Loading...
1/*
2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved.
3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved.
4 * Copyright (c) 2004 Intel Corporation. All rights reserved.
5 * Copyright (c) 2004 Topspin Corporation. All rights reserved.
6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved.
7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
8 * Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved.
9 *
10 * This software is available to you under a choice of one of two
11 * licenses. You may choose to be licensed under the terms of the GNU
12 * General Public License (GPL) Version 2, available from the file
13 * COPYING in the main directory of this source tree, or the
14 * OpenIB.org BSD license below:
15 *
16 * Redistribution and use in source and binary forms, with or
17 * without modification, are permitted provided that the following
18 * conditions are met:
19 *
20 * - Redistributions of source code must retain the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer.
23 *
24 * - Redistributions in binary form must reproduce the above
25 * copyright notice, this list of conditions and the following
26 * disclaimer in the documentation and/or other materials
27 * provided with the distribution.
28 *
29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36 * SOFTWARE.
37 */
38
39#if !defined(IB_VERBS_H)
40#define IB_VERBS_H
41
42#include <linux/types.h>
43#include <linux/device.h>
44#include <linux/mm.h>
45#include <linux/dma-mapping.h>
46#include <linux/kref.h>
47#include <linux/list.h>
48#include <linux/rwsem.h>
49#include <linux/scatterlist.h>
50#include <linux/workqueue.h>
51
52#include <linux/atomic.h>
53#include <asm/uaccess.h>
54
55extern struct workqueue_struct *ib_wq;
56
57union ib_gid {
58 u8 raw[16];
59 struct {
60 __be64 subnet_prefix;
61 __be64 interface_id;
62 } global;
63};
64
65enum rdma_node_type {
66 /* IB values map to NodeInfo:NodeType. */
67 RDMA_NODE_IB_CA = 1,
68 RDMA_NODE_IB_SWITCH,
69 RDMA_NODE_IB_ROUTER,
70 RDMA_NODE_RNIC
71};
72
73enum rdma_transport_type {
74 RDMA_TRANSPORT_IB,
75 RDMA_TRANSPORT_IWARP
76};
77
78enum rdma_transport_type
79rdma_node_get_transport(enum rdma_node_type node_type) __attribute_const__;
80
81enum rdma_link_layer {
82 IB_LINK_LAYER_UNSPECIFIED,
83 IB_LINK_LAYER_INFINIBAND,
84 IB_LINK_LAYER_ETHERNET,
85};
86
87enum ib_device_cap_flags {
88 IB_DEVICE_RESIZE_MAX_WR = 1,
89 IB_DEVICE_BAD_PKEY_CNTR = (1<<1),
90 IB_DEVICE_BAD_QKEY_CNTR = (1<<2),
91 IB_DEVICE_RAW_MULTI = (1<<3),
92 IB_DEVICE_AUTO_PATH_MIG = (1<<4),
93 IB_DEVICE_CHANGE_PHY_PORT = (1<<5),
94 IB_DEVICE_UD_AV_PORT_ENFORCE = (1<<6),
95 IB_DEVICE_CURR_QP_STATE_MOD = (1<<7),
96 IB_DEVICE_SHUTDOWN_PORT = (1<<8),
97 IB_DEVICE_INIT_TYPE = (1<<9),
98 IB_DEVICE_PORT_ACTIVE_EVENT = (1<<10),
99 IB_DEVICE_SYS_IMAGE_GUID = (1<<11),
100 IB_DEVICE_RC_RNR_NAK_GEN = (1<<12),
101 IB_DEVICE_SRQ_RESIZE = (1<<13),
102 IB_DEVICE_N_NOTIFY_CQ = (1<<14),
103 IB_DEVICE_LOCAL_DMA_LKEY = (1<<15),
104 IB_DEVICE_RESERVED = (1<<16), /* old SEND_W_INV */
105 IB_DEVICE_MEM_WINDOW = (1<<17),
106 /*
107 * Devices should set IB_DEVICE_UD_IP_SUM if they support
108 * insertion of UDP and TCP checksum on outgoing UD IPoIB
109 * messages and can verify the validity of checksum for
110 * incoming messages. Setting this flag implies that the
111 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
112 */
113 IB_DEVICE_UD_IP_CSUM = (1<<18),
114 IB_DEVICE_UD_TSO = (1<<19),
115 IB_DEVICE_MEM_MGT_EXTENSIONS = (1<<21),
116 IB_DEVICE_BLOCK_MULTICAST_LOOPBACK = (1<<22),
117};
118
119enum ib_atomic_cap {
120 IB_ATOMIC_NONE,
121 IB_ATOMIC_HCA,
122 IB_ATOMIC_GLOB
123};
124
125struct ib_device_attr {
126 u64 fw_ver;
127 __be64 sys_image_guid;
128 u64 max_mr_size;
129 u64 page_size_cap;
130 u32 vendor_id;
131 u32 vendor_part_id;
132 u32 hw_ver;
133 int max_qp;
134 int max_qp_wr;
135 int device_cap_flags;
136 int max_sge;
137 int max_sge_rd;
138 int max_cq;
139 int max_cqe;
140 int max_mr;
141 int max_pd;
142 int max_qp_rd_atom;
143 int max_ee_rd_atom;
144 int max_res_rd_atom;
145 int max_qp_init_rd_atom;
146 int max_ee_init_rd_atom;
147 enum ib_atomic_cap atomic_cap;
148 enum ib_atomic_cap masked_atomic_cap;
149 int max_ee;
150 int max_rdd;
151 int max_mw;
152 int max_raw_ipv6_qp;
153 int max_raw_ethy_qp;
154 int max_mcast_grp;
155 int max_mcast_qp_attach;
156 int max_total_mcast_qp_attach;
157 int max_ah;
158 int max_fmr;
159 int max_map_per_fmr;
160 int max_srq;
161 int max_srq_wr;
162 int max_srq_sge;
163 unsigned int max_fast_reg_page_list_len;
164 u16 max_pkeys;
165 u8 local_ca_ack_delay;
166};
167
168enum ib_mtu {
169 IB_MTU_256 = 1,
170 IB_MTU_512 = 2,
171 IB_MTU_1024 = 3,
172 IB_MTU_2048 = 4,
173 IB_MTU_4096 = 5
174};
175
176static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
177{
178 switch (mtu) {
179 case IB_MTU_256: return 256;
180 case IB_MTU_512: return 512;
181 case IB_MTU_1024: return 1024;
182 case IB_MTU_2048: return 2048;
183 case IB_MTU_4096: return 4096;
184 default: return -1;
185 }
186}
187
188enum ib_port_state {
189 IB_PORT_NOP = 0,
190 IB_PORT_DOWN = 1,
191 IB_PORT_INIT = 2,
192 IB_PORT_ARMED = 3,
193 IB_PORT_ACTIVE = 4,
194 IB_PORT_ACTIVE_DEFER = 5
195};
196
197enum ib_port_cap_flags {
198 IB_PORT_SM = 1 << 1,
199 IB_PORT_NOTICE_SUP = 1 << 2,
200 IB_PORT_TRAP_SUP = 1 << 3,
201 IB_PORT_OPT_IPD_SUP = 1 << 4,
202 IB_PORT_AUTO_MIGR_SUP = 1 << 5,
203 IB_PORT_SL_MAP_SUP = 1 << 6,
204 IB_PORT_MKEY_NVRAM = 1 << 7,
205 IB_PORT_PKEY_NVRAM = 1 << 8,
206 IB_PORT_LED_INFO_SUP = 1 << 9,
207 IB_PORT_SM_DISABLED = 1 << 10,
208 IB_PORT_SYS_IMAGE_GUID_SUP = 1 << 11,
209 IB_PORT_PKEY_SW_EXT_PORT_TRAP_SUP = 1 << 12,
210 IB_PORT_CM_SUP = 1 << 16,
211 IB_PORT_SNMP_TUNNEL_SUP = 1 << 17,
212 IB_PORT_REINIT_SUP = 1 << 18,
213 IB_PORT_DEVICE_MGMT_SUP = 1 << 19,
214 IB_PORT_VENDOR_CLASS_SUP = 1 << 20,
215 IB_PORT_DR_NOTICE_SUP = 1 << 21,
216 IB_PORT_CAP_MASK_NOTICE_SUP = 1 << 22,
217 IB_PORT_BOOT_MGMT_SUP = 1 << 23,
218 IB_PORT_LINK_LATENCY_SUP = 1 << 24,
219 IB_PORT_CLIENT_REG_SUP = 1 << 25
220};
221
222enum ib_port_width {
223 IB_WIDTH_1X = 1,
224 IB_WIDTH_4X = 2,
225 IB_WIDTH_8X = 4,
226 IB_WIDTH_12X = 8
227};
228
229static inline int ib_width_enum_to_int(enum ib_port_width width)
230{
231 switch (width) {
232 case IB_WIDTH_1X: return 1;
233 case IB_WIDTH_4X: return 4;
234 case IB_WIDTH_8X: return 8;
235 case IB_WIDTH_12X: return 12;
236 default: return -1;
237 }
238}
239
240struct ib_protocol_stats {
241 /* TBD... */
242};
243
244struct iw_protocol_stats {
245 u64 ipInReceives;
246 u64 ipInHdrErrors;
247 u64 ipInTooBigErrors;
248 u64 ipInNoRoutes;
249 u64 ipInAddrErrors;
250 u64 ipInUnknownProtos;
251 u64 ipInTruncatedPkts;
252 u64 ipInDiscards;
253 u64 ipInDelivers;
254 u64 ipOutForwDatagrams;
255 u64 ipOutRequests;
256 u64 ipOutDiscards;
257 u64 ipOutNoRoutes;
258 u64 ipReasmTimeout;
259 u64 ipReasmReqds;
260 u64 ipReasmOKs;
261 u64 ipReasmFails;
262 u64 ipFragOKs;
263 u64 ipFragFails;
264 u64 ipFragCreates;
265 u64 ipInMcastPkts;
266 u64 ipOutMcastPkts;
267 u64 ipInBcastPkts;
268 u64 ipOutBcastPkts;
269
270 u64 tcpRtoAlgorithm;
271 u64 tcpRtoMin;
272 u64 tcpRtoMax;
273 u64 tcpMaxConn;
274 u64 tcpActiveOpens;
275 u64 tcpPassiveOpens;
276 u64 tcpAttemptFails;
277 u64 tcpEstabResets;
278 u64 tcpCurrEstab;
279 u64 tcpInSegs;
280 u64 tcpOutSegs;
281 u64 tcpRetransSegs;
282 u64 tcpInErrs;
283 u64 tcpOutRsts;
284};
285
286union rdma_protocol_stats {
287 struct ib_protocol_stats ib;
288 struct iw_protocol_stats iw;
289};
290
291struct ib_port_attr {
292 enum ib_port_state state;
293 enum ib_mtu max_mtu;
294 enum ib_mtu active_mtu;
295 int gid_tbl_len;
296 u32 port_cap_flags;
297 u32 max_msg_sz;
298 u32 bad_pkey_cntr;
299 u32 qkey_viol_cntr;
300 u16 pkey_tbl_len;
301 u16 lid;
302 u16 sm_lid;
303 u8 lmc;
304 u8 max_vl_num;
305 u8 sm_sl;
306 u8 subnet_timeout;
307 u8 init_type_reply;
308 u8 active_width;
309 u8 active_speed;
310 u8 phys_state;
311};
312
313enum ib_device_modify_flags {
314 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0,
315 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1
316};
317
318struct ib_device_modify {
319 u64 sys_image_guid;
320 char node_desc[64];
321};
322
323enum ib_port_modify_flags {
324 IB_PORT_SHUTDOWN = 1,
325 IB_PORT_INIT_TYPE = (1<<2),
326 IB_PORT_RESET_QKEY_CNTR = (1<<3)
327};
328
329struct ib_port_modify {
330 u32 set_port_cap_mask;
331 u32 clr_port_cap_mask;
332 u8 init_type;
333};
334
335enum ib_event_type {
336 IB_EVENT_CQ_ERR,
337 IB_EVENT_QP_FATAL,
338 IB_EVENT_QP_REQ_ERR,
339 IB_EVENT_QP_ACCESS_ERR,
340 IB_EVENT_COMM_EST,
341 IB_EVENT_SQ_DRAINED,
342 IB_EVENT_PATH_MIG,
343 IB_EVENT_PATH_MIG_ERR,
344 IB_EVENT_DEVICE_FATAL,
345 IB_EVENT_PORT_ACTIVE,
346 IB_EVENT_PORT_ERR,
347 IB_EVENT_LID_CHANGE,
348 IB_EVENT_PKEY_CHANGE,
349 IB_EVENT_SM_CHANGE,
350 IB_EVENT_SRQ_ERR,
351 IB_EVENT_SRQ_LIMIT_REACHED,
352 IB_EVENT_QP_LAST_WQE_REACHED,
353 IB_EVENT_CLIENT_REREGISTER,
354 IB_EVENT_GID_CHANGE,
355};
356
357struct ib_event {
358 struct ib_device *device;
359 union {
360 struct ib_cq *cq;
361 struct ib_qp *qp;
362 struct ib_srq *srq;
363 u8 port_num;
364 } element;
365 enum ib_event_type event;
366};
367
368struct ib_event_handler {
369 struct ib_device *device;
370 void (*handler)(struct ib_event_handler *, struct ib_event *);
371 struct list_head list;
372};
373
374#define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \
375 do { \
376 (_ptr)->device = _device; \
377 (_ptr)->handler = _handler; \
378 INIT_LIST_HEAD(&(_ptr)->list); \
379 } while (0)
380
381struct ib_global_route {
382 union ib_gid dgid;
383 u32 flow_label;
384 u8 sgid_index;
385 u8 hop_limit;
386 u8 traffic_class;
387};
388
389struct ib_grh {
390 __be32 version_tclass_flow;
391 __be16 paylen;
392 u8 next_hdr;
393 u8 hop_limit;
394 union ib_gid sgid;
395 union ib_gid dgid;
396};
397
398enum {
399 IB_MULTICAST_QPN = 0xffffff
400};
401
402#define IB_LID_PERMISSIVE cpu_to_be16(0xFFFF)
403
404enum ib_ah_flags {
405 IB_AH_GRH = 1
406};
407
408enum ib_rate {
409 IB_RATE_PORT_CURRENT = 0,
410 IB_RATE_2_5_GBPS = 2,
411 IB_RATE_5_GBPS = 5,
412 IB_RATE_10_GBPS = 3,
413 IB_RATE_20_GBPS = 6,
414 IB_RATE_30_GBPS = 4,
415 IB_RATE_40_GBPS = 7,
416 IB_RATE_60_GBPS = 8,
417 IB_RATE_80_GBPS = 9,
418 IB_RATE_120_GBPS = 10
419};
420
421/**
422 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the
423 * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be
424 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
425 * @rate: rate to convert.
426 */
427int ib_rate_to_mult(enum ib_rate rate) __attribute_const__;
428
429/**
430 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
431 * enum.
432 * @mult: multiple to convert.
433 */
434enum ib_rate mult_to_ib_rate(int mult) __attribute_const__;
435
436struct ib_ah_attr {
437 struct ib_global_route grh;
438 u16 dlid;
439 u8 sl;
440 u8 src_path_bits;
441 u8 static_rate;
442 u8 ah_flags;
443 u8 port_num;
444};
445
446enum ib_wc_status {
447 IB_WC_SUCCESS,
448 IB_WC_LOC_LEN_ERR,
449 IB_WC_LOC_QP_OP_ERR,
450 IB_WC_LOC_EEC_OP_ERR,
451 IB_WC_LOC_PROT_ERR,
452 IB_WC_WR_FLUSH_ERR,
453 IB_WC_MW_BIND_ERR,
454 IB_WC_BAD_RESP_ERR,
455 IB_WC_LOC_ACCESS_ERR,
456 IB_WC_REM_INV_REQ_ERR,
457 IB_WC_REM_ACCESS_ERR,
458 IB_WC_REM_OP_ERR,
459 IB_WC_RETRY_EXC_ERR,
460 IB_WC_RNR_RETRY_EXC_ERR,
461 IB_WC_LOC_RDD_VIOL_ERR,
462 IB_WC_REM_INV_RD_REQ_ERR,
463 IB_WC_REM_ABORT_ERR,
464 IB_WC_INV_EECN_ERR,
465 IB_WC_INV_EEC_STATE_ERR,
466 IB_WC_FATAL_ERR,
467 IB_WC_RESP_TIMEOUT_ERR,
468 IB_WC_GENERAL_ERR
469};
470
471enum ib_wc_opcode {
472 IB_WC_SEND,
473 IB_WC_RDMA_WRITE,
474 IB_WC_RDMA_READ,
475 IB_WC_COMP_SWAP,
476 IB_WC_FETCH_ADD,
477 IB_WC_BIND_MW,
478 IB_WC_LSO,
479 IB_WC_LOCAL_INV,
480 IB_WC_FAST_REG_MR,
481 IB_WC_MASKED_COMP_SWAP,
482 IB_WC_MASKED_FETCH_ADD,
483/*
484 * Set value of IB_WC_RECV so consumers can test if a completion is a
485 * receive by testing (opcode & IB_WC_RECV).
486 */
487 IB_WC_RECV = 1 << 7,
488 IB_WC_RECV_RDMA_WITH_IMM
489};
490
491enum ib_wc_flags {
492 IB_WC_GRH = 1,
493 IB_WC_WITH_IMM = (1<<1),
494 IB_WC_WITH_INVALIDATE = (1<<2),
495};
496
497struct ib_wc {
498 u64 wr_id;
499 enum ib_wc_status status;
500 enum ib_wc_opcode opcode;
501 u32 vendor_err;
502 u32 byte_len;
503 struct ib_qp *qp;
504 union {
505 __be32 imm_data;
506 u32 invalidate_rkey;
507 } ex;
508 u32 src_qp;
509 int wc_flags;
510 u16 pkey_index;
511 u16 slid;
512 u8 sl;
513 u8 dlid_path_bits;
514 u8 port_num; /* valid only for DR SMPs on switches */
515 int csum_ok;
516};
517
518enum ib_cq_notify_flags {
519 IB_CQ_SOLICITED = 1 << 0,
520 IB_CQ_NEXT_COMP = 1 << 1,
521 IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
522 IB_CQ_REPORT_MISSED_EVENTS = 1 << 2,
523};
524
525enum ib_srq_attr_mask {
526 IB_SRQ_MAX_WR = 1 << 0,
527 IB_SRQ_LIMIT = 1 << 1,
528};
529
530struct ib_srq_attr {
531 u32 max_wr;
532 u32 max_sge;
533 u32 srq_limit;
534};
535
536struct ib_srq_init_attr {
537 void (*event_handler)(struct ib_event *, void *);
538 void *srq_context;
539 struct ib_srq_attr attr;
540};
541
542struct ib_qp_cap {
543 u32 max_send_wr;
544 u32 max_recv_wr;
545 u32 max_send_sge;
546 u32 max_recv_sge;
547 u32 max_inline_data;
548};
549
550enum ib_sig_type {
551 IB_SIGNAL_ALL_WR,
552 IB_SIGNAL_REQ_WR
553};
554
555enum ib_qp_type {
556 /*
557 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
558 * here (and in that order) since the MAD layer uses them as
559 * indices into a 2-entry table.
560 */
561 IB_QPT_SMI,
562 IB_QPT_GSI,
563
564 IB_QPT_RC,
565 IB_QPT_UC,
566 IB_QPT_UD,
567 IB_QPT_RAW_IPV6,
568 IB_QPT_RAW_ETHERTYPE
569};
570
571enum ib_qp_create_flags {
572 IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0,
573 IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK = 1 << 1,
574};
575
576struct ib_qp_init_attr {
577 void (*event_handler)(struct ib_event *, void *);
578 void *qp_context;
579 struct ib_cq *send_cq;
580 struct ib_cq *recv_cq;
581 struct ib_srq *srq;
582 struct ib_qp_cap cap;
583 enum ib_sig_type sq_sig_type;
584 enum ib_qp_type qp_type;
585 enum ib_qp_create_flags create_flags;
586 u8 port_num; /* special QP types only */
587};
588
589enum ib_rnr_timeout {
590 IB_RNR_TIMER_655_36 = 0,
591 IB_RNR_TIMER_000_01 = 1,
592 IB_RNR_TIMER_000_02 = 2,
593 IB_RNR_TIMER_000_03 = 3,
594 IB_RNR_TIMER_000_04 = 4,
595 IB_RNR_TIMER_000_06 = 5,
596 IB_RNR_TIMER_000_08 = 6,
597 IB_RNR_TIMER_000_12 = 7,
598 IB_RNR_TIMER_000_16 = 8,
599 IB_RNR_TIMER_000_24 = 9,
600 IB_RNR_TIMER_000_32 = 10,
601 IB_RNR_TIMER_000_48 = 11,
602 IB_RNR_TIMER_000_64 = 12,
603 IB_RNR_TIMER_000_96 = 13,
604 IB_RNR_TIMER_001_28 = 14,
605 IB_RNR_TIMER_001_92 = 15,
606 IB_RNR_TIMER_002_56 = 16,
607 IB_RNR_TIMER_003_84 = 17,
608 IB_RNR_TIMER_005_12 = 18,
609 IB_RNR_TIMER_007_68 = 19,
610 IB_RNR_TIMER_010_24 = 20,
611 IB_RNR_TIMER_015_36 = 21,
612 IB_RNR_TIMER_020_48 = 22,
613 IB_RNR_TIMER_030_72 = 23,
614 IB_RNR_TIMER_040_96 = 24,
615 IB_RNR_TIMER_061_44 = 25,
616 IB_RNR_TIMER_081_92 = 26,
617 IB_RNR_TIMER_122_88 = 27,
618 IB_RNR_TIMER_163_84 = 28,
619 IB_RNR_TIMER_245_76 = 29,
620 IB_RNR_TIMER_327_68 = 30,
621 IB_RNR_TIMER_491_52 = 31
622};
623
624enum ib_qp_attr_mask {
625 IB_QP_STATE = 1,
626 IB_QP_CUR_STATE = (1<<1),
627 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2),
628 IB_QP_ACCESS_FLAGS = (1<<3),
629 IB_QP_PKEY_INDEX = (1<<4),
630 IB_QP_PORT = (1<<5),
631 IB_QP_QKEY = (1<<6),
632 IB_QP_AV = (1<<7),
633 IB_QP_PATH_MTU = (1<<8),
634 IB_QP_TIMEOUT = (1<<9),
635 IB_QP_RETRY_CNT = (1<<10),
636 IB_QP_RNR_RETRY = (1<<11),
637 IB_QP_RQ_PSN = (1<<12),
638 IB_QP_MAX_QP_RD_ATOMIC = (1<<13),
639 IB_QP_ALT_PATH = (1<<14),
640 IB_QP_MIN_RNR_TIMER = (1<<15),
641 IB_QP_SQ_PSN = (1<<16),
642 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17),
643 IB_QP_PATH_MIG_STATE = (1<<18),
644 IB_QP_CAP = (1<<19),
645 IB_QP_DEST_QPN = (1<<20)
646};
647
648enum ib_qp_state {
649 IB_QPS_RESET,
650 IB_QPS_INIT,
651 IB_QPS_RTR,
652 IB_QPS_RTS,
653 IB_QPS_SQD,
654 IB_QPS_SQE,
655 IB_QPS_ERR
656};
657
658enum ib_mig_state {
659 IB_MIG_MIGRATED,
660 IB_MIG_REARM,
661 IB_MIG_ARMED
662};
663
664struct ib_qp_attr {
665 enum ib_qp_state qp_state;
666 enum ib_qp_state cur_qp_state;
667 enum ib_mtu path_mtu;
668 enum ib_mig_state path_mig_state;
669 u32 qkey;
670 u32 rq_psn;
671 u32 sq_psn;
672 u32 dest_qp_num;
673 int qp_access_flags;
674 struct ib_qp_cap cap;
675 struct ib_ah_attr ah_attr;
676 struct ib_ah_attr alt_ah_attr;
677 u16 pkey_index;
678 u16 alt_pkey_index;
679 u8 en_sqd_async_notify;
680 u8 sq_draining;
681 u8 max_rd_atomic;
682 u8 max_dest_rd_atomic;
683 u8 min_rnr_timer;
684 u8 port_num;
685 u8 timeout;
686 u8 retry_cnt;
687 u8 rnr_retry;
688 u8 alt_port_num;
689 u8 alt_timeout;
690};
691
692enum ib_wr_opcode {
693 IB_WR_RDMA_WRITE,
694 IB_WR_RDMA_WRITE_WITH_IMM,
695 IB_WR_SEND,
696 IB_WR_SEND_WITH_IMM,
697 IB_WR_RDMA_READ,
698 IB_WR_ATOMIC_CMP_AND_SWP,
699 IB_WR_ATOMIC_FETCH_AND_ADD,
700 IB_WR_LSO,
701 IB_WR_SEND_WITH_INV,
702 IB_WR_RDMA_READ_WITH_INV,
703 IB_WR_LOCAL_INV,
704 IB_WR_FAST_REG_MR,
705 IB_WR_MASKED_ATOMIC_CMP_AND_SWP,
706 IB_WR_MASKED_ATOMIC_FETCH_AND_ADD,
707};
708
709enum ib_send_flags {
710 IB_SEND_FENCE = 1,
711 IB_SEND_SIGNALED = (1<<1),
712 IB_SEND_SOLICITED = (1<<2),
713 IB_SEND_INLINE = (1<<3),
714 IB_SEND_IP_CSUM = (1<<4)
715};
716
717struct ib_sge {
718 u64 addr;
719 u32 length;
720 u32 lkey;
721};
722
723struct ib_fast_reg_page_list {
724 struct ib_device *device;
725 u64 *page_list;
726 unsigned int max_page_list_len;
727};
728
729struct ib_send_wr {
730 struct ib_send_wr *next;
731 u64 wr_id;
732 struct ib_sge *sg_list;
733 int num_sge;
734 enum ib_wr_opcode opcode;
735 int send_flags;
736 union {
737 __be32 imm_data;
738 u32 invalidate_rkey;
739 } ex;
740 union {
741 struct {
742 u64 remote_addr;
743 u32 rkey;
744 } rdma;
745 struct {
746 u64 remote_addr;
747 u64 compare_add;
748 u64 swap;
749 u64 compare_add_mask;
750 u64 swap_mask;
751 u32 rkey;
752 } atomic;
753 struct {
754 struct ib_ah *ah;
755 void *header;
756 int hlen;
757 int mss;
758 u32 remote_qpn;
759 u32 remote_qkey;
760 u16 pkey_index; /* valid for GSI only */
761 u8 port_num; /* valid for DR SMPs on switch only */
762 } ud;
763 struct {
764 u64 iova_start;
765 struct ib_fast_reg_page_list *page_list;
766 unsigned int page_shift;
767 unsigned int page_list_len;
768 u32 length;
769 int access_flags;
770 u32 rkey;
771 } fast_reg;
772 } wr;
773};
774
775struct ib_recv_wr {
776 struct ib_recv_wr *next;
777 u64 wr_id;
778 struct ib_sge *sg_list;
779 int num_sge;
780};
781
782enum ib_access_flags {
783 IB_ACCESS_LOCAL_WRITE = 1,
784 IB_ACCESS_REMOTE_WRITE = (1<<1),
785 IB_ACCESS_REMOTE_READ = (1<<2),
786 IB_ACCESS_REMOTE_ATOMIC = (1<<3),
787 IB_ACCESS_MW_BIND = (1<<4)
788};
789
790struct ib_phys_buf {
791 u64 addr;
792 u64 size;
793};
794
795struct ib_mr_attr {
796 struct ib_pd *pd;
797 u64 device_virt_addr;
798 u64 size;
799 int mr_access_flags;
800 u32 lkey;
801 u32 rkey;
802};
803
804enum ib_mr_rereg_flags {
805 IB_MR_REREG_TRANS = 1,
806 IB_MR_REREG_PD = (1<<1),
807 IB_MR_REREG_ACCESS = (1<<2)
808};
809
810struct ib_mw_bind {
811 struct ib_mr *mr;
812 u64 wr_id;
813 u64 addr;
814 u32 length;
815 int send_flags;
816 int mw_access_flags;
817};
818
819struct ib_fmr_attr {
820 int max_pages;
821 int max_maps;
822 u8 page_shift;
823};
824
825struct ib_ucontext {
826 struct ib_device *device;
827 struct list_head pd_list;
828 struct list_head mr_list;
829 struct list_head mw_list;
830 struct list_head cq_list;
831 struct list_head qp_list;
832 struct list_head srq_list;
833 struct list_head ah_list;
834 int closing;
835};
836
837struct ib_uobject {
838 u64 user_handle; /* handle given to us by userspace */
839 struct ib_ucontext *context; /* associated user context */
840 void *object; /* containing object */
841 struct list_head list; /* link to context's list */
842 int id; /* index into kernel idr */
843 struct kref ref;
844 struct rw_semaphore mutex; /* protects .live */
845 int live;
846};
847
848struct ib_udata {
849 void __user *inbuf;
850 void __user *outbuf;
851 size_t inlen;
852 size_t outlen;
853};
854
855struct ib_pd {
856 struct ib_device *device;
857 struct ib_uobject *uobject;
858 atomic_t usecnt; /* count all resources */
859};
860
861struct ib_ah {
862 struct ib_device *device;
863 struct ib_pd *pd;
864 struct ib_uobject *uobject;
865};
866
867typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
868
869struct ib_cq {
870 struct ib_device *device;
871 struct ib_uobject *uobject;
872 ib_comp_handler comp_handler;
873 void (*event_handler)(struct ib_event *, void *);
874 void *cq_context;
875 int cqe;
876 atomic_t usecnt; /* count number of work queues */
877};
878
879struct ib_srq {
880 struct ib_device *device;
881 struct ib_pd *pd;
882 struct ib_uobject *uobject;
883 void (*event_handler)(struct ib_event *, void *);
884 void *srq_context;
885 atomic_t usecnt;
886};
887
888struct ib_qp {
889 struct ib_device *device;
890 struct ib_pd *pd;
891 struct ib_cq *send_cq;
892 struct ib_cq *recv_cq;
893 struct ib_srq *srq;
894 struct ib_uobject *uobject;
895 void (*event_handler)(struct ib_event *, void *);
896 void *qp_context;
897 u32 qp_num;
898 enum ib_qp_type qp_type;
899};
900
901struct ib_mr {
902 struct ib_device *device;
903 struct ib_pd *pd;
904 struct ib_uobject *uobject;
905 u32 lkey;
906 u32 rkey;
907 atomic_t usecnt; /* count number of MWs */
908};
909
910struct ib_mw {
911 struct ib_device *device;
912 struct ib_pd *pd;
913 struct ib_uobject *uobject;
914 u32 rkey;
915};
916
917struct ib_fmr {
918 struct ib_device *device;
919 struct ib_pd *pd;
920 struct list_head list;
921 u32 lkey;
922 u32 rkey;
923};
924
925struct ib_mad;
926struct ib_grh;
927
928enum ib_process_mad_flags {
929 IB_MAD_IGNORE_MKEY = 1,
930 IB_MAD_IGNORE_BKEY = 2,
931 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
932};
933
934enum ib_mad_result {
935 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */
936 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */
937 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */
938 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */
939};
940
941#define IB_DEVICE_NAME_MAX 64
942
943struct ib_cache {
944 rwlock_t lock;
945 struct ib_event_handler event_handler;
946 struct ib_pkey_cache **pkey_cache;
947 struct ib_gid_cache **gid_cache;
948 u8 *lmc_cache;
949};
950
951struct ib_dma_mapping_ops {
952 int (*mapping_error)(struct ib_device *dev,
953 u64 dma_addr);
954 u64 (*map_single)(struct ib_device *dev,
955 void *ptr, size_t size,
956 enum dma_data_direction direction);
957 void (*unmap_single)(struct ib_device *dev,
958 u64 addr, size_t size,
959 enum dma_data_direction direction);
960 u64 (*map_page)(struct ib_device *dev,
961 struct page *page, unsigned long offset,
962 size_t size,
963 enum dma_data_direction direction);
964 void (*unmap_page)(struct ib_device *dev,
965 u64 addr, size_t size,
966 enum dma_data_direction direction);
967 int (*map_sg)(struct ib_device *dev,
968 struct scatterlist *sg, int nents,
969 enum dma_data_direction direction);
970 void (*unmap_sg)(struct ib_device *dev,
971 struct scatterlist *sg, int nents,
972 enum dma_data_direction direction);
973 u64 (*dma_address)(struct ib_device *dev,
974 struct scatterlist *sg);
975 unsigned int (*dma_len)(struct ib_device *dev,
976 struct scatterlist *sg);
977 void (*sync_single_for_cpu)(struct ib_device *dev,
978 u64 dma_handle,
979 size_t size,
980 enum dma_data_direction dir);
981 void (*sync_single_for_device)(struct ib_device *dev,
982 u64 dma_handle,
983 size_t size,
984 enum dma_data_direction dir);
985 void *(*alloc_coherent)(struct ib_device *dev,
986 size_t size,
987 u64 *dma_handle,
988 gfp_t flag);
989 void (*free_coherent)(struct ib_device *dev,
990 size_t size, void *cpu_addr,
991 u64 dma_handle);
992};
993
994struct iw_cm_verbs;
995
996struct ib_device {
997 struct device *dma_device;
998
999 char name[IB_DEVICE_NAME_MAX];
1000
1001 struct list_head event_handler_list;
1002 spinlock_t event_handler_lock;
1003
1004 spinlock_t client_data_lock;
1005 struct list_head core_list;
1006 struct list_head client_data_list;
1007
1008 struct ib_cache cache;
1009 int *pkey_tbl_len;
1010 int *gid_tbl_len;
1011
1012 int num_comp_vectors;
1013
1014 struct iw_cm_verbs *iwcm;
1015
1016 int (*get_protocol_stats)(struct ib_device *device,
1017 union rdma_protocol_stats *stats);
1018 int (*query_device)(struct ib_device *device,
1019 struct ib_device_attr *device_attr);
1020 int (*query_port)(struct ib_device *device,
1021 u8 port_num,
1022 struct ib_port_attr *port_attr);
1023 enum rdma_link_layer (*get_link_layer)(struct ib_device *device,
1024 u8 port_num);
1025 int (*query_gid)(struct ib_device *device,
1026 u8 port_num, int index,
1027 union ib_gid *gid);
1028 int (*query_pkey)(struct ib_device *device,
1029 u8 port_num, u16 index, u16 *pkey);
1030 int (*modify_device)(struct ib_device *device,
1031 int device_modify_mask,
1032 struct ib_device_modify *device_modify);
1033 int (*modify_port)(struct ib_device *device,
1034 u8 port_num, int port_modify_mask,
1035 struct ib_port_modify *port_modify);
1036 struct ib_ucontext * (*alloc_ucontext)(struct ib_device *device,
1037 struct ib_udata *udata);
1038 int (*dealloc_ucontext)(struct ib_ucontext *context);
1039 int (*mmap)(struct ib_ucontext *context,
1040 struct vm_area_struct *vma);
1041 struct ib_pd * (*alloc_pd)(struct ib_device *device,
1042 struct ib_ucontext *context,
1043 struct ib_udata *udata);
1044 int (*dealloc_pd)(struct ib_pd *pd);
1045 struct ib_ah * (*create_ah)(struct ib_pd *pd,
1046 struct ib_ah_attr *ah_attr);
1047 int (*modify_ah)(struct ib_ah *ah,
1048 struct ib_ah_attr *ah_attr);
1049 int (*query_ah)(struct ib_ah *ah,
1050 struct ib_ah_attr *ah_attr);
1051 int (*destroy_ah)(struct ib_ah *ah);
1052 struct ib_srq * (*create_srq)(struct ib_pd *pd,
1053 struct ib_srq_init_attr *srq_init_attr,
1054 struct ib_udata *udata);
1055 int (*modify_srq)(struct ib_srq *srq,
1056 struct ib_srq_attr *srq_attr,
1057 enum ib_srq_attr_mask srq_attr_mask,
1058 struct ib_udata *udata);
1059 int (*query_srq)(struct ib_srq *srq,
1060 struct ib_srq_attr *srq_attr);
1061 int (*destroy_srq)(struct ib_srq *srq);
1062 int (*post_srq_recv)(struct ib_srq *srq,
1063 struct ib_recv_wr *recv_wr,
1064 struct ib_recv_wr **bad_recv_wr);
1065 struct ib_qp * (*create_qp)(struct ib_pd *pd,
1066 struct ib_qp_init_attr *qp_init_attr,
1067 struct ib_udata *udata);
1068 int (*modify_qp)(struct ib_qp *qp,
1069 struct ib_qp_attr *qp_attr,
1070 int qp_attr_mask,
1071 struct ib_udata *udata);
1072 int (*query_qp)(struct ib_qp *qp,
1073 struct ib_qp_attr *qp_attr,
1074 int qp_attr_mask,
1075 struct ib_qp_init_attr *qp_init_attr);
1076 int (*destroy_qp)(struct ib_qp *qp);
1077 int (*post_send)(struct ib_qp *qp,
1078 struct ib_send_wr *send_wr,
1079 struct ib_send_wr **bad_send_wr);
1080 int (*post_recv)(struct ib_qp *qp,
1081 struct ib_recv_wr *recv_wr,
1082 struct ib_recv_wr **bad_recv_wr);
1083 struct ib_cq * (*create_cq)(struct ib_device *device, int cqe,
1084 int comp_vector,
1085 struct ib_ucontext *context,
1086 struct ib_udata *udata);
1087 int (*modify_cq)(struct ib_cq *cq, u16 cq_count,
1088 u16 cq_period);
1089 int (*destroy_cq)(struct ib_cq *cq);
1090 int (*resize_cq)(struct ib_cq *cq, int cqe,
1091 struct ib_udata *udata);
1092 int (*poll_cq)(struct ib_cq *cq, int num_entries,
1093 struct ib_wc *wc);
1094 int (*peek_cq)(struct ib_cq *cq, int wc_cnt);
1095 int (*req_notify_cq)(struct ib_cq *cq,
1096 enum ib_cq_notify_flags flags);
1097 int (*req_ncomp_notif)(struct ib_cq *cq,
1098 int wc_cnt);
1099 struct ib_mr * (*get_dma_mr)(struct ib_pd *pd,
1100 int mr_access_flags);
1101 struct ib_mr * (*reg_phys_mr)(struct ib_pd *pd,
1102 struct ib_phys_buf *phys_buf_array,
1103 int num_phys_buf,
1104 int mr_access_flags,
1105 u64 *iova_start);
1106 struct ib_mr * (*reg_user_mr)(struct ib_pd *pd,
1107 u64 start, u64 length,
1108 u64 virt_addr,
1109 int mr_access_flags,
1110 struct ib_udata *udata);
1111 int (*query_mr)(struct ib_mr *mr,
1112 struct ib_mr_attr *mr_attr);
1113 int (*dereg_mr)(struct ib_mr *mr);
1114 struct ib_mr * (*alloc_fast_reg_mr)(struct ib_pd *pd,
1115 int max_page_list_len);
1116 struct ib_fast_reg_page_list * (*alloc_fast_reg_page_list)(struct ib_device *device,
1117 int page_list_len);
1118 void (*free_fast_reg_page_list)(struct ib_fast_reg_page_list *page_list);
1119 int (*rereg_phys_mr)(struct ib_mr *mr,
1120 int mr_rereg_mask,
1121 struct ib_pd *pd,
1122 struct ib_phys_buf *phys_buf_array,
1123 int num_phys_buf,
1124 int mr_access_flags,
1125 u64 *iova_start);
1126 struct ib_mw * (*alloc_mw)(struct ib_pd *pd);
1127 int (*bind_mw)(struct ib_qp *qp,
1128 struct ib_mw *mw,
1129 struct ib_mw_bind *mw_bind);
1130 int (*dealloc_mw)(struct ib_mw *mw);
1131 struct ib_fmr * (*alloc_fmr)(struct ib_pd *pd,
1132 int mr_access_flags,
1133 struct ib_fmr_attr *fmr_attr);
1134 int (*map_phys_fmr)(struct ib_fmr *fmr,
1135 u64 *page_list, int list_len,
1136 u64 iova);
1137 int (*unmap_fmr)(struct list_head *fmr_list);
1138 int (*dealloc_fmr)(struct ib_fmr *fmr);
1139 int (*attach_mcast)(struct ib_qp *qp,
1140 union ib_gid *gid,
1141 u16 lid);
1142 int (*detach_mcast)(struct ib_qp *qp,
1143 union ib_gid *gid,
1144 u16 lid);
1145 int (*process_mad)(struct ib_device *device,
1146 int process_mad_flags,
1147 u8 port_num,
1148 struct ib_wc *in_wc,
1149 struct ib_grh *in_grh,
1150 struct ib_mad *in_mad,
1151 struct ib_mad *out_mad);
1152
1153 struct ib_dma_mapping_ops *dma_ops;
1154
1155 struct module *owner;
1156 struct device dev;
1157 struct kobject *ports_parent;
1158 struct list_head port_list;
1159
1160 enum {
1161 IB_DEV_UNINITIALIZED,
1162 IB_DEV_REGISTERED,
1163 IB_DEV_UNREGISTERED
1164 } reg_state;
1165
1166 int uverbs_abi_ver;
1167 u64 uverbs_cmd_mask;
1168
1169 char node_desc[64];
1170 __be64 node_guid;
1171 u32 local_dma_lkey;
1172 u8 node_type;
1173 u8 phys_port_cnt;
1174};
1175
1176struct ib_client {
1177 char *name;
1178 void (*add) (struct ib_device *);
1179 void (*remove)(struct ib_device *);
1180
1181 struct list_head list;
1182};
1183
1184struct ib_device *ib_alloc_device(size_t size);
1185void ib_dealloc_device(struct ib_device *device);
1186
1187int ib_register_device(struct ib_device *device,
1188 int (*port_callback)(struct ib_device *,
1189 u8, struct kobject *));
1190void ib_unregister_device(struct ib_device *device);
1191
1192int ib_register_client (struct ib_client *client);
1193void ib_unregister_client(struct ib_client *client);
1194
1195void *ib_get_client_data(struct ib_device *device, struct ib_client *client);
1196void ib_set_client_data(struct ib_device *device, struct ib_client *client,
1197 void *data);
1198
1199static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
1200{
1201 return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
1202}
1203
1204static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
1205{
1206 return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
1207}
1208
1209/**
1210 * ib_modify_qp_is_ok - Check that the supplied attribute mask
1211 * contains all required attributes and no attributes not allowed for
1212 * the given QP state transition.
1213 * @cur_state: Current QP state
1214 * @next_state: Next QP state
1215 * @type: QP type
1216 * @mask: Mask of supplied QP attributes
1217 *
1218 * This function is a helper function that a low-level driver's
1219 * modify_qp method can use to validate the consumer's input. It
1220 * checks that cur_state and next_state are valid QP states, that a
1221 * transition from cur_state to next_state is allowed by the IB spec,
1222 * and that the attribute mask supplied is allowed for the transition.
1223 */
1224int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
1225 enum ib_qp_type type, enum ib_qp_attr_mask mask);
1226
1227int ib_register_event_handler (struct ib_event_handler *event_handler);
1228int ib_unregister_event_handler(struct ib_event_handler *event_handler);
1229void ib_dispatch_event(struct ib_event *event);
1230
1231int ib_query_device(struct ib_device *device,
1232 struct ib_device_attr *device_attr);
1233
1234int ib_query_port(struct ib_device *device,
1235 u8 port_num, struct ib_port_attr *port_attr);
1236
1237enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
1238 u8 port_num);
1239
1240int ib_query_gid(struct ib_device *device,
1241 u8 port_num, int index, union ib_gid *gid);
1242
1243int ib_query_pkey(struct ib_device *device,
1244 u8 port_num, u16 index, u16 *pkey);
1245
1246int ib_modify_device(struct ib_device *device,
1247 int device_modify_mask,
1248 struct ib_device_modify *device_modify);
1249
1250int ib_modify_port(struct ib_device *device,
1251 u8 port_num, int port_modify_mask,
1252 struct ib_port_modify *port_modify);
1253
1254int ib_find_gid(struct ib_device *device, union ib_gid *gid,
1255 u8 *port_num, u16 *index);
1256
1257int ib_find_pkey(struct ib_device *device,
1258 u8 port_num, u16 pkey, u16 *index);
1259
1260/**
1261 * ib_alloc_pd - Allocates an unused protection domain.
1262 * @device: The device on which to allocate the protection domain.
1263 *
1264 * A protection domain object provides an association between QPs, shared
1265 * receive queues, address handles, memory regions, and memory windows.
1266 */
1267struct ib_pd *ib_alloc_pd(struct ib_device *device);
1268
1269/**
1270 * ib_dealloc_pd - Deallocates a protection domain.
1271 * @pd: The protection domain to deallocate.
1272 */
1273int ib_dealloc_pd(struct ib_pd *pd);
1274
1275/**
1276 * ib_create_ah - Creates an address handle for the given address vector.
1277 * @pd: The protection domain associated with the address handle.
1278 * @ah_attr: The attributes of the address vector.
1279 *
1280 * The address handle is used to reference a local or global destination
1281 * in all UD QP post sends.
1282 */
1283struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr);
1284
1285/**
1286 * ib_init_ah_from_wc - Initializes address handle attributes from a
1287 * work completion.
1288 * @device: Device on which the received message arrived.
1289 * @port_num: Port on which the received message arrived.
1290 * @wc: Work completion associated with the received message.
1291 * @grh: References the received global route header. This parameter is
1292 * ignored unless the work completion indicates that the GRH is valid.
1293 * @ah_attr: Returned attributes that can be used when creating an address
1294 * handle for replying to the message.
1295 */
1296int ib_init_ah_from_wc(struct ib_device *device, u8 port_num, struct ib_wc *wc,
1297 struct ib_grh *grh, struct ib_ah_attr *ah_attr);
1298
1299/**
1300 * ib_create_ah_from_wc - Creates an address handle associated with the
1301 * sender of the specified work completion.
1302 * @pd: The protection domain associated with the address handle.
1303 * @wc: Work completion information associated with a received message.
1304 * @grh: References the received global route header. This parameter is
1305 * ignored unless the work completion indicates that the GRH is valid.
1306 * @port_num: The outbound port number to associate with the address.
1307 *
1308 * The address handle is used to reference a local or global destination
1309 * in all UD QP post sends.
1310 */
1311struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, struct ib_wc *wc,
1312 struct ib_grh *grh, u8 port_num);
1313
1314/**
1315 * ib_modify_ah - Modifies the address vector associated with an address
1316 * handle.
1317 * @ah: The address handle to modify.
1318 * @ah_attr: The new address vector attributes to associate with the
1319 * address handle.
1320 */
1321int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
1322
1323/**
1324 * ib_query_ah - Queries the address vector associated with an address
1325 * handle.
1326 * @ah: The address handle to query.
1327 * @ah_attr: The address vector attributes associated with the address
1328 * handle.
1329 */
1330int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
1331
1332/**
1333 * ib_destroy_ah - Destroys an address handle.
1334 * @ah: The address handle to destroy.
1335 */
1336int ib_destroy_ah(struct ib_ah *ah);
1337
1338/**
1339 * ib_create_srq - Creates a SRQ associated with the specified protection
1340 * domain.
1341 * @pd: The protection domain associated with the SRQ.
1342 * @srq_init_attr: A list of initial attributes required to create the
1343 * SRQ. If SRQ creation succeeds, then the attributes are updated to
1344 * the actual capabilities of the created SRQ.
1345 *
1346 * srq_attr->max_wr and srq_attr->max_sge are read the determine the
1347 * requested size of the SRQ, and set to the actual values allocated
1348 * on return. If ib_create_srq() succeeds, then max_wr and max_sge
1349 * will always be at least as large as the requested values.
1350 */
1351struct ib_srq *ib_create_srq(struct ib_pd *pd,
1352 struct ib_srq_init_attr *srq_init_attr);
1353
1354/**
1355 * ib_modify_srq - Modifies the attributes for the specified SRQ.
1356 * @srq: The SRQ to modify.
1357 * @srq_attr: On input, specifies the SRQ attributes to modify. On output,
1358 * the current values of selected SRQ attributes are returned.
1359 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
1360 * are being modified.
1361 *
1362 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
1363 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when
1364 * the number of receives queued drops below the limit.
1365 */
1366int ib_modify_srq(struct ib_srq *srq,
1367 struct ib_srq_attr *srq_attr,
1368 enum ib_srq_attr_mask srq_attr_mask);
1369
1370/**
1371 * ib_query_srq - Returns the attribute list and current values for the
1372 * specified SRQ.
1373 * @srq: The SRQ to query.
1374 * @srq_attr: The attributes of the specified SRQ.
1375 */
1376int ib_query_srq(struct ib_srq *srq,
1377 struct ib_srq_attr *srq_attr);
1378
1379/**
1380 * ib_destroy_srq - Destroys the specified SRQ.
1381 * @srq: The SRQ to destroy.
1382 */
1383int ib_destroy_srq(struct ib_srq *srq);
1384
1385/**
1386 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
1387 * @srq: The SRQ to post the work request on.
1388 * @recv_wr: A list of work requests to post on the receive queue.
1389 * @bad_recv_wr: On an immediate failure, this parameter will reference
1390 * the work request that failed to be posted on the QP.
1391 */
1392static inline int ib_post_srq_recv(struct ib_srq *srq,
1393 struct ib_recv_wr *recv_wr,
1394 struct ib_recv_wr **bad_recv_wr)
1395{
1396 return srq->device->post_srq_recv(srq, recv_wr, bad_recv_wr);
1397}
1398
1399/**
1400 * ib_create_qp - Creates a QP associated with the specified protection
1401 * domain.
1402 * @pd: The protection domain associated with the QP.
1403 * @qp_init_attr: A list of initial attributes required to create the
1404 * QP. If QP creation succeeds, then the attributes are updated to
1405 * the actual capabilities of the created QP.
1406 */
1407struct ib_qp *ib_create_qp(struct ib_pd *pd,
1408 struct ib_qp_init_attr *qp_init_attr);
1409
1410/**
1411 * ib_modify_qp - Modifies the attributes for the specified QP and then
1412 * transitions the QP to the given state.
1413 * @qp: The QP to modify.
1414 * @qp_attr: On input, specifies the QP attributes to modify. On output,
1415 * the current values of selected QP attributes are returned.
1416 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP
1417 * are being modified.
1418 */
1419int ib_modify_qp(struct ib_qp *qp,
1420 struct ib_qp_attr *qp_attr,
1421 int qp_attr_mask);
1422
1423/**
1424 * ib_query_qp - Returns the attribute list and current values for the
1425 * specified QP.
1426 * @qp: The QP to query.
1427 * @qp_attr: The attributes of the specified QP.
1428 * @qp_attr_mask: A bit-mask used to select specific attributes to query.
1429 * @qp_init_attr: Additional attributes of the selected QP.
1430 *
1431 * The qp_attr_mask may be used to limit the query to gathering only the
1432 * selected attributes.
1433 */
1434int ib_query_qp(struct ib_qp *qp,
1435 struct ib_qp_attr *qp_attr,
1436 int qp_attr_mask,
1437 struct ib_qp_init_attr *qp_init_attr);
1438
1439/**
1440 * ib_destroy_qp - Destroys the specified QP.
1441 * @qp: The QP to destroy.
1442 */
1443int ib_destroy_qp(struct ib_qp *qp);
1444
1445/**
1446 * ib_post_send - Posts a list of work requests to the send queue of
1447 * the specified QP.
1448 * @qp: The QP to post the work request on.
1449 * @send_wr: A list of work requests to post on the send queue.
1450 * @bad_send_wr: On an immediate failure, this parameter will reference
1451 * the work request that failed to be posted on the QP.
1452 *
1453 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate
1454 * error is returned, the QP state shall not be affected,
1455 * ib_post_send() will return an immediate error after queueing any
1456 * earlier work requests in the list.
1457 */
1458static inline int ib_post_send(struct ib_qp *qp,
1459 struct ib_send_wr *send_wr,
1460 struct ib_send_wr **bad_send_wr)
1461{
1462 return qp->device->post_send(qp, send_wr, bad_send_wr);
1463}
1464
1465/**
1466 * ib_post_recv - Posts a list of work requests to the receive queue of
1467 * the specified QP.
1468 * @qp: The QP to post the work request on.
1469 * @recv_wr: A list of work requests to post on the receive queue.
1470 * @bad_recv_wr: On an immediate failure, this parameter will reference
1471 * the work request that failed to be posted on the QP.
1472 */
1473static inline int ib_post_recv(struct ib_qp *qp,
1474 struct ib_recv_wr *recv_wr,
1475 struct ib_recv_wr **bad_recv_wr)
1476{
1477 return qp->device->post_recv(qp, recv_wr, bad_recv_wr);
1478}
1479
1480/**
1481 * ib_create_cq - Creates a CQ on the specified device.
1482 * @device: The device on which to create the CQ.
1483 * @comp_handler: A user-specified callback that is invoked when a
1484 * completion event occurs on the CQ.
1485 * @event_handler: A user-specified callback that is invoked when an
1486 * asynchronous event not associated with a completion occurs on the CQ.
1487 * @cq_context: Context associated with the CQ returned to the user via
1488 * the associated completion and event handlers.
1489 * @cqe: The minimum size of the CQ.
1490 * @comp_vector - Completion vector used to signal completion events.
1491 * Must be >= 0 and < context->num_comp_vectors.
1492 *
1493 * Users can examine the cq structure to determine the actual CQ size.
1494 */
1495struct ib_cq *ib_create_cq(struct ib_device *device,
1496 ib_comp_handler comp_handler,
1497 void (*event_handler)(struct ib_event *, void *),
1498 void *cq_context, int cqe, int comp_vector);
1499
1500/**
1501 * ib_resize_cq - Modifies the capacity of the CQ.
1502 * @cq: The CQ to resize.
1503 * @cqe: The minimum size of the CQ.
1504 *
1505 * Users can examine the cq structure to determine the actual CQ size.
1506 */
1507int ib_resize_cq(struct ib_cq *cq, int cqe);
1508
1509/**
1510 * ib_modify_cq - Modifies moderation params of the CQ
1511 * @cq: The CQ to modify.
1512 * @cq_count: number of CQEs that will trigger an event
1513 * @cq_period: max period of time in usec before triggering an event
1514 *
1515 */
1516int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period);
1517
1518/**
1519 * ib_destroy_cq - Destroys the specified CQ.
1520 * @cq: The CQ to destroy.
1521 */
1522int ib_destroy_cq(struct ib_cq *cq);
1523
1524/**
1525 * ib_poll_cq - poll a CQ for completion(s)
1526 * @cq:the CQ being polled
1527 * @num_entries:maximum number of completions to return
1528 * @wc:array of at least @num_entries &struct ib_wc where completions
1529 * will be returned
1530 *
1531 * Poll a CQ for (possibly multiple) completions. If the return value
1532 * is < 0, an error occurred. If the return value is >= 0, it is the
1533 * number of completions returned. If the return value is
1534 * non-negative and < num_entries, then the CQ was emptied.
1535 */
1536static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
1537 struct ib_wc *wc)
1538{
1539 return cq->device->poll_cq(cq, num_entries, wc);
1540}
1541
1542/**
1543 * ib_peek_cq - Returns the number of unreaped completions currently
1544 * on the specified CQ.
1545 * @cq: The CQ to peek.
1546 * @wc_cnt: A minimum number of unreaped completions to check for.
1547 *
1548 * If the number of unreaped completions is greater than or equal to wc_cnt,
1549 * this function returns wc_cnt, otherwise, it returns the actual number of
1550 * unreaped completions.
1551 */
1552int ib_peek_cq(struct ib_cq *cq, int wc_cnt);
1553
1554/**
1555 * ib_req_notify_cq - Request completion notification on a CQ.
1556 * @cq: The CQ to generate an event for.
1557 * @flags:
1558 * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
1559 * to request an event on the next solicited event or next work
1560 * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
1561 * may also be |ed in to request a hint about missed events, as
1562 * described below.
1563 *
1564 * Return Value:
1565 * < 0 means an error occurred while requesting notification
1566 * == 0 means notification was requested successfully, and if
1567 * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
1568 * were missed and it is safe to wait for another event. In
1569 * this case is it guaranteed that any work completions added
1570 * to the CQ since the last CQ poll will trigger a completion
1571 * notification event.
1572 * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
1573 * in. It means that the consumer must poll the CQ again to
1574 * make sure it is empty to avoid missing an event because of a
1575 * race between requesting notification and an entry being
1576 * added to the CQ. This return value means it is possible
1577 * (but not guaranteed) that a work completion has been added
1578 * to the CQ since the last poll without triggering a
1579 * completion notification event.
1580 */
1581static inline int ib_req_notify_cq(struct ib_cq *cq,
1582 enum ib_cq_notify_flags flags)
1583{
1584 return cq->device->req_notify_cq(cq, flags);
1585}
1586
1587/**
1588 * ib_req_ncomp_notif - Request completion notification when there are
1589 * at least the specified number of unreaped completions on the CQ.
1590 * @cq: The CQ to generate an event for.
1591 * @wc_cnt: The number of unreaped completions that should be on the
1592 * CQ before an event is generated.
1593 */
1594static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt)
1595{
1596 return cq->device->req_ncomp_notif ?
1597 cq->device->req_ncomp_notif(cq, wc_cnt) :
1598 -ENOSYS;
1599}
1600
1601/**
1602 * ib_get_dma_mr - Returns a memory region for system memory that is
1603 * usable for DMA.
1604 * @pd: The protection domain associated with the memory region.
1605 * @mr_access_flags: Specifies the memory access rights.
1606 *
1607 * Note that the ib_dma_*() functions defined below must be used
1608 * to create/destroy addresses used with the Lkey or Rkey returned
1609 * by ib_get_dma_mr().
1610 */
1611struct ib_mr *ib_get_dma_mr(struct ib_pd *pd, int mr_access_flags);
1612
1613/**
1614 * ib_dma_mapping_error - check a DMA addr for error
1615 * @dev: The device for which the dma_addr was created
1616 * @dma_addr: The DMA address to check
1617 */
1618static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
1619{
1620 if (dev->dma_ops)
1621 return dev->dma_ops->mapping_error(dev, dma_addr);
1622 return dma_mapping_error(dev->dma_device, dma_addr);
1623}
1624
1625/**
1626 * ib_dma_map_single - Map a kernel virtual address to DMA address
1627 * @dev: The device for which the dma_addr is to be created
1628 * @cpu_addr: The kernel virtual address
1629 * @size: The size of the region in bytes
1630 * @direction: The direction of the DMA
1631 */
1632static inline u64 ib_dma_map_single(struct ib_device *dev,
1633 void *cpu_addr, size_t size,
1634 enum dma_data_direction direction)
1635{
1636 if (dev->dma_ops)
1637 return dev->dma_ops->map_single(dev, cpu_addr, size, direction);
1638 return dma_map_single(dev->dma_device, cpu_addr, size, direction);
1639}
1640
1641/**
1642 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
1643 * @dev: The device for which the DMA address was created
1644 * @addr: The DMA address
1645 * @size: The size of the region in bytes
1646 * @direction: The direction of the DMA
1647 */
1648static inline void ib_dma_unmap_single(struct ib_device *dev,
1649 u64 addr, size_t size,
1650 enum dma_data_direction direction)
1651{
1652 if (dev->dma_ops)
1653 dev->dma_ops->unmap_single(dev, addr, size, direction);
1654 else
1655 dma_unmap_single(dev->dma_device, addr, size, direction);
1656}
1657
1658static inline u64 ib_dma_map_single_attrs(struct ib_device *dev,
1659 void *cpu_addr, size_t size,
1660 enum dma_data_direction direction,
1661 struct dma_attrs *attrs)
1662{
1663 return dma_map_single_attrs(dev->dma_device, cpu_addr, size,
1664 direction, attrs);
1665}
1666
1667static inline void ib_dma_unmap_single_attrs(struct ib_device *dev,
1668 u64 addr, size_t size,
1669 enum dma_data_direction direction,
1670 struct dma_attrs *attrs)
1671{
1672 return dma_unmap_single_attrs(dev->dma_device, addr, size,
1673 direction, attrs);
1674}
1675
1676/**
1677 * ib_dma_map_page - Map a physical page to DMA address
1678 * @dev: The device for which the dma_addr is to be created
1679 * @page: The page to be mapped
1680 * @offset: The offset within the page
1681 * @size: The size of the region in bytes
1682 * @direction: The direction of the DMA
1683 */
1684static inline u64 ib_dma_map_page(struct ib_device *dev,
1685 struct page *page,
1686 unsigned long offset,
1687 size_t size,
1688 enum dma_data_direction direction)
1689{
1690 if (dev->dma_ops)
1691 return dev->dma_ops->map_page(dev, page, offset, size, direction);
1692 return dma_map_page(dev->dma_device, page, offset, size, direction);
1693}
1694
1695/**
1696 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
1697 * @dev: The device for which the DMA address was created
1698 * @addr: The DMA address
1699 * @size: The size of the region in bytes
1700 * @direction: The direction of the DMA
1701 */
1702static inline void ib_dma_unmap_page(struct ib_device *dev,
1703 u64 addr, size_t size,
1704 enum dma_data_direction direction)
1705{
1706 if (dev->dma_ops)
1707 dev->dma_ops->unmap_page(dev, addr, size, direction);
1708 else
1709 dma_unmap_page(dev->dma_device, addr, size, direction);
1710}
1711
1712/**
1713 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses
1714 * @dev: The device for which the DMA addresses are to be created
1715 * @sg: The array of scatter/gather entries
1716 * @nents: The number of scatter/gather entries
1717 * @direction: The direction of the DMA
1718 */
1719static inline int ib_dma_map_sg(struct ib_device *dev,
1720 struct scatterlist *sg, int nents,
1721 enum dma_data_direction direction)
1722{
1723 if (dev->dma_ops)
1724 return dev->dma_ops->map_sg(dev, sg, nents, direction);
1725 return dma_map_sg(dev->dma_device, sg, nents, direction);
1726}
1727
1728/**
1729 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
1730 * @dev: The device for which the DMA addresses were created
1731 * @sg: The array of scatter/gather entries
1732 * @nents: The number of scatter/gather entries
1733 * @direction: The direction of the DMA
1734 */
1735static inline void ib_dma_unmap_sg(struct ib_device *dev,
1736 struct scatterlist *sg, int nents,
1737 enum dma_data_direction direction)
1738{
1739 if (dev->dma_ops)
1740 dev->dma_ops->unmap_sg(dev, sg, nents, direction);
1741 else
1742 dma_unmap_sg(dev->dma_device, sg, nents, direction);
1743}
1744
1745static inline int ib_dma_map_sg_attrs(struct ib_device *dev,
1746 struct scatterlist *sg, int nents,
1747 enum dma_data_direction direction,
1748 struct dma_attrs *attrs)
1749{
1750 return dma_map_sg_attrs(dev->dma_device, sg, nents, direction, attrs);
1751}
1752
1753static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev,
1754 struct scatterlist *sg, int nents,
1755 enum dma_data_direction direction,
1756 struct dma_attrs *attrs)
1757{
1758 dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, attrs);
1759}
1760/**
1761 * ib_sg_dma_address - Return the DMA address from a scatter/gather entry
1762 * @dev: The device for which the DMA addresses were created
1763 * @sg: The scatter/gather entry
1764 */
1765static inline u64 ib_sg_dma_address(struct ib_device *dev,
1766 struct scatterlist *sg)
1767{
1768 if (dev->dma_ops)
1769 return dev->dma_ops->dma_address(dev, sg);
1770 return sg_dma_address(sg);
1771}
1772
1773/**
1774 * ib_sg_dma_len - Return the DMA length from a scatter/gather entry
1775 * @dev: The device for which the DMA addresses were created
1776 * @sg: The scatter/gather entry
1777 */
1778static inline unsigned int ib_sg_dma_len(struct ib_device *dev,
1779 struct scatterlist *sg)
1780{
1781 if (dev->dma_ops)
1782 return dev->dma_ops->dma_len(dev, sg);
1783 return sg_dma_len(sg);
1784}
1785
1786/**
1787 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
1788 * @dev: The device for which the DMA address was created
1789 * @addr: The DMA address
1790 * @size: The size of the region in bytes
1791 * @dir: The direction of the DMA
1792 */
1793static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
1794 u64 addr,
1795 size_t size,
1796 enum dma_data_direction dir)
1797{
1798 if (dev->dma_ops)
1799 dev->dma_ops->sync_single_for_cpu(dev, addr, size, dir);
1800 else
1801 dma_sync_single_for_cpu(dev->dma_device, addr, size, dir);
1802}
1803
1804/**
1805 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
1806 * @dev: The device for which the DMA address was created
1807 * @addr: The DMA address
1808 * @size: The size of the region in bytes
1809 * @dir: The direction of the DMA
1810 */
1811static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
1812 u64 addr,
1813 size_t size,
1814 enum dma_data_direction dir)
1815{
1816 if (dev->dma_ops)
1817 dev->dma_ops->sync_single_for_device(dev, addr, size, dir);
1818 else
1819 dma_sync_single_for_device(dev->dma_device, addr, size, dir);
1820}
1821
1822/**
1823 * ib_dma_alloc_coherent - Allocate memory and map it for DMA
1824 * @dev: The device for which the DMA address is requested
1825 * @size: The size of the region to allocate in bytes
1826 * @dma_handle: A pointer for returning the DMA address of the region
1827 * @flag: memory allocator flags
1828 */
1829static inline void *ib_dma_alloc_coherent(struct ib_device *dev,
1830 size_t size,
1831 u64 *dma_handle,
1832 gfp_t flag)
1833{
1834 if (dev->dma_ops)
1835 return dev->dma_ops->alloc_coherent(dev, size, dma_handle, flag);
1836 else {
1837 dma_addr_t handle;
1838 void *ret;
1839
1840 ret = dma_alloc_coherent(dev->dma_device, size, &handle, flag);
1841 *dma_handle = handle;
1842 return ret;
1843 }
1844}
1845
1846/**
1847 * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent()
1848 * @dev: The device for which the DMA addresses were allocated
1849 * @size: The size of the region
1850 * @cpu_addr: the address returned by ib_dma_alloc_coherent()
1851 * @dma_handle: the DMA address returned by ib_dma_alloc_coherent()
1852 */
1853static inline void ib_dma_free_coherent(struct ib_device *dev,
1854 size_t size, void *cpu_addr,
1855 u64 dma_handle)
1856{
1857 if (dev->dma_ops)
1858 dev->dma_ops->free_coherent(dev, size, cpu_addr, dma_handle);
1859 else
1860 dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle);
1861}
1862
1863/**
1864 * ib_reg_phys_mr - Prepares a virtually addressed memory region for use
1865 * by an HCA.
1866 * @pd: The protection domain associated assigned to the registered region.
1867 * @phys_buf_array: Specifies a list of physical buffers to use in the
1868 * memory region.
1869 * @num_phys_buf: Specifies the size of the phys_buf_array.
1870 * @mr_access_flags: Specifies the memory access rights.
1871 * @iova_start: The offset of the region's starting I/O virtual address.
1872 */
1873struct ib_mr *ib_reg_phys_mr(struct ib_pd *pd,
1874 struct ib_phys_buf *phys_buf_array,
1875 int num_phys_buf,
1876 int mr_access_flags,
1877 u64 *iova_start);
1878
1879/**
1880 * ib_rereg_phys_mr - Modifies the attributes of an existing memory region.
1881 * Conceptually, this call performs the functions deregister memory region
1882 * followed by register physical memory region. Where possible,
1883 * resources are reused instead of deallocated and reallocated.
1884 * @mr: The memory region to modify.
1885 * @mr_rereg_mask: A bit-mask used to indicate which of the following
1886 * properties of the memory region are being modified.
1887 * @pd: If %IB_MR_REREG_PD is set in mr_rereg_mask, this field specifies
1888 * the new protection domain to associated with the memory region,
1889 * otherwise, this parameter is ignored.
1890 * @phys_buf_array: If %IB_MR_REREG_TRANS is set in mr_rereg_mask, this
1891 * field specifies a list of physical buffers to use in the new
1892 * translation, otherwise, this parameter is ignored.
1893 * @num_phys_buf: If %IB_MR_REREG_TRANS is set in mr_rereg_mask, this
1894 * field specifies the size of the phys_buf_array, otherwise, this
1895 * parameter is ignored.
1896 * @mr_access_flags: If %IB_MR_REREG_ACCESS is set in mr_rereg_mask, this
1897 * field specifies the new memory access rights, otherwise, this
1898 * parameter is ignored.
1899 * @iova_start: The offset of the region's starting I/O virtual address.
1900 */
1901int ib_rereg_phys_mr(struct ib_mr *mr,
1902 int mr_rereg_mask,
1903 struct ib_pd *pd,
1904 struct ib_phys_buf *phys_buf_array,
1905 int num_phys_buf,
1906 int mr_access_flags,
1907 u64 *iova_start);
1908
1909/**
1910 * ib_query_mr - Retrieves information about a specific memory region.
1911 * @mr: The memory region to retrieve information about.
1912 * @mr_attr: The attributes of the specified memory region.
1913 */
1914int ib_query_mr(struct ib_mr *mr, struct ib_mr_attr *mr_attr);
1915
1916/**
1917 * ib_dereg_mr - Deregisters a memory region and removes it from the
1918 * HCA translation table.
1919 * @mr: The memory region to deregister.
1920 */
1921int ib_dereg_mr(struct ib_mr *mr);
1922
1923/**
1924 * ib_alloc_fast_reg_mr - Allocates memory region usable with the
1925 * IB_WR_FAST_REG_MR send work request.
1926 * @pd: The protection domain associated with the region.
1927 * @max_page_list_len: requested max physical buffer list length to be
1928 * used with fast register work requests for this MR.
1929 */
1930struct ib_mr *ib_alloc_fast_reg_mr(struct ib_pd *pd, int max_page_list_len);
1931
1932/**
1933 * ib_alloc_fast_reg_page_list - Allocates a page list array
1934 * @device - ib device pointer.
1935 * @page_list_len - size of the page list array to be allocated.
1936 *
1937 * This allocates and returns a struct ib_fast_reg_page_list * and a
1938 * page_list array that is at least page_list_len in size. The actual
1939 * size is returned in max_page_list_len. The caller is responsible
1940 * for initializing the contents of the page_list array before posting
1941 * a send work request with the IB_WC_FAST_REG_MR opcode.
1942 *
1943 * The page_list array entries must be translated using one of the
1944 * ib_dma_*() functions just like the addresses passed to
1945 * ib_map_phys_fmr(). Once the ib_post_send() is issued, the struct
1946 * ib_fast_reg_page_list must not be modified by the caller until the
1947 * IB_WC_FAST_REG_MR work request completes.
1948 */
1949struct ib_fast_reg_page_list *ib_alloc_fast_reg_page_list(
1950 struct ib_device *device, int page_list_len);
1951
1952/**
1953 * ib_free_fast_reg_page_list - Deallocates a previously allocated
1954 * page list array.
1955 * @page_list - struct ib_fast_reg_page_list pointer to be deallocated.
1956 */
1957void ib_free_fast_reg_page_list(struct ib_fast_reg_page_list *page_list);
1958
1959/**
1960 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR
1961 * R_Key and L_Key.
1962 * @mr - struct ib_mr pointer to be updated.
1963 * @newkey - new key to be used.
1964 */
1965static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey)
1966{
1967 mr->lkey = (mr->lkey & 0xffffff00) | newkey;
1968 mr->rkey = (mr->rkey & 0xffffff00) | newkey;
1969}
1970
1971/**
1972 * ib_alloc_mw - Allocates a memory window.
1973 * @pd: The protection domain associated with the memory window.
1974 */
1975struct ib_mw *ib_alloc_mw(struct ib_pd *pd);
1976
1977/**
1978 * ib_bind_mw - Posts a work request to the send queue of the specified
1979 * QP, which binds the memory window to the given address range and
1980 * remote access attributes.
1981 * @qp: QP to post the bind work request on.
1982 * @mw: The memory window to bind.
1983 * @mw_bind: Specifies information about the memory window, including
1984 * its address range, remote access rights, and associated memory region.
1985 */
1986static inline int ib_bind_mw(struct ib_qp *qp,
1987 struct ib_mw *mw,
1988 struct ib_mw_bind *mw_bind)
1989{
1990 /* XXX reference counting in corresponding MR? */
1991 return mw->device->bind_mw ?
1992 mw->device->bind_mw(qp, mw, mw_bind) :
1993 -ENOSYS;
1994}
1995
1996/**
1997 * ib_dealloc_mw - Deallocates a memory window.
1998 * @mw: The memory window to deallocate.
1999 */
2000int ib_dealloc_mw(struct ib_mw *mw);
2001
2002/**
2003 * ib_alloc_fmr - Allocates a unmapped fast memory region.
2004 * @pd: The protection domain associated with the unmapped region.
2005 * @mr_access_flags: Specifies the memory access rights.
2006 * @fmr_attr: Attributes of the unmapped region.
2007 *
2008 * A fast memory region must be mapped before it can be used as part of
2009 * a work request.
2010 */
2011struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
2012 int mr_access_flags,
2013 struct ib_fmr_attr *fmr_attr);
2014
2015/**
2016 * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region.
2017 * @fmr: The fast memory region to associate with the pages.
2018 * @page_list: An array of physical pages to map to the fast memory region.
2019 * @list_len: The number of pages in page_list.
2020 * @iova: The I/O virtual address to use with the mapped region.
2021 */
2022static inline int ib_map_phys_fmr(struct ib_fmr *fmr,
2023 u64 *page_list, int list_len,
2024 u64 iova)
2025{
2026 return fmr->device->map_phys_fmr(fmr, page_list, list_len, iova);
2027}
2028
2029/**
2030 * ib_unmap_fmr - Removes the mapping from a list of fast memory regions.
2031 * @fmr_list: A linked list of fast memory regions to unmap.
2032 */
2033int ib_unmap_fmr(struct list_head *fmr_list);
2034
2035/**
2036 * ib_dealloc_fmr - Deallocates a fast memory region.
2037 * @fmr: The fast memory region to deallocate.
2038 */
2039int ib_dealloc_fmr(struct ib_fmr *fmr);
2040
2041/**
2042 * ib_attach_mcast - Attaches the specified QP to a multicast group.
2043 * @qp: QP to attach to the multicast group. The QP must be type
2044 * IB_QPT_UD.
2045 * @gid: Multicast group GID.
2046 * @lid: Multicast group LID in host byte order.
2047 *
2048 * In order to send and receive multicast packets, subnet
2049 * administration must have created the multicast group and configured
2050 * the fabric appropriately. The port associated with the specified
2051 * QP must also be a member of the multicast group.
2052 */
2053int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2054
2055/**
2056 * ib_detach_mcast - Detaches the specified QP from a multicast group.
2057 * @qp: QP to detach from the multicast group.
2058 * @gid: Multicast group GID.
2059 * @lid: Multicast group LID in host byte order.
2060 */
2061int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2062
2063#endif /* IB_VERBS_H */
1/*
2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved.
3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved.
4 * Copyright (c) 2004 Intel Corporation. All rights reserved.
5 * Copyright (c) 2004 Topspin Corporation. All rights reserved.
6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved.
7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
8 * Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved.
9 *
10 * This software is available to you under a choice of one of two
11 * licenses. You may choose to be licensed under the terms of the GNU
12 * General Public License (GPL) Version 2, available from the file
13 * COPYING in the main directory of this source tree, or the
14 * OpenIB.org BSD license below:
15 *
16 * Redistribution and use in source and binary forms, with or
17 * without modification, are permitted provided that the following
18 * conditions are met:
19 *
20 * - Redistributions of source code must retain the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer.
23 *
24 * - Redistributions in binary form must reproduce the above
25 * copyright notice, this list of conditions and the following
26 * disclaimer in the documentation and/or other materials
27 * provided with the distribution.
28 *
29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36 * SOFTWARE.
37 */
38
39#if !defined(IB_VERBS_H)
40#define IB_VERBS_H
41
42#include <linux/types.h>
43#include <linux/device.h>
44#include <linux/mm.h>
45#include <linux/dma-mapping.h>
46#include <linux/kref.h>
47#include <linux/list.h>
48#include <linux/rwsem.h>
49#include <linux/scatterlist.h>
50#include <linux/workqueue.h>
51#include <linux/socket.h>
52#include <linux/irq_poll.h>
53#include <uapi/linux/if_ether.h>
54#include <net/ipv6.h>
55#include <net/ip.h>
56#include <linux/string.h>
57#include <linux/slab.h>
58#include <linux/netdevice.h>
59
60#include <linux/if_link.h>
61#include <linux/atomic.h>
62#include <linux/mmu_notifier.h>
63#include <linux/uaccess.h>
64#include <linux/cgroup_rdma.h>
65#include <uapi/rdma/ib_user_verbs.h>
66#include <rdma/restrack.h>
67#include <uapi/rdma/rdma_user_ioctl.h>
68#include <uapi/rdma/ib_user_ioctl_verbs.h>
69
70#define IB_FW_VERSION_NAME_MAX ETHTOOL_FWVERS_LEN
71
72extern struct workqueue_struct *ib_wq;
73extern struct workqueue_struct *ib_comp_wq;
74
75union ib_gid {
76 u8 raw[16];
77 struct {
78 __be64 subnet_prefix;
79 __be64 interface_id;
80 } global;
81};
82
83extern union ib_gid zgid;
84
85enum ib_gid_type {
86 /* If link layer is Ethernet, this is RoCE V1 */
87 IB_GID_TYPE_IB = 0,
88 IB_GID_TYPE_ROCE = 0,
89 IB_GID_TYPE_ROCE_UDP_ENCAP = 1,
90 IB_GID_TYPE_SIZE
91};
92
93#define ROCE_V2_UDP_DPORT 4791
94struct ib_gid_attr {
95 struct net_device *ndev;
96 struct ib_device *device;
97 enum ib_gid_type gid_type;
98 u16 index;
99 u8 port_num;
100};
101
102enum rdma_node_type {
103 /* IB values map to NodeInfo:NodeType. */
104 RDMA_NODE_IB_CA = 1,
105 RDMA_NODE_IB_SWITCH,
106 RDMA_NODE_IB_ROUTER,
107 RDMA_NODE_RNIC,
108 RDMA_NODE_USNIC,
109 RDMA_NODE_USNIC_UDP,
110};
111
112enum {
113 /* set the local administered indication */
114 IB_SA_WELL_KNOWN_GUID = BIT_ULL(57) | 2,
115};
116
117enum rdma_transport_type {
118 RDMA_TRANSPORT_IB,
119 RDMA_TRANSPORT_IWARP,
120 RDMA_TRANSPORT_USNIC,
121 RDMA_TRANSPORT_USNIC_UDP
122};
123
124enum rdma_protocol_type {
125 RDMA_PROTOCOL_IB,
126 RDMA_PROTOCOL_IBOE,
127 RDMA_PROTOCOL_IWARP,
128 RDMA_PROTOCOL_USNIC_UDP
129};
130
131__attribute_const__ enum rdma_transport_type
132rdma_node_get_transport(enum rdma_node_type node_type);
133
134enum rdma_network_type {
135 RDMA_NETWORK_IB,
136 RDMA_NETWORK_ROCE_V1 = RDMA_NETWORK_IB,
137 RDMA_NETWORK_IPV4,
138 RDMA_NETWORK_IPV6
139};
140
141static inline enum ib_gid_type ib_network_to_gid_type(enum rdma_network_type network_type)
142{
143 if (network_type == RDMA_NETWORK_IPV4 ||
144 network_type == RDMA_NETWORK_IPV6)
145 return IB_GID_TYPE_ROCE_UDP_ENCAP;
146
147 /* IB_GID_TYPE_IB same as RDMA_NETWORK_ROCE_V1 */
148 return IB_GID_TYPE_IB;
149}
150
151static inline enum rdma_network_type ib_gid_to_network_type(enum ib_gid_type gid_type,
152 union ib_gid *gid)
153{
154 if (gid_type == IB_GID_TYPE_IB)
155 return RDMA_NETWORK_IB;
156
157 if (ipv6_addr_v4mapped((struct in6_addr *)gid))
158 return RDMA_NETWORK_IPV4;
159 else
160 return RDMA_NETWORK_IPV6;
161}
162
163enum rdma_link_layer {
164 IB_LINK_LAYER_UNSPECIFIED,
165 IB_LINK_LAYER_INFINIBAND,
166 IB_LINK_LAYER_ETHERNET,
167};
168
169enum ib_device_cap_flags {
170 IB_DEVICE_RESIZE_MAX_WR = (1 << 0),
171 IB_DEVICE_BAD_PKEY_CNTR = (1 << 1),
172 IB_DEVICE_BAD_QKEY_CNTR = (1 << 2),
173 IB_DEVICE_RAW_MULTI = (1 << 3),
174 IB_DEVICE_AUTO_PATH_MIG = (1 << 4),
175 IB_DEVICE_CHANGE_PHY_PORT = (1 << 5),
176 IB_DEVICE_UD_AV_PORT_ENFORCE = (1 << 6),
177 IB_DEVICE_CURR_QP_STATE_MOD = (1 << 7),
178 IB_DEVICE_SHUTDOWN_PORT = (1 << 8),
179 /* Not in use, former INIT_TYPE = (1 << 9),*/
180 IB_DEVICE_PORT_ACTIVE_EVENT = (1 << 10),
181 IB_DEVICE_SYS_IMAGE_GUID = (1 << 11),
182 IB_DEVICE_RC_RNR_NAK_GEN = (1 << 12),
183 IB_DEVICE_SRQ_RESIZE = (1 << 13),
184 IB_DEVICE_N_NOTIFY_CQ = (1 << 14),
185
186 /*
187 * This device supports a per-device lkey or stag that can be
188 * used without performing a memory registration for the local
189 * memory. Note that ULPs should never check this flag, but
190 * instead of use the local_dma_lkey flag in the ib_pd structure,
191 * which will always contain a usable lkey.
192 */
193 IB_DEVICE_LOCAL_DMA_LKEY = (1 << 15),
194 /* Reserved, old SEND_W_INV = (1 << 16),*/
195 IB_DEVICE_MEM_WINDOW = (1 << 17),
196 /*
197 * Devices should set IB_DEVICE_UD_IP_SUM if they support
198 * insertion of UDP and TCP checksum on outgoing UD IPoIB
199 * messages and can verify the validity of checksum for
200 * incoming messages. Setting this flag implies that the
201 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
202 */
203 IB_DEVICE_UD_IP_CSUM = (1 << 18),
204 IB_DEVICE_UD_TSO = (1 << 19),
205 IB_DEVICE_XRC = (1 << 20),
206
207 /*
208 * This device supports the IB "base memory management extension",
209 * which includes support for fast registrations (IB_WR_REG_MR,
210 * IB_WR_LOCAL_INV and IB_WR_SEND_WITH_INV verbs). This flag should
211 * also be set by any iWarp device which must support FRs to comply
212 * to the iWarp verbs spec. iWarp devices also support the
213 * IB_WR_RDMA_READ_WITH_INV verb for RDMA READs that invalidate the
214 * stag.
215 */
216 IB_DEVICE_MEM_MGT_EXTENSIONS = (1 << 21),
217 IB_DEVICE_BLOCK_MULTICAST_LOOPBACK = (1 << 22),
218 IB_DEVICE_MEM_WINDOW_TYPE_2A = (1 << 23),
219 IB_DEVICE_MEM_WINDOW_TYPE_2B = (1 << 24),
220 IB_DEVICE_RC_IP_CSUM = (1 << 25),
221 /* Deprecated. Please use IB_RAW_PACKET_CAP_IP_CSUM. */
222 IB_DEVICE_RAW_IP_CSUM = (1 << 26),
223 /*
224 * Devices should set IB_DEVICE_CROSS_CHANNEL if they
225 * support execution of WQEs that involve synchronization
226 * of I/O operations with single completion queue managed
227 * by hardware.
228 */
229 IB_DEVICE_CROSS_CHANNEL = (1 << 27),
230 IB_DEVICE_MANAGED_FLOW_STEERING = (1 << 29),
231 IB_DEVICE_SIGNATURE_HANDOVER = (1 << 30),
232 IB_DEVICE_ON_DEMAND_PAGING = (1ULL << 31),
233 IB_DEVICE_SG_GAPS_REG = (1ULL << 32),
234 IB_DEVICE_VIRTUAL_FUNCTION = (1ULL << 33),
235 /* Deprecated. Please use IB_RAW_PACKET_CAP_SCATTER_FCS. */
236 IB_DEVICE_RAW_SCATTER_FCS = (1ULL << 34),
237 IB_DEVICE_RDMA_NETDEV_OPA_VNIC = (1ULL << 35),
238 /* The device supports padding incoming writes to cacheline. */
239 IB_DEVICE_PCI_WRITE_END_PADDING = (1ULL << 36),
240};
241
242enum ib_signature_prot_cap {
243 IB_PROT_T10DIF_TYPE_1 = 1,
244 IB_PROT_T10DIF_TYPE_2 = 1 << 1,
245 IB_PROT_T10DIF_TYPE_3 = 1 << 2,
246};
247
248enum ib_signature_guard_cap {
249 IB_GUARD_T10DIF_CRC = 1,
250 IB_GUARD_T10DIF_CSUM = 1 << 1,
251};
252
253enum ib_atomic_cap {
254 IB_ATOMIC_NONE,
255 IB_ATOMIC_HCA,
256 IB_ATOMIC_GLOB
257};
258
259enum ib_odp_general_cap_bits {
260 IB_ODP_SUPPORT = 1 << 0,
261 IB_ODP_SUPPORT_IMPLICIT = 1 << 1,
262};
263
264enum ib_odp_transport_cap_bits {
265 IB_ODP_SUPPORT_SEND = 1 << 0,
266 IB_ODP_SUPPORT_RECV = 1 << 1,
267 IB_ODP_SUPPORT_WRITE = 1 << 2,
268 IB_ODP_SUPPORT_READ = 1 << 3,
269 IB_ODP_SUPPORT_ATOMIC = 1 << 4,
270};
271
272struct ib_odp_caps {
273 uint64_t general_caps;
274 struct {
275 uint32_t rc_odp_caps;
276 uint32_t uc_odp_caps;
277 uint32_t ud_odp_caps;
278 } per_transport_caps;
279};
280
281struct ib_rss_caps {
282 /* Corresponding bit will be set if qp type from
283 * 'enum ib_qp_type' is supported, e.g.
284 * supported_qpts |= 1 << IB_QPT_UD
285 */
286 u32 supported_qpts;
287 u32 max_rwq_indirection_tables;
288 u32 max_rwq_indirection_table_size;
289};
290
291enum ib_tm_cap_flags {
292 /* Support tag matching on RC transport */
293 IB_TM_CAP_RC = 1 << 0,
294};
295
296struct ib_tm_caps {
297 /* Max size of RNDV header */
298 u32 max_rndv_hdr_size;
299 /* Max number of entries in tag matching list */
300 u32 max_num_tags;
301 /* From enum ib_tm_cap_flags */
302 u32 flags;
303 /* Max number of outstanding list operations */
304 u32 max_ops;
305 /* Max number of SGE in tag matching entry */
306 u32 max_sge;
307};
308
309struct ib_cq_init_attr {
310 unsigned int cqe;
311 int comp_vector;
312 u32 flags;
313};
314
315enum ib_cq_attr_mask {
316 IB_CQ_MODERATE = 1 << 0,
317};
318
319struct ib_cq_caps {
320 u16 max_cq_moderation_count;
321 u16 max_cq_moderation_period;
322};
323
324struct ib_dm_mr_attr {
325 u64 length;
326 u64 offset;
327 u32 access_flags;
328};
329
330struct ib_dm_alloc_attr {
331 u64 length;
332 u32 alignment;
333 u32 flags;
334};
335
336struct ib_device_attr {
337 u64 fw_ver;
338 __be64 sys_image_guid;
339 u64 max_mr_size;
340 u64 page_size_cap;
341 u32 vendor_id;
342 u32 vendor_part_id;
343 u32 hw_ver;
344 int max_qp;
345 int max_qp_wr;
346 u64 device_cap_flags;
347 int max_sge;
348 int max_sge_rd;
349 int max_cq;
350 int max_cqe;
351 int max_mr;
352 int max_pd;
353 int max_qp_rd_atom;
354 int max_ee_rd_atom;
355 int max_res_rd_atom;
356 int max_qp_init_rd_atom;
357 int max_ee_init_rd_atom;
358 enum ib_atomic_cap atomic_cap;
359 enum ib_atomic_cap masked_atomic_cap;
360 int max_ee;
361 int max_rdd;
362 int max_mw;
363 int max_raw_ipv6_qp;
364 int max_raw_ethy_qp;
365 int max_mcast_grp;
366 int max_mcast_qp_attach;
367 int max_total_mcast_qp_attach;
368 int max_ah;
369 int max_fmr;
370 int max_map_per_fmr;
371 int max_srq;
372 int max_srq_wr;
373 int max_srq_sge;
374 unsigned int max_fast_reg_page_list_len;
375 u16 max_pkeys;
376 u8 local_ca_ack_delay;
377 int sig_prot_cap;
378 int sig_guard_cap;
379 struct ib_odp_caps odp_caps;
380 uint64_t timestamp_mask;
381 uint64_t hca_core_clock; /* in KHZ */
382 struct ib_rss_caps rss_caps;
383 u32 max_wq_type_rq;
384 u32 raw_packet_caps; /* Use ib_raw_packet_caps enum */
385 struct ib_tm_caps tm_caps;
386 struct ib_cq_caps cq_caps;
387 u64 max_dm_size;
388};
389
390enum ib_mtu {
391 IB_MTU_256 = 1,
392 IB_MTU_512 = 2,
393 IB_MTU_1024 = 3,
394 IB_MTU_2048 = 4,
395 IB_MTU_4096 = 5
396};
397
398static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
399{
400 switch (mtu) {
401 case IB_MTU_256: return 256;
402 case IB_MTU_512: return 512;
403 case IB_MTU_1024: return 1024;
404 case IB_MTU_2048: return 2048;
405 case IB_MTU_4096: return 4096;
406 default: return -1;
407 }
408}
409
410static inline enum ib_mtu ib_mtu_int_to_enum(int mtu)
411{
412 if (mtu >= 4096)
413 return IB_MTU_4096;
414 else if (mtu >= 2048)
415 return IB_MTU_2048;
416 else if (mtu >= 1024)
417 return IB_MTU_1024;
418 else if (mtu >= 512)
419 return IB_MTU_512;
420 else
421 return IB_MTU_256;
422}
423
424enum ib_port_state {
425 IB_PORT_NOP = 0,
426 IB_PORT_DOWN = 1,
427 IB_PORT_INIT = 2,
428 IB_PORT_ARMED = 3,
429 IB_PORT_ACTIVE = 4,
430 IB_PORT_ACTIVE_DEFER = 5
431};
432
433enum ib_port_cap_flags {
434 IB_PORT_SM = 1 << 1,
435 IB_PORT_NOTICE_SUP = 1 << 2,
436 IB_PORT_TRAP_SUP = 1 << 3,
437 IB_PORT_OPT_IPD_SUP = 1 << 4,
438 IB_PORT_AUTO_MIGR_SUP = 1 << 5,
439 IB_PORT_SL_MAP_SUP = 1 << 6,
440 IB_PORT_MKEY_NVRAM = 1 << 7,
441 IB_PORT_PKEY_NVRAM = 1 << 8,
442 IB_PORT_LED_INFO_SUP = 1 << 9,
443 IB_PORT_SM_DISABLED = 1 << 10,
444 IB_PORT_SYS_IMAGE_GUID_SUP = 1 << 11,
445 IB_PORT_PKEY_SW_EXT_PORT_TRAP_SUP = 1 << 12,
446 IB_PORT_EXTENDED_SPEEDS_SUP = 1 << 14,
447 IB_PORT_CM_SUP = 1 << 16,
448 IB_PORT_SNMP_TUNNEL_SUP = 1 << 17,
449 IB_PORT_REINIT_SUP = 1 << 18,
450 IB_PORT_DEVICE_MGMT_SUP = 1 << 19,
451 IB_PORT_VENDOR_CLASS_SUP = 1 << 20,
452 IB_PORT_DR_NOTICE_SUP = 1 << 21,
453 IB_PORT_CAP_MASK_NOTICE_SUP = 1 << 22,
454 IB_PORT_BOOT_MGMT_SUP = 1 << 23,
455 IB_PORT_LINK_LATENCY_SUP = 1 << 24,
456 IB_PORT_CLIENT_REG_SUP = 1 << 25,
457 IB_PORT_IP_BASED_GIDS = 1 << 26,
458};
459
460enum ib_port_width {
461 IB_WIDTH_1X = 1,
462 IB_WIDTH_4X = 2,
463 IB_WIDTH_8X = 4,
464 IB_WIDTH_12X = 8
465};
466
467static inline int ib_width_enum_to_int(enum ib_port_width width)
468{
469 switch (width) {
470 case IB_WIDTH_1X: return 1;
471 case IB_WIDTH_4X: return 4;
472 case IB_WIDTH_8X: return 8;
473 case IB_WIDTH_12X: return 12;
474 default: return -1;
475 }
476}
477
478enum ib_port_speed {
479 IB_SPEED_SDR = 1,
480 IB_SPEED_DDR = 2,
481 IB_SPEED_QDR = 4,
482 IB_SPEED_FDR10 = 8,
483 IB_SPEED_FDR = 16,
484 IB_SPEED_EDR = 32,
485 IB_SPEED_HDR = 64
486};
487
488/**
489 * struct rdma_hw_stats
490 * @lock - Mutex to protect parallel write access to lifespan and values
491 * of counters, which are 64bits and not guaranteeed to be written
492 * atomicaly on 32bits systems.
493 * @timestamp - Used by the core code to track when the last update was
494 * @lifespan - Used by the core code to determine how old the counters
495 * should be before being updated again. Stored in jiffies, defaults
496 * to 10 milliseconds, drivers can override the default be specifying
497 * their own value during their allocation routine.
498 * @name - Array of pointers to static names used for the counters in
499 * directory.
500 * @num_counters - How many hardware counters there are. If name is
501 * shorter than this number, a kernel oops will result. Driver authors
502 * are encouraged to leave BUILD_BUG_ON(ARRAY_SIZE(@name) < num_counters)
503 * in their code to prevent this.
504 * @value - Array of u64 counters that are accessed by the sysfs code and
505 * filled in by the drivers get_stats routine
506 */
507struct rdma_hw_stats {
508 struct mutex lock; /* Protect lifespan and values[] */
509 unsigned long timestamp;
510 unsigned long lifespan;
511 const char * const *names;
512 int num_counters;
513 u64 value[];
514};
515
516#define RDMA_HW_STATS_DEFAULT_LIFESPAN 10
517/**
518 * rdma_alloc_hw_stats_struct - Helper function to allocate dynamic struct
519 * for drivers.
520 * @names - Array of static const char *
521 * @num_counters - How many elements in array
522 * @lifespan - How many milliseconds between updates
523 */
524static inline struct rdma_hw_stats *rdma_alloc_hw_stats_struct(
525 const char * const *names, int num_counters,
526 unsigned long lifespan)
527{
528 struct rdma_hw_stats *stats;
529
530 stats = kzalloc(sizeof(*stats) + num_counters * sizeof(u64),
531 GFP_KERNEL);
532 if (!stats)
533 return NULL;
534 stats->names = names;
535 stats->num_counters = num_counters;
536 stats->lifespan = msecs_to_jiffies(lifespan);
537
538 return stats;
539}
540
541
542/* Define bits for the various functionality this port needs to be supported by
543 * the core.
544 */
545/* Management 0x00000FFF */
546#define RDMA_CORE_CAP_IB_MAD 0x00000001
547#define RDMA_CORE_CAP_IB_SMI 0x00000002
548#define RDMA_CORE_CAP_IB_CM 0x00000004
549#define RDMA_CORE_CAP_IW_CM 0x00000008
550#define RDMA_CORE_CAP_IB_SA 0x00000010
551#define RDMA_CORE_CAP_OPA_MAD 0x00000020
552
553/* Address format 0x000FF000 */
554#define RDMA_CORE_CAP_AF_IB 0x00001000
555#define RDMA_CORE_CAP_ETH_AH 0x00002000
556#define RDMA_CORE_CAP_OPA_AH 0x00004000
557
558/* Protocol 0xFFF00000 */
559#define RDMA_CORE_CAP_PROT_IB 0x00100000
560#define RDMA_CORE_CAP_PROT_ROCE 0x00200000
561#define RDMA_CORE_CAP_PROT_IWARP 0x00400000
562#define RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP 0x00800000
563#define RDMA_CORE_CAP_PROT_RAW_PACKET 0x01000000
564#define RDMA_CORE_CAP_PROT_USNIC 0x02000000
565
566#define RDMA_CORE_PORT_IBA_IB (RDMA_CORE_CAP_PROT_IB \
567 | RDMA_CORE_CAP_IB_MAD \
568 | RDMA_CORE_CAP_IB_SMI \
569 | RDMA_CORE_CAP_IB_CM \
570 | RDMA_CORE_CAP_IB_SA \
571 | RDMA_CORE_CAP_AF_IB)
572#define RDMA_CORE_PORT_IBA_ROCE (RDMA_CORE_CAP_PROT_ROCE \
573 | RDMA_CORE_CAP_IB_MAD \
574 | RDMA_CORE_CAP_IB_CM \
575 | RDMA_CORE_CAP_AF_IB \
576 | RDMA_CORE_CAP_ETH_AH)
577#define RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP \
578 (RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP \
579 | RDMA_CORE_CAP_IB_MAD \
580 | RDMA_CORE_CAP_IB_CM \
581 | RDMA_CORE_CAP_AF_IB \
582 | RDMA_CORE_CAP_ETH_AH)
583#define RDMA_CORE_PORT_IWARP (RDMA_CORE_CAP_PROT_IWARP \
584 | RDMA_CORE_CAP_IW_CM)
585#define RDMA_CORE_PORT_INTEL_OPA (RDMA_CORE_PORT_IBA_IB \
586 | RDMA_CORE_CAP_OPA_MAD)
587
588#define RDMA_CORE_PORT_RAW_PACKET (RDMA_CORE_CAP_PROT_RAW_PACKET)
589
590#define RDMA_CORE_PORT_USNIC (RDMA_CORE_CAP_PROT_USNIC)
591
592struct ib_port_attr {
593 u64 subnet_prefix;
594 enum ib_port_state state;
595 enum ib_mtu max_mtu;
596 enum ib_mtu active_mtu;
597 int gid_tbl_len;
598 u32 port_cap_flags;
599 u32 max_msg_sz;
600 u32 bad_pkey_cntr;
601 u32 qkey_viol_cntr;
602 u16 pkey_tbl_len;
603 u32 sm_lid;
604 u32 lid;
605 u8 lmc;
606 u8 max_vl_num;
607 u8 sm_sl;
608 u8 subnet_timeout;
609 u8 init_type_reply;
610 u8 active_width;
611 u8 active_speed;
612 u8 phys_state;
613 bool grh_required;
614};
615
616enum ib_device_modify_flags {
617 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0,
618 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1
619};
620
621#define IB_DEVICE_NODE_DESC_MAX 64
622
623struct ib_device_modify {
624 u64 sys_image_guid;
625 char node_desc[IB_DEVICE_NODE_DESC_MAX];
626};
627
628enum ib_port_modify_flags {
629 IB_PORT_SHUTDOWN = 1,
630 IB_PORT_INIT_TYPE = (1<<2),
631 IB_PORT_RESET_QKEY_CNTR = (1<<3),
632 IB_PORT_OPA_MASK_CHG = (1<<4)
633};
634
635struct ib_port_modify {
636 u32 set_port_cap_mask;
637 u32 clr_port_cap_mask;
638 u8 init_type;
639};
640
641enum ib_event_type {
642 IB_EVENT_CQ_ERR,
643 IB_EVENT_QP_FATAL,
644 IB_EVENT_QP_REQ_ERR,
645 IB_EVENT_QP_ACCESS_ERR,
646 IB_EVENT_COMM_EST,
647 IB_EVENT_SQ_DRAINED,
648 IB_EVENT_PATH_MIG,
649 IB_EVENT_PATH_MIG_ERR,
650 IB_EVENT_DEVICE_FATAL,
651 IB_EVENT_PORT_ACTIVE,
652 IB_EVENT_PORT_ERR,
653 IB_EVENT_LID_CHANGE,
654 IB_EVENT_PKEY_CHANGE,
655 IB_EVENT_SM_CHANGE,
656 IB_EVENT_SRQ_ERR,
657 IB_EVENT_SRQ_LIMIT_REACHED,
658 IB_EVENT_QP_LAST_WQE_REACHED,
659 IB_EVENT_CLIENT_REREGISTER,
660 IB_EVENT_GID_CHANGE,
661 IB_EVENT_WQ_FATAL,
662};
663
664const char *__attribute_const__ ib_event_msg(enum ib_event_type event);
665
666struct ib_event {
667 struct ib_device *device;
668 union {
669 struct ib_cq *cq;
670 struct ib_qp *qp;
671 struct ib_srq *srq;
672 struct ib_wq *wq;
673 u8 port_num;
674 } element;
675 enum ib_event_type event;
676};
677
678struct ib_event_handler {
679 struct ib_device *device;
680 void (*handler)(struct ib_event_handler *, struct ib_event *);
681 struct list_head list;
682};
683
684#define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \
685 do { \
686 (_ptr)->device = _device; \
687 (_ptr)->handler = _handler; \
688 INIT_LIST_HEAD(&(_ptr)->list); \
689 } while (0)
690
691struct ib_global_route {
692 union ib_gid dgid;
693 u32 flow_label;
694 u8 sgid_index;
695 u8 hop_limit;
696 u8 traffic_class;
697};
698
699struct ib_grh {
700 __be32 version_tclass_flow;
701 __be16 paylen;
702 u8 next_hdr;
703 u8 hop_limit;
704 union ib_gid sgid;
705 union ib_gid dgid;
706};
707
708union rdma_network_hdr {
709 struct ib_grh ibgrh;
710 struct {
711 /* The IB spec states that if it's IPv4, the header
712 * is located in the last 20 bytes of the header.
713 */
714 u8 reserved[20];
715 struct iphdr roce4grh;
716 };
717};
718
719#define IB_QPN_MASK 0xFFFFFF
720
721enum {
722 IB_MULTICAST_QPN = 0xffffff
723};
724
725#define IB_LID_PERMISSIVE cpu_to_be16(0xFFFF)
726#define IB_MULTICAST_LID_BASE cpu_to_be16(0xC000)
727
728enum ib_ah_flags {
729 IB_AH_GRH = 1
730};
731
732enum ib_rate {
733 IB_RATE_PORT_CURRENT = 0,
734 IB_RATE_2_5_GBPS = 2,
735 IB_RATE_5_GBPS = 5,
736 IB_RATE_10_GBPS = 3,
737 IB_RATE_20_GBPS = 6,
738 IB_RATE_30_GBPS = 4,
739 IB_RATE_40_GBPS = 7,
740 IB_RATE_60_GBPS = 8,
741 IB_RATE_80_GBPS = 9,
742 IB_RATE_120_GBPS = 10,
743 IB_RATE_14_GBPS = 11,
744 IB_RATE_56_GBPS = 12,
745 IB_RATE_112_GBPS = 13,
746 IB_RATE_168_GBPS = 14,
747 IB_RATE_25_GBPS = 15,
748 IB_RATE_100_GBPS = 16,
749 IB_RATE_200_GBPS = 17,
750 IB_RATE_300_GBPS = 18
751};
752
753/**
754 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the
755 * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be
756 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
757 * @rate: rate to convert.
758 */
759__attribute_const__ int ib_rate_to_mult(enum ib_rate rate);
760
761/**
762 * ib_rate_to_mbps - Convert the IB rate enum to Mbps.
763 * For example, IB_RATE_2_5_GBPS will be converted to 2500.
764 * @rate: rate to convert.
765 */
766__attribute_const__ int ib_rate_to_mbps(enum ib_rate rate);
767
768
769/**
770 * enum ib_mr_type - memory region type
771 * @IB_MR_TYPE_MEM_REG: memory region that is used for
772 * normal registration
773 * @IB_MR_TYPE_SIGNATURE: memory region that is used for
774 * signature operations (data-integrity
775 * capable regions)
776 * @IB_MR_TYPE_SG_GAPS: memory region that is capable to
777 * register any arbitrary sg lists (without
778 * the normal mr constraints - see
779 * ib_map_mr_sg)
780 */
781enum ib_mr_type {
782 IB_MR_TYPE_MEM_REG,
783 IB_MR_TYPE_SIGNATURE,
784 IB_MR_TYPE_SG_GAPS,
785};
786
787/**
788 * Signature types
789 * IB_SIG_TYPE_NONE: Unprotected.
790 * IB_SIG_TYPE_T10_DIF: Type T10-DIF
791 */
792enum ib_signature_type {
793 IB_SIG_TYPE_NONE,
794 IB_SIG_TYPE_T10_DIF,
795};
796
797/**
798 * Signature T10-DIF block-guard types
799 * IB_T10DIF_CRC: Corresponds to T10-PI mandated CRC checksum rules.
800 * IB_T10DIF_CSUM: Corresponds to IP checksum rules.
801 */
802enum ib_t10_dif_bg_type {
803 IB_T10DIF_CRC,
804 IB_T10DIF_CSUM
805};
806
807/**
808 * struct ib_t10_dif_domain - Parameters specific for T10-DIF
809 * domain.
810 * @bg_type: T10-DIF block guard type (CRC|CSUM)
811 * @pi_interval: protection information interval.
812 * @bg: seed of guard computation.
813 * @app_tag: application tag of guard block
814 * @ref_tag: initial guard block reference tag.
815 * @ref_remap: Indicate wethear the reftag increments each block
816 * @app_escape: Indicate to skip block check if apptag=0xffff
817 * @ref_escape: Indicate to skip block check if reftag=0xffffffff
818 * @apptag_check_mask: check bitmask of application tag.
819 */
820struct ib_t10_dif_domain {
821 enum ib_t10_dif_bg_type bg_type;
822 u16 pi_interval;
823 u16 bg;
824 u16 app_tag;
825 u32 ref_tag;
826 bool ref_remap;
827 bool app_escape;
828 bool ref_escape;
829 u16 apptag_check_mask;
830};
831
832/**
833 * struct ib_sig_domain - Parameters for signature domain
834 * @sig_type: specific signauture type
835 * @sig: union of all signature domain attributes that may
836 * be used to set domain layout.
837 */
838struct ib_sig_domain {
839 enum ib_signature_type sig_type;
840 union {
841 struct ib_t10_dif_domain dif;
842 } sig;
843};
844
845/**
846 * struct ib_sig_attrs - Parameters for signature handover operation
847 * @check_mask: bitmask for signature byte check (8 bytes)
848 * @mem: memory domain layout desciptor.
849 * @wire: wire domain layout desciptor.
850 */
851struct ib_sig_attrs {
852 u8 check_mask;
853 struct ib_sig_domain mem;
854 struct ib_sig_domain wire;
855};
856
857enum ib_sig_err_type {
858 IB_SIG_BAD_GUARD,
859 IB_SIG_BAD_REFTAG,
860 IB_SIG_BAD_APPTAG,
861};
862
863/**
864 * struct ib_sig_err - signature error descriptor
865 */
866struct ib_sig_err {
867 enum ib_sig_err_type err_type;
868 u32 expected;
869 u32 actual;
870 u64 sig_err_offset;
871 u32 key;
872};
873
874enum ib_mr_status_check {
875 IB_MR_CHECK_SIG_STATUS = 1,
876};
877
878/**
879 * struct ib_mr_status - Memory region status container
880 *
881 * @fail_status: Bitmask of MR checks status. For each
882 * failed check a corresponding status bit is set.
883 * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS
884 * failure.
885 */
886struct ib_mr_status {
887 u32 fail_status;
888 struct ib_sig_err sig_err;
889};
890
891/**
892 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
893 * enum.
894 * @mult: multiple to convert.
895 */
896__attribute_const__ enum ib_rate mult_to_ib_rate(int mult);
897
898enum rdma_ah_attr_type {
899 RDMA_AH_ATTR_TYPE_UNDEFINED,
900 RDMA_AH_ATTR_TYPE_IB,
901 RDMA_AH_ATTR_TYPE_ROCE,
902 RDMA_AH_ATTR_TYPE_OPA,
903};
904
905struct ib_ah_attr {
906 u16 dlid;
907 u8 src_path_bits;
908};
909
910struct roce_ah_attr {
911 u8 dmac[ETH_ALEN];
912};
913
914struct opa_ah_attr {
915 u32 dlid;
916 u8 src_path_bits;
917 bool make_grd;
918};
919
920struct rdma_ah_attr {
921 struct ib_global_route grh;
922 u8 sl;
923 u8 static_rate;
924 u8 port_num;
925 u8 ah_flags;
926 enum rdma_ah_attr_type type;
927 union {
928 struct ib_ah_attr ib;
929 struct roce_ah_attr roce;
930 struct opa_ah_attr opa;
931 };
932};
933
934enum ib_wc_status {
935 IB_WC_SUCCESS,
936 IB_WC_LOC_LEN_ERR,
937 IB_WC_LOC_QP_OP_ERR,
938 IB_WC_LOC_EEC_OP_ERR,
939 IB_WC_LOC_PROT_ERR,
940 IB_WC_WR_FLUSH_ERR,
941 IB_WC_MW_BIND_ERR,
942 IB_WC_BAD_RESP_ERR,
943 IB_WC_LOC_ACCESS_ERR,
944 IB_WC_REM_INV_REQ_ERR,
945 IB_WC_REM_ACCESS_ERR,
946 IB_WC_REM_OP_ERR,
947 IB_WC_RETRY_EXC_ERR,
948 IB_WC_RNR_RETRY_EXC_ERR,
949 IB_WC_LOC_RDD_VIOL_ERR,
950 IB_WC_REM_INV_RD_REQ_ERR,
951 IB_WC_REM_ABORT_ERR,
952 IB_WC_INV_EECN_ERR,
953 IB_WC_INV_EEC_STATE_ERR,
954 IB_WC_FATAL_ERR,
955 IB_WC_RESP_TIMEOUT_ERR,
956 IB_WC_GENERAL_ERR
957};
958
959const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status);
960
961enum ib_wc_opcode {
962 IB_WC_SEND,
963 IB_WC_RDMA_WRITE,
964 IB_WC_RDMA_READ,
965 IB_WC_COMP_SWAP,
966 IB_WC_FETCH_ADD,
967 IB_WC_LSO,
968 IB_WC_LOCAL_INV,
969 IB_WC_REG_MR,
970 IB_WC_MASKED_COMP_SWAP,
971 IB_WC_MASKED_FETCH_ADD,
972/*
973 * Set value of IB_WC_RECV so consumers can test if a completion is a
974 * receive by testing (opcode & IB_WC_RECV).
975 */
976 IB_WC_RECV = 1 << 7,
977 IB_WC_RECV_RDMA_WITH_IMM
978};
979
980enum ib_wc_flags {
981 IB_WC_GRH = 1,
982 IB_WC_WITH_IMM = (1<<1),
983 IB_WC_WITH_INVALIDATE = (1<<2),
984 IB_WC_IP_CSUM_OK = (1<<3),
985 IB_WC_WITH_SMAC = (1<<4),
986 IB_WC_WITH_VLAN = (1<<5),
987 IB_WC_WITH_NETWORK_HDR_TYPE = (1<<6),
988};
989
990struct ib_wc {
991 union {
992 u64 wr_id;
993 struct ib_cqe *wr_cqe;
994 };
995 enum ib_wc_status status;
996 enum ib_wc_opcode opcode;
997 u32 vendor_err;
998 u32 byte_len;
999 struct ib_qp *qp;
1000 union {
1001 __be32 imm_data;
1002 u32 invalidate_rkey;
1003 } ex;
1004 u32 src_qp;
1005 u32 slid;
1006 int wc_flags;
1007 u16 pkey_index;
1008 u8 sl;
1009 u8 dlid_path_bits;
1010 u8 port_num; /* valid only for DR SMPs on switches */
1011 u8 smac[ETH_ALEN];
1012 u16 vlan_id;
1013 u8 network_hdr_type;
1014};
1015
1016enum ib_cq_notify_flags {
1017 IB_CQ_SOLICITED = 1 << 0,
1018 IB_CQ_NEXT_COMP = 1 << 1,
1019 IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
1020 IB_CQ_REPORT_MISSED_EVENTS = 1 << 2,
1021};
1022
1023enum ib_srq_type {
1024 IB_SRQT_BASIC,
1025 IB_SRQT_XRC,
1026 IB_SRQT_TM,
1027};
1028
1029static inline bool ib_srq_has_cq(enum ib_srq_type srq_type)
1030{
1031 return srq_type == IB_SRQT_XRC ||
1032 srq_type == IB_SRQT_TM;
1033}
1034
1035enum ib_srq_attr_mask {
1036 IB_SRQ_MAX_WR = 1 << 0,
1037 IB_SRQ_LIMIT = 1 << 1,
1038};
1039
1040struct ib_srq_attr {
1041 u32 max_wr;
1042 u32 max_sge;
1043 u32 srq_limit;
1044};
1045
1046struct ib_srq_init_attr {
1047 void (*event_handler)(struct ib_event *, void *);
1048 void *srq_context;
1049 struct ib_srq_attr attr;
1050 enum ib_srq_type srq_type;
1051
1052 struct {
1053 struct ib_cq *cq;
1054 union {
1055 struct {
1056 struct ib_xrcd *xrcd;
1057 } xrc;
1058
1059 struct {
1060 u32 max_num_tags;
1061 } tag_matching;
1062 };
1063 } ext;
1064};
1065
1066struct ib_qp_cap {
1067 u32 max_send_wr;
1068 u32 max_recv_wr;
1069 u32 max_send_sge;
1070 u32 max_recv_sge;
1071 u32 max_inline_data;
1072
1073 /*
1074 * Maximum number of rdma_rw_ctx structures in flight at a time.
1075 * ib_create_qp() will calculate the right amount of neededed WRs
1076 * and MRs based on this.
1077 */
1078 u32 max_rdma_ctxs;
1079};
1080
1081enum ib_sig_type {
1082 IB_SIGNAL_ALL_WR,
1083 IB_SIGNAL_REQ_WR
1084};
1085
1086enum ib_qp_type {
1087 /*
1088 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
1089 * here (and in that order) since the MAD layer uses them as
1090 * indices into a 2-entry table.
1091 */
1092 IB_QPT_SMI,
1093 IB_QPT_GSI,
1094
1095 IB_QPT_RC,
1096 IB_QPT_UC,
1097 IB_QPT_UD,
1098 IB_QPT_RAW_IPV6,
1099 IB_QPT_RAW_ETHERTYPE,
1100 IB_QPT_RAW_PACKET = 8,
1101 IB_QPT_XRC_INI = 9,
1102 IB_QPT_XRC_TGT,
1103 IB_QPT_MAX,
1104 IB_QPT_DRIVER = 0xFF,
1105 /* Reserve a range for qp types internal to the low level driver.
1106 * These qp types will not be visible at the IB core layer, so the
1107 * IB_QPT_MAX usages should not be affected in the core layer
1108 */
1109 IB_QPT_RESERVED1 = 0x1000,
1110 IB_QPT_RESERVED2,
1111 IB_QPT_RESERVED3,
1112 IB_QPT_RESERVED4,
1113 IB_QPT_RESERVED5,
1114 IB_QPT_RESERVED6,
1115 IB_QPT_RESERVED7,
1116 IB_QPT_RESERVED8,
1117 IB_QPT_RESERVED9,
1118 IB_QPT_RESERVED10,
1119};
1120
1121enum ib_qp_create_flags {
1122 IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0,
1123 IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK = 1 << 1,
1124 IB_QP_CREATE_CROSS_CHANNEL = 1 << 2,
1125 IB_QP_CREATE_MANAGED_SEND = 1 << 3,
1126 IB_QP_CREATE_MANAGED_RECV = 1 << 4,
1127 IB_QP_CREATE_NETIF_QP = 1 << 5,
1128 IB_QP_CREATE_SIGNATURE_EN = 1 << 6,
1129 /* FREE = 1 << 7, */
1130 IB_QP_CREATE_SCATTER_FCS = 1 << 8,
1131 IB_QP_CREATE_CVLAN_STRIPPING = 1 << 9,
1132 IB_QP_CREATE_SOURCE_QPN = 1 << 10,
1133 IB_QP_CREATE_PCI_WRITE_END_PADDING = 1 << 11,
1134 /* reserve bits 26-31 for low level drivers' internal use */
1135 IB_QP_CREATE_RESERVED_START = 1 << 26,
1136 IB_QP_CREATE_RESERVED_END = 1 << 31,
1137};
1138
1139/*
1140 * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler
1141 * callback to destroy the passed in QP.
1142 */
1143
1144struct ib_qp_init_attr {
1145 void (*event_handler)(struct ib_event *, void *);
1146 void *qp_context;
1147 struct ib_cq *send_cq;
1148 struct ib_cq *recv_cq;
1149 struct ib_srq *srq;
1150 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
1151 struct ib_qp_cap cap;
1152 enum ib_sig_type sq_sig_type;
1153 enum ib_qp_type qp_type;
1154 enum ib_qp_create_flags create_flags;
1155
1156 /*
1157 * Only needed for special QP types, or when using the RW API.
1158 */
1159 u8 port_num;
1160 struct ib_rwq_ind_table *rwq_ind_tbl;
1161 u32 source_qpn;
1162};
1163
1164struct ib_qp_open_attr {
1165 void (*event_handler)(struct ib_event *, void *);
1166 void *qp_context;
1167 u32 qp_num;
1168 enum ib_qp_type qp_type;
1169};
1170
1171enum ib_rnr_timeout {
1172 IB_RNR_TIMER_655_36 = 0,
1173 IB_RNR_TIMER_000_01 = 1,
1174 IB_RNR_TIMER_000_02 = 2,
1175 IB_RNR_TIMER_000_03 = 3,
1176 IB_RNR_TIMER_000_04 = 4,
1177 IB_RNR_TIMER_000_06 = 5,
1178 IB_RNR_TIMER_000_08 = 6,
1179 IB_RNR_TIMER_000_12 = 7,
1180 IB_RNR_TIMER_000_16 = 8,
1181 IB_RNR_TIMER_000_24 = 9,
1182 IB_RNR_TIMER_000_32 = 10,
1183 IB_RNR_TIMER_000_48 = 11,
1184 IB_RNR_TIMER_000_64 = 12,
1185 IB_RNR_TIMER_000_96 = 13,
1186 IB_RNR_TIMER_001_28 = 14,
1187 IB_RNR_TIMER_001_92 = 15,
1188 IB_RNR_TIMER_002_56 = 16,
1189 IB_RNR_TIMER_003_84 = 17,
1190 IB_RNR_TIMER_005_12 = 18,
1191 IB_RNR_TIMER_007_68 = 19,
1192 IB_RNR_TIMER_010_24 = 20,
1193 IB_RNR_TIMER_015_36 = 21,
1194 IB_RNR_TIMER_020_48 = 22,
1195 IB_RNR_TIMER_030_72 = 23,
1196 IB_RNR_TIMER_040_96 = 24,
1197 IB_RNR_TIMER_061_44 = 25,
1198 IB_RNR_TIMER_081_92 = 26,
1199 IB_RNR_TIMER_122_88 = 27,
1200 IB_RNR_TIMER_163_84 = 28,
1201 IB_RNR_TIMER_245_76 = 29,
1202 IB_RNR_TIMER_327_68 = 30,
1203 IB_RNR_TIMER_491_52 = 31
1204};
1205
1206enum ib_qp_attr_mask {
1207 IB_QP_STATE = 1,
1208 IB_QP_CUR_STATE = (1<<1),
1209 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2),
1210 IB_QP_ACCESS_FLAGS = (1<<3),
1211 IB_QP_PKEY_INDEX = (1<<4),
1212 IB_QP_PORT = (1<<5),
1213 IB_QP_QKEY = (1<<6),
1214 IB_QP_AV = (1<<7),
1215 IB_QP_PATH_MTU = (1<<8),
1216 IB_QP_TIMEOUT = (1<<9),
1217 IB_QP_RETRY_CNT = (1<<10),
1218 IB_QP_RNR_RETRY = (1<<11),
1219 IB_QP_RQ_PSN = (1<<12),
1220 IB_QP_MAX_QP_RD_ATOMIC = (1<<13),
1221 IB_QP_ALT_PATH = (1<<14),
1222 IB_QP_MIN_RNR_TIMER = (1<<15),
1223 IB_QP_SQ_PSN = (1<<16),
1224 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17),
1225 IB_QP_PATH_MIG_STATE = (1<<18),
1226 IB_QP_CAP = (1<<19),
1227 IB_QP_DEST_QPN = (1<<20),
1228 IB_QP_RESERVED1 = (1<<21),
1229 IB_QP_RESERVED2 = (1<<22),
1230 IB_QP_RESERVED3 = (1<<23),
1231 IB_QP_RESERVED4 = (1<<24),
1232 IB_QP_RATE_LIMIT = (1<<25),
1233};
1234
1235enum ib_qp_state {
1236 IB_QPS_RESET,
1237 IB_QPS_INIT,
1238 IB_QPS_RTR,
1239 IB_QPS_RTS,
1240 IB_QPS_SQD,
1241 IB_QPS_SQE,
1242 IB_QPS_ERR
1243};
1244
1245enum ib_mig_state {
1246 IB_MIG_MIGRATED,
1247 IB_MIG_REARM,
1248 IB_MIG_ARMED
1249};
1250
1251enum ib_mw_type {
1252 IB_MW_TYPE_1 = 1,
1253 IB_MW_TYPE_2 = 2
1254};
1255
1256struct ib_qp_attr {
1257 enum ib_qp_state qp_state;
1258 enum ib_qp_state cur_qp_state;
1259 enum ib_mtu path_mtu;
1260 enum ib_mig_state path_mig_state;
1261 u32 qkey;
1262 u32 rq_psn;
1263 u32 sq_psn;
1264 u32 dest_qp_num;
1265 int qp_access_flags;
1266 struct ib_qp_cap cap;
1267 struct rdma_ah_attr ah_attr;
1268 struct rdma_ah_attr alt_ah_attr;
1269 u16 pkey_index;
1270 u16 alt_pkey_index;
1271 u8 en_sqd_async_notify;
1272 u8 sq_draining;
1273 u8 max_rd_atomic;
1274 u8 max_dest_rd_atomic;
1275 u8 min_rnr_timer;
1276 u8 port_num;
1277 u8 timeout;
1278 u8 retry_cnt;
1279 u8 rnr_retry;
1280 u8 alt_port_num;
1281 u8 alt_timeout;
1282 u32 rate_limit;
1283};
1284
1285enum ib_wr_opcode {
1286 IB_WR_RDMA_WRITE,
1287 IB_WR_RDMA_WRITE_WITH_IMM,
1288 IB_WR_SEND,
1289 IB_WR_SEND_WITH_IMM,
1290 IB_WR_RDMA_READ,
1291 IB_WR_ATOMIC_CMP_AND_SWP,
1292 IB_WR_ATOMIC_FETCH_AND_ADD,
1293 IB_WR_LSO,
1294 IB_WR_SEND_WITH_INV,
1295 IB_WR_RDMA_READ_WITH_INV,
1296 IB_WR_LOCAL_INV,
1297 IB_WR_REG_MR,
1298 IB_WR_MASKED_ATOMIC_CMP_AND_SWP,
1299 IB_WR_MASKED_ATOMIC_FETCH_AND_ADD,
1300 IB_WR_REG_SIG_MR,
1301 /* reserve values for low level drivers' internal use.
1302 * These values will not be used at all in the ib core layer.
1303 */
1304 IB_WR_RESERVED1 = 0xf0,
1305 IB_WR_RESERVED2,
1306 IB_WR_RESERVED3,
1307 IB_WR_RESERVED4,
1308 IB_WR_RESERVED5,
1309 IB_WR_RESERVED6,
1310 IB_WR_RESERVED7,
1311 IB_WR_RESERVED8,
1312 IB_WR_RESERVED9,
1313 IB_WR_RESERVED10,
1314};
1315
1316enum ib_send_flags {
1317 IB_SEND_FENCE = 1,
1318 IB_SEND_SIGNALED = (1<<1),
1319 IB_SEND_SOLICITED = (1<<2),
1320 IB_SEND_INLINE = (1<<3),
1321 IB_SEND_IP_CSUM = (1<<4),
1322
1323 /* reserve bits 26-31 for low level drivers' internal use */
1324 IB_SEND_RESERVED_START = (1 << 26),
1325 IB_SEND_RESERVED_END = (1 << 31),
1326};
1327
1328struct ib_sge {
1329 u64 addr;
1330 u32 length;
1331 u32 lkey;
1332};
1333
1334struct ib_cqe {
1335 void (*done)(struct ib_cq *cq, struct ib_wc *wc);
1336};
1337
1338struct ib_send_wr {
1339 struct ib_send_wr *next;
1340 union {
1341 u64 wr_id;
1342 struct ib_cqe *wr_cqe;
1343 };
1344 struct ib_sge *sg_list;
1345 int num_sge;
1346 enum ib_wr_opcode opcode;
1347 int send_flags;
1348 union {
1349 __be32 imm_data;
1350 u32 invalidate_rkey;
1351 } ex;
1352};
1353
1354struct ib_rdma_wr {
1355 struct ib_send_wr wr;
1356 u64 remote_addr;
1357 u32 rkey;
1358};
1359
1360static inline struct ib_rdma_wr *rdma_wr(struct ib_send_wr *wr)
1361{
1362 return container_of(wr, struct ib_rdma_wr, wr);
1363}
1364
1365struct ib_atomic_wr {
1366 struct ib_send_wr wr;
1367 u64 remote_addr;
1368 u64 compare_add;
1369 u64 swap;
1370 u64 compare_add_mask;
1371 u64 swap_mask;
1372 u32 rkey;
1373};
1374
1375static inline struct ib_atomic_wr *atomic_wr(struct ib_send_wr *wr)
1376{
1377 return container_of(wr, struct ib_atomic_wr, wr);
1378}
1379
1380struct ib_ud_wr {
1381 struct ib_send_wr wr;
1382 struct ib_ah *ah;
1383 void *header;
1384 int hlen;
1385 int mss;
1386 u32 remote_qpn;
1387 u32 remote_qkey;
1388 u16 pkey_index; /* valid for GSI only */
1389 u8 port_num; /* valid for DR SMPs on switch only */
1390};
1391
1392static inline struct ib_ud_wr *ud_wr(struct ib_send_wr *wr)
1393{
1394 return container_of(wr, struct ib_ud_wr, wr);
1395}
1396
1397struct ib_reg_wr {
1398 struct ib_send_wr wr;
1399 struct ib_mr *mr;
1400 u32 key;
1401 int access;
1402};
1403
1404static inline struct ib_reg_wr *reg_wr(struct ib_send_wr *wr)
1405{
1406 return container_of(wr, struct ib_reg_wr, wr);
1407}
1408
1409struct ib_sig_handover_wr {
1410 struct ib_send_wr wr;
1411 struct ib_sig_attrs *sig_attrs;
1412 struct ib_mr *sig_mr;
1413 int access_flags;
1414 struct ib_sge *prot;
1415};
1416
1417static inline struct ib_sig_handover_wr *sig_handover_wr(struct ib_send_wr *wr)
1418{
1419 return container_of(wr, struct ib_sig_handover_wr, wr);
1420}
1421
1422struct ib_recv_wr {
1423 struct ib_recv_wr *next;
1424 union {
1425 u64 wr_id;
1426 struct ib_cqe *wr_cqe;
1427 };
1428 struct ib_sge *sg_list;
1429 int num_sge;
1430};
1431
1432enum ib_access_flags {
1433 IB_ACCESS_LOCAL_WRITE = 1,
1434 IB_ACCESS_REMOTE_WRITE = (1<<1),
1435 IB_ACCESS_REMOTE_READ = (1<<2),
1436 IB_ACCESS_REMOTE_ATOMIC = (1<<3),
1437 IB_ACCESS_MW_BIND = (1<<4),
1438 IB_ZERO_BASED = (1<<5),
1439 IB_ACCESS_ON_DEMAND = (1<<6),
1440 IB_ACCESS_HUGETLB = (1<<7),
1441};
1442
1443/*
1444 * XXX: these are apparently used for ->rereg_user_mr, no idea why they
1445 * are hidden here instead of a uapi header!
1446 */
1447enum ib_mr_rereg_flags {
1448 IB_MR_REREG_TRANS = 1,
1449 IB_MR_REREG_PD = (1<<1),
1450 IB_MR_REREG_ACCESS = (1<<2),
1451 IB_MR_REREG_SUPPORTED = ((IB_MR_REREG_ACCESS << 1) - 1)
1452};
1453
1454struct ib_fmr_attr {
1455 int max_pages;
1456 int max_maps;
1457 u8 page_shift;
1458};
1459
1460struct ib_umem;
1461
1462enum rdma_remove_reason {
1463 /* Userspace requested uobject deletion. Call could fail */
1464 RDMA_REMOVE_DESTROY,
1465 /* Context deletion. This call should delete the actual object itself */
1466 RDMA_REMOVE_CLOSE,
1467 /* Driver is being hot-unplugged. This call should delete the actual object itself */
1468 RDMA_REMOVE_DRIVER_REMOVE,
1469 /* Context is being cleaned-up, but commit was just completed */
1470 RDMA_REMOVE_DURING_CLEANUP,
1471};
1472
1473struct ib_rdmacg_object {
1474#ifdef CONFIG_CGROUP_RDMA
1475 struct rdma_cgroup *cg; /* owner rdma cgroup */
1476#endif
1477};
1478
1479struct ib_ucontext {
1480 struct ib_device *device;
1481 struct ib_uverbs_file *ufile;
1482 int closing;
1483
1484 /* locking the uobjects_list */
1485 struct mutex uobjects_lock;
1486 struct list_head uobjects;
1487 /* protects cleanup process from other actions */
1488 struct rw_semaphore cleanup_rwsem;
1489 enum rdma_remove_reason cleanup_reason;
1490
1491 struct pid *tgid;
1492#ifdef CONFIG_INFINIBAND_ON_DEMAND_PAGING
1493 struct rb_root_cached umem_tree;
1494 /*
1495 * Protects .umem_rbroot and tree, as well as odp_mrs_count and
1496 * mmu notifiers registration.
1497 */
1498 struct rw_semaphore umem_rwsem;
1499 void (*invalidate_range)(struct ib_umem *umem,
1500 unsigned long start, unsigned long end);
1501
1502 struct mmu_notifier mn;
1503 atomic_t notifier_count;
1504 /* A list of umems that don't have private mmu notifier counters yet. */
1505 struct list_head no_private_counters;
1506 int odp_mrs_count;
1507#endif
1508
1509 struct ib_rdmacg_object cg_obj;
1510};
1511
1512struct ib_uobject {
1513 u64 user_handle; /* handle given to us by userspace */
1514 struct ib_ucontext *context; /* associated user context */
1515 void *object; /* containing object */
1516 struct list_head list; /* link to context's list */
1517 struct ib_rdmacg_object cg_obj; /* rdmacg object */
1518 int id; /* index into kernel idr */
1519 struct kref ref;
1520 atomic_t usecnt; /* protects exclusive access */
1521 struct rcu_head rcu; /* kfree_rcu() overhead */
1522
1523 const struct uverbs_obj_type *type;
1524};
1525
1526struct ib_uobject_file {
1527 struct ib_uobject uobj;
1528 /* ufile contains the lock between context release and file close */
1529 struct ib_uverbs_file *ufile;
1530};
1531
1532struct ib_udata {
1533 const void __user *inbuf;
1534 void __user *outbuf;
1535 size_t inlen;
1536 size_t outlen;
1537};
1538
1539struct ib_pd {
1540 u32 local_dma_lkey;
1541 u32 flags;
1542 struct ib_device *device;
1543 struct ib_uobject *uobject;
1544 atomic_t usecnt; /* count all resources */
1545
1546 u32 unsafe_global_rkey;
1547
1548 /*
1549 * Implementation details of the RDMA core, don't use in drivers:
1550 */
1551 struct ib_mr *__internal_mr;
1552 struct rdma_restrack_entry res;
1553};
1554
1555struct ib_xrcd {
1556 struct ib_device *device;
1557 atomic_t usecnt; /* count all exposed resources */
1558 struct inode *inode;
1559
1560 struct mutex tgt_qp_mutex;
1561 struct list_head tgt_qp_list;
1562};
1563
1564struct ib_ah {
1565 struct ib_device *device;
1566 struct ib_pd *pd;
1567 struct ib_uobject *uobject;
1568 enum rdma_ah_attr_type type;
1569};
1570
1571typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
1572
1573enum ib_poll_context {
1574 IB_POLL_DIRECT, /* caller context, no hw completions */
1575 IB_POLL_SOFTIRQ, /* poll from softirq context */
1576 IB_POLL_WORKQUEUE, /* poll from workqueue */
1577};
1578
1579struct ib_cq {
1580 struct ib_device *device;
1581 struct ib_uobject *uobject;
1582 ib_comp_handler comp_handler;
1583 void (*event_handler)(struct ib_event *, void *);
1584 void *cq_context;
1585 int cqe;
1586 atomic_t usecnt; /* count number of work queues */
1587 enum ib_poll_context poll_ctx;
1588 struct ib_wc *wc;
1589 union {
1590 struct irq_poll iop;
1591 struct work_struct work;
1592 };
1593 /*
1594 * Implementation details of the RDMA core, don't use in drivers:
1595 */
1596 struct rdma_restrack_entry res;
1597};
1598
1599struct ib_srq {
1600 struct ib_device *device;
1601 struct ib_pd *pd;
1602 struct ib_uobject *uobject;
1603 void (*event_handler)(struct ib_event *, void *);
1604 void *srq_context;
1605 enum ib_srq_type srq_type;
1606 atomic_t usecnt;
1607
1608 struct {
1609 struct ib_cq *cq;
1610 union {
1611 struct {
1612 struct ib_xrcd *xrcd;
1613 u32 srq_num;
1614 } xrc;
1615 };
1616 } ext;
1617};
1618
1619enum ib_raw_packet_caps {
1620 /* Strip cvlan from incoming packet and report it in the matching work
1621 * completion is supported.
1622 */
1623 IB_RAW_PACKET_CAP_CVLAN_STRIPPING = (1 << 0),
1624 /* Scatter FCS field of an incoming packet to host memory is supported.
1625 */
1626 IB_RAW_PACKET_CAP_SCATTER_FCS = (1 << 1),
1627 /* Checksum offloads are supported (for both send and receive). */
1628 IB_RAW_PACKET_CAP_IP_CSUM = (1 << 2),
1629 /* When a packet is received for an RQ with no receive WQEs, the
1630 * packet processing is delayed.
1631 */
1632 IB_RAW_PACKET_CAP_DELAY_DROP = (1 << 3),
1633};
1634
1635enum ib_wq_type {
1636 IB_WQT_RQ
1637};
1638
1639enum ib_wq_state {
1640 IB_WQS_RESET,
1641 IB_WQS_RDY,
1642 IB_WQS_ERR
1643};
1644
1645struct ib_wq {
1646 struct ib_device *device;
1647 struct ib_uobject *uobject;
1648 void *wq_context;
1649 void (*event_handler)(struct ib_event *, void *);
1650 struct ib_pd *pd;
1651 struct ib_cq *cq;
1652 u32 wq_num;
1653 enum ib_wq_state state;
1654 enum ib_wq_type wq_type;
1655 atomic_t usecnt;
1656};
1657
1658enum ib_wq_flags {
1659 IB_WQ_FLAGS_CVLAN_STRIPPING = 1 << 0,
1660 IB_WQ_FLAGS_SCATTER_FCS = 1 << 1,
1661 IB_WQ_FLAGS_DELAY_DROP = 1 << 2,
1662 IB_WQ_FLAGS_PCI_WRITE_END_PADDING = 1 << 3,
1663};
1664
1665struct ib_wq_init_attr {
1666 void *wq_context;
1667 enum ib_wq_type wq_type;
1668 u32 max_wr;
1669 u32 max_sge;
1670 struct ib_cq *cq;
1671 void (*event_handler)(struct ib_event *, void *);
1672 u32 create_flags; /* Use enum ib_wq_flags */
1673};
1674
1675enum ib_wq_attr_mask {
1676 IB_WQ_STATE = 1 << 0,
1677 IB_WQ_CUR_STATE = 1 << 1,
1678 IB_WQ_FLAGS = 1 << 2,
1679};
1680
1681struct ib_wq_attr {
1682 enum ib_wq_state wq_state;
1683 enum ib_wq_state curr_wq_state;
1684 u32 flags; /* Use enum ib_wq_flags */
1685 u32 flags_mask; /* Use enum ib_wq_flags */
1686};
1687
1688struct ib_rwq_ind_table {
1689 struct ib_device *device;
1690 struct ib_uobject *uobject;
1691 atomic_t usecnt;
1692 u32 ind_tbl_num;
1693 u32 log_ind_tbl_size;
1694 struct ib_wq **ind_tbl;
1695};
1696
1697struct ib_rwq_ind_table_init_attr {
1698 u32 log_ind_tbl_size;
1699 /* Each entry is a pointer to Receive Work Queue */
1700 struct ib_wq **ind_tbl;
1701};
1702
1703enum port_pkey_state {
1704 IB_PORT_PKEY_NOT_VALID = 0,
1705 IB_PORT_PKEY_VALID = 1,
1706 IB_PORT_PKEY_LISTED = 2,
1707};
1708
1709struct ib_qp_security;
1710
1711struct ib_port_pkey {
1712 enum port_pkey_state state;
1713 u16 pkey_index;
1714 u8 port_num;
1715 struct list_head qp_list;
1716 struct list_head to_error_list;
1717 struct ib_qp_security *sec;
1718};
1719
1720struct ib_ports_pkeys {
1721 struct ib_port_pkey main;
1722 struct ib_port_pkey alt;
1723};
1724
1725struct ib_qp_security {
1726 struct ib_qp *qp;
1727 struct ib_device *dev;
1728 /* Hold this mutex when changing port and pkey settings. */
1729 struct mutex mutex;
1730 struct ib_ports_pkeys *ports_pkeys;
1731 /* A list of all open shared QP handles. Required to enforce security
1732 * properly for all users of a shared QP.
1733 */
1734 struct list_head shared_qp_list;
1735 void *security;
1736 bool destroying;
1737 atomic_t error_list_count;
1738 struct completion error_complete;
1739 int error_comps_pending;
1740};
1741
1742/*
1743 * @max_write_sge: Maximum SGE elements per RDMA WRITE request.
1744 * @max_read_sge: Maximum SGE elements per RDMA READ request.
1745 */
1746struct ib_qp {
1747 struct ib_device *device;
1748 struct ib_pd *pd;
1749 struct ib_cq *send_cq;
1750 struct ib_cq *recv_cq;
1751 spinlock_t mr_lock;
1752 int mrs_used;
1753 struct list_head rdma_mrs;
1754 struct list_head sig_mrs;
1755 struct ib_srq *srq;
1756 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
1757 struct list_head xrcd_list;
1758
1759 /* count times opened, mcast attaches, flow attaches */
1760 atomic_t usecnt;
1761 struct list_head open_list;
1762 struct ib_qp *real_qp;
1763 struct ib_uobject *uobject;
1764 void (*event_handler)(struct ib_event *, void *);
1765 void *qp_context;
1766 u32 qp_num;
1767 u32 max_write_sge;
1768 u32 max_read_sge;
1769 enum ib_qp_type qp_type;
1770 struct ib_rwq_ind_table *rwq_ind_tbl;
1771 struct ib_qp_security *qp_sec;
1772 u8 port;
1773
1774 /*
1775 * Implementation details of the RDMA core, don't use in drivers:
1776 */
1777 struct rdma_restrack_entry res;
1778};
1779
1780struct ib_dm {
1781 struct ib_device *device;
1782 u32 length;
1783 u32 flags;
1784 struct ib_uobject *uobject;
1785 atomic_t usecnt;
1786};
1787
1788struct ib_mr {
1789 struct ib_device *device;
1790 struct ib_pd *pd;
1791 u32 lkey;
1792 u32 rkey;
1793 u64 iova;
1794 u64 length;
1795 unsigned int page_size;
1796 bool need_inval;
1797 union {
1798 struct ib_uobject *uobject; /* user */
1799 struct list_head qp_entry; /* FR */
1800 };
1801
1802 struct ib_dm *dm;
1803
1804 /*
1805 * Implementation details of the RDMA core, don't use in drivers:
1806 */
1807 struct rdma_restrack_entry res;
1808};
1809
1810struct ib_mw {
1811 struct ib_device *device;
1812 struct ib_pd *pd;
1813 struct ib_uobject *uobject;
1814 u32 rkey;
1815 enum ib_mw_type type;
1816};
1817
1818struct ib_fmr {
1819 struct ib_device *device;
1820 struct ib_pd *pd;
1821 struct list_head list;
1822 u32 lkey;
1823 u32 rkey;
1824};
1825
1826/* Supported steering options */
1827enum ib_flow_attr_type {
1828 /* steering according to rule specifications */
1829 IB_FLOW_ATTR_NORMAL = 0x0,
1830 /* default unicast and multicast rule -
1831 * receive all Eth traffic which isn't steered to any QP
1832 */
1833 IB_FLOW_ATTR_ALL_DEFAULT = 0x1,
1834 /* default multicast rule -
1835 * receive all Eth multicast traffic which isn't steered to any QP
1836 */
1837 IB_FLOW_ATTR_MC_DEFAULT = 0x2,
1838 /* sniffer rule - receive all port traffic */
1839 IB_FLOW_ATTR_SNIFFER = 0x3
1840};
1841
1842/* Supported steering header types */
1843enum ib_flow_spec_type {
1844 /* L2 headers*/
1845 IB_FLOW_SPEC_ETH = 0x20,
1846 IB_FLOW_SPEC_IB = 0x22,
1847 /* L3 header*/
1848 IB_FLOW_SPEC_IPV4 = 0x30,
1849 IB_FLOW_SPEC_IPV6 = 0x31,
1850 IB_FLOW_SPEC_ESP = 0x34,
1851 /* L4 headers*/
1852 IB_FLOW_SPEC_TCP = 0x40,
1853 IB_FLOW_SPEC_UDP = 0x41,
1854 IB_FLOW_SPEC_VXLAN_TUNNEL = 0x50,
1855 IB_FLOW_SPEC_INNER = 0x100,
1856 /* Actions */
1857 IB_FLOW_SPEC_ACTION_TAG = 0x1000,
1858 IB_FLOW_SPEC_ACTION_DROP = 0x1001,
1859 IB_FLOW_SPEC_ACTION_HANDLE = 0x1002,
1860};
1861#define IB_FLOW_SPEC_LAYER_MASK 0xF0
1862#define IB_FLOW_SPEC_SUPPORT_LAYERS 8
1863
1864/* Flow steering rule priority is set according to it's domain.
1865 * Lower domain value means higher priority.
1866 */
1867enum ib_flow_domain {
1868 IB_FLOW_DOMAIN_USER,
1869 IB_FLOW_DOMAIN_ETHTOOL,
1870 IB_FLOW_DOMAIN_RFS,
1871 IB_FLOW_DOMAIN_NIC,
1872 IB_FLOW_DOMAIN_NUM /* Must be last */
1873};
1874
1875enum ib_flow_flags {
1876 IB_FLOW_ATTR_FLAGS_DONT_TRAP = 1UL << 1, /* Continue match, no steal */
1877 IB_FLOW_ATTR_FLAGS_EGRESS = 1UL << 2, /* Egress flow */
1878 IB_FLOW_ATTR_FLAGS_RESERVED = 1UL << 3 /* Must be last */
1879};
1880
1881struct ib_flow_eth_filter {
1882 u8 dst_mac[6];
1883 u8 src_mac[6];
1884 __be16 ether_type;
1885 __be16 vlan_tag;
1886 /* Must be last */
1887 u8 real_sz[0];
1888};
1889
1890struct ib_flow_spec_eth {
1891 u32 type;
1892 u16 size;
1893 struct ib_flow_eth_filter val;
1894 struct ib_flow_eth_filter mask;
1895};
1896
1897struct ib_flow_ib_filter {
1898 __be16 dlid;
1899 __u8 sl;
1900 /* Must be last */
1901 u8 real_sz[0];
1902};
1903
1904struct ib_flow_spec_ib {
1905 u32 type;
1906 u16 size;
1907 struct ib_flow_ib_filter val;
1908 struct ib_flow_ib_filter mask;
1909};
1910
1911/* IPv4 header flags */
1912enum ib_ipv4_flags {
1913 IB_IPV4_DONT_FRAG = 0x2, /* Don't enable packet fragmentation */
1914 IB_IPV4_MORE_FRAG = 0X4 /* For All fragmented packets except the
1915 last have this flag set */
1916};
1917
1918struct ib_flow_ipv4_filter {
1919 __be32 src_ip;
1920 __be32 dst_ip;
1921 u8 proto;
1922 u8 tos;
1923 u8 ttl;
1924 u8 flags;
1925 /* Must be last */
1926 u8 real_sz[0];
1927};
1928
1929struct ib_flow_spec_ipv4 {
1930 u32 type;
1931 u16 size;
1932 struct ib_flow_ipv4_filter val;
1933 struct ib_flow_ipv4_filter mask;
1934};
1935
1936struct ib_flow_ipv6_filter {
1937 u8 src_ip[16];
1938 u8 dst_ip[16];
1939 __be32 flow_label;
1940 u8 next_hdr;
1941 u8 traffic_class;
1942 u8 hop_limit;
1943 /* Must be last */
1944 u8 real_sz[0];
1945};
1946
1947struct ib_flow_spec_ipv6 {
1948 u32 type;
1949 u16 size;
1950 struct ib_flow_ipv6_filter val;
1951 struct ib_flow_ipv6_filter mask;
1952};
1953
1954struct ib_flow_tcp_udp_filter {
1955 __be16 dst_port;
1956 __be16 src_port;
1957 /* Must be last */
1958 u8 real_sz[0];
1959};
1960
1961struct ib_flow_spec_tcp_udp {
1962 u32 type;
1963 u16 size;
1964 struct ib_flow_tcp_udp_filter val;
1965 struct ib_flow_tcp_udp_filter mask;
1966};
1967
1968struct ib_flow_tunnel_filter {
1969 __be32 tunnel_id;
1970 u8 real_sz[0];
1971};
1972
1973/* ib_flow_spec_tunnel describes the Vxlan tunnel
1974 * the tunnel_id from val has the vni value
1975 */
1976struct ib_flow_spec_tunnel {
1977 u32 type;
1978 u16 size;
1979 struct ib_flow_tunnel_filter val;
1980 struct ib_flow_tunnel_filter mask;
1981};
1982
1983struct ib_flow_esp_filter {
1984 __be32 spi;
1985 __be32 seq;
1986 /* Must be last */
1987 u8 real_sz[0];
1988};
1989
1990struct ib_flow_spec_esp {
1991 u32 type;
1992 u16 size;
1993 struct ib_flow_esp_filter val;
1994 struct ib_flow_esp_filter mask;
1995};
1996
1997struct ib_flow_spec_action_tag {
1998 enum ib_flow_spec_type type;
1999 u16 size;
2000 u32 tag_id;
2001};
2002
2003struct ib_flow_spec_action_drop {
2004 enum ib_flow_spec_type type;
2005 u16 size;
2006};
2007
2008struct ib_flow_spec_action_handle {
2009 enum ib_flow_spec_type type;
2010 u16 size;
2011 struct ib_flow_action *act;
2012};
2013
2014union ib_flow_spec {
2015 struct {
2016 u32 type;
2017 u16 size;
2018 };
2019 struct ib_flow_spec_eth eth;
2020 struct ib_flow_spec_ib ib;
2021 struct ib_flow_spec_ipv4 ipv4;
2022 struct ib_flow_spec_tcp_udp tcp_udp;
2023 struct ib_flow_spec_ipv6 ipv6;
2024 struct ib_flow_spec_tunnel tunnel;
2025 struct ib_flow_spec_esp esp;
2026 struct ib_flow_spec_action_tag flow_tag;
2027 struct ib_flow_spec_action_drop drop;
2028 struct ib_flow_spec_action_handle action;
2029};
2030
2031struct ib_flow_attr {
2032 enum ib_flow_attr_type type;
2033 u16 size;
2034 u16 priority;
2035 u32 flags;
2036 u8 num_of_specs;
2037 u8 port;
2038 /* Following are the optional layers according to user request
2039 * struct ib_flow_spec_xxx
2040 * struct ib_flow_spec_yyy
2041 */
2042};
2043
2044struct ib_flow {
2045 struct ib_qp *qp;
2046 struct ib_uobject *uobject;
2047};
2048
2049enum ib_flow_action_type {
2050 IB_FLOW_ACTION_UNSPECIFIED,
2051 IB_FLOW_ACTION_ESP = 1,
2052};
2053
2054struct ib_flow_action_attrs_esp_keymats {
2055 enum ib_uverbs_flow_action_esp_keymat protocol;
2056 union {
2057 struct ib_uverbs_flow_action_esp_keymat_aes_gcm aes_gcm;
2058 } keymat;
2059};
2060
2061struct ib_flow_action_attrs_esp_replays {
2062 enum ib_uverbs_flow_action_esp_replay protocol;
2063 union {
2064 struct ib_uverbs_flow_action_esp_replay_bmp bmp;
2065 } replay;
2066};
2067
2068enum ib_flow_action_attrs_esp_flags {
2069 /* All user-space flags at the top: Use enum ib_uverbs_flow_action_esp_flags
2070 * This is done in order to share the same flags between user-space and
2071 * kernel and spare an unnecessary translation.
2072 */
2073
2074 /* Kernel flags */
2075 IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED = 1ULL << 32,
2076 IB_FLOW_ACTION_ESP_FLAGS_MOD_ESP_ATTRS = 1ULL << 33,
2077};
2078
2079struct ib_flow_spec_list {
2080 struct ib_flow_spec_list *next;
2081 union ib_flow_spec spec;
2082};
2083
2084struct ib_flow_action_attrs_esp {
2085 struct ib_flow_action_attrs_esp_keymats *keymat;
2086 struct ib_flow_action_attrs_esp_replays *replay;
2087 struct ib_flow_spec_list *encap;
2088 /* Used only if IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED is enabled.
2089 * Value of 0 is a valid value.
2090 */
2091 u32 esn;
2092 u32 spi;
2093 u32 seq;
2094 u32 tfc_pad;
2095 /* Use enum ib_flow_action_attrs_esp_flags */
2096 u64 flags;
2097 u64 hard_limit_pkts;
2098};
2099
2100struct ib_flow_action {
2101 struct ib_device *device;
2102 struct ib_uobject *uobject;
2103 enum ib_flow_action_type type;
2104 atomic_t usecnt;
2105};
2106
2107struct ib_mad_hdr;
2108struct ib_grh;
2109
2110enum ib_process_mad_flags {
2111 IB_MAD_IGNORE_MKEY = 1,
2112 IB_MAD_IGNORE_BKEY = 2,
2113 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
2114};
2115
2116enum ib_mad_result {
2117 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */
2118 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */
2119 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */
2120 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */
2121};
2122
2123struct ib_port_cache {
2124 u64 subnet_prefix;
2125 struct ib_pkey_cache *pkey;
2126 struct ib_gid_table *gid;
2127 u8 lmc;
2128 enum ib_port_state port_state;
2129};
2130
2131struct ib_cache {
2132 rwlock_t lock;
2133 struct ib_event_handler event_handler;
2134 struct ib_port_cache *ports;
2135};
2136
2137struct iw_cm_verbs;
2138
2139struct ib_port_immutable {
2140 int pkey_tbl_len;
2141 int gid_tbl_len;
2142 u32 core_cap_flags;
2143 u32 max_mad_size;
2144};
2145
2146/* rdma netdev type - specifies protocol type */
2147enum rdma_netdev_t {
2148 RDMA_NETDEV_OPA_VNIC,
2149 RDMA_NETDEV_IPOIB,
2150};
2151
2152/**
2153 * struct rdma_netdev - rdma netdev
2154 * For cases where netstack interfacing is required.
2155 */
2156struct rdma_netdev {
2157 void *clnt_priv;
2158 struct ib_device *hca;
2159 u8 port_num;
2160
2161 /* cleanup function must be specified */
2162 void (*free_rdma_netdev)(struct net_device *netdev);
2163
2164 /* control functions */
2165 void (*set_id)(struct net_device *netdev, int id);
2166 /* send packet */
2167 int (*send)(struct net_device *dev, struct sk_buff *skb,
2168 struct ib_ah *address, u32 dqpn);
2169 /* multicast */
2170 int (*attach_mcast)(struct net_device *dev, struct ib_device *hca,
2171 union ib_gid *gid, u16 mlid,
2172 int set_qkey, u32 qkey);
2173 int (*detach_mcast)(struct net_device *dev, struct ib_device *hca,
2174 union ib_gid *gid, u16 mlid);
2175};
2176
2177struct ib_port_pkey_list {
2178 /* Lock to hold while modifying the list. */
2179 spinlock_t list_lock;
2180 struct list_head pkey_list;
2181};
2182
2183struct uverbs_attr_bundle;
2184
2185struct ib_device {
2186 /* Do not access @dma_device directly from ULP nor from HW drivers. */
2187 struct device *dma_device;
2188
2189 char name[IB_DEVICE_NAME_MAX];
2190
2191 struct list_head event_handler_list;
2192 spinlock_t event_handler_lock;
2193
2194 spinlock_t client_data_lock;
2195 struct list_head core_list;
2196 /* Access to the client_data_list is protected by the client_data_lock
2197 * spinlock and the lists_rwsem read-write semaphore */
2198 struct list_head client_data_list;
2199
2200 struct ib_cache cache;
2201 /**
2202 * port_immutable is indexed by port number
2203 */
2204 struct ib_port_immutable *port_immutable;
2205
2206 int num_comp_vectors;
2207
2208 struct ib_port_pkey_list *port_pkey_list;
2209
2210 struct iw_cm_verbs *iwcm;
2211
2212 /**
2213 * alloc_hw_stats - Allocate a struct rdma_hw_stats and fill in the
2214 * driver initialized data. The struct is kfree()'ed by the sysfs
2215 * core when the device is removed. A lifespan of -1 in the return
2216 * struct tells the core to set a default lifespan.
2217 */
2218 struct rdma_hw_stats *(*alloc_hw_stats)(struct ib_device *device,
2219 u8 port_num);
2220 /**
2221 * get_hw_stats - Fill in the counter value(s) in the stats struct.
2222 * @index - The index in the value array we wish to have updated, or
2223 * num_counters if we want all stats updated
2224 * Return codes -
2225 * < 0 - Error, no counters updated
2226 * index - Updated the single counter pointed to by index
2227 * num_counters - Updated all counters (will reset the timestamp
2228 * and prevent further calls for lifespan milliseconds)
2229 * Drivers are allowed to update all counters in leiu of just the
2230 * one given in index at their option
2231 */
2232 int (*get_hw_stats)(struct ib_device *device,
2233 struct rdma_hw_stats *stats,
2234 u8 port, int index);
2235 int (*query_device)(struct ib_device *device,
2236 struct ib_device_attr *device_attr,
2237 struct ib_udata *udata);
2238 int (*query_port)(struct ib_device *device,
2239 u8 port_num,
2240 struct ib_port_attr *port_attr);
2241 enum rdma_link_layer (*get_link_layer)(struct ib_device *device,
2242 u8 port_num);
2243 /* When calling get_netdev, the HW vendor's driver should return the
2244 * net device of device @device at port @port_num or NULL if such
2245 * a net device doesn't exist. The vendor driver should call dev_hold
2246 * on this net device. The HW vendor's device driver must guarantee
2247 * that this function returns NULL before the net device has finished
2248 * NETDEV_UNREGISTER state.
2249 */
2250 struct net_device *(*get_netdev)(struct ib_device *device,
2251 u8 port_num);
2252 /* query_gid should be return GID value for @device, when @port_num
2253 * link layer is either IB or iWarp. It is no-op if @port_num port
2254 * is RoCE link layer.
2255 */
2256 int (*query_gid)(struct ib_device *device,
2257 u8 port_num, int index,
2258 union ib_gid *gid);
2259 /* When calling add_gid, the HW vendor's driver should add the gid
2260 * of device of port at gid index available at @attr. Meta-info of
2261 * that gid (for example, the network device related to this gid) is
2262 * available at @attr. @context allows the HW vendor driver to store
2263 * extra information together with a GID entry. The HW vendor driver may
2264 * allocate memory to contain this information and store it in @context
2265 * when a new GID entry is written to. Params are consistent until the
2266 * next call of add_gid or delete_gid. The function should return 0 on
2267 * success or error otherwise. The function could be called
2268 * concurrently for different ports. This function is only called when
2269 * roce_gid_table is used.
2270 */
2271 int (*add_gid)(const union ib_gid *gid,
2272 const struct ib_gid_attr *attr,
2273 void **context);
2274 /* When calling del_gid, the HW vendor's driver should delete the
2275 * gid of device @device at gid index gid_index of port port_num
2276 * available in @attr.
2277 * Upon the deletion of a GID entry, the HW vendor must free any
2278 * allocated memory. The caller will clear @context afterwards.
2279 * This function is only called when roce_gid_table is used.
2280 */
2281 int (*del_gid)(const struct ib_gid_attr *attr,
2282 void **context);
2283 int (*query_pkey)(struct ib_device *device,
2284 u8 port_num, u16 index, u16 *pkey);
2285 int (*modify_device)(struct ib_device *device,
2286 int device_modify_mask,
2287 struct ib_device_modify *device_modify);
2288 int (*modify_port)(struct ib_device *device,
2289 u8 port_num, int port_modify_mask,
2290 struct ib_port_modify *port_modify);
2291 struct ib_ucontext * (*alloc_ucontext)(struct ib_device *device,
2292 struct ib_udata *udata);
2293 int (*dealloc_ucontext)(struct ib_ucontext *context);
2294 int (*mmap)(struct ib_ucontext *context,
2295 struct vm_area_struct *vma);
2296 struct ib_pd * (*alloc_pd)(struct ib_device *device,
2297 struct ib_ucontext *context,
2298 struct ib_udata *udata);
2299 int (*dealloc_pd)(struct ib_pd *pd);
2300 struct ib_ah * (*create_ah)(struct ib_pd *pd,
2301 struct rdma_ah_attr *ah_attr,
2302 struct ib_udata *udata);
2303 int (*modify_ah)(struct ib_ah *ah,
2304 struct rdma_ah_attr *ah_attr);
2305 int (*query_ah)(struct ib_ah *ah,
2306 struct rdma_ah_attr *ah_attr);
2307 int (*destroy_ah)(struct ib_ah *ah);
2308 struct ib_srq * (*create_srq)(struct ib_pd *pd,
2309 struct ib_srq_init_attr *srq_init_attr,
2310 struct ib_udata *udata);
2311 int (*modify_srq)(struct ib_srq *srq,
2312 struct ib_srq_attr *srq_attr,
2313 enum ib_srq_attr_mask srq_attr_mask,
2314 struct ib_udata *udata);
2315 int (*query_srq)(struct ib_srq *srq,
2316 struct ib_srq_attr *srq_attr);
2317 int (*destroy_srq)(struct ib_srq *srq);
2318 int (*post_srq_recv)(struct ib_srq *srq,
2319 struct ib_recv_wr *recv_wr,
2320 struct ib_recv_wr **bad_recv_wr);
2321 struct ib_qp * (*create_qp)(struct ib_pd *pd,
2322 struct ib_qp_init_attr *qp_init_attr,
2323 struct ib_udata *udata);
2324 int (*modify_qp)(struct ib_qp *qp,
2325 struct ib_qp_attr *qp_attr,
2326 int qp_attr_mask,
2327 struct ib_udata *udata);
2328 int (*query_qp)(struct ib_qp *qp,
2329 struct ib_qp_attr *qp_attr,
2330 int qp_attr_mask,
2331 struct ib_qp_init_attr *qp_init_attr);
2332 int (*destroy_qp)(struct ib_qp *qp);
2333 int (*post_send)(struct ib_qp *qp,
2334 struct ib_send_wr *send_wr,
2335 struct ib_send_wr **bad_send_wr);
2336 int (*post_recv)(struct ib_qp *qp,
2337 struct ib_recv_wr *recv_wr,
2338 struct ib_recv_wr **bad_recv_wr);
2339 struct ib_cq * (*create_cq)(struct ib_device *device,
2340 const struct ib_cq_init_attr *attr,
2341 struct ib_ucontext *context,
2342 struct ib_udata *udata);
2343 int (*modify_cq)(struct ib_cq *cq, u16 cq_count,
2344 u16 cq_period);
2345 int (*destroy_cq)(struct ib_cq *cq);
2346 int (*resize_cq)(struct ib_cq *cq, int cqe,
2347 struct ib_udata *udata);
2348 int (*poll_cq)(struct ib_cq *cq, int num_entries,
2349 struct ib_wc *wc);
2350 int (*peek_cq)(struct ib_cq *cq, int wc_cnt);
2351 int (*req_notify_cq)(struct ib_cq *cq,
2352 enum ib_cq_notify_flags flags);
2353 int (*req_ncomp_notif)(struct ib_cq *cq,
2354 int wc_cnt);
2355 struct ib_mr * (*get_dma_mr)(struct ib_pd *pd,
2356 int mr_access_flags);
2357 struct ib_mr * (*reg_user_mr)(struct ib_pd *pd,
2358 u64 start, u64 length,
2359 u64 virt_addr,
2360 int mr_access_flags,
2361 struct ib_udata *udata);
2362 int (*rereg_user_mr)(struct ib_mr *mr,
2363 int flags,
2364 u64 start, u64 length,
2365 u64 virt_addr,
2366 int mr_access_flags,
2367 struct ib_pd *pd,
2368 struct ib_udata *udata);
2369 int (*dereg_mr)(struct ib_mr *mr);
2370 struct ib_mr * (*alloc_mr)(struct ib_pd *pd,
2371 enum ib_mr_type mr_type,
2372 u32 max_num_sg);
2373 int (*map_mr_sg)(struct ib_mr *mr,
2374 struct scatterlist *sg,
2375 int sg_nents,
2376 unsigned int *sg_offset);
2377 struct ib_mw * (*alloc_mw)(struct ib_pd *pd,
2378 enum ib_mw_type type,
2379 struct ib_udata *udata);
2380 int (*dealloc_mw)(struct ib_mw *mw);
2381 struct ib_fmr * (*alloc_fmr)(struct ib_pd *pd,
2382 int mr_access_flags,
2383 struct ib_fmr_attr *fmr_attr);
2384 int (*map_phys_fmr)(struct ib_fmr *fmr,
2385 u64 *page_list, int list_len,
2386 u64 iova);
2387 int (*unmap_fmr)(struct list_head *fmr_list);
2388 int (*dealloc_fmr)(struct ib_fmr *fmr);
2389 int (*attach_mcast)(struct ib_qp *qp,
2390 union ib_gid *gid,
2391 u16 lid);
2392 int (*detach_mcast)(struct ib_qp *qp,
2393 union ib_gid *gid,
2394 u16 lid);
2395 int (*process_mad)(struct ib_device *device,
2396 int process_mad_flags,
2397 u8 port_num,
2398 const struct ib_wc *in_wc,
2399 const struct ib_grh *in_grh,
2400 const struct ib_mad_hdr *in_mad,
2401 size_t in_mad_size,
2402 struct ib_mad_hdr *out_mad,
2403 size_t *out_mad_size,
2404 u16 *out_mad_pkey_index);
2405 struct ib_xrcd * (*alloc_xrcd)(struct ib_device *device,
2406 struct ib_ucontext *ucontext,
2407 struct ib_udata *udata);
2408 int (*dealloc_xrcd)(struct ib_xrcd *xrcd);
2409 struct ib_flow * (*create_flow)(struct ib_qp *qp,
2410 struct ib_flow_attr
2411 *flow_attr,
2412 int domain);
2413 int (*destroy_flow)(struct ib_flow *flow_id);
2414 int (*check_mr_status)(struct ib_mr *mr, u32 check_mask,
2415 struct ib_mr_status *mr_status);
2416 void (*disassociate_ucontext)(struct ib_ucontext *ibcontext);
2417 void (*drain_rq)(struct ib_qp *qp);
2418 void (*drain_sq)(struct ib_qp *qp);
2419 int (*set_vf_link_state)(struct ib_device *device, int vf, u8 port,
2420 int state);
2421 int (*get_vf_config)(struct ib_device *device, int vf, u8 port,
2422 struct ifla_vf_info *ivf);
2423 int (*get_vf_stats)(struct ib_device *device, int vf, u8 port,
2424 struct ifla_vf_stats *stats);
2425 int (*set_vf_guid)(struct ib_device *device, int vf, u8 port, u64 guid,
2426 int type);
2427 struct ib_wq * (*create_wq)(struct ib_pd *pd,
2428 struct ib_wq_init_attr *init_attr,
2429 struct ib_udata *udata);
2430 int (*destroy_wq)(struct ib_wq *wq);
2431 int (*modify_wq)(struct ib_wq *wq,
2432 struct ib_wq_attr *attr,
2433 u32 wq_attr_mask,
2434 struct ib_udata *udata);
2435 struct ib_rwq_ind_table * (*create_rwq_ind_table)(struct ib_device *device,
2436 struct ib_rwq_ind_table_init_attr *init_attr,
2437 struct ib_udata *udata);
2438 int (*destroy_rwq_ind_table)(struct ib_rwq_ind_table *wq_ind_table);
2439 struct ib_flow_action * (*create_flow_action_esp)(struct ib_device *device,
2440 const struct ib_flow_action_attrs_esp *attr,
2441 struct uverbs_attr_bundle *attrs);
2442 int (*destroy_flow_action)(struct ib_flow_action *action);
2443 int (*modify_flow_action_esp)(struct ib_flow_action *action,
2444 const struct ib_flow_action_attrs_esp *attr,
2445 struct uverbs_attr_bundle *attrs);
2446 struct ib_dm * (*alloc_dm)(struct ib_device *device,
2447 struct ib_ucontext *context,
2448 struct ib_dm_alloc_attr *attr,
2449 struct uverbs_attr_bundle *attrs);
2450 int (*dealloc_dm)(struct ib_dm *dm);
2451 struct ib_mr * (*reg_dm_mr)(struct ib_pd *pd, struct ib_dm *dm,
2452 struct ib_dm_mr_attr *attr,
2453 struct uverbs_attr_bundle *attrs);
2454 /**
2455 * rdma netdev operation
2456 *
2457 * Driver implementing alloc_rdma_netdev must return -EOPNOTSUPP if it
2458 * doesn't support the specified rdma netdev type.
2459 */
2460 struct net_device *(*alloc_rdma_netdev)(
2461 struct ib_device *device,
2462 u8 port_num,
2463 enum rdma_netdev_t type,
2464 const char *name,
2465 unsigned char name_assign_type,
2466 void (*setup)(struct net_device *));
2467
2468 struct module *owner;
2469 struct device dev;
2470 struct kobject *ports_parent;
2471 struct list_head port_list;
2472
2473 enum {
2474 IB_DEV_UNINITIALIZED,
2475 IB_DEV_REGISTERED,
2476 IB_DEV_UNREGISTERED
2477 } reg_state;
2478
2479 int uverbs_abi_ver;
2480 u64 uverbs_cmd_mask;
2481 u64 uverbs_ex_cmd_mask;
2482
2483 char node_desc[IB_DEVICE_NODE_DESC_MAX];
2484 __be64 node_guid;
2485 u32 local_dma_lkey;
2486 u16 is_switch:1;
2487 u8 node_type;
2488 u8 phys_port_cnt;
2489 struct ib_device_attr attrs;
2490 struct attribute_group *hw_stats_ag;
2491 struct rdma_hw_stats *hw_stats;
2492
2493#ifdef CONFIG_CGROUP_RDMA
2494 struct rdmacg_device cg_device;
2495#endif
2496
2497 u32 index;
2498 /*
2499 * Implementation details of the RDMA core, don't use in drivers
2500 */
2501 struct rdma_restrack_root res;
2502
2503 /**
2504 * The following mandatory functions are used only at device
2505 * registration. Keep functions such as these at the end of this
2506 * structure to avoid cache line misses when accessing struct ib_device
2507 * in fast paths.
2508 */
2509 int (*get_port_immutable)(struct ib_device *, u8, struct ib_port_immutable *);
2510 void (*get_dev_fw_str)(struct ib_device *, char *str);
2511 const struct cpumask *(*get_vector_affinity)(struct ib_device *ibdev,
2512 int comp_vector);
2513
2514 struct uverbs_root_spec *specs_root;
2515 enum rdma_driver_id driver_id;
2516};
2517
2518struct ib_client {
2519 char *name;
2520 void (*add) (struct ib_device *);
2521 void (*remove)(struct ib_device *, void *client_data);
2522
2523 /* Returns the net_dev belonging to this ib_client and matching the
2524 * given parameters.
2525 * @dev: An RDMA device that the net_dev use for communication.
2526 * @port: A physical port number on the RDMA device.
2527 * @pkey: P_Key that the net_dev uses if applicable.
2528 * @gid: A GID that the net_dev uses to communicate.
2529 * @addr: An IP address the net_dev is configured with.
2530 * @client_data: The device's client data set by ib_set_client_data().
2531 *
2532 * An ib_client that implements a net_dev on top of RDMA devices
2533 * (such as IP over IB) should implement this callback, allowing the
2534 * rdma_cm module to find the right net_dev for a given request.
2535 *
2536 * The caller is responsible for calling dev_put on the returned
2537 * netdev. */
2538 struct net_device *(*get_net_dev_by_params)(
2539 struct ib_device *dev,
2540 u8 port,
2541 u16 pkey,
2542 const union ib_gid *gid,
2543 const struct sockaddr *addr,
2544 void *client_data);
2545 struct list_head list;
2546};
2547
2548struct ib_device *ib_alloc_device(size_t size);
2549void ib_dealloc_device(struct ib_device *device);
2550
2551void ib_get_device_fw_str(struct ib_device *device, char *str);
2552
2553int ib_register_device(struct ib_device *device,
2554 int (*port_callback)(struct ib_device *,
2555 u8, struct kobject *));
2556void ib_unregister_device(struct ib_device *device);
2557
2558int ib_register_client (struct ib_client *client);
2559void ib_unregister_client(struct ib_client *client);
2560
2561void *ib_get_client_data(struct ib_device *device, struct ib_client *client);
2562void ib_set_client_data(struct ib_device *device, struct ib_client *client,
2563 void *data);
2564
2565static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
2566{
2567 return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
2568}
2569
2570static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
2571{
2572 return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
2573}
2574
2575static inline bool ib_is_buffer_cleared(const void __user *p,
2576 size_t len)
2577{
2578 bool ret;
2579 u8 *buf;
2580
2581 if (len > USHRT_MAX)
2582 return false;
2583
2584 buf = memdup_user(p, len);
2585 if (IS_ERR(buf))
2586 return false;
2587
2588 ret = !memchr_inv(buf, 0, len);
2589 kfree(buf);
2590 return ret;
2591}
2592
2593static inline bool ib_is_udata_cleared(struct ib_udata *udata,
2594 size_t offset,
2595 size_t len)
2596{
2597 return ib_is_buffer_cleared(udata->inbuf + offset, len);
2598}
2599
2600/**
2601 * ib_modify_qp_is_ok - Check that the supplied attribute mask
2602 * contains all required attributes and no attributes not allowed for
2603 * the given QP state transition.
2604 * @cur_state: Current QP state
2605 * @next_state: Next QP state
2606 * @type: QP type
2607 * @mask: Mask of supplied QP attributes
2608 * @ll : link layer of port
2609 *
2610 * This function is a helper function that a low-level driver's
2611 * modify_qp method can use to validate the consumer's input. It
2612 * checks that cur_state and next_state are valid QP states, that a
2613 * transition from cur_state to next_state is allowed by the IB spec,
2614 * and that the attribute mask supplied is allowed for the transition.
2615 */
2616bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
2617 enum ib_qp_type type, enum ib_qp_attr_mask mask,
2618 enum rdma_link_layer ll);
2619
2620void ib_register_event_handler(struct ib_event_handler *event_handler);
2621void ib_unregister_event_handler(struct ib_event_handler *event_handler);
2622void ib_dispatch_event(struct ib_event *event);
2623
2624int ib_query_port(struct ib_device *device,
2625 u8 port_num, struct ib_port_attr *port_attr);
2626
2627enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
2628 u8 port_num);
2629
2630/**
2631 * rdma_cap_ib_switch - Check if the device is IB switch
2632 * @device: Device to check
2633 *
2634 * Device driver is responsible for setting is_switch bit on
2635 * in ib_device structure at init time.
2636 *
2637 * Return: true if the device is IB switch.
2638 */
2639static inline bool rdma_cap_ib_switch(const struct ib_device *device)
2640{
2641 return device->is_switch;
2642}
2643
2644/**
2645 * rdma_start_port - Return the first valid port number for the device
2646 * specified
2647 *
2648 * @device: Device to be checked
2649 *
2650 * Return start port number
2651 */
2652static inline u8 rdma_start_port(const struct ib_device *device)
2653{
2654 return rdma_cap_ib_switch(device) ? 0 : 1;
2655}
2656
2657/**
2658 * rdma_end_port - Return the last valid port number for the device
2659 * specified
2660 *
2661 * @device: Device to be checked
2662 *
2663 * Return last port number
2664 */
2665static inline u8 rdma_end_port(const struct ib_device *device)
2666{
2667 return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt;
2668}
2669
2670static inline int rdma_is_port_valid(const struct ib_device *device,
2671 unsigned int port)
2672{
2673 return (port >= rdma_start_port(device) &&
2674 port <= rdma_end_port(device));
2675}
2676
2677static inline bool rdma_protocol_ib(const struct ib_device *device, u8 port_num)
2678{
2679 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IB;
2680}
2681
2682static inline bool rdma_protocol_roce(const struct ib_device *device, u8 port_num)
2683{
2684 return device->port_immutable[port_num].core_cap_flags &
2685 (RDMA_CORE_CAP_PROT_ROCE | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP);
2686}
2687
2688static inline bool rdma_protocol_roce_udp_encap(const struct ib_device *device, u8 port_num)
2689{
2690 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP;
2691}
2692
2693static inline bool rdma_protocol_roce_eth_encap(const struct ib_device *device, u8 port_num)
2694{
2695 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE;
2696}
2697
2698static inline bool rdma_protocol_iwarp(const struct ib_device *device, u8 port_num)
2699{
2700 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IWARP;
2701}
2702
2703static inline bool rdma_ib_or_roce(const struct ib_device *device, u8 port_num)
2704{
2705 return rdma_protocol_ib(device, port_num) ||
2706 rdma_protocol_roce(device, port_num);
2707}
2708
2709static inline bool rdma_protocol_raw_packet(const struct ib_device *device, u8 port_num)
2710{
2711 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_RAW_PACKET;
2712}
2713
2714static inline bool rdma_protocol_usnic(const struct ib_device *device, u8 port_num)
2715{
2716 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_USNIC;
2717}
2718
2719/**
2720 * rdma_cap_ib_mad - Check if the port of a device supports Infiniband
2721 * Management Datagrams.
2722 * @device: Device to check
2723 * @port_num: Port number to check
2724 *
2725 * Management Datagrams (MAD) are a required part of the InfiniBand
2726 * specification and are supported on all InfiniBand devices. A slightly
2727 * extended version are also supported on OPA interfaces.
2728 *
2729 * Return: true if the port supports sending/receiving of MAD packets.
2730 */
2731static inline bool rdma_cap_ib_mad(const struct ib_device *device, u8 port_num)
2732{
2733 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_MAD;
2734}
2735
2736/**
2737 * rdma_cap_opa_mad - Check if the port of device provides support for OPA
2738 * Management Datagrams.
2739 * @device: Device to check
2740 * @port_num: Port number to check
2741 *
2742 * Intel OmniPath devices extend and/or replace the InfiniBand Management
2743 * datagrams with their own versions. These OPA MADs share many but not all of
2744 * the characteristics of InfiniBand MADs.
2745 *
2746 * OPA MADs differ in the following ways:
2747 *
2748 * 1) MADs are variable size up to 2K
2749 * IBTA defined MADs remain fixed at 256 bytes
2750 * 2) OPA SMPs must carry valid PKeys
2751 * 3) OPA SMP packets are a different format
2752 *
2753 * Return: true if the port supports OPA MAD packet formats.
2754 */
2755static inline bool rdma_cap_opa_mad(struct ib_device *device, u8 port_num)
2756{
2757 return (device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_OPA_MAD)
2758 == RDMA_CORE_CAP_OPA_MAD;
2759}
2760
2761/**
2762 * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband
2763 * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI).
2764 * @device: Device to check
2765 * @port_num: Port number to check
2766 *
2767 * Each InfiniBand node is required to provide a Subnet Management Agent
2768 * that the subnet manager can access. Prior to the fabric being fully
2769 * configured by the subnet manager, the SMA is accessed via a well known
2770 * interface called the Subnet Management Interface (SMI). This interface
2771 * uses directed route packets to communicate with the SM to get around the
2772 * chicken and egg problem of the SM needing to know what's on the fabric
2773 * in order to configure the fabric, and needing to configure the fabric in
2774 * order to send packets to the devices on the fabric. These directed
2775 * route packets do not need the fabric fully configured in order to reach
2776 * their destination. The SMI is the only method allowed to send
2777 * directed route packets on an InfiniBand fabric.
2778 *
2779 * Return: true if the port provides an SMI.
2780 */
2781static inline bool rdma_cap_ib_smi(const struct ib_device *device, u8 port_num)
2782{
2783 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SMI;
2784}
2785
2786/**
2787 * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband
2788 * Communication Manager.
2789 * @device: Device to check
2790 * @port_num: Port number to check
2791 *
2792 * The InfiniBand Communication Manager is one of many pre-defined General
2793 * Service Agents (GSA) that are accessed via the General Service
2794 * Interface (GSI). It's role is to facilitate establishment of connections
2795 * between nodes as well as other management related tasks for established
2796 * connections.
2797 *
2798 * Return: true if the port supports an IB CM (this does not guarantee that
2799 * a CM is actually running however).
2800 */
2801static inline bool rdma_cap_ib_cm(const struct ib_device *device, u8 port_num)
2802{
2803 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_CM;
2804}
2805
2806/**
2807 * rdma_cap_iw_cm - Check if the port of device has the capability IWARP
2808 * Communication Manager.
2809 * @device: Device to check
2810 * @port_num: Port number to check
2811 *
2812 * Similar to above, but specific to iWARP connections which have a different
2813 * managment protocol than InfiniBand.
2814 *
2815 * Return: true if the port supports an iWARP CM (this does not guarantee that
2816 * a CM is actually running however).
2817 */
2818static inline bool rdma_cap_iw_cm(const struct ib_device *device, u8 port_num)
2819{
2820 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IW_CM;
2821}
2822
2823/**
2824 * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband
2825 * Subnet Administration.
2826 * @device: Device to check
2827 * @port_num: Port number to check
2828 *
2829 * An InfiniBand Subnet Administration (SA) service is a pre-defined General
2830 * Service Agent (GSA) provided by the Subnet Manager (SM). On InfiniBand
2831 * fabrics, devices should resolve routes to other hosts by contacting the
2832 * SA to query the proper route.
2833 *
2834 * Return: true if the port should act as a client to the fabric Subnet
2835 * Administration interface. This does not imply that the SA service is
2836 * running locally.
2837 */
2838static inline bool rdma_cap_ib_sa(const struct ib_device *device, u8 port_num)
2839{
2840 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SA;
2841}
2842
2843/**
2844 * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband
2845 * Multicast.
2846 * @device: Device to check
2847 * @port_num: Port number to check
2848 *
2849 * InfiniBand multicast registration is more complex than normal IPv4 or
2850 * IPv6 multicast registration. Each Host Channel Adapter must register
2851 * with the Subnet Manager when it wishes to join a multicast group. It
2852 * should do so only once regardless of how many queue pairs it subscribes
2853 * to this group. And it should leave the group only after all queue pairs
2854 * attached to the group have been detached.
2855 *
2856 * Return: true if the port must undertake the additional adminstrative
2857 * overhead of registering/unregistering with the SM and tracking of the
2858 * total number of queue pairs attached to the multicast group.
2859 */
2860static inline bool rdma_cap_ib_mcast(const struct ib_device *device, u8 port_num)
2861{
2862 return rdma_cap_ib_sa(device, port_num);
2863}
2864
2865/**
2866 * rdma_cap_af_ib - Check if the port of device has the capability
2867 * Native Infiniband Address.
2868 * @device: Device to check
2869 * @port_num: Port number to check
2870 *
2871 * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default
2872 * GID. RoCE uses a different mechanism, but still generates a GID via
2873 * a prescribed mechanism and port specific data.
2874 *
2875 * Return: true if the port uses a GID address to identify devices on the
2876 * network.
2877 */
2878static inline bool rdma_cap_af_ib(const struct ib_device *device, u8 port_num)
2879{
2880 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_AF_IB;
2881}
2882
2883/**
2884 * rdma_cap_eth_ah - Check if the port of device has the capability
2885 * Ethernet Address Handle.
2886 * @device: Device to check
2887 * @port_num: Port number to check
2888 *
2889 * RoCE is InfiniBand over Ethernet, and it uses a well defined technique
2890 * to fabricate GIDs over Ethernet/IP specific addresses native to the
2891 * port. Normally, packet headers are generated by the sending host
2892 * adapter, but when sending connectionless datagrams, we must manually
2893 * inject the proper headers for the fabric we are communicating over.
2894 *
2895 * Return: true if we are running as a RoCE port and must force the
2896 * addition of a Global Route Header built from our Ethernet Address
2897 * Handle into our header list for connectionless packets.
2898 */
2899static inline bool rdma_cap_eth_ah(const struct ib_device *device, u8 port_num)
2900{
2901 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_ETH_AH;
2902}
2903
2904/**
2905 * rdma_cap_opa_ah - Check if the port of device supports
2906 * OPA Address handles
2907 * @device: Device to check
2908 * @port_num: Port number to check
2909 *
2910 * Return: true if we are running on an OPA device which supports
2911 * the extended OPA addressing.
2912 */
2913static inline bool rdma_cap_opa_ah(struct ib_device *device, u8 port_num)
2914{
2915 return (device->port_immutable[port_num].core_cap_flags &
2916 RDMA_CORE_CAP_OPA_AH) == RDMA_CORE_CAP_OPA_AH;
2917}
2918
2919/**
2920 * rdma_max_mad_size - Return the max MAD size required by this RDMA Port.
2921 *
2922 * @device: Device
2923 * @port_num: Port number
2924 *
2925 * This MAD size includes the MAD headers and MAD payload. No other headers
2926 * are included.
2927 *
2928 * Return the max MAD size required by the Port. Will return 0 if the port
2929 * does not support MADs
2930 */
2931static inline size_t rdma_max_mad_size(const struct ib_device *device, u8 port_num)
2932{
2933 return device->port_immutable[port_num].max_mad_size;
2934}
2935
2936/**
2937 * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table
2938 * @device: Device to check
2939 * @port_num: Port number to check
2940 *
2941 * RoCE GID table mechanism manages the various GIDs for a device.
2942 *
2943 * NOTE: if allocating the port's GID table has failed, this call will still
2944 * return true, but any RoCE GID table API will fail.
2945 *
2946 * Return: true if the port uses RoCE GID table mechanism in order to manage
2947 * its GIDs.
2948 */
2949static inline bool rdma_cap_roce_gid_table(const struct ib_device *device,
2950 u8 port_num)
2951{
2952 return rdma_protocol_roce(device, port_num) &&
2953 device->add_gid && device->del_gid;
2954}
2955
2956/*
2957 * Check if the device supports READ W/ INVALIDATE.
2958 */
2959static inline bool rdma_cap_read_inv(struct ib_device *dev, u32 port_num)
2960{
2961 /*
2962 * iWarp drivers must support READ W/ INVALIDATE. No other protocol
2963 * has support for it yet.
2964 */
2965 return rdma_protocol_iwarp(dev, port_num);
2966}
2967
2968int ib_query_gid(struct ib_device *device,
2969 u8 port_num, int index, union ib_gid *gid,
2970 struct ib_gid_attr *attr);
2971
2972int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port,
2973 int state);
2974int ib_get_vf_config(struct ib_device *device, int vf, u8 port,
2975 struct ifla_vf_info *info);
2976int ib_get_vf_stats(struct ib_device *device, int vf, u8 port,
2977 struct ifla_vf_stats *stats);
2978int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid,
2979 int type);
2980
2981int ib_query_pkey(struct ib_device *device,
2982 u8 port_num, u16 index, u16 *pkey);
2983
2984int ib_modify_device(struct ib_device *device,
2985 int device_modify_mask,
2986 struct ib_device_modify *device_modify);
2987
2988int ib_modify_port(struct ib_device *device,
2989 u8 port_num, int port_modify_mask,
2990 struct ib_port_modify *port_modify);
2991
2992int ib_find_gid(struct ib_device *device, union ib_gid *gid,
2993 u8 *port_num, u16 *index);
2994
2995int ib_find_pkey(struct ib_device *device,
2996 u8 port_num, u16 pkey, u16 *index);
2997
2998enum ib_pd_flags {
2999 /*
3000 * Create a memory registration for all memory in the system and place
3001 * the rkey for it into pd->unsafe_global_rkey. This can be used by
3002 * ULPs to avoid the overhead of dynamic MRs.
3003 *
3004 * This flag is generally considered unsafe and must only be used in
3005 * extremly trusted environments. Every use of it will log a warning
3006 * in the kernel log.
3007 */
3008 IB_PD_UNSAFE_GLOBAL_RKEY = 0x01,
3009};
3010
3011struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
3012 const char *caller);
3013#define ib_alloc_pd(device, flags) \
3014 __ib_alloc_pd((device), (flags), KBUILD_MODNAME)
3015void ib_dealloc_pd(struct ib_pd *pd);
3016
3017/**
3018 * rdma_create_ah - Creates an address handle for the given address vector.
3019 * @pd: The protection domain associated with the address handle.
3020 * @ah_attr: The attributes of the address vector.
3021 *
3022 * The address handle is used to reference a local or global destination
3023 * in all UD QP post sends.
3024 */
3025struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr);
3026
3027/**
3028 * rdma_create_user_ah - Creates an address handle for the given address vector.
3029 * It resolves destination mac address for ah attribute of RoCE type.
3030 * @pd: The protection domain associated with the address handle.
3031 * @ah_attr: The attributes of the address vector.
3032 * @udata: pointer to user's input output buffer information need by
3033 * provider driver.
3034 *
3035 * It returns 0 on success and returns appropriate error code on error.
3036 * The address handle is used to reference a local or global destination
3037 * in all UD QP post sends.
3038 */
3039struct ib_ah *rdma_create_user_ah(struct ib_pd *pd,
3040 struct rdma_ah_attr *ah_attr,
3041 struct ib_udata *udata);
3042/**
3043 * ib_get_gids_from_rdma_hdr - Get sgid and dgid from GRH or IPv4 header
3044 * work completion.
3045 * @hdr: the L3 header to parse
3046 * @net_type: type of header to parse
3047 * @sgid: place to store source gid
3048 * @dgid: place to store destination gid
3049 */
3050int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
3051 enum rdma_network_type net_type,
3052 union ib_gid *sgid, union ib_gid *dgid);
3053
3054/**
3055 * ib_get_rdma_header_version - Get the header version
3056 * @hdr: the L3 header to parse
3057 */
3058int ib_get_rdma_header_version(const union rdma_network_hdr *hdr);
3059
3060/**
3061 * ib_init_ah_attr_from_wc - Initializes address handle attributes from a
3062 * work completion.
3063 * @device: Device on which the received message arrived.
3064 * @port_num: Port on which the received message arrived.
3065 * @wc: Work completion associated with the received message.
3066 * @grh: References the received global route header. This parameter is
3067 * ignored unless the work completion indicates that the GRH is valid.
3068 * @ah_attr: Returned attributes that can be used when creating an address
3069 * handle for replying to the message.
3070 */
3071int ib_init_ah_attr_from_wc(struct ib_device *device, u8 port_num,
3072 const struct ib_wc *wc, const struct ib_grh *grh,
3073 struct rdma_ah_attr *ah_attr);
3074
3075/**
3076 * ib_create_ah_from_wc - Creates an address handle associated with the
3077 * sender of the specified work completion.
3078 * @pd: The protection domain associated with the address handle.
3079 * @wc: Work completion information associated with a received message.
3080 * @grh: References the received global route header. This parameter is
3081 * ignored unless the work completion indicates that the GRH is valid.
3082 * @port_num: The outbound port number to associate with the address.
3083 *
3084 * The address handle is used to reference a local or global destination
3085 * in all UD QP post sends.
3086 */
3087struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
3088 const struct ib_grh *grh, u8 port_num);
3089
3090/**
3091 * rdma_modify_ah - Modifies the address vector associated with an address
3092 * handle.
3093 * @ah: The address handle to modify.
3094 * @ah_attr: The new address vector attributes to associate with the
3095 * address handle.
3096 */
3097int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
3098
3099/**
3100 * rdma_query_ah - Queries the address vector associated with an address
3101 * handle.
3102 * @ah: The address handle to query.
3103 * @ah_attr: The address vector attributes associated with the address
3104 * handle.
3105 */
3106int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
3107
3108/**
3109 * rdma_destroy_ah - Destroys an address handle.
3110 * @ah: The address handle to destroy.
3111 */
3112int rdma_destroy_ah(struct ib_ah *ah);
3113
3114/**
3115 * ib_create_srq - Creates a SRQ associated with the specified protection
3116 * domain.
3117 * @pd: The protection domain associated with the SRQ.
3118 * @srq_init_attr: A list of initial attributes required to create the
3119 * SRQ. If SRQ creation succeeds, then the attributes are updated to
3120 * the actual capabilities of the created SRQ.
3121 *
3122 * srq_attr->max_wr and srq_attr->max_sge are read the determine the
3123 * requested size of the SRQ, and set to the actual values allocated
3124 * on return. If ib_create_srq() succeeds, then max_wr and max_sge
3125 * will always be at least as large as the requested values.
3126 */
3127struct ib_srq *ib_create_srq(struct ib_pd *pd,
3128 struct ib_srq_init_attr *srq_init_attr);
3129
3130/**
3131 * ib_modify_srq - Modifies the attributes for the specified SRQ.
3132 * @srq: The SRQ to modify.
3133 * @srq_attr: On input, specifies the SRQ attributes to modify. On output,
3134 * the current values of selected SRQ attributes are returned.
3135 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
3136 * are being modified.
3137 *
3138 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
3139 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when
3140 * the number of receives queued drops below the limit.
3141 */
3142int ib_modify_srq(struct ib_srq *srq,
3143 struct ib_srq_attr *srq_attr,
3144 enum ib_srq_attr_mask srq_attr_mask);
3145
3146/**
3147 * ib_query_srq - Returns the attribute list and current values for the
3148 * specified SRQ.
3149 * @srq: The SRQ to query.
3150 * @srq_attr: The attributes of the specified SRQ.
3151 */
3152int ib_query_srq(struct ib_srq *srq,
3153 struct ib_srq_attr *srq_attr);
3154
3155/**
3156 * ib_destroy_srq - Destroys the specified SRQ.
3157 * @srq: The SRQ to destroy.
3158 */
3159int ib_destroy_srq(struct ib_srq *srq);
3160
3161/**
3162 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
3163 * @srq: The SRQ to post the work request on.
3164 * @recv_wr: A list of work requests to post on the receive queue.
3165 * @bad_recv_wr: On an immediate failure, this parameter will reference
3166 * the work request that failed to be posted on the QP.
3167 */
3168static inline int ib_post_srq_recv(struct ib_srq *srq,
3169 struct ib_recv_wr *recv_wr,
3170 struct ib_recv_wr **bad_recv_wr)
3171{
3172 return srq->device->post_srq_recv(srq, recv_wr, bad_recv_wr);
3173}
3174
3175/**
3176 * ib_create_qp - Creates a QP associated with the specified protection
3177 * domain.
3178 * @pd: The protection domain associated with the QP.
3179 * @qp_init_attr: A list of initial attributes required to create the
3180 * QP. If QP creation succeeds, then the attributes are updated to
3181 * the actual capabilities of the created QP.
3182 */
3183struct ib_qp *ib_create_qp(struct ib_pd *pd,
3184 struct ib_qp_init_attr *qp_init_attr);
3185
3186/**
3187 * ib_modify_qp_with_udata - Modifies the attributes for the specified QP.
3188 * @qp: The QP to modify.
3189 * @attr: On input, specifies the QP attributes to modify. On output,
3190 * the current values of selected QP attributes are returned.
3191 * @attr_mask: A bit-mask used to specify which attributes of the QP
3192 * are being modified.
3193 * @udata: pointer to user's input output buffer information
3194 * are being modified.
3195 * It returns 0 on success and returns appropriate error code on error.
3196 */
3197int ib_modify_qp_with_udata(struct ib_qp *qp,
3198 struct ib_qp_attr *attr,
3199 int attr_mask,
3200 struct ib_udata *udata);
3201
3202/**
3203 * ib_modify_qp - Modifies the attributes for the specified QP and then
3204 * transitions the QP to the given state.
3205 * @qp: The QP to modify.
3206 * @qp_attr: On input, specifies the QP attributes to modify. On output,
3207 * the current values of selected QP attributes are returned.
3208 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP
3209 * are being modified.
3210 */
3211int ib_modify_qp(struct ib_qp *qp,
3212 struct ib_qp_attr *qp_attr,
3213 int qp_attr_mask);
3214
3215/**
3216 * ib_query_qp - Returns the attribute list and current values for the
3217 * specified QP.
3218 * @qp: The QP to query.
3219 * @qp_attr: The attributes of the specified QP.
3220 * @qp_attr_mask: A bit-mask used to select specific attributes to query.
3221 * @qp_init_attr: Additional attributes of the selected QP.
3222 *
3223 * The qp_attr_mask may be used to limit the query to gathering only the
3224 * selected attributes.
3225 */
3226int ib_query_qp(struct ib_qp *qp,
3227 struct ib_qp_attr *qp_attr,
3228 int qp_attr_mask,
3229 struct ib_qp_init_attr *qp_init_attr);
3230
3231/**
3232 * ib_destroy_qp - Destroys the specified QP.
3233 * @qp: The QP to destroy.
3234 */
3235int ib_destroy_qp(struct ib_qp *qp);
3236
3237/**
3238 * ib_open_qp - Obtain a reference to an existing sharable QP.
3239 * @xrcd - XRC domain
3240 * @qp_open_attr: Attributes identifying the QP to open.
3241 *
3242 * Returns a reference to a sharable QP.
3243 */
3244struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
3245 struct ib_qp_open_attr *qp_open_attr);
3246
3247/**
3248 * ib_close_qp - Release an external reference to a QP.
3249 * @qp: The QP handle to release
3250 *
3251 * The opened QP handle is released by the caller. The underlying
3252 * shared QP is not destroyed until all internal references are released.
3253 */
3254int ib_close_qp(struct ib_qp *qp);
3255
3256/**
3257 * ib_post_send - Posts a list of work requests to the send queue of
3258 * the specified QP.
3259 * @qp: The QP to post the work request on.
3260 * @send_wr: A list of work requests to post on the send queue.
3261 * @bad_send_wr: On an immediate failure, this parameter will reference
3262 * the work request that failed to be posted on the QP.
3263 *
3264 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate
3265 * error is returned, the QP state shall not be affected,
3266 * ib_post_send() will return an immediate error after queueing any
3267 * earlier work requests in the list.
3268 */
3269static inline int ib_post_send(struct ib_qp *qp,
3270 struct ib_send_wr *send_wr,
3271 struct ib_send_wr **bad_send_wr)
3272{
3273 return qp->device->post_send(qp, send_wr, bad_send_wr);
3274}
3275
3276/**
3277 * ib_post_recv - Posts a list of work requests to the receive queue of
3278 * the specified QP.
3279 * @qp: The QP to post the work request on.
3280 * @recv_wr: A list of work requests to post on the receive queue.
3281 * @bad_recv_wr: On an immediate failure, this parameter will reference
3282 * the work request that failed to be posted on the QP.
3283 */
3284static inline int ib_post_recv(struct ib_qp *qp,
3285 struct ib_recv_wr *recv_wr,
3286 struct ib_recv_wr **bad_recv_wr)
3287{
3288 return qp->device->post_recv(qp, recv_wr, bad_recv_wr);
3289}
3290
3291struct ib_cq *__ib_alloc_cq(struct ib_device *dev, void *private,
3292 int nr_cqe, int comp_vector,
3293 enum ib_poll_context poll_ctx, const char *caller);
3294#define ib_alloc_cq(device, priv, nr_cqe, comp_vect, poll_ctx) \
3295 __ib_alloc_cq((device), (priv), (nr_cqe), (comp_vect), (poll_ctx), KBUILD_MODNAME)
3296
3297void ib_free_cq(struct ib_cq *cq);
3298int ib_process_cq_direct(struct ib_cq *cq, int budget);
3299
3300/**
3301 * ib_create_cq - Creates a CQ on the specified device.
3302 * @device: The device on which to create the CQ.
3303 * @comp_handler: A user-specified callback that is invoked when a
3304 * completion event occurs on the CQ.
3305 * @event_handler: A user-specified callback that is invoked when an
3306 * asynchronous event not associated with a completion occurs on the CQ.
3307 * @cq_context: Context associated with the CQ returned to the user via
3308 * the associated completion and event handlers.
3309 * @cq_attr: The attributes the CQ should be created upon.
3310 *
3311 * Users can examine the cq structure to determine the actual CQ size.
3312 */
3313struct ib_cq *ib_create_cq(struct ib_device *device,
3314 ib_comp_handler comp_handler,
3315 void (*event_handler)(struct ib_event *, void *),
3316 void *cq_context,
3317 const struct ib_cq_init_attr *cq_attr);
3318
3319/**
3320 * ib_resize_cq - Modifies the capacity of the CQ.
3321 * @cq: The CQ to resize.
3322 * @cqe: The minimum size of the CQ.
3323 *
3324 * Users can examine the cq structure to determine the actual CQ size.
3325 */
3326int ib_resize_cq(struct ib_cq *cq, int cqe);
3327
3328/**
3329 * rdma_set_cq_moderation - Modifies moderation params of the CQ
3330 * @cq: The CQ to modify.
3331 * @cq_count: number of CQEs that will trigger an event
3332 * @cq_period: max period of time in usec before triggering an event
3333 *
3334 */
3335int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period);
3336
3337/**
3338 * ib_destroy_cq - Destroys the specified CQ.
3339 * @cq: The CQ to destroy.
3340 */
3341int ib_destroy_cq(struct ib_cq *cq);
3342
3343/**
3344 * ib_poll_cq - poll a CQ for completion(s)
3345 * @cq:the CQ being polled
3346 * @num_entries:maximum number of completions to return
3347 * @wc:array of at least @num_entries &struct ib_wc where completions
3348 * will be returned
3349 *
3350 * Poll a CQ for (possibly multiple) completions. If the return value
3351 * is < 0, an error occurred. If the return value is >= 0, it is the
3352 * number of completions returned. If the return value is
3353 * non-negative and < num_entries, then the CQ was emptied.
3354 */
3355static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
3356 struct ib_wc *wc)
3357{
3358 return cq->device->poll_cq(cq, num_entries, wc);
3359}
3360
3361/**
3362 * ib_req_notify_cq - Request completion notification on a CQ.
3363 * @cq: The CQ to generate an event for.
3364 * @flags:
3365 * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
3366 * to request an event on the next solicited event or next work
3367 * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
3368 * may also be |ed in to request a hint about missed events, as
3369 * described below.
3370 *
3371 * Return Value:
3372 * < 0 means an error occurred while requesting notification
3373 * == 0 means notification was requested successfully, and if
3374 * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
3375 * were missed and it is safe to wait for another event. In
3376 * this case is it guaranteed that any work completions added
3377 * to the CQ since the last CQ poll will trigger a completion
3378 * notification event.
3379 * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
3380 * in. It means that the consumer must poll the CQ again to
3381 * make sure it is empty to avoid missing an event because of a
3382 * race between requesting notification and an entry being
3383 * added to the CQ. This return value means it is possible
3384 * (but not guaranteed) that a work completion has been added
3385 * to the CQ since the last poll without triggering a
3386 * completion notification event.
3387 */
3388static inline int ib_req_notify_cq(struct ib_cq *cq,
3389 enum ib_cq_notify_flags flags)
3390{
3391 return cq->device->req_notify_cq(cq, flags);
3392}
3393
3394/**
3395 * ib_req_ncomp_notif - Request completion notification when there are
3396 * at least the specified number of unreaped completions on the CQ.
3397 * @cq: The CQ to generate an event for.
3398 * @wc_cnt: The number of unreaped completions that should be on the
3399 * CQ before an event is generated.
3400 */
3401static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt)
3402{
3403 return cq->device->req_ncomp_notif ?
3404 cq->device->req_ncomp_notif(cq, wc_cnt) :
3405 -ENOSYS;
3406}
3407
3408/**
3409 * ib_dma_mapping_error - check a DMA addr for error
3410 * @dev: The device for which the dma_addr was created
3411 * @dma_addr: The DMA address to check
3412 */
3413static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
3414{
3415 return dma_mapping_error(dev->dma_device, dma_addr);
3416}
3417
3418/**
3419 * ib_dma_map_single - Map a kernel virtual address to DMA address
3420 * @dev: The device for which the dma_addr is to be created
3421 * @cpu_addr: The kernel virtual address
3422 * @size: The size of the region in bytes
3423 * @direction: The direction of the DMA
3424 */
3425static inline u64 ib_dma_map_single(struct ib_device *dev,
3426 void *cpu_addr, size_t size,
3427 enum dma_data_direction direction)
3428{
3429 return dma_map_single(dev->dma_device, cpu_addr, size, direction);
3430}
3431
3432/**
3433 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
3434 * @dev: The device for which the DMA address was created
3435 * @addr: The DMA address
3436 * @size: The size of the region in bytes
3437 * @direction: The direction of the DMA
3438 */
3439static inline void ib_dma_unmap_single(struct ib_device *dev,
3440 u64 addr, size_t size,
3441 enum dma_data_direction direction)
3442{
3443 dma_unmap_single(dev->dma_device, addr, size, direction);
3444}
3445
3446/**
3447 * ib_dma_map_page - Map a physical page to DMA address
3448 * @dev: The device for which the dma_addr is to be created
3449 * @page: The page to be mapped
3450 * @offset: The offset within the page
3451 * @size: The size of the region in bytes
3452 * @direction: The direction of the DMA
3453 */
3454static inline u64 ib_dma_map_page(struct ib_device *dev,
3455 struct page *page,
3456 unsigned long offset,
3457 size_t size,
3458 enum dma_data_direction direction)
3459{
3460 return dma_map_page(dev->dma_device, page, offset, size, direction);
3461}
3462
3463/**
3464 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
3465 * @dev: The device for which the DMA address was created
3466 * @addr: The DMA address
3467 * @size: The size of the region in bytes
3468 * @direction: The direction of the DMA
3469 */
3470static inline void ib_dma_unmap_page(struct ib_device *dev,
3471 u64 addr, size_t size,
3472 enum dma_data_direction direction)
3473{
3474 dma_unmap_page(dev->dma_device, addr, size, direction);
3475}
3476
3477/**
3478 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses
3479 * @dev: The device for which the DMA addresses are to be created
3480 * @sg: The array of scatter/gather entries
3481 * @nents: The number of scatter/gather entries
3482 * @direction: The direction of the DMA
3483 */
3484static inline int ib_dma_map_sg(struct ib_device *dev,
3485 struct scatterlist *sg, int nents,
3486 enum dma_data_direction direction)
3487{
3488 return dma_map_sg(dev->dma_device, sg, nents, direction);
3489}
3490
3491/**
3492 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
3493 * @dev: The device for which the DMA addresses were created
3494 * @sg: The array of scatter/gather entries
3495 * @nents: The number of scatter/gather entries
3496 * @direction: The direction of the DMA
3497 */
3498static inline void ib_dma_unmap_sg(struct ib_device *dev,
3499 struct scatterlist *sg, int nents,
3500 enum dma_data_direction direction)
3501{
3502 dma_unmap_sg(dev->dma_device, sg, nents, direction);
3503}
3504
3505static inline int ib_dma_map_sg_attrs(struct ib_device *dev,
3506 struct scatterlist *sg, int nents,
3507 enum dma_data_direction direction,
3508 unsigned long dma_attrs)
3509{
3510 return dma_map_sg_attrs(dev->dma_device, sg, nents, direction,
3511 dma_attrs);
3512}
3513
3514static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev,
3515 struct scatterlist *sg, int nents,
3516 enum dma_data_direction direction,
3517 unsigned long dma_attrs)
3518{
3519 dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, dma_attrs);
3520}
3521/**
3522 * ib_sg_dma_address - Return the DMA address from a scatter/gather entry
3523 * @dev: The device for which the DMA addresses were created
3524 * @sg: The scatter/gather entry
3525 *
3526 * Note: this function is obsolete. To do: change all occurrences of
3527 * ib_sg_dma_address() into sg_dma_address().
3528 */
3529static inline u64 ib_sg_dma_address(struct ib_device *dev,
3530 struct scatterlist *sg)
3531{
3532 return sg_dma_address(sg);
3533}
3534
3535/**
3536 * ib_sg_dma_len - Return the DMA length from a scatter/gather entry
3537 * @dev: The device for which the DMA addresses were created
3538 * @sg: The scatter/gather entry
3539 *
3540 * Note: this function is obsolete. To do: change all occurrences of
3541 * ib_sg_dma_len() into sg_dma_len().
3542 */
3543static inline unsigned int ib_sg_dma_len(struct ib_device *dev,
3544 struct scatterlist *sg)
3545{
3546 return sg_dma_len(sg);
3547}
3548
3549/**
3550 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
3551 * @dev: The device for which the DMA address was created
3552 * @addr: The DMA address
3553 * @size: The size of the region in bytes
3554 * @dir: The direction of the DMA
3555 */
3556static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
3557 u64 addr,
3558 size_t size,
3559 enum dma_data_direction dir)
3560{
3561 dma_sync_single_for_cpu(dev->dma_device, addr, size, dir);
3562}
3563
3564/**
3565 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
3566 * @dev: The device for which the DMA address was created
3567 * @addr: The DMA address
3568 * @size: The size of the region in bytes
3569 * @dir: The direction of the DMA
3570 */
3571static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
3572 u64 addr,
3573 size_t size,
3574 enum dma_data_direction dir)
3575{
3576 dma_sync_single_for_device(dev->dma_device, addr, size, dir);
3577}
3578
3579/**
3580 * ib_dma_alloc_coherent - Allocate memory and map it for DMA
3581 * @dev: The device for which the DMA address is requested
3582 * @size: The size of the region to allocate in bytes
3583 * @dma_handle: A pointer for returning the DMA address of the region
3584 * @flag: memory allocator flags
3585 */
3586static inline void *ib_dma_alloc_coherent(struct ib_device *dev,
3587 size_t size,
3588 dma_addr_t *dma_handle,
3589 gfp_t flag)
3590{
3591 return dma_alloc_coherent(dev->dma_device, size, dma_handle, flag);
3592}
3593
3594/**
3595 * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent()
3596 * @dev: The device for which the DMA addresses were allocated
3597 * @size: The size of the region
3598 * @cpu_addr: the address returned by ib_dma_alloc_coherent()
3599 * @dma_handle: the DMA address returned by ib_dma_alloc_coherent()
3600 */
3601static inline void ib_dma_free_coherent(struct ib_device *dev,
3602 size_t size, void *cpu_addr,
3603 dma_addr_t dma_handle)
3604{
3605 dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle);
3606}
3607
3608/**
3609 * ib_dereg_mr - Deregisters a memory region and removes it from the
3610 * HCA translation table.
3611 * @mr: The memory region to deregister.
3612 *
3613 * This function can fail, if the memory region has memory windows bound to it.
3614 */
3615int ib_dereg_mr(struct ib_mr *mr);
3616
3617struct ib_mr *ib_alloc_mr(struct ib_pd *pd,
3618 enum ib_mr_type mr_type,
3619 u32 max_num_sg);
3620
3621/**
3622 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR
3623 * R_Key and L_Key.
3624 * @mr - struct ib_mr pointer to be updated.
3625 * @newkey - new key to be used.
3626 */
3627static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey)
3628{
3629 mr->lkey = (mr->lkey & 0xffffff00) | newkey;
3630 mr->rkey = (mr->rkey & 0xffffff00) | newkey;
3631}
3632
3633/**
3634 * ib_inc_rkey - increments the key portion of the given rkey. Can be used
3635 * for calculating a new rkey for type 2 memory windows.
3636 * @rkey - the rkey to increment.
3637 */
3638static inline u32 ib_inc_rkey(u32 rkey)
3639{
3640 const u32 mask = 0x000000ff;
3641 return ((rkey + 1) & mask) | (rkey & ~mask);
3642}
3643
3644/**
3645 * ib_alloc_fmr - Allocates a unmapped fast memory region.
3646 * @pd: The protection domain associated with the unmapped region.
3647 * @mr_access_flags: Specifies the memory access rights.
3648 * @fmr_attr: Attributes of the unmapped region.
3649 *
3650 * A fast memory region must be mapped before it can be used as part of
3651 * a work request.
3652 */
3653struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
3654 int mr_access_flags,
3655 struct ib_fmr_attr *fmr_attr);
3656
3657/**
3658 * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region.
3659 * @fmr: The fast memory region to associate with the pages.
3660 * @page_list: An array of physical pages to map to the fast memory region.
3661 * @list_len: The number of pages in page_list.
3662 * @iova: The I/O virtual address to use with the mapped region.
3663 */
3664static inline int ib_map_phys_fmr(struct ib_fmr *fmr,
3665 u64 *page_list, int list_len,
3666 u64 iova)
3667{
3668 return fmr->device->map_phys_fmr(fmr, page_list, list_len, iova);
3669}
3670
3671/**
3672 * ib_unmap_fmr - Removes the mapping from a list of fast memory regions.
3673 * @fmr_list: A linked list of fast memory regions to unmap.
3674 */
3675int ib_unmap_fmr(struct list_head *fmr_list);
3676
3677/**
3678 * ib_dealloc_fmr - Deallocates a fast memory region.
3679 * @fmr: The fast memory region to deallocate.
3680 */
3681int ib_dealloc_fmr(struct ib_fmr *fmr);
3682
3683/**
3684 * ib_attach_mcast - Attaches the specified QP to a multicast group.
3685 * @qp: QP to attach to the multicast group. The QP must be type
3686 * IB_QPT_UD.
3687 * @gid: Multicast group GID.
3688 * @lid: Multicast group LID in host byte order.
3689 *
3690 * In order to send and receive multicast packets, subnet
3691 * administration must have created the multicast group and configured
3692 * the fabric appropriately. The port associated with the specified
3693 * QP must also be a member of the multicast group.
3694 */
3695int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
3696
3697/**
3698 * ib_detach_mcast - Detaches the specified QP from a multicast group.
3699 * @qp: QP to detach from the multicast group.
3700 * @gid: Multicast group GID.
3701 * @lid: Multicast group LID in host byte order.
3702 */
3703int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
3704
3705/**
3706 * ib_alloc_xrcd - Allocates an XRC domain.
3707 * @device: The device on which to allocate the XRC domain.
3708 * @caller: Module name for kernel consumers
3709 */
3710struct ib_xrcd *__ib_alloc_xrcd(struct ib_device *device, const char *caller);
3711#define ib_alloc_xrcd(device) \
3712 __ib_alloc_xrcd((device), KBUILD_MODNAME)
3713
3714/**
3715 * ib_dealloc_xrcd - Deallocates an XRC domain.
3716 * @xrcd: The XRC domain to deallocate.
3717 */
3718int ib_dealloc_xrcd(struct ib_xrcd *xrcd);
3719
3720struct ib_flow *ib_create_flow(struct ib_qp *qp,
3721 struct ib_flow_attr *flow_attr, int domain);
3722int ib_destroy_flow(struct ib_flow *flow_id);
3723
3724static inline int ib_check_mr_access(int flags)
3725{
3726 /*
3727 * Local write permission is required if remote write or
3728 * remote atomic permission is also requested.
3729 */
3730 if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) &&
3731 !(flags & IB_ACCESS_LOCAL_WRITE))
3732 return -EINVAL;
3733
3734 return 0;
3735}
3736
3737/**
3738 * ib_check_mr_status: lightweight check of MR status.
3739 * This routine may provide status checks on a selected
3740 * ib_mr. first use is for signature status check.
3741 *
3742 * @mr: A memory region.
3743 * @check_mask: Bitmask of which checks to perform from
3744 * ib_mr_status_check enumeration.
3745 * @mr_status: The container of relevant status checks.
3746 * failed checks will be indicated in the status bitmask
3747 * and the relevant info shall be in the error item.
3748 */
3749int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
3750 struct ib_mr_status *mr_status);
3751
3752struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u8 port,
3753 u16 pkey, const union ib_gid *gid,
3754 const struct sockaddr *addr);
3755struct ib_wq *ib_create_wq(struct ib_pd *pd,
3756 struct ib_wq_init_attr *init_attr);
3757int ib_destroy_wq(struct ib_wq *wq);
3758int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *attr,
3759 u32 wq_attr_mask);
3760struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device,
3761 struct ib_rwq_ind_table_init_attr*
3762 wq_ind_table_init_attr);
3763int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *wq_ind_table);
3764
3765int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
3766 unsigned int *sg_offset, unsigned int page_size);
3767
3768static inline int
3769ib_map_mr_sg_zbva(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
3770 unsigned int *sg_offset, unsigned int page_size)
3771{
3772 int n;
3773
3774 n = ib_map_mr_sg(mr, sg, sg_nents, sg_offset, page_size);
3775 mr->iova = 0;
3776
3777 return n;
3778}
3779
3780int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
3781 unsigned int *sg_offset, int (*set_page)(struct ib_mr *, u64));
3782
3783void ib_drain_rq(struct ib_qp *qp);
3784void ib_drain_sq(struct ib_qp *qp);
3785void ib_drain_qp(struct ib_qp *qp);
3786
3787int ib_get_eth_speed(struct ib_device *dev, u8 port_num, u8 *speed, u8 *width);
3788
3789static inline u8 *rdma_ah_retrieve_dmac(struct rdma_ah_attr *attr)
3790{
3791 if (attr->type == RDMA_AH_ATTR_TYPE_ROCE)
3792 return attr->roce.dmac;
3793 return NULL;
3794}
3795
3796static inline void rdma_ah_set_dlid(struct rdma_ah_attr *attr, u32 dlid)
3797{
3798 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
3799 attr->ib.dlid = (u16)dlid;
3800 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
3801 attr->opa.dlid = dlid;
3802}
3803
3804static inline u32 rdma_ah_get_dlid(const struct rdma_ah_attr *attr)
3805{
3806 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
3807 return attr->ib.dlid;
3808 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
3809 return attr->opa.dlid;
3810 return 0;
3811}
3812
3813static inline void rdma_ah_set_sl(struct rdma_ah_attr *attr, u8 sl)
3814{
3815 attr->sl = sl;
3816}
3817
3818static inline u8 rdma_ah_get_sl(const struct rdma_ah_attr *attr)
3819{
3820 return attr->sl;
3821}
3822
3823static inline void rdma_ah_set_path_bits(struct rdma_ah_attr *attr,
3824 u8 src_path_bits)
3825{
3826 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
3827 attr->ib.src_path_bits = src_path_bits;
3828 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
3829 attr->opa.src_path_bits = src_path_bits;
3830}
3831
3832static inline u8 rdma_ah_get_path_bits(const struct rdma_ah_attr *attr)
3833{
3834 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
3835 return attr->ib.src_path_bits;
3836 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
3837 return attr->opa.src_path_bits;
3838 return 0;
3839}
3840
3841static inline void rdma_ah_set_make_grd(struct rdma_ah_attr *attr,
3842 bool make_grd)
3843{
3844 if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
3845 attr->opa.make_grd = make_grd;
3846}
3847
3848static inline bool rdma_ah_get_make_grd(const struct rdma_ah_attr *attr)
3849{
3850 if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
3851 return attr->opa.make_grd;
3852 return false;
3853}
3854
3855static inline void rdma_ah_set_port_num(struct rdma_ah_attr *attr, u8 port_num)
3856{
3857 attr->port_num = port_num;
3858}
3859
3860static inline u8 rdma_ah_get_port_num(const struct rdma_ah_attr *attr)
3861{
3862 return attr->port_num;
3863}
3864
3865static inline void rdma_ah_set_static_rate(struct rdma_ah_attr *attr,
3866 u8 static_rate)
3867{
3868 attr->static_rate = static_rate;
3869}
3870
3871static inline u8 rdma_ah_get_static_rate(const struct rdma_ah_attr *attr)
3872{
3873 return attr->static_rate;
3874}
3875
3876static inline void rdma_ah_set_ah_flags(struct rdma_ah_attr *attr,
3877 enum ib_ah_flags flag)
3878{
3879 attr->ah_flags = flag;
3880}
3881
3882static inline enum ib_ah_flags
3883 rdma_ah_get_ah_flags(const struct rdma_ah_attr *attr)
3884{
3885 return attr->ah_flags;
3886}
3887
3888static inline const struct ib_global_route
3889 *rdma_ah_read_grh(const struct rdma_ah_attr *attr)
3890{
3891 return &attr->grh;
3892}
3893
3894/*To retrieve and modify the grh */
3895static inline struct ib_global_route
3896 *rdma_ah_retrieve_grh(struct rdma_ah_attr *attr)
3897{
3898 return &attr->grh;
3899}
3900
3901static inline void rdma_ah_set_dgid_raw(struct rdma_ah_attr *attr, void *dgid)
3902{
3903 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
3904
3905 memcpy(grh->dgid.raw, dgid, sizeof(grh->dgid));
3906}
3907
3908static inline void rdma_ah_set_subnet_prefix(struct rdma_ah_attr *attr,
3909 __be64 prefix)
3910{
3911 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
3912
3913 grh->dgid.global.subnet_prefix = prefix;
3914}
3915
3916static inline void rdma_ah_set_interface_id(struct rdma_ah_attr *attr,
3917 __be64 if_id)
3918{
3919 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
3920
3921 grh->dgid.global.interface_id = if_id;
3922}
3923
3924static inline void rdma_ah_set_grh(struct rdma_ah_attr *attr,
3925 union ib_gid *dgid, u32 flow_label,
3926 u8 sgid_index, u8 hop_limit,
3927 u8 traffic_class)
3928{
3929 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
3930
3931 attr->ah_flags = IB_AH_GRH;
3932 if (dgid)
3933 grh->dgid = *dgid;
3934 grh->flow_label = flow_label;
3935 grh->sgid_index = sgid_index;
3936 grh->hop_limit = hop_limit;
3937 grh->traffic_class = traffic_class;
3938}
3939
3940/**
3941 * rdma_ah_find_type - Return address handle type.
3942 *
3943 * @dev: Device to be checked
3944 * @port_num: Port number
3945 */
3946static inline enum rdma_ah_attr_type rdma_ah_find_type(struct ib_device *dev,
3947 u8 port_num)
3948{
3949 if (rdma_protocol_roce(dev, port_num))
3950 return RDMA_AH_ATTR_TYPE_ROCE;
3951 if (rdma_protocol_ib(dev, port_num)) {
3952 if (rdma_cap_opa_ah(dev, port_num))
3953 return RDMA_AH_ATTR_TYPE_OPA;
3954 return RDMA_AH_ATTR_TYPE_IB;
3955 }
3956
3957 return RDMA_AH_ATTR_TYPE_UNDEFINED;
3958}
3959
3960/**
3961 * ib_lid_cpu16 - Return lid in 16bit CPU encoding.
3962 * In the current implementation the only way to get
3963 * get the 32bit lid is from other sources for OPA.
3964 * For IB, lids will always be 16bits so cast the
3965 * value accordingly.
3966 *
3967 * @lid: A 32bit LID
3968 */
3969static inline u16 ib_lid_cpu16(u32 lid)
3970{
3971 WARN_ON_ONCE(lid & 0xFFFF0000);
3972 return (u16)lid;
3973}
3974
3975/**
3976 * ib_lid_be16 - Return lid in 16bit BE encoding.
3977 *
3978 * @lid: A 32bit LID
3979 */
3980static inline __be16 ib_lid_be16(u32 lid)
3981{
3982 WARN_ON_ONCE(lid & 0xFFFF0000);
3983 return cpu_to_be16((u16)lid);
3984}
3985
3986/**
3987 * ib_get_vector_affinity - Get the affinity mappings of a given completion
3988 * vector
3989 * @device: the rdma device
3990 * @comp_vector: index of completion vector
3991 *
3992 * Returns NULL on failure, otherwise a corresponding cpu map of the
3993 * completion vector (returns all-cpus map if the device driver doesn't
3994 * implement get_vector_affinity).
3995 */
3996static inline const struct cpumask *
3997ib_get_vector_affinity(struct ib_device *device, int comp_vector)
3998{
3999 if (comp_vector < 0 || comp_vector >= device->num_comp_vectors ||
4000 !device->get_vector_affinity)
4001 return NULL;
4002
4003 return device->get_vector_affinity(device, comp_vector);
4004
4005}
4006
4007/**
4008 * rdma_roce_rescan_device - Rescan all of the network devices in the system
4009 * and add their gids, as needed, to the relevant RoCE devices.
4010 *
4011 * @device: the rdma device
4012 */
4013void rdma_roce_rescan_device(struct ib_device *ibdev);
4014
4015#endif /* IB_VERBS_H */