Loading...
1/*
2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8#include "dm.h"
9#include "dm-uevent.h"
10
11#include <linux/init.h>
12#include <linux/module.h>
13#include <linux/mutex.h>
14#include <linux/moduleparam.h>
15#include <linux/blkpg.h>
16#include <linux/bio.h>
17#include <linux/buffer_head.h>
18#include <linux/mempool.h>
19#include <linux/slab.h>
20#include <linux/idr.h>
21#include <linux/hdreg.h>
22#include <linux/delay.h>
23
24#include <trace/events/block.h>
25
26#define DM_MSG_PREFIX "core"
27
28/*
29 * Cookies are numeric values sent with CHANGE and REMOVE
30 * uevents while resuming, removing or renaming the device.
31 */
32#define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
33#define DM_COOKIE_LENGTH 24
34
35static const char *_name = DM_NAME;
36
37static unsigned int major = 0;
38static unsigned int _major = 0;
39
40static DEFINE_IDR(_minor_idr);
41
42static DEFINE_SPINLOCK(_minor_lock);
43/*
44 * For bio-based dm.
45 * One of these is allocated per bio.
46 */
47struct dm_io {
48 struct mapped_device *md;
49 int error;
50 atomic_t io_count;
51 struct bio *bio;
52 unsigned long start_time;
53 spinlock_t endio_lock;
54};
55
56/*
57 * For bio-based dm.
58 * One of these is allocated per target within a bio. Hopefully
59 * this will be simplified out one day.
60 */
61struct dm_target_io {
62 struct dm_io *io;
63 struct dm_target *ti;
64 union map_info info;
65};
66
67/*
68 * For request-based dm.
69 * One of these is allocated per request.
70 */
71struct dm_rq_target_io {
72 struct mapped_device *md;
73 struct dm_target *ti;
74 struct request *orig, clone;
75 int error;
76 union map_info info;
77};
78
79/*
80 * For request-based dm.
81 * One of these is allocated per bio.
82 */
83struct dm_rq_clone_bio_info {
84 struct bio *orig;
85 struct dm_rq_target_io *tio;
86};
87
88union map_info *dm_get_mapinfo(struct bio *bio)
89{
90 if (bio && bio->bi_private)
91 return &((struct dm_target_io *)bio->bi_private)->info;
92 return NULL;
93}
94
95union map_info *dm_get_rq_mapinfo(struct request *rq)
96{
97 if (rq && rq->end_io_data)
98 return &((struct dm_rq_target_io *)rq->end_io_data)->info;
99 return NULL;
100}
101EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo);
102
103#define MINOR_ALLOCED ((void *)-1)
104
105/*
106 * Bits for the md->flags field.
107 */
108#define DMF_BLOCK_IO_FOR_SUSPEND 0
109#define DMF_SUSPENDED 1
110#define DMF_FROZEN 2
111#define DMF_FREEING 3
112#define DMF_DELETING 4
113#define DMF_NOFLUSH_SUSPENDING 5
114#define DMF_MERGE_IS_OPTIONAL 6
115
116/*
117 * Work processed by per-device workqueue.
118 */
119struct mapped_device {
120 struct rw_semaphore io_lock;
121 struct mutex suspend_lock;
122 rwlock_t map_lock;
123 atomic_t holders;
124 atomic_t open_count;
125
126 unsigned long flags;
127
128 struct request_queue *queue;
129 unsigned type;
130 /* Protect queue and type against concurrent access. */
131 struct mutex type_lock;
132
133 struct gendisk *disk;
134 char name[16];
135
136 void *interface_ptr;
137
138 /*
139 * A list of ios that arrived while we were suspended.
140 */
141 atomic_t pending[2];
142 wait_queue_head_t wait;
143 struct work_struct work;
144 struct bio_list deferred;
145 spinlock_t deferred_lock;
146
147 /*
148 * Processing queue (flush)
149 */
150 struct workqueue_struct *wq;
151
152 /*
153 * The current mapping.
154 */
155 struct dm_table *map;
156
157 /*
158 * io objects are allocated from here.
159 */
160 mempool_t *io_pool;
161 mempool_t *tio_pool;
162
163 struct bio_set *bs;
164
165 /*
166 * Event handling.
167 */
168 atomic_t event_nr;
169 wait_queue_head_t eventq;
170 atomic_t uevent_seq;
171 struct list_head uevent_list;
172 spinlock_t uevent_lock; /* Protect access to uevent_list */
173
174 /*
175 * freeze/thaw support require holding onto a super block
176 */
177 struct super_block *frozen_sb;
178 struct block_device *bdev;
179
180 /* forced geometry settings */
181 struct hd_geometry geometry;
182
183 /* For saving the address of __make_request for request based dm */
184 make_request_fn *saved_make_request_fn;
185
186 /* sysfs handle */
187 struct kobject kobj;
188
189 /* zero-length flush that will be cloned and submitted to targets */
190 struct bio flush_bio;
191};
192
193/*
194 * For mempools pre-allocation at the table loading time.
195 */
196struct dm_md_mempools {
197 mempool_t *io_pool;
198 mempool_t *tio_pool;
199 struct bio_set *bs;
200};
201
202#define MIN_IOS 256
203static struct kmem_cache *_io_cache;
204static struct kmem_cache *_tio_cache;
205static struct kmem_cache *_rq_tio_cache;
206static struct kmem_cache *_rq_bio_info_cache;
207
208static int __init local_init(void)
209{
210 int r = -ENOMEM;
211
212 /* allocate a slab for the dm_ios */
213 _io_cache = KMEM_CACHE(dm_io, 0);
214 if (!_io_cache)
215 return r;
216
217 /* allocate a slab for the target ios */
218 _tio_cache = KMEM_CACHE(dm_target_io, 0);
219 if (!_tio_cache)
220 goto out_free_io_cache;
221
222 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
223 if (!_rq_tio_cache)
224 goto out_free_tio_cache;
225
226 _rq_bio_info_cache = KMEM_CACHE(dm_rq_clone_bio_info, 0);
227 if (!_rq_bio_info_cache)
228 goto out_free_rq_tio_cache;
229
230 r = dm_uevent_init();
231 if (r)
232 goto out_free_rq_bio_info_cache;
233
234 _major = major;
235 r = register_blkdev(_major, _name);
236 if (r < 0)
237 goto out_uevent_exit;
238
239 if (!_major)
240 _major = r;
241
242 return 0;
243
244out_uevent_exit:
245 dm_uevent_exit();
246out_free_rq_bio_info_cache:
247 kmem_cache_destroy(_rq_bio_info_cache);
248out_free_rq_tio_cache:
249 kmem_cache_destroy(_rq_tio_cache);
250out_free_tio_cache:
251 kmem_cache_destroy(_tio_cache);
252out_free_io_cache:
253 kmem_cache_destroy(_io_cache);
254
255 return r;
256}
257
258static void local_exit(void)
259{
260 kmem_cache_destroy(_rq_bio_info_cache);
261 kmem_cache_destroy(_rq_tio_cache);
262 kmem_cache_destroy(_tio_cache);
263 kmem_cache_destroy(_io_cache);
264 unregister_blkdev(_major, _name);
265 dm_uevent_exit();
266
267 _major = 0;
268
269 DMINFO("cleaned up");
270}
271
272static int (*_inits[])(void) __initdata = {
273 local_init,
274 dm_target_init,
275 dm_linear_init,
276 dm_stripe_init,
277 dm_io_init,
278 dm_kcopyd_init,
279 dm_interface_init,
280};
281
282static void (*_exits[])(void) = {
283 local_exit,
284 dm_target_exit,
285 dm_linear_exit,
286 dm_stripe_exit,
287 dm_io_exit,
288 dm_kcopyd_exit,
289 dm_interface_exit,
290};
291
292static int __init dm_init(void)
293{
294 const int count = ARRAY_SIZE(_inits);
295
296 int r, i;
297
298 for (i = 0; i < count; i++) {
299 r = _inits[i]();
300 if (r)
301 goto bad;
302 }
303
304 return 0;
305
306 bad:
307 while (i--)
308 _exits[i]();
309
310 return r;
311}
312
313static void __exit dm_exit(void)
314{
315 int i = ARRAY_SIZE(_exits);
316
317 while (i--)
318 _exits[i]();
319
320 /*
321 * Should be empty by this point.
322 */
323 idr_remove_all(&_minor_idr);
324 idr_destroy(&_minor_idr);
325}
326
327/*
328 * Block device functions
329 */
330int dm_deleting_md(struct mapped_device *md)
331{
332 return test_bit(DMF_DELETING, &md->flags);
333}
334
335static int dm_blk_open(struct block_device *bdev, fmode_t mode)
336{
337 struct mapped_device *md;
338
339 spin_lock(&_minor_lock);
340
341 md = bdev->bd_disk->private_data;
342 if (!md)
343 goto out;
344
345 if (test_bit(DMF_FREEING, &md->flags) ||
346 dm_deleting_md(md)) {
347 md = NULL;
348 goto out;
349 }
350
351 dm_get(md);
352 atomic_inc(&md->open_count);
353
354out:
355 spin_unlock(&_minor_lock);
356
357 return md ? 0 : -ENXIO;
358}
359
360static int dm_blk_close(struct gendisk *disk, fmode_t mode)
361{
362 struct mapped_device *md = disk->private_data;
363
364 spin_lock(&_minor_lock);
365
366 atomic_dec(&md->open_count);
367 dm_put(md);
368
369 spin_unlock(&_minor_lock);
370
371 return 0;
372}
373
374int dm_open_count(struct mapped_device *md)
375{
376 return atomic_read(&md->open_count);
377}
378
379/*
380 * Guarantees nothing is using the device before it's deleted.
381 */
382int dm_lock_for_deletion(struct mapped_device *md)
383{
384 int r = 0;
385
386 spin_lock(&_minor_lock);
387
388 if (dm_open_count(md))
389 r = -EBUSY;
390 else
391 set_bit(DMF_DELETING, &md->flags);
392
393 spin_unlock(&_minor_lock);
394
395 return r;
396}
397
398static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
399{
400 struct mapped_device *md = bdev->bd_disk->private_data;
401
402 return dm_get_geometry(md, geo);
403}
404
405static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
406 unsigned int cmd, unsigned long arg)
407{
408 struct mapped_device *md = bdev->bd_disk->private_data;
409 struct dm_table *map = dm_get_live_table(md);
410 struct dm_target *tgt;
411 int r = -ENOTTY;
412
413 if (!map || !dm_table_get_size(map))
414 goto out;
415
416 /* We only support devices that have a single target */
417 if (dm_table_get_num_targets(map) != 1)
418 goto out;
419
420 tgt = dm_table_get_target(map, 0);
421
422 if (dm_suspended_md(md)) {
423 r = -EAGAIN;
424 goto out;
425 }
426
427 if (tgt->type->ioctl)
428 r = tgt->type->ioctl(tgt, cmd, arg);
429
430out:
431 dm_table_put(map);
432
433 return r;
434}
435
436static struct dm_io *alloc_io(struct mapped_device *md)
437{
438 return mempool_alloc(md->io_pool, GFP_NOIO);
439}
440
441static void free_io(struct mapped_device *md, struct dm_io *io)
442{
443 mempool_free(io, md->io_pool);
444}
445
446static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
447{
448 mempool_free(tio, md->tio_pool);
449}
450
451static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md,
452 gfp_t gfp_mask)
453{
454 return mempool_alloc(md->tio_pool, gfp_mask);
455}
456
457static void free_rq_tio(struct dm_rq_target_io *tio)
458{
459 mempool_free(tio, tio->md->tio_pool);
460}
461
462static struct dm_rq_clone_bio_info *alloc_bio_info(struct mapped_device *md)
463{
464 return mempool_alloc(md->io_pool, GFP_ATOMIC);
465}
466
467static void free_bio_info(struct dm_rq_clone_bio_info *info)
468{
469 mempool_free(info, info->tio->md->io_pool);
470}
471
472static int md_in_flight(struct mapped_device *md)
473{
474 return atomic_read(&md->pending[READ]) +
475 atomic_read(&md->pending[WRITE]);
476}
477
478static void start_io_acct(struct dm_io *io)
479{
480 struct mapped_device *md = io->md;
481 int cpu;
482 int rw = bio_data_dir(io->bio);
483
484 io->start_time = jiffies;
485
486 cpu = part_stat_lock();
487 part_round_stats(cpu, &dm_disk(md)->part0);
488 part_stat_unlock();
489 atomic_set(&dm_disk(md)->part0.in_flight[rw],
490 atomic_inc_return(&md->pending[rw]));
491}
492
493static void end_io_acct(struct dm_io *io)
494{
495 struct mapped_device *md = io->md;
496 struct bio *bio = io->bio;
497 unsigned long duration = jiffies - io->start_time;
498 int pending, cpu;
499 int rw = bio_data_dir(bio);
500
501 cpu = part_stat_lock();
502 part_round_stats(cpu, &dm_disk(md)->part0);
503 part_stat_add(cpu, &dm_disk(md)->part0, ticks[rw], duration);
504 part_stat_unlock();
505
506 /*
507 * After this is decremented the bio must not be touched if it is
508 * a flush.
509 */
510 pending = atomic_dec_return(&md->pending[rw]);
511 atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
512 pending += atomic_read(&md->pending[rw^0x1]);
513
514 /* nudge anyone waiting on suspend queue */
515 if (!pending)
516 wake_up(&md->wait);
517}
518
519/*
520 * Add the bio to the list of deferred io.
521 */
522static void queue_io(struct mapped_device *md, struct bio *bio)
523{
524 unsigned long flags;
525
526 spin_lock_irqsave(&md->deferred_lock, flags);
527 bio_list_add(&md->deferred, bio);
528 spin_unlock_irqrestore(&md->deferred_lock, flags);
529 queue_work(md->wq, &md->work);
530}
531
532/*
533 * Everyone (including functions in this file), should use this
534 * function to access the md->map field, and make sure they call
535 * dm_table_put() when finished.
536 */
537struct dm_table *dm_get_live_table(struct mapped_device *md)
538{
539 struct dm_table *t;
540 unsigned long flags;
541
542 read_lock_irqsave(&md->map_lock, flags);
543 t = md->map;
544 if (t)
545 dm_table_get(t);
546 read_unlock_irqrestore(&md->map_lock, flags);
547
548 return t;
549}
550
551/*
552 * Get the geometry associated with a dm device
553 */
554int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
555{
556 *geo = md->geometry;
557
558 return 0;
559}
560
561/*
562 * Set the geometry of a device.
563 */
564int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
565{
566 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
567
568 if (geo->start > sz) {
569 DMWARN("Start sector is beyond the geometry limits.");
570 return -EINVAL;
571 }
572
573 md->geometry = *geo;
574
575 return 0;
576}
577
578/*-----------------------------------------------------------------
579 * CRUD START:
580 * A more elegant soln is in the works that uses the queue
581 * merge fn, unfortunately there are a couple of changes to
582 * the block layer that I want to make for this. So in the
583 * interests of getting something for people to use I give
584 * you this clearly demarcated crap.
585 *---------------------------------------------------------------*/
586
587static int __noflush_suspending(struct mapped_device *md)
588{
589 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
590}
591
592/*
593 * Decrements the number of outstanding ios that a bio has been
594 * cloned into, completing the original io if necc.
595 */
596static void dec_pending(struct dm_io *io, int error)
597{
598 unsigned long flags;
599 int io_error;
600 struct bio *bio;
601 struct mapped_device *md = io->md;
602
603 /* Push-back supersedes any I/O errors */
604 if (unlikely(error)) {
605 spin_lock_irqsave(&io->endio_lock, flags);
606 if (!(io->error > 0 && __noflush_suspending(md)))
607 io->error = error;
608 spin_unlock_irqrestore(&io->endio_lock, flags);
609 }
610
611 if (atomic_dec_and_test(&io->io_count)) {
612 if (io->error == DM_ENDIO_REQUEUE) {
613 /*
614 * Target requested pushing back the I/O.
615 */
616 spin_lock_irqsave(&md->deferred_lock, flags);
617 if (__noflush_suspending(md))
618 bio_list_add_head(&md->deferred, io->bio);
619 else
620 /* noflush suspend was interrupted. */
621 io->error = -EIO;
622 spin_unlock_irqrestore(&md->deferred_lock, flags);
623 }
624
625 io_error = io->error;
626 bio = io->bio;
627 end_io_acct(io);
628 free_io(md, io);
629
630 if (io_error == DM_ENDIO_REQUEUE)
631 return;
632
633 if ((bio->bi_rw & REQ_FLUSH) && bio->bi_size) {
634 /*
635 * Preflush done for flush with data, reissue
636 * without REQ_FLUSH.
637 */
638 bio->bi_rw &= ~REQ_FLUSH;
639 queue_io(md, bio);
640 } else {
641 /* done with normal IO or empty flush */
642 trace_block_bio_complete(md->queue, bio, io_error);
643 bio_endio(bio, io_error);
644 }
645 }
646}
647
648static void clone_endio(struct bio *bio, int error)
649{
650 int r = 0;
651 struct dm_target_io *tio = bio->bi_private;
652 struct dm_io *io = tio->io;
653 struct mapped_device *md = tio->io->md;
654 dm_endio_fn endio = tio->ti->type->end_io;
655
656 if (!bio_flagged(bio, BIO_UPTODATE) && !error)
657 error = -EIO;
658
659 if (endio) {
660 r = endio(tio->ti, bio, error, &tio->info);
661 if (r < 0 || r == DM_ENDIO_REQUEUE)
662 /*
663 * error and requeue request are handled
664 * in dec_pending().
665 */
666 error = r;
667 else if (r == DM_ENDIO_INCOMPLETE)
668 /* The target will handle the io */
669 return;
670 else if (r) {
671 DMWARN("unimplemented target endio return value: %d", r);
672 BUG();
673 }
674 }
675
676 /*
677 * Store md for cleanup instead of tio which is about to get freed.
678 */
679 bio->bi_private = md->bs;
680
681 free_tio(md, tio);
682 bio_put(bio);
683 dec_pending(io, error);
684}
685
686/*
687 * Partial completion handling for request-based dm
688 */
689static void end_clone_bio(struct bio *clone, int error)
690{
691 struct dm_rq_clone_bio_info *info = clone->bi_private;
692 struct dm_rq_target_io *tio = info->tio;
693 struct bio *bio = info->orig;
694 unsigned int nr_bytes = info->orig->bi_size;
695
696 bio_put(clone);
697
698 if (tio->error)
699 /*
700 * An error has already been detected on the request.
701 * Once error occurred, just let clone->end_io() handle
702 * the remainder.
703 */
704 return;
705 else if (error) {
706 /*
707 * Don't notice the error to the upper layer yet.
708 * The error handling decision is made by the target driver,
709 * when the request is completed.
710 */
711 tio->error = error;
712 return;
713 }
714
715 /*
716 * I/O for the bio successfully completed.
717 * Notice the data completion to the upper layer.
718 */
719
720 /*
721 * bios are processed from the head of the list.
722 * So the completing bio should always be rq->bio.
723 * If it's not, something wrong is happening.
724 */
725 if (tio->orig->bio != bio)
726 DMERR("bio completion is going in the middle of the request");
727
728 /*
729 * Update the original request.
730 * Do not use blk_end_request() here, because it may complete
731 * the original request before the clone, and break the ordering.
732 */
733 blk_update_request(tio->orig, 0, nr_bytes);
734}
735
736/*
737 * Don't touch any member of the md after calling this function because
738 * the md may be freed in dm_put() at the end of this function.
739 * Or do dm_get() before calling this function and dm_put() later.
740 */
741static void rq_completed(struct mapped_device *md, int rw, int run_queue)
742{
743 atomic_dec(&md->pending[rw]);
744
745 /* nudge anyone waiting on suspend queue */
746 if (!md_in_flight(md))
747 wake_up(&md->wait);
748
749 if (run_queue)
750 blk_run_queue(md->queue);
751
752 /*
753 * dm_put() must be at the end of this function. See the comment above
754 */
755 dm_put(md);
756}
757
758static void free_rq_clone(struct request *clone)
759{
760 struct dm_rq_target_io *tio = clone->end_io_data;
761
762 blk_rq_unprep_clone(clone);
763 free_rq_tio(tio);
764}
765
766/*
767 * Complete the clone and the original request.
768 * Must be called without queue lock.
769 */
770static void dm_end_request(struct request *clone, int error)
771{
772 int rw = rq_data_dir(clone);
773 struct dm_rq_target_io *tio = clone->end_io_data;
774 struct mapped_device *md = tio->md;
775 struct request *rq = tio->orig;
776
777 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
778 rq->errors = clone->errors;
779 rq->resid_len = clone->resid_len;
780
781 if (rq->sense)
782 /*
783 * We are using the sense buffer of the original
784 * request.
785 * So setting the length of the sense data is enough.
786 */
787 rq->sense_len = clone->sense_len;
788 }
789
790 free_rq_clone(clone);
791 blk_end_request_all(rq, error);
792 rq_completed(md, rw, true);
793}
794
795static void dm_unprep_request(struct request *rq)
796{
797 struct request *clone = rq->special;
798
799 rq->special = NULL;
800 rq->cmd_flags &= ~REQ_DONTPREP;
801
802 free_rq_clone(clone);
803}
804
805/*
806 * Requeue the original request of a clone.
807 */
808void dm_requeue_unmapped_request(struct request *clone)
809{
810 int rw = rq_data_dir(clone);
811 struct dm_rq_target_io *tio = clone->end_io_data;
812 struct mapped_device *md = tio->md;
813 struct request *rq = tio->orig;
814 struct request_queue *q = rq->q;
815 unsigned long flags;
816
817 dm_unprep_request(rq);
818
819 spin_lock_irqsave(q->queue_lock, flags);
820 blk_requeue_request(q, rq);
821 spin_unlock_irqrestore(q->queue_lock, flags);
822
823 rq_completed(md, rw, 0);
824}
825EXPORT_SYMBOL_GPL(dm_requeue_unmapped_request);
826
827static void __stop_queue(struct request_queue *q)
828{
829 blk_stop_queue(q);
830}
831
832static void stop_queue(struct request_queue *q)
833{
834 unsigned long flags;
835
836 spin_lock_irqsave(q->queue_lock, flags);
837 __stop_queue(q);
838 spin_unlock_irqrestore(q->queue_lock, flags);
839}
840
841static void __start_queue(struct request_queue *q)
842{
843 if (blk_queue_stopped(q))
844 blk_start_queue(q);
845}
846
847static void start_queue(struct request_queue *q)
848{
849 unsigned long flags;
850
851 spin_lock_irqsave(q->queue_lock, flags);
852 __start_queue(q);
853 spin_unlock_irqrestore(q->queue_lock, flags);
854}
855
856static void dm_done(struct request *clone, int error, bool mapped)
857{
858 int r = error;
859 struct dm_rq_target_io *tio = clone->end_io_data;
860 dm_request_endio_fn rq_end_io = tio->ti->type->rq_end_io;
861
862 if (mapped && rq_end_io)
863 r = rq_end_io(tio->ti, clone, error, &tio->info);
864
865 if (r <= 0)
866 /* The target wants to complete the I/O */
867 dm_end_request(clone, r);
868 else if (r == DM_ENDIO_INCOMPLETE)
869 /* The target will handle the I/O */
870 return;
871 else if (r == DM_ENDIO_REQUEUE)
872 /* The target wants to requeue the I/O */
873 dm_requeue_unmapped_request(clone);
874 else {
875 DMWARN("unimplemented target endio return value: %d", r);
876 BUG();
877 }
878}
879
880/*
881 * Request completion handler for request-based dm
882 */
883static void dm_softirq_done(struct request *rq)
884{
885 bool mapped = true;
886 struct request *clone = rq->completion_data;
887 struct dm_rq_target_io *tio = clone->end_io_data;
888
889 if (rq->cmd_flags & REQ_FAILED)
890 mapped = false;
891
892 dm_done(clone, tio->error, mapped);
893}
894
895/*
896 * Complete the clone and the original request with the error status
897 * through softirq context.
898 */
899static void dm_complete_request(struct request *clone, int error)
900{
901 struct dm_rq_target_io *tio = clone->end_io_data;
902 struct request *rq = tio->orig;
903
904 tio->error = error;
905 rq->completion_data = clone;
906 blk_complete_request(rq);
907}
908
909/*
910 * Complete the not-mapped clone and the original request with the error status
911 * through softirq context.
912 * Target's rq_end_io() function isn't called.
913 * This may be used when the target's map_rq() function fails.
914 */
915void dm_kill_unmapped_request(struct request *clone, int error)
916{
917 struct dm_rq_target_io *tio = clone->end_io_data;
918 struct request *rq = tio->orig;
919
920 rq->cmd_flags |= REQ_FAILED;
921 dm_complete_request(clone, error);
922}
923EXPORT_SYMBOL_GPL(dm_kill_unmapped_request);
924
925/*
926 * Called with the queue lock held
927 */
928static void end_clone_request(struct request *clone, int error)
929{
930 /*
931 * For just cleaning up the information of the queue in which
932 * the clone was dispatched.
933 * The clone is *NOT* freed actually here because it is alloced from
934 * dm own mempool and REQ_ALLOCED isn't set in clone->cmd_flags.
935 */
936 __blk_put_request(clone->q, clone);
937
938 /*
939 * Actual request completion is done in a softirq context which doesn't
940 * hold the queue lock. Otherwise, deadlock could occur because:
941 * - another request may be submitted by the upper level driver
942 * of the stacking during the completion
943 * - the submission which requires queue lock may be done
944 * against this queue
945 */
946 dm_complete_request(clone, error);
947}
948
949/*
950 * Return maximum size of I/O possible at the supplied sector up to the current
951 * target boundary.
952 */
953static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
954{
955 sector_t target_offset = dm_target_offset(ti, sector);
956
957 return ti->len - target_offset;
958}
959
960static sector_t max_io_len(sector_t sector, struct dm_target *ti)
961{
962 sector_t len = max_io_len_target_boundary(sector, ti);
963
964 /*
965 * Does the target need to split even further ?
966 */
967 if (ti->split_io) {
968 sector_t boundary;
969 sector_t offset = dm_target_offset(ti, sector);
970 boundary = ((offset + ti->split_io) & ~(ti->split_io - 1))
971 - offset;
972 if (len > boundary)
973 len = boundary;
974 }
975
976 return len;
977}
978
979static void __map_bio(struct dm_target *ti, struct bio *clone,
980 struct dm_target_io *tio)
981{
982 int r;
983 sector_t sector;
984 struct mapped_device *md;
985
986 clone->bi_end_io = clone_endio;
987 clone->bi_private = tio;
988
989 /*
990 * Map the clone. If r == 0 we don't need to do
991 * anything, the target has assumed ownership of
992 * this io.
993 */
994 atomic_inc(&tio->io->io_count);
995 sector = clone->bi_sector;
996 r = ti->type->map(ti, clone, &tio->info);
997 if (r == DM_MAPIO_REMAPPED) {
998 /* the bio has been remapped so dispatch it */
999
1000 trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone,
1001 tio->io->bio->bi_bdev->bd_dev, sector);
1002
1003 generic_make_request(clone);
1004 } else if (r < 0 || r == DM_MAPIO_REQUEUE) {
1005 /* error the io and bail out, or requeue it if needed */
1006 md = tio->io->md;
1007 dec_pending(tio->io, r);
1008 /*
1009 * Store bio_set for cleanup.
1010 */
1011 clone->bi_private = md->bs;
1012 bio_put(clone);
1013 free_tio(md, tio);
1014 } else if (r) {
1015 DMWARN("unimplemented target map return value: %d", r);
1016 BUG();
1017 }
1018}
1019
1020struct clone_info {
1021 struct mapped_device *md;
1022 struct dm_table *map;
1023 struct bio *bio;
1024 struct dm_io *io;
1025 sector_t sector;
1026 sector_t sector_count;
1027 unsigned short idx;
1028};
1029
1030static void dm_bio_destructor(struct bio *bio)
1031{
1032 struct bio_set *bs = bio->bi_private;
1033
1034 bio_free(bio, bs);
1035}
1036
1037/*
1038 * Creates a little bio that just does part of a bvec.
1039 */
1040static struct bio *split_bvec(struct bio *bio, sector_t sector,
1041 unsigned short idx, unsigned int offset,
1042 unsigned int len, struct bio_set *bs)
1043{
1044 struct bio *clone;
1045 struct bio_vec *bv = bio->bi_io_vec + idx;
1046
1047 clone = bio_alloc_bioset(GFP_NOIO, 1, bs);
1048 clone->bi_destructor = dm_bio_destructor;
1049 *clone->bi_io_vec = *bv;
1050
1051 clone->bi_sector = sector;
1052 clone->bi_bdev = bio->bi_bdev;
1053 clone->bi_rw = bio->bi_rw;
1054 clone->bi_vcnt = 1;
1055 clone->bi_size = to_bytes(len);
1056 clone->bi_io_vec->bv_offset = offset;
1057 clone->bi_io_vec->bv_len = clone->bi_size;
1058 clone->bi_flags |= 1 << BIO_CLONED;
1059
1060 if (bio_integrity(bio)) {
1061 bio_integrity_clone(clone, bio, GFP_NOIO, bs);
1062 bio_integrity_trim(clone,
1063 bio_sector_offset(bio, idx, offset), len);
1064 }
1065
1066 return clone;
1067}
1068
1069/*
1070 * Creates a bio that consists of range of complete bvecs.
1071 */
1072static struct bio *clone_bio(struct bio *bio, sector_t sector,
1073 unsigned short idx, unsigned short bv_count,
1074 unsigned int len, struct bio_set *bs)
1075{
1076 struct bio *clone;
1077
1078 clone = bio_alloc_bioset(GFP_NOIO, bio->bi_max_vecs, bs);
1079 __bio_clone(clone, bio);
1080 clone->bi_destructor = dm_bio_destructor;
1081 clone->bi_sector = sector;
1082 clone->bi_idx = idx;
1083 clone->bi_vcnt = idx + bv_count;
1084 clone->bi_size = to_bytes(len);
1085 clone->bi_flags &= ~(1 << BIO_SEG_VALID);
1086
1087 if (bio_integrity(bio)) {
1088 bio_integrity_clone(clone, bio, GFP_NOIO, bs);
1089
1090 if (idx != bio->bi_idx || clone->bi_size < bio->bi_size)
1091 bio_integrity_trim(clone,
1092 bio_sector_offset(bio, idx, 0), len);
1093 }
1094
1095 return clone;
1096}
1097
1098static struct dm_target_io *alloc_tio(struct clone_info *ci,
1099 struct dm_target *ti)
1100{
1101 struct dm_target_io *tio = mempool_alloc(ci->md->tio_pool, GFP_NOIO);
1102
1103 tio->io = ci->io;
1104 tio->ti = ti;
1105 memset(&tio->info, 0, sizeof(tio->info));
1106
1107 return tio;
1108}
1109
1110static void __issue_target_request(struct clone_info *ci, struct dm_target *ti,
1111 unsigned request_nr, sector_t len)
1112{
1113 struct dm_target_io *tio = alloc_tio(ci, ti);
1114 struct bio *clone;
1115
1116 tio->info.target_request_nr = request_nr;
1117
1118 /*
1119 * Discard requests require the bio's inline iovecs be initialized.
1120 * ci->bio->bi_max_vecs is BIO_INLINE_VECS anyway, for both flush
1121 * and discard, so no need for concern about wasted bvec allocations.
1122 */
1123 clone = bio_alloc_bioset(GFP_NOIO, ci->bio->bi_max_vecs, ci->md->bs);
1124 __bio_clone(clone, ci->bio);
1125 clone->bi_destructor = dm_bio_destructor;
1126 if (len) {
1127 clone->bi_sector = ci->sector;
1128 clone->bi_size = to_bytes(len);
1129 }
1130
1131 __map_bio(ti, clone, tio);
1132}
1133
1134static void __issue_target_requests(struct clone_info *ci, struct dm_target *ti,
1135 unsigned num_requests, sector_t len)
1136{
1137 unsigned request_nr;
1138
1139 for (request_nr = 0; request_nr < num_requests; request_nr++)
1140 __issue_target_request(ci, ti, request_nr, len);
1141}
1142
1143static int __clone_and_map_empty_flush(struct clone_info *ci)
1144{
1145 unsigned target_nr = 0;
1146 struct dm_target *ti;
1147
1148 BUG_ON(bio_has_data(ci->bio));
1149 while ((ti = dm_table_get_target(ci->map, target_nr++)))
1150 __issue_target_requests(ci, ti, ti->num_flush_requests, 0);
1151
1152 return 0;
1153}
1154
1155/*
1156 * Perform all io with a single clone.
1157 */
1158static void __clone_and_map_simple(struct clone_info *ci, struct dm_target *ti)
1159{
1160 struct bio *clone, *bio = ci->bio;
1161 struct dm_target_io *tio;
1162
1163 tio = alloc_tio(ci, ti);
1164 clone = clone_bio(bio, ci->sector, ci->idx,
1165 bio->bi_vcnt - ci->idx, ci->sector_count,
1166 ci->md->bs);
1167 __map_bio(ti, clone, tio);
1168 ci->sector_count = 0;
1169}
1170
1171static int __clone_and_map_discard(struct clone_info *ci)
1172{
1173 struct dm_target *ti;
1174 sector_t len;
1175
1176 do {
1177 ti = dm_table_find_target(ci->map, ci->sector);
1178 if (!dm_target_is_valid(ti))
1179 return -EIO;
1180
1181 /*
1182 * Even though the device advertised discard support,
1183 * that does not mean every target supports it, and
1184 * reconfiguration might also have changed that since the
1185 * check was performed.
1186 */
1187 if (!ti->num_discard_requests)
1188 return -EOPNOTSUPP;
1189
1190 len = min(ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1191
1192 __issue_target_requests(ci, ti, ti->num_discard_requests, len);
1193
1194 ci->sector += len;
1195 } while (ci->sector_count -= len);
1196
1197 return 0;
1198}
1199
1200static int __clone_and_map(struct clone_info *ci)
1201{
1202 struct bio *clone, *bio = ci->bio;
1203 struct dm_target *ti;
1204 sector_t len = 0, max;
1205 struct dm_target_io *tio;
1206
1207 if (unlikely(bio->bi_rw & REQ_DISCARD))
1208 return __clone_and_map_discard(ci);
1209
1210 ti = dm_table_find_target(ci->map, ci->sector);
1211 if (!dm_target_is_valid(ti))
1212 return -EIO;
1213
1214 max = max_io_len(ci->sector, ti);
1215
1216 if (ci->sector_count <= max) {
1217 /*
1218 * Optimise for the simple case where we can do all of
1219 * the remaining io with a single clone.
1220 */
1221 __clone_and_map_simple(ci, ti);
1222
1223 } else if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) {
1224 /*
1225 * There are some bvecs that don't span targets.
1226 * Do as many of these as possible.
1227 */
1228 int i;
1229 sector_t remaining = max;
1230 sector_t bv_len;
1231
1232 for (i = ci->idx; remaining && (i < bio->bi_vcnt); i++) {
1233 bv_len = to_sector(bio->bi_io_vec[i].bv_len);
1234
1235 if (bv_len > remaining)
1236 break;
1237
1238 remaining -= bv_len;
1239 len += bv_len;
1240 }
1241
1242 tio = alloc_tio(ci, ti);
1243 clone = clone_bio(bio, ci->sector, ci->idx, i - ci->idx, len,
1244 ci->md->bs);
1245 __map_bio(ti, clone, tio);
1246
1247 ci->sector += len;
1248 ci->sector_count -= len;
1249 ci->idx = i;
1250
1251 } else {
1252 /*
1253 * Handle a bvec that must be split between two or more targets.
1254 */
1255 struct bio_vec *bv = bio->bi_io_vec + ci->idx;
1256 sector_t remaining = to_sector(bv->bv_len);
1257 unsigned int offset = 0;
1258
1259 do {
1260 if (offset) {
1261 ti = dm_table_find_target(ci->map, ci->sector);
1262 if (!dm_target_is_valid(ti))
1263 return -EIO;
1264
1265 max = max_io_len(ci->sector, ti);
1266 }
1267
1268 len = min(remaining, max);
1269
1270 tio = alloc_tio(ci, ti);
1271 clone = split_bvec(bio, ci->sector, ci->idx,
1272 bv->bv_offset + offset, len,
1273 ci->md->bs);
1274
1275 __map_bio(ti, clone, tio);
1276
1277 ci->sector += len;
1278 ci->sector_count -= len;
1279 offset += to_bytes(len);
1280 } while (remaining -= len);
1281
1282 ci->idx++;
1283 }
1284
1285 return 0;
1286}
1287
1288/*
1289 * Split the bio into several clones and submit it to targets.
1290 */
1291static void __split_and_process_bio(struct mapped_device *md, struct bio *bio)
1292{
1293 struct clone_info ci;
1294 int error = 0;
1295
1296 ci.map = dm_get_live_table(md);
1297 if (unlikely(!ci.map)) {
1298 bio_io_error(bio);
1299 return;
1300 }
1301
1302 ci.md = md;
1303 ci.io = alloc_io(md);
1304 ci.io->error = 0;
1305 atomic_set(&ci.io->io_count, 1);
1306 ci.io->bio = bio;
1307 ci.io->md = md;
1308 spin_lock_init(&ci.io->endio_lock);
1309 ci.sector = bio->bi_sector;
1310 ci.idx = bio->bi_idx;
1311
1312 start_io_acct(ci.io);
1313 if (bio->bi_rw & REQ_FLUSH) {
1314 ci.bio = &ci.md->flush_bio;
1315 ci.sector_count = 0;
1316 error = __clone_and_map_empty_flush(&ci);
1317 /* dec_pending submits any data associated with flush */
1318 } else {
1319 ci.bio = bio;
1320 ci.sector_count = bio_sectors(bio);
1321 while (ci.sector_count && !error)
1322 error = __clone_and_map(&ci);
1323 }
1324
1325 /* drop the extra reference count */
1326 dec_pending(ci.io, error);
1327 dm_table_put(ci.map);
1328}
1329/*-----------------------------------------------------------------
1330 * CRUD END
1331 *---------------------------------------------------------------*/
1332
1333static int dm_merge_bvec(struct request_queue *q,
1334 struct bvec_merge_data *bvm,
1335 struct bio_vec *biovec)
1336{
1337 struct mapped_device *md = q->queuedata;
1338 struct dm_table *map = dm_get_live_table(md);
1339 struct dm_target *ti;
1340 sector_t max_sectors;
1341 int max_size = 0;
1342
1343 if (unlikely(!map))
1344 goto out;
1345
1346 ti = dm_table_find_target(map, bvm->bi_sector);
1347 if (!dm_target_is_valid(ti))
1348 goto out_table;
1349
1350 /*
1351 * Find maximum amount of I/O that won't need splitting
1352 */
1353 max_sectors = min(max_io_len(bvm->bi_sector, ti),
1354 (sector_t) BIO_MAX_SECTORS);
1355 max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
1356 if (max_size < 0)
1357 max_size = 0;
1358
1359 /*
1360 * merge_bvec_fn() returns number of bytes
1361 * it can accept at this offset
1362 * max is precomputed maximal io size
1363 */
1364 if (max_size && ti->type->merge)
1365 max_size = ti->type->merge(ti, bvm, biovec, max_size);
1366 /*
1367 * If the target doesn't support merge method and some of the devices
1368 * provided their merge_bvec method (we know this by looking at
1369 * queue_max_hw_sectors), then we can't allow bios with multiple vector
1370 * entries. So always set max_size to 0, and the code below allows
1371 * just one page.
1372 */
1373 else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9)
1374
1375 max_size = 0;
1376
1377out_table:
1378 dm_table_put(map);
1379
1380out:
1381 /*
1382 * Always allow an entire first page
1383 */
1384 if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
1385 max_size = biovec->bv_len;
1386
1387 return max_size;
1388}
1389
1390/*
1391 * The request function that just remaps the bio built up by
1392 * dm_merge_bvec.
1393 */
1394static int _dm_request(struct request_queue *q, struct bio *bio)
1395{
1396 int rw = bio_data_dir(bio);
1397 struct mapped_device *md = q->queuedata;
1398 int cpu;
1399
1400 down_read(&md->io_lock);
1401
1402 cpu = part_stat_lock();
1403 part_stat_inc(cpu, &dm_disk(md)->part0, ios[rw]);
1404 part_stat_add(cpu, &dm_disk(md)->part0, sectors[rw], bio_sectors(bio));
1405 part_stat_unlock();
1406
1407 /* if we're suspended, we have to queue this io for later */
1408 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1409 up_read(&md->io_lock);
1410
1411 if (bio_rw(bio) != READA)
1412 queue_io(md, bio);
1413 else
1414 bio_io_error(bio);
1415 return 0;
1416 }
1417
1418 __split_and_process_bio(md, bio);
1419 up_read(&md->io_lock);
1420 return 0;
1421}
1422
1423static int dm_make_request(struct request_queue *q, struct bio *bio)
1424{
1425 struct mapped_device *md = q->queuedata;
1426
1427 return md->saved_make_request_fn(q, bio); /* call __make_request() */
1428}
1429
1430static int dm_request_based(struct mapped_device *md)
1431{
1432 return blk_queue_stackable(md->queue);
1433}
1434
1435static int dm_request(struct request_queue *q, struct bio *bio)
1436{
1437 struct mapped_device *md = q->queuedata;
1438
1439 if (dm_request_based(md))
1440 return dm_make_request(q, bio);
1441
1442 return _dm_request(q, bio);
1443}
1444
1445void dm_dispatch_request(struct request *rq)
1446{
1447 int r;
1448
1449 if (blk_queue_io_stat(rq->q))
1450 rq->cmd_flags |= REQ_IO_STAT;
1451
1452 rq->start_time = jiffies;
1453 r = blk_insert_cloned_request(rq->q, rq);
1454 if (r)
1455 dm_complete_request(rq, r);
1456}
1457EXPORT_SYMBOL_GPL(dm_dispatch_request);
1458
1459static void dm_rq_bio_destructor(struct bio *bio)
1460{
1461 struct dm_rq_clone_bio_info *info = bio->bi_private;
1462 struct mapped_device *md = info->tio->md;
1463
1464 free_bio_info(info);
1465 bio_free(bio, md->bs);
1466}
1467
1468static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig,
1469 void *data)
1470{
1471 struct dm_rq_target_io *tio = data;
1472 struct mapped_device *md = tio->md;
1473 struct dm_rq_clone_bio_info *info = alloc_bio_info(md);
1474
1475 if (!info)
1476 return -ENOMEM;
1477
1478 info->orig = bio_orig;
1479 info->tio = tio;
1480 bio->bi_end_io = end_clone_bio;
1481 bio->bi_private = info;
1482 bio->bi_destructor = dm_rq_bio_destructor;
1483
1484 return 0;
1485}
1486
1487static int setup_clone(struct request *clone, struct request *rq,
1488 struct dm_rq_target_io *tio)
1489{
1490 int r;
1491
1492 r = blk_rq_prep_clone(clone, rq, tio->md->bs, GFP_ATOMIC,
1493 dm_rq_bio_constructor, tio);
1494 if (r)
1495 return r;
1496
1497 clone->cmd = rq->cmd;
1498 clone->cmd_len = rq->cmd_len;
1499 clone->sense = rq->sense;
1500 clone->buffer = rq->buffer;
1501 clone->end_io = end_clone_request;
1502 clone->end_io_data = tio;
1503
1504 return 0;
1505}
1506
1507static struct request *clone_rq(struct request *rq, struct mapped_device *md,
1508 gfp_t gfp_mask)
1509{
1510 struct request *clone;
1511 struct dm_rq_target_io *tio;
1512
1513 tio = alloc_rq_tio(md, gfp_mask);
1514 if (!tio)
1515 return NULL;
1516
1517 tio->md = md;
1518 tio->ti = NULL;
1519 tio->orig = rq;
1520 tio->error = 0;
1521 memset(&tio->info, 0, sizeof(tio->info));
1522
1523 clone = &tio->clone;
1524 if (setup_clone(clone, rq, tio)) {
1525 /* -ENOMEM */
1526 free_rq_tio(tio);
1527 return NULL;
1528 }
1529
1530 return clone;
1531}
1532
1533/*
1534 * Called with the queue lock held.
1535 */
1536static int dm_prep_fn(struct request_queue *q, struct request *rq)
1537{
1538 struct mapped_device *md = q->queuedata;
1539 struct request *clone;
1540
1541 if (unlikely(rq->special)) {
1542 DMWARN("Already has something in rq->special.");
1543 return BLKPREP_KILL;
1544 }
1545
1546 clone = clone_rq(rq, md, GFP_ATOMIC);
1547 if (!clone)
1548 return BLKPREP_DEFER;
1549
1550 rq->special = clone;
1551 rq->cmd_flags |= REQ_DONTPREP;
1552
1553 return BLKPREP_OK;
1554}
1555
1556/*
1557 * Returns:
1558 * 0 : the request has been processed (not requeued)
1559 * !0 : the request has been requeued
1560 */
1561static int map_request(struct dm_target *ti, struct request *clone,
1562 struct mapped_device *md)
1563{
1564 int r, requeued = 0;
1565 struct dm_rq_target_io *tio = clone->end_io_data;
1566
1567 /*
1568 * Hold the md reference here for the in-flight I/O.
1569 * We can't rely on the reference count by device opener,
1570 * because the device may be closed during the request completion
1571 * when all bios are completed.
1572 * See the comment in rq_completed() too.
1573 */
1574 dm_get(md);
1575
1576 tio->ti = ti;
1577 r = ti->type->map_rq(ti, clone, &tio->info);
1578 switch (r) {
1579 case DM_MAPIO_SUBMITTED:
1580 /* The target has taken the I/O to submit by itself later */
1581 break;
1582 case DM_MAPIO_REMAPPED:
1583 /* The target has remapped the I/O so dispatch it */
1584 trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)),
1585 blk_rq_pos(tio->orig));
1586 dm_dispatch_request(clone);
1587 break;
1588 case DM_MAPIO_REQUEUE:
1589 /* The target wants to requeue the I/O */
1590 dm_requeue_unmapped_request(clone);
1591 requeued = 1;
1592 break;
1593 default:
1594 if (r > 0) {
1595 DMWARN("unimplemented target map return value: %d", r);
1596 BUG();
1597 }
1598
1599 /* The target wants to complete the I/O */
1600 dm_kill_unmapped_request(clone, r);
1601 break;
1602 }
1603
1604 return requeued;
1605}
1606
1607/*
1608 * q->request_fn for request-based dm.
1609 * Called with the queue lock held.
1610 */
1611static void dm_request_fn(struct request_queue *q)
1612{
1613 struct mapped_device *md = q->queuedata;
1614 struct dm_table *map = dm_get_live_table(md);
1615 struct dm_target *ti;
1616 struct request *rq, *clone;
1617 sector_t pos;
1618
1619 /*
1620 * For suspend, check blk_queue_stopped() and increment
1621 * ->pending within a single queue_lock not to increment the
1622 * number of in-flight I/Os after the queue is stopped in
1623 * dm_suspend().
1624 */
1625 while (!blk_queue_stopped(q)) {
1626 rq = blk_peek_request(q);
1627 if (!rq)
1628 goto delay_and_out;
1629
1630 /* always use block 0 to find the target for flushes for now */
1631 pos = 0;
1632 if (!(rq->cmd_flags & REQ_FLUSH))
1633 pos = blk_rq_pos(rq);
1634
1635 ti = dm_table_find_target(map, pos);
1636 BUG_ON(!dm_target_is_valid(ti));
1637
1638 if (ti->type->busy && ti->type->busy(ti))
1639 goto delay_and_out;
1640
1641 blk_start_request(rq);
1642 clone = rq->special;
1643 atomic_inc(&md->pending[rq_data_dir(clone)]);
1644
1645 spin_unlock(q->queue_lock);
1646 if (map_request(ti, clone, md))
1647 goto requeued;
1648
1649 BUG_ON(!irqs_disabled());
1650 spin_lock(q->queue_lock);
1651 }
1652
1653 goto out;
1654
1655requeued:
1656 BUG_ON(!irqs_disabled());
1657 spin_lock(q->queue_lock);
1658
1659delay_and_out:
1660 blk_delay_queue(q, HZ / 10);
1661out:
1662 dm_table_put(map);
1663
1664 return;
1665}
1666
1667int dm_underlying_device_busy(struct request_queue *q)
1668{
1669 return blk_lld_busy(q);
1670}
1671EXPORT_SYMBOL_GPL(dm_underlying_device_busy);
1672
1673static int dm_lld_busy(struct request_queue *q)
1674{
1675 int r;
1676 struct mapped_device *md = q->queuedata;
1677 struct dm_table *map = dm_get_live_table(md);
1678
1679 if (!map || test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))
1680 r = 1;
1681 else
1682 r = dm_table_any_busy_target(map);
1683
1684 dm_table_put(map);
1685
1686 return r;
1687}
1688
1689static int dm_any_congested(void *congested_data, int bdi_bits)
1690{
1691 int r = bdi_bits;
1692 struct mapped_device *md = congested_data;
1693 struct dm_table *map;
1694
1695 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1696 map = dm_get_live_table(md);
1697 if (map) {
1698 /*
1699 * Request-based dm cares about only own queue for
1700 * the query about congestion status of request_queue
1701 */
1702 if (dm_request_based(md))
1703 r = md->queue->backing_dev_info.state &
1704 bdi_bits;
1705 else
1706 r = dm_table_any_congested(map, bdi_bits);
1707
1708 dm_table_put(map);
1709 }
1710 }
1711
1712 return r;
1713}
1714
1715/*-----------------------------------------------------------------
1716 * An IDR is used to keep track of allocated minor numbers.
1717 *---------------------------------------------------------------*/
1718static void free_minor(int minor)
1719{
1720 spin_lock(&_minor_lock);
1721 idr_remove(&_minor_idr, minor);
1722 spin_unlock(&_minor_lock);
1723}
1724
1725/*
1726 * See if the device with a specific minor # is free.
1727 */
1728static int specific_minor(int minor)
1729{
1730 int r, m;
1731
1732 if (minor >= (1 << MINORBITS))
1733 return -EINVAL;
1734
1735 r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1736 if (!r)
1737 return -ENOMEM;
1738
1739 spin_lock(&_minor_lock);
1740
1741 if (idr_find(&_minor_idr, minor)) {
1742 r = -EBUSY;
1743 goto out;
1744 }
1745
1746 r = idr_get_new_above(&_minor_idr, MINOR_ALLOCED, minor, &m);
1747 if (r)
1748 goto out;
1749
1750 if (m != minor) {
1751 idr_remove(&_minor_idr, m);
1752 r = -EBUSY;
1753 goto out;
1754 }
1755
1756out:
1757 spin_unlock(&_minor_lock);
1758 return r;
1759}
1760
1761static int next_free_minor(int *minor)
1762{
1763 int r, m;
1764
1765 r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1766 if (!r)
1767 return -ENOMEM;
1768
1769 spin_lock(&_minor_lock);
1770
1771 r = idr_get_new(&_minor_idr, MINOR_ALLOCED, &m);
1772 if (r)
1773 goto out;
1774
1775 if (m >= (1 << MINORBITS)) {
1776 idr_remove(&_minor_idr, m);
1777 r = -ENOSPC;
1778 goto out;
1779 }
1780
1781 *minor = m;
1782
1783out:
1784 spin_unlock(&_minor_lock);
1785 return r;
1786}
1787
1788static const struct block_device_operations dm_blk_dops;
1789
1790static void dm_wq_work(struct work_struct *work);
1791
1792static void dm_init_md_queue(struct mapped_device *md)
1793{
1794 /*
1795 * Request-based dm devices cannot be stacked on top of bio-based dm
1796 * devices. The type of this dm device has not been decided yet.
1797 * The type is decided at the first table loading time.
1798 * To prevent problematic device stacking, clear the queue flag
1799 * for request stacking support until then.
1800 *
1801 * This queue is new, so no concurrency on the queue_flags.
1802 */
1803 queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
1804
1805 md->queue->queuedata = md;
1806 md->queue->backing_dev_info.congested_fn = dm_any_congested;
1807 md->queue->backing_dev_info.congested_data = md;
1808 blk_queue_make_request(md->queue, dm_request);
1809 blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
1810 blk_queue_merge_bvec(md->queue, dm_merge_bvec);
1811}
1812
1813/*
1814 * Allocate and initialise a blank device with a given minor.
1815 */
1816static struct mapped_device *alloc_dev(int minor)
1817{
1818 int r;
1819 struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
1820 void *old_md;
1821
1822 if (!md) {
1823 DMWARN("unable to allocate device, out of memory.");
1824 return NULL;
1825 }
1826
1827 if (!try_module_get(THIS_MODULE))
1828 goto bad_module_get;
1829
1830 /* get a minor number for the dev */
1831 if (minor == DM_ANY_MINOR)
1832 r = next_free_minor(&minor);
1833 else
1834 r = specific_minor(minor);
1835 if (r < 0)
1836 goto bad_minor;
1837
1838 md->type = DM_TYPE_NONE;
1839 init_rwsem(&md->io_lock);
1840 mutex_init(&md->suspend_lock);
1841 mutex_init(&md->type_lock);
1842 spin_lock_init(&md->deferred_lock);
1843 rwlock_init(&md->map_lock);
1844 atomic_set(&md->holders, 1);
1845 atomic_set(&md->open_count, 0);
1846 atomic_set(&md->event_nr, 0);
1847 atomic_set(&md->uevent_seq, 0);
1848 INIT_LIST_HEAD(&md->uevent_list);
1849 spin_lock_init(&md->uevent_lock);
1850
1851 md->queue = blk_alloc_queue(GFP_KERNEL);
1852 if (!md->queue)
1853 goto bad_queue;
1854
1855 dm_init_md_queue(md);
1856
1857 md->disk = alloc_disk(1);
1858 if (!md->disk)
1859 goto bad_disk;
1860
1861 atomic_set(&md->pending[0], 0);
1862 atomic_set(&md->pending[1], 0);
1863 init_waitqueue_head(&md->wait);
1864 INIT_WORK(&md->work, dm_wq_work);
1865 init_waitqueue_head(&md->eventq);
1866
1867 md->disk->major = _major;
1868 md->disk->first_minor = minor;
1869 md->disk->fops = &dm_blk_dops;
1870 md->disk->queue = md->queue;
1871 md->disk->private_data = md;
1872 sprintf(md->disk->disk_name, "dm-%d", minor);
1873 add_disk(md->disk);
1874 format_dev_t(md->name, MKDEV(_major, minor));
1875
1876 md->wq = alloc_workqueue("kdmflush",
1877 WQ_NON_REENTRANT | WQ_MEM_RECLAIM, 0);
1878 if (!md->wq)
1879 goto bad_thread;
1880
1881 md->bdev = bdget_disk(md->disk, 0);
1882 if (!md->bdev)
1883 goto bad_bdev;
1884
1885 bio_init(&md->flush_bio);
1886 md->flush_bio.bi_bdev = md->bdev;
1887 md->flush_bio.bi_rw = WRITE_FLUSH;
1888
1889 /* Populate the mapping, nobody knows we exist yet */
1890 spin_lock(&_minor_lock);
1891 old_md = idr_replace(&_minor_idr, md, minor);
1892 spin_unlock(&_minor_lock);
1893
1894 BUG_ON(old_md != MINOR_ALLOCED);
1895
1896 return md;
1897
1898bad_bdev:
1899 destroy_workqueue(md->wq);
1900bad_thread:
1901 del_gendisk(md->disk);
1902 put_disk(md->disk);
1903bad_disk:
1904 blk_cleanup_queue(md->queue);
1905bad_queue:
1906 free_minor(minor);
1907bad_minor:
1908 module_put(THIS_MODULE);
1909bad_module_get:
1910 kfree(md);
1911 return NULL;
1912}
1913
1914static void unlock_fs(struct mapped_device *md);
1915
1916static void free_dev(struct mapped_device *md)
1917{
1918 int minor = MINOR(disk_devt(md->disk));
1919
1920 unlock_fs(md);
1921 bdput(md->bdev);
1922 destroy_workqueue(md->wq);
1923 if (md->tio_pool)
1924 mempool_destroy(md->tio_pool);
1925 if (md->io_pool)
1926 mempool_destroy(md->io_pool);
1927 if (md->bs)
1928 bioset_free(md->bs);
1929 blk_integrity_unregister(md->disk);
1930 del_gendisk(md->disk);
1931 free_minor(minor);
1932
1933 spin_lock(&_minor_lock);
1934 md->disk->private_data = NULL;
1935 spin_unlock(&_minor_lock);
1936
1937 put_disk(md->disk);
1938 blk_cleanup_queue(md->queue);
1939 module_put(THIS_MODULE);
1940 kfree(md);
1941}
1942
1943static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
1944{
1945 struct dm_md_mempools *p;
1946
1947 if (md->io_pool && md->tio_pool && md->bs)
1948 /* the md already has necessary mempools */
1949 goto out;
1950
1951 p = dm_table_get_md_mempools(t);
1952 BUG_ON(!p || md->io_pool || md->tio_pool || md->bs);
1953
1954 md->io_pool = p->io_pool;
1955 p->io_pool = NULL;
1956 md->tio_pool = p->tio_pool;
1957 p->tio_pool = NULL;
1958 md->bs = p->bs;
1959 p->bs = NULL;
1960
1961out:
1962 /* mempool bind completed, now no need any mempools in the table */
1963 dm_table_free_md_mempools(t);
1964}
1965
1966/*
1967 * Bind a table to the device.
1968 */
1969static void event_callback(void *context)
1970{
1971 unsigned long flags;
1972 LIST_HEAD(uevents);
1973 struct mapped_device *md = (struct mapped_device *) context;
1974
1975 spin_lock_irqsave(&md->uevent_lock, flags);
1976 list_splice_init(&md->uevent_list, &uevents);
1977 spin_unlock_irqrestore(&md->uevent_lock, flags);
1978
1979 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
1980
1981 atomic_inc(&md->event_nr);
1982 wake_up(&md->eventq);
1983}
1984
1985/*
1986 * Protected by md->suspend_lock obtained by dm_swap_table().
1987 */
1988static void __set_size(struct mapped_device *md, sector_t size)
1989{
1990 set_capacity(md->disk, size);
1991
1992 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
1993}
1994
1995/*
1996 * Return 1 if the queue has a compulsory merge_bvec_fn function.
1997 *
1998 * If this function returns 0, then the device is either a non-dm
1999 * device without a merge_bvec_fn, or it is a dm device that is
2000 * able to split any bios it receives that are too big.
2001 */
2002int dm_queue_merge_is_compulsory(struct request_queue *q)
2003{
2004 struct mapped_device *dev_md;
2005
2006 if (!q->merge_bvec_fn)
2007 return 0;
2008
2009 if (q->make_request_fn == dm_request) {
2010 dev_md = q->queuedata;
2011 if (test_bit(DMF_MERGE_IS_OPTIONAL, &dev_md->flags))
2012 return 0;
2013 }
2014
2015 return 1;
2016}
2017
2018static int dm_device_merge_is_compulsory(struct dm_target *ti,
2019 struct dm_dev *dev, sector_t start,
2020 sector_t len, void *data)
2021{
2022 struct block_device *bdev = dev->bdev;
2023 struct request_queue *q = bdev_get_queue(bdev);
2024
2025 return dm_queue_merge_is_compulsory(q);
2026}
2027
2028/*
2029 * Return 1 if it is acceptable to ignore merge_bvec_fn based
2030 * on the properties of the underlying devices.
2031 */
2032static int dm_table_merge_is_optional(struct dm_table *table)
2033{
2034 unsigned i = 0;
2035 struct dm_target *ti;
2036
2037 while (i < dm_table_get_num_targets(table)) {
2038 ti = dm_table_get_target(table, i++);
2039
2040 if (ti->type->iterate_devices &&
2041 ti->type->iterate_devices(ti, dm_device_merge_is_compulsory, NULL))
2042 return 0;
2043 }
2044
2045 return 1;
2046}
2047
2048/*
2049 * Returns old map, which caller must destroy.
2050 */
2051static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2052 struct queue_limits *limits)
2053{
2054 struct dm_table *old_map;
2055 struct request_queue *q = md->queue;
2056 sector_t size;
2057 unsigned long flags;
2058 int merge_is_optional;
2059
2060 size = dm_table_get_size(t);
2061
2062 /*
2063 * Wipe any geometry if the size of the table changed.
2064 */
2065 if (size != get_capacity(md->disk))
2066 memset(&md->geometry, 0, sizeof(md->geometry));
2067
2068 __set_size(md, size);
2069
2070 dm_table_event_callback(t, event_callback, md);
2071
2072 /*
2073 * The queue hasn't been stopped yet, if the old table type wasn't
2074 * for request-based during suspension. So stop it to prevent
2075 * I/O mapping before resume.
2076 * This must be done before setting the queue restrictions,
2077 * because request-based dm may be run just after the setting.
2078 */
2079 if (dm_table_request_based(t) && !blk_queue_stopped(q))
2080 stop_queue(q);
2081
2082 __bind_mempools(md, t);
2083
2084 merge_is_optional = dm_table_merge_is_optional(t);
2085
2086 write_lock_irqsave(&md->map_lock, flags);
2087 old_map = md->map;
2088 md->map = t;
2089 dm_table_set_restrictions(t, q, limits);
2090 if (merge_is_optional)
2091 set_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2092 else
2093 clear_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2094 write_unlock_irqrestore(&md->map_lock, flags);
2095
2096 return old_map;
2097}
2098
2099/*
2100 * Returns unbound table for the caller to free.
2101 */
2102static struct dm_table *__unbind(struct mapped_device *md)
2103{
2104 struct dm_table *map = md->map;
2105 unsigned long flags;
2106
2107 if (!map)
2108 return NULL;
2109
2110 dm_table_event_callback(map, NULL, NULL);
2111 write_lock_irqsave(&md->map_lock, flags);
2112 md->map = NULL;
2113 write_unlock_irqrestore(&md->map_lock, flags);
2114
2115 return map;
2116}
2117
2118/*
2119 * Constructor for a new device.
2120 */
2121int dm_create(int minor, struct mapped_device **result)
2122{
2123 struct mapped_device *md;
2124
2125 md = alloc_dev(minor);
2126 if (!md)
2127 return -ENXIO;
2128
2129 dm_sysfs_init(md);
2130
2131 *result = md;
2132 return 0;
2133}
2134
2135/*
2136 * Functions to manage md->type.
2137 * All are required to hold md->type_lock.
2138 */
2139void dm_lock_md_type(struct mapped_device *md)
2140{
2141 mutex_lock(&md->type_lock);
2142}
2143
2144void dm_unlock_md_type(struct mapped_device *md)
2145{
2146 mutex_unlock(&md->type_lock);
2147}
2148
2149void dm_set_md_type(struct mapped_device *md, unsigned type)
2150{
2151 md->type = type;
2152}
2153
2154unsigned dm_get_md_type(struct mapped_device *md)
2155{
2156 return md->type;
2157}
2158
2159/*
2160 * Fully initialize a request-based queue (->elevator, ->request_fn, etc).
2161 */
2162static int dm_init_request_based_queue(struct mapped_device *md)
2163{
2164 struct request_queue *q = NULL;
2165
2166 if (md->queue->elevator)
2167 return 1;
2168
2169 /* Fully initialize the queue */
2170 q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL);
2171 if (!q)
2172 return 0;
2173
2174 md->queue = q;
2175 md->saved_make_request_fn = md->queue->make_request_fn;
2176 dm_init_md_queue(md);
2177 blk_queue_softirq_done(md->queue, dm_softirq_done);
2178 blk_queue_prep_rq(md->queue, dm_prep_fn);
2179 blk_queue_lld_busy(md->queue, dm_lld_busy);
2180
2181 elv_register_queue(md->queue);
2182
2183 return 1;
2184}
2185
2186/*
2187 * Setup the DM device's queue based on md's type
2188 */
2189int dm_setup_md_queue(struct mapped_device *md)
2190{
2191 if ((dm_get_md_type(md) == DM_TYPE_REQUEST_BASED) &&
2192 !dm_init_request_based_queue(md)) {
2193 DMWARN("Cannot initialize queue for request-based mapped device");
2194 return -EINVAL;
2195 }
2196
2197 return 0;
2198}
2199
2200static struct mapped_device *dm_find_md(dev_t dev)
2201{
2202 struct mapped_device *md;
2203 unsigned minor = MINOR(dev);
2204
2205 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2206 return NULL;
2207
2208 spin_lock(&_minor_lock);
2209
2210 md = idr_find(&_minor_idr, minor);
2211 if (md && (md == MINOR_ALLOCED ||
2212 (MINOR(disk_devt(dm_disk(md))) != minor) ||
2213 dm_deleting_md(md) ||
2214 test_bit(DMF_FREEING, &md->flags))) {
2215 md = NULL;
2216 goto out;
2217 }
2218
2219out:
2220 spin_unlock(&_minor_lock);
2221
2222 return md;
2223}
2224
2225struct mapped_device *dm_get_md(dev_t dev)
2226{
2227 struct mapped_device *md = dm_find_md(dev);
2228
2229 if (md)
2230 dm_get(md);
2231
2232 return md;
2233}
2234
2235void *dm_get_mdptr(struct mapped_device *md)
2236{
2237 return md->interface_ptr;
2238}
2239
2240void dm_set_mdptr(struct mapped_device *md, void *ptr)
2241{
2242 md->interface_ptr = ptr;
2243}
2244
2245void dm_get(struct mapped_device *md)
2246{
2247 atomic_inc(&md->holders);
2248 BUG_ON(test_bit(DMF_FREEING, &md->flags));
2249}
2250
2251const char *dm_device_name(struct mapped_device *md)
2252{
2253 return md->name;
2254}
2255EXPORT_SYMBOL_GPL(dm_device_name);
2256
2257static void __dm_destroy(struct mapped_device *md, bool wait)
2258{
2259 struct dm_table *map;
2260
2261 might_sleep();
2262
2263 spin_lock(&_minor_lock);
2264 map = dm_get_live_table(md);
2265 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2266 set_bit(DMF_FREEING, &md->flags);
2267 spin_unlock(&_minor_lock);
2268
2269 if (!dm_suspended_md(md)) {
2270 dm_table_presuspend_targets(map);
2271 dm_table_postsuspend_targets(map);
2272 }
2273
2274 /*
2275 * Rare, but there may be I/O requests still going to complete,
2276 * for example. Wait for all references to disappear.
2277 * No one should increment the reference count of the mapped_device,
2278 * after the mapped_device state becomes DMF_FREEING.
2279 */
2280 if (wait)
2281 while (atomic_read(&md->holders))
2282 msleep(1);
2283 else if (atomic_read(&md->holders))
2284 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2285 dm_device_name(md), atomic_read(&md->holders));
2286
2287 dm_sysfs_exit(md);
2288 dm_table_put(map);
2289 dm_table_destroy(__unbind(md));
2290 free_dev(md);
2291}
2292
2293void dm_destroy(struct mapped_device *md)
2294{
2295 __dm_destroy(md, true);
2296}
2297
2298void dm_destroy_immediate(struct mapped_device *md)
2299{
2300 __dm_destroy(md, false);
2301}
2302
2303void dm_put(struct mapped_device *md)
2304{
2305 atomic_dec(&md->holders);
2306}
2307EXPORT_SYMBOL_GPL(dm_put);
2308
2309static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
2310{
2311 int r = 0;
2312 DECLARE_WAITQUEUE(wait, current);
2313
2314 add_wait_queue(&md->wait, &wait);
2315
2316 while (1) {
2317 set_current_state(interruptible);
2318
2319 smp_mb();
2320 if (!md_in_flight(md))
2321 break;
2322
2323 if (interruptible == TASK_INTERRUPTIBLE &&
2324 signal_pending(current)) {
2325 r = -EINTR;
2326 break;
2327 }
2328
2329 io_schedule();
2330 }
2331 set_current_state(TASK_RUNNING);
2332
2333 remove_wait_queue(&md->wait, &wait);
2334
2335 return r;
2336}
2337
2338/*
2339 * Process the deferred bios
2340 */
2341static void dm_wq_work(struct work_struct *work)
2342{
2343 struct mapped_device *md = container_of(work, struct mapped_device,
2344 work);
2345 struct bio *c;
2346
2347 down_read(&md->io_lock);
2348
2349 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2350 spin_lock_irq(&md->deferred_lock);
2351 c = bio_list_pop(&md->deferred);
2352 spin_unlock_irq(&md->deferred_lock);
2353
2354 if (!c)
2355 break;
2356
2357 up_read(&md->io_lock);
2358
2359 if (dm_request_based(md))
2360 generic_make_request(c);
2361 else
2362 __split_and_process_bio(md, c);
2363
2364 down_read(&md->io_lock);
2365 }
2366
2367 up_read(&md->io_lock);
2368}
2369
2370static void dm_queue_flush(struct mapped_device *md)
2371{
2372 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2373 smp_mb__after_clear_bit();
2374 queue_work(md->wq, &md->work);
2375}
2376
2377/*
2378 * Swap in a new table, returning the old one for the caller to destroy.
2379 */
2380struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2381{
2382 struct dm_table *map = ERR_PTR(-EINVAL);
2383 struct queue_limits limits;
2384 int r;
2385
2386 mutex_lock(&md->suspend_lock);
2387
2388 /* device must be suspended */
2389 if (!dm_suspended_md(md))
2390 goto out;
2391
2392 r = dm_calculate_queue_limits(table, &limits);
2393 if (r) {
2394 map = ERR_PTR(r);
2395 goto out;
2396 }
2397
2398 map = __bind(md, table, &limits);
2399
2400out:
2401 mutex_unlock(&md->suspend_lock);
2402 return map;
2403}
2404
2405/*
2406 * Functions to lock and unlock any filesystem running on the
2407 * device.
2408 */
2409static int lock_fs(struct mapped_device *md)
2410{
2411 int r;
2412
2413 WARN_ON(md->frozen_sb);
2414
2415 md->frozen_sb = freeze_bdev(md->bdev);
2416 if (IS_ERR(md->frozen_sb)) {
2417 r = PTR_ERR(md->frozen_sb);
2418 md->frozen_sb = NULL;
2419 return r;
2420 }
2421
2422 set_bit(DMF_FROZEN, &md->flags);
2423
2424 return 0;
2425}
2426
2427static void unlock_fs(struct mapped_device *md)
2428{
2429 if (!test_bit(DMF_FROZEN, &md->flags))
2430 return;
2431
2432 thaw_bdev(md->bdev, md->frozen_sb);
2433 md->frozen_sb = NULL;
2434 clear_bit(DMF_FROZEN, &md->flags);
2435}
2436
2437/*
2438 * We need to be able to change a mapping table under a mounted
2439 * filesystem. For example we might want to move some data in
2440 * the background. Before the table can be swapped with
2441 * dm_bind_table, dm_suspend must be called to flush any in
2442 * flight bios and ensure that any further io gets deferred.
2443 */
2444/*
2445 * Suspend mechanism in request-based dm.
2446 *
2447 * 1. Flush all I/Os by lock_fs() if needed.
2448 * 2. Stop dispatching any I/O by stopping the request_queue.
2449 * 3. Wait for all in-flight I/Os to be completed or requeued.
2450 *
2451 * To abort suspend, start the request_queue.
2452 */
2453int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2454{
2455 struct dm_table *map = NULL;
2456 int r = 0;
2457 int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0;
2458 int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0;
2459
2460 mutex_lock(&md->suspend_lock);
2461
2462 if (dm_suspended_md(md)) {
2463 r = -EINVAL;
2464 goto out_unlock;
2465 }
2466
2467 map = dm_get_live_table(md);
2468
2469 /*
2470 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2471 * This flag is cleared before dm_suspend returns.
2472 */
2473 if (noflush)
2474 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2475
2476 /* This does not get reverted if there's an error later. */
2477 dm_table_presuspend_targets(map);
2478
2479 /*
2480 * Flush I/O to the device.
2481 * Any I/O submitted after lock_fs() may not be flushed.
2482 * noflush takes precedence over do_lockfs.
2483 * (lock_fs() flushes I/Os and waits for them to complete.)
2484 */
2485 if (!noflush && do_lockfs) {
2486 r = lock_fs(md);
2487 if (r)
2488 goto out;
2489 }
2490
2491 /*
2492 * Here we must make sure that no processes are submitting requests
2493 * to target drivers i.e. no one may be executing
2494 * __split_and_process_bio. This is called from dm_request and
2495 * dm_wq_work.
2496 *
2497 * To get all processes out of __split_and_process_bio in dm_request,
2498 * we take the write lock. To prevent any process from reentering
2499 * __split_and_process_bio from dm_request and quiesce the thread
2500 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2501 * flush_workqueue(md->wq).
2502 */
2503 down_write(&md->io_lock);
2504 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2505 up_write(&md->io_lock);
2506
2507 /*
2508 * Stop md->queue before flushing md->wq in case request-based
2509 * dm defers requests to md->wq from md->queue.
2510 */
2511 if (dm_request_based(md))
2512 stop_queue(md->queue);
2513
2514 flush_workqueue(md->wq);
2515
2516 /*
2517 * At this point no more requests are entering target request routines.
2518 * We call dm_wait_for_completion to wait for all existing requests
2519 * to finish.
2520 */
2521 r = dm_wait_for_completion(md, TASK_INTERRUPTIBLE);
2522
2523 down_write(&md->io_lock);
2524 if (noflush)
2525 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2526 up_write(&md->io_lock);
2527
2528 /* were we interrupted ? */
2529 if (r < 0) {
2530 dm_queue_flush(md);
2531
2532 if (dm_request_based(md))
2533 start_queue(md->queue);
2534
2535 unlock_fs(md);
2536 goto out; /* pushback list is already flushed, so skip flush */
2537 }
2538
2539 /*
2540 * If dm_wait_for_completion returned 0, the device is completely
2541 * quiescent now. There is no request-processing activity. All new
2542 * requests are being added to md->deferred list.
2543 */
2544
2545 set_bit(DMF_SUSPENDED, &md->flags);
2546
2547 dm_table_postsuspend_targets(map);
2548
2549out:
2550 dm_table_put(map);
2551
2552out_unlock:
2553 mutex_unlock(&md->suspend_lock);
2554 return r;
2555}
2556
2557int dm_resume(struct mapped_device *md)
2558{
2559 int r = -EINVAL;
2560 struct dm_table *map = NULL;
2561
2562 mutex_lock(&md->suspend_lock);
2563 if (!dm_suspended_md(md))
2564 goto out;
2565
2566 map = dm_get_live_table(md);
2567 if (!map || !dm_table_get_size(map))
2568 goto out;
2569
2570 r = dm_table_resume_targets(map);
2571 if (r)
2572 goto out;
2573
2574 dm_queue_flush(md);
2575
2576 /*
2577 * Flushing deferred I/Os must be done after targets are resumed
2578 * so that mapping of targets can work correctly.
2579 * Request-based dm is queueing the deferred I/Os in its request_queue.
2580 */
2581 if (dm_request_based(md))
2582 start_queue(md->queue);
2583
2584 unlock_fs(md);
2585
2586 clear_bit(DMF_SUSPENDED, &md->flags);
2587
2588 r = 0;
2589out:
2590 dm_table_put(map);
2591 mutex_unlock(&md->suspend_lock);
2592
2593 return r;
2594}
2595
2596/*-----------------------------------------------------------------
2597 * Event notification.
2598 *---------------------------------------------------------------*/
2599int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2600 unsigned cookie)
2601{
2602 char udev_cookie[DM_COOKIE_LENGTH];
2603 char *envp[] = { udev_cookie, NULL };
2604
2605 if (!cookie)
2606 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2607 else {
2608 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2609 DM_COOKIE_ENV_VAR_NAME, cookie);
2610 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2611 action, envp);
2612 }
2613}
2614
2615uint32_t dm_next_uevent_seq(struct mapped_device *md)
2616{
2617 return atomic_add_return(1, &md->uevent_seq);
2618}
2619
2620uint32_t dm_get_event_nr(struct mapped_device *md)
2621{
2622 return atomic_read(&md->event_nr);
2623}
2624
2625int dm_wait_event(struct mapped_device *md, int event_nr)
2626{
2627 return wait_event_interruptible(md->eventq,
2628 (event_nr != atomic_read(&md->event_nr)));
2629}
2630
2631void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2632{
2633 unsigned long flags;
2634
2635 spin_lock_irqsave(&md->uevent_lock, flags);
2636 list_add(elist, &md->uevent_list);
2637 spin_unlock_irqrestore(&md->uevent_lock, flags);
2638}
2639
2640/*
2641 * The gendisk is only valid as long as you have a reference
2642 * count on 'md'.
2643 */
2644struct gendisk *dm_disk(struct mapped_device *md)
2645{
2646 return md->disk;
2647}
2648
2649struct kobject *dm_kobject(struct mapped_device *md)
2650{
2651 return &md->kobj;
2652}
2653
2654/*
2655 * struct mapped_device should not be exported outside of dm.c
2656 * so use this check to verify that kobj is part of md structure
2657 */
2658struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2659{
2660 struct mapped_device *md;
2661
2662 md = container_of(kobj, struct mapped_device, kobj);
2663 if (&md->kobj != kobj)
2664 return NULL;
2665
2666 if (test_bit(DMF_FREEING, &md->flags) ||
2667 dm_deleting_md(md))
2668 return NULL;
2669
2670 dm_get(md);
2671 return md;
2672}
2673
2674int dm_suspended_md(struct mapped_device *md)
2675{
2676 return test_bit(DMF_SUSPENDED, &md->flags);
2677}
2678
2679int dm_suspended(struct dm_target *ti)
2680{
2681 return dm_suspended_md(dm_table_get_md(ti->table));
2682}
2683EXPORT_SYMBOL_GPL(dm_suspended);
2684
2685int dm_noflush_suspending(struct dm_target *ti)
2686{
2687 return __noflush_suspending(dm_table_get_md(ti->table));
2688}
2689EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2690
2691struct dm_md_mempools *dm_alloc_md_mempools(unsigned type, unsigned integrity)
2692{
2693 struct dm_md_mempools *pools = kmalloc(sizeof(*pools), GFP_KERNEL);
2694 unsigned int pool_size = (type == DM_TYPE_BIO_BASED) ? 16 : MIN_IOS;
2695
2696 if (!pools)
2697 return NULL;
2698
2699 pools->io_pool = (type == DM_TYPE_BIO_BASED) ?
2700 mempool_create_slab_pool(MIN_IOS, _io_cache) :
2701 mempool_create_slab_pool(MIN_IOS, _rq_bio_info_cache);
2702 if (!pools->io_pool)
2703 goto free_pools_and_out;
2704
2705 pools->tio_pool = (type == DM_TYPE_BIO_BASED) ?
2706 mempool_create_slab_pool(MIN_IOS, _tio_cache) :
2707 mempool_create_slab_pool(MIN_IOS, _rq_tio_cache);
2708 if (!pools->tio_pool)
2709 goto free_io_pool_and_out;
2710
2711 pools->bs = bioset_create(pool_size, 0);
2712 if (!pools->bs)
2713 goto free_tio_pool_and_out;
2714
2715 if (integrity && bioset_integrity_create(pools->bs, pool_size))
2716 goto free_bioset_and_out;
2717
2718 return pools;
2719
2720free_bioset_and_out:
2721 bioset_free(pools->bs);
2722
2723free_tio_pool_and_out:
2724 mempool_destroy(pools->tio_pool);
2725
2726free_io_pool_and_out:
2727 mempool_destroy(pools->io_pool);
2728
2729free_pools_and_out:
2730 kfree(pools);
2731
2732 return NULL;
2733}
2734
2735void dm_free_md_mempools(struct dm_md_mempools *pools)
2736{
2737 if (!pools)
2738 return;
2739
2740 if (pools->io_pool)
2741 mempool_destroy(pools->io_pool);
2742
2743 if (pools->tio_pool)
2744 mempool_destroy(pools->tio_pool);
2745
2746 if (pools->bs)
2747 bioset_free(pools->bs);
2748
2749 kfree(pools);
2750}
2751
2752static const struct block_device_operations dm_blk_dops = {
2753 .open = dm_blk_open,
2754 .release = dm_blk_close,
2755 .ioctl = dm_blk_ioctl,
2756 .getgeo = dm_blk_getgeo,
2757 .owner = THIS_MODULE
2758};
2759
2760EXPORT_SYMBOL(dm_get_mapinfo);
2761
2762/*
2763 * module hooks
2764 */
2765module_init(dm_init);
2766module_exit(dm_exit);
2767
2768module_param(major, uint, 0);
2769MODULE_PARM_DESC(major, "The major number of the device mapper");
2770MODULE_DESCRIPTION(DM_NAME " driver");
2771MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
2772MODULE_LICENSE("GPL");
1/*
2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8#include "dm-core.h"
9#include "dm-rq.h"
10#include "dm-uevent.h"
11
12#include <linux/init.h>
13#include <linux/module.h>
14#include <linux/mutex.h>
15#include <linux/sched/signal.h>
16#include <linux/blkpg.h>
17#include <linux/bio.h>
18#include <linux/mempool.h>
19#include <linux/dax.h>
20#include <linux/slab.h>
21#include <linux/idr.h>
22#include <linux/uio.h>
23#include <linux/hdreg.h>
24#include <linux/delay.h>
25#include <linux/wait.h>
26#include <linux/pr.h>
27#include <linux/refcount.h>
28
29#define DM_MSG_PREFIX "core"
30
31/*
32 * Cookies are numeric values sent with CHANGE and REMOVE
33 * uevents while resuming, removing or renaming the device.
34 */
35#define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
36#define DM_COOKIE_LENGTH 24
37
38static const char *_name = DM_NAME;
39
40static unsigned int major = 0;
41static unsigned int _major = 0;
42
43static DEFINE_IDR(_minor_idr);
44
45static DEFINE_SPINLOCK(_minor_lock);
46
47static void do_deferred_remove(struct work_struct *w);
48
49static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
50
51static struct workqueue_struct *deferred_remove_workqueue;
52
53atomic_t dm_global_event_nr = ATOMIC_INIT(0);
54DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
55
56void dm_issue_global_event(void)
57{
58 atomic_inc(&dm_global_event_nr);
59 wake_up(&dm_global_eventq);
60}
61
62/*
63 * One of these is allocated (on-stack) per original bio.
64 */
65struct clone_info {
66 struct dm_table *map;
67 struct bio *bio;
68 struct dm_io *io;
69 sector_t sector;
70 unsigned sector_count;
71};
72
73/*
74 * One of these is allocated per clone bio.
75 */
76#define DM_TIO_MAGIC 7282014
77struct dm_target_io {
78 unsigned magic;
79 struct dm_io *io;
80 struct dm_target *ti;
81 unsigned target_bio_nr;
82 unsigned *len_ptr;
83 bool inside_dm_io;
84 struct bio clone;
85};
86
87/*
88 * One of these is allocated per original bio.
89 * It contains the first clone used for that original.
90 */
91#define DM_IO_MAGIC 5191977
92struct dm_io {
93 unsigned magic;
94 struct mapped_device *md;
95 blk_status_t status;
96 atomic_t io_count;
97 struct bio *orig_bio;
98 unsigned long start_time;
99 spinlock_t endio_lock;
100 struct dm_stats_aux stats_aux;
101 /* last member of dm_target_io is 'struct bio' */
102 struct dm_target_io tio;
103};
104
105void *dm_per_bio_data(struct bio *bio, size_t data_size)
106{
107 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
108 if (!tio->inside_dm_io)
109 return (char *)bio - offsetof(struct dm_target_io, clone) - data_size;
110 return (char *)bio - offsetof(struct dm_target_io, clone) - offsetof(struct dm_io, tio) - data_size;
111}
112EXPORT_SYMBOL_GPL(dm_per_bio_data);
113
114struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
115{
116 struct dm_io *io = (struct dm_io *)((char *)data + data_size);
117 if (io->magic == DM_IO_MAGIC)
118 return (struct bio *)((char *)io + offsetof(struct dm_io, tio) + offsetof(struct dm_target_io, clone));
119 BUG_ON(io->magic != DM_TIO_MAGIC);
120 return (struct bio *)((char *)io + offsetof(struct dm_target_io, clone));
121}
122EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
123
124unsigned dm_bio_get_target_bio_nr(const struct bio *bio)
125{
126 return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
127}
128EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
129
130#define MINOR_ALLOCED ((void *)-1)
131
132/*
133 * Bits for the md->flags field.
134 */
135#define DMF_BLOCK_IO_FOR_SUSPEND 0
136#define DMF_SUSPENDED 1
137#define DMF_FROZEN 2
138#define DMF_FREEING 3
139#define DMF_DELETING 4
140#define DMF_NOFLUSH_SUSPENDING 5
141#define DMF_DEFERRED_REMOVE 6
142#define DMF_SUSPENDED_INTERNALLY 7
143
144#define DM_NUMA_NODE NUMA_NO_NODE
145static int dm_numa_node = DM_NUMA_NODE;
146
147/*
148 * For mempools pre-allocation at the table loading time.
149 */
150struct dm_md_mempools {
151 struct bio_set bs;
152 struct bio_set io_bs;
153};
154
155struct table_device {
156 struct list_head list;
157 refcount_t count;
158 struct dm_dev dm_dev;
159};
160
161/*
162 * Bio-based DM's mempools' reserved IOs set by the user.
163 */
164#define RESERVED_BIO_BASED_IOS 16
165static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
166
167static int __dm_get_module_param_int(int *module_param, int min, int max)
168{
169 int param = READ_ONCE(*module_param);
170 int modified_param = 0;
171 bool modified = true;
172
173 if (param < min)
174 modified_param = min;
175 else if (param > max)
176 modified_param = max;
177 else
178 modified = false;
179
180 if (modified) {
181 (void)cmpxchg(module_param, param, modified_param);
182 param = modified_param;
183 }
184
185 return param;
186}
187
188unsigned __dm_get_module_param(unsigned *module_param,
189 unsigned def, unsigned max)
190{
191 unsigned param = READ_ONCE(*module_param);
192 unsigned modified_param = 0;
193
194 if (!param)
195 modified_param = def;
196 else if (param > max)
197 modified_param = max;
198
199 if (modified_param) {
200 (void)cmpxchg(module_param, param, modified_param);
201 param = modified_param;
202 }
203
204 return param;
205}
206
207unsigned dm_get_reserved_bio_based_ios(void)
208{
209 return __dm_get_module_param(&reserved_bio_based_ios,
210 RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
211}
212EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
213
214static unsigned dm_get_numa_node(void)
215{
216 return __dm_get_module_param_int(&dm_numa_node,
217 DM_NUMA_NODE, num_online_nodes() - 1);
218}
219
220static int __init local_init(void)
221{
222 int r;
223
224 r = dm_uevent_init();
225 if (r)
226 return r;
227
228 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
229 if (!deferred_remove_workqueue) {
230 r = -ENOMEM;
231 goto out_uevent_exit;
232 }
233
234 _major = major;
235 r = register_blkdev(_major, _name);
236 if (r < 0)
237 goto out_free_workqueue;
238
239 if (!_major)
240 _major = r;
241
242 return 0;
243
244out_free_workqueue:
245 destroy_workqueue(deferred_remove_workqueue);
246out_uevent_exit:
247 dm_uevent_exit();
248
249 return r;
250}
251
252static void local_exit(void)
253{
254 flush_scheduled_work();
255 destroy_workqueue(deferred_remove_workqueue);
256
257 unregister_blkdev(_major, _name);
258 dm_uevent_exit();
259
260 _major = 0;
261
262 DMINFO("cleaned up");
263}
264
265static int (*_inits[])(void) __initdata = {
266 local_init,
267 dm_target_init,
268 dm_linear_init,
269 dm_stripe_init,
270 dm_io_init,
271 dm_kcopyd_init,
272 dm_interface_init,
273 dm_statistics_init,
274};
275
276static void (*_exits[])(void) = {
277 local_exit,
278 dm_target_exit,
279 dm_linear_exit,
280 dm_stripe_exit,
281 dm_io_exit,
282 dm_kcopyd_exit,
283 dm_interface_exit,
284 dm_statistics_exit,
285};
286
287static int __init dm_init(void)
288{
289 const int count = ARRAY_SIZE(_inits);
290
291 int r, i;
292
293 for (i = 0; i < count; i++) {
294 r = _inits[i]();
295 if (r)
296 goto bad;
297 }
298
299 return 0;
300
301 bad:
302 while (i--)
303 _exits[i]();
304
305 return r;
306}
307
308static void __exit dm_exit(void)
309{
310 int i = ARRAY_SIZE(_exits);
311
312 while (i--)
313 _exits[i]();
314
315 /*
316 * Should be empty by this point.
317 */
318 idr_destroy(&_minor_idr);
319}
320
321/*
322 * Block device functions
323 */
324int dm_deleting_md(struct mapped_device *md)
325{
326 return test_bit(DMF_DELETING, &md->flags);
327}
328
329static int dm_blk_open(struct block_device *bdev, fmode_t mode)
330{
331 struct mapped_device *md;
332
333 spin_lock(&_minor_lock);
334
335 md = bdev->bd_disk->private_data;
336 if (!md)
337 goto out;
338
339 if (test_bit(DMF_FREEING, &md->flags) ||
340 dm_deleting_md(md)) {
341 md = NULL;
342 goto out;
343 }
344
345 dm_get(md);
346 atomic_inc(&md->open_count);
347out:
348 spin_unlock(&_minor_lock);
349
350 return md ? 0 : -ENXIO;
351}
352
353static void dm_blk_close(struct gendisk *disk, fmode_t mode)
354{
355 struct mapped_device *md;
356
357 spin_lock(&_minor_lock);
358
359 md = disk->private_data;
360 if (WARN_ON(!md))
361 goto out;
362
363 if (atomic_dec_and_test(&md->open_count) &&
364 (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
365 queue_work(deferred_remove_workqueue, &deferred_remove_work);
366
367 dm_put(md);
368out:
369 spin_unlock(&_minor_lock);
370}
371
372int dm_open_count(struct mapped_device *md)
373{
374 return atomic_read(&md->open_count);
375}
376
377/*
378 * Guarantees nothing is using the device before it's deleted.
379 */
380int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
381{
382 int r = 0;
383
384 spin_lock(&_minor_lock);
385
386 if (dm_open_count(md)) {
387 r = -EBUSY;
388 if (mark_deferred)
389 set_bit(DMF_DEFERRED_REMOVE, &md->flags);
390 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
391 r = -EEXIST;
392 else
393 set_bit(DMF_DELETING, &md->flags);
394
395 spin_unlock(&_minor_lock);
396
397 return r;
398}
399
400int dm_cancel_deferred_remove(struct mapped_device *md)
401{
402 int r = 0;
403
404 spin_lock(&_minor_lock);
405
406 if (test_bit(DMF_DELETING, &md->flags))
407 r = -EBUSY;
408 else
409 clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
410
411 spin_unlock(&_minor_lock);
412
413 return r;
414}
415
416static void do_deferred_remove(struct work_struct *w)
417{
418 dm_deferred_remove();
419}
420
421sector_t dm_get_size(struct mapped_device *md)
422{
423 return get_capacity(md->disk);
424}
425
426struct request_queue *dm_get_md_queue(struct mapped_device *md)
427{
428 return md->queue;
429}
430
431struct dm_stats *dm_get_stats(struct mapped_device *md)
432{
433 return &md->stats;
434}
435
436static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
437{
438 struct mapped_device *md = bdev->bd_disk->private_data;
439
440 return dm_get_geometry(md, geo);
441}
442
443static int dm_blk_report_zones(struct gendisk *disk, sector_t sector,
444 struct blk_zone *zones, unsigned int *nr_zones)
445{
446#ifdef CONFIG_BLK_DEV_ZONED
447 struct mapped_device *md = disk->private_data;
448 struct dm_target *tgt;
449 struct dm_table *map;
450 int srcu_idx, ret;
451
452 if (dm_suspended_md(md))
453 return -EAGAIN;
454
455 map = dm_get_live_table(md, &srcu_idx);
456 if (!map)
457 return -EIO;
458
459 tgt = dm_table_find_target(map, sector);
460 if (!tgt) {
461 ret = -EIO;
462 goto out;
463 }
464
465 /*
466 * If we are executing this, we already know that the block device
467 * is a zoned device and so each target should have support for that
468 * type of drive. A missing report_zones method means that the target
469 * driver has a problem.
470 */
471 if (WARN_ON(!tgt->type->report_zones)) {
472 ret = -EIO;
473 goto out;
474 }
475
476 /*
477 * blkdev_report_zones() will loop and call this again to cover all the
478 * zones of the target, eventually moving on to the next target.
479 * So there is no need to loop here trying to fill the entire array
480 * of zones.
481 */
482 ret = tgt->type->report_zones(tgt, sector, zones, nr_zones);
483
484out:
485 dm_put_live_table(md, srcu_idx);
486 return ret;
487#else
488 return -ENOTSUPP;
489#endif
490}
491
492static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
493 struct block_device **bdev)
494 __acquires(md->io_barrier)
495{
496 struct dm_target *tgt;
497 struct dm_table *map;
498 int r;
499
500retry:
501 r = -ENOTTY;
502 map = dm_get_live_table(md, srcu_idx);
503 if (!map || !dm_table_get_size(map))
504 return r;
505
506 /* We only support devices that have a single target */
507 if (dm_table_get_num_targets(map) != 1)
508 return r;
509
510 tgt = dm_table_get_target(map, 0);
511 if (!tgt->type->prepare_ioctl)
512 return r;
513
514 if (dm_suspended_md(md))
515 return -EAGAIN;
516
517 r = tgt->type->prepare_ioctl(tgt, bdev);
518 if (r == -ENOTCONN && !fatal_signal_pending(current)) {
519 dm_put_live_table(md, *srcu_idx);
520 msleep(10);
521 goto retry;
522 }
523
524 return r;
525}
526
527static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
528 __releases(md->io_barrier)
529{
530 dm_put_live_table(md, srcu_idx);
531}
532
533static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
534 unsigned int cmd, unsigned long arg)
535{
536 struct mapped_device *md = bdev->bd_disk->private_data;
537 int r, srcu_idx;
538
539 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
540 if (r < 0)
541 goto out;
542
543 if (r > 0) {
544 /*
545 * Target determined this ioctl is being issued against a
546 * subset of the parent bdev; require extra privileges.
547 */
548 if (!capable(CAP_SYS_RAWIO)) {
549 DMWARN_LIMIT(
550 "%s: sending ioctl %x to DM device without required privilege.",
551 current->comm, cmd);
552 r = -ENOIOCTLCMD;
553 goto out;
554 }
555 }
556
557 r = __blkdev_driver_ioctl(bdev, mode, cmd, arg);
558out:
559 dm_unprepare_ioctl(md, srcu_idx);
560 return r;
561}
562
563static void start_io_acct(struct dm_io *io);
564
565static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio)
566{
567 struct dm_io *io;
568 struct dm_target_io *tio;
569 struct bio *clone;
570
571 clone = bio_alloc_bioset(GFP_NOIO, 0, &md->io_bs);
572 if (!clone)
573 return NULL;
574
575 tio = container_of(clone, struct dm_target_io, clone);
576 tio->inside_dm_io = true;
577 tio->io = NULL;
578
579 io = container_of(tio, struct dm_io, tio);
580 io->magic = DM_IO_MAGIC;
581 io->status = 0;
582 atomic_set(&io->io_count, 1);
583 io->orig_bio = bio;
584 io->md = md;
585 spin_lock_init(&io->endio_lock);
586
587 start_io_acct(io);
588
589 return io;
590}
591
592static void free_io(struct mapped_device *md, struct dm_io *io)
593{
594 bio_put(&io->tio.clone);
595}
596
597static struct dm_target_io *alloc_tio(struct clone_info *ci, struct dm_target *ti,
598 unsigned target_bio_nr, gfp_t gfp_mask)
599{
600 struct dm_target_io *tio;
601
602 if (!ci->io->tio.io) {
603 /* the dm_target_io embedded in ci->io is available */
604 tio = &ci->io->tio;
605 } else {
606 struct bio *clone = bio_alloc_bioset(gfp_mask, 0, &ci->io->md->bs);
607 if (!clone)
608 return NULL;
609
610 tio = container_of(clone, struct dm_target_io, clone);
611 tio->inside_dm_io = false;
612 }
613
614 tio->magic = DM_TIO_MAGIC;
615 tio->io = ci->io;
616 tio->ti = ti;
617 tio->target_bio_nr = target_bio_nr;
618
619 return tio;
620}
621
622static void free_tio(struct dm_target_io *tio)
623{
624 if (tio->inside_dm_io)
625 return;
626 bio_put(&tio->clone);
627}
628
629static bool md_in_flight_bios(struct mapped_device *md)
630{
631 int cpu;
632 struct hd_struct *part = &dm_disk(md)->part0;
633 long sum = 0;
634
635 for_each_possible_cpu(cpu) {
636 sum += part_stat_local_read_cpu(part, in_flight[0], cpu);
637 sum += part_stat_local_read_cpu(part, in_flight[1], cpu);
638 }
639
640 return sum != 0;
641}
642
643static bool md_in_flight(struct mapped_device *md)
644{
645 if (queue_is_mq(md->queue))
646 return blk_mq_queue_inflight(md->queue);
647 else
648 return md_in_flight_bios(md);
649}
650
651static void start_io_acct(struct dm_io *io)
652{
653 struct mapped_device *md = io->md;
654 struct bio *bio = io->orig_bio;
655
656 io->start_time = jiffies;
657
658 generic_start_io_acct(md->queue, bio_op(bio), bio_sectors(bio),
659 &dm_disk(md)->part0);
660
661 if (unlikely(dm_stats_used(&md->stats)))
662 dm_stats_account_io(&md->stats, bio_data_dir(bio),
663 bio->bi_iter.bi_sector, bio_sectors(bio),
664 false, 0, &io->stats_aux);
665}
666
667static void end_io_acct(struct dm_io *io)
668{
669 struct mapped_device *md = io->md;
670 struct bio *bio = io->orig_bio;
671 unsigned long duration = jiffies - io->start_time;
672
673 generic_end_io_acct(md->queue, bio_op(bio), &dm_disk(md)->part0,
674 io->start_time);
675
676 if (unlikely(dm_stats_used(&md->stats)))
677 dm_stats_account_io(&md->stats, bio_data_dir(bio),
678 bio->bi_iter.bi_sector, bio_sectors(bio),
679 true, duration, &io->stats_aux);
680
681 /* nudge anyone waiting on suspend queue */
682 if (unlikely(wq_has_sleeper(&md->wait)))
683 wake_up(&md->wait);
684}
685
686/*
687 * Add the bio to the list of deferred io.
688 */
689static void queue_io(struct mapped_device *md, struct bio *bio)
690{
691 unsigned long flags;
692
693 spin_lock_irqsave(&md->deferred_lock, flags);
694 bio_list_add(&md->deferred, bio);
695 spin_unlock_irqrestore(&md->deferred_lock, flags);
696 queue_work(md->wq, &md->work);
697}
698
699/*
700 * Everyone (including functions in this file), should use this
701 * function to access the md->map field, and make sure they call
702 * dm_put_live_table() when finished.
703 */
704struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
705{
706 *srcu_idx = srcu_read_lock(&md->io_barrier);
707
708 return srcu_dereference(md->map, &md->io_barrier);
709}
710
711void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
712{
713 srcu_read_unlock(&md->io_barrier, srcu_idx);
714}
715
716void dm_sync_table(struct mapped_device *md)
717{
718 synchronize_srcu(&md->io_barrier);
719 synchronize_rcu_expedited();
720}
721
722/*
723 * A fast alternative to dm_get_live_table/dm_put_live_table.
724 * The caller must not block between these two functions.
725 */
726static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
727{
728 rcu_read_lock();
729 return rcu_dereference(md->map);
730}
731
732static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
733{
734 rcu_read_unlock();
735}
736
737static char *_dm_claim_ptr = "I belong to device-mapper";
738
739/*
740 * Open a table device so we can use it as a map destination.
741 */
742static int open_table_device(struct table_device *td, dev_t dev,
743 struct mapped_device *md)
744{
745 struct block_device *bdev;
746
747 int r;
748
749 BUG_ON(td->dm_dev.bdev);
750
751 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr);
752 if (IS_ERR(bdev))
753 return PTR_ERR(bdev);
754
755 r = bd_link_disk_holder(bdev, dm_disk(md));
756 if (r) {
757 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
758 return r;
759 }
760
761 td->dm_dev.bdev = bdev;
762 td->dm_dev.dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
763 return 0;
764}
765
766/*
767 * Close a table device that we've been using.
768 */
769static void close_table_device(struct table_device *td, struct mapped_device *md)
770{
771 if (!td->dm_dev.bdev)
772 return;
773
774 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
775 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
776 put_dax(td->dm_dev.dax_dev);
777 td->dm_dev.bdev = NULL;
778 td->dm_dev.dax_dev = NULL;
779}
780
781static struct table_device *find_table_device(struct list_head *l, dev_t dev,
782 fmode_t mode)
783{
784 struct table_device *td;
785
786 list_for_each_entry(td, l, list)
787 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
788 return td;
789
790 return NULL;
791}
792
793int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
794 struct dm_dev **result)
795{
796 int r;
797 struct table_device *td;
798
799 mutex_lock(&md->table_devices_lock);
800 td = find_table_device(&md->table_devices, dev, mode);
801 if (!td) {
802 td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
803 if (!td) {
804 mutex_unlock(&md->table_devices_lock);
805 return -ENOMEM;
806 }
807
808 td->dm_dev.mode = mode;
809 td->dm_dev.bdev = NULL;
810
811 if ((r = open_table_device(td, dev, md))) {
812 mutex_unlock(&md->table_devices_lock);
813 kfree(td);
814 return r;
815 }
816
817 format_dev_t(td->dm_dev.name, dev);
818
819 refcount_set(&td->count, 1);
820 list_add(&td->list, &md->table_devices);
821 } else {
822 refcount_inc(&td->count);
823 }
824 mutex_unlock(&md->table_devices_lock);
825
826 *result = &td->dm_dev;
827 return 0;
828}
829EXPORT_SYMBOL_GPL(dm_get_table_device);
830
831void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
832{
833 struct table_device *td = container_of(d, struct table_device, dm_dev);
834
835 mutex_lock(&md->table_devices_lock);
836 if (refcount_dec_and_test(&td->count)) {
837 close_table_device(td, md);
838 list_del(&td->list);
839 kfree(td);
840 }
841 mutex_unlock(&md->table_devices_lock);
842}
843EXPORT_SYMBOL(dm_put_table_device);
844
845static void free_table_devices(struct list_head *devices)
846{
847 struct list_head *tmp, *next;
848
849 list_for_each_safe(tmp, next, devices) {
850 struct table_device *td = list_entry(tmp, struct table_device, list);
851
852 DMWARN("dm_destroy: %s still exists with %d references",
853 td->dm_dev.name, refcount_read(&td->count));
854 kfree(td);
855 }
856}
857
858/*
859 * Get the geometry associated with a dm device
860 */
861int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
862{
863 *geo = md->geometry;
864
865 return 0;
866}
867
868/*
869 * Set the geometry of a device.
870 */
871int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
872{
873 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
874
875 if (geo->start > sz) {
876 DMWARN("Start sector is beyond the geometry limits.");
877 return -EINVAL;
878 }
879
880 md->geometry = *geo;
881
882 return 0;
883}
884
885static int __noflush_suspending(struct mapped_device *md)
886{
887 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
888}
889
890/*
891 * Decrements the number of outstanding ios that a bio has been
892 * cloned into, completing the original io if necc.
893 */
894static void dec_pending(struct dm_io *io, blk_status_t error)
895{
896 unsigned long flags;
897 blk_status_t io_error;
898 struct bio *bio;
899 struct mapped_device *md = io->md;
900
901 /* Push-back supersedes any I/O errors */
902 if (unlikely(error)) {
903 spin_lock_irqsave(&io->endio_lock, flags);
904 if (!(io->status == BLK_STS_DM_REQUEUE && __noflush_suspending(md)))
905 io->status = error;
906 spin_unlock_irqrestore(&io->endio_lock, flags);
907 }
908
909 if (atomic_dec_and_test(&io->io_count)) {
910 if (io->status == BLK_STS_DM_REQUEUE) {
911 /*
912 * Target requested pushing back the I/O.
913 */
914 spin_lock_irqsave(&md->deferred_lock, flags);
915 if (__noflush_suspending(md))
916 /* NOTE early return due to BLK_STS_DM_REQUEUE below */
917 bio_list_add_head(&md->deferred, io->orig_bio);
918 else
919 /* noflush suspend was interrupted. */
920 io->status = BLK_STS_IOERR;
921 spin_unlock_irqrestore(&md->deferred_lock, flags);
922 }
923
924 io_error = io->status;
925 bio = io->orig_bio;
926 end_io_acct(io);
927 free_io(md, io);
928
929 if (io_error == BLK_STS_DM_REQUEUE)
930 return;
931
932 if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) {
933 /*
934 * Preflush done for flush with data, reissue
935 * without REQ_PREFLUSH.
936 */
937 bio->bi_opf &= ~REQ_PREFLUSH;
938 queue_io(md, bio);
939 } else {
940 /* done with normal IO or empty flush */
941 if (io_error)
942 bio->bi_status = io_error;
943 bio_endio(bio);
944 }
945 }
946}
947
948void disable_discard(struct mapped_device *md)
949{
950 struct queue_limits *limits = dm_get_queue_limits(md);
951
952 /* device doesn't really support DISCARD, disable it */
953 limits->max_discard_sectors = 0;
954 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, md->queue);
955}
956
957void disable_write_same(struct mapped_device *md)
958{
959 struct queue_limits *limits = dm_get_queue_limits(md);
960
961 /* device doesn't really support WRITE SAME, disable it */
962 limits->max_write_same_sectors = 0;
963}
964
965void disable_write_zeroes(struct mapped_device *md)
966{
967 struct queue_limits *limits = dm_get_queue_limits(md);
968
969 /* device doesn't really support WRITE ZEROES, disable it */
970 limits->max_write_zeroes_sectors = 0;
971}
972
973static void clone_endio(struct bio *bio)
974{
975 blk_status_t error = bio->bi_status;
976 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
977 struct dm_io *io = tio->io;
978 struct mapped_device *md = tio->io->md;
979 dm_endio_fn endio = tio->ti->type->end_io;
980
981 if (unlikely(error == BLK_STS_TARGET) && md->type != DM_TYPE_NVME_BIO_BASED) {
982 if (bio_op(bio) == REQ_OP_DISCARD &&
983 !bio->bi_disk->queue->limits.max_discard_sectors)
984 disable_discard(md);
985 else if (bio_op(bio) == REQ_OP_WRITE_SAME &&
986 !bio->bi_disk->queue->limits.max_write_same_sectors)
987 disable_write_same(md);
988 else if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
989 !bio->bi_disk->queue->limits.max_write_zeroes_sectors)
990 disable_write_zeroes(md);
991 }
992
993 if (endio) {
994 int r = endio(tio->ti, bio, &error);
995 switch (r) {
996 case DM_ENDIO_REQUEUE:
997 error = BLK_STS_DM_REQUEUE;
998 /*FALLTHRU*/
999 case DM_ENDIO_DONE:
1000 break;
1001 case DM_ENDIO_INCOMPLETE:
1002 /* The target will handle the io */
1003 return;
1004 default:
1005 DMWARN("unimplemented target endio return value: %d", r);
1006 BUG();
1007 }
1008 }
1009
1010 free_tio(tio);
1011 dec_pending(io, error);
1012}
1013
1014/*
1015 * Return maximum size of I/O possible at the supplied sector up to the current
1016 * target boundary.
1017 */
1018static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
1019{
1020 sector_t target_offset = dm_target_offset(ti, sector);
1021
1022 return ti->len - target_offset;
1023}
1024
1025static sector_t max_io_len(sector_t sector, struct dm_target *ti)
1026{
1027 sector_t len = max_io_len_target_boundary(sector, ti);
1028 sector_t offset, max_len;
1029
1030 /*
1031 * Does the target need to split even further?
1032 */
1033 if (ti->max_io_len) {
1034 offset = dm_target_offset(ti, sector);
1035 if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
1036 max_len = sector_div(offset, ti->max_io_len);
1037 else
1038 max_len = offset & (ti->max_io_len - 1);
1039 max_len = ti->max_io_len - max_len;
1040
1041 if (len > max_len)
1042 len = max_len;
1043 }
1044
1045 return len;
1046}
1047
1048int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1049{
1050 if (len > UINT_MAX) {
1051 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1052 (unsigned long long)len, UINT_MAX);
1053 ti->error = "Maximum size of target IO is too large";
1054 return -EINVAL;
1055 }
1056
1057 ti->max_io_len = (uint32_t) len;
1058
1059 return 0;
1060}
1061EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1062
1063static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1064 sector_t sector, int *srcu_idx)
1065 __acquires(md->io_barrier)
1066{
1067 struct dm_table *map;
1068 struct dm_target *ti;
1069
1070 map = dm_get_live_table(md, srcu_idx);
1071 if (!map)
1072 return NULL;
1073
1074 ti = dm_table_find_target(map, sector);
1075 if (!ti)
1076 return NULL;
1077
1078 return ti;
1079}
1080
1081static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1082 long nr_pages, void **kaddr, pfn_t *pfn)
1083{
1084 struct mapped_device *md = dax_get_private(dax_dev);
1085 sector_t sector = pgoff * PAGE_SECTORS;
1086 struct dm_target *ti;
1087 long len, ret = -EIO;
1088 int srcu_idx;
1089
1090 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1091
1092 if (!ti)
1093 goto out;
1094 if (!ti->type->direct_access)
1095 goto out;
1096 len = max_io_len(sector, ti) / PAGE_SECTORS;
1097 if (len < 1)
1098 goto out;
1099 nr_pages = min(len, nr_pages);
1100 ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn);
1101
1102 out:
1103 dm_put_live_table(md, srcu_idx);
1104
1105 return ret;
1106}
1107
1108static bool dm_dax_supported(struct dax_device *dax_dev, struct block_device *bdev,
1109 int blocksize, sector_t start, sector_t len)
1110{
1111 struct mapped_device *md = dax_get_private(dax_dev);
1112 struct dm_table *map;
1113 int srcu_idx;
1114 bool ret;
1115
1116 map = dm_get_live_table(md, &srcu_idx);
1117 if (!map)
1118 return false;
1119
1120 ret = dm_table_supports_dax(map, device_supports_dax, &blocksize);
1121
1122 dm_put_live_table(md, srcu_idx);
1123
1124 return ret;
1125}
1126
1127static size_t dm_dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1128 void *addr, size_t bytes, struct iov_iter *i)
1129{
1130 struct mapped_device *md = dax_get_private(dax_dev);
1131 sector_t sector = pgoff * PAGE_SECTORS;
1132 struct dm_target *ti;
1133 long ret = 0;
1134 int srcu_idx;
1135
1136 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1137
1138 if (!ti)
1139 goto out;
1140 if (!ti->type->dax_copy_from_iter) {
1141 ret = copy_from_iter(addr, bytes, i);
1142 goto out;
1143 }
1144 ret = ti->type->dax_copy_from_iter(ti, pgoff, addr, bytes, i);
1145 out:
1146 dm_put_live_table(md, srcu_idx);
1147
1148 return ret;
1149}
1150
1151static size_t dm_dax_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1152 void *addr, size_t bytes, struct iov_iter *i)
1153{
1154 struct mapped_device *md = dax_get_private(dax_dev);
1155 sector_t sector = pgoff * PAGE_SECTORS;
1156 struct dm_target *ti;
1157 long ret = 0;
1158 int srcu_idx;
1159
1160 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1161
1162 if (!ti)
1163 goto out;
1164 if (!ti->type->dax_copy_to_iter) {
1165 ret = copy_to_iter(addr, bytes, i);
1166 goto out;
1167 }
1168 ret = ti->type->dax_copy_to_iter(ti, pgoff, addr, bytes, i);
1169 out:
1170 dm_put_live_table(md, srcu_idx);
1171
1172 return ret;
1173}
1174
1175/*
1176 * A target may call dm_accept_partial_bio only from the map routine. It is
1177 * allowed for all bio types except REQ_PREFLUSH and REQ_OP_ZONE_RESET.
1178 *
1179 * dm_accept_partial_bio informs the dm that the target only wants to process
1180 * additional n_sectors sectors of the bio and the rest of the data should be
1181 * sent in a next bio.
1182 *
1183 * A diagram that explains the arithmetics:
1184 * +--------------------+---------------+-------+
1185 * | 1 | 2 | 3 |
1186 * +--------------------+---------------+-------+
1187 *
1188 * <-------------- *tio->len_ptr --------------->
1189 * <------- bi_size ------->
1190 * <-- n_sectors -->
1191 *
1192 * Region 1 was already iterated over with bio_advance or similar function.
1193 * (it may be empty if the target doesn't use bio_advance)
1194 * Region 2 is the remaining bio size that the target wants to process.
1195 * (it may be empty if region 1 is non-empty, although there is no reason
1196 * to make it empty)
1197 * The target requires that region 3 is to be sent in the next bio.
1198 *
1199 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1200 * the partially processed part (the sum of regions 1+2) must be the same for all
1201 * copies of the bio.
1202 */
1203void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1204{
1205 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1206 unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1207 BUG_ON(bio->bi_opf & REQ_PREFLUSH);
1208 BUG_ON(bi_size > *tio->len_ptr);
1209 BUG_ON(n_sectors > bi_size);
1210 *tio->len_ptr -= bi_size - n_sectors;
1211 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1212}
1213EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1214
1215/*
1216 * The zone descriptors obtained with a zone report indicate
1217 * zone positions within the underlying device of the target. The zone
1218 * descriptors must be remapped to match their position within the dm device.
1219 * The caller target should obtain the zones information using
1220 * blkdev_report_zones() to ensure that remapping for partition offset is
1221 * already handled.
1222 */
1223void dm_remap_zone_report(struct dm_target *ti, sector_t start,
1224 struct blk_zone *zones, unsigned int *nr_zones)
1225{
1226#ifdef CONFIG_BLK_DEV_ZONED
1227 struct blk_zone *zone;
1228 unsigned int nrz = *nr_zones;
1229 int i;
1230
1231 /*
1232 * Remap the start sector and write pointer position of the zones in
1233 * the array. Since we may have obtained from the target underlying
1234 * device more zones that the target size, also adjust the number
1235 * of zones.
1236 */
1237 for (i = 0; i < nrz; i++) {
1238 zone = zones + i;
1239 if (zone->start >= start + ti->len) {
1240 memset(zone, 0, sizeof(struct blk_zone) * (nrz - i));
1241 break;
1242 }
1243
1244 zone->start = zone->start + ti->begin - start;
1245 if (zone->type == BLK_ZONE_TYPE_CONVENTIONAL)
1246 continue;
1247
1248 if (zone->cond == BLK_ZONE_COND_FULL)
1249 zone->wp = zone->start + zone->len;
1250 else if (zone->cond == BLK_ZONE_COND_EMPTY)
1251 zone->wp = zone->start;
1252 else
1253 zone->wp = zone->wp + ti->begin - start;
1254 }
1255
1256 *nr_zones = i;
1257#else /* !CONFIG_BLK_DEV_ZONED */
1258 *nr_zones = 0;
1259#endif
1260}
1261EXPORT_SYMBOL_GPL(dm_remap_zone_report);
1262
1263static blk_qc_t __map_bio(struct dm_target_io *tio)
1264{
1265 int r;
1266 sector_t sector;
1267 struct bio *clone = &tio->clone;
1268 struct dm_io *io = tio->io;
1269 struct mapped_device *md = io->md;
1270 struct dm_target *ti = tio->ti;
1271 blk_qc_t ret = BLK_QC_T_NONE;
1272
1273 clone->bi_end_io = clone_endio;
1274
1275 /*
1276 * Map the clone. If r == 0 we don't need to do
1277 * anything, the target has assumed ownership of
1278 * this io.
1279 */
1280 atomic_inc(&io->io_count);
1281 sector = clone->bi_iter.bi_sector;
1282
1283 r = ti->type->map(ti, clone);
1284 switch (r) {
1285 case DM_MAPIO_SUBMITTED:
1286 break;
1287 case DM_MAPIO_REMAPPED:
1288 /* the bio has been remapped so dispatch it */
1289 trace_block_bio_remap(clone->bi_disk->queue, clone,
1290 bio_dev(io->orig_bio), sector);
1291 if (md->type == DM_TYPE_NVME_BIO_BASED)
1292 ret = direct_make_request(clone);
1293 else
1294 ret = generic_make_request(clone);
1295 break;
1296 case DM_MAPIO_KILL:
1297 free_tio(tio);
1298 dec_pending(io, BLK_STS_IOERR);
1299 break;
1300 case DM_MAPIO_REQUEUE:
1301 free_tio(tio);
1302 dec_pending(io, BLK_STS_DM_REQUEUE);
1303 break;
1304 default:
1305 DMWARN("unimplemented target map return value: %d", r);
1306 BUG();
1307 }
1308
1309 return ret;
1310}
1311
1312static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1313{
1314 bio->bi_iter.bi_sector = sector;
1315 bio->bi_iter.bi_size = to_bytes(len);
1316}
1317
1318/*
1319 * Creates a bio that consists of range of complete bvecs.
1320 */
1321static int clone_bio(struct dm_target_io *tio, struct bio *bio,
1322 sector_t sector, unsigned len)
1323{
1324 struct bio *clone = &tio->clone;
1325
1326 __bio_clone_fast(clone, bio);
1327
1328 if (bio_integrity(bio)) {
1329 int r;
1330
1331 if (unlikely(!dm_target_has_integrity(tio->ti->type) &&
1332 !dm_target_passes_integrity(tio->ti->type))) {
1333 DMWARN("%s: the target %s doesn't support integrity data.",
1334 dm_device_name(tio->io->md),
1335 tio->ti->type->name);
1336 return -EIO;
1337 }
1338
1339 r = bio_integrity_clone(clone, bio, GFP_NOIO);
1340 if (r < 0)
1341 return r;
1342 }
1343
1344 bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1345 clone->bi_iter.bi_size = to_bytes(len);
1346
1347 if (bio_integrity(bio))
1348 bio_integrity_trim(clone);
1349
1350 return 0;
1351}
1352
1353static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1354 struct dm_target *ti, unsigned num_bios)
1355{
1356 struct dm_target_io *tio;
1357 int try;
1358
1359 if (!num_bios)
1360 return;
1361
1362 if (num_bios == 1) {
1363 tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1364 bio_list_add(blist, &tio->clone);
1365 return;
1366 }
1367
1368 for (try = 0; try < 2; try++) {
1369 int bio_nr;
1370 struct bio *bio;
1371
1372 if (try)
1373 mutex_lock(&ci->io->md->table_devices_lock);
1374 for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1375 tio = alloc_tio(ci, ti, bio_nr, try ? GFP_NOIO : GFP_NOWAIT);
1376 if (!tio)
1377 break;
1378
1379 bio_list_add(blist, &tio->clone);
1380 }
1381 if (try)
1382 mutex_unlock(&ci->io->md->table_devices_lock);
1383 if (bio_nr == num_bios)
1384 return;
1385
1386 while ((bio = bio_list_pop(blist))) {
1387 tio = container_of(bio, struct dm_target_io, clone);
1388 free_tio(tio);
1389 }
1390 }
1391}
1392
1393static blk_qc_t __clone_and_map_simple_bio(struct clone_info *ci,
1394 struct dm_target_io *tio, unsigned *len)
1395{
1396 struct bio *clone = &tio->clone;
1397
1398 tio->len_ptr = len;
1399
1400 __bio_clone_fast(clone, ci->bio);
1401 if (len)
1402 bio_setup_sector(clone, ci->sector, *len);
1403
1404 return __map_bio(tio);
1405}
1406
1407static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1408 unsigned num_bios, unsigned *len)
1409{
1410 struct bio_list blist = BIO_EMPTY_LIST;
1411 struct bio *bio;
1412 struct dm_target_io *tio;
1413
1414 alloc_multiple_bios(&blist, ci, ti, num_bios);
1415
1416 while ((bio = bio_list_pop(&blist))) {
1417 tio = container_of(bio, struct dm_target_io, clone);
1418 (void) __clone_and_map_simple_bio(ci, tio, len);
1419 }
1420}
1421
1422static int __send_empty_flush(struct clone_info *ci)
1423{
1424 unsigned target_nr = 0;
1425 struct dm_target *ti;
1426
1427 /*
1428 * Empty flush uses a statically initialized bio, as the base for
1429 * cloning. However, blkg association requires that a bdev is
1430 * associated with a gendisk, which doesn't happen until the bdev is
1431 * opened. So, blkg association is done at issue time of the flush
1432 * rather than when the device is created in alloc_dev().
1433 */
1434 bio_set_dev(ci->bio, ci->io->md->bdev);
1435
1436 BUG_ON(bio_has_data(ci->bio));
1437 while ((ti = dm_table_get_target(ci->map, target_nr++)))
1438 __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1439
1440 bio_disassociate_blkg(ci->bio);
1441
1442 return 0;
1443}
1444
1445static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1446 sector_t sector, unsigned *len)
1447{
1448 struct bio *bio = ci->bio;
1449 struct dm_target_io *tio;
1450 int r;
1451
1452 tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1453 tio->len_ptr = len;
1454 r = clone_bio(tio, bio, sector, *len);
1455 if (r < 0) {
1456 free_tio(tio);
1457 return r;
1458 }
1459 (void) __map_bio(tio);
1460
1461 return 0;
1462}
1463
1464typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1465
1466static unsigned get_num_discard_bios(struct dm_target *ti)
1467{
1468 return ti->num_discard_bios;
1469}
1470
1471static unsigned get_num_secure_erase_bios(struct dm_target *ti)
1472{
1473 return ti->num_secure_erase_bios;
1474}
1475
1476static unsigned get_num_write_same_bios(struct dm_target *ti)
1477{
1478 return ti->num_write_same_bios;
1479}
1480
1481static unsigned get_num_write_zeroes_bios(struct dm_target *ti)
1482{
1483 return ti->num_write_zeroes_bios;
1484}
1485
1486static int __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti,
1487 unsigned num_bios)
1488{
1489 unsigned len;
1490
1491 /*
1492 * Even though the device advertised support for this type of
1493 * request, that does not mean every target supports it, and
1494 * reconfiguration might also have changed that since the
1495 * check was performed.
1496 */
1497 if (!num_bios)
1498 return -EOPNOTSUPP;
1499
1500 len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1501
1502 __send_duplicate_bios(ci, ti, num_bios, &len);
1503
1504 ci->sector += len;
1505 ci->sector_count -= len;
1506
1507 return 0;
1508}
1509
1510static int __send_discard(struct clone_info *ci, struct dm_target *ti)
1511{
1512 return __send_changing_extent_only(ci, ti, get_num_discard_bios(ti));
1513}
1514
1515static int __send_secure_erase(struct clone_info *ci, struct dm_target *ti)
1516{
1517 return __send_changing_extent_only(ci, ti, get_num_secure_erase_bios(ti));
1518}
1519
1520static int __send_write_same(struct clone_info *ci, struct dm_target *ti)
1521{
1522 return __send_changing_extent_only(ci, ti, get_num_write_same_bios(ti));
1523}
1524
1525static int __send_write_zeroes(struct clone_info *ci, struct dm_target *ti)
1526{
1527 return __send_changing_extent_only(ci, ti, get_num_write_zeroes_bios(ti));
1528}
1529
1530static bool is_abnormal_io(struct bio *bio)
1531{
1532 bool r = false;
1533
1534 switch (bio_op(bio)) {
1535 case REQ_OP_DISCARD:
1536 case REQ_OP_SECURE_ERASE:
1537 case REQ_OP_WRITE_SAME:
1538 case REQ_OP_WRITE_ZEROES:
1539 r = true;
1540 break;
1541 }
1542
1543 return r;
1544}
1545
1546static bool __process_abnormal_io(struct clone_info *ci, struct dm_target *ti,
1547 int *result)
1548{
1549 struct bio *bio = ci->bio;
1550
1551 if (bio_op(bio) == REQ_OP_DISCARD)
1552 *result = __send_discard(ci, ti);
1553 else if (bio_op(bio) == REQ_OP_SECURE_ERASE)
1554 *result = __send_secure_erase(ci, ti);
1555 else if (bio_op(bio) == REQ_OP_WRITE_SAME)
1556 *result = __send_write_same(ci, ti);
1557 else if (bio_op(bio) == REQ_OP_WRITE_ZEROES)
1558 *result = __send_write_zeroes(ci, ti);
1559 else
1560 return false;
1561
1562 return true;
1563}
1564
1565/*
1566 * Select the correct strategy for processing a non-flush bio.
1567 */
1568static int __split_and_process_non_flush(struct clone_info *ci)
1569{
1570 struct dm_target *ti;
1571 unsigned len;
1572 int r;
1573
1574 ti = dm_table_find_target(ci->map, ci->sector);
1575 if (!ti)
1576 return -EIO;
1577
1578 if (__process_abnormal_io(ci, ti, &r))
1579 return r;
1580
1581 len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count);
1582
1583 r = __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1584 if (r < 0)
1585 return r;
1586
1587 ci->sector += len;
1588 ci->sector_count -= len;
1589
1590 return 0;
1591}
1592
1593static void init_clone_info(struct clone_info *ci, struct mapped_device *md,
1594 struct dm_table *map, struct bio *bio)
1595{
1596 ci->map = map;
1597 ci->io = alloc_io(md, bio);
1598 ci->sector = bio->bi_iter.bi_sector;
1599}
1600
1601#define __dm_part_stat_sub(part, field, subnd) \
1602 (part_stat_get(part, field) -= (subnd))
1603
1604/*
1605 * Entry point to split a bio into clones and submit them to the targets.
1606 */
1607static blk_qc_t __split_and_process_bio(struct mapped_device *md,
1608 struct dm_table *map, struct bio *bio)
1609{
1610 struct clone_info ci;
1611 blk_qc_t ret = BLK_QC_T_NONE;
1612 int error = 0;
1613
1614 init_clone_info(&ci, md, map, bio);
1615
1616 if (bio->bi_opf & REQ_PREFLUSH) {
1617 struct bio flush_bio;
1618
1619 /*
1620 * Use an on-stack bio for this, it's safe since we don't
1621 * need to reference it after submit. It's just used as
1622 * the basis for the clone(s).
1623 */
1624 bio_init(&flush_bio, NULL, 0);
1625 flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1626 ci.bio = &flush_bio;
1627 ci.sector_count = 0;
1628 error = __send_empty_flush(&ci);
1629 /* dec_pending submits any data associated with flush */
1630 } else if (bio_op(bio) == REQ_OP_ZONE_RESET) {
1631 ci.bio = bio;
1632 ci.sector_count = 0;
1633 error = __split_and_process_non_flush(&ci);
1634 } else {
1635 ci.bio = bio;
1636 ci.sector_count = bio_sectors(bio);
1637 while (ci.sector_count && !error) {
1638 error = __split_and_process_non_flush(&ci);
1639 if (current->bio_list && ci.sector_count && !error) {
1640 /*
1641 * Remainder must be passed to generic_make_request()
1642 * so that it gets handled *after* bios already submitted
1643 * have been completely processed.
1644 * We take a clone of the original to store in
1645 * ci.io->orig_bio to be used by end_io_acct() and
1646 * for dec_pending to use for completion handling.
1647 */
1648 struct bio *b = bio_split(bio, bio_sectors(bio) - ci.sector_count,
1649 GFP_NOIO, &md->queue->bio_split);
1650 ci.io->orig_bio = b;
1651
1652 /*
1653 * Adjust IO stats for each split, otherwise upon queue
1654 * reentry there will be redundant IO accounting.
1655 * NOTE: this is a stop-gap fix, a proper fix involves
1656 * significant refactoring of DM core's bio splitting
1657 * (by eliminating DM's splitting and just using bio_split)
1658 */
1659 part_stat_lock();
1660 __dm_part_stat_sub(&dm_disk(md)->part0,
1661 sectors[op_stat_group(bio_op(bio))], ci.sector_count);
1662 part_stat_unlock();
1663
1664 bio_chain(b, bio);
1665 trace_block_split(md->queue, b, bio->bi_iter.bi_sector);
1666 ret = generic_make_request(bio);
1667 break;
1668 }
1669 }
1670 }
1671
1672 /* drop the extra reference count */
1673 dec_pending(ci.io, errno_to_blk_status(error));
1674 return ret;
1675}
1676
1677/*
1678 * Optimized variant of __split_and_process_bio that leverages the
1679 * fact that targets that use it do _not_ have a need to split bios.
1680 */
1681static blk_qc_t __process_bio(struct mapped_device *md, struct dm_table *map,
1682 struct bio *bio, struct dm_target *ti)
1683{
1684 struct clone_info ci;
1685 blk_qc_t ret = BLK_QC_T_NONE;
1686 int error = 0;
1687
1688 init_clone_info(&ci, md, map, bio);
1689
1690 if (bio->bi_opf & REQ_PREFLUSH) {
1691 struct bio flush_bio;
1692
1693 /*
1694 * Use an on-stack bio for this, it's safe since we don't
1695 * need to reference it after submit. It's just used as
1696 * the basis for the clone(s).
1697 */
1698 bio_init(&flush_bio, NULL, 0);
1699 flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1700 ci.bio = &flush_bio;
1701 ci.sector_count = 0;
1702 error = __send_empty_flush(&ci);
1703 /* dec_pending submits any data associated with flush */
1704 } else {
1705 struct dm_target_io *tio;
1706
1707 ci.bio = bio;
1708 ci.sector_count = bio_sectors(bio);
1709 if (__process_abnormal_io(&ci, ti, &error))
1710 goto out;
1711
1712 tio = alloc_tio(&ci, ti, 0, GFP_NOIO);
1713 ret = __clone_and_map_simple_bio(&ci, tio, NULL);
1714 }
1715out:
1716 /* drop the extra reference count */
1717 dec_pending(ci.io, errno_to_blk_status(error));
1718 return ret;
1719}
1720
1721static void dm_queue_split(struct mapped_device *md, struct dm_target *ti, struct bio **bio)
1722{
1723 unsigned len, sector_count;
1724
1725 sector_count = bio_sectors(*bio);
1726 len = min_t(sector_t, max_io_len((*bio)->bi_iter.bi_sector, ti), sector_count);
1727
1728 if (sector_count > len) {
1729 struct bio *split = bio_split(*bio, len, GFP_NOIO, &md->queue->bio_split);
1730
1731 bio_chain(split, *bio);
1732 trace_block_split(md->queue, split, (*bio)->bi_iter.bi_sector);
1733 generic_make_request(*bio);
1734 *bio = split;
1735 }
1736}
1737
1738static blk_qc_t dm_process_bio(struct mapped_device *md,
1739 struct dm_table *map, struct bio *bio)
1740{
1741 blk_qc_t ret = BLK_QC_T_NONE;
1742 struct dm_target *ti = md->immutable_target;
1743
1744 if (unlikely(!map)) {
1745 bio_io_error(bio);
1746 return ret;
1747 }
1748
1749 if (!ti) {
1750 ti = dm_table_find_target(map, bio->bi_iter.bi_sector);
1751 if (unlikely(!ti)) {
1752 bio_io_error(bio);
1753 return ret;
1754 }
1755 }
1756
1757 /*
1758 * If in ->make_request_fn we need to use blk_queue_split(), otherwise
1759 * queue_limits for abnormal requests (e.g. discard, writesame, etc)
1760 * won't be imposed.
1761 */
1762 if (current->bio_list) {
1763 blk_queue_split(md->queue, &bio);
1764 if (!is_abnormal_io(bio))
1765 dm_queue_split(md, ti, &bio);
1766 }
1767
1768 if (dm_get_md_type(md) == DM_TYPE_NVME_BIO_BASED)
1769 return __process_bio(md, map, bio, ti);
1770 else
1771 return __split_and_process_bio(md, map, bio);
1772}
1773
1774static blk_qc_t dm_make_request(struct request_queue *q, struct bio *bio)
1775{
1776 struct mapped_device *md = q->queuedata;
1777 blk_qc_t ret = BLK_QC_T_NONE;
1778 int srcu_idx;
1779 struct dm_table *map;
1780
1781 map = dm_get_live_table(md, &srcu_idx);
1782
1783 /* if we're suspended, we have to queue this io for later */
1784 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1785 dm_put_live_table(md, srcu_idx);
1786
1787 if (!(bio->bi_opf & REQ_RAHEAD))
1788 queue_io(md, bio);
1789 else
1790 bio_io_error(bio);
1791 return ret;
1792 }
1793
1794 ret = dm_process_bio(md, map, bio);
1795
1796 dm_put_live_table(md, srcu_idx);
1797 return ret;
1798}
1799
1800static int dm_any_congested(void *congested_data, int bdi_bits)
1801{
1802 int r = bdi_bits;
1803 struct mapped_device *md = congested_data;
1804 struct dm_table *map;
1805
1806 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1807 if (dm_request_based(md)) {
1808 /*
1809 * With request-based DM we only need to check the
1810 * top-level queue for congestion.
1811 */
1812 r = md->queue->backing_dev_info->wb.state & bdi_bits;
1813 } else {
1814 map = dm_get_live_table_fast(md);
1815 if (map)
1816 r = dm_table_any_congested(map, bdi_bits);
1817 dm_put_live_table_fast(md);
1818 }
1819 }
1820
1821 return r;
1822}
1823
1824/*-----------------------------------------------------------------
1825 * An IDR is used to keep track of allocated minor numbers.
1826 *---------------------------------------------------------------*/
1827static void free_minor(int minor)
1828{
1829 spin_lock(&_minor_lock);
1830 idr_remove(&_minor_idr, minor);
1831 spin_unlock(&_minor_lock);
1832}
1833
1834/*
1835 * See if the device with a specific minor # is free.
1836 */
1837static int specific_minor(int minor)
1838{
1839 int r;
1840
1841 if (minor >= (1 << MINORBITS))
1842 return -EINVAL;
1843
1844 idr_preload(GFP_KERNEL);
1845 spin_lock(&_minor_lock);
1846
1847 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1848
1849 spin_unlock(&_minor_lock);
1850 idr_preload_end();
1851 if (r < 0)
1852 return r == -ENOSPC ? -EBUSY : r;
1853 return 0;
1854}
1855
1856static int next_free_minor(int *minor)
1857{
1858 int r;
1859
1860 idr_preload(GFP_KERNEL);
1861 spin_lock(&_minor_lock);
1862
1863 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1864
1865 spin_unlock(&_minor_lock);
1866 idr_preload_end();
1867 if (r < 0)
1868 return r;
1869 *minor = r;
1870 return 0;
1871}
1872
1873static const struct block_device_operations dm_blk_dops;
1874static const struct dax_operations dm_dax_ops;
1875
1876static void dm_wq_work(struct work_struct *work);
1877
1878static void dm_init_normal_md_queue(struct mapped_device *md)
1879{
1880 /*
1881 * Initialize aspects of queue that aren't relevant for blk-mq
1882 */
1883 md->queue->backing_dev_info->congested_fn = dm_any_congested;
1884}
1885
1886static void cleanup_mapped_device(struct mapped_device *md)
1887{
1888 if (md->wq)
1889 destroy_workqueue(md->wq);
1890 bioset_exit(&md->bs);
1891 bioset_exit(&md->io_bs);
1892
1893 if (md->dax_dev) {
1894 kill_dax(md->dax_dev);
1895 put_dax(md->dax_dev);
1896 md->dax_dev = NULL;
1897 }
1898
1899 if (md->disk) {
1900 spin_lock(&_minor_lock);
1901 md->disk->private_data = NULL;
1902 spin_unlock(&_minor_lock);
1903 del_gendisk(md->disk);
1904 put_disk(md->disk);
1905 }
1906
1907 if (md->queue)
1908 blk_cleanup_queue(md->queue);
1909
1910 cleanup_srcu_struct(&md->io_barrier);
1911
1912 if (md->bdev) {
1913 bdput(md->bdev);
1914 md->bdev = NULL;
1915 }
1916
1917 mutex_destroy(&md->suspend_lock);
1918 mutex_destroy(&md->type_lock);
1919 mutex_destroy(&md->table_devices_lock);
1920
1921 dm_mq_cleanup_mapped_device(md);
1922}
1923
1924/*
1925 * Allocate and initialise a blank device with a given minor.
1926 */
1927static struct mapped_device *alloc_dev(int minor)
1928{
1929 int r, numa_node_id = dm_get_numa_node();
1930 struct mapped_device *md;
1931 void *old_md;
1932
1933 md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
1934 if (!md) {
1935 DMWARN("unable to allocate device, out of memory.");
1936 return NULL;
1937 }
1938
1939 if (!try_module_get(THIS_MODULE))
1940 goto bad_module_get;
1941
1942 /* get a minor number for the dev */
1943 if (minor == DM_ANY_MINOR)
1944 r = next_free_minor(&minor);
1945 else
1946 r = specific_minor(minor);
1947 if (r < 0)
1948 goto bad_minor;
1949
1950 r = init_srcu_struct(&md->io_barrier);
1951 if (r < 0)
1952 goto bad_io_barrier;
1953
1954 md->numa_node_id = numa_node_id;
1955 md->init_tio_pdu = false;
1956 md->type = DM_TYPE_NONE;
1957 mutex_init(&md->suspend_lock);
1958 mutex_init(&md->type_lock);
1959 mutex_init(&md->table_devices_lock);
1960 spin_lock_init(&md->deferred_lock);
1961 atomic_set(&md->holders, 1);
1962 atomic_set(&md->open_count, 0);
1963 atomic_set(&md->event_nr, 0);
1964 atomic_set(&md->uevent_seq, 0);
1965 INIT_LIST_HEAD(&md->uevent_list);
1966 INIT_LIST_HEAD(&md->table_devices);
1967 spin_lock_init(&md->uevent_lock);
1968
1969 md->queue = blk_alloc_queue_node(GFP_KERNEL, numa_node_id);
1970 if (!md->queue)
1971 goto bad;
1972 md->queue->queuedata = md;
1973 md->queue->backing_dev_info->congested_data = md;
1974
1975 md->disk = alloc_disk_node(1, md->numa_node_id);
1976 if (!md->disk)
1977 goto bad;
1978
1979 init_waitqueue_head(&md->wait);
1980 INIT_WORK(&md->work, dm_wq_work);
1981 init_waitqueue_head(&md->eventq);
1982 init_completion(&md->kobj_holder.completion);
1983
1984 md->disk->major = _major;
1985 md->disk->first_minor = minor;
1986 md->disk->fops = &dm_blk_dops;
1987 md->disk->queue = md->queue;
1988 md->disk->private_data = md;
1989 sprintf(md->disk->disk_name, "dm-%d", minor);
1990
1991 if (IS_ENABLED(CONFIG_DAX_DRIVER)) {
1992 md->dax_dev = alloc_dax(md, md->disk->disk_name,
1993 &dm_dax_ops, 0);
1994 if (!md->dax_dev)
1995 goto bad;
1996 }
1997
1998 add_disk_no_queue_reg(md->disk);
1999 format_dev_t(md->name, MKDEV(_major, minor));
2000
2001 md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
2002 if (!md->wq)
2003 goto bad;
2004
2005 md->bdev = bdget_disk(md->disk, 0);
2006 if (!md->bdev)
2007 goto bad;
2008
2009 dm_stats_init(&md->stats);
2010
2011 /* Populate the mapping, nobody knows we exist yet */
2012 spin_lock(&_minor_lock);
2013 old_md = idr_replace(&_minor_idr, md, minor);
2014 spin_unlock(&_minor_lock);
2015
2016 BUG_ON(old_md != MINOR_ALLOCED);
2017
2018 return md;
2019
2020bad:
2021 cleanup_mapped_device(md);
2022bad_io_barrier:
2023 free_minor(minor);
2024bad_minor:
2025 module_put(THIS_MODULE);
2026bad_module_get:
2027 kvfree(md);
2028 return NULL;
2029}
2030
2031static void unlock_fs(struct mapped_device *md);
2032
2033static void free_dev(struct mapped_device *md)
2034{
2035 int minor = MINOR(disk_devt(md->disk));
2036
2037 unlock_fs(md);
2038
2039 cleanup_mapped_device(md);
2040
2041 free_table_devices(&md->table_devices);
2042 dm_stats_cleanup(&md->stats);
2043 free_minor(minor);
2044
2045 module_put(THIS_MODULE);
2046 kvfree(md);
2047}
2048
2049static int __bind_mempools(struct mapped_device *md, struct dm_table *t)
2050{
2051 struct dm_md_mempools *p = dm_table_get_md_mempools(t);
2052 int ret = 0;
2053
2054 if (dm_table_bio_based(t)) {
2055 /*
2056 * The md may already have mempools that need changing.
2057 * If so, reload bioset because front_pad may have changed
2058 * because a different table was loaded.
2059 */
2060 bioset_exit(&md->bs);
2061 bioset_exit(&md->io_bs);
2062
2063 } else if (bioset_initialized(&md->bs)) {
2064 /*
2065 * There's no need to reload with request-based dm
2066 * because the size of front_pad doesn't change.
2067 * Note for future: If you are to reload bioset,
2068 * prep-ed requests in the queue may refer
2069 * to bio from the old bioset, so you must walk
2070 * through the queue to unprep.
2071 */
2072 goto out;
2073 }
2074
2075 BUG_ON(!p ||
2076 bioset_initialized(&md->bs) ||
2077 bioset_initialized(&md->io_bs));
2078
2079 ret = bioset_init_from_src(&md->bs, &p->bs);
2080 if (ret)
2081 goto out;
2082 ret = bioset_init_from_src(&md->io_bs, &p->io_bs);
2083 if (ret)
2084 bioset_exit(&md->bs);
2085out:
2086 /* mempool bind completed, no longer need any mempools in the table */
2087 dm_table_free_md_mempools(t);
2088 return ret;
2089}
2090
2091/*
2092 * Bind a table to the device.
2093 */
2094static void event_callback(void *context)
2095{
2096 unsigned long flags;
2097 LIST_HEAD(uevents);
2098 struct mapped_device *md = (struct mapped_device *) context;
2099
2100 spin_lock_irqsave(&md->uevent_lock, flags);
2101 list_splice_init(&md->uevent_list, &uevents);
2102 spin_unlock_irqrestore(&md->uevent_lock, flags);
2103
2104 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2105
2106 atomic_inc(&md->event_nr);
2107 wake_up(&md->eventq);
2108 dm_issue_global_event();
2109}
2110
2111/*
2112 * Protected by md->suspend_lock obtained by dm_swap_table().
2113 */
2114static void __set_size(struct mapped_device *md, sector_t size)
2115{
2116 lockdep_assert_held(&md->suspend_lock);
2117
2118 set_capacity(md->disk, size);
2119
2120 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2121}
2122
2123/*
2124 * Returns old map, which caller must destroy.
2125 */
2126static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2127 struct queue_limits *limits)
2128{
2129 struct dm_table *old_map;
2130 struct request_queue *q = md->queue;
2131 bool request_based = dm_table_request_based(t);
2132 sector_t size;
2133 int ret;
2134
2135 lockdep_assert_held(&md->suspend_lock);
2136
2137 size = dm_table_get_size(t);
2138
2139 /*
2140 * Wipe any geometry if the size of the table changed.
2141 */
2142 if (size != dm_get_size(md))
2143 memset(&md->geometry, 0, sizeof(md->geometry));
2144
2145 __set_size(md, size);
2146
2147 dm_table_event_callback(t, event_callback, md);
2148
2149 /*
2150 * The queue hasn't been stopped yet, if the old table type wasn't
2151 * for request-based during suspension. So stop it to prevent
2152 * I/O mapping before resume.
2153 * This must be done before setting the queue restrictions,
2154 * because request-based dm may be run just after the setting.
2155 */
2156 if (request_based)
2157 dm_stop_queue(q);
2158
2159 if (request_based || md->type == DM_TYPE_NVME_BIO_BASED) {
2160 /*
2161 * Leverage the fact that request-based DM targets and
2162 * NVMe bio based targets are immutable singletons
2163 * - used to optimize both dm_request_fn and dm_mq_queue_rq;
2164 * and __process_bio.
2165 */
2166 md->immutable_target = dm_table_get_immutable_target(t);
2167 }
2168
2169 ret = __bind_mempools(md, t);
2170 if (ret) {
2171 old_map = ERR_PTR(ret);
2172 goto out;
2173 }
2174
2175 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2176 rcu_assign_pointer(md->map, (void *)t);
2177 md->immutable_target_type = dm_table_get_immutable_target_type(t);
2178
2179 dm_table_set_restrictions(t, q, limits);
2180 if (old_map)
2181 dm_sync_table(md);
2182
2183out:
2184 return old_map;
2185}
2186
2187/*
2188 * Returns unbound table for the caller to free.
2189 */
2190static struct dm_table *__unbind(struct mapped_device *md)
2191{
2192 struct dm_table *map = rcu_dereference_protected(md->map, 1);
2193
2194 if (!map)
2195 return NULL;
2196
2197 dm_table_event_callback(map, NULL, NULL);
2198 RCU_INIT_POINTER(md->map, NULL);
2199 dm_sync_table(md);
2200
2201 return map;
2202}
2203
2204/*
2205 * Constructor for a new device.
2206 */
2207int dm_create(int minor, struct mapped_device **result)
2208{
2209 int r;
2210 struct mapped_device *md;
2211
2212 md = alloc_dev(minor);
2213 if (!md)
2214 return -ENXIO;
2215
2216 r = dm_sysfs_init(md);
2217 if (r) {
2218 free_dev(md);
2219 return r;
2220 }
2221
2222 *result = md;
2223 return 0;
2224}
2225
2226/*
2227 * Functions to manage md->type.
2228 * All are required to hold md->type_lock.
2229 */
2230void dm_lock_md_type(struct mapped_device *md)
2231{
2232 mutex_lock(&md->type_lock);
2233}
2234
2235void dm_unlock_md_type(struct mapped_device *md)
2236{
2237 mutex_unlock(&md->type_lock);
2238}
2239
2240void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2241{
2242 BUG_ON(!mutex_is_locked(&md->type_lock));
2243 md->type = type;
2244}
2245
2246enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2247{
2248 return md->type;
2249}
2250
2251struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2252{
2253 return md->immutable_target_type;
2254}
2255
2256/*
2257 * The queue_limits are only valid as long as you have a reference
2258 * count on 'md'.
2259 */
2260struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2261{
2262 BUG_ON(!atomic_read(&md->holders));
2263 return &md->queue->limits;
2264}
2265EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2266
2267/*
2268 * Setup the DM device's queue based on md's type
2269 */
2270int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2271{
2272 int r;
2273 struct queue_limits limits;
2274 enum dm_queue_mode type = dm_get_md_type(md);
2275
2276 switch (type) {
2277 case DM_TYPE_REQUEST_BASED:
2278 r = dm_mq_init_request_queue(md, t);
2279 if (r) {
2280 DMERR("Cannot initialize queue for request-based dm-mq mapped device");
2281 return r;
2282 }
2283 break;
2284 case DM_TYPE_BIO_BASED:
2285 case DM_TYPE_DAX_BIO_BASED:
2286 case DM_TYPE_NVME_BIO_BASED:
2287 dm_init_normal_md_queue(md);
2288 blk_queue_make_request(md->queue, dm_make_request);
2289 break;
2290 case DM_TYPE_NONE:
2291 WARN_ON_ONCE(true);
2292 break;
2293 }
2294
2295 r = dm_calculate_queue_limits(t, &limits);
2296 if (r) {
2297 DMERR("Cannot calculate initial queue limits");
2298 return r;
2299 }
2300 dm_table_set_restrictions(t, md->queue, &limits);
2301 blk_register_queue(md->disk);
2302
2303 return 0;
2304}
2305
2306struct mapped_device *dm_get_md(dev_t dev)
2307{
2308 struct mapped_device *md;
2309 unsigned minor = MINOR(dev);
2310
2311 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2312 return NULL;
2313
2314 spin_lock(&_minor_lock);
2315
2316 md = idr_find(&_minor_idr, minor);
2317 if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2318 test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2319 md = NULL;
2320 goto out;
2321 }
2322 dm_get(md);
2323out:
2324 spin_unlock(&_minor_lock);
2325
2326 return md;
2327}
2328EXPORT_SYMBOL_GPL(dm_get_md);
2329
2330void *dm_get_mdptr(struct mapped_device *md)
2331{
2332 return md->interface_ptr;
2333}
2334
2335void dm_set_mdptr(struct mapped_device *md, void *ptr)
2336{
2337 md->interface_ptr = ptr;
2338}
2339
2340void dm_get(struct mapped_device *md)
2341{
2342 atomic_inc(&md->holders);
2343 BUG_ON(test_bit(DMF_FREEING, &md->flags));
2344}
2345
2346int dm_hold(struct mapped_device *md)
2347{
2348 spin_lock(&_minor_lock);
2349 if (test_bit(DMF_FREEING, &md->flags)) {
2350 spin_unlock(&_minor_lock);
2351 return -EBUSY;
2352 }
2353 dm_get(md);
2354 spin_unlock(&_minor_lock);
2355 return 0;
2356}
2357EXPORT_SYMBOL_GPL(dm_hold);
2358
2359const char *dm_device_name(struct mapped_device *md)
2360{
2361 return md->name;
2362}
2363EXPORT_SYMBOL_GPL(dm_device_name);
2364
2365static void __dm_destroy(struct mapped_device *md, bool wait)
2366{
2367 struct dm_table *map;
2368 int srcu_idx;
2369
2370 might_sleep();
2371
2372 spin_lock(&_minor_lock);
2373 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2374 set_bit(DMF_FREEING, &md->flags);
2375 spin_unlock(&_minor_lock);
2376
2377 blk_set_queue_dying(md->queue);
2378
2379 /*
2380 * Take suspend_lock so that presuspend and postsuspend methods
2381 * do not race with internal suspend.
2382 */
2383 mutex_lock(&md->suspend_lock);
2384 map = dm_get_live_table(md, &srcu_idx);
2385 if (!dm_suspended_md(md)) {
2386 dm_table_presuspend_targets(map);
2387 dm_table_postsuspend_targets(map);
2388 }
2389 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2390 dm_put_live_table(md, srcu_idx);
2391 mutex_unlock(&md->suspend_lock);
2392
2393 /*
2394 * Rare, but there may be I/O requests still going to complete,
2395 * for example. Wait for all references to disappear.
2396 * No one should increment the reference count of the mapped_device,
2397 * after the mapped_device state becomes DMF_FREEING.
2398 */
2399 if (wait)
2400 while (atomic_read(&md->holders))
2401 msleep(1);
2402 else if (atomic_read(&md->holders))
2403 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2404 dm_device_name(md), atomic_read(&md->holders));
2405
2406 dm_sysfs_exit(md);
2407 dm_table_destroy(__unbind(md));
2408 free_dev(md);
2409}
2410
2411void dm_destroy(struct mapped_device *md)
2412{
2413 __dm_destroy(md, true);
2414}
2415
2416void dm_destroy_immediate(struct mapped_device *md)
2417{
2418 __dm_destroy(md, false);
2419}
2420
2421void dm_put(struct mapped_device *md)
2422{
2423 atomic_dec(&md->holders);
2424}
2425EXPORT_SYMBOL_GPL(dm_put);
2426
2427static int dm_wait_for_completion(struct mapped_device *md, long task_state)
2428{
2429 int r = 0;
2430 DEFINE_WAIT(wait);
2431
2432 while (1) {
2433 prepare_to_wait(&md->wait, &wait, task_state);
2434
2435 if (!md_in_flight(md))
2436 break;
2437
2438 if (signal_pending_state(task_state, current)) {
2439 r = -EINTR;
2440 break;
2441 }
2442
2443 io_schedule();
2444 }
2445 finish_wait(&md->wait, &wait);
2446
2447 return r;
2448}
2449
2450/*
2451 * Process the deferred bios
2452 */
2453static void dm_wq_work(struct work_struct *work)
2454{
2455 struct mapped_device *md = container_of(work, struct mapped_device,
2456 work);
2457 struct bio *c;
2458 int srcu_idx;
2459 struct dm_table *map;
2460
2461 map = dm_get_live_table(md, &srcu_idx);
2462
2463 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2464 spin_lock_irq(&md->deferred_lock);
2465 c = bio_list_pop(&md->deferred);
2466 spin_unlock_irq(&md->deferred_lock);
2467
2468 if (!c)
2469 break;
2470
2471 if (dm_request_based(md))
2472 (void) generic_make_request(c);
2473 else
2474 (void) dm_process_bio(md, map, c);
2475 }
2476
2477 dm_put_live_table(md, srcu_idx);
2478}
2479
2480static void dm_queue_flush(struct mapped_device *md)
2481{
2482 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2483 smp_mb__after_atomic();
2484 queue_work(md->wq, &md->work);
2485}
2486
2487/*
2488 * Swap in a new table, returning the old one for the caller to destroy.
2489 */
2490struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2491{
2492 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2493 struct queue_limits limits;
2494 int r;
2495
2496 mutex_lock(&md->suspend_lock);
2497
2498 /* device must be suspended */
2499 if (!dm_suspended_md(md))
2500 goto out;
2501
2502 /*
2503 * If the new table has no data devices, retain the existing limits.
2504 * This helps multipath with queue_if_no_path if all paths disappear,
2505 * then new I/O is queued based on these limits, and then some paths
2506 * reappear.
2507 */
2508 if (dm_table_has_no_data_devices(table)) {
2509 live_map = dm_get_live_table_fast(md);
2510 if (live_map)
2511 limits = md->queue->limits;
2512 dm_put_live_table_fast(md);
2513 }
2514
2515 if (!live_map) {
2516 r = dm_calculate_queue_limits(table, &limits);
2517 if (r) {
2518 map = ERR_PTR(r);
2519 goto out;
2520 }
2521 }
2522
2523 map = __bind(md, table, &limits);
2524 dm_issue_global_event();
2525
2526out:
2527 mutex_unlock(&md->suspend_lock);
2528 return map;
2529}
2530
2531/*
2532 * Functions to lock and unlock any filesystem running on the
2533 * device.
2534 */
2535static int lock_fs(struct mapped_device *md)
2536{
2537 int r;
2538
2539 WARN_ON(md->frozen_sb);
2540
2541 md->frozen_sb = freeze_bdev(md->bdev);
2542 if (IS_ERR(md->frozen_sb)) {
2543 r = PTR_ERR(md->frozen_sb);
2544 md->frozen_sb = NULL;
2545 return r;
2546 }
2547
2548 set_bit(DMF_FROZEN, &md->flags);
2549
2550 return 0;
2551}
2552
2553static void unlock_fs(struct mapped_device *md)
2554{
2555 if (!test_bit(DMF_FROZEN, &md->flags))
2556 return;
2557
2558 thaw_bdev(md->bdev, md->frozen_sb);
2559 md->frozen_sb = NULL;
2560 clear_bit(DMF_FROZEN, &md->flags);
2561}
2562
2563/*
2564 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2565 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2566 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2567 *
2568 * If __dm_suspend returns 0, the device is completely quiescent
2569 * now. There is no request-processing activity. All new requests
2570 * are being added to md->deferred list.
2571 */
2572static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2573 unsigned suspend_flags, long task_state,
2574 int dmf_suspended_flag)
2575{
2576 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2577 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2578 int r;
2579
2580 lockdep_assert_held(&md->suspend_lock);
2581
2582 /*
2583 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2584 * This flag is cleared before dm_suspend returns.
2585 */
2586 if (noflush)
2587 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2588 else
2589 pr_debug("%s: suspending with flush\n", dm_device_name(md));
2590
2591 /*
2592 * This gets reverted if there's an error later and the targets
2593 * provide the .presuspend_undo hook.
2594 */
2595 dm_table_presuspend_targets(map);
2596
2597 /*
2598 * Flush I/O to the device.
2599 * Any I/O submitted after lock_fs() may not be flushed.
2600 * noflush takes precedence over do_lockfs.
2601 * (lock_fs() flushes I/Os and waits for them to complete.)
2602 */
2603 if (!noflush && do_lockfs) {
2604 r = lock_fs(md);
2605 if (r) {
2606 dm_table_presuspend_undo_targets(map);
2607 return r;
2608 }
2609 }
2610
2611 /*
2612 * Here we must make sure that no processes are submitting requests
2613 * to target drivers i.e. no one may be executing
2614 * __split_and_process_bio. This is called from dm_request and
2615 * dm_wq_work.
2616 *
2617 * To get all processes out of __split_and_process_bio in dm_request,
2618 * we take the write lock. To prevent any process from reentering
2619 * __split_and_process_bio from dm_request and quiesce the thread
2620 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2621 * flush_workqueue(md->wq).
2622 */
2623 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2624 if (map)
2625 synchronize_srcu(&md->io_barrier);
2626
2627 /*
2628 * Stop md->queue before flushing md->wq in case request-based
2629 * dm defers requests to md->wq from md->queue.
2630 */
2631 if (dm_request_based(md))
2632 dm_stop_queue(md->queue);
2633
2634 flush_workqueue(md->wq);
2635
2636 /*
2637 * At this point no more requests are entering target request routines.
2638 * We call dm_wait_for_completion to wait for all existing requests
2639 * to finish.
2640 */
2641 r = dm_wait_for_completion(md, task_state);
2642 if (!r)
2643 set_bit(dmf_suspended_flag, &md->flags);
2644
2645 if (noflush)
2646 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2647 if (map)
2648 synchronize_srcu(&md->io_barrier);
2649
2650 /* were we interrupted ? */
2651 if (r < 0) {
2652 dm_queue_flush(md);
2653
2654 if (dm_request_based(md))
2655 dm_start_queue(md->queue);
2656
2657 unlock_fs(md);
2658 dm_table_presuspend_undo_targets(map);
2659 /* pushback list is already flushed, so skip flush */
2660 }
2661
2662 return r;
2663}
2664
2665/*
2666 * We need to be able to change a mapping table under a mounted
2667 * filesystem. For example we might want to move some data in
2668 * the background. Before the table can be swapped with
2669 * dm_bind_table, dm_suspend must be called to flush any in
2670 * flight bios and ensure that any further io gets deferred.
2671 */
2672/*
2673 * Suspend mechanism in request-based dm.
2674 *
2675 * 1. Flush all I/Os by lock_fs() if needed.
2676 * 2. Stop dispatching any I/O by stopping the request_queue.
2677 * 3. Wait for all in-flight I/Os to be completed or requeued.
2678 *
2679 * To abort suspend, start the request_queue.
2680 */
2681int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2682{
2683 struct dm_table *map = NULL;
2684 int r = 0;
2685
2686retry:
2687 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2688
2689 if (dm_suspended_md(md)) {
2690 r = -EINVAL;
2691 goto out_unlock;
2692 }
2693
2694 if (dm_suspended_internally_md(md)) {
2695 /* already internally suspended, wait for internal resume */
2696 mutex_unlock(&md->suspend_lock);
2697 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2698 if (r)
2699 return r;
2700 goto retry;
2701 }
2702
2703 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2704
2705 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2706 if (r)
2707 goto out_unlock;
2708
2709 dm_table_postsuspend_targets(map);
2710
2711out_unlock:
2712 mutex_unlock(&md->suspend_lock);
2713 return r;
2714}
2715
2716static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2717{
2718 if (map) {
2719 int r = dm_table_resume_targets(map);
2720 if (r)
2721 return r;
2722 }
2723
2724 dm_queue_flush(md);
2725
2726 /*
2727 * Flushing deferred I/Os must be done after targets are resumed
2728 * so that mapping of targets can work correctly.
2729 * Request-based dm is queueing the deferred I/Os in its request_queue.
2730 */
2731 if (dm_request_based(md))
2732 dm_start_queue(md->queue);
2733
2734 unlock_fs(md);
2735
2736 return 0;
2737}
2738
2739int dm_resume(struct mapped_device *md)
2740{
2741 int r;
2742 struct dm_table *map = NULL;
2743
2744retry:
2745 r = -EINVAL;
2746 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2747
2748 if (!dm_suspended_md(md))
2749 goto out;
2750
2751 if (dm_suspended_internally_md(md)) {
2752 /* already internally suspended, wait for internal resume */
2753 mutex_unlock(&md->suspend_lock);
2754 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2755 if (r)
2756 return r;
2757 goto retry;
2758 }
2759
2760 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2761 if (!map || !dm_table_get_size(map))
2762 goto out;
2763
2764 r = __dm_resume(md, map);
2765 if (r)
2766 goto out;
2767
2768 clear_bit(DMF_SUSPENDED, &md->flags);
2769out:
2770 mutex_unlock(&md->suspend_lock);
2771
2772 return r;
2773}
2774
2775/*
2776 * Internal suspend/resume works like userspace-driven suspend. It waits
2777 * until all bios finish and prevents issuing new bios to the target drivers.
2778 * It may be used only from the kernel.
2779 */
2780
2781static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2782{
2783 struct dm_table *map = NULL;
2784
2785 lockdep_assert_held(&md->suspend_lock);
2786
2787 if (md->internal_suspend_count++)
2788 return; /* nested internal suspend */
2789
2790 if (dm_suspended_md(md)) {
2791 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2792 return; /* nest suspend */
2793 }
2794
2795 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2796
2797 /*
2798 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2799 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend
2800 * would require changing .presuspend to return an error -- avoid this
2801 * until there is a need for more elaborate variants of internal suspend.
2802 */
2803 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2804 DMF_SUSPENDED_INTERNALLY);
2805
2806 dm_table_postsuspend_targets(map);
2807}
2808
2809static void __dm_internal_resume(struct mapped_device *md)
2810{
2811 BUG_ON(!md->internal_suspend_count);
2812
2813 if (--md->internal_suspend_count)
2814 return; /* resume from nested internal suspend */
2815
2816 if (dm_suspended_md(md))
2817 goto done; /* resume from nested suspend */
2818
2819 /*
2820 * NOTE: existing callers don't need to call dm_table_resume_targets
2821 * (which may fail -- so best to avoid it for now by passing NULL map)
2822 */
2823 (void) __dm_resume(md, NULL);
2824
2825done:
2826 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2827 smp_mb__after_atomic();
2828 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2829}
2830
2831void dm_internal_suspend_noflush(struct mapped_device *md)
2832{
2833 mutex_lock(&md->suspend_lock);
2834 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2835 mutex_unlock(&md->suspend_lock);
2836}
2837EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2838
2839void dm_internal_resume(struct mapped_device *md)
2840{
2841 mutex_lock(&md->suspend_lock);
2842 __dm_internal_resume(md);
2843 mutex_unlock(&md->suspend_lock);
2844}
2845EXPORT_SYMBOL_GPL(dm_internal_resume);
2846
2847/*
2848 * Fast variants of internal suspend/resume hold md->suspend_lock,
2849 * which prevents interaction with userspace-driven suspend.
2850 */
2851
2852void dm_internal_suspend_fast(struct mapped_device *md)
2853{
2854 mutex_lock(&md->suspend_lock);
2855 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2856 return;
2857
2858 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2859 synchronize_srcu(&md->io_barrier);
2860 flush_workqueue(md->wq);
2861 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2862}
2863EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2864
2865void dm_internal_resume_fast(struct mapped_device *md)
2866{
2867 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2868 goto done;
2869
2870 dm_queue_flush(md);
2871
2872done:
2873 mutex_unlock(&md->suspend_lock);
2874}
2875EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2876
2877/*-----------------------------------------------------------------
2878 * Event notification.
2879 *---------------------------------------------------------------*/
2880int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2881 unsigned cookie)
2882{
2883 char udev_cookie[DM_COOKIE_LENGTH];
2884 char *envp[] = { udev_cookie, NULL };
2885
2886 if (!cookie)
2887 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2888 else {
2889 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2890 DM_COOKIE_ENV_VAR_NAME, cookie);
2891 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2892 action, envp);
2893 }
2894}
2895
2896uint32_t dm_next_uevent_seq(struct mapped_device *md)
2897{
2898 return atomic_add_return(1, &md->uevent_seq);
2899}
2900
2901uint32_t dm_get_event_nr(struct mapped_device *md)
2902{
2903 return atomic_read(&md->event_nr);
2904}
2905
2906int dm_wait_event(struct mapped_device *md, int event_nr)
2907{
2908 return wait_event_interruptible(md->eventq,
2909 (event_nr != atomic_read(&md->event_nr)));
2910}
2911
2912void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2913{
2914 unsigned long flags;
2915
2916 spin_lock_irqsave(&md->uevent_lock, flags);
2917 list_add(elist, &md->uevent_list);
2918 spin_unlock_irqrestore(&md->uevent_lock, flags);
2919}
2920
2921/*
2922 * The gendisk is only valid as long as you have a reference
2923 * count on 'md'.
2924 */
2925struct gendisk *dm_disk(struct mapped_device *md)
2926{
2927 return md->disk;
2928}
2929EXPORT_SYMBOL_GPL(dm_disk);
2930
2931struct kobject *dm_kobject(struct mapped_device *md)
2932{
2933 return &md->kobj_holder.kobj;
2934}
2935
2936struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2937{
2938 struct mapped_device *md;
2939
2940 md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2941
2942 spin_lock(&_minor_lock);
2943 if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2944 md = NULL;
2945 goto out;
2946 }
2947 dm_get(md);
2948out:
2949 spin_unlock(&_minor_lock);
2950
2951 return md;
2952}
2953
2954int dm_suspended_md(struct mapped_device *md)
2955{
2956 return test_bit(DMF_SUSPENDED, &md->flags);
2957}
2958
2959int dm_suspended_internally_md(struct mapped_device *md)
2960{
2961 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2962}
2963
2964int dm_test_deferred_remove_flag(struct mapped_device *md)
2965{
2966 return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2967}
2968
2969int dm_suspended(struct dm_target *ti)
2970{
2971 return dm_suspended_md(dm_table_get_md(ti->table));
2972}
2973EXPORT_SYMBOL_GPL(dm_suspended);
2974
2975int dm_noflush_suspending(struct dm_target *ti)
2976{
2977 return __noflush_suspending(dm_table_get_md(ti->table));
2978}
2979EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2980
2981struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type,
2982 unsigned integrity, unsigned per_io_data_size,
2983 unsigned min_pool_size)
2984{
2985 struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
2986 unsigned int pool_size = 0;
2987 unsigned int front_pad, io_front_pad;
2988 int ret;
2989
2990 if (!pools)
2991 return NULL;
2992
2993 switch (type) {
2994 case DM_TYPE_BIO_BASED:
2995 case DM_TYPE_DAX_BIO_BASED:
2996 case DM_TYPE_NVME_BIO_BASED:
2997 pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
2998 front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
2999 io_front_pad = roundup(front_pad, __alignof__(struct dm_io)) + offsetof(struct dm_io, tio);
3000 ret = bioset_init(&pools->io_bs, pool_size, io_front_pad, 0);
3001 if (ret)
3002 goto out;
3003 if (integrity && bioset_integrity_create(&pools->io_bs, pool_size))
3004 goto out;
3005 break;
3006 case DM_TYPE_REQUEST_BASED:
3007 pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size);
3008 front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
3009 /* per_io_data_size is used for blk-mq pdu at queue allocation */
3010 break;
3011 default:
3012 BUG();
3013 }
3014
3015 ret = bioset_init(&pools->bs, pool_size, front_pad, 0);
3016 if (ret)
3017 goto out;
3018
3019 if (integrity && bioset_integrity_create(&pools->bs, pool_size))
3020 goto out;
3021
3022 return pools;
3023
3024out:
3025 dm_free_md_mempools(pools);
3026
3027 return NULL;
3028}
3029
3030void dm_free_md_mempools(struct dm_md_mempools *pools)
3031{
3032 if (!pools)
3033 return;
3034
3035 bioset_exit(&pools->bs);
3036 bioset_exit(&pools->io_bs);
3037
3038 kfree(pools);
3039}
3040
3041struct dm_pr {
3042 u64 old_key;
3043 u64 new_key;
3044 u32 flags;
3045 bool fail_early;
3046};
3047
3048static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
3049 void *data)
3050{
3051 struct mapped_device *md = bdev->bd_disk->private_data;
3052 struct dm_table *table;
3053 struct dm_target *ti;
3054 int ret = -ENOTTY, srcu_idx;
3055
3056 table = dm_get_live_table(md, &srcu_idx);
3057 if (!table || !dm_table_get_size(table))
3058 goto out;
3059
3060 /* We only support devices that have a single target */
3061 if (dm_table_get_num_targets(table) != 1)
3062 goto out;
3063 ti = dm_table_get_target(table, 0);
3064
3065 ret = -EINVAL;
3066 if (!ti->type->iterate_devices)
3067 goto out;
3068
3069 ret = ti->type->iterate_devices(ti, fn, data);
3070out:
3071 dm_put_live_table(md, srcu_idx);
3072 return ret;
3073}
3074
3075/*
3076 * For register / unregister we need to manually call out to every path.
3077 */
3078static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
3079 sector_t start, sector_t len, void *data)
3080{
3081 struct dm_pr *pr = data;
3082 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3083
3084 if (!ops || !ops->pr_register)
3085 return -EOPNOTSUPP;
3086 return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
3087}
3088
3089static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3090 u32 flags)
3091{
3092 struct dm_pr pr = {
3093 .old_key = old_key,
3094 .new_key = new_key,
3095 .flags = flags,
3096 .fail_early = true,
3097 };
3098 int ret;
3099
3100 ret = dm_call_pr(bdev, __dm_pr_register, &pr);
3101 if (ret && new_key) {
3102 /* unregister all paths if we failed to register any path */
3103 pr.old_key = new_key;
3104 pr.new_key = 0;
3105 pr.flags = 0;
3106 pr.fail_early = false;
3107 dm_call_pr(bdev, __dm_pr_register, &pr);
3108 }
3109
3110 return ret;
3111}
3112
3113static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3114 u32 flags)
3115{
3116 struct mapped_device *md = bdev->bd_disk->private_data;
3117 const struct pr_ops *ops;
3118 int r, srcu_idx;
3119
3120 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3121 if (r < 0)
3122 goto out;
3123
3124 ops = bdev->bd_disk->fops->pr_ops;
3125 if (ops && ops->pr_reserve)
3126 r = ops->pr_reserve(bdev, key, type, flags);
3127 else
3128 r = -EOPNOTSUPP;
3129out:
3130 dm_unprepare_ioctl(md, srcu_idx);
3131 return r;
3132}
3133
3134static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3135{
3136 struct mapped_device *md = bdev->bd_disk->private_data;
3137 const struct pr_ops *ops;
3138 int r, srcu_idx;
3139
3140 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3141 if (r < 0)
3142 goto out;
3143
3144 ops = bdev->bd_disk->fops->pr_ops;
3145 if (ops && ops->pr_release)
3146 r = ops->pr_release(bdev, key, type);
3147 else
3148 r = -EOPNOTSUPP;
3149out:
3150 dm_unprepare_ioctl(md, srcu_idx);
3151 return r;
3152}
3153
3154static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3155 enum pr_type type, bool abort)
3156{
3157 struct mapped_device *md = bdev->bd_disk->private_data;
3158 const struct pr_ops *ops;
3159 int r, srcu_idx;
3160
3161 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3162 if (r < 0)
3163 goto out;
3164
3165 ops = bdev->bd_disk->fops->pr_ops;
3166 if (ops && ops->pr_preempt)
3167 r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
3168 else
3169 r = -EOPNOTSUPP;
3170out:
3171 dm_unprepare_ioctl(md, srcu_idx);
3172 return r;
3173}
3174
3175static int dm_pr_clear(struct block_device *bdev, u64 key)
3176{
3177 struct mapped_device *md = bdev->bd_disk->private_data;
3178 const struct pr_ops *ops;
3179 int r, srcu_idx;
3180
3181 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3182 if (r < 0)
3183 goto out;
3184
3185 ops = bdev->bd_disk->fops->pr_ops;
3186 if (ops && ops->pr_clear)
3187 r = ops->pr_clear(bdev, key);
3188 else
3189 r = -EOPNOTSUPP;
3190out:
3191 dm_unprepare_ioctl(md, srcu_idx);
3192 return r;
3193}
3194
3195static const struct pr_ops dm_pr_ops = {
3196 .pr_register = dm_pr_register,
3197 .pr_reserve = dm_pr_reserve,
3198 .pr_release = dm_pr_release,
3199 .pr_preempt = dm_pr_preempt,
3200 .pr_clear = dm_pr_clear,
3201};
3202
3203static const struct block_device_operations dm_blk_dops = {
3204 .open = dm_blk_open,
3205 .release = dm_blk_close,
3206 .ioctl = dm_blk_ioctl,
3207 .getgeo = dm_blk_getgeo,
3208 .report_zones = dm_blk_report_zones,
3209 .pr_ops = &dm_pr_ops,
3210 .owner = THIS_MODULE
3211};
3212
3213static const struct dax_operations dm_dax_ops = {
3214 .direct_access = dm_dax_direct_access,
3215 .dax_supported = dm_dax_supported,
3216 .copy_from_iter = dm_dax_copy_from_iter,
3217 .copy_to_iter = dm_dax_copy_to_iter,
3218};
3219
3220/*
3221 * module hooks
3222 */
3223module_init(dm_init);
3224module_exit(dm_exit);
3225
3226module_param(major, uint, 0);
3227MODULE_PARM_DESC(major, "The major number of the device mapper");
3228
3229module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3230MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3231
3232module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
3233MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3234
3235MODULE_DESCRIPTION(DM_NAME " driver");
3236MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3237MODULE_LICENSE("GPL");