Linux Audio

Check our new training course

Loading...
v3.1
 
   1/*
   2 * Copyright (c) 2004 Mellanox Technologies Ltd.  All rights reserved.
   3 * Copyright (c) 2004 Infinicon Corporation.  All rights reserved.
   4 * Copyright (c) 2004 Intel Corporation.  All rights reserved.
   5 * Copyright (c) 2004 Topspin Corporation.  All rights reserved.
   6 * Copyright (c) 2004 Voltaire Corporation.  All rights reserved.
   7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
   8 * Copyright (c) 2005, 2006, 2007 Cisco Systems.  All rights reserved.
   9 *
  10 * This software is available to you under a choice of one of two
  11 * licenses.  You may choose to be licensed under the terms of the GNU
  12 * General Public License (GPL) Version 2, available from the file
  13 * COPYING in the main directory of this source tree, or the
  14 * OpenIB.org BSD license below:
  15 *
  16 *     Redistribution and use in source and binary forms, with or
  17 *     without modification, are permitted provided that the following
  18 *     conditions are met:
  19 *
  20 *      - Redistributions of source code must retain the above
  21 *        copyright notice, this list of conditions and the following
  22 *        disclaimer.
  23 *
  24 *      - Redistributions in binary form must reproduce the above
  25 *        copyright notice, this list of conditions and the following
  26 *        disclaimer in the documentation and/or other materials
  27 *        provided with the distribution.
  28 *
  29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  36 * SOFTWARE.
  37 */
  38
  39#if !defined(IB_VERBS_H)
  40#define IB_VERBS_H
  41
 
  42#include <linux/types.h>
  43#include <linux/device.h>
  44#include <linux/mm.h>
  45#include <linux/dma-mapping.h>
  46#include <linux/kref.h>
  47#include <linux/list.h>
  48#include <linux/rwsem.h>
  49#include <linux/scatterlist.h>
  50#include <linux/workqueue.h>
  51
 
 
 
 
 
 
 
 
  52#include <linux/atomic.h>
  53#include <asm/uaccess.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  54
  55extern struct workqueue_struct *ib_wq;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  56
  57union ib_gid {
  58	u8	raw[16];
  59	struct {
  60		__be64	subnet_prefix;
  61		__be64	interface_id;
  62	} global;
  63};
  64
  65enum rdma_node_type {
  66	/* IB values map to NodeInfo:NodeType. */
  67	RDMA_NODE_IB_CA 	= 1,
  68	RDMA_NODE_IB_SWITCH,
  69	RDMA_NODE_IB_ROUTER,
  70	RDMA_NODE_RNIC
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  71};
  72
  73enum rdma_transport_type {
  74	RDMA_TRANSPORT_IB,
  75	RDMA_TRANSPORT_IWARP
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  76};
  77
  78enum rdma_transport_type
  79rdma_node_get_transport(enum rdma_node_type node_type) __attribute_const__;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  80
  81enum rdma_link_layer {
  82	IB_LINK_LAYER_UNSPECIFIED,
  83	IB_LINK_LAYER_INFINIBAND,
  84	IB_LINK_LAYER_ETHERNET,
  85};
  86
  87enum ib_device_cap_flags {
  88	IB_DEVICE_RESIZE_MAX_WR		= 1,
  89	IB_DEVICE_BAD_PKEY_CNTR		= (1<<1),
  90	IB_DEVICE_BAD_QKEY_CNTR		= (1<<2),
  91	IB_DEVICE_RAW_MULTI		= (1<<3),
  92	IB_DEVICE_AUTO_PATH_MIG		= (1<<4),
  93	IB_DEVICE_CHANGE_PHY_PORT	= (1<<5),
  94	IB_DEVICE_UD_AV_PORT_ENFORCE	= (1<<6),
  95	IB_DEVICE_CURR_QP_STATE_MOD	= (1<<7),
  96	IB_DEVICE_SHUTDOWN_PORT		= (1<<8),
  97	IB_DEVICE_INIT_TYPE		= (1<<9),
  98	IB_DEVICE_PORT_ACTIVE_EVENT	= (1<<10),
  99	IB_DEVICE_SYS_IMAGE_GUID	= (1<<11),
 100	IB_DEVICE_RC_RNR_NAK_GEN	= (1<<12),
 101	IB_DEVICE_SRQ_RESIZE		= (1<<13),
 102	IB_DEVICE_N_NOTIFY_CQ		= (1<<14),
 103	IB_DEVICE_LOCAL_DMA_LKEY	= (1<<15),
 104	IB_DEVICE_RESERVED		= (1<<16), /* old SEND_W_INV */
 105	IB_DEVICE_MEM_WINDOW		= (1<<17),
 106	/*
 107	 * Devices should set IB_DEVICE_UD_IP_SUM if they support
 108	 * insertion of UDP and TCP checksum on outgoing UD IPoIB
 109	 * messages and can verify the validity of checksum for
 110	 * incoming messages.  Setting this flag implies that the
 111	 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
 112	 */
 113	IB_DEVICE_UD_IP_CSUM		= (1<<18),
 114	IB_DEVICE_UD_TSO		= (1<<19),
 115	IB_DEVICE_MEM_MGT_EXTENSIONS	= (1<<21),
 116	IB_DEVICE_BLOCK_MULTICAST_LOOPBACK = (1<<22),
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 117};
 118
 119enum ib_atomic_cap {
 120	IB_ATOMIC_NONE,
 121	IB_ATOMIC_HCA,
 122	IB_ATOMIC_GLOB
 123};
 124
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 125struct ib_device_attr {
 126	u64			fw_ver;
 127	__be64			sys_image_guid;
 128	u64			max_mr_size;
 129	u64			page_size_cap;
 130	u32			vendor_id;
 131	u32			vendor_part_id;
 132	u32			hw_ver;
 133	int			max_qp;
 134	int			max_qp_wr;
 135	int			device_cap_flags;
 136	int			max_sge;
 
 
 137	int			max_sge_rd;
 138	int			max_cq;
 139	int			max_cqe;
 140	int			max_mr;
 141	int			max_pd;
 142	int			max_qp_rd_atom;
 143	int			max_ee_rd_atom;
 144	int			max_res_rd_atom;
 145	int			max_qp_init_rd_atom;
 146	int			max_ee_init_rd_atom;
 147	enum ib_atomic_cap	atomic_cap;
 148	enum ib_atomic_cap	masked_atomic_cap;
 149	int			max_ee;
 150	int			max_rdd;
 151	int			max_mw;
 152	int			max_raw_ipv6_qp;
 153	int			max_raw_ethy_qp;
 154	int			max_mcast_grp;
 155	int			max_mcast_qp_attach;
 156	int			max_total_mcast_qp_attach;
 157	int			max_ah;
 158	int			max_fmr;
 159	int			max_map_per_fmr;
 160	int			max_srq;
 161	int			max_srq_wr;
 162	int			max_srq_sge;
 163	unsigned int		max_fast_reg_page_list_len;
 
 164	u16			max_pkeys;
 165	u8			local_ca_ack_delay;
 
 
 
 
 
 
 
 
 
 
 
 
 
 166};
 167
 168enum ib_mtu {
 169	IB_MTU_256  = 1,
 170	IB_MTU_512  = 2,
 171	IB_MTU_1024 = 3,
 172	IB_MTU_2048 = 4,
 173	IB_MTU_4096 = 5
 174};
 175
 
 
 
 
 
 176static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
 177{
 178	switch (mtu) {
 179	case IB_MTU_256:  return  256;
 180	case IB_MTU_512:  return  512;
 181	case IB_MTU_1024: return 1024;
 182	case IB_MTU_2048: return 2048;
 183	case IB_MTU_4096: return 4096;
 184	default: 	  return -1;
 185	}
 186}
 187
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 188enum ib_port_state {
 189	IB_PORT_NOP		= 0,
 190	IB_PORT_DOWN		= 1,
 191	IB_PORT_INIT		= 2,
 192	IB_PORT_ARMED		= 3,
 193	IB_PORT_ACTIVE		= 4,
 194	IB_PORT_ACTIVE_DEFER	= 5
 195};
 196
 197enum ib_port_cap_flags {
 198	IB_PORT_SM				= 1 <<  1,
 199	IB_PORT_NOTICE_SUP			= 1 <<  2,
 200	IB_PORT_TRAP_SUP			= 1 <<  3,
 201	IB_PORT_OPT_IPD_SUP                     = 1 <<  4,
 202	IB_PORT_AUTO_MIGR_SUP			= 1 <<  5,
 203	IB_PORT_SL_MAP_SUP			= 1 <<  6,
 204	IB_PORT_MKEY_NVRAM			= 1 <<  7,
 205	IB_PORT_PKEY_NVRAM			= 1 <<  8,
 206	IB_PORT_LED_INFO_SUP			= 1 <<  9,
 207	IB_PORT_SM_DISABLED			= 1 << 10,
 208	IB_PORT_SYS_IMAGE_GUID_SUP		= 1 << 11,
 209	IB_PORT_PKEY_SW_EXT_PORT_TRAP_SUP	= 1 << 12,
 210	IB_PORT_CM_SUP				= 1 << 16,
 211	IB_PORT_SNMP_TUNNEL_SUP			= 1 << 17,
 212	IB_PORT_REINIT_SUP			= 1 << 18,
 213	IB_PORT_DEVICE_MGMT_SUP			= 1 << 19,
 214	IB_PORT_VENDOR_CLASS_SUP		= 1 << 20,
 215	IB_PORT_DR_NOTICE_SUP			= 1 << 21,
 216	IB_PORT_CAP_MASK_NOTICE_SUP		= 1 << 22,
 217	IB_PORT_BOOT_MGMT_SUP			= 1 << 23,
 218	IB_PORT_LINK_LATENCY_SUP		= 1 << 24,
 219	IB_PORT_CLIENT_REG_SUP			= 1 << 25
 220};
 221
 222enum ib_port_width {
 223	IB_WIDTH_1X	= 1,
 
 224	IB_WIDTH_4X	= 2,
 225	IB_WIDTH_8X	= 4,
 226	IB_WIDTH_12X	= 8
 227};
 228
 229static inline int ib_width_enum_to_int(enum ib_port_width width)
 230{
 231	switch (width) {
 232	case IB_WIDTH_1X:  return  1;
 
 233	case IB_WIDTH_4X:  return  4;
 234	case IB_WIDTH_8X:  return  8;
 235	case IB_WIDTH_12X: return 12;
 236	default: 	  return -1;
 237	}
 238}
 239
 240struct ib_protocol_stats {
 241	/* TBD... */
 242};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 243
 244struct iw_protocol_stats {
 245	u64	ipInReceives;
 246	u64	ipInHdrErrors;
 247	u64	ipInTooBigErrors;
 248	u64	ipInNoRoutes;
 249	u64	ipInAddrErrors;
 250	u64	ipInUnknownProtos;
 251	u64	ipInTruncatedPkts;
 252	u64	ipInDiscards;
 253	u64	ipInDelivers;
 254	u64	ipOutForwDatagrams;
 255	u64	ipOutRequests;
 256	u64	ipOutDiscards;
 257	u64	ipOutNoRoutes;
 258	u64	ipReasmTimeout;
 259	u64	ipReasmReqds;
 260	u64	ipReasmOKs;
 261	u64	ipReasmFails;
 262	u64	ipFragOKs;
 263	u64	ipFragFails;
 264	u64	ipFragCreates;
 265	u64	ipInMcastPkts;
 266	u64	ipOutMcastPkts;
 267	u64	ipInBcastPkts;
 268	u64	ipOutBcastPkts;
 269
 270	u64	tcpRtoAlgorithm;
 271	u64	tcpRtoMin;
 272	u64	tcpRtoMax;
 273	u64	tcpMaxConn;
 274	u64	tcpActiveOpens;
 275	u64	tcpPassiveOpens;
 276	u64	tcpAttemptFails;
 277	u64	tcpEstabResets;
 278	u64	tcpCurrEstab;
 279	u64	tcpInSegs;
 280	u64	tcpOutSegs;
 281	u64	tcpRetransSegs;
 282	u64	tcpInErrs;
 283	u64	tcpOutRsts;
 284};
 285
 286union rdma_protocol_stats {
 287	struct ib_protocol_stats	ib;
 288	struct iw_protocol_stats	iw;
 289};
 290
 291struct ib_port_attr {
 
 292	enum ib_port_state	state;
 293	enum ib_mtu		max_mtu;
 294	enum ib_mtu		active_mtu;
 
 295	int			gid_tbl_len;
 
 
 296	u32			port_cap_flags;
 297	u32			max_msg_sz;
 298	u32			bad_pkey_cntr;
 299	u32			qkey_viol_cntr;
 300	u16			pkey_tbl_len;
 301	u16			lid;
 302	u16			sm_lid;
 303	u8			lmc;
 304	u8			max_vl_num;
 305	u8			sm_sl;
 306	u8			subnet_timeout;
 307	u8			init_type_reply;
 308	u8			active_width;
 309	u8			active_speed;
 310	u8                      phys_state;
 
 311};
 312
 313enum ib_device_modify_flags {
 314	IB_DEVICE_MODIFY_SYS_IMAGE_GUID	= 1 << 0,
 315	IB_DEVICE_MODIFY_NODE_DESC	= 1 << 1
 316};
 317
 
 
 318struct ib_device_modify {
 319	u64	sys_image_guid;
 320	char	node_desc[64];
 321};
 322
 323enum ib_port_modify_flags {
 324	IB_PORT_SHUTDOWN		= 1,
 325	IB_PORT_INIT_TYPE		= (1<<2),
 326	IB_PORT_RESET_QKEY_CNTR		= (1<<3)
 
 327};
 328
 329struct ib_port_modify {
 330	u32	set_port_cap_mask;
 331	u32	clr_port_cap_mask;
 332	u8	init_type;
 333};
 334
 335enum ib_event_type {
 336	IB_EVENT_CQ_ERR,
 337	IB_EVENT_QP_FATAL,
 338	IB_EVENT_QP_REQ_ERR,
 339	IB_EVENT_QP_ACCESS_ERR,
 340	IB_EVENT_COMM_EST,
 341	IB_EVENT_SQ_DRAINED,
 342	IB_EVENT_PATH_MIG,
 343	IB_EVENT_PATH_MIG_ERR,
 344	IB_EVENT_DEVICE_FATAL,
 345	IB_EVENT_PORT_ACTIVE,
 346	IB_EVENT_PORT_ERR,
 347	IB_EVENT_LID_CHANGE,
 348	IB_EVENT_PKEY_CHANGE,
 349	IB_EVENT_SM_CHANGE,
 350	IB_EVENT_SRQ_ERR,
 351	IB_EVENT_SRQ_LIMIT_REACHED,
 352	IB_EVENT_QP_LAST_WQE_REACHED,
 353	IB_EVENT_CLIENT_REREGISTER,
 354	IB_EVENT_GID_CHANGE,
 
 355};
 356
 
 
 357struct ib_event {
 358	struct ib_device	*device;
 359	union {
 360		struct ib_cq	*cq;
 361		struct ib_qp	*qp;
 362		struct ib_srq	*srq;
 363		u8		port_num;
 
 364	} element;
 365	enum ib_event_type	event;
 366};
 367
 368struct ib_event_handler {
 369	struct ib_device *device;
 370	void            (*handler)(struct ib_event_handler *, struct ib_event *);
 371	struct list_head  list;
 372};
 373
 374#define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler)		\
 375	do {							\
 376		(_ptr)->device  = _device;			\
 377		(_ptr)->handler = _handler;			\
 378		INIT_LIST_HEAD(&(_ptr)->list);			\
 379	} while (0)
 380
 381struct ib_global_route {
 
 382	union ib_gid	dgid;
 383	u32		flow_label;
 384	u8		sgid_index;
 385	u8		hop_limit;
 386	u8		traffic_class;
 387};
 388
 389struct ib_grh {
 390	__be32		version_tclass_flow;
 391	__be16		paylen;
 392	u8		next_hdr;
 393	u8		hop_limit;
 394	union ib_gid	sgid;
 395	union ib_gid	dgid;
 396};
 397
 
 
 
 
 
 
 
 
 
 
 
 
 
 398enum {
 399	IB_MULTICAST_QPN = 0xffffff
 400};
 401
 402#define IB_LID_PERMISSIVE	cpu_to_be16(0xFFFF)
 
 403
 404enum ib_ah_flags {
 405	IB_AH_GRH	= 1
 406};
 407
 408enum ib_rate {
 409	IB_RATE_PORT_CURRENT = 0,
 410	IB_RATE_2_5_GBPS = 2,
 411	IB_RATE_5_GBPS   = 5,
 412	IB_RATE_10_GBPS  = 3,
 413	IB_RATE_20_GBPS  = 6,
 414	IB_RATE_30_GBPS  = 4,
 415	IB_RATE_40_GBPS  = 7,
 416	IB_RATE_60_GBPS  = 8,
 417	IB_RATE_80_GBPS  = 9,
 418	IB_RATE_120_GBPS = 10
 
 
 
 
 
 
 
 
 
 
 
 
 
 419};
 420
 421/**
 422 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the
 423 * base rate of 2.5 Gbit/sec.  For example, IB_RATE_5_GBPS will be
 424 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
 425 * @rate: rate to convert.
 426 */
 427int ib_rate_to_mult(enum ib_rate rate) __attribute_const__;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 428
 429/**
 430 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
 431 * enum.
 432 * @mult: multiple to convert.
 433 */
 434enum ib_rate mult_to_ib_rate(int mult) __attribute_const__;
 
 
 
 
 
 
 
 
 
 
 
 
 
 435
 436struct ib_ah_attr {
 437	struct ib_global_route	grh;
 438	u16			dlid;
 439	u8			sl;
 440	u8			src_path_bits;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 441	u8			static_rate;
 
 442	u8			ah_flags;
 443	u8			port_num;
 
 
 
 
 
 444};
 445
 446enum ib_wc_status {
 447	IB_WC_SUCCESS,
 448	IB_WC_LOC_LEN_ERR,
 449	IB_WC_LOC_QP_OP_ERR,
 450	IB_WC_LOC_EEC_OP_ERR,
 451	IB_WC_LOC_PROT_ERR,
 452	IB_WC_WR_FLUSH_ERR,
 453	IB_WC_MW_BIND_ERR,
 454	IB_WC_BAD_RESP_ERR,
 455	IB_WC_LOC_ACCESS_ERR,
 456	IB_WC_REM_INV_REQ_ERR,
 457	IB_WC_REM_ACCESS_ERR,
 458	IB_WC_REM_OP_ERR,
 459	IB_WC_RETRY_EXC_ERR,
 460	IB_WC_RNR_RETRY_EXC_ERR,
 461	IB_WC_LOC_RDD_VIOL_ERR,
 462	IB_WC_REM_INV_RD_REQ_ERR,
 463	IB_WC_REM_ABORT_ERR,
 464	IB_WC_INV_EECN_ERR,
 465	IB_WC_INV_EEC_STATE_ERR,
 466	IB_WC_FATAL_ERR,
 467	IB_WC_RESP_TIMEOUT_ERR,
 468	IB_WC_GENERAL_ERR
 469};
 470
 
 
 471enum ib_wc_opcode {
 472	IB_WC_SEND,
 473	IB_WC_RDMA_WRITE,
 474	IB_WC_RDMA_READ,
 475	IB_WC_COMP_SWAP,
 476	IB_WC_FETCH_ADD,
 477	IB_WC_BIND_MW,
 478	IB_WC_LSO,
 479	IB_WC_LOCAL_INV,
 480	IB_WC_FAST_REG_MR,
 
 481	IB_WC_MASKED_COMP_SWAP,
 482	IB_WC_MASKED_FETCH_ADD,
 
 483/*
 484 * Set value of IB_WC_RECV so consumers can test if a completion is a
 485 * receive by testing (opcode & IB_WC_RECV).
 486 */
 487	IB_WC_RECV			= 1 << 7,
 488	IB_WC_RECV_RDMA_WITH_IMM
 489};
 490
 491enum ib_wc_flags {
 492	IB_WC_GRH		= 1,
 493	IB_WC_WITH_IMM		= (1<<1),
 494	IB_WC_WITH_INVALIDATE	= (1<<2),
 
 
 
 
 495};
 496
 497struct ib_wc {
 498	u64			wr_id;
 
 
 
 499	enum ib_wc_status	status;
 500	enum ib_wc_opcode	opcode;
 501	u32			vendor_err;
 502	u32			byte_len;
 503	struct ib_qp	       *qp;
 504	union {
 505		__be32		imm_data;
 506		u32		invalidate_rkey;
 507	} ex;
 508	u32			src_qp;
 
 509	int			wc_flags;
 510	u16			pkey_index;
 511	u16			slid;
 512	u8			sl;
 513	u8			dlid_path_bits;
 514	u8			port_num;	/* valid only for DR SMPs on switches */
 515	int			csum_ok;
 
 
 516};
 517
 518enum ib_cq_notify_flags {
 519	IB_CQ_SOLICITED			= 1 << 0,
 520	IB_CQ_NEXT_COMP			= 1 << 1,
 521	IB_CQ_SOLICITED_MASK		= IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
 522	IB_CQ_REPORT_MISSED_EVENTS	= 1 << 2,
 523};
 524
 
 
 
 
 
 
 
 
 
 
 
 
 525enum ib_srq_attr_mask {
 526	IB_SRQ_MAX_WR	= 1 << 0,
 527	IB_SRQ_LIMIT	= 1 << 1,
 528};
 529
 530struct ib_srq_attr {
 531	u32	max_wr;
 532	u32	max_sge;
 533	u32	srq_limit;
 534};
 535
 536struct ib_srq_init_attr {
 537	void		      (*event_handler)(struct ib_event *, void *);
 538	void		       *srq_context;
 539	struct ib_srq_attr	attr;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 540};
 541
 542struct ib_qp_cap {
 543	u32	max_send_wr;
 544	u32	max_recv_wr;
 545	u32	max_send_sge;
 546	u32	max_recv_sge;
 547	u32	max_inline_data;
 
 
 
 
 
 
 
 548};
 549
 550enum ib_sig_type {
 551	IB_SIGNAL_ALL_WR,
 552	IB_SIGNAL_REQ_WR
 553};
 554
 555enum ib_qp_type {
 556	/*
 557	 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
 558	 * here (and in that order) since the MAD layer uses them as
 559	 * indices into a 2-entry table.
 560	 */
 561	IB_QPT_SMI,
 562	IB_QPT_GSI,
 563
 564	IB_QPT_RC,
 565	IB_QPT_UC,
 566	IB_QPT_UD,
 567	IB_QPT_RAW_IPV6,
 568	IB_QPT_RAW_ETHERTYPE
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 569};
 570
 571enum ib_qp_create_flags {
 572	IB_QP_CREATE_IPOIB_UD_LSO		= 1 << 0,
 573	IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK	= 1 << 1,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 574};
 575
 
 
 
 
 
 576struct ib_qp_init_attr {
 
 577	void                  (*event_handler)(struct ib_event *, void *);
 
 578	void		       *qp_context;
 579	struct ib_cq	       *send_cq;
 580	struct ib_cq	       *recv_cq;
 581	struct ib_srq	       *srq;
 
 582	struct ib_qp_cap	cap;
 583	enum ib_sig_type	sq_sig_type;
 584	enum ib_qp_type		qp_type;
 585	enum ib_qp_create_flags	create_flags;
 586	u8			port_num; /* special QP types only */
 
 
 
 
 
 
 
 
 
 
 
 
 
 587};
 588
 589enum ib_rnr_timeout {
 590	IB_RNR_TIMER_655_36 =  0,
 591	IB_RNR_TIMER_000_01 =  1,
 592	IB_RNR_TIMER_000_02 =  2,
 593	IB_RNR_TIMER_000_03 =  3,
 594	IB_RNR_TIMER_000_04 =  4,
 595	IB_RNR_TIMER_000_06 =  5,
 596	IB_RNR_TIMER_000_08 =  6,
 597	IB_RNR_TIMER_000_12 =  7,
 598	IB_RNR_TIMER_000_16 =  8,
 599	IB_RNR_TIMER_000_24 =  9,
 600	IB_RNR_TIMER_000_32 = 10,
 601	IB_RNR_TIMER_000_48 = 11,
 602	IB_RNR_TIMER_000_64 = 12,
 603	IB_RNR_TIMER_000_96 = 13,
 604	IB_RNR_TIMER_001_28 = 14,
 605	IB_RNR_TIMER_001_92 = 15,
 606	IB_RNR_TIMER_002_56 = 16,
 607	IB_RNR_TIMER_003_84 = 17,
 608	IB_RNR_TIMER_005_12 = 18,
 609	IB_RNR_TIMER_007_68 = 19,
 610	IB_RNR_TIMER_010_24 = 20,
 611	IB_RNR_TIMER_015_36 = 21,
 612	IB_RNR_TIMER_020_48 = 22,
 613	IB_RNR_TIMER_030_72 = 23,
 614	IB_RNR_TIMER_040_96 = 24,
 615	IB_RNR_TIMER_061_44 = 25,
 616	IB_RNR_TIMER_081_92 = 26,
 617	IB_RNR_TIMER_122_88 = 27,
 618	IB_RNR_TIMER_163_84 = 28,
 619	IB_RNR_TIMER_245_76 = 29,
 620	IB_RNR_TIMER_327_68 = 30,
 621	IB_RNR_TIMER_491_52 = 31
 622};
 623
 624enum ib_qp_attr_mask {
 625	IB_QP_STATE			= 1,
 626	IB_QP_CUR_STATE			= (1<<1),
 627	IB_QP_EN_SQD_ASYNC_NOTIFY	= (1<<2),
 628	IB_QP_ACCESS_FLAGS		= (1<<3),
 629	IB_QP_PKEY_INDEX		= (1<<4),
 630	IB_QP_PORT			= (1<<5),
 631	IB_QP_QKEY			= (1<<6),
 632	IB_QP_AV			= (1<<7),
 633	IB_QP_PATH_MTU			= (1<<8),
 634	IB_QP_TIMEOUT			= (1<<9),
 635	IB_QP_RETRY_CNT			= (1<<10),
 636	IB_QP_RNR_RETRY			= (1<<11),
 637	IB_QP_RQ_PSN			= (1<<12),
 638	IB_QP_MAX_QP_RD_ATOMIC		= (1<<13),
 639	IB_QP_ALT_PATH			= (1<<14),
 640	IB_QP_MIN_RNR_TIMER		= (1<<15),
 641	IB_QP_SQ_PSN			= (1<<16),
 642	IB_QP_MAX_DEST_RD_ATOMIC	= (1<<17),
 643	IB_QP_PATH_MIG_STATE		= (1<<18),
 644	IB_QP_CAP			= (1<<19),
 645	IB_QP_DEST_QPN			= (1<<20)
 
 
 
 
 
 
 
 646};
 647
 648enum ib_qp_state {
 649	IB_QPS_RESET,
 650	IB_QPS_INIT,
 651	IB_QPS_RTR,
 652	IB_QPS_RTS,
 653	IB_QPS_SQD,
 654	IB_QPS_SQE,
 655	IB_QPS_ERR
 656};
 657
 658enum ib_mig_state {
 659	IB_MIG_MIGRATED,
 660	IB_MIG_REARM,
 661	IB_MIG_ARMED
 662};
 663
 
 
 
 
 
 664struct ib_qp_attr {
 665	enum ib_qp_state	qp_state;
 666	enum ib_qp_state	cur_qp_state;
 667	enum ib_mtu		path_mtu;
 668	enum ib_mig_state	path_mig_state;
 669	u32			qkey;
 670	u32			rq_psn;
 671	u32			sq_psn;
 672	u32			dest_qp_num;
 673	int			qp_access_flags;
 674	struct ib_qp_cap	cap;
 675	struct ib_ah_attr	ah_attr;
 676	struct ib_ah_attr	alt_ah_attr;
 677	u16			pkey_index;
 678	u16			alt_pkey_index;
 679	u8			en_sqd_async_notify;
 680	u8			sq_draining;
 681	u8			max_rd_atomic;
 682	u8			max_dest_rd_atomic;
 683	u8			min_rnr_timer;
 684	u8			port_num;
 685	u8			timeout;
 686	u8			retry_cnt;
 687	u8			rnr_retry;
 688	u8			alt_port_num;
 689	u8			alt_timeout;
 
 
 690};
 691
 692enum ib_wr_opcode {
 693	IB_WR_RDMA_WRITE,
 694	IB_WR_RDMA_WRITE_WITH_IMM,
 695	IB_WR_SEND,
 696	IB_WR_SEND_WITH_IMM,
 697	IB_WR_RDMA_READ,
 698	IB_WR_ATOMIC_CMP_AND_SWP,
 699	IB_WR_ATOMIC_FETCH_AND_ADD,
 700	IB_WR_LSO,
 701	IB_WR_SEND_WITH_INV,
 702	IB_WR_RDMA_READ_WITH_INV,
 703	IB_WR_LOCAL_INV,
 704	IB_WR_FAST_REG_MR,
 705	IB_WR_MASKED_ATOMIC_CMP_AND_SWP,
 706	IB_WR_MASKED_ATOMIC_FETCH_AND_ADD,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 707};
 708
 709enum ib_send_flags {
 710	IB_SEND_FENCE		= 1,
 711	IB_SEND_SIGNALED	= (1<<1),
 712	IB_SEND_SOLICITED	= (1<<2),
 713	IB_SEND_INLINE		= (1<<3),
 714	IB_SEND_IP_CSUM		= (1<<4)
 
 
 
 
 715};
 716
 717struct ib_sge {
 718	u64	addr;
 719	u32	length;
 720	u32	lkey;
 721};
 722
 723struct ib_fast_reg_page_list {
 724	struct ib_device       *device;
 725	u64		       *page_list;
 726	unsigned int		max_page_list_len;
 727};
 728
 729struct ib_send_wr {
 730	struct ib_send_wr      *next;
 731	u64			wr_id;
 
 
 
 732	struct ib_sge	       *sg_list;
 733	int			num_sge;
 734	enum ib_wr_opcode	opcode;
 735	int			send_flags;
 736	union {
 737		__be32		imm_data;
 738		u32		invalidate_rkey;
 739	} ex;
 740	union {
 741		struct {
 742			u64	remote_addr;
 743			u32	rkey;
 744		} rdma;
 745		struct {
 746			u64	remote_addr;
 747			u64	compare_add;
 748			u64	swap;
 749			u64	compare_add_mask;
 750			u64	swap_mask;
 751			u32	rkey;
 752		} atomic;
 753		struct {
 754			struct ib_ah *ah;
 755			void   *header;
 756			int     hlen;
 757			int     mss;
 758			u32	remote_qpn;
 759			u32	remote_qkey;
 760			u16	pkey_index; /* valid for GSI only */
 761			u8	port_num;   /* valid for DR SMPs on switch only */
 762		} ud;
 763		struct {
 764			u64				iova_start;
 765			struct ib_fast_reg_page_list   *page_list;
 766			unsigned int			page_shift;
 767			unsigned int			page_list_len;
 768			u32				length;
 769			int				access_flags;
 770			u32				rkey;
 771		} fast_reg;
 772	} wr;
 773};
 774
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 775struct ib_recv_wr {
 776	struct ib_recv_wr      *next;
 777	u64			wr_id;
 
 
 
 778	struct ib_sge	       *sg_list;
 779	int			num_sge;
 780};
 781
 782enum ib_access_flags {
 783	IB_ACCESS_LOCAL_WRITE	= 1,
 784	IB_ACCESS_REMOTE_WRITE	= (1<<1),
 785	IB_ACCESS_REMOTE_READ	= (1<<2),
 786	IB_ACCESS_REMOTE_ATOMIC	= (1<<3),
 787	IB_ACCESS_MW_BIND	= (1<<4)
 788};
 789
 790struct ib_phys_buf {
 791	u64      addr;
 792	u64      size;
 793};
 794
 795struct ib_mr_attr {
 796	struct ib_pd	*pd;
 797	u64		device_virt_addr;
 798	u64		size;
 799	int		mr_access_flags;
 800	u32		lkey;
 801	u32		rkey;
 802};
 803
 
 
 
 
 804enum ib_mr_rereg_flags {
 805	IB_MR_REREG_TRANS	= 1,
 806	IB_MR_REREG_PD		= (1<<1),
 807	IB_MR_REREG_ACCESS	= (1<<2)
 
 808};
 809
 810struct ib_mw_bind {
 811	struct ib_mr   *mr;
 812	u64		wr_id;
 813	u64		addr;
 814	u32		length;
 815	int		send_flags;
 816	int		mw_access_flags;
 817};
 818
 819struct ib_fmr_attr {
 820	int	max_pages;
 821	int	max_maps;
 822	u8	page_shift;
 
 
 
 
 
 
 
 
 
 823};
 824
 825struct ib_ucontext {
 826	struct ib_device       *device;
 827	struct list_head	pd_list;
 828	struct list_head	mr_list;
 829	struct list_head	mw_list;
 830	struct list_head	cq_list;
 831	struct list_head	qp_list;
 832	struct list_head	srq_list;
 833	struct list_head	ah_list;
 834	int			closing;
 835};
 836
 837struct ib_uobject {
 838	u64			user_handle;	/* handle given to us by userspace */
 
 
 
 839	struct ib_ucontext     *context;	/* associated user context */
 840	void		       *object;		/* containing object */
 841	struct list_head	list;		/* link to context's list */
 
 842	int			id;		/* index into kernel idr */
 843	struct kref		ref;
 844	struct rw_semaphore	mutex;		/* protects .live */
 845	int			live;
 
 
 846};
 847
 848struct ib_udata {
 849	void __user *inbuf;
 850	void __user *outbuf;
 851	size_t       inlen;
 852	size_t       outlen;
 853};
 854
 855struct ib_pd {
 
 
 856	struct ib_device       *device;
 857	struct ib_uobject      *uobject;
 858	atomic_t          	usecnt; /* count all resources */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 859};
 860
 861struct ib_ah {
 862	struct ib_device	*device;
 863	struct ib_pd		*pd;
 864	struct ib_uobject	*uobject;
 
 
 865};
 866
 867typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
 868
 
 
 
 
 
 
 
 
 
 869struct ib_cq {
 870	struct ib_device       *device;
 871	struct ib_uobject      *uobject;
 872	ib_comp_handler   	comp_handler;
 873	void                  (*event_handler)(struct ib_event *, void *);
 874	void                   *cq_context;
 875	int               	cqe;
 
 876	atomic_t          	usecnt; /* count number of work queues */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 877};
 878
 879struct ib_srq {
 880	struct ib_device       *device;
 881	struct ib_pd	       *pd;
 882	struct ib_uobject      *uobject;
 883	void		      (*event_handler)(struct ib_event *, void *);
 884	void		       *srq_context;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 885	atomic_t		usecnt;
 
 
 
 
 
 
 
 
 
 886};
 887
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 888struct ib_qp {
 889	struct ib_device       *device;
 890	struct ib_pd	       *pd;
 891	struct ib_cq	       *send_cq;
 892	struct ib_cq	       *recv_cq;
 
 
 
 
 893	struct ib_srq	       *srq;
 894	struct ib_uobject      *uobject;
 
 
 
 
 
 
 
 895	void                  (*event_handler)(struct ib_event *, void *);
 896	void		       *qp_context;
 
 
 
 897	u32			qp_num;
 
 
 898	enum ib_qp_type		qp_type;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 899};
 900
 901struct ib_mr {
 902	struct ib_device  *device;
 903	struct ib_pd	  *pd;
 904	struct ib_uobject *uobject;
 905	u32		   lkey;
 906	u32		   rkey;
 907	atomic_t	   usecnt; /* count number of MWs */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 908};
 909
 910struct ib_mw {
 911	struct ib_device	*device;
 912	struct ib_pd		*pd;
 913	struct ib_uobject	*uobject;
 914	u32			rkey;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 915};
 916
 917struct ib_fmr {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 918	struct ib_device	*device;
 919	struct ib_pd		*pd;
 920	struct list_head	list;
 921	u32			lkey;
 922	u32			rkey;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 923};
 924
 925struct ib_mad;
 926struct ib_grh;
 927
 928enum ib_process_mad_flags {
 929	IB_MAD_IGNORE_MKEY	= 1,
 930	IB_MAD_IGNORE_BKEY	= 2,
 931	IB_MAD_IGNORE_ALL	= IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
 932};
 933
 934enum ib_mad_result {
 935	IB_MAD_RESULT_FAILURE  = 0,      /* (!SUCCESS is the important flag) */
 936	IB_MAD_RESULT_SUCCESS  = 1 << 0, /* MAD was successfully processed   */
 937	IB_MAD_RESULT_REPLY    = 1 << 1, /* Reply packet needs to be sent    */
 938	IB_MAD_RESULT_CONSUMED = 1 << 2  /* Packet consumed: stop processing */
 939};
 940
 941#define IB_DEVICE_NAME_MAX 64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 942
 943struct ib_cache {
 944	rwlock_t                lock;
 945	struct ib_event_handler event_handler;
 946	struct ib_pkey_cache  **pkey_cache;
 947	struct ib_gid_cache   **gid_cache;
 948	u8                     *lmc_cache;
 949};
 950
 951struct ib_dma_mapping_ops {
 952	int		(*mapping_error)(struct ib_device *dev,
 953					 u64 dma_addr);
 954	u64		(*map_single)(struct ib_device *dev,
 955				      void *ptr, size_t size,
 956				      enum dma_data_direction direction);
 957	void		(*unmap_single)(struct ib_device *dev,
 958					u64 addr, size_t size,
 959					enum dma_data_direction direction);
 960	u64		(*map_page)(struct ib_device *dev,
 961				    struct page *page, unsigned long offset,
 962				    size_t size,
 963				    enum dma_data_direction direction);
 964	void		(*unmap_page)(struct ib_device *dev,
 965				      u64 addr, size_t size,
 966				      enum dma_data_direction direction);
 967	int		(*map_sg)(struct ib_device *dev,
 968				  struct scatterlist *sg, int nents,
 969				  enum dma_data_direction direction);
 970	void		(*unmap_sg)(struct ib_device *dev,
 971				    struct scatterlist *sg, int nents,
 972				    enum dma_data_direction direction);
 973	u64		(*dma_address)(struct ib_device *dev,
 974				       struct scatterlist *sg);
 975	unsigned int	(*dma_len)(struct ib_device *dev,
 976				   struct scatterlist *sg);
 977	void		(*sync_single_for_cpu)(struct ib_device *dev,
 978					       u64 dma_handle,
 979					       size_t size,
 980					       enum dma_data_direction dir);
 981	void		(*sync_single_for_device)(struct ib_device *dev,
 982						  u64 dma_handle,
 983						  size_t size,
 984						  enum dma_data_direction dir);
 985	void		*(*alloc_coherent)(struct ib_device *dev,
 986					   size_t size,
 987					   u64 *dma_handle,
 988					   gfp_t flag);
 989	void		(*free_coherent)(struct ib_device *dev,
 990					 size_t size, void *cpu_addr,
 991					 u64 dma_handle);
 992};
 993
 994struct iw_cm_verbs;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 995
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 996struct ib_device {
 
 997	struct device                *dma_device;
 998
 999	char                          name[IB_DEVICE_NAME_MAX];
 
1000
1001	struct list_head              event_handler_list;
1002	spinlock_t                    event_handler_lock;
 
1003
1004	spinlock_t                    client_data_lock;
1005	struct list_head              core_list;
1006	struct list_head              client_data_list;
1007
1008	struct ib_cache               cache;
1009	int                          *pkey_tbl_len;
1010	int                          *gid_tbl_len;
1011
1012	int			      num_comp_vectors;
 
 
 
 
 
 
 
 
 
1013
1014	struct iw_cm_verbs	     *iwcm;
1015
1016	int		           (*get_protocol_stats)(struct ib_device *device,
1017							 union rdma_protocol_stats *stats);
1018	int		           (*query_device)(struct ib_device *device,
1019						   struct ib_device_attr *device_attr);
1020	int		           (*query_port)(struct ib_device *device,
1021						 u8 port_num,
1022						 struct ib_port_attr *port_attr);
1023	enum rdma_link_layer	   (*get_link_layer)(struct ib_device *device,
1024						     u8 port_num);
1025	int		           (*query_gid)(struct ib_device *device,
1026						u8 port_num, int index,
1027						union ib_gid *gid);
1028	int		           (*query_pkey)(struct ib_device *device,
1029						 u8 port_num, u16 index, u16 *pkey);
1030	int		           (*modify_device)(struct ib_device *device,
1031						    int device_modify_mask,
1032						    struct ib_device_modify *device_modify);
1033	int		           (*modify_port)(struct ib_device *device,
1034						  u8 port_num, int port_modify_mask,
1035						  struct ib_port_modify *port_modify);
1036	struct ib_ucontext *       (*alloc_ucontext)(struct ib_device *device,
1037						     struct ib_udata *udata);
1038	int                        (*dealloc_ucontext)(struct ib_ucontext *context);
1039	int                        (*mmap)(struct ib_ucontext *context,
1040					   struct vm_area_struct *vma);
1041	struct ib_pd *             (*alloc_pd)(struct ib_device *device,
1042					       struct ib_ucontext *context,
1043					       struct ib_udata *udata);
1044	int                        (*dealloc_pd)(struct ib_pd *pd);
1045	struct ib_ah *             (*create_ah)(struct ib_pd *pd,
1046						struct ib_ah_attr *ah_attr);
1047	int                        (*modify_ah)(struct ib_ah *ah,
1048						struct ib_ah_attr *ah_attr);
1049	int                        (*query_ah)(struct ib_ah *ah,
1050					       struct ib_ah_attr *ah_attr);
1051	int                        (*destroy_ah)(struct ib_ah *ah);
1052	struct ib_srq *            (*create_srq)(struct ib_pd *pd,
1053						 struct ib_srq_init_attr *srq_init_attr,
1054						 struct ib_udata *udata);
1055	int                        (*modify_srq)(struct ib_srq *srq,
1056						 struct ib_srq_attr *srq_attr,
1057						 enum ib_srq_attr_mask srq_attr_mask,
1058						 struct ib_udata *udata);
1059	int                        (*query_srq)(struct ib_srq *srq,
1060						struct ib_srq_attr *srq_attr);
1061	int                        (*destroy_srq)(struct ib_srq *srq);
1062	int                        (*post_srq_recv)(struct ib_srq *srq,
1063						    struct ib_recv_wr *recv_wr,
1064						    struct ib_recv_wr **bad_recv_wr);
1065	struct ib_qp *             (*create_qp)(struct ib_pd *pd,
1066						struct ib_qp_init_attr *qp_init_attr,
1067						struct ib_udata *udata);
1068	int                        (*modify_qp)(struct ib_qp *qp,
1069						struct ib_qp_attr *qp_attr,
1070						int qp_attr_mask,
1071						struct ib_udata *udata);
1072	int                        (*query_qp)(struct ib_qp *qp,
1073					       struct ib_qp_attr *qp_attr,
1074					       int qp_attr_mask,
1075					       struct ib_qp_init_attr *qp_init_attr);
1076	int                        (*destroy_qp)(struct ib_qp *qp);
1077	int                        (*post_send)(struct ib_qp *qp,
1078						struct ib_send_wr *send_wr,
1079						struct ib_send_wr **bad_send_wr);
1080	int                        (*post_recv)(struct ib_qp *qp,
1081						struct ib_recv_wr *recv_wr,
1082						struct ib_recv_wr **bad_recv_wr);
1083	struct ib_cq *             (*create_cq)(struct ib_device *device, int cqe,
1084						int comp_vector,
1085						struct ib_ucontext *context,
1086						struct ib_udata *udata);
1087	int                        (*modify_cq)(struct ib_cq *cq, u16 cq_count,
1088						u16 cq_period);
1089	int                        (*destroy_cq)(struct ib_cq *cq);
1090	int                        (*resize_cq)(struct ib_cq *cq, int cqe,
1091						struct ib_udata *udata);
1092	int                        (*poll_cq)(struct ib_cq *cq, int num_entries,
1093					      struct ib_wc *wc);
1094	int                        (*peek_cq)(struct ib_cq *cq, int wc_cnt);
1095	int                        (*req_notify_cq)(struct ib_cq *cq,
1096						    enum ib_cq_notify_flags flags);
1097	int                        (*req_ncomp_notif)(struct ib_cq *cq,
1098						      int wc_cnt);
1099	struct ib_mr *             (*get_dma_mr)(struct ib_pd *pd,
1100						 int mr_access_flags);
1101	struct ib_mr *             (*reg_phys_mr)(struct ib_pd *pd,
1102						  struct ib_phys_buf *phys_buf_array,
1103						  int num_phys_buf,
1104						  int mr_access_flags,
1105						  u64 *iova_start);
1106	struct ib_mr *             (*reg_user_mr)(struct ib_pd *pd,
1107						  u64 start, u64 length,
1108						  u64 virt_addr,
1109						  int mr_access_flags,
1110						  struct ib_udata *udata);
1111	int                        (*query_mr)(struct ib_mr *mr,
1112					       struct ib_mr_attr *mr_attr);
1113	int                        (*dereg_mr)(struct ib_mr *mr);
1114	struct ib_mr *		   (*alloc_fast_reg_mr)(struct ib_pd *pd,
1115					       int max_page_list_len);
1116	struct ib_fast_reg_page_list * (*alloc_fast_reg_page_list)(struct ib_device *device,
1117								   int page_list_len);
1118	void			   (*free_fast_reg_page_list)(struct ib_fast_reg_page_list *page_list);
1119	int                        (*rereg_phys_mr)(struct ib_mr *mr,
1120						    int mr_rereg_mask,
1121						    struct ib_pd *pd,
1122						    struct ib_phys_buf *phys_buf_array,
1123						    int num_phys_buf,
1124						    int mr_access_flags,
1125						    u64 *iova_start);
1126	struct ib_mw *             (*alloc_mw)(struct ib_pd *pd);
1127	int                        (*bind_mw)(struct ib_qp *qp,
1128					      struct ib_mw *mw,
1129					      struct ib_mw_bind *mw_bind);
1130	int                        (*dealloc_mw)(struct ib_mw *mw);
1131	struct ib_fmr *	           (*alloc_fmr)(struct ib_pd *pd,
1132						int mr_access_flags,
1133						struct ib_fmr_attr *fmr_attr);
1134	int		           (*map_phys_fmr)(struct ib_fmr *fmr,
1135						   u64 *page_list, int list_len,
1136						   u64 iova);
1137	int		           (*unmap_fmr)(struct list_head *fmr_list);
1138	int		           (*dealloc_fmr)(struct ib_fmr *fmr);
1139	int                        (*attach_mcast)(struct ib_qp *qp,
1140						   union ib_gid *gid,
1141						   u16 lid);
1142	int                        (*detach_mcast)(struct ib_qp *qp,
1143						   union ib_gid *gid,
1144						   u16 lid);
1145	int                        (*process_mad)(struct ib_device *device,
1146						  int process_mad_flags,
1147						  u8 port_num,
1148						  struct ib_wc *in_wc,
1149						  struct ib_grh *in_grh,
1150						  struct ib_mad *in_mad,
1151						  struct ib_mad *out_mad);
1152
1153	struct ib_dma_mapping_ops   *dma_ops;
1154
1155	struct module               *owner;
1156	struct device                dev;
1157	struct kobject               *ports_parent;
1158	struct list_head             port_list;
1159
1160	enum {
1161		IB_DEV_UNINITIALIZED,
1162		IB_DEV_REGISTERED,
1163		IB_DEV_UNREGISTERED
1164	}                            reg_state;
1165
1166	int			     uverbs_abi_ver;
1167	u64			     uverbs_cmd_mask;
1168
1169	char			     node_desc[64];
1170	__be64			     node_guid;
1171	u32			     local_dma_lkey;
 
 
 
 
 
1172	u8                           node_type;
1173	u8                           phys_port_cnt;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1174};
1175
 
 
 
 
 
 
 
 
 
 
1176struct ib_client {
1177	char  *name;
1178	void (*add)   (struct ib_device *);
1179	void (*remove)(struct ib_device *);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1180
1181	struct list_head list;
 
1182};
1183
1184struct ib_device *ib_alloc_device(size_t size);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1185void ib_dealloc_device(struct ib_device *device);
1186
1187int ib_register_device(struct ib_device *device,
1188		       int (*port_callback)(struct ib_device *,
1189					    u8, struct kobject *));
 
1190void ib_unregister_device(struct ib_device *device);
 
 
 
1191
1192int ib_register_client   (struct ib_client *client);
1193void ib_unregister_client(struct ib_client *client);
1194
1195void *ib_get_client_data(struct ib_device *device, struct ib_client *client);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1196void  ib_set_client_data(struct ib_device *device, struct ib_client *client,
1197			 void *data);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1198
1199static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
1200{
1201	return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
1202}
1203
1204static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
1205{
1206	return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
1207}
1208
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1209/**
1210 * ib_modify_qp_is_ok - Check that the supplied attribute mask
1211 * contains all required attributes and no attributes not allowed for
1212 * the given QP state transition.
1213 * @cur_state: Current QP state
1214 * @next_state: Next QP state
1215 * @type: QP type
1216 * @mask: Mask of supplied QP attributes
1217 *
1218 * This function is a helper function that a low-level driver's
1219 * modify_qp method can use to validate the consumer's input.  It
1220 * checks that cur_state and next_state are valid QP states, that a
1221 * transition from cur_state to next_state is allowed by the IB spec,
1222 * and that the attribute mask supplied is allowed for the transition.
1223 */
1224int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
1225		       enum ib_qp_type type, enum ib_qp_attr_mask mask);
1226
1227int ib_register_event_handler  (struct ib_event_handler *event_handler);
1228int ib_unregister_event_handler(struct ib_event_handler *event_handler);
1229void ib_dispatch_event(struct ib_event *event);
1230
1231int ib_query_device(struct ib_device *device,
1232		    struct ib_device_attr *device_attr);
 
1233
1234int ib_query_port(struct ib_device *device,
1235		  u8 port_num, struct ib_port_attr *port_attr);
1236
1237enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
1238					       u8 port_num);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1239
1240int ib_query_gid(struct ib_device *device,
1241		 u8 port_num, int index, union ib_gid *gid);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1242
1243int ib_query_pkey(struct ib_device *device,
1244		  u8 port_num, u16 index, u16 *pkey);
1245
1246int ib_modify_device(struct ib_device *device,
1247		     int device_modify_mask,
1248		     struct ib_device_modify *device_modify);
1249
1250int ib_modify_port(struct ib_device *device,
1251		   u8 port_num, int port_modify_mask,
1252		   struct ib_port_modify *port_modify);
1253
1254int ib_find_gid(struct ib_device *device, union ib_gid *gid,
1255		u8 *port_num, u16 *index);
1256
1257int ib_find_pkey(struct ib_device *device,
1258		 u8 port_num, u16 pkey, u16 *index);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1259
1260/**
1261 * ib_alloc_pd - Allocates an unused protection domain.
1262 * @device: The device on which to allocate the protection domain.
 
1263 *
1264 * A protection domain object provides an association between QPs, shared
1265 * receive queues, address handles, memory regions, and memory windows.
 
 
 
1266 */
1267struct ib_pd *ib_alloc_pd(struct ib_device *device);
 
 
 
1268
1269/**
1270 * ib_dealloc_pd - Deallocates a protection domain.
1271 * @pd: The protection domain to deallocate.
 
 
1272 */
1273int ib_dealloc_pd(struct ib_pd *pd);
 
 
 
 
 
 
 
 
 
 
1274
1275/**
1276 * ib_create_ah - Creates an address handle for the given address vector.
1277 * @pd: The protection domain associated with the address handle.
1278 * @ah_attr: The attributes of the address vector.
 
1279 *
1280 * The address handle is used to reference a local or global destination
1281 * in all UD QP post sends.
1282 */
1283struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr);
 
1284
1285/**
1286 * ib_init_ah_from_wc - Initializes address handle attributes from a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1287 *   work completion.
1288 * @device: Device on which the received message arrived.
1289 * @port_num: Port on which the received message arrived.
1290 * @wc: Work completion associated with the received message.
1291 * @grh: References the received global route header.  This parameter is
1292 *   ignored unless the work completion indicates that the GRH is valid.
1293 * @ah_attr: Returned attributes that can be used when creating an address
1294 *   handle for replying to the message.
 
 
 
 
 
 
 
1295 */
1296int ib_init_ah_from_wc(struct ib_device *device, u8 port_num, struct ib_wc *wc,
1297		       struct ib_grh *grh, struct ib_ah_attr *ah_attr);
 
1298
1299/**
1300 * ib_create_ah_from_wc - Creates an address handle associated with the
1301 *   sender of the specified work completion.
1302 * @pd: The protection domain associated with the address handle.
1303 * @wc: Work completion information associated with a received message.
1304 * @grh: References the received global route header.  This parameter is
1305 *   ignored unless the work completion indicates that the GRH is valid.
1306 * @port_num: The outbound port number to associate with the address.
1307 *
1308 * The address handle is used to reference a local or global destination
1309 * in all UD QP post sends.
1310 */
1311struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, struct ib_wc *wc,
1312				   struct ib_grh *grh, u8 port_num);
1313
1314/**
1315 * ib_modify_ah - Modifies the address vector associated with an address
1316 *   handle.
1317 * @ah: The address handle to modify.
1318 * @ah_attr: The new address vector attributes to associate with the
1319 *   address handle.
1320 */
1321int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
1322
1323/**
1324 * ib_query_ah - Queries the address vector associated with an address
1325 *   handle.
1326 * @ah: The address handle to query.
1327 * @ah_attr: The address vector attributes associated with the address
1328 *   handle.
1329 */
1330int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
 
 
 
 
 
1331
1332/**
1333 * ib_destroy_ah - Destroys an address handle.
1334 * @ah: The address handle to destroy.
 
 
1335 */
1336int ib_destroy_ah(struct ib_ah *ah);
1337
1338/**
1339 * ib_create_srq - Creates a SRQ associated with the specified protection
1340 *   domain.
1341 * @pd: The protection domain associated with the SRQ.
1342 * @srq_init_attr: A list of initial attributes required to create the
1343 *   SRQ.  If SRQ creation succeeds, then the attributes are updated to
1344 *   the actual capabilities of the created SRQ.
1345 *
1346 * srq_attr->max_wr and srq_attr->max_sge are read the determine the
1347 * requested size of the SRQ, and set to the actual values allocated
1348 * on return.  If ib_create_srq() succeeds, then max_wr and max_sge
1349 * will always be at least as large as the requested values.
1350 */
1351struct ib_srq *ib_create_srq(struct ib_pd *pd,
1352			     struct ib_srq_init_attr *srq_init_attr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1353
1354/**
1355 * ib_modify_srq - Modifies the attributes for the specified SRQ.
1356 * @srq: The SRQ to modify.
1357 * @srq_attr: On input, specifies the SRQ attributes to modify.  On output,
1358 *   the current values of selected SRQ attributes are returned.
1359 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
1360 *   are being modified.
1361 *
1362 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
1363 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when
1364 * the number of receives queued drops below the limit.
1365 */
1366int ib_modify_srq(struct ib_srq *srq,
1367		  struct ib_srq_attr *srq_attr,
1368		  enum ib_srq_attr_mask srq_attr_mask);
1369
1370/**
1371 * ib_query_srq - Returns the attribute list and current values for the
1372 *   specified SRQ.
1373 * @srq: The SRQ to query.
1374 * @srq_attr: The attributes of the specified SRQ.
1375 */
1376int ib_query_srq(struct ib_srq *srq,
1377		 struct ib_srq_attr *srq_attr);
1378
1379/**
1380 * ib_destroy_srq - Destroys the specified SRQ.
1381 * @srq: The SRQ to destroy.
 
1382 */
1383int ib_destroy_srq(struct ib_srq *srq);
 
 
 
 
 
 
 
 
 
 
 
 
 
1384
1385/**
1386 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
1387 * @srq: The SRQ to post the work request on.
1388 * @recv_wr: A list of work requests to post on the receive queue.
1389 * @bad_recv_wr: On an immediate failure, this parameter will reference
1390 *   the work request that failed to be posted on the QP.
1391 */
1392static inline int ib_post_srq_recv(struct ib_srq *srq,
1393				   struct ib_recv_wr *recv_wr,
1394				   struct ib_recv_wr **bad_recv_wr)
1395{
1396	return srq->device->post_srq_recv(srq, recv_wr, bad_recv_wr);
 
 
 
1397}
1398
 
 
 
1399/**
1400 * ib_create_qp - Creates a QP associated with the specified protection
1401 *   domain.
1402 * @pd: The protection domain associated with the QP.
1403 * @qp_init_attr: A list of initial attributes required to create the
1404 *   QP.  If QP creation succeeds, then the attributes are updated to
1405 *   the actual capabilities of the created QP.
1406 */
1407struct ib_qp *ib_create_qp(struct ib_pd *pd,
1408			   struct ib_qp_init_attr *qp_init_attr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1409
1410/**
1411 * ib_modify_qp - Modifies the attributes for the specified QP and then
1412 *   transitions the QP to the given state.
1413 * @qp: The QP to modify.
1414 * @qp_attr: On input, specifies the QP attributes to modify.  On output,
1415 *   the current values of selected QP attributes are returned.
1416 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP
1417 *   are being modified.
1418 */
1419int ib_modify_qp(struct ib_qp *qp,
1420		 struct ib_qp_attr *qp_attr,
1421		 int qp_attr_mask);
1422
1423/**
1424 * ib_query_qp - Returns the attribute list and current values for the
1425 *   specified QP.
1426 * @qp: The QP to query.
1427 * @qp_attr: The attributes of the specified QP.
1428 * @qp_attr_mask: A bit-mask used to select specific attributes to query.
1429 * @qp_init_attr: Additional attributes of the selected QP.
1430 *
1431 * The qp_attr_mask may be used to limit the query to gathering only the
1432 * selected attributes.
1433 */
1434int ib_query_qp(struct ib_qp *qp,
1435		struct ib_qp_attr *qp_attr,
1436		int qp_attr_mask,
1437		struct ib_qp_init_attr *qp_init_attr);
1438
1439/**
1440 * ib_destroy_qp - Destroys the specified QP.
1441 * @qp: The QP to destroy.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1442 */
1443int ib_destroy_qp(struct ib_qp *qp);
1444
1445/**
1446 * ib_post_send - Posts a list of work requests to the send queue of
1447 *   the specified QP.
1448 * @qp: The QP to post the work request on.
1449 * @send_wr: A list of work requests to post on the send queue.
1450 * @bad_send_wr: On an immediate failure, this parameter will reference
1451 *   the work request that failed to be posted on the QP.
1452 *
1453 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate
1454 * error is returned, the QP state shall not be affected,
1455 * ib_post_send() will return an immediate error after queueing any
1456 * earlier work requests in the list.
1457 */
1458static inline int ib_post_send(struct ib_qp *qp,
1459			       struct ib_send_wr *send_wr,
1460			       struct ib_send_wr **bad_send_wr)
1461{
1462	return qp->device->post_send(qp, send_wr, bad_send_wr);
 
 
1463}
1464
1465/**
1466 * ib_post_recv - Posts a list of work requests to the receive queue of
1467 *   the specified QP.
1468 * @qp: The QP to post the work request on.
1469 * @recv_wr: A list of work requests to post on the receive queue.
1470 * @bad_recv_wr: On an immediate failure, this parameter will reference
1471 *   the work request that failed to be posted on the QP.
1472 */
1473static inline int ib_post_recv(struct ib_qp *qp,
1474			       struct ib_recv_wr *recv_wr,
1475			       struct ib_recv_wr **bad_recv_wr)
 
 
 
 
 
 
 
 
 
 
 
 
1476{
1477	return qp->device->post_recv(qp, recv_wr, bad_recv_wr);
 
1478}
1479
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1480/**
1481 * ib_create_cq - Creates a CQ on the specified device.
1482 * @device: The device on which to create the CQ.
1483 * @comp_handler: A user-specified callback that is invoked when a
1484 *   completion event occurs on the CQ.
1485 * @event_handler: A user-specified callback that is invoked when an
1486 *   asynchronous event not associated with a completion occurs on the CQ.
1487 * @cq_context: Context associated with the CQ returned to the user via
1488 *   the associated completion and event handlers.
1489 * @cqe: The minimum size of the CQ.
1490 * @comp_vector - Completion vector used to signal completion events.
1491 *     Must be >= 0 and < context->num_comp_vectors.
1492 *
1493 * Users can examine the cq structure to determine the actual CQ size.
1494 */
1495struct ib_cq *ib_create_cq(struct ib_device *device,
1496			   ib_comp_handler comp_handler,
1497			   void (*event_handler)(struct ib_event *, void *),
1498			   void *cq_context, int cqe, int comp_vector);
 
 
 
 
1499
1500/**
1501 * ib_resize_cq - Modifies the capacity of the CQ.
1502 * @cq: The CQ to resize.
1503 * @cqe: The minimum size of the CQ.
1504 *
1505 * Users can examine the cq structure to determine the actual CQ size.
1506 */
1507int ib_resize_cq(struct ib_cq *cq, int cqe);
1508
1509/**
1510 * ib_modify_cq - Modifies moderation params of the CQ
1511 * @cq: The CQ to modify.
1512 * @cq_count: number of CQEs that will trigger an event
1513 * @cq_period: max period of time in usec before triggering an event
1514 *
1515 */
1516int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period);
 
 
 
 
 
 
 
1517
1518/**
1519 * ib_destroy_cq - Destroys the specified CQ.
1520 * @cq: The CQ to destroy.
 
 
1521 */
1522int ib_destroy_cq(struct ib_cq *cq);
 
 
 
 
 
1523
1524/**
1525 * ib_poll_cq - poll a CQ for completion(s)
1526 * @cq:the CQ being polled
1527 * @num_entries:maximum number of completions to return
1528 * @wc:array of at least @num_entries &struct ib_wc where completions
1529 *   will be returned
1530 *
1531 * Poll a CQ for (possibly multiple) completions.  If the return value
1532 * is < 0, an error occurred.  If the return value is >= 0, it is the
1533 * number of completions returned.  If the return value is
1534 * non-negative and < num_entries, then the CQ was emptied.
1535 */
1536static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
1537			     struct ib_wc *wc)
1538{
1539	return cq->device->poll_cq(cq, num_entries, wc);
1540}
1541
1542/**
1543 * ib_peek_cq - Returns the number of unreaped completions currently
1544 *   on the specified CQ.
1545 * @cq: The CQ to peek.
1546 * @wc_cnt: A minimum number of unreaped completions to check for.
1547 *
1548 * If the number of unreaped completions is greater than or equal to wc_cnt,
1549 * this function returns wc_cnt, otherwise, it returns the actual number of
1550 * unreaped completions.
1551 */
1552int ib_peek_cq(struct ib_cq *cq, int wc_cnt);
1553
1554/**
1555 * ib_req_notify_cq - Request completion notification on a CQ.
1556 * @cq: The CQ to generate an event for.
1557 * @flags:
1558 *   Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
1559 *   to request an event on the next solicited event or next work
1560 *   completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
1561 *   may also be |ed in to request a hint about missed events, as
1562 *   described below.
1563 *
1564 * Return Value:
1565 *    < 0 means an error occurred while requesting notification
1566 *   == 0 means notification was requested successfully, and if
1567 *        IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
1568 *        were missed and it is safe to wait for another event.  In
1569 *        this case is it guaranteed that any work completions added
1570 *        to the CQ since the last CQ poll will trigger a completion
1571 *        notification event.
1572 *    > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
1573 *        in.  It means that the consumer must poll the CQ again to
1574 *        make sure it is empty to avoid missing an event because of a
1575 *        race between requesting notification and an entry being
1576 *        added to the CQ.  This return value means it is possible
1577 *        (but not guaranteed) that a work completion has been added
1578 *        to the CQ since the last poll without triggering a
1579 *        completion notification event.
1580 */
1581static inline int ib_req_notify_cq(struct ib_cq *cq,
1582				   enum ib_cq_notify_flags flags)
1583{
1584	return cq->device->req_notify_cq(cq, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1585}
1586
1587/**
1588 * ib_req_ncomp_notif - Request completion notification when there are
1589 *   at least the specified number of unreaped completions on the CQ.
1590 * @cq: The CQ to generate an event for.
1591 * @wc_cnt: The number of unreaped completions that should be on the
1592 *   CQ before an event is generated.
1593 */
1594static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt)
1595{
1596	return cq->device->req_ncomp_notif ?
1597		cq->device->req_ncomp_notif(cq, wc_cnt) :
1598		-ENOSYS;
1599}
1600
1601/**
1602 * ib_get_dma_mr - Returns a memory region for system memory that is
1603 *   usable for DMA.
1604 * @pd: The protection domain associated with the memory region.
1605 * @mr_access_flags: Specifies the memory access rights.
1606 *
1607 * Note that the ib_dma_*() functions defined below must be used
1608 * to create/destroy addresses used with the Lkey or Rkey returned
1609 * by ib_get_dma_mr().
1610 */
1611struct ib_mr *ib_get_dma_mr(struct ib_pd *pd, int mr_access_flags);
 
 
 
1612
1613/**
1614 * ib_dma_mapping_error - check a DMA addr for error
1615 * @dev: The device for which the dma_addr was created
1616 * @dma_addr: The DMA address to check
1617 */
1618static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
1619{
1620	if (dev->dma_ops)
1621		return dev->dma_ops->mapping_error(dev, dma_addr);
1622	return dma_mapping_error(dev->dma_device, dma_addr);
1623}
1624
1625/**
1626 * ib_dma_map_single - Map a kernel virtual address to DMA address
1627 * @dev: The device for which the dma_addr is to be created
1628 * @cpu_addr: The kernel virtual address
1629 * @size: The size of the region in bytes
1630 * @direction: The direction of the DMA
1631 */
1632static inline u64 ib_dma_map_single(struct ib_device *dev,
1633				    void *cpu_addr, size_t size,
1634				    enum dma_data_direction direction)
1635{
1636	if (dev->dma_ops)
1637		return dev->dma_ops->map_single(dev, cpu_addr, size, direction);
1638	return dma_map_single(dev->dma_device, cpu_addr, size, direction);
1639}
1640
1641/**
1642 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
1643 * @dev: The device for which the DMA address was created
1644 * @addr: The DMA address
1645 * @size: The size of the region in bytes
1646 * @direction: The direction of the DMA
1647 */
1648static inline void ib_dma_unmap_single(struct ib_device *dev,
1649				       u64 addr, size_t size,
1650				       enum dma_data_direction direction)
1651{
1652	if (dev->dma_ops)
1653		dev->dma_ops->unmap_single(dev, addr, size, direction);
1654	else
1655		dma_unmap_single(dev->dma_device, addr, size, direction);
1656}
1657
1658static inline u64 ib_dma_map_single_attrs(struct ib_device *dev,
1659					  void *cpu_addr, size_t size,
1660					  enum dma_data_direction direction,
1661					  struct dma_attrs *attrs)
1662{
1663	return dma_map_single_attrs(dev->dma_device, cpu_addr, size,
1664				    direction, attrs);
1665}
1666
1667static inline void ib_dma_unmap_single_attrs(struct ib_device *dev,
1668					     u64 addr, size_t size,
1669					     enum dma_data_direction direction,
1670					     struct dma_attrs *attrs)
1671{
1672	return dma_unmap_single_attrs(dev->dma_device, addr, size,
1673				      direction, attrs);
1674}
1675
1676/**
1677 * ib_dma_map_page - Map a physical page to DMA address
1678 * @dev: The device for which the dma_addr is to be created
1679 * @page: The page to be mapped
1680 * @offset: The offset within the page
1681 * @size: The size of the region in bytes
1682 * @direction: The direction of the DMA
1683 */
1684static inline u64 ib_dma_map_page(struct ib_device *dev,
1685				  struct page *page,
1686				  unsigned long offset,
1687				  size_t size,
1688					 enum dma_data_direction direction)
1689{
1690	if (dev->dma_ops)
1691		return dev->dma_ops->map_page(dev, page, offset, size, direction);
1692	return dma_map_page(dev->dma_device, page, offset, size, direction);
1693}
1694
1695/**
1696 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
1697 * @dev: The device for which the DMA address was created
1698 * @addr: The DMA address
1699 * @size: The size of the region in bytes
1700 * @direction: The direction of the DMA
1701 */
1702static inline void ib_dma_unmap_page(struct ib_device *dev,
1703				     u64 addr, size_t size,
1704				     enum dma_data_direction direction)
1705{
1706	if (dev->dma_ops)
1707		dev->dma_ops->unmap_page(dev, addr, size, direction);
1708	else
1709		dma_unmap_page(dev->dma_device, addr, size, direction);
1710}
1711
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1712/**
1713 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses
1714 * @dev: The device for which the DMA addresses are to be created
1715 * @sg: The array of scatter/gather entries
1716 * @nents: The number of scatter/gather entries
1717 * @direction: The direction of the DMA
1718 */
1719static inline int ib_dma_map_sg(struct ib_device *dev,
1720				struct scatterlist *sg, int nents,
1721				enum dma_data_direction direction)
1722{
1723	if (dev->dma_ops)
1724		return dev->dma_ops->map_sg(dev, sg, nents, direction);
1725	return dma_map_sg(dev->dma_device, sg, nents, direction);
1726}
1727
1728/**
1729 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
1730 * @dev: The device for which the DMA addresses were created
1731 * @sg: The array of scatter/gather entries
1732 * @nents: The number of scatter/gather entries
1733 * @direction: The direction of the DMA
1734 */
1735static inline void ib_dma_unmap_sg(struct ib_device *dev,
1736				   struct scatterlist *sg, int nents,
1737				   enum dma_data_direction direction)
1738{
1739	if (dev->dma_ops)
1740		dev->dma_ops->unmap_sg(dev, sg, nents, direction);
1741	else
1742		dma_unmap_sg(dev->dma_device, sg, nents, direction);
1743}
1744
1745static inline int ib_dma_map_sg_attrs(struct ib_device *dev,
1746				      struct scatterlist *sg, int nents,
1747				      enum dma_data_direction direction,
1748				      struct dma_attrs *attrs)
1749{
1750	return dma_map_sg_attrs(dev->dma_device, sg, nents, direction, attrs);
1751}
1752
1753static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev,
1754					 struct scatterlist *sg, int nents,
1755					 enum dma_data_direction direction,
1756					 struct dma_attrs *attrs)
1757{
1758	dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, attrs);
1759}
1760/**
1761 * ib_sg_dma_address - Return the DMA address from a scatter/gather entry
1762 * @dev: The device for which the DMA addresses were created
1763 * @sg: The scatter/gather entry
1764 */
1765static inline u64 ib_sg_dma_address(struct ib_device *dev,
1766				    struct scatterlist *sg)
1767{
1768	if (dev->dma_ops)
1769		return dev->dma_ops->dma_address(dev, sg);
1770	return sg_dma_address(sg);
1771}
1772
1773/**
1774 * ib_sg_dma_len - Return the DMA length from a scatter/gather entry
1775 * @dev: The device for which the DMA addresses were created
1776 * @sg: The scatter/gather entry
 
1777 */
1778static inline unsigned int ib_sg_dma_len(struct ib_device *dev,
1779					 struct scatterlist *sg)
1780{
1781	if (dev->dma_ops)
1782		return dev->dma_ops->dma_len(dev, sg);
1783	return sg_dma_len(sg);
1784}
1785
1786/**
1787 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
1788 * @dev: The device for which the DMA address was created
1789 * @addr: The DMA address
1790 * @size: The size of the region in bytes
1791 * @dir: The direction of the DMA
1792 */
1793static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
1794					      u64 addr,
1795					      size_t size,
1796					      enum dma_data_direction dir)
1797{
1798	if (dev->dma_ops)
1799		dev->dma_ops->sync_single_for_cpu(dev, addr, size, dir);
1800	else
1801		dma_sync_single_for_cpu(dev->dma_device, addr, size, dir);
1802}
1803
1804/**
1805 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
1806 * @dev: The device for which the DMA address was created
1807 * @addr: The DMA address
1808 * @size: The size of the region in bytes
1809 * @dir: The direction of the DMA
1810 */
1811static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
1812						 u64 addr,
1813						 size_t size,
1814						 enum dma_data_direction dir)
1815{
1816	if (dev->dma_ops)
1817		dev->dma_ops->sync_single_for_device(dev, addr, size, dir);
1818	else
1819		dma_sync_single_for_device(dev->dma_device, addr, size, dir);
1820}
1821
 
 
 
 
 
 
 
 
 
1822/**
1823 * ib_dma_alloc_coherent - Allocate memory and map it for DMA
1824 * @dev: The device for which the DMA address is requested
1825 * @size: The size of the region to allocate in bytes
1826 * @dma_handle: A pointer for returning the DMA address of the region
1827 * @flag: memory allocator flags
1828 */
1829static inline void *ib_dma_alloc_coherent(struct ib_device *dev,
1830					   size_t size,
1831					   u64 *dma_handle,
1832					   gfp_t flag)
1833{
1834	if (dev->dma_ops)
1835		return dev->dma_ops->alloc_coherent(dev, size, dma_handle, flag);
1836	else {
1837		dma_addr_t handle;
1838		void *ret;
1839
1840		ret = dma_alloc_coherent(dev->dma_device, size, &handle, flag);
1841		*dma_handle = handle;
1842		return ret;
1843	}
1844}
1845
 
 
 
 
 
 
 
1846/**
1847 * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent()
1848 * @dev: The device for which the DMA addresses were allocated
1849 * @size: The size of the region
1850 * @cpu_addr: the address returned by ib_dma_alloc_coherent()
1851 * @dma_handle: the DMA address returned by ib_dma_alloc_coherent()
1852 */
1853static inline void ib_dma_free_coherent(struct ib_device *dev,
1854					size_t size, void *cpu_addr,
1855					u64 dma_handle)
1856{
1857	if (dev->dma_ops)
1858		dev->dma_ops->free_coherent(dev, size, cpu_addr, dma_handle);
1859	else
1860		dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle);
1861}
1862
1863/**
1864 * ib_reg_phys_mr - Prepares a virtually addressed memory region for use
1865 *   by an HCA.
1866 * @pd: The protection domain associated assigned to the registered region.
1867 * @phys_buf_array: Specifies a list of physical buffers to use in the
1868 *   memory region.
1869 * @num_phys_buf: Specifies the size of the phys_buf_array.
1870 * @mr_access_flags: Specifies the memory access rights.
1871 * @iova_start: The offset of the region's starting I/O virtual address.
1872 */
1873struct ib_mr *ib_reg_phys_mr(struct ib_pd *pd,
1874			     struct ib_phys_buf *phys_buf_array,
1875			     int num_phys_buf,
1876			     int mr_access_flags,
1877			     u64 *iova_start);
1878
1879/**
1880 * ib_rereg_phys_mr - Modifies the attributes of an existing memory region.
1881 *   Conceptually, this call performs the functions deregister memory region
1882 *   followed by register physical memory region.  Where possible,
1883 *   resources are reused instead of deallocated and reallocated.
1884 * @mr: The memory region to modify.
1885 * @mr_rereg_mask: A bit-mask used to indicate which of the following
1886 *   properties of the memory region are being modified.
1887 * @pd: If %IB_MR_REREG_PD is set in mr_rereg_mask, this field specifies
1888 *   the new protection domain to associated with the memory region,
1889 *   otherwise, this parameter is ignored.
1890 * @phys_buf_array: If %IB_MR_REREG_TRANS is set in mr_rereg_mask, this
1891 *   field specifies a list of physical buffers to use in the new
1892 *   translation, otherwise, this parameter is ignored.
1893 * @num_phys_buf: If %IB_MR_REREG_TRANS is set in mr_rereg_mask, this
1894 *   field specifies the size of the phys_buf_array, otherwise, this
1895 *   parameter is ignored.
1896 * @mr_access_flags: If %IB_MR_REREG_ACCESS is set in mr_rereg_mask, this
1897 *   field specifies the new memory access rights, otherwise, this
1898 *   parameter is ignored.
1899 * @iova_start: The offset of the region's starting I/O virtual address.
1900 */
1901int ib_rereg_phys_mr(struct ib_mr *mr,
1902		     int mr_rereg_mask,
1903		     struct ib_pd *pd,
1904		     struct ib_phys_buf *phys_buf_array,
1905		     int num_phys_buf,
1906		     int mr_access_flags,
1907		     u64 *iova_start);
1908
1909/**
1910 * ib_query_mr - Retrieves information about a specific memory region.
1911 * @mr: The memory region to retrieve information about.
1912 * @mr_attr: The attributes of the specified memory region.
1913 */
1914int ib_query_mr(struct ib_mr *mr, struct ib_mr_attr *mr_attr);
 
 
 
 
1915
1916/**
1917 * ib_dereg_mr - Deregisters a memory region and removes it from the
1918 *   HCA translation table.
1919 * @mr: The memory region to deregister.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1920 */
1921int ib_dereg_mr(struct ib_mr *mr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1922
1923/**
1924 * ib_alloc_fast_reg_mr - Allocates memory region usable with the
1925 *   IB_WR_FAST_REG_MR send work request.
1926 * @pd: The protection domain associated with the region.
1927 * @max_page_list_len: requested max physical buffer list length to be
1928 *   used with fast register work requests for this MR.
 
 
 
 
 
1929 */
1930struct ib_mr *ib_alloc_fast_reg_mr(struct ib_pd *pd, int max_page_list_len);
 
1931
1932/**
1933 * ib_alloc_fast_reg_page_list - Allocates a page list array
1934 * @device - ib device pointer.
1935 * @page_list_len - size of the page list array to be allocated.
 
 
 
1936 *
1937 * This allocates and returns a struct ib_fast_reg_page_list * and a
1938 * page_list array that is at least page_list_len in size.  The actual
1939 * size is returned in max_page_list_len.  The caller is responsible
1940 * for initializing the contents of the page_list array before posting
1941 * a send work request with the IB_WC_FAST_REG_MR opcode.
1942 *
1943 * The page_list array entries must be translated using one of the
1944 * ib_dma_*() functions just like the addresses passed to
1945 * ib_map_phys_fmr().  Once the ib_post_send() is issued, the struct
1946 * ib_fast_reg_page_list must not be modified by the caller until the
1947 * IB_WC_FAST_REG_MR work request completes.
1948 */
1949struct ib_fast_reg_page_list *ib_alloc_fast_reg_page_list(
1950				struct ib_device *device, int page_list_len);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1951
1952/**
1953 * ib_free_fast_reg_page_list - Deallocates a previously allocated
1954 *   page list array.
1955 * @page_list - struct ib_fast_reg_page_list pointer to be deallocated.
 
1956 */
1957void ib_free_fast_reg_page_list(struct ib_fast_reg_page_list *page_list);
 
 
 
 
 
 
 
 
 
 
 
 
1958
1959/**
1960 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR
1961 *   R_Key and L_Key.
1962 * @mr - struct ib_mr pointer to be updated.
1963 * @newkey - new key to be used.
 
 
 
1964 */
1965static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey)
1966{
1967	mr->lkey = (mr->lkey & 0xffffff00) | newkey;
1968	mr->rkey = (mr->rkey & 0xffffff00) | newkey;
1969}
1970
1971/**
1972 * ib_alloc_mw - Allocates a memory window.
1973 * @pd: The protection domain associated with the memory window.
 
1974 */
1975struct ib_mw *ib_alloc_mw(struct ib_pd *pd);
 
 
 
 
1976
1977/**
1978 * ib_bind_mw - Posts a work request to the send queue of the specified
1979 *   QP, which binds the memory window to the given address range and
1980 *   remote access attributes.
1981 * @qp: QP to post the bind work request on.
1982 * @mw: The memory window to bind.
1983 * @mw_bind: Specifies information about the memory window, including
1984 *   its address range, remote access rights, and associated memory region.
 
1985 */
1986static inline int ib_bind_mw(struct ib_qp *qp,
1987			     struct ib_mw *mw,
1988			     struct ib_mw_bind *mw_bind)
1989{
1990	/* XXX reference counting in corresponding MR? */
1991	return mw->device->bind_mw ?
1992		mw->device->bind_mw(qp, mw, mw_bind) :
1993		-ENOSYS;
 
 
1994}
1995
1996/**
1997 * ib_dealloc_mw - Deallocates a memory window.
1998 * @mw: The memory window to deallocate.
 
 
1999 */
2000int ib_dealloc_mw(struct ib_mw *mw);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2001
2002/**
2003 * ib_alloc_fmr - Allocates a unmapped fast memory region.
2004 * @pd: The protection domain associated with the unmapped region.
2005 * @mr_access_flags: Specifies the memory access rights.
2006 * @fmr_attr: Attributes of the unmapped region.
 
2007 *
2008 * A fast memory region must be mapped before it can be used as part of
2009 * a work request.
2010 */
2011struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
2012			    int mr_access_flags,
2013			    struct ib_fmr_attr *fmr_attr);
 
 
 
 
2014
2015/**
2016 * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region.
2017 * @fmr: The fast memory region to associate with the pages.
2018 * @page_list: An array of physical pages to map to the fast memory region.
2019 * @list_len: The number of pages in page_list.
2020 * @iova: The I/O virtual address to use with the mapped region.
2021 */
2022static inline int ib_map_phys_fmr(struct ib_fmr *fmr,
2023				  u64 *page_list, int list_len,
2024				  u64 iova)
2025{
2026	return fmr->device->map_phys_fmr(fmr, page_list, list_len, iova);
 
 
 
 
2027}
2028
2029/**
2030 * ib_unmap_fmr - Removes the mapping from a list of fast memory regions.
2031 * @fmr_list: A linked list of fast memory regions to unmap.
 
 
 
 
2032 */
2033int ib_unmap_fmr(struct list_head *fmr_list);
 
 
 
 
 
 
 
 
2034
2035/**
2036 * ib_dealloc_fmr - Deallocates a fast memory region.
2037 * @fmr: The fast memory region to deallocate.
 
 
 
 
2038 */
2039int ib_dealloc_fmr(struct ib_fmr *fmr);
 
 
 
 
 
 
2040
2041/**
2042 * ib_attach_mcast - Attaches the specified QP to a multicast group.
2043 * @qp: QP to attach to the multicast group.  The QP must be type
2044 *   IB_QPT_UD.
2045 * @gid: Multicast group GID.
2046 * @lid: Multicast group LID in host byte order.
2047 *
2048 * In order to send and receive multicast packets, subnet
2049 * administration must have created the multicast group and configured
2050 * the fabric appropriately.  The port associated with the specified
2051 * QP must also be a member of the multicast group.
 
 
 
 
 
 
2052 */
2053int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
 
 
 
 
 
 
 
 
2054
2055/**
2056 * ib_detach_mcast - Detaches the specified QP from a multicast group.
2057 * @qp: QP to detach from the multicast group.
2058 * @gid: Multicast group GID.
2059 * @lid: Multicast group LID in host byte order.
 
 
 
2060 */
2061int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
 
 
 
 
 
 
2062
 
 
2063#endif /* IB_VERBS_H */
v6.8
   1/* SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB */
   2/*
   3 * Copyright (c) 2004 Mellanox Technologies Ltd.  All rights reserved.
   4 * Copyright (c) 2004 Infinicon Corporation.  All rights reserved.
   5 * Copyright (c) 2004, 2020 Intel Corporation.  All rights reserved.
   6 * Copyright (c) 2004 Topspin Corporation.  All rights reserved.
   7 * Copyright (c) 2004 Voltaire Corporation.  All rights reserved.
   8 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
   9 * Copyright (c) 2005, 2006, 2007 Cisco Systems.  All rights reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  10 */
  11
  12#ifndef IB_VERBS_H
  13#define IB_VERBS_H
  14
  15#include <linux/ethtool.h>
  16#include <linux/types.h>
  17#include <linux/device.h>
 
  18#include <linux/dma-mapping.h>
  19#include <linux/kref.h>
  20#include <linux/list.h>
  21#include <linux/rwsem.h>
 
  22#include <linux/workqueue.h>
  23#include <linux/irq_poll.h>
  24#include <uapi/linux/if_ether.h>
  25#include <net/ipv6.h>
  26#include <net/ip.h>
  27#include <linux/string.h>
  28#include <linux/slab.h>
  29#include <linux/netdevice.h>
  30#include <linux/refcount.h>
  31#include <linux/if_link.h>
  32#include <linux/atomic.h>
  33#include <linux/mmu_notifier.h>
  34#include <linux/uaccess.h>
  35#include <linux/cgroup_rdma.h>
  36#include <linux/irqflags.h>
  37#include <linux/preempt.h>
  38#include <linux/dim.h>
  39#include <uapi/rdma/ib_user_verbs.h>
  40#include <rdma/rdma_counter.h>
  41#include <rdma/restrack.h>
  42#include <rdma/signature.h>
  43#include <uapi/rdma/rdma_user_ioctl.h>
  44#include <uapi/rdma/ib_user_ioctl_verbs.h>
  45
  46#define IB_FW_VERSION_NAME_MAX	ETHTOOL_FWVERS_LEN
  47
  48struct ib_umem_odp;
  49struct ib_uqp_object;
  50struct ib_usrq_object;
  51struct ib_uwq_object;
  52struct rdma_cm_id;
  53struct ib_port;
  54struct hw_stats_device_data;
  55
  56extern struct workqueue_struct *ib_wq;
  57extern struct workqueue_struct *ib_comp_wq;
  58extern struct workqueue_struct *ib_comp_unbound_wq;
  59
  60struct ib_ucq_object;
  61
  62__printf(3, 4) __cold
  63void ibdev_printk(const char *level, const struct ib_device *ibdev,
  64		  const char *format, ...);
  65__printf(2, 3) __cold
  66void ibdev_emerg(const struct ib_device *ibdev, const char *format, ...);
  67__printf(2, 3) __cold
  68void ibdev_alert(const struct ib_device *ibdev, const char *format, ...);
  69__printf(2, 3) __cold
  70void ibdev_crit(const struct ib_device *ibdev, const char *format, ...);
  71__printf(2, 3) __cold
  72void ibdev_err(const struct ib_device *ibdev, const char *format, ...);
  73__printf(2, 3) __cold
  74void ibdev_warn(const struct ib_device *ibdev, const char *format, ...);
  75__printf(2, 3) __cold
  76void ibdev_notice(const struct ib_device *ibdev, const char *format, ...);
  77__printf(2, 3) __cold
  78void ibdev_info(const struct ib_device *ibdev, const char *format, ...);
  79
  80#if defined(CONFIG_DYNAMIC_DEBUG) || \
  81	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
  82#define ibdev_dbg(__dev, format, args...)                       \
  83	dynamic_ibdev_dbg(__dev, format, ##args)
  84#else
  85__printf(2, 3) __cold
  86static inline
  87void ibdev_dbg(const struct ib_device *ibdev, const char *format, ...) {}
  88#endif
  89
  90#define ibdev_level_ratelimited(ibdev_level, ibdev, fmt, ...)           \
  91do {                                                                    \
  92	static DEFINE_RATELIMIT_STATE(_rs,                              \
  93				      DEFAULT_RATELIMIT_INTERVAL,       \
  94				      DEFAULT_RATELIMIT_BURST);         \
  95	if (__ratelimit(&_rs))                                          \
  96		ibdev_level(ibdev, fmt, ##__VA_ARGS__);                 \
  97} while (0)
  98
  99#define ibdev_emerg_ratelimited(ibdev, fmt, ...) \
 100	ibdev_level_ratelimited(ibdev_emerg, ibdev, fmt, ##__VA_ARGS__)
 101#define ibdev_alert_ratelimited(ibdev, fmt, ...) \
 102	ibdev_level_ratelimited(ibdev_alert, ibdev, fmt, ##__VA_ARGS__)
 103#define ibdev_crit_ratelimited(ibdev, fmt, ...) \
 104	ibdev_level_ratelimited(ibdev_crit, ibdev, fmt, ##__VA_ARGS__)
 105#define ibdev_err_ratelimited(ibdev, fmt, ...) \
 106	ibdev_level_ratelimited(ibdev_err, ibdev, fmt, ##__VA_ARGS__)
 107#define ibdev_warn_ratelimited(ibdev, fmt, ...) \
 108	ibdev_level_ratelimited(ibdev_warn, ibdev, fmt, ##__VA_ARGS__)
 109#define ibdev_notice_ratelimited(ibdev, fmt, ...) \
 110	ibdev_level_ratelimited(ibdev_notice, ibdev, fmt, ##__VA_ARGS__)
 111#define ibdev_info_ratelimited(ibdev, fmt, ...) \
 112	ibdev_level_ratelimited(ibdev_info, ibdev, fmt, ##__VA_ARGS__)
 113
 114#if defined(CONFIG_DYNAMIC_DEBUG) || \
 115	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
 116/* descriptor check is first to prevent flooding with "callbacks suppressed" */
 117#define ibdev_dbg_ratelimited(ibdev, fmt, ...)                          \
 118do {                                                                    \
 119	static DEFINE_RATELIMIT_STATE(_rs,                              \
 120				      DEFAULT_RATELIMIT_INTERVAL,       \
 121				      DEFAULT_RATELIMIT_BURST);         \
 122	DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, fmt);                 \
 123	if (DYNAMIC_DEBUG_BRANCH(descriptor) && __ratelimit(&_rs))      \
 124		__dynamic_ibdev_dbg(&descriptor, ibdev, fmt,            \
 125				    ##__VA_ARGS__);                     \
 126} while (0)
 127#else
 128__printf(2, 3) __cold
 129static inline
 130void ibdev_dbg_ratelimited(const struct ib_device *ibdev, const char *format, ...) {}
 131#endif
 132
 133union ib_gid {
 134	u8	raw[16];
 135	struct {
 136		__be64	subnet_prefix;
 137		__be64	interface_id;
 138	} global;
 139};
 140
 141extern union ib_gid zgid;
 142
 143enum ib_gid_type {
 144	IB_GID_TYPE_IB = IB_UVERBS_GID_TYPE_IB,
 145	IB_GID_TYPE_ROCE = IB_UVERBS_GID_TYPE_ROCE_V1,
 146	IB_GID_TYPE_ROCE_UDP_ENCAP = IB_UVERBS_GID_TYPE_ROCE_V2,
 147	IB_GID_TYPE_SIZE
 148};
 149
 150#define ROCE_V2_UDP_DPORT      4791
 151struct ib_gid_attr {
 152	struct net_device __rcu	*ndev;
 153	struct ib_device	*device;
 154	union ib_gid		gid;
 155	enum ib_gid_type	gid_type;
 156	u16			index;
 157	u32			port_num;
 158};
 159
 160enum {
 161	/* set the local administered indication */
 162	IB_SA_WELL_KNOWN_GUID	= BIT_ULL(57) | 2,
 163};
 164
 165enum rdma_transport_type {
 166	RDMA_TRANSPORT_IB,
 167	RDMA_TRANSPORT_IWARP,
 168	RDMA_TRANSPORT_USNIC,
 169	RDMA_TRANSPORT_USNIC_UDP,
 170	RDMA_TRANSPORT_UNSPECIFIED,
 171};
 172
 173enum rdma_protocol_type {
 174	RDMA_PROTOCOL_IB,
 175	RDMA_PROTOCOL_IBOE,
 176	RDMA_PROTOCOL_IWARP,
 177	RDMA_PROTOCOL_USNIC_UDP
 178};
 179
 180__attribute_const__ enum rdma_transport_type
 181rdma_node_get_transport(unsigned int node_type);
 182
 183enum rdma_network_type {
 184	RDMA_NETWORK_IB,
 185	RDMA_NETWORK_ROCE_V1,
 186	RDMA_NETWORK_IPV4,
 187	RDMA_NETWORK_IPV6
 188};
 189
 190static inline enum ib_gid_type ib_network_to_gid_type(enum rdma_network_type network_type)
 191{
 192	if (network_type == RDMA_NETWORK_IPV4 ||
 193	    network_type == RDMA_NETWORK_IPV6)
 194		return IB_GID_TYPE_ROCE_UDP_ENCAP;
 195	else if (network_type == RDMA_NETWORK_ROCE_V1)
 196		return IB_GID_TYPE_ROCE;
 197	else
 198		return IB_GID_TYPE_IB;
 199}
 200
 201static inline enum rdma_network_type
 202rdma_gid_attr_network_type(const struct ib_gid_attr *attr)
 203{
 204	if (attr->gid_type == IB_GID_TYPE_IB)
 205		return RDMA_NETWORK_IB;
 206
 207	if (attr->gid_type == IB_GID_TYPE_ROCE)
 208		return RDMA_NETWORK_ROCE_V1;
 209
 210	if (ipv6_addr_v4mapped((struct in6_addr *)&attr->gid))
 211		return RDMA_NETWORK_IPV4;
 212	else
 213		return RDMA_NETWORK_IPV6;
 214}
 215
 216enum rdma_link_layer {
 217	IB_LINK_LAYER_UNSPECIFIED,
 218	IB_LINK_LAYER_INFINIBAND,
 219	IB_LINK_LAYER_ETHERNET,
 220};
 221
 222enum ib_device_cap_flags {
 223	IB_DEVICE_RESIZE_MAX_WR = IB_UVERBS_DEVICE_RESIZE_MAX_WR,
 224	IB_DEVICE_BAD_PKEY_CNTR = IB_UVERBS_DEVICE_BAD_PKEY_CNTR,
 225	IB_DEVICE_BAD_QKEY_CNTR = IB_UVERBS_DEVICE_BAD_QKEY_CNTR,
 226	IB_DEVICE_RAW_MULTI = IB_UVERBS_DEVICE_RAW_MULTI,
 227	IB_DEVICE_AUTO_PATH_MIG = IB_UVERBS_DEVICE_AUTO_PATH_MIG,
 228	IB_DEVICE_CHANGE_PHY_PORT = IB_UVERBS_DEVICE_CHANGE_PHY_PORT,
 229	IB_DEVICE_UD_AV_PORT_ENFORCE = IB_UVERBS_DEVICE_UD_AV_PORT_ENFORCE,
 230	IB_DEVICE_CURR_QP_STATE_MOD = IB_UVERBS_DEVICE_CURR_QP_STATE_MOD,
 231	IB_DEVICE_SHUTDOWN_PORT = IB_UVERBS_DEVICE_SHUTDOWN_PORT,
 232	/* IB_DEVICE_INIT_TYPE = IB_UVERBS_DEVICE_INIT_TYPE, (not in use) */
 233	IB_DEVICE_PORT_ACTIVE_EVENT = IB_UVERBS_DEVICE_PORT_ACTIVE_EVENT,
 234	IB_DEVICE_SYS_IMAGE_GUID = IB_UVERBS_DEVICE_SYS_IMAGE_GUID,
 235	IB_DEVICE_RC_RNR_NAK_GEN = IB_UVERBS_DEVICE_RC_RNR_NAK_GEN,
 236	IB_DEVICE_SRQ_RESIZE = IB_UVERBS_DEVICE_SRQ_RESIZE,
 237	IB_DEVICE_N_NOTIFY_CQ = IB_UVERBS_DEVICE_N_NOTIFY_CQ,
 238
 239	/* Reserved, old SEND_W_INV = 1 << 16,*/
 240	IB_DEVICE_MEM_WINDOW = IB_UVERBS_DEVICE_MEM_WINDOW,
 241	/*
 242	 * Devices should set IB_DEVICE_UD_IP_SUM if they support
 243	 * insertion of UDP and TCP checksum on outgoing UD IPoIB
 244	 * messages and can verify the validity of checksum for
 245	 * incoming messages.  Setting this flag implies that the
 246	 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
 247	 */
 248	IB_DEVICE_UD_IP_CSUM = IB_UVERBS_DEVICE_UD_IP_CSUM,
 249	IB_DEVICE_XRC = IB_UVERBS_DEVICE_XRC,
 250
 251	/*
 252	 * This device supports the IB "base memory management extension",
 253	 * which includes support for fast registrations (IB_WR_REG_MR,
 254	 * IB_WR_LOCAL_INV and IB_WR_SEND_WITH_INV verbs).  This flag should
 255	 * also be set by any iWarp device which must support FRs to comply
 256	 * to the iWarp verbs spec.  iWarp devices also support the
 257	 * IB_WR_RDMA_READ_WITH_INV verb for RDMA READs that invalidate the
 258	 * stag.
 259	 */
 260	IB_DEVICE_MEM_MGT_EXTENSIONS = IB_UVERBS_DEVICE_MEM_MGT_EXTENSIONS,
 261	IB_DEVICE_MEM_WINDOW_TYPE_2A = IB_UVERBS_DEVICE_MEM_WINDOW_TYPE_2A,
 262	IB_DEVICE_MEM_WINDOW_TYPE_2B = IB_UVERBS_DEVICE_MEM_WINDOW_TYPE_2B,
 263	IB_DEVICE_RC_IP_CSUM = IB_UVERBS_DEVICE_RC_IP_CSUM,
 264	/* Deprecated. Please use IB_RAW_PACKET_CAP_IP_CSUM. */
 265	IB_DEVICE_RAW_IP_CSUM = IB_UVERBS_DEVICE_RAW_IP_CSUM,
 266	IB_DEVICE_MANAGED_FLOW_STEERING =
 267		IB_UVERBS_DEVICE_MANAGED_FLOW_STEERING,
 268	/* Deprecated. Please use IB_RAW_PACKET_CAP_SCATTER_FCS. */
 269	IB_DEVICE_RAW_SCATTER_FCS = IB_UVERBS_DEVICE_RAW_SCATTER_FCS,
 270	/* The device supports padding incoming writes to cacheline. */
 271	IB_DEVICE_PCI_WRITE_END_PADDING =
 272		IB_UVERBS_DEVICE_PCI_WRITE_END_PADDING,
 273	/* Placement type attributes */
 274	IB_DEVICE_FLUSH_GLOBAL = IB_UVERBS_DEVICE_FLUSH_GLOBAL,
 275	IB_DEVICE_FLUSH_PERSISTENT = IB_UVERBS_DEVICE_FLUSH_PERSISTENT,
 276	IB_DEVICE_ATOMIC_WRITE = IB_UVERBS_DEVICE_ATOMIC_WRITE,
 277};
 278
 279enum ib_kernel_cap_flags {
 280	/*
 281	 * This device supports a per-device lkey or stag that can be
 282	 * used without performing a memory registration for the local
 283	 * memory.  Note that ULPs should never check this flag, but
 284	 * instead of use the local_dma_lkey flag in the ib_pd structure,
 285	 * which will always contain a usable lkey.
 286	 */
 287	IBK_LOCAL_DMA_LKEY = 1 << 0,
 288	/* IB_QP_CREATE_INTEGRITY_EN is supported to implement T10-PI */
 289	IBK_INTEGRITY_HANDOVER = 1 << 1,
 290	/* IB_ACCESS_ON_DEMAND is supported during reg_user_mr() */
 291	IBK_ON_DEMAND_PAGING = 1 << 2,
 292	/* IB_MR_TYPE_SG_GAPS is supported */
 293	IBK_SG_GAPS_REG = 1 << 3,
 294	/* Driver supports RDMA_NLDEV_CMD_DELLINK */
 295	IBK_ALLOW_USER_UNREG = 1 << 4,
 296
 297	/* ipoib will use IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK */
 298	IBK_BLOCK_MULTICAST_LOOPBACK = 1 << 5,
 299	/* iopib will use IB_QP_CREATE_IPOIB_UD_LSO for its QPs */
 300	IBK_UD_TSO = 1 << 6,
 301	/* iopib will use the device ops:
 302	 *   get_vf_config
 303	 *   get_vf_guid
 304	 *   get_vf_stats
 305	 *   set_vf_guid
 306	 *   set_vf_link_state
 307	 */
 308	IBK_VIRTUAL_FUNCTION = 1 << 7,
 309	/* ipoib will use IB_QP_CREATE_NETDEV_USE for its QPs */
 310	IBK_RDMA_NETDEV_OPA = 1 << 8,
 311};
 312
 313enum ib_atomic_cap {
 314	IB_ATOMIC_NONE,
 315	IB_ATOMIC_HCA,
 316	IB_ATOMIC_GLOB
 317};
 318
 319enum ib_odp_general_cap_bits {
 320	IB_ODP_SUPPORT		= 1 << 0,
 321	IB_ODP_SUPPORT_IMPLICIT = 1 << 1,
 322};
 323
 324enum ib_odp_transport_cap_bits {
 325	IB_ODP_SUPPORT_SEND	= 1 << 0,
 326	IB_ODP_SUPPORT_RECV	= 1 << 1,
 327	IB_ODP_SUPPORT_WRITE	= 1 << 2,
 328	IB_ODP_SUPPORT_READ	= 1 << 3,
 329	IB_ODP_SUPPORT_ATOMIC	= 1 << 4,
 330	IB_ODP_SUPPORT_SRQ_RECV	= 1 << 5,
 331};
 332
 333struct ib_odp_caps {
 334	uint64_t general_caps;
 335	struct {
 336		uint32_t  rc_odp_caps;
 337		uint32_t  uc_odp_caps;
 338		uint32_t  ud_odp_caps;
 339		uint32_t  xrc_odp_caps;
 340	} per_transport_caps;
 341};
 342
 343struct ib_rss_caps {
 344	/* Corresponding bit will be set if qp type from
 345	 * 'enum ib_qp_type' is supported, e.g.
 346	 * supported_qpts |= 1 << IB_QPT_UD
 347	 */
 348	u32 supported_qpts;
 349	u32 max_rwq_indirection_tables;
 350	u32 max_rwq_indirection_table_size;
 351};
 352
 353enum ib_tm_cap_flags {
 354	/*  Support tag matching with rendezvous offload for RC transport */
 355	IB_TM_CAP_RNDV_RC = 1 << 0,
 356};
 357
 358struct ib_tm_caps {
 359	/* Max size of RNDV header */
 360	u32 max_rndv_hdr_size;
 361	/* Max number of entries in tag matching list */
 362	u32 max_num_tags;
 363	/* From enum ib_tm_cap_flags */
 364	u32 flags;
 365	/* Max number of outstanding list operations */
 366	u32 max_ops;
 367	/* Max number of SGE in tag matching entry */
 368	u32 max_sge;
 369};
 370
 371struct ib_cq_init_attr {
 372	unsigned int	cqe;
 373	u32		comp_vector;
 374	u32		flags;
 375};
 376
 377enum ib_cq_attr_mask {
 378	IB_CQ_MODERATE = 1 << 0,
 379};
 380
 381struct ib_cq_caps {
 382	u16     max_cq_moderation_count;
 383	u16     max_cq_moderation_period;
 384};
 385
 386struct ib_dm_mr_attr {
 387	u64		length;
 388	u64		offset;
 389	u32		access_flags;
 390};
 391
 392struct ib_dm_alloc_attr {
 393	u64	length;
 394	u32	alignment;
 395	u32	flags;
 396};
 397
 398struct ib_device_attr {
 399	u64			fw_ver;
 400	__be64			sys_image_guid;
 401	u64			max_mr_size;
 402	u64			page_size_cap;
 403	u32			vendor_id;
 404	u32			vendor_part_id;
 405	u32			hw_ver;
 406	int			max_qp;
 407	int			max_qp_wr;
 408	u64			device_cap_flags;
 409	u64			kernel_cap_flags;
 410	int			max_send_sge;
 411	int			max_recv_sge;
 412	int			max_sge_rd;
 413	int			max_cq;
 414	int			max_cqe;
 415	int			max_mr;
 416	int			max_pd;
 417	int			max_qp_rd_atom;
 418	int			max_ee_rd_atom;
 419	int			max_res_rd_atom;
 420	int			max_qp_init_rd_atom;
 421	int			max_ee_init_rd_atom;
 422	enum ib_atomic_cap	atomic_cap;
 423	enum ib_atomic_cap	masked_atomic_cap;
 424	int			max_ee;
 425	int			max_rdd;
 426	int			max_mw;
 427	int			max_raw_ipv6_qp;
 428	int			max_raw_ethy_qp;
 429	int			max_mcast_grp;
 430	int			max_mcast_qp_attach;
 431	int			max_total_mcast_qp_attach;
 432	int			max_ah;
 
 
 433	int			max_srq;
 434	int			max_srq_wr;
 435	int			max_srq_sge;
 436	unsigned int		max_fast_reg_page_list_len;
 437	unsigned int		max_pi_fast_reg_page_list_len;
 438	u16			max_pkeys;
 439	u8			local_ca_ack_delay;
 440	int			sig_prot_cap;
 441	int			sig_guard_cap;
 442	struct ib_odp_caps	odp_caps;
 443	uint64_t		timestamp_mask;
 444	uint64_t		hca_core_clock; /* in KHZ */
 445	struct ib_rss_caps	rss_caps;
 446	u32			max_wq_type_rq;
 447	u32			raw_packet_caps; /* Use ib_raw_packet_caps enum */
 448	struct ib_tm_caps	tm_caps;
 449	struct ib_cq_caps       cq_caps;
 450	u64			max_dm_size;
 451	/* Max entries for sgl for optimized performance per READ */
 452	u32			max_sgl_rd;
 453};
 454
 455enum ib_mtu {
 456	IB_MTU_256  = 1,
 457	IB_MTU_512  = 2,
 458	IB_MTU_1024 = 3,
 459	IB_MTU_2048 = 4,
 460	IB_MTU_4096 = 5
 461};
 462
 463enum opa_mtu {
 464	OPA_MTU_8192 = 6,
 465	OPA_MTU_10240 = 7
 466};
 467
 468static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
 469{
 470	switch (mtu) {
 471	case IB_MTU_256:  return  256;
 472	case IB_MTU_512:  return  512;
 473	case IB_MTU_1024: return 1024;
 474	case IB_MTU_2048: return 2048;
 475	case IB_MTU_4096: return 4096;
 476	default: 	  return -1;
 477	}
 478}
 479
 480static inline enum ib_mtu ib_mtu_int_to_enum(int mtu)
 481{
 482	if (mtu >= 4096)
 483		return IB_MTU_4096;
 484	else if (mtu >= 2048)
 485		return IB_MTU_2048;
 486	else if (mtu >= 1024)
 487		return IB_MTU_1024;
 488	else if (mtu >= 512)
 489		return IB_MTU_512;
 490	else
 491		return IB_MTU_256;
 492}
 493
 494static inline int opa_mtu_enum_to_int(enum opa_mtu mtu)
 495{
 496	switch (mtu) {
 497	case OPA_MTU_8192:
 498		return 8192;
 499	case OPA_MTU_10240:
 500		return 10240;
 501	default:
 502		return(ib_mtu_enum_to_int((enum ib_mtu)mtu));
 503	}
 504}
 505
 506static inline enum opa_mtu opa_mtu_int_to_enum(int mtu)
 507{
 508	if (mtu >= 10240)
 509		return OPA_MTU_10240;
 510	else if (mtu >= 8192)
 511		return OPA_MTU_8192;
 512	else
 513		return ((enum opa_mtu)ib_mtu_int_to_enum(mtu));
 514}
 515
 516enum ib_port_state {
 517	IB_PORT_NOP		= 0,
 518	IB_PORT_DOWN		= 1,
 519	IB_PORT_INIT		= 2,
 520	IB_PORT_ARMED		= 3,
 521	IB_PORT_ACTIVE		= 4,
 522	IB_PORT_ACTIVE_DEFER	= 5
 523};
 524
 525enum ib_port_phys_state {
 526	IB_PORT_PHYS_STATE_SLEEP = 1,
 527	IB_PORT_PHYS_STATE_POLLING = 2,
 528	IB_PORT_PHYS_STATE_DISABLED = 3,
 529	IB_PORT_PHYS_STATE_PORT_CONFIGURATION_TRAINING = 4,
 530	IB_PORT_PHYS_STATE_LINK_UP = 5,
 531	IB_PORT_PHYS_STATE_LINK_ERROR_RECOVERY = 6,
 532	IB_PORT_PHYS_STATE_PHY_TEST = 7,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 533};
 534
 535enum ib_port_width {
 536	IB_WIDTH_1X	= 1,
 537	IB_WIDTH_2X	= 16,
 538	IB_WIDTH_4X	= 2,
 539	IB_WIDTH_8X	= 4,
 540	IB_WIDTH_12X	= 8
 541};
 542
 543static inline int ib_width_enum_to_int(enum ib_port_width width)
 544{
 545	switch (width) {
 546	case IB_WIDTH_1X:  return  1;
 547	case IB_WIDTH_2X:  return  2;
 548	case IB_WIDTH_4X:  return  4;
 549	case IB_WIDTH_8X:  return  8;
 550	case IB_WIDTH_12X: return 12;
 551	default: 	  return -1;
 552	}
 553}
 554
 555enum ib_port_speed {
 556	IB_SPEED_SDR	= 1,
 557	IB_SPEED_DDR	= 2,
 558	IB_SPEED_QDR	= 4,
 559	IB_SPEED_FDR10	= 8,
 560	IB_SPEED_FDR	= 16,
 561	IB_SPEED_EDR	= 32,
 562	IB_SPEED_HDR	= 64,
 563	IB_SPEED_NDR	= 128,
 564	IB_SPEED_XDR	= 256,
 565};
 566
 567enum ib_stat_flag {
 568	IB_STAT_FLAG_OPTIONAL = 1 << 0,
 569};
 570
 571/**
 572 * struct rdma_stat_desc
 573 * @name - The name of the counter
 574 * @flags - Flags of the counter; For example, IB_STAT_FLAG_OPTIONAL
 575 * @priv - Driver private information; Core code should not use
 576 */
 577struct rdma_stat_desc {
 578	const char *name;
 579	unsigned int flags;
 580	const void *priv;
 581};
 582
 583/**
 584 * struct rdma_hw_stats
 585 * @lock - Mutex to protect parallel write access to lifespan and values
 586 *    of counters, which are 64bits and not guaranteed to be written
 587 *    atomicaly on 32bits systems.
 588 * @timestamp - Used by the core code to track when the last update was
 589 * @lifespan - Used by the core code to determine how old the counters
 590 *   should be before being updated again.  Stored in jiffies, defaults
 591 *   to 10 milliseconds, drivers can override the default be specifying
 592 *   their own value during their allocation routine.
 593 * @descs - Array of pointers to static descriptors used for the counters
 594 *   in directory.
 595 * @is_disabled - A bitmap to indicate each counter is currently disabled
 596 *   or not.
 597 * @num_counters - How many hardware counters there are.  If name is
 598 *   shorter than this number, a kernel oops will result.  Driver authors
 599 *   are encouraged to leave BUILD_BUG_ON(ARRAY_SIZE(@name) < num_counters)
 600 *   in their code to prevent this.
 601 * @value - Array of u64 counters that are accessed by the sysfs code and
 602 *   filled in by the drivers get_stats routine
 603 */
 604struct rdma_hw_stats {
 605	struct mutex	lock; /* Protect lifespan and values[] */
 606	unsigned long	timestamp;
 607	unsigned long	lifespan;
 608	const struct rdma_stat_desc *descs;
 609	unsigned long	*is_disabled;
 610	int		num_counters;
 611	u64		value[] __counted_by(num_counters);
 612};
 613
 614#define RDMA_HW_STATS_DEFAULT_LIFESPAN 10
 615
 616struct rdma_hw_stats *rdma_alloc_hw_stats_struct(
 617	const struct rdma_stat_desc *descs, int num_counters,
 618	unsigned long lifespan);
 619
 620void rdma_free_hw_stats_struct(struct rdma_hw_stats *stats);
 621
 622/* Define bits for the various functionality this port needs to be supported by
 623 * the core.
 624 */
 625/* Management                           0x00000FFF */
 626#define RDMA_CORE_CAP_IB_MAD            0x00000001
 627#define RDMA_CORE_CAP_IB_SMI            0x00000002
 628#define RDMA_CORE_CAP_IB_CM             0x00000004
 629#define RDMA_CORE_CAP_IW_CM             0x00000008
 630#define RDMA_CORE_CAP_IB_SA             0x00000010
 631#define RDMA_CORE_CAP_OPA_MAD           0x00000020
 632
 633/* Address format                       0x000FF000 */
 634#define RDMA_CORE_CAP_AF_IB             0x00001000
 635#define RDMA_CORE_CAP_ETH_AH            0x00002000
 636#define RDMA_CORE_CAP_OPA_AH            0x00004000
 637#define RDMA_CORE_CAP_IB_GRH_REQUIRED   0x00008000
 638
 639/* Protocol                             0xFFF00000 */
 640#define RDMA_CORE_CAP_PROT_IB           0x00100000
 641#define RDMA_CORE_CAP_PROT_ROCE         0x00200000
 642#define RDMA_CORE_CAP_PROT_IWARP        0x00400000
 643#define RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP 0x00800000
 644#define RDMA_CORE_CAP_PROT_RAW_PACKET   0x01000000
 645#define RDMA_CORE_CAP_PROT_USNIC        0x02000000
 646
 647#define RDMA_CORE_PORT_IB_GRH_REQUIRED (RDMA_CORE_CAP_IB_GRH_REQUIRED \
 648					| RDMA_CORE_CAP_PROT_ROCE     \
 649					| RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP)
 650
 651#define RDMA_CORE_PORT_IBA_IB          (RDMA_CORE_CAP_PROT_IB  \
 652					| RDMA_CORE_CAP_IB_MAD \
 653					| RDMA_CORE_CAP_IB_SMI \
 654					| RDMA_CORE_CAP_IB_CM  \
 655					| RDMA_CORE_CAP_IB_SA  \
 656					| RDMA_CORE_CAP_AF_IB)
 657#define RDMA_CORE_PORT_IBA_ROCE        (RDMA_CORE_CAP_PROT_ROCE \
 658					| RDMA_CORE_CAP_IB_MAD  \
 659					| RDMA_CORE_CAP_IB_CM   \
 660					| RDMA_CORE_CAP_AF_IB   \
 661					| RDMA_CORE_CAP_ETH_AH)
 662#define RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP			\
 663					(RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP \
 664					| RDMA_CORE_CAP_IB_MAD  \
 665					| RDMA_CORE_CAP_IB_CM   \
 666					| RDMA_CORE_CAP_AF_IB   \
 667					| RDMA_CORE_CAP_ETH_AH)
 668#define RDMA_CORE_PORT_IWARP           (RDMA_CORE_CAP_PROT_IWARP \
 669					| RDMA_CORE_CAP_IW_CM)
 670#define RDMA_CORE_PORT_INTEL_OPA       (RDMA_CORE_PORT_IBA_IB  \
 671					| RDMA_CORE_CAP_OPA_MAD)
 672
 673#define RDMA_CORE_PORT_RAW_PACKET	(RDMA_CORE_CAP_PROT_RAW_PACKET)
 674
 675#define RDMA_CORE_PORT_USNIC		(RDMA_CORE_CAP_PROT_USNIC)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 676
 677struct ib_port_attr {
 678	u64			subnet_prefix;
 679	enum ib_port_state	state;
 680	enum ib_mtu		max_mtu;
 681	enum ib_mtu		active_mtu;
 682	u32                     phys_mtu;
 683	int			gid_tbl_len;
 684	unsigned int		ip_gids:1;
 685	/* This is the value from PortInfo CapabilityMask, defined by IBA */
 686	u32			port_cap_flags;
 687	u32			max_msg_sz;
 688	u32			bad_pkey_cntr;
 689	u32			qkey_viol_cntr;
 690	u16			pkey_tbl_len;
 691	u32			sm_lid;
 692	u32			lid;
 693	u8			lmc;
 694	u8			max_vl_num;
 695	u8			sm_sl;
 696	u8			subnet_timeout;
 697	u8			init_type_reply;
 698	u8			active_width;
 699	u16			active_speed;
 700	u8                      phys_state;
 701	u16			port_cap_flags2;
 702};
 703
 704enum ib_device_modify_flags {
 705	IB_DEVICE_MODIFY_SYS_IMAGE_GUID	= 1 << 0,
 706	IB_DEVICE_MODIFY_NODE_DESC	= 1 << 1
 707};
 708
 709#define IB_DEVICE_NODE_DESC_MAX 64
 710
 711struct ib_device_modify {
 712	u64	sys_image_guid;
 713	char	node_desc[IB_DEVICE_NODE_DESC_MAX];
 714};
 715
 716enum ib_port_modify_flags {
 717	IB_PORT_SHUTDOWN		= 1,
 718	IB_PORT_INIT_TYPE		= (1<<2),
 719	IB_PORT_RESET_QKEY_CNTR		= (1<<3),
 720	IB_PORT_OPA_MASK_CHG		= (1<<4)
 721};
 722
 723struct ib_port_modify {
 724	u32	set_port_cap_mask;
 725	u32	clr_port_cap_mask;
 726	u8	init_type;
 727};
 728
 729enum ib_event_type {
 730	IB_EVENT_CQ_ERR,
 731	IB_EVENT_QP_FATAL,
 732	IB_EVENT_QP_REQ_ERR,
 733	IB_EVENT_QP_ACCESS_ERR,
 734	IB_EVENT_COMM_EST,
 735	IB_EVENT_SQ_DRAINED,
 736	IB_EVENT_PATH_MIG,
 737	IB_EVENT_PATH_MIG_ERR,
 738	IB_EVENT_DEVICE_FATAL,
 739	IB_EVENT_PORT_ACTIVE,
 740	IB_EVENT_PORT_ERR,
 741	IB_EVENT_LID_CHANGE,
 742	IB_EVENT_PKEY_CHANGE,
 743	IB_EVENT_SM_CHANGE,
 744	IB_EVENT_SRQ_ERR,
 745	IB_EVENT_SRQ_LIMIT_REACHED,
 746	IB_EVENT_QP_LAST_WQE_REACHED,
 747	IB_EVENT_CLIENT_REREGISTER,
 748	IB_EVENT_GID_CHANGE,
 749	IB_EVENT_WQ_FATAL,
 750};
 751
 752const char *__attribute_const__ ib_event_msg(enum ib_event_type event);
 753
 754struct ib_event {
 755	struct ib_device	*device;
 756	union {
 757		struct ib_cq	*cq;
 758		struct ib_qp	*qp;
 759		struct ib_srq	*srq;
 760		struct ib_wq	*wq;
 761		u32		port_num;
 762	} element;
 763	enum ib_event_type	event;
 764};
 765
 766struct ib_event_handler {
 767	struct ib_device *device;
 768	void            (*handler)(struct ib_event_handler *, struct ib_event *);
 769	struct list_head  list;
 770};
 771
 772#define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler)		\
 773	do {							\
 774		(_ptr)->device  = _device;			\
 775		(_ptr)->handler = _handler;			\
 776		INIT_LIST_HEAD(&(_ptr)->list);			\
 777	} while (0)
 778
 779struct ib_global_route {
 780	const struct ib_gid_attr *sgid_attr;
 781	union ib_gid	dgid;
 782	u32		flow_label;
 783	u8		sgid_index;
 784	u8		hop_limit;
 785	u8		traffic_class;
 786};
 787
 788struct ib_grh {
 789	__be32		version_tclass_flow;
 790	__be16		paylen;
 791	u8		next_hdr;
 792	u8		hop_limit;
 793	union ib_gid	sgid;
 794	union ib_gid	dgid;
 795};
 796
 797union rdma_network_hdr {
 798	struct ib_grh ibgrh;
 799	struct {
 800		/* The IB spec states that if it's IPv4, the header
 801		 * is located in the last 20 bytes of the header.
 802		 */
 803		u8		reserved[20];
 804		struct iphdr	roce4grh;
 805	};
 806};
 807
 808#define IB_QPN_MASK		0xFFFFFF
 809
 810enum {
 811	IB_MULTICAST_QPN = 0xffffff
 812};
 813
 814#define IB_LID_PERMISSIVE	cpu_to_be16(0xFFFF)
 815#define IB_MULTICAST_LID_BASE	cpu_to_be16(0xC000)
 816
 817enum ib_ah_flags {
 818	IB_AH_GRH	= 1
 819};
 820
 821enum ib_rate {
 822	IB_RATE_PORT_CURRENT = 0,
 823	IB_RATE_2_5_GBPS = 2,
 824	IB_RATE_5_GBPS   = 5,
 825	IB_RATE_10_GBPS  = 3,
 826	IB_RATE_20_GBPS  = 6,
 827	IB_RATE_30_GBPS  = 4,
 828	IB_RATE_40_GBPS  = 7,
 829	IB_RATE_60_GBPS  = 8,
 830	IB_RATE_80_GBPS  = 9,
 831	IB_RATE_120_GBPS = 10,
 832	IB_RATE_14_GBPS  = 11,
 833	IB_RATE_56_GBPS  = 12,
 834	IB_RATE_112_GBPS = 13,
 835	IB_RATE_168_GBPS = 14,
 836	IB_RATE_25_GBPS  = 15,
 837	IB_RATE_100_GBPS = 16,
 838	IB_RATE_200_GBPS = 17,
 839	IB_RATE_300_GBPS = 18,
 840	IB_RATE_28_GBPS  = 19,
 841	IB_RATE_50_GBPS  = 20,
 842	IB_RATE_400_GBPS = 21,
 843	IB_RATE_600_GBPS = 22,
 844	IB_RATE_800_GBPS = 23,
 845};
 846
 847/**
 848 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the
 849 * base rate of 2.5 Gbit/sec.  For example, IB_RATE_5_GBPS will be
 850 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
 851 * @rate: rate to convert.
 852 */
 853__attribute_const__ int ib_rate_to_mult(enum ib_rate rate);
 854
 855/**
 856 * ib_rate_to_mbps - Convert the IB rate enum to Mbps.
 857 * For example, IB_RATE_2_5_GBPS will be converted to 2500.
 858 * @rate: rate to convert.
 859 */
 860__attribute_const__ int ib_rate_to_mbps(enum ib_rate rate);
 861
 862
 863/**
 864 * enum ib_mr_type - memory region type
 865 * @IB_MR_TYPE_MEM_REG:       memory region that is used for
 866 *                            normal registration
 867 * @IB_MR_TYPE_SG_GAPS:       memory region that is capable to
 868 *                            register any arbitrary sg lists (without
 869 *                            the normal mr constraints - see
 870 *                            ib_map_mr_sg)
 871 * @IB_MR_TYPE_DM:            memory region that is used for device
 872 *                            memory registration
 873 * @IB_MR_TYPE_USER:          memory region that is used for the user-space
 874 *                            application
 875 * @IB_MR_TYPE_DMA:           memory region that is used for DMA operations
 876 *                            without address translations (VA=PA)
 877 * @IB_MR_TYPE_INTEGRITY:     memory region that is used for
 878 *                            data integrity operations
 879 */
 880enum ib_mr_type {
 881	IB_MR_TYPE_MEM_REG,
 882	IB_MR_TYPE_SG_GAPS,
 883	IB_MR_TYPE_DM,
 884	IB_MR_TYPE_USER,
 885	IB_MR_TYPE_DMA,
 886	IB_MR_TYPE_INTEGRITY,
 887};
 888
 889enum ib_mr_status_check {
 890	IB_MR_CHECK_SIG_STATUS = 1,
 891};
 892
 893/**
 894 * struct ib_mr_status - Memory region status container
 895 *
 896 * @fail_status: Bitmask of MR checks status. For each
 897 *     failed check a corresponding status bit is set.
 898 * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS
 899 *     failure.
 900 */
 901struct ib_mr_status {
 902	u32		    fail_status;
 903	struct ib_sig_err   sig_err;
 904};
 905
 906/**
 907 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
 908 * enum.
 909 * @mult: multiple to convert.
 910 */
 911__attribute_const__ enum ib_rate mult_to_ib_rate(int mult);
 912
 913struct rdma_ah_init_attr {
 914	struct rdma_ah_attr *ah_attr;
 915	u32 flags;
 916	struct net_device *xmit_slave;
 917};
 918
 919enum rdma_ah_attr_type {
 920	RDMA_AH_ATTR_TYPE_UNDEFINED,
 921	RDMA_AH_ATTR_TYPE_IB,
 922	RDMA_AH_ATTR_TYPE_ROCE,
 923	RDMA_AH_ATTR_TYPE_OPA,
 924};
 925
 926struct ib_ah_attr {
 
 927	u16			dlid;
 
 928	u8			src_path_bits;
 929};
 930
 931struct roce_ah_attr {
 932	u8			dmac[ETH_ALEN];
 933};
 934
 935struct opa_ah_attr {
 936	u32			dlid;
 937	u8			src_path_bits;
 938	bool			make_grd;
 939};
 940
 941struct rdma_ah_attr {
 942	struct ib_global_route	grh;
 943	u8			sl;
 944	u8			static_rate;
 945	u32			port_num;
 946	u8			ah_flags;
 947	enum rdma_ah_attr_type type;
 948	union {
 949		struct ib_ah_attr ib;
 950		struct roce_ah_attr roce;
 951		struct opa_ah_attr opa;
 952	};
 953};
 954
 955enum ib_wc_status {
 956	IB_WC_SUCCESS,
 957	IB_WC_LOC_LEN_ERR,
 958	IB_WC_LOC_QP_OP_ERR,
 959	IB_WC_LOC_EEC_OP_ERR,
 960	IB_WC_LOC_PROT_ERR,
 961	IB_WC_WR_FLUSH_ERR,
 962	IB_WC_MW_BIND_ERR,
 963	IB_WC_BAD_RESP_ERR,
 964	IB_WC_LOC_ACCESS_ERR,
 965	IB_WC_REM_INV_REQ_ERR,
 966	IB_WC_REM_ACCESS_ERR,
 967	IB_WC_REM_OP_ERR,
 968	IB_WC_RETRY_EXC_ERR,
 969	IB_WC_RNR_RETRY_EXC_ERR,
 970	IB_WC_LOC_RDD_VIOL_ERR,
 971	IB_WC_REM_INV_RD_REQ_ERR,
 972	IB_WC_REM_ABORT_ERR,
 973	IB_WC_INV_EECN_ERR,
 974	IB_WC_INV_EEC_STATE_ERR,
 975	IB_WC_FATAL_ERR,
 976	IB_WC_RESP_TIMEOUT_ERR,
 977	IB_WC_GENERAL_ERR
 978};
 979
 980const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status);
 981
 982enum ib_wc_opcode {
 983	IB_WC_SEND = IB_UVERBS_WC_SEND,
 984	IB_WC_RDMA_WRITE = IB_UVERBS_WC_RDMA_WRITE,
 985	IB_WC_RDMA_READ = IB_UVERBS_WC_RDMA_READ,
 986	IB_WC_COMP_SWAP = IB_UVERBS_WC_COMP_SWAP,
 987	IB_WC_FETCH_ADD = IB_UVERBS_WC_FETCH_ADD,
 988	IB_WC_BIND_MW = IB_UVERBS_WC_BIND_MW,
 989	IB_WC_LOCAL_INV = IB_UVERBS_WC_LOCAL_INV,
 990	IB_WC_LSO = IB_UVERBS_WC_TSO,
 991	IB_WC_ATOMIC_WRITE = IB_UVERBS_WC_ATOMIC_WRITE,
 992	IB_WC_REG_MR,
 993	IB_WC_MASKED_COMP_SWAP,
 994	IB_WC_MASKED_FETCH_ADD,
 995	IB_WC_FLUSH = IB_UVERBS_WC_FLUSH,
 996/*
 997 * Set value of IB_WC_RECV so consumers can test if a completion is a
 998 * receive by testing (opcode & IB_WC_RECV).
 999 */
1000	IB_WC_RECV			= 1 << 7,
1001	IB_WC_RECV_RDMA_WITH_IMM
1002};
1003
1004enum ib_wc_flags {
1005	IB_WC_GRH		= 1,
1006	IB_WC_WITH_IMM		= (1<<1),
1007	IB_WC_WITH_INVALIDATE	= (1<<2),
1008	IB_WC_IP_CSUM_OK	= (1<<3),
1009	IB_WC_WITH_SMAC		= (1<<4),
1010	IB_WC_WITH_VLAN		= (1<<5),
1011	IB_WC_WITH_NETWORK_HDR_TYPE	= (1<<6),
1012};
1013
1014struct ib_wc {
1015	union {
1016		u64		wr_id;
1017		struct ib_cqe	*wr_cqe;
1018	};
1019	enum ib_wc_status	status;
1020	enum ib_wc_opcode	opcode;
1021	u32			vendor_err;
1022	u32			byte_len;
1023	struct ib_qp	       *qp;
1024	union {
1025		__be32		imm_data;
1026		u32		invalidate_rkey;
1027	} ex;
1028	u32			src_qp;
1029	u32			slid;
1030	int			wc_flags;
1031	u16			pkey_index;
 
1032	u8			sl;
1033	u8			dlid_path_bits;
1034	u32 port_num; /* valid only for DR SMPs on switches */
1035	u8			smac[ETH_ALEN];
1036	u16			vlan_id;
1037	u8			network_hdr_type;
1038};
1039
1040enum ib_cq_notify_flags {
1041	IB_CQ_SOLICITED			= 1 << 0,
1042	IB_CQ_NEXT_COMP			= 1 << 1,
1043	IB_CQ_SOLICITED_MASK		= IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
1044	IB_CQ_REPORT_MISSED_EVENTS	= 1 << 2,
1045};
1046
1047enum ib_srq_type {
1048	IB_SRQT_BASIC = IB_UVERBS_SRQT_BASIC,
1049	IB_SRQT_XRC = IB_UVERBS_SRQT_XRC,
1050	IB_SRQT_TM = IB_UVERBS_SRQT_TM,
1051};
1052
1053static inline bool ib_srq_has_cq(enum ib_srq_type srq_type)
1054{
1055	return srq_type == IB_SRQT_XRC ||
1056	       srq_type == IB_SRQT_TM;
1057}
1058
1059enum ib_srq_attr_mask {
1060	IB_SRQ_MAX_WR	= 1 << 0,
1061	IB_SRQ_LIMIT	= 1 << 1,
1062};
1063
1064struct ib_srq_attr {
1065	u32	max_wr;
1066	u32	max_sge;
1067	u32	srq_limit;
1068};
1069
1070struct ib_srq_init_attr {
1071	void		      (*event_handler)(struct ib_event *, void *);
1072	void		       *srq_context;
1073	struct ib_srq_attr	attr;
1074	enum ib_srq_type	srq_type;
1075
1076	struct {
1077		struct ib_cq   *cq;
1078		union {
1079			struct {
1080				struct ib_xrcd *xrcd;
1081			} xrc;
1082
1083			struct {
1084				u32		max_num_tags;
1085			} tag_matching;
1086		};
1087	} ext;
1088};
1089
1090struct ib_qp_cap {
1091	u32	max_send_wr;
1092	u32	max_recv_wr;
1093	u32	max_send_sge;
1094	u32	max_recv_sge;
1095	u32	max_inline_data;
1096
1097	/*
1098	 * Maximum number of rdma_rw_ctx structures in flight at a time.
1099	 * ib_create_qp() will calculate the right amount of needed WRs
1100	 * and MRs based on this.
1101	 */
1102	u32	max_rdma_ctxs;
1103};
1104
1105enum ib_sig_type {
1106	IB_SIGNAL_ALL_WR,
1107	IB_SIGNAL_REQ_WR
1108};
1109
1110enum ib_qp_type {
1111	/*
1112	 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
1113	 * here (and in that order) since the MAD layer uses them as
1114	 * indices into a 2-entry table.
1115	 */
1116	IB_QPT_SMI,
1117	IB_QPT_GSI,
1118
1119	IB_QPT_RC = IB_UVERBS_QPT_RC,
1120	IB_QPT_UC = IB_UVERBS_QPT_UC,
1121	IB_QPT_UD = IB_UVERBS_QPT_UD,
1122	IB_QPT_RAW_IPV6,
1123	IB_QPT_RAW_ETHERTYPE,
1124	IB_QPT_RAW_PACKET = IB_UVERBS_QPT_RAW_PACKET,
1125	IB_QPT_XRC_INI = IB_UVERBS_QPT_XRC_INI,
1126	IB_QPT_XRC_TGT = IB_UVERBS_QPT_XRC_TGT,
1127	IB_QPT_MAX,
1128	IB_QPT_DRIVER = IB_UVERBS_QPT_DRIVER,
1129	/* Reserve a range for qp types internal to the low level driver.
1130	 * These qp types will not be visible at the IB core layer, so the
1131	 * IB_QPT_MAX usages should not be affected in the core layer
1132	 */
1133	IB_QPT_RESERVED1 = 0x1000,
1134	IB_QPT_RESERVED2,
1135	IB_QPT_RESERVED3,
1136	IB_QPT_RESERVED4,
1137	IB_QPT_RESERVED5,
1138	IB_QPT_RESERVED6,
1139	IB_QPT_RESERVED7,
1140	IB_QPT_RESERVED8,
1141	IB_QPT_RESERVED9,
1142	IB_QPT_RESERVED10,
1143};
1144
1145enum ib_qp_create_flags {
1146	IB_QP_CREATE_IPOIB_UD_LSO		= 1 << 0,
1147	IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK	=
1148		IB_UVERBS_QP_CREATE_BLOCK_MULTICAST_LOOPBACK,
1149	IB_QP_CREATE_CROSS_CHANNEL              = 1 << 2,
1150	IB_QP_CREATE_MANAGED_SEND               = 1 << 3,
1151	IB_QP_CREATE_MANAGED_RECV               = 1 << 4,
1152	IB_QP_CREATE_NETIF_QP			= 1 << 5,
1153	IB_QP_CREATE_INTEGRITY_EN		= 1 << 6,
1154	IB_QP_CREATE_NETDEV_USE			= 1 << 7,
1155	IB_QP_CREATE_SCATTER_FCS		=
1156		IB_UVERBS_QP_CREATE_SCATTER_FCS,
1157	IB_QP_CREATE_CVLAN_STRIPPING		=
1158		IB_UVERBS_QP_CREATE_CVLAN_STRIPPING,
1159	IB_QP_CREATE_SOURCE_QPN			= 1 << 10,
1160	IB_QP_CREATE_PCI_WRITE_END_PADDING	=
1161		IB_UVERBS_QP_CREATE_PCI_WRITE_END_PADDING,
1162	/* reserve bits 26-31 for low level drivers' internal use */
1163	IB_QP_CREATE_RESERVED_START		= 1 << 26,
1164	IB_QP_CREATE_RESERVED_END		= 1 << 31,
1165};
1166
1167/*
1168 * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler
1169 * callback to destroy the passed in QP.
1170 */
1171
1172struct ib_qp_init_attr {
1173	/* This callback occurs in workqueue context */
1174	void                  (*event_handler)(struct ib_event *, void *);
1175
1176	void		       *qp_context;
1177	struct ib_cq	       *send_cq;
1178	struct ib_cq	       *recv_cq;
1179	struct ib_srq	       *srq;
1180	struct ib_xrcd	       *xrcd;     /* XRC TGT QPs only */
1181	struct ib_qp_cap	cap;
1182	enum ib_sig_type	sq_sig_type;
1183	enum ib_qp_type		qp_type;
1184	u32			create_flags;
1185
1186	/*
1187	 * Only needed for special QP types, or when using the RW API.
1188	 */
1189	u32			port_num;
1190	struct ib_rwq_ind_table *rwq_ind_tbl;
1191	u32			source_qpn;
1192};
1193
1194struct ib_qp_open_attr {
1195	void                  (*event_handler)(struct ib_event *, void *);
1196	void		       *qp_context;
1197	u32			qp_num;
1198	enum ib_qp_type		qp_type;
1199};
1200
1201enum ib_rnr_timeout {
1202	IB_RNR_TIMER_655_36 =  0,
1203	IB_RNR_TIMER_000_01 =  1,
1204	IB_RNR_TIMER_000_02 =  2,
1205	IB_RNR_TIMER_000_03 =  3,
1206	IB_RNR_TIMER_000_04 =  4,
1207	IB_RNR_TIMER_000_06 =  5,
1208	IB_RNR_TIMER_000_08 =  6,
1209	IB_RNR_TIMER_000_12 =  7,
1210	IB_RNR_TIMER_000_16 =  8,
1211	IB_RNR_TIMER_000_24 =  9,
1212	IB_RNR_TIMER_000_32 = 10,
1213	IB_RNR_TIMER_000_48 = 11,
1214	IB_RNR_TIMER_000_64 = 12,
1215	IB_RNR_TIMER_000_96 = 13,
1216	IB_RNR_TIMER_001_28 = 14,
1217	IB_RNR_TIMER_001_92 = 15,
1218	IB_RNR_TIMER_002_56 = 16,
1219	IB_RNR_TIMER_003_84 = 17,
1220	IB_RNR_TIMER_005_12 = 18,
1221	IB_RNR_TIMER_007_68 = 19,
1222	IB_RNR_TIMER_010_24 = 20,
1223	IB_RNR_TIMER_015_36 = 21,
1224	IB_RNR_TIMER_020_48 = 22,
1225	IB_RNR_TIMER_030_72 = 23,
1226	IB_RNR_TIMER_040_96 = 24,
1227	IB_RNR_TIMER_061_44 = 25,
1228	IB_RNR_TIMER_081_92 = 26,
1229	IB_RNR_TIMER_122_88 = 27,
1230	IB_RNR_TIMER_163_84 = 28,
1231	IB_RNR_TIMER_245_76 = 29,
1232	IB_RNR_TIMER_327_68 = 30,
1233	IB_RNR_TIMER_491_52 = 31
1234};
1235
1236enum ib_qp_attr_mask {
1237	IB_QP_STATE			= 1,
1238	IB_QP_CUR_STATE			= (1<<1),
1239	IB_QP_EN_SQD_ASYNC_NOTIFY	= (1<<2),
1240	IB_QP_ACCESS_FLAGS		= (1<<3),
1241	IB_QP_PKEY_INDEX		= (1<<4),
1242	IB_QP_PORT			= (1<<5),
1243	IB_QP_QKEY			= (1<<6),
1244	IB_QP_AV			= (1<<7),
1245	IB_QP_PATH_MTU			= (1<<8),
1246	IB_QP_TIMEOUT			= (1<<9),
1247	IB_QP_RETRY_CNT			= (1<<10),
1248	IB_QP_RNR_RETRY			= (1<<11),
1249	IB_QP_RQ_PSN			= (1<<12),
1250	IB_QP_MAX_QP_RD_ATOMIC		= (1<<13),
1251	IB_QP_ALT_PATH			= (1<<14),
1252	IB_QP_MIN_RNR_TIMER		= (1<<15),
1253	IB_QP_SQ_PSN			= (1<<16),
1254	IB_QP_MAX_DEST_RD_ATOMIC	= (1<<17),
1255	IB_QP_PATH_MIG_STATE		= (1<<18),
1256	IB_QP_CAP			= (1<<19),
1257	IB_QP_DEST_QPN			= (1<<20),
1258	IB_QP_RESERVED1			= (1<<21),
1259	IB_QP_RESERVED2			= (1<<22),
1260	IB_QP_RESERVED3			= (1<<23),
1261	IB_QP_RESERVED4			= (1<<24),
1262	IB_QP_RATE_LIMIT		= (1<<25),
1263
1264	IB_QP_ATTR_STANDARD_BITS = GENMASK(20, 0),
1265};
1266
1267enum ib_qp_state {
1268	IB_QPS_RESET,
1269	IB_QPS_INIT,
1270	IB_QPS_RTR,
1271	IB_QPS_RTS,
1272	IB_QPS_SQD,
1273	IB_QPS_SQE,
1274	IB_QPS_ERR
1275};
1276
1277enum ib_mig_state {
1278	IB_MIG_MIGRATED,
1279	IB_MIG_REARM,
1280	IB_MIG_ARMED
1281};
1282
1283enum ib_mw_type {
1284	IB_MW_TYPE_1 = 1,
1285	IB_MW_TYPE_2 = 2
1286};
1287
1288struct ib_qp_attr {
1289	enum ib_qp_state	qp_state;
1290	enum ib_qp_state	cur_qp_state;
1291	enum ib_mtu		path_mtu;
1292	enum ib_mig_state	path_mig_state;
1293	u32			qkey;
1294	u32			rq_psn;
1295	u32			sq_psn;
1296	u32			dest_qp_num;
1297	int			qp_access_flags;
1298	struct ib_qp_cap	cap;
1299	struct rdma_ah_attr	ah_attr;
1300	struct rdma_ah_attr	alt_ah_attr;
1301	u16			pkey_index;
1302	u16			alt_pkey_index;
1303	u8			en_sqd_async_notify;
1304	u8			sq_draining;
1305	u8			max_rd_atomic;
1306	u8			max_dest_rd_atomic;
1307	u8			min_rnr_timer;
1308	u32			port_num;
1309	u8			timeout;
1310	u8			retry_cnt;
1311	u8			rnr_retry;
1312	u32			alt_port_num;
1313	u8			alt_timeout;
1314	u32			rate_limit;
1315	struct net_device	*xmit_slave;
1316};
1317
1318enum ib_wr_opcode {
1319	/* These are shared with userspace */
1320	IB_WR_RDMA_WRITE = IB_UVERBS_WR_RDMA_WRITE,
1321	IB_WR_RDMA_WRITE_WITH_IMM = IB_UVERBS_WR_RDMA_WRITE_WITH_IMM,
1322	IB_WR_SEND = IB_UVERBS_WR_SEND,
1323	IB_WR_SEND_WITH_IMM = IB_UVERBS_WR_SEND_WITH_IMM,
1324	IB_WR_RDMA_READ = IB_UVERBS_WR_RDMA_READ,
1325	IB_WR_ATOMIC_CMP_AND_SWP = IB_UVERBS_WR_ATOMIC_CMP_AND_SWP,
1326	IB_WR_ATOMIC_FETCH_AND_ADD = IB_UVERBS_WR_ATOMIC_FETCH_AND_ADD,
1327	IB_WR_BIND_MW = IB_UVERBS_WR_BIND_MW,
1328	IB_WR_LSO = IB_UVERBS_WR_TSO,
1329	IB_WR_SEND_WITH_INV = IB_UVERBS_WR_SEND_WITH_INV,
1330	IB_WR_RDMA_READ_WITH_INV = IB_UVERBS_WR_RDMA_READ_WITH_INV,
1331	IB_WR_LOCAL_INV = IB_UVERBS_WR_LOCAL_INV,
1332	IB_WR_MASKED_ATOMIC_CMP_AND_SWP =
1333		IB_UVERBS_WR_MASKED_ATOMIC_CMP_AND_SWP,
1334	IB_WR_MASKED_ATOMIC_FETCH_AND_ADD =
1335		IB_UVERBS_WR_MASKED_ATOMIC_FETCH_AND_ADD,
1336	IB_WR_FLUSH = IB_UVERBS_WR_FLUSH,
1337	IB_WR_ATOMIC_WRITE = IB_UVERBS_WR_ATOMIC_WRITE,
1338
1339	/* These are kernel only and can not be issued by userspace */
1340	IB_WR_REG_MR = 0x20,
1341	IB_WR_REG_MR_INTEGRITY,
1342
1343	/* reserve values for low level drivers' internal use.
1344	 * These values will not be used at all in the ib core layer.
1345	 */
1346	IB_WR_RESERVED1 = 0xf0,
1347	IB_WR_RESERVED2,
1348	IB_WR_RESERVED3,
1349	IB_WR_RESERVED4,
1350	IB_WR_RESERVED5,
1351	IB_WR_RESERVED6,
1352	IB_WR_RESERVED7,
1353	IB_WR_RESERVED8,
1354	IB_WR_RESERVED9,
1355	IB_WR_RESERVED10,
1356};
1357
1358enum ib_send_flags {
1359	IB_SEND_FENCE		= 1,
1360	IB_SEND_SIGNALED	= (1<<1),
1361	IB_SEND_SOLICITED	= (1<<2),
1362	IB_SEND_INLINE		= (1<<3),
1363	IB_SEND_IP_CSUM		= (1<<4),
1364
1365	/* reserve bits 26-31 for low level drivers' internal use */
1366	IB_SEND_RESERVED_START	= (1 << 26),
1367	IB_SEND_RESERVED_END	= (1 << 31),
1368};
1369
1370struct ib_sge {
1371	u64	addr;
1372	u32	length;
1373	u32	lkey;
1374};
1375
1376struct ib_cqe {
1377	void (*done)(struct ib_cq *cq, struct ib_wc *wc);
 
 
1378};
1379
1380struct ib_send_wr {
1381	struct ib_send_wr      *next;
1382	union {
1383		u64		wr_id;
1384		struct ib_cqe	*wr_cqe;
1385	};
1386	struct ib_sge	       *sg_list;
1387	int			num_sge;
1388	enum ib_wr_opcode	opcode;
1389	int			send_flags;
1390	union {
1391		__be32		imm_data;
1392		u32		invalidate_rkey;
1393	} ex;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1394};
1395
1396struct ib_rdma_wr {
1397	struct ib_send_wr	wr;
1398	u64			remote_addr;
1399	u32			rkey;
1400};
1401
1402static inline const struct ib_rdma_wr *rdma_wr(const struct ib_send_wr *wr)
1403{
1404	return container_of(wr, struct ib_rdma_wr, wr);
1405}
1406
1407struct ib_atomic_wr {
1408	struct ib_send_wr	wr;
1409	u64			remote_addr;
1410	u64			compare_add;
1411	u64			swap;
1412	u64			compare_add_mask;
1413	u64			swap_mask;
1414	u32			rkey;
1415};
1416
1417static inline const struct ib_atomic_wr *atomic_wr(const struct ib_send_wr *wr)
1418{
1419	return container_of(wr, struct ib_atomic_wr, wr);
1420}
1421
1422struct ib_ud_wr {
1423	struct ib_send_wr	wr;
1424	struct ib_ah		*ah;
1425	void			*header;
1426	int			hlen;
1427	int			mss;
1428	u32			remote_qpn;
1429	u32			remote_qkey;
1430	u16			pkey_index; /* valid for GSI only */
1431	u32			port_num; /* valid for DR SMPs on switch only */
1432};
1433
1434static inline const struct ib_ud_wr *ud_wr(const struct ib_send_wr *wr)
1435{
1436	return container_of(wr, struct ib_ud_wr, wr);
1437}
1438
1439struct ib_reg_wr {
1440	struct ib_send_wr	wr;
1441	struct ib_mr		*mr;
1442	u32			key;
1443	int			access;
1444};
1445
1446static inline const struct ib_reg_wr *reg_wr(const struct ib_send_wr *wr)
1447{
1448	return container_of(wr, struct ib_reg_wr, wr);
1449}
1450
1451struct ib_recv_wr {
1452	struct ib_recv_wr      *next;
1453	union {
1454		u64		wr_id;
1455		struct ib_cqe	*wr_cqe;
1456	};
1457	struct ib_sge	       *sg_list;
1458	int			num_sge;
1459};
1460
1461enum ib_access_flags {
1462	IB_ACCESS_LOCAL_WRITE = IB_UVERBS_ACCESS_LOCAL_WRITE,
1463	IB_ACCESS_REMOTE_WRITE = IB_UVERBS_ACCESS_REMOTE_WRITE,
1464	IB_ACCESS_REMOTE_READ = IB_UVERBS_ACCESS_REMOTE_READ,
1465	IB_ACCESS_REMOTE_ATOMIC = IB_UVERBS_ACCESS_REMOTE_ATOMIC,
1466	IB_ACCESS_MW_BIND = IB_UVERBS_ACCESS_MW_BIND,
1467	IB_ZERO_BASED = IB_UVERBS_ACCESS_ZERO_BASED,
1468	IB_ACCESS_ON_DEMAND = IB_UVERBS_ACCESS_ON_DEMAND,
1469	IB_ACCESS_HUGETLB = IB_UVERBS_ACCESS_HUGETLB,
1470	IB_ACCESS_RELAXED_ORDERING = IB_UVERBS_ACCESS_RELAXED_ORDERING,
1471	IB_ACCESS_FLUSH_GLOBAL = IB_UVERBS_ACCESS_FLUSH_GLOBAL,
1472	IB_ACCESS_FLUSH_PERSISTENT = IB_UVERBS_ACCESS_FLUSH_PERSISTENT,
1473
1474	IB_ACCESS_OPTIONAL = IB_UVERBS_ACCESS_OPTIONAL_RANGE,
1475	IB_ACCESS_SUPPORTED =
1476		((IB_ACCESS_FLUSH_PERSISTENT << 1) - 1) | IB_ACCESS_OPTIONAL,
 
 
 
 
1477};
1478
1479/*
1480 * XXX: these are apparently used for ->rereg_user_mr, no idea why they
1481 * are hidden here instead of a uapi header!
1482 */
1483enum ib_mr_rereg_flags {
1484	IB_MR_REREG_TRANS	= 1,
1485	IB_MR_REREG_PD		= (1<<1),
1486	IB_MR_REREG_ACCESS	= (1<<2),
1487	IB_MR_REREG_SUPPORTED	= ((IB_MR_REREG_ACCESS << 1) - 1)
1488};
1489
1490struct ib_umem;
1491
1492enum rdma_remove_reason {
1493	/*
1494	 * Userspace requested uobject deletion or initial try
1495	 * to remove uobject via cleanup. Call could fail
1496	 */
1497	RDMA_REMOVE_DESTROY,
1498	/* Context deletion. This call should delete the actual object itself */
1499	RDMA_REMOVE_CLOSE,
1500	/* Driver is being hot-unplugged. This call should delete the actual object itself */
1501	RDMA_REMOVE_DRIVER_REMOVE,
1502	/* uobj is being cleaned-up before being committed */
1503	RDMA_REMOVE_ABORT,
1504	/* The driver failed to destroy the uobject and is being disconnected */
1505	RDMA_REMOVE_DRIVER_FAILURE,
1506};
1507
1508struct ib_rdmacg_object {
1509#ifdef CONFIG_CGROUP_RDMA
1510	struct rdma_cgroup	*cg;		/* owner rdma cgroup */
1511#endif
1512};
1513
1514struct ib_ucontext {
1515	struct ib_device       *device;
1516	struct ib_uverbs_file  *ufile;
1517
1518	struct ib_rdmacg_object	cg_obj;
1519	/*
1520	 * Implementation details of the RDMA core, don't use in drivers:
1521	 */
1522	struct rdma_restrack_entry res;
1523	struct xarray mmap_xa;
1524};
1525
1526struct ib_uobject {
1527	u64			user_handle;	/* handle given to us by userspace */
1528	/* ufile & ucontext owning this object */
1529	struct ib_uverbs_file  *ufile;
1530	/* FIXME, save memory: ufile->context == context */
1531	struct ib_ucontext     *context;	/* associated user context */
1532	void		       *object;		/* containing object */
1533	struct list_head	list;		/* link to context's list */
1534	struct ib_rdmacg_object	cg_obj;		/* rdmacg object */
1535	int			id;		/* index into kernel idr */
1536	struct kref		ref;
1537	atomic_t		usecnt;		/* protects exclusive access */
1538	struct rcu_head		rcu;		/* kfree_rcu() overhead */
1539
1540	const struct uverbs_api_object *uapi_object;
1541};
1542
1543struct ib_udata {
1544	const void __user *inbuf;
1545	void __user *outbuf;
1546	size_t       inlen;
1547	size_t       outlen;
1548};
1549
1550struct ib_pd {
1551	u32			local_dma_lkey;
1552	u32			flags;
1553	struct ib_device       *device;
1554	struct ib_uobject      *uobject;
1555	atomic_t          	usecnt; /* count all resources */
1556
1557	u32			unsafe_global_rkey;
1558
1559	/*
1560	 * Implementation details of the RDMA core, don't use in drivers:
1561	 */
1562	struct ib_mr	       *__internal_mr;
1563	struct rdma_restrack_entry res;
1564};
1565
1566struct ib_xrcd {
1567	struct ib_device       *device;
1568	atomic_t		usecnt; /* count all exposed resources */
1569	struct inode	       *inode;
1570	struct rw_semaphore	tgt_qps_rwsem;
1571	struct xarray		tgt_qps;
1572};
1573
1574struct ib_ah {
1575	struct ib_device	*device;
1576	struct ib_pd		*pd;
1577	struct ib_uobject	*uobject;
1578	const struct ib_gid_attr *sgid_attr;
1579	enum rdma_ah_attr_type	type;
1580};
1581
1582typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
1583
1584enum ib_poll_context {
1585	IB_POLL_SOFTIRQ,	   /* poll from softirq context */
1586	IB_POLL_WORKQUEUE,	   /* poll from workqueue */
1587	IB_POLL_UNBOUND_WORKQUEUE, /* poll from unbound workqueue */
1588	IB_POLL_LAST_POOL_TYPE = IB_POLL_UNBOUND_WORKQUEUE,
1589
1590	IB_POLL_DIRECT,		   /* caller context, no hw completions */
1591};
1592
1593struct ib_cq {
1594	struct ib_device       *device;
1595	struct ib_ucq_object   *uobject;
1596	ib_comp_handler   	comp_handler;
1597	void                  (*event_handler)(struct ib_event *, void *);
1598	void                   *cq_context;
1599	int               	cqe;
1600	unsigned int		cqe_used;
1601	atomic_t          	usecnt; /* count number of work queues */
1602	enum ib_poll_context	poll_ctx;
1603	struct ib_wc		*wc;
1604	struct list_head        pool_entry;
1605	union {
1606		struct irq_poll		iop;
1607		struct work_struct	work;
1608	};
1609	struct workqueue_struct *comp_wq;
1610	struct dim *dim;
1611
1612	/* updated only by trace points */
1613	ktime_t timestamp;
1614	u8 interrupt:1;
1615	u8 shared:1;
1616	unsigned int comp_vector;
1617
1618	/*
1619	 * Implementation details of the RDMA core, don't use in drivers:
1620	 */
1621	struct rdma_restrack_entry res;
1622};
1623
1624struct ib_srq {
1625	struct ib_device       *device;
1626	struct ib_pd	       *pd;
1627	struct ib_usrq_object  *uobject;
1628	void		      (*event_handler)(struct ib_event *, void *);
1629	void		       *srq_context;
1630	enum ib_srq_type	srq_type;
1631	atomic_t		usecnt;
1632
1633	struct {
1634		struct ib_cq   *cq;
1635		union {
1636			struct {
1637				struct ib_xrcd *xrcd;
1638				u32		srq_num;
1639			} xrc;
1640		};
1641	} ext;
1642
1643	/*
1644	 * Implementation details of the RDMA core, don't use in drivers:
1645	 */
1646	struct rdma_restrack_entry res;
1647};
1648
1649enum ib_raw_packet_caps {
1650	/*
1651	 * Strip cvlan from incoming packet and report it in the matching work
1652	 * completion is supported.
1653	 */
1654	IB_RAW_PACKET_CAP_CVLAN_STRIPPING =
1655		IB_UVERBS_RAW_PACKET_CAP_CVLAN_STRIPPING,
1656	/*
1657	 * Scatter FCS field of an incoming packet to host memory is supported.
1658	 */
1659	IB_RAW_PACKET_CAP_SCATTER_FCS = IB_UVERBS_RAW_PACKET_CAP_SCATTER_FCS,
1660	/* Checksum offloads are supported (for both send and receive). */
1661	IB_RAW_PACKET_CAP_IP_CSUM = IB_UVERBS_RAW_PACKET_CAP_IP_CSUM,
1662	/*
1663	 * When a packet is received for an RQ with no receive WQEs, the
1664	 * packet processing is delayed.
1665	 */
1666	IB_RAW_PACKET_CAP_DELAY_DROP = IB_UVERBS_RAW_PACKET_CAP_DELAY_DROP,
1667};
1668
1669enum ib_wq_type {
1670	IB_WQT_RQ = IB_UVERBS_WQT_RQ,
1671};
1672
1673enum ib_wq_state {
1674	IB_WQS_RESET,
1675	IB_WQS_RDY,
1676	IB_WQS_ERR
1677};
1678
1679struct ib_wq {
1680	struct ib_device       *device;
1681	struct ib_uwq_object   *uobject;
1682	void		    *wq_context;
1683	void		    (*event_handler)(struct ib_event *, void *);
1684	struct ib_pd	       *pd;
1685	struct ib_cq	       *cq;
1686	u32		wq_num;
1687	enum ib_wq_state       state;
1688	enum ib_wq_type	wq_type;
1689	atomic_t		usecnt;
1690};
1691
1692enum ib_wq_flags {
1693	IB_WQ_FLAGS_CVLAN_STRIPPING	= IB_UVERBS_WQ_FLAGS_CVLAN_STRIPPING,
1694	IB_WQ_FLAGS_SCATTER_FCS		= IB_UVERBS_WQ_FLAGS_SCATTER_FCS,
1695	IB_WQ_FLAGS_DELAY_DROP		= IB_UVERBS_WQ_FLAGS_DELAY_DROP,
1696	IB_WQ_FLAGS_PCI_WRITE_END_PADDING =
1697				IB_UVERBS_WQ_FLAGS_PCI_WRITE_END_PADDING,
1698};
1699
1700struct ib_wq_init_attr {
1701	void		       *wq_context;
1702	enum ib_wq_type	wq_type;
1703	u32		max_wr;
1704	u32		max_sge;
1705	struct	ib_cq	       *cq;
1706	void		    (*event_handler)(struct ib_event *, void *);
1707	u32		create_flags; /* Use enum ib_wq_flags */
1708};
1709
1710enum ib_wq_attr_mask {
1711	IB_WQ_STATE		= 1 << 0,
1712	IB_WQ_CUR_STATE		= 1 << 1,
1713	IB_WQ_FLAGS		= 1 << 2,
1714};
1715
1716struct ib_wq_attr {
1717	enum	ib_wq_state	wq_state;
1718	enum	ib_wq_state	curr_wq_state;
1719	u32			flags; /* Use enum ib_wq_flags */
1720	u32			flags_mask; /* Use enum ib_wq_flags */
1721};
1722
1723struct ib_rwq_ind_table {
1724	struct ib_device	*device;
1725	struct ib_uobject      *uobject;
1726	atomic_t		usecnt;
1727	u32		ind_tbl_num;
1728	u32		log_ind_tbl_size;
1729	struct ib_wq	**ind_tbl;
1730};
1731
1732struct ib_rwq_ind_table_init_attr {
1733	u32		log_ind_tbl_size;
1734	/* Each entry is a pointer to Receive Work Queue */
1735	struct ib_wq	**ind_tbl;
1736};
1737
1738enum port_pkey_state {
1739	IB_PORT_PKEY_NOT_VALID = 0,
1740	IB_PORT_PKEY_VALID = 1,
1741	IB_PORT_PKEY_LISTED = 2,
1742};
1743
1744struct ib_qp_security;
1745
1746struct ib_port_pkey {
1747	enum port_pkey_state	state;
1748	u16			pkey_index;
1749	u32			port_num;
1750	struct list_head	qp_list;
1751	struct list_head	to_error_list;
1752	struct ib_qp_security  *sec;
1753};
1754
1755struct ib_ports_pkeys {
1756	struct ib_port_pkey	main;
1757	struct ib_port_pkey	alt;
1758};
1759
1760struct ib_qp_security {
1761	struct ib_qp	       *qp;
1762	struct ib_device       *dev;
1763	/* Hold this mutex when changing port and pkey settings. */
1764	struct mutex		mutex;
1765	struct ib_ports_pkeys  *ports_pkeys;
1766	/* A list of all open shared QP handles.  Required to enforce security
1767	 * properly for all users of a shared QP.
1768	 */
1769	struct list_head        shared_qp_list;
1770	void                   *security;
1771	bool			destroying;
1772	atomic_t		error_list_count;
1773	struct completion	error_complete;
1774	int			error_comps_pending;
1775};
1776
1777/*
1778 * @max_write_sge: Maximum SGE elements per RDMA WRITE request.
1779 * @max_read_sge:  Maximum SGE elements per RDMA READ request.
1780 */
1781struct ib_qp {
1782	struct ib_device       *device;
1783	struct ib_pd	       *pd;
1784	struct ib_cq	       *send_cq;
1785	struct ib_cq	       *recv_cq;
1786	spinlock_t		mr_lock;
1787	int			mrs_used;
1788	struct list_head	rdma_mrs;
1789	struct list_head	sig_mrs;
1790	struct ib_srq	       *srq;
1791	struct ib_xrcd	       *xrcd; /* XRC TGT QPs only */
1792	struct list_head	xrcd_list;
1793
1794	/* count times opened, mcast attaches, flow attaches */
1795	atomic_t		usecnt;
1796	struct list_head	open_list;
1797	struct ib_qp           *real_qp;
1798	struct ib_uqp_object   *uobject;
1799	void                  (*event_handler)(struct ib_event *, void *);
1800	void		       *qp_context;
1801	/* sgid_attrs associated with the AV's */
1802	const struct ib_gid_attr *av_sgid_attr;
1803	const struct ib_gid_attr *alt_path_sgid_attr;
1804	u32			qp_num;
1805	u32			max_write_sge;
1806	u32			max_read_sge;
1807	enum ib_qp_type		qp_type;
1808	struct ib_rwq_ind_table *rwq_ind_tbl;
1809	struct ib_qp_security  *qp_sec;
1810	u32			port;
1811
1812	bool			integrity_en;
1813	/*
1814	 * Implementation details of the RDMA core, don't use in drivers:
1815	 */
1816	struct rdma_restrack_entry     res;
1817
1818	/* The counter the qp is bind to */
1819	struct rdma_counter    *counter;
1820};
1821
1822struct ib_dm {
1823	struct ib_device  *device;
1824	u32		   length;
1825	u32		   flags;
1826	struct ib_uobject *uobject;
1827	atomic_t	   usecnt;
1828};
1829
1830struct ib_mr {
1831	struct ib_device  *device;
1832	struct ib_pd	  *pd;
 
1833	u32		   lkey;
1834	u32		   rkey;
1835	u64		   iova;
1836	u64		   length;
1837	unsigned int	   page_size;
1838	enum ib_mr_type	   type;
1839	bool		   need_inval;
1840	union {
1841		struct ib_uobject	*uobject;	/* user */
1842		struct list_head	qp_entry;	/* FR */
1843	};
1844
1845	struct ib_dm      *dm;
1846	struct ib_sig_attrs *sig_attrs; /* only for IB_MR_TYPE_INTEGRITY MRs */
1847	/*
1848	 * Implementation details of the RDMA core, don't use in drivers:
1849	 */
1850	struct rdma_restrack_entry res;
1851};
1852
1853struct ib_mw {
1854	struct ib_device	*device;
1855	struct ib_pd		*pd;
1856	struct ib_uobject	*uobject;
1857	u32			rkey;
1858	enum ib_mw_type         type;
1859};
1860
1861/* Supported steering options */
1862enum ib_flow_attr_type {
1863	/* steering according to rule specifications */
1864	IB_FLOW_ATTR_NORMAL		= 0x0,
1865	/* default unicast and multicast rule -
1866	 * receive all Eth traffic which isn't steered to any QP
1867	 */
1868	IB_FLOW_ATTR_ALL_DEFAULT	= 0x1,
1869	/* default multicast rule -
1870	 * receive all Eth multicast traffic which isn't steered to any QP
1871	 */
1872	IB_FLOW_ATTR_MC_DEFAULT		= 0x2,
1873	/* sniffer rule - receive all port traffic */
1874	IB_FLOW_ATTR_SNIFFER		= 0x3
1875};
1876
1877/* Supported steering header types */
1878enum ib_flow_spec_type {
1879	/* L2 headers*/
1880	IB_FLOW_SPEC_ETH		= 0x20,
1881	IB_FLOW_SPEC_IB			= 0x22,
1882	/* L3 header*/
1883	IB_FLOW_SPEC_IPV4		= 0x30,
1884	IB_FLOW_SPEC_IPV6		= 0x31,
1885	IB_FLOW_SPEC_ESP                = 0x34,
1886	/* L4 headers*/
1887	IB_FLOW_SPEC_TCP		= 0x40,
1888	IB_FLOW_SPEC_UDP		= 0x41,
1889	IB_FLOW_SPEC_VXLAN_TUNNEL	= 0x50,
1890	IB_FLOW_SPEC_GRE		= 0x51,
1891	IB_FLOW_SPEC_MPLS		= 0x60,
1892	IB_FLOW_SPEC_INNER		= 0x100,
1893	/* Actions */
1894	IB_FLOW_SPEC_ACTION_TAG         = 0x1000,
1895	IB_FLOW_SPEC_ACTION_DROP        = 0x1001,
1896	IB_FLOW_SPEC_ACTION_HANDLE	= 0x1002,
1897	IB_FLOW_SPEC_ACTION_COUNT       = 0x1003,
1898};
1899#define IB_FLOW_SPEC_LAYER_MASK	0xF0
1900#define IB_FLOW_SPEC_SUPPORT_LAYERS 10
1901
1902enum ib_flow_flags {
1903	IB_FLOW_ATTR_FLAGS_DONT_TRAP = 1UL << 1, /* Continue match, no steal */
1904	IB_FLOW_ATTR_FLAGS_EGRESS = 1UL << 2, /* Egress flow */
1905	IB_FLOW_ATTR_FLAGS_RESERVED  = 1UL << 3  /* Must be last */
1906};
1907
1908struct ib_flow_eth_filter {
1909	u8	dst_mac[6];
1910	u8	src_mac[6];
1911	__be16	ether_type;
1912	__be16	vlan_tag;
1913	/* Must be last */
1914	u8	real_sz[];
1915};
1916
1917struct ib_flow_spec_eth {
1918	u32			  type;
1919	u16			  size;
1920	struct ib_flow_eth_filter val;
1921	struct ib_flow_eth_filter mask;
1922};
1923
1924struct ib_flow_ib_filter {
1925	__be16 dlid;
1926	__u8   sl;
1927	/* Must be last */
1928	u8	real_sz[];
1929};
1930
1931struct ib_flow_spec_ib {
1932	u32			 type;
1933	u16			 size;
1934	struct ib_flow_ib_filter val;
1935	struct ib_flow_ib_filter mask;
1936};
1937
1938/* IPv4 header flags */
1939enum ib_ipv4_flags {
1940	IB_IPV4_DONT_FRAG = 0x2, /* Don't enable packet fragmentation */
1941	IB_IPV4_MORE_FRAG = 0X4  /* For All fragmented packets except the
1942				    last have this flag set */
1943};
1944
1945struct ib_flow_ipv4_filter {
1946	__be32	src_ip;
1947	__be32	dst_ip;
1948	u8	proto;
1949	u8	tos;
1950	u8	ttl;
1951	u8	flags;
1952	/* Must be last */
1953	u8	real_sz[];
1954};
1955
1956struct ib_flow_spec_ipv4 {
1957	u32			   type;
1958	u16			   size;
1959	struct ib_flow_ipv4_filter val;
1960	struct ib_flow_ipv4_filter mask;
1961};
1962
1963struct ib_flow_ipv6_filter {
1964	u8	src_ip[16];
1965	u8	dst_ip[16];
1966	__be32	flow_label;
1967	u8	next_hdr;
1968	u8	traffic_class;
1969	u8	hop_limit;
1970	/* Must be last */
1971	u8	real_sz[];
1972};
1973
1974struct ib_flow_spec_ipv6 {
1975	u32			   type;
1976	u16			   size;
1977	struct ib_flow_ipv6_filter val;
1978	struct ib_flow_ipv6_filter mask;
1979};
1980
1981struct ib_flow_tcp_udp_filter {
1982	__be16	dst_port;
1983	__be16	src_port;
1984	/* Must be last */
1985	u8	real_sz[];
1986};
1987
1988struct ib_flow_spec_tcp_udp {
1989	u32			      type;
1990	u16			      size;
1991	struct ib_flow_tcp_udp_filter val;
1992	struct ib_flow_tcp_udp_filter mask;
1993};
1994
1995struct ib_flow_tunnel_filter {
1996	__be32	tunnel_id;
1997	u8	real_sz[];
1998};
1999
2000/* ib_flow_spec_tunnel describes the Vxlan tunnel
2001 * the tunnel_id from val has the vni value
2002 */
2003struct ib_flow_spec_tunnel {
2004	u32			      type;
2005	u16			      size;
2006	struct ib_flow_tunnel_filter  val;
2007	struct ib_flow_tunnel_filter  mask;
2008};
2009
2010struct ib_flow_esp_filter {
2011	__be32	spi;
2012	__be32  seq;
2013	/* Must be last */
2014	u8	real_sz[];
2015};
2016
2017struct ib_flow_spec_esp {
2018	u32                           type;
2019	u16			      size;
2020	struct ib_flow_esp_filter     val;
2021	struct ib_flow_esp_filter     mask;
2022};
2023
2024struct ib_flow_gre_filter {
2025	__be16 c_ks_res0_ver;
2026	__be16 protocol;
2027	__be32 key;
2028	/* Must be last */
2029	u8	real_sz[];
2030};
2031
2032struct ib_flow_spec_gre {
2033	u32                           type;
2034	u16			      size;
2035	struct ib_flow_gre_filter     val;
2036	struct ib_flow_gre_filter     mask;
2037};
2038
2039struct ib_flow_mpls_filter {
2040	__be32 tag;
2041	/* Must be last */
2042	u8	real_sz[];
2043};
2044
2045struct ib_flow_spec_mpls {
2046	u32                           type;
2047	u16			      size;
2048	struct ib_flow_mpls_filter     val;
2049	struct ib_flow_mpls_filter     mask;
2050};
2051
2052struct ib_flow_spec_action_tag {
2053	enum ib_flow_spec_type	      type;
2054	u16			      size;
2055	u32                           tag_id;
2056};
2057
2058struct ib_flow_spec_action_drop {
2059	enum ib_flow_spec_type	      type;
2060	u16			      size;
2061};
2062
2063struct ib_flow_spec_action_handle {
2064	enum ib_flow_spec_type	      type;
2065	u16			      size;
2066	struct ib_flow_action	     *act;
2067};
2068
2069enum ib_counters_description {
2070	IB_COUNTER_PACKETS,
2071	IB_COUNTER_BYTES,
2072};
2073
2074struct ib_flow_spec_action_count {
2075	enum ib_flow_spec_type type;
2076	u16 size;
2077	struct ib_counters *counters;
2078};
2079
2080union ib_flow_spec {
2081	struct {
2082		u32			type;
2083		u16			size;
2084	};
2085	struct ib_flow_spec_eth		eth;
2086	struct ib_flow_spec_ib		ib;
2087	struct ib_flow_spec_ipv4        ipv4;
2088	struct ib_flow_spec_tcp_udp	tcp_udp;
2089	struct ib_flow_spec_ipv6        ipv6;
2090	struct ib_flow_spec_tunnel      tunnel;
2091	struct ib_flow_spec_esp		esp;
2092	struct ib_flow_spec_gre		gre;
2093	struct ib_flow_spec_mpls	mpls;
2094	struct ib_flow_spec_action_tag  flow_tag;
2095	struct ib_flow_spec_action_drop drop;
2096	struct ib_flow_spec_action_handle action;
2097	struct ib_flow_spec_action_count flow_count;
2098};
2099
2100struct ib_flow_attr {
2101	enum ib_flow_attr_type type;
2102	u16	     size;
2103	u16	     priority;
2104	u32	     flags;
2105	u8	     num_of_specs;
2106	u32	     port;
2107	union ib_flow_spec flows[];
2108};
2109
2110struct ib_flow {
2111	struct ib_qp		*qp;
2112	struct ib_device	*device;
2113	struct ib_uobject	*uobject;
2114};
2115
2116enum ib_flow_action_type {
2117	IB_FLOW_ACTION_UNSPECIFIED,
2118	IB_FLOW_ACTION_ESP = 1,
2119};
2120
2121struct ib_flow_action_attrs_esp_keymats {
2122	enum ib_uverbs_flow_action_esp_keymat			protocol;
2123	union {
2124		struct ib_uverbs_flow_action_esp_keymat_aes_gcm aes_gcm;
2125	} keymat;
2126};
2127
2128struct ib_flow_action_attrs_esp_replays {
2129	enum ib_uverbs_flow_action_esp_replay			protocol;
2130	union {
2131		struct ib_uverbs_flow_action_esp_replay_bmp	bmp;
2132	} replay;
2133};
2134
2135enum ib_flow_action_attrs_esp_flags {
2136	/* All user-space flags at the top: Use enum ib_uverbs_flow_action_esp_flags
2137	 * This is done in order to share the same flags between user-space and
2138	 * kernel and spare an unnecessary translation.
2139	 */
2140
2141	/* Kernel flags */
2142	IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED	= 1ULL << 32,
2143	IB_FLOW_ACTION_ESP_FLAGS_MOD_ESP_ATTRS	= 1ULL << 33,
2144};
2145
2146struct ib_flow_spec_list {
2147	struct ib_flow_spec_list	*next;
2148	union ib_flow_spec		spec;
2149};
2150
2151struct ib_flow_action_attrs_esp {
2152	struct ib_flow_action_attrs_esp_keymats		*keymat;
2153	struct ib_flow_action_attrs_esp_replays		*replay;
2154	struct ib_flow_spec_list			*encap;
2155	/* Used only if IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED is enabled.
2156	 * Value of 0 is a valid value.
2157	 */
2158	u32						esn;
2159	u32						spi;
2160	u32						seq;
2161	u32						tfc_pad;
2162	/* Use enum ib_flow_action_attrs_esp_flags */
2163	u64						flags;
2164	u64						hard_limit_pkts;
2165};
2166
2167struct ib_flow_action {
2168	struct ib_device		*device;
2169	struct ib_uobject		*uobject;
2170	enum ib_flow_action_type	type;
2171	atomic_t			usecnt;
2172};
2173
2174struct ib_mad;
 
2175
2176enum ib_process_mad_flags {
2177	IB_MAD_IGNORE_MKEY	= 1,
2178	IB_MAD_IGNORE_BKEY	= 2,
2179	IB_MAD_IGNORE_ALL	= IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
2180};
2181
2182enum ib_mad_result {
2183	IB_MAD_RESULT_FAILURE  = 0,      /* (!SUCCESS is the important flag) */
2184	IB_MAD_RESULT_SUCCESS  = 1 << 0, /* MAD was successfully processed   */
2185	IB_MAD_RESULT_REPLY    = 1 << 1, /* Reply packet needs to be sent    */
2186	IB_MAD_RESULT_CONSUMED = 1 << 2  /* Packet consumed: stop processing */
2187};
2188
2189struct ib_port_cache {
2190	u64		      subnet_prefix;
2191	struct ib_pkey_cache  *pkey;
2192	struct ib_gid_table   *gid;
2193	u8                     lmc;
2194	enum ib_port_state     port_state;
2195};
2196
2197struct ib_port_immutable {
2198	int                           pkey_tbl_len;
2199	int                           gid_tbl_len;
2200	u32                           core_cap_flags;
2201	u32                           max_mad_size;
2202};
2203
2204struct ib_port_data {
2205	struct ib_device *ib_dev;
2206
2207	struct ib_port_immutable immutable;
2208
2209	spinlock_t pkey_list_lock;
2210
2211	spinlock_t netdev_lock;
2212
2213	struct list_head pkey_list;
2214
2215	struct ib_port_cache cache;
2216
2217	struct net_device __rcu *netdev;
2218	netdevice_tracker netdev_tracker;
2219	struct hlist_node ndev_hash_link;
2220	struct rdma_port_counter port_counter;
2221	struct ib_port *sysfs;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2222};
2223
2224/* rdma netdev type - specifies protocol type */
2225enum rdma_netdev_t {
2226	RDMA_NETDEV_OPA_VNIC,
2227	RDMA_NETDEV_IPOIB,
2228};
2229
2230/**
2231 * struct rdma_netdev - rdma netdev
2232 * For cases where netstack interfacing is required.
2233 */
2234struct rdma_netdev {
2235	void              *clnt_priv;
2236	struct ib_device  *hca;
2237	u32		   port_num;
2238	int                mtu;
2239
2240	/*
2241	 * cleanup function must be specified.
2242	 * FIXME: This is only used for OPA_VNIC and that usage should be
2243	 * removed too.
2244	 */
2245	void (*free_rdma_netdev)(struct net_device *netdev);
2246
2247	/* control functions */
2248	void (*set_id)(struct net_device *netdev, int id);
2249	/* send packet */
2250	int (*send)(struct net_device *dev, struct sk_buff *skb,
2251		    struct ib_ah *address, u32 dqpn);
2252	/* multicast */
2253	int (*attach_mcast)(struct net_device *dev, struct ib_device *hca,
2254			    union ib_gid *gid, u16 mlid,
2255			    int set_qkey, u32 qkey);
2256	int (*detach_mcast)(struct net_device *dev, struct ib_device *hca,
2257			    union ib_gid *gid, u16 mlid);
2258	/* timeout */
2259	void (*tx_timeout)(struct net_device *dev, unsigned int txqueue);
2260};
2261
2262struct rdma_netdev_alloc_params {
2263	size_t sizeof_priv;
2264	unsigned int txqs;
2265	unsigned int rxqs;
2266	void *param;
2267
2268	int (*initialize_rdma_netdev)(struct ib_device *device, u32 port_num,
2269				      struct net_device *netdev, void *param);
2270};
2271
2272struct ib_odp_counters {
2273	atomic64_t faults;
2274	atomic64_t invalidations;
2275	atomic64_t prefetch;
2276};
2277
2278struct ib_counters {
2279	struct ib_device	*device;
2280	struct ib_uobject	*uobject;
2281	/* num of objects attached */
2282	atomic_t	usecnt;
2283};
2284
2285struct ib_counters_read_attr {
2286	u64	*counters_buff;
2287	u32	ncounters;
2288	u32	flags; /* use enum ib_read_counters_flags */
2289};
2290
2291struct uverbs_attr_bundle;
2292struct iw_cm_id;
2293struct iw_cm_conn_param;
2294
2295#define INIT_RDMA_OBJ_SIZE(ib_struct, drv_struct, member)                      \
2296	.size_##ib_struct =                                                    \
2297		(sizeof(struct drv_struct) +                                   \
2298		 BUILD_BUG_ON_ZERO(offsetof(struct drv_struct, member)) +      \
2299		 BUILD_BUG_ON_ZERO(                                            \
2300			 !__same_type(((struct drv_struct *)NULL)->member,     \
2301				      struct ib_struct)))
2302
2303#define rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, gfp)                          \
2304	((struct ib_type *)rdma_zalloc_obj(ib_dev, ib_dev->ops.size_##ib_type, \
2305					   gfp, false))
2306
2307#define rdma_zalloc_drv_obj_numa(ib_dev, ib_type)                              \
2308	((struct ib_type *)rdma_zalloc_obj(ib_dev, ib_dev->ops.size_##ib_type, \
2309					   GFP_KERNEL, true))
2310
2311#define rdma_zalloc_drv_obj(ib_dev, ib_type)                                   \
2312	rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, GFP_KERNEL)
2313
2314#define DECLARE_RDMA_OBJ_SIZE(ib_struct) size_t size_##ib_struct
2315
2316struct rdma_user_mmap_entry {
2317	struct kref ref;
2318	struct ib_ucontext *ucontext;
2319	unsigned long start_pgoff;
2320	size_t npages;
2321	bool driver_removed;
2322};
2323
2324/* Return the offset (in bytes) the user should pass to libc's mmap() */
2325static inline u64
2326rdma_user_mmap_get_offset(const struct rdma_user_mmap_entry *entry)
2327{
2328	return (u64)entry->start_pgoff << PAGE_SHIFT;
2329}
2330
2331/**
2332 * struct ib_device_ops - InfiniBand device operations
2333 * This structure defines all the InfiniBand device operations, providers will
2334 * need to define the supported operations, otherwise they will be set to null.
2335 */
2336struct ib_device_ops {
2337	struct module *owner;
2338	enum rdma_driver_id driver_id;
2339	u32 uverbs_abi_ver;
2340	unsigned int uverbs_no_driver_id_binding:1;
2341
2342	/*
2343	 * NOTE: New drivers should not make use of device_group; instead new
2344	 * device parameter should be exposed via netlink command. This
2345	 * mechanism exists only for existing drivers.
2346	 */
2347	const struct attribute_group *device_group;
2348	const struct attribute_group **port_groups;
2349
2350	int (*post_send)(struct ib_qp *qp, const struct ib_send_wr *send_wr,
2351			 const struct ib_send_wr **bad_send_wr);
2352	int (*post_recv)(struct ib_qp *qp, const struct ib_recv_wr *recv_wr,
2353			 const struct ib_recv_wr **bad_recv_wr);
2354	void (*drain_rq)(struct ib_qp *qp);
2355	void (*drain_sq)(struct ib_qp *qp);
2356	int (*poll_cq)(struct ib_cq *cq, int num_entries, struct ib_wc *wc);
2357	int (*peek_cq)(struct ib_cq *cq, int wc_cnt);
2358	int (*req_notify_cq)(struct ib_cq *cq, enum ib_cq_notify_flags flags);
2359	int (*post_srq_recv)(struct ib_srq *srq,
2360			     const struct ib_recv_wr *recv_wr,
2361			     const struct ib_recv_wr **bad_recv_wr);
2362	int (*process_mad)(struct ib_device *device, int process_mad_flags,
2363			   u32 port_num, const struct ib_wc *in_wc,
2364			   const struct ib_grh *in_grh,
2365			   const struct ib_mad *in_mad, struct ib_mad *out_mad,
2366			   size_t *out_mad_size, u16 *out_mad_pkey_index);
2367	int (*query_device)(struct ib_device *device,
2368			    struct ib_device_attr *device_attr,
2369			    struct ib_udata *udata);
2370	int (*modify_device)(struct ib_device *device, int device_modify_mask,
2371			     struct ib_device_modify *device_modify);
2372	void (*get_dev_fw_str)(struct ib_device *device, char *str);
2373	const struct cpumask *(*get_vector_affinity)(struct ib_device *ibdev,
2374						     int comp_vector);
2375	int (*query_port)(struct ib_device *device, u32 port_num,
2376			  struct ib_port_attr *port_attr);
2377	int (*modify_port)(struct ib_device *device, u32 port_num,
2378			   int port_modify_mask,
2379			   struct ib_port_modify *port_modify);
2380	/**
2381	 * The following mandatory functions are used only at device
2382	 * registration.  Keep functions such as these at the end of this
2383	 * structure to avoid cache line misses when accessing struct ib_device
2384	 * in fast paths.
2385	 */
2386	int (*get_port_immutable)(struct ib_device *device, u32 port_num,
2387				  struct ib_port_immutable *immutable);
2388	enum rdma_link_layer (*get_link_layer)(struct ib_device *device,
2389					       u32 port_num);
2390	/**
2391	 * When calling get_netdev, the HW vendor's driver should return the
2392	 * net device of device @device at port @port_num or NULL if such
2393	 * a net device doesn't exist. The vendor driver should call dev_hold
2394	 * on this net device. The HW vendor's device driver must guarantee
2395	 * that this function returns NULL before the net device has finished
2396	 * NETDEV_UNREGISTER state.
2397	 */
2398	struct net_device *(*get_netdev)(struct ib_device *device,
2399					 u32 port_num);
2400	/**
2401	 * rdma netdev operation
2402	 *
2403	 * Driver implementing alloc_rdma_netdev or rdma_netdev_get_params
2404	 * must return -EOPNOTSUPP if it doesn't support the specified type.
2405	 */
2406	struct net_device *(*alloc_rdma_netdev)(
2407		struct ib_device *device, u32 port_num, enum rdma_netdev_t type,
2408		const char *name, unsigned char name_assign_type,
2409		void (*setup)(struct net_device *));
2410
2411	int (*rdma_netdev_get_params)(struct ib_device *device, u32 port_num,
2412				      enum rdma_netdev_t type,
2413				      struct rdma_netdev_alloc_params *params);
2414	/**
2415	 * query_gid should be return GID value for @device, when @port_num
2416	 * link layer is either IB or iWarp. It is no-op if @port_num port
2417	 * is RoCE link layer.
2418	 */
2419	int (*query_gid)(struct ib_device *device, u32 port_num, int index,
2420			 union ib_gid *gid);
2421	/**
2422	 * When calling add_gid, the HW vendor's driver should add the gid
2423	 * of device of port at gid index available at @attr. Meta-info of
2424	 * that gid (for example, the network device related to this gid) is
2425	 * available at @attr. @context allows the HW vendor driver to store
2426	 * extra information together with a GID entry. The HW vendor driver may
2427	 * allocate memory to contain this information and store it in @context
2428	 * when a new GID entry is written to. Params are consistent until the
2429	 * next call of add_gid or delete_gid. The function should return 0 on
2430	 * success or error otherwise. The function could be called
2431	 * concurrently for different ports. This function is only called when
2432	 * roce_gid_table is used.
2433	 */
2434	int (*add_gid)(const struct ib_gid_attr *attr, void **context);
2435	/**
2436	 * When calling del_gid, the HW vendor's driver should delete the
2437	 * gid of device @device at gid index gid_index of port port_num
2438	 * available in @attr.
2439	 * Upon the deletion of a GID entry, the HW vendor must free any
2440	 * allocated memory. The caller will clear @context afterwards.
2441	 * This function is only called when roce_gid_table is used.
2442	 */
2443	int (*del_gid)(const struct ib_gid_attr *attr, void **context);
2444	int (*query_pkey)(struct ib_device *device, u32 port_num, u16 index,
2445			  u16 *pkey);
2446	int (*alloc_ucontext)(struct ib_ucontext *context,
2447			      struct ib_udata *udata);
2448	void (*dealloc_ucontext)(struct ib_ucontext *context);
2449	int (*mmap)(struct ib_ucontext *context, struct vm_area_struct *vma);
2450	/**
2451	 * This will be called once refcount of an entry in mmap_xa reaches
2452	 * zero. The type of the memory that was mapped may differ between
2453	 * entries and is opaque to the rdma_user_mmap interface.
2454	 * Therefore needs to be implemented by the driver in mmap_free.
2455	 */
2456	void (*mmap_free)(struct rdma_user_mmap_entry *entry);
2457	void (*disassociate_ucontext)(struct ib_ucontext *ibcontext);
2458	int (*alloc_pd)(struct ib_pd *pd, struct ib_udata *udata);
2459	int (*dealloc_pd)(struct ib_pd *pd, struct ib_udata *udata);
2460	int (*create_ah)(struct ib_ah *ah, struct rdma_ah_init_attr *attr,
2461			 struct ib_udata *udata);
2462	int (*create_user_ah)(struct ib_ah *ah, struct rdma_ah_init_attr *attr,
2463			      struct ib_udata *udata);
2464	int (*modify_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
2465	int (*query_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
2466	int (*destroy_ah)(struct ib_ah *ah, u32 flags);
2467	int (*create_srq)(struct ib_srq *srq,
2468			  struct ib_srq_init_attr *srq_init_attr,
2469			  struct ib_udata *udata);
2470	int (*modify_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr,
2471			  enum ib_srq_attr_mask srq_attr_mask,
2472			  struct ib_udata *udata);
2473	int (*query_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr);
2474	int (*destroy_srq)(struct ib_srq *srq, struct ib_udata *udata);
2475	int (*create_qp)(struct ib_qp *qp, struct ib_qp_init_attr *qp_init_attr,
2476			 struct ib_udata *udata);
2477	int (*modify_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr,
2478			 int qp_attr_mask, struct ib_udata *udata);
2479	int (*query_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr,
2480			int qp_attr_mask, struct ib_qp_init_attr *qp_init_attr);
2481	int (*destroy_qp)(struct ib_qp *qp, struct ib_udata *udata);
2482	int (*create_cq)(struct ib_cq *cq, const struct ib_cq_init_attr *attr,
2483			 struct ib_udata *udata);
2484	int (*modify_cq)(struct ib_cq *cq, u16 cq_count, u16 cq_period);
2485	int (*destroy_cq)(struct ib_cq *cq, struct ib_udata *udata);
2486	int (*resize_cq)(struct ib_cq *cq, int cqe, struct ib_udata *udata);
2487	struct ib_mr *(*get_dma_mr)(struct ib_pd *pd, int mr_access_flags);
2488	struct ib_mr *(*reg_user_mr)(struct ib_pd *pd, u64 start, u64 length,
2489				     u64 virt_addr, int mr_access_flags,
2490				     struct ib_udata *udata);
2491	struct ib_mr *(*reg_user_mr_dmabuf)(struct ib_pd *pd, u64 offset,
2492					    u64 length, u64 virt_addr, int fd,
2493					    int mr_access_flags,
2494					    struct ib_udata *udata);
2495	struct ib_mr *(*rereg_user_mr)(struct ib_mr *mr, int flags, u64 start,
2496				       u64 length, u64 virt_addr,
2497				       int mr_access_flags, struct ib_pd *pd,
2498				       struct ib_udata *udata);
2499	int (*dereg_mr)(struct ib_mr *mr, struct ib_udata *udata);
2500	struct ib_mr *(*alloc_mr)(struct ib_pd *pd, enum ib_mr_type mr_type,
2501				  u32 max_num_sg);
2502	struct ib_mr *(*alloc_mr_integrity)(struct ib_pd *pd,
2503					    u32 max_num_data_sg,
2504					    u32 max_num_meta_sg);
2505	int (*advise_mr)(struct ib_pd *pd,
2506			 enum ib_uverbs_advise_mr_advice advice, u32 flags,
2507			 struct ib_sge *sg_list, u32 num_sge,
2508			 struct uverbs_attr_bundle *attrs);
2509
2510	/*
2511	 * Kernel users should universally support relaxed ordering (RO), as
2512	 * they are designed to read data only after observing the CQE and use
2513	 * the DMA API correctly.
2514	 *
2515	 * Some drivers implicitly enable RO if platform supports it.
2516	 */
2517	int (*map_mr_sg)(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
2518			 unsigned int *sg_offset);
2519	int (*check_mr_status)(struct ib_mr *mr, u32 check_mask,
2520			       struct ib_mr_status *mr_status);
2521	int (*alloc_mw)(struct ib_mw *mw, struct ib_udata *udata);
2522	int (*dealloc_mw)(struct ib_mw *mw);
2523	int (*attach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2524	int (*detach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2525	int (*alloc_xrcd)(struct ib_xrcd *xrcd, struct ib_udata *udata);
2526	int (*dealloc_xrcd)(struct ib_xrcd *xrcd, struct ib_udata *udata);
2527	struct ib_flow *(*create_flow)(struct ib_qp *qp,
2528				       struct ib_flow_attr *flow_attr,
2529				       struct ib_udata *udata);
2530	int (*destroy_flow)(struct ib_flow *flow_id);
2531	int (*destroy_flow_action)(struct ib_flow_action *action);
2532	int (*set_vf_link_state)(struct ib_device *device, int vf, u32 port,
2533				 int state);
2534	int (*get_vf_config)(struct ib_device *device, int vf, u32 port,
2535			     struct ifla_vf_info *ivf);
2536	int (*get_vf_stats)(struct ib_device *device, int vf, u32 port,
2537			    struct ifla_vf_stats *stats);
2538	int (*get_vf_guid)(struct ib_device *device, int vf, u32 port,
2539			    struct ifla_vf_guid *node_guid,
2540			    struct ifla_vf_guid *port_guid);
2541	int (*set_vf_guid)(struct ib_device *device, int vf, u32 port, u64 guid,
2542			   int type);
2543	struct ib_wq *(*create_wq)(struct ib_pd *pd,
2544				   struct ib_wq_init_attr *init_attr,
2545				   struct ib_udata *udata);
2546	int (*destroy_wq)(struct ib_wq *wq, struct ib_udata *udata);
2547	int (*modify_wq)(struct ib_wq *wq, struct ib_wq_attr *attr,
2548			 u32 wq_attr_mask, struct ib_udata *udata);
2549	int (*create_rwq_ind_table)(struct ib_rwq_ind_table *ib_rwq_ind_table,
2550				    struct ib_rwq_ind_table_init_attr *init_attr,
2551				    struct ib_udata *udata);
2552	int (*destroy_rwq_ind_table)(struct ib_rwq_ind_table *wq_ind_table);
2553	struct ib_dm *(*alloc_dm)(struct ib_device *device,
2554				  struct ib_ucontext *context,
2555				  struct ib_dm_alloc_attr *attr,
2556				  struct uverbs_attr_bundle *attrs);
2557	int (*dealloc_dm)(struct ib_dm *dm, struct uverbs_attr_bundle *attrs);
2558	struct ib_mr *(*reg_dm_mr)(struct ib_pd *pd, struct ib_dm *dm,
2559				   struct ib_dm_mr_attr *attr,
2560				   struct uverbs_attr_bundle *attrs);
2561	int (*create_counters)(struct ib_counters *counters,
2562			       struct uverbs_attr_bundle *attrs);
2563	int (*destroy_counters)(struct ib_counters *counters);
2564	int (*read_counters)(struct ib_counters *counters,
2565			     struct ib_counters_read_attr *counters_read_attr,
2566			     struct uverbs_attr_bundle *attrs);
2567	int (*map_mr_sg_pi)(struct ib_mr *mr, struct scatterlist *data_sg,
2568			    int data_sg_nents, unsigned int *data_sg_offset,
2569			    struct scatterlist *meta_sg, int meta_sg_nents,
2570			    unsigned int *meta_sg_offset);
2571
2572	/**
2573	 * alloc_hw_[device,port]_stats - Allocate a struct rdma_hw_stats and
2574	 *   fill in the driver initialized data.  The struct is kfree()'ed by
2575	 *   the sysfs core when the device is removed.  A lifespan of -1 in the
2576	 *   return struct tells the core to set a default lifespan.
2577	 */
2578	struct rdma_hw_stats *(*alloc_hw_device_stats)(struct ib_device *device);
2579	struct rdma_hw_stats *(*alloc_hw_port_stats)(struct ib_device *device,
2580						     u32 port_num);
2581	/**
2582	 * get_hw_stats - Fill in the counter value(s) in the stats struct.
2583	 * @index - The index in the value array we wish to have updated, or
2584	 *   num_counters if we want all stats updated
2585	 * Return codes -
2586	 *   < 0 - Error, no counters updated
2587	 *   index - Updated the single counter pointed to by index
2588	 *   num_counters - Updated all counters (will reset the timestamp
2589	 *     and prevent further calls for lifespan milliseconds)
2590	 * Drivers are allowed to update all counters in leiu of just the
2591	 *   one given in index at their option
2592	 */
2593	int (*get_hw_stats)(struct ib_device *device,
2594			    struct rdma_hw_stats *stats, u32 port, int index);
2595
2596	/**
2597	 * modify_hw_stat - Modify the counter configuration
2598	 * @enable: true/false when enable/disable a counter
2599	 * Return codes - 0 on success or error code otherwise.
2600	 */
2601	int (*modify_hw_stat)(struct ib_device *device, u32 port,
2602			      unsigned int counter_index, bool enable);
2603	/**
2604	 * Allows rdma drivers to add their own restrack attributes.
2605	 */
2606	int (*fill_res_mr_entry)(struct sk_buff *msg, struct ib_mr *ibmr);
2607	int (*fill_res_mr_entry_raw)(struct sk_buff *msg, struct ib_mr *ibmr);
2608	int (*fill_res_cq_entry)(struct sk_buff *msg, struct ib_cq *ibcq);
2609	int (*fill_res_cq_entry_raw)(struct sk_buff *msg, struct ib_cq *ibcq);
2610	int (*fill_res_qp_entry)(struct sk_buff *msg, struct ib_qp *ibqp);
2611	int (*fill_res_qp_entry_raw)(struct sk_buff *msg, struct ib_qp *ibqp);
2612	int (*fill_res_cm_id_entry)(struct sk_buff *msg, struct rdma_cm_id *id);
2613	int (*fill_res_srq_entry)(struct sk_buff *msg, struct ib_srq *ib_srq);
2614	int (*fill_res_srq_entry_raw)(struct sk_buff *msg, struct ib_srq *ib_srq);
2615
2616	/* Device lifecycle callbacks */
2617	/*
2618	 * Called after the device becomes registered, before clients are
2619	 * attached
2620	 */
2621	int (*enable_driver)(struct ib_device *dev);
2622	/*
2623	 * This is called as part of ib_dealloc_device().
2624	 */
2625	void (*dealloc_driver)(struct ib_device *dev);
2626
2627	/* iWarp CM callbacks */
2628	void (*iw_add_ref)(struct ib_qp *qp);
2629	void (*iw_rem_ref)(struct ib_qp *qp);
2630	struct ib_qp *(*iw_get_qp)(struct ib_device *device, int qpn);
2631	int (*iw_connect)(struct iw_cm_id *cm_id,
2632			  struct iw_cm_conn_param *conn_param);
2633	int (*iw_accept)(struct iw_cm_id *cm_id,
2634			 struct iw_cm_conn_param *conn_param);
2635	int (*iw_reject)(struct iw_cm_id *cm_id, const void *pdata,
2636			 u8 pdata_len);
2637	int (*iw_create_listen)(struct iw_cm_id *cm_id, int backlog);
2638	int (*iw_destroy_listen)(struct iw_cm_id *cm_id);
2639	/**
2640	 * counter_bind_qp - Bind a QP to a counter.
2641	 * @counter - The counter to be bound. If counter->id is zero then
2642	 *   the driver needs to allocate a new counter and set counter->id
2643	 */
2644	int (*counter_bind_qp)(struct rdma_counter *counter, struct ib_qp *qp);
2645	/**
2646	 * counter_unbind_qp - Unbind the qp from the dynamically-allocated
2647	 *   counter and bind it onto the default one
2648	 */
2649	int (*counter_unbind_qp)(struct ib_qp *qp);
2650	/**
2651	 * counter_dealloc -De-allocate the hw counter
2652	 */
2653	int (*counter_dealloc)(struct rdma_counter *counter);
2654	/**
2655	 * counter_alloc_stats - Allocate a struct rdma_hw_stats and fill in
2656	 * the driver initialized data.
2657	 */
2658	struct rdma_hw_stats *(*counter_alloc_stats)(
2659		struct rdma_counter *counter);
2660	/**
2661	 * counter_update_stats - Query the stats value of this counter
2662	 */
2663	int (*counter_update_stats)(struct rdma_counter *counter);
2664
2665	/**
2666	 * Allows rdma drivers to add their own restrack attributes
2667	 * dumped via 'rdma stat' iproute2 command.
2668	 */
2669	int (*fill_stat_mr_entry)(struct sk_buff *msg, struct ib_mr *ibmr);
2670
2671	/* query driver for its ucontext properties */
2672	int (*query_ucontext)(struct ib_ucontext *context,
2673			      struct uverbs_attr_bundle *attrs);
2674
2675	/*
2676	 * Provide NUMA node. This API exists for rdmavt/hfi1 only.
2677	 * Everyone else relies on Linux memory management model.
2678	 */
2679	int (*get_numa_node)(struct ib_device *dev);
2680
2681	DECLARE_RDMA_OBJ_SIZE(ib_ah);
2682	DECLARE_RDMA_OBJ_SIZE(ib_counters);
2683	DECLARE_RDMA_OBJ_SIZE(ib_cq);
2684	DECLARE_RDMA_OBJ_SIZE(ib_mw);
2685	DECLARE_RDMA_OBJ_SIZE(ib_pd);
2686	DECLARE_RDMA_OBJ_SIZE(ib_qp);
2687	DECLARE_RDMA_OBJ_SIZE(ib_rwq_ind_table);
2688	DECLARE_RDMA_OBJ_SIZE(ib_srq);
2689	DECLARE_RDMA_OBJ_SIZE(ib_ucontext);
2690	DECLARE_RDMA_OBJ_SIZE(ib_xrcd);
2691};
2692
2693struct ib_core_device {
2694	/* device must be the first element in structure until,
2695	 * union of ib_core_device and device exists in ib_device.
2696	 */
2697	struct device dev;
2698	possible_net_t rdma_net;
2699	struct kobject *ports_kobj;
2700	struct list_head port_list;
2701	struct ib_device *owner; /* reach back to owner ib_device */
2702};
2703
2704struct rdma_restrack_root;
2705struct ib_device {
2706	/* Do not access @dma_device directly from ULP nor from HW drivers. */
2707	struct device                *dma_device;
2708	struct ib_device_ops	     ops;
2709	char                          name[IB_DEVICE_NAME_MAX];
2710	struct rcu_head rcu_head;
2711
2712	struct list_head              event_handler_list;
2713	/* Protects event_handler_list */
2714	struct rw_semaphore event_handler_rwsem;
2715
2716	/* Protects QP's event_handler calls and open_qp list */
2717	spinlock_t qp_open_list_lock;
 
 
 
 
 
2718
2719	struct rw_semaphore	      client_data_rwsem;
2720	struct xarray                 client_data;
2721	struct mutex                  unregistration_lock;
2722
2723	/* Synchronize GID, Pkey cache entries, subnet prefix, LMC */
2724	rwlock_t cache_lock;
2725	/**
2726	 * port_data is indexed by port number
2727	 */
2728	struct ib_port_data *port_data;
2729
2730	int			      num_comp_vectors;
2731
2732	union {
2733		struct device		dev;
2734		struct ib_core_device	coredev;
2735	};
2736
2737	/* First group is for device attributes,
2738	 * Second group is for driver provided attributes (optional).
2739	 * Third group is for the hw_stats
2740	 * It is a NULL terminated array.
2741	 */
2742	const struct attribute_group	*groups[4];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2743
 
2744	u64			     uverbs_cmd_mask;
2745
2746	char			     node_desc[IB_DEVICE_NODE_DESC_MAX];
2747	__be64			     node_guid;
2748	u32			     local_dma_lkey;
2749	u16                          is_switch:1;
2750	/* Indicates kernel verbs support, should not be used in drivers */
2751	u16                          kverbs_provider:1;
2752	/* CQ adaptive moderation (RDMA DIM) */
2753	u16                          use_cq_dim:1;
2754	u8                           node_type;
2755	u32			     phys_port_cnt;
2756	struct ib_device_attr        attrs;
2757	struct hw_stats_device_data *hw_stats_data;
2758
2759#ifdef CONFIG_CGROUP_RDMA
2760	struct rdmacg_device         cg_device;
2761#endif
2762
2763	u32                          index;
2764
2765	spinlock_t                   cq_pools_lock;
2766	struct list_head             cq_pools[IB_POLL_LAST_POOL_TYPE + 1];
2767
2768	struct rdma_restrack_root *res;
2769
2770	const struct uapi_definition   *driver_def;
2771
2772	/*
2773	 * Positive refcount indicates that the device is currently
2774	 * registered and cannot be unregistered.
2775	 */
2776	refcount_t refcount;
2777	struct completion unreg_completion;
2778	struct work_struct unregistration_work;
2779
2780	const struct rdma_link_ops *link_ops;
2781
2782	/* Protects compat_devs xarray modifications */
2783	struct mutex compat_devs_mutex;
2784	/* Maintains compat devices for each net namespace */
2785	struct xarray compat_devs;
2786
2787	/* Used by iWarp CM */
2788	char iw_ifname[IFNAMSIZ];
2789	u32 iw_driver_flags;
2790	u32 lag_flags;
2791};
2792
2793static inline void *rdma_zalloc_obj(struct ib_device *dev, size_t size,
2794				    gfp_t gfp, bool is_numa_aware)
2795{
2796	if (is_numa_aware && dev->ops.get_numa_node)
2797		return kzalloc_node(size, gfp, dev->ops.get_numa_node(dev));
2798
2799	return kzalloc(size, gfp);
2800}
2801
2802struct ib_client_nl_info;
2803struct ib_client {
2804	const char *name;
2805	int (*add)(struct ib_device *ibdev);
2806	void (*remove)(struct ib_device *, void *client_data);
2807	void (*rename)(struct ib_device *dev, void *client_data);
2808	int (*get_nl_info)(struct ib_device *ibdev, void *client_data,
2809			   struct ib_client_nl_info *res);
2810	int (*get_global_nl_info)(struct ib_client_nl_info *res);
2811
2812	/* Returns the net_dev belonging to this ib_client and matching the
2813	 * given parameters.
2814	 * @dev:	 An RDMA device that the net_dev use for communication.
2815	 * @port:	 A physical port number on the RDMA device.
2816	 * @pkey:	 P_Key that the net_dev uses if applicable.
2817	 * @gid:	 A GID that the net_dev uses to communicate.
2818	 * @addr:	 An IP address the net_dev is configured with.
2819	 * @client_data: The device's client data set by ib_set_client_data().
2820	 *
2821	 * An ib_client that implements a net_dev on top of RDMA devices
2822	 * (such as IP over IB) should implement this callback, allowing the
2823	 * rdma_cm module to find the right net_dev for a given request.
2824	 *
2825	 * The caller is responsible for calling dev_put on the returned
2826	 * netdev. */
2827	struct net_device *(*get_net_dev_by_params)(
2828			struct ib_device *dev,
2829			u32 port,
2830			u16 pkey,
2831			const union ib_gid *gid,
2832			const struct sockaddr *addr,
2833			void *client_data);
2834
2835	refcount_t uses;
2836	struct completion uses_zero;
2837	u32 client_id;
2838
2839	/* kverbs are not required by the client */
2840	u8 no_kverbs_req:1;
2841};
2842
2843/*
2844 * IB block DMA iterator
2845 *
2846 * Iterates the DMA-mapped SGL in contiguous memory blocks aligned
2847 * to a HW supported page size.
2848 */
2849struct ib_block_iter {
2850	/* internal states */
2851	struct scatterlist *__sg;	/* sg holding the current aligned block */
2852	dma_addr_t __dma_addr;		/* unaligned DMA address of this block */
2853	size_t __sg_numblocks;		/* ib_umem_num_dma_blocks() */
2854	unsigned int __sg_nents;	/* number of SG entries */
2855	unsigned int __sg_advance;	/* number of bytes to advance in sg in next step */
2856	unsigned int __pg_bit;		/* alignment of current block */
2857};
2858
2859struct ib_device *_ib_alloc_device(size_t size);
2860#define ib_alloc_device(drv_struct, member)                                    \
2861	container_of(_ib_alloc_device(sizeof(struct drv_struct) +              \
2862				      BUILD_BUG_ON_ZERO(offsetof(              \
2863					      struct drv_struct, member))),    \
2864		     struct drv_struct, member)
2865
2866void ib_dealloc_device(struct ib_device *device);
2867
2868void ib_get_device_fw_str(struct ib_device *device, char *str);
2869
2870int ib_register_device(struct ib_device *device, const char *name,
2871		       struct device *dma_device);
2872void ib_unregister_device(struct ib_device *device);
2873void ib_unregister_driver(enum rdma_driver_id driver_id);
2874void ib_unregister_device_and_put(struct ib_device *device);
2875void ib_unregister_device_queued(struct ib_device *ib_dev);
2876
2877int ib_register_client   (struct ib_client *client);
2878void ib_unregister_client(struct ib_client *client);
2879
2880void __rdma_block_iter_start(struct ib_block_iter *biter,
2881			     struct scatterlist *sglist,
2882			     unsigned int nents,
2883			     unsigned long pgsz);
2884bool __rdma_block_iter_next(struct ib_block_iter *biter);
2885
2886/**
2887 * rdma_block_iter_dma_address - get the aligned dma address of the current
2888 * block held by the block iterator.
2889 * @biter: block iterator holding the memory block
2890 */
2891static inline dma_addr_t
2892rdma_block_iter_dma_address(struct ib_block_iter *biter)
2893{
2894	return biter->__dma_addr & ~(BIT_ULL(biter->__pg_bit) - 1);
2895}
2896
2897/**
2898 * rdma_for_each_block - iterate over contiguous memory blocks of the sg list
2899 * @sglist: sglist to iterate over
2900 * @biter: block iterator holding the memory block
2901 * @nents: maximum number of sg entries to iterate over
2902 * @pgsz: best HW supported page size to use
2903 *
2904 * Callers may use rdma_block_iter_dma_address() to get each
2905 * blocks aligned DMA address.
2906 */
2907#define rdma_for_each_block(sglist, biter, nents, pgsz)		\
2908	for (__rdma_block_iter_start(biter, sglist, nents,	\
2909				     pgsz);			\
2910	     __rdma_block_iter_next(biter);)
2911
2912/**
2913 * ib_get_client_data - Get IB client context
2914 * @device:Device to get context for
2915 * @client:Client to get context for
2916 *
2917 * ib_get_client_data() returns the client context data set with
2918 * ib_set_client_data(). This can only be called while the client is
2919 * registered to the device, once the ib_client remove() callback returns this
2920 * cannot be called.
2921 */
2922static inline void *ib_get_client_data(struct ib_device *device,
2923				       struct ib_client *client)
2924{
2925	return xa_load(&device->client_data, client->client_id);
2926}
2927void  ib_set_client_data(struct ib_device *device, struct ib_client *client,
2928			 void *data);
2929void ib_set_device_ops(struct ib_device *device,
2930		       const struct ib_device_ops *ops);
2931
2932int rdma_user_mmap_io(struct ib_ucontext *ucontext, struct vm_area_struct *vma,
2933		      unsigned long pfn, unsigned long size, pgprot_t prot,
2934		      struct rdma_user_mmap_entry *entry);
2935int rdma_user_mmap_entry_insert(struct ib_ucontext *ucontext,
2936				struct rdma_user_mmap_entry *entry,
2937				size_t length);
2938int rdma_user_mmap_entry_insert_range(struct ib_ucontext *ucontext,
2939				      struct rdma_user_mmap_entry *entry,
2940				      size_t length, u32 min_pgoff,
2941				      u32 max_pgoff);
2942
2943static inline int
2944rdma_user_mmap_entry_insert_exact(struct ib_ucontext *ucontext,
2945				  struct rdma_user_mmap_entry *entry,
2946				  size_t length, u32 pgoff)
2947{
2948	return rdma_user_mmap_entry_insert_range(ucontext, entry, length, pgoff,
2949						 pgoff);
2950}
2951
2952struct rdma_user_mmap_entry *
2953rdma_user_mmap_entry_get_pgoff(struct ib_ucontext *ucontext,
2954			       unsigned long pgoff);
2955struct rdma_user_mmap_entry *
2956rdma_user_mmap_entry_get(struct ib_ucontext *ucontext,
2957			 struct vm_area_struct *vma);
2958void rdma_user_mmap_entry_put(struct rdma_user_mmap_entry *entry);
2959
2960void rdma_user_mmap_entry_remove(struct rdma_user_mmap_entry *entry);
2961
2962static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
2963{
2964	return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
2965}
2966
2967static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
2968{
2969	return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
2970}
2971
2972static inline bool ib_is_buffer_cleared(const void __user *p,
2973					size_t len)
2974{
2975	bool ret;
2976	u8 *buf;
2977
2978	if (len > USHRT_MAX)
2979		return false;
2980
2981	buf = memdup_user(p, len);
2982	if (IS_ERR(buf))
2983		return false;
2984
2985	ret = !memchr_inv(buf, 0, len);
2986	kfree(buf);
2987	return ret;
2988}
2989
2990static inline bool ib_is_udata_cleared(struct ib_udata *udata,
2991				       size_t offset,
2992				       size_t len)
2993{
2994	return ib_is_buffer_cleared(udata->inbuf + offset, len);
2995}
2996
2997/**
2998 * ib_modify_qp_is_ok - Check that the supplied attribute mask
2999 * contains all required attributes and no attributes not allowed for
3000 * the given QP state transition.
3001 * @cur_state: Current QP state
3002 * @next_state: Next QP state
3003 * @type: QP type
3004 * @mask: Mask of supplied QP attributes
3005 *
3006 * This function is a helper function that a low-level driver's
3007 * modify_qp method can use to validate the consumer's input.  It
3008 * checks that cur_state and next_state are valid QP states, that a
3009 * transition from cur_state to next_state is allowed by the IB spec,
3010 * and that the attribute mask supplied is allowed for the transition.
3011 */
3012bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
3013			enum ib_qp_type type, enum ib_qp_attr_mask mask);
 
 
 
 
3014
3015void ib_register_event_handler(struct ib_event_handler *event_handler);
3016void ib_unregister_event_handler(struct ib_event_handler *event_handler);
3017void ib_dispatch_event(const struct ib_event *event);
3018
3019int ib_query_port(struct ib_device *device,
3020		  u32 port_num, struct ib_port_attr *port_attr);
3021
3022enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
3023					       u32 port_num);
3024
3025/**
3026 * rdma_cap_ib_switch - Check if the device is IB switch
3027 * @device: Device to check
3028 *
3029 * Device driver is responsible for setting is_switch bit on
3030 * in ib_device structure at init time.
3031 *
3032 * Return: true if the device is IB switch.
3033 */
3034static inline bool rdma_cap_ib_switch(const struct ib_device *device)
3035{
3036	return device->is_switch;
3037}
3038
3039/**
3040 * rdma_start_port - Return the first valid port number for the device
3041 * specified
3042 *
3043 * @device: Device to be checked
3044 *
3045 * Return start port number
3046 */
3047static inline u32 rdma_start_port(const struct ib_device *device)
3048{
3049	return rdma_cap_ib_switch(device) ? 0 : 1;
3050}
3051
3052/**
3053 * rdma_for_each_port - Iterate over all valid port numbers of the IB device
3054 * @device - The struct ib_device * to iterate over
3055 * @iter - The unsigned int to store the port number
3056 */
3057#define rdma_for_each_port(device, iter)                                       \
3058	for (iter = rdma_start_port(device +				       \
3059				    BUILD_BUG_ON_ZERO(!__same_type(u32,	       \
3060								   iter)));    \
3061	     iter <= rdma_end_port(device); iter++)
3062
3063/**
3064 * rdma_end_port - Return the last valid port number for the device
3065 * specified
3066 *
3067 * @device: Device to be checked
3068 *
3069 * Return last port number
3070 */
3071static inline u32 rdma_end_port(const struct ib_device *device)
3072{
3073	return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt;
3074}
3075
3076static inline int rdma_is_port_valid(const struct ib_device *device,
3077				     unsigned int port)
3078{
3079	return (port >= rdma_start_port(device) &&
3080		port <= rdma_end_port(device));
3081}
3082
3083static inline bool rdma_is_grh_required(const struct ib_device *device,
3084					u32 port_num)
3085{
3086	return device->port_data[port_num].immutable.core_cap_flags &
3087	       RDMA_CORE_PORT_IB_GRH_REQUIRED;
3088}
3089
3090static inline bool rdma_protocol_ib(const struct ib_device *device,
3091				    u32 port_num)
3092{
3093	return device->port_data[port_num].immutable.core_cap_flags &
3094	       RDMA_CORE_CAP_PROT_IB;
3095}
3096
3097static inline bool rdma_protocol_roce(const struct ib_device *device,
3098				      u32 port_num)
3099{
3100	return device->port_data[port_num].immutable.core_cap_flags &
3101	       (RDMA_CORE_CAP_PROT_ROCE | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP);
3102}
3103
3104static inline bool rdma_protocol_roce_udp_encap(const struct ib_device *device,
3105						u32 port_num)
3106{
3107	return device->port_data[port_num].immutable.core_cap_flags &
3108	       RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP;
3109}
3110
3111static inline bool rdma_protocol_roce_eth_encap(const struct ib_device *device,
3112						u32 port_num)
3113{
3114	return device->port_data[port_num].immutable.core_cap_flags &
3115	       RDMA_CORE_CAP_PROT_ROCE;
3116}
3117
3118static inline bool rdma_protocol_iwarp(const struct ib_device *device,
3119				       u32 port_num)
3120{
3121	return device->port_data[port_num].immutable.core_cap_flags &
3122	       RDMA_CORE_CAP_PROT_IWARP;
3123}
3124
3125static inline bool rdma_ib_or_roce(const struct ib_device *device,
3126				   u32 port_num)
3127{
3128	return rdma_protocol_ib(device, port_num) ||
3129		rdma_protocol_roce(device, port_num);
3130}
3131
3132static inline bool rdma_protocol_raw_packet(const struct ib_device *device,
3133					    u32 port_num)
3134{
3135	return device->port_data[port_num].immutable.core_cap_flags &
3136	       RDMA_CORE_CAP_PROT_RAW_PACKET;
3137}
3138
3139static inline bool rdma_protocol_usnic(const struct ib_device *device,
3140				       u32 port_num)
3141{
3142	return device->port_data[port_num].immutable.core_cap_flags &
3143	       RDMA_CORE_CAP_PROT_USNIC;
3144}
3145
3146/**
3147 * rdma_cap_ib_mad - Check if the port of a device supports Infiniband
3148 * Management Datagrams.
3149 * @device: Device to check
3150 * @port_num: Port number to check
3151 *
3152 * Management Datagrams (MAD) are a required part of the InfiniBand
3153 * specification and are supported on all InfiniBand devices.  A slightly
3154 * extended version are also supported on OPA interfaces.
3155 *
3156 * Return: true if the port supports sending/receiving of MAD packets.
3157 */
3158static inline bool rdma_cap_ib_mad(const struct ib_device *device, u32 port_num)
3159{
3160	return device->port_data[port_num].immutable.core_cap_flags &
3161	       RDMA_CORE_CAP_IB_MAD;
3162}
3163
3164/**
3165 * rdma_cap_opa_mad - Check if the port of device provides support for OPA
3166 * Management Datagrams.
3167 * @device: Device to check
3168 * @port_num: Port number to check
3169 *
3170 * Intel OmniPath devices extend and/or replace the InfiniBand Management
3171 * datagrams with their own versions.  These OPA MADs share many but not all of
3172 * the characteristics of InfiniBand MADs.
3173 *
3174 * OPA MADs differ in the following ways:
3175 *
3176 *    1) MADs are variable size up to 2K
3177 *       IBTA defined MADs remain fixed at 256 bytes
3178 *    2) OPA SMPs must carry valid PKeys
3179 *    3) OPA SMP packets are a different format
3180 *
3181 * Return: true if the port supports OPA MAD packet formats.
3182 */
3183static inline bool rdma_cap_opa_mad(struct ib_device *device, u32 port_num)
3184{
3185	return device->port_data[port_num].immutable.core_cap_flags &
3186		RDMA_CORE_CAP_OPA_MAD;
3187}
3188
3189/**
3190 * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband
3191 * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI).
3192 * @device: Device to check
3193 * @port_num: Port number to check
3194 *
3195 * Each InfiniBand node is required to provide a Subnet Management Agent
3196 * that the subnet manager can access.  Prior to the fabric being fully
3197 * configured by the subnet manager, the SMA is accessed via a well known
3198 * interface called the Subnet Management Interface (SMI).  This interface
3199 * uses directed route packets to communicate with the SM to get around the
3200 * chicken and egg problem of the SM needing to know what's on the fabric
3201 * in order to configure the fabric, and needing to configure the fabric in
3202 * order to send packets to the devices on the fabric.  These directed
3203 * route packets do not need the fabric fully configured in order to reach
3204 * their destination.  The SMI is the only method allowed to send
3205 * directed route packets on an InfiniBand fabric.
3206 *
3207 * Return: true if the port provides an SMI.
3208 */
3209static inline bool rdma_cap_ib_smi(const struct ib_device *device, u32 port_num)
3210{
3211	return device->port_data[port_num].immutable.core_cap_flags &
3212	       RDMA_CORE_CAP_IB_SMI;
3213}
3214
3215/**
3216 * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband
3217 * Communication Manager.
3218 * @device: Device to check
3219 * @port_num: Port number to check
3220 *
3221 * The InfiniBand Communication Manager is one of many pre-defined General
3222 * Service Agents (GSA) that are accessed via the General Service
3223 * Interface (GSI).  It's role is to facilitate establishment of connections
3224 * between nodes as well as other management related tasks for established
3225 * connections.
3226 *
3227 * Return: true if the port supports an IB CM (this does not guarantee that
3228 * a CM is actually running however).
3229 */
3230static inline bool rdma_cap_ib_cm(const struct ib_device *device, u32 port_num)
3231{
3232	return device->port_data[port_num].immutable.core_cap_flags &
3233	       RDMA_CORE_CAP_IB_CM;
3234}
3235
3236/**
3237 * rdma_cap_iw_cm - Check if the port of device has the capability IWARP
3238 * Communication Manager.
3239 * @device: Device to check
3240 * @port_num: Port number to check
3241 *
3242 * Similar to above, but specific to iWARP connections which have a different
3243 * managment protocol than InfiniBand.
3244 *
3245 * Return: true if the port supports an iWARP CM (this does not guarantee that
3246 * a CM is actually running however).
3247 */
3248static inline bool rdma_cap_iw_cm(const struct ib_device *device, u32 port_num)
3249{
3250	return device->port_data[port_num].immutable.core_cap_flags &
3251	       RDMA_CORE_CAP_IW_CM;
3252}
3253
3254/**
3255 * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband
3256 * Subnet Administration.
3257 * @device: Device to check
3258 * @port_num: Port number to check
3259 *
3260 * An InfiniBand Subnet Administration (SA) service is a pre-defined General
3261 * Service Agent (GSA) provided by the Subnet Manager (SM).  On InfiniBand
3262 * fabrics, devices should resolve routes to other hosts by contacting the
3263 * SA to query the proper route.
3264 *
3265 * Return: true if the port should act as a client to the fabric Subnet
3266 * Administration interface.  This does not imply that the SA service is
3267 * running locally.
3268 */
3269static inline bool rdma_cap_ib_sa(const struct ib_device *device, u32 port_num)
3270{
3271	return device->port_data[port_num].immutable.core_cap_flags &
3272	       RDMA_CORE_CAP_IB_SA;
3273}
3274
3275/**
3276 * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband
3277 * Multicast.
3278 * @device: Device to check
3279 * @port_num: Port number to check
3280 *
3281 * InfiniBand multicast registration is more complex than normal IPv4 or
3282 * IPv6 multicast registration.  Each Host Channel Adapter must register
3283 * with the Subnet Manager when it wishes to join a multicast group.  It
3284 * should do so only once regardless of how many queue pairs it subscribes
3285 * to this group.  And it should leave the group only after all queue pairs
3286 * attached to the group have been detached.
3287 *
3288 * Return: true if the port must undertake the additional adminstrative
3289 * overhead of registering/unregistering with the SM and tracking of the
3290 * total number of queue pairs attached to the multicast group.
3291 */
3292static inline bool rdma_cap_ib_mcast(const struct ib_device *device,
3293				     u32 port_num)
3294{
3295	return rdma_cap_ib_sa(device, port_num);
3296}
3297
3298/**
3299 * rdma_cap_af_ib - Check if the port of device has the capability
3300 * Native Infiniband Address.
3301 * @device: Device to check
3302 * @port_num: Port number to check
3303 *
3304 * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default
3305 * GID.  RoCE uses a different mechanism, but still generates a GID via
3306 * a prescribed mechanism and port specific data.
3307 *
3308 * Return: true if the port uses a GID address to identify devices on the
3309 * network.
3310 */
3311static inline bool rdma_cap_af_ib(const struct ib_device *device, u32 port_num)
3312{
3313	return device->port_data[port_num].immutable.core_cap_flags &
3314	       RDMA_CORE_CAP_AF_IB;
3315}
3316
3317/**
3318 * rdma_cap_eth_ah - Check if the port of device has the capability
3319 * Ethernet Address Handle.
3320 * @device: Device to check
3321 * @port_num: Port number to check
3322 *
3323 * RoCE is InfiniBand over Ethernet, and it uses a well defined technique
3324 * to fabricate GIDs over Ethernet/IP specific addresses native to the
3325 * port.  Normally, packet headers are generated by the sending host
3326 * adapter, but when sending connectionless datagrams, we must manually
3327 * inject the proper headers for the fabric we are communicating over.
3328 *
3329 * Return: true if we are running as a RoCE port and must force the
3330 * addition of a Global Route Header built from our Ethernet Address
3331 * Handle into our header list for connectionless packets.
3332 */
3333static inline bool rdma_cap_eth_ah(const struct ib_device *device, u32 port_num)
3334{
3335	return device->port_data[port_num].immutable.core_cap_flags &
3336	       RDMA_CORE_CAP_ETH_AH;
3337}
3338
3339/**
3340 * rdma_cap_opa_ah - Check if the port of device supports
3341 * OPA Address handles
3342 * @device: Device to check
3343 * @port_num: Port number to check
3344 *
3345 * Return: true if we are running on an OPA device which supports
3346 * the extended OPA addressing.
3347 */
3348static inline bool rdma_cap_opa_ah(struct ib_device *device, u32 port_num)
3349{
3350	return (device->port_data[port_num].immutable.core_cap_flags &
3351		RDMA_CORE_CAP_OPA_AH) == RDMA_CORE_CAP_OPA_AH;
3352}
3353
3354/**
3355 * rdma_max_mad_size - Return the max MAD size required by this RDMA Port.
3356 *
3357 * @device: Device
3358 * @port_num: Port number
3359 *
3360 * This MAD size includes the MAD headers and MAD payload.  No other headers
3361 * are included.
3362 *
3363 * Return the max MAD size required by the Port.  Will return 0 if the port
3364 * does not support MADs
3365 */
3366static inline size_t rdma_max_mad_size(const struct ib_device *device,
3367				       u32 port_num)
3368{
3369	return device->port_data[port_num].immutable.max_mad_size;
3370}
3371
3372/**
3373 * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table
3374 * @device: Device to check
3375 * @port_num: Port number to check
3376 *
3377 * RoCE GID table mechanism manages the various GIDs for a device.
3378 *
3379 * NOTE: if allocating the port's GID table has failed, this call will still
3380 * return true, but any RoCE GID table API will fail.
3381 *
3382 * Return: true if the port uses RoCE GID table mechanism in order to manage
3383 * its GIDs.
3384 */
3385static inline bool rdma_cap_roce_gid_table(const struct ib_device *device,
3386					   u32 port_num)
3387{
3388	return rdma_protocol_roce(device, port_num) &&
3389		device->ops.add_gid && device->ops.del_gid;
3390}
3391
3392/*
3393 * Check if the device supports READ W/ INVALIDATE.
3394 */
3395static inline bool rdma_cap_read_inv(struct ib_device *dev, u32 port_num)
3396{
3397	/*
3398	 * iWarp drivers must support READ W/ INVALIDATE.  No other protocol
3399	 * has support for it yet.
3400	 */
3401	return rdma_protocol_iwarp(dev, port_num);
3402}
3403
3404/**
3405 * rdma_core_cap_opa_port - Return whether the RDMA Port is OPA or not.
3406 * @device: Device
3407 * @port_num: 1 based Port number
3408 *
3409 * Return true if port is an Intel OPA port , false if not
3410 */
3411static inline bool rdma_core_cap_opa_port(struct ib_device *device,
3412					  u32 port_num)
3413{
3414	return (device->port_data[port_num].immutable.core_cap_flags &
3415		RDMA_CORE_PORT_INTEL_OPA) == RDMA_CORE_PORT_INTEL_OPA;
3416}
3417
3418/**
3419 * rdma_mtu_enum_to_int - Return the mtu of the port as an integer value.
3420 * @device: Device
3421 * @port_num: Port number
3422 * @mtu: enum value of MTU
3423 *
3424 * Return the MTU size supported by the port as an integer value. Will return
3425 * -1 if enum value of mtu is not supported.
3426 */
3427static inline int rdma_mtu_enum_to_int(struct ib_device *device, u32 port,
3428				       int mtu)
3429{
3430	if (rdma_core_cap_opa_port(device, port))
3431		return opa_mtu_enum_to_int((enum opa_mtu)mtu);
3432	else
3433		return ib_mtu_enum_to_int((enum ib_mtu)mtu);
3434}
3435
3436/**
3437 * rdma_mtu_from_attr - Return the mtu of the port from the port attribute.
3438 * @device: Device
3439 * @port_num: Port number
3440 * @attr: port attribute
3441 *
3442 * Return the MTU size supported by the port as an integer value.
3443 */
3444static inline int rdma_mtu_from_attr(struct ib_device *device, u32 port,
3445				     struct ib_port_attr *attr)
3446{
3447	if (rdma_core_cap_opa_port(device, port))
3448		return attr->phys_mtu;
3449	else
3450		return ib_mtu_enum_to_int(attr->max_mtu);
3451}
3452
3453int ib_set_vf_link_state(struct ib_device *device, int vf, u32 port,
3454			 int state);
3455int ib_get_vf_config(struct ib_device *device, int vf, u32 port,
3456		     struct ifla_vf_info *info);
3457int ib_get_vf_stats(struct ib_device *device, int vf, u32 port,
3458		    struct ifla_vf_stats *stats);
3459int ib_get_vf_guid(struct ib_device *device, int vf, u32 port,
3460		    struct ifla_vf_guid *node_guid,
3461		    struct ifla_vf_guid *port_guid);
3462int ib_set_vf_guid(struct ib_device *device, int vf, u32 port, u64 guid,
3463		   int type);
3464
3465int ib_query_pkey(struct ib_device *device,
3466		  u32 port_num, u16 index, u16 *pkey);
3467
3468int ib_modify_device(struct ib_device *device,
3469		     int device_modify_mask,
3470		     struct ib_device_modify *device_modify);
3471
3472int ib_modify_port(struct ib_device *device,
3473		   u32 port_num, int port_modify_mask,
3474		   struct ib_port_modify *port_modify);
3475
3476int ib_find_gid(struct ib_device *device, union ib_gid *gid,
3477		u32 *port_num, u16 *index);
3478
3479int ib_find_pkey(struct ib_device *device,
3480		 u32 port_num, u16 pkey, u16 *index);
3481
3482enum ib_pd_flags {
3483	/*
3484	 * Create a memory registration for all memory in the system and place
3485	 * the rkey for it into pd->unsafe_global_rkey.  This can be used by
3486	 * ULPs to avoid the overhead of dynamic MRs.
3487	 *
3488	 * This flag is generally considered unsafe and must only be used in
3489	 * extremly trusted environments.  Every use of it will log a warning
3490	 * in the kernel log.
3491	 */
3492	IB_PD_UNSAFE_GLOBAL_RKEY	= 0x01,
3493};
3494
3495struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
3496		const char *caller);
3497
3498/**
3499 * ib_alloc_pd - Allocates an unused protection domain.
3500 * @device: The device on which to allocate the protection domain.
3501 * @flags: protection domain flags
3502 *
3503 * A protection domain object provides an association between QPs, shared
3504 * receive queues, address handles, memory regions, and memory windows.
3505 *
3506 * Every PD has a local_dma_lkey which can be used as the lkey value for local
3507 * memory operations.
3508 */
3509#define ib_alloc_pd(device, flags) \
3510	__ib_alloc_pd((device), (flags), KBUILD_MODNAME)
3511
3512int ib_dealloc_pd_user(struct ib_pd *pd, struct ib_udata *udata);
3513
3514/**
3515 * ib_dealloc_pd - Deallocate kernel PD
3516 * @pd: The protection domain
3517 *
3518 * NOTE: for user PD use ib_dealloc_pd_user with valid udata!
3519 */
3520static inline void ib_dealloc_pd(struct ib_pd *pd)
3521{
3522	int ret = ib_dealloc_pd_user(pd, NULL);
3523
3524	WARN_ONCE(ret, "Destroy of kernel PD shouldn't fail");
3525}
3526
3527enum rdma_create_ah_flags {
3528	/* In a sleepable context */
3529	RDMA_CREATE_AH_SLEEPABLE = BIT(0),
3530};
3531
3532/**
3533 * rdma_create_ah - Creates an address handle for the given address vector.
3534 * @pd: The protection domain associated with the address handle.
3535 * @ah_attr: The attributes of the address vector.
3536 * @flags: Create address handle flags (see enum rdma_create_ah_flags).
3537 *
3538 * The address handle is used to reference a local or global destination
3539 * in all UD QP post sends.
3540 */
3541struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr,
3542			     u32 flags);
3543
3544/**
3545 * rdma_create_user_ah - Creates an address handle for the given address vector.
3546 * It resolves destination mac address for ah attribute of RoCE type.
3547 * @pd: The protection domain associated with the address handle.
3548 * @ah_attr: The attributes of the address vector.
3549 * @udata: pointer to user's input output buffer information need by
3550 *         provider driver.
3551 *
3552 * It returns 0 on success and returns appropriate error code on error.
3553 * The address handle is used to reference a local or global destination
3554 * in all UD QP post sends.
3555 */
3556struct ib_ah *rdma_create_user_ah(struct ib_pd *pd,
3557				  struct rdma_ah_attr *ah_attr,
3558				  struct ib_udata *udata);
3559/**
3560 * ib_get_gids_from_rdma_hdr - Get sgid and dgid from GRH or IPv4 header
3561 *   work completion.
3562 * @hdr: the L3 header to parse
3563 * @net_type: type of header to parse
3564 * @sgid: place to store source gid
3565 * @dgid: place to store destination gid
3566 */
3567int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
3568			      enum rdma_network_type net_type,
3569			      union ib_gid *sgid, union ib_gid *dgid);
3570
3571/**
3572 * ib_get_rdma_header_version - Get the header version
3573 * @hdr: the L3 header to parse
3574 */
3575int ib_get_rdma_header_version(const union rdma_network_hdr *hdr);
3576
3577/**
3578 * ib_init_ah_attr_from_wc - Initializes address handle attributes from a
3579 *   work completion.
3580 * @device: Device on which the received message arrived.
3581 * @port_num: Port on which the received message arrived.
3582 * @wc: Work completion associated with the received message.
3583 * @grh: References the received global route header.  This parameter is
3584 *   ignored unless the work completion indicates that the GRH is valid.
3585 * @ah_attr: Returned attributes that can be used when creating an address
3586 *   handle for replying to the message.
3587 * When ib_init_ah_attr_from_wc() returns success,
3588 * (a) for IB link layer it optionally contains a reference to SGID attribute
3589 * when GRH is present for IB link layer.
3590 * (b) for RoCE link layer it contains a reference to SGID attribute.
3591 * User must invoke rdma_cleanup_ah_attr_gid_attr() to release reference to SGID
3592 * attributes which are initialized using ib_init_ah_attr_from_wc().
3593 *
3594 */
3595int ib_init_ah_attr_from_wc(struct ib_device *device, u32 port_num,
3596			    const struct ib_wc *wc, const struct ib_grh *grh,
3597			    struct rdma_ah_attr *ah_attr);
3598
3599/**
3600 * ib_create_ah_from_wc - Creates an address handle associated with the
3601 *   sender of the specified work completion.
3602 * @pd: The protection domain associated with the address handle.
3603 * @wc: Work completion information associated with a received message.
3604 * @grh: References the received global route header.  This parameter is
3605 *   ignored unless the work completion indicates that the GRH is valid.
3606 * @port_num: The outbound port number to associate with the address.
3607 *
3608 * The address handle is used to reference a local or global destination
3609 * in all UD QP post sends.
3610 */
3611struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
3612				   const struct ib_grh *grh, u32 port_num);
3613
3614/**
3615 * rdma_modify_ah - Modifies the address vector associated with an address
3616 *   handle.
3617 * @ah: The address handle to modify.
3618 * @ah_attr: The new address vector attributes to associate with the
3619 *   address handle.
3620 */
3621int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
3622
3623/**
3624 * rdma_query_ah - Queries the address vector associated with an address
3625 *   handle.
3626 * @ah: The address handle to query.
3627 * @ah_attr: The address vector attributes associated with the address
3628 *   handle.
3629 */
3630int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
3631
3632enum rdma_destroy_ah_flags {
3633	/* In a sleepable context */
3634	RDMA_DESTROY_AH_SLEEPABLE = BIT(0),
3635};
3636
3637/**
3638 * rdma_destroy_ah_user - Destroys an address handle.
3639 * @ah: The address handle to destroy.
3640 * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags).
3641 * @udata: Valid user data or NULL for kernel objects
3642 */
3643int rdma_destroy_ah_user(struct ib_ah *ah, u32 flags, struct ib_udata *udata);
3644
3645/**
3646 * rdma_destroy_ah - Destroys an kernel address handle.
3647 * @ah: The address handle to destroy.
3648 * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags).
3649 *
3650 * NOTE: for user ah use rdma_destroy_ah_user with valid udata!
 
 
 
 
 
 
3651 */
3652static inline void rdma_destroy_ah(struct ib_ah *ah, u32 flags)
3653{
3654	int ret = rdma_destroy_ah_user(ah, flags, NULL);
3655
3656	WARN_ONCE(ret, "Destroy of kernel AH shouldn't fail");
3657}
3658
3659struct ib_srq *ib_create_srq_user(struct ib_pd *pd,
3660				  struct ib_srq_init_attr *srq_init_attr,
3661				  struct ib_usrq_object *uobject,
3662				  struct ib_udata *udata);
3663static inline struct ib_srq *
3664ib_create_srq(struct ib_pd *pd, struct ib_srq_init_attr *srq_init_attr)
3665{
3666	if (!pd->device->ops.create_srq)
3667		return ERR_PTR(-EOPNOTSUPP);
3668
3669	return ib_create_srq_user(pd, srq_init_attr, NULL, NULL);
3670}
3671
3672/**
3673 * ib_modify_srq - Modifies the attributes for the specified SRQ.
3674 * @srq: The SRQ to modify.
3675 * @srq_attr: On input, specifies the SRQ attributes to modify.  On output,
3676 *   the current values of selected SRQ attributes are returned.
3677 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
3678 *   are being modified.
3679 *
3680 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
3681 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when
3682 * the number of receives queued drops below the limit.
3683 */
3684int ib_modify_srq(struct ib_srq *srq,
3685		  struct ib_srq_attr *srq_attr,
3686		  enum ib_srq_attr_mask srq_attr_mask);
3687
3688/**
3689 * ib_query_srq - Returns the attribute list and current values for the
3690 *   specified SRQ.
3691 * @srq: The SRQ to query.
3692 * @srq_attr: The attributes of the specified SRQ.
3693 */
3694int ib_query_srq(struct ib_srq *srq,
3695		 struct ib_srq_attr *srq_attr);
3696
3697/**
3698 * ib_destroy_srq_user - Destroys the specified SRQ.
3699 * @srq: The SRQ to destroy.
3700 * @udata: Valid user data or NULL for kernel objects
3701 */
3702int ib_destroy_srq_user(struct ib_srq *srq, struct ib_udata *udata);
3703
3704/**
3705 * ib_destroy_srq - Destroys the specified kernel SRQ.
3706 * @srq: The SRQ to destroy.
3707 *
3708 * NOTE: for user srq use ib_destroy_srq_user with valid udata!
3709 */
3710static inline void ib_destroy_srq(struct ib_srq *srq)
3711{
3712	int ret = ib_destroy_srq_user(srq, NULL);
3713
3714	WARN_ONCE(ret, "Destroy of kernel SRQ shouldn't fail");
3715}
3716
3717/**
3718 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
3719 * @srq: The SRQ to post the work request on.
3720 * @recv_wr: A list of work requests to post on the receive queue.
3721 * @bad_recv_wr: On an immediate failure, this parameter will reference
3722 *   the work request that failed to be posted on the QP.
3723 */
3724static inline int ib_post_srq_recv(struct ib_srq *srq,
3725				   const struct ib_recv_wr *recv_wr,
3726				   const struct ib_recv_wr **bad_recv_wr)
3727{
3728	const struct ib_recv_wr *dummy;
3729
3730	return srq->device->ops.post_srq_recv(srq, recv_wr,
3731					      bad_recv_wr ? : &dummy);
3732}
3733
3734struct ib_qp *ib_create_qp_kernel(struct ib_pd *pd,
3735				  struct ib_qp_init_attr *qp_init_attr,
3736				  const char *caller);
3737/**
3738 * ib_create_qp - Creates a kernel QP associated with the specific protection
3739 * domain.
3740 * @pd: The protection domain associated with the QP.
3741 * @init_attr: A list of initial attributes required to create the
3742 *   QP.  If QP creation succeeds, then the attributes are updated to
3743 *   the actual capabilities of the created QP.
3744 */
3745static inline struct ib_qp *ib_create_qp(struct ib_pd *pd,
3746					 struct ib_qp_init_attr *init_attr)
3747{
3748	return ib_create_qp_kernel(pd, init_attr, KBUILD_MODNAME);
3749}
3750
3751/**
3752 * ib_modify_qp_with_udata - Modifies the attributes for the specified QP.
3753 * @qp: The QP to modify.
3754 * @attr: On input, specifies the QP attributes to modify.  On output,
3755 *   the current values of selected QP attributes are returned.
3756 * @attr_mask: A bit-mask used to specify which attributes of the QP
3757 *   are being modified.
3758 * @udata: pointer to user's input output buffer information
3759 *   are being modified.
3760 * It returns 0 on success and returns appropriate error code on error.
3761 */
3762int ib_modify_qp_with_udata(struct ib_qp *qp,
3763			    struct ib_qp_attr *attr,
3764			    int attr_mask,
3765			    struct ib_udata *udata);
3766
3767/**
3768 * ib_modify_qp - Modifies the attributes for the specified QP and then
3769 *   transitions the QP to the given state.
3770 * @qp: The QP to modify.
3771 * @qp_attr: On input, specifies the QP attributes to modify.  On output,
3772 *   the current values of selected QP attributes are returned.
3773 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP
3774 *   are being modified.
3775 */
3776int ib_modify_qp(struct ib_qp *qp,
3777		 struct ib_qp_attr *qp_attr,
3778		 int qp_attr_mask);
3779
3780/**
3781 * ib_query_qp - Returns the attribute list and current values for the
3782 *   specified QP.
3783 * @qp: The QP to query.
3784 * @qp_attr: The attributes of the specified QP.
3785 * @qp_attr_mask: A bit-mask used to select specific attributes to query.
3786 * @qp_init_attr: Additional attributes of the selected QP.
3787 *
3788 * The qp_attr_mask may be used to limit the query to gathering only the
3789 * selected attributes.
3790 */
3791int ib_query_qp(struct ib_qp *qp,
3792		struct ib_qp_attr *qp_attr,
3793		int qp_attr_mask,
3794		struct ib_qp_init_attr *qp_init_attr);
3795
3796/**
3797 * ib_destroy_qp - Destroys the specified QP.
3798 * @qp: The QP to destroy.
3799 * @udata: Valid udata or NULL for kernel objects
3800 */
3801int ib_destroy_qp_user(struct ib_qp *qp, struct ib_udata *udata);
3802
3803/**
3804 * ib_destroy_qp - Destroys the specified kernel QP.
3805 * @qp: The QP to destroy.
3806 *
3807 * NOTE: for user qp use ib_destroy_qp_user with valid udata!
3808 */
3809static inline int ib_destroy_qp(struct ib_qp *qp)
3810{
3811	return ib_destroy_qp_user(qp, NULL);
3812}
3813
3814/**
3815 * ib_open_qp - Obtain a reference to an existing sharable QP.
3816 * @xrcd - XRC domain
3817 * @qp_open_attr: Attributes identifying the QP to open.
3818 *
3819 * Returns a reference to a sharable QP.
3820 */
3821struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
3822			 struct ib_qp_open_attr *qp_open_attr);
3823
3824/**
3825 * ib_close_qp - Release an external reference to a QP.
3826 * @qp: The QP handle to release
3827 *
3828 * The opened QP handle is released by the caller.  The underlying
3829 * shared QP is not destroyed until all internal references are released.
3830 */
3831int ib_close_qp(struct ib_qp *qp);
3832
3833/**
3834 * ib_post_send - Posts a list of work requests to the send queue of
3835 *   the specified QP.
3836 * @qp: The QP to post the work request on.
3837 * @send_wr: A list of work requests to post on the send queue.
3838 * @bad_send_wr: On an immediate failure, this parameter will reference
3839 *   the work request that failed to be posted on the QP.
3840 *
3841 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate
3842 * error is returned, the QP state shall not be affected,
3843 * ib_post_send() will return an immediate error after queueing any
3844 * earlier work requests in the list.
3845 */
3846static inline int ib_post_send(struct ib_qp *qp,
3847			       const struct ib_send_wr *send_wr,
3848			       const struct ib_send_wr **bad_send_wr)
3849{
3850	const struct ib_send_wr *dummy;
3851
3852	return qp->device->ops.post_send(qp, send_wr, bad_send_wr ? : &dummy);
3853}
3854
3855/**
3856 * ib_post_recv - Posts a list of work requests to the receive queue of
3857 *   the specified QP.
3858 * @qp: The QP to post the work request on.
3859 * @recv_wr: A list of work requests to post on the receive queue.
3860 * @bad_recv_wr: On an immediate failure, this parameter will reference
3861 *   the work request that failed to be posted on the QP.
3862 */
3863static inline int ib_post_recv(struct ib_qp *qp,
3864			       const struct ib_recv_wr *recv_wr,
3865			       const struct ib_recv_wr **bad_recv_wr)
3866{
3867	const struct ib_recv_wr *dummy;
3868
3869	return qp->device->ops.post_recv(qp, recv_wr, bad_recv_wr ? : &dummy);
3870}
3871
3872struct ib_cq *__ib_alloc_cq(struct ib_device *dev, void *private, int nr_cqe,
3873			    int comp_vector, enum ib_poll_context poll_ctx,
3874			    const char *caller);
3875static inline struct ib_cq *ib_alloc_cq(struct ib_device *dev, void *private,
3876					int nr_cqe, int comp_vector,
3877					enum ib_poll_context poll_ctx)
3878{
3879	return __ib_alloc_cq(dev, private, nr_cqe, comp_vector, poll_ctx,
3880			     KBUILD_MODNAME);
3881}
3882
3883struct ib_cq *__ib_alloc_cq_any(struct ib_device *dev, void *private,
3884				int nr_cqe, enum ib_poll_context poll_ctx,
3885				const char *caller);
3886
3887/**
3888 * ib_alloc_cq_any: Allocate kernel CQ
3889 * @dev: The IB device
3890 * @private: Private data attached to the CQE
3891 * @nr_cqe: Number of CQEs in the CQ
3892 * @poll_ctx: Context used for polling the CQ
3893 */
3894static inline struct ib_cq *ib_alloc_cq_any(struct ib_device *dev,
3895					    void *private, int nr_cqe,
3896					    enum ib_poll_context poll_ctx)
3897{
3898	return __ib_alloc_cq_any(dev, private, nr_cqe, poll_ctx,
3899				 KBUILD_MODNAME);
3900}
3901
3902void ib_free_cq(struct ib_cq *cq);
3903int ib_process_cq_direct(struct ib_cq *cq, int budget);
3904
3905/**
3906 * ib_create_cq - Creates a CQ on the specified device.
3907 * @device: The device on which to create the CQ.
3908 * @comp_handler: A user-specified callback that is invoked when a
3909 *   completion event occurs on the CQ.
3910 * @event_handler: A user-specified callback that is invoked when an
3911 *   asynchronous event not associated with a completion occurs on the CQ.
3912 * @cq_context: Context associated with the CQ returned to the user via
3913 *   the associated completion and event handlers.
3914 * @cq_attr: The attributes the CQ should be created upon.
 
 
3915 *
3916 * Users can examine the cq structure to determine the actual CQ size.
3917 */
3918struct ib_cq *__ib_create_cq(struct ib_device *device,
3919			     ib_comp_handler comp_handler,
3920			     void (*event_handler)(struct ib_event *, void *),
3921			     void *cq_context,
3922			     const struct ib_cq_init_attr *cq_attr,
3923			     const char *caller);
3924#define ib_create_cq(device, cmp_hndlr, evt_hndlr, cq_ctxt, cq_attr) \
3925	__ib_create_cq((device), (cmp_hndlr), (evt_hndlr), (cq_ctxt), (cq_attr), KBUILD_MODNAME)
3926
3927/**
3928 * ib_resize_cq - Modifies the capacity of the CQ.
3929 * @cq: The CQ to resize.
3930 * @cqe: The minimum size of the CQ.
3931 *
3932 * Users can examine the cq structure to determine the actual CQ size.
3933 */
3934int ib_resize_cq(struct ib_cq *cq, int cqe);
3935
3936/**
3937 * rdma_set_cq_moderation - Modifies moderation params of the CQ
3938 * @cq: The CQ to modify.
3939 * @cq_count: number of CQEs that will trigger an event
3940 * @cq_period: max period of time in usec before triggering an event
3941 *
3942 */
3943int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period);
3944
3945/**
3946 * ib_destroy_cq_user - Destroys the specified CQ.
3947 * @cq: The CQ to destroy.
3948 * @udata: Valid user data or NULL for kernel objects
3949 */
3950int ib_destroy_cq_user(struct ib_cq *cq, struct ib_udata *udata);
3951
3952/**
3953 * ib_destroy_cq - Destroys the specified kernel CQ.
3954 * @cq: The CQ to destroy.
3955 *
3956 * NOTE: for user cq use ib_destroy_cq_user with valid udata!
3957 */
3958static inline void ib_destroy_cq(struct ib_cq *cq)
3959{
3960	int ret = ib_destroy_cq_user(cq, NULL);
3961
3962	WARN_ONCE(ret, "Destroy of kernel CQ shouldn't fail");
3963}
3964
3965/**
3966 * ib_poll_cq - poll a CQ for completion(s)
3967 * @cq:the CQ being polled
3968 * @num_entries:maximum number of completions to return
3969 * @wc:array of at least @num_entries &struct ib_wc where completions
3970 *   will be returned
3971 *
3972 * Poll a CQ for (possibly multiple) completions.  If the return value
3973 * is < 0, an error occurred.  If the return value is >= 0, it is the
3974 * number of completions returned.  If the return value is
3975 * non-negative and < num_entries, then the CQ was emptied.
3976 */
3977static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
3978			     struct ib_wc *wc)
3979{
3980	return cq->device->ops.poll_cq(cq, num_entries, wc);
3981}
3982
3983/**
 
 
 
 
 
 
 
 
 
 
 
 
3984 * ib_req_notify_cq - Request completion notification on a CQ.
3985 * @cq: The CQ to generate an event for.
3986 * @flags:
3987 *   Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
3988 *   to request an event on the next solicited event or next work
3989 *   completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
3990 *   may also be |ed in to request a hint about missed events, as
3991 *   described below.
3992 *
3993 * Return Value:
3994 *    < 0 means an error occurred while requesting notification
3995 *   == 0 means notification was requested successfully, and if
3996 *        IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
3997 *        were missed and it is safe to wait for another event.  In
3998 *        this case is it guaranteed that any work completions added
3999 *        to the CQ since the last CQ poll will trigger a completion
4000 *        notification event.
4001 *    > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
4002 *        in.  It means that the consumer must poll the CQ again to
4003 *        make sure it is empty to avoid missing an event because of a
4004 *        race between requesting notification and an entry being
4005 *        added to the CQ.  This return value means it is possible
4006 *        (but not guaranteed) that a work completion has been added
4007 *        to the CQ since the last poll without triggering a
4008 *        completion notification event.
4009 */
4010static inline int ib_req_notify_cq(struct ib_cq *cq,
4011				   enum ib_cq_notify_flags flags)
4012{
4013	return cq->device->ops.req_notify_cq(cq, flags);
4014}
4015
4016struct ib_cq *ib_cq_pool_get(struct ib_device *dev, unsigned int nr_cqe,
4017			     int comp_vector_hint,
4018			     enum ib_poll_context poll_ctx);
4019
4020void ib_cq_pool_put(struct ib_cq *cq, unsigned int nr_cqe);
4021
4022/*
4023 * Drivers that don't need a DMA mapping at the RDMA layer, set dma_device to
4024 * NULL. This causes the ib_dma* helpers to just stash the kernel virtual
4025 * address into the dma address.
4026 */
4027static inline bool ib_uses_virt_dma(struct ib_device *dev)
4028{
4029	return IS_ENABLED(CONFIG_INFINIBAND_VIRT_DMA) && !dev->dma_device;
4030}
4031
4032/*
4033 * Check if a IB device's underlying DMA mapping supports P2PDMA transfers.
4034 */
4035static inline bool ib_dma_pci_p2p_dma_supported(struct ib_device *dev)
4036{
4037	if (ib_uses_virt_dma(dev))
4038		return false;
4039
4040	return dma_pci_p2pdma_supported(dev->dma_device);
4041}
4042
4043/**
4044 * ib_virt_dma_to_ptr - Convert a dma_addr to a kernel pointer
4045 * @dma_addr: The DMA address
4046 *
4047 * Used by ib_uses_virt_dma() devices to get back to the kernel pointer after
4048 * going through the dma_addr marshalling.
4049 */
4050static inline void *ib_virt_dma_to_ptr(u64 dma_addr)
4051{
4052	/* virt_dma mode maps the kvs's directly into the dma addr */
4053	return (void *)(uintptr_t)dma_addr;
 
4054}
4055
4056/**
4057 * ib_virt_dma_to_page - Convert a dma_addr to a struct page
4058 * @dma_addr: The DMA address
 
 
4059 *
4060 * Used by ib_uses_virt_dma() device to get back to the struct page after going
4061 * through the dma_addr marshalling.
 
4062 */
4063static inline struct page *ib_virt_dma_to_page(u64 dma_addr)
4064{
4065	return virt_to_page(ib_virt_dma_to_ptr(dma_addr));
4066}
4067
4068/**
4069 * ib_dma_mapping_error - check a DMA addr for error
4070 * @dev: The device for which the dma_addr was created
4071 * @dma_addr: The DMA address to check
4072 */
4073static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
4074{
4075	if (ib_uses_virt_dma(dev))
4076		return 0;
4077	return dma_mapping_error(dev->dma_device, dma_addr);
4078}
4079
4080/**
4081 * ib_dma_map_single - Map a kernel virtual address to DMA address
4082 * @dev: The device for which the dma_addr is to be created
4083 * @cpu_addr: The kernel virtual address
4084 * @size: The size of the region in bytes
4085 * @direction: The direction of the DMA
4086 */
4087static inline u64 ib_dma_map_single(struct ib_device *dev,
4088				    void *cpu_addr, size_t size,
4089				    enum dma_data_direction direction)
4090{
4091	if (ib_uses_virt_dma(dev))
4092		return (uintptr_t)cpu_addr;
4093	return dma_map_single(dev->dma_device, cpu_addr, size, direction);
4094}
4095
4096/**
4097 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
4098 * @dev: The device for which the DMA address was created
4099 * @addr: The DMA address
4100 * @size: The size of the region in bytes
4101 * @direction: The direction of the DMA
4102 */
4103static inline void ib_dma_unmap_single(struct ib_device *dev,
4104				       u64 addr, size_t size,
4105				       enum dma_data_direction direction)
4106{
4107	if (!ib_uses_virt_dma(dev))
 
 
4108		dma_unmap_single(dev->dma_device, addr, size, direction);
4109}
4110
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4111/**
4112 * ib_dma_map_page - Map a physical page to DMA address
4113 * @dev: The device for which the dma_addr is to be created
4114 * @page: The page to be mapped
4115 * @offset: The offset within the page
4116 * @size: The size of the region in bytes
4117 * @direction: The direction of the DMA
4118 */
4119static inline u64 ib_dma_map_page(struct ib_device *dev,
4120				  struct page *page,
4121				  unsigned long offset,
4122				  size_t size,
4123					 enum dma_data_direction direction)
4124{
4125	if (ib_uses_virt_dma(dev))
4126		return (uintptr_t)(page_address(page) + offset);
4127	return dma_map_page(dev->dma_device, page, offset, size, direction);
4128}
4129
4130/**
4131 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
4132 * @dev: The device for which the DMA address was created
4133 * @addr: The DMA address
4134 * @size: The size of the region in bytes
4135 * @direction: The direction of the DMA
4136 */
4137static inline void ib_dma_unmap_page(struct ib_device *dev,
4138				     u64 addr, size_t size,
4139				     enum dma_data_direction direction)
4140{
4141	if (!ib_uses_virt_dma(dev))
 
 
4142		dma_unmap_page(dev->dma_device, addr, size, direction);
4143}
4144
4145int ib_dma_virt_map_sg(struct ib_device *dev, struct scatterlist *sg, int nents);
4146static inline int ib_dma_map_sg_attrs(struct ib_device *dev,
4147				      struct scatterlist *sg, int nents,
4148				      enum dma_data_direction direction,
4149				      unsigned long dma_attrs)
4150{
4151	if (ib_uses_virt_dma(dev))
4152		return ib_dma_virt_map_sg(dev, sg, nents);
4153	return dma_map_sg_attrs(dev->dma_device, sg, nents, direction,
4154				dma_attrs);
4155}
4156
4157static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev,
4158					 struct scatterlist *sg, int nents,
4159					 enum dma_data_direction direction,
4160					 unsigned long dma_attrs)
4161{
4162	if (!ib_uses_virt_dma(dev))
4163		dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction,
4164				   dma_attrs);
4165}
4166
4167/**
4168 * ib_dma_map_sgtable_attrs - Map a scatter/gather table to DMA addresses
4169 * @dev: The device for which the DMA addresses are to be created
4170 * @sg: The sg_table object describing the buffer
4171 * @direction: The direction of the DMA
4172 * @attrs: Optional DMA attributes for the map operation
4173 */
4174static inline int ib_dma_map_sgtable_attrs(struct ib_device *dev,
4175					   struct sg_table *sgt,
4176					   enum dma_data_direction direction,
4177					   unsigned long dma_attrs)
4178{
4179	int nents;
4180
4181	if (ib_uses_virt_dma(dev)) {
4182		nents = ib_dma_virt_map_sg(dev, sgt->sgl, sgt->orig_nents);
4183		if (!nents)
4184			return -EIO;
4185		sgt->nents = nents;
4186		return 0;
4187	}
4188	return dma_map_sgtable(dev->dma_device, sgt, direction, dma_attrs);
4189}
4190
4191static inline void ib_dma_unmap_sgtable_attrs(struct ib_device *dev,
4192					      struct sg_table *sgt,
4193					      enum dma_data_direction direction,
4194					      unsigned long dma_attrs)
4195{
4196	if (!ib_uses_virt_dma(dev))
4197		dma_unmap_sgtable(dev->dma_device, sgt, direction, dma_attrs);
4198}
4199
4200/**
4201 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses
4202 * @dev: The device for which the DMA addresses are to be created
4203 * @sg: The array of scatter/gather entries
4204 * @nents: The number of scatter/gather entries
4205 * @direction: The direction of the DMA
4206 */
4207static inline int ib_dma_map_sg(struct ib_device *dev,
4208				struct scatterlist *sg, int nents,
4209				enum dma_data_direction direction)
4210{
4211	return ib_dma_map_sg_attrs(dev, sg, nents, direction, 0);
 
 
4212}
4213
4214/**
4215 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
4216 * @dev: The device for which the DMA addresses were created
4217 * @sg: The array of scatter/gather entries
4218 * @nents: The number of scatter/gather entries
4219 * @direction: The direction of the DMA
4220 */
4221static inline void ib_dma_unmap_sg(struct ib_device *dev,
4222				   struct scatterlist *sg, int nents,
4223				   enum dma_data_direction direction)
4224{
4225	ib_dma_unmap_sg_attrs(dev, sg, nents, direction, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4226}
4227
4228/**
4229 * ib_dma_max_seg_size - Return the size limit of a single DMA transfer
4230 * @dev: The device to query
4231 *
4232 * The returned value represents a size in bytes.
4233 */
4234static inline unsigned int ib_dma_max_seg_size(struct ib_device *dev)
 
4235{
4236	if (ib_uses_virt_dma(dev))
4237		return UINT_MAX;
4238	return dma_get_max_seg_size(dev->dma_device);
4239}
4240
4241/**
4242 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
4243 * @dev: The device for which the DMA address was created
4244 * @addr: The DMA address
4245 * @size: The size of the region in bytes
4246 * @dir: The direction of the DMA
4247 */
4248static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
4249					      u64 addr,
4250					      size_t size,
4251					      enum dma_data_direction dir)
4252{
4253	if (!ib_uses_virt_dma(dev))
 
 
4254		dma_sync_single_for_cpu(dev->dma_device, addr, size, dir);
4255}
4256
4257/**
4258 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
4259 * @dev: The device for which the DMA address was created
4260 * @addr: The DMA address
4261 * @size: The size of the region in bytes
4262 * @dir: The direction of the DMA
4263 */
4264static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
4265						 u64 addr,
4266						 size_t size,
4267						 enum dma_data_direction dir)
4268{
4269	if (!ib_uses_virt_dma(dev))
 
 
4270		dma_sync_single_for_device(dev->dma_device, addr, size, dir);
4271}
4272
4273/* ib_reg_user_mr - register a memory region for virtual addresses from kernel
4274 * space. This function should be called when 'current' is the owning MM.
4275 */
4276struct ib_mr *ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
4277			     u64 virt_addr, int mr_access_flags);
4278
4279/* ib_advise_mr -  give an advice about an address range in a memory region */
4280int ib_advise_mr(struct ib_pd *pd, enum ib_uverbs_advise_mr_advice advice,
4281		 u32 flags, struct ib_sge *sg_list, u32 num_sge);
4282/**
4283 * ib_dereg_mr_user - Deregisters a memory region and removes it from the
4284 *   HCA translation table.
4285 * @mr: The memory region to deregister.
4286 * @udata: Valid user data or NULL for kernel object
4287 *
4288 * This function can fail, if the memory region has memory windows bound to it.
4289 */
4290int ib_dereg_mr_user(struct ib_mr *mr, struct ib_udata *udata);
4291
4292/**
4293 * ib_dereg_mr - Deregisters a kernel memory region and removes it from the
4294 *   HCA translation table.
4295 * @mr: The memory region to deregister.
4296 *
4297 * This function can fail, if the memory region has memory windows bound to it.
4298 *
4299 * NOTE: for user mr use ib_dereg_mr_user with valid udata!
4300 */
4301static inline int ib_dereg_mr(struct ib_mr *mr)
4302{
4303	return ib_dereg_mr_user(mr, NULL);
4304}
4305
4306struct ib_mr *ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type,
4307			  u32 max_num_sg);
4308
4309struct ib_mr *ib_alloc_mr_integrity(struct ib_pd *pd,
4310				    u32 max_num_data_sg,
4311				    u32 max_num_meta_sg);
4312
4313/**
4314 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR
4315 *   R_Key and L_Key.
4316 * @mr - struct ib_mr pointer to be updated.
4317 * @newkey - new key to be used.
4318 */
4319static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey)
 
 
 
4320{
4321	mr->lkey = (mr->lkey & 0xffffff00) | newkey;
4322	mr->rkey = (mr->rkey & 0xffffff00) | newkey;
 
 
4323}
4324
4325/**
4326 * ib_inc_rkey - increments the key portion of the given rkey. Can be used
4327 * for calculating a new rkey for type 2 memory windows.
4328 * @rkey - the rkey to increment.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4329 */
4330static inline u32 ib_inc_rkey(u32 rkey)
4331{
4332	const u32 mask = 0x000000ff;
4333	return ((rkey + 1) & mask) | (rkey & ~mask);
4334}
4335
4336/**
4337 * ib_attach_mcast - Attaches the specified QP to a multicast group.
4338 * @qp: QP to attach to the multicast group.  The QP must be type
4339 *   IB_QPT_UD.
4340 * @gid: Multicast group GID.
4341 * @lid: Multicast group LID in host byte order.
4342 *
4343 * In order to send and receive multicast packets, subnet
4344 * administration must have created the multicast group and configured
4345 * the fabric appropriately.  The port associated with the specified
4346 * QP must also be a member of the multicast group.
4347 */
4348int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
4349
4350/**
4351 * ib_detach_mcast - Detaches the specified QP from a multicast group.
4352 * @qp: QP to detach from the multicast group.
4353 * @gid: Multicast group GID.
4354 * @lid: Multicast group LID in host byte order.
4355 */
4356int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
4357
4358struct ib_xrcd *ib_alloc_xrcd_user(struct ib_device *device,
4359				   struct inode *inode, struct ib_udata *udata);
4360int ib_dealloc_xrcd_user(struct ib_xrcd *xrcd, struct ib_udata *udata);
4361
4362static inline int ib_check_mr_access(struct ib_device *ib_dev,
4363				     unsigned int flags)
4364{
4365	u64 device_cap = ib_dev->attrs.device_cap_flags;
4366
4367	/*
4368	 * Local write permission is required if remote write or
4369	 * remote atomic permission is also requested.
4370	 */
4371	if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) &&
4372	    !(flags & IB_ACCESS_LOCAL_WRITE))
4373		return -EINVAL;
4374
4375	if (flags & ~IB_ACCESS_SUPPORTED)
4376		return -EINVAL;
4377
4378	if (flags & IB_ACCESS_ON_DEMAND &&
4379	    !(ib_dev->attrs.kernel_cap_flags & IBK_ON_DEMAND_PAGING))
4380		return -EOPNOTSUPP;
4381
4382	if ((flags & IB_ACCESS_FLUSH_GLOBAL &&
4383	    !(device_cap & IB_DEVICE_FLUSH_GLOBAL)) ||
4384	    (flags & IB_ACCESS_FLUSH_PERSISTENT &&
4385	    !(device_cap & IB_DEVICE_FLUSH_PERSISTENT)))
4386		return -EOPNOTSUPP;
4387
4388	return 0;
4389}
4390
4391static inline bool ib_access_writable(int access_flags)
4392{
4393	/*
4394	 * We have writable memory backing the MR if any of the following
4395	 * access flags are set.  "Local write" and "remote write" obviously
4396	 * require write access.  "Remote atomic" can do things like fetch and
4397	 * add, which will modify memory, and "MW bind" can change permissions
4398	 * by binding a window.
4399	 */
4400	return access_flags &
4401		(IB_ACCESS_LOCAL_WRITE   | IB_ACCESS_REMOTE_WRITE |
4402		 IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_MW_BIND);
4403}
4404
4405/**
4406 * ib_check_mr_status: lightweight check of MR status.
4407 *     This routine may provide status checks on a selected
4408 *     ib_mr. first use is for signature status check.
4409 *
4410 * @mr: A memory region.
4411 * @check_mask: Bitmask of which checks to perform from
4412 *     ib_mr_status_check enumeration.
4413 * @mr_status: The container of relevant status checks.
4414 *     failed checks will be indicated in the status bitmask
4415 *     and the relevant info shall be in the error item.
4416 */
4417int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
4418		       struct ib_mr_status *mr_status);
4419
4420/**
4421 * ib_device_try_get: Hold a registration lock
4422 * device: The device to lock
4423 *
4424 * A device under an active registration lock cannot become unregistered. It
4425 * is only possible to obtain a registration lock on a device that is fully
4426 * registered, otherwise this function returns false.
4427 *
4428 * The registration lock is only necessary for actions which require the
4429 * device to still be registered. Uses that only require the device pointer to
4430 * be valid should use get_device(&ibdev->dev) to hold the memory.
 
 
4431 *
 
 
 
 
 
4432 */
4433static inline bool ib_device_try_get(struct ib_device *dev)
4434{
4435	return refcount_inc_not_zero(&dev->refcount);
4436}
4437
4438void ib_device_put(struct ib_device *device);
4439struct ib_device *ib_device_get_by_netdev(struct net_device *ndev,
4440					  enum rdma_driver_id driver_id);
4441struct ib_device *ib_device_get_by_name(const char *name,
4442					enum rdma_driver_id driver_id);
4443struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u32 port,
4444					    u16 pkey, const union ib_gid *gid,
4445					    const struct sockaddr *addr);
4446int ib_device_set_netdev(struct ib_device *ib_dev, struct net_device *ndev,
4447			 unsigned int port);
4448struct ib_wq *ib_create_wq(struct ib_pd *pd,
4449			   struct ib_wq_init_attr *init_attr);
4450int ib_destroy_wq_user(struct ib_wq *wq, struct ib_udata *udata);
4451
4452int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
4453		 unsigned int *sg_offset, unsigned int page_size);
4454int ib_map_mr_sg_pi(struct ib_mr *mr, struct scatterlist *data_sg,
4455		    int data_sg_nents, unsigned int *data_sg_offset,
4456		    struct scatterlist *meta_sg, int meta_sg_nents,
4457		    unsigned int *meta_sg_offset, unsigned int page_size);
4458
4459static inline int
4460ib_map_mr_sg_zbva(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
4461		  unsigned int *sg_offset, unsigned int page_size)
4462{
4463	int n;
4464
4465	n = ib_map_mr_sg(mr, sg, sg_nents, sg_offset, page_size);
4466	mr->iova = 0;
4467
4468	return n;
4469}
4470
4471int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
4472		unsigned int *sg_offset, int (*set_page)(struct ib_mr *, u64));
4473
4474void ib_drain_rq(struct ib_qp *qp);
4475void ib_drain_sq(struct ib_qp *qp);
4476void ib_drain_qp(struct ib_qp *qp);
4477
4478int ib_get_eth_speed(struct ib_device *dev, u32 port_num, u16 *speed,
4479		     u8 *width);
4480
4481static inline u8 *rdma_ah_retrieve_dmac(struct rdma_ah_attr *attr)
4482{
4483	if (attr->type == RDMA_AH_ATTR_TYPE_ROCE)
4484		return attr->roce.dmac;
4485	return NULL;
4486}
4487
4488static inline void rdma_ah_set_dlid(struct rdma_ah_attr *attr, u32 dlid)
4489{
4490	if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4491		attr->ib.dlid = (u16)dlid;
4492	else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4493		attr->opa.dlid = dlid;
4494}
4495
4496static inline u32 rdma_ah_get_dlid(const struct rdma_ah_attr *attr)
4497{
4498	if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4499		return attr->ib.dlid;
4500	else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4501		return attr->opa.dlid;
4502	return 0;
4503}
4504
4505static inline void rdma_ah_set_sl(struct rdma_ah_attr *attr, u8 sl)
4506{
4507	attr->sl = sl;
4508}
4509
4510static inline u8 rdma_ah_get_sl(const struct rdma_ah_attr *attr)
4511{
4512	return attr->sl;
4513}
4514
4515static inline void rdma_ah_set_path_bits(struct rdma_ah_attr *attr,
4516					 u8 src_path_bits)
4517{
4518	if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4519		attr->ib.src_path_bits = src_path_bits;
4520	else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4521		attr->opa.src_path_bits = src_path_bits;
4522}
4523
4524static inline u8 rdma_ah_get_path_bits(const struct rdma_ah_attr *attr)
4525{
4526	if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4527		return attr->ib.src_path_bits;
4528	else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4529		return attr->opa.src_path_bits;
4530	return 0;
4531}
4532
4533static inline void rdma_ah_set_make_grd(struct rdma_ah_attr *attr,
4534					bool make_grd)
4535{
4536	if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4537		attr->opa.make_grd = make_grd;
4538}
4539
4540static inline bool rdma_ah_get_make_grd(const struct rdma_ah_attr *attr)
4541{
4542	if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4543		return attr->opa.make_grd;
4544	return false;
4545}
4546
4547static inline void rdma_ah_set_port_num(struct rdma_ah_attr *attr, u32 port_num)
4548{
4549	attr->port_num = port_num;
4550}
4551
4552static inline u32 rdma_ah_get_port_num(const struct rdma_ah_attr *attr)
4553{
4554	return attr->port_num;
4555}
4556
4557static inline void rdma_ah_set_static_rate(struct rdma_ah_attr *attr,
4558					   u8 static_rate)
4559{
4560	attr->static_rate = static_rate;
4561}
4562
4563static inline u8 rdma_ah_get_static_rate(const struct rdma_ah_attr *attr)
4564{
4565	return attr->static_rate;
4566}
4567
4568static inline void rdma_ah_set_ah_flags(struct rdma_ah_attr *attr,
4569					enum ib_ah_flags flag)
4570{
4571	attr->ah_flags = flag;
4572}
4573
4574static inline enum ib_ah_flags
4575		rdma_ah_get_ah_flags(const struct rdma_ah_attr *attr)
4576{
4577	return attr->ah_flags;
4578}
4579
4580static inline const struct ib_global_route
4581		*rdma_ah_read_grh(const struct rdma_ah_attr *attr)
4582{
4583	return &attr->grh;
4584}
4585
4586/*To retrieve and modify the grh */
4587static inline struct ib_global_route
4588		*rdma_ah_retrieve_grh(struct rdma_ah_attr *attr)
4589{
4590	return &attr->grh;
4591}
4592
4593static inline void rdma_ah_set_dgid_raw(struct rdma_ah_attr *attr, void *dgid)
4594{
4595	struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4596
4597	memcpy(grh->dgid.raw, dgid, sizeof(grh->dgid));
4598}
4599
4600static inline void rdma_ah_set_subnet_prefix(struct rdma_ah_attr *attr,
4601					     __be64 prefix)
4602{
4603	struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4604
4605	grh->dgid.global.subnet_prefix = prefix;
4606}
4607
4608static inline void rdma_ah_set_interface_id(struct rdma_ah_attr *attr,
4609					    __be64 if_id)
4610{
4611	struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4612
4613	grh->dgid.global.interface_id = if_id;
4614}
4615
4616static inline void rdma_ah_set_grh(struct rdma_ah_attr *attr,
4617				   union ib_gid *dgid, u32 flow_label,
4618				   u8 sgid_index, u8 hop_limit,
4619				   u8 traffic_class)
4620{
4621	struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4622
4623	attr->ah_flags = IB_AH_GRH;
4624	if (dgid)
4625		grh->dgid = *dgid;
4626	grh->flow_label = flow_label;
4627	grh->sgid_index = sgid_index;
4628	grh->hop_limit = hop_limit;
4629	grh->traffic_class = traffic_class;
4630	grh->sgid_attr = NULL;
4631}
4632
4633void rdma_destroy_ah_attr(struct rdma_ah_attr *ah_attr);
4634void rdma_move_grh_sgid_attr(struct rdma_ah_attr *attr, union ib_gid *dgid,
4635			     u32 flow_label, u8 hop_limit, u8 traffic_class,
4636			     const struct ib_gid_attr *sgid_attr);
4637void rdma_copy_ah_attr(struct rdma_ah_attr *dest,
4638		       const struct rdma_ah_attr *src);
4639void rdma_replace_ah_attr(struct rdma_ah_attr *old,
4640			  const struct rdma_ah_attr *new);
4641void rdma_move_ah_attr(struct rdma_ah_attr *dest, struct rdma_ah_attr *src);
4642
4643/**
4644 * rdma_ah_find_type - Return address handle type.
4645 *
4646 * @dev: Device to be checked
4647 * @port_num: Port number
4648 */
4649static inline enum rdma_ah_attr_type rdma_ah_find_type(struct ib_device *dev,
4650						       u32 port_num)
4651{
4652	if (rdma_protocol_roce(dev, port_num))
4653		return RDMA_AH_ATTR_TYPE_ROCE;
4654	if (rdma_protocol_ib(dev, port_num)) {
4655		if (rdma_cap_opa_ah(dev, port_num))
4656			return RDMA_AH_ATTR_TYPE_OPA;
4657		return RDMA_AH_ATTR_TYPE_IB;
4658	}
4659
4660	return RDMA_AH_ATTR_TYPE_UNDEFINED;
4661}
4662
4663/**
4664 * ib_lid_cpu16 - Return lid in 16bit CPU encoding.
4665 *     In the current implementation the only way to
4666 *     get the 32bit lid is from other sources for OPA.
4667 *     For IB, lids will always be 16bits so cast the
4668 *     value accordingly.
4669 *
4670 * @lid: A 32bit LID
4671 */
4672static inline u16 ib_lid_cpu16(u32 lid)
4673{
4674	WARN_ON_ONCE(lid & 0xFFFF0000);
4675	return (u16)lid;
4676}
4677
4678/**
4679 * ib_lid_be16 - Return lid in 16bit BE encoding.
4680 *
4681 * @lid: A 32bit LID
4682 */
4683static inline __be16 ib_lid_be16(u32 lid)
4684{
4685	WARN_ON_ONCE(lid & 0xFFFF0000);
4686	return cpu_to_be16((u16)lid);
4687}
4688
4689/**
4690 * ib_get_vector_affinity - Get the affinity mappings of a given completion
4691 *   vector
4692 * @device:         the rdma device
4693 * @comp_vector:    index of completion vector
4694 *
4695 * Returns NULL on failure, otherwise a corresponding cpu map of the
4696 * completion vector (returns all-cpus map if the device driver doesn't
4697 * implement get_vector_affinity).
4698 */
4699static inline const struct cpumask *
4700ib_get_vector_affinity(struct ib_device *device, int comp_vector)
 
4701{
4702	if (comp_vector < 0 || comp_vector >= device->num_comp_vectors ||
4703	    !device->ops.get_vector_affinity)
4704		return NULL;
4705
4706	return device->ops.get_vector_affinity(device, comp_vector);
4707
4708}
4709
4710/**
4711 * rdma_roce_rescan_device - Rescan all of the network devices in the system
4712 * and add their gids, as needed, to the relevant RoCE devices.
4713 *
4714 * @device:         the rdma device
4715 */
4716void rdma_roce_rescan_device(struct ib_device *ibdev);
4717
4718struct ib_ucontext *ib_uverbs_get_ucontext_file(struct ib_uverbs_file *ufile);
4719
4720int uverbs_destroy_def_handler(struct uverbs_attr_bundle *attrs);
4721
4722struct net_device *rdma_alloc_netdev(struct ib_device *device, u32 port_num,
4723				     enum rdma_netdev_t type, const char *name,
4724				     unsigned char name_assign_type,
4725				     void (*setup)(struct net_device *));
4726
4727int rdma_init_netdev(struct ib_device *device, u32 port_num,
4728		     enum rdma_netdev_t type, const char *name,
4729		     unsigned char name_assign_type,
4730		     void (*setup)(struct net_device *),
4731		     struct net_device *netdev);
4732
4733/**
4734 * rdma_device_to_ibdev - Get ib_device pointer from device pointer
4735 *
4736 * @device:	device pointer for which ib_device pointer to retrieve
4737 *
4738 * rdma_device_to_ibdev() retrieves ib_device pointer from device.
4739 *
 
 
4740 */
4741static inline struct ib_device *rdma_device_to_ibdev(struct device *device)
4742{
4743	struct ib_core_device *coredev =
4744		container_of(device, struct ib_core_device, dev);
4745
4746	return coredev->owner;
4747}
4748
4749/**
4750 * ibdev_to_node - return the NUMA node for a given ib_device
4751 * @dev:	device to get the NUMA node for.
 
 
 
4752 */
4753static inline int ibdev_to_node(struct ib_device *ibdev)
 
 
4754{
4755	struct device *parent = ibdev->dev.parent;
4756
4757	if (!parent)
4758		return NUMA_NO_NODE;
4759	return dev_to_node(parent);
4760}
4761
4762/**
4763 * rdma_device_to_drv_device - Helper macro to reach back to driver's
4764 *			       ib_device holder structure from device pointer.
4765 *
4766 * NOTE: New drivers should not make use of this API; This API is only for
4767 * existing drivers who have exposed sysfs entries using
4768 * ops->device_group.
4769 */
4770#define rdma_device_to_drv_device(dev, drv_dev_struct, ibdev_member)           \
4771	container_of(rdma_device_to_ibdev(dev), drv_dev_struct, ibdev_member)
4772
4773bool rdma_dev_access_netns(const struct ib_device *device,
4774			   const struct net *net);
4775
4776#define IB_ROCE_UDP_ENCAP_VALID_PORT_MIN (0xC000)
4777#define IB_ROCE_UDP_ENCAP_VALID_PORT_MAX (0xFFFF)
4778#define IB_GRH_FLOWLABEL_MASK (0x000FFFFF)
4779
4780/**
4781 * rdma_flow_label_to_udp_sport - generate a RoCE v2 UDP src port value based
4782 *                               on the flow_label
4783 *
4784 * This function will convert the 20 bit flow_label input to a valid RoCE v2
4785 * UDP src port 14 bit value. All RoCE V2 drivers should use this same
4786 * convention.
4787 */
4788static inline u16 rdma_flow_label_to_udp_sport(u32 fl)
4789{
4790	u32 fl_low = fl & 0x03fff, fl_high = fl & 0xFC000;
4791
4792	fl_low ^= fl_high >> 14;
4793	return (u16)(fl_low | IB_ROCE_UDP_ENCAP_VALID_PORT_MIN);
4794}
4795
4796/**
4797 * rdma_calc_flow_label - generate a RDMA symmetric flow label value based on
4798 *                        local and remote qpn values
 
 
 
4799 *
4800 * This function folded the multiplication results of two qpns, 24 bit each,
4801 * fields, and converts it to a 20 bit results.
4802 *
4803 * This function will create symmetric flow_label value based on the local
4804 * and remote qpn values. this will allow both the requester and responder
4805 * to calculate the same flow_label for a given connection.
4806 *
4807 * This helper function should be used by driver in case the upper layer
4808 * provide a zero flow_label value. This is to improve entropy of RDMA
4809 * traffic in the network.
4810 */
4811static inline u32 rdma_calc_flow_label(u32 lqpn, u32 rqpn)
4812{
4813	u64 v = (u64)lqpn * rqpn;
4814
4815	v ^= v >> 20;
4816	v ^= v >> 40;
4817
4818	return (u32)(v & IB_GRH_FLOWLABEL_MASK);
4819}
4820
4821/**
4822 * rdma_get_udp_sport - Calculate and set UDP source port based on the flow
4823 *                      label. If flow label is not defined in GRH then
4824 *                      calculate it based on lqpn/rqpn.
4825 *
4826 * @fl:                 flow label from GRH
4827 * @lqpn:               local qp number
4828 * @rqpn:               remote qp number
4829 */
4830static inline u16 rdma_get_udp_sport(u32 fl, u32 lqpn, u32 rqpn)
4831{
4832	if (!fl)
4833		fl = rdma_calc_flow_label(lqpn, rqpn);
4834
4835	return rdma_flow_label_to_udp_sport(fl);
4836}
4837
4838const struct ib_port_immutable*
4839ib_port_immutable_read(struct ib_device *dev, unsigned int port);
4840#endif /* IB_VERBS_H */