Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 * Copyright (c) 2004 Mellanox Technologies Ltd.  All rights reserved.
   3 * Copyright (c) 2004 Infinicon Corporation.  All rights reserved.
   4 * Copyright (c) 2004 Intel Corporation.  All rights reserved.
   5 * Copyright (c) 2004 Topspin Corporation.  All rights reserved.
   6 * Copyright (c) 2004 Voltaire Corporation.  All rights reserved.
   7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
   8 * Copyright (c) 2005, 2006, 2007 Cisco Systems.  All rights reserved.
   9 *
  10 * This software is available to you under a choice of one of two
  11 * licenses.  You may choose to be licensed under the terms of the GNU
  12 * General Public License (GPL) Version 2, available from the file
  13 * COPYING in the main directory of this source tree, or the
  14 * OpenIB.org BSD license below:
  15 *
  16 *     Redistribution and use in source and binary forms, with or
  17 *     without modification, are permitted provided that the following
  18 *     conditions are met:
  19 *
  20 *      - Redistributions of source code must retain the above
  21 *        copyright notice, this list of conditions and the following
  22 *        disclaimer.
  23 *
  24 *      - Redistributions in binary form must reproduce the above
  25 *        copyright notice, this list of conditions and the following
  26 *        disclaimer in the documentation and/or other materials
  27 *        provided with the distribution.
  28 *
  29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  36 * SOFTWARE.
  37 */
  38
  39#if !defined(IB_VERBS_H)
  40#define IB_VERBS_H
  41
  42#include <linux/types.h>
  43#include <linux/device.h>
  44#include <linux/mm.h>
  45#include <linux/dma-mapping.h>
  46#include <linux/kref.h>
  47#include <linux/list.h>
  48#include <linux/rwsem.h>
  49#include <linux/scatterlist.h>
  50#include <linux/workqueue.h>
 
  51
  52#include <linux/atomic.h>
  53#include <asm/uaccess.h>
  54
  55extern struct workqueue_struct *ib_wq;
  56
  57union ib_gid {
  58	u8	raw[16];
  59	struct {
  60		__be64	subnet_prefix;
  61		__be64	interface_id;
  62	} global;
  63};
  64
  65enum rdma_node_type {
  66	/* IB values map to NodeInfo:NodeType. */
  67	RDMA_NODE_IB_CA 	= 1,
  68	RDMA_NODE_IB_SWITCH,
  69	RDMA_NODE_IB_ROUTER,
  70	RDMA_NODE_RNIC
 
 
  71};
  72
  73enum rdma_transport_type {
  74	RDMA_TRANSPORT_IB,
  75	RDMA_TRANSPORT_IWARP
 
 
  76};
  77
  78enum rdma_transport_type
  79rdma_node_get_transport(enum rdma_node_type node_type) __attribute_const__;
  80
  81enum rdma_link_layer {
  82	IB_LINK_LAYER_UNSPECIFIED,
  83	IB_LINK_LAYER_INFINIBAND,
  84	IB_LINK_LAYER_ETHERNET,
  85};
  86
  87enum ib_device_cap_flags {
  88	IB_DEVICE_RESIZE_MAX_WR		= 1,
  89	IB_DEVICE_BAD_PKEY_CNTR		= (1<<1),
  90	IB_DEVICE_BAD_QKEY_CNTR		= (1<<2),
  91	IB_DEVICE_RAW_MULTI		= (1<<3),
  92	IB_DEVICE_AUTO_PATH_MIG		= (1<<4),
  93	IB_DEVICE_CHANGE_PHY_PORT	= (1<<5),
  94	IB_DEVICE_UD_AV_PORT_ENFORCE	= (1<<6),
  95	IB_DEVICE_CURR_QP_STATE_MOD	= (1<<7),
  96	IB_DEVICE_SHUTDOWN_PORT		= (1<<8),
  97	IB_DEVICE_INIT_TYPE		= (1<<9),
  98	IB_DEVICE_PORT_ACTIVE_EVENT	= (1<<10),
  99	IB_DEVICE_SYS_IMAGE_GUID	= (1<<11),
 100	IB_DEVICE_RC_RNR_NAK_GEN	= (1<<12),
 101	IB_DEVICE_SRQ_RESIZE		= (1<<13),
 102	IB_DEVICE_N_NOTIFY_CQ		= (1<<14),
 103	IB_DEVICE_LOCAL_DMA_LKEY	= (1<<15),
 104	IB_DEVICE_RESERVED		= (1<<16), /* old SEND_W_INV */
 105	IB_DEVICE_MEM_WINDOW		= (1<<17),
 106	/*
 107	 * Devices should set IB_DEVICE_UD_IP_SUM if they support
 108	 * insertion of UDP and TCP checksum on outgoing UD IPoIB
 109	 * messages and can verify the validity of checksum for
 110	 * incoming messages.  Setting this flag implies that the
 111	 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
 112	 */
 113	IB_DEVICE_UD_IP_CSUM		= (1<<18),
 114	IB_DEVICE_UD_TSO		= (1<<19),
 
 115	IB_DEVICE_MEM_MGT_EXTENSIONS	= (1<<21),
 116	IB_DEVICE_BLOCK_MULTICAST_LOOPBACK = (1<<22),
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 117};
 118
 119enum ib_atomic_cap {
 120	IB_ATOMIC_NONE,
 121	IB_ATOMIC_HCA,
 122	IB_ATOMIC_GLOB
 123};
 124
 125struct ib_device_attr {
 126	u64			fw_ver;
 127	__be64			sys_image_guid;
 128	u64			max_mr_size;
 129	u64			page_size_cap;
 130	u32			vendor_id;
 131	u32			vendor_part_id;
 132	u32			hw_ver;
 133	int			max_qp;
 134	int			max_qp_wr;
 135	int			device_cap_flags;
 136	int			max_sge;
 137	int			max_sge_rd;
 138	int			max_cq;
 139	int			max_cqe;
 140	int			max_mr;
 141	int			max_pd;
 142	int			max_qp_rd_atom;
 143	int			max_ee_rd_atom;
 144	int			max_res_rd_atom;
 145	int			max_qp_init_rd_atom;
 146	int			max_ee_init_rd_atom;
 147	enum ib_atomic_cap	atomic_cap;
 148	enum ib_atomic_cap	masked_atomic_cap;
 149	int			max_ee;
 150	int			max_rdd;
 151	int			max_mw;
 152	int			max_raw_ipv6_qp;
 153	int			max_raw_ethy_qp;
 154	int			max_mcast_grp;
 155	int			max_mcast_qp_attach;
 156	int			max_total_mcast_qp_attach;
 157	int			max_ah;
 158	int			max_fmr;
 159	int			max_map_per_fmr;
 160	int			max_srq;
 161	int			max_srq_wr;
 162	int			max_srq_sge;
 163	unsigned int		max_fast_reg_page_list_len;
 164	u16			max_pkeys;
 165	u8			local_ca_ack_delay;
 
 
 166};
 167
 168enum ib_mtu {
 169	IB_MTU_256  = 1,
 170	IB_MTU_512  = 2,
 171	IB_MTU_1024 = 3,
 172	IB_MTU_2048 = 4,
 173	IB_MTU_4096 = 5
 174};
 175
 176static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
 177{
 178	switch (mtu) {
 179	case IB_MTU_256:  return  256;
 180	case IB_MTU_512:  return  512;
 181	case IB_MTU_1024: return 1024;
 182	case IB_MTU_2048: return 2048;
 183	case IB_MTU_4096: return 4096;
 184	default: 	  return -1;
 185	}
 186}
 187
 188enum ib_port_state {
 189	IB_PORT_NOP		= 0,
 190	IB_PORT_DOWN		= 1,
 191	IB_PORT_INIT		= 2,
 192	IB_PORT_ARMED		= 3,
 193	IB_PORT_ACTIVE		= 4,
 194	IB_PORT_ACTIVE_DEFER	= 5
 195};
 196
 197enum ib_port_cap_flags {
 198	IB_PORT_SM				= 1 <<  1,
 199	IB_PORT_NOTICE_SUP			= 1 <<  2,
 200	IB_PORT_TRAP_SUP			= 1 <<  3,
 201	IB_PORT_OPT_IPD_SUP                     = 1 <<  4,
 202	IB_PORT_AUTO_MIGR_SUP			= 1 <<  5,
 203	IB_PORT_SL_MAP_SUP			= 1 <<  6,
 204	IB_PORT_MKEY_NVRAM			= 1 <<  7,
 205	IB_PORT_PKEY_NVRAM			= 1 <<  8,
 206	IB_PORT_LED_INFO_SUP			= 1 <<  9,
 207	IB_PORT_SM_DISABLED			= 1 << 10,
 208	IB_PORT_SYS_IMAGE_GUID_SUP		= 1 << 11,
 209	IB_PORT_PKEY_SW_EXT_PORT_TRAP_SUP	= 1 << 12,
 
 210	IB_PORT_CM_SUP				= 1 << 16,
 211	IB_PORT_SNMP_TUNNEL_SUP			= 1 << 17,
 212	IB_PORT_REINIT_SUP			= 1 << 18,
 213	IB_PORT_DEVICE_MGMT_SUP			= 1 << 19,
 214	IB_PORT_VENDOR_CLASS_SUP		= 1 << 20,
 215	IB_PORT_DR_NOTICE_SUP			= 1 << 21,
 216	IB_PORT_CAP_MASK_NOTICE_SUP		= 1 << 22,
 217	IB_PORT_BOOT_MGMT_SUP			= 1 << 23,
 218	IB_PORT_LINK_LATENCY_SUP		= 1 << 24,
 219	IB_PORT_CLIENT_REG_SUP			= 1 << 25
 
 220};
 221
 222enum ib_port_width {
 223	IB_WIDTH_1X	= 1,
 224	IB_WIDTH_4X	= 2,
 225	IB_WIDTH_8X	= 4,
 226	IB_WIDTH_12X	= 8
 227};
 228
 229static inline int ib_width_enum_to_int(enum ib_port_width width)
 230{
 231	switch (width) {
 232	case IB_WIDTH_1X:  return  1;
 233	case IB_WIDTH_4X:  return  4;
 234	case IB_WIDTH_8X:  return  8;
 235	case IB_WIDTH_12X: return 12;
 236	default: 	  return -1;
 237	}
 238}
 239
 
 
 
 
 
 
 
 
 
 240struct ib_protocol_stats {
 241	/* TBD... */
 242};
 243
 244struct iw_protocol_stats {
 245	u64	ipInReceives;
 246	u64	ipInHdrErrors;
 247	u64	ipInTooBigErrors;
 248	u64	ipInNoRoutes;
 249	u64	ipInAddrErrors;
 250	u64	ipInUnknownProtos;
 251	u64	ipInTruncatedPkts;
 252	u64	ipInDiscards;
 253	u64	ipInDelivers;
 254	u64	ipOutForwDatagrams;
 255	u64	ipOutRequests;
 256	u64	ipOutDiscards;
 257	u64	ipOutNoRoutes;
 258	u64	ipReasmTimeout;
 259	u64	ipReasmReqds;
 260	u64	ipReasmOKs;
 261	u64	ipReasmFails;
 262	u64	ipFragOKs;
 263	u64	ipFragFails;
 264	u64	ipFragCreates;
 265	u64	ipInMcastPkts;
 266	u64	ipOutMcastPkts;
 267	u64	ipInBcastPkts;
 268	u64	ipOutBcastPkts;
 269
 270	u64	tcpRtoAlgorithm;
 271	u64	tcpRtoMin;
 272	u64	tcpRtoMax;
 273	u64	tcpMaxConn;
 274	u64	tcpActiveOpens;
 275	u64	tcpPassiveOpens;
 276	u64	tcpAttemptFails;
 277	u64	tcpEstabResets;
 278	u64	tcpCurrEstab;
 279	u64	tcpInSegs;
 280	u64	tcpOutSegs;
 281	u64	tcpRetransSegs;
 282	u64	tcpInErrs;
 283	u64	tcpOutRsts;
 284};
 285
 286union rdma_protocol_stats {
 287	struct ib_protocol_stats	ib;
 288	struct iw_protocol_stats	iw;
 289};
 290
 291struct ib_port_attr {
 292	enum ib_port_state	state;
 293	enum ib_mtu		max_mtu;
 294	enum ib_mtu		active_mtu;
 295	int			gid_tbl_len;
 296	u32			port_cap_flags;
 297	u32			max_msg_sz;
 298	u32			bad_pkey_cntr;
 299	u32			qkey_viol_cntr;
 300	u16			pkey_tbl_len;
 301	u16			lid;
 302	u16			sm_lid;
 303	u8			lmc;
 304	u8			max_vl_num;
 305	u8			sm_sl;
 306	u8			subnet_timeout;
 307	u8			init_type_reply;
 308	u8			active_width;
 309	u8			active_speed;
 310	u8                      phys_state;
 311};
 312
 313enum ib_device_modify_flags {
 314	IB_DEVICE_MODIFY_SYS_IMAGE_GUID	= 1 << 0,
 315	IB_DEVICE_MODIFY_NODE_DESC	= 1 << 1
 316};
 317
 318struct ib_device_modify {
 319	u64	sys_image_guid;
 320	char	node_desc[64];
 321};
 322
 323enum ib_port_modify_flags {
 324	IB_PORT_SHUTDOWN		= 1,
 325	IB_PORT_INIT_TYPE		= (1<<2),
 326	IB_PORT_RESET_QKEY_CNTR		= (1<<3)
 327};
 328
 329struct ib_port_modify {
 330	u32	set_port_cap_mask;
 331	u32	clr_port_cap_mask;
 332	u8	init_type;
 333};
 334
 335enum ib_event_type {
 336	IB_EVENT_CQ_ERR,
 337	IB_EVENT_QP_FATAL,
 338	IB_EVENT_QP_REQ_ERR,
 339	IB_EVENT_QP_ACCESS_ERR,
 340	IB_EVENT_COMM_EST,
 341	IB_EVENT_SQ_DRAINED,
 342	IB_EVENT_PATH_MIG,
 343	IB_EVENT_PATH_MIG_ERR,
 344	IB_EVENT_DEVICE_FATAL,
 345	IB_EVENT_PORT_ACTIVE,
 346	IB_EVENT_PORT_ERR,
 347	IB_EVENT_LID_CHANGE,
 348	IB_EVENT_PKEY_CHANGE,
 349	IB_EVENT_SM_CHANGE,
 350	IB_EVENT_SRQ_ERR,
 351	IB_EVENT_SRQ_LIMIT_REACHED,
 352	IB_EVENT_QP_LAST_WQE_REACHED,
 353	IB_EVENT_CLIENT_REREGISTER,
 354	IB_EVENT_GID_CHANGE,
 355};
 356
 357struct ib_event {
 358	struct ib_device	*device;
 359	union {
 360		struct ib_cq	*cq;
 361		struct ib_qp	*qp;
 362		struct ib_srq	*srq;
 363		u8		port_num;
 364	} element;
 365	enum ib_event_type	event;
 366};
 367
 368struct ib_event_handler {
 369	struct ib_device *device;
 370	void            (*handler)(struct ib_event_handler *, struct ib_event *);
 371	struct list_head  list;
 372};
 373
 374#define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler)		\
 375	do {							\
 376		(_ptr)->device  = _device;			\
 377		(_ptr)->handler = _handler;			\
 378		INIT_LIST_HEAD(&(_ptr)->list);			\
 379	} while (0)
 380
 381struct ib_global_route {
 382	union ib_gid	dgid;
 383	u32		flow_label;
 384	u8		sgid_index;
 385	u8		hop_limit;
 386	u8		traffic_class;
 387};
 388
 389struct ib_grh {
 390	__be32		version_tclass_flow;
 391	__be16		paylen;
 392	u8		next_hdr;
 393	u8		hop_limit;
 394	union ib_gid	sgid;
 395	union ib_gid	dgid;
 396};
 397
 398enum {
 399	IB_MULTICAST_QPN = 0xffffff
 400};
 401
 402#define IB_LID_PERMISSIVE	cpu_to_be16(0xFFFF)
 403
 404enum ib_ah_flags {
 405	IB_AH_GRH	= 1
 406};
 407
 408enum ib_rate {
 409	IB_RATE_PORT_CURRENT = 0,
 410	IB_RATE_2_5_GBPS = 2,
 411	IB_RATE_5_GBPS   = 5,
 412	IB_RATE_10_GBPS  = 3,
 413	IB_RATE_20_GBPS  = 6,
 414	IB_RATE_30_GBPS  = 4,
 415	IB_RATE_40_GBPS  = 7,
 416	IB_RATE_60_GBPS  = 8,
 417	IB_RATE_80_GBPS  = 9,
 418	IB_RATE_120_GBPS = 10
 
 
 
 
 
 
 
 
 419};
 420
 421/**
 422 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the
 423 * base rate of 2.5 Gbit/sec.  For example, IB_RATE_5_GBPS will be
 424 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
 425 * @rate: rate to convert.
 426 */
 427int ib_rate_to_mult(enum ib_rate rate) __attribute_const__;
 428
 429/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 430 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
 431 * enum.
 432 * @mult: multiple to convert.
 433 */
 434enum ib_rate mult_to_ib_rate(int mult) __attribute_const__;
 435
 436struct ib_ah_attr {
 437	struct ib_global_route	grh;
 438	u16			dlid;
 439	u8			sl;
 440	u8			src_path_bits;
 441	u8			static_rate;
 442	u8			ah_flags;
 443	u8			port_num;
 
 
 444};
 445
 446enum ib_wc_status {
 447	IB_WC_SUCCESS,
 448	IB_WC_LOC_LEN_ERR,
 449	IB_WC_LOC_QP_OP_ERR,
 450	IB_WC_LOC_EEC_OP_ERR,
 451	IB_WC_LOC_PROT_ERR,
 452	IB_WC_WR_FLUSH_ERR,
 453	IB_WC_MW_BIND_ERR,
 454	IB_WC_BAD_RESP_ERR,
 455	IB_WC_LOC_ACCESS_ERR,
 456	IB_WC_REM_INV_REQ_ERR,
 457	IB_WC_REM_ACCESS_ERR,
 458	IB_WC_REM_OP_ERR,
 459	IB_WC_RETRY_EXC_ERR,
 460	IB_WC_RNR_RETRY_EXC_ERR,
 461	IB_WC_LOC_RDD_VIOL_ERR,
 462	IB_WC_REM_INV_RD_REQ_ERR,
 463	IB_WC_REM_ABORT_ERR,
 464	IB_WC_INV_EECN_ERR,
 465	IB_WC_INV_EEC_STATE_ERR,
 466	IB_WC_FATAL_ERR,
 467	IB_WC_RESP_TIMEOUT_ERR,
 468	IB_WC_GENERAL_ERR
 469};
 470
 471enum ib_wc_opcode {
 472	IB_WC_SEND,
 473	IB_WC_RDMA_WRITE,
 474	IB_WC_RDMA_READ,
 475	IB_WC_COMP_SWAP,
 476	IB_WC_FETCH_ADD,
 477	IB_WC_BIND_MW,
 478	IB_WC_LSO,
 479	IB_WC_LOCAL_INV,
 480	IB_WC_FAST_REG_MR,
 481	IB_WC_MASKED_COMP_SWAP,
 482	IB_WC_MASKED_FETCH_ADD,
 483/*
 484 * Set value of IB_WC_RECV so consumers can test if a completion is a
 485 * receive by testing (opcode & IB_WC_RECV).
 486 */
 487	IB_WC_RECV			= 1 << 7,
 488	IB_WC_RECV_RDMA_WITH_IMM
 489};
 490
 491enum ib_wc_flags {
 492	IB_WC_GRH		= 1,
 493	IB_WC_WITH_IMM		= (1<<1),
 494	IB_WC_WITH_INVALIDATE	= (1<<2),
 
 
 
 495};
 496
 497struct ib_wc {
 498	u64			wr_id;
 499	enum ib_wc_status	status;
 500	enum ib_wc_opcode	opcode;
 501	u32			vendor_err;
 502	u32			byte_len;
 503	struct ib_qp	       *qp;
 504	union {
 505		__be32		imm_data;
 506		u32		invalidate_rkey;
 507	} ex;
 508	u32			src_qp;
 509	int			wc_flags;
 510	u16			pkey_index;
 511	u16			slid;
 512	u8			sl;
 513	u8			dlid_path_bits;
 514	u8			port_num;	/* valid only for DR SMPs on switches */
 515	int			csum_ok;
 
 516};
 517
 518enum ib_cq_notify_flags {
 519	IB_CQ_SOLICITED			= 1 << 0,
 520	IB_CQ_NEXT_COMP			= 1 << 1,
 521	IB_CQ_SOLICITED_MASK		= IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
 522	IB_CQ_REPORT_MISSED_EVENTS	= 1 << 2,
 523};
 524
 
 
 
 
 
 525enum ib_srq_attr_mask {
 526	IB_SRQ_MAX_WR	= 1 << 0,
 527	IB_SRQ_LIMIT	= 1 << 1,
 528};
 529
 530struct ib_srq_attr {
 531	u32	max_wr;
 532	u32	max_sge;
 533	u32	srq_limit;
 534};
 535
 536struct ib_srq_init_attr {
 537	void		      (*event_handler)(struct ib_event *, void *);
 538	void		       *srq_context;
 539	struct ib_srq_attr	attr;
 
 
 
 
 
 
 
 
 540};
 541
 542struct ib_qp_cap {
 543	u32	max_send_wr;
 544	u32	max_recv_wr;
 545	u32	max_send_sge;
 546	u32	max_recv_sge;
 547	u32	max_inline_data;
 548};
 549
 550enum ib_sig_type {
 551	IB_SIGNAL_ALL_WR,
 552	IB_SIGNAL_REQ_WR
 553};
 554
 555enum ib_qp_type {
 556	/*
 557	 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
 558	 * here (and in that order) since the MAD layer uses them as
 559	 * indices into a 2-entry table.
 560	 */
 561	IB_QPT_SMI,
 562	IB_QPT_GSI,
 563
 564	IB_QPT_RC,
 565	IB_QPT_UC,
 566	IB_QPT_UD,
 567	IB_QPT_RAW_IPV6,
 568	IB_QPT_RAW_ETHERTYPE
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 569};
 570
 571enum ib_qp_create_flags {
 572	IB_QP_CREATE_IPOIB_UD_LSO		= 1 << 0,
 573	IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK	= 1 << 1,
 
 
 
 
 
 574};
 575
 
 
 
 
 
 
 576struct ib_qp_init_attr {
 577	void                  (*event_handler)(struct ib_event *, void *);
 578	void		       *qp_context;
 579	struct ib_cq	       *send_cq;
 580	struct ib_cq	       *recv_cq;
 581	struct ib_srq	       *srq;
 
 582	struct ib_qp_cap	cap;
 583	enum ib_sig_type	sq_sig_type;
 584	enum ib_qp_type		qp_type;
 585	enum ib_qp_create_flags	create_flags;
 586	u8			port_num; /* special QP types only */
 587};
 588
 
 
 
 
 
 
 
 589enum ib_rnr_timeout {
 590	IB_RNR_TIMER_655_36 =  0,
 591	IB_RNR_TIMER_000_01 =  1,
 592	IB_RNR_TIMER_000_02 =  2,
 593	IB_RNR_TIMER_000_03 =  3,
 594	IB_RNR_TIMER_000_04 =  4,
 595	IB_RNR_TIMER_000_06 =  5,
 596	IB_RNR_TIMER_000_08 =  6,
 597	IB_RNR_TIMER_000_12 =  7,
 598	IB_RNR_TIMER_000_16 =  8,
 599	IB_RNR_TIMER_000_24 =  9,
 600	IB_RNR_TIMER_000_32 = 10,
 601	IB_RNR_TIMER_000_48 = 11,
 602	IB_RNR_TIMER_000_64 = 12,
 603	IB_RNR_TIMER_000_96 = 13,
 604	IB_RNR_TIMER_001_28 = 14,
 605	IB_RNR_TIMER_001_92 = 15,
 606	IB_RNR_TIMER_002_56 = 16,
 607	IB_RNR_TIMER_003_84 = 17,
 608	IB_RNR_TIMER_005_12 = 18,
 609	IB_RNR_TIMER_007_68 = 19,
 610	IB_RNR_TIMER_010_24 = 20,
 611	IB_RNR_TIMER_015_36 = 21,
 612	IB_RNR_TIMER_020_48 = 22,
 613	IB_RNR_TIMER_030_72 = 23,
 614	IB_RNR_TIMER_040_96 = 24,
 615	IB_RNR_TIMER_061_44 = 25,
 616	IB_RNR_TIMER_081_92 = 26,
 617	IB_RNR_TIMER_122_88 = 27,
 618	IB_RNR_TIMER_163_84 = 28,
 619	IB_RNR_TIMER_245_76 = 29,
 620	IB_RNR_TIMER_327_68 = 30,
 621	IB_RNR_TIMER_491_52 = 31
 622};
 623
 624enum ib_qp_attr_mask {
 625	IB_QP_STATE			= 1,
 626	IB_QP_CUR_STATE			= (1<<1),
 627	IB_QP_EN_SQD_ASYNC_NOTIFY	= (1<<2),
 628	IB_QP_ACCESS_FLAGS		= (1<<3),
 629	IB_QP_PKEY_INDEX		= (1<<4),
 630	IB_QP_PORT			= (1<<5),
 631	IB_QP_QKEY			= (1<<6),
 632	IB_QP_AV			= (1<<7),
 633	IB_QP_PATH_MTU			= (1<<8),
 634	IB_QP_TIMEOUT			= (1<<9),
 635	IB_QP_RETRY_CNT			= (1<<10),
 636	IB_QP_RNR_RETRY			= (1<<11),
 637	IB_QP_RQ_PSN			= (1<<12),
 638	IB_QP_MAX_QP_RD_ATOMIC		= (1<<13),
 639	IB_QP_ALT_PATH			= (1<<14),
 640	IB_QP_MIN_RNR_TIMER		= (1<<15),
 641	IB_QP_SQ_PSN			= (1<<16),
 642	IB_QP_MAX_DEST_RD_ATOMIC	= (1<<17),
 643	IB_QP_PATH_MIG_STATE		= (1<<18),
 644	IB_QP_CAP			= (1<<19),
 645	IB_QP_DEST_QPN			= (1<<20)
 
 
 
 
 646};
 647
 648enum ib_qp_state {
 649	IB_QPS_RESET,
 650	IB_QPS_INIT,
 651	IB_QPS_RTR,
 652	IB_QPS_RTS,
 653	IB_QPS_SQD,
 654	IB_QPS_SQE,
 655	IB_QPS_ERR
 656};
 657
 658enum ib_mig_state {
 659	IB_MIG_MIGRATED,
 660	IB_MIG_REARM,
 661	IB_MIG_ARMED
 662};
 663
 
 
 
 
 
 664struct ib_qp_attr {
 665	enum ib_qp_state	qp_state;
 666	enum ib_qp_state	cur_qp_state;
 667	enum ib_mtu		path_mtu;
 668	enum ib_mig_state	path_mig_state;
 669	u32			qkey;
 670	u32			rq_psn;
 671	u32			sq_psn;
 672	u32			dest_qp_num;
 673	int			qp_access_flags;
 674	struct ib_qp_cap	cap;
 675	struct ib_ah_attr	ah_attr;
 676	struct ib_ah_attr	alt_ah_attr;
 677	u16			pkey_index;
 678	u16			alt_pkey_index;
 679	u8			en_sqd_async_notify;
 680	u8			sq_draining;
 681	u8			max_rd_atomic;
 682	u8			max_dest_rd_atomic;
 683	u8			min_rnr_timer;
 684	u8			port_num;
 685	u8			timeout;
 686	u8			retry_cnt;
 687	u8			rnr_retry;
 688	u8			alt_port_num;
 689	u8			alt_timeout;
 
 
 
 
 690};
 691
 692enum ib_wr_opcode {
 693	IB_WR_RDMA_WRITE,
 694	IB_WR_RDMA_WRITE_WITH_IMM,
 695	IB_WR_SEND,
 696	IB_WR_SEND_WITH_IMM,
 697	IB_WR_RDMA_READ,
 698	IB_WR_ATOMIC_CMP_AND_SWP,
 699	IB_WR_ATOMIC_FETCH_AND_ADD,
 700	IB_WR_LSO,
 701	IB_WR_SEND_WITH_INV,
 702	IB_WR_RDMA_READ_WITH_INV,
 703	IB_WR_LOCAL_INV,
 704	IB_WR_FAST_REG_MR,
 705	IB_WR_MASKED_ATOMIC_CMP_AND_SWP,
 706	IB_WR_MASKED_ATOMIC_FETCH_AND_ADD,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 707};
 708
 709enum ib_send_flags {
 710	IB_SEND_FENCE		= 1,
 711	IB_SEND_SIGNALED	= (1<<1),
 712	IB_SEND_SOLICITED	= (1<<2),
 713	IB_SEND_INLINE		= (1<<3),
 714	IB_SEND_IP_CSUM		= (1<<4)
 
 
 
 
 715};
 716
 717struct ib_sge {
 718	u64	addr;
 719	u32	length;
 720	u32	lkey;
 721};
 722
 723struct ib_fast_reg_page_list {
 724	struct ib_device       *device;
 725	u64		       *page_list;
 726	unsigned int		max_page_list_len;
 727};
 728
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 729struct ib_send_wr {
 730	struct ib_send_wr      *next;
 731	u64			wr_id;
 732	struct ib_sge	       *sg_list;
 733	int			num_sge;
 734	enum ib_wr_opcode	opcode;
 735	int			send_flags;
 736	union {
 737		__be32		imm_data;
 738		u32		invalidate_rkey;
 739	} ex;
 740	union {
 741		struct {
 742			u64	remote_addr;
 743			u32	rkey;
 744		} rdma;
 745		struct {
 746			u64	remote_addr;
 747			u64	compare_add;
 748			u64	swap;
 749			u64	compare_add_mask;
 750			u64	swap_mask;
 751			u32	rkey;
 752		} atomic;
 753		struct {
 754			struct ib_ah *ah;
 755			void   *header;
 756			int     hlen;
 757			int     mss;
 758			u32	remote_qpn;
 759			u32	remote_qkey;
 760			u16	pkey_index; /* valid for GSI only */
 761			u8	port_num;   /* valid for DR SMPs on switch only */
 762		} ud;
 763		struct {
 764			u64				iova_start;
 765			struct ib_fast_reg_page_list   *page_list;
 766			unsigned int			page_shift;
 767			unsigned int			page_list_len;
 768			u32				length;
 769			int				access_flags;
 770			u32				rkey;
 771		} fast_reg;
 
 
 
 
 
 
 
 
 
 
 
 
 772	} wr;
 
 773};
 774
 775struct ib_recv_wr {
 776	struct ib_recv_wr      *next;
 777	u64			wr_id;
 778	struct ib_sge	       *sg_list;
 779	int			num_sge;
 780};
 781
 782enum ib_access_flags {
 783	IB_ACCESS_LOCAL_WRITE	= 1,
 784	IB_ACCESS_REMOTE_WRITE	= (1<<1),
 785	IB_ACCESS_REMOTE_READ	= (1<<2),
 786	IB_ACCESS_REMOTE_ATOMIC	= (1<<3),
 787	IB_ACCESS_MW_BIND	= (1<<4)
 
 788};
 789
 790struct ib_phys_buf {
 791	u64      addr;
 792	u64      size;
 793};
 794
 795struct ib_mr_attr {
 796	struct ib_pd	*pd;
 797	u64		device_virt_addr;
 798	u64		size;
 799	int		mr_access_flags;
 800	u32		lkey;
 801	u32		rkey;
 802};
 803
 804enum ib_mr_rereg_flags {
 805	IB_MR_REREG_TRANS	= 1,
 806	IB_MR_REREG_PD		= (1<<1),
 807	IB_MR_REREG_ACCESS	= (1<<2)
 808};
 809
 
 
 
 
 
 
 810struct ib_mw_bind {
 811	struct ib_mr   *mr;
 812	u64		wr_id;
 813	u64		addr;
 814	u32		length;
 815	int		send_flags;
 816	int		mw_access_flags;
 817};
 818
 819struct ib_fmr_attr {
 820	int	max_pages;
 821	int	max_maps;
 822	u8	page_shift;
 823};
 824
 825struct ib_ucontext {
 826	struct ib_device       *device;
 827	struct list_head	pd_list;
 828	struct list_head	mr_list;
 829	struct list_head	mw_list;
 830	struct list_head	cq_list;
 831	struct list_head	qp_list;
 832	struct list_head	srq_list;
 833	struct list_head	ah_list;
 
 
 834	int			closing;
 835};
 836
 837struct ib_uobject {
 838	u64			user_handle;	/* handle given to us by userspace */
 839	struct ib_ucontext     *context;	/* associated user context */
 840	void		       *object;		/* containing object */
 841	struct list_head	list;		/* link to context's list */
 842	int			id;		/* index into kernel idr */
 843	struct kref		ref;
 844	struct rw_semaphore	mutex;		/* protects .live */
 845	int			live;
 846};
 847
 848struct ib_udata {
 849	void __user *inbuf;
 850	void __user *outbuf;
 851	size_t       inlen;
 852	size_t       outlen;
 853};
 854
 855struct ib_pd {
 856	struct ib_device       *device;
 857	struct ib_uobject      *uobject;
 858	atomic_t          	usecnt; /* count all resources */
 859};
 860
 
 
 
 
 
 
 
 
 
 861struct ib_ah {
 862	struct ib_device	*device;
 863	struct ib_pd		*pd;
 864	struct ib_uobject	*uobject;
 865};
 866
 867typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
 868
 869struct ib_cq {
 870	struct ib_device       *device;
 871	struct ib_uobject      *uobject;
 872	ib_comp_handler   	comp_handler;
 873	void                  (*event_handler)(struct ib_event *, void *);
 874	void                   *cq_context;
 875	int               	cqe;
 876	atomic_t          	usecnt; /* count number of work queues */
 877};
 878
 879struct ib_srq {
 880	struct ib_device       *device;
 881	struct ib_pd	       *pd;
 882	struct ib_uobject      *uobject;
 883	void		      (*event_handler)(struct ib_event *, void *);
 884	void		       *srq_context;
 
 885	atomic_t		usecnt;
 
 
 
 
 
 
 
 
 886};
 887
 888struct ib_qp {
 889	struct ib_device       *device;
 890	struct ib_pd	       *pd;
 891	struct ib_cq	       *send_cq;
 892	struct ib_cq	       *recv_cq;
 893	struct ib_srq	       *srq;
 
 
 
 
 
 
 894	struct ib_uobject      *uobject;
 895	void                  (*event_handler)(struct ib_event *, void *);
 896	void		       *qp_context;
 897	u32			qp_num;
 898	enum ib_qp_type		qp_type;
 899};
 900
 901struct ib_mr {
 902	struct ib_device  *device;
 903	struct ib_pd	  *pd;
 904	struct ib_uobject *uobject;
 905	u32		   lkey;
 906	u32		   rkey;
 907	atomic_t	   usecnt; /* count number of MWs */
 908};
 909
 910struct ib_mw {
 911	struct ib_device	*device;
 912	struct ib_pd		*pd;
 913	struct ib_uobject	*uobject;
 914	u32			rkey;
 
 915};
 916
 917struct ib_fmr {
 918	struct ib_device	*device;
 919	struct ib_pd		*pd;
 920	struct list_head	list;
 921	u32			lkey;
 922	u32			rkey;
 923};
 924
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 925struct ib_mad;
 926struct ib_grh;
 927
 928enum ib_process_mad_flags {
 929	IB_MAD_IGNORE_MKEY	= 1,
 930	IB_MAD_IGNORE_BKEY	= 2,
 931	IB_MAD_IGNORE_ALL	= IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
 932};
 933
 934enum ib_mad_result {
 935	IB_MAD_RESULT_FAILURE  = 0,      /* (!SUCCESS is the important flag) */
 936	IB_MAD_RESULT_SUCCESS  = 1 << 0, /* MAD was successfully processed   */
 937	IB_MAD_RESULT_REPLY    = 1 << 1, /* Reply packet needs to be sent    */
 938	IB_MAD_RESULT_CONSUMED = 1 << 2  /* Packet consumed: stop processing */
 939};
 940
 941#define IB_DEVICE_NAME_MAX 64
 942
 943struct ib_cache {
 944	rwlock_t                lock;
 945	struct ib_event_handler event_handler;
 946	struct ib_pkey_cache  **pkey_cache;
 947	struct ib_gid_cache   **gid_cache;
 948	u8                     *lmc_cache;
 949};
 950
 951struct ib_dma_mapping_ops {
 952	int		(*mapping_error)(struct ib_device *dev,
 953					 u64 dma_addr);
 954	u64		(*map_single)(struct ib_device *dev,
 955				      void *ptr, size_t size,
 956				      enum dma_data_direction direction);
 957	void		(*unmap_single)(struct ib_device *dev,
 958					u64 addr, size_t size,
 959					enum dma_data_direction direction);
 960	u64		(*map_page)(struct ib_device *dev,
 961				    struct page *page, unsigned long offset,
 962				    size_t size,
 963				    enum dma_data_direction direction);
 964	void		(*unmap_page)(struct ib_device *dev,
 965				      u64 addr, size_t size,
 966				      enum dma_data_direction direction);
 967	int		(*map_sg)(struct ib_device *dev,
 968				  struct scatterlist *sg, int nents,
 969				  enum dma_data_direction direction);
 970	void		(*unmap_sg)(struct ib_device *dev,
 971				    struct scatterlist *sg, int nents,
 972				    enum dma_data_direction direction);
 973	u64		(*dma_address)(struct ib_device *dev,
 974				       struct scatterlist *sg);
 975	unsigned int	(*dma_len)(struct ib_device *dev,
 976				   struct scatterlist *sg);
 977	void		(*sync_single_for_cpu)(struct ib_device *dev,
 978					       u64 dma_handle,
 979					       size_t size,
 980					       enum dma_data_direction dir);
 981	void		(*sync_single_for_device)(struct ib_device *dev,
 982						  u64 dma_handle,
 983						  size_t size,
 984						  enum dma_data_direction dir);
 985	void		*(*alloc_coherent)(struct ib_device *dev,
 986					   size_t size,
 987					   u64 *dma_handle,
 988					   gfp_t flag);
 989	void		(*free_coherent)(struct ib_device *dev,
 990					 size_t size, void *cpu_addr,
 991					 u64 dma_handle);
 992};
 993
 994struct iw_cm_verbs;
 995
 996struct ib_device {
 997	struct device                *dma_device;
 998
 999	char                          name[IB_DEVICE_NAME_MAX];
1000
1001	struct list_head              event_handler_list;
1002	spinlock_t                    event_handler_lock;
1003
1004	spinlock_t                    client_data_lock;
1005	struct list_head              core_list;
1006	struct list_head              client_data_list;
1007
1008	struct ib_cache               cache;
1009	int                          *pkey_tbl_len;
1010	int                          *gid_tbl_len;
1011
1012	int			      num_comp_vectors;
1013
1014	struct iw_cm_verbs	     *iwcm;
1015
1016	int		           (*get_protocol_stats)(struct ib_device *device,
1017							 union rdma_protocol_stats *stats);
1018	int		           (*query_device)(struct ib_device *device,
1019						   struct ib_device_attr *device_attr);
1020	int		           (*query_port)(struct ib_device *device,
1021						 u8 port_num,
1022						 struct ib_port_attr *port_attr);
1023	enum rdma_link_layer	   (*get_link_layer)(struct ib_device *device,
1024						     u8 port_num);
1025	int		           (*query_gid)(struct ib_device *device,
1026						u8 port_num, int index,
1027						union ib_gid *gid);
1028	int		           (*query_pkey)(struct ib_device *device,
1029						 u8 port_num, u16 index, u16 *pkey);
1030	int		           (*modify_device)(struct ib_device *device,
1031						    int device_modify_mask,
1032						    struct ib_device_modify *device_modify);
1033	int		           (*modify_port)(struct ib_device *device,
1034						  u8 port_num, int port_modify_mask,
1035						  struct ib_port_modify *port_modify);
1036	struct ib_ucontext *       (*alloc_ucontext)(struct ib_device *device,
1037						     struct ib_udata *udata);
1038	int                        (*dealloc_ucontext)(struct ib_ucontext *context);
1039	int                        (*mmap)(struct ib_ucontext *context,
1040					   struct vm_area_struct *vma);
1041	struct ib_pd *             (*alloc_pd)(struct ib_device *device,
1042					       struct ib_ucontext *context,
1043					       struct ib_udata *udata);
1044	int                        (*dealloc_pd)(struct ib_pd *pd);
1045	struct ib_ah *             (*create_ah)(struct ib_pd *pd,
1046						struct ib_ah_attr *ah_attr);
1047	int                        (*modify_ah)(struct ib_ah *ah,
1048						struct ib_ah_attr *ah_attr);
1049	int                        (*query_ah)(struct ib_ah *ah,
1050					       struct ib_ah_attr *ah_attr);
1051	int                        (*destroy_ah)(struct ib_ah *ah);
1052	struct ib_srq *            (*create_srq)(struct ib_pd *pd,
1053						 struct ib_srq_init_attr *srq_init_attr,
1054						 struct ib_udata *udata);
1055	int                        (*modify_srq)(struct ib_srq *srq,
1056						 struct ib_srq_attr *srq_attr,
1057						 enum ib_srq_attr_mask srq_attr_mask,
1058						 struct ib_udata *udata);
1059	int                        (*query_srq)(struct ib_srq *srq,
1060						struct ib_srq_attr *srq_attr);
1061	int                        (*destroy_srq)(struct ib_srq *srq);
1062	int                        (*post_srq_recv)(struct ib_srq *srq,
1063						    struct ib_recv_wr *recv_wr,
1064						    struct ib_recv_wr **bad_recv_wr);
1065	struct ib_qp *             (*create_qp)(struct ib_pd *pd,
1066						struct ib_qp_init_attr *qp_init_attr,
1067						struct ib_udata *udata);
1068	int                        (*modify_qp)(struct ib_qp *qp,
1069						struct ib_qp_attr *qp_attr,
1070						int qp_attr_mask,
1071						struct ib_udata *udata);
1072	int                        (*query_qp)(struct ib_qp *qp,
1073					       struct ib_qp_attr *qp_attr,
1074					       int qp_attr_mask,
1075					       struct ib_qp_init_attr *qp_init_attr);
1076	int                        (*destroy_qp)(struct ib_qp *qp);
1077	int                        (*post_send)(struct ib_qp *qp,
1078						struct ib_send_wr *send_wr,
1079						struct ib_send_wr **bad_send_wr);
1080	int                        (*post_recv)(struct ib_qp *qp,
1081						struct ib_recv_wr *recv_wr,
1082						struct ib_recv_wr **bad_recv_wr);
1083	struct ib_cq *             (*create_cq)(struct ib_device *device, int cqe,
1084						int comp_vector,
1085						struct ib_ucontext *context,
1086						struct ib_udata *udata);
1087	int                        (*modify_cq)(struct ib_cq *cq, u16 cq_count,
1088						u16 cq_period);
1089	int                        (*destroy_cq)(struct ib_cq *cq);
1090	int                        (*resize_cq)(struct ib_cq *cq, int cqe,
1091						struct ib_udata *udata);
1092	int                        (*poll_cq)(struct ib_cq *cq, int num_entries,
1093					      struct ib_wc *wc);
1094	int                        (*peek_cq)(struct ib_cq *cq, int wc_cnt);
1095	int                        (*req_notify_cq)(struct ib_cq *cq,
1096						    enum ib_cq_notify_flags flags);
1097	int                        (*req_ncomp_notif)(struct ib_cq *cq,
1098						      int wc_cnt);
1099	struct ib_mr *             (*get_dma_mr)(struct ib_pd *pd,
1100						 int mr_access_flags);
1101	struct ib_mr *             (*reg_phys_mr)(struct ib_pd *pd,
1102						  struct ib_phys_buf *phys_buf_array,
1103						  int num_phys_buf,
1104						  int mr_access_flags,
1105						  u64 *iova_start);
1106	struct ib_mr *             (*reg_user_mr)(struct ib_pd *pd,
1107						  u64 start, u64 length,
1108						  u64 virt_addr,
1109						  int mr_access_flags,
1110						  struct ib_udata *udata);
1111	int                        (*query_mr)(struct ib_mr *mr,
1112					       struct ib_mr_attr *mr_attr);
1113	int                        (*dereg_mr)(struct ib_mr *mr);
 
 
 
1114	struct ib_mr *		   (*alloc_fast_reg_mr)(struct ib_pd *pd,
1115					       int max_page_list_len);
1116	struct ib_fast_reg_page_list * (*alloc_fast_reg_page_list)(struct ib_device *device,
1117								   int page_list_len);
1118	void			   (*free_fast_reg_page_list)(struct ib_fast_reg_page_list *page_list);
1119	int                        (*rereg_phys_mr)(struct ib_mr *mr,
1120						    int mr_rereg_mask,
1121						    struct ib_pd *pd,
1122						    struct ib_phys_buf *phys_buf_array,
1123						    int num_phys_buf,
1124						    int mr_access_flags,
1125						    u64 *iova_start);
1126	struct ib_mw *             (*alloc_mw)(struct ib_pd *pd);
 
1127	int                        (*bind_mw)(struct ib_qp *qp,
1128					      struct ib_mw *mw,
1129					      struct ib_mw_bind *mw_bind);
1130	int                        (*dealloc_mw)(struct ib_mw *mw);
1131	struct ib_fmr *	           (*alloc_fmr)(struct ib_pd *pd,
1132						int mr_access_flags,
1133						struct ib_fmr_attr *fmr_attr);
1134	int		           (*map_phys_fmr)(struct ib_fmr *fmr,
1135						   u64 *page_list, int list_len,
1136						   u64 iova);
1137	int		           (*unmap_fmr)(struct list_head *fmr_list);
1138	int		           (*dealloc_fmr)(struct ib_fmr *fmr);
1139	int                        (*attach_mcast)(struct ib_qp *qp,
1140						   union ib_gid *gid,
1141						   u16 lid);
1142	int                        (*detach_mcast)(struct ib_qp *qp,
1143						   union ib_gid *gid,
1144						   u16 lid);
1145	int                        (*process_mad)(struct ib_device *device,
1146						  int process_mad_flags,
1147						  u8 port_num,
1148						  struct ib_wc *in_wc,
1149						  struct ib_grh *in_grh,
1150						  struct ib_mad *in_mad,
1151						  struct ib_mad *out_mad);
 
 
 
 
 
 
 
 
 
 
 
1152
1153	struct ib_dma_mapping_ops   *dma_ops;
1154
1155	struct module               *owner;
1156	struct device                dev;
1157	struct kobject               *ports_parent;
1158	struct list_head             port_list;
1159
1160	enum {
1161		IB_DEV_UNINITIALIZED,
1162		IB_DEV_REGISTERED,
1163		IB_DEV_UNREGISTERED
1164	}                            reg_state;
1165
1166	int			     uverbs_abi_ver;
1167	u64			     uverbs_cmd_mask;
 
1168
1169	char			     node_desc[64];
1170	__be64			     node_guid;
1171	u32			     local_dma_lkey;
1172	u8                           node_type;
1173	u8                           phys_port_cnt;
1174};
1175
1176struct ib_client {
1177	char  *name;
1178	void (*add)   (struct ib_device *);
1179	void (*remove)(struct ib_device *);
1180
1181	struct list_head list;
1182};
1183
1184struct ib_device *ib_alloc_device(size_t size);
1185void ib_dealloc_device(struct ib_device *device);
1186
1187int ib_register_device(struct ib_device *device,
1188		       int (*port_callback)(struct ib_device *,
1189					    u8, struct kobject *));
1190void ib_unregister_device(struct ib_device *device);
1191
1192int ib_register_client   (struct ib_client *client);
1193void ib_unregister_client(struct ib_client *client);
1194
1195void *ib_get_client_data(struct ib_device *device, struct ib_client *client);
1196void  ib_set_client_data(struct ib_device *device, struct ib_client *client,
1197			 void *data);
1198
1199static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
1200{
1201	return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
1202}
1203
1204static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
1205{
1206	return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
1207}
1208
1209/**
1210 * ib_modify_qp_is_ok - Check that the supplied attribute mask
1211 * contains all required attributes and no attributes not allowed for
1212 * the given QP state transition.
1213 * @cur_state: Current QP state
1214 * @next_state: Next QP state
1215 * @type: QP type
1216 * @mask: Mask of supplied QP attributes
 
1217 *
1218 * This function is a helper function that a low-level driver's
1219 * modify_qp method can use to validate the consumer's input.  It
1220 * checks that cur_state and next_state are valid QP states, that a
1221 * transition from cur_state to next_state is allowed by the IB spec,
1222 * and that the attribute mask supplied is allowed for the transition.
1223 */
1224int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
1225		       enum ib_qp_type type, enum ib_qp_attr_mask mask);
 
1226
1227int ib_register_event_handler  (struct ib_event_handler *event_handler);
1228int ib_unregister_event_handler(struct ib_event_handler *event_handler);
1229void ib_dispatch_event(struct ib_event *event);
1230
1231int ib_query_device(struct ib_device *device,
1232		    struct ib_device_attr *device_attr);
1233
1234int ib_query_port(struct ib_device *device,
1235		  u8 port_num, struct ib_port_attr *port_attr);
1236
1237enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
1238					       u8 port_num);
1239
1240int ib_query_gid(struct ib_device *device,
1241		 u8 port_num, int index, union ib_gid *gid);
1242
1243int ib_query_pkey(struct ib_device *device,
1244		  u8 port_num, u16 index, u16 *pkey);
1245
1246int ib_modify_device(struct ib_device *device,
1247		     int device_modify_mask,
1248		     struct ib_device_modify *device_modify);
1249
1250int ib_modify_port(struct ib_device *device,
1251		   u8 port_num, int port_modify_mask,
1252		   struct ib_port_modify *port_modify);
1253
1254int ib_find_gid(struct ib_device *device, union ib_gid *gid,
1255		u8 *port_num, u16 *index);
1256
1257int ib_find_pkey(struct ib_device *device,
1258		 u8 port_num, u16 pkey, u16 *index);
1259
1260/**
1261 * ib_alloc_pd - Allocates an unused protection domain.
1262 * @device: The device on which to allocate the protection domain.
1263 *
1264 * A protection domain object provides an association between QPs, shared
1265 * receive queues, address handles, memory regions, and memory windows.
1266 */
1267struct ib_pd *ib_alloc_pd(struct ib_device *device);
1268
1269/**
1270 * ib_dealloc_pd - Deallocates a protection domain.
1271 * @pd: The protection domain to deallocate.
1272 */
1273int ib_dealloc_pd(struct ib_pd *pd);
1274
1275/**
1276 * ib_create_ah - Creates an address handle for the given address vector.
1277 * @pd: The protection domain associated with the address handle.
1278 * @ah_attr: The attributes of the address vector.
1279 *
1280 * The address handle is used to reference a local or global destination
1281 * in all UD QP post sends.
1282 */
1283struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr);
1284
1285/**
1286 * ib_init_ah_from_wc - Initializes address handle attributes from a
1287 *   work completion.
1288 * @device: Device on which the received message arrived.
1289 * @port_num: Port on which the received message arrived.
1290 * @wc: Work completion associated with the received message.
1291 * @grh: References the received global route header.  This parameter is
1292 *   ignored unless the work completion indicates that the GRH is valid.
1293 * @ah_attr: Returned attributes that can be used when creating an address
1294 *   handle for replying to the message.
1295 */
1296int ib_init_ah_from_wc(struct ib_device *device, u8 port_num, struct ib_wc *wc,
1297		       struct ib_grh *grh, struct ib_ah_attr *ah_attr);
1298
1299/**
1300 * ib_create_ah_from_wc - Creates an address handle associated with the
1301 *   sender of the specified work completion.
1302 * @pd: The protection domain associated with the address handle.
1303 * @wc: Work completion information associated with a received message.
1304 * @grh: References the received global route header.  This parameter is
1305 *   ignored unless the work completion indicates that the GRH is valid.
1306 * @port_num: The outbound port number to associate with the address.
1307 *
1308 * The address handle is used to reference a local or global destination
1309 * in all UD QP post sends.
1310 */
1311struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, struct ib_wc *wc,
1312				   struct ib_grh *grh, u8 port_num);
1313
1314/**
1315 * ib_modify_ah - Modifies the address vector associated with an address
1316 *   handle.
1317 * @ah: The address handle to modify.
1318 * @ah_attr: The new address vector attributes to associate with the
1319 *   address handle.
1320 */
1321int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
1322
1323/**
1324 * ib_query_ah - Queries the address vector associated with an address
1325 *   handle.
1326 * @ah: The address handle to query.
1327 * @ah_attr: The address vector attributes associated with the address
1328 *   handle.
1329 */
1330int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
1331
1332/**
1333 * ib_destroy_ah - Destroys an address handle.
1334 * @ah: The address handle to destroy.
1335 */
1336int ib_destroy_ah(struct ib_ah *ah);
1337
1338/**
1339 * ib_create_srq - Creates a SRQ associated with the specified protection
1340 *   domain.
1341 * @pd: The protection domain associated with the SRQ.
1342 * @srq_init_attr: A list of initial attributes required to create the
1343 *   SRQ.  If SRQ creation succeeds, then the attributes are updated to
1344 *   the actual capabilities of the created SRQ.
1345 *
1346 * srq_attr->max_wr and srq_attr->max_sge are read the determine the
1347 * requested size of the SRQ, and set to the actual values allocated
1348 * on return.  If ib_create_srq() succeeds, then max_wr and max_sge
1349 * will always be at least as large as the requested values.
1350 */
1351struct ib_srq *ib_create_srq(struct ib_pd *pd,
1352			     struct ib_srq_init_attr *srq_init_attr);
1353
1354/**
1355 * ib_modify_srq - Modifies the attributes for the specified SRQ.
1356 * @srq: The SRQ to modify.
1357 * @srq_attr: On input, specifies the SRQ attributes to modify.  On output,
1358 *   the current values of selected SRQ attributes are returned.
1359 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
1360 *   are being modified.
1361 *
1362 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
1363 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when
1364 * the number of receives queued drops below the limit.
1365 */
1366int ib_modify_srq(struct ib_srq *srq,
1367		  struct ib_srq_attr *srq_attr,
1368		  enum ib_srq_attr_mask srq_attr_mask);
1369
1370/**
1371 * ib_query_srq - Returns the attribute list and current values for the
1372 *   specified SRQ.
1373 * @srq: The SRQ to query.
1374 * @srq_attr: The attributes of the specified SRQ.
1375 */
1376int ib_query_srq(struct ib_srq *srq,
1377		 struct ib_srq_attr *srq_attr);
1378
1379/**
1380 * ib_destroy_srq - Destroys the specified SRQ.
1381 * @srq: The SRQ to destroy.
1382 */
1383int ib_destroy_srq(struct ib_srq *srq);
1384
1385/**
1386 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
1387 * @srq: The SRQ to post the work request on.
1388 * @recv_wr: A list of work requests to post on the receive queue.
1389 * @bad_recv_wr: On an immediate failure, this parameter will reference
1390 *   the work request that failed to be posted on the QP.
1391 */
1392static inline int ib_post_srq_recv(struct ib_srq *srq,
1393				   struct ib_recv_wr *recv_wr,
1394				   struct ib_recv_wr **bad_recv_wr)
1395{
1396	return srq->device->post_srq_recv(srq, recv_wr, bad_recv_wr);
1397}
1398
1399/**
1400 * ib_create_qp - Creates a QP associated with the specified protection
1401 *   domain.
1402 * @pd: The protection domain associated with the QP.
1403 * @qp_init_attr: A list of initial attributes required to create the
1404 *   QP.  If QP creation succeeds, then the attributes are updated to
1405 *   the actual capabilities of the created QP.
1406 */
1407struct ib_qp *ib_create_qp(struct ib_pd *pd,
1408			   struct ib_qp_init_attr *qp_init_attr);
1409
1410/**
1411 * ib_modify_qp - Modifies the attributes for the specified QP and then
1412 *   transitions the QP to the given state.
1413 * @qp: The QP to modify.
1414 * @qp_attr: On input, specifies the QP attributes to modify.  On output,
1415 *   the current values of selected QP attributes are returned.
1416 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP
1417 *   are being modified.
1418 */
1419int ib_modify_qp(struct ib_qp *qp,
1420		 struct ib_qp_attr *qp_attr,
1421		 int qp_attr_mask);
1422
1423/**
1424 * ib_query_qp - Returns the attribute list and current values for the
1425 *   specified QP.
1426 * @qp: The QP to query.
1427 * @qp_attr: The attributes of the specified QP.
1428 * @qp_attr_mask: A bit-mask used to select specific attributes to query.
1429 * @qp_init_attr: Additional attributes of the selected QP.
1430 *
1431 * The qp_attr_mask may be used to limit the query to gathering only the
1432 * selected attributes.
1433 */
1434int ib_query_qp(struct ib_qp *qp,
1435		struct ib_qp_attr *qp_attr,
1436		int qp_attr_mask,
1437		struct ib_qp_init_attr *qp_init_attr);
1438
1439/**
1440 * ib_destroy_qp - Destroys the specified QP.
1441 * @qp: The QP to destroy.
1442 */
1443int ib_destroy_qp(struct ib_qp *qp);
1444
1445/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1446 * ib_post_send - Posts a list of work requests to the send queue of
1447 *   the specified QP.
1448 * @qp: The QP to post the work request on.
1449 * @send_wr: A list of work requests to post on the send queue.
1450 * @bad_send_wr: On an immediate failure, this parameter will reference
1451 *   the work request that failed to be posted on the QP.
1452 *
1453 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate
1454 * error is returned, the QP state shall not be affected,
1455 * ib_post_send() will return an immediate error after queueing any
1456 * earlier work requests in the list.
1457 */
1458static inline int ib_post_send(struct ib_qp *qp,
1459			       struct ib_send_wr *send_wr,
1460			       struct ib_send_wr **bad_send_wr)
1461{
1462	return qp->device->post_send(qp, send_wr, bad_send_wr);
1463}
1464
1465/**
1466 * ib_post_recv - Posts a list of work requests to the receive queue of
1467 *   the specified QP.
1468 * @qp: The QP to post the work request on.
1469 * @recv_wr: A list of work requests to post on the receive queue.
1470 * @bad_recv_wr: On an immediate failure, this parameter will reference
1471 *   the work request that failed to be posted on the QP.
1472 */
1473static inline int ib_post_recv(struct ib_qp *qp,
1474			       struct ib_recv_wr *recv_wr,
1475			       struct ib_recv_wr **bad_recv_wr)
1476{
1477	return qp->device->post_recv(qp, recv_wr, bad_recv_wr);
1478}
1479
1480/**
1481 * ib_create_cq - Creates a CQ on the specified device.
1482 * @device: The device on which to create the CQ.
1483 * @comp_handler: A user-specified callback that is invoked when a
1484 *   completion event occurs on the CQ.
1485 * @event_handler: A user-specified callback that is invoked when an
1486 *   asynchronous event not associated with a completion occurs on the CQ.
1487 * @cq_context: Context associated with the CQ returned to the user via
1488 *   the associated completion and event handlers.
1489 * @cqe: The minimum size of the CQ.
1490 * @comp_vector - Completion vector used to signal completion events.
1491 *     Must be >= 0 and < context->num_comp_vectors.
1492 *
1493 * Users can examine the cq structure to determine the actual CQ size.
1494 */
1495struct ib_cq *ib_create_cq(struct ib_device *device,
1496			   ib_comp_handler comp_handler,
1497			   void (*event_handler)(struct ib_event *, void *),
1498			   void *cq_context, int cqe, int comp_vector);
1499
1500/**
1501 * ib_resize_cq - Modifies the capacity of the CQ.
1502 * @cq: The CQ to resize.
1503 * @cqe: The minimum size of the CQ.
1504 *
1505 * Users can examine the cq structure to determine the actual CQ size.
1506 */
1507int ib_resize_cq(struct ib_cq *cq, int cqe);
1508
1509/**
1510 * ib_modify_cq - Modifies moderation params of the CQ
1511 * @cq: The CQ to modify.
1512 * @cq_count: number of CQEs that will trigger an event
1513 * @cq_period: max period of time in usec before triggering an event
1514 *
1515 */
1516int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period);
1517
1518/**
1519 * ib_destroy_cq - Destroys the specified CQ.
1520 * @cq: The CQ to destroy.
1521 */
1522int ib_destroy_cq(struct ib_cq *cq);
1523
1524/**
1525 * ib_poll_cq - poll a CQ for completion(s)
1526 * @cq:the CQ being polled
1527 * @num_entries:maximum number of completions to return
1528 * @wc:array of at least @num_entries &struct ib_wc where completions
1529 *   will be returned
1530 *
1531 * Poll a CQ for (possibly multiple) completions.  If the return value
1532 * is < 0, an error occurred.  If the return value is >= 0, it is the
1533 * number of completions returned.  If the return value is
1534 * non-negative and < num_entries, then the CQ was emptied.
1535 */
1536static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
1537			     struct ib_wc *wc)
1538{
1539	return cq->device->poll_cq(cq, num_entries, wc);
1540}
1541
1542/**
1543 * ib_peek_cq - Returns the number of unreaped completions currently
1544 *   on the specified CQ.
1545 * @cq: The CQ to peek.
1546 * @wc_cnt: A minimum number of unreaped completions to check for.
1547 *
1548 * If the number of unreaped completions is greater than or equal to wc_cnt,
1549 * this function returns wc_cnt, otherwise, it returns the actual number of
1550 * unreaped completions.
1551 */
1552int ib_peek_cq(struct ib_cq *cq, int wc_cnt);
1553
1554/**
1555 * ib_req_notify_cq - Request completion notification on a CQ.
1556 * @cq: The CQ to generate an event for.
1557 * @flags:
1558 *   Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
1559 *   to request an event on the next solicited event or next work
1560 *   completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
1561 *   may also be |ed in to request a hint about missed events, as
1562 *   described below.
1563 *
1564 * Return Value:
1565 *    < 0 means an error occurred while requesting notification
1566 *   == 0 means notification was requested successfully, and if
1567 *        IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
1568 *        were missed and it is safe to wait for another event.  In
1569 *        this case is it guaranteed that any work completions added
1570 *        to the CQ since the last CQ poll will trigger a completion
1571 *        notification event.
1572 *    > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
1573 *        in.  It means that the consumer must poll the CQ again to
1574 *        make sure it is empty to avoid missing an event because of a
1575 *        race between requesting notification and an entry being
1576 *        added to the CQ.  This return value means it is possible
1577 *        (but not guaranteed) that a work completion has been added
1578 *        to the CQ since the last poll without triggering a
1579 *        completion notification event.
1580 */
1581static inline int ib_req_notify_cq(struct ib_cq *cq,
1582				   enum ib_cq_notify_flags flags)
1583{
1584	return cq->device->req_notify_cq(cq, flags);
1585}
1586
1587/**
1588 * ib_req_ncomp_notif - Request completion notification when there are
1589 *   at least the specified number of unreaped completions on the CQ.
1590 * @cq: The CQ to generate an event for.
1591 * @wc_cnt: The number of unreaped completions that should be on the
1592 *   CQ before an event is generated.
1593 */
1594static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt)
1595{
1596	return cq->device->req_ncomp_notif ?
1597		cq->device->req_ncomp_notif(cq, wc_cnt) :
1598		-ENOSYS;
1599}
1600
1601/**
1602 * ib_get_dma_mr - Returns a memory region for system memory that is
1603 *   usable for DMA.
1604 * @pd: The protection domain associated with the memory region.
1605 * @mr_access_flags: Specifies the memory access rights.
1606 *
1607 * Note that the ib_dma_*() functions defined below must be used
1608 * to create/destroy addresses used with the Lkey or Rkey returned
1609 * by ib_get_dma_mr().
1610 */
1611struct ib_mr *ib_get_dma_mr(struct ib_pd *pd, int mr_access_flags);
1612
1613/**
1614 * ib_dma_mapping_error - check a DMA addr for error
1615 * @dev: The device for which the dma_addr was created
1616 * @dma_addr: The DMA address to check
1617 */
1618static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
1619{
1620	if (dev->dma_ops)
1621		return dev->dma_ops->mapping_error(dev, dma_addr);
1622	return dma_mapping_error(dev->dma_device, dma_addr);
1623}
1624
1625/**
1626 * ib_dma_map_single - Map a kernel virtual address to DMA address
1627 * @dev: The device for which the dma_addr is to be created
1628 * @cpu_addr: The kernel virtual address
1629 * @size: The size of the region in bytes
1630 * @direction: The direction of the DMA
1631 */
1632static inline u64 ib_dma_map_single(struct ib_device *dev,
1633				    void *cpu_addr, size_t size,
1634				    enum dma_data_direction direction)
1635{
1636	if (dev->dma_ops)
1637		return dev->dma_ops->map_single(dev, cpu_addr, size, direction);
1638	return dma_map_single(dev->dma_device, cpu_addr, size, direction);
1639}
1640
1641/**
1642 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
1643 * @dev: The device for which the DMA address was created
1644 * @addr: The DMA address
1645 * @size: The size of the region in bytes
1646 * @direction: The direction of the DMA
1647 */
1648static inline void ib_dma_unmap_single(struct ib_device *dev,
1649				       u64 addr, size_t size,
1650				       enum dma_data_direction direction)
1651{
1652	if (dev->dma_ops)
1653		dev->dma_ops->unmap_single(dev, addr, size, direction);
1654	else
1655		dma_unmap_single(dev->dma_device, addr, size, direction);
1656}
1657
1658static inline u64 ib_dma_map_single_attrs(struct ib_device *dev,
1659					  void *cpu_addr, size_t size,
1660					  enum dma_data_direction direction,
1661					  struct dma_attrs *attrs)
1662{
1663	return dma_map_single_attrs(dev->dma_device, cpu_addr, size,
1664				    direction, attrs);
1665}
1666
1667static inline void ib_dma_unmap_single_attrs(struct ib_device *dev,
1668					     u64 addr, size_t size,
1669					     enum dma_data_direction direction,
1670					     struct dma_attrs *attrs)
1671{
1672	return dma_unmap_single_attrs(dev->dma_device, addr, size,
1673				      direction, attrs);
1674}
1675
1676/**
1677 * ib_dma_map_page - Map a physical page to DMA address
1678 * @dev: The device for which the dma_addr is to be created
1679 * @page: The page to be mapped
1680 * @offset: The offset within the page
1681 * @size: The size of the region in bytes
1682 * @direction: The direction of the DMA
1683 */
1684static inline u64 ib_dma_map_page(struct ib_device *dev,
1685				  struct page *page,
1686				  unsigned long offset,
1687				  size_t size,
1688					 enum dma_data_direction direction)
1689{
1690	if (dev->dma_ops)
1691		return dev->dma_ops->map_page(dev, page, offset, size, direction);
1692	return dma_map_page(dev->dma_device, page, offset, size, direction);
1693}
1694
1695/**
1696 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
1697 * @dev: The device for which the DMA address was created
1698 * @addr: The DMA address
1699 * @size: The size of the region in bytes
1700 * @direction: The direction of the DMA
1701 */
1702static inline void ib_dma_unmap_page(struct ib_device *dev,
1703				     u64 addr, size_t size,
1704				     enum dma_data_direction direction)
1705{
1706	if (dev->dma_ops)
1707		dev->dma_ops->unmap_page(dev, addr, size, direction);
1708	else
1709		dma_unmap_page(dev->dma_device, addr, size, direction);
1710}
1711
1712/**
1713 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses
1714 * @dev: The device for which the DMA addresses are to be created
1715 * @sg: The array of scatter/gather entries
1716 * @nents: The number of scatter/gather entries
1717 * @direction: The direction of the DMA
1718 */
1719static inline int ib_dma_map_sg(struct ib_device *dev,
1720				struct scatterlist *sg, int nents,
1721				enum dma_data_direction direction)
1722{
1723	if (dev->dma_ops)
1724		return dev->dma_ops->map_sg(dev, sg, nents, direction);
1725	return dma_map_sg(dev->dma_device, sg, nents, direction);
1726}
1727
1728/**
1729 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
1730 * @dev: The device for which the DMA addresses were created
1731 * @sg: The array of scatter/gather entries
1732 * @nents: The number of scatter/gather entries
1733 * @direction: The direction of the DMA
1734 */
1735static inline void ib_dma_unmap_sg(struct ib_device *dev,
1736				   struct scatterlist *sg, int nents,
1737				   enum dma_data_direction direction)
1738{
1739	if (dev->dma_ops)
1740		dev->dma_ops->unmap_sg(dev, sg, nents, direction);
1741	else
1742		dma_unmap_sg(dev->dma_device, sg, nents, direction);
1743}
1744
1745static inline int ib_dma_map_sg_attrs(struct ib_device *dev,
1746				      struct scatterlist *sg, int nents,
1747				      enum dma_data_direction direction,
1748				      struct dma_attrs *attrs)
1749{
1750	return dma_map_sg_attrs(dev->dma_device, sg, nents, direction, attrs);
1751}
1752
1753static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev,
1754					 struct scatterlist *sg, int nents,
1755					 enum dma_data_direction direction,
1756					 struct dma_attrs *attrs)
1757{
1758	dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, attrs);
1759}
1760/**
1761 * ib_sg_dma_address - Return the DMA address from a scatter/gather entry
1762 * @dev: The device for which the DMA addresses were created
1763 * @sg: The scatter/gather entry
 
 
 
1764 */
1765static inline u64 ib_sg_dma_address(struct ib_device *dev,
1766				    struct scatterlist *sg)
1767{
1768	if (dev->dma_ops)
1769		return dev->dma_ops->dma_address(dev, sg);
1770	return sg_dma_address(sg);
1771}
1772
1773/**
1774 * ib_sg_dma_len - Return the DMA length from a scatter/gather entry
1775 * @dev: The device for which the DMA addresses were created
1776 * @sg: The scatter/gather entry
 
 
 
1777 */
1778static inline unsigned int ib_sg_dma_len(struct ib_device *dev,
1779					 struct scatterlist *sg)
1780{
1781	if (dev->dma_ops)
1782		return dev->dma_ops->dma_len(dev, sg);
1783	return sg_dma_len(sg);
1784}
1785
1786/**
1787 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
1788 * @dev: The device for which the DMA address was created
1789 * @addr: The DMA address
1790 * @size: The size of the region in bytes
1791 * @dir: The direction of the DMA
1792 */
1793static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
1794					      u64 addr,
1795					      size_t size,
1796					      enum dma_data_direction dir)
1797{
1798	if (dev->dma_ops)
1799		dev->dma_ops->sync_single_for_cpu(dev, addr, size, dir);
1800	else
1801		dma_sync_single_for_cpu(dev->dma_device, addr, size, dir);
1802}
1803
1804/**
1805 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
1806 * @dev: The device for which the DMA address was created
1807 * @addr: The DMA address
1808 * @size: The size of the region in bytes
1809 * @dir: The direction of the DMA
1810 */
1811static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
1812						 u64 addr,
1813						 size_t size,
1814						 enum dma_data_direction dir)
1815{
1816	if (dev->dma_ops)
1817		dev->dma_ops->sync_single_for_device(dev, addr, size, dir);
1818	else
1819		dma_sync_single_for_device(dev->dma_device, addr, size, dir);
1820}
1821
1822/**
1823 * ib_dma_alloc_coherent - Allocate memory and map it for DMA
1824 * @dev: The device for which the DMA address is requested
1825 * @size: The size of the region to allocate in bytes
1826 * @dma_handle: A pointer for returning the DMA address of the region
1827 * @flag: memory allocator flags
1828 */
1829static inline void *ib_dma_alloc_coherent(struct ib_device *dev,
1830					   size_t size,
1831					   u64 *dma_handle,
1832					   gfp_t flag)
1833{
1834	if (dev->dma_ops)
1835		return dev->dma_ops->alloc_coherent(dev, size, dma_handle, flag);
1836	else {
1837		dma_addr_t handle;
1838		void *ret;
1839
1840		ret = dma_alloc_coherent(dev->dma_device, size, &handle, flag);
1841		*dma_handle = handle;
1842		return ret;
1843	}
1844}
1845
1846/**
1847 * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent()
1848 * @dev: The device for which the DMA addresses were allocated
1849 * @size: The size of the region
1850 * @cpu_addr: the address returned by ib_dma_alloc_coherent()
1851 * @dma_handle: the DMA address returned by ib_dma_alloc_coherent()
1852 */
1853static inline void ib_dma_free_coherent(struct ib_device *dev,
1854					size_t size, void *cpu_addr,
1855					u64 dma_handle)
1856{
1857	if (dev->dma_ops)
1858		dev->dma_ops->free_coherent(dev, size, cpu_addr, dma_handle);
1859	else
1860		dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle);
1861}
1862
1863/**
1864 * ib_reg_phys_mr - Prepares a virtually addressed memory region for use
1865 *   by an HCA.
1866 * @pd: The protection domain associated assigned to the registered region.
1867 * @phys_buf_array: Specifies a list of physical buffers to use in the
1868 *   memory region.
1869 * @num_phys_buf: Specifies the size of the phys_buf_array.
1870 * @mr_access_flags: Specifies the memory access rights.
1871 * @iova_start: The offset of the region's starting I/O virtual address.
1872 */
1873struct ib_mr *ib_reg_phys_mr(struct ib_pd *pd,
1874			     struct ib_phys_buf *phys_buf_array,
1875			     int num_phys_buf,
1876			     int mr_access_flags,
1877			     u64 *iova_start);
1878
1879/**
1880 * ib_rereg_phys_mr - Modifies the attributes of an existing memory region.
1881 *   Conceptually, this call performs the functions deregister memory region
1882 *   followed by register physical memory region.  Where possible,
1883 *   resources are reused instead of deallocated and reallocated.
1884 * @mr: The memory region to modify.
1885 * @mr_rereg_mask: A bit-mask used to indicate which of the following
1886 *   properties of the memory region are being modified.
1887 * @pd: If %IB_MR_REREG_PD is set in mr_rereg_mask, this field specifies
1888 *   the new protection domain to associated with the memory region,
1889 *   otherwise, this parameter is ignored.
1890 * @phys_buf_array: If %IB_MR_REREG_TRANS is set in mr_rereg_mask, this
1891 *   field specifies a list of physical buffers to use in the new
1892 *   translation, otherwise, this parameter is ignored.
1893 * @num_phys_buf: If %IB_MR_REREG_TRANS is set in mr_rereg_mask, this
1894 *   field specifies the size of the phys_buf_array, otherwise, this
1895 *   parameter is ignored.
1896 * @mr_access_flags: If %IB_MR_REREG_ACCESS is set in mr_rereg_mask, this
1897 *   field specifies the new memory access rights, otherwise, this
1898 *   parameter is ignored.
1899 * @iova_start: The offset of the region's starting I/O virtual address.
1900 */
1901int ib_rereg_phys_mr(struct ib_mr *mr,
1902		     int mr_rereg_mask,
1903		     struct ib_pd *pd,
1904		     struct ib_phys_buf *phys_buf_array,
1905		     int num_phys_buf,
1906		     int mr_access_flags,
1907		     u64 *iova_start);
1908
1909/**
1910 * ib_query_mr - Retrieves information about a specific memory region.
1911 * @mr: The memory region to retrieve information about.
1912 * @mr_attr: The attributes of the specified memory region.
1913 */
1914int ib_query_mr(struct ib_mr *mr, struct ib_mr_attr *mr_attr);
1915
1916/**
1917 * ib_dereg_mr - Deregisters a memory region and removes it from the
1918 *   HCA translation table.
1919 * @mr: The memory region to deregister.
 
 
1920 */
1921int ib_dereg_mr(struct ib_mr *mr);
1922
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1923/**
1924 * ib_alloc_fast_reg_mr - Allocates memory region usable with the
1925 *   IB_WR_FAST_REG_MR send work request.
1926 * @pd: The protection domain associated with the region.
1927 * @max_page_list_len: requested max physical buffer list length to be
1928 *   used with fast register work requests for this MR.
1929 */
1930struct ib_mr *ib_alloc_fast_reg_mr(struct ib_pd *pd, int max_page_list_len);
1931
1932/**
1933 * ib_alloc_fast_reg_page_list - Allocates a page list array
1934 * @device - ib device pointer.
1935 * @page_list_len - size of the page list array to be allocated.
1936 *
1937 * This allocates and returns a struct ib_fast_reg_page_list * and a
1938 * page_list array that is at least page_list_len in size.  The actual
1939 * size is returned in max_page_list_len.  The caller is responsible
1940 * for initializing the contents of the page_list array before posting
1941 * a send work request with the IB_WC_FAST_REG_MR opcode.
1942 *
1943 * The page_list array entries must be translated using one of the
1944 * ib_dma_*() functions just like the addresses passed to
1945 * ib_map_phys_fmr().  Once the ib_post_send() is issued, the struct
1946 * ib_fast_reg_page_list must not be modified by the caller until the
1947 * IB_WC_FAST_REG_MR work request completes.
1948 */
1949struct ib_fast_reg_page_list *ib_alloc_fast_reg_page_list(
1950				struct ib_device *device, int page_list_len);
1951
1952/**
1953 * ib_free_fast_reg_page_list - Deallocates a previously allocated
1954 *   page list array.
1955 * @page_list - struct ib_fast_reg_page_list pointer to be deallocated.
1956 */
1957void ib_free_fast_reg_page_list(struct ib_fast_reg_page_list *page_list);
1958
1959/**
1960 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR
1961 *   R_Key and L_Key.
1962 * @mr - struct ib_mr pointer to be updated.
1963 * @newkey - new key to be used.
1964 */
1965static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey)
1966{
1967	mr->lkey = (mr->lkey & 0xffffff00) | newkey;
1968	mr->rkey = (mr->rkey & 0xffffff00) | newkey;
1969}
1970
1971/**
 
 
 
 
 
 
 
 
 
 
 
1972 * ib_alloc_mw - Allocates a memory window.
1973 * @pd: The protection domain associated with the memory window.
 
1974 */
1975struct ib_mw *ib_alloc_mw(struct ib_pd *pd);
1976
1977/**
1978 * ib_bind_mw - Posts a work request to the send queue of the specified
1979 *   QP, which binds the memory window to the given address range and
1980 *   remote access attributes.
1981 * @qp: QP to post the bind work request on.
1982 * @mw: The memory window to bind.
1983 * @mw_bind: Specifies information about the memory window, including
1984 *   its address range, remote access rights, and associated memory region.
 
 
 
 
1985 */
1986static inline int ib_bind_mw(struct ib_qp *qp,
1987			     struct ib_mw *mw,
1988			     struct ib_mw_bind *mw_bind)
1989{
1990	/* XXX reference counting in corresponding MR? */
1991	return mw->device->bind_mw ?
1992		mw->device->bind_mw(qp, mw, mw_bind) :
1993		-ENOSYS;
1994}
1995
1996/**
1997 * ib_dealloc_mw - Deallocates a memory window.
1998 * @mw: The memory window to deallocate.
1999 */
2000int ib_dealloc_mw(struct ib_mw *mw);
2001
2002/**
2003 * ib_alloc_fmr - Allocates a unmapped fast memory region.
2004 * @pd: The protection domain associated with the unmapped region.
2005 * @mr_access_flags: Specifies the memory access rights.
2006 * @fmr_attr: Attributes of the unmapped region.
2007 *
2008 * A fast memory region must be mapped before it can be used as part of
2009 * a work request.
2010 */
2011struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
2012			    int mr_access_flags,
2013			    struct ib_fmr_attr *fmr_attr);
2014
2015/**
2016 * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region.
2017 * @fmr: The fast memory region to associate with the pages.
2018 * @page_list: An array of physical pages to map to the fast memory region.
2019 * @list_len: The number of pages in page_list.
2020 * @iova: The I/O virtual address to use with the mapped region.
2021 */
2022static inline int ib_map_phys_fmr(struct ib_fmr *fmr,
2023				  u64 *page_list, int list_len,
2024				  u64 iova)
2025{
2026	return fmr->device->map_phys_fmr(fmr, page_list, list_len, iova);
2027}
2028
2029/**
2030 * ib_unmap_fmr - Removes the mapping from a list of fast memory regions.
2031 * @fmr_list: A linked list of fast memory regions to unmap.
2032 */
2033int ib_unmap_fmr(struct list_head *fmr_list);
2034
2035/**
2036 * ib_dealloc_fmr - Deallocates a fast memory region.
2037 * @fmr: The fast memory region to deallocate.
2038 */
2039int ib_dealloc_fmr(struct ib_fmr *fmr);
2040
2041/**
2042 * ib_attach_mcast - Attaches the specified QP to a multicast group.
2043 * @qp: QP to attach to the multicast group.  The QP must be type
2044 *   IB_QPT_UD.
2045 * @gid: Multicast group GID.
2046 * @lid: Multicast group LID in host byte order.
2047 *
2048 * In order to send and receive multicast packets, subnet
2049 * administration must have created the multicast group and configured
2050 * the fabric appropriately.  The port associated with the specified
2051 * QP must also be a member of the multicast group.
2052 */
2053int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2054
2055/**
2056 * ib_detach_mcast - Detaches the specified QP from a multicast group.
2057 * @qp: QP to detach from the multicast group.
2058 * @gid: Multicast group GID.
2059 * @lid: Multicast group LID in host byte order.
2060 */
2061int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2062
2063#endif /* IB_VERBS_H */
v3.15
   1/*
   2 * Copyright (c) 2004 Mellanox Technologies Ltd.  All rights reserved.
   3 * Copyright (c) 2004 Infinicon Corporation.  All rights reserved.
   4 * Copyright (c) 2004 Intel Corporation.  All rights reserved.
   5 * Copyright (c) 2004 Topspin Corporation.  All rights reserved.
   6 * Copyright (c) 2004 Voltaire Corporation.  All rights reserved.
   7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
   8 * Copyright (c) 2005, 2006, 2007 Cisco Systems.  All rights reserved.
   9 *
  10 * This software is available to you under a choice of one of two
  11 * licenses.  You may choose to be licensed under the terms of the GNU
  12 * General Public License (GPL) Version 2, available from the file
  13 * COPYING in the main directory of this source tree, or the
  14 * OpenIB.org BSD license below:
  15 *
  16 *     Redistribution and use in source and binary forms, with or
  17 *     without modification, are permitted provided that the following
  18 *     conditions are met:
  19 *
  20 *      - Redistributions of source code must retain the above
  21 *        copyright notice, this list of conditions and the following
  22 *        disclaimer.
  23 *
  24 *      - Redistributions in binary form must reproduce the above
  25 *        copyright notice, this list of conditions and the following
  26 *        disclaimer in the documentation and/or other materials
  27 *        provided with the distribution.
  28 *
  29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  36 * SOFTWARE.
  37 */
  38
  39#if !defined(IB_VERBS_H)
  40#define IB_VERBS_H
  41
  42#include <linux/types.h>
  43#include <linux/device.h>
  44#include <linux/mm.h>
  45#include <linux/dma-mapping.h>
  46#include <linux/kref.h>
  47#include <linux/list.h>
  48#include <linux/rwsem.h>
  49#include <linux/scatterlist.h>
  50#include <linux/workqueue.h>
  51#include <uapi/linux/if_ether.h>
  52
  53#include <linux/atomic.h>
  54#include <asm/uaccess.h>
  55
  56extern struct workqueue_struct *ib_wq;
  57
  58union ib_gid {
  59	u8	raw[16];
  60	struct {
  61		__be64	subnet_prefix;
  62		__be64	interface_id;
  63	} global;
  64};
  65
  66enum rdma_node_type {
  67	/* IB values map to NodeInfo:NodeType. */
  68	RDMA_NODE_IB_CA 	= 1,
  69	RDMA_NODE_IB_SWITCH,
  70	RDMA_NODE_IB_ROUTER,
  71	RDMA_NODE_RNIC,
  72	RDMA_NODE_USNIC,
  73	RDMA_NODE_USNIC_UDP,
  74};
  75
  76enum rdma_transport_type {
  77	RDMA_TRANSPORT_IB,
  78	RDMA_TRANSPORT_IWARP,
  79	RDMA_TRANSPORT_USNIC,
  80	RDMA_TRANSPORT_USNIC_UDP
  81};
  82
  83enum rdma_transport_type
  84rdma_node_get_transport(enum rdma_node_type node_type) __attribute_const__;
  85
  86enum rdma_link_layer {
  87	IB_LINK_LAYER_UNSPECIFIED,
  88	IB_LINK_LAYER_INFINIBAND,
  89	IB_LINK_LAYER_ETHERNET,
  90};
  91
  92enum ib_device_cap_flags {
  93	IB_DEVICE_RESIZE_MAX_WR		= 1,
  94	IB_DEVICE_BAD_PKEY_CNTR		= (1<<1),
  95	IB_DEVICE_BAD_QKEY_CNTR		= (1<<2),
  96	IB_DEVICE_RAW_MULTI		= (1<<3),
  97	IB_DEVICE_AUTO_PATH_MIG		= (1<<4),
  98	IB_DEVICE_CHANGE_PHY_PORT	= (1<<5),
  99	IB_DEVICE_UD_AV_PORT_ENFORCE	= (1<<6),
 100	IB_DEVICE_CURR_QP_STATE_MOD	= (1<<7),
 101	IB_DEVICE_SHUTDOWN_PORT		= (1<<8),
 102	IB_DEVICE_INIT_TYPE		= (1<<9),
 103	IB_DEVICE_PORT_ACTIVE_EVENT	= (1<<10),
 104	IB_DEVICE_SYS_IMAGE_GUID	= (1<<11),
 105	IB_DEVICE_RC_RNR_NAK_GEN	= (1<<12),
 106	IB_DEVICE_SRQ_RESIZE		= (1<<13),
 107	IB_DEVICE_N_NOTIFY_CQ		= (1<<14),
 108	IB_DEVICE_LOCAL_DMA_LKEY	= (1<<15),
 109	IB_DEVICE_RESERVED		= (1<<16), /* old SEND_W_INV */
 110	IB_DEVICE_MEM_WINDOW		= (1<<17),
 111	/*
 112	 * Devices should set IB_DEVICE_UD_IP_SUM if they support
 113	 * insertion of UDP and TCP checksum on outgoing UD IPoIB
 114	 * messages and can verify the validity of checksum for
 115	 * incoming messages.  Setting this flag implies that the
 116	 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
 117	 */
 118	IB_DEVICE_UD_IP_CSUM		= (1<<18),
 119	IB_DEVICE_UD_TSO		= (1<<19),
 120	IB_DEVICE_XRC			= (1<<20),
 121	IB_DEVICE_MEM_MGT_EXTENSIONS	= (1<<21),
 122	IB_DEVICE_BLOCK_MULTICAST_LOOPBACK = (1<<22),
 123	IB_DEVICE_MEM_WINDOW_TYPE_2A	= (1<<23),
 124	IB_DEVICE_MEM_WINDOW_TYPE_2B	= (1<<24),
 125	IB_DEVICE_MANAGED_FLOW_STEERING = (1<<29),
 126	IB_DEVICE_SIGNATURE_HANDOVER	= (1<<30)
 127};
 128
 129enum ib_signature_prot_cap {
 130	IB_PROT_T10DIF_TYPE_1 = 1,
 131	IB_PROT_T10DIF_TYPE_2 = 1 << 1,
 132	IB_PROT_T10DIF_TYPE_3 = 1 << 2,
 133};
 134
 135enum ib_signature_guard_cap {
 136	IB_GUARD_T10DIF_CRC	= 1,
 137	IB_GUARD_T10DIF_CSUM	= 1 << 1,
 138};
 139
 140enum ib_atomic_cap {
 141	IB_ATOMIC_NONE,
 142	IB_ATOMIC_HCA,
 143	IB_ATOMIC_GLOB
 144};
 145
 146struct ib_device_attr {
 147	u64			fw_ver;
 148	__be64			sys_image_guid;
 149	u64			max_mr_size;
 150	u64			page_size_cap;
 151	u32			vendor_id;
 152	u32			vendor_part_id;
 153	u32			hw_ver;
 154	int			max_qp;
 155	int			max_qp_wr;
 156	int			device_cap_flags;
 157	int			max_sge;
 158	int			max_sge_rd;
 159	int			max_cq;
 160	int			max_cqe;
 161	int			max_mr;
 162	int			max_pd;
 163	int			max_qp_rd_atom;
 164	int			max_ee_rd_atom;
 165	int			max_res_rd_atom;
 166	int			max_qp_init_rd_atom;
 167	int			max_ee_init_rd_atom;
 168	enum ib_atomic_cap	atomic_cap;
 169	enum ib_atomic_cap	masked_atomic_cap;
 170	int			max_ee;
 171	int			max_rdd;
 172	int			max_mw;
 173	int			max_raw_ipv6_qp;
 174	int			max_raw_ethy_qp;
 175	int			max_mcast_grp;
 176	int			max_mcast_qp_attach;
 177	int			max_total_mcast_qp_attach;
 178	int			max_ah;
 179	int			max_fmr;
 180	int			max_map_per_fmr;
 181	int			max_srq;
 182	int			max_srq_wr;
 183	int			max_srq_sge;
 184	unsigned int		max_fast_reg_page_list_len;
 185	u16			max_pkeys;
 186	u8			local_ca_ack_delay;
 187	int			sig_prot_cap;
 188	int			sig_guard_cap;
 189};
 190
 191enum ib_mtu {
 192	IB_MTU_256  = 1,
 193	IB_MTU_512  = 2,
 194	IB_MTU_1024 = 3,
 195	IB_MTU_2048 = 4,
 196	IB_MTU_4096 = 5
 197};
 198
 199static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
 200{
 201	switch (mtu) {
 202	case IB_MTU_256:  return  256;
 203	case IB_MTU_512:  return  512;
 204	case IB_MTU_1024: return 1024;
 205	case IB_MTU_2048: return 2048;
 206	case IB_MTU_4096: return 4096;
 207	default: 	  return -1;
 208	}
 209}
 210
 211enum ib_port_state {
 212	IB_PORT_NOP		= 0,
 213	IB_PORT_DOWN		= 1,
 214	IB_PORT_INIT		= 2,
 215	IB_PORT_ARMED		= 3,
 216	IB_PORT_ACTIVE		= 4,
 217	IB_PORT_ACTIVE_DEFER	= 5
 218};
 219
 220enum ib_port_cap_flags {
 221	IB_PORT_SM				= 1 <<  1,
 222	IB_PORT_NOTICE_SUP			= 1 <<  2,
 223	IB_PORT_TRAP_SUP			= 1 <<  3,
 224	IB_PORT_OPT_IPD_SUP                     = 1 <<  4,
 225	IB_PORT_AUTO_MIGR_SUP			= 1 <<  5,
 226	IB_PORT_SL_MAP_SUP			= 1 <<  6,
 227	IB_PORT_MKEY_NVRAM			= 1 <<  7,
 228	IB_PORT_PKEY_NVRAM			= 1 <<  8,
 229	IB_PORT_LED_INFO_SUP			= 1 <<  9,
 230	IB_PORT_SM_DISABLED			= 1 << 10,
 231	IB_PORT_SYS_IMAGE_GUID_SUP		= 1 << 11,
 232	IB_PORT_PKEY_SW_EXT_PORT_TRAP_SUP	= 1 << 12,
 233	IB_PORT_EXTENDED_SPEEDS_SUP             = 1 << 14,
 234	IB_PORT_CM_SUP				= 1 << 16,
 235	IB_PORT_SNMP_TUNNEL_SUP			= 1 << 17,
 236	IB_PORT_REINIT_SUP			= 1 << 18,
 237	IB_PORT_DEVICE_MGMT_SUP			= 1 << 19,
 238	IB_PORT_VENDOR_CLASS_SUP		= 1 << 20,
 239	IB_PORT_DR_NOTICE_SUP			= 1 << 21,
 240	IB_PORT_CAP_MASK_NOTICE_SUP		= 1 << 22,
 241	IB_PORT_BOOT_MGMT_SUP			= 1 << 23,
 242	IB_PORT_LINK_LATENCY_SUP		= 1 << 24,
 243	IB_PORT_CLIENT_REG_SUP			= 1 << 25,
 244	IB_PORT_IP_BASED_GIDS			= 1 << 26
 245};
 246
 247enum ib_port_width {
 248	IB_WIDTH_1X	= 1,
 249	IB_WIDTH_4X	= 2,
 250	IB_WIDTH_8X	= 4,
 251	IB_WIDTH_12X	= 8
 252};
 253
 254static inline int ib_width_enum_to_int(enum ib_port_width width)
 255{
 256	switch (width) {
 257	case IB_WIDTH_1X:  return  1;
 258	case IB_WIDTH_4X:  return  4;
 259	case IB_WIDTH_8X:  return  8;
 260	case IB_WIDTH_12X: return 12;
 261	default: 	  return -1;
 262	}
 263}
 264
 265enum ib_port_speed {
 266	IB_SPEED_SDR	= 1,
 267	IB_SPEED_DDR	= 2,
 268	IB_SPEED_QDR	= 4,
 269	IB_SPEED_FDR10	= 8,
 270	IB_SPEED_FDR	= 16,
 271	IB_SPEED_EDR	= 32
 272};
 273
 274struct ib_protocol_stats {
 275	/* TBD... */
 276};
 277
 278struct iw_protocol_stats {
 279	u64	ipInReceives;
 280	u64	ipInHdrErrors;
 281	u64	ipInTooBigErrors;
 282	u64	ipInNoRoutes;
 283	u64	ipInAddrErrors;
 284	u64	ipInUnknownProtos;
 285	u64	ipInTruncatedPkts;
 286	u64	ipInDiscards;
 287	u64	ipInDelivers;
 288	u64	ipOutForwDatagrams;
 289	u64	ipOutRequests;
 290	u64	ipOutDiscards;
 291	u64	ipOutNoRoutes;
 292	u64	ipReasmTimeout;
 293	u64	ipReasmReqds;
 294	u64	ipReasmOKs;
 295	u64	ipReasmFails;
 296	u64	ipFragOKs;
 297	u64	ipFragFails;
 298	u64	ipFragCreates;
 299	u64	ipInMcastPkts;
 300	u64	ipOutMcastPkts;
 301	u64	ipInBcastPkts;
 302	u64	ipOutBcastPkts;
 303
 304	u64	tcpRtoAlgorithm;
 305	u64	tcpRtoMin;
 306	u64	tcpRtoMax;
 307	u64	tcpMaxConn;
 308	u64	tcpActiveOpens;
 309	u64	tcpPassiveOpens;
 310	u64	tcpAttemptFails;
 311	u64	tcpEstabResets;
 312	u64	tcpCurrEstab;
 313	u64	tcpInSegs;
 314	u64	tcpOutSegs;
 315	u64	tcpRetransSegs;
 316	u64	tcpInErrs;
 317	u64	tcpOutRsts;
 318};
 319
 320union rdma_protocol_stats {
 321	struct ib_protocol_stats	ib;
 322	struct iw_protocol_stats	iw;
 323};
 324
 325struct ib_port_attr {
 326	enum ib_port_state	state;
 327	enum ib_mtu		max_mtu;
 328	enum ib_mtu		active_mtu;
 329	int			gid_tbl_len;
 330	u32			port_cap_flags;
 331	u32			max_msg_sz;
 332	u32			bad_pkey_cntr;
 333	u32			qkey_viol_cntr;
 334	u16			pkey_tbl_len;
 335	u16			lid;
 336	u16			sm_lid;
 337	u8			lmc;
 338	u8			max_vl_num;
 339	u8			sm_sl;
 340	u8			subnet_timeout;
 341	u8			init_type_reply;
 342	u8			active_width;
 343	u8			active_speed;
 344	u8                      phys_state;
 345};
 346
 347enum ib_device_modify_flags {
 348	IB_DEVICE_MODIFY_SYS_IMAGE_GUID	= 1 << 0,
 349	IB_DEVICE_MODIFY_NODE_DESC	= 1 << 1
 350};
 351
 352struct ib_device_modify {
 353	u64	sys_image_guid;
 354	char	node_desc[64];
 355};
 356
 357enum ib_port_modify_flags {
 358	IB_PORT_SHUTDOWN		= 1,
 359	IB_PORT_INIT_TYPE		= (1<<2),
 360	IB_PORT_RESET_QKEY_CNTR		= (1<<3)
 361};
 362
 363struct ib_port_modify {
 364	u32	set_port_cap_mask;
 365	u32	clr_port_cap_mask;
 366	u8	init_type;
 367};
 368
 369enum ib_event_type {
 370	IB_EVENT_CQ_ERR,
 371	IB_EVENT_QP_FATAL,
 372	IB_EVENT_QP_REQ_ERR,
 373	IB_EVENT_QP_ACCESS_ERR,
 374	IB_EVENT_COMM_EST,
 375	IB_EVENT_SQ_DRAINED,
 376	IB_EVENT_PATH_MIG,
 377	IB_EVENT_PATH_MIG_ERR,
 378	IB_EVENT_DEVICE_FATAL,
 379	IB_EVENT_PORT_ACTIVE,
 380	IB_EVENT_PORT_ERR,
 381	IB_EVENT_LID_CHANGE,
 382	IB_EVENT_PKEY_CHANGE,
 383	IB_EVENT_SM_CHANGE,
 384	IB_EVENT_SRQ_ERR,
 385	IB_EVENT_SRQ_LIMIT_REACHED,
 386	IB_EVENT_QP_LAST_WQE_REACHED,
 387	IB_EVENT_CLIENT_REREGISTER,
 388	IB_EVENT_GID_CHANGE,
 389};
 390
 391struct ib_event {
 392	struct ib_device	*device;
 393	union {
 394		struct ib_cq	*cq;
 395		struct ib_qp	*qp;
 396		struct ib_srq	*srq;
 397		u8		port_num;
 398	} element;
 399	enum ib_event_type	event;
 400};
 401
 402struct ib_event_handler {
 403	struct ib_device *device;
 404	void            (*handler)(struct ib_event_handler *, struct ib_event *);
 405	struct list_head  list;
 406};
 407
 408#define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler)		\
 409	do {							\
 410		(_ptr)->device  = _device;			\
 411		(_ptr)->handler = _handler;			\
 412		INIT_LIST_HEAD(&(_ptr)->list);			\
 413	} while (0)
 414
 415struct ib_global_route {
 416	union ib_gid	dgid;
 417	u32		flow_label;
 418	u8		sgid_index;
 419	u8		hop_limit;
 420	u8		traffic_class;
 421};
 422
 423struct ib_grh {
 424	__be32		version_tclass_flow;
 425	__be16		paylen;
 426	u8		next_hdr;
 427	u8		hop_limit;
 428	union ib_gid	sgid;
 429	union ib_gid	dgid;
 430};
 431
 432enum {
 433	IB_MULTICAST_QPN = 0xffffff
 434};
 435
 436#define IB_LID_PERMISSIVE	cpu_to_be16(0xFFFF)
 437
 438enum ib_ah_flags {
 439	IB_AH_GRH	= 1
 440};
 441
 442enum ib_rate {
 443	IB_RATE_PORT_CURRENT = 0,
 444	IB_RATE_2_5_GBPS = 2,
 445	IB_RATE_5_GBPS   = 5,
 446	IB_RATE_10_GBPS  = 3,
 447	IB_RATE_20_GBPS  = 6,
 448	IB_RATE_30_GBPS  = 4,
 449	IB_RATE_40_GBPS  = 7,
 450	IB_RATE_60_GBPS  = 8,
 451	IB_RATE_80_GBPS  = 9,
 452	IB_RATE_120_GBPS = 10,
 453	IB_RATE_14_GBPS  = 11,
 454	IB_RATE_56_GBPS  = 12,
 455	IB_RATE_112_GBPS = 13,
 456	IB_RATE_168_GBPS = 14,
 457	IB_RATE_25_GBPS  = 15,
 458	IB_RATE_100_GBPS = 16,
 459	IB_RATE_200_GBPS = 17,
 460	IB_RATE_300_GBPS = 18
 461};
 462
 463/**
 464 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the
 465 * base rate of 2.5 Gbit/sec.  For example, IB_RATE_5_GBPS will be
 466 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
 467 * @rate: rate to convert.
 468 */
 469int ib_rate_to_mult(enum ib_rate rate) __attribute_const__;
 470
 471/**
 472 * ib_rate_to_mbps - Convert the IB rate enum to Mbps.
 473 * For example, IB_RATE_2_5_GBPS will be converted to 2500.
 474 * @rate: rate to convert.
 475 */
 476int ib_rate_to_mbps(enum ib_rate rate) __attribute_const__;
 477
 478enum ib_mr_create_flags {
 479	IB_MR_SIGNATURE_EN = 1,
 480};
 481
 482/**
 483 * ib_mr_init_attr - Memory region init attributes passed to routine
 484 *     ib_create_mr.
 485 * @max_reg_descriptors: max number of registration descriptors that
 486 *     may be used with registration work requests.
 487 * @flags: MR creation flags bit mask.
 488 */
 489struct ib_mr_init_attr {
 490	int	    max_reg_descriptors;
 491	u32	    flags;
 492};
 493
 494enum ib_signature_type {
 495	IB_SIG_TYPE_T10_DIF,
 496};
 497
 498/**
 499 * T10-DIF Signature types
 500 * T10-DIF types are defined by SCSI
 501 * specifications.
 502 */
 503enum ib_t10_dif_type {
 504	IB_T10DIF_NONE,
 505	IB_T10DIF_TYPE1,
 506	IB_T10DIF_TYPE2,
 507	IB_T10DIF_TYPE3
 508};
 509
 510/**
 511 * Signature T10-DIF block-guard types
 512 * IB_T10DIF_CRC: Corresponds to T10-PI mandated CRC checksum rules.
 513 * IB_T10DIF_CSUM: Corresponds to IP checksum rules.
 514 */
 515enum ib_t10_dif_bg_type {
 516	IB_T10DIF_CRC,
 517	IB_T10DIF_CSUM
 518};
 519
 520/**
 521 * struct ib_t10_dif_domain - Parameters specific for T10-DIF
 522 *     domain.
 523 * @type: T10-DIF type (0|1|2|3)
 524 * @bg_type: T10-DIF block guard type (CRC|CSUM)
 525 * @pi_interval: protection information interval.
 526 * @bg: seed of guard computation.
 527 * @app_tag: application tag of guard block
 528 * @ref_tag: initial guard block reference tag.
 529 * @type3_inc_reftag: T10-DIF type 3 does not state
 530 *     about the reference tag, it is the user
 531 *     choice to increment it or not.
 532 */
 533struct ib_t10_dif_domain {
 534	enum ib_t10_dif_type	type;
 535	enum ib_t10_dif_bg_type bg_type;
 536	u16			pi_interval;
 537	u16			bg;
 538	u16			app_tag;
 539	u32			ref_tag;
 540	bool			type3_inc_reftag;
 541};
 542
 543/**
 544 * struct ib_sig_domain - Parameters for signature domain
 545 * @sig_type: specific signauture type
 546 * @sig: union of all signature domain attributes that may
 547 *     be used to set domain layout.
 548 */
 549struct ib_sig_domain {
 550	enum ib_signature_type sig_type;
 551	union {
 552		struct ib_t10_dif_domain dif;
 553	} sig;
 554};
 555
 556/**
 557 * struct ib_sig_attrs - Parameters for signature handover operation
 558 * @check_mask: bitmask for signature byte check (8 bytes)
 559 * @mem: memory domain layout desciptor.
 560 * @wire: wire domain layout desciptor.
 561 */
 562struct ib_sig_attrs {
 563	u8			check_mask;
 564	struct ib_sig_domain	mem;
 565	struct ib_sig_domain	wire;
 566};
 567
 568enum ib_sig_err_type {
 569	IB_SIG_BAD_GUARD,
 570	IB_SIG_BAD_REFTAG,
 571	IB_SIG_BAD_APPTAG,
 572};
 573
 574/**
 575 * struct ib_sig_err - signature error descriptor
 576 */
 577struct ib_sig_err {
 578	enum ib_sig_err_type	err_type;
 579	u32			expected;
 580	u32			actual;
 581	u64			sig_err_offset;
 582	u32			key;
 583};
 584
 585enum ib_mr_status_check {
 586	IB_MR_CHECK_SIG_STATUS = 1,
 587};
 588
 589/**
 590 * struct ib_mr_status - Memory region status container
 591 *
 592 * @fail_status: Bitmask of MR checks status. For each
 593 *     failed check a corresponding status bit is set.
 594 * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS
 595 *     failure.
 596 */
 597struct ib_mr_status {
 598	u32		    fail_status;
 599	struct ib_sig_err   sig_err;
 600};
 601
 602/**
 603 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
 604 * enum.
 605 * @mult: multiple to convert.
 606 */
 607enum ib_rate mult_to_ib_rate(int mult) __attribute_const__;
 608
 609struct ib_ah_attr {
 610	struct ib_global_route	grh;
 611	u16			dlid;
 612	u8			sl;
 613	u8			src_path_bits;
 614	u8			static_rate;
 615	u8			ah_flags;
 616	u8			port_num;
 617	u8			dmac[ETH_ALEN];
 618	u16			vlan_id;
 619};
 620
 621enum ib_wc_status {
 622	IB_WC_SUCCESS,
 623	IB_WC_LOC_LEN_ERR,
 624	IB_WC_LOC_QP_OP_ERR,
 625	IB_WC_LOC_EEC_OP_ERR,
 626	IB_WC_LOC_PROT_ERR,
 627	IB_WC_WR_FLUSH_ERR,
 628	IB_WC_MW_BIND_ERR,
 629	IB_WC_BAD_RESP_ERR,
 630	IB_WC_LOC_ACCESS_ERR,
 631	IB_WC_REM_INV_REQ_ERR,
 632	IB_WC_REM_ACCESS_ERR,
 633	IB_WC_REM_OP_ERR,
 634	IB_WC_RETRY_EXC_ERR,
 635	IB_WC_RNR_RETRY_EXC_ERR,
 636	IB_WC_LOC_RDD_VIOL_ERR,
 637	IB_WC_REM_INV_RD_REQ_ERR,
 638	IB_WC_REM_ABORT_ERR,
 639	IB_WC_INV_EECN_ERR,
 640	IB_WC_INV_EEC_STATE_ERR,
 641	IB_WC_FATAL_ERR,
 642	IB_WC_RESP_TIMEOUT_ERR,
 643	IB_WC_GENERAL_ERR
 644};
 645
 646enum ib_wc_opcode {
 647	IB_WC_SEND,
 648	IB_WC_RDMA_WRITE,
 649	IB_WC_RDMA_READ,
 650	IB_WC_COMP_SWAP,
 651	IB_WC_FETCH_ADD,
 652	IB_WC_BIND_MW,
 653	IB_WC_LSO,
 654	IB_WC_LOCAL_INV,
 655	IB_WC_FAST_REG_MR,
 656	IB_WC_MASKED_COMP_SWAP,
 657	IB_WC_MASKED_FETCH_ADD,
 658/*
 659 * Set value of IB_WC_RECV so consumers can test if a completion is a
 660 * receive by testing (opcode & IB_WC_RECV).
 661 */
 662	IB_WC_RECV			= 1 << 7,
 663	IB_WC_RECV_RDMA_WITH_IMM
 664};
 665
 666enum ib_wc_flags {
 667	IB_WC_GRH		= 1,
 668	IB_WC_WITH_IMM		= (1<<1),
 669	IB_WC_WITH_INVALIDATE	= (1<<2),
 670	IB_WC_IP_CSUM_OK	= (1<<3),
 671	IB_WC_WITH_SMAC		= (1<<4),
 672	IB_WC_WITH_VLAN		= (1<<5),
 673};
 674
 675struct ib_wc {
 676	u64			wr_id;
 677	enum ib_wc_status	status;
 678	enum ib_wc_opcode	opcode;
 679	u32			vendor_err;
 680	u32			byte_len;
 681	struct ib_qp	       *qp;
 682	union {
 683		__be32		imm_data;
 684		u32		invalidate_rkey;
 685	} ex;
 686	u32			src_qp;
 687	int			wc_flags;
 688	u16			pkey_index;
 689	u16			slid;
 690	u8			sl;
 691	u8			dlid_path_bits;
 692	u8			port_num;	/* valid only for DR SMPs on switches */
 693	u8			smac[ETH_ALEN];
 694	u16			vlan_id;
 695};
 696
 697enum ib_cq_notify_flags {
 698	IB_CQ_SOLICITED			= 1 << 0,
 699	IB_CQ_NEXT_COMP			= 1 << 1,
 700	IB_CQ_SOLICITED_MASK		= IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
 701	IB_CQ_REPORT_MISSED_EVENTS	= 1 << 2,
 702};
 703
 704enum ib_srq_type {
 705	IB_SRQT_BASIC,
 706	IB_SRQT_XRC
 707};
 708
 709enum ib_srq_attr_mask {
 710	IB_SRQ_MAX_WR	= 1 << 0,
 711	IB_SRQ_LIMIT	= 1 << 1,
 712};
 713
 714struct ib_srq_attr {
 715	u32	max_wr;
 716	u32	max_sge;
 717	u32	srq_limit;
 718};
 719
 720struct ib_srq_init_attr {
 721	void		      (*event_handler)(struct ib_event *, void *);
 722	void		       *srq_context;
 723	struct ib_srq_attr	attr;
 724	enum ib_srq_type	srq_type;
 725
 726	union {
 727		struct {
 728			struct ib_xrcd *xrcd;
 729			struct ib_cq   *cq;
 730		} xrc;
 731	} ext;
 732};
 733
 734struct ib_qp_cap {
 735	u32	max_send_wr;
 736	u32	max_recv_wr;
 737	u32	max_send_sge;
 738	u32	max_recv_sge;
 739	u32	max_inline_data;
 740};
 741
 742enum ib_sig_type {
 743	IB_SIGNAL_ALL_WR,
 744	IB_SIGNAL_REQ_WR
 745};
 746
 747enum ib_qp_type {
 748	/*
 749	 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
 750	 * here (and in that order) since the MAD layer uses them as
 751	 * indices into a 2-entry table.
 752	 */
 753	IB_QPT_SMI,
 754	IB_QPT_GSI,
 755
 756	IB_QPT_RC,
 757	IB_QPT_UC,
 758	IB_QPT_UD,
 759	IB_QPT_RAW_IPV6,
 760	IB_QPT_RAW_ETHERTYPE,
 761	IB_QPT_RAW_PACKET = 8,
 762	IB_QPT_XRC_INI = 9,
 763	IB_QPT_XRC_TGT,
 764	IB_QPT_MAX,
 765	/* Reserve a range for qp types internal to the low level driver.
 766	 * These qp types will not be visible at the IB core layer, so the
 767	 * IB_QPT_MAX usages should not be affected in the core layer
 768	 */
 769	IB_QPT_RESERVED1 = 0x1000,
 770	IB_QPT_RESERVED2,
 771	IB_QPT_RESERVED3,
 772	IB_QPT_RESERVED4,
 773	IB_QPT_RESERVED5,
 774	IB_QPT_RESERVED6,
 775	IB_QPT_RESERVED7,
 776	IB_QPT_RESERVED8,
 777	IB_QPT_RESERVED9,
 778	IB_QPT_RESERVED10,
 779};
 780
 781enum ib_qp_create_flags {
 782	IB_QP_CREATE_IPOIB_UD_LSO		= 1 << 0,
 783	IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK	= 1 << 1,
 784	IB_QP_CREATE_NETIF_QP			= 1 << 5,
 785	IB_QP_CREATE_SIGNATURE_EN		= 1 << 6,
 786	/* reserve bits 26-31 for low level drivers' internal use */
 787	IB_QP_CREATE_RESERVED_START		= 1 << 26,
 788	IB_QP_CREATE_RESERVED_END		= 1 << 31,
 789};
 790
 791
 792/*
 793 * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler
 794 * callback to destroy the passed in QP.
 795 */
 796
 797struct ib_qp_init_attr {
 798	void                  (*event_handler)(struct ib_event *, void *);
 799	void		       *qp_context;
 800	struct ib_cq	       *send_cq;
 801	struct ib_cq	       *recv_cq;
 802	struct ib_srq	       *srq;
 803	struct ib_xrcd	       *xrcd;     /* XRC TGT QPs only */
 804	struct ib_qp_cap	cap;
 805	enum ib_sig_type	sq_sig_type;
 806	enum ib_qp_type		qp_type;
 807	enum ib_qp_create_flags	create_flags;
 808	u8			port_num; /* special QP types only */
 809};
 810
 811struct ib_qp_open_attr {
 812	void                  (*event_handler)(struct ib_event *, void *);
 813	void		       *qp_context;
 814	u32			qp_num;
 815	enum ib_qp_type		qp_type;
 816};
 817
 818enum ib_rnr_timeout {
 819	IB_RNR_TIMER_655_36 =  0,
 820	IB_RNR_TIMER_000_01 =  1,
 821	IB_RNR_TIMER_000_02 =  2,
 822	IB_RNR_TIMER_000_03 =  3,
 823	IB_RNR_TIMER_000_04 =  4,
 824	IB_RNR_TIMER_000_06 =  5,
 825	IB_RNR_TIMER_000_08 =  6,
 826	IB_RNR_TIMER_000_12 =  7,
 827	IB_RNR_TIMER_000_16 =  8,
 828	IB_RNR_TIMER_000_24 =  9,
 829	IB_RNR_TIMER_000_32 = 10,
 830	IB_RNR_TIMER_000_48 = 11,
 831	IB_RNR_TIMER_000_64 = 12,
 832	IB_RNR_TIMER_000_96 = 13,
 833	IB_RNR_TIMER_001_28 = 14,
 834	IB_RNR_TIMER_001_92 = 15,
 835	IB_RNR_TIMER_002_56 = 16,
 836	IB_RNR_TIMER_003_84 = 17,
 837	IB_RNR_TIMER_005_12 = 18,
 838	IB_RNR_TIMER_007_68 = 19,
 839	IB_RNR_TIMER_010_24 = 20,
 840	IB_RNR_TIMER_015_36 = 21,
 841	IB_RNR_TIMER_020_48 = 22,
 842	IB_RNR_TIMER_030_72 = 23,
 843	IB_RNR_TIMER_040_96 = 24,
 844	IB_RNR_TIMER_061_44 = 25,
 845	IB_RNR_TIMER_081_92 = 26,
 846	IB_RNR_TIMER_122_88 = 27,
 847	IB_RNR_TIMER_163_84 = 28,
 848	IB_RNR_TIMER_245_76 = 29,
 849	IB_RNR_TIMER_327_68 = 30,
 850	IB_RNR_TIMER_491_52 = 31
 851};
 852
 853enum ib_qp_attr_mask {
 854	IB_QP_STATE			= 1,
 855	IB_QP_CUR_STATE			= (1<<1),
 856	IB_QP_EN_SQD_ASYNC_NOTIFY	= (1<<2),
 857	IB_QP_ACCESS_FLAGS		= (1<<3),
 858	IB_QP_PKEY_INDEX		= (1<<4),
 859	IB_QP_PORT			= (1<<5),
 860	IB_QP_QKEY			= (1<<6),
 861	IB_QP_AV			= (1<<7),
 862	IB_QP_PATH_MTU			= (1<<8),
 863	IB_QP_TIMEOUT			= (1<<9),
 864	IB_QP_RETRY_CNT			= (1<<10),
 865	IB_QP_RNR_RETRY			= (1<<11),
 866	IB_QP_RQ_PSN			= (1<<12),
 867	IB_QP_MAX_QP_RD_ATOMIC		= (1<<13),
 868	IB_QP_ALT_PATH			= (1<<14),
 869	IB_QP_MIN_RNR_TIMER		= (1<<15),
 870	IB_QP_SQ_PSN			= (1<<16),
 871	IB_QP_MAX_DEST_RD_ATOMIC	= (1<<17),
 872	IB_QP_PATH_MIG_STATE		= (1<<18),
 873	IB_QP_CAP			= (1<<19),
 874	IB_QP_DEST_QPN			= (1<<20),
 875	IB_QP_SMAC			= (1<<21),
 876	IB_QP_ALT_SMAC			= (1<<22),
 877	IB_QP_VID			= (1<<23),
 878	IB_QP_ALT_VID			= (1<<24),
 879};
 880
 881enum ib_qp_state {
 882	IB_QPS_RESET,
 883	IB_QPS_INIT,
 884	IB_QPS_RTR,
 885	IB_QPS_RTS,
 886	IB_QPS_SQD,
 887	IB_QPS_SQE,
 888	IB_QPS_ERR
 889};
 890
 891enum ib_mig_state {
 892	IB_MIG_MIGRATED,
 893	IB_MIG_REARM,
 894	IB_MIG_ARMED
 895};
 896
 897enum ib_mw_type {
 898	IB_MW_TYPE_1 = 1,
 899	IB_MW_TYPE_2 = 2
 900};
 901
 902struct ib_qp_attr {
 903	enum ib_qp_state	qp_state;
 904	enum ib_qp_state	cur_qp_state;
 905	enum ib_mtu		path_mtu;
 906	enum ib_mig_state	path_mig_state;
 907	u32			qkey;
 908	u32			rq_psn;
 909	u32			sq_psn;
 910	u32			dest_qp_num;
 911	int			qp_access_flags;
 912	struct ib_qp_cap	cap;
 913	struct ib_ah_attr	ah_attr;
 914	struct ib_ah_attr	alt_ah_attr;
 915	u16			pkey_index;
 916	u16			alt_pkey_index;
 917	u8			en_sqd_async_notify;
 918	u8			sq_draining;
 919	u8			max_rd_atomic;
 920	u8			max_dest_rd_atomic;
 921	u8			min_rnr_timer;
 922	u8			port_num;
 923	u8			timeout;
 924	u8			retry_cnt;
 925	u8			rnr_retry;
 926	u8			alt_port_num;
 927	u8			alt_timeout;
 928	u8			smac[ETH_ALEN];
 929	u8			alt_smac[ETH_ALEN];
 930	u16			vlan_id;
 931	u16			alt_vlan_id;
 932};
 933
 934enum ib_wr_opcode {
 935	IB_WR_RDMA_WRITE,
 936	IB_WR_RDMA_WRITE_WITH_IMM,
 937	IB_WR_SEND,
 938	IB_WR_SEND_WITH_IMM,
 939	IB_WR_RDMA_READ,
 940	IB_WR_ATOMIC_CMP_AND_SWP,
 941	IB_WR_ATOMIC_FETCH_AND_ADD,
 942	IB_WR_LSO,
 943	IB_WR_SEND_WITH_INV,
 944	IB_WR_RDMA_READ_WITH_INV,
 945	IB_WR_LOCAL_INV,
 946	IB_WR_FAST_REG_MR,
 947	IB_WR_MASKED_ATOMIC_CMP_AND_SWP,
 948	IB_WR_MASKED_ATOMIC_FETCH_AND_ADD,
 949	IB_WR_BIND_MW,
 950	IB_WR_REG_SIG_MR,
 951	/* reserve values for low level drivers' internal use.
 952	 * These values will not be used at all in the ib core layer.
 953	 */
 954	IB_WR_RESERVED1 = 0xf0,
 955	IB_WR_RESERVED2,
 956	IB_WR_RESERVED3,
 957	IB_WR_RESERVED4,
 958	IB_WR_RESERVED5,
 959	IB_WR_RESERVED6,
 960	IB_WR_RESERVED7,
 961	IB_WR_RESERVED8,
 962	IB_WR_RESERVED9,
 963	IB_WR_RESERVED10,
 964};
 965
 966enum ib_send_flags {
 967	IB_SEND_FENCE		= 1,
 968	IB_SEND_SIGNALED	= (1<<1),
 969	IB_SEND_SOLICITED	= (1<<2),
 970	IB_SEND_INLINE		= (1<<3),
 971	IB_SEND_IP_CSUM		= (1<<4),
 972
 973	/* reserve bits 26-31 for low level drivers' internal use */
 974	IB_SEND_RESERVED_START	= (1 << 26),
 975	IB_SEND_RESERVED_END	= (1 << 31),
 976};
 977
 978struct ib_sge {
 979	u64	addr;
 980	u32	length;
 981	u32	lkey;
 982};
 983
 984struct ib_fast_reg_page_list {
 985	struct ib_device       *device;
 986	u64		       *page_list;
 987	unsigned int		max_page_list_len;
 988};
 989
 990/**
 991 * struct ib_mw_bind_info - Parameters for a memory window bind operation.
 992 * @mr: A memory region to bind the memory window to.
 993 * @addr: The address where the memory window should begin.
 994 * @length: The length of the memory window, in bytes.
 995 * @mw_access_flags: Access flags from enum ib_access_flags for the window.
 996 *
 997 * This struct contains the shared parameters for type 1 and type 2
 998 * memory window bind operations.
 999 */
1000struct ib_mw_bind_info {
1001	struct ib_mr   *mr;
1002	u64		addr;
1003	u64		length;
1004	int		mw_access_flags;
1005};
1006
1007struct ib_send_wr {
1008	struct ib_send_wr      *next;
1009	u64			wr_id;
1010	struct ib_sge	       *sg_list;
1011	int			num_sge;
1012	enum ib_wr_opcode	opcode;
1013	int			send_flags;
1014	union {
1015		__be32		imm_data;
1016		u32		invalidate_rkey;
1017	} ex;
1018	union {
1019		struct {
1020			u64	remote_addr;
1021			u32	rkey;
1022		} rdma;
1023		struct {
1024			u64	remote_addr;
1025			u64	compare_add;
1026			u64	swap;
1027			u64	compare_add_mask;
1028			u64	swap_mask;
1029			u32	rkey;
1030		} atomic;
1031		struct {
1032			struct ib_ah *ah;
1033			void   *header;
1034			int     hlen;
1035			int     mss;
1036			u32	remote_qpn;
1037			u32	remote_qkey;
1038			u16	pkey_index; /* valid for GSI only */
1039			u8	port_num;   /* valid for DR SMPs on switch only */
1040		} ud;
1041		struct {
1042			u64				iova_start;
1043			struct ib_fast_reg_page_list   *page_list;
1044			unsigned int			page_shift;
1045			unsigned int			page_list_len;
1046			u32				length;
1047			int				access_flags;
1048			u32				rkey;
1049		} fast_reg;
1050		struct {
1051			struct ib_mw            *mw;
1052			/* The new rkey for the memory window. */
1053			u32                      rkey;
1054			struct ib_mw_bind_info   bind_info;
1055		} bind_mw;
1056		struct {
1057			struct ib_sig_attrs    *sig_attrs;
1058			struct ib_mr	       *sig_mr;
1059			int			access_flags;
1060			struct ib_sge	       *prot;
1061		} sig_handover;
1062	} wr;
1063	u32			xrc_remote_srq_num;	/* XRC TGT QPs only */
1064};
1065
1066struct ib_recv_wr {
1067	struct ib_recv_wr      *next;
1068	u64			wr_id;
1069	struct ib_sge	       *sg_list;
1070	int			num_sge;
1071};
1072
1073enum ib_access_flags {
1074	IB_ACCESS_LOCAL_WRITE	= 1,
1075	IB_ACCESS_REMOTE_WRITE	= (1<<1),
1076	IB_ACCESS_REMOTE_READ	= (1<<2),
1077	IB_ACCESS_REMOTE_ATOMIC	= (1<<3),
1078	IB_ACCESS_MW_BIND	= (1<<4),
1079	IB_ZERO_BASED		= (1<<5)
1080};
1081
1082struct ib_phys_buf {
1083	u64      addr;
1084	u64      size;
1085};
1086
1087struct ib_mr_attr {
1088	struct ib_pd	*pd;
1089	u64		device_virt_addr;
1090	u64		size;
1091	int		mr_access_flags;
1092	u32		lkey;
1093	u32		rkey;
1094};
1095
1096enum ib_mr_rereg_flags {
1097	IB_MR_REREG_TRANS	= 1,
1098	IB_MR_REREG_PD		= (1<<1),
1099	IB_MR_REREG_ACCESS	= (1<<2)
1100};
1101
1102/**
1103 * struct ib_mw_bind - Parameters for a type 1 memory window bind operation.
1104 * @wr_id:      Work request id.
1105 * @send_flags: Flags from ib_send_flags enum.
1106 * @bind_info:  More parameters of the bind operation.
1107 */
1108struct ib_mw_bind {
1109	u64                    wr_id;
1110	int                    send_flags;
1111	struct ib_mw_bind_info bind_info;
 
 
 
1112};
1113
1114struct ib_fmr_attr {
1115	int	max_pages;
1116	int	max_maps;
1117	u8	page_shift;
1118};
1119
1120struct ib_ucontext {
1121	struct ib_device       *device;
1122	struct list_head	pd_list;
1123	struct list_head	mr_list;
1124	struct list_head	mw_list;
1125	struct list_head	cq_list;
1126	struct list_head	qp_list;
1127	struct list_head	srq_list;
1128	struct list_head	ah_list;
1129	struct list_head	xrcd_list;
1130	struct list_head	rule_list;
1131	int			closing;
1132};
1133
1134struct ib_uobject {
1135	u64			user_handle;	/* handle given to us by userspace */
1136	struct ib_ucontext     *context;	/* associated user context */
1137	void		       *object;		/* containing object */
1138	struct list_head	list;		/* link to context's list */
1139	int			id;		/* index into kernel idr */
1140	struct kref		ref;
1141	struct rw_semaphore	mutex;		/* protects .live */
1142	int			live;
1143};
1144
1145struct ib_udata {
1146	const void __user *inbuf;
1147	void __user *outbuf;
1148	size_t       inlen;
1149	size_t       outlen;
1150};
1151
1152struct ib_pd {
1153	struct ib_device       *device;
1154	struct ib_uobject      *uobject;
1155	atomic_t          	usecnt; /* count all resources */
1156};
1157
1158struct ib_xrcd {
1159	struct ib_device       *device;
1160	atomic_t		usecnt; /* count all exposed resources */
1161	struct inode	       *inode;
1162
1163	struct mutex		tgt_qp_mutex;
1164	struct list_head	tgt_qp_list;
1165};
1166
1167struct ib_ah {
1168	struct ib_device	*device;
1169	struct ib_pd		*pd;
1170	struct ib_uobject	*uobject;
1171};
1172
1173typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
1174
1175struct ib_cq {
1176	struct ib_device       *device;
1177	struct ib_uobject      *uobject;
1178	ib_comp_handler   	comp_handler;
1179	void                  (*event_handler)(struct ib_event *, void *);
1180	void                   *cq_context;
1181	int               	cqe;
1182	atomic_t          	usecnt; /* count number of work queues */
1183};
1184
1185struct ib_srq {
1186	struct ib_device       *device;
1187	struct ib_pd	       *pd;
1188	struct ib_uobject      *uobject;
1189	void		      (*event_handler)(struct ib_event *, void *);
1190	void		       *srq_context;
1191	enum ib_srq_type	srq_type;
1192	atomic_t		usecnt;
1193
1194	union {
1195		struct {
1196			struct ib_xrcd *xrcd;
1197			struct ib_cq   *cq;
1198			u32		srq_num;
1199		} xrc;
1200	} ext;
1201};
1202
1203struct ib_qp {
1204	struct ib_device       *device;
1205	struct ib_pd	       *pd;
1206	struct ib_cq	       *send_cq;
1207	struct ib_cq	       *recv_cq;
1208	struct ib_srq	       *srq;
1209	struct ib_xrcd	       *xrcd; /* XRC TGT QPs only */
1210	struct list_head	xrcd_list;
1211	/* count times opened, mcast attaches, flow attaches */
1212	atomic_t		usecnt;
1213	struct list_head	open_list;
1214	struct ib_qp           *real_qp;
1215	struct ib_uobject      *uobject;
1216	void                  (*event_handler)(struct ib_event *, void *);
1217	void		       *qp_context;
1218	u32			qp_num;
1219	enum ib_qp_type		qp_type;
1220};
1221
1222struct ib_mr {
1223	struct ib_device  *device;
1224	struct ib_pd	  *pd;
1225	struct ib_uobject *uobject;
1226	u32		   lkey;
1227	u32		   rkey;
1228	atomic_t	   usecnt; /* count number of MWs */
1229};
1230
1231struct ib_mw {
1232	struct ib_device	*device;
1233	struct ib_pd		*pd;
1234	struct ib_uobject	*uobject;
1235	u32			rkey;
1236	enum ib_mw_type         type;
1237};
1238
1239struct ib_fmr {
1240	struct ib_device	*device;
1241	struct ib_pd		*pd;
1242	struct list_head	list;
1243	u32			lkey;
1244	u32			rkey;
1245};
1246
1247/* Supported steering options */
1248enum ib_flow_attr_type {
1249	/* steering according to rule specifications */
1250	IB_FLOW_ATTR_NORMAL		= 0x0,
1251	/* default unicast and multicast rule -
1252	 * receive all Eth traffic which isn't steered to any QP
1253	 */
1254	IB_FLOW_ATTR_ALL_DEFAULT	= 0x1,
1255	/* default multicast rule -
1256	 * receive all Eth multicast traffic which isn't steered to any QP
1257	 */
1258	IB_FLOW_ATTR_MC_DEFAULT		= 0x2,
1259	/* sniffer rule - receive all port traffic */
1260	IB_FLOW_ATTR_SNIFFER		= 0x3
1261};
1262
1263/* Supported steering header types */
1264enum ib_flow_spec_type {
1265	/* L2 headers*/
1266	IB_FLOW_SPEC_ETH	= 0x20,
1267	IB_FLOW_SPEC_IB		= 0x22,
1268	/* L3 header*/
1269	IB_FLOW_SPEC_IPV4	= 0x30,
1270	/* L4 headers*/
1271	IB_FLOW_SPEC_TCP	= 0x40,
1272	IB_FLOW_SPEC_UDP	= 0x41
1273};
1274#define IB_FLOW_SPEC_LAYER_MASK	0xF0
1275#define IB_FLOW_SPEC_SUPPORT_LAYERS 4
1276
1277/* Flow steering rule priority is set according to it's domain.
1278 * Lower domain value means higher priority.
1279 */
1280enum ib_flow_domain {
1281	IB_FLOW_DOMAIN_USER,
1282	IB_FLOW_DOMAIN_ETHTOOL,
1283	IB_FLOW_DOMAIN_RFS,
1284	IB_FLOW_DOMAIN_NIC,
1285	IB_FLOW_DOMAIN_NUM /* Must be last */
1286};
1287
1288struct ib_flow_eth_filter {
1289	u8	dst_mac[6];
1290	u8	src_mac[6];
1291	__be16	ether_type;
1292	__be16	vlan_tag;
1293};
1294
1295struct ib_flow_spec_eth {
1296	enum ib_flow_spec_type	  type;
1297	u16			  size;
1298	struct ib_flow_eth_filter val;
1299	struct ib_flow_eth_filter mask;
1300};
1301
1302struct ib_flow_ib_filter {
1303	__be16 dlid;
1304	__u8   sl;
1305};
1306
1307struct ib_flow_spec_ib {
1308	enum ib_flow_spec_type	 type;
1309	u16			 size;
1310	struct ib_flow_ib_filter val;
1311	struct ib_flow_ib_filter mask;
1312};
1313
1314struct ib_flow_ipv4_filter {
1315	__be32	src_ip;
1316	__be32	dst_ip;
1317};
1318
1319struct ib_flow_spec_ipv4 {
1320	enum ib_flow_spec_type	   type;
1321	u16			   size;
1322	struct ib_flow_ipv4_filter val;
1323	struct ib_flow_ipv4_filter mask;
1324};
1325
1326struct ib_flow_tcp_udp_filter {
1327	__be16	dst_port;
1328	__be16	src_port;
1329};
1330
1331struct ib_flow_spec_tcp_udp {
1332	enum ib_flow_spec_type	      type;
1333	u16			      size;
1334	struct ib_flow_tcp_udp_filter val;
1335	struct ib_flow_tcp_udp_filter mask;
1336};
1337
1338union ib_flow_spec {
1339	struct {
1340		enum ib_flow_spec_type	type;
1341		u16			size;
1342	};
1343	struct ib_flow_spec_eth		eth;
1344	struct ib_flow_spec_ib		ib;
1345	struct ib_flow_spec_ipv4        ipv4;
1346	struct ib_flow_spec_tcp_udp	tcp_udp;
1347};
1348
1349struct ib_flow_attr {
1350	enum ib_flow_attr_type type;
1351	u16	     size;
1352	u16	     priority;
1353	u32	     flags;
1354	u8	     num_of_specs;
1355	u8	     port;
1356	/* Following are the optional layers according to user request
1357	 * struct ib_flow_spec_xxx
1358	 * struct ib_flow_spec_yyy
1359	 */
1360};
1361
1362struct ib_flow {
1363	struct ib_qp		*qp;
1364	struct ib_uobject	*uobject;
1365};
1366
1367struct ib_mad;
1368struct ib_grh;
1369
1370enum ib_process_mad_flags {
1371	IB_MAD_IGNORE_MKEY	= 1,
1372	IB_MAD_IGNORE_BKEY	= 2,
1373	IB_MAD_IGNORE_ALL	= IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
1374};
1375
1376enum ib_mad_result {
1377	IB_MAD_RESULT_FAILURE  = 0,      /* (!SUCCESS is the important flag) */
1378	IB_MAD_RESULT_SUCCESS  = 1 << 0, /* MAD was successfully processed   */
1379	IB_MAD_RESULT_REPLY    = 1 << 1, /* Reply packet needs to be sent    */
1380	IB_MAD_RESULT_CONSUMED = 1 << 2  /* Packet consumed: stop processing */
1381};
1382
1383#define IB_DEVICE_NAME_MAX 64
1384
1385struct ib_cache {
1386	rwlock_t                lock;
1387	struct ib_event_handler event_handler;
1388	struct ib_pkey_cache  **pkey_cache;
1389	struct ib_gid_cache   **gid_cache;
1390	u8                     *lmc_cache;
1391};
1392
1393struct ib_dma_mapping_ops {
1394	int		(*mapping_error)(struct ib_device *dev,
1395					 u64 dma_addr);
1396	u64		(*map_single)(struct ib_device *dev,
1397				      void *ptr, size_t size,
1398				      enum dma_data_direction direction);
1399	void		(*unmap_single)(struct ib_device *dev,
1400					u64 addr, size_t size,
1401					enum dma_data_direction direction);
1402	u64		(*map_page)(struct ib_device *dev,
1403				    struct page *page, unsigned long offset,
1404				    size_t size,
1405				    enum dma_data_direction direction);
1406	void		(*unmap_page)(struct ib_device *dev,
1407				      u64 addr, size_t size,
1408				      enum dma_data_direction direction);
1409	int		(*map_sg)(struct ib_device *dev,
1410				  struct scatterlist *sg, int nents,
1411				  enum dma_data_direction direction);
1412	void		(*unmap_sg)(struct ib_device *dev,
1413				    struct scatterlist *sg, int nents,
1414				    enum dma_data_direction direction);
 
 
 
 
1415	void		(*sync_single_for_cpu)(struct ib_device *dev,
1416					       u64 dma_handle,
1417					       size_t size,
1418					       enum dma_data_direction dir);
1419	void		(*sync_single_for_device)(struct ib_device *dev,
1420						  u64 dma_handle,
1421						  size_t size,
1422						  enum dma_data_direction dir);
1423	void		*(*alloc_coherent)(struct ib_device *dev,
1424					   size_t size,
1425					   u64 *dma_handle,
1426					   gfp_t flag);
1427	void		(*free_coherent)(struct ib_device *dev,
1428					 size_t size, void *cpu_addr,
1429					 u64 dma_handle);
1430};
1431
1432struct iw_cm_verbs;
1433
1434struct ib_device {
1435	struct device                *dma_device;
1436
1437	char                          name[IB_DEVICE_NAME_MAX];
1438
1439	struct list_head              event_handler_list;
1440	spinlock_t                    event_handler_lock;
1441
1442	spinlock_t                    client_data_lock;
1443	struct list_head              core_list;
1444	struct list_head              client_data_list;
1445
1446	struct ib_cache               cache;
1447	int                          *pkey_tbl_len;
1448	int                          *gid_tbl_len;
1449
1450	int			      num_comp_vectors;
1451
1452	struct iw_cm_verbs	     *iwcm;
1453
1454	int		           (*get_protocol_stats)(struct ib_device *device,
1455							 union rdma_protocol_stats *stats);
1456	int		           (*query_device)(struct ib_device *device,
1457						   struct ib_device_attr *device_attr);
1458	int		           (*query_port)(struct ib_device *device,
1459						 u8 port_num,
1460						 struct ib_port_attr *port_attr);
1461	enum rdma_link_layer	   (*get_link_layer)(struct ib_device *device,
1462						     u8 port_num);
1463	int		           (*query_gid)(struct ib_device *device,
1464						u8 port_num, int index,
1465						union ib_gid *gid);
1466	int		           (*query_pkey)(struct ib_device *device,
1467						 u8 port_num, u16 index, u16 *pkey);
1468	int		           (*modify_device)(struct ib_device *device,
1469						    int device_modify_mask,
1470						    struct ib_device_modify *device_modify);
1471	int		           (*modify_port)(struct ib_device *device,
1472						  u8 port_num, int port_modify_mask,
1473						  struct ib_port_modify *port_modify);
1474	struct ib_ucontext *       (*alloc_ucontext)(struct ib_device *device,
1475						     struct ib_udata *udata);
1476	int                        (*dealloc_ucontext)(struct ib_ucontext *context);
1477	int                        (*mmap)(struct ib_ucontext *context,
1478					   struct vm_area_struct *vma);
1479	struct ib_pd *             (*alloc_pd)(struct ib_device *device,
1480					       struct ib_ucontext *context,
1481					       struct ib_udata *udata);
1482	int                        (*dealloc_pd)(struct ib_pd *pd);
1483	struct ib_ah *             (*create_ah)(struct ib_pd *pd,
1484						struct ib_ah_attr *ah_attr);
1485	int                        (*modify_ah)(struct ib_ah *ah,
1486						struct ib_ah_attr *ah_attr);
1487	int                        (*query_ah)(struct ib_ah *ah,
1488					       struct ib_ah_attr *ah_attr);
1489	int                        (*destroy_ah)(struct ib_ah *ah);
1490	struct ib_srq *            (*create_srq)(struct ib_pd *pd,
1491						 struct ib_srq_init_attr *srq_init_attr,
1492						 struct ib_udata *udata);
1493	int                        (*modify_srq)(struct ib_srq *srq,
1494						 struct ib_srq_attr *srq_attr,
1495						 enum ib_srq_attr_mask srq_attr_mask,
1496						 struct ib_udata *udata);
1497	int                        (*query_srq)(struct ib_srq *srq,
1498						struct ib_srq_attr *srq_attr);
1499	int                        (*destroy_srq)(struct ib_srq *srq);
1500	int                        (*post_srq_recv)(struct ib_srq *srq,
1501						    struct ib_recv_wr *recv_wr,
1502						    struct ib_recv_wr **bad_recv_wr);
1503	struct ib_qp *             (*create_qp)(struct ib_pd *pd,
1504						struct ib_qp_init_attr *qp_init_attr,
1505						struct ib_udata *udata);
1506	int                        (*modify_qp)(struct ib_qp *qp,
1507						struct ib_qp_attr *qp_attr,
1508						int qp_attr_mask,
1509						struct ib_udata *udata);
1510	int                        (*query_qp)(struct ib_qp *qp,
1511					       struct ib_qp_attr *qp_attr,
1512					       int qp_attr_mask,
1513					       struct ib_qp_init_attr *qp_init_attr);
1514	int                        (*destroy_qp)(struct ib_qp *qp);
1515	int                        (*post_send)(struct ib_qp *qp,
1516						struct ib_send_wr *send_wr,
1517						struct ib_send_wr **bad_send_wr);
1518	int                        (*post_recv)(struct ib_qp *qp,
1519						struct ib_recv_wr *recv_wr,
1520						struct ib_recv_wr **bad_recv_wr);
1521	struct ib_cq *             (*create_cq)(struct ib_device *device, int cqe,
1522						int comp_vector,
1523						struct ib_ucontext *context,
1524						struct ib_udata *udata);
1525	int                        (*modify_cq)(struct ib_cq *cq, u16 cq_count,
1526						u16 cq_period);
1527	int                        (*destroy_cq)(struct ib_cq *cq);
1528	int                        (*resize_cq)(struct ib_cq *cq, int cqe,
1529						struct ib_udata *udata);
1530	int                        (*poll_cq)(struct ib_cq *cq, int num_entries,
1531					      struct ib_wc *wc);
1532	int                        (*peek_cq)(struct ib_cq *cq, int wc_cnt);
1533	int                        (*req_notify_cq)(struct ib_cq *cq,
1534						    enum ib_cq_notify_flags flags);
1535	int                        (*req_ncomp_notif)(struct ib_cq *cq,
1536						      int wc_cnt);
1537	struct ib_mr *             (*get_dma_mr)(struct ib_pd *pd,
1538						 int mr_access_flags);
1539	struct ib_mr *             (*reg_phys_mr)(struct ib_pd *pd,
1540						  struct ib_phys_buf *phys_buf_array,
1541						  int num_phys_buf,
1542						  int mr_access_flags,
1543						  u64 *iova_start);
1544	struct ib_mr *             (*reg_user_mr)(struct ib_pd *pd,
1545						  u64 start, u64 length,
1546						  u64 virt_addr,
1547						  int mr_access_flags,
1548						  struct ib_udata *udata);
1549	int                        (*query_mr)(struct ib_mr *mr,
1550					       struct ib_mr_attr *mr_attr);
1551	int                        (*dereg_mr)(struct ib_mr *mr);
1552	int                        (*destroy_mr)(struct ib_mr *mr);
1553	struct ib_mr *		   (*create_mr)(struct ib_pd *pd,
1554						struct ib_mr_init_attr *mr_init_attr);
1555	struct ib_mr *		   (*alloc_fast_reg_mr)(struct ib_pd *pd,
1556					       int max_page_list_len);
1557	struct ib_fast_reg_page_list * (*alloc_fast_reg_page_list)(struct ib_device *device,
1558								   int page_list_len);
1559	void			   (*free_fast_reg_page_list)(struct ib_fast_reg_page_list *page_list);
1560	int                        (*rereg_phys_mr)(struct ib_mr *mr,
1561						    int mr_rereg_mask,
1562						    struct ib_pd *pd,
1563						    struct ib_phys_buf *phys_buf_array,
1564						    int num_phys_buf,
1565						    int mr_access_flags,
1566						    u64 *iova_start);
1567	struct ib_mw *             (*alloc_mw)(struct ib_pd *pd,
1568					       enum ib_mw_type type);
1569	int                        (*bind_mw)(struct ib_qp *qp,
1570					      struct ib_mw *mw,
1571					      struct ib_mw_bind *mw_bind);
1572	int                        (*dealloc_mw)(struct ib_mw *mw);
1573	struct ib_fmr *	           (*alloc_fmr)(struct ib_pd *pd,
1574						int mr_access_flags,
1575						struct ib_fmr_attr *fmr_attr);
1576	int		           (*map_phys_fmr)(struct ib_fmr *fmr,
1577						   u64 *page_list, int list_len,
1578						   u64 iova);
1579	int		           (*unmap_fmr)(struct list_head *fmr_list);
1580	int		           (*dealloc_fmr)(struct ib_fmr *fmr);
1581	int                        (*attach_mcast)(struct ib_qp *qp,
1582						   union ib_gid *gid,
1583						   u16 lid);
1584	int                        (*detach_mcast)(struct ib_qp *qp,
1585						   union ib_gid *gid,
1586						   u16 lid);
1587	int                        (*process_mad)(struct ib_device *device,
1588						  int process_mad_flags,
1589						  u8 port_num,
1590						  struct ib_wc *in_wc,
1591						  struct ib_grh *in_grh,
1592						  struct ib_mad *in_mad,
1593						  struct ib_mad *out_mad);
1594	struct ib_xrcd *	   (*alloc_xrcd)(struct ib_device *device,
1595						 struct ib_ucontext *ucontext,
1596						 struct ib_udata *udata);
1597	int			   (*dealloc_xrcd)(struct ib_xrcd *xrcd);
1598	struct ib_flow *	   (*create_flow)(struct ib_qp *qp,
1599						  struct ib_flow_attr
1600						  *flow_attr,
1601						  int domain);
1602	int			   (*destroy_flow)(struct ib_flow *flow_id);
1603	int			   (*check_mr_status)(struct ib_mr *mr, u32 check_mask,
1604						      struct ib_mr_status *mr_status);
1605
1606	struct ib_dma_mapping_ops   *dma_ops;
1607
1608	struct module               *owner;
1609	struct device                dev;
1610	struct kobject               *ports_parent;
1611	struct list_head             port_list;
1612
1613	enum {
1614		IB_DEV_UNINITIALIZED,
1615		IB_DEV_REGISTERED,
1616		IB_DEV_UNREGISTERED
1617	}                            reg_state;
1618
1619	int			     uverbs_abi_ver;
1620	u64			     uverbs_cmd_mask;
1621	u64			     uverbs_ex_cmd_mask;
1622
1623	char			     node_desc[64];
1624	__be64			     node_guid;
1625	u32			     local_dma_lkey;
1626	u8                           node_type;
1627	u8                           phys_port_cnt;
1628};
1629
1630struct ib_client {
1631	char  *name;
1632	void (*add)   (struct ib_device *);
1633	void (*remove)(struct ib_device *);
1634
1635	struct list_head list;
1636};
1637
1638struct ib_device *ib_alloc_device(size_t size);
1639void ib_dealloc_device(struct ib_device *device);
1640
1641int ib_register_device(struct ib_device *device,
1642		       int (*port_callback)(struct ib_device *,
1643					    u8, struct kobject *));
1644void ib_unregister_device(struct ib_device *device);
1645
1646int ib_register_client   (struct ib_client *client);
1647void ib_unregister_client(struct ib_client *client);
1648
1649void *ib_get_client_data(struct ib_device *device, struct ib_client *client);
1650void  ib_set_client_data(struct ib_device *device, struct ib_client *client,
1651			 void *data);
1652
1653static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
1654{
1655	return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
1656}
1657
1658static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
1659{
1660	return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
1661}
1662
1663/**
1664 * ib_modify_qp_is_ok - Check that the supplied attribute mask
1665 * contains all required attributes and no attributes not allowed for
1666 * the given QP state transition.
1667 * @cur_state: Current QP state
1668 * @next_state: Next QP state
1669 * @type: QP type
1670 * @mask: Mask of supplied QP attributes
1671 * @ll : link layer of port
1672 *
1673 * This function is a helper function that a low-level driver's
1674 * modify_qp method can use to validate the consumer's input.  It
1675 * checks that cur_state and next_state are valid QP states, that a
1676 * transition from cur_state to next_state is allowed by the IB spec,
1677 * and that the attribute mask supplied is allowed for the transition.
1678 */
1679int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
1680		       enum ib_qp_type type, enum ib_qp_attr_mask mask,
1681		       enum rdma_link_layer ll);
1682
1683int ib_register_event_handler  (struct ib_event_handler *event_handler);
1684int ib_unregister_event_handler(struct ib_event_handler *event_handler);
1685void ib_dispatch_event(struct ib_event *event);
1686
1687int ib_query_device(struct ib_device *device,
1688		    struct ib_device_attr *device_attr);
1689
1690int ib_query_port(struct ib_device *device,
1691		  u8 port_num, struct ib_port_attr *port_attr);
1692
1693enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
1694					       u8 port_num);
1695
1696int ib_query_gid(struct ib_device *device,
1697		 u8 port_num, int index, union ib_gid *gid);
1698
1699int ib_query_pkey(struct ib_device *device,
1700		  u8 port_num, u16 index, u16 *pkey);
1701
1702int ib_modify_device(struct ib_device *device,
1703		     int device_modify_mask,
1704		     struct ib_device_modify *device_modify);
1705
1706int ib_modify_port(struct ib_device *device,
1707		   u8 port_num, int port_modify_mask,
1708		   struct ib_port_modify *port_modify);
1709
1710int ib_find_gid(struct ib_device *device, union ib_gid *gid,
1711		u8 *port_num, u16 *index);
1712
1713int ib_find_pkey(struct ib_device *device,
1714		 u8 port_num, u16 pkey, u16 *index);
1715
1716/**
1717 * ib_alloc_pd - Allocates an unused protection domain.
1718 * @device: The device on which to allocate the protection domain.
1719 *
1720 * A protection domain object provides an association between QPs, shared
1721 * receive queues, address handles, memory regions, and memory windows.
1722 */
1723struct ib_pd *ib_alloc_pd(struct ib_device *device);
1724
1725/**
1726 * ib_dealloc_pd - Deallocates a protection domain.
1727 * @pd: The protection domain to deallocate.
1728 */
1729int ib_dealloc_pd(struct ib_pd *pd);
1730
1731/**
1732 * ib_create_ah - Creates an address handle for the given address vector.
1733 * @pd: The protection domain associated with the address handle.
1734 * @ah_attr: The attributes of the address vector.
1735 *
1736 * The address handle is used to reference a local or global destination
1737 * in all UD QP post sends.
1738 */
1739struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr);
1740
1741/**
1742 * ib_init_ah_from_wc - Initializes address handle attributes from a
1743 *   work completion.
1744 * @device: Device on which the received message arrived.
1745 * @port_num: Port on which the received message arrived.
1746 * @wc: Work completion associated with the received message.
1747 * @grh: References the received global route header.  This parameter is
1748 *   ignored unless the work completion indicates that the GRH is valid.
1749 * @ah_attr: Returned attributes that can be used when creating an address
1750 *   handle for replying to the message.
1751 */
1752int ib_init_ah_from_wc(struct ib_device *device, u8 port_num, struct ib_wc *wc,
1753		       struct ib_grh *grh, struct ib_ah_attr *ah_attr);
1754
1755/**
1756 * ib_create_ah_from_wc - Creates an address handle associated with the
1757 *   sender of the specified work completion.
1758 * @pd: The protection domain associated with the address handle.
1759 * @wc: Work completion information associated with a received message.
1760 * @grh: References the received global route header.  This parameter is
1761 *   ignored unless the work completion indicates that the GRH is valid.
1762 * @port_num: The outbound port number to associate with the address.
1763 *
1764 * The address handle is used to reference a local or global destination
1765 * in all UD QP post sends.
1766 */
1767struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, struct ib_wc *wc,
1768				   struct ib_grh *grh, u8 port_num);
1769
1770/**
1771 * ib_modify_ah - Modifies the address vector associated with an address
1772 *   handle.
1773 * @ah: The address handle to modify.
1774 * @ah_attr: The new address vector attributes to associate with the
1775 *   address handle.
1776 */
1777int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
1778
1779/**
1780 * ib_query_ah - Queries the address vector associated with an address
1781 *   handle.
1782 * @ah: The address handle to query.
1783 * @ah_attr: The address vector attributes associated with the address
1784 *   handle.
1785 */
1786int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
1787
1788/**
1789 * ib_destroy_ah - Destroys an address handle.
1790 * @ah: The address handle to destroy.
1791 */
1792int ib_destroy_ah(struct ib_ah *ah);
1793
1794/**
1795 * ib_create_srq - Creates a SRQ associated with the specified protection
1796 *   domain.
1797 * @pd: The protection domain associated with the SRQ.
1798 * @srq_init_attr: A list of initial attributes required to create the
1799 *   SRQ.  If SRQ creation succeeds, then the attributes are updated to
1800 *   the actual capabilities of the created SRQ.
1801 *
1802 * srq_attr->max_wr and srq_attr->max_sge are read the determine the
1803 * requested size of the SRQ, and set to the actual values allocated
1804 * on return.  If ib_create_srq() succeeds, then max_wr and max_sge
1805 * will always be at least as large as the requested values.
1806 */
1807struct ib_srq *ib_create_srq(struct ib_pd *pd,
1808			     struct ib_srq_init_attr *srq_init_attr);
1809
1810/**
1811 * ib_modify_srq - Modifies the attributes for the specified SRQ.
1812 * @srq: The SRQ to modify.
1813 * @srq_attr: On input, specifies the SRQ attributes to modify.  On output,
1814 *   the current values of selected SRQ attributes are returned.
1815 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
1816 *   are being modified.
1817 *
1818 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
1819 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when
1820 * the number of receives queued drops below the limit.
1821 */
1822int ib_modify_srq(struct ib_srq *srq,
1823		  struct ib_srq_attr *srq_attr,
1824		  enum ib_srq_attr_mask srq_attr_mask);
1825
1826/**
1827 * ib_query_srq - Returns the attribute list and current values for the
1828 *   specified SRQ.
1829 * @srq: The SRQ to query.
1830 * @srq_attr: The attributes of the specified SRQ.
1831 */
1832int ib_query_srq(struct ib_srq *srq,
1833		 struct ib_srq_attr *srq_attr);
1834
1835/**
1836 * ib_destroy_srq - Destroys the specified SRQ.
1837 * @srq: The SRQ to destroy.
1838 */
1839int ib_destroy_srq(struct ib_srq *srq);
1840
1841/**
1842 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
1843 * @srq: The SRQ to post the work request on.
1844 * @recv_wr: A list of work requests to post on the receive queue.
1845 * @bad_recv_wr: On an immediate failure, this parameter will reference
1846 *   the work request that failed to be posted on the QP.
1847 */
1848static inline int ib_post_srq_recv(struct ib_srq *srq,
1849				   struct ib_recv_wr *recv_wr,
1850				   struct ib_recv_wr **bad_recv_wr)
1851{
1852	return srq->device->post_srq_recv(srq, recv_wr, bad_recv_wr);
1853}
1854
1855/**
1856 * ib_create_qp - Creates a QP associated with the specified protection
1857 *   domain.
1858 * @pd: The protection domain associated with the QP.
1859 * @qp_init_attr: A list of initial attributes required to create the
1860 *   QP.  If QP creation succeeds, then the attributes are updated to
1861 *   the actual capabilities of the created QP.
1862 */
1863struct ib_qp *ib_create_qp(struct ib_pd *pd,
1864			   struct ib_qp_init_attr *qp_init_attr);
1865
1866/**
1867 * ib_modify_qp - Modifies the attributes for the specified QP and then
1868 *   transitions the QP to the given state.
1869 * @qp: The QP to modify.
1870 * @qp_attr: On input, specifies the QP attributes to modify.  On output,
1871 *   the current values of selected QP attributes are returned.
1872 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP
1873 *   are being modified.
1874 */
1875int ib_modify_qp(struct ib_qp *qp,
1876		 struct ib_qp_attr *qp_attr,
1877		 int qp_attr_mask);
1878
1879/**
1880 * ib_query_qp - Returns the attribute list and current values for the
1881 *   specified QP.
1882 * @qp: The QP to query.
1883 * @qp_attr: The attributes of the specified QP.
1884 * @qp_attr_mask: A bit-mask used to select specific attributes to query.
1885 * @qp_init_attr: Additional attributes of the selected QP.
1886 *
1887 * The qp_attr_mask may be used to limit the query to gathering only the
1888 * selected attributes.
1889 */
1890int ib_query_qp(struct ib_qp *qp,
1891		struct ib_qp_attr *qp_attr,
1892		int qp_attr_mask,
1893		struct ib_qp_init_attr *qp_init_attr);
1894
1895/**
1896 * ib_destroy_qp - Destroys the specified QP.
1897 * @qp: The QP to destroy.
1898 */
1899int ib_destroy_qp(struct ib_qp *qp);
1900
1901/**
1902 * ib_open_qp - Obtain a reference to an existing sharable QP.
1903 * @xrcd - XRC domain
1904 * @qp_open_attr: Attributes identifying the QP to open.
1905 *
1906 * Returns a reference to a sharable QP.
1907 */
1908struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
1909			 struct ib_qp_open_attr *qp_open_attr);
1910
1911/**
1912 * ib_close_qp - Release an external reference to a QP.
1913 * @qp: The QP handle to release
1914 *
1915 * The opened QP handle is released by the caller.  The underlying
1916 * shared QP is not destroyed until all internal references are released.
1917 */
1918int ib_close_qp(struct ib_qp *qp);
1919
1920/**
1921 * ib_post_send - Posts a list of work requests to the send queue of
1922 *   the specified QP.
1923 * @qp: The QP to post the work request on.
1924 * @send_wr: A list of work requests to post on the send queue.
1925 * @bad_send_wr: On an immediate failure, this parameter will reference
1926 *   the work request that failed to be posted on the QP.
1927 *
1928 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate
1929 * error is returned, the QP state shall not be affected,
1930 * ib_post_send() will return an immediate error after queueing any
1931 * earlier work requests in the list.
1932 */
1933static inline int ib_post_send(struct ib_qp *qp,
1934			       struct ib_send_wr *send_wr,
1935			       struct ib_send_wr **bad_send_wr)
1936{
1937	return qp->device->post_send(qp, send_wr, bad_send_wr);
1938}
1939
1940/**
1941 * ib_post_recv - Posts a list of work requests to the receive queue of
1942 *   the specified QP.
1943 * @qp: The QP to post the work request on.
1944 * @recv_wr: A list of work requests to post on the receive queue.
1945 * @bad_recv_wr: On an immediate failure, this parameter will reference
1946 *   the work request that failed to be posted on the QP.
1947 */
1948static inline int ib_post_recv(struct ib_qp *qp,
1949			       struct ib_recv_wr *recv_wr,
1950			       struct ib_recv_wr **bad_recv_wr)
1951{
1952	return qp->device->post_recv(qp, recv_wr, bad_recv_wr);
1953}
1954
1955/**
1956 * ib_create_cq - Creates a CQ on the specified device.
1957 * @device: The device on which to create the CQ.
1958 * @comp_handler: A user-specified callback that is invoked when a
1959 *   completion event occurs on the CQ.
1960 * @event_handler: A user-specified callback that is invoked when an
1961 *   asynchronous event not associated with a completion occurs on the CQ.
1962 * @cq_context: Context associated with the CQ returned to the user via
1963 *   the associated completion and event handlers.
1964 * @cqe: The minimum size of the CQ.
1965 * @comp_vector - Completion vector used to signal completion events.
1966 *     Must be >= 0 and < context->num_comp_vectors.
1967 *
1968 * Users can examine the cq structure to determine the actual CQ size.
1969 */
1970struct ib_cq *ib_create_cq(struct ib_device *device,
1971			   ib_comp_handler comp_handler,
1972			   void (*event_handler)(struct ib_event *, void *),
1973			   void *cq_context, int cqe, int comp_vector);
1974
1975/**
1976 * ib_resize_cq - Modifies the capacity of the CQ.
1977 * @cq: The CQ to resize.
1978 * @cqe: The minimum size of the CQ.
1979 *
1980 * Users can examine the cq structure to determine the actual CQ size.
1981 */
1982int ib_resize_cq(struct ib_cq *cq, int cqe);
1983
1984/**
1985 * ib_modify_cq - Modifies moderation params of the CQ
1986 * @cq: The CQ to modify.
1987 * @cq_count: number of CQEs that will trigger an event
1988 * @cq_period: max period of time in usec before triggering an event
1989 *
1990 */
1991int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period);
1992
1993/**
1994 * ib_destroy_cq - Destroys the specified CQ.
1995 * @cq: The CQ to destroy.
1996 */
1997int ib_destroy_cq(struct ib_cq *cq);
1998
1999/**
2000 * ib_poll_cq - poll a CQ for completion(s)
2001 * @cq:the CQ being polled
2002 * @num_entries:maximum number of completions to return
2003 * @wc:array of at least @num_entries &struct ib_wc where completions
2004 *   will be returned
2005 *
2006 * Poll a CQ for (possibly multiple) completions.  If the return value
2007 * is < 0, an error occurred.  If the return value is >= 0, it is the
2008 * number of completions returned.  If the return value is
2009 * non-negative and < num_entries, then the CQ was emptied.
2010 */
2011static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
2012			     struct ib_wc *wc)
2013{
2014	return cq->device->poll_cq(cq, num_entries, wc);
2015}
2016
2017/**
2018 * ib_peek_cq - Returns the number of unreaped completions currently
2019 *   on the specified CQ.
2020 * @cq: The CQ to peek.
2021 * @wc_cnt: A minimum number of unreaped completions to check for.
2022 *
2023 * If the number of unreaped completions is greater than or equal to wc_cnt,
2024 * this function returns wc_cnt, otherwise, it returns the actual number of
2025 * unreaped completions.
2026 */
2027int ib_peek_cq(struct ib_cq *cq, int wc_cnt);
2028
2029/**
2030 * ib_req_notify_cq - Request completion notification on a CQ.
2031 * @cq: The CQ to generate an event for.
2032 * @flags:
2033 *   Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
2034 *   to request an event on the next solicited event or next work
2035 *   completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
2036 *   may also be |ed in to request a hint about missed events, as
2037 *   described below.
2038 *
2039 * Return Value:
2040 *    < 0 means an error occurred while requesting notification
2041 *   == 0 means notification was requested successfully, and if
2042 *        IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
2043 *        were missed and it is safe to wait for another event.  In
2044 *        this case is it guaranteed that any work completions added
2045 *        to the CQ since the last CQ poll will trigger a completion
2046 *        notification event.
2047 *    > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
2048 *        in.  It means that the consumer must poll the CQ again to
2049 *        make sure it is empty to avoid missing an event because of a
2050 *        race between requesting notification and an entry being
2051 *        added to the CQ.  This return value means it is possible
2052 *        (but not guaranteed) that a work completion has been added
2053 *        to the CQ since the last poll without triggering a
2054 *        completion notification event.
2055 */
2056static inline int ib_req_notify_cq(struct ib_cq *cq,
2057				   enum ib_cq_notify_flags flags)
2058{
2059	return cq->device->req_notify_cq(cq, flags);
2060}
2061
2062/**
2063 * ib_req_ncomp_notif - Request completion notification when there are
2064 *   at least the specified number of unreaped completions on the CQ.
2065 * @cq: The CQ to generate an event for.
2066 * @wc_cnt: The number of unreaped completions that should be on the
2067 *   CQ before an event is generated.
2068 */
2069static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt)
2070{
2071	return cq->device->req_ncomp_notif ?
2072		cq->device->req_ncomp_notif(cq, wc_cnt) :
2073		-ENOSYS;
2074}
2075
2076/**
2077 * ib_get_dma_mr - Returns a memory region for system memory that is
2078 *   usable for DMA.
2079 * @pd: The protection domain associated with the memory region.
2080 * @mr_access_flags: Specifies the memory access rights.
2081 *
2082 * Note that the ib_dma_*() functions defined below must be used
2083 * to create/destroy addresses used with the Lkey or Rkey returned
2084 * by ib_get_dma_mr().
2085 */
2086struct ib_mr *ib_get_dma_mr(struct ib_pd *pd, int mr_access_flags);
2087
2088/**
2089 * ib_dma_mapping_error - check a DMA addr for error
2090 * @dev: The device for which the dma_addr was created
2091 * @dma_addr: The DMA address to check
2092 */
2093static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
2094{
2095	if (dev->dma_ops)
2096		return dev->dma_ops->mapping_error(dev, dma_addr);
2097	return dma_mapping_error(dev->dma_device, dma_addr);
2098}
2099
2100/**
2101 * ib_dma_map_single - Map a kernel virtual address to DMA address
2102 * @dev: The device for which the dma_addr is to be created
2103 * @cpu_addr: The kernel virtual address
2104 * @size: The size of the region in bytes
2105 * @direction: The direction of the DMA
2106 */
2107static inline u64 ib_dma_map_single(struct ib_device *dev,
2108				    void *cpu_addr, size_t size,
2109				    enum dma_data_direction direction)
2110{
2111	if (dev->dma_ops)
2112		return dev->dma_ops->map_single(dev, cpu_addr, size, direction);
2113	return dma_map_single(dev->dma_device, cpu_addr, size, direction);
2114}
2115
2116/**
2117 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
2118 * @dev: The device for which the DMA address was created
2119 * @addr: The DMA address
2120 * @size: The size of the region in bytes
2121 * @direction: The direction of the DMA
2122 */
2123static inline void ib_dma_unmap_single(struct ib_device *dev,
2124				       u64 addr, size_t size,
2125				       enum dma_data_direction direction)
2126{
2127	if (dev->dma_ops)
2128		dev->dma_ops->unmap_single(dev, addr, size, direction);
2129	else
2130		dma_unmap_single(dev->dma_device, addr, size, direction);
2131}
2132
2133static inline u64 ib_dma_map_single_attrs(struct ib_device *dev,
2134					  void *cpu_addr, size_t size,
2135					  enum dma_data_direction direction,
2136					  struct dma_attrs *attrs)
2137{
2138	return dma_map_single_attrs(dev->dma_device, cpu_addr, size,
2139				    direction, attrs);
2140}
2141
2142static inline void ib_dma_unmap_single_attrs(struct ib_device *dev,
2143					     u64 addr, size_t size,
2144					     enum dma_data_direction direction,
2145					     struct dma_attrs *attrs)
2146{
2147	return dma_unmap_single_attrs(dev->dma_device, addr, size,
2148				      direction, attrs);
2149}
2150
2151/**
2152 * ib_dma_map_page - Map a physical page to DMA address
2153 * @dev: The device for which the dma_addr is to be created
2154 * @page: The page to be mapped
2155 * @offset: The offset within the page
2156 * @size: The size of the region in bytes
2157 * @direction: The direction of the DMA
2158 */
2159static inline u64 ib_dma_map_page(struct ib_device *dev,
2160				  struct page *page,
2161				  unsigned long offset,
2162				  size_t size,
2163					 enum dma_data_direction direction)
2164{
2165	if (dev->dma_ops)
2166		return dev->dma_ops->map_page(dev, page, offset, size, direction);
2167	return dma_map_page(dev->dma_device, page, offset, size, direction);
2168}
2169
2170/**
2171 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
2172 * @dev: The device for which the DMA address was created
2173 * @addr: The DMA address
2174 * @size: The size of the region in bytes
2175 * @direction: The direction of the DMA
2176 */
2177static inline void ib_dma_unmap_page(struct ib_device *dev,
2178				     u64 addr, size_t size,
2179				     enum dma_data_direction direction)
2180{
2181	if (dev->dma_ops)
2182		dev->dma_ops->unmap_page(dev, addr, size, direction);
2183	else
2184		dma_unmap_page(dev->dma_device, addr, size, direction);
2185}
2186
2187/**
2188 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses
2189 * @dev: The device for which the DMA addresses are to be created
2190 * @sg: The array of scatter/gather entries
2191 * @nents: The number of scatter/gather entries
2192 * @direction: The direction of the DMA
2193 */
2194static inline int ib_dma_map_sg(struct ib_device *dev,
2195				struct scatterlist *sg, int nents,
2196				enum dma_data_direction direction)
2197{
2198	if (dev->dma_ops)
2199		return dev->dma_ops->map_sg(dev, sg, nents, direction);
2200	return dma_map_sg(dev->dma_device, sg, nents, direction);
2201}
2202
2203/**
2204 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
2205 * @dev: The device for which the DMA addresses were created
2206 * @sg: The array of scatter/gather entries
2207 * @nents: The number of scatter/gather entries
2208 * @direction: The direction of the DMA
2209 */
2210static inline void ib_dma_unmap_sg(struct ib_device *dev,
2211				   struct scatterlist *sg, int nents,
2212				   enum dma_data_direction direction)
2213{
2214	if (dev->dma_ops)
2215		dev->dma_ops->unmap_sg(dev, sg, nents, direction);
2216	else
2217		dma_unmap_sg(dev->dma_device, sg, nents, direction);
2218}
2219
2220static inline int ib_dma_map_sg_attrs(struct ib_device *dev,
2221				      struct scatterlist *sg, int nents,
2222				      enum dma_data_direction direction,
2223				      struct dma_attrs *attrs)
2224{
2225	return dma_map_sg_attrs(dev->dma_device, sg, nents, direction, attrs);
2226}
2227
2228static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev,
2229					 struct scatterlist *sg, int nents,
2230					 enum dma_data_direction direction,
2231					 struct dma_attrs *attrs)
2232{
2233	dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, attrs);
2234}
2235/**
2236 * ib_sg_dma_address - Return the DMA address from a scatter/gather entry
2237 * @dev: The device for which the DMA addresses were created
2238 * @sg: The scatter/gather entry
2239 *
2240 * Note: this function is obsolete. To do: change all occurrences of
2241 * ib_sg_dma_address() into sg_dma_address().
2242 */
2243static inline u64 ib_sg_dma_address(struct ib_device *dev,
2244				    struct scatterlist *sg)
2245{
 
 
2246	return sg_dma_address(sg);
2247}
2248
2249/**
2250 * ib_sg_dma_len - Return the DMA length from a scatter/gather entry
2251 * @dev: The device for which the DMA addresses were created
2252 * @sg: The scatter/gather entry
2253 *
2254 * Note: this function is obsolete. To do: change all occurrences of
2255 * ib_sg_dma_len() into sg_dma_len().
2256 */
2257static inline unsigned int ib_sg_dma_len(struct ib_device *dev,
2258					 struct scatterlist *sg)
2259{
 
 
2260	return sg_dma_len(sg);
2261}
2262
2263/**
2264 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
2265 * @dev: The device for which the DMA address was created
2266 * @addr: The DMA address
2267 * @size: The size of the region in bytes
2268 * @dir: The direction of the DMA
2269 */
2270static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
2271					      u64 addr,
2272					      size_t size,
2273					      enum dma_data_direction dir)
2274{
2275	if (dev->dma_ops)
2276		dev->dma_ops->sync_single_for_cpu(dev, addr, size, dir);
2277	else
2278		dma_sync_single_for_cpu(dev->dma_device, addr, size, dir);
2279}
2280
2281/**
2282 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
2283 * @dev: The device for which the DMA address was created
2284 * @addr: The DMA address
2285 * @size: The size of the region in bytes
2286 * @dir: The direction of the DMA
2287 */
2288static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
2289						 u64 addr,
2290						 size_t size,
2291						 enum dma_data_direction dir)
2292{
2293	if (dev->dma_ops)
2294		dev->dma_ops->sync_single_for_device(dev, addr, size, dir);
2295	else
2296		dma_sync_single_for_device(dev->dma_device, addr, size, dir);
2297}
2298
2299/**
2300 * ib_dma_alloc_coherent - Allocate memory and map it for DMA
2301 * @dev: The device for which the DMA address is requested
2302 * @size: The size of the region to allocate in bytes
2303 * @dma_handle: A pointer for returning the DMA address of the region
2304 * @flag: memory allocator flags
2305 */
2306static inline void *ib_dma_alloc_coherent(struct ib_device *dev,
2307					   size_t size,
2308					   u64 *dma_handle,
2309					   gfp_t flag)
2310{
2311	if (dev->dma_ops)
2312		return dev->dma_ops->alloc_coherent(dev, size, dma_handle, flag);
2313	else {
2314		dma_addr_t handle;
2315		void *ret;
2316
2317		ret = dma_alloc_coherent(dev->dma_device, size, &handle, flag);
2318		*dma_handle = handle;
2319		return ret;
2320	}
2321}
2322
2323/**
2324 * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent()
2325 * @dev: The device for which the DMA addresses were allocated
2326 * @size: The size of the region
2327 * @cpu_addr: the address returned by ib_dma_alloc_coherent()
2328 * @dma_handle: the DMA address returned by ib_dma_alloc_coherent()
2329 */
2330static inline void ib_dma_free_coherent(struct ib_device *dev,
2331					size_t size, void *cpu_addr,
2332					u64 dma_handle)
2333{
2334	if (dev->dma_ops)
2335		dev->dma_ops->free_coherent(dev, size, cpu_addr, dma_handle);
2336	else
2337		dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle);
2338}
2339
2340/**
2341 * ib_reg_phys_mr - Prepares a virtually addressed memory region for use
2342 *   by an HCA.
2343 * @pd: The protection domain associated assigned to the registered region.
2344 * @phys_buf_array: Specifies a list of physical buffers to use in the
2345 *   memory region.
2346 * @num_phys_buf: Specifies the size of the phys_buf_array.
2347 * @mr_access_flags: Specifies the memory access rights.
2348 * @iova_start: The offset of the region's starting I/O virtual address.
2349 */
2350struct ib_mr *ib_reg_phys_mr(struct ib_pd *pd,
2351			     struct ib_phys_buf *phys_buf_array,
2352			     int num_phys_buf,
2353			     int mr_access_flags,
2354			     u64 *iova_start);
2355
2356/**
2357 * ib_rereg_phys_mr - Modifies the attributes of an existing memory region.
2358 *   Conceptually, this call performs the functions deregister memory region
2359 *   followed by register physical memory region.  Where possible,
2360 *   resources are reused instead of deallocated and reallocated.
2361 * @mr: The memory region to modify.
2362 * @mr_rereg_mask: A bit-mask used to indicate which of the following
2363 *   properties of the memory region are being modified.
2364 * @pd: If %IB_MR_REREG_PD is set in mr_rereg_mask, this field specifies
2365 *   the new protection domain to associated with the memory region,
2366 *   otherwise, this parameter is ignored.
2367 * @phys_buf_array: If %IB_MR_REREG_TRANS is set in mr_rereg_mask, this
2368 *   field specifies a list of physical buffers to use in the new
2369 *   translation, otherwise, this parameter is ignored.
2370 * @num_phys_buf: If %IB_MR_REREG_TRANS is set in mr_rereg_mask, this
2371 *   field specifies the size of the phys_buf_array, otherwise, this
2372 *   parameter is ignored.
2373 * @mr_access_flags: If %IB_MR_REREG_ACCESS is set in mr_rereg_mask, this
2374 *   field specifies the new memory access rights, otherwise, this
2375 *   parameter is ignored.
2376 * @iova_start: The offset of the region's starting I/O virtual address.
2377 */
2378int ib_rereg_phys_mr(struct ib_mr *mr,
2379		     int mr_rereg_mask,
2380		     struct ib_pd *pd,
2381		     struct ib_phys_buf *phys_buf_array,
2382		     int num_phys_buf,
2383		     int mr_access_flags,
2384		     u64 *iova_start);
2385
2386/**
2387 * ib_query_mr - Retrieves information about a specific memory region.
2388 * @mr: The memory region to retrieve information about.
2389 * @mr_attr: The attributes of the specified memory region.
2390 */
2391int ib_query_mr(struct ib_mr *mr, struct ib_mr_attr *mr_attr);
2392
2393/**
2394 * ib_dereg_mr - Deregisters a memory region and removes it from the
2395 *   HCA translation table.
2396 * @mr: The memory region to deregister.
2397 *
2398 * This function can fail, if the memory region has memory windows bound to it.
2399 */
2400int ib_dereg_mr(struct ib_mr *mr);
2401
2402
2403/**
2404 * ib_create_mr - Allocates a memory region that may be used for
2405 *     signature handover operations.
2406 * @pd: The protection domain associated with the region.
2407 * @mr_init_attr: memory region init attributes.
2408 */
2409struct ib_mr *ib_create_mr(struct ib_pd *pd,
2410			   struct ib_mr_init_attr *mr_init_attr);
2411
2412/**
2413 * ib_destroy_mr - Destroys a memory region that was created using
2414 *     ib_create_mr and removes it from HW translation tables.
2415 * @mr: The memory region to destroy.
2416 *
2417 * This function can fail, if the memory region has memory windows bound to it.
2418 */
2419int ib_destroy_mr(struct ib_mr *mr);
2420
2421/**
2422 * ib_alloc_fast_reg_mr - Allocates memory region usable with the
2423 *   IB_WR_FAST_REG_MR send work request.
2424 * @pd: The protection domain associated with the region.
2425 * @max_page_list_len: requested max physical buffer list length to be
2426 *   used with fast register work requests for this MR.
2427 */
2428struct ib_mr *ib_alloc_fast_reg_mr(struct ib_pd *pd, int max_page_list_len);
2429
2430/**
2431 * ib_alloc_fast_reg_page_list - Allocates a page list array
2432 * @device - ib device pointer.
2433 * @page_list_len - size of the page list array to be allocated.
2434 *
2435 * This allocates and returns a struct ib_fast_reg_page_list * and a
2436 * page_list array that is at least page_list_len in size.  The actual
2437 * size is returned in max_page_list_len.  The caller is responsible
2438 * for initializing the contents of the page_list array before posting
2439 * a send work request with the IB_WC_FAST_REG_MR opcode.
2440 *
2441 * The page_list array entries must be translated using one of the
2442 * ib_dma_*() functions just like the addresses passed to
2443 * ib_map_phys_fmr().  Once the ib_post_send() is issued, the struct
2444 * ib_fast_reg_page_list must not be modified by the caller until the
2445 * IB_WC_FAST_REG_MR work request completes.
2446 */
2447struct ib_fast_reg_page_list *ib_alloc_fast_reg_page_list(
2448				struct ib_device *device, int page_list_len);
2449
2450/**
2451 * ib_free_fast_reg_page_list - Deallocates a previously allocated
2452 *   page list array.
2453 * @page_list - struct ib_fast_reg_page_list pointer to be deallocated.
2454 */
2455void ib_free_fast_reg_page_list(struct ib_fast_reg_page_list *page_list);
2456
2457/**
2458 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR
2459 *   R_Key and L_Key.
2460 * @mr - struct ib_mr pointer to be updated.
2461 * @newkey - new key to be used.
2462 */
2463static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey)
2464{
2465	mr->lkey = (mr->lkey & 0xffffff00) | newkey;
2466	mr->rkey = (mr->rkey & 0xffffff00) | newkey;
2467}
2468
2469/**
2470 * ib_inc_rkey - increments the key portion of the given rkey. Can be used
2471 * for calculating a new rkey for type 2 memory windows.
2472 * @rkey - the rkey to increment.
2473 */
2474static inline u32 ib_inc_rkey(u32 rkey)
2475{
2476	const u32 mask = 0x000000ff;
2477	return ((rkey + 1) & mask) | (rkey & ~mask);
2478}
2479
2480/**
2481 * ib_alloc_mw - Allocates a memory window.
2482 * @pd: The protection domain associated with the memory window.
2483 * @type: The type of the memory window (1 or 2).
2484 */
2485struct ib_mw *ib_alloc_mw(struct ib_pd *pd, enum ib_mw_type type);
2486
2487/**
2488 * ib_bind_mw - Posts a work request to the send queue of the specified
2489 *   QP, which binds the memory window to the given address range and
2490 *   remote access attributes.
2491 * @qp: QP to post the bind work request on.
2492 * @mw: The memory window to bind.
2493 * @mw_bind: Specifies information about the memory window, including
2494 *   its address range, remote access rights, and associated memory region.
2495 *
2496 * If there is no immediate error, the function will update the rkey member
2497 * of the mw parameter to its new value. The bind operation can still fail
2498 * asynchronously.
2499 */
2500static inline int ib_bind_mw(struct ib_qp *qp,
2501			     struct ib_mw *mw,
2502			     struct ib_mw_bind *mw_bind)
2503{
2504	/* XXX reference counting in corresponding MR? */
2505	return mw->device->bind_mw ?
2506		mw->device->bind_mw(qp, mw, mw_bind) :
2507		-ENOSYS;
2508}
2509
2510/**
2511 * ib_dealloc_mw - Deallocates a memory window.
2512 * @mw: The memory window to deallocate.
2513 */
2514int ib_dealloc_mw(struct ib_mw *mw);
2515
2516/**
2517 * ib_alloc_fmr - Allocates a unmapped fast memory region.
2518 * @pd: The protection domain associated with the unmapped region.
2519 * @mr_access_flags: Specifies the memory access rights.
2520 * @fmr_attr: Attributes of the unmapped region.
2521 *
2522 * A fast memory region must be mapped before it can be used as part of
2523 * a work request.
2524 */
2525struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
2526			    int mr_access_flags,
2527			    struct ib_fmr_attr *fmr_attr);
2528
2529/**
2530 * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region.
2531 * @fmr: The fast memory region to associate with the pages.
2532 * @page_list: An array of physical pages to map to the fast memory region.
2533 * @list_len: The number of pages in page_list.
2534 * @iova: The I/O virtual address to use with the mapped region.
2535 */
2536static inline int ib_map_phys_fmr(struct ib_fmr *fmr,
2537				  u64 *page_list, int list_len,
2538				  u64 iova)
2539{
2540	return fmr->device->map_phys_fmr(fmr, page_list, list_len, iova);
2541}
2542
2543/**
2544 * ib_unmap_fmr - Removes the mapping from a list of fast memory regions.
2545 * @fmr_list: A linked list of fast memory regions to unmap.
2546 */
2547int ib_unmap_fmr(struct list_head *fmr_list);
2548
2549/**
2550 * ib_dealloc_fmr - Deallocates a fast memory region.
2551 * @fmr: The fast memory region to deallocate.
2552 */
2553int ib_dealloc_fmr(struct ib_fmr *fmr);
2554
2555/**
2556 * ib_attach_mcast - Attaches the specified QP to a multicast group.
2557 * @qp: QP to attach to the multicast group.  The QP must be type
2558 *   IB_QPT_UD.
2559 * @gid: Multicast group GID.
2560 * @lid: Multicast group LID in host byte order.
2561 *
2562 * In order to send and receive multicast packets, subnet
2563 * administration must have created the multicast group and configured
2564 * the fabric appropriately.  The port associated with the specified
2565 * QP must also be a member of the multicast group.
2566 */
2567int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2568
2569/**
2570 * ib_detach_mcast - Detaches the specified QP from a multicast group.
2571 * @qp: QP to detach from the multicast group.
2572 * @gid: Multicast group GID.
2573 * @lid: Multicast group LID in host byte order.
2574 */
2575int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2576
2577/**
2578 * ib_alloc_xrcd - Allocates an XRC domain.
2579 * @device: The device on which to allocate the XRC domain.
2580 */
2581struct ib_xrcd *ib_alloc_xrcd(struct ib_device *device);
2582
2583/**
2584 * ib_dealloc_xrcd - Deallocates an XRC domain.
2585 * @xrcd: The XRC domain to deallocate.
2586 */
2587int ib_dealloc_xrcd(struct ib_xrcd *xrcd);
2588
2589struct ib_flow *ib_create_flow(struct ib_qp *qp,
2590			       struct ib_flow_attr *flow_attr, int domain);
2591int ib_destroy_flow(struct ib_flow *flow_id);
2592
2593static inline int ib_check_mr_access(int flags)
2594{
2595	/*
2596	 * Local write permission is required if remote write or
2597	 * remote atomic permission is also requested.
2598	 */
2599	if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) &&
2600	    !(flags & IB_ACCESS_LOCAL_WRITE))
2601		return -EINVAL;
2602
2603	return 0;
2604}
2605
2606/**
2607 * ib_check_mr_status: lightweight check of MR status.
2608 *     This routine may provide status checks on a selected
2609 *     ib_mr. first use is for signature status check.
2610 *
2611 * @mr: A memory region.
2612 * @check_mask: Bitmask of which checks to perform from
2613 *     ib_mr_status_check enumeration.
2614 * @mr_status: The container of relevant status checks.
2615 *     failed checks will be indicated in the status bitmask
2616 *     and the relevant info shall be in the error item.
2617 */
2618int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
2619		       struct ib_mr_status *mr_status);
2620
2621#endif /* IB_VERBS_H */