Linux Audio

Check our new training course

Loading...
v3.1
 
   1/*
   2 * Copyright (c) 2004 Mellanox Technologies Ltd.  All rights reserved.
   3 * Copyright (c) 2004 Infinicon Corporation.  All rights reserved.
   4 * Copyright (c) 2004 Intel Corporation.  All rights reserved.
   5 * Copyright (c) 2004 Topspin Corporation.  All rights reserved.
   6 * Copyright (c) 2004 Voltaire Corporation.  All rights reserved.
   7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
   8 * Copyright (c) 2005, 2006, 2007 Cisco Systems.  All rights reserved.
   9 *
  10 * This software is available to you under a choice of one of two
  11 * licenses.  You may choose to be licensed under the terms of the GNU
  12 * General Public License (GPL) Version 2, available from the file
  13 * COPYING in the main directory of this source tree, or the
  14 * OpenIB.org BSD license below:
  15 *
  16 *     Redistribution and use in source and binary forms, with or
  17 *     without modification, are permitted provided that the following
  18 *     conditions are met:
  19 *
  20 *      - Redistributions of source code must retain the above
  21 *        copyright notice, this list of conditions and the following
  22 *        disclaimer.
  23 *
  24 *      - Redistributions in binary form must reproduce the above
  25 *        copyright notice, this list of conditions and the following
  26 *        disclaimer in the documentation and/or other materials
  27 *        provided with the distribution.
  28 *
  29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  36 * SOFTWARE.
  37 */
  38
  39#if !defined(IB_VERBS_H)
  40#define IB_VERBS_H
  41
  42#include <linux/types.h>
  43#include <linux/device.h>
  44#include <linux/mm.h>
  45#include <linux/dma-mapping.h>
  46#include <linux/kref.h>
  47#include <linux/list.h>
  48#include <linux/rwsem.h>
  49#include <linux/scatterlist.h>
  50#include <linux/workqueue.h>
  51
 
 
 
 
 
 
 
 
  52#include <linux/atomic.h>
  53#include <asm/uaccess.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  54
  55extern struct workqueue_struct *ib_wq;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  56
  57union ib_gid {
  58	u8	raw[16];
  59	struct {
  60		__be64	subnet_prefix;
  61		__be64	interface_id;
  62	} global;
  63};
  64
  65enum rdma_node_type {
  66	/* IB values map to NodeInfo:NodeType. */
  67	RDMA_NODE_IB_CA 	= 1,
  68	RDMA_NODE_IB_SWITCH,
  69	RDMA_NODE_IB_ROUTER,
  70	RDMA_NODE_RNIC
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  71};
  72
  73enum rdma_transport_type {
  74	RDMA_TRANSPORT_IB,
  75	RDMA_TRANSPORT_IWARP
 
 
 
  76};
  77
  78enum rdma_transport_type
  79rdma_node_get_transport(enum rdma_node_type node_type) __attribute_const__;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  80
  81enum rdma_link_layer {
  82	IB_LINK_LAYER_UNSPECIFIED,
  83	IB_LINK_LAYER_INFINIBAND,
  84	IB_LINK_LAYER_ETHERNET,
  85};
  86
  87enum ib_device_cap_flags {
  88	IB_DEVICE_RESIZE_MAX_WR		= 1,
  89	IB_DEVICE_BAD_PKEY_CNTR		= (1<<1),
  90	IB_DEVICE_BAD_QKEY_CNTR		= (1<<2),
  91	IB_DEVICE_RAW_MULTI		= (1<<3),
  92	IB_DEVICE_AUTO_PATH_MIG		= (1<<4),
  93	IB_DEVICE_CHANGE_PHY_PORT	= (1<<5),
  94	IB_DEVICE_UD_AV_PORT_ENFORCE	= (1<<6),
  95	IB_DEVICE_CURR_QP_STATE_MOD	= (1<<7),
  96	IB_DEVICE_SHUTDOWN_PORT		= (1<<8),
  97	IB_DEVICE_INIT_TYPE		= (1<<9),
  98	IB_DEVICE_PORT_ACTIVE_EVENT	= (1<<10),
  99	IB_DEVICE_SYS_IMAGE_GUID	= (1<<11),
 100	IB_DEVICE_RC_RNR_NAK_GEN	= (1<<12),
 101	IB_DEVICE_SRQ_RESIZE		= (1<<13),
 102	IB_DEVICE_N_NOTIFY_CQ		= (1<<14),
 103	IB_DEVICE_LOCAL_DMA_LKEY	= (1<<15),
 104	IB_DEVICE_RESERVED		= (1<<16), /* old SEND_W_INV */
 105	IB_DEVICE_MEM_WINDOW		= (1<<17),
 
 
 
 
 
 
 
 
 106	/*
 107	 * Devices should set IB_DEVICE_UD_IP_SUM if they support
 108	 * insertion of UDP and TCP checksum on outgoing UD IPoIB
 109	 * messages and can verify the validity of checksum for
 110	 * incoming messages.  Setting this flag implies that the
 111	 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
 112	 */
 113	IB_DEVICE_UD_IP_CSUM		= (1<<18),
 114	IB_DEVICE_UD_TSO		= (1<<19),
 115	IB_DEVICE_MEM_MGT_EXTENSIONS	= (1<<21),
 116	IB_DEVICE_BLOCK_MULTICAST_LOOPBACK = (1<<22),
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 117};
 118
 119enum ib_atomic_cap {
 120	IB_ATOMIC_NONE,
 121	IB_ATOMIC_HCA,
 122	IB_ATOMIC_GLOB
 123};
 124
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 125struct ib_device_attr {
 126	u64			fw_ver;
 127	__be64			sys_image_guid;
 128	u64			max_mr_size;
 129	u64			page_size_cap;
 130	u32			vendor_id;
 131	u32			vendor_part_id;
 132	u32			hw_ver;
 133	int			max_qp;
 134	int			max_qp_wr;
 135	int			device_cap_flags;
 136	int			max_sge;
 
 137	int			max_sge_rd;
 138	int			max_cq;
 139	int			max_cqe;
 140	int			max_mr;
 141	int			max_pd;
 142	int			max_qp_rd_atom;
 143	int			max_ee_rd_atom;
 144	int			max_res_rd_atom;
 145	int			max_qp_init_rd_atom;
 146	int			max_ee_init_rd_atom;
 147	enum ib_atomic_cap	atomic_cap;
 148	enum ib_atomic_cap	masked_atomic_cap;
 149	int			max_ee;
 150	int			max_rdd;
 151	int			max_mw;
 152	int			max_raw_ipv6_qp;
 153	int			max_raw_ethy_qp;
 154	int			max_mcast_grp;
 155	int			max_mcast_qp_attach;
 156	int			max_total_mcast_qp_attach;
 157	int			max_ah;
 158	int			max_fmr;
 159	int			max_map_per_fmr;
 160	int			max_srq;
 161	int			max_srq_wr;
 162	int			max_srq_sge;
 163	unsigned int		max_fast_reg_page_list_len;
 
 164	u16			max_pkeys;
 165	u8			local_ca_ack_delay;
 
 
 
 
 
 
 
 
 
 
 
 
 
 166};
 167
 168enum ib_mtu {
 169	IB_MTU_256  = 1,
 170	IB_MTU_512  = 2,
 171	IB_MTU_1024 = 3,
 172	IB_MTU_2048 = 4,
 173	IB_MTU_4096 = 5
 174};
 175
 
 
 
 
 
 176static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
 177{
 178	switch (mtu) {
 179	case IB_MTU_256:  return  256;
 180	case IB_MTU_512:  return  512;
 181	case IB_MTU_1024: return 1024;
 182	case IB_MTU_2048: return 2048;
 183	case IB_MTU_4096: return 4096;
 184	default: 	  return -1;
 185	}
 186}
 187
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 188enum ib_port_state {
 189	IB_PORT_NOP		= 0,
 190	IB_PORT_DOWN		= 1,
 191	IB_PORT_INIT		= 2,
 192	IB_PORT_ARMED		= 3,
 193	IB_PORT_ACTIVE		= 4,
 194	IB_PORT_ACTIVE_DEFER	= 5
 195};
 196
 197enum ib_port_cap_flags {
 198	IB_PORT_SM				= 1 <<  1,
 199	IB_PORT_NOTICE_SUP			= 1 <<  2,
 200	IB_PORT_TRAP_SUP			= 1 <<  3,
 201	IB_PORT_OPT_IPD_SUP                     = 1 <<  4,
 202	IB_PORT_AUTO_MIGR_SUP			= 1 <<  5,
 203	IB_PORT_SL_MAP_SUP			= 1 <<  6,
 204	IB_PORT_MKEY_NVRAM			= 1 <<  7,
 205	IB_PORT_PKEY_NVRAM			= 1 <<  8,
 206	IB_PORT_LED_INFO_SUP			= 1 <<  9,
 207	IB_PORT_SM_DISABLED			= 1 << 10,
 208	IB_PORT_SYS_IMAGE_GUID_SUP		= 1 << 11,
 209	IB_PORT_PKEY_SW_EXT_PORT_TRAP_SUP	= 1 << 12,
 210	IB_PORT_CM_SUP				= 1 << 16,
 211	IB_PORT_SNMP_TUNNEL_SUP			= 1 << 17,
 212	IB_PORT_REINIT_SUP			= 1 << 18,
 213	IB_PORT_DEVICE_MGMT_SUP			= 1 << 19,
 214	IB_PORT_VENDOR_CLASS_SUP		= 1 << 20,
 215	IB_PORT_DR_NOTICE_SUP			= 1 << 21,
 216	IB_PORT_CAP_MASK_NOTICE_SUP		= 1 << 22,
 217	IB_PORT_BOOT_MGMT_SUP			= 1 << 23,
 218	IB_PORT_LINK_LATENCY_SUP		= 1 << 24,
 219	IB_PORT_CLIENT_REG_SUP			= 1 << 25
 220};
 221
 222enum ib_port_width {
 223	IB_WIDTH_1X	= 1,
 
 224	IB_WIDTH_4X	= 2,
 225	IB_WIDTH_8X	= 4,
 226	IB_WIDTH_12X	= 8
 227};
 228
 229static inline int ib_width_enum_to_int(enum ib_port_width width)
 230{
 231	switch (width) {
 232	case IB_WIDTH_1X:  return  1;
 
 233	case IB_WIDTH_4X:  return  4;
 234	case IB_WIDTH_8X:  return  8;
 235	case IB_WIDTH_12X: return 12;
 236	default: 	  return -1;
 237	}
 238}
 239
 240struct ib_protocol_stats {
 241	/* TBD... */
 
 
 
 
 
 
 242};
 243
 244struct iw_protocol_stats {
 245	u64	ipInReceives;
 246	u64	ipInHdrErrors;
 247	u64	ipInTooBigErrors;
 248	u64	ipInNoRoutes;
 249	u64	ipInAddrErrors;
 250	u64	ipInUnknownProtos;
 251	u64	ipInTruncatedPkts;
 252	u64	ipInDiscards;
 253	u64	ipInDelivers;
 254	u64	ipOutForwDatagrams;
 255	u64	ipOutRequests;
 256	u64	ipOutDiscards;
 257	u64	ipOutNoRoutes;
 258	u64	ipReasmTimeout;
 259	u64	ipReasmReqds;
 260	u64	ipReasmOKs;
 261	u64	ipReasmFails;
 262	u64	ipFragOKs;
 263	u64	ipFragFails;
 264	u64	ipFragCreates;
 265	u64	ipInMcastPkts;
 266	u64	ipOutMcastPkts;
 267	u64	ipInBcastPkts;
 268	u64	ipOutBcastPkts;
 269
 270	u64	tcpRtoAlgorithm;
 271	u64	tcpRtoMin;
 272	u64	tcpRtoMax;
 273	u64	tcpMaxConn;
 274	u64	tcpActiveOpens;
 275	u64	tcpPassiveOpens;
 276	u64	tcpAttemptFails;
 277	u64	tcpEstabResets;
 278	u64	tcpCurrEstab;
 279	u64	tcpInSegs;
 280	u64	tcpOutSegs;
 281	u64	tcpRetransSegs;
 282	u64	tcpInErrs;
 283	u64	tcpOutRsts;
 284};
 285
 286union rdma_protocol_stats {
 287	struct ib_protocol_stats	ib;
 288	struct iw_protocol_stats	iw;
 289};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 290
 291struct ib_port_attr {
 
 292	enum ib_port_state	state;
 293	enum ib_mtu		max_mtu;
 294	enum ib_mtu		active_mtu;
 
 295	int			gid_tbl_len;
 
 
 296	u32			port_cap_flags;
 297	u32			max_msg_sz;
 298	u32			bad_pkey_cntr;
 299	u32			qkey_viol_cntr;
 300	u16			pkey_tbl_len;
 301	u16			lid;
 302	u16			sm_lid;
 303	u8			lmc;
 304	u8			max_vl_num;
 305	u8			sm_sl;
 306	u8			subnet_timeout;
 307	u8			init_type_reply;
 308	u8			active_width;
 309	u8			active_speed;
 310	u8                      phys_state;
 
 311};
 312
 313enum ib_device_modify_flags {
 314	IB_DEVICE_MODIFY_SYS_IMAGE_GUID	= 1 << 0,
 315	IB_DEVICE_MODIFY_NODE_DESC	= 1 << 1
 316};
 317
 
 
 318struct ib_device_modify {
 319	u64	sys_image_guid;
 320	char	node_desc[64];
 321};
 322
 323enum ib_port_modify_flags {
 324	IB_PORT_SHUTDOWN		= 1,
 325	IB_PORT_INIT_TYPE		= (1<<2),
 326	IB_PORT_RESET_QKEY_CNTR		= (1<<3)
 
 327};
 328
 329struct ib_port_modify {
 330	u32	set_port_cap_mask;
 331	u32	clr_port_cap_mask;
 332	u8	init_type;
 333};
 334
 335enum ib_event_type {
 336	IB_EVENT_CQ_ERR,
 337	IB_EVENT_QP_FATAL,
 338	IB_EVENT_QP_REQ_ERR,
 339	IB_EVENT_QP_ACCESS_ERR,
 340	IB_EVENT_COMM_EST,
 341	IB_EVENT_SQ_DRAINED,
 342	IB_EVENT_PATH_MIG,
 343	IB_EVENT_PATH_MIG_ERR,
 344	IB_EVENT_DEVICE_FATAL,
 345	IB_EVENT_PORT_ACTIVE,
 346	IB_EVENT_PORT_ERR,
 347	IB_EVENT_LID_CHANGE,
 348	IB_EVENT_PKEY_CHANGE,
 349	IB_EVENT_SM_CHANGE,
 350	IB_EVENT_SRQ_ERR,
 351	IB_EVENT_SRQ_LIMIT_REACHED,
 352	IB_EVENT_QP_LAST_WQE_REACHED,
 353	IB_EVENT_CLIENT_REREGISTER,
 354	IB_EVENT_GID_CHANGE,
 
 355};
 356
 
 
 357struct ib_event {
 358	struct ib_device	*device;
 359	union {
 360		struct ib_cq	*cq;
 361		struct ib_qp	*qp;
 362		struct ib_srq	*srq;
 
 363		u8		port_num;
 364	} element;
 365	enum ib_event_type	event;
 366};
 367
 368struct ib_event_handler {
 369	struct ib_device *device;
 370	void            (*handler)(struct ib_event_handler *, struct ib_event *);
 371	struct list_head  list;
 372};
 373
 374#define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler)		\
 375	do {							\
 376		(_ptr)->device  = _device;			\
 377		(_ptr)->handler = _handler;			\
 378		INIT_LIST_HEAD(&(_ptr)->list);			\
 379	} while (0)
 380
 381struct ib_global_route {
 
 382	union ib_gid	dgid;
 383	u32		flow_label;
 384	u8		sgid_index;
 385	u8		hop_limit;
 386	u8		traffic_class;
 387};
 388
 389struct ib_grh {
 390	__be32		version_tclass_flow;
 391	__be16		paylen;
 392	u8		next_hdr;
 393	u8		hop_limit;
 394	union ib_gid	sgid;
 395	union ib_gid	dgid;
 396};
 397
 
 
 
 
 
 
 
 
 
 
 
 
 
 398enum {
 399	IB_MULTICAST_QPN = 0xffffff
 400};
 401
 402#define IB_LID_PERMISSIVE	cpu_to_be16(0xFFFF)
 
 403
 404enum ib_ah_flags {
 405	IB_AH_GRH	= 1
 406};
 407
 408enum ib_rate {
 409	IB_RATE_PORT_CURRENT = 0,
 410	IB_RATE_2_5_GBPS = 2,
 411	IB_RATE_5_GBPS   = 5,
 412	IB_RATE_10_GBPS  = 3,
 413	IB_RATE_20_GBPS  = 6,
 414	IB_RATE_30_GBPS  = 4,
 415	IB_RATE_40_GBPS  = 7,
 416	IB_RATE_60_GBPS  = 8,
 417	IB_RATE_80_GBPS  = 9,
 418	IB_RATE_120_GBPS = 10
 
 
 
 
 
 
 
 
 
 
 
 
 419};
 420
 421/**
 422 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the
 423 * base rate of 2.5 Gbit/sec.  For example, IB_RATE_5_GBPS will be
 424 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
 425 * @rate: rate to convert.
 426 */
 427int ib_rate_to_mult(enum ib_rate rate) __attribute_const__;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 428
 429/**
 430 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
 431 * enum.
 432 * @mult: multiple to convert.
 433 */
 434enum ib_rate mult_to_ib_rate(int mult) __attribute_const__;
 
 
 
 
 
 
 
 
 
 
 
 
 
 435
 436struct ib_ah_attr {
 437	struct ib_global_route	grh;
 438	u16			dlid;
 439	u8			sl;
 440	u8			src_path_bits;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 441	u8			static_rate;
 442	u8			ah_flags;
 443	u8			port_num;
 
 
 
 
 
 
 
 444};
 445
 446enum ib_wc_status {
 447	IB_WC_SUCCESS,
 448	IB_WC_LOC_LEN_ERR,
 449	IB_WC_LOC_QP_OP_ERR,
 450	IB_WC_LOC_EEC_OP_ERR,
 451	IB_WC_LOC_PROT_ERR,
 452	IB_WC_WR_FLUSH_ERR,
 453	IB_WC_MW_BIND_ERR,
 454	IB_WC_BAD_RESP_ERR,
 455	IB_WC_LOC_ACCESS_ERR,
 456	IB_WC_REM_INV_REQ_ERR,
 457	IB_WC_REM_ACCESS_ERR,
 458	IB_WC_REM_OP_ERR,
 459	IB_WC_RETRY_EXC_ERR,
 460	IB_WC_RNR_RETRY_EXC_ERR,
 461	IB_WC_LOC_RDD_VIOL_ERR,
 462	IB_WC_REM_INV_RD_REQ_ERR,
 463	IB_WC_REM_ABORT_ERR,
 464	IB_WC_INV_EECN_ERR,
 465	IB_WC_INV_EEC_STATE_ERR,
 466	IB_WC_FATAL_ERR,
 467	IB_WC_RESP_TIMEOUT_ERR,
 468	IB_WC_GENERAL_ERR
 469};
 470
 
 
 471enum ib_wc_opcode {
 472	IB_WC_SEND,
 473	IB_WC_RDMA_WRITE,
 474	IB_WC_RDMA_READ,
 475	IB_WC_COMP_SWAP,
 476	IB_WC_FETCH_ADD,
 477	IB_WC_BIND_MW,
 478	IB_WC_LSO,
 479	IB_WC_LOCAL_INV,
 480	IB_WC_FAST_REG_MR,
 481	IB_WC_MASKED_COMP_SWAP,
 482	IB_WC_MASKED_FETCH_ADD,
 483/*
 484 * Set value of IB_WC_RECV so consumers can test if a completion is a
 485 * receive by testing (opcode & IB_WC_RECV).
 486 */
 487	IB_WC_RECV			= 1 << 7,
 488	IB_WC_RECV_RDMA_WITH_IMM
 489};
 490
 491enum ib_wc_flags {
 492	IB_WC_GRH		= 1,
 493	IB_WC_WITH_IMM		= (1<<1),
 494	IB_WC_WITH_INVALIDATE	= (1<<2),
 
 
 
 
 495};
 496
 497struct ib_wc {
 498	u64			wr_id;
 
 
 
 499	enum ib_wc_status	status;
 500	enum ib_wc_opcode	opcode;
 501	u32			vendor_err;
 502	u32			byte_len;
 503	struct ib_qp	       *qp;
 504	union {
 505		__be32		imm_data;
 506		u32		invalidate_rkey;
 507	} ex;
 508	u32			src_qp;
 
 509	int			wc_flags;
 510	u16			pkey_index;
 511	u16			slid;
 512	u8			sl;
 513	u8			dlid_path_bits;
 514	u8			port_num;	/* valid only for DR SMPs on switches */
 515	int			csum_ok;
 
 
 516};
 517
 518enum ib_cq_notify_flags {
 519	IB_CQ_SOLICITED			= 1 << 0,
 520	IB_CQ_NEXT_COMP			= 1 << 1,
 521	IB_CQ_SOLICITED_MASK		= IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
 522	IB_CQ_REPORT_MISSED_EVENTS	= 1 << 2,
 523};
 524
 
 
 
 
 
 
 
 
 
 
 
 
 525enum ib_srq_attr_mask {
 526	IB_SRQ_MAX_WR	= 1 << 0,
 527	IB_SRQ_LIMIT	= 1 << 1,
 528};
 529
 530struct ib_srq_attr {
 531	u32	max_wr;
 532	u32	max_sge;
 533	u32	srq_limit;
 534};
 535
 536struct ib_srq_init_attr {
 537	void		      (*event_handler)(struct ib_event *, void *);
 538	void		       *srq_context;
 539	struct ib_srq_attr	attr;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 540};
 541
 542struct ib_qp_cap {
 543	u32	max_send_wr;
 544	u32	max_recv_wr;
 545	u32	max_send_sge;
 546	u32	max_recv_sge;
 547	u32	max_inline_data;
 
 
 
 
 
 
 
 548};
 549
 550enum ib_sig_type {
 551	IB_SIGNAL_ALL_WR,
 552	IB_SIGNAL_REQ_WR
 553};
 554
 555enum ib_qp_type {
 556	/*
 557	 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
 558	 * here (and in that order) since the MAD layer uses them as
 559	 * indices into a 2-entry table.
 560	 */
 561	IB_QPT_SMI,
 562	IB_QPT_GSI,
 563
 564	IB_QPT_RC,
 565	IB_QPT_UC,
 566	IB_QPT_UD,
 567	IB_QPT_RAW_IPV6,
 568	IB_QPT_RAW_ETHERTYPE
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 569};
 570
 571enum ib_qp_create_flags {
 572	IB_QP_CREATE_IPOIB_UD_LSO		= 1 << 0,
 573	IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK	= 1 << 1,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 574};
 575
 
 
 
 
 
 576struct ib_qp_init_attr {
 
 577	void                  (*event_handler)(struct ib_event *, void *);
 
 578	void		       *qp_context;
 579	struct ib_cq	       *send_cq;
 580	struct ib_cq	       *recv_cq;
 581	struct ib_srq	       *srq;
 
 582	struct ib_qp_cap	cap;
 583	enum ib_sig_type	sq_sig_type;
 584	enum ib_qp_type		qp_type;
 585	enum ib_qp_create_flags	create_flags;
 586	u8			port_num; /* special QP types only */
 
 
 
 
 
 
 
 
 
 
 
 
 
 587};
 588
 589enum ib_rnr_timeout {
 590	IB_RNR_TIMER_655_36 =  0,
 591	IB_RNR_TIMER_000_01 =  1,
 592	IB_RNR_TIMER_000_02 =  2,
 593	IB_RNR_TIMER_000_03 =  3,
 594	IB_RNR_TIMER_000_04 =  4,
 595	IB_RNR_TIMER_000_06 =  5,
 596	IB_RNR_TIMER_000_08 =  6,
 597	IB_RNR_TIMER_000_12 =  7,
 598	IB_RNR_TIMER_000_16 =  8,
 599	IB_RNR_TIMER_000_24 =  9,
 600	IB_RNR_TIMER_000_32 = 10,
 601	IB_RNR_TIMER_000_48 = 11,
 602	IB_RNR_TIMER_000_64 = 12,
 603	IB_RNR_TIMER_000_96 = 13,
 604	IB_RNR_TIMER_001_28 = 14,
 605	IB_RNR_TIMER_001_92 = 15,
 606	IB_RNR_TIMER_002_56 = 16,
 607	IB_RNR_TIMER_003_84 = 17,
 608	IB_RNR_TIMER_005_12 = 18,
 609	IB_RNR_TIMER_007_68 = 19,
 610	IB_RNR_TIMER_010_24 = 20,
 611	IB_RNR_TIMER_015_36 = 21,
 612	IB_RNR_TIMER_020_48 = 22,
 613	IB_RNR_TIMER_030_72 = 23,
 614	IB_RNR_TIMER_040_96 = 24,
 615	IB_RNR_TIMER_061_44 = 25,
 616	IB_RNR_TIMER_081_92 = 26,
 617	IB_RNR_TIMER_122_88 = 27,
 618	IB_RNR_TIMER_163_84 = 28,
 619	IB_RNR_TIMER_245_76 = 29,
 620	IB_RNR_TIMER_327_68 = 30,
 621	IB_RNR_TIMER_491_52 = 31
 622};
 623
 624enum ib_qp_attr_mask {
 625	IB_QP_STATE			= 1,
 626	IB_QP_CUR_STATE			= (1<<1),
 627	IB_QP_EN_SQD_ASYNC_NOTIFY	= (1<<2),
 628	IB_QP_ACCESS_FLAGS		= (1<<3),
 629	IB_QP_PKEY_INDEX		= (1<<4),
 630	IB_QP_PORT			= (1<<5),
 631	IB_QP_QKEY			= (1<<6),
 632	IB_QP_AV			= (1<<7),
 633	IB_QP_PATH_MTU			= (1<<8),
 634	IB_QP_TIMEOUT			= (1<<9),
 635	IB_QP_RETRY_CNT			= (1<<10),
 636	IB_QP_RNR_RETRY			= (1<<11),
 637	IB_QP_RQ_PSN			= (1<<12),
 638	IB_QP_MAX_QP_RD_ATOMIC		= (1<<13),
 639	IB_QP_ALT_PATH			= (1<<14),
 640	IB_QP_MIN_RNR_TIMER		= (1<<15),
 641	IB_QP_SQ_PSN			= (1<<16),
 642	IB_QP_MAX_DEST_RD_ATOMIC	= (1<<17),
 643	IB_QP_PATH_MIG_STATE		= (1<<18),
 644	IB_QP_CAP			= (1<<19),
 645	IB_QP_DEST_QPN			= (1<<20)
 
 
 
 
 
 646};
 647
 648enum ib_qp_state {
 649	IB_QPS_RESET,
 650	IB_QPS_INIT,
 651	IB_QPS_RTR,
 652	IB_QPS_RTS,
 653	IB_QPS_SQD,
 654	IB_QPS_SQE,
 655	IB_QPS_ERR
 656};
 657
 658enum ib_mig_state {
 659	IB_MIG_MIGRATED,
 660	IB_MIG_REARM,
 661	IB_MIG_ARMED
 662};
 663
 
 
 
 
 
 664struct ib_qp_attr {
 665	enum ib_qp_state	qp_state;
 666	enum ib_qp_state	cur_qp_state;
 667	enum ib_mtu		path_mtu;
 668	enum ib_mig_state	path_mig_state;
 669	u32			qkey;
 670	u32			rq_psn;
 671	u32			sq_psn;
 672	u32			dest_qp_num;
 673	int			qp_access_flags;
 674	struct ib_qp_cap	cap;
 675	struct ib_ah_attr	ah_attr;
 676	struct ib_ah_attr	alt_ah_attr;
 677	u16			pkey_index;
 678	u16			alt_pkey_index;
 679	u8			en_sqd_async_notify;
 680	u8			sq_draining;
 681	u8			max_rd_atomic;
 682	u8			max_dest_rd_atomic;
 683	u8			min_rnr_timer;
 684	u8			port_num;
 685	u8			timeout;
 686	u8			retry_cnt;
 687	u8			rnr_retry;
 688	u8			alt_port_num;
 689	u8			alt_timeout;
 
 
 690};
 691
 692enum ib_wr_opcode {
 693	IB_WR_RDMA_WRITE,
 694	IB_WR_RDMA_WRITE_WITH_IMM,
 695	IB_WR_SEND,
 696	IB_WR_SEND_WITH_IMM,
 697	IB_WR_RDMA_READ,
 698	IB_WR_ATOMIC_CMP_AND_SWP,
 699	IB_WR_ATOMIC_FETCH_AND_ADD,
 700	IB_WR_LSO,
 701	IB_WR_SEND_WITH_INV,
 702	IB_WR_RDMA_READ_WITH_INV,
 703	IB_WR_LOCAL_INV,
 704	IB_WR_FAST_REG_MR,
 705	IB_WR_MASKED_ATOMIC_CMP_AND_SWP,
 706	IB_WR_MASKED_ATOMIC_FETCH_AND_ADD,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 707};
 708
 709enum ib_send_flags {
 710	IB_SEND_FENCE		= 1,
 711	IB_SEND_SIGNALED	= (1<<1),
 712	IB_SEND_SOLICITED	= (1<<2),
 713	IB_SEND_INLINE		= (1<<3),
 714	IB_SEND_IP_CSUM		= (1<<4)
 
 
 
 
 715};
 716
 717struct ib_sge {
 718	u64	addr;
 719	u32	length;
 720	u32	lkey;
 721};
 722
 723struct ib_fast_reg_page_list {
 724	struct ib_device       *device;
 725	u64		       *page_list;
 726	unsigned int		max_page_list_len;
 727};
 728
 729struct ib_send_wr {
 730	struct ib_send_wr      *next;
 731	u64			wr_id;
 
 
 
 732	struct ib_sge	       *sg_list;
 733	int			num_sge;
 734	enum ib_wr_opcode	opcode;
 735	int			send_flags;
 736	union {
 737		__be32		imm_data;
 738		u32		invalidate_rkey;
 739	} ex;
 740	union {
 741		struct {
 742			u64	remote_addr;
 743			u32	rkey;
 744		} rdma;
 745		struct {
 746			u64	remote_addr;
 747			u64	compare_add;
 748			u64	swap;
 749			u64	compare_add_mask;
 750			u64	swap_mask;
 751			u32	rkey;
 752		} atomic;
 753		struct {
 754			struct ib_ah *ah;
 755			void   *header;
 756			int     hlen;
 757			int     mss;
 758			u32	remote_qpn;
 759			u32	remote_qkey;
 760			u16	pkey_index; /* valid for GSI only */
 761			u8	port_num;   /* valid for DR SMPs on switch only */
 762		} ud;
 763		struct {
 764			u64				iova_start;
 765			struct ib_fast_reg_page_list   *page_list;
 766			unsigned int			page_shift;
 767			unsigned int			page_list_len;
 768			u32				length;
 769			int				access_flags;
 770			u32				rkey;
 771		} fast_reg;
 772	} wr;
 773};
 774
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 775struct ib_recv_wr {
 776	struct ib_recv_wr      *next;
 777	u64			wr_id;
 
 
 
 778	struct ib_sge	       *sg_list;
 779	int			num_sge;
 780};
 781
 782enum ib_access_flags {
 783	IB_ACCESS_LOCAL_WRITE	= 1,
 784	IB_ACCESS_REMOTE_WRITE	= (1<<1),
 785	IB_ACCESS_REMOTE_READ	= (1<<2),
 786	IB_ACCESS_REMOTE_ATOMIC	= (1<<3),
 787	IB_ACCESS_MW_BIND	= (1<<4)
 788};
 789
 790struct ib_phys_buf {
 791	u64      addr;
 792	u64      size;
 793};
 794
 795struct ib_mr_attr {
 796	struct ib_pd	*pd;
 797	u64		device_virt_addr;
 798	u64		size;
 799	int		mr_access_flags;
 800	u32		lkey;
 801	u32		rkey;
 802};
 803
 
 
 
 
 804enum ib_mr_rereg_flags {
 805	IB_MR_REREG_TRANS	= 1,
 806	IB_MR_REREG_PD		= (1<<1),
 807	IB_MR_REREG_ACCESS	= (1<<2)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 808};
 809
 810struct ib_mw_bind {
 811	struct ib_mr   *mr;
 812	u64		wr_id;
 813	u64		addr;
 814	u32		length;
 815	int		send_flags;
 816	int		mw_access_flags;
 817};
 818
 819struct ib_fmr_attr {
 820	int	max_pages;
 821	int	max_maps;
 822	u8	page_shift;
 823};
 824
 825struct ib_ucontext {
 826	struct ib_device       *device;
 827	struct list_head	pd_list;
 828	struct list_head	mr_list;
 829	struct list_head	mw_list;
 830	struct list_head	cq_list;
 831	struct list_head	qp_list;
 832	struct list_head	srq_list;
 833	struct list_head	ah_list;
 834	int			closing;
 
 
 
 
 
 
 
 
 835};
 836
 837struct ib_uobject {
 838	u64			user_handle;	/* handle given to us by userspace */
 
 
 
 839	struct ib_ucontext     *context;	/* associated user context */
 840	void		       *object;		/* containing object */
 841	struct list_head	list;		/* link to context's list */
 
 842	int			id;		/* index into kernel idr */
 843	struct kref		ref;
 844	struct rw_semaphore	mutex;		/* protects .live */
 845	int			live;
 
 
 846};
 847
 848struct ib_udata {
 849	void __user *inbuf;
 850	void __user *outbuf;
 851	size_t       inlen;
 852	size_t       outlen;
 853};
 854
 855struct ib_pd {
 
 
 856	struct ib_device       *device;
 857	struct ib_uobject      *uobject;
 858	atomic_t          	usecnt; /* count all resources */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 859};
 860
 861struct ib_ah {
 862	struct ib_device	*device;
 863	struct ib_pd		*pd;
 864	struct ib_uobject	*uobject;
 
 
 865};
 866
 867typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
 868
 
 
 
 
 
 
 
 
 
 869struct ib_cq {
 870	struct ib_device       *device;
 871	struct ib_uobject      *uobject;
 872	ib_comp_handler   	comp_handler;
 873	void                  (*event_handler)(struct ib_event *, void *);
 874	void                   *cq_context;
 875	int               	cqe;
 
 876	atomic_t          	usecnt; /* count number of work queues */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 877};
 878
 879struct ib_srq {
 880	struct ib_device       *device;
 881	struct ib_pd	       *pd;
 882	struct ib_uobject      *uobject;
 883	void		      (*event_handler)(struct ib_event *, void *);
 884	void		       *srq_context;
 
 885	atomic_t		usecnt;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 886};
 887
 
 
 
 
 888struct ib_qp {
 889	struct ib_device       *device;
 890	struct ib_pd	       *pd;
 891	struct ib_cq	       *send_cq;
 892	struct ib_cq	       *recv_cq;
 
 
 
 
 893	struct ib_srq	       *srq;
 894	struct ib_uobject      *uobject;
 
 
 
 
 
 
 
 895	void                  (*event_handler)(struct ib_event *, void *);
 896	void		       *qp_context;
 
 
 
 897	u32			qp_num;
 
 
 898	enum ib_qp_type		qp_type;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 899};
 900
 901struct ib_mr {
 902	struct ib_device  *device;
 903	struct ib_pd	  *pd;
 904	struct ib_uobject *uobject;
 905	u32		   lkey;
 906	u32		   rkey;
 907	atomic_t	   usecnt; /* count number of MWs */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 908};
 909
 910struct ib_mw {
 911	struct ib_device	*device;
 912	struct ib_pd		*pd;
 913	struct ib_uobject	*uobject;
 914	u32			rkey;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 915};
 916
 917struct ib_fmr {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 918	struct ib_device	*device;
 919	struct ib_pd		*pd;
 920	struct list_head	list;
 921	u32			lkey;
 922	u32			rkey;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 923};
 924
 925struct ib_mad;
 926struct ib_grh;
 927
 928enum ib_process_mad_flags {
 929	IB_MAD_IGNORE_MKEY	= 1,
 930	IB_MAD_IGNORE_BKEY	= 2,
 931	IB_MAD_IGNORE_ALL	= IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
 932};
 933
 934enum ib_mad_result {
 935	IB_MAD_RESULT_FAILURE  = 0,      /* (!SUCCESS is the important flag) */
 936	IB_MAD_RESULT_SUCCESS  = 1 << 0, /* MAD was successfully processed   */
 937	IB_MAD_RESULT_REPLY    = 1 << 1, /* Reply packet needs to be sent    */
 938	IB_MAD_RESULT_CONSUMED = 1 << 2  /* Packet consumed: stop processing */
 939};
 940
 941#define IB_DEVICE_NAME_MAX 64
 
 
 
 
 
 
 942
 943struct ib_cache {
 944	rwlock_t                lock;
 945	struct ib_event_handler event_handler;
 946	struct ib_pkey_cache  **pkey_cache;
 947	struct ib_gid_cache   **gid_cache;
 948	u8                     *lmc_cache;
 949};
 950
 951struct ib_dma_mapping_ops {
 952	int		(*mapping_error)(struct ib_device *dev,
 953					 u64 dma_addr);
 954	u64		(*map_single)(struct ib_device *dev,
 955				      void *ptr, size_t size,
 956				      enum dma_data_direction direction);
 957	void		(*unmap_single)(struct ib_device *dev,
 958					u64 addr, size_t size,
 959					enum dma_data_direction direction);
 960	u64		(*map_page)(struct ib_device *dev,
 961				    struct page *page, unsigned long offset,
 962				    size_t size,
 963				    enum dma_data_direction direction);
 964	void		(*unmap_page)(struct ib_device *dev,
 965				      u64 addr, size_t size,
 966				      enum dma_data_direction direction);
 967	int		(*map_sg)(struct ib_device *dev,
 968				  struct scatterlist *sg, int nents,
 969				  enum dma_data_direction direction);
 970	void		(*unmap_sg)(struct ib_device *dev,
 971				    struct scatterlist *sg, int nents,
 972				    enum dma_data_direction direction);
 973	u64		(*dma_address)(struct ib_device *dev,
 974				       struct scatterlist *sg);
 975	unsigned int	(*dma_len)(struct ib_device *dev,
 976				   struct scatterlist *sg);
 977	void		(*sync_single_for_cpu)(struct ib_device *dev,
 978					       u64 dma_handle,
 979					       size_t size,
 980					       enum dma_data_direction dir);
 981	void		(*sync_single_for_device)(struct ib_device *dev,
 982						  u64 dma_handle,
 983						  size_t size,
 984						  enum dma_data_direction dir);
 985	void		*(*alloc_coherent)(struct ib_device *dev,
 986					   size_t size,
 987					   u64 *dma_handle,
 988					   gfp_t flag);
 989	void		(*free_coherent)(struct ib_device *dev,
 990					 size_t size, void *cpu_addr,
 991					 u64 dma_handle);
 992};
 993
 994struct iw_cm_verbs;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 995
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 996struct ib_device {
 
 997	struct device                *dma_device;
 998
 999	char                          name[IB_DEVICE_NAME_MAX];
 
1000
1001	struct list_head              event_handler_list;
1002	spinlock_t                    event_handler_lock;
 
1003
1004	spinlock_t                    client_data_lock;
1005	struct list_head              core_list;
1006	struct list_head              client_data_list;
1007
1008	struct ib_cache               cache;
1009	int                          *pkey_tbl_len;
1010	int                          *gid_tbl_len;
1011
1012	int			      num_comp_vectors;
 
 
 
 
 
 
 
 
 
1013
1014	struct iw_cm_verbs	     *iwcm;
1015
1016	int		           (*get_protocol_stats)(struct ib_device *device,
1017							 union rdma_protocol_stats *stats);
1018	int		           (*query_device)(struct ib_device *device,
1019						   struct ib_device_attr *device_attr);
1020	int		           (*query_port)(struct ib_device *device,
1021						 u8 port_num,
1022						 struct ib_port_attr *port_attr);
1023	enum rdma_link_layer	   (*get_link_layer)(struct ib_device *device,
1024						     u8 port_num);
1025	int		           (*query_gid)(struct ib_device *device,
1026						u8 port_num, int index,
1027						union ib_gid *gid);
1028	int		           (*query_pkey)(struct ib_device *device,
1029						 u8 port_num, u16 index, u16 *pkey);
1030	int		           (*modify_device)(struct ib_device *device,
1031						    int device_modify_mask,
1032						    struct ib_device_modify *device_modify);
1033	int		           (*modify_port)(struct ib_device *device,
1034						  u8 port_num, int port_modify_mask,
1035						  struct ib_port_modify *port_modify);
1036	struct ib_ucontext *       (*alloc_ucontext)(struct ib_device *device,
1037						     struct ib_udata *udata);
1038	int                        (*dealloc_ucontext)(struct ib_ucontext *context);
1039	int                        (*mmap)(struct ib_ucontext *context,
1040					   struct vm_area_struct *vma);
1041	struct ib_pd *             (*alloc_pd)(struct ib_device *device,
1042					       struct ib_ucontext *context,
1043					       struct ib_udata *udata);
1044	int                        (*dealloc_pd)(struct ib_pd *pd);
1045	struct ib_ah *             (*create_ah)(struct ib_pd *pd,
1046						struct ib_ah_attr *ah_attr);
1047	int                        (*modify_ah)(struct ib_ah *ah,
1048						struct ib_ah_attr *ah_attr);
1049	int                        (*query_ah)(struct ib_ah *ah,
1050					       struct ib_ah_attr *ah_attr);
1051	int                        (*destroy_ah)(struct ib_ah *ah);
1052	struct ib_srq *            (*create_srq)(struct ib_pd *pd,
1053						 struct ib_srq_init_attr *srq_init_attr,
1054						 struct ib_udata *udata);
1055	int                        (*modify_srq)(struct ib_srq *srq,
1056						 struct ib_srq_attr *srq_attr,
1057						 enum ib_srq_attr_mask srq_attr_mask,
1058						 struct ib_udata *udata);
1059	int                        (*query_srq)(struct ib_srq *srq,
1060						struct ib_srq_attr *srq_attr);
1061	int                        (*destroy_srq)(struct ib_srq *srq);
1062	int                        (*post_srq_recv)(struct ib_srq *srq,
1063						    struct ib_recv_wr *recv_wr,
1064						    struct ib_recv_wr **bad_recv_wr);
1065	struct ib_qp *             (*create_qp)(struct ib_pd *pd,
1066						struct ib_qp_init_attr *qp_init_attr,
1067						struct ib_udata *udata);
1068	int                        (*modify_qp)(struct ib_qp *qp,
1069						struct ib_qp_attr *qp_attr,
1070						int qp_attr_mask,
1071						struct ib_udata *udata);
1072	int                        (*query_qp)(struct ib_qp *qp,
1073					       struct ib_qp_attr *qp_attr,
1074					       int qp_attr_mask,
1075					       struct ib_qp_init_attr *qp_init_attr);
1076	int                        (*destroy_qp)(struct ib_qp *qp);
1077	int                        (*post_send)(struct ib_qp *qp,
1078						struct ib_send_wr *send_wr,
1079						struct ib_send_wr **bad_send_wr);
1080	int                        (*post_recv)(struct ib_qp *qp,
1081						struct ib_recv_wr *recv_wr,
1082						struct ib_recv_wr **bad_recv_wr);
1083	struct ib_cq *             (*create_cq)(struct ib_device *device, int cqe,
1084						int comp_vector,
1085						struct ib_ucontext *context,
1086						struct ib_udata *udata);
1087	int                        (*modify_cq)(struct ib_cq *cq, u16 cq_count,
1088						u16 cq_period);
1089	int                        (*destroy_cq)(struct ib_cq *cq);
1090	int                        (*resize_cq)(struct ib_cq *cq, int cqe,
1091						struct ib_udata *udata);
1092	int                        (*poll_cq)(struct ib_cq *cq, int num_entries,
1093					      struct ib_wc *wc);
1094	int                        (*peek_cq)(struct ib_cq *cq, int wc_cnt);
1095	int                        (*req_notify_cq)(struct ib_cq *cq,
1096						    enum ib_cq_notify_flags flags);
1097	int                        (*req_ncomp_notif)(struct ib_cq *cq,
1098						      int wc_cnt);
1099	struct ib_mr *             (*get_dma_mr)(struct ib_pd *pd,
1100						 int mr_access_flags);
1101	struct ib_mr *             (*reg_phys_mr)(struct ib_pd *pd,
1102						  struct ib_phys_buf *phys_buf_array,
1103						  int num_phys_buf,
1104						  int mr_access_flags,
1105						  u64 *iova_start);
1106	struct ib_mr *             (*reg_user_mr)(struct ib_pd *pd,
1107						  u64 start, u64 length,
1108						  u64 virt_addr,
1109						  int mr_access_flags,
1110						  struct ib_udata *udata);
1111	int                        (*query_mr)(struct ib_mr *mr,
1112					       struct ib_mr_attr *mr_attr);
1113	int                        (*dereg_mr)(struct ib_mr *mr);
1114	struct ib_mr *		   (*alloc_fast_reg_mr)(struct ib_pd *pd,
1115					       int max_page_list_len);
1116	struct ib_fast_reg_page_list * (*alloc_fast_reg_page_list)(struct ib_device *device,
1117								   int page_list_len);
1118	void			   (*free_fast_reg_page_list)(struct ib_fast_reg_page_list *page_list);
1119	int                        (*rereg_phys_mr)(struct ib_mr *mr,
1120						    int mr_rereg_mask,
1121						    struct ib_pd *pd,
1122						    struct ib_phys_buf *phys_buf_array,
1123						    int num_phys_buf,
1124						    int mr_access_flags,
1125						    u64 *iova_start);
1126	struct ib_mw *             (*alloc_mw)(struct ib_pd *pd);
1127	int                        (*bind_mw)(struct ib_qp *qp,
1128					      struct ib_mw *mw,
1129					      struct ib_mw_bind *mw_bind);
1130	int                        (*dealloc_mw)(struct ib_mw *mw);
1131	struct ib_fmr *	           (*alloc_fmr)(struct ib_pd *pd,
1132						int mr_access_flags,
1133						struct ib_fmr_attr *fmr_attr);
1134	int		           (*map_phys_fmr)(struct ib_fmr *fmr,
1135						   u64 *page_list, int list_len,
1136						   u64 iova);
1137	int		           (*unmap_fmr)(struct list_head *fmr_list);
1138	int		           (*dealloc_fmr)(struct ib_fmr *fmr);
1139	int                        (*attach_mcast)(struct ib_qp *qp,
1140						   union ib_gid *gid,
1141						   u16 lid);
1142	int                        (*detach_mcast)(struct ib_qp *qp,
1143						   union ib_gid *gid,
1144						   u16 lid);
1145	int                        (*process_mad)(struct ib_device *device,
1146						  int process_mad_flags,
1147						  u8 port_num,
1148						  struct ib_wc *in_wc,
1149						  struct ib_grh *in_grh,
1150						  struct ib_mad *in_mad,
1151						  struct ib_mad *out_mad);
1152
1153	struct ib_dma_mapping_ops   *dma_ops;
1154
1155	struct module               *owner;
1156	struct device                dev;
1157	struct kobject               *ports_parent;
1158	struct list_head             port_list;
1159
1160	enum {
1161		IB_DEV_UNINITIALIZED,
1162		IB_DEV_REGISTERED,
1163		IB_DEV_UNREGISTERED
1164	}                            reg_state;
1165
1166	int			     uverbs_abi_ver;
1167	u64			     uverbs_cmd_mask;
 
1168
1169	char			     node_desc[64];
1170	__be64			     node_guid;
1171	u32			     local_dma_lkey;
 
 
 
 
 
1172	u8                           node_type;
1173	u8                           phys_port_cnt;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1174};
1175
 
1176struct ib_client {
1177	char  *name;
1178	void (*add)   (struct ib_device *);
1179	void (*remove)(struct ib_device *);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1180
1181	struct list_head list;
 
1182};
1183
1184struct ib_device *ib_alloc_device(size_t size);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1185void ib_dealloc_device(struct ib_device *device);
1186
1187int ib_register_device(struct ib_device *device,
1188		       int (*port_callback)(struct ib_device *,
1189					    u8, struct kobject *));
1190void ib_unregister_device(struct ib_device *device);
 
 
 
1191
1192int ib_register_client   (struct ib_client *client);
1193void ib_unregister_client(struct ib_client *client);
1194
1195void *ib_get_client_data(struct ib_device *device, struct ib_client *client);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1196void  ib_set_client_data(struct ib_device *device, struct ib_client *client,
1197			 void *data);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1198
1199static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
1200{
1201	return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
1202}
1203
1204static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
1205{
1206	return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
1207}
1208
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1209/**
1210 * ib_modify_qp_is_ok - Check that the supplied attribute mask
1211 * contains all required attributes and no attributes not allowed for
1212 * the given QP state transition.
1213 * @cur_state: Current QP state
1214 * @next_state: Next QP state
1215 * @type: QP type
1216 * @mask: Mask of supplied QP attributes
1217 *
1218 * This function is a helper function that a low-level driver's
1219 * modify_qp method can use to validate the consumer's input.  It
1220 * checks that cur_state and next_state are valid QP states, that a
1221 * transition from cur_state to next_state is allowed by the IB spec,
1222 * and that the attribute mask supplied is allowed for the transition.
1223 */
1224int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
1225		       enum ib_qp_type type, enum ib_qp_attr_mask mask);
1226
1227int ib_register_event_handler  (struct ib_event_handler *event_handler);
1228int ib_unregister_event_handler(struct ib_event_handler *event_handler);
1229void ib_dispatch_event(struct ib_event *event);
1230
1231int ib_query_device(struct ib_device *device,
1232		    struct ib_device_attr *device_attr);
1233
1234int ib_query_port(struct ib_device *device,
1235		  u8 port_num, struct ib_port_attr *port_attr);
1236
1237enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
1238					       u8 port_num);
1239
1240int ib_query_gid(struct ib_device *device,
1241		 u8 port_num, int index, union ib_gid *gid);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1242
1243int ib_query_pkey(struct ib_device *device,
1244		  u8 port_num, u16 index, u16 *pkey);
1245
1246int ib_modify_device(struct ib_device *device,
1247		     int device_modify_mask,
1248		     struct ib_device_modify *device_modify);
1249
1250int ib_modify_port(struct ib_device *device,
1251		   u8 port_num, int port_modify_mask,
1252		   struct ib_port_modify *port_modify);
1253
1254int ib_find_gid(struct ib_device *device, union ib_gid *gid,
1255		u8 *port_num, u16 *index);
1256
1257int ib_find_pkey(struct ib_device *device,
1258		 u8 port_num, u16 pkey, u16 *index);
1259
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1260/**
1261 * ib_alloc_pd - Allocates an unused protection domain.
1262 * @device: The device on which to allocate the protection domain.
1263 *
1264 * A protection domain object provides an association between QPs, shared
1265 * receive queues, address handles, memory regions, and memory windows.
1266 */
1267struct ib_pd *ib_alloc_pd(struct ib_device *device);
 
 
 
 
 
 
 
 
1268
1269/**
1270 * ib_dealloc_pd - Deallocates a protection domain.
1271 * @pd: The protection domain to deallocate.
 
 
 
 
 
1272 */
1273int ib_dealloc_pd(struct ib_pd *pd);
 
1274
1275/**
1276 * ib_create_ah - Creates an address handle for the given address vector.
 
1277 * @pd: The protection domain associated with the address handle.
1278 * @ah_attr: The attributes of the address vector.
 
 
1279 *
 
1280 * The address handle is used to reference a local or global destination
1281 * in all UD QP post sends.
1282 */
1283struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1284
1285/**
1286 * ib_init_ah_from_wc - Initializes address handle attributes from a
1287 *   work completion.
1288 * @device: Device on which the received message arrived.
1289 * @port_num: Port on which the received message arrived.
1290 * @wc: Work completion associated with the received message.
1291 * @grh: References the received global route header.  This parameter is
1292 *   ignored unless the work completion indicates that the GRH is valid.
1293 * @ah_attr: Returned attributes that can be used when creating an address
1294 *   handle for replying to the message.
 
 
 
 
 
 
 
1295 */
1296int ib_init_ah_from_wc(struct ib_device *device, u8 port_num, struct ib_wc *wc,
1297		       struct ib_grh *grh, struct ib_ah_attr *ah_attr);
 
1298
1299/**
1300 * ib_create_ah_from_wc - Creates an address handle associated with the
1301 *   sender of the specified work completion.
1302 * @pd: The protection domain associated with the address handle.
1303 * @wc: Work completion information associated with a received message.
1304 * @grh: References the received global route header.  This parameter is
1305 *   ignored unless the work completion indicates that the GRH is valid.
1306 * @port_num: The outbound port number to associate with the address.
1307 *
1308 * The address handle is used to reference a local or global destination
1309 * in all UD QP post sends.
1310 */
1311struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, struct ib_wc *wc,
1312				   struct ib_grh *grh, u8 port_num);
1313
1314/**
1315 * ib_modify_ah - Modifies the address vector associated with an address
1316 *   handle.
1317 * @ah: The address handle to modify.
1318 * @ah_attr: The new address vector attributes to associate with the
1319 *   address handle.
1320 */
1321int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
1322
1323/**
1324 * ib_query_ah - Queries the address vector associated with an address
1325 *   handle.
1326 * @ah: The address handle to query.
1327 * @ah_attr: The address vector attributes associated with the address
1328 *   handle.
1329 */
1330int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
 
 
 
 
 
1331
1332/**
1333 * ib_destroy_ah - Destroys an address handle.
1334 * @ah: The address handle to destroy.
 
 
1335 */
1336int ib_destroy_ah(struct ib_ah *ah);
1337
1338/**
1339 * ib_create_srq - Creates a SRQ associated with the specified protection
1340 *   domain.
1341 * @pd: The protection domain associated with the SRQ.
1342 * @srq_init_attr: A list of initial attributes required to create the
1343 *   SRQ.  If SRQ creation succeeds, then the attributes are updated to
1344 *   the actual capabilities of the created SRQ.
1345 *
1346 * srq_attr->max_wr and srq_attr->max_sge are read the determine the
1347 * requested size of the SRQ, and set to the actual values allocated
1348 * on return.  If ib_create_srq() succeeds, then max_wr and max_sge
1349 * will always be at least as large as the requested values.
1350 */
1351struct ib_srq *ib_create_srq(struct ib_pd *pd,
1352			     struct ib_srq_init_attr *srq_init_attr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1353
1354/**
1355 * ib_modify_srq - Modifies the attributes for the specified SRQ.
1356 * @srq: The SRQ to modify.
1357 * @srq_attr: On input, specifies the SRQ attributes to modify.  On output,
1358 *   the current values of selected SRQ attributes are returned.
1359 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
1360 *   are being modified.
1361 *
1362 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
1363 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when
1364 * the number of receives queued drops below the limit.
1365 */
1366int ib_modify_srq(struct ib_srq *srq,
1367		  struct ib_srq_attr *srq_attr,
1368		  enum ib_srq_attr_mask srq_attr_mask);
1369
1370/**
1371 * ib_query_srq - Returns the attribute list and current values for the
1372 *   specified SRQ.
1373 * @srq: The SRQ to query.
1374 * @srq_attr: The attributes of the specified SRQ.
1375 */
1376int ib_query_srq(struct ib_srq *srq,
1377		 struct ib_srq_attr *srq_attr);
1378
1379/**
1380 * ib_destroy_srq - Destroys the specified SRQ.
1381 * @srq: The SRQ to destroy.
 
1382 */
1383int ib_destroy_srq(struct ib_srq *srq);
 
 
 
 
 
 
 
 
 
 
 
1384
1385/**
1386 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
1387 * @srq: The SRQ to post the work request on.
1388 * @recv_wr: A list of work requests to post on the receive queue.
1389 * @bad_recv_wr: On an immediate failure, this parameter will reference
1390 *   the work request that failed to be posted on the QP.
1391 */
1392static inline int ib_post_srq_recv(struct ib_srq *srq,
1393				   struct ib_recv_wr *recv_wr,
1394				   struct ib_recv_wr **bad_recv_wr)
1395{
1396	return srq->device->post_srq_recv(srq, recv_wr, bad_recv_wr);
 
 
 
1397}
1398
1399/**
1400 * ib_create_qp - Creates a QP associated with the specified protection
1401 *   domain.
1402 * @pd: The protection domain associated with the QP.
1403 * @qp_init_attr: A list of initial attributes required to create the
1404 *   QP.  If QP creation succeeds, then the attributes are updated to
1405 *   the actual capabilities of the created QP.
1406 */
1407struct ib_qp *ib_create_qp(struct ib_pd *pd,
1408			   struct ib_qp_init_attr *qp_init_attr);
1409
1410/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1411 * ib_modify_qp - Modifies the attributes for the specified QP and then
1412 *   transitions the QP to the given state.
1413 * @qp: The QP to modify.
1414 * @qp_attr: On input, specifies the QP attributes to modify.  On output,
1415 *   the current values of selected QP attributes are returned.
1416 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP
1417 *   are being modified.
1418 */
1419int ib_modify_qp(struct ib_qp *qp,
1420		 struct ib_qp_attr *qp_attr,
1421		 int qp_attr_mask);
1422
1423/**
1424 * ib_query_qp - Returns the attribute list and current values for the
1425 *   specified QP.
1426 * @qp: The QP to query.
1427 * @qp_attr: The attributes of the specified QP.
1428 * @qp_attr_mask: A bit-mask used to select specific attributes to query.
1429 * @qp_init_attr: Additional attributes of the selected QP.
1430 *
1431 * The qp_attr_mask may be used to limit the query to gathering only the
1432 * selected attributes.
1433 */
1434int ib_query_qp(struct ib_qp *qp,
1435		struct ib_qp_attr *qp_attr,
1436		int qp_attr_mask,
1437		struct ib_qp_init_attr *qp_init_attr);
1438
1439/**
1440 * ib_destroy_qp - Destroys the specified QP.
1441 * @qp: The QP to destroy.
 
1442 */
1443int ib_destroy_qp(struct ib_qp *qp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1444
1445/**
1446 * ib_post_send - Posts a list of work requests to the send queue of
1447 *   the specified QP.
1448 * @qp: The QP to post the work request on.
1449 * @send_wr: A list of work requests to post on the send queue.
1450 * @bad_send_wr: On an immediate failure, this parameter will reference
1451 *   the work request that failed to be posted on the QP.
1452 *
1453 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate
1454 * error is returned, the QP state shall not be affected,
1455 * ib_post_send() will return an immediate error after queueing any
1456 * earlier work requests in the list.
1457 */
1458static inline int ib_post_send(struct ib_qp *qp,
1459			       struct ib_send_wr *send_wr,
1460			       struct ib_send_wr **bad_send_wr)
1461{
1462	return qp->device->post_send(qp, send_wr, bad_send_wr);
 
 
1463}
1464
1465/**
1466 * ib_post_recv - Posts a list of work requests to the receive queue of
1467 *   the specified QP.
1468 * @qp: The QP to post the work request on.
1469 * @recv_wr: A list of work requests to post on the receive queue.
1470 * @bad_recv_wr: On an immediate failure, this parameter will reference
1471 *   the work request that failed to be posted on the QP.
1472 */
1473static inline int ib_post_recv(struct ib_qp *qp,
1474			       struct ib_recv_wr *recv_wr,
1475			       struct ib_recv_wr **bad_recv_wr)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1476{
1477	return qp->device->post_recv(qp, recv_wr, bad_recv_wr);
 
1478}
1479
1480/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1481 * ib_create_cq - Creates a CQ on the specified device.
1482 * @device: The device on which to create the CQ.
1483 * @comp_handler: A user-specified callback that is invoked when a
1484 *   completion event occurs on the CQ.
1485 * @event_handler: A user-specified callback that is invoked when an
1486 *   asynchronous event not associated with a completion occurs on the CQ.
1487 * @cq_context: Context associated with the CQ returned to the user via
1488 *   the associated completion and event handlers.
1489 * @cqe: The minimum size of the CQ.
1490 * @comp_vector - Completion vector used to signal completion events.
1491 *     Must be >= 0 and < context->num_comp_vectors.
1492 *
1493 * Users can examine the cq structure to determine the actual CQ size.
1494 */
1495struct ib_cq *ib_create_cq(struct ib_device *device,
1496			   ib_comp_handler comp_handler,
1497			   void (*event_handler)(struct ib_event *, void *),
1498			   void *cq_context, int cqe, int comp_vector);
 
 
 
 
1499
1500/**
1501 * ib_resize_cq - Modifies the capacity of the CQ.
1502 * @cq: The CQ to resize.
1503 * @cqe: The minimum size of the CQ.
1504 *
1505 * Users can examine the cq structure to determine the actual CQ size.
1506 */
1507int ib_resize_cq(struct ib_cq *cq, int cqe);
1508
1509/**
1510 * ib_modify_cq - Modifies moderation params of the CQ
1511 * @cq: The CQ to modify.
1512 * @cq_count: number of CQEs that will trigger an event
1513 * @cq_period: max period of time in usec before triggering an event
1514 *
1515 */
1516int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period);
1517
1518/**
1519 * ib_destroy_cq - Destroys the specified CQ.
1520 * @cq: The CQ to destroy.
 
1521 */
1522int ib_destroy_cq(struct ib_cq *cq);
 
 
 
 
 
 
 
 
 
 
 
1523
1524/**
1525 * ib_poll_cq - poll a CQ for completion(s)
1526 * @cq:the CQ being polled
1527 * @num_entries:maximum number of completions to return
1528 * @wc:array of at least @num_entries &struct ib_wc where completions
1529 *   will be returned
1530 *
1531 * Poll a CQ for (possibly multiple) completions.  If the return value
1532 * is < 0, an error occurred.  If the return value is >= 0, it is the
1533 * number of completions returned.  If the return value is
1534 * non-negative and < num_entries, then the CQ was emptied.
1535 */
1536static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
1537			     struct ib_wc *wc)
1538{
1539	return cq->device->poll_cq(cq, num_entries, wc);
1540}
1541
1542/**
1543 * ib_peek_cq - Returns the number of unreaped completions currently
1544 *   on the specified CQ.
1545 * @cq: The CQ to peek.
1546 * @wc_cnt: A minimum number of unreaped completions to check for.
1547 *
1548 * If the number of unreaped completions is greater than or equal to wc_cnt,
1549 * this function returns wc_cnt, otherwise, it returns the actual number of
1550 * unreaped completions.
1551 */
1552int ib_peek_cq(struct ib_cq *cq, int wc_cnt);
1553
1554/**
1555 * ib_req_notify_cq - Request completion notification on a CQ.
1556 * @cq: The CQ to generate an event for.
1557 * @flags:
1558 *   Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
1559 *   to request an event on the next solicited event or next work
1560 *   completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
1561 *   may also be |ed in to request a hint about missed events, as
1562 *   described below.
1563 *
1564 * Return Value:
1565 *    < 0 means an error occurred while requesting notification
1566 *   == 0 means notification was requested successfully, and if
1567 *        IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
1568 *        were missed and it is safe to wait for another event.  In
1569 *        this case is it guaranteed that any work completions added
1570 *        to the CQ since the last CQ poll will trigger a completion
1571 *        notification event.
1572 *    > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
1573 *        in.  It means that the consumer must poll the CQ again to
1574 *        make sure it is empty to avoid missing an event because of a
1575 *        race between requesting notification and an entry being
1576 *        added to the CQ.  This return value means it is possible
1577 *        (but not guaranteed) that a work completion has been added
1578 *        to the CQ since the last poll without triggering a
1579 *        completion notification event.
1580 */
1581static inline int ib_req_notify_cq(struct ib_cq *cq,
1582				   enum ib_cq_notify_flags flags)
1583{
1584	return cq->device->req_notify_cq(cq, flags);
1585}
1586
 
 
 
 
 
 
1587/**
1588 * ib_req_ncomp_notif - Request completion notification when there are
1589 *   at least the specified number of unreaped completions on the CQ.
1590 * @cq: The CQ to generate an event for.
1591 * @wc_cnt: The number of unreaped completions that should be on the
1592 *   CQ before an event is generated.
1593 */
1594static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt)
1595{
1596	return cq->device->req_ncomp_notif ?
1597		cq->device->req_ncomp_notif(cq, wc_cnt) :
1598		-ENOSYS;
1599}
1600
1601/**
1602 * ib_get_dma_mr - Returns a memory region for system memory that is
1603 *   usable for DMA.
1604 * @pd: The protection domain associated with the memory region.
1605 * @mr_access_flags: Specifies the memory access rights.
1606 *
1607 * Note that the ib_dma_*() functions defined below must be used
1608 * to create/destroy addresses used with the Lkey or Rkey returned
1609 * by ib_get_dma_mr().
1610 */
1611struct ib_mr *ib_get_dma_mr(struct ib_pd *pd, int mr_access_flags);
1612
1613/**
1614 * ib_dma_mapping_error - check a DMA addr for error
1615 * @dev: The device for which the dma_addr was created
1616 * @dma_addr: The DMA address to check
1617 */
1618static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
1619{
1620	if (dev->dma_ops)
1621		return dev->dma_ops->mapping_error(dev, dma_addr);
1622	return dma_mapping_error(dev->dma_device, dma_addr);
1623}
1624
1625/**
1626 * ib_dma_map_single - Map a kernel virtual address to DMA address
1627 * @dev: The device for which the dma_addr is to be created
1628 * @cpu_addr: The kernel virtual address
1629 * @size: The size of the region in bytes
1630 * @direction: The direction of the DMA
1631 */
1632static inline u64 ib_dma_map_single(struct ib_device *dev,
1633				    void *cpu_addr, size_t size,
1634				    enum dma_data_direction direction)
1635{
1636	if (dev->dma_ops)
1637		return dev->dma_ops->map_single(dev, cpu_addr, size, direction);
1638	return dma_map_single(dev->dma_device, cpu_addr, size, direction);
1639}
1640
1641/**
1642 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
1643 * @dev: The device for which the DMA address was created
1644 * @addr: The DMA address
1645 * @size: The size of the region in bytes
1646 * @direction: The direction of the DMA
1647 */
1648static inline void ib_dma_unmap_single(struct ib_device *dev,
1649				       u64 addr, size_t size,
1650				       enum dma_data_direction direction)
1651{
1652	if (dev->dma_ops)
1653		dev->dma_ops->unmap_single(dev, addr, size, direction);
1654	else
1655		dma_unmap_single(dev->dma_device, addr, size, direction);
1656}
1657
1658static inline u64 ib_dma_map_single_attrs(struct ib_device *dev,
1659					  void *cpu_addr, size_t size,
1660					  enum dma_data_direction direction,
1661					  struct dma_attrs *attrs)
1662{
1663	return dma_map_single_attrs(dev->dma_device, cpu_addr, size,
1664				    direction, attrs);
1665}
1666
1667static inline void ib_dma_unmap_single_attrs(struct ib_device *dev,
1668					     u64 addr, size_t size,
1669					     enum dma_data_direction direction,
1670					     struct dma_attrs *attrs)
1671{
1672	return dma_unmap_single_attrs(dev->dma_device, addr, size,
1673				      direction, attrs);
1674}
1675
1676/**
1677 * ib_dma_map_page - Map a physical page to DMA address
1678 * @dev: The device for which the dma_addr is to be created
1679 * @page: The page to be mapped
1680 * @offset: The offset within the page
1681 * @size: The size of the region in bytes
1682 * @direction: The direction of the DMA
1683 */
1684static inline u64 ib_dma_map_page(struct ib_device *dev,
1685				  struct page *page,
1686				  unsigned long offset,
1687				  size_t size,
1688					 enum dma_data_direction direction)
1689{
1690	if (dev->dma_ops)
1691		return dev->dma_ops->map_page(dev, page, offset, size, direction);
1692	return dma_map_page(dev->dma_device, page, offset, size, direction);
1693}
1694
1695/**
1696 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
1697 * @dev: The device for which the DMA address was created
1698 * @addr: The DMA address
1699 * @size: The size of the region in bytes
1700 * @direction: The direction of the DMA
1701 */
1702static inline void ib_dma_unmap_page(struct ib_device *dev,
1703				     u64 addr, size_t size,
1704				     enum dma_data_direction direction)
1705{
1706	if (dev->dma_ops)
1707		dev->dma_ops->unmap_page(dev, addr, size, direction);
1708	else
1709		dma_unmap_page(dev->dma_device, addr, size, direction);
1710}
1711
1712/**
1713 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses
1714 * @dev: The device for which the DMA addresses are to be created
1715 * @sg: The array of scatter/gather entries
1716 * @nents: The number of scatter/gather entries
1717 * @direction: The direction of the DMA
1718 */
1719static inline int ib_dma_map_sg(struct ib_device *dev,
1720				struct scatterlist *sg, int nents,
1721				enum dma_data_direction direction)
1722{
1723	if (dev->dma_ops)
1724		return dev->dma_ops->map_sg(dev, sg, nents, direction);
1725	return dma_map_sg(dev->dma_device, sg, nents, direction);
1726}
1727
1728/**
1729 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
1730 * @dev: The device for which the DMA addresses were created
1731 * @sg: The array of scatter/gather entries
1732 * @nents: The number of scatter/gather entries
1733 * @direction: The direction of the DMA
1734 */
1735static inline void ib_dma_unmap_sg(struct ib_device *dev,
1736				   struct scatterlist *sg, int nents,
1737				   enum dma_data_direction direction)
1738{
1739	if (dev->dma_ops)
1740		dev->dma_ops->unmap_sg(dev, sg, nents, direction);
1741	else
1742		dma_unmap_sg(dev->dma_device, sg, nents, direction);
1743}
1744
1745static inline int ib_dma_map_sg_attrs(struct ib_device *dev,
1746				      struct scatterlist *sg, int nents,
1747				      enum dma_data_direction direction,
1748				      struct dma_attrs *attrs)
1749{
1750	return dma_map_sg_attrs(dev->dma_device, sg, nents, direction, attrs);
 
1751}
1752
1753static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev,
1754					 struct scatterlist *sg, int nents,
1755					 enum dma_data_direction direction,
1756					 struct dma_attrs *attrs)
1757{
1758	dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, attrs);
1759}
1760/**
1761 * ib_sg_dma_address - Return the DMA address from a scatter/gather entry
1762 * @dev: The device for which the DMA addresses were created
1763 * @sg: The scatter/gather entry
1764 */
1765static inline u64 ib_sg_dma_address(struct ib_device *dev,
1766				    struct scatterlist *sg)
1767{
1768	if (dev->dma_ops)
1769		return dev->dma_ops->dma_address(dev, sg);
1770	return sg_dma_address(sg);
1771}
1772
1773/**
1774 * ib_sg_dma_len - Return the DMA length from a scatter/gather entry
1775 * @dev: The device for which the DMA addresses were created
1776 * @sg: The scatter/gather entry
 
1777 */
1778static inline unsigned int ib_sg_dma_len(struct ib_device *dev,
1779					 struct scatterlist *sg)
1780{
1781	if (dev->dma_ops)
1782		return dev->dma_ops->dma_len(dev, sg);
1783	return sg_dma_len(sg);
1784}
1785
1786/**
1787 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
1788 * @dev: The device for which the DMA address was created
1789 * @addr: The DMA address
1790 * @size: The size of the region in bytes
1791 * @dir: The direction of the DMA
1792 */
1793static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
1794					      u64 addr,
1795					      size_t size,
1796					      enum dma_data_direction dir)
1797{
1798	if (dev->dma_ops)
1799		dev->dma_ops->sync_single_for_cpu(dev, addr, size, dir);
1800	else
1801		dma_sync_single_for_cpu(dev->dma_device, addr, size, dir);
1802}
1803
1804/**
1805 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
1806 * @dev: The device for which the DMA address was created
1807 * @addr: The DMA address
1808 * @size: The size of the region in bytes
1809 * @dir: The direction of the DMA
1810 */
1811static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
1812						 u64 addr,
1813						 size_t size,
1814						 enum dma_data_direction dir)
1815{
1816	if (dev->dma_ops)
1817		dev->dma_ops->sync_single_for_device(dev, addr, size, dir);
1818	else
1819		dma_sync_single_for_device(dev->dma_device, addr, size, dir);
1820}
1821
1822/**
1823 * ib_dma_alloc_coherent - Allocate memory and map it for DMA
1824 * @dev: The device for which the DMA address is requested
1825 * @size: The size of the region to allocate in bytes
1826 * @dma_handle: A pointer for returning the DMA address of the region
1827 * @flag: memory allocator flags
1828 */
1829static inline void *ib_dma_alloc_coherent(struct ib_device *dev,
1830					   size_t size,
1831					   u64 *dma_handle,
1832					   gfp_t flag)
1833{
1834	if (dev->dma_ops)
1835		return dev->dma_ops->alloc_coherent(dev, size, dma_handle, flag);
1836	else {
1837		dma_addr_t handle;
1838		void *ret;
1839
1840		ret = dma_alloc_coherent(dev->dma_device, size, &handle, flag);
1841		*dma_handle = handle;
1842		return ret;
1843	}
1844}
1845
1846/**
1847 * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent()
1848 * @dev: The device for which the DMA addresses were allocated
1849 * @size: The size of the region
1850 * @cpu_addr: the address returned by ib_dma_alloc_coherent()
1851 * @dma_handle: the DMA address returned by ib_dma_alloc_coherent()
1852 */
1853static inline void ib_dma_free_coherent(struct ib_device *dev,
1854					size_t size, void *cpu_addr,
1855					u64 dma_handle)
1856{
1857	if (dev->dma_ops)
1858		dev->dma_ops->free_coherent(dev, size, cpu_addr, dma_handle);
1859	else
1860		dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle);
1861}
1862
1863/**
1864 * ib_reg_phys_mr - Prepares a virtually addressed memory region for use
1865 *   by an HCA.
1866 * @pd: The protection domain associated assigned to the registered region.
1867 * @phys_buf_array: Specifies a list of physical buffers to use in the
1868 *   memory region.
1869 * @num_phys_buf: Specifies the size of the phys_buf_array.
1870 * @mr_access_flags: Specifies the memory access rights.
1871 * @iova_start: The offset of the region's starting I/O virtual address.
1872 */
1873struct ib_mr *ib_reg_phys_mr(struct ib_pd *pd,
1874			     struct ib_phys_buf *phys_buf_array,
1875			     int num_phys_buf,
1876			     int mr_access_flags,
1877			     u64 *iova_start);
1878
1879/**
1880 * ib_rereg_phys_mr - Modifies the attributes of an existing memory region.
1881 *   Conceptually, this call performs the functions deregister memory region
1882 *   followed by register physical memory region.  Where possible,
1883 *   resources are reused instead of deallocated and reallocated.
1884 * @mr: The memory region to modify.
1885 * @mr_rereg_mask: A bit-mask used to indicate which of the following
1886 *   properties of the memory region are being modified.
1887 * @pd: If %IB_MR_REREG_PD is set in mr_rereg_mask, this field specifies
1888 *   the new protection domain to associated with the memory region,
1889 *   otherwise, this parameter is ignored.
1890 * @phys_buf_array: If %IB_MR_REREG_TRANS is set in mr_rereg_mask, this
1891 *   field specifies a list of physical buffers to use in the new
1892 *   translation, otherwise, this parameter is ignored.
1893 * @num_phys_buf: If %IB_MR_REREG_TRANS is set in mr_rereg_mask, this
1894 *   field specifies the size of the phys_buf_array, otherwise, this
1895 *   parameter is ignored.
1896 * @mr_access_flags: If %IB_MR_REREG_ACCESS is set in mr_rereg_mask, this
1897 *   field specifies the new memory access rights, otherwise, this
1898 *   parameter is ignored.
1899 * @iova_start: The offset of the region's starting I/O virtual address.
1900 */
1901int ib_rereg_phys_mr(struct ib_mr *mr,
1902		     int mr_rereg_mask,
1903		     struct ib_pd *pd,
1904		     struct ib_phys_buf *phys_buf_array,
1905		     int num_phys_buf,
1906		     int mr_access_flags,
1907		     u64 *iova_start);
1908
1909/**
1910 * ib_query_mr - Retrieves information about a specific memory region.
1911 * @mr: The memory region to retrieve information about.
1912 * @mr_attr: The attributes of the specified memory region.
1913 */
1914int ib_query_mr(struct ib_mr *mr, struct ib_mr_attr *mr_attr);
 
1915
 
 
 
1916/**
1917 * ib_dereg_mr - Deregisters a memory region and removes it from the
1918 *   HCA translation table.
1919 * @mr: The memory region to deregister.
 
 
 
1920 */
1921int ib_dereg_mr(struct ib_mr *mr);
1922
1923/**
1924 * ib_alloc_fast_reg_mr - Allocates memory region usable with the
1925 *   IB_WR_FAST_REG_MR send work request.
1926 * @pd: The protection domain associated with the region.
1927 * @max_page_list_len: requested max physical buffer list length to be
1928 *   used with fast register work requests for this MR.
1929 */
1930struct ib_mr *ib_alloc_fast_reg_mr(struct ib_pd *pd, int max_page_list_len);
1931
1932/**
1933 * ib_alloc_fast_reg_page_list - Allocates a page list array
1934 * @device - ib device pointer.
1935 * @page_list_len - size of the page list array to be allocated.
1936 *
1937 * This allocates and returns a struct ib_fast_reg_page_list * and a
1938 * page_list array that is at least page_list_len in size.  The actual
1939 * size is returned in max_page_list_len.  The caller is responsible
1940 * for initializing the contents of the page_list array before posting
1941 * a send work request with the IB_WC_FAST_REG_MR opcode.
1942 *
1943 * The page_list array entries must be translated using one of the
1944 * ib_dma_*() functions just like the addresses passed to
1945 * ib_map_phys_fmr().  Once the ib_post_send() is issued, the struct
1946 * ib_fast_reg_page_list must not be modified by the caller until the
1947 * IB_WC_FAST_REG_MR work request completes.
1948 */
1949struct ib_fast_reg_page_list *ib_alloc_fast_reg_page_list(
1950				struct ib_device *device, int page_list_len);
 
 
1951
1952/**
1953 * ib_free_fast_reg_page_list - Deallocates a previously allocated
1954 *   page list array.
1955 * @page_list - struct ib_fast_reg_page_list pointer to be deallocated.
1956 */
1957void ib_free_fast_reg_page_list(struct ib_fast_reg_page_list *page_list);
1958
1959/**
1960 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR
1961 *   R_Key and L_Key.
1962 * @mr - struct ib_mr pointer to be updated.
1963 * @newkey - new key to be used.
1964 */
1965static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey)
1966{
1967	mr->lkey = (mr->lkey & 0xffffff00) | newkey;
1968	mr->rkey = (mr->rkey & 0xffffff00) | newkey;
1969}
1970
1971/**
1972 * ib_alloc_mw - Allocates a memory window.
1973 * @pd: The protection domain associated with the memory window.
 
1974 */
1975struct ib_mw *ib_alloc_mw(struct ib_pd *pd);
 
 
 
 
1976
1977/**
1978 * ib_bind_mw - Posts a work request to the send queue of the specified
1979 *   QP, which binds the memory window to the given address range and
1980 *   remote access attributes.
1981 * @qp: QP to post the bind work request on.
1982 * @mw: The memory window to bind.
1983 * @mw_bind: Specifies information about the memory window, including
1984 *   its address range, remote access rights, and associated memory region.
1985 */
1986static inline int ib_bind_mw(struct ib_qp *qp,
1987			     struct ib_mw *mw,
1988			     struct ib_mw_bind *mw_bind)
1989{
1990	/* XXX reference counting in corresponding MR? */
1991	return mw->device->bind_mw ?
1992		mw->device->bind_mw(qp, mw, mw_bind) :
1993		-ENOSYS;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1994}
1995
1996/**
1997 * ib_dealloc_mw - Deallocates a memory window.
1998 * @mw: The memory window to deallocate.
 
 
 
 
 
1999 */
2000int ib_dealloc_mw(struct ib_mw *mw);
 
 
 
 
2001
2002/**
2003 * ib_alloc_fmr - Allocates a unmapped fast memory region.
2004 * @pd: The protection domain associated with the unmapped region.
2005 * @mr_access_flags: Specifies the memory access rights.
2006 * @fmr_attr: Attributes of the unmapped region.
2007 *
2008 * A fast memory region must be mapped before it can be used as part of
2009 * a work request.
2010 */
2011struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
2012			    int mr_access_flags,
2013			    struct ib_fmr_attr *fmr_attr);
 
 
2014
2015/**
2016 * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region.
2017 * @fmr: The fast memory region to associate with the pages.
2018 * @page_list: An array of physical pages to map to the fast memory region.
2019 * @list_len: The number of pages in page_list.
2020 * @iova: The I/O virtual address to use with the mapped region.
 
 
 
2021 */
2022static inline int ib_map_phys_fmr(struct ib_fmr *fmr,
2023				  u64 *page_list, int list_len,
2024				  u64 iova)
2025{
2026	return fmr->device->map_phys_fmr(fmr, page_list, list_len, iova);
 
 
 
 
 
2027}
2028
2029/**
2030 * ib_unmap_fmr - Removes the mapping from a list of fast memory regions.
2031 * @fmr_list: A linked list of fast memory regions to unmap.
 
 
2032 */
2033int ib_unmap_fmr(struct list_head *fmr_list);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2034
2035/**
2036 * ib_dealloc_fmr - Deallocates a fast memory region.
2037 * @fmr: The fast memory region to deallocate.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2038 */
2039int ib_dealloc_fmr(struct ib_fmr *fmr);
 
 
 
 
 
 
2040
2041/**
2042 * ib_attach_mcast - Attaches the specified QP to a multicast group.
2043 * @qp: QP to attach to the multicast group.  The QP must be type
2044 *   IB_QPT_UD.
2045 * @gid: Multicast group GID.
2046 * @lid: Multicast group LID in host byte order.
2047 *
2048 * In order to send and receive multicast packets, subnet
2049 * administration must have created the multicast group and configured
2050 * the fabric appropriately.  The port associated with the specified
2051 * QP must also be a member of the multicast group.
2052 */
2053int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
 
 
 
 
 
 
 
2054
2055/**
2056 * ib_detach_mcast - Detaches the specified QP from a multicast group.
2057 * @qp: QP to detach from the multicast group.
2058 * @gid: Multicast group GID.
2059 * @lid: Multicast group LID in host byte order.
 
 
2060 */
2061int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
 
 
2062
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2063#endif /* IB_VERBS_H */
v5.9
   1/* SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB */
   2/*
   3 * Copyright (c) 2004 Mellanox Technologies Ltd.  All rights reserved.
   4 * Copyright (c) 2004 Infinicon Corporation.  All rights reserved.
   5 * Copyright (c) 2004 Intel Corporation.  All rights reserved.
   6 * Copyright (c) 2004 Topspin Corporation.  All rights reserved.
   7 * Copyright (c) 2004 Voltaire Corporation.  All rights reserved.
   8 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
   9 * Copyright (c) 2005, 2006, 2007 Cisco Systems.  All rights reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  10 */
  11
  12#ifndef IB_VERBS_H
  13#define IB_VERBS_H
  14
  15#include <linux/types.h>
  16#include <linux/device.h>
 
  17#include <linux/dma-mapping.h>
  18#include <linux/kref.h>
  19#include <linux/list.h>
  20#include <linux/rwsem.h>
 
  21#include <linux/workqueue.h>
  22#include <linux/irq_poll.h>
  23#include <uapi/linux/if_ether.h>
  24#include <net/ipv6.h>
  25#include <net/ip.h>
  26#include <linux/string.h>
  27#include <linux/slab.h>
  28#include <linux/netdevice.h>
  29#include <linux/refcount.h>
  30#include <linux/if_link.h>
  31#include <linux/atomic.h>
  32#include <linux/mmu_notifier.h>
  33#include <linux/uaccess.h>
  34#include <linux/cgroup_rdma.h>
  35#include <linux/irqflags.h>
  36#include <linux/preempt.h>
  37#include <linux/dim.h>
  38#include <uapi/rdma/ib_user_verbs.h>
  39#include <rdma/rdma_counter.h>
  40#include <rdma/restrack.h>
  41#include <rdma/signature.h>
  42#include <uapi/rdma/rdma_user_ioctl.h>
  43#include <uapi/rdma/ib_user_ioctl_verbs.h>
  44
  45#define IB_FW_VERSION_NAME_MAX	ETHTOOL_FWVERS_LEN
  46
  47struct ib_umem_odp;
  48struct ib_uqp_object;
  49struct ib_usrq_object;
  50struct ib_uwq_object;
  51struct rdma_cm_id;
  52
  53extern struct workqueue_struct *ib_wq;
  54extern struct workqueue_struct *ib_comp_wq;
  55extern struct workqueue_struct *ib_comp_unbound_wq;
  56
  57struct ib_ucq_object;
  58
  59__printf(3, 4) __cold
  60void ibdev_printk(const char *level, const struct ib_device *ibdev,
  61		  const char *format, ...);
  62__printf(2, 3) __cold
  63void ibdev_emerg(const struct ib_device *ibdev, const char *format, ...);
  64__printf(2, 3) __cold
  65void ibdev_alert(const struct ib_device *ibdev, const char *format, ...);
  66__printf(2, 3) __cold
  67void ibdev_crit(const struct ib_device *ibdev, const char *format, ...);
  68__printf(2, 3) __cold
  69void ibdev_err(const struct ib_device *ibdev, const char *format, ...);
  70__printf(2, 3) __cold
  71void ibdev_warn(const struct ib_device *ibdev, const char *format, ...);
  72__printf(2, 3) __cold
  73void ibdev_notice(const struct ib_device *ibdev, const char *format, ...);
  74__printf(2, 3) __cold
  75void ibdev_info(const struct ib_device *ibdev, const char *format, ...);
  76
  77#if defined(CONFIG_DYNAMIC_DEBUG) || \
  78	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
  79#define ibdev_dbg(__dev, format, args...)                       \
  80	dynamic_ibdev_dbg(__dev, format, ##args)
  81#else
  82__printf(2, 3) __cold
  83static inline
  84void ibdev_dbg(const struct ib_device *ibdev, const char *format, ...) {}
  85#endif
  86
  87#define ibdev_level_ratelimited(ibdev_level, ibdev, fmt, ...)           \
  88do {                                                                    \
  89	static DEFINE_RATELIMIT_STATE(_rs,                              \
  90				      DEFAULT_RATELIMIT_INTERVAL,       \
  91				      DEFAULT_RATELIMIT_BURST);         \
  92	if (__ratelimit(&_rs))                                          \
  93		ibdev_level(ibdev, fmt, ##__VA_ARGS__);                 \
  94} while (0)
  95
  96#define ibdev_emerg_ratelimited(ibdev, fmt, ...) \
  97	ibdev_level_ratelimited(ibdev_emerg, ibdev, fmt, ##__VA_ARGS__)
  98#define ibdev_alert_ratelimited(ibdev, fmt, ...) \
  99	ibdev_level_ratelimited(ibdev_alert, ibdev, fmt, ##__VA_ARGS__)
 100#define ibdev_crit_ratelimited(ibdev, fmt, ...) \
 101	ibdev_level_ratelimited(ibdev_crit, ibdev, fmt, ##__VA_ARGS__)
 102#define ibdev_err_ratelimited(ibdev, fmt, ...) \
 103	ibdev_level_ratelimited(ibdev_err, ibdev, fmt, ##__VA_ARGS__)
 104#define ibdev_warn_ratelimited(ibdev, fmt, ...) \
 105	ibdev_level_ratelimited(ibdev_warn, ibdev, fmt, ##__VA_ARGS__)
 106#define ibdev_notice_ratelimited(ibdev, fmt, ...) \
 107	ibdev_level_ratelimited(ibdev_notice, ibdev, fmt, ##__VA_ARGS__)
 108#define ibdev_info_ratelimited(ibdev, fmt, ...) \
 109	ibdev_level_ratelimited(ibdev_info, ibdev, fmt, ##__VA_ARGS__)
 110
 111#if defined(CONFIG_DYNAMIC_DEBUG) || \
 112	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
 113/* descriptor check is first to prevent flooding with "callbacks suppressed" */
 114#define ibdev_dbg_ratelimited(ibdev, fmt, ...)                          \
 115do {                                                                    \
 116	static DEFINE_RATELIMIT_STATE(_rs,                              \
 117				      DEFAULT_RATELIMIT_INTERVAL,       \
 118				      DEFAULT_RATELIMIT_BURST);         \
 119	DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, fmt);                 \
 120	if (DYNAMIC_DEBUG_BRANCH(descriptor) && __ratelimit(&_rs))      \
 121		__dynamic_ibdev_dbg(&descriptor, ibdev, fmt,            \
 122				    ##__VA_ARGS__);                     \
 123} while (0)
 124#else
 125__printf(2, 3) __cold
 126static inline
 127void ibdev_dbg_ratelimited(const struct ib_device *ibdev, const char *format, ...) {}
 128#endif
 129
 130union ib_gid {
 131	u8	raw[16];
 132	struct {
 133		__be64	subnet_prefix;
 134		__be64	interface_id;
 135	} global;
 136};
 137
 138extern union ib_gid zgid;
 139
 140enum ib_gid_type {
 141	/* If link layer is Ethernet, this is RoCE V1 */
 142	IB_GID_TYPE_IB        = 0,
 143	IB_GID_TYPE_ROCE      = 0,
 144	IB_GID_TYPE_ROCE_UDP_ENCAP = 1,
 145	IB_GID_TYPE_SIZE
 146};
 147
 148#define ROCE_V2_UDP_DPORT      4791
 149struct ib_gid_attr {
 150	struct net_device __rcu	*ndev;
 151	struct ib_device	*device;
 152	union ib_gid		gid;
 153	enum ib_gid_type	gid_type;
 154	u16			index;
 155	u8			port_num;
 156};
 157
 158enum {
 159	/* set the local administered indication */
 160	IB_SA_WELL_KNOWN_GUID	= BIT_ULL(57) | 2,
 161};
 162
 163enum rdma_transport_type {
 164	RDMA_TRANSPORT_IB,
 165	RDMA_TRANSPORT_IWARP,
 166	RDMA_TRANSPORT_USNIC,
 167	RDMA_TRANSPORT_USNIC_UDP,
 168	RDMA_TRANSPORT_UNSPECIFIED,
 169};
 170
 171enum rdma_protocol_type {
 172	RDMA_PROTOCOL_IB,
 173	RDMA_PROTOCOL_IBOE,
 174	RDMA_PROTOCOL_IWARP,
 175	RDMA_PROTOCOL_USNIC_UDP
 176};
 177
 178__attribute_const__ enum rdma_transport_type
 179rdma_node_get_transport(unsigned int node_type);
 180
 181enum rdma_network_type {
 182	RDMA_NETWORK_IB,
 183	RDMA_NETWORK_ROCE_V1 = RDMA_NETWORK_IB,
 184	RDMA_NETWORK_IPV4,
 185	RDMA_NETWORK_IPV6
 186};
 187
 188static inline enum ib_gid_type ib_network_to_gid_type(enum rdma_network_type network_type)
 189{
 190	if (network_type == RDMA_NETWORK_IPV4 ||
 191	    network_type == RDMA_NETWORK_IPV6)
 192		return IB_GID_TYPE_ROCE_UDP_ENCAP;
 193
 194	/* IB_GID_TYPE_IB same as RDMA_NETWORK_ROCE_V1 */
 195	return IB_GID_TYPE_IB;
 196}
 197
 198static inline enum rdma_network_type
 199rdma_gid_attr_network_type(const struct ib_gid_attr *attr)
 200{
 201	if (attr->gid_type == IB_GID_TYPE_IB)
 202		return RDMA_NETWORK_IB;
 203
 204	if (ipv6_addr_v4mapped((struct in6_addr *)&attr->gid))
 205		return RDMA_NETWORK_IPV4;
 206	else
 207		return RDMA_NETWORK_IPV6;
 208}
 209
 210enum rdma_link_layer {
 211	IB_LINK_LAYER_UNSPECIFIED,
 212	IB_LINK_LAYER_INFINIBAND,
 213	IB_LINK_LAYER_ETHERNET,
 214};
 215
 216enum ib_device_cap_flags {
 217	IB_DEVICE_RESIZE_MAX_WR			= (1 << 0),
 218	IB_DEVICE_BAD_PKEY_CNTR			= (1 << 1),
 219	IB_DEVICE_BAD_QKEY_CNTR			= (1 << 2),
 220	IB_DEVICE_RAW_MULTI			= (1 << 3),
 221	IB_DEVICE_AUTO_PATH_MIG			= (1 << 4),
 222	IB_DEVICE_CHANGE_PHY_PORT		= (1 << 5),
 223	IB_DEVICE_UD_AV_PORT_ENFORCE		= (1 << 6),
 224	IB_DEVICE_CURR_QP_STATE_MOD		= (1 << 7),
 225	IB_DEVICE_SHUTDOWN_PORT			= (1 << 8),
 226	/* Not in use, former INIT_TYPE		= (1 << 9),*/
 227	IB_DEVICE_PORT_ACTIVE_EVENT		= (1 << 10),
 228	IB_DEVICE_SYS_IMAGE_GUID		= (1 << 11),
 229	IB_DEVICE_RC_RNR_NAK_GEN		= (1 << 12),
 230	IB_DEVICE_SRQ_RESIZE			= (1 << 13),
 231	IB_DEVICE_N_NOTIFY_CQ			= (1 << 14),
 232
 233	/*
 234	 * This device supports a per-device lkey or stag that can be
 235	 * used without performing a memory registration for the local
 236	 * memory.  Note that ULPs should never check this flag, but
 237	 * instead of use the local_dma_lkey flag in the ib_pd structure,
 238	 * which will always contain a usable lkey.
 239	 */
 240	IB_DEVICE_LOCAL_DMA_LKEY		= (1 << 15),
 241	/* Reserved, old SEND_W_INV		= (1 << 16),*/
 242	IB_DEVICE_MEM_WINDOW			= (1 << 17),
 243	/*
 244	 * Devices should set IB_DEVICE_UD_IP_SUM if they support
 245	 * insertion of UDP and TCP checksum on outgoing UD IPoIB
 246	 * messages and can verify the validity of checksum for
 247	 * incoming messages.  Setting this flag implies that the
 248	 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
 249	 */
 250	IB_DEVICE_UD_IP_CSUM			= (1 << 18),
 251	IB_DEVICE_UD_TSO			= (1 << 19),
 252	IB_DEVICE_XRC				= (1 << 20),
 253
 254	/*
 255	 * This device supports the IB "base memory management extension",
 256	 * which includes support for fast registrations (IB_WR_REG_MR,
 257	 * IB_WR_LOCAL_INV and IB_WR_SEND_WITH_INV verbs).  This flag should
 258	 * also be set by any iWarp device which must support FRs to comply
 259	 * to the iWarp verbs spec.  iWarp devices also support the
 260	 * IB_WR_RDMA_READ_WITH_INV verb for RDMA READs that invalidate the
 261	 * stag.
 262	 */
 263	IB_DEVICE_MEM_MGT_EXTENSIONS		= (1 << 21),
 264	IB_DEVICE_BLOCK_MULTICAST_LOOPBACK	= (1 << 22),
 265	IB_DEVICE_MEM_WINDOW_TYPE_2A		= (1 << 23),
 266	IB_DEVICE_MEM_WINDOW_TYPE_2B		= (1 << 24),
 267	IB_DEVICE_RC_IP_CSUM			= (1 << 25),
 268	/* Deprecated. Please use IB_RAW_PACKET_CAP_IP_CSUM. */
 269	IB_DEVICE_RAW_IP_CSUM			= (1 << 26),
 270	/*
 271	 * Devices should set IB_DEVICE_CROSS_CHANNEL if they
 272	 * support execution of WQEs that involve synchronization
 273	 * of I/O operations with single completion queue managed
 274	 * by hardware.
 275	 */
 276	IB_DEVICE_CROSS_CHANNEL			= (1 << 27),
 277	IB_DEVICE_MANAGED_FLOW_STEERING		= (1 << 29),
 278	IB_DEVICE_INTEGRITY_HANDOVER		= (1 << 30),
 279	IB_DEVICE_ON_DEMAND_PAGING		= (1ULL << 31),
 280	IB_DEVICE_SG_GAPS_REG			= (1ULL << 32),
 281	IB_DEVICE_VIRTUAL_FUNCTION		= (1ULL << 33),
 282	/* Deprecated. Please use IB_RAW_PACKET_CAP_SCATTER_FCS. */
 283	IB_DEVICE_RAW_SCATTER_FCS		= (1ULL << 34),
 284	IB_DEVICE_RDMA_NETDEV_OPA		= (1ULL << 35),
 285	/* The device supports padding incoming writes to cacheline. */
 286	IB_DEVICE_PCI_WRITE_END_PADDING		= (1ULL << 36),
 287	IB_DEVICE_ALLOW_USER_UNREG		= (1ULL << 37),
 288};
 289
 290enum ib_atomic_cap {
 291	IB_ATOMIC_NONE,
 292	IB_ATOMIC_HCA,
 293	IB_ATOMIC_GLOB
 294};
 295
 296enum ib_odp_general_cap_bits {
 297	IB_ODP_SUPPORT		= 1 << 0,
 298	IB_ODP_SUPPORT_IMPLICIT = 1 << 1,
 299};
 300
 301enum ib_odp_transport_cap_bits {
 302	IB_ODP_SUPPORT_SEND	= 1 << 0,
 303	IB_ODP_SUPPORT_RECV	= 1 << 1,
 304	IB_ODP_SUPPORT_WRITE	= 1 << 2,
 305	IB_ODP_SUPPORT_READ	= 1 << 3,
 306	IB_ODP_SUPPORT_ATOMIC	= 1 << 4,
 307	IB_ODP_SUPPORT_SRQ_RECV	= 1 << 5,
 308};
 309
 310struct ib_odp_caps {
 311	uint64_t general_caps;
 312	struct {
 313		uint32_t  rc_odp_caps;
 314		uint32_t  uc_odp_caps;
 315		uint32_t  ud_odp_caps;
 316		uint32_t  xrc_odp_caps;
 317	} per_transport_caps;
 318};
 319
 320struct ib_rss_caps {
 321	/* Corresponding bit will be set if qp type from
 322	 * 'enum ib_qp_type' is supported, e.g.
 323	 * supported_qpts |= 1 << IB_QPT_UD
 324	 */
 325	u32 supported_qpts;
 326	u32 max_rwq_indirection_tables;
 327	u32 max_rwq_indirection_table_size;
 328};
 329
 330enum ib_tm_cap_flags {
 331	/*  Support tag matching with rendezvous offload for RC transport */
 332	IB_TM_CAP_RNDV_RC = 1 << 0,
 333};
 334
 335struct ib_tm_caps {
 336	/* Max size of RNDV header */
 337	u32 max_rndv_hdr_size;
 338	/* Max number of entries in tag matching list */
 339	u32 max_num_tags;
 340	/* From enum ib_tm_cap_flags */
 341	u32 flags;
 342	/* Max number of outstanding list operations */
 343	u32 max_ops;
 344	/* Max number of SGE in tag matching entry */
 345	u32 max_sge;
 346};
 347
 348struct ib_cq_init_attr {
 349	unsigned int	cqe;
 350	u32		comp_vector;
 351	u32		flags;
 352};
 353
 354enum ib_cq_attr_mask {
 355	IB_CQ_MODERATE = 1 << 0,
 356};
 357
 358struct ib_cq_caps {
 359	u16     max_cq_moderation_count;
 360	u16     max_cq_moderation_period;
 361};
 362
 363struct ib_dm_mr_attr {
 364	u64		length;
 365	u64		offset;
 366	u32		access_flags;
 367};
 368
 369struct ib_dm_alloc_attr {
 370	u64	length;
 371	u32	alignment;
 372	u32	flags;
 373};
 374
 375struct ib_device_attr {
 376	u64			fw_ver;
 377	__be64			sys_image_guid;
 378	u64			max_mr_size;
 379	u64			page_size_cap;
 380	u32			vendor_id;
 381	u32			vendor_part_id;
 382	u32			hw_ver;
 383	int			max_qp;
 384	int			max_qp_wr;
 385	u64			device_cap_flags;
 386	int			max_send_sge;
 387	int			max_recv_sge;
 388	int			max_sge_rd;
 389	int			max_cq;
 390	int			max_cqe;
 391	int			max_mr;
 392	int			max_pd;
 393	int			max_qp_rd_atom;
 394	int			max_ee_rd_atom;
 395	int			max_res_rd_atom;
 396	int			max_qp_init_rd_atom;
 397	int			max_ee_init_rd_atom;
 398	enum ib_atomic_cap	atomic_cap;
 399	enum ib_atomic_cap	masked_atomic_cap;
 400	int			max_ee;
 401	int			max_rdd;
 402	int			max_mw;
 403	int			max_raw_ipv6_qp;
 404	int			max_raw_ethy_qp;
 405	int			max_mcast_grp;
 406	int			max_mcast_qp_attach;
 407	int			max_total_mcast_qp_attach;
 408	int			max_ah;
 
 
 409	int			max_srq;
 410	int			max_srq_wr;
 411	int			max_srq_sge;
 412	unsigned int		max_fast_reg_page_list_len;
 413	unsigned int		max_pi_fast_reg_page_list_len;
 414	u16			max_pkeys;
 415	u8			local_ca_ack_delay;
 416	int			sig_prot_cap;
 417	int			sig_guard_cap;
 418	struct ib_odp_caps	odp_caps;
 419	uint64_t		timestamp_mask;
 420	uint64_t		hca_core_clock; /* in KHZ */
 421	struct ib_rss_caps	rss_caps;
 422	u32			max_wq_type_rq;
 423	u32			raw_packet_caps; /* Use ib_raw_packet_caps enum */
 424	struct ib_tm_caps	tm_caps;
 425	struct ib_cq_caps       cq_caps;
 426	u64			max_dm_size;
 427	/* Max entries for sgl for optimized performance per READ */
 428	u32			max_sgl_rd;
 429};
 430
 431enum ib_mtu {
 432	IB_MTU_256  = 1,
 433	IB_MTU_512  = 2,
 434	IB_MTU_1024 = 3,
 435	IB_MTU_2048 = 4,
 436	IB_MTU_4096 = 5
 437};
 438
 439enum opa_mtu {
 440	OPA_MTU_8192 = 6,
 441	OPA_MTU_10240 = 7
 442};
 443
 444static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
 445{
 446	switch (mtu) {
 447	case IB_MTU_256:  return  256;
 448	case IB_MTU_512:  return  512;
 449	case IB_MTU_1024: return 1024;
 450	case IB_MTU_2048: return 2048;
 451	case IB_MTU_4096: return 4096;
 452	default: 	  return -1;
 453	}
 454}
 455
 456static inline enum ib_mtu ib_mtu_int_to_enum(int mtu)
 457{
 458	if (mtu >= 4096)
 459		return IB_MTU_4096;
 460	else if (mtu >= 2048)
 461		return IB_MTU_2048;
 462	else if (mtu >= 1024)
 463		return IB_MTU_1024;
 464	else if (mtu >= 512)
 465		return IB_MTU_512;
 466	else
 467		return IB_MTU_256;
 468}
 469
 470static inline int opa_mtu_enum_to_int(enum opa_mtu mtu)
 471{
 472	switch (mtu) {
 473	case OPA_MTU_8192:
 474		return 8192;
 475	case OPA_MTU_10240:
 476		return 10240;
 477	default:
 478		return(ib_mtu_enum_to_int((enum ib_mtu)mtu));
 479	}
 480}
 481
 482static inline enum opa_mtu opa_mtu_int_to_enum(int mtu)
 483{
 484	if (mtu >= 10240)
 485		return OPA_MTU_10240;
 486	else if (mtu >= 8192)
 487		return OPA_MTU_8192;
 488	else
 489		return ((enum opa_mtu)ib_mtu_int_to_enum(mtu));
 490}
 491
 492enum ib_port_state {
 493	IB_PORT_NOP		= 0,
 494	IB_PORT_DOWN		= 1,
 495	IB_PORT_INIT		= 2,
 496	IB_PORT_ARMED		= 3,
 497	IB_PORT_ACTIVE		= 4,
 498	IB_PORT_ACTIVE_DEFER	= 5
 499};
 500
 501enum ib_port_phys_state {
 502	IB_PORT_PHYS_STATE_SLEEP = 1,
 503	IB_PORT_PHYS_STATE_POLLING = 2,
 504	IB_PORT_PHYS_STATE_DISABLED = 3,
 505	IB_PORT_PHYS_STATE_PORT_CONFIGURATION_TRAINING = 4,
 506	IB_PORT_PHYS_STATE_LINK_UP = 5,
 507	IB_PORT_PHYS_STATE_LINK_ERROR_RECOVERY = 6,
 508	IB_PORT_PHYS_STATE_PHY_TEST = 7,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 509};
 510
 511enum ib_port_width {
 512	IB_WIDTH_1X	= 1,
 513	IB_WIDTH_2X	= 16,
 514	IB_WIDTH_4X	= 2,
 515	IB_WIDTH_8X	= 4,
 516	IB_WIDTH_12X	= 8
 517};
 518
 519static inline int ib_width_enum_to_int(enum ib_port_width width)
 520{
 521	switch (width) {
 522	case IB_WIDTH_1X:  return  1;
 523	case IB_WIDTH_2X:  return  2;
 524	case IB_WIDTH_4X:  return  4;
 525	case IB_WIDTH_8X:  return  8;
 526	case IB_WIDTH_12X: return 12;
 527	default: 	  return -1;
 528	}
 529}
 530
 531enum ib_port_speed {
 532	IB_SPEED_SDR	= 1,
 533	IB_SPEED_DDR	= 2,
 534	IB_SPEED_QDR	= 4,
 535	IB_SPEED_FDR10	= 8,
 536	IB_SPEED_FDR	= 16,
 537	IB_SPEED_EDR	= 32,
 538	IB_SPEED_HDR	= 64
 539};
 540
 541/**
 542 * struct rdma_hw_stats
 543 * @lock - Mutex to protect parallel write access to lifespan and values
 544 *    of counters, which are 64bits and not guaranteeed to be written
 545 *    atomicaly on 32bits systems.
 546 * @timestamp - Used by the core code to track when the last update was
 547 * @lifespan - Used by the core code to determine how old the counters
 548 *   should be before being updated again.  Stored in jiffies, defaults
 549 *   to 10 milliseconds, drivers can override the default be specifying
 550 *   their own value during their allocation routine.
 551 * @name - Array of pointers to static names used for the counters in
 552 *   directory.
 553 * @num_counters - How many hardware counters there are.  If name is
 554 *   shorter than this number, a kernel oops will result.  Driver authors
 555 *   are encouraged to leave BUILD_BUG_ON(ARRAY_SIZE(@name) < num_counters)
 556 *   in their code to prevent this.
 557 * @value - Array of u64 counters that are accessed by the sysfs code and
 558 *   filled in by the drivers get_stats routine
 559 */
 560struct rdma_hw_stats {
 561	struct mutex	lock; /* Protect lifespan and values[] */
 562	unsigned long	timestamp;
 563	unsigned long	lifespan;
 564	const char * const *names;
 565	int		num_counters;
 566	u64		value[];
 567};
 568
 569#define RDMA_HW_STATS_DEFAULT_LIFESPAN 10
 570/**
 571 * rdma_alloc_hw_stats_struct - Helper function to allocate dynamic struct
 572 *   for drivers.
 573 * @names - Array of static const char *
 574 * @num_counters - How many elements in array
 575 * @lifespan - How many milliseconds between updates
 576 */
 577static inline struct rdma_hw_stats *rdma_alloc_hw_stats_struct(
 578		const char * const *names, int num_counters,
 579		unsigned long lifespan)
 580{
 581	struct rdma_hw_stats *stats;
 582
 583	stats = kzalloc(sizeof(*stats) + num_counters * sizeof(u64),
 584			GFP_KERNEL);
 585	if (!stats)
 586		return NULL;
 587	stats->names = names;
 588	stats->num_counters = num_counters;
 589	stats->lifespan = msecs_to_jiffies(lifespan);
 590
 591	return stats;
 592}
 593
 594
 595/* Define bits for the various functionality this port needs to be supported by
 596 * the core.
 597 */
 598/* Management                           0x00000FFF */
 599#define RDMA_CORE_CAP_IB_MAD            0x00000001
 600#define RDMA_CORE_CAP_IB_SMI            0x00000002
 601#define RDMA_CORE_CAP_IB_CM             0x00000004
 602#define RDMA_CORE_CAP_IW_CM             0x00000008
 603#define RDMA_CORE_CAP_IB_SA             0x00000010
 604#define RDMA_CORE_CAP_OPA_MAD           0x00000020
 605
 606/* Address format                       0x000FF000 */
 607#define RDMA_CORE_CAP_AF_IB             0x00001000
 608#define RDMA_CORE_CAP_ETH_AH            0x00002000
 609#define RDMA_CORE_CAP_OPA_AH            0x00004000
 610#define RDMA_CORE_CAP_IB_GRH_REQUIRED   0x00008000
 611
 612/* Protocol                             0xFFF00000 */
 613#define RDMA_CORE_CAP_PROT_IB           0x00100000
 614#define RDMA_CORE_CAP_PROT_ROCE         0x00200000
 615#define RDMA_CORE_CAP_PROT_IWARP        0x00400000
 616#define RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP 0x00800000
 617#define RDMA_CORE_CAP_PROT_RAW_PACKET   0x01000000
 618#define RDMA_CORE_CAP_PROT_USNIC        0x02000000
 619
 620#define RDMA_CORE_PORT_IB_GRH_REQUIRED (RDMA_CORE_CAP_IB_GRH_REQUIRED \
 621					| RDMA_CORE_CAP_PROT_ROCE     \
 622					| RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP)
 623
 624#define RDMA_CORE_PORT_IBA_IB          (RDMA_CORE_CAP_PROT_IB  \
 625					| RDMA_CORE_CAP_IB_MAD \
 626					| RDMA_CORE_CAP_IB_SMI \
 627					| RDMA_CORE_CAP_IB_CM  \
 628					| RDMA_CORE_CAP_IB_SA  \
 629					| RDMA_CORE_CAP_AF_IB)
 630#define RDMA_CORE_PORT_IBA_ROCE        (RDMA_CORE_CAP_PROT_ROCE \
 631					| RDMA_CORE_CAP_IB_MAD  \
 632					| RDMA_CORE_CAP_IB_CM   \
 633					| RDMA_CORE_CAP_AF_IB   \
 634					| RDMA_CORE_CAP_ETH_AH)
 635#define RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP			\
 636					(RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP \
 637					| RDMA_CORE_CAP_IB_MAD  \
 638					| RDMA_CORE_CAP_IB_CM   \
 639					| RDMA_CORE_CAP_AF_IB   \
 640					| RDMA_CORE_CAP_ETH_AH)
 641#define RDMA_CORE_PORT_IWARP           (RDMA_CORE_CAP_PROT_IWARP \
 642					| RDMA_CORE_CAP_IW_CM)
 643#define RDMA_CORE_PORT_INTEL_OPA       (RDMA_CORE_PORT_IBA_IB  \
 644					| RDMA_CORE_CAP_OPA_MAD)
 645
 646#define RDMA_CORE_PORT_RAW_PACKET	(RDMA_CORE_CAP_PROT_RAW_PACKET)
 647
 648#define RDMA_CORE_PORT_USNIC		(RDMA_CORE_CAP_PROT_USNIC)
 649
 650struct ib_port_attr {
 651	u64			subnet_prefix;
 652	enum ib_port_state	state;
 653	enum ib_mtu		max_mtu;
 654	enum ib_mtu		active_mtu;
 655	u32                     phys_mtu;
 656	int			gid_tbl_len;
 657	unsigned int		ip_gids:1;
 658	/* This is the value from PortInfo CapabilityMask, defined by IBA */
 659	u32			port_cap_flags;
 660	u32			max_msg_sz;
 661	u32			bad_pkey_cntr;
 662	u32			qkey_viol_cntr;
 663	u16			pkey_tbl_len;
 664	u32			sm_lid;
 665	u32			lid;
 666	u8			lmc;
 667	u8			max_vl_num;
 668	u8			sm_sl;
 669	u8			subnet_timeout;
 670	u8			init_type_reply;
 671	u8			active_width;
 672	u8			active_speed;
 673	u8                      phys_state;
 674	u16			port_cap_flags2;
 675};
 676
 677enum ib_device_modify_flags {
 678	IB_DEVICE_MODIFY_SYS_IMAGE_GUID	= 1 << 0,
 679	IB_DEVICE_MODIFY_NODE_DESC	= 1 << 1
 680};
 681
 682#define IB_DEVICE_NODE_DESC_MAX 64
 683
 684struct ib_device_modify {
 685	u64	sys_image_guid;
 686	char	node_desc[IB_DEVICE_NODE_DESC_MAX];
 687};
 688
 689enum ib_port_modify_flags {
 690	IB_PORT_SHUTDOWN		= 1,
 691	IB_PORT_INIT_TYPE		= (1<<2),
 692	IB_PORT_RESET_QKEY_CNTR		= (1<<3),
 693	IB_PORT_OPA_MASK_CHG		= (1<<4)
 694};
 695
 696struct ib_port_modify {
 697	u32	set_port_cap_mask;
 698	u32	clr_port_cap_mask;
 699	u8	init_type;
 700};
 701
 702enum ib_event_type {
 703	IB_EVENT_CQ_ERR,
 704	IB_EVENT_QP_FATAL,
 705	IB_EVENT_QP_REQ_ERR,
 706	IB_EVENT_QP_ACCESS_ERR,
 707	IB_EVENT_COMM_EST,
 708	IB_EVENT_SQ_DRAINED,
 709	IB_EVENT_PATH_MIG,
 710	IB_EVENT_PATH_MIG_ERR,
 711	IB_EVENT_DEVICE_FATAL,
 712	IB_EVENT_PORT_ACTIVE,
 713	IB_EVENT_PORT_ERR,
 714	IB_EVENT_LID_CHANGE,
 715	IB_EVENT_PKEY_CHANGE,
 716	IB_EVENT_SM_CHANGE,
 717	IB_EVENT_SRQ_ERR,
 718	IB_EVENT_SRQ_LIMIT_REACHED,
 719	IB_EVENT_QP_LAST_WQE_REACHED,
 720	IB_EVENT_CLIENT_REREGISTER,
 721	IB_EVENT_GID_CHANGE,
 722	IB_EVENT_WQ_FATAL,
 723};
 724
 725const char *__attribute_const__ ib_event_msg(enum ib_event_type event);
 726
 727struct ib_event {
 728	struct ib_device	*device;
 729	union {
 730		struct ib_cq	*cq;
 731		struct ib_qp	*qp;
 732		struct ib_srq	*srq;
 733		struct ib_wq	*wq;
 734		u8		port_num;
 735	} element;
 736	enum ib_event_type	event;
 737};
 738
 739struct ib_event_handler {
 740	struct ib_device *device;
 741	void            (*handler)(struct ib_event_handler *, struct ib_event *);
 742	struct list_head  list;
 743};
 744
 745#define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler)		\
 746	do {							\
 747		(_ptr)->device  = _device;			\
 748		(_ptr)->handler = _handler;			\
 749		INIT_LIST_HEAD(&(_ptr)->list);			\
 750	} while (0)
 751
 752struct ib_global_route {
 753	const struct ib_gid_attr *sgid_attr;
 754	union ib_gid	dgid;
 755	u32		flow_label;
 756	u8		sgid_index;
 757	u8		hop_limit;
 758	u8		traffic_class;
 759};
 760
 761struct ib_grh {
 762	__be32		version_tclass_flow;
 763	__be16		paylen;
 764	u8		next_hdr;
 765	u8		hop_limit;
 766	union ib_gid	sgid;
 767	union ib_gid	dgid;
 768};
 769
 770union rdma_network_hdr {
 771	struct ib_grh ibgrh;
 772	struct {
 773		/* The IB spec states that if it's IPv4, the header
 774		 * is located in the last 20 bytes of the header.
 775		 */
 776		u8		reserved[20];
 777		struct iphdr	roce4grh;
 778	};
 779};
 780
 781#define IB_QPN_MASK		0xFFFFFF
 782
 783enum {
 784	IB_MULTICAST_QPN = 0xffffff
 785};
 786
 787#define IB_LID_PERMISSIVE	cpu_to_be16(0xFFFF)
 788#define IB_MULTICAST_LID_BASE	cpu_to_be16(0xC000)
 789
 790enum ib_ah_flags {
 791	IB_AH_GRH	= 1
 792};
 793
 794enum ib_rate {
 795	IB_RATE_PORT_CURRENT = 0,
 796	IB_RATE_2_5_GBPS = 2,
 797	IB_RATE_5_GBPS   = 5,
 798	IB_RATE_10_GBPS  = 3,
 799	IB_RATE_20_GBPS  = 6,
 800	IB_RATE_30_GBPS  = 4,
 801	IB_RATE_40_GBPS  = 7,
 802	IB_RATE_60_GBPS  = 8,
 803	IB_RATE_80_GBPS  = 9,
 804	IB_RATE_120_GBPS = 10,
 805	IB_RATE_14_GBPS  = 11,
 806	IB_RATE_56_GBPS  = 12,
 807	IB_RATE_112_GBPS = 13,
 808	IB_RATE_168_GBPS = 14,
 809	IB_RATE_25_GBPS  = 15,
 810	IB_RATE_100_GBPS = 16,
 811	IB_RATE_200_GBPS = 17,
 812	IB_RATE_300_GBPS = 18,
 813	IB_RATE_28_GBPS  = 19,
 814	IB_RATE_50_GBPS  = 20,
 815	IB_RATE_400_GBPS = 21,
 816	IB_RATE_600_GBPS = 22,
 817};
 818
 819/**
 820 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the
 821 * base rate of 2.5 Gbit/sec.  For example, IB_RATE_5_GBPS will be
 822 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
 823 * @rate: rate to convert.
 824 */
 825__attribute_const__ int ib_rate_to_mult(enum ib_rate rate);
 826
 827/**
 828 * ib_rate_to_mbps - Convert the IB rate enum to Mbps.
 829 * For example, IB_RATE_2_5_GBPS will be converted to 2500.
 830 * @rate: rate to convert.
 831 */
 832__attribute_const__ int ib_rate_to_mbps(enum ib_rate rate);
 833
 834
 835/**
 836 * enum ib_mr_type - memory region type
 837 * @IB_MR_TYPE_MEM_REG:       memory region that is used for
 838 *                            normal registration
 839 * @IB_MR_TYPE_SG_GAPS:       memory region that is capable to
 840 *                            register any arbitrary sg lists (without
 841 *                            the normal mr constraints - see
 842 *                            ib_map_mr_sg)
 843 * @IB_MR_TYPE_DM:            memory region that is used for device
 844 *                            memory registration
 845 * @IB_MR_TYPE_USER:          memory region that is used for the user-space
 846 *                            application
 847 * @IB_MR_TYPE_DMA:           memory region that is used for DMA operations
 848 *                            without address translations (VA=PA)
 849 * @IB_MR_TYPE_INTEGRITY:     memory region that is used for
 850 *                            data integrity operations
 851 */
 852enum ib_mr_type {
 853	IB_MR_TYPE_MEM_REG,
 854	IB_MR_TYPE_SG_GAPS,
 855	IB_MR_TYPE_DM,
 856	IB_MR_TYPE_USER,
 857	IB_MR_TYPE_DMA,
 858	IB_MR_TYPE_INTEGRITY,
 859};
 860
 861enum ib_mr_status_check {
 862	IB_MR_CHECK_SIG_STATUS = 1,
 863};
 864
 865/**
 866 * struct ib_mr_status - Memory region status container
 867 *
 868 * @fail_status: Bitmask of MR checks status. For each
 869 *     failed check a corresponding status bit is set.
 870 * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS
 871 *     failure.
 872 */
 873struct ib_mr_status {
 874	u32		    fail_status;
 875	struct ib_sig_err   sig_err;
 876};
 877
 878/**
 879 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
 880 * enum.
 881 * @mult: multiple to convert.
 882 */
 883__attribute_const__ enum ib_rate mult_to_ib_rate(int mult);
 884
 885struct rdma_ah_init_attr {
 886	struct rdma_ah_attr *ah_attr;
 887	u32 flags;
 888	struct net_device *xmit_slave;
 889};
 890
 891enum rdma_ah_attr_type {
 892	RDMA_AH_ATTR_TYPE_UNDEFINED,
 893	RDMA_AH_ATTR_TYPE_IB,
 894	RDMA_AH_ATTR_TYPE_ROCE,
 895	RDMA_AH_ATTR_TYPE_OPA,
 896};
 897
 898struct ib_ah_attr {
 
 899	u16			dlid;
 
 900	u8			src_path_bits;
 901};
 902
 903struct roce_ah_attr {
 904	u8			dmac[ETH_ALEN];
 905};
 906
 907struct opa_ah_attr {
 908	u32			dlid;
 909	u8			src_path_bits;
 910	bool			make_grd;
 911};
 912
 913struct rdma_ah_attr {
 914	struct ib_global_route	grh;
 915	u8			sl;
 916	u8			static_rate;
 
 917	u8			port_num;
 918	u8			ah_flags;
 919	enum rdma_ah_attr_type type;
 920	union {
 921		struct ib_ah_attr ib;
 922		struct roce_ah_attr roce;
 923		struct opa_ah_attr opa;
 924	};
 925};
 926
 927enum ib_wc_status {
 928	IB_WC_SUCCESS,
 929	IB_WC_LOC_LEN_ERR,
 930	IB_WC_LOC_QP_OP_ERR,
 931	IB_WC_LOC_EEC_OP_ERR,
 932	IB_WC_LOC_PROT_ERR,
 933	IB_WC_WR_FLUSH_ERR,
 934	IB_WC_MW_BIND_ERR,
 935	IB_WC_BAD_RESP_ERR,
 936	IB_WC_LOC_ACCESS_ERR,
 937	IB_WC_REM_INV_REQ_ERR,
 938	IB_WC_REM_ACCESS_ERR,
 939	IB_WC_REM_OP_ERR,
 940	IB_WC_RETRY_EXC_ERR,
 941	IB_WC_RNR_RETRY_EXC_ERR,
 942	IB_WC_LOC_RDD_VIOL_ERR,
 943	IB_WC_REM_INV_RD_REQ_ERR,
 944	IB_WC_REM_ABORT_ERR,
 945	IB_WC_INV_EECN_ERR,
 946	IB_WC_INV_EEC_STATE_ERR,
 947	IB_WC_FATAL_ERR,
 948	IB_WC_RESP_TIMEOUT_ERR,
 949	IB_WC_GENERAL_ERR
 950};
 951
 952const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status);
 953
 954enum ib_wc_opcode {
 955	IB_WC_SEND,
 956	IB_WC_RDMA_WRITE,
 957	IB_WC_RDMA_READ,
 958	IB_WC_COMP_SWAP,
 959	IB_WC_FETCH_ADD,
 
 960	IB_WC_LSO,
 961	IB_WC_LOCAL_INV,
 962	IB_WC_REG_MR,
 963	IB_WC_MASKED_COMP_SWAP,
 964	IB_WC_MASKED_FETCH_ADD,
 965/*
 966 * Set value of IB_WC_RECV so consumers can test if a completion is a
 967 * receive by testing (opcode & IB_WC_RECV).
 968 */
 969	IB_WC_RECV			= 1 << 7,
 970	IB_WC_RECV_RDMA_WITH_IMM
 971};
 972
 973enum ib_wc_flags {
 974	IB_WC_GRH		= 1,
 975	IB_WC_WITH_IMM		= (1<<1),
 976	IB_WC_WITH_INVALIDATE	= (1<<2),
 977	IB_WC_IP_CSUM_OK	= (1<<3),
 978	IB_WC_WITH_SMAC		= (1<<4),
 979	IB_WC_WITH_VLAN		= (1<<5),
 980	IB_WC_WITH_NETWORK_HDR_TYPE	= (1<<6),
 981};
 982
 983struct ib_wc {
 984	union {
 985		u64		wr_id;
 986		struct ib_cqe	*wr_cqe;
 987	};
 988	enum ib_wc_status	status;
 989	enum ib_wc_opcode	opcode;
 990	u32			vendor_err;
 991	u32			byte_len;
 992	struct ib_qp	       *qp;
 993	union {
 994		__be32		imm_data;
 995		u32		invalidate_rkey;
 996	} ex;
 997	u32			src_qp;
 998	u32			slid;
 999	int			wc_flags;
1000	u16			pkey_index;
 
1001	u8			sl;
1002	u8			dlid_path_bits;
1003	u8			port_num;	/* valid only for DR SMPs on switches */
1004	u8			smac[ETH_ALEN];
1005	u16			vlan_id;
1006	u8			network_hdr_type;
1007};
1008
1009enum ib_cq_notify_flags {
1010	IB_CQ_SOLICITED			= 1 << 0,
1011	IB_CQ_NEXT_COMP			= 1 << 1,
1012	IB_CQ_SOLICITED_MASK		= IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
1013	IB_CQ_REPORT_MISSED_EVENTS	= 1 << 2,
1014};
1015
1016enum ib_srq_type {
1017	IB_SRQT_BASIC = IB_UVERBS_SRQT_BASIC,
1018	IB_SRQT_XRC = IB_UVERBS_SRQT_XRC,
1019	IB_SRQT_TM = IB_UVERBS_SRQT_TM,
1020};
1021
1022static inline bool ib_srq_has_cq(enum ib_srq_type srq_type)
1023{
1024	return srq_type == IB_SRQT_XRC ||
1025	       srq_type == IB_SRQT_TM;
1026}
1027
1028enum ib_srq_attr_mask {
1029	IB_SRQ_MAX_WR	= 1 << 0,
1030	IB_SRQ_LIMIT	= 1 << 1,
1031};
1032
1033struct ib_srq_attr {
1034	u32	max_wr;
1035	u32	max_sge;
1036	u32	srq_limit;
1037};
1038
1039struct ib_srq_init_attr {
1040	void		      (*event_handler)(struct ib_event *, void *);
1041	void		       *srq_context;
1042	struct ib_srq_attr	attr;
1043	enum ib_srq_type	srq_type;
1044
1045	struct {
1046		struct ib_cq   *cq;
1047		union {
1048			struct {
1049				struct ib_xrcd *xrcd;
1050			} xrc;
1051
1052			struct {
1053				u32		max_num_tags;
1054			} tag_matching;
1055		};
1056	} ext;
1057};
1058
1059struct ib_qp_cap {
1060	u32	max_send_wr;
1061	u32	max_recv_wr;
1062	u32	max_send_sge;
1063	u32	max_recv_sge;
1064	u32	max_inline_data;
1065
1066	/*
1067	 * Maximum number of rdma_rw_ctx structures in flight at a time.
1068	 * ib_create_qp() will calculate the right amount of neededed WRs
1069	 * and MRs based on this.
1070	 */
1071	u32	max_rdma_ctxs;
1072};
1073
1074enum ib_sig_type {
1075	IB_SIGNAL_ALL_WR,
1076	IB_SIGNAL_REQ_WR
1077};
1078
1079enum ib_qp_type {
1080	/*
1081	 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
1082	 * here (and in that order) since the MAD layer uses them as
1083	 * indices into a 2-entry table.
1084	 */
1085	IB_QPT_SMI,
1086	IB_QPT_GSI,
1087
1088	IB_QPT_RC = IB_UVERBS_QPT_RC,
1089	IB_QPT_UC = IB_UVERBS_QPT_UC,
1090	IB_QPT_UD = IB_UVERBS_QPT_UD,
1091	IB_QPT_RAW_IPV6,
1092	IB_QPT_RAW_ETHERTYPE,
1093	IB_QPT_RAW_PACKET = IB_UVERBS_QPT_RAW_PACKET,
1094	IB_QPT_XRC_INI = IB_UVERBS_QPT_XRC_INI,
1095	IB_QPT_XRC_TGT = IB_UVERBS_QPT_XRC_TGT,
1096	IB_QPT_MAX,
1097	IB_QPT_DRIVER = IB_UVERBS_QPT_DRIVER,
1098	/* Reserve a range for qp types internal to the low level driver.
1099	 * These qp types will not be visible at the IB core layer, so the
1100	 * IB_QPT_MAX usages should not be affected in the core layer
1101	 */
1102	IB_QPT_RESERVED1 = 0x1000,
1103	IB_QPT_RESERVED2,
1104	IB_QPT_RESERVED3,
1105	IB_QPT_RESERVED4,
1106	IB_QPT_RESERVED5,
1107	IB_QPT_RESERVED6,
1108	IB_QPT_RESERVED7,
1109	IB_QPT_RESERVED8,
1110	IB_QPT_RESERVED9,
1111	IB_QPT_RESERVED10,
1112};
1113
1114enum ib_qp_create_flags {
1115	IB_QP_CREATE_IPOIB_UD_LSO		= 1 << 0,
1116	IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK	=
1117		IB_UVERBS_QP_CREATE_BLOCK_MULTICAST_LOOPBACK,
1118	IB_QP_CREATE_CROSS_CHANNEL              = 1 << 2,
1119	IB_QP_CREATE_MANAGED_SEND               = 1 << 3,
1120	IB_QP_CREATE_MANAGED_RECV               = 1 << 4,
1121	IB_QP_CREATE_NETIF_QP			= 1 << 5,
1122	IB_QP_CREATE_INTEGRITY_EN		= 1 << 6,
1123	IB_QP_CREATE_NETDEV_USE			= 1 << 7,
1124	IB_QP_CREATE_SCATTER_FCS		=
1125		IB_UVERBS_QP_CREATE_SCATTER_FCS,
1126	IB_QP_CREATE_CVLAN_STRIPPING		=
1127		IB_UVERBS_QP_CREATE_CVLAN_STRIPPING,
1128	IB_QP_CREATE_SOURCE_QPN			= 1 << 10,
1129	IB_QP_CREATE_PCI_WRITE_END_PADDING	=
1130		IB_UVERBS_QP_CREATE_PCI_WRITE_END_PADDING,
1131	/* reserve bits 26-31 for low level drivers' internal use */
1132	IB_QP_CREATE_RESERVED_START		= 1 << 26,
1133	IB_QP_CREATE_RESERVED_END		= 1 << 31,
1134};
1135
1136/*
1137 * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler
1138 * callback to destroy the passed in QP.
1139 */
1140
1141struct ib_qp_init_attr {
1142	/* Consumer's event_handler callback must not block */
1143	void                  (*event_handler)(struct ib_event *, void *);
1144
1145	void		       *qp_context;
1146	struct ib_cq	       *send_cq;
1147	struct ib_cq	       *recv_cq;
1148	struct ib_srq	       *srq;
1149	struct ib_xrcd	       *xrcd;     /* XRC TGT QPs only */
1150	struct ib_qp_cap	cap;
1151	enum ib_sig_type	sq_sig_type;
1152	enum ib_qp_type		qp_type;
1153	u32			create_flags;
1154
1155	/*
1156	 * Only needed for special QP types, or when using the RW API.
1157	 */
1158	u8			port_num;
1159	struct ib_rwq_ind_table *rwq_ind_tbl;
1160	u32			source_qpn;
1161};
1162
1163struct ib_qp_open_attr {
1164	void                  (*event_handler)(struct ib_event *, void *);
1165	void		       *qp_context;
1166	u32			qp_num;
1167	enum ib_qp_type		qp_type;
1168};
1169
1170enum ib_rnr_timeout {
1171	IB_RNR_TIMER_655_36 =  0,
1172	IB_RNR_TIMER_000_01 =  1,
1173	IB_RNR_TIMER_000_02 =  2,
1174	IB_RNR_TIMER_000_03 =  3,
1175	IB_RNR_TIMER_000_04 =  4,
1176	IB_RNR_TIMER_000_06 =  5,
1177	IB_RNR_TIMER_000_08 =  6,
1178	IB_RNR_TIMER_000_12 =  7,
1179	IB_RNR_TIMER_000_16 =  8,
1180	IB_RNR_TIMER_000_24 =  9,
1181	IB_RNR_TIMER_000_32 = 10,
1182	IB_RNR_TIMER_000_48 = 11,
1183	IB_RNR_TIMER_000_64 = 12,
1184	IB_RNR_TIMER_000_96 = 13,
1185	IB_RNR_TIMER_001_28 = 14,
1186	IB_RNR_TIMER_001_92 = 15,
1187	IB_RNR_TIMER_002_56 = 16,
1188	IB_RNR_TIMER_003_84 = 17,
1189	IB_RNR_TIMER_005_12 = 18,
1190	IB_RNR_TIMER_007_68 = 19,
1191	IB_RNR_TIMER_010_24 = 20,
1192	IB_RNR_TIMER_015_36 = 21,
1193	IB_RNR_TIMER_020_48 = 22,
1194	IB_RNR_TIMER_030_72 = 23,
1195	IB_RNR_TIMER_040_96 = 24,
1196	IB_RNR_TIMER_061_44 = 25,
1197	IB_RNR_TIMER_081_92 = 26,
1198	IB_RNR_TIMER_122_88 = 27,
1199	IB_RNR_TIMER_163_84 = 28,
1200	IB_RNR_TIMER_245_76 = 29,
1201	IB_RNR_TIMER_327_68 = 30,
1202	IB_RNR_TIMER_491_52 = 31
1203};
1204
1205enum ib_qp_attr_mask {
1206	IB_QP_STATE			= 1,
1207	IB_QP_CUR_STATE			= (1<<1),
1208	IB_QP_EN_SQD_ASYNC_NOTIFY	= (1<<2),
1209	IB_QP_ACCESS_FLAGS		= (1<<3),
1210	IB_QP_PKEY_INDEX		= (1<<4),
1211	IB_QP_PORT			= (1<<5),
1212	IB_QP_QKEY			= (1<<6),
1213	IB_QP_AV			= (1<<7),
1214	IB_QP_PATH_MTU			= (1<<8),
1215	IB_QP_TIMEOUT			= (1<<9),
1216	IB_QP_RETRY_CNT			= (1<<10),
1217	IB_QP_RNR_RETRY			= (1<<11),
1218	IB_QP_RQ_PSN			= (1<<12),
1219	IB_QP_MAX_QP_RD_ATOMIC		= (1<<13),
1220	IB_QP_ALT_PATH			= (1<<14),
1221	IB_QP_MIN_RNR_TIMER		= (1<<15),
1222	IB_QP_SQ_PSN			= (1<<16),
1223	IB_QP_MAX_DEST_RD_ATOMIC	= (1<<17),
1224	IB_QP_PATH_MIG_STATE		= (1<<18),
1225	IB_QP_CAP			= (1<<19),
1226	IB_QP_DEST_QPN			= (1<<20),
1227	IB_QP_RESERVED1			= (1<<21),
1228	IB_QP_RESERVED2			= (1<<22),
1229	IB_QP_RESERVED3			= (1<<23),
1230	IB_QP_RESERVED4			= (1<<24),
1231	IB_QP_RATE_LIMIT		= (1<<25),
1232};
1233
1234enum ib_qp_state {
1235	IB_QPS_RESET,
1236	IB_QPS_INIT,
1237	IB_QPS_RTR,
1238	IB_QPS_RTS,
1239	IB_QPS_SQD,
1240	IB_QPS_SQE,
1241	IB_QPS_ERR
1242};
1243
1244enum ib_mig_state {
1245	IB_MIG_MIGRATED,
1246	IB_MIG_REARM,
1247	IB_MIG_ARMED
1248};
1249
1250enum ib_mw_type {
1251	IB_MW_TYPE_1 = 1,
1252	IB_MW_TYPE_2 = 2
1253};
1254
1255struct ib_qp_attr {
1256	enum ib_qp_state	qp_state;
1257	enum ib_qp_state	cur_qp_state;
1258	enum ib_mtu		path_mtu;
1259	enum ib_mig_state	path_mig_state;
1260	u32			qkey;
1261	u32			rq_psn;
1262	u32			sq_psn;
1263	u32			dest_qp_num;
1264	int			qp_access_flags;
1265	struct ib_qp_cap	cap;
1266	struct rdma_ah_attr	ah_attr;
1267	struct rdma_ah_attr	alt_ah_attr;
1268	u16			pkey_index;
1269	u16			alt_pkey_index;
1270	u8			en_sqd_async_notify;
1271	u8			sq_draining;
1272	u8			max_rd_atomic;
1273	u8			max_dest_rd_atomic;
1274	u8			min_rnr_timer;
1275	u8			port_num;
1276	u8			timeout;
1277	u8			retry_cnt;
1278	u8			rnr_retry;
1279	u8			alt_port_num;
1280	u8			alt_timeout;
1281	u32			rate_limit;
1282	struct net_device	*xmit_slave;
1283};
1284
1285enum ib_wr_opcode {
1286	/* These are shared with userspace */
1287	IB_WR_RDMA_WRITE = IB_UVERBS_WR_RDMA_WRITE,
1288	IB_WR_RDMA_WRITE_WITH_IMM = IB_UVERBS_WR_RDMA_WRITE_WITH_IMM,
1289	IB_WR_SEND = IB_UVERBS_WR_SEND,
1290	IB_WR_SEND_WITH_IMM = IB_UVERBS_WR_SEND_WITH_IMM,
1291	IB_WR_RDMA_READ = IB_UVERBS_WR_RDMA_READ,
1292	IB_WR_ATOMIC_CMP_AND_SWP = IB_UVERBS_WR_ATOMIC_CMP_AND_SWP,
1293	IB_WR_ATOMIC_FETCH_AND_ADD = IB_UVERBS_WR_ATOMIC_FETCH_AND_ADD,
1294	IB_WR_LSO = IB_UVERBS_WR_TSO,
1295	IB_WR_SEND_WITH_INV = IB_UVERBS_WR_SEND_WITH_INV,
1296	IB_WR_RDMA_READ_WITH_INV = IB_UVERBS_WR_RDMA_READ_WITH_INV,
1297	IB_WR_LOCAL_INV = IB_UVERBS_WR_LOCAL_INV,
1298	IB_WR_MASKED_ATOMIC_CMP_AND_SWP =
1299		IB_UVERBS_WR_MASKED_ATOMIC_CMP_AND_SWP,
1300	IB_WR_MASKED_ATOMIC_FETCH_AND_ADD =
1301		IB_UVERBS_WR_MASKED_ATOMIC_FETCH_AND_ADD,
1302
1303	/* These are kernel only and can not be issued by userspace */
1304	IB_WR_REG_MR = 0x20,
1305	IB_WR_REG_MR_INTEGRITY,
1306
1307	/* reserve values for low level drivers' internal use.
1308	 * These values will not be used at all in the ib core layer.
1309	 */
1310	IB_WR_RESERVED1 = 0xf0,
1311	IB_WR_RESERVED2,
1312	IB_WR_RESERVED3,
1313	IB_WR_RESERVED4,
1314	IB_WR_RESERVED5,
1315	IB_WR_RESERVED6,
1316	IB_WR_RESERVED7,
1317	IB_WR_RESERVED8,
1318	IB_WR_RESERVED9,
1319	IB_WR_RESERVED10,
1320};
1321
1322enum ib_send_flags {
1323	IB_SEND_FENCE		= 1,
1324	IB_SEND_SIGNALED	= (1<<1),
1325	IB_SEND_SOLICITED	= (1<<2),
1326	IB_SEND_INLINE		= (1<<3),
1327	IB_SEND_IP_CSUM		= (1<<4),
1328
1329	/* reserve bits 26-31 for low level drivers' internal use */
1330	IB_SEND_RESERVED_START	= (1 << 26),
1331	IB_SEND_RESERVED_END	= (1 << 31),
1332};
1333
1334struct ib_sge {
1335	u64	addr;
1336	u32	length;
1337	u32	lkey;
1338};
1339
1340struct ib_cqe {
1341	void (*done)(struct ib_cq *cq, struct ib_wc *wc);
 
 
1342};
1343
1344struct ib_send_wr {
1345	struct ib_send_wr      *next;
1346	union {
1347		u64		wr_id;
1348		struct ib_cqe	*wr_cqe;
1349	};
1350	struct ib_sge	       *sg_list;
1351	int			num_sge;
1352	enum ib_wr_opcode	opcode;
1353	int			send_flags;
1354	union {
1355		__be32		imm_data;
1356		u32		invalidate_rkey;
1357	} ex;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1358};
1359
1360struct ib_rdma_wr {
1361	struct ib_send_wr	wr;
1362	u64			remote_addr;
1363	u32			rkey;
1364};
1365
1366static inline const struct ib_rdma_wr *rdma_wr(const struct ib_send_wr *wr)
1367{
1368	return container_of(wr, struct ib_rdma_wr, wr);
1369}
1370
1371struct ib_atomic_wr {
1372	struct ib_send_wr	wr;
1373	u64			remote_addr;
1374	u64			compare_add;
1375	u64			swap;
1376	u64			compare_add_mask;
1377	u64			swap_mask;
1378	u32			rkey;
1379};
1380
1381static inline const struct ib_atomic_wr *atomic_wr(const struct ib_send_wr *wr)
1382{
1383	return container_of(wr, struct ib_atomic_wr, wr);
1384}
1385
1386struct ib_ud_wr {
1387	struct ib_send_wr	wr;
1388	struct ib_ah		*ah;
1389	void			*header;
1390	int			hlen;
1391	int			mss;
1392	u32			remote_qpn;
1393	u32			remote_qkey;
1394	u16			pkey_index; /* valid for GSI only */
1395	u8			port_num;   /* valid for DR SMPs on switch only */
1396};
1397
1398static inline const struct ib_ud_wr *ud_wr(const struct ib_send_wr *wr)
1399{
1400	return container_of(wr, struct ib_ud_wr, wr);
1401}
1402
1403struct ib_reg_wr {
1404	struct ib_send_wr	wr;
1405	struct ib_mr		*mr;
1406	u32			key;
1407	int			access;
1408};
1409
1410static inline const struct ib_reg_wr *reg_wr(const struct ib_send_wr *wr)
1411{
1412	return container_of(wr, struct ib_reg_wr, wr);
1413}
1414
1415struct ib_recv_wr {
1416	struct ib_recv_wr      *next;
1417	union {
1418		u64		wr_id;
1419		struct ib_cqe	*wr_cqe;
1420	};
1421	struct ib_sge	       *sg_list;
1422	int			num_sge;
1423};
1424
1425enum ib_access_flags {
1426	IB_ACCESS_LOCAL_WRITE = IB_UVERBS_ACCESS_LOCAL_WRITE,
1427	IB_ACCESS_REMOTE_WRITE = IB_UVERBS_ACCESS_REMOTE_WRITE,
1428	IB_ACCESS_REMOTE_READ = IB_UVERBS_ACCESS_REMOTE_READ,
1429	IB_ACCESS_REMOTE_ATOMIC = IB_UVERBS_ACCESS_REMOTE_ATOMIC,
1430	IB_ACCESS_MW_BIND = IB_UVERBS_ACCESS_MW_BIND,
1431	IB_ZERO_BASED = IB_UVERBS_ACCESS_ZERO_BASED,
1432	IB_ACCESS_ON_DEMAND = IB_UVERBS_ACCESS_ON_DEMAND,
1433	IB_ACCESS_HUGETLB = IB_UVERBS_ACCESS_HUGETLB,
1434	IB_ACCESS_RELAXED_ORDERING = IB_UVERBS_ACCESS_RELAXED_ORDERING,
1435
1436	IB_ACCESS_OPTIONAL = IB_UVERBS_ACCESS_OPTIONAL_RANGE,
1437	IB_ACCESS_SUPPORTED =
1438		((IB_ACCESS_HUGETLB << 1) - 1) | IB_ACCESS_OPTIONAL,
 
 
 
 
 
 
1439};
1440
1441/*
1442 * XXX: these are apparently used for ->rereg_user_mr, no idea why they
1443 * are hidden here instead of a uapi header!
1444 */
1445enum ib_mr_rereg_flags {
1446	IB_MR_REREG_TRANS	= 1,
1447	IB_MR_REREG_PD		= (1<<1),
1448	IB_MR_REREG_ACCESS	= (1<<2),
1449	IB_MR_REREG_SUPPORTED	= ((IB_MR_REREG_ACCESS << 1) - 1)
1450};
1451
1452struct ib_umem;
1453
1454enum rdma_remove_reason {
1455	/*
1456	 * Userspace requested uobject deletion or initial try
1457	 * to remove uobject via cleanup. Call could fail
1458	 */
1459	RDMA_REMOVE_DESTROY,
1460	/* Context deletion. This call should delete the actual object itself */
1461	RDMA_REMOVE_CLOSE,
1462	/* Driver is being hot-unplugged. This call should delete the actual object itself */
1463	RDMA_REMOVE_DRIVER_REMOVE,
1464	/* uobj is being cleaned-up before being committed */
1465	RDMA_REMOVE_ABORT,
1466	/*
1467	 * uobj has been fully created, with the uobj->object set, but is being
1468	 * cleaned up before being comitted
1469	 */
1470	RDMA_REMOVE_ABORT_HWOBJ,
1471};
1472
1473struct ib_rdmacg_object {
1474#ifdef CONFIG_CGROUP_RDMA
1475	struct rdma_cgroup	*cg;		/* owner rdma cgroup */
1476#endif
 
 
 
 
 
 
 
 
 
1477};
1478
1479struct ib_ucontext {
1480	struct ib_device       *device;
1481	struct ib_uverbs_file  *ufile;
1482	/*
1483	 * 'closing' can be read by the driver only during a destroy callback,
1484	 * it is set when we are closing the file descriptor and indicates
1485	 * that mm_sem may be locked.
1486	 */
1487	bool closing;
1488
1489	bool cleanup_retryable;
1490
1491	struct ib_rdmacg_object	cg_obj;
1492	/*
1493	 * Implementation details of the RDMA core, don't use in drivers:
1494	 */
1495	struct rdma_restrack_entry res;
1496	struct xarray mmap_xa;
1497};
1498
1499struct ib_uobject {
1500	u64			user_handle;	/* handle given to us by userspace */
1501	/* ufile & ucontext owning this object */
1502	struct ib_uverbs_file  *ufile;
1503	/* FIXME, save memory: ufile->context == context */
1504	struct ib_ucontext     *context;	/* associated user context */
1505	void		       *object;		/* containing object */
1506	struct list_head	list;		/* link to context's list */
1507	struct ib_rdmacg_object	cg_obj;		/* rdmacg object */
1508	int			id;		/* index into kernel idr */
1509	struct kref		ref;
1510	atomic_t		usecnt;		/* protects exclusive access */
1511	struct rcu_head		rcu;		/* kfree_rcu() overhead */
1512
1513	const struct uverbs_api_object *uapi_object;
1514};
1515
1516struct ib_udata {
1517	const void __user *inbuf;
1518	void __user *outbuf;
1519	size_t       inlen;
1520	size_t       outlen;
1521};
1522
1523struct ib_pd {
1524	u32			local_dma_lkey;
1525	u32			flags;
1526	struct ib_device       *device;
1527	struct ib_uobject      *uobject;
1528	atomic_t          	usecnt; /* count all resources */
1529
1530	u32			unsafe_global_rkey;
1531
1532	/*
1533	 * Implementation details of the RDMA core, don't use in drivers:
1534	 */
1535	struct ib_mr	       *__internal_mr;
1536	struct rdma_restrack_entry res;
1537};
1538
1539struct ib_xrcd {
1540	struct ib_device       *device;
1541	atomic_t		usecnt; /* count all exposed resources */
1542	struct inode	       *inode;
1543	struct rw_semaphore	tgt_qps_rwsem;
1544	struct xarray		tgt_qps;
1545};
1546
1547struct ib_ah {
1548	struct ib_device	*device;
1549	struct ib_pd		*pd;
1550	struct ib_uobject	*uobject;
1551	const struct ib_gid_attr *sgid_attr;
1552	enum rdma_ah_attr_type	type;
1553};
1554
1555typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
1556
1557enum ib_poll_context {
1558	IB_POLL_SOFTIRQ,	   /* poll from softirq context */
1559	IB_POLL_WORKQUEUE,	   /* poll from workqueue */
1560	IB_POLL_UNBOUND_WORKQUEUE, /* poll from unbound workqueue */
1561	IB_POLL_LAST_POOL_TYPE = IB_POLL_UNBOUND_WORKQUEUE,
1562
1563	IB_POLL_DIRECT,		   /* caller context, no hw completions */
1564};
1565
1566struct ib_cq {
1567	struct ib_device       *device;
1568	struct ib_ucq_object   *uobject;
1569	ib_comp_handler   	comp_handler;
1570	void                  (*event_handler)(struct ib_event *, void *);
1571	void                   *cq_context;
1572	int               	cqe;
1573	unsigned int		cqe_used;
1574	atomic_t          	usecnt; /* count number of work queues */
1575	enum ib_poll_context	poll_ctx;
1576	struct ib_wc		*wc;
1577	struct list_head        pool_entry;
1578	union {
1579		struct irq_poll		iop;
1580		struct work_struct	work;
1581	};
1582	struct workqueue_struct *comp_wq;
1583	struct dim *dim;
1584
1585	/* updated only by trace points */
1586	ktime_t timestamp;
1587	u8 interrupt:1;
1588	u8 shared:1;
1589	unsigned int comp_vector;
1590
1591	/*
1592	 * Implementation details of the RDMA core, don't use in drivers:
1593	 */
1594	struct rdma_restrack_entry res;
1595};
1596
1597struct ib_srq {
1598	struct ib_device       *device;
1599	struct ib_pd	       *pd;
1600	struct ib_usrq_object  *uobject;
1601	void		      (*event_handler)(struct ib_event *, void *);
1602	void		       *srq_context;
1603	enum ib_srq_type	srq_type;
1604	atomic_t		usecnt;
1605
1606	struct {
1607		struct ib_cq   *cq;
1608		union {
1609			struct {
1610				struct ib_xrcd *xrcd;
1611				u32		srq_num;
1612			} xrc;
1613		};
1614	} ext;
1615};
1616
1617enum ib_raw_packet_caps {
1618	/* Strip cvlan from incoming packet and report it in the matching work
1619	 * completion is supported.
1620	 */
1621	IB_RAW_PACKET_CAP_CVLAN_STRIPPING	= (1 << 0),
1622	/* Scatter FCS field of an incoming packet to host memory is supported.
1623	 */
1624	IB_RAW_PACKET_CAP_SCATTER_FCS		= (1 << 1),
1625	/* Checksum offloads are supported (for both send and receive). */
1626	IB_RAW_PACKET_CAP_IP_CSUM		= (1 << 2),
1627	/* When a packet is received for an RQ with no receive WQEs, the
1628	 * packet processing is delayed.
1629	 */
1630	IB_RAW_PACKET_CAP_DELAY_DROP		= (1 << 3),
1631};
1632
1633enum ib_wq_type {
1634	IB_WQT_RQ = IB_UVERBS_WQT_RQ,
1635};
1636
1637enum ib_wq_state {
1638	IB_WQS_RESET,
1639	IB_WQS_RDY,
1640	IB_WQS_ERR
1641};
1642
1643struct ib_wq {
1644	struct ib_device       *device;
1645	struct ib_uwq_object   *uobject;
1646	void		    *wq_context;
1647	void		    (*event_handler)(struct ib_event *, void *);
1648	struct ib_pd	       *pd;
1649	struct ib_cq	       *cq;
1650	u32		wq_num;
1651	enum ib_wq_state       state;
1652	enum ib_wq_type	wq_type;
1653	atomic_t		usecnt;
1654};
1655
1656enum ib_wq_flags {
1657	IB_WQ_FLAGS_CVLAN_STRIPPING	= IB_UVERBS_WQ_FLAGS_CVLAN_STRIPPING,
1658	IB_WQ_FLAGS_SCATTER_FCS		= IB_UVERBS_WQ_FLAGS_SCATTER_FCS,
1659	IB_WQ_FLAGS_DELAY_DROP		= IB_UVERBS_WQ_FLAGS_DELAY_DROP,
1660	IB_WQ_FLAGS_PCI_WRITE_END_PADDING =
1661				IB_UVERBS_WQ_FLAGS_PCI_WRITE_END_PADDING,
1662};
1663
1664struct ib_wq_init_attr {
1665	void		       *wq_context;
1666	enum ib_wq_type	wq_type;
1667	u32		max_wr;
1668	u32		max_sge;
1669	struct	ib_cq	       *cq;
1670	void		    (*event_handler)(struct ib_event *, void *);
1671	u32		create_flags; /* Use enum ib_wq_flags */
1672};
1673
1674enum ib_wq_attr_mask {
1675	IB_WQ_STATE		= 1 << 0,
1676	IB_WQ_CUR_STATE		= 1 << 1,
1677	IB_WQ_FLAGS		= 1 << 2,
1678};
1679
1680struct ib_wq_attr {
1681	enum	ib_wq_state	wq_state;
1682	enum	ib_wq_state	curr_wq_state;
1683	u32			flags; /* Use enum ib_wq_flags */
1684	u32			flags_mask; /* Use enum ib_wq_flags */
1685};
1686
1687struct ib_rwq_ind_table {
1688	struct ib_device	*device;
1689	struct ib_uobject      *uobject;
1690	atomic_t		usecnt;
1691	u32		ind_tbl_num;
1692	u32		log_ind_tbl_size;
1693	struct ib_wq	**ind_tbl;
1694};
1695
1696struct ib_rwq_ind_table_init_attr {
1697	u32		log_ind_tbl_size;
1698	/* Each entry is a pointer to Receive Work Queue */
1699	struct ib_wq	**ind_tbl;
1700};
1701
1702enum port_pkey_state {
1703	IB_PORT_PKEY_NOT_VALID = 0,
1704	IB_PORT_PKEY_VALID = 1,
1705	IB_PORT_PKEY_LISTED = 2,
1706};
1707
1708struct ib_qp_security;
1709
1710struct ib_port_pkey {
1711	enum port_pkey_state	state;
1712	u16			pkey_index;
1713	u8			port_num;
1714	struct list_head	qp_list;
1715	struct list_head	to_error_list;
1716	struct ib_qp_security  *sec;
1717};
1718
1719struct ib_ports_pkeys {
1720	struct ib_port_pkey	main;
1721	struct ib_port_pkey	alt;
1722};
1723
1724struct ib_qp_security {
1725	struct ib_qp	       *qp;
1726	struct ib_device       *dev;
1727	/* Hold this mutex when changing port and pkey settings. */
1728	struct mutex		mutex;
1729	struct ib_ports_pkeys  *ports_pkeys;
1730	/* A list of all open shared QP handles.  Required to enforce security
1731	 * properly for all users of a shared QP.
1732	 */
1733	struct list_head        shared_qp_list;
1734	void                   *security;
1735	bool			destroying;
1736	atomic_t		error_list_count;
1737	struct completion	error_complete;
1738	int			error_comps_pending;
1739};
1740
1741/*
1742 * @max_write_sge: Maximum SGE elements per RDMA WRITE request.
1743 * @max_read_sge:  Maximum SGE elements per RDMA READ request.
1744 */
1745struct ib_qp {
1746	struct ib_device       *device;
1747	struct ib_pd	       *pd;
1748	struct ib_cq	       *send_cq;
1749	struct ib_cq	       *recv_cq;
1750	spinlock_t		mr_lock;
1751	int			mrs_used;
1752	struct list_head	rdma_mrs;
1753	struct list_head	sig_mrs;
1754	struct ib_srq	       *srq;
1755	struct ib_xrcd	       *xrcd; /* XRC TGT QPs only */
1756	struct list_head	xrcd_list;
1757
1758	/* count times opened, mcast attaches, flow attaches */
1759	atomic_t		usecnt;
1760	struct list_head	open_list;
1761	struct ib_qp           *real_qp;
1762	struct ib_uqp_object   *uobject;
1763	void                  (*event_handler)(struct ib_event *, void *);
1764	void		       *qp_context;
1765	/* sgid_attrs associated with the AV's */
1766	const struct ib_gid_attr *av_sgid_attr;
1767	const struct ib_gid_attr *alt_path_sgid_attr;
1768	u32			qp_num;
1769	u32			max_write_sge;
1770	u32			max_read_sge;
1771	enum ib_qp_type		qp_type;
1772	struct ib_rwq_ind_table *rwq_ind_tbl;
1773	struct ib_qp_security  *qp_sec;
1774	u8			port;
1775
1776	bool			integrity_en;
1777	/*
1778	 * Implementation details of the RDMA core, don't use in drivers:
1779	 */
1780	struct rdma_restrack_entry     res;
1781
1782	/* The counter the qp is bind to */
1783	struct rdma_counter    *counter;
1784};
1785
1786struct ib_dm {
1787	struct ib_device  *device;
1788	u32		   length;
1789	u32		   flags;
1790	struct ib_uobject *uobject;
1791	atomic_t	   usecnt;
1792};
1793
1794struct ib_mr {
1795	struct ib_device  *device;
1796	struct ib_pd	  *pd;
 
1797	u32		   lkey;
1798	u32		   rkey;
1799	u64		   iova;
1800	u64		   length;
1801	unsigned int	   page_size;
1802	enum ib_mr_type	   type;
1803	bool		   need_inval;
1804	union {
1805		struct ib_uobject	*uobject;	/* user */
1806		struct list_head	qp_entry;	/* FR */
1807	};
1808
1809	struct ib_dm      *dm;
1810	struct ib_sig_attrs *sig_attrs; /* only for IB_MR_TYPE_INTEGRITY MRs */
1811	/*
1812	 * Implementation details of the RDMA core, don't use in drivers:
1813	 */
1814	struct rdma_restrack_entry res;
1815};
1816
1817struct ib_mw {
1818	struct ib_device	*device;
1819	struct ib_pd		*pd;
1820	struct ib_uobject	*uobject;
1821	u32			rkey;
1822	enum ib_mw_type         type;
1823};
1824
1825/* Supported steering options */
1826enum ib_flow_attr_type {
1827	/* steering according to rule specifications */
1828	IB_FLOW_ATTR_NORMAL		= 0x0,
1829	/* default unicast and multicast rule -
1830	 * receive all Eth traffic which isn't steered to any QP
1831	 */
1832	IB_FLOW_ATTR_ALL_DEFAULT	= 0x1,
1833	/* default multicast rule -
1834	 * receive all Eth multicast traffic which isn't steered to any QP
1835	 */
1836	IB_FLOW_ATTR_MC_DEFAULT		= 0x2,
1837	/* sniffer rule - receive all port traffic */
1838	IB_FLOW_ATTR_SNIFFER		= 0x3
1839};
1840
1841/* Supported steering header types */
1842enum ib_flow_spec_type {
1843	/* L2 headers*/
1844	IB_FLOW_SPEC_ETH		= 0x20,
1845	IB_FLOW_SPEC_IB			= 0x22,
1846	/* L3 header*/
1847	IB_FLOW_SPEC_IPV4		= 0x30,
1848	IB_FLOW_SPEC_IPV6		= 0x31,
1849	IB_FLOW_SPEC_ESP                = 0x34,
1850	/* L4 headers*/
1851	IB_FLOW_SPEC_TCP		= 0x40,
1852	IB_FLOW_SPEC_UDP		= 0x41,
1853	IB_FLOW_SPEC_VXLAN_TUNNEL	= 0x50,
1854	IB_FLOW_SPEC_GRE		= 0x51,
1855	IB_FLOW_SPEC_MPLS		= 0x60,
1856	IB_FLOW_SPEC_INNER		= 0x100,
1857	/* Actions */
1858	IB_FLOW_SPEC_ACTION_TAG         = 0x1000,
1859	IB_FLOW_SPEC_ACTION_DROP        = 0x1001,
1860	IB_FLOW_SPEC_ACTION_HANDLE	= 0x1002,
1861	IB_FLOW_SPEC_ACTION_COUNT       = 0x1003,
1862};
1863#define IB_FLOW_SPEC_LAYER_MASK	0xF0
1864#define IB_FLOW_SPEC_SUPPORT_LAYERS 10
1865
1866/* Flow steering rule priority is set according to it's domain.
1867 * Lower domain value means higher priority.
1868 */
1869enum ib_flow_domain {
1870	IB_FLOW_DOMAIN_USER,
1871	IB_FLOW_DOMAIN_ETHTOOL,
1872	IB_FLOW_DOMAIN_RFS,
1873	IB_FLOW_DOMAIN_NIC,
1874	IB_FLOW_DOMAIN_NUM /* Must be last */
1875};
1876
1877enum ib_flow_flags {
1878	IB_FLOW_ATTR_FLAGS_DONT_TRAP = 1UL << 1, /* Continue match, no steal */
1879	IB_FLOW_ATTR_FLAGS_EGRESS = 1UL << 2, /* Egress flow */
1880	IB_FLOW_ATTR_FLAGS_RESERVED  = 1UL << 3  /* Must be last */
1881};
1882
1883struct ib_flow_eth_filter {
1884	u8	dst_mac[6];
1885	u8	src_mac[6];
1886	__be16	ether_type;
1887	__be16	vlan_tag;
1888	/* Must be last */
1889	u8	real_sz[];
1890};
1891
1892struct ib_flow_spec_eth {
1893	u32			  type;
1894	u16			  size;
1895	struct ib_flow_eth_filter val;
1896	struct ib_flow_eth_filter mask;
1897};
1898
1899struct ib_flow_ib_filter {
1900	__be16 dlid;
1901	__u8   sl;
1902	/* Must be last */
1903	u8	real_sz[];
1904};
1905
1906struct ib_flow_spec_ib {
1907	u32			 type;
1908	u16			 size;
1909	struct ib_flow_ib_filter val;
1910	struct ib_flow_ib_filter mask;
1911};
1912
1913/* IPv4 header flags */
1914enum ib_ipv4_flags {
1915	IB_IPV4_DONT_FRAG = 0x2, /* Don't enable packet fragmentation */
1916	IB_IPV4_MORE_FRAG = 0X4  /* For All fragmented packets except the
1917				    last have this flag set */
1918};
1919
1920struct ib_flow_ipv4_filter {
1921	__be32	src_ip;
1922	__be32	dst_ip;
1923	u8	proto;
1924	u8	tos;
1925	u8	ttl;
1926	u8	flags;
1927	/* Must be last */
1928	u8	real_sz[];
1929};
1930
1931struct ib_flow_spec_ipv4 {
1932	u32			   type;
1933	u16			   size;
1934	struct ib_flow_ipv4_filter val;
1935	struct ib_flow_ipv4_filter mask;
1936};
1937
1938struct ib_flow_ipv6_filter {
1939	u8	src_ip[16];
1940	u8	dst_ip[16];
1941	__be32	flow_label;
1942	u8	next_hdr;
1943	u8	traffic_class;
1944	u8	hop_limit;
1945	/* Must be last */
1946	u8	real_sz[];
1947};
1948
1949struct ib_flow_spec_ipv6 {
1950	u32			   type;
1951	u16			   size;
1952	struct ib_flow_ipv6_filter val;
1953	struct ib_flow_ipv6_filter mask;
1954};
1955
1956struct ib_flow_tcp_udp_filter {
1957	__be16	dst_port;
1958	__be16	src_port;
1959	/* Must be last */
1960	u8	real_sz[];
1961};
1962
1963struct ib_flow_spec_tcp_udp {
1964	u32			      type;
1965	u16			      size;
1966	struct ib_flow_tcp_udp_filter val;
1967	struct ib_flow_tcp_udp_filter mask;
1968};
1969
1970struct ib_flow_tunnel_filter {
1971	__be32	tunnel_id;
1972	u8	real_sz[];
1973};
1974
1975/* ib_flow_spec_tunnel describes the Vxlan tunnel
1976 * the tunnel_id from val has the vni value
1977 */
1978struct ib_flow_spec_tunnel {
1979	u32			      type;
1980	u16			      size;
1981	struct ib_flow_tunnel_filter  val;
1982	struct ib_flow_tunnel_filter  mask;
1983};
1984
1985struct ib_flow_esp_filter {
1986	__be32	spi;
1987	__be32  seq;
1988	/* Must be last */
1989	u8	real_sz[];
1990};
1991
1992struct ib_flow_spec_esp {
1993	u32                           type;
1994	u16			      size;
1995	struct ib_flow_esp_filter     val;
1996	struct ib_flow_esp_filter     mask;
1997};
1998
1999struct ib_flow_gre_filter {
2000	__be16 c_ks_res0_ver;
2001	__be16 protocol;
2002	__be32 key;
2003	/* Must be last */
2004	u8	real_sz[];
2005};
2006
2007struct ib_flow_spec_gre {
2008	u32                           type;
2009	u16			      size;
2010	struct ib_flow_gre_filter     val;
2011	struct ib_flow_gre_filter     mask;
2012};
2013
2014struct ib_flow_mpls_filter {
2015	__be32 tag;
2016	/* Must be last */
2017	u8	real_sz[];
2018};
2019
2020struct ib_flow_spec_mpls {
2021	u32                           type;
2022	u16			      size;
2023	struct ib_flow_mpls_filter     val;
2024	struct ib_flow_mpls_filter     mask;
2025};
2026
2027struct ib_flow_spec_action_tag {
2028	enum ib_flow_spec_type	      type;
2029	u16			      size;
2030	u32                           tag_id;
2031};
2032
2033struct ib_flow_spec_action_drop {
2034	enum ib_flow_spec_type	      type;
2035	u16			      size;
2036};
2037
2038struct ib_flow_spec_action_handle {
2039	enum ib_flow_spec_type	      type;
2040	u16			      size;
2041	struct ib_flow_action	     *act;
2042};
2043
2044enum ib_counters_description {
2045	IB_COUNTER_PACKETS,
2046	IB_COUNTER_BYTES,
2047};
2048
2049struct ib_flow_spec_action_count {
2050	enum ib_flow_spec_type type;
2051	u16 size;
2052	struct ib_counters *counters;
2053};
2054
2055union ib_flow_spec {
2056	struct {
2057		u32			type;
2058		u16			size;
2059	};
2060	struct ib_flow_spec_eth		eth;
2061	struct ib_flow_spec_ib		ib;
2062	struct ib_flow_spec_ipv4        ipv4;
2063	struct ib_flow_spec_tcp_udp	tcp_udp;
2064	struct ib_flow_spec_ipv6        ipv6;
2065	struct ib_flow_spec_tunnel      tunnel;
2066	struct ib_flow_spec_esp		esp;
2067	struct ib_flow_spec_gre		gre;
2068	struct ib_flow_spec_mpls	mpls;
2069	struct ib_flow_spec_action_tag  flow_tag;
2070	struct ib_flow_spec_action_drop drop;
2071	struct ib_flow_spec_action_handle action;
2072	struct ib_flow_spec_action_count flow_count;
2073};
2074
2075struct ib_flow_attr {
2076	enum ib_flow_attr_type type;
2077	u16	     size;
2078	u16	     priority;
2079	u32	     flags;
2080	u8	     num_of_specs;
2081	u8	     port;
2082	union ib_flow_spec flows[];
2083};
2084
2085struct ib_flow {
2086	struct ib_qp		*qp;
2087	struct ib_device	*device;
2088	struct ib_uobject	*uobject;
2089};
2090
2091enum ib_flow_action_type {
2092	IB_FLOW_ACTION_UNSPECIFIED,
2093	IB_FLOW_ACTION_ESP = 1,
2094};
2095
2096struct ib_flow_action_attrs_esp_keymats {
2097	enum ib_uverbs_flow_action_esp_keymat			protocol;
2098	union {
2099		struct ib_uverbs_flow_action_esp_keymat_aes_gcm aes_gcm;
2100	} keymat;
2101};
2102
2103struct ib_flow_action_attrs_esp_replays {
2104	enum ib_uverbs_flow_action_esp_replay			protocol;
2105	union {
2106		struct ib_uverbs_flow_action_esp_replay_bmp	bmp;
2107	} replay;
2108};
2109
2110enum ib_flow_action_attrs_esp_flags {
2111	/* All user-space flags at the top: Use enum ib_uverbs_flow_action_esp_flags
2112	 * This is done in order to share the same flags between user-space and
2113	 * kernel and spare an unnecessary translation.
2114	 */
2115
2116	/* Kernel flags */
2117	IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED	= 1ULL << 32,
2118	IB_FLOW_ACTION_ESP_FLAGS_MOD_ESP_ATTRS	= 1ULL << 33,
2119};
2120
2121struct ib_flow_spec_list {
2122	struct ib_flow_spec_list	*next;
2123	union ib_flow_spec		spec;
2124};
2125
2126struct ib_flow_action_attrs_esp {
2127	struct ib_flow_action_attrs_esp_keymats		*keymat;
2128	struct ib_flow_action_attrs_esp_replays		*replay;
2129	struct ib_flow_spec_list			*encap;
2130	/* Used only if IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED is enabled.
2131	 * Value of 0 is a valid value.
2132	 */
2133	u32						esn;
2134	u32						spi;
2135	u32						seq;
2136	u32						tfc_pad;
2137	/* Use enum ib_flow_action_attrs_esp_flags */
2138	u64						flags;
2139	u64						hard_limit_pkts;
2140};
2141
2142struct ib_flow_action {
2143	struct ib_device		*device;
2144	struct ib_uobject		*uobject;
2145	enum ib_flow_action_type	type;
2146	atomic_t			usecnt;
2147};
2148
2149struct ib_mad;
2150struct ib_grh;
2151
2152enum ib_process_mad_flags {
2153	IB_MAD_IGNORE_MKEY	= 1,
2154	IB_MAD_IGNORE_BKEY	= 2,
2155	IB_MAD_IGNORE_ALL	= IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
2156};
2157
2158enum ib_mad_result {
2159	IB_MAD_RESULT_FAILURE  = 0,      /* (!SUCCESS is the important flag) */
2160	IB_MAD_RESULT_SUCCESS  = 1 << 0, /* MAD was successfully processed   */
2161	IB_MAD_RESULT_REPLY    = 1 << 1, /* Reply packet needs to be sent    */
2162	IB_MAD_RESULT_CONSUMED = 1 << 2  /* Packet consumed: stop processing */
2163};
2164
2165struct ib_port_cache {
2166	u64		      subnet_prefix;
2167	struct ib_pkey_cache  *pkey;
2168	struct ib_gid_table   *gid;
2169	u8                     lmc;
2170	enum ib_port_state     port_state;
2171};
2172
2173struct ib_port_immutable {
2174	int                           pkey_tbl_len;
2175	int                           gid_tbl_len;
2176	u32                           core_cap_flags;
2177	u32                           max_mad_size;
2178};
2179
2180struct ib_port_data {
2181	struct ib_device *ib_dev;
2182
2183	struct ib_port_immutable immutable;
2184
2185	spinlock_t pkey_list_lock;
2186	struct list_head pkey_list;
2187
2188	struct ib_port_cache cache;
2189
2190	spinlock_t netdev_lock;
2191	struct net_device __rcu *netdev;
2192	struct hlist_node ndev_hash_link;
2193	struct rdma_port_counter port_counter;
2194	struct rdma_hw_stats *hw_stats;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2195};
2196
2197/* rdma netdev type - specifies protocol type */
2198enum rdma_netdev_t {
2199	RDMA_NETDEV_OPA_VNIC,
2200	RDMA_NETDEV_IPOIB,
2201};
2202
2203/**
2204 * struct rdma_netdev - rdma netdev
2205 * For cases where netstack interfacing is required.
2206 */
2207struct rdma_netdev {
2208	void              *clnt_priv;
2209	struct ib_device  *hca;
2210	u8                 port_num;
2211	int                mtu;
2212
2213	/*
2214	 * cleanup function must be specified.
2215	 * FIXME: This is only used for OPA_VNIC and that usage should be
2216	 * removed too.
2217	 */
2218	void (*free_rdma_netdev)(struct net_device *netdev);
2219
2220	/* control functions */
2221	void (*set_id)(struct net_device *netdev, int id);
2222	/* send packet */
2223	int (*send)(struct net_device *dev, struct sk_buff *skb,
2224		    struct ib_ah *address, u32 dqpn);
2225	/* multicast */
2226	int (*attach_mcast)(struct net_device *dev, struct ib_device *hca,
2227			    union ib_gid *gid, u16 mlid,
2228			    int set_qkey, u32 qkey);
2229	int (*detach_mcast)(struct net_device *dev, struct ib_device *hca,
2230			    union ib_gid *gid, u16 mlid);
2231};
2232
2233struct rdma_netdev_alloc_params {
2234	size_t sizeof_priv;
2235	unsigned int txqs;
2236	unsigned int rxqs;
2237	void *param;
2238
2239	int (*initialize_rdma_netdev)(struct ib_device *device, u8 port_num,
2240				      struct net_device *netdev, void *param);
2241};
2242
2243struct ib_odp_counters {
2244	atomic64_t faults;
2245	atomic64_t invalidations;
2246	atomic64_t prefetch;
2247};
2248
2249struct ib_counters {
2250	struct ib_device	*device;
2251	struct ib_uobject	*uobject;
2252	/* num of objects attached */
2253	atomic_t	usecnt;
2254};
2255
2256struct ib_counters_read_attr {
2257	u64	*counters_buff;
2258	u32	ncounters;
2259	u32	flags; /* use enum ib_read_counters_flags */
2260};
2261
2262struct uverbs_attr_bundle;
2263struct iw_cm_id;
2264struct iw_cm_conn_param;
2265
2266#define INIT_RDMA_OBJ_SIZE(ib_struct, drv_struct, member)                      \
2267	.size_##ib_struct =                                                    \
2268		(sizeof(struct drv_struct) +                                   \
2269		 BUILD_BUG_ON_ZERO(offsetof(struct drv_struct, member)) +      \
2270		 BUILD_BUG_ON_ZERO(                                            \
2271			 !__same_type(((struct drv_struct *)NULL)->member,     \
2272				      struct ib_struct)))
2273
2274#define rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, gfp)                         \
2275	((struct ib_type *)kzalloc(ib_dev->ops.size_##ib_type, gfp))
2276
2277#define rdma_zalloc_drv_obj(ib_dev, ib_type)                                   \
2278	rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, GFP_KERNEL)
2279
2280#define DECLARE_RDMA_OBJ_SIZE(ib_struct) size_t size_##ib_struct
2281
2282struct rdma_user_mmap_entry {
2283	struct kref ref;
2284	struct ib_ucontext *ucontext;
2285	unsigned long start_pgoff;
2286	size_t npages;
2287	bool driver_removed;
2288};
2289
2290/* Return the offset (in bytes) the user should pass to libc's mmap() */
2291static inline u64
2292rdma_user_mmap_get_offset(const struct rdma_user_mmap_entry *entry)
2293{
2294	return (u64)entry->start_pgoff << PAGE_SHIFT;
2295}
2296
2297/**
2298 * struct ib_device_ops - InfiniBand device operations
2299 * This structure defines all the InfiniBand device operations, providers will
2300 * need to define the supported operations, otherwise they will be set to null.
2301 */
2302struct ib_device_ops {
2303	struct module *owner;
2304	enum rdma_driver_id driver_id;
2305	u32 uverbs_abi_ver;
2306	unsigned int uverbs_no_driver_id_binding:1;
2307
2308	int (*post_send)(struct ib_qp *qp, const struct ib_send_wr *send_wr,
2309			 const struct ib_send_wr **bad_send_wr);
2310	int (*post_recv)(struct ib_qp *qp, const struct ib_recv_wr *recv_wr,
2311			 const struct ib_recv_wr **bad_recv_wr);
2312	void (*drain_rq)(struct ib_qp *qp);
2313	void (*drain_sq)(struct ib_qp *qp);
2314	int (*poll_cq)(struct ib_cq *cq, int num_entries, struct ib_wc *wc);
2315	int (*peek_cq)(struct ib_cq *cq, int wc_cnt);
2316	int (*req_notify_cq)(struct ib_cq *cq, enum ib_cq_notify_flags flags);
2317	int (*req_ncomp_notif)(struct ib_cq *cq, int wc_cnt);
2318	int (*post_srq_recv)(struct ib_srq *srq,
2319			     const struct ib_recv_wr *recv_wr,
2320			     const struct ib_recv_wr **bad_recv_wr);
2321	int (*process_mad)(struct ib_device *device, int process_mad_flags,
2322			   u8 port_num, const struct ib_wc *in_wc,
2323			   const struct ib_grh *in_grh,
2324			   const struct ib_mad *in_mad, struct ib_mad *out_mad,
2325			   size_t *out_mad_size, u16 *out_mad_pkey_index);
2326	int (*query_device)(struct ib_device *device,
2327			    struct ib_device_attr *device_attr,
2328			    struct ib_udata *udata);
2329	int (*modify_device)(struct ib_device *device, int device_modify_mask,
2330			     struct ib_device_modify *device_modify);
2331	void (*get_dev_fw_str)(struct ib_device *device, char *str);
2332	const struct cpumask *(*get_vector_affinity)(struct ib_device *ibdev,
2333						     int comp_vector);
2334	int (*query_port)(struct ib_device *device, u8 port_num,
2335			  struct ib_port_attr *port_attr);
2336	int (*modify_port)(struct ib_device *device, u8 port_num,
2337			   int port_modify_mask,
2338			   struct ib_port_modify *port_modify);
2339	/**
2340	 * The following mandatory functions are used only at device
2341	 * registration.  Keep functions such as these at the end of this
2342	 * structure to avoid cache line misses when accessing struct ib_device
2343	 * in fast paths.
2344	 */
2345	int (*get_port_immutable)(struct ib_device *device, u8 port_num,
2346				  struct ib_port_immutable *immutable);
2347	enum rdma_link_layer (*get_link_layer)(struct ib_device *device,
2348					       u8 port_num);
2349	/**
2350	 * When calling get_netdev, the HW vendor's driver should return the
2351	 * net device of device @device at port @port_num or NULL if such
2352	 * a net device doesn't exist. The vendor driver should call dev_hold
2353	 * on this net device. The HW vendor's device driver must guarantee
2354	 * that this function returns NULL before the net device has finished
2355	 * NETDEV_UNREGISTER state.
2356	 */
2357	struct net_device *(*get_netdev)(struct ib_device *device, u8 port_num);
2358	/**
2359	 * rdma netdev operation
2360	 *
2361	 * Driver implementing alloc_rdma_netdev or rdma_netdev_get_params
2362	 * must return -EOPNOTSUPP if it doesn't support the specified type.
2363	 */
2364	struct net_device *(*alloc_rdma_netdev)(
2365		struct ib_device *device, u8 port_num, enum rdma_netdev_t type,
2366		const char *name, unsigned char name_assign_type,
2367		void (*setup)(struct net_device *));
2368
2369	int (*rdma_netdev_get_params)(struct ib_device *device, u8 port_num,
2370				      enum rdma_netdev_t type,
2371				      struct rdma_netdev_alloc_params *params);
2372	/**
2373	 * query_gid should be return GID value for @device, when @port_num
2374	 * link layer is either IB or iWarp. It is no-op if @port_num port
2375	 * is RoCE link layer.
2376	 */
2377	int (*query_gid)(struct ib_device *device, u8 port_num, int index,
2378			 union ib_gid *gid);
2379	/**
2380	 * When calling add_gid, the HW vendor's driver should add the gid
2381	 * of device of port at gid index available at @attr. Meta-info of
2382	 * that gid (for example, the network device related to this gid) is
2383	 * available at @attr. @context allows the HW vendor driver to store
2384	 * extra information together with a GID entry. The HW vendor driver may
2385	 * allocate memory to contain this information and store it in @context
2386	 * when a new GID entry is written to. Params are consistent until the
2387	 * next call of add_gid or delete_gid. The function should return 0 on
2388	 * success or error otherwise. The function could be called
2389	 * concurrently for different ports. This function is only called when
2390	 * roce_gid_table is used.
2391	 */
2392	int (*add_gid)(const struct ib_gid_attr *attr, void **context);
2393	/**
2394	 * When calling del_gid, the HW vendor's driver should delete the
2395	 * gid of device @device at gid index gid_index of port port_num
2396	 * available in @attr.
2397	 * Upon the deletion of a GID entry, the HW vendor must free any
2398	 * allocated memory. The caller will clear @context afterwards.
2399	 * This function is only called when roce_gid_table is used.
2400	 */
2401	int (*del_gid)(const struct ib_gid_attr *attr, void **context);
2402	int (*query_pkey)(struct ib_device *device, u8 port_num, u16 index,
2403			  u16 *pkey);
2404	int (*alloc_ucontext)(struct ib_ucontext *context,
2405			      struct ib_udata *udata);
2406	void (*dealloc_ucontext)(struct ib_ucontext *context);
2407	int (*mmap)(struct ib_ucontext *context, struct vm_area_struct *vma);
2408	/**
2409	 * This will be called once refcount of an entry in mmap_xa reaches
2410	 * zero. The type of the memory that was mapped may differ between
2411	 * entries and is opaque to the rdma_user_mmap interface.
2412	 * Therefore needs to be implemented by the driver in mmap_free.
2413	 */
2414	void (*mmap_free)(struct rdma_user_mmap_entry *entry);
2415	void (*disassociate_ucontext)(struct ib_ucontext *ibcontext);
2416	int (*alloc_pd)(struct ib_pd *pd, struct ib_udata *udata);
2417	void (*dealloc_pd)(struct ib_pd *pd, struct ib_udata *udata);
2418	int (*create_ah)(struct ib_ah *ah, struct rdma_ah_init_attr *attr,
2419			 struct ib_udata *udata);
2420	int (*modify_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
2421	int (*query_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
2422	void (*destroy_ah)(struct ib_ah *ah, u32 flags);
2423	int (*create_srq)(struct ib_srq *srq,
2424			  struct ib_srq_init_attr *srq_init_attr,
2425			  struct ib_udata *udata);
2426	int (*modify_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr,
2427			  enum ib_srq_attr_mask srq_attr_mask,
2428			  struct ib_udata *udata);
2429	int (*query_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr);
2430	void (*destroy_srq)(struct ib_srq *srq, struct ib_udata *udata);
2431	struct ib_qp *(*create_qp)(struct ib_pd *pd,
2432				   struct ib_qp_init_attr *qp_init_attr,
2433				   struct ib_udata *udata);
2434	int (*modify_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr,
2435			 int qp_attr_mask, struct ib_udata *udata);
2436	int (*query_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr,
2437			int qp_attr_mask, struct ib_qp_init_attr *qp_init_attr);
2438	int (*destroy_qp)(struct ib_qp *qp, struct ib_udata *udata);
2439	int (*create_cq)(struct ib_cq *cq, const struct ib_cq_init_attr *attr,
2440			 struct ib_udata *udata);
2441	int (*modify_cq)(struct ib_cq *cq, u16 cq_count, u16 cq_period);
2442	void (*destroy_cq)(struct ib_cq *cq, struct ib_udata *udata);
2443	int (*resize_cq)(struct ib_cq *cq, int cqe, struct ib_udata *udata);
2444	struct ib_mr *(*get_dma_mr)(struct ib_pd *pd, int mr_access_flags);
2445	struct ib_mr *(*reg_user_mr)(struct ib_pd *pd, u64 start, u64 length,
2446				     u64 virt_addr, int mr_access_flags,
2447				     struct ib_udata *udata);
2448	int (*rereg_user_mr)(struct ib_mr *mr, int flags, u64 start, u64 length,
2449			     u64 virt_addr, int mr_access_flags,
2450			     struct ib_pd *pd, struct ib_udata *udata);
2451	int (*dereg_mr)(struct ib_mr *mr, struct ib_udata *udata);
2452	struct ib_mr *(*alloc_mr)(struct ib_pd *pd, enum ib_mr_type mr_type,
2453				  u32 max_num_sg);
2454	struct ib_mr *(*alloc_mr_integrity)(struct ib_pd *pd,
2455					    u32 max_num_data_sg,
2456					    u32 max_num_meta_sg);
2457	int (*advise_mr)(struct ib_pd *pd,
2458			 enum ib_uverbs_advise_mr_advice advice, u32 flags,
2459			 struct ib_sge *sg_list, u32 num_sge,
2460			 struct uverbs_attr_bundle *attrs);
2461	int (*map_mr_sg)(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
2462			 unsigned int *sg_offset);
2463	int (*check_mr_status)(struct ib_mr *mr, u32 check_mask,
2464			       struct ib_mr_status *mr_status);
2465	struct ib_mw *(*alloc_mw)(struct ib_pd *pd, enum ib_mw_type type,
2466				  struct ib_udata *udata);
2467	int (*dealloc_mw)(struct ib_mw *mw);
2468	int (*attach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2469	int (*detach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2470	int (*alloc_xrcd)(struct ib_xrcd *xrcd, struct ib_udata *udata);
2471	void (*dealloc_xrcd)(struct ib_xrcd *xrcd, struct ib_udata *udata);
2472	struct ib_flow *(*create_flow)(struct ib_qp *qp,
2473				       struct ib_flow_attr *flow_attr,
2474				       int domain, struct ib_udata *udata);
2475	int (*destroy_flow)(struct ib_flow *flow_id);
2476	struct ib_flow_action *(*create_flow_action_esp)(
2477		struct ib_device *device,
2478		const struct ib_flow_action_attrs_esp *attr,
2479		struct uverbs_attr_bundle *attrs);
2480	int (*destroy_flow_action)(struct ib_flow_action *action);
2481	int (*modify_flow_action_esp)(
2482		struct ib_flow_action *action,
2483		const struct ib_flow_action_attrs_esp *attr,
2484		struct uverbs_attr_bundle *attrs);
2485	int (*set_vf_link_state)(struct ib_device *device, int vf, u8 port,
2486				 int state);
2487	int (*get_vf_config)(struct ib_device *device, int vf, u8 port,
2488			     struct ifla_vf_info *ivf);
2489	int (*get_vf_stats)(struct ib_device *device, int vf, u8 port,
2490			    struct ifla_vf_stats *stats);
2491	int (*get_vf_guid)(struct ib_device *device, int vf, u8 port,
2492			    struct ifla_vf_guid *node_guid,
2493			    struct ifla_vf_guid *port_guid);
2494	int (*set_vf_guid)(struct ib_device *device, int vf, u8 port, u64 guid,
2495			   int type);
2496	struct ib_wq *(*create_wq)(struct ib_pd *pd,
2497				   struct ib_wq_init_attr *init_attr,
2498				   struct ib_udata *udata);
2499	void (*destroy_wq)(struct ib_wq *wq, struct ib_udata *udata);
2500	int (*modify_wq)(struct ib_wq *wq, struct ib_wq_attr *attr,
2501			 u32 wq_attr_mask, struct ib_udata *udata);
2502	struct ib_rwq_ind_table *(*create_rwq_ind_table)(
2503		struct ib_device *device,
2504		struct ib_rwq_ind_table_init_attr *init_attr,
2505		struct ib_udata *udata);
2506	int (*destroy_rwq_ind_table)(struct ib_rwq_ind_table *wq_ind_table);
2507	struct ib_dm *(*alloc_dm)(struct ib_device *device,
2508				  struct ib_ucontext *context,
2509				  struct ib_dm_alloc_attr *attr,
2510				  struct uverbs_attr_bundle *attrs);
2511	int (*dealloc_dm)(struct ib_dm *dm, struct uverbs_attr_bundle *attrs);
2512	struct ib_mr *(*reg_dm_mr)(struct ib_pd *pd, struct ib_dm *dm,
2513				   struct ib_dm_mr_attr *attr,
2514				   struct uverbs_attr_bundle *attrs);
2515	int (*create_counters)(struct ib_counters *counters,
2516			       struct uverbs_attr_bundle *attrs);
2517	void (*destroy_counters)(struct ib_counters *counters);
2518	int (*read_counters)(struct ib_counters *counters,
2519			     struct ib_counters_read_attr *counters_read_attr,
2520			     struct uverbs_attr_bundle *attrs);
2521	int (*map_mr_sg_pi)(struct ib_mr *mr, struct scatterlist *data_sg,
2522			    int data_sg_nents, unsigned int *data_sg_offset,
2523			    struct scatterlist *meta_sg, int meta_sg_nents,
2524			    unsigned int *meta_sg_offset);
2525
2526	/**
2527	 * alloc_hw_stats - Allocate a struct rdma_hw_stats and fill in the
2528	 *   driver initialized data.  The struct is kfree()'ed by the sysfs
2529	 *   core when the device is removed.  A lifespan of -1 in the return
2530	 *   struct tells the core to set a default lifespan.
2531	 */
2532	struct rdma_hw_stats *(*alloc_hw_stats)(struct ib_device *device,
2533						u8 port_num);
2534	/**
2535	 * get_hw_stats - Fill in the counter value(s) in the stats struct.
2536	 * @index - The index in the value array we wish to have updated, or
2537	 *   num_counters if we want all stats updated
2538	 * Return codes -
2539	 *   < 0 - Error, no counters updated
2540	 *   index - Updated the single counter pointed to by index
2541	 *   num_counters - Updated all counters (will reset the timestamp
2542	 *     and prevent further calls for lifespan milliseconds)
2543	 * Drivers are allowed to update all counters in leiu of just the
2544	 *   one given in index at their option
2545	 */
2546	int (*get_hw_stats)(struct ib_device *device,
2547			    struct rdma_hw_stats *stats, u8 port, int index);
2548	/*
2549	 * This function is called once for each port when a ib device is
2550	 * registered.
2551	 */
2552	int (*init_port)(struct ib_device *device, u8 port_num,
2553			 struct kobject *port_sysfs);
2554	/**
2555	 * Allows rdma drivers to add their own restrack attributes.
2556	 */
2557	int (*fill_res_mr_entry)(struct sk_buff *msg, struct ib_mr *ibmr);
2558	int (*fill_res_mr_entry_raw)(struct sk_buff *msg, struct ib_mr *ibmr);
2559	int (*fill_res_cq_entry)(struct sk_buff *msg, struct ib_cq *ibcq);
2560	int (*fill_res_cq_entry_raw)(struct sk_buff *msg, struct ib_cq *ibcq);
2561	int (*fill_res_qp_entry)(struct sk_buff *msg, struct ib_qp *ibqp);
2562	int (*fill_res_qp_entry_raw)(struct sk_buff *msg, struct ib_qp *ibqp);
2563	int (*fill_res_cm_id_entry)(struct sk_buff *msg, struct rdma_cm_id *id);
2564
2565	/* Device lifecycle callbacks */
2566	/*
2567	 * Called after the device becomes registered, before clients are
2568	 * attached
2569	 */
2570	int (*enable_driver)(struct ib_device *dev);
2571	/*
2572	 * This is called as part of ib_dealloc_device().
2573	 */
2574	void (*dealloc_driver)(struct ib_device *dev);
2575
2576	/* iWarp CM callbacks */
2577	void (*iw_add_ref)(struct ib_qp *qp);
2578	void (*iw_rem_ref)(struct ib_qp *qp);
2579	struct ib_qp *(*iw_get_qp)(struct ib_device *device, int qpn);
2580	int (*iw_connect)(struct iw_cm_id *cm_id,
2581			  struct iw_cm_conn_param *conn_param);
2582	int (*iw_accept)(struct iw_cm_id *cm_id,
2583			 struct iw_cm_conn_param *conn_param);
2584	int (*iw_reject)(struct iw_cm_id *cm_id, const void *pdata,
2585			 u8 pdata_len);
2586	int (*iw_create_listen)(struct iw_cm_id *cm_id, int backlog);
2587	int (*iw_destroy_listen)(struct iw_cm_id *cm_id);
2588	/**
2589	 * counter_bind_qp - Bind a QP to a counter.
2590	 * @counter - The counter to be bound. If counter->id is zero then
2591	 *   the driver needs to allocate a new counter and set counter->id
2592	 */
2593	int (*counter_bind_qp)(struct rdma_counter *counter, struct ib_qp *qp);
2594	/**
2595	 * counter_unbind_qp - Unbind the qp from the dynamically-allocated
2596	 *   counter and bind it onto the default one
2597	 */
2598	int (*counter_unbind_qp)(struct ib_qp *qp);
2599	/**
2600	 * counter_dealloc -De-allocate the hw counter
2601	 */
2602	int (*counter_dealloc)(struct rdma_counter *counter);
2603	/**
2604	 * counter_alloc_stats - Allocate a struct rdma_hw_stats and fill in
2605	 * the driver initialized data.
2606	 */
2607	struct rdma_hw_stats *(*counter_alloc_stats)(
2608		struct rdma_counter *counter);
2609	/**
2610	 * counter_update_stats - Query the stats value of this counter
2611	 */
2612	int (*counter_update_stats)(struct rdma_counter *counter);
2613
2614	/**
2615	 * Allows rdma drivers to add their own restrack attributes
2616	 * dumped via 'rdma stat' iproute2 command.
2617	 */
2618	int (*fill_stat_mr_entry)(struct sk_buff *msg, struct ib_mr *ibmr);
2619
2620	/* query driver for its ucontext properties */
2621	int (*query_ucontext)(struct ib_ucontext *context,
2622			      struct uverbs_attr_bundle *attrs);
2623
2624	DECLARE_RDMA_OBJ_SIZE(ib_ah);
2625	DECLARE_RDMA_OBJ_SIZE(ib_counters);
2626	DECLARE_RDMA_OBJ_SIZE(ib_cq);
2627	DECLARE_RDMA_OBJ_SIZE(ib_pd);
2628	DECLARE_RDMA_OBJ_SIZE(ib_srq);
2629	DECLARE_RDMA_OBJ_SIZE(ib_ucontext);
2630	DECLARE_RDMA_OBJ_SIZE(ib_xrcd);
2631};
2632
2633struct ib_core_device {
2634	/* device must be the first element in structure until,
2635	 * union of ib_core_device and device exists in ib_device.
2636	 */
2637	struct device dev;
2638	possible_net_t rdma_net;
2639	struct kobject *ports_kobj;
2640	struct list_head port_list;
2641	struct ib_device *owner; /* reach back to owner ib_device */
2642};
2643
2644struct rdma_restrack_root;
2645struct ib_device {
2646	/* Do not access @dma_device directly from ULP nor from HW drivers. */
2647	struct device                *dma_device;
2648	struct ib_device_ops	     ops;
2649	char                          name[IB_DEVICE_NAME_MAX];
2650	struct rcu_head rcu_head;
2651
2652	struct list_head              event_handler_list;
2653	/* Protects event_handler_list */
2654	struct rw_semaphore event_handler_rwsem;
2655
2656	/* Protects QP's event_handler calls and open_qp list */
2657	spinlock_t qp_open_list_lock;
 
 
 
 
 
2658
2659	struct rw_semaphore	      client_data_rwsem;
2660	struct xarray                 client_data;
2661	struct mutex                  unregistration_lock;
2662
2663	/* Synchronize GID, Pkey cache entries, subnet prefix, LMC */
2664	rwlock_t cache_lock;
2665	/**
2666	 * port_data is indexed by port number
2667	 */
2668	struct ib_port_data *port_data;
2669
2670	int			      num_comp_vectors;
2671
2672	union {
2673		struct device		dev;
2674		struct ib_core_device	coredev;
2675	};
2676
2677	/* First group for device attributes,
2678	 * Second group for driver provided attributes (optional).
2679	 * It is NULL terminated array.
2680	 */
2681	const struct attribute_group	*groups[3];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2682
 
2683	u64			     uverbs_cmd_mask;
2684	u64			     uverbs_ex_cmd_mask;
2685
2686	char			     node_desc[IB_DEVICE_NODE_DESC_MAX];
2687	__be64			     node_guid;
2688	u32			     local_dma_lkey;
2689	u16                          is_switch:1;
2690	/* Indicates kernel verbs support, should not be used in drivers */
2691	u16                          kverbs_provider:1;
2692	/* CQ adaptive moderation (RDMA DIM) */
2693	u16                          use_cq_dim:1;
2694	u8                           node_type;
2695	u8                           phys_port_cnt;
2696	struct ib_device_attr        attrs;
2697	struct attribute_group	     *hw_stats_ag;
2698	struct rdma_hw_stats         *hw_stats;
2699
2700#ifdef CONFIG_CGROUP_RDMA
2701	struct rdmacg_device         cg_device;
2702#endif
2703
2704	u32                          index;
2705
2706	spinlock_t                   cq_pools_lock;
2707	struct list_head             cq_pools[IB_POLL_LAST_POOL_TYPE + 1];
2708
2709	struct rdma_restrack_root *res;
2710
2711	const struct uapi_definition   *driver_def;
2712
2713	/*
2714	 * Positive refcount indicates that the device is currently
2715	 * registered and cannot be unregistered.
2716	 */
2717	refcount_t refcount;
2718	struct completion unreg_completion;
2719	struct work_struct unregistration_work;
2720
2721	const struct rdma_link_ops *link_ops;
2722
2723	/* Protects compat_devs xarray modifications */
2724	struct mutex compat_devs_mutex;
2725	/* Maintains compat devices for each net namespace */
2726	struct xarray compat_devs;
2727
2728	/* Used by iWarp CM */
2729	char iw_ifname[IFNAMSIZ];
2730	u32 iw_driver_flags;
2731	u32 lag_flags;
2732};
2733
2734struct ib_client_nl_info;
2735struct ib_client {
2736	const char *name;
2737	int (*add)(struct ib_device *ibdev);
2738	void (*remove)(struct ib_device *, void *client_data);
2739	void (*rename)(struct ib_device *dev, void *client_data);
2740	int (*get_nl_info)(struct ib_device *ibdev, void *client_data,
2741			   struct ib_client_nl_info *res);
2742	int (*get_global_nl_info)(struct ib_client_nl_info *res);
2743
2744	/* Returns the net_dev belonging to this ib_client and matching the
2745	 * given parameters.
2746	 * @dev:	 An RDMA device that the net_dev use for communication.
2747	 * @port:	 A physical port number on the RDMA device.
2748	 * @pkey:	 P_Key that the net_dev uses if applicable.
2749	 * @gid:	 A GID that the net_dev uses to communicate.
2750	 * @addr:	 An IP address the net_dev is configured with.
2751	 * @client_data: The device's client data set by ib_set_client_data().
2752	 *
2753	 * An ib_client that implements a net_dev on top of RDMA devices
2754	 * (such as IP over IB) should implement this callback, allowing the
2755	 * rdma_cm module to find the right net_dev for a given request.
2756	 *
2757	 * The caller is responsible for calling dev_put on the returned
2758	 * netdev. */
2759	struct net_device *(*get_net_dev_by_params)(
2760			struct ib_device *dev,
2761			u8 port,
2762			u16 pkey,
2763			const union ib_gid *gid,
2764			const struct sockaddr *addr,
2765			void *client_data);
2766
2767	refcount_t uses;
2768	struct completion uses_zero;
2769	u32 client_id;
2770
2771	/* kverbs are not required by the client */
2772	u8 no_kverbs_req:1;
2773};
2774
2775/*
2776 * IB block DMA iterator
2777 *
2778 * Iterates the DMA-mapped SGL in contiguous memory blocks aligned
2779 * to a HW supported page size.
2780 */
2781struct ib_block_iter {
2782	/* internal states */
2783	struct scatterlist *__sg;	/* sg holding the current aligned block */
2784	dma_addr_t __dma_addr;		/* unaligned DMA address of this block */
2785	unsigned int __sg_nents;	/* number of SG entries */
2786	unsigned int __sg_advance;	/* number of bytes to advance in sg in next step */
2787	unsigned int __pg_bit;		/* alignment of current block */
2788};
2789
2790struct ib_device *_ib_alloc_device(size_t size);
2791#define ib_alloc_device(drv_struct, member)                                    \
2792	container_of(_ib_alloc_device(sizeof(struct drv_struct) +              \
2793				      BUILD_BUG_ON_ZERO(offsetof(              \
2794					      struct drv_struct, member))),    \
2795		     struct drv_struct, member)
2796
2797void ib_dealloc_device(struct ib_device *device);
2798
2799void ib_get_device_fw_str(struct ib_device *device, char *str);
2800
2801int ib_register_device(struct ib_device *device, const char *name);
2802void ib_unregister_device(struct ib_device *device);
2803void ib_unregister_driver(enum rdma_driver_id driver_id);
2804void ib_unregister_device_and_put(struct ib_device *device);
2805void ib_unregister_device_queued(struct ib_device *ib_dev);
2806
2807int ib_register_client   (struct ib_client *client);
2808void ib_unregister_client(struct ib_client *client);
2809
2810void __rdma_block_iter_start(struct ib_block_iter *biter,
2811			     struct scatterlist *sglist,
2812			     unsigned int nents,
2813			     unsigned long pgsz);
2814bool __rdma_block_iter_next(struct ib_block_iter *biter);
2815
2816/**
2817 * rdma_block_iter_dma_address - get the aligned dma address of the current
2818 * block held by the block iterator.
2819 * @biter: block iterator holding the memory block
2820 */
2821static inline dma_addr_t
2822rdma_block_iter_dma_address(struct ib_block_iter *biter)
2823{
2824	return biter->__dma_addr & ~(BIT_ULL(biter->__pg_bit) - 1);
2825}
2826
2827/**
2828 * rdma_for_each_block - iterate over contiguous memory blocks of the sg list
2829 * @sglist: sglist to iterate over
2830 * @biter: block iterator holding the memory block
2831 * @nents: maximum number of sg entries to iterate over
2832 * @pgsz: best HW supported page size to use
2833 *
2834 * Callers may use rdma_block_iter_dma_address() to get each
2835 * blocks aligned DMA address.
2836 */
2837#define rdma_for_each_block(sglist, biter, nents, pgsz)		\
2838	for (__rdma_block_iter_start(biter, sglist, nents,	\
2839				     pgsz);			\
2840	     __rdma_block_iter_next(biter);)
2841
2842/**
2843 * ib_get_client_data - Get IB client context
2844 * @device:Device to get context for
2845 * @client:Client to get context for
2846 *
2847 * ib_get_client_data() returns the client context data set with
2848 * ib_set_client_data(). This can only be called while the client is
2849 * registered to the device, once the ib_client remove() callback returns this
2850 * cannot be called.
2851 */
2852static inline void *ib_get_client_data(struct ib_device *device,
2853				       struct ib_client *client)
2854{
2855	return xa_load(&device->client_data, client->client_id);
2856}
2857void  ib_set_client_data(struct ib_device *device, struct ib_client *client,
2858			 void *data);
2859void ib_set_device_ops(struct ib_device *device,
2860		       const struct ib_device_ops *ops);
2861
2862int rdma_user_mmap_io(struct ib_ucontext *ucontext, struct vm_area_struct *vma,
2863		      unsigned long pfn, unsigned long size, pgprot_t prot,
2864		      struct rdma_user_mmap_entry *entry);
2865int rdma_user_mmap_entry_insert(struct ib_ucontext *ucontext,
2866				struct rdma_user_mmap_entry *entry,
2867				size_t length);
2868int rdma_user_mmap_entry_insert_range(struct ib_ucontext *ucontext,
2869				      struct rdma_user_mmap_entry *entry,
2870				      size_t length, u32 min_pgoff,
2871				      u32 max_pgoff);
2872
2873struct rdma_user_mmap_entry *
2874rdma_user_mmap_entry_get_pgoff(struct ib_ucontext *ucontext,
2875			       unsigned long pgoff);
2876struct rdma_user_mmap_entry *
2877rdma_user_mmap_entry_get(struct ib_ucontext *ucontext,
2878			 struct vm_area_struct *vma);
2879void rdma_user_mmap_entry_put(struct rdma_user_mmap_entry *entry);
2880
2881void rdma_user_mmap_entry_remove(struct rdma_user_mmap_entry *entry);
2882
2883static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
2884{
2885	return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
2886}
2887
2888static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
2889{
2890	return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
2891}
2892
2893static inline bool ib_is_buffer_cleared(const void __user *p,
2894					size_t len)
2895{
2896	bool ret;
2897	u8 *buf;
2898
2899	if (len > USHRT_MAX)
2900		return false;
2901
2902	buf = memdup_user(p, len);
2903	if (IS_ERR(buf))
2904		return false;
2905
2906	ret = !memchr_inv(buf, 0, len);
2907	kfree(buf);
2908	return ret;
2909}
2910
2911static inline bool ib_is_udata_cleared(struct ib_udata *udata,
2912				       size_t offset,
2913				       size_t len)
2914{
2915	return ib_is_buffer_cleared(udata->inbuf + offset, len);
2916}
2917
2918/**
2919 * ib_is_destroy_retryable - Check whether the uobject destruction
2920 * is retryable.
2921 * @ret: The initial destruction return code
2922 * @why: remove reason
2923 * @uobj: The uobject that is destroyed
2924 *
2925 * This function is a helper function that IB layer and low-level drivers
2926 * can use to consider whether the destruction of the given uobject is
2927 * retry-able.
2928 * It checks the original return code, if it wasn't success the destruction
2929 * is retryable according to the ucontext state (i.e. cleanup_retryable) and
2930 * the remove reason. (i.e. why).
2931 * Must be called with the object locked for destroy.
2932 */
2933static inline bool ib_is_destroy_retryable(int ret, enum rdma_remove_reason why,
2934					   struct ib_uobject *uobj)
2935{
2936	return ret && (why == RDMA_REMOVE_DESTROY ||
2937		       uobj->context->cleanup_retryable);
2938}
2939
2940/**
2941 * ib_destroy_usecnt - Called during destruction to check the usecnt
2942 * @usecnt: The usecnt atomic
2943 * @why: remove reason
2944 * @uobj: The uobject that is destroyed
2945 *
2946 * Non-zero usecnts will block destruction unless destruction was triggered by
2947 * a ucontext cleanup.
2948 */
2949static inline int ib_destroy_usecnt(atomic_t *usecnt,
2950				    enum rdma_remove_reason why,
2951				    struct ib_uobject *uobj)
2952{
2953	if (atomic_read(usecnt) && ib_is_destroy_retryable(-EBUSY, why, uobj))
2954		return -EBUSY;
2955	return 0;
2956}
2957
2958/**
2959 * ib_modify_qp_is_ok - Check that the supplied attribute mask
2960 * contains all required attributes and no attributes not allowed for
2961 * the given QP state transition.
2962 * @cur_state: Current QP state
2963 * @next_state: Next QP state
2964 * @type: QP type
2965 * @mask: Mask of supplied QP attributes
2966 *
2967 * This function is a helper function that a low-level driver's
2968 * modify_qp method can use to validate the consumer's input.  It
2969 * checks that cur_state and next_state are valid QP states, that a
2970 * transition from cur_state to next_state is allowed by the IB spec,
2971 * and that the attribute mask supplied is allowed for the transition.
2972 */
2973bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
2974			enum ib_qp_type type, enum ib_qp_attr_mask mask);
2975
2976void ib_register_event_handler(struct ib_event_handler *event_handler);
2977void ib_unregister_event_handler(struct ib_event_handler *event_handler);
2978void ib_dispatch_event(const struct ib_event *event);
 
 
 
2979
2980int ib_query_port(struct ib_device *device,
2981		  u8 port_num, struct ib_port_attr *port_attr);
2982
2983enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
2984					       u8 port_num);
2985
2986/**
2987 * rdma_cap_ib_switch - Check if the device is IB switch
2988 * @device: Device to check
2989 *
2990 * Device driver is responsible for setting is_switch bit on
2991 * in ib_device structure at init time.
2992 *
2993 * Return: true if the device is IB switch.
2994 */
2995static inline bool rdma_cap_ib_switch(const struct ib_device *device)
2996{
2997	return device->is_switch;
2998}
2999
3000/**
3001 * rdma_start_port - Return the first valid port number for the device
3002 * specified
3003 *
3004 * @device: Device to be checked
3005 *
3006 * Return start port number
3007 */
3008static inline u8 rdma_start_port(const struct ib_device *device)
3009{
3010	return rdma_cap_ib_switch(device) ? 0 : 1;
3011}
3012
3013/**
3014 * rdma_for_each_port - Iterate over all valid port numbers of the IB device
3015 * @device - The struct ib_device * to iterate over
3016 * @iter - The unsigned int to store the port number
3017 */
3018#define rdma_for_each_port(device, iter)                                       \
3019	for (iter = rdma_start_port(device + BUILD_BUG_ON_ZERO(!__same_type(   \
3020						     unsigned int, iter)));    \
3021	     iter <= rdma_end_port(device); (iter)++)
3022
3023/**
3024 * rdma_end_port - Return the last valid port number for the device
3025 * specified
3026 *
3027 * @device: Device to be checked
3028 *
3029 * Return last port number
3030 */
3031static inline u8 rdma_end_port(const struct ib_device *device)
3032{
3033	return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt;
3034}
3035
3036static inline int rdma_is_port_valid(const struct ib_device *device,
3037				     unsigned int port)
3038{
3039	return (port >= rdma_start_port(device) &&
3040		port <= rdma_end_port(device));
3041}
3042
3043static inline bool rdma_is_grh_required(const struct ib_device *device,
3044					u8 port_num)
3045{
3046	return device->port_data[port_num].immutable.core_cap_flags &
3047	       RDMA_CORE_PORT_IB_GRH_REQUIRED;
3048}
3049
3050static inline bool rdma_protocol_ib(const struct ib_device *device, u8 port_num)
3051{
3052	return device->port_data[port_num].immutable.core_cap_flags &
3053	       RDMA_CORE_CAP_PROT_IB;
3054}
3055
3056static inline bool rdma_protocol_roce(const struct ib_device *device, u8 port_num)
3057{
3058	return device->port_data[port_num].immutable.core_cap_flags &
3059	       (RDMA_CORE_CAP_PROT_ROCE | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP);
3060}
3061
3062static inline bool rdma_protocol_roce_udp_encap(const struct ib_device *device, u8 port_num)
3063{
3064	return device->port_data[port_num].immutable.core_cap_flags &
3065	       RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP;
3066}
3067
3068static inline bool rdma_protocol_roce_eth_encap(const struct ib_device *device, u8 port_num)
3069{
3070	return device->port_data[port_num].immutable.core_cap_flags &
3071	       RDMA_CORE_CAP_PROT_ROCE;
3072}
3073
3074static inline bool rdma_protocol_iwarp(const struct ib_device *device, u8 port_num)
3075{
3076	return device->port_data[port_num].immutable.core_cap_flags &
3077	       RDMA_CORE_CAP_PROT_IWARP;
3078}
3079
3080static inline bool rdma_ib_or_roce(const struct ib_device *device, u8 port_num)
3081{
3082	return rdma_protocol_ib(device, port_num) ||
3083		rdma_protocol_roce(device, port_num);
3084}
3085
3086static inline bool rdma_protocol_raw_packet(const struct ib_device *device, u8 port_num)
3087{
3088	return device->port_data[port_num].immutable.core_cap_flags &
3089	       RDMA_CORE_CAP_PROT_RAW_PACKET;
3090}
3091
3092static inline bool rdma_protocol_usnic(const struct ib_device *device, u8 port_num)
3093{
3094	return device->port_data[port_num].immutable.core_cap_flags &
3095	       RDMA_CORE_CAP_PROT_USNIC;
3096}
3097
3098/**
3099 * rdma_cap_ib_mad - Check if the port of a device supports Infiniband
3100 * Management Datagrams.
3101 * @device: Device to check
3102 * @port_num: Port number to check
3103 *
3104 * Management Datagrams (MAD) are a required part of the InfiniBand
3105 * specification and are supported on all InfiniBand devices.  A slightly
3106 * extended version are also supported on OPA interfaces.
3107 *
3108 * Return: true if the port supports sending/receiving of MAD packets.
3109 */
3110static inline bool rdma_cap_ib_mad(const struct ib_device *device, u8 port_num)
3111{
3112	return device->port_data[port_num].immutable.core_cap_flags &
3113	       RDMA_CORE_CAP_IB_MAD;
3114}
3115
3116/**
3117 * rdma_cap_opa_mad - Check if the port of device provides support for OPA
3118 * Management Datagrams.
3119 * @device: Device to check
3120 * @port_num: Port number to check
3121 *
3122 * Intel OmniPath devices extend and/or replace the InfiniBand Management
3123 * datagrams with their own versions.  These OPA MADs share many but not all of
3124 * the characteristics of InfiniBand MADs.
3125 *
3126 * OPA MADs differ in the following ways:
3127 *
3128 *    1) MADs are variable size up to 2K
3129 *       IBTA defined MADs remain fixed at 256 bytes
3130 *    2) OPA SMPs must carry valid PKeys
3131 *    3) OPA SMP packets are a different format
3132 *
3133 * Return: true if the port supports OPA MAD packet formats.
3134 */
3135static inline bool rdma_cap_opa_mad(struct ib_device *device, u8 port_num)
3136{
3137	return device->port_data[port_num].immutable.core_cap_flags &
3138		RDMA_CORE_CAP_OPA_MAD;
3139}
3140
3141/**
3142 * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband
3143 * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI).
3144 * @device: Device to check
3145 * @port_num: Port number to check
3146 *
3147 * Each InfiniBand node is required to provide a Subnet Management Agent
3148 * that the subnet manager can access.  Prior to the fabric being fully
3149 * configured by the subnet manager, the SMA is accessed via a well known
3150 * interface called the Subnet Management Interface (SMI).  This interface
3151 * uses directed route packets to communicate with the SM to get around the
3152 * chicken and egg problem of the SM needing to know what's on the fabric
3153 * in order to configure the fabric, and needing to configure the fabric in
3154 * order to send packets to the devices on the fabric.  These directed
3155 * route packets do not need the fabric fully configured in order to reach
3156 * their destination.  The SMI is the only method allowed to send
3157 * directed route packets on an InfiniBand fabric.
3158 *
3159 * Return: true if the port provides an SMI.
3160 */
3161static inline bool rdma_cap_ib_smi(const struct ib_device *device, u8 port_num)
3162{
3163	return device->port_data[port_num].immutable.core_cap_flags &
3164	       RDMA_CORE_CAP_IB_SMI;
3165}
3166
3167/**
3168 * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband
3169 * Communication Manager.
3170 * @device: Device to check
3171 * @port_num: Port number to check
3172 *
3173 * The InfiniBand Communication Manager is one of many pre-defined General
3174 * Service Agents (GSA) that are accessed via the General Service
3175 * Interface (GSI).  It's role is to facilitate establishment of connections
3176 * between nodes as well as other management related tasks for established
3177 * connections.
3178 *
3179 * Return: true if the port supports an IB CM (this does not guarantee that
3180 * a CM is actually running however).
3181 */
3182static inline bool rdma_cap_ib_cm(const struct ib_device *device, u8 port_num)
3183{
3184	return device->port_data[port_num].immutable.core_cap_flags &
3185	       RDMA_CORE_CAP_IB_CM;
3186}
3187
3188/**
3189 * rdma_cap_iw_cm - Check if the port of device has the capability IWARP
3190 * Communication Manager.
3191 * @device: Device to check
3192 * @port_num: Port number to check
3193 *
3194 * Similar to above, but specific to iWARP connections which have a different
3195 * managment protocol than InfiniBand.
3196 *
3197 * Return: true if the port supports an iWARP CM (this does not guarantee that
3198 * a CM is actually running however).
3199 */
3200static inline bool rdma_cap_iw_cm(const struct ib_device *device, u8 port_num)
3201{
3202	return device->port_data[port_num].immutable.core_cap_flags &
3203	       RDMA_CORE_CAP_IW_CM;
3204}
3205
3206/**
3207 * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband
3208 * Subnet Administration.
3209 * @device: Device to check
3210 * @port_num: Port number to check
3211 *
3212 * An InfiniBand Subnet Administration (SA) service is a pre-defined General
3213 * Service Agent (GSA) provided by the Subnet Manager (SM).  On InfiniBand
3214 * fabrics, devices should resolve routes to other hosts by contacting the
3215 * SA to query the proper route.
3216 *
3217 * Return: true if the port should act as a client to the fabric Subnet
3218 * Administration interface.  This does not imply that the SA service is
3219 * running locally.
3220 */
3221static inline bool rdma_cap_ib_sa(const struct ib_device *device, u8 port_num)
3222{
3223	return device->port_data[port_num].immutable.core_cap_flags &
3224	       RDMA_CORE_CAP_IB_SA;
3225}
3226
3227/**
3228 * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband
3229 * Multicast.
3230 * @device: Device to check
3231 * @port_num: Port number to check
3232 *
3233 * InfiniBand multicast registration is more complex than normal IPv4 or
3234 * IPv6 multicast registration.  Each Host Channel Adapter must register
3235 * with the Subnet Manager when it wishes to join a multicast group.  It
3236 * should do so only once regardless of how many queue pairs it subscribes
3237 * to this group.  And it should leave the group only after all queue pairs
3238 * attached to the group have been detached.
3239 *
3240 * Return: true if the port must undertake the additional adminstrative
3241 * overhead of registering/unregistering with the SM and tracking of the
3242 * total number of queue pairs attached to the multicast group.
3243 */
3244static inline bool rdma_cap_ib_mcast(const struct ib_device *device, u8 port_num)
3245{
3246	return rdma_cap_ib_sa(device, port_num);
3247}
3248
3249/**
3250 * rdma_cap_af_ib - Check if the port of device has the capability
3251 * Native Infiniband Address.
3252 * @device: Device to check
3253 * @port_num: Port number to check
3254 *
3255 * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default
3256 * GID.  RoCE uses a different mechanism, but still generates a GID via
3257 * a prescribed mechanism and port specific data.
3258 *
3259 * Return: true if the port uses a GID address to identify devices on the
3260 * network.
3261 */
3262static inline bool rdma_cap_af_ib(const struct ib_device *device, u8 port_num)
3263{
3264	return device->port_data[port_num].immutable.core_cap_flags &
3265	       RDMA_CORE_CAP_AF_IB;
3266}
3267
3268/**
3269 * rdma_cap_eth_ah - Check if the port of device has the capability
3270 * Ethernet Address Handle.
3271 * @device: Device to check
3272 * @port_num: Port number to check
3273 *
3274 * RoCE is InfiniBand over Ethernet, and it uses a well defined technique
3275 * to fabricate GIDs over Ethernet/IP specific addresses native to the
3276 * port.  Normally, packet headers are generated by the sending host
3277 * adapter, but when sending connectionless datagrams, we must manually
3278 * inject the proper headers for the fabric we are communicating over.
3279 *
3280 * Return: true if we are running as a RoCE port and must force the
3281 * addition of a Global Route Header built from our Ethernet Address
3282 * Handle into our header list for connectionless packets.
3283 */
3284static inline bool rdma_cap_eth_ah(const struct ib_device *device, u8 port_num)
3285{
3286	return device->port_data[port_num].immutable.core_cap_flags &
3287	       RDMA_CORE_CAP_ETH_AH;
3288}
3289
3290/**
3291 * rdma_cap_opa_ah - Check if the port of device supports
3292 * OPA Address handles
3293 * @device: Device to check
3294 * @port_num: Port number to check
3295 *
3296 * Return: true if we are running on an OPA device which supports
3297 * the extended OPA addressing.
3298 */
3299static inline bool rdma_cap_opa_ah(struct ib_device *device, u8 port_num)
3300{
3301	return (device->port_data[port_num].immutable.core_cap_flags &
3302		RDMA_CORE_CAP_OPA_AH) == RDMA_CORE_CAP_OPA_AH;
3303}
3304
3305/**
3306 * rdma_max_mad_size - Return the max MAD size required by this RDMA Port.
3307 *
3308 * @device: Device
3309 * @port_num: Port number
3310 *
3311 * This MAD size includes the MAD headers and MAD payload.  No other headers
3312 * are included.
3313 *
3314 * Return the max MAD size required by the Port.  Will return 0 if the port
3315 * does not support MADs
3316 */
3317static inline size_t rdma_max_mad_size(const struct ib_device *device, u8 port_num)
3318{
3319	return device->port_data[port_num].immutable.max_mad_size;
3320}
3321
3322/**
3323 * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table
3324 * @device: Device to check
3325 * @port_num: Port number to check
3326 *
3327 * RoCE GID table mechanism manages the various GIDs for a device.
3328 *
3329 * NOTE: if allocating the port's GID table has failed, this call will still
3330 * return true, but any RoCE GID table API will fail.
3331 *
3332 * Return: true if the port uses RoCE GID table mechanism in order to manage
3333 * its GIDs.
3334 */
3335static inline bool rdma_cap_roce_gid_table(const struct ib_device *device,
3336					   u8 port_num)
3337{
3338	return rdma_protocol_roce(device, port_num) &&
3339		device->ops.add_gid && device->ops.del_gid;
3340}
3341
3342/*
3343 * Check if the device supports READ W/ INVALIDATE.
3344 */
3345static inline bool rdma_cap_read_inv(struct ib_device *dev, u32 port_num)
3346{
3347	/*
3348	 * iWarp drivers must support READ W/ INVALIDATE.  No other protocol
3349	 * has support for it yet.
3350	 */
3351	return rdma_protocol_iwarp(dev, port_num);
3352}
3353
3354/**
3355 * rdma_find_pg_bit - Find page bit given address and HW supported page sizes
3356 *
3357 * @addr: address
3358 * @pgsz_bitmap: bitmap of HW supported page sizes
3359 */
3360static inline unsigned int rdma_find_pg_bit(unsigned long addr,
3361					    unsigned long pgsz_bitmap)
3362{
3363	unsigned long align;
3364	unsigned long pgsz;
3365
3366	align = addr & -addr;
3367
3368	/* Find page bit such that addr is aligned to the highest supported
3369	 * HW page size
3370	 */
3371	pgsz = pgsz_bitmap & ~(-align << 1);
3372	if (!pgsz)
3373		return __ffs(pgsz_bitmap);
3374
3375	return __fls(pgsz);
3376}
3377
3378/**
3379 * rdma_core_cap_opa_port - Return whether the RDMA Port is OPA or not.
3380 * @device: Device
3381 * @port_num: 1 based Port number
3382 *
3383 * Return true if port is an Intel OPA port , false if not
3384 */
3385static inline bool rdma_core_cap_opa_port(struct ib_device *device,
3386					  u32 port_num)
3387{
3388	return (device->port_data[port_num].immutable.core_cap_flags &
3389		RDMA_CORE_PORT_INTEL_OPA) == RDMA_CORE_PORT_INTEL_OPA;
3390}
3391
3392/**
3393 * rdma_mtu_enum_to_int - Return the mtu of the port as an integer value.
3394 * @device: Device
3395 * @port_num: Port number
3396 * @mtu: enum value of MTU
3397 *
3398 * Return the MTU size supported by the port as an integer value. Will return
3399 * -1 if enum value of mtu is not supported.
3400 */
3401static inline int rdma_mtu_enum_to_int(struct ib_device *device, u8 port,
3402				       int mtu)
3403{
3404	if (rdma_core_cap_opa_port(device, port))
3405		return opa_mtu_enum_to_int((enum opa_mtu)mtu);
3406	else
3407		return ib_mtu_enum_to_int((enum ib_mtu)mtu);
3408}
3409
3410/**
3411 * rdma_mtu_from_attr - Return the mtu of the port from the port attribute.
3412 * @device: Device
3413 * @port_num: Port number
3414 * @attr: port attribute
3415 *
3416 * Return the MTU size supported by the port as an integer value.
3417 */
3418static inline int rdma_mtu_from_attr(struct ib_device *device, u8 port,
3419				     struct ib_port_attr *attr)
3420{
3421	if (rdma_core_cap_opa_port(device, port))
3422		return attr->phys_mtu;
3423	else
3424		return ib_mtu_enum_to_int(attr->max_mtu);
3425}
3426
3427int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port,
3428			 int state);
3429int ib_get_vf_config(struct ib_device *device, int vf, u8 port,
3430		     struct ifla_vf_info *info);
3431int ib_get_vf_stats(struct ib_device *device, int vf, u8 port,
3432		    struct ifla_vf_stats *stats);
3433int ib_get_vf_guid(struct ib_device *device, int vf, u8 port,
3434		    struct ifla_vf_guid *node_guid,
3435		    struct ifla_vf_guid *port_guid);
3436int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid,
3437		   int type);
3438
3439int ib_query_pkey(struct ib_device *device,
3440		  u8 port_num, u16 index, u16 *pkey);
3441
3442int ib_modify_device(struct ib_device *device,
3443		     int device_modify_mask,
3444		     struct ib_device_modify *device_modify);
3445
3446int ib_modify_port(struct ib_device *device,
3447		   u8 port_num, int port_modify_mask,
3448		   struct ib_port_modify *port_modify);
3449
3450int ib_find_gid(struct ib_device *device, union ib_gid *gid,
3451		u8 *port_num, u16 *index);
3452
3453int ib_find_pkey(struct ib_device *device,
3454		 u8 port_num, u16 pkey, u16 *index);
3455
3456enum ib_pd_flags {
3457	/*
3458	 * Create a memory registration for all memory in the system and place
3459	 * the rkey for it into pd->unsafe_global_rkey.  This can be used by
3460	 * ULPs to avoid the overhead of dynamic MRs.
3461	 *
3462	 * This flag is generally considered unsafe and must only be used in
3463	 * extremly trusted environments.  Every use of it will log a warning
3464	 * in the kernel log.
3465	 */
3466	IB_PD_UNSAFE_GLOBAL_RKEY	= 0x01,
3467};
3468
3469struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
3470		const char *caller);
3471
3472#define ib_alloc_pd(device, flags) \
3473	__ib_alloc_pd((device), (flags), KBUILD_MODNAME)
3474
3475/**
3476 * ib_dealloc_pd_user - Deallocate kernel/user PD
3477 * @pd: The protection domain
3478 * @udata: Valid user data or NULL for kernel objects
3479 */
3480void ib_dealloc_pd_user(struct ib_pd *pd, struct ib_udata *udata);
3481
3482/**
3483 * ib_dealloc_pd - Deallocate kernel PD
3484 * @pd: The protection domain
3485 *
3486 * NOTE: for user PD use ib_dealloc_pd_user with valid udata!
 
3487 */
3488static inline void ib_dealloc_pd(struct ib_pd *pd)
3489{
3490	ib_dealloc_pd_user(pd, NULL);
3491}
3492
3493enum rdma_create_ah_flags {
3494	/* In a sleepable context */
3495	RDMA_CREATE_AH_SLEEPABLE = BIT(0),
3496};
3497
3498/**
3499 * rdma_create_ah - Creates an address handle for the given address vector.
3500 * @pd: The protection domain associated with the address handle.
3501 * @ah_attr: The attributes of the address vector.
3502 * @flags: Create address handle flags (see enum rdma_create_ah_flags).
3503 *
3504 * The address handle is used to reference a local or global destination
3505 * in all UD QP post sends.
3506 */
3507struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr,
3508			     u32 flags);
3509
3510/**
3511 * rdma_create_user_ah - Creates an address handle for the given address vector.
3512 * It resolves destination mac address for ah attribute of RoCE type.
3513 * @pd: The protection domain associated with the address handle.
3514 * @ah_attr: The attributes of the address vector.
3515 * @udata: pointer to user's input output buffer information need by
3516 *         provider driver.
3517 *
3518 * It returns 0 on success and returns appropriate error code on error.
3519 * The address handle is used to reference a local or global destination
3520 * in all UD QP post sends.
3521 */
3522struct ib_ah *rdma_create_user_ah(struct ib_pd *pd,
3523				  struct rdma_ah_attr *ah_attr,
3524				  struct ib_udata *udata);
3525/**
3526 * ib_get_gids_from_rdma_hdr - Get sgid and dgid from GRH or IPv4 header
3527 *   work completion.
3528 * @hdr: the L3 header to parse
3529 * @net_type: type of header to parse
3530 * @sgid: place to store source gid
3531 * @dgid: place to store destination gid
3532 */
3533int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
3534			      enum rdma_network_type net_type,
3535			      union ib_gid *sgid, union ib_gid *dgid);
3536
3537/**
3538 * ib_get_rdma_header_version - Get the header version
3539 * @hdr: the L3 header to parse
3540 */
3541int ib_get_rdma_header_version(const union rdma_network_hdr *hdr);
3542
3543/**
3544 * ib_init_ah_attr_from_wc - Initializes address handle attributes from a
3545 *   work completion.
3546 * @device: Device on which the received message arrived.
3547 * @port_num: Port on which the received message arrived.
3548 * @wc: Work completion associated with the received message.
3549 * @grh: References the received global route header.  This parameter is
3550 *   ignored unless the work completion indicates that the GRH is valid.
3551 * @ah_attr: Returned attributes that can be used when creating an address
3552 *   handle for replying to the message.
3553 * When ib_init_ah_attr_from_wc() returns success,
3554 * (a) for IB link layer it optionally contains a reference to SGID attribute
3555 * when GRH is present for IB link layer.
3556 * (b) for RoCE link layer it contains a reference to SGID attribute.
3557 * User must invoke rdma_cleanup_ah_attr_gid_attr() to release reference to SGID
3558 * attributes which are initialized using ib_init_ah_attr_from_wc().
3559 *
3560 */
3561int ib_init_ah_attr_from_wc(struct ib_device *device, u8 port_num,
3562			    const struct ib_wc *wc, const struct ib_grh *grh,
3563			    struct rdma_ah_attr *ah_attr);
3564
3565/**
3566 * ib_create_ah_from_wc - Creates an address handle associated with the
3567 *   sender of the specified work completion.
3568 * @pd: The protection domain associated with the address handle.
3569 * @wc: Work completion information associated with a received message.
3570 * @grh: References the received global route header.  This parameter is
3571 *   ignored unless the work completion indicates that the GRH is valid.
3572 * @port_num: The outbound port number to associate with the address.
3573 *
3574 * The address handle is used to reference a local or global destination
3575 * in all UD QP post sends.
3576 */
3577struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
3578				   const struct ib_grh *grh, u8 port_num);
3579
3580/**
3581 * rdma_modify_ah - Modifies the address vector associated with an address
3582 *   handle.
3583 * @ah: The address handle to modify.
3584 * @ah_attr: The new address vector attributes to associate with the
3585 *   address handle.
3586 */
3587int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
3588
3589/**
3590 * rdma_query_ah - Queries the address vector associated with an address
3591 *   handle.
3592 * @ah: The address handle to query.
3593 * @ah_attr: The address vector attributes associated with the address
3594 *   handle.
3595 */
3596int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
3597
3598enum rdma_destroy_ah_flags {
3599	/* In a sleepable context */
3600	RDMA_DESTROY_AH_SLEEPABLE = BIT(0),
3601};
3602
3603/**
3604 * rdma_destroy_ah_user - Destroys an address handle.
3605 * @ah: The address handle to destroy.
3606 * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags).
3607 * @udata: Valid user data or NULL for kernel objects
3608 */
3609int rdma_destroy_ah_user(struct ib_ah *ah, u32 flags, struct ib_udata *udata);
3610
3611/**
3612 * rdma_destroy_ah - Destroys an kernel address handle.
3613 * @ah: The address handle to destroy.
3614 * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags).
3615 *
3616 * NOTE: for user ah use rdma_destroy_ah_user with valid udata!
 
 
 
 
 
 
3617 */
3618static inline int rdma_destroy_ah(struct ib_ah *ah, u32 flags)
3619{
3620	return rdma_destroy_ah_user(ah, flags, NULL);
3621}
3622
3623struct ib_srq *ib_create_srq_user(struct ib_pd *pd,
3624				  struct ib_srq_init_attr *srq_init_attr,
3625				  struct ib_usrq_object *uobject,
3626				  struct ib_udata *udata);
3627static inline struct ib_srq *
3628ib_create_srq(struct ib_pd *pd, struct ib_srq_init_attr *srq_init_attr)
3629{
3630	if (!pd->device->ops.create_srq)
3631		return ERR_PTR(-EOPNOTSUPP);
3632
3633	return ib_create_srq_user(pd, srq_init_attr, NULL, NULL);
3634}
3635
3636/**
3637 * ib_modify_srq - Modifies the attributes for the specified SRQ.
3638 * @srq: The SRQ to modify.
3639 * @srq_attr: On input, specifies the SRQ attributes to modify.  On output,
3640 *   the current values of selected SRQ attributes are returned.
3641 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
3642 *   are being modified.
3643 *
3644 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
3645 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when
3646 * the number of receives queued drops below the limit.
3647 */
3648int ib_modify_srq(struct ib_srq *srq,
3649		  struct ib_srq_attr *srq_attr,
3650		  enum ib_srq_attr_mask srq_attr_mask);
3651
3652/**
3653 * ib_query_srq - Returns the attribute list and current values for the
3654 *   specified SRQ.
3655 * @srq: The SRQ to query.
3656 * @srq_attr: The attributes of the specified SRQ.
3657 */
3658int ib_query_srq(struct ib_srq *srq,
3659		 struct ib_srq_attr *srq_attr);
3660
3661/**
3662 * ib_destroy_srq_user - Destroys the specified SRQ.
3663 * @srq: The SRQ to destroy.
3664 * @udata: Valid user data or NULL for kernel objects
3665 */
3666int ib_destroy_srq_user(struct ib_srq *srq, struct ib_udata *udata);
3667
3668/**
3669 * ib_destroy_srq - Destroys the specified kernel SRQ.
3670 * @srq: The SRQ to destroy.
3671 *
3672 * NOTE: for user srq use ib_destroy_srq_user with valid udata!
3673 */
3674static inline int ib_destroy_srq(struct ib_srq *srq)
3675{
3676	return ib_destroy_srq_user(srq, NULL);
3677}
3678
3679/**
3680 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
3681 * @srq: The SRQ to post the work request on.
3682 * @recv_wr: A list of work requests to post on the receive queue.
3683 * @bad_recv_wr: On an immediate failure, this parameter will reference
3684 *   the work request that failed to be posted on the QP.
3685 */
3686static inline int ib_post_srq_recv(struct ib_srq *srq,
3687				   const struct ib_recv_wr *recv_wr,
3688				   const struct ib_recv_wr **bad_recv_wr)
3689{
3690	const struct ib_recv_wr *dummy;
3691
3692	return srq->device->ops.post_srq_recv(srq, recv_wr,
3693					      bad_recv_wr ? : &dummy);
3694}
3695
 
 
 
 
 
 
 
 
3696struct ib_qp *ib_create_qp(struct ib_pd *pd,
3697			   struct ib_qp_init_attr *qp_init_attr);
3698
3699/**
3700 * ib_modify_qp_with_udata - Modifies the attributes for the specified QP.
3701 * @qp: The QP to modify.
3702 * @attr: On input, specifies the QP attributes to modify.  On output,
3703 *   the current values of selected QP attributes are returned.
3704 * @attr_mask: A bit-mask used to specify which attributes of the QP
3705 *   are being modified.
3706 * @udata: pointer to user's input output buffer information
3707 *   are being modified.
3708 * It returns 0 on success and returns appropriate error code on error.
3709 */
3710int ib_modify_qp_with_udata(struct ib_qp *qp,
3711			    struct ib_qp_attr *attr,
3712			    int attr_mask,
3713			    struct ib_udata *udata);
3714
3715/**
3716 * ib_modify_qp - Modifies the attributes for the specified QP and then
3717 *   transitions the QP to the given state.
3718 * @qp: The QP to modify.
3719 * @qp_attr: On input, specifies the QP attributes to modify.  On output,
3720 *   the current values of selected QP attributes are returned.
3721 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP
3722 *   are being modified.
3723 */
3724int ib_modify_qp(struct ib_qp *qp,
3725		 struct ib_qp_attr *qp_attr,
3726		 int qp_attr_mask);
3727
3728/**
3729 * ib_query_qp - Returns the attribute list and current values for the
3730 *   specified QP.
3731 * @qp: The QP to query.
3732 * @qp_attr: The attributes of the specified QP.
3733 * @qp_attr_mask: A bit-mask used to select specific attributes to query.
3734 * @qp_init_attr: Additional attributes of the selected QP.
3735 *
3736 * The qp_attr_mask may be used to limit the query to gathering only the
3737 * selected attributes.
3738 */
3739int ib_query_qp(struct ib_qp *qp,
3740		struct ib_qp_attr *qp_attr,
3741		int qp_attr_mask,
3742		struct ib_qp_init_attr *qp_init_attr);
3743
3744/**
3745 * ib_destroy_qp - Destroys the specified QP.
3746 * @qp: The QP to destroy.
3747 * @udata: Valid udata or NULL for kernel objects
3748 */
3749int ib_destroy_qp_user(struct ib_qp *qp, struct ib_udata *udata);
3750
3751/**
3752 * ib_destroy_qp - Destroys the specified kernel QP.
3753 * @qp: The QP to destroy.
3754 *
3755 * NOTE: for user qp use ib_destroy_qp_user with valid udata!
3756 */
3757static inline int ib_destroy_qp(struct ib_qp *qp)
3758{
3759	return ib_destroy_qp_user(qp, NULL);
3760}
3761
3762/**
3763 * ib_open_qp - Obtain a reference to an existing sharable QP.
3764 * @xrcd - XRC domain
3765 * @qp_open_attr: Attributes identifying the QP to open.
3766 *
3767 * Returns a reference to a sharable QP.
3768 */
3769struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
3770			 struct ib_qp_open_attr *qp_open_attr);
3771
3772/**
3773 * ib_close_qp - Release an external reference to a QP.
3774 * @qp: The QP handle to release
3775 *
3776 * The opened QP handle is released by the caller.  The underlying
3777 * shared QP is not destroyed until all internal references are released.
3778 */
3779int ib_close_qp(struct ib_qp *qp);
3780
3781/**
3782 * ib_post_send - Posts a list of work requests to the send queue of
3783 *   the specified QP.
3784 * @qp: The QP to post the work request on.
3785 * @send_wr: A list of work requests to post on the send queue.
3786 * @bad_send_wr: On an immediate failure, this parameter will reference
3787 *   the work request that failed to be posted on the QP.
3788 *
3789 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate
3790 * error is returned, the QP state shall not be affected,
3791 * ib_post_send() will return an immediate error after queueing any
3792 * earlier work requests in the list.
3793 */
3794static inline int ib_post_send(struct ib_qp *qp,
3795			       const struct ib_send_wr *send_wr,
3796			       const struct ib_send_wr **bad_send_wr)
3797{
3798	const struct ib_send_wr *dummy;
3799
3800	return qp->device->ops.post_send(qp, send_wr, bad_send_wr ? : &dummy);
3801}
3802
3803/**
3804 * ib_post_recv - Posts a list of work requests to the receive queue of
3805 *   the specified QP.
3806 * @qp: The QP to post the work request on.
3807 * @recv_wr: A list of work requests to post on the receive queue.
3808 * @bad_recv_wr: On an immediate failure, this parameter will reference
3809 *   the work request that failed to be posted on the QP.
3810 */
3811static inline int ib_post_recv(struct ib_qp *qp,
3812			       const struct ib_recv_wr *recv_wr,
3813			       const struct ib_recv_wr **bad_recv_wr)
3814{
3815	const struct ib_recv_wr *dummy;
3816
3817	return qp->device->ops.post_recv(qp, recv_wr, bad_recv_wr ? : &dummy);
3818}
3819
3820struct ib_cq *__ib_alloc_cq_user(struct ib_device *dev, void *private,
3821				 int nr_cqe, int comp_vector,
3822				 enum ib_poll_context poll_ctx,
3823				 const char *caller, struct ib_udata *udata);
3824
3825/**
3826 * ib_alloc_cq_user: Allocate kernel/user CQ
3827 * @dev: The IB device
3828 * @private: Private data attached to the CQE
3829 * @nr_cqe: Number of CQEs in the CQ
3830 * @comp_vector: Completion vector used for the IRQs
3831 * @poll_ctx: Context used for polling the CQ
3832 * @udata: Valid user data or NULL for kernel objects
3833 */
3834static inline struct ib_cq *ib_alloc_cq_user(struct ib_device *dev,
3835					     void *private, int nr_cqe,
3836					     int comp_vector,
3837					     enum ib_poll_context poll_ctx,
3838					     struct ib_udata *udata)
3839{
3840	return __ib_alloc_cq_user(dev, private, nr_cqe, comp_vector, poll_ctx,
3841				  KBUILD_MODNAME, udata);
3842}
3843
3844/**
3845 * ib_alloc_cq: Allocate kernel CQ
3846 * @dev: The IB device
3847 * @private: Private data attached to the CQE
3848 * @nr_cqe: Number of CQEs in the CQ
3849 * @comp_vector: Completion vector used for the IRQs
3850 * @poll_ctx: Context used for polling the CQ
3851 *
3852 * NOTE: for user cq use ib_alloc_cq_user with valid udata!
3853 */
3854static inline struct ib_cq *ib_alloc_cq(struct ib_device *dev, void *private,
3855					int nr_cqe, int comp_vector,
3856					enum ib_poll_context poll_ctx)
3857{
3858	return ib_alloc_cq_user(dev, private, nr_cqe, comp_vector, poll_ctx,
3859				NULL);
3860}
3861
3862struct ib_cq *__ib_alloc_cq_any(struct ib_device *dev, void *private,
3863				int nr_cqe, enum ib_poll_context poll_ctx,
3864				const char *caller);
3865
3866/**
3867 * ib_alloc_cq_any: Allocate kernel CQ
3868 * @dev: The IB device
3869 * @private: Private data attached to the CQE
3870 * @nr_cqe: Number of CQEs in the CQ
3871 * @poll_ctx: Context used for polling the CQ
3872 */
3873static inline struct ib_cq *ib_alloc_cq_any(struct ib_device *dev,
3874					    void *private, int nr_cqe,
3875					    enum ib_poll_context poll_ctx)
3876{
3877	return __ib_alloc_cq_any(dev, private, nr_cqe, poll_ctx,
3878				 KBUILD_MODNAME);
3879}
3880
3881/**
3882 * ib_free_cq_user - Free kernel/user CQ
3883 * @cq: The CQ to free
3884 * @udata: Valid user data or NULL for kernel objects
3885 *
3886 * NOTE: This function shouldn't be called on shared CQs.
3887 */
3888void ib_free_cq_user(struct ib_cq *cq, struct ib_udata *udata);
3889
3890/**
3891 * ib_free_cq - Free kernel CQ
3892 * @cq: The CQ to free
3893 *
3894 * NOTE: for user cq use ib_free_cq_user with valid udata!
3895 */
3896static inline void ib_free_cq(struct ib_cq *cq)
3897{
3898	ib_free_cq_user(cq, NULL);
3899}
3900
3901int ib_process_cq_direct(struct ib_cq *cq, int budget);
3902
3903/**
3904 * ib_create_cq - Creates a CQ on the specified device.
3905 * @device: The device on which to create the CQ.
3906 * @comp_handler: A user-specified callback that is invoked when a
3907 *   completion event occurs on the CQ.
3908 * @event_handler: A user-specified callback that is invoked when an
3909 *   asynchronous event not associated with a completion occurs on the CQ.
3910 * @cq_context: Context associated with the CQ returned to the user via
3911 *   the associated completion and event handlers.
3912 * @cq_attr: The attributes the CQ should be created upon.
 
 
3913 *
3914 * Users can examine the cq structure to determine the actual CQ size.
3915 */
3916struct ib_cq *__ib_create_cq(struct ib_device *device,
3917			     ib_comp_handler comp_handler,
3918			     void (*event_handler)(struct ib_event *, void *),
3919			     void *cq_context,
3920			     const struct ib_cq_init_attr *cq_attr,
3921			     const char *caller);
3922#define ib_create_cq(device, cmp_hndlr, evt_hndlr, cq_ctxt, cq_attr) \
3923	__ib_create_cq((device), (cmp_hndlr), (evt_hndlr), (cq_ctxt), (cq_attr), KBUILD_MODNAME)
3924
3925/**
3926 * ib_resize_cq - Modifies the capacity of the CQ.
3927 * @cq: The CQ to resize.
3928 * @cqe: The minimum size of the CQ.
3929 *
3930 * Users can examine the cq structure to determine the actual CQ size.
3931 */
3932int ib_resize_cq(struct ib_cq *cq, int cqe);
3933
3934/**
3935 * rdma_set_cq_moderation - Modifies moderation params of the CQ
3936 * @cq: The CQ to modify.
3937 * @cq_count: number of CQEs that will trigger an event
3938 * @cq_period: max period of time in usec before triggering an event
3939 *
3940 */
3941int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period);
3942
3943/**
3944 * ib_destroy_cq_user - Destroys the specified CQ.
3945 * @cq: The CQ to destroy.
3946 * @udata: Valid user data or NULL for kernel objects
3947 */
3948int ib_destroy_cq_user(struct ib_cq *cq, struct ib_udata *udata);
3949
3950/**
3951 * ib_destroy_cq - Destroys the specified kernel CQ.
3952 * @cq: The CQ to destroy.
3953 *
3954 * NOTE: for user cq use ib_destroy_cq_user with valid udata!
3955 */
3956static inline void ib_destroy_cq(struct ib_cq *cq)
3957{
3958	ib_destroy_cq_user(cq, NULL);
3959}
3960
3961/**
3962 * ib_poll_cq - poll a CQ for completion(s)
3963 * @cq:the CQ being polled
3964 * @num_entries:maximum number of completions to return
3965 * @wc:array of at least @num_entries &struct ib_wc where completions
3966 *   will be returned
3967 *
3968 * Poll a CQ for (possibly multiple) completions.  If the return value
3969 * is < 0, an error occurred.  If the return value is >= 0, it is the
3970 * number of completions returned.  If the return value is
3971 * non-negative and < num_entries, then the CQ was emptied.
3972 */
3973static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
3974			     struct ib_wc *wc)
3975{
3976	return cq->device->ops.poll_cq(cq, num_entries, wc);
3977}
3978
3979/**
 
 
 
 
 
 
 
 
 
 
 
 
3980 * ib_req_notify_cq - Request completion notification on a CQ.
3981 * @cq: The CQ to generate an event for.
3982 * @flags:
3983 *   Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
3984 *   to request an event on the next solicited event or next work
3985 *   completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
3986 *   may also be |ed in to request a hint about missed events, as
3987 *   described below.
3988 *
3989 * Return Value:
3990 *    < 0 means an error occurred while requesting notification
3991 *   == 0 means notification was requested successfully, and if
3992 *        IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
3993 *        were missed and it is safe to wait for another event.  In
3994 *        this case is it guaranteed that any work completions added
3995 *        to the CQ since the last CQ poll will trigger a completion
3996 *        notification event.
3997 *    > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
3998 *        in.  It means that the consumer must poll the CQ again to
3999 *        make sure it is empty to avoid missing an event because of a
4000 *        race between requesting notification and an entry being
4001 *        added to the CQ.  This return value means it is possible
4002 *        (but not guaranteed) that a work completion has been added
4003 *        to the CQ since the last poll without triggering a
4004 *        completion notification event.
4005 */
4006static inline int ib_req_notify_cq(struct ib_cq *cq,
4007				   enum ib_cq_notify_flags flags)
4008{
4009	return cq->device->ops.req_notify_cq(cq, flags);
4010}
4011
4012struct ib_cq *ib_cq_pool_get(struct ib_device *dev, unsigned int nr_cqe,
4013			     int comp_vector_hint,
4014			     enum ib_poll_context poll_ctx);
4015
4016void ib_cq_pool_put(struct ib_cq *cq, unsigned int nr_cqe);
4017
4018/**
4019 * ib_req_ncomp_notif - Request completion notification when there are
4020 *   at least the specified number of unreaped completions on the CQ.
4021 * @cq: The CQ to generate an event for.
4022 * @wc_cnt: The number of unreaped completions that should be on the
4023 *   CQ before an event is generated.
4024 */
4025static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt)
4026{
4027	return cq->device->ops.req_ncomp_notif ?
4028		cq->device->ops.req_ncomp_notif(cq, wc_cnt) :
4029		-ENOSYS;
4030}
4031
4032/**
 
 
 
 
 
 
 
 
 
 
 
 
4033 * ib_dma_mapping_error - check a DMA addr for error
4034 * @dev: The device for which the dma_addr was created
4035 * @dma_addr: The DMA address to check
4036 */
4037static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
4038{
 
 
4039	return dma_mapping_error(dev->dma_device, dma_addr);
4040}
4041
4042/**
4043 * ib_dma_map_single - Map a kernel virtual address to DMA address
4044 * @dev: The device for which the dma_addr is to be created
4045 * @cpu_addr: The kernel virtual address
4046 * @size: The size of the region in bytes
4047 * @direction: The direction of the DMA
4048 */
4049static inline u64 ib_dma_map_single(struct ib_device *dev,
4050				    void *cpu_addr, size_t size,
4051				    enum dma_data_direction direction)
4052{
 
 
4053	return dma_map_single(dev->dma_device, cpu_addr, size, direction);
4054}
4055
4056/**
4057 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
4058 * @dev: The device for which the DMA address was created
4059 * @addr: The DMA address
4060 * @size: The size of the region in bytes
4061 * @direction: The direction of the DMA
4062 */
4063static inline void ib_dma_unmap_single(struct ib_device *dev,
4064				       u64 addr, size_t size,
4065				       enum dma_data_direction direction)
4066{
4067	dma_unmap_single(dev->dma_device, addr, size, direction);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4068}
4069
4070/**
4071 * ib_dma_map_page - Map a physical page to DMA address
4072 * @dev: The device for which the dma_addr is to be created
4073 * @page: The page to be mapped
4074 * @offset: The offset within the page
4075 * @size: The size of the region in bytes
4076 * @direction: The direction of the DMA
4077 */
4078static inline u64 ib_dma_map_page(struct ib_device *dev,
4079				  struct page *page,
4080				  unsigned long offset,
4081				  size_t size,
4082					 enum dma_data_direction direction)
4083{
 
 
4084	return dma_map_page(dev->dma_device, page, offset, size, direction);
4085}
4086
4087/**
4088 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
4089 * @dev: The device for which the DMA address was created
4090 * @addr: The DMA address
4091 * @size: The size of the region in bytes
4092 * @direction: The direction of the DMA
4093 */
4094static inline void ib_dma_unmap_page(struct ib_device *dev,
4095				     u64 addr, size_t size,
4096				     enum dma_data_direction direction)
4097{
4098	dma_unmap_page(dev->dma_device, addr, size, direction);
 
 
 
4099}
4100
4101/**
4102 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses
4103 * @dev: The device for which the DMA addresses are to be created
4104 * @sg: The array of scatter/gather entries
4105 * @nents: The number of scatter/gather entries
4106 * @direction: The direction of the DMA
4107 */
4108static inline int ib_dma_map_sg(struct ib_device *dev,
4109				struct scatterlist *sg, int nents,
4110				enum dma_data_direction direction)
4111{
 
 
4112	return dma_map_sg(dev->dma_device, sg, nents, direction);
4113}
4114
4115/**
4116 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
4117 * @dev: The device for which the DMA addresses were created
4118 * @sg: The array of scatter/gather entries
4119 * @nents: The number of scatter/gather entries
4120 * @direction: The direction of the DMA
4121 */
4122static inline void ib_dma_unmap_sg(struct ib_device *dev,
4123				   struct scatterlist *sg, int nents,
4124				   enum dma_data_direction direction)
4125{
4126	dma_unmap_sg(dev->dma_device, sg, nents, direction);
 
 
 
4127}
4128
4129static inline int ib_dma_map_sg_attrs(struct ib_device *dev,
4130				      struct scatterlist *sg, int nents,
4131				      enum dma_data_direction direction,
4132				      unsigned long dma_attrs)
4133{
4134	return dma_map_sg_attrs(dev->dma_device, sg, nents, direction,
4135				dma_attrs);
4136}
4137
4138static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev,
4139					 struct scatterlist *sg, int nents,
4140					 enum dma_data_direction direction,
4141					 unsigned long dma_attrs)
4142{
4143	dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, dma_attrs);
 
 
 
 
 
 
 
 
 
 
 
 
4144}
4145
4146/**
4147 * ib_dma_max_seg_size - Return the size limit of a single DMA transfer
4148 * @dev: The device to query
4149 *
4150 * The returned value represents a size in bytes.
4151 */
4152static inline unsigned int ib_dma_max_seg_size(struct ib_device *dev)
 
4153{
4154	return dma_get_max_seg_size(dev->dma_device);
 
 
4155}
4156
4157/**
4158 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
4159 * @dev: The device for which the DMA address was created
4160 * @addr: The DMA address
4161 * @size: The size of the region in bytes
4162 * @dir: The direction of the DMA
4163 */
4164static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
4165					      u64 addr,
4166					      size_t size,
4167					      enum dma_data_direction dir)
4168{
4169	dma_sync_single_for_cpu(dev->dma_device, addr, size, dir);
 
 
 
4170}
4171
4172/**
4173 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
4174 * @dev: The device for which the DMA address was created
4175 * @addr: The DMA address
4176 * @size: The size of the region in bytes
4177 * @dir: The direction of the DMA
4178 */
4179static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
4180						 u64 addr,
4181						 size_t size,
4182						 enum dma_data_direction dir)
4183{
4184	dma_sync_single_for_device(dev->dma_device, addr, size, dir);
 
 
 
4185}
4186
4187/**
4188 * ib_dma_alloc_coherent - Allocate memory and map it for DMA
4189 * @dev: The device for which the DMA address is requested
4190 * @size: The size of the region to allocate in bytes
4191 * @dma_handle: A pointer for returning the DMA address of the region
4192 * @flag: memory allocator flags
4193 */
4194static inline void *ib_dma_alloc_coherent(struct ib_device *dev,
4195					   size_t size,
4196					   dma_addr_t *dma_handle,
4197					   gfp_t flag)
4198{
4199	return dma_alloc_coherent(dev->dma_device, size, dma_handle, flag);
 
 
 
 
 
 
 
 
 
4200}
4201
4202/**
4203 * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent()
4204 * @dev: The device for which the DMA addresses were allocated
4205 * @size: The size of the region
4206 * @cpu_addr: the address returned by ib_dma_alloc_coherent()
4207 * @dma_handle: the DMA address returned by ib_dma_alloc_coherent()
4208 */
4209static inline void ib_dma_free_coherent(struct ib_device *dev,
4210					size_t size, void *cpu_addr,
4211					dma_addr_t dma_handle)
4212{
4213	dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle);
 
 
 
4214}
4215
4216/* ib_reg_user_mr - register a memory region for virtual addresses from kernel
4217 * space. This function should be called when 'current' is the owning MM.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4218 */
4219struct ib_mr *ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
4220			     u64 virt_addr, int mr_access_flags);
4221
4222/* ib_advise_mr -  give an advice about an address range in a memory region */
4223int ib_advise_mr(struct ib_pd *pd, enum ib_uverbs_advise_mr_advice advice,
4224		 u32 flags, struct ib_sge *sg_list, u32 num_sge);
4225/**
4226 * ib_dereg_mr_user - Deregisters a memory region and removes it from the
4227 *   HCA translation table.
4228 * @mr: The memory region to deregister.
4229 * @udata: Valid user data or NULL for kernel object
4230 *
4231 * This function can fail, if the memory region has memory windows bound to it.
4232 */
4233int ib_dereg_mr_user(struct ib_mr *mr, struct ib_udata *udata);
 
 
 
 
 
 
 
 
 
4234
4235/**
4236 * ib_dereg_mr - Deregisters a kernel memory region and removes it from the
4237 *   HCA translation table.
4238 * @mr: The memory region to deregister.
4239 *
4240 * This function can fail, if the memory region has memory windows bound to it.
 
 
 
 
4241 *
4242 * NOTE: for user mr use ib_dereg_mr_user with valid udata!
 
 
 
 
4243 */
4244static inline int ib_dereg_mr(struct ib_mr *mr)
4245{
4246	return ib_dereg_mr_user(mr, NULL);
4247}
4248
4249struct ib_mr *ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type,
4250			  u32 max_num_sg);
4251
4252struct ib_mr *ib_alloc_mr_integrity(struct ib_pd *pd,
4253				    u32 max_num_data_sg,
4254				    u32 max_num_meta_sg);
4255
4256/**
4257 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR
4258 *   R_Key and L_Key.
4259 * @mr - struct ib_mr pointer to be updated.
4260 * @newkey - new key to be used.
4261 */
4262static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey)
4263{
4264	mr->lkey = (mr->lkey & 0xffffff00) | newkey;
4265	mr->rkey = (mr->rkey & 0xffffff00) | newkey;
4266}
4267
4268/**
4269 * ib_inc_rkey - increments the key portion of the given rkey. Can be used
4270 * for calculating a new rkey for type 2 memory windows.
4271 * @rkey - the rkey to increment.
4272 */
4273static inline u32 ib_inc_rkey(u32 rkey)
4274{
4275	const u32 mask = 0x000000ff;
4276	return ((rkey + 1) & mask) | (rkey & ~mask);
4277}
4278
4279/**
4280 * ib_attach_mcast - Attaches the specified QP to a multicast group.
4281 * @qp: QP to attach to the multicast group.  The QP must be type
4282 *   IB_QPT_UD.
4283 * @gid: Multicast group GID.
4284 * @lid: Multicast group LID in host byte order.
4285 *
4286 * In order to send and receive multicast packets, subnet
4287 * administration must have created the multicast group and configured
4288 * the fabric appropriately.  The port associated with the specified
4289 * QP must also be a member of the multicast group.
4290 */
4291int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
4292
4293/**
4294 * ib_detach_mcast - Detaches the specified QP from a multicast group.
4295 * @qp: QP to detach from the multicast group.
4296 * @gid: Multicast group GID.
4297 * @lid: Multicast group LID in host byte order.
4298 */
4299int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
4300
4301struct ib_xrcd *ib_alloc_xrcd_user(struct ib_device *device,
4302				   struct inode *inode, struct ib_udata *udata);
4303int ib_dealloc_xrcd_user(struct ib_xrcd *xrcd, struct ib_udata *udata);
4304
4305static inline int ib_check_mr_access(int flags)
4306{
4307	/*
4308	 * Local write permission is required if remote write or
4309	 * remote atomic permission is also requested.
4310	 */
4311	if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) &&
4312	    !(flags & IB_ACCESS_LOCAL_WRITE))
4313		return -EINVAL;
4314
4315	if (flags & ~IB_ACCESS_SUPPORTED)
4316		return -EINVAL;
4317
4318	return 0;
4319}
4320
4321static inline bool ib_access_writable(int access_flags)
4322{
4323	/*
4324	 * We have writable memory backing the MR if any of the following
4325	 * access flags are set.  "Local write" and "remote write" obviously
4326	 * require write access.  "Remote atomic" can do things like fetch and
4327	 * add, which will modify memory, and "MW bind" can change permissions
4328	 * by binding a window.
4329	 */
4330	return access_flags &
4331		(IB_ACCESS_LOCAL_WRITE   | IB_ACCESS_REMOTE_WRITE |
4332		 IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_MW_BIND);
4333}
4334
4335/**
4336 * ib_check_mr_status: lightweight check of MR status.
4337 *     This routine may provide status checks on a selected
4338 *     ib_mr. first use is for signature status check.
4339 *
4340 * @mr: A memory region.
4341 * @check_mask: Bitmask of which checks to perform from
4342 *     ib_mr_status_check enumeration.
4343 * @mr_status: The container of relevant status checks.
4344 *     failed checks will be indicated in the status bitmask
4345 *     and the relevant info shall be in the error item.
4346 */
4347int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
4348		       struct ib_mr_status *mr_status);
4349
4350/**
4351 * ib_device_try_get: Hold a registration lock
4352 * device: The device to lock
4353 *
4354 * A device under an active registration lock cannot become unregistered. It
4355 * is only possible to obtain a registration lock on a device that is fully
4356 * registered, otherwise this function returns false.
4357 *
4358 * The registration lock is only necessary for actions which require the
4359 * device to still be registered. Uses that only require the device pointer to
4360 * be valid should use get_device(&ibdev->dev) to hold the memory.
4361 *
4362 */
4363static inline bool ib_device_try_get(struct ib_device *dev)
4364{
4365	return refcount_inc_not_zero(&dev->refcount);
4366}
4367
4368void ib_device_put(struct ib_device *device);
4369struct ib_device *ib_device_get_by_netdev(struct net_device *ndev,
4370					  enum rdma_driver_id driver_id);
4371struct ib_device *ib_device_get_by_name(const char *name,
4372					enum rdma_driver_id driver_id);
4373struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u8 port,
4374					    u16 pkey, const union ib_gid *gid,
4375					    const struct sockaddr *addr);
4376int ib_device_set_netdev(struct ib_device *ib_dev, struct net_device *ndev,
4377			 unsigned int port);
4378struct net_device *ib_device_netdev(struct ib_device *dev, u8 port);
4379
4380struct ib_wq *ib_create_wq(struct ib_pd *pd,
4381			   struct ib_wq_init_attr *init_attr);
4382int ib_destroy_wq(struct ib_wq *wq, struct ib_udata *udata);
4383int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *attr,
4384		 u32 wq_attr_mask);
4385int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *wq_ind_table);
4386
4387int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
4388		 unsigned int *sg_offset, unsigned int page_size);
4389int ib_map_mr_sg_pi(struct ib_mr *mr, struct scatterlist *data_sg,
4390		    int data_sg_nents, unsigned int *data_sg_offset,
4391		    struct scatterlist *meta_sg, int meta_sg_nents,
4392		    unsigned int *meta_sg_offset, unsigned int page_size);
4393
4394static inline int
4395ib_map_mr_sg_zbva(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
4396		  unsigned int *sg_offset, unsigned int page_size)
4397{
4398	int n;
4399
4400	n = ib_map_mr_sg(mr, sg, sg_nents, sg_offset, page_size);
4401	mr->iova = 0;
4402
4403	return n;
4404}
4405
4406int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
4407		unsigned int *sg_offset, int (*set_page)(struct ib_mr *, u64));
4408
4409void ib_drain_rq(struct ib_qp *qp);
4410void ib_drain_sq(struct ib_qp *qp);
4411void ib_drain_qp(struct ib_qp *qp);
4412
4413int ib_get_eth_speed(struct ib_device *dev, u8 port_num, u8 *speed, u8 *width);
4414
4415static inline u8 *rdma_ah_retrieve_dmac(struct rdma_ah_attr *attr)
4416{
4417	if (attr->type == RDMA_AH_ATTR_TYPE_ROCE)
4418		return attr->roce.dmac;
4419	return NULL;
4420}
4421
4422static inline void rdma_ah_set_dlid(struct rdma_ah_attr *attr, u32 dlid)
4423{
4424	if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4425		attr->ib.dlid = (u16)dlid;
4426	else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4427		attr->opa.dlid = dlid;
4428}
4429
4430static inline u32 rdma_ah_get_dlid(const struct rdma_ah_attr *attr)
4431{
4432	if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4433		return attr->ib.dlid;
4434	else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4435		return attr->opa.dlid;
4436	return 0;
4437}
4438
4439static inline void rdma_ah_set_sl(struct rdma_ah_attr *attr, u8 sl)
4440{
4441	attr->sl = sl;
4442}
4443
4444static inline u8 rdma_ah_get_sl(const struct rdma_ah_attr *attr)
4445{
4446	return attr->sl;
4447}
4448
4449static inline void rdma_ah_set_path_bits(struct rdma_ah_attr *attr,
4450					 u8 src_path_bits)
4451{
4452	if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4453		attr->ib.src_path_bits = src_path_bits;
4454	else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4455		attr->opa.src_path_bits = src_path_bits;
4456}
4457
4458static inline u8 rdma_ah_get_path_bits(const struct rdma_ah_attr *attr)
4459{
4460	if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4461		return attr->ib.src_path_bits;
4462	else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4463		return attr->opa.src_path_bits;
4464	return 0;
4465}
4466
4467static inline void rdma_ah_set_make_grd(struct rdma_ah_attr *attr,
4468					bool make_grd)
4469{
4470	if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4471		attr->opa.make_grd = make_grd;
4472}
4473
4474static inline bool rdma_ah_get_make_grd(const struct rdma_ah_attr *attr)
4475{
4476	if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4477		return attr->opa.make_grd;
4478	return false;
4479}
4480
4481static inline void rdma_ah_set_port_num(struct rdma_ah_attr *attr, u8 port_num)
4482{
4483	attr->port_num = port_num;
4484}
4485
4486static inline u8 rdma_ah_get_port_num(const struct rdma_ah_attr *attr)
4487{
4488	return attr->port_num;
4489}
4490
4491static inline void rdma_ah_set_static_rate(struct rdma_ah_attr *attr,
4492					   u8 static_rate)
4493{
4494	attr->static_rate = static_rate;
4495}
4496
4497static inline u8 rdma_ah_get_static_rate(const struct rdma_ah_attr *attr)
4498{
4499	return attr->static_rate;
4500}
4501
4502static inline void rdma_ah_set_ah_flags(struct rdma_ah_attr *attr,
4503					enum ib_ah_flags flag)
4504{
4505	attr->ah_flags = flag;
4506}
4507
4508static inline enum ib_ah_flags
4509		rdma_ah_get_ah_flags(const struct rdma_ah_attr *attr)
4510{
4511	return attr->ah_flags;
4512}
4513
4514static inline const struct ib_global_route
4515		*rdma_ah_read_grh(const struct rdma_ah_attr *attr)
4516{
4517	return &attr->grh;
4518}
4519
4520/*To retrieve and modify the grh */
4521static inline struct ib_global_route
4522		*rdma_ah_retrieve_grh(struct rdma_ah_attr *attr)
4523{
4524	return &attr->grh;
4525}
4526
4527static inline void rdma_ah_set_dgid_raw(struct rdma_ah_attr *attr, void *dgid)
4528{
4529	struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4530
4531	memcpy(grh->dgid.raw, dgid, sizeof(grh->dgid));
4532}
4533
4534static inline void rdma_ah_set_subnet_prefix(struct rdma_ah_attr *attr,
4535					     __be64 prefix)
4536{
4537	struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4538
4539	grh->dgid.global.subnet_prefix = prefix;
4540}
4541
4542static inline void rdma_ah_set_interface_id(struct rdma_ah_attr *attr,
4543					    __be64 if_id)
4544{
4545	struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4546
4547	grh->dgid.global.interface_id = if_id;
4548}
4549
4550static inline void rdma_ah_set_grh(struct rdma_ah_attr *attr,
4551				   union ib_gid *dgid, u32 flow_label,
4552				   u8 sgid_index, u8 hop_limit,
4553				   u8 traffic_class)
4554{
4555	struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4556
4557	attr->ah_flags = IB_AH_GRH;
4558	if (dgid)
4559		grh->dgid = *dgid;
4560	grh->flow_label = flow_label;
4561	grh->sgid_index = sgid_index;
4562	grh->hop_limit = hop_limit;
4563	grh->traffic_class = traffic_class;
4564	grh->sgid_attr = NULL;
4565}
4566
4567void rdma_destroy_ah_attr(struct rdma_ah_attr *ah_attr);
4568void rdma_move_grh_sgid_attr(struct rdma_ah_attr *attr, union ib_gid *dgid,
4569			     u32 flow_label, u8 hop_limit, u8 traffic_class,
4570			     const struct ib_gid_attr *sgid_attr);
4571void rdma_copy_ah_attr(struct rdma_ah_attr *dest,
4572		       const struct rdma_ah_attr *src);
4573void rdma_replace_ah_attr(struct rdma_ah_attr *old,
4574			  const struct rdma_ah_attr *new);
4575void rdma_move_ah_attr(struct rdma_ah_attr *dest, struct rdma_ah_attr *src);
4576
4577/**
4578 * rdma_ah_find_type - Return address handle type.
4579 *
4580 * @dev: Device to be checked
4581 * @port_num: Port number
4582 */
4583static inline enum rdma_ah_attr_type rdma_ah_find_type(struct ib_device *dev,
4584						       u8 port_num)
4585{
4586	if (rdma_protocol_roce(dev, port_num))
4587		return RDMA_AH_ATTR_TYPE_ROCE;
4588	if (rdma_protocol_ib(dev, port_num)) {
4589		if (rdma_cap_opa_ah(dev, port_num))
4590			return RDMA_AH_ATTR_TYPE_OPA;
4591		return RDMA_AH_ATTR_TYPE_IB;
4592	}
4593
4594	return RDMA_AH_ATTR_TYPE_UNDEFINED;
4595}
4596
4597/**
4598 * ib_lid_cpu16 - Return lid in 16bit CPU encoding.
4599 *     In the current implementation the only way to get
4600 *     get the 32bit lid is from other sources for OPA.
4601 *     For IB, lids will always be 16bits so cast the
4602 *     value accordingly.
4603 *
4604 * @lid: A 32bit LID
4605 */
4606static inline u16 ib_lid_cpu16(u32 lid)
4607{
4608	WARN_ON_ONCE(lid & 0xFFFF0000);
4609	return (u16)lid;
4610}
4611
4612/**
4613 * ib_lid_be16 - Return lid in 16bit BE encoding.
 
 
 
4614 *
4615 * @lid: A 32bit LID
 
4616 */
4617static inline __be16 ib_lid_be16(u32 lid)
4618{
4619	WARN_ON_ONCE(lid & 0xFFFF0000);
4620	return cpu_to_be16((u16)lid);
4621}
4622
4623/**
4624 * ib_get_vector_affinity - Get the affinity mappings of a given completion
4625 *   vector
4626 * @device:         the rdma device
4627 * @comp_vector:    index of completion vector
4628 *
4629 * Returns NULL on failure, otherwise a corresponding cpu map of the
4630 * completion vector (returns all-cpus map if the device driver doesn't
4631 * implement get_vector_affinity).
4632 */
4633static inline const struct cpumask *
4634ib_get_vector_affinity(struct ib_device *device, int comp_vector)
 
4635{
4636	if (comp_vector < 0 || comp_vector >= device->num_comp_vectors ||
4637	    !device->ops.get_vector_affinity)
4638		return NULL;
4639
4640	return device->ops.get_vector_affinity(device, comp_vector);
4641
4642}
4643
4644/**
4645 * rdma_roce_rescan_device - Rescan all of the network devices in the system
4646 * and add their gids, as needed, to the relevant RoCE devices.
4647 *
4648 * @device:         the rdma device
4649 */
4650void rdma_roce_rescan_device(struct ib_device *ibdev);
4651
4652struct ib_ucontext *ib_uverbs_get_ucontext_file(struct ib_uverbs_file *ufile);
4653
4654int uverbs_destroy_def_handler(struct uverbs_attr_bundle *attrs);
4655
4656struct net_device *rdma_alloc_netdev(struct ib_device *device, u8 port_num,
4657				     enum rdma_netdev_t type, const char *name,
4658				     unsigned char name_assign_type,
4659				     void (*setup)(struct net_device *));
4660
4661int rdma_init_netdev(struct ib_device *device, u8 port_num,
4662		     enum rdma_netdev_t type, const char *name,
4663		     unsigned char name_assign_type,
4664		     void (*setup)(struct net_device *),
4665		     struct net_device *netdev);
4666
4667/**
4668 * rdma_set_device_sysfs_group - Set device attributes group to have
4669 *				 driver specific sysfs entries at
4670 *				 for infiniband class.
4671 *
4672 * @device:	device pointer for which attributes to be created
4673 * @group:	Pointer to group which should be added when device
4674 *		is registered with sysfs.
4675 * rdma_set_device_sysfs_group() allows existing drivers to expose one
4676 * group per device to have sysfs attributes.
4677 *
4678 * NOTE: New drivers should not make use of this API; instead new device
4679 * parameter should be exposed via netlink command. This API and mechanism
4680 * exist only for existing drivers.
4681 */
4682static inline void
4683rdma_set_device_sysfs_group(struct ib_device *dev,
4684			    const struct attribute_group *group)
4685{
4686	dev->groups[1] = group;
4687}
4688
4689/**
4690 * rdma_device_to_ibdev - Get ib_device pointer from device pointer
4691 *
4692 * @device:	device pointer for which ib_device pointer to retrieve
4693 *
4694 * rdma_device_to_ibdev() retrieves ib_device pointer from device.
4695 *
4696 */
4697static inline struct ib_device *rdma_device_to_ibdev(struct device *device)
4698{
4699	struct ib_core_device *coredev =
4700		container_of(device, struct ib_core_device, dev);
4701
4702	return coredev->owner;
4703}
4704
4705/**
4706 * rdma_device_to_drv_device - Helper macro to reach back to driver's
4707 *			       ib_device holder structure from device pointer.
 
 
 
4708 *
4709 * NOTE: New drivers should not make use of this API; This API is only for
4710 * existing drivers who have exposed sysfs entries using
4711 * rdma_set_device_sysfs_group().
 
4712 */
4713#define rdma_device_to_drv_device(dev, drv_dev_struct, ibdev_member)           \
4714	container_of(rdma_device_to_ibdev(dev), drv_dev_struct, ibdev_member)
4715
4716bool rdma_dev_access_netns(const struct ib_device *device,
4717			   const struct net *net);
4718
4719#define IB_ROCE_UDP_ENCAP_VALID_PORT_MIN (0xC000)
4720#define IB_GRH_FLOWLABEL_MASK (0x000FFFFF)
4721
4722/**
4723 * rdma_flow_label_to_udp_sport - generate a RoCE v2 UDP src port value based
4724 *                               on the flow_label
4725 *
4726 * This function will convert the 20 bit flow_label input to a valid RoCE v2
4727 * UDP src port 14 bit value. All RoCE V2 drivers should use this same
4728 * convention.
4729 */
4730static inline u16 rdma_flow_label_to_udp_sport(u32 fl)
4731{
4732	u32 fl_low = fl & 0x03fff, fl_high = fl & 0xFC000;
4733
4734	fl_low ^= fl_high >> 14;
4735	return (u16)(fl_low | IB_ROCE_UDP_ENCAP_VALID_PORT_MIN);
4736}
4737
4738/**
4739 * rdma_calc_flow_label - generate a RDMA symmetric flow label value based on
4740 *                        local and remote qpn values
4741 *
4742 * This function folded the multiplication results of two qpns, 24 bit each,
4743 * fields, and converts it to a 20 bit results.
4744 *
4745 * This function will create symmetric flow_label value based on the local
4746 * and remote qpn values. this will allow both the requester and responder
4747 * to calculate the same flow_label for a given connection.
4748 *
4749 * This helper function should be used by driver in case the upper layer
4750 * provide a zero flow_label value. This is to improve entropy of RDMA
4751 * traffic in the network.
4752 */
4753static inline u32 rdma_calc_flow_label(u32 lqpn, u32 rqpn)
4754{
4755	u64 v = (u64)lqpn * rqpn;
4756
4757	v ^= v >> 20;
4758	v ^= v >> 40;
4759
4760	return (u32)(v & IB_GRH_FLOWLABEL_MASK);
4761}
4762#endif /* IB_VERBS_H */