm_clk_hw_get_clk);
4272
4273/*
4274 * clkdev helpers
4275 */
4276
4277void __clk_put(struct clk *clk)
4278{
4279	struct module *owner;
4280
4281	if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
4282		return;
4283
4284	clk_prepare_lock();
4285
4286	/*
4287	 * Before calling clk_put, all calls to clk_rate_exclusive_get() from a
4288	 * given user should be balanced with calls to clk_rate_exclusive_put()
4289	 * and by that same consumer
4290	 */
4291	if (WARN_ON(clk->exclusive_count)) {
4292		/* We voiced our concern, let's sanitize the situation */
4293		clk->core->protect_count -= (clk->exclusive_count - 1);
4294		clk_core_rate_unprotect(clk->core);
4295		clk->exclusive_count = 0;
4296	}
4297
4298	hlist_del(&clk->clks_node);
4299	if (clk->min_rate > clk->core->req_rate ||
4300	    clk->max_rate < clk->core->req_rate)
4301		clk_core_set_rate_nolock(clk->core, clk->core->req_rate);
4302
4303	owner = clk->core->owner;
4304	kref_put(&clk->core->ref, __clk_release);
4305
4306	clk_prepare_unlock();
4307
4308	module_put(owner);
4309
4310	free_clk(clk);
4311}
4312
4313/***        clk rate change notifiers        ***/
4314
4315/**
4316 * clk_notifier_register - add a clk rate change notifier
4317 * @clk: struct clk * to watch
4318 * @nb: struct notifier_block * with callback info
4319 *
4320 * Request notification when clk's rate changes.  This uses an SRCU
4321 * notifier because we want it to block and notifier unregistrations are
4322 * uncommon.  The callbacks associated with the notifier must not
4323 * re-enter into the clk framework by calling any top-level clk APIs;
4324 * this will cause a nested prepare_lock mutex.
4325 *
4326 * In all notification cases (pre, post and abort rate change) the original
4327 * clock rate is passed to the callback via struct clk_notifier_data.old_rate
4328 * and the new frequency is passed via struct clk_notifier_data.new_rate.
 
 
 
 
 
 
 
 
 
 
4329 *
4330 * clk_notifier_register() must be called from non-atomic context.
4331 * Returns -EINVAL if called with null arguments, -ENOMEM upon
4332 * allocation failure; otherwise, passes along the return value of
4333 * srcu_notifier_chain_register().
4334 */
4335int clk_notifier_register(struct clk *clk, struct notifier_block *nb)
4336{
4337	struct clk_notifier *cn;
4338	int ret = -ENOMEM;
4339
4340	if (!clk || !nb)
4341		return -EINVAL;
4342
4343	clk_prepare_lock();
4344
4345	/* search the list of notifiers for this clk */
4346	list_for_each_entry(cn, &clk_notifier_list, node)
4347		if (cn->clk == clk)
4348			goto found;
4349
4350	/* if clk wasn't in the notifier list, allocate new clk_notifier */
4351	cn = kzalloc(sizeof(*cn), GFP_KERNEL);
4352	if (!cn)
4353		goto out;
 
4354
4355	cn->clk = clk;
4356	srcu_init_notifier_head(&cn->notifier_head);
4357
4358	list_add(&cn->node, &clk_notifier_list);
 
4359
4360found:
4361	ret = srcu_notifier_chain_register(&cn->notifier_head, nb);
4362
4363	clk->core->notifier_count++;
4364
4365out:
4366	clk_prepare_unlock();
4367
4368	return ret;
4369}
4370EXPORT_SYMBOL_GPL(clk_notifier_register);
4371
4372/**
4373 * clk_notifier_unregister - remove a clk rate change notifier
4374 * @clk: struct clk *
4375 * @nb: struct notifier_block * with callback info
4376 *
4377 * Request no further notification for changes to 'clk' and frees memory
4378 * allocated in clk_notifier_register.
4379 *
4380 * Returns -EINVAL if called with null arguments; otherwise, passes
4381 * along the return value of srcu_notifier_chain_unregister().
4382 */
4383int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb)
4384{
4385	struct clk_notifier *cn;
4386	int ret = -ENOENT;
4387
4388	if (!clk || !nb)
4389		return -EINVAL;
4390
4391	clk_prepare_lock();
4392
4393	list_for_each_entry(cn, &clk_notifier_list, node) {
4394		if (cn->clk == clk) {
4395			ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb);
4396
4397			clk->core->notifier_count--;
4398
4399			/* XXX the notifier code should handle this better */
4400			if (!cn->notifier_head.head) {
4401				srcu_cleanup_notifier_head(&cn->notifier_head);
4402				list_del(&cn->node);
4403				kfree(cn);
4404			}
4405			break;
4406		}
4407	}
4408
4409	clk_prepare_unlock();
 
4410
4411	return ret;
4412}
4413EXPORT_SYMBOL_GPL(clk_notifier_unregister);
4414
4415struct clk_notifier_devres {
4416	struct clk *clk;
4417	struct notifier_block *nb;
4418};
 
4419
4420static void devm_clk_notifier_release(struct device *dev, void *res)
4421{
4422	struct clk_notifier_devres *devres = res;
4423
4424	clk_notifier_unregister(devres->clk, devres->nb);
4425}
4426
4427int devm_clk_notifier_register(struct device *dev, struct clk *clk,
4428			       struct notifier_block *nb)
4429{
4430	struct clk_notifier_devres *devres;
4431	int ret;
4432
4433	devres = devres_alloc(devm_clk_notifier_release,
4434			      sizeof(*devres), GFP_KERNEL);
4435
4436	if (!devres)
4437		return -ENOMEM;
4438
4439	ret = clk_notifier_register(clk, nb);
4440	if (!ret) {
4441		devres->clk = clk;
4442		devres->nb = nb;
4443	} else {
4444		devres_free(devres);
4445	}
4446
4447	return ret;
4448}
4449EXPORT_SYMBOL_GPL(devm_clk_notifier_register);
4450
4451#ifdef CONFIG_OF
4452static void clk_core_reparent_orphans(void)
4453{
4454	clk_prepare_lock();
4455	clk_core_reparent_orphans_nolock();
4456	clk_prepare_unlock();
4457}
4458
4459/**
4460 * struct of_clk_provider - Clock provider registration structure
4461 * @link: Entry in global list of clock providers
4462 * @node: Pointer to device tree node of clock provider
4463 * @get: Get clock callback.  Returns NULL or a struct clk for the
4464 *       given clock specifier
4465 * @get_hw: Get clk_hw callback.  Returns NULL, ERR_PTR or a
4466 *       struct clk_hw for the given clock specifier
4467 * @data: context pointer to be passed into @get callback
4468 */
4469struct of_clk_provider {
4470	struct list_head link;
4471
4472	struct device_node *node;
4473	struct clk *(*get)(struct of_phandle_args *clkspec, void *data);
4474	struct clk_hw *(*get_hw)(struct of_phandle_args *clkspec, void *data);
4475	void *data;
4476};
4477
4478extern struct of_device_id __clk_of_table;
4479static const struct of_device_id __clk_of_table_sentinel
4480	__used __section("__clk_of_table_end");
4481
4482static LIST_HEAD(of_clk_providers);
4483static DEFINE_MUTEX(of_clk_mutex);
4484
4485struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec,
4486				     void *data)
4487{
4488	return data;
4489}
4490EXPORT_SYMBOL_GPL(of_clk_src_simple_get);
4491
4492struct clk_hw *of_clk_hw_simple_get(struct of_phandle_args *clkspec, void *data)
4493{
4494	return data;
4495}
4496EXPORT_SYMBOL_GPL(of_clk_hw_simple_get);
4497
4498struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data)
4499{
4500	struct clk_onecell_data *clk_data = data;
4501	unsigned int idx = clkspec->args[0];
4502
4503	if (idx >= clk_data->clk_num) {
4504		pr_err("%s: invalid clock index %u\n", __func__, idx);
4505		return ERR_PTR(-EINVAL);
4506	}
4507
4508	return clk_data->clks[idx];
4509}
4510EXPORT_SYMBOL_GPL(of_clk_src_onecell_get);
4511
4512struct clk_hw *
4513of_clk_hw_onecell_get(struct of_phandle_args *clkspec, void *data)
4514{
4515	struct clk_hw_onecell_data *hw_data = data;
4516	unsigned int idx = clkspec->args[0];
4517
4518	if (idx >= hw_data->num) {
4519		pr_err("%s: invalid index %u\n", __func__, idx);
4520		return ERR_PTR(-EINVAL);
4521	}
4522
4523	return hw_data->hws[idx];
4524}
4525EXPORT_SYMBOL_GPL(of_clk_hw_onecell_get);
4526
4527/**
4528 * of_clk_add_provider() - Register a clock provider for a node
4529 * @np: Device node pointer associated with clock provider
4530 * @clk_src_get: callback for decoding clock
4531 * @data: context pointer for @clk_src_get callback.
4532 *
4533 * This function is *deprecated*. Use of_clk_add_hw_provider() instead.
4534 */
4535int of_clk_add_provider(struct device_node *np,
4536			struct clk *(*clk_src_get)(struct of_phandle_args *clkspec,
4537						   void *data),
4538			void *data)
4539{
4540	struct of_clk_provider *cp;
4541	int ret;
4542
4543	if (!np)
4544		return 0;
4545
4546	cp = kzalloc(sizeof(*cp), GFP_KERNEL);
4547	if (!cp)
4548		return -ENOMEM;
4549
4550	cp->node = of_node_get(np);
4551	cp->data = data;
4552	cp->get = clk_src_get;
4553
4554	mutex_lock(&of_clk_mutex);
4555	list_add(&cp->link, &of_clk_providers);
4556	mutex_unlock(&of_clk_mutex);
4557	pr_debug("Added clock from %pOF\n", np);
4558
4559	clk_core_reparent_orphans();
4560
4561	ret = of_clk_set_defaults(np, true);
4562	if (ret < 0)
4563		of_clk_del_provider(np);
4564
4565	fwnode_dev_initialized(&np->fwnode, true);
4566
4567	return ret;
4568}
4569EXPORT_SYMBOL_GPL(of_clk_add_provider);
4570
4571/**
4572 * of_clk_add_hw_provider() - Register a clock provider for a node
4573 * @np: Device node pointer associated with clock provider
4574 * @get: callback for decoding clk_hw
4575 * @data: context pointer for @get callback.
4576 */
4577int of_clk_add_hw_provider(struct device_node *np,
4578			   struct clk_hw *(*get)(struct of_phandle_args *clkspec,
4579						 void *data),
4580			   void *data)
4581{
4582	struct of_clk_provider *cp;
4583	int ret;
4584
4585	if (!np)
4586		return 0;
4587
4588	cp = kzalloc(sizeof(*cp), GFP_KERNEL);
4589	if (!cp)
4590		return -ENOMEM;
4591
4592	cp->node = of_node_get(np);
4593	cp->data = data;
4594	cp->get_hw = get;
4595
4596	mutex_lock(&of_clk_mutex);
4597	list_add(&cp->link, &of_clk_providers);
4598	mutex_unlock(&of_clk_mutex);
4599	pr_debug("Added clk_hw provider from %pOF\n", np);
4600
4601	clk_core_reparent_orphans();
4602
4603	ret = of_clk_set_defaults(np, true);
4604	if (ret < 0)
4605		of_clk_del_provider(np);
4606
4607	fwnode_dev_initialized(&np->fwnode, true);
4608
4609	return ret;
4610}
4611EXPORT_SYMBOL_GPL(of_clk_add_hw_provider);
4612
4613static void devm_of_clk_release_provider(struct device *dev, void *res)
4614{
4615	of_clk_del_provider(*(struct device_node **)res);
4616}
4617
4618/*
4619 * We allow a child device to use its parent device as the clock provider node
4620 * for cases like MFD sub-devices where the child device driver wants to use
4621 * devm_*() APIs but not list the device in DT as a sub-node.
4622 */
4623static struct device_node *get_clk_provider_node(struct device *dev)
4624{
4625	struct device_node *np, *parent_np;
4626
4627	np = dev->of_node;
4628	parent_np = dev->parent ? dev->parent->of_node : NULL;
4629
4630	if (!of_find_property(np, "#clock-cells", NULL))
4631		if (of_find_property(parent_np, "#clock-cells", NULL))
4632			np = parent_np;
4633
4634	return np;
4635}
4636
4637/**
4638 * devm_of_clk_add_hw_provider() - Managed clk provider node registration
4639 * @dev: Device acting as the clock provider (used for DT node and lifetime)
4640 * @get: callback for decoding clk_hw
4641 * @data: context pointer for @get callback
4642 *
4643 * Registers clock provider for given device's node. If the device has no DT
4644 * node or if the device node lacks of clock provider information (#clock-cells)
4645 * then the parent device's node is scanned for this information. If parent node
4646 * has the #clock-cells then it is used in registration. Provider is
4647 * automatically released at device exit.
4648 *
4649 * Return: 0 on success or an errno on failure.
4650 */
4651int devm_of_clk_add_hw_provider(struct device *dev,
4652			struct clk_hw *(*get)(struct of_phandle_args *clkspec,
4653					      void *data),
4654			void *data)
4655{
4656	struct device_node **ptr, *np;
4657	int ret;
4658
4659	ptr = devres_alloc(devm_of_clk_release_provider, sizeof(*ptr),
4660			   GFP_KERNEL);
4661	if (!ptr)
4662		return -ENOMEM;
4663
4664	np = get_clk_provider_node(dev);
4665	ret = of_clk_add_hw_provider(np, get, data);
4666	if (!ret) {
4667		*ptr = np;
4668		devres_add(dev, ptr);
4669	} else {
4670		devres_free(ptr);
4671	}
4672
4673	return ret;
4674}
4675EXPORT_SYMBOL_GPL(devm_of_clk_add_hw_provider);
4676
4677/**
4678 * of_clk_del_provider() - Remove a previously registered clock provider
4679 * @np: Device node pointer associated with clock provider
4680 */
4681void of_clk_del_provider(struct device_node *np)
4682{
4683	struct of_clk_provider *cp;
4684
4685	if (!np)
4686		return;
4687
4688	mutex_lock(&of_clk_mutex);
4689	list_for_each_entry(cp, &of_clk_providers, link) {
4690		if (cp->node == np) {
4691			list_del(&cp->link);
4692			fwnode_dev_initialized(&np->fwnode, false);
4693			of_node_put(cp->node);
4694			kfree(cp);
4695			break;
4696		}
4697	}
4698	mutex_unlock(&of_clk_mutex);
4699}
4700EXPORT_SYMBOL_GPL(of_clk_del_provider);
4701
4702static int devm_clk_provider_match(struct device *dev, void *res, void *data)
4703{
4704	struct device_node **np = res;
4705
4706	if (WARN_ON(!np || !*np))
4707		return 0;
4708
4709	return *np == data;
4710}
4711
4712/**
4713 * devm_of_clk_del_provider() - Remove clock provider registered using devm
4714 * @dev: Device to whose lifetime the clock provider was bound
4715 */
4716void devm_of_clk_del_provider(struct device *dev)
4717{
4718	int ret;
4719	struct device_node *np = get_clk_provider_node(dev);
4720
4721	ret = devres_release(dev, devm_of_clk_release_provider,
4722			     devm_clk_provider_match, np);
4723
4724	WARN_ON(ret);
4725}
4726EXPORT_SYMBOL(devm_of_clk_del_provider);
4727
4728/**
4729 * of_parse_clkspec() - Parse a DT clock specifier for a given device node
4730 * @np: device node to parse clock specifier from
4731 * @index: index of phandle to parse clock out of. If index < 0, @name is used
4732 * @name: clock name to find and parse. If name is NULL, the index is used
4733 * @out_args: Result of parsing the clock specifier
4734 *
4735 * Parses a device node's "clocks" and "clock-names" properties to find the
4736 * phandle and cells for the index or name that is desired. The resulting clock
4737 * specifier is placed into @out_args, or an errno is returned when there's a
4738 * parsing error. The @index argument is ignored if @name is non-NULL.
4739 *
4740 * Example:
4741 *
4742 * phandle1: clock-controller@1 {
4743 *	#clock-cells = <2>;
4744 * }
4745 *
4746 * phandle2: clock-controller@2 {
4747 *	#clock-cells = <1>;
4748 * }
4749 *
4750 * clock-consumer@3 {
4751 *	clocks = <&phandle1 1 2 &phandle2 3>;
4752 *	clock-names = "name1", "name2";
4753 * }
4754 *
4755 * To get a device_node for `clock-controller@2' node you may call this
4756 * function a few different ways:
4757 *
4758 *   of_parse_clkspec(clock-consumer@3, -1, "name2", &args);
4759 *   of_parse_clkspec(clock-consumer@3, 1, NULL, &args);
4760 *   of_parse_clkspec(clock-consumer@3, 1, "name2", &args);
4761 *
4762 * Return: 0 upon successfully parsing the clock specifier. Otherwise, -ENOENT
4763 * if @name is NULL or -EINVAL if @name is non-NULL and it can't be found in
4764 * the "clock-names" property of @np.
4765 */
4766static int of_parse_clkspec(const struct device_node *np, int index,
4767			    const char *name, struct of_phandle_args *out_args)
4768{
4769	int ret = -ENOENT;
4770
4771	/* Walk up the tree of devices looking for a clock property that matches */
4772	while (np) {
4773		/*
4774		 * For named clocks, first look up the name in the
4775		 * "clock-names" property.  If it cannot be found, then index
4776		 * will be an error code and of_parse_phandle_with_args() will
4777		 * return -EINVAL.
4778		 */
4779		if (name)
4780			index = of_property_match_string(np, "clock-names", name);
4781		ret = of_parse_phandle_with_args(np, "clocks", "#clock-cells",
4782						 index, out_args);
4783		if (!ret)
4784			break;
4785		if (name && index >= 0)
4786			break;
4787
4788		/*
4789		 * No matching clock found on this node.  If the parent node
4790		 * has a "clock-ranges" property, then we can try one of its
4791		 * clocks.
4792		 */
4793		np = np->parent;
4794		if (np && !of_get_property(np, "clock-ranges", NULL))
4795			break;
4796		index = 0;
4797	}
4798
4799	return ret;
4800}
4801
4802static struct clk_hw *
4803__of_clk_get_hw_from_provider(struct of_clk_provider *provider,
4804			      struct of_phandle_args *clkspec)
4805{
4806	struct clk *clk;
4807
4808	if (provider->get_hw)
4809		return provider->get_hw(clkspec, provider->data);
4810
4811	clk = provider->get(clkspec, provider->data);
4812	if (IS_ERR(clk))
4813		return ERR_CAST(clk);
4814	return __clk_get_hw(clk);
4815}
4816
4817static struct clk_hw *
4818of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec)
4819{
4820	struct of_clk_provider *provider;
4821	struct clk_hw *hw = ERR_PTR(-EPROBE_DEFER);
4822
4823	if (!clkspec)
4824		return ERR_PTR(-EINVAL);
4825
4826	mutex_lock(&of_clk_mutex);
4827	list_for_each_entry(provider, &of_clk_providers, link) {
4828		if (provider->node == clkspec->np) {
4829			hw = __of_clk_get_hw_from_provider(provider, clkspec);
4830			if (!IS_ERR(hw))
4831				break;
4832		}
4833	}
4834	mutex_unlock(&of_clk_mutex);
4835
4836	return hw;
4837}
4838
4839/**
4840 * of_clk_get_from_provider() - Lookup a clock from a clock provider
4841 * @clkspec: pointer to a clock specifier data structure
4842 *
4843 * This function looks up a struct clk from the registered list of clock
4844 * providers, an input is a clock specifier data structure as returned
4845 * from the of_parse_phandle_with_args() function call.
4846 */
4847struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec)
4848{
4849	struct clk_hw *hw = of_clk_get_hw_from_clkspec(clkspec);
4850
4851	return clk_hw_create_clk(NULL, hw, NULL, __func__);
4852}
4853EXPORT_SYMBOL_GPL(of_clk_get_from_provider);
4854
4855struct clk_hw *of_clk_get_hw(struct device_node *np, int index,
4856			     const char *con_id)
4857{
4858	int ret;
4859	struct clk_hw *hw;
4860	struct of_phandle_args clkspec;
4861
4862	ret = of_parse_clkspec(np, index, con_id, &clkspec);
4863	if (ret)
4864		return ERR_PTR(ret);
4865
4866	hw = of_clk_get_hw_from_clkspec(&clkspec);
4867	of_node_put(clkspec.np);
4868
4869	return hw;
4870}
4871
4872static struct clk *__of_clk_get(struct device_node *np,
4873				int index, const char *dev_id,
4874				const char *con_id)
4875{
4876	struct clk_hw *hw = of_clk_get_hw(np, index, con_id);
4877
4878	return clk_hw_create_clk(NULL, hw, dev_id, con_id);
4879}
4880
4881struct clk *of_clk_get(struct device_node *np, int index)
4882{
4883	return __of_clk_get(np, index, np->full_name, NULL);
4884}
4885EXPORT_SYMBOL(of_clk_get);
4886
4887/**
4888 * of_clk_get_by_name() - Parse and lookup a clock referenced by a device node
4889 * @np: pointer to clock consumer node
4890 * @name: name of consumer's clock input, or NULL for the first clock reference
4891 *
4892 * This function parses the clocks and clock-names properties,
4893 * and uses them to look up the struct clk from the registered list of clock
4894 * providers.
4895 */
4896struct clk *of_clk_get_by_name(struct device_node *np, const char *name)
4897{
4898	if (!np)
4899		return ERR_PTR(-ENOENT);
4900
4901	return __of_clk_get(np, 0, np->full_name, name);
4902}
4903EXPORT_SYMBOL(of_clk_get_by_name);
4904
4905/**
4906 * of_clk_get_parent_count() - Count the number of clocks a device node has
4907 * @np: device node to count
4908 *
4909 * Returns: The number of clocks that are possible parents of this node
4910 */
4911unsigned int of_clk_get_parent_count(const struct device_node *np)
4912{
4913	int count;
4914
4915	count = of_count_phandle_with_args(np, "clocks", "#clock-cells");
4916	if (count < 0)
4917		return 0;
4918
4919	return count;
4920}
4921EXPORT_SYMBOL_GPL(of_clk_get_parent_count);
4922
4923const char *of_clk_get_parent_name(const struct device_node *np, int index)
4924{
4925	struct of_phandle_args clkspec;
4926	struct property *prop;
4927	const char *clk_name;
4928	const __be32 *vp;
4929	u32 pv;
4930	int rc;
4931	int count;
4932	struct clk *clk;
4933
4934	rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index,
4935					&clkspec);
4936	if (rc)
4937		return NULL;
4938
4939	index = clkspec.args_count ? clkspec.args[0] : 0;
4940	count = 0;
4941
4942	/* if there is an indices property, use it to transfer the index
4943	 * specified into an array offset for the clock-output-names property.
4944	 */
4945	of_property_for_each_u32(clkspec.np, "clock-indices", prop, vp, pv) {
4946		if (index == pv) {
4947			index = count;
4948			break;
4949		}
4950		count++;
4951	}
4952	/* We went off the end of 'clock-indices' without finding it */
4953	if (prop && !vp)
4954		return NULL;
4955
4956	if (of_property_read_string_index(clkspec.np, "clock-output-names",
4957					  index,
4958					  &clk_name) < 0) {
4959		/*
4960		 * Best effort to get the name if the clock has been
4961		 * registered with the framework. If the clock isn't
4962		 * registered, we return the node name as the name of
4963		 * the clock as long as #clock-cells = 0.
4964		 */
4965		clk = of_clk_get_from_provider(&clkspec);
4966		if (IS_ERR(clk)) {
4967			if (clkspec.args_count == 0)
4968				clk_name = clkspec.np->name;
4969			else
4970				clk_name = NULL;
4971		} else {
4972			clk_name = __clk_get_name(clk);
4973			clk_put(clk);
4974		}
4975	}
4976
4977
4978	of_node_put(clkspec.np);
4979	return clk_name;
4980}
4981EXPORT_SYMBOL_GPL(of_clk_get_parent_name);
4982
4983/**
4984 * of_clk_parent_fill() - Fill @parents with names of @np's parents and return
4985 * number of parents
4986 * @np: Device node pointer associated with clock provider
4987 * @parents: pointer to char array that hold the parents' names
4988 * @size: size of the @parents array
4989 *
4990 * Return: number of parents for the clock node.
4991 */
4992int of_clk_parent_fill(struct device_node *np, const char **parents,
4993		       unsigned int size)
4994{
4995	unsigned int i = 0;
4996
4997	while (i < size && (parents[i] = of_clk_get_parent_name(np, i)) != NULL)
4998		i++;
4999
5000	return i;
5001}
5002EXPORT_SYMBOL_GPL(of_clk_parent_fill);
5003
5004struct clock_provider {
5005	void (*clk_init_cb)(struct device_node *);
5006	struct device_node *np;
5007	struct list_head node;
5008};
5009
5010/*
5011 * This function looks for a parent clock. If there is one, then it
5012 * checks that the provider for this parent clock was initialized, in
5013 * this case the parent clock will be ready.
5014 */
5015static int parent_ready(struct device_node *np)
5016{
5017	int i = 0;
5018
5019	while (true) {
5020		struct clk *clk = of_clk_get(np, i);
5021
5022		/* this parent is ready we can check the next one */
5023		if (!IS_ERR(clk)) {
5024			clk_put(clk);
5025			i++;
5026			continue;
5027		}
5028
5029		/* at least one parent is not ready, we exit now */
5030		if (PTR_ERR(clk) == -EPROBE_DEFER)
5031			return 0;
5032
5033		/*
5034		 * Here we make assumption that the device tree is
5035		 * written correctly. So an error means that there is
5036		 * no more parent. As we didn't exit yet, then the
5037		 * previous parent are ready. If there is no clock
5038		 * parent, no need to wait for them, then we can
5039		 * consider their absence as being ready
5040		 */
5041		return 1;
5042	}
5043}
5044
5045/**
5046 * of_clk_detect_critical() - set CLK_IS_CRITICAL flag from Device Tree
5047 * @np: Device node pointer associated with clock provider
5048 * @index: clock index
5049 * @flags: pointer to top-level framework flags
5050 *
5051 * Detects if the clock-critical property exists and, if so, sets the
5052 * corresponding CLK_IS_CRITICAL flag.
5053 *
5054 * Do not use this function. It exists only for legacy Device Tree
5055 * bindings, such as the one-clock-per-node style that are outdated.
5056 * Those bindings typically put all clock data into .dts and the Linux
5057 * driver has no clock data, thus making it impossible to set this flag
5058 * correctly from the driver. Only those drivers may call
5059 * of_clk_detect_critical from their setup functions.
5060 *
5061 * Return: error code or zero on success
5062 */
5063int of_clk_detect_critical(struct device_node *np, int index,
5064			   unsigned long *flags)
5065{
5066	struct property *prop;
5067	const __be32 *cur;
5068	uint32_t idx;
5069
5070	if (!np || !flags)
5071		return -EINVAL;
5072
5073	of_property_for_each_u32(np, "clock-critical", prop, cur, idx)
5074		if (index == idx)
5075			*flags |= CLK_IS_CRITICAL;
5076
5077	return 0;
5078}
5079
5080/**
5081 * of_clk_init() - Scan and init clock providers from the DT
5082 * @matches: array of compatible values and init functions for providers.
5083 *
5084 * This function scans the device tree for matching clock providers
5085 * and calls their initialization functions. It also does it by trying
5086 * to follow the dependencies.
5087 */
5088void __init of_clk_init(const struct of_device_id *matches)
5089{
5090	const struct of_device_id *match;
5091	struct device_node *np;
5092	struct clock_provider *clk_provider, *next;
5093	bool is_init_done;
5094	bool force = false;
5095	LIST_HEAD(clk_provider_list);
5096
5097	if (!matches)
5098		matches = &__clk_of_table;
5099
5100	/* First prepare the list of the clocks providers */
5101	for_each_matching_node_and_match(np, matches, &match) {
5102		struct clock_provider *parent;
5103
5104		if (!of_device_is_available(np))
5105			continue;
5106
5107		parent = kzalloc(sizeof(*parent), GFP_KERNEL);
5108		if (!parent) {
5109			list_for_each_entry_safe(clk_provider, next,
5110						 &clk_provider_list, node) {
5111				list_del(&clk_provider->node);
5112				of_node_put(clk_provider->np);
5113				kfree(clk_provider);
5114			}
5115			of_node_put(np);
5116			return;
5117		}
5118
5119		parent->clk_init_cb = match->data;
5120		parent->np = of_node_get(np);
5121		list_add_tail(&parent->node, &clk_provider_list);
5122	}
5123
5124	while (!list_empty(&clk_provider_list)) {
5125		is_init_done = false;
5126		list_for_each_entry_safe(clk_provider, next,
5127					&clk_provider_list, node) {
5128			if (force || parent_ready(clk_provider->np)) {
5129
5130				/* Don't populate platform devices */
5131				of_node_set_flag(clk_provider->np,
5132						 OF_POPULATED);
5133
5134				clk_provider->clk_init_cb(clk_provider->np);
5135				of_clk_set_defaults(clk_provider->np, true);
5136
5137				list_del(&clk_provider->node);
5138				of_node_put(clk_provider->np);
5139				kfree(clk_provider);
5140				is_init_done = true;
5141			}
5142		}
5143
5144		/*
5145		 * We didn't manage to initialize any of the
5146		 * remaining providers during the last loop, so now we
5147		 * initialize all the remaining ones unconditionally
5148		 * in case the clock parent was not mandatory
5149		 */
5150		if (!is_init_done)
5151			force = true;
5152	}
5153}
5154#endif