Linux Audio

Check our new training course

Loading...
v3.1
 
   1/*
   2 * Copyright (c) 2004 Mellanox Technologies Ltd.  All rights reserved.
   3 * Copyright (c) 2004 Infinicon Corporation.  All rights reserved.
   4 * Copyright (c) 2004 Intel Corporation.  All rights reserved.
   5 * Copyright (c) 2004 Topspin Corporation.  All rights reserved.
   6 * Copyright (c) 2004 Voltaire Corporation.  All rights reserved.
   7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
   8 * Copyright (c) 2005, 2006, 2007 Cisco Systems.  All rights reserved.
   9 *
  10 * This software is available to you under a choice of one of two
  11 * licenses.  You may choose to be licensed under the terms of the GNU
  12 * General Public License (GPL) Version 2, available from the file
  13 * COPYING in the main directory of this source tree, or the
  14 * OpenIB.org BSD license below:
  15 *
  16 *     Redistribution and use in source and binary forms, with or
  17 *     without modification, are permitted provided that the following
  18 *     conditions are met:
  19 *
  20 *      - Redistributions of source code must retain the above
  21 *        copyright notice, this list of conditions and the following
  22 *        disclaimer.
  23 *
  24 *      - Redistributions in binary form must reproduce the above
  25 *        copyright notice, this list of conditions and the following
  26 *        disclaimer in the documentation and/or other materials
  27 *        provided with the distribution.
  28 *
  29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  36 * SOFTWARE.
  37 */
  38
  39#if !defined(IB_VERBS_H)
  40#define IB_VERBS_H
  41
 
  42#include <linux/types.h>
  43#include <linux/device.h>
  44#include <linux/mm.h>
  45#include <linux/dma-mapping.h>
  46#include <linux/kref.h>
  47#include <linux/list.h>
  48#include <linux/rwsem.h>
  49#include <linux/scatterlist.h>
  50#include <linux/workqueue.h>
  51
 
 
 
 
 
 
 
 
  52#include <linux/atomic.h>
  53#include <asm/uaccess.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  54
  55extern struct workqueue_struct *ib_wq;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  56
  57union ib_gid {
  58	u8	raw[16];
  59	struct {
  60		__be64	subnet_prefix;
  61		__be64	interface_id;
  62	} global;
  63};
  64
  65enum rdma_node_type {
  66	/* IB values map to NodeInfo:NodeType. */
  67	RDMA_NODE_IB_CA 	= 1,
  68	RDMA_NODE_IB_SWITCH,
  69	RDMA_NODE_IB_ROUTER,
  70	RDMA_NODE_RNIC
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  71};
  72
  73enum rdma_transport_type {
  74	RDMA_TRANSPORT_IB,
  75	RDMA_TRANSPORT_IWARP
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  76};
  77
  78enum rdma_transport_type
  79rdma_node_get_transport(enum rdma_node_type node_type) __attribute_const__;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  80
  81enum rdma_link_layer {
  82	IB_LINK_LAYER_UNSPECIFIED,
  83	IB_LINK_LAYER_INFINIBAND,
  84	IB_LINK_LAYER_ETHERNET,
  85};
  86
  87enum ib_device_cap_flags {
  88	IB_DEVICE_RESIZE_MAX_WR		= 1,
  89	IB_DEVICE_BAD_PKEY_CNTR		= (1<<1),
  90	IB_DEVICE_BAD_QKEY_CNTR		= (1<<2),
  91	IB_DEVICE_RAW_MULTI		= (1<<3),
  92	IB_DEVICE_AUTO_PATH_MIG		= (1<<4),
  93	IB_DEVICE_CHANGE_PHY_PORT	= (1<<5),
  94	IB_DEVICE_UD_AV_PORT_ENFORCE	= (1<<6),
  95	IB_DEVICE_CURR_QP_STATE_MOD	= (1<<7),
  96	IB_DEVICE_SHUTDOWN_PORT		= (1<<8),
  97	IB_DEVICE_INIT_TYPE		= (1<<9),
  98	IB_DEVICE_PORT_ACTIVE_EVENT	= (1<<10),
  99	IB_DEVICE_SYS_IMAGE_GUID	= (1<<11),
 100	IB_DEVICE_RC_RNR_NAK_GEN	= (1<<12),
 101	IB_DEVICE_SRQ_RESIZE		= (1<<13),
 102	IB_DEVICE_N_NOTIFY_CQ		= (1<<14),
 103	IB_DEVICE_LOCAL_DMA_LKEY	= (1<<15),
 104	IB_DEVICE_RESERVED		= (1<<16), /* old SEND_W_INV */
 105	IB_DEVICE_MEM_WINDOW		= (1<<17),
 106	/*
 107	 * Devices should set IB_DEVICE_UD_IP_SUM if they support
 108	 * insertion of UDP and TCP checksum on outgoing UD IPoIB
 109	 * messages and can verify the validity of checksum for
 110	 * incoming messages.  Setting this flag implies that the
 111	 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
 112	 */
 113	IB_DEVICE_UD_IP_CSUM		= (1<<18),
 114	IB_DEVICE_UD_TSO		= (1<<19),
 115	IB_DEVICE_MEM_MGT_EXTENSIONS	= (1<<21),
 116	IB_DEVICE_BLOCK_MULTICAST_LOOPBACK = (1<<22),
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 117};
 118
 119enum ib_atomic_cap {
 120	IB_ATOMIC_NONE,
 121	IB_ATOMIC_HCA,
 122	IB_ATOMIC_GLOB
 123};
 124
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 125struct ib_device_attr {
 126	u64			fw_ver;
 127	__be64			sys_image_guid;
 128	u64			max_mr_size;
 129	u64			page_size_cap;
 130	u32			vendor_id;
 131	u32			vendor_part_id;
 132	u32			hw_ver;
 133	int			max_qp;
 134	int			max_qp_wr;
 135	int			device_cap_flags;
 136	int			max_sge;
 
 
 137	int			max_sge_rd;
 138	int			max_cq;
 139	int			max_cqe;
 140	int			max_mr;
 141	int			max_pd;
 142	int			max_qp_rd_atom;
 143	int			max_ee_rd_atom;
 144	int			max_res_rd_atom;
 145	int			max_qp_init_rd_atom;
 146	int			max_ee_init_rd_atom;
 147	enum ib_atomic_cap	atomic_cap;
 148	enum ib_atomic_cap	masked_atomic_cap;
 149	int			max_ee;
 150	int			max_rdd;
 151	int			max_mw;
 152	int			max_raw_ipv6_qp;
 153	int			max_raw_ethy_qp;
 154	int			max_mcast_grp;
 155	int			max_mcast_qp_attach;
 156	int			max_total_mcast_qp_attach;
 157	int			max_ah;
 158	int			max_fmr;
 159	int			max_map_per_fmr;
 160	int			max_srq;
 161	int			max_srq_wr;
 162	int			max_srq_sge;
 163	unsigned int		max_fast_reg_page_list_len;
 
 164	u16			max_pkeys;
 165	u8			local_ca_ack_delay;
 
 
 
 
 
 
 
 
 
 
 
 
 
 166};
 167
 168enum ib_mtu {
 169	IB_MTU_256  = 1,
 170	IB_MTU_512  = 2,
 171	IB_MTU_1024 = 3,
 172	IB_MTU_2048 = 4,
 173	IB_MTU_4096 = 5
 174};
 175
 
 
 
 
 
 176static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
 177{
 178	switch (mtu) {
 179	case IB_MTU_256:  return  256;
 180	case IB_MTU_512:  return  512;
 181	case IB_MTU_1024: return 1024;
 182	case IB_MTU_2048: return 2048;
 183	case IB_MTU_4096: return 4096;
 184	default: 	  return -1;
 185	}
 186}
 187
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 188enum ib_port_state {
 189	IB_PORT_NOP		= 0,
 190	IB_PORT_DOWN		= 1,
 191	IB_PORT_INIT		= 2,
 192	IB_PORT_ARMED		= 3,
 193	IB_PORT_ACTIVE		= 4,
 194	IB_PORT_ACTIVE_DEFER	= 5
 195};
 196
 197enum ib_port_cap_flags {
 198	IB_PORT_SM				= 1 <<  1,
 199	IB_PORT_NOTICE_SUP			= 1 <<  2,
 200	IB_PORT_TRAP_SUP			= 1 <<  3,
 201	IB_PORT_OPT_IPD_SUP                     = 1 <<  4,
 202	IB_PORT_AUTO_MIGR_SUP			= 1 <<  5,
 203	IB_PORT_SL_MAP_SUP			= 1 <<  6,
 204	IB_PORT_MKEY_NVRAM			= 1 <<  7,
 205	IB_PORT_PKEY_NVRAM			= 1 <<  8,
 206	IB_PORT_LED_INFO_SUP			= 1 <<  9,
 207	IB_PORT_SM_DISABLED			= 1 << 10,
 208	IB_PORT_SYS_IMAGE_GUID_SUP		= 1 << 11,
 209	IB_PORT_PKEY_SW_EXT_PORT_TRAP_SUP	= 1 << 12,
 210	IB_PORT_CM_SUP				= 1 << 16,
 211	IB_PORT_SNMP_TUNNEL_SUP			= 1 << 17,
 212	IB_PORT_REINIT_SUP			= 1 << 18,
 213	IB_PORT_DEVICE_MGMT_SUP			= 1 << 19,
 214	IB_PORT_VENDOR_CLASS_SUP		= 1 << 20,
 215	IB_PORT_DR_NOTICE_SUP			= 1 << 21,
 216	IB_PORT_CAP_MASK_NOTICE_SUP		= 1 << 22,
 217	IB_PORT_BOOT_MGMT_SUP			= 1 << 23,
 218	IB_PORT_LINK_LATENCY_SUP		= 1 << 24,
 219	IB_PORT_CLIENT_REG_SUP			= 1 << 25
 220};
 221
 222enum ib_port_width {
 223	IB_WIDTH_1X	= 1,
 
 224	IB_WIDTH_4X	= 2,
 225	IB_WIDTH_8X	= 4,
 226	IB_WIDTH_12X	= 8
 227};
 228
 229static inline int ib_width_enum_to_int(enum ib_port_width width)
 230{
 231	switch (width) {
 232	case IB_WIDTH_1X:  return  1;
 
 233	case IB_WIDTH_4X:  return  4;
 234	case IB_WIDTH_8X:  return  8;
 235	case IB_WIDTH_12X: return 12;
 236	default: 	  return -1;
 237	}
 238}
 239
 240struct ib_protocol_stats {
 241	/* TBD... */
 242};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 243
 244struct iw_protocol_stats {
 245	u64	ipInReceives;
 246	u64	ipInHdrErrors;
 247	u64	ipInTooBigErrors;
 248	u64	ipInNoRoutes;
 249	u64	ipInAddrErrors;
 250	u64	ipInUnknownProtos;
 251	u64	ipInTruncatedPkts;
 252	u64	ipInDiscards;
 253	u64	ipInDelivers;
 254	u64	ipOutForwDatagrams;
 255	u64	ipOutRequests;
 256	u64	ipOutDiscards;
 257	u64	ipOutNoRoutes;
 258	u64	ipReasmTimeout;
 259	u64	ipReasmReqds;
 260	u64	ipReasmOKs;
 261	u64	ipReasmFails;
 262	u64	ipFragOKs;
 263	u64	ipFragFails;
 264	u64	ipFragCreates;
 265	u64	ipInMcastPkts;
 266	u64	ipOutMcastPkts;
 267	u64	ipInBcastPkts;
 268	u64	ipOutBcastPkts;
 269
 270	u64	tcpRtoAlgorithm;
 271	u64	tcpRtoMin;
 272	u64	tcpRtoMax;
 273	u64	tcpMaxConn;
 274	u64	tcpActiveOpens;
 275	u64	tcpPassiveOpens;
 276	u64	tcpAttemptFails;
 277	u64	tcpEstabResets;
 278	u64	tcpCurrEstab;
 279	u64	tcpInSegs;
 280	u64	tcpOutSegs;
 281	u64	tcpRetransSegs;
 282	u64	tcpInErrs;
 283	u64	tcpOutRsts;
 284};
 285
 286union rdma_protocol_stats {
 287	struct ib_protocol_stats	ib;
 288	struct iw_protocol_stats	iw;
 289};
 290
 291struct ib_port_attr {
 
 292	enum ib_port_state	state;
 293	enum ib_mtu		max_mtu;
 294	enum ib_mtu		active_mtu;
 
 295	int			gid_tbl_len;
 
 
 296	u32			port_cap_flags;
 297	u32			max_msg_sz;
 298	u32			bad_pkey_cntr;
 299	u32			qkey_viol_cntr;
 300	u16			pkey_tbl_len;
 301	u16			lid;
 302	u16			sm_lid;
 303	u8			lmc;
 304	u8			max_vl_num;
 305	u8			sm_sl;
 306	u8			subnet_timeout;
 307	u8			init_type_reply;
 308	u8			active_width;
 309	u8			active_speed;
 310	u8                      phys_state;
 
 311};
 312
 313enum ib_device_modify_flags {
 314	IB_DEVICE_MODIFY_SYS_IMAGE_GUID	= 1 << 0,
 315	IB_DEVICE_MODIFY_NODE_DESC	= 1 << 1
 316};
 317
 
 
 318struct ib_device_modify {
 319	u64	sys_image_guid;
 320	char	node_desc[64];
 321};
 322
 323enum ib_port_modify_flags {
 324	IB_PORT_SHUTDOWN		= 1,
 325	IB_PORT_INIT_TYPE		= (1<<2),
 326	IB_PORT_RESET_QKEY_CNTR		= (1<<3)
 
 327};
 328
 329struct ib_port_modify {
 330	u32	set_port_cap_mask;
 331	u32	clr_port_cap_mask;
 332	u8	init_type;
 333};
 334
 335enum ib_event_type {
 336	IB_EVENT_CQ_ERR,
 337	IB_EVENT_QP_FATAL,
 338	IB_EVENT_QP_REQ_ERR,
 339	IB_EVENT_QP_ACCESS_ERR,
 340	IB_EVENT_COMM_EST,
 341	IB_EVENT_SQ_DRAINED,
 342	IB_EVENT_PATH_MIG,
 343	IB_EVENT_PATH_MIG_ERR,
 344	IB_EVENT_DEVICE_FATAL,
 345	IB_EVENT_PORT_ACTIVE,
 346	IB_EVENT_PORT_ERR,
 347	IB_EVENT_LID_CHANGE,
 348	IB_EVENT_PKEY_CHANGE,
 349	IB_EVENT_SM_CHANGE,
 350	IB_EVENT_SRQ_ERR,
 351	IB_EVENT_SRQ_LIMIT_REACHED,
 352	IB_EVENT_QP_LAST_WQE_REACHED,
 353	IB_EVENT_CLIENT_REREGISTER,
 354	IB_EVENT_GID_CHANGE,
 
 355};
 356
 
 
 357struct ib_event {
 358	struct ib_device	*device;
 359	union {
 360		struct ib_cq	*cq;
 361		struct ib_qp	*qp;
 362		struct ib_srq	*srq;
 363		u8		port_num;
 
 364	} element;
 365	enum ib_event_type	event;
 366};
 367
 368struct ib_event_handler {
 369	struct ib_device *device;
 370	void            (*handler)(struct ib_event_handler *, struct ib_event *);
 371	struct list_head  list;
 372};
 373
 374#define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler)		\
 375	do {							\
 376		(_ptr)->device  = _device;			\
 377		(_ptr)->handler = _handler;			\
 378		INIT_LIST_HEAD(&(_ptr)->list);			\
 379	} while (0)
 380
 381struct ib_global_route {
 
 382	union ib_gid	dgid;
 383	u32		flow_label;
 384	u8		sgid_index;
 385	u8		hop_limit;
 386	u8		traffic_class;
 387};
 388
 389struct ib_grh {
 390	__be32		version_tclass_flow;
 391	__be16		paylen;
 392	u8		next_hdr;
 393	u8		hop_limit;
 394	union ib_gid	sgid;
 395	union ib_gid	dgid;
 396};
 397
 
 
 
 
 
 
 
 
 
 
 
 
 
 398enum {
 399	IB_MULTICAST_QPN = 0xffffff
 400};
 401
 402#define IB_LID_PERMISSIVE	cpu_to_be16(0xFFFF)
 
 403
 404enum ib_ah_flags {
 405	IB_AH_GRH	= 1
 406};
 407
 408enum ib_rate {
 409	IB_RATE_PORT_CURRENT = 0,
 410	IB_RATE_2_5_GBPS = 2,
 411	IB_RATE_5_GBPS   = 5,
 412	IB_RATE_10_GBPS  = 3,
 413	IB_RATE_20_GBPS  = 6,
 414	IB_RATE_30_GBPS  = 4,
 415	IB_RATE_40_GBPS  = 7,
 416	IB_RATE_60_GBPS  = 8,
 417	IB_RATE_80_GBPS  = 9,
 418	IB_RATE_120_GBPS = 10
 
 
 
 
 
 
 
 
 
 
 
 
 419};
 420
 421/**
 422 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the
 423 * base rate of 2.5 Gbit/sec.  For example, IB_RATE_5_GBPS will be
 424 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
 425 * @rate: rate to convert.
 426 */
 427int ib_rate_to_mult(enum ib_rate rate) __attribute_const__;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 428
 429/**
 430 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
 431 * enum.
 432 * @mult: multiple to convert.
 433 */
 434enum ib_rate mult_to_ib_rate(int mult) __attribute_const__;
 
 
 
 
 
 
 
 
 
 
 
 
 
 435
 436struct ib_ah_attr {
 437	struct ib_global_route	grh;
 438	u16			dlid;
 439	u8			sl;
 440	u8			src_path_bits;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 441	u8			static_rate;
 
 442	u8			ah_flags;
 443	u8			port_num;
 
 
 
 
 
 444};
 445
 446enum ib_wc_status {
 447	IB_WC_SUCCESS,
 448	IB_WC_LOC_LEN_ERR,
 449	IB_WC_LOC_QP_OP_ERR,
 450	IB_WC_LOC_EEC_OP_ERR,
 451	IB_WC_LOC_PROT_ERR,
 452	IB_WC_WR_FLUSH_ERR,
 453	IB_WC_MW_BIND_ERR,
 454	IB_WC_BAD_RESP_ERR,
 455	IB_WC_LOC_ACCESS_ERR,
 456	IB_WC_REM_INV_REQ_ERR,
 457	IB_WC_REM_ACCESS_ERR,
 458	IB_WC_REM_OP_ERR,
 459	IB_WC_RETRY_EXC_ERR,
 460	IB_WC_RNR_RETRY_EXC_ERR,
 461	IB_WC_LOC_RDD_VIOL_ERR,
 462	IB_WC_REM_INV_RD_REQ_ERR,
 463	IB_WC_REM_ABORT_ERR,
 464	IB_WC_INV_EECN_ERR,
 465	IB_WC_INV_EEC_STATE_ERR,
 466	IB_WC_FATAL_ERR,
 467	IB_WC_RESP_TIMEOUT_ERR,
 468	IB_WC_GENERAL_ERR
 469};
 470
 
 
 471enum ib_wc_opcode {
 472	IB_WC_SEND,
 473	IB_WC_RDMA_WRITE,
 474	IB_WC_RDMA_READ,
 475	IB_WC_COMP_SWAP,
 476	IB_WC_FETCH_ADD,
 477	IB_WC_BIND_MW,
 478	IB_WC_LSO,
 479	IB_WC_LOCAL_INV,
 480	IB_WC_FAST_REG_MR,
 
 481	IB_WC_MASKED_COMP_SWAP,
 482	IB_WC_MASKED_FETCH_ADD,
 
 483/*
 484 * Set value of IB_WC_RECV so consumers can test if a completion is a
 485 * receive by testing (opcode & IB_WC_RECV).
 486 */
 487	IB_WC_RECV			= 1 << 7,
 488	IB_WC_RECV_RDMA_WITH_IMM
 489};
 490
 491enum ib_wc_flags {
 492	IB_WC_GRH		= 1,
 493	IB_WC_WITH_IMM		= (1<<1),
 494	IB_WC_WITH_INVALIDATE	= (1<<2),
 
 
 
 
 495};
 496
 497struct ib_wc {
 498	u64			wr_id;
 
 
 
 499	enum ib_wc_status	status;
 500	enum ib_wc_opcode	opcode;
 501	u32			vendor_err;
 502	u32			byte_len;
 503	struct ib_qp	       *qp;
 504	union {
 505		__be32		imm_data;
 506		u32		invalidate_rkey;
 507	} ex;
 508	u32			src_qp;
 
 509	int			wc_flags;
 510	u16			pkey_index;
 511	u16			slid;
 512	u8			sl;
 513	u8			dlid_path_bits;
 514	u8			port_num;	/* valid only for DR SMPs on switches */
 515	int			csum_ok;
 
 
 516};
 517
 518enum ib_cq_notify_flags {
 519	IB_CQ_SOLICITED			= 1 << 0,
 520	IB_CQ_NEXT_COMP			= 1 << 1,
 521	IB_CQ_SOLICITED_MASK		= IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
 522	IB_CQ_REPORT_MISSED_EVENTS	= 1 << 2,
 523};
 524
 
 
 
 
 
 
 
 
 
 
 
 
 525enum ib_srq_attr_mask {
 526	IB_SRQ_MAX_WR	= 1 << 0,
 527	IB_SRQ_LIMIT	= 1 << 1,
 528};
 529
 530struct ib_srq_attr {
 531	u32	max_wr;
 532	u32	max_sge;
 533	u32	srq_limit;
 534};
 535
 536struct ib_srq_init_attr {
 537	void		      (*event_handler)(struct ib_event *, void *);
 538	void		       *srq_context;
 539	struct ib_srq_attr	attr;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 540};
 541
 542struct ib_qp_cap {
 543	u32	max_send_wr;
 544	u32	max_recv_wr;
 545	u32	max_send_sge;
 546	u32	max_recv_sge;
 547	u32	max_inline_data;
 
 
 
 
 
 
 
 548};
 549
 550enum ib_sig_type {
 551	IB_SIGNAL_ALL_WR,
 552	IB_SIGNAL_REQ_WR
 553};
 554
 555enum ib_qp_type {
 556	/*
 557	 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
 558	 * here (and in that order) since the MAD layer uses them as
 559	 * indices into a 2-entry table.
 560	 */
 561	IB_QPT_SMI,
 562	IB_QPT_GSI,
 563
 564	IB_QPT_RC,
 565	IB_QPT_UC,
 566	IB_QPT_UD,
 567	IB_QPT_RAW_IPV6,
 568	IB_QPT_RAW_ETHERTYPE
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 569};
 570
 571enum ib_qp_create_flags {
 572	IB_QP_CREATE_IPOIB_UD_LSO		= 1 << 0,
 573	IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK	= 1 << 1,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 574};
 575
 
 
 
 
 
 576struct ib_qp_init_attr {
 
 577	void                  (*event_handler)(struct ib_event *, void *);
 
 578	void		       *qp_context;
 579	struct ib_cq	       *send_cq;
 580	struct ib_cq	       *recv_cq;
 581	struct ib_srq	       *srq;
 
 582	struct ib_qp_cap	cap;
 583	enum ib_sig_type	sq_sig_type;
 584	enum ib_qp_type		qp_type;
 585	enum ib_qp_create_flags	create_flags;
 586	u8			port_num; /* special QP types only */
 
 
 
 
 
 
 
 
 
 
 
 
 
 587};
 588
 589enum ib_rnr_timeout {
 590	IB_RNR_TIMER_655_36 =  0,
 591	IB_RNR_TIMER_000_01 =  1,
 592	IB_RNR_TIMER_000_02 =  2,
 593	IB_RNR_TIMER_000_03 =  3,
 594	IB_RNR_TIMER_000_04 =  4,
 595	IB_RNR_TIMER_000_06 =  5,
 596	IB_RNR_TIMER_000_08 =  6,
 597	IB_RNR_TIMER_000_12 =  7,
 598	IB_RNR_TIMER_000_16 =  8,
 599	IB_RNR_TIMER_000_24 =  9,
 600	IB_RNR_TIMER_000_32 = 10,
 601	IB_RNR_TIMER_000_48 = 11,
 602	IB_RNR_TIMER_000_64 = 12,
 603	IB_RNR_TIMER_000_96 = 13,
 604	IB_RNR_TIMER_001_28 = 14,
 605	IB_RNR_TIMER_001_92 = 15,
 606	IB_RNR_TIMER_002_56 = 16,
 607	IB_RNR_TIMER_003_84 = 17,
 608	IB_RNR_TIMER_005_12 = 18,
 609	IB_RNR_TIMER_007_68 = 19,
 610	IB_RNR_TIMER_010_24 = 20,
 611	IB_RNR_TIMER_015_36 = 21,
 612	IB_RNR_TIMER_020_48 = 22,
 613	IB_RNR_TIMER_030_72 = 23,
 614	IB_RNR_TIMER_040_96 = 24,
 615	IB_RNR_TIMER_061_44 = 25,
 616	IB_RNR_TIMER_081_92 = 26,
 617	IB_RNR_TIMER_122_88 = 27,
 618	IB_RNR_TIMER_163_84 = 28,
 619	IB_RNR_TIMER_245_76 = 29,
 620	IB_RNR_TIMER_327_68 = 30,
 621	IB_RNR_TIMER_491_52 = 31
 622};
 623
 624enum ib_qp_attr_mask {
 625	IB_QP_STATE			= 1,
 626	IB_QP_CUR_STATE			= (1<<1),
 627	IB_QP_EN_SQD_ASYNC_NOTIFY	= (1<<2),
 628	IB_QP_ACCESS_FLAGS		= (1<<3),
 629	IB_QP_PKEY_INDEX		= (1<<4),
 630	IB_QP_PORT			= (1<<5),
 631	IB_QP_QKEY			= (1<<6),
 632	IB_QP_AV			= (1<<7),
 633	IB_QP_PATH_MTU			= (1<<8),
 634	IB_QP_TIMEOUT			= (1<<9),
 635	IB_QP_RETRY_CNT			= (1<<10),
 636	IB_QP_RNR_RETRY			= (1<<11),
 637	IB_QP_RQ_PSN			= (1<<12),
 638	IB_QP_MAX_QP_RD_ATOMIC		= (1<<13),
 639	IB_QP_ALT_PATH			= (1<<14),
 640	IB_QP_MIN_RNR_TIMER		= (1<<15),
 641	IB_QP_SQ_PSN			= (1<<16),
 642	IB_QP_MAX_DEST_RD_ATOMIC	= (1<<17),
 643	IB_QP_PATH_MIG_STATE		= (1<<18),
 644	IB_QP_CAP			= (1<<19),
 645	IB_QP_DEST_QPN			= (1<<20)
 
 
 
 
 
 
 
 646};
 647
 648enum ib_qp_state {
 649	IB_QPS_RESET,
 650	IB_QPS_INIT,
 651	IB_QPS_RTR,
 652	IB_QPS_RTS,
 653	IB_QPS_SQD,
 654	IB_QPS_SQE,
 655	IB_QPS_ERR
 656};
 657
 658enum ib_mig_state {
 659	IB_MIG_MIGRATED,
 660	IB_MIG_REARM,
 661	IB_MIG_ARMED
 662};
 663
 
 
 
 
 
 664struct ib_qp_attr {
 665	enum ib_qp_state	qp_state;
 666	enum ib_qp_state	cur_qp_state;
 667	enum ib_mtu		path_mtu;
 668	enum ib_mig_state	path_mig_state;
 669	u32			qkey;
 670	u32			rq_psn;
 671	u32			sq_psn;
 672	u32			dest_qp_num;
 673	int			qp_access_flags;
 674	struct ib_qp_cap	cap;
 675	struct ib_ah_attr	ah_attr;
 676	struct ib_ah_attr	alt_ah_attr;
 677	u16			pkey_index;
 678	u16			alt_pkey_index;
 679	u8			en_sqd_async_notify;
 680	u8			sq_draining;
 681	u8			max_rd_atomic;
 682	u8			max_dest_rd_atomic;
 683	u8			min_rnr_timer;
 684	u8			port_num;
 685	u8			timeout;
 686	u8			retry_cnt;
 687	u8			rnr_retry;
 688	u8			alt_port_num;
 689	u8			alt_timeout;
 
 
 690};
 691
 692enum ib_wr_opcode {
 693	IB_WR_RDMA_WRITE,
 694	IB_WR_RDMA_WRITE_WITH_IMM,
 695	IB_WR_SEND,
 696	IB_WR_SEND_WITH_IMM,
 697	IB_WR_RDMA_READ,
 698	IB_WR_ATOMIC_CMP_AND_SWP,
 699	IB_WR_ATOMIC_FETCH_AND_ADD,
 700	IB_WR_LSO,
 701	IB_WR_SEND_WITH_INV,
 702	IB_WR_RDMA_READ_WITH_INV,
 703	IB_WR_LOCAL_INV,
 704	IB_WR_FAST_REG_MR,
 705	IB_WR_MASKED_ATOMIC_CMP_AND_SWP,
 706	IB_WR_MASKED_ATOMIC_FETCH_AND_ADD,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 707};
 708
 709enum ib_send_flags {
 710	IB_SEND_FENCE		= 1,
 711	IB_SEND_SIGNALED	= (1<<1),
 712	IB_SEND_SOLICITED	= (1<<2),
 713	IB_SEND_INLINE		= (1<<3),
 714	IB_SEND_IP_CSUM		= (1<<4)
 
 
 
 
 715};
 716
 717struct ib_sge {
 718	u64	addr;
 719	u32	length;
 720	u32	lkey;
 721};
 722
 723struct ib_fast_reg_page_list {
 724	struct ib_device       *device;
 725	u64		       *page_list;
 726	unsigned int		max_page_list_len;
 727};
 728
 729struct ib_send_wr {
 730	struct ib_send_wr      *next;
 731	u64			wr_id;
 
 
 
 732	struct ib_sge	       *sg_list;
 733	int			num_sge;
 734	enum ib_wr_opcode	opcode;
 735	int			send_flags;
 736	union {
 737		__be32		imm_data;
 738		u32		invalidate_rkey;
 739	} ex;
 740	union {
 741		struct {
 742			u64	remote_addr;
 743			u32	rkey;
 744		} rdma;
 745		struct {
 746			u64	remote_addr;
 747			u64	compare_add;
 748			u64	swap;
 749			u64	compare_add_mask;
 750			u64	swap_mask;
 751			u32	rkey;
 752		} atomic;
 753		struct {
 754			struct ib_ah *ah;
 755			void   *header;
 756			int     hlen;
 757			int     mss;
 758			u32	remote_qpn;
 759			u32	remote_qkey;
 760			u16	pkey_index; /* valid for GSI only */
 761			u8	port_num;   /* valid for DR SMPs on switch only */
 762		} ud;
 763		struct {
 764			u64				iova_start;
 765			struct ib_fast_reg_page_list   *page_list;
 766			unsigned int			page_shift;
 767			unsigned int			page_list_len;
 768			u32				length;
 769			int				access_flags;
 770			u32				rkey;
 771		} fast_reg;
 772	} wr;
 773};
 774
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 775struct ib_recv_wr {
 776	struct ib_recv_wr      *next;
 777	u64			wr_id;
 
 
 
 778	struct ib_sge	       *sg_list;
 779	int			num_sge;
 780};
 781
 782enum ib_access_flags {
 783	IB_ACCESS_LOCAL_WRITE	= 1,
 784	IB_ACCESS_REMOTE_WRITE	= (1<<1),
 785	IB_ACCESS_REMOTE_READ	= (1<<2),
 786	IB_ACCESS_REMOTE_ATOMIC	= (1<<3),
 787	IB_ACCESS_MW_BIND	= (1<<4)
 788};
 789
 790struct ib_phys_buf {
 791	u64      addr;
 792	u64      size;
 793};
 794
 795struct ib_mr_attr {
 796	struct ib_pd	*pd;
 797	u64		device_virt_addr;
 798	u64		size;
 799	int		mr_access_flags;
 800	u32		lkey;
 801	u32		rkey;
 802};
 803
 
 
 
 
 804enum ib_mr_rereg_flags {
 805	IB_MR_REREG_TRANS	= 1,
 806	IB_MR_REREG_PD		= (1<<1),
 807	IB_MR_REREG_ACCESS	= (1<<2)
 
 808};
 809
 810struct ib_mw_bind {
 811	struct ib_mr   *mr;
 812	u64		wr_id;
 813	u64		addr;
 814	u32		length;
 815	int		send_flags;
 816	int		mw_access_flags;
 817};
 818
 819struct ib_fmr_attr {
 820	int	max_pages;
 821	int	max_maps;
 822	u8	page_shift;
 
 
 
 
 
 
 
 
 
 823};
 824
 825struct ib_ucontext {
 826	struct ib_device       *device;
 827	struct list_head	pd_list;
 828	struct list_head	mr_list;
 829	struct list_head	mw_list;
 830	struct list_head	cq_list;
 831	struct list_head	qp_list;
 832	struct list_head	srq_list;
 833	struct list_head	ah_list;
 834	int			closing;
 835};
 836
 837struct ib_uobject {
 838	u64			user_handle;	/* handle given to us by userspace */
 
 
 
 839	struct ib_ucontext     *context;	/* associated user context */
 840	void		       *object;		/* containing object */
 841	struct list_head	list;		/* link to context's list */
 
 842	int			id;		/* index into kernel idr */
 843	struct kref		ref;
 844	struct rw_semaphore	mutex;		/* protects .live */
 845	int			live;
 
 
 846};
 847
 848struct ib_udata {
 849	void __user *inbuf;
 850	void __user *outbuf;
 851	size_t       inlen;
 852	size_t       outlen;
 853};
 854
 855struct ib_pd {
 
 
 856	struct ib_device       *device;
 857	struct ib_uobject      *uobject;
 858	atomic_t          	usecnt; /* count all resources */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 859};
 860
 861struct ib_ah {
 862	struct ib_device	*device;
 863	struct ib_pd		*pd;
 864	struct ib_uobject	*uobject;
 
 
 865};
 866
 867typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
 868
 
 
 
 
 
 
 
 
 
 869struct ib_cq {
 870	struct ib_device       *device;
 871	struct ib_uobject      *uobject;
 872	ib_comp_handler   	comp_handler;
 873	void                  (*event_handler)(struct ib_event *, void *);
 874	void                   *cq_context;
 875	int               	cqe;
 
 876	atomic_t          	usecnt; /* count number of work queues */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 877};
 878
 879struct ib_srq {
 880	struct ib_device       *device;
 881	struct ib_pd	       *pd;
 882	struct ib_uobject      *uobject;
 883	void		      (*event_handler)(struct ib_event *, void *);
 884	void		       *srq_context;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 885	atomic_t		usecnt;
 886};
 887
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 888struct ib_qp {
 889	struct ib_device       *device;
 890	struct ib_pd	       *pd;
 891	struct ib_cq	       *send_cq;
 892	struct ib_cq	       *recv_cq;
 
 
 
 
 893	struct ib_srq	       *srq;
 894	struct ib_uobject      *uobject;
 
 
 
 
 
 
 
 895	void                  (*event_handler)(struct ib_event *, void *);
 896	void		       *qp_context;
 
 
 
 897	u32			qp_num;
 
 
 898	enum ib_qp_type		qp_type;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 899};
 900
 901struct ib_mr {
 902	struct ib_device  *device;
 903	struct ib_pd	  *pd;
 904	struct ib_uobject *uobject;
 905	u32		   lkey;
 906	u32		   rkey;
 907	atomic_t	   usecnt; /* count number of MWs */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 908};
 909
 910struct ib_mw {
 911	struct ib_device	*device;
 912	struct ib_pd		*pd;
 913	struct ib_uobject	*uobject;
 914	u32			rkey;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 915};
 916
 917struct ib_fmr {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 918	struct ib_device	*device;
 919	struct ib_pd		*pd;
 920	struct list_head	list;
 921	u32			lkey;
 922	u32			rkey;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 923};
 924
 925struct ib_mad;
 926struct ib_grh;
 927
 928enum ib_process_mad_flags {
 929	IB_MAD_IGNORE_MKEY	= 1,
 930	IB_MAD_IGNORE_BKEY	= 2,
 931	IB_MAD_IGNORE_ALL	= IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
 932};
 933
 934enum ib_mad_result {
 935	IB_MAD_RESULT_FAILURE  = 0,      /* (!SUCCESS is the important flag) */
 936	IB_MAD_RESULT_SUCCESS  = 1 << 0, /* MAD was successfully processed   */
 937	IB_MAD_RESULT_REPLY    = 1 << 1, /* Reply packet needs to be sent    */
 938	IB_MAD_RESULT_CONSUMED = 1 << 2  /* Packet consumed: stop processing */
 939};
 940
 941#define IB_DEVICE_NAME_MAX 64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 942
 943struct ib_cache {
 944	rwlock_t                lock;
 945	struct ib_event_handler event_handler;
 946	struct ib_pkey_cache  **pkey_cache;
 947	struct ib_gid_cache   **gid_cache;
 948	u8                     *lmc_cache;
 949};
 950
 951struct ib_dma_mapping_ops {
 952	int		(*mapping_error)(struct ib_device *dev,
 953					 u64 dma_addr);
 954	u64		(*map_single)(struct ib_device *dev,
 955				      void *ptr, size_t size,
 956				      enum dma_data_direction direction);
 957	void		(*unmap_single)(struct ib_device *dev,
 958					u64 addr, size_t size,
 959					enum dma_data_direction direction);
 960	u64		(*map_page)(struct ib_device *dev,
 961				    struct page *page, unsigned long offset,
 962				    size_t size,
 963				    enum dma_data_direction direction);
 964	void		(*unmap_page)(struct ib_device *dev,
 965				      u64 addr, size_t size,
 966				      enum dma_data_direction direction);
 967	int		(*map_sg)(struct ib_device *dev,
 968				  struct scatterlist *sg, int nents,
 969				  enum dma_data_direction direction);
 970	void		(*unmap_sg)(struct ib_device *dev,
 971				    struct scatterlist *sg, int nents,
 972				    enum dma_data_direction direction);
 973	u64		(*dma_address)(struct ib_device *dev,
 974				       struct scatterlist *sg);
 975	unsigned int	(*dma_len)(struct ib_device *dev,
 976				   struct scatterlist *sg);
 977	void		(*sync_single_for_cpu)(struct ib_device *dev,
 978					       u64 dma_handle,
 979					       size_t size,
 980					       enum dma_data_direction dir);
 981	void		(*sync_single_for_device)(struct ib_device *dev,
 982						  u64 dma_handle,
 983						  size_t size,
 984						  enum dma_data_direction dir);
 985	void		*(*alloc_coherent)(struct ib_device *dev,
 986					   size_t size,
 987					   u64 *dma_handle,
 988					   gfp_t flag);
 989	void		(*free_coherent)(struct ib_device *dev,
 990					 size_t size, void *cpu_addr,
 991					 u64 dma_handle);
 992};
 993
 994struct iw_cm_verbs;
 
 
 
 
 
 995
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 996struct ib_device {
 
 997	struct device                *dma_device;
 998
 999	char                          name[IB_DEVICE_NAME_MAX];
 
1000
1001	struct list_head              event_handler_list;
1002	spinlock_t                    event_handler_lock;
 
1003
1004	spinlock_t                    client_data_lock;
1005	struct list_head              core_list;
1006	struct list_head              client_data_list;
1007
1008	struct ib_cache               cache;
1009	int                          *pkey_tbl_len;
1010	int                          *gid_tbl_len;
1011
1012	int			      num_comp_vectors;
 
 
 
 
 
 
 
 
 
1013
1014	struct iw_cm_verbs	     *iwcm;
1015
1016	int		           (*get_protocol_stats)(struct ib_device *device,
1017							 union rdma_protocol_stats *stats);
1018	int		           (*query_device)(struct ib_device *device,
1019						   struct ib_device_attr *device_attr);
1020	int		           (*query_port)(struct ib_device *device,
1021						 u8 port_num,
1022						 struct ib_port_attr *port_attr);
1023	enum rdma_link_layer	   (*get_link_layer)(struct ib_device *device,
1024						     u8 port_num);
1025	int		           (*query_gid)(struct ib_device *device,
1026						u8 port_num, int index,
1027						union ib_gid *gid);
1028	int		           (*query_pkey)(struct ib_device *device,
1029						 u8 port_num, u16 index, u16 *pkey);
1030	int		           (*modify_device)(struct ib_device *device,
1031						    int device_modify_mask,
1032						    struct ib_device_modify *device_modify);
1033	int		           (*modify_port)(struct ib_device *device,
1034						  u8 port_num, int port_modify_mask,
1035						  struct ib_port_modify *port_modify);
1036	struct ib_ucontext *       (*alloc_ucontext)(struct ib_device *device,
1037						     struct ib_udata *udata);
1038	int                        (*dealloc_ucontext)(struct ib_ucontext *context);
1039	int                        (*mmap)(struct ib_ucontext *context,
1040					   struct vm_area_struct *vma);
1041	struct ib_pd *             (*alloc_pd)(struct ib_device *device,
1042					       struct ib_ucontext *context,
1043					       struct ib_udata *udata);
1044	int                        (*dealloc_pd)(struct ib_pd *pd);
1045	struct ib_ah *             (*create_ah)(struct ib_pd *pd,
1046						struct ib_ah_attr *ah_attr);
1047	int                        (*modify_ah)(struct ib_ah *ah,
1048						struct ib_ah_attr *ah_attr);
1049	int                        (*query_ah)(struct ib_ah *ah,
1050					       struct ib_ah_attr *ah_attr);
1051	int                        (*destroy_ah)(struct ib_ah *ah);
1052	struct ib_srq *            (*create_srq)(struct ib_pd *pd,
1053						 struct ib_srq_init_attr *srq_init_attr,
1054						 struct ib_udata *udata);
1055	int                        (*modify_srq)(struct ib_srq *srq,
1056						 struct ib_srq_attr *srq_attr,
1057						 enum ib_srq_attr_mask srq_attr_mask,
1058						 struct ib_udata *udata);
1059	int                        (*query_srq)(struct ib_srq *srq,
1060						struct ib_srq_attr *srq_attr);
1061	int                        (*destroy_srq)(struct ib_srq *srq);
1062	int                        (*post_srq_recv)(struct ib_srq *srq,
1063						    struct ib_recv_wr *recv_wr,
1064						    struct ib_recv_wr **bad_recv_wr);
1065	struct ib_qp *             (*create_qp)(struct ib_pd *pd,
1066						struct ib_qp_init_attr *qp_init_attr,
1067						struct ib_udata *udata);
1068	int                        (*modify_qp)(struct ib_qp *qp,
1069						struct ib_qp_attr *qp_attr,
1070						int qp_attr_mask,
1071						struct ib_udata *udata);
1072	int                        (*query_qp)(struct ib_qp *qp,
1073					       struct ib_qp_attr *qp_attr,
1074					       int qp_attr_mask,
1075					       struct ib_qp_init_attr *qp_init_attr);
1076	int                        (*destroy_qp)(struct ib_qp *qp);
1077	int                        (*post_send)(struct ib_qp *qp,
1078						struct ib_send_wr *send_wr,
1079						struct ib_send_wr **bad_send_wr);
1080	int                        (*post_recv)(struct ib_qp *qp,
1081						struct ib_recv_wr *recv_wr,
1082						struct ib_recv_wr **bad_recv_wr);
1083	struct ib_cq *             (*create_cq)(struct ib_device *device, int cqe,
1084						int comp_vector,
1085						struct ib_ucontext *context,
1086						struct ib_udata *udata);
1087	int                        (*modify_cq)(struct ib_cq *cq, u16 cq_count,
1088						u16 cq_period);
1089	int                        (*destroy_cq)(struct ib_cq *cq);
1090	int                        (*resize_cq)(struct ib_cq *cq, int cqe,
1091						struct ib_udata *udata);
1092	int                        (*poll_cq)(struct ib_cq *cq, int num_entries,
1093					      struct ib_wc *wc);
1094	int                        (*peek_cq)(struct ib_cq *cq, int wc_cnt);
1095	int                        (*req_notify_cq)(struct ib_cq *cq,
1096						    enum ib_cq_notify_flags flags);
1097	int                        (*req_ncomp_notif)(struct ib_cq *cq,
1098						      int wc_cnt);
1099	struct ib_mr *             (*get_dma_mr)(struct ib_pd *pd,
1100						 int mr_access_flags);
1101	struct ib_mr *             (*reg_phys_mr)(struct ib_pd *pd,
1102						  struct ib_phys_buf *phys_buf_array,
1103						  int num_phys_buf,
1104						  int mr_access_flags,
1105						  u64 *iova_start);
1106	struct ib_mr *             (*reg_user_mr)(struct ib_pd *pd,
1107						  u64 start, u64 length,
1108						  u64 virt_addr,
1109						  int mr_access_flags,
1110						  struct ib_udata *udata);
1111	int                        (*query_mr)(struct ib_mr *mr,
1112					       struct ib_mr_attr *mr_attr);
1113	int                        (*dereg_mr)(struct ib_mr *mr);
1114	struct ib_mr *		   (*alloc_fast_reg_mr)(struct ib_pd *pd,
1115					       int max_page_list_len);
1116	struct ib_fast_reg_page_list * (*alloc_fast_reg_page_list)(struct ib_device *device,
1117								   int page_list_len);
1118	void			   (*free_fast_reg_page_list)(struct ib_fast_reg_page_list *page_list);
1119	int                        (*rereg_phys_mr)(struct ib_mr *mr,
1120						    int mr_rereg_mask,
1121						    struct ib_pd *pd,
1122						    struct ib_phys_buf *phys_buf_array,
1123						    int num_phys_buf,
1124						    int mr_access_flags,
1125						    u64 *iova_start);
1126	struct ib_mw *             (*alloc_mw)(struct ib_pd *pd);
1127	int                        (*bind_mw)(struct ib_qp *qp,
1128					      struct ib_mw *mw,
1129					      struct ib_mw_bind *mw_bind);
1130	int                        (*dealloc_mw)(struct ib_mw *mw);
1131	struct ib_fmr *	           (*alloc_fmr)(struct ib_pd *pd,
1132						int mr_access_flags,
1133						struct ib_fmr_attr *fmr_attr);
1134	int		           (*map_phys_fmr)(struct ib_fmr *fmr,
1135						   u64 *page_list, int list_len,
1136						   u64 iova);
1137	int		           (*unmap_fmr)(struct list_head *fmr_list);
1138	int		           (*dealloc_fmr)(struct ib_fmr *fmr);
1139	int                        (*attach_mcast)(struct ib_qp *qp,
1140						   union ib_gid *gid,
1141						   u16 lid);
1142	int                        (*detach_mcast)(struct ib_qp *qp,
1143						   union ib_gid *gid,
1144						   u16 lid);
1145	int                        (*process_mad)(struct ib_device *device,
1146						  int process_mad_flags,
1147						  u8 port_num,
1148						  struct ib_wc *in_wc,
1149						  struct ib_grh *in_grh,
1150						  struct ib_mad *in_mad,
1151						  struct ib_mad *out_mad);
1152
1153	struct ib_dma_mapping_ops   *dma_ops;
1154
1155	struct module               *owner;
1156	struct device                dev;
1157	struct kobject               *ports_parent;
1158	struct list_head             port_list;
1159
1160	enum {
1161		IB_DEV_UNINITIALIZED,
1162		IB_DEV_REGISTERED,
1163		IB_DEV_UNREGISTERED
1164	}                            reg_state;
1165
1166	int			     uverbs_abi_ver;
1167	u64			     uverbs_cmd_mask;
1168
1169	char			     node_desc[64];
1170	__be64			     node_guid;
1171	u32			     local_dma_lkey;
 
 
 
 
 
1172	u8                           node_type;
1173	u8                           phys_port_cnt;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1174};
1175
 
 
 
 
 
 
 
 
 
 
1176struct ib_client {
1177	char  *name;
1178	void (*add)   (struct ib_device *);
1179	void (*remove)(struct ib_device *);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1180
1181	struct list_head list;
 
1182};
1183
1184struct ib_device *ib_alloc_device(size_t size);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1185void ib_dealloc_device(struct ib_device *device);
1186
1187int ib_register_device(struct ib_device *device,
1188		       int (*port_callback)(struct ib_device *,
1189					    u8, struct kobject *));
 
1190void ib_unregister_device(struct ib_device *device);
 
 
 
1191
1192int ib_register_client   (struct ib_client *client);
1193void ib_unregister_client(struct ib_client *client);
1194
1195void *ib_get_client_data(struct ib_device *device, struct ib_client *client);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1196void  ib_set_client_data(struct ib_device *device, struct ib_client *client,
1197			 void *data);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1198
1199static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
1200{
1201	return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
1202}
1203
1204static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
1205{
1206	return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
1207}
1208
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1209/**
1210 * ib_modify_qp_is_ok - Check that the supplied attribute mask
1211 * contains all required attributes and no attributes not allowed for
1212 * the given QP state transition.
1213 * @cur_state: Current QP state
1214 * @next_state: Next QP state
1215 * @type: QP type
1216 * @mask: Mask of supplied QP attributes
1217 *
1218 * This function is a helper function that a low-level driver's
1219 * modify_qp method can use to validate the consumer's input.  It
1220 * checks that cur_state and next_state are valid QP states, that a
1221 * transition from cur_state to next_state is allowed by the IB spec,
1222 * and that the attribute mask supplied is allowed for the transition.
1223 */
1224int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
1225		       enum ib_qp_type type, enum ib_qp_attr_mask mask);
1226
1227int ib_register_event_handler  (struct ib_event_handler *event_handler);
1228int ib_unregister_event_handler(struct ib_event_handler *event_handler);
1229void ib_dispatch_event(struct ib_event *event);
1230
1231int ib_query_device(struct ib_device *device,
1232		    struct ib_device_attr *device_attr);
 
1233
1234int ib_query_port(struct ib_device *device,
1235		  u8 port_num, struct ib_port_attr *port_attr);
1236
1237enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
1238					       u8 port_num);
1239
1240int ib_query_gid(struct ib_device *device,
1241		 u8 port_num, int index, union ib_gid *gid);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1242
1243int ib_query_pkey(struct ib_device *device,
1244		  u8 port_num, u16 index, u16 *pkey);
1245
1246int ib_modify_device(struct ib_device *device,
1247		     int device_modify_mask,
1248		     struct ib_device_modify *device_modify);
1249
1250int ib_modify_port(struct ib_device *device,
1251		   u8 port_num, int port_modify_mask,
1252		   struct ib_port_modify *port_modify);
1253
1254int ib_find_gid(struct ib_device *device, union ib_gid *gid,
1255		u8 *port_num, u16 *index);
1256
1257int ib_find_pkey(struct ib_device *device,
1258		 u8 port_num, u16 pkey, u16 *index);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1259
1260/**
1261 * ib_alloc_pd - Allocates an unused protection domain.
1262 * @device: The device on which to allocate the protection domain.
 
1263 *
1264 * A protection domain object provides an association between QPs, shared
1265 * receive queues, address handles, memory regions, and memory windows.
 
 
 
1266 */
1267struct ib_pd *ib_alloc_pd(struct ib_device *device);
 
 
 
1268
1269/**
1270 * ib_dealloc_pd - Deallocates a protection domain.
1271 * @pd: The protection domain to deallocate.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1272 */
1273int ib_dealloc_pd(struct ib_pd *pd);
 
1274
1275/**
1276 * ib_create_ah - Creates an address handle for the given address vector.
 
1277 * @pd: The protection domain associated with the address handle.
1278 * @ah_attr: The attributes of the address vector.
 
 
1279 *
 
1280 * The address handle is used to reference a local or global destination
1281 * in all UD QP post sends.
1282 */
1283struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr);
 
 
 
 
 
 
 
 
 
 
 
 
 
1284
1285/**
1286 * ib_init_ah_from_wc - Initializes address handle attributes from a
 
 
 
 
 
 
1287 *   work completion.
1288 * @device: Device on which the received message arrived.
1289 * @port_num: Port on which the received message arrived.
1290 * @wc: Work completion associated with the received message.
1291 * @grh: References the received global route header.  This parameter is
1292 *   ignored unless the work completion indicates that the GRH is valid.
1293 * @ah_attr: Returned attributes that can be used when creating an address
1294 *   handle for replying to the message.
 
 
 
 
 
 
 
1295 */
1296int ib_init_ah_from_wc(struct ib_device *device, u8 port_num, struct ib_wc *wc,
1297		       struct ib_grh *grh, struct ib_ah_attr *ah_attr);
 
1298
1299/**
1300 * ib_create_ah_from_wc - Creates an address handle associated with the
1301 *   sender of the specified work completion.
1302 * @pd: The protection domain associated with the address handle.
1303 * @wc: Work completion information associated with a received message.
1304 * @grh: References the received global route header.  This parameter is
1305 *   ignored unless the work completion indicates that the GRH is valid.
1306 * @port_num: The outbound port number to associate with the address.
1307 *
1308 * The address handle is used to reference a local or global destination
1309 * in all UD QP post sends.
1310 */
1311struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, struct ib_wc *wc,
1312				   struct ib_grh *grh, u8 port_num);
1313
1314/**
1315 * ib_modify_ah - Modifies the address vector associated with an address
1316 *   handle.
1317 * @ah: The address handle to modify.
1318 * @ah_attr: The new address vector attributes to associate with the
1319 *   address handle.
1320 */
1321int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
1322
1323/**
1324 * ib_query_ah - Queries the address vector associated with an address
1325 *   handle.
1326 * @ah: The address handle to query.
1327 * @ah_attr: The address vector attributes associated with the address
1328 *   handle.
1329 */
1330int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
 
 
 
 
 
1331
1332/**
1333 * ib_destroy_ah - Destroys an address handle.
1334 * @ah: The address handle to destroy.
 
 
1335 */
1336int ib_destroy_ah(struct ib_ah *ah);
1337
1338/**
1339 * ib_create_srq - Creates a SRQ associated with the specified protection
1340 *   domain.
1341 * @pd: The protection domain associated with the SRQ.
1342 * @srq_init_attr: A list of initial attributes required to create the
1343 *   SRQ.  If SRQ creation succeeds, then the attributes are updated to
1344 *   the actual capabilities of the created SRQ.
1345 *
1346 * srq_attr->max_wr and srq_attr->max_sge are read the determine the
1347 * requested size of the SRQ, and set to the actual values allocated
1348 * on return.  If ib_create_srq() succeeds, then max_wr and max_sge
1349 * will always be at least as large as the requested values.
1350 */
1351struct ib_srq *ib_create_srq(struct ib_pd *pd,
1352			     struct ib_srq_init_attr *srq_init_attr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1353
1354/**
1355 * ib_modify_srq - Modifies the attributes for the specified SRQ.
1356 * @srq: The SRQ to modify.
1357 * @srq_attr: On input, specifies the SRQ attributes to modify.  On output,
1358 *   the current values of selected SRQ attributes are returned.
1359 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
1360 *   are being modified.
1361 *
1362 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
1363 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when
1364 * the number of receives queued drops below the limit.
1365 */
1366int ib_modify_srq(struct ib_srq *srq,
1367		  struct ib_srq_attr *srq_attr,
1368		  enum ib_srq_attr_mask srq_attr_mask);
1369
1370/**
1371 * ib_query_srq - Returns the attribute list and current values for the
1372 *   specified SRQ.
1373 * @srq: The SRQ to query.
1374 * @srq_attr: The attributes of the specified SRQ.
1375 */
1376int ib_query_srq(struct ib_srq *srq,
1377		 struct ib_srq_attr *srq_attr);
1378
1379/**
1380 * ib_destroy_srq - Destroys the specified SRQ.
1381 * @srq: The SRQ to destroy.
 
1382 */
1383int ib_destroy_srq(struct ib_srq *srq);
 
 
 
 
 
 
 
 
 
 
 
 
 
1384
1385/**
1386 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
1387 * @srq: The SRQ to post the work request on.
1388 * @recv_wr: A list of work requests to post on the receive queue.
1389 * @bad_recv_wr: On an immediate failure, this parameter will reference
1390 *   the work request that failed to be posted on the QP.
1391 */
1392static inline int ib_post_srq_recv(struct ib_srq *srq,
1393				   struct ib_recv_wr *recv_wr,
1394				   struct ib_recv_wr **bad_recv_wr)
1395{
1396	return srq->device->post_srq_recv(srq, recv_wr, bad_recv_wr);
 
 
 
1397}
1398
 
 
 
1399/**
1400 * ib_create_qp - Creates a QP associated with the specified protection
1401 *   domain.
1402 * @pd: The protection domain associated with the QP.
1403 * @qp_init_attr: A list of initial attributes required to create the
1404 *   QP.  If QP creation succeeds, then the attributes are updated to
1405 *   the actual capabilities of the created QP.
1406 */
1407struct ib_qp *ib_create_qp(struct ib_pd *pd,
1408			   struct ib_qp_init_attr *qp_init_attr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1409
1410/**
1411 * ib_modify_qp - Modifies the attributes for the specified QP and then
1412 *   transitions the QP to the given state.
1413 * @qp: The QP to modify.
1414 * @qp_attr: On input, specifies the QP attributes to modify.  On output,
1415 *   the current values of selected QP attributes are returned.
1416 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP
1417 *   are being modified.
1418 */
1419int ib_modify_qp(struct ib_qp *qp,
1420		 struct ib_qp_attr *qp_attr,
1421		 int qp_attr_mask);
1422
1423/**
1424 * ib_query_qp - Returns the attribute list and current values for the
1425 *   specified QP.
1426 * @qp: The QP to query.
1427 * @qp_attr: The attributes of the specified QP.
1428 * @qp_attr_mask: A bit-mask used to select specific attributes to query.
1429 * @qp_init_attr: Additional attributes of the selected QP.
1430 *
1431 * The qp_attr_mask may be used to limit the query to gathering only the
1432 * selected attributes.
1433 */
1434int ib_query_qp(struct ib_qp *qp,
1435		struct ib_qp_attr *qp_attr,
1436		int qp_attr_mask,
1437		struct ib_qp_init_attr *qp_init_attr);
1438
1439/**
1440 * ib_destroy_qp - Destroys the specified QP.
1441 * @qp: The QP to destroy.
 
 
 
 
 
 
 
 
 
1442 */
1443int ib_destroy_qp(struct ib_qp *qp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1444
1445/**
1446 * ib_post_send - Posts a list of work requests to the send queue of
1447 *   the specified QP.
1448 * @qp: The QP to post the work request on.
1449 * @send_wr: A list of work requests to post on the send queue.
1450 * @bad_send_wr: On an immediate failure, this parameter will reference
1451 *   the work request that failed to be posted on the QP.
1452 *
1453 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate
1454 * error is returned, the QP state shall not be affected,
1455 * ib_post_send() will return an immediate error after queueing any
1456 * earlier work requests in the list.
1457 */
1458static inline int ib_post_send(struct ib_qp *qp,
1459			       struct ib_send_wr *send_wr,
1460			       struct ib_send_wr **bad_send_wr)
1461{
1462	return qp->device->post_send(qp, send_wr, bad_send_wr);
 
 
1463}
1464
1465/**
1466 * ib_post_recv - Posts a list of work requests to the receive queue of
1467 *   the specified QP.
1468 * @qp: The QP to post the work request on.
1469 * @recv_wr: A list of work requests to post on the receive queue.
1470 * @bad_recv_wr: On an immediate failure, this parameter will reference
1471 *   the work request that failed to be posted on the QP.
1472 */
1473static inline int ib_post_recv(struct ib_qp *qp,
1474			       struct ib_recv_wr *recv_wr,
1475			       struct ib_recv_wr **bad_recv_wr)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1476{
1477	return qp->device->post_recv(qp, recv_wr, bad_recv_wr);
 
1478}
1479
 
 
 
1480/**
1481 * ib_create_cq - Creates a CQ on the specified device.
1482 * @device: The device on which to create the CQ.
1483 * @comp_handler: A user-specified callback that is invoked when a
1484 *   completion event occurs on the CQ.
1485 * @event_handler: A user-specified callback that is invoked when an
1486 *   asynchronous event not associated with a completion occurs on the CQ.
1487 * @cq_context: Context associated with the CQ returned to the user via
1488 *   the associated completion and event handlers.
1489 * @cqe: The minimum size of the CQ.
1490 * @comp_vector - Completion vector used to signal completion events.
1491 *     Must be >= 0 and < context->num_comp_vectors.
1492 *
1493 * Users can examine the cq structure to determine the actual CQ size.
1494 */
1495struct ib_cq *ib_create_cq(struct ib_device *device,
1496			   ib_comp_handler comp_handler,
1497			   void (*event_handler)(struct ib_event *, void *),
1498			   void *cq_context, int cqe, int comp_vector);
 
 
 
 
1499
1500/**
1501 * ib_resize_cq - Modifies the capacity of the CQ.
1502 * @cq: The CQ to resize.
1503 * @cqe: The minimum size of the CQ.
1504 *
1505 * Users can examine the cq structure to determine the actual CQ size.
1506 */
1507int ib_resize_cq(struct ib_cq *cq, int cqe);
1508
1509/**
1510 * ib_modify_cq - Modifies moderation params of the CQ
1511 * @cq: The CQ to modify.
1512 * @cq_count: number of CQEs that will trigger an event
1513 * @cq_period: max period of time in usec before triggering an event
1514 *
1515 */
1516int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period);
 
 
 
 
 
 
 
1517
1518/**
1519 * ib_destroy_cq - Destroys the specified CQ.
1520 * @cq: The CQ to destroy.
 
 
1521 */
1522int ib_destroy_cq(struct ib_cq *cq);
 
 
 
 
 
1523
1524/**
1525 * ib_poll_cq - poll a CQ for completion(s)
1526 * @cq:the CQ being polled
1527 * @num_entries:maximum number of completions to return
1528 * @wc:array of at least @num_entries &struct ib_wc where completions
1529 *   will be returned
1530 *
1531 * Poll a CQ for (possibly multiple) completions.  If the return value
1532 * is < 0, an error occurred.  If the return value is >= 0, it is the
1533 * number of completions returned.  If the return value is
1534 * non-negative and < num_entries, then the CQ was emptied.
1535 */
1536static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
1537			     struct ib_wc *wc)
1538{
1539	return cq->device->poll_cq(cq, num_entries, wc);
1540}
1541
1542/**
1543 * ib_peek_cq - Returns the number of unreaped completions currently
1544 *   on the specified CQ.
1545 * @cq: The CQ to peek.
1546 * @wc_cnt: A minimum number of unreaped completions to check for.
1547 *
1548 * If the number of unreaped completions is greater than or equal to wc_cnt,
1549 * this function returns wc_cnt, otherwise, it returns the actual number of
1550 * unreaped completions.
1551 */
1552int ib_peek_cq(struct ib_cq *cq, int wc_cnt);
1553
1554/**
1555 * ib_req_notify_cq - Request completion notification on a CQ.
1556 * @cq: The CQ to generate an event for.
1557 * @flags:
1558 *   Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
1559 *   to request an event on the next solicited event or next work
1560 *   completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
1561 *   may also be |ed in to request a hint about missed events, as
1562 *   described below.
1563 *
1564 * Return Value:
1565 *    < 0 means an error occurred while requesting notification
1566 *   == 0 means notification was requested successfully, and if
1567 *        IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
1568 *        were missed and it is safe to wait for another event.  In
1569 *        this case is it guaranteed that any work completions added
1570 *        to the CQ since the last CQ poll will trigger a completion
1571 *        notification event.
1572 *    > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
1573 *        in.  It means that the consumer must poll the CQ again to
1574 *        make sure it is empty to avoid missing an event because of a
1575 *        race between requesting notification and an entry being
1576 *        added to the CQ.  This return value means it is possible
1577 *        (but not guaranteed) that a work completion has been added
1578 *        to the CQ since the last poll without triggering a
1579 *        completion notification event.
1580 */
1581static inline int ib_req_notify_cq(struct ib_cq *cq,
1582				   enum ib_cq_notify_flags flags)
1583{
1584	return cq->device->req_notify_cq(cq, flags);
1585}
1586
1587/**
1588 * ib_req_ncomp_notif - Request completion notification when there are
1589 *   at least the specified number of unreaped completions on the CQ.
1590 * @cq: The CQ to generate an event for.
1591 * @wc_cnt: The number of unreaped completions that should be on the
1592 *   CQ before an event is generated.
 
 
 
 
1593 */
1594static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt)
1595{
1596	return cq->device->req_ncomp_notif ?
1597		cq->device->req_ncomp_notif(cq, wc_cnt) :
1598		-ENOSYS;
1599}
1600
1601/**
1602 * ib_get_dma_mr - Returns a memory region for system memory that is
1603 *   usable for DMA.
1604 * @pd: The protection domain associated with the memory region.
1605 * @mr_access_flags: Specifies the memory access rights.
1606 *
1607 * Note that the ib_dma_*() functions defined below must be used
1608 * to create/destroy addresses used with the Lkey or Rkey returned
1609 * by ib_get_dma_mr().
1610 */
1611struct ib_mr *ib_get_dma_mr(struct ib_pd *pd, int mr_access_flags);
 
 
 
 
 
 
1612
1613/**
1614 * ib_dma_mapping_error - check a DMA addr for error
1615 * @dev: The device for which the dma_addr was created
1616 * @dma_addr: The DMA address to check
1617 */
1618static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
1619{
1620	if (dev->dma_ops)
1621		return dev->dma_ops->mapping_error(dev, dma_addr);
1622	return dma_mapping_error(dev->dma_device, dma_addr);
1623}
1624
1625/**
1626 * ib_dma_map_single - Map a kernel virtual address to DMA address
1627 * @dev: The device for which the dma_addr is to be created
1628 * @cpu_addr: The kernel virtual address
1629 * @size: The size of the region in bytes
1630 * @direction: The direction of the DMA
1631 */
1632static inline u64 ib_dma_map_single(struct ib_device *dev,
1633				    void *cpu_addr, size_t size,
1634				    enum dma_data_direction direction)
1635{
1636	if (dev->dma_ops)
1637		return dev->dma_ops->map_single(dev, cpu_addr, size, direction);
1638	return dma_map_single(dev->dma_device, cpu_addr, size, direction);
1639}
1640
1641/**
1642 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
1643 * @dev: The device for which the DMA address was created
1644 * @addr: The DMA address
1645 * @size: The size of the region in bytes
1646 * @direction: The direction of the DMA
1647 */
1648static inline void ib_dma_unmap_single(struct ib_device *dev,
1649				       u64 addr, size_t size,
1650				       enum dma_data_direction direction)
1651{
1652	if (dev->dma_ops)
1653		dev->dma_ops->unmap_single(dev, addr, size, direction);
1654	else
1655		dma_unmap_single(dev->dma_device, addr, size, direction);
1656}
1657
1658static inline u64 ib_dma_map_single_attrs(struct ib_device *dev,
1659					  void *cpu_addr, size_t size,
1660					  enum dma_data_direction direction,
1661					  struct dma_attrs *attrs)
1662{
1663	return dma_map_single_attrs(dev->dma_device, cpu_addr, size,
1664				    direction, attrs);
1665}
1666
1667static inline void ib_dma_unmap_single_attrs(struct ib_device *dev,
1668					     u64 addr, size_t size,
1669					     enum dma_data_direction direction,
1670					     struct dma_attrs *attrs)
1671{
1672	return dma_unmap_single_attrs(dev->dma_device, addr, size,
1673				      direction, attrs);
1674}
1675
1676/**
1677 * ib_dma_map_page - Map a physical page to DMA address
1678 * @dev: The device for which the dma_addr is to be created
1679 * @page: The page to be mapped
1680 * @offset: The offset within the page
1681 * @size: The size of the region in bytes
1682 * @direction: The direction of the DMA
1683 */
1684static inline u64 ib_dma_map_page(struct ib_device *dev,
1685				  struct page *page,
1686				  unsigned long offset,
1687				  size_t size,
1688					 enum dma_data_direction direction)
1689{
1690	if (dev->dma_ops)
1691		return dev->dma_ops->map_page(dev, page, offset, size, direction);
1692	return dma_map_page(dev->dma_device, page, offset, size, direction);
1693}
1694
1695/**
1696 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
1697 * @dev: The device for which the DMA address was created
1698 * @addr: The DMA address
1699 * @size: The size of the region in bytes
1700 * @direction: The direction of the DMA
1701 */
1702static inline void ib_dma_unmap_page(struct ib_device *dev,
1703				     u64 addr, size_t size,
1704				     enum dma_data_direction direction)
1705{
1706	if (dev->dma_ops)
1707		dev->dma_ops->unmap_page(dev, addr, size, direction);
1708	else
1709		dma_unmap_page(dev->dma_device, addr, size, direction);
1710}
1711
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1712/**
1713 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses
1714 * @dev: The device for which the DMA addresses are to be created
1715 * @sg: The array of scatter/gather entries
1716 * @nents: The number of scatter/gather entries
1717 * @direction: The direction of the DMA
1718 */
1719static inline int ib_dma_map_sg(struct ib_device *dev,
1720				struct scatterlist *sg, int nents,
1721				enum dma_data_direction direction)
1722{
1723	if (dev->dma_ops)
1724		return dev->dma_ops->map_sg(dev, sg, nents, direction);
1725	return dma_map_sg(dev->dma_device, sg, nents, direction);
1726}
1727
1728/**
1729 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
1730 * @dev: The device for which the DMA addresses were created
1731 * @sg: The array of scatter/gather entries
1732 * @nents: The number of scatter/gather entries
1733 * @direction: The direction of the DMA
1734 */
1735static inline void ib_dma_unmap_sg(struct ib_device *dev,
1736				   struct scatterlist *sg, int nents,
1737				   enum dma_data_direction direction)
1738{
1739	if (dev->dma_ops)
1740		dev->dma_ops->unmap_sg(dev, sg, nents, direction);
1741	else
1742		dma_unmap_sg(dev->dma_device, sg, nents, direction);
1743}
1744
1745static inline int ib_dma_map_sg_attrs(struct ib_device *dev,
1746				      struct scatterlist *sg, int nents,
1747				      enum dma_data_direction direction,
1748				      struct dma_attrs *attrs)
1749{
1750	return dma_map_sg_attrs(dev->dma_device, sg, nents, direction, attrs);
1751}
1752
1753static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev,
1754					 struct scatterlist *sg, int nents,
1755					 enum dma_data_direction direction,
1756					 struct dma_attrs *attrs)
1757{
1758	dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, attrs);
1759}
1760/**
1761 * ib_sg_dma_address - Return the DMA address from a scatter/gather entry
1762 * @dev: The device for which the DMA addresses were created
1763 * @sg: The scatter/gather entry
1764 */
1765static inline u64 ib_sg_dma_address(struct ib_device *dev,
1766				    struct scatterlist *sg)
1767{
1768	if (dev->dma_ops)
1769		return dev->dma_ops->dma_address(dev, sg);
1770	return sg_dma_address(sg);
1771}
1772
1773/**
1774 * ib_sg_dma_len - Return the DMA length from a scatter/gather entry
1775 * @dev: The device for which the DMA addresses were created
1776 * @sg: The scatter/gather entry
 
1777 */
1778static inline unsigned int ib_sg_dma_len(struct ib_device *dev,
1779					 struct scatterlist *sg)
1780{
1781	if (dev->dma_ops)
1782		return dev->dma_ops->dma_len(dev, sg);
1783	return sg_dma_len(sg);
1784}
1785
1786/**
1787 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
1788 * @dev: The device for which the DMA address was created
1789 * @addr: The DMA address
1790 * @size: The size of the region in bytes
1791 * @dir: The direction of the DMA
1792 */
1793static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
1794					      u64 addr,
1795					      size_t size,
1796					      enum dma_data_direction dir)
1797{
1798	if (dev->dma_ops)
1799		dev->dma_ops->sync_single_for_cpu(dev, addr, size, dir);
1800	else
1801		dma_sync_single_for_cpu(dev->dma_device, addr, size, dir);
1802}
1803
1804/**
1805 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
1806 * @dev: The device for which the DMA address was created
1807 * @addr: The DMA address
1808 * @size: The size of the region in bytes
1809 * @dir: The direction of the DMA
1810 */
1811static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
1812						 u64 addr,
1813						 size_t size,
1814						 enum dma_data_direction dir)
1815{
1816	if (dev->dma_ops)
1817		dev->dma_ops->sync_single_for_device(dev, addr, size, dir);
1818	else
1819		dma_sync_single_for_device(dev->dma_device, addr, size, dir);
1820}
1821
 
 
 
 
 
 
 
 
 
1822/**
1823 * ib_dma_alloc_coherent - Allocate memory and map it for DMA
1824 * @dev: The device for which the DMA address is requested
1825 * @size: The size of the region to allocate in bytes
1826 * @dma_handle: A pointer for returning the DMA address of the region
1827 * @flag: memory allocator flags
1828 */
1829static inline void *ib_dma_alloc_coherent(struct ib_device *dev,
1830					   size_t size,
1831					   u64 *dma_handle,
1832					   gfp_t flag)
1833{
1834	if (dev->dma_ops)
1835		return dev->dma_ops->alloc_coherent(dev, size, dma_handle, flag);
1836	else {
1837		dma_addr_t handle;
1838		void *ret;
1839
1840		ret = dma_alloc_coherent(dev->dma_device, size, &handle, flag);
1841		*dma_handle = handle;
1842		return ret;
1843	}
1844}
1845
 
 
 
 
 
 
 
1846/**
1847 * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent()
1848 * @dev: The device for which the DMA addresses were allocated
1849 * @size: The size of the region
1850 * @cpu_addr: the address returned by ib_dma_alloc_coherent()
1851 * @dma_handle: the DMA address returned by ib_dma_alloc_coherent()
1852 */
1853static inline void ib_dma_free_coherent(struct ib_device *dev,
1854					size_t size, void *cpu_addr,
1855					u64 dma_handle)
1856{
1857	if (dev->dma_ops)
1858		dev->dma_ops->free_coherent(dev, size, cpu_addr, dma_handle);
1859	else
1860		dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle);
1861}
1862
1863/**
1864 * ib_reg_phys_mr - Prepares a virtually addressed memory region for use
1865 *   by an HCA.
1866 * @pd: The protection domain associated assigned to the registered region.
1867 * @phys_buf_array: Specifies a list of physical buffers to use in the
1868 *   memory region.
1869 * @num_phys_buf: Specifies the size of the phys_buf_array.
1870 * @mr_access_flags: Specifies the memory access rights.
1871 * @iova_start: The offset of the region's starting I/O virtual address.
1872 */
1873struct ib_mr *ib_reg_phys_mr(struct ib_pd *pd,
1874			     struct ib_phys_buf *phys_buf_array,
1875			     int num_phys_buf,
1876			     int mr_access_flags,
1877			     u64 *iova_start);
1878
1879/**
1880 * ib_rereg_phys_mr - Modifies the attributes of an existing memory region.
1881 *   Conceptually, this call performs the functions deregister memory region
1882 *   followed by register physical memory region.  Where possible,
1883 *   resources are reused instead of deallocated and reallocated.
1884 * @mr: The memory region to modify.
1885 * @mr_rereg_mask: A bit-mask used to indicate which of the following
1886 *   properties of the memory region are being modified.
1887 * @pd: If %IB_MR_REREG_PD is set in mr_rereg_mask, this field specifies
1888 *   the new protection domain to associated with the memory region,
1889 *   otherwise, this parameter is ignored.
1890 * @phys_buf_array: If %IB_MR_REREG_TRANS is set in mr_rereg_mask, this
1891 *   field specifies a list of physical buffers to use in the new
1892 *   translation, otherwise, this parameter is ignored.
1893 * @num_phys_buf: If %IB_MR_REREG_TRANS is set in mr_rereg_mask, this
1894 *   field specifies the size of the phys_buf_array, otherwise, this
1895 *   parameter is ignored.
1896 * @mr_access_flags: If %IB_MR_REREG_ACCESS is set in mr_rereg_mask, this
1897 *   field specifies the new memory access rights, otherwise, this
1898 *   parameter is ignored.
1899 * @iova_start: The offset of the region's starting I/O virtual address.
1900 */
1901int ib_rereg_phys_mr(struct ib_mr *mr,
1902		     int mr_rereg_mask,
1903		     struct ib_pd *pd,
1904		     struct ib_phys_buf *phys_buf_array,
1905		     int num_phys_buf,
1906		     int mr_access_flags,
1907		     u64 *iova_start);
1908
1909/**
1910 * ib_query_mr - Retrieves information about a specific memory region.
1911 * @mr: The memory region to retrieve information about.
1912 * @mr_attr: The attributes of the specified memory region.
1913 */
1914int ib_query_mr(struct ib_mr *mr, struct ib_mr_attr *mr_attr);
 
 
 
 
1915
1916/**
1917 * ib_dereg_mr - Deregisters a memory region and removes it from the
1918 *   HCA translation table.
1919 * @mr: The memory region to deregister.
 
 
 
 
 
 
 
1920 */
1921int ib_dereg_mr(struct ib_mr *mr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1922
1923/**
1924 * ib_alloc_fast_reg_mr - Allocates memory region usable with the
1925 *   IB_WR_FAST_REG_MR send work request.
1926 * @pd: The protection domain associated with the region.
1927 * @max_page_list_len: requested max physical buffer list length to be
1928 *   used with fast register work requests for this MR.
 
 
 
 
 
1929 */
1930struct ib_mr *ib_alloc_fast_reg_mr(struct ib_pd *pd, int max_page_list_len);
 
1931
1932/**
1933 * ib_alloc_fast_reg_page_list - Allocates a page list array
1934 * @device - ib device pointer.
1935 * @page_list_len - size of the page list array to be allocated.
1936 *
1937 * This allocates and returns a struct ib_fast_reg_page_list * and a
1938 * page_list array that is at least page_list_len in size.  The actual
1939 * size is returned in max_page_list_len.  The caller is responsible
1940 * for initializing the contents of the page_list array before posting
1941 * a send work request with the IB_WC_FAST_REG_MR opcode.
 
 
1942 *
1943 * The page_list array entries must be translated using one of the
1944 * ib_dma_*() functions just like the addresses passed to
1945 * ib_map_phys_fmr().  Once the ib_post_send() is issued, the struct
1946 * ib_fast_reg_page_list must not be modified by the caller until the
1947 * IB_WC_FAST_REG_MR work request completes.
1948 */
1949struct ib_fast_reg_page_list *ib_alloc_fast_reg_page_list(
1950				struct ib_device *device, int page_list_len);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1951
1952/**
1953 * ib_free_fast_reg_page_list - Deallocates a previously allocated
1954 *   page list array.
1955 * @page_list - struct ib_fast_reg_page_list pointer to be deallocated.
 
1956 */
1957void ib_free_fast_reg_page_list(struct ib_fast_reg_page_list *page_list);
 
 
 
 
 
 
 
 
 
 
 
 
1958
1959/**
1960 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR
1961 *   R_Key and L_Key.
1962 * @mr - struct ib_mr pointer to be updated.
1963 * @newkey - new key to be used.
 
 
 
1964 */
1965static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey)
1966{
1967	mr->lkey = (mr->lkey & 0xffffff00) | newkey;
1968	mr->rkey = (mr->rkey & 0xffffff00) | newkey;
1969}
1970
1971/**
1972 * ib_alloc_mw - Allocates a memory window.
1973 * @pd: The protection domain associated with the memory window.
 
1974 */
1975struct ib_mw *ib_alloc_mw(struct ib_pd *pd);
 
 
 
 
1976
1977/**
1978 * ib_bind_mw - Posts a work request to the send queue of the specified
1979 *   QP, which binds the memory window to the given address range and
1980 *   remote access attributes.
1981 * @qp: QP to post the bind work request on.
1982 * @mw: The memory window to bind.
1983 * @mw_bind: Specifies information about the memory window, including
1984 *   its address range, remote access rights, and associated memory region.
 
1985 */
1986static inline int ib_bind_mw(struct ib_qp *qp,
1987			     struct ib_mw *mw,
1988			     struct ib_mw_bind *mw_bind)
1989{
1990	/* XXX reference counting in corresponding MR? */
1991	return mw->device->bind_mw ?
1992		mw->device->bind_mw(qp, mw, mw_bind) :
1993		-ENOSYS;
 
 
1994}
1995
1996/**
1997 * ib_dealloc_mw - Deallocates a memory window.
1998 * @mw: The memory window to deallocate.
 
 
1999 */
2000int ib_dealloc_mw(struct ib_mw *mw);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2001
2002/**
2003 * ib_alloc_fmr - Allocates a unmapped fast memory region.
2004 * @pd: The protection domain associated with the unmapped region.
2005 * @mr_access_flags: Specifies the memory access rights.
2006 * @fmr_attr: Attributes of the unmapped region.
 
2007 *
2008 * A fast memory region must be mapped before it can be used as part of
2009 * a work request.
2010 */
2011struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
2012			    int mr_access_flags,
2013			    struct ib_fmr_attr *fmr_attr);
 
 
 
 
2014
2015/**
2016 * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region.
2017 * @fmr: The fast memory region to associate with the pages.
2018 * @page_list: An array of physical pages to map to the fast memory region.
2019 * @list_len: The number of pages in page_list.
2020 * @iova: The I/O virtual address to use with the mapped region.
2021 */
2022static inline int ib_map_phys_fmr(struct ib_fmr *fmr,
2023				  u64 *page_list, int list_len,
2024				  u64 iova)
2025{
2026	return fmr->device->map_phys_fmr(fmr, page_list, list_len, iova);
 
 
 
 
2027}
2028
2029/**
2030 * ib_unmap_fmr - Removes the mapping from a list of fast memory regions.
2031 * @fmr_list: A linked list of fast memory regions to unmap.
 
 
 
 
2032 */
2033int ib_unmap_fmr(struct list_head *fmr_list);
 
 
 
 
 
 
 
 
2034
2035/**
2036 * ib_dealloc_fmr - Deallocates a fast memory region.
2037 * @fmr: The fast memory region to deallocate.
 
 
 
 
2038 */
2039int ib_dealloc_fmr(struct ib_fmr *fmr);
 
 
 
 
 
 
2040
2041/**
2042 * ib_attach_mcast - Attaches the specified QP to a multicast group.
2043 * @qp: QP to attach to the multicast group.  The QP must be type
2044 *   IB_QPT_UD.
2045 * @gid: Multicast group GID.
2046 * @lid: Multicast group LID in host byte order.
2047 *
2048 * In order to send and receive multicast packets, subnet
2049 * administration must have created the multicast group and configured
2050 * the fabric appropriately.  The port associated with the specified
2051 * QP must also be a member of the multicast group.
 
 
 
 
 
 
2052 */
2053int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
 
 
 
 
 
 
 
 
2054
2055/**
2056 * ib_detach_mcast - Detaches the specified QP from a multicast group.
2057 * @qp: QP to detach from the multicast group.
2058 * @gid: Multicast group GID.
2059 * @lid: Multicast group LID in host byte order.
 
 
 
2060 */
2061int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
 
 
 
 
 
 
2062
 
 
2063#endif /* IB_VERBS_H */
v6.2
   1/* SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB */
   2/*
   3 * Copyright (c) 2004 Mellanox Technologies Ltd.  All rights reserved.
   4 * Copyright (c) 2004 Infinicon Corporation.  All rights reserved.
   5 * Copyright (c) 2004, 2020 Intel Corporation.  All rights reserved.
   6 * Copyright (c) 2004 Topspin Corporation.  All rights reserved.
   7 * Copyright (c) 2004 Voltaire Corporation.  All rights reserved.
   8 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
   9 * Copyright (c) 2005, 2006, 2007 Cisco Systems.  All rights reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  10 */
  11
  12#ifndef IB_VERBS_H
  13#define IB_VERBS_H
  14
  15#include <linux/ethtool.h>
  16#include <linux/types.h>
  17#include <linux/device.h>
 
  18#include <linux/dma-mapping.h>
  19#include <linux/kref.h>
  20#include <linux/list.h>
  21#include <linux/rwsem.h>
 
  22#include <linux/workqueue.h>
  23#include <linux/irq_poll.h>
  24#include <uapi/linux/if_ether.h>
  25#include <net/ipv6.h>
  26#include <net/ip.h>
  27#include <linux/string.h>
  28#include <linux/slab.h>
  29#include <linux/netdevice.h>
  30#include <linux/refcount.h>
  31#include <linux/if_link.h>
  32#include <linux/atomic.h>
  33#include <linux/mmu_notifier.h>
  34#include <linux/uaccess.h>
  35#include <linux/cgroup_rdma.h>
  36#include <linux/irqflags.h>
  37#include <linux/preempt.h>
  38#include <linux/dim.h>
  39#include <uapi/rdma/ib_user_verbs.h>
  40#include <rdma/rdma_counter.h>
  41#include <rdma/restrack.h>
  42#include <rdma/signature.h>
  43#include <uapi/rdma/rdma_user_ioctl.h>
  44#include <uapi/rdma/ib_user_ioctl_verbs.h>
  45
  46#define IB_FW_VERSION_NAME_MAX	ETHTOOL_FWVERS_LEN
  47
  48struct ib_umem_odp;
  49struct ib_uqp_object;
  50struct ib_usrq_object;
  51struct ib_uwq_object;
  52struct rdma_cm_id;
  53struct ib_port;
  54struct hw_stats_device_data;
  55
  56extern struct workqueue_struct *ib_wq;
  57extern struct workqueue_struct *ib_comp_wq;
  58extern struct workqueue_struct *ib_comp_unbound_wq;
  59
  60struct ib_ucq_object;
  61
  62__printf(3, 4) __cold
  63void ibdev_printk(const char *level, const struct ib_device *ibdev,
  64		  const char *format, ...);
  65__printf(2, 3) __cold
  66void ibdev_emerg(const struct ib_device *ibdev, const char *format, ...);
  67__printf(2, 3) __cold
  68void ibdev_alert(const struct ib_device *ibdev, const char *format, ...);
  69__printf(2, 3) __cold
  70void ibdev_crit(const struct ib_device *ibdev, const char *format, ...);
  71__printf(2, 3) __cold
  72void ibdev_err(const struct ib_device *ibdev, const char *format, ...);
  73__printf(2, 3) __cold
  74void ibdev_warn(const struct ib_device *ibdev, const char *format, ...);
  75__printf(2, 3) __cold
  76void ibdev_notice(const struct ib_device *ibdev, const char *format, ...);
  77__printf(2, 3) __cold
  78void ibdev_info(const struct ib_device *ibdev, const char *format, ...);
  79
  80#if defined(CONFIG_DYNAMIC_DEBUG) || \
  81	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
  82#define ibdev_dbg(__dev, format, args...)                       \
  83	dynamic_ibdev_dbg(__dev, format, ##args)
  84#else
  85__printf(2, 3) __cold
  86static inline
  87void ibdev_dbg(const struct ib_device *ibdev, const char *format, ...) {}
  88#endif
  89
  90#define ibdev_level_ratelimited(ibdev_level, ibdev, fmt, ...)           \
  91do {                                                                    \
  92	static DEFINE_RATELIMIT_STATE(_rs,                              \
  93				      DEFAULT_RATELIMIT_INTERVAL,       \
  94				      DEFAULT_RATELIMIT_BURST);         \
  95	if (__ratelimit(&_rs))                                          \
  96		ibdev_level(ibdev, fmt, ##__VA_ARGS__);                 \
  97} while (0)
  98
  99#define ibdev_emerg_ratelimited(ibdev, fmt, ...) \
 100	ibdev_level_ratelimited(ibdev_emerg, ibdev, fmt, ##__VA_ARGS__)
 101#define ibdev_alert_ratelimited(ibdev, fmt, ...) \
 102	ibdev_level_ratelimited(ibdev_alert, ibdev, fmt, ##__VA_ARGS__)
 103#define ibdev_crit_ratelimited(ibdev, fmt, ...) \
 104	ibdev_level_ratelimited(ibdev_crit, ibdev, fmt, ##__VA_ARGS__)
 105#define ibdev_err_ratelimited(ibdev, fmt, ...) \
 106	ibdev_level_ratelimited(ibdev_err, ibdev, fmt, ##__VA_ARGS__)
 107#define ibdev_warn_ratelimited(ibdev, fmt, ...) \
 108	ibdev_level_ratelimited(ibdev_warn, ibdev, fmt, ##__VA_ARGS__)
 109#define ibdev_notice_ratelimited(ibdev, fmt, ...) \
 110	ibdev_level_ratelimited(ibdev_notice, ibdev, fmt, ##__VA_ARGS__)
 111#define ibdev_info_ratelimited(ibdev, fmt, ...) \
 112	ibdev_level_ratelimited(ibdev_info, ibdev, fmt, ##__VA_ARGS__)
 113
 114#if defined(CONFIG_DYNAMIC_DEBUG) || \
 115	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
 116/* descriptor check is first to prevent flooding with "callbacks suppressed" */
 117#define ibdev_dbg_ratelimited(ibdev, fmt, ...)                          \
 118do {                                                                    \
 119	static DEFINE_RATELIMIT_STATE(_rs,                              \
 120				      DEFAULT_RATELIMIT_INTERVAL,       \
 121				      DEFAULT_RATELIMIT_BURST);         \
 122	DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, fmt);                 \
 123	if (DYNAMIC_DEBUG_BRANCH(descriptor) && __ratelimit(&_rs))      \
 124		__dynamic_ibdev_dbg(&descriptor, ibdev, fmt,            \
 125				    ##__VA_ARGS__);                     \
 126} while (0)
 127#else
 128__printf(2, 3) __cold
 129static inline
 130void ibdev_dbg_ratelimited(const struct ib_device *ibdev, const char *format, ...) {}
 131#endif
 132
 133union ib_gid {
 134	u8	raw[16];
 135	struct {
 136		__be64	subnet_prefix;
 137		__be64	interface_id;
 138	} global;
 139};
 140
 141extern union ib_gid zgid;
 142
 143enum ib_gid_type {
 144	IB_GID_TYPE_IB = IB_UVERBS_GID_TYPE_IB,
 145	IB_GID_TYPE_ROCE = IB_UVERBS_GID_TYPE_ROCE_V1,
 146	IB_GID_TYPE_ROCE_UDP_ENCAP = IB_UVERBS_GID_TYPE_ROCE_V2,
 147	IB_GID_TYPE_SIZE
 148};
 149
 150#define ROCE_V2_UDP_DPORT      4791
 151struct ib_gid_attr {
 152	struct net_device __rcu	*ndev;
 153	struct ib_device	*device;
 154	union ib_gid		gid;
 155	enum ib_gid_type	gid_type;
 156	u16			index;
 157	u32			port_num;
 158};
 159
 160enum {
 161	/* set the local administered indication */
 162	IB_SA_WELL_KNOWN_GUID	= BIT_ULL(57) | 2,
 163};
 164
 165enum rdma_transport_type {
 166	RDMA_TRANSPORT_IB,
 167	RDMA_TRANSPORT_IWARP,
 168	RDMA_TRANSPORT_USNIC,
 169	RDMA_TRANSPORT_USNIC_UDP,
 170	RDMA_TRANSPORT_UNSPECIFIED,
 171};
 172
 173enum rdma_protocol_type {
 174	RDMA_PROTOCOL_IB,
 175	RDMA_PROTOCOL_IBOE,
 176	RDMA_PROTOCOL_IWARP,
 177	RDMA_PROTOCOL_USNIC_UDP
 178};
 179
 180__attribute_const__ enum rdma_transport_type
 181rdma_node_get_transport(unsigned int node_type);
 182
 183enum rdma_network_type {
 184	RDMA_NETWORK_IB,
 185	RDMA_NETWORK_ROCE_V1,
 186	RDMA_NETWORK_IPV4,
 187	RDMA_NETWORK_IPV6
 188};
 189
 190static inline enum ib_gid_type ib_network_to_gid_type(enum rdma_network_type network_type)
 191{
 192	if (network_type == RDMA_NETWORK_IPV4 ||
 193	    network_type == RDMA_NETWORK_IPV6)
 194		return IB_GID_TYPE_ROCE_UDP_ENCAP;
 195	else if (network_type == RDMA_NETWORK_ROCE_V1)
 196		return IB_GID_TYPE_ROCE;
 197	else
 198		return IB_GID_TYPE_IB;
 199}
 200
 201static inline enum rdma_network_type
 202rdma_gid_attr_network_type(const struct ib_gid_attr *attr)
 203{
 204	if (attr->gid_type == IB_GID_TYPE_IB)
 205		return RDMA_NETWORK_IB;
 206
 207	if (attr->gid_type == IB_GID_TYPE_ROCE)
 208		return RDMA_NETWORK_ROCE_V1;
 209
 210	if (ipv6_addr_v4mapped((struct in6_addr *)&attr->gid))
 211		return RDMA_NETWORK_IPV4;
 212	else
 213		return RDMA_NETWORK_IPV6;
 214}
 215
 216enum rdma_link_layer {
 217	IB_LINK_LAYER_UNSPECIFIED,
 218	IB_LINK_LAYER_INFINIBAND,
 219	IB_LINK_LAYER_ETHERNET,
 220};
 221
 222enum ib_device_cap_flags {
 223	IB_DEVICE_RESIZE_MAX_WR = IB_UVERBS_DEVICE_RESIZE_MAX_WR,
 224	IB_DEVICE_BAD_PKEY_CNTR = IB_UVERBS_DEVICE_BAD_PKEY_CNTR,
 225	IB_DEVICE_BAD_QKEY_CNTR = IB_UVERBS_DEVICE_BAD_QKEY_CNTR,
 226	IB_DEVICE_RAW_MULTI = IB_UVERBS_DEVICE_RAW_MULTI,
 227	IB_DEVICE_AUTO_PATH_MIG = IB_UVERBS_DEVICE_AUTO_PATH_MIG,
 228	IB_DEVICE_CHANGE_PHY_PORT = IB_UVERBS_DEVICE_CHANGE_PHY_PORT,
 229	IB_DEVICE_UD_AV_PORT_ENFORCE = IB_UVERBS_DEVICE_UD_AV_PORT_ENFORCE,
 230	IB_DEVICE_CURR_QP_STATE_MOD = IB_UVERBS_DEVICE_CURR_QP_STATE_MOD,
 231	IB_DEVICE_SHUTDOWN_PORT = IB_UVERBS_DEVICE_SHUTDOWN_PORT,
 232	/* IB_DEVICE_INIT_TYPE = IB_UVERBS_DEVICE_INIT_TYPE, (not in use) */
 233	IB_DEVICE_PORT_ACTIVE_EVENT = IB_UVERBS_DEVICE_PORT_ACTIVE_EVENT,
 234	IB_DEVICE_SYS_IMAGE_GUID = IB_UVERBS_DEVICE_SYS_IMAGE_GUID,
 235	IB_DEVICE_RC_RNR_NAK_GEN = IB_UVERBS_DEVICE_RC_RNR_NAK_GEN,
 236	IB_DEVICE_SRQ_RESIZE = IB_UVERBS_DEVICE_SRQ_RESIZE,
 237	IB_DEVICE_N_NOTIFY_CQ = IB_UVERBS_DEVICE_N_NOTIFY_CQ,
 238
 239	/* Reserved, old SEND_W_INV = 1 << 16,*/
 240	IB_DEVICE_MEM_WINDOW = IB_UVERBS_DEVICE_MEM_WINDOW,
 241	/*
 242	 * Devices should set IB_DEVICE_UD_IP_SUM if they support
 243	 * insertion of UDP and TCP checksum on outgoing UD IPoIB
 244	 * messages and can verify the validity of checksum for
 245	 * incoming messages.  Setting this flag implies that the
 246	 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
 247	 */
 248	IB_DEVICE_UD_IP_CSUM = IB_UVERBS_DEVICE_UD_IP_CSUM,
 249	IB_DEVICE_XRC = IB_UVERBS_DEVICE_XRC,
 250
 251	/*
 252	 * This device supports the IB "base memory management extension",
 253	 * which includes support for fast registrations (IB_WR_REG_MR,
 254	 * IB_WR_LOCAL_INV and IB_WR_SEND_WITH_INV verbs).  This flag should
 255	 * also be set by any iWarp device which must support FRs to comply
 256	 * to the iWarp verbs spec.  iWarp devices also support the
 257	 * IB_WR_RDMA_READ_WITH_INV verb for RDMA READs that invalidate the
 258	 * stag.
 259	 */
 260	IB_DEVICE_MEM_MGT_EXTENSIONS = IB_UVERBS_DEVICE_MEM_MGT_EXTENSIONS,
 261	IB_DEVICE_MEM_WINDOW_TYPE_2A = IB_UVERBS_DEVICE_MEM_WINDOW_TYPE_2A,
 262	IB_DEVICE_MEM_WINDOW_TYPE_2B = IB_UVERBS_DEVICE_MEM_WINDOW_TYPE_2B,
 263	IB_DEVICE_RC_IP_CSUM = IB_UVERBS_DEVICE_RC_IP_CSUM,
 264	/* Deprecated. Please use IB_RAW_PACKET_CAP_IP_CSUM. */
 265	IB_DEVICE_RAW_IP_CSUM = IB_UVERBS_DEVICE_RAW_IP_CSUM,
 266	IB_DEVICE_MANAGED_FLOW_STEERING =
 267		IB_UVERBS_DEVICE_MANAGED_FLOW_STEERING,
 268	/* Deprecated. Please use IB_RAW_PACKET_CAP_SCATTER_FCS. */
 269	IB_DEVICE_RAW_SCATTER_FCS = IB_UVERBS_DEVICE_RAW_SCATTER_FCS,
 270	/* The device supports padding incoming writes to cacheline. */
 271	IB_DEVICE_PCI_WRITE_END_PADDING =
 272		IB_UVERBS_DEVICE_PCI_WRITE_END_PADDING,
 273	/* Placement type attributes */
 274	IB_DEVICE_FLUSH_GLOBAL = IB_UVERBS_DEVICE_FLUSH_GLOBAL,
 275	IB_DEVICE_FLUSH_PERSISTENT = IB_UVERBS_DEVICE_FLUSH_PERSISTENT,
 276	IB_DEVICE_ATOMIC_WRITE = IB_UVERBS_DEVICE_ATOMIC_WRITE,
 277};
 278
 279enum ib_kernel_cap_flags {
 280	/*
 281	 * This device supports a per-device lkey or stag that can be
 282	 * used without performing a memory registration for the local
 283	 * memory.  Note that ULPs should never check this flag, but
 284	 * instead of use the local_dma_lkey flag in the ib_pd structure,
 285	 * which will always contain a usable lkey.
 286	 */
 287	IBK_LOCAL_DMA_LKEY = 1 << 0,
 288	/* IB_QP_CREATE_INTEGRITY_EN is supported to implement T10-PI */
 289	IBK_INTEGRITY_HANDOVER = 1 << 1,
 290	/* IB_ACCESS_ON_DEMAND is supported during reg_user_mr() */
 291	IBK_ON_DEMAND_PAGING = 1 << 2,
 292	/* IB_MR_TYPE_SG_GAPS is supported */
 293	IBK_SG_GAPS_REG = 1 << 3,
 294	/* Driver supports RDMA_NLDEV_CMD_DELLINK */
 295	IBK_ALLOW_USER_UNREG = 1 << 4,
 296
 297	/* ipoib will use IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK */
 298	IBK_BLOCK_MULTICAST_LOOPBACK = 1 << 5,
 299	/* iopib will use IB_QP_CREATE_IPOIB_UD_LSO for its QPs */
 300	IBK_UD_TSO = 1 << 6,
 301	/* iopib will use the device ops:
 302	 *   get_vf_config
 303	 *   get_vf_guid
 304	 *   get_vf_stats
 305	 *   set_vf_guid
 306	 *   set_vf_link_state
 307	 */
 308	IBK_VIRTUAL_FUNCTION = 1 << 7,
 309	/* ipoib will use IB_QP_CREATE_NETDEV_USE for its QPs */
 310	IBK_RDMA_NETDEV_OPA = 1 << 8,
 311};
 312
 313enum ib_atomic_cap {
 314	IB_ATOMIC_NONE,
 315	IB_ATOMIC_HCA,
 316	IB_ATOMIC_GLOB
 317};
 318
 319enum ib_odp_general_cap_bits {
 320	IB_ODP_SUPPORT		= 1 << 0,
 321	IB_ODP_SUPPORT_IMPLICIT = 1 << 1,
 322};
 323
 324enum ib_odp_transport_cap_bits {
 325	IB_ODP_SUPPORT_SEND	= 1 << 0,
 326	IB_ODP_SUPPORT_RECV	= 1 << 1,
 327	IB_ODP_SUPPORT_WRITE	= 1 << 2,
 328	IB_ODP_SUPPORT_READ	= 1 << 3,
 329	IB_ODP_SUPPORT_ATOMIC	= 1 << 4,
 330	IB_ODP_SUPPORT_SRQ_RECV	= 1 << 5,
 331};
 332
 333struct ib_odp_caps {
 334	uint64_t general_caps;
 335	struct {
 336		uint32_t  rc_odp_caps;
 337		uint32_t  uc_odp_caps;
 338		uint32_t  ud_odp_caps;
 339		uint32_t  xrc_odp_caps;
 340	} per_transport_caps;
 341};
 342
 343struct ib_rss_caps {
 344	/* Corresponding bit will be set if qp type from
 345	 * 'enum ib_qp_type' is supported, e.g.
 346	 * supported_qpts |= 1 << IB_QPT_UD
 347	 */
 348	u32 supported_qpts;
 349	u32 max_rwq_indirection_tables;
 350	u32 max_rwq_indirection_table_size;
 351};
 352
 353enum ib_tm_cap_flags {
 354	/*  Support tag matching with rendezvous offload for RC transport */
 355	IB_TM_CAP_RNDV_RC = 1 << 0,
 356};
 357
 358struct ib_tm_caps {
 359	/* Max size of RNDV header */
 360	u32 max_rndv_hdr_size;
 361	/* Max number of entries in tag matching list */
 362	u32 max_num_tags;
 363	/* From enum ib_tm_cap_flags */
 364	u32 flags;
 365	/* Max number of outstanding list operations */
 366	u32 max_ops;
 367	/* Max number of SGE in tag matching entry */
 368	u32 max_sge;
 369};
 370
 371struct ib_cq_init_attr {
 372	unsigned int	cqe;
 373	u32		comp_vector;
 374	u32		flags;
 375};
 376
 377enum ib_cq_attr_mask {
 378	IB_CQ_MODERATE = 1 << 0,
 379};
 380
 381struct ib_cq_caps {
 382	u16     max_cq_moderation_count;
 383	u16     max_cq_moderation_period;
 384};
 385
 386struct ib_dm_mr_attr {
 387	u64		length;
 388	u64		offset;
 389	u32		access_flags;
 390};
 391
 392struct ib_dm_alloc_attr {
 393	u64	length;
 394	u32	alignment;
 395	u32	flags;
 396};
 397
 398struct ib_device_attr {
 399	u64			fw_ver;
 400	__be64			sys_image_guid;
 401	u64			max_mr_size;
 402	u64			page_size_cap;
 403	u32			vendor_id;
 404	u32			vendor_part_id;
 405	u32			hw_ver;
 406	int			max_qp;
 407	int			max_qp_wr;
 408	u64			device_cap_flags;
 409	u64			kernel_cap_flags;
 410	int			max_send_sge;
 411	int			max_recv_sge;
 412	int			max_sge_rd;
 413	int			max_cq;
 414	int			max_cqe;
 415	int			max_mr;
 416	int			max_pd;
 417	int			max_qp_rd_atom;
 418	int			max_ee_rd_atom;
 419	int			max_res_rd_atom;
 420	int			max_qp_init_rd_atom;
 421	int			max_ee_init_rd_atom;
 422	enum ib_atomic_cap	atomic_cap;
 423	enum ib_atomic_cap	masked_atomic_cap;
 424	int			max_ee;
 425	int			max_rdd;
 426	int			max_mw;
 427	int			max_raw_ipv6_qp;
 428	int			max_raw_ethy_qp;
 429	int			max_mcast_grp;
 430	int			max_mcast_qp_attach;
 431	int			max_total_mcast_qp_attach;
 432	int			max_ah;
 
 
 433	int			max_srq;
 434	int			max_srq_wr;
 435	int			max_srq_sge;
 436	unsigned int		max_fast_reg_page_list_len;
 437	unsigned int		max_pi_fast_reg_page_list_len;
 438	u16			max_pkeys;
 439	u8			local_ca_ack_delay;
 440	int			sig_prot_cap;
 441	int			sig_guard_cap;
 442	struct ib_odp_caps	odp_caps;
 443	uint64_t		timestamp_mask;
 444	uint64_t		hca_core_clock; /* in KHZ */
 445	struct ib_rss_caps	rss_caps;
 446	u32			max_wq_type_rq;
 447	u32			raw_packet_caps; /* Use ib_raw_packet_caps enum */
 448	struct ib_tm_caps	tm_caps;
 449	struct ib_cq_caps       cq_caps;
 450	u64			max_dm_size;
 451	/* Max entries for sgl for optimized performance per READ */
 452	u32			max_sgl_rd;
 453};
 454
 455enum ib_mtu {
 456	IB_MTU_256  = 1,
 457	IB_MTU_512  = 2,
 458	IB_MTU_1024 = 3,
 459	IB_MTU_2048 = 4,
 460	IB_MTU_4096 = 5
 461};
 462
 463enum opa_mtu {
 464	OPA_MTU_8192 = 6,
 465	OPA_MTU_10240 = 7
 466};
 467
 468static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
 469{
 470	switch (mtu) {
 471	case IB_MTU_256:  return  256;
 472	case IB_MTU_512:  return  512;
 473	case IB_MTU_1024: return 1024;
 474	case IB_MTU_2048: return 2048;
 475	case IB_MTU_4096: return 4096;
 476	default: 	  return -1;
 477	}
 478}
 479
 480static inline enum ib_mtu ib_mtu_int_to_enum(int mtu)
 481{
 482	if (mtu >= 4096)
 483		return IB_MTU_4096;
 484	else if (mtu >= 2048)
 485		return IB_MTU_2048;
 486	else if (mtu >= 1024)
 487		return IB_MTU_1024;
 488	else if (mtu >= 512)
 489		return IB_MTU_512;
 490	else
 491		return IB_MTU_256;
 492}
 493
 494static inline int opa_mtu_enum_to_int(enum opa_mtu mtu)
 495{
 496	switch (mtu) {
 497	case OPA_MTU_8192:
 498		return 8192;
 499	case OPA_MTU_10240:
 500		return 10240;
 501	default:
 502		return(ib_mtu_enum_to_int((enum ib_mtu)mtu));
 503	}
 504}
 505
 506static inline enum opa_mtu opa_mtu_int_to_enum(int mtu)
 507{
 508	if (mtu >= 10240)
 509		return OPA_MTU_10240;
 510	else if (mtu >= 8192)
 511		return OPA_MTU_8192;
 512	else
 513		return ((enum opa_mtu)ib_mtu_int_to_enum(mtu));
 514}
 515
 516enum ib_port_state {
 517	IB_PORT_NOP		= 0,
 518	IB_PORT_DOWN		= 1,
 519	IB_PORT_INIT		= 2,
 520	IB_PORT_ARMED		= 3,
 521	IB_PORT_ACTIVE		= 4,
 522	IB_PORT_ACTIVE_DEFER	= 5
 523};
 524
 525enum ib_port_phys_state {
 526	IB_PORT_PHYS_STATE_SLEEP = 1,
 527	IB_PORT_PHYS_STATE_POLLING = 2,
 528	IB_PORT_PHYS_STATE_DISABLED = 3,
 529	IB_PORT_PHYS_STATE_PORT_CONFIGURATION_TRAINING = 4,
 530	IB_PORT_PHYS_STATE_LINK_UP = 5,
 531	IB_PORT_PHYS_STATE_LINK_ERROR_RECOVERY = 6,
 532	IB_PORT_PHYS_STATE_PHY_TEST = 7,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 533};
 534
 535enum ib_port_width {
 536	IB_WIDTH_1X	= 1,
 537	IB_WIDTH_2X	= 16,
 538	IB_WIDTH_4X	= 2,
 539	IB_WIDTH_8X	= 4,
 540	IB_WIDTH_12X	= 8
 541};
 542
 543static inline int ib_width_enum_to_int(enum ib_port_width width)
 544{
 545	switch (width) {
 546	case IB_WIDTH_1X:  return  1;
 547	case IB_WIDTH_2X:  return  2;
 548	case IB_WIDTH_4X:  return  4;
 549	case IB_WIDTH_8X:  return  8;
 550	case IB_WIDTH_12X: return 12;
 551	default: 	  return -1;
 552	}
 553}
 554
 555enum ib_port_speed {
 556	IB_SPEED_SDR	= 1,
 557	IB_SPEED_DDR	= 2,
 558	IB_SPEED_QDR	= 4,
 559	IB_SPEED_FDR10	= 8,
 560	IB_SPEED_FDR	= 16,
 561	IB_SPEED_EDR	= 32,
 562	IB_SPEED_HDR	= 64,
 563	IB_SPEED_NDR	= 128,
 564};
 565
 566enum ib_stat_flag {
 567	IB_STAT_FLAG_OPTIONAL = 1 << 0,
 568};
 569
 570/**
 571 * struct rdma_stat_desc
 572 * @name - The name of the counter
 573 * @flags - Flags of the counter; For example, IB_STAT_FLAG_OPTIONAL
 574 * @priv - Driver private information; Core code should not use
 575 */
 576struct rdma_stat_desc {
 577	const char *name;
 578	unsigned int flags;
 579	const void *priv;
 580};
 581
 582/**
 583 * struct rdma_hw_stats
 584 * @lock - Mutex to protect parallel write access to lifespan and values
 585 *    of counters, which are 64bits and not guaranteed to be written
 586 *    atomicaly on 32bits systems.
 587 * @timestamp - Used by the core code to track when the last update was
 588 * @lifespan - Used by the core code to determine how old the counters
 589 *   should be before being updated again.  Stored in jiffies, defaults
 590 *   to 10 milliseconds, drivers can override the default be specifying
 591 *   their own value during their allocation routine.
 592 * @descs - Array of pointers to static descriptors used for the counters
 593 *   in directory.
 594 * @is_disabled - A bitmap to indicate each counter is currently disabled
 595 *   or not.
 596 * @num_counters - How many hardware counters there are.  If name is
 597 *   shorter than this number, a kernel oops will result.  Driver authors
 598 *   are encouraged to leave BUILD_BUG_ON(ARRAY_SIZE(@name) < num_counters)
 599 *   in their code to prevent this.
 600 * @value - Array of u64 counters that are accessed by the sysfs code and
 601 *   filled in by the drivers get_stats routine
 602 */
 603struct rdma_hw_stats {
 604	struct mutex	lock; /* Protect lifespan and values[] */
 605	unsigned long	timestamp;
 606	unsigned long	lifespan;
 607	const struct rdma_stat_desc *descs;
 608	unsigned long	*is_disabled;
 609	int		num_counters;
 610	u64		value[];
 611};
 612
 613#define RDMA_HW_STATS_DEFAULT_LIFESPAN 10
 614
 615struct rdma_hw_stats *rdma_alloc_hw_stats_struct(
 616	const struct rdma_stat_desc *descs, int num_counters,
 617	unsigned long lifespan);
 618
 619void rdma_free_hw_stats_struct(struct rdma_hw_stats *stats);
 620
 621/* Define bits for the various functionality this port needs to be supported by
 622 * the core.
 623 */
 624/* Management                           0x00000FFF */
 625#define RDMA_CORE_CAP_IB_MAD            0x00000001
 626#define RDMA_CORE_CAP_IB_SMI            0x00000002
 627#define RDMA_CORE_CAP_IB_CM             0x00000004
 628#define RDMA_CORE_CAP_IW_CM             0x00000008
 629#define RDMA_CORE_CAP_IB_SA             0x00000010
 630#define RDMA_CORE_CAP_OPA_MAD           0x00000020
 631
 632/* Address format                       0x000FF000 */
 633#define RDMA_CORE_CAP_AF_IB             0x00001000
 634#define RDMA_CORE_CAP_ETH_AH            0x00002000
 635#define RDMA_CORE_CAP_OPA_AH            0x00004000
 636#define RDMA_CORE_CAP_IB_GRH_REQUIRED   0x00008000
 637
 638/* Protocol                             0xFFF00000 */
 639#define RDMA_CORE_CAP_PROT_IB           0x00100000
 640#define RDMA_CORE_CAP_PROT_ROCE         0x00200000
 641#define RDMA_CORE_CAP_PROT_IWARP        0x00400000
 642#define RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP 0x00800000
 643#define RDMA_CORE_CAP_PROT_RAW_PACKET   0x01000000
 644#define RDMA_CORE_CAP_PROT_USNIC        0x02000000
 645
 646#define RDMA_CORE_PORT_IB_GRH_REQUIRED (RDMA_CORE_CAP_IB_GRH_REQUIRED \
 647					| RDMA_CORE_CAP_PROT_ROCE     \
 648					| RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP)
 649
 650#define RDMA_CORE_PORT_IBA_IB          (RDMA_CORE_CAP_PROT_IB  \
 651					| RDMA_CORE_CAP_IB_MAD \
 652					| RDMA_CORE_CAP_IB_SMI \
 653					| RDMA_CORE_CAP_IB_CM  \
 654					| RDMA_CORE_CAP_IB_SA  \
 655					| RDMA_CORE_CAP_AF_IB)
 656#define RDMA_CORE_PORT_IBA_ROCE        (RDMA_CORE_CAP_PROT_ROCE \
 657					| RDMA_CORE_CAP_IB_MAD  \
 658					| RDMA_CORE_CAP_IB_CM   \
 659					| RDMA_CORE_CAP_AF_IB   \
 660					| RDMA_CORE_CAP_ETH_AH)
 661#define RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP			\
 662					(RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP \
 663					| RDMA_CORE_CAP_IB_MAD  \
 664					| RDMA_CORE_CAP_IB_CM   \
 665					| RDMA_CORE_CAP_AF_IB   \
 666					| RDMA_CORE_CAP_ETH_AH)
 667#define RDMA_CORE_PORT_IWARP           (RDMA_CORE_CAP_PROT_IWARP \
 668					| RDMA_CORE_CAP_IW_CM)
 669#define RDMA_CORE_PORT_INTEL_OPA       (RDMA_CORE_PORT_IBA_IB  \
 670					| RDMA_CORE_CAP_OPA_MAD)
 671
 672#define RDMA_CORE_PORT_RAW_PACKET	(RDMA_CORE_CAP_PROT_RAW_PACKET)
 673
 674#define RDMA_CORE_PORT_USNIC		(RDMA_CORE_CAP_PROT_USNIC)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 675
 676struct ib_port_attr {
 677	u64			subnet_prefix;
 678	enum ib_port_state	state;
 679	enum ib_mtu		max_mtu;
 680	enum ib_mtu		active_mtu;
 681	u32                     phys_mtu;
 682	int			gid_tbl_len;
 683	unsigned int		ip_gids:1;
 684	/* This is the value from PortInfo CapabilityMask, defined by IBA */
 685	u32			port_cap_flags;
 686	u32			max_msg_sz;
 687	u32			bad_pkey_cntr;
 688	u32			qkey_viol_cntr;
 689	u16			pkey_tbl_len;
 690	u32			sm_lid;
 691	u32			lid;
 692	u8			lmc;
 693	u8			max_vl_num;
 694	u8			sm_sl;
 695	u8			subnet_timeout;
 696	u8			init_type_reply;
 697	u8			active_width;
 698	u16			active_speed;
 699	u8                      phys_state;
 700	u16			port_cap_flags2;
 701};
 702
 703enum ib_device_modify_flags {
 704	IB_DEVICE_MODIFY_SYS_IMAGE_GUID	= 1 << 0,
 705	IB_DEVICE_MODIFY_NODE_DESC	= 1 << 1
 706};
 707
 708#define IB_DEVICE_NODE_DESC_MAX 64
 709
 710struct ib_device_modify {
 711	u64	sys_image_guid;
 712	char	node_desc[IB_DEVICE_NODE_DESC_MAX];
 713};
 714
 715enum ib_port_modify_flags {
 716	IB_PORT_SHUTDOWN		= 1,
 717	IB_PORT_INIT_TYPE		= (1<<2),
 718	IB_PORT_RESET_QKEY_CNTR		= (1<<3),
 719	IB_PORT_OPA_MASK_CHG		= (1<<4)
 720};
 721
 722struct ib_port_modify {
 723	u32	set_port_cap_mask;
 724	u32	clr_port_cap_mask;
 725	u8	init_type;
 726};
 727
 728enum ib_event_type {
 729	IB_EVENT_CQ_ERR,
 730	IB_EVENT_QP_FATAL,
 731	IB_EVENT_QP_REQ_ERR,
 732	IB_EVENT_QP_ACCESS_ERR,
 733	IB_EVENT_COMM_EST,
 734	IB_EVENT_SQ_DRAINED,
 735	IB_EVENT_PATH_MIG,
 736	IB_EVENT_PATH_MIG_ERR,
 737	IB_EVENT_DEVICE_FATAL,
 738	IB_EVENT_PORT_ACTIVE,
 739	IB_EVENT_PORT_ERR,
 740	IB_EVENT_LID_CHANGE,
 741	IB_EVENT_PKEY_CHANGE,
 742	IB_EVENT_SM_CHANGE,
 743	IB_EVENT_SRQ_ERR,
 744	IB_EVENT_SRQ_LIMIT_REACHED,
 745	IB_EVENT_QP_LAST_WQE_REACHED,
 746	IB_EVENT_CLIENT_REREGISTER,
 747	IB_EVENT_GID_CHANGE,
 748	IB_EVENT_WQ_FATAL,
 749};
 750
 751const char *__attribute_const__ ib_event_msg(enum ib_event_type event);
 752
 753struct ib_event {
 754	struct ib_device	*device;
 755	union {
 756		struct ib_cq	*cq;
 757		struct ib_qp	*qp;
 758		struct ib_srq	*srq;
 759		struct ib_wq	*wq;
 760		u32		port_num;
 761	} element;
 762	enum ib_event_type	event;
 763};
 764
 765struct ib_event_handler {
 766	struct ib_device *device;
 767	void            (*handler)(struct ib_event_handler *, struct ib_event *);
 768	struct list_head  list;
 769};
 770
 771#define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler)		\
 772	do {							\
 773		(_ptr)->device  = _device;			\
 774		(_ptr)->handler = _handler;			\
 775		INIT_LIST_HEAD(&(_ptr)->list);			\
 776	} while (0)
 777
 778struct ib_global_route {
 779	const struct ib_gid_attr *sgid_attr;
 780	union ib_gid	dgid;
 781	u32		flow_label;
 782	u8		sgid_index;
 783	u8		hop_limit;
 784	u8		traffic_class;
 785};
 786
 787struct ib_grh {
 788	__be32		version_tclass_flow;
 789	__be16		paylen;
 790	u8		next_hdr;
 791	u8		hop_limit;
 792	union ib_gid	sgid;
 793	union ib_gid	dgid;
 794};
 795
 796union rdma_network_hdr {
 797	struct ib_grh ibgrh;
 798	struct {
 799		/* The IB spec states that if it's IPv4, the header
 800		 * is located in the last 20 bytes of the header.
 801		 */
 802		u8		reserved[20];
 803		struct iphdr	roce4grh;
 804	};
 805};
 806
 807#define IB_QPN_MASK		0xFFFFFF
 808
 809enum {
 810	IB_MULTICAST_QPN = 0xffffff
 811};
 812
 813#define IB_LID_PERMISSIVE	cpu_to_be16(0xFFFF)
 814#define IB_MULTICAST_LID_BASE	cpu_to_be16(0xC000)
 815
 816enum ib_ah_flags {
 817	IB_AH_GRH	= 1
 818};
 819
 820enum ib_rate {
 821	IB_RATE_PORT_CURRENT = 0,
 822	IB_RATE_2_5_GBPS = 2,
 823	IB_RATE_5_GBPS   = 5,
 824	IB_RATE_10_GBPS  = 3,
 825	IB_RATE_20_GBPS  = 6,
 826	IB_RATE_30_GBPS  = 4,
 827	IB_RATE_40_GBPS  = 7,
 828	IB_RATE_60_GBPS  = 8,
 829	IB_RATE_80_GBPS  = 9,
 830	IB_RATE_120_GBPS = 10,
 831	IB_RATE_14_GBPS  = 11,
 832	IB_RATE_56_GBPS  = 12,
 833	IB_RATE_112_GBPS = 13,
 834	IB_RATE_168_GBPS = 14,
 835	IB_RATE_25_GBPS  = 15,
 836	IB_RATE_100_GBPS = 16,
 837	IB_RATE_200_GBPS = 17,
 838	IB_RATE_300_GBPS = 18,
 839	IB_RATE_28_GBPS  = 19,
 840	IB_RATE_50_GBPS  = 20,
 841	IB_RATE_400_GBPS = 21,
 842	IB_RATE_600_GBPS = 22,
 843};
 844
 845/**
 846 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the
 847 * base rate of 2.5 Gbit/sec.  For example, IB_RATE_5_GBPS will be
 848 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
 849 * @rate: rate to convert.
 850 */
 851__attribute_const__ int ib_rate_to_mult(enum ib_rate rate);
 852
 853/**
 854 * ib_rate_to_mbps - Convert the IB rate enum to Mbps.
 855 * For example, IB_RATE_2_5_GBPS will be converted to 2500.
 856 * @rate: rate to convert.
 857 */
 858__attribute_const__ int ib_rate_to_mbps(enum ib_rate rate);
 859
 860
 861/**
 862 * enum ib_mr_type - memory region type
 863 * @IB_MR_TYPE_MEM_REG:       memory region that is used for
 864 *                            normal registration
 865 * @IB_MR_TYPE_SG_GAPS:       memory region that is capable to
 866 *                            register any arbitrary sg lists (without
 867 *                            the normal mr constraints - see
 868 *                            ib_map_mr_sg)
 869 * @IB_MR_TYPE_DM:            memory region that is used for device
 870 *                            memory registration
 871 * @IB_MR_TYPE_USER:          memory region that is used for the user-space
 872 *                            application
 873 * @IB_MR_TYPE_DMA:           memory region that is used for DMA operations
 874 *                            without address translations (VA=PA)
 875 * @IB_MR_TYPE_INTEGRITY:     memory region that is used for
 876 *                            data integrity operations
 877 */
 878enum ib_mr_type {
 879	IB_MR_TYPE_MEM_REG,
 880	IB_MR_TYPE_SG_GAPS,
 881	IB_MR_TYPE_DM,
 882	IB_MR_TYPE_USER,
 883	IB_MR_TYPE_DMA,
 884	IB_MR_TYPE_INTEGRITY,
 885};
 886
 887enum ib_mr_status_check {
 888	IB_MR_CHECK_SIG_STATUS = 1,
 889};
 890
 891/**
 892 * struct ib_mr_status - Memory region status container
 893 *
 894 * @fail_status: Bitmask of MR checks status. For each
 895 *     failed check a corresponding status bit is set.
 896 * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS
 897 *     failure.
 898 */
 899struct ib_mr_status {
 900	u32		    fail_status;
 901	struct ib_sig_err   sig_err;
 902};
 903
 904/**
 905 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
 906 * enum.
 907 * @mult: multiple to convert.
 908 */
 909__attribute_const__ enum ib_rate mult_to_ib_rate(int mult);
 910
 911struct rdma_ah_init_attr {
 912	struct rdma_ah_attr *ah_attr;
 913	u32 flags;
 914	struct net_device *xmit_slave;
 915};
 916
 917enum rdma_ah_attr_type {
 918	RDMA_AH_ATTR_TYPE_UNDEFINED,
 919	RDMA_AH_ATTR_TYPE_IB,
 920	RDMA_AH_ATTR_TYPE_ROCE,
 921	RDMA_AH_ATTR_TYPE_OPA,
 922};
 923
 924struct ib_ah_attr {
 
 925	u16			dlid;
 
 926	u8			src_path_bits;
 927};
 928
 929struct roce_ah_attr {
 930	u8			dmac[ETH_ALEN];
 931};
 932
 933struct opa_ah_attr {
 934	u32			dlid;
 935	u8			src_path_bits;
 936	bool			make_grd;
 937};
 938
 939struct rdma_ah_attr {
 940	struct ib_global_route	grh;
 941	u8			sl;
 942	u8			static_rate;
 943	u32			port_num;
 944	u8			ah_flags;
 945	enum rdma_ah_attr_type type;
 946	union {
 947		struct ib_ah_attr ib;
 948		struct roce_ah_attr roce;
 949		struct opa_ah_attr opa;
 950	};
 951};
 952
 953enum ib_wc_status {
 954	IB_WC_SUCCESS,
 955	IB_WC_LOC_LEN_ERR,
 956	IB_WC_LOC_QP_OP_ERR,
 957	IB_WC_LOC_EEC_OP_ERR,
 958	IB_WC_LOC_PROT_ERR,
 959	IB_WC_WR_FLUSH_ERR,
 960	IB_WC_MW_BIND_ERR,
 961	IB_WC_BAD_RESP_ERR,
 962	IB_WC_LOC_ACCESS_ERR,
 963	IB_WC_REM_INV_REQ_ERR,
 964	IB_WC_REM_ACCESS_ERR,
 965	IB_WC_REM_OP_ERR,
 966	IB_WC_RETRY_EXC_ERR,
 967	IB_WC_RNR_RETRY_EXC_ERR,
 968	IB_WC_LOC_RDD_VIOL_ERR,
 969	IB_WC_REM_INV_RD_REQ_ERR,
 970	IB_WC_REM_ABORT_ERR,
 971	IB_WC_INV_EECN_ERR,
 972	IB_WC_INV_EEC_STATE_ERR,
 973	IB_WC_FATAL_ERR,
 974	IB_WC_RESP_TIMEOUT_ERR,
 975	IB_WC_GENERAL_ERR
 976};
 977
 978const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status);
 979
 980enum ib_wc_opcode {
 981	IB_WC_SEND = IB_UVERBS_WC_SEND,
 982	IB_WC_RDMA_WRITE = IB_UVERBS_WC_RDMA_WRITE,
 983	IB_WC_RDMA_READ = IB_UVERBS_WC_RDMA_READ,
 984	IB_WC_COMP_SWAP = IB_UVERBS_WC_COMP_SWAP,
 985	IB_WC_FETCH_ADD = IB_UVERBS_WC_FETCH_ADD,
 986	IB_WC_BIND_MW = IB_UVERBS_WC_BIND_MW,
 987	IB_WC_LOCAL_INV = IB_UVERBS_WC_LOCAL_INV,
 988	IB_WC_LSO = IB_UVERBS_WC_TSO,
 989	IB_WC_ATOMIC_WRITE = IB_UVERBS_WC_ATOMIC_WRITE,
 990	IB_WC_REG_MR,
 991	IB_WC_MASKED_COMP_SWAP,
 992	IB_WC_MASKED_FETCH_ADD,
 993	IB_WC_FLUSH = IB_UVERBS_WC_FLUSH,
 994/*
 995 * Set value of IB_WC_RECV so consumers can test if a completion is a
 996 * receive by testing (opcode & IB_WC_RECV).
 997 */
 998	IB_WC_RECV			= 1 << 7,
 999	IB_WC_RECV_RDMA_WITH_IMM
1000};
1001
1002enum ib_wc_flags {
1003	IB_WC_GRH		= 1,
1004	IB_WC_WITH_IMM		= (1<<1),
1005	IB_WC_WITH_INVALIDATE	= (1<<2),
1006	IB_WC_IP_CSUM_OK	= (1<<3),
1007	IB_WC_WITH_SMAC		= (1<<4),
1008	IB_WC_WITH_VLAN		= (1<<5),
1009	IB_WC_WITH_NETWORK_HDR_TYPE	= (1<<6),
1010};
1011
1012struct ib_wc {
1013	union {
1014		u64		wr_id;
1015		struct ib_cqe	*wr_cqe;
1016	};
1017	enum ib_wc_status	status;
1018	enum ib_wc_opcode	opcode;
1019	u32			vendor_err;
1020	u32			byte_len;
1021	struct ib_qp	       *qp;
1022	union {
1023		__be32		imm_data;
1024		u32		invalidate_rkey;
1025	} ex;
1026	u32			src_qp;
1027	u32			slid;
1028	int			wc_flags;
1029	u16			pkey_index;
 
1030	u8			sl;
1031	u8			dlid_path_bits;
1032	u32 port_num; /* valid only for DR SMPs on switches */
1033	u8			smac[ETH_ALEN];
1034	u16			vlan_id;
1035	u8			network_hdr_type;
1036};
1037
1038enum ib_cq_notify_flags {
1039	IB_CQ_SOLICITED			= 1 << 0,
1040	IB_CQ_NEXT_COMP			= 1 << 1,
1041	IB_CQ_SOLICITED_MASK		= IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
1042	IB_CQ_REPORT_MISSED_EVENTS	= 1 << 2,
1043};
1044
1045enum ib_srq_type {
1046	IB_SRQT_BASIC = IB_UVERBS_SRQT_BASIC,
1047	IB_SRQT_XRC = IB_UVERBS_SRQT_XRC,
1048	IB_SRQT_TM = IB_UVERBS_SRQT_TM,
1049};
1050
1051static inline bool ib_srq_has_cq(enum ib_srq_type srq_type)
1052{
1053	return srq_type == IB_SRQT_XRC ||
1054	       srq_type == IB_SRQT_TM;
1055}
1056
1057enum ib_srq_attr_mask {
1058	IB_SRQ_MAX_WR	= 1 << 0,
1059	IB_SRQ_LIMIT	= 1 << 1,
1060};
1061
1062struct ib_srq_attr {
1063	u32	max_wr;
1064	u32	max_sge;
1065	u32	srq_limit;
1066};
1067
1068struct ib_srq_init_attr {
1069	void		      (*event_handler)(struct ib_event *, void *);
1070	void		       *srq_context;
1071	struct ib_srq_attr	attr;
1072	enum ib_srq_type	srq_type;
1073
1074	struct {
1075		struct ib_cq   *cq;
1076		union {
1077			struct {
1078				struct ib_xrcd *xrcd;
1079			} xrc;
1080
1081			struct {
1082				u32		max_num_tags;
1083			} tag_matching;
1084		};
1085	} ext;
1086};
1087
1088struct ib_qp_cap {
1089	u32	max_send_wr;
1090	u32	max_recv_wr;
1091	u32	max_send_sge;
1092	u32	max_recv_sge;
1093	u32	max_inline_data;
1094
1095	/*
1096	 * Maximum number of rdma_rw_ctx structures in flight at a time.
1097	 * ib_create_qp() will calculate the right amount of neededed WRs
1098	 * and MRs based on this.
1099	 */
1100	u32	max_rdma_ctxs;
1101};
1102
1103enum ib_sig_type {
1104	IB_SIGNAL_ALL_WR,
1105	IB_SIGNAL_REQ_WR
1106};
1107
1108enum ib_qp_type {
1109	/*
1110	 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
1111	 * here (and in that order) since the MAD layer uses them as
1112	 * indices into a 2-entry table.
1113	 */
1114	IB_QPT_SMI,
1115	IB_QPT_GSI,
1116
1117	IB_QPT_RC = IB_UVERBS_QPT_RC,
1118	IB_QPT_UC = IB_UVERBS_QPT_UC,
1119	IB_QPT_UD = IB_UVERBS_QPT_UD,
1120	IB_QPT_RAW_IPV6,
1121	IB_QPT_RAW_ETHERTYPE,
1122	IB_QPT_RAW_PACKET = IB_UVERBS_QPT_RAW_PACKET,
1123	IB_QPT_XRC_INI = IB_UVERBS_QPT_XRC_INI,
1124	IB_QPT_XRC_TGT = IB_UVERBS_QPT_XRC_TGT,
1125	IB_QPT_MAX,
1126	IB_QPT_DRIVER = IB_UVERBS_QPT_DRIVER,
1127	/* Reserve a range for qp types internal to the low level driver.
1128	 * These qp types will not be visible at the IB core layer, so the
1129	 * IB_QPT_MAX usages should not be affected in the core layer
1130	 */
1131	IB_QPT_RESERVED1 = 0x1000,
1132	IB_QPT_RESERVED2,
1133	IB_QPT_RESERVED3,
1134	IB_QPT_RESERVED4,
1135	IB_QPT_RESERVED5,
1136	IB_QPT_RESERVED6,
1137	IB_QPT_RESERVED7,
1138	IB_QPT_RESERVED8,
1139	IB_QPT_RESERVED9,
1140	IB_QPT_RESERVED10,
1141};
1142
1143enum ib_qp_create_flags {
1144	IB_QP_CREATE_IPOIB_UD_LSO		= 1 << 0,
1145	IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK	=
1146		IB_UVERBS_QP_CREATE_BLOCK_MULTICAST_LOOPBACK,
1147	IB_QP_CREATE_CROSS_CHANNEL              = 1 << 2,
1148	IB_QP_CREATE_MANAGED_SEND               = 1 << 3,
1149	IB_QP_CREATE_MANAGED_RECV               = 1 << 4,
1150	IB_QP_CREATE_NETIF_QP			= 1 << 5,
1151	IB_QP_CREATE_INTEGRITY_EN		= 1 << 6,
1152	IB_QP_CREATE_NETDEV_USE			= 1 << 7,
1153	IB_QP_CREATE_SCATTER_FCS		=
1154		IB_UVERBS_QP_CREATE_SCATTER_FCS,
1155	IB_QP_CREATE_CVLAN_STRIPPING		=
1156		IB_UVERBS_QP_CREATE_CVLAN_STRIPPING,
1157	IB_QP_CREATE_SOURCE_QPN			= 1 << 10,
1158	IB_QP_CREATE_PCI_WRITE_END_PADDING	=
1159		IB_UVERBS_QP_CREATE_PCI_WRITE_END_PADDING,
1160	/* reserve bits 26-31 for low level drivers' internal use */
1161	IB_QP_CREATE_RESERVED_START		= 1 << 26,
1162	IB_QP_CREATE_RESERVED_END		= 1 << 31,
1163};
1164
1165/*
1166 * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler
1167 * callback to destroy the passed in QP.
1168 */
1169
1170struct ib_qp_init_attr {
1171	/* Consumer's event_handler callback must not block */
1172	void                  (*event_handler)(struct ib_event *, void *);
1173
1174	void		       *qp_context;
1175	struct ib_cq	       *send_cq;
1176	struct ib_cq	       *recv_cq;
1177	struct ib_srq	       *srq;
1178	struct ib_xrcd	       *xrcd;     /* XRC TGT QPs only */
1179	struct ib_qp_cap	cap;
1180	enum ib_sig_type	sq_sig_type;
1181	enum ib_qp_type		qp_type;
1182	u32			create_flags;
1183
1184	/*
1185	 * Only needed for special QP types, or when using the RW API.
1186	 */
1187	u32			port_num;
1188	struct ib_rwq_ind_table *rwq_ind_tbl;
1189	u32			source_qpn;
1190};
1191
1192struct ib_qp_open_attr {
1193	void                  (*event_handler)(struct ib_event *, void *);
1194	void		       *qp_context;
1195	u32			qp_num;
1196	enum ib_qp_type		qp_type;
1197};
1198
1199enum ib_rnr_timeout {
1200	IB_RNR_TIMER_655_36 =  0,
1201	IB_RNR_TIMER_000_01 =  1,
1202	IB_RNR_TIMER_000_02 =  2,
1203	IB_RNR_TIMER_000_03 =  3,
1204	IB_RNR_TIMER_000_04 =  4,
1205	IB_RNR_TIMER_000_06 =  5,
1206	IB_RNR_TIMER_000_08 =  6,
1207	IB_RNR_TIMER_000_12 =  7,
1208	IB_RNR_TIMER_000_16 =  8,
1209	IB_RNR_TIMER_000_24 =  9,
1210	IB_RNR_TIMER_000_32 = 10,
1211	IB_RNR_TIMER_000_48 = 11,
1212	IB_RNR_TIMER_000_64 = 12,
1213	IB_RNR_TIMER_000_96 = 13,
1214	IB_RNR_TIMER_001_28 = 14,
1215	IB_RNR_TIMER_001_92 = 15,
1216	IB_RNR_TIMER_002_56 = 16,
1217	IB_RNR_TIMER_003_84 = 17,
1218	IB_RNR_TIMER_005_12 = 18,
1219	IB_RNR_TIMER_007_68 = 19,
1220	IB_RNR_TIMER_010_24 = 20,
1221	IB_RNR_TIMER_015_36 = 21,
1222	IB_RNR_TIMER_020_48 = 22,
1223	IB_RNR_TIMER_030_72 = 23,
1224	IB_RNR_TIMER_040_96 = 24,
1225	IB_RNR_TIMER_061_44 = 25,
1226	IB_RNR_TIMER_081_92 = 26,
1227	IB_RNR_TIMER_122_88 = 27,
1228	IB_RNR_TIMER_163_84 = 28,
1229	IB_RNR_TIMER_245_76 = 29,
1230	IB_RNR_TIMER_327_68 = 30,
1231	IB_RNR_TIMER_491_52 = 31
1232};
1233
1234enum ib_qp_attr_mask {
1235	IB_QP_STATE			= 1,
1236	IB_QP_CUR_STATE			= (1<<1),
1237	IB_QP_EN_SQD_ASYNC_NOTIFY	= (1<<2),
1238	IB_QP_ACCESS_FLAGS		= (1<<3),
1239	IB_QP_PKEY_INDEX		= (1<<4),
1240	IB_QP_PORT			= (1<<5),
1241	IB_QP_QKEY			= (1<<6),
1242	IB_QP_AV			= (1<<7),
1243	IB_QP_PATH_MTU			= (1<<8),
1244	IB_QP_TIMEOUT			= (1<<9),
1245	IB_QP_RETRY_CNT			= (1<<10),
1246	IB_QP_RNR_RETRY			= (1<<11),
1247	IB_QP_RQ_PSN			= (1<<12),
1248	IB_QP_MAX_QP_RD_ATOMIC		= (1<<13),
1249	IB_QP_ALT_PATH			= (1<<14),
1250	IB_QP_MIN_RNR_TIMER		= (1<<15),
1251	IB_QP_SQ_PSN			= (1<<16),
1252	IB_QP_MAX_DEST_RD_ATOMIC	= (1<<17),
1253	IB_QP_PATH_MIG_STATE		= (1<<18),
1254	IB_QP_CAP			= (1<<19),
1255	IB_QP_DEST_QPN			= (1<<20),
1256	IB_QP_RESERVED1			= (1<<21),
1257	IB_QP_RESERVED2			= (1<<22),
1258	IB_QP_RESERVED3			= (1<<23),
1259	IB_QP_RESERVED4			= (1<<24),
1260	IB_QP_RATE_LIMIT		= (1<<25),
1261
1262	IB_QP_ATTR_STANDARD_BITS = GENMASK(20, 0),
1263};
1264
1265enum ib_qp_state {
1266	IB_QPS_RESET,
1267	IB_QPS_INIT,
1268	IB_QPS_RTR,
1269	IB_QPS_RTS,
1270	IB_QPS_SQD,
1271	IB_QPS_SQE,
1272	IB_QPS_ERR
1273};
1274
1275enum ib_mig_state {
1276	IB_MIG_MIGRATED,
1277	IB_MIG_REARM,
1278	IB_MIG_ARMED
1279};
1280
1281enum ib_mw_type {
1282	IB_MW_TYPE_1 = 1,
1283	IB_MW_TYPE_2 = 2
1284};
1285
1286struct ib_qp_attr {
1287	enum ib_qp_state	qp_state;
1288	enum ib_qp_state	cur_qp_state;
1289	enum ib_mtu		path_mtu;
1290	enum ib_mig_state	path_mig_state;
1291	u32			qkey;
1292	u32			rq_psn;
1293	u32			sq_psn;
1294	u32			dest_qp_num;
1295	int			qp_access_flags;
1296	struct ib_qp_cap	cap;
1297	struct rdma_ah_attr	ah_attr;
1298	struct rdma_ah_attr	alt_ah_attr;
1299	u16			pkey_index;
1300	u16			alt_pkey_index;
1301	u8			en_sqd_async_notify;
1302	u8			sq_draining;
1303	u8			max_rd_atomic;
1304	u8			max_dest_rd_atomic;
1305	u8			min_rnr_timer;
1306	u32			port_num;
1307	u8			timeout;
1308	u8			retry_cnt;
1309	u8			rnr_retry;
1310	u32			alt_port_num;
1311	u8			alt_timeout;
1312	u32			rate_limit;
1313	struct net_device	*xmit_slave;
1314};
1315
1316enum ib_wr_opcode {
1317	/* These are shared with userspace */
1318	IB_WR_RDMA_WRITE = IB_UVERBS_WR_RDMA_WRITE,
1319	IB_WR_RDMA_WRITE_WITH_IMM = IB_UVERBS_WR_RDMA_WRITE_WITH_IMM,
1320	IB_WR_SEND = IB_UVERBS_WR_SEND,
1321	IB_WR_SEND_WITH_IMM = IB_UVERBS_WR_SEND_WITH_IMM,
1322	IB_WR_RDMA_READ = IB_UVERBS_WR_RDMA_READ,
1323	IB_WR_ATOMIC_CMP_AND_SWP = IB_UVERBS_WR_ATOMIC_CMP_AND_SWP,
1324	IB_WR_ATOMIC_FETCH_AND_ADD = IB_UVERBS_WR_ATOMIC_FETCH_AND_ADD,
1325	IB_WR_BIND_MW = IB_UVERBS_WR_BIND_MW,
1326	IB_WR_LSO = IB_UVERBS_WR_TSO,
1327	IB_WR_SEND_WITH_INV = IB_UVERBS_WR_SEND_WITH_INV,
1328	IB_WR_RDMA_READ_WITH_INV = IB_UVERBS_WR_RDMA_READ_WITH_INV,
1329	IB_WR_LOCAL_INV = IB_UVERBS_WR_LOCAL_INV,
1330	IB_WR_MASKED_ATOMIC_CMP_AND_SWP =
1331		IB_UVERBS_WR_MASKED_ATOMIC_CMP_AND_SWP,
1332	IB_WR_MASKED_ATOMIC_FETCH_AND_ADD =
1333		IB_UVERBS_WR_MASKED_ATOMIC_FETCH_AND_ADD,
1334	IB_WR_FLUSH = IB_UVERBS_WR_FLUSH,
1335	IB_WR_ATOMIC_WRITE = IB_UVERBS_WR_ATOMIC_WRITE,
1336
1337	/* These are kernel only and can not be issued by userspace */
1338	IB_WR_REG_MR = 0x20,
1339	IB_WR_REG_MR_INTEGRITY,
1340
1341	/* reserve values for low level drivers' internal use.
1342	 * These values will not be used at all in the ib core layer.
1343	 */
1344	IB_WR_RESERVED1 = 0xf0,
1345	IB_WR_RESERVED2,
1346	IB_WR_RESERVED3,
1347	IB_WR_RESERVED4,
1348	IB_WR_RESERVED5,
1349	IB_WR_RESERVED6,
1350	IB_WR_RESERVED7,
1351	IB_WR_RESERVED8,
1352	IB_WR_RESERVED9,
1353	IB_WR_RESERVED10,
1354};
1355
1356enum ib_send_flags {
1357	IB_SEND_FENCE		= 1,
1358	IB_SEND_SIGNALED	= (1<<1),
1359	IB_SEND_SOLICITED	= (1<<2),
1360	IB_SEND_INLINE		= (1<<3),
1361	IB_SEND_IP_CSUM		= (1<<4),
1362
1363	/* reserve bits 26-31 for low level drivers' internal use */
1364	IB_SEND_RESERVED_START	= (1 << 26),
1365	IB_SEND_RESERVED_END	= (1 << 31),
1366};
1367
1368struct ib_sge {
1369	u64	addr;
1370	u32	length;
1371	u32	lkey;
1372};
1373
1374struct ib_cqe {
1375	void (*done)(struct ib_cq *cq, struct ib_wc *wc);
 
 
1376};
1377
1378struct ib_send_wr {
1379	struct ib_send_wr      *next;
1380	union {
1381		u64		wr_id;
1382		struct ib_cqe	*wr_cqe;
1383	};
1384	struct ib_sge	       *sg_list;
1385	int			num_sge;
1386	enum ib_wr_opcode	opcode;
1387	int			send_flags;
1388	union {
1389		__be32		imm_data;
1390		u32		invalidate_rkey;
1391	} ex;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1392};
1393
1394struct ib_rdma_wr {
1395	struct ib_send_wr	wr;
1396	u64			remote_addr;
1397	u32			rkey;
1398};
1399
1400static inline const struct ib_rdma_wr *rdma_wr(const struct ib_send_wr *wr)
1401{
1402	return container_of(wr, struct ib_rdma_wr, wr);
1403}
1404
1405struct ib_atomic_wr {
1406	struct ib_send_wr	wr;
1407	u64			remote_addr;
1408	u64			compare_add;
1409	u64			swap;
1410	u64			compare_add_mask;
1411	u64			swap_mask;
1412	u32			rkey;
1413};
1414
1415static inline const struct ib_atomic_wr *atomic_wr(const struct ib_send_wr *wr)
1416{
1417	return container_of(wr, struct ib_atomic_wr, wr);
1418}
1419
1420struct ib_ud_wr {
1421	struct ib_send_wr	wr;
1422	struct ib_ah		*ah;
1423	void			*header;
1424	int			hlen;
1425	int			mss;
1426	u32			remote_qpn;
1427	u32			remote_qkey;
1428	u16			pkey_index; /* valid for GSI only */
1429	u32			port_num; /* valid for DR SMPs on switch only */
1430};
1431
1432static inline const struct ib_ud_wr *ud_wr(const struct ib_send_wr *wr)
1433{
1434	return container_of(wr, struct ib_ud_wr, wr);
1435}
1436
1437struct ib_reg_wr {
1438	struct ib_send_wr	wr;
1439	struct ib_mr		*mr;
1440	u32			key;
1441	int			access;
1442};
1443
1444static inline const struct ib_reg_wr *reg_wr(const struct ib_send_wr *wr)
1445{
1446	return container_of(wr, struct ib_reg_wr, wr);
1447}
1448
1449struct ib_recv_wr {
1450	struct ib_recv_wr      *next;
1451	union {
1452		u64		wr_id;
1453		struct ib_cqe	*wr_cqe;
1454	};
1455	struct ib_sge	       *sg_list;
1456	int			num_sge;
1457};
1458
1459enum ib_access_flags {
1460	IB_ACCESS_LOCAL_WRITE = IB_UVERBS_ACCESS_LOCAL_WRITE,
1461	IB_ACCESS_REMOTE_WRITE = IB_UVERBS_ACCESS_REMOTE_WRITE,
1462	IB_ACCESS_REMOTE_READ = IB_UVERBS_ACCESS_REMOTE_READ,
1463	IB_ACCESS_REMOTE_ATOMIC = IB_UVERBS_ACCESS_REMOTE_ATOMIC,
1464	IB_ACCESS_MW_BIND = IB_UVERBS_ACCESS_MW_BIND,
1465	IB_ZERO_BASED = IB_UVERBS_ACCESS_ZERO_BASED,
1466	IB_ACCESS_ON_DEMAND = IB_UVERBS_ACCESS_ON_DEMAND,
1467	IB_ACCESS_HUGETLB = IB_UVERBS_ACCESS_HUGETLB,
1468	IB_ACCESS_RELAXED_ORDERING = IB_UVERBS_ACCESS_RELAXED_ORDERING,
1469	IB_ACCESS_FLUSH_GLOBAL = IB_UVERBS_ACCESS_FLUSH_GLOBAL,
1470	IB_ACCESS_FLUSH_PERSISTENT = IB_UVERBS_ACCESS_FLUSH_PERSISTENT,
1471
1472	IB_ACCESS_OPTIONAL = IB_UVERBS_ACCESS_OPTIONAL_RANGE,
1473	IB_ACCESS_SUPPORTED =
1474		((IB_ACCESS_FLUSH_PERSISTENT << 1) - 1) | IB_ACCESS_OPTIONAL,
 
 
 
 
1475};
1476
1477/*
1478 * XXX: these are apparently used for ->rereg_user_mr, no idea why they
1479 * are hidden here instead of a uapi header!
1480 */
1481enum ib_mr_rereg_flags {
1482	IB_MR_REREG_TRANS	= 1,
1483	IB_MR_REREG_PD		= (1<<1),
1484	IB_MR_REREG_ACCESS	= (1<<2),
1485	IB_MR_REREG_SUPPORTED	= ((IB_MR_REREG_ACCESS << 1) - 1)
1486};
1487
1488struct ib_umem;
1489
1490enum rdma_remove_reason {
1491	/*
1492	 * Userspace requested uobject deletion or initial try
1493	 * to remove uobject via cleanup. Call could fail
1494	 */
1495	RDMA_REMOVE_DESTROY,
1496	/* Context deletion. This call should delete the actual object itself */
1497	RDMA_REMOVE_CLOSE,
1498	/* Driver is being hot-unplugged. This call should delete the actual object itself */
1499	RDMA_REMOVE_DRIVER_REMOVE,
1500	/* uobj is being cleaned-up before being committed */
1501	RDMA_REMOVE_ABORT,
1502	/* The driver failed to destroy the uobject and is being disconnected */
1503	RDMA_REMOVE_DRIVER_FAILURE,
1504};
1505
1506struct ib_rdmacg_object {
1507#ifdef CONFIG_CGROUP_RDMA
1508	struct rdma_cgroup	*cg;		/* owner rdma cgroup */
1509#endif
1510};
1511
1512struct ib_ucontext {
1513	struct ib_device       *device;
1514	struct ib_uverbs_file  *ufile;
1515
1516	struct ib_rdmacg_object	cg_obj;
1517	/*
1518	 * Implementation details of the RDMA core, don't use in drivers:
1519	 */
1520	struct rdma_restrack_entry res;
1521	struct xarray mmap_xa;
1522};
1523
1524struct ib_uobject {
1525	u64			user_handle;	/* handle given to us by userspace */
1526	/* ufile & ucontext owning this object */
1527	struct ib_uverbs_file  *ufile;
1528	/* FIXME, save memory: ufile->context == context */
1529	struct ib_ucontext     *context;	/* associated user context */
1530	void		       *object;		/* containing object */
1531	struct list_head	list;		/* link to context's list */
1532	struct ib_rdmacg_object	cg_obj;		/* rdmacg object */
1533	int			id;		/* index into kernel idr */
1534	struct kref		ref;
1535	atomic_t		usecnt;		/* protects exclusive access */
1536	struct rcu_head		rcu;		/* kfree_rcu() overhead */
1537
1538	const struct uverbs_api_object *uapi_object;
1539};
1540
1541struct ib_udata {
1542	const void __user *inbuf;
1543	void __user *outbuf;
1544	size_t       inlen;
1545	size_t       outlen;
1546};
1547
1548struct ib_pd {
1549	u32			local_dma_lkey;
1550	u32			flags;
1551	struct ib_device       *device;
1552	struct ib_uobject      *uobject;
1553	atomic_t          	usecnt; /* count all resources */
1554
1555	u32			unsafe_global_rkey;
1556
1557	/*
1558	 * Implementation details of the RDMA core, don't use in drivers:
1559	 */
1560	struct ib_mr	       *__internal_mr;
1561	struct rdma_restrack_entry res;
1562};
1563
1564struct ib_xrcd {
1565	struct ib_device       *device;
1566	atomic_t		usecnt; /* count all exposed resources */
1567	struct inode	       *inode;
1568	struct rw_semaphore	tgt_qps_rwsem;
1569	struct xarray		tgt_qps;
1570};
1571
1572struct ib_ah {
1573	struct ib_device	*device;
1574	struct ib_pd		*pd;
1575	struct ib_uobject	*uobject;
1576	const struct ib_gid_attr *sgid_attr;
1577	enum rdma_ah_attr_type	type;
1578};
1579
1580typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
1581
1582enum ib_poll_context {
1583	IB_POLL_SOFTIRQ,	   /* poll from softirq context */
1584	IB_POLL_WORKQUEUE,	   /* poll from workqueue */
1585	IB_POLL_UNBOUND_WORKQUEUE, /* poll from unbound workqueue */
1586	IB_POLL_LAST_POOL_TYPE = IB_POLL_UNBOUND_WORKQUEUE,
1587
1588	IB_POLL_DIRECT,		   /* caller context, no hw completions */
1589};
1590
1591struct ib_cq {
1592	struct ib_device       *device;
1593	struct ib_ucq_object   *uobject;
1594	ib_comp_handler   	comp_handler;
1595	void                  (*event_handler)(struct ib_event *, void *);
1596	void                   *cq_context;
1597	int               	cqe;
1598	unsigned int		cqe_used;
1599	atomic_t          	usecnt; /* count number of work queues */
1600	enum ib_poll_context	poll_ctx;
1601	struct ib_wc		*wc;
1602	struct list_head        pool_entry;
1603	union {
1604		struct irq_poll		iop;
1605		struct work_struct	work;
1606	};
1607	struct workqueue_struct *comp_wq;
1608	struct dim *dim;
1609
1610	/* updated only by trace points */
1611	ktime_t timestamp;
1612	u8 interrupt:1;
1613	u8 shared:1;
1614	unsigned int comp_vector;
1615
1616	/*
1617	 * Implementation details of the RDMA core, don't use in drivers:
1618	 */
1619	struct rdma_restrack_entry res;
1620};
1621
1622struct ib_srq {
1623	struct ib_device       *device;
1624	struct ib_pd	       *pd;
1625	struct ib_usrq_object  *uobject;
1626	void		      (*event_handler)(struct ib_event *, void *);
1627	void		       *srq_context;
1628	enum ib_srq_type	srq_type;
1629	atomic_t		usecnt;
1630
1631	struct {
1632		struct ib_cq   *cq;
1633		union {
1634			struct {
1635				struct ib_xrcd *xrcd;
1636				u32		srq_num;
1637			} xrc;
1638		};
1639	} ext;
1640
1641	/*
1642	 * Implementation details of the RDMA core, don't use in drivers:
1643	 */
1644	struct rdma_restrack_entry res;
1645};
1646
1647enum ib_raw_packet_caps {
1648	/*
1649	 * Strip cvlan from incoming packet and report it in the matching work
1650	 * completion is supported.
1651	 */
1652	IB_RAW_PACKET_CAP_CVLAN_STRIPPING =
1653		IB_UVERBS_RAW_PACKET_CAP_CVLAN_STRIPPING,
1654	/*
1655	 * Scatter FCS field of an incoming packet to host memory is supported.
1656	 */
1657	IB_RAW_PACKET_CAP_SCATTER_FCS = IB_UVERBS_RAW_PACKET_CAP_SCATTER_FCS,
1658	/* Checksum offloads are supported (for both send and receive). */
1659	IB_RAW_PACKET_CAP_IP_CSUM = IB_UVERBS_RAW_PACKET_CAP_IP_CSUM,
1660	/*
1661	 * When a packet is received for an RQ with no receive WQEs, the
1662	 * packet processing is delayed.
1663	 */
1664	IB_RAW_PACKET_CAP_DELAY_DROP = IB_UVERBS_RAW_PACKET_CAP_DELAY_DROP,
1665};
1666
1667enum ib_wq_type {
1668	IB_WQT_RQ = IB_UVERBS_WQT_RQ,
1669};
1670
1671enum ib_wq_state {
1672	IB_WQS_RESET,
1673	IB_WQS_RDY,
1674	IB_WQS_ERR
1675};
1676
1677struct ib_wq {
1678	struct ib_device       *device;
1679	struct ib_uwq_object   *uobject;
1680	void		    *wq_context;
1681	void		    (*event_handler)(struct ib_event *, void *);
1682	struct ib_pd	       *pd;
1683	struct ib_cq	       *cq;
1684	u32		wq_num;
1685	enum ib_wq_state       state;
1686	enum ib_wq_type	wq_type;
1687	atomic_t		usecnt;
1688};
1689
1690enum ib_wq_flags {
1691	IB_WQ_FLAGS_CVLAN_STRIPPING	= IB_UVERBS_WQ_FLAGS_CVLAN_STRIPPING,
1692	IB_WQ_FLAGS_SCATTER_FCS		= IB_UVERBS_WQ_FLAGS_SCATTER_FCS,
1693	IB_WQ_FLAGS_DELAY_DROP		= IB_UVERBS_WQ_FLAGS_DELAY_DROP,
1694	IB_WQ_FLAGS_PCI_WRITE_END_PADDING =
1695				IB_UVERBS_WQ_FLAGS_PCI_WRITE_END_PADDING,
1696};
1697
1698struct ib_wq_init_attr {
1699	void		       *wq_context;
1700	enum ib_wq_type	wq_type;
1701	u32		max_wr;
1702	u32		max_sge;
1703	struct	ib_cq	       *cq;
1704	void		    (*event_handler)(struct ib_event *, void *);
1705	u32		create_flags; /* Use enum ib_wq_flags */
1706};
1707
1708enum ib_wq_attr_mask {
1709	IB_WQ_STATE		= 1 << 0,
1710	IB_WQ_CUR_STATE		= 1 << 1,
1711	IB_WQ_FLAGS		= 1 << 2,
1712};
1713
1714struct ib_wq_attr {
1715	enum	ib_wq_state	wq_state;
1716	enum	ib_wq_state	curr_wq_state;
1717	u32			flags; /* Use enum ib_wq_flags */
1718	u32			flags_mask; /* Use enum ib_wq_flags */
1719};
1720
1721struct ib_rwq_ind_table {
1722	struct ib_device	*device;
1723	struct ib_uobject      *uobject;
1724	atomic_t		usecnt;
1725	u32		ind_tbl_num;
1726	u32		log_ind_tbl_size;
1727	struct ib_wq	**ind_tbl;
1728};
1729
1730struct ib_rwq_ind_table_init_attr {
1731	u32		log_ind_tbl_size;
1732	/* Each entry is a pointer to Receive Work Queue */
1733	struct ib_wq	**ind_tbl;
1734};
1735
1736enum port_pkey_state {
1737	IB_PORT_PKEY_NOT_VALID = 0,
1738	IB_PORT_PKEY_VALID = 1,
1739	IB_PORT_PKEY_LISTED = 2,
1740};
1741
1742struct ib_qp_security;
1743
1744struct ib_port_pkey {
1745	enum port_pkey_state	state;
1746	u16			pkey_index;
1747	u32			port_num;
1748	struct list_head	qp_list;
1749	struct list_head	to_error_list;
1750	struct ib_qp_security  *sec;
1751};
1752
1753struct ib_ports_pkeys {
1754	struct ib_port_pkey	main;
1755	struct ib_port_pkey	alt;
1756};
1757
1758struct ib_qp_security {
1759	struct ib_qp	       *qp;
1760	struct ib_device       *dev;
1761	/* Hold this mutex when changing port and pkey settings. */
1762	struct mutex		mutex;
1763	struct ib_ports_pkeys  *ports_pkeys;
1764	/* A list of all open shared QP handles.  Required to enforce security
1765	 * properly for all users of a shared QP.
1766	 */
1767	struct list_head        shared_qp_list;
1768	void                   *security;
1769	bool			destroying;
1770	atomic_t		error_list_count;
1771	struct completion	error_complete;
1772	int			error_comps_pending;
1773};
1774
1775/*
1776 * @max_write_sge: Maximum SGE elements per RDMA WRITE request.
1777 * @max_read_sge:  Maximum SGE elements per RDMA READ request.
1778 */
1779struct ib_qp {
1780	struct ib_device       *device;
1781	struct ib_pd	       *pd;
1782	struct ib_cq	       *send_cq;
1783	struct ib_cq	       *recv_cq;
1784	spinlock_t		mr_lock;
1785	int			mrs_used;
1786	struct list_head	rdma_mrs;
1787	struct list_head	sig_mrs;
1788	struct ib_srq	       *srq;
1789	struct ib_xrcd	       *xrcd; /* XRC TGT QPs only */
1790	struct list_head	xrcd_list;
1791
1792	/* count times opened, mcast attaches, flow attaches */
1793	atomic_t		usecnt;
1794	struct list_head	open_list;
1795	struct ib_qp           *real_qp;
1796	struct ib_uqp_object   *uobject;
1797	void                  (*event_handler)(struct ib_event *, void *);
1798	void		       *qp_context;
1799	/* sgid_attrs associated with the AV's */
1800	const struct ib_gid_attr *av_sgid_attr;
1801	const struct ib_gid_attr *alt_path_sgid_attr;
1802	u32			qp_num;
1803	u32			max_write_sge;
1804	u32			max_read_sge;
1805	enum ib_qp_type		qp_type;
1806	struct ib_rwq_ind_table *rwq_ind_tbl;
1807	struct ib_qp_security  *qp_sec;
1808	u32			port;
1809
1810	bool			integrity_en;
1811	/*
1812	 * Implementation details of the RDMA core, don't use in drivers:
1813	 */
1814	struct rdma_restrack_entry     res;
1815
1816	/* The counter the qp is bind to */
1817	struct rdma_counter    *counter;
1818};
1819
1820struct ib_dm {
1821	struct ib_device  *device;
1822	u32		   length;
1823	u32		   flags;
1824	struct ib_uobject *uobject;
1825	atomic_t	   usecnt;
1826};
1827
1828struct ib_mr {
1829	struct ib_device  *device;
1830	struct ib_pd	  *pd;
 
1831	u32		   lkey;
1832	u32		   rkey;
1833	u64		   iova;
1834	u64		   length;
1835	unsigned int	   page_size;
1836	enum ib_mr_type	   type;
1837	bool		   need_inval;
1838	union {
1839		struct ib_uobject	*uobject;	/* user */
1840		struct list_head	qp_entry;	/* FR */
1841	};
1842
1843	struct ib_dm      *dm;
1844	struct ib_sig_attrs *sig_attrs; /* only for IB_MR_TYPE_INTEGRITY MRs */
1845	/*
1846	 * Implementation details of the RDMA core, don't use in drivers:
1847	 */
1848	struct rdma_restrack_entry res;
1849};
1850
1851struct ib_mw {
1852	struct ib_device	*device;
1853	struct ib_pd		*pd;
1854	struct ib_uobject	*uobject;
1855	u32			rkey;
1856	enum ib_mw_type         type;
1857};
1858
1859/* Supported steering options */
1860enum ib_flow_attr_type {
1861	/* steering according to rule specifications */
1862	IB_FLOW_ATTR_NORMAL		= 0x0,
1863	/* default unicast and multicast rule -
1864	 * receive all Eth traffic which isn't steered to any QP
1865	 */
1866	IB_FLOW_ATTR_ALL_DEFAULT	= 0x1,
1867	/* default multicast rule -
1868	 * receive all Eth multicast traffic which isn't steered to any QP
1869	 */
1870	IB_FLOW_ATTR_MC_DEFAULT		= 0x2,
1871	/* sniffer rule - receive all port traffic */
1872	IB_FLOW_ATTR_SNIFFER		= 0x3
1873};
1874
1875/* Supported steering header types */
1876enum ib_flow_spec_type {
1877	/* L2 headers*/
1878	IB_FLOW_SPEC_ETH		= 0x20,
1879	IB_FLOW_SPEC_IB			= 0x22,
1880	/* L3 header*/
1881	IB_FLOW_SPEC_IPV4		= 0x30,
1882	IB_FLOW_SPEC_IPV6		= 0x31,
1883	IB_FLOW_SPEC_ESP                = 0x34,
1884	/* L4 headers*/
1885	IB_FLOW_SPEC_TCP		= 0x40,
1886	IB_FLOW_SPEC_UDP		= 0x41,
1887	IB_FLOW_SPEC_VXLAN_TUNNEL	= 0x50,
1888	IB_FLOW_SPEC_GRE		= 0x51,
1889	IB_FLOW_SPEC_MPLS		= 0x60,
1890	IB_FLOW_SPEC_INNER		= 0x100,
1891	/* Actions */
1892	IB_FLOW_SPEC_ACTION_TAG         = 0x1000,
1893	IB_FLOW_SPEC_ACTION_DROP        = 0x1001,
1894	IB_FLOW_SPEC_ACTION_HANDLE	= 0x1002,
1895	IB_FLOW_SPEC_ACTION_COUNT       = 0x1003,
1896};
1897#define IB_FLOW_SPEC_LAYER_MASK	0xF0
1898#define IB_FLOW_SPEC_SUPPORT_LAYERS 10
1899
1900enum ib_flow_flags {
1901	IB_FLOW_ATTR_FLAGS_DONT_TRAP = 1UL << 1, /* Continue match, no steal */
1902	IB_FLOW_ATTR_FLAGS_EGRESS = 1UL << 2, /* Egress flow */
1903	IB_FLOW_ATTR_FLAGS_RESERVED  = 1UL << 3  /* Must be last */
1904};
1905
1906struct ib_flow_eth_filter {
1907	u8	dst_mac[6];
1908	u8	src_mac[6];
1909	__be16	ether_type;
1910	__be16	vlan_tag;
1911	/* Must be last */
1912	u8	real_sz[];
1913};
1914
1915struct ib_flow_spec_eth {
1916	u32			  type;
1917	u16			  size;
1918	struct ib_flow_eth_filter val;
1919	struct ib_flow_eth_filter mask;
1920};
1921
1922struct ib_flow_ib_filter {
1923	__be16 dlid;
1924	__u8   sl;
1925	/* Must be last */
1926	u8	real_sz[];
1927};
1928
1929struct ib_flow_spec_ib {
1930	u32			 type;
1931	u16			 size;
1932	struct ib_flow_ib_filter val;
1933	struct ib_flow_ib_filter mask;
1934};
1935
1936/* IPv4 header flags */
1937enum ib_ipv4_flags {
1938	IB_IPV4_DONT_FRAG = 0x2, /* Don't enable packet fragmentation */
1939	IB_IPV4_MORE_FRAG = 0X4  /* For All fragmented packets except the
1940				    last have this flag set */
1941};
1942
1943struct ib_flow_ipv4_filter {
1944	__be32	src_ip;
1945	__be32	dst_ip;
1946	u8	proto;
1947	u8	tos;
1948	u8	ttl;
1949	u8	flags;
1950	/* Must be last */
1951	u8	real_sz[];
1952};
1953
1954struct ib_flow_spec_ipv4 {
1955	u32			   type;
1956	u16			   size;
1957	struct ib_flow_ipv4_filter val;
1958	struct ib_flow_ipv4_filter mask;
1959};
1960
1961struct ib_flow_ipv6_filter {
1962	u8	src_ip[16];
1963	u8	dst_ip[16];
1964	__be32	flow_label;
1965	u8	next_hdr;
1966	u8	traffic_class;
1967	u8	hop_limit;
1968	/* Must be last */
1969	u8	real_sz[];
1970};
1971
1972struct ib_flow_spec_ipv6 {
1973	u32			   type;
1974	u16			   size;
1975	struct ib_flow_ipv6_filter val;
1976	struct ib_flow_ipv6_filter mask;
1977};
1978
1979struct ib_flow_tcp_udp_filter {
1980	__be16	dst_port;
1981	__be16	src_port;
1982	/* Must be last */
1983	u8	real_sz[];
1984};
1985
1986struct ib_flow_spec_tcp_udp {
1987	u32			      type;
1988	u16			      size;
1989	struct ib_flow_tcp_udp_filter val;
1990	struct ib_flow_tcp_udp_filter mask;
1991};
1992
1993struct ib_flow_tunnel_filter {
1994	__be32	tunnel_id;
1995	u8	real_sz[];
1996};
1997
1998/* ib_flow_spec_tunnel describes the Vxlan tunnel
1999 * the tunnel_id from val has the vni value
2000 */
2001struct ib_flow_spec_tunnel {
2002	u32			      type;
2003	u16			      size;
2004	struct ib_flow_tunnel_filter  val;
2005	struct ib_flow_tunnel_filter  mask;
2006};
2007
2008struct ib_flow_esp_filter {
2009	__be32	spi;
2010	__be32  seq;
2011	/* Must be last */
2012	u8	real_sz[];
2013};
2014
2015struct ib_flow_spec_esp {
2016	u32                           type;
2017	u16			      size;
2018	struct ib_flow_esp_filter     val;
2019	struct ib_flow_esp_filter     mask;
2020};
2021
2022struct ib_flow_gre_filter {
2023	__be16 c_ks_res0_ver;
2024	__be16 protocol;
2025	__be32 key;
2026	/* Must be last */
2027	u8	real_sz[];
2028};
2029
2030struct ib_flow_spec_gre {
2031	u32                           type;
2032	u16			      size;
2033	struct ib_flow_gre_filter     val;
2034	struct ib_flow_gre_filter     mask;
2035};
2036
2037struct ib_flow_mpls_filter {
2038	__be32 tag;
2039	/* Must be last */
2040	u8	real_sz[];
2041};
2042
2043struct ib_flow_spec_mpls {
2044	u32                           type;
2045	u16			      size;
2046	struct ib_flow_mpls_filter     val;
2047	struct ib_flow_mpls_filter     mask;
2048};
2049
2050struct ib_flow_spec_action_tag {
2051	enum ib_flow_spec_type	      type;
2052	u16			      size;
2053	u32                           tag_id;
2054};
2055
2056struct ib_flow_spec_action_drop {
2057	enum ib_flow_spec_type	      type;
2058	u16			      size;
2059};
2060
2061struct ib_flow_spec_action_handle {
2062	enum ib_flow_spec_type	      type;
2063	u16			      size;
2064	struct ib_flow_action	     *act;
2065};
2066
2067enum ib_counters_description {
2068	IB_COUNTER_PACKETS,
2069	IB_COUNTER_BYTES,
2070};
2071
2072struct ib_flow_spec_action_count {
2073	enum ib_flow_spec_type type;
2074	u16 size;
2075	struct ib_counters *counters;
2076};
2077
2078union ib_flow_spec {
2079	struct {
2080		u32			type;
2081		u16			size;
2082	};
2083	struct ib_flow_spec_eth		eth;
2084	struct ib_flow_spec_ib		ib;
2085	struct ib_flow_spec_ipv4        ipv4;
2086	struct ib_flow_spec_tcp_udp	tcp_udp;
2087	struct ib_flow_spec_ipv6        ipv6;
2088	struct ib_flow_spec_tunnel      tunnel;
2089	struct ib_flow_spec_esp		esp;
2090	struct ib_flow_spec_gre		gre;
2091	struct ib_flow_spec_mpls	mpls;
2092	struct ib_flow_spec_action_tag  flow_tag;
2093	struct ib_flow_spec_action_drop drop;
2094	struct ib_flow_spec_action_handle action;
2095	struct ib_flow_spec_action_count flow_count;
2096};
2097
2098struct ib_flow_attr {
2099	enum ib_flow_attr_type type;
2100	u16	     size;
2101	u16	     priority;
2102	u32	     flags;
2103	u8	     num_of_specs;
2104	u32	     port;
2105	union ib_flow_spec flows[];
2106};
2107
2108struct ib_flow {
2109	struct ib_qp		*qp;
2110	struct ib_device	*device;
2111	struct ib_uobject	*uobject;
2112};
2113
2114enum ib_flow_action_type {
2115	IB_FLOW_ACTION_UNSPECIFIED,
2116	IB_FLOW_ACTION_ESP = 1,
2117};
2118
2119struct ib_flow_action_attrs_esp_keymats {
2120	enum ib_uverbs_flow_action_esp_keymat			protocol;
2121	union {
2122		struct ib_uverbs_flow_action_esp_keymat_aes_gcm aes_gcm;
2123	} keymat;
2124};
2125
2126struct ib_flow_action_attrs_esp_replays {
2127	enum ib_uverbs_flow_action_esp_replay			protocol;
2128	union {
2129		struct ib_uverbs_flow_action_esp_replay_bmp	bmp;
2130	} replay;
2131};
2132
2133enum ib_flow_action_attrs_esp_flags {
2134	/* All user-space flags at the top: Use enum ib_uverbs_flow_action_esp_flags
2135	 * This is done in order to share the same flags between user-space and
2136	 * kernel and spare an unnecessary translation.
2137	 */
2138
2139	/* Kernel flags */
2140	IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED	= 1ULL << 32,
2141	IB_FLOW_ACTION_ESP_FLAGS_MOD_ESP_ATTRS	= 1ULL << 33,
2142};
2143
2144struct ib_flow_spec_list {
2145	struct ib_flow_spec_list	*next;
2146	union ib_flow_spec		spec;
2147};
2148
2149struct ib_flow_action_attrs_esp {
2150	struct ib_flow_action_attrs_esp_keymats		*keymat;
2151	struct ib_flow_action_attrs_esp_replays		*replay;
2152	struct ib_flow_spec_list			*encap;
2153	/* Used only if IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED is enabled.
2154	 * Value of 0 is a valid value.
2155	 */
2156	u32						esn;
2157	u32						spi;
2158	u32						seq;
2159	u32						tfc_pad;
2160	/* Use enum ib_flow_action_attrs_esp_flags */
2161	u64						flags;
2162	u64						hard_limit_pkts;
2163};
2164
2165struct ib_flow_action {
2166	struct ib_device		*device;
2167	struct ib_uobject		*uobject;
2168	enum ib_flow_action_type	type;
2169	atomic_t			usecnt;
2170};
2171
2172struct ib_mad;
 
2173
2174enum ib_process_mad_flags {
2175	IB_MAD_IGNORE_MKEY	= 1,
2176	IB_MAD_IGNORE_BKEY	= 2,
2177	IB_MAD_IGNORE_ALL	= IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
2178};
2179
2180enum ib_mad_result {
2181	IB_MAD_RESULT_FAILURE  = 0,      /* (!SUCCESS is the important flag) */
2182	IB_MAD_RESULT_SUCCESS  = 1 << 0, /* MAD was successfully processed   */
2183	IB_MAD_RESULT_REPLY    = 1 << 1, /* Reply packet needs to be sent    */
2184	IB_MAD_RESULT_CONSUMED = 1 << 2  /* Packet consumed: stop processing */
2185};
2186
2187struct ib_port_cache {
2188	u64		      subnet_prefix;
2189	struct ib_pkey_cache  *pkey;
2190	struct ib_gid_table   *gid;
2191	u8                     lmc;
2192	enum ib_port_state     port_state;
2193};
2194
2195struct ib_port_immutable {
2196	int                           pkey_tbl_len;
2197	int                           gid_tbl_len;
2198	u32                           core_cap_flags;
2199	u32                           max_mad_size;
2200};
2201
2202struct ib_port_data {
2203	struct ib_device *ib_dev;
2204
2205	struct ib_port_immutable immutable;
2206
2207	spinlock_t pkey_list_lock;
2208
2209	spinlock_t netdev_lock;
2210
2211	struct list_head pkey_list;
2212
2213	struct ib_port_cache cache;
2214
2215	struct net_device __rcu *netdev;
2216	netdevice_tracker netdev_tracker;
2217	struct hlist_node ndev_hash_link;
2218	struct rdma_port_counter port_counter;
2219	struct ib_port *sysfs;
2220};
2221
2222/* rdma netdev type - specifies protocol type */
2223enum rdma_netdev_t {
2224	RDMA_NETDEV_OPA_VNIC,
2225	RDMA_NETDEV_IPOIB,
2226};
2227
2228/**
2229 * struct rdma_netdev - rdma netdev
2230 * For cases where netstack interfacing is required.
2231 */
2232struct rdma_netdev {
2233	void              *clnt_priv;
2234	struct ib_device  *hca;
2235	u32		   port_num;
2236	int                mtu;
2237
2238	/*
2239	 * cleanup function must be specified.
2240	 * FIXME: This is only used for OPA_VNIC and that usage should be
2241	 * removed too.
2242	 */
2243	void (*free_rdma_netdev)(struct net_device *netdev);
2244
2245	/* control functions */
2246	void (*set_id)(struct net_device *netdev, int id);
2247	/* send packet */
2248	int (*send)(struct net_device *dev, struct sk_buff *skb,
2249		    struct ib_ah *address, u32 dqpn);
2250	/* multicast */
2251	int (*attach_mcast)(struct net_device *dev, struct ib_device *hca,
2252			    union ib_gid *gid, u16 mlid,
2253			    int set_qkey, u32 qkey);
2254	int (*detach_mcast)(struct net_device *dev, struct ib_device *hca,
2255			    union ib_gid *gid, u16 mlid);
2256	/* timeout */
2257	void (*tx_timeout)(struct net_device *dev, unsigned int txqueue);
2258};
2259
2260struct rdma_netdev_alloc_params {
2261	size_t sizeof_priv;
2262	unsigned int txqs;
2263	unsigned int rxqs;
2264	void *param;
2265
2266	int (*initialize_rdma_netdev)(struct ib_device *device, u32 port_num,
2267				      struct net_device *netdev, void *param);
2268};
2269
2270struct ib_odp_counters {
2271	atomic64_t faults;
2272	atomic64_t invalidations;
2273	atomic64_t prefetch;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2274};
2275
2276struct ib_counters {
2277	struct ib_device	*device;
2278	struct ib_uobject	*uobject;
2279	/* num of objects attached */
2280	atomic_t	usecnt;
2281};
2282
2283struct ib_counters_read_attr {
2284	u64	*counters_buff;
2285	u32	ncounters;
2286	u32	flags; /* use enum ib_read_counters_flags */
2287};
2288
2289struct uverbs_attr_bundle;
2290struct iw_cm_id;
2291struct iw_cm_conn_param;
2292
2293#define INIT_RDMA_OBJ_SIZE(ib_struct, drv_struct, member)                      \
2294	.size_##ib_struct =                                                    \
2295		(sizeof(struct drv_struct) +                                   \
2296		 BUILD_BUG_ON_ZERO(offsetof(struct drv_struct, member)) +      \
2297		 BUILD_BUG_ON_ZERO(                                            \
2298			 !__same_type(((struct drv_struct *)NULL)->member,     \
2299				      struct ib_struct)))
2300
2301#define rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, gfp)                          \
2302	((struct ib_type *)rdma_zalloc_obj(ib_dev, ib_dev->ops.size_##ib_type, \
2303					   gfp, false))
2304
2305#define rdma_zalloc_drv_obj_numa(ib_dev, ib_type)                              \
2306	((struct ib_type *)rdma_zalloc_obj(ib_dev, ib_dev->ops.size_##ib_type, \
2307					   GFP_KERNEL, true))
2308
2309#define rdma_zalloc_drv_obj(ib_dev, ib_type)                                   \
2310	rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, GFP_KERNEL)
2311
2312#define DECLARE_RDMA_OBJ_SIZE(ib_struct) size_t size_##ib_struct
2313
2314struct rdma_user_mmap_entry {
2315	struct kref ref;
2316	struct ib_ucontext *ucontext;
2317	unsigned long start_pgoff;
2318	size_t npages;
2319	bool driver_removed;
2320};
2321
2322/* Return the offset (in bytes) the user should pass to libc's mmap() */
2323static inline u64
2324rdma_user_mmap_get_offset(const struct rdma_user_mmap_entry *entry)
2325{
2326	return (u64)entry->start_pgoff << PAGE_SHIFT;
2327}
2328
2329/**
2330 * struct ib_device_ops - InfiniBand device operations
2331 * This structure defines all the InfiniBand device operations, providers will
2332 * need to define the supported operations, otherwise they will be set to null.
2333 */
2334struct ib_device_ops {
2335	struct module *owner;
2336	enum rdma_driver_id driver_id;
2337	u32 uverbs_abi_ver;
2338	unsigned int uverbs_no_driver_id_binding:1;
2339
2340	/*
2341	 * NOTE: New drivers should not make use of device_group; instead new
2342	 * device parameter should be exposed via netlink command. This
2343	 * mechanism exists only for existing drivers.
2344	 */
2345	const struct attribute_group *device_group;
2346	const struct attribute_group **port_groups;
2347
2348	int (*post_send)(struct ib_qp *qp, const struct ib_send_wr *send_wr,
2349			 const struct ib_send_wr **bad_send_wr);
2350	int (*post_recv)(struct ib_qp *qp, const struct ib_recv_wr *recv_wr,
2351			 const struct ib_recv_wr **bad_recv_wr);
2352	void (*drain_rq)(struct ib_qp *qp);
2353	void (*drain_sq)(struct ib_qp *qp);
2354	int (*poll_cq)(struct ib_cq *cq, int num_entries, struct ib_wc *wc);
2355	int (*peek_cq)(struct ib_cq *cq, int wc_cnt);
2356	int (*req_notify_cq)(struct ib_cq *cq, enum ib_cq_notify_flags flags);
2357	int (*post_srq_recv)(struct ib_srq *srq,
2358			     const struct ib_recv_wr *recv_wr,
2359			     const struct ib_recv_wr **bad_recv_wr);
2360	int (*process_mad)(struct ib_device *device, int process_mad_flags,
2361			   u32 port_num, const struct ib_wc *in_wc,
2362			   const struct ib_grh *in_grh,
2363			   const struct ib_mad *in_mad, struct ib_mad *out_mad,
2364			   size_t *out_mad_size, u16 *out_mad_pkey_index);
2365	int (*query_device)(struct ib_device *device,
2366			    struct ib_device_attr *device_attr,
2367			    struct ib_udata *udata);
2368	int (*modify_device)(struct ib_device *device, int device_modify_mask,
2369			     struct ib_device_modify *device_modify);
2370	void (*get_dev_fw_str)(struct ib_device *device, char *str);
2371	const struct cpumask *(*get_vector_affinity)(struct ib_device *ibdev,
2372						     int comp_vector);
2373	int (*query_port)(struct ib_device *device, u32 port_num,
2374			  struct ib_port_attr *port_attr);
2375	int (*modify_port)(struct ib_device *device, u32 port_num,
2376			   int port_modify_mask,
2377			   struct ib_port_modify *port_modify);
2378	/**
2379	 * The following mandatory functions are used only at device
2380	 * registration.  Keep functions such as these at the end of this
2381	 * structure to avoid cache line misses when accessing struct ib_device
2382	 * in fast paths.
2383	 */
2384	int (*get_port_immutable)(struct ib_device *device, u32 port_num,
2385				  struct ib_port_immutable *immutable);
2386	enum rdma_link_layer (*get_link_layer)(struct ib_device *device,
2387					       u32 port_num);
2388	/**
2389	 * When calling get_netdev, the HW vendor's driver should return the
2390	 * net device of device @device at port @port_num or NULL if such
2391	 * a net device doesn't exist. The vendor driver should call dev_hold
2392	 * on this net device. The HW vendor's device driver must guarantee
2393	 * that this function returns NULL before the net device has finished
2394	 * NETDEV_UNREGISTER state.
2395	 */
2396	struct net_device *(*get_netdev)(struct ib_device *device,
2397					 u32 port_num);
2398	/**
2399	 * rdma netdev operation
2400	 *
2401	 * Driver implementing alloc_rdma_netdev or rdma_netdev_get_params
2402	 * must return -EOPNOTSUPP if it doesn't support the specified type.
2403	 */
2404	struct net_device *(*alloc_rdma_netdev)(
2405		struct ib_device *device, u32 port_num, enum rdma_netdev_t type,
2406		const char *name, unsigned char name_assign_type,
2407		void (*setup)(struct net_device *));
2408
2409	int (*rdma_netdev_get_params)(struct ib_device *device, u32 port_num,
2410				      enum rdma_netdev_t type,
2411				      struct rdma_netdev_alloc_params *params);
2412	/**
2413	 * query_gid should be return GID value for @device, when @port_num
2414	 * link layer is either IB or iWarp. It is no-op if @port_num port
2415	 * is RoCE link layer.
2416	 */
2417	int (*query_gid)(struct ib_device *device, u32 port_num, int index,
2418			 union ib_gid *gid);
2419	/**
2420	 * When calling add_gid, the HW vendor's driver should add the gid
2421	 * of device of port at gid index available at @attr. Meta-info of
2422	 * that gid (for example, the network device related to this gid) is
2423	 * available at @attr. @context allows the HW vendor driver to store
2424	 * extra information together with a GID entry. The HW vendor driver may
2425	 * allocate memory to contain this information and store it in @context
2426	 * when a new GID entry is written to. Params are consistent until the
2427	 * next call of add_gid or delete_gid. The function should return 0 on
2428	 * success or error otherwise. The function could be called
2429	 * concurrently for different ports. This function is only called when
2430	 * roce_gid_table is used.
2431	 */
2432	int (*add_gid)(const struct ib_gid_attr *attr, void **context);
2433	/**
2434	 * When calling del_gid, the HW vendor's driver should delete the
2435	 * gid of device @device at gid index gid_index of port port_num
2436	 * available in @attr.
2437	 * Upon the deletion of a GID entry, the HW vendor must free any
2438	 * allocated memory. The caller will clear @context afterwards.
2439	 * This function is only called when roce_gid_table is used.
2440	 */
2441	int (*del_gid)(const struct ib_gid_attr *attr, void **context);
2442	int (*query_pkey)(struct ib_device *device, u32 port_num, u16 index,
2443			  u16 *pkey);
2444	int (*alloc_ucontext)(struct ib_ucontext *context,
2445			      struct ib_udata *udata);
2446	void (*dealloc_ucontext)(struct ib_ucontext *context);
2447	int (*mmap)(struct ib_ucontext *context, struct vm_area_struct *vma);
2448	/**
2449	 * This will be called once refcount of an entry in mmap_xa reaches
2450	 * zero. The type of the memory that was mapped may differ between
2451	 * entries and is opaque to the rdma_user_mmap interface.
2452	 * Therefore needs to be implemented by the driver in mmap_free.
2453	 */
2454	void (*mmap_free)(struct rdma_user_mmap_entry *entry);
2455	void (*disassociate_ucontext)(struct ib_ucontext *ibcontext);
2456	int (*alloc_pd)(struct ib_pd *pd, struct ib_udata *udata);
2457	int (*dealloc_pd)(struct ib_pd *pd, struct ib_udata *udata);
2458	int (*create_ah)(struct ib_ah *ah, struct rdma_ah_init_attr *attr,
2459			 struct ib_udata *udata);
2460	int (*create_user_ah)(struct ib_ah *ah, struct rdma_ah_init_attr *attr,
2461			      struct ib_udata *udata);
2462	int (*modify_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
2463	int (*query_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
2464	int (*destroy_ah)(struct ib_ah *ah, u32 flags);
2465	int (*create_srq)(struct ib_srq *srq,
2466			  struct ib_srq_init_attr *srq_init_attr,
2467			  struct ib_udata *udata);
2468	int (*modify_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr,
2469			  enum ib_srq_attr_mask srq_attr_mask,
2470			  struct ib_udata *udata);
2471	int (*query_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr);
2472	int (*destroy_srq)(struct ib_srq *srq, struct ib_udata *udata);
2473	int (*create_qp)(struct ib_qp *qp, struct ib_qp_init_attr *qp_init_attr,
2474			 struct ib_udata *udata);
2475	int (*modify_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr,
2476			 int qp_attr_mask, struct ib_udata *udata);
2477	int (*query_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr,
2478			int qp_attr_mask, struct ib_qp_init_attr *qp_init_attr);
2479	int (*destroy_qp)(struct ib_qp *qp, struct ib_udata *udata);
2480	int (*create_cq)(struct ib_cq *cq, const struct ib_cq_init_attr *attr,
2481			 struct ib_udata *udata);
2482	int (*modify_cq)(struct ib_cq *cq, u16 cq_count, u16 cq_period);
2483	int (*destroy_cq)(struct ib_cq *cq, struct ib_udata *udata);
2484	int (*resize_cq)(struct ib_cq *cq, int cqe, struct ib_udata *udata);
2485	struct ib_mr *(*get_dma_mr)(struct ib_pd *pd, int mr_access_flags);
2486	struct ib_mr *(*reg_user_mr)(struct ib_pd *pd, u64 start, u64 length,
2487				     u64 virt_addr, int mr_access_flags,
2488				     struct ib_udata *udata);
2489	struct ib_mr *(*reg_user_mr_dmabuf)(struct ib_pd *pd, u64 offset,
2490					    u64 length, u64 virt_addr, int fd,
2491					    int mr_access_flags,
2492					    struct ib_udata *udata);
2493	struct ib_mr *(*rereg_user_mr)(struct ib_mr *mr, int flags, u64 start,
2494				       u64 length, u64 virt_addr,
2495				       int mr_access_flags, struct ib_pd *pd,
2496				       struct ib_udata *udata);
2497	int (*dereg_mr)(struct ib_mr *mr, struct ib_udata *udata);
2498	struct ib_mr *(*alloc_mr)(struct ib_pd *pd, enum ib_mr_type mr_type,
2499				  u32 max_num_sg);
2500	struct ib_mr *(*alloc_mr_integrity)(struct ib_pd *pd,
2501					    u32 max_num_data_sg,
2502					    u32 max_num_meta_sg);
2503	int (*advise_mr)(struct ib_pd *pd,
2504			 enum ib_uverbs_advise_mr_advice advice, u32 flags,
2505			 struct ib_sge *sg_list, u32 num_sge,
2506			 struct uverbs_attr_bundle *attrs);
2507
2508	/*
2509	 * Kernel users should universally support relaxed ordering (RO), as
2510	 * they are designed to read data only after observing the CQE and use
2511	 * the DMA API correctly.
2512	 *
2513	 * Some drivers implicitly enable RO if platform supports it.
2514	 */
2515	int (*map_mr_sg)(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
2516			 unsigned int *sg_offset);
2517	int (*check_mr_status)(struct ib_mr *mr, u32 check_mask,
2518			       struct ib_mr_status *mr_status);
2519	int (*alloc_mw)(struct ib_mw *mw, struct ib_udata *udata);
2520	int (*dealloc_mw)(struct ib_mw *mw);
2521	int (*attach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2522	int (*detach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2523	int (*alloc_xrcd)(struct ib_xrcd *xrcd, struct ib_udata *udata);
2524	int (*dealloc_xrcd)(struct ib_xrcd *xrcd, struct ib_udata *udata);
2525	struct ib_flow *(*create_flow)(struct ib_qp *qp,
2526				       struct ib_flow_attr *flow_attr,
2527				       struct ib_udata *udata);
2528	int (*destroy_flow)(struct ib_flow *flow_id);
2529	int (*destroy_flow_action)(struct ib_flow_action *action);
2530	int (*set_vf_link_state)(struct ib_device *device, int vf, u32 port,
2531				 int state);
2532	int (*get_vf_config)(struct ib_device *device, int vf, u32 port,
2533			     struct ifla_vf_info *ivf);
2534	int (*get_vf_stats)(struct ib_device *device, int vf, u32 port,
2535			    struct ifla_vf_stats *stats);
2536	int (*get_vf_guid)(struct ib_device *device, int vf, u32 port,
2537			    struct ifla_vf_guid *node_guid,
2538			    struct ifla_vf_guid *port_guid);
2539	int (*set_vf_guid)(struct ib_device *device, int vf, u32 port, u64 guid,
2540			   int type);
2541	struct ib_wq *(*create_wq)(struct ib_pd *pd,
2542				   struct ib_wq_init_attr *init_attr,
2543				   struct ib_udata *udata);
2544	int (*destroy_wq)(struct ib_wq *wq, struct ib_udata *udata);
2545	int (*modify_wq)(struct ib_wq *wq, struct ib_wq_attr *attr,
2546			 u32 wq_attr_mask, struct ib_udata *udata);
2547	int (*create_rwq_ind_table)(struct ib_rwq_ind_table *ib_rwq_ind_table,
2548				    struct ib_rwq_ind_table_init_attr *init_attr,
2549				    struct ib_udata *udata);
2550	int (*destroy_rwq_ind_table)(struct ib_rwq_ind_table *wq_ind_table);
2551	struct ib_dm *(*alloc_dm)(struct ib_device *device,
2552				  struct ib_ucontext *context,
2553				  struct ib_dm_alloc_attr *attr,
2554				  struct uverbs_attr_bundle *attrs);
2555	int (*dealloc_dm)(struct ib_dm *dm, struct uverbs_attr_bundle *attrs);
2556	struct ib_mr *(*reg_dm_mr)(struct ib_pd *pd, struct ib_dm *dm,
2557				   struct ib_dm_mr_attr *attr,
2558				   struct uverbs_attr_bundle *attrs);
2559	int (*create_counters)(struct ib_counters *counters,
2560			       struct uverbs_attr_bundle *attrs);
2561	int (*destroy_counters)(struct ib_counters *counters);
2562	int (*read_counters)(struct ib_counters *counters,
2563			     struct ib_counters_read_attr *counters_read_attr,
2564			     struct uverbs_attr_bundle *attrs);
2565	int (*map_mr_sg_pi)(struct ib_mr *mr, struct scatterlist *data_sg,
2566			    int data_sg_nents, unsigned int *data_sg_offset,
2567			    struct scatterlist *meta_sg, int meta_sg_nents,
2568			    unsigned int *meta_sg_offset);
2569
2570	/**
2571	 * alloc_hw_[device,port]_stats - Allocate a struct rdma_hw_stats and
2572	 *   fill in the driver initialized data.  The struct is kfree()'ed by
2573	 *   the sysfs core when the device is removed.  A lifespan of -1 in the
2574	 *   return struct tells the core to set a default lifespan.
2575	 */
2576	struct rdma_hw_stats *(*alloc_hw_device_stats)(struct ib_device *device);
2577	struct rdma_hw_stats *(*alloc_hw_port_stats)(struct ib_device *device,
2578						     u32 port_num);
2579	/**
2580	 * get_hw_stats - Fill in the counter value(s) in the stats struct.
2581	 * @index - The index in the value array we wish to have updated, or
2582	 *   num_counters if we want all stats updated
2583	 * Return codes -
2584	 *   < 0 - Error, no counters updated
2585	 *   index - Updated the single counter pointed to by index
2586	 *   num_counters - Updated all counters (will reset the timestamp
2587	 *     and prevent further calls for lifespan milliseconds)
2588	 * Drivers are allowed to update all counters in leiu of just the
2589	 *   one given in index at their option
2590	 */
2591	int (*get_hw_stats)(struct ib_device *device,
2592			    struct rdma_hw_stats *stats, u32 port, int index);
2593
2594	/**
2595	 * modify_hw_stat - Modify the counter configuration
2596	 * @enable: true/false when enable/disable a counter
2597	 * Return codes - 0 on success or error code otherwise.
2598	 */
2599	int (*modify_hw_stat)(struct ib_device *device, u32 port,
2600			      unsigned int counter_index, bool enable);
2601	/**
2602	 * Allows rdma drivers to add their own restrack attributes.
2603	 */
2604	int (*fill_res_mr_entry)(struct sk_buff *msg, struct ib_mr *ibmr);
2605	int (*fill_res_mr_entry_raw)(struct sk_buff *msg, struct ib_mr *ibmr);
2606	int (*fill_res_cq_entry)(struct sk_buff *msg, struct ib_cq *ibcq);
2607	int (*fill_res_cq_entry_raw)(struct sk_buff *msg, struct ib_cq *ibcq);
2608	int (*fill_res_qp_entry)(struct sk_buff *msg, struct ib_qp *ibqp);
2609	int (*fill_res_qp_entry_raw)(struct sk_buff *msg, struct ib_qp *ibqp);
2610	int (*fill_res_cm_id_entry)(struct sk_buff *msg, struct rdma_cm_id *id);
2611
2612	/* Device lifecycle callbacks */
2613	/*
2614	 * Called after the device becomes registered, before clients are
2615	 * attached
2616	 */
2617	int (*enable_driver)(struct ib_device *dev);
2618	/*
2619	 * This is called as part of ib_dealloc_device().
2620	 */
2621	void (*dealloc_driver)(struct ib_device *dev);
2622
2623	/* iWarp CM callbacks */
2624	void (*iw_add_ref)(struct ib_qp *qp);
2625	void (*iw_rem_ref)(struct ib_qp *qp);
2626	struct ib_qp *(*iw_get_qp)(struct ib_device *device, int qpn);
2627	int (*iw_connect)(struct iw_cm_id *cm_id,
2628			  struct iw_cm_conn_param *conn_param);
2629	int (*iw_accept)(struct iw_cm_id *cm_id,
2630			 struct iw_cm_conn_param *conn_param);
2631	int (*iw_reject)(struct iw_cm_id *cm_id, const void *pdata,
2632			 u8 pdata_len);
2633	int (*iw_create_listen)(struct iw_cm_id *cm_id, int backlog);
2634	int (*iw_destroy_listen)(struct iw_cm_id *cm_id);
2635	/**
2636	 * counter_bind_qp - Bind a QP to a counter.
2637	 * @counter - The counter to be bound. If counter->id is zero then
2638	 *   the driver needs to allocate a new counter and set counter->id
2639	 */
2640	int (*counter_bind_qp)(struct rdma_counter *counter, struct ib_qp *qp);
2641	/**
2642	 * counter_unbind_qp - Unbind the qp from the dynamically-allocated
2643	 *   counter and bind it onto the default one
2644	 */
2645	int (*counter_unbind_qp)(struct ib_qp *qp);
2646	/**
2647	 * counter_dealloc -De-allocate the hw counter
2648	 */
2649	int (*counter_dealloc)(struct rdma_counter *counter);
2650	/**
2651	 * counter_alloc_stats - Allocate a struct rdma_hw_stats and fill in
2652	 * the driver initialized data.
2653	 */
2654	struct rdma_hw_stats *(*counter_alloc_stats)(
2655		struct rdma_counter *counter);
2656	/**
2657	 * counter_update_stats - Query the stats value of this counter
2658	 */
2659	int (*counter_update_stats)(struct rdma_counter *counter);
2660
2661	/**
2662	 * Allows rdma drivers to add their own restrack attributes
2663	 * dumped via 'rdma stat' iproute2 command.
2664	 */
2665	int (*fill_stat_mr_entry)(struct sk_buff *msg, struct ib_mr *ibmr);
2666
2667	/* query driver for its ucontext properties */
2668	int (*query_ucontext)(struct ib_ucontext *context,
2669			      struct uverbs_attr_bundle *attrs);
2670
2671	/*
2672	 * Provide NUMA node. This API exists for rdmavt/hfi1 only.
2673	 * Everyone else relies on Linux memory management model.
2674	 */
2675	int (*get_numa_node)(struct ib_device *dev);
2676
2677	DECLARE_RDMA_OBJ_SIZE(ib_ah);
2678	DECLARE_RDMA_OBJ_SIZE(ib_counters);
2679	DECLARE_RDMA_OBJ_SIZE(ib_cq);
2680	DECLARE_RDMA_OBJ_SIZE(ib_mw);
2681	DECLARE_RDMA_OBJ_SIZE(ib_pd);
2682	DECLARE_RDMA_OBJ_SIZE(ib_qp);
2683	DECLARE_RDMA_OBJ_SIZE(ib_rwq_ind_table);
2684	DECLARE_RDMA_OBJ_SIZE(ib_srq);
2685	DECLARE_RDMA_OBJ_SIZE(ib_ucontext);
2686	DECLARE_RDMA_OBJ_SIZE(ib_xrcd);
2687};
2688
2689struct ib_core_device {
2690	/* device must be the first element in structure until,
2691	 * union of ib_core_device and device exists in ib_device.
2692	 */
2693	struct device dev;
2694	possible_net_t rdma_net;
2695	struct kobject *ports_kobj;
2696	struct list_head port_list;
2697	struct ib_device *owner; /* reach back to owner ib_device */
2698};
2699
2700struct rdma_restrack_root;
2701struct ib_device {
2702	/* Do not access @dma_device directly from ULP nor from HW drivers. */
2703	struct device                *dma_device;
2704	struct ib_device_ops	     ops;
2705	char                          name[IB_DEVICE_NAME_MAX];
2706	struct rcu_head rcu_head;
2707
2708	struct list_head              event_handler_list;
2709	/* Protects event_handler_list */
2710	struct rw_semaphore event_handler_rwsem;
2711
2712	/* Protects QP's event_handler calls and open_qp list */
2713	spinlock_t qp_open_list_lock;
 
 
 
 
 
2714
2715	struct rw_semaphore	      client_data_rwsem;
2716	struct xarray                 client_data;
2717	struct mutex                  unregistration_lock;
2718
2719	/* Synchronize GID, Pkey cache entries, subnet prefix, LMC */
2720	rwlock_t cache_lock;
2721	/**
2722	 * port_data is indexed by port number
2723	 */
2724	struct ib_port_data *port_data;
2725
2726	int			      num_comp_vectors;
2727
2728	union {
2729		struct device		dev;
2730		struct ib_core_device	coredev;
2731	};
2732
2733	/* First group is for device attributes,
2734	 * Second group is for driver provided attributes (optional).
2735	 * Third group is for the hw_stats
2736	 * It is a NULL terminated array.
2737	 */
2738	const struct attribute_group	*groups[4];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2739
 
2740	u64			     uverbs_cmd_mask;
2741
2742	char			     node_desc[IB_DEVICE_NODE_DESC_MAX];
2743	__be64			     node_guid;
2744	u32			     local_dma_lkey;
2745	u16                          is_switch:1;
2746	/* Indicates kernel verbs support, should not be used in drivers */
2747	u16                          kverbs_provider:1;
2748	/* CQ adaptive moderation (RDMA DIM) */
2749	u16                          use_cq_dim:1;
2750	u8                           node_type;
2751	u32			     phys_port_cnt;
2752	struct ib_device_attr        attrs;
2753	struct hw_stats_device_data *hw_stats_data;
2754
2755#ifdef CONFIG_CGROUP_RDMA
2756	struct rdmacg_device         cg_device;
2757#endif
2758
2759	u32                          index;
2760
2761	spinlock_t                   cq_pools_lock;
2762	struct list_head             cq_pools[IB_POLL_LAST_POOL_TYPE + 1];
2763
2764	struct rdma_restrack_root *res;
2765
2766	const struct uapi_definition   *driver_def;
2767
2768	/*
2769	 * Positive refcount indicates that the device is currently
2770	 * registered and cannot be unregistered.
2771	 */
2772	refcount_t refcount;
2773	struct completion unreg_completion;
2774	struct work_struct unregistration_work;
2775
2776	const struct rdma_link_ops *link_ops;
2777
2778	/* Protects compat_devs xarray modifications */
2779	struct mutex compat_devs_mutex;
2780	/* Maintains compat devices for each net namespace */
2781	struct xarray compat_devs;
2782
2783	/* Used by iWarp CM */
2784	char iw_ifname[IFNAMSIZ];
2785	u32 iw_driver_flags;
2786	u32 lag_flags;
2787};
2788
2789static inline void *rdma_zalloc_obj(struct ib_device *dev, size_t size,
2790				    gfp_t gfp, bool is_numa_aware)
2791{
2792	if (is_numa_aware && dev->ops.get_numa_node)
2793		return kzalloc_node(size, gfp, dev->ops.get_numa_node(dev));
2794
2795	return kzalloc(size, gfp);
2796}
2797
2798struct ib_client_nl_info;
2799struct ib_client {
2800	const char *name;
2801	int (*add)(struct ib_device *ibdev);
2802	void (*remove)(struct ib_device *, void *client_data);
2803	void (*rename)(struct ib_device *dev, void *client_data);
2804	int (*get_nl_info)(struct ib_device *ibdev, void *client_data,
2805			   struct ib_client_nl_info *res);
2806	int (*get_global_nl_info)(struct ib_client_nl_info *res);
2807
2808	/* Returns the net_dev belonging to this ib_client and matching the
2809	 * given parameters.
2810	 * @dev:	 An RDMA device that the net_dev use for communication.
2811	 * @port:	 A physical port number on the RDMA device.
2812	 * @pkey:	 P_Key that the net_dev uses if applicable.
2813	 * @gid:	 A GID that the net_dev uses to communicate.
2814	 * @addr:	 An IP address the net_dev is configured with.
2815	 * @client_data: The device's client data set by ib_set_client_data().
2816	 *
2817	 * An ib_client that implements a net_dev on top of RDMA devices
2818	 * (such as IP over IB) should implement this callback, allowing the
2819	 * rdma_cm module to find the right net_dev for a given request.
2820	 *
2821	 * The caller is responsible for calling dev_put on the returned
2822	 * netdev. */
2823	struct net_device *(*get_net_dev_by_params)(
2824			struct ib_device *dev,
2825			u32 port,
2826			u16 pkey,
2827			const union ib_gid *gid,
2828			const struct sockaddr *addr,
2829			void *client_data);
2830
2831	refcount_t uses;
2832	struct completion uses_zero;
2833	u32 client_id;
2834
2835	/* kverbs are not required by the client */
2836	u8 no_kverbs_req:1;
2837};
2838
2839/*
2840 * IB block DMA iterator
2841 *
2842 * Iterates the DMA-mapped SGL in contiguous memory blocks aligned
2843 * to a HW supported page size.
2844 */
2845struct ib_block_iter {
2846	/* internal states */
2847	struct scatterlist *__sg;	/* sg holding the current aligned block */
2848	dma_addr_t __dma_addr;		/* unaligned DMA address of this block */
2849	unsigned int __sg_nents;	/* number of SG entries */
2850	unsigned int __sg_advance;	/* number of bytes to advance in sg in next step */
2851	unsigned int __pg_bit;		/* alignment of current block */
2852};
2853
2854struct ib_device *_ib_alloc_device(size_t size);
2855#define ib_alloc_device(drv_struct, member)                                    \
2856	container_of(_ib_alloc_device(sizeof(struct drv_struct) +              \
2857				      BUILD_BUG_ON_ZERO(offsetof(              \
2858					      struct drv_struct, member))),    \
2859		     struct drv_struct, member)
2860
2861void ib_dealloc_device(struct ib_device *device);
2862
2863void ib_get_device_fw_str(struct ib_device *device, char *str);
2864
2865int ib_register_device(struct ib_device *device, const char *name,
2866		       struct device *dma_device);
2867void ib_unregister_device(struct ib_device *device);
2868void ib_unregister_driver(enum rdma_driver_id driver_id);
2869void ib_unregister_device_and_put(struct ib_device *device);
2870void ib_unregister_device_queued(struct ib_device *ib_dev);
2871
2872int ib_register_client   (struct ib_client *client);
2873void ib_unregister_client(struct ib_client *client);
2874
2875void __rdma_block_iter_start(struct ib_block_iter *biter,
2876			     struct scatterlist *sglist,
2877			     unsigned int nents,
2878			     unsigned long pgsz);
2879bool __rdma_block_iter_next(struct ib_block_iter *biter);
2880
2881/**
2882 * rdma_block_iter_dma_address - get the aligned dma address of the current
2883 * block held by the block iterator.
2884 * @biter: block iterator holding the memory block
2885 */
2886static inline dma_addr_t
2887rdma_block_iter_dma_address(struct ib_block_iter *biter)
2888{
2889	return biter->__dma_addr & ~(BIT_ULL(biter->__pg_bit) - 1);
2890}
2891
2892/**
2893 * rdma_for_each_block - iterate over contiguous memory blocks of the sg list
2894 * @sglist: sglist to iterate over
2895 * @biter: block iterator holding the memory block
2896 * @nents: maximum number of sg entries to iterate over
2897 * @pgsz: best HW supported page size to use
2898 *
2899 * Callers may use rdma_block_iter_dma_address() to get each
2900 * blocks aligned DMA address.
2901 */
2902#define rdma_for_each_block(sglist, biter, nents, pgsz)		\
2903	for (__rdma_block_iter_start(biter, sglist, nents,	\
2904				     pgsz);			\
2905	     __rdma_block_iter_next(biter);)
2906
2907/**
2908 * ib_get_client_data - Get IB client context
2909 * @device:Device to get context for
2910 * @client:Client to get context for
2911 *
2912 * ib_get_client_data() returns the client context data set with
2913 * ib_set_client_data(). This can only be called while the client is
2914 * registered to the device, once the ib_client remove() callback returns this
2915 * cannot be called.
2916 */
2917static inline void *ib_get_client_data(struct ib_device *device,
2918				       struct ib_client *client)
2919{
2920	return xa_load(&device->client_data, client->client_id);
2921}
2922void  ib_set_client_data(struct ib_device *device, struct ib_client *client,
2923			 void *data);
2924void ib_set_device_ops(struct ib_device *device,
2925		       const struct ib_device_ops *ops);
2926
2927int rdma_user_mmap_io(struct ib_ucontext *ucontext, struct vm_area_struct *vma,
2928		      unsigned long pfn, unsigned long size, pgprot_t prot,
2929		      struct rdma_user_mmap_entry *entry);
2930int rdma_user_mmap_entry_insert(struct ib_ucontext *ucontext,
2931				struct rdma_user_mmap_entry *entry,
2932				size_t length);
2933int rdma_user_mmap_entry_insert_range(struct ib_ucontext *ucontext,
2934				      struct rdma_user_mmap_entry *entry,
2935				      size_t length, u32 min_pgoff,
2936				      u32 max_pgoff);
2937
2938static inline int
2939rdma_user_mmap_entry_insert_exact(struct ib_ucontext *ucontext,
2940				  struct rdma_user_mmap_entry *entry,
2941				  size_t length, u32 pgoff)
2942{
2943	return rdma_user_mmap_entry_insert_range(ucontext, entry, length, pgoff,
2944						 pgoff);
2945}
2946
2947struct rdma_user_mmap_entry *
2948rdma_user_mmap_entry_get_pgoff(struct ib_ucontext *ucontext,
2949			       unsigned long pgoff);
2950struct rdma_user_mmap_entry *
2951rdma_user_mmap_entry_get(struct ib_ucontext *ucontext,
2952			 struct vm_area_struct *vma);
2953void rdma_user_mmap_entry_put(struct rdma_user_mmap_entry *entry);
2954
2955void rdma_user_mmap_entry_remove(struct rdma_user_mmap_entry *entry);
2956
2957static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
2958{
2959	return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
2960}
2961
2962static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
2963{
2964	return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
2965}
2966
2967static inline bool ib_is_buffer_cleared(const void __user *p,
2968					size_t len)
2969{
2970	bool ret;
2971	u8 *buf;
2972
2973	if (len > USHRT_MAX)
2974		return false;
2975
2976	buf = memdup_user(p, len);
2977	if (IS_ERR(buf))
2978		return false;
2979
2980	ret = !memchr_inv(buf, 0, len);
2981	kfree(buf);
2982	return ret;
2983}
2984
2985static inline bool ib_is_udata_cleared(struct ib_udata *udata,
2986				       size_t offset,
2987				       size_t len)
2988{
2989	return ib_is_buffer_cleared(udata->inbuf + offset, len);
2990}
2991
2992/**
2993 * ib_modify_qp_is_ok - Check that the supplied attribute mask
2994 * contains all required attributes and no attributes not allowed for
2995 * the given QP state transition.
2996 * @cur_state: Current QP state
2997 * @next_state: Next QP state
2998 * @type: QP type
2999 * @mask: Mask of supplied QP attributes
3000 *
3001 * This function is a helper function that a low-level driver's
3002 * modify_qp method can use to validate the consumer's input.  It
3003 * checks that cur_state and next_state are valid QP states, that a
3004 * transition from cur_state to next_state is allowed by the IB spec,
3005 * and that the attribute mask supplied is allowed for the transition.
3006 */
3007bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
3008			enum ib_qp_type type, enum ib_qp_attr_mask mask);
 
 
 
 
3009
3010void ib_register_event_handler(struct ib_event_handler *event_handler);
3011void ib_unregister_event_handler(struct ib_event_handler *event_handler);
3012void ib_dispatch_event(const struct ib_event *event);
3013
3014int ib_query_port(struct ib_device *device,
3015		  u32 port_num, struct ib_port_attr *port_attr);
3016
3017enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
3018					       u32 port_num);
3019
3020/**
3021 * rdma_cap_ib_switch - Check if the device is IB switch
3022 * @device: Device to check
3023 *
3024 * Device driver is responsible for setting is_switch bit on
3025 * in ib_device structure at init time.
3026 *
3027 * Return: true if the device is IB switch.
3028 */
3029static inline bool rdma_cap_ib_switch(const struct ib_device *device)
3030{
3031	return device->is_switch;
3032}
3033
3034/**
3035 * rdma_start_port - Return the first valid port number for the device
3036 * specified
3037 *
3038 * @device: Device to be checked
3039 *
3040 * Return start port number
3041 */
3042static inline u32 rdma_start_port(const struct ib_device *device)
3043{
3044	return rdma_cap_ib_switch(device) ? 0 : 1;
3045}
3046
3047/**
3048 * rdma_for_each_port - Iterate over all valid port numbers of the IB device
3049 * @device - The struct ib_device * to iterate over
3050 * @iter - The unsigned int to store the port number
3051 */
3052#define rdma_for_each_port(device, iter)                                       \
3053	for (iter = rdma_start_port(device +				       \
3054				    BUILD_BUG_ON_ZERO(!__same_type(u32,	       \
3055								   iter)));    \
3056	     iter <= rdma_end_port(device); iter++)
3057
3058/**
3059 * rdma_end_port - Return the last valid port number for the device
3060 * specified
3061 *
3062 * @device: Device to be checked
3063 *
3064 * Return last port number
3065 */
3066static inline u32 rdma_end_port(const struct ib_device *device)
3067{
3068	return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt;
3069}
3070
3071static inline int rdma_is_port_valid(const struct ib_device *device,
3072				     unsigned int port)
3073{
3074	return (port >= rdma_start_port(device) &&
3075		port <= rdma_end_port(device));
3076}
3077
3078static inline bool rdma_is_grh_required(const struct ib_device *device,
3079					u32 port_num)
3080{
3081	return device->port_data[port_num].immutable.core_cap_flags &
3082	       RDMA_CORE_PORT_IB_GRH_REQUIRED;
3083}
3084
3085static inline bool rdma_protocol_ib(const struct ib_device *device,
3086				    u32 port_num)
3087{
3088	return device->port_data[port_num].immutable.core_cap_flags &
3089	       RDMA_CORE_CAP_PROT_IB;
3090}
3091
3092static inline bool rdma_protocol_roce(const struct ib_device *device,
3093				      u32 port_num)
3094{
3095	return device->port_data[port_num].immutable.core_cap_flags &
3096	       (RDMA_CORE_CAP_PROT_ROCE | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP);
3097}
3098
3099static inline bool rdma_protocol_roce_udp_encap(const struct ib_device *device,
3100						u32 port_num)
3101{
3102	return device->port_data[port_num].immutable.core_cap_flags &
3103	       RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP;
3104}
3105
3106static inline bool rdma_protocol_roce_eth_encap(const struct ib_device *device,
3107						u32 port_num)
3108{
3109	return device->port_data[port_num].immutable.core_cap_flags &
3110	       RDMA_CORE_CAP_PROT_ROCE;
3111}
3112
3113static inline bool rdma_protocol_iwarp(const struct ib_device *device,
3114				       u32 port_num)
3115{
3116	return device->port_data[port_num].immutable.core_cap_flags &
3117	       RDMA_CORE_CAP_PROT_IWARP;
3118}
3119
3120static inline bool rdma_ib_or_roce(const struct ib_device *device,
3121				   u32 port_num)
3122{
3123	return rdma_protocol_ib(device, port_num) ||
3124		rdma_protocol_roce(device, port_num);
3125}
3126
3127static inline bool rdma_protocol_raw_packet(const struct ib_device *device,
3128					    u32 port_num)
3129{
3130	return device->port_data[port_num].immutable.core_cap_flags &
3131	       RDMA_CORE_CAP_PROT_RAW_PACKET;
3132}
3133
3134static inline bool rdma_protocol_usnic(const struct ib_device *device,
3135				       u32 port_num)
3136{
3137	return device->port_data[port_num].immutable.core_cap_flags &
3138	       RDMA_CORE_CAP_PROT_USNIC;
3139}
3140
3141/**
3142 * rdma_cap_ib_mad - Check if the port of a device supports Infiniband
3143 * Management Datagrams.
3144 * @device: Device to check
3145 * @port_num: Port number to check
3146 *
3147 * Management Datagrams (MAD) are a required part of the InfiniBand
3148 * specification and are supported on all InfiniBand devices.  A slightly
3149 * extended version are also supported on OPA interfaces.
3150 *
3151 * Return: true if the port supports sending/receiving of MAD packets.
3152 */
3153static inline bool rdma_cap_ib_mad(const struct ib_device *device, u32 port_num)
3154{
3155	return device->port_data[port_num].immutable.core_cap_flags &
3156	       RDMA_CORE_CAP_IB_MAD;
3157}
3158
3159/**
3160 * rdma_cap_opa_mad - Check if the port of device provides support for OPA
3161 * Management Datagrams.
3162 * @device: Device to check
3163 * @port_num: Port number to check
3164 *
3165 * Intel OmniPath devices extend and/or replace the InfiniBand Management
3166 * datagrams with their own versions.  These OPA MADs share many but not all of
3167 * the characteristics of InfiniBand MADs.
3168 *
3169 * OPA MADs differ in the following ways:
3170 *
3171 *    1) MADs are variable size up to 2K
3172 *       IBTA defined MADs remain fixed at 256 bytes
3173 *    2) OPA SMPs must carry valid PKeys
3174 *    3) OPA SMP packets are a different format
3175 *
3176 * Return: true if the port supports OPA MAD packet formats.
3177 */
3178static inline bool rdma_cap_opa_mad(struct ib_device *device, u32 port_num)
3179{
3180	return device->port_data[port_num].immutable.core_cap_flags &
3181		RDMA_CORE_CAP_OPA_MAD;
3182}
3183
3184/**
3185 * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband
3186 * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI).
3187 * @device: Device to check
3188 * @port_num: Port number to check
3189 *
3190 * Each InfiniBand node is required to provide a Subnet Management Agent
3191 * that the subnet manager can access.  Prior to the fabric being fully
3192 * configured by the subnet manager, the SMA is accessed via a well known
3193 * interface called the Subnet Management Interface (SMI).  This interface
3194 * uses directed route packets to communicate with the SM to get around the
3195 * chicken and egg problem of the SM needing to know what's on the fabric
3196 * in order to configure the fabric, and needing to configure the fabric in
3197 * order to send packets to the devices on the fabric.  These directed
3198 * route packets do not need the fabric fully configured in order to reach
3199 * their destination.  The SMI is the only method allowed to send
3200 * directed route packets on an InfiniBand fabric.
3201 *
3202 * Return: true if the port provides an SMI.
3203 */
3204static inline bool rdma_cap_ib_smi(const struct ib_device *device, u32 port_num)
3205{
3206	return device->port_data[port_num].immutable.core_cap_flags &
3207	       RDMA_CORE_CAP_IB_SMI;
3208}
3209
3210/**
3211 * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband
3212 * Communication Manager.
3213 * @device: Device to check
3214 * @port_num: Port number to check
3215 *
3216 * The InfiniBand Communication Manager is one of many pre-defined General
3217 * Service Agents (GSA) that are accessed via the General Service
3218 * Interface (GSI).  It's role is to facilitate establishment of connections
3219 * between nodes as well as other management related tasks for established
3220 * connections.
3221 *
3222 * Return: true if the port supports an IB CM (this does not guarantee that
3223 * a CM is actually running however).
3224 */
3225static inline bool rdma_cap_ib_cm(const struct ib_device *device, u32 port_num)
3226{
3227	return device->port_data[port_num].immutable.core_cap_flags &
3228	       RDMA_CORE_CAP_IB_CM;
3229}
3230
3231/**
3232 * rdma_cap_iw_cm - Check if the port of device has the capability IWARP
3233 * Communication Manager.
3234 * @device: Device to check
3235 * @port_num: Port number to check
3236 *
3237 * Similar to above, but specific to iWARP connections which have a different
3238 * managment protocol than InfiniBand.
3239 *
3240 * Return: true if the port supports an iWARP CM (this does not guarantee that
3241 * a CM is actually running however).
3242 */
3243static inline bool rdma_cap_iw_cm(const struct ib_device *device, u32 port_num)
3244{
3245	return device->port_data[port_num].immutable.core_cap_flags &
3246	       RDMA_CORE_CAP_IW_CM;
3247}
3248
3249/**
3250 * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband
3251 * Subnet Administration.
3252 * @device: Device to check
3253 * @port_num: Port number to check
3254 *
3255 * An InfiniBand Subnet Administration (SA) service is a pre-defined General
3256 * Service Agent (GSA) provided by the Subnet Manager (SM).  On InfiniBand
3257 * fabrics, devices should resolve routes to other hosts by contacting the
3258 * SA to query the proper route.
3259 *
3260 * Return: true if the port should act as a client to the fabric Subnet
3261 * Administration interface.  This does not imply that the SA service is
3262 * running locally.
3263 */
3264static inline bool rdma_cap_ib_sa(const struct ib_device *device, u32 port_num)
3265{
3266	return device->port_data[port_num].immutable.core_cap_flags &
3267	       RDMA_CORE_CAP_IB_SA;
3268}
3269
3270/**
3271 * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband
3272 * Multicast.
3273 * @device: Device to check
3274 * @port_num: Port number to check
3275 *
3276 * InfiniBand multicast registration is more complex than normal IPv4 or
3277 * IPv6 multicast registration.  Each Host Channel Adapter must register
3278 * with the Subnet Manager when it wishes to join a multicast group.  It
3279 * should do so only once regardless of how many queue pairs it subscribes
3280 * to this group.  And it should leave the group only after all queue pairs
3281 * attached to the group have been detached.
3282 *
3283 * Return: true if the port must undertake the additional adminstrative
3284 * overhead of registering/unregistering with the SM and tracking of the
3285 * total number of queue pairs attached to the multicast group.
3286 */
3287static inline bool rdma_cap_ib_mcast(const struct ib_device *device,
3288				     u32 port_num)
3289{
3290	return rdma_cap_ib_sa(device, port_num);
3291}
3292
3293/**
3294 * rdma_cap_af_ib - Check if the port of device has the capability
3295 * Native Infiniband Address.
3296 * @device: Device to check
3297 * @port_num: Port number to check
3298 *
3299 * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default
3300 * GID.  RoCE uses a different mechanism, but still generates a GID via
3301 * a prescribed mechanism and port specific data.
3302 *
3303 * Return: true if the port uses a GID address to identify devices on the
3304 * network.
3305 */
3306static inline bool rdma_cap_af_ib(const struct ib_device *device, u32 port_num)
3307{
3308	return device->port_data[port_num].immutable.core_cap_flags &
3309	       RDMA_CORE_CAP_AF_IB;
3310}
3311
3312/**
3313 * rdma_cap_eth_ah - Check if the port of device has the capability
3314 * Ethernet Address Handle.
3315 * @device: Device to check
3316 * @port_num: Port number to check
3317 *
3318 * RoCE is InfiniBand over Ethernet, and it uses a well defined technique
3319 * to fabricate GIDs over Ethernet/IP specific addresses native to the
3320 * port.  Normally, packet headers are generated by the sending host
3321 * adapter, but when sending connectionless datagrams, we must manually
3322 * inject the proper headers for the fabric we are communicating over.
3323 *
3324 * Return: true if we are running as a RoCE port and must force the
3325 * addition of a Global Route Header built from our Ethernet Address
3326 * Handle into our header list for connectionless packets.
3327 */
3328static inline bool rdma_cap_eth_ah(const struct ib_device *device, u32 port_num)
3329{
3330	return device->port_data[port_num].immutable.core_cap_flags &
3331	       RDMA_CORE_CAP_ETH_AH;
3332}
3333
3334/**
3335 * rdma_cap_opa_ah - Check if the port of device supports
3336 * OPA Address handles
3337 * @device: Device to check
3338 * @port_num: Port number to check
3339 *
3340 * Return: true if we are running on an OPA device which supports
3341 * the extended OPA addressing.
3342 */
3343static inline bool rdma_cap_opa_ah(struct ib_device *device, u32 port_num)
3344{
3345	return (device->port_data[port_num].immutable.core_cap_flags &
3346		RDMA_CORE_CAP_OPA_AH) == RDMA_CORE_CAP_OPA_AH;
3347}
3348
3349/**
3350 * rdma_max_mad_size - Return the max MAD size required by this RDMA Port.
3351 *
3352 * @device: Device
3353 * @port_num: Port number
3354 *
3355 * This MAD size includes the MAD headers and MAD payload.  No other headers
3356 * are included.
3357 *
3358 * Return the max MAD size required by the Port.  Will return 0 if the port
3359 * does not support MADs
3360 */
3361static inline size_t rdma_max_mad_size(const struct ib_device *device,
3362				       u32 port_num)
3363{
3364	return device->port_data[port_num].immutable.max_mad_size;
3365}
3366
3367/**
3368 * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table
3369 * @device: Device to check
3370 * @port_num: Port number to check
3371 *
3372 * RoCE GID table mechanism manages the various GIDs for a device.
3373 *
3374 * NOTE: if allocating the port's GID table has failed, this call will still
3375 * return true, but any RoCE GID table API will fail.
3376 *
3377 * Return: true if the port uses RoCE GID table mechanism in order to manage
3378 * its GIDs.
3379 */
3380static inline bool rdma_cap_roce_gid_table(const struct ib_device *device,
3381					   u32 port_num)
3382{
3383	return rdma_protocol_roce(device, port_num) &&
3384		device->ops.add_gid && device->ops.del_gid;
3385}
3386
3387/*
3388 * Check if the device supports READ W/ INVALIDATE.
3389 */
3390static inline bool rdma_cap_read_inv(struct ib_device *dev, u32 port_num)
3391{
3392	/*
3393	 * iWarp drivers must support READ W/ INVALIDATE.  No other protocol
3394	 * has support for it yet.
3395	 */
3396	return rdma_protocol_iwarp(dev, port_num);
3397}
3398
3399/**
3400 * rdma_core_cap_opa_port - Return whether the RDMA Port is OPA or not.
3401 * @device: Device
3402 * @port_num: 1 based Port number
3403 *
3404 * Return true if port is an Intel OPA port , false if not
3405 */
3406static inline bool rdma_core_cap_opa_port(struct ib_device *device,
3407					  u32 port_num)
3408{
3409	return (device->port_data[port_num].immutable.core_cap_flags &
3410		RDMA_CORE_PORT_INTEL_OPA) == RDMA_CORE_PORT_INTEL_OPA;
3411}
3412
3413/**
3414 * rdma_mtu_enum_to_int - Return the mtu of the port as an integer value.
3415 * @device: Device
3416 * @port_num: Port number
3417 * @mtu: enum value of MTU
3418 *
3419 * Return the MTU size supported by the port as an integer value. Will return
3420 * -1 if enum value of mtu is not supported.
3421 */
3422static inline int rdma_mtu_enum_to_int(struct ib_device *device, u32 port,
3423				       int mtu)
3424{
3425	if (rdma_core_cap_opa_port(device, port))
3426		return opa_mtu_enum_to_int((enum opa_mtu)mtu);
3427	else
3428		return ib_mtu_enum_to_int((enum ib_mtu)mtu);
3429}
3430
3431/**
3432 * rdma_mtu_from_attr - Return the mtu of the port from the port attribute.
3433 * @device: Device
3434 * @port_num: Port number
3435 * @attr: port attribute
3436 *
3437 * Return the MTU size supported by the port as an integer value.
3438 */
3439static inline int rdma_mtu_from_attr(struct ib_device *device, u32 port,
3440				     struct ib_port_attr *attr)
3441{
3442	if (rdma_core_cap_opa_port(device, port))
3443		return attr->phys_mtu;
3444	else
3445		return ib_mtu_enum_to_int(attr->max_mtu);
3446}
3447
3448int ib_set_vf_link_state(struct ib_device *device, int vf, u32 port,
3449			 int state);
3450int ib_get_vf_config(struct ib_device *device, int vf, u32 port,
3451		     struct ifla_vf_info *info);
3452int ib_get_vf_stats(struct ib_device *device, int vf, u32 port,
3453		    struct ifla_vf_stats *stats);
3454int ib_get_vf_guid(struct ib_device *device, int vf, u32 port,
3455		    struct ifla_vf_guid *node_guid,
3456		    struct ifla_vf_guid *port_guid);
3457int ib_set_vf_guid(struct ib_device *device, int vf, u32 port, u64 guid,
3458		   int type);
3459
3460int ib_query_pkey(struct ib_device *device,
3461		  u32 port_num, u16 index, u16 *pkey);
3462
3463int ib_modify_device(struct ib_device *device,
3464		     int device_modify_mask,
3465		     struct ib_device_modify *device_modify);
3466
3467int ib_modify_port(struct ib_device *device,
3468		   u32 port_num, int port_modify_mask,
3469		   struct ib_port_modify *port_modify);
3470
3471int ib_find_gid(struct ib_device *device, union ib_gid *gid,
3472		u32 *port_num, u16 *index);
3473
3474int ib_find_pkey(struct ib_device *device,
3475		 u32 port_num, u16 pkey, u16 *index);
3476
3477enum ib_pd_flags {
3478	/*
3479	 * Create a memory registration for all memory in the system and place
3480	 * the rkey for it into pd->unsafe_global_rkey.  This can be used by
3481	 * ULPs to avoid the overhead of dynamic MRs.
3482	 *
3483	 * This flag is generally considered unsafe and must only be used in
3484	 * extremly trusted environments.  Every use of it will log a warning
3485	 * in the kernel log.
3486	 */
3487	IB_PD_UNSAFE_GLOBAL_RKEY	= 0x01,
3488};
3489
3490struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
3491		const char *caller);
3492
3493/**
3494 * ib_alloc_pd - Allocates an unused protection domain.
3495 * @device: The device on which to allocate the protection domain.
3496 * @flags: protection domain flags
3497 *
3498 * A protection domain object provides an association between QPs, shared
3499 * receive queues, address handles, memory regions, and memory windows.
3500 *
3501 * Every PD has a local_dma_lkey which can be used as the lkey value for local
3502 * memory operations.
3503 */
3504#define ib_alloc_pd(device, flags) \
3505	__ib_alloc_pd((device), (flags), KBUILD_MODNAME)
3506
3507int ib_dealloc_pd_user(struct ib_pd *pd, struct ib_udata *udata);
3508
3509/**
3510 * ib_dealloc_pd - Deallocate kernel PD
3511 * @pd: The protection domain
3512 *
3513 * NOTE: for user PD use ib_dealloc_pd_user with valid udata!
3514 */
3515static inline void ib_dealloc_pd(struct ib_pd *pd)
3516{
3517	int ret = ib_dealloc_pd_user(pd, NULL);
3518
3519	WARN_ONCE(ret, "Destroy of kernel PD shouldn't fail");
3520}
3521
3522enum rdma_create_ah_flags {
3523	/* In a sleepable context */
3524	RDMA_CREATE_AH_SLEEPABLE = BIT(0),
3525};
3526
3527/**
3528 * rdma_create_ah - Creates an address handle for the given address vector.
3529 * @pd: The protection domain associated with the address handle.
3530 * @ah_attr: The attributes of the address vector.
3531 * @flags: Create address handle flags (see enum rdma_create_ah_flags).
3532 *
3533 * The address handle is used to reference a local or global destination
3534 * in all UD QP post sends.
3535 */
3536struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr,
3537			     u32 flags);
3538
3539/**
3540 * rdma_create_user_ah - Creates an address handle for the given address vector.
3541 * It resolves destination mac address for ah attribute of RoCE type.
3542 * @pd: The protection domain associated with the address handle.
3543 * @ah_attr: The attributes of the address vector.
3544 * @udata: pointer to user's input output buffer information need by
3545 *         provider driver.
3546 *
3547 * It returns 0 on success and returns appropriate error code on error.
3548 * The address handle is used to reference a local or global destination
3549 * in all UD QP post sends.
3550 */
3551struct ib_ah *rdma_create_user_ah(struct ib_pd *pd,
3552				  struct rdma_ah_attr *ah_attr,
3553				  struct ib_udata *udata);
3554/**
3555 * ib_get_gids_from_rdma_hdr - Get sgid and dgid from GRH or IPv4 header
3556 *   work completion.
3557 * @hdr: the L3 header to parse
3558 * @net_type: type of header to parse
3559 * @sgid: place to store source gid
3560 * @dgid: place to store destination gid
3561 */
3562int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
3563			      enum rdma_network_type net_type,
3564			      union ib_gid *sgid, union ib_gid *dgid);
3565
3566/**
3567 * ib_get_rdma_header_version - Get the header version
3568 * @hdr: the L3 header to parse
3569 */
3570int ib_get_rdma_header_version(const union rdma_network_hdr *hdr);
3571
3572/**
3573 * ib_init_ah_attr_from_wc - Initializes address handle attributes from a
3574 *   work completion.
3575 * @device: Device on which the received message arrived.
3576 * @port_num: Port on which the received message arrived.
3577 * @wc: Work completion associated with the received message.
3578 * @grh: References the received global route header.  This parameter is
3579 *   ignored unless the work completion indicates that the GRH is valid.
3580 * @ah_attr: Returned attributes that can be used when creating an address
3581 *   handle for replying to the message.
3582 * When ib_init_ah_attr_from_wc() returns success,
3583 * (a) for IB link layer it optionally contains a reference to SGID attribute
3584 * when GRH is present for IB link layer.
3585 * (b) for RoCE link layer it contains a reference to SGID attribute.
3586 * User must invoke rdma_cleanup_ah_attr_gid_attr() to release reference to SGID
3587 * attributes which are initialized using ib_init_ah_attr_from_wc().
3588 *
3589 */
3590int ib_init_ah_attr_from_wc(struct ib_device *device, u32 port_num,
3591			    const struct ib_wc *wc, const struct ib_grh *grh,
3592			    struct rdma_ah_attr *ah_attr);
3593
3594/**
3595 * ib_create_ah_from_wc - Creates an address handle associated with the
3596 *   sender of the specified work completion.
3597 * @pd: The protection domain associated with the address handle.
3598 * @wc: Work completion information associated with a received message.
3599 * @grh: References the received global route header.  This parameter is
3600 *   ignored unless the work completion indicates that the GRH is valid.
3601 * @port_num: The outbound port number to associate with the address.
3602 *
3603 * The address handle is used to reference a local or global destination
3604 * in all UD QP post sends.
3605 */
3606struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
3607				   const struct ib_grh *grh, u32 port_num);
3608
3609/**
3610 * rdma_modify_ah - Modifies the address vector associated with an address
3611 *   handle.
3612 * @ah: The address handle to modify.
3613 * @ah_attr: The new address vector attributes to associate with the
3614 *   address handle.
3615 */
3616int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
3617
3618/**
3619 * rdma_query_ah - Queries the address vector associated with an address
3620 *   handle.
3621 * @ah: The address handle to query.
3622 * @ah_attr: The address vector attributes associated with the address
3623 *   handle.
3624 */
3625int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
3626
3627enum rdma_destroy_ah_flags {
3628	/* In a sleepable context */
3629	RDMA_DESTROY_AH_SLEEPABLE = BIT(0),
3630};
3631
3632/**
3633 * rdma_destroy_ah_user - Destroys an address handle.
3634 * @ah: The address handle to destroy.
3635 * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags).
3636 * @udata: Valid user data or NULL for kernel objects
3637 */
3638int rdma_destroy_ah_user(struct ib_ah *ah, u32 flags, struct ib_udata *udata);
3639
3640/**
3641 * rdma_destroy_ah - Destroys an kernel address handle.
3642 * @ah: The address handle to destroy.
3643 * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags).
3644 *
3645 * NOTE: for user ah use rdma_destroy_ah_user with valid udata!
 
 
 
 
 
 
3646 */
3647static inline void rdma_destroy_ah(struct ib_ah *ah, u32 flags)
3648{
3649	int ret = rdma_destroy_ah_user(ah, flags, NULL);
3650
3651	WARN_ONCE(ret, "Destroy of kernel AH shouldn't fail");
3652}
3653
3654struct ib_srq *ib_create_srq_user(struct ib_pd *pd,
3655				  struct ib_srq_init_attr *srq_init_attr,
3656				  struct ib_usrq_object *uobject,
3657				  struct ib_udata *udata);
3658static inline struct ib_srq *
3659ib_create_srq(struct ib_pd *pd, struct ib_srq_init_attr *srq_init_attr)
3660{
3661	if (!pd->device->ops.create_srq)
3662		return ERR_PTR(-EOPNOTSUPP);
3663
3664	return ib_create_srq_user(pd, srq_init_attr, NULL, NULL);
3665}
3666
3667/**
3668 * ib_modify_srq - Modifies the attributes for the specified SRQ.
3669 * @srq: The SRQ to modify.
3670 * @srq_attr: On input, specifies the SRQ attributes to modify.  On output,
3671 *   the current values of selected SRQ attributes are returned.
3672 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
3673 *   are being modified.
3674 *
3675 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
3676 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when
3677 * the number of receives queued drops below the limit.
3678 */
3679int ib_modify_srq(struct ib_srq *srq,
3680		  struct ib_srq_attr *srq_attr,
3681		  enum ib_srq_attr_mask srq_attr_mask);
3682
3683/**
3684 * ib_query_srq - Returns the attribute list and current values for the
3685 *   specified SRQ.
3686 * @srq: The SRQ to query.
3687 * @srq_attr: The attributes of the specified SRQ.
3688 */
3689int ib_query_srq(struct ib_srq *srq,
3690		 struct ib_srq_attr *srq_attr);
3691
3692/**
3693 * ib_destroy_srq_user - Destroys the specified SRQ.
3694 * @srq: The SRQ to destroy.
3695 * @udata: Valid user data or NULL for kernel objects
3696 */
3697int ib_destroy_srq_user(struct ib_srq *srq, struct ib_udata *udata);
3698
3699/**
3700 * ib_destroy_srq - Destroys the specified kernel SRQ.
3701 * @srq: The SRQ to destroy.
3702 *
3703 * NOTE: for user srq use ib_destroy_srq_user with valid udata!
3704 */
3705static inline void ib_destroy_srq(struct ib_srq *srq)
3706{
3707	int ret = ib_destroy_srq_user(srq, NULL);
3708
3709	WARN_ONCE(ret, "Destroy of kernel SRQ shouldn't fail");
3710}
3711
3712/**
3713 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
3714 * @srq: The SRQ to post the work request on.
3715 * @recv_wr: A list of work requests to post on the receive queue.
3716 * @bad_recv_wr: On an immediate failure, this parameter will reference
3717 *   the work request that failed to be posted on the QP.
3718 */
3719static inline int ib_post_srq_recv(struct ib_srq *srq,
3720				   const struct ib_recv_wr *recv_wr,
3721				   const struct ib_recv_wr **bad_recv_wr)
3722{
3723	const struct ib_recv_wr *dummy;
3724
3725	return srq->device->ops.post_srq_recv(srq, recv_wr,
3726					      bad_recv_wr ? : &dummy);
3727}
3728
3729struct ib_qp *ib_create_qp_kernel(struct ib_pd *pd,
3730				  struct ib_qp_init_attr *qp_init_attr,
3731				  const char *caller);
3732/**
3733 * ib_create_qp - Creates a kernel QP associated with the specific protection
3734 * domain.
3735 * @pd: The protection domain associated with the QP.
3736 * @init_attr: A list of initial attributes required to create the
3737 *   QP.  If QP creation succeeds, then the attributes are updated to
3738 *   the actual capabilities of the created QP.
3739 */
3740static inline struct ib_qp *ib_create_qp(struct ib_pd *pd,
3741					 struct ib_qp_init_attr *init_attr)
3742{
3743	return ib_create_qp_kernel(pd, init_attr, KBUILD_MODNAME);
3744}
3745
3746/**
3747 * ib_modify_qp_with_udata - Modifies the attributes for the specified QP.
3748 * @qp: The QP to modify.
3749 * @attr: On input, specifies the QP attributes to modify.  On output,
3750 *   the current values of selected QP attributes are returned.
3751 * @attr_mask: A bit-mask used to specify which attributes of the QP
3752 *   are being modified.
3753 * @udata: pointer to user's input output buffer information
3754 *   are being modified.
3755 * It returns 0 on success and returns appropriate error code on error.
3756 */
3757int ib_modify_qp_with_udata(struct ib_qp *qp,
3758			    struct ib_qp_attr *attr,
3759			    int attr_mask,
3760			    struct ib_udata *udata);
3761
3762/**
3763 * ib_modify_qp - Modifies the attributes for the specified QP and then
3764 *   transitions the QP to the given state.
3765 * @qp: The QP to modify.
3766 * @qp_attr: On input, specifies the QP attributes to modify.  On output,
3767 *   the current values of selected QP attributes are returned.
3768 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP
3769 *   are being modified.
3770 */
3771int ib_modify_qp(struct ib_qp *qp,
3772		 struct ib_qp_attr *qp_attr,
3773		 int qp_attr_mask);
3774
3775/**
3776 * ib_query_qp - Returns the attribute list and current values for the
3777 *   specified QP.
3778 * @qp: The QP to query.
3779 * @qp_attr: The attributes of the specified QP.
3780 * @qp_attr_mask: A bit-mask used to select specific attributes to query.
3781 * @qp_init_attr: Additional attributes of the selected QP.
3782 *
3783 * The qp_attr_mask may be used to limit the query to gathering only the
3784 * selected attributes.
3785 */
3786int ib_query_qp(struct ib_qp *qp,
3787		struct ib_qp_attr *qp_attr,
3788		int qp_attr_mask,
3789		struct ib_qp_init_attr *qp_init_attr);
3790
3791/**
3792 * ib_destroy_qp - Destroys the specified QP.
3793 * @qp: The QP to destroy.
3794 * @udata: Valid udata or NULL for kernel objects
3795 */
3796int ib_destroy_qp_user(struct ib_qp *qp, struct ib_udata *udata);
3797
3798/**
3799 * ib_destroy_qp - Destroys the specified kernel QP.
3800 * @qp: The QP to destroy.
3801 *
3802 * NOTE: for user qp use ib_destroy_qp_user with valid udata!
3803 */
3804static inline int ib_destroy_qp(struct ib_qp *qp)
3805{
3806	return ib_destroy_qp_user(qp, NULL);
3807}
3808
3809/**
3810 * ib_open_qp - Obtain a reference to an existing sharable QP.
3811 * @xrcd - XRC domain
3812 * @qp_open_attr: Attributes identifying the QP to open.
3813 *
3814 * Returns a reference to a sharable QP.
3815 */
3816struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
3817			 struct ib_qp_open_attr *qp_open_attr);
3818
3819/**
3820 * ib_close_qp - Release an external reference to a QP.
3821 * @qp: The QP handle to release
3822 *
3823 * The opened QP handle is released by the caller.  The underlying
3824 * shared QP is not destroyed until all internal references are released.
3825 */
3826int ib_close_qp(struct ib_qp *qp);
3827
3828/**
3829 * ib_post_send - Posts a list of work requests to the send queue of
3830 *   the specified QP.
3831 * @qp: The QP to post the work request on.
3832 * @send_wr: A list of work requests to post on the send queue.
3833 * @bad_send_wr: On an immediate failure, this parameter will reference
3834 *   the work request that failed to be posted on the QP.
3835 *
3836 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate
3837 * error is returned, the QP state shall not be affected,
3838 * ib_post_send() will return an immediate error after queueing any
3839 * earlier work requests in the list.
3840 */
3841static inline int ib_post_send(struct ib_qp *qp,
3842			       const struct ib_send_wr *send_wr,
3843			       const struct ib_send_wr **bad_send_wr)
3844{
3845	const struct ib_send_wr *dummy;
3846
3847	return qp->device->ops.post_send(qp, send_wr, bad_send_wr ? : &dummy);
3848}
3849
3850/**
3851 * ib_post_recv - Posts a list of work requests to the receive queue of
3852 *   the specified QP.
3853 * @qp: The QP to post the work request on.
3854 * @recv_wr: A list of work requests to post on the receive queue.
3855 * @bad_recv_wr: On an immediate failure, this parameter will reference
3856 *   the work request that failed to be posted on the QP.
3857 */
3858static inline int ib_post_recv(struct ib_qp *qp,
3859			       const struct ib_recv_wr *recv_wr,
3860			       const struct ib_recv_wr **bad_recv_wr)
3861{
3862	const struct ib_recv_wr *dummy;
3863
3864	return qp->device->ops.post_recv(qp, recv_wr, bad_recv_wr ? : &dummy);
3865}
3866
3867struct ib_cq *__ib_alloc_cq(struct ib_device *dev, void *private, int nr_cqe,
3868			    int comp_vector, enum ib_poll_context poll_ctx,
3869			    const char *caller);
3870static inline struct ib_cq *ib_alloc_cq(struct ib_device *dev, void *private,
3871					int nr_cqe, int comp_vector,
3872					enum ib_poll_context poll_ctx)
3873{
3874	return __ib_alloc_cq(dev, private, nr_cqe, comp_vector, poll_ctx,
3875			     KBUILD_MODNAME);
3876}
3877
3878struct ib_cq *__ib_alloc_cq_any(struct ib_device *dev, void *private,
3879				int nr_cqe, enum ib_poll_context poll_ctx,
3880				const char *caller);
3881
3882/**
3883 * ib_alloc_cq_any: Allocate kernel CQ
3884 * @dev: The IB device
3885 * @private: Private data attached to the CQE
3886 * @nr_cqe: Number of CQEs in the CQ
3887 * @poll_ctx: Context used for polling the CQ
3888 */
3889static inline struct ib_cq *ib_alloc_cq_any(struct ib_device *dev,
3890					    void *private, int nr_cqe,
3891					    enum ib_poll_context poll_ctx)
3892{
3893	return __ib_alloc_cq_any(dev, private, nr_cqe, poll_ctx,
3894				 KBUILD_MODNAME);
3895}
3896
3897void ib_free_cq(struct ib_cq *cq);
3898int ib_process_cq_direct(struct ib_cq *cq, int budget);
3899
3900/**
3901 * ib_create_cq - Creates a CQ on the specified device.
3902 * @device: The device on which to create the CQ.
3903 * @comp_handler: A user-specified callback that is invoked when a
3904 *   completion event occurs on the CQ.
3905 * @event_handler: A user-specified callback that is invoked when an
3906 *   asynchronous event not associated with a completion occurs on the CQ.
3907 * @cq_context: Context associated with the CQ returned to the user via
3908 *   the associated completion and event handlers.
3909 * @cq_attr: The attributes the CQ should be created upon.
 
 
3910 *
3911 * Users can examine the cq structure to determine the actual CQ size.
3912 */
3913struct ib_cq *__ib_create_cq(struct ib_device *device,
3914			     ib_comp_handler comp_handler,
3915			     void (*event_handler)(struct ib_event *, void *),
3916			     void *cq_context,
3917			     const struct ib_cq_init_attr *cq_attr,
3918			     const char *caller);
3919#define ib_create_cq(device, cmp_hndlr, evt_hndlr, cq_ctxt, cq_attr) \
3920	__ib_create_cq((device), (cmp_hndlr), (evt_hndlr), (cq_ctxt), (cq_attr), KBUILD_MODNAME)
3921
3922/**
3923 * ib_resize_cq - Modifies the capacity of the CQ.
3924 * @cq: The CQ to resize.
3925 * @cqe: The minimum size of the CQ.
3926 *
3927 * Users can examine the cq structure to determine the actual CQ size.
3928 */
3929int ib_resize_cq(struct ib_cq *cq, int cqe);
3930
3931/**
3932 * rdma_set_cq_moderation - Modifies moderation params of the CQ
3933 * @cq: The CQ to modify.
3934 * @cq_count: number of CQEs that will trigger an event
3935 * @cq_period: max period of time in usec before triggering an event
3936 *
3937 */
3938int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period);
3939
3940/**
3941 * ib_destroy_cq_user - Destroys the specified CQ.
3942 * @cq: The CQ to destroy.
3943 * @udata: Valid user data or NULL for kernel objects
3944 */
3945int ib_destroy_cq_user(struct ib_cq *cq, struct ib_udata *udata);
3946
3947/**
3948 * ib_destroy_cq - Destroys the specified kernel CQ.
3949 * @cq: The CQ to destroy.
3950 *
3951 * NOTE: for user cq use ib_destroy_cq_user with valid udata!
3952 */
3953static inline void ib_destroy_cq(struct ib_cq *cq)
3954{
3955	int ret = ib_destroy_cq_user(cq, NULL);
3956
3957	WARN_ONCE(ret, "Destroy of kernel CQ shouldn't fail");
3958}
3959
3960/**
3961 * ib_poll_cq - poll a CQ for completion(s)
3962 * @cq:the CQ being polled
3963 * @num_entries:maximum number of completions to return
3964 * @wc:array of at least @num_entries &struct ib_wc where completions
3965 *   will be returned
3966 *
3967 * Poll a CQ for (possibly multiple) completions.  If the return value
3968 * is < 0, an error occurred.  If the return value is >= 0, it is the
3969 * number of completions returned.  If the return value is
3970 * non-negative and < num_entries, then the CQ was emptied.
3971 */
3972static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
3973			     struct ib_wc *wc)
3974{
3975	return cq->device->ops.poll_cq(cq, num_entries, wc);
3976}
3977
3978/**
 
 
 
 
 
 
 
 
 
 
 
 
3979 * ib_req_notify_cq - Request completion notification on a CQ.
3980 * @cq: The CQ to generate an event for.
3981 * @flags:
3982 *   Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
3983 *   to request an event on the next solicited event or next work
3984 *   completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
3985 *   may also be |ed in to request a hint about missed events, as
3986 *   described below.
3987 *
3988 * Return Value:
3989 *    < 0 means an error occurred while requesting notification
3990 *   == 0 means notification was requested successfully, and if
3991 *        IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
3992 *        were missed and it is safe to wait for another event.  In
3993 *        this case is it guaranteed that any work completions added
3994 *        to the CQ since the last CQ poll will trigger a completion
3995 *        notification event.
3996 *    > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
3997 *        in.  It means that the consumer must poll the CQ again to
3998 *        make sure it is empty to avoid missing an event because of a
3999 *        race between requesting notification and an entry being
4000 *        added to the CQ.  This return value means it is possible
4001 *        (but not guaranteed) that a work completion has been added
4002 *        to the CQ since the last poll without triggering a
4003 *        completion notification event.
4004 */
4005static inline int ib_req_notify_cq(struct ib_cq *cq,
4006				   enum ib_cq_notify_flags flags)
4007{
4008	return cq->device->ops.req_notify_cq(cq, flags);
4009}
4010
4011struct ib_cq *ib_cq_pool_get(struct ib_device *dev, unsigned int nr_cqe,
4012			     int comp_vector_hint,
4013			     enum ib_poll_context poll_ctx);
4014
4015void ib_cq_pool_put(struct ib_cq *cq, unsigned int nr_cqe);
4016
4017/*
4018 * Drivers that don't need a DMA mapping at the RDMA layer, set dma_device to
4019 * NULL. This causes the ib_dma* helpers to just stash the kernel virtual
4020 * address into the dma address.
4021 */
4022static inline bool ib_uses_virt_dma(struct ib_device *dev)
4023{
4024	return IS_ENABLED(CONFIG_INFINIBAND_VIRT_DMA) && !dev->dma_device;
 
 
4025}
4026
4027/*
4028 * Check if a IB device's underlying DMA mapping supports P2PDMA transfers.
 
 
 
 
 
 
 
4029 */
4030static inline bool ib_dma_pci_p2p_dma_supported(struct ib_device *dev)
4031{
4032	if (ib_uses_virt_dma(dev))
4033		return false;
4034
4035	return dma_pci_p2pdma_supported(dev->dma_device);
4036}
4037
4038/**
4039 * ib_dma_mapping_error - check a DMA addr for error
4040 * @dev: The device for which the dma_addr was created
4041 * @dma_addr: The DMA address to check
4042 */
4043static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
4044{
4045	if (ib_uses_virt_dma(dev))
4046		return 0;
4047	return dma_mapping_error(dev->dma_device, dma_addr);
4048}
4049
4050/**
4051 * ib_dma_map_single - Map a kernel virtual address to DMA address
4052 * @dev: The device for which the dma_addr is to be created
4053 * @cpu_addr: The kernel virtual address
4054 * @size: The size of the region in bytes
4055 * @direction: The direction of the DMA
4056 */
4057static inline u64 ib_dma_map_single(struct ib_device *dev,
4058				    void *cpu_addr, size_t size,
4059				    enum dma_data_direction direction)
4060{
4061	if (ib_uses_virt_dma(dev))
4062		return (uintptr_t)cpu_addr;
4063	return dma_map_single(dev->dma_device, cpu_addr, size, direction);
4064}
4065
4066/**
4067 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
4068 * @dev: The device for which the DMA address was created
4069 * @addr: The DMA address
4070 * @size: The size of the region in bytes
4071 * @direction: The direction of the DMA
4072 */
4073static inline void ib_dma_unmap_single(struct ib_device *dev,
4074				       u64 addr, size_t size,
4075				       enum dma_data_direction direction)
4076{
4077	if (!ib_uses_virt_dma(dev))
 
 
4078		dma_unmap_single(dev->dma_device, addr, size, direction);
4079}
4080
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4081/**
4082 * ib_dma_map_page - Map a physical page to DMA address
4083 * @dev: The device for which the dma_addr is to be created
4084 * @page: The page to be mapped
4085 * @offset: The offset within the page
4086 * @size: The size of the region in bytes
4087 * @direction: The direction of the DMA
4088 */
4089static inline u64 ib_dma_map_page(struct ib_device *dev,
4090				  struct page *page,
4091				  unsigned long offset,
4092				  size_t size,
4093					 enum dma_data_direction direction)
4094{
4095	if (ib_uses_virt_dma(dev))
4096		return (uintptr_t)(page_address(page) + offset);
4097	return dma_map_page(dev->dma_device, page, offset, size, direction);
4098}
4099
4100/**
4101 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
4102 * @dev: The device for which the DMA address was created
4103 * @addr: The DMA address
4104 * @size: The size of the region in bytes
4105 * @direction: The direction of the DMA
4106 */
4107static inline void ib_dma_unmap_page(struct ib_device *dev,
4108				     u64 addr, size_t size,
4109				     enum dma_data_direction direction)
4110{
4111	if (!ib_uses_virt_dma(dev))
 
 
4112		dma_unmap_page(dev->dma_device, addr, size, direction);
4113}
4114
4115int ib_dma_virt_map_sg(struct ib_device *dev, struct scatterlist *sg, int nents);
4116static inline int ib_dma_map_sg_attrs(struct ib_device *dev,
4117				      struct scatterlist *sg, int nents,
4118				      enum dma_data_direction direction,
4119				      unsigned long dma_attrs)
4120{
4121	if (ib_uses_virt_dma(dev))
4122		return ib_dma_virt_map_sg(dev, sg, nents);
4123	return dma_map_sg_attrs(dev->dma_device, sg, nents, direction,
4124				dma_attrs);
4125}
4126
4127static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev,
4128					 struct scatterlist *sg, int nents,
4129					 enum dma_data_direction direction,
4130					 unsigned long dma_attrs)
4131{
4132	if (!ib_uses_virt_dma(dev))
4133		dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction,
4134				   dma_attrs);
4135}
4136
4137/**
4138 * ib_dma_map_sgtable_attrs - Map a scatter/gather table to DMA addresses
4139 * @dev: The device for which the DMA addresses are to be created
4140 * @sg: The sg_table object describing the buffer
4141 * @direction: The direction of the DMA
4142 * @attrs: Optional DMA attributes for the map operation
4143 */
4144static inline int ib_dma_map_sgtable_attrs(struct ib_device *dev,
4145					   struct sg_table *sgt,
4146					   enum dma_data_direction direction,
4147					   unsigned long dma_attrs)
4148{
4149	int nents;
4150
4151	if (ib_uses_virt_dma(dev)) {
4152		nents = ib_dma_virt_map_sg(dev, sgt->sgl, sgt->orig_nents);
4153		if (!nents)
4154			return -EIO;
4155		sgt->nents = nents;
4156		return 0;
4157	}
4158	return dma_map_sgtable(dev->dma_device, sgt, direction, dma_attrs);
4159}
4160
4161static inline void ib_dma_unmap_sgtable_attrs(struct ib_device *dev,
4162					      struct sg_table *sgt,
4163					      enum dma_data_direction direction,
4164					      unsigned long dma_attrs)
4165{
4166	if (!ib_uses_virt_dma(dev))
4167		dma_unmap_sgtable(dev->dma_device, sgt, direction, dma_attrs);
4168}
4169
4170/**
4171 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses
4172 * @dev: The device for which the DMA addresses are to be created
4173 * @sg: The array of scatter/gather entries
4174 * @nents: The number of scatter/gather entries
4175 * @direction: The direction of the DMA
4176 */
4177static inline int ib_dma_map_sg(struct ib_device *dev,
4178				struct scatterlist *sg, int nents,
4179				enum dma_data_direction direction)
4180{
4181	return ib_dma_map_sg_attrs(dev, sg, nents, direction, 0);
 
 
4182}
4183
4184/**
4185 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
4186 * @dev: The device for which the DMA addresses were created
4187 * @sg: The array of scatter/gather entries
4188 * @nents: The number of scatter/gather entries
4189 * @direction: The direction of the DMA
4190 */
4191static inline void ib_dma_unmap_sg(struct ib_device *dev,
4192				   struct scatterlist *sg, int nents,
4193				   enum dma_data_direction direction)
4194{
4195	ib_dma_unmap_sg_attrs(dev, sg, nents, direction, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4196}
4197
4198/**
4199 * ib_dma_max_seg_size - Return the size limit of a single DMA transfer
4200 * @dev: The device to query
4201 *
4202 * The returned value represents a size in bytes.
4203 */
4204static inline unsigned int ib_dma_max_seg_size(struct ib_device *dev)
 
4205{
4206	if (ib_uses_virt_dma(dev))
4207		return UINT_MAX;
4208	return dma_get_max_seg_size(dev->dma_device);
4209}
4210
4211/**
4212 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
4213 * @dev: The device for which the DMA address was created
4214 * @addr: The DMA address
4215 * @size: The size of the region in bytes
4216 * @dir: The direction of the DMA
4217 */
4218static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
4219					      u64 addr,
4220					      size_t size,
4221					      enum dma_data_direction dir)
4222{
4223	if (!ib_uses_virt_dma(dev))
 
 
4224		dma_sync_single_for_cpu(dev->dma_device, addr, size, dir);
4225}
4226
4227/**
4228 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
4229 * @dev: The device for which the DMA address was created
4230 * @addr: The DMA address
4231 * @size: The size of the region in bytes
4232 * @dir: The direction of the DMA
4233 */
4234static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
4235						 u64 addr,
4236						 size_t size,
4237						 enum dma_data_direction dir)
4238{
4239	if (!ib_uses_virt_dma(dev))
 
 
4240		dma_sync_single_for_device(dev->dma_device, addr, size, dir);
4241}
4242
4243/* ib_reg_user_mr - register a memory region for virtual addresses from kernel
4244 * space. This function should be called when 'current' is the owning MM.
4245 */
4246struct ib_mr *ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
4247			     u64 virt_addr, int mr_access_flags);
4248
4249/* ib_advise_mr -  give an advice about an address range in a memory region */
4250int ib_advise_mr(struct ib_pd *pd, enum ib_uverbs_advise_mr_advice advice,
4251		 u32 flags, struct ib_sge *sg_list, u32 num_sge);
4252/**
4253 * ib_dereg_mr_user - Deregisters a memory region and removes it from the
4254 *   HCA translation table.
4255 * @mr: The memory region to deregister.
4256 * @udata: Valid user data or NULL for kernel object
4257 *
4258 * This function can fail, if the memory region has memory windows bound to it.
4259 */
4260int ib_dereg_mr_user(struct ib_mr *mr, struct ib_udata *udata);
4261
4262/**
4263 * ib_dereg_mr - Deregisters a kernel memory region and removes it from the
4264 *   HCA translation table.
4265 * @mr: The memory region to deregister.
4266 *
4267 * This function can fail, if the memory region has memory windows bound to it.
4268 *
4269 * NOTE: for user mr use ib_dereg_mr_user with valid udata!
4270 */
4271static inline int ib_dereg_mr(struct ib_mr *mr)
4272{
4273	return ib_dereg_mr_user(mr, NULL);
4274}
4275
4276struct ib_mr *ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type,
4277			  u32 max_num_sg);
4278
4279struct ib_mr *ib_alloc_mr_integrity(struct ib_pd *pd,
4280				    u32 max_num_data_sg,
4281				    u32 max_num_meta_sg);
4282
4283/**
4284 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR
4285 *   R_Key and L_Key.
4286 * @mr - struct ib_mr pointer to be updated.
4287 * @newkey - new key to be used.
4288 */
4289static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey)
 
 
 
4290{
4291	mr->lkey = (mr->lkey & 0xffffff00) | newkey;
4292	mr->rkey = (mr->rkey & 0xffffff00) | newkey;
 
 
4293}
4294
4295/**
4296 * ib_inc_rkey - increments the key portion of the given rkey. Can be used
4297 * for calculating a new rkey for type 2 memory windows.
4298 * @rkey - the rkey to increment.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4299 */
4300static inline u32 ib_inc_rkey(u32 rkey)
4301{
4302	const u32 mask = 0x000000ff;
4303	return ((rkey + 1) & mask) | (rkey & ~mask);
4304}
4305
4306/**
4307 * ib_attach_mcast - Attaches the specified QP to a multicast group.
4308 * @qp: QP to attach to the multicast group.  The QP must be type
4309 *   IB_QPT_UD.
4310 * @gid: Multicast group GID.
4311 * @lid: Multicast group LID in host byte order.
4312 *
4313 * In order to send and receive multicast packets, subnet
4314 * administration must have created the multicast group and configured
4315 * the fabric appropriately.  The port associated with the specified
4316 * QP must also be a member of the multicast group.
4317 */
4318int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
4319
4320/**
4321 * ib_detach_mcast - Detaches the specified QP from a multicast group.
4322 * @qp: QP to detach from the multicast group.
4323 * @gid: Multicast group GID.
4324 * @lid: Multicast group LID in host byte order.
4325 */
4326int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
4327
4328struct ib_xrcd *ib_alloc_xrcd_user(struct ib_device *device,
4329				   struct inode *inode, struct ib_udata *udata);
4330int ib_dealloc_xrcd_user(struct ib_xrcd *xrcd, struct ib_udata *udata);
4331
4332static inline int ib_check_mr_access(struct ib_device *ib_dev,
4333				     unsigned int flags)
4334{
4335	u64 device_cap = ib_dev->attrs.device_cap_flags;
4336
4337	/*
4338	 * Local write permission is required if remote write or
4339	 * remote atomic permission is also requested.
4340	 */
4341	if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) &&
4342	    !(flags & IB_ACCESS_LOCAL_WRITE))
4343		return -EINVAL;
4344
4345	if (flags & ~IB_ACCESS_SUPPORTED)
4346		return -EINVAL;
4347
4348	if (flags & IB_ACCESS_ON_DEMAND &&
4349	    !(ib_dev->attrs.kernel_cap_flags & IBK_ON_DEMAND_PAGING))
4350		return -EOPNOTSUPP;
4351
4352	if ((flags & IB_ACCESS_FLUSH_GLOBAL &&
4353	    !(device_cap & IB_DEVICE_FLUSH_GLOBAL)) ||
4354	    (flags & IB_ACCESS_FLUSH_PERSISTENT &&
4355	    !(device_cap & IB_DEVICE_FLUSH_PERSISTENT)))
4356		return -EOPNOTSUPP;
4357
4358	return 0;
4359}
4360
4361static inline bool ib_access_writable(int access_flags)
4362{
4363	/*
4364	 * We have writable memory backing the MR if any of the following
4365	 * access flags are set.  "Local write" and "remote write" obviously
4366	 * require write access.  "Remote atomic" can do things like fetch and
4367	 * add, which will modify memory, and "MW bind" can change permissions
4368	 * by binding a window.
4369	 */
4370	return access_flags &
4371		(IB_ACCESS_LOCAL_WRITE   | IB_ACCESS_REMOTE_WRITE |
4372		 IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_MW_BIND);
4373}
4374
4375/**
4376 * ib_check_mr_status: lightweight check of MR status.
4377 *     This routine may provide status checks on a selected
4378 *     ib_mr. first use is for signature status check.
4379 *
4380 * @mr: A memory region.
4381 * @check_mask: Bitmask of which checks to perform from
4382 *     ib_mr_status_check enumeration.
4383 * @mr_status: The container of relevant status checks.
4384 *     failed checks will be indicated in the status bitmask
4385 *     and the relevant info shall be in the error item.
4386 */
4387int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
4388		       struct ib_mr_status *mr_status);
4389
4390/**
4391 * ib_device_try_get: Hold a registration lock
4392 * device: The device to lock
 
4393 *
4394 * A device under an active registration lock cannot become unregistered. It
4395 * is only possible to obtain a registration lock on a device that is fully
4396 * registered, otherwise this function returns false.
4397 *
4398 * The registration lock is only necessary for actions which require the
4399 * device to still be registered. Uses that only require the device pointer to
4400 * be valid should use get_device(&ibdev->dev) to hold the memory.
4401 *
 
 
 
 
 
4402 */
4403static inline bool ib_device_try_get(struct ib_device *dev)
4404{
4405	return refcount_inc_not_zero(&dev->refcount);
4406}
4407
4408void ib_device_put(struct ib_device *device);
4409struct ib_device *ib_device_get_by_netdev(struct net_device *ndev,
4410					  enum rdma_driver_id driver_id);
4411struct ib_device *ib_device_get_by_name(const char *name,
4412					enum rdma_driver_id driver_id);
4413struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u32 port,
4414					    u16 pkey, const union ib_gid *gid,
4415					    const struct sockaddr *addr);
4416int ib_device_set_netdev(struct ib_device *ib_dev, struct net_device *ndev,
4417			 unsigned int port);
4418struct net_device *ib_device_netdev(struct ib_device *dev, u32 port);
4419
4420struct ib_wq *ib_create_wq(struct ib_pd *pd,
4421			   struct ib_wq_init_attr *init_attr);
4422int ib_destroy_wq_user(struct ib_wq *wq, struct ib_udata *udata);
4423
4424int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
4425		 unsigned int *sg_offset, unsigned int page_size);
4426int ib_map_mr_sg_pi(struct ib_mr *mr, struct scatterlist *data_sg,
4427		    int data_sg_nents, unsigned int *data_sg_offset,
4428		    struct scatterlist *meta_sg, int meta_sg_nents,
4429		    unsigned int *meta_sg_offset, unsigned int page_size);
4430
4431static inline int
4432ib_map_mr_sg_zbva(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
4433		  unsigned int *sg_offset, unsigned int page_size)
4434{
4435	int n;
4436
4437	n = ib_map_mr_sg(mr, sg, sg_nents, sg_offset, page_size);
4438	mr->iova = 0;
4439
4440	return n;
4441}
4442
4443int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
4444		unsigned int *sg_offset, int (*set_page)(struct ib_mr *, u64));
4445
4446void ib_drain_rq(struct ib_qp *qp);
4447void ib_drain_sq(struct ib_qp *qp);
4448void ib_drain_qp(struct ib_qp *qp);
4449
4450int ib_get_eth_speed(struct ib_device *dev, u32 port_num, u16 *speed,
4451		     u8 *width);
4452
4453static inline u8 *rdma_ah_retrieve_dmac(struct rdma_ah_attr *attr)
4454{
4455	if (attr->type == RDMA_AH_ATTR_TYPE_ROCE)
4456		return attr->roce.dmac;
4457	return NULL;
4458}
4459
4460static inline void rdma_ah_set_dlid(struct rdma_ah_attr *attr, u32 dlid)
4461{
4462	if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4463		attr->ib.dlid = (u16)dlid;
4464	else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4465		attr->opa.dlid = dlid;
4466}
4467
4468static inline u32 rdma_ah_get_dlid(const struct rdma_ah_attr *attr)
4469{
4470	if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4471		return attr->ib.dlid;
4472	else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4473		return attr->opa.dlid;
4474	return 0;
4475}
4476
4477static inline void rdma_ah_set_sl(struct rdma_ah_attr *attr, u8 sl)
4478{
4479	attr->sl = sl;
4480}
4481
4482static inline u8 rdma_ah_get_sl(const struct rdma_ah_attr *attr)
4483{
4484	return attr->sl;
4485}
4486
4487static inline void rdma_ah_set_path_bits(struct rdma_ah_attr *attr,
4488					 u8 src_path_bits)
4489{
4490	if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4491		attr->ib.src_path_bits = src_path_bits;
4492	else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4493		attr->opa.src_path_bits = src_path_bits;
4494}
4495
4496static inline u8 rdma_ah_get_path_bits(const struct rdma_ah_attr *attr)
4497{
4498	if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4499		return attr->ib.src_path_bits;
4500	else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4501		return attr->opa.src_path_bits;
4502	return 0;
4503}
4504
4505static inline void rdma_ah_set_make_grd(struct rdma_ah_attr *attr,
4506					bool make_grd)
4507{
4508	if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4509		attr->opa.make_grd = make_grd;
4510}
4511
4512static inline bool rdma_ah_get_make_grd(const struct rdma_ah_attr *attr)
4513{
4514	if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4515		return attr->opa.make_grd;
4516	return false;
4517}
4518
4519static inline void rdma_ah_set_port_num(struct rdma_ah_attr *attr, u32 port_num)
4520{
4521	attr->port_num = port_num;
4522}
4523
4524static inline u32 rdma_ah_get_port_num(const struct rdma_ah_attr *attr)
4525{
4526	return attr->port_num;
4527}
4528
4529static inline void rdma_ah_set_static_rate(struct rdma_ah_attr *attr,
4530					   u8 static_rate)
4531{
4532	attr->static_rate = static_rate;
4533}
4534
4535static inline u8 rdma_ah_get_static_rate(const struct rdma_ah_attr *attr)
4536{
4537	return attr->static_rate;
4538}
4539
4540static inline void rdma_ah_set_ah_flags(struct rdma_ah_attr *attr,
4541					enum ib_ah_flags flag)
4542{
4543	attr->ah_flags = flag;
4544}
4545
4546static inline enum ib_ah_flags
4547		rdma_ah_get_ah_flags(const struct rdma_ah_attr *attr)
4548{
4549	return attr->ah_flags;
4550}
4551
4552static inline const struct ib_global_route
4553		*rdma_ah_read_grh(const struct rdma_ah_attr *attr)
4554{
4555	return &attr->grh;
4556}
4557
4558/*To retrieve and modify the grh */
4559static inline struct ib_global_route
4560		*rdma_ah_retrieve_grh(struct rdma_ah_attr *attr)
4561{
4562	return &attr->grh;
4563}
4564
4565static inline void rdma_ah_set_dgid_raw(struct rdma_ah_attr *attr, void *dgid)
4566{
4567	struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4568
4569	memcpy(grh->dgid.raw, dgid, sizeof(grh->dgid));
4570}
4571
4572static inline void rdma_ah_set_subnet_prefix(struct rdma_ah_attr *attr,
4573					     __be64 prefix)
4574{
4575	struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4576
4577	grh->dgid.global.subnet_prefix = prefix;
4578}
4579
4580static inline void rdma_ah_set_interface_id(struct rdma_ah_attr *attr,
4581					    __be64 if_id)
4582{
4583	struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4584
4585	grh->dgid.global.interface_id = if_id;
4586}
4587
4588static inline void rdma_ah_set_grh(struct rdma_ah_attr *attr,
4589				   union ib_gid *dgid, u32 flow_label,
4590				   u8 sgid_index, u8 hop_limit,
4591				   u8 traffic_class)
4592{
4593	struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4594
4595	attr->ah_flags = IB_AH_GRH;
4596	if (dgid)
4597		grh->dgid = *dgid;
4598	grh->flow_label = flow_label;
4599	grh->sgid_index = sgid_index;
4600	grh->hop_limit = hop_limit;
4601	grh->traffic_class = traffic_class;
4602	grh->sgid_attr = NULL;
4603}
4604
4605void rdma_destroy_ah_attr(struct rdma_ah_attr *ah_attr);
4606void rdma_move_grh_sgid_attr(struct rdma_ah_attr *attr, union ib_gid *dgid,
4607			     u32 flow_label, u8 hop_limit, u8 traffic_class,
4608			     const struct ib_gid_attr *sgid_attr);
4609void rdma_copy_ah_attr(struct rdma_ah_attr *dest,
4610		       const struct rdma_ah_attr *src);
4611void rdma_replace_ah_attr(struct rdma_ah_attr *old,
4612			  const struct rdma_ah_attr *new);
4613void rdma_move_ah_attr(struct rdma_ah_attr *dest, struct rdma_ah_attr *src);
4614
4615/**
4616 * rdma_ah_find_type - Return address handle type.
4617 *
4618 * @dev: Device to be checked
4619 * @port_num: Port number
4620 */
4621static inline enum rdma_ah_attr_type rdma_ah_find_type(struct ib_device *dev,
4622						       u32 port_num)
4623{
4624	if (rdma_protocol_roce(dev, port_num))
4625		return RDMA_AH_ATTR_TYPE_ROCE;
4626	if (rdma_protocol_ib(dev, port_num)) {
4627		if (rdma_cap_opa_ah(dev, port_num))
4628			return RDMA_AH_ATTR_TYPE_OPA;
4629		return RDMA_AH_ATTR_TYPE_IB;
4630	}
4631
4632	return RDMA_AH_ATTR_TYPE_UNDEFINED;
4633}
4634
4635/**
4636 * ib_lid_cpu16 - Return lid in 16bit CPU encoding.
4637 *     In the current implementation the only way to
4638 *     get the 32bit lid is from other sources for OPA.
4639 *     For IB, lids will always be 16bits so cast the
4640 *     value accordingly.
4641 *
4642 * @lid: A 32bit LID
4643 */
4644static inline u16 ib_lid_cpu16(u32 lid)
4645{
4646	WARN_ON_ONCE(lid & 0xFFFF0000);
4647	return (u16)lid;
4648}
4649
4650/**
4651 * ib_lid_be16 - Return lid in 16bit BE encoding.
4652 *
4653 * @lid: A 32bit LID
4654 */
4655static inline __be16 ib_lid_be16(u32 lid)
4656{
4657	WARN_ON_ONCE(lid & 0xFFFF0000);
4658	return cpu_to_be16((u16)lid);
4659}
4660
4661/**
4662 * ib_get_vector_affinity - Get the affinity mappings of a given completion
4663 *   vector
4664 * @device:         the rdma device
4665 * @comp_vector:    index of completion vector
4666 *
4667 * Returns NULL on failure, otherwise a corresponding cpu map of the
4668 * completion vector (returns all-cpus map if the device driver doesn't
4669 * implement get_vector_affinity).
4670 */
4671static inline const struct cpumask *
4672ib_get_vector_affinity(struct ib_device *device, int comp_vector)
 
4673{
4674	if (comp_vector < 0 || comp_vector >= device->num_comp_vectors ||
4675	    !device->ops.get_vector_affinity)
4676		return NULL;
4677
4678	return device->ops.get_vector_affinity(device, comp_vector);
4679
4680}
4681
4682/**
4683 * rdma_roce_rescan_device - Rescan all of the network devices in the system
4684 * and add their gids, as needed, to the relevant RoCE devices.
4685 *
4686 * @device:         the rdma device
4687 */
4688void rdma_roce_rescan_device(struct ib_device *ibdev);
4689
4690struct ib_ucontext *ib_uverbs_get_ucontext_file(struct ib_uverbs_file *ufile);
4691
4692int uverbs_destroy_def_handler(struct uverbs_attr_bundle *attrs);
4693
4694struct net_device *rdma_alloc_netdev(struct ib_device *device, u32 port_num,
4695				     enum rdma_netdev_t type, const char *name,
4696				     unsigned char name_assign_type,
4697				     void (*setup)(struct net_device *));
4698
4699int rdma_init_netdev(struct ib_device *device, u32 port_num,
4700		     enum rdma_netdev_t type, const char *name,
4701		     unsigned char name_assign_type,
4702		     void (*setup)(struct net_device *),
4703		     struct net_device *netdev);
4704
4705/**
4706 * rdma_device_to_ibdev - Get ib_device pointer from device pointer
4707 *
4708 * @device:	device pointer for which ib_device pointer to retrieve
4709 *
4710 * rdma_device_to_ibdev() retrieves ib_device pointer from device.
4711 *
 
 
4712 */
4713static inline struct ib_device *rdma_device_to_ibdev(struct device *device)
4714{
4715	struct ib_core_device *coredev =
4716		container_of(device, struct ib_core_device, dev);
4717
4718	return coredev->owner;
4719}
4720
4721/**
4722 * ibdev_to_node - return the NUMA node for a given ib_device
4723 * @dev:	device to get the NUMA node for.
 
 
 
4724 */
4725static inline int ibdev_to_node(struct ib_device *ibdev)
 
 
4726{
4727	struct device *parent = ibdev->dev.parent;
4728
4729	if (!parent)
4730		return NUMA_NO_NODE;
4731	return dev_to_node(parent);
4732}
4733
4734/**
4735 * rdma_device_to_drv_device - Helper macro to reach back to driver's
4736 *			       ib_device holder structure from device pointer.
4737 *
4738 * NOTE: New drivers should not make use of this API; This API is only for
4739 * existing drivers who have exposed sysfs entries using
4740 * ops->device_group.
4741 */
4742#define rdma_device_to_drv_device(dev, drv_dev_struct, ibdev_member)           \
4743	container_of(rdma_device_to_ibdev(dev), drv_dev_struct, ibdev_member)
4744
4745bool rdma_dev_access_netns(const struct ib_device *device,
4746			   const struct net *net);
4747
4748#define IB_ROCE_UDP_ENCAP_VALID_PORT_MIN (0xC000)
4749#define IB_ROCE_UDP_ENCAP_VALID_PORT_MAX (0xFFFF)
4750#define IB_GRH_FLOWLABEL_MASK (0x000FFFFF)
4751
4752/**
4753 * rdma_flow_label_to_udp_sport - generate a RoCE v2 UDP src port value based
4754 *                               on the flow_label
4755 *
4756 * This function will convert the 20 bit flow_label input to a valid RoCE v2
4757 * UDP src port 14 bit value. All RoCE V2 drivers should use this same
4758 * convention.
4759 */
4760static inline u16 rdma_flow_label_to_udp_sport(u32 fl)
4761{
4762	u32 fl_low = fl & 0x03fff, fl_high = fl & 0xFC000;
4763
4764	fl_low ^= fl_high >> 14;
4765	return (u16)(fl_low | IB_ROCE_UDP_ENCAP_VALID_PORT_MIN);
4766}
4767
4768/**
4769 * rdma_calc_flow_label - generate a RDMA symmetric flow label value based on
4770 *                        local and remote qpn values
 
 
 
4771 *
4772 * This function folded the multiplication results of two qpns, 24 bit each,
4773 * fields, and converts it to a 20 bit results.
4774 *
4775 * This function will create symmetric flow_label value based on the local
4776 * and remote qpn values. this will allow both the requester and responder
4777 * to calculate the same flow_label for a given connection.
4778 *
4779 * This helper function should be used by driver in case the upper layer
4780 * provide a zero flow_label value. This is to improve entropy of RDMA
4781 * traffic in the network.
4782 */
4783static inline u32 rdma_calc_flow_label(u32 lqpn, u32 rqpn)
4784{
4785	u64 v = (u64)lqpn * rqpn;
4786
4787	v ^= v >> 20;
4788	v ^= v >> 40;
4789
4790	return (u32)(v & IB_GRH_FLOWLABEL_MASK);
4791}
4792
4793/**
4794 * rdma_get_udp_sport - Calculate and set UDP source port based on the flow
4795 *                      label. If flow label is not defined in GRH then
4796 *                      calculate it based on lqpn/rqpn.
4797 *
4798 * @fl:                 flow label from GRH
4799 * @lqpn:               local qp number
4800 * @rqpn:               remote qp number
4801 */
4802static inline u16 rdma_get_udp_sport(u32 fl, u32 lqpn, u32 rqpn)
4803{
4804	if (!fl)
4805		fl = rdma_calc_flow_label(lqpn, rqpn);
4806
4807	return rdma_flow_label_to_udp_sport(fl);
4808}
4809
4810const struct ib_port_immutable*
4811ib_port_immutable_read(struct ib_device *dev, unsigned int port);
4812#endif /* IB_VERBS_H */