Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 * Copyright (c) 2004 Mellanox Technologies Ltd.  All rights reserved.
   3 * Copyright (c) 2004 Infinicon Corporation.  All rights reserved.
   4 * Copyright (c) 2004 Intel Corporation.  All rights reserved.
   5 * Copyright (c) 2004 Topspin Corporation.  All rights reserved.
   6 * Copyright (c) 2004 Voltaire Corporation.  All rights reserved.
   7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
   8 * Copyright (c) 2005, 2006, 2007 Cisco Systems.  All rights reserved.
   9 *
  10 * This software is available to you under a choice of one of two
  11 * licenses.  You may choose to be licensed under the terms of the GNU
  12 * General Public License (GPL) Version 2, available from the file
  13 * COPYING in the main directory of this source tree, or the
  14 * OpenIB.org BSD license below:
  15 *
  16 *     Redistribution and use in source and binary forms, with or
  17 *     without modification, are permitted provided that the following
  18 *     conditions are met:
  19 *
  20 *      - Redistributions of source code must retain the above
  21 *        copyright notice, this list of conditions and the following
  22 *        disclaimer.
  23 *
  24 *      - Redistributions in binary form must reproduce the above
  25 *        copyright notice, this list of conditions and the following
  26 *        disclaimer in the documentation and/or other materials
  27 *        provided with the distribution.
  28 *
  29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  36 * SOFTWARE.
  37 */
  38
  39#if !defined(IB_VERBS_H)
  40#define IB_VERBS_H
  41
  42#include <linux/types.h>
  43#include <linux/device.h>
  44#include <linux/mm.h>
  45#include <linux/dma-mapping.h>
  46#include <linux/kref.h>
  47#include <linux/list.h>
  48#include <linux/rwsem.h>
  49#include <linux/scatterlist.h>
  50#include <linux/workqueue.h>
 
 
 
 
 
 
 
  51
 
  52#include <linux/atomic.h>
 
  53#include <asm/uaccess.h>
  54
  55extern struct workqueue_struct *ib_wq;
 
  56
  57union ib_gid {
  58	u8	raw[16];
  59	struct {
  60		__be64	subnet_prefix;
  61		__be64	interface_id;
  62	} global;
  63};
  64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  65enum rdma_node_type {
  66	/* IB values map to NodeInfo:NodeType. */
  67	RDMA_NODE_IB_CA 	= 1,
  68	RDMA_NODE_IB_SWITCH,
  69	RDMA_NODE_IB_ROUTER,
  70	RDMA_NODE_RNIC
 
 
 
 
 
 
 
  71};
  72
  73enum rdma_transport_type {
  74	RDMA_TRANSPORT_IB,
  75	RDMA_TRANSPORT_IWARP
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  76};
  77
  78enum rdma_transport_type
  79rdma_node_get_transport(enum rdma_node_type node_type) __attribute_const__;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  80
  81enum rdma_link_layer {
  82	IB_LINK_LAYER_UNSPECIFIED,
  83	IB_LINK_LAYER_INFINIBAND,
  84	IB_LINK_LAYER_ETHERNET,
  85};
  86
  87enum ib_device_cap_flags {
  88	IB_DEVICE_RESIZE_MAX_WR		= 1,
  89	IB_DEVICE_BAD_PKEY_CNTR		= (1<<1),
  90	IB_DEVICE_BAD_QKEY_CNTR		= (1<<2),
  91	IB_DEVICE_RAW_MULTI		= (1<<3),
  92	IB_DEVICE_AUTO_PATH_MIG		= (1<<4),
  93	IB_DEVICE_CHANGE_PHY_PORT	= (1<<5),
  94	IB_DEVICE_UD_AV_PORT_ENFORCE	= (1<<6),
  95	IB_DEVICE_CURR_QP_STATE_MOD	= (1<<7),
  96	IB_DEVICE_SHUTDOWN_PORT		= (1<<8),
  97	IB_DEVICE_INIT_TYPE		= (1<<9),
  98	IB_DEVICE_PORT_ACTIVE_EVENT	= (1<<10),
  99	IB_DEVICE_SYS_IMAGE_GUID	= (1<<11),
 100	IB_DEVICE_RC_RNR_NAK_GEN	= (1<<12),
 101	IB_DEVICE_SRQ_RESIZE		= (1<<13),
 102	IB_DEVICE_N_NOTIFY_CQ		= (1<<14),
 103	IB_DEVICE_LOCAL_DMA_LKEY	= (1<<15),
 104	IB_DEVICE_RESERVED		= (1<<16), /* old SEND_W_INV */
 105	IB_DEVICE_MEM_WINDOW		= (1<<17),
 
 
 
 
 
 
 
 
 106	/*
 107	 * Devices should set IB_DEVICE_UD_IP_SUM if they support
 108	 * insertion of UDP and TCP checksum on outgoing UD IPoIB
 109	 * messages and can verify the validity of checksum for
 110	 * incoming messages.  Setting this flag implies that the
 111	 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
 112	 */
 113	IB_DEVICE_UD_IP_CSUM		= (1<<18),
 114	IB_DEVICE_UD_TSO		= (1<<19),
 115	IB_DEVICE_MEM_MGT_EXTENSIONS	= (1<<21),
 116	IB_DEVICE_BLOCK_MULTICAST_LOOPBACK = (1<<22),
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 117};
 118
 119enum ib_atomic_cap {
 120	IB_ATOMIC_NONE,
 121	IB_ATOMIC_HCA,
 122	IB_ATOMIC_GLOB
 123};
 124
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 125struct ib_device_attr {
 126	u64			fw_ver;
 127	__be64			sys_image_guid;
 128	u64			max_mr_size;
 129	u64			page_size_cap;
 130	u32			vendor_id;
 131	u32			vendor_part_id;
 132	u32			hw_ver;
 133	int			max_qp;
 134	int			max_qp_wr;
 135	int			device_cap_flags;
 136	int			max_sge;
 137	int			max_sge_rd;
 138	int			max_cq;
 139	int			max_cqe;
 140	int			max_mr;
 141	int			max_pd;
 142	int			max_qp_rd_atom;
 143	int			max_ee_rd_atom;
 144	int			max_res_rd_atom;
 145	int			max_qp_init_rd_atom;
 146	int			max_ee_init_rd_atom;
 147	enum ib_atomic_cap	atomic_cap;
 148	enum ib_atomic_cap	masked_atomic_cap;
 149	int			max_ee;
 150	int			max_rdd;
 151	int			max_mw;
 152	int			max_raw_ipv6_qp;
 153	int			max_raw_ethy_qp;
 154	int			max_mcast_grp;
 155	int			max_mcast_qp_attach;
 156	int			max_total_mcast_qp_attach;
 157	int			max_ah;
 158	int			max_fmr;
 159	int			max_map_per_fmr;
 160	int			max_srq;
 161	int			max_srq_wr;
 162	int			max_srq_sge;
 163	unsigned int		max_fast_reg_page_list_len;
 164	u16			max_pkeys;
 165	u8			local_ca_ack_delay;
 
 
 
 
 
 166};
 167
 168enum ib_mtu {
 169	IB_MTU_256  = 1,
 170	IB_MTU_512  = 2,
 171	IB_MTU_1024 = 3,
 172	IB_MTU_2048 = 4,
 173	IB_MTU_4096 = 5
 174};
 175
 176static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
 177{
 178	switch (mtu) {
 179	case IB_MTU_256:  return  256;
 180	case IB_MTU_512:  return  512;
 181	case IB_MTU_1024: return 1024;
 182	case IB_MTU_2048: return 2048;
 183	case IB_MTU_4096: return 4096;
 184	default: 	  return -1;
 185	}
 186}
 187
 188enum ib_port_state {
 189	IB_PORT_NOP		= 0,
 190	IB_PORT_DOWN		= 1,
 191	IB_PORT_INIT		= 2,
 192	IB_PORT_ARMED		= 3,
 193	IB_PORT_ACTIVE		= 4,
 194	IB_PORT_ACTIVE_DEFER	= 5
 195};
 196
 197enum ib_port_cap_flags {
 198	IB_PORT_SM				= 1 <<  1,
 199	IB_PORT_NOTICE_SUP			= 1 <<  2,
 200	IB_PORT_TRAP_SUP			= 1 <<  3,
 201	IB_PORT_OPT_IPD_SUP                     = 1 <<  4,
 202	IB_PORT_AUTO_MIGR_SUP			= 1 <<  5,
 203	IB_PORT_SL_MAP_SUP			= 1 <<  6,
 204	IB_PORT_MKEY_NVRAM			= 1 <<  7,
 205	IB_PORT_PKEY_NVRAM			= 1 <<  8,
 206	IB_PORT_LED_INFO_SUP			= 1 <<  9,
 207	IB_PORT_SM_DISABLED			= 1 << 10,
 208	IB_PORT_SYS_IMAGE_GUID_SUP		= 1 << 11,
 209	IB_PORT_PKEY_SW_EXT_PORT_TRAP_SUP	= 1 << 12,
 
 210	IB_PORT_CM_SUP				= 1 << 16,
 211	IB_PORT_SNMP_TUNNEL_SUP			= 1 << 17,
 212	IB_PORT_REINIT_SUP			= 1 << 18,
 213	IB_PORT_DEVICE_MGMT_SUP			= 1 << 19,
 214	IB_PORT_VENDOR_CLASS_SUP		= 1 << 20,
 215	IB_PORT_DR_NOTICE_SUP			= 1 << 21,
 216	IB_PORT_CAP_MASK_NOTICE_SUP		= 1 << 22,
 217	IB_PORT_BOOT_MGMT_SUP			= 1 << 23,
 218	IB_PORT_LINK_LATENCY_SUP		= 1 << 24,
 219	IB_PORT_CLIENT_REG_SUP			= 1 << 25
 
 220};
 221
 222enum ib_port_width {
 223	IB_WIDTH_1X	= 1,
 224	IB_WIDTH_4X	= 2,
 225	IB_WIDTH_8X	= 4,
 226	IB_WIDTH_12X	= 8
 227};
 228
 229static inline int ib_width_enum_to_int(enum ib_port_width width)
 230{
 231	switch (width) {
 232	case IB_WIDTH_1X:  return  1;
 233	case IB_WIDTH_4X:  return  4;
 234	case IB_WIDTH_8X:  return  8;
 235	case IB_WIDTH_12X: return 12;
 236	default: 	  return -1;
 237	}
 238}
 239
 
 
 
 
 
 
 
 
 
 240struct ib_protocol_stats {
 241	/* TBD... */
 242};
 243
 244struct iw_protocol_stats {
 245	u64	ipInReceives;
 246	u64	ipInHdrErrors;
 247	u64	ipInTooBigErrors;
 248	u64	ipInNoRoutes;
 249	u64	ipInAddrErrors;
 250	u64	ipInUnknownProtos;
 251	u64	ipInTruncatedPkts;
 252	u64	ipInDiscards;
 253	u64	ipInDelivers;
 254	u64	ipOutForwDatagrams;
 255	u64	ipOutRequests;
 256	u64	ipOutDiscards;
 257	u64	ipOutNoRoutes;
 258	u64	ipReasmTimeout;
 259	u64	ipReasmReqds;
 260	u64	ipReasmOKs;
 261	u64	ipReasmFails;
 262	u64	ipFragOKs;
 263	u64	ipFragFails;
 264	u64	ipFragCreates;
 265	u64	ipInMcastPkts;
 266	u64	ipOutMcastPkts;
 267	u64	ipInBcastPkts;
 268	u64	ipOutBcastPkts;
 269
 270	u64	tcpRtoAlgorithm;
 271	u64	tcpRtoMin;
 272	u64	tcpRtoMax;
 273	u64	tcpMaxConn;
 274	u64	tcpActiveOpens;
 275	u64	tcpPassiveOpens;
 276	u64	tcpAttemptFails;
 277	u64	tcpEstabResets;
 278	u64	tcpCurrEstab;
 279	u64	tcpInSegs;
 280	u64	tcpOutSegs;
 281	u64	tcpRetransSegs;
 282	u64	tcpInErrs;
 283	u64	tcpOutRsts;
 284};
 285
 286union rdma_protocol_stats {
 287	struct ib_protocol_stats	ib;
 288	struct iw_protocol_stats	iw;
 289};
 290
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 291struct ib_port_attr {
 
 292	enum ib_port_state	state;
 293	enum ib_mtu		max_mtu;
 294	enum ib_mtu		active_mtu;
 295	int			gid_tbl_len;
 296	u32			port_cap_flags;
 297	u32			max_msg_sz;
 298	u32			bad_pkey_cntr;
 299	u32			qkey_viol_cntr;
 300	u16			pkey_tbl_len;
 301	u16			lid;
 302	u16			sm_lid;
 303	u8			lmc;
 304	u8			max_vl_num;
 305	u8			sm_sl;
 306	u8			subnet_timeout;
 307	u8			init_type_reply;
 308	u8			active_width;
 309	u8			active_speed;
 310	u8                      phys_state;
 
 311};
 312
 313enum ib_device_modify_flags {
 314	IB_DEVICE_MODIFY_SYS_IMAGE_GUID	= 1 << 0,
 315	IB_DEVICE_MODIFY_NODE_DESC	= 1 << 1
 316};
 317
 318struct ib_device_modify {
 319	u64	sys_image_guid;
 320	char	node_desc[64];
 321};
 322
 323enum ib_port_modify_flags {
 324	IB_PORT_SHUTDOWN		= 1,
 325	IB_PORT_INIT_TYPE		= (1<<2),
 326	IB_PORT_RESET_QKEY_CNTR		= (1<<3)
 327};
 328
 329struct ib_port_modify {
 330	u32	set_port_cap_mask;
 331	u32	clr_port_cap_mask;
 332	u8	init_type;
 333};
 334
 335enum ib_event_type {
 336	IB_EVENT_CQ_ERR,
 337	IB_EVENT_QP_FATAL,
 338	IB_EVENT_QP_REQ_ERR,
 339	IB_EVENT_QP_ACCESS_ERR,
 340	IB_EVENT_COMM_EST,
 341	IB_EVENT_SQ_DRAINED,
 342	IB_EVENT_PATH_MIG,
 343	IB_EVENT_PATH_MIG_ERR,
 344	IB_EVENT_DEVICE_FATAL,
 345	IB_EVENT_PORT_ACTIVE,
 346	IB_EVENT_PORT_ERR,
 347	IB_EVENT_LID_CHANGE,
 348	IB_EVENT_PKEY_CHANGE,
 349	IB_EVENT_SM_CHANGE,
 350	IB_EVENT_SRQ_ERR,
 351	IB_EVENT_SRQ_LIMIT_REACHED,
 352	IB_EVENT_QP_LAST_WQE_REACHED,
 353	IB_EVENT_CLIENT_REREGISTER,
 354	IB_EVENT_GID_CHANGE,
 355};
 356
 
 
 357struct ib_event {
 358	struct ib_device	*device;
 359	union {
 360		struct ib_cq	*cq;
 361		struct ib_qp	*qp;
 362		struct ib_srq	*srq;
 363		u8		port_num;
 364	} element;
 365	enum ib_event_type	event;
 366};
 367
 368struct ib_event_handler {
 369	struct ib_device *device;
 370	void            (*handler)(struct ib_event_handler *, struct ib_event *);
 371	struct list_head  list;
 372};
 373
 374#define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler)		\
 375	do {							\
 376		(_ptr)->device  = _device;			\
 377		(_ptr)->handler = _handler;			\
 378		INIT_LIST_HEAD(&(_ptr)->list);			\
 379	} while (0)
 380
 381struct ib_global_route {
 382	union ib_gid	dgid;
 383	u32		flow_label;
 384	u8		sgid_index;
 385	u8		hop_limit;
 386	u8		traffic_class;
 387};
 388
 389struct ib_grh {
 390	__be32		version_tclass_flow;
 391	__be16		paylen;
 392	u8		next_hdr;
 393	u8		hop_limit;
 394	union ib_gid	sgid;
 395	union ib_gid	dgid;
 396};
 397
 
 
 
 
 
 
 
 
 
 
 
 398enum {
 399	IB_MULTICAST_QPN = 0xffffff
 400};
 401
 402#define IB_LID_PERMISSIVE	cpu_to_be16(0xFFFF)
 
 403
 404enum ib_ah_flags {
 405	IB_AH_GRH	= 1
 406};
 407
 408enum ib_rate {
 409	IB_RATE_PORT_CURRENT = 0,
 410	IB_RATE_2_5_GBPS = 2,
 411	IB_RATE_5_GBPS   = 5,
 412	IB_RATE_10_GBPS  = 3,
 413	IB_RATE_20_GBPS  = 6,
 414	IB_RATE_30_GBPS  = 4,
 415	IB_RATE_40_GBPS  = 7,
 416	IB_RATE_60_GBPS  = 8,
 417	IB_RATE_80_GBPS  = 9,
 418	IB_RATE_120_GBPS = 10
 
 
 
 
 
 
 
 
 419};
 420
 421/**
 422 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the
 423 * base rate of 2.5 Gbit/sec.  For example, IB_RATE_5_GBPS will be
 424 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
 425 * @rate: rate to convert.
 426 */
 427int ib_rate_to_mult(enum ib_rate rate) __attribute_const__;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 428
 429/**
 430 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
 431 * enum.
 432 * @mult: multiple to convert.
 433 */
 434enum ib_rate mult_to_ib_rate(int mult) __attribute_const__;
 435
 436struct ib_ah_attr {
 437	struct ib_global_route	grh;
 438	u16			dlid;
 439	u8			sl;
 440	u8			src_path_bits;
 441	u8			static_rate;
 442	u8			ah_flags;
 443	u8			port_num;
 
 444};
 445
 446enum ib_wc_status {
 447	IB_WC_SUCCESS,
 448	IB_WC_LOC_LEN_ERR,
 449	IB_WC_LOC_QP_OP_ERR,
 450	IB_WC_LOC_EEC_OP_ERR,
 451	IB_WC_LOC_PROT_ERR,
 452	IB_WC_WR_FLUSH_ERR,
 453	IB_WC_MW_BIND_ERR,
 454	IB_WC_BAD_RESP_ERR,
 455	IB_WC_LOC_ACCESS_ERR,
 456	IB_WC_REM_INV_REQ_ERR,
 457	IB_WC_REM_ACCESS_ERR,
 458	IB_WC_REM_OP_ERR,
 459	IB_WC_RETRY_EXC_ERR,
 460	IB_WC_RNR_RETRY_EXC_ERR,
 461	IB_WC_LOC_RDD_VIOL_ERR,
 462	IB_WC_REM_INV_RD_REQ_ERR,
 463	IB_WC_REM_ABORT_ERR,
 464	IB_WC_INV_EECN_ERR,
 465	IB_WC_INV_EEC_STATE_ERR,
 466	IB_WC_FATAL_ERR,
 467	IB_WC_RESP_TIMEOUT_ERR,
 468	IB_WC_GENERAL_ERR
 469};
 470
 
 
 471enum ib_wc_opcode {
 472	IB_WC_SEND,
 473	IB_WC_RDMA_WRITE,
 474	IB_WC_RDMA_READ,
 475	IB_WC_COMP_SWAP,
 476	IB_WC_FETCH_ADD,
 477	IB_WC_BIND_MW,
 478	IB_WC_LSO,
 479	IB_WC_LOCAL_INV,
 480	IB_WC_FAST_REG_MR,
 481	IB_WC_MASKED_COMP_SWAP,
 482	IB_WC_MASKED_FETCH_ADD,
 483/*
 484 * Set value of IB_WC_RECV so consumers can test if a completion is a
 485 * receive by testing (opcode & IB_WC_RECV).
 486 */
 487	IB_WC_RECV			= 1 << 7,
 488	IB_WC_RECV_RDMA_WITH_IMM
 489};
 490
 491enum ib_wc_flags {
 492	IB_WC_GRH		= 1,
 493	IB_WC_WITH_IMM		= (1<<1),
 494	IB_WC_WITH_INVALIDATE	= (1<<2),
 
 
 
 
 495};
 496
 497struct ib_wc {
 498	u64			wr_id;
 
 
 
 499	enum ib_wc_status	status;
 500	enum ib_wc_opcode	opcode;
 501	u32			vendor_err;
 502	u32			byte_len;
 503	struct ib_qp	       *qp;
 504	union {
 505		__be32		imm_data;
 506		u32		invalidate_rkey;
 507	} ex;
 508	u32			src_qp;
 509	int			wc_flags;
 510	u16			pkey_index;
 511	u16			slid;
 512	u8			sl;
 513	u8			dlid_path_bits;
 514	u8			port_num;	/* valid only for DR SMPs on switches */
 515	int			csum_ok;
 
 
 516};
 517
 518enum ib_cq_notify_flags {
 519	IB_CQ_SOLICITED			= 1 << 0,
 520	IB_CQ_NEXT_COMP			= 1 << 1,
 521	IB_CQ_SOLICITED_MASK		= IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
 522	IB_CQ_REPORT_MISSED_EVENTS	= 1 << 2,
 523};
 524
 
 
 
 
 
 525enum ib_srq_attr_mask {
 526	IB_SRQ_MAX_WR	= 1 << 0,
 527	IB_SRQ_LIMIT	= 1 << 1,
 528};
 529
 530struct ib_srq_attr {
 531	u32	max_wr;
 532	u32	max_sge;
 533	u32	srq_limit;
 534};
 535
 536struct ib_srq_init_attr {
 537	void		      (*event_handler)(struct ib_event *, void *);
 538	void		       *srq_context;
 539	struct ib_srq_attr	attr;
 
 
 
 
 
 
 
 
 540};
 541
 542struct ib_qp_cap {
 543	u32	max_send_wr;
 544	u32	max_recv_wr;
 545	u32	max_send_sge;
 546	u32	max_recv_sge;
 547	u32	max_inline_data;
 548};
 549
 550enum ib_sig_type {
 551	IB_SIGNAL_ALL_WR,
 552	IB_SIGNAL_REQ_WR
 553};
 554
 555enum ib_qp_type {
 556	/*
 557	 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
 558	 * here (and in that order) since the MAD layer uses them as
 559	 * indices into a 2-entry table.
 560	 */
 561	IB_QPT_SMI,
 562	IB_QPT_GSI,
 563
 564	IB_QPT_RC,
 565	IB_QPT_UC,
 566	IB_QPT_UD,
 567	IB_QPT_RAW_IPV6,
 568	IB_QPT_RAW_ETHERTYPE
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 569};
 570
 571enum ib_qp_create_flags {
 572	IB_QP_CREATE_IPOIB_UD_LSO		= 1 << 0,
 573	IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK	= 1 << 1,
 
 
 
 
 
 
 
 
 
 574};
 575
 
 
 
 
 
 576struct ib_qp_init_attr {
 577	void                  (*event_handler)(struct ib_event *, void *);
 578	void		       *qp_context;
 579	struct ib_cq	       *send_cq;
 580	struct ib_cq	       *recv_cq;
 581	struct ib_srq	       *srq;
 
 582	struct ib_qp_cap	cap;
 583	enum ib_sig_type	sq_sig_type;
 584	enum ib_qp_type		qp_type;
 585	enum ib_qp_create_flags	create_flags;
 586	u8			port_num; /* special QP types only */
 587};
 588
 
 
 
 
 
 
 
 589enum ib_rnr_timeout {
 590	IB_RNR_TIMER_655_36 =  0,
 591	IB_RNR_TIMER_000_01 =  1,
 592	IB_RNR_TIMER_000_02 =  2,
 593	IB_RNR_TIMER_000_03 =  3,
 594	IB_RNR_TIMER_000_04 =  4,
 595	IB_RNR_TIMER_000_06 =  5,
 596	IB_RNR_TIMER_000_08 =  6,
 597	IB_RNR_TIMER_000_12 =  7,
 598	IB_RNR_TIMER_000_16 =  8,
 599	IB_RNR_TIMER_000_24 =  9,
 600	IB_RNR_TIMER_000_32 = 10,
 601	IB_RNR_TIMER_000_48 = 11,
 602	IB_RNR_TIMER_000_64 = 12,
 603	IB_RNR_TIMER_000_96 = 13,
 604	IB_RNR_TIMER_001_28 = 14,
 605	IB_RNR_TIMER_001_92 = 15,
 606	IB_RNR_TIMER_002_56 = 16,
 607	IB_RNR_TIMER_003_84 = 17,
 608	IB_RNR_TIMER_005_12 = 18,
 609	IB_RNR_TIMER_007_68 = 19,
 610	IB_RNR_TIMER_010_24 = 20,
 611	IB_RNR_TIMER_015_36 = 21,
 612	IB_RNR_TIMER_020_48 = 22,
 613	IB_RNR_TIMER_030_72 = 23,
 614	IB_RNR_TIMER_040_96 = 24,
 615	IB_RNR_TIMER_061_44 = 25,
 616	IB_RNR_TIMER_081_92 = 26,
 617	IB_RNR_TIMER_122_88 = 27,
 618	IB_RNR_TIMER_163_84 = 28,
 619	IB_RNR_TIMER_245_76 = 29,
 620	IB_RNR_TIMER_327_68 = 30,
 621	IB_RNR_TIMER_491_52 = 31
 622};
 623
 624enum ib_qp_attr_mask {
 625	IB_QP_STATE			= 1,
 626	IB_QP_CUR_STATE			= (1<<1),
 627	IB_QP_EN_SQD_ASYNC_NOTIFY	= (1<<2),
 628	IB_QP_ACCESS_FLAGS		= (1<<3),
 629	IB_QP_PKEY_INDEX		= (1<<4),
 630	IB_QP_PORT			= (1<<5),
 631	IB_QP_QKEY			= (1<<6),
 632	IB_QP_AV			= (1<<7),
 633	IB_QP_PATH_MTU			= (1<<8),
 634	IB_QP_TIMEOUT			= (1<<9),
 635	IB_QP_RETRY_CNT			= (1<<10),
 636	IB_QP_RNR_RETRY			= (1<<11),
 637	IB_QP_RQ_PSN			= (1<<12),
 638	IB_QP_MAX_QP_RD_ATOMIC		= (1<<13),
 639	IB_QP_ALT_PATH			= (1<<14),
 640	IB_QP_MIN_RNR_TIMER		= (1<<15),
 641	IB_QP_SQ_PSN			= (1<<16),
 642	IB_QP_MAX_DEST_RD_ATOMIC	= (1<<17),
 643	IB_QP_PATH_MIG_STATE		= (1<<18),
 644	IB_QP_CAP			= (1<<19),
 645	IB_QP_DEST_QPN			= (1<<20)
 
 
 
 
 646};
 647
 648enum ib_qp_state {
 649	IB_QPS_RESET,
 650	IB_QPS_INIT,
 651	IB_QPS_RTR,
 652	IB_QPS_RTS,
 653	IB_QPS_SQD,
 654	IB_QPS_SQE,
 655	IB_QPS_ERR
 656};
 657
 658enum ib_mig_state {
 659	IB_MIG_MIGRATED,
 660	IB_MIG_REARM,
 661	IB_MIG_ARMED
 662};
 663
 
 
 
 
 
 664struct ib_qp_attr {
 665	enum ib_qp_state	qp_state;
 666	enum ib_qp_state	cur_qp_state;
 667	enum ib_mtu		path_mtu;
 668	enum ib_mig_state	path_mig_state;
 669	u32			qkey;
 670	u32			rq_psn;
 671	u32			sq_psn;
 672	u32			dest_qp_num;
 673	int			qp_access_flags;
 674	struct ib_qp_cap	cap;
 675	struct ib_ah_attr	ah_attr;
 676	struct ib_ah_attr	alt_ah_attr;
 677	u16			pkey_index;
 678	u16			alt_pkey_index;
 679	u8			en_sqd_async_notify;
 680	u8			sq_draining;
 681	u8			max_rd_atomic;
 682	u8			max_dest_rd_atomic;
 683	u8			min_rnr_timer;
 684	u8			port_num;
 685	u8			timeout;
 686	u8			retry_cnt;
 687	u8			rnr_retry;
 688	u8			alt_port_num;
 689	u8			alt_timeout;
 690};
 691
 692enum ib_wr_opcode {
 693	IB_WR_RDMA_WRITE,
 694	IB_WR_RDMA_WRITE_WITH_IMM,
 695	IB_WR_SEND,
 696	IB_WR_SEND_WITH_IMM,
 697	IB_WR_RDMA_READ,
 698	IB_WR_ATOMIC_CMP_AND_SWP,
 699	IB_WR_ATOMIC_FETCH_AND_ADD,
 700	IB_WR_LSO,
 701	IB_WR_SEND_WITH_INV,
 702	IB_WR_RDMA_READ_WITH_INV,
 703	IB_WR_LOCAL_INV,
 704	IB_WR_FAST_REG_MR,
 705	IB_WR_MASKED_ATOMIC_CMP_AND_SWP,
 706	IB_WR_MASKED_ATOMIC_FETCH_AND_ADD,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 707};
 708
 709enum ib_send_flags {
 710	IB_SEND_FENCE		= 1,
 711	IB_SEND_SIGNALED	= (1<<1),
 712	IB_SEND_SOLICITED	= (1<<2),
 713	IB_SEND_INLINE		= (1<<3),
 714	IB_SEND_IP_CSUM		= (1<<4)
 
 
 
 
 715};
 716
 717struct ib_sge {
 718	u64	addr;
 719	u32	length;
 720	u32	lkey;
 721};
 722
 723struct ib_fast_reg_page_list {
 724	struct ib_device       *device;
 725	u64		       *page_list;
 726	unsigned int		max_page_list_len;
 727};
 728
 729struct ib_send_wr {
 730	struct ib_send_wr      *next;
 731	u64			wr_id;
 
 
 
 732	struct ib_sge	       *sg_list;
 733	int			num_sge;
 734	enum ib_wr_opcode	opcode;
 735	int			send_flags;
 736	union {
 737		__be32		imm_data;
 738		u32		invalidate_rkey;
 739	} ex;
 740	union {
 741		struct {
 742			u64	remote_addr;
 743			u32	rkey;
 744		} rdma;
 745		struct {
 746			u64	remote_addr;
 747			u64	compare_add;
 748			u64	swap;
 749			u64	compare_add_mask;
 750			u64	swap_mask;
 751			u32	rkey;
 752		} atomic;
 753		struct {
 754			struct ib_ah *ah;
 755			void   *header;
 756			int     hlen;
 757			int     mss;
 758			u32	remote_qpn;
 759			u32	remote_qkey;
 760			u16	pkey_index; /* valid for GSI only */
 761			u8	port_num;   /* valid for DR SMPs on switch only */
 762		} ud;
 763		struct {
 764			u64				iova_start;
 765			struct ib_fast_reg_page_list   *page_list;
 766			unsigned int			page_shift;
 767			unsigned int			page_list_len;
 768			u32				length;
 769			int				access_flags;
 770			u32				rkey;
 771		} fast_reg;
 772	} wr;
 773};
 774
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 775struct ib_recv_wr {
 776	struct ib_recv_wr      *next;
 777	u64			wr_id;
 
 
 
 778	struct ib_sge	       *sg_list;
 779	int			num_sge;
 780};
 781
 782enum ib_access_flags {
 783	IB_ACCESS_LOCAL_WRITE	= 1,
 784	IB_ACCESS_REMOTE_WRITE	= (1<<1),
 785	IB_ACCESS_REMOTE_READ	= (1<<2),
 786	IB_ACCESS_REMOTE_ATOMIC	= (1<<3),
 787	IB_ACCESS_MW_BIND	= (1<<4)
 788};
 789
 790struct ib_phys_buf {
 791	u64      addr;
 792	u64      size;
 793};
 794
 795struct ib_mr_attr {
 796	struct ib_pd	*pd;
 797	u64		device_virt_addr;
 798	u64		size;
 799	int		mr_access_flags;
 800	u32		lkey;
 801	u32		rkey;
 802};
 803
 
 
 
 
 804enum ib_mr_rereg_flags {
 805	IB_MR_REREG_TRANS	= 1,
 806	IB_MR_REREG_PD		= (1<<1),
 807	IB_MR_REREG_ACCESS	= (1<<2)
 808};
 809
 810struct ib_mw_bind {
 811	struct ib_mr   *mr;
 812	u64		wr_id;
 813	u64		addr;
 814	u32		length;
 815	int		send_flags;
 816	int		mw_access_flags;
 817};
 818
 819struct ib_fmr_attr {
 820	int	max_pages;
 821	int	max_maps;
 822	u8	page_shift;
 823};
 824
 
 
 825struct ib_ucontext {
 826	struct ib_device       *device;
 827	struct list_head	pd_list;
 828	struct list_head	mr_list;
 829	struct list_head	mw_list;
 830	struct list_head	cq_list;
 831	struct list_head	qp_list;
 832	struct list_head	srq_list;
 833	struct list_head	ah_list;
 
 
 834	int			closing;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 835};
 836
 837struct ib_uobject {
 838	u64			user_handle;	/* handle given to us by userspace */
 839	struct ib_ucontext     *context;	/* associated user context */
 840	void		       *object;		/* containing object */
 841	struct list_head	list;		/* link to context's list */
 842	int			id;		/* index into kernel idr */
 843	struct kref		ref;
 844	struct rw_semaphore	mutex;		/* protects .live */
 
 845	int			live;
 846};
 847
 848struct ib_udata {
 849	void __user *inbuf;
 850	void __user *outbuf;
 851	size_t       inlen;
 852	size_t       outlen;
 853};
 854
 855struct ib_pd {
 
 856	struct ib_device       *device;
 857	struct ib_uobject      *uobject;
 858	atomic_t          	usecnt; /* count all resources */
 
 
 
 
 
 
 
 
 
 
 859};
 860
 861struct ib_ah {
 862	struct ib_device	*device;
 863	struct ib_pd		*pd;
 864	struct ib_uobject	*uobject;
 865};
 866
 867typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
 868
 
 
 
 
 
 
 869struct ib_cq {
 870	struct ib_device       *device;
 871	struct ib_uobject      *uobject;
 872	ib_comp_handler   	comp_handler;
 873	void                  (*event_handler)(struct ib_event *, void *);
 874	void                   *cq_context;
 875	int               	cqe;
 876	atomic_t          	usecnt; /* count number of work queues */
 
 
 
 
 
 
 877};
 878
 879struct ib_srq {
 880	struct ib_device       *device;
 881	struct ib_pd	       *pd;
 882	struct ib_uobject      *uobject;
 883	void		      (*event_handler)(struct ib_event *, void *);
 884	void		       *srq_context;
 
 885	atomic_t		usecnt;
 
 
 
 
 
 
 
 
 886};
 887
 888struct ib_qp {
 889	struct ib_device       *device;
 890	struct ib_pd	       *pd;
 891	struct ib_cq	       *send_cq;
 892	struct ib_cq	       *recv_cq;
 893	struct ib_srq	       *srq;
 
 
 
 
 
 
 894	struct ib_uobject      *uobject;
 895	void                  (*event_handler)(struct ib_event *, void *);
 896	void		       *qp_context;
 897	u32			qp_num;
 898	enum ib_qp_type		qp_type;
 899};
 900
 901struct ib_mr {
 902	struct ib_device  *device;
 903	struct ib_pd	  *pd;
 904	struct ib_uobject *uobject;
 905	u32		   lkey;
 906	u32		   rkey;
 907	atomic_t	   usecnt; /* count number of MWs */
 
 
 908};
 909
 910struct ib_mw {
 911	struct ib_device	*device;
 912	struct ib_pd		*pd;
 913	struct ib_uobject	*uobject;
 914	u32			rkey;
 
 915};
 916
 917struct ib_fmr {
 918	struct ib_device	*device;
 919	struct ib_pd		*pd;
 920	struct list_head	list;
 921	u32			lkey;
 922	u32			rkey;
 923};
 924
 925struct ib_mad;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 926struct ib_grh;
 927
 928enum ib_process_mad_flags {
 929	IB_MAD_IGNORE_MKEY	= 1,
 930	IB_MAD_IGNORE_BKEY	= 2,
 931	IB_MAD_IGNORE_ALL	= IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
 932};
 933
 934enum ib_mad_result {
 935	IB_MAD_RESULT_FAILURE  = 0,      /* (!SUCCESS is the important flag) */
 936	IB_MAD_RESULT_SUCCESS  = 1 << 0, /* MAD was successfully processed   */
 937	IB_MAD_RESULT_REPLY    = 1 << 1, /* Reply packet needs to be sent    */
 938	IB_MAD_RESULT_CONSUMED = 1 << 2  /* Packet consumed: stop processing */
 939};
 940
 941#define IB_DEVICE_NAME_MAX 64
 942
 943struct ib_cache {
 944	rwlock_t                lock;
 945	struct ib_event_handler event_handler;
 946	struct ib_pkey_cache  **pkey_cache;
 947	struct ib_gid_cache   **gid_cache;
 948	u8                     *lmc_cache;
 949};
 950
 951struct ib_dma_mapping_ops {
 952	int		(*mapping_error)(struct ib_device *dev,
 953					 u64 dma_addr);
 954	u64		(*map_single)(struct ib_device *dev,
 955				      void *ptr, size_t size,
 956				      enum dma_data_direction direction);
 957	void		(*unmap_single)(struct ib_device *dev,
 958					u64 addr, size_t size,
 959					enum dma_data_direction direction);
 960	u64		(*map_page)(struct ib_device *dev,
 961				    struct page *page, unsigned long offset,
 962				    size_t size,
 963				    enum dma_data_direction direction);
 964	void		(*unmap_page)(struct ib_device *dev,
 965				      u64 addr, size_t size,
 966				      enum dma_data_direction direction);
 967	int		(*map_sg)(struct ib_device *dev,
 968				  struct scatterlist *sg, int nents,
 969				  enum dma_data_direction direction);
 970	void		(*unmap_sg)(struct ib_device *dev,
 971				    struct scatterlist *sg, int nents,
 972				    enum dma_data_direction direction);
 973	u64		(*dma_address)(struct ib_device *dev,
 974				       struct scatterlist *sg);
 975	unsigned int	(*dma_len)(struct ib_device *dev,
 976				   struct scatterlist *sg);
 977	void		(*sync_single_for_cpu)(struct ib_device *dev,
 978					       u64 dma_handle,
 979					       size_t size,
 980					       enum dma_data_direction dir);
 981	void		(*sync_single_for_device)(struct ib_device *dev,
 982						  u64 dma_handle,
 983						  size_t size,
 984						  enum dma_data_direction dir);
 985	void		*(*alloc_coherent)(struct ib_device *dev,
 986					   size_t size,
 987					   u64 *dma_handle,
 988					   gfp_t flag);
 989	void		(*free_coherent)(struct ib_device *dev,
 990					 size_t size, void *cpu_addr,
 991					 u64 dma_handle);
 992};
 993
 994struct iw_cm_verbs;
 995
 
 
 
 
 
 
 
 996struct ib_device {
 997	struct device                *dma_device;
 998
 999	char                          name[IB_DEVICE_NAME_MAX];
1000
1001	struct list_head              event_handler_list;
1002	spinlock_t                    event_handler_lock;
1003
1004	spinlock_t                    client_data_lock;
1005	struct list_head              core_list;
 
 
1006	struct list_head              client_data_list;
1007
1008	struct ib_cache               cache;
1009	int                          *pkey_tbl_len;
1010	int                          *gid_tbl_len;
 
 
1011
1012	int			      num_comp_vectors;
1013
1014	struct iw_cm_verbs	     *iwcm;
1015
1016	int		           (*get_protocol_stats)(struct ib_device *device,
1017							 union rdma_protocol_stats *stats);
1018	int		           (*query_device)(struct ib_device *device,
1019						   struct ib_device_attr *device_attr);
 
1020	int		           (*query_port)(struct ib_device *device,
1021						 u8 port_num,
1022						 struct ib_port_attr *port_attr);
1023	enum rdma_link_layer	   (*get_link_layer)(struct ib_device *device,
1024						     u8 port_num);
 
 
 
 
 
 
 
 
 
1025	int		           (*query_gid)(struct ib_device *device,
1026						u8 port_num, int index,
1027						union ib_gid *gid);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1028	int		           (*query_pkey)(struct ib_device *device,
1029						 u8 port_num, u16 index, u16 *pkey);
1030	int		           (*modify_device)(struct ib_device *device,
1031						    int device_modify_mask,
1032						    struct ib_device_modify *device_modify);
1033	int		           (*modify_port)(struct ib_device *device,
1034						  u8 port_num, int port_modify_mask,
1035						  struct ib_port_modify *port_modify);
1036	struct ib_ucontext *       (*alloc_ucontext)(struct ib_device *device,
1037						     struct ib_udata *udata);
1038	int                        (*dealloc_ucontext)(struct ib_ucontext *context);
1039	int                        (*mmap)(struct ib_ucontext *context,
1040					   struct vm_area_struct *vma);
1041	struct ib_pd *             (*alloc_pd)(struct ib_device *device,
1042					       struct ib_ucontext *context,
1043					       struct ib_udata *udata);
1044	int                        (*dealloc_pd)(struct ib_pd *pd);
1045	struct ib_ah *             (*create_ah)(struct ib_pd *pd,
1046						struct ib_ah_attr *ah_attr);
1047	int                        (*modify_ah)(struct ib_ah *ah,
1048						struct ib_ah_attr *ah_attr);
1049	int                        (*query_ah)(struct ib_ah *ah,
1050					       struct ib_ah_attr *ah_attr);
1051	int                        (*destroy_ah)(struct ib_ah *ah);
1052	struct ib_srq *            (*create_srq)(struct ib_pd *pd,
1053						 struct ib_srq_init_attr *srq_init_attr,
1054						 struct ib_udata *udata);
1055	int                        (*modify_srq)(struct ib_srq *srq,
1056						 struct ib_srq_attr *srq_attr,
1057						 enum ib_srq_attr_mask srq_attr_mask,
1058						 struct ib_udata *udata);
1059	int                        (*query_srq)(struct ib_srq *srq,
1060						struct ib_srq_attr *srq_attr);
1061	int                        (*destroy_srq)(struct ib_srq *srq);
1062	int                        (*post_srq_recv)(struct ib_srq *srq,
1063						    struct ib_recv_wr *recv_wr,
1064						    struct ib_recv_wr **bad_recv_wr);
1065	struct ib_qp *             (*create_qp)(struct ib_pd *pd,
1066						struct ib_qp_init_attr *qp_init_attr,
1067						struct ib_udata *udata);
1068	int                        (*modify_qp)(struct ib_qp *qp,
1069						struct ib_qp_attr *qp_attr,
1070						int qp_attr_mask,
1071						struct ib_udata *udata);
1072	int                        (*query_qp)(struct ib_qp *qp,
1073					       struct ib_qp_attr *qp_attr,
1074					       int qp_attr_mask,
1075					       struct ib_qp_init_attr *qp_init_attr);
1076	int                        (*destroy_qp)(struct ib_qp *qp);
1077	int                        (*post_send)(struct ib_qp *qp,
1078						struct ib_send_wr *send_wr,
1079						struct ib_send_wr **bad_send_wr);
1080	int                        (*post_recv)(struct ib_qp *qp,
1081						struct ib_recv_wr *recv_wr,
1082						struct ib_recv_wr **bad_recv_wr);
1083	struct ib_cq *             (*create_cq)(struct ib_device *device, int cqe,
1084						int comp_vector,
1085						struct ib_ucontext *context,
1086						struct ib_udata *udata);
1087	int                        (*modify_cq)(struct ib_cq *cq, u16 cq_count,
1088						u16 cq_period);
1089	int                        (*destroy_cq)(struct ib_cq *cq);
1090	int                        (*resize_cq)(struct ib_cq *cq, int cqe,
1091						struct ib_udata *udata);
1092	int                        (*poll_cq)(struct ib_cq *cq, int num_entries,
1093					      struct ib_wc *wc);
1094	int                        (*peek_cq)(struct ib_cq *cq, int wc_cnt);
1095	int                        (*req_notify_cq)(struct ib_cq *cq,
1096						    enum ib_cq_notify_flags flags);
1097	int                        (*req_ncomp_notif)(struct ib_cq *cq,
1098						      int wc_cnt);
1099	struct ib_mr *             (*get_dma_mr)(struct ib_pd *pd,
1100						 int mr_access_flags);
1101	struct ib_mr *             (*reg_phys_mr)(struct ib_pd *pd,
1102						  struct ib_phys_buf *phys_buf_array,
1103						  int num_phys_buf,
1104						  int mr_access_flags,
1105						  u64 *iova_start);
1106	struct ib_mr *             (*reg_user_mr)(struct ib_pd *pd,
1107						  u64 start, u64 length,
1108						  u64 virt_addr,
1109						  int mr_access_flags,
1110						  struct ib_udata *udata);
1111	int                        (*query_mr)(struct ib_mr *mr,
1112					       struct ib_mr_attr *mr_attr);
1113	int                        (*dereg_mr)(struct ib_mr *mr);
1114	struct ib_mr *		   (*alloc_fast_reg_mr)(struct ib_pd *pd,
1115					       int max_page_list_len);
1116	struct ib_fast_reg_page_list * (*alloc_fast_reg_page_list)(struct ib_device *device,
1117								   int page_list_len);
1118	void			   (*free_fast_reg_page_list)(struct ib_fast_reg_page_list *page_list);
1119	int                        (*rereg_phys_mr)(struct ib_mr *mr,
1120						    int mr_rereg_mask,
1121						    struct ib_pd *pd,
1122						    struct ib_phys_buf *phys_buf_array,
1123						    int num_phys_buf,
1124						    int mr_access_flags,
1125						    u64 *iova_start);
1126	struct ib_mw *             (*alloc_mw)(struct ib_pd *pd);
1127	int                        (*bind_mw)(struct ib_qp *qp,
1128					      struct ib_mw *mw,
1129					      struct ib_mw_bind *mw_bind);
 
 
 
 
 
 
 
1130	int                        (*dealloc_mw)(struct ib_mw *mw);
1131	struct ib_fmr *	           (*alloc_fmr)(struct ib_pd *pd,
1132						int mr_access_flags,
1133						struct ib_fmr_attr *fmr_attr);
1134	int		           (*map_phys_fmr)(struct ib_fmr *fmr,
1135						   u64 *page_list, int list_len,
1136						   u64 iova);
1137	int		           (*unmap_fmr)(struct list_head *fmr_list);
1138	int		           (*dealloc_fmr)(struct ib_fmr *fmr);
1139	int                        (*attach_mcast)(struct ib_qp *qp,
1140						   union ib_gid *gid,
1141						   u16 lid);
1142	int                        (*detach_mcast)(struct ib_qp *qp,
1143						   union ib_gid *gid,
1144						   u16 lid);
1145	int                        (*process_mad)(struct ib_device *device,
1146						  int process_mad_flags,
1147						  u8 port_num,
1148						  struct ib_wc *in_wc,
1149						  struct ib_grh *in_grh,
1150						  struct ib_mad *in_mad,
1151						  struct ib_mad *out_mad);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1152
1153	struct ib_dma_mapping_ops   *dma_ops;
1154
1155	struct module               *owner;
1156	struct device                dev;
1157	struct kobject               *ports_parent;
1158	struct list_head             port_list;
1159
1160	enum {
1161		IB_DEV_UNINITIALIZED,
1162		IB_DEV_REGISTERED,
1163		IB_DEV_UNREGISTERED
1164	}                            reg_state;
1165
1166	int			     uverbs_abi_ver;
1167	u64			     uverbs_cmd_mask;
 
1168
1169	char			     node_desc[64];
1170	__be64			     node_guid;
1171	u32			     local_dma_lkey;
 
1172	u8                           node_type;
1173	u8                           phys_port_cnt;
 
 
 
 
 
 
 
 
 
1174};
1175
1176struct ib_client {
1177	char  *name;
1178	void (*add)   (struct ib_device *);
1179	void (*remove)(struct ib_device *);
1180
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1181	struct list_head list;
1182};
1183
1184struct ib_device *ib_alloc_device(size_t size);
1185void ib_dealloc_device(struct ib_device *device);
1186
1187int ib_register_device(struct ib_device *device,
1188		       int (*port_callback)(struct ib_device *,
1189					    u8, struct kobject *));
1190void ib_unregister_device(struct ib_device *device);
1191
1192int ib_register_client   (struct ib_client *client);
1193void ib_unregister_client(struct ib_client *client);
1194
1195void *ib_get_client_data(struct ib_device *device, struct ib_client *client);
1196void  ib_set_client_data(struct ib_device *device, struct ib_client *client,
1197			 void *data);
1198
1199static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
1200{
1201	return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
1202}
1203
1204static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
1205{
1206	return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
1207}
1208
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1209/**
1210 * ib_modify_qp_is_ok - Check that the supplied attribute mask
1211 * contains all required attributes and no attributes not allowed for
1212 * the given QP state transition.
1213 * @cur_state: Current QP state
1214 * @next_state: Next QP state
1215 * @type: QP type
1216 * @mask: Mask of supplied QP attributes
 
1217 *
1218 * This function is a helper function that a low-level driver's
1219 * modify_qp method can use to validate the consumer's input.  It
1220 * checks that cur_state and next_state are valid QP states, that a
1221 * transition from cur_state to next_state is allowed by the IB spec,
1222 * and that the attribute mask supplied is allowed for the transition.
1223 */
1224int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
1225		       enum ib_qp_type type, enum ib_qp_attr_mask mask);
 
1226
1227int ib_register_event_handler  (struct ib_event_handler *event_handler);
1228int ib_unregister_event_handler(struct ib_event_handler *event_handler);
1229void ib_dispatch_event(struct ib_event *event);
1230
1231int ib_query_device(struct ib_device *device,
1232		    struct ib_device_attr *device_attr);
1233
1234int ib_query_port(struct ib_device *device,
1235		  u8 port_num, struct ib_port_attr *port_attr);
1236
1237enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
1238					       u8 port_num);
1239
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1240int ib_query_gid(struct ib_device *device,
1241		 u8 port_num, int index, union ib_gid *gid);
 
 
 
 
 
 
 
 
 
 
1242
1243int ib_query_pkey(struct ib_device *device,
1244		  u8 port_num, u16 index, u16 *pkey);
1245
1246int ib_modify_device(struct ib_device *device,
1247		     int device_modify_mask,
1248		     struct ib_device_modify *device_modify);
1249
1250int ib_modify_port(struct ib_device *device,
1251		   u8 port_num, int port_modify_mask,
1252		   struct ib_port_modify *port_modify);
1253
1254int ib_find_gid(struct ib_device *device, union ib_gid *gid,
 
1255		u8 *port_num, u16 *index);
1256
1257int ib_find_pkey(struct ib_device *device,
1258		 u8 port_num, u16 pkey, u16 *index);
1259
1260/**
1261 * ib_alloc_pd - Allocates an unused protection domain.
1262 * @device: The device on which to allocate the protection domain.
1263 *
1264 * A protection domain object provides an association between QPs, shared
1265 * receive queues, address handles, memory regions, and memory windows.
1266 */
1267struct ib_pd *ib_alloc_pd(struct ib_device *device);
1268
1269/**
1270 * ib_dealloc_pd - Deallocates a protection domain.
1271 * @pd: The protection domain to deallocate.
1272 */
1273int ib_dealloc_pd(struct ib_pd *pd);
1274
1275/**
1276 * ib_create_ah - Creates an address handle for the given address vector.
1277 * @pd: The protection domain associated with the address handle.
1278 * @ah_attr: The attributes of the address vector.
1279 *
1280 * The address handle is used to reference a local or global destination
1281 * in all UD QP post sends.
1282 */
1283struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr);
1284
1285/**
1286 * ib_init_ah_from_wc - Initializes address handle attributes from a
1287 *   work completion.
1288 * @device: Device on which the received message arrived.
1289 * @port_num: Port on which the received message arrived.
1290 * @wc: Work completion associated with the received message.
1291 * @grh: References the received global route header.  This parameter is
1292 *   ignored unless the work completion indicates that the GRH is valid.
1293 * @ah_attr: Returned attributes that can be used when creating an address
1294 *   handle for replying to the message.
1295 */
1296int ib_init_ah_from_wc(struct ib_device *device, u8 port_num, struct ib_wc *wc,
1297		       struct ib_grh *grh, struct ib_ah_attr *ah_attr);
 
1298
1299/**
1300 * ib_create_ah_from_wc - Creates an address handle associated with the
1301 *   sender of the specified work completion.
1302 * @pd: The protection domain associated with the address handle.
1303 * @wc: Work completion information associated with a received message.
1304 * @grh: References the received global route header.  This parameter is
1305 *   ignored unless the work completion indicates that the GRH is valid.
1306 * @port_num: The outbound port number to associate with the address.
1307 *
1308 * The address handle is used to reference a local or global destination
1309 * in all UD QP post sends.
1310 */
1311struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, struct ib_wc *wc,
1312				   struct ib_grh *grh, u8 port_num);
1313
1314/**
1315 * ib_modify_ah - Modifies the address vector associated with an address
1316 *   handle.
1317 * @ah: The address handle to modify.
1318 * @ah_attr: The new address vector attributes to associate with the
1319 *   address handle.
1320 */
1321int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
1322
1323/**
1324 * ib_query_ah - Queries the address vector associated with an address
1325 *   handle.
1326 * @ah: The address handle to query.
1327 * @ah_attr: The address vector attributes associated with the address
1328 *   handle.
1329 */
1330int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
1331
1332/**
1333 * ib_destroy_ah - Destroys an address handle.
1334 * @ah: The address handle to destroy.
1335 */
1336int ib_destroy_ah(struct ib_ah *ah);
1337
1338/**
1339 * ib_create_srq - Creates a SRQ associated with the specified protection
1340 *   domain.
1341 * @pd: The protection domain associated with the SRQ.
1342 * @srq_init_attr: A list of initial attributes required to create the
1343 *   SRQ.  If SRQ creation succeeds, then the attributes are updated to
1344 *   the actual capabilities of the created SRQ.
1345 *
1346 * srq_attr->max_wr and srq_attr->max_sge are read the determine the
1347 * requested size of the SRQ, and set to the actual values allocated
1348 * on return.  If ib_create_srq() succeeds, then max_wr and max_sge
1349 * will always be at least as large as the requested values.
1350 */
1351struct ib_srq *ib_create_srq(struct ib_pd *pd,
1352			     struct ib_srq_init_attr *srq_init_attr);
1353
1354/**
1355 * ib_modify_srq - Modifies the attributes for the specified SRQ.
1356 * @srq: The SRQ to modify.
1357 * @srq_attr: On input, specifies the SRQ attributes to modify.  On output,
1358 *   the current values of selected SRQ attributes are returned.
1359 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
1360 *   are being modified.
1361 *
1362 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
1363 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when
1364 * the number of receives queued drops below the limit.
1365 */
1366int ib_modify_srq(struct ib_srq *srq,
1367		  struct ib_srq_attr *srq_attr,
1368		  enum ib_srq_attr_mask srq_attr_mask);
1369
1370/**
1371 * ib_query_srq - Returns the attribute list and current values for the
1372 *   specified SRQ.
1373 * @srq: The SRQ to query.
1374 * @srq_attr: The attributes of the specified SRQ.
1375 */
1376int ib_query_srq(struct ib_srq *srq,
1377		 struct ib_srq_attr *srq_attr);
1378
1379/**
1380 * ib_destroy_srq - Destroys the specified SRQ.
1381 * @srq: The SRQ to destroy.
1382 */
1383int ib_destroy_srq(struct ib_srq *srq);
1384
1385/**
1386 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
1387 * @srq: The SRQ to post the work request on.
1388 * @recv_wr: A list of work requests to post on the receive queue.
1389 * @bad_recv_wr: On an immediate failure, this parameter will reference
1390 *   the work request that failed to be posted on the QP.
1391 */
1392static inline int ib_post_srq_recv(struct ib_srq *srq,
1393				   struct ib_recv_wr *recv_wr,
1394				   struct ib_recv_wr **bad_recv_wr)
1395{
1396	return srq->device->post_srq_recv(srq, recv_wr, bad_recv_wr);
1397}
1398
1399/**
1400 * ib_create_qp - Creates a QP associated with the specified protection
1401 *   domain.
1402 * @pd: The protection domain associated with the QP.
1403 * @qp_init_attr: A list of initial attributes required to create the
1404 *   QP.  If QP creation succeeds, then the attributes are updated to
1405 *   the actual capabilities of the created QP.
1406 */
1407struct ib_qp *ib_create_qp(struct ib_pd *pd,
1408			   struct ib_qp_init_attr *qp_init_attr);
1409
1410/**
1411 * ib_modify_qp - Modifies the attributes for the specified QP and then
1412 *   transitions the QP to the given state.
1413 * @qp: The QP to modify.
1414 * @qp_attr: On input, specifies the QP attributes to modify.  On output,
1415 *   the current values of selected QP attributes are returned.
1416 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP
1417 *   are being modified.
1418 */
1419int ib_modify_qp(struct ib_qp *qp,
1420		 struct ib_qp_attr *qp_attr,
1421		 int qp_attr_mask);
1422
1423/**
1424 * ib_query_qp - Returns the attribute list and current values for the
1425 *   specified QP.
1426 * @qp: The QP to query.
1427 * @qp_attr: The attributes of the specified QP.
1428 * @qp_attr_mask: A bit-mask used to select specific attributes to query.
1429 * @qp_init_attr: Additional attributes of the selected QP.
1430 *
1431 * The qp_attr_mask may be used to limit the query to gathering only the
1432 * selected attributes.
1433 */
1434int ib_query_qp(struct ib_qp *qp,
1435		struct ib_qp_attr *qp_attr,
1436		int qp_attr_mask,
1437		struct ib_qp_init_attr *qp_init_attr);
1438
1439/**
1440 * ib_destroy_qp - Destroys the specified QP.
1441 * @qp: The QP to destroy.
1442 */
1443int ib_destroy_qp(struct ib_qp *qp);
1444
1445/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1446 * ib_post_send - Posts a list of work requests to the send queue of
1447 *   the specified QP.
1448 * @qp: The QP to post the work request on.
1449 * @send_wr: A list of work requests to post on the send queue.
1450 * @bad_send_wr: On an immediate failure, this parameter will reference
1451 *   the work request that failed to be posted on the QP.
1452 *
1453 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate
1454 * error is returned, the QP state shall not be affected,
1455 * ib_post_send() will return an immediate error after queueing any
1456 * earlier work requests in the list.
1457 */
1458static inline int ib_post_send(struct ib_qp *qp,
1459			       struct ib_send_wr *send_wr,
1460			       struct ib_send_wr **bad_send_wr)
1461{
1462	return qp->device->post_send(qp, send_wr, bad_send_wr);
1463}
1464
1465/**
1466 * ib_post_recv - Posts a list of work requests to the receive queue of
1467 *   the specified QP.
1468 * @qp: The QP to post the work request on.
1469 * @recv_wr: A list of work requests to post on the receive queue.
1470 * @bad_recv_wr: On an immediate failure, this parameter will reference
1471 *   the work request that failed to be posted on the QP.
1472 */
1473static inline int ib_post_recv(struct ib_qp *qp,
1474			       struct ib_recv_wr *recv_wr,
1475			       struct ib_recv_wr **bad_recv_wr)
1476{
1477	return qp->device->post_recv(qp, recv_wr, bad_recv_wr);
1478}
1479
 
 
 
 
 
1480/**
1481 * ib_create_cq - Creates a CQ on the specified device.
1482 * @device: The device on which to create the CQ.
1483 * @comp_handler: A user-specified callback that is invoked when a
1484 *   completion event occurs on the CQ.
1485 * @event_handler: A user-specified callback that is invoked when an
1486 *   asynchronous event not associated with a completion occurs on the CQ.
1487 * @cq_context: Context associated with the CQ returned to the user via
1488 *   the associated completion and event handlers.
1489 * @cqe: The minimum size of the CQ.
1490 * @comp_vector - Completion vector used to signal completion events.
1491 *     Must be >= 0 and < context->num_comp_vectors.
1492 *
1493 * Users can examine the cq structure to determine the actual CQ size.
1494 */
1495struct ib_cq *ib_create_cq(struct ib_device *device,
1496			   ib_comp_handler comp_handler,
1497			   void (*event_handler)(struct ib_event *, void *),
1498			   void *cq_context, int cqe, int comp_vector);
 
1499
1500/**
1501 * ib_resize_cq - Modifies the capacity of the CQ.
1502 * @cq: The CQ to resize.
1503 * @cqe: The minimum size of the CQ.
1504 *
1505 * Users can examine the cq structure to determine the actual CQ size.
1506 */
1507int ib_resize_cq(struct ib_cq *cq, int cqe);
1508
1509/**
1510 * ib_modify_cq - Modifies moderation params of the CQ
1511 * @cq: The CQ to modify.
1512 * @cq_count: number of CQEs that will trigger an event
1513 * @cq_period: max period of time in usec before triggering an event
1514 *
1515 */
1516int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period);
1517
1518/**
1519 * ib_destroy_cq - Destroys the specified CQ.
1520 * @cq: The CQ to destroy.
1521 */
1522int ib_destroy_cq(struct ib_cq *cq);
1523
1524/**
1525 * ib_poll_cq - poll a CQ for completion(s)
1526 * @cq:the CQ being polled
1527 * @num_entries:maximum number of completions to return
1528 * @wc:array of at least @num_entries &struct ib_wc where completions
1529 *   will be returned
1530 *
1531 * Poll a CQ for (possibly multiple) completions.  If the return value
1532 * is < 0, an error occurred.  If the return value is >= 0, it is the
1533 * number of completions returned.  If the return value is
1534 * non-negative and < num_entries, then the CQ was emptied.
1535 */
1536static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
1537			     struct ib_wc *wc)
1538{
1539	return cq->device->poll_cq(cq, num_entries, wc);
1540}
1541
1542/**
1543 * ib_peek_cq - Returns the number of unreaped completions currently
1544 *   on the specified CQ.
1545 * @cq: The CQ to peek.
1546 * @wc_cnt: A minimum number of unreaped completions to check for.
1547 *
1548 * If the number of unreaped completions is greater than or equal to wc_cnt,
1549 * this function returns wc_cnt, otherwise, it returns the actual number of
1550 * unreaped completions.
1551 */
1552int ib_peek_cq(struct ib_cq *cq, int wc_cnt);
1553
1554/**
1555 * ib_req_notify_cq - Request completion notification on a CQ.
1556 * @cq: The CQ to generate an event for.
1557 * @flags:
1558 *   Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
1559 *   to request an event on the next solicited event or next work
1560 *   completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
1561 *   may also be |ed in to request a hint about missed events, as
1562 *   described below.
1563 *
1564 * Return Value:
1565 *    < 0 means an error occurred while requesting notification
1566 *   == 0 means notification was requested successfully, and if
1567 *        IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
1568 *        were missed and it is safe to wait for another event.  In
1569 *        this case is it guaranteed that any work completions added
1570 *        to the CQ since the last CQ poll will trigger a completion
1571 *        notification event.
1572 *    > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
1573 *        in.  It means that the consumer must poll the CQ again to
1574 *        make sure it is empty to avoid missing an event because of a
1575 *        race between requesting notification and an entry being
1576 *        added to the CQ.  This return value means it is possible
1577 *        (but not guaranteed) that a work completion has been added
1578 *        to the CQ since the last poll without triggering a
1579 *        completion notification event.
1580 */
1581static inline int ib_req_notify_cq(struct ib_cq *cq,
1582				   enum ib_cq_notify_flags flags)
1583{
1584	return cq->device->req_notify_cq(cq, flags);
1585}
1586
1587/**
1588 * ib_req_ncomp_notif - Request completion notification when there are
1589 *   at least the specified number of unreaped completions on the CQ.
1590 * @cq: The CQ to generate an event for.
1591 * @wc_cnt: The number of unreaped completions that should be on the
1592 *   CQ before an event is generated.
1593 */
1594static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt)
1595{
1596	return cq->device->req_ncomp_notif ?
1597		cq->device->req_ncomp_notif(cq, wc_cnt) :
1598		-ENOSYS;
1599}
1600
1601/**
1602 * ib_get_dma_mr - Returns a memory region for system memory that is
1603 *   usable for DMA.
1604 * @pd: The protection domain associated with the memory region.
1605 * @mr_access_flags: Specifies the memory access rights.
1606 *
1607 * Note that the ib_dma_*() functions defined below must be used
1608 * to create/destroy addresses used with the Lkey or Rkey returned
1609 * by ib_get_dma_mr().
1610 */
1611struct ib_mr *ib_get_dma_mr(struct ib_pd *pd, int mr_access_flags);
1612
1613/**
1614 * ib_dma_mapping_error - check a DMA addr for error
1615 * @dev: The device for which the dma_addr was created
1616 * @dma_addr: The DMA address to check
1617 */
1618static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
1619{
1620	if (dev->dma_ops)
1621		return dev->dma_ops->mapping_error(dev, dma_addr);
1622	return dma_mapping_error(dev->dma_device, dma_addr);
1623}
1624
1625/**
1626 * ib_dma_map_single - Map a kernel virtual address to DMA address
1627 * @dev: The device for which the dma_addr is to be created
1628 * @cpu_addr: The kernel virtual address
1629 * @size: The size of the region in bytes
1630 * @direction: The direction of the DMA
1631 */
1632static inline u64 ib_dma_map_single(struct ib_device *dev,
1633				    void *cpu_addr, size_t size,
1634				    enum dma_data_direction direction)
1635{
1636	if (dev->dma_ops)
1637		return dev->dma_ops->map_single(dev, cpu_addr, size, direction);
1638	return dma_map_single(dev->dma_device, cpu_addr, size, direction);
1639}
1640
1641/**
1642 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
1643 * @dev: The device for which the DMA address was created
1644 * @addr: The DMA address
1645 * @size: The size of the region in bytes
1646 * @direction: The direction of the DMA
1647 */
1648static inline void ib_dma_unmap_single(struct ib_device *dev,
1649				       u64 addr, size_t size,
1650				       enum dma_data_direction direction)
1651{
1652	if (dev->dma_ops)
1653		dev->dma_ops->unmap_single(dev, addr, size, direction);
1654	else
1655		dma_unmap_single(dev->dma_device, addr, size, direction);
1656}
1657
1658static inline u64 ib_dma_map_single_attrs(struct ib_device *dev,
1659					  void *cpu_addr, size_t size,
1660					  enum dma_data_direction direction,
1661					  struct dma_attrs *attrs)
1662{
1663	return dma_map_single_attrs(dev->dma_device, cpu_addr, size,
1664				    direction, attrs);
1665}
1666
1667static inline void ib_dma_unmap_single_attrs(struct ib_device *dev,
1668					     u64 addr, size_t size,
1669					     enum dma_data_direction direction,
1670					     struct dma_attrs *attrs)
1671{
1672	return dma_unmap_single_attrs(dev->dma_device, addr, size,
1673				      direction, attrs);
1674}
1675
1676/**
1677 * ib_dma_map_page - Map a physical page to DMA address
1678 * @dev: The device for which the dma_addr is to be created
1679 * @page: The page to be mapped
1680 * @offset: The offset within the page
1681 * @size: The size of the region in bytes
1682 * @direction: The direction of the DMA
1683 */
1684static inline u64 ib_dma_map_page(struct ib_device *dev,
1685				  struct page *page,
1686				  unsigned long offset,
1687				  size_t size,
1688					 enum dma_data_direction direction)
1689{
1690	if (dev->dma_ops)
1691		return dev->dma_ops->map_page(dev, page, offset, size, direction);
1692	return dma_map_page(dev->dma_device, page, offset, size, direction);
1693}
1694
1695/**
1696 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
1697 * @dev: The device for which the DMA address was created
1698 * @addr: The DMA address
1699 * @size: The size of the region in bytes
1700 * @direction: The direction of the DMA
1701 */
1702static inline void ib_dma_unmap_page(struct ib_device *dev,
1703				     u64 addr, size_t size,
1704				     enum dma_data_direction direction)
1705{
1706	if (dev->dma_ops)
1707		dev->dma_ops->unmap_page(dev, addr, size, direction);
1708	else
1709		dma_unmap_page(dev->dma_device, addr, size, direction);
1710}
1711
1712/**
1713 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses
1714 * @dev: The device for which the DMA addresses are to be created
1715 * @sg: The array of scatter/gather entries
1716 * @nents: The number of scatter/gather entries
1717 * @direction: The direction of the DMA
1718 */
1719static inline int ib_dma_map_sg(struct ib_device *dev,
1720				struct scatterlist *sg, int nents,
1721				enum dma_data_direction direction)
1722{
1723	if (dev->dma_ops)
1724		return dev->dma_ops->map_sg(dev, sg, nents, direction);
1725	return dma_map_sg(dev->dma_device, sg, nents, direction);
1726}
1727
1728/**
1729 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
1730 * @dev: The device for which the DMA addresses were created
1731 * @sg: The array of scatter/gather entries
1732 * @nents: The number of scatter/gather entries
1733 * @direction: The direction of the DMA
1734 */
1735static inline void ib_dma_unmap_sg(struct ib_device *dev,
1736				   struct scatterlist *sg, int nents,
1737				   enum dma_data_direction direction)
1738{
1739	if (dev->dma_ops)
1740		dev->dma_ops->unmap_sg(dev, sg, nents, direction);
1741	else
1742		dma_unmap_sg(dev->dma_device, sg, nents, direction);
1743}
1744
1745static inline int ib_dma_map_sg_attrs(struct ib_device *dev,
1746				      struct scatterlist *sg, int nents,
1747				      enum dma_data_direction direction,
1748				      struct dma_attrs *attrs)
1749{
1750	return dma_map_sg_attrs(dev->dma_device, sg, nents, direction, attrs);
1751}
1752
1753static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev,
1754					 struct scatterlist *sg, int nents,
1755					 enum dma_data_direction direction,
1756					 struct dma_attrs *attrs)
1757{
1758	dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, attrs);
1759}
1760/**
1761 * ib_sg_dma_address - Return the DMA address from a scatter/gather entry
1762 * @dev: The device for which the DMA addresses were created
1763 * @sg: The scatter/gather entry
 
 
 
1764 */
1765static inline u64 ib_sg_dma_address(struct ib_device *dev,
1766				    struct scatterlist *sg)
1767{
1768	if (dev->dma_ops)
1769		return dev->dma_ops->dma_address(dev, sg);
1770	return sg_dma_address(sg);
1771}
1772
1773/**
1774 * ib_sg_dma_len - Return the DMA length from a scatter/gather entry
1775 * @dev: The device for which the DMA addresses were created
1776 * @sg: The scatter/gather entry
 
 
 
1777 */
1778static inline unsigned int ib_sg_dma_len(struct ib_device *dev,
1779					 struct scatterlist *sg)
1780{
1781	if (dev->dma_ops)
1782		return dev->dma_ops->dma_len(dev, sg);
1783	return sg_dma_len(sg);
1784}
1785
1786/**
1787 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
1788 * @dev: The device for which the DMA address was created
1789 * @addr: The DMA address
1790 * @size: The size of the region in bytes
1791 * @dir: The direction of the DMA
1792 */
1793static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
1794					      u64 addr,
1795					      size_t size,
1796					      enum dma_data_direction dir)
1797{
1798	if (dev->dma_ops)
1799		dev->dma_ops->sync_single_for_cpu(dev, addr, size, dir);
1800	else
1801		dma_sync_single_for_cpu(dev->dma_device, addr, size, dir);
1802}
1803
1804/**
1805 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
1806 * @dev: The device for which the DMA address was created
1807 * @addr: The DMA address
1808 * @size: The size of the region in bytes
1809 * @dir: The direction of the DMA
1810 */
1811static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
1812						 u64 addr,
1813						 size_t size,
1814						 enum dma_data_direction dir)
1815{
1816	if (dev->dma_ops)
1817		dev->dma_ops->sync_single_for_device(dev, addr, size, dir);
1818	else
1819		dma_sync_single_for_device(dev->dma_device, addr, size, dir);
1820}
1821
1822/**
1823 * ib_dma_alloc_coherent - Allocate memory and map it for DMA
1824 * @dev: The device for which the DMA address is requested
1825 * @size: The size of the region to allocate in bytes
1826 * @dma_handle: A pointer for returning the DMA address of the region
1827 * @flag: memory allocator flags
1828 */
1829static inline void *ib_dma_alloc_coherent(struct ib_device *dev,
1830					   size_t size,
1831					   u64 *dma_handle,
1832					   gfp_t flag)
1833{
1834	if (dev->dma_ops)
1835		return dev->dma_ops->alloc_coherent(dev, size, dma_handle, flag);
1836	else {
1837		dma_addr_t handle;
1838		void *ret;
1839
1840		ret = dma_alloc_coherent(dev->dma_device, size, &handle, flag);
1841		*dma_handle = handle;
1842		return ret;
1843	}
1844}
1845
1846/**
1847 * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent()
1848 * @dev: The device for which the DMA addresses were allocated
1849 * @size: The size of the region
1850 * @cpu_addr: the address returned by ib_dma_alloc_coherent()
1851 * @dma_handle: the DMA address returned by ib_dma_alloc_coherent()
1852 */
1853static inline void ib_dma_free_coherent(struct ib_device *dev,
1854					size_t size, void *cpu_addr,
1855					u64 dma_handle)
1856{
1857	if (dev->dma_ops)
1858		dev->dma_ops->free_coherent(dev, size, cpu_addr, dma_handle);
1859	else
1860		dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle);
1861}
1862
1863/**
1864 * ib_reg_phys_mr - Prepares a virtually addressed memory region for use
1865 *   by an HCA.
1866 * @pd: The protection domain associated assigned to the registered region.
1867 * @phys_buf_array: Specifies a list of physical buffers to use in the
1868 *   memory region.
1869 * @num_phys_buf: Specifies the size of the phys_buf_array.
1870 * @mr_access_flags: Specifies the memory access rights.
1871 * @iova_start: The offset of the region's starting I/O virtual address.
1872 */
1873struct ib_mr *ib_reg_phys_mr(struct ib_pd *pd,
1874			     struct ib_phys_buf *phys_buf_array,
1875			     int num_phys_buf,
1876			     int mr_access_flags,
1877			     u64 *iova_start);
1878
1879/**
1880 * ib_rereg_phys_mr - Modifies the attributes of an existing memory region.
1881 *   Conceptually, this call performs the functions deregister memory region
1882 *   followed by register physical memory region.  Where possible,
1883 *   resources are reused instead of deallocated and reallocated.
1884 * @mr: The memory region to modify.
1885 * @mr_rereg_mask: A bit-mask used to indicate which of the following
1886 *   properties of the memory region are being modified.
1887 * @pd: If %IB_MR_REREG_PD is set in mr_rereg_mask, this field specifies
1888 *   the new protection domain to associated with the memory region,
1889 *   otherwise, this parameter is ignored.
1890 * @phys_buf_array: If %IB_MR_REREG_TRANS is set in mr_rereg_mask, this
1891 *   field specifies a list of physical buffers to use in the new
1892 *   translation, otherwise, this parameter is ignored.
1893 * @num_phys_buf: If %IB_MR_REREG_TRANS is set in mr_rereg_mask, this
1894 *   field specifies the size of the phys_buf_array, otherwise, this
1895 *   parameter is ignored.
1896 * @mr_access_flags: If %IB_MR_REREG_ACCESS is set in mr_rereg_mask, this
1897 *   field specifies the new memory access rights, otherwise, this
1898 *   parameter is ignored.
1899 * @iova_start: The offset of the region's starting I/O virtual address.
1900 */
1901int ib_rereg_phys_mr(struct ib_mr *mr,
1902		     int mr_rereg_mask,
1903		     struct ib_pd *pd,
1904		     struct ib_phys_buf *phys_buf_array,
1905		     int num_phys_buf,
1906		     int mr_access_flags,
1907		     u64 *iova_start);
1908
1909/**
1910 * ib_query_mr - Retrieves information about a specific memory region.
1911 * @mr: The memory region to retrieve information about.
1912 * @mr_attr: The attributes of the specified memory region.
1913 */
1914int ib_query_mr(struct ib_mr *mr, struct ib_mr_attr *mr_attr);
1915
1916/**
1917 * ib_dereg_mr - Deregisters a memory region and removes it from the
1918 *   HCA translation table.
1919 * @mr: The memory region to deregister.
1920 */
1921int ib_dereg_mr(struct ib_mr *mr);
1922
1923/**
1924 * ib_alloc_fast_reg_mr - Allocates memory region usable with the
1925 *   IB_WR_FAST_REG_MR send work request.
1926 * @pd: The protection domain associated with the region.
1927 * @max_page_list_len: requested max physical buffer list length to be
1928 *   used with fast register work requests for this MR.
1929 */
1930struct ib_mr *ib_alloc_fast_reg_mr(struct ib_pd *pd, int max_page_list_len);
1931
1932/**
1933 * ib_alloc_fast_reg_page_list - Allocates a page list array
1934 * @device - ib device pointer.
1935 * @page_list_len - size of the page list array to be allocated.
1936 *
1937 * This allocates and returns a struct ib_fast_reg_page_list * and a
1938 * page_list array that is at least page_list_len in size.  The actual
1939 * size is returned in max_page_list_len.  The caller is responsible
1940 * for initializing the contents of the page_list array before posting
1941 * a send work request with the IB_WC_FAST_REG_MR opcode.
1942 *
1943 * The page_list array entries must be translated using one of the
1944 * ib_dma_*() functions just like the addresses passed to
1945 * ib_map_phys_fmr().  Once the ib_post_send() is issued, the struct
1946 * ib_fast_reg_page_list must not be modified by the caller until the
1947 * IB_WC_FAST_REG_MR work request completes.
1948 */
1949struct ib_fast_reg_page_list *ib_alloc_fast_reg_page_list(
1950				struct ib_device *device, int page_list_len);
1951
1952/**
1953 * ib_free_fast_reg_page_list - Deallocates a previously allocated
1954 *   page list array.
1955 * @page_list - struct ib_fast_reg_page_list pointer to be deallocated.
1956 */
1957void ib_free_fast_reg_page_list(struct ib_fast_reg_page_list *page_list);
1958
1959/**
1960 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR
1961 *   R_Key and L_Key.
1962 * @mr - struct ib_mr pointer to be updated.
1963 * @newkey - new key to be used.
1964 */
1965static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey)
1966{
1967	mr->lkey = (mr->lkey & 0xffffff00) | newkey;
1968	mr->rkey = (mr->rkey & 0xffffff00) | newkey;
1969}
1970
1971/**
1972 * ib_alloc_mw - Allocates a memory window.
1973 * @pd: The protection domain associated with the memory window.
 
1974 */
1975struct ib_mw *ib_alloc_mw(struct ib_pd *pd);
1976
1977/**
1978 * ib_bind_mw - Posts a work request to the send queue of the specified
1979 *   QP, which binds the memory window to the given address range and
1980 *   remote access attributes.
1981 * @qp: QP to post the bind work request on.
1982 * @mw: The memory window to bind.
1983 * @mw_bind: Specifies information about the memory window, including
1984 *   its address range, remote access rights, and associated memory region.
1985 */
1986static inline int ib_bind_mw(struct ib_qp *qp,
1987			     struct ib_mw *mw,
1988			     struct ib_mw_bind *mw_bind)
1989{
1990	/* XXX reference counting in corresponding MR? */
1991	return mw->device->bind_mw ?
1992		mw->device->bind_mw(qp, mw, mw_bind) :
1993		-ENOSYS;
1994}
1995
1996/**
1997 * ib_dealloc_mw - Deallocates a memory window.
1998 * @mw: The memory window to deallocate.
1999 */
2000int ib_dealloc_mw(struct ib_mw *mw);
2001
2002/**
2003 * ib_alloc_fmr - Allocates a unmapped fast memory region.
2004 * @pd: The protection domain associated with the unmapped region.
2005 * @mr_access_flags: Specifies the memory access rights.
2006 * @fmr_attr: Attributes of the unmapped region.
2007 *
2008 * A fast memory region must be mapped before it can be used as part of
2009 * a work request.
2010 */
2011struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
2012			    int mr_access_flags,
2013			    struct ib_fmr_attr *fmr_attr);
2014
2015/**
2016 * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region.
2017 * @fmr: The fast memory region to associate with the pages.
2018 * @page_list: An array of physical pages to map to the fast memory region.
2019 * @list_len: The number of pages in page_list.
2020 * @iova: The I/O virtual address to use with the mapped region.
2021 */
2022static inline int ib_map_phys_fmr(struct ib_fmr *fmr,
2023				  u64 *page_list, int list_len,
2024				  u64 iova)
2025{
2026	return fmr->device->map_phys_fmr(fmr, page_list, list_len, iova);
2027}
2028
2029/**
2030 * ib_unmap_fmr - Removes the mapping from a list of fast memory regions.
2031 * @fmr_list: A linked list of fast memory regions to unmap.
2032 */
2033int ib_unmap_fmr(struct list_head *fmr_list);
2034
2035/**
2036 * ib_dealloc_fmr - Deallocates a fast memory region.
2037 * @fmr: The fast memory region to deallocate.
2038 */
2039int ib_dealloc_fmr(struct ib_fmr *fmr);
2040
2041/**
2042 * ib_attach_mcast - Attaches the specified QP to a multicast group.
2043 * @qp: QP to attach to the multicast group.  The QP must be type
2044 *   IB_QPT_UD.
2045 * @gid: Multicast group GID.
2046 * @lid: Multicast group LID in host byte order.
2047 *
2048 * In order to send and receive multicast packets, subnet
2049 * administration must have created the multicast group and configured
2050 * the fabric appropriately.  The port associated with the specified
2051 * QP must also be a member of the multicast group.
2052 */
2053int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2054
2055/**
2056 * ib_detach_mcast - Detaches the specified QP from a multicast group.
2057 * @qp: QP to detach from the multicast group.
2058 * @gid: Multicast group GID.
2059 * @lid: Multicast group LID in host byte order.
2060 */
2061int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2062
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2063#endif /* IB_VERBS_H */
v4.6
   1/*
   2 * Copyright (c) 2004 Mellanox Technologies Ltd.  All rights reserved.
   3 * Copyright (c) 2004 Infinicon Corporation.  All rights reserved.
   4 * Copyright (c) 2004 Intel Corporation.  All rights reserved.
   5 * Copyright (c) 2004 Topspin Corporation.  All rights reserved.
   6 * Copyright (c) 2004 Voltaire Corporation.  All rights reserved.
   7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
   8 * Copyright (c) 2005, 2006, 2007 Cisco Systems.  All rights reserved.
   9 *
  10 * This software is available to you under a choice of one of two
  11 * licenses.  You may choose to be licensed under the terms of the GNU
  12 * General Public License (GPL) Version 2, available from the file
  13 * COPYING in the main directory of this source tree, or the
  14 * OpenIB.org BSD license below:
  15 *
  16 *     Redistribution and use in source and binary forms, with or
  17 *     without modification, are permitted provided that the following
  18 *     conditions are met:
  19 *
  20 *      - Redistributions of source code must retain the above
  21 *        copyright notice, this list of conditions and the following
  22 *        disclaimer.
  23 *
  24 *      - Redistributions in binary form must reproduce the above
  25 *        copyright notice, this list of conditions and the following
  26 *        disclaimer in the documentation and/or other materials
  27 *        provided with the distribution.
  28 *
  29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  36 * SOFTWARE.
  37 */
  38
  39#if !defined(IB_VERBS_H)
  40#define IB_VERBS_H
  41
  42#include <linux/types.h>
  43#include <linux/device.h>
  44#include <linux/mm.h>
  45#include <linux/dma-mapping.h>
  46#include <linux/kref.h>
  47#include <linux/list.h>
  48#include <linux/rwsem.h>
  49#include <linux/scatterlist.h>
  50#include <linux/workqueue.h>
  51#include <linux/socket.h>
  52#include <linux/irq_poll.h>
  53#include <uapi/linux/if_ether.h>
  54#include <net/ipv6.h>
  55#include <net/ip.h>
  56#include <linux/string.h>
  57#include <linux/slab.h>
  58
  59#include <linux/if_link.h>
  60#include <linux/atomic.h>
  61#include <linux/mmu_notifier.h>
  62#include <asm/uaccess.h>
  63
  64extern struct workqueue_struct *ib_wq;
  65extern struct workqueue_struct *ib_comp_wq;
  66
  67union ib_gid {
  68	u8	raw[16];
  69	struct {
  70		__be64	subnet_prefix;
  71		__be64	interface_id;
  72	} global;
  73};
  74
  75extern union ib_gid zgid;
  76
  77enum ib_gid_type {
  78	/* If link layer is Ethernet, this is RoCE V1 */
  79	IB_GID_TYPE_IB        = 0,
  80	IB_GID_TYPE_ROCE      = 0,
  81	IB_GID_TYPE_ROCE_UDP_ENCAP = 1,
  82	IB_GID_TYPE_SIZE
  83};
  84
  85#define ROCE_V2_UDP_DPORT      4791
  86struct ib_gid_attr {
  87	enum ib_gid_type	gid_type;
  88	struct net_device	*ndev;
  89};
  90
  91enum rdma_node_type {
  92	/* IB values map to NodeInfo:NodeType. */
  93	RDMA_NODE_IB_CA 	= 1,
  94	RDMA_NODE_IB_SWITCH,
  95	RDMA_NODE_IB_ROUTER,
  96	RDMA_NODE_RNIC,
  97	RDMA_NODE_USNIC,
  98	RDMA_NODE_USNIC_UDP,
  99};
 100
 101enum {
 102	/* set the local administered indication */
 103	IB_SA_WELL_KNOWN_GUID	= BIT_ULL(57) | 2,
 104};
 105
 106enum rdma_transport_type {
 107	RDMA_TRANSPORT_IB,
 108	RDMA_TRANSPORT_IWARP,
 109	RDMA_TRANSPORT_USNIC,
 110	RDMA_TRANSPORT_USNIC_UDP
 111};
 112
 113enum rdma_protocol_type {
 114	RDMA_PROTOCOL_IB,
 115	RDMA_PROTOCOL_IBOE,
 116	RDMA_PROTOCOL_IWARP,
 117	RDMA_PROTOCOL_USNIC_UDP
 118};
 119
 120__attribute_const__ enum rdma_transport_type
 121rdma_node_get_transport(enum rdma_node_type node_type);
 122
 123enum rdma_network_type {
 124	RDMA_NETWORK_IB,
 125	RDMA_NETWORK_ROCE_V1 = RDMA_NETWORK_IB,
 126	RDMA_NETWORK_IPV4,
 127	RDMA_NETWORK_IPV6
 128};
 129
 130static inline enum ib_gid_type ib_network_to_gid_type(enum rdma_network_type network_type)
 131{
 132	if (network_type == RDMA_NETWORK_IPV4 ||
 133	    network_type == RDMA_NETWORK_IPV6)
 134		return IB_GID_TYPE_ROCE_UDP_ENCAP;
 135
 136	/* IB_GID_TYPE_IB same as RDMA_NETWORK_ROCE_V1 */
 137	return IB_GID_TYPE_IB;
 138}
 139
 140static inline enum rdma_network_type ib_gid_to_network_type(enum ib_gid_type gid_type,
 141							    union ib_gid *gid)
 142{
 143	if (gid_type == IB_GID_TYPE_IB)
 144		return RDMA_NETWORK_IB;
 145
 146	if (ipv6_addr_v4mapped((struct in6_addr *)gid))
 147		return RDMA_NETWORK_IPV4;
 148	else
 149		return RDMA_NETWORK_IPV6;
 150}
 151
 152enum rdma_link_layer {
 153	IB_LINK_LAYER_UNSPECIFIED,
 154	IB_LINK_LAYER_INFINIBAND,
 155	IB_LINK_LAYER_ETHERNET,
 156};
 157
 158enum ib_device_cap_flags {
 159	IB_DEVICE_RESIZE_MAX_WR			= (1 << 0),
 160	IB_DEVICE_BAD_PKEY_CNTR			= (1 << 1),
 161	IB_DEVICE_BAD_QKEY_CNTR			= (1 << 2),
 162	IB_DEVICE_RAW_MULTI			= (1 << 3),
 163	IB_DEVICE_AUTO_PATH_MIG			= (1 << 4),
 164	IB_DEVICE_CHANGE_PHY_PORT		= (1 << 5),
 165	IB_DEVICE_UD_AV_PORT_ENFORCE		= (1 << 6),
 166	IB_DEVICE_CURR_QP_STATE_MOD		= (1 << 7),
 167	IB_DEVICE_SHUTDOWN_PORT			= (1 << 8),
 168	IB_DEVICE_INIT_TYPE			= (1 << 9),
 169	IB_DEVICE_PORT_ACTIVE_EVENT		= (1 << 10),
 170	IB_DEVICE_SYS_IMAGE_GUID		= (1 << 11),
 171	IB_DEVICE_RC_RNR_NAK_GEN		= (1 << 12),
 172	IB_DEVICE_SRQ_RESIZE			= (1 << 13),
 173	IB_DEVICE_N_NOTIFY_CQ			= (1 << 14),
 174
 175	/*
 176	 * This device supports a per-device lkey or stag that can be
 177	 * used without performing a memory registration for the local
 178	 * memory.  Note that ULPs should never check this flag, but
 179	 * instead of use the local_dma_lkey flag in the ib_pd structure,
 180	 * which will always contain a usable lkey.
 181	 */
 182	IB_DEVICE_LOCAL_DMA_LKEY		= (1 << 15),
 183	IB_DEVICE_RESERVED /* old SEND_W_INV */	= (1 << 16),
 184	IB_DEVICE_MEM_WINDOW			= (1 << 17),
 185	/*
 186	 * Devices should set IB_DEVICE_UD_IP_SUM if they support
 187	 * insertion of UDP and TCP checksum on outgoing UD IPoIB
 188	 * messages and can verify the validity of checksum for
 189	 * incoming messages.  Setting this flag implies that the
 190	 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
 191	 */
 192	IB_DEVICE_UD_IP_CSUM			= (1 << 18),
 193	IB_DEVICE_UD_TSO			= (1 << 19),
 194	IB_DEVICE_XRC				= (1 << 20),
 195
 196	/*
 197	 * This device supports the IB "base memory management extension",
 198	 * which includes support for fast registrations (IB_WR_REG_MR,
 199	 * IB_WR_LOCAL_INV and IB_WR_SEND_WITH_INV verbs).  This flag should
 200	 * also be set by any iWarp device which must support FRs to comply
 201	 * to the iWarp verbs spec.  iWarp devices also support the
 202	 * IB_WR_RDMA_READ_WITH_INV verb for RDMA READs that invalidate the
 203	 * stag.
 204	 */
 205	IB_DEVICE_MEM_MGT_EXTENSIONS		= (1 << 21),
 206	IB_DEVICE_BLOCK_MULTICAST_LOOPBACK	= (1 << 22),
 207	IB_DEVICE_MEM_WINDOW_TYPE_2A		= (1 << 23),
 208	IB_DEVICE_MEM_WINDOW_TYPE_2B		= (1 << 24),
 209	IB_DEVICE_RC_IP_CSUM			= (1 << 25),
 210	IB_DEVICE_RAW_IP_CSUM			= (1 << 26),
 211	/*
 212	 * Devices should set IB_DEVICE_CROSS_CHANNEL if they
 213	 * support execution of WQEs that involve synchronization
 214	 * of I/O operations with single completion queue managed
 215	 * by hardware.
 216	 */
 217	IB_DEVICE_CROSS_CHANNEL		= (1 << 27),
 218	IB_DEVICE_MANAGED_FLOW_STEERING		= (1 << 29),
 219	IB_DEVICE_SIGNATURE_HANDOVER		= (1 << 30),
 220	IB_DEVICE_ON_DEMAND_PAGING		= (1 << 31),
 221	IB_DEVICE_SG_GAPS_REG			= (1ULL << 32),
 222	IB_DEVICE_VIRTUAL_FUNCTION		= ((u64)1 << 33),
 223};
 224
 225enum ib_signature_prot_cap {
 226	IB_PROT_T10DIF_TYPE_1 = 1,
 227	IB_PROT_T10DIF_TYPE_2 = 1 << 1,
 228	IB_PROT_T10DIF_TYPE_3 = 1 << 2,
 229};
 230
 231enum ib_signature_guard_cap {
 232	IB_GUARD_T10DIF_CRC	= 1,
 233	IB_GUARD_T10DIF_CSUM	= 1 << 1,
 234};
 235
 236enum ib_atomic_cap {
 237	IB_ATOMIC_NONE,
 238	IB_ATOMIC_HCA,
 239	IB_ATOMIC_GLOB
 240};
 241
 242enum ib_odp_general_cap_bits {
 243	IB_ODP_SUPPORT = 1 << 0,
 244};
 245
 246enum ib_odp_transport_cap_bits {
 247	IB_ODP_SUPPORT_SEND	= 1 << 0,
 248	IB_ODP_SUPPORT_RECV	= 1 << 1,
 249	IB_ODP_SUPPORT_WRITE	= 1 << 2,
 250	IB_ODP_SUPPORT_READ	= 1 << 3,
 251	IB_ODP_SUPPORT_ATOMIC	= 1 << 4,
 252};
 253
 254struct ib_odp_caps {
 255	uint64_t general_caps;
 256	struct {
 257		uint32_t  rc_odp_caps;
 258		uint32_t  uc_odp_caps;
 259		uint32_t  ud_odp_caps;
 260	} per_transport_caps;
 261};
 262
 263enum ib_cq_creation_flags {
 264	IB_CQ_FLAGS_TIMESTAMP_COMPLETION   = 1 << 0,
 265	IB_CQ_FLAGS_IGNORE_OVERRUN	   = 1 << 1,
 266};
 267
 268struct ib_cq_init_attr {
 269	unsigned int	cqe;
 270	int		comp_vector;
 271	u32		flags;
 272};
 273
 274struct ib_device_attr {
 275	u64			fw_ver;
 276	__be64			sys_image_guid;
 277	u64			max_mr_size;
 278	u64			page_size_cap;
 279	u32			vendor_id;
 280	u32			vendor_part_id;
 281	u32			hw_ver;
 282	int			max_qp;
 283	int			max_qp_wr;
 284	u64			device_cap_flags;
 285	int			max_sge;
 286	int			max_sge_rd;
 287	int			max_cq;
 288	int			max_cqe;
 289	int			max_mr;
 290	int			max_pd;
 291	int			max_qp_rd_atom;
 292	int			max_ee_rd_atom;
 293	int			max_res_rd_atom;
 294	int			max_qp_init_rd_atom;
 295	int			max_ee_init_rd_atom;
 296	enum ib_atomic_cap	atomic_cap;
 297	enum ib_atomic_cap	masked_atomic_cap;
 298	int			max_ee;
 299	int			max_rdd;
 300	int			max_mw;
 301	int			max_raw_ipv6_qp;
 302	int			max_raw_ethy_qp;
 303	int			max_mcast_grp;
 304	int			max_mcast_qp_attach;
 305	int			max_total_mcast_qp_attach;
 306	int			max_ah;
 307	int			max_fmr;
 308	int			max_map_per_fmr;
 309	int			max_srq;
 310	int			max_srq_wr;
 311	int			max_srq_sge;
 312	unsigned int		max_fast_reg_page_list_len;
 313	u16			max_pkeys;
 314	u8			local_ca_ack_delay;
 315	int			sig_prot_cap;
 316	int			sig_guard_cap;
 317	struct ib_odp_caps	odp_caps;
 318	uint64_t		timestamp_mask;
 319	uint64_t		hca_core_clock; /* in KHZ */
 320};
 321
 322enum ib_mtu {
 323	IB_MTU_256  = 1,
 324	IB_MTU_512  = 2,
 325	IB_MTU_1024 = 3,
 326	IB_MTU_2048 = 4,
 327	IB_MTU_4096 = 5
 328};
 329
 330static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
 331{
 332	switch (mtu) {
 333	case IB_MTU_256:  return  256;
 334	case IB_MTU_512:  return  512;
 335	case IB_MTU_1024: return 1024;
 336	case IB_MTU_2048: return 2048;
 337	case IB_MTU_4096: return 4096;
 338	default: 	  return -1;
 339	}
 340}
 341
 342enum ib_port_state {
 343	IB_PORT_NOP		= 0,
 344	IB_PORT_DOWN		= 1,
 345	IB_PORT_INIT		= 2,
 346	IB_PORT_ARMED		= 3,
 347	IB_PORT_ACTIVE		= 4,
 348	IB_PORT_ACTIVE_DEFER	= 5
 349};
 350
 351enum ib_port_cap_flags {
 352	IB_PORT_SM				= 1 <<  1,
 353	IB_PORT_NOTICE_SUP			= 1 <<  2,
 354	IB_PORT_TRAP_SUP			= 1 <<  3,
 355	IB_PORT_OPT_IPD_SUP                     = 1 <<  4,
 356	IB_PORT_AUTO_MIGR_SUP			= 1 <<  5,
 357	IB_PORT_SL_MAP_SUP			= 1 <<  6,
 358	IB_PORT_MKEY_NVRAM			= 1 <<  7,
 359	IB_PORT_PKEY_NVRAM			= 1 <<  8,
 360	IB_PORT_LED_INFO_SUP			= 1 <<  9,
 361	IB_PORT_SM_DISABLED			= 1 << 10,
 362	IB_PORT_SYS_IMAGE_GUID_SUP		= 1 << 11,
 363	IB_PORT_PKEY_SW_EXT_PORT_TRAP_SUP	= 1 << 12,
 364	IB_PORT_EXTENDED_SPEEDS_SUP             = 1 << 14,
 365	IB_PORT_CM_SUP				= 1 << 16,
 366	IB_PORT_SNMP_TUNNEL_SUP			= 1 << 17,
 367	IB_PORT_REINIT_SUP			= 1 << 18,
 368	IB_PORT_DEVICE_MGMT_SUP			= 1 << 19,
 369	IB_PORT_VENDOR_CLASS_SUP		= 1 << 20,
 370	IB_PORT_DR_NOTICE_SUP			= 1 << 21,
 371	IB_PORT_CAP_MASK_NOTICE_SUP		= 1 << 22,
 372	IB_PORT_BOOT_MGMT_SUP			= 1 << 23,
 373	IB_PORT_LINK_LATENCY_SUP		= 1 << 24,
 374	IB_PORT_CLIENT_REG_SUP			= 1 << 25,
 375	IB_PORT_IP_BASED_GIDS			= 1 << 26,
 376};
 377
 378enum ib_port_width {
 379	IB_WIDTH_1X	= 1,
 380	IB_WIDTH_4X	= 2,
 381	IB_WIDTH_8X	= 4,
 382	IB_WIDTH_12X	= 8
 383};
 384
 385static inline int ib_width_enum_to_int(enum ib_port_width width)
 386{
 387	switch (width) {
 388	case IB_WIDTH_1X:  return  1;
 389	case IB_WIDTH_4X:  return  4;
 390	case IB_WIDTH_8X:  return  8;
 391	case IB_WIDTH_12X: return 12;
 392	default: 	  return -1;
 393	}
 394}
 395
 396enum ib_port_speed {
 397	IB_SPEED_SDR	= 1,
 398	IB_SPEED_DDR	= 2,
 399	IB_SPEED_QDR	= 4,
 400	IB_SPEED_FDR10	= 8,
 401	IB_SPEED_FDR	= 16,
 402	IB_SPEED_EDR	= 32
 403};
 404
 405struct ib_protocol_stats {
 406	/* TBD... */
 407};
 408
 409struct iw_protocol_stats {
 410	u64	ipInReceives;
 411	u64	ipInHdrErrors;
 412	u64	ipInTooBigErrors;
 413	u64	ipInNoRoutes;
 414	u64	ipInAddrErrors;
 415	u64	ipInUnknownProtos;
 416	u64	ipInTruncatedPkts;
 417	u64	ipInDiscards;
 418	u64	ipInDelivers;
 419	u64	ipOutForwDatagrams;
 420	u64	ipOutRequests;
 421	u64	ipOutDiscards;
 422	u64	ipOutNoRoutes;
 423	u64	ipReasmTimeout;
 424	u64	ipReasmReqds;
 425	u64	ipReasmOKs;
 426	u64	ipReasmFails;
 427	u64	ipFragOKs;
 428	u64	ipFragFails;
 429	u64	ipFragCreates;
 430	u64	ipInMcastPkts;
 431	u64	ipOutMcastPkts;
 432	u64	ipInBcastPkts;
 433	u64	ipOutBcastPkts;
 434
 435	u64	tcpRtoAlgorithm;
 436	u64	tcpRtoMin;
 437	u64	tcpRtoMax;
 438	u64	tcpMaxConn;
 439	u64	tcpActiveOpens;
 440	u64	tcpPassiveOpens;
 441	u64	tcpAttemptFails;
 442	u64	tcpEstabResets;
 443	u64	tcpCurrEstab;
 444	u64	tcpInSegs;
 445	u64	tcpOutSegs;
 446	u64	tcpRetransSegs;
 447	u64	tcpInErrs;
 448	u64	tcpOutRsts;
 449};
 450
 451union rdma_protocol_stats {
 452	struct ib_protocol_stats	ib;
 453	struct iw_protocol_stats	iw;
 454};
 455
 456/* Define bits for the various functionality this port needs to be supported by
 457 * the core.
 458 */
 459/* Management                           0x00000FFF */
 460#define RDMA_CORE_CAP_IB_MAD            0x00000001
 461#define RDMA_CORE_CAP_IB_SMI            0x00000002
 462#define RDMA_CORE_CAP_IB_CM             0x00000004
 463#define RDMA_CORE_CAP_IW_CM             0x00000008
 464#define RDMA_CORE_CAP_IB_SA             0x00000010
 465#define RDMA_CORE_CAP_OPA_MAD           0x00000020
 466
 467/* Address format                       0x000FF000 */
 468#define RDMA_CORE_CAP_AF_IB             0x00001000
 469#define RDMA_CORE_CAP_ETH_AH            0x00002000
 470
 471/* Protocol                             0xFFF00000 */
 472#define RDMA_CORE_CAP_PROT_IB           0x00100000
 473#define RDMA_CORE_CAP_PROT_ROCE         0x00200000
 474#define RDMA_CORE_CAP_PROT_IWARP        0x00400000
 475#define RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP 0x00800000
 476
 477#define RDMA_CORE_PORT_IBA_IB          (RDMA_CORE_CAP_PROT_IB  \
 478					| RDMA_CORE_CAP_IB_MAD \
 479					| RDMA_CORE_CAP_IB_SMI \
 480					| RDMA_CORE_CAP_IB_CM  \
 481					| RDMA_CORE_CAP_IB_SA  \
 482					| RDMA_CORE_CAP_AF_IB)
 483#define RDMA_CORE_PORT_IBA_ROCE        (RDMA_CORE_CAP_PROT_ROCE \
 484					| RDMA_CORE_CAP_IB_MAD  \
 485					| RDMA_CORE_CAP_IB_CM   \
 486					| RDMA_CORE_CAP_AF_IB   \
 487					| RDMA_CORE_CAP_ETH_AH)
 488#define RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP			\
 489					(RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP \
 490					| RDMA_CORE_CAP_IB_MAD  \
 491					| RDMA_CORE_CAP_IB_CM   \
 492					| RDMA_CORE_CAP_AF_IB   \
 493					| RDMA_CORE_CAP_ETH_AH)
 494#define RDMA_CORE_PORT_IWARP           (RDMA_CORE_CAP_PROT_IWARP \
 495					| RDMA_CORE_CAP_IW_CM)
 496#define RDMA_CORE_PORT_INTEL_OPA       (RDMA_CORE_PORT_IBA_IB  \
 497					| RDMA_CORE_CAP_OPA_MAD)
 498
 499struct ib_port_attr {
 500	u64			subnet_prefix;
 501	enum ib_port_state	state;
 502	enum ib_mtu		max_mtu;
 503	enum ib_mtu		active_mtu;
 504	int			gid_tbl_len;
 505	u32			port_cap_flags;
 506	u32			max_msg_sz;
 507	u32			bad_pkey_cntr;
 508	u32			qkey_viol_cntr;
 509	u16			pkey_tbl_len;
 510	u16			lid;
 511	u16			sm_lid;
 512	u8			lmc;
 513	u8			max_vl_num;
 514	u8			sm_sl;
 515	u8			subnet_timeout;
 516	u8			init_type_reply;
 517	u8			active_width;
 518	u8			active_speed;
 519	u8                      phys_state;
 520	bool			grh_required;
 521};
 522
 523enum ib_device_modify_flags {
 524	IB_DEVICE_MODIFY_SYS_IMAGE_GUID	= 1 << 0,
 525	IB_DEVICE_MODIFY_NODE_DESC	= 1 << 1
 526};
 527
 528struct ib_device_modify {
 529	u64	sys_image_guid;
 530	char	node_desc[64];
 531};
 532
 533enum ib_port_modify_flags {
 534	IB_PORT_SHUTDOWN		= 1,
 535	IB_PORT_INIT_TYPE		= (1<<2),
 536	IB_PORT_RESET_QKEY_CNTR		= (1<<3)
 537};
 538
 539struct ib_port_modify {
 540	u32	set_port_cap_mask;
 541	u32	clr_port_cap_mask;
 542	u8	init_type;
 543};
 544
 545enum ib_event_type {
 546	IB_EVENT_CQ_ERR,
 547	IB_EVENT_QP_FATAL,
 548	IB_EVENT_QP_REQ_ERR,
 549	IB_EVENT_QP_ACCESS_ERR,
 550	IB_EVENT_COMM_EST,
 551	IB_EVENT_SQ_DRAINED,
 552	IB_EVENT_PATH_MIG,
 553	IB_EVENT_PATH_MIG_ERR,
 554	IB_EVENT_DEVICE_FATAL,
 555	IB_EVENT_PORT_ACTIVE,
 556	IB_EVENT_PORT_ERR,
 557	IB_EVENT_LID_CHANGE,
 558	IB_EVENT_PKEY_CHANGE,
 559	IB_EVENT_SM_CHANGE,
 560	IB_EVENT_SRQ_ERR,
 561	IB_EVENT_SRQ_LIMIT_REACHED,
 562	IB_EVENT_QP_LAST_WQE_REACHED,
 563	IB_EVENT_CLIENT_REREGISTER,
 564	IB_EVENT_GID_CHANGE,
 565};
 566
 567const char *__attribute_const__ ib_event_msg(enum ib_event_type event);
 568
 569struct ib_event {
 570	struct ib_device	*device;
 571	union {
 572		struct ib_cq	*cq;
 573		struct ib_qp	*qp;
 574		struct ib_srq	*srq;
 575		u8		port_num;
 576	} element;
 577	enum ib_event_type	event;
 578};
 579
 580struct ib_event_handler {
 581	struct ib_device *device;
 582	void            (*handler)(struct ib_event_handler *, struct ib_event *);
 583	struct list_head  list;
 584};
 585
 586#define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler)		\
 587	do {							\
 588		(_ptr)->device  = _device;			\
 589		(_ptr)->handler = _handler;			\
 590		INIT_LIST_HEAD(&(_ptr)->list);			\
 591	} while (0)
 592
 593struct ib_global_route {
 594	union ib_gid	dgid;
 595	u32		flow_label;
 596	u8		sgid_index;
 597	u8		hop_limit;
 598	u8		traffic_class;
 599};
 600
 601struct ib_grh {
 602	__be32		version_tclass_flow;
 603	__be16		paylen;
 604	u8		next_hdr;
 605	u8		hop_limit;
 606	union ib_gid	sgid;
 607	union ib_gid	dgid;
 608};
 609
 610union rdma_network_hdr {
 611	struct ib_grh ibgrh;
 612	struct {
 613		/* The IB spec states that if it's IPv4, the header
 614		 * is located in the last 20 bytes of the header.
 615		 */
 616		u8		reserved[20];
 617		struct iphdr	roce4grh;
 618	};
 619};
 620
 621enum {
 622	IB_MULTICAST_QPN = 0xffffff
 623};
 624
 625#define IB_LID_PERMISSIVE	cpu_to_be16(0xFFFF)
 626#define IB_MULTICAST_LID_BASE	cpu_to_be16(0xC000)
 627
 628enum ib_ah_flags {
 629	IB_AH_GRH	= 1
 630};
 631
 632enum ib_rate {
 633	IB_RATE_PORT_CURRENT = 0,
 634	IB_RATE_2_5_GBPS = 2,
 635	IB_RATE_5_GBPS   = 5,
 636	IB_RATE_10_GBPS  = 3,
 637	IB_RATE_20_GBPS  = 6,
 638	IB_RATE_30_GBPS  = 4,
 639	IB_RATE_40_GBPS  = 7,
 640	IB_RATE_60_GBPS  = 8,
 641	IB_RATE_80_GBPS  = 9,
 642	IB_RATE_120_GBPS = 10,
 643	IB_RATE_14_GBPS  = 11,
 644	IB_RATE_56_GBPS  = 12,
 645	IB_RATE_112_GBPS = 13,
 646	IB_RATE_168_GBPS = 14,
 647	IB_RATE_25_GBPS  = 15,
 648	IB_RATE_100_GBPS = 16,
 649	IB_RATE_200_GBPS = 17,
 650	IB_RATE_300_GBPS = 18
 651};
 652
 653/**
 654 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the
 655 * base rate of 2.5 Gbit/sec.  For example, IB_RATE_5_GBPS will be
 656 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
 657 * @rate: rate to convert.
 658 */
 659__attribute_const__ int ib_rate_to_mult(enum ib_rate rate);
 660
 661/**
 662 * ib_rate_to_mbps - Convert the IB rate enum to Mbps.
 663 * For example, IB_RATE_2_5_GBPS will be converted to 2500.
 664 * @rate: rate to convert.
 665 */
 666__attribute_const__ int ib_rate_to_mbps(enum ib_rate rate);
 667
 668
 669/**
 670 * enum ib_mr_type - memory region type
 671 * @IB_MR_TYPE_MEM_REG:       memory region that is used for
 672 *                            normal registration
 673 * @IB_MR_TYPE_SIGNATURE:     memory region that is used for
 674 *                            signature operations (data-integrity
 675 *                            capable regions)
 676 * @IB_MR_TYPE_SG_GAPS:       memory region that is capable to
 677 *                            register any arbitrary sg lists (without
 678 *                            the normal mr constraints - see
 679 *                            ib_map_mr_sg)
 680 */
 681enum ib_mr_type {
 682	IB_MR_TYPE_MEM_REG,
 683	IB_MR_TYPE_SIGNATURE,
 684	IB_MR_TYPE_SG_GAPS,
 685};
 686
 687/**
 688 * Signature types
 689 * IB_SIG_TYPE_NONE: Unprotected.
 690 * IB_SIG_TYPE_T10_DIF: Type T10-DIF
 691 */
 692enum ib_signature_type {
 693	IB_SIG_TYPE_NONE,
 694	IB_SIG_TYPE_T10_DIF,
 695};
 696
 697/**
 698 * Signature T10-DIF block-guard types
 699 * IB_T10DIF_CRC: Corresponds to T10-PI mandated CRC checksum rules.
 700 * IB_T10DIF_CSUM: Corresponds to IP checksum rules.
 701 */
 702enum ib_t10_dif_bg_type {
 703	IB_T10DIF_CRC,
 704	IB_T10DIF_CSUM
 705};
 706
 707/**
 708 * struct ib_t10_dif_domain - Parameters specific for T10-DIF
 709 *     domain.
 710 * @bg_type: T10-DIF block guard type (CRC|CSUM)
 711 * @pi_interval: protection information interval.
 712 * @bg: seed of guard computation.
 713 * @app_tag: application tag of guard block
 714 * @ref_tag: initial guard block reference tag.
 715 * @ref_remap: Indicate wethear the reftag increments each block
 716 * @app_escape: Indicate to skip block check if apptag=0xffff
 717 * @ref_escape: Indicate to skip block check if reftag=0xffffffff
 718 * @apptag_check_mask: check bitmask of application tag.
 719 */
 720struct ib_t10_dif_domain {
 721	enum ib_t10_dif_bg_type bg_type;
 722	u16			pi_interval;
 723	u16			bg;
 724	u16			app_tag;
 725	u32			ref_tag;
 726	bool			ref_remap;
 727	bool			app_escape;
 728	bool			ref_escape;
 729	u16			apptag_check_mask;
 730};
 731
 732/**
 733 * struct ib_sig_domain - Parameters for signature domain
 734 * @sig_type: specific signauture type
 735 * @sig: union of all signature domain attributes that may
 736 *     be used to set domain layout.
 737 */
 738struct ib_sig_domain {
 739	enum ib_signature_type sig_type;
 740	union {
 741		struct ib_t10_dif_domain dif;
 742	} sig;
 743};
 744
 745/**
 746 * struct ib_sig_attrs - Parameters for signature handover operation
 747 * @check_mask: bitmask for signature byte check (8 bytes)
 748 * @mem: memory domain layout desciptor.
 749 * @wire: wire domain layout desciptor.
 750 */
 751struct ib_sig_attrs {
 752	u8			check_mask;
 753	struct ib_sig_domain	mem;
 754	struct ib_sig_domain	wire;
 755};
 756
 757enum ib_sig_err_type {
 758	IB_SIG_BAD_GUARD,
 759	IB_SIG_BAD_REFTAG,
 760	IB_SIG_BAD_APPTAG,
 761};
 762
 763/**
 764 * struct ib_sig_err - signature error descriptor
 765 */
 766struct ib_sig_err {
 767	enum ib_sig_err_type	err_type;
 768	u32			expected;
 769	u32			actual;
 770	u64			sig_err_offset;
 771	u32			key;
 772};
 773
 774enum ib_mr_status_check {
 775	IB_MR_CHECK_SIG_STATUS = 1,
 776};
 777
 778/**
 779 * struct ib_mr_status - Memory region status container
 780 *
 781 * @fail_status: Bitmask of MR checks status. For each
 782 *     failed check a corresponding status bit is set.
 783 * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS
 784 *     failure.
 785 */
 786struct ib_mr_status {
 787	u32		    fail_status;
 788	struct ib_sig_err   sig_err;
 789};
 790
 791/**
 792 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
 793 * enum.
 794 * @mult: multiple to convert.
 795 */
 796__attribute_const__ enum ib_rate mult_to_ib_rate(int mult);
 797
 798struct ib_ah_attr {
 799	struct ib_global_route	grh;
 800	u16			dlid;
 801	u8			sl;
 802	u8			src_path_bits;
 803	u8			static_rate;
 804	u8			ah_flags;
 805	u8			port_num;
 806	u8			dmac[ETH_ALEN];
 807};
 808
 809enum ib_wc_status {
 810	IB_WC_SUCCESS,
 811	IB_WC_LOC_LEN_ERR,
 812	IB_WC_LOC_QP_OP_ERR,
 813	IB_WC_LOC_EEC_OP_ERR,
 814	IB_WC_LOC_PROT_ERR,
 815	IB_WC_WR_FLUSH_ERR,
 816	IB_WC_MW_BIND_ERR,
 817	IB_WC_BAD_RESP_ERR,
 818	IB_WC_LOC_ACCESS_ERR,
 819	IB_WC_REM_INV_REQ_ERR,
 820	IB_WC_REM_ACCESS_ERR,
 821	IB_WC_REM_OP_ERR,
 822	IB_WC_RETRY_EXC_ERR,
 823	IB_WC_RNR_RETRY_EXC_ERR,
 824	IB_WC_LOC_RDD_VIOL_ERR,
 825	IB_WC_REM_INV_RD_REQ_ERR,
 826	IB_WC_REM_ABORT_ERR,
 827	IB_WC_INV_EECN_ERR,
 828	IB_WC_INV_EEC_STATE_ERR,
 829	IB_WC_FATAL_ERR,
 830	IB_WC_RESP_TIMEOUT_ERR,
 831	IB_WC_GENERAL_ERR
 832};
 833
 834const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status);
 835
 836enum ib_wc_opcode {
 837	IB_WC_SEND,
 838	IB_WC_RDMA_WRITE,
 839	IB_WC_RDMA_READ,
 840	IB_WC_COMP_SWAP,
 841	IB_WC_FETCH_ADD,
 
 842	IB_WC_LSO,
 843	IB_WC_LOCAL_INV,
 844	IB_WC_REG_MR,
 845	IB_WC_MASKED_COMP_SWAP,
 846	IB_WC_MASKED_FETCH_ADD,
 847/*
 848 * Set value of IB_WC_RECV so consumers can test if a completion is a
 849 * receive by testing (opcode & IB_WC_RECV).
 850 */
 851	IB_WC_RECV			= 1 << 7,
 852	IB_WC_RECV_RDMA_WITH_IMM
 853};
 854
 855enum ib_wc_flags {
 856	IB_WC_GRH		= 1,
 857	IB_WC_WITH_IMM		= (1<<1),
 858	IB_WC_WITH_INVALIDATE	= (1<<2),
 859	IB_WC_IP_CSUM_OK	= (1<<3),
 860	IB_WC_WITH_SMAC		= (1<<4),
 861	IB_WC_WITH_VLAN		= (1<<5),
 862	IB_WC_WITH_NETWORK_HDR_TYPE	= (1<<6),
 863};
 864
 865struct ib_wc {
 866	union {
 867		u64		wr_id;
 868		struct ib_cqe	*wr_cqe;
 869	};
 870	enum ib_wc_status	status;
 871	enum ib_wc_opcode	opcode;
 872	u32			vendor_err;
 873	u32			byte_len;
 874	struct ib_qp	       *qp;
 875	union {
 876		__be32		imm_data;
 877		u32		invalidate_rkey;
 878	} ex;
 879	u32			src_qp;
 880	int			wc_flags;
 881	u16			pkey_index;
 882	u16			slid;
 883	u8			sl;
 884	u8			dlid_path_bits;
 885	u8			port_num;	/* valid only for DR SMPs on switches */
 886	u8			smac[ETH_ALEN];
 887	u16			vlan_id;
 888	u8			network_hdr_type;
 889};
 890
 891enum ib_cq_notify_flags {
 892	IB_CQ_SOLICITED			= 1 << 0,
 893	IB_CQ_NEXT_COMP			= 1 << 1,
 894	IB_CQ_SOLICITED_MASK		= IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
 895	IB_CQ_REPORT_MISSED_EVENTS	= 1 << 2,
 896};
 897
 898enum ib_srq_type {
 899	IB_SRQT_BASIC,
 900	IB_SRQT_XRC
 901};
 902
 903enum ib_srq_attr_mask {
 904	IB_SRQ_MAX_WR	= 1 << 0,
 905	IB_SRQ_LIMIT	= 1 << 1,
 906};
 907
 908struct ib_srq_attr {
 909	u32	max_wr;
 910	u32	max_sge;
 911	u32	srq_limit;
 912};
 913
 914struct ib_srq_init_attr {
 915	void		      (*event_handler)(struct ib_event *, void *);
 916	void		       *srq_context;
 917	struct ib_srq_attr	attr;
 918	enum ib_srq_type	srq_type;
 919
 920	union {
 921		struct {
 922			struct ib_xrcd *xrcd;
 923			struct ib_cq   *cq;
 924		} xrc;
 925	} ext;
 926};
 927
 928struct ib_qp_cap {
 929	u32	max_send_wr;
 930	u32	max_recv_wr;
 931	u32	max_send_sge;
 932	u32	max_recv_sge;
 933	u32	max_inline_data;
 934};
 935
 936enum ib_sig_type {
 937	IB_SIGNAL_ALL_WR,
 938	IB_SIGNAL_REQ_WR
 939};
 940
 941enum ib_qp_type {
 942	/*
 943	 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
 944	 * here (and in that order) since the MAD layer uses them as
 945	 * indices into a 2-entry table.
 946	 */
 947	IB_QPT_SMI,
 948	IB_QPT_GSI,
 949
 950	IB_QPT_RC,
 951	IB_QPT_UC,
 952	IB_QPT_UD,
 953	IB_QPT_RAW_IPV6,
 954	IB_QPT_RAW_ETHERTYPE,
 955	IB_QPT_RAW_PACKET = 8,
 956	IB_QPT_XRC_INI = 9,
 957	IB_QPT_XRC_TGT,
 958	IB_QPT_MAX,
 959	/* Reserve a range for qp types internal to the low level driver.
 960	 * These qp types will not be visible at the IB core layer, so the
 961	 * IB_QPT_MAX usages should not be affected in the core layer
 962	 */
 963	IB_QPT_RESERVED1 = 0x1000,
 964	IB_QPT_RESERVED2,
 965	IB_QPT_RESERVED3,
 966	IB_QPT_RESERVED4,
 967	IB_QPT_RESERVED5,
 968	IB_QPT_RESERVED6,
 969	IB_QPT_RESERVED7,
 970	IB_QPT_RESERVED8,
 971	IB_QPT_RESERVED9,
 972	IB_QPT_RESERVED10,
 973};
 974
 975enum ib_qp_create_flags {
 976	IB_QP_CREATE_IPOIB_UD_LSO		= 1 << 0,
 977	IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK	= 1 << 1,
 978	IB_QP_CREATE_CROSS_CHANNEL              = 1 << 2,
 979	IB_QP_CREATE_MANAGED_SEND               = 1 << 3,
 980	IB_QP_CREATE_MANAGED_RECV               = 1 << 4,
 981	IB_QP_CREATE_NETIF_QP			= 1 << 5,
 982	IB_QP_CREATE_SIGNATURE_EN		= 1 << 6,
 983	IB_QP_CREATE_USE_GFP_NOIO		= 1 << 7,
 984	/* reserve bits 26-31 for low level drivers' internal use */
 985	IB_QP_CREATE_RESERVED_START		= 1 << 26,
 986	IB_QP_CREATE_RESERVED_END		= 1 << 31,
 987};
 988
 989/*
 990 * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler
 991 * callback to destroy the passed in QP.
 992 */
 993
 994struct ib_qp_init_attr {
 995	void                  (*event_handler)(struct ib_event *, void *);
 996	void		       *qp_context;
 997	struct ib_cq	       *send_cq;
 998	struct ib_cq	       *recv_cq;
 999	struct ib_srq	       *srq;
1000	struct ib_xrcd	       *xrcd;     /* XRC TGT QPs only */
1001	struct ib_qp_cap	cap;
1002	enum ib_sig_type	sq_sig_type;
1003	enum ib_qp_type		qp_type;
1004	enum ib_qp_create_flags	create_flags;
1005	u8			port_num; /* special QP types only */
1006};
1007
1008struct ib_qp_open_attr {
1009	void                  (*event_handler)(struct ib_event *, void *);
1010	void		       *qp_context;
1011	u32			qp_num;
1012	enum ib_qp_type		qp_type;
1013};
1014
1015enum ib_rnr_timeout {
1016	IB_RNR_TIMER_655_36 =  0,
1017	IB_RNR_TIMER_000_01 =  1,
1018	IB_RNR_TIMER_000_02 =  2,
1019	IB_RNR_TIMER_000_03 =  3,
1020	IB_RNR_TIMER_000_04 =  4,
1021	IB_RNR_TIMER_000_06 =  5,
1022	IB_RNR_TIMER_000_08 =  6,
1023	IB_RNR_TIMER_000_12 =  7,
1024	IB_RNR_TIMER_000_16 =  8,
1025	IB_RNR_TIMER_000_24 =  9,
1026	IB_RNR_TIMER_000_32 = 10,
1027	IB_RNR_TIMER_000_48 = 11,
1028	IB_RNR_TIMER_000_64 = 12,
1029	IB_RNR_TIMER_000_96 = 13,
1030	IB_RNR_TIMER_001_28 = 14,
1031	IB_RNR_TIMER_001_92 = 15,
1032	IB_RNR_TIMER_002_56 = 16,
1033	IB_RNR_TIMER_003_84 = 17,
1034	IB_RNR_TIMER_005_12 = 18,
1035	IB_RNR_TIMER_007_68 = 19,
1036	IB_RNR_TIMER_010_24 = 20,
1037	IB_RNR_TIMER_015_36 = 21,
1038	IB_RNR_TIMER_020_48 = 22,
1039	IB_RNR_TIMER_030_72 = 23,
1040	IB_RNR_TIMER_040_96 = 24,
1041	IB_RNR_TIMER_061_44 = 25,
1042	IB_RNR_TIMER_081_92 = 26,
1043	IB_RNR_TIMER_122_88 = 27,
1044	IB_RNR_TIMER_163_84 = 28,
1045	IB_RNR_TIMER_245_76 = 29,
1046	IB_RNR_TIMER_327_68 = 30,
1047	IB_RNR_TIMER_491_52 = 31
1048};
1049
1050enum ib_qp_attr_mask {
1051	IB_QP_STATE			= 1,
1052	IB_QP_CUR_STATE			= (1<<1),
1053	IB_QP_EN_SQD_ASYNC_NOTIFY	= (1<<2),
1054	IB_QP_ACCESS_FLAGS		= (1<<3),
1055	IB_QP_PKEY_INDEX		= (1<<4),
1056	IB_QP_PORT			= (1<<5),
1057	IB_QP_QKEY			= (1<<6),
1058	IB_QP_AV			= (1<<7),
1059	IB_QP_PATH_MTU			= (1<<8),
1060	IB_QP_TIMEOUT			= (1<<9),
1061	IB_QP_RETRY_CNT			= (1<<10),
1062	IB_QP_RNR_RETRY			= (1<<11),
1063	IB_QP_RQ_PSN			= (1<<12),
1064	IB_QP_MAX_QP_RD_ATOMIC		= (1<<13),
1065	IB_QP_ALT_PATH			= (1<<14),
1066	IB_QP_MIN_RNR_TIMER		= (1<<15),
1067	IB_QP_SQ_PSN			= (1<<16),
1068	IB_QP_MAX_DEST_RD_ATOMIC	= (1<<17),
1069	IB_QP_PATH_MIG_STATE		= (1<<18),
1070	IB_QP_CAP			= (1<<19),
1071	IB_QP_DEST_QPN			= (1<<20),
1072	IB_QP_RESERVED1			= (1<<21),
1073	IB_QP_RESERVED2			= (1<<22),
1074	IB_QP_RESERVED3			= (1<<23),
1075	IB_QP_RESERVED4			= (1<<24),
1076};
1077
1078enum ib_qp_state {
1079	IB_QPS_RESET,
1080	IB_QPS_INIT,
1081	IB_QPS_RTR,
1082	IB_QPS_RTS,
1083	IB_QPS_SQD,
1084	IB_QPS_SQE,
1085	IB_QPS_ERR
1086};
1087
1088enum ib_mig_state {
1089	IB_MIG_MIGRATED,
1090	IB_MIG_REARM,
1091	IB_MIG_ARMED
1092};
1093
1094enum ib_mw_type {
1095	IB_MW_TYPE_1 = 1,
1096	IB_MW_TYPE_2 = 2
1097};
1098
1099struct ib_qp_attr {
1100	enum ib_qp_state	qp_state;
1101	enum ib_qp_state	cur_qp_state;
1102	enum ib_mtu		path_mtu;
1103	enum ib_mig_state	path_mig_state;
1104	u32			qkey;
1105	u32			rq_psn;
1106	u32			sq_psn;
1107	u32			dest_qp_num;
1108	int			qp_access_flags;
1109	struct ib_qp_cap	cap;
1110	struct ib_ah_attr	ah_attr;
1111	struct ib_ah_attr	alt_ah_attr;
1112	u16			pkey_index;
1113	u16			alt_pkey_index;
1114	u8			en_sqd_async_notify;
1115	u8			sq_draining;
1116	u8			max_rd_atomic;
1117	u8			max_dest_rd_atomic;
1118	u8			min_rnr_timer;
1119	u8			port_num;
1120	u8			timeout;
1121	u8			retry_cnt;
1122	u8			rnr_retry;
1123	u8			alt_port_num;
1124	u8			alt_timeout;
1125};
1126
1127enum ib_wr_opcode {
1128	IB_WR_RDMA_WRITE,
1129	IB_WR_RDMA_WRITE_WITH_IMM,
1130	IB_WR_SEND,
1131	IB_WR_SEND_WITH_IMM,
1132	IB_WR_RDMA_READ,
1133	IB_WR_ATOMIC_CMP_AND_SWP,
1134	IB_WR_ATOMIC_FETCH_AND_ADD,
1135	IB_WR_LSO,
1136	IB_WR_SEND_WITH_INV,
1137	IB_WR_RDMA_READ_WITH_INV,
1138	IB_WR_LOCAL_INV,
1139	IB_WR_REG_MR,
1140	IB_WR_MASKED_ATOMIC_CMP_AND_SWP,
1141	IB_WR_MASKED_ATOMIC_FETCH_AND_ADD,
1142	IB_WR_REG_SIG_MR,
1143	/* reserve values for low level drivers' internal use.
1144	 * These values will not be used at all in the ib core layer.
1145	 */
1146	IB_WR_RESERVED1 = 0xf0,
1147	IB_WR_RESERVED2,
1148	IB_WR_RESERVED3,
1149	IB_WR_RESERVED4,
1150	IB_WR_RESERVED5,
1151	IB_WR_RESERVED6,
1152	IB_WR_RESERVED7,
1153	IB_WR_RESERVED8,
1154	IB_WR_RESERVED9,
1155	IB_WR_RESERVED10,
1156};
1157
1158enum ib_send_flags {
1159	IB_SEND_FENCE		= 1,
1160	IB_SEND_SIGNALED	= (1<<1),
1161	IB_SEND_SOLICITED	= (1<<2),
1162	IB_SEND_INLINE		= (1<<3),
1163	IB_SEND_IP_CSUM		= (1<<4),
1164
1165	/* reserve bits 26-31 for low level drivers' internal use */
1166	IB_SEND_RESERVED_START	= (1 << 26),
1167	IB_SEND_RESERVED_END	= (1 << 31),
1168};
1169
1170struct ib_sge {
1171	u64	addr;
1172	u32	length;
1173	u32	lkey;
1174};
1175
1176struct ib_cqe {
1177	void (*done)(struct ib_cq *cq, struct ib_wc *wc);
 
 
1178};
1179
1180struct ib_send_wr {
1181	struct ib_send_wr      *next;
1182	union {
1183		u64		wr_id;
1184		struct ib_cqe	*wr_cqe;
1185	};
1186	struct ib_sge	       *sg_list;
1187	int			num_sge;
1188	enum ib_wr_opcode	opcode;
1189	int			send_flags;
1190	union {
1191		__be32		imm_data;
1192		u32		invalidate_rkey;
1193	} ex;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1194};
1195
1196struct ib_rdma_wr {
1197	struct ib_send_wr	wr;
1198	u64			remote_addr;
1199	u32			rkey;
1200};
1201
1202static inline struct ib_rdma_wr *rdma_wr(struct ib_send_wr *wr)
1203{
1204	return container_of(wr, struct ib_rdma_wr, wr);
1205}
1206
1207struct ib_atomic_wr {
1208	struct ib_send_wr	wr;
1209	u64			remote_addr;
1210	u64			compare_add;
1211	u64			swap;
1212	u64			compare_add_mask;
1213	u64			swap_mask;
1214	u32			rkey;
1215};
1216
1217static inline struct ib_atomic_wr *atomic_wr(struct ib_send_wr *wr)
1218{
1219	return container_of(wr, struct ib_atomic_wr, wr);
1220}
1221
1222struct ib_ud_wr {
1223	struct ib_send_wr	wr;
1224	struct ib_ah		*ah;
1225	void			*header;
1226	int			hlen;
1227	int			mss;
1228	u32			remote_qpn;
1229	u32			remote_qkey;
1230	u16			pkey_index; /* valid for GSI only */
1231	u8			port_num;   /* valid for DR SMPs on switch only */
1232};
1233
1234static inline struct ib_ud_wr *ud_wr(struct ib_send_wr *wr)
1235{
1236	return container_of(wr, struct ib_ud_wr, wr);
1237}
1238
1239struct ib_reg_wr {
1240	struct ib_send_wr	wr;
1241	struct ib_mr		*mr;
1242	u32			key;
1243	int			access;
1244};
1245
1246static inline struct ib_reg_wr *reg_wr(struct ib_send_wr *wr)
1247{
1248	return container_of(wr, struct ib_reg_wr, wr);
1249}
1250
1251struct ib_sig_handover_wr {
1252	struct ib_send_wr	wr;
1253	struct ib_sig_attrs    *sig_attrs;
1254	struct ib_mr	       *sig_mr;
1255	int			access_flags;
1256	struct ib_sge	       *prot;
1257};
1258
1259static inline struct ib_sig_handover_wr *sig_handover_wr(struct ib_send_wr *wr)
1260{
1261	return container_of(wr, struct ib_sig_handover_wr, wr);
1262}
1263
1264struct ib_recv_wr {
1265	struct ib_recv_wr      *next;
1266	union {
1267		u64		wr_id;
1268		struct ib_cqe	*wr_cqe;
1269	};
1270	struct ib_sge	       *sg_list;
1271	int			num_sge;
1272};
1273
1274enum ib_access_flags {
1275	IB_ACCESS_LOCAL_WRITE	= 1,
1276	IB_ACCESS_REMOTE_WRITE	= (1<<1),
1277	IB_ACCESS_REMOTE_READ	= (1<<2),
1278	IB_ACCESS_REMOTE_ATOMIC	= (1<<3),
1279	IB_ACCESS_MW_BIND	= (1<<4),
1280	IB_ZERO_BASED		= (1<<5),
1281	IB_ACCESS_ON_DEMAND     = (1<<6),
 
 
 
 
 
 
 
 
 
 
 
 
1282};
1283
1284/*
1285 * XXX: these are apparently used for ->rereg_user_mr, no idea why they
1286 * are hidden here instead of a uapi header!
1287 */
1288enum ib_mr_rereg_flags {
1289	IB_MR_REREG_TRANS	= 1,
1290	IB_MR_REREG_PD		= (1<<1),
1291	IB_MR_REREG_ACCESS	= (1<<2),
1292	IB_MR_REREG_SUPPORTED	= ((IB_MR_REREG_ACCESS << 1) - 1)
 
 
 
 
 
 
 
 
1293};
1294
1295struct ib_fmr_attr {
1296	int	max_pages;
1297	int	max_maps;
1298	u8	page_shift;
1299};
1300
1301struct ib_umem;
1302
1303struct ib_ucontext {
1304	struct ib_device       *device;
1305	struct list_head	pd_list;
1306	struct list_head	mr_list;
1307	struct list_head	mw_list;
1308	struct list_head	cq_list;
1309	struct list_head	qp_list;
1310	struct list_head	srq_list;
1311	struct list_head	ah_list;
1312	struct list_head	xrcd_list;
1313	struct list_head	rule_list;
1314	int			closing;
1315
1316	struct pid             *tgid;
1317#ifdef CONFIG_INFINIBAND_ON_DEMAND_PAGING
1318	struct rb_root      umem_tree;
1319	/*
1320	 * Protects .umem_rbroot and tree, as well as odp_mrs_count and
1321	 * mmu notifiers registration.
1322	 */
1323	struct rw_semaphore	umem_rwsem;
1324	void (*invalidate_range)(struct ib_umem *umem,
1325				 unsigned long start, unsigned long end);
1326
1327	struct mmu_notifier	mn;
1328	atomic_t		notifier_count;
1329	/* A list of umems that don't have private mmu notifier counters yet. */
1330	struct list_head	no_private_counters;
1331	int                     odp_mrs_count;
1332#endif
1333};
1334
1335struct ib_uobject {
1336	u64			user_handle;	/* handle given to us by userspace */
1337	struct ib_ucontext     *context;	/* associated user context */
1338	void		       *object;		/* containing object */
1339	struct list_head	list;		/* link to context's list */
1340	int			id;		/* index into kernel idr */
1341	struct kref		ref;
1342	struct rw_semaphore	mutex;		/* protects .live */
1343	struct rcu_head		rcu;		/* kfree_rcu() overhead */
1344	int			live;
1345};
1346
1347struct ib_udata {
1348	const void __user *inbuf;
1349	void __user *outbuf;
1350	size_t       inlen;
1351	size_t       outlen;
1352};
1353
1354struct ib_pd {
1355	u32			local_dma_lkey;
1356	struct ib_device       *device;
1357	struct ib_uobject      *uobject;
1358	atomic_t          	usecnt; /* count all resources */
1359	struct ib_mr	       *local_mr;
1360};
1361
1362struct ib_xrcd {
1363	struct ib_device       *device;
1364	atomic_t		usecnt; /* count all exposed resources */
1365	struct inode	       *inode;
1366
1367	struct mutex		tgt_qp_mutex;
1368	struct list_head	tgt_qp_list;
1369};
1370
1371struct ib_ah {
1372	struct ib_device	*device;
1373	struct ib_pd		*pd;
1374	struct ib_uobject	*uobject;
1375};
1376
1377typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
1378
1379enum ib_poll_context {
1380	IB_POLL_DIRECT,		/* caller context, no hw completions */
1381	IB_POLL_SOFTIRQ,	/* poll from softirq context */
1382	IB_POLL_WORKQUEUE,	/* poll from workqueue */
1383};
1384
1385struct ib_cq {
1386	struct ib_device       *device;
1387	struct ib_uobject      *uobject;
1388	ib_comp_handler   	comp_handler;
1389	void                  (*event_handler)(struct ib_event *, void *);
1390	void                   *cq_context;
1391	int               	cqe;
1392	atomic_t          	usecnt; /* count number of work queues */
1393	enum ib_poll_context	poll_ctx;
1394	struct ib_wc		*wc;
1395	union {
1396		struct irq_poll		iop;
1397		struct work_struct	work;
1398	};
1399};
1400
1401struct ib_srq {
1402	struct ib_device       *device;
1403	struct ib_pd	       *pd;
1404	struct ib_uobject      *uobject;
1405	void		      (*event_handler)(struct ib_event *, void *);
1406	void		       *srq_context;
1407	enum ib_srq_type	srq_type;
1408	atomic_t		usecnt;
1409
1410	union {
1411		struct {
1412			struct ib_xrcd *xrcd;
1413			struct ib_cq   *cq;
1414			u32		srq_num;
1415		} xrc;
1416	} ext;
1417};
1418
1419struct ib_qp {
1420	struct ib_device       *device;
1421	struct ib_pd	       *pd;
1422	struct ib_cq	       *send_cq;
1423	struct ib_cq	       *recv_cq;
1424	struct ib_srq	       *srq;
1425	struct ib_xrcd	       *xrcd; /* XRC TGT QPs only */
1426	struct list_head	xrcd_list;
1427	/* count times opened, mcast attaches, flow attaches */
1428	atomic_t		usecnt;
1429	struct list_head	open_list;
1430	struct ib_qp           *real_qp;
1431	struct ib_uobject      *uobject;
1432	void                  (*event_handler)(struct ib_event *, void *);
1433	void		       *qp_context;
1434	u32			qp_num;
1435	enum ib_qp_type		qp_type;
1436};
1437
1438struct ib_mr {
1439	struct ib_device  *device;
1440	struct ib_pd	  *pd;
1441	struct ib_uobject *uobject;
1442	u32		   lkey;
1443	u32		   rkey;
1444	u64		   iova;
1445	u32		   length;
1446	unsigned int	   page_size;
1447};
1448
1449struct ib_mw {
1450	struct ib_device	*device;
1451	struct ib_pd		*pd;
1452	struct ib_uobject	*uobject;
1453	u32			rkey;
1454	enum ib_mw_type         type;
1455};
1456
1457struct ib_fmr {
1458	struct ib_device	*device;
1459	struct ib_pd		*pd;
1460	struct list_head	list;
1461	u32			lkey;
1462	u32			rkey;
1463};
1464
1465/* Supported steering options */
1466enum ib_flow_attr_type {
1467	/* steering according to rule specifications */
1468	IB_FLOW_ATTR_NORMAL		= 0x0,
1469	/* default unicast and multicast rule -
1470	 * receive all Eth traffic which isn't steered to any QP
1471	 */
1472	IB_FLOW_ATTR_ALL_DEFAULT	= 0x1,
1473	/* default multicast rule -
1474	 * receive all Eth multicast traffic which isn't steered to any QP
1475	 */
1476	IB_FLOW_ATTR_MC_DEFAULT		= 0x2,
1477	/* sniffer rule - receive all port traffic */
1478	IB_FLOW_ATTR_SNIFFER		= 0x3
1479};
1480
1481/* Supported steering header types */
1482enum ib_flow_spec_type {
1483	/* L2 headers*/
1484	IB_FLOW_SPEC_ETH	= 0x20,
1485	IB_FLOW_SPEC_IB		= 0x22,
1486	/* L3 header*/
1487	IB_FLOW_SPEC_IPV4	= 0x30,
1488	/* L4 headers*/
1489	IB_FLOW_SPEC_TCP	= 0x40,
1490	IB_FLOW_SPEC_UDP	= 0x41
1491};
1492#define IB_FLOW_SPEC_LAYER_MASK	0xF0
1493#define IB_FLOW_SPEC_SUPPORT_LAYERS 4
1494
1495/* Flow steering rule priority is set according to it's domain.
1496 * Lower domain value means higher priority.
1497 */
1498enum ib_flow_domain {
1499	IB_FLOW_DOMAIN_USER,
1500	IB_FLOW_DOMAIN_ETHTOOL,
1501	IB_FLOW_DOMAIN_RFS,
1502	IB_FLOW_DOMAIN_NIC,
1503	IB_FLOW_DOMAIN_NUM /* Must be last */
1504};
1505
1506enum ib_flow_flags {
1507	IB_FLOW_ATTR_FLAGS_DONT_TRAP = 1UL << 1, /* Continue match, no steal */
1508	IB_FLOW_ATTR_FLAGS_RESERVED  = 1UL << 2  /* Must be last */
1509};
1510
1511struct ib_flow_eth_filter {
1512	u8	dst_mac[6];
1513	u8	src_mac[6];
1514	__be16	ether_type;
1515	__be16	vlan_tag;
1516};
1517
1518struct ib_flow_spec_eth {
1519	enum ib_flow_spec_type	  type;
1520	u16			  size;
1521	struct ib_flow_eth_filter val;
1522	struct ib_flow_eth_filter mask;
1523};
1524
1525struct ib_flow_ib_filter {
1526	__be16 dlid;
1527	__u8   sl;
1528};
1529
1530struct ib_flow_spec_ib {
1531	enum ib_flow_spec_type	 type;
1532	u16			 size;
1533	struct ib_flow_ib_filter val;
1534	struct ib_flow_ib_filter mask;
1535};
1536
1537struct ib_flow_ipv4_filter {
1538	__be32	src_ip;
1539	__be32	dst_ip;
1540};
1541
1542struct ib_flow_spec_ipv4 {
1543	enum ib_flow_spec_type	   type;
1544	u16			   size;
1545	struct ib_flow_ipv4_filter val;
1546	struct ib_flow_ipv4_filter mask;
1547};
1548
1549struct ib_flow_tcp_udp_filter {
1550	__be16	dst_port;
1551	__be16	src_port;
1552};
1553
1554struct ib_flow_spec_tcp_udp {
1555	enum ib_flow_spec_type	      type;
1556	u16			      size;
1557	struct ib_flow_tcp_udp_filter val;
1558	struct ib_flow_tcp_udp_filter mask;
1559};
1560
1561union ib_flow_spec {
1562	struct {
1563		enum ib_flow_spec_type	type;
1564		u16			size;
1565	};
1566	struct ib_flow_spec_eth		eth;
1567	struct ib_flow_spec_ib		ib;
1568	struct ib_flow_spec_ipv4        ipv4;
1569	struct ib_flow_spec_tcp_udp	tcp_udp;
1570};
1571
1572struct ib_flow_attr {
1573	enum ib_flow_attr_type type;
1574	u16	     size;
1575	u16	     priority;
1576	u32	     flags;
1577	u8	     num_of_specs;
1578	u8	     port;
1579	/* Following are the optional layers according to user request
1580	 * struct ib_flow_spec_xxx
1581	 * struct ib_flow_spec_yyy
1582	 */
1583};
1584
1585struct ib_flow {
1586	struct ib_qp		*qp;
1587	struct ib_uobject	*uobject;
1588};
1589
1590struct ib_mad_hdr;
1591struct ib_grh;
1592
1593enum ib_process_mad_flags {
1594	IB_MAD_IGNORE_MKEY	= 1,
1595	IB_MAD_IGNORE_BKEY	= 2,
1596	IB_MAD_IGNORE_ALL	= IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
1597};
1598
1599enum ib_mad_result {
1600	IB_MAD_RESULT_FAILURE  = 0,      /* (!SUCCESS is the important flag) */
1601	IB_MAD_RESULT_SUCCESS  = 1 << 0, /* MAD was successfully processed   */
1602	IB_MAD_RESULT_REPLY    = 1 << 1, /* Reply packet needs to be sent    */
1603	IB_MAD_RESULT_CONSUMED = 1 << 2  /* Packet consumed: stop processing */
1604};
1605
1606#define IB_DEVICE_NAME_MAX 64
1607
1608struct ib_cache {
1609	rwlock_t                lock;
1610	struct ib_event_handler event_handler;
1611	struct ib_pkey_cache  **pkey_cache;
1612	struct ib_gid_table   **gid_cache;
1613	u8                     *lmc_cache;
1614};
1615
1616struct ib_dma_mapping_ops {
1617	int		(*mapping_error)(struct ib_device *dev,
1618					 u64 dma_addr);
1619	u64		(*map_single)(struct ib_device *dev,
1620				      void *ptr, size_t size,
1621				      enum dma_data_direction direction);
1622	void		(*unmap_single)(struct ib_device *dev,
1623					u64 addr, size_t size,
1624					enum dma_data_direction direction);
1625	u64		(*map_page)(struct ib_device *dev,
1626				    struct page *page, unsigned long offset,
1627				    size_t size,
1628				    enum dma_data_direction direction);
1629	void		(*unmap_page)(struct ib_device *dev,
1630				      u64 addr, size_t size,
1631				      enum dma_data_direction direction);
1632	int		(*map_sg)(struct ib_device *dev,
1633				  struct scatterlist *sg, int nents,
1634				  enum dma_data_direction direction);
1635	void		(*unmap_sg)(struct ib_device *dev,
1636				    struct scatterlist *sg, int nents,
1637				    enum dma_data_direction direction);
 
 
 
 
1638	void		(*sync_single_for_cpu)(struct ib_device *dev,
1639					       u64 dma_handle,
1640					       size_t size,
1641					       enum dma_data_direction dir);
1642	void		(*sync_single_for_device)(struct ib_device *dev,
1643						  u64 dma_handle,
1644						  size_t size,
1645						  enum dma_data_direction dir);
1646	void		*(*alloc_coherent)(struct ib_device *dev,
1647					   size_t size,
1648					   u64 *dma_handle,
1649					   gfp_t flag);
1650	void		(*free_coherent)(struct ib_device *dev,
1651					 size_t size, void *cpu_addr,
1652					 u64 dma_handle);
1653};
1654
1655struct iw_cm_verbs;
1656
1657struct ib_port_immutable {
1658	int                           pkey_tbl_len;
1659	int                           gid_tbl_len;
1660	u32                           core_cap_flags;
1661	u32                           max_mad_size;
1662};
1663
1664struct ib_device {
1665	struct device                *dma_device;
1666
1667	char                          name[IB_DEVICE_NAME_MAX];
1668
1669	struct list_head              event_handler_list;
1670	spinlock_t                    event_handler_lock;
1671
1672	spinlock_t                    client_data_lock;
1673	struct list_head              core_list;
1674	/* Access to the client_data_list is protected by the client_data_lock
1675	 * spinlock and the lists_rwsem read-write semaphore */
1676	struct list_head              client_data_list;
1677
1678	struct ib_cache               cache;
1679	/**
1680	 * port_immutable is indexed by port number
1681	 */
1682	struct ib_port_immutable     *port_immutable;
1683
1684	int			      num_comp_vectors;
1685
1686	struct iw_cm_verbs	     *iwcm;
1687
1688	int		           (*get_protocol_stats)(struct ib_device *device,
1689							 union rdma_protocol_stats *stats);
1690	int		           (*query_device)(struct ib_device *device,
1691						   struct ib_device_attr *device_attr,
1692						   struct ib_udata *udata);
1693	int		           (*query_port)(struct ib_device *device,
1694						 u8 port_num,
1695						 struct ib_port_attr *port_attr);
1696	enum rdma_link_layer	   (*get_link_layer)(struct ib_device *device,
1697						     u8 port_num);
1698	/* When calling get_netdev, the HW vendor's driver should return the
1699	 * net device of device @device at port @port_num or NULL if such
1700	 * a net device doesn't exist. The vendor driver should call dev_hold
1701	 * on this net device. The HW vendor's device driver must guarantee
1702	 * that this function returns NULL before the net device reaches
1703	 * NETDEV_UNREGISTER_FINAL state.
1704	 */
1705	struct net_device	  *(*get_netdev)(struct ib_device *device,
1706						 u8 port_num);
1707	int		           (*query_gid)(struct ib_device *device,
1708						u8 port_num, int index,
1709						union ib_gid *gid);
1710	/* When calling add_gid, the HW vendor's driver should
1711	 * add the gid of device @device at gid index @index of
1712	 * port @port_num to be @gid. Meta-info of that gid (for example,
1713	 * the network device related to this gid is available
1714	 * at @attr. @context allows the HW vendor driver to store extra
1715	 * information together with a GID entry. The HW vendor may allocate
1716	 * memory to contain this information and store it in @context when a
1717	 * new GID entry is written to. Params are consistent until the next
1718	 * call of add_gid or delete_gid. The function should return 0 on
1719	 * success or error otherwise. The function could be called
1720	 * concurrently for different ports. This function is only called
1721	 * when roce_gid_table is used.
1722	 */
1723	int		           (*add_gid)(struct ib_device *device,
1724					      u8 port_num,
1725					      unsigned int index,
1726					      const union ib_gid *gid,
1727					      const struct ib_gid_attr *attr,
1728					      void **context);
1729	/* When calling del_gid, the HW vendor's driver should delete the
1730	 * gid of device @device at gid index @index of port @port_num.
1731	 * Upon the deletion of a GID entry, the HW vendor must free any
1732	 * allocated memory. The caller will clear @context afterwards.
1733	 * This function is only called when roce_gid_table is used.
1734	 */
1735	int		           (*del_gid)(struct ib_device *device,
1736					      u8 port_num,
1737					      unsigned int index,
1738					      void **context);
1739	int		           (*query_pkey)(struct ib_device *device,
1740						 u8 port_num, u16 index, u16 *pkey);
1741	int		           (*modify_device)(struct ib_device *device,
1742						    int device_modify_mask,
1743						    struct ib_device_modify *device_modify);
1744	int		           (*modify_port)(struct ib_device *device,
1745						  u8 port_num, int port_modify_mask,
1746						  struct ib_port_modify *port_modify);
1747	struct ib_ucontext *       (*alloc_ucontext)(struct ib_device *device,
1748						     struct ib_udata *udata);
1749	int                        (*dealloc_ucontext)(struct ib_ucontext *context);
1750	int                        (*mmap)(struct ib_ucontext *context,
1751					   struct vm_area_struct *vma);
1752	struct ib_pd *             (*alloc_pd)(struct ib_device *device,
1753					       struct ib_ucontext *context,
1754					       struct ib_udata *udata);
1755	int                        (*dealloc_pd)(struct ib_pd *pd);
1756	struct ib_ah *             (*create_ah)(struct ib_pd *pd,
1757						struct ib_ah_attr *ah_attr);
1758	int                        (*modify_ah)(struct ib_ah *ah,
1759						struct ib_ah_attr *ah_attr);
1760	int                        (*query_ah)(struct ib_ah *ah,
1761					       struct ib_ah_attr *ah_attr);
1762	int                        (*destroy_ah)(struct ib_ah *ah);
1763	struct ib_srq *            (*create_srq)(struct ib_pd *pd,
1764						 struct ib_srq_init_attr *srq_init_attr,
1765						 struct ib_udata *udata);
1766	int                        (*modify_srq)(struct ib_srq *srq,
1767						 struct ib_srq_attr *srq_attr,
1768						 enum ib_srq_attr_mask srq_attr_mask,
1769						 struct ib_udata *udata);
1770	int                        (*query_srq)(struct ib_srq *srq,
1771						struct ib_srq_attr *srq_attr);
1772	int                        (*destroy_srq)(struct ib_srq *srq);
1773	int                        (*post_srq_recv)(struct ib_srq *srq,
1774						    struct ib_recv_wr *recv_wr,
1775						    struct ib_recv_wr **bad_recv_wr);
1776	struct ib_qp *             (*create_qp)(struct ib_pd *pd,
1777						struct ib_qp_init_attr *qp_init_attr,
1778						struct ib_udata *udata);
1779	int                        (*modify_qp)(struct ib_qp *qp,
1780						struct ib_qp_attr *qp_attr,
1781						int qp_attr_mask,
1782						struct ib_udata *udata);
1783	int                        (*query_qp)(struct ib_qp *qp,
1784					       struct ib_qp_attr *qp_attr,
1785					       int qp_attr_mask,
1786					       struct ib_qp_init_attr *qp_init_attr);
1787	int                        (*destroy_qp)(struct ib_qp *qp);
1788	int                        (*post_send)(struct ib_qp *qp,
1789						struct ib_send_wr *send_wr,
1790						struct ib_send_wr **bad_send_wr);
1791	int                        (*post_recv)(struct ib_qp *qp,
1792						struct ib_recv_wr *recv_wr,
1793						struct ib_recv_wr **bad_recv_wr);
1794	struct ib_cq *             (*create_cq)(struct ib_device *device,
1795						const struct ib_cq_init_attr *attr,
1796						struct ib_ucontext *context,
1797						struct ib_udata *udata);
1798	int                        (*modify_cq)(struct ib_cq *cq, u16 cq_count,
1799						u16 cq_period);
1800	int                        (*destroy_cq)(struct ib_cq *cq);
1801	int                        (*resize_cq)(struct ib_cq *cq, int cqe,
1802						struct ib_udata *udata);
1803	int                        (*poll_cq)(struct ib_cq *cq, int num_entries,
1804					      struct ib_wc *wc);
1805	int                        (*peek_cq)(struct ib_cq *cq, int wc_cnt);
1806	int                        (*req_notify_cq)(struct ib_cq *cq,
1807						    enum ib_cq_notify_flags flags);
1808	int                        (*req_ncomp_notif)(struct ib_cq *cq,
1809						      int wc_cnt);
1810	struct ib_mr *             (*get_dma_mr)(struct ib_pd *pd,
1811						 int mr_access_flags);
 
 
 
 
 
1812	struct ib_mr *             (*reg_user_mr)(struct ib_pd *pd,
1813						  u64 start, u64 length,
1814						  u64 virt_addr,
1815						  int mr_access_flags,
1816						  struct ib_udata *udata);
1817	int			   (*rereg_user_mr)(struct ib_mr *mr,
1818						    int flags,
1819						    u64 start, u64 length,
1820						    u64 virt_addr,
 
 
 
 
 
 
 
 
 
1821						    int mr_access_flags,
1822						    struct ib_pd *pd,
1823						    struct ib_udata *udata);
1824	int                        (*dereg_mr)(struct ib_mr *mr);
1825	struct ib_mr *		   (*alloc_mr)(struct ib_pd *pd,
1826					       enum ib_mr_type mr_type,
1827					       u32 max_num_sg);
1828	int                        (*map_mr_sg)(struct ib_mr *mr,
1829						struct scatterlist *sg,
1830						int sg_nents);
1831	struct ib_mw *             (*alloc_mw)(struct ib_pd *pd,
1832					       enum ib_mw_type type,
1833					       struct ib_udata *udata);
1834	int                        (*dealloc_mw)(struct ib_mw *mw);
1835	struct ib_fmr *	           (*alloc_fmr)(struct ib_pd *pd,
1836						int mr_access_flags,
1837						struct ib_fmr_attr *fmr_attr);
1838	int		           (*map_phys_fmr)(struct ib_fmr *fmr,
1839						   u64 *page_list, int list_len,
1840						   u64 iova);
1841	int		           (*unmap_fmr)(struct list_head *fmr_list);
1842	int		           (*dealloc_fmr)(struct ib_fmr *fmr);
1843	int                        (*attach_mcast)(struct ib_qp *qp,
1844						   union ib_gid *gid,
1845						   u16 lid);
1846	int                        (*detach_mcast)(struct ib_qp *qp,
1847						   union ib_gid *gid,
1848						   u16 lid);
1849	int                        (*process_mad)(struct ib_device *device,
1850						  int process_mad_flags,
1851						  u8 port_num,
1852						  const struct ib_wc *in_wc,
1853						  const struct ib_grh *in_grh,
1854						  const struct ib_mad_hdr *in_mad,
1855						  size_t in_mad_size,
1856						  struct ib_mad_hdr *out_mad,
1857						  size_t *out_mad_size,
1858						  u16 *out_mad_pkey_index);
1859	struct ib_xrcd *	   (*alloc_xrcd)(struct ib_device *device,
1860						 struct ib_ucontext *ucontext,
1861						 struct ib_udata *udata);
1862	int			   (*dealloc_xrcd)(struct ib_xrcd *xrcd);
1863	struct ib_flow *	   (*create_flow)(struct ib_qp *qp,
1864						  struct ib_flow_attr
1865						  *flow_attr,
1866						  int domain);
1867	int			   (*destroy_flow)(struct ib_flow *flow_id);
1868	int			   (*check_mr_status)(struct ib_mr *mr, u32 check_mask,
1869						      struct ib_mr_status *mr_status);
1870	void			   (*disassociate_ucontext)(struct ib_ucontext *ibcontext);
1871	void			   (*drain_rq)(struct ib_qp *qp);
1872	void			   (*drain_sq)(struct ib_qp *qp);
1873	int			   (*set_vf_link_state)(struct ib_device *device, int vf, u8 port,
1874							int state);
1875	int			   (*get_vf_config)(struct ib_device *device, int vf, u8 port,
1876						   struct ifla_vf_info *ivf);
1877	int			   (*get_vf_stats)(struct ib_device *device, int vf, u8 port,
1878						   struct ifla_vf_stats *stats);
1879	int			   (*set_vf_guid)(struct ib_device *device, int vf, u8 port, u64 guid,
1880						  int type);
1881
1882	struct ib_dma_mapping_ops   *dma_ops;
1883
1884	struct module               *owner;
1885	struct device                dev;
1886	struct kobject               *ports_parent;
1887	struct list_head             port_list;
1888
1889	enum {
1890		IB_DEV_UNINITIALIZED,
1891		IB_DEV_REGISTERED,
1892		IB_DEV_UNREGISTERED
1893	}                            reg_state;
1894
1895	int			     uverbs_abi_ver;
1896	u64			     uverbs_cmd_mask;
1897	u64			     uverbs_ex_cmd_mask;
1898
1899	char			     node_desc[64];
1900	__be64			     node_guid;
1901	u32			     local_dma_lkey;
1902	u16                          is_switch:1;
1903	u8                           node_type;
1904	u8                           phys_port_cnt;
1905	struct ib_device_attr        attrs;
1906
1907	/**
1908	 * The following mandatory functions are used only at device
1909	 * registration.  Keep functions such as these at the end of this
1910	 * structure to avoid cache line misses when accessing struct ib_device
1911	 * in fast paths.
1912	 */
1913	int (*get_port_immutable)(struct ib_device *, u8, struct ib_port_immutable *);
1914};
1915
1916struct ib_client {
1917	char  *name;
1918	void (*add)   (struct ib_device *);
1919	void (*remove)(struct ib_device *, void *client_data);
1920
1921	/* Returns the net_dev belonging to this ib_client and matching the
1922	 * given parameters.
1923	 * @dev:	 An RDMA device that the net_dev use for communication.
1924	 * @port:	 A physical port number on the RDMA device.
1925	 * @pkey:	 P_Key that the net_dev uses if applicable.
1926	 * @gid:	 A GID that the net_dev uses to communicate.
1927	 * @addr:	 An IP address the net_dev is configured with.
1928	 * @client_data: The device's client data set by ib_set_client_data().
1929	 *
1930	 * An ib_client that implements a net_dev on top of RDMA devices
1931	 * (such as IP over IB) should implement this callback, allowing the
1932	 * rdma_cm module to find the right net_dev for a given request.
1933	 *
1934	 * The caller is responsible for calling dev_put on the returned
1935	 * netdev. */
1936	struct net_device *(*get_net_dev_by_params)(
1937			struct ib_device *dev,
1938			u8 port,
1939			u16 pkey,
1940			const union ib_gid *gid,
1941			const struct sockaddr *addr,
1942			void *client_data);
1943	struct list_head list;
1944};
1945
1946struct ib_device *ib_alloc_device(size_t size);
1947void ib_dealloc_device(struct ib_device *device);
1948
1949int ib_register_device(struct ib_device *device,
1950		       int (*port_callback)(struct ib_device *,
1951					    u8, struct kobject *));
1952void ib_unregister_device(struct ib_device *device);
1953
1954int ib_register_client   (struct ib_client *client);
1955void ib_unregister_client(struct ib_client *client);
1956
1957void *ib_get_client_data(struct ib_device *device, struct ib_client *client);
1958void  ib_set_client_data(struct ib_device *device, struct ib_client *client,
1959			 void *data);
1960
1961static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
1962{
1963	return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
1964}
1965
1966static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
1967{
1968	return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
1969}
1970
1971static inline bool ib_is_udata_cleared(struct ib_udata *udata,
1972				       size_t offset,
1973				       size_t len)
1974{
1975	const void __user *p = udata->inbuf + offset;
1976	bool ret = false;
1977	u8 *buf;
1978
1979	if (len > USHRT_MAX)
1980		return false;
1981
1982	buf = kmalloc(len, GFP_KERNEL);
1983	if (!buf)
1984		return false;
1985
1986	if (copy_from_user(buf, p, len))
1987		goto free;
1988
1989	ret = !memchr_inv(buf, 0, len);
1990
1991free:
1992	kfree(buf);
1993	return ret;
1994}
1995
1996/**
1997 * ib_modify_qp_is_ok - Check that the supplied attribute mask
1998 * contains all required attributes and no attributes not allowed for
1999 * the given QP state transition.
2000 * @cur_state: Current QP state
2001 * @next_state: Next QP state
2002 * @type: QP type
2003 * @mask: Mask of supplied QP attributes
2004 * @ll : link layer of port
2005 *
2006 * This function is a helper function that a low-level driver's
2007 * modify_qp method can use to validate the consumer's input.  It
2008 * checks that cur_state and next_state are valid QP states, that a
2009 * transition from cur_state to next_state is allowed by the IB spec,
2010 * and that the attribute mask supplied is allowed for the transition.
2011 */
2012int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
2013		       enum ib_qp_type type, enum ib_qp_attr_mask mask,
2014		       enum rdma_link_layer ll);
2015
2016int ib_register_event_handler  (struct ib_event_handler *event_handler);
2017int ib_unregister_event_handler(struct ib_event_handler *event_handler);
2018void ib_dispatch_event(struct ib_event *event);
2019
 
 
 
2020int ib_query_port(struct ib_device *device,
2021		  u8 port_num, struct ib_port_attr *port_attr);
2022
2023enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
2024					       u8 port_num);
2025
2026/**
2027 * rdma_cap_ib_switch - Check if the device is IB switch
2028 * @device: Device to check
2029 *
2030 * Device driver is responsible for setting is_switch bit on
2031 * in ib_device structure at init time.
2032 *
2033 * Return: true if the device is IB switch.
2034 */
2035static inline bool rdma_cap_ib_switch(const struct ib_device *device)
2036{
2037	return device->is_switch;
2038}
2039
2040/**
2041 * rdma_start_port - Return the first valid port number for the device
2042 * specified
2043 *
2044 * @device: Device to be checked
2045 *
2046 * Return start port number
2047 */
2048static inline u8 rdma_start_port(const struct ib_device *device)
2049{
2050	return rdma_cap_ib_switch(device) ? 0 : 1;
2051}
2052
2053/**
2054 * rdma_end_port - Return the last valid port number for the device
2055 * specified
2056 *
2057 * @device: Device to be checked
2058 *
2059 * Return last port number
2060 */
2061static inline u8 rdma_end_port(const struct ib_device *device)
2062{
2063	return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt;
2064}
2065
2066static inline bool rdma_protocol_ib(const struct ib_device *device, u8 port_num)
2067{
2068	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IB;
2069}
2070
2071static inline bool rdma_protocol_roce(const struct ib_device *device, u8 port_num)
2072{
2073	return device->port_immutable[port_num].core_cap_flags &
2074		(RDMA_CORE_CAP_PROT_ROCE | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP);
2075}
2076
2077static inline bool rdma_protocol_roce_udp_encap(const struct ib_device *device, u8 port_num)
2078{
2079	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP;
2080}
2081
2082static inline bool rdma_protocol_roce_eth_encap(const struct ib_device *device, u8 port_num)
2083{
2084	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE;
2085}
2086
2087static inline bool rdma_protocol_iwarp(const struct ib_device *device, u8 port_num)
2088{
2089	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IWARP;
2090}
2091
2092static inline bool rdma_ib_or_roce(const struct ib_device *device, u8 port_num)
2093{
2094	return rdma_protocol_ib(device, port_num) ||
2095		rdma_protocol_roce(device, port_num);
2096}
2097
2098/**
2099 * rdma_cap_ib_mad - Check if the port of a device supports Infiniband
2100 * Management Datagrams.
2101 * @device: Device to check
2102 * @port_num: Port number to check
2103 *
2104 * Management Datagrams (MAD) are a required part of the InfiniBand
2105 * specification and are supported on all InfiniBand devices.  A slightly
2106 * extended version are also supported on OPA interfaces.
2107 *
2108 * Return: true if the port supports sending/receiving of MAD packets.
2109 */
2110static inline bool rdma_cap_ib_mad(const struct ib_device *device, u8 port_num)
2111{
2112	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_MAD;
2113}
2114
2115/**
2116 * rdma_cap_opa_mad - Check if the port of device provides support for OPA
2117 * Management Datagrams.
2118 * @device: Device to check
2119 * @port_num: Port number to check
2120 *
2121 * Intel OmniPath devices extend and/or replace the InfiniBand Management
2122 * datagrams with their own versions.  These OPA MADs share many but not all of
2123 * the characteristics of InfiniBand MADs.
2124 *
2125 * OPA MADs differ in the following ways:
2126 *
2127 *    1) MADs are variable size up to 2K
2128 *       IBTA defined MADs remain fixed at 256 bytes
2129 *    2) OPA SMPs must carry valid PKeys
2130 *    3) OPA SMP packets are a different format
2131 *
2132 * Return: true if the port supports OPA MAD packet formats.
2133 */
2134static inline bool rdma_cap_opa_mad(struct ib_device *device, u8 port_num)
2135{
2136	return (device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_OPA_MAD)
2137		== RDMA_CORE_CAP_OPA_MAD;
2138}
2139
2140/**
2141 * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband
2142 * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI).
2143 * @device: Device to check
2144 * @port_num: Port number to check
2145 *
2146 * Each InfiniBand node is required to provide a Subnet Management Agent
2147 * that the subnet manager can access.  Prior to the fabric being fully
2148 * configured by the subnet manager, the SMA is accessed via a well known
2149 * interface called the Subnet Management Interface (SMI).  This interface
2150 * uses directed route packets to communicate with the SM to get around the
2151 * chicken and egg problem of the SM needing to know what's on the fabric
2152 * in order to configure the fabric, and needing to configure the fabric in
2153 * order to send packets to the devices on the fabric.  These directed
2154 * route packets do not need the fabric fully configured in order to reach
2155 * their destination.  The SMI is the only method allowed to send
2156 * directed route packets on an InfiniBand fabric.
2157 *
2158 * Return: true if the port provides an SMI.
2159 */
2160static inline bool rdma_cap_ib_smi(const struct ib_device *device, u8 port_num)
2161{
2162	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SMI;
2163}
2164
2165/**
2166 * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband
2167 * Communication Manager.
2168 * @device: Device to check
2169 * @port_num: Port number to check
2170 *
2171 * The InfiniBand Communication Manager is one of many pre-defined General
2172 * Service Agents (GSA) that are accessed via the General Service
2173 * Interface (GSI).  It's role is to facilitate establishment of connections
2174 * between nodes as well as other management related tasks for established
2175 * connections.
2176 *
2177 * Return: true if the port supports an IB CM (this does not guarantee that
2178 * a CM is actually running however).
2179 */
2180static inline bool rdma_cap_ib_cm(const struct ib_device *device, u8 port_num)
2181{
2182	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_CM;
2183}
2184
2185/**
2186 * rdma_cap_iw_cm - Check if the port of device has the capability IWARP
2187 * Communication Manager.
2188 * @device: Device to check
2189 * @port_num: Port number to check
2190 *
2191 * Similar to above, but specific to iWARP connections which have a different
2192 * managment protocol than InfiniBand.
2193 *
2194 * Return: true if the port supports an iWARP CM (this does not guarantee that
2195 * a CM is actually running however).
2196 */
2197static inline bool rdma_cap_iw_cm(const struct ib_device *device, u8 port_num)
2198{
2199	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IW_CM;
2200}
2201
2202/**
2203 * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband
2204 * Subnet Administration.
2205 * @device: Device to check
2206 * @port_num: Port number to check
2207 *
2208 * An InfiniBand Subnet Administration (SA) service is a pre-defined General
2209 * Service Agent (GSA) provided by the Subnet Manager (SM).  On InfiniBand
2210 * fabrics, devices should resolve routes to other hosts by contacting the
2211 * SA to query the proper route.
2212 *
2213 * Return: true if the port should act as a client to the fabric Subnet
2214 * Administration interface.  This does not imply that the SA service is
2215 * running locally.
2216 */
2217static inline bool rdma_cap_ib_sa(const struct ib_device *device, u8 port_num)
2218{
2219	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SA;
2220}
2221
2222/**
2223 * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband
2224 * Multicast.
2225 * @device: Device to check
2226 * @port_num: Port number to check
2227 *
2228 * InfiniBand multicast registration is more complex than normal IPv4 or
2229 * IPv6 multicast registration.  Each Host Channel Adapter must register
2230 * with the Subnet Manager when it wishes to join a multicast group.  It
2231 * should do so only once regardless of how many queue pairs it subscribes
2232 * to this group.  And it should leave the group only after all queue pairs
2233 * attached to the group have been detached.
2234 *
2235 * Return: true if the port must undertake the additional adminstrative
2236 * overhead of registering/unregistering with the SM and tracking of the
2237 * total number of queue pairs attached to the multicast group.
2238 */
2239static inline bool rdma_cap_ib_mcast(const struct ib_device *device, u8 port_num)
2240{
2241	return rdma_cap_ib_sa(device, port_num);
2242}
2243
2244/**
2245 * rdma_cap_af_ib - Check if the port of device has the capability
2246 * Native Infiniband Address.
2247 * @device: Device to check
2248 * @port_num: Port number to check
2249 *
2250 * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default
2251 * GID.  RoCE uses a different mechanism, but still generates a GID via
2252 * a prescribed mechanism and port specific data.
2253 *
2254 * Return: true if the port uses a GID address to identify devices on the
2255 * network.
2256 */
2257static inline bool rdma_cap_af_ib(const struct ib_device *device, u8 port_num)
2258{
2259	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_AF_IB;
2260}
2261
2262/**
2263 * rdma_cap_eth_ah - Check if the port of device has the capability
2264 * Ethernet Address Handle.
2265 * @device: Device to check
2266 * @port_num: Port number to check
2267 *
2268 * RoCE is InfiniBand over Ethernet, and it uses a well defined technique
2269 * to fabricate GIDs over Ethernet/IP specific addresses native to the
2270 * port.  Normally, packet headers are generated by the sending host
2271 * adapter, but when sending connectionless datagrams, we must manually
2272 * inject the proper headers for the fabric we are communicating over.
2273 *
2274 * Return: true if we are running as a RoCE port and must force the
2275 * addition of a Global Route Header built from our Ethernet Address
2276 * Handle into our header list for connectionless packets.
2277 */
2278static inline bool rdma_cap_eth_ah(const struct ib_device *device, u8 port_num)
2279{
2280	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_ETH_AH;
2281}
2282
2283/**
2284 * rdma_max_mad_size - Return the max MAD size required by this RDMA Port.
2285 *
2286 * @device: Device
2287 * @port_num: Port number
2288 *
2289 * This MAD size includes the MAD headers and MAD payload.  No other headers
2290 * are included.
2291 *
2292 * Return the max MAD size required by the Port.  Will return 0 if the port
2293 * does not support MADs
2294 */
2295static inline size_t rdma_max_mad_size(const struct ib_device *device, u8 port_num)
2296{
2297	return device->port_immutable[port_num].max_mad_size;
2298}
2299
2300/**
2301 * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table
2302 * @device: Device to check
2303 * @port_num: Port number to check
2304 *
2305 * RoCE GID table mechanism manages the various GIDs for a device.
2306 *
2307 * NOTE: if allocating the port's GID table has failed, this call will still
2308 * return true, but any RoCE GID table API will fail.
2309 *
2310 * Return: true if the port uses RoCE GID table mechanism in order to manage
2311 * its GIDs.
2312 */
2313static inline bool rdma_cap_roce_gid_table(const struct ib_device *device,
2314					   u8 port_num)
2315{
2316	return rdma_protocol_roce(device, port_num) &&
2317		device->add_gid && device->del_gid;
2318}
2319
2320int ib_query_gid(struct ib_device *device,
2321		 u8 port_num, int index, union ib_gid *gid,
2322		 struct ib_gid_attr *attr);
2323
2324int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port,
2325			 int state);
2326int ib_get_vf_config(struct ib_device *device, int vf, u8 port,
2327		     struct ifla_vf_info *info);
2328int ib_get_vf_stats(struct ib_device *device, int vf, u8 port,
2329		    struct ifla_vf_stats *stats);
2330int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid,
2331		   int type);
2332
2333int ib_query_pkey(struct ib_device *device,
2334		  u8 port_num, u16 index, u16 *pkey);
2335
2336int ib_modify_device(struct ib_device *device,
2337		     int device_modify_mask,
2338		     struct ib_device_modify *device_modify);
2339
2340int ib_modify_port(struct ib_device *device,
2341		   u8 port_num, int port_modify_mask,
2342		   struct ib_port_modify *port_modify);
2343
2344int ib_find_gid(struct ib_device *device, union ib_gid *gid,
2345		enum ib_gid_type gid_type, struct net_device *ndev,
2346		u8 *port_num, u16 *index);
2347
2348int ib_find_pkey(struct ib_device *device,
2349		 u8 port_num, u16 pkey, u16 *index);
2350
 
 
 
 
 
 
 
2351struct ib_pd *ib_alloc_pd(struct ib_device *device);
2352
2353void ib_dealloc_pd(struct ib_pd *pd);
 
 
 
 
2354
2355/**
2356 * ib_create_ah - Creates an address handle for the given address vector.
2357 * @pd: The protection domain associated with the address handle.
2358 * @ah_attr: The attributes of the address vector.
2359 *
2360 * The address handle is used to reference a local or global destination
2361 * in all UD QP post sends.
2362 */
2363struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr);
2364
2365/**
2366 * ib_init_ah_from_wc - Initializes address handle attributes from a
2367 *   work completion.
2368 * @device: Device on which the received message arrived.
2369 * @port_num: Port on which the received message arrived.
2370 * @wc: Work completion associated with the received message.
2371 * @grh: References the received global route header.  This parameter is
2372 *   ignored unless the work completion indicates that the GRH is valid.
2373 * @ah_attr: Returned attributes that can be used when creating an address
2374 *   handle for replying to the message.
2375 */
2376int ib_init_ah_from_wc(struct ib_device *device, u8 port_num,
2377		       const struct ib_wc *wc, const struct ib_grh *grh,
2378		       struct ib_ah_attr *ah_attr);
2379
2380/**
2381 * ib_create_ah_from_wc - Creates an address handle associated with the
2382 *   sender of the specified work completion.
2383 * @pd: The protection domain associated with the address handle.
2384 * @wc: Work completion information associated with a received message.
2385 * @grh: References the received global route header.  This parameter is
2386 *   ignored unless the work completion indicates that the GRH is valid.
2387 * @port_num: The outbound port number to associate with the address.
2388 *
2389 * The address handle is used to reference a local or global destination
2390 * in all UD QP post sends.
2391 */
2392struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
2393				   const struct ib_grh *grh, u8 port_num);
2394
2395/**
2396 * ib_modify_ah - Modifies the address vector associated with an address
2397 *   handle.
2398 * @ah: The address handle to modify.
2399 * @ah_attr: The new address vector attributes to associate with the
2400 *   address handle.
2401 */
2402int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
2403
2404/**
2405 * ib_query_ah - Queries the address vector associated with an address
2406 *   handle.
2407 * @ah: The address handle to query.
2408 * @ah_attr: The address vector attributes associated with the address
2409 *   handle.
2410 */
2411int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
2412
2413/**
2414 * ib_destroy_ah - Destroys an address handle.
2415 * @ah: The address handle to destroy.
2416 */
2417int ib_destroy_ah(struct ib_ah *ah);
2418
2419/**
2420 * ib_create_srq - Creates a SRQ associated with the specified protection
2421 *   domain.
2422 * @pd: The protection domain associated with the SRQ.
2423 * @srq_init_attr: A list of initial attributes required to create the
2424 *   SRQ.  If SRQ creation succeeds, then the attributes are updated to
2425 *   the actual capabilities of the created SRQ.
2426 *
2427 * srq_attr->max_wr and srq_attr->max_sge are read the determine the
2428 * requested size of the SRQ, and set to the actual values allocated
2429 * on return.  If ib_create_srq() succeeds, then max_wr and max_sge
2430 * will always be at least as large as the requested values.
2431 */
2432struct ib_srq *ib_create_srq(struct ib_pd *pd,
2433			     struct ib_srq_init_attr *srq_init_attr);
2434
2435/**
2436 * ib_modify_srq - Modifies the attributes for the specified SRQ.
2437 * @srq: The SRQ to modify.
2438 * @srq_attr: On input, specifies the SRQ attributes to modify.  On output,
2439 *   the current values of selected SRQ attributes are returned.
2440 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
2441 *   are being modified.
2442 *
2443 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
2444 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when
2445 * the number of receives queued drops below the limit.
2446 */
2447int ib_modify_srq(struct ib_srq *srq,
2448		  struct ib_srq_attr *srq_attr,
2449		  enum ib_srq_attr_mask srq_attr_mask);
2450
2451/**
2452 * ib_query_srq - Returns the attribute list and current values for the
2453 *   specified SRQ.
2454 * @srq: The SRQ to query.
2455 * @srq_attr: The attributes of the specified SRQ.
2456 */
2457int ib_query_srq(struct ib_srq *srq,
2458		 struct ib_srq_attr *srq_attr);
2459
2460/**
2461 * ib_destroy_srq - Destroys the specified SRQ.
2462 * @srq: The SRQ to destroy.
2463 */
2464int ib_destroy_srq(struct ib_srq *srq);
2465
2466/**
2467 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
2468 * @srq: The SRQ to post the work request on.
2469 * @recv_wr: A list of work requests to post on the receive queue.
2470 * @bad_recv_wr: On an immediate failure, this parameter will reference
2471 *   the work request that failed to be posted on the QP.
2472 */
2473static inline int ib_post_srq_recv(struct ib_srq *srq,
2474				   struct ib_recv_wr *recv_wr,
2475				   struct ib_recv_wr **bad_recv_wr)
2476{
2477	return srq->device->post_srq_recv(srq, recv_wr, bad_recv_wr);
2478}
2479
2480/**
2481 * ib_create_qp - Creates a QP associated with the specified protection
2482 *   domain.
2483 * @pd: The protection domain associated with the QP.
2484 * @qp_init_attr: A list of initial attributes required to create the
2485 *   QP.  If QP creation succeeds, then the attributes are updated to
2486 *   the actual capabilities of the created QP.
2487 */
2488struct ib_qp *ib_create_qp(struct ib_pd *pd,
2489			   struct ib_qp_init_attr *qp_init_attr);
2490
2491/**
2492 * ib_modify_qp - Modifies the attributes for the specified QP and then
2493 *   transitions the QP to the given state.
2494 * @qp: The QP to modify.
2495 * @qp_attr: On input, specifies the QP attributes to modify.  On output,
2496 *   the current values of selected QP attributes are returned.
2497 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP
2498 *   are being modified.
2499 */
2500int ib_modify_qp(struct ib_qp *qp,
2501		 struct ib_qp_attr *qp_attr,
2502		 int qp_attr_mask);
2503
2504/**
2505 * ib_query_qp - Returns the attribute list and current values for the
2506 *   specified QP.
2507 * @qp: The QP to query.
2508 * @qp_attr: The attributes of the specified QP.
2509 * @qp_attr_mask: A bit-mask used to select specific attributes to query.
2510 * @qp_init_attr: Additional attributes of the selected QP.
2511 *
2512 * The qp_attr_mask may be used to limit the query to gathering only the
2513 * selected attributes.
2514 */
2515int ib_query_qp(struct ib_qp *qp,
2516		struct ib_qp_attr *qp_attr,
2517		int qp_attr_mask,
2518		struct ib_qp_init_attr *qp_init_attr);
2519
2520/**
2521 * ib_destroy_qp - Destroys the specified QP.
2522 * @qp: The QP to destroy.
2523 */
2524int ib_destroy_qp(struct ib_qp *qp);
2525
2526/**
2527 * ib_open_qp - Obtain a reference to an existing sharable QP.
2528 * @xrcd - XRC domain
2529 * @qp_open_attr: Attributes identifying the QP to open.
2530 *
2531 * Returns a reference to a sharable QP.
2532 */
2533struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
2534			 struct ib_qp_open_attr *qp_open_attr);
2535
2536/**
2537 * ib_close_qp - Release an external reference to a QP.
2538 * @qp: The QP handle to release
2539 *
2540 * The opened QP handle is released by the caller.  The underlying
2541 * shared QP is not destroyed until all internal references are released.
2542 */
2543int ib_close_qp(struct ib_qp *qp);
2544
2545/**
2546 * ib_post_send - Posts a list of work requests to the send queue of
2547 *   the specified QP.
2548 * @qp: The QP to post the work request on.
2549 * @send_wr: A list of work requests to post on the send queue.
2550 * @bad_send_wr: On an immediate failure, this parameter will reference
2551 *   the work request that failed to be posted on the QP.
2552 *
2553 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate
2554 * error is returned, the QP state shall not be affected,
2555 * ib_post_send() will return an immediate error after queueing any
2556 * earlier work requests in the list.
2557 */
2558static inline int ib_post_send(struct ib_qp *qp,
2559			       struct ib_send_wr *send_wr,
2560			       struct ib_send_wr **bad_send_wr)
2561{
2562	return qp->device->post_send(qp, send_wr, bad_send_wr);
2563}
2564
2565/**
2566 * ib_post_recv - Posts a list of work requests to the receive queue of
2567 *   the specified QP.
2568 * @qp: The QP to post the work request on.
2569 * @recv_wr: A list of work requests to post on the receive queue.
2570 * @bad_recv_wr: On an immediate failure, this parameter will reference
2571 *   the work request that failed to be posted on the QP.
2572 */
2573static inline int ib_post_recv(struct ib_qp *qp,
2574			       struct ib_recv_wr *recv_wr,
2575			       struct ib_recv_wr **bad_recv_wr)
2576{
2577	return qp->device->post_recv(qp, recv_wr, bad_recv_wr);
2578}
2579
2580struct ib_cq *ib_alloc_cq(struct ib_device *dev, void *private,
2581		int nr_cqe, int comp_vector, enum ib_poll_context poll_ctx);
2582void ib_free_cq(struct ib_cq *cq);
2583int ib_process_cq_direct(struct ib_cq *cq, int budget);
2584
2585/**
2586 * ib_create_cq - Creates a CQ on the specified device.
2587 * @device: The device on which to create the CQ.
2588 * @comp_handler: A user-specified callback that is invoked when a
2589 *   completion event occurs on the CQ.
2590 * @event_handler: A user-specified callback that is invoked when an
2591 *   asynchronous event not associated with a completion occurs on the CQ.
2592 * @cq_context: Context associated with the CQ returned to the user via
2593 *   the associated completion and event handlers.
2594 * @cq_attr: The attributes the CQ should be created upon.
 
 
2595 *
2596 * Users can examine the cq structure to determine the actual CQ size.
2597 */
2598struct ib_cq *ib_create_cq(struct ib_device *device,
2599			   ib_comp_handler comp_handler,
2600			   void (*event_handler)(struct ib_event *, void *),
2601			   void *cq_context,
2602			   const struct ib_cq_init_attr *cq_attr);
2603
2604/**
2605 * ib_resize_cq - Modifies the capacity of the CQ.
2606 * @cq: The CQ to resize.
2607 * @cqe: The minimum size of the CQ.
2608 *
2609 * Users can examine the cq structure to determine the actual CQ size.
2610 */
2611int ib_resize_cq(struct ib_cq *cq, int cqe);
2612
2613/**
2614 * ib_modify_cq - Modifies moderation params of the CQ
2615 * @cq: The CQ to modify.
2616 * @cq_count: number of CQEs that will trigger an event
2617 * @cq_period: max period of time in usec before triggering an event
2618 *
2619 */
2620int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period);
2621
2622/**
2623 * ib_destroy_cq - Destroys the specified CQ.
2624 * @cq: The CQ to destroy.
2625 */
2626int ib_destroy_cq(struct ib_cq *cq);
2627
2628/**
2629 * ib_poll_cq - poll a CQ for completion(s)
2630 * @cq:the CQ being polled
2631 * @num_entries:maximum number of completions to return
2632 * @wc:array of at least @num_entries &struct ib_wc where completions
2633 *   will be returned
2634 *
2635 * Poll a CQ for (possibly multiple) completions.  If the return value
2636 * is < 0, an error occurred.  If the return value is >= 0, it is the
2637 * number of completions returned.  If the return value is
2638 * non-negative and < num_entries, then the CQ was emptied.
2639 */
2640static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
2641			     struct ib_wc *wc)
2642{
2643	return cq->device->poll_cq(cq, num_entries, wc);
2644}
2645
2646/**
2647 * ib_peek_cq - Returns the number of unreaped completions currently
2648 *   on the specified CQ.
2649 * @cq: The CQ to peek.
2650 * @wc_cnt: A minimum number of unreaped completions to check for.
2651 *
2652 * If the number of unreaped completions is greater than or equal to wc_cnt,
2653 * this function returns wc_cnt, otherwise, it returns the actual number of
2654 * unreaped completions.
2655 */
2656int ib_peek_cq(struct ib_cq *cq, int wc_cnt);
2657
2658/**
2659 * ib_req_notify_cq - Request completion notification on a CQ.
2660 * @cq: The CQ to generate an event for.
2661 * @flags:
2662 *   Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
2663 *   to request an event on the next solicited event or next work
2664 *   completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
2665 *   may also be |ed in to request a hint about missed events, as
2666 *   described below.
2667 *
2668 * Return Value:
2669 *    < 0 means an error occurred while requesting notification
2670 *   == 0 means notification was requested successfully, and if
2671 *        IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
2672 *        were missed and it is safe to wait for another event.  In
2673 *        this case is it guaranteed that any work completions added
2674 *        to the CQ since the last CQ poll will trigger a completion
2675 *        notification event.
2676 *    > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
2677 *        in.  It means that the consumer must poll the CQ again to
2678 *        make sure it is empty to avoid missing an event because of a
2679 *        race between requesting notification and an entry being
2680 *        added to the CQ.  This return value means it is possible
2681 *        (but not guaranteed) that a work completion has been added
2682 *        to the CQ since the last poll without triggering a
2683 *        completion notification event.
2684 */
2685static inline int ib_req_notify_cq(struct ib_cq *cq,
2686				   enum ib_cq_notify_flags flags)
2687{
2688	return cq->device->req_notify_cq(cq, flags);
2689}
2690
2691/**
2692 * ib_req_ncomp_notif - Request completion notification when there are
2693 *   at least the specified number of unreaped completions on the CQ.
2694 * @cq: The CQ to generate an event for.
2695 * @wc_cnt: The number of unreaped completions that should be on the
2696 *   CQ before an event is generated.
2697 */
2698static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt)
2699{
2700	return cq->device->req_ncomp_notif ?
2701		cq->device->req_ncomp_notif(cq, wc_cnt) :
2702		-ENOSYS;
2703}
2704
2705/**
2706 * ib_get_dma_mr - Returns a memory region for system memory that is
2707 *   usable for DMA.
2708 * @pd: The protection domain associated with the memory region.
2709 * @mr_access_flags: Specifies the memory access rights.
2710 *
2711 * Note that the ib_dma_*() functions defined below must be used
2712 * to create/destroy addresses used with the Lkey or Rkey returned
2713 * by ib_get_dma_mr().
2714 */
2715struct ib_mr *ib_get_dma_mr(struct ib_pd *pd, int mr_access_flags);
2716
2717/**
2718 * ib_dma_mapping_error - check a DMA addr for error
2719 * @dev: The device for which the dma_addr was created
2720 * @dma_addr: The DMA address to check
2721 */
2722static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
2723{
2724	if (dev->dma_ops)
2725		return dev->dma_ops->mapping_error(dev, dma_addr);
2726	return dma_mapping_error(dev->dma_device, dma_addr);
2727}
2728
2729/**
2730 * ib_dma_map_single - Map a kernel virtual address to DMA address
2731 * @dev: The device for which the dma_addr is to be created
2732 * @cpu_addr: The kernel virtual address
2733 * @size: The size of the region in bytes
2734 * @direction: The direction of the DMA
2735 */
2736static inline u64 ib_dma_map_single(struct ib_device *dev,
2737				    void *cpu_addr, size_t size,
2738				    enum dma_data_direction direction)
2739{
2740	if (dev->dma_ops)
2741		return dev->dma_ops->map_single(dev, cpu_addr, size, direction);
2742	return dma_map_single(dev->dma_device, cpu_addr, size, direction);
2743}
2744
2745/**
2746 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
2747 * @dev: The device for which the DMA address was created
2748 * @addr: The DMA address
2749 * @size: The size of the region in bytes
2750 * @direction: The direction of the DMA
2751 */
2752static inline void ib_dma_unmap_single(struct ib_device *dev,
2753				       u64 addr, size_t size,
2754				       enum dma_data_direction direction)
2755{
2756	if (dev->dma_ops)
2757		dev->dma_ops->unmap_single(dev, addr, size, direction);
2758	else
2759		dma_unmap_single(dev->dma_device, addr, size, direction);
2760}
2761
2762static inline u64 ib_dma_map_single_attrs(struct ib_device *dev,
2763					  void *cpu_addr, size_t size,
2764					  enum dma_data_direction direction,
2765					  struct dma_attrs *attrs)
2766{
2767	return dma_map_single_attrs(dev->dma_device, cpu_addr, size,
2768				    direction, attrs);
2769}
2770
2771static inline void ib_dma_unmap_single_attrs(struct ib_device *dev,
2772					     u64 addr, size_t size,
2773					     enum dma_data_direction direction,
2774					     struct dma_attrs *attrs)
2775{
2776	return dma_unmap_single_attrs(dev->dma_device, addr, size,
2777				      direction, attrs);
2778}
2779
2780/**
2781 * ib_dma_map_page - Map a physical page to DMA address
2782 * @dev: The device for which the dma_addr is to be created
2783 * @page: The page to be mapped
2784 * @offset: The offset within the page
2785 * @size: The size of the region in bytes
2786 * @direction: The direction of the DMA
2787 */
2788static inline u64 ib_dma_map_page(struct ib_device *dev,
2789				  struct page *page,
2790				  unsigned long offset,
2791				  size_t size,
2792					 enum dma_data_direction direction)
2793{
2794	if (dev->dma_ops)
2795		return dev->dma_ops->map_page(dev, page, offset, size, direction);
2796	return dma_map_page(dev->dma_device, page, offset, size, direction);
2797}
2798
2799/**
2800 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
2801 * @dev: The device for which the DMA address was created
2802 * @addr: The DMA address
2803 * @size: The size of the region in bytes
2804 * @direction: The direction of the DMA
2805 */
2806static inline void ib_dma_unmap_page(struct ib_device *dev,
2807				     u64 addr, size_t size,
2808				     enum dma_data_direction direction)
2809{
2810	if (dev->dma_ops)
2811		dev->dma_ops->unmap_page(dev, addr, size, direction);
2812	else
2813		dma_unmap_page(dev->dma_device, addr, size, direction);
2814}
2815
2816/**
2817 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses
2818 * @dev: The device for which the DMA addresses are to be created
2819 * @sg: The array of scatter/gather entries
2820 * @nents: The number of scatter/gather entries
2821 * @direction: The direction of the DMA
2822 */
2823static inline int ib_dma_map_sg(struct ib_device *dev,
2824				struct scatterlist *sg, int nents,
2825				enum dma_data_direction direction)
2826{
2827	if (dev->dma_ops)
2828		return dev->dma_ops->map_sg(dev, sg, nents, direction);
2829	return dma_map_sg(dev->dma_device, sg, nents, direction);
2830}
2831
2832/**
2833 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
2834 * @dev: The device for which the DMA addresses were created
2835 * @sg: The array of scatter/gather entries
2836 * @nents: The number of scatter/gather entries
2837 * @direction: The direction of the DMA
2838 */
2839static inline void ib_dma_unmap_sg(struct ib_device *dev,
2840				   struct scatterlist *sg, int nents,
2841				   enum dma_data_direction direction)
2842{
2843	if (dev->dma_ops)
2844		dev->dma_ops->unmap_sg(dev, sg, nents, direction);
2845	else
2846		dma_unmap_sg(dev->dma_device, sg, nents, direction);
2847}
2848
2849static inline int ib_dma_map_sg_attrs(struct ib_device *dev,
2850				      struct scatterlist *sg, int nents,
2851				      enum dma_data_direction direction,
2852				      struct dma_attrs *attrs)
2853{
2854	return dma_map_sg_attrs(dev->dma_device, sg, nents, direction, attrs);
2855}
2856
2857static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev,
2858					 struct scatterlist *sg, int nents,
2859					 enum dma_data_direction direction,
2860					 struct dma_attrs *attrs)
2861{
2862	dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, attrs);
2863}
2864/**
2865 * ib_sg_dma_address - Return the DMA address from a scatter/gather entry
2866 * @dev: The device for which the DMA addresses were created
2867 * @sg: The scatter/gather entry
2868 *
2869 * Note: this function is obsolete. To do: change all occurrences of
2870 * ib_sg_dma_address() into sg_dma_address().
2871 */
2872static inline u64 ib_sg_dma_address(struct ib_device *dev,
2873				    struct scatterlist *sg)
2874{
 
 
2875	return sg_dma_address(sg);
2876}
2877
2878/**
2879 * ib_sg_dma_len - Return the DMA length from a scatter/gather entry
2880 * @dev: The device for which the DMA addresses were created
2881 * @sg: The scatter/gather entry
2882 *
2883 * Note: this function is obsolete. To do: change all occurrences of
2884 * ib_sg_dma_len() into sg_dma_len().
2885 */
2886static inline unsigned int ib_sg_dma_len(struct ib_device *dev,
2887					 struct scatterlist *sg)
2888{
 
 
2889	return sg_dma_len(sg);
2890}
2891
2892/**
2893 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
2894 * @dev: The device for which the DMA address was created
2895 * @addr: The DMA address
2896 * @size: The size of the region in bytes
2897 * @dir: The direction of the DMA
2898 */
2899static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
2900					      u64 addr,
2901					      size_t size,
2902					      enum dma_data_direction dir)
2903{
2904	if (dev->dma_ops)
2905		dev->dma_ops->sync_single_for_cpu(dev, addr, size, dir);
2906	else
2907		dma_sync_single_for_cpu(dev->dma_device, addr, size, dir);
2908}
2909
2910/**
2911 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
2912 * @dev: The device for which the DMA address was created
2913 * @addr: The DMA address
2914 * @size: The size of the region in bytes
2915 * @dir: The direction of the DMA
2916 */
2917static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
2918						 u64 addr,
2919						 size_t size,
2920						 enum dma_data_direction dir)
2921{
2922	if (dev->dma_ops)
2923		dev->dma_ops->sync_single_for_device(dev, addr, size, dir);
2924	else
2925		dma_sync_single_for_device(dev->dma_device, addr, size, dir);
2926}
2927
2928/**
2929 * ib_dma_alloc_coherent - Allocate memory and map it for DMA
2930 * @dev: The device for which the DMA address is requested
2931 * @size: The size of the region to allocate in bytes
2932 * @dma_handle: A pointer for returning the DMA address of the region
2933 * @flag: memory allocator flags
2934 */
2935static inline void *ib_dma_alloc_coherent(struct ib_device *dev,
2936					   size_t size,
2937					   u64 *dma_handle,
2938					   gfp_t flag)
2939{
2940	if (dev->dma_ops)
2941		return dev->dma_ops->alloc_coherent(dev, size, dma_handle, flag);
2942	else {
2943		dma_addr_t handle;
2944		void *ret;
2945
2946		ret = dma_alloc_coherent(dev->dma_device, size, &handle, flag);
2947		*dma_handle = handle;
2948		return ret;
2949	}
2950}
2951
2952/**
2953 * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent()
2954 * @dev: The device for which the DMA addresses were allocated
2955 * @size: The size of the region
2956 * @cpu_addr: the address returned by ib_dma_alloc_coherent()
2957 * @dma_handle: the DMA address returned by ib_dma_alloc_coherent()
2958 */
2959static inline void ib_dma_free_coherent(struct ib_device *dev,
2960					size_t size, void *cpu_addr,
2961					u64 dma_handle)
2962{
2963	if (dev->dma_ops)
2964		dev->dma_ops->free_coherent(dev, size, cpu_addr, dma_handle);
2965	else
2966		dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle);
2967}
2968
2969/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2970 * ib_dereg_mr - Deregisters a memory region and removes it from the
2971 *   HCA translation table.
2972 * @mr: The memory region to deregister.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2973 *
2974 * This function can fail, if the memory region has memory windows bound to it.
 
 
 
 
2975 */
2976int ib_dereg_mr(struct ib_mr *mr);
 
2977
2978struct ib_mr *ib_alloc_mr(struct ib_pd *pd,
2979			  enum ib_mr_type mr_type,
2980			  u32 max_num_sg);
 
 
 
2981
2982/**
2983 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR
2984 *   R_Key and L_Key.
2985 * @mr - struct ib_mr pointer to be updated.
2986 * @newkey - new key to be used.
2987 */
2988static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey)
2989{
2990	mr->lkey = (mr->lkey & 0xffffff00) | newkey;
2991	mr->rkey = (mr->rkey & 0xffffff00) | newkey;
2992}
2993
2994/**
2995 * ib_inc_rkey - increments the key portion of the given rkey. Can be used
2996 * for calculating a new rkey for type 2 memory windows.
2997 * @rkey - the rkey to increment.
2998 */
2999static inline u32 ib_inc_rkey(u32 rkey)
3000{
3001	const u32 mask = 0x000000ff;
3002	return ((rkey + 1) & mask) | (rkey & ~mask);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3003}
3004
3005/**
 
 
 
 
 
 
3006 * ib_alloc_fmr - Allocates a unmapped fast memory region.
3007 * @pd: The protection domain associated with the unmapped region.
3008 * @mr_access_flags: Specifies the memory access rights.
3009 * @fmr_attr: Attributes of the unmapped region.
3010 *
3011 * A fast memory region must be mapped before it can be used as part of
3012 * a work request.
3013 */
3014struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
3015			    int mr_access_flags,
3016			    struct ib_fmr_attr *fmr_attr);
3017
3018/**
3019 * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region.
3020 * @fmr: The fast memory region to associate with the pages.
3021 * @page_list: An array of physical pages to map to the fast memory region.
3022 * @list_len: The number of pages in page_list.
3023 * @iova: The I/O virtual address to use with the mapped region.
3024 */
3025static inline int ib_map_phys_fmr(struct ib_fmr *fmr,
3026				  u64 *page_list, int list_len,
3027				  u64 iova)
3028{
3029	return fmr->device->map_phys_fmr(fmr, page_list, list_len, iova);
3030}
3031
3032/**
3033 * ib_unmap_fmr - Removes the mapping from a list of fast memory regions.
3034 * @fmr_list: A linked list of fast memory regions to unmap.
3035 */
3036int ib_unmap_fmr(struct list_head *fmr_list);
3037
3038/**
3039 * ib_dealloc_fmr - Deallocates a fast memory region.
3040 * @fmr: The fast memory region to deallocate.
3041 */
3042int ib_dealloc_fmr(struct ib_fmr *fmr);
3043
3044/**
3045 * ib_attach_mcast - Attaches the specified QP to a multicast group.
3046 * @qp: QP to attach to the multicast group.  The QP must be type
3047 *   IB_QPT_UD.
3048 * @gid: Multicast group GID.
3049 * @lid: Multicast group LID in host byte order.
3050 *
3051 * In order to send and receive multicast packets, subnet
3052 * administration must have created the multicast group and configured
3053 * the fabric appropriately.  The port associated with the specified
3054 * QP must also be a member of the multicast group.
3055 */
3056int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
3057
3058/**
3059 * ib_detach_mcast - Detaches the specified QP from a multicast group.
3060 * @qp: QP to detach from the multicast group.
3061 * @gid: Multicast group GID.
3062 * @lid: Multicast group LID in host byte order.
3063 */
3064int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
3065
3066/**
3067 * ib_alloc_xrcd - Allocates an XRC domain.
3068 * @device: The device on which to allocate the XRC domain.
3069 */
3070struct ib_xrcd *ib_alloc_xrcd(struct ib_device *device);
3071
3072/**
3073 * ib_dealloc_xrcd - Deallocates an XRC domain.
3074 * @xrcd: The XRC domain to deallocate.
3075 */
3076int ib_dealloc_xrcd(struct ib_xrcd *xrcd);
3077
3078struct ib_flow *ib_create_flow(struct ib_qp *qp,
3079			       struct ib_flow_attr *flow_attr, int domain);
3080int ib_destroy_flow(struct ib_flow *flow_id);
3081
3082static inline int ib_check_mr_access(int flags)
3083{
3084	/*
3085	 * Local write permission is required if remote write or
3086	 * remote atomic permission is also requested.
3087	 */
3088	if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) &&
3089	    !(flags & IB_ACCESS_LOCAL_WRITE))
3090		return -EINVAL;
3091
3092	return 0;
3093}
3094
3095/**
3096 * ib_check_mr_status: lightweight check of MR status.
3097 *     This routine may provide status checks on a selected
3098 *     ib_mr. first use is for signature status check.
3099 *
3100 * @mr: A memory region.
3101 * @check_mask: Bitmask of which checks to perform from
3102 *     ib_mr_status_check enumeration.
3103 * @mr_status: The container of relevant status checks.
3104 *     failed checks will be indicated in the status bitmask
3105 *     and the relevant info shall be in the error item.
3106 */
3107int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
3108		       struct ib_mr_status *mr_status);
3109
3110struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u8 port,
3111					    u16 pkey, const union ib_gid *gid,
3112					    const struct sockaddr *addr);
3113
3114int ib_map_mr_sg(struct ib_mr *mr,
3115		 struct scatterlist *sg,
3116		 int sg_nents,
3117		 unsigned int page_size);
3118
3119static inline int
3120ib_map_mr_sg_zbva(struct ib_mr *mr,
3121		  struct scatterlist *sg,
3122		  int sg_nents,
3123		  unsigned int page_size)
3124{
3125	int n;
3126
3127	n = ib_map_mr_sg(mr, sg, sg_nents, page_size);
3128	mr->iova = 0;
3129
3130	return n;
3131}
3132
3133int ib_sg_to_pages(struct ib_mr *mr,
3134		   struct scatterlist *sgl,
3135		   int sg_nents,
3136		   int (*set_page)(struct ib_mr *, u64));
3137
3138void ib_drain_rq(struct ib_qp *qp);
3139void ib_drain_sq(struct ib_qp *qp);
3140void ib_drain_qp(struct ib_qp *qp);
3141#endif /* IB_VERBS_H */