Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
   3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
   4 *
   5 * This file is released under the GPL.
   6 */
   7
   8#include "dm.h"
 
   9#include "dm-uevent.h"
 
  10
  11#include <linux/init.h>
  12#include <linux/module.h>
  13#include <linux/mutex.h>
  14#include <linux/moduleparam.h>
 
  15#include <linux/blkpg.h>
  16#include <linux/bio.h>
  17#include <linux/buffer_head.h>
  18#include <linux/mempool.h>
 
  19#include <linux/slab.h>
  20#include <linux/idr.h>
 
  21#include <linux/hdreg.h>
  22#include <linux/delay.h>
  23
  24#include <trace/events/block.h>
 
 
 
 
  25
  26#define DM_MSG_PREFIX "core"
  27
  28/*
  29 * Cookies are numeric values sent with CHANGE and REMOVE
  30 * uevents while resuming, removing or renaming the device.
  31 */
  32#define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
  33#define DM_COOKIE_LENGTH 24
  34
 
 
 
 
 
 
 
  35static const char *_name = DM_NAME;
  36
  37static unsigned int major = 0;
  38static unsigned int _major = 0;
  39
  40static DEFINE_IDR(_minor_idr);
  41
  42static DEFINE_SPINLOCK(_minor_lock);
  43/*
  44 * For bio-based dm.
  45 * One of these is allocated per bio.
  46 */
  47struct dm_io {
  48	struct mapped_device *md;
  49	int error;
  50	atomic_t io_count;
  51	struct bio *bio;
  52	unsigned long start_time;
  53	spinlock_t endio_lock;
  54};
  55
  56/*
  57 * For bio-based dm.
  58 * One of these is allocated per target within a bio.  Hopefully
  59 * this will be simplified out one day.
  60 */
  61struct dm_target_io {
  62	struct dm_io *io;
  63	struct dm_target *ti;
  64	union map_info info;
  65};
  66
  67/*
  68 * For request-based dm.
  69 * One of these is allocated per request.
  70 */
  71struct dm_rq_target_io {
  72	struct mapped_device *md;
  73	struct dm_target *ti;
  74	struct request *orig, clone;
  75	int error;
  76	union map_info info;
  77};
  78
  79/*
  80 * For request-based dm.
  81 * One of these is allocated per bio.
  82 */
  83struct dm_rq_clone_bio_info {
  84	struct bio *orig;
  85	struct dm_rq_target_io *tio;
  86};
  87
  88union map_info *dm_get_mapinfo(struct bio *bio)
  89{
  90	if (bio && bio->bi_private)
  91		return &((struct dm_target_io *)bio->bi_private)->info;
  92	return NULL;
  93}
  94
  95union map_info *dm_get_rq_mapinfo(struct request *rq)
  96{
  97	if (rq && rq->end_io_data)
  98		return &((struct dm_rq_target_io *)rq->end_io_data)->info;
  99	return NULL;
 100}
 101EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo);
 102
 103#define MINOR_ALLOCED ((void *)-1)
 
 
 104
 105/*
 106 * Bits for the md->flags field.
 107 */
 108#define DMF_BLOCK_IO_FOR_SUSPEND 0
 109#define DMF_SUSPENDED 1
 110#define DMF_FROZEN 2
 111#define DMF_FREEING 3
 112#define DMF_DELETING 4
 113#define DMF_NOFLUSH_SUSPENDING 5
 114#define DMF_MERGE_IS_OPTIONAL 6
 115
 116/*
 117 * Work processed by per-device workqueue.
 118 */
 119struct mapped_device {
 120	struct rw_semaphore io_lock;
 121	struct mutex suspend_lock;
 122	rwlock_t map_lock;
 123	atomic_t holders;
 124	atomic_t open_count;
 125
 126	unsigned long flags;
 127
 128	struct request_queue *queue;
 129	unsigned type;
 130	/* Protect queue and type against concurrent access. */
 131	struct mutex type_lock;
 132
 133	struct gendisk *disk;
 134	char name[16];
 
 
 
 
 
 135
 136	void *interface_ptr;
 
 
 
 
 
 
 
 
 137
 138	/*
 139	 * A list of ios that arrived while we were suspended.
 140	 */
 141	atomic_t pending[2];
 142	wait_queue_head_t wait;
 143	struct work_struct work;
 144	struct bio_list deferred;
 145	spinlock_t deferred_lock;
 146
 147	/*
 148	 * Processing queue (flush)
 149	 */
 150	struct workqueue_struct *wq;
 151
 152	/*
 153	 * The current mapping.
 154	 */
 155	struct dm_table *map;
 156
 157	/*
 158	 * io objects are allocated from here.
 159	 */
 160	mempool_t *io_pool;
 161	mempool_t *tio_pool;
 
 
 
 
 
 
 
 
 
 
 162
 163	struct bio_set *bs;
 
 
 
 
 164
 165	/*
 166	 * Event handling.
 167	 */
 168	atomic_t event_nr;
 169	wait_queue_head_t eventq;
 170	atomic_t uevent_seq;
 171	struct list_head uevent_list;
 172	spinlock_t uevent_lock; /* Protect access to uevent_list */
 173
 174	/*
 175	 * freeze/thaw support require holding onto a super block
 176	 */
 177	struct super_block *frozen_sb;
 178	struct block_device *bdev;
 
 179
 180	/* forced geometry settings */
 181	struct hd_geometry geometry;
 
 
 182
 183	/* For saving the address of __make_request for request based dm */
 184	make_request_fn *saved_make_request_fn;
 185
 186	/* sysfs handle */
 187	struct kobject kobj;
 
 
 
 188
 189	/* zero-length flush that will be cloned and submitted to targets */
 190	struct bio flush_bio;
 191};
 
 192
 193/*
 194 * For mempools pre-allocation at the table loading time.
 195 */
 196struct dm_md_mempools {
 197	mempool_t *io_pool;
 198	mempool_t *tio_pool;
 199	struct bio_set *bs;
 200};
 201
 202#define MIN_IOS 256
 203static struct kmem_cache *_io_cache;
 204static struct kmem_cache *_tio_cache;
 205static struct kmem_cache *_rq_tio_cache;
 206static struct kmem_cache *_rq_bio_info_cache;
 207
 208static int __init local_init(void)
 209{
 210	int r = -ENOMEM;
 
 
 
 211
 212	/* allocate a slab for the dm_ios */
 213	_io_cache = KMEM_CACHE(dm_io, 0);
 214	if (!_io_cache)
 215		return r;
 
 216
 217	/* allocate a slab for the target ios */
 218	_tio_cache = KMEM_CACHE(dm_target_io, 0);
 219	if (!_tio_cache)
 220		goto out_free_io_cache;
 221
 222	_rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
 223	if (!_rq_tio_cache)
 224		goto out_free_tio_cache;
 225
 226	_rq_bio_info_cache = KMEM_CACHE(dm_rq_clone_bio_info, 0);
 227	if (!_rq_bio_info_cache)
 228		goto out_free_rq_tio_cache;
 229
 230	r = dm_uevent_init();
 231	if (r)
 232		goto out_free_rq_bio_info_cache;
 
 
 
 
 
 
 233
 234	_major = major;
 235	r = register_blkdev(_major, _name);
 236	if (r < 0)
 237		goto out_uevent_exit;
 238
 239	if (!_major)
 240		_major = r;
 241
 242	return 0;
 243
 
 
 244out_uevent_exit:
 245	dm_uevent_exit();
 246out_free_rq_bio_info_cache:
 247	kmem_cache_destroy(_rq_bio_info_cache);
 248out_free_rq_tio_cache:
 249	kmem_cache_destroy(_rq_tio_cache);
 250out_free_tio_cache:
 251	kmem_cache_destroy(_tio_cache);
 252out_free_io_cache:
 253	kmem_cache_destroy(_io_cache);
 254
 255	return r;
 256}
 257
 258static void local_exit(void)
 259{
 260	kmem_cache_destroy(_rq_bio_info_cache);
 261	kmem_cache_destroy(_rq_tio_cache);
 262	kmem_cache_destroy(_tio_cache);
 263	kmem_cache_destroy(_io_cache);
 264	unregister_blkdev(_major, _name);
 265	dm_uevent_exit();
 266
 267	_major = 0;
 268
 269	DMINFO("cleaned up");
 270}
 271
 272static int (*_inits[])(void) __initdata = {
 273	local_init,
 274	dm_target_init,
 275	dm_linear_init,
 276	dm_stripe_init,
 277	dm_io_init,
 278	dm_kcopyd_init,
 279	dm_interface_init,
 
 280};
 281
 282static void (*_exits[])(void) = {
 283	local_exit,
 284	dm_target_exit,
 285	dm_linear_exit,
 286	dm_stripe_exit,
 287	dm_io_exit,
 288	dm_kcopyd_exit,
 289	dm_interface_exit,
 
 290};
 291
 292static int __init dm_init(void)
 293{
 294	const int count = ARRAY_SIZE(_inits);
 295
 296	int r, i;
 297
 
 
 
 
 
 298	for (i = 0; i < count; i++) {
 299		r = _inits[i]();
 300		if (r)
 301			goto bad;
 302	}
 303
 304	return 0;
 305
 306      bad:
 307	while (i--)
 308		_exits[i]();
 309
 310	return r;
 311}
 312
 313static void __exit dm_exit(void)
 314{
 315	int i = ARRAY_SIZE(_exits);
 316
 317	while (i--)
 318		_exits[i]();
 319
 320	/*
 321	 * Should be empty by this point.
 322	 */
 323	idr_remove_all(&_minor_idr);
 324	idr_destroy(&_minor_idr);
 325}
 326
 327/*
 328 * Block device functions
 329 */
 330int dm_deleting_md(struct mapped_device *md)
 331{
 332	return test_bit(DMF_DELETING, &md->flags);
 333}
 334
 335static int dm_blk_open(struct block_device *bdev, fmode_t mode)
 336{
 337	struct mapped_device *md;
 338
 339	spin_lock(&_minor_lock);
 340
 341	md = bdev->bd_disk->private_data;
 342	if (!md)
 343		goto out;
 344
 345	if (test_bit(DMF_FREEING, &md->flags) ||
 346	    dm_deleting_md(md)) {
 347		md = NULL;
 348		goto out;
 349	}
 350
 351	dm_get(md);
 352	atomic_inc(&md->open_count);
 353
 354out:
 355	spin_unlock(&_minor_lock);
 356
 357	return md ? 0 : -ENXIO;
 358}
 359
 360static int dm_blk_close(struct gendisk *disk, fmode_t mode)
 361{
 362	struct mapped_device *md = disk->private_data;
 363
 364	spin_lock(&_minor_lock);
 365
 366	atomic_dec(&md->open_count);
 367	dm_put(md);
 
 368
 369	spin_unlock(&_minor_lock);
 
 
 370
 371	return 0;
 
 
 372}
 373
 374int dm_open_count(struct mapped_device *md)
 375{
 376	return atomic_read(&md->open_count);
 377}
 378
 379/*
 380 * Guarantees nothing is using the device before it's deleted.
 381 */
 382int dm_lock_for_deletion(struct mapped_device *md)
 383{
 384	int r = 0;
 385
 386	spin_lock(&_minor_lock);
 387
 388	if (dm_open_count(md))
 389		r = -EBUSY;
 
 
 
 
 390	else
 391		set_bit(DMF_DELETING, &md->flags);
 392
 393	spin_unlock(&_minor_lock);
 394
 395	return r;
 396}
 397
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 398static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
 399{
 400	struct mapped_device *md = bdev->bd_disk->private_data;
 401
 402	return dm_get_geometry(md, geo);
 403}
 404
 405static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
 406			unsigned int cmd, unsigned long arg)
 407{
 408	struct mapped_device *md = bdev->bd_disk->private_data;
 409	struct dm_table *map = dm_get_live_table(md);
 410	struct dm_target *tgt;
 411	int r = -ENOTTY;
 412
 
 
 
 413	if (!map || !dm_table_get_size(map))
 414		goto out;
 415
 416	/* We only support devices that have a single target */
 417	if (dm_table_get_num_targets(map) != 1)
 418		goto out;
 419
 420	tgt = dm_table_get_target(map, 0);
 421
 422	if (dm_suspended_md(md)) {
 423		r = -EAGAIN;
 424		goto out;
 425	}
 426
 427	if (tgt->type->ioctl)
 428		r = tgt->type->ioctl(tgt, cmd, arg);
 429
 430out:
 431	dm_table_put(map);
 
 
 
 
 432
 433	return r;
 434}
 435
 436static struct dm_io *alloc_io(struct mapped_device *md)
 437{
 438	return mempool_alloc(md->io_pool, GFP_NOIO);
 439}
 440
 441static void free_io(struct mapped_device *md, struct dm_io *io)
 
 442{
 443	mempool_free(io, md->io_pool);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 444}
 445
 446static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
 447{
 448	mempool_free(tio, md->tio_pool);
 449}
 
 450
 451static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md,
 452					    gfp_t gfp_mask)
 453{
 454	return mempool_alloc(md->tio_pool, gfp_mask);
 455}
 456
 457static void free_rq_tio(struct dm_rq_target_io *tio)
 458{
 459	mempool_free(tio, tio->md->tio_pool);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 460}
 461
 462static struct dm_rq_clone_bio_info *alloc_bio_info(struct mapped_device *md)
 463{
 464	return mempool_alloc(md->io_pool, GFP_ATOMIC);
 465}
 466
 467static void free_bio_info(struct dm_rq_clone_bio_info *info)
 468{
 469	mempool_free(info, info->tio->md->io_pool);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 470}
 471
 472static int md_in_flight(struct mapped_device *md)
 473{
 474	return atomic_read(&md->pending[READ]) +
 475	       atomic_read(&md->pending[WRITE]);
 476}
 477
 478static void start_io_acct(struct dm_io *io)
 479{
 480	struct mapped_device *md = io->md;
 481	int cpu;
 482	int rw = bio_data_dir(io->bio);
 483
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 484	io->start_time = jiffies;
 
 485
 486	cpu = part_stat_lock();
 487	part_round_stats(cpu, &dm_disk(md)->part0);
 488	part_stat_unlock();
 489	atomic_set(&dm_disk(md)->part0.in_flight[rw],
 490		atomic_inc_return(&md->pending[rw]));
 491}
 492
 493static void end_io_acct(struct dm_io *io)
 494{
 495	struct mapped_device *md = io->md;
 496	struct bio *bio = io->bio;
 497	unsigned long duration = jiffies - io->start_time;
 498	int pending, cpu;
 499	int rw = bio_data_dir(bio);
 500
 501	cpu = part_stat_lock();
 502	part_round_stats(cpu, &dm_disk(md)->part0);
 503	part_stat_add(cpu, &dm_disk(md)->part0, ticks[rw], duration);
 504	part_stat_unlock();
 505
 506	/*
 507	 * After this is decremented the bio must not be touched if it is
 508	 * a flush.
 509	 */
 510	pending = atomic_dec_return(&md->pending[rw]);
 511	atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
 512	pending += atomic_read(&md->pending[rw^0x1]);
 513
 514	/* nudge anyone waiting on suspend queue */
 515	if (!pending)
 516		wake_up(&md->wait);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 517}
 518
 519/*
 520 * Add the bio to the list of deferred io.
 521 */
 522static void queue_io(struct mapped_device *md, struct bio *bio)
 523{
 524	unsigned long flags;
 525
 526	spin_lock_irqsave(&md->deferred_lock, flags);
 527	bio_list_add(&md->deferred, bio);
 528	spin_unlock_irqrestore(&md->deferred_lock, flags);
 529	queue_work(md->wq, &md->work);
 530}
 531
 532/*
 533 * Everyone (including functions in this file), should use this
 534 * function to access the md->map field, and make sure they call
 535 * dm_table_put() when finished.
 536 */
 537struct dm_table *dm_get_live_table(struct mapped_device *md)
 
 538{
 539	struct dm_table *t;
 540	unsigned long flags;
 541
 542	read_lock_irqsave(&md->map_lock, flags);
 543	t = md->map;
 544	if (t)
 545		dm_table_get(t);
 546	read_unlock_irqrestore(&md->map_lock, flags);
 547
 548	return t;
 549}
 550
 551/*
 552 * Get the geometry associated with a dm device
 553 */
 554int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
 555{
 556	*geo = md->geometry;
 
 557
 558	return 0;
 
 
 
 559}
 560
 561/*
 562 * Set the geometry of a device.
 
 563 */
 564int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
 565{
 566	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
 567
 568	if (geo->start > sz) {
 569		DMWARN("Start sector is beyond the geometry limits.");
 570		return -EINVAL;
 571	}
 572
 573	md->geometry = *geo;
 574
 575	return 0;
 576}
 577
 578/*-----------------------------------------------------------------
 579 * CRUD START:
 580 *   A more elegant soln is in the works that uses the queue
 581 *   merge fn, unfortunately there are a couple of changes to
 582 *   the block layer that I want to make for this.  So in the
 583 *   interests of getting something for people to use I give
 584 *   you this clearly demarcated crap.
 585 *---------------------------------------------------------------*/
 586
 587static int __noflush_suspending(struct mapped_device *md)
 588{
 589	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
 590}
 591
 592/*
 593 * Decrements the number of outstanding ios that a bio has been
 594 * cloned into, completing the original io if necc.
 595 */
 596static void dec_pending(struct dm_io *io, int error)
 597{
 598	unsigned long flags;
 599	int io_error;
 600	struct bio *bio;
 601	struct mapped_device *md = io->md;
 602
 603	/* Push-back supersedes any I/O errors */
 604	if (unlikely(error)) {
 605		spin_lock_irqsave(&io->endio_lock, flags);
 606		if (!(io->error > 0 && __noflush_suspending(md)))
 607			io->error = error;
 608		spin_unlock_irqrestore(&io->endio_lock, flags);
 609	}
 610
 611	if (atomic_dec_and_test(&io->io_count)) {
 612		if (io->error == DM_ENDIO_REQUEUE) {
 613			/*
 614			 * Target requested pushing back the I/O.
 615			 */
 616			spin_lock_irqsave(&md->deferred_lock, flags);
 617			if (__noflush_suspending(md))
 618				bio_list_add_head(&md->deferred, io->bio);
 619			else
 620				/* noflush suspend was interrupted. */
 621				io->error = -EIO;
 622			spin_unlock_irqrestore(&md->deferred_lock, flags);
 623		}
 624
 625		io_error = io->error;
 626		bio = io->bio;
 627		end_io_acct(io);
 628		free_io(md, io);
 629
 630		if (io_error == DM_ENDIO_REQUEUE)
 631			return;
 632
 633		if ((bio->bi_rw & REQ_FLUSH) && bio->bi_size) {
 634			/*
 635			 * Preflush done for flush with data, reissue
 636			 * without REQ_FLUSH.
 637			 */
 638			bio->bi_rw &= ~REQ_FLUSH;
 639			queue_io(md, bio);
 640		} else {
 641			/* done with normal IO or empty flush */
 642			trace_block_bio_complete(md->queue, bio, io_error);
 643			bio_endio(bio, io_error);
 644		}
 645	}
 646}
 647
 648static void clone_endio(struct bio *bio, int error)
 
 649{
 650	int r = 0;
 651	struct dm_target_io *tio = bio->bi_private;
 652	struct dm_io *io = tio->io;
 653	struct mapped_device *md = tio->io->md;
 654	dm_endio_fn endio = tio->ti->type->end_io;
 655
 656	if (!bio_flagged(bio, BIO_UPTODATE) && !error)
 657		error = -EIO;
 658
 659	if (endio) {
 660		r = endio(tio->ti, bio, error, &tio->info);
 661		if (r < 0 || r == DM_ENDIO_REQUEUE)
 662			/*
 663			 * error and requeue request are handled
 664			 * in dec_pending().
 665			 */
 666			error = r;
 667		else if (r == DM_ENDIO_INCOMPLETE)
 668			/* The target will handle the io */
 669			return;
 670		else if (r) {
 671			DMWARN("unimplemented target endio return value: %d", r);
 672			BUG();
 673		}
 674	}
 675
 676	/*
 677	 * Store md for cleanup instead of tio which is about to get freed.
 678	 */
 679	bio->bi_private = md->bs;
 680
 681	free_tio(md, tio);
 682	bio_put(bio);
 683	dec_pending(io, error);
 684}
 685
 
 
 686/*
 687 * Partial completion handling for request-based dm
 688 */
 689static void end_clone_bio(struct bio *clone, int error)
 
 690{
 691	struct dm_rq_clone_bio_info *info = clone->bi_private;
 692	struct dm_rq_target_io *tio = info->tio;
 693	struct bio *bio = info->orig;
 694	unsigned int nr_bytes = info->orig->bi_size;
 695
 696	bio_put(clone);
 
 
 
 697
 698	if (tio->error)
 699		/*
 700		 * An error has already been detected on the request.
 701		 * Once error occurred, just let clone->end_io() handle
 702		 * the remainder.
 703		 */
 704		return;
 705	else if (error) {
 706		/*
 707		 * Don't notice the error to the upper layer yet.
 708		 * The error handling decision is made by the target driver,
 709		 * when the request is completed.
 710		 */
 711		tio->error = error;
 712		return;
 713	}
 714
 715	/*
 716	 * I/O for the bio successfully completed.
 717	 * Notice the data completion to the upper layer.
 
 718	 */
 
 
 
 
 
 719
 720	/*
 721	 * bios are processed from the head of the list.
 722	 * So the completing bio should always be rq->bio.
 723	 * If it's not, something wrong is happening.
 724	 */
 725	if (tio->orig->bio != bio)
 726		DMERR("bio completion is going in the middle of the request");
 727
 728	/*
 729	 * Update the original request.
 730	 * Do not use blk_end_request() here, because it may complete
 731	 * the original request before the clone, and break the ordering.
 732	 */
 733	blk_update_request(tio->orig, 0, nr_bytes);
 734}
 735
 736/*
 737 * Don't touch any member of the md after calling this function because
 738 * the md may be freed in dm_put() at the end of this function.
 739 * Or do dm_get() before calling this function and dm_put() later.
 740 */
 741static void rq_completed(struct mapped_device *md, int rw, int run_queue)
 742{
 743	atomic_dec(&md->pending[rw]);
 744
 745	/* nudge anyone waiting on suspend queue */
 746	if (!md_in_flight(md))
 747		wake_up(&md->wait);
 748
 749	if (run_queue)
 750		blk_run_queue(md->queue);
 751
 752	/*
 753	 * dm_put() must be at the end of this function. See the comment above
 754	 */
 755	dm_put(md);
 756}
 757
 758static void free_rq_clone(struct request *clone)
 
 759{
 760	struct dm_rq_target_io *tio = clone->end_io_data;
 761
 762	blk_rq_unprep_clone(clone);
 763	free_rq_tio(tio);
 
 
 
 764}
 765
 766/*
 767 * Complete the clone and the original request.
 768 * Must be called without queue lock.
 769 */
 770static void dm_end_request(struct request *clone, int error)
 771{
 772	int rw = rq_data_dir(clone);
 773	struct dm_rq_target_io *tio = clone->end_io_data;
 774	struct mapped_device *md = tio->md;
 775	struct request *rq = tio->orig;
 776
 777	if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
 778		rq->errors = clone->errors;
 779		rq->resid_len = clone->resid_len;
 780
 781		if (rq->sense)
 782			/*
 783			 * We are using the sense buffer of the original
 784			 * request.
 785			 * So setting the length of the sense data is enough.
 786			 */
 787			rq->sense_len = clone->sense_len;
 
 
 
 788	}
 
 789
 790	free_rq_clone(clone);
 791	blk_end_request_all(rq, error);
 792	rq_completed(md, rw, true);
 793}
 794
 795static void dm_unprep_request(struct request *rq)
 796{
 797	struct request *clone = rq->special;
 798
 799	rq->special = NULL;
 800	rq->cmd_flags &= ~REQ_DONTPREP;
 801
 802	free_rq_clone(clone);
 803}
 804
 805/*
 806 * Requeue the original request of a clone.
 807 */
 808void dm_requeue_unmapped_request(struct request *clone)
 809{
 810	int rw = rq_data_dir(clone);
 811	struct dm_rq_target_io *tio = clone->end_io_data;
 812	struct mapped_device *md = tio->md;
 813	struct request *rq = tio->orig;
 814	struct request_queue *q = rq->q;
 815	unsigned long flags;
 816
 817	dm_unprep_request(rq);
 818
 819	spin_lock_irqsave(q->queue_lock, flags);
 820	blk_requeue_request(q, rq);
 821	spin_unlock_irqrestore(q->queue_lock, flags);
 822
 823	rq_completed(md, rw, 0);
 824}
 825EXPORT_SYMBOL_GPL(dm_requeue_unmapped_request);
 826
 827static void __stop_queue(struct request_queue *q)
 
 
 
 828{
 829	blk_stop_queue(q);
 830}
 831
 832static void stop_queue(struct request_queue *q)
 833{
 834	unsigned long flags;
 
 835
 836	spin_lock_irqsave(q->queue_lock, flags);
 837	__stop_queue(q);
 838	spin_unlock_irqrestore(q->queue_lock, flags);
 839}
 840
 841static void __start_queue(struct request_queue *q)
 842{
 843	if (blk_queue_stopped(q))
 844		blk_start_queue(q);
 845}
 846
 847static void start_queue(struct request_queue *q)
 848{
 849	unsigned long flags;
 850
 851	spin_lock_irqsave(q->queue_lock, flags);
 852	__start_queue(q);
 853	spin_unlock_irqrestore(q->queue_lock, flags);
 854}
 855
 856static void dm_done(struct request *clone, int error, bool mapped)
 857{
 858	int r = error;
 859	struct dm_rq_target_io *tio = clone->end_io_data;
 860	dm_request_endio_fn rq_end_io = tio->ti->type->rq_end_io;
 861
 862	if (mapped && rq_end_io)
 863		r = rq_end_io(tio->ti, clone, error, &tio->info);
 864
 865	if (r <= 0)
 866		/* The target wants to complete the I/O */
 867		dm_end_request(clone, r);
 868	else if (r == DM_ENDIO_INCOMPLETE)
 869		/* The target will handle the I/O */
 870		return;
 871	else if (r == DM_ENDIO_REQUEUE)
 872		/* The target wants to requeue the I/O */
 873		dm_requeue_unmapped_request(clone);
 874	else {
 875		DMWARN("unimplemented target endio return value: %d", r);
 876		BUG();
 877	}
 878}
 879
 880/*
 881 * Request completion handler for request-based dm
 882 */
 883static void dm_softirq_done(struct request *rq)
 884{
 885	bool mapped = true;
 886	struct request *clone = rq->completion_data;
 887	struct dm_rq_target_io *tio = clone->end_io_data;
 888
 889	if (rq->cmd_flags & REQ_FAILED)
 890		mapped = false;
 891
 892	dm_done(clone, tio->error, mapped);
 893}
 894
 895/*
 896 * Complete the clone and the original request with the error status
 897 * through softirq context.
 898 */
 899static void dm_complete_request(struct request *clone, int error)
 900{
 901	struct dm_rq_target_io *tio = clone->end_io_data;
 902	struct request *rq = tio->orig;
 
 
 
 
 903
 904	tio->error = error;
 905	rq->completion_data = clone;
 906	blk_complete_request(rq);
 907}
 908
 909/*
 910 * Complete the not-mapped clone and the original request with the error status
 911 * through softirq context.
 912 * Target's rq_end_io() function isn't called.
 913 * This may be used when the target's map_rq() function fails.
 914 */
 915void dm_kill_unmapped_request(struct request *clone, int error)
 916{
 917	struct dm_rq_target_io *tio = clone->end_io_data;
 918	struct request *rq = tio->orig;
 919
 920	rq->cmd_flags |= REQ_FAILED;
 921	dm_complete_request(clone, error);
 922}
 923EXPORT_SYMBOL_GPL(dm_kill_unmapped_request);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 924
 925/*
 926 * Called with the queue lock held
 927 */
 928static void end_clone_request(struct request *clone, int error)
 929{
 930	/*
 931	 * For just cleaning up the information of the queue in which
 932	 * the clone was dispatched.
 933	 * The clone is *NOT* freed actually here because it is alloced from
 934	 * dm own mempool and REQ_ALLOCED isn't set in clone->cmd_flags.
 935	 */
 936	__blk_put_request(clone->q, clone);
 937
 938	/*
 939	 * Actual request completion is done in a softirq context which doesn't
 940	 * hold the queue lock.  Otherwise, deadlock could occur because:
 941	 *     - another request may be submitted by the upper level driver
 942	 *       of the stacking during the completion
 943	 *     - the submission which requires queue lock may be done
 944	 *       against this queue
 945	 */
 946	dm_complete_request(clone, error);
 947}
 948
 949/*
 950 * Return maximum size of I/O possible at the supplied sector up to the current
 951 * target boundary.
 952 */
 953static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
 954{
 955	sector_t target_offset = dm_target_offset(ti, sector);
 956
 957	return ti->len - target_offset;
 958}
 959
 960static sector_t max_io_len(sector_t sector, struct dm_target *ti)
 961{
 962	sector_t len = max_io_len_target_boundary(sector, ti);
 963
 964	/*
 965	 * Does the target need to split even further ?
 966	 */
 967	if (ti->split_io) {
 968		sector_t boundary;
 969		sector_t offset = dm_target_offset(ti, sector);
 970		boundary = ((offset + ti->split_io) & ~(ti->split_io - 1))
 971			   - offset;
 972		if (len > boundary)
 973			len = boundary;
 974	}
 
 
 
 975
 976	return len;
 977}
 978
 979static void __map_bio(struct dm_target *ti, struct bio *clone,
 980		      struct dm_target_io *tio)
 981{
 982	int r;
 983	sector_t sector;
 984	struct mapped_device *md;
 985
 986	clone->bi_end_io = clone_endio;
 987	clone->bi_private = tio;
 
 988
 989	/*
 990	 * Map the clone.  If r == 0 we don't need to do
 991	 * anything, the target has assumed ownership of
 992	 * this io.
 993	 */
 994	atomic_inc(&tio->io->io_count);
 995	sector = clone->bi_sector;
 996	r = ti->type->map(ti, clone, &tio->info);
 997	if (r == DM_MAPIO_REMAPPED) {
 998		/* the bio has been remapped so dispatch it */
 999
1000		trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone,
1001				      tio->io->bio->bi_bdev->bd_dev, sector);
1002
1003		generic_make_request(clone);
1004	} else if (r < 0 || r == DM_MAPIO_REQUEUE) {
1005		/* error the io and bail out, or requeue it if needed */
1006		md = tio->io->md;
1007		dec_pending(tio->io, r);
1008		/*
1009		 * Store bio_set for cleanup.
 
1010		 */
1011		clone->bi_private = md->bs;
1012		bio_put(clone);
1013		free_tio(md, tio);
1014	} else if (r) {
1015		DMWARN("unimplemented target map return value: %d", r);
1016		BUG();
 
1017	}
1018}
1019
1020struct clone_info {
1021	struct mapped_device *md;
1022	struct dm_table *map;
1023	struct bio *bio;
 
1024	struct dm_io *io;
1025	sector_t sector;
1026	sector_t sector_count;
1027	unsigned short idx;
1028};
1029
1030static void dm_bio_destructor(struct bio *bio)
1031{
1032	struct bio_set *bs = bio->bi_private;
 
 
 
 
 
1033
1034	bio_free(bio, bs);
 
 
 
 
 
1035}
1036
1037/*
1038 * Creates a little bio that just does part of a bvec.
 
 
 
 
 
1039 */
1040static struct bio *split_bvec(struct bio *bio, sector_t sector,
1041			      unsigned short idx, unsigned int offset,
1042			      unsigned int len, struct bio_set *bs)
1043{
1044	struct bio *clone;
1045	struct bio_vec *bv = bio->bi_io_vec + idx;
1046
1047	clone = bio_alloc_bioset(GFP_NOIO, 1, bs);
1048	clone->bi_destructor = dm_bio_destructor;
1049	*clone->bi_io_vec = *bv;
1050
1051	clone->bi_sector = sector;
1052	clone->bi_bdev = bio->bi_bdev;
1053	clone->bi_rw = bio->bi_rw;
1054	clone->bi_vcnt = 1;
1055	clone->bi_size = to_bytes(len);
1056	clone->bi_io_vec->bv_offset = offset;
1057	clone->bi_io_vec->bv_len = clone->bi_size;
1058	clone->bi_flags |= 1 << BIO_CLONED;
1059
1060	if (bio_integrity(bio)) {
1061		bio_integrity_clone(clone, bio, GFP_NOIO, bs);
1062		bio_integrity_trim(clone,
1063				   bio_sector_offset(bio, idx, offset), len);
1064	}
1065
1066	return clone;
1067}
1068
1069/*
1070 * Creates a bio that consists of range of complete bvecs.
 
1071 */
1072static struct bio *clone_bio(struct bio *bio, sector_t sector,
1073			     unsigned short idx, unsigned short bv_count,
1074			     unsigned int len, struct bio_set *bs)
1075{
1076	struct bio *clone;
 
 
1077
1078	clone = bio_alloc_bioset(GFP_NOIO, bio->bi_max_vecs, bs);
1079	__bio_clone(clone, bio);
1080	clone->bi_destructor = dm_bio_destructor;
1081	clone->bi_sector = sector;
1082	clone->bi_idx = idx;
1083	clone->bi_vcnt = idx + bv_count;
1084	clone->bi_size = to_bytes(len);
1085	clone->bi_flags &= ~(1 << BIO_SEG_VALID);
1086
1087	if (bio_integrity(bio)) {
1088		bio_integrity_clone(clone, bio, GFP_NOIO, bs);
1089
1090		if (idx != bio->bi_idx || clone->bi_size < bio->bi_size)
1091			bio_integrity_trim(clone,
1092					   bio_sector_offset(bio, idx, 0), len);
1093	}
1094
1095	return clone;
 
 
 
 
 
 
1096}
1097
1098static struct dm_target_io *alloc_tio(struct clone_info *ci,
1099				      struct dm_target *ti)
1100{
1101	struct dm_target_io *tio = mempool_alloc(ci->md->tio_pool, GFP_NOIO);
1102
1103	tio->io = ci->io;
1104	tio->ti = ti;
1105	memset(&tio->info, 0, sizeof(tio->info));
1106
1107	return tio;
1108}
1109
1110static void __issue_target_request(struct clone_info *ci, struct dm_target *ti,
1111				   unsigned request_nr, sector_t len)
1112{
1113	struct dm_target_io *tio = alloc_tio(ci, ti);
1114	struct bio *clone;
1115
1116	tio->info.target_request_nr = request_nr;
 
 
1117
1118	/*
1119	 * Discard requests require the bio's inline iovecs be initialized.
1120	 * ci->bio->bi_max_vecs is BIO_INLINE_VECS anyway, for both flush
1121	 * and discard, so no need for concern about wasted bvec allocations.
1122	 */
1123	clone = bio_alloc_bioset(GFP_NOIO, ci->bio->bi_max_vecs, ci->md->bs);
1124	__bio_clone(clone, ci->bio);
1125	clone->bi_destructor = dm_bio_destructor;
1126	if (len) {
1127		clone->bi_sector = ci->sector;
1128		clone->bi_size = to_bytes(len);
1129	}
1130
1131	__map_bio(ti, clone, tio);
 
1132}
1133
1134static void __issue_target_requests(struct clone_info *ci, struct dm_target *ti,
1135				    unsigned num_requests, sector_t len)
1136{
1137	unsigned request_nr;
1138
1139	for (request_nr = 0; request_nr < num_requests; request_nr++)
1140		__issue_target_request(ci, ti, request_nr, len);
1141}
1142
1143static int __clone_and_map_empty_flush(struct clone_info *ci)
1144{
1145	unsigned target_nr = 0;
1146	struct dm_target *ti;
 
 
 
 
1147
1148	BUG_ON(bio_has_data(ci->bio));
1149	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1150		__issue_target_requests(ci, ti, ti->num_flush_requests, 0);
 
 
 
 
 
1151
1152	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1153}
1154
1155/*
1156 * Perform all io with a single clone.
 
1157 */
1158static void __clone_and_map_simple(struct clone_info *ci, struct dm_target *ti)
 
1159{
1160	struct bio *clone, *bio = ci->bio;
1161	struct dm_target_io *tio;
1162
1163	tio = alloc_tio(ci, ti);
1164	clone = clone_bio(bio, ci->sector, ci->idx,
1165			  bio->bi_vcnt - ci->idx, ci->sector_count,
1166			  ci->md->bs);
1167	__map_bio(ti, clone, tio);
1168	ci->sector_count = 0;
1169}
1170
1171static int __clone_and_map_discard(struct clone_info *ci)
1172{
1173	struct dm_target *ti;
1174	sector_t len;
1175
1176	do {
1177		ti = dm_table_find_target(ci->map, ci->sector);
1178		if (!dm_target_is_valid(ti))
1179			return -EIO;
1180
1181		/*
1182		 * Even though the device advertised discard support,
1183		 * that does not mean every target supports it, and
1184		 * reconfiguration might also have changed that since the
1185		 * check was performed.
1186		 */
1187		if (!ti->num_discard_requests)
1188			return -EOPNOTSUPP;
1189
1190		len = min(ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
 
 
 
 
 
 
 
 
 
 
 
1191
1192		__issue_target_requests(ci, ti, ti->num_discard_requests, len);
 
 
 
 
 
 
 
1193
1194		ci->sector += len;
1195	} while (ci->sector_count -= len);
1196
1197	return 0;
1198}
 
1199
1200static int __clone_and_map(struct clone_info *ci)
 
 
1201{
1202	struct bio *clone, *bio = ci->bio;
1203	struct dm_target *ti;
1204	sector_t len = 0, max;
1205	struct dm_target_io *tio;
1206
1207	if (unlikely(bio->bi_rw & REQ_DISCARD))
1208		return __clone_and_map_discard(ci);
 
1209
1210	ti = dm_table_find_target(ci->map, ci->sector);
1211	if (!dm_target_is_valid(ti))
1212		return -EIO;
1213
1214	max = max_io_len(ci->sector, ti);
 
1215
1216	if (ci->sector_count <= max) {
1217		/*
1218		 * Optimise for the simple case where we can do all of
1219		 * the remaining io with a single clone.
1220		 */
1221		__clone_and_map_simple(ci, ti);
 
 
 
1222
1223	} else if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) {
1224		/*
1225		 * There are some bvecs that don't span targets.
1226		 * Do as many of these as possible.
1227		 */
1228		int i;
1229		sector_t remaining = max;
1230		sector_t bv_len;
1231
1232		for (i = ci->idx; remaining && (i < bio->bi_vcnt); i++) {
1233			bv_len = to_sector(bio->bi_io_vec[i].bv_len);
 
 
 
 
 
 
 
1234
1235			if (bv_len > remaining)
1236				break;
1237
1238			remaining -= bv_len;
1239			len += bv_len;
1240		}
1241
1242		tio = alloc_tio(ci, ti);
1243		clone = clone_bio(bio, ci->sector, ci->idx, i - ci->idx, len,
1244				  ci->md->bs);
1245		__map_bio(ti, clone, tio);
1246
1247		ci->sector += len;
1248		ci->sector_count -= len;
1249		ci->idx = i;
1250
1251	} else {
 
 
 
 
1252		/*
1253		 * Handle a bvec that must be split between two or more targets.
 
1254		 */
1255		struct bio_vec *bv = bio->bi_io_vec + ci->idx;
1256		sector_t remaining = to_sector(bv->bv_len);
1257		unsigned int offset = 0;
1258
1259		do {
1260			if (offset) {
1261				ti = dm_table_find_target(ci->map, ci->sector);
1262				if (!dm_target_is_valid(ti))
1263					return -EIO;
1264
1265				max = max_io_len(ci->sector, ti);
1266			}
1267
1268			len = min(remaining, max);
1269
1270			tio = alloc_tio(ci, ti);
1271			clone = split_bvec(bio, ci->sector, ci->idx,
1272					   bv->bv_offset + offset, len,
1273					   ci->md->bs);
1274
1275			__map_bio(ti, clone, tio);
 
1276
1277			ci->sector += len;
1278			ci->sector_count -= len;
1279			offset += to_bytes(len);
1280		} while (remaining -= len);
 
 
 
 
1281
1282		ci->idx++;
1283	}
 
1284
1285	return 0;
 
 
 
1286}
1287
1288/*
1289 * Split the bio into several clones and submit it to targets.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1290 */
1291static void __split_and_process_bio(struct mapped_device *md, struct bio *bio)
1292{
1293	struct clone_info ci;
1294	int error = 0;
 
1295
1296	ci.map = dm_get_live_table(md);
1297	if (unlikely(!ci.map)) {
1298		bio_io_error(bio);
1299		return;
1300	}
1301
1302	ci.md = md;
1303	ci.io = alloc_io(md);
1304	ci.io->error = 0;
1305	atomic_set(&ci.io->io_count, 1);
1306	ci.io->bio = bio;
1307	ci.io->md = md;
1308	spin_lock_init(&ci.io->endio_lock);
1309	ci.sector = bio->bi_sector;
1310	ci.idx = bio->bi_idx;
1311
1312	start_io_acct(ci.io);
1313	if (bio->bi_rw & REQ_FLUSH) {
1314		ci.bio = &ci.md->flush_bio;
1315		ci.sector_count = 0;
1316		error = __clone_and_map_empty_flush(&ci);
1317		/* dec_pending submits any data associated with flush */
1318	} else {
1319		ci.bio = bio;
1320		ci.sector_count = bio_sectors(bio);
1321		while (ci.sector_count && !error)
1322			error = __clone_and_map(&ci);
1323	}
1324
1325	/* drop the extra reference count */
1326	dec_pending(ci.io, error);
1327	dm_table_put(ci.map);
 
 
 
 
1328}
1329/*-----------------------------------------------------------------
1330 * CRUD END
1331 *---------------------------------------------------------------*/
1332
1333static int dm_merge_bvec(struct request_queue *q,
1334			 struct bvec_merge_data *bvm,
1335			 struct bio_vec *biovec)
 
 
 
 
 
 
 
1336{
1337	struct mapped_device *md = q->queuedata;
1338	struct dm_table *map = dm_get_live_table(md);
1339	struct dm_target *ti;
1340	sector_t max_sectors;
1341	int max_size = 0;
1342
1343	if (unlikely(!map))
1344		goto out;
1345
1346	ti = dm_table_find_target(map, bvm->bi_sector);
1347	if (!dm_target_is_valid(ti))
1348		goto out_table;
1349
1350	/*
1351	 * Find maximum amount of I/O that won't need splitting
 
1352	 */
1353	max_sectors = min(max_io_len(bvm->bi_sector, ti),
1354			  (sector_t) BIO_MAX_SECTORS);
1355	max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
1356	if (max_size < 0)
1357		max_size = 0;
1358
1359	/*
1360	 * merge_bvec_fn() returns number of bytes
1361	 * it can accept at this offset
1362	 * max is precomputed maximal io size
1363	 */
1364	if (max_size && ti->type->merge)
1365		max_size = ti->type->merge(ti, bvm, biovec, max_size);
1366	/*
1367	 * If the target doesn't support merge method and some of the devices
1368	 * provided their merge_bvec method (we know this by looking at
1369	 * queue_max_hw_sectors), then we can't allow bios with multiple vector
1370	 * entries.  So always set max_size to 0, and the code below allows
1371	 * just one page.
1372	 */
1373	else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9)
1374
1375		max_size = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1376
1377out_table:
1378	dm_table_put(map);
 
 
 
 
 
 
 
1379
1380out:
1381	/*
1382	 * Always allow an entire first page
1383	 */
1384	if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
1385		max_size = biovec->bv_len;
1386
1387	return max_size;
1388}
1389
1390/*
1391 * The request function that just remaps the bio built up by
1392 * dm_merge_bvec.
1393 */
1394static int _dm_request(struct request_queue *q, struct bio *bio)
1395{
1396	int rw = bio_data_dir(bio);
1397	struct mapped_device *md = q->queuedata;
1398	int cpu;
1399
1400	down_read(&md->io_lock);
 
 
 
 
 
 
1401
1402	cpu = part_stat_lock();
1403	part_stat_inc(cpu, &dm_disk(md)->part0, ios[rw]);
1404	part_stat_add(cpu, &dm_disk(md)->part0, sectors[rw], bio_sectors(bio));
1405	part_stat_unlock();
1406
1407	/* if we're suspended, we have to queue this io for later */
1408	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1409		up_read(&md->io_lock);
 
 
 
 
1410
1411		if (bio_rw(bio) != READA)
1412			queue_io(md, bio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1413		else
1414			bio_io_error(bio);
1415		return 0;
 
 
 
1416	}
1417
1418	__split_and_process_bio(md, bio);
1419	up_read(&md->io_lock);
1420	return 0;
1421}
1422
1423static int dm_make_request(struct request_queue *q, struct bio *bio)
1424{
1425	struct mapped_device *md = q->queuedata;
1426
1427	return md->saved_make_request_fn(q, bio); /* call __make_request() */
 
 
 
 
 
 
 
 
1428}
1429
1430static int dm_request_based(struct mapped_device *md)
 
1431{
1432	return blk_queue_stackable(md->queue);
1433}
1434
1435static int dm_request(struct request_queue *q, struct bio *bio)
1436{
1437	struct mapped_device *md = q->queuedata;
1438
1439	if (dm_request_based(md))
1440		return dm_make_request(q, bio);
 
 
 
 
 
1441
1442	return _dm_request(q, bio);
 
 
 
 
 
 
 
 
 
1443}
1444
1445void dm_dispatch_request(struct request *rq)
 
1446{
1447	int r;
 
 
1448
1449	if (blk_queue_io_stat(rq->q))
1450		rq->cmd_flags |= REQ_IO_STAT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1451
1452	rq->start_time = jiffies;
1453	r = blk_insert_cloned_request(rq->q, rq);
1454	if (r)
1455		dm_complete_request(rq, r);
1456}
1457EXPORT_SYMBOL_GPL(dm_dispatch_request);
1458
1459static void dm_rq_bio_destructor(struct bio *bio)
1460{
1461	struct dm_rq_clone_bio_info *info = bio->bi_private;
1462	struct mapped_device *md = info->tio->md;
1463
1464	free_bio_info(info);
1465	bio_free(bio, md->bs);
1466}
 
 
 
 
1467
1468static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig,
1469				 void *data)
1470{
1471	struct dm_rq_target_io *tio = data;
1472	struct mapped_device *md = tio->md;
1473	struct dm_rq_clone_bio_info *info = alloc_bio_info(md);
1474
1475	if (!info)
1476		return -ENOMEM;
 
1477
1478	info->orig = bio_orig;
1479	info->tio = tio;
1480	bio->bi_end_io = end_clone_bio;
1481	bio->bi_private = info;
1482	bio->bi_destructor = dm_rq_bio_destructor;
1483
1484	return 0;
 
 
 
 
 
 
1485}
1486
1487static int setup_clone(struct request *clone, struct request *rq,
1488		       struct dm_rq_target_io *tio)
1489{
1490	int r;
 
1491
1492	r = blk_rq_prep_clone(clone, rq, tio->md->bs, GFP_ATOMIC,
1493			      dm_rq_bio_constructor, tio);
1494	if (r)
1495		return r;
1496
1497	clone->cmd = rq->cmd;
1498	clone->cmd_len = rq->cmd_len;
1499	clone->sense = rq->sense;
1500	clone->buffer = rq->buffer;
1501	clone->end_io = end_clone_request;
1502	clone->end_io_data = tio;
 
1503
1504	return 0;
 
1505}
1506
1507static struct request *clone_rq(struct request *rq, struct mapped_device *md,
1508				gfp_t gfp_mask)
1509{
1510	struct request *clone;
1511	struct dm_rq_target_io *tio;
1512
1513	tio = alloc_rq_tio(md, gfp_mask);
1514	if (!tio)
1515		return NULL;
1516
1517	tio->md = md;
1518	tio->ti = NULL;
1519	tio->orig = rq;
1520	tio->error = 0;
1521	memset(&tio->info, 0, sizeof(tio->info));
1522
1523	clone = &tio->clone;
1524	if (setup_clone(clone, rq, tio)) {
1525		/* -ENOMEM */
1526		free_rq_tio(tio);
1527		return NULL;
1528	}
1529
1530	return clone;
1531}
1532
1533/*
1534 * Called with the queue lock held.
1535 */
1536static int dm_prep_fn(struct request_queue *q, struct request *rq)
1537{
1538	struct mapped_device *md = q->queuedata;
1539	struct request *clone;
1540
1541	if (unlikely(rq->special)) {
1542		DMWARN("Already has something in rq->special.");
1543		return BLKPREP_KILL;
 
 
 
 
 
 
 
 
 
1544	}
1545
1546	clone = clone_rq(rq, md, GFP_ATOMIC);
1547	if (!clone)
1548		return BLKPREP_DEFER;
1549
1550	rq->special = clone;
1551	rq->cmd_flags |= REQ_DONTPREP;
 
 
1552
1553	return BLKPREP_OK;
 
1554}
1555
1556/*
1557 * Returns:
1558 * 0  : the request has been processed (not requeued)
1559 * !0 : the request has been requeued
 
 
 
 
1560 */
1561static int map_request(struct dm_target *ti, struct request *clone,
1562		       struct mapped_device *md)
1563{
1564	int r, requeued = 0;
1565	struct dm_rq_target_io *tio = clone->end_io_data;
1566
1567	/*
1568	 * Hold the md reference here for the in-flight I/O.
1569	 * We can't rely on the reference count by device opener,
1570	 * because the device may be closed during the request completion
1571	 * when all bios are completed.
1572	 * See the comment in rq_completed() too.
1573	 */
1574	dm_get(md);
1575
1576	tio->ti = ti;
1577	r = ti->type->map_rq(ti, clone, &tio->info);
1578	switch (r) {
1579	case DM_MAPIO_SUBMITTED:
1580		/* The target has taken the I/O to submit by itself later */
1581		break;
1582	case DM_MAPIO_REMAPPED:
1583		/* The target has remapped the I/O so dispatch it */
1584		trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)),
1585				     blk_rq_pos(tio->orig));
1586		dm_dispatch_request(clone);
1587		break;
1588	case DM_MAPIO_REQUEUE:
1589		/* The target wants to requeue the I/O */
1590		dm_requeue_unmapped_request(clone);
1591		requeued = 1;
1592		break;
1593	default:
1594		if (r > 0) {
1595			DMWARN("unimplemented target map return value: %d", r);
1596			BUG();
1597		}
1598
1599		/* The target wants to complete the I/O */
1600		dm_kill_unmapped_request(clone, r);
1601		break;
 
 
 
 
 
 
 
 
1602	}
1603
1604	return requeued;
1605}
1606
1607/*
1608 * q->request_fn for request-based dm.
1609 * Called with the queue lock held.
1610 */
1611static void dm_request_fn(struct request_queue *q)
1612{
1613	struct mapped_device *md = q->queuedata;
1614	struct dm_table *map = dm_get_live_table(md);
1615	struct dm_target *ti;
1616	struct request *rq, *clone;
1617	sector_t pos;
 
 
 
 
 
 
 
 
 
 
1618
1619	/*
1620	 * For suspend, check blk_queue_stopped() and increment
1621	 * ->pending within a single queue_lock not to increment the
1622	 * number of in-flight I/Os after the queue is stopped in
1623	 * dm_suspend().
1624	 */
1625	while (!blk_queue_stopped(q)) {
1626		rq = blk_peek_request(q);
1627		if (!rq)
1628			goto delay_and_out;
1629
1630		/* always use block 0 to find the target for flushes for now */
1631		pos = 0;
1632		if (!(rq->cmd_flags & REQ_FLUSH))
1633			pos = blk_rq_pos(rq);
1634
1635		ti = dm_table_find_target(map, pos);
1636		BUG_ON(!dm_target_is_valid(ti));
1637
1638		if (ti->type->busy && ti->type->busy(ti))
1639			goto delay_and_out;
1640
1641		blk_start_request(rq);
1642		clone = rq->special;
1643		atomic_inc(&md->pending[rq_data_dir(clone)]);
 
 
 
 
 
 
 
1644
1645		spin_unlock(q->queue_lock);
1646		if (map_request(ti, clone, md))
1647			goto requeued;
 
 
 
 
 
 
 
 
 
 
 
 
 
1648
1649		BUG_ON(!irqs_disabled());
1650		spin_lock(q->queue_lock);
 
 
 
 
 
 
 
1651	}
1652
1653	goto out;
 
1654
1655requeued:
1656	BUG_ON(!irqs_disabled());
1657	spin_lock(q->queue_lock);
 
 
1658
1659delay_and_out:
1660	blk_delay_queue(q, HZ / 10);
 
 
 
 
 
 
 
 
 
1661out:
1662	dm_table_put(map);
1663
1664	return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1665}
1666
1667int dm_underlying_device_busy(struct request_queue *q)
1668{
1669	return blk_lld_busy(q);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1670}
1671EXPORT_SYMBOL_GPL(dm_underlying_device_busy);
1672
1673static int dm_lld_busy(struct request_queue *q)
 
1674{
1675	int r;
1676	struct mapped_device *md = q->queuedata;
1677	struct dm_table *map = dm_get_live_table(md);
1678
1679	if (!map || test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))
1680		r = 1;
1681	else
1682		r = dm_table_any_busy_target(map);
1683
1684	dm_table_put(map);
 
 
1685
1686	return r;
 
1687}
1688
1689static int dm_any_congested(void *congested_data, int bdi_bits)
 
1690{
1691	int r = bdi_bits;
1692	struct mapped_device *md = congested_data;
1693	struct dm_table *map;
 
 
 
 
 
 
 
1694
1695	if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1696		map = dm_get_live_table(md);
1697		if (map) {
 
 
 
 
 
 
 
 
 
 
 
1698			/*
1699			 * Request-based dm cares about only own queue for
1700			 * the query about congestion status of request_queue
1701			 */
1702			if (dm_request_based(md))
1703				r = md->queue->backing_dev_info.state &
1704				    bdi_bits;
1705			else
1706				r = dm_table_any_congested(map, bdi_bits);
1707
1708			dm_table_put(map);
1709		}
1710	}
1711
1712	return r;
 
 
 
 
 
 
 
1713}
1714
1715/*-----------------------------------------------------------------
1716 * An IDR is used to keep track of allocated minor numbers.
1717 *---------------------------------------------------------------*/
1718static void free_minor(int minor)
1719{
1720	spin_lock(&_minor_lock);
1721	idr_remove(&_minor_idr, minor);
1722	spin_unlock(&_minor_lock);
1723}
1724
1725/*
1726 * See if the device with a specific minor # is free.
1727 */
1728static int specific_minor(int minor)
1729{
1730	int r, m;
1731
1732	if (minor >= (1 << MINORBITS))
1733		return -EINVAL;
1734
1735	r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1736	if (!r)
1737		return -ENOMEM;
1738
1739	spin_lock(&_minor_lock);
1740
1741	if (idr_find(&_minor_idr, minor)) {
1742		r = -EBUSY;
1743		goto out;
1744	}
1745
1746	r = idr_get_new_above(&_minor_idr, MINOR_ALLOCED, minor, &m);
1747	if (r)
1748		goto out;
1749
1750	if (m != minor) {
1751		idr_remove(&_minor_idr, m);
1752		r = -EBUSY;
1753		goto out;
1754	}
1755
1756out:
1757	spin_unlock(&_minor_lock);
1758	return r;
 
 
 
1759}
1760
1761static int next_free_minor(int *minor)
1762{
1763	int r, m;
1764
1765	r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1766	if (!r)
1767		return -ENOMEM;
1768
 
1769	spin_lock(&_minor_lock);
1770
1771	r = idr_get_new(&_minor_idr, MINOR_ALLOCED, &m);
1772	if (r)
1773		goto out;
1774
1775	if (m >= (1 << MINORBITS)) {
1776		idr_remove(&_minor_idr, m);
1777		r = -ENOSPC;
1778		goto out;
1779	}
1780
1781	*minor = m;
1782
1783out:
1784	spin_unlock(&_minor_lock);
1785	return r;
 
 
 
 
1786}
1787
1788static const struct block_device_operations dm_blk_dops;
 
 
1789
1790static void dm_wq_work(struct work_struct *work);
1791
1792static void dm_init_md_queue(struct mapped_device *md)
 
1793{
1794	/*
1795	 * Request-based dm devices cannot be stacked on top of bio-based dm
1796	 * devices.  The type of this dm device has not been decided yet.
1797	 * The type is decided at the first table loading time.
1798	 * To prevent problematic device stacking, clear the queue flag
1799	 * for request stacking support until then.
1800	 *
1801	 * This queue is new, so no concurrency on the queue_flags.
1802	 */
1803	queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
1804
1805	md->queue->queuedata = md;
1806	md->queue->backing_dev_info.congested_fn = dm_any_congested;
1807	md->queue->backing_dev_info.congested_data = md;
1808	blk_queue_make_request(md->queue, dm_request);
1809	blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
1810	blk_queue_merge_bvec(md->queue, dm_merge_bvec);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1811}
1812
1813/*
1814 * Allocate and initialise a blank device with a given minor.
1815 */
1816static struct mapped_device *alloc_dev(int minor)
1817{
1818	int r;
1819	struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
1820	void *old_md;
1821
 
1822	if (!md) {
1823		DMWARN("unable to allocate device, out of memory.");
1824		return NULL;
1825	}
1826
1827	if (!try_module_get(THIS_MODULE))
1828		goto bad_module_get;
1829
1830	/* get a minor number for the dev */
1831	if (minor == DM_ANY_MINOR)
1832		r = next_free_minor(&minor);
1833	else
1834		r = specific_minor(minor);
1835	if (r < 0)
1836		goto bad_minor;
1837
 
 
 
 
 
 
1838	md->type = DM_TYPE_NONE;
1839	init_rwsem(&md->io_lock);
1840	mutex_init(&md->suspend_lock);
1841	mutex_init(&md->type_lock);
 
1842	spin_lock_init(&md->deferred_lock);
1843	rwlock_init(&md->map_lock);
1844	atomic_set(&md->holders, 1);
1845	atomic_set(&md->open_count, 0);
1846	atomic_set(&md->event_nr, 0);
1847	atomic_set(&md->uevent_seq, 0);
1848	INIT_LIST_HEAD(&md->uevent_list);
 
1849	spin_lock_init(&md->uevent_lock);
1850
1851	md->queue = blk_alloc_queue(GFP_KERNEL);
1852	if (!md->queue)
1853		goto bad_queue;
1854
1855	dm_init_md_queue(md);
1856
1857	md->disk = alloc_disk(1);
1858	if (!md->disk)
1859		goto bad_disk;
 
1860
1861	atomic_set(&md->pending[0], 0);
1862	atomic_set(&md->pending[1], 0);
1863	init_waitqueue_head(&md->wait);
1864	INIT_WORK(&md->work, dm_wq_work);
 
1865	init_waitqueue_head(&md->eventq);
 
 
 
 
 
 
1866
1867	md->disk->major = _major;
1868	md->disk->first_minor = minor;
 
 
1869	md->disk->fops = &dm_blk_dops;
1870	md->disk->queue = md->queue;
1871	md->disk->private_data = md;
1872	sprintf(md->disk->disk_name, "dm-%d", minor);
1873	add_disk(md->disk);
 
 
 
 
 
 
 
 
 
 
 
 
1874	format_dev_t(md->name, MKDEV(_major, minor));
1875
1876	md->wq = alloc_workqueue("kdmflush",
1877				 WQ_NON_REENTRANT | WQ_MEM_RECLAIM, 0);
1878	if (!md->wq)
1879		goto bad_thread;
 
 
 
 
1880
1881	md->bdev = bdget_disk(md->disk, 0);
1882	if (!md->bdev)
1883		goto bad_bdev;
1884
1885	bio_init(&md->flush_bio);
1886	md->flush_bio.bi_bdev = md->bdev;
1887	md->flush_bio.bi_rw = WRITE_FLUSH;
1888
1889	/* Populate the mapping, nobody knows we exist yet */
1890	spin_lock(&_minor_lock);
1891	old_md = idr_replace(&_minor_idr, md, minor);
1892	spin_unlock(&_minor_lock);
1893
1894	BUG_ON(old_md != MINOR_ALLOCED);
1895
1896	return md;
1897
1898bad_bdev:
1899	destroy_workqueue(md->wq);
1900bad_thread:
1901	del_gendisk(md->disk);
1902	put_disk(md->disk);
1903bad_disk:
1904	blk_cleanup_queue(md->queue);
1905bad_queue:
1906	free_minor(minor);
1907bad_minor:
1908	module_put(THIS_MODULE);
1909bad_module_get:
1910	kfree(md);
1911	return NULL;
1912}
1913
1914static void unlock_fs(struct mapped_device *md);
1915
1916static void free_dev(struct mapped_device *md)
1917{
1918	int minor = MINOR(disk_devt(md->disk));
1919
1920	unlock_fs(md);
1921	bdput(md->bdev);
1922	destroy_workqueue(md->wq);
1923	if (md->tio_pool)
1924		mempool_destroy(md->tio_pool);
1925	if (md->io_pool)
1926		mempool_destroy(md->io_pool);
1927	if (md->bs)
1928		bioset_free(md->bs);
1929	blk_integrity_unregister(md->disk);
1930	del_gendisk(md->disk);
1931	free_minor(minor);
1932
1933	spin_lock(&_minor_lock);
1934	md->disk->private_data = NULL;
1935	spin_unlock(&_minor_lock);
1936
1937	put_disk(md->disk);
1938	blk_cleanup_queue(md->queue);
1939	module_put(THIS_MODULE);
1940	kfree(md);
1941}
1942
1943static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
1944{
1945	struct dm_md_mempools *p;
1946
1947	if (md->io_pool && md->tio_pool && md->bs)
1948		/* the md already has necessary mempools */
1949		goto out;
1950
1951	p = dm_table_get_md_mempools(t);
1952	BUG_ON(!p || md->io_pool || md->tio_pool || md->bs);
1953
1954	md->io_pool = p->io_pool;
1955	p->io_pool = NULL;
1956	md->tio_pool = p->tio_pool;
1957	p->tio_pool = NULL;
1958	md->bs = p->bs;
1959	p->bs = NULL;
1960
1961out:
1962	/* mempool bind completed, now no need any mempools in the table */
1963	dm_table_free_md_mempools(t);
1964}
1965
1966/*
1967 * Bind a table to the device.
1968 */
1969static void event_callback(void *context)
1970{
1971	unsigned long flags;
1972	LIST_HEAD(uevents);
1973	struct mapped_device *md = (struct mapped_device *) context;
1974
1975	spin_lock_irqsave(&md->uevent_lock, flags);
1976	list_splice_init(&md->uevent_list, &uevents);
1977	spin_unlock_irqrestore(&md->uevent_lock, flags);
1978
1979	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
1980
1981	atomic_inc(&md->event_nr);
1982	wake_up(&md->eventq);
1983}
1984
1985/*
1986 * Protected by md->suspend_lock obtained by dm_swap_table().
1987 */
1988static void __set_size(struct mapped_device *md, sector_t size)
1989{
1990	set_capacity(md->disk, size);
1991
1992	i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
1993}
1994
1995/*
1996 * Return 1 if the queue has a compulsory merge_bvec_fn function.
1997 *
1998 * If this function returns 0, then the device is either a non-dm
1999 * device without a merge_bvec_fn, or it is a dm device that is
2000 * able to split any bios it receives that are too big.
2001 */
2002int dm_queue_merge_is_compulsory(struct request_queue *q)
2003{
2004	struct mapped_device *dev_md;
2005
2006	if (!q->merge_bvec_fn)
2007		return 0;
2008
2009	if (q->make_request_fn == dm_request) {
2010		dev_md = q->queuedata;
2011		if (test_bit(DMF_MERGE_IS_OPTIONAL, &dev_md->flags))
2012			return 0;
2013	}
2014
2015	return 1;
2016}
2017
2018static int dm_device_merge_is_compulsory(struct dm_target *ti,
2019					 struct dm_dev *dev, sector_t start,
2020					 sector_t len, void *data)
2021{
2022	struct block_device *bdev = dev->bdev;
2023	struct request_queue *q = bdev_get_queue(bdev);
2024
2025	return dm_queue_merge_is_compulsory(q);
2026}
2027
2028/*
2029 * Return 1 if it is acceptable to ignore merge_bvec_fn based
2030 * on the properties of the underlying devices.
2031 */
2032static int dm_table_merge_is_optional(struct dm_table *table)
2033{
2034	unsigned i = 0;
2035	struct dm_target *ti;
2036
2037	while (i < dm_table_get_num_targets(table)) {
2038		ti = dm_table_get_target(table, i++);
2039
2040		if (ti->type->iterate_devices &&
2041		    ti->type->iterate_devices(ti, dm_device_merge_is_compulsory, NULL))
2042			return 0;
2043	}
2044
2045	return 1;
2046}
2047
2048/*
2049 * Returns old map, which caller must destroy.
2050 */
2051static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2052			       struct queue_limits *limits)
2053{
2054	struct dm_table *old_map;
2055	struct request_queue *q = md->queue;
2056	sector_t size;
2057	unsigned long flags;
2058	int merge_is_optional;
 
2059
2060	size = dm_table_get_size(t);
2061
2062	/*
2063	 * Wipe any geometry if the size of the table changed.
2064	 */
2065	if (size != get_capacity(md->disk))
2066		memset(&md->geometry, 0, sizeof(md->geometry));
2067
2068	__set_size(md, size);
 
 
 
2069
2070	dm_table_event_callback(t, event_callback, md);
2071
2072	/*
2073	 * The queue hasn't been stopped yet, if the old table type wasn't
2074	 * for request-based during suspension.  So stop it to prevent
2075	 * I/O mapping before resume.
2076	 * This must be done before setting the queue restrictions,
2077	 * because request-based dm may be run just after the setting.
2078	 */
2079	if (dm_table_request_based(t) && !blk_queue_stopped(q))
2080		stop_queue(q);
2081
2082	__bind_mempools(md, t);
2083
2084	merge_is_optional = dm_table_merge_is_optional(t);
2085
2086	write_lock_irqsave(&md->map_lock, flags);
2087	old_map = md->map;
2088	md->map = t;
2089	dm_table_set_restrictions(t, q, limits);
2090	if (merge_is_optional)
2091		set_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2092	else
2093		clear_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2094	write_unlock_irqrestore(&md->map_lock, flags);
2095
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2096	return old_map;
2097}
2098
2099/*
2100 * Returns unbound table for the caller to free.
2101 */
2102static struct dm_table *__unbind(struct mapped_device *md)
2103{
2104	struct dm_table *map = md->map;
2105	unsigned long flags;
2106
2107	if (!map)
2108		return NULL;
2109
2110	dm_table_event_callback(map, NULL, NULL);
2111	write_lock_irqsave(&md->map_lock, flags);
2112	md->map = NULL;
2113	write_unlock_irqrestore(&md->map_lock, flags);
2114
2115	return map;
2116}
2117
2118/*
2119 * Constructor for a new device.
2120 */
2121int dm_create(int minor, struct mapped_device **result)
2122{
2123	struct mapped_device *md;
2124
2125	md = alloc_dev(minor);
2126	if (!md)
2127		return -ENXIO;
2128
2129	dm_sysfs_init(md);
2130
2131	*result = md;
2132	return 0;
2133}
2134
2135/*
2136 * Functions to manage md->type.
2137 * All are required to hold md->type_lock.
2138 */
2139void dm_lock_md_type(struct mapped_device *md)
2140{
2141	mutex_lock(&md->type_lock);
2142}
2143
2144void dm_unlock_md_type(struct mapped_device *md)
2145{
2146	mutex_unlock(&md->type_lock);
2147}
2148
2149void dm_set_md_type(struct mapped_device *md, unsigned type)
2150{
 
2151	md->type = type;
2152}
2153
2154unsigned dm_get_md_type(struct mapped_device *md)
2155{
2156	return md->type;
2157}
2158
 
 
 
 
 
2159/*
2160 * Fully initialize a request-based queue (->elevator, ->request_fn, etc).
 
2161 */
2162static int dm_init_request_based_queue(struct mapped_device *md)
2163{
2164	struct request_queue *q = NULL;
2165
2166	if (md->queue->elevator)
2167		return 1;
2168
2169	/* Fully initialize the queue */
2170	q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL);
2171	if (!q)
2172		return 0;
2173
2174	md->queue = q;
2175	md->saved_make_request_fn = md->queue->make_request_fn;
2176	dm_init_md_queue(md);
2177	blk_queue_softirq_done(md->queue, dm_softirq_done);
2178	blk_queue_prep_rq(md->queue, dm_prep_fn);
2179	blk_queue_lld_busy(md->queue, dm_lld_busy);
2180
2181	elv_register_queue(md->queue);
2182
2183	return 1;
2184}
 
2185
2186/*
2187 * Setup the DM device's queue based on md's type
2188 */
2189int dm_setup_md_queue(struct mapped_device *md)
2190{
2191	if ((dm_get_md_type(md) == DM_TYPE_REQUEST_BASED) &&
2192	    !dm_init_request_based_queue(md)) {
2193		DMWARN("Cannot initialize queue for request-based mapped device");
2194		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2195	}
 
 
 
 
 
 
 
 
 
 
 
 
 
2196
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2197	return 0;
 
 
 
 
 
 
 
 
2198}
2199
2200static struct mapped_device *dm_find_md(dev_t dev)
2201{
2202	struct mapped_device *md;
2203	unsigned minor = MINOR(dev);
2204
2205	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2206		return NULL;
2207
2208	spin_lock(&_minor_lock);
2209
2210	md = idr_find(&_minor_idr, minor);
2211	if (md && (md == MINOR_ALLOCED ||
2212		   (MINOR(disk_devt(dm_disk(md))) != minor) ||
2213		   dm_deleting_md(md) ||
2214		   test_bit(DMF_FREEING, &md->flags))) {
2215		md = NULL;
2216		goto out;
2217	}
2218
2219out:
2220	spin_unlock(&_minor_lock);
2221
2222	return md;
2223}
2224
2225struct mapped_device *dm_get_md(dev_t dev)
2226{
2227	struct mapped_device *md = dm_find_md(dev);
2228
2229	if (md)
2230		dm_get(md);
2231
2232	return md;
2233}
2234
2235void *dm_get_mdptr(struct mapped_device *md)
2236{
2237	return md->interface_ptr;
2238}
2239
2240void dm_set_mdptr(struct mapped_device *md, void *ptr)
2241{
2242	md->interface_ptr = ptr;
2243}
2244
2245void dm_get(struct mapped_device *md)
2246{
2247	atomic_inc(&md->holders);
2248	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2249}
2250
 
 
 
 
 
 
 
 
 
 
 
 
 
2251const char *dm_device_name(struct mapped_device *md)
2252{
2253	return md->name;
2254}
2255EXPORT_SYMBOL_GPL(dm_device_name);
2256
2257static void __dm_destroy(struct mapped_device *md, bool wait)
2258{
2259	struct dm_table *map;
 
2260
2261	might_sleep();
2262
2263	spin_lock(&_minor_lock);
2264	map = dm_get_live_table(md);
2265	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2266	set_bit(DMF_FREEING, &md->flags);
2267	spin_unlock(&_minor_lock);
2268
 
 
 
 
 
 
 
 
2269	if (!dm_suspended_md(md)) {
2270		dm_table_presuspend_targets(map);
 
 
2271		dm_table_postsuspend_targets(map);
2272	}
 
 
 
2273
2274	/*
2275	 * Rare, but there may be I/O requests still going to complete,
2276	 * for example.  Wait for all references to disappear.
2277	 * No one should increment the reference count of the mapped_device,
2278	 * after the mapped_device state becomes DMF_FREEING.
2279	 */
2280	if (wait)
2281		while (atomic_read(&md->holders))
2282			msleep(1);
2283	else if (atomic_read(&md->holders))
2284		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2285		       dm_device_name(md), atomic_read(&md->holders));
2286
2287	dm_sysfs_exit(md);
2288	dm_table_put(map);
2289	dm_table_destroy(__unbind(md));
2290	free_dev(md);
2291}
2292
2293void dm_destroy(struct mapped_device *md)
2294{
2295	__dm_destroy(md, true);
2296}
2297
2298void dm_destroy_immediate(struct mapped_device *md)
2299{
2300	__dm_destroy(md, false);
2301}
2302
2303void dm_put(struct mapped_device *md)
2304{
2305	atomic_dec(&md->holders);
2306}
2307EXPORT_SYMBOL_GPL(dm_put);
2308
2309static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
2310{
2311	int r = 0;
2312	DECLARE_WAITQUEUE(wait, current);
 
 
 
 
 
 
2313
2314	add_wait_queue(&md->wait, &wait);
 
 
 
2315
2316	while (1) {
2317		set_current_state(interruptible);
2318
2319		smp_mb();
2320		if (!md_in_flight(md))
2321			break;
2322
2323		if (interruptible == TASK_INTERRUPTIBLE &&
2324		    signal_pending(current)) {
2325			r = -EINTR;
2326			break;
2327		}
2328
2329		io_schedule();
2330	}
2331	set_current_state(TASK_RUNNING);
2332
2333	remove_wait_queue(&md->wait, &wait);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2334
2335	return r;
2336}
2337
2338/*
2339 * Process the deferred bios
2340 */
2341static void dm_wq_work(struct work_struct *work)
2342{
2343	struct mapped_device *md = container_of(work, struct mapped_device,
2344						work);
2345	struct bio *c;
2346
2347	down_read(&md->io_lock);
2348
2349	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2350		spin_lock_irq(&md->deferred_lock);
2351		c = bio_list_pop(&md->deferred);
2352		spin_unlock_irq(&md->deferred_lock);
2353
2354		if (!c)
2355			break;
2356
2357		up_read(&md->io_lock);
2358
2359		if (dm_request_based(md))
2360			generic_make_request(c);
2361		else
2362			__split_and_process_bio(md, c);
2363
2364		down_read(&md->io_lock);
2365	}
2366
2367	up_read(&md->io_lock);
2368}
2369
2370static void dm_queue_flush(struct mapped_device *md)
2371{
2372	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2373	smp_mb__after_clear_bit();
2374	queue_work(md->wq, &md->work);
2375}
2376
2377/*
2378 * Swap in a new table, returning the old one for the caller to destroy.
2379 */
2380struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2381{
2382	struct dm_table *map = ERR_PTR(-EINVAL);
2383	struct queue_limits limits;
2384	int r;
2385
2386	mutex_lock(&md->suspend_lock);
2387
2388	/* device must be suspended */
2389	if (!dm_suspended_md(md))
2390		goto out;
2391
2392	r = dm_calculate_queue_limits(table, &limits);
2393	if (r) {
2394		map = ERR_PTR(r);
2395		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2396	}
2397
2398	map = __bind(md, table, &limits);
 
2399
2400out:
2401	mutex_unlock(&md->suspend_lock);
2402	return map;
2403}
2404
2405/*
2406 * Functions to lock and unlock any filesystem running on the
2407 * device.
2408 */
2409static int lock_fs(struct mapped_device *md)
2410{
2411	int r;
2412
2413	WARN_ON(md->frozen_sb);
2414
2415	md->frozen_sb = freeze_bdev(md->bdev);
2416	if (IS_ERR(md->frozen_sb)) {
2417		r = PTR_ERR(md->frozen_sb);
2418		md->frozen_sb = NULL;
2419		return r;
2420	}
2421
2422	set_bit(DMF_FROZEN, &md->flags);
2423
2424	return 0;
 
 
 
2425}
2426
2427static void unlock_fs(struct mapped_device *md)
2428{
2429	if (!test_bit(DMF_FROZEN, &md->flags))
2430		return;
2431
2432	thaw_bdev(md->bdev, md->frozen_sb);
2433	md->frozen_sb = NULL;
2434	clear_bit(DMF_FROZEN, &md->flags);
2435}
2436
2437/*
2438 * We need to be able to change a mapping table under a mounted
2439 * filesystem.  For example we might want to move some data in
2440 * the background.  Before the table can be swapped with
2441 * dm_bind_table, dm_suspend must be called to flush any in
2442 * flight bios and ensure that any further io gets deferred.
2443 */
2444/*
2445 * Suspend mechanism in request-based dm.
2446 *
2447 * 1. Flush all I/Os by lock_fs() if needed.
2448 * 2. Stop dispatching any I/O by stopping the request_queue.
2449 * 3. Wait for all in-flight I/Os to be completed or requeued.
2450 *
2451 * To abort suspend, start the request_queue.
2452 */
2453int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2454{
2455	struct dm_table *map = NULL;
2456	int r = 0;
2457	int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0;
2458	int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0;
2459
2460	mutex_lock(&md->suspend_lock);
2461
2462	if (dm_suspended_md(md)) {
2463		r = -EINVAL;
2464		goto out_unlock;
2465	}
2466
2467	map = dm_get_live_table(md);
2468
2469	/*
2470	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2471	 * This flag is cleared before dm_suspend returns.
2472	 */
2473	if (noflush)
2474		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
 
 
2475
2476	/* This does not get reverted if there's an error later. */
 
 
 
2477	dm_table_presuspend_targets(map);
2478
2479	/*
2480	 * Flush I/O to the device.
2481	 * Any I/O submitted after lock_fs() may not be flushed.
2482	 * noflush takes precedence over do_lockfs.
2483	 * (lock_fs() flushes I/Os and waits for them to complete.)
2484	 */
2485	if (!noflush && do_lockfs) {
2486		r = lock_fs(md);
2487		if (r)
2488			goto out;
 
 
2489	}
2490
2491	/*
2492	 * Here we must make sure that no processes are submitting requests
2493	 * to target drivers i.e. no one may be executing
2494	 * __split_and_process_bio. This is called from dm_request and
2495	 * dm_wq_work.
2496	 *
2497	 * To get all processes out of __split_and_process_bio in dm_request,
2498	 * we take the write lock. To prevent any process from reentering
2499	 * __split_and_process_bio from dm_request and quiesce the thread
2500	 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2501	 * flush_workqueue(md->wq).
2502	 */
2503	down_write(&md->io_lock);
2504	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2505	up_write(&md->io_lock);
 
2506
2507	/*
2508	 * Stop md->queue before flushing md->wq in case request-based
2509	 * dm defers requests to md->wq from md->queue.
2510	 */
2511	if (dm_request_based(md))
2512		stop_queue(md->queue);
2513
2514	flush_workqueue(md->wq);
2515
2516	/*
2517	 * At this point no more requests are entering target request routines.
2518	 * We call dm_wait_for_completion to wait for all existing requests
2519	 * to finish.
2520	 */
2521	r = dm_wait_for_completion(md, TASK_INTERRUPTIBLE);
 
 
2522
2523	down_write(&md->io_lock);
2524	if (noflush)
2525		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2526	up_write(&md->io_lock);
 
2527
2528	/* were we interrupted ? */
2529	if (r < 0) {
2530		dm_queue_flush(md);
2531
2532		if (dm_request_based(md))
2533			start_queue(md->queue);
2534
2535		unlock_fs(md);
2536		goto out; /* pushback list is already flushed, so skip flush */
 
2537	}
2538
2539	/*
2540	 * If dm_wait_for_completion returned 0, the device is completely
2541	 * quiescent now. There is no request-processing activity. All new
2542	 * requests are being added to md->deferred list.
2543	 */
2544
2545	set_bit(DMF_SUSPENDED, &md->flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2546
2547	dm_table_postsuspend_targets(map);
 
2548
2549out:
2550	dm_table_put(map);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2551
2552out_unlock:
2553	mutex_unlock(&md->suspend_lock);
2554	return r;
2555}
2556
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2557int dm_resume(struct mapped_device *md)
2558{
2559	int r = -EINVAL;
2560	struct dm_table *map = NULL;
2561
2562	mutex_lock(&md->suspend_lock);
 
 
 
2563	if (!dm_suspended_md(md))
2564		goto out;
2565
2566	map = dm_get_live_table(md);
 
 
 
 
 
 
 
 
 
2567	if (!map || !dm_table_get_size(map))
2568		goto out;
2569
2570	r = dm_table_resume_targets(map);
2571	if (r)
2572		goto out;
2573
2574	dm_queue_flush(md);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2575
2576	/*
2577	 * Flushing deferred I/Os must be done after targets are resumed
2578	 * so that mapping of targets can work correctly.
2579	 * Request-based dm is queueing the deferred I/Os in its request_queue.
 
2580	 */
2581	if (dm_request_based(md))
2582		start_queue(md->queue);
2583
2584	unlock_fs(md);
 
 
 
2585
2586	clear_bit(DMF_SUSPENDED, &md->flags);
 
 
2587
2588	r = 0;
2589out:
2590	dm_table_put(map);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2591	mutex_unlock(&md->suspend_lock);
 
 
2592
2593	return r;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2594}
 
 
 
 
 
 
 
 
 
 
 
 
 
2595
2596/*-----------------------------------------------------------------
2597 * Event notification.
2598 *---------------------------------------------------------------*/
2599int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2600		       unsigned cookie)
2601{
 
 
2602	char udev_cookie[DM_COOKIE_LENGTH];
2603	char *envp[] = { udev_cookie, NULL };
2604
 
 
2605	if (!cookie)
2606		return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2607	else {
2608		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2609			 DM_COOKIE_ENV_VAR_NAME, cookie);
2610		return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2611					  action, envp);
2612	}
 
 
 
 
2613}
2614
2615uint32_t dm_next_uevent_seq(struct mapped_device *md)
2616{
2617	return atomic_add_return(1, &md->uevent_seq);
2618}
2619
2620uint32_t dm_get_event_nr(struct mapped_device *md)
2621{
2622	return atomic_read(&md->event_nr);
2623}
2624
2625int dm_wait_event(struct mapped_device *md, int event_nr)
2626{
2627	return wait_event_interruptible(md->eventq,
2628			(event_nr != atomic_read(&md->event_nr)));
2629}
2630
2631void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2632{
2633	unsigned long flags;
2634
2635	spin_lock_irqsave(&md->uevent_lock, flags);
2636	list_add(elist, &md->uevent_list);
2637	spin_unlock_irqrestore(&md->uevent_lock, flags);
2638}
2639
2640/*
2641 * The gendisk is only valid as long as you have a reference
2642 * count on 'md'.
2643 */
2644struct gendisk *dm_disk(struct mapped_device *md)
2645{
2646	return md->disk;
2647}
 
2648
2649struct kobject *dm_kobject(struct mapped_device *md)
2650{
2651	return &md->kobj;
2652}
2653
2654/*
2655 * struct mapped_device should not be exported outside of dm.c
2656 * so use this check to verify that kobj is part of md structure
2657 */
2658struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2659{
2660	struct mapped_device *md;
2661
2662	md = container_of(kobj, struct mapped_device, kobj);
2663	if (&md->kobj != kobj)
2664		return NULL;
2665
2666	if (test_bit(DMF_FREEING, &md->flags) ||
2667	    dm_deleting_md(md))
2668		return NULL;
2669
 
 
 
 
 
2670	dm_get(md);
 
 
 
2671	return md;
2672}
2673
2674int dm_suspended_md(struct mapped_device *md)
2675{
2676	return test_bit(DMF_SUSPENDED, &md->flags);
2677}
2678
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2679int dm_suspended(struct dm_target *ti)
2680{
2681	return dm_suspended_md(dm_table_get_md(ti->table));
2682}
2683EXPORT_SYMBOL_GPL(dm_suspended);
2684
 
 
 
 
 
 
2685int dm_noflush_suspending(struct dm_target *ti)
2686{
2687	return __noflush_suspending(dm_table_get_md(ti->table));
2688}
2689EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2690
2691struct dm_md_mempools *dm_alloc_md_mempools(unsigned type, unsigned integrity)
2692{
2693	struct dm_md_mempools *pools = kmalloc(sizeof(*pools), GFP_KERNEL);
2694	unsigned int pool_size = (type == DM_TYPE_BIO_BASED) ? 16 : MIN_IOS;
2695
2696	if (!pools)
2697		return NULL;
2698
2699	pools->io_pool = (type == DM_TYPE_BIO_BASED) ?
2700			 mempool_create_slab_pool(MIN_IOS, _io_cache) :
2701			 mempool_create_slab_pool(MIN_IOS, _rq_bio_info_cache);
2702	if (!pools->io_pool)
2703		goto free_pools_and_out;
2704
2705	pools->tio_pool = (type == DM_TYPE_BIO_BASED) ?
2706			  mempool_create_slab_pool(MIN_IOS, _tio_cache) :
2707			  mempool_create_slab_pool(MIN_IOS, _rq_tio_cache);
2708	if (!pools->tio_pool)
2709		goto free_io_pool_and_out;
2710
2711	pools->bs = bioset_create(pool_size, 0);
2712	if (!pools->bs)
2713		goto free_tio_pool_and_out;
 
 
 
 
 
 
2714
2715	if (integrity && bioset_integrity_create(pools->bs, pool_size))
2716		goto free_bioset_and_out;
 
 
 
 
 
2717
2718	return pools;
 
 
2719
2720free_bioset_and_out:
2721	bioset_free(pools->bs);
 
 
2722
2723free_tio_pool_and_out:
2724	mempool_destroy(pools->tio_pool);
 
 
2725
2726free_io_pool_and_out:
2727	mempool_destroy(pools->io_pool);
 
2728
2729free_pools_and_out:
2730	kfree(pools);
 
 
 
 
2731
2732	return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2733}
2734
2735void dm_free_md_mempools(struct dm_md_mempools *pools)
 
2736{
2737	if (!pools)
2738		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2739
2740	if (pools->io_pool)
2741		mempool_destroy(pools->io_pool);
2742
2743	if (pools->tio_pool)
2744		mempool_destroy(pools->tio_pool);
 
 
 
 
 
 
2745
2746	if (pools->bs)
2747		bioset_free(pools->bs);
2748
2749	kfree(pools);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2750}
2751
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2752static const struct block_device_operations dm_blk_dops = {
 
 
2753	.open = dm_blk_open,
2754	.release = dm_blk_close,
2755	.ioctl = dm_blk_ioctl,
2756	.getgeo = dm_blk_getgeo,
 
 
2757	.owner = THIS_MODULE
2758};
2759
2760EXPORT_SYMBOL(dm_get_mapinfo);
 
 
 
 
 
 
 
 
 
 
 
 
 
2761
2762/*
2763 * module hooks
2764 */
2765module_init(dm_init);
2766module_exit(dm_exit);
2767
2768module_param(major, uint, 0);
2769MODULE_PARM_DESC(major, "The major number of the device mapper");
 
 
 
 
 
 
 
 
 
 
2770MODULE_DESCRIPTION(DM_NAME " driver");
2771MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
2772MODULE_LICENSE("GPL");
v6.2
   1/*
   2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
   3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
   4 *
   5 * This file is released under the GPL.
   6 */
   7
   8#include "dm-core.h"
   9#include "dm-rq.h"
  10#include "dm-uevent.h"
  11#include "dm-ima.h"
  12
  13#include <linux/init.h>
  14#include <linux/module.h>
  15#include <linux/mutex.h>
  16#include <linux/sched/mm.h>
  17#include <linux/sched/signal.h>
  18#include <linux/blkpg.h>
  19#include <linux/bio.h>
 
  20#include <linux/mempool.h>
  21#include <linux/dax.h>
  22#include <linux/slab.h>
  23#include <linux/idr.h>
  24#include <linux/uio.h>
  25#include <linux/hdreg.h>
  26#include <linux/delay.h>
  27#include <linux/wait.h>
  28#include <linux/pr.h>
  29#include <linux/refcount.h>
  30#include <linux/part_stat.h>
  31#include <linux/blk-crypto.h>
  32#include <linux/blk-crypto-profile.h>
  33
  34#define DM_MSG_PREFIX "core"
  35
  36/*
  37 * Cookies are numeric values sent with CHANGE and REMOVE
  38 * uevents while resuming, removing or renaming the device.
  39 */
  40#define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
  41#define DM_COOKIE_LENGTH 24
  42
  43/*
  44 * For REQ_POLLED fs bio, this flag is set if we link mapped underlying
  45 * dm_io into one list, and reuse bio->bi_private as the list head. Before
  46 * ending this fs bio, we will recover its ->bi_private.
  47 */
  48#define REQ_DM_POLL_LIST	REQ_DRV
  49
  50static const char *_name = DM_NAME;
  51
  52static unsigned int major = 0;
  53static unsigned int _major = 0;
  54
  55static DEFINE_IDR(_minor_idr);
  56
  57static DEFINE_SPINLOCK(_minor_lock);
 
 
 
 
 
 
 
 
 
 
 
 
  58
  59static void do_deferred_remove(struct work_struct *w);
 
 
 
 
 
 
 
 
 
  60
  61static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
 
 
 
 
 
 
 
 
 
 
  62
  63static struct workqueue_struct *deferred_remove_workqueue;
 
 
 
 
 
 
 
  64
  65atomic_t dm_global_event_nr = ATOMIC_INIT(0);
  66DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
 
 
 
 
  67
  68void dm_issue_global_event(void)
  69{
  70	atomic_inc(&dm_global_event_nr);
  71	wake_up(&dm_global_eventq);
 
  72}
 
  73
  74DEFINE_STATIC_KEY_FALSE(stats_enabled);
  75DEFINE_STATIC_KEY_FALSE(swap_bios_enabled);
  76DEFINE_STATIC_KEY_FALSE(zoned_enabled);
  77
  78/*
  79 * One of these is allocated (on-stack) per original bio.
  80 */
  81struct clone_info {
  82	struct dm_table *map;
  83	struct bio *bio;
  84	struct dm_io *io;
  85	sector_t sector;
  86	unsigned sector_count;
  87	bool is_abnormal_io:1;
  88	bool submit_as_polled:1;
  89};
 
 
 
 
 
 
 
 
 
 
  90
  91static inline struct dm_target_io *clone_to_tio(struct bio *clone)
  92{
  93	return container_of(clone, struct dm_target_io, clone);
  94}
  95
  96void *dm_per_bio_data(struct bio *bio, size_t data_size)
  97{
  98	if (!dm_tio_flagged(clone_to_tio(bio), DM_TIO_INSIDE_DM_IO))
  99		return (char *)bio - DM_TARGET_IO_BIO_OFFSET - data_size;
 100	return (char *)bio - DM_IO_BIO_OFFSET - data_size;
 101}
 102EXPORT_SYMBOL_GPL(dm_per_bio_data);
 103
 104struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
 105{
 106	struct dm_io *io = (struct dm_io *)((char *)data + data_size);
 107	if (io->magic == DM_IO_MAGIC)
 108		return (struct bio *)((char *)io + DM_IO_BIO_OFFSET);
 109	BUG_ON(io->magic != DM_TIO_MAGIC);
 110	return (struct bio *)((char *)io + DM_TARGET_IO_BIO_OFFSET);
 111}
 112EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
 113
 114unsigned dm_bio_get_target_bio_nr(const struct bio *bio)
 115{
 116	return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
 117}
 118EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
 
 
 
 119
 120#define MINOR_ALLOCED ((void *)-1)
 
 
 
 121
 122#define DM_NUMA_NODE NUMA_NO_NODE
 123static int dm_numa_node = DM_NUMA_NODE;
 
 
 124
 125#define DEFAULT_SWAP_BIOS	(8 * 1048576 / PAGE_SIZE)
 126static int swap_bios = DEFAULT_SWAP_BIOS;
 127static int get_swap_bios(void)
 128{
 129	int latch = READ_ONCE(swap_bios);
 130	if (unlikely(latch <= 0))
 131		latch = DEFAULT_SWAP_BIOS;
 132	return latch;
 133}
 134
 135struct table_device {
 136	struct list_head list;
 137	refcount_t count;
 138	struct dm_dev dm_dev;
 139};
 140
 141/*
 142 * Bio-based DM's mempools' reserved IOs set by the user.
 143 */
 144#define RESERVED_BIO_BASED_IOS		16
 145static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
 146
 147static int __dm_get_module_param_int(int *module_param, int min, int max)
 148{
 149	int param = READ_ONCE(*module_param);
 150	int modified_param = 0;
 151	bool modified = true;
 
 
 
 152
 153	if (param < min)
 154		modified_param = min;
 155	else if (param > max)
 156		modified_param = max;
 157	else
 158		modified = false;
 159
 160	if (modified) {
 161		(void)cmpxchg(module_param, param, modified_param);
 162		param = modified_param;
 163	}
 164
 165	return param;
 166}
 167
 168unsigned __dm_get_module_param(unsigned *module_param,
 169			       unsigned def, unsigned max)
 170{
 171	unsigned param = READ_ONCE(*module_param);
 172	unsigned modified_param = 0;
 173
 174	if (!param)
 175		modified_param = def;
 176	else if (param > max)
 177		modified_param = max;
 178
 179	if (modified_param) {
 180		(void)cmpxchg(module_param, param, modified_param);
 181		param = modified_param;
 182	}
 
 
 
 
 183
 184	return param;
 185}
 
 
 
 186
 187unsigned dm_get_reserved_bio_based_ios(void)
 188{
 189	return __dm_get_module_param(&reserved_bio_based_ios,
 190				     RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
 191}
 192EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
 193
 194static unsigned dm_get_numa_node(void)
 195{
 196	return __dm_get_module_param_int(&dm_numa_node,
 197					 DM_NUMA_NODE, num_online_nodes() - 1);
 198}
 199
 200static int __init local_init(void)
 201{
 202	int r;
 
 
 
 
 
 
 
 
 
 203
 204	r = dm_uevent_init();
 205	if (r)
 206		return r;
 207
 208	deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
 209	if (!deferred_remove_workqueue) {
 210		r = -ENOMEM;
 211		goto out_uevent_exit;
 212	}
 213
 214	_major = major;
 215	r = register_blkdev(_major, _name);
 216	if (r < 0)
 217		goto out_free_workqueue;
 218
 219	if (!_major)
 220		_major = r;
 221
 222	return 0;
 223
 224out_free_workqueue:
 225	destroy_workqueue(deferred_remove_workqueue);
 226out_uevent_exit:
 227	dm_uevent_exit();
 
 
 
 
 
 
 
 
 228
 229	return r;
 230}
 231
 232static void local_exit(void)
 233{
 234	flush_scheduled_work();
 235	destroy_workqueue(deferred_remove_workqueue);
 236
 
 237	unregister_blkdev(_major, _name);
 238	dm_uevent_exit();
 239
 240	_major = 0;
 241
 242	DMINFO("cleaned up");
 243}
 244
 245static int (*_inits[])(void) __initdata = {
 246	local_init,
 247	dm_target_init,
 248	dm_linear_init,
 249	dm_stripe_init,
 250	dm_io_init,
 251	dm_kcopyd_init,
 252	dm_interface_init,
 253	dm_statistics_init,
 254};
 255
 256static void (*_exits[])(void) = {
 257	local_exit,
 258	dm_target_exit,
 259	dm_linear_exit,
 260	dm_stripe_exit,
 261	dm_io_exit,
 262	dm_kcopyd_exit,
 263	dm_interface_exit,
 264	dm_statistics_exit,
 265};
 266
 267static int __init dm_init(void)
 268{
 269	const int count = ARRAY_SIZE(_inits);
 
 270	int r, i;
 271
 272#if (IS_ENABLED(CONFIG_IMA) && !IS_ENABLED(CONFIG_IMA_DISABLE_HTABLE))
 273	DMWARN("CONFIG_IMA_DISABLE_HTABLE is disabled."
 274	       " Duplicate IMA measurements will not be recorded in the IMA log.");
 275#endif
 276
 277	for (i = 0; i < count; i++) {
 278		r = _inits[i]();
 279		if (r)
 280			goto bad;
 281	}
 282
 283	return 0;
 284bad:
 
 285	while (i--)
 286		_exits[i]();
 287
 288	return r;
 289}
 290
 291static void __exit dm_exit(void)
 292{
 293	int i = ARRAY_SIZE(_exits);
 294
 295	while (i--)
 296		_exits[i]();
 297
 298	/*
 299	 * Should be empty by this point.
 300	 */
 
 301	idr_destroy(&_minor_idr);
 302}
 303
 304/*
 305 * Block device functions
 306 */
 307int dm_deleting_md(struct mapped_device *md)
 308{
 309	return test_bit(DMF_DELETING, &md->flags);
 310}
 311
 312static int dm_blk_open(struct block_device *bdev, fmode_t mode)
 313{
 314	struct mapped_device *md;
 315
 316	spin_lock(&_minor_lock);
 317
 318	md = bdev->bd_disk->private_data;
 319	if (!md)
 320		goto out;
 321
 322	if (test_bit(DMF_FREEING, &md->flags) ||
 323	    dm_deleting_md(md)) {
 324		md = NULL;
 325		goto out;
 326	}
 327
 328	dm_get(md);
 329	atomic_inc(&md->open_count);
 
 330out:
 331	spin_unlock(&_minor_lock);
 332
 333	return md ? 0 : -ENXIO;
 334}
 335
 336static void dm_blk_close(struct gendisk *disk, fmode_t mode)
 337{
 338	struct mapped_device *md;
 339
 340	spin_lock(&_minor_lock);
 341
 342	md = disk->private_data;
 343	if (WARN_ON(!md))
 344		goto out;
 345
 346	if (atomic_dec_and_test(&md->open_count) &&
 347	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
 348		queue_work(deferred_remove_workqueue, &deferred_remove_work);
 349
 350	dm_put(md);
 351out:
 352	spin_unlock(&_minor_lock);
 353}
 354
 355int dm_open_count(struct mapped_device *md)
 356{
 357	return atomic_read(&md->open_count);
 358}
 359
 360/*
 361 * Guarantees nothing is using the device before it's deleted.
 362 */
 363int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
 364{
 365	int r = 0;
 366
 367	spin_lock(&_minor_lock);
 368
 369	if (dm_open_count(md)) {
 370		r = -EBUSY;
 371		if (mark_deferred)
 372			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
 373	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
 374		r = -EEXIST;
 375	else
 376		set_bit(DMF_DELETING, &md->flags);
 377
 378	spin_unlock(&_minor_lock);
 379
 380	return r;
 381}
 382
 383int dm_cancel_deferred_remove(struct mapped_device *md)
 384{
 385	int r = 0;
 386
 387	spin_lock(&_minor_lock);
 388
 389	if (test_bit(DMF_DELETING, &md->flags))
 390		r = -EBUSY;
 391	else
 392		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
 393
 394	spin_unlock(&_minor_lock);
 395
 396	return r;
 397}
 398
 399static void do_deferred_remove(struct work_struct *w)
 400{
 401	dm_deferred_remove();
 402}
 403
 404static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
 405{
 406	struct mapped_device *md = bdev->bd_disk->private_data;
 407
 408	return dm_get_geometry(md, geo);
 409}
 410
 411static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
 412			    struct block_device **bdev)
 413{
 414	struct dm_target *ti;
 415	struct dm_table *map;
 416	int r;
 
 417
 418retry:
 419	r = -ENOTTY;
 420	map = dm_get_live_table(md, srcu_idx);
 421	if (!map || !dm_table_get_size(map))
 422		return r;
 423
 424	/* We only support devices that have a single target */
 425	if (map->num_targets != 1)
 426		return r;
 
 
 427
 428	ti = dm_table_get_target(map, 0);
 429	if (!ti->type->prepare_ioctl)
 430		return r;
 
 431
 432	if (dm_suspended_md(md))
 433		return -EAGAIN;
 434
 435	r = ti->type->prepare_ioctl(ti, bdev);
 436	if (r == -ENOTCONN && !fatal_signal_pending(current)) {
 437		dm_put_live_table(md, *srcu_idx);
 438		msleep(10);
 439		goto retry;
 440	}
 441
 442	return r;
 443}
 444
 445static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
 446{
 447	dm_put_live_table(md, srcu_idx);
 448}
 449
 450static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
 451			unsigned int cmd, unsigned long arg)
 452{
 453	struct mapped_device *md = bdev->bd_disk->private_data;
 454	int r, srcu_idx;
 455
 456	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
 457	if (r < 0)
 458		goto out;
 459
 460	if (r > 0) {
 461		/*
 462		 * Target determined this ioctl is being issued against a
 463		 * subset of the parent bdev; require extra privileges.
 464		 */
 465		if (!capable(CAP_SYS_RAWIO)) {
 466			DMDEBUG_LIMIT(
 467	"%s: sending ioctl %x to DM device without required privilege.",
 468				current->comm, cmd);
 469			r = -ENOIOCTLCMD;
 470			goto out;
 471		}
 472	}
 473
 474	if (!bdev->bd_disk->fops->ioctl)
 475		r = -ENOTTY;
 476	else
 477		r = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg);
 478out:
 479	dm_unprepare_ioctl(md, srcu_idx);
 480	return r;
 481}
 482
 483u64 dm_start_time_ns_from_clone(struct bio *bio)
 484{
 485	return jiffies_to_nsecs(clone_to_tio(bio)->io->start_time);
 486}
 487EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone);
 488
 489static bool bio_is_flush_with_data(struct bio *bio)
 
 490{
 491	return ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size);
 492}
 493
 494static void dm_io_acct(struct dm_io *io, bool end)
 495{
 496	struct dm_stats_aux *stats_aux = &io->stats_aux;
 497	unsigned long start_time = io->start_time;
 498	struct mapped_device *md = io->md;
 499	struct bio *bio = io->orig_bio;
 500	unsigned int sectors;
 501
 502	/*
 503	 * If REQ_PREFLUSH set, don't account payload, it will be
 504	 * submitted (and accounted) after this flush completes.
 505	 */
 506	if (bio_is_flush_with_data(bio))
 507		sectors = 0;
 508	else if (likely(!(dm_io_flagged(io, DM_IO_WAS_SPLIT))))
 509		sectors = bio_sectors(bio);
 510	else
 511		sectors = io->sectors;
 512
 513	if (!end)
 514		bdev_start_io_acct(bio->bi_bdev, sectors, bio_op(bio),
 515				   start_time);
 516	else
 517		bdev_end_io_acct(bio->bi_bdev, bio_op(bio), start_time);
 518
 519	if (static_branch_unlikely(&stats_enabled) &&
 520	    unlikely(dm_stats_used(&md->stats))) {
 521		sector_t sector;
 522
 523		if (likely(!dm_io_flagged(io, DM_IO_WAS_SPLIT)))
 524			sector = bio->bi_iter.bi_sector;
 525		else
 526			sector = bio_end_sector(bio) - io->sector_offset;
 527
 528		dm_stats_account_io(&md->stats, bio_data_dir(bio),
 529				    sector, sectors,
 530				    end, start_time, stats_aux);
 531	}
 532}
 533
 534static void __dm_start_io_acct(struct dm_io *io)
 535{
 536	dm_io_acct(io, false);
 537}
 538
 539static void dm_start_io_acct(struct dm_io *io, struct bio *clone)
 540{
 541	/*
 542	 * Ensure IO accounting is only ever started once.
 543	 */
 544	if (dm_io_flagged(io, DM_IO_ACCOUNTED))
 545		return;
 546
 547	/* Expect no possibility for race unless DM_TIO_IS_DUPLICATE_BIO. */
 548	if (!clone || likely(dm_tio_is_normal(clone_to_tio(clone)))) {
 549		dm_io_set_flag(io, DM_IO_ACCOUNTED);
 550	} else {
 551		unsigned long flags;
 552		/* Can afford locking given DM_TIO_IS_DUPLICATE_BIO */
 553		spin_lock_irqsave(&io->lock, flags);
 554		if (dm_io_flagged(io, DM_IO_ACCOUNTED)) {
 555			spin_unlock_irqrestore(&io->lock, flags);
 556			return;
 557		}
 558		dm_io_set_flag(io, DM_IO_ACCOUNTED);
 559		spin_unlock_irqrestore(&io->lock, flags);
 560	}
 561
 562	__dm_start_io_acct(io);
 563}
 564
 565static void dm_end_io_acct(struct dm_io *io)
 566{
 567	dm_io_acct(io, true);
 
 568}
 569
 570static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio)
 571{
 572	struct dm_io *io;
 573	struct dm_target_io *tio;
 574	struct bio *clone;
 575
 576	clone = bio_alloc_clone(NULL, bio, GFP_NOIO, &md->mempools->io_bs);
 577	tio = clone_to_tio(clone);
 578	tio->flags = 0;
 579	dm_tio_set_flag(tio, DM_TIO_INSIDE_DM_IO);
 580	tio->io = NULL;
 581
 582	io = container_of(tio, struct dm_io, tio);
 583	io->magic = DM_IO_MAGIC;
 584	io->status = BLK_STS_OK;
 585
 586	/* one ref is for submission, the other is for completion */
 587	atomic_set(&io->io_count, 2);
 588	this_cpu_inc(*md->pending_io);
 589	io->orig_bio = bio;
 590	io->md = md;
 591	spin_lock_init(&io->lock);
 592	io->start_time = jiffies;
 593	io->flags = 0;
 594
 595	if (static_branch_unlikely(&stats_enabled))
 596		dm_stats_record_start(&md->stats, &io->stats_aux);
 597
 598	return io;
 
 599}
 600
 601static void free_io(struct dm_io *io)
 602{
 603	bio_put(&io->tio.clone);
 604}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 605
 606static struct bio *alloc_tio(struct clone_info *ci, struct dm_target *ti,
 607			     unsigned target_bio_nr, unsigned *len, gfp_t gfp_mask)
 608{
 609	struct mapped_device *md = ci->io->md;
 610	struct dm_target_io *tio;
 611	struct bio *clone;
 612
 613	if (!ci->io->tio.io) {
 614		/* the dm_target_io embedded in ci->io is available */
 615		tio = &ci->io->tio;
 616		/* alloc_io() already initialized embedded clone */
 617		clone = &tio->clone;
 618	} else {
 619		clone = bio_alloc_clone(NULL, ci->bio, gfp_mask,
 620					&md->mempools->bs);
 621		if (!clone)
 622			return NULL;
 623
 624		/* REQ_DM_POLL_LIST shouldn't be inherited */
 625		clone->bi_opf &= ~REQ_DM_POLL_LIST;
 626
 627		tio = clone_to_tio(clone);
 628		tio->flags = 0; /* also clears DM_TIO_INSIDE_DM_IO */
 629	}
 630
 631	tio->magic = DM_TIO_MAGIC;
 632	tio->io = ci->io;
 633	tio->ti = ti;
 634	tio->target_bio_nr = target_bio_nr;
 635	tio->len_ptr = len;
 636	tio->old_sector = 0;
 637
 638	/* Set default bdev, but target must bio_set_dev() before issuing IO */
 639	clone->bi_bdev = md->disk->part0;
 640	if (unlikely(ti->needs_bio_set_dev))
 641		bio_set_dev(clone, md->disk->part0);
 642
 643	if (len) {
 644		clone->bi_iter.bi_size = to_bytes(*len);
 645		if (bio_integrity(clone))
 646			bio_integrity_trim(clone);
 647	}
 648
 649	return clone;
 650}
 651
 652static void free_tio(struct bio *clone)
 653{
 654	if (dm_tio_flagged(clone_to_tio(clone), DM_TIO_INSIDE_DM_IO))
 655		return;
 656	bio_put(clone);
 657}
 658
 659/*
 660 * Add the bio to the list of deferred io.
 661 */
 662static void queue_io(struct mapped_device *md, struct bio *bio)
 663{
 664	unsigned long flags;
 665
 666	spin_lock_irqsave(&md->deferred_lock, flags);
 667	bio_list_add(&md->deferred, bio);
 668	spin_unlock_irqrestore(&md->deferred_lock, flags);
 669	queue_work(md->wq, &md->work);
 670}
 671
 672/*
 673 * Everyone (including functions in this file), should use this
 674 * function to access the md->map field, and make sure they call
 675 * dm_put_live_table() when finished.
 676 */
 677struct dm_table *dm_get_live_table(struct mapped_device *md,
 678				   int *srcu_idx) __acquires(md->io_barrier)
 679{
 680	*srcu_idx = srcu_read_lock(&md->io_barrier);
 
 
 
 
 
 
 
 681
 682	return srcu_dereference(md->map, &md->io_barrier);
 683}
 684
 685void dm_put_live_table(struct mapped_device *md,
 686		       int srcu_idx) __releases(md->io_barrier)
 
 
 687{
 688	srcu_read_unlock(&md->io_barrier, srcu_idx);
 689}
 690
 691void dm_sync_table(struct mapped_device *md)
 692{
 693	synchronize_srcu(&md->io_barrier);
 694	synchronize_rcu_expedited();
 695}
 696
 697/*
 698 * A fast alternative to dm_get_live_table/dm_put_live_table.
 699 * The caller must not block between these two functions.
 700 */
 701static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
 702{
 703	rcu_read_lock();
 704	return rcu_dereference(md->map);
 
 
 
 
 
 
 
 
 705}
 706
 707static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
 
 
 
 
 
 
 
 
 
 708{
 709	rcu_read_unlock();
 710}
 711
 712static inline struct dm_table *dm_get_live_table_bio(struct mapped_device *md,
 713					int *srcu_idx, blk_opf_t bio_opf)
 
 
 
 714{
 715	if (bio_opf & REQ_NOWAIT)
 716		return dm_get_live_table_fast(md);
 717	else
 718		return dm_get_live_table(md, srcu_idx);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 719}
 720
 721static inline void dm_put_live_table_bio(struct mapped_device *md, int srcu_idx,
 722					 blk_opf_t bio_opf)
 723{
 724	if (bio_opf & REQ_NOWAIT)
 725		dm_put_live_table_fast(md);
 726	else
 727		dm_put_live_table(md, srcu_idx);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 728}
 729
 730static char *_dm_claim_ptr = "I belong to device-mapper";
 731
 732/*
 733 * Open a table device so we can use it as a map destination.
 734 */
 735static struct table_device *open_table_device(struct mapped_device *md,
 736		dev_t dev, fmode_t mode)
 737{
 738	struct table_device *td;
 739	struct block_device *bdev;
 740	u64 part_off;
 741	int r;
 742
 743	td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
 744	if (!td)
 745		return ERR_PTR(-ENOMEM);
 746	refcount_set(&td->count, 1);
 747
 748	bdev = blkdev_get_by_dev(dev, mode | FMODE_EXCL, _dm_claim_ptr);
 749	if (IS_ERR(bdev)) {
 750		r = PTR_ERR(bdev);
 751		goto out_free_td;
 
 
 
 
 
 
 
 
 
 
 
 752	}
 753
 754	/*
 755	 * We can be called before the dm disk is added.  In that case we can't
 756	 * register the holder relation here.  It will be done once add_disk was
 757	 * called.
 758	 */
 759	if (md->disk->slave_dir) {
 760		r = bd_link_disk_holder(bdev, md->disk);
 761		if (r)
 762			goto out_blkdev_put;
 763	}
 764
 765	td->dm_dev.mode = mode;
 766	td->dm_dev.bdev = bdev;
 767	td->dm_dev.dax_dev = fs_dax_get_by_bdev(bdev, &part_off, NULL, NULL);
 768	format_dev_t(td->dm_dev.name, dev);
 769	list_add(&td->list, &md->table_devices);
 770	return td;
 
 771
 772out_blkdev_put:
 773	blkdev_put(bdev, mode | FMODE_EXCL);
 774out_free_td:
 775	kfree(td);
 776	return ERR_PTR(r);
 
 777}
 778
 779/*
 780 * Close a table device that we've been using.
 
 
 781 */
 782static void close_table_device(struct table_device *td, struct mapped_device *md)
 783{
 784	if (md->disk->slave_dir)
 785		bd_unlink_disk_holder(td->dm_dev.bdev, md->disk);
 786	blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
 787	put_dax(td->dm_dev.dax_dev);
 788	list_del(&td->list);
 789	kfree(td);
 
 
 
 
 
 
 
 790}
 791
 792static struct table_device *find_table_device(struct list_head *l, dev_t dev,
 793					      fmode_t mode)
 794{
 795	struct table_device *td;
 796
 797	list_for_each_entry(td, l, list)
 798		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
 799			return td;
 800
 801	return NULL;
 802}
 803
 804int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
 805			struct dm_dev **result)
 
 
 
 806{
 807	struct table_device *td;
 
 
 
 
 
 
 
 808
 809	mutex_lock(&md->table_devices_lock);
 810	td = find_table_device(&md->table_devices, dev, mode);
 811	if (!td) {
 812		td = open_table_device(md, dev, mode);
 813		if (IS_ERR(td)) {
 814			mutex_unlock(&md->table_devices_lock);
 815			return PTR_ERR(td);
 816		}
 817	} else {
 818		refcount_inc(&td->count);
 819	}
 820	mutex_unlock(&md->table_devices_lock);
 821
 822	*result = &td->dm_dev;
 823	return 0;
 
 824}
 825
 826void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
 827{
 828	struct table_device *td = container_of(d, struct table_device, dm_dev);
 829
 830	mutex_lock(&md->table_devices_lock);
 831	if (refcount_dec_and_test(&td->count))
 832		close_table_device(td, md);
 833	mutex_unlock(&md->table_devices_lock);
 834}
 835
 836/*
 837 * Get the geometry associated with a dm device
 838 */
 839int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
 840{
 841	*geo = md->geometry;
 
 
 
 
 
 
 
 
 
 
 
 842
 843	return 0;
 844}
 
 845
 846/*
 847 * Set the geometry of a device.
 848 */
 849int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
 850{
 851	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
 
 852
 853	if (geo->start > sz) {
 854		DMERR("Start sector is beyond the geometry limits.");
 855		return -EINVAL;
 856	}
 857
 858	md->geometry = *geo;
 
 
 
 859
 860	return 0;
 
 
 
 861}
 862
 863static int __noflush_suspending(struct mapped_device *md)
 864{
 865	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
 
 
 
 
 866}
 867
 868static void dm_requeue_add_io(struct dm_io *io, bool first_stage)
 869{
 870	struct mapped_device *md = io->md;
 
 
 871
 872	if (first_stage) {
 873		struct dm_io *next = md->requeue_list;
 874
 875		md->requeue_list = io;
 876		io->next = next;
 877	} else {
 878		bio_list_add_head(&md->deferred, io->orig_bio);
 
 
 
 
 
 
 
 
 879	}
 880}
 881
 882static void dm_kick_requeue(struct mapped_device *md, bool first_stage)
 
 
 
 883{
 884	if (first_stage)
 885		queue_work(md->wq, &md->requeue_work);
 886	else
 887		queue_work(md->wq, &md->work);
 
 
 
 
 888}
 889
 890/*
 891 * Return true if the dm_io's original bio is requeued.
 892 * io->status is updated with error if requeue disallowed.
 893 */
 894static bool dm_handle_requeue(struct dm_io *io, bool first_stage)
 895{
 896	struct bio *bio = io->orig_bio;
 897	bool handle_requeue = (io->status == BLK_STS_DM_REQUEUE);
 898	bool handle_polled_eagain = ((io->status == BLK_STS_AGAIN) &&
 899				     (bio->bi_opf & REQ_POLLED));
 900	struct mapped_device *md = io->md;
 901	bool requeued = false;
 902
 903	if (handle_requeue || handle_polled_eagain) {
 904		unsigned long flags;
 
 
 905
 906		if (bio->bi_opf & REQ_POLLED) {
 907			/*
 908			 * Upper layer won't help us poll split bio
 909			 * (io->orig_bio may only reflect a subset of the
 910			 * pre-split original) so clear REQ_POLLED.
 911			 */
 912			bio_clear_polled(bio);
 913		}
 
 
 914
 915		/*
 916		 * Target requested pushing back the I/O or
 917		 * polled IO hit BLK_STS_AGAIN.
 918		 */
 919		spin_lock_irqsave(&md->deferred_lock, flags);
 920		if ((__noflush_suspending(md) &&
 921		     !WARN_ON_ONCE(dm_is_zone_write(md, bio))) ||
 922		    handle_polled_eagain || first_stage) {
 923			dm_requeue_add_io(io, first_stage);
 924			requeued = true;
 925		} else {
 926			/*
 927			 * noflush suspend was interrupted or this is
 928			 * a write to a zoned target.
 929			 */
 930			io->status = BLK_STS_IOERR;
 931		}
 932		spin_unlock_irqrestore(&md->deferred_lock, flags);
 933	}
 934
 935	if (requeued)
 936		dm_kick_requeue(md, first_stage);
 
 
 
 
 
 
 
 
 
 
 937
 938	return requeued;
 
 
 
 
 
 
 
 
 939}
 940
 941static void __dm_io_complete(struct dm_io *io, bool first_stage)
 
 
 
 
 942{
 943	struct bio *bio = io->orig_bio;
 944	struct mapped_device *md = io->md;
 945	blk_status_t io_error;
 946	bool requeued;
 947
 948	requeued = dm_handle_requeue(io, first_stage);
 949	if (requeued && first_stage)
 950		return;
 951
 952	io_error = io->status;
 953	if (dm_io_flagged(io, DM_IO_ACCOUNTED))
 954		dm_end_io_acct(io);
 955	else if (!io_error) {
 956		/*
 957		 * Must handle target that DM_MAPIO_SUBMITTED only to
 958		 * then bio_endio() rather than dm_submit_bio_remap()
 959		 */
 960		__dm_start_io_acct(io);
 961		dm_end_io_acct(io);
 962	}
 963	free_io(io);
 964	smp_wmb();
 965	this_cpu_dec(*md->pending_io);
 966
 967	/* nudge anyone waiting on suspend queue */
 968	if (unlikely(wq_has_sleeper(&md->wait)))
 969		wake_up(&md->wait);
 
 
 
 
 
 
 970
 971	/* Return early if the original bio was requeued */
 972	if (requeued)
 973		return;
 974
 975	if (bio_is_flush_with_data(bio)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 976		/*
 977		 * Preflush done for flush with data, reissue
 978		 * without REQ_PREFLUSH.
 979		 */
 980		bio->bi_opf &= ~REQ_PREFLUSH;
 981		queue_io(md, bio);
 982	} else {
 983		/* done with normal IO or empty flush */
 984		if (io_error)
 985			bio->bi_status = io_error;
 986		bio_endio(bio);
 987	}
 988}
 989
 990static void dm_wq_requeue_work(struct work_struct *work)
 991{
 992	struct mapped_device *md = container_of(work, struct mapped_device,
 993						requeue_work);
 994	unsigned long flags;
 995	struct dm_io *io;
 
 
 
 
 996
 997	/* reuse deferred lock to simplify dm_handle_requeue */
 998	spin_lock_irqsave(&md->deferred_lock, flags);
 999	io = md->requeue_list;
1000	md->requeue_list = NULL;
1001	spin_unlock_irqrestore(&md->deferred_lock, flags);
1002
1003	while (io) {
1004		struct dm_io *next = io->next;
1005
1006		dm_io_rewind(io, &md->disk->bio_split);
1007
1008		io->next = NULL;
1009		__dm_io_complete(io, false);
1010		io = next;
1011	}
1012}
1013
1014/*
1015 * Two staged requeue:
1016 *
1017 * 1) io->orig_bio points to the real original bio, and the part mapped to
1018 *    this io must be requeued, instead of other parts of the original bio.
1019 *
1020 * 2) io->orig_bio points to new cloned bio which matches the requeued dm_io.
1021 */
1022static void dm_io_complete(struct dm_io *io)
 
 
1023{
1024	bool first_requeue;
 
1025
1026	/*
1027	 * Only dm_io that has been split needs two stage requeue, otherwise
1028	 * we may run into long bio clone chain during suspend and OOM could
1029	 * be triggered.
1030	 *
1031	 * Also flush data dm_io won't be marked as DM_IO_WAS_SPLIT, so they
1032	 * also aren't handled via the first stage requeue.
1033	 */
1034	if (dm_io_flagged(io, DM_IO_WAS_SPLIT))
1035		first_requeue = true;
1036	else
1037		first_requeue = false;
 
 
 
 
 
 
1038
1039	__dm_io_complete(io, first_requeue);
1040}
1041
1042/*
1043 * Decrements the number of outstanding ios that a bio has been
1044 * cloned into, completing the original io if necc.
1045 */
1046static inline void __dm_io_dec_pending(struct dm_io *io)
 
 
1047{
1048	if (atomic_dec_and_test(&io->io_count))
1049		dm_io_complete(io);
1050}
1051
1052static void dm_io_set_error(struct dm_io *io, blk_status_t error)
1053{
1054	unsigned long flags;
 
 
 
 
 
 
 
 
 
 
 
 
 
1055
1056	/* Push-back supersedes any I/O errors */
1057	spin_lock_irqsave(&io->lock, flags);
1058	if (!(io->status == BLK_STS_DM_REQUEUE &&
1059	      __noflush_suspending(io->md))) {
1060		io->status = error;
1061	}
1062	spin_unlock_irqrestore(&io->lock, flags);
1063}
1064
1065static void dm_io_dec_pending(struct dm_io *io, blk_status_t error)
 
1066{
1067	if (unlikely(error))
1068		dm_io_set_error(io, error);
 
 
 
1069
1070	__dm_io_dec_pending(io);
1071}
1072
1073void disable_discard(struct mapped_device *md)
 
1074{
1075	struct queue_limits *limits = dm_get_queue_limits(md);
 
1076
1077	/* device doesn't really support DISCARD, disable it */
1078	limits->max_discard_sectors = 0;
1079}
1080
1081void disable_write_zeroes(struct mapped_device *md)
1082{
1083	struct queue_limits *limits = dm_get_queue_limits(md);
 
 
 
 
 
 
 
 
 
1084
1085	/* device doesn't really support WRITE ZEROES, disable it */
1086	limits->max_write_zeroes_sectors = 0;
1087}
1088
1089static bool swap_bios_limit(struct dm_target *ti, struct bio *bio)
 
1090{
1091	return unlikely((bio->bi_opf & REQ_SWAP) != 0) && unlikely(ti->limit_swap_bios);
 
 
 
1092}
1093
1094static void clone_endio(struct bio *bio)
1095{
1096	blk_status_t error = bio->bi_status;
1097	struct dm_target_io *tio = clone_to_tio(bio);
1098	struct dm_target *ti = tio->ti;
1099	dm_endio_fn endio = ti->type->end_io;
1100	struct dm_io *io = tio->io;
1101	struct mapped_device *md = io->md;
1102
1103	if (unlikely(error == BLK_STS_TARGET)) {
1104		if (bio_op(bio) == REQ_OP_DISCARD &&
1105		    !bdev_max_discard_sectors(bio->bi_bdev))
1106			disable_discard(md);
1107		else if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
1108			 !bdev_write_zeroes_sectors(bio->bi_bdev))
1109			disable_write_zeroes(md);
1110	}
1111
1112	if (static_branch_unlikely(&zoned_enabled) &&
1113	    unlikely(bdev_is_zoned(bio->bi_bdev)))
1114		dm_zone_endio(io, bio);
1115
1116	if (endio) {
1117		int r = endio(ti, bio, &error);
1118		switch (r) {
1119		case DM_ENDIO_REQUEUE:
1120			if (static_branch_unlikely(&zoned_enabled)) {
1121				/*
1122				 * Requeuing writes to a sequential zone of a zoned
1123				 * target will break the sequential write pattern:
1124				 * fail such IO.
1125				 */
1126				if (WARN_ON_ONCE(dm_is_zone_write(md, bio)))
1127					error = BLK_STS_IOERR;
1128				else
1129					error = BLK_STS_DM_REQUEUE;
1130			} else
1131				error = BLK_STS_DM_REQUEUE;
1132			fallthrough;
1133		case DM_ENDIO_DONE:
1134			break;
1135		case DM_ENDIO_INCOMPLETE:
1136			/* The target will handle the io */
1137			return;
1138		default:
1139			DMCRIT("unimplemented target endio return value: %d", r);
1140			BUG();
1141		}
1142	}
1143
1144	if (static_branch_unlikely(&swap_bios_enabled) &&
1145	    unlikely(swap_bios_limit(ti, bio)))
1146		up(&md->swap_bios_semaphore);
1147
1148	free_tio(bio);
1149	dm_io_dec_pending(io, error);
1150}
1151
1152/*
1153 * Return maximum size of I/O possible at the supplied sector up to the current
1154 * target boundary.
1155 */
1156static inline sector_t max_io_len_target_boundary(struct dm_target *ti,
1157						  sector_t target_offset)
1158{
1159	return ti->len - target_offset;
 
 
 
 
 
 
 
 
1160}
1161
1162static sector_t max_io_len(struct dm_target *ti, sector_t sector)
1163{
1164	sector_t target_offset = dm_target_offset(ti, sector);
1165	sector_t len = max_io_len_target_boundary(ti, target_offset);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1166
1167	/*
1168	 * Does the target need to split IO even further?
1169	 * - varied (per target) IO splitting is a tenet of DM; this
1170	 *   explains why stacked chunk_sectors based splitting via
1171	 *   bio_split_to_limits() isn't possible here.
1172	 */
1173	if (!ti->max_io_len)
1174		return len;
1175	return min_t(sector_t, len,
1176		min(queue_max_sectors(ti->table->md->queue),
1177		    blk_chunk_sectors_left(target_offset, ti->max_io_len)));
1178}
1179
1180int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1181{
1182	if (len > UINT_MAX) {
1183		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1184		      (unsigned long long)len, UINT_MAX);
1185		ti->error = "Maximum size of target IO is too large";
1186		return -EINVAL;
1187	}
1188
1189	ti->max_io_len = (uint32_t) len;
 
1190
1191	return 0;
1192}
1193EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1194
1195static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1196						sector_t sector, int *srcu_idx)
1197	__acquires(md->io_barrier)
1198{
1199	struct dm_table *map;
1200	struct dm_target *ti;
 
 
1201
1202	map = dm_get_live_table(md, srcu_idx);
1203	if (!map)
1204		return NULL;
1205
1206	ti = dm_table_find_target(map, sector);
1207	if (!ti)
1208		return NULL;
1209
1210	return ti;
1211}
1212
1213static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1214		long nr_pages, enum dax_access_mode mode, void **kaddr,
1215		pfn_t *pfn)
1216{
1217	struct mapped_device *md = dax_get_private(dax_dev);
1218	sector_t sector = pgoff * PAGE_SECTORS;
1219	struct dm_target *ti;
1220	long len, ret = -EIO;
1221	int srcu_idx;
1222
1223	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
 
 
 
 
 
 
 
1224
1225	if (!ti)
1226		goto out;
1227	if (!ti->type->direct_access)
1228		goto out;
1229	len = max_io_len(ti, sector) / PAGE_SECTORS;
1230	if (len < 1)
1231		goto out;
1232	nr_pages = min(len, nr_pages);
1233	ret = ti->type->direct_access(ti, pgoff, nr_pages, mode, kaddr, pfn);
1234
1235 out:
1236	dm_put_live_table(md, srcu_idx);
1237
1238	return ret;
1239}
 
1240
1241static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
1242				  size_t nr_pages)
1243{
1244	struct mapped_device *md = dax_get_private(dax_dev);
1245	sector_t sector = pgoff * PAGE_SECTORS;
1246	struct dm_target *ti;
1247	int ret = -EIO;
1248	int srcu_idx;
1249
1250	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1251
1252	if (!ti)
1253		goto out;
1254	if (WARN_ON(!ti->type->dax_zero_page_range)) {
1255		/*
1256		 * ->zero_page_range() is mandatory dax operation. If we are
1257		 *  here, something is wrong.
1258		 */
1259		goto out;
1260	}
1261	ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages);
1262 out:
1263	dm_put_live_table(md, srcu_idx);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1264
1265	return ret;
1266}
1267
1268static size_t dm_dax_recovery_write(struct dax_device *dax_dev, pgoff_t pgoff,
1269		void *addr, size_t bytes, struct iov_iter *i)
1270{
1271	struct mapped_device *md = dax_get_private(dax_dev);
1272	sector_t sector = pgoff * PAGE_SECTORS;
1273	struct dm_target *ti;
1274	int srcu_idx;
1275	long ret = 0;
1276
1277	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1278	if (!ti || !ti->type->dax_recovery_write)
1279		goto out;
1280
1281	ret = ti->type->dax_recovery_write(ti, pgoff, addr, bytes, i);
1282out:
1283	dm_put_live_table(md, srcu_idx);
1284	return ret;
1285}
1286
1287/*
1288 * A target may call dm_accept_partial_bio only from the map routine.  It is
1289 * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_* zone management
1290 * operations, REQ_OP_ZONE_APPEND (zone append writes) and any bio serviced by
1291 * __send_duplicate_bios().
1292 *
1293 * dm_accept_partial_bio informs the dm that the target only wants to process
1294 * additional n_sectors sectors of the bio and the rest of the data should be
1295 * sent in a next bio.
1296 *
1297 * A diagram that explains the arithmetics:
1298 * +--------------------+---------------+-------+
1299 * |         1          |       2       |   3   |
1300 * +--------------------+---------------+-------+
1301 *
1302 * <-------------- *tio->len_ptr --------------->
1303 *                      <----- bio_sectors ----->
1304 *                      <-- n_sectors -->
1305 *
1306 * Region 1 was already iterated over with bio_advance or similar function.
1307 *	(it may be empty if the target doesn't use bio_advance)
1308 * Region 2 is the remaining bio size that the target wants to process.
1309 *	(it may be empty if region 1 is non-empty, although there is no reason
1310 *	 to make it empty)
1311 * The target requires that region 3 is to be sent in the next bio.
1312 *
1313 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1314 * the partially processed part (the sum of regions 1+2) must be the same for all
1315 * copies of the bio.
1316 */
1317void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1318{
1319	struct dm_target_io *tio = clone_to_tio(bio);
1320	struct dm_io *io = tio->io;
1321	unsigned bio_sectors = bio_sectors(bio);
1322
1323	BUG_ON(dm_tio_flagged(tio, DM_TIO_IS_DUPLICATE_BIO));
1324	BUG_ON(op_is_zone_mgmt(bio_op(bio)));
1325	BUG_ON(bio_op(bio) == REQ_OP_ZONE_APPEND);
1326	BUG_ON(bio_sectors > *tio->len_ptr);
1327	BUG_ON(n_sectors > bio_sectors);
1328
1329	*tio->len_ptr -= bio_sectors - n_sectors;
1330	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1331
1332	/*
1333	 * __split_and_process_bio() may have already saved mapped part
1334	 * for accounting but it is being reduced so update accordingly.
1335	 */
1336	dm_io_set_flag(io, DM_IO_WAS_SPLIT);
1337	io->sectors = n_sectors;
1338	io->sector_offset = bio_sectors(io->orig_bio);
1339}
1340EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
 
 
1341
1342/*
1343 * @clone: clone bio that DM core passed to target's .map function
1344 * @tgt_clone: clone of @clone bio that target needs submitted
1345 *
1346 * Targets should use this interface to submit bios they take
1347 * ownership of when returning DM_MAPIO_SUBMITTED.
1348 *
1349 * Target should also enable ti->accounts_remapped_io
1350 */
1351void dm_submit_bio_remap(struct bio *clone, struct bio *tgt_clone)
1352{
1353	struct dm_target_io *tio = clone_to_tio(clone);
1354	struct dm_io *io = tio->io;
 
 
 
 
 
 
1355
1356	/* establish bio that will get submitted */
1357	if (!tgt_clone)
1358		tgt_clone = clone;
1359
1360	/*
1361	 * Account io->origin_bio to DM dev on behalf of target
1362	 * that took ownership of IO with DM_MAPIO_SUBMITTED.
1363	 */
1364	dm_start_io_acct(io, clone);
 
 
 
 
1365
1366	trace_block_bio_remap(tgt_clone, disk_devt(io->md->disk),
1367			      tio->old_sector);
1368	submit_bio_noacct(tgt_clone);
1369}
1370EXPORT_SYMBOL_GPL(dm_submit_bio_remap);
 
 
 
 
 
 
 
 
 
 
1371
1372static noinline void __set_swap_bios_limit(struct mapped_device *md, int latch)
1373{
1374	mutex_lock(&md->swap_bios_lock);
1375	while (latch < md->swap_bios) {
1376		cond_resched();
1377		down(&md->swap_bios_semaphore);
1378		md->swap_bios--;
1379	}
1380	while (latch > md->swap_bios) {
1381		cond_resched();
1382		up(&md->swap_bios_semaphore);
1383		md->swap_bios++;
1384	}
1385	mutex_unlock(&md->swap_bios_lock);
1386}
1387
1388static void __map_bio(struct bio *clone)
1389{
1390	struct dm_target_io *tio = clone_to_tio(clone);
1391	struct dm_target *ti = tio->ti;
1392	struct dm_io *io = tio->io;
1393	struct mapped_device *md = io->md;
1394	int r;
1395
1396	clone->bi_end_io = clone_endio;
1397
 
1398	/*
1399	 * Map the clone.
1400	 */
1401	tio->old_sector = clone->bi_iter.bi_sector;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1402
1403	if (static_branch_unlikely(&swap_bios_enabled) &&
1404	    unlikely(swap_bios_limit(ti, clone))) {
1405		int latch = get_swap_bios();
1406		if (unlikely(latch != md->swap_bios))
1407			__set_swap_bios_limit(md, latch);
1408		down(&md->swap_bios_semaphore);
1409	}
1410
1411	if (static_branch_unlikely(&zoned_enabled)) {
1412		/*
1413		 * Check if the IO needs a special mapping due to zone append
1414		 * emulation on zoned target. In this case, dm_zone_map_bio()
1415		 * calls the target map operation.
1416		 */
1417		if (unlikely(dm_emulate_zone_append(md)))
1418			r = dm_zone_map_bio(tio);
1419		else
1420			r = ti->type->map(ti, clone);
1421	} else
1422		r = ti->type->map(ti, clone);
1423
1424	switch (r) {
1425	case DM_MAPIO_SUBMITTED:
1426		/* target has assumed ownership of this io */
1427		if (!ti->accounts_remapped_io)
1428			dm_start_io_acct(io, clone);
1429		break;
1430	case DM_MAPIO_REMAPPED:
1431		dm_submit_bio_remap(clone, NULL);
1432		break;
1433	case DM_MAPIO_KILL:
1434	case DM_MAPIO_REQUEUE:
1435		if (static_branch_unlikely(&swap_bios_enabled) &&
1436		    unlikely(swap_bios_limit(ti, clone)))
1437			up(&md->swap_bios_semaphore);
1438		free_tio(clone);
1439		if (r == DM_MAPIO_KILL)
1440			dm_io_dec_pending(io, BLK_STS_IOERR);
1441		else
1442			dm_io_dec_pending(io, BLK_STS_DM_REQUEUE);
1443		break;
1444	default:
1445		DMCRIT("unimplemented target map return value: %d", r);
1446		BUG();
1447	}
 
 
 
 
1448}
1449
1450static void setup_split_accounting(struct clone_info *ci, unsigned len)
1451{
1452	struct dm_io *io = ci->io;
1453
1454	if (ci->sector_count > len) {
1455		/*
1456		 * Split needed, save the mapped part for accounting.
1457		 * NOTE: dm_accept_partial_bio() will update accordingly.
1458		 */
1459		dm_io_set_flag(io, DM_IO_WAS_SPLIT);
1460		io->sectors = len;
1461		io->sector_offset = bio_sectors(ci->bio);
1462	}
1463}
1464
1465static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1466				struct dm_target *ti, unsigned num_bios)
1467{
1468	struct bio *bio;
1469	int try;
1470
1471	for (try = 0; try < 2; try++) {
1472		int bio_nr;
 
1473
1474		if (try)
1475			mutex_lock(&ci->io->md->table_devices_lock);
1476		for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1477			bio = alloc_tio(ci, ti, bio_nr, NULL,
1478					try ? GFP_NOIO : GFP_NOWAIT);
1479			if (!bio)
1480				break;
1481
1482			bio_list_add(blist, bio);
1483		}
1484		if (try)
1485			mutex_unlock(&ci->io->md->table_devices_lock);
1486		if (bio_nr == num_bios)
1487			return;
1488
1489		while ((bio = bio_list_pop(blist)))
1490			free_tio(bio);
1491	}
1492}
1493
1494static int __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1495				 unsigned int num_bios, unsigned *len)
1496{
1497	struct bio_list blist = BIO_EMPTY_LIST;
1498	struct bio *clone;
1499	unsigned int ret = 0;
1500
1501	switch (num_bios) {
1502	case 0:
1503		break;
1504	case 1:
1505		if (len)
1506			setup_split_accounting(ci, *len);
1507		clone = alloc_tio(ci, ti, 0, len, GFP_NOIO);
1508		__map_bio(clone);
1509		ret = 1;
1510		break;
1511	default:
1512		/* dm_accept_partial_bio() is not supported with shared tio->len_ptr */
1513		alloc_multiple_bios(&blist, ci, ti, num_bios);
1514		while ((clone = bio_list_pop(&blist))) {
1515			dm_tio_set_flag(clone_to_tio(clone), DM_TIO_IS_DUPLICATE_BIO);
1516			__map_bio(clone);
1517			ret += 1;
1518		}
1519		break;
1520	}
1521
1522	return ret;
 
 
 
1523}
 
1524
1525static void __send_empty_flush(struct clone_info *ci)
1526{
1527	struct dm_table *t = ci->map;
1528	struct bio flush_bio;
1529
1530	/*
1531	 * Use an on-stack bio for this, it's safe since we don't
1532	 * need to reference it after submit. It's just used as
1533	 * the basis for the clone(s).
1534	 */
1535	bio_init(&flush_bio, ci->io->md->disk->part0, NULL, 0,
1536		 REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC);
1537
1538	ci->bio = &flush_bio;
1539	ci->sector_count = 0;
1540	ci->io->tio.clone.bi_iter.bi_size = 0;
 
 
 
1541
1542	for (unsigned int i = 0; i < t->num_targets; i++) {
1543		unsigned int bios;
1544		struct dm_target *ti = dm_table_get_target(t, i);
1545
1546		atomic_add(ti->num_flush_bios, &ci->io->io_count);
1547		bios = __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1548		atomic_sub(ti->num_flush_bios - bios, &ci->io->io_count);
1549	}
 
1550
1551	/*
1552	 * alloc_io() takes one extra reference for submission, so the
1553	 * reference won't reach 0 without the following subtraction
1554	 */
1555	atomic_sub(1, &ci->io->io_count);
1556
1557	bio_uninit(ci->bio);
1558}
1559
1560static void __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti,
1561					unsigned num_bios)
1562{
1563	unsigned len;
1564	unsigned int bios;
1565
1566	len = min_t(sector_t, ci->sector_count,
1567		    max_io_len_target_boundary(ti, dm_target_offset(ti, ci->sector)));
 
 
1568
1569	atomic_add(num_bios, &ci->io->io_count);
1570	bios = __send_duplicate_bios(ci, ti, num_bios, &len);
1571	/*
1572	 * alloc_io() takes one extra reference for submission, so the
1573	 * reference won't reach 0 without the following (+1) subtraction
1574	 */
1575	atomic_sub(num_bios - bios + 1, &ci->io->io_count);
1576
1577	ci->sector += len;
1578	ci->sector_count -= len;
1579}
1580
1581static bool is_abnormal_io(struct bio *bio)
 
1582{
1583	enum req_op op = bio_op(bio);
 
 
 
 
 
1584
1585	if (op != REQ_OP_READ && op != REQ_OP_WRITE && op != REQ_OP_FLUSH) {
1586		switch (op) {
1587		case REQ_OP_DISCARD:
1588		case REQ_OP_SECURE_ERASE:
1589		case REQ_OP_WRITE_ZEROES:
1590			return true;
1591		default:
1592			break;
1593		}
 
 
1594	}
1595
1596	return false;
1597}
1598
1599static blk_status_t __process_abnormal_io(struct clone_info *ci,
1600					  struct dm_target *ti)
 
 
1601{
1602	unsigned num_bios = 0;
 
1603
1604	switch (bio_op(ci->bio)) {
1605	case REQ_OP_DISCARD:
1606		num_bios = ti->num_discard_bios;
1607		break;
1608	case REQ_OP_SECURE_ERASE:
1609		num_bios = ti->num_secure_erase_bios;
1610		break;
1611	case REQ_OP_WRITE_ZEROES:
1612		num_bios = ti->num_write_zeroes_bios;
1613		break;
1614	default:
1615		break;
1616	}
1617
1618	/*
1619	 * Even though the device advertised support for this type of
1620	 * request, that does not mean every target supports it, and
1621	 * reconfiguration might also have changed that since the
1622	 * check was performed.
1623	 */
1624	if (unlikely(!num_bios))
1625		return BLK_STS_NOTSUPP;
1626
1627	__send_changing_extent_only(ci, ti, num_bios);
1628	return BLK_STS_OK;
1629}
1630
1631/*
1632 * Reuse ->bi_private as dm_io list head for storing all dm_io instances
1633 * associated with this bio, and this bio's bi_private needs to be
1634 * stored in dm_io->data before the reuse.
1635 *
1636 * bio->bi_private is owned by fs or upper layer, so block layer won't
1637 * touch it after splitting. Meantime it won't be changed by anyone after
1638 * bio is submitted. So this reuse is safe.
1639 */
1640static inline struct dm_io **dm_poll_list_head(struct bio *bio)
 
1641{
1642	return (struct dm_io **)&bio->bi_private;
1643}
1644
1645static void dm_queue_poll_io(struct bio *bio, struct dm_io *io)
1646{
1647	struct dm_io **head = dm_poll_list_head(bio);
 
 
 
 
 
1648
1649	if (!(bio->bi_opf & REQ_DM_POLL_LIST)) {
1650		bio->bi_opf |= REQ_DM_POLL_LIST;
1651		/*
1652		 * Save .bi_private into dm_io, so that we can reuse
1653		 * .bi_private as dm_io list head for storing dm_io list
1654		 */
1655		io->data = bio->bi_private;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1656
1657		/* tell block layer to poll for completion */
1658		bio->bi_cookie = ~BLK_QC_T_NONE;
1659
1660		io->next = NULL;
1661	} else {
1662		/*
1663		 * bio recursed due to split, reuse original poll list,
1664		 * and save bio->bi_private too.
1665		 */
1666		io->data = (*head)->data;
1667		io->next = *head;
1668	}
1669
1670	*head = io;
1671}
1672
1673/*
1674 * Select the correct strategy for processing a non-flush bio.
 
1675 */
1676static blk_status_t __split_and_process_bio(struct clone_info *ci)
1677{
1678	struct bio *clone;
 
1679	struct dm_target *ti;
1680	unsigned len;
1681
1682	ti = dm_table_find_target(ci->map, ci->sector);
1683	if (unlikely(!ti))
1684		return BLK_STS_IOERR;
1685
1686	if (unlikely((ci->bio->bi_opf & REQ_NOWAIT) != 0) &&
1687	    unlikely(!dm_target_supports_nowait(ti->type)))
1688		return BLK_STS_NOTSUPP;
1689
1690	if (unlikely(ci->is_abnormal_io))
1691		return __process_abnormal_io(ci, ti);
1692
1693	/*
1694	 * Only support bio polling for normal IO, and the target io is
1695	 * exactly inside the dm_io instance (verified in dm_poll_dm_io)
 
 
1696	 */
1697	ci->submit_as_polled = !!(ci->bio->bi_opf & REQ_POLLED);
 
 
 
1698
1699	len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count);
1700	setup_split_accounting(ci, len);
1701	clone = alloc_tio(ci, ti, 0, &len, GFP_NOIO);
1702	__map_bio(clone);
1703
1704	ci->sector += len;
1705	ci->sector_count -= len;
1706
1707	return BLK_STS_OK;
1708}
1709
1710static void init_clone_info(struct clone_info *ci, struct mapped_device *md,
1711			    struct dm_table *map, struct bio *bio, bool is_abnormal)
1712{
1713	ci->map = map;
1714	ci->io = alloc_io(md, bio);
1715	ci->bio = bio;
1716	ci->is_abnormal_io = is_abnormal;
1717	ci->submit_as_polled = false;
1718	ci->sector = bio->bi_iter.bi_sector;
1719	ci->sector_count = bio_sectors(bio);
1720
1721	/* Shouldn't happen but sector_count was being set to 0 so... */
1722	if (static_branch_unlikely(&zoned_enabled) &&
1723	    WARN_ON_ONCE(op_is_zone_mgmt(bio_op(bio)) && ci->sector_count))
1724		ci->sector_count = 0;
1725}
1726
1727/*
1728 * Entry point to split a bio into clones and submit them to the targets.
1729 */
1730static void dm_split_and_process_bio(struct mapped_device *md,
1731				     struct dm_table *map, struct bio *bio)
1732{
1733	struct clone_info ci;
1734	struct dm_io *io;
1735	blk_status_t error = BLK_STS_OK;
1736	bool is_abnormal;
1737
1738	is_abnormal = is_abnormal_io(bio);
1739	if (unlikely(is_abnormal)) {
1740		/*
1741		 * Use bio_split_to_limits() for abnormal IO (e.g. discard, etc)
1742		 * otherwise associated queue_limits won't be imposed.
1743		 */
1744		bio = bio_split_to_limits(bio);
1745		if (!bio)
1746			return;
1747	}
1748
1749	init_clone_info(&ci, md, map, bio, is_abnormal);
1750	io = ci.io;
1751
1752	if (bio->bi_opf & REQ_PREFLUSH) {
1753		__send_empty_flush(&ci);
1754		/* dm_io_complete submits any data associated with flush */
1755		goto out;
1756	}
1757
1758	error = __split_and_process_bio(&ci);
1759	if (error || !ci.sector_count)
1760		goto out;
1761	/*
1762	 * Remainder must be passed to submit_bio_noacct() so it gets handled
1763	 * *after* bios already submitted have been completely processed.
1764	 */
1765	bio_trim(bio, io->sectors, ci.sector_count);
1766	trace_block_split(bio, bio->bi_iter.bi_sector);
1767	bio_inc_remaining(bio);
1768	submit_bio_noacct(bio);
1769out:
1770	/*
1771	 * Drop the extra reference count for non-POLLED bio, and hold one
1772	 * reference for POLLED bio, which will be released in dm_poll_bio
1773	 *
1774	 * Add every dm_io instance into the dm_io list head which is stored
1775	 * in bio->bi_private, so that dm_poll_bio can poll them all.
1776	 */
1777	if (error || !ci.submit_as_polled) {
1778		/*
1779		 * In case of submission failure, the extra reference for
1780		 * submitting io isn't consumed yet
1781		 */
1782		if (error)
1783			atomic_dec(&io->io_count);
1784		dm_io_dec_pending(io, error);
1785	} else
1786		dm_queue_poll_io(bio, io);
1787}
1788
1789static void dm_submit_bio(struct bio *bio)
1790{
1791	struct mapped_device *md = bio->bi_bdev->bd_disk->private_data;
1792	int srcu_idx;
1793	struct dm_table *map;
1794	blk_opf_t bio_opf = bio->bi_opf;
1795
1796	map = dm_get_live_table_bio(md, &srcu_idx, bio_opf);
1797
1798	/* If suspended, or map not yet available, queue this IO for later */
1799	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) ||
1800	    unlikely(!map)) {
1801		if (bio->bi_opf & REQ_NOWAIT)
1802			bio_wouldblock_error(bio);
1803		else if (bio->bi_opf & REQ_RAHEAD)
1804			bio_io_error(bio);
1805		else
1806			queue_io(md, bio);
1807		goto out;
1808	}
1809
1810	dm_split_and_process_bio(md, map, bio);
1811out:
1812	dm_put_live_table_bio(md, srcu_idx, bio_opf);
1813}
 
1814
1815static bool dm_poll_dm_io(struct dm_io *io, struct io_comp_batch *iob,
1816			  unsigned int flags)
1817{
1818	WARN_ON_ONCE(!dm_tio_is_normal(&io->tio));
 
 
 
 
 
 
 
1819
1820	/* don't poll if the mapped io is done */
1821	if (atomic_read(&io->io_count) > 1)
1822		bio_poll(&io->tio.clone, iob, flags);
1823
1824	/* bio_poll holds the last reference */
1825	return atomic_read(&io->io_count) == 1;
1826}
1827
1828static int dm_poll_bio(struct bio *bio, struct io_comp_batch *iob,
1829		       unsigned int flags)
1830{
1831	struct dm_io **head = dm_poll_list_head(bio);
1832	struct dm_io *list = *head;
1833	struct dm_io *tmp = NULL;
1834	struct dm_io *curr, *next;
1835
1836	/* Only poll normal bio which was marked as REQ_DM_POLL_LIST */
1837	if (!(bio->bi_opf & REQ_DM_POLL_LIST))
1838		return 0;
1839
1840	WARN_ON_ONCE(!list);
1841
1842	/*
1843	 * Restore .bi_private before possibly completing dm_io.
1844	 *
1845	 * bio_poll() is only possible once @bio has been completely
1846	 * submitted via submit_bio_noacct()'s depth-first submission.
1847	 * So there is no dm_queue_poll_io() race associated with
1848	 * clearing REQ_DM_POLL_LIST here.
1849	 */
1850	bio->bi_opf &= ~REQ_DM_POLL_LIST;
1851	bio->bi_private = list->data;
1852
1853	for (curr = list, next = curr->next; curr; curr = next, next =
1854			curr ? curr->next : NULL) {
1855		if (dm_poll_dm_io(curr, iob, flags)) {
1856			/*
1857			 * clone_endio() has already occurred, so no
1858			 * error handling is needed here.
1859			 */
1860			__dm_io_dec_pending(curr);
1861		} else {
1862			curr->next = tmp;
1863			tmp = curr;
 
 
 
1864		}
1865	}
1866
1867	/* Not done? */
1868	if (tmp) {
1869		bio->bi_opf |= REQ_DM_POLL_LIST;
1870		/* Reset bio->bi_private to dm_io list head */
1871		*head = tmp;
1872		return 0;
1873	}
1874	return 1;
1875}
1876
1877/*-----------------------------------------------------------------
1878 * An IDR is used to keep track of allocated minor numbers.
1879 *---------------------------------------------------------------*/
1880static void free_minor(int minor)
1881{
1882	spin_lock(&_minor_lock);
1883	idr_remove(&_minor_idr, minor);
1884	spin_unlock(&_minor_lock);
1885}
1886
1887/*
1888 * See if the device with a specific minor # is free.
1889 */
1890static int specific_minor(int minor)
1891{
1892	int r;
1893
1894	if (minor >= (1 << MINORBITS))
1895		return -EINVAL;
1896
1897	idr_preload(GFP_KERNEL);
 
 
 
1898	spin_lock(&_minor_lock);
1899
1900	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
 
 
 
 
 
 
 
 
 
 
 
 
 
1901
 
1902	spin_unlock(&_minor_lock);
1903	idr_preload_end();
1904	if (r < 0)
1905		return r == -ENOSPC ? -EBUSY : r;
1906	return 0;
1907}
1908
1909static int next_free_minor(int *minor)
1910{
1911	int r;
 
 
 
 
1912
1913	idr_preload(GFP_KERNEL);
1914	spin_lock(&_minor_lock);
1915
1916	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
 
 
 
 
 
 
 
 
 
 
1917
 
1918	spin_unlock(&_minor_lock);
1919	idr_preload_end();
1920	if (r < 0)
1921		return r;
1922	*minor = r;
1923	return 0;
1924}
1925
1926static const struct block_device_operations dm_blk_dops;
1927static const struct block_device_operations dm_rq_blk_dops;
1928static const struct dax_operations dm_dax_ops;
1929
1930static void dm_wq_work(struct work_struct *work);
1931
1932#ifdef CONFIG_BLK_INLINE_ENCRYPTION
1933static void dm_queue_destroy_crypto_profile(struct request_queue *q)
1934{
1935	dm_destroy_crypto_profile(q->crypto_profile);
1936}
 
 
 
 
 
 
 
 
1937
1938#else /* CONFIG_BLK_INLINE_ENCRYPTION */
1939
1940static inline void dm_queue_destroy_crypto_profile(struct request_queue *q)
1941{
1942}
1943#endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
1944
1945static void cleanup_mapped_device(struct mapped_device *md)
1946{
1947	if (md->wq)
1948		destroy_workqueue(md->wq);
1949	dm_free_md_mempools(md->mempools);
1950
1951	if (md->dax_dev) {
1952		dax_remove_host(md->disk);
1953		kill_dax(md->dax_dev);
1954		put_dax(md->dax_dev);
1955		md->dax_dev = NULL;
1956	}
1957
1958	dm_cleanup_zoned_dev(md);
1959	if (md->disk) {
1960		spin_lock(&_minor_lock);
1961		md->disk->private_data = NULL;
1962		spin_unlock(&_minor_lock);
1963		if (dm_get_md_type(md) != DM_TYPE_NONE) {
1964			struct table_device *td;
1965
1966			dm_sysfs_exit(md);
1967			list_for_each_entry(td, &md->table_devices, list) {
1968				bd_unlink_disk_holder(td->dm_dev.bdev,
1969						      md->disk);
1970			}
1971
1972			/*
1973			 * Hold lock to make sure del_gendisk() won't concurrent
1974			 * with open/close_table_device().
1975			 */
1976			mutex_lock(&md->table_devices_lock);
1977			del_gendisk(md->disk);
1978			mutex_unlock(&md->table_devices_lock);
1979		}
1980		dm_queue_destroy_crypto_profile(md->queue);
1981		put_disk(md->disk);
1982	}
1983
1984	if (md->pending_io) {
1985		free_percpu(md->pending_io);
1986		md->pending_io = NULL;
1987	}
1988
1989	cleanup_srcu_struct(&md->io_barrier);
1990
1991	mutex_destroy(&md->suspend_lock);
1992	mutex_destroy(&md->type_lock);
1993	mutex_destroy(&md->table_devices_lock);
1994	mutex_destroy(&md->swap_bios_lock);
1995
1996	dm_mq_cleanup_mapped_device(md);
1997}
1998
1999/*
2000 * Allocate and initialise a blank device with a given minor.
2001 */
2002static struct mapped_device *alloc_dev(int minor)
2003{
2004	int r, numa_node_id = dm_get_numa_node();
2005	struct mapped_device *md;
2006	void *old_md;
2007
2008	md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
2009	if (!md) {
2010		DMERR("unable to allocate device, out of memory.");
2011		return NULL;
2012	}
2013
2014	if (!try_module_get(THIS_MODULE))
2015		goto bad_module_get;
2016
2017	/* get a minor number for the dev */
2018	if (minor == DM_ANY_MINOR)
2019		r = next_free_minor(&minor);
2020	else
2021		r = specific_minor(minor);
2022	if (r < 0)
2023		goto bad_minor;
2024
2025	r = init_srcu_struct(&md->io_barrier);
2026	if (r < 0)
2027		goto bad_io_barrier;
2028
2029	md->numa_node_id = numa_node_id;
2030	md->init_tio_pdu = false;
2031	md->type = DM_TYPE_NONE;
 
2032	mutex_init(&md->suspend_lock);
2033	mutex_init(&md->type_lock);
2034	mutex_init(&md->table_devices_lock);
2035	spin_lock_init(&md->deferred_lock);
 
2036	atomic_set(&md->holders, 1);
2037	atomic_set(&md->open_count, 0);
2038	atomic_set(&md->event_nr, 0);
2039	atomic_set(&md->uevent_seq, 0);
2040	INIT_LIST_HEAD(&md->uevent_list);
2041	INIT_LIST_HEAD(&md->table_devices);
2042	spin_lock_init(&md->uevent_lock);
2043
2044	/*
2045	 * default to bio-based until DM table is loaded and md->type
2046	 * established. If request-based table is loaded: blk-mq will
2047	 * override accordingly.
2048	 */
2049	md->disk = blk_alloc_disk(md->numa_node_id);
 
2050	if (!md->disk)
2051		goto bad;
2052	md->queue = md->disk->queue;
2053
 
 
2054	init_waitqueue_head(&md->wait);
2055	INIT_WORK(&md->work, dm_wq_work);
2056	INIT_WORK(&md->requeue_work, dm_wq_requeue_work);
2057	init_waitqueue_head(&md->eventq);
2058	init_completion(&md->kobj_holder.completion);
2059
2060	md->requeue_list = NULL;
2061	md->swap_bios = get_swap_bios();
2062	sema_init(&md->swap_bios_semaphore, md->swap_bios);
2063	mutex_init(&md->swap_bios_lock);
2064
2065	md->disk->major = _major;
2066	md->disk->first_minor = minor;
2067	md->disk->minors = 1;
2068	md->disk->flags |= GENHD_FL_NO_PART;
2069	md->disk->fops = &dm_blk_dops;
 
2070	md->disk->private_data = md;
2071	sprintf(md->disk->disk_name, "dm-%d", minor);
2072
2073	if (IS_ENABLED(CONFIG_FS_DAX)) {
2074		md->dax_dev = alloc_dax(md, &dm_dax_ops);
2075		if (IS_ERR(md->dax_dev)) {
2076			md->dax_dev = NULL;
2077			goto bad;
2078		}
2079		set_dax_nocache(md->dax_dev);
2080		set_dax_nomc(md->dax_dev);
2081		if (dax_add_host(md->dax_dev, md->disk))
2082			goto bad;
2083	}
2084
2085	format_dev_t(md->name, MKDEV(_major, minor));
2086
2087	md->wq = alloc_workqueue("kdmflush/%s", WQ_MEM_RECLAIM, 0, md->name);
 
2088	if (!md->wq)
2089		goto bad;
2090
2091	md->pending_io = alloc_percpu(unsigned long);
2092	if (!md->pending_io)
2093		goto bad;
2094
2095	dm_stats_init(&md->stats);
 
 
 
 
 
 
2096
2097	/* Populate the mapping, nobody knows we exist yet */
2098	spin_lock(&_minor_lock);
2099	old_md = idr_replace(&_minor_idr, md, minor);
2100	spin_unlock(&_minor_lock);
2101
2102	BUG_ON(old_md != MINOR_ALLOCED);
2103
2104	return md;
2105
2106bad:
2107	cleanup_mapped_device(md);
2108bad_io_barrier:
 
 
 
 
 
2109	free_minor(minor);
2110bad_minor:
2111	module_put(THIS_MODULE);
2112bad_module_get:
2113	kvfree(md);
2114	return NULL;
2115}
2116
2117static void unlock_fs(struct mapped_device *md);
2118
2119static void free_dev(struct mapped_device *md)
2120{
2121	int minor = MINOR(disk_devt(md->disk));
2122
2123	unlock_fs(md);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2124
2125	cleanup_mapped_device(md);
 
2126
2127	WARN_ON_ONCE(!list_empty(&md->table_devices));
2128	dm_stats_cleanup(&md->stats);
2129	free_minor(minor);
 
 
 
2130
2131	module_put(THIS_MODULE);
2132	kvfree(md);
 
2133}
2134
2135/*
2136 * Bind a table to the device.
2137 */
2138static void event_callback(void *context)
2139{
2140	unsigned long flags;
2141	LIST_HEAD(uevents);
2142	struct mapped_device *md = (struct mapped_device *) context;
2143
2144	spin_lock_irqsave(&md->uevent_lock, flags);
2145	list_splice_init(&md->uevent_list, &uevents);
2146	spin_unlock_irqrestore(&md->uevent_lock, flags);
2147
2148	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2149
2150	atomic_inc(&md->event_nr);
2151	wake_up(&md->eventq);
2152	dm_issue_global_event();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2153}
2154
2155/*
2156 * Returns old map, which caller must destroy.
2157 */
2158static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2159			       struct queue_limits *limits)
2160{
2161	struct dm_table *old_map;
 
2162	sector_t size;
2163	int ret;
2164
2165	lockdep_assert_held(&md->suspend_lock);
2166
2167	size = dm_table_get_size(t);
2168
2169	/*
2170	 * Wipe any geometry if the size of the table changed.
2171	 */
2172	if (size != dm_get_size(md))
2173		memset(&md->geometry, 0, sizeof(md->geometry));
2174
2175	if (!get_capacity(md->disk))
2176		set_capacity(md->disk, size);
2177	else
2178		set_capacity_and_notify(md->disk, size);
2179
2180	dm_table_event_callback(t, event_callback, md);
2181
2182	if (dm_table_request_based(t)) {
2183		/*
2184		 * Leverage the fact that request-based DM targets are
2185		 * immutable singletons - used to optimize dm_mq_queue_rq.
2186		 */
2187		md->immutable_target = dm_table_get_immutable_target(t);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2188
2189		/*
2190		 * There is no need to reload with request-based dm because the
2191		 * size of front_pad doesn't change.
2192		 *
2193		 * Note for future: If you are to reload bioset, prep-ed
2194		 * requests in the queue may refer to bio from the old bioset,
2195		 * so you must walk through the queue to unprep.
2196		 */
2197		if (!md->mempools) {
2198			md->mempools = t->mempools;
2199			t->mempools = NULL;
2200		}
2201	} else {
2202		/*
2203		 * The md may already have mempools that need changing.
2204		 * If so, reload bioset because front_pad may have changed
2205		 * because a different table was loaded.
2206		 */
2207		dm_free_md_mempools(md->mempools);
2208		md->mempools = t->mempools;
2209		t->mempools = NULL;
2210	}
2211
2212	ret = dm_table_set_restrictions(t, md->queue, limits);
2213	if (ret) {
2214		old_map = ERR_PTR(ret);
2215		goto out;
2216	}
2217
2218	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2219	rcu_assign_pointer(md->map, (void *)t);
2220	md->immutable_target_type = dm_table_get_immutable_target_type(t);
2221
2222	if (old_map)
2223		dm_sync_table(md);
2224out:
2225	return old_map;
2226}
2227
2228/*
2229 * Returns unbound table for the caller to free.
2230 */
2231static struct dm_table *__unbind(struct mapped_device *md)
2232{
2233	struct dm_table *map = rcu_dereference_protected(md->map, 1);
 
2234
2235	if (!map)
2236		return NULL;
2237
2238	dm_table_event_callback(map, NULL, NULL);
2239	RCU_INIT_POINTER(md->map, NULL);
2240	dm_sync_table(md);
 
2241
2242	return map;
2243}
2244
2245/*
2246 * Constructor for a new device.
2247 */
2248int dm_create(int minor, struct mapped_device **result)
2249{
2250	struct mapped_device *md;
2251
2252	md = alloc_dev(minor);
2253	if (!md)
2254		return -ENXIO;
2255
2256	dm_ima_reset_data(md);
2257
2258	*result = md;
2259	return 0;
2260}
2261
2262/*
2263 * Functions to manage md->type.
2264 * All are required to hold md->type_lock.
2265 */
2266void dm_lock_md_type(struct mapped_device *md)
2267{
2268	mutex_lock(&md->type_lock);
2269}
2270
2271void dm_unlock_md_type(struct mapped_device *md)
2272{
2273	mutex_unlock(&md->type_lock);
2274}
2275
2276void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2277{
2278	BUG_ON(!mutex_is_locked(&md->type_lock));
2279	md->type = type;
2280}
2281
2282enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2283{
2284	return md->type;
2285}
2286
2287struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2288{
2289	return md->immutable_target_type;
2290}
2291
2292/*
2293 * The queue_limits are only valid as long as you have a reference
2294 * count on 'md'.
2295 */
2296struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2297{
2298	BUG_ON(!atomic_read(&md->holders));
2299	return &md->queue->limits;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2300}
2301EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2302
2303/*
2304 * Setup the DM device's queue based on md's type
2305 */
2306int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2307{
2308	enum dm_queue_mode type = dm_table_get_type(t);
2309	struct queue_limits limits;
2310	struct table_device *td;
2311	int r;
2312
2313	switch (type) {
2314	case DM_TYPE_REQUEST_BASED:
2315		md->disk->fops = &dm_rq_blk_dops;
2316		r = dm_mq_init_request_queue(md, t);
2317		if (r) {
2318			DMERR("Cannot initialize queue for request-based dm mapped device");
2319			return r;
2320		}
2321		break;
2322	case DM_TYPE_BIO_BASED:
2323	case DM_TYPE_DAX_BIO_BASED:
2324		break;
2325	case DM_TYPE_NONE:
2326		WARN_ON_ONCE(true);
2327		break;
2328	}
2329
2330	r = dm_calculate_queue_limits(t, &limits);
2331	if (r) {
2332		DMERR("Cannot calculate initial queue limits");
2333		return r;
2334	}
2335	r = dm_table_set_restrictions(t, md->queue, &limits);
2336	if (r)
2337		return r;
2338
2339	/*
2340	 * Hold lock to make sure add_disk() and del_gendisk() won't concurrent
2341	 * with open_table_device() and close_table_device().
2342	 */
2343	mutex_lock(&md->table_devices_lock);
2344	r = add_disk(md->disk);
2345	mutex_unlock(&md->table_devices_lock);
2346	if (r)
2347		return r;
2348
2349	/*
2350	 * Register the holder relationship for devices added before the disk
2351	 * was live.
2352	 */
2353	list_for_each_entry(td, &md->table_devices, list) {
2354		r = bd_link_disk_holder(td->dm_dev.bdev, md->disk);
2355		if (r)
2356			goto out_undo_holders;
2357	}
2358
2359	r = dm_sysfs_init(md);
2360	if (r)
2361		goto out_undo_holders;
2362
2363	md->type = type;
2364	return 0;
2365
2366out_undo_holders:
2367	list_for_each_entry_continue_reverse(td, &md->table_devices, list)
2368		bd_unlink_disk_holder(td->dm_dev.bdev, md->disk);
2369	mutex_lock(&md->table_devices_lock);
2370	del_gendisk(md->disk);
2371	mutex_unlock(&md->table_devices_lock);
2372	return r;
2373}
2374
2375struct mapped_device *dm_get_md(dev_t dev)
2376{
2377	struct mapped_device *md;
2378	unsigned minor = MINOR(dev);
2379
2380	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2381		return NULL;
2382
2383	spin_lock(&_minor_lock);
2384
2385	md = idr_find(&_minor_idr, minor);
2386	if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2387	    test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
 
 
2388		md = NULL;
2389		goto out;
2390	}
2391	dm_get(md);
2392out:
2393	spin_unlock(&_minor_lock);
2394
2395	return md;
2396}
2397EXPORT_SYMBOL_GPL(dm_get_md);
 
 
 
 
 
 
 
 
 
2398
2399void *dm_get_mdptr(struct mapped_device *md)
2400{
2401	return md->interface_ptr;
2402}
2403
2404void dm_set_mdptr(struct mapped_device *md, void *ptr)
2405{
2406	md->interface_ptr = ptr;
2407}
2408
2409void dm_get(struct mapped_device *md)
2410{
2411	atomic_inc(&md->holders);
2412	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2413}
2414
2415int dm_hold(struct mapped_device *md)
2416{
2417	spin_lock(&_minor_lock);
2418	if (test_bit(DMF_FREEING, &md->flags)) {
2419		spin_unlock(&_minor_lock);
2420		return -EBUSY;
2421	}
2422	dm_get(md);
2423	spin_unlock(&_minor_lock);
2424	return 0;
2425}
2426EXPORT_SYMBOL_GPL(dm_hold);
2427
2428const char *dm_device_name(struct mapped_device *md)
2429{
2430	return md->name;
2431}
2432EXPORT_SYMBOL_GPL(dm_device_name);
2433
2434static void __dm_destroy(struct mapped_device *md, bool wait)
2435{
2436	struct dm_table *map;
2437	int srcu_idx;
2438
2439	might_sleep();
2440
2441	spin_lock(&_minor_lock);
 
2442	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2443	set_bit(DMF_FREEING, &md->flags);
2444	spin_unlock(&_minor_lock);
2445
2446	blk_mark_disk_dead(md->disk);
2447
2448	/*
2449	 * Take suspend_lock so that presuspend and postsuspend methods
2450	 * do not race with internal suspend.
2451	 */
2452	mutex_lock(&md->suspend_lock);
2453	map = dm_get_live_table(md, &srcu_idx);
2454	if (!dm_suspended_md(md)) {
2455		dm_table_presuspend_targets(map);
2456		set_bit(DMF_SUSPENDED, &md->flags);
2457		set_bit(DMF_POST_SUSPENDING, &md->flags);
2458		dm_table_postsuspend_targets(map);
2459	}
2460	/* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2461	dm_put_live_table(md, srcu_idx);
2462	mutex_unlock(&md->suspend_lock);
2463
2464	/*
2465	 * Rare, but there may be I/O requests still going to complete,
2466	 * for example.  Wait for all references to disappear.
2467	 * No one should increment the reference count of the mapped_device,
2468	 * after the mapped_device state becomes DMF_FREEING.
2469	 */
2470	if (wait)
2471		while (atomic_read(&md->holders))
2472			msleep(1);
2473	else if (atomic_read(&md->holders))
2474		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2475		       dm_device_name(md), atomic_read(&md->holders));
2476
 
 
2477	dm_table_destroy(__unbind(md));
2478	free_dev(md);
2479}
2480
2481void dm_destroy(struct mapped_device *md)
2482{
2483	__dm_destroy(md, true);
2484}
2485
2486void dm_destroy_immediate(struct mapped_device *md)
2487{
2488	__dm_destroy(md, false);
2489}
2490
2491void dm_put(struct mapped_device *md)
2492{
2493	atomic_dec(&md->holders);
2494}
2495EXPORT_SYMBOL_GPL(dm_put);
2496
2497static bool dm_in_flight_bios(struct mapped_device *md)
2498{
2499	int cpu;
2500	unsigned long sum = 0;
2501
2502	for_each_possible_cpu(cpu)
2503		sum += *per_cpu_ptr(md->pending_io, cpu);
2504
2505	return sum != 0;
2506}
2507
2508static int dm_wait_for_bios_completion(struct mapped_device *md, unsigned int task_state)
2509{
2510	int r = 0;
2511	DEFINE_WAIT(wait);
2512
2513	while (true) {
2514		prepare_to_wait(&md->wait, &wait, task_state);
2515
2516		if (!dm_in_flight_bios(md))
 
2517			break;
2518
2519		if (signal_pending_state(task_state, current)) {
 
2520			r = -EINTR;
2521			break;
2522		}
2523
2524		io_schedule();
2525	}
2526	finish_wait(&md->wait, &wait);
2527
2528	smp_rmb();
2529
2530	return r;
2531}
2532
2533static int dm_wait_for_completion(struct mapped_device *md, unsigned int task_state)
2534{
2535	int r = 0;
2536
2537	if (!queue_is_mq(md->queue))
2538		return dm_wait_for_bios_completion(md, task_state);
2539
2540	while (true) {
2541		if (!blk_mq_queue_inflight(md->queue))
2542			break;
2543
2544		if (signal_pending_state(task_state, current)) {
2545			r = -EINTR;
2546			break;
2547		}
2548
2549		msleep(5);
2550	}
2551
2552	return r;
2553}
2554
2555/*
2556 * Process the deferred bios
2557 */
2558static void dm_wq_work(struct work_struct *work)
2559{
2560	struct mapped_device *md = container_of(work, struct mapped_device, work);
2561	struct bio *bio;
 
 
 
2562
2563	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2564		spin_lock_irq(&md->deferred_lock);
2565		bio = bio_list_pop(&md->deferred);
2566		spin_unlock_irq(&md->deferred_lock);
2567
2568		if (!bio)
2569			break;
2570
2571		submit_bio_noacct(bio);
 
 
 
 
 
 
 
2572	}
 
 
2573}
2574
2575static void dm_queue_flush(struct mapped_device *md)
2576{
2577	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2578	smp_mb__after_atomic();
2579	queue_work(md->wq, &md->work);
2580}
2581
2582/*
2583 * Swap in a new table, returning the old one for the caller to destroy.
2584 */
2585struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2586{
2587	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2588	struct queue_limits limits;
2589	int r;
2590
2591	mutex_lock(&md->suspend_lock);
2592
2593	/* device must be suspended */
2594	if (!dm_suspended_md(md))
2595		goto out;
2596
2597	/*
2598	 * If the new table has no data devices, retain the existing limits.
2599	 * This helps multipath with queue_if_no_path if all paths disappear,
2600	 * then new I/O is queued based on these limits, and then some paths
2601	 * reappear.
2602	 */
2603	if (dm_table_has_no_data_devices(table)) {
2604		live_map = dm_get_live_table_fast(md);
2605		if (live_map)
2606			limits = md->queue->limits;
2607		dm_put_live_table_fast(md);
2608	}
2609
2610	if (!live_map) {
2611		r = dm_calculate_queue_limits(table, &limits);
2612		if (r) {
2613			map = ERR_PTR(r);
2614			goto out;
2615		}
2616	}
2617
2618	map = __bind(md, table, &limits);
2619	dm_issue_global_event();
2620
2621out:
2622	mutex_unlock(&md->suspend_lock);
2623	return map;
2624}
2625
2626/*
2627 * Functions to lock and unlock any filesystem running on the
2628 * device.
2629 */
2630static int lock_fs(struct mapped_device *md)
2631{
2632	int r;
2633
2634	WARN_ON(test_bit(DMF_FROZEN, &md->flags));
 
 
 
 
 
 
 
 
 
2635
2636	r = freeze_bdev(md->disk->part0);
2637	if (!r)
2638		set_bit(DMF_FROZEN, &md->flags);
2639	return r;
2640}
2641
2642static void unlock_fs(struct mapped_device *md)
2643{
2644	if (!test_bit(DMF_FROZEN, &md->flags))
2645		return;
2646	thaw_bdev(md->disk->part0);
 
 
2647	clear_bit(DMF_FROZEN, &md->flags);
2648}
2649
2650/*
2651 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2652 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2653 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
 
 
 
 
 
2654 *
2655 * If __dm_suspend returns 0, the device is completely quiescent
2656 * now. There is no request-processing activity. All new requests
2657 * are being added to md->deferred list.
2658 */
2659static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2660			unsigned suspend_flags, unsigned int task_state,
2661			int dmf_suspended_flag)
2662{
2663	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2664	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2665	int r;
 
 
 
 
 
 
 
 
2666
2667	lockdep_assert_held(&md->suspend_lock);
2668
2669	/*
2670	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2671	 * This flag is cleared before dm_suspend returns.
2672	 */
2673	if (noflush)
2674		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2675	else
2676		DMDEBUG("%s: suspending with flush", dm_device_name(md));
2677
2678	/*
2679	 * This gets reverted if there's an error later and the targets
2680	 * provide the .presuspend_undo hook.
2681	 */
2682	dm_table_presuspend_targets(map);
2683
2684	/*
2685	 * Flush I/O to the device.
2686	 * Any I/O submitted after lock_fs() may not be flushed.
2687	 * noflush takes precedence over do_lockfs.
2688	 * (lock_fs() flushes I/Os and waits for them to complete.)
2689	 */
2690	if (!noflush && do_lockfs) {
2691		r = lock_fs(md);
2692		if (r) {
2693			dm_table_presuspend_undo_targets(map);
2694			return r;
2695		}
2696	}
2697
2698	/*
2699	 * Here we must make sure that no processes are submitting requests
2700	 * to target drivers i.e. no one may be executing
2701	 * dm_split_and_process_bio from dm_submit_bio.
 
2702	 *
2703	 * To get all processes out of dm_split_and_process_bio in dm_submit_bio,
2704	 * we take the write lock. To prevent any process from reentering
2705	 * dm_split_and_process_bio from dm_submit_bio and quiesce the thread
2706	 * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call
2707	 * flush_workqueue(md->wq).
2708	 */
 
2709	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2710	if (map)
2711		synchronize_srcu(&md->io_barrier);
2712
2713	/*
2714	 * Stop md->queue before flushing md->wq in case request-based
2715	 * dm defers requests to md->wq from md->queue.
2716	 */
2717	if (dm_request_based(md))
2718		dm_stop_queue(md->queue);
2719
2720	flush_workqueue(md->wq);
2721
2722	/*
2723	 * At this point no more requests are entering target request routines.
2724	 * We call dm_wait_for_completion to wait for all existing requests
2725	 * to finish.
2726	 */
2727	r = dm_wait_for_completion(md, task_state);
2728	if (!r)
2729		set_bit(dmf_suspended_flag, &md->flags);
2730
 
2731	if (noflush)
2732		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2733	if (map)
2734		synchronize_srcu(&md->io_barrier);
2735
2736	/* were we interrupted ? */
2737	if (r < 0) {
2738		dm_queue_flush(md);
2739
2740		if (dm_request_based(md))
2741			dm_start_queue(md->queue);
2742
2743		unlock_fs(md);
2744		dm_table_presuspend_undo_targets(map);
2745		/* pushback list is already flushed, so skip flush */
2746	}
2747
2748	return r;
2749}
 
 
 
2750
2751/*
2752 * We need to be able to change a mapping table under a mounted
2753 * filesystem.  For example we might want to move some data in
2754 * the background.  Before the table can be swapped with
2755 * dm_bind_table, dm_suspend must be called to flush any in
2756 * flight bios and ensure that any further io gets deferred.
2757 */
2758/*
2759 * Suspend mechanism in request-based dm.
2760 *
2761 * 1. Flush all I/Os by lock_fs() if needed.
2762 * 2. Stop dispatching any I/O by stopping the request_queue.
2763 * 3. Wait for all in-flight I/Os to be completed or requeued.
2764 *
2765 * To abort suspend, start the request_queue.
2766 */
2767int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2768{
2769	struct dm_table *map = NULL;
2770	int r = 0;
2771
2772retry:
2773	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2774
2775	if (dm_suspended_md(md)) {
2776		r = -EINVAL;
2777		goto out_unlock;
2778	}
2779
2780	if (dm_suspended_internally_md(md)) {
2781		/* already internally suspended, wait for internal resume */
2782		mutex_unlock(&md->suspend_lock);
2783		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2784		if (r)
2785			return r;
2786		goto retry;
2787	}
2788
2789	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2790
2791	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2792	if (r)
2793		goto out_unlock;
2794
2795	set_bit(DMF_POST_SUSPENDING, &md->flags);
2796	dm_table_postsuspend_targets(map);
2797	clear_bit(DMF_POST_SUSPENDING, &md->flags);
2798
2799out_unlock:
2800	mutex_unlock(&md->suspend_lock);
2801	return r;
2802}
2803
2804static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2805{
2806	if (map) {
2807		int r = dm_table_resume_targets(map);
2808		if (r)
2809			return r;
2810	}
2811
2812	dm_queue_flush(md);
2813
2814	/*
2815	 * Flushing deferred I/Os must be done after targets are resumed
2816	 * so that mapping of targets can work correctly.
2817	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2818	 */
2819	if (dm_request_based(md))
2820		dm_start_queue(md->queue);
2821
2822	unlock_fs(md);
2823
2824	return 0;
2825}
2826
2827int dm_resume(struct mapped_device *md)
2828{
2829	int r;
2830	struct dm_table *map = NULL;
2831
2832retry:
2833	r = -EINVAL;
2834	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2835
2836	if (!dm_suspended_md(md))
2837		goto out;
2838
2839	if (dm_suspended_internally_md(md)) {
2840		/* already internally suspended, wait for internal resume */
2841		mutex_unlock(&md->suspend_lock);
2842		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2843		if (r)
2844			return r;
2845		goto retry;
2846	}
2847
2848	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2849	if (!map || !dm_table_get_size(map))
2850		goto out;
2851
2852	r = __dm_resume(md, map);
2853	if (r)
2854		goto out;
2855
2856	clear_bit(DMF_SUSPENDED, &md->flags);
2857out:
2858	mutex_unlock(&md->suspend_lock);
2859
2860	return r;
2861}
2862
2863/*
2864 * Internal suspend/resume works like userspace-driven suspend. It waits
2865 * until all bios finish and prevents issuing new bios to the target drivers.
2866 * It may be used only from the kernel.
2867 */
2868
2869static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2870{
2871	struct dm_table *map = NULL;
2872
2873	lockdep_assert_held(&md->suspend_lock);
2874
2875	if (md->internal_suspend_count++)
2876		return; /* nested internal suspend */
2877
2878	if (dm_suspended_md(md)) {
2879		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2880		return; /* nest suspend */
2881	}
2882
2883	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2884
2885	/*
2886	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2887	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
2888	 * would require changing .presuspend to return an error -- avoid this
2889	 * until there is a need for more elaborate variants of internal suspend.
2890	 */
2891	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2892			    DMF_SUSPENDED_INTERNALLY);
2893
2894	set_bit(DMF_POST_SUSPENDING, &md->flags);
2895	dm_table_postsuspend_targets(map);
2896	clear_bit(DMF_POST_SUSPENDING, &md->flags);
2897}
2898
2899static void __dm_internal_resume(struct mapped_device *md)
2900{
2901	BUG_ON(!md->internal_suspend_count);
2902
2903	if (--md->internal_suspend_count)
2904		return; /* resume from nested internal suspend */
2905
2906	if (dm_suspended_md(md))
2907		goto done; /* resume from nested suspend */
2908
2909	/*
2910	 * NOTE: existing callers don't need to call dm_table_resume_targets
2911	 * (which may fail -- so best to avoid it for now by passing NULL map)
2912	 */
2913	(void) __dm_resume(md, NULL);
2914
2915done:
2916	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2917	smp_mb__after_atomic();
2918	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2919}
2920
2921void dm_internal_suspend_noflush(struct mapped_device *md)
2922{
2923	mutex_lock(&md->suspend_lock);
2924	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2925	mutex_unlock(&md->suspend_lock);
2926}
2927EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2928
2929void dm_internal_resume(struct mapped_device *md)
2930{
2931	mutex_lock(&md->suspend_lock);
2932	__dm_internal_resume(md);
2933	mutex_unlock(&md->suspend_lock);
2934}
2935EXPORT_SYMBOL_GPL(dm_internal_resume);
2936
2937/*
2938 * Fast variants of internal suspend/resume hold md->suspend_lock,
2939 * which prevents interaction with userspace-driven suspend.
2940 */
2941
2942void dm_internal_suspend_fast(struct mapped_device *md)
2943{
2944	mutex_lock(&md->suspend_lock);
2945	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2946		return;
2947
2948	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2949	synchronize_srcu(&md->io_barrier);
2950	flush_workqueue(md->wq);
2951	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2952}
2953EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2954
2955void dm_internal_resume_fast(struct mapped_device *md)
2956{
2957	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2958		goto done;
2959
2960	dm_queue_flush(md);
2961
2962done:
2963	mutex_unlock(&md->suspend_lock);
2964}
2965EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2966
2967/*-----------------------------------------------------------------
2968 * Event notification.
2969 *---------------------------------------------------------------*/
2970int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2971		       unsigned cookie)
2972{
2973	int r;
2974	unsigned noio_flag;
2975	char udev_cookie[DM_COOKIE_LENGTH];
2976	char *envp[] = { udev_cookie, NULL };
2977
2978	noio_flag = memalloc_noio_save();
2979
2980	if (!cookie)
2981		r = kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2982	else {
2983		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2984			 DM_COOKIE_ENV_VAR_NAME, cookie);
2985		r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2986				       action, envp);
2987	}
2988
2989	memalloc_noio_restore(noio_flag);
2990
2991	return r;
2992}
2993
2994uint32_t dm_next_uevent_seq(struct mapped_device *md)
2995{
2996	return atomic_add_return(1, &md->uevent_seq);
2997}
2998
2999uint32_t dm_get_event_nr(struct mapped_device *md)
3000{
3001	return atomic_read(&md->event_nr);
3002}
3003
3004int dm_wait_event(struct mapped_device *md, int event_nr)
3005{
3006	return wait_event_interruptible(md->eventq,
3007			(event_nr != atomic_read(&md->event_nr)));
3008}
3009
3010void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
3011{
3012	unsigned long flags;
3013
3014	spin_lock_irqsave(&md->uevent_lock, flags);
3015	list_add(elist, &md->uevent_list);
3016	spin_unlock_irqrestore(&md->uevent_lock, flags);
3017}
3018
3019/*
3020 * The gendisk is only valid as long as you have a reference
3021 * count on 'md'.
3022 */
3023struct gendisk *dm_disk(struct mapped_device *md)
3024{
3025	return md->disk;
3026}
3027EXPORT_SYMBOL_GPL(dm_disk);
3028
3029struct kobject *dm_kobject(struct mapped_device *md)
3030{
3031	return &md->kobj_holder.kobj;
3032}
3033
 
 
 
 
3034struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
3035{
3036	struct mapped_device *md;
3037
3038	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
 
 
 
 
 
 
3039
3040	spin_lock(&_minor_lock);
3041	if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
3042		md = NULL;
3043		goto out;
3044	}
3045	dm_get(md);
3046out:
3047	spin_unlock(&_minor_lock);
3048
3049	return md;
3050}
3051
3052int dm_suspended_md(struct mapped_device *md)
3053{
3054	return test_bit(DMF_SUSPENDED, &md->flags);
3055}
3056
3057static int dm_post_suspending_md(struct mapped_device *md)
3058{
3059	return test_bit(DMF_POST_SUSPENDING, &md->flags);
3060}
3061
3062int dm_suspended_internally_md(struct mapped_device *md)
3063{
3064	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3065}
3066
3067int dm_test_deferred_remove_flag(struct mapped_device *md)
3068{
3069	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
3070}
3071
3072int dm_suspended(struct dm_target *ti)
3073{
3074	return dm_suspended_md(ti->table->md);
3075}
3076EXPORT_SYMBOL_GPL(dm_suspended);
3077
3078int dm_post_suspending(struct dm_target *ti)
3079{
3080	return dm_post_suspending_md(ti->table->md);
3081}
3082EXPORT_SYMBOL_GPL(dm_post_suspending);
3083
3084int dm_noflush_suspending(struct dm_target *ti)
3085{
3086	return __noflush_suspending(ti->table->md);
3087}
3088EXPORT_SYMBOL_GPL(dm_noflush_suspending);
3089
3090void dm_free_md_mempools(struct dm_md_mempools *pools)
3091{
 
 
 
3092	if (!pools)
3093		return;
3094
3095	bioset_exit(&pools->bs);
3096	bioset_exit(&pools->io_bs);
 
 
 
3097
3098	kfree(pools);
3099}
 
 
 
3100
3101struct dm_pr {
3102	u64	old_key;
3103	u64	new_key;
3104	u32	flags;
3105	bool	abort;
3106	bool	fail_early;
3107	int	ret;
3108	enum pr_type type;
3109};
3110
3111static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
3112		      struct dm_pr *pr)
3113{
3114	struct mapped_device *md = bdev->bd_disk->private_data;
3115	struct dm_table *table;
3116	struct dm_target *ti;
3117	int ret = -ENOTTY, srcu_idx;
3118
3119	table = dm_get_live_table(md, &srcu_idx);
3120	if (!table || !dm_table_get_size(table))
3121		goto out;
3122
3123	/* We only support devices that have a single target */
3124	if (table->num_targets != 1)
3125		goto out;
3126	ti = dm_table_get_target(table, 0);
3127
3128	if (dm_suspended_md(md)) {
3129		ret = -EAGAIN;
3130		goto out;
3131	}
3132
3133	ret = -EINVAL;
3134	if (!ti->type->iterate_devices)
3135		goto out;
3136
3137	ti->type->iterate_devices(ti, fn, pr);
3138	ret = 0;
3139out:
3140	dm_put_live_table(md, srcu_idx);
3141	return ret;
3142}
3143
3144/*
3145 * For register / unregister we need to manually call out to every path.
3146 */
3147static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
3148			    sector_t start, sector_t len, void *data)
3149{
3150	struct dm_pr *pr = data;
3151	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3152	int ret;
3153
3154	if (!ops || !ops->pr_register) {
3155		pr->ret = -EOPNOTSUPP;
3156		return -1;
3157	}
3158
3159	ret = ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
3160	if (!ret)
3161		return 0;
3162
3163	if (!pr->ret)
3164		pr->ret = ret;
3165
3166	if (pr->fail_early)
3167		return -1;
3168
3169	return 0;
3170}
3171
3172static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3173			  u32 flags)
3174{
3175	struct dm_pr pr = {
3176		.old_key	= old_key,
3177		.new_key	= new_key,
3178		.flags		= flags,
3179		.fail_early	= true,
3180		.ret		= 0,
3181	};
3182	int ret;
3183
3184	ret = dm_call_pr(bdev, __dm_pr_register, &pr);
3185	if (ret) {
3186		/* Didn't even get to register a path */
3187		return ret;
3188	}
3189
3190	if (!pr.ret)
3191		return 0;
3192	ret = pr.ret;
3193
3194	if (!new_key)
3195		return ret;
3196
3197	/* unregister all paths if we failed to register any path */
3198	pr.old_key = new_key;
3199	pr.new_key = 0;
3200	pr.flags = 0;
3201	pr.fail_early = false;
3202	(void) dm_call_pr(bdev, __dm_pr_register, &pr);
3203	return ret;
3204}
3205
 
 
3206
3207static int __dm_pr_reserve(struct dm_target *ti, struct dm_dev *dev,
3208			   sector_t start, sector_t len, void *data)
3209{
3210	struct dm_pr *pr = data;
3211	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3212
3213	if (!ops || !ops->pr_reserve) {
3214		pr->ret = -EOPNOTSUPP;
3215		return -1;
3216	}
3217
3218	pr->ret = ops->pr_reserve(dev->bdev, pr->old_key, pr->type, pr->flags);
3219	if (!pr->ret)
3220		return -1;
3221
3222	return 0;
3223}
3224
3225static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3226			 u32 flags)
3227{
3228	struct dm_pr pr = {
3229		.old_key	= key,
3230		.flags		= flags,
3231		.type		= type,
3232		.fail_early	= false,
3233		.ret		= 0,
3234	};
3235	int ret;
3236
3237	ret = dm_call_pr(bdev, __dm_pr_reserve, &pr);
3238	if (ret)
3239		return ret;
3240
3241	return pr.ret;
3242}
3243
3244/*
3245 * If there is a non-All Registrants type of reservation, the release must be
3246 * sent down the holding path. For the cases where there is no reservation or
3247 * the path is not the holder the device will also return success, so we must
3248 * try each path to make sure we got the correct path.
3249 */
3250static int __dm_pr_release(struct dm_target *ti, struct dm_dev *dev,
3251			   sector_t start, sector_t len, void *data)
3252{
3253	struct dm_pr *pr = data;
3254	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3255
3256	if (!ops || !ops->pr_release) {
3257		pr->ret = -EOPNOTSUPP;
3258		return -1;
3259	}
3260
3261	pr->ret = ops->pr_release(dev->bdev, pr->old_key, pr->type);
3262	if (pr->ret)
3263		return -1;
3264
3265	return 0;
3266}
3267
3268static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3269{
3270	struct dm_pr pr = {
3271		.old_key	= key,
3272		.type		= type,
3273		.fail_early	= false,
3274	};
3275	int ret;
3276
3277	ret = dm_call_pr(bdev, __dm_pr_release, &pr);
3278	if (ret)
3279		return ret;
3280
3281	return pr.ret;
3282}
3283
3284static int __dm_pr_preempt(struct dm_target *ti, struct dm_dev *dev,
3285			   sector_t start, sector_t len, void *data)
3286{
3287	struct dm_pr *pr = data;
3288	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3289
3290	if (!ops || !ops->pr_preempt) {
3291		pr->ret = -EOPNOTSUPP;
3292		return -1;
3293	}
3294
3295	pr->ret = ops->pr_preempt(dev->bdev, pr->old_key, pr->new_key, pr->type,
3296				  pr->abort);
3297	if (!pr->ret)
3298		return -1;
3299
3300	return 0;
3301}
3302
3303static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3304			 enum pr_type type, bool abort)
3305{
3306	struct dm_pr pr = {
3307		.new_key	= new_key,
3308		.old_key	= old_key,
3309		.type		= type,
3310		.fail_early	= false,
3311	};
3312	int ret;
3313
3314	ret = dm_call_pr(bdev, __dm_pr_preempt, &pr);
3315	if (ret)
3316		return ret;
3317
3318	return pr.ret;
3319}
3320
3321static int dm_pr_clear(struct block_device *bdev, u64 key)
3322{
3323	struct mapped_device *md = bdev->bd_disk->private_data;
3324	const struct pr_ops *ops;
3325	int r, srcu_idx;
3326
3327	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3328	if (r < 0)
3329		goto out;
3330
3331	ops = bdev->bd_disk->fops->pr_ops;
3332	if (ops && ops->pr_clear)
3333		r = ops->pr_clear(bdev, key);
3334	else
3335		r = -EOPNOTSUPP;
3336out:
3337	dm_unprepare_ioctl(md, srcu_idx);
3338	return r;
3339}
3340
3341static const struct pr_ops dm_pr_ops = {
3342	.pr_register	= dm_pr_register,
3343	.pr_reserve	= dm_pr_reserve,
3344	.pr_release	= dm_pr_release,
3345	.pr_preempt	= dm_pr_preempt,
3346	.pr_clear	= dm_pr_clear,
3347};
3348
3349static const struct block_device_operations dm_blk_dops = {
3350	.submit_bio = dm_submit_bio,
3351	.poll_bio = dm_poll_bio,
3352	.open = dm_blk_open,
3353	.release = dm_blk_close,
3354	.ioctl = dm_blk_ioctl,
3355	.getgeo = dm_blk_getgeo,
3356	.report_zones = dm_blk_report_zones,
3357	.pr_ops = &dm_pr_ops,
3358	.owner = THIS_MODULE
3359};
3360
3361static const struct block_device_operations dm_rq_blk_dops = {
3362	.open = dm_blk_open,
3363	.release = dm_blk_close,
3364	.ioctl = dm_blk_ioctl,
3365	.getgeo = dm_blk_getgeo,
3366	.pr_ops = &dm_pr_ops,
3367	.owner = THIS_MODULE
3368};
3369
3370static const struct dax_operations dm_dax_ops = {
3371	.direct_access = dm_dax_direct_access,
3372	.zero_page_range = dm_dax_zero_page_range,
3373	.recovery_write = dm_dax_recovery_write,
3374};
3375
3376/*
3377 * module hooks
3378 */
3379module_init(dm_init);
3380module_exit(dm_exit);
3381
3382module_param(major, uint, 0);
3383MODULE_PARM_DESC(major, "The major number of the device mapper");
3384
3385module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3386MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3387
3388module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
3389MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3390
3391module_param(swap_bios, int, S_IRUGO | S_IWUSR);
3392MODULE_PARM_DESC(swap_bios, "Maximum allowed inflight swap IOs");
3393
3394MODULE_DESCRIPTION(DM_NAME " driver");
3395MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3396MODULE_LICENSE("GPL");