Linux Audio

Check our new training course

Loading...
   1/*
   2 * Copyright (c) 2004 Mellanox Technologies Ltd.  All rights reserved.
   3 * Copyright (c) 2004 Infinicon Corporation.  All rights reserved.
   4 * Copyright (c) 2004 Intel Corporation.  All rights reserved.
   5 * Copyright (c) 2004 Topspin Corporation.  All rights reserved.
   6 * Copyright (c) 2004 Voltaire Corporation.  All rights reserved.
   7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
   8 * Copyright (c) 2005, 2006, 2007 Cisco Systems.  All rights reserved.
   9 *
  10 * This software is available to you under a choice of one of two
  11 * licenses.  You may choose to be licensed under the terms of the GNU
  12 * General Public License (GPL) Version 2, available from the file
  13 * COPYING in the main directory of this source tree, or the
  14 * OpenIB.org BSD license below:
  15 *
  16 *     Redistribution and use in source and binary forms, with or
  17 *     without modification, are permitted provided that the following
  18 *     conditions are met:
  19 *
  20 *      - Redistributions of source code must retain the above
  21 *        copyright notice, this list of conditions and the following
  22 *        disclaimer.
  23 *
  24 *      - Redistributions in binary form must reproduce the above
  25 *        copyright notice, this list of conditions and the following
  26 *        disclaimer in the documentation and/or other materials
  27 *        provided with the distribution.
  28 *
  29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  36 * SOFTWARE.
  37 */
  38
  39#if !defined(IB_VERBS_H)
  40#define IB_VERBS_H
  41
  42#include <linux/types.h>
  43#include <linux/device.h>
  44#include <linux/mm.h>
  45#include <linux/dma-mapping.h>
  46#include <linux/kref.h>
  47#include <linux/list.h>
  48#include <linux/rwsem.h>
  49#include <linux/scatterlist.h>
  50#include <linux/workqueue.h>
  51
  52#include <linux/atomic.h>
  53#include <asm/uaccess.h>
  54
  55extern struct workqueue_struct *ib_wq;
  56
  57union ib_gid {
  58	u8	raw[16];
  59	struct {
  60		__be64	subnet_prefix;
  61		__be64	interface_id;
  62	} global;
  63};
  64
  65enum rdma_node_type {
  66	/* IB values map to NodeInfo:NodeType. */
  67	RDMA_NODE_IB_CA 	= 1,
  68	RDMA_NODE_IB_SWITCH,
  69	RDMA_NODE_IB_ROUTER,
  70	RDMA_NODE_RNIC
  71};
  72
  73enum rdma_transport_type {
  74	RDMA_TRANSPORT_IB,
  75	RDMA_TRANSPORT_IWARP
  76};
  77
  78enum rdma_transport_type
  79rdma_node_get_transport(enum rdma_node_type node_type) __attribute_const__;
  80
  81enum rdma_link_layer {
  82	IB_LINK_LAYER_UNSPECIFIED,
  83	IB_LINK_LAYER_INFINIBAND,
  84	IB_LINK_LAYER_ETHERNET,
  85};
  86
  87enum ib_device_cap_flags {
  88	IB_DEVICE_RESIZE_MAX_WR		= 1,
  89	IB_DEVICE_BAD_PKEY_CNTR		= (1<<1),
  90	IB_DEVICE_BAD_QKEY_CNTR		= (1<<2),
  91	IB_DEVICE_RAW_MULTI		= (1<<3),
  92	IB_DEVICE_AUTO_PATH_MIG		= (1<<4),
  93	IB_DEVICE_CHANGE_PHY_PORT	= (1<<5),
  94	IB_DEVICE_UD_AV_PORT_ENFORCE	= (1<<6),
  95	IB_DEVICE_CURR_QP_STATE_MOD	= (1<<7),
  96	IB_DEVICE_SHUTDOWN_PORT		= (1<<8),
  97	IB_DEVICE_INIT_TYPE		= (1<<9),
  98	IB_DEVICE_PORT_ACTIVE_EVENT	= (1<<10),
  99	IB_DEVICE_SYS_IMAGE_GUID	= (1<<11),
 100	IB_DEVICE_RC_RNR_NAK_GEN	= (1<<12),
 101	IB_DEVICE_SRQ_RESIZE		= (1<<13),
 102	IB_DEVICE_N_NOTIFY_CQ		= (1<<14),
 103	IB_DEVICE_LOCAL_DMA_LKEY	= (1<<15),
 104	IB_DEVICE_RESERVED		= (1<<16), /* old SEND_W_INV */
 105	IB_DEVICE_MEM_WINDOW		= (1<<17),
 106	/*
 107	 * Devices should set IB_DEVICE_UD_IP_SUM if they support
 108	 * insertion of UDP and TCP checksum on outgoing UD IPoIB
 109	 * messages and can verify the validity of checksum for
 110	 * incoming messages.  Setting this flag implies that the
 111	 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
 112	 */
 113	IB_DEVICE_UD_IP_CSUM		= (1<<18),
 114	IB_DEVICE_UD_TSO		= (1<<19),
 115	IB_DEVICE_XRC			= (1<<20),
 116	IB_DEVICE_MEM_MGT_EXTENSIONS	= (1<<21),
 117	IB_DEVICE_BLOCK_MULTICAST_LOOPBACK = (1<<22),
 118};
 119
 120enum ib_atomic_cap {
 121	IB_ATOMIC_NONE,
 122	IB_ATOMIC_HCA,
 123	IB_ATOMIC_GLOB
 124};
 125
 126struct ib_device_attr {
 127	u64			fw_ver;
 128	__be64			sys_image_guid;
 129	u64			max_mr_size;
 130	u64			page_size_cap;
 131	u32			vendor_id;
 132	u32			vendor_part_id;
 133	u32			hw_ver;
 134	int			max_qp;
 135	int			max_qp_wr;
 136	int			device_cap_flags;
 137	int			max_sge;
 138	int			max_sge_rd;
 139	int			max_cq;
 140	int			max_cqe;
 141	int			max_mr;
 142	int			max_pd;
 143	int			max_qp_rd_atom;
 144	int			max_ee_rd_atom;
 145	int			max_res_rd_atom;
 146	int			max_qp_init_rd_atom;
 147	int			max_ee_init_rd_atom;
 148	enum ib_atomic_cap	atomic_cap;
 149	enum ib_atomic_cap	masked_atomic_cap;
 150	int			max_ee;
 151	int			max_rdd;
 152	int			max_mw;
 153	int			max_raw_ipv6_qp;
 154	int			max_raw_ethy_qp;
 155	int			max_mcast_grp;
 156	int			max_mcast_qp_attach;
 157	int			max_total_mcast_qp_attach;
 158	int			max_ah;
 159	int			max_fmr;
 160	int			max_map_per_fmr;
 161	int			max_srq;
 162	int			max_srq_wr;
 163	int			max_srq_sge;
 164	unsigned int		max_fast_reg_page_list_len;
 165	u16			max_pkeys;
 166	u8			local_ca_ack_delay;
 167};
 168
 169enum ib_mtu {
 170	IB_MTU_256  = 1,
 171	IB_MTU_512  = 2,
 172	IB_MTU_1024 = 3,
 173	IB_MTU_2048 = 4,
 174	IB_MTU_4096 = 5
 175};
 176
 177static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
 178{
 179	switch (mtu) {
 180	case IB_MTU_256:  return  256;
 181	case IB_MTU_512:  return  512;
 182	case IB_MTU_1024: return 1024;
 183	case IB_MTU_2048: return 2048;
 184	case IB_MTU_4096: return 4096;
 185	default: 	  return -1;
 186	}
 187}
 188
 189enum ib_port_state {
 190	IB_PORT_NOP		= 0,
 191	IB_PORT_DOWN		= 1,
 192	IB_PORT_INIT		= 2,
 193	IB_PORT_ARMED		= 3,
 194	IB_PORT_ACTIVE		= 4,
 195	IB_PORT_ACTIVE_DEFER	= 5
 196};
 197
 198enum ib_port_cap_flags {
 199	IB_PORT_SM				= 1 <<  1,
 200	IB_PORT_NOTICE_SUP			= 1 <<  2,
 201	IB_PORT_TRAP_SUP			= 1 <<  3,
 202	IB_PORT_OPT_IPD_SUP                     = 1 <<  4,
 203	IB_PORT_AUTO_MIGR_SUP			= 1 <<  5,
 204	IB_PORT_SL_MAP_SUP			= 1 <<  6,
 205	IB_PORT_MKEY_NVRAM			= 1 <<  7,
 206	IB_PORT_PKEY_NVRAM			= 1 <<  8,
 207	IB_PORT_LED_INFO_SUP			= 1 <<  9,
 208	IB_PORT_SM_DISABLED			= 1 << 10,
 209	IB_PORT_SYS_IMAGE_GUID_SUP		= 1 << 11,
 210	IB_PORT_PKEY_SW_EXT_PORT_TRAP_SUP	= 1 << 12,
 211	IB_PORT_EXTENDED_SPEEDS_SUP             = 1 << 14,
 212	IB_PORT_CM_SUP				= 1 << 16,
 213	IB_PORT_SNMP_TUNNEL_SUP			= 1 << 17,
 214	IB_PORT_REINIT_SUP			= 1 << 18,
 215	IB_PORT_DEVICE_MGMT_SUP			= 1 << 19,
 216	IB_PORT_VENDOR_CLASS_SUP		= 1 << 20,
 217	IB_PORT_DR_NOTICE_SUP			= 1 << 21,
 218	IB_PORT_CAP_MASK_NOTICE_SUP		= 1 << 22,
 219	IB_PORT_BOOT_MGMT_SUP			= 1 << 23,
 220	IB_PORT_LINK_LATENCY_SUP		= 1 << 24,
 221	IB_PORT_CLIENT_REG_SUP			= 1 << 25
 222};
 223
 224enum ib_port_width {
 225	IB_WIDTH_1X	= 1,
 226	IB_WIDTH_4X	= 2,
 227	IB_WIDTH_8X	= 4,
 228	IB_WIDTH_12X	= 8
 229};
 230
 231static inline int ib_width_enum_to_int(enum ib_port_width width)
 232{
 233	switch (width) {
 234	case IB_WIDTH_1X:  return  1;
 235	case IB_WIDTH_4X:  return  4;
 236	case IB_WIDTH_8X:  return  8;
 237	case IB_WIDTH_12X: return 12;
 238	default: 	  return -1;
 239	}
 240}
 241
 242enum ib_port_speed {
 243	IB_SPEED_SDR	= 1,
 244	IB_SPEED_DDR	= 2,
 245	IB_SPEED_QDR	= 4,
 246	IB_SPEED_FDR10	= 8,
 247	IB_SPEED_FDR	= 16,
 248	IB_SPEED_EDR	= 32
 249};
 250
 251struct ib_protocol_stats {
 252	/* TBD... */
 253};
 254
 255struct iw_protocol_stats {
 256	u64	ipInReceives;
 257	u64	ipInHdrErrors;
 258	u64	ipInTooBigErrors;
 259	u64	ipInNoRoutes;
 260	u64	ipInAddrErrors;
 261	u64	ipInUnknownProtos;
 262	u64	ipInTruncatedPkts;
 263	u64	ipInDiscards;
 264	u64	ipInDelivers;
 265	u64	ipOutForwDatagrams;
 266	u64	ipOutRequests;
 267	u64	ipOutDiscards;
 268	u64	ipOutNoRoutes;
 269	u64	ipReasmTimeout;
 270	u64	ipReasmReqds;
 271	u64	ipReasmOKs;
 272	u64	ipReasmFails;
 273	u64	ipFragOKs;
 274	u64	ipFragFails;
 275	u64	ipFragCreates;
 276	u64	ipInMcastPkts;
 277	u64	ipOutMcastPkts;
 278	u64	ipInBcastPkts;
 279	u64	ipOutBcastPkts;
 280
 281	u64	tcpRtoAlgorithm;
 282	u64	tcpRtoMin;
 283	u64	tcpRtoMax;
 284	u64	tcpMaxConn;
 285	u64	tcpActiveOpens;
 286	u64	tcpPassiveOpens;
 287	u64	tcpAttemptFails;
 288	u64	tcpEstabResets;
 289	u64	tcpCurrEstab;
 290	u64	tcpInSegs;
 291	u64	tcpOutSegs;
 292	u64	tcpRetransSegs;
 293	u64	tcpInErrs;
 294	u64	tcpOutRsts;
 295};
 296
 297union rdma_protocol_stats {
 298	struct ib_protocol_stats	ib;
 299	struct iw_protocol_stats	iw;
 300};
 301
 302struct ib_port_attr {
 303	enum ib_port_state	state;
 304	enum ib_mtu		max_mtu;
 305	enum ib_mtu		active_mtu;
 306	int			gid_tbl_len;
 307	u32			port_cap_flags;
 308	u32			max_msg_sz;
 309	u32			bad_pkey_cntr;
 310	u32			qkey_viol_cntr;
 311	u16			pkey_tbl_len;
 312	u16			lid;
 313	u16			sm_lid;
 314	u8			lmc;
 315	u8			max_vl_num;
 316	u8			sm_sl;
 317	u8			subnet_timeout;
 318	u8			init_type_reply;
 319	u8			active_width;
 320	u8			active_speed;
 321	u8                      phys_state;
 322};
 323
 324enum ib_device_modify_flags {
 325	IB_DEVICE_MODIFY_SYS_IMAGE_GUID	= 1 << 0,
 326	IB_DEVICE_MODIFY_NODE_DESC	= 1 << 1
 327};
 328
 329struct ib_device_modify {
 330	u64	sys_image_guid;
 331	char	node_desc[64];
 332};
 333
 334enum ib_port_modify_flags {
 335	IB_PORT_SHUTDOWN		= 1,
 336	IB_PORT_INIT_TYPE		= (1<<2),
 337	IB_PORT_RESET_QKEY_CNTR		= (1<<3)
 338};
 339
 340struct ib_port_modify {
 341	u32	set_port_cap_mask;
 342	u32	clr_port_cap_mask;
 343	u8	init_type;
 344};
 345
 346enum ib_event_type {
 347	IB_EVENT_CQ_ERR,
 348	IB_EVENT_QP_FATAL,
 349	IB_EVENT_QP_REQ_ERR,
 350	IB_EVENT_QP_ACCESS_ERR,
 351	IB_EVENT_COMM_EST,
 352	IB_EVENT_SQ_DRAINED,
 353	IB_EVENT_PATH_MIG,
 354	IB_EVENT_PATH_MIG_ERR,
 355	IB_EVENT_DEVICE_FATAL,
 356	IB_EVENT_PORT_ACTIVE,
 357	IB_EVENT_PORT_ERR,
 358	IB_EVENT_LID_CHANGE,
 359	IB_EVENT_PKEY_CHANGE,
 360	IB_EVENT_SM_CHANGE,
 361	IB_EVENT_SRQ_ERR,
 362	IB_EVENT_SRQ_LIMIT_REACHED,
 363	IB_EVENT_QP_LAST_WQE_REACHED,
 364	IB_EVENT_CLIENT_REREGISTER,
 365	IB_EVENT_GID_CHANGE,
 366};
 367
 368struct ib_event {
 369	struct ib_device	*device;
 370	union {
 371		struct ib_cq	*cq;
 372		struct ib_qp	*qp;
 373		struct ib_srq	*srq;
 374		u8		port_num;
 375	} element;
 376	enum ib_event_type	event;
 377};
 378
 379struct ib_event_handler {
 380	struct ib_device *device;
 381	void            (*handler)(struct ib_event_handler *, struct ib_event *);
 382	struct list_head  list;
 383};
 384
 385#define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler)		\
 386	do {							\
 387		(_ptr)->device  = _device;			\
 388		(_ptr)->handler = _handler;			\
 389		INIT_LIST_HEAD(&(_ptr)->list);			\
 390	} while (0)
 391
 392struct ib_global_route {
 393	union ib_gid	dgid;
 394	u32		flow_label;
 395	u8		sgid_index;
 396	u8		hop_limit;
 397	u8		traffic_class;
 398};
 399
 400struct ib_grh {
 401	__be32		version_tclass_flow;
 402	__be16		paylen;
 403	u8		next_hdr;
 404	u8		hop_limit;
 405	union ib_gid	sgid;
 406	union ib_gid	dgid;
 407};
 408
 409enum {
 410	IB_MULTICAST_QPN = 0xffffff
 411};
 412
 413#define IB_LID_PERMISSIVE	cpu_to_be16(0xFFFF)
 414
 415enum ib_ah_flags {
 416	IB_AH_GRH	= 1
 417};
 418
 419enum ib_rate {
 420	IB_RATE_PORT_CURRENT = 0,
 421	IB_RATE_2_5_GBPS = 2,
 422	IB_RATE_5_GBPS   = 5,
 423	IB_RATE_10_GBPS  = 3,
 424	IB_RATE_20_GBPS  = 6,
 425	IB_RATE_30_GBPS  = 4,
 426	IB_RATE_40_GBPS  = 7,
 427	IB_RATE_60_GBPS  = 8,
 428	IB_RATE_80_GBPS  = 9,
 429	IB_RATE_120_GBPS = 10,
 430	IB_RATE_14_GBPS  = 11,
 431	IB_RATE_56_GBPS  = 12,
 432	IB_RATE_112_GBPS = 13,
 433	IB_RATE_168_GBPS = 14,
 434	IB_RATE_25_GBPS  = 15,
 435	IB_RATE_100_GBPS = 16,
 436	IB_RATE_200_GBPS = 17,
 437	IB_RATE_300_GBPS = 18
 438};
 439
 440/**
 441 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the
 442 * base rate of 2.5 Gbit/sec.  For example, IB_RATE_5_GBPS will be
 443 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
 444 * @rate: rate to convert.
 445 */
 446int ib_rate_to_mult(enum ib_rate rate) __attribute_const__;
 447
 448/**
 449 * ib_rate_to_mbps - Convert the IB rate enum to Mbps.
 450 * For example, IB_RATE_2_5_GBPS will be converted to 2500.
 451 * @rate: rate to convert.
 452 */
 453int ib_rate_to_mbps(enum ib_rate rate) __attribute_const__;
 454
 455/**
 456 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
 457 * enum.
 458 * @mult: multiple to convert.
 459 */
 460enum ib_rate mult_to_ib_rate(int mult) __attribute_const__;
 461
 462struct ib_ah_attr {
 463	struct ib_global_route	grh;
 464	u16			dlid;
 465	u8			sl;
 466	u8			src_path_bits;
 467	u8			static_rate;
 468	u8			ah_flags;
 469	u8			port_num;
 470};
 471
 472enum ib_wc_status {
 473	IB_WC_SUCCESS,
 474	IB_WC_LOC_LEN_ERR,
 475	IB_WC_LOC_QP_OP_ERR,
 476	IB_WC_LOC_EEC_OP_ERR,
 477	IB_WC_LOC_PROT_ERR,
 478	IB_WC_WR_FLUSH_ERR,
 479	IB_WC_MW_BIND_ERR,
 480	IB_WC_BAD_RESP_ERR,
 481	IB_WC_LOC_ACCESS_ERR,
 482	IB_WC_REM_INV_REQ_ERR,
 483	IB_WC_REM_ACCESS_ERR,
 484	IB_WC_REM_OP_ERR,
 485	IB_WC_RETRY_EXC_ERR,
 486	IB_WC_RNR_RETRY_EXC_ERR,
 487	IB_WC_LOC_RDD_VIOL_ERR,
 488	IB_WC_REM_INV_RD_REQ_ERR,
 489	IB_WC_REM_ABORT_ERR,
 490	IB_WC_INV_EECN_ERR,
 491	IB_WC_INV_EEC_STATE_ERR,
 492	IB_WC_FATAL_ERR,
 493	IB_WC_RESP_TIMEOUT_ERR,
 494	IB_WC_GENERAL_ERR
 495};
 496
 497enum ib_wc_opcode {
 498	IB_WC_SEND,
 499	IB_WC_RDMA_WRITE,
 500	IB_WC_RDMA_READ,
 501	IB_WC_COMP_SWAP,
 502	IB_WC_FETCH_ADD,
 503	IB_WC_BIND_MW,
 504	IB_WC_LSO,
 505	IB_WC_LOCAL_INV,
 506	IB_WC_FAST_REG_MR,
 507	IB_WC_MASKED_COMP_SWAP,
 508	IB_WC_MASKED_FETCH_ADD,
 509/*
 510 * Set value of IB_WC_RECV so consumers can test if a completion is a
 511 * receive by testing (opcode & IB_WC_RECV).
 512 */
 513	IB_WC_RECV			= 1 << 7,
 514	IB_WC_RECV_RDMA_WITH_IMM
 515};
 516
 517enum ib_wc_flags {
 518	IB_WC_GRH		= 1,
 519	IB_WC_WITH_IMM		= (1<<1),
 520	IB_WC_WITH_INVALIDATE	= (1<<2),
 521	IB_WC_IP_CSUM_OK	= (1<<3),
 522};
 523
 524struct ib_wc {
 525	u64			wr_id;
 526	enum ib_wc_status	status;
 527	enum ib_wc_opcode	opcode;
 528	u32			vendor_err;
 529	u32			byte_len;
 530	struct ib_qp	       *qp;
 531	union {
 532		__be32		imm_data;
 533		u32		invalidate_rkey;
 534	} ex;
 535	u32			src_qp;
 536	int			wc_flags;
 537	u16			pkey_index;
 538	u16			slid;
 539	u8			sl;
 540	u8			dlid_path_bits;
 541	u8			port_num;	/* valid only for DR SMPs on switches */
 542};
 543
 544enum ib_cq_notify_flags {
 545	IB_CQ_SOLICITED			= 1 << 0,
 546	IB_CQ_NEXT_COMP			= 1 << 1,
 547	IB_CQ_SOLICITED_MASK		= IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
 548	IB_CQ_REPORT_MISSED_EVENTS	= 1 << 2,
 549};
 550
 551enum ib_srq_type {
 552	IB_SRQT_BASIC,
 553	IB_SRQT_XRC
 554};
 555
 556enum ib_srq_attr_mask {
 557	IB_SRQ_MAX_WR	= 1 << 0,
 558	IB_SRQ_LIMIT	= 1 << 1,
 559};
 560
 561struct ib_srq_attr {
 562	u32	max_wr;
 563	u32	max_sge;
 564	u32	srq_limit;
 565};
 566
 567struct ib_srq_init_attr {
 568	void		      (*event_handler)(struct ib_event *, void *);
 569	void		       *srq_context;
 570	struct ib_srq_attr	attr;
 571	enum ib_srq_type	srq_type;
 572
 573	union {
 574		struct {
 575			struct ib_xrcd *xrcd;
 576			struct ib_cq   *cq;
 577		} xrc;
 578	} ext;
 579};
 580
 581struct ib_qp_cap {
 582	u32	max_send_wr;
 583	u32	max_recv_wr;
 584	u32	max_send_sge;
 585	u32	max_recv_sge;
 586	u32	max_inline_data;
 587};
 588
 589enum ib_sig_type {
 590	IB_SIGNAL_ALL_WR,
 591	IB_SIGNAL_REQ_WR
 592};
 593
 594enum ib_qp_type {
 595	/*
 596	 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
 597	 * here (and in that order) since the MAD layer uses them as
 598	 * indices into a 2-entry table.
 599	 */
 600	IB_QPT_SMI,
 601	IB_QPT_GSI,
 602
 603	IB_QPT_RC,
 604	IB_QPT_UC,
 605	IB_QPT_UD,
 606	IB_QPT_RAW_IPV6,
 607	IB_QPT_RAW_ETHERTYPE,
 608	IB_QPT_RAW_PACKET = 8,
 609	IB_QPT_XRC_INI = 9,
 610	IB_QPT_XRC_TGT,
 611	IB_QPT_MAX
 612};
 613
 614enum ib_qp_create_flags {
 615	IB_QP_CREATE_IPOIB_UD_LSO		= 1 << 0,
 616	IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK	= 1 << 1,
 617};
 618
 619struct ib_qp_init_attr {
 620	void                  (*event_handler)(struct ib_event *, void *);
 621	void		       *qp_context;
 622	struct ib_cq	       *send_cq;
 623	struct ib_cq	       *recv_cq;
 624	struct ib_srq	       *srq;
 625	struct ib_xrcd	       *xrcd;     /* XRC TGT QPs only */
 626	struct ib_qp_cap	cap;
 627	enum ib_sig_type	sq_sig_type;
 628	enum ib_qp_type		qp_type;
 629	enum ib_qp_create_flags	create_flags;
 630	u8			port_num; /* special QP types only */
 631};
 632
 633struct ib_qp_open_attr {
 634	void                  (*event_handler)(struct ib_event *, void *);
 635	void		       *qp_context;
 636	u32			qp_num;
 637	enum ib_qp_type		qp_type;
 638};
 639
 640enum ib_rnr_timeout {
 641	IB_RNR_TIMER_655_36 =  0,
 642	IB_RNR_TIMER_000_01 =  1,
 643	IB_RNR_TIMER_000_02 =  2,
 644	IB_RNR_TIMER_000_03 =  3,
 645	IB_RNR_TIMER_000_04 =  4,
 646	IB_RNR_TIMER_000_06 =  5,
 647	IB_RNR_TIMER_000_08 =  6,
 648	IB_RNR_TIMER_000_12 =  7,
 649	IB_RNR_TIMER_000_16 =  8,
 650	IB_RNR_TIMER_000_24 =  9,
 651	IB_RNR_TIMER_000_32 = 10,
 652	IB_RNR_TIMER_000_48 = 11,
 653	IB_RNR_TIMER_000_64 = 12,
 654	IB_RNR_TIMER_000_96 = 13,
 655	IB_RNR_TIMER_001_28 = 14,
 656	IB_RNR_TIMER_001_92 = 15,
 657	IB_RNR_TIMER_002_56 = 16,
 658	IB_RNR_TIMER_003_84 = 17,
 659	IB_RNR_TIMER_005_12 = 18,
 660	IB_RNR_TIMER_007_68 = 19,
 661	IB_RNR_TIMER_010_24 = 20,
 662	IB_RNR_TIMER_015_36 = 21,
 663	IB_RNR_TIMER_020_48 = 22,
 664	IB_RNR_TIMER_030_72 = 23,
 665	IB_RNR_TIMER_040_96 = 24,
 666	IB_RNR_TIMER_061_44 = 25,
 667	IB_RNR_TIMER_081_92 = 26,
 668	IB_RNR_TIMER_122_88 = 27,
 669	IB_RNR_TIMER_163_84 = 28,
 670	IB_RNR_TIMER_245_76 = 29,
 671	IB_RNR_TIMER_327_68 = 30,
 672	IB_RNR_TIMER_491_52 = 31
 673};
 674
 675enum ib_qp_attr_mask {
 676	IB_QP_STATE			= 1,
 677	IB_QP_CUR_STATE			= (1<<1),
 678	IB_QP_EN_SQD_ASYNC_NOTIFY	= (1<<2),
 679	IB_QP_ACCESS_FLAGS		= (1<<3),
 680	IB_QP_PKEY_INDEX		= (1<<4),
 681	IB_QP_PORT			= (1<<5),
 682	IB_QP_QKEY			= (1<<6),
 683	IB_QP_AV			= (1<<7),
 684	IB_QP_PATH_MTU			= (1<<8),
 685	IB_QP_TIMEOUT			= (1<<9),
 686	IB_QP_RETRY_CNT			= (1<<10),
 687	IB_QP_RNR_RETRY			= (1<<11),
 688	IB_QP_RQ_PSN			= (1<<12),
 689	IB_QP_MAX_QP_RD_ATOMIC		= (1<<13),
 690	IB_QP_ALT_PATH			= (1<<14),
 691	IB_QP_MIN_RNR_TIMER		= (1<<15),
 692	IB_QP_SQ_PSN			= (1<<16),
 693	IB_QP_MAX_DEST_RD_ATOMIC	= (1<<17),
 694	IB_QP_PATH_MIG_STATE		= (1<<18),
 695	IB_QP_CAP			= (1<<19),
 696	IB_QP_DEST_QPN			= (1<<20)
 697};
 698
 699enum ib_qp_state {
 700	IB_QPS_RESET,
 701	IB_QPS_INIT,
 702	IB_QPS_RTR,
 703	IB_QPS_RTS,
 704	IB_QPS_SQD,
 705	IB_QPS_SQE,
 706	IB_QPS_ERR
 707};
 708
 709enum ib_mig_state {
 710	IB_MIG_MIGRATED,
 711	IB_MIG_REARM,
 712	IB_MIG_ARMED
 713};
 714
 715struct ib_qp_attr {
 716	enum ib_qp_state	qp_state;
 717	enum ib_qp_state	cur_qp_state;
 718	enum ib_mtu		path_mtu;
 719	enum ib_mig_state	path_mig_state;
 720	u32			qkey;
 721	u32			rq_psn;
 722	u32			sq_psn;
 723	u32			dest_qp_num;
 724	int			qp_access_flags;
 725	struct ib_qp_cap	cap;
 726	struct ib_ah_attr	ah_attr;
 727	struct ib_ah_attr	alt_ah_attr;
 728	u16			pkey_index;
 729	u16			alt_pkey_index;
 730	u8			en_sqd_async_notify;
 731	u8			sq_draining;
 732	u8			max_rd_atomic;
 733	u8			max_dest_rd_atomic;
 734	u8			min_rnr_timer;
 735	u8			port_num;
 736	u8			timeout;
 737	u8			retry_cnt;
 738	u8			rnr_retry;
 739	u8			alt_port_num;
 740	u8			alt_timeout;
 741};
 742
 743enum ib_wr_opcode {
 744	IB_WR_RDMA_WRITE,
 745	IB_WR_RDMA_WRITE_WITH_IMM,
 746	IB_WR_SEND,
 747	IB_WR_SEND_WITH_IMM,
 748	IB_WR_RDMA_READ,
 749	IB_WR_ATOMIC_CMP_AND_SWP,
 750	IB_WR_ATOMIC_FETCH_AND_ADD,
 751	IB_WR_LSO,
 752	IB_WR_SEND_WITH_INV,
 753	IB_WR_RDMA_READ_WITH_INV,
 754	IB_WR_LOCAL_INV,
 755	IB_WR_FAST_REG_MR,
 756	IB_WR_MASKED_ATOMIC_CMP_AND_SWP,
 757	IB_WR_MASKED_ATOMIC_FETCH_AND_ADD,
 758};
 759
 760enum ib_send_flags {
 761	IB_SEND_FENCE		= 1,
 762	IB_SEND_SIGNALED	= (1<<1),
 763	IB_SEND_SOLICITED	= (1<<2),
 764	IB_SEND_INLINE		= (1<<3),
 765	IB_SEND_IP_CSUM		= (1<<4)
 766};
 767
 768struct ib_sge {
 769	u64	addr;
 770	u32	length;
 771	u32	lkey;
 772};
 773
 774struct ib_fast_reg_page_list {
 775	struct ib_device       *device;
 776	u64		       *page_list;
 777	unsigned int		max_page_list_len;
 778};
 779
 780struct ib_send_wr {
 781	struct ib_send_wr      *next;
 782	u64			wr_id;
 783	struct ib_sge	       *sg_list;
 784	int			num_sge;
 785	enum ib_wr_opcode	opcode;
 786	int			send_flags;
 787	union {
 788		__be32		imm_data;
 789		u32		invalidate_rkey;
 790	} ex;
 791	union {
 792		struct {
 793			u64	remote_addr;
 794			u32	rkey;
 795		} rdma;
 796		struct {
 797			u64	remote_addr;
 798			u64	compare_add;
 799			u64	swap;
 800			u64	compare_add_mask;
 801			u64	swap_mask;
 802			u32	rkey;
 803		} atomic;
 804		struct {
 805			struct ib_ah *ah;
 806			void   *header;
 807			int     hlen;
 808			int     mss;
 809			u32	remote_qpn;
 810			u32	remote_qkey;
 811			u16	pkey_index; /* valid for GSI only */
 812			u8	port_num;   /* valid for DR SMPs on switch only */
 813		} ud;
 814		struct {
 815			u64				iova_start;
 816			struct ib_fast_reg_page_list   *page_list;
 817			unsigned int			page_shift;
 818			unsigned int			page_list_len;
 819			u32				length;
 820			int				access_flags;
 821			u32				rkey;
 822		} fast_reg;
 823	} wr;
 824	u32			xrc_remote_srq_num;	/* XRC TGT QPs only */
 825};
 826
 827struct ib_recv_wr {
 828	struct ib_recv_wr      *next;
 829	u64			wr_id;
 830	struct ib_sge	       *sg_list;
 831	int			num_sge;
 832};
 833
 834enum ib_access_flags {
 835	IB_ACCESS_LOCAL_WRITE	= 1,
 836	IB_ACCESS_REMOTE_WRITE	= (1<<1),
 837	IB_ACCESS_REMOTE_READ	= (1<<2),
 838	IB_ACCESS_REMOTE_ATOMIC	= (1<<3),
 839	IB_ACCESS_MW_BIND	= (1<<4)
 840};
 841
 842struct ib_phys_buf {
 843	u64      addr;
 844	u64      size;
 845};
 846
 847struct ib_mr_attr {
 848	struct ib_pd	*pd;
 849	u64		device_virt_addr;
 850	u64		size;
 851	int		mr_access_flags;
 852	u32		lkey;
 853	u32		rkey;
 854};
 855
 856enum ib_mr_rereg_flags {
 857	IB_MR_REREG_TRANS	= 1,
 858	IB_MR_REREG_PD		= (1<<1),
 859	IB_MR_REREG_ACCESS	= (1<<2)
 860};
 861
 862struct ib_mw_bind {
 863	struct ib_mr   *mr;
 864	u64		wr_id;
 865	u64		addr;
 866	u32		length;
 867	int		send_flags;
 868	int		mw_access_flags;
 869};
 870
 871struct ib_fmr_attr {
 872	int	max_pages;
 873	int	max_maps;
 874	u8	page_shift;
 875};
 876
 877struct ib_ucontext {
 878	struct ib_device       *device;
 879	struct list_head	pd_list;
 880	struct list_head	mr_list;
 881	struct list_head	mw_list;
 882	struct list_head	cq_list;
 883	struct list_head	qp_list;
 884	struct list_head	srq_list;
 885	struct list_head	ah_list;
 886	struct list_head	xrcd_list;
 887	int			closing;
 888};
 889
 890struct ib_uobject {
 891	u64			user_handle;	/* handle given to us by userspace */
 892	struct ib_ucontext     *context;	/* associated user context */
 893	void		       *object;		/* containing object */
 894	struct list_head	list;		/* link to context's list */
 895	int			id;		/* index into kernel idr */
 896	struct kref		ref;
 897	struct rw_semaphore	mutex;		/* protects .live */
 898	int			live;
 899};
 900
 901struct ib_udata {
 902	void __user *inbuf;
 903	void __user *outbuf;
 904	size_t       inlen;
 905	size_t       outlen;
 906};
 907
 908struct ib_pd {
 909	struct ib_device       *device;
 910	struct ib_uobject      *uobject;
 911	atomic_t          	usecnt; /* count all resources */
 912};
 913
 914struct ib_xrcd {
 915	struct ib_device       *device;
 916	atomic_t		usecnt; /* count all exposed resources */
 917	struct inode	       *inode;
 918
 919	struct mutex		tgt_qp_mutex;
 920	struct list_head	tgt_qp_list;
 921};
 922
 923struct ib_ah {
 924	struct ib_device	*device;
 925	struct ib_pd		*pd;
 926	struct ib_uobject	*uobject;
 927};
 928
 929typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
 930
 931struct ib_cq {
 932	struct ib_device       *device;
 933	struct ib_uobject      *uobject;
 934	ib_comp_handler   	comp_handler;
 935	void                  (*event_handler)(struct ib_event *, void *);
 936	void                   *cq_context;
 937	int               	cqe;
 938	atomic_t          	usecnt; /* count number of work queues */
 939};
 940
 941struct ib_srq {
 942	struct ib_device       *device;
 943	struct ib_pd	       *pd;
 944	struct ib_uobject      *uobject;
 945	void		      (*event_handler)(struct ib_event *, void *);
 946	void		       *srq_context;
 947	enum ib_srq_type	srq_type;
 948	atomic_t		usecnt;
 949
 950	union {
 951		struct {
 952			struct ib_xrcd *xrcd;
 953			struct ib_cq   *cq;
 954			u32		srq_num;
 955		} xrc;
 956	} ext;
 957};
 958
 959struct ib_qp {
 960	struct ib_device       *device;
 961	struct ib_pd	       *pd;
 962	struct ib_cq	       *send_cq;
 963	struct ib_cq	       *recv_cq;
 964	struct ib_srq	       *srq;
 965	struct ib_xrcd	       *xrcd; /* XRC TGT QPs only */
 966	struct list_head	xrcd_list;
 967	atomic_t		usecnt; /* count times opened, mcast attaches */
 968	struct list_head	open_list;
 969	struct ib_qp           *real_qp;
 970	struct ib_uobject      *uobject;
 971	void                  (*event_handler)(struct ib_event *, void *);
 972	void		       *qp_context;
 973	u32			qp_num;
 974	enum ib_qp_type		qp_type;
 975};
 976
 977struct ib_mr {
 978	struct ib_device  *device;
 979	struct ib_pd	  *pd;
 980	struct ib_uobject *uobject;
 981	u32		   lkey;
 982	u32		   rkey;
 983	atomic_t	   usecnt; /* count number of MWs */
 984};
 985
 986struct ib_mw {
 987	struct ib_device	*device;
 988	struct ib_pd		*pd;
 989	struct ib_uobject	*uobject;
 990	u32			rkey;
 991};
 992
 993struct ib_fmr {
 994	struct ib_device	*device;
 995	struct ib_pd		*pd;
 996	struct list_head	list;
 997	u32			lkey;
 998	u32			rkey;
 999};
1000
1001struct ib_mad;
1002struct ib_grh;
1003
1004enum ib_process_mad_flags {
1005	IB_MAD_IGNORE_MKEY	= 1,
1006	IB_MAD_IGNORE_BKEY	= 2,
1007	IB_MAD_IGNORE_ALL	= IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
1008};
1009
1010enum ib_mad_result {
1011	IB_MAD_RESULT_FAILURE  = 0,      /* (!SUCCESS is the important flag) */
1012	IB_MAD_RESULT_SUCCESS  = 1 << 0, /* MAD was successfully processed   */
1013	IB_MAD_RESULT_REPLY    = 1 << 1, /* Reply packet needs to be sent    */
1014	IB_MAD_RESULT_CONSUMED = 1 << 2  /* Packet consumed: stop processing */
1015};
1016
1017#define IB_DEVICE_NAME_MAX 64
1018
1019struct ib_cache {
1020	rwlock_t                lock;
1021	struct ib_event_handler event_handler;
1022	struct ib_pkey_cache  **pkey_cache;
1023	struct ib_gid_cache   **gid_cache;
1024	u8                     *lmc_cache;
1025};
1026
1027struct ib_dma_mapping_ops {
1028	int		(*mapping_error)(struct ib_device *dev,
1029					 u64 dma_addr);
1030	u64		(*map_single)(struct ib_device *dev,
1031				      void *ptr, size_t size,
1032				      enum dma_data_direction direction);
1033	void		(*unmap_single)(struct ib_device *dev,
1034					u64 addr, size_t size,
1035					enum dma_data_direction direction);
1036	u64		(*map_page)(struct ib_device *dev,
1037				    struct page *page, unsigned long offset,
1038				    size_t size,
1039				    enum dma_data_direction direction);
1040	void		(*unmap_page)(struct ib_device *dev,
1041				      u64 addr, size_t size,
1042				      enum dma_data_direction direction);
1043	int		(*map_sg)(struct ib_device *dev,
1044				  struct scatterlist *sg, int nents,
1045				  enum dma_data_direction direction);
1046	void		(*unmap_sg)(struct ib_device *dev,
1047				    struct scatterlist *sg, int nents,
1048				    enum dma_data_direction direction);
1049	u64		(*dma_address)(struct ib_device *dev,
1050				       struct scatterlist *sg);
1051	unsigned int	(*dma_len)(struct ib_device *dev,
1052				   struct scatterlist *sg);
1053	void		(*sync_single_for_cpu)(struct ib_device *dev,
1054					       u64 dma_handle,
1055					       size_t size,
1056					       enum dma_data_direction dir);
1057	void		(*sync_single_for_device)(struct ib_device *dev,
1058						  u64 dma_handle,
1059						  size_t size,
1060						  enum dma_data_direction dir);
1061	void		*(*alloc_coherent)(struct ib_device *dev,
1062					   size_t size,
1063					   u64 *dma_handle,
1064					   gfp_t flag);
1065	void		(*free_coherent)(struct ib_device *dev,
1066					 size_t size, void *cpu_addr,
1067					 u64 dma_handle);
1068};
1069
1070struct iw_cm_verbs;
1071
1072struct ib_device {
1073	struct device                *dma_device;
1074
1075	char                          name[IB_DEVICE_NAME_MAX];
1076
1077	struct list_head              event_handler_list;
1078	spinlock_t                    event_handler_lock;
1079
1080	spinlock_t                    client_data_lock;
1081	struct list_head              core_list;
1082	struct list_head              client_data_list;
1083
1084	struct ib_cache               cache;
1085	int                          *pkey_tbl_len;
1086	int                          *gid_tbl_len;
1087
1088	int			      num_comp_vectors;
1089
1090	struct iw_cm_verbs	     *iwcm;
1091
1092	int		           (*get_protocol_stats)(struct ib_device *device,
1093							 union rdma_protocol_stats *stats);
1094	int		           (*query_device)(struct ib_device *device,
1095						   struct ib_device_attr *device_attr);
1096	int		           (*query_port)(struct ib_device *device,
1097						 u8 port_num,
1098						 struct ib_port_attr *port_attr);
1099	enum rdma_link_layer	   (*get_link_layer)(struct ib_device *device,
1100						     u8 port_num);
1101	int		           (*query_gid)(struct ib_device *device,
1102						u8 port_num, int index,
1103						union ib_gid *gid);
1104	int		           (*query_pkey)(struct ib_device *device,
1105						 u8 port_num, u16 index, u16 *pkey);
1106	int		           (*modify_device)(struct ib_device *device,
1107						    int device_modify_mask,
1108						    struct ib_device_modify *device_modify);
1109	int		           (*modify_port)(struct ib_device *device,
1110						  u8 port_num, int port_modify_mask,
1111						  struct ib_port_modify *port_modify);
1112	struct ib_ucontext *       (*alloc_ucontext)(struct ib_device *device,
1113						     struct ib_udata *udata);
1114	int                        (*dealloc_ucontext)(struct ib_ucontext *context);
1115	int                        (*mmap)(struct ib_ucontext *context,
1116					   struct vm_area_struct *vma);
1117	struct ib_pd *             (*alloc_pd)(struct ib_device *device,
1118					       struct ib_ucontext *context,
1119					       struct ib_udata *udata);
1120	int                        (*dealloc_pd)(struct ib_pd *pd);
1121	struct ib_ah *             (*create_ah)(struct ib_pd *pd,
1122						struct ib_ah_attr *ah_attr);
1123	int                        (*modify_ah)(struct ib_ah *ah,
1124						struct ib_ah_attr *ah_attr);
1125	int                        (*query_ah)(struct ib_ah *ah,
1126					       struct ib_ah_attr *ah_attr);
1127	int                        (*destroy_ah)(struct ib_ah *ah);
1128	struct ib_srq *            (*create_srq)(struct ib_pd *pd,
1129						 struct ib_srq_init_attr *srq_init_attr,
1130						 struct ib_udata *udata);
1131	int                        (*modify_srq)(struct ib_srq *srq,
1132						 struct ib_srq_attr *srq_attr,
1133						 enum ib_srq_attr_mask srq_attr_mask,
1134						 struct ib_udata *udata);
1135	int                        (*query_srq)(struct ib_srq *srq,
1136						struct ib_srq_attr *srq_attr);
1137	int                        (*destroy_srq)(struct ib_srq *srq);
1138	int                        (*post_srq_recv)(struct ib_srq *srq,
1139						    struct ib_recv_wr *recv_wr,
1140						    struct ib_recv_wr **bad_recv_wr);
1141	struct ib_qp *             (*create_qp)(struct ib_pd *pd,
1142						struct ib_qp_init_attr *qp_init_attr,
1143						struct ib_udata *udata);
1144	int                        (*modify_qp)(struct ib_qp *qp,
1145						struct ib_qp_attr *qp_attr,
1146						int qp_attr_mask,
1147						struct ib_udata *udata);
1148	int                        (*query_qp)(struct ib_qp *qp,
1149					       struct ib_qp_attr *qp_attr,
1150					       int qp_attr_mask,
1151					       struct ib_qp_init_attr *qp_init_attr);
1152	int                        (*destroy_qp)(struct ib_qp *qp);
1153	int                        (*post_send)(struct ib_qp *qp,
1154						struct ib_send_wr *send_wr,
1155						struct ib_send_wr **bad_send_wr);
1156	int                        (*post_recv)(struct ib_qp *qp,
1157						struct ib_recv_wr *recv_wr,
1158						struct ib_recv_wr **bad_recv_wr);
1159	struct ib_cq *             (*create_cq)(struct ib_device *device, int cqe,
1160						int comp_vector,
1161						struct ib_ucontext *context,
1162						struct ib_udata *udata);
1163	int                        (*modify_cq)(struct ib_cq *cq, u16 cq_count,
1164						u16 cq_period);
1165	int                        (*destroy_cq)(struct ib_cq *cq);
1166	int                        (*resize_cq)(struct ib_cq *cq, int cqe,
1167						struct ib_udata *udata);
1168	int                        (*poll_cq)(struct ib_cq *cq, int num_entries,
1169					      struct ib_wc *wc);
1170	int                        (*peek_cq)(struct ib_cq *cq, int wc_cnt);
1171	int                        (*req_notify_cq)(struct ib_cq *cq,
1172						    enum ib_cq_notify_flags flags);
1173	int                        (*req_ncomp_notif)(struct ib_cq *cq,
1174						      int wc_cnt);
1175	struct ib_mr *             (*get_dma_mr)(struct ib_pd *pd,
1176						 int mr_access_flags);
1177	struct ib_mr *             (*reg_phys_mr)(struct ib_pd *pd,
1178						  struct ib_phys_buf *phys_buf_array,
1179						  int num_phys_buf,
1180						  int mr_access_flags,
1181						  u64 *iova_start);
1182	struct ib_mr *             (*reg_user_mr)(struct ib_pd *pd,
1183						  u64 start, u64 length,
1184						  u64 virt_addr,
1185						  int mr_access_flags,
1186						  struct ib_udata *udata);
1187	int                        (*query_mr)(struct ib_mr *mr,
1188					       struct ib_mr_attr *mr_attr);
1189	int                        (*dereg_mr)(struct ib_mr *mr);
1190	struct ib_mr *		   (*alloc_fast_reg_mr)(struct ib_pd *pd,
1191					       int max_page_list_len);
1192	struct ib_fast_reg_page_list * (*alloc_fast_reg_page_list)(struct ib_device *device,
1193								   int page_list_len);
1194	void			   (*free_fast_reg_page_list)(struct ib_fast_reg_page_list *page_list);
1195	int                        (*rereg_phys_mr)(struct ib_mr *mr,
1196						    int mr_rereg_mask,
1197						    struct ib_pd *pd,
1198						    struct ib_phys_buf *phys_buf_array,
1199						    int num_phys_buf,
1200						    int mr_access_flags,
1201						    u64 *iova_start);
1202	struct ib_mw *             (*alloc_mw)(struct ib_pd *pd);
1203	int                        (*bind_mw)(struct ib_qp *qp,
1204					      struct ib_mw *mw,
1205					      struct ib_mw_bind *mw_bind);
1206	int                        (*dealloc_mw)(struct ib_mw *mw);
1207	struct ib_fmr *	           (*alloc_fmr)(struct ib_pd *pd,
1208						int mr_access_flags,
1209						struct ib_fmr_attr *fmr_attr);
1210	int		           (*map_phys_fmr)(struct ib_fmr *fmr,
1211						   u64 *page_list, int list_len,
1212						   u64 iova);
1213	int		           (*unmap_fmr)(struct list_head *fmr_list);
1214	int		           (*dealloc_fmr)(struct ib_fmr *fmr);
1215	int                        (*attach_mcast)(struct ib_qp *qp,
1216						   union ib_gid *gid,
1217						   u16 lid);
1218	int                        (*detach_mcast)(struct ib_qp *qp,
1219						   union ib_gid *gid,
1220						   u16 lid);
1221	int                        (*process_mad)(struct ib_device *device,
1222						  int process_mad_flags,
1223						  u8 port_num,
1224						  struct ib_wc *in_wc,
1225						  struct ib_grh *in_grh,
1226						  struct ib_mad *in_mad,
1227						  struct ib_mad *out_mad);
1228	struct ib_xrcd *	   (*alloc_xrcd)(struct ib_device *device,
1229						 struct ib_ucontext *ucontext,
1230						 struct ib_udata *udata);
1231	int			   (*dealloc_xrcd)(struct ib_xrcd *xrcd);
1232
1233	struct ib_dma_mapping_ops   *dma_ops;
1234
1235	struct module               *owner;
1236	struct device                dev;
1237	struct kobject               *ports_parent;
1238	struct list_head             port_list;
1239
1240	enum {
1241		IB_DEV_UNINITIALIZED,
1242		IB_DEV_REGISTERED,
1243		IB_DEV_UNREGISTERED
1244	}                            reg_state;
1245
1246	int			     uverbs_abi_ver;
1247	u64			     uverbs_cmd_mask;
1248
1249	char			     node_desc[64];
1250	__be64			     node_guid;
1251	u32			     local_dma_lkey;
1252	u8                           node_type;
1253	u8                           phys_port_cnt;
1254};
1255
1256struct ib_client {
1257	char  *name;
1258	void (*add)   (struct ib_device *);
1259	void (*remove)(struct ib_device *);
1260
1261	struct list_head list;
1262};
1263
1264struct ib_device *ib_alloc_device(size_t size);
1265void ib_dealloc_device(struct ib_device *device);
1266
1267int ib_register_device(struct ib_device *device,
1268		       int (*port_callback)(struct ib_device *,
1269					    u8, struct kobject *));
1270void ib_unregister_device(struct ib_device *device);
1271
1272int ib_register_client   (struct ib_client *client);
1273void ib_unregister_client(struct ib_client *client);
1274
1275void *ib_get_client_data(struct ib_device *device, struct ib_client *client);
1276void  ib_set_client_data(struct ib_device *device, struct ib_client *client,
1277			 void *data);
1278
1279static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
1280{
1281	return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
1282}
1283
1284static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
1285{
1286	return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
1287}
1288
1289/**
1290 * ib_modify_qp_is_ok - Check that the supplied attribute mask
1291 * contains all required attributes and no attributes not allowed for
1292 * the given QP state transition.
1293 * @cur_state: Current QP state
1294 * @next_state: Next QP state
1295 * @type: QP type
1296 * @mask: Mask of supplied QP attributes
1297 *
1298 * This function is a helper function that a low-level driver's
1299 * modify_qp method can use to validate the consumer's input.  It
1300 * checks that cur_state and next_state are valid QP states, that a
1301 * transition from cur_state to next_state is allowed by the IB spec,
1302 * and that the attribute mask supplied is allowed for the transition.
1303 */
1304int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
1305		       enum ib_qp_type type, enum ib_qp_attr_mask mask);
1306
1307int ib_register_event_handler  (struct ib_event_handler *event_handler);
1308int ib_unregister_event_handler(struct ib_event_handler *event_handler);
1309void ib_dispatch_event(struct ib_event *event);
1310
1311int ib_query_device(struct ib_device *device,
1312		    struct ib_device_attr *device_attr);
1313
1314int ib_query_port(struct ib_device *device,
1315		  u8 port_num, struct ib_port_attr *port_attr);
1316
1317enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
1318					       u8 port_num);
1319
1320int ib_query_gid(struct ib_device *device,
1321		 u8 port_num, int index, union ib_gid *gid);
1322
1323int ib_query_pkey(struct ib_device *device,
1324		  u8 port_num, u16 index, u16 *pkey);
1325
1326int ib_modify_device(struct ib_device *device,
1327		     int device_modify_mask,
1328		     struct ib_device_modify *device_modify);
1329
1330int ib_modify_port(struct ib_device *device,
1331		   u8 port_num, int port_modify_mask,
1332		   struct ib_port_modify *port_modify);
1333
1334int ib_find_gid(struct ib_device *device, union ib_gid *gid,
1335		u8 *port_num, u16 *index);
1336
1337int ib_find_pkey(struct ib_device *device,
1338		 u8 port_num, u16 pkey, u16 *index);
1339
1340/**
1341 * ib_alloc_pd - Allocates an unused protection domain.
1342 * @device: The device on which to allocate the protection domain.
1343 *
1344 * A protection domain object provides an association between QPs, shared
1345 * receive queues, address handles, memory regions, and memory windows.
1346 */
1347struct ib_pd *ib_alloc_pd(struct ib_device *device);
1348
1349/**
1350 * ib_dealloc_pd - Deallocates a protection domain.
1351 * @pd: The protection domain to deallocate.
1352 */
1353int ib_dealloc_pd(struct ib_pd *pd);
1354
1355/**
1356 * ib_create_ah - Creates an address handle for the given address vector.
1357 * @pd: The protection domain associated with the address handle.
1358 * @ah_attr: The attributes of the address vector.
1359 *
1360 * The address handle is used to reference a local or global destination
1361 * in all UD QP post sends.
1362 */
1363struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr);
1364
1365/**
1366 * ib_init_ah_from_wc - Initializes address handle attributes from a
1367 *   work completion.
1368 * @device: Device on which the received message arrived.
1369 * @port_num: Port on which the received message arrived.
1370 * @wc: Work completion associated with the received message.
1371 * @grh: References the received global route header.  This parameter is
1372 *   ignored unless the work completion indicates that the GRH is valid.
1373 * @ah_attr: Returned attributes that can be used when creating an address
1374 *   handle for replying to the message.
1375 */
1376int ib_init_ah_from_wc(struct ib_device *device, u8 port_num, struct ib_wc *wc,
1377		       struct ib_grh *grh, struct ib_ah_attr *ah_attr);
1378
1379/**
1380 * ib_create_ah_from_wc - Creates an address handle associated with the
1381 *   sender of the specified work completion.
1382 * @pd: The protection domain associated with the address handle.
1383 * @wc: Work completion information associated with a received message.
1384 * @grh: References the received global route header.  This parameter is
1385 *   ignored unless the work completion indicates that the GRH is valid.
1386 * @port_num: The outbound port number to associate with the address.
1387 *
1388 * The address handle is used to reference a local or global destination
1389 * in all UD QP post sends.
1390 */
1391struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, struct ib_wc *wc,
1392				   struct ib_grh *grh, u8 port_num);
1393
1394/**
1395 * ib_modify_ah - Modifies the address vector associated with an address
1396 *   handle.
1397 * @ah: The address handle to modify.
1398 * @ah_attr: The new address vector attributes to associate with the
1399 *   address handle.
1400 */
1401int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
1402
1403/**
1404 * ib_query_ah - Queries the address vector associated with an address
1405 *   handle.
1406 * @ah: The address handle to query.
1407 * @ah_attr: The address vector attributes associated with the address
1408 *   handle.
1409 */
1410int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
1411
1412/**
1413 * ib_destroy_ah - Destroys an address handle.
1414 * @ah: The address handle to destroy.
1415 */
1416int ib_destroy_ah(struct ib_ah *ah);
1417
1418/**
1419 * ib_create_srq - Creates a SRQ associated with the specified protection
1420 *   domain.
1421 * @pd: The protection domain associated with the SRQ.
1422 * @srq_init_attr: A list of initial attributes required to create the
1423 *   SRQ.  If SRQ creation succeeds, then the attributes are updated to
1424 *   the actual capabilities of the created SRQ.
1425 *
1426 * srq_attr->max_wr and srq_attr->max_sge are read the determine the
1427 * requested size of the SRQ, and set to the actual values allocated
1428 * on return.  If ib_create_srq() succeeds, then max_wr and max_sge
1429 * will always be at least as large as the requested values.
1430 */
1431struct ib_srq *ib_create_srq(struct ib_pd *pd,
1432			     struct ib_srq_init_attr *srq_init_attr);
1433
1434/**
1435 * ib_modify_srq - Modifies the attributes for the specified SRQ.
1436 * @srq: The SRQ to modify.
1437 * @srq_attr: On input, specifies the SRQ attributes to modify.  On output,
1438 *   the current values of selected SRQ attributes are returned.
1439 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
1440 *   are being modified.
1441 *
1442 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
1443 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when
1444 * the number of receives queued drops below the limit.
1445 */
1446int ib_modify_srq(struct ib_srq *srq,
1447		  struct ib_srq_attr *srq_attr,
1448		  enum ib_srq_attr_mask srq_attr_mask);
1449
1450/**
1451 * ib_query_srq - Returns the attribute list and current values for the
1452 *   specified SRQ.
1453 * @srq: The SRQ to query.
1454 * @srq_attr: The attributes of the specified SRQ.
1455 */
1456int ib_query_srq(struct ib_srq *srq,
1457		 struct ib_srq_attr *srq_attr);
1458
1459/**
1460 * ib_destroy_srq - Destroys the specified SRQ.
1461 * @srq: The SRQ to destroy.
1462 */
1463int ib_destroy_srq(struct ib_srq *srq);
1464
1465/**
1466 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
1467 * @srq: The SRQ to post the work request on.
1468 * @recv_wr: A list of work requests to post on the receive queue.
1469 * @bad_recv_wr: On an immediate failure, this parameter will reference
1470 *   the work request that failed to be posted on the QP.
1471 */
1472static inline int ib_post_srq_recv(struct ib_srq *srq,
1473				   struct ib_recv_wr *recv_wr,
1474				   struct ib_recv_wr **bad_recv_wr)
1475{
1476	return srq->device->post_srq_recv(srq, recv_wr, bad_recv_wr);
1477}
1478
1479/**
1480 * ib_create_qp - Creates a QP associated with the specified protection
1481 *   domain.
1482 * @pd: The protection domain associated with the QP.
1483 * @qp_init_attr: A list of initial attributes required to create the
1484 *   QP.  If QP creation succeeds, then the attributes are updated to
1485 *   the actual capabilities of the created QP.
1486 */
1487struct ib_qp *ib_create_qp(struct ib_pd *pd,
1488			   struct ib_qp_init_attr *qp_init_attr);
1489
1490/**
1491 * ib_modify_qp - Modifies the attributes for the specified QP and then
1492 *   transitions the QP to the given state.
1493 * @qp: The QP to modify.
1494 * @qp_attr: On input, specifies the QP attributes to modify.  On output,
1495 *   the current values of selected QP attributes are returned.
1496 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP
1497 *   are being modified.
1498 */
1499int ib_modify_qp(struct ib_qp *qp,
1500		 struct ib_qp_attr *qp_attr,
1501		 int qp_attr_mask);
1502
1503/**
1504 * ib_query_qp - Returns the attribute list and current values for the
1505 *   specified QP.
1506 * @qp: The QP to query.
1507 * @qp_attr: The attributes of the specified QP.
1508 * @qp_attr_mask: A bit-mask used to select specific attributes to query.
1509 * @qp_init_attr: Additional attributes of the selected QP.
1510 *
1511 * The qp_attr_mask may be used to limit the query to gathering only the
1512 * selected attributes.
1513 */
1514int ib_query_qp(struct ib_qp *qp,
1515		struct ib_qp_attr *qp_attr,
1516		int qp_attr_mask,
1517		struct ib_qp_init_attr *qp_init_attr);
1518
1519/**
1520 * ib_destroy_qp - Destroys the specified QP.
1521 * @qp: The QP to destroy.
1522 */
1523int ib_destroy_qp(struct ib_qp *qp);
1524
1525/**
1526 * ib_open_qp - Obtain a reference to an existing sharable QP.
1527 * @xrcd - XRC domain
1528 * @qp_open_attr: Attributes identifying the QP to open.
1529 *
1530 * Returns a reference to a sharable QP.
1531 */
1532struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
1533			 struct ib_qp_open_attr *qp_open_attr);
1534
1535/**
1536 * ib_close_qp - Release an external reference to a QP.
1537 * @qp: The QP handle to release
1538 *
1539 * The opened QP handle is released by the caller.  The underlying
1540 * shared QP is not destroyed until all internal references are released.
1541 */
1542int ib_close_qp(struct ib_qp *qp);
1543
1544/**
1545 * ib_post_send - Posts a list of work requests to the send queue of
1546 *   the specified QP.
1547 * @qp: The QP to post the work request on.
1548 * @send_wr: A list of work requests to post on the send queue.
1549 * @bad_send_wr: On an immediate failure, this parameter will reference
1550 *   the work request that failed to be posted on the QP.
1551 *
1552 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate
1553 * error is returned, the QP state shall not be affected,
1554 * ib_post_send() will return an immediate error after queueing any
1555 * earlier work requests in the list.
1556 */
1557static inline int ib_post_send(struct ib_qp *qp,
1558			       struct ib_send_wr *send_wr,
1559			       struct ib_send_wr **bad_send_wr)
1560{
1561	return qp->device->post_send(qp, send_wr, bad_send_wr);
1562}
1563
1564/**
1565 * ib_post_recv - Posts a list of work requests to the receive queue of
1566 *   the specified QP.
1567 * @qp: The QP to post the work request on.
1568 * @recv_wr: A list of work requests to post on the receive queue.
1569 * @bad_recv_wr: On an immediate failure, this parameter will reference
1570 *   the work request that failed to be posted on the QP.
1571 */
1572static inline int ib_post_recv(struct ib_qp *qp,
1573			       struct ib_recv_wr *recv_wr,
1574			       struct ib_recv_wr **bad_recv_wr)
1575{
1576	return qp->device->post_recv(qp, recv_wr, bad_recv_wr);
1577}
1578
1579/**
1580 * ib_create_cq - Creates a CQ on the specified device.
1581 * @device: The device on which to create the CQ.
1582 * @comp_handler: A user-specified callback that is invoked when a
1583 *   completion event occurs on the CQ.
1584 * @event_handler: A user-specified callback that is invoked when an
1585 *   asynchronous event not associated with a completion occurs on the CQ.
1586 * @cq_context: Context associated with the CQ returned to the user via
1587 *   the associated completion and event handlers.
1588 * @cqe: The minimum size of the CQ.
1589 * @comp_vector - Completion vector used to signal completion events.
1590 *     Must be >= 0 and < context->num_comp_vectors.
1591 *
1592 * Users can examine the cq structure to determine the actual CQ size.
1593 */
1594struct ib_cq *ib_create_cq(struct ib_device *device,
1595			   ib_comp_handler comp_handler,
1596			   void (*event_handler)(struct ib_event *, void *),
1597			   void *cq_context, int cqe, int comp_vector);
1598
1599/**
1600 * ib_resize_cq - Modifies the capacity of the CQ.
1601 * @cq: The CQ to resize.
1602 * @cqe: The minimum size of the CQ.
1603 *
1604 * Users can examine the cq structure to determine the actual CQ size.
1605 */
1606int ib_resize_cq(struct ib_cq *cq, int cqe);
1607
1608/**
1609 * ib_modify_cq - Modifies moderation params of the CQ
1610 * @cq: The CQ to modify.
1611 * @cq_count: number of CQEs that will trigger an event
1612 * @cq_period: max period of time in usec before triggering an event
1613 *
1614 */
1615int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period);
1616
1617/**
1618 * ib_destroy_cq - Destroys the specified CQ.
1619 * @cq: The CQ to destroy.
1620 */
1621int ib_destroy_cq(struct ib_cq *cq);
1622
1623/**
1624 * ib_poll_cq - poll a CQ for completion(s)
1625 * @cq:the CQ being polled
1626 * @num_entries:maximum number of completions to return
1627 * @wc:array of at least @num_entries &struct ib_wc where completions
1628 *   will be returned
1629 *
1630 * Poll a CQ for (possibly multiple) completions.  If the return value
1631 * is < 0, an error occurred.  If the return value is >= 0, it is the
1632 * number of completions returned.  If the return value is
1633 * non-negative and < num_entries, then the CQ was emptied.
1634 */
1635static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
1636			     struct ib_wc *wc)
1637{
1638	return cq->device->poll_cq(cq, num_entries, wc);
1639}
1640
1641/**
1642 * ib_peek_cq - Returns the number of unreaped completions currently
1643 *   on the specified CQ.
1644 * @cq: The CQ to peek.
1645 * @wc_cnt: A minimum number of unreaped completions to check for.
1646 *
1647 * If the number of unreaped completions is greater than or equal to wc_cnt,
1648 * this function returns wc_cnt, otherwise, it returns the actual number of
1649 * unreaped completions.
1650 */
1651int ib_peek_cq(struct ib_cq *cq, int wc_cnt);
1652
1653/**
1654 * ib_req_notify_cq - Request completion notification on a CQ.
1655 * @cq: The CQ to generate an event for.
1656 * @flags:
1657 *   Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
1658 *   to request an event on the next solicited event or next work
1659 *   completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
1660 *   may also be |ed in to request a hint about missed events, as
1661 *   described below.
1662 *
1663 * Return Value:
1664 *    < 0 means an error occurred while requesting notification
1665 *   == 0 means notification was requested successfully, and if
1666 *        IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
1667 *        were missed and it is safe to wait for another event.  In
1668 *        this case is it guaranteed that any work completions added
1669 *        to the CQ since the last CQ poll will trigger a completion
1670 *        notification event.
1671 *    > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
1672 *        in.  It means that the consumer must poll the CQ again to
1673 *        make sure it is empty to avoid missing an event because of a
1674 *        race between requesting notification and an entry being
1675 *        added to the CQ.  This return value means it is possible
1676 *        (but not guaranteed) that a work completion has been added
1677 *        to the CQ since the last poll without triggering a
1678 *        completion notification event.
1679 */
1680static inline int ib_req_notify_cq(struct ib_cq *cq,
1681				   enum ib_cq_notify_flags flags)
1682{
1683	return cq->device->req_notify_cq(cq, flags);
1684}
1685
1686/**
1687 * ib_req_ncomp_notif - Request completion notification when there are
1688 *   at least the specified number of unreaped completions on the CQ.
1689 * @cq: The CQ to generate an event for.
1690 * @wc_cnt: The number of unreaped completions that should be on the
1691 *   CQ before an event is generated.
1692 */
1693static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt)
1694{
1695	return cq->device->req_ncomp_notif ?
1696		cq->device->req_ncomp_notif(cq, wc_cnt) :
1697		-ENOSYS;
1698}
1699
1700/**
1701 * ib_get_dma_mr - Returns a memory region for system memory that is
1702 *   usable for DMA.
1703 * @pd: The protection domain associated with the memory region.
1704 * @mr_access_flags: Specifies the memory access rights.
1705 *
1706 * Note that the ib_dma_*() functions defined below must be used
1707 * to create/destroy addresses used with the Lkey or Rkey returned
1708 * by ib_get_dma_mr().
1709 */
1710struct ib_mr *ib_get_dma_mr(struct ib_pd *pd, int mr_access_flags);
1711
1712/**
1713 * ib_dma_mapping_error - check a DMA addr for error
1714 * @dev: The device for which the dma_addr was created
1715 * @dma_addr: The DMA address to check
1716 */
1717static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
1718{
1719	if (dev->dma_ops)
1720		return dev->dma_ops->mapping_error(dev, dma_addr);
1721	return dma_mapping_error(dev->dma_device, dma_addr);
1722}
1723
1724/**
1725 * ib_dma_map_single - Map a kernel virtual address to DMA address
1726 * @dev: The device for which the dma_addr is to be created
1727 * @cpu_addr: The kernel virtual address
1728 * @size: The size of the region in bytes
1729 * @direction: The direction of the DMA
1730 */
1731static inline u64 ib_dma_map_single(struct ib_device *dev,
1732				    void *cpu_addr, size_t size,
1733				    enum dma_data_direction direction)
1734{
1735	if (dev->dma_ops)
1736		return dev->dma_ops->map_single(dev, cpu_addr, size, direction);
1737	return dma_map_single(dev->dma_device, cpu_addr, size, direction);
1738}
1739
1740/**
1741 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
1742 * @dev: The device for which the DMA address was created
1743 * @addr: The DMA address
1744 * @size: The size of the region in bytes
1745 * @direction: The direction of the DMA
1746 */
1747static inline void ib_dma_unmap_single(struct ib_device *dev,
1748				       u64 addr, size_t size,
1749				       enum dma_data_direction direction)
1750{
1751	if (dev->dma_ops)
1752		dev->dma_ops->unmap_single(dev, addr, size, direction);
1753	else
1754		dma_unmap_single(dev->dma_device, addr, size, direction);
1755}
1756
1757static inline u64 ib_dma_map_single_attrs(struct ib_device *dev,
1758					  void *cpu_addr, size_t size,
1759					  enum dma_data_direction direction,
1760					  struct dma_attrs *attrs)
1761{
1762	return dma_map_single_attrs(dev->dma_device, cpu_addr, size,
1763				    direction, attrs);
1764}
1765
1766static inline void ib_dma_unmap_single_attrs(struct ib_device *dev,
1767					     u64 addr, size_t size,
1768					     enum dma_data_direction direction,
1769					     struct dma_attrs *attrs)
1770{
1771	return dma_unmap_single_attrs(dev->dma_device, addr, size,
1772				      direction, attrs);
1773}
1774
1775/**
1776 * ib_dma_map_page - Map a physical page to DMA address
1777 * @dev: The device for which the dma_addr is to be created
1778 * @page: The page to be mapped
1779 * @offset: The offset within the page
1780 * @size: The size of the region in bytes
1781 * @direction: The direction of the DMA
1782 */
1783static inline u64 ib_dma_map_page(struct ib_device *dev,
1784				  struct page *page,
1785				  unsigned long offset,
1786				  size_t size,
1787					 enum dma_data_direction direction)
1788{
1789	if (dev->dma_ops)
1790		return dev->dma_ops->map_page(dev, page, offset, size, direction);
1791	return dma_map_page(dev->dma_device, page, offset, size, direction);
1792}
1793
1794/**
1795 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
1796 * @dev: The device for which the DMA address was created
1797 * @addr: The DMA address
1798 * @size: The size of the region in bytes
1799 * @direction: The direction of the DMA
1800 */
1801static inline void ib_dma_unmap_page(struct ib_device *dev,
1802				     u64 addr, size_t size,
1803				     enum dma_data_direction direction)
1804{
1805	if (dev->dma_ops)
1806		dev->dma_ops->unmap_page(dev, addr, size, direction);
1807	else
1808		dma_unmap_page(dev->dma_device, addr, size, direction);
1809}
1810
1811/**
1812 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses
1813 * @dev: The device for which the DMA addresses are to be created
1814 * @sg: The array of scatter/gather entries
1815 * @nents: The number of scatter/gather entries
1816 * @direction: The direction of the DMA
1817 */
1818static inline int ib_dma_map_sg(struct ib_device *dev,
1819				struct scatterlist *sg, int nents,
1820				enum dma_data_direction direction)
1821{
1822	if (dev->dma_ops)
1823		return dev->dma_ops->map_sg(dev, sg, nents, direction);
1824	return dma_map_sg(dev->dma_device, sg, nents, direction);
1825}
1826
1827/**
1828 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
1829 * @dev: The device for which the DMA addresses were created
1830 * @sg: The array of scatter/gather entries
1831 * @nents: The number of scatter/gather entries
1832 * @direction: The direction of the DMA
1833 */
1834static inline void ib_dma_unmap_sg(struct ib_device *dev,
1835				   struct scatterlist *sg, int nents,
1836				   enum dma_data_direction direction)
1837{
1838	if (dev->dma_ops)
1839		dev->dma_ops->unmap_sg(dev, sg, nents, direction);
1840	else
1841		dma_unmap_sg(dev->dma_device, sg, nents, direction);
1842}
1843
1844static inline int ib_dma_map_sg_attrs(struct ib_device *dev,
1845				      struct scatterlist *sg, int nents,
1846				      enum dma_data_direction direction,
1847				      struct dma_attrs *attrs)
1848{
1849	return dma_map_sg_attrs(dev->dma_device, sg, nents, direction, attrs);
1850}
1851
1852static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev,
1853					 struct scatterlist *sg, int nents,
1854					 enum dma_data_direction direction,
1855					 struct dma_attrs *attrs)
1856{
1857	dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, attrs);
1858}
1859/**
1860 * ib_sg_dma_address - Return the DMA address from a scatter/gather entry
1861 * @dev: The device for which the DMA addresses were created
1862 * @sg: The scatter/gather entry
1863 */
1864static inline u64 ib_sg_dma_address(struct ib_device *dev,
1865				    struct scatterlist *sg)
1866{
1867	if (dev->dma_ops)
1868		return dev->dma_ops->dma_address(dev, sg);
1869	return sg_dma_address(sg);
1870}
1871
1872/**
1873 * ib_sg_dma_len - Return the DMA length from a scatter/gather entry
1874 * @dev: The device for which the DMA addresses were created
1875 * @sg: The scatter/gather entry
1876 */
1877static inline unsigned int ib_sg_dma_len(struct ib_device *dev,
1878					 struct scatterlist *sg)
1879{
1880	if (dev->dma_ops)
1881		return dev->dma_ops->dma_len(dev, sg);
1882	return sg_dma_len(sg);
1883}
1884
1885/**
1886 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
1887 * @dev: The device for which the DMA address was created
1888 * @addr: The DMA address
1889 * @size: The size of the region in bytes
1890 * @dir: The direction of the DMA
1891 */
1892static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
1893					      u64 addr,
1894					      size_t size,
1895					      enum dma_data_direction dir)
1896{
1897	if (dev->dma_ops)
1898		dev->dma_ops->sync_single_for_cpu(dev, addr, size, dir);
1899	else
1900		dma_sync_single_for_cpu(dev->dma_device, addr, size, dir);
1901}
1902
1903/**
1904 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
1905 * @dev: The device for which the DMA address was created
1906 * @addr: The DMA address
1907 * @size: The size of the region in bytes
1908 * @dir: The direction of the DMA
1909 */
1910static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
1911						 u64 addr,
1912						 size_t size,
1913						 enum dma_data_direction dir)
1914{
1915	if (dev->dma_ops)
1916		dev->dma_ops->sync_single_for_device(dev, addr, size, dir);
1917	else
1918		dma_sync_single_for_device(dev->dma_device, addr, size, dir);
1919}
1920
1921/**
1922 * ib_dma_alloc_coherent - Allocate memory and map it for DMA
1923 * @dev: The device for which the DMA address is requested
1924 * @size: The size of the region to allocate in bytes
1925 * @dma_handle: A pointer for returning the DMA address of the region
1926 * @flag: memory allocator flags
1927 */
1928static inline void *ib_dma_alloc_coherent(struct ib_device *dev,
1929					   size_t size,
1930					   u64 *dma_handle,
1931					   gfp_t flag)
1932{
1933	if (dev->dma_ops)
1934		return dev->dma_ops->alloc_coherent(dev, size, dma_handle, flag);
1935	else {
1936		dma_addr_t handle;
1937		void *ret;
1938
1939		ret = dma_alloc_coherent(dev->dma_device, size, &handle, flag);
1940		*dma_handle = handle;
1941		return ret;
1942	}
1943}
1944
1945/**
1946 * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent()
1947 * @dev: The device for which the DMA addresses were allocated
1948 * @size: The size of the region
1949 * @cpu_addr: the address returned by ib_dma_alloc_coherent()
1950 * @dma_handle: the DMA address returned by ib_dma_alloc_coherent()
1951 */
1952static inline void ib_dma_free_coherent(struct ib_device *dev,
1953					size_t size, void *cpu_addr,
1954					u64 dma_handle)
1955{
1956	if (dev->dma_ops)
1957		dev->dma_ops->free_coherent(dev, size, cpu_addr, dma_handle);
1958	else
1959		dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle);
1960}
1961
1962/**
1963 * ib_reg_phys_mr - Prepares a virtually addressed memory region for use
1964 *   by an HCA.
1965 * @pd: The protection domain associated assigned to the registered region.
1966 * @phys_buf_array: Specifies a list of physical buffers to use in the
1967 *   memory region.
1968 * @num_phys_buf: Specifies the size of the phys_buf_array.
1969 * @mr_access_flags: Specifies the memory access rights.
1970 * @iova_start: The offset of the region's starting I/O virtual address.
1971 */
1972struct ib_mr *ib_reg_phys_mr(struct ib_pd *pd,
1973			     struct ib_phys_buf *phys_buf_array,
1974			     int num_phys_buf,
1975			     int mr_access_flags,
1976			     u64 *iova_start);
1977
1978/**
1979 * ib_rereg_phys_mr - Modifies the attributes of an existing memory region.
1980 *   Conceptually, this call performs the functions deregister memory region
1981 *   followed by register physical memory region.  Where possible,
1982 *   resources are reused instead of deallocated and reallocated.
1983 * @mr: The memory region to modify.
1984 * @mr_rereg_mask: A bit-mask used to indicate which of the following
1985 *   properties of the memory region are being modified.
1986 * @pd: If %IB_MR_REREG_PD is set in mr_rereg_mask, this field specifies
1987 *   the new protection domain to associated with the memory region,
1988 *   otherwise, this parameter is ignored.
1989 * @phys_buf_array: If %IB_MR_REREG_TRANS is set in mr_rereg_mask, this
1990 *   field specifies a list of physical buffers to use in the new
1991 *   translation, otherwise, this parameter is ignored.
1992 * @num_phys_buf: If %IB_MR_REREG_TRANS is set in mr_rereg_mask, this
1993 *   field specifies the size of the phys_buf_array, otherwise, this
1994 *   parameter is ignored.
1995 * @mr_access_flags: If %IB_MR_REREG_ACCESS is set in mr_rereg_mask, this
1996 *   field specifies the new memory access rights, otherwise, this
1997 *   parameter is ignored.
1998 * @iova_start: The offset of the region's starting I/O virtual address.
1999 */
2000int ib_rereg_phys_mr(struct ib_mr *mr,
2001		     int mr_rereg_mask,
2002		     struct ib_pd *pd,
2003		     struct ib_phys_buf *phys_buf_array,
2004		     int num_phys_buf,
2005		     int mr_access_flags,
2006		     u64 *iova_start);
2007
2008/**
2009 * ib_query_mr - Retrieves information about a specific memory region.
2010 * @mr: The memory region to retrieve information about.
2011 * @mr_attr: The attributes of the specified memory region.
2012 */
2013int ib_query_mr(struct ib_mr *mr, struct ib_mr_attr *mr_attr);
2014
2015/**
2016 * ib_dereg_mr - Deregisters a memory region and removes it from the
2017 *   HCA translation table.
2018 * @mr: The memory region to deregister.
2019 */
2020int ib_dereg_mr(struct ib_mr *mr);
2021
2022/**
2023 * ib_alloc_fast_reg_mr - Allocates memory region usable with the
2024 *   IB_WR_FAST_REG_MR send work request.
2025 * @pd: The protection domain associated with the region.
2026 * @max_page_list_len: requested max physical buffer list length to be
2027 *   used with fast register work requests for this MR.
2028 */
2029struct ib_mr *ib_alloc_fast_reg_mr(struct ib_pd *pd, int max_page_list_len);
2030
2031/**
2032 * ib_alloc_fast_reg_page_list - Allocates a page list array
2033 * @device - ib device pointer.
2034 * @page_list_len - size of the page list array to be allocated.
2035 *
2036 * This allocates and returns a struct ib_fast_reg_page_list * and a
2037 * page_list array that is at least page_list_len in size.  The actual
2038 * size is returned in max_page_list_len.  The caller is responsible
2039 * for initializing the contents of the page_list array before posting
2040 * a send work request with the IB_WC_FAST_REG_MR opcode.
2041 *
2042 * The page_list array entries must be translated using one of the
2043 * ib_dma_*() functions just like the addresses passed to
2044 * ib_map_phys_fmr().  Once the ib_post_send() is issued, the struct
2045 * ib_fast_reg_page_list must not be modified by the caller until the
2046 * IB_WC_FAST_REG_MR work request completes.
2047 */
2048struct ib_fast_reg_page_list *ib_alloc_fast_reg_page_list(
2049				struct ib_device *device, int page_list_len);
2050
2051/**
2052 * ib_free_fast_reg_page_list - Deallocates a previously allocated
2053 *   page list array.
2054 * @page_list - struct ib_fast_reg_page_list pointer to be deallocated.
2055 */
2056void ib_free_fast_reg_page_list(struct ib_fast_reg_page_list *page_list);
2057
2058/**
2059 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR
2060 *   R_Key and L_Key.
2061 * @mr - struct ib_mr pointer to be updated.
2062 * @newkey - new key to be used.
2063 */
2064static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey)
2065{
2066	mr->lkey = (mr->lkey & 0xffffff00) | newkey;
2067	mr->rkey = (mr->rkey & 0xffffff00) | newkey;
2068}
2069
2070/**
2071 * ib_alloc_mw - Allocates a memory window.
2072 * @pd: The protection domain associated with the memory window.
2073 */
2074struct ib_mw *ib_alloc_mw(struct ib_pd *pd);
2075
2076/**
2077 * ib_bind_mw - Posts a work request to the send queue of the specified
2078 *   QP, which binds the memory window to the given address range and
2079 *   remote access attributes.
2080 * @qp: QP to post the bind work request on.
2081 * @mw: The memory window to bind.
2082 * @mw_bind: Specifies information about the memory window, including
2083 *   its address range, remote access rights, and associated memory region.
2084 */
2085static inline int ib_bind_mw(struct ib_qp *qp,
2086			     struct ib_mw *mw,
2087			     struct ib_mw_bind *mw_bind)
2088{
2089	/* XXX reference counting in corresponding MR? */
2090	return mw->device->bind_mw ?
2091		mw->device->bind_mw(qp, mw, mw_bind) :
2092		-ENOSYS;
2093}
2094
2095/**
2096 * ib_dealloc_mw - Deallocates a memory window.
2097 * @mw: The memory window to deallocate.
2098 */
2099int ib_dealloc_mw(struct ib_mw *mw);
2100
2101/**
2102 * ib_alloc_fmr - Allocates a unmapped fast memory region.
2103 * @pd: The protection domain associated with the unmapped region.
2104 * @mr_access_flags: Specifies the memory access rights.
2105 * @fmr_attr: Attributes of the unmapped region.
2106 *
2107 * A fast memory region must be mapped before it can be used as part of
2108 * a work request.
2109 */
2110struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
2111			    int mr_access_flags,
2112			    struct ib_fmr_attr *fmr_attr);
2113
2114/**
2115 * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region.
2116 * @fmr: The fast memory region to associate with the pages.
2117 * @page_list: An array of physical pages to map to the fast memory region.
2118 * @list_len: The number of pages in page_list.
2119 * @iova: The I/O virtual address to use with the mapped region.
2120 */
2121static inline int ib_map_phys_fmr(struct ib_fmr *fmr,
2122				  u64 *page_list, int list_len,
2123				  u64 iova)
2124{
2125	return fmr->device->map_phys_fmr(fmr, page_list, list_len, iova);
2126}
2127
2128/**
2129 * ib_unmap_fmr - Removes the mapping from a list of fast memory regions.
2130 * @fmr_list: A linked list of fast memory regions to unmap.
2131 */
2132int ib_unmap_fmr(struct list_head *fmr_list);
2133
2134/**
2135 * ib_dealloc_fmr - Deallocates a fast memory region.
2136 * @fmr: The fast memory region to deallocate.
2137 */
2138int ib_dealloc_fmr(struct ib_fmr *fmr);
2139
2140/**
2141 * ib_attach_mcast - Attaches the specified QP to a multicast group.
2142 * @qp: QP to attach to the multicast group.  The QP must be type
2143 *   IB_QPT_UD.
2144 * @gid: Multicast group GID.
2145 * @lid: Multicast group LID in host byte order.
2146 *
2147 * In order to send and receive multicast packets, subnet
2148 * administration must have created the multicast group and configured
2149 * the fabric appropriately.  The port associated with the specified
2150 * QP must also be a member of the multicast group.
2151 */
2152int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2153
2154/**
2155 * ib_detach_mcast - Detaches the specified QP from a multicast group.
2156 * @qp: QP to detach from the multicast group.
2157 * @gid: Multicast group GID.
2158 * @lid: Multicast group LID in host byte order.
2159 */
2160int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2161
2162/**
2163 * ib_alloc_xrcd - Allocates an XRC domain.
2164 * @device: The device on which to allocate the XRC domain.
2165 */
2166struct ib_xrcd *ib_alloc_xrcd(struct ib_device *device);
2167
2168/**
2169 * ib_dealloc_xrcd - Deallocates an XRC domain.
2170 * @xrcd: The XRC domain to deallocate.
2171 */
2172int ib_dealloc_xrcd(struct ib_xrcd *xrcd);
2173
2174#endif /* IB_VERBS_H */