Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
   3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
   4 *
   5 * This file is released under the GPL.
   6 */
   7
   8#include "dm.h"
 
   9#include "dm-uevent.h"
  10
  11#include <linux/init.h>
  12#include <linux/module.h>
  13#include <linux/mutex.h>
  14#include <linux/moduleparam.h>
 
  15#include <linux/blkpg.h>
  16#include <linux/bio.h>
  17#include <linux/buffer_head.h>
  18#include <linux/mempool.h>
 
  19#include <linux/slab.h>
  20#include <linux/idr.h>
 
  21#include <linux/hdreg.h>
  22#include <linux/delay.h>
  23
  24#include <trace/events/block.h>
 
 
 
  25
  26#define DM_MSG_PREFIX "core"
  27
  28/*
  29 * Cookies are numeric values sent with CHANGE and REMOVE
  30 * uevents while resuming, removing or renaming the device.
  31 */
  32#define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
  33#define DM_COOKIE_LENGTH 24
  34
  35static const char *_name = DM_NAME;
  36
  37static unsigned int major = 0;
  38static unsigned int _major = 0;
  39
  40static DEFINE_IDR(_minor_idr);
  41
  42static DEFINE_SPINLOCK(_minor_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  43/*
  44 * For bio-based dm.
  45 * One of these is allocated per bio.
  46 */
  47struct dm_io {
  48	struct mapped_device *md;
  49	int error;
  50	atomic_t io_count;
  51	struct bio *bio;
  52	unsigned long start_time;
  53	spinlock_t endio_lock;
 
  54};
  55
  56/*
  57 * For bio-based dm.
  58 * One of these is allocated per target within a bio.  Hopefully
  59 * this will be simplified out one day.
  60 */
 
  61struct dm_target_io {
 
  62	struct dm_io *io;
  63	struct dm_target *ti;
  64	union map_info info;
 
 
 
  65};
  66
  67/*
  68 * For request-based dm.
  69 * One of these is allocated per request.
  70 */
  71struct dm_rq_target_io {
 
 
  72	struct mapped_device *md;
  73	struct dm_target *ti;
  74	struct request *orig, clone;
  75	int error;
  76	union map_info info;
 
 
 
 
  77};
  78
  79/*
  80 * For request-based dm.
  81 * One of these is allocated per bio.
  82 */
  83struct dm_rq_clone_bio_info {
  84	struct bio *orig;
  85	struct dm_rq_target_io *tio;
  86};
  87
  88union map_info *dm_get_mapinfo(struct bio *bio)
  89{
  90	if (bio && bio->bi_private)
  91		return &((struct dm_target_io *)bio->bi_private)->info;
  92	return NULL;
 
 
  93}
 
  94
  95union map_info *dm_get_rq_mapinfo(struct request *rq)
  96{
  97	if (rq && rq->end_io_data)
  98		return &((struct dm_rq_target_io *)rq->end_io_data)->info;
  99	return NULL;
 100}
 101EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo);
 102
 103#define MINOR_ALLOCED ((void *)-1)
 104
 105/*
 106 * Bits for the md->flags field.
 107 */
 108#define DMF_BLOCK_IO_FOR_SUSPEND 0
 109#define DMF_SUSPENDED 1
 110#define DMF_FROZEN 2
 111#define DMF_FREEING 3
 112#define DMF_DELETING 4
 113#define DMF_NOFLUSH_SUSPENDING 5
 114#define DMF_MERGE_IS_OPTIONAL 6
 
 
 
 
 
 115
 116/*
 117 * Work processed by per-device workqueue.
 118 */
 119struct mapped_device {
 120	struct rw_semaphore io_lock;
 121	struct mutex suspend_lock;
 122	rwlock_t map_lock;
 123	atomic_t holders;
 124	atomic_t open_count;
 125
 126	unsigned long flags;
 127
 128	struct request_queue *queue;
 129	unsigned type;
 130	/* Protect queue and type against concurrent access. */
 131	struct mutex type_lock;
 132
 133	struct gendisk *disk;
 134	char name[16];
 135
 136	void *interface_ptr;
 137
 138	/*
 139	 * A list of ios that arrived while we were suspended.
 140	 */
 141	atomic_t pending[2];
 142	wait_queue_head_t wait;
 143	struct work_struct work;
 144	struct bio_list deferred;
 145	spinlock_t deferred_lock;
 146
 147	/*
 148	 * Processing queue (flush)
 149	 */
 150	struct workqueue_struct *wq;
 
 151
 152	/*
 153	 * The current mapping.
 154	 */
 155	struct dm_table *map;
 
 156
 157	/*
 158	 * io objects are allocated from here.
 159	 */
 160	mempool_t *io_pool;
 161	mempool_t *tio_pool;
 162
 163	struct bio_set *bs;
 
 
 
 
 
 164
 165	/*
 166	 * Event handling.
 167	 */
 168	atomic_t event_nr;
 169	wait_queue_head_t eventq;
 170	atomic_t uevent_seq;
 171	struct list_head uevent_list;
 172	spinlock_t uevent_lock; /* Protect access to uevent_list */
 173
 174	/*
 175	 * freeze/thaw support require holding onto a super block
 176	 */
 177	struct super_block *frozen_sb;
 178	struct block_device *bdev;
 179
 180	/* forced geometry settings */
 181	struct hd_geometry geometry;
 
 
 
 182
 183	/* For saving the address of __make_request for request based dm */
 184	make_request_fn *saved_make_request_fn;
 
 
 185
 186	/* sysfs handle */
 187	struct kobject kobj;
 
 
 188
 189	/* zero-length flush that will be cloned and submitted to targets */
 190	struct bio flush_bio;
 191};
 192
 193/*
 194 * For mempools pre-allocation at the table loading time.
 195 */
 196struct dm_md_mempools {
 197	mempool_t *io_pool;
 198	mempool_t *tio_pool;
 199	struct bio_set *bs;
 200};
 201
 202#define MIN_IOS 256
 203static struct kmem_cache *_io_cache;
 204static struct kmem_cache *_tio_cache;
 205static struct kmem_cache *_rq_tio_cache;
 206static struct kmem_cache *_rq_bio_info_cache;
 207
 208static int __init local_init(void)
 209{
 210	int r = -ENOMEM;
 211
 212	/* allocate a slab for the dm_ios */
 213	_io_cache = KMEM_CACHE(dm_io, 0);
 214	if (!_io_cache)
 215		return r;
 216
 217	/* allocate a slab for the target ios */
 218	_tio_cache = KMEM_CACHE(dm_target_io, 0);
 219	if (!_tio_cache)
 220		goto out_free_io_cache;
 221
 222	_rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
 223	if (!_rq_tio_cache)
 224		goto out_free_tio_cache;
 225
 226	_rq_bio_info_cache = KMEM_CACHE(dm_rq_clone_bio_info, 0);
 227	if (!_rq_bio_info_cache)
 228		goto out_free_rq_tio_cache;
 229
 230	r = dm_uevent_init();
 231	if (r)
 232		goto out_free_rq_bio_info_cache;
 
 
 
 
 
 
 233
 234	_major = major;
 235	r = register_blkdev(_major, _name);
 236	if (r < 0)
 237		goto out_uevent_exit;
 238
 239	if (!_major)
 240		_major = r;
 241
 242	return 0;
 243
 
 
 244out_uevent_exit:
 245	dm_uevent_exit();
 246out_free_rq_bio_info_cache:
 247	kmem_cache_destroy(_rq_bio_info_cache);
 248out_free_rq_tio_cache:
 249	kmem_cache_destroy(_rq_tio_cache);
 250out_free_tio_cache:
 251	kmem_cache_destroy(_tio_cache);
 252out_free_io_cache:
 253	kmem_cache_destroy(_io_cache);
 254
 255	return r;
 256}
 257
 258static void local_exit(void)
 259{
 260	kmem_cache_destroy(_rq_bio_info_cache);
 261	kmem_cache_destroy(_rq_tio_cache);
 262	kmem_cache_destroy(_tio_cache);
 263	kmem_cache_destroy(_io_cache);
 264	unregister_blkdev(_major, _name);
 265	dm_uevent_exit();
 266
 267	_major = 0;
 268
 269	DMINFO("cleaned up");
 270}
 271
 272static int (*_inits[])(void) __initdata = {
 273	local_init,
 274	dm_target_init,
 275	dm_linear_init,
 276	dm_stripe_init,
 277	dm_io_init,
 278	dm_kcopyd_init,
 279	dm_interface_init,
 
 280};
 281
 282static void (*_exits[])(void) = {
 283	local_exit,
 284	dm_target_exit,
 285	dm_linear_exit,
 286	dm_stripe_exit,
 287	dm_io_exit,
 288	dm_kcopyd_exit,
 289	dm_interface_exit,
 
 290};
 291
 292static int __init dm_init(void)
 293{
 294	const int count = ARRAY_SIZE(_inits);
 295
 296	int r, i;
 297
 298	for (i = 0; i < count; i++) {
 299		r = _inits[i]();
 300		if (r)
 301			goto bad;
 302	}
 303
 304	return 0;
 305
 306      bad:
 307	while (i--)
 308		_exits[i]();
 309
 310	return r;
 311}
 312
 313static void __exit dm_exit(void)
 314{
 315	int i = ARRAY_SIZE(_exits);
 316
 317	while (i--)
 318		_exits[i]();
 319
 320	/*
 321	 * Should be empty by this point.
 322	 */
 323	idr_remove_all(&_minor_idr);
 324	idr_destroy(&_minor_idr);
 325}
 326
 327/*
 328 * Block device functions
 329 */
 330int dm_deleting_md(struct mapped_device *md)
 331{
 332	return test_bit(DMF_DELETING, &md->flags);
 333}
 334
 335static int dm_blk_open(struct block_device *bdev, fmode_t mode)
 336{
 337	struct mapped_device *md;
 338
 339	spin_lock(&_minor_lock);
 340
 341	md = bdev->bd_disk->private_data;
 342	if (!md)
 343		goto out;
 344
 345	if (test_bit(DMF_FREEING, &md->flags) ||
 346	    dm_deleting_md(md)) {
 347		md = NULL;
 348		goto out;
 349	}
 350
 351	dm_get(md);
 352	atomic_inc(&md->open_count);
 353
 354out:
 355	spin_unlock(&_minor_lock);
 356
 357	return md ? 0 : -ENXIO;
 358}
 359
 360static int dm_blk_close(struct gendisk *disk, fmode_t mode)
 361{
 362	struct mapped_device *md = disk->private_data;
 363
 364	spin_lock(&_minor_lock);
 365
 366	atomic_dec(&md->open_count);
 367	dm_put(md);
 
 368
 369	spin_unlock(&_minor_lock);
 
 
 370
 371	return 0;
 
 
 372}
 373
 374int dm_open_count(struct mapped_device *md)
 375{
 376	return atomic_read(&md->open_count);
 377}
 378
 379/*
 380 * Guarantees nothing is using the device before it's deleted.
 381 */
 382int dm_lock_for_deletion(struct mapped_device *md)
 383{
 384	int r = 0;
 385
 386	spin_lock(&_minor_lock);
 387
 388	if (dm_open_count(md))
 389		r = -EBUSY;
 
 
 
 
 390	else
 391		set_bit(DMF_DELETING, &md->flags);
 392
 393	spin_unlock(&_minor_lock);
 394
 395	return r;
 396}
 397
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 398static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
 399{
 400	struct mapped_device *md = bdev->bd_disk->private_data;
 401
 402	return dm_get_geometry(md, geo);
 403}
 404
 405static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
 406			unsigned int cmd, unsigned long arg)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 407{
 408	struct mapped_device *md = bdev->bd_disk->private_data;
 409	struct dm_table *map = dm_get_live_table(md);
 410	struct dm_target *tgt;
 411	int r = -ENOTTY;
 
 412
 
 
 
 413	if (!map || !dm_table_get_size(map))
 414		goto out;
 415
 416	/* We only support devices that have a single target */
 417	if (dm_table_get_num_targets(map) != 1)
 418		goto out;
 419
 420	tgt = dm_table_get_target(map, 0);
 
 
 421
 422	if (dm_suspended_md(md)) {
 423		r = -EAGAIN;
 424		goto out;
 425	}
 426
 427	if (tgt->type->ioctl)
 428		r = tgt->type->ioctl(tgt, cmd, arg);
 429
 430out:
 431	dm_table_put(map);
 
 
 
 
 432
 433	return r;
 434}
 435
 436static struct dm_io *alloc_io(struct mapped_device *md)
 
 437{
 438	return mempool_alloc(md->io_pool, GFP_NOIO);
 439}
 440
 441static void free_io(struct mapped_device *md, struct dm_io *io)
 
 442{
 443	mempool_free(io, md->io_pool);
 444}
 445
 446static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
 447{
 448	mempool_free(tio, md->tio_pool);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 449}
 450
 451static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md,
 452					    gfp_t gfp_mask)
 
 453{
 454	return mempool_alloc(md->tio_pool, gfp_mask);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 455}
 456
 457static void free_rq_tio(struct dm_rq_target_io *tio)
 458{
 459	mempool_free(tio, tio->md->tio_pool);
 460}
 461
 462static struct dm_rq_clone_bio_info *alloc_bio_info(struct mapped_device *md)
 
 463{
 464	return mempool_alloc(md->io_pool, GFP_ATOMIC);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 465}
 466
 467static void free_bio_info(struct dm_rq_clone_bio_info *info)
 468{
 469	mempool_free(info, info->tio->md->io_pool);
 
 
 470}
 471
 472static int md_in_flight(struct mapped_device *md)
 473{
 474	return atomic_read(&md->pending[READ]) +
 475	       atomic_read(&md->pending[WRITE]);
 
 
 476}
 
 477
 478static void start_io_acct(struct dm_io *io)
 479{
 480	struct mapped_device *md = io->md;
 481	int cpu;
 482	int rw = bio_data_dir(io->bio);
 483
 484	io->start_time = jiffies;
 485
 486	cpu = part_stat_lock();
 487	part_round_stats(cpu, &dm_disk(md)->part0);
 488	part_stat_unlock();
 489	atomic_set(&dm_disk(md)->part0.in_flight[rw],
 490		atomic_inc_return(&md->pending[rw]));
 491}
 492
 493static void end_io_acct(struct dm_io *io)
 494{
 495	struct mapped_device *md = io->md;
 496	struct bio *bio = io->bio;
 497	unsigned long duration = jiffies - io->start_time;
 498	int pending, cpu;
 499	int rw = bio_data_dir(bio);
 500
 501	cpu = part_stat_lock();
 502	part_round_stats(cpu, &dm_disk(md)->part0);
 503	part_stat_add(cpu, &dm_disk(md)->part0, ticks[rw], duration);
 504	part_stat_unlock();
 505
 506	/*
 507	 * After this is decremented the bio must not be touched if it is
 508	 * a flush.
 509	 */
 510	pending = atomic_dec_return(&md->pending[rw]);
 511	atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
 512	pending += atomic_read(&md->pending[rw^0x1]);
 513
 514	/* nudge anyone waiting on suspend queue */
 515	if (!pending)
 516		wake_up(&md->wait);
 517}
 518
 519/*
 520 * Add the bio to the list of deferred io.
 521 */
 522static void queue_io(struct mapped_device *md, struct bio *bio)
 523{
 524	unsigned long flags;
 525
 526	spin_lock_irqsave(&md->deferred_lock, flags);
 527	bio_list_add(&md->deferred, bio);
 528	spin_unlock_irqrestore(&md->deferred_lock, flags);
 529	queue_work(md->wq, &md->work);
 530}
 531
 532/*
 533 * Everyone (including functions in this file), should use this
 534 * function to access the md->map field, and make sure they call
 535 * dm_table_put() when finished.
 536 */
 537struct dm_table *dm_get_live_table(struct mapped_device *md)
 538{
 539	struct dm_table *t;
 540	unsigned long flags;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 541
 542	read_lock_irqsave(&md->map_lock, flags);
 543	t = md->map;
 544	if (t)
 545		dm_table_get(t);
 546	read_unlock_irqrestore(&md->map_lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 547
 548	return t;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 549}
 550
 551/*
 552 * Get the geometry associated with a dm device
 553 */
 554int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
 555{
 556	*geo = md->geometry;
 557
 558	return 0;
 559}
 560
 561/*
 562 * Set the geometry of a device.
 563 */
 564int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
 565{
 566	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
 567
 568	if (geo->start > sz) {
 569		DMWARN("Start sector is beyond the geometry limits.");
 570		return -EINVAL;
 571	}
 572
 573	md->geometry = *geo;
 574
 575	return 0;
 576}
 577
 578/*-----------------------------------------------------------------
 579 * CRUD START:
 580 *   A more elegant soln is in the works that uses the queue
 581 *   merge fn, unfortunately there are a couple of changes to
 582 *   the block layer that I want to make for this.  So in the
 583 *   interests of getting something for people to use I give
 584 *   you this clearly demarcated crap.
 585 *---------------------------------------------------------------*/
 586
 587static int __noflush_suspending(struct mapped_device *md)
 588{
 589	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
 590}
 591
 592/*
 593 * Decrements the number of outstanding ios that a bio has been
 594 * cloned into, completing the original io if necc.
 595 */
 596static void dec_pending(struct dm_io *io, int error)
 597{
 598	unsigned long flags;
 599	int io_error;
 600	struct bio *bio;
 601	struct mapped_device *md = io->md;
 602
 603	/* Push-back supersedes any I/O errors */
 604	if (unlikely(error)) {
 605		spin_lock_irqsave(&io->endio_lock, flags);
 606		if (!(io->error > 0 && __noflush_suspending(md)))
 607			io->error = error;
 608		spin_unlock_irqrestore(&io->endio_lock, flags);
 609	}
 610
 611	if (atomic_dec_and_test(&io->io_count)) {
 612		if (io->error == DM_ENDIO_REQUEUE) {
 613			/*
 614			 * Target requested pushing back the I/O.
 615			 */
 616			spin_lock_irqsave(&md->deferred_lock, flags);
 617			if (__noflush_suspending(md))
 618				bio_list_add_head(&md->deferred, io->bio);
 
 619			else
 620				/* noflush suspend was interrupted. */
 621				io->error = -EIO;
 622			spin_unlock_irqrestore(&md->deferred_lock, flags);
 623		}
 624
 625		io_error = io->error;
 626		bio = io->bio;
 627		end_io_acct(io);
 628		free_io(md, io);
 629
 630		if (io_error == DM_ENDIO_REQUEUE)
 631			return;
 632
 633		if ((bio->bi_rw & REQ_FLUSH) && bio->bi_size) {
 634			/*
 635			 * Preflush done for flush with data, reissue
 636			 * without REQ_FLUSH.
 637			 */
 638			bio->bi_rw &= ~REQ_FLUSH;
 639			queue_io(md, bio);
 640		} else {
 641			/* done with normal IO or empty flush */
 642			trace_block_bio_complete(md->queue, bio, io_error);
 643			bio_endio(bio, io_error);
 
 644		}
 645	}
 646}
 647
 648static void clone_endio(struct bio *bio, int error)
 649{
 650	int r = 0;
 651	struct dm_target_io *tio = bio->bi_private;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 652	struct dm_io *io = tio->io;
 653	struct mapped_device *md = tio->io->md;
 654	dm_endio_fn endio = tio->ti->type->end_io;
 
 655
 656	if (!bio_flagged(bio, BIO_UPTODATE) && !error)
 657		error = -EIO;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 658
 659	if (endio) {
 660		r = endio(tio->ti, bio, error, &tio->info);
 661		if (r < 0 || r == DM_ENDIO_REQUEUE)
 662			/*
 663			 * error and requeue request are handled
 664			 * in dec_pending().
 665			 */
 666			error = r;
 667		else if (r == DM_ENDIO_INCOMPLETE)
 668			/* The target will handle the io */
 669			return;
 670		else if (r) {
 671			DMWARN("unimplemented target endio return value: %d", r);
 672			BUG();
 673		}
 674	}
 675
 676	/*
 677	 * Store md for cleanup instead of tio which is about to get freed.
 678	 */
 679	bio->bi_private = md->bs;
 680
 681	free_tio(md, tio);
 682	bio_put(bio);
 683	dec_pending(io, error);
 684}
 685
 686/*
 687 * Partial completion handling for request-based dm
 
 688 */
 689static void end_clone_bio(struct bio *clone, int error)
 690{
 691	struct dm_rq_clone_bio_info *info = clone->bi_private;
 692	struct dm_rq_target_io *tio = info->tio;
 693	struct bio *bio = info->orig;
 694	unsigned int nr_bytes = info->orig->bi_size;
 695
 696	bio_put(clone);
 697
 698	if (tio->error)
 699		/*
 700		 * An error has already been detected on the request.
 701		 * Once error occurred, just let clone->end_io() handle
 702		 * the remainder.
 703		 */
 704		return;
 705	else if (error) {
 706		/*
 707		 * Don't notice the error to the upper layer yet.
 708		 * The error handling decision is made by the target driver,
 709		 * when the request is completed.
 710		 */
 711		tio->error = error;
 712		return;
 713	}
 714
 715	/*
 716	 * I/O for the bio successfully completed.
 717	 * Notice the data completion to the upper layer.
 718	 */
 719
 720	/*
 721	 * bios are processed from the head of the list.
 722	 * So the completing bio should always be rq->bio.
 723	 * If it's not, something wrong is happening.
 724	 */
 725	if (tio->orig->bio != bio)
 726		DMERR("bio completion is going in the middle of the request");
 727
 728	/*
 729	 * Update the original request.
 730	 * Do not use blk_end_request() here, because it may complete
 731	 * the original request before the clone, and break the ordering.
 732	 */
 733	blk_update_request(tio->orig, 0, nr_bytes);
 734}
 735
 736/*
 737 * Don't touch any member of the md after calling this function because
 738 * the md may be freed in dm_put() at the end of this function.
 739 * Or do dm_get() before calling this function and dm_put() later.
 740 */
 741static void rq_completed(struct mapped_device *md, int rw, int run_queue)
 742{
 743	atomic_dec(&md->pending[rw]);
 744
 745	/* nudge anyone waiting on suspend queue */
 746	if (!md_in_flight(md))
 747		wake_up(&md->wait);
 748
 749	if (run_queue)
 750		blk_run_queue(md->queue);
 751
 752	/*
 753	 * dm_put() must be at the end of this function. See the comment above
 754	 */
 755	dm_put(md);
 756}
 
 
 
 
 
 757
 758static void free_rq_clone(struct request *clone)
 759{
 760	struct dm_rq_target_io *tio = clone->end_io_data;
 761
 762	blk_rq_unprep_clone(clone);
 763	free_rq_tio(tio);
 764}
 765
 766/*
 767 * Complete the clone and the original request.
 768 * Must be called without queue lock.
 769 */
 770static void dm_end_request(struct request *clone, int error)
 771{
 772	int rw = rq_data_dir(clone);
 773	struct dm_rq_target_io *tio = clone->end_io_data;
 774	struct mapped_device *md = tio->md;
 775	struct request *rq = tio->orig;
 776
 777	if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
 778		rq->errors = clone->errors;
 779		rq->resid_len = clone->resid_len;
 780
 781		if (rq->sense)
 782			/*
 783			 * We are using the sense buffer of the original
 784			 * request.
 785			 * So setting the length of the sense data is enough.
 786			 */
 787			rq->sense_len = clone->sense_len;
 788	}
 789
 790	free_rq_clone(clone);
 791	blk_end_request_all(rq, error);
 792	rq_completed(md, rw, true);
 793}
 
 794
 795static void dm_unprep_request(struct request *rq)
 
 
 796{
 797	struct request *clone = rq->special;
 
 798
 799	rq->special = NULL;
 800	rq->cmd_flags &= ~REQ_DONTPREP;
 
 
 
 
 
 801
 802	free_rq_clone(clone);
 803}
 804
 805/*
 806 * Requeue the original request of a clone.
 807 */
 808void dm_requeue_unmapped_request(struct request *clone)
 809{
 810	int rw = rq_data_dir(clone);
 811	struct dm_rq_target_io *tio = clone->end_io_data;
 812	struct mapped_device *md = tio->md;
 813	struct request *rq = tio->orig;
 814	struct request_queue *q = rq->q;
 815	unsigned long flags;
 816
 817	dm_unprep_request(rq);
 818
 819	spin_lock_irqsave(q->queue_lock, flags);
 820	blk_requeue_request(q, rq);
 821	spin_unlock_irqrestore(q->queue_lock, flags);
 
 
 
 
 
 
 822
 823	rq_completed(md, rw, 0);
 824}
 825EXPORT_SYMBOL_GPL(dm_requeue_unmapped_request);
 826
 827static void __stop_queue(struct request_queue *q)
 828{
 829	blk_stop_queue(q);
 830}
 831
 832static void stop_queue(struct request_queue *q)
 
 833{
 834	unsigned long flags;
 
 
 
 835
 836	spin_lock_irqsave(q->queue_lock, flags);
 837	__stop_queue(q);
 838	spin_unlock_irqrestore(q->queue_lock, flags);
 839}
 840
 841static void __start_queue(struct request_queue *q)
 842{
 843	if (blk_queue_stopped(q))
 844		blk_start_queue(q);
 845}
 846
 847static void start_queue(struct request_queue *q)
 848{
 849	unsigned long flags;
 850
 851	spin_lock_irqsave(q->queue_lock, flags);
 852	__start_queue(q);
 853	spin_unlock_irqrestore(q->queue_lock, flags);
 854}
 855
 856static void dm_done(struct request *clone, int error, bool mapped)
 
 857{
 858	int r = error;
 859	struct dm_rq_target_io *tio = clone->end_io_data;
 860	dm_request_endio_fn rq_end_io = tio->ti->type->rq_end_io;
 
 
 861
 862	if (mapped && rq_end_io)
 863		r = rq_end_io(tio->ti, clone, error, &tio->info);
 864
 865	if (r <= 0)
 866		/* The target wants to complete the I/O */
 867		dm_end_request(clone, r);
 868	else if (r == DM_ENDIO_INCOMPLETE)
 869		/* The target will handle the I/O */
 870		return;
 871	else if (r == DM_ENDIO_REQUEUE)
 872		/* The target wants to requeue the I/O */
 873		dm_requeue_unmapped_request(clone);
 874	else {
 875		DMWARN("unimplemented target endio return value: %d", r);
 876		BUG();
 877	}
 878}
 
 
 879
 880/*
 881 * Request completion handler for request-based dm
 882 */
 883static void dm_softirq_done(struct request *rq)
 884{
 885	bool mapped = true;
 886	struct request *clone = rq->completion_data;
 887	struct dm_rq_target_io *tio = clone->end_io_data;
 888
 889	if (rq->cmd_flags & REQ_FAILED)
 890		mapped = false;
 891
 892	dm_done(clone, tio->error, mapped);
 893}
 894
 895/*
 896 * Complete the clone and the original request with the error status
 897 * through softirq context.
 898 */
 899static void dm_complete_request(struct request *clone, int error)
 900{
 901	struct dm_rq_target_io *tio = clone->end_io_data;
 902	struct request *rq = tio->orig;
 
 
 
 903
 904	tio->error = error;
 905	rq->completion_data = clone;
 906	blk_complete_request(rq);
 907}
 908
 909/*
 910 * Complete the not-mapped clone and the original request with the error status
 911 * through softirq context.
 912 * Target's rq_end_io() function isn't called.
 913 * This may be used when the target's map_rq() function fails.
 914 */
 915void dm_kill_unmapped_request(struct request *clone, int error)
 916{
 917	struct dm_rq_target_io *tio = clone->end_io_data;
 918	struct request *rq = tio->orig;
 919
 920	rq->cmd_flags |= REQ_FAILED;
 921	dm_complete_request(clone, error);
 922}
 923EXPORT_SYMBOL_GPL(dm_kill_unmapped_request);
 924
 925/*
 926 * Called with the queue lock held
 927 */
 928static void end_clone_request(struct request *clone, int error)
 929{
 930	/*
 931	 * For just cleaning up the information of the queue in which
 932	 * the clone was dispatched.
 933	 * The clone is *NOT* freed actually here because it is alloced from
 934	 * dm own mempool and REQ_ALLOCED isn't set in clone->cmd_flags.
 935	 */
 936	__blk_put_request(clone->q, clone);
 937
 938	/*
 939	 * Actual request completion is done in a softirq context which doesn't
 940	 * hold the queue lock.  Otherwise, deadlock could occur because:
 941	 *     - another request may be submitted by the upper level driver
 942	 *       of the stacking during the completion
 943	 *     - the submission which requires queue lock may be done
 944	 *       against this queue
 945	 */
 946	dm_complete_request(clone, error);
 947}
 948
 949/*
 950 * Return maximum size of I/O possible at the supplied sector up to the current
 951 * target boundary.
 952 */
 953static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
 954{
 955	sector_t target_offset = dm_target_offset(ti, sector);
 956
 957	return ti->len - target_offset;
 958}
 
 
 
 
 
 
 
 
 
 959
 960static sector_t max_io_len(sector_t sector, struct dm_target *ti)
 961{
 962	sector_t len = max_io_len_target_boundary(sector, ti);
 963
 964	/*
 965	 * Does the target need to split even further ?
 966	 */
 967	if (ti->split_io) {
 968		sector_t boundary;
 969		sector_t offset = dm_target_offset(ti, sector);
 970		boundary = ((offset + ti->split_io) & ~(ti->split_io - 1))
 971			   - offset;
 972		if (len > boundary)
 973			len = boundary;
 974	}
 975
 976	return len;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 977}
 
 978
 979static void __map_bio(struct dm_target *ti, struct bio *clone,
 980		      struct dm_target_io *tio)
 981{
 982	int r;
 983	sector_t sector;
 984	struct mapped_device *md;
 
 
 
 985
 986	clone->bi_end_io = clone_endio;
 987	clone->bi_private = tio;
 988
 989	/*
 990	 * Map the clone.  If r == 0 we don't need to do
 991	 * anything, the target has assumed ownership of
 992	 * this io.
 993	 */
 994	atomic_inc(&tio->io->io_count);
 995	sector = clone->bi_sector;
 996	r = ti->type->map(ti, clone, &tio->info);
 997	if (r == DM_MAPIO_REMAPPED) {
 998		/* the bio has been remapped so dispatch it */
 999
1000		trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone,
1001				      tio->io->bio->bi_bdev->bd_dev, sector);
1002
1003		generic_make_request(clone);
1004	} else if (r < 0 || r == DM_MAPIO_REQUEUE) {
1005		/* error the io and bail out, or requeue it if needed */
1006		md = tio->io->md;
1007		dec_pending(tio->io, r);
1008		/*
1009		 * Store bio_set for cleanup.
1010		 */
1011		clone->bi_private = md->bs;
1012		bio_put(clone);
1013		free_tio(md, tio);
1014	} else if (r) {
 
 
 
 
1015		DMWARN("unimplemented target map return value: %d", r);
1016		BUG();
1017	}
1018}
1019
1020struct clone_info {
1021	struct mapped_device *md;
1022	struct dm_table *map;
1023	struct bio *bio;
1024	struct dm_io *io;
1025	sector_t sector;
1026	sector_t sector_count;
1027	unsigned short idx;
1028};
1029
1030static void dm_bio_destructor(struct bio *bio)
1031{
1032	struct bio_set *bs = bio->bi_private;
1033
1034	bio_free(bio, bs);
1035}
1036
1037/*
1038 * Creates a little bio that just does part of a bvec.
1039 */
1040static struct bio *split_bvec(struct bio *bio, sector_t sector,
1041			      unsigned short idx, unsigned int offset,
1042			      unsigned int len, struct bio_set *bs)
1043{
1044	struct bio *clone;
1045	struct bio_vec *bv = bio->bi_io_vec + idx;
1046
1047	clone = bio_alloc_bioset(GFP_NOIO, 1, bs);
1048	clone->bi_destructor = dm_bio_destructor;
1049	*clone->bi_io_vec = *bv;
1050
1051	clone->bi_sector = sector;
1052	clone->bi_bdev = bio->bi_bdev;
1053	clone->bi_rw = bio->bi_rw;
1054	clone->bi_vcnt = 1;
1055	clone->bi_size = to_bytes(len);
1056	clone->bi_io_vec->bv_offset = offset;
1057	clone->bi_io_vec->bv_len = clone->bi_size;
1058	clone->bi_flags |= 1 << BIO_CLONED;
1059
1060	if (bio_integrity(bio)) {
1061		bio_integrity_clone(clone, bio, GFP_NOIO, bs);
1062		bio_integrity_trim(clone,
1063				   bio_sector_offset(bio, idx, offset), len);
1064	}
1065
1066	return clone;
1067}
1068
1069/*
1070 * Creates a bio that consists of range of complete bvecs.
1071 */
1072static struct bio *clone_bio(struct bio *bio, sector_t sector,
1073			     unsigned short idx, unsigned short bv_count,
1074			     unsigned int len, struct bio_set *bs)
1075{
1076	struct bio *clone;
 
 
1077
1078	clone = bio_alloc_bioset(GFP_NOIO, bio->bi_max_vecs, bs);
1079	__bio_clone(clone, bio);
1080	clone->bi_destructor = dm_bio_destructor;
1081	clone->bi_sector = sector;
1082	clone->bi_idx = idx;
1083	clone->bi_vcnt = idx + bv_count;
1084	clone->bi_size = to_bytes(len);
1085	clone->bi_flags &= ~(1 << BIO_SEG_VALID);
1086
1087	if (bio_integrity(bio)) {
1088		bio_integrity_clone(clone, bio, GFP_NOIO, bs);
1089
1090		if (idx != bio->bi_idx || clone->bi_size < bio->bi_size)
1091			bio_integrity_trim(clone,
1092					   bio_sector_offset(bio, idx, 0), len);
 
 
 
 
 
 
 
 
1093	}
1094
1095	return clone;
1096}
1097
1098static struct dm_target_io *alloc_tio(struct clone_info *ci,
1099				      struct dm_target *ti)
1100{
1101	struct dm_target_io *tio = mempool_alloc(ci->md->tio_pool, GFP_NOIO);
1102
1103	tio->io = ci->io;
1104	tio->ti = ti;
1105	memset(&tio->info, 0, sizeof(tio->info));
1106
1107	return tio;
1108}
1109
1110static void __issue_target_request(struct clone_info *ci, struct dm_target *ti,
1111				   unsigned request_nr, sector_t len)
1112{
1113	struct dm_target_io *tio = alloc_tio(ci, ti);
1114	struct bio *clone;
1115
1116	tio->info.target_request_nr = request_nr;
 
1117
1118	/*
1119	 * Discard requests require the bio's inline iovecs be initialized.
1120	 * ci->bio->bi_max_vecs is BIO_INLINE_VECS anyway, for both flush
1121	 * and discard, so no need for concern about wasted bvec allocations.
1122	 */
1123	clone = bio_alloc_bioset(GFP_NOIO, ci->bio->bi_max_vecs, ci->md->bs);
1124	__bio_clone(clone, ci->bio);
1125	clone->bi_destructor = dm_bio_destructor;
1126	if (len) {
1127		clone->bi_sector = ci->sector;
1128		clone->bi_size = to_bytes(len);
1129	}
1130
1131	__map_bio(ti, clone, tio);
1132}
 
 
 
 
 
 
 
 
1133
1134static void __issue_target_requests(struct clone_info *ci, struct dm_target *ti,
1135				    unsigned num_requests, sector_t len)
1136{
1137	unsigned request_nr;
 
 
1138
1139	for (request_nr = 0; request_nr < num_requests; request_nr++)
1140		__issue_target_request(ci, ti, request_nr, len);
 
 
 
1141}
1142
1143static int __clone_and_map_empty_flush(struct clone_info *ci)
 
1144{
1145	unsigned target_nr = 0;
1146	struct dm_target *ti;
1147
1148	BUG_ON(bio_has_data(ci->bio));
1149	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1150		__issue_target_requests(ci, ti, ti->num_flush_requests, 0);
1151
1152	return 0;
 
 
 
 
1153}
1154
1155/*
1156 * Perform all io with a single clone.
1157 */
1158static void __clone_and_map_simple(struct clone_info *ci, struct dm_target *ti)
1159{
1160	struct bio *clone, *bio = ci->bio;
 
1161	struct dm_target_io *tio;
1162
1163	tio = alloc_tio(ci, ti);
1164	clone = clone_bio(bio, ci->sector, ci->idx,
1165			  bio->bi_vcnt - ci->idx, ci->sector_count,
1166			  ci->md->bs);
1167	__map_bio(ti, clone, tio);
1168	ci->sector_count = 0;
1169}
1170
1171static int __clone_and_map_discard(struct clone_info *ci)
1172{
 
1173	struct dm_target *ti;
1174	sector_t len;
1175
1176	do {
1177		ti = dm_table_find_target(ci->map, ci->sector);
1178		if (!dm_target_is_valid(ti))
1179			return -EIO;
1180
1181		/*
1182		 * Even though the device advertised discard support,
1183		 * that does not mean every target supports it, and
1184		 * reconfiguration might also have changed that since the
1185		 * check was performed.
1186		 */
1187		if (!ti->num_discard_requests)
1188			return -EOPNOTSUPP;
1189
1190		len = min(ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1191
1192		__issue_target_requests(ci, ti, ti->num_discard_requests, len);
1193
1194		ci->sector += len;
1195	} while (ci->sector_count -= len);
 
 
 
 
1196
 
 
 
1197	return 0;
1198}
1199
1200static int __clone_and_map(struct clone_info *ci)
 
1201{
1202	struct bio *clone, *bio = ci->bio;
1203	struct dm_target *ti;
1204	sector_t len = 0, max;
1205	struct dm_target_io *tio;
 
1206
1207	if (unlikely(bio->bi_rw & REQ_DISCARD))
1208		return __clone_and_map_discard(ci);
1209
1210	ti = dm_table_find_target(ci->map, ci->sector);
1211	if (!dm_target_is_valid(ti))
1212		return -EIO;
1213
1214	max = max_io_len(ci->sector, ti);
1215
1216	if (ci->sector_count <= max) {
1217		/*
1218		 * Optimise for the simple case where we can do all of
1219		 * the remaining io with a single clone.
1220		 */
1221		__clone_and_map_simple(ci, ti);
1222
1223	} else if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) {
1224		/*
1225		 * There are some bvecs that don't span targets.
1226		 * Do as many of these as possible.
1227		 */
1228		int i;
1229		sector_t remaining = max;
1230		sector_t bv_len;
1231
1232		for (i = ci->idx; remaining && (i < bio->bi_vcnt); i++) {
1233			bv_len = to_sector(bio->bi_io_vec[i].bv_len);
1234
1235			if (bv_len > remaining)
1236				break;
1237
1238			remaining -= bv_len;
1239			len += bv_len;
1240		}
1241
1242		tio = alloc_tio(ci, ti);
1243		clone = clone_bio(bio, ci->sector, ci->idx, i - ci->idx, len,
1244				  ci->md->bs);
1245		__map_bio(ti, clone, tio);
1246
1247		ci->sector += len;
1248		ci->sector_count -= len;
1249		ci->idx = i;
1250
1251	} else {
1252		/*
1253		 * Handle a bvec that must be split between two or more targets.
1254		 */
1255		struct bio_vec *bv = bio->bi_io_vec + ci->idx;
1256		sector_t remaining = to_sector(bv->bv_len);
1257		unsigned int offset = 0;
1258
1259		do {
1260			if (offset) {
1261				ti = dm_table_find_target(ci->map, ci->sector);
1262				if (!dm_target_is_valid(ti))
1263					return -EIO;
1264
1265				max = max_io_len(ci->sector, ti);
1266			}
1267
1268			len = min(remaining, max);
1269
1270			tio = alloc_tio(ci, ti);
1271			clone = split_bvec(bio, ci->sector, ci->idx,
1272					   bv->bv_offset + offset, len,
1273					   ci->md->bs);
1274
1275			__map_bio(ti, clone, tio);
1276
1277			ci->sector += len;
1278			ci->sector_count -= len;
1279			offset += to_bytes(len);
1280		} while (remaining -= len);
1281
1282		ci->idx++;
1283	}
 
1284
1285	return 0;
1286}
1287
1288/*
1289 * Split the bio into several clones and submit it to targets.
1290 */
1291static void __split_and_process_bio(struct mapped_device *md, struct bio *bio)
1292{
1293	struct clone_info ci;
1294	int error = 0;
1295
1296	ci.map = dm_get_live_table(md);
1297	if (unlikely(!ci.map)) {
1298		bio_io_error(bio);
1299		return;
1300	}
1301
1302	ci.md = md;
1303	ci.io = alloc_io(md);
1304	ci.io->error = 0;
1305	atomic_set(&ci.io->io_count, 1);
1306	ci.io->bio = bio;
1307	ci.io->md = md;
1308	spin_lock_init(&ci.io->endio_lock);
1309	ci.sector = bio->bi_sector;
1310	ci.idx = bio->bi_idx;
1311
1312	start_io_acct(ci.io);
1313	if (bio->bi_rw & REQ_FLUSH) {
1314		ci.bio = &ci.md->flush_bio;
1315		ci.sector_count = 0;
1316		error = __clone_and_map_empty_flush(&ci);
1317		/* dec_pending submits any data associated with flush */
1318	} else {
1319		ci.bio = bio;
1320		ci.sector_count = bio_sectors(bio);
1321		while (ci.sector_count && !error)
1322			error = __clone_and_map(&ci);
1323	}
1324
1325	/* drop the extra reference count */
1326	dec_pending(ci.io, error);
1327	dm_table_put(ci.map);
1328}
1329/*-----------------------------------------------------------------
1330 * CRUD END
1331 *---------------------------------------------------------------*/
1332
1333static int dm_merge_bvec(struct request_queue *q,
1334			 struct bvec_merge_data *bvm,
1335			 struct bio_vec *biovec)
1336{
1337	struct mapped_device *md = q->queuedata;
1338	struct dm_table *map = dm_get_live_table(md);
1339	struct dm_target *ti;
1340	sector_t max_sectors;
1341	int max_size = 0;
1342
1343	if (unlikely(!map))
1344		goto out;
 
 
1345
1346	ti = dm_table_find_target(map, bvm->bi_sector);
1347	if (!dm_target_is_valid(ti))
1348		goto out_table;
 
1349
1350	/*
1351	 * Find maximum amount of I/O that won't need splitting
1352	 */
1353	max_sectors = min(max_io_len(bvm->bi_sector, ti),
1354			  (sector_t) BIO_MAX_SECTORS);
1355	max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
1356	if (max_size < 0)
1357		max_size = 0;
1358
1359	/*
1360	 * merge_bvec_fn() returns number of bytes
1361	 * it can accept at this offset
1362	 * max is precomputed maximal io size
1363	 */
1364	if (max_size && ti->type->merge)
1365		max_size = ti->type->merge(ti, bvm, biovec, max_size);
1366	/*
1367	 * If the target doesn't support merge method and some of the devices
1368	 * provided their merge_bvec method (we know this by looking at
1369	 * queue_max_hw_sectors), then we can't allow bios with multiple vector
1370	 * entries.  So always set max_size to 0, and the code below allows
1371	 * just one page.
1372	 */
1373	else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9)
 
1374
1375		max_size = 0;
1376
1377out_table:
1378	dm_table_put(map);
1379
1380out:
1381	/*
1382	 * Always allow an entire first page
1383	 */
1384	if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
1385		max_size = biovec->bv_len;
1386
1387	return max_size;
1388}
1389
1390/*
1391 * The request function that just remaps the bio built up by
1392 * dm_merge_bvec.
1393 */
1394static int _dm_request(struct request_queue *q, struct bio *bio)
1395{
1396	int rw = bio_data_dir(bio);
1397	struct mapped_device *md = q->queuedata;
1398	int cpu;
1399
1400	down_read(&md->io_lock);
1401
1402	cpu = part_stat_lock();
1403	part_stat_inc(cpu, &dm_disk(md)->part0, ios[rw]);
1404	part_stat_add(cpu, &dm_disk(md)->part0, sectors[rw], bio_sectors(bio));
1405	part_stat_unlock();
1406
1407	/* if we're suspended, we have to queue this io for later */
1408	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1409		up_read(&md->io_lock);
1410
1411		if (bio_rw(bio) != READA)
1412			queue_io(md, bio);
1413		else
1414			bio_io_error(bio);
1415		return 0;
1416	}
1417
1418	__split_and_process_bio(md, bio);
1419	up_read(&md->io_lock);
1420	return 0;
1421}
1422
1423static int dm_make_request(struct request_queue *q, struct bio *bio)
1424{
1425	struct mapped_device *md = q->queuedata;
1426
1427	return md->saved_make_request_fn(q, bio); /* call __make_request() */
1428}
1429
1430static int dm_request_based(struct mapped_device *md)
1431{
1432	return blk_queue_stackable(md->queue);
1433}
1434
1435static int dm_request(struct request_queue *q, struct bio *bio)
1436{
1437	struct mapped_device *md = q->queuedata;
1438
1439	if (dm_request_based(md))
1440		return dm_make_request(q, bio);
1441
1442	return _dm_request(q, bio);
1443}
1444
1445void dm_dispatch_request(struct request *rq)
1446{
1447	int r;
1448
1449	if (blk_queue_io_stat(rq->q))
1450		rq->cmd_flags |= REQ_IO_STAT;
 
 
 
 
 
 
1451
1452	rq->start_time = jiffies;
1453	r = blk_insert_cloned_request(rq->q, rq);
1454	if (r)
1455		dm_complete_request(rq, r);
1456}
1457EXPORT_SYMBOL_GPL(dm_dispatch_request);
1458
1459static void dm_rq_bio_destructor(struct bio *bio)
 
1460{
1461	struct dm_rq_clone_bio_info *info = bio->bi_private;
1462	struct mapped_device *md = info->tio->md;
1463
1464	free_bio_info(info);
1465	bio_free(bio, md->bs);
 
 
 
 
 
 
 
 
 
 
1466}
1467
1468static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig,
1469				 void *data)
 
 
1470{
1471	struct dm_rq_target_io *tio = data;
1472	struct mapped_device *md = tio->md;
1473	struct dm_rq_clone_bio_info *info = alloc_bio_info(md);
1474
1475	if (!info)
1476		return -ENOMEM;
1477
1478	info->orig = bio_orig;
1479	info->tio = tio;
1480	bio->bi_end_io = end_clone_bio;
1481	bio->bi_private = info;
1482	bio->bi_destructor = dm_rq_bio_destructor;
1483
1484	return 0;
1485}
1486
1487static int setup_clone(struct request *clone, struct request *rq,
1488		       struct dm_rq_target_io *tio)
1489{
1490	int r;
1491
1492	r = blk_rq_prep_clone(clone, rq, tio->md->bs, GFP_ATOMIC,
1493			      dm_rq_bio_constructor, tio);
1494	if (r)
1495		return r;
1496
1497	clone->cmd = rq->cmd;
1498	clone->cmd_len = rq->cmd_len;
1499	clone->sense = rq->sense;
1500	clone->buffer = rq->buffer;
1501	clone->end_io = end_clone_request;
1502	clone->end_io_data = tio;
1503
1504	return 0;
1505}
1506
1507static struct request *clone_rq(struct request *rq, struct mapped_device *md,
1508				gfp_t gfp_mask)
1509{
1510	struct request *clone;
1511	struct dm_rq_target_io *tio;
1512
1513	tio = alloc_rq_tio(md, gfp_mask);
1514	if (!tio)
1515		return NULL;
1516
1517	tio->md = md;
1518	tio->ti = NULL;
1519	tio->orig = rq;
1520	tio->error = 0;
1521	memset(&tio->info, 0, sizeof(tio->info));
1522
1523	clone = &tio->clone;
1524	if (setup_clone(clone, rq, tio)) {
1525		/* -ENOMEM */
1526		free_rq_tio(tio);
1527		return NULL;
1528	}
1529
1530	return clone;
1531}
1532
1533/*
1534 * Called with the queue lock held.
1535 */
1536static int dm_prep_fn(struct request_queue *q, struct request *rq)
1537{
1538	struct mapped_device *md = q->queuedata;
1539	struct request *clone;
1540
1541	if (unlikely(rq->special)) {
1542		DMWARN("Already has something in rq->special.");
1543		return BLKPREP_KILL;
1544	}
1545
1546	clone = clone_rq(rq, md, GFP_ATOMIC);
1547	if (!clone)
1548		return BLKPREP_DEFER;
1549
1550	rq->special = clone;
1551	rq->cmd_flags |= REQ_DONTPREP;
1552
1553	return BLKPREP_OK;
1554}
1555
1556/*
1557 * Returns:
1558 * 0  : the request has been processed (not requeued)
1559 * !0 : the request has been requeued
1560 */
1561static int map_request(struct dm_target *ti, struct request *clone,
1562		       struct mapped_device *md)
1563{
1564	int r, requeued = 0;
1565	struct dm_rq_target_io *tio = clone->end_io_data;
 
1566
1567	/*
1568	 * Hold the md reference here for the in-flight I/O.
1569	 * We can't rely on the reference count by device opener,
1570	 * because the device may be closed during the request completion
1571	 * when all bios are completed.
1572	 * See the comment in rq_completed() too.
1573	 */
1574	dm_get(md);
1575
1576	tio->ti = ti;
1577	r = ti->type->map_rq(ti, clone, &tio->info);
1578	switch (r) {
1579	case DM_MAPIO_SUBMITTED:
1580		/* The target has taken the I/O to submit by itself later */
1581		break;
1582	case DM_MAPIO_REMAPPED:
1583		/* The target has remapped the I/O so dispatch it */
1584		trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)),
1585				     blk_rq_pos(tio->orig));
1586		dm_dispatch_request(clone);
1587		break;
1588	case DM_MAPIO_REQUEUE:
1589		/* The target wants to requeue the I/O */
1590		dm_requeue_unmapped_request(clone);
1591		requeued = 1;
1592		break;
1593	default:
1594		if (r > 0) {
1595			DMWARN("unimplemented target map return value: %d", r);
1596			BUG();
1597		}
1598
1599		/* The target wants to complete the I/O */
1600		dm_kill_unmapped_request(clone, r);
1601		break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1602	}
1603
1604	return requeued;
 
 
1605}
1606
1607/*
1608 * q->request_fn for request-based dm.
1609 * Called with the queue lock held.
1610 */
1611static void dm_request_fn(struct request_queue *q)
 
1612{
1613	struct mapped_device *md = q->queuedata;
1614	struct dm_table *map = dm_get_live_table(md);
1615	struct dm_target *ti;
1616	struct request *rq, *clone;
1617	sector_t pos;
1618
1619	/*
1620	 * For suspend, check blk_queue_stopped() and increment
1621	 * ->pending within a single queue_lock not to increment the
1622	 * number of in-flight I/Os after the queue is stopped in
1623	 * dm_suspend().
1624	 */
1625	while (!blk_queue_stopped(q)) {
1626		rq = blk_peek_request(q);
1627		if (!rq)
1628			goto delay_and_out;
1629
1630		/* always use block 0 to find the target for flushes for now */
1631		pos = 0;
1632		if (!(rq->cmd_flags & REQ_FLUSH))
1633			pos = blk_rq_pos(rq);
1634
1635		ti = dm_table_find_target(map, pos);
1636		BUG_ON(!dm_target_is_valid(ti));
1637
1638		if (ti->type->busy && ti->type->busy(ti))
1639			goto delay_and_out;
1640
1641		blk_start_request(rq);
1642		clone = rq->special;
1643		atomic_inc(&md->pending[rq_data_dir(clone)]);
 
 
 
 
 
 
 
 
 
 
 
1644
1645		spin_unlock(q->queue_lock);
1646		if (map_request(ti, clone, md))
1647			goto requeued;
 
1648
1649		BUG_ON(!irqs_disabled());
1650		spin_lock(q->queue_lock);
1651	}
1652
1653	goto out;
1654
1655requeued:
1656	BUG_ON(!irqs_disabled());
1657	spin_lock(q->queue_lock);
1658
1659delay_and_out:
1660	blk_delay_queue(q, HZ / 10);
1661out:
1662	dm_table_put(map);
1663
1664	return;
1665}
1666
1667int dm_underlying_device_busy(struct request_queue *q)
 
1668{
1669	return blk_lld_busy(q);
1670}
1671EXPORT_SYMBOL_GPL(dm_underlying_device_busy);
1672
1673static int dm_lld_busy(struct request_queue *q)
1674{
1675	int r;
1676	struct mapped_device *md = q->queuedata;
1677	struct dm_table *map = dm_get_live_table(md);
1678
1679	if (!map || test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))
1680		r = 1;
1681	else
1682		r = dm_table_any_busy_target(map);
 
 
 
1683
1684	dm_table_put(map);
 
 
 
 
 
 
 
 
 
 
 
1685
1686	return r;
 
 
1687}
1688
1689static int dm_any_congested(void *congested_data, int bdi_bits)
1690{
1691	int r = bdi_bits;
1692	struct mapped_device *md = congested_data;
 
1693	struct dm_table *map;
1694
1695	if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1696		map = dm_get_live_table(md);
1697		if (map) {
1698			/*
1699			 * Request-based dm cares about only own queue for
1700			 * the query about congestion status of request_queue
1701			 */
1702			if (dm_request_based(md))
1703				r = md->queue->backing_dev_info.state &
1704				    bdi_bits;
1705			else
1706				r = dm_table_any_congested(map, bdi_bits);
1707
1708			dm_table_put(map);
1709		}
 
 
 
 
 
 
 
 
 
1710	}
1711
1712	return r;
 
 
 
1713}
1714
1715/*-----------------------------------------------------------------
1716 * An IDR is used to keep track of allocated minor numbers.
1717 *---------------------------------------------------------------*/
1718static void free_minor(int minor)
1719{
1720	spin_lock(&_minor_lock);
1721	idr_remove(&_minor_idr, minor);
1722	spin_unlock(&_minor_lock);
1723}
1724
1725/*
1726 * See if the device with a specific minor # is free.
1727 */
1728static int specific_minor(int minor)
1729{
1730	int r, m;
1731
1732	if (minor >= (1 << MINORBITS))
1733		return -EINVAL;
1734
1735	r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1736	if (!r)
1737		return -ENOMEM;
1738
1739	spin_lock(&_minor_lock);
1740
1741	if (idr_find(&_minor_idr, minor)) {
1742		r = -EBUSY;
1743		goto out;
1744	}
1745
1746	r = idr_get_new_above(&_minor_idr, MINOR_ALLOCED, minor, &m);
1747	if (r)
1748		goto out;
1749
1750	if (m != minor) {
1751		idr_remove(&_minor_idr, m);
1752		r = -EBUSY;
1753		goto out;
1754	}
1755
1756out:
1757	spin_unlock(&_minor_lock);
1758	return r;
 
 
 
1759}
1760
1761static int next_free_minor(int *minor)
1762{
1763	int r, m;
1764
1765	r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1766	if (!r)
1767		return -ENOMEM;
1768
 
1769	spin_lock(&_minor_lock);
1770
1771	r = idr_get_new(&_minor_idr, MINOR_ALLOCED, &m);
1772	if (r)
1773		goto out;
1774
1775	if (m >= (1 << MINORBITS)) {
1776		idr_remove(&_minor_idr, m);
1777		r = -ENOSPC;
1778		goto out;
1779	}
1780
1781	*minor = m;
1782
1783out:
1784	spin_unlock(&_minor_lock);
1785	return r;
 
 
 
 
1786}
1787
1788static const struct block_device_operations dm_blk_dops;
 
1789
1790static void dm_wq_work(struct work_struct *work);
1791
1792static void dm_init_md_queue(struct mapped_device *md)
1793{
1794	/*
1795	 * Request-based dm devices cannot be stacked on top of bio-based dm
1796	 * devices.  The type of this dm device has not been decided yet.
1797	 * The type is decided at the first table loading time.
1798	 * To prevent problematic device stacking, clear the queue flag
1799	 * for request stacking support until then.
1800	 *
1801	 * This queue is new, so no concurrency on the queue_flags.
1802	 */
1803	queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
 
 
 
 
 
 
 
 
1804
1805	md->queue->queuedata = md;
1806	md->queue->backing_dev_info.congested_fn = dm_any_congested;
1807	md->queue->backing_dev_info.congested_data = md;
1808	blk_queue_make_request(md->queue, dm_request);
1809	blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
1810	blk_queue_merge_bvec(md->queue, dm_merge_bvec);
 
 
 
 
 
 
 
 
 
1811}
1812
1813/*
1814 * Allocate and initialise a blank device with a given minor.
1815 */
1816static struct mapped_device *alloc_dev(int minor)
1817{
1818	int r;
1819	struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
1820	void *old_md;
1821
 
1822	if (!md) {
1823		DMWARN("unable to allocate device, out of memory.");
1824		return NULL;
1825	}
1826
1827	if (!try_module_get(THIS_MODULE))
1828		goto bad_module_get;
1829
1830	/* get a minor number for the dev */
1831	if (minor == DM_ANY_MINOR)
1832		r = next_free_minor(&minor);
1833	else
1834		r = specific_minor(minor);
1835	if (r < 0)
1836		goto bad_minor;
1837
 
 
 
 
 
 
1838	md->type = DM_TYPE_NONE;
1839	init_rwsem(&md->io_lock);
1840	mutex_init(&md->suspend_lock);
1841	mutex_init(&md->type_lock);
 
1842	spin_lock_init(&md->deferred_lock);
1843	rwlock_init(&md->map_lock);
1844	atomic_set(&md->holders, 1);
1845	atomic_set(&md->open_count, 0);
1846	atomic_set(&md->event_nr, 0);
1847	atomic_set(&md->uevent_seq, 0);
1848	INIT_LIST_HEAD(&md->uevent_list);
 
1849	spin_lock_init(&md->uevent_lock);
1850
1851	md->queue = blk_alloc_queue(GFP_KERNEL);
 
 
 
 
 
1852	if (!md->queue)
1853		goto bad_queue;
1854
1855	dm_init_md_queue(md);
1856
1857	md->disk = alloc_disk(1);
1858	if (!md->disk)
1859		goto bad_disk;
1860
1861	atomic_set(&md->pending[0], 0);
1862	atomic_set(&md->pending[1], 0);
1863	init_waitqueue_head(&md->wait);
1864	INIT_WORK(&md->work, dm_wq_work);
1865	init_waitqueue_head(&md->eventq);
 
1866
1867	md->disk->major = _major;
1868	md->disk->first_minor = minor;
1869	md->disk->fops = &dm_blk_dops;
1870	md->disk->queue = md->queue;
1871	md->disk->private_data = md;
1872	sprintf(md->disk->disk_name, "dm-%d", minor);
1873	add_disk(md->disk);
 
 
 
 
 
 
 
 
1874	format_dev_t(md->name, MKDEV(_major, minor));
1875
1876	md->wq = alloc_workqueue("kdmflush",
1877				 WQ_NON_REENTRANT | WQ_MEM_RECLAIM, 0);
1878	if (!md->wq)
1879		goto bad_thread;
1880
1881	md->bdev = bdget_disk(md->disk, 0);
1882	if (!md->bdev)
1883		goto bad_bdev;
1884
1885	bio_init(&md->flush_bio);
1886	md->flush_bio.bi_bdev = md->bdev;
1887	md->flush_bio.bi_rw = WRITE_FLUSH;
1888
1889	/* Populate the mapping, nobody knows we exist yet */
1890	spin_lock(&_minor_lock);
1891	old_md = idr_replace(&_minor_idr, md, minor);
1892	spin_unlock(&_minor_lock);
1893
1894	BUG_ON(old_md != MINOR_ALLOCED);
1895
1896	return md;
1897
1898bad_bdev:
1899	destroy_workqueue(md->wq);
1900bad_thread:
1901	del_gendisk(md->disk);
1902	put_disk(md->disk);
1903bad_disk:
1904	blk_cleanup_queue(md->queue);
1905bad_queue:
1906	free_minor(minor);
1907bad_minor:
1908	module_put(THIS_MODULE);
1909bad_module_get:
1910	kfree(md);
1911	return NULL;
1912}
1913
1914static void unlock_fs(struct mapped_device *md);
1915
1916static void free_dev(struct mapped_device *md)
1917{
1918	int minor = MINOR(disk_devt(md->disk));
1919
1920	unlock_fs(md);
1921	bdput(md->bdev);
1922	destroy_workqueue(md->wq);
1923	if (md->tio_pool)
1924		mempool_destroy(md->tio_pool);
1925	if (md->io_pool)
1926		mempool_destroy(md->io_pool);
1927	if (md->bs)
1928		bioset_free(md->bs);
1929	blk_integrity_unregister(md->disk);
1930	del_gendisk(md->disk);
1931	free_minor(minor);
1932
1933	spin_lock(&_minor_lock);
1934	md->disk->private_data = NULL;
1935	spin_unlock(&_minor_lock);
 
 
1936
1937	put_disk(md->disk);
1938	blk_cleanup_queue(md->queue);
1939	module_put(THIS_MODULE);
1940	kfree(md);
1941}
1942
1943static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
1944{
1945	struct dm_md_mempools *p;
 
1946
1947	if (md->io_pool && md->tio_pool && md->bs)
1948		/* the md already has necessary mempools */
1949		goto out;
 
 
 
 
 
1950
1951	p = dm_table_get_md_mempools(t);
1952	BUG_ON(!p || md->io_pool || md->tio_pool || md->bs);
 
 
 
 
 
 
 
 
 
1953
1954	md->io_pool = p->io_pool;
1955	p->io_pool = NULL;
1956	md->tio_pool = p->tio_pool;
1957	p->tio_pool = NULL;
1958	md->bs = p->bs;
1959	p->bs = NULL;
1960
 
 
 
 
 
 
1961out:
1962	/* mempool bind completed, now no need any mempools in the table */
1963	dm_table_free_md_mempools(t);
 
1964}
1965
1966/*
1967 * Bind a table to the device.
1968 */
1969static void event_callback(void *context)
1970{
1971	unsigned long flags;
1972	LIST_HEAD(uevents);
1973	struct mapped_device *md = (struct mapped_device *) context;
1974
1975	spin_lock_irqsave(&md->uevent_lock, flags);
1976	list_splice_init(&md->uevent_list, &uevents);
1977	spin_unlock_irqrestore(&md->uevent_lock, flags);
1978
1979	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
1980
1981	atomic_inc(&md->event_nr);
1982	wake_up(&md->eventq);
 
1983}
1984
1985/*
1986 * Protected by md->suspend_lock obtained by dm_swap_table().
1987 */
1988static void __set_size(struct mapped_device *md, sector_t size)
1989{
 
 
1990	set_capacity(md->disk, size);
1991
1992	i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
1993}
1994
1995/*
1996 * Return 1 if the queue has a compulsory merge_bvec_fn function.
1997 *
1998 * If this function returns 0, then the device is either a non-dm
1999 * device without a merge_bvec_fn, or it is a dm device that is
2000 * able to split any bios it receives that are too big.
2001 */
2002int dm_queue_merge_is_compulsory(struct request_queue *q)
2003{
2004	struct mapped_device *dev_md;
2005
2006	if (!q->merge_bvec_fn)
2007		return 0;
2008
2009	if (q->make_request_fn == dm_request) {
2010		dev_md = q->queuedata;
2011		if (test_bit(DMF_MERGE_IS_OPTIONAL, &dev_md->flags))
2012			return 0;
2013	}
2014
2015	return 1;
2016}
2017
2018static int dm_device_merge_is_compulsory(struct dm_target *ti,
2019					 struct dm_dev *dev, sector_t start,
2020					 sector_t len, void *data)
2021{
2022	struct block_device *bdev = dev->bdev;
2023	struct request_queue *q = bdev_get_queue(bdev);
2024
2025	return dm_queue_merge_is_compulsory(q);
2026}
2027
2028/*
2029 * Return 1 if it is acceptable to ignore merge_bvec_fn based
2030 * on the properties of the underlying devices.
2031 */
2032static int dm_table_merge_is_optional(struct dm_table *table)
2033{
2034	unsigned i = 0;
2035	struct dm_target *ti;
2036
2037	while (i < dm_table_get_num_targets(table)) {
2038		ti = dm_table_get_target(table, i++);
2039
2040		if (ti->type->iterate_devices &&
2041		    ti->type->iterate_devices(ti, dm_device_merge_is_compulsory, NULL))
2042			return 0;
2043	}
2044
2045	return 1;
2046}
2047
2048/*
2049 * Returns old map, which caller must destroy.
2050 */
2051static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2052			       struct queue_limits *limits)
2053{
2054	struct dm_table *old_map;
2055	struct request_queue *q = md->queue;
 
2056	sector_t size;
2057	unsigned long flags;
2058	int merge_is_optional;
 
2059
2060	size = dm_table_get_size(t);
2061
2062	/*
2063	 * Wipe any geometry if the size of the table changed.
2064	 */
2065	if (size != get_capacity(md->disk))
2066		memset(&md->geometry, 0, sizeof(md->geometry));
2067
2068	__set_size(md, size);
2069
2070	dm_table_event_callback(t, event_callback, md);
2071
2072	/*
2073	 * The queue hasn't been stopped yet, if the old table type wasn't
2074	 * for request-based during suspension.  So stop it to prevent
2075	 * I/O mapping before resume.
2076	 * This must be done before setting the queue restrictions,
2077	 * because request-based dm may be run just after the setting.
2078	 */
2079	if (dm_table_request_based(t) && !blk_queue_stopped(q))
2080		stop_queue(q);
 
 
 
 
 
 
 
 
 
 
2081
2082	__bind_mempools(md, t);
 
 
 
 
2083
2084	merge_is_optional = dm_table_merge_is_optional(t);
 
 
2085
2086	write_lock_irqsave(&md->map_lock, flags);
2087	old_map = md->map;
2088	md->map = t;
2089	dm_table_set_restrictions(t, q, limits);
2090	if (merge_is_optional)
2091		set_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2092	else
2093		clear_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2094	write_unlock_irqrestore(&md->map_lock, flags);
2095
 
2096	return old_map;
2097}
2098
2099/*
2100 * Returns unbound table for the caller to free.
2101 */
2102static struct dm_table *__unbind(struct mapped_device *md)
2103{
2104	struct dm_table *map = md->map;
2105	unsigned long flags;
2106
2107	if (!map)
2108		return NULL;
2109
2110	dm_table_event_callback(map, NULL, NULL);
2111	write_lock_irqsave(&md->map_lock, flags);
2112	md->map = NULL;
2113	write_unlock_irqrestore(&md->map_lock, flags);
2114
2115	return map;
2116}
2117
2118/*
2119 * Constructor for a new device.
2120 */
2121int dm_create(int minor, struct mapped_device **result)
2122{
 
2123	struct mapped_device *md;
2124
2125	md = alloc_dev(minor);
2126	if (!md)
2127		return -ENXIO;
2128
2129	dm_sysfs_init(md);
 
 
 
 
2130
2131	*result = md;
2132	return 0;
2133}
2134
2135/*
2136 * Functions to manage md->type.
2137 * All are required to hold md->type_lock.
2138 */
2139void dm_lock_md_type(struct mapped_device *md)
2140{
2141	mutex_lock(&md->type_lock);
2142}
2143
2144void dm_unlock_md_type(struct mapped_device *md)
2145{
2146	mutex_unlock(&md->type_lock);
2147}
2148
2149void dm_set_md_type(struct mapped_device *md, unsigned type)
2150{
 
2151	md->type = type;
2152}
2153
2154unsigned dm_get_md_type(struct mapped_device *md)
2155{
2156	return md->type;
2157}
2158
 
 
 
 
 
2159/*
2160 * Fully initialize a request-based queue (->elevator, ->request_fn, etc).
 
2161 */
2162static int dm_init_request_based_queue(struct mapped_device *md)
2163{
2164	struct request_queue *q = NULL;
2165
2166	if (md->queue->elevator)
2167		return 1;
2168
2169	/* Fully initialize the queue */
2170	q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL);
2171	if (!q)
2172		return 0;
2173
2174	md->queue = q;
2175	md->saved_make_request_fn = md->queue->make_request_fn;
2176	dm_init_md_queue(md);
2177	blk_queue_softirq_done(md->queue, dm_softirq_done);
2178	blk_queue_prep_rq(md->queue, dm_prep_fn);
2179	blk_queue_lld_busy(md->queue, dm_lld_busy);
2180
2181	elv_register_queue(md->queue);
2182
2183	return 1;
2184}
 
2185
2186/*
2187 * Setup the DM device's queue based on md's type
2188 */
2189int dm_setup_md_queue(struct mapped_device *md)
2190{
2191	if ((dm_get_md_type(md) == DM_TYPE_REQUEST_BASED) &&
2192	    !dm_init_request_based_queue(md)) {
2193		DMWARN("Cannot initialize queue for request-based mapped device");
2194		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2195	}
 
 
2196
2197	return 0;
2198}
2199
2200static struct mapped_device *dm_find_md(dev_t dev)
2201{
2202	struct mapped_device *md;
2203	unsigned minor = MINOR(dev);
2204
2205	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2206		return NULL;
2207
2208	spin_lock(&_minor_lock);
2209
2210	md = idr_find(&_minor_idr, minor);
2211	if (md && (md == MINOR_ALLOCED ||
2212		   (MINOR(disk_devt(dm_disk(md))) != minor) ||
2213		   dm_deleting_md(md) ||
2214		   test_bit(DMF_FREEING, &md->flags))) {
2215		md = NULL;
2216		goto out;
2217	}
2218
2219out:
2220	spin_unlock(&_minor_lock);
2221
2222	return md;
2223}
2224
2225struct mapped_device *dm_get_md(dev_t dev)
2226{
2227	struct mapped_device *md = dm_find_md(dev);
2228
2229	if (md)
2230		dm_get(md);
2231
2232	return md;
2233}
2234
2235void *dm_get_mdptr(struct mapped_device *md)
2236{
2237	return md->interface_ptr;
2238}
2239
2240void dm_set_mdptr(struct mapped_device *md, void *ptr)
2241{
2242	md->interface_ptr = ptr;
2243}
2244
2245void dm_get(struct mapped_device *md)
2246{
2247	atomic_inc(&md->holders);
2248	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2249}
2250
 
 
 
 
 
 
 
 
 
 
 
 
 
2251const char *dm_device_name(struct mapped_device *md)
2252{
2253	return md->name;
2254}
2255EXPORT_SYMBOL_GPL(dm_device_name);
2256
2257static void __dm_destroy(struct mapped_device *md, bool wait)
2258{
2259	struct dm_table *map;
 
2260
2261	might_sleep();
2262
2263	spin_lock(&_minor_lock);
2264	map = dm_get_live_table(md);
2265	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2266	set_bit(DMF_FREEING, &md->flags);
2267	spin_unlock(&_minor_lock);
2268
 
 
 
 
 
 
 
 
2269	if (!dm_suspended_md(md)) {
2270		dm_table_presuspend_targets(map);
 
 
2271		dm_table_postsuspend_targets(map);
2272	}
 
 
 
2273
2274	/*
2275	 * Rare, but there may be I/O requests still going to complete,
2276	 * for example.  Wait for all references to disappear.
2277	 * No one should increment the reference count of the mapped_device,
2278	 * after the mapped_device state becomes DMF_FREEING.
2279	 */
2280	if (wait)
2281		while (atomic_read(&md->holders))
2282			msleep(1);
2283	else if (atomic_read(&md->holders))
2284		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2285		       dm_device_name(md), atomic_read(&md->holders));
2286
2287	dm_sysfs_exit(md);
2288	dm_table_put(map);
2289	dm_table_destroy(__unbind(md));
2290	free_dev(md);
2291}
2292
2293void dm_destroy(struct mapped_device *md)
2294{
2295	__dm_destroy(md, true);
2296}
2297
2298void dm_destroy_immediate(struct mapped_device *md)
2299{
2300	__dm_destroy(md, false);
2301}
2302
2303void dm_put(struct mapped_device *md)
2304{
2305	atomic_dec(&md->holders);
2306}
2307EXPORT_SYMBOL_GPL(dm_put);
2308
2309static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
2310{
2311	int r = 0;
2312	DECLARE_WAITQUEUE(wait, current);
 
 
 
 
 
 
 
 
 
2313
2314	add_wait_queue(&md->wait, &wait);
 
 
 
2315
2316	while (1) {
2317		set_current_state(interruptible);
2318
2319		smp_mb();
2320		if (!md_in_flight(md))
2321			break;
2322
2323		if (interruptible == TASK_INTERRUPTIBLE &&
2324		    signal_pending(current)) {
2325			r = -EINTR;
2326			break;
2327		}
2328
2329		io_schedule();
2330	}
2331	set_current_state(TASK_RUNNING);
 
 
 
 
 
 
 
2332
2333	remove_wait_queue(&md->wait, &wait);
 
 
 
 
 
 
 
 
 
 
 
 
 
2334
2335	return r;
2336}
2337
2338/*
2339 * Process the deferred bios
2340 */
2341static void dm_wq_work(struct work_struct *work)
2342{
2343	struct mapped_device *md = container_of(work, struct mapped_device,
2344						work);
2345	struct bio *c;
 
 
2346
2347	down_read(&md->io_lock);
2348
2349	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2350		spin_lock_irq(&md->deferred_lock);
2351		c = bio_list_pop(&md->deferred);
2352		spin_unlock_irq(&md->deferred_lock);
2353
2354		if (!c)
2355			break;
2356
2357		up_read(&md->io_lock);
2358
2359		if (dm_request_based(md))
2360			generic_make_request(c);
2361		else
2362			__split_and_process_bio(md, c);
2363
2364		down_read(&md->io_lock);
2365	}
2366
2367	up_read(&md->io_lock);
2368}
2369
2370static void dm_queue_flush(struct mapped_device *md)
2371{
2372	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2373	smp_mb__after_clear_bit();
2374	queue_work(md->wq, &md->work);
2375}
2376
2377/*
2378 * Swap in a new table, returning the old one for the caller to destroy.
2379 */
2380struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2381{
2382	struct dm_table *map = ERR_PTR(-EINVAL);
2383	struct queue_limits limits;
2384	int r;
2385
2386	mutex_lock(&md->suspend_lock);
2387
2388	/* device must be suspended */
2389	if (!dm_suspended_md(md))
2390		goto out;
2391
2392	r = dm_calculate_queue_limits(table, &limits);
2393	if (r) {
2394		map = ERR_PTR(r);
2395		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2396	}
2397
2398	map = __bind(md, table, &limits);
 
2399
2400out:
2401	mutex_unlock(&md->suspend_lock);
2402	return map;
2403}
2404
2405/*
2406 * Functions to lock and unlock any filesystem running on the
2407 * device.
2408 */
2409static int lock_fs(struct mapped_device *md)
2410{
2411	int r;
2412
2413	WARN_ON(md->frozen_sb);
2414
2415	md->frozen_sb = freeze_bdev(md->bdev);
2416	if (IS_ERR(md->frozen_sb)) {
2417		r = PTR_ERR(md->frozen_sb);
2418		md->frozen_sb = NULL;
2419		return r;
2420	}
2421
2422	set_bit(DMF_FROZEN, &md->flags);
2423
2424	return 0;
2425}
2426
2427static void unlock_fs(struct mapped_device *md)
2428{
2429	if (!test_bit(DMF_FROZEN, &md->flags))
2430		return;
2431
2432	thaw_bdev(md->bdev, md->frozen_sb);
2433	md->frozen_sb = NULL;
2434	clear_bit(DMF_FROZEN, &md->flags);
2435}
2436
2437/*
2438 * We need to be able to change a mapping table under a mounted
2439 * filesystem.  For example we might want to move some data in
2440 * the background.  Before the table can be swapped with
2441 * dm_bind_table, dm_suspend must be called to flush any in
2442 * flight bios and ensure that any further io gets deferred.
2443 */
2444/*
2445 * Suspend mechanism in request-based dm.
2446 *
2447 * 1. Flush all I/Os by lock_fs() if needed.
2448 * 2. Stop dispatching any I/O by stopping the request_queue.
2449 * 3. Wait for all in-flight I/Os to be completed or requeued.
2450 *
2451 * To abort suspend, start the request_queue.
2452 */
2453int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
 
 
 
 
2454{
2455	struct dm_table *map = NULL;
2456	int r = 0;
2457	int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0;
2458	int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0;
2459
2460	mutex_lock(&md->suspend_lock);
2461
2462	if (dm_suspended_md(md)) {
2463		r = -EINVAL;
2464		goto out_unlock;
2465	}
2466
2467	map = dm_get_live_table(md);
2468
2469	/*
2470	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2471	 * This flag is cleared before dm_suspend returns.
2472	 */
2473	if (noflush)
2474		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
 
 
2475
2476	/* This does not get reverted if there's an error later. */
 
 
 
2477	dm_table_presuspend_targets(map);
2478
2479	/*
2480	 * Flush I/O to the device.
2481	 * Any I/O submitted after lock_fs() may not be flushed.
2482	 * noflush takes precedence over do_lockfs.
2483	 * (lock_fs() flushes I/Os and waits for them to complete.)
2484	 */
2485	if (!noflush && do_lockfs) {
2486		r = lock_fs(md);
2487		if (r)
2488			goto out;
 
 
2489	}
2490
2491	/*
2492	 * Here we must make sure that no processes are submitting requests
2493	 * to target drivers i.e. no one may be executing
2494	 * __split_and_process_bio. This is called from dm_request and
2495	 * dm_wq_work.
2496	 *
2497	 * To get all processes out of __split_and_process_bio in dm_request,
2498	 * we take the write lock. To prevent any process from reentering
2499	 * __split_and_process_bio from dm_request and quiesce the thread
2500	 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2501	 * flush_workqueue(md->wq).
2502	 */
2503	down_write(&md->io_lock);
2504	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2505	up_write(&md->io_lock);
 
2506
2507	/*
2508	 * Stop md->queue before flushing md->wq in case request-based
2509	 * dm defers requests to md->wq from md->queue.
2510	 */
2511	if (dm_request_based(md))
2512		stop_queue(md->queue);
2513
2514	flush_workqueue(md->wq);
2515
2516	/*
2517	 * At this point no more requests are entering target request routines.
2518	 * We call dm_wait_for_completion to wait for all existing requests
2519	 * to finish.
2520	 */
2521	r = dm_wait_for_completion(md, TASK_INTERRUPTIBLE);
 
 
2522
2523	down_write(&md->io_lock);
2524	if (noflush)
2525		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2526	up_write(&md->io_lock);
 
2527
2528	/* were we interrupted ? */
2529	if (r < 0) {
2530		dm_queue_flush(md);
2531
2532		if (dm_request_based(md))
2533			start_queue(md->queue);
2534
2535		unlock_fs(md);
2536		goto out; /* pushback list is already flushed, so skip flush */
 
2537	}
2538
2539	/*
2540	 * If dm_wait_for_completion returned 0, the device is completely
2541	 * quiescent now. There is no request-processing activity. All new
2542	 * requests are being added to md->deferred list.
2543	 */
2544
2545	set_bit(DMF_SUSPENDED, &md->flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2546
2547	dm_table_postsuspend_targets(map);
 
2548
2549out:
2550	dm_table_put(map);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2551
2552out_unlock:
2553	mutex_unlock(&md->suspend_lock);
2554	return r;
2555}
2556
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2557int dm_resume(struct mapped_device *md)
2558{
2559	int r = -EINVAL;
2560	struct dm_table *map = NULL;
2561
2562	mutex_lock(&md->suspend_lock);
 
 
 
2563	if (!dm_suspended_md(md))
2564		goto out;
2565
2566	map = dm_get_live_table(md);
 
 
 
 
 
 
 
 
 
2567	if (!map || !dm_table_get_size(map))
2568		goto out;
2569
2570	r = dm_table_resume_targets(map);
2571	if (r)
2572		goto out;
2573
2574	dm_queue_flush(md);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2575
2576	/*
2577	 * Flushing deferred I/Os must be done after targets are resumed
2578	 * so that mapping of targets can work correctly.
2579	 * Request-based dm is queueing the deferred I/Os in its request_queue.
 
2580	 */
2581	if (dm_request_based(md))
2582		start_queue(md->queue);
2583
2584	unlock_fs(md);
 
 
 
2585
2586	clear_bit(DMF_SUSPENDED, &md->flags);
 
 
2587
2588	r = 0;
2589out:
2590	dm_table_put(map);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2591	mutex_unlock(&md->suspend_lock);
 
 
2592
2593	return r;
 
 
 
 
2594}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2595
2596/*-----------------------------------------------------------------
2597 * Event notification.
2598 *---------------------------------------------------------------*/
2599int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2600		       unsigned cookie)
2601{
 
 
2602	char udev_cookie[DM_COOKIE_LENGTH];
2603	char *envp[] = { udev_cookie, NULL };
2604
 
 
2605	if (!cookie)
2606		return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2607	else {
2608		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2609			 DM_COOKIE_ENV_VAR_NAME, cookie);
2610		return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2611					  action, envp);
2612	}
 
 
 
 
2613}
2614
2615uint32_t dm_next_uevent_seq(struct mapped_device *md)
2616{
2617	return atomic_add_return(1, &md->uevent_seq);
2618}
2619
2620uint32_t dm_get_event_nr(struct mapped_device *md)
2621{
2622	return atomic_read(&md->event_nr);
2623}
2624
2625int dm_wait_event(struct mapped_device *md, int event_nr)
2626{
2627	return wait_event_interruptible(md->eventq,
2628			(event_nr != atomic_read(&md->event_nr)));
2629}
2630
2631void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2632{
2633	unsigned long flags;
2634
2635	spin_lock_irqsave(&md->uevent_lock, flags);
2636	list_add(elist, &md->uevent_list);
2637	spin_unlock_irqrestore(&md->uevent_lock, flags);
2638}
2639
2640/*
2641 * The gendisk is only valid as long as you have a reference
2642 * count on 'md'.
2643 */
2644struct gendisk *dm_disk(struct mapped_device *md)
2645{
2646	return md->disk;
2647}
 
2648
2649struct kobject *dm_kobject(struct mapped_device *md)
2650{
2651	return &md->kobj;
2652}
2653
2654/*
2655 * struct mapped_device should not be exported outside of dm.c
2656 * so use this check to verify that kobj is part of md structure
2657 */
2658struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2659{
2660	struct mapped_device *md;
2661
2662	md = container_of(kobj, struct mapped_device, kobj);
2663	if (&md->kobj != kobj)
2664		return NULL;
2665
2666	if (test_bit(DMF_FREEING, &md->flags) ||
2667	    dm_deleting_md(md))
2668		return NULL;
2669
 
 
 
 
 
2670	dm_get(md);
 
 
 
2671	return md;
2672}
2673
2674int dm_suspended_md(struct mapped_device *md)
2675{
2676	return test_bit(DMF_SUSPENDED, &md->flags);
2677}
2678
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2679int dm_suspended(struct dm_target *ti)
2680{
2681	return dm_suspended_md(dm_table_get_md(ti->table));
2682}
2683EXPORT_SYMBOL_GPL(dm_suspended);
2684
 
 
 
 
 
 
2685int dm_noflush_suspending(struct dm_target *ti)
2686{
2687	return __noflush_suspending(dm_table_get_md(ti->table));
2688}
2689EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2690
2691struct dm_md_mempools *dm_alloc_md_mempools(unsigned type, unsigned integrity)
2692{
2693	struct dm_md_mempools *pools = kmalloc(sizeof(*pools), GFP_KERNEL);
2694	unsigned int pool_size = (type == DM_TYPE_BIO_BASED) ? 16 : MIN_IOS;
 
 
 
 
2695
2696	if (!pools)
2697		return NULL;
2698
2699	pools->io_pool = (type == DM_TYPE_BIO_BASED) ?
2700			 mempool_create_slab_pool(MIN_IOS, _io_cache) :
2701			 mempool_create_slab_pool(MIN_IOS, _rq_bio_info_cache);
2702	if (!pools->io_pool)
2703		goto free_pools_and_out;
2704
2705	pools->tio_pool = (type == DM_TYPE_BIO_BASED) ?
2706			  mempool_create_slab_pool(MIN_IOS, _tio_cache) :
2707			  mempool_create_slab_pool(MIN_IOS, _rq_tio_cache);
2708	if (!pools->tio_pool)
2709		goto free_io_pool_and_out;
2710
2711	pools->bs = bioset_create(pool_size, 0);
2712	if (!pools->bs)
2713		goto free_tio_pool_and_out;
2714
2715	if (integrity && bioset_integrity_create(pools->bs, pool_size))
2716		goto free_bioset_and_out;
2717
2718	return pools;
 
2719
2720free_bioset_and_out:
2721	bioset_free(pools->bs);
 
2722
2723free_tio_pool_and_out:
2724	mempool_destroy(pools->tio_pool);
2725
2726free_io_pool_and_out:
2727	mempool_destroy(pools->io_pool);
2728
2729free_pools_and_out:
2730	kfree(pools);
2731
2732	return NULL;
2733}
2734
2735void dm_free_md_mempools(struct dm_md_mempools *pools)
2736{
2737	if (!pools)
2738		return;
2739
2740	if (pools->io_pool)
2741		mempool_destroy(pools->io_pool);
2742
2743	if (pools->tio_pool)
2744		mempool_destroy(pools->tio_pool);
2745
2746	if (pools->bs)
2747		bioset_free(pools->bs);
 
 
 
 
2748
2749	kfree(pools);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2750}
2751
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2752static const struct block_device_operations dm_blk_dops = {
 
2753	.open = dm_blk_open,
2754	.release = dm_blk_close,
2755	.ioctl = dm_blk_ioctl,
2756	.getgeo = dm_blk_getgeo,
 
 
2757	.owner = THIS_MODULE
2758};
2759
2760EXPORT_SYMBOL(dm_get_mapinfo);
 
 
 
 
 
 
2761
2762/*
2763 * module hooks
2764 */
2765module_init(dm_init);
2766module_exit(dm_exit);
2767
2768module_param(major, uint, 0);
2769MODULE_PARM_DESC(major, "The major number of the device mapper");
 
 
 
 
 
 
 
2770MODULE_DESCRIPTION(DM_NAME " driver");
2771MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
2772MODULE_LICENSE("GPL");
v5.9
   1/*
   2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
   3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
   4 *
   5 * This file is released under the GPL.
   6 */
   7
   8#include "dm-core.h"
   9#include "dm-rq.h"
  10#include "dm-uevent.h"
  11
  12#include <linux/init.h>
  13#include <linux/module.h>
  14#include <linux/mutex.h>
  15#include <linux/sched/mm.h>
  16#include <linux/sched/signal.h>
  17#include <linux/blkpg.h>
  18#include <linux/bio.h>
 
  19#include <linux/mempool.h>
  20#include <linux/dax.h>
  21#include <linux/slab.h>
  22#include <linux/idr.h>
  23#include <linux/uio.h>
  24#include <linux/hdreg.h>
  25#include <linux/delay.h>
  26#include <linux/wait.h>
  27#include <linux/pr.h>
  28#include <linux/refcount.h>
  29#include <linux/part_stat.h>
  30#include <linux/blk-crypto.h>
  31
  32#define DM_MSG_PREFIX "core"
  33
  34/*
  35 * Cookies are numeric values sent with CHANGE and REMOVE
  36 * uevents while resuming, removing or renaming the device.
  37 */
  38#define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
  39#define DM_COOKIE_LENGTH 24
  40
  41static const char *_name = DM_NAME;
  42
  43static unsigned int major = 0;
  44static unsigned int _major = 0;
  45
  46static DEFINE_IDR(_minor_idr);
  47
  48static DEFINE_SPINLOCK(_minor_lock);
  49
  50static void do_deferred_remove(struct work_struct *w);
  51
  52static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
  53
  54static struct workqueue_struct *deferred_remove_workqueue;
  55
  56atomic_t dm_global_event_nr = ATOMIC_INIT(0);
  57DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
  58
  59void dm_issue_global_event(void)
  60{
  61	atomic_inc(&dm_global_event_nr);
  62	wake_up(&dm_global_eventq);
  63}
  64
  65/*
  66 * One of these is allocated (on-stack) per original bio.
 
  67 */
  68struct clone_info {
  69	struct dm_table *map;
 
 
  70	struct bio *bio;
  71	struct dm_io *io;
  72	sector_t sector;
  73	unsigned sector_count;
  74};
  75
  76/*
  77 * One of these is allocated per clone bio.
 
 
  78 */
  79#define DM_TIO_MAGIC 7282014
  80struct dm_target_io {
  81	unsigned magic;
  82	struct dm_io *io;
  83	struct dm_target *ti;
  84	unsigned target_bio_nr;
  85	unsigned *len_ptr;
  86	bool inside_dm_io;
  87	struct bio clone;
  88};
  89
  90/*
  91 * One of these is allocated per original bio.
  92 * It contains the first clone used for that original.
  93 */
  94#define DM_IO_MAGIC 5191977
  95struct dm_io {
  96	unsigned magic;
  97	struct mapped_device *md;
  98	blk_status_t status;
  99	atomic_t io_count;
 100	struct bio *orig_bio;
 101	unsigned long start_time;
 102	spinlock_t endio_lock;
 103	struct dm_stats_aux stats_aux;
 104	/* last member of dm_target_io is 'struct bio' */
 105	struct dm_target_io tio;
 106};
 107
 108void *dm_per_bio_data(struct bio *bio, size_t data_size)
 109{
 110	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
 111	if (!tio->inside_dm_io)
 112		return (char *)bio - offsetof(struct dm_target_io, clone) - data_size;
 113	return (char *)bio - offsetof(struct dm_target_io, clone) - offsetof(struct dm_io, tio) - data_size;
 114}
 115EXPORT_SYMBOL_GPL(dm_per_bio_data);
 116
 117struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
 118{
 119	struct dm_io *io = (struct dm_io *)((char *)data + data_size);
 120	if (io->magic == DM_IO_MAGIC)
 121		return (struct bio *)((char *)io + offsetof(struct dm_io, tio) + offsetof(struct dm_target_io, clone));
 122	BUG_ON(io->magic != DM_TIO_MAGIC);
 123	return (struct bio *)((char *)io + offsetof(struct dm_target_io, clone));
 124}
 125EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
 126
 127unsigned dm_bio_get_target_bio_nr(const struct bio *bio)
 128{
 129	return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
 
 
 130}
 131EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
 132
 133#define MINOR_ALLOCED ((void *)-1)
 134
 135/*
 136 * Bits for the md->flags field.
 137 */
 138#define DMF_BLOCK_IO_FOR_SUSPEND 0
 139#define DMF_SUSPENDED 1
 140#define DMF_FROZEN 2
 141#define DMF_FREEING 3
 142#define DMF_DELETING 4
 143#define DMF_NOFLUSH_SUSPENDING 5
 144#define DMF_DEFERRED_REMOVE 6
 145#define DMF_SUSPENDED_INTERNALLY 7
 146#define DMF_POST_SUSPENDING 8
 147
 148#define DM_NUMA_NODE NUMA_NO_NODE
 149static int dm_numa_node = DM_NUMA_NODE;
 150
 151/*
 152 * For mempools pre-allocation at the table loading time.
 153 */
 154struct dm_md_mempools {
 155	struct bio_set bs;
 156	struct bio_set io_bs;
 157};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 158
 159struct table_device {
 160	struct list_head list;
 161	refcount_t count;
 162	struct dm_dev dm_dev;
 163};
 164
 165/*
 166 * Bio-based DM's mempools' reserved IOs set by the user.
 167 */
 168#define RESERVED_BIO_BASED_IOS		16
 169static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
 170
 171static int __dm_get_module_param_int(int *module_param, int min, int max)
 172{
 173	int param = READ_ONCE(*module_param);
 174	int modified_param = 0;
 175	bool modified = true;
 176
 177	if (param < min)
 178		modified_param = min;
 179	else if (param > max)
 180		modified_param = max;
 181	else
 182		modified = false;
 183
 184	if (modified) {
 185		(void)cmpxchg(module_param, param, modified_param);
 186		param = modified_param;
 187	}
 
 
 
 
 188
 189	return param;
 190}
 
 
 
 191
 192unsigned __dm_get_module_param(unsigned *module_param,
 193			       unsigned def, unsigned max)
 194{
 195	unsigned param = READ_ONCE(*module_param);
 196	unsigned modified_param = 0;
 197
 198	if (!param)
 199		modified_param = def;
 200	else if (param > max)
 201		modified_param = max;
 202
 203	if (modified_param) {
 204		(void)cmpxchg(module_param, param, modified_param);
 205		param = modified_param;
 206	}
 207
 208	return param;
 209}
 
 210
 211unsigned dm_get_reserved_bio_based_ios(void)
 212{
 213	return __dm_get_module_param(&reserved_bio_based_ios,
 214				     RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
 215}
 216EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
 
 
 217
 218static unsigned dm_get_numa_node(void)
 219{
 220	return __dm_get_module_param_int(&dm_numa_node,
 221					 DM_NUMA_NODE, num_online_nodes() - 1);
 222}
 223
 224static int __init local_init(void)
 225{
 226	int r;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 227
 228	r = dm_uevent_init();
 229	if (r)
 230		return r;
 231
 232	deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
 233	if (!deferred_remove_workqueue) {
 234		r = -ENOMEM;
 235		goto out_uevent_exit;
 236	}
 237
 238	_major = major;
 239	r = register_blkdev(_major, _name);
 240	if (r < 0)
 241		goto out_free_workqueue;
 242
 243	if (!_major)
 244		_major = r;
 245
 246	return 0;
 247
 248out_free_workqueue:
 249	destroy_workqueue(deferred_remove_workqueue);
 250out_uevent_exit:
 251	dm_uevent_exit();
 
 
 
 
 
 
 
 
 252
 253	return r;
 254}
 255
 256static void local_exit(void)
 257{
 258	flush_scheduled_work();
 259	destroy_workqueue(deferred_remove_workqueue);
 260
 
 261	unregister_blkdev(_major, _name);
 262	dm_uevent_exit();
 263
 264	_major = 0;
 265
 266	DMINFO("cleaned up");
 267}
 268
 269static int (*_inits[])(void) __initdata = {
 270	local_init,
 271	dm_target_init,
 272	dm_linear_init,
 273	dm_stripe_init,
 274	dm_io_init,
 275	dm_kcopyd_init,
 276	dm_interface_init,
 277	dm_statistics_init,
 278};
 279
 280static void (*_exits[])(void) = {
 281	local_exit,
 282	dm_target_exit,
 283	dm_linear_exit,
 284	dm_stripe_exit,
 285	dm_io_exit,
 286	dm_kcopyd_exit,
 287	dm_interface_exit,
 288	dm_statistics_exit,
 289};
 290
 291static int __init dm_init(void)
 292{
 293	const int count = ARRAY_SIZE(_inits);
 294
 295	int r, i;
 296
 297	for (i = 0; i < count; i++) {
 298		r = _inits[i]();
 299		if (r)
 300			goto bad;
 301	}
 302
 303	return 0;
 304
 305      bad:
 306	while (i--)
 307		_exits[i]();
 308
 309	return r;
 310}
 311
 312static void __exit dm_exit(void)
 313{
 314	int i = ARRAY_SIZE(_exits);
 315
 316	while (i--)
 317		_exits[i]();
 318
 319	/*
 320	 * Should be empty by this point.
 321	 */
 
 322	idr_destroy(&_minor_idr);
 323}
 324
 325/*
 326 * Block device functions
 327 */
 328int dm_deleting_md(struct mapped_device *md)
 329{
 330	return test_bit(DMF_DELETING, &md->flags);
 331}
 332
 333static int dm_blk_open(struct block_device *bdev, fmode_t mode)
 334{
 335	struct mapped_device *md;
 336
 337	spin_lock(&_minor_lock);
 338
 339	md = bdev->bd_disk->private_data;
 340	if (!md)
 341		goto out;
 342
 343	if (test_bit(DMF_FREEING, &md->flags) ||
 344	    dm_deleting_md(md)) {
 345		md = NULL;
 346		goto out;
 347	}
 348
 349	dm_get(md);
 350	atomic_inc(&md->open_count);
 
 351out:
 352	spin_unlock(&_minor_lock);
 353
 354	return md ? 0 : -ENXIO;
 355}
 356
 357static void dm_blk_close(struct gendisk *disk, fmode_t mode)
 358{
 359	struct mapped_device *md;
 360
 361	spin_lock(&_minor_lock);
 362
 363	md = disk->private_data;
 364	if (WARN_ON(!md))
 365		goto out;
 366
 367	if (atomic_dec_and_test(&md->open_count) &&
 368	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
 369		queue_work(deferred_remove_workqueue, &deferred_remove_work);
 370
 371	dm_put(md);
 372out:
 373	spin_unlock(&_minor_lock);
 374}
 375
 376int dm_open_count(struct mapped_device *md)
 377{
 378	return atomic_read(&md->open_count);
 379}
 380
 381/*
 382 * Guarantees nothing is using the device before it's deleted.
 383 */
 384int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
 385{
 386	int r = 0;
 387
 388	spin_lock(&_minor_lock);
 389
 390	if (dm_open_count(md)) {
 391		r = -EBUSY;
 392		if (mark_deferred)
 393			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
 394	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
 395		r = -EEXIST;
 396	else
 397		set_bit(DMF_DELETING, &md->flags);
 398
 399	spin_unlock(&_minor_lock);
 400
 401	return r;
 402}
 403
 404int dm_cancel_deferred_remove(struct mapped_device *md)
 405{
 406	int r = 0;
 407
 408	spin_lock(&_minor_lock);
 409
 410	if (test_bit(DMF_DELETING, &md->flags))
 411		r = -EBUSY;
 412	else
 413		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
 414
 415	spin_unlock(&_minor_lock);
 416
 417	return r;
 418}
 419
 420static void do_deferred_remove(struct work_struct *w)
 421{
 422	dm_deferred_remove();
 423}
 424
 425sector_t dm_get_size(struct mapped_device *md)
 426{
 427	return get_capacity(md->disk);
 428}
 429
 430struct request_queue *dm_get_md_queue(struct mapped_device *md)
 431{
 432	return md->queue;
 433}
 434
 435struct dm_stats *dm_get_stats(struct mapped_device *md)
 436{
 437	return &md->stats;
 438}
 439
 440static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
 441{
 442	struct mapped_device *md = bdev->bd_disk->private_data;
 443
 444	return dm_get_geometry(md, geo);
 445}
 446
 447#ifdef CONFIG_BLK_DEV_ZONED
 448int dm_report_zones_cb(struct blk_zone *zone, unsigned int idx, void *data)
 449{
 450	struct dm_report_zones_args *args = data;
 451	sector_t sector_diff = args->tgt->begin - args->start;
 452
 453	/*
 454	 * Ignore zones beyond the target range.
 455	 */
 456	if (zone->start >= args->start + args->tgt->len)
 457		return 0;
 458
 459	/*
 460	 * Remap the start sector and write pointer position of the zone
 461	 * to match its position in the target range.
 462	 */
 463	zone->start += sector_diff;
 464	if (zone->type != BLK_ZONE_TYPE_CONVENTIONAL) {
 465		if (zone->cond == BLK_ZONE_COND_FULL)
 466			zone->wp = zone->start + zone->len;
 467		else if (zone->cond == BLK_ZONE_COND_EMPTY)
 468			zone->wp = zone->start;
 469		else
 470			zone->wp += sector_diff;
 471	}
 472
 473	args->next_sector = zone->start + zone->len;
 474	return args->orig_cb(zone, args->zone_idx++, args->orig_data);
 475}
 476EXPORT_SYMBOL_GPL(dm_report_zones_cb);
 477
 478static int dm_blk_report_zones(struct gendisk *disk, sector_t sector,
 479		unsigned int nr_zones, report_zones_cb cb, void *data)
 480{
 481	struct mapped_device *md = disk->private_data;
 482	struct dm_table *map;
 483	int srcu_idx, ret;
 484	struct dm_report_zones_args args = {
 485		.next_sector = sector,
 486		.orig_data = data,
 487		.orig_cb = cb,
 488	};
 489
 490	if (dm_suspended_md(md))
 491		return -EAGAIN;
 492
 493	map = dm_get_live_table(md, &srcu_idx);
 494	if (!map)
 495		return -EIO;
 496
 497	do {
 498		struct dm_target *tgt;
 499
 500		tgt = dm_table_find_target(map, args.next_sector);
 501		if (WARN_ON_ONCE(!tgt->type->report_zones)) {
 502			ret = -EIO;
 503			goto out;
 504		}
 505
 506		args.tgt = tgt;
 507		ret = tgt->type->report_zones(tgt, &args,
 508					      nr_zones - args.zone_idx);
 509		if (ret < 0)
 510			goto out;
 511	} while (args.zone_idx < nr_zones &&
 512		 args.next_sector < get_capacity(disk));
 513
 514	ret = args.zone_idx;
 515out:
 516	dm_put_live_table(md, srcu_idx);
 517	return ret;
 518}
 519#else
 520#define dm_blk_report_zones		NULL
 521#endif /* CONFIG_BLK_DEV_ZONED */
 522
 523static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
 524			    struct block_device **bdev)
 525	__acquires(md->io_barrier)
 526{
 
 
 527	struct dm_target *tgt;
 528	struct dm_table *map;
 529	int r;
 530
 531retry:
 532	r = -ENOTTY;
 533	map = dm_get_live_table(md, srcu_idx);
 534	if (!map || !dm_table_get_size(map))
 535		return r;
 536
 537	/* We only support devices that have a single target */
 538	if (dm_table_get_num_targets(map) != 1)
 539		return r;
 540
 541	tgt = dm_table_get_target(map, 0);
 542	if (!tgt->type->prepare_ioctl)
 543		return r;
 544
 545	if (dm_suspended_md(md))
 546		return -EAGAIN;
 
 
 
 
 
 547
 548	r = tgt->type->prepare_ioctl(tgt, bdev);
 549	if (r == -ENOTCONN && !fatal_signal_pending(current)) {
 550		dm_put_live_table(md, *srcu_idx);
 551		msleep(10);
 552		goto retry;
 553	}
 554
 555	return r;
 556}
 557
 558static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
 559	__releases(md->io_barrier)
 560{
 561	dm_put_live_table(md, srcu_idx);
 562}
 563
 564static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
 565			unsigned int cmd, unsigned long arg)
 566{
 567	struct mapped_device *md = bdev->bd_disk->private_data;
 568	int r, srcu_idx;
 569
 570	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
 571	if (r < 0)
 572		goto out;
 573
 574	if (r > 0) {
 575		/*
 576		 * Target determined this ioctl is being issued against a
 577		 * subset of the parent bdev; require extra privileges.
 578		 */
 579		if (!capable(CAP_SYS_RAWIO)) {
 580			DMWARN_LIMIT(
 581	"%s: sending ioctl %x to DM device without required privilege.",
 582				current->comm, cmd);
 583			r = -ENOIOCTLCMD;
 584			goto out;
 585		}
 586	}
 587
 588	r =  __blkdev_driver_ioctl(bdev, mode, cmd, arg);
 589out:
 590	dm_unprepare_ioctl(md, srcu_idx);
 591	return r;
 592}
 593
 594static void start_io_acct(struct dm_io *io);
 595
 596static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio)
 597{
 598	struct dm_io *io;
 599	struct dm_target_io *tio;
 600	struct bio *clone;
 601
 602	clone = bio_alloc_bioset(GFP_NOIO, 0, &md->io_bs);
 603	if (!clone)
 604		return NULL;
 605
 606	tio = container_of(clone, struct dm_target_io, clone);
 607	tio->inside_dm_io = true;
 608	tio->io = NULL;
 609
 610	io = container_of(tio, struct dm_io, tio);
 611	io->magic = DM_IO_MAGIC;
 612	io->status = 0;
 613	atomic_set(&io->io_count, 1);
 614	io->orig_bio = bio;
 615	io->md = md;
 616	spin_lock_init(&io->endio_lock);
 617
 618	start_io_acct(io);
 619
 620	return io;
 621}
 622
 623static void free_io(struct mapped_device *md, struct dm_io *io)
 624{
 625	bio_put(&io->tio.clone);
 626}
 627
 628static struct dm_target_io *alloc_tio(struct clone_info *ci, struct dm_target *ti,
 629				      unsigned target_bio_nr, gfp_t gfp_mask)
 630{
 631	struct dm_target_io *tio;
 632
 633	if (!ci->io->tio.io) {
 634		/* the dm_target_io embedded in ci->io is available */
 635		tio = &ci->io->tio;
 636	} else {
 637		struct bio *clone = bio_alloc_bioset(gfp_mask, 0, &ci->io->md->bs);
 638		if (!clone)
 639			return NULL;
 640
 641		tio = container_of(clone, struct dm_target_io, clone);
 642		tio->inside_dm_io = false;
 643	}
 644
 645	tio->magic = DM_TIO_MAGIC;
 646	tio->io = ci->io;
 647	tio->ti = ti;
 648	tio->target_bio_nr = target_bio_nr;
 649
 650	return tio;
 651}
 652
 653static void free_tio(struct dm_target_io *tio)
 654{
 655	if (tio->inside_dm_io)
 656		return;
 657	bio_put(&tio->clone);
 658}
 659
 660u64 dm_start_time_ns_from_clone(struct bio *bio)
 661{
 662	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
 663	struct dm_io *io = tio->io;
 664
 665	return jiffies_to_nsecs(io->start_time);
 666}
 667EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone);
 668
 669static void start_io_acct(struct dm_io *io)
 670{
 671	struct mapped_device *md = io->md;
 672	struct bio *bio = io->orig_bio;
 
 
 
 673
 674	io->start_time = bio_start_io_acct(bio);
 675	if (unlikely(dm_stats_used(&md->stats)))
 676		dm_stats_account_io(&md->stats, bio_data_dir(bio),
 677				    bio->bi_iter.bi_sector, bio_sectors(bio),
 678				    false, 0, &io->stats_aux);
 679}
 680
 681static void end_io_acct(struct dm_io *io)
 682{
 683	struct mapped_device *md = io->md;
 684	struct bio *bio = io->orig_bio;
 685	unsigned long duration = jiffies - io->start_time;
 
 
 686
 687	bio_end_io_acct(bio, io->start_time);
 
 
 
 688
 689	if (unlikely(dm_stats_used(&md->stats)))
 690		dm_stats_account_io(&md->stats, bio_data_dir(bio),
 691				    bio->bi_iter.bi_sector, bio_sectors(bio),
 692				    true, duration, &io->stats_aux);
 
 
 
 693
 694	/* nudge anyone waiting on suspend queue */
 695	if (unlikely(wq_has_sleeper(&md->wait)))
 696		wake_up(&md->wait);
 697}
 698
 699/*
 700 * Add the bio to the list of deferred io.
 701 */
 702static void queue_io(struct mapped_device *md, struct bio *bio)
 703{
 704	unsigned long flags;
 705
 706	spin_lock_irqsave(&md->deferred_lock, flags);
 707	bio_list_add(&md->deferred, bio);
 708	spin_unlock_irqrestore(&md->deferred_lock, flags);
 709	queue_work(md->wq, &md->work);
 710}
 711
 712/*
 713 * Everyone (including functions in this file), should use this
 714 * function to access the md->map field, and make sure they call
 715 * dm_put_live_table() when finished.
 716 */
 717struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
 718{
 719	*srcu_idx = srcu_read_lock(&md->io_barrier);
 720
 721	return srcu_dereference(md->map, &md->io_barrier);
 722}
 723
 724void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
 725{
 726	srcu_read_unlock(&md->io_barrier, srcu_idx);
 727}
 728
 729void dm_sync_table(struct mapped_device *md)
 730{
 731	synchronize_srcu(&md->io_barrier);
 732	synchronize_rcu_expedited();
 733}
 734
 735/*
 736 * A fast alternative to dm_get_live_table/dm_put_live_table.
 737 * The caller must not block between these two functions.
 738 */
 739static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
 740{
 741	rcu_read_lock();
 742	return rcu_dereference(md->map);
 743}
 744
 745static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
 746{
 747	rcu_read_unlock();
 748}
 749
 750static char *_dm_claim_ptr = "I belong to device-mapper";
 751
 752/*
 753 * Open a table device so we can use it as a map destination.
 754 */
 755static int open_table_device(struct table_device *td, dev_t dev,
 756			     struct mapped_device *md)
 757{
 758	struct block_device *bdev;
 759
 760	int r;
 761
 762	BUG_ON(td->dm_dev.bdev);
 763
 764	bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr);
 765	if (IS_ERR(bdev))
 766		return PTR_ERR(bdev);
 767
 768	r = bd_link_disk_holder(bdev, dm_disk(md));
 769	if (r) {
 770		blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
 771		return r;
 772	}
 773
 774	td->dm_dev.bdev = bdev;
 775	td->dm_dev.dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
 776	return 0;
 777}
 778
 779/*
 780 * Close a table device that we've been using.
 781 */
 782static void close_table_device(struct table_device *td, struct mapped_device *md)
 783{
 784	if (!td->dm_dev.bdev)
 785		return;
 786
 787	bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
 788	blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
 789	put_dax(td->dm_dev.dax_dev);
 790	td->dm_dev.bdev = NULL;
 791	td->dm_dev.dax_dev = NULL;
 792}
 793
 794static struct table_device *find_table_device(struct list_head *l, dev_t dev,
 795					      fmode_t mode)
 796{
 797	struct table_device *td;
 798
 799	list_for_each_entry(td, l, list)
 800		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
 801			return td;
 802
 803	return NULL;
 804}
 805
 806int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
 807			struct dm_dev **result)
 808{
 809	int r;
 810	struct table_device *td;
 811
 812	mutex_lock(&md->table_devices_lock);
 813	td = find_table_device(&md->table_devices, dev, mode);
 814	if (!td) {
 815		td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
 816		if (!td) {
 817			mutex_unlock(&md->table_devices_lock);
 818			return -ENOMEM;
 819		}
 820
 821		td->dm_dev.mode = mode;
 822		td->dm_dev.bdev = NULL;
 823
 824		if ((r = open_table_device(td, dev, md))) {
 825			mutex_unlock(&md->table_devices_lock);
 826			kfree(td);
 827			return r;
 828		}
 829
 830		format_dev_t(td->dm_dev.name, dev);
 831
 832		refcount_set(&td->count, 1);
 833		list_add(&td->list, &md->table_devices);
 834	} else {
 835		refcount_inc(&td->count);
 836	}
 837	mutex_unlock(&md->table_devices_lock);
 838
 839	*result = &td->dm_dev;
 840	return 0;
 841}
 842EXPORT_SYMBOL_GPL(dm_get_table_device);
 843
 844void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
 845{
 846	struct table_device *td = container_of(d, struct table_device, dm_dev);
 847
 848	mutex_lock(&md->table_devices_lock);
 849	if (refcount_dec_and_test(&td->count)) {
 850		close_table_device(td, md);
 851		list_del(&td->list);
 852		kfree(td);
 853	}
 854	mutex_unlock(&md->table_devices_lock);
 855}
 856EXPORT_SYMBOL(dm_put_table_device);
 857
 858static void free_table_devices(struct list_head *devices)
 859{
 860	struct list_head *tmp, *next;
 861
 862	list_for_each_safe(tmp, next, devices) {
 863		struct table_device *td = list_entry(tmp, struct table_device, list);
 864
 865		DMWARN("dm_destroy: %s still exists with %d references",
 866		       td->dm_dev.name, refcount_read(&td->count));
 867		kfree(td);
 868	}
 869}
 870
 871/*
 872 * Get the geometry associated with a dm device
 873 */
 874int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
 875{
 876	*geo = md->geometry;
 877
 878	return 0;
 879}
 880
 881/*
 882 * Set the geometry of a device.
 883 */
 884int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
 885{
 886	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
 887
 888	if (geo->start > sz) {
 889		DMWARN("Start sector is beyond the geometry limits.");
 890		return -EINVAL;
 891	}
 892
 893	md->geometry = *geo;
 894
 895	return 0;
 896}
 897
 
 
 
 
 
 
 
 
 
 898static int __noflush_suspending(struct mapped_device *md)
 899{
 900	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
 901}
 902
 903/*
 904 * Decrements the number of outstanding ios that a bio has been
 905 * cloned into, completing the original io if necc.
 906 */
 907static void dec_pending(struct dm_io *io, blk_status_t error)
 908{
 909	unsigned long flags;
 910	blk_status_t io_error;
 911	struct bio *bio;
 912	struct mapped_device *md = io->md;
 913
 914	/* Push-back supersedes any I/O errors */
 915	if (unlikely(error)) {
 916		spin_lock_irqsave(&io->endio_lock, flags);
 917		if (!(io->status == BLK_STS_DM_REQUEUE && __noflush_suspending(md)))
 918			io->status = error;
 919		spin_unlock_irqrestore(&io->endio_lock, flags);
 920	}
 921
 922	if (atomic_dec_and_test(&io->io_count)) {
 923		if (io->status == BLK_STS_DM_REQUEUE) {
 924			/*
 925			 * Target requested pushing back the I/O.
 926			 */
 927			spin_lock_irqsave(&md->deferred_lock, flags);
 928			if (__noflush_suspending(md))
 929				/* NOTE early return due to BLK_STS_DM_REQUEUE below */
 930				bio_list_add_head(&md->deferred, io->orig_bio);
 931			else
 932				/* noflush suspend was interrupted. */
 933				io->status = BLK_STS_IOERR;
 934			spin_unlock_irqrestore(&md->deferred_lock, flags);
 935		}
 936
 937		io_error = io->status;
 938		bio = io->orig_bio;
 939		end_io_acct(io);
 940		free_io(md, io);
 941
 942		if (io_error == BLK_STS_DM_REQUEUE)
 943			return;
 944
 945		if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) {
 946			/*
 947			 * Preflush done for flush with data, reissue
 948			 * without REQ_PREFLUSH.
 949			 */
 950			bio->bi_opf &= ~REQ_PREFLUSH;
 951			queue_io(md, bio);
 952		} else {
 953			/* done with normal IO or empty flush */
 954			if (io_error)
 955				bio->bi_status = io_error;
 956			bio_endio(bio);
 957		}
 958	}
 959}
 960
 961void disable_discard(struct mapped_device *md)
 962{
 963	struct queue_limits *limits = dm_get_queue_limits(md);
 964
 965	/* device doesn't really support DISCARD, disable it */
 966	limits->max_discard_sectors = 0;
 967	blk_queue_flag_clear(QUEUE_FLAG_DISCARD, md->queue);
 968}
 969
 970void disable_write_same(struct mapped_device *md)
 971{
 972	struct queue_limits *limits = dm_get_queue_limits(md);
 973
 974	/* device doesn't really support WRITE SAME, disable it */
 975	limits->max_write_same_sectors = 0;
 976}
 977
 978void disable_write_zeroes(struct mapped_device *md)
 979{
 980	struct queue_limits *limits = dm_get_queue_limits(md);
 981
 982	/* device doesn't really support WRITE ZEROES, disable it */
 983	limits->max_write_zeroes_sectors = 0;
 984}
 985
 986static void clone_endio(struct bio *bio)
 987{
 988	blk_status_t error = bio->bi_status;
 989	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
 990	struct dm_io *io = tio->io;
 991	struct mapped_device *md = tio->io->md;
 992	dm_endio_fn endio = tio->ti->type->end_io;
 993	struct bio *orig_bio = io->orig_bio;
 994
 995	if (unlikely(error == BLK_STS_TARGET) && md->type != DM_TYPE_NVME_BIO_BASED) {
 996		if (bio_op(bio) == REQ_OP_DISCARD &&
 997		    !bio->bi_disk->queue->limits.max_discard_sectors)
 998			disable_discard(md);
 999		else if (bio_op(bio) == REQ_OP_WRITE_SAME &&
1000			 !bio->bi_disk->queue->limits.max_write_same_sectors)
1001			disable_write_same(md);
1002		else if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
1003			 !bio->bi_disk->queue->limits.max_write_zeroes_sectors)
1004			disable_write_zeroes(md);
1005	}
1006
1007	/*
1008	 * For zone-append bios get offset in zone of the written
1009	 * sector and add that to the original bio sector pos.
1010	 */
1011	if (bio_op(orig_bio) == REQ_OP_ZONE_APPEND) {
1012		sector_t written_sector = bio->bi_iter.bi_sector;
1013		struct request_queue *q = orig_bio->bi_disk->queue;
1014		u64 mask = (u64)blk_queue_zone_sectors(q) - 1;
1015
1016		orig_bio->bi_iter.bi_sector += written_sector & mask;
1017	}
1018
1019	if (endio) {
1020		int r = endio(tio->ti, bio, &error);
1021		switch (r) {
1022		case DM_ENDIO_REQUEUE:
1023			error = BLK_STS_DM_REQUEUE;
1024			fallthrough;
1025		case DM_ENDIO_DONE:
1026			break;
1027		case DM_ENDIO_INCOMPLETE:
1028			/* The target will handle the io */
1029			return;
1030		default:
1031			DMWARN("unimplemented target endio return value: %d", r);
1032			BUG();
1033		}
1034	}
1035
1036	free_tio(tio);
 
 
 
 
 
 
1037	dec_pending(io, error);
1038}
1039
1040/*
1041 * Return maximum size of I/O possible at the supplied sector up to the current
1042 * target boundary.
1043 */
1044static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
1045{
1046	sector_t target_offset = dm_target_offset(ti, sector);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1047
1048	return ti->len - target_offset;
 
 
 
 
 
1049}
1050
1051static sector_t max_io_len(sector_t sector, struct dm_target *ti)
 
 
 
 
 
1052{
1053	sector_t len = max_io_len_target_boundary(sector, ti);
1054	sector_t offset, max_len;
 
 
 
 
 
 
1055
1056	/*
1057	 * Does the target need to split even further?
1058	 */
1059	if (ti->max_io_len) {
1060		offset = dm_target_offset(ti, sector);
1061		if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
1062			max_len = sector_div(offset, ti->max_io_len);
1063		else
1064			max_len = offset & (ti->max_io_len - 1);
1065		max_len = ti->max_io_len - max_len;
1066
1067		if (len > max_len)
1068			len = max_len;
1069	}
1070
1071	return len;
 
1072}
1073
1074int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
 
 
 
 
1075{
1076	if (len > UINT_MAX) {
1077		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1078		      (unsigned long long)len, UINT_MAX);
1079		ti->error = "Maximum size of target IO is too large";
1080		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
1081	}
1082
1083	ti->max_io_len = (uint32_t) len;
1084
1085	return 0;
1086}
1087EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1088
1089static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1090						sector_t sector, int *srcu_idx)
1091	__acquires(md->io_barrier)
1092{
1093	struct dm_table *map;
1094	struct dm_target *ti;
1095
1096	map = dm_get_live_table(md, srcu_idx);
1097	if (!map)
1098		return NULL;
1099
1100	ti = dm_table_find_target(map, sector);
1101	if (!ti)
1102		return NULL;
1103
1104	return ti;
1105}
1106
1107static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1108				 long nr_pages, void **kaddr, pfn_t *pfn)
 
 
1109{
1110	struct mapped_device *md = dax_get_private(dax_dev);
1111	sector_t sector = pgoff * PAGE_SECTORS;
1112	struct dm_target *ti;
1113	long len, ret = -EIO;
1114	int srcu_idx;
 
1115
1116	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1117
1118	if (!ti)
1119		goto out;
1120	if (!ti->type->direct_access)
1121		goto out;
1122	len = max_io_len(sector, ti) / PAGE_SECTORS;
1123	if (len < 1)
1124		goto out;
1125	nr_pages = min(len, nr_pages);
1126	ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn);
1127
1128 out:
1129	dm_put_live_table(md, srcu_idx);
 
1130
1131	return ret;
 
 
1132}
1133
1134static bool dm_dax_supported(struct dax_device *dax_dev, struct block_device *bdev,
1135		int blocksize, sector_t start, sector_t len)
1136{
1137	struct mapped_device *md = dax_get_private(dax_dev);
1138	struct dm_table *map;
1139	bool ret = false;
1140	int srcu_idx;
1141
1142	map = dm_get_live_table(md, &srcu_idx);
1143	if (!map)
1144		goto out;
 
1145
1146	ret = dm_table_supports_dax(map, device_supports_dax, &blocksize);
 
 
 
 
1147
1148out:
1149	dm_put_live_table(md, srcu_idx);
 
1150
1151	return ret;
 
 
1152}
1153
1154static size_t dm_dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1155				    void *addr, size_t bytes, struct iov_iter *i)
1156{
1157	struct mapped_device *md = dax_get_private(dax_dev);
1158	sector_t sector = pgoff * PAGE_SECTORS;
1159	struct dm_target *ti;
1160	long ret = 0;
1161	int srcu_idx;
1162
1163	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
 
1164
1165	if (!ti)
1166		goto out;
1167	if (!ti->type->dax_copy_from_iter) {
1168		ret = copy_from_iter(addr, bytes, i);
1169		goto out;
 
 
 
 
 
 
 
1170	}
1171	ret = ti->type->dax_copy_from_iter(ti, pgoff, addr, bytes, i);
1172 out:
1173	dm_put_live_table(md, srcu_idx);
1174
1175	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
1176}
1177
1178static size_t dm_dax_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1179		void *addr, size_t bytes, struct iov_iter *i)
 
 
 
1180{
1181	struct mapped_device *md = dax_get_private(dax_dev);
1182	sector_t sector = pgoff * PAGE_SECTORS;
1183	struct dm_target *ti;
1184	long ret = 0;
1185	int srcu_idx;
1186
1187	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
 
 
 
1188
1189	if (!ti)
1190		goto out;
1191	if (!ti->type->dax_copy_to_iter) {
1192		ret = copy_to_iter(addr, bytes, i);
1193		goto out;
1194	}
1195	ret = ti->type->dax_copy_to_iter(ti, pgoff, addr, bytes, i);
1196 out:
1197	dm_put_live_table(md, srcu_idx);
 
1198
1199	return ret;
 
1200}
 
1201
1202static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
1203				  size_t nr_pages)
 
 
1204{
1205	struct mapped_device *md = dax_get_private(dax_dev);
1206	sector_t sector = pgoff * PAGE_SECTORS;
1207	struct dm_target *ti;
1208	int ret = -EIO;
1209	int srcu_idx;
 
 
 
 
 
 
 
 
 
 
 
 
 
1210
1211	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
 
 
 
 
 
 
1212
1213	if (!ti)
1214		goto out;
1215	if (WARN_ON(!ti->type->dax_zero_page_range)) {
1216		/*
1217		 * ->zero_page_range() is mandatory dax operation. If we are
1218		 *  here, something is wrong.
1219		 */
1220		dm_put_live_table(md, srcu_idx);
1221		goto out;
1222	}
1223	ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages);
1224
1225 out:
1226	dm_put_live_table(md, srcu_idx);
 
1227
1228	return ret;
1229}
 
 
 
 
 
 
 
 
 
1230
1231/*
1232 * A target may call dm_accept_partial_bio only from the map routine.  It is
1233 * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_RESET,
1234 * REQ_OP_ZONE_OPEN, REQ_OP_ZONE_CLOSE and REQ_OP_ZONE_FINISH.
1235 *
1236 * dm_accept_partial_bio informs the dm that the target only wants to process
1237 * additional n_sectors sectors of the bio and the rest of the data should be
1238 * sent in a next bio.
1239 *
1240 * A diagram that explains the arithmetics:
1241 * +--------------------+---------------+-------+
1242 * |         1          |       2       |   3   |
1243 * +--------------------+---------------+-------+
1244 *
1245 * <-------------- *tio->len_ptr --------------->
1246 *                      <------- bi_size ------->
1247 *                      <-- n_sectors -->
1248 *
1249 * Region 1 was already iterated over with bio_advance or similar function.
1250 *	(it may be empty if the target doesn't use bio_advance)
1251 * Region 2 is the remaining bio size that the target wants to process.
1252 *	(it may be empty if region 1 is non-empty, although there is no reason
1253 *	 to make it empty)
1254 * The target requires that region 3 is to be sent in the next bio.
1255 *
1256 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1257 * the partially processed part (the sum of regions 1+2) must be the same for all
1258 * copies of the bio.
1259 */
1260void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1261{
1262	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1263	unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1264	BUG_ON(bio->bi_opf & REQ_PREFLUSH);
1265	BUG_ON(bi_size > *tio->len_ptr);
1266	BUG_ON(n_sectors > bi_size);
1267	*tio->len_ptr -= bi_size - n_sectors;
1268	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1269}
1270EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1271
1272static blk_qc_t __map_bio(struct dm_target_io *tio)
 
1273{
1274	int r;
1275	sector_t sector;
1276	struct bio *clone = &tio->clone;
1277	struct dm_io *io = tio->io;
1278	struct dm_target *ti = tio->ti;
1279	blk_qc_t ret = BLK_QC_T_NONE;
1280
1281	clone->bi_end_io = clone_endio;
 
1282
1283	/*
1284	 * Map the clone.  If r == 0 we don't need to do
1285	 * anything, the target has assumed ownership of
1286	 * this io.
1287	 */
1288	atomic_inc(&io->io_count);
1289	sector = clone->bi_iter.bi_sector;
 
 
 
1290
1291	r = ti->type->map(ti, clone);
1292	switch (r) {
1293	case DM_MAPIO_SUBMITTED:
1294		break;
1295	case DM_MAPIO_REMAPPED:
1296		/* the bio has been remapped so dispatch it */
1297		trace_block_bio_remap(clone->bi_disk->queue, clone,
1298				      bio_dev(io->orig_bio), sector);
1299		ret = submit_bio_noacct(clone);
1300		break;
1301	case DM_MAPIO_KILL:
1302		free_tio(tio);
1303		dec_pending(io, BLK_STS_IOERR);
1304		break;
1305	case DM_MAPIO_REQUEUE:
1306		free_tio(tio);
1307		dec_pending(io, BLK_STS_DM_REQUEUE);
1308		break;
1309	default:
1310		DMWARN("unimplemented target map return value: %d", r);
1311		BUG();
1312	}
 
1313
1314	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1315}
1316
1317static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
 
 
 
 
 
1318{
1319	bio->bi_iter.bi_sector = sector;
1320	bio->bi_iter.bi_size = to_bytes(len);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1321}
1322
1323/*
1324 * Creates a bio that consists of range of complete bvecs.
1325 */
1326static int clone_bio(struct dm_target_io *tio, struct bio *bio,
1327		     sector_t sector, unsigned len)
 
1328{
1329	struct bio *clone = &tio->clone;
1330
1331	__bio_clone_fast(clone, bio);
1332
1333	bio_crypt_clone(clone, bio, GFP_NOIO);
 
 
 
 
 
 
 
1334
1335	if (bio_integrity(bio)) {
1336		int r;
1337
1338		if (unlikely(!dm_target_has_integrity(tio->ti->type) &&
1339			     !dm_target_passes_integrity(tio->ti->type))) {
1340			DMWARN("%s: the target %s doesn't support integrity data.",
1341				dm_device_name(tio->io->md),
1342				tio->ti->type->name);
1343			return -EIO;
1344		}
1345
1346		r = bio_integrity_clone(clone, bio, GFP_NOIO);
1347		if (r < 0)
1348			return r;
1349	}
1350
1351	bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1352	clone->bi_iter.bi_size = to_bytes(len);
1353
1354	if (bio_integrity(bio))
1355		bio_integrity_trim(clone);
 
 
1356
1357	return 0;
 
 
 
 
1358}
1359
1360static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1361				struct dm_target *ti, unsigned num_bios)
1362{
1363	struct dm_target_io *tio;
1364	int try;
1365
1366	if (!num_bios)
1367		return;
1368
1369	if (num_bios == 1) {
1370		tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1371		bio_list_add(blist, &tio->clone);
1372		return;
 
 
 
 
 
 
 
1373	}
1374
1375	for (try = 0; try < 2; try++) {
1376		int bio_nr;
1377		struct bio *bio;
1378
1379		if (try)
1380			mutex_lock(&ci->io->md->table_devices_lock);
1381		for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1382			tio = alloc_tio(ci, ti, bio_nr, try ? GFP_NOIO : GFP_NOWAIT);
1383			if (!tio)
1384				break;
1385
1386			bio_list_add(blist, &tio->clone);
1387		}
1388		if (try)
1389			mutex_unlock(&ci->io->md->table_devices_lock);
1390		if (bio_nr == num_bios)
1391			return;
1392
1393		while ((bio = bio_list_pop(blist))) {
1394			tio = container_of(bio, struct dm_target_io, clone);
1395			free_tio(tio);
1396		}
1397	}
1398}
1399
1400static blk_qc_t __clone_and_map_simple_bio(struct clone_info *ci,
1401					   struct dm_target_io *tio, unsigned *len)
1402{
1403	struct bio *clone = &tio->clone;
 
1404
1405	tio->len_ptr = len;
 
 
1406
1407	__bio_clone_fast(clone, ci->bio);
1408	if (len)
1409		bio_setup_sector(clone, ci->sector, *len);
1410
1411	return __map_bio(tio);
1412}
1413
1414static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1415				  unsigned num_bios, unsigned *len)
 
 
1416{
1417	struct bio_list blist = BIO_EMPTY_LIST;
1418	struct bio *bio;
1419	struct dm_target_io *tio;
1420
1421	alloc_multiple_bios(&blist, ci, ti, num_bios);
1422
1423	while ((bio = bio_list_pop(&blist))) {
1424		tio = container_of(bio, struct dm_target_io, clone);
1425		(void) __clone_and_map_simple_bio(ci, tio, len);
1426	}
1427}
1428
1429static int __send_empty_flush(struct clone_info *ci)
1430{
1431	unsigned target_nr = 0;
1432	struct dm_target *ti;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1433
1434	/*
1435	 * Empty flush uses a statically initialized bio, as the base for
1436	 * cloning.  However, blkg association requires that a bdev is
1437	 * associated with a gendisk, which doesn't happen until the bdev is
1438	 * opened.  So, blkg association is done at issue time of the flush
1439	 * rather than when the device is created in alloc_dev().
1440	 */
1441	bio_set_dev(ci->bio, ci->io->md->bdev);
1442
1443	BUG_ON(bio_has_data(ci->bio));
1444	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1445		__send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1446	return 0;
1447}
1448
1449static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1450				    sector_t sector, unsigned *len)
1451{
1452	struct bio *bio = ci->bio;
 
 
1453	struct dm_target_io *tio;
1454	int r;
1455
1456	tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1457	tio->len_ptr = len;
1458	r = clone_bio(tio, bio, sector, *len);
1459	if (r < 0) {
1460		free_tio(tio);
1461		return r;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1462	}
1463	(void) __map_bio(tio);
1464
1465	return 0;
1466}
1467
1468typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
 
 
 
 
 
 
 
 
 
 
 
 
1469
1470static unsigned get_num_discard_bios(struct dm_target *ti)
1471{
1472	return ti->num_discard_bios;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1473}
 
 
 
1474
1475static unsigned get_num_secure_erase_bios(struct dm_target *ti)
 
 
1476{
1477	return ti->num_secure_erase_bios;
1478}
 
 
 
1479
1480static unsigned get_num_write_same_bios(struct dm_target *ti)
1481{
1482	return ti->num_write_same_bios;
1483}
1484
1485static unsigned get_num_write_zeroes_bios(struct dm_target *ti)
1486{
1487	return ti->num_write_zeroes_bios;
1488}
1489
1490static int __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti,
1491				       unsigned num_bios)
1492{
1493	unsigned len;
 
 
 
 
1494
1495	/*
1496	 * Even though the device advertised support for this type of
1497	 * request, that does not mean every target supports it, and
1498	 * reconfiguration might also have changed that since the
1499	 * check was performed.
 
 
 
 
 
 
 
 
1500	 */
1501	if (!num_bios)
1502		return -EOPNOTSUPP;
1503
1504	len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1505
1506	__send_duplicate_bios(ci, ti, num_bios, &len);
 
1507
1508	ci->sector += len;
1509	ci->sector_count -= len;
 
 
 
 
1510
1511	return 0;
1512}
1513
1514static int __send_discard(struct clone_info *ci, struct dm_target *ti)
 
 
 
 
1515{
1516	return __send_changing_extent_only(ci, ti, get_num_discard_bios(ti));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1517}
1518
1519static int __send_secure_erase(struct clone_info *ci, struct dm_target *ti)
1520{
1521	return __send_changing_extent_only(ci, ti, get_num_secure_erase_bios(ti));
 
 
1522}
1523
1524static int __send_write_same(struct clone_info *ci, struct dm_target *ti)
1525{
1526	return __send_changing_extent_only(ci, ti, get_num_write_same_bios(ti));
1527}
1528
1529static int __send_write_zeroes(struct clone_info *ci, struct dm_target *ti)
1530{
1531	return __send_changing_extent_only(ci, ti, get_num_write_zeroes_bios(ti));
 
 
 
 
 
1532}
1533
1534static bool is_abnormal_io(struct bio *bio)
1535{
1536	bool r = false;
1537
1538	switch (bio_op(bio)) {
1539	case REQ_OP_DISCARD:
1540	case REQ_OP_SECURE_ERASE:
1541	case REQ_OP_WRITE_SAME:
1542	case REQ_OP_WRITE_ZEROES:
1543		r = true;
1544		break;
1545	}
1546
1547	return r;
 
 
 
1548}
 
1549
1550static bool __process_abnormal_io(struct clone_info *ci, struct dm_target *ti,
1551				  int *result)
1552{
1553	struct bio *bio = ci->bio;
 
1554
1555	if (bio_op(bio) == REQ_OP_DISCARD)
1556		*result = __send_discard(ci, ti);
1557	else if (bio_op(bio) == REQ_OP_SECURE_ERASE)
1558		*result = __send_secure_erase(ci, ti);
1559	else if (bio_op(bio) == REQ_OP_WRITE_SAME)
1560		*result = __send_write_same(ci, ti);
1561	else if (bio_op(bio) == REQ_OP_WRITE_ZEROES)
1562		*result = __send_write_zeroes(ci, ti);
1563	else
1564		return false;
1565
1566	return true;
1567}
1568
1569/*
1570 * Select the correct strategy for processing a non-flush bio.
1571 */
1572static int __split_and_process_non_flush(struct clone_info *ci)
1573{
1574	struct dm_target *ti;
1575	unsigned len;
1576	int r;
 
 
 
1577
1578	ti = dm_table_find_target(ci->map, ci->sector);
1579	if (!ti)
1580		return -EIO;
 
 
1581
1582	if (__process_abnormal_io(ci, ti, &r))
1583		return r;
1584
1585	len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count);
 
 
 
1586
1587	r = __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1588	if (r < 0)
 
1589		return r;
1590
1591	ci->sector += len;
1592	ci->sector_count -= len;
 
 
 
 
1593
1594	return 0;
1595}
1596
1597static void init_clone_info(struct clone_info *ci, struct mapped_device *md,
1598			    struct dm_table *map, struct bio *bio)
1599{
1600	ci->map = map;
1601	ci->io = alloc_io(md, bio);
1602	ci->sector = bio->bi_iter.bi_sector;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1603}
1604
1605#define __dm_part_stat_sub(part, field, subnd)	\
1606	(part_stat_get(part, field) -= (subnd))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1607
1608/*
1609 * Entry point to split a bio into clones and submit them to the targets.
 
 
1610 */
1611static blk_qc_t __split_and_process_bio(struct mapped_device *md,
1612					struct dm_table *map, struct bio *bio)
1613{
1614	struct clone_info ci;
1615	blk_qc_t ret = BLK_QC_T_NONE;
1616	int error = 0;
1617
1618	init_clone_info(&ci, md, map, bio);
 
 
 
 
 
 
 
1619
1620	if (bio->bi_opf & REQ_PREFLUSH) {
1621		struct bio flush_bio;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1622
1623		/*
1624		 * Use an on-stack bio for this, it's safe since we don't
1625		 * need to reference it after submit. It's just used as
1626		 * the basis for the clone(s).
1627		 */
1628		bio_init(&flush_bio, NULL, 0);
1629		flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1630		ci.bio = &flush_bio;
1631		ci.sector_count = 0;
1632		error = __send_empty_flush(&ci);
1633		bio_uninit(ci.bio);
1634		/* dec_pending submits any data associated with flush */
1635	} else if (op_is_zone_mgmt(bio_op(bio))) {
1636		ci.bio = bio;
1637		ci.sector_count = 0;
1638		error = __split_and_process_non_flush(&ci);
1639	} else {
1640		ci.bio = bio;
1641		ci.sector_count = bio_sectors(bio);
1642		while (ci.sector_count && !error) {
1643			error = __split_and_process_non_flush(&ci);
1644			if (current->bio_list && ci.sector_count && !error) {
1645				/*
1646				 * Remainder must be passed to submit_bio_noacct()
1647				 * so that it gets handled *after* bios already submitted
1648				 * have been completely processed.
1649				 * We take a clone of the original to store in
1650				 * ci.io->orig_bio to be used by end_io_acct() and
1651				 * for dec_pending to use for completion handling.
1652				 */
1653				struct bio *b = bio_split(bio, bio_sectors(bio) - ci.sector_count,
1654							  GFP_NOIO, &md->queue->bio_split);
1655				ci.io->orig_bio = b;
1656
1657				/*
1658				 * Adjust IO stats for each split, otherwise upon queue
1659				 * reentry there will be redundant IO accounting.
1660				 * NOTE: this is a stop-gap fix, a proper fix involves
1661				 * significant refactoring of DM core's bio splitting
1662				 * (by eliminating DM's splitting and just using bio_split)
1663				 */
1664				part_stat_lock();
1665				__dm_part_stat_sub(&dm_disk(md)->part0,
1666						   sectors[op_stat_group(bio_op(bio))], ci.sector_count);
1667				part_stat_unlock();
1668
1669				bio_chain(b, bio);
1670				trace_block_split(md->queue, b, bio->bi_iter.bi_sector);
1671				ret = submit_bio_noacct(bio);
1672				break;
1673			}
1674		}
1675	}
1676
1677	/* drop the extra reference count */
1678	dec_pending(ci.io, errno_to_blk_status(error));
1679	return ret;
1680}
1681
1682/*
1683 * Optimized variant of __split_and_process_bio that leverages the
1684 * fact that targets that use it do _not_ have a need to split bios.
1685 */
1686static blk_qc_t __process_bio(struct mapped_device *md, struct dm_table *map,
1687			      struct bio *bio, struct dm_target *ti)
1688{
1689	struct clone_info ci;
1690	blk_qc_t ret = BLK_QC_T_NONE;
1691	int error = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1692
1693	init_clone_info(&ci, md, map, bio);
 
1694
1695	if (bio->bi_opf & REQ_PREFLUSH) {
1696		struct bio flush_bio;
1697
1698		/*
1699		 * Use an on-stack bio for this, it's safe since we don't
1700		 * need to reference it after submit. It's just used as
1701		 * the basis for the clone(s).
1702		 */
1703		bio_init(&flush_bio, NULL, 0);
1704		flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1705		ci.bio = &flush_bio;
1706		ci.sector_count = 0;
1707		error = __send_empty_flush(&ci);
1708		bio_uninit(ci.bio);
1709		/* dec_pending submits any data associated with flush */
1710	} else {
1711		struct dm_target_io *tio;
1712
1713		ci.bio = bio;
1714		ci.sector_count = bio_sectors(bio);
1715		if (__process_abnormal_io(&ci, ti, &error))
1716			goto out;
1717
1718		tio = alloc_tio(&ci, ti, 0, GFP_NOIO);
1719		ret = __clone_and_map_simple_bio(&ci, tio, NULL);
1720	}
 
 
 
 
 
 
 
 
 
1721out:
1722	/* drop the extra reference count */
1723	dec_pending(ci.io, errno_to_blk_status(error));
1724	return ret;
1725}
1726
1727static blk_qc_t dm_process_bio(struct mapped_device *md,
1728			       struct dm_table *map, struct bio *bio)
1729{
1730	blk_qc_t ret = BLK_QC_T_NONE;
1731	struct dm_target *ti = md->immutable_target;
 
1732
1733	if (unlikely(!map)) {
1734		bio_io_error(bio);
1735		return ret;
1736	}
 
1737
1738	if (!ti) {
1739		ti = dm_table_find_target(map, bio->bi_iter.bi_sector);
1740		if (unlikely(!ti)) {
1741			bio_io_error(bio);
1742			return ret;
1743		}
1744	}
1745
1746	/*
1747	 * If in ->submit_bio we need to use blk_queue_split(), otherwise
1748	 * queue_limits for abnormal requests (e.g. discard, writesame, etc)
1749	 * won't be imposed.
1750	 * If called from dm_wq_work() for deferred bio processing, bio
1751	 * was already handled by following code with previous ->submit_bio.
1752	 */
1753	if (current->bio_list) {
1754		if (is_abnormal_io(bio))
1755			blk_queue_split(&bio);
1756		/* regular IO is split by __split_and_process_bio */
1757	}
1758
1759	if (dm_get_md_type(md) == DM_TYPE_NVME_BIO_BASED)
1760		return __process_bio(md, map, bio, ti);
1761	return __split_and_process_bio(md, map, bio);
1762}
1763
1764static blk_qc_t dm_submit_bio(struct bio *bio)
1765{
1766	struct mapped_device *md = bio->bi_disk->private_data;
1767	blk_qc_t ret = BLK_QC_T_NONE;
1768	int srcu_idx;
1769	struct dm_table *map;
1770
1771	if (dm_get_md_type(md) == DM_TYPE_REQUEST_BASED) {
1772		/*
1773		 * We are called with a live reference on q_usage_counter, but
1774		 * that one will be released as soon as we return.  Grab an
1775		 * extra one as blk_mq_submit_bio expects to be able to consume
1776		 * a reference (which lives until the request is freed in case a
1777		 * request is allocated).
1778		 */
1779		percpu_ref_get(&bio->bi_disk->queue->q_usage_counter);
1780		return blk_mq_submit_bio(bio);
1781	}
 
1782
1783	map = dm_get_live_table(md, &srcu_idx);
1784
1785	/* if we're suspended, we have to queue this io for later */
1786	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1787		dm_put_live_table(md, srcu_idx);
1788
1789		if (!(bio->bi_opf & REQ_RAHEAD))
1790			queue_io(md, bio);
1791		else
1792			bio_io_error(bio);
1793		return ret;
1794	}
1795
1796	ret = dm_process_bio(md, map, bio);
1797
1798	dm_put_live_table(md, srcu_idx);
1799	return ret;
1800}
1801
1802/*-----------------------------------------------------------------
1803 * An IDR is used to keep track of allocated minor numbers.
1804 *---------------------------------------------------------------*/
1805static void free_minor(int minor)
1806{
1807	spin_lock(&_minor_lock);
1808	idr_remove(&_minor_idr, minor);
1809	spin_unlock(&_minor_lock);
1810}
1811
1812/*
1813 * See if the device with a specific minor # is free.
1814 */
1815static int specific_minor(int minor)
1816{
1817	int r;
1818
1819	if (minor >= (1 << MINORBITS))
1820		return -EINVAL;
1821
1822	idr_preload(GFP_KERNEL);
 
 
 
1823	spin_lock(&_minor_lock);
1824
1825	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
 
 
 
 
 
 
 
 
 
 
 
 
 
1826
 
1827	spin_unlock(&_minor_lock);
1828	idr_preload_end();
1829	if (r < 0)
1830		return r == -ENOSPC ? -EBUSY : r;
1831	return 0;
1832}
1833
1834static int next_free_minor(int *minor)
1835{
1836	int r;
 
 
 
 
1837
1838	idr_preload(GFP_KERNEL);
1839	spin_lock(&_minor_lock);
1840
1841	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
 
 
 
 
 
 
 
 
 
 
1842
 
1843	spin_unlock(&_minor_lock);
1844	idr_preload_end();
1845	if (r < 0)
1846		return r;
1847	*minor = r;
1848	return 0;
1849}
1850
1851static const struct block_device_operations dm_blk_dops;
1852static const struct dax_operations dm_dax_ops;
1853
1854static void dm_wq_work(struct work_struct *work);
1855
1856static void cleanup_mapped_device(struct mapped_device *md)
1857{
1858	if (md->wq)
1859		destroy_workqueue(md->wq);
1860	bioset_exit(&md->bs);
1861	bioset_exit(&md->io_bs);
1862
1863	if (md->dax_dev) {
1864		kill_dax(md->dax_dev);
1865		put_dax(md->dax_dev);
1866		md->dax_dev = NULL;
1867	}
1868
1869	if (md->disk) {
1870		spin_lock(&_minor_lock);
1871		md->disk->private_data = NULL;
1872		spin_unlock(&_minor_lock);
1873		del_gendisk(md->disk);
1874		put_disk(md->disk);
1875	}
1876
1877	if (md->queue)
1878		blk_cleanup_queue(md->queue);
1879
1880	cleanup_srcu_struct(&md->io_barrier);
1881
1882	if (md->bdev) {
1883		bdput(md->bdev);
1884		md->bdev = NULL;
1885	}
1886
1887	mutex_destroy(&md->suspend_lock);
1888	mutex_destroy(&md->type_lock);
1889	mutex_destroy(&md->table_devices_lock);
1890
1891	dm_mq_cleanup_mapped_device(md);
1892}
1893
1894/*
1895 * Allocate and initialise a blank device with a given minor.
1896 */
1897static struct mapped_device *alloc_dev(int minor)
1898{
1899	int r, numa_node_id = dm_get_numa_node();
1900	struct mapped_device *md;
1901	void *old_md;
1902
1903	md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
1904	if (!md) {
1905		DMWARN("unable to allocate device, out of memory.");
1906		return NULL;
1907	}
1908
1909	if (!try_module_get(THIS_MODULE))
1910		goto bad_module_get;
1911
1912	/* get a minor number for the dev */
1913	if (minor == DM_ANY_MINOR)
1914		r = next_free_minor(&minor);
1915	else
1916		r = specific_minor(minor);
1917	if (r < 0)
1918		goto bad_minor;
1919
1920	r = init_srcu_struct(&md->io_barrier);
1921	if (r < 0)
1922		goto bad_io_barrier;
1923
1924	md->numa_node_id = numa_node_id;
1925	md->init_tio_pdu = false;
1926	md->type = DM_TYPE_NONE;
 
1927	mutex_init(&md->suspend_lock);
1928	mutex_init(&md->type_lock);
1929	mutex_init(&md->table_devices_lock);
1930	spin_lock_init(&md->deferred_lock);
 
1931	atomic_set(&md->holders, 1);
1932	atomic_set(&md->open_count, 0);
1933	atomic_set(&md->event_nr, 0);
1934	atomic_set(&md->uevent_seq, 0);
1935	INIT_LIST_HEAD(&md->uevent_list);
1936	INIT_LIST_HEAD(&md->table_devices);
1937	spin_lock_init(&md->uevent_lock);
1938
1939	/*
1940	 * default to bio-based until DM table is loaded and md->type
1941	 * established. If request-based table is loaded: blk-mq will
1942	 * override accordingly.
1943	 */
1944	md->queue = blk_alloc_queue(numa_node_id);
1945	if (!md->queue)
1946		goto bad;
 
 
1947
1948	md->disk = alloc_disk_node(1, md->numa_node_id);
1949	if (!md->disk)
1950		goto bad;
1951
 
 
1952	init_waitqueue_head(&md->wait);
1953	INIT_WORK(&md->work, dm_wq_work);
1954	init_waitqueue_head(&md->eventq);
1955	init_completion(&md->kobj_holder.completion);
1956
1957	md->disk->major = _major;
1958	md->disk->first_minor = minor;
1959	md->disk->fops = &dm_blk_dops;
1960	md->disk->queue = md->queue;
1961	md->disk->private_data = md;
1962	sprintf(md->disk->disk_name, "dm-%d", minor);
1963
1964	if (IS_ENABLED(CONFIG_DAX_DRIVER)) {
1965		md->dax_dev = alloc_dax(md, md->disk->disk_name,
1966					&dm_dax_ops, 0);
1967		if (IS_ERR(md->dax_dev))
1968			goto bad;
1969	}
1970
1971	add_disk_no_queue_reg(md->disk);
1972	format_dev_t(md->name, MKDEV(_major, minor));
1973
1974	md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
 
1975	if (!md->wq)
1976		goto bad;
1977
1978	md->bdev = bdget_disk(md->disk, 0);
1979	if (!md->bdev)
1980		goto bad;
1981
1982	dm_stats_init(&md->stats);
 
 
1983
1984	/* Populate the mapping, nobody knows we exist yet */
1985	spin_lock(&_minor_lock);
1986	old_md = idr_replace(&_minor_idr, md, minor);
1987	spin_unlock(&_minor_lock);
1988
1989	BUG_ON(old_md != MINOR_ALLOCED);
1990
1991	return md;
1992
1993bad:
1994	cleanup_mapped_device(md);
1995bad_io_barrier:
 
 
 
 
 
1996	free_minor(minor);
1997bad_minor:
1998	module_put(THIS_MODULE);
1999bad_module_get:
2000	kvfree(md);
2001	return NULL;
2002}
2003
2004static void unlock_fs(struct mapped_device *md);
2005
2006static void free_dev(struct mapped_device *md)
2007{
2008	int minor = MINOR(disk_devt(md->disk));
2009
2010	unlock_fs(md);
 
 
 
 
 
 
 
 
 
 
 
2011
2012	cleanup_mapped_device(md);
2013
2014	free_table_devices(&md->table_devices);
2015	dm_stats_cleanup(&md->stats);
2016	free_minor(minor);
2017
 
 
2018	module_put(THIS_MODULE);
2019	kvfree(md);
2020}
2021
2022static int __bind_mempools(struct mapped_device *md, struct dm_table *t)
2023{
2024	struct dm_md_mempools *p = dm_table_get_md_mempools(t);
2025	int ret = 0;
2026
2027	if (dm_table_bio_based(t)) {
2028		/*
2029		 * The md may already have mempools that need changing.
2030		 * If so, reload bioset because front_pad may have changed
2031		 * because a different table was loaded.
2032		 */
2033		bioset_exit(&md->bs);
2034		bioset_exit(&md->io_bs);
2035
2036	} else if (bioset_initialized(&md->bs)) {
2037		/*
2038		 * There's no need to reload with request-based dm
2039		 * because the size of front_pad doesn't change.
2040		 * Note for future: If you are to reload bioset,
2041		 * prep-ed requests in the queue may refer
2042		 * to bio from the old bioset, so you must walk
2043		 * through the queue to unprep.
2044		 */
2045		goto out;
2046	}
2047
2048	BUG_ON(!p ||
2049	       bioset_initialized(&md->bs) ||
2050	       bioset_initialized(&md->io_bs));
 
 
 
2051
2052	ret = bioset_init_from_src(&md->bs, &p->bs);
2053	if (ret)
2054		goto out;
2055	ret = bioset_init_from_src(&md->io_bs, &p->io_bs);
2056	if (ret)
2057		bioset_exit(&md->bs);
2058out:
2059	/* mempool bind completed, no longer need any mempools in the table */
2060	dm_table_free_md_mempools(t);
2061	return ret;
2062}
2063
2064/*
2065 * Bind a table to the device.
2066 */
2067static void event_callback(void *context)
2068{
2069	unsigned long flags;
2070	LIST_HEAD(uevents);
2071	struct mapped_device *md = (struct mapped_device *) context;
2072
2073	spin_lock_irqsave(&md->uevent_lock, flags);
2074	list_splice_init(&md->uevent_list, &uevents);
2075	spin_unlock_irqrestore(&md->uevent_lock, flags);
2076
2077	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2078
2079	atomic_inc(&md->event_nr);
2080	wake_up(&md->eventq);
2081	dm_issue_global_event();
2082}
2083
2084/*
2085 * Protected by md->suspend_lock obtained by dm_swap_table().
2086 */
2087static void __set_size(struct mapped_device *md, sector_t size)
2088{
2089	lockdep_assert_held(&md->suspend_lock);
2090
2091	set_capacity(md->disk, size);
2092
2093	i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2094}
2095
2096/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2097 * Returns old map, which caller must destroy.
2098 */
2099static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2100			       struct queue_limits *limits)
2101{
2102	struct dm_table *old_map;
2103	struct request_queue *q = md->queue;
2104	bool request_based = dm_table_request_based(t);
2105	sector_t size;
2106	int ret;
2107
2108	lockdep_assert_held(&md->suspend_lock);
2109
2110	size = dm_table_get_size(t);
2111
2112	/*
2113	 * Wipe any geometry if the size of the table changed.
2114	 */
2115	if (size != dm_get_size(md))
2116		memset(&md->geometry, 0, sizeof(md->geometry));
2117
2118	__set_size(md, size);
2119
2120	dm_table_event_callback(t, event_callback, md);
2121
2122	/*
2123	 * The queue hasn't been stopped yet, if the old table type wasn't
2124	 * for request-based during suspension.  So stop it to prevent
2125	 * I/O mapping before resume.
2126	 * This must be done before setting the queue restrictions,
2127	 * because request-based dm may be run just after the setting.
2128	 */
2129	if (request_based)
2130		dm_stop_queue(q);
2131
2132	if (request_based || md->type == DM_TYPE_NVME_BIO_BASED) {
2133		/*
2134		 * Leverage the fact that request-based DM targets and
2135		 * NVMe bio based targets are immutable singletons
2136		 * - used to optimize both dm_request_fn and dm_mq_queue_rq;
2137		 *   and __process_bio.
2138		 */
2139		md->immutable_target = dm_table_get_immutable_target(t);
2140	}
2141
2142	ret = __bind_mempools(md, t);
2143	if (ret) {
2144		old_map = ERR_PTR(ret);
2145		goto out;
2146	}
2147
2148	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2149	rcu_assign_pointer(md->map, (void *)t);
2150	md->immutable_target_type = dm_table_get_immutable_target_type(t);
2151
 
 
 
2152	dm_table_set_restrictions(t, q, limits);
2153	if (old_map)
2154		dm_sync_table(md);
 
 
 
2155
2156out:
2157	return old_map;
2158}
2159
2160/*
2161 * Returns unbound table for the caller to free.
2162 */
2163static struct dm_table *__unbind(struct mapped_device *md)
2164{
2165	struct dm_table *map = rcu_dereference_protected(md->map, 1);
 
2166
2167	if (!map)
2168		return NULL;
2169
2170	dm_table_event_callback(map, NULL, NULL);
2171	RCU_INIT_POINTER(md->map, NULL);
2172	dm_sync_table(md);
 
2173
2174	return map;
2175}
2176
2177/*
2178 * Constructor for a new device.
2179 */
2180int dm_create(int minor, struct mapped_device **result)
2181{
2182	int r;
2183	struct mapped_device *md;
2184
2185	md = alloc_dev(minor);
2186	if (!md)
2187		return -ENXIO;
2188
2189	r = dm_sysfs_init(md);
2190	if (r) {
2191		free_dev(md);
2192		return r;
2193	}
2194
2195	*result = md;
2196	return 0;
2197}
2198
2199/*
2200 * Functions to manage md->type.
2201 * All are required to hold md->type_lock.
2202 */
2203void dm_lock_md_type(struct mapped_device *md)
2204{
2205	mutex_lock(&md->type_lock);
2206}
2207
2208void dm_unlock_md_type(struct mapped_device *md)
2209{
2210	mutex_unlock(&md->type_lock);
2211}
2212
2213void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2214{
2215	BUG_ON(!mutex_is_locked(&md->type_lock));
2216	md->type = type;
2217}
2218
2219enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2220{
2221	return md->type;
2222}
2223
2224struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2225{
2226	return md->immutable_target_type;
2227}
2228
2229/*
2230 * The queue_limits are only valid as long as you have a reference
2231 * count on 'md'.
2232 */
2233struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2234{
2235	BUG_ON(!atomic_read(&md->holders));
2236	return &md->queue->limits;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2237}
2238EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2239
2240/*
2241 * Setup the DM device's queue based on md's type
2242 */
2243int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2244{
2245	int r;
2246	struct queue_limits limits;
2247	enum dm_queue_mode type = dm_get_md_type(md);
2248
2249	switch (type) {
2250	case DM_TYPE_REQUEST_BASED:
2251		r = dm_mq_init_request_queue(md, t);
2252		if (r) {
2253			DMERR("Cannot initialize queue for request-based dm-mq mapped device");
2254			return r;
2255		}
2256		break;
2257	case DM_TYPE_BIO_BASED:
2258	case DM_TYPE_DAX_BIO_BASED:
2259	case DM_TYPE_NVME_BIO_BASED:
2260		break;
2261	case DM_TYPE_NONE:
2262		WARN_ON_ONCE(true);
2263		break;
2264	}
2265
2266	r = dm_calculate_queue_limits(t, &limits);
2267	if (r) {
2268		DMERR("Cannot calculate initial queue limits");
2269		return r;
2270	}
2271	dm_table_set_restrictions(t, md->queue, &limits);
2272	blk_register_queue(md->disk);
2273
2274	return 0;
2275}
2276
2277struct mapped_device *dm_get_md(dev_t dev)
2278{
2279	struct mapped_device *md;
2280	unsigned minor = MINOR(dev);
2281
2282	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2283		return NULL;
2284
2285	spin_lock(&_minor_lock);
2286
2287	md = idr_find(&_minor_idr, minor);
2288	if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2289	    test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
 
 
2290		md = NULL;
2291		goto out;
2292	}
2293	dm_get(md);
2294out:
2295	spin_unlock(&_minor_lock);
2296
2297	return md;
2298}
2299EXPORT_SYMBOL_GPL(dm_get_md);
 
 
 
 
 
 
 
 
 
2300
2301void *dm_get_mdptr(struct mapped_device *md)
2302{
2303	return md->interface_ptr;
2304}
2305
2306void dm_set_mdptr(struct mapped_device *md, void *ptr)
2307{
2308	md->interface_ptr = ptr;
2309}
2310
2311void dm_get(struct mapped_device *md)
2312{
2313	atomic_inc(&md->holders);
2314	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2315}
2316
2317int dm_hold(struct mapped_device *md)
2318{
2319	spin_lock(&_minor_lock);
2320	if (test_bit(DMF_FREEING, &md->flags)) {
2321		spin_unlock(&_minor_lock);
2322		return -EBUSY;
2323	}
2324	dm_get(md);
2325	spin_unlock(&_minor_lock);
2326	return 0;
2327}
2328EXPORT_SYMBOL_GPL(dm_hold);
2329
2330const char *dm_device_name(struct mapped_device *md)
2331{
2332	return md->name;
2333}
2334EXPORT_SYMBOL_GPL(dm_device_name);
2335
2336static void __dm_destroy(struct mapped_device *md, bool wait)
2337{
2338	struct dm_table *map;
2339	int srcu_idx;
2340
2341	might_sleep();
2342
2343	spin_lock(&_minor_lock);
 
2344	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2345	set_bit(DMF_FREEING, &md->flags);
2346	spin_unlock(&_minor_lock);
2347
2348	blk_set_queue_dying(md->queue);
2349
2350	/*
2351	 * Take suspend_lock so that presuspend and postsuspend methods
2352	 * do not race with internal suspend.
2353	 */
2354	mutex_lock(&md->suspend_lock);
2355	map = dm_get_live_table(md, &srcu_idx);
2356	if (!dm_suspended_md(md)) {
2357		dm_table_presuspend_targets(map);
2358		set_bit(DMF_SUSPENDED, &md->flags);
2359		set_bit(DMF_POST_SUSPENDING, &md->flags);
2360		dm_table_postsuspend_targets(map);
2361	}
2362	/* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2363	dm_put_live_table(md, srcu_idx);
2364	mutex_unlock(&md->suspend_lock);
2365
2366	/*
2367	 * Rare, but there may be I/O requests still going to complete,
2368	 * for example.  Wait for all references to disappear.
2369	 * No one should increment the reference count of the mapped_device,
2370	 * after the mapped_device state becomes DMF_FREEING.
2371	 */
2372	if (wait)
2373		while (atomic_read(&md->holders))
2374			msleep(1);
2375	else if (atomic_read(&md->holders))
2376		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2377		       dm_device_name(md), atomic_read(&md->holders));
2378
2379	dm_sysfs_exit(md);
 
2380	dm_table_destroy(__unbind(md));
2381	free_dev(md);
2382}
2383
2384void dm_destroy(struct mapped_device *md)
2385{
2386	__dm_destroy(md, true);
2387}
2388
2389void dm_destroy_immediate(struct mapped_device *md)
2390{
2391	__dm_destroy(md, false);
2392}
2393
2394void dm_put(struct mapped_device *md)
2395{
2396	atomic_dec(&md->holders);
2397}
2398EXPORT_SYMBOL_GPL(dm_put);
2399
2400static bool md_in_flight_bios(struct mapped_device *md)
2401{
2402	int cpu;
2403	struct hd_struct *part = &dm_disk(md)->part0;
2404	long sum = 0;
2405
2406	for_each_possible_cpu(cpu) {
2407		sum += part_stat_local_read_cpu(part, in_flight[0], cpu);
2408		sum += part_stat_local_read_cpu(part, in_flight[1], cpu);
2409	}
2410
2411	return sum != 0;
2412}
2413
2414static int dm_wait_for_bios_completion(struct mapped_device *md, long task_state)
2415{
2416	int r = 0;
2417	DEFINE_WAIT(wait);
2418
2419	while (true) {
2420		prepare_to_wait(&md->wait, &wait, task_state);
2421
2422		if (!md_in_flight_bios(md))
 
2423			break;
2424
2425		if (signal_pending_state(task_state, current)) {
 
2426			r = -EINTR;
2427			break;
2428		}
2429
2430		io_schedule();
2431	}
2432	finish_wait(&md->wait, &wait);
2433
2434	return r;
2435}
2436
2437static int dm_wait_for_completion(struct mapped_device *md, long task_state)
2438{
2439	int r = 0;
2440
2441	if (!queue_is_mq(md->queue))
2442		return dm_wait_for_bios_completion(md, task_state);
2443
2444	while (true) {
2445		if (!blk_mq_queue_inflight(md->queue))
2446			break;
2447
2448		if (signal_pending_state(task_state, current)) {
2449			r = -EINTR;
2450			break;
2451		}
2452
2453		msleep(5);
2454	}
2455
2456	return r;
2457}
2458
2459/*
2460 * Process the deferred bios
2461 */
2462static void dm_wq_work(struct work_struct *work)
2463{
2464	struct mapped_device *md = container_of(work, struct mapped_device,
2465						work);
2466	struct bio *c;
2467	int srcu_idx;
2468	struct dm_table *map;
2469
2470	map = dm_get_live_table(md, &srcu_idx);
2471
2472	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2473		spin_lock_irq(&md->deferred_lock);
2474		c = bio_list_pop(&md->deferred);
2475		spin_unlock_irq(&md->deferred_lock);
2476
2477		if (!c)
2478			break;
2479
 
 
2480		if (dm_request_based(md))
2481			(void) submit_bio_noacct(c);
2482		else
2483			(void) dm_process_bio(md, map, c);
 
 
2484	}
2485
2486	dm_put_live_table(md, srcu_idx);
2487}
2488
2489static void dm_queue_flush(struct mapped_device *md)
2490{
2491	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2492	smp_mb__after_atomic();
2493	queue_work(md->wq, &md->work);
2494}
2495
2496/*
2497 * Swap in a new table, returning the old one for the caller to destroy.
2498 */
2499struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2500{
2501	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2502	struct queue_limits limits;
2503	int r;
2504
2505	mutex_lock(&md->suspend_lock);
2506
2507	/* device must be suspended */
2508	if (!dm_suspended_md(md))
2509		goto out;
2510
2511	/*
2512	 * If the new table has no data devices, retain the existing limits.
2513	 * This helps multipath with queue_if_no_path if all paths disappear,
2514	 * then new I/O is queued based on these limits, and then some paths
2515	 * reappear.
2516	 */
2517	if (dm_table_has_no_data_devices(table)) {
2518		live_map = dm_get_live_table_fast(md);
2519		if (live_map)
2520			limits = md->queue->limits;
2521		dm_put_live_table_fast(md);
2522	}
2523
2524	if (!live_map) {
2525		r = dm_calculate_queue_limits(table, &limits);
2526		if (r) {
2527			map = ERR_PTR(r);
2528			goto out;
2529		}
2530	}
2531
2532	map = __bind(md, table, &limits);
2533	dm_issue_global_event();
2534
2535out:
2536	mutex_unlock(&md->suspend_lock);
2537	return map;
2538}
2539
2540/*
2541 * Functions to lock and unlock any filesystem running on the
2542 * device.
2543 */
2544static int lock_fs(struct mapped_device *md)
2545{
2546	int r;
2547
2548	WARN_ON(md->frozen_sb);
2549
2550	md->frozen_sb = freeze_bdev(md->bdev);
2551	if (IS_ERR(md->frozen_sb)) {
2552		r = PTR_ERR(md->frozen_sb);
2553		md->frozen_sb = NULL;
2554		return r;
2555	}
2556
2557	set_bit(DMF_FROZEN, &md->flags);
2558
2559	return 0;
2560}
2561
2562static void unlock_fs(struct mapped_device *md)
2563{
2564	if (!test_bit(DMF_FROZEN, &md->flags))
2565		return;
2566
2567	thaw_bdev(md->bdev, md->frozen_sb);
2568	md->frozen_sb = NULL;
2569	clear_bit(DMF_FROZEN, &md->flags);
2570}
2571
2572/*
2573 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2574 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2575 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
 
 
 
 
 
 
 
 
 
2576 *
2577 * If __dm_suspend returns 0, the device is completely quiescent
2578 * now. There is no request-processing activity. All new requests
2579 * are being added to md->deferred list.
2580 */
2581static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2582			unsigned suspend_flags, long task_state,
2583			int dmf_suspended_flag)
2584{
2585	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2586	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2587	int r;
 
 
 
 
 
 
 
 
2588
2589	lockdep_assert_held(&md->suspend_lock);
2590
2591	/*
2592	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2593	 * This flag is cleared before dm_suspend returns.
2594	 */
2595	if (noflush)
2596		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2597	else
2598		DMDEBUG("%s: suspending with flush", dm_device_name(md));
2599
2600	/*
2601	 * This gets reverted if there's an error later and the targets
2602	 * provide the .presuspend_undo hook.
2603	 */
2604	dm_table_presuspend_targets(map);
2605
2606	/*
2607	 * Flush I/O to the device.
2608	 * Any I/O submitted after lock_fs() may not be flushed.
2609	 * noflush takes precedence over do_lockfs.
2610	 * (lock_fs() flushes I/Os and waits for them to complete.)
2611	 */
2612	if (!noflush && do_lockfs) {
2613		r = lock_fs(md);
2614		if (r) {
2615			dm_table_presuspend_undo_targets(map);
2616			return r;
2617		}
2618	}
2619
2620	/*
2621	 * Here we must make sure that no processes are submitting requests
2622	 * to target drivers i.e. no one may be executing
2623	 * __split_and_process_bio. This is called from dm_request and
2624	 * dm_wq_work.
2625	 *
2626	 * To get all processes out of __split_and_process_bio in dm_request,
2627	 * we take the write lock. To prevent any process from reentering
2628	 * __split_and_process_bio from dm_request and quiesce the thread
2629	 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2630	 * flush_workqueue(md->wq).
2631	 */
 
2632	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2633	if (map)
2634		synchronize_srcu(&md->io_barrier);
2635
2636	/*
2637	 * Stop md->queue before flushing md->wq in case request-based
2638	 * dm defers requests to md->wq from md->queue.
2639	 */
2640	if (dm_request_based(md))
2641		dm_stop_queue(md->queue);
2642
2643	flush_workqueue(md->wq);
2644
2645	/*
2646	 * At this point no more requests are entering target request routines.
2647	 * We call dm_wait_for_completion to wait for all existing requests
2648	 * to finish.
2649	 */
2650	r = dm_wait_for_completion(md, task_state);
2651	if (!r)
2652		set_bit(dmf_suspended_flag, &md->flags);
2653
 
2654	if (noflush)
2655		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2656	if (map)
2657		synchronize_srcu(&md->io_barrier);
2658
2659	/* were we interrupted ? */
2660	if (r < 0) {
2661		dm_queue_flush(md);
2662
2663		if (dm_request_based(md))
2664			dm_start_queue(md->queue);
2665
2666		unlock_fs(md);
2667		dm_table_presuspend_undo_targets(map);
2668		/* pushback list is already flushed, so skip flush */
2669	}
2670
2671	return r;
2672}
 
 
 
2673
2674/*
2675 * We need to be able to change a mapping table under a mounted
2676 * filesystem.  For example we might want to move some data in
2677 * the background.  Before the table can be swapped with
2678 * dm_bind_table, dm_suspend must be called to flush any in
2679 * flight bios and ensure that any further io gets deferred.
2680 */
2681/*
2682 * Suspend mechanism in request-based dm.
2683 *
2684 * 1. Flush all I/Os by lock_fs() if needed.
2685 * 2. Stop dispatching any I/O by stopping the request_queue.
2686 * 3. Wait for all in-flight I/Os to be completed or requeued.
2687 *
2688 * To abort suspend, start the request_queue.
2689 */
2690int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2691{
2692	struct dm_table *map = NULL;
2693	int r = 0;
2694
2695retry:
2696	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2697
2698	if (dm_suspended_md(md)) {
2699		r = -EINVAL;
2700		goto out_unlock;
2701	}
2702
2703	if (dm_suspended_internally_md(md)) {
2704		/* already internally suspended, wait for internal resume */
2705		mutex_unlock(&md->suspend_lock);
2706		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2707		if (r)
2708			return r;
2709		goto retry;
2710	}
2711
2712	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2713
2714	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2715	if (r)
2716		goto out_unlock;
2717
2718	set_bit(DMF_POST_SUSPENDING, &md->flags);
2719	dm_table_postsuspend_targets(map);
2720	clear_bit(DMF_POST_SUSPENDING, &md->flags);
2721
2722out_unlock:
2723	mutex_unlock(&md->suspend_lock);
2724	return r;
2725}
2726
2727static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2728{
2729	if (map) {
2730		int r = dm_table_resume_targets(map);
2731		if (r)
2732			return r;
2733	}
2734
2735	dm_queue_flush(md);
2736
2737	/*
2738	 * Flushing deferred I/Os must be done after targets are resumed
2739	 * so that mapping of targets can work correctly.
2740	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2741	 */
2742	if (dm_request_based(md))
2743		dm_start_queue(md->queue);
2744
2745	unlock_fs(md);
2746
2747	return 0;
2748}
2749
2750int dm_resume(struct mapped_device *md)
2751{
2752	int r;
2753	struct dm_table *map = NULL;
2754
2755retry:
2756	r = -EINVAL;
2757	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2758
2759	if (!dm_suspended_md(md))
2760		goto out;
2761
2762	if (dm_suspended_internally_md(md)) {
2763		/* already internally suspended, wait for internal resume */
2764		mutex_unlock(&md->suspend_lock);
2765		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2766		if (r)
2767			return r;
2768		goto retry;
2769	}
2770
2771	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2772	if (!map || !dm_table_get_size(map))
2773		goto out;
2774
2775	r = __dm_resume(md, map);
2776	if (r)
2777		goto out;
2778
2779	clear_bit(DMF_SUSPENDED, &md->flags);
2780out:
2781	mutex_unlock(&md->suspend_lock);
2782
2783	return r;
2784}
2785
2786/*
2787 * Internal suspend/resume works like userspace-driven suspend. It waits
2788 * until all bios finish and prevents issuing new bios to the target drivers.
2789 * It may be used only from the kernel.
2790 */
2791
2792static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2793{
2794	struct dm_table *map = NULL;
2795
2796	lockdep_assert_held(&md->suspend_lock);
2797
2798	if (md->internal_suspend_count++)
2799		return; /* nested internal suspend */
2800
2801	if (dm_suspended_md(md)) {
2802		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2803		return; /* nest suspend */
2804	}
2805
2806	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2807
2808	/*
2809	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2810	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
2811	 * would require changing .presuspend to return an error -- avoid this
2812	 * until there is a need for more elaborate variants of internal suspend.
2813	 */
2814	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2815			    DMF_SUSPENDED_INTERNALLY);
2816
2817	set_bit(DMF_POST_SUSPENDING, &md->flags);
2818	dm_table_postsuspend_targets(map);
2819	clear_bit(DMF_POST_SUSPENDING, &md->flags);
2820}
2821
2822static void __dm_internal_resume(struct mapped_device *md)
2823{
2824	BUG_ON(!md->internal_suspend_count);
2825
2826	if (--md->internal_suspend_count)
2827		return; /* resume from nested internal suspend */
2828
2829	if (dm_suspended_md(md))
2830		goto done; /* resume from nested suspend */
2831
2832	/*
2833	 * NOTE: existing callers don't need to call dm_table_resume_targets
2834	 * (which may fail -- so best to avoid it for now by passing NULL map)
2835	 */
2836	(void) __dm_resume(md, NULL);
2837
2838done:
2839	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2840	smp_mb__after_atomic();
2841	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2842}
2843
2844void dm_internal_suspend_noflush(struct mapped_device *md)
2845{
2846	mutex_lock(&md->suspend_lock);
2847	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2848	mutex_unlock(&md->suspend_lock);
2849}
2850EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2851
2852void dm_internal_resume(struct mapped_device *md)
2853{
2854	mutex_lock(&md->suspend_lock);
2855	__dm_internal_resume(md);
2856	mutex_unlock(&md->suspend_lock);
2857}
2858EXPORT_SYMBOL_GPL(dm_internal_resume);
2859
2860/*
2861 * Fast variants of internal suspend/resume hold md->suspend_lock,
2862 * which prevents interaction with userspace-driven suspend.
2863 */
2864
2865void dm_internal_suspend_fast(struct mapped_device *md)
2866{
2867	mutex_lock(&md->suspend_lock);
2868	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2869		return;
2870
2871	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2872	synchronize_srcu(&md->io_barrier);
2873	flush_workqueue(md->wq);
2874	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2875}
2876EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2877
2878void dm_internal_resume_fast(struct mapped_device *md)
2879{
2880	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2881		goto done;
2882
2883	dm_queue_flush(md);
2884
2885done:
2886	mutex_unlock(&md->suspend_lock);
2887}
2888EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2889
2890/*-----------------------------------------------------------------
2891 * Event notification.
2892 *---------------------------------------------------------------*/
2893int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2894		       unsigned cookie)
2895{
2896	int r;
2897	unsigned noio_flag;
2898	char udev_cookie[DM_COOKIE_LENGTH];
2899	char *envp[] = { udev_cookie, NULL };
2900
2901	noio_flag = memalloc_noio_save();
2902
2903	if (!cookie)
2904		r = kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2905	else {
2906		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2907			 DM_COOKIE_ENV_VAR_NAME, cookie);
2908		r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2909				       action, envp);
2910	}
2911
2912	memalloc_noio_restore(noio_flag);
2913
2914	return r;
2915}
2916
2917uint32_t dm_next_uevent_seq(struct mapped_device *md)
2918{
2919	return atomic_add_return(1, &md->uevent_seq);
2920}
2921
2922uint32_t dm_get_event_nr(struct mapped_device *md)
2923{
2924	return atomic_read(&md->event_nr);
2925}
2926
2927int dm_wait_event(struct mapped_device *md, int event_nr)
2928{
2929	return wait_event_interruptible(md->eventq,
2930			(event_nr != atomic_read(&md->event_nr)));
2931}
2932
2933void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2934{
2935	unsigned long flags;
2936
2937	spin_lock_irqsave(&md->uevent_lock, flags);
2938	list_add(elist, &md->uevent_list);
2939	spin_unlock_irqrestore(&md->uevent_lock, flags);
2940}
2941
2942/*
2943 * The gendisk is only valid as long as you have a reference
2944 * count on 'md'.
2945 */
2946struct gendisk *dm_disk(struct mapped_device *md)
2947{
2948	return md->disk;
2949}
2950EXPORT_SYMBOL_GPL(dm_disk);
2951
2952struct kobject *dm_kobject(struct mapped_device *md)
2953{
2954	return &md->kobj_holder.kobj;
2955}
2956
 
 
 
 
2957struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2958{
2959	struct mapped_device *md;
2960
2961	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
 
 
 
 
 
 
2962
2963	spin_lock(&_minor_lock);
2964	if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2965		md = NULL;
2966		goto out;
2967	}
2968	dm_get(md);
2969out:
2970	spin_unlock(&_minor_lock);
2971
2972	return md;
2973}
2974
2975int dm_suspended_md(struct mapped_device *md)
2976{
2977	return test_bit(DMF_SUSPENDED, &md->flags);
2978}
2979
2980static int dm_post_suspending_md(struct mapped_device *md)
2981{
2982	return test_bit(DMF_POST_SUSPENDING, &md->flags);
2983}
2984
2985int dm_suspended_internally_md(struct mapped_device *md)
2986{
2987	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2988}
2989
2990int dm_test_deferred_remove_flag(struct mapped_device *md)
2991{
2992	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2993}
2994
2995int dm_suspended(struct dm_target *ti)
2996{
2997	return dm_suspended_md(dm_table_get_md(ti->table));
2998}
2999EXPORT_SYMBOL_GPL(dm_suspended);
3000
3001int dm_post_suspending(struct dm_target *ti)
3002{
3003	return dm_post_suspending_md(dm_table_get_md(ti->table));
3004}
3005EXPORT_SYMBOL_GPL(dm_post_suspending);
3006
3007int dm_noflush_suspending(struct dm_target *ti)
3008{
3009	return __noflush_suspending(dm_table_get_md(ti->table));
3010}
3011EXPORT_SYMBOL_GPL(dm_noflush_suspending);
3012
3013struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type,
3014					    unsigned integrity, unsigned per_io_data_size,
3015					    unsigned min_pool_size)
3016{
3017	struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
3018	unsigned int pool_size = 0;
3019	unsigned int front_pad, io_front_pad;
3020	int ret;
3021
3022	if (!pools)
3023		return NULL;
3024
3025	switch (type) {
3026	case DM_TYPE_BIO_BASED:
3027	case DM_TYPE_DAX_BIO_BASED:
3028	case DM_TYPE_NVME_BIO_BASED:
3029		pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
3030		front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
3031		io_front_pad = roundup(front_pad,  __alignof__(struct dm_io)) + offsetof(struct dm_io, tio);
3032		ret = bioset_init(&pools->io_bs, pool_size, io_front_pad, 0);
3033		if (ret)
3034			goto out;
3035		if (integrity && bioset_integrity_create(&pools->io_bs, pool_size))
3036			goto out;
3037		break;
3038	case DM_TYPE_REQUEST_BASED:
3039		pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size);
3040		front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
3041		/* per_io_data_size is used for blk-mq pdu at queue allocation */
3042		break;
3043	default:
3044		BUG();
3045	}
3046
3047	ret = bioset_init(&pools->bs, pool_size, front_pad, 0);
3048	if (ret)
3049		goto out;
3050
3051	if (integrity && bioset_integrity_create(&pools->bs, pool_size))
3052		goto out;
3053
3054	return pools;
 
3055
3056out:
3057	dm_free_md_mempools(pools);
3058
3059	return NULL;
3060}
3061
3062void dm_free_md_mempools(struct dm_md_mempools *pools)
3063{
3064	if (!pools)
3065		return;
3066
3067	bioset_exit(&pools->bs);
3068	bioset_exit(&pools->io_bs);
3069
3070	kfree(pools);
3071}
3072
3073struct dm_pr {
3074	u64	old_key;
3075	u64	new_key;
3076	u32	flags;
3077	bool	fail_early;
3078};
3079
3080static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
3081		      void *data)
3082{
3083	struct mapped_device *md = bdev->bd_disk->private_data;
3084	struct dm_table *table;
3085	struct dm_target *ti;
3086	int ret = -ENOTTY, srcu_idx;
3087
3088	table = dm_get_live_table(md, &srcu_idx);
3089	if (!table || !dm_table_get_size(table))
3090		goto out;
3091
3092	/* We only support devices that have a single target */
3093	if (dm_table_get_num_targets(table) != 1)
3094		goto out;
3095	ti = dm_table_get_target(table, 0);
3096
3097	ret = -EINVAL;
3098	if (!ti->type->iterate_devices)
3099		goto out;
3100
3101	ret = ti->type->iterate_devices(ti, fn, data);
3102out:
3103	dm_put_live_table(md, srcu_idx);
3104	return ret;
3105}
3106
3107/*
3108 * For register / unregister we need to manually call out to every path.
3109 */
3110static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
3111			    sector_t start, sector_t len, void *data)
3112{
3113	struct dm_pr *pr = data;
3114	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3115
3116	if (!ops || !ops->pr_register)
3117		return -EOPNOTSUPP;
3118	return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
3119}
3120
3121static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3122			  u32 flags)
3123{
3124	struct dm_pr pr = {
3125		.old_key	= old_key,
3126		.new_key	= new_key,
3127		.flags		= flags,
3128		.fail_early	= true,
3129	};
3130	int ret;
3131
3132	ret = dm_call_pr(bdev, __dm_pr_register, &pr);
3133	if (ret && new_key) {
3134		/* unregister all paths if we failed to register any path */
3135		pr.old_key = new_key;
3136		pr.new_key = 0;
3137		pr.flags = 0;
3138		pr.fail_early = false;
3139		dm_call_pr(bdev, __dm_pr_register, &pr);
3140	}
3141
3142	return ret;
3143}
3144
3145static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3146			 u32 flags)
3147{
3148	struct mapped_device *md = bdev->bd_disk->private_data;
3149	const struct pr_ops *ops;
3150	int r, srcu_idx;
3151
3152	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3153	if (r < 0)
3154		goto out;
3155
3156	ops = bdev->bd_disk->fops->pr_ops;
3157	if (ops && ops->pr_reserve)
3158		r = ops->pr_reserve(bdev, key, type, flags);
3159	else
3160		r = -EOPNOTSUPP;
3161out:
3162	dm_unprepare_ioctl(md, srcu_idx);
3163	return r;
3164}
3165
3166static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3167{
3168	struct mapped_device *md = bdev->bd_disk->private_data;
3169	const struct pr_ops *ops;
3170	int r, srcu_idx;
3171
3172	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3173	if (r < 0)
3174		goto out;
3175
3176	ops = bdev->bd_disk->fops->pr_ops;
3177	if (ops && ops->pr_release)
3178		r = ops->pr_release(bdev, key, type);
3179	else
3180		r = -EOPNOTSUPP;
3181out:
3182	dm_unprepare_ioctl(md, srcu_idx);
3183	return r;
3184}
3185
3186static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3187			 enum pr_type type, bool abort)
3188{
3189	struct mapped_device *md = bdev->bd_disk->private_data;
3190	const struct pr_ops *ops;
3191	int r, srcu_idx;
3192
3193	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3194	if (r < 0)
3195		goto out;
3196
3197	ops = bdev->bd_disk->fops->pr_ops;
3198	if (ops && ops->pr_preempt)
3199		r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
3200	else
3201		r = -EOPNOTSUPP;
3202out:
3203	dm_unprepare_ioctl(md, srcu_idx);
3204	return r;
3205}
3206
3207static int dm_pr_clear(struct block_device *bdev, u64 key)
3208{
3209	struct mapped_device *md = bdev->bd_disk->private_data;
3210	const struct pr_ops *ops;
3211	int r, srcu_idx;
3212
3213	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3214	if (r < 0)
3215		goto out;
3216
3217	ops = bdev->bd_disk->fops->pr_ops;
3218	if (ops && ops->pr_clear)
3219		r = ops->pr_clear(bdev, key);
3220	else
3221		r = -EOPNOTSUPP;
3222out:
3223	dm_unprepare_ioctl(md, srcu_idx);
3224	return r;
3225}
3226
3227static const struct pr_ops dm_pr_ops = {
3228	.pr_register	= dm_pr_register,
3229	.pr_reserve	= dm_pr_reserve,
3230	.pr_release	= dm_pr_release,
3231	.pr_preempt	= dm_pr_preempt,
3232	.pr_clear	= dm_pr_clear,
3233};
3234
3235static const struct block_device_operations dm_blk_dops = {
3236	.submit_bio = dm_submit_bio,
3237	.open = dm_blk_open,
3238	.release = dm_blk_close,
3239	.ioctl = dm_blk_ioctl,
3240	.getgeo = dm_blk_getgeo,
3241	.report_zones = dm_blk_report_zones,
3242	.pr_ops = &dm_pr_ops,
3243	.owner = THIS_MODULE
3244};
3245
3246static const struct dax_operations dm_dax_ops = {
3247	.direct_access = dm_dax_direct_access,
3248	.dax_supported = dm_dax_supported,
3249	.copy_from_iter = dm_dax_copy_from_iter,
3250	.copy_to_iter = dm_dax_copy_to_iter,
3251	.zero_page_range = dm_dax_zero_page_range,
3252};
3253
3254/*
3255 * module hooks
3256 */
3257module_init(dm_init);
3258module_exit(dm_exit);
3259
3260module_param(major, uint, 0);
3261MODULE_PARM_DESC(major, "The major number of the device mapper");
3262
3263module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3264MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3265
3266module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
3267MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3268
3269MODULE_DESCRIPTION(DM_NAME " driver");
3270MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3271MODULE_LICENSE("GPL");