Loading...
1/*
2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved.
3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved.
4 * Copyright (c) 2004 Intel Corporation. All rights reserved.
5 * Copyright (c) 2004 Topspin Corporation. All rights reserved.
6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved.
7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
8 * Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved.
9 *
10 * This software is available to you under a choice of one of two
11 * licenses. You may choose to be licensed under the terms of the GNU
12 * General Public License (GPL) Version 2, available from the file
13 * COPYING in the main directory of this source tree, or the
14 * OpenIB.org BSD license below:
15 *
16 * Redistribution and use in source and binary forms, with or
17 * without modification, are permitted provided that the following
18 * conditions are met:
19 *
20 * - Redistributions of source code must retain the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer.
23 *
24 * - Redistributions in binary form must reproduce the above
25 * copyright notice, this list of conditions and the following
26 * disclaimer in the documentation and/or other materials
27 * provided with the distribution.
28 *
29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36 * SOFTWARE.
37 */
38
39#if !defined(IB_VERBS_H)
40#define IB_VERBS_H
41
42#include <linux/types.h>
43#include <linux/device.h>
44#include <linux/mm.h>
45#include <linux/dma-mapping.h>
46#include <linux/kref.h>
47#include <linux/list.h>
48#include <linux/rwsem.h>
49#include <linux/scatterlist.h>
50#include <linux/workqueue.h>
51
52#include <linux/atomic.h>
53#include <asm/uaccess.h>
54
55extern struct workqueue_struct *ib_wq;
56
57union ib_gid {
58 u8 raw[16];
59 struct {
60 __be64 subnet_prefix;
61 __be64 interface_id;
62 } global;
63};
64
65enum rdma_node_type {
66 /* IB values map to NodeInfo:NodeType. */
67 RDMA_NODE_IB_CA = 1,
68 RDMA_NODE_IB_SWITCH,
69 RDMA_NODE_IB_ROUTER,
70 RDMA_NODE_RNIC
71};
72
73enum rdma_transport_type {
74 RDMA_TRANSPORT_IB,
75 RDMA_TRANSPORT_IWARP
76};
77
78enum rdma_transport_type
79rdma_node_get_transport(enum rdma_node_type node_type) __attribute_const__;
80
81enum rdma_link_layer {
82 IB_LINK_LAYER_UNSPECIFIED,
83 IB_LINK_LAYER_INFINIBAND,
84 IB_LINK_LAYER_ETHERNET,
85};
86
87enum ib_device_cap_flags {
88 IB_DEVICE_RESIZE_MAX_WR = 1,
89 IB_DEVICE_BAD_PKEY_CNTR = (1<<1),
90 IB_DEVICE_BAD_QKEY_CNTR = (1<<2),
91 IB_DEVICE_RAW_MULTI = (1<<3),
92 IB_DEVICE_AUTO_PATH_MIG = (1<<4),
93 IB_DEVICE_CHANGE_PHY_PORT = (1<<5),
94 IB_DEVICE_UD_AV_PORT_ENFORCE = (1<<6),
95 IB_DEVICE_CURR_QP_STATE_MOD = (1<<7),
96 IB_DEVICE_SHUTDOWN_PORT = (1<<8),
97 IB_DEVICE_INIT_TYPE = (1<<9),
98 IB_DEVICE_PORT_ACTIVE_EVENT = (1<<10),
99 IB_DEVICE_SYS_IMAGE_GUID = (1<<11),
100 IB_DEVICE_RC_RNR_NAK_GEN = (1<<12),
101 IB_DEVICE_SRQ_RESIZE = (1<<13),
102 IB_DEVICE_N_NOTIFY_CQ = (1<<14),
103 IB_DEVICE_LOCAL_DMA_LKEY = (1<<15),
104 IB_DEVICE_RESERVED = (1<<16), /* old SEND_W_INV */
105 IB_DEVICE_MEM_WINDOW = (1<<17),
106 /*
107 * Devices should set IB_DEVICE_UD_IP_SUM if they support
108 * insertion of UDP and TCP checksum on outgoing UD IPoIB
109 * messages and can verify the validity of checksum for
110 * incoming messages. Setting this flag implies that the
111 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
112 */
113 IB_DEVICE_UD_IP_CSUM = (1<<18),
114 IB_DEVICE_UD_TSO = (1<<19),
115 IB_DEVICE_MEM_MGT_EXTENSIONS = (1<<21),
116 IB_DEVICE_BLOCK_MULTICAST_LOOPBACK = (1<<22),
117};
118
119enum ib_atomic_cap {
120 IB_ATOMIC_NONE,
121 IB_ATOMIC_HCA,
122 IB_ATOMIC_GLOB
123};
124
125struct ib_device_attr {
126 u64 fw_ver;
127 __be64 sys_image_guid;
128 u64 max_mr_size;
129 u64 page_size_cap;
130 u32 vendor_id;
131 u32 vendor_part_id;
132 u32 hw_ver;
133 int max_qp;
134 int max_qp_wr;
135 int device_cap_flags;
136 int max_sge;
137 int max_sge_rd;
138 int max_cq;
139 int max_cqe;
140 int max_mr;
141 int max_pd;
142 int max_qp_rd_atom;
143 int max_ee_rd_atom;
144 int max_res_rd_atom;
145 int max_qp_init_rd_atom;
146 int max_ee_init_rd_atom;
147 enum ib_atomic_cap atomic_cap;
148 enum ib_atomic_cap masked_atomic_cap;
149 int max_ee;
150 int max_rdd;
151 int max_mw;
152 int max_raw_ipv6_qp;
153 int max_raw_ethy_qp;
154 int max_mcast_grp;
155 int max_mcast_qp_attach;
156 int max_total_mcast_qp_attach;
157 int max_ah;
158 int max_fmr;
159 int max_map_per_fmr;
160 int max_srq;
161 int max_srq_wr;
162 int max_srq_sge;
163 unsigned int max_fast_reg_page_list_len;
164 u16 max_pkeys;
165 u8 local_ca_ack_delay;
166};
167
168enum ib_mtu {
169 IB_MTU_256 = 1,
170 IB_MTU_512 = 2,
171 IB_MTU_1024 = 3,
172 IB_MTU_2048 = 4,
173 IB_MTU_4096 = 5
174};
175
176static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
177{
178 switch (mtu) {
179 case IB_MTU_256: return 256;
180 case IB_MTU_512: return 512;
181 case IB_MTU_1024: return 1024;
182 case IB_MTU_2048: return 2048;
183 case IB_MTU_4096: return 4096;
184 default: return -1;
185 }
186}
187
188enum ib_port_state {
189 IB_PORT_NOP = 0,
190 IB_PORT_DOWN = 1,
191 IB_PORT_INIT = 2,
192 IB_PORT_ARMED = 3,
193 IB_PORT_ACTIVE = 4,
194 IB_PORT_ACTIVE_DEFER = 5
195};
196
197enum ib_port_cap_flags {
198 IB_PORT_SM = 1 << 1,
199 IB_PORT_NOTICE_SUP = 1 << 2,
200 IB_PORT_TRAP_SUP = 1 << 3,
201 IB_PORT_OPT_IPD_SUP = 1 << 4,
202 IB_PORT_AUTO_MIGR_SUP = 1 << 5,
203 IB_PORT_SL_MAP_SUP = 1 << 6,
204 IB_PORT_MKEY_NVRAM = 1 << 7,
205 IB_PORT_PKEY_NVRAM = 1 << 8,
206 IB_PORT_LED_INFO_SUP = 1 << 9,
207 IB_PORT_SM_DISABLED = 1 << 10,
208 IB_PORT_SYS_IMAGE_GUID_SUP = 1 << 11,
209 IB_PORT_PKEY_SW_EXT_PORT_TRAP_SUP = 1 << 12,
210 IB_PORT_CM_SUP = 1 << 16,
211 IB_PORT_SNMP_TUNNEL_SUP = 1 << 17,
212 IB_PORT_REINIT_SUP = 1 << 18,
213 IB_PORT_DEVICE_MGMT_SUP = 1 << 19,
214 IB_PORT_VENDOR_CLASS_SUP = 1 << 20,
215 IB_PORT_DR_NOTICE_SUP = 1 << 21,
216 IB_PORT_CAP_MASK_NOTICE_SUP = 1 << 22,
217 IB_PORT_BOOT_MGMT_SUP = 1 << 23,
218 IB_PORT_LINK_LATENCY_SUP = 1 << 24,
219 IB_PORT_CLIENT_REG_SUP = 1 << 25
220};
221
222enum ib_port_width {
223 IB_WIDTH_1X = 1,
224 IB_WIDTH_4X = 2,
225 IB_WIDTH_8X = 4,
226 IB_WIDTH_12X = 8
227};
228
229static inline int ib_width_enum_to_int(enum ib_port_width width)
230{
231 switch (width) {
232 case IB_WIDTH_1X: return 1;
233 case IB_WIDTH_4X: return 4;
234 case IB_WIDTH_8X: return 8;
235 case IB_WIDTH_12X: return 12;
236 default: return -1;
237 }
238}
239
240struct ib_protocol_stats {
241 /* TBD... */
242};
243
244struct iw_protocol_stats {
245 u64 ipInReceives;
246 u64 ipInHdrErrors;
247 u64 ipInTooBigErrors;
248 u64 ipInNoRoutes;
249 u64 ipInAddrErrors;
250 u64 ipInUnknownProtos;
251 u64 ipInTruncatedPkts;
252 u64 ipInDiscards;
253 u64 ipInDelivers;
254 u64 ipOutForwDatagrams;
255 u64 ipOutRequests;
256 u64 ipOutDiscards;
257 u64 ipOutNoRoutes;
258 u64 ipReasmTimeout;
259 u64 ipReasmReqds;
260 u64 ipReasmOKs;
261 u64 ipReasmFails;
262 u64 ipFragOKs;
263 u64 ipFragFails;
264 u64 ipFragCreates;
265 u64 ipInMcastPkts;
266 u64 ipOutMcastPkts;
267 u64 ipInBcastPkts;
268 u64 ipOutBcastPkts;
269
270 u64 tcpRtoAlgorithm;
271 u64 tcpRtoMin;
272 u64 tcpRtoMax;
273 u64 tcpMaxConn;
274 u64 tcpActiveOpens;
275 u64 tcpPassiveOpens;
276 u64 tcpAttemptFails;
277 u64 tcpEstabResets;
278 u64 tcpCurrEstab;
279 u64 tcpInSegs;
280 u64 tcpOutSegs;
281 u64 tcpRetransSegs;
282 u64 tcpInErrs;
283 u64 tcpOutRsts;
284};
285
286union rdma_protocol_stats {
287 struct ib_protocol_stats ib;
288 struct iw_protocol_stats iw;
289};
290
291struct ib_port_attr {
292 enum ib_port_state state;
293 enum ib_mtu max_mtu;
294 enum ib_mtu active_mtu;
295 int gid_tbl_len;
296 u32 port_cap_flags;
297 u32 max_msg_sz;
298 u32 bad_pkey_cntr;
299 u32 qkey_viol_cntr;
300 u16 pkey_tbl_len;
301 u16 lid;
302 u16 sm_lid;
303 u8 lmc;
304 u8 max_vl_num;
305 u8 sm_sl;
306 u8 subnet_timeout;
307 u8 init_type_reply;
308 u8 active_width;
309 u8 active_speed;
310 u8 phys_state;
311};
312
313enum ib_device_modify_flags {
314 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0,
315 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1
316};
317
318struct ib_device_modify {
319 u64 sys_image_guid;
320 char node_desc[64];
321};
322
323enum ib_port_modify_flags {
324 IB_PORT_SHUTDOWN = 1,
325 IB_PORT_INIT_TYPE = (1<<2),
326 IB_PORT_RESET_QKEY_CNTR = (1<<3)
327};
328
329struct ib_port_modify {
330 u32 set_port_cap_mask;
331 u32 clr_port_cap_mask;
332 u8 init_type;
333};
334
335enum ib_event_type {
336 IB_EVENT_CQ_ERR,
337 IB_EVENT_QP_FATAL,
338 IB_EVENT_QP_REQ_ERR,
339 IB_EVENT_QP_ACCESS_ERR,
340 IB_EVENT_COMM_EST,
341 IB_EVENT_SQ_DRAINED,
342 IB_EVENT_PATH_MIG,
343 IB_EVENT_PATH_MIG_ERR,
344 IB_EVENT_DEVICE_FATAL,
345 IB_EVENT_PORT_ACTIVE,
346 IB_EVENT_PORT_ERR,
347 IB_EVENT_LID_CHANGE,
348 IB_EVENT_PKEY_CHANGE,
349 IB_EVENT_SM_CHANGE,
350 IB_EVENT_SRQ_ERR,
351 IB_EVENT_SRQ_LIMIT_REACHED,
352 IB_EVENT_QP_LAST_WQE_REACHED,
353 IB_EVENT_CLIENT_REREGISTER,
354 IB_EVENT_GID_CHANGE,
355};
356
357struct ib_event {
358 struct ib_device *device;
359 union {
360 struct ib_cq *cq;
361 struct ib_qp *qp;
362 struct ib_srq *srq;
363 u8 port_num;
364 } element;
365 enum ib_event_type event;
366};
367
368struct ib_event_handler {
369 struct ib_device *device;
370 void (*handler)(struct ib_event_handler *, struct ib_event *);
371 struct list_head list;
372};
373
374#define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \
375 do { \
376 (_ptr)->device = _device; \
377 (_ptr)->handler = _handler; \
378 INIT_LIST_HEAD(&(_ptr)->list); \
379 } while (0)
380
381struct ib_global_route {
382 union ib_gid dgid;
383 u32 flow_label;
384 u8 sgid_index;
385 u8 hop_limit;
386 u8 traffic_class;
387};
388
389struct ib_grh {
390 __be32 version_tclass_flow;
391 __be16 paylen;
392 u8 next_hdr;
393 u8 hop_limit;
394 union ib_gid sgid;
395 union ib_gid dgid;
396};
397
398enum {
399 IB_MULTICAST_QPN = 0xffffff
400};
401
402#define IB_LID_PERMISSIVE cpu_to_be16(0xFFFF)
403
404enum ib_ah_flags {
405 IB_AH_GRH = 1
406};
407
408enum ib_rate {
409 IB_RATE_PORT_CURRENT = 0,
410 IB_RATE_2_5_GBPS = 2,
411 IB_RATE_5_GBPS = 5,
412 IB_RATE_10_GBPS = 3,
413 IB_RATE_20_GBPS = 6,
414 IB_RATE_30_GBPS = 4,
415 IB_RATE_40_GBPS = 7,
416 IB_RATE_60_GBPS = 8,
417 IB_RATE_80_GBPS = 9,
418 IB_RATE_120_GBPS = 10
419};
420
421/**
422 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the
423 * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be
424 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
425 * @rate: rate to convert.
426 */
427int ib_rate_to_mult(enum ib_rate rate) __attribute_const__;
428
429/**
430 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
431 * enum.
432 * @mult: multiple to convert.
433 */
434enum ib_rate mult_to_ib_rate(int mult) __attribute_const__;
435
436struct ib_ah_attr {
437 struct ib_global_route grh;
438 u16 dlid;
439 u8 sl;
440 u8 src_path_bits;
441 u8 static_rate;
442 u8 ah_flags;
443 u8 port_num;
444};
445
446enum ib_wc_status {
447 IB_WC_SUCCESS,
448 IB_WC_LOC_LEN_ERR,
449 IB_WC_LOC_QP_OP_ERR,
450 IB_WC_LOC_EEC_OP_ERR,
451 IB_WC_LOC_PROT_ERR,
452 IB_WC_WR_FLUSH_ERR,
453 IB_WC_MW_BIND_ERR,
454 IB_WC_BAD_RESP_ERR,
455 IB_WC_LOC_ACCESS_ERR,
456 IB_WC_REM_INV_REQ_ERR,
457 IB_WC_REM_ACCESS_ERR,
458 IB_WC_REM_OP_ERR,
459 IB_WC_RETRY_EXC_ERR,
460 IB_WC_RNR_RETRY_EXC_ERR,
461 IB_WC_LOC_RDD_VIOL_ERR,
462 IB_WC_REM_INV_RD_REQ_ERR,
463 IB_WC_REM_ABORT_ERR,
464 IB_WC_INV_EECN_ERR,
465 IB_WC_INV_EEC_STATE_ERR,
466 IB_WC_FATAL_ERR,
467 IB_WC_RESP_TIMEOUT_ERR,
468 IB_WC_GENERAL_ERR
469};
470
471enum ib_wc_opcode {
472 IB_WC_SEND,
473 IB_WC_RDMA_WRITE,
474 IB_WC_RDMA_READ,
475 IB_WC_COMP_SWAP,
476 IB_WC_FETCH_ADD,
477 IB_WC_BIND_MW,
478 IB_WC_LSO,
479 IB_WC_LOCAL_INV,
480 IB_WC_FAST_REG_MR,
481 IB_WC_MASKED_COMP_SWAP,
482 IB_WC_MASKED_FETCH_ADD,
483/*
484 * Set value of IB_WC_RECV so consumers can test if a completion is a
485 * receive by testing (opcode & IB_WC_RECV).
486 */
487 IB_WC_RECV = 1 << 7,
488 IB_WC_RECV_RDMA_WITH_IMM
489};
490
491enum ib_wc_flags {
492 IB_WC_GRH = 1,
493 IB_WC_WITH_IMM = (1<<1),
494 IB_WC_WITH_INVALIDATE = (1<<2),
495};
496
497struct ib_wc {
498 u64 wr_id;
499 enum ib_wc_status status;
500 enum ib_wc_opcode opcode;
501 u32 vendor_err;
502 u32 byte_len;
503 struct ib_qp *qp;
504 union {
505 __be32 imm_data;
506 u32 invalidate_rkey;
507 } ex;
508 u32 src_qp;
509 int wc_flags;
510 u16 pkey_index;
511 u16 slid;
512 u8 sl;
513 u8 dlid_path_bits;
514 u8 port_num; /* valid only for DR SMPs on switches */
515 int csum_ok;
516};
517
518enum ib_cq_notify_flags {
519 IB_CQ_SOLICITED = 1 << 0,
520 IB_CQ_NEXT_COMP = 1 << 1,
521 IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
522 IB_CQ_REPORT_MISSED_EVENTS = 1 << 2,
523};
524
525enum ib_srq_attr_mask {
526 IB_SRQ_MAX_WR = 1 << 0,
527 IB_SRQ_LIMIT = 1 << 1,
528};
529
530struct ib_srq_attr {
531 u32 max_wr;
532 u32 max_sge;
533 u32 srq_limit;
534};
535
536struct ib_srq_init_attr {
537 void (*event_handler)(struct ib_event *, void *);
538 void *srq_context;
539 struct ib_srq_attr attr;
540};
541
542struct ib_qp_cap {
543 u32 max_send_wr;
544 u32 max_recv_wr;
545 u32 max_send_sge;
546 u32 max_recv_sge;
547 u32 max_inline_data;
548};
549
550enum ib_sig_type {
551 IB_SIGNAL_ALL_WR,
552 IB_SIGNAL_REQ_WR
553};
554
555enum ib_qp_type {
556 /*
557 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
558 * here (and in that order) since the MAD layer uses them as
559 * indices into a 2-entry table.
560 */
561 IB_QPT_SMI,
562 IB_QPT_GSI,
563
564 IB_QPT_RC,
565 IB_QPT_UC,
566 IB_QPT_UD,
567 IB_QPT_RAW_IPV6,
568 IB_QPT_RAW_ETHERTYPE
569};
570
571enum ib_qp_create_flags {
572 IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0,
573 IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK = 1 << 1,
574};
575
576struct ib_qp_init_attr {
577 void (*event_handler)(struct ib_event *, void *);
578 void *qp_context;
579 struct ib_cq *send_cq;
580 struct ib_cq *recv_cq;
581 struct ib_srq *srq;
582 struct ib_qp_cap cap;
583 enum ib_sig_type sq_sig_type;
584 enum ib_qp_type qp_type;
585 enum ib_qp_create_flags create_flags;
586 u8 port_num; /* special QP types only */
587};
588
589enum ib_rnr_timeout {
590 IB_RNR_TIMER_655_36 = 0,
591 IB_RNR_TIMER_000_01 = 1,
592 IB_RNR_TIMER_000_02 = 2,
593 IB_RNR_TIMER_000_03 = 3,
594 IB_RNR_TIMER_000_04 = 4,
595 IB_RNR_TIMER_000_06 = 5,
596 IB_RNR_TIMER_000_08 = 6,
597 IB_RNR_TIMER_000_12 = 7,
598 IB_RNR_TIMER_000_16 = 8,
599 IB_RNR_TIMER_000_24 = 9,
600 IB_RNR_TIMER_000_32 = 10,
601 IB_RNR_TIMER_000_48 = 11,
602 IB_RNR_TIMER_000_64 = 12,
603 IB_RNR_TIMER_000_96 = 13,
604 IB_RNR_TIMER_001_28 = 14,
605 IB_RNR_TIMER_001_92 = 15,
606 IB_RNR_TIMER_002_56 = 16,
607 IB_RNR_TIMER_003_84 = 17,
608 IB_RNR_TIMER_005_12 = 18,
609 IB_RNR_TIMER_007_68 = 19,
610 IB_RNR_TIMER_010_24 = 20,
611 IB_RNR_TIMER_015_36 = 21,
612 IB_RNR_TIMER_020_48 = 22,
613 IB_RNR_TIMER_030_72 = 23,
614 IB_RNR_TIMER_040_96 = 24,
615 IB_RNR_TIMER_061_44 = 25,
616 IB_RNR_TIMER_081_92 = 26,
617 IB_RNR_TIMER_122_88 = 27,
618 IB_RNR_TIMER_163_84 = 28,
619 IB_RNR_TIMER_245_76 = 29,
620 IB_RNR_TIMER_327_68 = 30,
621 IB_RNR_TIMER_491_52 = 31
622};
623
624enum ib_qp_attr_mask {
625 IB_QP_STATE = 1,
626 IB_QP_CUR_STATE = (1<<1),
627 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2),
628 IB_QP_ACCESS_FLAGS = (1<<3),
629 IB_QP_PKEY_INDEX = (1<<4),
630 IB_QP_PORT = (1<<5),
631 IB_QP_QKEY = (1<<6),
632 IB_QP_AV = (1<<7),
633 IB_QP_PATH_MTU = (1<<8),
634 IB_QP_TIMEOUT = (1<<9),
635 IB_QP_RETRY_CNT = (1<<10),
636 IB_QP_RNR_RETRY = (1<<11),
637 IB_QP_RQ_PSN = (1<<12),
638 IB_QP_MAX_QP_RD_ATOMIC = (1<<13),
639 IB_QP_ALT_PATH = (1<<14),
640 IB_QP_MIN_RNR_TIMER = (1<<15),
641 IB_QP_SQ_PSN = (1<<16),
642 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17),
643 IB_QP_PATH_MIG_STATE = (1<<18),
644 IB_QP_CAP = (1<<19),
645 IB_QP_DEST_QPN = (1<<20)
646};
647
648enum ib_qp_state {
649 IB_QPS_RESET,
650 IB_QPS_INIT,
651 IB_QPS_RTR,
652 IB_QPS_RTS,
653 IB_QPS_SQD,
654 IB_QPS_SQE,
655 IB_QPS_ERR
656};
657
658enum ib_mig_state {
659 IB_MIG_MIGRATED,
660 IB_MIG_REARM,
661 IB_MIG_ARMED
662};
663
664struct ib_qp_attr {
665 enum ib_qp_state qp_state;
666 enum ib_qp_state cur_qp_state;
667 enum ib_mtu path_mtu;
668 enum ib_mig_state path_mig_state;
669 u32 qkey;
670 u32 rq_psn;
671 u32 sq_psn;
672 u32 dest_qp_num;
673 int qp_access_flags;
674 struct ib_qp_cap cap;
675 struct ib_ah_attr ah_attr;
676 struct ib_ah_attr alt_ah_attr;
677 u16 pkey_index;
678 u16 alt_pkey_index;
679 u8 en_sqd_async_notify;
680 u8 sq_draining;
681 u8 max_rd_atomic;
682 u8 max_dest_rd_atomic;
683 u8 min_rnr_timer;
684 u8 port_num;
685 u8 timeout;
686 u8 retry_cnt;
687 u8 rnr_retry;
688 u8 alt_port_num;
689 u8 alt_timeout;
690};
691
692enum ib_wr_opcode {
693 IB_WR_RDMA_WRITE,
694 IB_WR_RDMA_WRITE_WITH_IMM,
695 IB_WR_SEND,
696 IB_WR_SEND_WITH_IMM,
697 IB_WR_RDMA_READ,
698 IB_WR_ATOMIC_CMP_AND_SWP,
699 IB_WR_ATOMIC_FETCH_AND_ADD,
700 IB_WR_LSO,
701 IB_WR_SEND_WITH_INV,
702 IB_WR_RDMA_READ_WITH_INV,
703 IB_WR_LOCAL_INV,
704 IB_WR_FAST_REG_MR,
705 IB_WR_MASKED_ATOMIC_CMP_AND_SWP,
706 IB_WR_MASKED_ATOMIC_FETCH_AND_ADD,
707};
708
709enum ib_send_flags {
710 IB_SEND_FENCE = 1,
711 IB_SEND_SIGNALED = (1<<1),
712 IB_SEND_SOLICITED = (1<<2),
713 IB_SEND_INLINE = (1<<3),
714 IB_SEND_IP_CSUM = (1<<4)
715};
716
717struct ib_sge {
718 u64 addr;
719 u32 length;
720 u32 lkey;
721};
722
723struct ib_fast_reg_page_list {
724 struct ib_device *device;
725 u64 *page_list;
726 unsigned int max_page_list_len;
727};
728
729struct ib_send_wr {
730 struct ib_send_wr *next;
731 u64 wr_id;
732 struct ib_sge *sg_list;
733 int num_sge;
734 enum ib_wr_opcode opcode;
735 int send_flags;
736 union {
737 __be32 imm_data;
738 u32 invalidate_rkey;
739 } ex;
740 union {
741 struct {
742 u64 remote_addr;
743 u32 rkey;
744 } rdma;
745 struct {
746 u64 remote_addr;
747 u64 compare_add;
748 u64 swap;
749 u64 compare_add_mask;
750 u64 swap_mask;
751 u32 rkey;
752 } atomic;
753 struct {
754 struct ib_ah *ah;
755 void *header;
756 int hlen;
757 int mss;
758 u32 remote_qpn;
759 u32 remote_qkey;
760 u16 pkey_index; /* valid for GSI only */
761 u8 port_num; /* valid for DR SMPs on switch only */
762 } ud;
763 struct {
764 u64 iova_start;
765 struct ib_fast_reg_page_list *page_list;
766 unsigned int page_shift;
767 unsigned int page_list_len;
768 u32 length;
769 int access_flags;
770 u32 rkey;
771 } fast_reg;
772 } wr;
773};
774
775struct ib_recv_wr {
776 struct ib_recv_wr *next;
777 u64 wr_id;
778 struct ib_sge *sg_list;
779 int num_sge;
780};
781
782enum ib_access_flags {
783 IB_ACCESS_LOCAL_WRITE = 1,
784 IB_ACCESS_REMOTE_WRITE = (1<<1),
785 IB_ACCESS_REMOTE_READ = (1<<2),
786 IB_ACCESS_REMOTE_ATOMIC = (1<<3),
787 IB_ACCESS_MW_BIND = (1<<4)
788};
789
790struct ib_phys_buf {
791 u64 addr;
792 u64 size;
793};
794
795struct ib_mr_attr {
796 struct ib_pd *pd;
797 u64 device_virt_addr;
798 u64 size;
799 int mr_access_flags;
800 u32 lkey;
801 u32 rkey;
802};
803
804enum ib_mr_rereg_flags {
805 IB_MR_REREG_TRANS = 1,
806 IB_MR_REREG_PD = (1<<1),
807 IB_MR_REREG_ACCESS = (1<<2)
808};
809
810struct ib_mw_bind {
811 struct ib_mr *mr;
812 u64 wr_id;
813 u64 addr;
814 u32 length;
815 int send_flags;
816 int mw_access_flags;
817};
818
819struct ib_fmr_attr {
820 int max_pages;
821 int max_maps;
822 u8 page_shift;
823};
824
825struct ib_ucontext {
826 struct ib_device *device;
827 struct list_head pd_list;
828 struct list_head mr_list;
829 struct list_head mw_list;
830 struct list_head cq_list;
831 struct list_head qp_list;
832 struct list_head srq_list;
833 struct list_head ah_list;
834 int closing;
835};
836
837struct ib_uobject {
838 u64 user_handle; /* handle given to us by userspace */
839 struct ib_ucontext *context; /* associated user context */
840 void *object; /* containing object */
841 struct list_head list; /* link to context's list */
842 int id; /* index into kernel idr */
843 struct kref ref;
844 struct rw_semaphore mutex; /* protects .live */
845 int live;
846};
847
848struct ib_udata {
849 void __user *inbuf;
850 void __user *outbuf;
851 size_t inlen;
852 size_t outlen;
853};
854
855struct ib_pd {
856 struct ib_device *device;
857 struct ib_uobject *uobject;
858 atomic_t usecnt; /* count all resources */
859};
860
861struct ib_ah {
862 struct ib_device *device;
863 struct ib_pd *pd;
864 struct ib_uobject *uobject;
865};
866
867typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
868
869struct ib_cq {
870 struct ib_device *device;
871 struct ib_uobject *uobject;
872 ib_comp_handler comp_handler;
873 void (*event_handler)(struct ib_event *, void *);
874 void *cq_context;
875 int cqe;
876 atomic_t usecnt; /* count number of work queues */
877};
878
879struct ib_srq {
880 struct ib_device *device;
881 struct ib_pd *pd;
882 struct ib_uobject *uobject;
883 void (*event_handler)(struct ib_event *, void *);
884 void *srq_context;
885 atomic_t usecnt;
886};
887
888struct ib_qp {
889 struct ib_device *device;
890 struct ib_pd *pd;
891 struct ib_cq *send_cq;
892 struct ib_cq *recv_cq;
893 struct ib_srq *srq;
894 struct ib_uobject *uobject;
895 void (*event_handler)(struct ib_event *, void *);
896 void *qp_context;
897 u32 qp_num;
898 enum ib_qp_type qp_type;
899};
900
901struct ib_mr {
902 struct ib_device *device;
903 struct ib_pd *pd;
904 struct ib_uobject *uobject;
905 u32 lkey;
906 u32 rkey;
907 atomic_t usecnt; /* count number of MWs */
908};
909
910struct ib_mw {
911 struct ib_device *device;
912 struct ib_pd *pd;
913 struct ib_uobject *uobject;
914 u32 rkey;
915};
916
917struct ib_fmr {
918 struct ib_device *device;
919 struct ib_pd *pd;
920 struct list_head list;
921 u32 lkey;
922 u32 rkey;
923};
924
925struct ib_mad;
926struct ib_grh;
927
928enum ib_process_mad_flags {
929 IB_MAD_IGNORE_MKEY = 1,
930 IB_MAD_IGNORE_BKEY = 2,
931 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
932};
933
934enum ib_mad_result {
935 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */
936 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */
937 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */
938 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */
939};
940
941#define IB_DEVICE_NAME_MAX 64
942
943struct ib_cache {
944 rwlock_t lock;
945 struct ib_event_handler event_handler;
946 struct ib_pkey_cache **pkey_cache;
947 struct ib_gid_cache **gid_cache;
948 u8 *lmc_cache;
949};
950
951struct ib_dma_mapping_ops {
952 int (*mapping_error)(struct ib_device *dev,
953 u64 dma_addr);
954 u64 (*map_single)(struct ib_device *dev,
955 void *ptr, size_t size,
956 enum dma_data_direction direction);
957 void (*unmap_single)(struct ib_device *dev,
958 u64 addr, size_t size,
959 enum dma_data_direction direction);
960 u64 (*map_page)(struct ib_device *dev,
961 struct page *page, unsigned long offset,
962 size_t size,
963 enum dma_data_direction direction);
964 void (*unmap_page)(struct ib_device *dev,
965 u64 addr, size_t size,
966 enum dma_data_direction direction);
967 int (*map_sg)(struct ib_device *dev,
968 struct scatterlist *sg, int nents,
969 enum dma_data_direction direction);
970 void (*unmap_sg)(struct ib_device *dev,
971 struct scatterlist *sg, int nents,
972 enum dma_data_direction direction);
973 u64 (*dma_address)(struct ib_device *dev,
974 struct scatterlist *sg);
975 unsigned int (*dma_len)(struct ib_device *dev,
976 struct scatterlist *sg);
977 void (*sync_single_for_cpu)(struct ib_device *dev,
978 u64 dma_handle,
979 size_t size,
980 enum dma_data_direction dir);
981 void (*sync_single_for_device)(struct ib_device *dev,
982 u64 dma_handle,
983 size_t size,
984 enum dma_data_direction dir);
985 void *(*alloc_coherent)(struct ib_device *dev,
986 size_t size,
987 u64 *dma_handle,
988 gfp_t flag);
989 void (*free_coherent)(struct ib_device *dev,
990 size_t size, void *cpu_addr,
991 u64 dma_handle);
992};
993
994struct iw_cm_verbs;
995
996struct ib_device {
997 struct device *dma_device;
998
999 char name[IB_DEVICE_NAME_MAX];
1000
1001 struct list_head event_handler_list;
1002 spinlock_t event_handler_lock;
1003
1004 spinlock_t client_data_lock;
1005 struct list_head core_list;
1006 struct list_head client_data_list;
1007
1008 struct ib_cache cache;
1009 int *pkey_tbl_len;
1010 int *gid_tbl_len;
1011
1012 int num_comp_vectors;
1013
1014 struct iw_cm_verbs *iwcm;
1015
1016 int (*get_protocol_stats)(struct ib_device *device,
1017 union rdma_protocol_stats *stats);
1018 int (*query_device)(struct ib_device *device,
1019 struct ib_device_attr *device_attr);
1020 int (*query_port)(struct ib_device *device,
1021 u8 port_num,
1022 struct ib_port_attr *port_attr);
1023 enum rdma_link_layer (*get_link_layer)(struct ib_device *device,
1024 u8 port_num);
1025 int (*query_gid)(struct ib_device *device,
1026 u8 port_num, int index,
1027 union ib_gid *gid);
1028 int (*query_pkey)(struct ib_device *device,
1029 u8 port_num, u16 index, u16 *pkey);
1030 int (*modify_device)(struct ib_device *device,
1031 int device_modify_mask,
1032 struct ib_device_modify *device_modify);
1033 int (*modify_port)(struct ib_device *device,
1034 u8 port_num, int port_modify_mask,
1035 struct ib_port_modify *port_modify);
1036 struct ib_ucontext * (*alloc_ucontext)(struct ib_device *device,
1037 struct ib_udata *udata);
1038 int (*dealloc_ucontext)(struct ib_ucontext *context);
1039 int (*mmap)(struct ib_ucontext *context,
1040 struct vm_area_struct *vma);
1041 struct ib_pd * (*alloc_pd)(struct ib_device *device,
1042 struct ib_ucontext *context,
1043 struct ib_udata *udata);
1044 int (*dealloc_pd)(struct ib_pd *pd);
1045 struct ib_ah * (*create_ah)(struct ib_pd *pd,
1046 struct ib_ah_attr *ah_attr);
1047 int (*modify_ah)(struct ib_ah *ah,
1048 struct ib_ah_attr *ah_attr);
1049 int (*query_ah)(struct ib_ah *ah,
1050 struct ib_ah_attr *ah_attr);
1051 int (*destroy_ah)(struct ib_ah *ah);
1052 struct ib_srq * (*create_srq)(struct ib_pd *pd,
1053 struct ib_srq_init_attr *srq_init_attr,
1054 struct ib_udata *udata);
1055 int (*modify_srq)(struct ib_srq *srq,
1056 struct ib_srq_attr *srq_attr,
1057 enum ib_srq_attr_mask srq_attr_mask,
1058 struct ib_udata *udata);
1059 int (*query_srq)(struct ib_srq *srq,
1060 struct ib_srq_attr *srq_attr);
1061 int (*destroy_srq)(struct ib_srq *srq);
1062 int (*post_srq_recv)(struct ib_srq *srq,
1063 struct ib_recv_wr *recv_wr,
1064 struct ib_recv_wr **bad_recv_wr);
1065 struct ib_qp * (*create_qp)(struct ib_pd *pd,
1066 struct ib_qp_init_attr *qp_init_attr,
1067 struct ib_udata *udata);
1068 int (*modify_qp)(struct ib_qp *qp,
1069 struct ib_qp_attr *qp_attr,
1070 int qp_attr_mask,
1071 struct ib_udata *udata);
1072 int (*query_qp)(struct ib_qp *qp,
1073 struct ib_qp_attr *qp_attr,
1074 int qp_attr_mask,
1075 struct ib_qp_init_attr *qp_init_attr);
1076 int (*destroy_qp)(struct ib_qp *qp);
1077 int (*post_send)(struct ib_qp *qp,
1078 struct ib_send_wr *send_wr,
1079 struct ib_send_wr **bad_send_wr);
1080 int (*post_recv)(struct ib_qp *qp,
1081 struct ib_recv_wr *recv_wr,
1082 struct ib_recv_wr **bad_recv_wr);
1083 struct ib_cq * (*create_cq)(struct ib_device *device, int cqe,
1084 int comp_vector,
1085 struct ib_ucontext *context,
1086 struct ib_udata *udata);
1087 int (*modify_cq)(struct ib_cq *cq, u16 cq_count,
1088 u16 cq_period);
1089 int (*destroy_cq)(struct ib_cq *cq);
1090 int (*resize_cq)(struct ib_cq *cq, int cqe,
1091 struct ib_udata *udata);
1092 int (*poll_cq)(struct ib_cq *cq, int num_entries,
1093 struct ib_wc *wc);
1094 int (*peek_cq)(struct ib_cq *cq, int wc_cnt);
1095 int (*req_notify_cq)(struct ib_cq *cq,
1096 enum ib_cq_notify_flags flags);
1097 int (*req_ncomp_notif)(struct ib_cq *cq,
1098 int wc_cnt);
1099 struct ib_mr * (*get_dma_mr)(struct ib_pd *pd,
1100 int mr_access_flags);
1101 struct ib_mr * (*reg_phys_mr)(struct ib_pd *pd,
1102 struct ib_phys_buf *phys_buf_array,
1103 int num_phys_buf,
1104 int mr_access_flags,
1105 u64 *iova_start);
1106 struct ib_mr * (*reg_user_mr)(struct ib_pd *pd,
1107 u64 start, u64 length,
1108 u64 virt_addr,
1109 int mr_access_flags,
1110 struct ib_udata *udata);
1111 int (*query_mr)(struct ib_mr *mr,
1112 struct ib_mr_attr *mr_attr);
1113 int (*dereg_mr)(struct ib_mr *mr);
1114 struct ib_mr * (*alloc_fast_reg_mr)(struct ib_pd *pd,
1115 int max_page_list_len);
1116 struct ib_fast_reg_page_list * (*alloc_fast_reg_page_list)(struct ib_device *device,
1117 int page_list_len);
1118 void (*free_fast_reg_page_list)(struct ib_fast_reg_page_list *page_list);
1119 int (*rereg_phys_mr)(struct ib_mr *mr,
1120 int mr_rereg_mask,
1121 struct ib_pd *pd,
1122 struct ib_phys_buf *phys_buf_array,
1123 int num_phys_buf,
1124 int mr_access_flags,
1125 u64 *iova_start);
1126 struct ib_mw * (*alloc_mw)(struct ib_pd *pd);
1127 int (*bind_mw)(struct ib_qp *qp,
1128 struct ib_mw *mw,
1129 struct ib_mw_bind *mw_bind);
1130 int (*dealloc_mw)(struct ib_mw *mw);
1131 struct ib_fmr * (*alloc_fmr)(struct ib_pd *pd,
1132 int mr_access_flags,
1133 struct ib_fmr_attr *fmr_attr);
1134 int (*map_phys_fmr)(struct ib_fmr *fmr,
1135 u64 *page_list, int list_len,
1136 u64 iova);
1137 int (*unmap_fmr)(struct list_head *fmr_list);
1138 int (*dealloc_fmr)(struct ib_fmr *fmr);
1139 int (*attach_mcast)(struct ib_qp *qp,
1140 union ib_gid *gid,
1141 u16 lid);
1142 int (*detach_mcast)(struct ib_qp *qp,
1143 union ib_gid *gid,
1144 u16 lid);
1145 int (*process_mad)(struct ib_device *device,
1146 int process_mad_flags,
1147 u8 port_num,
1148 struct ib_wc *in_wc,
1149 struct ib_grh *in_grh,
1150 struct ib_mad *in_mad,
1151 struct ib_mad *out_mad);
1152
1153 struct ib_dma_mapping_ops *dma_ops;
1154
1155 struct module *owner;
1156 struct device dev;
1157 struct kobject *ports_parent;
1158 struct list_head port_list;
1159
1160 enum {
1161 IB_DEV_UNINITIALIZED,
1162 IB_DEV_REGISTERED,
1163 IB_DEV_UNREGISTERED
1164 } reg_state;
1165
1166 int uverbs_abi_ver;
1167 u64 uverbs_cmd_mask;
1168
1169 char node_desc[64];
1170 __be64 node_guid;
1171 u32 local_dma_lkey;
1172 u8 node_type;
1173 u8 phys_port_cnt;
1174};
1175
1176struct ib_client {
1177 char *name;
1178 void (*add) (struct ib_device *);
1179 void (*remove)(struct ib_device *);
1180
1181 struct list_head list;
1182};
1183
1184struct ib_device *ib_alloc_device(size_t size);
1185void ib_dealloc_device(struct ib_device *device);
1186
1187int ib_register_device(struct ib_device *device,
1188 int (*port_callback)(struct ib_device *,
1189 u8, struct kobject *));
1190void ib_unregister_device(struct ib_device *device);
1191
1192int ib_register_client (struct ib_client *client);
1193void ib_unregister_client(struct ib_client *client);
1194
1195void *ib_get_client_data(struct ib_device *device, struct ib_client *client);
1196void ib_set_client_data(struct ib_device *device, struct ib_client *client,
1197 void *data);
1198
1199static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
1200{
1201 return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
1202}
1203
1204static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
1205{
1206 return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
1207}
1208
1209/**
1210 * ib_modify_qp_is_ok - Check that the supplied attribute mask
1211 * contains all required attributes and no attributes not allowed for
1212 * the given QP state transition.
1213 * @cur_state: Current QP state
1214 * @next_state: Next QP state
1215 * @type: QP type
1216 * @mask: Mask of supplied QP attributes
1217 *
1218 * This function is a helper function that a low-level driver's
1219 * modify_qp method can use to validate the consumer's input. It
1220 * checks that cur_state and next_state are valid QP states, that a
1221 * transition from cur_state to next_state is allowed by the IB spec,
1222 * and that the attribute mask supplied is allowed for the transition.
1223 */
1224int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
1225 enum ib_qp_type type, enum ib_qp_attr_mask mask);
1226
1227int ib_register_event_handler (struct ib_event_handler *event_handler);
1228int ib_unregister_event_handler(struct ib_event_handler *event_handler);
1229void ib_dispatch_event(struct ib_event *event);
1230
1231int ib_query_device(struct ib_device *device,
1232 struct ib_device_attr *device_attr);
1233
1234int ib_query_port(struct ib_device *device,
1235 u8 port_num, struct ib_port_attr *port_attr);
1236
1237enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
1238 u8 port_num);
1239
1240int ib_query_gid(struct ib_device *device,
1241 u8 port_num, int index, union ib_gid *gid);
1242
1243int ib_query_pkey(struct ib_device *device,
1244 u8 port_num, u16 index, u16 *pkey);
1245
1246int ib_modify_device(struct ib_device *device,
1247 int device_modify_mask,
1248 struct ib_device_modify *device_modify);
1249
1250int ib_modify_port(struct ib_device *device,
1251 u8 port_num, int port_modify_mask,
1252 struct ib_port_modify *port_modify);
1253
1254int ib_find_gid(struct ib_device *device, union ib_gid *gid,
1255 u8 *port_num, u16 *index);
1256
1257int ib_find_pkey(struct ib_device *device,
1258 u8 port_num, u16 pkey, u16 *index);
1259
1260/**
1261 * ib_alloc_pd - Allocates an unused protection domain.
1262 * @device: The device on which to allocate the protection domain.
1263 *
1264 * A protection domain object provides an association between QPs, shared
1265 * receive queues, address handles, memory regions, and memory windows.
1266 */
1267struct ib_pd *ib_alloc_pd(struct ib_device *device);
1268
1269/**
1270 * ib_dealloc_pd - Deallocates a protection domain.
1271 * @pd: The protection domain to deallocate.
1272 */
1273int ib_dealloc_pd(struct ib_pd *pd);
1274
1275/**
1276 * ib_create_ah - Creates an address handle for the given address vector.
1277 * @pd: The protection domain associated with the address handle.
1278 * @ah_attr: The attributes of the address vector.
1279 *
1280 * The address handle is used to reference a local or global destination
1281 * in all UD QP post sends.
1282 */
1283struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr);
1284
1285/**
1286 * ib_init_ah_from_wc - Initializes address handle attributes from a
1287 * work completion.
1288 * @device: Device on which the received message arrived.
1289 * @port_num: Port on which the received message arrived.
1290 * @wc: Work completion associated with the received message.
1291 * @grh: References the received global route header. This parameter is
1292 * ignored unless the work completion indicates that the GRH is valid.
1293 * @ah_attr: Returned attributes that can be used when creating an address
1294 * handle for replying to the message.
1295 */
1296int ib_init_ah_from_wc(struct ib_device *device, u8 port_num, struct ib_wc *wc,
1297 struct ib_grh *grh, struct ib_ah_attr *ah_attr);
1298
1299/**
1300 * ib_create_ah_from_wc - Creates an address handle associated with the
1301 * sender of the specified work completion.
1302 * @pd: The protection domain associated with the address handle.
1303 * @wc: Work completion information associated with a received message.
1304 * @grh: References the received global route header. This parameter is
1305 * ignored unless the work completion indicates that the GRH is valid.
1306 * @port_num: The outbound port number to associate with the address.
1307 *
1308 * The address handle is used to reference a local or global destination
1309 * in all UD QP post sends.
1310 */
1311struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, struct ib_wc *wc,
1312 struct ib_grh *grh, u8 port_num);
1313
1314/**
1315 * ib_modify_ah - Modifies the address vector associated with an address
1316 * handle.
1317 * @ah: The address handle to modify.
1318 * @ah_attr: The new address vector attributes to associate with the
1319 * address handle.
1320 */
1321int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
1322
1323/**
1324 * ib_query_ah - Queries the address vector associated with an address
1325 * handle.
1326 * @ah: The address handle to query.
1327 * @ah_attr: The address vector attributes associated with the address
1328 * handle.
1329 */
1330int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
1331
1332/**
1333 * ib_destroy_ah - Destroys an address handle.
1334 * @ah: The address handle to destroy.
1335 */
1336int ib_destroy_ah(struct ib_ah *ah);
1337
1338/**
1339 * ib_create_srq - Creates a SRQ associated with the specified protection
1340 * domain.
1341 * @pd: The protection domain associated with the SRQ.
1342 * @srq_init_attr: A list of initial attributes required to create the
1343 * SRQ. If SRQ creation succeeds, then the attributes are updated to
1344 * the actual capabilities of the created SRQ.
1345 *
1346 * srq_attr->max_wr and srq_attr->max_sge are read the determine the
1347 * requested size of the SRQ, and set to the actual values allocated
1348 * on return. If ib_create_srq() succeeds, then max_wr and max_sge
1349 * will always be at least as large as the requested values.
1350 */
1351struct ib_srq *ib_create_srq(struct ib_pd *pd,
1352 struct ib_srq_init_attr *srq_init_attr);
1353
1354/**
1355 * ib_modify_srq - Modifies the attributes for the specified SRQ.
1356 * @srq: The SRQ to modify.
1357 * @srq_attr: On input, specifies the SRQ attributes to modify. On output,
1358 * the current values of selected SRQ attributes are returned.
1359 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
1360 * are being modified.
1361 *
1362 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
1363 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when
1364 * the number of receives queued drops below the limit.
1365 */
1366int ib_modify_srq(struct ib_srq *srq,
1367 struct ib_srq_attr *srq_attr,
1368 enum ib_srq_attr_mask srq_attr_mask);
1369
1370/**
1371 * ib_query_srq - Returns the attribute list and current values for the
1372 * specified SRQ.
1373 * @srq: The SRQ to query.
1374 * @srq_attr: The attributes of the specified SRQ.
1375 */
1376int ib_query_srq(struct ib_srq *srq,
1377 struct ib_srq_attr *srq_attr);
1378
1379/**
1380 * ib_destroy_srq - Destroys the specified SRQ.
1381 * @srq: The SRQ to destroy.
1382 */
1383int ib_destroy_srq(struct ib_srq *srq);
1384
1385/**
1386 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
1387 * @srq: The SRQ to post the work request on.
1388 * @recv_wr: A list of work requests to post on the receive queue.
1389 * @bad_recv_wr: On an immediate failure, this parameter will reference
1390 * the work request that failed to be posted on the QP.
1391 */
1392static inline int ib_post_srq_recv(struct ib_srq *srq,
1393 struct ib_recv_wr *recv_wr,
1394 struct ib_recv_wr **bad_recv_wr)
1395{
1396 return srq->device->post_srq_recv(srq, recv_wr, bad_recv_wr);
1397}
1398
1399/**
1400 * ib_create_qp - Creates a QP associated with the specified protection
1401 * domain.
1402 * @pd: The protection domain associated with the QP.
1403 * @qp_init_attr: A list of initial attributes required to create the
1404 * QP. If QP creation succeeds, then the attributes are updated to
1405 * the actual capabilities of the created QP.
1406 */
1407struct ib_qp *ib_create_qp(struct ib_pd *pd,
1408 struct ib_qp_init_attr *qp_init_attr);
1409
1410/**
1411 * ib_modify_qp - Modifies the attributes for the specified QP and then
1412 * transitions the QP to the given state.
1413 * @qp: The QP to modify.
1414 * @qp_attr: On input, specifies the QP attributes to modify. On output,
1415 * the current values of selected QP attributes are returned.
1416 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP
1417 * are being modified.
1418 */
1419int ib_modify_qp(struct ib_qp *qp,
1420 struct ib_qp_attr *qp_attr,
1421 int qp_attr_mask);
1422
1423/**
1424 * ib_query_qp - Returns the attribute list and current values for the
1425 * specified QP.
1426 * @qp: The QP to query.
1427 * @qp_attr: The attributes of the specified QP.
1428 * @qp_attr_mask: A bit-mask used to select specific attributes to query.
1429 * @qp_init_attr: Additional attributes of the selected QP.
1430 *
1431 * The qp_attr_mask may be used to limit the query to gathering only the
1432 * selected attributes.
1433 */
1434int ib_query_qp(struct ib_qp *qp,
1435 struct ib_qp_attr *qp_attr,
1436 int qp_attr_mask,
1437 struct ib_qp_init_attr *qp_init_attr);
1438
1439/**
1440 * ib_destroy_qp - Destroys the specified QP.
1441 * @qp: The QP to destroy.
1442 */
1443int ib_destroy_qp(struct ib_qp *qp);
1444
1445/**
1446 * ib_post_send - Posts a list of work requests to the send queue of
1447 * the specified QP.
1448 * @qp: The QP to post the work request on.
1449 * @send_wr: A list of work requests to post on the send queue.
1450 * @bad_send_wr: On an immediate failure, this parameter will reference
1451 * the work request that failed to be posted on the QP.
1452 *
1453 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate
1454 * error is returned, the QP state shall not be affected,
1455 * ib_post_send() will return an immediate error after queueing any
1456 * earlier work requests in the list.
1457 */
1458static inline int ib_post_send(struct ib_qp *qp,
1459 struct ib_send_wr *send_wr,
1460 struct ib_send_wr **bad_send_wr)
1461{
1462 return qp->device->post_send(qp, send_wr, bad_send_wr);
1463}
1464
1465/**
1466 * ib_post_recv - Posts a list of work requests to the receive queue of
1467 * the specified QP.
1468 * @qp: The QP to post the work request on.
1469 * @recv_wr: A list of work requests to post on the receive queue.
1470 * @bad_recv_wr: On an immediate failure, this parameter will reference
1471 * the work request that failed to be posted on the QP.
1472 */
1473static inline int ib_post_recv(struct ib_qp *qp,
1474 struct ib_recv_wr *recv_wr,
1475 struct ib_recv_wr **bad_recv_wr)
1476{
1477 return qp->device->post_recv(qp, recv_wr, bad_recv_wr);
1478}
1479
1480/**
1481 * ib_create_cq - Creates a CQ on the specified device.
1482 * @device: The device on which to create the CQ.
1483 * @comp_handler: A user-specified callback that is invoked when a
1484 * completion event occurs on the CQ.
1485 * @event_handler: A user-specified callback that is invoked when an
1486 * asynchronous event not associated with a completion occurs on the CQ.
1487 * @cq_context: Context associated with the CQ returned to the user via
1488 * the associated completion and event handlers.
1489 * @cqe: The minimum size of the CQ.
1490 * @comp_vector - Completion vector used to signal completion events.
1491 * Must be >= 0 and < context->num_comp_vectors.
1492 *
1493 * Users can examine the cq structure to determine the actual CQ size.
1494 */
1495struct ib_cq *ib_create_cq(struct ib_device *device,
1496 ib_comp_handler comp_handler,
1497 void (*event_handler)(struct ib_event *, void *),
1498 void *cq_context, int cqe, int comp_vector);
1499
1500/**
1501 * ib_resize_cq - Modifies the capacity of the CQ.
1502 * @cq: The CQ to resize.
1503 * @cqe: The minimum size of the CQ.
1504 *
1505 * Users can examine the cq structure to determine the actual CQ size.
1506 */
1507int ib_resize_cq(struct ib_cq *cq, int cqe);
1508
1509/**
1510 * ib_modify_cq - Modifies moderation params of the CQ
1511 * @cq: The CQ to modify.
1512 * @cq_count: number of CQEs that will trigger an event
1513 * @cq_period: max period of time in usec before triggering an event
1514 *
1515 */
1516int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period);
1517
1518/**
1519 * ib_destroy_cq - Destroys the specified CQ.
1520 * @cq: The CQ to destroy.
1521 */
1522int ib_destroy_cq(struct ib_cq *cq);
1523
1524/**
1525 * ib_poll_cq - poll a CQ for completion(s)
1526 * @cq:the CQ being polled
1527 * @num_entries:maximum number of completions to return
1528 * @wc:array of at least @num_entries &struct ib_wc where completions
1529 * will be returned
1530 *
1531 * Poll a CQ for (possibly multiple) completions. If the return value
1532 * is < 0, an error occurred. If the return value is >= 0, it is the
1533 * number of completions returned. If the return value is
1534 * non-negative and < num_entries, then the CQ was emptied.
1535 */
1536static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
1537 struct ib_wc *wc)
1538{
1539 return cq->device->poll_cq(cq, num_entries, wc);
1540}
1541
1542/**
1543 * ib_peek_cq - Returns the number of unreaped completions currently
1544 * on the specified CQ.
1545 * @cq: The CQ to peek.
1546 * @wc_cnt: A minimum number of unreaped completions to check for.
1547 *
1548 * If the number of unreaped completions is greater than or equal to wc_cnt,
1549 * this function returns wc_cnt, otherwise, it returns the actual number of
1550 * unreaped completions.
1551 */
1552int ib_peek_cq(struct ib_cq *cq, int wc_cnt);
1553
1554/**
1555 * ib_req_notify_cq - Request completion notification on a CQ.
1556 * @cq: The CQ to generate an event for.
1557 * @flags:
1558 * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
1559 * to request an event on the next solicited event or next work
1560 * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
1561 * may also be |ed in to request a hint about missed events, as
1562 * described below.
1563 *
1564 * Return Value:
1565 * < 0 means an error occurred while requesting notification
1566 * == 0 means notification was requested successfully, and if
1567 * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
1568 * were missed and it is safe to wait for another event. In
1569 * this case is it guaranteed that any work completions added
1570 * to the CQ since the last CQ poll will trigger a completion
1571 * notification event.
1572 * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
1573 * in. It means that the consumer must poll the CQ again to
1574 * make sure it is empty to avoid missing an event because of a
1575 * race between requesting notification and an entry being
1576 * added to the CQ. This return value means it is possible
1577 * (but not guaranteed) that a work completion has been added
1578 * to the CQ since the last poll without triggering a
1579 * completion notification event.
1580 */
1581static inline int ib_req_notify_cq(struct ib_cq *cq,
1582 enum ib_cq_notify_flags flags)
1583{
1584 return cq->device->req_notify_cq(cq, flags);
1585}
1586
1587/**
1588 * ib_req_ncomp_notif - Request completion notification when there are
1589 * at least the specified number of unreaped completions on the CQ.
1590 * @cq: The CQ to generate an event for.
1591 * @wc_cnt: The number of unreaped completions that should be on the
1592 * CQ before an event is generated.
1593 */
1594static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt)
1595{
1596 return cq->device->req_ncomp_notif ?
1597 cq->device->req_ncomp_notif(cq, wc_cnt) :
1598 -ENOSYS;
1599}
1600
1601/**
1602 * ib_get_dma_mr - Returns a memory region for system memory that is
1603 * usable for DMA.
1604 * @pd: The protection domain associated with the memory region.
1605 * @mr_access_flags: Specifies the memory access rights.
1606 *
1607 * Note that the ib_dma_*() functions defined below must be used
1608 * to create/destroy addresses used with the Lkey or Rkey returned
1609 * by ib_get_dma_mr().
1610 */
1611struct ib_mr *ib_get_dma_mr(struct ib_pd *pd, int mr_access_flags);
1612
1613/**
1614 * ib_dma_mapping_error - check a DMA addr for error
1615 * @dev: The device for which the dma_addr was created
1616 * @dma_addr: The DMA address to check
1617 */
1618static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
1619{
1620 if (dev->dma_ops)
1621 return dev->dma_ops->mapping_error(dev, dma_addr);
1622 return dma_mapping_error(dev->dma_device, dma_addr);
1623}
1624
1625/**
1626 * ib_dma_map_single - Map a kernel virtual address to DMA address
1627 * @dev: The device for which the dma_addr is to be created
1628 * @cpu_addr: The kernel virtual address
1629 * @size: The size of the region in bytes
1630 * @direction: The direction of the DMA
1631 */
1632static inline u64 ib_dma_map_single(struct ib_device *dev,
1633 void *cpu_addr, size_t size,
1634 enum dma_data_direction direction)
1635{
1636 if (dev->dma_ops)
1637 return dev->dma_ops->map_single(dev, cpu_addr, size, direction);
1638 return dma_map_single(dev->dma_device, cpu_addr, size, direction);
1639}
1640
1641/**
1642 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
1643 * @dev: The device for which the DMA address was created
1644 * @addr: The DMA address
1645 * @size: The size of the region in bytes
1646 * @direction: The direction of the DMA
1647 */
1648static inline void ib_dma_unmap_single(struct ib_device *dev,
1649 u64 addr, size_t size,
1650 enum dma_data_direction direction)
1651{
1652 if (dev->dma_ops)
1653 dev->dma_ops->unmap_single(dev, addr, size, direction);
1654 else
1655 dma_unmap_single(dev->dma_device, addr, size, direction);
1656}
1657
1658static inline u64 ib_dma_map_single_attrs(struct ib_device *dev,
1659 void *cpu_addr, size_t size,
1660 enum dma_data_direction direction,
1661 struct dma_attrs *attrs)
1662{
1663 return dma_map_single_attrs(dev->dma_device, cpu_addr, size,
1664 direction, attrs);
1665}
1666
1667static inline void ib_dma_unmap_single_attrs(struct ib_device *dev,
1668 u64 addr, size_t size,
1669 enum dma_data_direction direction,
1670 struct dma_attrs *attrs)
1671{
1672 return dma_unmap_single_attrs(dev->dma_device, addr, size,
1673 direction, attrs);
1674}
1675
1676/**
1677 * ib_dma_map_page - Map a physical page to DMA address
1678 * @dev: The device for which the dma_addr is to be created
1679 * @page: The page to be mapped
1680 * @offset: The offset within the page
1681 * @size: The size of the region in bytes
1682 * @direction: The direction of the DMA
1683 */
1684static inline u64 ib_dma_map_page(struct ib_device *dev,
1685 struct page *page,
1686 unsigned long offset,
1687 size_t size,
1688 enum dma_data_direction direction)
1689{
1690 if (dev->dma_ops)
1691 return dev->dma_ops->map_page(dev, page, offset, size, direction);
1692 return dma_map_page(dev->dma_device, page, offset, size, direction);
1693}
1694
1695/**
1696 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
1697 * @dev: The device for which the DMA address was created
1698 * @addr: The DMA address
1699 * @size: The size of the region in bytes
1700 * @direction: The direction of the DMA
1701 */
1702static inline void ib_dma_unmap_page(struct ib_device *dev,
1703 u64 addr, size_t size,
1704 enum dma_data_direction direction)
1705{
1706 if (dev->dma_ops)
1707 dev->dma_ops->unmap_page(dev, addr, size, direction);
1708 else
1709 dma_unmap_page(dev->dma_device, addr, size, direction);
1710}
1711
1712/**
1713 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses
1714 * @dev: The device for which the DMA addresses are to be created
1715 * @sg: The array of scatter/gather entries
1716 * @nents: The number of scatter/gather entries
1717 * @direction: The direction of the DMA
1718 */
1719static inline int ib_dma_map_sg(struct ib_device *dev,
1720 struct scatterlist *sg, int nents,
1721 enum dma_data_direction direction)
1722{
1723 if (dev->dma_ops)
1724 return dev->dma_ops->map_sg(dev, sg, nents, direction);
1725 return dma_map_sg(dev->dma_device, sg, nents, direction);
1726}
1727
1728/**
1729 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
1730 * @dev: The device for which the DMA addresses were created
1731 * @sg: The array of scatter/gather entries
1732 * @nents: The number of scatter/gather entries
1733 * @direction: The direction of the DMA
1734 */
1735static inline void ib_dma_unmap_sg(struct ib_device *dev,
1736 struct scatterlist *sg, int nents,
1737 enum dma_data_direction direction)
1738{
1739 if (dev->dma_ops)
1740 dev->dma_ops->unmap_sg(dev, sg, nents, direction);
1741 else
1742 dma_unmap_sg(dev->dma_device, sg, nents, direction);
1743}
1744
1745static inline int ib_dma_map_sg_attrs(struct ib_device *dev,
1746 struct scatterlist *sg, int nents,
1747 enum dma_data_direction direction,
1748 struct dma_attrs *attrs)
1749{
1750 return dma_map_sg_attrs(dev->dma_device, sg, nents, direction, attrs);
1751}
1752
1753static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev,
1754 struct scatterlist *sg, int nents,
1755 enum dma_data_direction direction,
1756 struct dma_attrs *attrs)
1757{
1758 dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, attrs);
1759}
1760/**
1761 * ib_sg_dma_address - Return the DMA address from a scatter/gather entry
1762 * @dev: The device for which the DMA addresses were created
1763 * @sg: The scatter/gather entry
1764 */
1765static inline u64 ib_sg_dma_address(struct ib_device *dev,
1766 struct scatterlist *sg)
1767{
1768 if (dev->dma_ops)
1769 return dev->dma_ops->dma_address(dev, sg);
1770 return sg_dma_address(sg);
1771}
1772
1773/**
1774 * ib_sg_dma_len - Return the DMA length from a scatter/gather entry
1775 * @dev: The device for which the DMA addresses were created
1776 * @sg: The scatter/gather entry
1777 */
1778static inline unsigned int ib_sg_dma_len(struct ib_device *dev,
1779 struct scatterlist *sg)
1780{
1781 if (dev->dma_ops)
1782 return dev->dma_ops->dma_len(dev, sg);
1783 return sg_dma_len(sg);
1784}
1785
1786/**
1787 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
1788 * @dev: The device for which the DMA address was created
1789 * @addr: The DMA address
1790 * @size: The size of the region in bytes
1791 * @dir: The direction of the DMA
1792 */
1793static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
1794 u64 addr,
1795 size_t size,
1796 enum dma_data_direction dir)
1797{
1798 if (dev->dma_ops)
1799 dev->dma_ops->sync_single_for_cpu(dev, addr, size, dir);
1800 else
1801 dma_sync_single_for_cpu(dev->dma_device, addr, size, dir);
1802}
1803
1804/**
1805 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
1806 * @dev: The device for which the DMA address was created
1807 * @addr: The DMA address
1808 * @size: The size of the region in bytes
1809 * @dir: The direction of the DMA
1810 */
1811static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
1812 u64 addr,
1813 size_t size,
1814 enum dma_data_direction dir)
1815{
1816 if (dev->dma_ops)
1817 dev->dma_ops->sync_single_for_device(dev, addr, size, dir);
1818 else
1819 dma_sync_single_for_device(dev->dma_device, addr, size, dir);
1820}
1821
1822/**
1823 * ib_dma_alloc_coherent - Allocate memory and map it for DMA
1824 * @dev: The device for which the DMA address is requested
1825 * @size: The size of the region to allocate in bytes
1826 * @dma_handle: A pointer for returning the DMA address of the region
1827 * @flag: memory allocator flags
1828 */
1829static inline void *ib_dma_alloc_coherent(struct ib_device *dev,
1830 size_t size,
1831 u64 *dma_handle,
1832 gfp_t flag)
1833{
1834 if (dev->dma_ops)
1835 return dev->dma_ops->alloc_coherent(dev, size, dma_handle, flag);
1836 else {
1837 dma_addr_t handle;
1838 void *ret;
1839
1840 ret = dma_alloc_coherent(dev->dma_device, size, &handle, flag);
1841 *dma_handle = handle;
1842 return ret;
1843 }
1844}
1845
1846/**
1847 * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent()
1848 * @dev: The device for which the DMA addresses were allocated
1849 * @size: The size of the region
1850 * @cpu_addr: the address returned by ib_dma_alloc_coherent()
1851 * @dma_handle: the DMA address returned by ib_dma_alloc_coherent()
1852 */
1853static inline void ib_dma_free_coherent(struct ib_device *dev,
1854 size_t size, void *cpu_addr,
1855 u64 dma_handle)
1856{
1857 if (dev->dma_ops)
1858 dev->dma_ops->free_coherent(dev, size, cpu_addr, dma_handle);
1859 else
1860 dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle);
1861}
1862
1863/**
1864 * ib_reg_phys_mr - Prepares a virtually addressed memory region for use
1865 * by an HCA.
1866 * @pd: The protection domain associated assigned to the registered region.
1867 * @phys_buf_array: Specifies a list of physical buffers to use in the
1868 * memory region.
1869 * @num_phys_buf: Specifies the size of the phys_buf_array.
1870 * @mr_access_flags: Specifies the memory access rights.
1871 * @iova_start: The offset of the region's starting I/O virtual address.
1872 */
1873struct ib_mr *ib_reg_phys_mr(struct ib_pd *pd,
1874 struct ib_phys_buf *phys_buf_array,
1875 int num_phys_buf,
1876 int mr_access_flags,
1877 u64 *iova_start);
1878
1879/**
1880 * ib_rereg_phys_mr - Modifies the attributes of an existing memory region.
1881 * Conceptually, this call performs the functions deregister memory region
1882 * followed by register physical memory region. Where possible,
1883 * resources are reused instead of deallocated and reallocated.
1884 * @mr: The memory region to modify.
1885 * @mr_rereg_mask: A bit-mask used to indicate which of the following
1886 * properties of the memory region are being modified.
1887 * @pd: If %IB_MR_REREG_PD is set in mr_rereg_mask, this field specifies
1888 * the new protection domain to associated with the memory region,
1889 * otherwise, this parameter is ignored.
1890 * @phys_buf_array: If %IB_MR_REREG_TRANS is set in mr_rereg_mask, this
1891 * field specifies a list of physical buffers to use in the new
1892 * translation, otherwise, this parameter is ignored.
1893 * @num_phys_buf: If %IB_MR_REREG_TRANS is set in mr_rereg_mask, this
1894 * field specifies the size of the phys_buf_array, otherwise, this
1895 * parameter is ignored.
1896 * @mr_access_flags: If %IB_MR_REREG_ACCESS is set in mr_rereg_mask, this
1897 * field specifies the new memory access rights, otherwise, this
1898 * parameter is ignored.
1899 * @iova_start: The offset of the region's starting I/O virtual address.
1900 */
1901int ib_rereg_phys_mr(struct ib_mr *mr,
1902 int mr_rereg_mask,
1903 struct ib_pd *pd,
1904 struct ib_phys_buf *phys_buf_array,
1905 int num_phys_buf,
1906 int mr_access_flags,
1907 u64 *iova_start);
1908
1909/**
1910 * ib_query_mr - Retrieves information about a specific memory region.
1911 * @mr: The memory region to retrieve information about.
1912 * @mr_attr: The attributes of the specified memory region.
1913 */
1914int ib_query_mr(struct ib_mr *mr, struct ib_mr_attr *mr_attr);
1915
1916/**
1917 * ib_dereg_mr - Deregisters a memory region and removes it from the
1918 * HCA translation table.
1919 * @mr: The memory region to deregister.
1920 */
1921int ib_dereg_mr(struct ib_mr *mr);
1922
1923/**
1924 * ib_alloc_fast_reg_mr - Allocates memory region usable with the
1925 * IB_WR_FAST_REG_MR send work request.
1926 * @pd: The protection domain associated with the region.
1927 * @max_page_list_len: requested max physical buffer list length to be
1928 * used with fast register work requests for this MR.
1929 */
1930struct ib_mr *ib_alloc_fast_reg_mr(struct ib_pd *pd, int max_page_list_len);
1931
1932/**
1933 * ib_alloc_fast_reg_page_list - Allocates a page list array
1934 * @device - ib device pointer.
1935 * @page_list_len - size of the page list array to be allocated.
1936 *
1937 * This allocates and returns a struct ib_fast_reg_page_list * and a
1938 * page_list array that is at least page_list_len in size. The actual
1939 * size is returned in max_page_list_len. The caller is responsible
1940 * for initializing the contents of the page_list array before posting
1941 * a send work request with the IB_WC_FAST_REG_MR opcode.
1942 *
1943 * The page_list array entries must be translated using one of the
1944 * ib_dma_*() functions just like the addresses passed to
1945 * ib_map_phys_fmr(). Once the ib_post_send() is issued, the struct
1946 * ib_fast_reg_page_list must not be modified by the caller until the
1947 * IB_WC_FAST_REG_MR work request completes.
1948 */
1949struct ib_fast_reg_page_list *ib_alloc_fast_reg_page_list(
1950 struct ib_device *device, int page_list_len);
1951
1952/**
1953 * ib_free_fast_reg_page_list - Deallocates a previously allocated
1954 * page list array.
1955 * @page_list - struct ib_fast_reg_page_list pointer to be deallocated.
1956 */
1957void ib_free_fast_reg_page_list(struct ib_fast_reg_page_list *page_list);
1958
1959/**
1960 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR
1961 * R_Key and L_Key.
1962 * @mr - struct ib_mr pointer to be updated.
1963 * @newkey - new key to be used.
1964 */
1965static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey)
1966{
1967 mr->lkey = (mr->lkey & 0xffffff00) | newkey;
1968 mr->rkey = (mr->rkey & 0xffffff00) | newkey;
1969}
1970
1971/**
1972 * ib_alloc_mw - Allocates a memory window.
1973 * @pd: The protection domain associated with the memory window.
1974 */
1975struct ib_mw *ib_alloc_mw(struct ib_pd *pd);
1976
1977/**
1978 * ib_bind_mw - Posts a work request to the send queue of the specified
1979 * QP, which binds the memory window to the given address range and
1980 * remote access attributes.
1981 * @qp: QP to post the bind work request on.
1982 * @mw: The memory window to bind.
1983 * @mw_bind: Specifies information about the memory window, including
1984 * its address range, remote access rights, and associated memory region.
1985 */
1986static inline int ib_bind_mw(struct ib_qp *qp,
1987 struct ib_mw *mw,
1988 struct ib_mw_bind *mw_bind)
1989{
1990 /* XXX reference counting in corresponding MR? */
1991 return mw->device->bind_mw ?
1992 mw->device->bind_mw(qp, mw, mw_bind) :
1993 -ENOSYS;
1994}
1995
1996/**
1997 * ib_dealloc_mw - Deallocates a memory window.
1998 * @mw: The memory window to deallocate.
1999 */
2000int ib_dealloc_mw(struct ib_mw *mw);
2001
2002/**
2003 * ib_alloc_fmr - Allocates a unmapped fast memory region.
2004 * @pd: The protection domain associated with the unmapped region.
2005 * @mr_access_flags: Specifies the memory access rights.
2006 * @fmr_attr: Attributes of the unmapped region.
2007 *
2008 * A fast memory region must be mapped before it can be used as part of
2009 * a work request.
2010 */
2011struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
2012 int mr_access_flags,
2013 struct ib_fmr_attr *fmr_attr);
2014
2015/**
2016 * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region.
2017 * @fmr: The fast memory region to associate with the pages.
2018 * @page_list: An array of physical pages to map to the fast memory region.
2019 * @list_len: The number of pages in page_list.
2020 * @iova: The I/O virtual address to use with the mapped region.
2021 */
2022static inline int ib_map_phys_fmr(struct ib_fmr *fmr,
2023 u64 *page_list, int list_len,
2024 u64 iova)
2025{
2026 return fmr->device->map_phys_fmr(fmr, page_list, list_len, iova);
2027}
2028
2029/**
2030 * ib_unmap_fmr - Removes the mapping from a list of fast memory regions.
2031 * @fmr_list: A linked list of fast memory regions to unmap.
2032 */
2033int ib_unmap_fmr(struct list_head *fmr_list);
2034
2035/**
2036 * ib_dealloc_fmr - Deallocates a fast memory region.
2037 * @fmr: The fast memory region to deallocate.
2038 */
2039int ib_dealloc_fmr(struct ib_fmr *fmr);
2040
2041/**
2042 * ib_attach_mcast - Attaches the specified QP to a multicast group.
2043 * @qp: QP to attach to the multicast group. The QP must be type
2044 * IB_QPT_UD.
2045 * @gid: Multicast group GID.
2046 * @lid: Multicast group LID in host byte order.
2047 *
2048 * In order to send and receive multicast packets, subnet
2049 * administration must have created the multicast group and configured
2050 * the fabric appropriately. The port associated with the specified
2051 * QP must also be a member of the multicast group.
2052 */
2053int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2054
2055/**
2056 * ib_detach_mcast - Detaches the specified QP from a multicast group.
2057 * @qp: QP to detach from the multicast group.
2058 * @gid: Multicast group GID.
2059 * @lid: Multicast group LID in host byte order.
2060 */
2061int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2062
2063#endif /* IB_VERBS_H */
1/* SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB */
2/*
3 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved.
4 * Copyright (c) 2004 Infinicon Corporation. All rights reserved.
5 * Copyright (c) 2004, 2020 Intel Corporation. All rights reserved.
6 * Copyright (c) 2004 Topspin Corporation. All rights reserved.
7 * Copyright (c) 2004 Voltaire Corporation. All rights reserved.
8 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
9 * Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved.
10 */
11
12#ifndef IB_VERBS_H
13#define IB_VERBS_H
14
15#include <linux/ethtool.h>
16#include <linux/types.h>
17#include <linux/device.h>
18#include <linux/dma-mapping.h>
19#include <linux/kref.h>
20#include <linux/list.h>
21#include <linux/rwsem.h>
22#include <linux/workqueue.h>
23#include <linux/irq_poll.h>
24#include <uapi/linux/if_ether.h>
25#include <net/ipv6.h>
26#include <net/ip.h>
27#include <linux/string.h>
28#include <linux/slab.h>
29#include <linux/netdevice.h>
30#include <linux/refcount.h>
31#include <linux/if_link.h>
32#include <linux/atomic.h>
33#include <linux/mmu_notifier.h>
34#include <linux/uaccess.h>
35#include <linux/cgroup_rdma.h>
36#include <linux/irqflags.h>
37#include <linux/preempt.h>
38#include <linux/dim.h>
39#include <uapi/rdma/ib_user_verbs.h>
40#include <rdma/rdma_counter.h>
41#include <rdma/restrack.h>
42#include <rdma/signature.h>
43#include <uapi/rdma/rdma_user_ioctl.h>
44#include <uapi/rdma/ib_user_ioctl_verbs.h>
45
46#define IB_FW_VERSION_NAME_MAX ETHTOOL_FWVERS_LEN
47
48struct ib_umem_odp;
49struct ib_uqp_object;
50struct ib_usrq_object;
51struct ib_uwq_object;
52struct rdma_cm_id;
53struct ib_port;
54struct hw_stats_device_data;
55
56extern struct workqueue_struct *ib_wq;
57extern struct workqueue_struct *ib_comp_wq;
58extern struct workqueue_struct *ib_comp_unbound_wq;
59
60struct ib_ucq_object;
61
62__printf(3, 4) __cold
63void ibdev_printk(const char *level, const struct ib_device *ibdev,
64 const char *format, ...);
65__printf(2, 3) __cold
66void ibdev_emerg(const struct ib_device *ibdev, const char *format, ...);
67__printf(2, 3) __cold
68void ibdev_alert(const struct ib_device *ibdev, const char *format, ...);
69__printf(2, 3) __cold
70void ibdev_crit(const struct ib_device *ibdev, const char *format, ...);
71__printf(2, 3) __cold
72void ibdev_err(const struct ib_device *ibdev, const char *format, ...);
73__printf(2, 3) __cold
74void ibdev_warn(const struct ib_device *ibdev, const char *format, ...);
75__printf(2, 3) __cold
76void ibdev_notice(const struct ib_device *ibdev, const char *format, ...);
77__printf(2, 3) __cold
78void ibdev_info(const struct ib_device *ibdev, const char *format, ...);
79
80#if defined(CONFIG_DYNAMIC_DEBUG) || \
81 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
82#define ibdev_dbg(__dev, format, args...) \
83 dynamic_ibdev_dbg(__dev, format, ##args)
84#else
85__printf(2, 3) __cold
86static inline
87void ibdev_dbg(const struct ib_device *ibdev, const char *format, ...) {}
88#endif
89
90#define ibdev_level_ratelimited(ibdev_level, ibdev, fmt, ...) \
91do { \
92 static DEFINE_RATELIMIT_STATE(_rs, \
93 DEFAULT_RATELIMIT_INTERVAL, \
94 DEFAULT_RATELIMIT_BURST); \
95 if (__ratelimit(&_rs)) \
96 ibdev_level(ibdev, fmt, ##__VA_ARGS__); \
97} while (0)
98
99#define ibdev_emerg_ratelimited(ibdev, fmt, ...) \
100 ibdev_level_ratelimited(ibdev_emerg, ibdev, fmt, ##__VA_ARGS__)
101#define ibdev_alert_ratelimited(ibdev, fmt, ...) \
102 ibdev_level_ratelimited(ibdev_alert, ibdev, fmt, ##__VA_ARGS__)
103#define ibdev_crit_ratelimited(ibdev, fmt, ...) \
104 ibdev_level_ratelimited(ibdev_crit, ibdev, fmt, ##__VA_ARGS__)
105#define ibdev_err_ratelimited(ibdev, fmt, ...) \
106 ibdev_level_ratelimited(ibdev_err, ibdev, fmt, ##__VA_ARGS__)
107#define ibdev_warn_ratelimited(ibdev, fmt, ...) \
108 ibdev_level_ratelimited(ibdev_warn, ibdev, fmt, ##__VA_ARGS__)
109#define ibdev_notice_ratelimited(ibdev, fmt, ...) \
110 ibdev_level_ratelimited(ibdev_notice, ibdev, fmt, ##__VA_ARGS__)
111#define ibdev_info_ratelimited(ibdev, fmt, ...) \
112 ibdev_level_ratelimited(ibdev_info, ibdev, fmt, ##__VA_ARGS__)
113
114#if defined(CONFIG_DYNAMIC_DEBUG) || \
115 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
116/* descriptor check is first to prevent flooding with "callbacks suppressed" */
117#define ibdev_dbg_ratelimited(ibdev, fmt, ...) \
118do { \
119 static DEFINE_RATELIMIT_STATE(_rs, \
120 DEFAULT_RATELIMIT_INTERVAL, \
121 DEFAULT_RATELIMIT_BURST); \
122 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, fmt); \
123 if (DYNAMIC_DEBUG_BRANCH(descriptor) && __ratelimit(&_rs)) \
124 __dynamic_ibdev_dbg(&descriptor, ibdev, fmt, \
125 ##__VA_ARGS__); \
126} while (0)
127#else
128__printf(2, 3) __cold
129static inline
130void ibdev_dbg_ratelimited(const struct ib_device *ibdev, const char *format, ...) {}
131#endif
132
133union ib_gid {
134 u8 raw[16];
135 struct {
136 __be64 subnet_prefix;
137 __be64 interface_id;
138 } global;
139};
140
141extern union ib_gid zgid;
142
143enum ib_gid_type {
144 IB_GID_TYPE_IB = IB_UVERBS_GID_TYPE_IB,
145 IB_GID_TYPE_ROCE = IB_UVERBS_GID_TYPE_ROCE_V1,
146 IB_GID_TYPE_ROCE_UDP_ENCAP = IB_UVERBS_GID_TYPE_ROCE_V2,
147 IB_GID_TYPE_SIZE
148};
149
150#define ROCE_V2_UDP_DPORT 4791
151struct ib_gid_attr {
152 struct net_device __rcu *ndev;
153 struct ib_device *device;
154 union ib_gid gid;
155 enum ib_gid_type gid_type;
156 u16 index;
157 u32 port_num;
158};
159
160enum {
161 /* set the local administered indication */
162 IB_SA_WELL_KNOWN_GUID = BIT_ULL(57) | 2,
163};
164
165enum rdma_transport_type {
166 RDMA_TRANSPORT_IB,
167 RDMA_TRANSPORT_IWARP,
168 RDMA_TRANSPORT_USNIC,
169 RDMA_TRANSPORT_USNIC_UDP,
170 RDMA_TRANSPORT_UNSPECIFIED,
171};
172
173enum rdma_protocol_type {
174 RDMA_PROTOCOL_IB,
175 RDMA_PROTOCOL_IBOE,
176 RDMA_PROTOCOL_IWARP,
177 RDMA_PROTOCOL_USNIC_UDP
178};
179
180__attribute_const__ enum rdma_transport_type
181rdma_node_get_transport(unsigned int node_type);
182
183enum rdma_network_type {
184 RDMA_NETWORK_IB,
185 RDMA_NETWORK_ROCE_V1,
186 RDMA_NETWORK_IPV4,
187 RDMA_NETWORK_IPV6
188};
189
190static inline enum ib_gid_type ib_network_to_gid_type(enum rdma_network_type network_type)
191{
192 if (network_type == RDMA_NETWORK_IPV4 ||
193 network_type == RDMA_NETWORK_IPV6)
194 return IB_GID_TYPE_ROCE_UDP_ENCAP;
195 else if (network_type == RDMA_NETWORK_ROCE_V1)
196 return IB_GID_TYPE_ROCE;
197 else
198 return IB_GID_TYPE_IB;
199}
200
201static inline enum rdma_network_type
202rdma_gid_attr_network_type(const struct ib_gid_attr *attr)
203{
204 if (attr->gid_type == IB_GID_TYPE_IB)
205 return RDMA_NETWORK_IB;
206
207 if (attr->gid_type == IB_GID_TYPE_ROCE)
208 return RDMA_NETWORK_ROCE_V1;
209
210 if (ipv6_addr_v4mapped((struct in6_addr *)&attr->gid))
211 return RDMA_NETWORK_IPV4;
212 else
213 return RDMA_NETWORK_IPV6;
214}
215
216enum rdma_link_layer {
217 IB_LINK_LAYER_UNSPECIFIED,
218 IB_LINK_LAYER_INFINIBAND,
219 IB_LINK_LAYER_ETHERNET,
220};
221
222enum ib_device_cap_flags {
223 IB_DEVICE_RESIZE_MAX_WR = IB_UVERBS_DEVICE_RESIZE_MAX_WR,
224 IB_DEVICE_BAD_PKEY_CNTR = IB_UVERBS_DEVICE_BAD_PKEY_CNTR,
225 IB_DEVICE_BAD_QKEY_CNTR = IB_UVERBS_DEVICE_BAD_QKEY_CNTR,
226 IB_DEVICE_RAW_MULTI = IB_UVERBS_DEVICE_RAW_MULTI,
227 IB_DEVICE_AUTO_PATH_MIG = IB_UVERBS_DEVICE_AUTO_PATH_MIG,
228 IB_DEVICE_CHANGE_PHY_PORT = IB_UVERBS_DEVICE_CHANGE_PHY_PORT,
229 IB_DEVICE_UD_AV_PORT_ENFORCE = IB_UVERBS_DEVICE_UD_AV_PORT_ENFORCE,
230 IB_DEVICE_CURR_QP_STATE_MOD = IB_UVERBS_DEVICE_CURR_QP_STATE_MOD,
231 IB_DEVICE_SHUTDOWN_PORT = IB_UVERBS_DEVICE_SHUTDOWN_PORT,
232 /* IB_DEVICE_INIT_TYPE = IB_UVERBS_DEVICE_INIT_TYPE, (not in use) */
233 IB_DEVICE_PORT_ACTIVE_EVENT = IB_UVERBS_DEVICE_PORT_ACTIVE_EVENT,
234 IB_DEVICE_SYS_IMAGE_GUID = IB_UVERBS_DEVICE_SYS_IMAGE_GUID,
235 IB_DEVICE_RC_RNR_NAK_GEN = IB_UVERBS_DEVICE_RC_RNR_NAK_GEN,
236 IB_DEVICE_SRQ_RESIZE = IB_UVERBS_DEVICE_SRQ_RESIZE,
237 IB_DEVICE_N_NOTIFY_CQ = IB_UVERBS_DEVICE_N_NOTIFY_CQ,
238
239 /* Reserved, old SEND_W_INV = 1 << 16,*/
240 IB_DEVICE_MEM_WINDOW = IB_UVERBS_DEVICE_MEM_WINDOW,
241 /*
242 * Devices should set IB_DEVICE_UD_IP_SUM if they support
243 * insertion of UDP and TCP checksum on outgoing UD IPoIB
244 * messages and can verify the validity of checksum for
245 * incoming messages. Setting this flag implies that the
246 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
247 */
248 IB_DEVICE_UD_IP_CSUM = IB_UVERBS_DEVICE_UD_IP_CSUM,
249 IB_DEVICE_XRC = IB_UVERBS_DEVICE_XRC,
250
251 /*
252 * This device supports the IB "base memory management extension",
253 * which includes support for fast registrations (IB_WR_REG_MR,
254 * IB_WR_LOCAL_INV and IB_WR_SEND_WITH_INV verbs). This flag should
255 * also be set by any iWarp device which must support FRs to comply
256 * to the iWarp verbs spec. iWarp devices also support the
257 * IB_WR_RDMA_READ_WITH_INV verb for RDMA READs that invalidate the
258 * stag.
259 */
260 IB_DEVICE_MEM_MGT_EXTENSIONS = IB_UVERBS_DEVICE_MEM_MGT_EXTENSIONS,
261 IB_DEVICE_MEM_WINDOW_TYPE_2A = IB_UVERBS_DEVICE_MEM_WINDOW_TYPE_2A,
262 IB_DEVICE_MEM_WINDOW_TYPE_2B = IB_UVERBS_DEVICE_MEM_WINDOW_TYPE_2B,
263 IB_DEVICE_RC_IP_CSUM = IB_UVERBS_DEVICE_RC_IP_CSUM,
264 /* Deprecated. Please use IB_RAW_PACKET_CAP_IP_CSUM. */
265 IB_DEVICE_RAW_IP_CSUM = IB_UVERBS_DEVICE_RAW_IP_CSUM,
266 IB_DEVICE_MANAGED_FLOW_STEERING =
267 IB_UVERBS_DEVICE_MANAGED_FLOW_STEERING,
268 /* Deprecated. Please use IB_RAW_PACKET_CAP_SCATTER_FCS. */
269 IB_DEVICE_RAW_SCATTER_FCS = IB_UVERBS_DEVICE_RAW_SCATTER_FCS,
270 /* The device supports padding incoming writes to cacheline. */
271 IB_DEVICE_PCI_WRITE_END_PADDING =
272 IB_UVERBS_DEVICE_PCI_WRITE_END_PADDING,
273 /* Placement type attributes */
274 IB_DEVICE_FLUSH_GLOBAL = IB_UVERBS_DEVICE_FLUSH_GLOBAL,
275 IB_DEVICE_FLUSH_PERSISTENT = IB_UVERBS_DEVICE_FLUSH_PERSISTENT,
276 IB_DEVICE_ATOMIC_WRITE = IB_UVERBS_DEVICE_ATOMIC_WRITE,
277};
278
279enum ib_kernel_cap_flags {
280 /*
281 * This device supports a per-device lkey or stag that can be
282 * used without performing a memory registration for the local
283 * memory. Note that ULPs should never check this flag, but
284 * instead of use the local_dma_lkey flag in the ib_pd structure,
285 * which will always contain a usable lkey.
286 */
287 IBK_LOCAL_DMA_LKEY = 1 << 0,
288 /* IB_QP_CREATE_INTEGRITY_EN is supported to implement T10-PI */
289 IBK_INTEGRITY_HANDOVER = 1 << 1,
290 /* IB_ACCESS_ON_DEMAND is supported during reg_user_mr() */
291 IBK_ON_DEMAND_PAGING = 1 << 2,
292 /* IB_MR_TYPE_SG_GAPS is supported */
293 IBK_SG_GAPS_REG = 1 << 3,
294 /* Driver supports RDMA_NLDEV_CMD_DELLINK */
295 IBK_ALLOW_USER_UNREG = 1 << 4,
296
297 /* ipoib will use IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK */
298 IBK_BLOCK_MULTICAST_LOOPBACK = 1 << 5,
299 /* iopib will use IB_QP_CREATE_IPOIB_UD_LSO for its QPs */
300 IBK_UD_TSO = 1 << 6,
301 /* iopib will use the device ops:
302 * get_vf_config
303 * get_vf_guid
304 * get_vf_stats
305 * set_vf_guid
306 * set_vf_link_state
307 */
308 IBK_VIRTUAL_FUNCTION = 1 << 7,
309 /* ipoib will use IB_QP_CREATE_NETDEV_USE for its QPs */
310 IBK_RDMA_NETDEV_OPA = 1 << 8,
311};
312
313enum ib_atomic_cap {
314 IB_ATOMIC_NONE,
315 IB_ATOMIC_HCA,
316 IB_ATOMIC_GLOB
317};
318
319enum ib_odp_general_cap_bits {
320 IB_ODP_SUPPORT = 1 << 0,
321 IB_ODP_SUPPORT_IMPLICIT = 1 << 1,
322};
323
324enum ib_odp_transport_cap_bits {
325 IB_ODP_SUPPORT_SEND = 1 << 0,
326 IB_ODP_SUPPORT_RECV = 1 << 1,
327 IB_ODP_SUPPORT_WRITE = 1 << 2,
328 IB_ODP_SUPPORT_READ = 1 << 3,
329 IB_ODP_SUPPORT_ATOMIC = 1 << 4,
330 IB_ODP_SUPPORT_SRQ_RECV = 1 << 5,
331};
332
333struct ib_odp_caps {
334 uint64_t general_caps;
335 struct {
336 uint32_t rc_odp_caps;
337 uint32_t uc_odp_caps;
338 uint32_t ud_odp_caps;
339 uint32_t xrc_odp_caps;
340 } per_transport_caps;
341};
342
343struct ib_rss_caps {
344 /* Corresponding bit will be set if qp type from
345 * 'enum ib_qp_type' is supported, e.g.
346 * supported_qpts |= 1 << IB_QPT_UD
347 */
348 u32 supported_qpts;
349 u32 max_rwq_indirection_tables;
350 u32 max_rwq_indirection_table_size;
351};
352
353enum ib_tm_cap_flags {
354 /* Support tag matching with rendezvous offload for RC transport */
355 IB_TM_CAP_RNDV_RC = 1 << 0,
356};
357
358struct ib_tm_caps {
359 /* Max size of RNDV header */
360 u32 max_rndv_hdr_size;
361 /* Max number of entries in tag matching list */
362 u32 max_num_tags;
363 /* From enum ib_tm_cap_flags */
364 u32 flags;
365 /* Max number of outstanding list operations */
366 u32 max_ops;
367 /* Max number of SGE in tag matching entry */
368 u32 max_sge;
369};
370
371struct ib_cq_init_attr {
372 unsigned int cqe;
373 u32 comp_vector;
374 u32 flags;
375};
376
377enum ib_cq_attr_mask {
378 IB_CQ_MODERATE = 1 << 0,
379};
380
381struct ib_cq_caps {
382 u16 max_cq_moderation_count;
383 u16 max_cq_moderation_period;
384};
385
386struct ib_dm_mr_attr {
387 u64 length;
388 u64 offset;
389 u32 access_flags;
390};
391
392struct ib_dm_alloc_attr {
393 u64 length;
394 u32 alignment;
395 u32 flags;
396};
397
398struct ib_device_attr {
399 u64 fw_ver;
400 __be64 sys_image_guid;
401 u64 max_mr_size;
402 u64 page_size_cap;
403 u32 vendor_id;
404 u32 vendor_part_id;
405 u32 hw_ver;
406 int max_qp;
407 int max_qp_wr;
408 u64 device_cap_flags;
409 u64 kernel_cap_flags;
410 int max_send_sge;
411 int max_recv_sge;
412 int max_sge_rd;
413 int max_cq;
414 int max_cqe;
415 int max_mr;
416 int max_pd;
417 int max_qp_rd_atom;
418 int max_ee_rd_atom;
419 int max_res_rd_atom;
420 int max_qp_init_rd_atom;
421 int max_ee_init_rd_atom;
422 enum ib_atomic_cap atomic_cap;
423 enum ib_atomic_cap masked_atomic_cap;
424 int max_ee;
425 int max_rdd;
426 int max_mw;
427 int max_raw_ipv6_qp;
428 int max_raw_ethy_qp;
429 int max_mcast_grp;
430 int max_mcast_qp_attach;
431 int max_total_mcast_qp_attach;
432 int max_ah;
433 int max_srq;
434 int max_srq_wr;
435 int max_srq_sge;
436 unsigned int max_fast_reg_page_list_len;
437 unsigned int max_pi_fast_reg_page_list_len;
438 u16 max_pkeys;
439 u8 local_ca_ack_delay;
440 int sig_prot_cap;
441 int sig_guard_cap;
442 struct ib_odp_caps odp_caps;
443 uint64_t timestamp_mask;
444 uint64_t hca_core_clock; /* in KHZ */
445 struct ib_rss_caps rss_caps;
446 u32 max_wq_type_rq;
447 u32 raw_packet_caps; /* Use ib_raw_packet_caps enum */
448 struct ib_tm_caps tm_caps;
449 struct ib_cq_caps cq_caps;
450 u64 max_dm_size;
451 /* Max entries for sgl for optimized performance per READ */
452 u32 max_sgl_rd;
453};
454
455enum ib_mtu {
456 IB_MTU_256 = 1,
457 IB_MTU_512 = 2,
458 IB_MTU_1024 = 3,
459 IB_MTU_2048 = 4,
460 IB_MTU_4096 = 5
461};
462
463enum opa_mtu {
464 OPA_MTU_8192 = 6,
465 OPA_MTU_10240 = 7
466};
467
468static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
469{
470 switch (mtu) {
471 case IB_MTU_256: return 256;
472 case IB_MTU_512: return 512;
473 case IB_MTU_1024: return 1024;
474 case IB_MTU_2048: return 2048;
475 case IB_MTU_4096: return 4096;
476 default: return -1;
477 }
478}
479
480static inline enum ib_mtu ib_mtu_int_to_enum(int mtu)
481{
482 if (mtu >= 4096)
483 return IB_MTU_4096;
484 else if (mtu >= 2048)
485 return IB_MTU_2048;
486 else if (mtu >= 1024)
487 return IB_MTU_1024;
488 else if (mtu >= 512)
489 return IB_MTU_512;
490 else
491 return IB_MTU_256;
492}
493
494static inline int opa_mtu_enum_to_int(enum opa_mtu mtu)
495{
496 switch (mtu) {
497 case OPA_MTU_8192:
498 return 8192;
499 case OPA_MTU_10240:
500 return 10240;
501 default:
502 return(ib_mtu_enum_to_int((enum ib_mtu)mtu));
503 }
504}
505
506static inline enum opa_mtu opa_mtu_int_to_enum(int mtu)
507{
508 if (mtu >= 10240)
509 return OPA_MTU_10240;
510 else if (mtu >= 8192)
511 return OPA_MTU_8192;
512 else
513 return ((enum opa_mtu)ib_mtu_int_to_enum(mtu));
514}
515
516enum ib_port_state {
517 IB_PORT_NOP = 0,
518 IB_PORT_DOWN = 1,
519 IB_PORT_INIT = 2,
520 IB_PORT_ARMED = 3,
521 IB_PORT_ACTIVE = 4,
522 IB_PORT_ACTIVE_DEFER = 5
523};
524
525enum ib_port_phys_state {
526 IB_PORT_PHYS_STATE_SLEEP = 1,
527 IB_PORT_PHYS_STATE_POLLING = 2,
528 IB_PORT_PHYS_STATE_DISABLED = 3,
529 IB_PORT_PHYS_STATE_PORT_CONFIGURATION_TRAINING = 4,
530 IB_PORT_PHYS_STATE_LINK_UP = 5,
531 IB_PORT_PHYS_STATE_LINK_ERROR_RECOVERY = 6,
532 IB_PORT_PHYS_STATE_PHY_TEST = 7,
533};
534
535enum ib_port_width {
536 IB_WIDTH_1X = 1,
537 IB_WIDTH_2X = 16,
538 IB_WIDTH_4X = 2,
539 IB_WIDTH_8X = 4,
540 IB_WIDTH_12X = 8
541};
542
543static inline int ib_width_enum_to_int(enum ib_port_width width)
544{
545 switch (width) {
546 case IB_WIDTH_1X: return 1;
547 case IB_WIDTH_2X: return 2;
548 case IB_WIDTH_4X: return 4;
549 case IB_WIDTH_8X: return 8;
550 case IB_WIDTH_12X: return 12;
551 default: return -1;
552 }
553}
554
555enum ib_port_speed {
556 IB_SPEED_SDR = 1,
557 IB_SPEED_DDR = 2,
558 IB_SPEED_QDR = 4,
559 IB_SPEED_FDR10 = 8,
560 IB_SPEED_FDR = 16,
561 IB_SPEED_EDR = 32,
562 IB_SPEED_HDR = 64,
563 IB_SPEED_NDR = 128,
564};
565
566enum ib_stat_flag {
567 IB_STAT_FLAG_OPTIONAL = 1 << 0,
568};
569
570/**
571 * struct rdma_stat_desc
572 * @name - The name of the counter
573 * @flags - Flags of the counter; For example, IB_STAT_FLAG_OPTIONAL
574 * @priv - Driver private information; Core code should not use
575 */
576struct rdma_stat_desc {
577 const char *name;
578 unsigned int flags;
579 const void *priv;
580};
581
582/**
583 * struct rdma_hw_stats
584 * @lock - Mutex to protect parallel write access to lifespan and values
585 * of counters, which are 64bits and not guaranteed to be written
586 * atomicaly on 32bits systems.
587 * @timestamp - Used by the core code to track when the last update was
588 * @lifespan - Used by the core code to determine how old the counters
589 * should be before being updated again. Stored in jiffies, defaults
590 * to 10 milliseconds, drivers can override the default be specifying
591 * their own value during their allocation routine.
592 * @descs - Array of pointers to static descriptors used for the counters
593 * in directory.
594 * @is_disabled - A bitmap to indicate each counter is currently disabled
595 * or not.
596 * @num_counters - How many hardware counters there are. If name is
597 * shorter than this number, a kernel oops will result. Driver authors
598 * are encouraged to leave BUILD_BUG_ON(ARRAY_SIZE(@name) < num_counters)
599 * in their code to prevent this.
600 * @value - Array of u64 counters that are accessed by the sysfs code and
601 * filled in by the drivers get_stats routine
602 */
603struct rdma_hw_stats {
604 struct mutex lock; /* Protect lifespan and values[] */
605 unsigned long timestamp;
606 unsigned long lifespan;
607 const struct rdma_stat_desc *descs;
608 unsigned long *is_disabled;
609 int num_counters;
610 u64 value[];
611};
612
613#define RDMA_HW_STATS_DEFAULT_LIFESPAN 10
614
615struct rdma_hw_stats *rdma_alloc_hw_stats_struct(
616 const struct rdma_stat_desc *descs, int num_counters,
617 unsigned long lifespan);
618
619void rdma_free_hw_stats_struct(struct rdma_hw_stats *stats);
620
621/* Define bits for the various functionality this port needs to be supported by
622 * the core.
623 */
624/* Management 0x00000FFF */
625#define RDMA_CORE_CAP_IB_MAD 0x00000001
626#define RDMA_CORE_CAP_IB_SMI 0x00000002
627#define RDMA_CORE_CAP_IB_CM 0x00000004
628#define RDMA_CORE_CAP_IW_CM 0x00000008
629#define RDMA_CORE_CAP_IB_SA 0x00000010
630#define RDMA_CORE_CAP_OPA_MAD 0x00000020
631
632/* Address format 0x000FF000 */
633#define RDMA_CORE_CAP_AF_IB 0x00001000
634#define RDMA_CORE_CAP_ETH_AH 0x00002000
635#define RDMA_CORE_CAP_OPA_AH 0x00004000
636#define RDMA_CORE_CAP_IB_GRH_REQUIRED 0x00008000
637
638/* Protocol 0xFFF00000 */
639#define RDMA_CORE_CAP_PROT_IB 0x00100000
640#define RDMA_CORE_CAP_PROT_ROCE 0x00200000
641#define RDMA_CORE_CAP_PROT_IWARP 0x00400000
642#define RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP 0x00800000
643#define RDMA_CORE_CAP_PROT_RAW_PACKET 0x01000000
644#define RDMA_CORE_CAP_PROT_USNIC 0x02000000
645
646#define RDMA_CORE_PORT_IB_GRH_REQUIRED (RDMA_CORE_CAP_IB_GRH_REQUIRED \
647 | RDMA_CORE_CAP_PROT_ROCE \
648 | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP)
649
650#define RDMA_CORE_PORT_IBA_IB (RDMA_CORE_CAP_PROT_IB \
651 | RDMA_CORE_CAP_IB_MAD \
652 | RDMA_CORE_CAP_IB_SMI \
653 | RDMA_CORE_CAP_IB_CM \
654 | RDMA_CORE_CAP_IB_SA \
655 | RDMA_CORE_CAP_AF_IB)
656#define RDMA_CORE_PORT_IBA_ROCE (RDMA_CORE_CAP_PROT_ROCE \
657 | RDMA_CORE_CAP_IB_MAD \
658 | RDMA_CORE_CAP_IB_CM \
659 | RDMA_CORE_CAP_AF_IB \
660 | RDMA_CORE_CAP_ETH_AH)
661#define RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP \
662 (RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP \
663 | RDMA_CORE_CAP_IB_MAD \
664 | RDMA_CORE_CAP_IB_CM \
665 | RDMA_CORE_CAP_AF_IB \
666 | RDMA_CORE_CAP_ETH_AH)
667#define RDMA_CORE_PORT_IWARP (RDMA_CORE_CAP_PROT_IWARP \
668 | RDMA_CORE_CAP_IW_CM)
669#define RDMA_CORE_PORT_INTEL_OPA (RDMA_CORE_PORT_IBA_IB \
670 | RDMA_CORE_CAP_OPA_MAD)
671
672#define RDMA_CORE_PORT_RAW_PACKET (RDMA_CORE_CAP_PROT_RAW_PACKET)
673
674#define RDMA_CORE_PORT_USNIC (RDMA_CORE_CAP_PROT_USNIC)
675
676struct ib_port_attr {
677 u64 subnet_prefix;
678 enum ib_port_state state;
679 enum ib_mtu max_mtu;
680 enum ib_mtu active_mtu;
681 u32 phys_mtu;
682 int gid_tbl_len;
683 unsigned int ip_gids:1;
684 /* This is the value from PortInfo CapabilityMask, defined by IBA */
685 u32 port_cap_flags;
686 u32 max_msg_sz;
687 u32 bad_pkey_cntr;
688 u32 qkey_viol_cntr;
689 u16 pkey_tbl_len;
690 u32 sm_lid;
691 u32 lid;
692 u8 lmc;
693 u8 max_vl_num;
694 u8 sm_sl;
695 u8 subnet_timeout;
696 u8 init_type_reply;
697 u8 active_width;
698 u16 active_speed;
699 u8 phys_state;
700 u16 port_cap_flags2;
701};
702
703enum ib_device_modify_flags {
704 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0,
705 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1
706};
707
708#define IB_DEVICE_NODE_DESC_MAX 64
709
710struct ib_device_modify {
711 u64 sys_image_guid;
712 char node_desc[IB_DEVICE_NODE_DESC_MAX];
713};
714
715enum ib_port_modify_flags {
716 IB_PORT_SHUTDOWN = 1,
717 IB_PORT_INIT_TYPE = (1<<2),
718 IB_PORT_RESET_QKEY_CNTR = (1<<3),
719 IB_PORT_OPA_MASK_CHG = (1<<4)
720};
721
722struct ib_port_modify {
723 u32 set_port_cap_mask;
724 u32 clr_port_cap_mask;
725 u8 init_type;
726};
727
728enum ib_event_type {
729 IB_EVENT_CQ_ERR,
730 IB_EVENT_QP_FATAL,
731 IB_EVENT_QP_REQ_ERR,
732 IB_EVENT_QP_ACCESS_ERR,
733 IB_EVENT_COMM_EST,
734 IB_EVENT_SQ_DRAINED,
735 IB_EVENT_PATH_MIG,
736 IB_EVENT_PATH_MIG_ERR,
737 IB_EVENT_DEVICE_FATAL,
738 IB_EVENT_PORT_ACTIVE,
739 IB_EVENT_PORT_ERR,
740 IB_EVENT_LID_CHANGE,
741 IB_EVENT_PKEY_CHANGE,
742 IB_EVENT_SM_CHANGE,
743 IB_EVENT_SRQ_ERR,
744 IB_EVENT_SRQ_LIMIT_REACHED,
745 IB_EVENT_QP_LAST_WQE_REACHED,
746 IB_EVENT_CLIENT_REREGISTER,
747 IB_EVENT_GID_CHANGE,
748 IB_EVENT_WQ_FATAL,
749};
750
751const char *__attribute_const__ ib_event_msg(enum ib_event_type event);
752
753struct ib_event {
754 struct ib_device *device;
755 union {
756 struct ib_cq *cq;
757 struct ib_qp *qp;
758 struct ib_srq *srq;
759 struct ib_wq *wq;
760 u32 port_num;
761 } element;
762 enum ib_event_type event;
763};
764
765struct ib_event_handler {
766 struct ib_device *device;
767 void (*handler)(struct ib_event_handler *, struct ib_event *);
768 struct list_head list;
769};
770
771#define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \
772 do { \
773 (_ptr)->device = _device; \
774 (_ptr)->handler = _handler; \
775 INIT_LIST_HEAD(&(_ptr)->list); \
776 } while (0)
777
778struct ib_global_route {
779 const struct ib_gid_attr *sgid_attr;
780 union ib_gid dgid;
781 u32 flow_label;
782 u8 sgid_index;
783 u8 hop_limit;
784 u8 traffic_class;
785};
786
787struct ib_grh {
788 __be32 version_tclass_flow;
789 __be16 paylen;
790 u8 next_hdr;
791 u8 hop_limit;
792 union ib_gid sgid;
793 union ib_gid dgid;
794};
795
796union rdma_network_hdr {
797 struct ib_grh ibgrh;
798 struct {
799 /* The IB spec states that if it's IPv4, the header
800 * is located in the last 20 bytes of the header.
801 */
802 u8 reserved[20];
803 struct iphdr roce4grh;
804 };
805};
806
807#define IB_QPN_MASK 0xFFFFFF
808
809enum {
810 IB_MULTICAST_QPN = 0xffffff
811};
812
813#define IB_LID_PERMISSIVE cpu_to_be16(0xFFFF)
814#define IB_MULTICAST_LID_BASE cpu_to_be16(0xC000)
815
816enum ib_ah_flags {
817 IB_AH_GRH = 1
818};
819
820enum ib_rate {
821 IB_RATE_PORT_CURRENT = 0,
822 IB_RATE_2_5_GBPS = 2,
823 IB_RATE_5_GBPS = 5,
824 IB_RATE_10_GBPS = 3,
825 IB_RATE_20_GBPS = 6,
826 IB_RATE_30_GBPS = 4,
827 IB_RATE_40_GBPS = 7,
828 IB_RATE_60_GBPS = 8,
829 IB_RATE_80_GBPS = 9,
830 IB_RATE_120_GBPS = 10,
831 IB_RATE_14_GBPS = 11,
832 IB_RATE_56_GBPS = 12,
833 IB_RATE_112_GBPS = 13,
834 IB_RATE_168_GBPS = 14,
835 IB_RATE_25_GBPS = 15,
836 IB_RATE_100_GBPS = 16,
837 IB_RATE_200_GBPS = 17,
838 IB_RATE_300_GBPS = 18,
839 IB_RATE_28_GBPS = 19,
840 IB_RATE_50_GBPS = 20,
841 IB_RATE_400_GBPS = 21,
842 IB_RATE_600_GBPS = 22,
843};
844
845/**
846 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the
847 * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be
848 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
849 * @rate: rate to convert.
850 */
851__attribute_const__ int ib_rate_to_mult(enum ib_rate rate);
852
853/**
854 * ib_rate_to_mbps - Convert the IB rate enum to Mbps.
855 * For example, IB_RATE_2_5_GBPS will be converted to 2500.
856 * @rate: rate to convert.
857 */
858__attribute_const__ int ib_rate_to_mbps(enum ib_rate rate);
859
860
861/**
862 * enum ib_mr_type - memory region type
863 * @IB_MR_TYPE_MEM_REG: memory region that is used for
864 * normal registration
865 * @IB_MR_TYPE_SG_GAPS: memory region that is capable to
866 * register any arbitrary sg lists (without
867 * the normal mr constraints - see
868 * ib_map_mr_sg)
869 * @IB_MR_TYPE_DM: memory region that is used for device
870 * memory registration
871 * @IB_MR_TYPE_USER: memory region that is used for the user-space
872 * application
873 * @IB_MR_TYPE_DMA: memory region that is used for DMA operations
874 * without address translations (VA=PA)
875 * @IB_MR_TYPE_INTEGRITY: memory region that is used for
876 * data integrity operations
877 */
878enum ib_mr_type {
879 IB_MR_TYPE_MEM_REG,
880 IB_MR_TYPE_SG_GAPS,
881 IB_MR_TYPE_DM,
882 IB_MR_TYPE_USER,
883 IB_MR_TYPE_DMA,
884 IB_MR_TYPE_INTEGRITY,
885};
886
887enum ib_mr_status_check {
888 IB_MR_CHECK_SIG_STATUS = 1,
889};
890
891/**
892 * struct ib_mr_status - Memory region status container
893 *
894 * @fail_status: Bitmask of MR checks status. For each
895 * failed check a corresponding status bit is set.
896 * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS
897 * failure.
898 */
899struct ib_mr_status {
900 u32 fail_status;
901 struct ib_sig_err sig_err;
902};
903
904/**
905 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
906 * enum.
907 * @mult: multiple to convert.
908 */
909__attribute_const__ enum ib_rate mult_to_ib_rate(int mult);
910
911struct rdma_ah_init_attr {
912 struct rdma_ah_attr *ah_attr;
913 u32 flags;
914 struct net_device *xmit_slave;
915};
916
917enum rdma_ah_attr_type {
918 RDMA_AH_ATTR_TYPE_UNDEFINED,
919 RDMA_AH_ATTR_TYPE_IB,
920 RDMA_AH_ATTR_TYPE_ROCE,
921 RDMA_AH_ATTR_TYPE_OPA,
922};
923
924struct ib_ah_attr {
925 u16 dlid;
926 u8 src_path_bits;
927};
928
929struct roce_ah_attr {
930 u8 dmac[ETH_ALEN];
931};
932
933struct opa_ah_attr {
934 u32 dlid;
935 u8 src_path_bits;
936 bool make_grd;
937};
938
939struct rdma_ah_attr {
940 struct ib_global_route grh;
941 u8 sl;
942 u8 static_rate;
943 u32 port_num;
944 u8 ah_flags;
945 enum rdma_ah_attr_type type;
946 union {
947 struct ib_ah_attr ib;
948 struct roce_ah_attr roce;
949 struct opa_ah_attr opa;
950 };
951};
952
953enum ib_wc_status {
954 IB_WC_SUCCESS,
955 IB_WC_LOC_LEN_ERR,
956 IB_WC_LOC_QP_OP_ERR,
957 IB_WC_LOC_EEC_OP_ERR,
958 IB_WC_LOC_PROT_ERR,
959 IB_WC_WR_FLUSH_ERR,
960 IB_WC_MW_BIND_ERR,
961 IB_WC_BAD_RESP_ERR,
962 IB_WC_LOC_ACCESS_ERR,
963 IB_WC_REM_INV_REQ_ERR,
964 IB_WC_REM_ACCESS_ERR,
965 IB_WC_REM_OP_ERR,
966 IB_WC_RETRY_EXC_ERR,
967 IB_WC_RNR_RETRY_EXC_ERR,
968 IB_WC_LOC_RDD_VIOL_ERR,
969 IB_WC_REM_INV_RD_REQ_ERR,
970 IB_WC_REM_ABORT_ERR,
971 IB_WC_INV_EECN_ERR,
972 IB_WC_INV_EEC_STATE_ERR,
973 IB_WC_FATAL_ERR,
974 IB_WC_RESP_TIMEOUT_ERR,
975 IB_WC_GENERAL_ERR
976};
977
978const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status);
979
980enum ib_wc_opcode {
981 IB_WC_SEND = IB_UVERBS_WC_SEND,
982 IB_WC_RDMA_WRITE = IB_UVERBS_WC_RDMA_WRITE,
983 IB_WC_RDMA_READ = IB_UVERBS_WC_RDMA_READ,
984 IB_WC_COMP_SWAP = IB_UVERBS_WC_COMP_SWAP,
985 IB_WC_FETCH_ADD = IB_UVERBS_WC_FETCH_ADD,
986 IB_WC_BIND_MW = IB_UVERBS_WC_BIND_MW,
987 IB_WC_LOCAL_INV = IB_UVERBS_WC_LOCAL_INV,
988 IB_WC_LSO = IB_UVERBS_WC_TSO,
989 IB_WC_ATOMIC_WRITE = IB_UVERBS_WC_ATOMIC_WRITE,
990 IB_WC_REG_MR,
991 IB_WC_MASKED_COMP_SWAP,
992 IB_WC_MASKED_FETCH_ADD,
993 IB_WC_FLUSH = IB_UVERBS_WC_FLUSH,
994/*
995 * Set value of IB_WC_RECV so consumers can test if a completion is a
996 * receive by testing (opcode & IB_WC_RECV).
997 */
998 IB_WC_RECV = 1 << 7,
999 IB_WC_RECV_RDMA_WITH_IMM
1000};
1001
1002enum ib_wc_flags {
1003 IB_WC_GRH = 1,
1004 IB_WC_WITH_IMM = (1<<1),
1005 IB_WC_WITH_INVALIDATE = (1<<2),
1006 IB_WC_IP_CSUM_OK = (1<<3),
1007 IB_WC_WITH_SMAC = (1<<4),
1008 IB_WC_WITH_VLAN = (1<<5),
1009 IB_WC_WITH_NETWORK_HDR_TYPE = (1<<6),
1010};
1011
1012struct ib_wc {
1013 union {
1014 u64 wr_id;
1015 struct ib_cqe *wr_cqe;
1016 };
1017 enum ib_wc_status status;
1018 enum ib_wc_opcode opcode;
1019 u32 vendor_err;
1020 u32 byte_len;
1021 struct ib_qp *qp;
1022 union {
1023 __be32 imm_data;
1024 u32 invalidate_rkey;
1025 } ex;
1026 u32 src_qp;
1027 u32 slid;
1028 int wc_flags;
1029 u16 pkey_index;
1030 u8 sl;
1031 u8 dlid_path_bits;
1032 u32 port_num; /* valid only for DR SMPs on switches */
1033 u8 smac[ETH_ALEN];
1034 u16 vlan_id;
1035 u8 network_hdr_type;
1036};
1037
1038enum ib_cq_notify_flags {
1039 IB_CQ_SOLICITED = 1 << 0,
1040 IB_CQ_NEXT_COMP = 1 << 1,
1041 IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
1042 IB_CQ_REPORT_MISSED_EVENTS = 1 << 2,
1043};
1044
1045enum ib_srq_type {
1046 IB_SRQT_BASIC = IB_UVERBS_SRQT_BASIC,
1047 IB_SRQT_XRC = IB_UVERBS_SRQT_XRC,
1048 IB_SRQT_TM = IB_UVERBS_SRQT_TM,
1049};
1050
1051static inline bool ib_srq_has_cq(enum ib_srq_type srq_type)
1052{
1053 return srq_type == IB_SRQT_XRC ||
1054 srq_type == IB_SRQT_TM;
1055}
1056
1057enum ib_srq_attr_mask {
1058 IB_SRQ_MAX_WR = 1 << 0,
1059 IB_SRQ_LIMIT = 1 << 1,
1060};
1061
1062struct ib_srq_attr {
1063 u32 max_wr;
1064 u32 max_sge;
1065 u32 srq_limit;
1066};
1067
1068struct ib_srq_init_attr {
1069 void (*event_handler)(struct ib_event *, void *);
1070 void *srq_context;
1071 struct ib_srq_attr attr;
1072 enum ib_srq_type srq_type;
1073
1074 struct {
1075 struct ib_cq *cq;
1076 union {
1077 struct {
1078 struct ib_xrcd *xrcd;
1079 } xrc;
1080
1081 struct {
1082 u32 max_num_tags;
1083 } tag_matching;
1084 };
1085 } ext;
1086};
1087
1088struct ib_qp_cap {
1089 u32 max_send_wr;
1090 u32 max_recv_wr;
1091 u32 max_send_sge;
1092 u32 max_recv_sge;
1093 u32 max_inline_data;
1094
1095 /*
1096 * Maximum number of rdma_rw_ctx structures in flight at a time.
1097 * ib_create_qp() will calculate the right amount of neededed WRs
1098 * and MRs based on this.
1099 */
1100 u32 max_rdma_ctxs;
1101};
1102
1103enum ib_sig_type {
1104 IB_SIGNAL_ALL_WR,
1105 IB_SIGNAL_REQ_WR
1106};
1107
1108enum ib_qp_type {
1109 /*
1110 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
1111 * here (and in that order) since the MAD layer uses them as
1112 * indices into a 2-entry table.
1113 */
1114 IB_QPT_SMI,
1115 IB_QPT_GSI,
1116
1117 IB_QPT_RC = IB_UVERBS_QPT_RC,
1118 IB_QPT_UC = IB_UVERBS_QPT_UC,
1119 IB_QPT_UD = IB_UVERBS_QPT_UD,
1120 IB_QPT_RAW_IPV6,
1121 IB_QPT_RAW_ETHERTYPE,
1122 IB_QPT_RAW_PACKET = IB_UVERBS_QPT_RAW_PACKET,
1123 IB_QPT_XRC_INI = IB_UVERBS_QPT_XRC_INI,
1124 IB_QPT_XRC_TGT = IB_UVERBS_QPT_XRC_TGT,
1125 IB_QPT_MAX,
1126 IB_QPT_DRIVER = IB_UVERBS_QPT_DRIVER,
1127 /* Reserve a range for qp types internal to the low level driver.
1128 * These qp types will not be visible at the IB core layer, so the
1129 * IB_QPT_MAX usages should not be affected in the core layer
1130 */
1131 IB_QPT_RESERVED1 = 0x1000,
1132 IB_QPT_RESERVED2,
1133 IB_QPT_RESERVED3,
1134 IB_QPT_RESERVED4,
1135 IB_QPT_RESERVED5,
1136 IB_QPT_RESERVED6,
1137 IB_QPT_RESERVED7,
1138 IB_QPT_RESERVED8,
1139 IB_QPT_RESERVED9,
1140 IB_QPT_RESERVED10,
1141};
1142
1143enum ib_qp_create_flags {
1144 IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0,
1145 IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK =
1146 IB_UVERBS_QP_CREATE_BLOCK_MULTICAST_LOOPBACK,
1147 IB_QP_CREATE_CROSS_CHANNEL = 1 << 2,
1148 IB_QP_CREATE_MANAGED_SEND = 1 << 3,
1149 IB_QP_CREATE_MANAGED_RECV = 1 << 4,
1150 IB_QP_CREATE_NETIF_QP = 1 << 5,
1151 IB_QP_CREATE_INTEGRITY_EN = 1 << 6,
1152 IB_QP_CREATE_NETDEV_USE = 1 << 7,
1153 IB_QP_CREATE_SCATTER_FCS =
1154 IB_UVERBS_QP_CREATE_SCATTER_FCS,
1155 IB_QP_CREATE_CVLAN_STRIPPING =
1156 IB_UVERBS_QP_CREATE_CVLAN_STRIPPING,
1157 IB_QP_CREATE_SOURCE_QPN = 1 << 10,
1158 IB_QP_CREATE_PCI_WRITE_END_PADDING =
1159 IB_UVERBS_QP_CREATE_PCI_WRITE_END_PADDING,
1160 /* reserve bits 26-31 for low level drivers' internal use */
1161 IB_QP_CREATE_RESERVED_START = 1 << 26,
1162 IB_QP_CREATE_RESERVED_END = 1 << 31,
1163};
1164
1165/*
1166 * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler
1167 * callback to destroy the passed in QP.
1168 */
1169
1170struct ib_qp_init_attr {
1171 /* Consumer's event_handler callback must not block */
1172 void (*event_handler)(struct ib_event *, void *);
1173
1174 void *qp_context;
1175 struct ib_cq *send_cq;
1176 struct ib_cq *recv_cq;
1177 struct ib_srq *srq;
1178 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
1179 struct ib_qp_cap cap;
1180 enum ib_sig_type sq_sig_type;
1181 enum ib_qp_type qp_type;
1182 u32 create_flags;
1183
1184 /*
1185 * Only needed for special QP types, or when using the RW API.
1186 */
1187 u32 port_num;
1188 struct ib_rwq_ind_table *rwq_ind_tbl;
1189 u32 source_qpn;
1190};
1191
1192struct ib_qp_open_attr {
1193 void (*event_handler)(struct ib_event *, void *);
1194 void *qp_context;
1195 u32 qp_num;
1196 enum ib_qp_type qp_type;
1197};
1198
1199enum ib_rnr_timeout {
1200 IB_RNR_TIMER_655_36 = 0,
1201 IB_RNR_TIMER_000_01 = 1,
1202 IB_RNR_TIMER_000_02 = 2,
1203 IB_RNR_TIMER_000_03 = 3,
1204 IB_RNR_TIMER_000_04 = 4,
1205 IB_RNR_TIMER_000_06 = 5,
1206 IB_RNR_TIMER_000_08 = 6,
1207 IB_RNR_TIMER_000_12 = 7,
1208 IB_RNR_TIMER_000_16 = 8,
1209 IB_RNR_TIMER_000_24 = 9,
1210 IB_RNR_TIMER_000_32 = 10,
1211 IB_RNR_TIMER_000_48 = 11,
1212 IB_RNR_TIMER_000_64 = 12,
1213 IB_RNR_TIMER_000_96 = 13,
1214 IB_RNR_TIMER_001_28 = 14,
1215 IB_RNR_TIMER_001_92 = 15,
1216 IB_RNR_TIMER_002_56 = 16,
1217 IB_RNR_TIMER_003_84 = 17,
1218 IB_RNR_TIMER_005_12 = 18,
1219 IB_RNR_TIMER_007_68 = 19,
1220 IB_RNR_TIMER_010_24 = 20,
1221 IB_RNR_TIMER_015_36 = 21,
1222 IB_RNR_TIMER_020_48 = 22,
1223 IB_RNR_TIMER_030_72 = 23,
1224 IB_RNR_TIMER_040_96 = 24,
1225 IB_RNR_TIMER_061_44 = 25,
1226 IB_RNR_TIMER_081_92 = 26,
1227 IB_RNR_TIMER_122_88 = 27,
1228 IB_RNR_TIMER_163_84 = 28,
1229 IB_RNR_TIMER_245_76 = 29,
1230 IB_RNR_TIMER_327_68 = 30,
1231 IB_RNR_TIMER_491_52 = 31
1232};
1233
1234enum ib_qp_attr_mask {
1235 IB_QP_STATE = 1,
1236 IB_QP_CUR_STATE = (1<<1),
1237 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2),
1238 IB_QP_ACCESS_FLAGS = (1<<3),
1239 IB_QP_PKEY_INDEX = (1<<4),
1240 IB_QP_PORT = (1<<5),
1241 IB_QP_QKEY = (1<<6),
1242 IB_QP_AV = (1<<7),
1243 IB_QP_PATH_MTU = (1<<8),
1244 IB_QP_TIMEOUT = (1<<9),
1245 IB_QP_RETRY_CNT = (1<<10),
1246 IB_QP_RNR_RETRY = (1<<11),
1247 IB_QP_RQ_PSN = (1<<12),
1248 IB_QP_MAX_QP_RD_ATOMIC = (1<<13),
1249 IB_QP_ALT_PATH = (1<<14),
1250 IB_QP_MIN_RNR_TIMER = (1<<15),
1251 IB_QP_SQ_PSN = (1<<16),
1252 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17),
1253 IB_QP_PATH_MIG_STATE = (1<<18),
1254 IB_QP_CAP = (1<<19),
1255 IB_QP_DEST_QPN = (1<<20),
1256 IB_QP_RESERVED1 = (1<<21),
1257 IB_QP_RESERVED2 = (1<<22),
1258 IB_QP_RESERVED3 = (1<<23),
1259 IB_QP_RESERVED4 = (1<<24),
1260 IB_QP_RATE_LIMIT = (1<<25),
1261
1262 IB_QP_ATTR_STANDARD_BITS = GENMASK(20, 0),
1263};
1264
1265enum ib_qp_state {
1266 IB_QPS_RESET,
1267 IB_QPS_INIT,
1268 IB_QPS_RTR,
1269 IB_QPS_RTS,
1270 IB_QPS_SQD,
1271 IB_QPS_SQE,
1272 IB_QPS_ERR
1273};
1274
1275enum ib_mig_state {
1276 IB_MIG_MIGRATED,
1277 IB_MIG_REARM,
1278 IB_MIG_ARMED
1279};
1280
1281enum ib_mw_type {
1282 IB_MW_TYPE_1 = 1,
1283 IB_MW_TYPE_2 = 2
1284};
1285
1286struct ib_qp_attr {
1287 enum ib_qp_state qp_state;
1288 enum ib_qp_state cur_qp_state;
1289 enum ib_mtu path_mtu;
1290 enum ib_mig_state path_mig_state;
1291 u32 qkey;
1292 u32 rq_psn;
1293 u32 sq_psn;
1294 u32 dest_qp_num;
1295 int qp_access_flags;
1296 struct ib_qp_cap cap;
1297 struct rdma_ah_attr ah_attr;
1298 struct rdma_ah_attr alt_ah_attr;
1299 u16 pkey_index;
1300 u16 alt_pkey_index;
1301 u8 en_sqd_async_notify;
1302 u8 sq_draining;
1303 u8 max_rd_atomic;
1304 u8 max_dest_rd_atomic;
1305 u8 min_rnr_timer;
1306 u32 port_num;
1307 u8 timeout;
1308 u8 retry_cnt;
1309 u8 rnr_retry;
1310 u32 alt_port_num;
1311 u8 alt_timeout;
1312 u32 rate_limit;
1313 struct net_device *xmit_slave;
1314};
1315
1316enum ib_wr_opcode {
1317 /* These are shared with userspace */
1318 IB_WR_RDMA_WRITE = IB_UVERBS_WR_RDMA_WRITE,
1319 IB_WR_RDMA_WRITE_WITH_IMM = IB_UVERBS_WR_RDMA_WRITE_WITH_IMM,
1320 IB_WR_SEND = IB_UVERBS_WR_SEND,
1321 IB_WR_SEND_WITH_IMM = IB_UVERBS_WR_SEND_WITH_IMM,
1322 IB_WR_RDMA_READ = IB_UVERBS_WR_RDMA_READ,
1323 IB_WR_ATOMIC_CMP_AND_SWP = IB_UVERBS_WR_ATOMIC_CMP_AND_SWP,
1324 IB_WR_ATOMIC_FETCH_AND_ADD = IB_UVERBS_WR_ATOMIC_FETCH_AND_ADD,
1325 IB_WR_BIND_MW = IB_UVERBS_WR_BIND_MW,
1326 IB_WR_LSO = IB_UVERBS_WR_TSO,
1327 IB_WR_SEND_WITH_INV = IB_UVERBS_WR_SEND_WITH_INV,
1328 IB_WR_RDMA_READ_WITH_INV = IB_UVERBS_WR_RDMA_READ_WITH_INV,
1329 IB_WR_LOCAL_INV = IB_UVERBS_WR_LOCAL_INV,
1330 IB_WR_MASKED_ATOMIC_CMP_AND_SWP =
1331 IB_UVERBS_WR_MASKED_ATOMIC_CMP_AND_SWP,
1332 IB_WR_MASKED_ATOMIC_FETCH_AND_ADD =
1333 IB_UVERBS_WR_MASKED_ATOMIC_FETCH_AND_ADD,
1334 IB_WR_FLUSH = IB_UVERBS_WR_FLUSH,
1335 IB_WR_ATOMIC_WRITE = IB_UVERBS_WR_ATOMIC_WRITE,
1336
1337 /* These are kernel only and can not be issued by userspace */
1338 IB_WR_REG_MR = 0x20,
1339 IB_WR_REG_MR_INTEGRITY,
1340
1341 /* reserve values for low level drivers' internal use.
1342 * These values will not be used at all in the ib core layer.
1343 */
1344 IB_WR_RESERVED1 = 0xf0,
1345 IB_WR_RESERVED2,
1346 IB_WR_RESERVED3,
1347 IB_WR_RESERVED4,
1348 IB_WR_RESERVED5,
1349 IB_WR_RESERVED6,
1350 IB_WR_RESERVED7,
1351 IB_WR_RESERVED8,
1352 IB_WR_RESERVED9,
1353 IB_WR_RESERVED10,
1354};
1355
1356enum ib_send_flags {
1357 IB_SEND_FENCE = 1,
1358 IB_SEND_SIGNALED = (1<<1),
1359 IB_SEND_SOLICITED = (1<<2),
1360 IB_SEND_INLINE = (1<<3),
1361 IB_SEND_IP_CSUM = (1<<4),
1362
1363 /* reserve bits 26-31 for low level drivers' internal use */
1364 IB_SEND_RESERVED_START = (1 << 26),
1365 IB_SEND_RESERVED_END = (1 << 31),
1366};
1367
1368struct ib_sge {
1369 u64 addr;
1370 u32 length;
1371 u32 lkey;
1372};
1373
1374struct ib_cqe {
1375 void (*done)(struct ib_cq *cq, struct ib_wc *wc);
1376};
1377
1378struct ib_send_wr {
1379 struct ib_send_wr *next;
1380 union {
1381 u64 wr_id;
1382 struct ib_cqe *wr_cqe;
1383 };
1384 struct ib_sge *sg_list;
1385 int num_sge;
1386 enum ib_wr_opcode opcode;
1387 int send_flags;
1388 union {
1389 __be32 imm_data;
1390 u32 invalidate_rkey;
1391 } ex;
1392};
1393
1394struct ib_rdma_wr {
1395 struct ib_send_wr wr;
1396 u64 remote_addr;
1397 u32 rkey;
1398};
1399
1400static inline const struct ib_rdma_wr *rdma_wr(const struct ib_send_wr *wr)
1401{
1402 return container_of(wr, struct ib_rdma_wr, wr);
1403}
1404
1405struct ib_atomic_wr {
1406 struct ib_send_wr wr;
1407 u64 remote_addr;
1408 u64 compare_add;
1409 u64 swap;
1410 u64 compare_add_mask;
1411 u64 swap_mask;
1412 u32 rkey;
1413};
1414
1415static inline const struct ib_atomic_wr *atomic_wr(const struct ib_send_wr *wr)
1416{
1417 return container_of(wr, struct ib_atomic_wr, wr);
1418}
1419
1420struct ib_ud_wr {
1421 struct ib_send_wr wr;
1422 struct ib_ah *ah;
1423 void *header;
1424 int hlen;
1425 int mss;
1426 u32 remote_qpn;
1427 u32 remote_qkey;
1428 u16 pkey_index; /* valid for GSI only */
1429 u32 port_num; /* valid for DR SMPs on switch only */
1430};
1431
1432static inline const struct ib_ud_wr *ud_wr(const struct ib_send_wr *wr)
1433{
1434 return container_of(wr, struct ib_ud_wr, wr);
1435}
1436
1437struct ib_reg_wr {
1438 struct ib_send_wr wr;
1439 struct ib_mr *mr;
1440 u32 key;
1441 int access;
1442};
1443
1444static inline const struct ib_reg_wr *reg_wr(const struct ib_send_wr *wr)
1445{
1446 return container_of(wr, struct ib_reg_wr, wr);
1447}
1448
1449struct ib_recv_wr {
1450 struct ib_recv_wr *next;
1451 union {
1452 u64 wr_id;
1453 struct ib_cqe *wr_cqe;
1454 };
1455 struct ib_sge *sg_list;
1456 int num_sge;
1457};
1458
1459enum ib_access_flags {
1460 IB_ACCESS_LOCAL_WRITE = IB_UVERBS_ACCESS_LOCAL_WRITE,
1461 IB_ACCESS_REMOTE_WRITE = IB_UVERBS_ACCESS_REMOTE_WRITE,
1462 IB_ACCESS_REMOTE_READ = IB_UVERBS_ACCESS_REMOTE_READ,
1463 IB_ACCESS_REMOTE_ATOMIC = IB_UVERBS_ACCESS_REMOTE_ATOMIC,
1464 IB_ACCESS_MW_BIND = IB_UVERBS_ACCESS_MW_BIND,
1465 IB_ZERO_BASED = IB_UVERBS_ACCESS_ZERO_BASED,
1466 IB_ACCESS_ON_DEMAND = IB_UVERBS_ACCESS_ON_DEMAND,
1467 IB_ACCESS_HUGETLB = IB_UVERBS_ACCESS_HUGETLB,
1468 IB_ACCESS_RELAXED_ORDERING = IB_UVERBS_ACCESS_RELAXED_ORDERING,
1469 IB_ACCESS_FLUSH_GLOBAL = IB_UVERBS_ACCESS_FLUSH_GLOBAL,
1470 IB_ACCESS_FLUSH_PERSISTENT = IB_UVERBS_ACCESS_FLUSH_PERSISTENT,
1471
1472 IB_ACCESS_OPTIONAL = IB_UVERBS_ACCESS_OPTIONAL_RANGE,
1473 IB_ACCESS_SUPPORTED =
1474 ((IB_ACCESS_FLUSH_PERSISTENT << 1) - 1) | IB_ACCESS_OPTIONAL,
1475};
1476
1477/*
1478 * XXX: these are apparently used for ->rereg_user_mr, no idea why they
1479 * are hidden here instead of a uapi header!
1480 */
1481enum ib_mr_rereg_flags {
1482 IB_MR_REREG_TRANS = 1,
1483 IB_MR_REREG_PD = (1<<1),
1484 IB_MR_REREG_ACCESS = (1<<2),
1485 IB_MR_REREG_SUPPORTED = ((IB_MR_REREG_ACCESS << 1) - 1)
1486};
1487
1488struct ib_umem;
1489
1490enum rdma_remove_reason {
1491 /*
1492 * Userspace requested uobject deletion or initial try
1493 * to remove uobject via cleanup. Call could fail
1494 */
1495 RDMA_REMOVE_DESTROY,
1496 /* Context deletion. This call should delete the actual object itself */
1497 RDMA_REMOVE_CLOSE,
1498 /* Driver is being hot-unplugged. This call should delete the actual object itself */
1499 RDMA_REMOVE_DRIVER_REMOVE,
1500 /* uobj is being cleaned-up before being committed */
1501 RDMA_REMOVE_ABORT,
1502 /* The driver failed to destroy the uobject and is being disconnected */
1503 RDMA_REMOVE_DRIVER_FAILURE,
1504};
1505
1506struct ib_rdmacg_object {
1507#ifdef CONFIG_CGROUP_RDMA
1508 struct rdma_cgroup *cg; /* owner rdma cgroup */
1509#endif
1510};
1511
1512struct ib_ucontext {
1513 struct ib_device *device;
1514 struct ib_uverbs_file *ufile;
1515
1516 struct ib_rdmacg_object cg_obj;
1517 /*
1518 * Implementation details of the RDMA core, don't use in drivers:
1519 */
1520 struct rdma_restrack_entry res;
1521 struct xarray mmap_xa;
1522};
1523
1524struct ib_uobject {
1525 u64 user_handle; /* handle given to us by userspace */
1526 /* ufile & ucontext owning this object */
1527 struct ib_uverbs_file *ufile;
1528 /* FIXME, save memory: ufile->context == context */
1529 struct ib_ucontext *context; /* associated user context */
1530 void *object; /* containing object */
1531 struct list_head list; /* link to context's list */
1532 struct ib_rdmacg_object cg_obj; /* rdmacg object */
1533 int id; /* index into kernel idr */
1534 struct kref ref;
1535 atomic_t usecnt; /* protects exclusive access */
1536 struct rcu_head rcu; /* kfree_rcu() overhead */
1537
1538 const struct uverbs_api_object *uapi_object;
1539};
1540
1541struct ib_udata {
1542 const void __user *inbuf;
1543 void __user *outbuf;
1544 size_t inlen;
1545 size_t outlen;
1546};
1547
1548struct ib_pd {
1549 u32 local_dma_lkey;
1550 u32 flags;
1551 struct ib_device *device;
1552 struct ib_uobject *uobject;
1553 atomic_t usecnt; /* count all resources */
1554
1555 u32 unsafe_global_rkey;
1556
1557 /*
1558 * Implementation details of the RDMA core, don't use in drivers:
1559 */
1560 struct ib_mr *__internal_mr;
1561 struct rdma_restrack_entry res;
1562};
1563
1564struct ib_xrcd {
1565 struct ib_device *device;
1566 atomic_t usecnt; /* count all exposed resources */
1567 struct inode *inode;
1568 struct rw_semaphore tgt_qps_rwsem;
1569 struct xarray tgt_qps;
1570};
1571
1572struct ib_ah {
1573 struct ib_device *device;
1574 struct ib_pd *pd;
1575 struct ib_uobject *uobject;
1576 const struct ib_gid_attr *sgid_attr;
1577 enum rdma_ah_attr_type type;
1578};
1579
1580typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
1581
1582enum ib_poll_context {
1583 IB_POLL_SOFTIRQ, /* poll from softirq context */
1584 IB_POLL_WORKQUEUE, /* poll from workqueue */
1585 IB_POLL_UNBOUND_WORKQUEUE, /* poll from unbound workqueue */
1586 IB_POLL_LAST_POOL_TYPE = IB_POLL_UNBOUND_WORKQUEUE,
1587
1588 IB_POLL_DIRECT, /* caller context, no hw completions */
1589};
1590
1591struct ib_cq {
1592 struct ib_device *device;
1593 struct ib_ucq_object *uobject;
1594 ib_comp_handler comp_handler;
1595 void (*event_handler)(struct ib_event *, void *);
1596 void *cq_context;
1597 int cqe;
1598 unsigned int cqe_used;
1599 atomic_t usecnt; /* count number of work queues */
1600 enum ib_poll_context poll_ctx;
1601 struct ib_wc *wc;
1602 struct list_head pool_entry;
1603 union {
1604 struct irq_poll iop;
1605 struct work_struct work;
1606 };
1607 struct workqueue_struct *comp_wq;
1608 struct dim *dim;
1609
1610 /* updated only by trace points */
1611 ktime_t timestamp;
1612 u8 interrupt:1;
1613 u8 shared:1;
1614 unsigned int comp_vector;
1615
1616 /*
1617 * Implementation details of the RDMA core, don't use in drivers:
1618 */
1619 struct rdma_restrack_entry res;
1620};
1621
1622struct ib_srq {
1623 struct ib_device *device;
1624 struct ib_pd *pd;
1625 struct ib_usrq_object *uobject;
1626 void (*event_handler)(struct ib_event *, void *);
1627 void *srq_context;
1628 enum ib_srq_type srq_type;
1629 atomic_t usecnt;
1630
1631 struct {
1632 struct ib_cq *cq;
1633 union {
1634 struct {
1635 struct ib_xrcd *xrcd;
1636 u32 srq_num;
1637 } xrc;
1638 };
1639 } ext;
1640
1641 /*
1642 * Implementation details of the RDMA core, don't use in drivers:
1643 */
1644 struct rdma_restrack_entry res;
1645};
1646
1647enum ib_raw_packet_caps {
1648 /*
1649 * Strip cvlan from incoming packet and report it in the matching work
1650 * completion is supported.
1651 */
1652 IB_RAW_PACKET_CAP_CVLAN_STRIPPING =
1653 IB_UVERBS_RAW_PACKET_CAP_CVLAN_STRIPPING,
1654 /*
1655 * Scatter FCS field of an incoming packet to host memory is supported.
1656 */
1657 IB_RAW_PACKET_CAP_SCATTER_FCS = IB_UVERBS_RAW_PACKET_CAP_SCATTER_FCS,
1658 /* Checksum offloads are supported (for both send and receive). */
1659 IB_RAW_PACKET_CAP_IP_CSUM = IB_UVERBS_RAW_PACKET_CAP_IP_CSUM,
1660 /*
1661 * When a packet is received for an RQ with no receive WQEs, the
1662 * packet processing is delayed.
1663 */
1664 IB_RAW_PACKET_CAP_DELAY_DROP = IB_UVERBS_RAW_PACKET_CAP_DELAY_DROP,
1665};
1666
1667enum ib_wq_type {
1668 IB_WQT_RQ = IB_UVERBS_WQT_RQ,
1669};
1670
1671enum ib_wq_state {
1672 IB_WQS_RESET,
1673 IB_WQS_RDY,
1674 IB_WQS_ERR
1675};
1676
1677struct ib_wq {
1678 struct ib_device *device;
1679 struct ib_uwq_object *uobject;
1680 void *wq_context;
1681 void (*event_handler)(struct ib_event *, void *);
1682 struct ib_pd *pd;
1683 struct ib_cq *cq;
1684 u32 wq_num;
1685 enum ib_wq_state state;
1686 enum ib_wq_type wq_type;
1687 atomic_t usecnt;
1688};
1689
1690enum ib_wq_flags {
1691 IB_WQ_FLAGS_CVLAN_STRIPPING = IB_UVERBS_WQ_FLAGS_CVLAN_STRIPPING,
1692 IB_WQ_FLAGS_SCATTER_FCS = IB_UVERBS_WQ_FLAGS_SCATTER_FCS,
1693 IB_WQ_FLAGS_DELAY_DROP = IB_UVERBS_WQ_FLAGS_DELAY_DROP,
1694 IB_WQ_FLAGS_PCI_WRITE_END_PADDING =
1695 IB_UVERBS_WQ_FLAGS_PCI_WRITE_END_PADDING,
1696};
1697
1698struct ib_wq_init_attr {
1699 void *wq_context;
1700 enum ib_wq_type wq_type;
1701 u32 max_wr;
1702 u32 max_sge;
1703 struct ib_cq *cq;
1704 void (*event_handler)(struct ib_event *, void *);
1705 u32 create_flags; /* Use enum ib_wq_flags */
1706};
1707
1708enum ib_wq_attr_mask {
1709 IB_WQ_STATE = 1 << 0,
1710 IB_WQ_CUR_STATE = 1 << 1,
1711 IB_WQ_FLAGS = 1 << 2,
1712};
1713
1714struct ib_wq_attr {
1715 enum ib_wq_state wq_state;
1716 enum ib_wq_state curr_wq_state;
1717 u32 flags; /* Use enum ib_wq_flags */
1718 u32 flags_mask; /* Use enum ib_wq_flags */
1719};
1720
1721struct ib_rwq_ind_table {
1722 struct ib_device *device;
1723 struct ib_uobject *uobject;
1724 atomic_t usecnt;
1725 u32 ind_tbl_num;
1726 u32 log_ind_tbl_size;
1727 struct ib_wq **ind_tbl;
1728};
1729
1730struct ib_rwq_ind_table_init_attr {
1731 u32 log_ind_tbl_size;
1732 /* Each entry is a pointer to Receive Work Queue */
1733 struct ib_wq **ind_tbl;
1734};
1735
1736enum port_pkey_state {
1737 IB_PORT_PKEY_NOT_VALID = 0,
1738 IB_PORT_PKEY_VALID = 1,
1739 IB_PORT_PKEY_LISTED = 2,
1740};
1741
1742struct ib_qp_security;
1743
1744struct ib_port_pkey {
1745 enum port_pkey_state state;
1746 u16 pkey_index;
1747 u32 port_num;
1748 struct list_head qp_list;
1749 struct list_head to_error_list;
1750 struct ib_qp_security *sec;
1751};
1752
1753struct ib_ports_pkeys {
1754 struct ib_port_pkey main;
1755 struct ib_port_pkey alt;
1756};
1757
1758struct ib_qp_security {
1759 struct ib_qp *qp;
1760 struct ib_device *dev;
1761 /* Hold this mutex when changing port and pkey settings. */
1762 struct mutex mutex;
1763 struct ib_ports_pkeys *ports_pkeys;
1764 /* A list of all open shared QP handles. Required to enforce security
1765 * properly for all users of a shared QP.
1766 */
1767 struct list_head shared_qp_list;
1768 void *security;
1769 bool destroying;
1770 atomic_t error_list_count;
1771 struct completion error_complete;
1772 int error_comps_pending;
1773};
1774
1775/*
1776 * @max_write_sge: Maximum SGE elements per RDMA WRITE request.
1777 * @max_read_sge: Maximum SGE elements per RDMA READ request.
1778 */
1779struct ib_qp {
1780 struct ib_device *device;
1781 struct ib_pd *pd;
1782 struct ib_cq *send_cq;
1783 struct ib_cq *recv_cq;
1784 spinlock_t mr_lock;
1785 int mrs_used;
1786 struct list_head rdma_mrs;
1787 struct list_head sig_mrs;
1788 struct ib_srq *srq;
1789 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
1790 struct list_head xrcd_list;
1791
1792 /* count times opened, mcast attaches, flow attaches */
1793 atomic_t usecnt;
1794 struct list_head open_list;
1795 struct ib_qp *real_qp;
1796 struct ib_uqp_object *uobject;
1797 void (*event_handler)(struct ib_event *, void *);
1798 void *qp_context;
1799 /* sgid_attrs associated with the AV's */
1800 const struct ib_gid_attr *av_sgid_attr;
1801 const struct ib_gid_attr *alt_path_sgid_attr;
1802 u32 qp_num;
1803 u32 max_write_sge;
1804 u32 max_read_sge;
1805 enum ib_qp_type qp_type;
1806 struct ib_rwq_ind_table *rwq_ind_tbl;
1807 struct ib_qp_security *qp_sec;
1808 u32 port;
1809
1810 bool integrity_en;
1811 /*
1812 * Implementation details of the RDMA core, don't use in drivers:
1813 */
1814 struct rdma_restrack_entry res;
1815
1816 /* The counter the qp is bind to */
1817 struct rdma_counter *counter;
1818};
1819
1820struct ib_dm {
1821 struct ib_device *device;
1822 u32 length;
1823 u32 flags;
1824 struct ib_uobject *uobject;
1825 atomic_t usecnt;
1826};
1827
1828struct ib_mr {
1829 struct ib_device *device;
1830 struct ib_pd *pd;
1831 u32 lkey;
1832 u32 rkey;
1833 u64 iova;
1834 u64 length;
1835 unsigned int page_size;
1836 enum ib_mr_type type;
1837 bool need_inval;
1838 union {
1839 struct ib_uobject *uobject; /* user */
1840 struct list_head qp_entry; /* FR */
1841 };
1842
1843 struct ib_dm *dm;
1844 struct ib_sig_attrs *sig_attrs; /* only for IB_MR_TYPE_INTEGRITY MRs */
1845 /*
1846 * Implementation details of the RDMA core, don't use in drivers:
1847 */
1848 struct rdma_restrack_entry res;
1849};
1850
1851struct ib_mw {
1852 struct ib_device *device;
1853 struct ib_pd *pd;
1854 struct ib_uobject *uobject;
1855 u32 rkey;
1856 enum ib_mw_type type;
1857};
1858
1859/* Supported steering options */
1860enum ib_flow_attr_type {
1861 /* steering according to rule specifications */
1862 IB_FLOW_ATTR_NORMAL = 0x0,
1863 /* default unicast and multicast rule -
1864 * receive all Eth traffic which isn't steered to any QP
1865 */
1866 IB_FLOW_ATTR_ALL_DEFAULT = 0x1,
1867 /* default multicast rule -
1868 * receive all Eth multicast traffic which isn't steered to any QP
1869 */
1870 IB_FLOW_ATTR_MC_DEFAULT = 0x2,
1871 /* sniffer rule - receive all port traffic */
1872 IB_FLOW_ATTR_SNIFFER = 0x3
1873};
1874
1875/* Supported steering header types */
1876enum ib_flow_spec_type {
1877 /* L2 headers*/
1878 IB_FLOW_SPEC_ETH = 0x20,
1879 IB_FLOW_SPEC_IB = 0x22,
1880 /* L3 header*/
1881 IB_FLOW_SPEC_IPV4 = 0x30,
1882 IB_FLOW_SPEC_IPV6 = 0x31,
1883 IB_FLOW_SPEC_ESP = 0x34,
1884 /* L4 headers*/
1885 IB_FLOW_SPEC_TCP = 0x40,
1886 IB_FLOW_SPEC_UDP = 0x41,
1887 IB_FLOW_SPEC_VXLAN_TUNNEL = 0x50,
1888 IB_FLOW_SPEC_GRE = 0x51,
1889 IB_FLOW_SPEC_MPLS = 0x60,
1890 IB_FLOW_SPEC_INNER = 0x100,
1891 /* Actions */
1892 IB_FLOW_SPEC_ACTION_TAG = 0x1000,
1893 IB_FLOW_SPEC_ACTION_DROP = 0x1001,
1894 IB_FLOW_SPEC_ACTION_HANDLE = 0x1002,
1895 IB_FLOW_SPEC_ACTION_COUNT = 0x1003,
1896};
1897#define IB_FLOW_SPEC_LAYER_MASK 0xF0
1898#define IB_FLOW_SPEC_SUPPORT_LAYERS 10
1899
1900enum ib_flow_flags {
1901 IB_FLOW_ATTR_FLAGS_DONT_TRAP = 1UL << 1, /* Continue match, no steal */
1902 IB_FLOW_ATTR_FLAGS_EGRESS = 1UL << 2, /* Egress flow */
1903 IB_FLOW_ATTR_FLAGS_RESERVED = 1UL << 3 /* Must be last */
1904};
1905
1906struct ib_flow_eth_filter {
1907 u8 dst_mac[6];
1908 u8 src_mac[6];
1909 __be16 ether_type;
1910 __be16 vlan_tag;
1911 /* Must be last */
1912 u8 real_sz[];
1913};
1914
1915struct ib_flow_spec_eth {
1916 u32 type;
1917 u16 size;
1918 struct ib_flow_eth_filter val;
1919 struct ib_flow_eth_filter mask;
1920};
1921
1922struct ib_flow_ib_filter {
1923 __be16 dlid;
1924 __u8 sl;
1925 /* Must be last */
1926 u8 real_sz[];
1927};
1928
1929struct ib_flow_spec_ib {
1930 u32 type;
1931 u16 size;
1932 struct ib_flow_ib_filter val;
1933 struct ib_flow_ib_filter mask;
1934};
1935
1936/* IPv4 header flags */
1937enum ib_ipv4_flags {
1938 IB_IPV4_DONT_FRAG = 0x2, /* Don't enable packet fragmentation */
1939 IB_IPV4_MORE_FRAG = 0X4 /* For All fragmented packets except the
1940 last have this flag set */
1941};
1942
1943struct ib_flow_ipv4_filter {
1944 __be32 src_ip;
1945 __be32 dst_ip;
1946 u8 proto;
1947 u8 tos;
1948 u8 ttl;
1949 u8 flags;
1950 /* Must be last */
1951 u8 real_sz[];
1952};
1953
1954struct ib_flow_spec_ipv4 {
1955 u32 type;
1956 u16 size;
1957 struct ib_flow_ipv4_filter val;
1958 struct ib_flow_ipv4_filter mask;
1959};
1960
1961struct ib_flow_ipv6_filter {
1962 u8 src_ip[16];
1963 u8 dst_ip[16];
1964 __be32 flow_label;
1965 u8 next_hdr;
1966 u8 traffic_class;
1967 u8 hop_limit;
1968 /* Must be last */
1969 u8 real_sz[];
1970};
1971
1972struct ib_flow_spec_ipv6 {
1973 u32 type;
1974 u16 size;
1975 struct ib_flow_ipv6_filter val;
1976 struct ib_flow_ipv6_filter mask;
1977};
1978
1979struct ib_flow_tcp_udp_filter {
1980 __be16 dst_port;
1981 __be16 src_port;
1982 /* Must be last */
1983 u8 real_sz[];
1984};
1985
1986struct ib_flow_spec_tcp_udp {
1987 u32 type;
1988 u16 size;
1989 struct ib_flow_tcp_udp_filter val;
1990 struct ib_flow_tcp_udp_filter mask;
1991};
1992
1993struct ib_flow_tunnel_filter {
1994 __be32 tunnel_id;
1995 u8 real_sz[];
1996};
1997
1998/* ib_flow_spec_tunnel describes the Vxlan tunnel
1999 * the tunnel_id from val has the vni value
2000 */
2001struct ib_flow_spec_tunnel {
2002 u32 type;
2003 u16 size;
2004 struct ib_flow_tunnel_filter val;
2005 struct ib_flow_tunnel_filter mask;
2006};
2007
2008struct ib_flow_esp_filter {
2009 __be32 spi;
2010 __be32 seq;
2011 /* Must be last */
2012 u8 real_sz[];
2013};
2014
2015struct ib_flow_spec_esp {
2016 u32 type;
2017 u16 size;
2018 struct ib_flow_esp_filter val;
2019 struct ib_flow_esp_filter mask;
2020};
2021
2022struct ib_flow_gre_filter {
2023 __be16 c_ks_res0_ver;
2024 __be16 protocol;
2025 __be32 key;
2026 /* Must be last */
2027 u8 real_sz[];
2028};
2029
2030struct ib_flow_spec_gre {
2031 u32 type;
2032 u16 size;
2033 struct ib_flow_gre_filter val;
2034 struct ib_flow_gre_filter mask;
2035};
2036
2037struct ib_flow_mpls_filter {
2038 __be32 tag;
2039 /* Must be last */
2040 u8 real_sz[];
2041};
2042
2043struct ib_flow_spec_mpls {
2044 u32 type;
2045 u16 size;
2046 struct ib_flow_mpls_filter val;
2047 struct ib_flow_mpls_filter mask;
2048};
2049
2050struct ib_flow_spec_action_tag {
2051 enum ib_flow_spec_type type;
2052 u16 size;
2053 u32 tag_id;
2054};
2055
2056struct ib_flow_spec_action_drop {
2057 enum ib_flow_spec_type type;
2058 u16 size;
2059};
2060
2061struct ib_flow_spec_action_handle {
2062 enum ib_flow_spec_type type;
2063 u16 size;
2064 struct ib_flow_action *act;
2065};
2066
2067enum ib_counters_description {
2068 IB_COUNTER_PACKETS,
2069 IB_COUNTER_BYTES,
2070};
2071
2072struct ib_flow_spec_action_count {
2073 enum ib_flow_spec_type type;
2074 u16 size;
2075 struct ib_counters *counters;
2076};
2077
2078union ib_flow_spec {
2079 struct {
2080 u32 type;
2081 u16 size;
2082 };
2083 struct ib_flow_spec_eth eth;
2084 struct ib_flow_spec_ib ib;
2085 struct ib_flow_spec_ipv4 ipv4;
2086 struct ib_flow_spec_tcp_udp tcp_udp;
2087 struct ib_flow_spec_ipv6 ipv6;
2088 struct ib_flow_spec_tunnel tunnel;
2089 struct ib_flow_spec_esp esp;
2090 struct ib_flow_spec_gre gre;
2091 struct ib_flow_spec_mpls mpls;
2092 struct ib_flow_spec_action_tag flow_tag;
2093 struct ib_flow_spec_action_drop drop;
2094 struct ib_flow_spec_action_handle action;
2095 struct ib_flow_spec_action_count flow_count;
2096};
2097
2098struct ib_flow_attr {
2099 enum ib_flow_attr_type type;
2100 u16 size;
2101 u16 priority;
2102 u32 flags;
2103 u8 num_of_specs;
2104 u32 port;
2105 union ib_flow_spec flows[];
2106};
2107
2108struct ib_flow {
2109 struct ib_qp *qp;
2110 struct ib_device *device;
2111 struct ib_uobject *uobject;
2112};
2113
2114enum ib_flow_action_type {
2115 IB_FLOW_ACTION_UNSPECIFIED,
2116 IB_FLOW_ACTION_ESP = 1,
2117};
2118
2119struct ib_flow_action_attrs_esp_keymats {
2120 enum ib_uverbs_flow_action_esp_keymat protocol;
2121 union {
2122 struct ib_uverbs_flow_action_esp_keymat_aes_gcm aes_gcm;
2123 } keymat;
2124};
2125
2126struct ib_flow_action_attrs_esp_replays {
2127 enum ib_uverbs_flow_action_esp_replay protocol;
2128 union {
2129 struct ib_uverbs_flow_action_esp_replay_bmp bmp;
2130 } replay;
2131};
2132
2133enum ib_flow_action_attrs_esp_flags {
2134 /* All user-space flags at the top: Use enum ib_uverbs_flow_action_esp_flags
2135 * This is done in order to share the same flags between user-space and
2136 * kernel and spare an unnecessary translation.
2137 */
2138
2139 /* Kernel flags */
2140 IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED = 1ULL << 32,
2141 IB_FLOW_ACTION_ESP_FLAGS_MOD_ESP_ATTRS = 1ULL << 33,
2142};
2143
2144struct ib_flow_spec_list {
2145 struct ib_flow_spec_list *next;
2146 union ib_flow_spec spec;
2147};
2148
2149struct ib_flow_action_attrs_esp {
2150 struct ib_flow_action_attrs_esp_keymats *keymat;
2151 struct ib_flow_action_attrs_esp_replays *replay;
2152 struct ib_flow_spec_list *encap;
2153 /* Used only if IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED is enabled.
2154 * Value of 0 is a valid value.
2155 */
2156 u32 esn;
2157 u32 spi;
2158 u32 seq;
2159 u32 tfc_pad;
2160 /* Use enum ib_flow_action_attrs_esp_flags */
2161 u64 flags;
2162 u64 hard_limit_pkts;
2163};
2164
2165struct ib_flow_action {
2166 struct ib_device *device;
2167 struct ib_uobject *uobject;
2168 enum ib_flow_action_type type;
2169 atomic_t usecnt;
2170};
2171
2172struct ib_mad;
2173
2174enum ib_process_mad_flags {
2175 IB_MAD_IGNORE_MKEY = 1,
2176 IB_MAD_IGNORE_BKEY = 2,
2177 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
2178};
2179
2180enum ib_mad_result {
2181 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */
2182 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */
2183 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */
2184 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */
2185};
2186
2187struct ib_port_cache {
2188 u64 subnet_prefix;
2189 struct ib_pkey_cache *pkey;
2190 struct ib_gid_table *gid;
2191 u8 lmc;
2192 enum ib_port_state port_state;
2193};
2194
2195struct ib_port_immutable {
2196 int pkey_tbl_len;
2197 int gid_tbl_len;
2198 u32 core_cap_flags;
2199 u32 max_mad_size;
2200};
2201
2202struct ib_port_data {
2203 struct ib_device *ib_dev;
2204
2205 struct ib_port_immutable immutable;
2206
2207 spinlock_t pkey_list_lock;
2208
2209 spinlock_t netdev_lock;
2210
2211 struct list_head pkey_list;
2212
2213 struct ib_port_cache cache;
2214
2215 struct net_device __rcu *netdev;
2216 netdevice_tracker netdev_tracker;
2217 struct hlist_node ndev_hash_link;
2218 struct rdma_port_counter port_counter;
2219 struct ib_port *sysfs;
2220};
2221
2222/* rdma netdev type - specifies protocol type */
2223enum rdma_netdev_t {
2224 RDMA_NETDEV_OPA_VNIC,
2225 RDMA_NETDEV_IPOIB,
2226};
2227
2228/**
2229 * struct rdma_netdev - rdma netdev
2230 * For cases where netstack interfacing is required.
2231 */
2232struct rdma_netdev {
2233 void *clnt_priv;
2234 struct ib_device *hca;
2235 u32 port_num;
2236 int mtu;
2237
2238 /*
2239 * cleanup function must be specified.
2240 * FIXME: This is only used for OPA_VNIC and that usage should be
2241 * removed too.
2242 */
2243 void (*free_rdma_netdev)(struct net_device *netdev);
2244
2245 /* control functions */
2246 void (*set_id)(struct net_device *netdev, int id);
2247 /* send packet */
2248 int (*send)(struct net_device *dev, struct sk_buff *skb,
2249 struct ib_ah *address, u32 dqpn);
2250 /* multicast */
2251 int (*attach_mcast)(struct net_device *dev, struct ib_device *hca,
2252 union ib_gid *gid, u16 mlid,
2253 int set_qkey, u32 qkey);
2254 int (*detach_mcast)(struct net_device *dev, struct ib_device *hca,
2255 union ib_gid *gid, u16 mlid);
2256 /* timeout */
2257 void (*tx_timeout)(struct net_device *dev, unsigned int txqueue);
2258};
2259
2260struct rdma_netdev_alloc_params {
2261 size_t sizeof_priv;
2262 unsigned int txqs;
2263 unsigned int rxqs;
2264 void *param;
2265
2266 int (*initialize_rdma_netdev)(struct ib_device *device, u32 port_num,
2267 struct net_device *netdev, void *param);
2268};
2269
2270struct ib_odp_counters {
2271 atomic64_t faults;
2272 atomic64_t invalidations;
2273 atomic64_t prefetch;
2274};
2275
2276struct ib_counters {
2277 struct ib_device *device;
2278 struct ib_uobject *uobject;
2279 /* num of objects attached */
2280 atomic_t usecnt;
2281};
2282
2283struct ib_counters_read_attr {
2284 u64 *counters_buff;
2285 u32 ncounters;
2286 u32 flags; /* use enum ib_read_counters_flags */
2287};
2288
2289struct uverbs_attr_bundle;
2290struct iw_cm_id;
2291struct iw_cm_conn_param;
2292
2293#define INIT_RDMA_OBJ_SIZE(ib_struct, drv_struct, member) \
2294 .size_##ib_struct = \
2295 (sizeof(struct drv_struct) + \
2296 BUILD_BUG_ON_ZERO(offsetof(struct drv_struct, member)) + \
2297 BUILD_BUG_ON_ZERO( \
2298 !__same_type(((struct drv_struct *)NULL)->member, \
2299 struct ib_struct)))
2300
2301#define rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, gfp) \
2302 ((struct ib_type *)rdma_zalloc_obj(ib_dev, ib_dev->ops.size_##ib_type, \
2303 gfp, false))
2304
2305#define rdma_zalloc_drv_obj_numa(ib_dev, ib_type) \
2306 ((struct ib_type *)rdma_zalloc_obj(ib_dev, ib_dev->ops.size_##ib_type, \
2307 GFP_KERNEL, true))
2308
2309#define rdma_zalloc_drv_obj(ib_dev, ib_type) \
2310 rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, GFP_KERNEL)
2311
2312#define DECLARE_RDMA_OBJ_SIZE(ib_struct) size_t size_##ib_struct
2313
2314struct rdma_user_mmap_entry {
2315 struct kref ref;
2316 struct ib_ucontext *ucontext;
2317 unsigned long start_pgoff;
2318 size_t npages;
2319 bool driver_removed;
2320};
2321
2322/* Return the offset (in bytes) the user should pass to libc's mmap() */
2323static inline u64
2324rdma_user_mmap_get_offset(const struct rdma_user_mmap_entry *entry)
2325{
2326 return (u64)entry->start_pgoff << PAGE_SHIFT;
2327}
2328
2329/**
2330 * struct ib_device_ops - InfiniBand device operations
2331 * This structure defines all the InfiniBand device operations, providers will
2332 * need to define the supported operations, otherwise they will be set to null.
2333 */
2334struct ib_device_ops {
2335 struct module *owner;
2336 enum rdma_driver_id driver_id;
2337 u32 uverbs_abi_ver;
2338 unsigned int uverbs_no_driver_id_binding:1;
2339
2340 /*
2341 * NOTE: New drivers should not make use of device_group; instead new
2342 * device parameter should be exposed via netlink command. This
2343 * mechanism exists only for existing drivers.
2344 */
2345 const struct attribute_group *device_group;
2346 const struct attribute_group **port_groups;
2347
2348 int (*post_send)(struct ib_qp *qp, const struct ib_send_wr *send_wr,
2349 const struct ib_send_wr **bad_send_wr);
2350 int (*post_recv)(struct ib_qp *qp, const struct ib_recv_wr *recv_wr,
2351 const struct ib_recv_wr **bad_recv_wr);
2352 void (*drain_rq)(struct ib_qp *qp);
2353 void (*drain_sq)(struct ib_qp *qp);
2354 int (*poll_cq)(struct ib_cq *cq, int num_entries, struct ib_wc *wc);
2355 int (*peek_cq)(struct ib_cq *cq, int wc_cnt);
2356 int (*req_notify_cq)(struct ib_cq *cq, enum ib_cq_notify_flags flags);
2357 int (*post_srq_recv)(struct ib_srq *srq,
2358 const struct ib_recv_wr *recv_wr,
2359 const struct ib_recv_wr **bad_recv_wr);
2360 int (*process_mad)(struct ib_device *device, int process_mad_flags,
2361 u32 port_num, const struct ib_wc *in_wc,
2362 const struct ib_grh *in_grh,
2363 const struct ib_mad *in_mad, struct ib_mad *out_mad,
2364 size_t *out_mad_size, u16 *out_mad_pkey_index);
2365 int (*query_device)(struct ib_device *device,
2366 struct ib_device_attr *device_attr,
2367 struct ib_udata *udata);
2368 int (*modify_device)(struct ib_device *device, int device_modify_mask,
2369 struct ib_device_modify *device_modify);
2370 void (*get_dev_fw_str)(struct ib_device *device, char *str);
2371 const struct cpumask *(*get_vector_affinity)(struct ib_device *ibdev,
2372 int comp_vector);
2373 int (*query_port)(struct ib_device *device, u32 port_num,
2374 struct ib_port_attr *port_attr);
2375 int (*modify_port)(struct ib_device *device, u32 port_num,
2376 int port_modify_mask,
2377 struct ib_port_modify *port_modify);
2378 /**
2379 * The following mandatory functions are used only at device
2380 * registration. Keep functions such as these at the end of this
2381 * structure to avoid cache line misses when accessing struct ib_device
2382 * in fast paths.
2383 */
2384 int (*get_port_immutable)(struct ib_device *device, u32 port_num,
2385 struct ib_port_immutable *immutable);
2386 enum rdma_link_layer (*get_link_layer)(struct ib_device *device,
2387 u32 port_num);
2388 /**
2389 * When calling get_netdev, the HW vendor's driver should return the
2390 * net device of device @device at port @port_num or NULL if such
2391 * a net device doesn't exist. The vendor driver should call dev_hold
2392 * on this net device. The HW vendor's device driver must guarantee
2393 * that this function returns NULL before the net device has finished
2394 * NETDEV_UNREGISTER state.
2395 */
2396 struct net_device *(*get_netdev)(struct ib_device *device,
2397 u32 port_num);
2398 /**
2399 * rdma netdev operation
2400 *
2401 * Driver implementing alloc_rdma_netdev or rdma_netdev_get_params
2402 * must return -EOPNOTSUPP if it doesn't support the specified type.
2403 */
2404 struct net_device *(*alloc_rdma_netdev)(
2405 struct ib_device *device, u32 port_num, enum rdma_netdev_t type,
2406 const char *name, unsigned char name_assign_type,
2407 void (*setup)(struct net_device *));
2408
2409 int (*rdma_netdev_get_params)(struct ib_device *device, u32 port_num,
2410 enum rdma_netdev_t type,
2411 struct rdma_netdev_alloc_params *params);
2412 /**
2413 * query_gid should be return GID value for @device, when @port_num
2414 * link layer is either IB or iWarp. It is no-op if @port_num port
2415 * is RoCE link layer.
2416 */
2417 int (*query_gid)(struct ib_device *device, u32 port_num, int index,
2418 union ib_gid *gid);
2419 /**
2420 * When calling add_gid, the HW vendor's driver should add the gid
2421 * of device of port at gid index available at @attr. Meta-info of
2422 * that gid (for example, the network device related to this gid) is
2423 * available at @attr. @context allows the HW vendor driver to store
2424 * extra information together with a GID entry. The HW vendor driver may
2425 * allocate memory to contain this information and store it in @context
2426 * when a new GID entry is written to. Params are consistent until the
2427 * next call of add_gid or delete_gid. The function should return 0 on
2428 * success or error otherwise. The function could be called
2429 * concurrently for different ports. This function is only called when
2430 * roce_gid_table is used.
2431 */
2432 int (*add_gid)(const struct ib_gid_attr *attr, void **context);
2433 /**
2434 * When calling del_gid, the HW vendor's driver should delete the
2435 * gid of device @device at gid index gid_index of port port_num
2436 * available in @attr.
2437 * Upon the deletion of a GID entry, the HW vendor must free any
2438 * allocated memory. The caller will clear @context afterwards.
2439 * This function is only called when roce_gid_table is used.
2440 */
2441 int (*del_gid)(const struct ib_gid_attr *attr, void **context);
2442 int (*query_pkey)(struct ib_device *device, u32 port_num, u16 index,
2443 u16 *pkey);
2444 int (*alloc_ucontext)(struct ib_ucontext *context,
2445 struct ib_udata *udata);
2446 void (*dealloc_ucontext)(struct ib_ucontext *context);
2447 int (*mmap)(struct ib_ucontext *context, struct vm_area_struct *vma);
2448 /**
2449 * This will be called once refcount of an entry in mmap_xa reaches
2450 * zero. The type of the memory that was mapped may differ between
2451 * entries and is opaque to the rdma_user_mmap interface.
2452 * Therefore needs to be implemented by the driver in mmap_free.
2453 */
2454 void (*mmap_free)(struct rdma_user_mmap_entry *entry);
2455 void (*disassociate_ucontext)(struct ib_ucontext *ibcontext);
2456 int (*alloc_pd)(struct ib_pd *pd, struct ib_udata *udata);
2457 int (*dealloc_pd)(struct ib_pd *pd, struct ib_udata *udata);
2458 int (*create_ah)(struct ib_ah *ah, struct rdma_ah_init_attr *attr,
2459 struct ib_udata *udata);
2460 int (*create_user_ah)(struct ib_ah *ah, struct rdma_ah_init_attr *attr,
2461 struct ib_udata *udata);
2462 int (*modify_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
2463 int (*query_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
2464 int (*destroy_ah)(struct ib_ah *ah, u32 flags);
2465 int (*create_srq)(struct ib_srq *srq,
2466 struct ib_srq_init_attr *srq_init_attr,
2467 struct ib_udata *udata);
2468 int (*modify_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr,
2469 enum ib_srq_attr_mask srq_attr_mask,
2470 struct ib_udata *udata);
2471 int (*query_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr);
2472 int (*destroy_srq)(struct ib_srq *srq, struct ib_udata *udata);
2473 int (*create_qp)(struct ib_qp *qp, struct ib_qp_init_attr *qp_init_attr,
2474 struct ib_udata *udata);
2475 int (*modify_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr,
2476 int qp_attr_mask, struct ib_udata *udata);
2477 int (*query_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr,
2478 int qp_attr_mask, struct ib_qp_init_attr *qp_init_attr);
2479 int (*destroy_qp)(struct ib_qp *qp, struct ib_udata *udata);
2480 int (*create_cq)(struct ib_cq *cq, const struct ib_cq_init_attr *attr,
2481 struct ib_udata *udata);
2482 int (*modify_cq)(struct ib_cq *cq, u16 cq_count, u16 cq_period);
2483 int (*destroy_cq)(struct ib_cq *cq, struct ib_udata *udata);
2484 int (*resize_cq)(struct ib_cq *cq, int cqe, struct ib_udata *udata);
2485 struct ib_mr *(*get_dma_mr)(struct ib_pd *pd, int mr_access_flags);
2486 struct ib_mr *(*reg_user_mr)(struct ib_pd *pd, u64 start, u64 length,
2487 u64 virt_addr, int mr_access_flags,
2488 struct ib_udata *udata);
2489 struct ib_mr *(*reg_user_mr_dmabuf)(struct ib_pd *pd, u64 offset,
2490 u64 length, u64 virt_addr, int fd,
2491 int mr_access_flags,
2492 struct ib_udata *udata);
2493 struct ib_mr *(*rereg_user_mr)(struct ib_mr *mr, int flags, u64 start,
2494 u64 length, u64 virt_addr,
2495 int mr_access_flags, struct ib_pd *pd,
2496 struct ib_udata *udata);
2497 int (*dereg_mr)(struct ib_mr *mr, struct ib_udata *udata);
2498 struct ib_mr *(*alloc_mr)(struct ib_pd *pd, enum ib_mr_type mr_type,
2499 u32 max_num_sg);
2500 struct ib_mr *(*alloc_mr_integrity)(struct ib_pd *pd,
2501 u32 max_num_data_sg,
2502 u32 max_num_meta_sg);
2503 int (*advise_mr)(struct ib_pd *pd,
2504 enum ib_uverbs_advise_mr_advice advice, u32 flags,
2505 struct ib_sge *sg_list, u32 num_sge,
2506 struct uverbs_attr_bundle *attrs);
2507
2508 /*
2509 * Kernel users should universally support relaxed ordering (RO), as
2510 * they are designed to read data only after observing the CQE and use
2511 * the DMA API correctly.
2512 *
2513 * Some drivers implicitly enable RO if platform supports it.
2514 */
2515 int (*map_mr_sg)(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
2516 unsigned int *sg_offset);
2517 int (*check_mr_status)(struct ib_mr *mr, u32 check_mask,
2518 struct ib_mr_status *mr_status);
2519 int (*alloc_mw)(struct ib_mw *mw, struct ib_udata *udata);
2520 int (*dealloc_mw)(struct ib_mw *mw);
2521 int (*attach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2522 int (*detach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2523 int (*alloc_xrcd)(struct ib_xrcd *xrcd, struct ib_udata *udata);
2524 int (*dealloc_xrcd)(struct ib_xrcd *xrcd, struct ib_udata *udata);
2525 struct ib_flow *(*create_flow)(struct ib_qp *qp,
2526 struct ib_flow_attr *flow_attr,
2527 struct ib_udata *udata);
2528 int (*destroy_flow)(struct ib_flow *flow_id);
2529 int (*destroy_flow_action)(struct ib_flow_action *action);
2530 int (*set_vf_link_state)(struct ib_device *device, int vf, u32 port,
2531 int state);
2532 int (*get_vf_config)(struct ib_device *device, int vf, u32 port,
2533 struct ifla_vf_info *ivf);
2534 int (*get_vf_stats)(struct ib_device *device, int vf, u32 port,
2535 struct ifla_vf_stats *stats);
2536 int (*get_vf_guid)(struct ib_device *device, int vf, u32 port,
2537 struct ifla_vf_guid *node_guid,
2538 struct ifla_vf_guid *port_guid);
2539 int (*set_vf_guid)(struct ib_device *device, int vf, u32 port, u64 guid,
2540 int type);
2541 struct ib_wq *(*create_wq)(struct ib_pd *pd,
2542 struct ib_wq_init_attr *init_attr,
2543 struct ib_udata *udata);
2544 int (*destroy_wq)(struct ib_wq *wq, struct ib_udata *udata);
2545 int (*modify_wq)(struct ib_wq *wq, struct ib_wq_attr *attr,
2546 u32 wq_attr_mask, struct ib_udata *udata);
2547 int (*create_rwq_ind_table)(struct ib_rwq_ind_table *ib_rwq_ind_table,
2548 struct ib_rwq_ind_table_init_attr *init_attr,
2549 struct ib_udata *udata);
2550 int (*destroy_rwq_ind_table)(struct ib_rwq_ind_table *wq_ind_table);
2551 struct ib_dm *(*alloc_dm)(struct ib_device *device,
2552 struct ib_ucontext *context,
2553 struct ib_dm_alloc_attr *attr,
2554 struct uverbs_attr_bundle *attrs);
2555 int (*dealloc_dm)(struct ib_dm *dm, struct uverbs_attr_bundle *attrs);
2556 struct ib_mr *(*reg_dm_mr)(struct ib_pd *pd, struct ib_dm *dm,
2557 struct ib_dm_mr_attr *attr,
2558 struct uverbs_attr_bundle *attrs);
2559 int (*create_counters)(struct ib_counters *counters,
2560 struct uverbs_attr_bundle *attrs);
2561 int (*destroy_counters)(struct ib_counters *counters);
2562 int (*read_counters)(struct ib_counters *counters,
2563 struct ib_counters_read_attr *counters_read_attr,
2564 struct uverbs_attr_bundle *attrs);
2565 int (*map_mr_sg_pi)(struct ib_mr *mr, struct scatterlist *data_sg,
2566 int data_sg_nents, unsigned int *data_sg_offset,
2567 struct scatterlist *meta_sg, int meta_sg_nents,
2568 unsigned int *meta_sg_offset);
2569
2570 /**
2571 * alloc_hw_[device,port]_stats - Allocate a struct rdma_hw_stats and
2572 * fill in the driver initialized data. The struct is kfree()'ed by
2573 * the sysfs core when the device is removed. A lifespan of -1 in the
2574 * return struct tells the core to set a default lifespan.
2575 */
2576 struct rdma_hw_stats *(*alloc_hw_device_stats)(struct ib_device *device);
2577 struct rdma_hw_stats *(*alloc_hw_port_stats)(struct ib_device *device,
2578 u32 port_num);
2579 /**
2580 * get_hw_stats - Fill in the counter value(s) in the stats struct.
2581 * @index - The index in the value array we wish to have updated, or
2582 * num_counters if we want all stats updated
2583 * Return codes -
2584 * < 0 - Error, no counters updated
2585 * index - Updated the single counter pointed to by index
2586 * num_counters - Updated all counters (will reset the timestamp
2587 * and prevent further calls for lifespan milliseconds)
2588 * Drivers are allowed to update all counters in leiu of just the
2589 * one given in index at their option
2590 */
2591 int (*get_hw_stats)(struct ib_device *device,
2592 struct rdma_hw_stats *stats, u32 port, int index);
2593
2594 /**
2595 * modify_hw_stat - Modify the counter configuration
2596 * @enable: true/false when enable/disable a counter
2597 * Return codes - 0 on success or error code otherwise.
2598 */
2599 int (*modify_hw_stat)(struct ib_device *device, u32 port,
2600 unsigned int counter_index, bool enable);
2601 /**
2602 * Allows rdma drivers to add their own restrack attributes.
2603 */
2604 int (*fill_res_mr_entry)(struct sk_buff *msg, struct ib_mr *ibmr);
2605 int (*fill_res_mr_entry_raw)(struct sk_buff *msg, struct ib_mr *ibmr);
2606 int (*fill_res_cq_entry)(struct sk_buff *msg, struct ib_cq *ibcq);
2607 int (*fill_res_cq_entry_raw)(struct sk_buff *msg, struct ib_cq *ibcq);
2608 int (*fill_res_qp_entry)(struct sk_buff *msg, struct ib_qp *ibqp);
2609 int (*fill_res_qp_entry_raw)(struct sk_buff *msg, struct ib_qp *ibqp);
2610 int (*fill_res_cm_id_entry)(struct sk_buff *msg, struct rdma_cm_id *id);
2611
2612 /* Device lifecycle callbacks */
2613 /*
2614 * Called after the device becomes registered, before clients are
2615 * attached
2616 */
2617 int (*enable_driver)(struct ib_device *dev);
2618 /*
2619 * This is called as part of ib_dealloc_device().
2620 */
2621 void (*dealloc_driver)(struct ib_device *dev);
2622
2623 /* iWarp CM callbacks */
2624 void (*iw_add_ref)(struct ib_qp *qp);
2625 void (*iw_rem_ref)(struct ib_qp *qp);
2626 struct ib_qp *(*iw_get_qp)(struct ib_device *device, int qpn);
2627 int (*iw_connect)(struct iw_cm_id *cm_id,
2628 struct iw_cm_conn_param *conn_param);
2629 int (*iw_accept)(struct iw_cm_id *cm_id,
2630 struct iw_cm_conn_param *conn_param);
2631 int (*iw_reject)(struct iw_cm_id *cm_id, const void *pdata,
2632 u8 pdata_len);
2633 int (*iw_create_listen)(struct iw_cm_id *cm_id, int backlog);
2634 int (*iw_destroy_listen)(struct iw_cm_id *cm_id);
2635 /**
2636 * counter_bind_qp - Bind a QP to a counter.
2637 * @counter - The counter to be bound. If counter->id is zero then
2638 * the driver needs to allocate a new counter and set counter->id
2639 */
2640 int (*counter_bind_qp)(struct rdma_counter *counter, struct ib_qp *qp);
2641 /**
2642 * counter_unbind_qp - Unbind the qp from the dynamically-allocated
2643 * counter and bind it onto the default one
2644 */
2645 int (*counter_unbind_qp)(struct ib_qp *qp);
2646 /**
2647 * counter_dealloc -De-allocate the hw counter
2648 */
2649 int (*counter_dealloc)(struct rdma_counter *counter);
2650 /**
2651 * counter_alloc_stats - Allocate a struct rdma_hw_stats and fill in
2652 * the driver initialized data.
2653 */
2654 struct rdma_hw_stats *(*counter_alloc_stats)(
2655 struct rdma_counter *counter);
2656 /**
2657 * counter_update_stats - Query the stats value of this counter
2658 */
2659 int (*counter_update_stats)(struct rdma_counter *counter);
2660
2661 /**
2662 * Allows rdma drivers to add their own restrack attributes
2663 * dumped via 'rdma stat' iproute2 command.
2664 */
2665 int (*fill_stat_mr_entry)(struct sk_buff *msg, struct ib_mr *ibmr);
2666
2667 /* query driver for its ucontext properties */
2668 int (*query_ucontext)(struct ib_ucontext *context,
2669 struct uverbs_attr_bundle *attrs);
2670
2671 /*
2672 * Provide NUMA node. This API exists for rdmavt/hfi1 only.
2673 * Everyone else relies on Linux memory management model.
2674 */
2675 int (*get_numa_node)(struct ib_device *dev);
2676
2677 DECLARE_RDMA_OBJ_SIZE(ib_ah);
2678 DECLARE_RDMA_OBJ_SIZE(ib_counters);
2679 DECLARE_RDMA_OBJ_SIZE(ib_cq);
2680 DECLARE_RDMA_OBJ_SIZE(ib_mw);
2681 DECLARE_RDMA_OBJ_SIZE(ib_pd);
2682 DECLARE_RDMA_OBJ_SIZE(ib_qp);
2683 DECLARE_RDMA_OBJ_SIZE(ib_rwq_ind_table);
2684 DECLARE_RDMA_OBJ_SIZE(ib_srq);
2685 DECLARE_RDMA_OBJ_SIZE(ib_ucontext);
2686 DECLARE_RDMA_OBJ_SIZE(ib_xrcd);
2687};
2688
2689struct ib_core_device {
2690 /* device must be the first element in structure until,
2691 * union of ib_core_device and device exists in ib_device.
2692 */
2693 struct device dev;
2694 possible_net_t rdma_net;
2695 struct kobject *ports_kobj;
2696 struct list_head port_list;
2697 struct ib_device *owner; /* reach back to owner ib_device */
2698};
2699
2700struct rdma_restrack_root;
2701struct ib_device {
2702 /* Do not access @dma_device directly from ULP nor from HW drivers. */
2703 struct device *dma_device;
2704 struct ib_device_ops ops;
2705 char name[IB_DEVICE_NAME_MAX];
2706 struct rcu_head rcu_head;
2707
2708 struct list_head event_handler_list;
2709 /* Protects event_handler_list */
2710 struct rw_semaphore event_handler_rwsem;
2711
2712 /* Protects QP's event_handler calls and open_qp list */
2713 spinlock_t qp_open_list_lock;
2714
2715 struct rw_semaphore client_data_rwsem;
2716 struct xarray client_data;
2717 struct mutex unregistration_lock;
2718
2719 /* Synchronize GID, Pkey cache entries, subnet prefix, LMC */
2720 rwlock_t cache_lock;
2721 /**
2722 * port_data is indexed by port number
2723 */
2724 struct ib_port_data *port_data;
2725
2726 int num_comp_vectors;
2727
2728 union {
2729 struct device dev;
2730 struct ib_core_device coredev;
2731 };
2732
2733 /* First group is for device attributes,
2734 * Second group is for driver provided attributes (optional).
2735 * Third group is for the hw_stats
2736 * It is a NULL terminated array.
2737 */
2738 const struct attribute_group *groups[4];
2739
2740 u64 uverbs_cmd_mask;
2741
2742 char node_desc[IB_DEVICE_NODE_DESC_MAX];
2743 __be64 node_guid;
2744 u32 local_dma_lkey;
2745 u16 is_switch:1;
2746 /* Indicates kernel verbs support, should not be used in drivers */
2747 u16 kverbs_provider:1;
2748 /* CQ adaptive moderation (RDMA DIM) */
2749 u16 use_cq_dim:1;
2750 u8 node_type;
2751 u32 phys_port_cnt;
2752 struct ib_device_attr attrs;
2753 struct hw_stats_device_data *hw_stats_data;
2754
2755#ifdef CONFIG_CGROUP_RDMA
2756 struct rdmacg_device cg_device;
2757#endif
2758
2759 u32 index;
2760
2761 spinlock_t cq_pools_lock;
2762 struct list_head cq_pools[IB_POLL_LAST_POOL_TYPE + 1];
2763
2764 struct rdma_restrack_root *res;
2765
2766 const struct uapi_definition *driver_def;
2767
2768 /*
2769 * Positive refcount indicates that the device is currently
2770 * registered and cannot be unregistered.
2771 */
2772 refcount_t refcount;
2773 struct completion unreg_completion;
2774 struct work_struct unregistration_work;
2775
2776 const struct rdma_link_ops *link_ops;
2777
2778 /* Protects compat_devs xarray modifications */
2779 struct mutex compat_devs_mutex;
2780 /* Maintains compat devices for each net namespace */
2781 struct xarray compat_devs;
2782
2783 /* Used by iWarp CM */
2784 char iw_ifname[IFNAMSIZ];
2785 u32 iw_driver_flags;
2786 u32 lag_flags;
2787};
2788
2789static inline void *rdma_zalloc_obj(struct ib_device *dev, size_t size,
2790 gfp_t gfp, bool is_numa_aware)
2791{
2792 if (is_numa_aware && dev->ops.get_numa_node)
2793 return kzalloc_node(size, gfp, dev->ops.get_numa_node(dev));
2794
2795 return kzalloc(size, gfp);
2796}
2797
2798struct ib_client_nl_info;
2799struct ib_client {
2800 const char *name;
2801 int (*add)(struct ib_device *ibdev);
2802 void (*remove)(struct ib_device *, void *client_data);
2803 void (*rename)(struct ib_device *dev, void *client_data);
2804 int (*get_nl_info)(struct ib_device *ibdev, void *client_data,
2805 struct ib_client_nl_info *res);
2806 int (*get_global_nl_info)(struct ib_client_nl_info *res);
2807
2808 /* Returns the net_dev belonging to this ib_client and matching the
2809 * given parameters.
2810 * @dev: An RDMA device that the net_dev use for communication.
2811 * @port: A physical port number on the RDMA device.
2812 * @pkey: P_Key that the net_dev uses if applicable.
2813 * @gid: A GID that the net_dev uses to communicate.
2814 * @addr: An IP address the net_dev is configured with.
2815 * @client_data: The device's client data set by ib_set_client_data().
2816 *
2817 * An ib_client that implements a net_dev on top of RDMA devices
2818 * (such as IP over IB) should implement this callback, allowing the
2819 * rdma_cm module to find the right net_dev for a given request.
2820 *
2821 * The caller is responsible for calling dev_put on the returned
2822 * netdev. */
2823 struct net_device *(*get_net_dev_by_params)(
2824 struct ib_device *dev,
2825 u32 port,
2826 u16 pkey,
2827 const union ib_gid *gid,
2828 const struct sockaddr *addr,
2829 void *client_data);
2830
2831 refcount_t uses;
2832 struct completion uses_zero;
2833 u32 client_id;
2834
2835 /* kverbs are not required by the client */
2836 u8 no_kverbs_req:1;
2837};
2838
2839/*
2840 * IB block DMA iterator
2841 *
2842 * Iterates the DMA-mapped SGL in contiguous memory blocks aligned
2843 * to a HW supported page size.
2844 */
2845struct ib_block_iter {
2846 /* internal states */
2847 struct scatterlist *__sg; /* sg holding the current aligned block */
2848 dma_addr_t __dma_addr; /* unaligned DMA address of this block */
2849 unsigned int __sg_nents; /* number of SG entries */
2850 unsigned int __sg_advance; /* number of bytes to advance in sg in next step */
2851 unsigned int __pg_bit; /* alignment of current block */
2852};
2853
2854struct ib_device *_ib_alloc_device(size_t size);
2855#define ib_alloc_device(drv_struct, member) \
2856 container_of(_ib_alloc_device(sizeof(struct drv_struct) + \
2857 BUILD_BUG_ON_ZERO(offsetof( \
2858 struct drv_struct, member))), \
2859 struct drv_struct, member)
2860
2861void ib_dealloc_device(struct ib_device *device);
2862
2863void ib_get_device_fw_str(struct ib_device *device, char *str);
2864
2865int ib_register_device(struct ib_device *device, const char *name,
2866 struct device *dma_device);
2867void ib_unregister_device(struct ib_device *device);
2868void ib_unregister_driver(enum rdma_driver_id driver_id);
2869void ib_unregister_device_and_put(struct ib_device *device);
2870void ib_unregister_device_queued(struct ib_device *ib_dev);
2871
2872int ib_register_client (struct ib_client *client);
2873void ib_unregister_client(struct ib_client *client);
2874
2875void __rdma_block_iter_start(struct ib_block_iter *biter,
2876 struct scatterlist *sglist,
2877 unsigned int nents,
2878 unsigned long pgsz);
2879bool __rdma_block_iter_next(struct ib_block_iter *biter);
2880
2881/**
2882 * rdma_block_iter_dma_address - get the aligned dma address of the current
2883 * block held by the block iterator.
2884 * @biter: block iterator holding the memory block
2885 */
2886static inline dma_addr_t
2887rdma_block_iter_dma_address(struct ib_block_iter *biter)
2888{
2889 return biter->__dma_addr & ~(BIT_ULL(biter->__pg_bit) - 1);
2890}
2891
2892/**
2893 * rdma_for_each_block - iterate over contiguous memory blocks of the sg list
2894 * @sglist: sglist to iterate over
2895 * @biter: block iterator holding the memory block
2896 * @nents: maximum number of sg entries to iterate over
2897 * @pgsz: best HW supported page size to use
2898 *
2899 * Callers may use rdma_block_iter_dma_address() to get each
2900 * blocks aligned DMA address.
2901 */
2902#define rdma_for_each_block(sglist, biter, nents, pgsz) \
2903 for (__rdma_block_iter_start(biter, sglist, nents, \
2904 pgsz); \
2905 __rdma_block_iter_next(biter);)
2906
2907/**
2908 * ib_get_client_data - Get IB client context
2909 * @device:Device to get context for
2910 * @client:Client to get context for
2911 *
2912 * ib_get_client_data() returns the client context data set with
2913 * ib_set_client_data(). This can only be called while the client is
2914 * registered to the device, once the ib_client remove() callback returns this
2915 * cannot be called.
2916 */
2917static inline void *ib_get_client_data(struct ib_device *device,
2918 struct ib_client *client)
2919{
2920 return xa_load(&device->client_data, client->client_id);
2921}
2922void ib_set_client_data(struct ib_device *device, struct ib_client *client,
2923 void *data);
2924void ib_set_device_ops(struct ib_device *device,
2925 const struct ib_device_ops *ops);
2926
2927int rdma_user_mmap_io(struct ib_ucontext *ucontext, struct vm_area_struct *vma,
2928 unsigned long pfn, unsigned long size, pgprot_t prot,
2929 struct rdma_user_mmap_entry *entry);
2930int rdma_user_mmap_entry_insert(struct ib_ucontext *ucontext,
2931 struct rdma_user_mmap_entry *entry,
2932 size_t length);
2933int rdma_user_mmap_entry_insert_range(struct ib_ucontext *ucontext,
2934 struct rdma_user_mmap_entry *entry,
2935 size_t length, u32 min_pgoff,
2936 u32 max_pgoff);
2937
2938static inline int
2939rdma_user_mmap_entry_insert_exact(struct ib_ucontext *ucontext,
2940 struct rdma_user_mmap_entry *entry,
2941 size_t length, u32 pgoff)
2942{
2943 return rdma_user_mmap_entry_insert_range(ucontext, entry, length, pgoff,
2944 pgoff);
2945}
2946
2947struct rdma_user_mmap_entry *
2948rdma_user_mmap_entry_get_pgoff(struct ib_ucontext *ucontext,
2949 unsigned long pgoff);
2950struct rdma_user_mmap_entry *
2951rdma_user_mmap_entry_get(struct ib_ucontext *ucontext,
2952 struct vm_area_struct *vma);
2953void rdma_user_mmap_entry_put(struct rdma_user_mmap_entry *entry);
2954
2955void rdma_user_mmap_entry_remove(struct rdma_user_mmap_entry *entry);
2956
2957static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
2958{
2959 return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
2960}
2961
2962static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
2963{
2964 return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
2965}
2966
2967static inline bool ib_is_buffer_cleared(const void __user *p,
2968 size_t len)
2969{
2970 bool ret;
2971 u8 *buf;
2972
2973 if (len > USHRT_MAX)
2974 return false;
2975
2976 buf = memdup_user(p, len);
2977 if (IS_ERR(buf))
2978 return false;
2979
2980 ret = !memchr_inv(buf, 0, len);
2981 kfree(buf);
2982 return ret;
2983}
2984
2985static inline bool ib_is_udata_cleared(struct ib_udata *udata,
2986 size_t offset,
2987 size_t len)
2988{
2989 return ib_is_buffer_cleared(udata->inbuf + offset, len);
2990}
2991
2992/**
2993 * ib_modify_qp_is_ok - Check that the supplied attribute mask
2994 * contains all required attributes and no attributes not allowed for
2995 * the given QP state transition.
2996 * @cur_state: Current QP state
2997 * @next_state: Next QP state
2998 * @type: QP type
2999 * @mask: Mask of supplied QP attributes
3000 *
3001 * This function is a helper function that a low-level driver's
3002 * modify_qp method can use to validate the consumer's input. It
3003 * checks that cur_state and next_state are valid QP states, that a
3004 * transition from cur_state to next_state is allowed by the IB spec,
3005 * and that the attribute mask supplied is allowed for the transition.
3006 */
3007bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
3008 enum ib_qp_type type, enum ib_qp_attr_mask mask);
3009
3010void ib_register_event_handler(struct ib_event_handler *event_handler);
3011void ib_unregister_event_handler(struct ib_event_handler *event_handler);
3012void ib_dispatch_event(const struct ib_event *event);
3013
3014int ib_query_port(struct ib_device *device,
3015 u32 port_num, struct ib_port_attr *port_attr);
3016
3017enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
3018 u32 port_num);
3019
3020/**
3021 * rdma_cap_ib_switch - Check if the device is IB switch
3022 * @device: Device to check
3023 *
3024 * Device driver is responsible for setting is_switch bit on
3025 * in ib_device structure at init time.
3026 *
3027 * Return: true if the device is IB switch.
3028 */
3029static inline bool rdma_cap_ib_switch(const struct ib_device *device)
3030{
3031 return device->is_switch;
3032}
3033
3034/**
3035 * rdma_start_port - Return the first valid port number for the device
3036 * specified
3037 *
3038 * @device: Device to be checked
3039 *
3040 * Return start port number
3041 */
3042static inline u32 rdma_start_port(const struct ib_device *device)
3043{
3044 return rdma_cap_ib_switch(device) ? 0 : 1;
3045}
3046
3047/**
3048 * rdma_for_each_port - Iterate over all valid port numbers of the IB device
3049 * @device - The struct ib_device * to iterate over
3050 * @iter - The unsigned int to store the port number
3051 */
3052#define rdma_for_each_port(device, iter) \
3053 for (iter = rdma_start_port(device + \
3054 BUILD_BUG_ON_ZERO(!__same_type(u32, \
3055 iter))); \
3056 iter <= rdma_end_port(device); iter++)
3057
3058/**
3059 * rdma_end_port - Return the last valid port number for the device
3060 * specified
3061 *
3062 * @device: Device to be checked
3063 *
3064 * Return last port number
3065 */
3066static inline u32 rdma_end_port(const struct ib_device *device)
3067{
3068 return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt;
3069}
3070
3071static inline int rdma_is_port_valid(const struct ib_device *device,
3072 unsigned int port)
3073{
3074 return (port >= rdma_start_port(device) &&
3075 port <= rdma_end_port(device));
3076}
3077
3078static inline bool rdma_is_grh_required(const struct ib_device *device,
3079 u32 port_num)
3080{
3081 return device->port_data[port_num].immutable.core_cap_flags &
3082 RDMA_CORE_PORT_IB_GRH_REQUIRED;
3083}
3084
3085static inline bool rdma_protocol_ib(const struct ib_device *device,
3086 u32 port_num)
3087{
3088 return device->port_data[port_num].immutable.core_cap_flags &
3089 RDMA_CORE_CAP_PROT_IB;
3090}
3091
3092static inline bool rdma_protocol_roce(const struct ib_device *device,
3093 u32 port_num)
3094{
3095 return device->port_data[port_num].immutable.core_cap_flags &
3096 (RDMA_CORE_CAP_PROT_ROCE | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP);
3097}
3098
3099static inline bool rdma_protocol_roce_udp_encap(const struct ib_device *device,
3100 u32 port_num)
3101{
3102 return device->port_data[port_num].immutable.core_cap_flags &
3103 RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP;
3104}
3105
3106static inline bool rdma_protocol_roce_eth_encap(const struct ib_device *device,
3107 u32 port_num)
3108{
3109 return device->port_data[port_num].immutable.core_cap_flags &
3110 RDMA_CORE_CAP_PROT_ROCE;
3111}
3112
3113static inline bool rdma_protocol_iwarp(const struct ib_device *device,
3114 u32 port_num)
3115{
3116 return device->port_data[port_num].immutable.core_cap_flags &
3117 RDMA_CORE_CAP_PROT_IWARP;
3118}
3119
3120static inline bool rdma_ib_or_roce(const struct ib_device *device,
3121 u32 port_num)
3122{
3123 return rdma_protocol_ib(device, port_num) ||
3124 rdma_protocol_roce(device, port_num);
3125}
3126
3127static inline bool rdma_protocol_raw_packet(const struct ib_device *device,
3128 u32 port_num)
3129{
3130 return device->port_data[port_num].immutable.core_cap_flags &
3131 RDMA_CORE_CAP_PROT_RAW_PACKET;
3132}
3133
3134static inline bool rdma_protocol_usnic(const struct ib_device *device,
3135 u32 port_num)
3136{
3137 return device->port_data[port_num].immutable.core_cap_flags &
3138 RDMA_CORE_CAP_PROT_USNIC;
3139}
3140
3141/**
3142 * rdma_cap_ib_mad - Check if the port of a device supports Infiniband
3143 * Management Datagrams.
3144 * @device: Device to check
3145 * @port_num: Port number to check
3146 *
3147 * Management Datagrams (MAD) are a required part of the InfiniBand
3148 * specification and are supported on all InfiniBand devices. A slightly
3149 * extended version are also supported on OPA interfaces.
3150 *
3151 * Return: true if the port supports sending/receiving of MAD packets.
3152 */
3153static inline bool rdma_cap_ib_mad(const struct ib_device *device, u32 port_num)
3154{
3155 return device->port_data[port_num].immutable.core_cap_flags &
3156 RDMA_CORE_CAP_IB_MAD;
3157}
3158
3159/**
3160 * rdma_cap_opa_mad - Check if the port of device provides support for OPA
3161 * Management Datagrams.
3162 * @device: Device to check
3163 * @port_num: Port number to check
3164 *
3165 * Intel OmniPath devices extend and/or replace the InfiniBand Management
3166 * datagrams with their own versions. These OPA MADs share many but not all of
3167 * the characteristics of InfiniBand MADs.
3168 *
3169 * OPA MADs differ in the following ways:
3170 *
3171 * 1) MADs are variable size up to 2K
3172 * IBTA defined MADs remain fixed at 256 bytes
3173 * 2) OPA SMPs must carry valid PKeys
3174 * 3) OPA SMP packets are a different format
3175 *
3176 * Return: true if the port supports OPA MAD packet formats.
3177 */
3178static inline bool rdma_cap_opa_mad(struct ib_device *device, u32 port_num)
3179{
3180 return device->port_data[port_num].immutable.core_cap_flags &
3181 RDMA_CORE_CAP_OPA_MAD;
3182}
3183
3184/**
3185 * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband
3186 * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI).
3187 * @device: Device to check
3188 * @port_num: Port number to check
3189 *
3190 * Each InfiniBand node is required to provide a Subnet Management Agent
3191 * that the subnet manager can access. Prior to the fabric being fully
3192 * configured by the subnet manager, the SMA is accessed via a well known
3193 * interface called the Subnet Management Interface (SMI). This interface
3194 * uses directed route packets to communicate with the SM to get around the
3195 * chicken and egg problem of the SM needing to know what's on the fabric
3196 * in order to configure the fabric, and needing to configure the fabric in
3197 * order to send packets to the devices on the fabric. These directed
3198 * route packets do not need the fabric fully configured in order to reach
3199 * their destination. The SMI is the only method allowed to send
3200 * directed route packets on an InfiniBand fabric.
3201 *
3202 * Return: true if the port provides an SMI.
3203 */
3204static inline bool rdma_cap_ib_smi(const struct ib_device *device, u32 port_num)
3205{
3206 return device->port_data[port_num].immutable.core_cap_flags &
3207 RDMA_CORE_CAP_IB_SMI;
3208}
3209
3210/**
3211 * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband
3212 * Communication Manager.
3213 * @device: Device to check
3214 * @port_num: Port number to check
3215 *
3216 * The InfiniBand Communication Manager is one of many pre-defined General
3217 * Service Agents (GSA) that are accessed via the General Service
3218 * Interface (GSI). It's role is to facilitate establishment of connections
3219 * between nodes as well as other management related tasks for established
3220 * connections.
3221 *
3222 * Return: true if the port supports an IB CM (this does not guarantee that
3223 * a CM is actually running however).
3224 */
3225static inline bool rdma_cap_ib_cm(const struct ib_device *device, u32 port_num)
3226{
3227 return device->port_data[port_num].immutable.core_cap_flags &
3228 RDMA_CORE_CAP_IB_CM;
3229}
3230
3231/**
3232 * rdma_cap_iw_cm - Check if the port of device has the capability IWARP
3233 * Communication Manager.
3234 * @device: Device to check
3235 * @port_num: Port number to check
3236 *
3237 * Similar to above, but specific to iWARP connections which have a different
3238 * managment protocol than InfiniBand.
3239 *
3240 * Return: true if the port supports an iWARP CM (this does not guarantee that
3241 * a CM is actually running however).
3242 */
3243static inline bool rdma_cap_iw_cm(const struct ib_device *device, u32 port_num)
3244{
3245 return device->port_data[port_num].immutable.core_cap_flags &
3246 RDMA_CORE_CAP_IW_CM;
3247}
3248
3249/**
3250 * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband
3251 * Subnet Administration.
3252 * @device: Device to check
3253 * @port_num: Port number to check
3254 *
3255 * An InfiniBand Subnet Administration (SA) service is a pre-defined General
3256 * Service Agent (GSA) provided by the Subnet Manager (SM). On InfiniBand
3257 * fabrics, devices should resolve routes to other hosts by contacting the
3258 * SA to query the proper route.
3259 *
3260 * Return: true if the port should act as a client to the fabric Subnet
3261 * Administration interface. This does not imply that the SA service is
3262 * running locally.
3263 */
3264static inline bool rdma_cap_ib_sa(const struct ib_device *device, u32 port_num)
3265{
3266 return device->port_data[port_num].immutable.core_cap_flags &
3267 RDMA_CORE_CAP_IB_SA;
3268}
3269
3270/**
3271 * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband
3272 * Multicast.
3273 * @device: Device to check
3274 * @port_num: Port number to check
3275 *
3276 * InfiniBand multicast registration is more complex than normal IPv4 or
3277 * IPv6 multicast registration. Each Host Channel Adapter must register
3278 * with the Subnet Manager when it wishes to join a multicast group. It
3279 * should do so only once regardless of how many queue pairs it subscribes
3280 * to this group. And it should leave the group only after all queue pairs
3281 * attached to the group have been detached.
3282 *
3283 * Return: true if the port must undertake the additional adminstrative
3284 * overhead of registering/unregistering with the SM and tracking of the
3285 * total number of queue pairs attached to the multicast group.
3286 */
3287static inline bool rdma_cap_ib_mcast(const struct ib_device *device,
3288 u32 port_num)
3289{
3290 return rdma_cap_ib_sa(device, port_num);
3291}
3292
3293/**
3294 * rdma_cap_af_ib - Check if the port of device has the capability
3295 * Native Infiniband Address.
3296 * @device: Device to check
3297 * @port_num: Port number to check
3298 *
3299 * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default
3300 * GID. RoCE uses a different mechanism, but still generates a GID via
3301 * a prescribed mechanism and port specific data.
3302 *
3303 * Return: true if the port uses a GID address to identify devices on the
3304 * network.
3305 */
3306static inline bool rdma_cap_af_ib(const struct ib_device *device, u32 port_num)
3307{
3308 return device->port_data[port_num].immutable.core_cap_flags &
3309 RDMA_CORE_CAP_AF_IB;
3310}
3311
3312/**
3313 * rdma_cap_eth_ah - Check if the port of device has the capability
3314 * Ethernet Address Handle.
3315 * @device: Device to check
3316 * @port_num: Port number to check
3317 *
3318 * RoCE is InfiniBand over Ethernet, and it uses a well defined technique
3319 * to fabricate GIDs over Ethernet/IP specific addresses native to the
3320 * port. Normally, packet headers are generated by the sending host
3321 * adapter, but when sending connectionless datagrams, we must manually
3322 * inject the proper headers for the fabric we are communicating over.
3323 *
3324 * Return: true if we are running as a RoCE port and must force the
3325 * addition of a Global Route Header built from our Ethernet Address
3326 * Handle into our header list for connectionless packets.
3327 */
3328static inline bool rdma_cap_eth_ah(const struct ib_device *device, u32 port_num)
3329{
3330 return device->port_data[port_num].immutable.core_cap_flags &
3331 RDMA_CORE_CAP_ETH_AH;
3332}
3333
3334/**
3335 * rdma_cap_opa_ah - Check if the port of device supports
3336 * OPA Address handles
3337 * @device: Device to check
3338 * @port_num: Port number to check
3339 *
3340 * Return: true if we are running on an OPA device which supports
3341 * the extended OPA addressing.
3342 */
3343static inline bool rdma_cap_opa_ah(struct ib_device *device, u32 port_num)
3344{
3345 return (device->port_data[port_num].immutable.core_cap_flags &
3346 RDMA_CORE_CAP_OPA_AH) == RDMA_CORE_CAP_OPA_AH;
3347}
3348
3349/**
3350 * rdma_max_mad_size - Return the max MAD size required by this RDMA Port.
3351 *
3352 * @device: Device
3353 * @port_num: Port number
3354 *
3355 * This MAD size includes the MAD headers and MAD payload. No other headers
3356 * are included.
3357 *
3358 * Return the max MAD size required by the Port. Will return 0 if the port
3359 * does not support MADs
3360 */
3361static inline size_t rdma_max_mad_size(const struct ib_device *device,
3362 u32 port_num)
3363{
3364 return device->port_data[port_num].immutable.max_mad_size;
3365}
3366
3367/**
3368 * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table
3369 * @device: Device to check
3370 * @port_num: Port number to check
3371 *
3372 * RoCE GID table mechanism manages the various GIDs for a device.
3373 *
3374 * NOTE: if allocating the port's GID table has failed, this call will still
3375 * return true, but any RoCE GID table API will fail.
3376 *
3377 * Return: true if the port uses RoCE GID table mechanism in order to manage
3378 * its GIDs.
3379 */
3380static inline bool rdma_cap_roce_gid_table(const struct ib_device *device,
3381 u32 port_num)
3382{
3383 return rdma_protocol_roce(device, port_num) &&
3384 device->ops.add_gid && device->ops.del_gid;
3385}
3386
3387/*
3388 * Check if the device supports READ W/ INVALIDATE.
3389 */
3390static inline bool rdma_cap_read_inv(struct ib_device *dev, u32 port_num)
3391{
3392 /*
3393 * iWarp drivers must support READ W/ INVALIDATE. No other protocol
3394 * has support for it yet.
3395 */
3396 return rdma_protocol_iwarp(dev, port_num);
3397}
3398
3399/**
3400 * rdma_core_cap_opa_port - Return whether the RDMA Port is OPA or not.
3401 * @device: Device
3402 * @port_num: 1 based Port number
3403 *
3404 * Return true if port is an Intel OPA port , false if not
3405 */
3406static inline bool rdma_core_cap_opa_port(struct ib_device *device,
3407 u32 port_num)
3408{
3409 return (device->port_data[port_num].immutable.core_cap_flags &
3410 RDMA_CORE_PORT_INTEL_OPA) == RDMA_CORE_PORT_INTEL_OPA;
3411}
3412
3413/**
3414 * rdma_mtu_enum_to_int - Return the mtu of the port as an integer value.
3415 * @device: Device
3416 * @port_num: Port number
3417 * @mtu: enum value of MTU
3418 *
3419 * Return the MTU size supported by the port as an integer value. Will return
3420 * -1 if enum value of mtu is not supported.
3421 */
3422static inline int rdma_mtu_enum_to_int(struct ib_device *device, u32 port,
3423 int mtu)
3424{
3425 if (rdma_core_cap_opa_port(device, port))
3426 return opa_mtu_enum_to_int((enum opa_mtu)mtu);
3427 else
3428 return ib_mtu_enum_to_int((enum ib_mtu)mtu);
3429}
3430
3431/**
3432 * rdma_mtu_from_attr - Return the mtu of the port from the port attribute.
3433 * @device: Device
3434 * @port_num: Port number
3435 * @attr: port attribute
3436 *
3437 * Return the MTU size supported by the port as an integer value.
3438 */
3439static inline int rdma_mtu_from_attr(struct ib_device *device, u32 port,
3440 struct ib_port_attr *attr)
3441{
3442 if (rdma_core_cap_opa_port(device, port))
3443 return attr->phys_mtu;
3444 else
3445 return ib_mtu_enum_to_int(attr->max_mtu);
3446}
3447
3448int ib_set_vf_link_state(struct ib_device *device, int vf, u32 port,
3449 int state);
3450int ib_get_vf_config(struct ib_device *device, int vf, u32 port,
3451 struct ifla_vf_info *info);
3452int ib_get_vf_stats(struct ib_device *device, int vf, u32 port,
3453 struct ifla_vf_stats *stats);
3454int ib_get_vf_guid(struct ib_device *device, int vf, u32 port,
3455 struct ifla_vf_guid *node_guid,
3456 struct ifla_vf_guid *port_guid);
3457int ib_set_vf_guid(struct ib_device *device, int vf, u32 port, u64 guid,
3458 int type);
3459
3460int ib_query_pkey(struct ib_device *device,
3461 u32 port_num, u16 index, u16 *pkey);
3462
3463int ib_modify_device(struct ib_device *device,
3464 int device_modify_mask,
3465 struct ib_device_modify *device_modify);
3466
3467int ib_modify_port(struct ib_device *device,
3468 u32 port_num, int port_modify_mask,
3469 struct ib_port_modify *port_modify);
3470
3471int ib_find_gid(struct ib_device *device, union ib_gid *gid,
3472 u32 *port_num, u16 *index);
3473
3474int ib_find_pkey(struct ib_device *device,
3475 u32 port_num, u16 pkey, u16 *index);
3476
3477enum ib_pd_flags {
3478 /*
3479 * Create a memory registration for all memory in the system and place
3480 * the rkey for it into pd->unsafe_global_rkey. This can be used by
3481 * ULPs to avoid the overhead of dynamic MRs.
3482 *
3483 * This flag is generally considered unsafe and must only be used in
3484 * extremly trusted environments. Every use of it will log a warning
3485 * in the kernel log.
3486 */
3487 IB_PD_UNSAFE_GLOBAL_RKEY = 0x01,
3488};
3489
3490struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
3491 const char *caller);
3492
3493/**
3494 * ib_alloc_pd - Allocates an unused protection domain.
3495 * @device: The device on which to allocate the protection domain.
3496 * @flags: protection domain flags
3497 *
3498 * A protection domain object provides an association between QPs, shared
3499 * receive queues, address handles, memory regions, and memory windows.
3500 *
3501 * Every PD has a local_dma_lkey which can be used as the lkey value for local
3502 * memory operations.
3503 */
3504#define ib_alloc_pd(device, flags) \
3505 __ib_alloc_pd((device), (flags), KBUILD_MODNAME)
3506
3507int ib_dealloc_pd_user(struct ib_pd *pd, struct ib_udata *udata);
3508
3509/**
3510 * ib_dealloc_pd - Deallocate kernel PD
3511 * @pd: The protection domain
3512 *
3513 * NOTE: for user PD use ib_dealloc_pd_user with valid udata!
3514 */
3515static inline void ib_dealloc_pd(struct ib_pd *pd)
3516{
3517 int ret = ib_dealloc_pd_user(pd, NULL);
3518
3519 WARN_ONCE(ret, "Destroy of kernel PD shouldn't fail");
3520}
3521
3522enum rdma_create_ah_flags {
3523 /* In a sleepable context */
3524 RDMA_CREATE_AH_SLEEPABLE = BIT(0),
3525};
3526
3527/**
3528 * rdma_create_ah - Creates an address handle for the given address vector.
3529 * @pd: The protection domain associated with the address handle.
3530 * @ah_attr: The attributes of the address vector.
3531 * @flags: Create address handle flags (see enum rdma_create_ah_flags).
3532 *
3533 * The address handle is used to reference a local or global destination
3534 * in all UD QP post sends.
3535 */
3536struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr,
3537 u32 flags);
3538
3539/**
3540 * rdma_create_user_ah - Creates an address handle for the given address vector.
3541 * It resolves destination mac address for ah attribute of RoCE type.
3542 * @pd: The protection domain associated with the address handle.
3543 * @ah_attr: The attributes of the address vector.
3544 * @udata: pointer to user's input output buffer information need by
3545 * provider driver.
3546 *
3547 * It returns 0 on success and returns appropriate error code on error.
3548 * The address handle is used to reference a local or global destination
3549 * in all UD QP post sends.
3550 */
3551struct ib_ah *rdma_create_user_ah(struct ib_pd *pd,
3552 struct rdma_ah_attr *ah_attr,
3553 struct ib_udata *udata);
3554/**
3555 * ib_get_gids_from_rdma_hdr - Get sgid and dgid from GRH or IPv4 header
3556 * work completion.
3557 * @hdr: the L3 header to parse
3558 * @net_type: type of header to parse
3559 * @sgid: place to store source gid
3560 * @dgid: place to store destination gid
3561 */
3562int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
3563 enum rdma_network_type net_type,
3564 union ib_gid *sgid, union ib_gid *dgid);
3565
3566/**
3567 * ib_get_rdma_header_version - Get the header version
3568 * @hdr: the L3 header to parse
3569 */
3570int ib_get_rdma_header_version(const union rdma_network_hdr *hdr);
3571
3572/**
3573 * ib_init_ah_attr_from_wc - Initializes address handle attributes from a
3574 * work completion.
3575 * @device: Device on which the received message arrived.
3576 * @port_num: Port on which the received message arrived.
3577 * @wc: Work completion associated with the received message.
3578 * @grh: References the received global route header. This parameter is
3579 * ignored unless the work completion indicates that the GRH is valid.
3580 * @ah_attr: Returned attributes that can be used when creating an address
3581 * handle for replying to the message.
3582 * When ib_init_ah_attr_from_wc() returns success,
3583 * (a) for IB link layer it optionally contains a reference to SGID attribute
3584 * when GRH is present for IB link layer.
3585 * (b) for RoCE link layer it contains a reference to SGID attribute.
3586 * User must invoke rdma_cleanup_ah_attr_gid_attr() to release reference to SGID
3587 * attributes which are initialized using ib_init_ah_attr_from_wc().
3588 *
3589 */
3590int ib_init_ah_attr_from_wc(struct ib_device *device, u32 port_num,
3591 const struct ib_wc *wc, const struct ib_grh *grh,
3592 struct rdma_ah_attr *ah_attr);
3593
3594/**
3595 * ib_create_ah_from_wc - Creates an address handle associated with the
3596 * sender of the specified work completion.
3597 * @pd: The protection domain associated with the address handle.
3598 * @wc: Work completion information associated with a received message.
3599 * @grh: References the received global route header. This parameter is
3600 * ignored unless the work completion indicates that the GRH is valid.
3601 * @port_num: The outbound port number to associate with the address.
3602 *
3603 * The address handle is used to reference a local or global destination
3604 * in all UD QP post sends.
3605 */
3606struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
3607 const struct ib_grh *grh, u32 port_num);
3608
3609/**
3610 * rdma_modify_ah - Modifies the address vector associated with an address
3611 * handle.
3612 * @ah: The address handle to modify.
3613 * @ah_attr: The new address vector attributes to associate with the
3614 * address handle.
3615 */
3616int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
3617
3618/**
3619 * rdma_query_ah - Queries the address vector associated with an address
3620 * handle.
3621 * @ah: The address handle to query.
3622 * @ah_attr: The address vector attributes associated with the address
3623 * handle.
3624 */
3625int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
3626
3627enum rdma_destroy_ah_flags {
3628 /* In a sleepable context */
3629 RDMA_DESTROY_AH_SLEEPABLE = BIT(0),
3630};
3631
3632/**
3633 * rdma_destroy_ah_user - Destroys an address handle.
3634 * @ah: The address handle to destroy.
3635 * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags).
3636 * @udata: Valid user data or NULL for kernel objects
3637 */
3638int rdma_destroy_ah_user(struct ib_ah *ah, u32 flags, struct ib_udata *udata);
3639
3640/**
3641 * rdma_destroy_ah - Destroys an kernel address handle.
3642 * @ah: The address handle to destroy.
3643 * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags).
3644 *
3645 * NOTE: for user ah use rdma_destroy_ah_user with valid udata!
3646 */
3647static inline void rdma_destroy_ah(struct ib_ah *ah, u32 flags)
3648{
3649 int ret = rdma_destroy_ah_user(ah, flags, NULL);
3650
3651 WARN_ONCE(ret, "Destroy of kernel AH shouldn't fail");
3652}
3653
3654struct ib_srq *ib_create_srq_user(struct ib_pd *pd,
3655 struct ib_srq_init_attr *srq_init_attr,
3656 struct ib_usrq_object *uobject,
3657 struct ib_udata *udata);
3658static inline struct ib_srq *
3659ib_create_srq(struct ib_pd *pd, struct ib_srq_init_attr *srq_init_attr)
3660{
3661 if (!pd->device->ops.create_srq)
3662 return ERR_PTR(-EOPNOTSUPP);
3663
3664 return ib_create_srq_user(pd, srq_init_attr, NULL, NULL);
3665}
3666
3667/**
3668 * ib_modify_srq - Modifies the attributes for the specified SRQ.
3669 * @srq: The SRQ to modify.
3670 * @srq_attr: On input, specifies the SRQ attributes to modify. On output,
3671 * the current values of selected SRQ attributes are returned.
3672 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
3673 * are being modified.
3674 *
3675 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
3676 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when
3677 * the number of receives queued drops below the limit.
3678 */
3679int ib_modify_srq(struct ib_srq *srq,
3680 struct ib_srq_attr *srq_attr,
3681 enum ib_srq_attr_mask srq_attr_mask);
3682
3683/**
3684 * ib_query_srq - Returns the attribute list and current values for the
3685 * specified SRQ.
3686 * @srq: The SRQ to query.
3687 * @srq_attr: The attributes of the specified SRQ.
3688 */
3689int ib_query_srq(struct ib_srq *srq,
3690 struct ib_srq_attr *srq_attr);
3691
3692/**
3693 * ib_destroy_srq_user - Destroys the specified SRQ.
3694 * @srq: The SRQ to destroy.
3695 * @udata: Valid user data or NULL for kernel objects
3696 */
3697int ib_destroy_srq_user(struct ib_srq *srq, struct ib_udata *udata);
3698
3699/**
3700 * ib_destroy_srq - Destroys the specified kernel SRQ.
3701 * @srq: The SRQ to destroy.
3702 *
3703 * NOTE: for user srq use ib_destroy_srq_user with valid udata!
3704 */
3705static inline void ib_destroy_srq(struct ib_srq *srq)
3706{
3707 int ret = ib_destroy_srq_user(srq, NULL);
3708
3709 WARN_ONCE(ret, "Destroy of kernel SRQ shouldn't fail");
3710}
3711
3712/**
3713 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
3714 * @srq: The SRQ to post the work request on.
3715 * @recv_wr: A list of work requests to post on the receive queue.
3716 * @bad_recv_wr: On an immediate failure, this parameter will reference
3717 * the work request that failed to be posted on the QP.
3718 */
3719static inline int ib_post_srq_recv(struct ib_srq *srq,
3720 const struct ib_recv_wr *recv_wr,
3721 const struct ib_recv_wr **bad_recv_wr)
3722{
3723 const struct ib_recv_wr *dummy;
3724
3725 return srq->device->ops.post_srq_recv(srq, recv_wr,
3726 bad_recv_wr ? : &dummy);
3727}
3728
3729struct ib_qp *ib_create_qp_kernel(struct ib_pd *pd,
3730 struct ib_qp_init_attr *qp_init_attr,
3731 const char *caller);
3732/**
3733 * ib_create_qp - Creates a kernel QP associated with the specific protection
3734 * domain.
3735 * @pd: The protection domain associated with the QP.
3736 * @init_attr: A list of initial attributes required to create the
3737 * QP. If QP creation succeeds, then the attributes are updated to
3738 * the actual capabilities of the created QP.
3739 */
3740static inline struct ib_qp *ib_create_qp(struct ib_pd *pd,
3741 struct ib_qp_init_attr *init_attr)
3742{
3743 return ib_create_qp_kernel(pd, init_attr, KBUILD_MODNAME);
3744}
3745
3746/**
3747 * ib_modify_qp_with_udata - Modifies the attributes for the specified QP.
3748 * @qp: The QP to modify.
3749 * @attr: On input, specifies the QP attributes to modify. On output,
3750 * the current values of selected QP attributes are returned.
3751 * @attr_mask: A bit-mask used to specify which attributes of the QP
3752 * are being modified.
3753 * @udata: pointer to user's input output buffer information
3754 * are being modified.
3755 * It returns 0 on success and returns appropriate error code on error.
3756 */
3757int ib_modify_qp_with_udata(struct ib_qp *qp,
3758 struct ib_qp_attr *attr,
3759 int attr_mask,
3760 struct ib_udata *udata);
3761
3762/**
3763 * ib_modify_qp - Modifies the attributes for the specified QP and then
3764 * transitions the QP to the given state.
3765 * @qp: The QP to modify.
3766 * @qp_attr: On input, specifies the QP attributes to modify. On output,
3767 * the current values of selected QP attributes are returned.
3768 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP
3769 * are being modified.
3770 */
3771int ib_modify_qp(struct ib_qp *qp,
3772 struct ib_qp_attr *qp_attr,
3773 int qp_attr_mask);
3774
3775/**
3776 * ib_query_qp - Returns the attribute list and current values for the
3777 * specified QP.
3778 * @qp: The QP to query.
3779 * @qp_attr: The attributes of the specified QP.
3780 * @qp_attr_mask: A bit-mask used to select specific attributes to query.
3781 * @qp_init_attr: Additional attributes of the selected QP.
3782 *
3783 * The qp_attr_mask may be used to limit the query to gathering only the
3784 * selected attributes.
3785 */
3786int ib_query_qp(struct ib_qp *qp,
3787 struct ib_qp_attr *qp_attr,
3788 int qp_attr_mask,
3789 struct ib_qp_init_attr *qp_init_attr);
3790
3791/**
3792 * ib_destroy_qp - Destroys the specified QP.
3793 * @qp: The QP to destroy.
3794 * @udata: Valid udata or NULL for kernel objects
3795 */
3796int ib_destroy_qp_user(struct ib_qp *qp, struct ib_udata *udata);
3797
3798/**
3799 * ib_destroy_qp - Destroys the specified kernel QP.
3800 * @qp: The QP to destroy.
3801 *
3802 * NOTE: for user qp use ib_destroy_qp_user with valid udata!
3803 */
3804static inline int ib_destroy_qp(struct ib_qp *qp)
3805{
3806 return ib_destroy_qp_user(qp, NULL);
3807}
3808
3809/**
3810 * ib_open_qp - Obtain a reference to an existing sharable QP.
3811 * @xrcd - XRC domain
3812 * @qp_open_attr: Attributes identifying the QP to open.
3813 *
3814 * Returns a reference to a sharable QP.
3815 */
3816struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
3817 struct ib_qp_open_attr *qp_open_attr);
3818
3819/**
3820 * ib_close_qp - Release an external reference to a QP.
3821 * @qp: The QP handle to release
3822 *
3823 * The opened QP handle is released by the caller. The underlying
3824 * shared QP is not destroyed until all internal references are released.
3825 */
3826int ib_close_qp(struct ib_qp *qp);
3827
3828/**
3829 * ib_post_send - Posts a list of work requests to the send queue of
3830 * the specified QP.
3831 * @qp: The QP to post the work request on.
3832 * @send_wr: A list of work requests to post on the send queue.
3833 * @bad_send_wr: On an immediate failure, this parameter will reference
3834 * the work request that failed to be posted on the QP.
3835 *
3836 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate
3837 * error is returned, the QP state shall not be affected,
3838 * ib_post_send() will return an immediate error after queueing any
3839 * earlier work requests in the list.
3840 */
3841static inline int ib_post_send(struct ib_qp *qp,
3842 const struct ib_send_wr *send_wr,
3843 const struct ib_send_wr **bad_send_wr)
3844{
3845 const struct ib_send_wr *dummy;
3846
3847 return qp->device->ops.post_send(qp, send_wr, bad_send_wr ? : &dummy);
3848}
3849
3850/**
3851 * ib_post_recv - Posts a list of work requests to the receive queue of
3852 * the specified QP.
3853 * @qp: The QP to post the work request on.
3854 * @recv_wr: A list of work requests to post on the receive queue.
3855 * @bad_recv_wr: On an immediate failure, this parameter will reference
3856 * the work request that failed to be posted on the QP.
3857 */
3858static inline int ib_post_recv(struct ib_qp *qp,
3859 const struct ib_recv_wr *recv_wr,
3860 const struct ib_recv_wr **bad_recv_wr)
3861{
3862 const struct ib_recv_wr *dummy;
3863
3864 return qp->device->ops.post_recv(qp, recv_wr, bad_recv_wr ? : &dummy);
3865}
3866
3867struct ib_cq *__ib_alloc_cq(struct ib_device *dev, void *private, int nr_cqe,
3868 int comp_vector, enum ib_poll_context poll_ctx,
3869 const char *caller);
3870static inline struct ib_cq *ib_alloc_cq(struct ib_device *dev, void *private,
3871 int nr_cqe, int comp_vector,
3872 enum ib_poll_context poll_ctx)
3873{
3874 return __ib_alloc_cq(dev, private, nr_cqe, comp_vector, poll_ctx,
3875 KBUILD_MODNAME);
3876}
3877
3878struct ib_cq *__ib_alloc_cq_any(struct ib_device *dev, void *private,
3879 int nr_cqe, enum ib_poll_context poll_ctx,
3880 const char *caller);
3881
3882/**
3883 * ib_alloc_cq_any: Allocate kernel CQ
3884 * @dev: The IB device
3885 * @private: Private data attached to the CQE
3886 * @nr_cqe: Number of CQEs in the CQ
3887 * @poll_ctx: Context used for polling the CQ
3888 */
3889static inline struct ib_cq *ib_alloc_cq_any(struct ib_device *dev,
3890 void *private, int nr_cqe,
3891 enum ib_poll_context poll_ctx)
3892{
3893 return __ib_alloc_cq_any(dev, private, nr_cqe, poll_ctx,
3894 KBUILD_MODNAME);
3895}
3896
3897void ib_free_cq(struct ib_cq *cq);
3898int ib_process_cq_direct(struct ib_cq *cq, int budget);
3899
3900/**
3901 * ib_create_cq - Creates a CQ on the specified device.
3902 * @device: The device on which to create the CQ.
3903 * @comp_handler: A user-specified callback that is invoked when a
3904 * completion event occurs on the CQ.
3905 * @event_handler: A user-specified callback that is invoked when an
3906 * asynchronous event not associated with a completion occurs on the CQ.
3907 * @cq_context: Context associated with the CQ returned to the user via
3908 * the associated completion and event handlers.
3909 * @cq_attr: The attributes the CQ should be created upon.
3910 *
3911 * Users can examine the cq structure to determine the actual CQ size.
3912 */
3913struct ib_cq *__ib_create_cq(struct ib_device *device,
3914 ib_comp_handler comp_handler,
3915 void (*event_handler)(struct ib_event *, void *),
3916 void *cq_context,
3917 const struct ib_cq_init_attr *cq_attr,
3918 const char *caller);
3919#define ib_create_cq(device, cmp_hndlr, evt_hndlr, cq_ctxt, cq_attr) \
3920 __ib_create_cq((device), (cmp_hndlr), (evt_hndlr), (cq_ctxt), (cq_attr), KBUILD_MODNAME)
3921
3922/**
3923 * ib_resize_cq - Modifies the capacity of the CQ.
3924 * @cq: The CQ to resize.
3925 * @cqe: The minimum size of the CQ.
3926 *
3927 * Users can examine the cq structure to determine the actual CQ size.
3928 */
3929int ib_resize_cq(struct ib_cq *cq, int cqe);
3930
3931/**
3932 * rdma_set_cq_moderation - Modifies moderation params of the CQ
3933 * @cq: The CQ to modify.
3934 * @cq_count: number of CQEs that will trigger an event
3935 * @cq_period: max period of time in usec before triggering an event
3936 *
3937 */
3938int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period);
3939
3940/**
3941 * ib_destroy_cq_user - Destroys the specified CQ.
3942 * @cq: The CQ to destroy.
3943 * @udata: Valid user data or NULL for kernel objects
3944 */
3945int ib_destroy_cq_user(struct ib_cq *cq, struct ib_udata *udata);
3946
3947/**
3948 * ib_destroy_cq - Destroys the specified kernel CQ.
3949 * @cq: The CQ to destroy.
3950 *
3951 * NOTE: for user cq use ib_destroy_cq_user with valid udata!
3952 */
3953static inline void ib_destroy_cq(struct ib_cq *cq)
3954{
3955 int ret = ib_destroy_cq_user(cq, NULL);
3956
3957 WARN_ONCE(ret, "Destroy of kernel CQ shouldn't fail");
3958}
3959
3960/**
3961 * ib_poll_cq - poll a CQ for completion(s)
3962 * @cq:the CQ being polled
3963 * @num_entries:maximum number of completions to return
3964 * @wc:array of at least @num_entries &struct ib_wc where completions
3965 * will be returned
3966 *
3967 * Poll a CQ for (possibly multiple) completions. If the return value
3968 * is < 0, an error occurred. If the return value is >= 0, it is the
3969 * number of completions returned. If the return value is
3970 * non-negative and < num_entries, then the CQ was emptied.
3971 */
3972static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
3973 struct ib_wc *wc)
3974{
3975 return cq->device->ops.poll_cq(cq, num_entries, wc);
3976}
3977
3978/**
3979 * ib_req_notify_cq - Request completion notification on a CQ.
3980 * @cq: The CQ to generate an event for.
3981 * @flags:
3982 * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
3983 * to request an event on the next solicited event or next work
3984 * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
3985 * may also be |ed in to request a hint about missed events, as
3986 * described below.
3987 *
3988 * Return Value:
3989 * < 0 means an error occurred while requesting notification
3990 * == 0 means notification was requested successfully, and if
3991 * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
3992 * were missed and it is safe to wait for another event. In
3993 * this case is it guaranteed that any work completions added
3994 * to the CQ since the last CQ poll will trigger a completion
3995 * notification event.
3996 * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
3997 * in. It means that the consumer must poll the CQ again to
3998 * make sure it is empty to avoid missing an event because of a
3999 * race between requesting notification and an entry being
4000 * added to the CQ. This return value means it is possible
4001 * (but not guaranteed) that a work completion has been added
4002 * to the CQ since the last poll without triggering a
4003 * completion notification event.
4004 */
4005static inline int ib_req_notify_cq(struct ib_cq *cq,
4006 enum ib_cq_notify_flags flags)
4007{
4008 return cq->device->ops.req_notify_cq(cq, flags);
4009}
4010
4011struct ib_cq *ib_cq_pool_get(struct ib_device *dev, unsigned int nr_cqe,
4012 int comp_vector_hint,
4013 enum ib_poll_context poll_ctx);
4014
4015void ib_cq_pool_put(struct ib_cq *cq, unsigned int nr_cqe);
4016
4017/*
4018 * Drivers that don't need a DMA mapping at the RDMA layer, set dma_device to
4019 * NULL. This causes the ib_dma* helpers to just stash the kernel virtual
4020 * address into the dma address.
4021 */
4022static inline bool ib_uses_virt_dma(struct ib_device *dev)
4023{
4024 return IS_ENABLED(CONFIG_INFINIBAND_VIRT_DMA) && !dev->dma_device;
4025}
4026
4027/*
4028 * Check if a IB device's underlying DMA mapping supports P2PDMA transfers.
4029 */
4030static inline bool ib_dma_pci_p2p_dma_supported(struct ib_device *dev)
4031{
4032 if (ib_uses_virt_dma(dev))
4033 return false;
4034
4035 return dma_pci_p2pdma_supported(dev->dma_device);
4036}
4037
4038/**
4039 * ib_dma_mapping_error - check a DMA addr for error
4040 * @dev: The device for which the dma_addr was created
4041 * @dma_addr: The DMA address to check
4042 */
4043static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
4044{
4045 if (ib_uses_virt_dma(dev))
4046 return 0;
4047 return dma_mapping_error(dev->dma_device, dma_addr);
4048}
4049
4050/**
4051 * ib_dma_map_single - Map a kernel virtual address to DMA address
4052 * @dev: The device for which the dma_addr is to be created
4053 * @cpu_addr: The kernel virtual address
4054 * @size: The size of the region in bytes
4055 * @direction: The direction of the DMA
4056 */
4057static inline u64 ib_dma_map_single(struct ib_device *dev,
4058 void *cpu_addr, size_t size,
4059 enum dma_data_direction direction)
4060{
4061 if (ib_uses_virt_dma(dev))
4062 return (uintptr_t)cpu_addr;
4063 return dma_map_single(dev->dma_device, cpu_addr, size, direction);
4064}
4065
4066/**
4067 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
4068 * @dev: The device for which the DMA address was created
4069 * @addr: The DMA address
4070 * @size: The size of the region in bytes
4071 * @direction: The direction of the DMA
4072 */
4073static inline void ib_dma_unmap_single(struct ib_device *dev,
4074 u64 addr, size_t size,
4075 enum dma_data_direction direction)
4076{
4077 if (!ib_uses_virt_dma(dev))
4078 dma_unmap_single(dev->dma_device, addr, size, direction);
4079}
4080
4081/**
4082 * ib_dma_map_page - Map a physical page to DMA address
4083 * @dev: The device for which the dma_addr is to be created
4084 * @page: The page to be mapped
4085 * @offset: The offset within the page
4086 * @size: The size of the region in bytes
4087 * @direction: The direction of the DMA
4088 */
4089static inline u64 ib_dma_map_page(struct ib_device *dev,
4090 struct page *page,
4091 unsigned long offset,
4092 size_t size,
4093 enum dma_data_direction direction)
4094{
4095 if (ib_uses_virt_dma(dev))
4096 return (uintptr_t)(page_address(page) + offset);
4097 return dma_map_page(dev->dma_device, page, offset, size, direction);
4098}
4099
4100/**
4101 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
4102 * @dev: The device for which the DMA address was created
4103 * @addr: The DMA address
4104 * @size: The size of the region in bytes
4105 * @direction: The direction of the DMA
4106 */
4107static inline void ib_dma_unmap_page(struct ib_device *dev,
4108 u64 addr, size_t size,
4109 enum dma_data_direction direction)
4110{
4111 if (!ib_uses_virt_dma(dev))
4112 dma_unmap_page(dev->dma_device, addr, size, direction);
4113}
4114
4115int ib_dma_virt_map_sg(struct ib_device *dev, struct scatterlist *sg, int nents);
4116static inline int ib_dma_map_sg_attrs(struct ib_device *dev,
4117 struct scatterlist *sg, int nents,
4118 enum dma_data_direction direction,
4119 unsigned long dma_attrs)
4120{
4121 if (ib_uses_virt_dma(dev))
4122 return ib_dma_virt_map_sg(dev, sg, nents);
4123 return dma_map_sg_attrs(dev->dma_device, sg, nents, direction,
4124 dma_attrs);
4125}
4126
4127static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev,
4128 struct scatterlist *sg, int nents,
4129 enum dma_data_direction direction,
4130 unsigned long dma_attrs)
4131{
4132 if (!ib_uses_virt_dma(dev))
4133 dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction,
4134 dma_attrs);
4135}
4136
4137/**
4138 * ib_dma_map_sgtable_attrs - Map a scatter/gather table to DMA addresses
4139 * @dev: The device for which the DMA addresses are to be created
4140 * @sg: The sg_table object describing the buffer
4141 * @direction: The direction of the DMA
4142 * @attrs: Optional DMA attributes for the map operation
4143 */
4144static inline int ib_dma_map_sgtable_attrs(struct ib_device *dev,
4145 struct sg_table *sgt,
4146 enum dma_data_direction direction,
4147 unsigned long dma_attrs)
4148{
4149 int nents;
4150
4151 if (ib_uses_virt_dma(dev)) {
4152 nents = ib_dma_virt_map_sg(dev, sgt->sgl, sgt->orig_nents);
4153 if (!nents)
4154 return -EIO;
4155 sgt->nents = nents;
4156 return 0;
4157 }
4158 return dma_map_sgtable(dev->dma_device, sgt, direction, dma_attrs);
4159}
4160
4161static inline void ib_dma_unmap_sgtable_attrs(struct ib_device *dev,
4162 struct sg_table *sgt,
4163 enum dma_data_direction direction,
4164 unsigned long dma_attrs)
4165{
4166 if (!ib_uses_virt_dma(dev))
4167 dma_unmap_sgtable(dev->dma_device, sgt, direction, dma_attrs);
4168}
4169
4170/**
4171 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses
4172 * @dev: The device for which the DMA addresses are to be created
4173 * @sg: The array of scatter/gather entries
4174 * @nents: The number of scatter/gather entries
4175 * @direction: The direction of the DMA
4176 */
4177static inline int ib_dma_map_sg(struct ib_device *dev,
4178 struct scatterlist *sg, int nents,
4179 enum dma_data_direction direction)
4180{
4181 return ib_dma_map_sg_attrs(dev, sg, nents, direction, 0);
4182}
4183
4184/**
4185 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
4186 * @dev: The device for which the DMA addresses were created
4187 * @sg: The array of scatter/gather entries
4188 * @nents: The number of scatter/gather entries
4189 * @direction: The direction of the DMA
4190 */
4191static inline void ib_dma_unmap_sg(struct ib_device *dev,
4192 struct scatterlist *sg, int nents,
4193 enum dma_data_direction direction)
4194{
4195 ib_dma_unmap_sg_attrs(dev, sg, nents, direction, 0);
4196}
4197
4198/**
4199 * ib_dma_max_seg_size - Return the size limit of a single DMA transfer
4200 * @dev: The device to query
4201 *
4202 * The returned value represents a size in bytes.
4203 */
4204static inline unsigned int ib_dma_max_seg_size(struct ib_device *dev)
4205{
4206 if (ib_uses_virt_dma(dev))
4207 return UINT_MAX;
4208 return dma_get_max_seg_size(dev->dma_device);
4209}
4210
4211/**
4212 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
4213 * @dev: The device for which the DMA address was created
4214 * @addr: The DMA address
4215 * @size: The size of the region in bytes
4216 * @dir: The direction of the DMA
4217 */
4218static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
4219 u64 addr,
4220 size_t size,
4221 enum dma_data_direction dir)
4222{
4223 if (!ib_uses_virt_dma(dev))
4224 dma_sync_single_for_cpu(dev->dma_device, addr, size, dir);
4225}
4226
4227/**
4228 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
4229 * @dev: The device for which the DMA address was created
4230 * @addr: The DMA address
4231 * @size: The size of the region in bytes
4232 * @dir: The direction of the DMA
4233 */
4234static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
4235 u64 addr,
4236 size_t size,
4237 enum dma_data_direction dir)
4238{
4239 if (!ib_uses_virt_dma(dev))
4240 dma_sync_single_for_device(dev->dma_device, addr, size, dir);
4241}
4242
4243/* ib_reg_user_mr - register a memory region for virtual addresses from kernel
4244 * space. This function should be called when 'current' is the owning MM.
4245 */
4246struct ib_mr *ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
4247 u64 virt_addr, int mr_access_flags);
4248
4249/* ib_advise_mr - give an advice about an address range in a memory region */
4250int ib_advise_mr(struct ib_pd *pd, enum ib_uverbs_advise_mr_advice advice,
4251 u32 flags, struct ib_sge *sg_list, u32 num_sge);
4252/**
4253 * ib_dereg_mr_user - Deregisters a memory region and removes it from the
4254 * HCA translation table.
4255 * @mr: The memory region to deregister.
4256 * @udata: Valid user data or NULL for kernel object
4257 *
4258 * This function can fail, if the memory region has memory windows bound to it.
4259 */
4260int ib_dereg_mr_user(struct ib_mr *mr, struct ib_udata *udata);
4261
4262/**
4263 * ib_dereg_mr - Deregisters a kernel memory region and removes it from the
4264 * HCA translation table.
4265 * @mr: The memory region to deregister.
4266 *
4267 * This function can fail, if the memory region has memory windows bound to it.
4268 *
4269 * NOTE: for user mr use ib_dereg_mr_user with valid udata!
4270 */
4271static inline int ib_dereg_mr(struct ib_mr *mr)
4272{
4273 return ib_dereg_mr_user(mr, NULL);
4274}
4275
4276struct ib_mr *ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type,
4277 u32 max_num_sg);
4278
4279struct ib_mr *ib_alloc_mr_integrity(struct ib_pd *pd,
4280 u32 max_num_data_sg,
4281 u32 max_num_meta_sg);
4282
4283/**
4284 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR
4285 * R_Key and L_Key.
4286 * @mr - struct ib_mr pointer to be updated.
4287 * @newkey - new key to be used.
4288 */
4289static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey)
4290{
4291 mr->lkey = (mr->lkey & 0xffffff00) | newkey;
4292 mr->rkey = (mr->rkey & 0xffffff00) | newkey;
4293}
4294
4295/**
4296 * ib_inc_rkey - increments the key portion of the given rkey. Can be used
4297 * for calculating a new rkey for type 2 memory windows.
4298 * @rkey - the rkey to increment.
4299 */
4300static inline u32 ib_inc_rkey(u32 rkey)
4301{
4302 const u32 mask = 0x000000ff;
4303 return ((rkey + 1) & mask) | (rkey & ~mask);
4304}
4305
4306/**
4307 * ib_attach_mcast - Attaches the specified QP to a multicast group.
4308 * @qp: QP to attach to the multicast group. The QP must be type
4309 * IB_QPT_UD.
4310 * @gid: Multicast group GID.
4311 * @lid: Multicast group LID in host byte order.
4312 *
4313 * In order to send and receive multicast packets, subnet
4314 * administration must have created the multicast group and configured
4315 * the fabric appropriately. The port associated with the specified
4316 * QP must also be a member of the multicast group.
4317 */
4318int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
4319
4320/**
4321 * ib_detach_mcast - Detaches the specified QP from a multicast group.
4322 * @qp: QP to detach from the multicast group.
4323 * @gid: Multicast group GID.
4324 * @lid: Multicast group LID in host byte order.
4325 */
4326int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
4327
4328struct ib_xrcd *ib_alloc_xrcd_user(struct ib_device *device,
4329 struct inode *inode, struct ib_udata *udata);
4330int ib_dealloc_xrcd_user(struct ib_xrcd *xrcd, struct ib_udata *udata);
4331
4332static inline int ib_check_mr_access(struct ib_device *ib_dev,
4333 unsigned int flags)
4334{
4335 u64 device_cap = ib_dev->attrs.device_cap_flags;
4336
4337 /*
4338 * Local write permission is required if remote write or
4339 * remote atomic permission is also requested.
4340 */
4341 if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) &&
4342 !(flags & IB_ACCESS_LOCAL_WRITE))
4343 return -EINVAL;
4344
4345 if (flags & ~IB_ACCESS_SUPPORTED)
4346 return -EINVAL;
4347
4348 if (flags & IB_ACCESS_ON_DEMAND &&
4349 !(ib_dev->attrs.kernel_cap_flags & IBK_ON_DEMAND_PAGING))
4350 return -EOPNOTSUPP;
4351
4352 if ((flags & IB_ACCESS_FLUSH_GLOBAL &&
4353 !(device_cap & IB_DEVICE_FLUSH_GLOBAL)) ||
4354 (flags & IB_ACCESS_FLUSH_PERSISTENT &&
4355 !(device_cap & IB_DEVICE_FLUSH_PERSISTENT)))
4356 return -EOPNOTSUPP;
4357
4358 return 0;
4359}
4360
4361static inline bool ib_access_writable(int access_flags)
4362{
4363 /*
4364 * We have writable memory backing the MR if any of the following
4365 * access flags are set. "Local write" and "remote write" obviously
4366 * require write access. "Remote atomic" can do things like fetch and
4367 * add, which will modify memory, and "MW bind" can change permissions
4368 * by binding a window.
4369 */
4370 return access_flags &
4371 (IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_WRITE |
4372 IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_MW_BIND);
4373}
4374
4375/**
4376 * ib_check_mr_status: lightweight check of MR status.
4377 * This routine may provide status checks on a selected
4378 * ib_mr. first use is for signature status check.
4379 *
4380 * @mr: A memory region.
4381 * @check_mask: Bitmask of which checks to perform from
4382 * ib_mr_status_check enumeration.
4383 * @mr_status: The container of relevant status checks.
4384 * failed checks will be indicated in the status bitmask
4385 * and the relevant info shall be in the error item.
4386 */
4387int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
4388 struct ib_mr_status *mr_status);
4389
4390/**
4391 * ib_device_try_get: Hold a registration lock
4392 * device: The device to lock
4393 *
4394 * A device under an active registration lock cannot become unregistered. It
4395 * is only possible to obtain a registration lock on a device that is fully
4396 * registered, otherwise this function returns false.
4397 *
4398 * The registration lock is only necessary for actions which require the
4399 * device to still be registered. Uses that only require the device pointer to
4400 * be valid should use get_device(&ibdev->dev) to hold the memory.
4401 *
4402 */
4403static inline bool ib_device_try_get(struct ib_device *dev)
4404{
4405 return refcount_inc_not_zero(&dev->refcount);
4406}
4407
4408void ib_device_put(struct ib_device *device);
4409struct ib_device *ib_device_get_by_netdev(struct net_device *ndev,
4410 enum rdma_driver_id driver_id);
4411struct ib_device *ib_device_get_by_name(const char *name,
4412 enum rdma_driver_id driver_id);
4413struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u32 port,
4414 u16 pkey, const union ib_gid *gid,
4415 const struct sockaddr *addr);
4416int ib_device_set_netdev(struct ib_device *ib_dev, struct net_device *ndev,
4417 unsigned int port);
4418struct net_device *ib_device_netdev(struct ib_device *dev, u32 port);
4419
4420struct ib_wq *ib_create_wq(struct ib_pd *pd,
4421 struct ib_wq_init_attr *init_attr);
4422int ib_destroy_wq_user(struct ib_wq *wq, struct ib_udata *udata);
4423
4424int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
4425 unsigned int *sg_offset, unsigned int page_size);
4426int ib_map_mr_sg_pi(struct ib_mr *mr, struct scatterlist *data_sg,
4427 int data_sg_nents, unsigned int *data_sg_offset,
4428 struct scatterlist *meta_sg, int meta_sg_nents,
4429 unsigned int *meta_sg_offset, unsigned int page_size);
4430
4431static inline int
4432ib_map_mr_sg_zbva(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
4433 unsigned int *sg_offset, unsigned int page_size)
4434{
4435 int n;
4436
4437 n = ib_map_mr_sg(mr, sg, sg_nents, sg_offset, page_size);
4438 mr->iova = 0;
4439
4440 return n;
4441}
4442
4443int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
4444 unsigned int *sg_offset, int (*set_page)(struct ib_mr *, u64));
4445
4446void ib_drain_rq(struct ib_qp *qp);
4447void ib_drain_sq(struct ib_qp *qp);
4448void ib_drain_qp(struct ib_qp *qp);
4449
4450int ib_get_eth_speed(struct ib_device *dev, u32 port_num, u16 *speed,
4451 u8 *width);
4452
4453static inline u8 *rdma_ah_retrieve_dmac(struct rdma_ah_attr *attr)
4454{
4455 if (attr->type == RDMA_AH_ATTR_TYPE_ROCE)
4456 return attr->roce.dmac;
4457 return NULL;
4458}
4459
4460static inline void rdma_ah_set_dlid(struct rdma_ah_attr *attr, u32 dlid)
4461{
4462 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4463 attr->ib.dlid = (u16)dlid;
4464 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4465 attr->opa.dlid = dlid;
4466}
4467
4468static inline u32 rdma_ah_get_dlid(const struct rdma_ah_attr *attr)
4469{
4470 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4471 return attr->ib.dlid;
4472 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4473 return attr->opa.dlid;
4474 return 0;
4475}
4476
4477static inline void rdma_ah_set_sl(struct rdma_ah_attr *attr, u8 sl)
4478{
4479 attr->sl = sl;
4480}
4481
4482static inline u8 rdma_ah_get_sl(const struct rdma_ah_attr *attr)
4483{
4484 return attr->sl;
4485}
4486
4487static inline void rdma_ah_set_path_bits(struct rdma_ah_attr *attr,
4488 u8 src_path_bits)
4489{
4490 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4491 attr->ib.src_path_bits = src_path_bits;
4492 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4493 attr->opa.src_path_bits = src_path_bits;
4494}
4495
4496static inline u8 rdma_ah_get_path_bits(const struct rdma_ah_attr *attr)
4497{
4498 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4499 return attr->ib.src_path_bits;
4500 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4501 return attr->opa.src_path_bits;
4502 return 0;
4503}
4504
4505static inline void rdma_ah_set_make_grd(struct rdma_ah_attr *attr,
4506 bool make_grd)
4507{
4508 if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4509 attr->opa.make_grd = make_grd;
4510}
4511
4512static inline bool rdma_ah_get_make_grd(const struct rdma_ah_attr *attr)
4513{
4514 if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4515 return attr->opa.make_grd;
4516 return false;
4517}
4518
4519static inline void rdma_ah_set_port_num(struct rdma_ah_attr *attr, u32 port_num)
4520{
4521 attr->port_num = port_num;
4522}
4523
4524static inline u32 rdma_ah_get_port_num(const struct rdma_ah_attr *attr)
4525{
4526 return attr->port_num;
4527}
4528
4529static inline void rdma_ah_set_static_rate(struct rdma_ah_attr *attr,
4530 u8 static_rate)
4531{
4532 attr->static_rate = static_rate;
4533}
4534
4535static inline u8 rdma_ah_get_static_rate(const struct rdma_ah_attr *attr)
4536{
4537 return attr->static_rate;
4538}
4539
4540static inline void rdma_ah_set_ah_flags(struct rdma_ah_attr *attr,
4541 enum ib_ah_flags flag)
4542{
4543 attr->ah_flags = flag;
4544}
4545
4546static inline enum ib_ah_flags
4547 rdma_ah_get_ah_flags(const struct rdma_ah_attr *attr)
4548{
4549 return attr->ah_flags;
4550}
4551
4552static inline const struct ib_global_route
4553 *rdma_ah_read_grh(const struct rdma_ah_attr *attr)
4554{
4555 return &attr->grh;
4556}
4557
4558/*To retrieve and modify the grh */
4559static inline struct ib_global_route
4560 *rdma_ah_retrieve_grh(struct rdma_ah_attr *attr)
4561{
4562 return &attr->grh;
4563}
4564
4565static inline void rdma_ah_set_dgid_raw(struct rdma_ah_attr *attr, void *dgid)
4566{
4567 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4568
4569 memcpy(grh->dgid.raw, dgid, sizeof(grh->dgid));
4570}
4571
4572static inline void rdma_ah_set_subnet_prefix(struct rdma_ah_attr *attr,
4573 __be64 prefix)
4574{
4575 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4576
4577 grh->dgid.global.subnet_prefix = prefix;
4578}
4579
4580static inline void rdma_ah_set_interface_id(struct rdma_ah_attr *attr,
4581 __be64 if_id)
4582{
4583 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4584
4585 grh->dgid.global.interface_id = if_id;
4586}
4587
4588static inline void rdma_ah_set_grh(struct rdma_ah_attr *attr,
4589 union ib_gid *dgid, u32 flow_label,
4590 u8 sgid_index, u8 hop_limit,
4591 u8 traffic_class)
4592{
4593 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4594
4595 attr->ah_flags = IB_AH_GRH;
4596 if (dgid)
4597 grh->dgid = *dgid;
4598 grh->flow_label = flow_label;
4599 grh->sgid_index = sgid_index;
4600 grh->hop_limit = hop_limit;
4601 grh->traffic_class = traffic_class;
4602 grh->sgid_attr = NULL;
4603}
4604
4605void rdma_destroy_ah_attr(struct rdma_ah_attr *ah_attr);
4606void rdma_move_grh_sgid_attr(struct rdma_ah_attr *attr, union ib_gid *dgid,
4607 u32 flow_label, u8 hop_limit, u8 traffic_class,
4608 const struct ib_gid_attr *sgid_attr);
4609void rdma_copy_ah_attr(struct rdma_ah_attr *dest,
4610 const struct rdma_ah_attr *src);
4611void rdma_replace_ah_attr(struct rdma_ah_attr *old,
4612 const struct rdma_ah_attr *new);
4613void rdma_move_ah_attr(struct rdma_ah_attr *dest, struct rdma_ah_attr *src);
4614
4615/**
4616 * rdma_ah_find_type - Return address handle type.
4617 *
4618 * @dev: Device to be checked
4619 * @port_num: Port number
4620 */
4621static inline enum rdma_ah_attr_type rdma_ah_find_type(struct ib_device *dev,
4622 u32 port_num)
4623{
4624 if (rdma_protocol_roce(dev, port_num))
4625 return RDMA_AH_ATTR_TYPE_ROCE;
4626 if (rdma_protocol_ib(dev, port_num)) {
4627 if (rdma_cap_opa_ah(dev, port_num))
4628 return RDMA_AH_ATTR_TYPE_OPA;
4629 return RDMA_AH_ATTR_TYPE_IB;
4630 }
4631
4632 return RDMA_AH_ATTR_TYPE_UNDEFINED;
4633}
4634
4635/**
4636 * ib_lid_cpu16 - Return lid in 16bit CPU encoding.
4637 * In the current implementation the only way to
4638 * get the 32bit lid is from other sources for OPA.
4639 * For IB, lids will always be 16bits so cast the
4640 * value accordingly.
4641 *
4642 * @lid: A 32bit LID
4643 */
4644static inline u16 ib_lid_cpu16(u32 lid)
4645{
4646 WARN_ON_ONCE(lid & 0xFFFF0000);
4647 return (u16)lid;
4648}
4649
4650/**
4651 * ib_lid_be16 - Return lid in 16bit BE encoding.
4652 *
4653 * @lid: A 32bit LID
4654 */
4655static inline __be16 ib_lid_be16(u32 lid)
4656{
4657 WARN_ON_ONCE(lid & 0xFFFF0000);
4658 return cpu_to_be16((u16)lid);
4659}
4660
4661/**
4662 * ib_get_vector_affinity - Get the affinity mappings of a given completion
4663 * vector
4664 * @device: the rdma device
4665 * @comp_vector: index of completion vector
4666 *
4667 * Returns NULL on failure, otherwise a corresponding cpu map of the
4668 * completion vector (returns all-cpus map if the device driver doesn't
4669 * implement get_vector_affinity).
4670 */
4671static inline const struct cpumask *
4672ib_get_vector_affinity(struct ib_device *device, int comp_vector)
4673{
4674 if (comp_vector < 0 || comp_vector >= device->num_comp_vectors ||
4675 !device->ops.get_vector_affinity)
4676 return NULL;
4677
4678 return device->ops.get_vector_affinity(device, comp_vector);
4679
4680}
4681
4682/**
4683 * rdma_roce_rescan_device - Rescan all of the network devices in the system
4684 * and add their gids, as needed, to the relevant RoCE devices.
4685 *
4686 * @device: the rdma device
4687 */
4688void rdma_roce_rescan_device(struct ib_device *ibdev);
4689
4690struct ib_ucontext *ib_uverbs_get_ucontext_file(struct ib_uverbs_file *ufile);
4691
4692int uverbs_destroy_def_handler(struct uverbs_attr_bundle *attrs);
4693
4694struct net_device *rdma_alloc_netdev(struct ib_device *device, u32 port_num,
4695 enum rdma_netdev_t type, const char *name,
4696 unsigned char name_assign_type,
4697 void (*setup)(struct net_device *));
4698
4699int rdma_init_netdev(struct ib_device *device, u32 port_num,
4700 enum rdma_netdev_t type, const char *name,
4701 unsigned char name_assign_type,
4702 void (*setup)(struct net_device *),
4703 struct net_device *netdev);
4704
4705/**
4706 * rdma_device_to_ibdev - Get ib_device pointer from device pointer
4707 *
4708 * @device: device pointer for which ib_device pointer to retrieve
4709 *
4710 * rdma_device_to_ibdev() retrieves ib_device pointer from device.
4711 *
4712 */
4713static inline struct ib_device *rdma_device_to_ibdev(struct device *device)
4714{
4715 struct ib_core_device *coredev =
4716 container_of(device, struct ib_core_device, dev);
4717
4718 return coredev->owner;
4719}
4720
4721/**
4722 * ibdev_to_node - return the NUMA node for a given ib_device
4723 * @dev: device to get the NUMA node for.
4724 */
4725static inline int ibdev_to_node(struct ib_device *ibdev)
4726{
4727 struct device *parent = ibdev->dev.parent;
4728
4729 if (!parent)
4730 return NUMA_NO_NODE;
4731 return dev_to_node(parent);
4732}
4733
4734/**
4735 * rdma_device_to_drv_device - Helper macro to reach back to driver's
4736 * ib_device holder structure from device pointer.
4737 *
4738 * NOTE: New drivers should not make use of this API; This API is only for
4739 * existing drivers who have exposed sysfs entries using
4740 * ops->device_group.
4741 */
4742#define rdma_device_to_drv_device(dev, drv_dev_struct, ibdev_member) \
4743 container_of(rdma_device_to_ibdev(dev), drv_dev_struct, ibdev_member)
4744
4745bool rdma_dev_access_netns(const struct ib_device *device,
4746 const struct net *net);
4747
4748#define IB_ROCE_UDP_ENCAP_VALID_PORT_MIN (0xC000)
4749#define IB_ROCE_UDP_ENCAP_VALID_PORT_MAX (0xFFFF)
4750#define IB_GRH_FLOWLABEL_MASK (0x000FFFFF)
4751
4752/**
4753 * rdma_flow_label_to_udp_sport - generate a RoCE v2 UDP src port value based
4754 * on the flow_label
4755 *
4756 * This function will convert the 20 bit flow_label input to a valid RoCE v2
4757 * UDP src port 14 bit value. All RoCE V2 drivers should use this same
4758 * convention.
4759 */
4760static inline u16 rdma_flow_label_to_udp_sport(u32 fl)
4761{
4762 u32 fl_low = fl & 0x03fff, fl_high = fl & 0xFC000;
4763
4764 fl_low ^= fl_high >> 14;
4765 return (u16)(fl_low | IB_ROCE_UDP_ENCAP_VALID_PORT_MIN);
4766}
4767
4768/**
4769 * rdma_calc_flow_label - generate a RDMA symmetric flow label value based on
4770 * local and remote qpn values
4771 *
4772 * This function folded the multiplication results of two qpns, 24 bit each,
4773 * fields, and converts it to a 20 bit results.
4774 *
4775 * This function will create symmetric flow_label value based on the local
4776 * and remote qpn values. this will allow both the requester and responder
4777 * to calculate the same flow_label for a given connection.
4778 *
4779 * This helper function should be used by driver in case the upper layer
4780 * provide a zero flow_label value. This is to improve entropy of RDMA
4781 * traffic in the network.
4782 */
4783static inline u32 rdma_calc_flow_label(u32 lqpn, u32 rqpn)
4784{
4785 u64 v = (u64)lqpn * rqpn;
4786
4787 v ^= v >> 20;
4788 v ^= v >> 40;
4789
4790 return (u32)(v & IB_GRH_FLOWLABEL_MASK);
4791}
4792
4793/**
4794 * rdma_get_udp_sport - Calculate and set UDP source port based on the flow
4795 * label. If flow label is not defined in GRH then
4796 * calculate it based on lqpn/rqpn.
4797 *
4798 * @fl: flow label from GRH
4799 * @lqpn: local qp number
4800 * @rqpn: remote qp number
4801 */
4802static inline u16 rdma_get_udp_sport(u32 fl, u32 lqpn, u32 rqpn)
4803{
4804 if (!fl)
4805 fl = rdma_calc_flow_label(lqpn, rqpn);
4806
4807 return rdma_flow_label_to_udp_sport(fl);
4808}
4809
4810const struct ib_port_immutable*
4811ib_port_immutable_read(struct ib_device *dev, unsigned int port);
4812#endif /* IB_VERBS_H */