Loading...
1/*
2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved.
3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved.
4 * Copyright (c) 2004 Intel Corporation. All rights reserved.
5 * Copyright (c) 2004 Topspin Corporation. All rights reserved.
6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved.
7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
8 * Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved.
9 *
10 * This software is available to you under a choice of one of two
11 * licenses. You may choose to be licensed under the terms of the GNU
12 * General Public License (GPL) Version 2, available from the file
13 * COPYING in the main directory of this source tree, or the
14 * OpenIB.org BSD license below:
15 *
16 * Redistribution and use in source and binary forms, with or
17 * without modification, are permitted provided that the following
18 * conditions are met:
19 *
20 * - Redistributions of source code must retain the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer.
23 *
24 * - Redistributions in binary form must reproduce the above
25 * copyright notice, this list of conditions and the following
26 * disclaimer in the documentation and/or other materials
27 * provided with the distribution.
28 *
29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36 * SOFTWARE.
37 */
38
39#if !defined(IB_VERBS_H)
40#define IB_VERBS_H
41
42#include <linux/types.h>
43#include <linux/device.h>
44#include <linux/mm.h>
45#include <linux/dma-mapping.h>
46#include <linux/kref.h>
47#include <linux/list.h>
48#include <linux/rwsem.h>
49#include <linux/scatterlist.h>
50#include <linux/workqueue.h>
51
52#include <linux/atomic.h>
53#include <asm/uaccess.h>
54
55extern struct workqueue_struct *ib_wq;
56
57union ib_gid {
58 u8 raw[16];
59 struct {
60 __be64 subnet_prefix;
61 __be64 interface_id;
62 } global;
63};
64
65enum rdma_node_type {
66 /* IB values map to NodeInfo:NodeType. */
67 RDMA_NODE_IB_CA = 1,
68 RDMA_NODE_IB_SWITCH,
69 RDMA_NODE_IB_ROUTER,
70 RDMA_NODE_RNIC
71};
72
73enum rdma_transport_type {
74 RDMA_TRANSPORT_IB,
75 RDMA_TRANSPORT_IWARP
76};
77
78enum rdma_transport_type
79rdma_node_get_transport(enum rdma_node_type node_type) __attribute_const__;
80
81enum rdma_link_layer {
82 IB_LINK_LAYER_UNSPECIFIED,
83 IB_LINK_LAYER_INFINIBAND,
84 IB_LINK_LAYER_ETHERNET,
85};
86
87enum ib_device_cap_flags {
88 IB_DEVICE_RESIZE_MAX_WR = 1,
89 IB_DEVICE_BAD_PKEY_CNTR = (1<<1),
90 IB_DEVICE_BAD_QKEY_CNTR = (1<<2),
91 IB_DEVICE_RAW_MULTI = (1<<3),
92 IB_DEVICE_AUTO_PATH_MIG = (1<<4),
93 IB_DEVICE_CHANGE_PHY_PORT = (1<<5),
94 IB_DEVICE_UD_AV_PORT_ENFORCE = (1<<6),
95 IB_DEVICE_CURR_QP_STATE_MOD = (1<<7),
96 IB_DEVICE_SHUTDOWN_PORT = (1<<8),
97 IB_DEVICE_INIT_TYPE = (1<<9),
98 IB_DEVICE_PORT_ACTIVE_EVENT = (1<<10),
99 IB_DEVICE_SYS_IMAGE_GUID = (1<<11),
100 IB_DEVICE_RC_RNR_NAK_GEN = (1<<12),
101 IB_DEVICE_SRQ_RESIZE = (1<<13),
102 IB_DEVICE_N_NOTIFY_CQ = (1<<14),
103 IB_DEVICE_LOCAL_DMA_LKEY = (1<<15),
104 IB_DEVICE_RESERVED = (1<<16), /* old SEND_W_INV */
105 IB_DEVICE_MEM_WINDOW = (1<<17),
106 /*
107 * Devices should set IB_DEVICE_UD_IP_SUM if they support
108 * insertion of UDP and TCP checksum on outgoing UD IPoIB
109 * messages and can verify the validity of checksum for
110 * incoming messages. Setting this flag implies that the
111 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
112 */
113 IB_DEVICE_UD_IP_CSUM = (1<<18),
114 IB_DEVICE_UD_TSO = (1<<19),
115 IB_DEVICE_MEM_MGT_EXTENSIONS = (1<<21),
116 IB_DEVICE_BLOCK_MULTICAST_LOOPBACK = (1<<22),
117};
118
119enum ib_atomic_cap {
120 IB_ATOMIC_NONE,
121 IB_ATOMIC_HCA,
122 IB_ATOMIC_GLOB
123};
124
125struct ib_device_attr {
126 u64 fw_ver;
127 __be64 sys_image_guid;
128 u64 max_mr_size;
129 u64 page_size_cap;
130 u32 vendor_id;
131 u32 vendor_part_id;
132 u32 hw_ver;
133 int max_qp;
134 int max_qp_wr;
135 int device_cap_flags;
136 int max_sge;
137 int max_sge_rd;
138 int max_cq;
139 int max_cqe;
140 int max_mr;
141 int max_pd;
142 int max_qp_rd_atom;
143 int max_ee_rd_atom;
144 int max_res_rd_atom;
145 int max_qp_init_rd_atom;
146 int max_ee_init_rd_atom;
147 enum ib_atomic_cap atomic_cap;
148 enum ib_atomic_cap masked_atomic_cap;
149 int max_ee;
150 int max_rdd;
151 int max_mw;
152 int max_raw_ipv6_qp;
153 int max_raw_ethy_qp;
154 int max_mcast_grp;
155 int max_mcast_qp_attach;
156 int max_total_mcast_qp_attach;
157 int max_ah;
158 int max_fmr;
159 int max_map_per_fmr;
160 int max_srq;
161 int max_srq_wr;
162 int max_srq_sge;
163 unsigned int max_fast_reg_page_list_len;
164 u16 max_pkeys;
165 u8 local_ca_ack_delay;
166};
167
168enum ib_mtu {
169 IB_MTU_256 = 1,
170 IB_MTU_512 = 2,
171 IB_MTU_1024 = 3,
172 IB_MTU_2048 = 4,
173 IB_MTU_4096 = 5
174};
175
176static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
177{
178 switch (mtu) {
179 case IB_MTU_256: return 256;
180 case IB_MTU_512: return 512;
181 case IB_MTU_1024: return 1024;
182 case IB_MTU_2048: return 2048;
183 case IB_MTU_4096: return 4096;
184 default: return -1;
185 }
186}
187
188enum ib_port_state {
189 IB_PORT_NOP = 0,
190 IB_PORT_DOWN = 1,
191 IB_PORT_INIT = 2,
192 IB_PORT_ARMED = 3,
193 IB_PORT_ACTIVE = 4,
194 IB_PORT_ACTIVE_DEFER = 5
195};
196
197enum ib_port_cap_flags {
198 IB_PORT_SM = 1 << 1,
199 IB_PORT_NOTICE_SUP = 1 << 2,
200 IB_PORT_TRAP_SUP = 1 << 3,
201 IB_PORT_OPT_IPD_SUP = 1 << 4,
202 IB_PORT_AUTO_MIGR_SUP = 1 << 5,
203 IB_PORT_SL_MAP_SUP = 1 << 6,
204 IB_PORT_MKEY_NVRAM = 1 << 7,
205 IB_PORT_PKEY_NVRAM = 1 << 8,
206 IB_PORT_LED_INFO_SUP = 1 << 9,
207 IB_PORT_SM_DISABLED = 1 << 10,
208 IB_PORT_SYS_IMAGE_GUID_SUP = 1 << 11,
209 IB_PORT_PKEY_SW_EXT_PORT_TRAP_SUP = 1 << 12,
210 IB_PORT_CM_SUP = 1 << 16,
211 IB_PORT_SNMP_TUNNEL_SUP = 1 << 17,
212 IB_PORT_REINIT_SUP = 1 << 18,
213 IB_PORT_DEVICE_MGMT_SUP = 1 << 19,
214 IB_PORT_VENDOR_CLASS_SUP = 1 << 20,
215 IB_PORT_DR_NOTICE_SUP = 1 << 21,
216 IB_PORT_CAP_MASK_NOTICE_SUP = 1 << 22,
217 IB_PORT_BOOT_MGMT_SUP = 1 << 23,
218 IB_PORT_LINK_LATENCY_SUP = 1 << 24,
219 IB_PORT_CLIENT_REG_SUP = 1 << 25
220};
221
222enum ib_port_width {
223 IB_WIDTH_1X = 1,
224 IB_WIDTH_4X = 2,
225 IB_WIDTH_8X = 4,
226 IB_WIDTH_12X = 8
227};
228
229static inline int ib_width_enum_to_int(enum ib_port_width width)
230{
231 switch (width) {
232 case IB_WIDTH_1X: return 1;
233 case IB_WIDTH_4X: return 4;
234 case IB_WIDTH_8X: return 8;
235 case IB_WIDTH_12X: return 12;
236 default: return -1;
237 }
238}
239
240struct ib_protocol_stats {
241 /* TBD... */
242};
243
244struct iw_protocol_stats {
245 u64 ipInReceives;
246 u64 ipInHdrErrors;
247 u64 ipInTooBigErrors;
248 u64 ipInNoRoutes;
249 u64 ipInAddrErrors;
250 u64 ipInUnknownProtos;
251 u64 ipInTruncatedPkts;
252 u64 ipInDiscards;
253 u64 ipInDelivers;
254 u64 ipOutForwDatagrams;
255 u64 ipOutRequests;
256 u64 ipOutDiscards;
257 u64 ipOutNoRoutes;
258 u64 ipReasmTimeout;
259 u64 ipReasmReqds;
260 u64 ipReasmOKs;
261 u64 ipReasmFails;
262 u64 ipFragOKs;
263 u64 ipFragFails;
264 u64 ipFragCreates;
265 u64 ipInMcastPkts;
266 u64 ipOutMcastPkts;
267 u64 ipInBcastPkts;
268 u64 ipOutBcastPkts;
269
270 u64 tcpRtoAlgorithm;
271 u64 tcpRtoMin;
272 u64 tcpRtoMax;
273 u64 tcpMaxConn;
274 u64 tcpActiveOpens;
275 u64 tcpPassiveOpens;
276 u64 tcpAttemptFails;
277 u64 tcpEstabResets;
278 u64 tcpCurrEstab;
279 u64 tcpInSegs;
280 u64 tcpOutSegs;
281 u64 tcpRetransSegs;
282 u64 tcpInErrs;
283 u64 tcpOutRsts;
284};
285
286union rdma_protocol_stats {
287 struct ib_protocol_stats ib;
288 struct iw_protocol_stats iw;
289};
290
291struct ib_port_attr {
292 enum ib_port_state state;
293 enum ib_mtu max_mtu;
294 enum ib_mtu active_mtu;
295 int gid_tbl_len;
296 u32 port_cap_flags;
297 u32 max_msg_sz;
298 u32 bad_pkey_cntr;
299 u32 qkey_viol_cntr;
300 u16 pkey_tbl_len;
301 u16 lid;
302 u16 sm_lid;
303 u8 lmc;
304 u8 max_vl_num;
305 u8 sm_sl;
306 u8 subnet_timeout;
307 u8 init_type_reply;
308 u8 active_width;
309 u8 active_speed;
310 u8 phys_state;
311};
312
313enum ib_device_modify_flags {
314 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0,
315 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1
316};
317
318struct ib_device_modify {
319 u64 sys_image_guid;
320 char node_desc[64];
321};
322
323enum ib_port_modify_flags {
324 IB_PORT_SHUTDOWN = 1,
325 IB_PORT_INIT_TYPE = (1<<2),
326 IB_PORT_RESET_QKEY_CNTR = (1<<3)
327};
328
329struct ib_port_modify {
330 u32 set_port_cap_mask;
331 u32 clr_port_cap_mask;
332 u8 init_type;
333};
334
335enum ib_event_type {
336 IB_EVENT_CQ_ERR,
337 IB_EVENT_QP_FATAL,
338 IB_EVENT_QP_REQ_ERR,
339 IB_EVENT_QP_ACCESS_ERR,
340 IB_EVENT_COMM_EST,
341 IB_EVENT_SQ_DRAINED,
342 IB_EVENT_PATH_MIG,
343 IB_EVENT_PATH_MIG_ERR,
344 IB_EVENT_DEVICE_FATAL,
345 IB_EVENT_PORT_ACTIVE,
346 IB_EVENT_PORT_ERR,
347 IB_EVENT_LID_CHANGE,
348 IB_EVENT_PKEY_CHANGE,
349 IB_EVENT_SM_CHANGE,
350 IB_EVENT_SRQ_ERR,
351 IB_EVENT_SRQ_LIMIT_REACHED,
352 IB_EVENT_QP_LAST_WQE_REACHED,
353 IB_EVENT_CLIENT_REREGISTER,
354 IB_EVENT_GID_CHANGE,
355};
356
357struct ib_event {
358 struct ib_device *device;
359 union {
360 struct ib_cq *cq;
361 struct ib_qp *qp;
362 struct ib_srq *srq;
363 u8 port_num;
364 } element;
365 enum ib_event_type event;
366};
367
368struct ib_event_handler {
369 struct ib_device *device;
370 void (*handler)(struct ib_event_handler *, struct ib_event *);
371 struct list_head list;
372};
373
374#define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \
375 do { \
376 (_ptr)->device = _device; \
377 (_ptr)->handler = _handler; \
378 INIT_LIST_HEAD(&(_ptr)->list); \
379 } while (0)
380
381struct ib_global_route {
382 union ib_gid dgid;
383 u32 flow_label;
384 u8 sgid_index;
385 u8 hop_limit;
386 u8 traffic_class;
387};
388
389struct ib_grh {
390 __be32 version_tclass_flow;
391 __be16 paylen;
392 u8 next_hdr;
393 u8 hop_limit;
394 union ib_gid sgid;
395 union ib_gid dgid;
396};
397
398enum {
399 IB_MULTICAST_QPN = 0xffffff
400};
401
402#define IB_LID_PERMISSIVE cpu_to_be16(0xFFFF)
403
404enum ib_ah_flags {
405 IB_AH_GRH = 1
406};
407
408enum ib_rate {
409 IB_RATE_PORT_CURRENT = 0,
410 IB_RATE_2_5_GBPS = 2,
411 IB_RATE_5_GBPS = 5,
412 IB_RATE_10_GBPS = 3,
413 IB_RATE_20_GBPS = 6,
414 IB_RATE_30_GBPS = 4,
415 IB_RATE_40_GBPS = 7,
416 IB_RATE_60_GBPS = 8,
417 IB_RATE_80_GBPS = 9,
418 IB_RATE_120_GBPS = 10
419};
420
421/**
422 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the
423 * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be
424 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
425 * @rate: rate to convert.
426 */
427int ib_rate_to_mult(enum ib_rate rate) __attribute_const__;
428
429/**
430 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
431 * enum.
432 * @mult: multiple to convert.
433 */
434enum ib_rate mult_to_ib_rate(int mult) __attribute_const__;
435
436struct ib_ah_attr {
437 struct ib_global_route grh;
438 u16 dlid;
439 u8 sl;
440 u8 src_path_bits;
441 u8 static_rate;
442 u8 ah_flags;
443 u8 port_num;
444};
445
446enum ib_wc_status {
447 IB_WC_SUCCESS,
448 IB_WC_LOC_LEN_ERR,
449 IB_WC_LOC_QP_OP_ERR,
450 IB_WC_LOC_EEC_OP_ERR,
451 IB_WC_LOC_PROT_ERR,
452 IB_WC_WR_FLUSH_ERR,
453 IB_WC_MW_BIND_ERR,
454 IB_WC_BAD_RESP_ERR,
455 IB_WC_LOC_ACCESS_ERR,
456 IB_WC_REM_INV_REQ_ERR,
457 IB_WC_REM_ACCESS_ERR,
458 IB_WC_REM_OP_ERR,
459 IB_WC_RETRY_EXC_ERR,
460 IB_WC_RNR_RETRY_EXC_ERR,
461 IB_WC_LOC_RDD_VIOL_ERR,
462 IB_WC_REM_INV_RD_REQ_ERR,
463 IB_WC_REM_ABORT_ERR,
464 IB_WC_INV_EECN_ERR,
465 IB_WC_INV_EEC_STATE_ERR,
466 IB_WC_FATAL_ERR,
467 IB_WC_RESP_TIMEOUT_ERR,
468 IB_WC_GENERAL_ERR
469};
470
471enum ib_wc_opcode {
472 IB_WC_SEND,
473 IB_WC_RDMA_WRITE,
474 IB_WC_RDMA_READ,
475 IB_WC_COMP_SWAP,
476 IB_WC_FETCH_ADD,
477 IB_WC_BIND_MW,
478 IB_WC_LSO,
479 IB_WC_LOCAL_INV,
480 IB_WC_FAST_REG_MR,
481 IB_WC_MASKED_COMP_SWAP,
482 IB_WC_MASKED_FETCH_ADD,
483/*
484 * Set value of IB_WC_RECV so consumers can test if a completion is a
485 * receive by testing (opcode & IB_WC_RECV).
486 */
487 IB_WC_RECV = 1 << 7,
488 IB_WC_RECV_RDMA_WITH_IMM
489};
490
491enum ib_wc_flags {
492 IB_WC_GRH = 1,
493 IB_WC_WITH_IMM = (1<<1),
494 IB_WC_WITH_INVALIDATE = (1<<2),
495};
496
497struct ib_wc {
498 u64 wr_id;
499 enum ib_wc_status status;
500 enum ib_wc_opcode opcode;
501 u32 vendor_err;
502 u32 byte_len;
503 struct ib_qp *qp;
504 union {
505 __be32 imm_data;
506 u32 invalidate_rkey;
507 } ex;
508 u32 src_qp;
509 int wc_flags;
510 u16 pkey_index;
511 u16 slid;
512 u8 sl;
513 u8 dlid_path_bits;
514 u8 port_num; /* valid only for DR SMPs on switches */
515 int csum_ok;
516};
517
518enum ib_cq_notify_flags {
519 IB_CQ_SOLICITED = 1 << 0,
520 IB_CQ_NEXT_COMP = 1 << 1,
521 IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
522 IB_CQ_REPORT_MISSED_EVENTS = 1 << 2,
523};
524
525enum ib_srq_attr_mask {
526 IB_SRQ_MAX_WR = 1 << 0,
527 IB_SRQ_LIMIT = 1 << 1,
528};
529
530struct ib_srq_attr {
531 u32 max_wr;
532 u32 max_sge;
533 u32 srq_limit;
534};
535
536struct ib_srq_init_attr {
537 void (*event_handler)(struct ib_event *, void *);
538 void *srq_context;
539 struct ib_srq_attr attr;
540};
541
542struct ib_qp_cap {
543 u32 max_send_wr;
544 u32 max_recv_wr;
545 u32 max_send_sge;
546 u32 max_recv_sge;
547 u32 max_inline_data;
548};
549
550enum ib_sig_type {
551 IB_SIGNAL_ALL_WR,
552 IB_SIGNAL_REQ_WR
553};
554
555enum ib_qp_type {
556 /*
557 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
558 * here (and in that order) since the MAD layer uses them as
559 * indices into a 2-entry table.
560 */
561 IB_QPT_SMI,
562 IB_QPT_GSI,
563
564 IB_QPT_RC,
565 IB_QPT_UC,
566 IB_QPT_UD,
567 IB_QPT_RAW_IPV6,
568 IB_QPT_RAW_ETHERTYPE
569};
570
571enum ib_qp_create_flags {
572 IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0,
573 IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK = 1 << 1,
574};
575
576struct ib_qp_init_attr {
577 void (*event_handler)(struct ib_event *, void *);
578 void *qp_context;
579 struct ib_cq *send_cq;
580 struct ib_cq *recv_cq;
581 struct ib_srq *srq;
582 struct ib_qp_cap cap;
583 enum ib_sig_type sq_sig_type;
584 enum ib_qp_type qp_type;
585 enum ib_qp_create_flags create_flags;
586 u8 port_num; /* special QP types only */
587};
588
589enum ib_rnr_timeout {
590 IB_RNR_TIMER_655_36 = 0,
591 IB_RNR_TIMER_000_01 = 1,
592 IB_RNR_TIMER_000_02 = 2,
593 IB_RNR_TIMER_000_03 = 3,
594 IB_RNR_TIMER_000_04 = 4,
595 IB_RNR_TIMER_000_06 = 5,
596 IB_RNR_TIMER_000_08 = 6,
597 IB_RNR_TIMER_000_12 = 7,
598 IB_RNR_TIMER_000_16 = 8,
599 IB_RNR_TIMER_000_24 = 9,
600 IB_RNR_TIMER_000_32 = 10,
601 IB_RNR_TIMER_000_48 = 11,
602 IB_RNR_TIMER_000_64 = 12,
603 IB_RNR_TIMER_000_96 = 13,
604 IB_RNR_TIMER_001_28 = 14,
605 IB_RNR_TIMER_001_92 = 15,
606 IB_RNR_TIMER_002_56 = 16,
607 IB_RNR_TIMER_003_84 = 17,
608 IB_RNR_TIMER_005_12 = 18,
609 IB_RNR_TIMER_007_68 = 19,
610 IB_RNR_TIMER_010_24 = 20,
611 IB_RNR_TIMER_015_36 = 21,
612 IB_RNR_TIMER_020_48 = 22,
613 IB_RNR_TIMER_030_72 = 23,
614 IB_RNR_TIMER_040_96 = 24,
615 IB_RNR_TIMER_061_44 = 25,
616 IB_RNR_TIMER_081_92 = 26,
617 IB_RNR_TIMER_122_88 = 27,
618 IB_RNR_TIMER_163_84 = 28,
619 IB_RNR_TIMER_245_76 = 29,
620 IB_RNR_TIMER_327_68 = 30,
621 IB_RNR_TIMER_491_52 = 31
622};
623
624enum ib_qp_attr_mask {
625 IB_QP_STATE = 1,
626 IB_QP_CUR_STATE = (1<<1),
627 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2),
628 IB_QP_ACCESS_FLAGS = (1<<3),
629 IB_QP_PKEY_INDEX = (1<<4),
630 IB_QP_PORT = (1<<5),
631 IB_QP_QKEY = (1<<6),
632 IB_QP_AV = (1<<7),
633 IB_QP_PATH_MTU = (1<<8),
634 IB_QP_TIMEOUT = (1<<9),
635 IB_QP_RETRY_CNT = (1<<10),
636 IB_QP_RNR_RETRY = (1<<11),
637 IB_QP_RQ_PSN = (1<<12),
638 IB_QP_MAX_QP_RD_ATOMIC = (1<<13),
639 IB_QP_ALT_PATH = (1<<14),
640 IB_QP_MIN_RNR_TIMER = (1<<15),
641 IB_QP_SQ_PSN = (1<<16),
642 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17),
643 IB_QP_PATH_MIG_STATE = (1<<18),
644 IB_QP_CAP = (1<<19),
645 IB_QP_DEST_QPN = (1<<20)
646};
647
648enum ib_qp_state {
649 IB_QPS_RESET,
650 IB_QPS_INIT,
651 IB_QPS_RTR,
652 IB_QPS_RTS,
653 IB_QPS_SQD,
654 IB_QPS_SQE,
655 IB_QPS_ERR
656};
657
658enum ib_mig_state {
659 IB_MIG_MIGRATED,
660 IB_MIG_REARM,
661 IB_MIG_ARMED
662};
663
664struct ib_qp_attr {
665 enum ib_qp_state qp_state;
666 enum ib_qp_state cur_qp_state;
667 enum ib_mtu path_mtu;
668 enum ib_mig_state path_mig_state;
669 u32 qkey;
670 u32 rq_psn;
671 u32 sq_psn;
672 u32 dest_qp_num;
673 int qp_access_flags;
674 struct ib_qp_cap cap;
675 struct ib_ah_attr ah_attr;
676 struct ib_ah_attr alt_ah_attr;
677 u16 pkey_index;
678 u16 alt_pkey_index;
679 u8 en_sqd_async_notify;
680 u8 sq_draining;
681 u8 max_rd_atomic;
682 u8 max_dest_rd_atomic;
683 u8 min_rnr_timer;
684 u8 port_num;
685 u8 timeout;
686 u8 retry_cnt;
687 u8 rnr_retry;
688 u8 alt_port_num;
689 u8 alt_timeout;
690};
691
692enum ib_wr_opcode {
693 IB_WR_RDMA_WRITE,
694 IB_WR_RDMA_WRITE_WITH_IMM,
695 IB_WR_SEND,
696 IB_WR_SEND_WITH_IMM,
697 IB_WR_RDMA_READ,
698 IB_WR_ATOMIC_CMP_AND_SWP,
699 IB_WR_ATOMIC_FETCH_AND_ADD,
700 IB_WR_LSO,
701 IB_WR_SEND_WITH_INV,
702 IB_WR_RDMA_READ_WITH_INV,
703 IB_WR_LOCAL_INV,
704 IB_WR_FAST_REG_MR,
705 IB_WR_MASKED_ATOMIC_CMP_AND_SWP,
706 IB_WR_MASKED_ATOMIC_FETCH_AND_ADD,
707};
708
709enum ib_send_flags {
710 IB_SEND_FENCE = 1,
711 IB_SEND_SIGNALED = (1<<1),
712 IB_SEND_SOLICITED = (1<<2),
713 IB_SEND_INLINE = (1<<3),
714 IB_SEND_IP_CSUM = (1<<4)
715};
716
717struct ib_sge {
718 u64 addr;
719 u32 length;
720 u32 lkey;
721};
722
723struct ib_fast_reg_page_list {
724 struct ib_device *device;
725 u64 *page_list;
726 unsigned int max_page_list_len;
727};
728
729struct ib_send_wr {
730 struct ib_send_wr *next;
731 u64 wr_id;
732 struct ib_sge *sg_list;
733 int num_sge;
734 enum ib_wr_opcode opcode;
735 int send_flags;
736 union {
737 __be32 imm_data;
738 u32 invalidate_rkey;
739 } ex;
740 union {
741 struct {
742 u64 remote_addr;
743 u32 rkey;
744 } rdma;
745 struct {
746 u64 remote_addr;
747 u64 compare_add;
748 u64 swap;
749 u64 compare_add_mask;
750 u64 swap_mask;
751 u32 rkey;
752 } atomic;
753 struct {
754 struct ib_ah *ah;
755 void *header;
756 int hlen;
757 int mss;
758 u32 remote_qpn;
759 u32 remote_qkey;
760 u16 pkey_index; /* valid for GSI only */
761 u8 port_num; /* valid for DR SMPs on switch only */
762 } ud;
763 struct {
764 u64 iova_start;
765 struct ib_fast_reg_page_list *page_list;
766 unsigned int page_shift;
767 unsigned int page_list_len;
768 u32 length;
769 int access_flags;
770 u32 rkey;
771 } fast_reg;
772 } wr;
773};
774
775struct ib_recv_wr {
776 struct ib_recv_wr *next;
777 u64 wr_id;
778 struct ib_sge *sg_list;
779 int num_sge;
780};
781
782enum ib_access_flags {
783 IB_ACCESS_LOCAL_WRITE = 1,
784 IB_ACCESS_REMOTE_WRITE = (1<<1),
785 IB_ACCESS_REMOTE_READ = (1<<2),
786 IB_ACCESS_REMOTE_ATOMIC = (1<<3),
787 IB_ACCESS_MW_BIND = (1<<4)
788};
789
790struct ib_phys_buf {
791 u64 addr;
792 u64 size;
793};
794
795struct ib_mr_attr {
796 struct ib_pd *pd;
797 u64 device_virt_addr;
798 u64 size;
799 int mr_access_flags;
800 u32 lkey;
801 u32 rkey;
802};
803
804enum ib_mr_rereg_flags {
805 IB_MR_REREG_TRANS = 1,
806 IB_MR_REREG_PD = (1<<1),
807 IB_MR_REREG_ACCESS = (1<<2)
808};
809
810struct ib_mw_bind {
811 struct ib_mr *mr;
812 u64 wr_id;
813 u64 addr;
814 u32 length;
815 int send_flags;
816 int mw_access_flags;
817};
818
819struct ib_fmr_attr {
820 int max_pages;
821 int max_maps;
822 u8 page_shift;
823};
824
825struct ib_ucontext {
826 struct ib_device *device;
827 struct list_head pd_list;
828 struct list_head mr_list;
829 struct list_head mw_list;
830 struct list_head cq_list;
831 struct list_head qp_list;
832 struct list_head srq_list;
833 struct list_head ah_list;
834 int closing;
835};
836
837struct ib_uobject {
838 u64 user_handle; /* handle given to us by userspace */
839 struct ib_ucontext *context; /* associated user context */
840 void *object; /* containing object */
841 struct list_head list; /* link to context's list */
842 int id; /* index into kernel idr */
843 struct kref ref;
844 struct rw_semaphore mutex; /* protects .live */
845 int live;
846};
847
848struct ib_udata {
849 void __user *inbuf;
850 void __user *outbuf;
851 size_t inlen;
852 size_t outlen;
853};
854
855struct ib_pd {
856 struct ib_device *device;
857 struct ib_uobject *uobject;
858 atomic_t usecnt; /* count all resources */
859};
860
861struct ib_ah {
862 struct ib_device *device;
863 struct ib_pd *pd;
864 struct ib_uobject *uobject;
865};
866
867typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
868
869struct ib_cq {
870 struct ib_device *device;
871 struct ib_uobject *uobject;
872 ib_comp_handler comp_handler;
873 void (*event_handler)(struct ib_event *, void *);
874 void *cq_context;
875 int cqe;
876 atomic_t usecnt; /* count number of work queues */
877};
878
879struct ib_srq {
880 struct ib_device *device;
881 struct ib_pd *pd;
882 struct ib_uobject *uobject;
883 void (*event_handler)(struct ib_event *, void *);
884 void *srq_context;
885 atomic_t usecnt;
886};
887
888struct ib_qp {
889 struct ib_device *device;
890 struct ib_pd *pd;
891 struct ib_cq *send_cq;
892 struct ib_cq *recv_cq;
893 struct ib_srq *srq;
894 struct ib_uobject *uobject;
895 void (*event_handler)(struct ib_event *, void *);
896 void *qp_context;
897 u32 qp_num;
898 enum ib_qp_type qp_type;
899};
900
901struct ib_mr {
902 struct ib_device *device;
903 struct ib_pd *pd;
904 struct ib_uobject *uobject;
905 u32 lkey;
906 u32 rkey;
907 atomic_t usecnt; /* count number of MWs */
908};
909
910struct ib_mw {
911 struct ib_device *device;
912 struct ib_pd *pd;
913 struct ib_uobject *uobject;
914 u32 rkey;
915};
916
917struct ib_fmr {
918 struct ib_device *device;
919 struct ib_pd *pd;
920 struct list_head list;
921 u32 lkey;
922 u32 rkey;
923};
924
925struct ib_mad;
926struct ib_grh;
927
928enum ib_process_mad_flags {
929 IB_MAD_IGNORE_MKEY = 1,
930 IB_MAD_IGNORE_BKEY = 2,
931 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
932};
933
934enum ib_mad_result {
935 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */
936 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */
937 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */
938 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */
939};
940
941#define IB_DEVICE_NAME_MAX 64
942
943struct ib_cache {
944 rwlock_t lock;
945 struct ib_event_handler event_handler;
946 struct ib_pkey_cache **pkey_cache;
947 struct ib_gid_cache **gid_cache;
948 u8 *lmc_cache;
949};
950
951struct ib_dma_mapping_ops {
952 int (*mapping_error)(struct ib_device *dev,
953 u64 dma_addr);
954 u64 (*map_single)(struct ib_device *dev,
955 void *ptr, size_t size,
956 enum dma_data_direction direction);
957 void (*unmap_single)(struct ib_device *dev,
958 u64 addr, size_t size,
959 enum dma_data_direction direction);
960 u64 (*map_page)(struct ib_device *dev,
961 struct page *page, unsigned long offset,
962 size_t size,
963 enum dma_data_direction direction);
964 void (*unmap_page)(struct ib_device *dev,
965 u64 addr, size_t size,
966 enum dma_data_direction direction);
967 int (*map_sg)(struct ib_device *dev,
968 struct scatterlist *sg, int nents,
969 enum dma_data_direction direction);
970 void (*unmap_sg)(struct ib_device *dev,
971 struct scatterlist *sg, int nents,
972 enum dma_data_direction direction);
973 u64 (*dma_address)(struct ib_device *dev,
974 struct scatterlist *sg);
975 unsigned int (*dma_len)(struct ib_device *dev,
976 struct scatterlist *sg);
977 void (*sync_single_for_cpu)(struct ib_device *dev,
978 u64 dma_handle,
979 size_t size,
980 enum dma_data_direction dir);
981 void (*sync_single_for_device)(struct ib_device *dev,
982 u64 dma_handle,
983 size_t size,
984 enum dma_data_direction dir);
985 void *(*alloc_coherent)(struct ib_device *dev,
986 size_t size,
987 u64 *dma_handle,
988 gfp_t flag);
989 void (*free_coherent)(struct ib_device *dev,
990 size_t size, void *cpu_addr,
991 u64 dma_handle);
992};
993
994struct iw_cm_verbs;
995
996struct ib_device {
997 struct device *dma_device;
998
999 char name[IB_DEVICE_NAME_MAX];
1000
1001 struct list_head event_handler_list;
1002 spinlock_t event_handler_lock;
1003
1004 spinlock_t client_data_lock;
1005 struct list_head core_list;
1006 struct list_head client_data_list;
1007
1008 struct ib_cache cache;
1009 int *pkey_tbl_len;
1010 int *gid_tbl_len;
1011
1012 int num_comp_vectors;
1013
1014 struct iw_cm_verbs *iwcm;
1015
1016 int (*get_protocol_stats)(struct ib_device *device,
1017 union rdma_protocol_stats *stats);
1018 int (*query_device)(struct ib_device *device,
1019 struct ib_device_attr *device_attr);
1020 int (*query_port)(struct ib_device *device,
1021 u8 port_num,
1022 struct ib_port_attr *port_attr);
1023 enum rdma_link_layer (*get_link_layer)(struct ib_device *device,
1024 u8 port_num);
1025 int (*query_gid)(struct ib_device *device,
1026 u8 port_num, int index,
1027 union ib_gid *gid);
1028 int (*query_pkey)(struct ib_device *device,
1029 u8 port_num, u16 index, u16 *pkey);
1030 int (*modify_device)(struct ib_device *device,
1031 int device_modify_mask,
1032 struct ib_device_modify *device_modify);
1033 int (*modify_port)(struct ib_device *device,
1034 u8 port_num, int port_modify_mask,
1035 struct ib_port_modify *port_modify);
1036 struct ib_ucontext * (*alloc_ucontext)(struct ib_device *device,
1037 struct ib_udata *udata);
1038 int (*dealloc_ucontext)(struct ib_ucontext *context);
1039 int (*mmap)(struct ib_ucontext *context,
1040 struct vm_area_struct *vma);
1041 struct ib_pd * (*alloc_pd)(struct ib_device *device,
1042 struct ib_ucontext *context,
1043 struct ib_udata *udata);
1044 int (*dealloc_pd)(struct ib_pd *pd);
1045 struct ib_ah * (*create_ah)(struct ib_pd *pd,
1046 struct ib_ah_attr *ah_attr);
1047 int (*modify_ah)(struct ib_ah *ah,
1048 struct ib_ah_attr *ah_attr);
1049 int (*query_ah)(struct ib_ah *ah,
1050 struct ib_ah_attr *ah_attr);
1051 int (*destroy_ah)(struct ib_ah *ah);
1052 struct ib_srq * (*create_srq)(struct ib_pd *pd,
1053 struct ib_srq_init_attr *srq_init_attr,
1054 struct ib_udata *udata);
1055 int (*modify_srq)(struct ib_srq *srq,
1056 struct ib_srq_attr *srq_attr,
1057 enum ib_srq_attr_mask srq_attr_mask,
1058 struct ib_udata *udata);
1059 int (*query_srq)(struct ib_srq *srq,
1060 struct ib_srq_attr *srq_attr);
1061 int (*destroy_srq)(struct ib_srq *srq);
1062 int (*post_srq_recv)(struct ib_srq *srq,
1063 struct ib_recv_wr *recv_wr,
1064 struct ib_recv_wr **bad_recv_wr);
1065 struct ib_qp * (*create_qp)(struct ib_pd *pd,
1066 struct ib_qp_init_attr *qp_init_attr,
1067 struct ib_udata *udata);
1068 int (*modify_qp)(struct ib_qp *qp,
1069 struct ib_qp_attr *qp_attr,
1070 int qp_attr_mask,
1071 struct ib_udata *udata);
1072 int (*query_qp)(struct ib_qp *qp,
1073 struct ib_qp_attr *qp_attr,
1074 int qp_attr_mask,
1075 struct ib_qp_init_attr *qp_init_attr);
1076 int (*destroy_qp)(struct ib_qp *qp);
1077 int (*post_send)(struct ib_qp *qp,
1078 struct ib_send_wr *send_wr,
1079 struct ib_send_wr **bad_send_wr);
1080 int (*post_recv)(struct ib_qp *qp,
1081 struct ib_recv_wr *recv_wr,
1082 struct ib_recv_wr **bad_recv_wr);
1083 struct ib_cq * (*create_cq)(struct ib_device *device, int cqe,
1084 int comp_vector,
1085 struct ib_ucontext *context,
1086 struct ib_udata *udata);
1087 int (*modify_cq)(struct ib_cq *cq, u16 cq_count,
1088 u16 cq_period);
1089 int (*destroy_cq)(struct ib_cq *cq);
1090 int (*resize_cq)(struct ib_cq *cq, int cqe,
1091 struct ib_udata *udata);
1092 int (*poll_cq)(struct ib_cq *cq, int num_entries,
1093 struct ib_wc *wc);
1094 int (*peek_cq)(struct ib_cq *cq, int wc_cnt);
1095 int (*req_notify_cq)(struct ib_cq *cq,
1096 enum ib_cq_notify_flags flags);
1097 int (*req_ncomp_notif)(struct ib_cq *cq,
1098 int wc_cnt);
1099 struct ib_mr * (*get_dma_mr)(struct ib_pd *pd,
1100 int mr_access_flags);
1101 struct ib_mr * (*reg_phys_mr)(struct ib_pd *pd,
1102 struct ib_phys_buf *phys_buf_array,
1103 int num_phys_buf,
1104 int mr_access_flags,
1105 u64 *iova_start);
1106 struct ib_mr * (*reg_user_mr)(struct ib_pd *pd,
1107 u64 start, u64 length,
1108 u64 virt_addr,
1109 int mr_access_flags,
1110 struct ib_udata *udata);
1111 int (*query_mr)(struct ib_mr *mr,
1112 struct ib_mr_attr *mr_attr);
1113 int (*dereg_mr)(struct ib_mr *mr);
1114 struct ib_mr * (*alloc_fast_reg_mr)(struct ib_pd *pd,
1115 int max_page_list_len);
1116 struct ib_fast_reg_page_list * (*alloc_fast_reg_page_list)(struct ib_device *device,
1117 int page_list_len);
1118 void (*free_fast_reg_page_list)(struct ib_fast_reg_page_list *page_list);
1119 int (*rereg_phys_mr)(struct ib_mr *mr,
1120 int mr_rereg_mask,
1121 struct ib_pd *pd,
1122 struct ib_phys_buf *phys_buf_array,
1123 int num_phys_buf,
1124 int mr_access_flags,
1125 u64 *iova_start);
1126 struct ib_mw * (*alloc_mw)(struct ib_pd *pd);
1127 int (*bind_mw)(struct ib_qp *qp,
1128 struct ib_mw *mw,
1129 struct ib_mw_bind *mw_bind);
1130 int (*dealloc_mw)(struct ib_mw *mw);
1131 struct ib_fmr * (*alloc_fmr)(struct ib_pd *pd,
1132 int mr_access_flags,
1133 struct ib_fmr_attr *fmr_attr);
1134 int (*map_phys_fmr)(struct ib_fmr *fmr,
1135 u64 *page_list, int list_len,
1136 u64 iova);
1137 int (*unmap_fmr)(struct list_head *fmr_list);
1138 int (*dealloc_fmr)(struct ib_fmr *fmr);
1139 int (*attach_mcast)(struct ib_qp *qp,
1140 union ib_gid *gid,
1141 u16 lid);
1142 int (*detach_mcast)(struct ib_qp *qp,
1143 union ib_gid *gid,
1144 u16 lid);
1145 int (*process_mad)(struct ib_device *device,
1146 int process_mad_flags,
1147 u8 port_num,
1148 struct ib_wc *in_wc,
1149 struct ib_grh *in_grh,
1150 struct ib_mad *in_mad,
1151 struct ib_mad *out_mad);
1152
1153 struct ib_dma_mapping_ops *dma_ops;
1154
1155 struct module *owner;
1156 struct device dev;
1157 struct kobject *ports_parent;
1158 struct list_head port_list;
1159
1160 enum {
1161 IB_DEV_UNINITIALIZED,
1162 IB_DEV_REGISTERED,
1163 IB_DEV_UNREGISTERED
1164 } reg_state;
1165
1166 int uverbs_abi_ver;
1167 u64 uverbs_cmd_mask;
1168
1169 char node_desc[64];
1170 __be64 node_guid;
1171 u32 local_dma_lkey;
1172 u8 node_type;
1173 u8 phys_port_cnt;
1174};
1175
1176struct ib_client {
1177 char *name;
1178 void (*add) (struct ib_device *);
1179 void (*remove)(struct ib_device *);
1180
1181 struct list_head list;
1182};
1183
1184struct ib_device *ib_alloc_device(size_t size);
1185void ib_dealloc_device(struct ib_device *device);
1186
1187int ib_register_device(struct ib_device *device,
1188 int (*port_callback)(struct ib_device *,
1189 u8, struct kobject *));
1190void ib_unregister_device(struct ib_device *device);
1191
1192int ib_register_client (struct ib_client *client);
1193void ib_unregister_client(struct ib_client *client);
1194
1195void *ib_get_client_data(struct ib_device *device, struct ib_client *client);
1196void ib_set_client_data(struct ib_device *device, struct ib_client *client,
1197 void *data);
1198
1199static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
1200{
1201 return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
1202}
1203
1204static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
1205{
1206 return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
1207}
1208
1209/**
1210 * ib_modify_qp_is_ok - Check that the supplied attribute mask
1211 * contains all required attributes and no attributes not allowed for
1212 * the given QP state transition.
1213 * @cur_state: Current QP state
1214 * @next_state: Next QP state
1215 * @type: QP type
1216 * @mask: Mask of supplied QP attributes
1217 *
1218 * This function is a helper function that a low-level driver's
1219 * modify_qp method can use to validate the consumer's input. It
1220 * checks that cur_state and next_state are valid QP states, that a
1221 * transition from cur_state to next_state is allowed by the IB spec,
1222 * and that the attribute mask supplied is allowed for the transition.
1223 */
1224int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
1225 enum ib_qp_type type, enum ib_qp_attr_mask mask);
1226
1227int ib_register_event_handler (struct ib_event_handler *event_handler);
1228int ib_unregister_event_handler(struct ib_event_handler *event_handler);
1229void ib_dispatch_event(struct ib_event *event);
1230
1231int ib_query_device(struct ib_device *device,
1232 struct ib_device_attr *device_attr);
1233
1234int ib_query_port(struct ib_device *device,
1235 u8 port_num, struct ib_port_attr *port_attr);
1236
1237enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
1238 u8 port_num);
1239
1240int ib_query_gid(struct ib_device *device,
1241 u8 port_num, int index, union ib_gid *gid);
1242
1243int ib_query_pkey(struct ib_device *device,
1244 u8 port_num, u16 index, u16 *pkey);
1245
1246int ib_modify_device(struct ib_device *device,
1247 int device_modify_mask,
1248 struct ib_device_modify *device_modify);
1249
1250int ib_modify_port(struct ib_device *device,
1251 u8 port_num, int port_modify_mask,
1252 struct ib_port_modify *port_modify);
1253
1254int ib_find_gid(struct ib_device *device, union ib_gid *gid,
1255 u8 *port_num, u16 *index);
1256
1257int ib_find_pkey(struct ib_device *device,
1258 u8 port_num, u16 pkey, u16 *index);
1259
1260/**
1261 * ib_alloc_pd - Allocates an unused protection domain.
1262 * @device: The device on which to allocate the protection domain.
1263 *
1264 * A protection domain object provides an association between QPs, shared
1265 * receive queues, address handles, memory regions, and memory windows.
1266 */
1267struct ib_pd *ib_alloc_pd(struct ib_device *device);
1268
1269/**
1270 * ib_dealloc_pd - Deallocates a protection domain.
1271 * @pd: The protection domain to deallocate.
1272 */
1273int ib_dealloc_pd(struct ib_pd *pd);
1274
1275/**
1276 * ib_create_ah - Creates an address handle for the given address vector.
1277 * @pd: The protection domain associated with the address handle.
1278 * @ah_attr: The attributes of the address vector.
1279 *
1280 * The address handle is used to reference a local or global destination
1281 * in all UD QP post sends.
1282 */
1283struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr);
1284
1285/**
1286 * ib_init_ah_from_wc - Initializes address handle attributes from a
1287 * work completion.
1288 * @device: Device on which the received message arrived.
1289 * @port_num: Port on which the received message arrived.
1290 * @wc: Work completion associated with the received message.
1291 * @grh: References the received global route header. This parameter is
1292 * ignored unless the work completion indicates that the GRH is valid.
1293 * @ah_attr: Returned attributes that can be used when creating an address
1294 * handle for replying to the message.
1295 */
1296int ib_init_ah_from_wc(struct ib_device *device, u8 port_num, struct ib_wc *wc,
1297 struct ib_grh *grh, struct ib_ah_attr *ah_attr);
1298
1299/**
1300 * ib_create_ah_from_wc - Creates an address handle associated with the
1301 * sender of the specified work completion.
1302 * @pd: The protection domain associated with the address handle.
1303 * @wc: Work completion information associated with a received message.
1304 * @grh: References the received global route header. This parameter is
1305 * ignored unless the work completion indicates that the GRH is valid.
1306 * @port_num: The outbound port number to associate with the address.
1307 *
1308 * The address handle is used to reference a local or global destination
1309 * in all UD QP post sends.
1310 */
1311struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, struct ib_wc *wc,
1312 struct ib_grh *grh, u8 port_num);
1313
1314/**
1315 * ib_modify_ah - Modifies the address vector associated with an address
1316 * handle.
1317 * @ah: The address handle to modify.
1318 * @ah_attr: The new address vector attributes to associate with the
1319 * address handle.
1320 */
1321int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
1322
1323/**
1324 * ib_query_ah - Queries the address vector associated with an address
1325 * handle.
1326 * @ah: The address handle to query.
1327 * @ah_attr: The address vector attributes associated with the address
1328 * handle.
1329 */
1330int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
1331
1332/**
1333 * ib_destroy_ah - Destroys an address handle.
1334 * @ah: The address handle to destroy.
1335 */
1336int ib_destroy_ah(struct ib_ah *ah);
1337
1338/**
1339 * ib_create_srq - Creates a SRQ associated with the specified protection
1340 * domain.
1341 * @pd: The protection domain associated with the SRQ.
1342 * @srq_init_attr: A list of initial attributes required to create the
1343 * SRQ. If SRQ creation succeeds, then the attributes are updated to
1344 * the actual capabilities of the created SRQ.
1345 *
1346 * srq_attr->max_wr and srq_attr->max_sge are read the determine the
1347 * requested size of the SRQ, and set to the actual values allocated
1348 * on return. If ib_create_srq() succeeds, then max_wr and max_sge
1349 * will always be at least as large as the requested values.
1350 */
1351struct ib_srq *ib_create_srq(struct ib_pd *pd,
1352 struct ib_srq_init_attr *srq_init_attr);
1353
1354/**
1355 * ib_modify_srq - Modifies the attributes for the specified SRQ.
1356 * @srq: The SRQ to modify.
1357 * @srq_attr: On input, specifies the SRQ attributes to modify. On output,
1358 * the current values of selected SRQ attributes are returned.
1359 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
1360 * are being modified.
1361 *
1362 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
1363 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when
1364 * the number of receives queued drops below the limit.
1365 */
1366int ib_modify_srq(struct ib_srq *srq,
1367 struct ib_srq_attr *srq_attr,
1368 enum ib_srq_attr_mask srq_attr_mask);
1369
1370/**
1371 * ib_query_srq - Returns the attribute list and current values for the
1372 * specified SRQ.
1373 * @srq: The SRQ to query.
1374 * @srq_attr: The attributes of the specified SRQ.
1375 */
1376int ib_query_srq(struct ib_srq *srq,
1377 struct ib_srq_attr *srq_attr);
1378
1379/**
1380 * ib_destroy_srq - Destroys the specified SRQ.
1381 * @srq: The SRQ to destroy.
1382 */
1383int ib_destroy_srq(struct ib_srq *srq);
1384
1385/**
1386 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
1387 * @srq: The SRQ to post the work request on.
1388 * @recv_wr: A list of work requests to post on the receive queue.
1389 * @bad_recv_wr: On an immediate failure, this parameter will reference
1390 * the work request that failed to be posted on the QP.
1391 */
1392static inline int ib_post_srq_recv(struct ib_srq *srq,
1393 struct ib_recv_wr *recv_wr,
1394 struct ib_recv_wr **bad_recv_wr)
1395{
1396 return srq->device->post_srq_recv(srq, recv_wr, bad_recv_wr);
1397}
1398
1399/**
1400 * ib_create_qp - Creates a QP associated with the specified protection
1401 * domain.
1402 * @pd: The protection domain associated with the QP.
1403 * @qp_init_attr: A list of initial attributes required to create the
1404 * QP. If QP creation succeeds, then the attributes are updated to
1405 * the actual capabilities of the created QP.
1406 */
1407struct ib_qp *ib_create_qp(struct ib_pd *pd,
1408 struct ib_qp_init_attr *qp_init_attr);
1409
1410/**
1411 * ib_modify_qp - Modifies the attributes for the specified QP and then
1412 * transitions the QP to the given state.
1413 * @qp: The QP to modify.
1414 * @qp_attr: On input, specifies the QP attributes to modify. On output,
1415 * the current values of selected QP attributes are returned.
1416 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP
1417 * are being modified.
1418 */
1419int ib_modify_qp(struct ib_qp *qp,
1420 struct ib_qp_attr *qp_attr,
1421 int qp_attr_mask);
1422
1423/**
1424 * ib_query_qp - Returns the attribute list and current values for the
1425 * specified QP.
1426 * @qp: The QP to query.
1427 * @qp_attr: The attributes of the specified QP.
1428 * @qp_attr_mask: A bit-mask used to select specific attributes to query.
1429 * @qp_init_attr: Additional attributes of the selected QP.
1430 *
1431 * The qp_attr_mask may be used to limit the query to gathering only the
1432 * selected attributes.
1433 */
1434int ib_query_qp(struct ib_qp *qp,
1435 struct ib_qp_attr *qp_attr,
1436 int qp_attr_mask,
1437 struct ib_qp_init_attr *qp_init_attr);
1438
1439/**
1440 * ib_destroy_qp - Destroys the specified QP.
1441 * @qp: The QP to destroy.
1442 */
1443int ib_destroy_qp(struct ib_qp *qp);
1444
1445/**
1446 * ib_post_send - Posts a list of work requests to the send queue of
1447 * the specified QP.
1448 * @qp: The QP to post the work request on.
1449 * @send_wr: A list of work requests to post on the send queue.
1450 * @bad_send_wr: On an immediate failure, this parameter will reference
1451 * the work request that failed to be posted on the QP.
1452 *
1453 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate
1454 * error is returned, the QP state shall not be affected,
1455 * ib_post_send() will return an immediate error after queueing any
1456 * earlier work requests in the list.
1457 */
1458static inline int ib_post_send(struct ib_qp *qp,
1459 struct ib_send_wr *send_wr,
1460 struct ib_send_wr **bad_send_wr)
1461{
1462 return qp->device->post_send(qp, send_wr, bad_send_wr);
1463}
1464
1465/**
1466 * ib_post_recv - Posts a list of work requests to the receive queue of
1467 * the specified QP.
1468 * @qp: The QP to post the work request on.
1469 * @recv_wr: A list of work requests to post on the receive queue.
1470 * @bad_recv_wr: On an immediate failure, this parameter will reference
1471 * the work request that failed to be posted on the QP.
1472 */
1473static inline int ib_post_recv(struct ib_qp *qp,
1474 struct ib_recv_wr *recv_wr,
1475 struct ib_recv_wr **bad_recv_wr)
1476{
1477 return qp->device->post_recv(qp, recv_wr, bad_recv_wr);
1478}
1479
1480/**
1481 * ib_create_cq - Creates a CQ on the specified device.
1482 * @device: The device on which to create the CQ.
1483 * @comp_handler: A user-specified callback that is invoked when a
1484 * completion event occurs on the CQ.
1485 * @event_handler: A user-specified callback that is invoked when an
1486 * asynchronous event not associated with a completion occurs on the CQ.
1487 * @cq_context: Context associated with the CQ returned to the user via
1488 * the associated completion and event handlers.
1489 * @cqe: The minimum size of the CQ.
1490 * @comp_vector - Completion vector used to signal completion events.
1491 * Must be >= 0 and < context->num_comp_vectors.
1492 *
1493 * Users can examine the cq structure to determine the actual CQ size.
1494 */
1495struct ib_cq *ib_create_cq(struct ib_device *device,
1496 ib_comp_handler comp_handler,
1497 void (*event_handler)(struct ib_event *, void *),
1498 void *cq_context, int cqe, int comp_vector);
1499
1500/**
1501 * ib_resize_cq - Modifies the capacity of the CQ.
1502 * @cq: The CQ to resize.
1503 * @cqe: The minimum size of the CQ.
1504 *
1505 * Users can examine the cq structure to determine the actual CQ size.
1506 */
1507int ib_resize_cq(struct ib_cq *cq, int cqe);
1508
1509/**
1510 * ib_modify_cq - Modifies moderation params of the CQ
1511 * @cq: The CQ to modify.
1512 * @cq_count: number of CQEs that will trigger an event
1513 * @cq_period: max period of time in usec before triggering an event
1514 *
1515 */
1516int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period);
1517
1518/**
1519 * ib_destroy_cq - Destroys the specified CQ.
1520 * @cq: The CQ to destroy.
1521 */
1522int ib_destroy_cq(struct ib_cq *cq);
1523
1524/**
1525 * ib_poll_cq - poll a CQ for completion(s)
1526 * @cq:the CQ being polled
1527 * @num_entries:maximum number of completions to return
1528 * @wc:array of at least @num_entries &struct ib_wc where completions
1529 * will be returned
1530 *
1531 * Poll a CQ for (possibly multiple) completions. If the return value
1532 * is < 0, an error occurred. If the return value is >= 0, it is the
1533 * number of completions returned. If the return value is
1534 * non-negative and < num_entries, then the CQ was emptied.
1535 */
1536static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
1537 struct ib_wc *wc)
1538{
1539 return cq->device->poll_cq(cq, num_entries, wc);
1540}
1541
1542/**
1543 * ib_peek_cq - Returns the number of unreaped completions currently
1544 * on the specified CQ.
1545 * @cq: The CQ to peek.
1546 * @wc_cnt: A minimum number of unreaped completions to check for.
1547 *
1548 * If the number of unreaped completions is greater than or equal to wc_cnt,
1549 * this function returns wc_cnt, otherwise, it returns the actual number of
1550 * unreaped completions.
1551 */
1552int ib_peek_cq(struct ib_cq *cq, int wc_cnt);
1553
1554/**
1555 * ib_req_notify_cq - Request completion notification on a CQ.
1556 * @cq: The CQ to generate an event for.
1557 * @flags:
1558 * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
1559 * to request an event on the next solicited event or next work
1560 * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
1561 * may also be |ed in to request a hint about missed events, as
1562 * described below.
1563 *
1564 * Return Value:
1565 * < 0 means an error occurred while requesting notification
1566 * == 0 means notification was requested successfully, and if
1567 * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
1568 * were missed and it is safe to wait for another event. In
1569 * this case is it guaranteed that any work completions added
1570 * to the CQ since the last CQ poll will trigger a completion
1571 * notification event.
1572 * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
1573 * in. It means that the consumer must poll the CQ again to
1574 * make sure it is empty to avoid missing an event because of a
1575 * race between requesting notification and an entry being
1576 * added to the CQ. This return value means it is possible
1577 * (but not guaranteed) that a work completion has been added
1578 * to the CQ since the last poll without triggering a
1579 * completion notification event.
1580 */
1581static inline int ib_req_notify_cq(struct ib_cq *cq,
1582 enum ib_cq_notify_flags flags)
1583{
1584 return cq->device->req_notify_cq(cq, flags);
1585}
1586
1587/**
1588 * ib_req_ncomp_notif - Request completion notification when there are
1589 * at least the specified number of unreaped completions on the CQ.
1590 * @cq: The CQ to generate an event for.
1591 * @wc_cnt: The number of unreaped completions that should be on the
1592 * CQ before an event is generated.
1593 */
1594static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt)
1595{
1596 return cq->device->req_ncomp_notif ?
1597 cq->device->req_ncomp_notif(cq, wc_cnt) :
1598 -ENOSYS;
1599}
1600
1601/**
1602 * ib_get_dma_mr - Returns a memory region for system memory that is
1603 * usable for DMA.
1604 * @pd: The protection domain associated with the memory region.
1605 * @mr_access_flags: Specifies the memory access rights.
1606 *
1607 * Note that the ib_dma_*() functions defined below must be used
1608 * to create/destroy addresses used with the Lkey or Rkey returned
1609 * by ib_get_dma_mr().
1610 */
1611struct ib_mr *ib_get_dma_mr(struct ib_pd *pd, int mr_access_flags);
1612
1613/**
1614 * ib_dma_mapping_error - check a DMA addr for error
1615 * @dev: The device for which the dma_addr was created
1616 * @dma_addr: The DMA address to check
1617 */
1618static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
1619{
1620 if (dev->dma_ops)
1621 return dev->dma_ops->mapping_error(dev, dma_addr);
1622 return dma_mapping_error(dev->dma_device, dma_addr);
1623}
1624
1625/**
1626 * ib_dma_map_single - Map a kernel virtual address to DMA address
1627 * @dev: The device for which the dma_addr is to be created
1628 * @cpu_addr: The kernel virtual address
1629 * @size: The size of the region in bytes
1630 * @direction: The direction of the DMA
1631 */
1632static inline u64 ib_dma_map_single(struct ib_device *dev,
1633 void *cpu_addr, size_t size,
1634 enum dma_data_direction direction)
1635{
1636 if (dev->dma_ops)
1637 return dev->dma_ops->map_single(dev, cpu_addr, size, direction);
1638 return dma_map_single(dev->dma_device, cpu_addr, size, direction);
1639}
1640
1641/**
1642 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
1643 * @dev: The device for which the DMA address was created
1644 * @addr: The DMA address
1645 * @size: The size of the region in bytes
1646 * @direction: The direction of the DMA
1647 */
1648static inline void ib_dma_unmap_single(struct ib_device *dev,
1649 u64 addr, size_t size,
1650 enum dma_data_direction direction)
1651{
1652 if (dev->dma_ops)
1653 dev->dma_ops->unmap_single(dev, addr, size, direction);
1654 else
1655 dma_unmap_single(dev->dma_device, addr, size, direction);
1656}
1657
1658static inline u64 ib_dma_map_single_attrs(struct ib_device *dev,
1659 void *cpu_addr, size_t size,
1660 enum dma_data_direction direction,
1661 struct dma_attrs *attrs)
1662{
1663 return dma_map_single_attrs(dev->dma_device, cpu_addr, size,
1664 direction, attrs);
1665}
1666
1667static inline void ib_dma_unmap_single_attrs(struct ib_device *dev,
1668 u64 addr, size_t size,
1669 enum dma_data_direction direction,
1670 struct dma_attrs *attrs)
1671{
1672 return dma_unmap_single_attrs(dev->dma_device, addr, size,
1673 direction, attrs);
1674}
1675
1676/**
1677 * ib_dma_map_page - Map a physical page to DMA address
1678 * @dev: The device for which the dma_addr is to be created
1679 * @page: The page to be mapped
1680 * @offset: The offset within the page
1681 * @size: The size of the region in bytes
1682 * @direction: The direction of the DMA
1683 */
1684static inline u64 ib_dma_map_page(struct ib_device *dev,
1685 struct page *page,
1686 unsigned long offset,
1687 size_t size,
1688 enum dma_data_direction direction)
1689{
1690 if (dev->dma_ops)
1691 return dev->dma_ops->map_page(dev, page, offset, size, direction);
1692 return dma_map_page(dev->dma_device, page, offset, size, direction);
1693}
1694
1695/**
1696 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
1697 * @dev: The device for which the DMA address was created
1698 * @addr: The DMA address
1699 * @size: The size of the region in bytes
1700 * @direction: The direction of the DMA
1701 */
1702static inline void ib_dma_unmap_page(struct ib_device *dev,
1703 u64 addr, size_t size,
1704 enum dma_data_direction direction)
1705{
1706 if (dev->dma_ops)
1707 dev->dma_ops->unmap_page(dev, addr, size, direction);
1708 else
1709 dma_unmap_page(dev->dma_device, addr, size, direction);
1710}
1711
1712/**
1713 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses
1714 * @dev: The device for which the DMA addresses are to be created
1715 * @sg: The array of scatter/gather entries
1716 * @nents: The number of scatter/gather entries
1717 * @direction: The direction of the DMA
1718 */
1719static inline int ib_dma_map_sg(struct ib_device *dev,
1720 struct scatterlist *sg, int nents,
1721 enum dma_data_direction direction)
1722{
1723 if (dev->dma_ops)
1724 return dev->dma_ops->map_sg(dev, sg, nents, direction);
1725 return dma_map_sg(dev->dma_device, sg, nents, direction);
1726}
1727
1728/**
1729 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
1730 * @dev: The device for which the DMA addresses were created
1731 * @sg: The array of scatter/gather entries
1732 * @nents: The number of scatter/gather entries
1733 * @direction: The direction of the DMA
1734 */
1735static inline void ib_dma_unmap_sg(struct ib_device *dev,
1736 struct scatterlist *sg, int nents,
1737 enum dma_data_direction direction)
1738{
1739 if (dev->dma_ops)
1740 dev->dma_ops->unmap_sg(dev, sg, nents, direction);
1741 else
1742 dma_unmap_sg(dev->dma_device, sg, nents, direction);
1743}
1744
1745static inline int ib_dma_map_sg_attrs(struct ib_device *dev,
1746 struct scatterlist *sg, int nents,
1747 enum dma_data_direction direction,
1748 struct dma_attrs *attrs)
1749{
1750 return dma_map_sg_attrs(dev->dma_device, sg, nents, direction, attrs);
1751}
1752
1753static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev,
1754 struct scatterlist *sg, int nents,
1755 enum dma_data_direction direction,
1756 struct dma_attrs *attrs)
1757{
1758 dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, attrs);
1759}
1760/**
1761 * ib_sg_dma_address - Return the DMA address from a scatter/gather entry
1762 * @dev: The device for which the DMA addresses were created
1763 * @sg: The scatter/gather entry
1764 */
1765static inline u64 ib_sg_dma_address(struct ib_device *dev,
1766 struct scatterlist *sg)
1767{
1768 if (dev->dma_ops)
1769 return dev->dma_ops->dma_address(dev, sg);
1770 return sg_dma_address(sg);
1771}
1772
1773/**
1774 * ib_sg_dma_len - Return the DMA length from a scatter/gather entry
1775 * @dev: The device for which the DMA addresses were created
1776 * @sg: The scatter/gather entry
1777 */
1778static inline unsigned int ib_sg_dma_len(struct ib_device *dev,
1779 struct scatterlist *sg)
1780{
1781 if (dev->dma_ops)
1782 return dev->dma_ops->dma_len(dev, sg);
1783 return sg_dma_len(sg);
1784}
1785
1786/**
1787 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
1788 * @dev: The device for which the DMA address was created
1789 * @addr: The DMA address
1790 * @size: The size of the region in bytes
1791 * @dir: The direction of the DMA
1792 */
1793static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
1794 u64 addr,
1795 size_t size,
1796 enum dma_data_direction dir)
1797{
1798 if (dev->dma_ops)
1799 dev->dma_ops->sync_single_for_cpu(dev, addr, size, dir);
1800 else
1801 dma_sync_single_for_cpu(dev->dma_device, addr, size, dir);
1802}
1803
1804/**
1805 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
1806 * @dev: The device for which the DMA address was created
1807 * @addr: The DMA address
1808 * @size: The size of the region in bytes
1809 * @dir: The direction of the DMA
1810 */
1811static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
1812 u64 addr,
1813 size_t size,
1814 enum dma_data_direction dir)
1815{
1816 if (dev->dma_ops)
1817 dev->dma_ops->sync_single_for_device(dev, addr, size, dir);
1818 else
1819 dma_sync_single_for_device(dev->dma_device, addr, size, dir);
1820}
1821
1822/**
1823 * ib_dma_alloc_coherent - Allocate memory and map it for DMA
1824 * @dev: The device for which the DMA address is requested
1825 * @size: The size of the region to allocate in bytes
1826 * @dma_handle: A pointer for returning the DMA address of the region
1827 * @flag: memory allocator flags
1828 */
1829static inline void *ib_dma_alloc_coherent(struct ib_device *dev,
1830 size_t size,
1831 u64 *dma_handle,
1832 gfp_t flag)
1833{
1834 if (dev->dma_ops)
1835 return dev->dma_ops->alloc_coherent(dev, size, dma_handle, flag);
1836 else {
1837 dma_addr_t handle;
1838 void *ret;
1839
1840 ret = dma_alloc_coherent(dev->dma_device, size, &handle, flag);
1841 *dma_handle = handle;
1842 return ret;
1843 }
1844}
1845
1846/**
1847 * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent()
1848 * @dev: The device for which the DMA addresses were allocated
1849 * @size: The size of the region
1850 * @cpu_addr: the address returned by ib_dma_alloc_coherent()
1851 * @dma_handle: the DMA address returned by ib_dma_alloc_coherent()
1852 */
1853static inline void ib_dma_free_coherent(struct ib_device *dev,
1854 size_t size, void *cpu_addr,
1855 u64 dma_handle)
1856{
1857 if (dev->dma_ops)
1858 dev->dma_ops->free_coherent(dev, size, cpu_addr, dma_handle);
1859 else
1860 dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle);
1861}
1862
1863/**
1864 * ib_reg_phys_mr - Prepares a virtually addressed memory region for use
1865 * by an HCA.
1866 * @pd: The protection domain associated assigned to the registered region.
1867 * @phys_buf_array: Specifies a list of physical buffers to use in the
1868 * memory region.
1869 * @num_phys_buf: Specifies the size of the phys_buf_array.
1870 * @mr_access_flags: Specifies the memory access rights.
1871 * @iova_start: The offset of the region's starting I/O virtual address.
1872 */
1873struct ib_mr *ib_reg_phys_mr(struct ib_pd *pd,
1874 struct ib_phys_buf *phys_buf_array,
1875 int num_phys_buf,
1876 int mr_access_flags,
1877 u64 *iova_start);
1878
1879/**
1880 * ib_rereg_phys_mr - Modifies the attributes of an existing memory region.
1881 * Conceptually, this call performs the functions deregister memory region
1882 * followed by register physical memory region. Where possible,
1883 * resources are reused instead of deallocated and reallocated.
1884 * @mr: The memory region to modify.
1885 * @mr_rereg_mask: A bit-mask used to indicate which of the following
1886 * properties of the memory region are being modified.
1887 * @pd: If %IB_MR_REREG_PD is set in mr_rereg_mask, this field specifies
1888 * the new protection domain to associated with the memory region,
1889 * otherwise, this parameter is ignored.
1890 * @phys_buf_array: If %IB_MR_REREG_TRANS is set in mr_rereg_mask, this
1891 * field specifies a list of physical buffers to use in the new
1892 * translation, otherwise, this parameter is ignored.
1893 * @num_phys_buf: If %IB_MR_REREG_TRANS is set in mr_rereg_mask, this
1894 * field specifies the size of the phys_buf_array, otherwise, this
1895 * parameter is ignored.
1896 * @mr_access_flags: If %IB_MR_REREG_ACCESS is set in mr_rereg_mask, this
1897 * field specifies the new memory access rights, otherwise, this
1898 * parameter is ignored.
1899 * @iova_start: The offset of the region's starting I/O virtual address.
1900 */
1901int ib_rereg_phys_mr(struct ib_mr *mr,
1902 int mr_rereg_mask,
1903 struct ib_pd *pd,
1904 struct ib_phys_buf *phys_buf_array,
1905 int num_phys_buf,
1906 int mr_access_flags,
1907 u64 *iova_start);
1908
1909/**
1910 * ib_query_mr - Retrieves information about a specific memory region.
1911 * @mr: The memory region to retrieve information about.
1912 * @mr_attr: The attributes of the specified memory region.
1913 */
1914int ib_query_mr(struct ib_mr *mr, struct ib_mr_attr *mr_attr);
1915
1916/**
1917 * ib_dereg_mr - Deregisters a memory region and removes it from the
1918 * HCA translation table.
1919 * @mr: The memory region to deregister.
1920 */
1921int ib_dereg_mr(struct ib_mr *mr);
1922
1923/**
1924 * ib_alloc_fast_reg_mr - Allocates memory region usable with the
1925 * IB_WR_FAST_REG_MR send work request.
1926 * @pd: The protection domain associated with the region.
1927 * @max_page_list_len: requested max physical buffer list length to be
1928 * used with fast register work requests for this MR.
1929 */
1930struct ib_mr *ib_alloc_fast_reg_mr(struct ib_pd *pd, int max_page_list_len);
1931
1932/**
1933 * ib_alloc_fast_reg_page_list - Allocates a page list array
1934 * @device - ib device pointer.
1935 * @page_list_len - size of the page list array to be allocated.
1936 *
1937 * This allocates and returns a struct ib_fast_reg_page_list * and a
1938 * page_list array that is at least page_list_len in size. The actual
1939 * size is returned in max_page_list_len. The caller is responsible
1940 * for initializing the contents of the page_list array before posting
1941 * a send work request with the IB_WC_FAST_REG_MR opcode.
1942 *
1943 * The page_list array entries must be translated using one of the
1944 * ib_dma_*() functions just like the addresses passed to
1945 * ib_map_phys_fmr(). Once the ib_post_send() is issued, the struct
1946 * ib_fast_reg_page_list must not be modified by the caller until the
1947 * IB_WC_FAST_REG_MR work request completes.
1948 */
1949struct ib_fast_reg_page_list *ib_alloc_fast_reg_page_list(
1950 struct ib_device *device, int page_list_len);
1951
1952/**
1953 * ib_free_fast_reg_page_list - Deallocates a previously allocated
1954 * page list array.
1955 * @page_list - struct ib_fast_reg_page_list pointer to be deallocated.
1956 */
1957void ib_free_fast_reg_page_list(struct ib_fast_reg_page_list *page_list);
1958
1959/**
1960 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR
1961 * R_Key and L_Key.
1962 * @mr - struct ib_mr pointer to be updated.
1963 * @newkey - new key to be used.
1964 */
1965static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey)
1966{
1967 mr->lkey = (mr->lkey & 0xffffff00) | newkey;
1968 mr->rkey = (mr->rkey & 0xffffff00) | newkey;
1969}
1970
1971/**
1972 * ib_alloc_mw - Allocates a memory window.
1973 * @pd: The protection domain associated with the memory window.
1974 */
1975struct ib_mw *ib_alloc_mw(struct ib_pd *pd);
1976
1977/**
1978 * ib_bind_mw - Posts a work request to the send queue of the specified
1979 * QP, which binds the memory window to the given address range and
1980 * remote access attributes.
1981 * @qp: QP to post the bind work request on.
1982 * @mw: The memory window to bind.
1983 * @mw_bind: Specifies information about the memory window, including
1984 * its address range, remote access rights, and associated memory region.
1985 */
1986static inline int ib_bind_mw(struct ib_qp *qp,
1987 struct ib_mw *mw,
1988 struct ib_mw_bind *mw_bind)
1989{
1990 /* XXX reference counting in corresponding MR? */
1991 return mw->device->bind_mw ?
1992 mw->device->bind_mw(qp, mw, mw_bind) :
1993 -ENOSYS;
1994}
1995
1996/**
1997 * ib_dealloc_mw - Deallocates a memory window.
1998 * @mw: The memory window to deallocate.
1999 */
2000int ib_dealloc_mw(struct ib_mw *mw);
2001
2002/**
2003 * ib_alloc_fmr - Allocates a unmapped fast memory region.
2004 * @pd: The protection domain associated with the unmapped region.
2005 * @mr_access_flags: Specifies the memory access rights.
2006 * @fmr_attr: Attributes of the unmapped region.
2007 *
2008 * A fast memory region must be mapped before it can be used as part of
2009 * a work request.
2010 */
2011struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
2012 int mr_access_flags,
2013 struct ib_fmr_attr *fmr_attr);
2014
2015/**
2016 * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region.
2017 * @fmr: The fast memory region to associate with the pages.
2018 * @page_list: An array of physical pages to map to the fast memory region.
2019 * @list_len: The number of pages in page_list.
2020 * @iova: The I/O virtual address to use with the mapped region.
2021 */
2022static inline int ib_map_phys_fmr(struct ib_fmr *fmr,
2023 u64 *page_list, int list_len,
2024 u64 iova)
2025{
2026 return fmr->device->map_phys_fmr(fmr, page_list, list_len, iova);
2027}
2028
2029/**
2030 * ib_unmap_fmr - Removes the mapping from a list of fast memory regions.
2031 * @fmr_list: A linked list of fast memory regions to unmap.
2032 */
2033int ib_unmap_fmr(struct list_head *fmr_list);
2034
2035/**
2036 * ib_dealloc_fmr - Deallocates a fast memory region.
2037 * @fmr: The fast memory region to deallocate.
2038 */
2039int ib_dealloc_fmr(struct ib_fmr *fmr);
2040
2041/**
2042 * ib_attach_mcast - Attaches the specified QP to a multicast group.
2043 * @qp: QP to attach to the multicast group. The QP must be type
2044 * IB_QPT_UD.
2045 * @gid: Multicast group GID.
2046 * @lid: Multicast group LID in host byte order.
2047 *
2048 * In order to send and receive multicast packets, subnet
2049 * administration must have created the multicast group and configured
2050 * the fabric appropriately. The port associated with the specified
2051 * QP must also be a member of the multicast group.
2052 */
2053int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2054
2055/**
2056 * ib_detach_mcast - Detaches the specified QP from a multicast group.
2057 * @qp: QP to detach from the multicast group.
2058 * @gid: Multicast group GID.
2059 * @lid: Multicast group LID in host byte order.
2060 */
2061int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2062
2063#endif /* IB_VERBS_H */
1/*
2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved.
3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved.
4 * Copyright (c) 2004 Intel Corporation. All rights reserved.
5 * Copyright (c) 2004 Topspin Corporation. All rights reserved.
6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved.
7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
8 * Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved.
9 *
10 * This software is available to you under a choice of one of two
11 * licenses. You may choose to be licensed under the terms of the GNU
12 * General Public License (GPL) Version 2, available from the file
13 * COPYING in the main directory of this source tree, or the
14 * OpenIB.org BSD license below:
15 *
16 * Redistribution and use in source and binary forms, with or
17 * without modification, are permitted provided that the following
18 * conditions are met:
19 *
20 * - Redistributions of source code must retain the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer.
23 *
24 * - Redistributions in binary form must reproduce the above
25 * copyright notice, this list of conditions and the following
26 * disclaimer in the documentation and/or other materials
27 * provided with the distribution.
28 *
29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36 * SOFTWARE.
37 */
38
39#if !defined(IB_VERBS_H)
40#define IB_VERBS_H
41
42#include <linux/types.h>
43#include <linux/device.h>
44#include <linux/mm.h>
45#include <linux/dma-mapping.h>
46#include <linux/kref.h>
47#include <linux/list.h>
48#include <linux/rwsem.h>
49#include <linux/scatterlist.h>
50#include <linux/workqueue.h>
51#include <uapi/linux/if_ether.h>
52
53#include <linux/atomic.h>
54#include <asm/uaccess.h>
55
56extern struct workqueue_struct *ib_wq;
57
58union ib_gid {
59 u8 raw[16];
60 struct {
61 __be64 subnet_prefix;
62 __be64 interface_id;
63 } global;
64};
65
66enum rdma_node_type {
67 /* IB values map to NodeInfo:NodeType. */
68 RDMA_NODE_IB_CA = 1,
69 RDMA_NODE_IB_SWITCH,
70 RDMA_NODE_IB_ROUTER,
71 RDMA_NODE_RNIC,
72 RDMA_NODE_USNIC,
73 RDMA_NODE_USNIC_UDP,
74};
75
76enum rdma_transport_type {
77 RDMA_TRANSPORT_IB,
78 RDMA_TRANSPORT_IWARP,
79 RDMA_TRANSPORT_USNIC,
80 RDMA_TRANSPORT_USNIC_UDP
81};
82
83enum rdma_transport_type
84rdma_node_get_transport(enum rdma_node_type node_type) __attribute_const__;
85
86enum rdma_link_layer {
87 IB_LINK_LAYER_UNSPECIFIED,
88 IB_LINK_LAYER_INFINIBAND,
89 IB_LINK_LAYER_ETHERNET,
90};
91
92enum ib_device_cap_flags {
93 IB_DEVICE_RESIZE_MAX_WR = 1,
94 IB_DEVICE_BAD_PKEY_CNTR = (1<<1),
95 IB_DEVICE_BAD_QKEY_CNTR = (1<<2),
96 IB_DEVICE_RAW_MULTI = (1<<3),
97 IB_DEVICE_AUTO_PATH_MIG = (1<<4),
98 IB_DEVICE_CHANGE_PHY_PORT = (1<<5),
99 IB_DEVICE_UD_AV_PORT_ENFORCE = (1<<6),
100 IB_DEVICE_CURR_QP_STATE_MOD = (1<<7),
101 IB_DEVICE_SHUTDOWN_PORT = (1<<8),
102 IB_DEVICE_INIT_TYPE = (1<<9),
103 IB_DEVICE_PORT_ACTIVE_EVENT = (1<<10),
104 IB_DEVICE_SYS_IMAGE_GUID = (1<<11),
105 IB_DEVICE_RC_RNR_NAK_GEN = (1<<12),
106 IB_DEVICE_SRQ_RESIZE = (1<<13),
107 IB_DEVICE_N_NOTIFY_CQ = (1<<14),
108 IB_DEVICE_LOCAL_DMA_LKEY = (1<<15),
109 IB_DEVICE_RESERVED = (1<<16), /* old SEND_W_INV */
110 IB_DEVICE_MEM_WINDOW = (1<<17),
111 /*
112 * Devices should set IB_DEVICE_UD_IP_SUM if they support
113 * insertion of UDP and TCP checksum on outgoing UD IPoIB
114 * messages and can verify the validity of checksum for
115 * incoming messages. Setting this flag implies that the
116 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
117 */
118 IB_DEVICE_UD_IP_CSUM = (1<<18),
119 IB_DEVICE_UD_TSO = (1<<19),
120 IB_DEVICE_XRC = (1<<20),
121 IB_DEVICE_MEM_MGT_EXTENSIONS = (1<<21),
122 IB_DEVICE_BLOCK_MULTICAST_LOOPBACK = (1<<22),
123 IB_DEVICE_MEM_WINDOW_TYPE_2A = (1<<23),
124 IB_DEVICE_MEM_WINDOW_TYPE_2B = (1<<24),
125 IB_DEVICE_MANAGED_FLOW_STEERING = (1<<29),
126 IB_DEVICE_SIGNATURE_HANDOVER = (1<<30)
127};
128
129enum ib_signature_prot_cap {
130 IB_PROT_T10DIF_TYPE_1 = 1,
131 IB_PROT_T10DIF_TYPE_2 = 1 << 1,
132 IB_PROT_T10DIF_TYPE_3 = 1 << 2,
133};
134
135enum ib_signature_guard_cap {
136 IB_GUARD_T10DIF_CRC = 1,
137 IB_GUARD_T10DIF_CSUM = 1 << 1,
138};
139
140enum ib_atomic_cap {
141 IB_ATOMIC_NONE,
142 IB_ATOMIC_HCA,
143 IB_ATOMIC_GLOB
144};
145
146struct ib_device_attr {
147 u64 fw_ver;
148 __be64 sys_image_guid;
149 u64 max_mr_size;
150 u64 page_size_cap;
151 u32 vendor_id;
152 u32 vendor_part_id;
153 u32 hw_ver;
154 int max_qp;
155 int max_qp_wr;
156 int device_cap_flags;
157 int max_sge;
158 int max_sge_rd;
159 int max_cq;
160 int max_cqe;
161 int max_mr;
162 int max_pd;
163 int max_qp_rd_atom;
164 int max_ee_rd_atom;
165 int max_res_rd_atom;
166 int max_qp_init_rd_atom;
167 int max_ee_init_rd_atom;
168 enum ib_atomic_cap atomic_cap;
169 enum ib_atomic_cap masked_atomic_cap;
170 int max_ee;
171 int max_rdd;
172 int max_mw;
173 int max_raw_ipv6_qp;
174 int max_raw_ethy_qp;
175 int max_mcast_grp;
176 int max_mcast_qp_attach;
177 int max_total_mcast_qp_attach;
178 int max_ah;
179 int max_fmr;
180 int max_map_per_fmr;
181 int max_srq;
182 int max_srq_wr;
183 int max_srq_sge;
184 unsigned int max_fast_reg_page_list_len;
185 u16 max_pkeys;
186 u8 local_ca_ack_delay;
187 int sig_prot_cap;
188 int sig_guard_cap;
189};
190
191enum ib_mtu {
192 IB_MTU_256 = 1,
193 IB_MTU_512 = 2,
194 IB_MTU_1024 = 3,
195 IB_MTU_2048 = 4,
196 IB_MTU_4096 = 5
197};
198
199static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
200{
201 switch (mtu) {
202 case IB_MTU_256: return 256;
203 case IB_MTU_512: return 512;
204 case IB_MTU_1024: return 1024;
205 case IB_MTU_2048: return 2048;
206 case IB_MTU_4096: return 4096;
207 default: return -1;
208 }
209}
210
211enum ib_port_state {
212 IB_PORT_NOP = 0,
213 IB_PORT_DOWN = 1,
214 IB_PORT_INIT = 2,
215 IB_PORT_ARMED = 3,
216 IB_PORT_ACTIVE = 4,
217 IB_PORT_ACTIVE_DEFER = 5
218};
219
220enum ib_port_cap_flags {
221 IB_PORT_SM = 1 << 1,
222 IB_PORT_NOTICE_SUP = 1 << 2,
223 IB_PORT_TRAP_SUP = 1 << 3,
224 IB_PORT_OPT_IPD_SUP = 1 << 4,
225 IB_PORT_AUTO_MIGR_SUP = 1 << 5,
226 IB_PORT_SL_MAP_SUP = 1 << 6,
227 IB_PORT_MKEY_NVRAM = 1 << 7,
228 IB_PORT_PKEY_NVRAM = 1 << 8,
229 IB_PORT_LED_INFO_SUP = 1 << 9,
230 IB_PORT_SM_DISABLED = 1 << 10,
231 IB_PORT_SYS_IMAGE_GUID_SUP = 1 << 11,
232 IB_PORT_PKEY_SW_EXT_PORT_TRAP_SUP = 1 << 12,
233 IB_PORT_EXTENDED_SPEEDS_SUP = 1 << 14,
234 IB_PORT_CM_SUP = 1 << 16,
235 IB_PORT_SNMP_TUNNEL_SUP = 1 << 17,
236 IB_PORT_REINIT_SUP = 1 << 18,
237 IB_PORT_DEVICE_MGMT_SUP = 1 << 19,
238 IB_PORT_VENDOR_CLASS_SUP = 1 << 20,
239 IB_PORT_DR_NOTICE_SUP = 1 << 21,
240 IB_PORT_CAP_MASK_NOTICE_SUP = 1 << 22,
241 IB_PORT_BOOT_MGMT_SUP = 1 << 23,
242 IB_PORT_LINK_LATENCY_SUP = 1 << 24,
243 IB_PORT_CLIENT_REG_SUP = 1 << 25,
244 IB_PORT_IP_BASED_GIDS = 1 << 26
245};
246
247enum ib_port_width {
248 IB_WIDTH_1X = 1,
249 IB_WIDTH_4X = 2,
250 IB_WIDTH_8X = 4,
251 IB_WIDTH_12X = 8
252};
253
254static inline int ib_width_enum_to_int(enum ib_port_width width)
255{
256 switch (width) {
257 case IB_WIDTH_1X: return 1;
258 case IB_WIDTH_4X: return 4;
259 case IB_WIDTH_8X: return 8;
260 case IB_WIDTH_12X: return 12;
261 default: return -1;
262 }
263}
264
265enum ib_port_speed {
266 IB_SPEED_SDR = 1,
267 IB_SPEED_DDR = 2,
268 IB_SPEED_QDR = 4,
269 IB_SPEED_FDR10 = 8,
270 IB_SPEED_FDR = 16,
271 IB_SPEED_EDR = 32
272};
273
274struct ib_protocol_stats {
275 /* TBD... */
276};
277
278struct iw_protocol_stats {
279 u64 ipInReceives;
280 u64 ipInHdrErrors;
281 u64 ipInTooBigErrors;
282 u64 ipInNoRoutes;
283 u64 ipInAddrErrors;
284 u64 ipInUnknownProtos;
285 u64 ipInTruncatedPkts;
286 u64 ipInDiscards;
287 u64 ipInDelivers;
288 u64 ipOutForwDatagrams;
289 u64 ipOutRequests;
290 u64 ipOutDiscards;
291 u64 ipOutNoRoutes;
292 u64 ipReasmTimeout;
293 u64 ipReasmReqds;
294 u64 ipReasmOKs;
295 u64 ipReasmFails;
296 u64 ipFragOKs;
297 u64 ipFragFails;
298 u64 ipFragCreates;
299 u64 ipInMcastPkts;
300 u64 ipOutMcastPkts;
301 u64 ipInBcastPkts;
302 u64 ipOutBcastPkts;
303
304 u64 tcpRtoAlgorithm;
305 u64 tcpRtoMin;
306 u64 tcpRtoMax;
307 u64 tcpMaxConn;
308 u64 tcpActiveOpens;
309 u64 tcpPassiveOpens;
310 u64 tcpAttemptFails;
311 u64 tcpEstabResets;
312 u64 tcpCurrEstab;
313 u64 tcpInSegs;
314 u64 tcpOutSegs;
315 u64 tcpRetransSegs;
316 u64 tcpInErrs;
317 u64 tcpOutRsts;
318};
319
320union rdma_protocol_stats {
321 struct ib_protocol_stats ib;
322 struct iw_protocol_stats iw;
323};
324
325struct ib_port_attr {
326 enum ib_port_state state;
327 enum ib_mtu max_mtu;
328 enum ib_mtu active_mtu;
329 int gid_tbl_len;
330 u32 port_cap_flags;
331 u32 max_msg_sz;
332 u32 bad_pkey_cntr;
333 u32 qkey_viol_cntr;
334 u16 pkey_tbl_len;
335 u16 lid;
336 u16 sm_lid;
337 u8 lmc;
338 u8 max_vl_num;
339 u8 sm_sl;
340 u8 subnet_timeout;
341 u8 init_type_reply;
342 u8 active_width;
343 u8 active_speed;
344 u8 phys_state;
345};
346
347enum ib_device_modify_flags {
348 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0,
349 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1
350};
351
352struct ib_device_modify {
353 u64 sys_image_guid;
354 char node_desc[64];
355};
356
357enum ib_port_modify_flags {
358 IB_PORT_SHUTDOWN = 1,
359 IB_PORT_INIT_TYPE = (1<<2),
360 IB_PORT_RESET_QKEY_CNTR = (1<<3)
361};
362
363struct ib_port_modify {
364 u32 set_port_cap_mask;
365 u32 clr_port_cap_mask;
366 u8 init_type;
367};
368
369enum ib_event_type {
370 IB_EVENT_CQ_ERR,
371 IB_EVENT_QP_FATAL,
372 IB_EVENT_QP_REQ_ERR,
373 IB_EVENT_QP_ACCESS_ERR,
374 IB_EVENT_COMM_EST,
375 IB_EVENT_SQ_DRAINED,
376 IB_EVENT_PATH_MIG,
377 IB_EVENT_PATH_MIG_ERR,
378 IB_EVENT_DEVICE_FATAL,
379 IB_EVENT_PORT_ACTIVE,
380 IB_EVENT_PORT_ERR,
381 IB_EVENT_LID_CHANGE,
382 IB_EVENT_PKEY_CHANGE,
383 IB_EVENT_SM_CHANGE,
384 IB_EVENT_SRQ_ERR,
385 IB_EVENT_SRQ_LIMIT_REACHED,
386 IB_EVENT_QP_LAST_WQE_REACHED,
387 IB_EVENT_CLIENT_REREGISTER,
388 IB_EVENT_GID_CHANGE,
389};
390
391struct ib_event {
392 struct ib_device *device;
393 union {
394 struct ib_cq *cq;
395 struct ib_qp *qp;
396 struct ib_srq *srq;
397 u8 port_num;
398 } element;
399 enum ib_event_type event;
400};
401
402struct ib_event_handler {
403 struct ib_device *device;
404 void (*handler)(struct ib_event_handler *, struct ib_event *);
405 struct list_head list;
406};
407
408#define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \
409 do { \
410 (_ptr)->device = _device; \
411 (_ptr)->handler = _handler; \
412 INIT_LIST_HEAD(&(_ptr)->list); \
413 } while (0)
414
415struct ib_global_route {
416 union ib_gid dgid;
417 u32 flow_label;
418 u8 sgid_index;
419 u8 hop_limit;
420 u8 traffic_class;
421};
422
423struct ib_grh {
424 __be32 version_tclass_flow;
425 __be16 paylen;
426 u8 next_hdr;
427 u8 hop_limit;
428 union ib_gid sgid;
429 union ib_gid dgid;
430};
431
432enum {
433 IB_MULTICAST_QPN = 0xffffff
434};
435
436#define IB_LID_PERMISSIVE cpu_to_be16(0xFFFF)
437
438enum ib_ah_flags {
439 IB_AH_GRH = 1
440};
441
442enum ib_rate {
443 IB_RATE_PORT_CURRENT = 0,
444 IB_RATE_2_5_GBPS = 2,
445 IB_RATE_5_GBPS = 5,
446 IB_RATE_10_GBPS = 3,
447 IB_RATE_20_GBPS = 6,
448 IB_RATE_30_GBPS = 4,
449 IB_RATE_40_GBPS = 7,
450 IB_RATE_60_GBPS = 8,
451 IB_RATE_80_GBPS = 9,
452 IB_RATE_120_GBPS = 10,
453 IB_RATE_14_GBPS = 11,
454 IB_RATE_56_GBPS = 12,
455 IB_RATE_112_GBPS = 13,
456 IB_RATE_168_GBPS = 14,
457 IB_RATE_25_GBPS = 15,
458 IB_RATE_100_GBPS = 16,
459 IB_RATE_200_GBPS = 17,
460 IB_RATE_300_GBPS = 18
461};
462
463/**
464 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the
465 * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be
466 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
467 * @rate: rate to convert.
468 */
469int ib_rate_to_mult(enum ib_rate rate) __attribute_const__;
470
471/**
472 * ib_rate_to_mbps - Convert the IB rate enum to Mbps.
473 * For example, IB_RATE_2_5_GBPS will be converted to 2500.
474 * @rate: rate to convert.
475 */
476int ib_rate_to_mbps(enum ib_rate rate) __attribute_const__;
477
478enum ib_mr_create_flags {
479 IB_MR_SIGNATURE_EN = 1,
480};
481
482/**
483 * ib_mr_init_attr - Memory region init attributes passed to routine
484 * ib_create_mr.
485 * @max_reg_descriptors: max number of registration descriptors that
486 * may be used with registration work requests.
487 * @flags: MR creation flags bit mask.
488 */
489struct ib_mr_init_attr {
490 int max_reg_descriptors;
491 u32 flags;
492};
493
494enum ib_signature_type {
495 IB_SIG_TYPE_T10_DIF,
496};
497
498/**
499 * T10-DIF Signature types
500 * T10-DIF types are defined by SCSI
501 * specifications.
502 */
503enum ib_t10_dif_type {
504 IB_T10DIF_NONE,
505 IB_T10DIF_TYPE1,
506 IB_T10DIF_TYPE2,
507 IB_T10DIF_TYPE3
508};
509
510/**
511 * Signature T10-DIF block-guard types
512 * IB_T10DIF_CRC: Corresponds to T10-PI mandated CRC checksum rules.
513 * IB_T10DIF_CSUM: Corresponds to IP checksum rules.
514 */
515enum ib_t10_dif_bg_type {
516 IB_T10DIF_CRC,
517 IB_T10DIF_CSUM
518};
519
520/**
521 * struct ib_t10_dif_domain - Parameters specific for T10-DIF
522 * domain.
523 * @type: T10-DIF type (0|1|2|3)
524 * @bg_type: T10-DIF block guard type (CRC|CSUM)
525 * @pi_interval: protection information interval.
526 * @bg: seed of guard computation.
527 * @app_tag: application tag of guard block
528 * @ref_tag: initial guard block reference tag.
529 * @type3_inc_reftag: T10-DIF type 3 does not state
530 * about the reference tag, it is the user
531 * choice to increment it or not.
532 */
533struct ib_t10_dif_domain {
534 enum ib_t10_dif_type type;
535 enum ib_t10_dif_bg_type bg_type;
536 u16 pi_interval;
537 u16 bg;
538 u16 app_tag;
539 u32 ref_tag;
540 bool type3_inc_reftag;
541};
542
543/**
544 * struct ib_sig_domain - Parameters for signature domain
545 * @sig_type: specific signauture type
546 * @sig: union of all signature domain attributes that may
547 * be used to set domain layout.
548 */
549struct ib_sig_domain {
550 enum ib_signature_type sig_type;
551 union {
552 struct ib_t10_dif_domain dif;
553 } sig;
554};
555
556/**
557 * struct ib_sig_attrs - Parameters for signature handover operation
558 * @check_mask: bitmask for signature byte check (8 bytes)
559 * @mem: memory domain layout desciptor.
560 * @wire: wire domain layout desciptor.
561 */
562struct ib_sig_attrs {
563 u8 check_mask;
564 struct ib_sig_domain mem;
565 struct ib_sig_domain wire;
566};
567
568enum ib_sig_err_type {
569 IB_SIG_BAD_GUARD,
570 IB_SIG_BAD_REFTAG,
571 IB_SIG_BAD_APPTAG,
572};
573
574/**
575 * struct ib_sig_err - signature error descriptor
576 */
577struct ib_sig_err {
578 enum ib_sig_err_type err_type;
579 u32 expected;
580 u32 actual;
581 u64 sig_err_offset;
582 u32 key;
583};
584
585enum ib_mr_status_check {
586 IB_MR_CHECK_SIG_STATUS = 1,
587};
588
589/**
590 * struct ib_mr_status - Memory region status container
591 *
592 * @fail_status: Bitmask of MR checks status. For each
593 * failed check a corresponding status bit is set.
594 * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS
595 * failure.
596 */
597struct ib_mr_status {
598 u32 fail_status;
599 struct ib_sig_err sig_err;
600};
601
602/**
603 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
604 * enum.
605 * @mult: multiple to convert.
606 */
607enum ib_rate mult_to_ib_rate(int mult) __attribute_const__;
608
609struct ib_ah_attr {
610 struct ib_global_route grh;
611 u16 dlid;
612 u8 sl;
613 u8 src_path_bits;
614 u8 static_rate;
615 u8 ah_flags;
616 u8 port_num;
617 u8 dmac[ETH_ALEN];
618 u16 vlan_id;
619};
620
621enum ib_wc_status {
622 IB_WC_SUCCESS,
623 IB_WC_LOC_LEN_ERR,
624 IB_WC_LOC_QP_OP_ERR,
625 IB_WC_LOC_EEC_OP_ERR,
626 IB_WC_LOC_PROT_ERR,
627 IB_WC_WR_FLUSH_ERR,
628 IB_WC_MW_BIND_ERR,
629 IB_WC_BAD_RESP_ERR,
630 IB_WC_LOC_ACCESS_ERR,
631 IB_WC_REM_INV_REQ_ERR,
632 IB_WC_REM_ACCESS_ERR,
633 IB_WC_REM_OP_ERR,
634 IB_WC_RETRY_EXC_ERR,
635 IB_WC_RNR_RETRY_EXC_ERR,
636 IB_WC_LOC_RDD_VIOL_ERR,
637 IB_WC_REM_INV_RD_REQ_ERR,
638 IB_WC_REM_ABORT_ERR,
639 IB_WC_INV_EECN_ERR,
640 IB_WC_INV_EEC_STATE_ERR,
641 IB_WC_FATAL_ERR,
642 IB_WC_RESP_TIMEOUT_ERR,
643 IB_WC_GENERAL_ERR
644};
645
646enum ib_wc_opcode {
647 IB_WC_SEND,
648 IB_WC_RDMA_WRITE,
649 IB_WC_RDMA_READ,
650 IB_WC_COMP_SWAP,
651 IB_WC_FETCH_ADD,
652 IB_WC_BIND_MW,
653 IB_WC_LSO,
654 IB_WC_LOCAL_INV,
655 IB_WC_FAST_REG_MR,
656 IB_WC_MASKED_COMP_SWAP,
657 IB_WC_MASKED_FETCH_ADD,
658/*
659 * Set value of IB_WC_RECV so consumers can test if a completion is a
660 * receive by testing (opcode & IB_WC_RECV).
661 */
662 IB_WC_RECV = 1 << 7,
663 IB_WC_RECV_RDMA_WITH_IMM
664};
665
666enum ib_wc_flags {
667 IB_WC_GRH = 1,
668 IB_WC_WITH_IMM = (1<<1),
669 IB_WC_WITH_INVALIDATE = (1<<2),
670 IB_WC_IP_CSUM_OK = (1<<3),
671 IB_WC_WITH_SMAC = (1<<4),
672 IB_WC_WITH_VLAN = (1<<5),
673};
674
675struct ib_wc {
676 u64 wr_id;
677 enum ib_wc_status status;
678 enum ib_wc_opcode opcode;
679 u32 vendor_err;
680 u32 byte_len;
681 struct ib_qp *qp;
682 union {
683 __be32 imm_data;
684 u32 invalidate_rkey;
685 } ex;
686 u32 src_qp;
687 int wc_flags;
688 u16 pkey_index;
689 u16 slid;
690 u8 sl;
691 u8 dlid_path_bits;
692 u8 port_num; /* valid only for DR SMPs on switches */
693 u8 smac[ETH_ALEN];
694 u16 vlan_id;
695};
696
697enum ib_cq_notify_flags {
698 IB_CQ_SOLICITED = 1 << 0,
699 IB_CQ_NEXT_COMP = 1 << 1,
700 IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
701 IB_CQ_REPORT_MISSED_EVENTS = 1 << 2,
702};
703
704enum ib_srq_type {
705 IB_SRQT_BASIC,
706 IB_SRQT_XRC
707};
708
709enum ib_srq_attr_mask {
710 IB_SRQ_MAX_WR = 1 << 0,
711 IB_SRQ_LIMIT = 1 << 1,
712};
713
714struct ib_srq_attr {
715 u32 max_wr;
716 u32 max_sge;
717 u32 srq_limit;
718};
719
720struct ib_srq_init_attr {
721 void (*event_handler)(struct ib_event *, void *);
722 void *srq_context;
723 struct ib_srq_attr attr;
724 enum ib_srq_type srq_type;
725
726 union {
727 struct {
728 struct ib_xrcd *xrcd;
729 struct ib_cq *cq;
730 } xrc;
731 } ext;
732};
733
734struct ib_qp_cap {
735 u32 max_send_wr;
736 u32 max_recv_wr;
737 u32 max_send_sge;
738 u32 max_recv_sge;
739 u32 max_inline_data;
740};
741
742enum ib_sig_type {
743 IB_SIGNAL_ALL_WR,
744 IB_SIGNAL_REQ_WR
745};
746
747enum ib_qp_type {
748 /*
749 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
750 * here (and in that order) since the MAD layer uses them as
751 * indices into a 2-entry table.
752 */
753 IB_QPT_SMI,
754 IB_QPT_GSI,
755
756 IB_QPT_RC,
757 IB_QPT_UC,
758 IB_QPT_UD,
759 IB_QPT_RAW_IPV6,
760 IB_QPT_RAW_ETHERTYPE,
761 IB_QPT_RAW_PACKET = 8,
762 IB_QPT_XRC_INI = 9,
763 IB_QPT_XRC_TGT,
764 IB_QPT_MAX,
765 /* Reserve a range for qp types internal to the low level driver.
766 * These qp types will not be visible at the IB core layer, so the
767 * IB_QPT_MAX usages should not be affected in the core layer
768 */
769 IB_QPT_RESERVED1 = 0x1000,
770 IB_QPT_RESERVED2,
771 IB_QPT_RESERVED3,
772 IB_QPT_RESERVED4,
773 IB_QPT_RESERVED5,
774 IB_QPT_RESERVED6,
775 IB_QPT_RESERVED7,
776 IB_QPT_RESERVED8,
777 IB_QPT_RESERVED9,
778 IB_QPT_RESERVED10,
779};
780
781enum ib_qp_create_flags {
782 IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0,
783 IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK = 1 << 1,
784 IB_QP_CREATE_NETIF_QP = 1 << 5,
785 IB_QP_CREATE_SIGNATURE_EN = 1 << 6,
786 /* reserve bits 26-31 for low level drivers' internal use */
787 IB_QP_CREATE_RESERVED_START = 1 << 26,
788 IB_QP_CREATE_RESERVED_END = 1 << 31,
789};
790
791
792/*
793 * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler
794 * callback to destroy the passed in QP.
795 */
796
797struct ib_qp_init_attr {
798 void (*event_handler)(struct ib_event *, void *);
799 void *qp_context;
800 struct ib_cq *send_cq;
801 struct ib_cq *recv_cq;
802 struct ib_srq *srq;
803 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
804 struct ib_qp_cap cap;
805 enum ib_sig_type sq_sig_type;
806 enum ib_qp_type qp_type;
807 enum ib_qp_create_flags create_flags;
808 u8 port_num; /* special QP types only */
809};
810
811struct ib_qp_open_attr {
812 void (*event_handler)(struct ib_event *, void *);
813 void *qp_context;
814 u32 qp_num;
815 enum ib_qp_type qp_type;
816};
817
818enum ib_rnr_timeout {
819 IB_RNR_TIMER_655_36 = 0,
820 IB_RNR_TIMER_000_01 = 1,
821 IB_RNR_TIMER_000_02 = 2,
822 IB_RNR_TIMER_000_03 = 3,
823 IB_RNR_TIMER_000_04 = 4,
824 IB_RNR_TIMER_000_06 = 5,
825 IB_RNR_TIMER_000_08 = 6,
826 IB_RNR_TIMER_000_12 = 7,
827 IB_RNR_TIMER_000_16 = 8,
828 IB_RNR_TIMER_000_24 = 9,
829 IB_RNR_TIMER_000_32 = 10,
830 IB_RNR_TIMER_000_48 = 11,
831 IB_RNR_TIMER_000_64 = 12,
832 IB_RNR_TIMER_000_96 = 13,
833 IB_RNR_TIMER_001_28 = 14,
834 IB_RNR_TIMER_001_92 = 15,
835 IB_RNR_TIMER_002_56 = 16,
836 IB_RNR_TIMER_003_84 = 17,
837 IB_RNR_TIMER_005_12 = 18,
838 IB_RNR_TIMER_007_68 = 19,
839 IB_RNR_TIMER_010_24 = 20,
840 IB_RNR_TIMER_015_36 = 21,
841 IB_RNR_TIMER_020_48 = 22,
842 IB_RNR_TIMER_030_72 = 23,
843 IB_RNR_TIMER_040_96 = 24,
844 IB_RNR_TIMER_061_44 = 25,
845 IB_RNR_TIMER_081_92 = 26,
846 IB_RNR_TIMER_122_88 = 27,
847 IB_RNR_TIMER_163_84 = 28,
848 IB_RNR_TIMER_245_76 = 29,
849 IB_RNR_TIMER_327_68 = 30,
850 IB_RNR_TIMER_491_52 = 31
851};
852
853enum ib_qp_attr_mask {
854 IB_QP_STATE = 1,
855 IB_QP_CUR_STATE = (1<<1),
856 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2),
857 IB_QP_ACCESS_FLAGS = (1<<3),
858 IB_QP_PKEY_INDEX = (1<<4),
859 IB_QP_PORT = (1<<5),
860 IB_QP_QKEY = (1<<6),
861 IB_QP_AV = (1<<7),
862 IB_QP_PATH_MTU = (1<<8),
863 IB_QP_TIMEOUT = (1<<9),
864 IB_QP_RETRY_CNT = (1<<10),
865 IB_QP_RNR_RETRY = (1<<11),
866 IB_QP_RQ_PSN = (1<<12),
867 IB_QP_MAX_QP_RD_ATOMIC = (1<<13),
868 IB_QP_ALT_PATH = (1<<14),
869 IB_QP_MIN_RNR_TIMER = (1<<15),
870 IB_QP_SQ_PSN = (1<<16),
871 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17),
872 IB_QP_PATH_MIG_STATE = (1<<18),
873 IB_QP_CAP = (1<<19),
874 IB_QP_DEST_QPN = (1<<20),
875 IB_QP_SMAC = (1<<21),
876 IB_QP_ALT_SMAC = (1<<22),
877 IB_QP_VID = (1<<23),
878 IB_QP_ALT_VID = (1<<24),
879};
880
881enum ib_qp_state {
882 IB_QPS_RESET,
883 IB_QPS_INIT,
884 IB_QPS_RTR,
885 IB_QPS_RTS,
886 IB_QPS_SQD,
887 IB_QPS_SQE,
888 IB_QPS_ERR
889};
890
891enum ib_mig_state {
892 IB_MIG_MIGRATED,
893 IB_MIG_REARM,
894 IB_MIG_ARMED
895};
896
897enum ib_mw_type {
898 IB_MW_TYPE_1 = 1,
899 IB_MW_TYPE_2 = 2
900};
901
902struct ib_qp_attr {
903 enum ib_qp_state qp_state;
904 enum ib_qp_state cur_qp_state;
905 enum ib_mtu path_mtu;
906 enum ib_mig_state path_mig_state;
907 u32 qkey;
908 u32 rq_psn;
909 u32 sq_psn;
910 u32 dest_qp_num;
911 int qp_access_flags;
912 struct ib_qp_cap cap;
913 struct ib_ah_attr ah_attr;
914 struct ib_ah_attr alt_ah_attr;
915 u16 pkey_index;
916 u16 alt_pkey_index;
917 u8 en_sqd_async_notify;
918 u8 sq_draining;
919 u8 max_rd_atomic;
920 u8 max_dest_rd_atomic;
921 u8 min_rnr_timer;
922 u8 port_num;
923 u8 timeout;
924 u8 retry_cnt;
925 u8 rnr_retry;
926 u8 alt_port_num;
927 u8 alt_timeout;
928 u8 smac[ETH_ALEN];
929 u8 alt_smac[ETH_ALEN];
930 u16 vlan_id;
931 u16 alt_vlan_id;
932};
933
934enum ib_wr_opcode {
935 IB_WR_RDMA_WRITE,
936 IB_WR_RDMA_WRITE_WITH_IMM,
937 IB_WR_SEND,
938 IB_WR_SEND_WITH_IMM,
939 IB_WR_RDMA_READ,
940 IB_WR_ATOMIC_CMP_AND_SWP,
941 IB_WR_ATOMIC_FETCH_AND_ADD,
942 IB_WR_LSO,
943 IB_WR_SEND_WITH_INV,
944 IB_WR_RDMA_READ_WITH_INV,
945 IB_WR_LOCAL_INV,
946 IB_WR_FAST_REG_MR,
947 IB_WR_MASKED_ATOMIC_CMP_AND_SWP,
948 IB_WR_MASKED_ATOMIC_FETCH_AND_ADD,
949 IB_WR_BIND_MW,
950 IB_WR_REG_SIG_MR,
951 /* reserve values for low level drivers' internal use.
952 * These values will not be used at all in the ib core layer.
953 */
954 IB_WR_RESERVED1 = 0xf0,
955 IB_WR_RESERVED2,
956 IB_WR_RESERVED3,
957 IB_WR_RESERVED4,
958 IB_WR_RESERVED5,
959 IB_WR_RESERVED6,
960 IB_WR_RESERVED7,
961 IB_WR_RESERVED8,
962 IB_WR_RESERVED9,
963 IB_WR_RESERVED10,
964};
965
966enum ib_send_flags {
967 IB_SEND_FENCE = 1,
968 IB_SEND_SIGNALED = (1<<1),
969 IB_SEND_SOLICITED = (1<<2),
970 IB_SEND_INLINE = (1<<3),
971 IB_SEND_IP_CSUM = (1<<4),
972
973 /* reserve bits 26-31 for low level drivers' internal use */
974 IB_SEND_RESERVED_START = (1 << 26),
975 IB_SEND_RESERVED_END = (1 << 31),
976};
977
978struct ib_sge {
979 u64 addr;
980 u32 length;
981 u32 lkey;
982};
983
984struct ib_fast_reg_page_list {
985 struct ib_device *device;
986 u64 *page_list;
987 unsigned int max_page_list_len;
988};
989
990/**
991 * struct ib_mw_bind_info - Parameters for a memory window bind operation.
992 * @mr: A memory region to bind the memory window to.
993 * @addr: The address where the memory window should begin.
994 * @length: The length of the memory window, in bytes.
995 * @mw_access_flags: Access flags from enum ib_access_flags for the window.
996 *
997 * This struct contains the shared parameters for type 1 and type 2
998 * memory window bind operations.
999 */
1000struct ib_mw_bind_info {
1001 struct ib_mr *mr;
1002 u64 addr;
1003 u64 length;
1004 int mw_access_flags;
1005};
1006
1007struct ib_send_wr {
1008 struct ib_send_wr *next;
1009 u64 wr_id;
1010 struct ib_sge *sg_list;
1011 int num_sge;
1012 enum ib_wr_opcode opcode;
1013 int send_flags;
1014 union {
1015 __be32 imm_data;
1016 u32 invalidate_rkey;
1017 } ex;
1018 union {
1019 struct {
1020 u64 remote_addr;
1021 u32 rkey;
1022 } rdma;
1023 struct {
1024 u64 remote_addr;
1025 u64 compare_add;
1026 u64 swap;
1027 u64 compare_add_mask;
1028 u64 swap_mask;
1029 u32 rkey;
1030 } atomic;
1031 struct {
1032 struct ib_ah *ah;
1033 void *header;
1034 int hlen;
1035 int mss;
1036 u32 remote_qpn;
1037 u32 remote_qkey;
1038 u16 pkey_index; /* valid for GSI only */
1039 u8 port_num; /* valid for DR SMPs on switch only */
1040 } ud;
1041 struct {
1042 u64 iova_start;
1043 struct ib_fast_reg_page_list *page_list;
1044 unsigned int page_shift;
1045 unsigned int page_list_len;
1046 u32 length;
1047 int access_flags;
1048 u32 rkey;
1049 } fast_reg;
1050 struct {
1051 struct ib_mw *mw;
1052 /* The new rkey for the memory window. */
1053 u32 rkey;
1054 struct ib_mw_bind_info bind_info;
1055 } bind_mw;
1056 struct {
1057 struct ib_sig_attrs *sig_attrs;
1058 struct ib_mr *sig_mr;
1059 int access_flags;
1060 struct ib_sge *prot;
1061 } sig_handover;
1062 } wr;
1063 u32 xrc_remote_srq_num; /* XRC TGT QPs only */
1064};
1065
1066struct ib_recv_wr {
1067 struct ib_recv_wr *next;
1068 u64 wr_id;
1069 struct ib_sge *sg_list;
1070 int num_sge;
1071};
1072
1073enum ib_access_flags {
1074 IB_ACCESS_LOCAL_WRITE = 1,
1075 IB_ACCESS_REMOTE_WRITE = (1<<1),
1076 IB_ACCESS_REMOTE_READ = (1<<2),
1077 IB_ACCESS_REMOTE_ATOMIC = (1<<3),
1078 IB_ACCESS_MW_BIND = (1<<4),
1079 IB_ZERO_BASED = (1<<5)
1080};
1081
1082struct ib_phys_buf {
1083 u64 addr;
1084 u64 size;
1085};
1086
1087struct ib_mr_attr {
1088 struct ib_pd *pd;
1089 u64 device_virt_addr;
1090 u64 size;
1091 int mr_access_flags;
1092 u32 lkey;
1093 u32 rkey;
1094};
1095
1096enum ib_mr_rereg_flags {
1097 IB_MR_REREG_TRANS = 1,
1098 IB_MR_REREG_PD = (1<<1),
1099 IB_MR_REREG_ACCESS = (1<<2)
1100};
1101
1102/**
1103 * struct ib_mw_bind - Parameters for a type 1 memory window bind operation.
1104 * @wr_id: Work request id.
1105 * @send_flags: Flags from ib_send_flags enum.
1106 * @bind_info: More parameters of the bind operation.
1107 */
1108struct ib_mw_bind {
1109 u64 wr_id;
1110 int send_flags;
1111 struct ib_mw_bind_info bind_info;
1112};
1113
1114struct ib_fmr_attr {
1115 int max_pages;
1116 int max_maps;
1117 u8 page_shift;
1118};
1119
1120struct ib_ucontext {
1121 struct ib_device *device;
1122 struct list_head pd_list;
1123 struct list_head mr_list;
1124 struct list_head mw_list;
1125 struct list_head cq_list;
1126 struct list_head qp_list;
1127 struct list_head srq_list;
1128 struct list_head ah_list;
1129 struct list_head xrcd_list;
1130 struct list_head rule_list;
1131 int closing;
1132};
1133
1134struct ib_uobject {
1135 u64 user_handle; /* handle given to us by userspace */
1136 struct ib_ucontext *context; /* associated user context */
1137 void *object; /* containing object */
1138 struct list_head list; /* link to context's list */
1139 int id; /* index into kernel idr */
1140 struct kref ref;
1141 struct rw_semaphore mutex; /* protects .live */
1142 int live;
1143};
1144
1145struct ib_udata {
1146 const void __user *inbuf;
1147 void __user *outbuf;
1148 size_t inlen;
1149 size_t outlen;
1150};
1151
1152struct ib_pd {
1153 struct ib_device *device;
1154 struct ib_uobject *uobject;
1155 atomic_t usecnt; /* count all resources */
1156};
1157
1158struct ib_xrcd {
1159 struct ib_device *device;
1160 atomic_t usecnt; /* count all exposed resources */
1161 struct inode *inode;
1162
1163 struct mutex tgt_qp_mutex;
1164 struct list_head tgt_qp_list;
1165};
1166
1167struct ib_ah {
1168 struct ib_device *device;
1169 struct ib_pd *pd;
1170 struct ib_uobject *uobject;
1171};
1172
1173typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
1174
1175struct ib_cq {
1176 struct ib_device *device;
1177 struct ib_uobject *uobject;
1178 ib_comp_handler comp_handler;
1179 void (*event_handler)(struct ib_event *, void *);
1180 void *cq_context;
1181 int cqe;
1182 atomic_t usecnt; /* count number of work queues */
1183};
1184
1185struct ib_srq {
1186 struct ib_device *device;
1187 struct ib_pd *pd;
1188 struct ib_uobject *uobject;
1189 void (*event_handler)(struct ib_event *, void *);
1190 void *srq_context;
1191 enum ib_srq_type srq_type;
1192 atomic_t usecnt;
1193
1194 union {
1195 struct {
1196 struct ib_xrcd *xrcd;
1197 struct ib_cq *cq;
1198 u32 srq_num;
1199 } xrc;
1200 } ext;
1201};
1202
1203struct ib_qp {
1204 struct ib_device *device;
1205 struct ib_pd *pd;
1206 struct ib_cq *send_cq;
1207 struct ib_cq *recv_cq;
1208 struct ib_srq *srq;
1209 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
1210 struct list_head xrcd_list;
1211 /* count times opened, mcast attaches, flow attaches */
1212 atomic_t usecnt;
1213 struct list_head open_list;
1214 struct ib_qp *real_qp;
1215 struct ib_uobject *uobject;
1216 void (*event_handler)(struct ib_event *, void *);
1217 void *qp_context;
1218 u32 qp_num;
1219 enum ib_qp_type qp_type;
1220};
1221
1222struct ib_mr {
1223 struct ib_device *device;
1224 struct ib_pd *pd;
1225 struct ib_uobject *uobject;
1226 u32 lkey;
1227 u32 rkey;
1228 atomic_t usecnt; /* count number of MWs */
1229};
1230
1231struct ib_mw {
1232 struct ib_device *device;
1233 struct ib_pd *pd;
1234 struct ib_uobject *uobject;
1235 u32 rkey;
1236 enum ib_mw_type type;
1237};
1238
1239struct ib_fmr {
1240 struct ib_device *device;
1241 struct ib_pd *pd;
1242 struct list_head list;
1243 u32 lkey;
1244 u32 rkey;
1245};
1246
1247/* Supported steering options */
1248enum ib_flow_attr_type {
1249 /* steering according to rule specifications */
1250 IB_FLOW_ATTR_NORMAL = 0x0,
1251 /* default unicast and multicast rule -
1252 * receive all Eth traffic which isn't steered to any QP
1253 */
1254 IB_FLOW_ATTR_ALL_DEFAULT = 0x1,
1255 /* default multicast rule -
1256 * receive all Eth multicast traffic which isn't steered to any QP
1257 */
1258 IB_FLOW_ATTR_MC_DEFAULT = 0x2,
1259 /* sniffer rule - receive all port traffic */
1260 IB_FLOW_ATTR_SNIFFER = 0x3
1261};
1262
1263/* Supported steering header types */
1264enum ib_flow_spec_type {
1265 /* L2 headers*/
1266 IB_FLOW_SPEC_ETH = 0x20,
1267 IB_FLOW_SPEC_IB = 0x22,
1268 /* L3 header*/
1269 IB_FLOW_SPEC_IPV4 = 0x30,
1270 /* L4 headers*/
1271 IB_FLOW_SPEC_TCP = 0x40,
1272 IB_FLOW_SPEC_UDP = 0x41
1273};
1274#define IB_FLOW_SPEC_LAYER_MASK 0xF0
1275#define IB_FLOW_SPEC_SUPPORT_LAYERS 4
1276
1277/* Flow steering rule priority is set according to it's domain.
1278 * Lower domain value means higher priority.
1279 */
1280enum ib_flow_domain {
1281 IB_FLOW_DOMAIN_USER,
1282 IB_FLOW_DOMAIN_ETHTOOL,
1283 IB_FLOW_DOMAIN_RFS,
1284 IB_FLOW_DOMAIN_NIC,
1285 IB_FLOW_DOMAIN_NUM /* Must be last */
1286};
1287
1288struct ib_flow_eth_filter {
1289 u8 dst_mac[6];
1290 u8 src_mac[6];
1291 __be16 ether_type;
1292 __be16 vlan_tag;
1293};
1294
1295struct ib_flow_spec_eth {
1296 enum ib_flow_spec_type type;
1297 u16 size;
1298 struct ib_flow_eth_filter val;
1299 struct ib_flow_eth_filter mask;
1300};
1301
1302struct ib_flow_ib_filter {
1303 __be16 dlid;
1304 __u8 sl;
1305};
1306
1307struct ib_flow_spec_ib {
1308 enum ib_flow_spec_type type;
1309 u16 size;
1310 struct ib_flow_ib_filter val;
1311 struct ib_flow_ib_filter mask;
1312};
1313
1314struct ib_flow_ipv4_filter {
1315 __be32 src_ip;
1316 __be32 dst_ip;
1317};
1318
1319struct ib_flow_spec_ipv4 {
1320 enum ib_flow_spec_type type;
1321 u16 size;
1322 struct ib_flow_ipv4_filter val;
1323 struct ib_flow_ipv4_filter mask;
1324};
1325
1326struct ib_flow_tcp_udp_filter {
1327 __be16 dst_port;
1328 __be16 src_port;
1329};
1330
1331struct ib_flow_spec_tcp_udp {
1332 enum ib_flow_spec_type type;
1333 u16 size;
1334 struct ib_flow_tcp_udp_filter val;
1335 struct ib_flow_tcp_udp_filter mask;
1336};
1337
1338union ib_flow_spec {
1339 struct {
1340 enum ib_flow_spec_type type;
1341 u16 size;
1342 };
1343 struct ib_flow_spec_eth eth;
1344 struct ib_flow_spec_ib ib;
1345 struct ib_flow_spec_ipv4 ipv4;
1346 struct ib_flow_spec_tcp_udp tcp_udp;
1347};
1348
1349struct ib_flow_attr {
1350 enum ib_flow_attr_type type;
1351 u16 size;
1352 u16 priority;
1353 u32 flags;
1354 u8 num_of_specs;
1355 u8 port;
1356 /* Following are the optional layers according to user request
1357 * struct ib_flow_spec_xxx
1358 * struct ib_flow_spec_yyy
1359 */
1360};
1361
1362struct ib_flow {
1363 struct ib_qp *qp;
1364 struct ib_uobject *uobject;
1365};
1366
1367struct ib_mad;
1368struct ib_grh;
1369
1370enum ib_process_mad_flags {
1371 IB_MAD_IGNORE_MKEY = 1,
1372 IB_MAD_IGNORE_BKEY = 2,
1373 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
1374};
1375
1376enum ib_mad_result {
1377 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */
1378 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */
1379 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */
1380 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */
1381};
1382
1383#define IB_DEVICE_NAME_MAX 64
1384
1385struct ib_cache {
1386 rwlock_t lock;
1387 struct ib_event_handler event_handler;
1388 struct ib_pkey_cache **pkey_cache;
1389 struct ib_gid_cache **gid_cache;
1390 u8 *lmc_cache;
1391};
1392
1393struct ib_dma_mapping_ops {
1394 int (*mapping_error)(struct ib_device *dev,
1395 u64 dma_addr);
1396 u64 (*map_single)(struct ib_device *dev,
1397 void *ptr, size_t size,
1398 enum dma_data_direction direction);
1399 void (*unmap_single)(struct ib_device *dev,
1400 u64 addr, size_t size,
1401 enum dma_data_direction direction);
1402 u64 (*map_page)(struct ib_device *dev,
1403 struct page *page, unsigned long offset,
1404 size_t size,
1405 enum dma_data_direction direction);
1406 void (*unmap_page)(struct ib_device *dev,
1407 u64 addr, size_t size,
1408 enum dma_data_direction direction);
1409 int (*map_sg)(struct ib_device *dev,
1410 struct scatterlist *sg, int nents,
1411 enum dma_data_direction direction);
1412 void (*unmap_sg)(struct ib_device *dev,
1413 struct scatterlist *sg, int nents,
1414 enum dma_data_direction direction);
1415 void (*sync_single_for_cpu)(struct ib_device *dev,
1416 u64 dma_handle,
1417 size_t size,
1418 enum dma_data_direction dir);
1419 void (*sync_single_for_device)(struct ib_device *dev,
1420 u64 dma_handle,
1421 size_t size,
1422 enum dma_data_direction dir);
1423 void *(*alloc_coherent)(struct ib_device *dev,
1424 size_t size,
1425 u64 *dma_handle,
1426 gfp_t flag);
1427 void (*free_coherent)(struct ib_device *dev,
1428 size_t size, void *cpu_addr,
1429 u64 dma_handle);
1430};
1431
1432struct iw_cm_verbs;
1433
1434struct ib_device {
1435 struct device *dma_device;
1436
1437 char name[IB_DEVICE_NAME_MAX];
1438
1439 struct list_head event_handler_list;
1440 spinlock_t event_handler_lock;
1441
1442 spinlock_t client_data_lock;
1443 struct list_head core_list;
1444 struct list_head client_data_list;
1445
1446 struct ib_cache cache;
1447 int *pkey_tbl_len;
1448 int *gid_tbl_len;
1449
1450 int num_comp_vectors;
1451
1452 struct iw_cm_verbs *iwcm;
1453
1454 int (*get_protocol_stats)(struct ib_device *device,
1455 union rdma_protocol_stats *stats);
1456 int (*query_device)(struct ib_device *device,
1457 struct ib_device_attr *device_attr);
1458 int (*query_port)(struct ib_device *device,
1459 u8 port_num,
1460 struct ib_port_attr *port_attr);
1461 enum rdma_link_layer (*get_link_layer)(struct ib_device *device,
1462 u8 port_num);
1463 int (*query_gid)(struct ib_device *device,
1464 u8 port_num, int index,
1465 union ib_gid *gid);
1466 int (*query_pkey)(struct ib_device *device,
1467 u8 port_num, u16 index, u16 *pkey);
1468 int (*modify_device)(struct ib_device *device,
1469 int device_modify_mask,
1470 struct ib_device_modify *device_modify);
1471 int (*modify_port)(struct ib_device *device,
1472 u8 port_num, int port_modify_mask,
1473 struct ib_port_modify *port_modify);
1474 struct ib_ucontext * (*alloc_ucontext)(struct ib_device *device,
1475 struct ib_udata *udata);
1476 int (*dealloc_ucontext)(struct ib_ucontext *context);
1477 int (*mmap)(struct ib_ucontext *context,
1478 struct vm_area_struct *vma);
1479 struct ib_pd * (*alloc_pd)(struct ib_device *device,
1480 struct ib_ucontext *context,
1481 struct ib_udata *udata);
1482 int (*dealloc_pd)(struct ib_pd *pd);
1483 struct ib_ah * (*create_ah)(struct ib_pd *pd,
1484 struct ib_ah_attr *ah_attr);
1485 int (*modify_ah)(struct ib_ah *ah,
1486 struct ib_ah_attr *ah_attr);
1487 int (*query_ah)(struct ib_ah *ah,
1488 struct ib_ah_attr *ah_attr);
1489 int (*destroy_ah)(struct ib_ah *ah);
1490 struct ib_srq * (*create_srq)(struct ib_pd *pd,
1491 struct ib_srq_init_attr *srq_init_attr,
1492 struct ib_udata *udata);
1493 int (*modify_srq)(struct ib_srq *srq,
1494 struct ib_srq_attr *srq_attr,
1495 enum ib_srq_attr_mask srq_attr_mask,
1496 struct ib_udata *udata);
1497 int (*query_srq)(struct ib_srq *srq,
1498 struct ib_srq_attr *srq_attr);
1499 int (*destroy_srq)(struct ib_srq *srq);
1500 int (*post_srq_recv)(struct ib_srq *srq,
1501 struct ib_recv_wr *recv_wr,
1502 struct ib_recv_wr **bad_recv_wr);
1503 struct ib_qp * (*create_qp)(struct ib_pd *pd,
1504 struct ib_qp_init_attr *qp_init_attr,
1505 struct ib_udata *udata);
1506 int (*modify_qp)(struct ib_qp *qp,
1507 struct ib_qp_attr *qp_attr,
1508 int qp_attr_mask,
1509 struct ib_udata *udata);
1510 int (*query_qp)(struct ib_qp *qp,
1511 struct ib_qp_attr *qp_attr,
1512 int qp_attr_mask,
1513 struct ib_qp_init_attr *qp_init_attr);
1514 int (*destroy_qp)(struct ib_qp *qp);
1515 int (*post_send)(struct ib_qp *qp,
1516 struct ib_send_wr *send_wr,
1517 struct ib_send_wr **bad_send_wr);
1518 int (*post_recv)(struct ib_qp *qp,
1519 struct ib_recv_wr *recv_wr,
1520 struct ib_recv_wr **bad_recv_wr);
1521 struct ib_cq * (*create_cq)(struct ib_device *device, int cqe,
1522 int comp_vector,
1523 struct ib_ucontext *context,
1524 struct ib_udata *udata);
1525 int (*modify_cq)(struct ib_cq *cq, u16 cq_count,
1526 u16 cq_period);
1527 int (*destroy_cq)(struct ib_cq *cq);
1528 int (*resize_cq)(struct ib_cq *cq, int cqe,
1529 struct ib_udata *udata);
1530 int (*poll_cq)(struct ib_cq *cq, int num_entries,
1531 struct ib_wc *wc);
1532 int (*peek_cq)(struct ib_cq *cq, int wc_cnt);
1533 int (*req_notify_cq)(struct ib_cq *cq,
1534 enum ib_cq_notify_flags flags);
1535 int (*req_ncomp_notif)(struct ib_cq *cq,
1536 int wc_cnt);
1537 struct ib_mr * (*get_dma_mr)(struct ib_pd *pd,
1538 int mr_access_flags);
1539 struct ib_mr * (*reg_phys_mr)(struct ib_pd *pd,
1540 struct ib_phys_buf *phys_buf_array,
1541 int num_phys_buf,
1542 int mr_access_flags,
1543 u64 *iova_start);
1544 struct ib_mr * (*reg_user_mr)(struct ib_pd *pd,
1545 u64 start, u64 length,
1546 u64 virt_addr,
1547 int mr_access_flags,
1548 struct ib_udata *udata);
1549 int (*query_mr)(struct ib_mr *mr,
1550 struct ib_mr_attr *mr_attr);
1551 int (*dereg_mr)(struct ib_mr *mr);
1552 int (*destroy_mr)(struct ib_mr *mr);
1553 struct ib_mr * (*create_mr)(struct ib_pd *pd,
1554 struct ib_mr_init_attr *mr_init_attr);
1555 struct ib_mr * (*alloc_fast_reg_mr)(struct ib_pd *pd,
1556 int max_page_list_len);
1557 struct ib_fast_reg_page_list * (*alloc_fast_reg_page_list)(struct ib_device *device,
1558 int page_list_len);
1559 void (*free_fast_reg_page_list)(struct ib_fast_reg_page_list *page_list);
1560 int (*rereg_phys_mr)(struct ib_mr *mr,
1561 int mr_rereg_mask,
1562 struct ib_pd *pd,
1563 struct ib_phys_buf *phys_buf_array,
1564 int num_phys_buf,
1565 int mr_access_flags,
1566 u64 *iova_start);
1567 struct ib_mw * (*alloc_mw)(struct ib_pd *pd,
1568 enum ib_mw_type type);
1569 int (*bind_mw)(struct ib_qp *qp,
1570 struct ib_mw *mw,
1571 struct ib_mw_bind *mw_bind);
1572 int (*dealloc_mw)(struct ib_mw *mw);
1573 struct ib_fmr * (*alloc_fmr)(struct ib_pd *pd,
1574 int mr_access_flags,
1575 struct ib_fmr_attr *fmr_attr);
1576 int (*map_phys_fmr)(struct ib_fmr *fmr,
1577 u64 *page_list, int list_len,
1578 u64 iova);
1579 int (*unmap_fmr)(struct list_head *fmr_list);
1580 int (*dealloc_fmr)(struct ib_fmr *fmr);
1581 int (*attach_mcast)(struct ib_qp *qp,
1582 union ib_gid *gid,
1583 u16 lid);
1584 int (*detach_mcast)(struct ib_qp *qp,
1585 union ib_gid *gid,
1586 u16 lid);
1587 int (*process_mad)(struct ib_device *device,
1588 int process_mad_flags,
1589 u8 port_num,
1590 struct ib_wc *in_wc,
1591 struct ib_grh *in_grh,
1592 struct ib_mad *in_mad,
1593 struct ib_mad *out_mad);
1594 struct ib_xrcd * (*alloc_xrcd)(struct ib_device *device,
1595 struct ib_ucontext *ucontext,
1596 struct ib_udata *udata);
1597 int (*dealloc_xrcd)(struct ib_xrcd *xrcd);
1598 struct ib_flow * (*create_flow)(struct ib_qp *qp,
1599 struct ib_flow_attr
1600 *flow_attr,
1601 int domain);
1602 int (*destroy_flow)(struct ib_flow *flow_id);
1603 int (*check_mr_status)(struct ib_mr *mr, u32 check_mask,
1604 struct ib_mr_status *mr_status);
1605
1606 struct ib_dma_mapping_ops *dma_ops;
1607
1608 struct module *owner;
1609 struct device dev;
1610 struct kobject *ports_parent;
1611 struct list_head port_list;
1612
1613 enum {
1614 IB_DEV_UNINITIALIZED,
1615 IB_DEV_REGISTERED,
1616 IB_DEV_UNREGISTERED
1617 } reg_state;
1618
1619 int uverbs_abi_ver;
1620 u64 uverbs_cmd_mask;
1621 u64 uverbs_ex_cmd_mask;
1622
1623 char node_desc[64];
1624 __be64 node_guid;
1625 u32 local_dma_lkey;
1626 u8 node_type;
1627 u8 phys_port_cnt;
1628};
1629
1630struct ib_client {
1631 char *name;
1632 void (*add) (struct ib_device *);
1633 void (*remove)(struct ib_device *);
1634
1635 struct list_head list;
1636};
1637
1638struct ib_device *ib_alloc_device(size_t size);
1639void ib_dealloc_device(struct ib_device *device);
1640
1641int ib_register_device(struct ib_device *device,
1642 int (*port_callback)(struct ib_device *,
1643 u8, struct kobject *));
1644void ib_unregister_device(struct ib_device *device);
1645
1646int ib_register_client (struct ib_client *client);
1647void ib_unregister_client(struct ib_client *client);
1648
1649void *ib_get_client_data(struct ib_device *device, struct ib_client *client);
1650void ib_set_client_data(struct ib_device *device, struct ib_client *client,
1651 void *data);
1652
1653static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
1654{
1655 return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
1656}
1657
1658static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
1659{
1660 return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
1661}
1662
1663/**
1664 * ib_modify_qp_is_ok - Check that the supplied attribute mask
1665 * contains all required attributes and no attributes not allowed for
1666 * the given QP state transition.
1667 * @cur_state: Current QP state
1668 * @next_state: Next QP state
1669 * @type: QP type
1670 * @mask: Mask of supplied QP attributes
1671 * @ll : link layer of port
1672 *
1673 * This function is a helper function that a low-level driver's
1674 * modify_qp method can use to validate the consumer's input. It
1675 * checks that cur_state and next_state are valid QP states, that a
1676 * transition from cur_state to next_state is allowed by the IB spec,
1677 * and that the attribute mask supplied is allowed for the transition.
1678 */
1679int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
1680 enum ib_qp_type type, enum ib_qp_attr_mask mask,
1681 enum rdma_link_layer ll);
1682
1683int ib_register_event_handler (struct ib_event_handler *event_handler);
1684int ib_unregister_event_handler(struct ib_event_handler *event_handler);
1685void ib_dispatch_event(struct ib_event *event);
1686
1687int ib_query_device(struct ib_device *device,
1688 struct ib_device_attr *device_attr);
1689
1690int ib_query_port(struct ib_device *device,
1691 u8 port_num, struct ib_port_attr *port_attr);
1692
1693enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
1694 u8 port_num);
1695
1696int ib_query_gid(struct ib_device *device,
1697 u8 port_num, int index, union ib_gid *gid);
1698
1699int ib_query_pkey(struct ib_device *device,
1700 u8 port_num, u16 index, u16 *pkey);
1701
1702int ib_modify_device(struct ib_device *device,
1703 int device_modify_mask,
1704 struct ib_device_modify *device_modify);
1705
1706int ib_modify_port(struct ib_device *device,
1707 u8 port_num, int port_modify_mask,
1708 struct ib_port_modify *port_modify);
1709
1710int ib_find_gid(struct ib_device *device, union ib_gid *gid,
1711 u8 *port_num, u16 *index);
1712
1713int ib_find_pkey(struct ib_device *device,
1714 u8 port_num, u16 pkey, u16 *index);
1715
1716/**
1717 * ib_alloc_pd - Allocates an unused protection domain.
1718 * @device: The device on which to allocate the protection domain.
1719 *
1720 * A protection domain object provides an association between QPs, shared
1721 * receive queues, address handles, memory regions, and memory windows.
1722 */
1723struct ib_pd *ib_alloc_pd(struct ib_device *device);
1724
1725/**
1726 * ib_dealloc_pd - Deallocates a protection domain.
1727 * @pd: The protection domain to deallocate.
1728 */
1729int ib_dealloc_pd(struct ib_pd *pd);
1730
1731/**
1732 * ib_create_ah - Creates an address handle for the given address vector.
1733 * @pd: The protection domain associated with the address handle.
1734 * @ah_attr: The attributes of the address vector.
1735 *
1736 * The address handle is used to reference a local or global destination
1737 * in all UD QP post sends.
1738 */
1739struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr);
1740
1741/**
1742 * ib_init_ah_from_wc - Initializes address handle attributes from a
1743 * work completion.
1744 * @device: Device on which the received message arrived.
1745 * @port_num: Port on which the received message arrived.
1746 * @wc: Work completion associated with the received message.
1747 * @grh: References the received global route header. This parameter is
1748 * ignored unless the work completion indicates that the GRH is valid.
1749 * @ah_attr: Returned attributes that can be used when creating an address
1750 * handle for replying to the message.
1751 */
1752int ib_init_ah_from_wc(struct ib_device *device, u8 port_num, struct ib_wc *wc,
1753 struct ib_grh *grh, struct ib_ah_attr *ah_attr);
1754
1755/**
1756 * ib_create_ah_from_wc - Creates an address handle associated with the
1757 * sender of the specified work completion.
1758 * @pd: The protection domain associated with the address handle.
1759 * @wc: Work completion information associated with a received message.
1760 * @grh: References the received global route header. This parameter is
1761 * ignored unless the work completion indicates that the GRH is valid.
1762 * @port_num: The outbound port number to associate with the address.
1763 *
1764 * The address handle is used to reference a local or global destination
1765 * in all UD QP post sends.
1766 */
1767struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, struct ib_wc *wc,
1768 struct ib_grh *grh, u8 port_num);
1769
1770/**
1771 * ib_modify_ah - Modifies the address vector associated with an address
1772 * handle.
1773 * @ah: The address handle to modify.
1774 * @ah_attr: The new address vector attributes to associate with the
1775 * address handle.
1776 */
1777int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
1778
1779/**
1780 * ib_query_ah - Queries the address vector associated with an address
1781 * handle.
1782 * @ah: The address handle to query.
1783 * @ah_attr: The address vector attributes associated with the address
1784 * handle.
1785 */
1786int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
1787
1788/**
1789 * ib_destroy_ah - Destroys an address handle.
1790 * @ah: The address handle to destroy.
1791 */
1792int ib_destroy_ah(struct ib_ah *ah);
1793
1794/**
1795 * ib_create_srq - Creates a SRQ associated with the specified protection
1796 * domain.
1797 * @pd: The protection domain associated with the SRQ.
1798 * @srq_init_attr: A list of initial attributes required to create the
1799 * SRQ. If SRQ creation succeeds, then the attributes are updated to
1800 * the actual capabilities of the created SRQ.
1801 *
1802 * srq_attr->max_wr and srq_attr->max_sge are read the determine the
1803 * requested size of the SRQ, and set to the actual values allocated
1804 * on return. If ib_create_srq() succeeds, then max_wr and max_sge
1805 * will always be at least as large as the requested values.
1806 */
1807struct ib_srq *ib_create_srq(struct ib_pd *pd,
1808 struct ib_srq_init_attr *srq_init_attr);
1809
1810/**
1811 * ib_modify_srq - Modifies the attributes for the specified SRQ.
1812 * @srq: The SRQ to modify.
1813 * @srq_attr: On input, specifies the SRQ attributes to modify. On output,
1814 * the current values of selected SRQ attributes are returned.
1815 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
1816 * are being modified.
1817 *
1818 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
1819 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when
1820 * the number of receives queued drops below the limit.
1821 */
1822int ib_modify_srq(struct ib_srq *srq,
1823 struct ib_srq_attr *srq_attr,
1824 enum ib_srq_attr_mask srq_attr_mask);
1825
1826/**
1827 * ib_query_srq - Returns the attribute list and current values for the
1828 * specified SRQ.
1829 * @srq: The SRQ to query.
1830 * @srq_attr: The attributes of the specified SRQ.
1831 */
1832int ib_query_srq(struct ib_srq *srq,
1833 struct ib_srq_attr *srq_attr);
1834
1835/**
1836 * ib_destroy_srq - Destroys the specified SRQ.
1837 * @srq: The SRQ to destroy.
1838 */
1839int ib_destroy_srq(struct ib_srq *srq);
1840
1841/**
1842 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
1843 * @srq: The SRQ to post the work request on.
1844 * @recv_wr: A list of work requests to post on the receive queue.
1845 * @bad_recv_wr: On an immediate failure, this parameter will reference
1846 * the work request that failed to be posted on the QP.
1847 */
1848static inline int ib_post_srq_recv(struct ib_srq *srq,
1849 struct ib_recv_wr *recv_wr,
1850 struct ib_recv_wr **bad_recv_wr)
1851{
1852 return srq->device->post_srq_recv(srq, recv_wr, bad_recv_wr);
1853}
1854
1855/**
1856 * ib_create_qp - Creates a QP associated with the specified protection
1857 * domain.
1858 * @pd: The protection domain associated with the QP.
1859 * @qp_init_attr: A list of initial attributes required to create the
1860 * QP. If QP creation succeeds, then the attributes are updated to
1861 * the actual capabilities of the created QP.
1862 */
1863struct ib_qp *ib_create_qp(struct ib_pd *pd,
1864 struct ib_qp_init_attr *qp_init_attr);
1865
1866/**
1867 * ib_modify_qp - Modifies the attributes for the specified QP and then
1868 * transitions the QP to the given state.
1869 * @qp: The QP to modify.
1870 * @qp_attr: On input, specifies the QP attributes to modify. On output,
1871 * the current values of selected QP attributes are returned.
1872 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP
1873 * are being modified.
1874 */
1875int ib_modify_qp(struct ib_qp *qp,
1876 struct ib_qp_attr *qp_attr,
1877 int qp_attr_mask);
1878
1879/**
1880 * ib_query_qp - Returns the attribute list and current values for the
1881 * specified QP.
1882 * @qp: The QP to query.
1883 * @qp_attr: The attributes of the specified QP.
1884 * @qp_attr_mask: A bit-mask used to select specific attributes to query.
1885 * @qp_init_attr: Additional attributes of the selected QP.
1886 *
1887 * The qp_attr_mask may be used to limit the query to gathering only the
1888 * selected attributes.
1889 */
1890int ib_query_qp(struct ib_qp *qp,
1891 struct ib_qp_attr *qp_attr,
1892 int qp_attr_mask,
1893 struct ib_qp_init_attr *qp_init_attr);
1894
1895/**
1896 * ib_destroy_qp - Destroys the specified QP.
1897 * @qp: The QP to destroy.
1898 */
1899int ib_destroy_qp(struct ib_qp *qp);
1900
1901/**
1902 * ib_open_qp - Obtain a reference to an existing sharable QP.
1903 * @xrcd - XRC domain
1904 * @qp_open_attr: Attributes identifying the QP to open.
1905 *
1906 * Returns a reference to a sharable QP.
1907 */
1908struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
1909 struct ib_qp_open_attr *qp_open_attr);
1910
1911/**
1912 * ib_close_qp - Release an external reference to a QP.
1913 * @qp: The QP handle to release
1914 *
1915 * The opened QP handle is released by the caller. The underlying
1916 * shared QP is not destroyed until all internal references are released.
1917 */
1918int ib_close_qp(struct ib_qp *qp);
1919
1920/**
1921 * ib_post_send - Posts a list of work requests to the send queue of
1922 * the specified QP.
1923 * @qp: The QP to post the work request on.
1924 * @send_wr: A list of work requests to post on the send queue.
1925 * @bad_send_wr: On an immediate failure, this parameter will reference
1926 * the work request that failed to be posted on the QP.
1927 *
1928 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate
1929 * error is returned, the QP state shall not be affected,
1930 * ib_post_send() will return an immediate error after queueing any
1931 * earlier work requests in the list.
1932 */
1933static inline int ib_post_send(struct ib_qp *qp,
1934 struct ib_send_wr *send_wr,
1935 struct ib_send_wr **bad_send_wr)
1936{
1937 return qp->device->post_send(qp, send_wr, bad_send_wr);
1938}
1939
1940/**
1941 * ib_post_recv - Posts a list of work requests to the receive queue of
1942 * the specified QP.
1943 * @qp: The QP to post the work request on.
1944 * @recv_wr: A list of work requests to post on the receive queue.
1945 * @bad_recv_wr: On an immediate failure, this parameter will reference
1946 * the work request that failed to be posted on the QP.
1947 */
1948static inline int ib_post_recv(struct ib_qp *qp,
1949 struct ib_recv_wr *recv_wr,
1950 struct ib_recv_wr **bad_recv_wr)
1951{
1952 return qp->device->post_recv(qp, recv_wr, bad_recv_wr);
1953}
1954
1955/**
1956 * ib_create_cq - Creates a CQ on the specified device.
1957 * @device: The device on which to create the CQ.
1958 * @comp_handler: A user-specified callback that is invoked when a
1959 * completion event occurs on the CQ.
1960 * @event_handler: A user-specified callback that is invoked when an
1961 * asynchronous event not associated with a completion occurs on the CQ.
1962 * @cq_context: Context associated with the CQ returned to the user via
1963 * the associated completion and event handlers.
1964 * @cqe: The minimum size of the CQ.
1965 * @comp_vector - Completion vector used to signal completion events.
1966 * Must be >= 0 and < context->num_comp_vectors.
1967 *
1968 * Users can examine the cq structure to determine the actual CQ size.
1969 */
1970struct ib_cq *ib_create_cq(struct ib_device *device,
1971 ib_comp_handler comp_handler,
1972 void (*event_handler)(struct ib_event *, void *),
1973 void *cq_context, int cqe, int comp_vector);
1974
1975/**
1976 * ib_resize_cq - Modifies the capacity of the CQ.
1977 * @cq: The CQ to resize.
1978 * @cqe: The minimum size of the CQ.
1979 *
1980 * Users can examine the cq structure to determine the actual CQ size.
1981 */
1982int ib_resize_cq(struct ib_cq *cq, int cqe);
1983
1984/**
1985 * ib_modify_cq - Modifies moderation params of the CQ
1986 * @cq: The CQ to modify.
1987 * @cq_count: number of CQEs that will trigger an event
1988 * @cq_period: max period of time in usec before triggering an event
1989 *
1990 */
1991int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period);
1992
1993/**
1994 * ib_destroy_cq - Destroys the specified CQ.
1995 * @cq: The CQ to destroy.
1996 */
1997int ib_destroy_cq(struct ib_cq *cq);
1998
1999/**
2000 * ib_poll_cq - poll a CQ for completion(s)
2001 * @cq:the CQ being polled
2002 * @num_entries:maximum number of completions to return
2003 * @wc:array of at least @num_entries &struct ib_wc where completions
2004 * will be returned
2005 *
2006 * Poll a CQ for (possibly multiple) completions. If the return value
2007 * is < 0, an error occurred. If the return value is >= 0, it is the
2008 * number of completions returned. If the return value is
2009 * non-negative and < num_entries, then the CQ was emptied.
2010 */
2011static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
2012 struct ib_wc *wc)
2013{
2014 return cq->device->poll_cq(cq, num_entries, wc);
2015}
2016
2017/**
2018 * ib_peek_cq - Returns the number of unreaped completions currently
2019 * on the specified CQ.
2020 * @cq: The CQ to peek.
2021 * @wc_cnt: A minimum number of unreaped completions to check for.
2022 *
2023 * If the number of unreaped completions is greater than or equal to wc_cnt,
2024 * this function returns wc_cnt, otherwise, it returns the actual number of
2025 * unreaped completions.
2026 */
2027int ib_peek_cq(struct ib_cq *cq, int wc_cnt);
2028
2029/**
2030 * ib_req_notify_cq - Request completion notification on a CQ.
2031 * @cq: The CQ to generate an event for.
2032 * @flags:
2033 * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
2034 * to request an event on the next solicited event or next work
2035 * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
2036 * may also be |ed in to request a hint about missed events, as
2037 * described below.
2038 *
2039 * Return Value:
2040 * < 0 means an error occurred while requesting notification
2041 * == 0 means notification was requested successfully, and if
2042 * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
2043 * were missed and it is safe to wait for another event. In
2044 * this case is it guaranteed that any work completions added
2045 * to the CQ since the last CQ poll will trigger a completion
2046 * notification event.
2047 * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
2048 * in. It means that the consumer must poll the CQ again to
2049 * make sure it is empty to avoid missing an event because of a
2050 * race between requesting notification and an entry being
2051 * added to the CQ. This return value means it is possible
2052 * (but not guaranteed) that a work completion has been added
2053 * to the CQ since the last poll without triggering a
2054 * completion notification event.
2055 */
2056static inline int ib_req_notify_cq(struct ib_cq *cq,
2057 enum ib_cq_notify_flags flags)
2058{
2059 return cq->device->req_notify_cq(cq, flags);
2060}
2061
2062/**
2063 * ib_req_ncomp_notif - Request completion notification when there are
2064 * at least the specified number of unreaped completions on the CQ.
2065 * @cq: The CQ to generate an event for.
2066 * @wc_cnt: The number of unreaped completions that should be on the
2067 * CQ before an event is generated.
2068 */
2069static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt)
2070{
2071 return cq->device->req_ncomp_notif ?
2072 cq->device->req_ncomp_notif(cq, wc_cnt) :
2073 -ENOSYS;
2074}
2075
2076/**
2077 * ib_get_dma_mr - Returns a memory region for system memory that is
2078 * usable for DMA.
2079 * @pd: The protection domain associated with the memory region.
2080 * @mr_access_flags: Specifies the memory access rights.
2081 *
2082 * Note that the ib_dma_*() functions defined below must be used
2083 * to create/destroy addresses used with the Lkey or Rkey returned
2084 * by ib_get_dma_mr().
2085 */
2086struct ib_mr *ib_get_dma_mr(struct ib_pd *pd, int mr_access_flags);
2087
2088/**
2089 * ib_dma_mapping_error - check a DMA addr for error
2090 * @dev: The device for which the dma_addr was created
2091 * @dma_addr: The DMA address to check
2092 */
2093static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
2094{
2095 if (dev->dma_ops)
2096 return dev->dma_ops->mapping_error(dev, dma_addr);
2097 return dma_mapping_error(dev->dma_device, dma_addr);
2098}
2099
2100/**
2101 * ib_dma_map_single - Map a kernel virtual address to DMA address
2102 * @dev: The device for which the dma_addr is to be created
2103 * @cpu_addr: The kernel virtual address
2104 * @size: The size of the region in bytes
2105 * @direction: The direction of the DMA
2106 */
2107static inline u64 ib_dma_map_single(struct ib_device *dev,
2108 void *cpu_addr, size_t size,
2109 enum dma_data_direction direction)
2110{
2111 if (dev->dma_ops)
2112 return dev->dma_ops->map_single(dev, cpu_addr, size, direction);
2113 return dma_map_single(dev->dma_device, cpu_addr, size, direction);
2114}
2115
2116/**
2117 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
2118 * @dev: The device for which the DMA address was created
2119 * @addr: The DMA address
2120 * @size: The size of the region in bytes
2121 * @direction: The direction of the DMA
2122 */
2123static inline void ib_dma_unmap_single(struct ib_device *dev,
2124 u64 addr, size_t size,
2125 enum dma_data_direction direction)
2126{
2127 if (dev->dma_ops)
2128 dev->dma_ops->unmap_single(dev, addr, size, direction);
2129 else
2130 dma_unmap_single(dev->dma_device, addr, size, direction);
2131}
2132
2133static inline u64 ib_dma_map_single_attrs(struct ib_device *dev,
2134 void *cpu_addr, size_t size,
2135 enum dma_data_direction direction,
2136 struct dma_attrs *attrs)
2137{
2138 return dma_map_single_attrs(dev->dma_device, cpu_addr, size,
2139 direction, attrs);
2140}
2141
2142static inline void ib_dma_unmap_single_attrs(struct ib_device *dev,
2143 u64 addr, size_t size,
2144 enum dma_data_direction direction,
2145 struct dma_attrs *attrs)
2146{
2147 return dma_unmap_single_attrs(dev->dma_device, addr, size,
2148 direction, attrs);
2149}
2150
2151/**
2152 * ib_dma_map_page - Map a physical page to DMA address
2153 * @dev: The device for which the dma_addr is to be created
2154 * @page: The page to be mapped
2155 * @offset: The offset within the page
2156 * @size: The size of the region in bytes
2157 * @direction: The direction of the DMA
2158 */
2159static inline u64 ib_dma_map_page(struct ib_device *dev,
2160 struct page *page,
2161 unsigned long offset,
2162 size_t size,
2163 enum dma_data_direction direction)
2164{
2165 if (dev->dma_ops)
2166 return dev->dma_ops->map_page(dev, page, offset, size, direction);
2167 return dma_map_page(dev->dma_device, page, offset, size, direction);
2168}
2169
2170/**
2171 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
2172 * @dev: The device for which the DMA address was created
2173 * @addr: The DMA address
2174 * @size: The size of the region in bytes
2175 * @direction: The direction of the DMA
2176 */
2177static inline void ib_dma_unmap_page(struct ib_device *dev,
2178 u64 addr, size_t size,
2179 enum dma_data_direction direction)
2180{
2181 if (dev->dma_ops)
2182 dev->dma_ops->unmap_page(dev, addr, size, direction);
2183 else
2184 dma_unmap_page(dev->dma_device, addr, size, direction);
2185}
2186
2187/**
2188 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses
2189 * @dev: The device for which the DMA addresses are to be created
2190 * @sg: The array of scatter/gather entries
2191 * @nents: The number of scatter/gather entries
2192 * @direction: The direction of the DMA
2193 */
2194static inline int ib_dma_map_sg(struct ib_device *dev,
2195 struct scatterlist *sg, int nents,
2196 enum dma_data_direction direction)
2197{
2198 if (dev->dma_ops)
2199 return dev->dma_ops->map_sg(dev, sg, nents, direction);
2200 return dma_map_sg(dev->dma_device, sg, nents, direction);
2201}
2202
2203/**
2204 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
2205 * @dev: The device for which the DMA addresses were created
2206 * @sg: The array of scatter/gather entries
2207 * @nents: The number of scatter/gather entries
2208 * @direction: The direction of the DMA
2209 */
2210static inline void ib_dma_unmap_sg(struct ib_device *dev,
2211 struct scatterlist *sg, int nents,
2212 enum dma_data_direction direction)
2213{
2214 if (dev->dma_ops)
2215 dev->dma_ops->unmap_sg(dev, sg, nents, direction);
2216 else
2217 dma_unmap_sg(dev->dma_device, sg, nents, direction);
2218}
2219
2220static inline int ib_dma_map_sg_attrs(struct ib_device *dev,
2221 struct scatterlist *sg, int nents,
2222 enum dma_data_direction direction,
2223 struct dma_attrs *attrs)
2224{
2225 return dma_map_sg_attrs(dev->dma_device, sg, nents, direction, attrs);
2226}
2227
2228static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev,
2229 struct scatterlist *sg, int nents,
2230 enum dma_data_direction direction,
2231 struct dma_attrs *attrs)
2232{
2233 dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, attrs);
2234}
2235/**
2236 * ib_sg_dma_address - Return the DMA address from a scatter/gather entry
2237 * @dev: The device for which the DMA addresses were created
2238 * @sg: The scatter/gather entry
2239 *
2240 * Note: this function is obsolete. To do: change all occurrences of
2241 * ib_sg_dma_address() into sg_dma_address().
2242 */
2243static inline u64 ib_sg_dma_address(struct ib_device *dev,
2244 struct scatterlist *sg)
2245{
2246 return sg_dma_address(sg);
2247}
2248
2249/**
2250 * ib_sg_dma_len - Return the DMA length from a scatter/gather entry
2251 * @dev: The device for which the DMA addresses were created
2252 * @sg: The scatter/gather entry
2253 *
2254 * Note: this function is obsolete. To do: change all occurrences of
2255 * ib_sg_dma_len() into sg_dma_len().
2256 */
2257static inline unsigned int ib_sg_dma_len(struct ib_device *dev,
2258 struct scatterlist *sg)
2259{
2260 return sg_dma_len(sg);
2261}
2262
2263/**
2264 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
2265 * @dev: The device for which the DMA address was created
2266 * @addr: The DMA address
2267 * @size: The size of the region in bytes
2268 * @dir: The direction of the DMA
2269 */
2270static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
2271 u64 addr,
2272 size_t size,
2273 enum dma_data_direction dir)
2274{
2275 if (dev->dma_ops)
2276 dev->dma_ops->sync_single_for_cpu(dev, addr, size, dir);
2277 else
2278 dma_sync_single_for_cpu(dev->dma_device, addr, size, dir);
2279}
2280
2281/**
2282 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
2283 * @dev: The device for which the DMA address was created
2284 * @addr: The DMA address
2285 * @size: The size of the region in bytes
2286 * @dir: The direction of the DMA
2287 */
2288static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
2289 u64 addr,
2290 size_t size,
2291 enum dma_data_direction dir)
2292{
2293 if (dev->dma_ops)
2294 dev->dma_ops->sync_single_for_device(dev, addr, size, dir);
2295 else
2296 dma_sync_single_for_device(dev->dma_device, addr, size, dir);
2297}
2298
2299/**
2300 * ib_dma_alloc_coherent - Allocate memory and map it for DMA
2301 * @dev: The device for which the DMA address is requested
2302 * @size: The size of the region to allocate in bytes
2303 * @dma_handle: A pointer for returning the DMA address of the region
2304 * @flag: memory allocator flags
2305 */
2306static inline void *ib_dma_alloc_coherent(struct ib_device *dev,
2307 size_t size,
2308 u64 *dma_handle,
2309 gfp_t flag)
2310{
2311 if (dev->dma_ops)
2312 return dev->dma_ops->alloc_coherent(dev, size, dma_handle, flag);
2313 else {
2314 dma_addr_t handle;
2315 void *ret;
2316
2317 ret = dma_alloc_coherent(dev->dma_device, size, &handle, flag);
2318 *dma_handle = handle;
2319 return ret;
2320 }
2321}
2322
2323/**
2324 * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent()
2325 * @dev: The device for which the DMA addresses were allocated
2326 * @size: The size of the region
2327 * @cpu_addr: the address returned by ib_dma_alloc_coherent()
2328 * @dma_handle: the DMA address returned by ib_dma_alloc_coherent()
2329 */
2330static inline void ib_dma_free_coherent(struct ib_device *dev,
2331 size_t size, void *cpu_addr,
2332 u64 dma_handle)
2333{
2334 if (dev->dma_ops)
2335 dev->dma_ops->free_coherent(dev, size, cpu_addr, dma_handle);
2336 else
2337 dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle);
2338}
2339
2340/**
2341 * ib_reg_phys_mr - Prepares a virtually addressed memory region for use
2342 * by an HCA.
2343 * @pd: The protection domain associated assigned to the registered region.
2344 * @phys_buf_array: Specifies a list of physical buffers to use in the
2345 * memory region.
2346 * @num_phys_buf: Specifies the size of the phys_buf_array.
2347 * @mr_access_flags: Specifies the memory access rights.
2348 * @iova_start: The offset of the region's starting I/O virtual address.
2349 */
2350struct ib_mr *ib_reg_phys_mr(struct ib_pd *pd,
2351 struct ib_phys_buf *phys_buf_array,
2352 int num_phys_buf,
2353 int mr_access_flags,
2354 u64 *iova_start);
2355
2356/**
2357 * ib_rereg_phys_mr - Modifies the attributes of an existing memory region.
2358 * Conceptually, this call performs the functions deregister memory region
2359 * followed by register physical memory region. Where possible,
2360 * resources are reused instead of deallocated and reallocated.
2361 * @mr: The memory region to modify.
2362 * @mr_rereg_mask: A bit-mask used to indicate which of the following
2363 * properties of the memory region are being modified.
2364 * @pd: If %IB_MR_REREG_PD is set in mr_rereg_mask, this field specifies
2365 * the new protection domain to associated with the memory region,
2366 * otherwise, this parameter is ignored.
2367 * @phys_buf_array: If %IB_MR_REREG_TRANS is set in mr_rereg_mask, this
2368 * field specifies a list of physical buffers to use in the new
2369 * translation, otherwise, this parameter is ignored.
2370 * @num_phys_buf: If %IB_MR_REREG_TRANS is set in mr_rereg_mask, this
2371 * field specifies the size of the phys_buf_array, otherwise, this
2372 * parameter is ignored.
2373 * @mr_access_flags: If %IB_MR_REREG_ACCESS is set in mr_rereg_mask, this
2374 * field specifies the new memory access rights, otherwise, this
2375 * parameter is ignored.
2376 * @iova_start: The offset of the region's starting I/O virtual address.
2377 */
2378int ib_rereg_phys_mr(struct ib_mr *mr,
2379 int mr_rereg_mask,
2380 struct ib_pd *pd,
2381 struct ib_phys_buf *phys_buf_array,
2382 int num_phys_buf,
2383 int mr_access_flags,
2384 u64 *iova_start);
2385
2386/**
2387 * ib_query_mr - Retrieves information about a specific memory region.
2388 * @mr: The memory region to retrieve information about.
2389 * @mr_attr: The attributes of the specified memory region.
2390 */
2391int ib_query_mr(struct ib_mr *mr, struct ib_mr_attr *mr_attr);
2392
2393/**
2394 * ib_dereg_mr - Deregisters a memory region and removes it from the
2395 * HCA translation table.
2396 * @mr: The memory region to deregister.
2397 *
2398 * This function can fail, if the memory region has memory windows bound to it.
2399 */
2400int ib_dereg_mr(struct ib_mr *mr);
2401
2402
2403/**
2404 * ib_create_mr - Allocates a memory region that may be used for
2405 * signature handover operations.
2406 * @pd: The protection domain associated with the region.
2407 * @mr_init_attr: memory region init attributes.
2408 */
2409struct ib_mr *ib_create_mr(struct ib_pd *pd,
2410 struct ib_mr_init_attr *mr_init_attr);
2411
2412/**
2413 * ib_destroy_mr - Destroys a memory region that was created using
2414 * ib_create_mr and removes it from HW translation tables.
2415 * @mr: The memory region to destroy.
2416 *
2417 * This function can fail, if the memory region has memory windows bound to it.
2418 */
2419int ib_destroy_mr(struct ib_mr *mr);
2420
2421/**
2422 * ib_alloc_fast_reg_mr - Allocates memory region usable with the
2423 * IB_WR_FAST_REG_MR send work request.
2424 * @pd: The protection domain associated with the region.
2425 * @max_page_list_len: requested max physical buffer list length to be
2426 * used with fast register work requests for this MR.
2427 */
2428struct ib_mr *ib_alloc_fast_reg_mr(struct ib_pd *pd, int max_page_list_len);
2429
2430/**
2431 * ib_alloc_fast_reg_page_list - Allocates a page list array
2432 * @device - ib device pointer.
2433 * @page_list_len - size of the page list array to be allocated.
2434 *
2435 * This allocates and returns a struct ib_fast_reg_page_list * and a
2436 * page_list array that is at least page_list_len in size. The actual
2437 * size is returned in max_page_list_len. The caller is responsible
2438 * for initializing the contents of the page_list array before posting
2439 * a send work request with the IB_WC_FAST_REG_MR opcode.
2440 *
2441 * The page_list array entries must be translated using one of the
2442 * ib_dma_*() functions just like the addresses passed to
2443 * ib_map_phys_fmr(). Once the ib_post_send() is issued, the struct
2444 * ib_fast_reg_page_list must not be modified by the caller until the
2445 * IB_WC_FAST_REG_MR work request completes.
2446 */
2447struct ib_fast_reg_page_list *ib_alloc_fast_reg_page_list(
2448 struct ib_device *device, int page_list_len);
2449
2450/**
2451 * ib_free_fast_reg_page_list - Deallocates a previously allocated
2452 * page list array.
2453 * @page_list - struct ib_fast_reg_page_list pointer to be deallocated.
2454 */
2455void ib_free_fast_reg_page_list(struct ib_fast_reg_page_list *page_list);
2456
2457/**
2458 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR
2459 * R_Key and L_Key.
2460 * @mr - struct ib_mr pointer to be updated.
2461 * @newkey - new key to be used.
2462 */
2463static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey)
2464{
2465 mr->lkey = (mr->lkey & 0xffffff00) | newkey;
2466 mr->rkey = (mr->rkey & 0xffffff00) | newkey;
2467}
2468
2469/**
2470 * ib_inc_rkey - increments the key portion of the given rkey. Can be used
2471 * for calculating a new rkey for type 2 memory windows.
2472 * @rkey - the rkey to increment.
2473 */
2474static inline u32 ib_inc_rkey(u32 rkey)
2475{
2476 const u32 mask = 0x000000ff;
2477 return ((rkey + 1) & mask) | (rkey & ~mask);
2478}
2479
2480/**
2481 * ib_alloc_mw - Allocates a memory window.
2482 * @pd: The protection domain associated with the memory window.
2483 * @type: The type of the memory window (1 or 2).
2484 */
2485struct ib_mw *ib_alloc_mw(struct ib_pd *pd, enum ib_mw_type type);
2486
2487/**
2488 * ib_bind_mw - Posts a work request to the send queue of the specified
2489 * QP, which binds the memory window to the given address range and
2490 * remote access attributes.
2491 * @qp: QP to post the bind work request on.
2492 * @mw: The memory window to bind.
2493 * @mw_bind: Specifies information about the memory window, including
2494 * its address range, remote access rights, and associated memory region.
2495 *
2496 * If there is no immediate error, the function will update the rkey member
2497 * of the mw parameter to its new value. The bind operation can still fail
2498 * asynchronously.
2499 */
2500static inline int ib_bind_mw(struct ib_qp *qp,
2501 struct ib_mw *mw,
2502 struct ib_mw_bind *mw_bind)
2503{
2504 /* XXX reference counting in corresponding MR? */
2505 return mw->device->bind_mw ?
2506 mw->device->bind_mw(qp, mw, mw_bind) :
2507 -ENOSYS;
2508}
2509
2510/**
2511 * ib_dealloc_mw - Deallocates a memory window.
2512 * @mw: The memory window to deallocate.
2513 */
2514int ib_dealloc_mw(struct ib_mw *mw);
2515
2516/**
2517 * ib_alloc_fmr - Allocates a unmapped fast memory region.
2518 * @pd: The protection domain associated with the unmapped region.
2519 * @mr_access_flags: Specifies the memory access rights.
2520 * @fmr_attr: Attributes of the unmapped region.
2521 *
2522 * A fast memory region must be mapped before it can be used as part of
2523 * a work request.
2524 */
2525struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
2526 int mr_access_flags,
2527 struct ib_fmr_attr *fmr_attr);
2528
2529/**
2530 * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region.
2531 * @fmr: The fast memory region to associate with the pages.
2532 * @page_list: An array of physical pages to map to the fast memory region.
2533 * @list_len: The number of pages in page_list.
2534 * @iova: The I/O virtual address to use with the mapped region.
2535 */
2536static inline int ib_map_phys_fmr(struct ib_fmr *fmr,
2537 u64 *page_list, int list_len,
2538 u64 iova)
2539{
2540 return fmr->device->map_phys_fmr(fmr, page_list, list_len, iova);
2541}
2542
2543/**
2544 * ib_unmap_fmr - Removes the mapping from a list of fast memory regions.
2545 * @fmr_list: A linked list of fast memory regions to unmap.
2546 */
2547int ib_unmap_fmr(struct list_head *fmr_list);
2548
2549/**
2550 * ib_dealloc_fmr - Deallocates a fast memory region.
2551 * @fmr: The fast memory region to deallocate.
2552 */
2553int ib_dealloc_fmr(struct ib_fmr *fmr);
2554
2555/**
2556 * ib_attach_mcast - Attaches the specified QP to a multicast group.
2557 * @qp: QP to attach to the multicast group. The QP must be type
2558 * IB_QPT_UD.
2559 * @gid: Multicast group GID.
2560 * @lid: Multicast group LID in host byte order.
2561 *
2562 * In order to send and receive multicast packets, subnet
2563 * administration must have created the multicast group and configured
2564 * the fabric appropriately. The port associated with the specified
2565 * QP must also be a member of the multicast group.
2566 */
2567int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2568
2569/**
2570 * ib_detach_mcast - Detaches the specified QP from a multicast group.
2571 * @qp: QP to detach from the multicast group.
2572 * @gid: Multicast group GID.
2573 * @lid: Multicast group LID in host byte order.
2574 */
2575int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2576
2577/**
2578 * ib_alloc_xrcd - Allocates an XRC domain.
2579 * @device: The device on which to allocate the XRC domain.
2580 */
2581struct ib_xrcd *ib_alloc_xrcd(struct ib_device *device);
2582
2583/**
2584 * ib_dealloc_xrcd - Deallocates an XRC domain.
2585 * @xrcd: The XRC domain to deallocate.
2586 */
2587int ib_dealloc_xrcd(struct ib_xrcd *xrcd);
2588
2589struct ib_flow *ib_create_flow(struct ib_qp *qp,
2590 struct ib_flow_attr *flow_attr, int domain);
2591int ib_destroy_flow(struct ib_flow *flow_id);
2592
2593static inline int ib_check_mr_access(int flags)
2594{
2595 /*
2596 * Local write permission is required if remote write or
2597 * remote atomic permission is also requested.
2598 */
2599 if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) &&
2600 !(flags & IB_ACCESS_LOCAL_WRITE))
2601 return -EINVAL;
2602
2603 return 0;
2604}
2605
2606/**
2607 * ib_check_mr_status: lightweight check of MR status.
2608 * This routine may provide status checks on a selected
2609 * ib_mr. first use is for signature status check.
2610 *
2611 * @mr: A memory region.
2612 * @check_mask: Bitmask of which checks to perform from
2613 * ib_mr_status_check enumeration.
2614 * @mr_status: The container of relevant status checks.
2615 * failed checks will be indicated in the status bitmask
2616 * and the relevant info shall be in the error item.
2617 */
2618int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
2619 struct ib_mr_status *mr_status);
2620
2621#endif /* IB_VERBS_H */