Linux Audio

Check our new training course

Loading...
v3.5.6
   1/*
   2 * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com>
   3 * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org>
   4 *
   5 * This program is free software; you can redistribute it and/or modify
   6 * it under the terms of the GNU General Public License version 2 as
   7 * published by the Free Software Foundation.
   8 *
   9 * Standard functionality for the common clock API.  See Documentation/clk.txt
  10 */
  11
  12#include <linux/clk-private.h>
 
 
  13#include <linux/module.h>
  14#include <linux/mutex.h>
  15#include <linux/spinlock.h>
  16#include <linux/err.h>
  17#include <linux/list.h>
  18#include <linux/slab.h>
 
 
 
 
 
 
 
  19
  20static DEFINE_SPINLOCK(enable_lock);
  21static DEFINE_MUTEX(prepare_lock);
  22
 
 
 
 
 
 
  23static HLIST_HEAD(clk_root_list);
  24static HLIST_HEAD(clk_orphan_list);
  25static LIST_HEAD(clk_notifier_list);
  26
  27/***        debugfs support        ***/
  28
  29#ifdef CONFIG_COMMON_CLK_DEBUG
  30#include <linux/debugfs.h>
  31
  32static struct dentry *rootdir;
  33static struct dentry *orphandir;
  34static int inited = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  35
  36/* caller must hold prepare_lock */
  37static int clk_debug_create_one(struct clk *clk, struct dentry *pdentry)
  38{
  39	struct dentry *d;
  40	int ret = -ENOMEM;
  41
  42	if (!clk || !pdentry) {
  43		ret = -EINVAL;
  44		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  45	}
  46
  47	d = debugfs_create_dir(clk->name, pdentry);
  48	if (!d)
  49		goto out;
  50
  51	clk->dentry = d;
  52
  53	d = debugfs_create_u32("clk_rate", S_IRUGO, clk->dentry,
  54			(u32 *)&clk->rate);
  55	if (!d)
  56		goto err_out;
  57
  58	d = debugfs_create_x32("clk_flags", S_IRUGO, clk->dentry,
  59			(u32 *)&clk->flags);
  60	if (!d)
  61		goto err_out;
  62
  63	d = debugfs_create_u32("clk_prepare_count", S_IRUGO, clk->dentry,
  64			(u32 *)&clk->prepare_count);
  65	if (!d)
  66		goto err_out;
  67
  68	d = debugfs_create_u32("clk_enable_count", S_IRUGO, clk->dentry,
  69			(u32 *)&clk->enable_count);
  70	if (!d)
  71		goto err_out;
  72
  73	d = debugfs_create_u32("clk_notifier_count", S_IRUGO, clk->dentry,
  74			(u32 *)&clk->notifier_count);
  75	if (!d)
  76		goto err_out;
  77
  78	ret = 0;
  79	goto out;
  80
  81err_out:
  82	debugfs_remove(clk->dentry);
  83out:
  84	return ret;
  85}
  86
  87/* caller must hold prepare_lock */
  88static int clk_debug_create_subtree(struct clk *clk, struct dentry *pdentry)
  89{
  90	struct clk *child;
  91	struct hlist_node *tmp;
  92	int ret = -EINVAL;;
  93
  94	if (!clk || !pdentry)
  95		goto out;
  96
  97	ret = clk_debug_create_one(clk, pdentry);
  98
  99	if (ret)
 100		goto out;
 
 101
 102	hlist_for_each_entry(child, tmp, &clk->children, child_node)
 103		clk_debug_create_subtree(child, clk->dentry);
 
 
 104
 105	ret = 0;
 106out:
 107	return ret;
 
 
 
 
 
 
 
 
 
 
 108}
 109
 110/**
 111 * clk_debug_register - add a clk node to the debugfs clk tree
 112 * @clk: the clk being added to the debugfs clk tree
 113 *
 114 * Dynamically adds a clk to the debugfs clk tree if debugfs has been
 115 * initialized.  Otherwise it bails out early since the debugfs clk tree
 116 * will be created lazily by clk_debug_init as part of a late_initcall.
 117 *
 118 * Caller must hold prepare_lock.  Only clk_init calls this function (so
 119 * far) so this is taken care.
 120 */
 121static int clk_debug_register(struct clk *clk)
 122{
 123	struct clk *parent;
 124	struct dentry *pdentry;
 125	int ret = 0;
 126
 127	if (!inited)
 128		goto out;
 129
 130	parent = clk->parent;
 
 
 
 
 
 
 131
 
 
 132	/*
 133	 * Check to see if a clk is a root clk.  Also check that it is
 134	 * safe to add this clk to debugfs
 135	 */
 136	if (!parent)
 137		if (clk->flags & CLK_IS_ROOT)
 138			pdentry = rootdir;
 139		else
 140			pdentry = orphandir;
 141	else
 142		if (parent->dentry)
 143			pdentry = parent->dentry;
 144		else
 145			goto out;
 146
 147	ret = clk_debug_create_subtree(clk, pdentry);
 148
 149out:
 150	return ret;
 151}
 152
 153/**
 154 * clk_debug_init - lazily create the debugfs clk tree visualization
 155 *
 156 * clks are often initialized very early during boot before memory can
 157 * be dynamically allocated and well before debugfs is setup.
 158 * clk_debug_init walks the clk tree hierarchy while holding
 159 * prepare_lock and creates the topology as part of a late_initcall,
 160 * thus insuring that clks initialized very early will still be
 161 * represented in the debugfs clk tree.  This function should only be
 162 * called once at boot-time, and all other clks added dynamically will
 163 * be done so with clk_debug_register.
 164 */
 165static int __init clk_debug_init(void)
 166{
 167	struct clk *clk;
 168	struct hlist_node *tmp;
 169
 170	rootdir = debugfs_create_dir("clk", NULL);
 171
 172	if (!rootdir)
 173		return -ENOMEM;
 174
 175	orphandir = debugfs_create_dir("orphans", rootdir);
 176
 177	if (!orphandir)
 178		return -ENOMEM;
 179
 180	mutex_lock(&prepare_lock);
 
 
 181
 182	hlist_for_each_entry(clk, tmp, &clk_root_list, child_node)
 183		clk_debug_create_subtree(clk, rootdir);
 184
 185	hlist_for_each_entry(clk, tmp, &clk_orphan_list, child_node)
 186		clk_debug_create_subtree(clk, orphandir);
 187
 188	inited = 1;
 
 189
 190	mutex_unlock(&prepare_lock);
 
 191
 192	return 0;
 
 
 
 
 
 
 
 193}
 194late_initcall(clk_debug_init);
 195#else
 196static inline int clk_debug_register(struct clk *clk) { return 0; }
 197#endif
 198
 199/* caller must hold prepare_lock */
 200static void clk_disable_unused_subtree(struct clk *clk)
 201{
 202	struct clk *child;
 203	struct hlist_node *tmp;
 204	unsigned long flags;
 205
 206	if (!clk)
 207		goto out;
 208
 209	hlist_for_each_entry(child, tmp, &clk->children, child_node)
 210		clk_disable_unused_subtree(child);
 211
 212	spin_lock_irqsave(&enable_lock, flags);
 213
 214	if (clk->enable_count)
 215		goto unlock_out;
 216
 217	if (clk->flags & CLK_IGNORE_UNUSED)
 218		goto unlock_out;
 219
 220	if (__clk_is_enabled(clk) && clk->ops->disable)
 221		clk->ops->disable(clk->hw);
 
 
 
 
 
 
 
 
 
 
 
 222
 223unlock_out:
 224	spin_unlock_irqrestore(&enable_lock, flags);
 
 225
 226out:
 227	return;
 
 
 
 228}
 
 229
 230static int clk_disable_unused(void)
 231{
 232	struct clk *clk;
 233	struct hlist_node *tmp;
 234
 235	mutex_lock(&prepare_lock);
 
 
 
 236
 237	hlist_for_each_entry(clk, tmp, &clk_root_list, child_node)
 238		clk_disable_unused_subtree(clk);
 239
 240	hlist_for_each_entry(clk, tmp, &clk_orphan_list, child_node)
 241		clk_disable_unused_subtree(clk);
 242
 243	mutex_unlock(&prepare_lock);
 
 
 
 
 
 
 
 
 
 244
 245	return 0;
 246}
 247late_initcall(clk_disable_unused);
 248
 249/***    helper functions   ***/
 250
 251inline const char *__clk_get_name(struct clk *clk)
 252{
 253	return !clk ? NULL : clk->name;
 254}
 
 255
 256inline struct clk_hw *__clk_get_hw(struct clk *clk)
 257{
 258	return !clk ? NULL : clk->hw;
 259}
 
 260
 261inline u8 __clk_get_num_parents(struct clk *clk)
 262{
 263	return !clk ? -EINVAL : clk->num_parents;
 264}
 
 265
 266inline struct clk *__clk_get_parent(struct clk *clk)
 267{
 268	return !clk ? NULL : clk->parent;
 269}
 
 270
 271inline int __clk_get_enable_count(struct clk *clk)
 272{
 273	return !clk ? -EINVAL : clk->enable_count;
 274}
 
 275
 276inline int __clk_get_prepare_count(struct clk *clk)
 
 277{
 278	return !clk ? -EINVAL : clk->prepare_count;
 
 
 
 
 
 
 
 
 
 
 
 
 279}
 280
 281unsigned long __clk_get_rate(struct clk *clk)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 282{
 283	unsigned long ret;
 284
 285	if (!clk) {
 286		ret = 0;
 287		goto out;
 288	}
 289
 290	ret = clk->rate;
 291
 292	if (clk->flags & CLK_IS_ROOT)
 293		goto out;
 294
 295	if (!clk->parent)
 296		ret = 0;
 297
 298out:
 299	return ret;
 300}
 301
 302inline unsigned long __clk_get_flags(struct clk *clk)
 303{
 304	return !clk ? -EINVAL : clk->flags;
 305}
 
 306
 307int __clk_is_enabled(struct clk *clk)
 308{
 309	int ret;
 
 
 
 
 310
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 311	if (!clk)
 312		return -EINVAL;
 313
 314	/*
 315	 * .is_enabled is only mandatory for clocks that gate
 316	 * fall back to software usage counter if .is_enabled is missing
 317	 */
 318	if (!clk->ops->is_enabled) {
 319		ret = clk->enable_count ? 1 : 0;
 320		goto out;
 321	}
 322
 323	ret = clk->ops->is_enabled(clk->hw);
 324out:
 325	return ret;
 
 
 
 
 326}
 327
 328static struct clk *__clk_lookup_subtree(const char *name, struct clk *clk)
 
 
 329{
 330	struct clk *child;
 331	struct clk *ret;
 332	struct hlist_node *tmp;
 
 333
 334	if (!strcmp(clk->name, name))
 335		return clk;
 
 
 
 
 
 
 336
 337	hlist_for_each_entry(child, tmp, &clk->children, child_node) {
 338		ret = __clk_lookup_subtree(name, child);
 339		if (ret)
 340			return ret;
 
 
 
 
 341	}
 342
 343	return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 344}
 345
 346struct clk *__clk_lookup(const char *name)
 347{
 348	struct clk *root_clk;
 349	struct clk *ret;
 350	struct hlist_node *tmp;
 351
 352	if (!name)
 353		return NULL;
 354
 355	/* search the 'proper' clk tree first */
 356	hlist_for_each_entry(root_clk, tmp, &clk_root_list, child_node) {
 357		ret = __clk_lookup_subtree(name, root_clk);
 358		if (ret)
 359			return ret;
 360	}
 361
 362	/* if not found, then search the orphan tree */
 363	hlist_for_each_entry(root_clk, tmp, &clk_orphan_list, child_node) {
 364		ret = __clk_lookup_subtree(name, root_clk);
 365		if (ret)
 366			return ret;
 367	}
 368
 369	return NULL;
 
 
 
 
 370}
 371
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 372/***        clk api        ***/
 373
 374void __clk_unprepare(struct clk *clk)
 375{
 376	if (!clk)
 
 
 377		return;
 378
 379	if (WARN_ON(clk->prepare_count == 0))
 380		return;
 381
 382	if (--clk->prepare_count > 0)
 383		return;
 384
 385	WARN_ON(clk->enable_count > 0);
 
 
 386
 387	if (clk->ops->unprepare)
 388		clk->ops->unprepare(clk->hw);
 389
 390	__clk_unprepare(clk->parent);
 
 391}
 392
 393/**
 394 * clk_unprepare - undo preparation of a clock source
 395 * @clk: the clk being unprepare
 396 *
 397 * clk_unprepare may sleep, which differentiates it from clk_disable.  In a
 398 * simple case, clk_unprepare can be used instead of clk_disable to gate a clk
 399 * if the operation may sleep.  One example is a clk which is accessed over
 400 * I2c.  In the complex case a clk gate operation may require a fast and a slow
 401 * part.  It is this reason that clk_unprepare and clk_disable are not mutually
 402 * exclusive.  In fact clk_disable must be called before clk_unprepare.
 403 */
 404void clk_unprepare(struct clk *clk)
 405{
 406	mutex_lock(&prepare_lock);
 407	__clk_unprepare(clk);
 408	mutex_unlock(&prepare_lock);
 
 
 
 409}
 410EXPORT_SYMBOL_GPL(clk_unprepare);
 411
 412int __clk_prepare(struct clk *clk)
 413{
 414	int ret = 0;
 415
 416	if (!clk)
 
 
 417		return 0;
 418
 419	if (clk->prepare_count == 0) {
 420		ret = __clk_prepare(clk->parent);
 421		if (ret)
 422			return ret;
 423
 424		if (clk->ops->prepare) {
 425			ret = clk->ops->prepare(clk->hw);
 426			if (ret) {
 427				__clk_unprepare(clk->parent);
 428				return ret;
 429			}
 
 
 
 
 430		}
 431	}
 432
 433	clk->prepare_count++;
 434
 435	return 0;
 436}
 437
 438/**
 439 * clk_prepare - prepare a clock source
 440 * @clk: the clk being prepared
 441 *
 442 * clk_prepare may sleep, which differentiates it from clk_enable.  In a simple
 443 * case, clk_prepare can be used instead of clk_enable to ungate a clk if the
 444 * operation may sleep.  One example is a clk which is accessed over I2c.  In
 445 * the complex case a clk ungate operation may require a fast and a slow part.
 446 * It is this reason that clk_prepare and clk_enable are not mutually
 447 * exclusive.  In fact clk_prepare must be called before clk_enable.
 448 * Returns 0 on success, -EERROR otherwise.
 449 */
 450int clk_prepare(struct clk *clk)
 451{
 452	int ret;
 453
 454	mutex_lock(&prepare_lock);
 455	ret = __clk_prepare(clk);
 456	mutex_unlock(&prepare_lock);
 
 
 
 457
 458	return ret;
 459}
 460EXPORT_SYMBOL_GPL(clk_prepare);
 461
 462static void __clk_disable(struct clk *clk)
 463{
 464	if (!clk)
 
 
 465		return;
 466
 467	if (WARN_ON(clk->enable_count == 0))
 468		return;
 469
 470	if (--clk->enable_count > 0)
 471		return;
 472
 473	if (clk->ops->disable)
 474		clk->ops->disable(clk->hw);
 
 
 
 
 475
 476	__clk_disable(clk->parent);
 477}
 478
 479/**
 480 * clk_disable - gate a clock
 481 * @clk: the clk being gated
 482 *
 483 * clk_disable must not sleep, which differentiates it from clk_unprepare.  In
 484 * a simple case, clk_disable can be used instead of clk_unprepare to gate a
 485 * clk if the operation is fast and will never sleep.  One example is a
 486 * SoC-internal clk which is controlled via simple register writes.  In the
 487 * complex case a clk gate operation may require a fast and a slow part.  It is
 488 * this reason that clk_unprepare and clk_disable are not mutually exclusive.
 489 * In fact clk_disable must be called before clk_unprepare.
 490 */
 491void clk_disable(struct clk *clk)
 492{
 493	unsigned long flags;
 494
 495	spin_lock_irqsave(&enable_lock, flags);
 496	__clk_disable(clk);
 497	spin_unlock_irqrestore(&enable_lock, flags);
 
 
 
 498}
 499EXPORT_SYMBOL_GPL(clk_disable);
 500
 501static int __clk_enable(struct clk *clk)
 502{
 503	int ret = 0;
 504
 505	if (!clk)
 
 
 506		return 0;
 507
 508	if (WARN_ON(clk->prepare_count == 0))
 509		return -ESHUTDOWN;
 510
 511	if (clk->enable_count == 0) {
 512		ret = __clk_enable(clk->parent);
 513
 514		if (ret)
 515			return ret;
 516
 517		if (clk->ops->enable) {
 518			ret = clk->ops->enable(clk->hw);
 519			if (ret) {
 520				__clk_disable(clk->parent);
 521				return ret;
 522			}
 
 
 
 
 523		}
 524	}
 525
 526	clk->enable_count++;
 527	return 0;
 528}
 529
 530/**
 531 * clk_enable - ungate a clock
 532 * @clk: the clk being ungated
 533 *
 534 * clk_enable must not sleep, which differentiates it from clk_prepare.  In a
 535 * simple case, clk_enable can be used instead of clk_prepare to ungate a clk
 536 * if the operation will never sleep.  One example is a SoC-internal clk which
 537 * is controlled via simple register writes.  In the complex case a clk ungate
 538 * operation may require a fast and a slow part.  It is this reason that
 539 * clk_enable and clk_prepare are not mutually exclusive.  In fact clk_prepare
 540 * must be called before clk_enable.  Returns 0 on success, -EERROR
 541 * otherwise.
 542 */
 543int clk_enable(struct clk *clk)
 544{
 545	unsigned long flags;
 546	int ret;
 547
 548	spin_lock_irqsave(&enable_lock, flags);
 549	ret = __clk_enable(clk);
 550	spin_unlock_irqrestore(&enable_lock, flags);
 
 
 
 551
 552	return ret;
 553}
 554EXPORT_SYMBOL_GPL(clk_enable);
 555
 556/**
 557 * clk_get_rate - return the rate of clk
 558 * @clk: the clk whose rate is being returned
 559 *
 560 * Simply returns the cached rate of the clk.  Does not query the hardware.  If
 561 * clk is NULL then returns 0.
 562 */
 563unsigned long clk_get_rate(struct clk *clk)
 564{
 565	unsigned long rate;
 
 566
 567	mutex_lock(&prepare_lock);
 568	rate = __clk_get_rate(clk);
 569	mutex_unlock(&prepare_lock);
 570
 571	return rate;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 572}
 573EXPORT_SYMBOL_GPL(clk_get_rate);
 574
 575/**
 576 * __clk_round_rate - round the given rate for a clk
 577 * @clk: round the rate of this clock
 
 
 
 578 *
 579 * Caller must hold prepare_lock.  Useful for clk_ops such as .set_rate
 580 */
 581unsigned long __clk_round_rate(struct clk *clk, unsigned long rate)
 582{
 583	unsigned long parent_rate = 0;
 
 
 
 584
 585	if (!clk)
 586		return -EINVAL;
 
 587
 588	if (!clk->ops->round_rate) {
 589		if (clk->flags & CLK_SET_RATE_PARENT)
 590			return __clk_round_rate(clk->parent, rate);
 591		else
 592			return clk->rate;
 593	}
 
 594
 595	if (clk->parent)
 596		parent_rate = clk->parent->rate;
 
 597
 598	return clk->ops->round_rate(clk->hw, rate, &parent_rate);
 599}
 
 600
 601/**
 602 * clk_round_rate - round the given rate for a clk
 603 * @clk: the clk for which we are rounding a rate
 604 * @rate: the rate which is to be rounded
 605 *
 606 * Takes in a rate as input and rounds it to a rate that the clk can actually
 607 * use which is then returned.  If clk doesn't support round_rate operation
 608 * then the parent rate is returned.
 609 */
 610long clk_round_rate(struct clk *clk, unsigned long rate)
 611{
 612	unsigned long ret;
 
 613
 614	mutex_lock(&prepare_lock);
 615	ret = __clk_round_rate(clk, rate);
 616	mutex_unlock(&prepare_lock);
 617
 618	return ret;
 
 
 
 
 
 
 
 
 
 
 
 619}
 620EXPORT_SYMBOL_GPL(clk_round_rate);
 621
 622/**
 623 * __clk_notify - call clk notifier chain
 624 * @clk: struct clk * that is changing rate
 625 * @msg: clk notifier type (see include/linux/clk.h)
 626 * @old_rate: old clk rate
 627 * @new_rate: new clk rate
 628 *
 629 * Triggers a notifier call chain on the clk rate-change notification
 630 * for 'clk'.  Passes a pointer to the struct clk and the previous
 631 * and current rates to the notifier callback.  Intended to be called by
 632 * internal clock code only.  Returns NOTIFY_DONE from the last driver
 633 * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if
 634 * a driver returns that.
 635 */
 636static int __clk_notify(struct clk *clk, unsigned long msg,
 637		unsigned long old_rate, unsigned long new_rate)
 638{
 639	struct clk_notifier *cn;
 640	struct clk_notifier_data cnd;
 641	int ret = NOTIFY_DONE;
 642
 643	cnd.clk = clk;
 644	cnd.old_rate = old_rate;
 645	cnd.new_rate = new_rate;
 646
 647	list_for_each_entry(cn, &clk_notifier_list, node) {
 648		if (cn->clk == clk) {
 
 649			ret = srcu_notifier_call_chain(&cn->notifier_head, msg,
 650					&cnd);
 651			break;
 652		}
 653	}
 654
 655	return ret;
 656}
 657
 658/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 659 * __clk_recalc_rates
 660 * @clk: first clk in the subtree
 661 * @msg: notification type (see include/linux/clk.h)
 662 *
 663 * Walks the subtree of clks starting with clk and recalculates rates as it
 664 * goes.  Note that if a clk does not implement the .recalc_rate callback then
 665 * it is assumed that the clock will take on the rate of it's parent.
 666 *
 667 * clk_recalc_rates also propagates the POST_RATE_CHANGE notification,
 668 * if necessary.
 669 *
 670 * Caller must hold prepare_lock.
 671 */
 672static void __clk_recalc_rates(struct clk *clk, unsigned long msg)
 673{
 674	unsigned long old_rate;
 675	unsigned long parent_rate = 0;
 676	struct hlist_node *tmp;
 677	struct clk *child;
 678
 679	old_rate = clk->rate;
 680
 681	if (clk->parent)
 682		parent_rate = clk->parent->rate;
 683
 684	if (clk->ops->recalc_rate)
 685		clk->rate = clk->ops->recalc_rate(clk->hw, parent_rate);
 686	else
 687		clk->rate = parent_rate;
 688
 689	/*
 690	 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE
 691	 * & ABORT_RATE_CHANGE notifiers
 692	 */
 693	if (clk->notifier_count && msg)
 694		__clk_notify(clk, msg, old_rate, clk->rate);
 695
 696	hlist_for_each_entry(child, tmp, &clk->children, child_node)
 697		__clk_recalc_rates(child, msg);
 698}
 699
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 700/**
 701 * __clk_speculate_rates
 702 * @clk: first clk in the subtree
 703 * @parent_rate: the "future" rate of clk's parent
 704 *
 705 * Walks the subtree of clks starting with clk, speculating rates as it
 706 * goes and firing off PRE_RATE_CHANGE notifications as necessary.
 707 *
 708 * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending
 709 * pre-rate change notifications and returns early if no clks in the
 710 * subtree have subscribed to the notifications.  Note that if a clk does not
 711 * implement the .recalc_rate callback then it is assumed that the clock will
 712 * take on the rate of it's parent.
 713 *
 714 * Caller must hold prepare_lock.
 715 */
 716static int __clk_speculate_rates(struct clk *clk, unsigned long parent_rate)
 
 717{
 718	struct hlist_node *tmp;
 719	struct clk *child;
 720	unsigned long new_rate;
 721	int ret = NOTIFY_DONE;
 722
 723	if (clk->ops->recalc_rate)
 724		new_rate = clk->ops->recalc_rate(clk->hw, parent_rate);
 725	else
 726		new_rate = parent_rate;
 727
 728	/* abort the rate change if a driver returns NOTIFY_BAD */
 729	if (clk->notifier_count)
 730		ret = __clk_notify(clk, PRE_RATE_CHANGE, clk->rate, new_rate);
 731
 732	if (ret == NOTIFY_BAD)
 
 
 
 
 
 
 733		goto out;
 
 734
 735	hlist_for_each_entry(child, tmp, &clk->children, child_node) {
 736		ret = __clk_speculate_rates(child, new_rate);
 737		if (ret == NOTIFY_BAD)
 738			break;
 739	}
 740
 741out:
 742	return ret;
 743}
 744
 745static void clk_calc_subtree(struct clk *clk, unsigned long new_rate)
 
 746{
 747	struct clk *child;
 748	struct hlist_node *tmp;
 749
 750	clk->new_rate = new_rate;
 751
 752	hlist_for_each_entry(child, tmp, &clk->children, child_node) {
 753		if (child->ops->recalc_rate)
 754			child->new_rate = child->ops->recalc_rate(child->hw, new_rate);
 755		else
 756			child->new_rate = new_rate;
 757		clk_calc_subtree(child, child->new_rate);
 
 
 
 
 
 758	}
 759}
 760
 761/*
 762 * calculate the new rates returning the topmost clock that has to be
 763 * changed.
 764 */
 765static struct clk *clk_calc_new_rates(struct clk *clk, unsigned long rate)
 
 766{
 767	struct clk *top = clk;
 
 768	unsigned long best_parent_rate = 0;
 769	unsigned long new_rate;
 
 
 
 
 770
 771	/* sanity */
 772	if (IS_ERR_OR_NULL(clk))
 773		return NULL;
 774
 775	/* save parent rate, if it exists */
 776	if (clk->parent)
 777		best_parent_rate = clk->parent->rate;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 778
 779	/* never propagate up to the parent */
 780	if (!(clk->flags & CLK_SET_RATE_PARENT)) {
 781		if (!clk->ops->round_rate) {
 782			clk->new_rate = clk->rate;
 783			return NULL;
 784		}
 785		new_rate = clk->ops->round_rate(clk->hw, rate, &best_parent_rate);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 786		goto out;
 787	}
 788
 789	/* need clk->parent from here on out */
 790	if (!clk->parent) {
 791		pr_debug("%s: %s has NULL parent\n", __func__, clk->name);
 
 
 792		return NULL;
 793	}
 794
 795	if (!clk->ops->round_rate) {
 796		top = clk_calc_new_rates(clk->parent, rate);
 797		new_rate = clk->parent->new_rate;
 798
 799		goto out;
 
 
 
 800	}
 801
 802	new_rate = clk->ops->round_rate(clk->hw, rate, &best_parent_rate);
 803
 804	if (best_parent_rate != clk->parent->rate) {
 805		top = clk_calc_new_rates(clk->parent, best_parent_rate);
 806
 807		goto out;
 808	}
 809
 810out:
 811	clk_calc_subtree(clk, new_rate);
 812
 813	return top;
 814}
 815
 816/*
 817 * Notify about rate changes in a subtree. Always walk down the whole tree
 818 * so that in case of an error we can walk down the whole tree again and
 819 * abort the change.
 820 */
 821static struct clk *clk_propagate_rate_change(struct clk *clk, unsigned long event)
 
 822{
 823	struct hlist_node *tmp;
 824	struct clk *child, *fail_clk = NULL;
 825	int ret = NOTIFY_DONE;
 826
 827	if (clk->rate == clk->new_rate)
 828		return 0;
 829
 830	if (clk->notifier_count) {
 831		ret = __clk_notify(clk, event, clk->rate, clk->new_rate);
 832		if (ret == NOTIFY_BAD)
 833			fail_clk = clk;
 834	}
 835
 836	hlist_for_each_entry(child, tmp, &clk->children, child_node) {
 837		clk = clk_propagate_rate_change(child, event);
 838		if (clk)
 839			fail_clk = clk;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 840	}
 841
 842	return fail_clk;
 843}
 844
 845/*
 846 * walk down a subtree and set the new rates notifying the rate
 847 * change on the way
 848 */
 849static void clk_change_rate(struct clk *clk)
 850{
 851	struct clk *child;
 
 852	unsigned long old_rate;
 853	unsigned long best_parent_rate = 0;
 854	struct hlist_node *tmp;
 
 855
 856	old_rate = clk->rate;
 857
 858	if (clk->parent)
 859		best_parent_rate = clk->parent->rate;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 860
 861	if (clk->ops->set_rate)
 862		clk->ops->set_rate(clk->hw, clk->new_rate, best_parent_rate);
 
 863
 864	if (clk->ops->recalc_rate)
 865		clk->rate = clk->ops->recalc_rate(clk->hw, best_parent_rate);
 866	else
 867		clk->rate = best_parent_rate;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 868
 869	if (clk->notifier_count && old_rate != clk->rate)
 870		__clk_notify(clk, POST_RATE_CHANGE, old_rate, clk->rate);
 871
 872	hlist_for_each_entry(child, tmp, &clk->children, child_node)
 
 
 
 
 
 
 
 873		clk_change_rate(child);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 874}
 875
 876/**
 877 * clk_set_rate - specify a new rate for clk
 878 * @clk: the clk whose rate is being changed
 879 * @rate: the new rate for clk
 880 *
 881 * In the simplest case clk_set_rate will only adjust the rate of clk.
 882 *
 883 * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to
 884 * propagate up to clk's parent; whether or not this happens depends on the
 885 * outcome of clk's .round_rate implementation.  If *parent_rate is unchanged
 886 * after calling .round_rate then upstream parent propagation is ignored.  If
 887 * *parent_rate comes back with a new rate for clk's parent then we propagate
 888 * up to clk's parent and set it's rate.  Upward propagation will continue
 889 * until either a clk does not support the CLK_SET_RATE_PARENT flag or
 890 * .round_rate stops requesting changes to clk's parent_rate.
 891 *
 892 * Rate changes are accomplished via tree traversal that also recalculates the
 893 * rates for the clocks and fires off POST_RATE_CHANGE notifiers.
 894 *
 895 * Returns 0 on success, -EERROR otherwise.
 896 */
 897int clk_set_rate(struct clk *clk, unsigned long rate)
 898{
 899	struct clk *top, *fail_clk;
 900	int ret = 0;
 
 
 901
 902	/* prevent racing with updates to the clock topology */
 903	mutex_lock(&prepare_lock);
 904
 905	/* bail early if nothing to do */
 906	if (rate == clk->rate)
 907		goto out;
 908
 909	if ((clk->flags & CLK_SET_RATE_GATE) && clk->prepare_count) {
 910		ret = -EBUSY;
 911		goto out;
 912	}
 913
 914	/* calculate new rates and get the topmost changed clock */
 915	top = clk_calc_new_rates(clk, rate);
 916	if (!top) {
 917		ret = -EINVAL;
 918		goto out;
 919	}
 920
 921	/* notify that we are about to change rates */
 922	fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE);
 923	if (fail_clk) {
 924		pr_warn("%s: failed to set %s rate\n", __func__,
 925				fail_clk->name);
 926		clk_propagate_rate_change(top, ABORT_RATE_CHANGE);
 927		ret = -EBUSY;
 928		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 929	}
 930
 931	/* change the rates */
 932	clk_change_rate(top);
 933
 934	mutex_unlock(&prepare_lock);
 
 
 
 
 935
 936	return 0;
 937out:
 938	mutex_unlock(&prepare_lock);
 939
 940	return ret;
 941}
 942EXPORT_SYMBOL_GPL(clk_set_rate);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 943
 944/**
 945 * clk_get_parent - return the parent of a clk
 946 * @clk: the clk whose parent gets returned
 947 *
 948 * Simply returns clk->parent.  Returns NULL if clk is NULL.
 949 */
 950struct clk *clk_get_parent(struct clk *clk)
 951{
 952	struct clk *parent;
 953
 954	mutex_lock(&prepare_lock);
 955	parent = __clk_get_parent(clk);
 956	mutex_unlock(&prepare_lock);
 
 
 
 
 957
 958	return parent;
 959}
 960EXPORT_SYMBOL_GPL(clk_get_parent);
 961
 962/*
 963 * .get_parent is mandatory for clocks with multiple possible parents.  It is
 964 * optional for single-parent clocks.  Always call .get_parent if it is
 965 * available and WARN if it is missing for multi-parent clocks.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 966 *
 967 * For single-parent clocks without .get_parent, first check to see if the
 968 * .parents array exists, and if so use it to avoid an expensive tree
 969 * traversal.  If .parents does not exist then walk the tree with __clk_lookup.
 
 970 */
 971static struct clk *__clk_init_parent(struct clk *clk)
 972{
 973	struct clk *ret = NULL;
 974	u8 index;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 975
 976	/* handle the trivial cases */
 
 977
 978	if (!clk->num_parents)
 979		goto out;
 980
 981	if (clk->num_parents == 1) {
 982		if (IS_ERR_OR_NULL(clk->parent))
 983			ret = clk->parent = __clk_lookup(clk->parent_names[0]);
 984		ret = clk->parent;
 985		goto out;
 986	}
 987
 988	if (!clk->ops->get_parent) {
 989		WARN(!clk->ops->get_parent,
 990			"%s: multi-parent clocks must implement .get_parent\n",
 991			__func__);
 992		goto out;
 993	};
 994
 995	/*
 996	 * Do our best to cache parent clocks in clk->parents.  This prevents
 997	 * unnecessary and expensive calls to __clk_lookup.  We don't set
 998	 * clk->parent here; that is done by the calling function
 999	 */
 
 
 
 
 
 
1000
1001	index = clk->ops->get_parent(clk->hw);
 
1002
1003	if (!clk->parents)
1004		clk->parents =
1005			kzalloc((sizeof(struct clk*) * clk->num_parents),
1006					GFP_KERNEL);
1007
1008	if (!clk->parents)
1009		ret = __clk_lookup(clk->parent_names[index]);
1010	else if (!clk->parents[index])
1011		ret = clk->parents[index] =
1012			__clk_lookup(clk->parent_names[index]);
1013	else
1014		ret = clk->parents[index];
 
 
 
1015
1016out:
 
 
1017	return ret;
1018}
1019
1020void __clk_reparent(struct clk *clk, struct clk *new_parent)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1021{
1022#ifdef CONFIG_COMMON_CLK_DEBUG
1023	struct dentry *d;
1024	struct dentry *new_parent_d;
1025#endif
1026
1027	if (!clk || !new_parent)
1028		return;
 
1029
1030	hlist_del(&clk->child_node);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1031
1032	if (new_parent)
1033		hlist_add_head(&clk->child_node, &new_parent->children);
1034	else
1035		hlist_add_head(&clk->child_node, &clk_orphan_list);
1036
1037#ifdef CONFIG_COMMON_CLK_DEBUG
1038	if (!inited)
 
 
 
 
 
 
 
1039		goto out;
1040
1041	if (new_parent)
1042		new_parent_d = new_parent->dentry;
1043	else
1044		new_parent_d = orphandir;
 
 
 
 
 
1045
1046	d = debugfs_rename(clk->dentry->d_parent, clk->dentry,
1047			new_parent_d, clk->name);
1048	if (d)
1049		clk->dentry = d;
1050	else
1051		pr_debug("%s: failed to rename debugfs entry for %s\n",
1052				__func__, clk->name);
1053out:
1054#endif
1055
1056	clk->parent = new_parent;
 
 
1057
1058	__clk_recalc_rates(clk, POST_RATE_CHANGE);
 
 
 
 
 
 
 
 
1059}
1060
1061static int __clk_set_parent(struct clk *clk, struct clk *parent)
 
 
 
 
 
 
 
1062{
1063	struct clk *old_parent;
1064	unsigned long flags;
1065	int ret = -EINVAL;
1066	u8 i;
 
 
1067
1068	old_parent = clk->parent;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1069
1070	if (!clk->parents)
1071		clk->parents = kzalloc((sizeof(struct clk*) * clk->num_parents),
1072								GFP_KERNEL);
 
1073
1074	/*
1075	 * find index of new parent clock using cached parent ptrs,
1076	 * or if not yet cached, use string name comparison and cache
1077	 * them now to avoid future calls to __clk_lookup.
1078	 */
1079	for (i = 0; i < clk->num_parents; i++) {
1080		if (clk->parents && clk->parents[i] == parent)
1081			break;
1082		else if (!strcmp(clk->parent_names[i], parent->name)) {
1083			if (clk->parents)
1084				clk->parents[i] = __clk_lookup(parent->name);
1085			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1086		}
1087	}
1088
1089	if (i == clk->num_parents) {
1090		pr_debug("%s: clock %s is not a possible parent of clock %s\n",
1091				__func__, parent->name, clk->name);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1092		goto out;
1093	}
1094
1095	/* migrate prepare and enable */
1096	if (clk->prepare_count)
1097		__clk_prepare(parent);
1098
1099	/* FIXME replace with clk_is_enabled(clk) someday */
1100	spin_lock_irqsave(&enable_lock, flags);
1101	if (clk->enable_count)
1102		__clk_enable(parent);
1103	spin_unlock_irqrestore(&enable_lock, flags);
1104
1105	/* change clock input source */
1106	ret = clk->ops->set_parent(clk->hw, i);
1107
1108	/* clean up old prepare and enable */
1109	spin_lock_irqsave(&enable_lock, flags);
1110	if (clk->enable_count)
1111		__clk_disable(old_parent);
1112	spin_unlock_irqrestore(&enable_lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1113
1114	if (clk->prepare_count)
1115		__clk_unprepare(old_parent);
 
 
 
 
 
 
 
 
 
 
 
 
 
1116
 
 
 
 
 
 
1117out:
1118	return ret;
1119}
1120
1121/**
1122 * clk_set_parent - switch the parent of a mux clk
1123 * @clk: the mux clk whose input we are switching
1124 * @parent: the new input to clk
1125 *
1126 * Re-parent clk to use parent as it's new input source.  If clk has the
1127 * CLK_SET_PARENT_GATE flag set then clk must be gated for this
1128 * operation to succeed.  After successfully changing clk's parent
1129 * clk_set_parent will update the clk topology, sysfs topology and
1130 * propagate rate recalculation via __clk_recalc_rates.  Returns 0 on
1131 * success, -EERROR otherwise.
1132 */
1133int clk_set_parent(struct clk *clk, struct clk *parent)
1134{
1135	int ret = 0;
1136
1137	if (!clk || !clk->ops)
1138		return -EINVAL;
1139
1140	if (!clk->ops->set_parent)
1141		return -ENOSYS;
1142
1143	/* prevent racing with updates to the clock topology */
1144	mutex_lock(&prepare_lock);
 
1145
1146	if (clk->parent == parent)
1147		goto out;
1148
1149	/* propagate PRE_RATE_CHANGE notifications */
1150	if (clk->notifier_count)
1151		ret = __clk_speculate_rates(clk, parent->rate);
 
 
 
 
 
 
 
 
 
 
 
 
 
1152
1153	/* abort if a driver objects */
1154	if (ret == NOTIFY_STOP)
1155		goto out;
 
1156
1157	/* only re-parent if the clock is not in use */
1158	if ((clk->flags & CLK_SET_PARENT_GATE) && clk->prepare_count)
1159		ret = -EBUSY;
1160	else
1161		ret = __clk_set_parent(clk, parent);
1162
1163	/* propagate ABORT_RATE_CHANGE if .set_parent failed */
1164	if (ret) {
1165		__clk_recalc_rates(clk, ABORT_RATE_CHANGE);
1166		goto out;
1167	}
 
 
 
 
 
 
 
 
 
 
 
 
1168
1169	/* propagate rate recalculation downstream */
1170	__clk_reparent(clk, parent);
1171
1172out:
1173	mutex_unlock(&prepare_lock);
1174
1175	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1176}
1177EXPORT_SYMBOL_GPL(clk_set_parent);
 
 
 
 
 
 
 
 
 
 
1178
1179/**
1180 * __clk_init - initialize the data structures in a struct clk
1181 * @dev:	device initializing this clk, placeholder for now
1182 * @clk:	clk being initialized
1183 *
1184 * Initializes the lists in struct clk, queries the hardware for the
1185 * parent and rate and sets them both.
1186 */
1187int __clk_init(struct device *dev, struct clk *clk)
1188{
1189	int i, ret = 0;
1190	struct clk *orphan;
1191	struct hlist_node *tmp, *tmp2;
 
1192
1193	if (!clk)
1194		return -EINVAL;
1195
1196	mutex_lock(&prepare_lock);
1197
1198	/* check to see if a clock with this name is already registered */
1199	if (__clk_lookup(clk->name)) {
1200		pr_debug("%s: clk %s already initialized\n",
1201				__func__, clk->name);
1202		ret = -EEXIST;
1203		goto out;
1204	}
1205
1206	/* check that clk_ops are sane.  See Documentation/clk.txt */
1207	if (clk->ops->set_rate &&
1208			!(clk->ops->round_rate && clk->ops->recalc_rate)) {
1209		pr_warning("%s: %s must implement .round_rate & .recalc_rate\n",
1210				__func__, clk->name);
 
1211		ret = -EINVAL;
1212		goto out;
1213	}
1214
1215	if (clk->ops->set_parent && !clk->ops->get_parent) {
1216		pr_warning("%s: %s must implement .get_parent & .set_parent\n",
1217				__func__, clk->name);
1218		ret = -EINVAL;
1219		goto out;
1220	}
1221
1222	/* throw a WARN if any entries in parent_names are NULL */
1223	for (i = 0; i < clk->num_parents; i++)
1224		WARN(!clk->parent_names[i],
1225				"%s: invalid NULL in %s's .parent_names\n",
1226				__func__, clk->name);
 
1227
1228	/*
1229	 * Allocate an array of struct clk *'s to avoid unnecessary string
1230	 * look-ups of clk's possible parents.  This can fail for clocks passed
1231	 * in to clk_init during early boot; thus any access to clk->parents[]
1232	 * must always check for a NULL pointer and try to populate it if
1233	 * necessary.
1234	 *
1235	 * If clk->parents is not NULL we skip this entire block.  This allows
1236	 * for clock drivers to statically initialize clk->parents.
1237	 */
1238	if (clk->num_parents && !clk->parents) {
1239		clk->parents = kmalloc((sizeof(struct clk*) * clk->num_parents),
1240				GFP_KERNEL);
1241		/*
1242		 * __clk_lookup returns NULL for parents that have not been
1243		 * clk_init'd; thus any access to clk->parents[] must check
1244		 * for a NULL pointer.  We can always perform lazy lookups for
1245		 * missing parents later on.
1246		 */
1247		if (clk->parents)
1248			for (i = 0; i < clk->num_parents; i++)
1249				clk->parents[i] =
1250					__clk_lookup(clk->parent_names[i]);
1251	}
1252
1253	clk->parent = __clk_init_parent(clk);
 
 
 
 
 
 
1254
1255	/*
1256	 * Populate clk->parent if parent has already been __clk_init'd.  If
1257	 * parent has not yet been __clk_init'd then place clk in the orphan
1258	 * list.  If clk has set the CLK_IS_ROOT flag then place it in the root
1259	 * clk list.
1260	 *
1261	 * Every time a new clk is clk_init'd then we walk the list of orphan
1262	 * clocks and re-parent any that are children of the clock currently
1263	 * being clk_init'd.
1264	 */
1265	if (clk->parent)
1266		hlist_add_head(&clk->child_node,
1267				&clk->parent->children);
1268	else if (clk->flags & CLK_IS_ROOT)
1269		hlist_add_head(&clk->child_node, &clk_root_list);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1270	else
1271		hlist_add_head(&clk->child_node, &clk_orphan_list);
 
 
 
 
 
 
 
 
 
 
1272
1273	/*
1274	 * Set clk's rate.  The preferred method is to use .recalc_rate.  For
1275	 * simple clocks and lazy developers the default fallback is to use the
1276	 * parent's rate.  If a clock doesn't have a parent (or is orphaned)
1277	 * then rate is set to zero.
1278	 */
1279	if (clk->ops->recalc_rate)
1280		clk->rate = clk->ops->recalc_rate(clk->hw,
1281				__clk_get_rate(clk->parent));
1282	else if (clk->parent)
1283		clk->rate = clk->parent->rate;
1284	else
1285		clk->rate = 0;
 
1286
1287	/*
1288	 * walk the list of orphan clocks and reparent any that are children of
1289	 * this clock
1290	 */
1291	hlist_for_each_entry_safe(orphan, tmp, tmp2, &clk_orphan_list, child_node)
1292		for (i = 0; i < orphan->num_parents; i++)
1293			if (!strcmp(clk->name, orphan->parent_names[i])) {
1294				__clk_reparent(orphan, clk);
1295				break;
1296			}
1297
1298	/*
1299	 * optional platform-specific magic
1300	 *
1301	 * The .init callback is not used by any of the basic clock types, but
1302	 * exists for weird hardware that must perform initialization magic.
1303	 * Please consider other ways of solving initialization problems before
1304	 * using this callback, as it's use is discouraged.
1305	 */
1306	if (clk->ops->init)
1307		clk->ops->init(clk->hw);
1308
1309	clk_debug_register(clk);
1310
 
1311out:
1312	mutex_unlock(&prepare_lock);
 
 
 
1313
1314	return ret;
1315}
1316
1317/**
1318 * __clk_register - register a clock and return a cookie.
1319 *
1320 * Same as clk_register, except that the .clk field inside hw shall point to a
1321 * preallocated (generally statically allocated) struct clk. None of the fields
1322 * of the struct clk need to be initialized.
1323 *
1324 * The data pointed to by .init and .clk field shall NOT be marked as init
1325 * data.
1326 *
1327 * __clk_register is only exposed via clk-private.h and is intended for use with
1328 * very large numbers of clocks that need to be statically initialized.  It is
1329 * a layering violation to include clk-private.h from any code which implements
1330 * a clock's .ops; as such any statically initialized clock data MUST be in a
1331 * separate C file from the logic that implements it's operations.  Returns 0
1332 * on success, otherwise an error code.
1333 */
1334struct clk *__clk_register(struct device *dev, struct clk_hw *hw)
1335{
1336	int ret;
1337	struct clk *clk;
1338
1339	clk = hw->clk;
1340	clk->name = hw->init->name;
1341	clk->ops = hw->init->ops;
1342	clk->hw = hw;
1343	clk->flags = hw->init->flags;
1344	clk->parent_names = hw->init->parent_names;
1345	clk->num_parents = hw->init->num_parents;
1346
1347	ret = __clk_init(dev, clk);
1348	if (ret)
1349		return ERR_PTR(ret);
 
 
 
 
 
 
 
 
 
1350
1351	return clk;
1352}
1353EXPORT_SYMBOL_GPL(__clk_register);
 
 
 
 
 
 
 
 
1354
1355/**
1356 * clk_register - allocate a new clock, register it and return an opaque cookie
1357 * @dev: device that is registering this clock
1358 * @hw: link to hardware-specific clock data
1359 *
1360 * clk_register is the primary interface for populating the clock tree with new
1361 * clock nodes.  It returns a pointer to the newly allocated struct clk which
1362 * cannot be dereferenced by driver code but may be used in conjuction with the
1363 * rest of the clock API.  In the event of an error clk_register will return an
1364 * error code; drivers must test for an error code after calling clk_register.
1365 */
1366struct clk *clk_register(struct device *dev, struct clk_hw *hw)
1367{
1368	int i, ret;
1369	struct clk *clk;
1370
1371	clk = kzalloc(sizeof(*clk), GFP_KERNEL);
1372	if (!clk) {
1373		pr_err("%s: could not allocate clk\n", __func__);
1374		ret = -ENOMEM;
1375		goto fail_out;
1376	}
1377
1378	clk->name = kstrdup(hw->init->name, GFP_KERNEL);
1379	if (!clk->name) {
1380		pr_err("%s: could not allocate clk->name\n", __func__);
1381		ret = -ENOMEM;
1382		goto fail_name;
1383	}
1384	clk->ops = hw->init->ops;
1385	clk->hw = hw;
1386	clk->flags = hw->init->flags;
1387	clk->num_parents = hw->init->num_parents;
1388	hw->clk = clk;
 
 
 
 
1389
1390	/* allocate local copy in case parent_names is __initdata */
1391	clk->parent_names = kzalloc((sizeof(char*) * clk->num_parents),
1392			GFP_KERNEL);
1393
1394	if (!clk->parent_names) {
1395		pr_err("%s: could not allocate clk->parent_names\n", __func__);
1396		ret = -ENOMEM;
1397		goto fail_parent_names;
1398	}
1399
1400
1401	/* copy each string name in case parent_names is __initdata */
1402	for (i = 0; i < clk->num_parents; i++) {
1403		clk->parent_names[i] = kstrdup(hw->init->parent_names[i],
1404						GFP_KERNEL);
1405		if (!clk->parent_names[i]) {
1406			pr_err("%s: could not copy parent_names\n", __func__);
1407			ret = -ENOMEM;
1408			goto fail_parent_names_copy;
1409		}
1410	}
1411
1412	ret = __clk_init(dev, clk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1413	if (!ret)
1414		return clk;
1415
 
 
 
 
 
1416fail_parent_names_copy:
1417	while (--i >= 0)
1418		kfree(clk->parent_names[i]);
1419	kfree(clk->parent_names);
1420fail_parent_names:
1421	kfree(clk->name);
1422fail_name:
1423	kfree(clk);
1424fail_out:
1425	return ERR_PTR(ret);
1426}
1427EXPORT_SYMBOL_GPL(clk_register);
1428
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1429/**
1430 * clk_unregister - unregister a currently registered clock
1431 * @clk: clock to unregister
1432 *
1433 * Currently unimplemented.
1434 */
1435void clk_unregister(struct clk *clk) {}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1436EXPORT_SYMBOL_GPL(clk_unregister);
1437
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1438/***        clk rate change notifiers        ***/
1439
1440/**
1441 * clk_notifier_register - add a clk rate change notifier
1442 * @clk: struct clk * to watch
1443 * @nb: struct notifier_block * with callback info
1444 *
1445 * Request notification when clk's rate changes.  This uses an SRCU
1446 * notifier because we want it to block and notifier unregistrations are
1447 * uncommon.  The callbacks associated with the notifier must not
1448 * re-enter into the clk framework by calling any top-level clk APIs;
1449 * this will cause a nested prepare_lock mutex.
1450 *
1451 * Pre-change notifier callbacks will be passed the current, pre-change
1452 * rate of the clk via struct clk_notifier_data.old_rate.  The new,
1453 * post-change rate of the clk is passed via struct
1454 * clk_notifier_data.new_rate.
1455 *
1456 * Post-change notifiers will pass the now-current, post-change rate of
1457 * the clk in both struct clk_notifier_data.old_rate and struct
1458 * clk_notifier_data.new_rate.
1459 *
1460 * Abort-change notifiers are effectively the opposite of pre-change
1461 * notifiers: the original pre-change clk rate is passed in via struct
1462 * clk_notifier_data.new_rate and the failed post-change rate is passed
1463 * in via struct clk_notifier_data.old_rate.
1464 *
1465 * clk_notifier_register() must be called from non-atomic context.
1466 * Returns -EINVAL if called with null arguments, -ENOMEM upon
1467 * allocation failure; otherwise, passes along the return value of
1468 * srcu_notifier_chain_register().
1469 */
1470int clk_notifier_register(struct clk *clk, struct notifier_block *nb)
1471{
1472	struct clk_notifier *cn;
1473	int ret = -ENOMEM;
1474
1475	if (!clk || !nb)
1476		return -EINVAL;
1477
1478	mutex_lock(&prepare_lock);
1479
1480	/* search the list of notifiers for this clk */
1481	list_for_each_entry(cn, &clk_notifier_list, node)
1482		if (cn->clk == clk)
1483			break;
1484
1485	/* if clk wasn't in the notifier list, allocate new clk_notifier */
1486	if (cn->clk != clk) {
1487		cn = kzalloc(sizeof(struct clk_notifier), GFP_KERNEL);
1488		if (!cn)
1489			goto out;
1490
1491		cn->clk = clk;
1492		srcu_init_notifier_head(&cn->notifier_head);
1493
1494		list_add(&cn->node, &clk_notifier_list);
1495	}
1496
1497	ret = srcu_notifier_chain_register(&cn->notifier_head, nb);
1498
1499	clk->notifier_count++;
1500
1501out:
1502	mutex_unlock(&prepare_lock);
1503
1504	return ret;
1505}
1506EXPORT_SYMBOL_GPL(clk_notifier_register);
1507
1508/**
1509 * clk_notifier_unregister - remove a clk rate change notifier
1510 * @clk: struct clk *
1511 * @nb: struct notifier_block * with callback info
1512 *
1513 * Request no further notification for changes to 'clk' and frees memory
1514 * allocated in clk_notifier_register.
1515 *
1516 * Returns -EINVAL if called with null arguments; otherwise, passes
1517 * along the return value of srcu_notifier_chain_unregister().
1518 */
1519int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb)
1520{
1521	struct clk_notifier *cn = NULL;
1522	int ret = -EINVAL;
1523
1524	if (!clk || !nb)
1525		return -EINVAL;
1526
1527	mutex_lock(&prepare_lock);
1528
1529	list_for_each_entry(cn, &clk_notifier_list, node)
1530		if (cn->clk == clk)
1531			break;
1532
1533	if (cn->clk == clk) {
1534		ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb);
1535
1536		clk->notifier_count--;
1537
1538		/* XXX the notifier code should handle this better */
1539		if (!cn->notifier_head.head) {
1540			srcu_cleanup_notifier_head(&cn->notifier_head);
 
1541			kfree(cn);
1542		}
1543
1544	} else {
1545		ret = -ENOENT;
1546	}
1547
1548	mutex_unlock(&prepare_lock);
1549
1550	return ret;
1551}
1552EXPORT_SYMBOL_GPL(clk_notifier_unregister);
v4.6
   1/*
   2 * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com>
   3 * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org>
   4 *
   5 * This program is free software; you can redistribute it and/or modify
   6 * it under the terms of the GNU General Public License version 2 as
   7 * published by the Free Software Foundation.
   8 *
   9 * Standard functionality for the common clock API.  See Documentation/clk.txt
  10 */
  11
  12#include <linux/clk.h>
  13#include <linux/clk-provider.h>
  14#include <linux/clk/clk-conf.h>
  15#include <linux/module.h>
  16#include <linux/mutex.h>
  17#include <linux/spinlock.h>
  18#include <linux/err.h>
  19#include <linux/list.h>
  20#include <linux/slab.h>
  21#include <linux/of.h>
  22#include <linux/device.h>
  23#include <linux/init.h>
  24#include <linux/sched.h>
  25#include <linux/clkdev.h>
  26
  27#include "clk.h"
  28
  29static DEFINE_SPINLOCK(enable_lock);
  30static DEFINE_MUTEX(prepare_lock);
  31
  32static struct task_struct *prepare_owner;
  33static struct task_struct *enable_owner;
  34
  35static int prepare_refcnt;
  36static int enable_refcnt;
  37
  38static HLIST_HEAD(clk_root_list);
  39static HLIST_HEAD(clk_orphan_list);
  40static LIST_HEAD(clk_notifier_list);
  41
  42/***    private data structures    ***/
  43
  44struct clk_core {
  45	const char		*name;
  46	const struct clk_ops	*ops;
  47	struct clk_hw		*hw;
  48	struct module		*owner;
  49	struct clk_core		*parent;
  50	const char		**parent_names;
  51	struct clk_core		**parents;
  52	u8			num_parents;
  53	u8			new_parent_index;
  54	unsigned long		rate;
  55	unsigned long		req_rate;
  56	unsigned long		new_rate;
  57	struct clk_core		*new_parent;
  58	struct clk_core		*new_child;
  59	unsigned long		flags;
  60	bool			orphan;
  61	unsigned int		enable_count;
  62	unsigned int		prepare_count;
  63	unsigned long		min_rate;
  64	unsigned long		max_rate;
  65	unsigned long		accuracy;
  66	int			phase;
  67	struct hlist_head	children;
  68	struct hlist_node	child_node;
  69	struct hlist_head	clks;
  70	unsigned int		notifier_count;
  71#ifdef CONFIG_DEBUG_FS
  72	struct dentry		*dentry;
  73	struct hlist_node	debug_node;
  74#endif
  75	struct kref		ref;
  76};
  77
  78#define CREATE_TRACE_POINTS
  79#include <trace/events/clk.h>
 
 
 
  80
  81struct clk {
  82	struct clk_core	*core;
  83	const char *dev_id;
  84	const char *con_id;
  85	unsigned long min_rate;
  86	unsigned long max_rate;
  87	struct hlist_node clks_node;
  88};
  89
  90/***           locking             ***/
  91static void clk_prepare_lock(void)
  92{
  93	if (!mutex_trylock(&prepare_lock)) {
  94		if (prepare_owner == current) {
  95			prepare_refcnt++;
  96			return;
  97		}
  98		mutex_lock(&prepare_lock);
  99	}
 100	WARN_ON_ONCE(prepare_owner != NULL);
 101	WARN_ON_ONCE(prepare_refcnt != 0);
 102	prepare_owner = current;
 103	prepare_refcnt = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 104}
 105
 106static void clk_prepare_unlock(void)
 
 107{
 108	WARN_ON_ONCE(prepare_owner != current);
 109	WARN_ON_ONCE(prepare_refcnt == 0);
 
 
 
 
 110
 111	if (--prepare_refcnt)
 112		return;
 113	prepare_owner = NULL;
 114	mutex_unlock(&prepare_lock);
 115}
 116
 117static unsigned long clk_enable_lock(void)
 118	__acquires(enable_lock)
 119{
 120	unsigned long flags;
 121
 122	if (!spin_trylock_irqsave(&enable_lock, flags)) {
 123		if (enable_owner == current) {
 124			enable_refcnt++;
 125			__acquire(enable_lock);
 126			return flags;
 127		}
 128		spin_lock_irqsave(&enable_lock, flags);
 129	}
 130	WARN_ON_ONCE(enable_owner != NULL);
 131	WARN_ON_ONCE(enable_refcnt != 0);
 132	enable_owner = current;
 133	enable_refcnt = 1;
 134	return flags;
 135}
 136
 137static void clk_enable_unlock(unsigned long flags)
 138	__releases(enable_lock)
 
 
 
 
 
 
 
 
 
 
 139{
 140	WARN_ON_ONCE(enable_owner != current);
 141	WARN_ON_ONCE(enable_refcnt == 0);
 
 
 
 
 142
 143	if (--enable_refcnt) {
 144		__release(enable_lock);
 145		return;
 146	}
 147	enable_owner = NULL;
 148	spin_unlock_irqrestore(&enable_lock, flags);
 149}
 150
 151static bool clk_core_is_prepared(struct clk_core *core)
 152{
 153	/*
 154	 * .is_prepared is optional for clocks that can prepare
 155	 * fall back to software usage counter if it is missing
 156	 */
 157	if (!core->ops->is_prepared)
 158		return core->prepare_count;
 
 
 
 
 
 
 
 
 159
 160	return core->ops->is_prepared(core->hw);
 
 
 
 161}
 162
 163static bool clk_core_is_enabled(struct clk_core *core)
 
 
 
 
 
 
 
 
 
 
 
 
 164{
 165	/*
 166	 * .is_enabled is only mandatory for clocks that gate
 167	 * fall back to software usage counter if .is_enabled is missing
 168	 */
 169	if (!core->ops->is_enabled)
 170		return core->enable_count;
 
 
 
 171
 172	return core->ops->is_enabled(core->hw);
 173}
 174
 175static void clk_unprepare_unused_subtree(struct clk_core *core)
 176{
 177	struct clk_core *child;
 178
 179	lockdep_assert_held(&prepare_lock);
 
 180
 181	hlist_for_each_entry(child, &core->children, child_node)
 182		clk_unprepare_unused_subtree(child);
 183
 184	if (core->prepare_count)
 185		return;
 186
 187	if (core->flags & CLK_IGNORE_UNUSED)
 188		return;
 189
 190	if (clk_core_is_prepared(core)) {
 191		trace_clk_unprepare(core);
 192		if (core->ops->unprepare_unused)
 193			core->ops->unprepare_unused(core->hw);
 194		else if (core->ops->unprepare)
 195			core->ops->unprepare(core->hw);
 196		trace_clk_unprepare_complete(core);
 197	}
 198}
 
 
 
 
 199
 200static void clk_disable_unused_subtree(struct clk_core *core)
 
 201{
 202	struct clk_core *child;
 
 203	unsigned long flags;
 204
 205	lockdep_assert_held(&prepare_lock);
 
 206
 207	hlist_for_each_entry(child, &core->children, child_node)
 208		clk_disable_unused_subtree(child);
 209
 210	flags = clk_enable_lock();
 211
 212	if (core->enable_count)
 213		goto unlock_out;
 214
 215	if (core->flags & CLK_IGNORE_UNUSED)
 216		goto unlock_out;
 217
 218	/*
 219	 * some gate clocks have special needs during the disable-unused
 220	 * sequence.  call .disable_unused if available, otherwise fall
 221	 * back to .disable
 222	 */
 223	if (clk_core_is_enabled(core)) {
 224		trace_clk_disable(core);
 225		if (core->ops->disable_unused)
 226			core->ops->disable_unused(core->hw);
 227		else if (core->ops->disable)
 228			core->ops->disable(core->hw);
 229		trace_clk_disable_complete(core);
 230	}
 231
 232unlock_out:
 233	clk_enable_unlock(flags);
 234}
 235
 236static bool clk_ignore_unused;
 237static int __init clk_ignore_unused_setup(char *__unused)
 238{
 239	clk_ignore_unused = true;
 240	return 1;
 241}
 242__setup("clk_ignore_unused", clk_ignore_unused_setup);
 243
 244static int clk_disable_unused(void)
 245{
 246	struct clk_core *core;
 
 247
 248	if (clk_ignore_unused) {
 249		pr_warn("clk: Not disabling unused clocks\n");
 250		return 0;
 251	}
 252
 253	clk_prepare_lock();
 
 254
 255	hlist_for_each_entry(core, &clk_root_list, child_node)
 256		clk_disable_unused_subtree(core);
 257
 258	hlist_for_each_entry(core, &clk_orphan_list, child_node)
 259		clk_disable_unused_subtree(core);
 260
 261	hlist_for_each_entry(core, &clk_root_list, child_node)
 262		clk_unprepare_unused_subtree(core);
 263
 264	hlist_for_each_entry(core, &clk_orphan_list, child_node)
 265		clk_unprepare_unused_subtree(core);
 266
 267	clk_prepare_unlock();
 268
 269	return 0;
 270}
 271late_initcall_sync(clk_disable_unused);
 272
 273/***    helper functions   ***/
 274
 275const char *__clk_get_name(const struct clk *clk)
 276{
 277	return !clk ? NULL : clk->core->name;
 278}
 279EXPORT_SYMBOL_GPL(__clk_get_name);
 280
 281const char *clk_hw_get_name(const struct clk_hw *hw)
 282{
 283	return hw->core->name;
 284}
 285EXPORT_SYMBOL_GPL(clk_hw_get_name);
 286
 287struct clk_hw *__clk_get_hw(struct clk *clk)
 288{
 289	return !clk ? NULL : clk->core->hw;
 290}
 291EXPORT_SYMBOL_GPL(__clk_get_hw);
 292
 293unsigned int clk_hw_get_num_parents(const struct clk_hw *hw)
 294{
 295	return hw->core->num_parents;
 296}
 297EXPORT_SYMBOL_GPL(clk_hw_get_num_parents);
 298
 299struct clk_hw *clk_hw_get_parent(const struct clk_hw *hw)
 300{
 301	return hw->core->parent ? hw->core->parent->hw : NULL;
 302}
 303EXPORT_SYMBOL_GPL(clk_hw_get_parent);
 304
 305static struct clk_core *__clk_lookup_subtree(const char *name,
 306					     struct clk_core *core)
 307{
 308	struct clk_core *child;
 309	struct clk_core *ret;
 310
 311	if (!strcmp(core->name, name))
 312		return core;
 313
 314	hlist_for_each_entry(child, &core->children, child_node) {
 315		ret = __clk_lookup_subtree(name, child);
 316		if (ret)
 317			return ret;
 318	}
 319
 320	return NULL;
 321}
 322
 323static struct clk_core *clk_core_lookup(const char *name)
 324{
 325	struct clk_core *root_clk;
 326	struct clk_core *ret;
 327
 328	if (!name)
 329		return NULL;
 330
 331	/* search the 'proper' clk tree first */
 332	hlist_for_each_entry(root_clk, &clk_root_list, child_node) {
 333		ret = __clk_lookup_subtree(name, root_clk);
 334		if (ret)
 335			return ret;
 336	}
 337
 338	/* if not found, then search the orphan tree */
 339	hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) {
 340		ret = __clk_lookup_subtree(name, root_clk);
 341		if (ret)
 342			return ret;
 343	}
 344
 345	return NULL;
 346}
 347
 348static struct clk_core *clk_core_get_parent_by_index(struct clk_core *core,
 349							 u8 index)
 350{
 351	if (!core || index >= core->num_parents)
 352		return NULL;
 353
 354	if (!core->parents[index])
 355		core->parents[index] =
 356				clk_core_lookup(core->parent_names[index]);
 357
 358	return core->parents[index];
 359}
 360
 361struct clk_hw *
 362clk_hw_get_parent_by_index(const struct clk_hw *hw, unsigned int index)
 363{
 364	struct clk_core *parent;
 365
 366	parent = clk_core_get_parent_by_index(hw->core, index);
 367
 368	return !parent ? NULL : parent->hw;
 369}
 370EXPORT_SYMBOL_GPL(clk_hw_get_parent_by_index);
 371
 372unsigned int __clk_get_enable_count(struct clk *clk)
 373{
 374	return !clk ? 0 : clk->core->enable_count;
 375}
 376
 377static unsigned long clk_core_get_rate_nolock(struct clk_core *core)
 378{
 379	unsigned long ret;
 380
 381	if (!core) {
 382		ret = 0;
 383		goto out;
 384	}
 385
 386	ret = core->rate;
 387
 388	if (!core->num_parents)
 389		goto out;
 390
 391	if (!core->parent)
 392		ret = 0;
 393
 394out:
 395	return ret;
 396}
 397
 398unsigned long clk_hw_get_rate(const struct clk_hw *hw)
 399{
 400	return clk_core_get_rate_nolock(hw->core);
 401}
 402EXPORT_SYMBOL_GPL(clk_hw_get_rate);
 403
 404static unsigned long __clk_get_accuracy(struct clk_core *core)
 405{
 406	if (!core)
 407		return 0;
 408
 409	return core->accuracy;
 410}
 411
 412unsigned long __clk_get_flags(struct clk *clk)
 413{
 414	return !clk ? 0 : clk->core->flags;
 415}
 416EXPORT_SYMBOL_GPL(__clk_get_flags);
 417
 418unsigned long clk_hw_get_flags(const struct clk_hw *hw)
 419{
 420	return hw->core->flags;
 421}
 422EXPORT_SYMBOL_GPL(clk_hw_get_flags);
 423
 424bool clk_hw_is_prepared(const struct clk_hw *hw)
 425{
 426	return clk_core_is_prepared(hw->core);
 427}
 428
 429bool clk_hw_is_enabled(const struct clk_hw *hw)
 430{
 431	return clk_core_is_enabled(hw->core);
 432}
 433
 434bool __clk_is_enabled(struct clk *clk)
 435{
 436	if (!clk)
 437		return false;
 438
 439	return clk_core_is_enabled(clk->core);
 440}
 441EXPORT_SYMBOL_GPL(__clk_is_enabled);
 
 
 
 
 
 442
 443static bool mux_is_better_rate(unsigned long rate, unsigned long now,
 444			   unsigned long best, unsigned long flags)
 445{
 446	if (flags & CLK_MUX_ROUND_CLOSEST)
 447		return abs(now - rate) < abs(best - rate);
 448
 449	return now <= rate && now > best;
 450}
 451
 452static int
 453clk_mux_determine_rate_flags(struct clk_hw *hw, struct clk_rate_request *req,
 454			     unsigned long flags)
 455{
 456	struct clk_core *core = hw->core, *parent, *best_parent = NULL;
 457	int i, num_parents, ret;
 458	unsigned long best = 0;
 459	struct clk_rate_request parent_req = *req;
 460
 461	/* if NO_REPARENT flag set, pass through to current parent */
 462	if (core->flags & CLK_SET_RATE_NO_REPARENT) {
 463		parent = core->parent;
 464		if (core->flags & CLK_SET_RATE_PARENT) {
 465			ret = __clk_determine_rate(parent ? parent->hw : NULL,
 466						   &parent_req);
 467			if (ret)
 468				return ret;
 469
 470			best = parent_req.rate;
 471		} else if (parent) {
 472			best = clk_core_get_rate_nolock(parent);
 473		} else {
 474			best = clk_core_get_rate_nolock(core);
 475		}
 476
 477		goto out;
 478	}
 479
 480	/* find the parent that can provide the fastest rate <= rate */
 481	num_parents = core->num_parents;
 482	for (i = 0; i < num_parents; i++) {
 483		parent = clk_core_get_parent_by_index(core, i);
 484		if (!parent)
 485			continue;
 486
 487		if (core->flags & CLK_SET_RATE_PARENT) {
 488			parent_req = *req;
 489			ret = __clk_determine_rate(parent->hw, &parent_req);
 490			if (ret)
 491				continue;
 492		} else {
 493			parent_req.rate = clk_core_get_rate_nolock(parent);
 494		}
 495
 496		if (mux_is_better_rate(req->rate, parent_req.rate,
 497				       best, flags)) {
 498			best_parent = parent;
 499			best = parent_req.rate;
 500		}
 501	}
 502
 503	if (!best_parent)
 504		return -EINVAL;
 505
 506out:
 507	if (best_parent)
 508		req->best_parent_hw = best_parent->hw;
 509	req->best_parent_rate = best;
 510	req->rate = best;
 511
 512	return 0;
 513}
 514
 515struct clk *__clk_lookup(const char *name)
 516{
 517	struct clk_core *core = clk_core_lookup(name);
 
 
 518
 519	return !core ? NULL : core->hw->clk;
 520}
 521
 522static void clk_core_get_boundaries(struct clk_core *core,
 523				    unsigned long *min_rate,
 524				    unsigned long *max_rate)
 525{
 526	struct clk *clk_user;
 
 527
 528	*min_rate = core->min_rate;
 529	*max_rate = core->max_rate;
 
 
 
 
 530
 531	hlist_for_each_entry(clk_user, &core->clks, clks_node)
 532		*min_rate = max(*min_rate, clk_user->min_rate);
 533
 534	hlist_for_each_entry(clk_user, &core->clks, clks_node)
 535		*max_rate = min(*max_rate, clk_user->max_rate);
 536}
 537
 538void clk_hw_set_rate_range(struct clk_hw *hw, unsigned long min_rate,
 539			   unsigned long max_rate)
 540{
 541	hw->core->min_rate = min_rate;
 542	hw->core->max_rate = max_rate;
 543}
 544EXPORT_SYMBOL_GPL(clk_hw_set_rate_range);
 545
 546/*
 547 * Helper for finding best parent to provide a given frequency. This can be used
 548 * directly as a determine_rate callback (e.g. for a mux), or from a more
 549 * complex clock that may combine a mux with other operations.
 550 */
 551int __clk_mux_determine_rate(struct clk_hw *hw,
 552			     struct clk_rate_request *req)
 553{
 554	return clk_mux_determine_rate_flags(hw, req, 0);
 555}
 556EXPORT_SYMBOL_GPL(__clk_mux_determine_rate);
 557
 558int __clk_mux_determine_rate_closest(struct clk_hw *hw,
 559				     struct clk_rate_request *req)
 560{
 561	return clk_mux_determine_rate_flags(hw, req, CLK_MUX_ROUND_CLOSEST);
 562}
 563EXPORT_SYMBOL_GPL(__clk_mux_determine_rate_closest);
 564
 565/***        clk api        ***/
 566
 567static void clk_core_unprepare(struct clk_core *core)
 568{
 569	lockdep_assert_held(&prepare_lock);
 570
 571	if (!core)
 572		return;
 573
 574	if (WARN_ON(core->prepare_count == 0))
 575		return;
 576
 577	if (--core->prepare_count > 0)
 578		return;
 579
 580	WARN_ON(core->enable_count > 0);
 581
 582	trace_clk_unprepare(core);
 583
 584	if (core->ops->unprepare)
 585		core->ops->unprepare(core->hw);
 586
 587	trace_clk_unprepare_complete(core);
 588	clk_core_unprepare(core->parent);
 589}
 590
 591/**
 592 * clk_unprepare - undo preparation of a clock source
 593 * @clk: the clk being unprepared
 594 *
 595 * clk_unprepare may sleep, which differentiates it from clk_disable.  In a
 596 * simple case, clk_unprepare can be used instead of clk_disable to gate a clk
 597 * if the operation may sleep.  One example is a clk which is accessed over
 598 * I2c.  In the complex case a clk gate operation may require a fast and a slow
 599 * part.  It is this reason that clk_unprepare and clk_disable are not mutually
 600 * exclusive.  In fact clk_disable must be called before clk_unprepare.
 601 */
 602void clk_unprepare(struct clk *clk)
 603{
 604	if (IS_ERR_OR_NULL(clk))
 605		return;
 606
 607	clk_prepare_lock();
 608	clk_core_unprepare(clk->core);
 609	clk_prepare_unlock();
 610}
 611EXPORT_SYMBOL_GPL(clk_unprepare);
 612
 613static int clk_core_prepare(struct clk_core *core)
 614{
 615	int ret = 0;
 616
 617	lockdep_assert_held(&prepare_lock);
 618
 619	if (!core)
 620		return 0;
 621
 622	if (core->prepare_count == 0) {
 623		ret = clk_core_prepare(core->parent);
 624		if (ret)
 625			return ret;
 626
 627		trace_clk_prepare(core);
 628
 629		if (core->ops->prepare)
 630			ret = core->ops->prepare(core->hw);
 631
 632		trace_clk_prepare_complete(core);
 633
 634		if (ret) {
 635			clk_core_unprepare(core->parent);
 636			return ret;
 637		}
 638	}
 639
 640	core->prepare_count++;
 641
 642	return 0;
 643}
 644
 645/**
 646 * clk_prepare - prepare a clock source
 647 * @clk: the clk being prepared
 648 *
 649 * clk_prepare may sleep, which differentiates it from clk_enable.  In a simple
 650 * case, clk_prepare can be used instead of clk_enable to ungate a clk if the
 651 * operation may sleep.  One example is a clk which is accessed over I2c.  In
 652 * the complex case a clk ungate operation may require a fast and a slow part.
 653 * It is this reason that clk_prepare and clk_enable are not mutually
 654 * exclusive.  In fact clk_prepare must be called before clk_enable.
 655 * Returns 0 on success, -EERROR otherwise.
 656 */
 657int clk_prepare(struct clk *clk)
 658{
 659	int ret;
 660
 661	if (!clk)
 662		return 0;
 663
 664	clk_prepare_lock();
 665	ret = clk_core_prepare(clk->core);
 666	clk_prepare_unlock();
 667
 668	return ret;
 669}
 670EXPORT_SYMBOL_GPL(clk_prepare);
 671
 672static void clk_core_disable(struct clk_core *core)
 673{
 674	lockdep_assert_held(&enable_lock);
 675
 676	if (!core)
 677		return;
 678
 679	if (WARN_ON(core->enable_count == 0))
 680		return;
 681
 682	if (--core->enable_count > 0)
 683		return;
 684
 685	trace_clk_disable(core);
 686
 687	if (core->ops->disable)
 688		core->ops->disable(core->hw);
 689
 690	trace_clk_disable_complete(core);
 691
 692	clk_core_disable(core->parent);
 693}
 694
 695/**
 696 * clk_disable - gate a clock
 697 * @clk: the clk being gated
 698 *
 699 * clk_disable must not sleep, which differentiates it from clk_unprepare.  In
 700 * a simple case, clk_disable can be used instead of clk_unprepare to gate a
 701 * clk if the operation is fast and will never sleep.  One example is a
 702 * SoC-internal clk which is controlled via simple register writes.  In the
 703 * complex case a clk gate operation may require a fast and a slow part.  It is
 704 * this reason that clk_unprepare and clk_disable are not mutually exclusive.
 705 * In fact clk_disable must be called before clk_unprepare.
 706 */
 707void clk_disable(struct clk *clk)
 708{
 709	unsigned long flags;
 710
 711	if (IS_ERR_OR_NULL(clk))
 712		return;
 713
 714	flags = clk_enable_lock();
 715	clk_core_disable(clk->core);
 716	clk_enable_unlock(flags);
 717}
 718EXPORT_SYMBOL_GPL(clk_disable);
 719
 720static int clk_core_enable(struct clk_core *core)
 721{
 722	int ret = 0;
 723
 724	lockdep_assert_held(&enable_lock);
 725
 726	if (!core)
 727		return 0;
 728
 729	if (WARN_ON(core->prepare_count == 0))
 730		return -ESHUTDOWN;
 731
 732	if (core->enable_count == 0) {
 733		ret = clk_core_enable(core->parent);
 734
 735		if (ret)
 736			return ret;
 737
 738		trace_clk_enable(core);
 739
 740		if (core->ops->enable)
 741			ret = core->ops->enable(core->hw);
 742
 743		trace_clk_enable_complete(core);
 744
 745		if (ret) {
 746			clk_core_disable(core->parent);
 747			return ret;
 748		}
 749	}
 750
 751	core->enable_count++;
 752	return 0;
 753}
 754
 755/**
 756 * clk_enable - ungate a clock
 757 * @clk: the clk being ungated
 758 *
 759 * clk_enable must not sleep, which differentiates it from clk_prepare.  In a
 760 * simple case, clk_enable can be used instead of clk_prepare to ungate a clk
 761 * if the operation will never sleep.  One example is a SoC-internal clk which
 762 * is controlled via simple register writes.  In the complex case a clk ungate
 763 * operation may require a fast and a slow part.  It is this reason that
 764 * clk_enable and clk_prepare are not mutually exclusive.  In fact clk_prepare
 765 * must be called before clk_enable.  Returns 0 on success, -EERROR
 766 * otherwise.
 767 */
 768int clk_enable(struct clk *clk)
 769{
 770	unsigned long flags;
 771	int ret;
 772
 773	if (!clk)
 774		return 0;
 775
 776	flags = clk_enable_lock();
 777	ret = clk_core_enable(clk->core);
 778	clk_enable_unlock(flags);
 779
 780	return ret;
 781}
 782EXPORT_SYMBOL_GPL(clk_enable);
 783
 784static int clk_core_round_rate_nolock(struct clk_core *core,
 785				      struct clk_rate_request *req)
 
 
 
 
 
 
 786{
 787	struct clk_core *parent;
 788	long rate;
 789
 790	lockdep_assert_held(&prepare_lock);
 
 
 791
 792	if (!core)
 793		return 0;
 794
 795	parent = core->parent;
 796	if (parent) {
 797		req->best_parent_hw = parent->hw;
 798		req->best_parent_rate = parent->rate;
 799	} else {
 800		req->best_parent_hw = NULL;
 801		req->best_parent_rate = 0;
 802	}
 803
 804	if (core->ops->determine_rate) {
 805		return core->ops->determine_rate(core->hw, req);
 806	} else if (core->ops->round_rate) {
 807		rate = core->ops->round_rate(core->hw, req->rate,
 808					     &req->best_parent_rate);
 809		if (rate < 0)
 810			return rate;
 811
 812		req->rate = rate;
 813	} else if (core->flags & CLK_SET_RATE_PARENT) {
 814		return clk_core_round_rate_nolock(parent, req);
 815	} else {
 816		req->rate = core->rate;
 817	}
 818
 819	return 0;
 820}
 
 821
 822/**
 823 * __clk_determine_rate - get the closest rate actually supported by a clock
 824 * @hw: determine the rate of this clock
 825 * @rate: target rate
 826 * @min_rate: returned rate must be greater than this rate
 827 * @max_rate: returned rate must be less than this rate
 828 *
 829 * Useful for clk_ops such as .set_rate and .determine_rate.
 830 */
 831int __clk_determine_rate(struct clk_hw *hw, struct clk_rate_request *req)
 832{
 833	if (!hw) {
 834		req->rate = 0;
 835		return 0;
 836	}
 837
 838	return clk_core_round_rate_nolock(hw->core, req);
 839}
 840EXPORT_SYMBOL_GPL(__clk_determine_rate);
 841
 842unsigned long clk_hw_round_rate(struct clk_hw *hw, unsigned long rate)
 843{
 844	int ret;
 845	struct clk_rate_request req;
 846
 847	clk_core_get_boundaries(hw->core, &req.min_rate, &req.max_rate);
 848	req.rate = rate;
 849
 850	ret = clk_core_round_rate_nolock(hw->core, &req);
 851	if (ret)
 852		return 0;
 853
 854	return req.rate;
 855}
 856EXPORT_SYMBOL_GPL(clk_hw_round_rate);
 857
 858/**
 859 * clk_round_rate - round the given rate for a clk
 860 * @clk: the clk for which we are rounding a rate
 861 * @rate: the rate which is to be rounded
 862 *
 863 * Takes in a rate as input and rounds it to a rate that the clk can actually
 864 * use which is then returned.  If clk doesn't support round_rate operation
 865 * then the parent rate is returned.
 866 */
 867long clk_round_rate(struct clk *clk, unsigned long rate)
 868{
 869	struct clk_rate_request req;
 870	int ret;
 871
 872	if (!clk)
 873		return 0;
 
 874
 875	clk_prepare_lock();
 876
 877	clk_core_get_boundaries(clk->core, &req.min_rate, &req.max_rate);
 878	req.rate = rate;
 879
 880	ret = clk_core_round_rate_nolock(clk->core, &req);
 881	clk_prepare_unlock();
 882
 883	if (ret)
 884		return ret;
 885
 886	return req.rate;
 887}
 888EXPORT_SYMBOL_GPL(clk_round_rate);
 889
 890/**
 891 * __clk_notify - call clk notifier chain
 892 * @core: clk that is changing rate
 893 * @msg: clk notifier type (see include/linux/clk.h)
 894 * @old_rate: old clk rate
 895 * @new_rate: new clk rate
 896 *
 897 * Triggers a notifier call chain on the clk rate-change notification
 898 * for 'clk'.  Passes a pointer to the struct clk and the previous
 899 * and current rates to the notifier callback.  Intended to be called by
 900 * internal clock code only.  Returns NOTIFY_DONE from the last driver
 901 * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if
 902 * a driver returns that.
 903 */
 904static int __clk_notify(struct clk_core *core, unsigned long msg,
 905		unsigned long old_rate, unsigned long new_rate)
 906{
 907	struct clk_notifier *cn;
 908	struct clk_notifier_data cnd;
 909	int ret = NOTIFY_DONE;
 910
 
 911	cnd.old_rate = old_rate;
 912	cnd.new_rate = new_rate;
 913
 914	list_for_each_entry(cn, &clk_notifier_list, node) {
 915		if (cn->clk->core == core) {
 916			cnd.clk = cn->clk;
 917			ret = srcu_notifier_call_chain(&cn->notifier_head, msg,
 918					&cnd);
 
 919		}
 920	}
 921
 922	return ret;
 923}
 924
 925/**
 926 * __clk_recalc_accuracies
 927 * @core: first clk in the subtree
 928 *
 929 * Walks the subtree of clks starting with clk and recalculates accuracies as
 930 * it goes.  Note that if a clk does not implement the .recalc_accuracy
 931 * callback then it is assumed that the clock will take on the accuracy of its
 932 * parent.
 933 */
 934static void __clk_recalc_accuracies(struct clk_core *core)
 935{
 936	unsigned long parent_accuracy = 0;
 937	struct clk_core *child;
 938
 939	lockdep_assert_held(&prepare_lock);
 940
 941	if (core->parent)
 942		parent_accuracy = core->parent->accuracy;
 943
 944	if (core->ops->recalc_accuracy)
 945		core->accuracy = core->ops->recalc_accuracy(core->hw,
 946							  parent_accuracy);
 947	else
 948		core->accuracy = parent_accuracy;
 949
 950	hlist_for_each_entry(child, &core->children, child_node)
 951		__clk_recalc_accuracies(child);
 952}
 953
 954static long clk_core_get_accuracy(struct clk_core *core)
 955{
 956	unsigned long accuracy;
 957
 958	clk_prepare_lock();
 959	if (core && (core->flags & CLK_GET_ACCURACY_NOCACHE))
 960		__clk_recalc_accuracies(core);
 961
 962	accuracy = __clk_get_accuracy(core);
 963	clk_prepare_unlock();
 964
 965	return accuracy;
 966}
 967
 968/**
 969 * clk_get_accuracy - return the accuracy of clk
 970 * @clk: the clk whose accuracy is being returned
 971 *
 972 * Simply returns the cached accuracy of the clk, unless
 973 * CLK_GET_ACCURACY_NOCACHE flag is set, which means a recalc_rate will be
 974 * issued.
 975 * If clk is NULL then returns 0.
 976 */
 977long clk_get_accuracy(struct clk *clk)
 978{
 979	if (!clk)
 980		return 0;
 981
 982	return clk_core_get_accuracy(clk->core);
 983}
 984EXPORT_SYMBOL_GPL(clk_get_accuracy);
 985
 986static unsigned long clk_recalc(struct clk_core *core,
 987				unsigned long parent_rate)
 988{
 989	if (core->ops->recalc_rate)
 990		return core->ops->recalc_rate(core->hw, parent_rate);
 991	return parent_rate;
 992}
 993
 994/**
 995 * __clk_recalc_rates
 996 * @core: first clk in the subtree
 997 * @msg: notification type (see include/linux/clk.h)
 998 *
 999 * Walks the subtree of clks starting with clk and recalculates rates as it
1000 * goes.  Note that if a clk does not implement the .recalc_rate callback then
1001 * it is assumed that the clock will take on the rate of its parent.
1002 *
1003 * clk_recalc_rates also propagates the POST_RATE_CHANGE notification,
1004 * if necessary.
 
 
1005 */
1006static void __clk_recalc_rates(struct clk_core *core, unsigned long msg)
1007{
1008	unsigned long old_rate;
1009	unsigned long parent_rate = 0;
1010	struct clk_core *child;
 
1011
1012	lockdep_assert_held(&prepare_lock);
1013
1014	old_rate = core->rate;
 
1015
1016	if (core->parent)
1017		parent_rate = core->parent->rate;
1018
1019	core->rate = clk_recalc(core, parent_rate);
1020
1021	/*
1022	 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE
1023	 * & ABORT_RATE_CHANGE notifiers
1024	 */
1025	if (core->notifier_count && msg)
1026		__clk_notify(core, msg, old_rate, core->rate);
1027
1028	hlist_for_each_entry(child, &core->children, child_node)
1029		__clk_recalc_rates(child, msg);
1030}
1031
1032static unsigned long clk_core_get_rate(struct clk_core *core)
1033{
1034	unsigned long rate;
1035
1036	clk_prepare_lock();
1037
1038	if (core && (core->flags & CLK_GET_RATE_NOCACHE))
1039		__clk_recalc_rates(core, 0);
1040
1041	rate = clk_core_get_rate_nolock(core);
1042	clk_prepare_unlock();
1043
1044	return rate;
1045}
1046
1047/**
1048 * clk_get_rate - return the rate of clk
1049 * @clk: the clk whose rate is being returned
1050 *
1051 * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag
1052 * is set, which means a recalc_rate will be issued.
1053 * If clk is NULL then returns 0.
1054 */
1055unsigned long clk_get_rate(struct clk *clk)
1056{
1057	if (!clk)
1058		return 0;
1059
1060	return clk_core_get_rate(clk->core);
1061}
1062EXPORT_SYMBOL_GPL(clk_get_rate);
1063
1064static int clk_fetch_parent_index(struct clk_core *core,
1065				  struct clk_core *parent)
1066{
1067	int i;
1068
1069	if (!parent)
1070		return -EINVAL;
1071
1072	for (i = 0; i < core->num_parents; i++)
1073		if (clk_core_get_parent_by_index(core, i) == parent)
1074			return i;
1075
1076	return -EINVAL;
1077}
1078
1079/*
1080 * Update the orphan status of @core and all its children.
1081 */
1082static void clk_core_update_orphan_status(struct clk_core *core, bool is_orphan)
1083{
1084	struct clk_core *child;
1085
1086	core->orphan = is_orphan;
1087
1088	hlist_for_each_entry(child, &core->children, child_node)
1089		clk_core_update_orphan_status(child, is_orphan);
1090}
1091
1092static void clk_reparent(struct clk_core *core, struct clk_core *new_parent)
1093{
1094	bool was_orphan = core->orphan;
1095
1096	hlist_del(&core->child_node);
1097
1098	if (new_parent) {
1099		bool becomes_orphan = new_parent->orphan;
1100
1101		/* avoid duplicate POST_RATE_CHANGE notifications */
1102		if (new_parent->new_child == core)
1103			new_parent->new_child = NULL;
1104
1105		hlist_add_head(&core->child_node, &new_parent->children);
1106
1107		if (was_orphan != becomes_orphan)
1108			clk_core_update_orphan_status(core, becomes_orphan);
1109	} else {
1110		hlist_add_head(&core->child_node, &clk_orphan_list);
1111		if (!was_orphan)
1112			clk_core_update_orphan_status(core, true);
1113	}
1114
1115	core->parent = new_parent;
1116}
1117
1118static struct clk_core *__clk_set_parent_before(struct clk_core *core,
1119					   struct clk_core *parent)
1120{
1121	unsigned long flags;
1122	struct clk_core *old_parent = core->parent;
1123
1124	/*
1125	 * Migrate prepare state between parents and prevent race with
1126	 * clk_enable().
1127	 *
1128	 * If the clock is not prepared, then a race with
1129	 * clk_enable/disable() is impossible since we already have the
1130	 * prepare lock (future calls to clk_enable() need to be preceded by
1131	 * a clk_prepare()).
1132	 *
1133	 * If the clock is prepared, migrate the prepared state to the new
1134	 * parent and also protect against a race with clk_enable() by
1135	 * forcing the clock and the new parent on.  This ensures that all
1136	 * future calls to clk_enable() are practically NOPs with respect to
1137	 * hardware and software states.
1138	 *
1139	 * See also: Comment for clk_set_parent() below.
1140	 */
1141	if (core->prepare_count) {
1142		clk_core_prepare(parent);
1143		flags = clk_enable_lock();
1144		clk_core_enable(parent);
1145		clk_core_enable(core);
1146		clk_enable_unlock(flags);
1147	}
1148
1149	/* update the clk tree topology */
1150	flags = clk_enable_lock();
1151	clk_reparent(core, parent);
1152	clk_enable_unlock(flags);
1153
1154	return old_parent;
1155}
1156
1157static void __clk_set_parent_after(struct clk_core *core,
1158				   struct clk_core *parent,
1159				   struct clk_core *old_parent)
1160{
1161	unsigned long flags;
1162
1163	/*
1164	 * Finish the migration of prepare state and undo the changes done
1165	 * for preventing a race with clk_enable().
1166	 */
1167	if (core->prepare_count) {
1168		flags = clk_enable_lock();
1169		clk_core_disable(core);
1170		clk_core_disable(old_parent);
1171		clk_enable_unlock(flags);
1172		clk_core_unprepare(old_parent);
1173	}
1174}
1175
1176static int __clk_set_parent(struct clk_core *core, struct clk_core *parent,
1177			    u8 p_index)
1178{
1179	unsigned long flags;
1180	int ret = 0;
1181	struct clk_core *old_parent;
1182
1183	old_parent = __clk_set_parent_before(core, parent);
1184
1185	trace_clk_set_parent(core, parent);
1186
1187	/* change clock input source */
1188	if (parent && core->ops->set_parent)
1189		ret = core->ops->set_parent(core->hw, p_index);
1190
1191	trace_clk_set_parent_complete(core, parent);
1192
1193	if (ret) {
1194		flags = clk_enable_lock();
1195		clk_reparent(core, old_parent);
1196		clk_enable_unlock(flags);
1197		__clk_set_parent_after(core, old_parent, parent);
1198
1199		return ret;
1200	}
1201
1202	__clk_set_parent_after(core, parent, old_parent);
1203
1204	return 0;
1205}
1206
1207/**
1208 * __clk_speculate_rates
1209 * @core: first clk in the subtree
1210 * @parent_rate: the "future" rate of clk's parent
1211 *
1212 * Walks the subtree of clks starting with clk, speculating rates as it
1213 * goes and firing off PRE_RATE_CHANGE notifications as necessary.
1214 *
1215 * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending
1216 * pre-rate change notifications and returns early if no clks in the
1217 * subtree have subscribed to the notifications.  Note that if a clk does not
1218 * implement the .recalc_rate callback then it is assumed that the clock will
1219 * take on the rate of its parent.
 
 
1220 */
1221static int __clk_speculate_rates(struct clk_core *core,
1222				 unsigned long parent_rate)
1223{
1224	struct clk_core *child;
 
1225	unsigned long new_rate;
1226	int ret = NOTIFY_DONE;
1227
1228	lockdep_assert_held(&prepare_lock);
 
 
 
1229
1230	new_rate = clk_recalc(core, parent_rate);
 
 
1231
1232	/* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */
1233	if (core->notifier_count)
1234		ret = __clk_notify(core, PRE_RATE_CHANGE, core->rate, new_rate);
1235
1236	if (ret & NOTIFY_STOP_MASK) {
1237		pr_debug("%s: clk notifier callback for clock %s aborted with error %d\n",
1238				__func__, core->name, ret);
1239		goto out;
1240	}
1241
1242	hlist_for_each_entry(child, &core->children, child_node) {
1243		ret = __clk_speculate_rates(child, new_rate);
1244		if (ret & NOTIFY_STOP_MASK)
1245			break;
1246	}
1247
1248out:
1249	return ret;
1250}
1251
1252static void clk_calc_subtree(struct clk_core *core, unsigned long new_rate,
1253			     struct clk_core *new_parent, u8 p_index)
1254{
1255	struct clk_core *child;
 
 
 
1256
1257	core->new_rate = new_rate;
1258	core->new_parent = new_parent;
1259	core->new_parent_index = p_index;
1260	/* include clk in new parent's PRE_RATE_CHANGE notifications */
1261	core->new_child = NULL;
1262	if (new_parent && new_parent != core->parent)
1263		new_parent->new_child = core;
1264
1265	hlist_for_each_entry(child, &core->children, child_node) {
1266		child->new_rate = clk_recalc(child, new_rate);
1267		clk_calc_subtree(child, child->new_rate, NULL, 0);
1268	}
1269}
1270
1271/*
1272 * calculate the new rates returning the topmost clock that has to be
1273 * changed.
1274 */
1275static struct clk_core *clk_calc_new_rates(struct clk_core *core,
1276					   unsigned long rate)
1277{
1278	struct clk_core *top = core;
1279	struct clk_core *old_parent, *parent;
1280	unsigned long best_parent_rate = 0;
1281	unsigned long new_rate;
1282	unsigned long min_rate;
1283	unsigned long max_rate;
1284	int p_index = 0;
1285	long ret;
1286
1287	/* sanity */
1288	if (IS_ERR_OR_NULL(core))
1289		return NULL;
1290
1291	/* save parent rate, if it exists */
1292	parent = old_parent = core->parent;
1293	if (parent)
1294		best_parent_rate = parent->rate;
1295
1296	clk_core_get_boundaries(core, &min_rate, &max_rate);
1297
1298	/* find the closest rate and parent clk/rate */
1299	if (core->ops->determine_rate) {
1300		struct clk_rate_request req;
1301
1302		req.rate = rate;
1303		req.min_rate = min_rate;
1304		req.max_rate = max_rate;
1305		if (parent) {
1306			req.best_parent_hw = parent->hw;
1307			req.best_parent_rate = parent->rate;
1308		} else {
1309			req.best_parent_hw = NULL;
1310			req.best_parent_rate = 0;
1311		}
1312
1313		ret = core->ops->determine_rate(core->hw, &req);
1314		if (ret < 0)
 
 
1315			return NULL;
1316
1317		best_parent_rate = req.best_parent_rate;
1318		new_rate = req.rate;
1319		parent = req.best_parent_hw ? req.best_parent_hw->core : NULL;
1320	} else if (core->ops->round_rate) {
1321		ret = core->ops->round_rate(core->hw, rate,
1322					    &best_parent_rate);
1323		if (ret < 0)
1324			return NULL;
1325
1326		new_rate = ret;
1327		if (new_rate < min_rate || new_rate > max_rate)
1328			return NULL;
1329	} else if (!parent || !(core->flags & CLK_SET_RATE_PARENT)) {
1330		/* pass-through clock without adjustable parent */
1331		core->new_rate = core->rate;
1332		return NULL;
1333	} else {
1334		/* pass-through clock with adjustable parent */
1335		top = clk_calc_new_rates(parent, rate);
1336		new_rate = parent->new_rate;
1337		goto out;
1338	}
1339
1340	/* some clocks must be gated to change parent */
1341	if (parent != old_parent &&
1342	    (core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) {
1343		pr_debug("%s: %s not gated but wants to reparent\n",
1344			 __func__, core->name);
1345		return NULL;
1346	}
1347
1348	/* try finding the new parent index */
1349	if (parent && core->num_parents > 1) {
1350		p_index = clk_fetch_parent_index(core, parent);
1351		if (p_index < 0) {
1352			pr_debug("%s: clk %s can not be parent of clk %s\n",
1353				 __func__, parent->name, core->name);
1354			return NULL;
1355		}
1356	}
1357
1358	if ((core->flags & CLK_SET_RATE_PARENT) && parent &&
1359	    best_parent_rate != parent->rate)
1360		top = clk_calc_new_rates(parent, best_parent_rate);
 
 
 
 
1361
1362out:
1363	clk_calc_subtree(core, new_rate, parent, p_index);
1364
1365	return top;
1366}
1367
1368/*
1369 * Notify about rate changes in a subtree. Always walk down the whole tree
1370 * so that in case of an error we can walk down the whole tree again and
1371 * abort the change.
1372 */
1373static struct clk_core *clk_propagate_rate_change(struct clk_core *core,
1374						  unsigned long event)
1375{
1376	struct clk_core *child, *tmp_clk, *fail_clk = NULL;
 
1377	int ret = NOTIFY_DONE;
1378
1379	if (core->rate == core->new_rate)
1380		return NULL;
 
 
 
 
 
 
1381
1382	if (core->notifier_count) {
1383		ret = __clk_notify(core, event, core->rate, core->new_rate);
1384		if (ret & NOTIFY_STOP_MASK)
1385			fail_clk = core;
1386	}
1387
1388	hlist_for_each_entry(child, &core->children, child_node) {
1389		/* Skip children who will be reparented to another clock */
1390		if (child->new_parent && child->new_parent != core)
1391			continue;
1392		tmp_clk = clk_propagate_rate_change(child, event);
1393		if (tmp_clk)
1394			fail_clk = tmp_clk;
1395	}
1396
1397	/* handle the new child who might not be in core->children yet */
1398	if (core->new_child) {
1399		tmp_clk = clk_propagate_rate_change(core->new_child, event);
1400		if (tmp_clk)
1401			fail_clk = tmp_clk;
1402	}
1403
1404	return fail_clk;
1405}
1406
1407/*
1408 * walk down a subtree and set the new rates notifying the rate
1409 * change on the way
1410 */
1411static void clk_change_rate(struct clk_core *core)
1412{
1413	struct clk_core *child;
1414	struct hlist_node *tmp;
1415	unsigned long old_rate;
1416	unsigned long best_parent_rate = 0;
1417	bool skip_set_rate = false;
1418	struct clk_core *old_parent;
1419
1420	old_rate = core->rate;
1421
1422	if (core->new_parent)
1423		best_parent_rate = core->new_parent->rate;
1424	else if (core->parent)
1425		best_parent_rate = core->parent->rate;
1426
1427	if (core->flags & CLK_SET_RATE_UNGATE) {
1428		unsigned long flags;
1429
1430		clk_core_prepare(core);
1431		flags = clk_enable_lock();
1432		clk_core_enable(core);
1433		clk_enable_unlock(flags);
1434	}
1435
1436	if (core->new_parent && core->new_parent != core->parent) {
1437		old_parent = __clk_set_parent_before(core, core->new_parent);
1438		trace_clk_set_parent(core, core->new_parent);
1439
1440		if (core->ops->set_rate_and_parent) {
1441			skip_set_rate = true;
1442			core->ops->set_rate_and_parent(core->hw, core->new_rate,
1443					best_parent_rate,
1444					core->new_parent_index);
1445		} else if (core->ops->set_parent) {
1446			core->ops->set_parent(core->hw, core->new_parent_index);
1447		}
1448
1449		trace_clk_set_parent_complete(core, core->new_parent);
1450		__clk_set_parent_after(core, core->new_parent, old_parent);
1451	}
1452
1453	trace_clk_set_rate(core, core->new_rate);
1454
1455	if (!skip_set_rate && core->ops->set_rate)
1456		core->ops->set_rate(core->hw, core->new_rate, best_parent_rate);
1457
1458	trace_clk_set_rate_complete(core, core->new_rate);
1459
1460	core->rate = clk_recalc(core, best_parent_rate);
1461
1462	if (core->flags & CLK_SET_RATE_UNGATE) {
1463		unsigned long flags;
1464
1465		flags = clk_enable_lock();
1466		clk_core_disable(core);
1467		clk_enable_unlock(flags);
1468		clk_core_unprepare(core);
1469	}
1470
1471	if (core->notifier_count && old_rate != core->rate)
1472		__clk_notify(core, POST_RATE_CHANGE, old_rate, core->rate);
1473
1474	if (core->flags & CLK_RECALC_NEW_RATES)
1475		(void)clk_calc_new_rates(core, core->new_rate);
1476
1477	/*
1478	 * Use safe iteration, as change_rate can actually swap parents
1479	 * for certain clock types.
1480	 */
1481	hlist_for_each_entry_safe(child, tmp, &core->children, child_node) {
1482		/* Skip children who will be reparented to another clock */
1483		if (child->new_parent && child->new_parent != core)
1484			continue;
1485		clk_change_rate(child);
1486	}
1487
1488	/* handle the new child who might not be in core->children yet */
1489	if (core->new_child)
1490		clk_change_rate(core->new_child);
1491}
1492
1493static int clk_core_set_rate_nolock(struct clk_core *core,
1494				    unsigned long req_rate)
1495{
1496	struct clk_core *top, *fail_clk;
1497	unsigned long rate = req_rate;
1498	int ret = 0;
1499
1500	if (!core)
1501		return 0;
1502
1503	/* bail early if nothing to do */
1504	if (rate == clk_core_get_rate_nolock(core))
1505		return 0;
1506
1507	if ((core->flags & CLK_SET_RATE_GATE) && core->prepare_count)
1508		return -EBUSY;
1509
1510	/* calculate new rates and get the topmost changed clock */
1511	top = clk_calc_new_rates(core, rate);
1512	if (!top)
1513		return -EINVAL;
1514
1515	/* notify that we are about to change rates */
1516	fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE);
1517	if (fail_clk) {
1518		pr_debug("%s: failed to set %s rate\n", __func__,
1519				fail_clk->name);
1520		clk_propagate_rate_change(top, ABORT_RATE_CHANGE);
1521		return -EBUSY;
1522	}
1523
1524	/* change the rates */
1525	clk_change_rate(top);
1526
1527	core->req_rate = req_rate;
1528
1529	return ret;
1530}
1531
1532/**
1533 * clk_set_rate - specify a new rate for clk
1534 * @clk: the clk whose rate is being changed
1535 * @rate: the new rate for clk
1536 *
1537 * In the simplest case clk_set_rate will only adjust the rate of clk.
1538 *
1539 * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to
1540 * propagate up to clk's parent; whether or not this happens depends on the
1541 * outcome of clk's .round_rate implementation.  If *parent_rate is unchanged
1542 * after calling .round_rate then upstream parent propagation is ignored.  If
1543 * *parent_rate comes back with a new rate for clk's parent then we propagate
1544 * up to clk's parent and set its rate.  Upward propagation will continue
1545 * until either a clk does not support the CLK_SET_RATE_PARENT flag or
1546 * .round_rate stops requesting changes to clk's parent_rate.
1547 *
1548 * Rate changes are accomplished via tree traversal that also recalculates the
1549 * rates for the clocks and fires off POST_RATE_CHANGE notifiers.
1550 *
1551 * Returns 0 on success, -EERROR otherwise.
1552 */
1553int clk_set_rate(struct clk *clk, unsigned long rate)
1554{
1555	int ret;
1556
1557	if (!clk)
1558		return 0;
1559
1560	/* prevent racing with updates to the clock topology */
1561	clk_prepare_lock();
1562
1563	ret = clk_core_set_rate_nolock(clk->core, rate);
 
 
1564
1565	clk_prepare_unlock();
 
 
 
1566
1567	return ret;
1568}
1569EXPORT_SYMBOL_GPL(clk_set_rate);
 
 
 
1570
1571/**
1572 * clk_set_rate_range - set a rate range for a clock source
1573 * @clk: clock source
1574 * @min: desired minimum clock rate in Hz, inclusive
1575 * @max: desired maximum clock rate in Hz, inclusive
1576 *
1577 * Returns success (0) or negative errno.
1578 */
1579int clk_set_rate_range(struct clk *clk, unsigned long min, unsigned long max)
1580{
1581	int ret = 0;
1582
1583	if (!clk)
1584		return 0;
1585
1586	if (min > max) {
1587		pr_err("%s: clk %s dev %s con %s: invalid range [%lu, %lu]\n",
1588		       __func__, clk->core->name, clk->dev_id, clk->con_id,
1589		       min, max);
1590		return -EINVAL;
1591	}
1592
1593	clk_prepare_lock();
 
1594
1595	if (min != clk->min_rate || max != clk->max_rate) {
1596		clk->min_rate = min;
1597		clk->max_rate = max;
1598		ret = clk_core_set_rate_nolock(clk->core, clk->core->req_rate);
1599	}
1600
1601	clk_prepare_unlock();
 
 
1602
1603	return ret;
1604}
1605EXPORT_SYMBOL_GPL(clk_set_rate_range);
1606
1607/**
1608 * clk_set_min_rate - set a minimum clock rate for a clock source
1609 * @clk: clock source
1610 * @rate: desired minimum clock rate in Hz, inclusive
1611 *
1612 * Returns success (0) or negative errno.
1613 */
1614int clk_set_min_rate(struct clk *clk, unsigned long rate)
1615{
1616	if (!clk)
1617		return 0;
1618
1619	return clk_set_rate_range(clk, rate, clk->max_rate);
1620}
1621EXPORT_SYMBOL_GPL(clk_set_min_rate);
1622
1623/**
1624 * clk_set_max_rate - set a maximum clock rate for a clock source
1625 * @clk: clock source
1626 * @rate: desired maximum clock rate in Hz, inclusive
1627 *
1628 * Returns success (0) or negative errno.
1629 */
1630int clk_set_max_rate(struct clk *clk, unsigned long rate)
1631{
1632	if (!clk)
1633		return 0;
1634
1635	return clk_set_rate_range(clk, clk->min_rate, rate);
1636}
1637EXPORT_SYMBOL_GPL(clk_set_max_rate);
1638
1639/**
1640 * clk_get_parent - return the parent of a clk
1641 * @clk: the clk whose parent gets returned
1642 *
1643 * Simply returns clk->parent.  Returns NULL if clk is NULL.
1644 */
1645struct clk *clk_get_parent(struct clk *clk)
1646{
1647	struct clk *parent;
1648
1649	if (!clk)
1650		return NULL;
1651
1652	clk_prepare_lock();
1653	/* TODO: Create a per-user clk and change callers to call clk_put */
1654	parent = !clk->core->parent ? NULL : clk->core->parent->hw->clk;
1655	clk_prepare_unlock();
1656
1657	return parent;
1658}
1659EXPORT_SYMBOL_GPL(clk_get_parent);
1660
1661static struct clk_core *__clk_init_parent(struct clk_core *core)
1662{
1663	u8 index = 0;
1664
1665	if (core->num_parents > 1 && core->ops->get_parent)
1666		index = core->ops->get_parent(core->hw);
1667
1668	return clk_core_get_parent_by_index(core, index);
1669}
1670
1671static void clk_core_reparent(struct clk_core *core,
1672				  struct clk_core *new_parent)
1673{
1674	clk_reparent(core, new_parent);
1675	__clk_recalc_accuracies(core);
1676	__clk_recalc_rates(core, POST_RATE_CHANGE);
1677}
1678
1679void clk_hw_reparent(struct clk_hw *hw, struct clk_hw *new_parent)
1680{
1681	if (!hw)
1682		return;
1683
1684	clk_core_reparent(hw->core, !new_parent ? NULL : new_parent->core);
1685}
1686
1687/**
1688 * clk_has_parent - check if a clock is a possible parent for another
1689 * @clk: clock source
1690 * @parent: parent clock source
1691 *
1692 * This function can be used in drivers that need to check that a clock can be
1693 * the parent of another without actually changing the parent.
1694 *
1695 * Returns true if @parent is a possible parent for @clk, false otherwise.
1696 */
1697bool clk_has_parent(struct clk *clk, struct clk *parent)
1698{
1699	struct clk_core *core, *parent_core;
1700	unsigned int i;
1701
1702	/* NULL clocks should be nops, so return success if either is NULL. */
1703	if (!clk || !parent)
1704		return true;
1705
1706	core = clk->core;
1707	parent_core = parent->core;
1708
1709	/* Optimize for the case where the parent is already the parent. */
1710	if (core->parent == parent_core)
1711		return true;
1712
1713	for (i = 0; i < core->num_parents; i++)
1714		if (strcmp(core->parent_names[i], parent_core->name) == 0)
1715			return true;
1716
1717	return false;
1718}
1719EXPORT_SYMBOL_GPL(clk_has_parent);
1720
1721static int clk_core_set_parent(struct clk_core *core, struct clk_core *parent)
1722{
1723	int ret = 0;
1724	int p_index = 0;
1725	unsigned long p_rate = 0;
1726
1727	if (!core)
1728		return 0;
1729
1730	/* prevent racing with updates to the clock topology */
1731	clk_prepare_lock();
1732
1733	if (core->parent == parent)
1734		goto out;
1735
1736	/* verify ops for for multi-parent clks */
1737	if ((core->num_parents > 1) && (!core->ops->set_parent)) {
1738		ret = -ENOSYS;
 
1739		goto out;
1740	}
1741
1742	/* check that we are allowed to re-parent if the clock is in use */
1743	if ((core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) {
1744		ret = -EBUSY;
 
1745		goto out;
1746	}
1747
1748	/* try finding the new parent index */
1749	if (parent) {
1750		p_index = clk_fetch_parent_index(core, parent);
1751		if (p_index < 0) {
1752			pr_debug("%s: clk %s can not be parent of clk %s\n",
1753					__func__, parent->name, core->name);
1754			ret = p_index;
1755			goto out;
1756		}
1757		p_rate = parent->rate;
1758	}
1759
1760	/* propagate PRE_RATE_CHANGE notifications */
1761	ret = __clk_speculate_rates(core, p_rate);
1762
1763	/* abort if a driver objects */
1764	if (ret & NOTIFY_STOP_MASK)
1765		goto out;
 
1766
1767	/* do the re-parent */
1768	ret = __clk_set_parent(core, parent, p_index);
1769
1770	/* propagate rate an accuracy recalculation accordingly */
1771	if (ret) {
1772		__clk_recalc_rates(core, ABORT_RATE_CHANGE);
1773	} else {
1774		__clk_recalc_rates(core, POST_RATE_CHANGE);
1775		__clk_recalc_accuracies(core);
1776	}
1777
1778out:
1779	clk_prepare_unlock();
1780
1781	return ret;
1782}
1783
1784/**
1785 * clk_set_parent - switch the parent of a mux clk
1786 * @clk: the mux clk whose input we are switching
1787 * @parent: the new input to clk
1788 *
1789 * Re-parent clk to use parent as its new input source.  If clk is in
1790 * prepared state, the clk will get enabled for the duration of this call. If
1791 * that's not acceptable for a specific clk (Eg: the consumer can't handle
1792 * that, the reparenting is glitchy in hardware, etc), use the
1793 * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared.
1794 *
1795 * After successfully changing clk's parent clk_set_parent will update the
1796 * clk topology, sysfs topology and propagate rate recalculation via
1797 * __clk_recalc_rates.
1798 *
1799 * Returns 0 on success, -EERROR otherwise.
1800 */
1801int clk_set_parent(struct clk *clk, struct clk *parent)
1802{
1803	if (!clk)
1804		return 0;
 
 
1805
1806	return clk_core_set_parent(clk->core, parent ? parent->core : NULL);
1807}
1808EXPORT_SYMBOL_GPL(clk_set_parent);
1809
1810/**
1811 * clk_set_phase - adjust the phase shift of a clock signal
1812 * @clk: clock signal source
1813 * @degrees: number of degrees the signal is shifted
1814 *
1815 * Shifts the phase of a clock signal by the specified
1816 * degrees. Returns 0 on success, -EERROR otherwise.
1817 *
1818 * This function makes no distinction about the input or reference
1819 * signal that we adjust the clock signal phase against. For example
1820 * phase locked-loop clock signal generators we may shift phase with
1821 * respect to feedback clock signal input, but for other cases the
1822 * clock phase may be shifted with respect to some other, unspecified
1823 * signal.
1824 *
1825 * Additionally the concept of phase shift does not propagate through
1826 * the clock tree hierarchy, which sets it apart from clock rates and
1827 * clock accuracy. A parent clock phase attribute does not have an
1828 * impact on the phase attribute of a child clock.
1829 */
1830int clk_set_phase(struct clk *clk, int degrees)
1831{
1832	int ret = -EINVAL;
1833
1834	if (!clk)
1835		return 0;
 
 
1836
1837	/* sanity check degrees */
1838	degrees %= 360;
1839	if (degrees < 0)
1840		degrees += 360;
1841
1842	clk_prepare_lock();
1843
1844	/* bail early if nothing to do */
1845	if (degrees == clk->core->phase)
1846		goto out;
1847
1848	trace_clk_set_phase(clk->core, degrees);
1849
1850	if (clk->core->ops->set_phase)
1851		ret = clk->core->ops->set_phase(clk->core->hw, degrees);
1852
1853	trace_clk_set_phase_complete(clk->core, degrees);
1854
1855	if (!ret)
1856		clk->core->phase = degrees;
1857
 
 
 
 
 
 
 
1858out:
1859	clk_prepare_unlock();
1860
1861	return ret;
1862}
1863EXPORT_SYMBOL_GPL(clk_set_phase);
1864
1865static int clk_core_get_phase(struct clk_core *core)
1866{
1867	int ret;
1868
1869	clk_prepare_lock();
1870	ret = core->phase;
1871	clk_prepare_unlock();
1872
1873	return ret;
1874}
1875
1876/**
1877 * clk_get_phase - return the phase shift of a clock signal
1878 * @clk: clock signal source
1879 *
1880 * Returns the phase shift of a clock node in degrees, otherwise returns
1881 * -EERROR.
1882 */
1883int clk_get_phase(struct clk *clk)
1884{
1885	if (!clk)
1886		return 0;
1887
1888	return clk_core_get_phase(clk->core);
1889}
1890EXPORT_SYMBOL_GPL(clk_get_phase);
1891
1892/**
1893 * clk_is_match - check if two clk's point to the same hardware clock
1894 * @p: clk compared against q
1895 * @q: clk compared against p
1896 *
1897 * Returns true if the two struct clk pointers both point to the same hardware
1898 * clock node. Put differently, returns true if struct clk *p and struct clk *q
1899 * share the same struct clk_core object.
1900 *
1901 * Returns false otherwise. Note that two NULL clks are treated as matching.
1902 */
1903bool clk_is_match(const struct clk *p, const struct clk *q)
1904{
1905	/* trivial case: identical struct clk's or both NULL */
1906	if (p == q)
1907		return true;
1908
1909	/* true if clk->core pointers match. Avoid dereferencing garbage */
1910	if (!IS_ERR_OR_NULL(p) && !IS_ERR_OR_NULL(q))
1911		if (p->core == q->core)
1912			return true;
1913
1914	return false;
1915}
1916EXPORT_SYMBOL_GPL(clk_is_match);
1917
1918/***        debugfs support        ***/
1919
1920#ifdef CONFIG_DEBUG_FS
1921#include <linux/debugfs.h>
1922
1923static struct dentry *rootdir;
1924static int inited = 0;
1925static DEFINE_MUTEX(clk_debug_lock);
1926static HLIST_HEAD(clk_debug_list);
1927
1928static struct hlist_head *all_lists[] = {
1929	&clk_root_list,
1930	&clk_orphan_list,
1931	NULL,
1932};
1933
1934static struct hlist_head *orphan_list[] = {
1935	&clk_orphan_list,
1936	NULL,
1937};
1938
1939static void clk_summary_show_one(struct seq_file *s, struct clk_core *c,
1940				 int level)
1941{
1942	if (!c)
1943		return;
1944
1945	seq_printf(s, "%*s%-*s %11d %12d %11lu %10lu %-3d\n",
1946		   level * 3 + 1, "",
1947		   30 - level * 3, c->name,
1948		   c->enable_count, c->prepare_count, clk_core_get_rate(c),
1949		   clk_core_get_accuracy(c), clk_core_get_phase(c));
1950}
1951
1952static void clk_summary_show_subtree(struct seq_file *s, struct clk_core *c,
1953				     int level)
1954{
1955	struct clk_core *child;
1956
1957	if (!c)
1958		return;
1959
1960	clk_summary_show_one(s, c, level);
1961
1962	hlist_for_each_entry(child, &c->children, child_node)
1963		clk_summary_show_subtree(s, child, level + 1);
1964}
1965
1966static int clk_summary_show(struct seq_file *s, void *data)
1967{
1968	struct clk_core *c;
1969	struct hlist_head **lists = (struct hlist_head **)s->private;
1970
1971	seq_puts(s, "   clock                         enable_cnt  prepare_cnt        rate   accuracy   phase\n");
1972	seq_puts(s, "----------------------------------------------------------------------------------------\n");
1973
1974	clk_prepare_lock();
1975
1976	for (; *lists; lists++)
1977		hlist_for_each_entry(c, *lists, child_node)
1978			clk_summary_show_subtree(s, c, 0);
1979
1980	clk_prepare_unlock();
1981
1982	return 0;
1983}
1984
1985
1986static int clk_summary_open(struct inode *inode, struct file *file)
1987{
1988	return single_open(file, clk_summary_show, inode->i_private);
1989}
1990
1991static const struct file_operations clk_summary_fops = {
1992	.open		= clk_summary_open,
1993	.read		= seq_read,
1994	.llseek		= seq_lseek,
1995	.release	= single_release,
1996};
1997
1998static void clk_dump_one(struct seq_file *s, struct clk_core *c, int level)
1999{
2000	if (!c)
2001		return;
2002
2003	/* This should be JSON format, i.e. elements separated with a comma */
2004	seq_printf(s, "\"%s\": { ", c->name);
2005	seq_printf(s, "\"enable_count\": %d,", c->enable_count);
2006	seq_printf(s, "\"prepare_count\": %d,", c->prepare_count);
2007	seq_printf(s, "\"rate\": %lu,", clk_core_get_rate(c));
2008	seq_printf(s, "\"accuracy\": %lu,", clk_core_get_accuracy(c));
2009	seq_printf(s, "\"phase\": %d", clk_core_get_phase(c));
2010}
2011
2012static void clk_dump_subtree(struct seq_file *s, struct clk_core *c, int level)
2013{
2014	struct clk_core *child;
2015
2016	if (!c)
2017		return;
2018
2019	clk_dump_one(s, c, level);
2020
2021	hlist_for_each_entry(child, &c->children, child_node) {
2022		seq_printf(s, ",");
2023		clk_dump_subtree(s, child, level + 1);
2024	}
2025
2026	seq_printf(s, "}");
2027}
2028
2029static int clk_dump(struct seq_file *s, void *data)
2030{
2031	struct clk_core *c;
2032	bool first_node = true;
2033	struct hlist_head **lists = (struct hlist_head **)s->private;
2034
2035	seq_printf(s, "{");
2036
2037	clk_prepare_lock();
2038
2039	for (; *lists; lists++) {
2040		hlist_for_each_entry(c, *lists, child_node) {
2041			if (!first_node)
2042				seq_puts(s, ",");
2043			first_node = false;
2044			clk_dump_subtree(s, c, 0);
2045		}
2046	}
2047
2048	clk_prepare_unlock();
2049
2050	seq_puts(s, "}\n");
2051	return 0;
2052}
2053
2054
2055static int clk_dump_open(struct inode *inode, struct file *file)
2056{
2057	return single_open(file, clk_dump, inode->i_private);
2058}
2059
2060static const struct file_operations clk_dump_fops = {
2061	.open		= clk_dump_open,
2062	.read		= seq_read,
2063	.llseek		= seq_lseek,
2064	.release	= single_release,
2065};
2066
2067static int clk_debug_create_one(struct clk_core *core, struct dentry *pdentry)
2068{
2069	struct dentry *d;
2070	int ret = -ENOMEM;
2071
2072	if (!core || !pdentry) {
2073		ret = -EINVAL;
2074		goto out;
2075	}
2076
2077	d = debugfs_create_dir(core->name, pdentry);
2078	if (!d)
2079		goto out;
 
 
 
 
 
 
2080
2081	core->dentry = d;
 
2082
2083	d = debugfs_create_u32("clk_rate", S_IRUGO, core->dentry,
2084			(u32 *)&core->rate);
2085	if (!d)
2086		goto err_out;
2087
2088	d = debugfs_create_u32("clk_accuracy", S_IRUGO, core->dentry,
2089			(u32 *)&core->accuracy);
2090	if (!d)
2091		goto err_out;
2092
2093	d = debugfs_create_u32("clk_phase", S_IRUGO, core->dentry,
2094			(u32 *)&core->phase);
2095	if (!d)
2096		goto err_out;
2097
2098	d = debugfs_create_x32("clk_flags", S_IRUGO, core->dentry,
2099			(u32 *)&core->flags);
2100	if (!d)
2101		goto err_out;
2102
2103	d = debugfs_create_u32("clk_prepare_count", S_IRUGO, core->dentry,
2104			(u32 *)&core->prepare_count);
2105	if (!d)
2106		goto err_out;
2107
2108	d = debugfs_create_u32("clk_enable_count", S_IRUGO, core->dentry,
2109			(u32 *)&core->enable_count);
2110	if (!d)
2111		goto err_out;
2112
2113	d = debugfs_create_u32("clk_notifier_count", S_IRUGO, core->dentry,
2114			(u32 *)&core->notifier_count);
2115	if (!d)
2116		goto err_out;
2117
2118	if (core->ops->debug_init) {
2119		ret = core->ops->debug_init(core->hw, core->dentry);
2120		if (ret)
2121			goto err_out;
2122	}
2123
2124	ret = 0;
2125	goto out;
2126
2127err_out:
2128	debugfs_remove_recursive(core->dentry);
2129	core->dentry = NULL;
2130out:
2131	return ret;
2132}
2133
2134/**
2135 * clk_debug_register - add a clk node to the debugfs clk directory
2136 * @core: the clk being added to the debugfs clk directory
 
2137 *
2138 * Dynamically adds a clk to the debugfs clk directory if debugfs has been
2139 * initialized.  Otherwise it bails out early since the debugfs clk directory
2140 * will be created lazily by clk_debug_init as part of a late_initcall.
 
 
 
2141 */
2142static int clk_debug_register(struct clk_core *core)
2143{
2144	int ret = 0;
2145
2146	mutex_lock(&clk_debug_lock);
2147	hlist_add_head(&core->debug_node, &clk_debug_list);
2148
2149	if (!inited)
2150		goto unlock;
2151
2152	ret = clk_debug_create_one(core, rootdir);
2153unlock:
2154	mutex_unlock(&clk_debug_lock);
2155
2156	return ret;
2157}
2158
2159 /**
2160 * clk_debug_unregister - remove a clk node from the debugfs clk directory
2161 * @core: the clk being removed from the debugfs clk directory
2162 *
2163 * Dynamically removes a clk and all its child nodes from the
2164 * debugfs clk directory if clk->dentry points to debugfs created by
2165 * clk_debug_register in __clk_core_init.
2166 */
2167static void clk_debug_unregister(struct clk_core *core)
2168{
2169	mutex_lock(&clk_debug_lock);
2170	hlist_del_init(&core->debug_node);
2171	debugfs_remove_recursive(core->dentry);
2172	core->dentry = NULL;
2173	mutex_unlock(&clk_debug_lock);
2174}
2175
2176struct dentry *clk_debugfs_add_file(struct clk_hw *hw, char *name, umode_t mode,
2177				void *data, const struct file_operations *fops)
2178{
2179	struct dentry *d = NULL;
2180
2181	if (hw->core->dentry)
2182		d = debugfs_create_file(name, mode, hw->core->dentry, data,
2183					fops);
 
 
2184
2185	return d;
2186}
2187EXPORT_SYMBOL_GPL(clk_debugfs_add_file);
2188
2189/**
2190 * clk_debug_init - lazily populate the debugfs clk directory
2191 *
2192 * clks are often initialized very early during boot before memory can be
2193 * dynamically allocated and well before debugfs is setup. This function
2194 * populates the debugfs clk directory once at boot-time when we know that
2195 * debugfs is setup. It should only be called once at boot-time, all other clks
2196 * added dynamically will be done so with clk_debug_register.
2197 */
2198static int __init clk_debug_init(void)
2199{
2200	struct clk_core *core;
2201	struct dentry *d;
2202
2203	rootdir = debugfs_create_dir("clk", NULL);
 
2204
2205	if (!rootdir)
2206		return -ENOMEM;
2207
2208	d = debugfs_create_file("clk_summary", S_IRUGO, rootdir, &all_lists,
2209				&clk_summary_fops);
2210	if (!d)
2211		return -ENOMEM;
2212
2213	d = debugfs_create_file("clk_dump", S_IRUGO, rootdir, &all_lists,
2214				&clk_dump_fops);
2215	if (!d)
2216		return -ENOMEM;
2217
2218	d = debugfs_create_file("clk_orphan_summary", S_IRUGO, rootdir,
2219				&orphan_list, &clk_summary_fops);
2220	if (!d)
2221		return -ENOMEM;
2222
2223	d = debugfs_create_file("clk_orphan_dump", S_IRUGO, rootdir,
2224				&orphan_list, &clk_dump_fops);
2225	if (!d)
2226		return -ENOMEM;
2227
2228	mutex_lock(&clk_debug_lock);
2229	hlist_for_each_entry(core, &clk_debug_list, debug_node)
2230		clk_debug_create_one(core, rootdir);
2231
2232	inited = 1;
2233	mutex_unlock(&clk_debug_lock);
2234
2235	return 0;
2236}
2237late_initcall(clk_debug_init);
2238#else
2239static inline int clk_debug_register(struct clk_core *core) { return 0; }
2240static inline void clk_debug_reparent(struct clk_core *core,
2241				      struct clk_core *new_parent)
2242{
2243}
2244static inline void clk_debug_unregister(struct clk_core *core)
2245{
2246}
2247#endif
2248
2249/**
2250 * __clk_core_init - initialize the data structures in a struct clk_core
2251 * @core:	clk_core being initialized
 
2252 *
2253 * Initializes the lists in struct clk_core, queries the hardware for the
2254 * parent and rate and sets them both.
2255 */
2256static int __clk_core_init(struct clk_core *core)
2257{
2258	int i, ret = 0;
2259	struct clk_core *orphan;
2260	struct hlist_node *tmp2;
2261	unsigned long rate;
2262
2263	if (!core)
2264		return -EINVAL;
2265
2266	clk_prepare_lock();
2267
2268	/* check to see if a clock with this name is already registered */
2269	if (clk_core_lookup(core->name)) {
2270		pr_debug("%s: clk %s already initialized\n",
2271				__func__, core->name);
2272		ret = -EEXIST;
2273		goto out;
2274	}
2275
2276	/* check that clk_ops are sane.  See Documentation/clk.txt */
2277	if (core->ops->set_rate &&
2278	    !((core->ops->round_rate || core->ops->determine_rate) &&
2279	      core->ops->recalc_rate)) {
2280		pr_err("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n",
2281		       __func__, core->name);
2282		ret = -EINVAL;
2283		goto out;
2284	}
2285
2286	if (core->ops->set_parent && !core->ops->get_parent) {
2287		pr_err("%s: %s must implement .get_parent & .set_parent\n",
2288		       __func__, core->name);
2289		ret = -EINVAL;
2290		goto out;
2291	}
2292
2293	if (core->num_parents > 1 && !core->ops->get_parent) {
2294		pr_err("%s: %s must implement .get_parent as it has multi parents\n",
2295		       __func__, core->name);
2296		ret = -EINVAL;
2297		goto out;
2298	}
2299
2300	if (core->ops->set_rate_and_parent &&
2301			!(core->ops->set_parent && core->ops->set_rate)) {
2302		pr_err("%s: %s must implement .set_parent & .set_rate\n",
2303				__func__, core->name);
2304		ret = -EINVAL;
2305		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2306	}
2307
2308	/* throw a WARN if any entries in parent_names are NULL */
2309	for (i = 0; i < core->num_parents; i++)
2310		WARN(!core->parent_names[i],
2311				"%s: invalid NULL in %s's .parent_names\n",
2312				__func__, core->name);
2313
2314	core->parent = __clk_init_parent(core);
2315
2316	/*
2317	 * Populate core->parent if parent has already been clk_core_init'd. If
2318	 * parent has not yet been clk_core_init'd then place clk in the orphan
2319	 * list.  If clk doesn't have any parents then place it in the root
2320	 * clk list.
2321	 *
2322	 * Every time a new clk is clk_init'd then we walk the list of orphan
2323	 * clocks and re-parent any that are children of the clock currently
2324	 * being clk_init'd.
2325	 */
2326	if (core->parent) {
2327		hlist_add_head(&core->child_node,
2328				&core->parent->children);
2329		core->orphan = core->parent->orphan;
2330	} else if (!core->num_parents) {
2331		hlist_add_head(&core->child_node, &clk_root_list);
2332		core->orphan = false;
2333	} else {
2334		hlist_add_head(&core->child_node, &clk_orphan_list);
2335		core->orphan = true;
2336	}
2337
2338	/*
2339	 * Set clk's accuracy.  The preferred method is to use
2340	 * .recalc_accuracy. For simple clocks and lazy developers the default
2341	 * fallback is to use the parent's accuracy.  If a clock doesn't have a
2342	 * parent (or is orphaned) then accuracy is set to zero (perfect
2343	 * clock).
2344	 */
2345	if (core->ops->recalc_accuracy)
2346		core->accuracy = core->ops->recalc_accuracy(core->hw,
2347					__clk_get_accuracy(core->parent));
2348	else if (core->parent)
2349		core->accuracy = core->parent->accuracy;
2350	else
2351		core->accuracy = 0;
2352
2353	/*
2354	 * Set clk's phase.
2355	 * Since a phase is by definition relative to its parent, just
2356	 * query the current clock phase, or just assume it's in phase.
2357	 */
2358	if (core->ops->get_phase)
2359		core->phase = core->ops->get_phase(core->hw);
2360	else
2361		core->phase = 0;
2362
2363	/*
2364	 * Set clk's rate.  The preferred method is to use .recalc_rate.  For
2365	 * simple clocks and lazy developers the default fallback is to use the
2366	 * parent's rate.  If a clock doesn't have a parent (or is orphaned)
2367	 * then rate is set to zero.
2368	 */
2369	if (core->ops->recalc_rate)
2370		rate = core->ops->recalc_rate(core->hw,
2371				clk_core_get_rate_nolock(core->parent));
2372	else if (core->parent)
2373		rate = core->parent->rate;
2374	else
2375		rate = 0;
2376	core->rate = core->req_rate = rate;
2377
2378	/*
2379	 * walk the list of orphan clocks and reparent any that newly finds a
2380	 * parent.
2381	 */
2382	hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) {
2383		struct clk_core *parent = __clk_init_parent(orphan);
2384
2385		if (parent)
2386			clk_core_reparent(orphan, parent);
2387	}
2388
2389	/*
2390	 * optional platform-specific magic
2391	 *
2392	 * The .init callback is not used by any of the basic clock types, but
2393	 * exists for weird hardware that must perform initialization magic.
2394	 * Please consider other ways of solving initialization problems before
2395	 * using this callback, as its use is discouraged.
2396	 */
2397	if (core->ops->init)
2398		core->ops->init(core->hw);
 
 
2399
2400	kref_init(&core->ref);
2401out:
2402	clk_prepare_unlock();
2403
2404	if (!ret)
2405		clk_debug_register(core);
2406
2407	return ret;
2408}
2409
2410struct clk *__clk_create_clk(struct clk_hw *hw, const char *dev_id,
2411			     const char *con_id)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2412{
 
2413	struct clk *clk;
2414
2415	/* This is to allow this function to be chained to others */
2416	if (IS_ERR_OR_NULL(hw))
2417		return (struct clk *) hw;
 
 
 
 
2418
2419	clk = kzalloc(sizeof(*clk), GFP_KERNEL);
2420	if (!clk)
2421		return ERR_PTR(-ENOMEM);
2422
2423	clk->core = hw->core;
2424	clk->dev_id = dev_id;
2425	clk->con_id = con_id;
2426	clk->max_rate = ULONG_MAX;
2427
2428	clk_prepare_lock();
2429	hlist_add_head(&clk->clks_node, &hw->core->clks);
2430	clk_prepare_unlock();
2431
2432	return clk;
2433}
2434
2435void __clk_free_clk(struct clk *clk)
2436{
2437	clk_prepare_lock();
2438	hlist_del(&clk->clks_node);
2439	clk_prepare_unlock();
2440
2441	kfree(clk);
2442}
2443
2444/**
2445 * clk_register - allocate a new clock, register it and return an opaque cookie
2446 * @dev: device that is registering this clock
2447 * @hw: link to hardware-specific clock data
2448 *
2449 * clk_register is the primary interface for populating the clock tree with new
2450 * clock nodes.  It returns a pointer to the newly allocated struct clk which
2451 * cannot be dereferenced by driver code but may be used in conjunction with the
2452 * rest of the clock API.  In the event of an error clk_register will return an
2453 * error code; drivers must test for an error code after calling clk_register.
2454 */
2455struct clk *clk_register(struct device *dev, struct clk_hw *hw)
2456{
2457	int i, ret;
2458	struct clk_core *core;
2459
2460	core = kzalloc(sizeof(*core), GFP_KERNEL);
2461	if (!core) {
 
2462		ret = -ENOMEM;
2463		goto fail_out;
2464	}
2465
2466	core->name = kstrdup_const(hw->init->name, GFP_KERNEL);
2467	if (!core->name) {
 
2468		ret = -ENOMEM;
2469		goto fail_name;
2470	}
2471	core->ops = hw->init->ops;
2472	if (dev && dev->driver)
2473		core->owner = dev->driver->owner;
2474	core->hw = hw;
2475	core->flags = hw->init->flags;
2476	core->num_parents = hw->init->num_parents;
2477	core->min_rate = 0;
2478	core->max_rate = ULONG_MAX;
2479	hw->core = core;
2480
2481	/* allocate local copy in case parent_names is __initdata */
2482	core->parent_names = kcalloc(core->num_parents, sizeof(char *),
2483					GFP_KERNEL);
2484
2485	if (!core->parent_names) {
 
2486		ret = -ENOMEM;
2487		goto fail_parent_names;
2488	}
2489
2490
2491	/* copy each string name in case parent_names is __initdata */
2492	for (i = 0; i < core->num_parents; i++) {
2493		core->parent_names[i] = kstrdup_const(hw->init->parent_names[i],
2494						GFP_KERNEL);
2495		if (!core->parent_names[i]) {
 
2496			ret = -ENOMEM;
2497			goto fail_parent_names_copy;
2498		}
2499	}
2500
2501	/* avoid unnecessary string look-ups of clk_core's possible parents. */
2502	core->parents = kcalloc(core->num_parents, sizeof(*core->parents),
2503				GFP_KERNEL);
2504	if (!core->parents) {
2505		ret = -ENOMEM;
2506		goto fail_parents;
2507	};
2508
2509	INIT_HLIST_HEAD(&core->clks);
2510
2511	hw->clk = __clk_create_clk(hw, NULL, NULL);
2512	if (IS_ERR(hw->clk)) {
2513		ret = PTR_ERR(hw->clk);
2514		goto fail_parents;
2515	}
2516
2517	ret = __clk_core_init(core);
2518	if (!ret)
2519		return hw->clk;
2520
2521	__clk_free_clk(hw->clk);
2522	hw->clk = NULL;
2523
2524fail_parents:
2525	kfree(core->parents);
2526fail_parent_names_copy:
2527	while (--i >= 0)
2528		kfree_const(core->parent_names[i]);
2529	kfree(core->parent_names);
2530fail_parent_names:
2531	kfree_const(core->name);
2532fail_name:
2533	kfree(core);
2534fail_out:
2535	return ERR_PTR(ret);
2536}
2537EXPORT_SYMBOL_GPL(clk_register);
2538
2539/* Free memory allocated for a clock. */
2540static void __clk_release(struct kref *ref)
2541{
2542	struct clk_core *core = container_of(ref, struct clk_core, ref);
2543	int i = core->num_parents;
2544
2545	lockdep_assert_held(&prepare_lock);
2546
2547	kfree(core->parents);
2548	while (--i >= 0)
2549		kfree_const(core->parent_names[i]);
2550
2551	kfree(core->parent_names);
2552	kfree_const(core->name);
2553	kfree(core);
2554}
2555
2556/*
2557 * Empty clk_ops for unregistered clocks. These are used temporarily
2558 * after clk_unregister() was called on a clock and until last clock
2559 * consumer calls clk_put() and the struct clk object is freed.
2560 */
2561static int clk_nodrv_prepare_enable(struct clk_hw *hw)
2562{
2563	return -ENXIO;
2564}
2565
2566static void clk_nodrv_disable_unprepare(struct clk_hw *hw)
2567{
2568	WARN_ON_ONCE(1);
2569}
2570
2571static int clk_nodrv_set_rate(struct clk_hw *hw, unsigned long rate,
2572					unsigned long parent_rate)
2573{
2574	return -ENXIO;
2575}
2576
2577static int clk_nodrv_set_parent(struct clk_hw *hw, u8 index)
2578{
2579	return -ENXIO;
2580}
2581
2582static const struct clk_ops clk_nodrv_ops = {
2583	.enable		= clk_nodrv_prepare_enable,
2584	.disable	= clk_nodrv_disable_unprepare,
2585	.prepare	= clk_nodrv_prepare_enable,
2586	.unprepare	= clk_nodrv_disable_unprepare,
2587	.set_rate	= clk_nodrv_set_rate,
2588	.set_parent	= clk_nodrv_set_parent,
2589};
2590
2591/**
2592 * clk_unregister - unregister a currently registered clock
2593 * @clk: clock to unregister
 
 
2594 */
2595void clk_unregister(struct clk *clk)
2596{
2597	unsigned long flags;
2598
2599	if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
2600		return;
2601
2602	clk_debug_unregister(clk->core);
2603
2604	clk_prepare_lock();
2605
2606	if (clk->core->ops == &clk_nodrv_ops) {
2607		pr_err("%s: unregistered clock: %s\n", __func__,
2608		       clk->core->name);
2609		goto unlock;
2610	}
2611	/*
2612	 * Assign empty clock ops for consumers that might still hold
2613	 * a reference to this clock.
2614	 */
2615	flags = clk_enable_lock();
2616	clk->core->ops = &clk_nodrv_ops;
2617	clk_enable_unlock(flags);
2618
2619	if (!hlist_empty(&clk->core->children)) {
2620		struct clk_core *child;
2621		struct hlist_node *t;
2622
2623		/* Reparent all children to the orphan list. */
2624		hlist_for_each_entry_safe(child, t, &clk->core->children,
2625					  child_node)
2626			clk_core_set_parent(child, NULL);
2627	}
2628
2629	hlist_del_init(&clk->core->child_node);
2630
2631	if (clk->core->prepare_count)
2632		pr_warn("%s: unregistering prepared clock: %s\n",
2633					__func__, clk->core->name);
2634	kref_put(&clk->core->ref, __clk_release);
2635unlock:
2636	clk_prepare_unlock();
2637}
2638EXPORT_SYMBOL_GPL(clk_unregister);
2639
2640static void devm_clk_release(struct device *dev, void *res)
2641{
2642	clk_unregister(*(struct clk **)res);
2643}
2644
2645/**
2646 * devm_clk_register - resource managed clk_register()
2647 * @dev: device that is registering this clock
2648 * @hw: link to hardware-specific clock data
2649 *
2650 * Managed clk_register(). Clocks returned from this function are
2651 * automatically clk_unregister()ed on driver detach. See clk_register() for
2652 * more information.
2653 */
2654struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw)
2655{
2656	struct clk *clk;
2657	struct clk **clkp;
2658
2659	clkp = devres_alloc(devm_clk_release, sizeof(*clkp), GFP_KERNEL);
2660	if (!clkp)
2661		return ERR_PTR(-ENOMEM);
2662
2663	clk = clk_register(dev, hw);
2664	if (!IS_ERR(clk)) {
2665		*clkp = clk;
2666		devres_add(dev, clkp);
2667	} else {
2668		devres_free(clkp);
2669	}
2670
2671	return clk;
2672}
2673EXPORT_SYMBOL_GPL(devm_clk_register);
2674
2675static int devm_clk_match(struct device *dev, void *res, void *data)
2676{
2677	struct clk *c = res;
2678	if (WARN_ON(!c))
2679		return 0;
2680	return c == data;
2681}
2682
2683/**
2684 * devm_clk_unregister - resource managed clk_unregister()
2685 * @clk: clock to unregister
2686 *
2687 * Deallocate a clock allocated with devm_clk_register(). Normally
2688 * this function will not need to be called and the resource management
2689 * code will ensure that the resource is freed.
2690 */
2691void devm_clk_unregister(struct device *dev, struct clk *clk)
2692{
2693	WARN_ON(devres_release(dev, devm_clk_release, devm_clk_match, clk));
2694}
2695EXPORT_SYMBOL_GPL(devm_clk_unregister);
2696
2697/*
2698 * clkdev helpers
2699 */
2700int __clk_get(struct clk *clk)
2701{
2702	struct clk_core *core = !clk ? NULL : clk->core;
2703
2704	if (core) {
2705		if (!try_module_get(core->owner))
2706			return 0;
2707
2708		kref_get(&core->ref);
2709	}
2710	return 1;
2711}
2712
2713void __clk_put(struct clk *clk)
2714{
2715	struct module *owner;
2716
2717	if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
2718		return;
2719
2720	clk_prepare_lock();
2721
2722	hlist_del(&clk->clks_node);
2723	if (clk->min_rate > clk->core->req_rate ||
2724	    clk->max_rate < clk->core->req_rate)
2725		clk_core_set_rate_nolock(clk->core, clk->core->req_rate);
2726
2727	owner = clk->core->owner;
2728	kref_put(&clk->core->ref, __clk_release);
2729
2730	clk_prepare_unlock();
2731
2732	module_put(owner);
2733
2734	kfree(clk);
2735}
2736
2737/***        clk rate change notifiers        ***/
2738
2739/**
2740 * clk_notifier_register - add a clk rate change notifier
2741 * @clk: struct clk * to watch
2742 * @nb: struct notifier_block * with callback info
2743 *
2744 * Request notification when clk's rate changes.  This uses an SRCU
2745 * notifier because we want it to block and notifier unregistrations are
2746 * uncommon.  The callbacks associated with the notifier must not
2747 * re-enter into the clk framework by calling any top-level clk APIs;
2748 * this will cause a nested prepare_lock mutex.
2749 *
2750 * In all notification cases (pre, post and abort rate change) the original
2751 * clock rate is passed to the callback via struct clk_notifier_data.old_rate
2752 * and the new frequency is passed via struct clk_notifier_data.new_rate.
 
 
 
 
 
 
 
 
 
 
2753 *
2754 * clk_notifier_register() must be called from non-atomic context.
2755 * Returns -EINVAL if called with null arguments, -ENOMEM upon
2756 * allocation failure; otherwise, passes along the return value of
2757 * srcu_notifier_chain_register().
2758 */
2759int clk_notifier_register(struct clk *clk, struct notifier_block *nb)
2760{
2761	struct clk_notifier *cn;
2762	int ret = -ENOMEM;
2763
2764	if (!clk || !nb)
2765		return -EINVAL;
2766
2767	clk_prepare_lock();
2768
2769	/* search the list of notifiers for this clk */
2770	list_for_each_entry(cn, &clk_notifier_list, node)
2771		if (cn->clk == clk)
2772			break;
2773
2774	/* if clk wasn't in the notifier list, allocate new clk_notifier */
2775	if (cn->clk != clk) {
2776		cn = kzalloc(sizeof(struct clk_notifier), GFP_KERNEL);
2777		if (!cn)
2778			goto out;
2779
2780		cn->clk = clk;
2781		srcu_init_notifier_head(&cn->notifier_head);
2782
2783		list_add(&cn->node, &clk_notifier_list);
2784	}
2785
2786	ret = srcu_notifier_chain_register(&cn->notifier_head, nb);
2787
2788	clk->core->notifier_count++;
2789
2790out:
2791	clk_prepare_unlock();
2792
2793	return ret;
2794}
2795EXPORT_SYMBOL_GPL(clk_notifier_register);
2796
2797/**
2798 * clk_notifier_unregister - remove a clk rate change notifier
2799 * @clk: struct clk *
2800 * @nb: struct notifier_block * with callback info
2801 *
2802 * Request no further notification for changes to 'clk' and frees memory
2803 * allocated in clk_notifier_register.
2804 *
2805 * Returns -EINVAL if called with null arguments; otherwise, passes
2806 * along the return value of srcu_notifier_chain_unregister().
2807 */
2808int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb)
2809{
2810	struct clk_notifier *cn = NULL;
2811	int ret = -EINVAL;
2812
2813	if (!clk || !nb)
2814		return -EINVAL;
2815
2816	clk_prepare_lock();
2817
2818	list_for_each_entry(cn, &clk_notifier_list, node)
2819		if (cn->clk == clk)
2820			break;
2821
2822	if (cn->clk == clk) {
2823		ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb);
2824
2825		clk->core->notifier_count--;
2826
2827		/* XXX the notifier code should handle this better */
2828		if (!cn->notifier_head.head) {
2829			srcu_cleanup_notifier_head(&cn->notifier_head);
2830			list_del(&cn->node);
2831			kfree(cn);
2832		}
2833
2834	} else {
2835		ret = -ENOENT;
2836	}
2837
2838	clk_prepare_unlock();
2839
2840	return ret;
2841}
2842EXPORT_SYMBOL_GPL(clk_notifier_unregister);
2843
2844#ifdef CONFIG_OF
2845/**
2846 * struct of_clk_provider - Clock provider registration structure
2847 * @link: Entry in global list of clock providers
2848 * @node: Pointer to device tree node of clock provider
2849 * @get: Get clock callback.  Returns NULL or a struct clk for the
2850 *       given clock specifier
2851 * @data: context pointer to be passed into @get callback
2852 */
2853struct of_clk_provider {
2854	struct list_head link;
2855
2856	struct device_node *node;
2857	struct clk *(*get)(struct of_phandle_args *clkspec, void *data);
2858	void *data;
2859};
2860
2861static const struct of_device_id __clk_of_table_sentinel
2862	__used __section(__clk_of_table_end);
2863
2864static LIST_HEAD(of_clk_providers);
2865static DEFINE_MUTEX(of_clk_mutex);
2866
2867struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec,
2868				     void *data)
2869{
2870	return data;
2871}
2872EXPORT_SYMBOL_GPL(of_clk_src_simple_get);
2873
2874struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data)
2875{
2876	struct clk_onecell_data *clk_data = data;
2877	unsigned int idx = clkspec->args[0];
2878
2879	if (idx >= clk_data->clk_num) {
2880		pr_err("%s: invalid clock index %u\n", __func__, idx);
2881		return ERR_PTR(-EINVAL);
2882	}
2883
2884	return clk_data->clks[idx];
2885}
2886EXPORT_SYMBOL_GPL(of_clk_src_onecell_get);
2887
2888/**
2889 * of_clk_add_provider() - Register a clock provider for a node
2890 * @np: Device node pointer associated with clock provider
2891 * @clk_src_get: callback for decoding clock
2892 * @data: context pointer for @clk_src_get callback.
2893 */
2894int of_clk_add_provider(struct device_node *np,
2895			struct clk *(*clk_src_get)(struct of_phandle_args *clkspec,
2896						   void *data),
2897			void *data)
2898{
2899	struct of_clk_provider *cp;
2900	int ret;
2901
2902	cp = kzalloc(sizeof(struct of_clk_provider), GFP_KERNEL);
2903	if (!cp)
2904		return -ENOMEM;
2905
2906	cp->node = of_node_get(np);
2907	cp->data = data;
2908	cp->get = clk_src_get;
2909
2910	mutex_lock(&of_clk_mutex);
2911	list_add(&cp->link, &of_clk_providers);
2912	mutex_unlock(&of_clk_mutex);
2913	pr_debug("Added clock from %s\n", np->full_name);
2914
2915	ret = of_clk_set_defaults(np, true);
2916	if (ret < 0)
2917		of_clk_del_provider(np);
2918
2919	return ret;
2920}
2921EXPORT_SYMBOL_GPL(of_clk_add_provider);
2922
2923/**
2924 * of_clk_del_provider() - Remove a previously registered clock provider
2925 * @np: Device node pointer associated with clock provider
2926 */
2927void of_clk_del_provider(struct device_node *np)
2928{
2929	struct of_clk_provider *cp;
2930
2931	mutex_lock(&of_clk_mutex);
2932	list_for_each_entry(cp, &of_clk_providers, link) {
2933		if (cp->node == np) {
2934			list_del(&cp->link);
2935			of_node_put(cp->node);
2936			kfree(cp);
2937			break;
2938		}
2939	}
2940	mutex_unlock(&of_clk_mutex);
2941}
2942EXPORT_SYMBOL_GPL(of_clk_del_provider);
2943
2944struct clk *__of_clk_get_from_provider(struct of_phandle_args *clkspec,
2945				       const char *dev_id, const char *con_id)
2946{
2947	struct of_clk_provider *provider;
2948	struct clk *clk = ERR_PTR(-EPROBE_DEFER);
2949
2950	if (!clkspec)
2951		return ERR_PTR(-EINVAL);
2952
2953	/* Check if we have such a provider in our array */
2954	mutex_lock(&of_clk_mutex);
2955	list_for_each_entry(provider, &of_clk_providers, link) {
2956		if (provider->node == clkspec->np)
2957			clk = provider->get(clkspec, provider->data);
2958		if (!IS_ERR(clk)) {
2959			clk = __clk_create_clk(__clk_get_hw(clk), dev_id,
2960					       con_id);
2961
2962			if (!IS_ERR(clk) && !__clk_get(clk)) {
2963				__clk_free_clk(clk);
2964				clk = ERR_PTR(-ENOENT);
2965			}
2966
2967			break;
2968		}
2969	}
2970	mutex_unlock(&of_clk_mutex);
2971
2972	return clk;
2973}
2974
2975/**
2976 * of_clk_get_from_provider() - Lookup a clock from a clock provider
2977 * @clkspec: pointer to a clock specifier data structure
2978 *
2979 * This function looks up a struct clk from the registered list of clock
2980 * providers, an input is a clock specifier data structure as returned
2981 * from the of_parse_phandle_with_args() function call.
2982 */
2983struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec)
2984{
2985	return __of_clk_get_from_provider(clkspec, NULL, __func__);
2986}
2987EXPORT_SYMBOL_GPL(of_clk_get_from_provider);
2988
2989/**
2990 * of_clk_get_parent_count() - Count the number of clocks a device node has
2991 * @np: device node to count
2992 *
2993 * Returns: The number of clocks that are possible parents of this node
2994 */
2995unsigned int of_clk_get_parent_count(struct device_node *np)
2996{
2997	int count;
2998
2999	count = of_count_phandle_with_args(np, "clocks", "#clock-cells");
3000	if (count < 0)
3001		return 0;
3002
3003	return count;
3004}
3005EXPORT_SYMBOL_GPL(of_clk_get_parent_count);
3006
3007const char *of_clk_get_parent_name(struct device_node *np, int index)
3008{
3009	struct of_phandle_args clkspec;
3010	struct property *prop;
3011	const char *clk_name;
3012	const __be32 *vp;
3013	u32 pv;
3014	int rc;
3015	int count;
3016	struct clk *clk;
3017
3018	rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index,
3019					&clkspec);
3020	if (rc)
3021		return NULL;
3022
3023	index = clkspec.args_count ? clkspec.args[0] : 0;
3024	count = 0;
3025
3026	/* if there is an indices property, use it to transfer the index
3027	 * specified into an array offset for the clock-output-names property.
3028	 */
3029	of_property_for_each_u32(clkspec.np, "clock-indices", prop, vp, pv) {
3030		if (index == pv) {
3031			index = count;
3032			break;
3033		}
3034		count++;
3035	}
3036	/* We went off the end of 'clock-indices' without finding it */
3037	if (prop && !vp)
3038		return NULL;
3039
3040	if (of_property_read_string_index(clkspec.np, "clock-output-names",
3041					  index,
3042					  &clk_name) < 0) {
3043		/*
3044		 * Best effort to get the name if the clock has been
3045		 * registered with the framework. If the clock isn't
3046		 * registered, we return the node name as the name of
3047		 * the clock as long as #clock-cells = 0.
3048		 */
3049		clk = of_clk_get_from_provider(&clkspec);
3050		if (IS_ERR(clk)) {
3051			if (clkspec.args_count == 0)
3052				clk_name = clkspec.np->name;
3053			else
3054				clk_name = NULL;
3055		} else {
3056			clk_name = __clk_get_name(clk);
3057			clk_put(clk);
3058		}
3059	}
3060
3061
3062	of_node_put(clkspec.np);
3063	return clk_name;
3064}
3065EXPORT_SYMBOL_GPL(of_clk_get_parent_name);
3066
3067/**
3068 * of_clk_parent_fill() - Fill @parents with names of @np's parents and return
3069 * number of parents
3070 * @np: Device node pointer associated with clock provider
3071 * @parents: pointer to char array that hold the parents' names
3072 * @size: size of the @parents array
3073 *
3074 * Return: number of parents for the clock node.
3075 */
3076int of_clk_parent_fill(struct device_node *np, const char **parents,
3077		       unsigned int size)
3078{
3079	unsigned int i = 0;
3080
3081	while (i < size && (parents[i] = of_clk_get_parent_name(np, i)) != NULL)
3082		i++;
3083
3084	return i;
3085}
3086EXPORT_SYMBOL_GPL(of_clk_parent_fill);
3087
3088struct clock_provider {
3089	of_clk_init_cb_t clk_init_cb;
3090	struct device_node *np;
3091	struct list_head node;
3092};
3093
3094/*
3095 * This function looks for a parent clock. If there is one, then it
3096 * checks that the provider for this parent clock was initialized, in
3097 * this case the parent clock will be ready.
3098 */
3099static int parent_ready(struct device_node *np)
3100{
3101	int i = 0;
3102
3103	while (true) {
3104		struct clk *clk = of_clk_get(np, i);
3105
3106		/* this parent is ready we can check the next one */
3107		if (!IS_ERR(clk)) {
3108			clk_put(clk);
3109			i++;
3110			continue;
3111		}
3112
3113		/* at least one parent is not ready, we exit now */
3114		if (PTR_ERR(clk) == -EPROBE_DEFER)
3115			return 0;
3116
3117		/*
3118		 * Here we make assumption that the device tree is
3119		 * written correctly. So an error means that there is
3120		 * no more parent. As we didn't exit yet, then the
3121		 * previous parent are ready. If there is no clock
3122		 * parent, no need to wait for them, then we can
3123		 * consider their absence as being ready
3124		 */
3125		return 1;
3126	}
3127}
3128
3129/**
3130 * of_clk_init() - Scan and init clock providers from the DT
3131 * @matches: array of compatible values and init functions for providers.
3132 *
3133 * This function scans the device tree for matching clock providers
3134 * and calls their initialization functions. It also does it by trying
3135 * to follow the dependencies.
3136 */
3137void __init of_clk_init(const struct of_device_id *matches)
3138{
3139	const struct of_device_id *match;
3140	struct device_node *np;
3141	struct clock_provider *clk_provider, *next;
3142	bool is_init_done;
3143	bool force = false;
3144	LIST_HEAD(clk_provider_list);
3145
3146	if (!matches)
3147		matches = &__clk_of_table;
3148
3149	/* First prepare the list of the clocks providers */
3150	for_each_matching_node_and_match(np, matches, &match) {
3151		struct clock_provider *parent;
3152
3153		if (!of_device_is_available(np))
3154			continue;
3155
3156		parent = kzalloc(sizeof(*parent), GFP_KERNEL);
3157		if (!parent) {
3158			list_for_each_entry_safe(clk_provider, next,
3159						 &clk_provider_list, node) {
3160				list_del(&clk_provider->node);
3161				of_node_put(clk_provider->np);
3162				kfree(clk_provider);
3163			}
3164			of_node_put(np);
3165			return;
3166		}
3167
3168		parent->clk_init_cb = match->data;
3169		parent->np = of_node_get(np);
3170		list_add_tail(&parent->node, &clk_provider_list);
3171	}
3172
3173	while (!list_empty(&clk_provider_list)) {
3174		is_init_done = false;
3175		list_for_each_entry_safe(clk_provider, next,
3176					&clk_provider_list, node) {
3177			if (force || parent_ready(clk_provider->np)) {
3178
3179				clk_provider->clk_init_cb(clk_provider->np);
3180				of_clk_set_defaults(clk_provider->np, true);
3181
3182				list_del(&clk_provider->node);
3183				of_node_put(clk_provider->np);
3184				kfree(clk_provider);
3185				is_init_done = true;
3186			}
3187		}
3188
3189		/*
3190		 * We didn't manage to initialize any of the
3191		 * remaining providers during the last loop, so now we
3192		 * initialize all the remaining ones unconditionally
3193		 * in case the clock parent was not mandatory
3194		 */
3195		if (!is_init_done)
3196			force = true;
3197	}
3198}
3199#endif