Linux Audio

Check our new training course

Loading...
v3.5.6
   1/*
   2 * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com>
   3 * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org>
   4 *
   5 * This program is free software; you can redistribute it and/or modify
   6 * it under the terms of the GNU General Public License version 2 as
   7 * published by the Free Software Foundation.
   8 *
   9 * Standard functionality for the common clock API.  See Documentation/clk.txt
  10 */
  11
  12#include <linux/clk-private.h>
 
 
  13#include <linux/module.h>
  14#include <linux/mutex.h>
  15#include <linux/spinlock.h>
  16#include <linux/err.h>
  17#include <linux/list.h>
  18#include <linux/slab.h>
 
 
 
 
 
 
 
 
 
  19
  20static DEFINE_SPINLOCK(enable_lock);
  21static DEFINE_MUTEX(prepare_lock);
  22
 
 
 
 
 
 
  23static HLIST_HEAD(clk_root_list);
  24static HLIST_HEAD(clk_orphan_list);
  25static LIST_HEAD(clk_notifier_list);
  26
  27/***        debugfs support        ***/
  28
  29#ifdef CONFIG_COMMON_CLK_DEBUG
  30#include <linux/debugfs.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  31
  32static struct dentry *rootdir;
  33static struct dentry *orphandir;
  34static int inited = 0;
  35
  36/* caller must hold prepare_lock */
  37static int clk_debug_create_one(struct clk *clk, struct dentry *pdentry)
  38{
  39	struct dentry *d;
  40	int ret = -ENOMEM;
 
 
 
 
  41
  42	if (!clk || !pdentry) {
  43		ret = -EINVAL;
  44		goto out;
  45	}
  46
  47	d = debugfs_create_dir(clk->name, pdentry);
  48	if (!d)
  49		goto out;
  50
  51	clk->dentry = d;
 
 
  52
  53	d = debugfs_create_u32("clk_rate", S_IRUGO, clk->dentry,
  54			(u32 *)&clk->rate);
  55	if (!d)
  56		goto err_out;
  57
  58	d = debugfs_create_x32("clk_flags", S_IRUGO, clk->dentry,
  59			(u32 *)&clk->flags);
  60	if (!d)
  61		goto err_out;
  62
  63	d = debugfs_create_u32("clk_prepare_count", S_IRUGO, clk->dentry,
  64			(u32 *)&clk->prepare_count);
  65	if (!d)
  66		goto err_out;
 
 
 
 
 
 
 
 
 
 
 
  67
  68	d = debugfs_create_u32("clk_enable_count", S_IRUGO, clk->dentry,
  69			(u32 *)&clk->enable_count);
  70	if (!d)
  71		goto err_out;
  72
  73	d = debugfs_create_u32("clk_notifier_count", S_IRUGO, clk->dentry,
  74			(u32 *)&clk->notifier_count);
  75	if (!d)
  76		goto err_out;
 
  77
  78	ret = 0;
  79	goto out;
 
 
  80
  81err_out:
  82	debugfs_remove(clk->dentry);
  83out:
  84	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  85}
  86
  87/* caller must hold prepare_lock */
  88static int clk_debug_create_subtree(struct clk *clk, struct dentry *pdentry)
  89{
  90	struct clk *child;
  91	struct hlist_node *tmp;
  92	int ret = -EINVAL;;
  93
  94	if (!clk || !pdentry)
  95		goto out;
 
 
 
 
 
 
 
 
 
 
  96
  97	ret = clk_debug_create_one(clk, pdentry);
 
 
  98
  99	if (ret)
 100		goto out;
 
 
 
 
 101
 102	hlist_for_each_entry(child, tmp, &clk->children, child_node)
 103		clk_debug_create_subtree(child, clk->dentry);
 
 
 104
 105	ret = 0;
 106out:
 107	return ret;
 108}
 109
 110/**
 111 * clk_debug_register - add a clk node to the debugfs clk tree
 112 * @clk: the clk being added to the debugfs clk tree
 113 *
 114 * Dynamically adds a clk to the debugfs clk tree if debugfs has been
 115 * initialized.  Otherwise it bails out early since the debugfs clk tree
 116 * will be created lazily by clk_debug_init as part of a late_initcall.
 117 *
 118 * Caller must hold prepare_lock.  Only clk_init calls this function (so
 119 * far) so this is taken care.
 120 */
 121static int clk_debug_register(struct clk *clk)
 122{
 123	struct clk *parent;
 124	struct dentry *pdentry;
 125	int ret = 0;
 126
 127	if (!inited)
 128		goto out;
 129
 130	parent = clk->parent;
 
 
 
 
 
 131
 132	/*
 133	 * Check to see if a clk is a root clk.  Also check that it is
 134	 * safe to add this clk to debugfs
 
 
 
 
 
 
 135	 */
 136	if (!parent)
 137		if (clk->flags & CLK_IS_ROOT)
 138			pdentry = rootdir;
 139		else
 140			pdentry = orphandir;
 141	else
 142		if (parent->dentry)
 143			pdentry = parent->dentry;
 144		else
 145			goto out;
 146
 147	ret = clk_debug_create_subtree(clk, pdentry);
 
 
 
 148
 149out:
 150	return ret;
 151}
 152
 153/**
 154 * clk_debug_init - lazily create the debugfs clk tree visualization
 155 *
 156 * clks are often initialized very early during boot before memory can
 157 * be dynamically allocated and well before debugfs is setup.
 158 * clk_debug_init walks the clk tree hierarchy while holding
 159 * prepare_lock and creates the topology as part of a late_initcall,
 160 * thus insuring that clks initialized very early will still be
 161 * represented in the debugfs clk tree.  This function should only be
 162 * called once at boot-time, and all other clks added dynamically will
 163 * be done so with clk_debug_register.
 164 */
 165static int __init clk_debug_init(void)
 166{
 167	struct clk *clk;
 168	struct hlist_node *tmp;
 169
 170	rootdir = debugfs_create_dir("clk", NULL);
 171
 172	if (!rootdir)
 173		return -ENOMEM;
 
 
 
 174
 175	orphandir = debugfs_create_dir("orphans", rootdir);
 
 
 
 
 176
 177	if (!orphandir)
 178		return -ENOMEM;
 
 
 
 179
 180	mutex_lock(&prepare_lock);
 
 
 
 
 181
 182	hlist_for_each_entry(clk, tmp, &clk_root_list, child_node)
 183		clk_debug_create_subtree(clk, rootdir);
 
 
 
 184
 185	hlist_for_each_entry(clk, tmp, &clk_orphan_list, child_node)
 186		clk_debug_create_subtree(clk, orphandir);
 
 
 
 187
 188	inited = 1;
 
 189
 190	mutex_unlock(&prepare_lock);
 
 
 
 
 191
 192	return 0;
 193}
 194late_initcall(clk_debug_init);
 195#else
 196static inline int clk_debug_register(struct clk *clk) { return 0; }
 197#endif
 198
 199/* caller must hold prepare_lock */
 200static void clk_disable_unused_subtree(struct clk *clk)
 201{
 202	struct clk *child;
 203	struct hlist_node *tmp;
 204	unsigned long flags;
 205
 206	if (!clk)
 207		goto out;
 208
 209	hlist_for_each_entry(child, tmp, &clk->children, child_node)
 210		clk_disable_unused_subtree(child);
 
 
 
 
 
 
 
 
 
 
 
 211
 212	spin_lock_irqsave(&enable_lock, flags);
 
 213
 214	if (clk->enable_count)
 215		goto unlock_out;
 
 
 
 216
 217	if (clk->flags & CLK_IGNORE_UNUSED)
 218		goto unlock_out;
 
 219
 220	if (__clk_is_enabled(clk) && clk->ops->disable)
 221		clk->ops->disable(clk->hw);
 222
 223unlock_out:
 224	spin_unlock_irqrestore(&enable_lock, flags);
 
 
 225
 226out:
 227	return;
 
 228}
 
 229
 230static int clk_disable_unused(void)
 231{
 232	struct clk *clk;
 233	struct hlist_node *tmp;
 234
 235	mutex_lock(&prepare_lock);
 
 
 236
 237	hlist_for_each_entry(clk, tmp, &clk_root_list, child_node)
 238		clk_disable_unused_subtree(clk);
 
 
 239
 240	hlist_for_each_entry(clk, tmp, &clk_orphan_list, child_node)
 241		clk_disable_unused_subtree(clk);
 242
 243	mutex_unlock(&prepare_lock);
 
 244
 245	return 0;
 
 
 
 
 246}
 247late_initcall(clk_disable_unused);
 248
 249/***    helper functions   ***/
 
 
 
 
 250
 251inline const char *__clk_get_name(struct clk *clk)
 252{
 253	return !clk ? NULL : clk->name;
 
 
 
 254}
 255
 256inline struct clk_hw *__clk_get_hw(struct clk *clk)
 257{
 258	return !clk ? NULL : clk->hw;
 259}
 
 260
 261inline u8 __clk_get_num_parents(struct clk *clk)
 262{
 263	return !clk ? -EINVAL : clk->num_parents;
 264}
 
 265
 266inline struct clk *__clk_get_parent(struct clk *clk)
 267{
 268	return !clk ? NULL : clk->parent;
 269}
 270
 271inline int __clk_get_enable_count(struct clk *clk)
 272{
 273	return !clk ? -EINVAL : clk->enable_count;
 274}
 275
 276inline int __clk_get_prepare_count(struct clk *clk)
 277{
 278	return !clk ? -EINVAL : clk->prepare_count;
 279}
 280
 281unsigned long __clk_get_rate(struct clk *clk)
 282{
 283	unsigned long ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 284
 285	if (!clk) {
 286		ret = 0;
 287		goto out;
 288	}
 289
 290	ret = clk->rate;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 291
 292	if (clk->flags & CLK_IS_ROOT)
 293		goto out;
 
 
 
 
 294
 295	if (!clk->parent)
 296		ret = 0;
 297
 298out:
 299	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 300}
 301
 302inline unsigned long __clk_get_flags(struct clk *clk)
 
 303{
 304	return !clk ? -EINVAL : clk->flags;
 
 305}
 
 306
 307int __clk_is_enabled(struct clk *clk)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 308{
 309	int ret;
 310
 311	if (!clk)
 
 
 312		return -EINVAL;
 313
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 314	/*
 315	 * .is_enabled is only mandatory for clocks that gate
 316	 * fall back to software usage counter if .is_enabled is missing
 317	 */
 318	if (!clk->ops->is_enabled) {
 319		ret = clk->enable_count ? 1 : 0;
 320		goto out;
 321	}
 322
 323	ret = clk->ops->is_enabled(clk->hw);
 
 324out:
 325	return ret;
 326}
 
 327
 328static struct clk *__clk_lookup_subtree(const char *name, struct clk *clk)
 329{
 330	struct clk *child;
 331	struct clk *ret;
 332	struct hlist_node *tmp;
 333
 334	if (!strcmp(clk->name, name))
 335		return clk;
 336
 337	hlist_for_each_entry(child, tmp, &clk->children, child_node) {
 338		ret = __clk_lookup_subtree(name, child);
 339		if (ret)
 340			return ret;
 341	}
 342
 343	return NULL;
 344}
 345
 346struct clk *__clk_lookup(const char *name)
 347{
 348	struct clk *root_clk;
 349	struct clk *ret;
 350	struct hlist_node *tmp;
 351
 352	if (!name)
 353		return NULL;
 354
 355	/* search the 'proper' clk tree first */
 356	hlist_for_each_entry(root_clk, tmp, &clk_root_list, child_node) {
 357		ret = __clk_lookup_subtree(name, root_clk);
 358		if (ret)
 359			return ret;
 360	}
 361
 362	/* if not found, then search the orphan tree */
 363	hlist_for_each_entry(root_clk, tmp, &clk_orphan_list, child_node) {
 364		ret = __clk_lookup_subtree(name, root_clk);
 365		if (ret)
 366			return ret;
 367	}
 368
 369	return NULL;
 
 370}
 371
 372/***        clk api        ***/
 373
 374void __clk_unprepare(struct clk *clk)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 375{
 376	if (!clk)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 377		return;
 378
 379	if (WARN_ON(clk->prepare_count == 0))
 380		return;
 381
 382	if (--clk->prepare_count > 0)
 383		return;
 384
 385	WARN_ON(clk->enable_count > 0);
 
 
 
 
 
 386
 387	if (clk->ops->unprepare)
 388		clk->ops->unprepare(clk->hw);
 389
 390	__clk_unprepare(clk->parent);
 
 
 
 
 
 
 
 
 391}
 392
 393/**
 394 * clk_unprepare - undo preparation of a clock source
 395 * @clk: the clk being unprepare
 396 *
 397 * clk_unprepare may sleep, which differentiates it from clk_disable.  In a
 398 * simple case, clk_unprepare can be used instead of clk_disable to gate a clk
 399 * if the operation may sleep.  One example is a clk which is accessed over
 400 * I2c.  In the complex case a clk gate operation may require a fast and a slow
 401 * part.  It is this reason that clk_unprepare and clk_disable are not mutually
 402 * exclusive.  In fact clk_disable must be called before clk_unprepare.
 403 */
 404void clk_unprepare(struct clk *clk)
 405{
 406	mutex_lock(&prepare_lock);
 407	__clk_unprepare(clk);
 408	mutex_unlock(&prepare_lock);
 
 409}
 410EXPORT_SYMBOL_GPL(clk_unprepare);
 411
 412int __clk_prepare(struct clk *clk)
 413{
 414	int ret = 0;
 415
 416	if (!clk)
 
 
 417		return 0;
 418
 419	if (clk->prepare_count == 0) {
 420		ret = __clk_prepare(clk->parent);
 421		if (ret)
 422			return ret;
 423
 424		if (clk->ops->prepare) {
 425			ret = clk->ops->prepare(clk->hw);
 426			if (ret) {
 427				__clk_unprepare(clk->parent);
 428				return ret;
 429			}
 430		}
 
 
 
 
 
 
 431	}
 432
 433	clk->prepare_count++;
 434
 435	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 436}
 437
 438/**
 439 * clk_prepare - prepare a clock source
 440 * @clk: the clk being prepared
 441 *
 442 * clk_prepare may sleep, which differentiates it from clk_enable.  In a simple
 443 * case, clk_prepare can be used instead of clk_enable to ungate a clk if the
 444 * operation may sleep.  One example is a clk which is accessed over I2c.  In
 445 * the complex case a clk ungate operation may require a fast and a slow part.
 446 * It is this reason that clk_prepare and clk_enable are not mutually
 447 * exclusive.  In fact clk_prepare must be called before clk_enable.
 448 * Returns 0 on success, -EERROR otherwise.
 449 */
 450int clk_prepare(struct clk *clk)
 451{
 452	int ret;
 453
 454	mutex_lock(&prepare_lock);
 455	ret = __clk_prepare(clk);
 456	mutex_unlock(&prepare_lock);
 457
 458	return ret;
 459}
 460EXPORT_SYMBOL_GPL(clk_prepare);
 461
 462static void __clk_disable(struct clk *clk)
 463{
 464	if (!clk)
 
 
 
 
 
 465		return;
 466
 467	if (WARN_ON(clk->enable_count == 0))
 468		return;
 469
 470	if (--clk->enable_count > 0)
 471		return;
 472
 473	if (clk->ops->disable)
 474		clk->ops->disable(clk->hw);
 
 
 
 
 
 
 
 
 
 
 
 475
 476	__clk_disable(clk->parent);
 
 
 477}
 478
 479/**
 480 * clk_disable - gate a clock
 481 * @clk: the clk being gated
 482 *
 483 * clk_disable must not sleep, which differentiates it from clk_unprepare.  In
 484 * a simple case, clk_disable can be used instead of clk_unprepare to gate a
 485 * clk if the operation is fast and will never sleep.  One example is a
 486 * SoC-internal clk which is controlled via simple register writes.  In the
 487 * complex case a clk gate operation may require a fast and a slow part.  It is
 488 * this reason that clk_unprepare and clk_disable are not mutually exclusive.
 489 * In fact clk_disable must be called before clk_unprepare.
 490 */
 491void clk_disable(struct clk *clk)
 492{
 493	unsigned long flags;
 
 494
 495	spin_lock_irqsave(&enable_lock, flags);
 496	__clk_disable(clk);
 497	spin_unlock_irqrestore(&enable_lock, flags);
 498}
 499EXPORT_SYMBOL_GPL(clk_disable);
 500
 501static int __clk_enable(struct clk *clk)
 502{
 503	int ret = 0;
 504
 505	if (!clk)
 
 
 506		return 0;
 507
 508	if (WARN_ON(clk->prepare_count == 0))
 509		return -ESHUTDOWN;
 510
 511	if (clk->enable_count == 0) {
 512		ret = __clk_enable(clk->parent);
 513
 514		if (ret)
 515			return ret;
 516
 517		if (clk->ops->enable) {
 518			ret = clk->ops->enable(clk->hw);
 519			if (ret) {
 520				__clk_disable(clk->parent);
 521				return ret;
 522			}
 
 
 
 
 523		}
 524	}
 525
 526	clk->enable_count++;
 527	return 0;
 528}
 529
 
 
 
 
 
 
 
 
 
 
 
 
 530/**
 531 * clk_enable - ungate a clock
 532 * @clk: the clk being ungated
 533 *
 534 * clk_enable must not sleep, which differentiates it from clk_prepare.  In a
 535 * simple case, clk_enable can be used instead of clk_prepare to ungate a clk
 536 * if the operation will never sleep.  One example is a SoC-internal clk which
 537 * is controlled via simple register writes.  In the complex case a clk ungate
 538 * operation may require a fast and a slow part.  It is this reason that
 539 * clk_enable and clk_prepare are not mutually exclusive.  In fact clk_prepare
 540 * must be called before clk_enable.  Returns 0 on success, -EERROR
 541 * otherwise.
 542 */
 543int clk_enable(struct clk *clk)
 544{
 545	unsigned long flags;
 
 
 
 
 
 
 
 
 546	int ret;
 547
 548	spin_lock_irqsave(&enable_lock, flags);
 549	ret = __clk_enable(clk);
 550	spin_unlock_irqrestore(&enable_lock, flags);
 
 
 
 
 551
 552	return ret;
 553}
 554EXPORT_SYMBOL_GPL(clk_enable);
 555
 556/**
 557 * clk_get_rate - return the rate of clk
 558 * @clk: the clk whose rate is being returned
 559 *
 560 * Simply returns the cached rate of the clk.  Does not query the hardware.  If
 561 * clk is NULL then returns 0.
 562 */
 563unsigned long clk_get_rate(struct clk *clk)
 564{
 565	unsigned long rate;
 
 
 566
 567	mutex_lock(&prepare_lock);
 568	rate = __clk_get_rate(clk);
 569	mutex_unlock(&prepare_lock);
 570
 571	return rate;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 572}
 573EXPORT_SYMBOL_GPL(clk_get_rate);
 574
 575/**
 576 * __clk_round_rate - round the given rate for a clk
 577 * @clk: round the rate of this clock
 
 578 *
 579 * Caller must hold prepare_lock.  Useful for clk_ops such as .set_rate
 580 */
 581unsigned long __clk_round_rate(struct clk *clk, unsigned long rate)
 582{
 583	unsigned long parent_rate = 0;
 
 
 
 584
 585	if (!clk)
 586		return -EINVAL;
 
 587
 588	if (!clk->ops->round_rate) {
 589		if (clk->flags & CLK_SET_RATE_PARENT)
 590			return __clk_round_rate(clk->parent, rate);
 591		else
 592			return clk->rate;
 593	}
 594
 595	if (clk->parent)
 596		parent_rate = clk->parent->rate;
 597
 598	return clk->ops->round_rate(clk->hw, rate, &parent_rate);
 
 
 
 
 599}
 
 600
 601/**
 602 * clk_round_rate - round the given rate for a clk
 603 * @clk: the clk for which we are rounding a rate
 604 * @rate: the rate which is to be rounded
 605 *
 606 * Takes in a rate as input and rounds it to a rate that the clk can actually
 607 * use which is then returned.  If clk doesn't support round_rate operation
 608 * then the parent rate is returned.
 609 */
 610long clk_round_rate(struct clk *clk, unsigned long rate)
 611{
 612	unsigned long ret;
 
 613
 614	mutex_lock(&prepare_lock);
 615	ret = __clk_round_rate(clk, rate);
 616	mutex_unlock(&prepare_lock);
 617
 618	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 619}
 620EXPORT_SYMBOL_GPL(clk_round_rate);
 621
 622/**
 623 * __clk_notify - call clk notifier chain
 624 * @clk: struct clk * that is changing rate
 625 * @msg: clk notifier type (see include/linux/clk.h)
 626 * @old_rate: old clk rate
 627 * @new_rate: new clk rate
 628 *
 629 * Triggers a notifier call chain on the clk rate-change notification
 630 * for 'clk'.  Passes a pointer to the struct clk and the previous
 631 * and current rates to the notifier callback.  Intended to be called by
 632 * internal clock code only.  Returns NOTIFY_DONE from the last driver
 633 * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if
 634 * a driver returns that.
 635 */
 636static int __clk_notify(struct clk *clk, unsigned long msg,
 637		unsigned long old_rate, unsigned long new_rate)
 638{
 639	struct clk_notifier *cn;
 640	struct clk_notifier_data cnd;
 641	int ret = NOTIFY_DONE;
 642
 643	cnd.clk = clk;
 644	cnd.old_rate = old_rate;
 645	cnd.new_rate = new_rate;
 646
 647	list_for_each_entry(cn, &clk_notifier_list, node) {
 648		if (cn->clk == clk) {
 
 649			ret = srcu_notifier_call_chain(&cn->notifier_head, msg,
 650					&cnd);
 651			break;
 
 652		}
 653	}
 654
 655	return ret;
 656}
 657
 658/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 659 * __clk_recalc_rates
 660 * @clk: first clk in the subtree
 661 * @msg: notification type (see include/linux/clk.h)
 662 *
 663 * Walks the subtree of clks starting with clk and recalculates rates as it
 664 * goes.  Note that if a clk does not implement the .recalc_rate callback then
 665 * it is assumed that the clock will take on the rate of it's parent.
 666 *
 667 * clk_recalc_rates also propagates the POST_RATE_CHANGE notification,
 668 * if necessary.
 669 *
 670 * Caller must hold prepare_lock.
 671 */
 672static void __clk_recalc_rates(struct clk *clk, unsigned long msg)
 673{
 674	unsigned long old_rate;
 675	unsigned long parent_rate = 0;
 676	struct hlist_node *tmp;
 677	struct clk *child;
 678
 679	old_rate = clk->rate;
 680
 681	if (clk->parent)
 682		parent_rate = clk->parent->rate;
 683
 684	if (clk->ops->recalc_rate)
 685		clk->rate = clk->ops->recalc_rate(clk->hw, parent_rate);
 686	else
 687		clk->rate = parent_rate;
 688
 689	/*
 690	 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE
 691	 * & ABORT_RATE_CHANGE notifiers
 692	 */
 693	if (clk->notifier_count && msg)
 694		__clk_notify(clk, msg, old_rate, clk->rate);
 695
 696	hlist_for_each_entry(child, tmp, &clk->children, child_node)
 697		__clk_recalc_rates(child, msg);
 698}
 699
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 700/**
 701 * __clk_speculate_rates
 702 * @clk: first clk in the subtree
 703 * @parent_rate: the "future" rate of clk's parent
 704 *
 705 * Walks the subtree of clks starting with clk, speculating rates as it
 706 * goes and firing off PRE_RATE_CHANGE notifications as necessary.
 707 *
 708 * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending
 709 * pre-rate change notifications and returns early if no clks in the
 710 * subtree have subscribed to the notifications.  Note that if a clk does not
 711 * implement the .recalc_rate callback then it is assumed that the clock will
 712 * take on the rate of it's parent.
 713 *
 714 * Caller must hold prepare_lock.
 715 */
 716static int __clk_speculate_rates(struct clk *clk, unsigned long parent_rate)
 
 717{
 718	struct hlist_node *tmp;
 719	struct clk *child;
 720	unsigned long new_rate;
 721	int ret = NOTIFY_DONE;
 722
 723	if (clk->ops->recalc_rate)
 724		new_rate = clk->ops->recalc_rate(clk->hw, parent_rate);
 725	else
 726		new_rate = parent_rate;
 727
 728	/* abort the rate change if a driver returns NOTIFY_BAD */
 729	if (clk->notifier_count)
 730		ret = __clk_notify(clk, PRE_RATE_CHANGE, clk->rate, new_rate);
 731
 732	if (ret == NOTIFY_BAD)
 
 
 733		goto out;
 
 734
 735	hlist_for_each_entry(child, tmp, &clk->children, child_node) {
 736		ret = __clk_speculate_rates(child, new_rate);
 737		if (ret == NOTIFY_BAD)
 738			break;
 739	}
 740
 741out:
 742	return ret;
 743}
 744
 745static void clk_calc_subtree(struct clk *clk, unsigned long new_rate)
 
 746{
 747	struct clk *child;
 748	struct hlist_node *tmp;
 749
 750	clk->new_rate = new_rate;
 751
 752	hlist_for_each_entry(child, tmp, &clk->children, child_node) {
 753		if (child->ops->recalc_rate)
 754			child->new_rate = child->ops->recalc_rate(child->hw, new_rate);
 755		else
 756			child->new_rate = new_rate;
 757		clk_calc_subtree(child, child->new_rate);
 
 
 
 
 
 758	}
 759}
 760
 761/*
 762 * calculate the new rates returning the topmost clock that has to be
 763 * changed.
 764 */
 765static struct clk *clk_calc_new_rates(struct clk *clk, unsigned long rate)
 
 766{
 767	struct clk *top = clk;
 
 768	unsigned long best_parent_rate = 0;
 769	unsigned long new_rate;
 
 
 
 
 770
 771	/* sanity */
 772	if (IS_ERR_OR_NULL(clk))
 773		return NULL;
 774
 775	/* save parent rate, if it exists */
 776	if (clk->parent)
 777		best_parent_rate = clk->parent->rate;
 
 
 
 
 
 
 
 778
 779	/* never propagate up to the parent */
 780	if (!(clk->flags & CLK_SET_RATE_PARENT)) {
 781		if (!clk->ops->round_rate) {
 782			clk->new_rate = clk->rate;
 
 
 
 
 783			return NULL;
 784		}
 785		new_rate = clk->ops->round_rate(clk->hw, rate, &best_parent_rate);
 
 
 
 
 
 
 
 
 
 
 
 
 
 786		goto out;
 787	}
 788
 789	/* need clk->parent from here on out */
 790	if (!clk->parent) {
 791		pr_debug("%s: %s has NULL parent\n", __func__, clk->name);
 
 
 792		return NULL;
 793	}
 794
 795	if (!clk->ops->round_rate) {
 796		top = clk_calc_new_rates(clk->parent, rate);
 797		new_rate = clk->parent->new_rate;
 798
 799		goto out;
 
 
 
 800	}
 801
 802	new_rate = clk->ops->round_rate(clk->hw, rate, &best_parent_rate);
 803
 804	if (best_parent_rate != clk->parent->rate) {
 805		top = clk_calc_new_rates(clk->parent, best_parent_rate);
 806
 807		goto out;
 808	}
 809
 810out:
 811	clk_calc_subtree(clk, new_rate);
 812
 813	return top;
 814}
 815
 816/*
 817 * Notify about rate changes in a subtree. Always walk down the whole tree
 818 * so that in case of an error we can walk down the whole tree again and
 819 * abort the change.
 820 */
 821static struct clk *clk_propagate_rate_change(struct clk *clk, unsigned long event)
 
 822{
 823	struct hlist_node *tmp;
 824	struct clk *child, *fail_clk = NULL;
 825	int ret = NOTIFY_DONE;
 826
 827	if (clk->rate == clk->new_rate)
 828		return 0;
 829
 830	if (clk->notifier_count) {
 831		ret = __clk_notify(clk, event, clk->rate, clk->new_rate);
 832		if (ret == NOTIFY_BAD)
 833			fail_clk = clk;
 834	}
 835
 836	hlist_for_each_entry(child, tmp, &clk->children, child_node) {
 837		clk = clk_propagate_rate_change(child, event);
 838		if (clk)
 839			fail_clk = clk;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 840	}
 841
 842	return fail_clk;
 843}
 844
 845/*
 846 * walk down a subtree and set the new rates notifying the rate
 847 * change on the way
 848 */
 849static void clk_change_rate(struct clk *clk)
 850{
 851	struct clk *child;
 
 852	unsigned long old_rate;
 853	unsigned long best_parent_rate = 0;
 854	struct hlist_node *tmp;
 
 
 855
 856	old_rate = clk->rate;
 857
 858	if (clk->parent)
 859		best_parent_rate = clk->parent->rate;
 
 
 
 
 
 860
 861	if (clk->ops->set_rate)
 862		clk->ops->set_rate(clk->hw, clk->new_rate, best_parent_rate);
 863
 864	if (clk->ops->recalc_rate)
 865		clk->rate = clk->ops->recalc_rate(clk->hw, best_parent_rate);
 866	else
 867		clk->rate = best_parent_rate;
 868
 869	if (clk->notifier_count && old_rate != clk->rate)
 870		__clk_notify(clk, POST_RATE_CHANGE, old_rate, clk->rate);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 871
 872	hlist_for_each_entry(child, tmp, &clk->children, child_node)
 
 
 
 
 
 
 
 
 
 
 
 
 
 873		clk_change_rate(child);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 874}
 875
 876/**
 877 * clk_set_rate - specify a new rate for clk
 878 * @clk: the clk whose rate is being changed
 879 * @rate: the new rate for clk
 880 *
 881 * In the simplest case clk_set_rate will only adjust the rate of clk.
 882 *
 883 * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to
 884 * propagate up to clk's parent; whether or not this happens depends on the
 885 * outcome of clk's .round_rate implementation.  If *parent_rate is unchanged
 886 * after calling .round_rate then upstream parent propagation is ignored.  If
 887 * *parent_rate comes back with a new rate for clk's parent then we propagate
 888 * up to clk's parent and set it's rate.  Upward propagation will continue
 889 * until either a clk does not support the CLK_SET_RATE_PARENT flag or
 890 * .round_rate stops requesting changes to clk's parent_rate.
 891 *
 892 * Rate changes are accomplished via tree traversal that also recalculates the
 893 * rates for the clocks and fires off POST_RATE_CHANGE notifiers.
 894 *
 895 * Returns 0 on success, -EERROR otherwise.
 896 */
 897int clk_set_rate(struct clk *clk, unsigned long rate)
 898{
 899	struct clk *top, *fail_clk;
 900	int ret = 0;
 
 
 901
 902	/* prevent racing with updates to the clock topology */
 903	mutex_lock(&prepare_lock);
 904
 905	/* bail early if nothing to do */
 906	if (rate == clk->rate)
 907		goto out;
 908
 909	if ((clk->flags & CLK_SET_RATE_GATE) && clk->prepare_count) {
 910		ret = -EBUSY;
 911		goto out;
 912	}
 913
 914	/* calculate new rates and get the topmost changed clock */
 915	top = clk_calc_new_rates(clk, rate);
 916	if (!top) {
 917		ret = -EINVAL;
 918		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 919	}
 920
 921	/* notify that we are about to change rates */
 922	fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE);
 923	if (fail_clk) {
 924		pr_warn("%s: failed to set %s rate\n", __func__,
 925				fail_clk->name);
 926		clk_propagate_rate_change(top, ABORT_RATE_CHANGE);
 927		ret = -EBUSY;
 928		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 929	}
 930
 931	/* change the rates */
 932	clk_change_rate(top);
 933
 934	mutex_unlock(&prepare_lock);
 
 935
 936	return 0;
 937out:
 938	mutex_unlock(&prepare_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 939
 940	return ret;
 941}
 942EXPORT_SYMBOL_GPL(clk_set_rate);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 943
 944/**
 945 * clk_get_parent - return the parent of a clk
 946 * @clk: the clk whose parent gets returned
 947 *
 948 * Simply returns clk->parent.  Returns NULL if clk is NULL.
 949 */
 950struct clk *clk_get_parent(struct clk *clk)
 951{
 952	struct clk *parent;
 953
 954	mutex_lock(&prepare_lock);
 955	parent = __clk_get_parent(clk);
 956	mutex_unlock(&prepare_lock);
 
 
 
 
 957
 958	return parent;
 959}
 960EXPORT_SYMBOL_GPL(clk_get_parent);
 961
 962/*
 963 * .get_parent is mandatory for clocks with multiple possible parents.  It is
 964 * optional for single-parent clocks.  Always call .get_parent if it is
 965 * available and WARN if it is missing for multi-parent clocks.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 966 *
 967 * For single-parent clocks without .get_parent, first check to see if the
 968 * .parents array exists, and if so use it to avoid an expensive tree
 969 * traversal.  If .parents does not exist then walk the tree with __clk_lookup.
 970 */
 971static struct clk *__clk_init_parent(struct clk *clk)
 972{
 973	struct clk *ret = NULL;
 974	u8 index;
 975
 976	/* handle the trivial cases */
 
 
 977
 978	if (!clk->num_parents)
 979		goto out;
 980
 981	if (clk->num_parents == 1) {
 982		if (IS_ERR_OR_NULL(clk->parent))
 983			ret = clk->parent = __clk_lookup(clk->parent_names[0]);
 984		ret = clk->parent;
 985		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 986	}
 987
 988	if (!clk->ops->get_parent) {
 989		WARN(!clk->ops->get_parent,
 990			"%s: multi-parent clocks must implement .get_parent\n",
 991			__func__);
 992		goto out;
 993	};
 994
 995	/*
 996	 * Do our best to cache parent clocks in clk->parents.  This prevents
 997	 * unnecessary and expensive calls to __clk_lookup.  We don't set
 998	 * clk->parent here; that is done by the calling function
 999	 */
1000
1001	index = clk->ops->get_parent(clk->hw);
 
 
1002
1003	if (!clk->parents)
1004		clk->parents =
1005			kzalloc((sizeof(struct clk*) * clk->num_parents),
1006					GFP_KERNEL);
1007
1008	if (!clk->parents)
1009		ret = __clk_lookup(clk->parent_names[index]);
1010	else if (!clk->parents[index])
1011		ret = clk->parents[index] =
1012			__clk_lookup(clk->parent_names[index]);
1013	else
1014		ret = clk->parents[index];
 
 
 
1015
1016out:
1017	return ret;
1018}
1019
1020void __clk_reparent(struct clk *clk, struct clk *new_parent)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1021{
1022#ifdef CONFIG_COMMON_CLK_DEBUG
1023	struct dentry *d;
1024	struct dentry *new_parent_d;
1025#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1026
1027	if (!clk || !new_parent)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1028		return;
1029
1030	hlist_del(&clk->child_node);
 
 
 
 
 
 
1031
1032	if (new_parent)
1033		hlist_add_head(&clk->child_node, &new_parent->children);
1034	else
1035		hlist_add_head(&clk->child_node, &clk_orphan_list);
1036
1037#ifdef CONFIG_COMMON_CLK_DEBUG
1038	if (!inited)
1039		goto out;
1040
1041	if (new_parent)
1042		new_parent_d = new_parent->dentry;
1043	else
1044		new_parent_d = orphandir;
1045
1046	d = debugfs_rename(clk->dentry->d_parent, clk->dentry,
1047			new_parent_d, clk->name);
1048	if (d)
1049		clk->dentry = d;
1050	else
1051		pr_debug("%s: failed to rename debugfs entry for %s\n",
1052				__func__, clk->name);
1053out:
1054#endif
1055
1056	clk->parent = new_parent;
 
 
 
1057
1058	__clk_recalc_rates(clk, POST_RATE_CHANGE);
 
 
 
 
 
 
 
 
 
 
 
 
1059}
 
1060
1061static int __clk_set_parent(struct clk *clk, struct clk *parent)
1062{
1063	struct clk *old_parent;
1064	unsigned long flags;
1065	int ret = -EINVAL;
1066	u8 i;
1067
1068	old_parent = clk->parent;
 
 
 
 
 
 
 
 
1069
1070	if (!clk->parents)
1071		clk->parents = kzalloc((sizeof(struct clk*) * clk->num_parents),
1072								GFP_KERNEL);
1073
1074	/*
1075	 * find index of new parent clock using cached parent ptrs,
1076	 * or if not yet cached, use string name comparison and cache
1077	 * them now to avoid future calls to __clk_lookup.
1078	 */
1079	for (i = 0; i < clk->num_parents; i++) {
1080		if (clk->parents && clk->parents[i] == parent)
1081			break;
1082		else if (!strcmp(clk->parent_names[i], parent->name)) {
1083			if (clk->parents)
1084				clk->parents[i] = __clk_lookup(parent->name);
1085			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1086		}
1087	}
 
 
 
 
 
 
 
 
1088
1089	if (i == clk->num_parents) {
1090		pr_debug("%s: clock %s is not a possible parent of clock %s\n",
1091				__func__, parent->name, clk->name);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1092		goto out;
1093	}
1094
1095	/* migrate prepare and enable */
1096	if (clk->prepare_count)
1097		__clk_prepare(parent);
1098
1099	/* FIXME replace with clk_is_enabled(clk) someday */
1100	spin_lock_irqsave(&enable_lock, flags);
1101	if (clk->enable_count)
1102		__clk_enable(parent);
1103	spin_unlock_irqrestore(&enable_lock, flags);
1104
1105	/* change clock input source */
1106	ret = clk->ops->set_parent(clk->hw, i);
1107
1108	/* clean up old prepare and enable */
1109	spin_lock_irqsave(&enable_lock, flags);
1110	if (clk->enable_count)
1111		__clk_disable(old_parent);
1112	spin_unlock_irqrestore(&enable_lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1113
1114	if (clk->prepare_count)
1115		__clk_unprepare(old_parent);
1116
 
 
 
1117out:
1118	return ret;
1119}
1120
1121/**
1122 * clk_set_parent - switch the parent of a mux clk
1123 * @clk: the mux clk whose input we are switching
1124 * @parent: the new input to clk
1125 *
1126 * Re-parent clk to use parent as it's new input source.  If clk has the
1127 * CLK_SET_PARENT_GATE flag set then clk must be gated for this
1128 * operation to succeed.  After successfully changing clk's parent
1129 * clk_set_parent will update the clk topology, sysfs topology and
1130 * propagate rate recalculation via __clk_recalc_rates.  Returns 0 on
1131 * success, -EERROR otherwise.
1132 */
1133int clk_set_parent(struct clk *clk, struct clk *parent)
1134{
1135	int ret = 0;
1136
1137	if (!clk || !clk->ops)
1138		return -EINVAL;
 
 
 
1139
1140	if (!clk->ops->set_parent)
1141		return -ENOSYS;
1142
1143	/* prevent racing with updates to the clock topology */
1144	mutex_lock(&prepare_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1145
1146	if (clk->parent == parent)
1147		goto out;
 
 
1148
1149	/* propagate PRE_RATE_CHANGE notifications */
1150	if (clk->notifier_count)
1151		ret = __clk_speculate_rates(clk, parent->rate);
1152
1153	/* abort if a driver objects */
1154	if (ret == NOTIFY_STOP)
1155		goto out;
1156
1157	/* only re-parent if the clock is not in use */
1158	if ((clk->flags & CLK_SET_PARENT_GATE) && clk->prepare_count)
1159		ret = -EBUSY;
1160	else
1161		ret = __clk_set_parent(clk, parent);
 
 
 
 
 
 
 
 
1162
1163	/* propagate ABORT_RATE_CHANGE if .set_parent failed */
1164	if (ret) {
1165		__clk_recalc_rates(clk, ABORT_RATE_CHANGE);
1166		goto out;
1167	}
1168
1169	/* propagate rate recalculation downstream */
1170	__clk_reparent(clk, parent);
1171
1172out:
1173	mutex_unlock(&prepare_lock);
 
 
1174
1175	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1176}
1177EXPORT_SYMBOL_GPL(clk_set_parent);
 
 
 
 
 
 
 
 
 
 
1178
1179/**
1180 * __clk_init - initialize the data structures in a struct clk
1181 * @dev:	device initializing this clk, placeholder for now
1182 * @clk:	clk being initialized
1183 *
1184 * Initializes the lists in struct clk, queries the hardware for the
1185 * parent and rate and sets them both.
1186 */
1187int __clk_init(struct device *dev, struct clk *clk)
1188{
1189	int i, ret = 0;
1190	struct clk *orphan;
1191	struct hlist_node *tmp, *tmp2;
 
1192
1193	if (!clk)
1194		return -EINVAL;
1195
1196	mutex_lock(&prepare_lock);
 
 
 
 
1197
1198	/* check to see if a clock with this name is already registered */
1199	if (__clk_lookup(clk->name)) {
1200		pr_debug("%s: clk %s already initialized\n",
1201				__func__, clk->name);
1202		ret = -EEXIST;
1203		goto out;
1204	}
1205
1206	/* check that clk_ops are sane.  See Documentation/clk.txt */
1207	if (clk->ops->set_rate &&
1208			!(clk->ops->round_rate && clk->ops->recalc_rate)) {
1209		pr_warning("%s: %s must implement .round_rate & .recalc_rate\n",
1210				__func__, clk->name);
 
1211		ret = -EINVAL;
1212		goto out;
1213	}
1214
1215	if (clk->ops->set_parent && !clk->ops->get_parent) {
1216		pr_warning("%s: %s must implement .get_parent & .set_parent\n",
1217				__func__, clk->name);
1218		ret = -EINVAL;
1219		goto out;
1220	}
1221
1222	/* throw a WARN if any entries in parent_names are NULL */
1223	for (i = 0; i < clk->num_parents; i++)
1224		WARN(!clk->parent_names[i],
1225				"%s: invalid NULL in %s's .parent_names\n",
1226				__func__, clk->name);
 
1227
1228	/*
1229	 * Allocate an array of struct clk *'s to avoid unnecessary string
1230	 * look-ups of clk's possible parents.  This can fail for clocks passed
1231	 * in to clk_init during early boot; thus any access to clk->parents[]
1232	 * must always check for a NULL pointer and try to populate it if
1233	 * necessary.
1234	 *
1235	 * If clk->parents is not NULL we skip this entire block.  This allows
1236	 * for clock drivers to statically initialize clk->parents.
1237	 */
1238	if (clk->num_parents && !clk->parents) {
1239		clk->parents = kmalloc((sizeof(struct clk*) * clk->num_parents),
1240				GFP_KERNEL);
1241		/*
1242		 * __clk_lookup returns NULL for parents that have not been
1243		 * clk_init'd; thus any access to clk->parents[] must check
1244		 * for a NULL pointer.  We can always perform lazy lookups for
1245		 * missing parents later on.
1246		 */
1247		if (clk->parents)
1248			for (i = 0; i < clk->num_parents; i++)
1249				clk->parents[i] =
1250					__clk_lookup(clk->parent_names[i]);
1251	}
1252
1253	clk->parent = __clk_init_parent(clk);
 
 
 
 
 
 
1254
1255	/*
1256	 * Populate clk->parent if parent has already been __clk_init'd.  If
1257	 * parent has not yet been __clk_init'd then place clk in the orphan
1258	 * list.  If clk has set the CLK_IS_ROOT flag then place it in the root
1259	 * clk list.
1260	 *
1261	 * Every time a new clk is clk_init'd then we walk the list of orphan
1262	 * clocks and re-parent any that are children of the clock currently
1263	 * being clk_init'd.
1264	 */
1265	if (clk->parent)
1266		hlist_add_head(&clk->child_node,
1267				&clk->parent->children);
1268	else if (clk->flags & CLK_IS_ROOT)
1269		hlist_add_head(&clk->child_node, &clk_root_list);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1270	else
1271		hlist_add_head(&clk->child_node, &clk_orphan_list);
 
 
 
 
 
 
 
 
 
 
1272
1273	/*
1274	 * Set clk's rate.  The preferred method is to use .recalc_rate.  For
1275	 * simple clocks and lazy developers the default fallback is to use the
1276	 * parent's rate.  If a clock doesn't have a parent (or is orphaned)
1277	 * then rate is set to zero.
1278	 */
1279	if (clk->ops->recalc_rate)
1280		clk->rate = clk->ops->recalc_rate(clk->hw,
1281				__clk_get_rate(clk->parent));
1282	else if (clk->parent)
1283		clk->rate = clk->parent->rate;
1284	else
1285		clk->rate = 0;
 
1286
1287	/*
1288	 * walk the list of orphan clocks and reparent any that are children of
1289	 * this clock
 
1290	 */
1291	hlist_for_each_entry_safe(orphan, tmp, tmp2, &clk_orphan_list, child_node)
1292		for (i = 0; i < orphan->num_parents; i++)
1293			if (!strcmp(clk->name, orphan->parent_names[i])) {
1294				__clk_reparent(orphan, clk);
1295				break;
1296			}
 
 
 
1297
1298	/*
1299	 * optional platform-specific magic
1300	 *
1301	 * The .init callback is not used by any of the basic clock types, but
1302	 * exists for weird hardware that must perform initialization magic.
1303	 * Please consider other ways of solving initialization problems before
1304	 * using this callback, as it's use is discouraged.
1305	 */
1306	if (clk->ops->init)
1307		clk->ops->init(clk->hw);
1308
1309	clk_debug_register(clk);
 
 
 
 
 
 
 
 
 
 
 
 
 
1310
 
1311out:
1312	mutex_unlock(&prepare_lock);
 
 
 
 
 
1313
1314	return ret;
1315}
1316
1317/**
1318 * __clk_register - register a clock and return a cookie.
1319 *
1320 * Same as clk_register, except that the .clk field inside hw shall point to a
1321 * preallocated (generally statically allocated) struct clk. None of the fields
1322 * of the struct clk need to be initialized.
1323 *
1324 * The data pointed to by .init and .clk field shall NOT be marked as init
1325 * data.
1326 *
1327 * __clk_register is only exposed via clk-private.h and is intended for use with
1328 * very large numbers of clocks that need to be statically initialized.  It is
1329 * a layering violation to include clk-private.h from any code which implements
1330 * a clock's .ops; as such any statically initialized clock data MUST be in a
1331 * separate C file from the logic that implements it's operations.  Returns 0
1332 * on success, otherwise an error code.
1333 */
1334struct clk *__clk_register(struct device *dev, struct clk_hw *hw)
1335{
1336	int ret;
1337	struct clk *clk;
1338
1339	clk = hw->clk;
1340	clk->name = hw->init->name;
1341	clk->ops = hw->init->ops;
1342	clk->hw = hw;
1343	clk->flags = hw->init->flags;
1344	clk->parent_names = hw->init->parent_names;
1345	clk->num_parents = hw->init->num_parents;
1346
1347	ret = __clk_init(dev, clk);
1348	if (ret)
1349		return ERR_PTR(ret);
 
 
 
 
 
 
 
 
 
1350
1351	return clk;
1352}
1353EXPORT_SYMBOL_GPL(__clk_register);
 
 
 
 
 
 
 
 
 
1354
1355/**
1356 * clk_register - allocate a new clock, register it and return an opaque cookie
1357 * @dev: device that is registering this clock
1358 * @hw: link to hardware-specific clock data
1359 *
1360 * clk_register is the primary interface for populating the clock tree with new
1361 * clock nodes.  It returns a pointer to the newly allocated struct clk which
1362 * cannot be dereferenced by driver code but may be used in conjuction with the
1363 * rest of the clock API.  In the event of an error clk_register will return an
1364 * error code; drivers must test for an error code after calling clk_register.
1365 */
1366struct clk *clk_register(struct device *dev, struct clk_hw *hw)
1367{
1368	int i, ret;
1369	struct clk *clk;
1370
1371	clk = kzalloc(sizeof(*clk), GFP_KERNEL);
1372	if (!clk) {
1373		pr_err("%s: could not allocate clk\n", __func__);
1374		ret = -ENOMEM;
1375		goto fail_out;
1376	}
1377
1378	clk->name = kstrdup(hw->init->name, GFP_KERNEL);
1379	if (!clk->name) {
1380		pr_err("%s: could not allocate clk->name\n", __func__);
1381		ret = -ENOMEM;
1382		goto fail_name;
1383	}
1384	clk->ops = hw->init->ops;
1385	clk->hw = hw;
1386	clk->flags = hw->init->flags;
1387	clk->num_parents = hw->init->num_parents;
1388	hw->clk = clk;
 
 
 
 
 
 
 
 
 
 
 
 
1389
1390	/* allocate local copy in case parent_names is __initdata */
1391	clk->parent_names = kzalloc((sizeof(char*) * clk->num_parents),
1392			GFP_KERNEL);
1393
1394	if (!clk->parent_names) {
1395		pr_err("%s: could not allocate clk->parent_names\n", __func__);
1396		ret = -ENOMEM;
1397		goto fail_parent_names;
1398	}
1399
1400
1401	/* copy each string name in case parent_names is __initdata */
1402	for (i = 0; i < clk->num_parents; i++) {
1403		clk->parent_names[i] = kstrdup(hw->init->parent_names[i],
1404						GFP_KERNEL);
1405		if (!clk->parent_names[i]) {
1406			pr_err("%s: could not copy parent_names\n", __func__);
1407			ret = -ENOMEM;
1408			goto fail_parent_names_copy;
1409		}
1410	}
1411
1412	ret = __clk_init(dev, clk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1413	if (!ret)
1414		return clk;
1415
 
 
 
 
 
1416fail_parent_names_copy:
1417	while (--i >= 0)
1418		kfree(clk->parent_names[i]);
1419	kfree(clk->parent_names);
1420fail_parent_names:
1421	kfree(clk->name);
 
1422fail_name:
1423	kfree(clk);
1424fail_out:
1425	return ERR_PTR(ret);
1426}
1427EXPORT_SYMBOL_GPL(clk_register);
1428
1429/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1430 * clk_unregister - unregister a currently registered clock
1431 * @clk: clock to unregister
1432 *
1433 * Currently unimplemented.
1434 */
1435void clk_unregister(struct clk *clk) {}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1436EXPORT_SYMBOL_GPL(clk_unregister);
1437
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1438/***        clk rate change notifiers        ***/
1439
1440/**
1441 * clk_notifier_register - add a clk rate change notifier
1442 * @clk: struct clk * to watch
1443 * @nb: struct notifier_block * with callback info
1444 *
1445 * Request notification when clk's rate changes.  This uses an SRCU
1446 * notifier because we want it to block and notifier unregistrations are
1447 * uncommon.  The callbacks associated with the notifier must not
1448 * re-enter into the clk framework by calling any top-level clk APIs;
1449 * this will cause a nested prepare_lock mutex.
1450 *
1451 * Pre-change notifier callbacks will be passed the current, pre-change
1452 * rate of the clk via struct clk_notifier_data.old_rate.  The new,
1453 * post-change rate of the clk is passed via struct
1454 * clk_notifier_data.new_rate.
1455 *
1456 * Post-change notifiers will pass the now-current, post-change rate of
1457 * the clk in both struct clk_notifier_data.old_rate and struct
1458 * clk_notifier_data.new_rate.
1459 *
1460 * Abort-change notifiers are effectively the opposite of pre-change
1461 * notifiers: the original pre-change clk rate is passed in via struct
1462 * clk_notifier_data.new_rate and the failed post-change rate is passed
1463 * in via struct clk_notifier_data.old_rate.
1464 *
1465 * clk_notifier_register() must be called from non-atomic context.
1466 * Returns -EINVAL if called with null arguments, -ENOMEM upon
1467 * allocation failure; otherwise, passes along the return value of
1468 * srcu_notifier_chain_register().
1469 */
1470int clk_notifier_register(struct clk *clk, struct notifier_block *nb)
1471{
1472	struct clk_notifier *cn;
1473	int ret = -ENOMEM;
1474
1475	if (!clk || !nb)
1476		return -EINVAL;
1477
1478	mutex_lock(&prepare_lock);
1479
1480	/* search the list of notifiers for this clk */
1481	list_for_each_entry(cn, &clk_notifier_list, node)
1482		if (cn->clk == clk)
1483			break;
1484
1485	/* if clk wasn't in the notifier list, allocate new clk_notifier */
1486	if (cn->clk != clk) {
1487		cn = kzalloc(sizeof(struct clk_notifier), GFP_KERNEL);
1488		if (!cn)
1489			goto out;
1490
1491		cn->clk = clk;
1492		srcu_init_notifier_head(&cn->notifier_head);
1493
1494		list_add(&cn->node, &clk_notifier_list);
1495	}
1496
1497	ret = srcu_notifier_chain_register(&cn->notifier_head, nb);
1498
1499	clk->notifier_count++;
1500
1501out:
1502	mutex_unlock(&prepare_lock);
1503
1504	return ret;
1505}
1506EXPORT_SYMBOL_GPL(clk_notifier_register);
1507
1508/**
1509 * clk_notifier_unregister - remove a clk rate change notifier
1510 * @clk: struct clk *
1511 * @nb: struct notifier_block * with callback info
1512 *
1513 * Request no further notification for changes to 'clk' and frees memory
1514 * allocated in clk_notifier_register.
1515 *
1516 * Returns -EINVAL if called with null arguments; otherwise, passes
1517 * along the return value of srcu_notifier_chain_unregister().
1518 */
1519int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb)
1520{
1521	struct clk_notifier *cn = NULL;
1522	int ret = -EINVAL;
1523
1524	if (!clk || !nb)
1525		return -EINVAL;
1526
1527	mutex_lock(&prepare_lock);
1528
1529	list_for_each_entry(cn, &clk_notifier_list, node)
1530		if (cn->clk == clk)
1531			break;
1532
1533	if (cn->clk == clk) {
1534		ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb);
1535
1536		clk->notifier_count--;
1537
1538		/* XXX the notifier code should handle this better */
1539		if (!cn->notifier_head.head) {
1540			srcu_cleanup_notifier_head(&cn->notifier_head);
 
1541			kfree(cn);
1542		}
1543
1544	} else {
1545		ret = -ENOENT;
1546	}
1547
1548	mutex_unlock(&prepare_lock);
1549
1550	return ret;
1551}
1552EXPORT_SYMBOL_GPL(clk_notifier_unregister);
v4.17
   1/*
   2 * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com>
   3 * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org>
   4 *
   5 * This program is free software; you can redistribute it and/or modify
   6 * it under the terms of the GNU General Public License version 2 as
   7 * published by the Free Software Foundation.
   8 *
   9 * Standard functionality for the common clock API.  See Documentation/clk.txt
  10 */
  11
  12#include <linux/clk.h>
  13#include <linux/clk-provider.h>
  14#include <linux/clk/clk-conf.h>
  15#include <linux/module.h>
  16#include <linux/mutex.h>
  17#include <linux/spinlock.h>
  18#include <linux/err.h>
  19#include <linux/list.h>
  20#include <linux/slab.h>
  21#include <linux/of.h>
  22#include <linux/device.h>
  23#include <linux/init.h>
  24#include <linux/pm_runtime.h>
  25#include <linux/sched.h>
  26#include <linux/clkdev.h>
  27#include <linux/stringify.h>
  28
  29#include "clk.h"
  30
  31static DEFINE_SPINLOCK(enable_lock);
  32static DEFINE_MUTEX(prepare_lock);
  33
  34static struct task_struct *prepare_owner;
  35static struct task_struct *enable_owner;
  36
  37static int prepare_refcnt;
  38static int enable_refcnt;
  39
  40static HLIST_HEAD(clk_root_list);
  41static HLIST_HEAD(clk_orphan_list);
  42static LIST_HEAD(clk_notifier_list);
  43
  44/***    private data structures    ***/
  45
  46struct clk_core {
  47	const char		*name;
  48	const struct clk_ops	*ops;
  49	struct clk_hw		*hw;
  50	struct module		*owner;
  51	struct device		*dev;
  52	struct clk_core		*parent;
  53	const char		**parent_names;
  54	struct clk_core		**parents;
  55	u8			num_parents;
  56	u8			new_parent_index;
  57	unsigned long		rate;
  58	unsigned long		req_rate;
  59	unsigned long		new_rate;
  60	struct clk_core		*new_parent;
  61	struct clk_core		*new_child;
  62	unsigned long		flags;
  63	bool			orphan;
  64	unsigned int		enable_count;
  65	unsigned int		prepare_count;
  66	unsigned int		protect_count;
  67	unsigned long		min_rate;
  68	unsigned long		max_rate;
  69	unsigned long		accuracy;
  70	int			phase;
  71	struct hlist_head	children;
  72	struct hlist_node	child_node;
  73	struct hlist_head	clks;
  74	unsigned int		notifier_count;
  75#ifdef CONFIG_DEBUG_FS
  76	struct dentry		*dentry;
  77	struct hlist_node	debug_node;
  78#endif
  79	struct kref		ref;
  80};
  81
  82#define CREATE_TRACE_POINTS
  83#include <trace/events/clk.h>
 
  84
  85struct clk {
  86	struct clk_core	*core;
  87	const char *dev_id;
  88	const char *con_id;
  89	unsigned long min_rate;
  90	unsigned long max_rate;
  91	unsigned int exclusive_count;
  92	struct hlist_node clks_node;
  93};
  94
  95/***           runtime pm          ***/
  96static int clk_pm_runtime_get(struct clk_core *core)
  97{
  98	int ret = 0;
  99
 100	if (!core->dev)
 101		return 0;
 
 102
 103	ret = pm_runtime_get_sync(core->dev);
 104	return ret < 0 ? ret : 0;
 105}
 106
 107static void clk_pm_runtime_put(struct clk_core *core)
 108{
 109	if (!core->dev)
 110		return;
 111
 112	pm_runtime_put_sync(core->dev);
 113}
 
 
 114
 115/***           locking             ***/
 116static void clk_prepare_lock(void)
 117{
 118	if (!mutex_trylock(&prepare_lock)) {
 119		if (prepare_owner == current) {
 120			prepare_refcnt++;
 121			return;
 122		}
 123		mutex_lock(&prepare_lock);
 124	}
 125	WARN_ON_ONCE(prepare_owner != NULL);
 126	WARN_ON_ONCE(prepare_refcnt != 0);
 127	prepare_owner = current;
 128	prepare_refcnt = 1;
 129}
 130
 131static void clk_prepare_unlock(void)
 132{
 133	WARN_ON_ONCE(prepare_owner != current);
 134	WARN_ON_ONCE(prepare_refcnt == 0);
 135
 136	if (--prepare_refcnt)
 137		return;
 138	prepare_owner = NULL;
 139	mutex_unlock(&prepare_lock);
 140}
 141
 142static unsigned long clk_enable_lock(void)
 143	__acquires(enable_lock)
 144{
 145	unsigned long flags;
 146
 147	/*
 148	 * On UP systems, spin_trylock_irqsave() always returns true, even if
 149	 * we already hold the lock. So, in that case, we rely only on
 150	 * reference counting.
 151	 */
 152	if (!IS_ENABLED(CONFIG_SMP) ||
 153	    !spin_trylock_irqsave(&enable_lock, flags)) {
 154		if (enable_owner == current) {
 155			enable_refcnt++;
 156			__acquire(enable_lock);
 157			if (!IS_ENABLED(CONFIG_SMP))
 158				local_save_flags(flags);
 159			return flags;
 160		}
 161		spin_lock_irqsave(&enable_lock, flags);
 162	}
 163	WARN_ON_ONCE(enable_owner != NULL);
 164	WARN_ON_ONCE(enable_refcnt != 0);
 165	enable_owner = current;
 166	enable_refcnt = 1;
 167	return flags;
 168}
 169
 170static void clk_enable_unlock(unsigned long flags)
 171	__releases(enable_lock)
 172{
 173	WARN_ON_ONCE(enable_owner != current);
 174	WARN_ON_ONCE(enable_refcnt == 0);
 
 175
 176	if (--enable_refcnt) {
 177		__release(enable_lock);
 178		return;
 179	}
 180	enable_owner = NULL;
 181	spin_unlock_irqrestore(&enable_lock, flags);
 182}
 183
 184static bool clk_core_rate_is_protected(struct clk_core *core)
 185{
 186	return core->protect_count;
 187}
 188
 189static bool clk_core_is_prepared(struct clk_core *core)
 190{
 191	bool ret = false;
 192
 193	/*
 194	 * .is_prepared is optional for clocks that can prepare
 195	 * fall back to software usage counter if it is missing
 196	 */
 197	if (!core->ops->is_prepared)
 198		return core->prepare_count;
 199
 200	if (!clk_pm_runtime_get(core)) {
 201		ret = core->ops->is_prepared(core->hw);
 202		clk_pm_runtime_put(core);
 203	}
 204
 
 
 205	return ret;
 206}
 207
 208static bool clk_core_is_enabled(struct clk_core *core)
 
 
 
 
 
 
 
 
 
 
 
 209{
 210	bool ret = false;
 
 
 
 
 
 211
 212	/*
 213	 * .is_enabled is only mandatory for clocks that gate
 214	 * fall back to software usage counter if .is_enabled is missing
 215	 */
 216	if (!core->ops->is_enabled)
 217		return core->enable_count;
 218
 219	/*
 220	 * Check if clock controller's device is runtime active before
 221	 * calling .is_enabled callback. If not, assume that clock is
 222	 * disabled, because we might be called from atomic context, from
 223	 * which pm_runtime_get() is not allowed.
 224	 * This function is called mainly from clk_disable_unused_subtree,
 225	 * which ensures proper runtime pm activation of controller before
 226	 * taking enable spinlock, but the below check is needed if one tries
 227	 * to call it from other places.
 228	 */
 229	if (core->dev) {
 230		pm_runtime_get_noresume(core->dev);
 231		if (!pm_runtime_active(core->dev)) {
 232			ret = false;
 233			goto done;
 234		}
 235	}
 
 
 
 236
 237	ret = core->ops->is_enabled(core->hw);
 238done:
 239	if (core->dev)
 240		pm_runtime_put(core->dev);
 241
 
 242	return ret;
 243}
 244
 245/***    helper functions   ***/
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 246
 247const char *__clk_get_name(const struct clk *clk)
 248{
 249	return !clk ? NULL : clk->core->name;
 250}
 251EXPORT_SYMBOL_GPL(__clk_get_name);
 252
 253const char *clk_hw_get_name(const struct clk_hw *hw)
 254{
 255	return hw->core->name;
 256}
 257EXPORT_SYMBOL_GPL(clk_hw_get_name);
 258
 259struct clk_hw *__clk_get_hw(struct clk *clk)
 260{
 261	return !clk ? NULL : clk->core->hw;
 262}
 263EXPORT_SYMBOL_GPL(__clk_get_hw);
 264
 265unsigned int clk_hw_get_num_parents(const struct clk_hw *hw)
 266{
 267	return hw->core->num_parents;
 268}
 269EXPORT_SYMBOL_GPL(clk_hw_get_num_parents);
 270
 271struct clk_hw *clk_hw_get_parent(const struct clk_hw *hw)
 272{
 273	return hw->core->parent ? hw->core->parent->hw : NULL;
 274}
 275EXPORT_SYMBOL_GPL(clk_hw_get_parent);
 276
 277static struct clk_core *__clk_lookup_subtree(const char *name,
 278					     struct clk_core *core)
 279{
 280	struct clk_core *child;
 281	struct clk_core *ret;
 282
 283	if (!strcmp(core->name, name))
 284		return core;
 285
 286	hlist_for_each_entry(child, &core->children, child_node) {
 287		ret = __clk_lookup_subtree(name, child);
 288		if (ret)
 289			return ret;
 290	}
 291
 292	return NULL;
 293}
 
 
 
 
 294
 295static struct clk_core *clk_core_lookup(const char *name)
 
 296{
 297	struct clk_core *root_clk;
 298	struct clk_core *ret;
 
 299
 300	if (!name)
 301		return NULL;
 302
 303	/* search the 'proper' clk tree first */
 304	hlist_for_each_entry(root_clk, &clk_root_list, child_node) {
 305		ret = __clk_lookup_subtree(name, root_clk);
 306		if (ret)
 307			return ret;
 308	}
 309
 310	/* if not found, then search the orphan tree */
 311	hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) {
 312		ret = __clk_lookup_subtree(name, root_clk);
 313		if (ret)
 314			return ret;
 315	}
 316
 317	return NULL;
 318}
 319
 320static struct clk_core *clk_core_get_parent_by_index(struct clk_core *core,
 321							 u8 index)
 322{
 323	if (!core || index >= core->num_parents)
 324		return NULL;
 325
 326	if (!core->parents[index])
 327		core->parents[index] =
 328				clk_core_lookup(core->parent_names[index]);
 329
 330	return core->parents[index];
 331}
 332
 333struct clk_hw *
 334clk_hw_get_parent_by_index(const struct clk_hw *hw, unsigned int index)
 335{
 336	struct clk_core *parent;
 337
 338	parent = clk_core_get_parent_by_index(hw->core, index);
 339
 340	return !parent ? NULL : parent->hw;
 341}
 342EXPORT_SYMBOL_GPL(clk_hw_get_parent_by_index);
 343
 344unsigned int __clk_get_enable_count(struct clk *clk)
 345{
 346	return !clk ? 0 : clk->core->enable_count;
 347}
 348
 349static unsigned long clk_core_get_rate_nolock(struct clk_core *core)
 350{
 351	unsigned long ret;
 352
 353	if (!core) {
 354		ret = 0;
 355		goto out;
 356	}
 357
 358	ret = core->rate;
 
 359
 360	if (!core->num_parents)
 361		goto out;
 362
 363	if (!core->parent)
 364		ret = 0;
 365
 366out:
 367	return ret;
 368}
 
 369
 370unsigned long clk_hw_get_rate(const struct clk_hw *hw)
 371{
 372	return clk_core_get_rate_nolock(hw->core);
 373}
 374EXPORT_SYMBOL_GPL(clk_hw_get_rate);
 375
 376static unsigned long __clk_get_accuracy(struct clk_core *core)
 377{
 378	if (!core)
 379		return 0;
 380
 381	return core->accuracy;
 382}
 383
 384unsigned long __clk_get_flags(struct clk *clk)
 385{
 386	return !clk ? 0 : clk->core->flags;
 387}
 388EXPORT_SYMBOL_GPL(__clk_get_flags);
 389
 390unsigned long clk_hw_get_flags(const struct clk_hw *hw)
 391{
 392	return hw->core->flags;
 393}
 394EXPORT_SYMBOL_GPL(clk_hw_get_flags);
 395
 396bool clk_hw_is_prepared(const struct clk_hw *hw)
 397{
 398	return clk_core_is_prepared(hw->core);
 399}
 400
 401bool clk_hw_rate_is_protected(const struct clk_hw *hw)
 402{
 403	return clk_core_rate_is_protected(hw->core);
 404}
 405
 406bool clk_hw_is_enabled(const struct clk_hw *hw)
 407{
 408	return clk_core_is_enabled(hw->core);
 409}
 410
 411bool __clk_is_enabled(struct clk *clk)
 412{
 413	if (!clk)
 414		return false;
 415
 416	return clk_core_is_enabled(clk->core);
 417}
 418EXPORT_SYMBOL_GPL(__clk_is_enabled);
 419
 420static bool mux_is_better_rate(unsigned long rate, unsigned long now,
 421			   unsigned long best, unsigned long flags)
 422{
 423	if (flags & CLK_MUX_ROUND_CLOSEST)
 424		return abs(now - rate) < abs(best - rate);
 425
 426	return now <= rate && now > best;
 427}
 428
 429int clk_mux_determine_rate_flags(struct clk_hw *hw,
 430				 struct clk_rate_request *req,
 431				 unsigned long flags)
 432{
 433	struct clk_core *core = hw->core, *parent, *best_parent = NULL;
 434	int i, num_parents, ret;
 435	unsigned long best = 0;
 436	struct clk_rate_request parent_req = *req;
 437
 438	/* if NO_REPARENT flag set, pass through to current parent */
 439	if (core->flags & CLK_SET_RATE_NO_REPARENT) {
 440		parent = core->parent;
 441		if (core->flags & CLK_SET_RATE_PARENT) {
 442			ret = __clk_determine_rate(parent ? parent->hw : NULL,
 443						   &parent_req);
 444			if (ret)
 445				return ret;
 446
 447			best = parent_req.rate;
 448		} else if (parent) {
 449			best = clk_core_get_rate_nolock(parent);
 450		} else {
 451			best = clk_core_get_rate_nolock(core);
 452		}
 453
 
 
 454		goto out;
 455	}
 456
 457	/* find the parent that can provide the fastest rate <= rate */
 458	num_parents = core->num_parents;
 459	for (i = 0; i < num_parents; i++) {
 460		parent = clk_core_get_parent_by_index(core, i);
 461		if (!parent)
 462			continue;
 463
 464		if (core->flags & CLK_SET_RATE_PARENT) {
 465			parent_req = *req;
 466			ret = __clk_determine_rate(parent->hw, &parent_req);
 467			if (ret)
 468				continue;
 469		} else {
 470			parent_req.rate = clk_core_get_rate_nolock(parent);
 471		}
 472
 473		if (mux_is_better_rate(req->rate, parent_req.rate,
 474				       best, flags)) {
 475			best_parent = parent;
 476			best = parent_req.rate;
 477		}
 478	}
 479
 480	if (!best_parent)
 481		return -EINVAL;
 482
 483out:
 484	if (best_parent)
 485		req->best_parent_hw = best_parent->hw;
 486	req->best_parent_rate = best;
 487	req->rate = best;
 488
 489	return 0;
 490}
 491EXPORT_SYMBOL_GPL(clk_mux_determine_rate_flags);
 492
 493struct clk *__clk_lookup(const char *name)
 494{
 495	struct clk_core *core = clk_core_lookup(name);
 496
 497	return !core ? NULL : core->hw->clk;
 498}
 499
 500static void clk_core_get_boundaries(struct clk_core *core,
 501				    unsigned long *min_rate,
 502				    unsigned long *max_rate)
 503{
 504	struct clk *clk_user;
 505
 506	*min_rate = core->min_rate;
 507	*max_rate = core->max_rate;
 508
 509	hlist_for_each_entry(clk_user, &core->clks, clks_node)
 510		*min_rate = max(*min_rate, clk_user->min_rate);
 511
 512	hlist_for_each_entry(clk_user, &core->clks, clks_node)
 513		*max_rate = min(*max_rate, clk_user->max_rate);
 514}
 515
 516void clk_hw_set_rate_range(struct clk_hw *hw, unsigned long min_rate,
 517			   unsigned long max_rate)
 518{
 519	hw->core->min_rate = min_rate;
 520	hw->core->max_rate = max_rate;
 521}
 522EXPORT_SYMBOL_GPL(clk_hw_set_rate_range);
 523
 524/*
 525 * Helper for finding best parent to provide a given frequency. This can be used
 526 * directly as a determine_rate callback (e.g. for a mux), or from a more
 527 * complex clock that may combine a mux with other operations.
 528 */
 529int __clk_mux_determine_rate(struct clk_hw *hw,
 530			     struct clk_rate_request *req)
 531{
 532	return clk_mux_determine_rate_flags(hw, req, 0);
 533}
 534EXPORT_SYMBOL_GPL(__clk_mux_determine_rate);
 535
 536int __clk_mux_determine_rate_closest(struct clk_hw *hw,
 537				     struct clk_rate_request *req)
 538{
 539	return clk_mux_determine_rate_flags(hw, req, CLK_MUX_ROUND_CLOSEST);
 540}
 541EXPORT_SYMBOL_GPL(__clk_mux_determine_rate_closest);
 542
 543/***        clk api        ***/
 544
 545static void clk_core_rate_unprotect(struct clk_core *core)
 546{
 547	lockdep_assert_held(&prepare_lock);
 548
 549	if (!core)
 550		return;
 551
 552	if (WARN_ON(core->protect_count == 0))
 553		return;
 554
 555	if (--core->protect_count > 0)
 556		return;
 557
 558	clk_core_rate_unprotect(core->parent);
 559}
 560
 561static int clk_core_rate_nuke_protect(struct clk_core *core)
 562{
 563	int ret;
 564
 565	lockdep_assert_held(&prepare_lock);
 566
 567	if (!core)
 568		return -EINVAL;
 569
 570	if (core->protect_count == 0)
 571		return 0;
 572
 573	ret = core->protect_count;
 574	core->protect_count = 1;
 575	clk_core_rate_unprotect(core);
 576
 577	return ret;
 578}
 579
 580/**
 581 * clk_rate_exclusive_put - release exclusivity over clock rate control
 582 * @clk: the clk over which the exclusivity is released
 583 *
 584 * clk_rate_exclusive_put() completes a critical section during which a clock
 585 * consumer cannot tolerate any other consumer making any operation on the
 586 * clock which could result in a rate change or rate glitch. Exclusive clocks
 587 * cannot have their rate changed, either directly or indirectly due to changes
 588 * further up the parent chain of clocks. As a result, clocks up parent chain
 589 * also get under exclusive control of the calling consumer.
 590 *
 591 * If exlusivity is claimed more than once on clock, even by the same consumer,
 592 * the rate effectively gets locked as exclusivity can't be preempted.
 593 *
 594 * Calls to clk_rate_exclusive_put() must be balanced with calls to
 595 * clk_rate_exclusive_get(). Calls to this function may sleep, and do not return
 596 * error status.
 597 */
 598void clk_rate_exclusive_put(struct clk *clk)
 599{
 600	if (!clk)
 601		return;
 602
 603	clk_prepare_lock();
 604
 605	/*
 606	 * if there is something wrong with this consumer protect count, stop
 607	 * here before messing with the provider
 608	 */
 609	if (WARN_ON(clk->exclusive_count <= 0))
 
 610		goto out;
 
 611
 612	clk_core_rate_unprotect(clk->core);
 613	clk->exclusive_count--;
 614out:
 615	clk_prepare_unlock();
 616}
 617EXPORT_SYMBOL_GPL(clk_rate_exclusive_put);
 618
 619static void clk_core_rate_protect(struct clk_core *core)
 620{
 621	lockdep_assert_held(&prepare_lock);
 
 
 622
 623	if (!core)
 624		return;
 625
 626	if (core->protect_count == 0)
 627		clk_core_rate_protect(core->parent);
 
 
 
 628
 629	core->protect_count++;
 630}
 631
 632static void clk_core_rate_restore_protect(struct clk_core *core, int count)
 633{
 634	lockdep_assert_held(&prepare_lock);
 
 
 635
 636	if (!core)
 637		return;
 
 
 
 
 
 
 
 638
 639	if (count == 0)
 640		return;
 
 
 
 
 641
 642	clk_core_rate_protect(core);
 643	core->protect_count = count;
 644}
 645
 646/**
 647 * clk_rate_exclusive_get - get exclusivity over the clk rate control
 648 * @clk: the clk over which the exclusity of rate control is requested
 649 *
 650 * clk_rate_exlusive_get() begins a critical section during which a clock
 651 * consumer cannot tolerate any other consumer making any operation on the
 652 * clock which could result in a rate change or rate glitch. Exclusive clocks
 653 * cannot have their rate changed, either directly or indirectly due to changes
 654 * further up the parent chain of clocks. As a result, clocks up parent chain
 655 * also get under exclusive control of the calling consumer.
 656 *
 657 * If exlusivity is claimed more than once on clock, even by the same consumer,
 658 * the rate effectively gets locked as exclusivity can't be preempted.
 659 *
 660 * Calls to clk_rate_exclusive_get() should be balanced with calls to
 661 * clk_rate_exclusive_put(). Calls to this function may sleep.
 662 * Returns 0 on success, -EERROR otherwise
 663 */
 664int clk_rate_exclusive_get(struct clk *clk)
 665{
 666	if (!clk)
 667		return 0;
 668
 669	clk_prepare_lock();
 670	clk_core_rate_protect(clk->core);
 671	clk->exclusive_count++;
 672	clk_prepare_unlock();
 673
 674	return 0;
 675}
 676EXPORT_SYMBOL_GPL(clk_rate_exclusive_get);
 677
 678static void clk_core_unprepare(struct clk_core *core)
 679{
 680	lockdep_assert_held(&prepare_lock);
 681
 682	if (!core)
 683		return;
 684
 685	if (WARN_ON(core->prepare_count == 0))
 686		return;
 687
 688	if (WARN_ON(core->prepare_count == 1 && core->flags & CLK_IS_CRITICAL))
 689		return;
 690
 691	if (--core->prepare_count > 0)
 692		return;
 693
 694	WARN_ON(core->enable_count > 0);
 695
 696	trace_clk_unprepare(core);
 697
 698	if (core->ops->unprepare)
 699		core->ops->unprepare(core->hw);
 700
 701	clk_pm_runtime_put(core);
 
 702
 703	trace_clk_unprepare_complete(core);
 704	clk_core_unprepare(core->parent);
 705}
 706
 707static void clk_core_unprepare_lock(struct clk_core *core)
 708{
 709	clk_prepare_lock();
 710	clk_core_unprepare(core);
 711	clk_prepare_unlock();
 712}
 713
 714/**
 715 * clk_unprepare - undo preparation of a clock source
 716 * @clk: the clk being unprepared
 717 *
 718 * clk_unprepare may sleep, which differentiates it from clk_disable.  In a
 719 * simple case, clk_unprepare can be used instead of clk_disable to gate a clk
 720 * if the operation may sleep.  One example is a clk which is accessed over
 721 * I2c.  In the complex case a clk gate operation may require a fast and a slow
 722 * part.  It is this reason that clk_unprepare and clk_disable are not mutually
 723 * exclusive.  In fact clk_disable must be called before clk_unprepare.
 724 */
 725void clk_unprepare(struct clk *clk)
 726{
 727	if (IS_ERR_OR_NULL(clk))
 728		return;
 729
 730	clk_core_unprepare_lock(clk->core);
 731}
 732EXPORT_SYMBOL_GPL(clk_unprepare);
 733
 734static int clk_core_prepare(struct clk_core *core)
 735{
 736	int ret = 0;
 737
 738	lockdep_assert_held(&prepare_lock);
 739
 740	if (!core)
 741		return 0;
 742
 743	if (core->prepare_count == 0) {
 744		ret = clk_pm_runtime_get(core);
 745		if (ret)
 746			return ret;
 747
 748		ret = clk_core_prepare(core->parent);
 749		if (ret)
 750			goto runtime_put;
 751
 752		trace_clk_prepare(core);
 753
 754		if (core->ops->prepare)
 755			ret = core->ops->prepare(core->hw);
 756
 757		trace_clk_prepare_complete(core);
 758
 759		if (ret)
 760			goto unprepare;
 761	}
 762
 763	core->prepare_count++;
 764
 765	return 0;
 766unprepare:
 767	clk_core_unprepare(core->parent);
 768runtime_put:
 769	clk_pm_runtime_put(core);
 770	return ret;
 771}
 772
 773static int clk_core_prepare_lock(struct clk_core *core)
 774{
 775	int ret;
 776
 777	clk_prepare_lock();
 778	ret = clk_core_prepare(core);
 779	clk_prepare_unlock();
 780
 781	return ret;
 782}
 783
 784/**
 785 * clk_prepare - prepare a clock source
 786 * @clk: the clk being prepared
 787 *
 788 * clk_prepare may sleep, which differentiates it from clk_enable.  In a simple
 789 * case, clk_prepare can be used instead of clk_enable to ungate a clk if the
 790 * operation may sleep.  One example is a clk which is accessed over I2c.  In
 791 * the complex case a clk ungate operation may require a fast and a slow part.
 792 * It is this reason that clk_prepare and clk_enable are not mutually
 793 * exclusive.  In fact clk_prepare must be called before clk_enable.
 794 * Returns 0 on success, -EERROR otherwise.
 795 */
 796int clk_prepare(struct clk *clk)
 797{
 798	if (!clk)
 799		return 0;
 
 
 
 800
 801	return clk_core_prepare_lock(clk->core);
 802}
 803EXPORT_SYMBOL_GPL(clk_prepare);
 804
 805static void clk_core_disable(struct clk_core *core)
 806{
 807	lockdep_assert_held(&enable_lock);
 808
 809	if (!core)
 810		return;
 811
 812	if (WARN_ON(core->enable_count == 0))
 813		return;
 814
 815	if (WARN_ON(core->enable_count == 1 && core->flags & CLK_IS_CRITICAL))
 816		return;
 817
 818	if (--core->enable_count > 0)
 819		return;
 820
 821	trace_clk_disable_rcuidle(core);
 822
 823	if (core->ops->disable)
 824		core->ops->disable(core->hw);
 825
 826	trace_clk_disable_complete_rcuidle(core);
 827
 828	clk_core_disable(core->parent);
 829}
 830
 831static void clk_core_disable_lock(struct clk_core *core)
 832{
 833	unsigned long flags;
 834
 835	flags = clk_enable_lock();
 836	clk_core_disable(core);
 837	clk_enable_unlock(flags);
 838}
 839
 840/**
 841 * clk_disable - gate a clock
 842 * @clk: the clk being gated
 843 *
 844 * clk_disable must not sleep, which differentiates it from clk_unprepare.  In
 845 * a simple case, clk_disable can be used instead of clk_unprepare to gate a
 846 * clk if the operation is fast and will never sleep.  One example is a
 847 * SoC-internal clk which is controlled via simple register writes.  In the
 848 * complex case a clk gate operation may require a fast and a slow part.  It is
 849 * this reason that clk_unprepare and clk_disable are not mutually exclusive.
 850 * In fact clk_disable must be called before clk_unprepare.
 851 */
 852void clk_disable(struct clk *clk)
 853{
 854	if (IS_ERR_OR_NULL(clk))
 855		return;
 856
 857	clk_core_disable_lock(clk->core);
 
 
 858}
 859EXPORT_SYMBOL_GPL(clk_disable);
 860
 861static int clk_core_enable(struct clk_core *core)
 862{
 863	int ret = 0;
 864
 865	lockdep_assert_held(&enable_lock);
 866
 867	if (!core)
 868		return 0;
 869
 870	if (WARN_ON(core->prepare_count == 0))
 871		return -ESHUTDOWN;
 872
 873	if (core->enable_count == 0) {
 874		ret = clk_core_enable(core->parent);
 875
 876		if (ret)
 877			return ret;
 878
 879		trace_clk_enable_rcuidle(core);
 880
 881		if (core->ops->enable)
 882			ret = core->ops->enable(core->hw);
 883
 884		trace_clk_enable_complete_rcuidle(core);
 885
 886		if (ret) {
 887			clk_core_disable(core->parent);
 888			return ret;
 889		}
 890	}
 891
 892	core->enable_count++;
 893	return 0;
 894}
 895
 896static int clk_core_enable_lock(struct clk_core *core)
 897{
 898	unsigned long flags;
 899	int ret;
 900
 901	flags = clk_enable_lock();
 902	ret = clk_core_enable(core);
 903	clk_enable_unlock(flags);
 904
 905	return ret;
 906}
 907
 908/**
 909 * clk_enable - ungate a clock
 910 * @clk: the clk being ungated
 911 *
 912 * clk_enable must not sleep, which differentiates it from clk_prepare.  In a
 913 * simple case, clk_enable can be used instead of clk_prepare to ungate a clk
 914 * if the operation will never sleep.  One example is a SoC-internal clk which
 915 * is controlled via simple register writes.  In the complex case a clk ungate
 916 * operation may require a fast and a slow part.  It is this reason that
 917 * clk_enable and clk_prepare are not mutually exclusive.  In fact clk_prepare
 918 * must be called before clk_enable.  Returns 0 on success, -EERROR
 919 * otherwise.
 920 */
 921int clk_enable(struct clk *clk)
 922{
 923	if (!clk)
 924		return 0;
 925
 926	return clk_core_enable_lock(clk->core);
 927}
 928EXPORT_SYMBOL_GPL(clk_enable);
 929
 930static int clk_core_prepare_enable(struct clk_core *core)
 931{
 932	int ret;
 933
 934	ret = clk_core_prepare_lock(core);
 935	if (ret)
 936		return ret;
 937
 938	ret = clk_core_enable_lock(core);
 939	if (ret)
 940		clk_core_unprepare_lock(core);
 941
 942	return ret;
 943}
 
 944
 945static void clk_core_disable_unprepare(struct clk_core *core)
 
 
 
 
 
 
 
 946{
 947	clk_core_disable_lock(core);
 948	clk_core_unprepare_lock(core);
 949}
 950
 951static void clk_unprepare_unused_subtree(struct clk_core *core)
 952{
 953	struct clk_core *child;
 954
 955	lockdep_assert_held(&prepare_lock);
 956
 957	hlist_for_each_entry(child, &core->children, child_node)
 958		clk_unprepare_unused_subtree(child);
 959
 960	if (core->prepare_count)
 961		return;
 962
 963	if (core->flags & CLK_IGNORE_UNUSED)
 964		return;
 965
 966	if (clk_pm_runtime_get(core))
 967		return;
 968
 969	if (clk_core_is_prepared(core)) {
 970		trace_clk_unprepare(core);
 971		if (core->ops->unprepare_unused)
 972			core->ops->unprepare_unused(core->hw);
 973		else if (core->ops->unprepare)
 974			core->ops->unprepare(core->hw);
 975		trace_clk_unprepare_complete(core);
 976	}
 977
 978	clk_pm_runtime_put(core);
 979}
 980
 981static void clk_disable_unused_subtree(struct clk_core *core)
 982{
 983	struct clk_core *child;
 984	unsigned long flags;
 985
 986	lockdep_assert_held(&prepare_lock);
 987
 988	hlist_for_each_entry(child, &core->children, child_node)
 989		clk_disable_unused_subtree(child);
 990
 991	if (core->flags & CLK_OPS_PARENT_ENABLE)
 992		clk_core_prepare_enable(core->parent);
 993
 994	if (clk_pm_runtime_get(core))
 995		goto unprepare_out;
 996
 997	flags = clk_enable_lock();
 998
 999	if (core->enable_count)
1000		goto unlock_out;
1001
1002	if (core->flags & CLK_IGNORE_UNUSED)
1003		goto unlock_out;
1004
1005	/*
1006	 * some gate clocks have special needs during the disable-unused
1007	 * sequence.  call .disable_unused if available, otherwise fall
1008	 * back to .disable
1009	 */
1010	if (clk_core_is_enabled(core)) {
1011		trace_clk_disable(core);
1012		if (core->ops->disable_unused)
1013			core->ops->disable_unused(core->hw);
1014		else if (core->ops->disable)
1015			core->ops->disable(core->hw);
1016		trace_clk_disable_complete(core);
1017	}
1018
1019unlock_out:
1020	clk_enable_unlock(flags);
1021	clk_pm_runtime_put(core);
1022unprepare_out:
1023	if (core->flags & CLK_OPS_PARENT_ENABLE)
1024		clk_core_disable_unprepare(core->parent);
1025}
1026
1027static bool clk_ignore_unused;
1028static int __init clk_ignore_unused_setup(char *__unused)
1029{
1030	clk_ignore_unused = true;
1031	return 1;
1032}
1033__setup("clk_ignore_unused", clk_ignore_unused_setup);
1034
1035static int clk_disable_unused(void)
1036{
1037	struct clk_core *core;
1038
1039	if (clk_ignore_unused) {
1040		pr_warn("clk: Not disabling unused clocks\n");
1041		return 0;
1042	}
1043
1044	clk_prepare_lock();
1045
1046	hlist_for_each_entry(core, &clk_root_list, child_node)
1047		clk_disable_unused_subtree(core);
1048
1049	hlist_for_each_entry(core, &clk_orphan_list, child_node)
1050		clk_disable_unused_subtree(core);
1051
1052	hlist_for_each_entry(core, &clk_root_list, child_node)
1053		clk_unprepare_unused_subtree(core);
1054
1055	hlist_for_each_entry(core, &clk_orphan_list, child_node)
1056		clk_unprepare_unused_subtree(core);
1057
1058	clk_prepare_unlock();
1059
1060	return 0;
1061}
1062late_initcall_sync(clk_disable_unused);
1063
1064static int clk_core_determine_round_nolock(struct clk_core *core,
1065					   struct clk_rate_request *req)
1066{
1067	long rate;
1068
1069	lockdep_assert_held(&prepare_lock);
1070
1071	if (!core)
1072		return 0;
1073
1074	/*
1075	 * At this point, core protection will be disabled if
1076	 * - if the provider is not protected at all
1077	 * - if the calling consumer is the only one which has exclusivity
1078	 *   over the provider
1079	 */
1080	if (clk_core_rate_is_protected(core)) {
1081		req->rate = core->rate;
1082	} else if (core->ops->determine_rate) {
1083		return core->ops->determine_rate(core->hw, req);
1084	} else if (core->ops->round_rate) {
1085		rate = core->ops->round_rate(core->hw, req->rate,
1086					     &req->best_parent_rate);
1087		if (rate < 0)
1088			return rate;
1089
1090		req->rate = rate;
1091	} else {
1092		return -EINVAL;
1093	}
1094
1095	return 0;
1096}
1097
1098static void clk_core_init_rate_req(struct clk_core * const core,
1099				   struct clk_rate_request *req)
1100{
1101	struct clk_core *parent;
1102
1103	if (WARN_ON(!core || !req))
1104		return;
1105
1106	parent = core->parent;
1107	if (parent) {
1108		req->best_parent_hw = parent->hw;
1109		req->best_parent_rate = parent->rate;
1110	} else {
1111		req->best_parent_hw = NULL;
1112		req->best_parent_rate = 0;
1113	}
1114}
1115
1116static bool clk_core_can_round(struct clk_core * const core)
1117{
1118	if (core->ops->determine_rate || core->ops->round_rate)
1119		return true;
1120
1121	return false;
1122}
1123
1124static int clk_core_round_rate_nolock(struct clk_core *core,
1125				      struct clk_rate_request *req)
1126{
1127	lockdep_assert_held(&prepare_lock);
1128
1129	if (!core) {
1130		req->rate = 0;
1131		return 0;
1132	}
1133
1134	clk_core_init_rate_req(core, req);
1135
1136	if (clk_core_can_round(core))
1137		return clk_core_determine_round_nolock(core, req);
1138	else if (core->flags & CLK_SET_RATE_PARENT)
1139		return clk_core_round_rate_nolock(core->parent, req);
1140
1141	req->rate = core->rate;
1142	return 0;
1143}
 
1144
1145/**
1146 * __clk_determine_rate - get the closest rate actually supported by a clock
1147 * @hw: determine the rate of this clock
1148 * @req: target rate request
1149 *
1150 * Useful for clk_ops such as .set_rate and .determine_rate.
1151 */
1152int __clk_determine_rate(struct clk_hw *hw, struct clk_rate_request *req)
1153{
1154	if (!hw) {
1155		req->rate = 0;
1156		return 0;
1157	}
1158
1159	return clk_core_round_rate_nolock(hw->core, req);
1160}
1161EXPORT_SYMBOL_GPL(__clk_determine_rate);
1162
1163unsigned long clk_hw_round_rate(struct clk_hw *hw, unsigned long rate)
1164{
1165	int ret;
1166	struct clk_rate_request req;
 
 
1167
1168	clk_core_get_boundaries(hw->core, &req.min_rate, &req.max_rate);
1169	req.rate = rate;
1170
1171	ret = clk_core_round_rate_nolock(hw->core, &req);
1172	if (ret)
1173		return 0;
1174
1175	return req.rate;
1176}
1177EXPORT_SYMBOL_GPL(clk_hw_round_rate);
1178
1179/**
1180 * clk_round_rate - round the given rate for a clk
1181 * @clk: the clk for which we are rounding a rate
1182 * @rate: the rate which is to be rounded
1183 *
1184 * Takes in a rate as input and rounds it to a rate that the clk can actually
1185 * use which is then returned.  If clk doesn't support round_rate operation
1186 * then the parent rate is returned.
1187 */
1188long clk_round_rate(struct clk *clk, unsigned long rate)
1189{
1190	struct clk_rate_request req;
1191	int ret;
1192
1193	if (!clk)
1194		return 0;
 
1195
1196	clk_prepare_lock();
1197
1198	if (clk->exclusive_count)
1199		clk_core_rate_unprotect(clk->core);
1200
1201	clk_core_get_boundaries(clk->core, &req.min_rate, &req.max_rate);
1202	req.rate = rate;
1203
1204	ret = clk_core_round_rate_nolock(clk->core, &req);
1205
1206	if (clk->exclusive_count)
1207		clk_core_rate_protect(clk->core);
1208
1209	clk_prepare_unlock();
1210
1211	if (ret)
1212		return ret;
1213
1214	return req.rate;
1215}
1216EXPORT_SYMBOL_GPL(clk_round_rate);
1217
1218/**
1219 * __clk_notify - call clk notifier chain
1220 * @core: clk that is changing rate
1221 * @msg: clk notifier type (see include/linux/clk.h)
1222 * @old_rate: old clk rate
1223 * @new_rate: new clk rate
1224 *
1225 * Triggers a notifier call chain on the clk rate-change notification
1226 * for 'clk'.  Passes a pointer to the struct clk and the previous
1227 * and current rates to the notifier callback.  Intended to be called by
1228 * internal clock code only.  Returns NOTIFY_DONE from the last driver
1229 * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if
1230 * a driver returns that.
1231 */
1232static int __clk_notify(struct clk_core *core, unsigned long msg,
1233		unsigned long old_rate, unsigned long new_rate)
1234{
1235	struct clk_notifier *cn;
1236	struct clk_notifier_data cnd;
1237	int ret = NOTIFY_DONE;
1238
 
1239	cnd.old_rate = old_rate;
1240	cnd.new_rate = new_rate;
1241
1242	list_for_each_entry(cn, &clk_notifier_list, node) {
1243		if (cn->clk->core == core) {
1244			cnd.clk = cn->clk;
1245			ret = srcu_notifier_call_chain(&cn->notifier_head, msg,
1246					&cnd);
1247			if (ret & NOTIFY_STOP_MASK)
1248				return ret;
1249		}
1250	}
1251
1252	return ret;
1253}
1254
1255/**
1256 * __clk_recalc_accuracies
1257 * @core: first clk in the subtree
1258 *
1259 * Walks the subtree of clks starting with clk and recalculates accuracies as
1260 * it goes.  Note that if a clk does not implement the .recalc_accuracy
1261 * callback then it is assumed that the clock will take on the accuracy of its
1262 * parent.
1263 */
1264static void __clk_recalc_accuracies(struct clk_core *core)
1265{
1266	unsigned long parent_accuracy = 0;
1267	struct clk_core *child;
1268
1269	lockdep_assert_held(&prepare_lock);
1270
1271	if (core->parent)
1272		parent_accuracy = core->parent->accuracy;
1273
1274	if (core->ops->recalc_accuracy)
1275		core->accuracy = core->ops->recalc_accuracy(core->hw,
1276							  parent_accuracy);
1277	else
1278		core->accuracy = parent_accuracy;
1279
1280	hlist_for_each_entry(child, &core->children, child_node)
1281		__clk_recalc_accuracies(child);
1282}
1283
1284static long clk_core_get_accuracy(struct clk_core *core)
1285{
1286	unsigned long accuracy;
1287
1288	clk_prepare_lock();
1289	if (core && (core->flags & CLK_GET_ACCURACY_NOCACHE))
1290		__clk_recalc_accuracies(core);
1291
1292	accuracy = __clk_get_accuracy(core);
1293	clk_prepare_unlock();
1294
1295	return accuracy;
1296}
1297
1298/**
1299 * clk_get_accuracy - return the accuracy of clk
1300 * @clk: the clk whose accuracy is being returned
1301 *
1302 * Simply returns the cached accuracy of the clk, unless
1303 * CLK_GET_ACCURACY_NOCACHE flag is set, which means a recalc_rate will be
1304 * issued.
1305 * If clk is NULL then returns 0.
1306 */
1307long clk_get_accuracy(struct clk *clk)
1308{
1309	if (!clk)
1310		return 0;
1311
1312	return clk_core_get_accuracy(clk->core);
1313}
1314EXPORT_SYMBOL_GPL(clk_get_accuracy);
1315
1316static unsigned long clk_recalc(struct clk_core *core,
1317				unsigned long parent_rate)
1318{
1319	unsigned long rate = parent_rate;
1320
1321	if (core->ops->recalc_rate && !clk_pm_runtime_get(core)) {
1322		rate = core->ops->recalc_rate(core->hw, parent_rate);
1323		clk_pm_runtime_put(core);
1324	}
1325	return rate;
1326}
1327
1328/**
1329 * __clk_recalc_rates
1330 * @core: first clk in the subtree
1331 * @msg: notification type (see include/linux/clk.h)
1332 *
1333 * Walks the subtree of clks starting with clk and recalculates rates as it
1334 * goes.  Note that if a clk does not implement the .recalc_rate callback then
1335 * it is assumed that the clock will take on the rate of its parent.
1336 *
1337 * clk_recalc_rates also propagates the POST_RATE_CHANGE notification,
1338 * if necessary.
 
 
1339 */
1340static void __clk_recalc_rates(struct clk_core *core, unsigned long msg)
1341{
1342	unsigned long old_rate;
1343	unsigned long parent_rate = 0;
1344	struct clk_core *child;
 
1345
1346	lockdep_assert_held(&prepare_lock);
1347
1348	old_rate = core->rate;
 
1349
1350	if (core->parent)
1351		parent_rate = core->parent->rate;
1352
1353	core->rate = clk_recalc(core, parent_rate);
1354
1355	/*
1356	 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE
1357	 * & ABORT_RATE_CHANGE notifiers
1358	 */
1359	if (core->notifier_count && msg)
1360		__clk_notify(core, msg, old_rate, core->rate);
1361
1362	hlist_for_each_entry(child, &core->children, child_node)
1363		__clk_recalc_rates(child, msg);
1364}
1365
1366static unsigned long clk_core_get_rate(struct clk_core *core)
1367{
1368	unsigned long rate;
1369
1370	clk_prepare_lock();
1371
1372	if (core && (core->flags & CLK_GET_RATE_NOCACHE))
1373		__clk_recalc_rates(core, 0);
1374
1375	rate = clk_core_get_rate_nolock(core);
1376	clk_prepare_unlock();
1377
1378	return rate;
1379}
1380
1381/**
1382 * clk_get_rate - return the rate of clk
1383 * @clk: the clk whose rate is being returned
1384 *
1385 * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag
1386 * is set, which means a recalc_rate will be issued.
1387 * If clk is NULL then returns 0.
1388 */
1389unsigned long clk_get_rate(struct clk *clk)
1390{
1391	if (!clk)
1392		return 0;
1393
1394	return clk_core_get_rate(clk->core);
1395}
1396EXPORT_SYMBOL_GPL(clk_get_rate);
1397
1398static int clk_fetch_parent_index(struct clk_core *core,
1399				  struct clk_core *parent)
1400{
1401	int i;
1402
1403	if (!parent)
1404		return -EINVAL;
1405
1406	for (i = 0; i < core->num_parents; i++)
1407		if (clk_core_get_parent_by_index(core, i) == parent)
1408			return i;
1409
1410	return -EINVAL;
1411}
1412
1413/*
1414 * Update the orphan status of @core and all its children.
1415 */
1416static void clk_core_update_orphan_status(struct clk_core *core, bool is_orphan)
1417{
1418	struct clk_core *child;
1419
1420	core->orphan = is_orphan;
1421
1422	hlist_for_each_entry(child, &core->children, child_node)
1423		clk_core_update_orphan_status(child, is_orphan);
1424}
1425
1426static void clk_reparent(struct clk_core *core, struct clk_core *new_parent)
1427{
1428	bool was_orphan = core->orphan;
1429
1430	hlist_del(&core->child_node);
1431
1432	if (new_parent) {
1433		bool becomes_orphan = new_parent->orphan;
1434
1435		/* avoid duplicate POST_RATE_CHANGE notifications */
1436		if (new_parent->new_child == core)
1437			new_parent->new_child = NULL;
1438
1439		hlist_add_head(&core->child_node, &new_parent->children);
1440
1441		if (was_orphan != becomes_orphan)
1442			clk_core_update_orphan_status(core, becomes_orphan);
1443	} else {
1444		hlist_add_head(&core->child_node, &clk_orphan_list);
1445		if (!was_orphan)
1446			clk_core_update_orphan_status(core, true);
1447	}
1448
1449	core->parent = new_parent;
1450}
1451
1452static struct clk_core *__clk_set_parent_before(struct clk_core *core,
1453					   struct clk_core *parent)
1454{
1455	unsigned long flags;
1456	struct clk_core *old_parent = core->parent;
1457
1458	/*
1459	 * 1. enable parents for CLK_OPS_PARENT_ENABLE clock
1460	 *
1461	 * 2. Migrate prepare state between parents and prevent race with
1462	 * clk_enable().
1463	 *
1464	 * If the clock is not prepared, then a race with
1465	 * clk_enable/disable() is impossible since we already have the
1466	 * prepare lock (future calls to clk_enable() need to be preceded by
1467	 * a clk_prepare()).
1468	 *
1469	 * If the clock is prepared, migrate the prepared state to the new
1470	 * parent and also protect against a race with clk_enable() by
1471	 * forcing the clock and the new parent on.  This ensures that all
1472	 * future calls to clk_enable() are practically NOPs with respect to
1473	 * hardware and software states.
1474	 *
1475	 * See also: Comment for clk_set_parent() below.
1476	 */
1477
1478	/* enable old_parent & parent if CLK_OPS_PARENT_ENABLE is set */
1479	if (core->flags & CLK_OPS_PARENT_ENABLE) {
1480		clk_core_prepare_enable(old_parent);
1481		clk_core_prepare_enable(parent);
1482	}
1483
1484	/* migrate prepare count if > 0 */
1485	if (core->prepare_count) {
1486		clk_core_prepare_enable(parent);
1487		clk_core_enable_lock(core);
1488	}
1489
1490	/* update the clk tree topology */
1491	flags = clk_enable_lock();
1492	clk_reparent(core, parent);
1493	clk_enable_unlock(flags);
1494
1495	return old_parent;
1496}
1497
1498static void __clk_set_parent_after(struct clk_core *core,
1499				   struct clk_core *parent,
1500				   struct clk_core *old_parent)
1501{
1502	/*
1503	 * Finish the migration of prepare state and undo the changes done
1504	 * for preventing a race with clk_enable().
1505	 */
1506	if (core->prepare_count) {
1507		clk_core_disable_lock(core);
1508		clk_core_disable_unprepare(old_parent);
1509	}
1510
1511	/* re-balance ref counting if CLK_OPS_PARENT_ENABLE is set */
1512	if (core->flags & CLK_OPS_PARENT_ENABLE) {
1513		clk_core_disable_unprepare(parent);
1514		clk_core_disable_unprepare(old_parent);
1515	}
1516}
1517
1518static int __clk_set_parent(struct clk_core *core, struct clk_core *parent,
1519			    u8 p_index)
1520{
1521	unsigned long flags;
1522	int ret = 0;
1523	struct clk_core *old_parent;
1524
1525	old_parent = __clk_set_parent_before(core, parent);
1526
1527	trace_clk_set_parent(core, parent);
1528
1529	/* change clock input source */
1530	if (parent && core->ops->set_parent)
1531		ret = core->ops->set_parent(core->hw, p_index);
1532
1533	trace_clk_set_parent_complete(core, parent);
1534
1535	if (ret) {
1536		flags = clk_enable_lock();
1537		clk_reparent(core, old_parent);
1538		clk_enable_unlock(flags);
1539		__clk_set_parent_after(core, old_parent, parent);
1540
1541		return ret;
1542	}
1543
1544	__clk_set_parent_after(core, parent, old_parent);
1545
1546	return 0;
1547}
1548
1549/**
1550 * __clk_speculate_rates
1551 * @core: first clk in the subtree
1552 * @parent_rate: the "future" rate of clk's parent
1553 *
1554 * Walks the subtree of clks starting with clk, speculating rates as it
1555 * goes and firing off PRE_RATE_CHANGE notifications as necessary.
1556 *
1557 * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending
1558 * pre-rate change notifications and returns early if no clks in the
1559 * subtree have subscribed to the notifications.  Note that if a clk does not
1560 * implement the .recalc_rate callback then it is assumed that the clock will
1561 * take on the rate of its parent.
 
 
1562 */
1563static int __clk_speculate_rates(struct clk_core *core,
1564				 unsigned long parent_rate)
1565{
1566	struct clk_core *child;
 
1567	unsigned long new_rate;
1568	int ret = NOTIFY_DONE;
1569
1570	lockdep_assert_held(&prepare_lock);
1571
1572	new_rate = clk_recalc(core, parent_rate);
 
1573
1574	/* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */
1575	if (core->notifier_count)
1576		ret = __clk_notify(core, PRE_RATE_CHANGE, core->rate, new_rate);
1577
1578	if (ret & NOTIFY_STOP_MASK) {
1579		pr_debug("%s: clk notifier callback for clock %s aborted with error %d\n",
1580				__func__, core->name, ret);
1581		goto out;
1582	}
1583
1584	hlist_for_each_entry(child, &core->children, child_node) {
1585		ret = __clk_speculate_rates(child, new_rate);
1586		if (ret & NOTIFY_STOP_MASK)
1587			break;
1588	}
1589
1590out:
1591	return ret;
1592}
1593
1594static void clk_calc_subtree(struct clk_core *core, unsigned long new_rate,
1595			     struct clk_core *new_parent, u8 p_index)
1596{
1597	struct clk_core *child;
 
 
 
1598
1599	core->new_rate = new_rate;
1600	core->new_parent = new_parent;
1601	core->new_parent_index = p_index;
1602	/* include clk in new parent's PRE_RATE_CHANGE notifications */
1603	core->new_child = NULL;
1604	if (new_parent && new_parent != core->parent)
1605		new_parent->new_child = core;
1606
1607	hlist_for_each_entry(child, &core->children, child_node) {
1608		child->new_rate = clk_recalc(child, new_rate);
1609		clk_calc_subtree(child, child->new_rate, NULL, 0);
1610	}
1611}
1612
1613/*
1614 * calculate the new rates returning the topmost clock that has to be
1615 * changed.
1616 */
1617static struct clk_core *clk_calc_new_rates(struct clk_core *core,
1618					   unsigned long rate)
1619{
1620	struct clk_core *top = core;
1621	struct clk_core *old_parent, *parent;
1622	unsigned long best_parent_rate = 0;
1623	unsigned long new_rate;
1624	unsigned long min_rate;
1625	unsigned long max_rate;
1626	int p_index = 0;
1627	long ret;
1628
1629	/* sanity */
1630	if (IS_ERR_OR_NULL(core))
1631		return NULL;
1632
1633	/* save parent rate, if it exists */
1634	parent = old_parent = core->parent;
1635	if (parent)
1636		best_parent_rate = parent->rate;
1637
1638	clk_core_get_boundaries(core, &min_rate, &max_rate);
1639
1640	/* find the closest rate and parent clk/rate */
1641	if (clk_core_can_round(core)) {
1642		struct clk_rate_request req;
1643
1644		req.rate = rate;
1645		req.min_rate = min_rate;
1646		req.max_rate = max_rate;
1647
1648		clk_core_init_rate_req(core, &req);
1649
1650		ret = clk_core_determine_round_nolock(core, &req);
1651		if (ret < 0)
1652			return NULL;
1653
1654		best_parent_rate = req.best_parent_rate;
1655		new_rate = req.rate;
1656		parent = req.best_parent_hw ? req.best_parent_hw->core : NULL;
1657
1658		if (new_rate < min_rate || new_rate > max_rate)
1659			return NULL;
1660	} else if (!parent || !(core->flags & CLK_SET_RATE_PARENT)) {
1661		/* pass-through clock without adjustable parent */
1662		core->new_rate = core->rate;
1663		return NULL;
1664	} else {
1665		/* pass-through clock with adjustable parent */
1666		top = clk_calc_new_rates(parent, rate);
1667		new_rate = parent->new_rate;
1668		goto out;
1669	}
1670
1671	/* some clocks must be gated to change parent */
1672	if (parent != old_parent &&
1673	    (core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) {
1674		pr_debug("%s: %s not gated but wants to reparent\n",
1675			 __func__, core->name);
1676		return NULL;
1677	}
1678
1679	/* try finding the new parent index */
1680	if (parent && core->num_parents > 1) {
1681		p_index = clk_fetch_parent_index(core, parent);
1682		if (p_index < 0) {
1683			pr_debug("%s: clk %s can not be parent of clk %s\n",
1684				 __func__, parent->name, core->name);
1685			return NULL;
1686		}
1687	}
1688
1689	if ((core->flags & CLK_SET_RATE_PARENT) && parent &&
1690	    best_parent_rate != parent->rate)
1691		top = clk_calc_new_rates(parent, best_parent_rate);
 
 
 
 
1692
1693out:
1694	clk_calc_subtree(core, new_rate, parent, p_index);
1695
1696	return top;
1697}
1698
1699/*
1700 * Notify about rate changes in a subtree. Always walk down the whole tree
1701 * so that in case of an error we can walk down the whole tree again and
1702 * abort the change.
1703 */
1704static struct clk_core *clk_propagate_rate_change(struct clk_core *core,
1705						  unsigned long event)
1706{
1707	struct clk_core *child, *tmp_clk, *fail_clk = NULL;
 
1708	int ret = NOTIFY_DONE;
1709
1710	if (core->rate == core->new_rate)
1711		return NULL;
 
 
 
 
 
 
1712
1713	if (core->notifier_count) {
1714		ret = __clk_notify(core, event, core->rate, core->new_rate);
1715		if (ret & NOTIFY_STOP_MASK)
1716			fail_clk = core;
1717	}
1718
1719	hlist_for_each_entry(child, &core->children, child_node) {
1720		/* Skip children who will be reparented to another clock */
1721		if (child->new_parent && child->new_parent != core)
1722			continue;
1723		tmp_clk = clk_propagate_rate_change(child, event);
1724		if (tmp_clk)
1725			fail_clk = tmp_clk;
1726	}
1727
1728	/* handle the new child who might not be in core->children yet */
1729	if (core->new_child) {
1730		tmp_clk = clk_propagate_rate_change(core->new_child, event);
1731		if (tmp_clk)
1732			fail_clk = tmp_clk;
1733	}
1734
1735	return fail_clk;
1736}
1737
1738/*
1739 * walk down a subtree and set the new rates notifying the rate
1740 * change on the way
1741 */
1742static void clk_change_rate(struct clk_core *core)
1743{
1744	struct clk_core *child;
1745	struct hlist_node *tmp;
1746	unsigned long old_rate;
1747	unsigned long best_parent_rate = 0;
1748	bool skip_set_rate = false;
1749	struct clk_core *old_parent;
1750	struct clk_core *parent = NULL;
1751
1752	old_rate = core->rate;
1753
1754	if (core->new_parent) {
1755		parent = core->new_parent;
1756		best_parent_rate = core->new_parent->rate;
1757	} else if (core->parent) {
1758		parent = core->parent;
1759		best_parent_rate = core->parent->rate;
1760	}
1761
1762	if (clk_pm_runtime_get(core))
1763		return;
1764
1765	if (core->flags & CLK_SET_RATE_UNGATE) {
1766		unsigned long flags;
 
 
1767
1768		clk_core_prepare(core);
1769		flags = clk_enable_lock();
1770		clk_core_enable(core);
1771		clk_enable_unlock(flags);
1772	}
1773
1774	if (core->new_parent && core->new_parent != core->parent) {
1775		old_parent = __clk_set_parent_before(core, core->new_parent);
1776		trace_clk_set_parent(core, core->new_parent);
1777
1778		if (core->ops->set_rate_and_parent) {
1779			skip_set_rate = true;
1780			core->ops->set_rate_and_parent(core->hw, core->new_rate,
1781					best_parent_rate,
1782					core->new_parent_index);
1783		} else if (core->ops->set_parent) {
1784			core->ops->set_parent(core->hw, core->new_parent_index);
1785		}
1786
1787		trace_clk_set_parent_complete(core, core->new_parent);
1788		__clk_set_parent_after(core, core->new_parent, old_parent);
1789	}
1790
1791	if (core->flags & CLK_OPS_PARENT_ENABLE)
1792		clk_core_prepare_enable(parent);
1793
1794	trace_clk_set_rate(core, core->new_rate);
1795
1796	if (!skip_set_rate && core->ops->set_rate)
1797		core->ops->set_rate(core->hw, core->new_rate, best_parent_rate);
1798
1799	trace_clk_set_rate_complete(core, core->new_rate);
1800
1801	core->rate = clk_recalc(core, best_parent_rate);
1802
1803	if (core->flags & CLK_SET_RATE_UNGATE) {
1804		unsigned long flags;
1805
1806		flags = clk_enable_lock();
1807		clk_core_disable(core);
1808		clk_enable_unlock(flags);
1809		clk_core_unprepare(core);
1810	}
1811
1812	if (core->flags & CLK_OPS_PARENT_ENABLE)
1813		clk_core_disable_unprepare(parent);
1814
1815	if (core->notifier_count && old_rate != core->rate)
1816		__clk_notify(core, POST_RATE_CHANGE, old_rate, core->rate);
1817
1818	if (core->flags & CLK_RECALC_NEW_RATES)
1819		(void)clk_calc_new_rates(core, core->new_rate);
1820
1821	/*
1822	 * Use safe iteration, as change_rate can actually swap parents
1823	 * for certain clock types.
1824	 */
1825	hlist_for_each_entry_safe(child, tmp, &core->children, child_node) {
1826		/* Skip children who will be reparented to another clock */
1827		if (child->new_parent && child->new_parent != core)
1828			continue;
1829		clk_change_rate(child);
1830	}
1831
1832	/* handle the new child who might not be in core->children yet */
1833	if (core->new_child)
1834		clk_change_rate(core->new_child);
1835
1836	clk_pm_runtime_put(core);
1837}
1838
1839static unsigned long clk_core_req_round_rate_nolock(struct clk_core *core,
1840						     unsigned long req_rate)
1841{
1842	int ret, cnt;
1843	struct clk_rate_request req;
1844
1845	lockdep_assert_held(&prepare_lock);
1846
1847	if (!core)
1848		return 0;
1849
1850	/* simulate what the rate would be if it could be freely set */
1851	cnt = clk_core_rate_nuke_protect(core);
1852	if (cnt < 0)
1853		return cnt;
1854
1855	clk_core_get_boundaries(core, &req.min_rate, &req.max_rate);
1856	req.rate = req_rate;
1857
1858	ret = clk_core_round_rate_nolock(core, &req);
1859
1860	/* restore the protection */
1861	clk_core_rate_restore_protect(core, cnt);
1862
1863	return ret ? 0 : req.rate;
1864}
1865
1866static int clk_core_set_rate_nolock(struct clk_core *core,
1867				    unsigned long req_rate)
1868{
1869	struct clk_core *top, *fail_clk;
1870	unsigned long rate;
1871	int ret = 0;
1872
1873	if (!core)
1874		return 0;
1875
1876	rate = clk_core_req_round_rate_nolock(core, req_rate);
1877
1878	/* bail early if nothing to do */
1879	if (rate == clk_core_get_rate_nolock(core))
1880		return 0;
1881
1882	/* fail on a direct rate set of a protected provider */
1883	if (clk_core_rate_is_protected(core))
1884		return -EBUSY;
1885
1886	if ((core->flags & CLK_SET_RATE_GATE) && core->prepare_count)
1887		return -EBUSY;
1888
1889	/* calculate new rates and get the topmost changed clock */
1890	top = clk_calc_new_rates(core, req_rate);
1891	if (!top)
1892		return -EINVAL;
1893
1894	ret = clk_pm_runtime_get(core);
1895	if (ret)
1896		return ret;
1897
1898	/* notify that we are about to change rates */
1899	fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE);
1900	if (fail_clk) {
1901		pr_debug("%s: failed to set %s rate\n", __func__,
1902				fail_clk->name);
1903		clk_propagate_rate_change(top, ABORT_RATE_CHANGE);
1904		ret = -EBUSY;
1905		goto err;
1906	}
1907
1908	/* change the rates */
1909	clk_change_rate(top);
1910
1911	core->req_rate = req_rate;
1912err:
1913	clk_pm_runtime_put(core);
1914
1915	return ret;
1916}
1917
1918/**
1919 * clk_set_rate - specify a new rate for clk
1920 * @clk: the clk whose rate is being changed
1921 * @rate: the new rate for clk
1922 *
1923 * In the simplest case clk_set_rate will only adjust the rate of clk.
1924 *
1925 * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to
1926 * propagate up to clk's parent; whether or not this happens depends on the
1927 * outcome of clk's .round_rate implementation.  If *parent_rate is unchanged
1928 * after calling .round_rate then upstream parent propagation is ignored.  If
1929 * *parent_rate comes back with a new rate for clk's parent then we propagate
1930 * up to clk's parent and set its rate.  Upward propagation will continue
1931 * until either a clk does not support the CLK_SET_RATE_PARENT flag or
1932 * .round_rate stops requesting changes to clk's parent_rate.
1933 *
1934 * Rate changes are accomplished via tree traversal that also recalculates the
1935 * rates for the clocks and fires off POST_RATE_CHANGE notifiers.
1936 *
1937 * Returns 0 on success, -EERROR otherwise.
1938 */
1939int clk_set_rate(struct clk *clk, unsigned long rate)
1940{
1941	int ret;
1942
1943	if (!clk)
1944		return 0;
1945
1946	/* prevent racing with updates to the clock topology */
1947	clk_prepare_lock();
1948
1949	if (clk->exclusive_count)
1950		clk_core_rate_unprotect(clk->core);
 
1951
1952	ret = clk_core_set_rate_nolock(clk->core, rate);
 
 
 
1953
1954	if (clk->exclusive_count)
1955		clk_core_rate_protect(clk->core);
1956
1957	clk_prepare_unlock();
1958
1959	return ret;
1960}
1961EXPORT_SYMBOL_GPL(clk_set_rate);
1962
1963/**
1964 * clk_set_rate_exclusive - specify a new rate get exclusive control
1965 * @clk: the clk whose rate is being changed
1966 * @rate: the new rate for clk
1967 *
1968 * This is a combination of clk_set_rate() and clk_rate_exclusive_get()
1969 * within a critical section
1970 *
1971 * This can be used initially to ensure that at least 1 consumer is
1972 * statisfied when several consumers are competing for exclusivity over the
1973 * same clock provider.
1974 *
1975 * The exclusivity is not applied if setting the rate failed.
1976 *
1977 * Calls to clk_rate_exclusive_get() should be balanced with calls to
1978 * clk_rate_exclusive_put().
1979 *
1980 * Returns 0 on success, -EERROR otherwise.
1981 */
1982int clk_set_rate_exclusive(struct clk *clk, unsigned long rate)
1983{
1984	int ret;
1985
1986	if (!clk)
1987		return 0;
1988
1989	/* prevent racing with updates to the clock topology */
1990	clk_prepare_lock();
1991
1992	/*
1993	 * The temporary protection removal is not here, on purpose
1994	 * This function is meant to be used instead of clk_rate_protect,
1995	 * so before the consumer code path protect the clock provider
1996	 */
1997
1998	ret = clk_core_set_rate_nolock(clk->core, rate);
1999	if (!ret) {
2000		clk_core_rate_protect(clk->core);
2001		clk->exclusive_count++;
2002	}
2003
2004	clk_prepare_unlock();
2005
2006	return ret;
2007}
2008EXPORT_SYMBOL_GPL(clk_set_rate_exclusive);
2009
2010/**
2011 * clk_set_rate_range - set a rate range for a clock source
2012 * @clk: clock source
2013 * @min: desired minimum clock rate in Hz, inclusive
2014 * @max: desired maximum clock rate in Hz, inclusive
2015 *
2016 * Returns success (0) or negative errno.
2017 */
2018int clk_set_rate_range(struct clk *clk, unsigned long min, unsigned long max)
2019{
2020	int ret = 0;
2021	unsigned long old_min, old_max, rate;
2022
2023	if (!clk)
2024		return 0;
2025
2026	if (min > max) {
2027		pr_err("%s: clk %s dev %s con %s: invalid range [%lu, %lu]\n",
2028		       __func__, clk->core->name, clk->dev_id, clk->con_id,
2029		       min, max);
2030		return -EINVAL;
2031	}
2032
2033	clk_prepare_lock();
 
2034
2035	if (clk->exclusive_count)
2036		clk_core_rate_unprotect(clk->core);
2037
2038	/* Save the current values in case we need to rollback the change */
2039	old_min = clk->min_rate;
2040	old_max = clk->max_rate;
2041	clk->min_rate = min;
2042	clk->max_rate = max;
2043
2044	rate = clk_core_get_rate_nolock(clk->core);
2045	if (rate < min || rate > max) {
2046		/*
2047		 * FIXME:
2048		 * We are in bit of trouble here, current rate is outside the
2049		 * the requested range. We are going try to request appropriate
2050		 * range boundary but there is a catch. It may fail for the
2051		 * usual reason (clock broken, clock protected, etc) but also
2052		 * because:
2053		 * - round_rate() was not favorable and fell on the wrong
2054		 *   side of the boundary
2055		 * - the determine_rate() callback does not really check for
2056		 *   this corner case when determining the rate
2057		 */
2058
2059		if (rate < min)
2060			rate = min;
2061		else
2062			rate = max;
2063
2064		ret = clk_core_set_rate_nolock(clk->core, rate);
2065		if (ret) {
2066			/* rollback the changes */
2067			clk->min_rate = old_min;
2068			clk->max_rate = old_max;
2069		}
2070	}
2071
2072	if (clk->exclusive_count)
2073		clk_core_rate_protect(clk->core);
2074
2075	clk_prepare_unlock();
2076
2077	return ret;
2078}
2079EXPORT_SYMBOL_GPL(clk_set_rate_range);
2080
2081/**
2082 * clk_set_min_rate - set a minimum clock rate for a clock source
2083 * @clk: clock source
2084 * @rate: desired minimum clock rate in Hz, inclusive
2085 *
2086 * Returns success (0) or negative errno.
2087 */
2088int clk_set_min_rate(struct clk *clk, unsigned long rate)
2089{
2090	if (!clk)
2091		return 0;
2092
2093	return clk_set_rate_range(clk, rate, clk->max_rate);
2094}
2095EXPORT_SYMBOL_GPL(clk_set_min_rate);
2096
2097/**
2098 * clk_set_max_rate - set a maximum clock rate for a clock source
2099 * @clk: clock source
2100 * @rate: desired maximum clock rate in Hz, inclusive
2101 *
2102 * Returns success (0) or negative errno.
2103 */
2104int clk_set_max_rate(struct clk *clk, unsigned long rate)
2105{
2106	if (!clk)
2107		return 0;
2108
2109	return clk_set_rate_range(clk, clk->min_rate, rate);
2110}
2111EXPORT_SYMBOL_GPL(clk_set_max_rate);
2112
2113/**
2114 * clk_get_parent - return the parent of a clk
2115 * @clk: the clk whose parent gets returned
2116 *
2117 * Simply returns clk->parent.  Returns NULL if clk is NULL.
2118 */
2119struct clk *clk_get_parent(struct clk *clk)
2120{
2121	struct clk *parent;
2122
2123	if (!clk)
2124		return NULL;
2125
2126	clk_prepare_lock();
2127	/* TODO: Create a per-user clk and change callers to call clk_put */
2128	parent = !clk->core->parent ? NULL : clk->core->parent->hw->clk;
2129	clk_prepare_unlock();
2130
2131	return parent;
2132}
2133EXPORT_SYMBOL_GPL(clk_get_parent);
2134
2135static struct clk_core *__clk_init_parent(struct clk_core *core)
2136{
2137	u8 index = 0;
2138
2139	if (core->num_parents > 1 && core->ops->get_parent)
2140		index = core->ops->get_parent(core->hw);
2141
2142	return clk_core_get_parent_by_index(core, index);
2143}
2144
2145static void clk_core_reparent(struct clk_core *core,
2146				  struct clk_core *new_parent)
2147{
2148	clk_reparent(core, new_parent);
2149	__clk_recalc_accuracies(core);
2150	__clk_recalc_rates(core, POST_RATE_CHANGE);
2151}
2152
2153void clk_hw_reparent(struct clk_hw *hw, struct clk_hw *new_parent)
2154{
2155	if (!hw)
2156		return;
2157
2158	clk_core_reparent(hw->core, !new_parent ? NULL : new_parent->core);
2159}
2160
2161/**
2162 * clk_has_parent - check if a clock is a possible parent for another
2163 * @clk: clock source
2164 * @parent: parent clock source
2165 *
2166 * This function can be used in drivers that need to check that a clock can be
2167 * the parent of another without actually changing the parent.
2168 *
2169 * Returns true if @parent is a possible parent for @clk, false otherwise.
 
 
2170 */
2171bool clk_has_parent(struct clk *clk, struct clk *parent)
2172{
2173	struct clk_core *core, *parent_core;
2174	unsigned int i;
2175
2176	/* NULL clocks should be nops, so return success if either is NULL. */
2177	if (!clk || !parent)
2178		return true;
2179
2180	core = clk->core;
2181	parent_core = parent->core;
2182
2183	/* Optimize for the case where the parent is already the parent. */
2184	if (core->parent == parent_core)
2185		return true;
2186
2187	for (i = 0; i < core->num_parents; i++)
2188		if (strcmp(core->parent_names[i], parent_core->name) == 0)
2189			return true;
2190
2191	return false;
2192}
2193EXPORT_SYMBOL_GPL(clk_has_parent);
2194
2195static int clk_core_set_parent_nolock(struct clk_core *core,
2196				      struct clk_core *parent)
2197{
2198	int ret = 0;
2199	int p_index = 0;
2200	unsigned long p_rate = 0;
2201
2202	lockdep_assert_held(&prepare_lock);
2203
2204	if (!core)
2205		return 0;
2206
2207	if (core->parent == parent)
2208		return 0;
2209
2210	/* verify ops for for multi-parent clks */
2211	if (core->num_parents > 1 && !core->ops->set_parent)
2212		return -EPERM;
2213
2214	/* check that we are allowed to re-parent if the clock is in use */
2215	if ((core->flags & CLK_SET_PARENT_GATE) && core->prepare_count)
2216		return -EBUSY;
2217
2218	if (clk_core_rate_is_protected(core))
2219		return -EBUSY;
2220
2221	/* try finding the new parent index */
2222	if (parent) {
2223		p_index = clk_fetch_parent_index(core, parent);
2224		if (p_index < 0) {
2225			pr_debug("%s: clk %s can not be parent of clk %s\n",
2226					__func__, parent->name, core->name);
2227			return p_index;
2228		}
2229		p_rate = parent->rate;
2230	}
2231
2232	ret = clk_pm_runtime_get(core);
2233	if (ret)
2234		return ret;
 
 
 
2235
2236	/* propagate PRE_RATE_CHANGE notifications */
2237	ret = __clk_speculate_rates(core, p_rate);
 
 
 
2238
2239	/* abort if a driver objects */
2240	if (ret & NOTIFY_STOP_MASK)
2241		goto runtime_put;
2242
2243	/* do the re-parent */
2244	ret = __clk_set_parent(core, parent, p_index);
 
 
2245
2246	/* propagate rate an accuracy recalculation accordingly */
2247	if (ret) {
2248		__clk_recalc_rates(core, ABORT_RATE_CHANGE);
2249	} else {
2250		__clk_recalc_rates(core, POST_RATE_CHANGE);
2251		__clk_recalc_accuracies(core);
2252	}
2253
2254runtime_put:
2255	clk_pm_runtime_put(core);
2256
 
2257	return ret;
2258}
2259
2260/**
2261 * clk_set_parent - switch the parent of a mux clk
2262 * @clk: the mux clk whose input we are switching
2263 * @parent: the new input to clk
2264 *
2265 * Re-parent clk to use parent as its new input source.  If clk is in
2266 * prepared state, the clk will get enabled for the duration of this call. If
2267 * that's not acceptable for a specific clk (Eg: the consumer can't handle
2268 * that, the reparenting is glitchy in hardware, etc), use the
2269 * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared.
2270 *
2271 * After successfully changing clk's parent clk_set_parent will update the
2272 * clk topology, sysfs topology and propagate rate recalculation via
2273 * __clk_recalc_rates.
2274 *
2275 * Returns 0 on success, -EERROR otherwise.
2276 */
2277int clk_set_parent(struct clk *clk, struct clk *parent)
2278{
2279	int ret;
2280
2281	if (!clk)
2282		return 0;
2283
2284	clk_prepare_lock();
2285
2286	if (clk->exclusive_count)
2287		clk_core_rate_unprotect(clk->core);
2288
2289	ret = clk_core_set_parent_nolock(clk->core,
2290					 parent ? parent->core : NULL);
2291
2292	if (clk->exclusive_count)
2293		clk_core_rate_protect(clk->core);
2294
2295	clk_prepare_unlock();
2296
2297	return ret;
2298}
2299EXPORT_SYMBOL_GPL(clk_set_parent);
2300
2301static int clk_core_set_phase_nolock(struct clk_core *core, int degrees)
2302{
2303	int ret = -EINVAL;
2304
2305	lockdep_assert_held(&prepare_lock);
2306
2307	if (!core)
2308		return 0;
2309
2310	if (clk_core_rate_is_protected(core))
2311		return -EBUSY;
2312
2313	trace_clk_set_phase(core, degrees);
2314
2315	if (core->ops->set_phase) {
2316		ret = core->ops->set_phase(core->hw, degrees);
2317		if (!ret)
2318			core->phase = degrees;
2319	}
2320
2321	trace_clk_set_phase_complete(core, degrees);
2322
2323	return ret;
2324}
2325
2326/**
2327 * clk_set_phase - adjust the phase shift of a clock signal
2328 * @clk: clock signal source
2329 * @degrees: number of degrees the signal is shifted
2330 *
2331 * Shifts the phase of a clock signal by the specified
2332 * degrees. Returns 0 on success, -EERROR otherwise.
2333 *
2334 * This function makes no distinction about the input or reference
2335 * signal that we adjust the clock signal phase against. For example
2336 * phase locked-loop clock signal generators we may shift phase with
2337 * respect to feedback clock signal input, but for other cases the
2338 * clock phase may be shifted with respect to some other, unspecified
2339 * signal.
2340 *
2341 * Additionally the concept of phase shift does not propagate through
2342 * the clock tree hierarchy, which sets it apart from clock rates and
2343 * clock accuracy. A parent clock phase attribute does not have an
2344 * impact on the phase attribute of a child clock.
2345 */
2346int clk_set_phase(struct clk *clk, int degrees)
2347{
2348	int ret;
2349
2350	if (!clk)
2351		return 0;
2352
2353	/* sanity check degrees */
2354	degrees %= 360;
2355	if (degrees < 0)
2356		degrees += 360;
2357
2358	clk_prepare_lock();
2359
2360	if (clk->exclusive_count)
2361		clk_core_rate_unprotect(clk->core);
2362
2363	ret = clk_core_set_phase_nolock(clk->core, degrees);
2364
2365	if (clk->exclusive_count)
2366		clk_core_rate_protect(clk->core);
2367
2368	clk_prepare_unlock();
2369
2370	return ret;
2371}
2372EXPORT_SYMBOL_GPL(clk_set_phase);
2373
2374static int clk_core_get_phase(struct clk_core *core)
2375{
2376	int ret;
2377
2378	clk_prepare_lock();
2379	/* Always try to update cached phase if possible */
2380	if (core->ops->get_phase)
2381		core->phase = core->ops->get_phase(core->hw);
2382	ret = core->phase;
2383	clk_prepare_unlock();
2384
2385	return ret;
2386}
2387
2388/**
2389 * clk_get_phase - return the phase shift of a clock signal
2390 * @clk: clock signal source
2391 *
2392 * Returns the phase shift of a clock node in degrees, otherwise returns
2393 * -EERROR.
2394 */
2395int clk_get_phase(struct clk *clk)
2396{
2397	if (!clk)
2398		return 0;
2399
2400	return clk_core_get_phase(clk->core);
2401}
2402EXPORT_SYMBOL_GPL(clk_get_phase);
2403
2404/**
2405 * clk_is_match - check if two clk's point to the same hardware clock
2406 * @p: clk compared against q
2407 * @q: clk compared against p
2408 *
2409 * Returns true if the two struct clk pointers both point to the same hardware
2410 * clock node. Put differently, returns true if struct clk *p and struct clk *q
2411 * share the same struct clk_core object.
2412 *
2413 * Returns false otherwise. Note that two NULL clks are treated as matching.
2414 */
2415bool clk_is_match(const struct clk *p, const struct clk *q)
2416{
2417	/* trivial case: identical struct clk's or both NULL */
2418	if (p == q)
2419		return true;
2420
2421	/* true if clk->core pointers match. Avoid dereferencing garbage */
2422	if (!IS_ERR_OR_NULL(p) && !IS_ERR_OR_NULL(q))
2423		if (p->core == q->core)
2424			return true;
2425
2426	return false;
2427}
2428EXPORT_SYMBOL_GPL(clk_is_match);
2429
2430/***        debugfs support        ***/
2431
2432#ifdef CONFIG_DEBUG_FS
2433#include <linux/debugfs.h>
2434
2435static struct dentry *rootdir;
2436static int inited = 0;
2437static DEFINE_MUTEX(clk_debug_lock);
2438static HLIST_HEAD(clk_debug_list);
2439
2440static struct hlist_head *all_lists[] = {
2441	&clk_root_list,
2442	&clk_orphan_list,
2443	NULL,
2444};
2445
2446static struct hlist_head *orphan_list[] = {
2447	&clk_orphan_list,
2448	NULL,
2449};
2450
2451static void clk_summary_show_one(struct seq_file *s, struct clk_core *c,
2452				 int level)
2453{
2454	if (!c)
2455		return;
2456
2457	seq_printf(s, "%*s%-*s %7d %8d %8d %11lu %10lu %-3d\n",
2458		   level * 3 + 1, "",
2459		   30 - level * 3, c->name,
2460		   c->enable_count, c->prepare_count, c->protect_count,
2461		   clk_core_get_rate(c), clk_core_get_accuracy(c),
2462		   clk_core_get_phase(c));
2463}
2464
2465static void clk_summary_show_subtree(struct seq_file *s, struct clk_core *c,
2466				     int level)
2467{
2468	struct clk_core *child;
2469
2470	if (!c)
2471		return;
 
2472
2473	clk_summary_show_one(s, c, level);
 
 
 
2474
2475	hlist_for_each_entry(child, &c->children, child_node)
2476		clk_summary_show_subtree(s, child, level + 1);
2477}
 
 
 
 
 
 
2478
2479static int clk_summary_show(struct seq_file *s, void *data)
2480{
2481	struct clk_core *c;
2482	struct hlist_head **lists = (struct hlist_head **)s->private;
2483
2484	seq_puts(s, "                                 enable  prepare  protect                               \n");
2485	seq_puts(s, "   clock                          count    count    count        rate   accuracy   phase\n");
2486	seq_puts(s, "----------------------------------------------------------------------------------------\n");
2487
2488	clk_prepare_lock();
2489
2490	for (; *lists; lists++)
2491		hlist_for_each_entry(c, *lists, child_node)
2492			clk_summary_show_subtree(s, c, 0);
2493
2494	clk_prepare_unlock();
2495
2496	return 0;
2497}
2498DEFINE_SHOW_ATTRIBUTE(clk_summary);
2499
2500static void clk_dump_one(struct seq_file *s, struct clk_core *c, int level)
2501{
2502	if (!c)
2503		return;
 
 
2504
2505	/* This should be JSON format, i.e. elements separated with a comma */
2506	seq_printf(s, "\"%s\": { ", c->name);
2507	seq_printf(s, "\"enable_count\": %d,", c->enable_count);
2508	seq_printf(s, "\"prepare_count\": %d,", c->prepare_count);
2509	seq_printf(s, "\"protect_count\": %d,", c->protect_count);
2510	seq_printf(s, "\"rate\": %lu,", clk_core_get_rate(c));
2511	seq_printf(s, "\"accuracy\": %lu,", clk_core_get_accuracy(c));
2512	seq_printf(s, "\"phase\": %d", clk_core_get_phase(c));
2513}
2514
2515static void clk_dump_subtree(struct seq_file *s, struct clk_core *c, int level)
2516{
2517	struct clk_core *child;
2518
2519	if (!c)
2520		return;
2521
2522	clk_dump_one(s, c, level);
2523
2524	hlist_for_each_entry(child, &c->children, child_node) {
2525		seq_putc(s, ',');
2526		clk_dump_subtree(s, child, level + 1);
2527	}
2528
2529	seq_putc(s, '}');
2530}
2531
2532static int clk_dump_show(struct seq_file *s, void *data)
2533{
2534	struct clk_core *c;
2535	bool first_node = true;
2536	struct hlist_head **lists = (struct hlist_head **)s->private;
2537
2538	seq_putc(s, '{');
2539	clk_prepare_lock();
2540
2541	for (; *lists; lists++) {
2542		hlist_for_each_entry(c, *lists, child_node) {
2543			if (!first_node)
2544				seq_putc(s, ',');
2545			first_node = false;
2546			clk_dump_subtree(s, c, 0);
2547		}
2548	}
2549
2550	clk_prepare_unlock();
2551
2552	seq_puts(s, "}\n");
2553	return 0;
2554}
2555DEFINE_SHOW_ATTRIBUTE(clk_dump);
2556
2557static const struct {
2558	unsigned long flag;
2559	const char *name;
2560} clk_flags[] = {
2561#define ENTRY(f) { f, __stringify(f) }
2562	ENTRY(CLK_SET_RATE_GATE),
2563	ENTRY(CLK_SET_PARENT_GATE),
2564	ENTRY(CLK_SET_RATE_PARENT),
2565	ENTRY(CLK_IGNORE_UNUSED),
2566	ENTRY(CLK_IS_BASIC),
2567	ENTRY(CLK_GET_RATE_NOCACHE),
2568	ENTRY(CLK_SET_RATE_NO_REPARENT),
2569	ENTRY(CLK_GET_ACCURACY_NOCACHE),
2570	ENTRY(CLK_RECALC_NEW_RATES),
2571	ENTRY(CLK_SET_RATE_UNGATE),
2572	ENTRY(CLK_IS_CRITICAL),
2573	ENTRY(CLK_OPS_PARENT_ENABLE),
2574#undef ENTRY
2575};
2576
2577static int clk_flags_show(struct seq_file *s, void *data)
2578{
2579	struct clk_core *core = s->private;
2580	unsigned long flags = core->flags;
2581	unsigned int i;
2582
2583	for (i = 0; flags && i < ARRAY_SIZE(clk_flags); i++) {
2584		if (flags & clk_flags[i].flag) {
2585			seq_printf(s, "%s\n", clk_flags[i].name);
2586			flags &= ~clk_flags[i].flag;
2587		}
2588	}
2589	if (flags) {
2590		/* Unknown flags */
2591		seq_printf(s, "0x%lx\n", flags);
2592	}
2593
2594	return 0;
2595}
2596DEFINE_SHOW_ATTRIBUTE(clk_flags);
2597
2598static int possible_parents_show(struct seq_file *s, void *data)
2599{
2600	struct clk_core *core = s->private;
2601	int i;
2602
2603	for (i = 0; i < core->num_parents - 1; i++)
2604		seq_printf(s, "%s ", core->parent_names[i]);
2605
2606	seq_printf(s, "%s\n", core->parent_names[i]);
2607
2608	return 0;
2609}
2610DEFINE_SHOW_ATTRIBUTE(possible_parents);
2611
2612static int clk_debug_create_one(struct clk_core *core, struct dentry *pdentry)
2613{
2614	struct dentry *d;
2615	int ret = -ENOMEM;
2616
2617	if (!core || !pdentry) {
2618		ret = -EINVAL;
2619		goto out;
2620	}
2621
2622	d = debugfs_create_dir(core->name, pdentry);
2623	if (!d)
2624		goto out;
 
 
 
 
 
 
2625
2626	core->dentry = d;
 
2627
2628	d = debugfs_create_ulong("clk_rate", 0444, core->dentry, &core->rate);
2629	if (!d)
2630		goto err_out;
2631
2632	d = debugfs_create_ulong("clk_accuracy", 0444, core->dentry,
2633				 &core->accuracy);
2634	if (!d)
2635		goto err_out;
2636
2637	d = debugfs_create_u32("clk_phase", 0444, core->dentry, &core->phase);
2638	if (!d)
2639		goto err_out;
2640
2641	d = debugfs_create_file("clk_flags", 0444, core->dentry, core,
2642				&clk_flags_fops);
2643	if (!d)
2644		goto err_out;
2645
2646	d = debugfs_create_u32("clk_prepare_count", 0444, core->dentry,
2647			       &core->prepare_count);
2648	if (!d)
2649		goto err_out;
2650
2651	d = debugfs_create_u32("clk_enable_count", 0444, core->dentry,
2652			       &core->enable_count);
2653	if (!d)
2654		goto err_out;
2655
2656	d = debugfs_create_u32("clk_protect_count", 0444, core->dentry,
2657			       &core->protect_count);
2658	if (!d)
2659		goto err_out;
2660
2661	d = debugfs_create_u32("clk_notifier_count", 0444, core->dentry,
2662			       &core->notifier_count);
2663	if (!d)
2664		goto err_out;
2665
2666	if (core->num_parents > 1) {
2667		d = debugfs_create_file("clk_possible_parents", 0444,
2668				core->dentry, core, &possible_parents_fops);
2669		if (!d)
2670			goto err_out;
2671	}
2672
2673	if (core->ops->debug_init) {
2674		ret = core->ops->debug_init(core->hw, core->dentry);
2675		if (ret)
2676			goto err_out;
2677	}
2678
2679	ret = 0;
2680	goto out;
2681
2682err_out:
2683	debugfs_remove_recursive(core->dentry);
2684	core->dentry = NULL;
2685out:
2686	return ret;
2687}
2688
2689/**
2690 * clk_debug_register - add a clk node to the debugfs clk directory
2691 * @core: the clk being added to the debugfs clk directory
 
2692 *
2693 * Dynamically adds a clk to the debugfs clk directory if debugfs has been
2694 * initialized.  Otherwise it bails out early since the debugfs clk directory
2695 * will be created lazily by clk_debug_init as part of a late_initcall.
 
 
 
2696 */
2697static int clk_debug_register(struct clk_core *core)
2698{
2699	int ret = 0;
2700
2701	mutex_lock(&clk_debug_lock);
2702	hlist_add_head(&core->debug_node, &clk_debug_list);
2703	if (inited)
2704		ret = clk_debug_create_one(core, rootdir);
2705	mutex_unlock(&clk_debug_lock);
2706
2707	return ret;
2708}
2709
2710 /**
2711 * clk_debug_unregister - remove a clk node from the debugfs clk directory
2712 * @core: the clk being removed from the debugfs clk directory
2713 *
2714 * Dynamically removes a clk and all its child nodes from the
2715 * debugfs clk directory if clk->dentry points to debugfs created by
2716 * clk_debug_register in __clk_core_init.
2717 */
2718static void clk_debug_unregister(struct clk_core *core)
2719{
2720	mutex_lock(&clk_debug_lock);
2721	hlist_del_init(&core->debug_node);
2722	debugfs_remove_recursive(core->dentry);
2723	core->dentry = NULL;
2724	mutex_unlock(&clk_debug_lock);
2725}
2726
2727struct dentry *clk_debugfs_add_file(struct clk_hw *hw, char *name, umode_t mode,
2728				void *data, const struct file_operations *fops)
2729{
2730	struct dentry *d = NULL;
2731
2732	if (hw->core->dentry)
2733		d = debugfs_create_file(name, mode, hw->core->dentry, data,
2734					fops);
2735
2736	return d;
2737}
2738EXPORT_SYMBOL_GPL(clk_debugfs_add_file);
2739
2740/**
2741 * clk_debug_init - lazily populate the debugfs clk directory
2742 *
2743 * clks are often initialized very early during boot before memory can be
2744 * dynamically allocated and well before debugfs is setup. This function
2745 * populates the debugfs clk directory once at boot-time when we know that
2746 * debugfs is setup. It should only be called once at boot-time, all other clks
2747 * added dynamically will be done so with clk_debug_register.
2748 */
2749static int __init clk_debug_init(void)
2750{
2751	struct clk_core *core;
2752	struct dentry *d;
2753
2754	rootdir = debugfs_create_dir("clk", NULL);
 
 
 
 
2755
2756	if (!rootdir)
2757		return -ENOMEM;
2758
2759	d = debugfs_create_file("clk_summary", 0444, rootdir, &all_lists,
2760				&clk_summary_fops);
2761	if (!d)
2762		return -ENOMEM;
2763
2764	d = debugfs_create_file("clk_dump", 0444, rootdir, &all_lists,
2765				&clk_dump_fops);
2766	if (!d)
2767		return -ENOMEM;
2768
2769	d = debugfs_create_file("clk_orphan_summary", 0444, rootdir,
2770				&orphan_list, &clk_summary_fops);
2771	if (!d)
2772		return -ENOMEM;
2773
2774	d = debugfs_create_file("clk_orphan_dump", 0444, rootdir,
2775				&orphan_list, &clk_dump_fops);
2776	if (!d)
2777		return -ENOMEM;
2778
2779	mutex_lock(&clk_debug_lock);
2780	hlist_for_each_entry(core, &clk_debug_list, debug_node)
2781		clk_debug_create_one(core, rootdir);
2782
2783	inited = 1;
2784	mutex_unlock(&clk_debug_lock);
2785
2786	return 0;
2787}
2788late_initcall(clk_debug_init);
2789#else
2790static inline int clk_debug_register(struct clk_core *core) { return 0; }
2791static inline void clk_debug_reparent(struct clk_core *core,
2792				      struct clk_core *new_parent)
2793{
2794}
2795static inline void clk_debug_unregister(struct clk_core *core)
2796{
2797}
2798#endif
2799
2800/**
2801 * __clk_core_init - initialize the data structures in a struct clk_core
2802 * @core:	clk_core being initialized
 
2803 *
2804 * Initializes the lists in struct clk_core, queries the hardware for the
2805 * parent and rate and sets them both.
2806 */
2807static int __clk_core_init(struct clk_core *core)
2808{
2809	int i, ret;
2810	struct clk_core *orphan;
2811	struct hlist_node *tmp2;
2812	unsigned long rate;
2813
2814	if (!core)
2815		return -EINVAL;
2816
2817	clk_prepare_lock();
2818
2819	ret = clk_pm_runtime_get(core);
2820	if (ret)
2821		goto unlock;
2822
2823	/* check to see if a clock with this name is already registered */
2824	if (clk_core_lookup(core->name)) {
2825		pr_debug("%s: clk %s already initialized\n",
2826				__func__, core->name);
2827		ret = -EEXIST;
2828		goto out;
2829	}
2830
2831	/* check that clk_ops are sane.  See Documentation/clk.txt */
2832	if (core->ops->set_rate &&
2833	    !((core->ops->round_rate || core->ops->determine_rate) &&
2834	      core->ops->recalc_rate)) {
2835		pr_err("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n",
2836		       __func__, core->name);
2837		ret = -EINVAL;
2838		goto out;
2839	}
2840
2841	if (core->ops->set_parent && !core->ops->get_parent) {
2842		pr_err("%s: %s must implement .get_parent & .set_parent\n",
2843		       __func__, core->name);
2844		ret = -EINVAL;
2845		goto out;
2846	}
2847
2848	if (core->num_parents > 1 && !core->ops->get_parent) {
2849		pr_err("%s: %s must implement .get_parent as it has multi parents\n",
2850		       __func__, core->name);
2851		ret = -EINVAL;
2852		goto out;
2853	}
2854
2855	if (core->ops->set_rate_and_parent &&
2856			!(core->ops->set_parent && core->ops->set_rate)) {
2857		pr_err("%s: %s must implement .set_parent & .set_rate\n",
2858				__func__, core->name);
2859		ret = -EINVAL;
2860		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2861	}
2862
2863	/* throw a WARN if any entries in parent_names are NULL */
2864	for (i = 0; i < core->num_parents; i++)
2865		WARN(!core->parent_names[i],
2866				"%s: invalid NULL in %s's .parent_names\n",
2867				__func__, core->name);
2868
2869	core->parent = __clk_init_parent(core);
2870
2871	/*
2872	 * Populate core->parent if parent has already been clk_core_init'd. If
2873	 * parent has not yet been clk_core_init'd then place clk in the orphan
2874	 * list.  If clk doesn't have any parents then place it in the root
2875	 * clk list.
2876	 *
2877	 * Every time a new clk is clk_init'd then we walk the list of orphan
2878	 * clocks and re-parent any that are children of the clock currently
2879	 * being clk_init'd.
2880	 */
2881	if (core->parent) {
2882		hlist_add_head(&core->child_node,
2883				&core->parent->children);
2884		core->orphan = core->parent->orphan;
2885	} else if (!core->num_parents) {
2886		hlist_add_head(&core->child_node, &clk_root_list);
2887		core->orphan = false;
2888	} else {
2889		hlist_add_head(&core->child_node, &clk_orphan_list);
2890		core->orphan = true;
2891	}
2892
2893	/*
2894	 * optional platform-specific magic
2895	 *
2896	 * The .init callback is not used by any of the basic clock types, but
2897	 * exists for weird hardware that must perform initialization magic.
2898	 * Please consider other ways of solving initialization problems before
2899	 * using this callback, as its use is discouraged.
2900	 */
2901	if (core->ops->init)
2902		core->ops->init(core->hw);
2903
2904	/*
2905	 * Set clk's accuracy.  The preferred method is to use
2906	 * .recalc_accuracy. For simple clocks and lazy developers the default
2907	 * fallback is to use the parent's accuracy.  If a clock doesn't have a
2908	 * parent (or is orphaned) then accuracy is set to zero (perfect
2909	 * clock).
2910	 */
2911	if (core->ops->recalc_accuracy)
2912		core->accuracy = core->ops->recalc_accuracy(core->hw,
2913					__clk_get_accuracy(core->parent));
2914	else if (core->parent)
2915		core->accuracy = core->parent->accuracy;
2916	else
2917		core->accuracy = 0;
2918
2919	/*
2920	 * Set clk's phase.
2921	 * Since a phase is by definition relative to its parent, just
2922	 * query the current clock phase, or just assume it's in phase.
2923	 */
2924	if (core->ops->get_phase)
2925		core->phase = core->ops->get_phase(core->hw);
2926	else
2927		core->phase = 0;
2928
2929	/*
2930	 * Set clk's rate.  The preferred method is to use .recalc_rate.  For
2931	 * simple clocks and lazy developers the default fallback is to use the
2932	 * parent's rate.  If a clock doesn't have a parent (or is orphaned)
2933	 * then rate is set to zero.
2934	 */
2935	if (core->ops->recalc_rate)
2936		rate = core->ops->recalc_rate(core->hw,
2937				clk_core_get_rate_nolock(core->parent));
2938	else if (core->parent)
2939		rate = core->parent->rate;
2940	else
2941		rate = 0;
2942	core->rate = core->req_rate = rate;
2943
2944	/*
2945	 * Enable CLK_IS_CRITICAL clocks so newly added critical clocks
2946	 * don't get accidentally disabled when walking the orphan tree and
2947	 * reparenting clocks
2948	 */
2949	if (core->flags & CLK_IS_CRITICAL) {
2950		unsigned long flags;
2951
2952		clk_core_prepare(core);
2953
2954		flags = clk_enable_lock();
2955		clk_core_enable(core);
2956		clk_enable_unlock(flags);
2957	}
2958
2959	/*
2960	 * walk the list of orphan clocks and reparent any that newly finds a
2961	 * parent.
 
 
 
 
2962	 */
2963	hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) {
2964		struct clk_core *parent = __clk_init_parent(orphan);
2965
2966		/*
2967		 * We need to use __clk_set_parent_before() and _after() to
2968		 * to properly migrate any prepare/enable count of the orphan
2969		 * clock. This is important for CLK_IS_CRITICAL clocks, which
2970		 * are enabled during init but might not have a parent yet.
2971		 */
2972		if (parent) {
2973			/* update the clk tree topology */
2974			__clk_set_parent_before(orphan, parent);
2975			__clk_set_parent_after(orphan, parent, NULL);
2976			__clk_recalc_accuracies(orphan);
2977			__clk_recalc_rates(orphan, 0);
2978		}
2979	}
2980
2981	kref_init(&core->ref);
2982out:
2983	clk_pm_runtime_put(core);
2984unlock:
2985	clk_prepare_unlock();
2986
2987	if (!ret)
2988		clk_debug_register(core);
2989
2990	return ret;
2991}
2992
2993struct clk *__clk_create_clk(struct clk_hw *hw, const char *dev_id,
2994			     const char *con_id)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2995{
 
2996	struct clk *clk;
2997
2998	/* This is to allow this function to be chained to others */
2999	if (IS_ERR_OR_NULL(hw))
3000		return ERR_CAST(hw);
 
 
 
 
3001
3002	clk = kzalloc(sizeof(*clk), GFP_KERNEL);
3003	if (!clk)
3004		return ERR_PTR(-ENOMEM);
3005
3006	clk->core = hw->core;
3007	clk->dev_id = dev_id;
3008	clk->con_id = kstrdup_const(con_id, GFP_KERNEL);
3009	clk->max_rate = ULONG_MAX;
3010
3011	clk_prepare_lock();
3012	hlist_add_head(&clk->clks_node, &hw->core->clks);
3013	clk_prepare_unlock();
3014
3015	return clk;
3016}
3017
3018void __clk_free_clk(struct clk *clk)
3019{
3020	clk_prepare_lock();
3021	hlist_del(&clk->clks_node);
3022	clk_prepare_unlock();
3023
3024	kfree_const(clk->con_id);
3025	kfree(clk);
3026}
3027
3028/**
3029 * clk_register - allocate a new clock, register it and return an opaque cookie
3030 * @dev: device that is registering this clock
3031 * @hw: link to hardware-specific clock data
3032 *
3033 * clk_register is the primary interface for populating the clock tree with new
3034 * clock nodes.  It returns a pointer to the newly allocated struct clk which
3035 * cannot be dereferenced by driver code but may be used in conjunction with the
3036 * rest of the clock API.  In the event of an error clk_register will return an
3037 * error code; drivers must test for an error code after calling clk_register.
3038 */
3039struct clk *clk_register(struct device *dev, struct clk_hw *hw)
3040{
3041	int i, ret;
3042	struct clk_core *core;
3043
3044	core = kzalloc(sizeof(*core), GFP_KERNEL);
3045	if (!core) {
 
3046		ret = -ENOMEM;
3047		goto fail_out;
3048	}
3049
3050	core->name = kstrdup_const(hw->init->name, GFP_KERNEL);
3051	if (!core->name) {
 
3052		ret = -ENOMEM;
3053		goto fail_name;
3054	}
3055
3056	if (WARN_ON(!hw->init->ops)) {
3057		ret = -EINVAL;
3058		goto fail_ops;
3059	}
3060	core->ops = hw->init->ops;
3061
3062	if (dev && pm_runtime_enabled(dev))
3063		core->dev = dev;
3064	if (dev && dev->driver)
3065		core->owner = dev->driver->owner;
3066	core->hw = hw;
3067	core->flags = hw->init->flags;
3068	core->num_parents = hw->init->num_parents;
3069	core->min_rate = 0;
3070	core->max_rate = ULONG_MAX;
3071	hw->core = core;
3072
3073	/* allocate local copy in case parent_names is __initdata */
3074	core->parent_names = kcalloc(core->num_parents, sizeof(char *),
3075					GFP_KERNEL);
3076
3077	if (!core->parent_names) {
 
3078		ret = -ENOMEM;
3079		goto fail_parent_names;
3080	}
3081
3082
3083	/* copy each string name in case parent_names is __initdata */
3084	for (i = 0; i < core->num_parents; i++) {
3085		core->parent_names[i] = kstrdup_const(hw->init->parent_names[i],
3086						GFP_KERNEL);
3087		if (!core->parent_names[i]) {
 
3088			ret = -ENOMEM;
3089			goto fail_parent_names_copy;
3090		}
3091	}
3092
3093	/* avoid unnecessary string look-ups of clk_core's possible parents. */
3094	core->parents = kcalloc(core->num_parents, sizeof(*core->parents),
3095				GFP_KERNEL);
3096	if (!core->parents) {
3097		ret = -ENOMEM;
3098		goto fail_parents;
3099	};
3100
3101	INIT_HLIST_HEAD(&core->clks);
3102
3103	hw->clk = __clk_create_clk(hw, NULL, NULL);
3104	if (IS_ERR(hw->clk)) {
3105		ret = PTR_ERR(hw->clk);
3106		goto fail_parents;
3107	}
3108
3109	ret = __clk_core_init(core);
3110	if (!ret)
3111		return hw->clk;
3112
3113	__clk_free_clk(hw->clk);
3114	hw->clk = NULL;
3115
3116fail_parents:
3117	kfree(core->parents);
3118fail_parent_names_copy:
3119	while (--i >= 0)
3120		kfree_const(core->parent_names[i]);
3121	kfree(core->parent_names);
3122fail_parent_names:
3123fail_ops:
3124	kfree_const(core->name);
3125fail_name:
3126	kfree(core);
3127fail_out:
3128	return ERR_PTR(ret);
3129}
3130EXPORT_SYMBOL_GPL(clk_register);
3131
3132/**
3133 * clk_hw_register - register a clk_hw and return an error code
3134 * @dev: device that is registering this clock
3135 * @hw: link to hardware-specific clock data
3136 *
3137 * clk_hw_register is the primary interface for populating the clock tree with
3138 * new clock nodes. It returns an integer equal to zero indicating success or
3139 * less than zero indicating failure. Drivers must test for an error code after
3140 * calling clk_hw_register().
3141 */
3142int clk_hw_register(struct device *dev, struct clk_hw *hw)
3143{
3144	return PTR_ERR_OR_ZERO(clk_register(dev, hw));
3145}
3146EXPORT_SYMBOL_GPL(clk_hw_register);
3147
3148/* Free memory allocated for a clock. */
3149static void __clk_release(struct kref *ref)
3150{
3151	struct clk_core *core = container_of(ref, struct clk_core, ref);
3152	int i = core->num_parents;
3153
3154	lockdep_assert_held(&prepare_lock);
3155
3156	kfree(core->parents);
3157	while (--i >= 0)
3158		kfree_const(core->parent_names[i]);
3159
3160	kfree(core->parent_names);
3161	kfree_const(core->name);
3162	kfree(core);
3163}
3164
3165/*
3166 * Empty clk_ops for unregistered clocks. These are used temporarily
3167 * after clk_unregister() was called on a clock and until last clock
3168 * consumer calls clk_put() and the struct clk object is freed.
3169 */
3170static int clk_nodrv_prepare_enable(struct clk_hw *hw)
3171{
3172	return -ENXIO;
3173}
3174
3175static void clk_nodrv_disable_unprepare(struct clk_hw *hw)
3176{
3177	WARN_ON_ONCE(1);
3178}
3179
3180static int clk_nodrv_set_rate(struct clk_hw *hw, unsigned long rate,
3181					unsigned long parent_rate)
3182{
3183	return -ENXIO;
3184}
3185
3186static int clk_nodrv_set_parent(struct clk_hw *hw, u8 index)
3187{
3188	return -ENXIO;
3189}
3190
3191static const struct clk_ops clk_nodrv_ops = {
3192	.enable		= clk_nodrv_prepare_enable,
3193	.disable	= clk_nodrv_disable_unprepare,
3194	.prepare	= clk_nodrv_prepare_enable,
3195	.unprepare	= clk_nodrv_disable_unprepare,
3196	.set_rate	= clk_nodrv_set_rate,
3197	.set_parent	= clk_nodrv_set_parent,
3198};
3199
3200/**
3201 * clk_unregister - unregister a currently registered clock
3202 * @clk: clock to unregister
 
 
3203 */
3204void clk_unregister(struct clk *clk)
3205{
3206	unsigned long flags;
3207
3208	if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
3209		return;
3210
3211	clk_debug_unregister(clk->core);
3212
3213	clk_prepare_lock();
3214
3215	if (clk->core->ops == &clk_nodrv_ops) {
3216		pr_err("%s: unregistered clock: %s\n", __func__,
3217		       clk->core->name);
3218		goto unlock;
3219	}
3220	/*
3221	 * Assign empty clock ops for consumers that might still hold
3222	 * a reference to this clock.
3223	 */
3224	flags = clk_enable_lock();
3225	clk->core->ops = &clk_nodrv_ops;
3226	clk_enable_unlock(flags);
3227
3228	if (!hlist_empty(&clk->core->children)) {
3229		struct clk_core *child;
3230		struct hlist_node *t;
3231
3232		/* Reparent all children to the orphan list. */
3233		hlist_for_each_entry_safe(child, t, &clk->core->children,
3234					  child_node)
3235			clk_core_set_parent_nolock(child, NULL);
3236	}
3237
3238	hlist_del_init(&clk->core->child_node);
3239
3240	if (clk->core->prepare_count)
3241		pr_warn("%s: unregistering prepared clock: %s\n",
3242					__func__, clk->core->name);
3243
3244	if (clk->core->protect_count)
3245		pr_warn("%s: unregistering protected clock: %s\n",
3246					__func__, clk->core->name);
3247
3248	kref_put(&clk->core->ref, __clk_release);
3249unlock:
3250	clk_prepare_unlock();
3251}
3252EXPORT_SYMBOL_GPL(clk_unregister);
3253
3254/**
3255 * clk_hw_unregister - unregister a currently registered clk_hw
3256 * @hw: hardware-specific clock data to unregister
3257 */
3258void clk_hw_unregister(struct clk_hw *hw)
3259{
3260	clk_unregister(hw->clk);
3261}
3262EXPORT_SYMBOL_GPL(clk_hw_unregister);
3263
3264static void devm_clk_release(struct device *dev, void *res)
3265{
3266	clk_unregister(*(struct clk **)res);
3267}
3268
3269static void devm_clk_hw_release(struct device *dev, void *res)
3270{
3271	clk_hw_unregister(*(struct clk_hw **)res);
3272}
3273
3274/**
3275 * devm_clk_register - resource managed clk_register()
3276 * @dev: device that is registering this clock
3277 * @hw: link to hardware-specific clock data
3278 *
3279 * Managed clk_register(). Clocks returned from this function are
3280 * automatically clk_unregister()ed on driver detach. See clk_register() for
3281 * more information.
3282 */
3283struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw)
3284{
3285	struct clk *clk;
3286	struct clk **clkp;
3287
3288	clkp = devres_alloc(devm_clk_release, sizeof(*clkp), GFP_KERNEL);
3289	if (!clkp)
3290		return ERR_PTR(-ENOMEM);
3291
3292	clk = clk_register(dev, hw);
3293	if (!IS_ERR(clk)) {
3294		*clkp = clk;
3295		devres_add(dev, clkp);
3296	} else {
3297		devres_free(clkp);
3298	}
3299
3300	return clk;
3301}
3302EXPORT_SYMBOL_GPL(devm_clk_register);
3303
3304/**
3305 * devm_clk_hw_register - resource managed clk_hw_register()
3306 * @dev: device that is registering this clock
3307 * @hw: link to hardware-specific clock data
3308 *
3309 * Managed clk_hw_register(). Clocks registered by this function are
3310 * automatically clk_hw_unregister()ed on driver detach. See clk_hw_register()
3311 * for more information.
3312 */
3313int devm_clk_hw_register(struct device *dev, struct clk_hw *hw)
3314{
3315	struct clk_hw **hwp;
3316	int ret;
3317
3318	hwp = devres_alloc(devm_clk_hw_release, sizeof(*hwp), GFP_KERNEL);
3319	if (!hwp)
3320		return -ENOMEM;
3321
3322	ret = clk_hw_register(dev, hw);
3323	if (!ret) {
3324		*hwp = hw;
3325		devres_add(dev, hwp);
3326	} else {
3327		devres_free(hwp);
3328	}
3329
3330	return ret;
3331}
3332EXPORT_SYMBOL_GPL(devm_clk_hw_register);
3333
3334static int devm_clk_match(struct device *dev, void *res, void *data)
3335{
3336	struct clk *c = res;
3337	if (WARN_ON(!c))
3338		return 0;
3339	return c == data;
3340}
3341
3342static int devm_clk_hw_match(struct device *dev, void *res, void *data)
3343{
3344	struct clk_hw *hw = res;
3345
3346	if (WARN_ON(!hw))
3347		return 0;
3348	return hw == data;
3349}
3350
3351/**
3352 * devm_clk_unregister - resource managed clk_unregister()
3353 * @clk: clock to unregister
3354 *
3355 * Deallocate a clock allocated with devm_clk_register(). Normally
3356 * this function will not need to be called and the resource management
3357 * code will ensure that the resource is freed.
3358 */
3359void devm_clk_unregister(struct device *dev, struct clk *clk)
3360{
3361	WARN_ON(devres_release(dev, devm_clk_release, devm_clk_match, clk));
3362}
3363EXPORT_SYMBOL_GPL(devm_clk_unregister);
3364
3365/**
3366 * devm_clk_hw_unregister - resource managed clk_hw_unregister()
3367 * @dev: device that is unregistering the hardware-specific clock data
3368 * @hw: link to hardware-specific clock data
3369 *
3370 * Unregister a clk_hw registered with devm_clk_hw_register(). Normally
3371 * this function will not need to be called and the resource management
3372 * code will ensure that the resource is freed.
3373 */
3374void devm_clk_hw_unregister(struct device *dev, struct clk_hw *hw)
3375{
3376	WARN_ON(devres_release(dev, devm_clk_hw_release, devm_clk_hw_match,
3377				hw));
3378}
3379EXPORT_SYMBOL_GPL(devm_clk_hw_unregister);
3380
3381/*
3382 * clkdev helpers
3383 */
3384int __clk_get(struct clk *clk)
3385{
3386	struct clk_core *core = !clk ? NULL : clk->core;
3387
3388	if (core) {
3389		if (!try_module_get(core->owner))
3390			return 0;
3391
3392		kref_get(&core->ref);
3393	}
3394	return 1;
3395}
3396
3397void __clk_put(struct clk *clk)
3398{
3399	struct module *owner;
3400
3401	if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
3402		return;
3403
3404	clk_prepare_lock();
3405
3406	/*
3407	 * Before calling clk_put, all calls to clk_rate_exclusive_get() from a
3408	 * given user should be balanced with calls to clk_rate_exclusive_put()
3409	 * and by that same consumer
3410	 */
3411	if (WARN_ON(clk->exclusive_count)) {
3412		/* We voiced our concern, let's sanitize the situation */
3413		clk->core->protect_count -= (clk->exclusive_count - 1);
3414		clk_core_rate_unprotect(clk->core);
3415		clk->exclusive_count = 0;
3416	}
3417
3418	hlist_del(&clk->clks_node);
3419	if (clk->min_rate > clk->core->req_rate ||
3420	    clk->max_rate < clk->core->req_rate)
3421		clk_core_set_rate_nolock(clk->core, clk->core->req_rate);
3422
3423	owner = clk->core->owner;
3424	kref_put(&clk->core->ref, __clk_release);
3425
3426	clk_prepare_unlock();
3427
3428	module_put(owner);
3429
3430	kfree(clk);
3431}
3432
3433/***        clk rate change notifiers        ***/
3434
3435/**
3436 * clk_notifier_register - add a clk rate change notifier
3437 * @clk: struct clk * to watch
3438 * @nb: struct notifier_block * with callback info
3439 *
3440 * Request notification when clk's rate changes.  This uses an SRCU
3441 * notifier because we want it to block and notifier unregistrations are
3442 * uncommon.  The callbacks associated with the notifier must not
3443 * re-enter into the clk framework by calling any top-level clk APIs;
3444 * this will cause a nested prepare_lock mutex.
3445 *
3446 * In all notification cases (pre, post and abort rate change) the original
3447 * clock rate is passed to the callback via struct clk_notifier_data.old_rate
3448 * and the new frequency is passed via struct clk_notifier_data.new_rate.
 
 
 
 
 
 
 
 
 
 
3449 *
3450 * clk_notifier_register() must be called from non-atomic context.
3451 * Returns -EINVAL if called with null arguments, -ENOMEM upon
3452 * allocation failure; otherwise, passes along the return value of
3453 * srcu_notifier_chain_register().
3454 */
3455int clk_notifier_register(struct clk *clk, struct notifier_block *nb)
3456{
3457	struct clk_notifier *cn;
3458	int ret = -ENOMEM;
3459
3460	if (!clk || !nb)
3461		return -EINVAL;
3462
3463	clk_prepare_lock();
3464
3465	/* search the list of notifiers for this clk */
3466	list_for_each_entry(cn, &clk_notifier_list, node)
3467		if (cn->clk == clk)
3468			break;
3469
3470	/* if clk wasn't in the notifier list, allocate new clk_notifier */
3471	if (cn->clk != clk) {
3472		cn = kzalloc(sizeof(*cn), GFP_KERNEL);
3473		if (!cn)
3474			goto out;
3475
3476		cn->clk = clk;
3477		srcu_init_notifier_head(&cn->notifier_head);
3478
3479		list_add(&cn->node, &clk_notifier_list);
3480	}
3481
3482	ret = srcu_notifier_chain_register(&cn->notifier_head, nb);
3483
3484	clk->core->notifier_count++;
3485
3486out:
3487	clk_prepare_unlock();
3488
3489	return ret;
3490}
3491EXPORT_SYMBOL_GPL(clk_notifier_register);
3492
3493/**
3494 * clk_notifier_unregister - remove a clk rate change notifier
3495 * @clk: struct clk *
3496 * @nb: struct notifier_block * with callback info
3497 *
3498 * Request no further notification for changes to 'clk' and frees memory
3499 * allocated in clk_notifier_register.
3500 *
3501 * Returns -EINVAL if called with null arguments; otherwise, passes
3502 * along the return value of srcu_notifier_chain_unregister().
3503 */
3504int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb)
3505{
3506	struct clk_notifier *cn = NULL;
3507	int ret = -EINVAL;
3508
3509	if (!clk || !nb)
3510		return -EINVAL;
3511
3512	clk_prepare_lock();
3513
3514	list_for_each_entry(cn, &clk_notifier_list, node)
3515		if (cn->clk == clk)
3516			break;
3517
3518	if (cn->clk == clk) {
3519		ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb);
3520
3521		clk->core->notifier_count--;
3522
3523		/* XXX the notifier code should handle this better */
3524		if (!cn->notifier_head.head) {
3525			srcu_cleanup_notifier_head(&cn->notifier_head);
3526			list_del(&cn->node);
3527			kfree(cn);
3528		}
3529
3530	} else {
3531		ret = -ENOENT;
3532	}
3533
3534	clk_prepare_unlock();
3535
3536	return ret;
3537}
3538EXPORT_SYMBOL_GPL(clk_notifier_unregister);
3539
3540#ifdef CONFIG_OF
3541/**
3542 * struct of_clk_provider - Clock provider registration structure
3543 * @link: Entry in global list of clock providers
3544 * @node: Pointer to device tree node of clock provider
3545 * @get: Get clock callback.  Returns NULL or a struct clk for the
3546 *       given clock specifier
3547 * @data: context pointer to be passed into @get callback
3548 */
3549struct of_clk_provider {
3550	struct list_head link;
3551
3552	struct device_node *node;
3553	struct clk *(*get)(struct of_phandle_args *clkspec, void *data);
3554	struct clk_hw *(*get_hw)(struct of_phandle_args *clkspec, void *data);
3555	void *data;
3556};
3557
3558static const struct of_device_id __clk_of_table_sentinel
3559	__used __section(__clk_of_table_end);
3560
3561static LIST_HEAD(of_clk_providers);
3562static DEFINE_MUTEX(of_clk_mutex);
3563
3564struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec,
3565				     void *data)
3566{
3567	return data;
3568}
3569EXPORT_SYMBOL_GPL(of_clk_src_simple_get);
3570
3571struct clk_hw *of_clk_hw_simple_get(struct of_phandle_args *clkspec, void *data)
3572{
3573	return data;
3574}
3575EXPORT_SYMBOL_GPL(of_clk_hw_simple_get);
3576
3577struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data)
3578{
3579	struct clk_onecell_data *clk_data = data;
3580	unsigned int idx = clkspec->args[0];
3581
3582	if (idx >= clk_data->clk_num) {
3583		pr_err("%s: invalid clock index %u\n", __func__, idx);
3584		return ERR_PTR(-EINVAL);
3585	}
3586
3587	return clk_data->clks[idx];
3588}
3589EXPORT_SYMBOL_GPL(of_clk_src_onecell_get);
3590
3591struct clk_hw *
3592of_clk_hw_onecell_get(struct of_phandle_args *clkspec, void *data)
3593{
3594	struct clk_hw_onecell_data *hw_data = data;
3595	unsigned int idx = clkspec->args[0];
3596
3597	if (idx >= hw_data->num) {
3598		pr_err("%s: invalid index %u\n", __func__, idx);
3599		return ERR_PTR(-EINVAL);
3600	}
3601
3602	return hw_data->hws[idx];
3603}
3604EXPORT_SYMBOL_GPL(of_clk_hw_onecell_get);
3605
3606/**
3607 * of_clk_add_provider() - Register a clock provider for a node
3608 * @np: Device node pointer associated with clock provider
3609 * @clk_src_get: callback for decoding clock
3610 * @data: context pointer for @clk_src_get callback.
3611 */
3612int of_clk_add_provider(struct device_node *np,
3613			struct clk *(*clk_src_get)(struct of_phandle_args *clkspec,
3614						   void *data),
3615			void *data)
3616{
3617	struct of_clk_provider *cp;
3618	int ret;
3619
3620	cp = kzalloc(sizeof(*cp), GFP_KERNEL);
3621	if (!cp)
3622		return -ENOMEM;
3623
3624	cp->node = of_node_get(np);
3625	cp->data = data;
3626	cp->get = clk_src_get;
3627
3628	mutex_lock(&of_clk_mutex);
3629	list_add(&cp->link, &of_clk_providers);
3630	mutex_unlock(&of_clk_mutex);
3631	pr_debug("Added clock from %pOF\n", np);
3632
3633	ret = of_clk_set_defaults(np, true);
3634	if (ret < 0)
3635		of_clk_del_provider(np);
3636
3637	return ret;
3638}
3639EXPORT_SYMBOL_GPL(of_clk_add_provider);
3640
3641/**
3642 * of_clk_add_hw_provider() - Register a clock provider for a node
3643 * @np: Device node pointer associated with clock provider
3644 * @get: callback for decoding clk_hw
3645 * @data: context pointer for @get callback.
3646 */
3647int of_clk_add_hw_provider(struct device_node *np,
3648			   struct clk_hw *(*get)(struct of_phandle_args *clkspec,
3649						 void *data),
3650			   void *data)
3651{
3652	struct of_clk_provider *cp;
3653	int ret;
3654
3655	cp = kzalloc(sizeof(*cp), GFP_KERNEL);
3656	if (!cp)
3657		return -ENOMEM;
3658
3659	cp->node = of_node_get(np);
3660	cp->data = data;
3661	cp->get_hw = get;
3662
3663	mutex_lock(&of_clk_mutex);
3664	list_add(&cp->link, &of_clk_providers);
3665	mutex_unlock(&of_clk_mutex);
3666	pr_debug("Added clk_hw provider from %pOF\n", np);
3667
3668	ret = of_clk_set_defaults(np, true);
3669	if (ret < 0)
3670		of_clk_del_provider(np);
3671
3672	return ret;
3673}
3674EXPORT_SYMBOL_GPL(of_clk_add_hw_provider);
3675
3676static void devm_of_clk_release_provider(struct device *dev, void *res)
3677{
3678	of_clk_del_provider(*(struct device_node **)res);
3679}
3680
3681int devm_of_clk_add_hw_provider(struct device *dev,
3682			struct clk_hw *(*get)(struct of_phandle_args *clkspec,
3683					      void *data),
3684			void *data)
3685{
3686	struct device_node **ptr, *np;
3687	int ret;
3688
3689	ptr = devres_alloc(devm_of_clk_release_provider, sizeof(*ptr),
3690			   GFP_KERNEL);
3691	if (!ptr)
3692		return -ENOMEM;
3693
3694	np = dev->of_node;
3695	ret = of_clk_add_hw_provider(np, get, data);
3696	if (!ret) {
3697		*ptr = np;
3698		devres_add(dev, ptr);
3699	} else {
3700		devres_free(ptr);
3701	}
3702
3703	return ret;
3704}
3705EXPORT_SYMBOL_GPL(devm_of_clk_add_hw_provider);
3706
3707/**
3708 * of_clk_del_provider() - Remove a previously registered clock provider
3709 * @np: Device node pointer associated with clock provider
3710 */
3711void of_clk_del_provider(struct device_node *np)
3712{
3713	struct of_clk_provider *cp;
3714
3715	mutex_lock(&of_clk_mutex);
3716	list_for_each_entry(cp, &of_clk_providers, link) {
3717		if (cp->node == np) {
3718			list_del(&cp->link);
3719			of_node_put(cp->node);
3720			kfree(cp);
3721			break;
3722		}
3723	}
3724	mutex_unlock(&of_clk_mutex);
3725}
3726EXPORT_SYMBOL_GPL(of_clk_del_provider);
3727
3728static int devm_clk_provider_match(struct device *dev, void *res, void *data)
3729{
3730	struct device_node **np = res;
3731
3732	if (WARN_ON(!np || !*np))
3733		return 0;
3734
3735	return *np == data;
3736}
3737
3738void devm_of_clk_del_provider(struct device *dev)
3739{
3740	int ret;
3741
3742	ret = devres_release(dev, devm_of_clk_release_provider,
3743			     devm_clk_provider_match, dev->of_node);
3744
3745	WARN_ON(ret);
3746}
3747EXPORT_SYMBOL(devm_of_clk_del_provider);
3748
3749static struct clk_hw *
3750__of_clk_get_hw_from_provider(struct of_clk_provider *provider,
3751			      struct of_phandle_args *clkspec)
3752{
3753	struct clk *clk;
3754
3755	if (provider->get_hw)
3756		return provider->get_hw(clkspec, provider->data);
3757
3758	clk = provider->get(clkspec, provider->data);
3759	if (IS_ERR(clk))
3760		return ERR_CAST(clk);
3761	return __clk_get_hw(clk);
3762}
3763
3764struct clk *__of_clk_get_from_provider(struct of_phandle_args *clkspec,
3765				       const char *dev_id, const char *con_id)
3766{
3767	struct of_clk_provider *provider;
3768	struct clk *clk = ERR_PTR(-EPROBE_DEFER);
3769	struct clk_hw *hw;
3770
3771	if (!clkspec)
3772		return ERR_PTR(-EINVAL);
3773
3774	/* Check if we have such a provider in our array */
3775	mutex_lock(&of_clk_mutex);
3776	list_for_each_entry(provider, &of_clk_providers, link) {
3777		if (provider->node == clkspec->np) {
3778			hw = __of_clk_get_hw_from_provider(provider, clkspec);
3779			clk = __clk_create_clk(hw, dev_id, con_id);
3780		}
3781
3782		if (!IS_ERR(clk)) {
3783			if (!__clk_get(clk)) {
3784				__clk_free_clk(clk);
3785				clk = ERR_PTR(-ENOENT);
3786			}
3787
3788			break;
3789		}
3790	}
3791	mutex_unlock(&of_clk_mutex);
3792
3793	return clk;
3794}
3795
3796/**
3797 * of_clk_get_from_provider() - Lookup a clock from a clock provider
3798 * @clkspec: pointer to a clock specifier data structure
3799 *
3800 * This function looks up a struct clk from the registered list of clock
3801 * providers, an input is a clock specifier data structure as returned
3802 * from the of_parse_phandle_with_args() function call.
3803 */
3804struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec)
3805{
3806	return __of_clk_get_from_provider(clkspec, NULL, __func__);
3807}
3808EXPORT_SYMBOL_GPL(of_clk_get_from_provider);
3809
3810/**
3811 * of_clk_get_parent_count() - Count the number of clocks a device node has
3812 * @np: device node to count
3813 *
3814 * Returns: The number of clocks that are possible parents of this node
3815 */
3816unsigned int of_clk_get_parent_count(struct device_node *np)
3817{
3818	int count;
3819
3820	count = of_count_phandle_with_args(np, "clocks", "#clock-cells");
3821	if (count < 0)
3822		return 0;
3823
3824	return count;
3825}
3826EXPORT_SYMBOL_GPL(of_clk_get_parent_count);
3827
3828const char *of_clk_get_parent_name(struct device_node *np, int index)
3829{
3830	struct of_phandle_args clkspec;
3831	struct property *prop;
3832	const char *clk_name;
3833	const __be32 *vp;
3834	u32 pv;
3835	int rc;
3836	int count;
3837	struct clk *clk;
3838
3839	rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index,
3840					&clkspec);
3841	if (rc)
3842		return NULL;
3843
3844	index = clkspec.args_count ? clkspec.args[0] : 0;
3845	count = 0;
3846
3847	/* if there is an indices property, use it to transfer the index
3848	 * specified into an array offset for the clock-output-names property.
3849	 */
3850	of_property_for_each_u32(clkspec.np, "clock-indices", prop, vp, pv) {
3851		if (index == pv) {
3852			index = count;
3853			break;
3854		}
3855		count++;
3856	}
3857	/* We went off the end of 'clock-indices' without finding it */
3858	if (prop && !vp)
3859		return NULL;
3860
3861	if (of_property_read_string_index(clkspec.np, "clock-output-names",
3862					  index,
3863					  &clk_name) < 0) {
3864		/*
3865		 * Best effort to get the name if the clock has been
3866		 * registered with the framework. If the clock isn't
3867		 * registered, we return the node name as the name of
3868		 * the clock as long as #clock-cells = 0.
3869		 */
3870		clk = of_clk_get_from_provider(&clkspec);
3871		if (IS_ERR(clk)) {
3872			if (clkspec.args_count == 0)
3873				clk_name = clkspec.np->name;
3874			else
3875				clk_name = NULL;
3876		} else {
3877			clk_name = __clk_get_name(clk);
3878			clk_put(clk);
3879		}
3880	}
3881
3882
3883	of_node_put(clkspec.np);
3884	return clk_name;
3885}
3886EXPORT_SYMBOL_GPL(of_clk_get_parent_name);
3887
3888/**
3889 * of_clk_parent_fill() - Fill @parents with names of @np's parents and return
3890 * number of parents
3891 * @np: Device node pointer associated with clock provider
3892 * @parents: pointer to char array that hold the parents' names
3893 * @size: size of the @parents array
3894 *
3895 * Return: number of parents for the clock node.
3896 */
3897int of_clk_parent_fill(struct device_node *np, const char **parents,
3898		       unsigned int size)
3899{
3900	unsigned int i = 0;
3901
3902	while (i < size && (parents[i] = of_clk_get_parent_name(np, i)) != NULL)
3903		i++;
3904
3905	return i;
3906}
3907EXPORT_SYMBOL_GPL(of_clk_parent_fill);
3908
3909struct clock_provider {
3910	of_clk_init_cb_t clk_init_cb;
3911	struct device_node *np;
3912	struct list_head node;
3913};
3914
3915/*
3916 * This function looks for a parent clock. If there is one, then it
3917 * checks that the provider for this parent clock was initialized, in
3918 * this case the parent clock will be ready.
3919 */
3920static int parent_ready(struct device_node *np)
3921{
3922	int i = 0;
3923
3924	while (true) {
3925		struct clk *clk = of_clk_get(np, i);
3926
3927		/* this parent is ready we can check the next one */
3928		if (!IS_ERR(clk)) {
3929			clk_put(clk);
3930			i++;
3931			continue;
3932		}
3933
3934		/* at least one parent is not ready, we exit now */
3935		if (PTR_ERR(clk) == -EPROBE_DEFER)
3936			return 0;
3937
3938		/*
3939		 * Here we make assumption that the device tree is
3940		 * written correctly. So an error means that there is
3941		 * no more parent. As we didn't exit yet, then the
3942		 * previous parent are ready. If there is no clock
3943		 * parent, no need to wait for them, then we can
3944		 * consider their absence as being ready
3945		 */
3946		return 1;
3947	}
3948}
3949
3950/**
3951 * of_clk_detect_critical() - set CLK_IS_CRITICAL flag from Device Tree
3952 * @np: Device node pointer associated with clock provider
3953 * @index: clock index
3954 * @flags: pointer to top-level framework flags
3955 *
3956 * Detects if the clock-critical property exists and, if so, sets the
3957 * corresponding CLK_IS_CRITICAL flag.
3958 *
3959 * Do not use this function. It exists only for legacy Device Tree
3960 * bindings, such as the one-clock-per-node style that are outdated.
3961 * Those bindings typically put all clock data into .dts and the Linux
3962 * driver has no clock data, thus making it impossible to set this flag
3963 * correctly from the driver. Only those drivers may call
3964 * of_clk_detect_critical from their setup functions.
3965 *
3966 * Return: error code or zero on success
3967 */
3968int of_clk_detect_critical(struct device_node *np,
3969					  int index, unsigned long *flags)
3970{
3971	struct property *prop;
3972	const __be32 *cur;
3973	uint32_t idx;
3974
3975	if (!np || !flags)
3976		return -EINVAL;
3977
3978	of_property_for_each_u32(np, "clock-critical", prop, cur, idx)
3979		if (index == idx)
3980			*flags |= CLK_IS_CRITICAL;
3981
3982	return 0;
3983}
3984
3985/**
3986 * of_clk_init() - Scan and init clock providers from the DT
3987 * @matches: array of compatible values and init functions for providers.
3988 *
3989 * This function scans the device tree for matching clock providers
3990 * and calls their initialization functions. It also does it by trying
3991 * to follow the dependencies.
3992 */
3993void __init of_clk_init(const struct of_device_id *matches)
3994{
3995	const struct of_device_id *match;
3996	struct device_node *np;
3997	struct clock_provider *clk_provider, *next;
3998	bool is_init_done;
3999	bool force = false;
4000	LIST_HEAD(clk_provider_list);
4001
4002	if (!matches)
4003		matches = &__clk_of_table;
4004
4005	/* First prepare the list of the clocks providers */
4006	for_each_matching_node_and_match(np, matches, &match) {
4007		struct clock_provider *parent;
4008
4009		if (!of_device_is_available(np))
4010			continue;
4011
4012		parent = kzalloc(sizeof(*parent), GFP_KERNEL);
4013		if (!parent) {
4014			list_for_each_entry_safe(clk_provider, next,
4015						 &clk_provider_list, node) {
4016				list_del(&clk_provider->node);
4017				of_node_put(clk_provider->np);
4018				kfree(clk_provider);
4019			}
4020			of_node_put(np);
4021			return;
4022		}
4023
4024		parent->clk_init_cb = match->data;
4025		parent->np = of_node_get(np);
4026		list_add_tail(&parent->node, &clk_provider_list);
4027	}
4028
4029	while (!list_empty(&clk_provider_list)) {
4030		is_init_done = false;
4031		list_for_each_entry_safe(clk_provider, next,
4032					&clk_provider_list, node) {
4033			if (force || parent_ready(clk_provider->np)) {
4034
4035				/* Don't populate platform devices */
4036				of_node_set_flag(clk_provider->np,
4037						 OF_POPULATED);
4038
4039				clk_provider->clk_init_cb(clk_provider->np);
4040				of_clk_set_defaults(clk_provider->np, true);
4041
4042				list_del(&clk_provider->node);
4043				of_node_put(clk_provider->np);
4044				kfree(clk_provider);
4045				is_init_done = true;
4046			}
4047		}
4048
4049		/*
4050		 * We didn't manage to initialize any of the
4051		 * remaining providers during the last loop, so now we
4052		 * initialize all the remaining ones unconditionally
4053		 * in case the clock parent was not mandatory
4054		 */
4055		if (!is_init_done)
4056			force = true;
4057	}
4058}
4059#endif