Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
   3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
   4 *
   5 * This file is released under the GPL.
   6 */
   7
   8#include "dm.h"
   9#include "dm-uevent.h"
  10
  11#include <linux/init.h>
  12#include <linux/module.h>
  13#include <linux/mutex.h>
  14#include <linux/moduleparam.h>
  15#include <linux/blkpg.h>
  16#include <linux/bio.h>
  17#include <linux/buffer_head.h>
  18#include <linux/mempool.h>
  19#include <linux/slab.h>
  20#include <linux/idr.h>
  21#include <linux/hdreg.h>
  22#include <linux/delay.h>
 
 
 
 
 
 
  23
  24#include <trace/events/block.h>
  25
  26#define DM_MSG_PREFIX "core"
  27
 
 
 
 
 
 
 
 
 
 
  28/*
  29 * Cookies are numeric values sent with CHANGE and REMOVE
  30 * uevents while resuming, removing or renaming the device.
  31 */
  32#define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
  33#define DM_COOKIE_LENGTH 24
  34
  35static const char *_name = DM_NAME;
  36
  37static unsigned int major = 0;
  38static unsigned int _major = 0;
  39
  40static DEFINE_IDR(_minor_idr);
  41
  42static DEFINE_SPINLOCK(_minor_lock);
 
 
 
 
 
 
 
  43/*
  44 * For bio-based dm.
  45 * One of these is allocated per bio.
  46 */
  47struct dm_io {
  48	struct mapped_device *md;
  49	int error;
  50	atomic_t io_count;
  51	struct bio *bio;
  52	unsigned long start_time;
  53	spinlock_t endio_lock;
  54};
  55
  56/*
  57 * For bio-based dm.
  58 * One of these is allocated per target within a bio.  Hopefully
  59 * this will be simplified out one day.
  60 */
  61struct dm_target_io {
  62	struct dm_io *io;
  63	struct dm_target *ti;
  64	union map_info info;
  65};
  66
  67/*
  68 * For request-based dm.
  69 * One of these is allocated per request.
  70 */
  71struct dm_rq_target_io {
  72	struct mapped_device *md;
  73	struct dm_target *ti;
  74	struct request *orig, clone;
 
  75	int error;
  76	union map_info info;
 
 
 
  77};
  78
  79/*
  80 * For request-based dm.
  81 * One of these is allocated per bio.
 
 
 
 
  82 */
  83struct dm_rq_clone_bio_info {
  84	struct bio *orig;
  85	struct dm_rq_target_io *tio;
 
  86};
  87
  88union map_info *dm_get_mapinfo(struct bio *bio)
  89{
  90	if (bio && bio->bi_private)
  91		return &((struct dm_target_io *)bio->bi_private)->info;
  92	return NULL;
  93}
  94
  95union map_info *dm_get_rq_mapinfo(struct request *rq)
  96{
  97	if (rq && rq->end_io_data)
  98		return &((struct dm_rq_target_io *)rq->end_io_data)->info;
  99	return NULL;
 100}
 101EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo);
 102
 103#define MINOR_ALLOCED ((void *)-1)
 104
 105/*
 106 * Bits for the md->flags field.
 107 */
 108#define DMF_BLOCK_IO_FOR_SUSPEND 0
 109#define DMF_SUSPENDED 1
 110#define DMF_FROZEN 2
 111#define DMF_FREEING 3
 112#define DMF_DELETING 4
 113#define DMF_NOFLUSH_SUSPENDING 5
 114#define DMF_MERGE_IS_OPTIONAL 6
 
 115
 116/*
 117 * Work processed by per-device workqueue.
 118 */
 119struct mapped_device {
 120	struct rw_semaphore io_lock;
 121	struct mutex suspend_lock;
 122	rwlock_t map_lock;
 123	atomic_t holders;
 124	atomic_t open_count;
 
 
 
 
 
 
 
 125
 126	unsigned long flags;
 127
 128	struct request_queue *queue;
 
 
 129	unsigned type;
 130	/* Protect queue and type against concurrent access. */
 131	struct mutex type_lock;
 132
 
 
 
 
 
 
 133	struct gendisk *disk;
 134	char name[16];
 135
 136	void *interface_ptr;
 137
 138	/*
 139	 * A list of ios that arrived while we were suspended.
 140	 */
 141	atomic_t pending[2];
 142	wait_queue_head_t wait;
 143	struct work_struct work;
 144	struct bio_list deferred;
 145	spinlock_t deferred_lock;
 
 146
 147	/*
 148	 * Processing queue (flush)
 149	 */
 150	struct workqueue_struct *wq;
 
 
 
 
 
 
 
 151
 152	/*
 153	 * The current mapping.
 154	 */
 155	struct dm_table *map;
 156
 157	/*
 158	 * io objects are allocated from here.
 159	 */
 160	mempool_t *io_pool;
 161	mempool_t *tio_pool;
 162
 163	struct bio_set *bs;
 164
 165	/*
 166	 * Event handling.
 167	 */
 168	atomic_t event_nr;
 169	wait_queue_head_t eventq;
 170	atomic_t uevent_seq;
 171	struct list_head uevent_list;
 172	spinlock_t uevent_lock; /* Protect access to uevent_list */
 173
 174	/*
 175	 * freeze/thaw support require holding onto a super block
 176	 */
 177	struct super_block *frozen_sb;
 178	struct block_device *bdev;
 179
 180	/* forced geometry settings */
 181	struct hd_geometry geometry;
 182
 183	/* For saving the address of __make_request for request based dm */
 184	make_request_fn *saved_make_request_fn;
 185
 186	/* sysfs handle */
 187	struct kobject kobj;
 188
 189	/* zero-length flush that will be cloned and submitted to targets */
 190	struct bio flush_bio;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 191};
 192
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 193/*
 194 * For mempools pre-allocation at the table loading time.
 195 */
 196struct dm_md_mempools {
 197	mempool_t *io_pool;
 198	mempool_t *tio_pool;
 199	struct bio_set *bs;
 200};
 201
 202#define MIN_IOS 256
 
 
 
 
 
 
 
 
 203static struct kmem_cache *_io_cache;
 204static struct kmem_cache *_tio_cache;
 205static struct kmem_cache *_rq_tio_cache;
 206static struct kmem_cache *_rq_bio_info_cache;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 207
 208static int __init local_init(void)
 209{
 210	int r = -ENOMEM;
 211
 212	/* allocate a slab for the dm_ios */
 213	_io_cache = KMEM_CACHE(dm_io, 0);
 214	if (!_io_cache)
 215		return r;
 216
 217	/* allocate a slab for the target ios */
 218	_tio_cache = KMEM_CACHE(dm_target_io, 0);
 219	if (!_tio_cache)
 220		goto out_free_io_cache;
 221
 222	_rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
 223	if (!_rq_tio_cache)
 224		goto out_free_tio_cache;
 225
 226	_rq_bio_info_cache = KMEM_CACHE(dm_rq_clone_bio_info, 0);
 227	if (!_rq_bio_info_cache)
 
 228		goto out_free_rq_tio_cache;
 229
 230	r = dm_uevent_init();
 231	if (r)
 232		goto out_free_rq_bio_info_cache;
 
 
 
 
 
 
 233
 234	_major = major;
 235	r = register_blkdev(_major, _name);
 236	if (r < 0)
 237		goto out_uevent_exit;
 238
 239	if (!_major)
 240		_major = r;
 241
 242	return 0;
 243
 
 
 244out_uevent_exit:
 245	dm_uevent_exit();
 246out_free_rq_bio_info_cache:
 247	kmem_cache_destroy(_rq_bio_info_cache);
 248out_free_rq_tio_cache:
 249	kmem_cache_destroy(_rq_tio_cache);
 250out_free_tio_cache:
 251	kmem_cache_destroy(_tio_cache);
 252out_free_io_cache:
 253	kmem_cache_destroy(_io_cache);
 254
 255	return r;
 256}
 257
 258static void local_exit(void)
 259{
 260	kmem_cache_destroy(_rq_bio_info_cache);
 
 
 
 261	kmem_cache_destroy(_rq_tio_cache);
 262	kmem_cache_destroy(_tio_cache);
 263	kmem_cache_destroy(_io_cache);
 264	unregister_blkdev(_major, _name);
 265	dm_uevent_exit();
 266
 267	_major = 0;
 268
 269	DMINFO("cleaned up");
 270}
 271
 272static int (*_inits[])(void) __initdata = {
 273	local_init,
 274	dm_target_init,
 275	dm_linear_init,
 276	dm_stripe_init,
 277	dm_io_init,
 278	dm_kcopyd_init,
 279	dm_interface_init,
 
 280};
 281
 282static void (*_exits[])(void) = {
 283	local_exit,
 284	dm_target_exit,
 285	dm_linear_exit,
 286	dm_stripe_exit,
 287	dm_io_exit,
 288	dm_kcopyd_exit,
 289	dm_interface_exit,
 
 290};
 291
 292static int __init dm_init(void)
 293{
 294	const int count = ARRAY_SIZE(_inits);
 295
 296	int r, i;
 297
 298	for (i = 0; i < count; i++) {
 299		r = _inits[i]();
 300		if (r)
 301			goto bad;
 302	}
 303
 304	return 0;
 305
 306      bad:
 307	while (i--)
 308		_exits[i]();
 309
 310	return r;
 311}
 312
 313static void __exit dm_exit(void)
 314{
 315	int i = ARRAY_SIZE(_exits);
 316
 317	while (i--)
 318		_exits[i]();
 319
 320	/*
 321	 * Should be empty by this point.
 322	 */
 323	idr_remove_all(&_minor_idr);
 324	idr_destroy(&_minor_idr);
 325}
 326
 327/*
 328 * Block device functions
 329 */
 330int dm_deleting_md(struct mapped_device *md)
 331{
 332	return test_bit(DMF_DELETING, &md->flags);
 333}
 334
 335static int dm_blk_open(struct block_device *bdev, fmode_t mode)
 336{
 337	struct mapped_device *md;
 338
 339	spin_lock(&_minor_lock);
 340
 341	md = bdev->bd_disk->private_data;
 342	if (!md)
 343		goto out;
 344
 345	if (test_bit(DMF_FREEING, &md->flags) ||
 346	    dm_deleting_md(md)) {
 347		md = NULL;
 348		goto out;
 349	}
 350
 351	dm_get(md);
 352	atomic_inc(&md->open_count);
 353
 354out:
 355	spin_unlock(&_minor_lock);
 356
 357	return md ? 0 : -ENXIO;
 358}
 359
 360static int dm_blk_close(struct gendisk *disk, fmode_t mode)
 361{
 362	struct mapped_device *md = disk->private_data;
 363
 364	spin_lock(&_minor_lock);
 365
 366	atomic_dec(&md->open_count);
 367	dm_put(md);
 
 368
 369	spin_unlock(&_minor_lock);
 
 
 370
 371	return 0;
 
 
 372}
 373
 374int dm_open_count(struct mapped_device *md)
 375{
 376	return atomic_read(&md->open_count);
 377}
 378
 379/*
 380 * Guarantees nothing is using the device before it's deleted.
 381 */
 382int dm_lock_for_deletion(struct mapped_device *md)
 383{
 384	int r = 0;
 385
 386	spin_lock(&_minor_lock);
 387
 388	if (dm_open_count(md))
 389		r = -EBUSY;
 
 
 
 
 390	else
 391		set_bit(DMF_DELETING, &md->flags);
 392
 393	spin_unlock(&_minor_lock);
 394
 395	return r;
 396}
 397
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 398static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
 399{
 400	struct mapped_device *md = bdev->bd_disk->private_data;
 401
 402	return dm_get_geometry(md, geo);
 403}
 404
 405static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
 406			unsigned int cmd, unsigned long arg)
 
 407{
 408	struct mapped_device *md = bdev->bd_disk->private_data;
 409	struct dm_table *map = dm_get_live_table(md);
 410	struct dm_target *tgt;
 411	int r = -ENOTTY;
 
 412
 
 
 
 413	if (!map || !dm_table_get_size(map))
 414		goto out;
 415
 416	/* We only support devices that have a single target */
 417	if (dm_table_get_num_targets(map) != 1)
 418		goto out;
 419
 420	tgt = dm_table_get_target(map, 0);
 
 
 421
 422	if (dm_suspended_md(md)) {
 423		r = -EAGAIN;
 424		goto out;
 425	}
 426
 427	if (tgt->type->ioctl)
 428		r = tgt->type->ioctl(tgt, cmd, arg);
 
 
 
 
 
 429
 430out:
 431	dm_table_put(map);
 
 
 
 
 
 
 432
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 433	return r;
 434}
 435
 436static struct dm_io *alloc_io(struct mapped_device *md)
 437{
 438	return mempool_alloc(md->io_pool, GFP_NOIO);
 439}
 440
 441static void free_io(struct mapped_device *md, struct dm_io *io)
 442{
 443	mempool_free(io, md->io_pool);
 444}
 445
 446static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
 447{
 448	mempool_free(tio, md->tio_pool);
 449}
 450
 451static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md,
 452					    gfp_t gfp_mask)
 453{
 454	return mempool_alloc(md->tio_pool, gfp_mask);
 455}
 456
 457static void free_rq_tio(struct dm_rq_target_io *tio)
 458{
 459	mempool_free(tio, tio->md->tio_pool);
 460}
 461
 462static struct dm_rq_clone_bio_info *alloc_bio_info(struct mapped_device *md)
 
 463{
 464	return mempool_alloc(md->io_pool, GFP_ATOMIC);
 465}
 466
 467static void free_bio_info(struct dm_rq_clone_bio_info *info)
 468{
 469	mempool_free(info, info->tio->md->io_pool);
 470}
 471
 472static int md_in_flight(struct mapped_device *md)
 473{
 474	return atomic_read(&md->pending[READ]) +
 475	       atomic_read(&md->pending[WRITE]);
 476}
 477
 478static void start_io_acct(struct dm_io *io)
 479{
 480	struct mapped_device *md = io->md;
 
 481	int cpu;
 482	int rw = bio_data_dir(io->bio);
 483
 484	io->start_time = jiffies;
 485
 486	cpu = part_stat_lock();
 487	part_round_stats(cpu, &dm_disk(md)->part0);
 488	part_stat_unlock();
 489	atomic_set(&dm_disk(md)->part0.in_flight[rw],
 490		atomic_inc_return(&md->pending[rw]));
 
 
 
 
 491}
 492
 493static void end_io_acct(struct dm_io *io)
 494{
 495	struct mapped_device *md = io->md;
 496	struct bio *bio = io->bio;
 497	unsigned long duration = jiffies - io->start_time;
 498	int pending, cpu;
 499	int rw = bio_data_dir(bio);
 500
 501	cpu = part_stat_lock();
 502	part_round_stats(cpu, &dm_disk(md)->part0);
 503	part_stat_add(cpu, &dm_disk(md)->part0, ticks[rw], duration);
 504	part_stat_unlock();
 
 505
 506	/*
 507	 * After this is decremented the bio must not be touched if it is
 508	 * a flush.
 509	 */
 510	pending = atomic_dec_return(&md->pending[rw]);
 511	atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
 512	pending += atomic_read(&md->pending[rw^0x1]);
 513
 514	/* nudge anyone waiting on suspend queue */
 515	if (!pending)
 516		wake_up(&md->wait);
 517}
 518
 519/*
 520 * Add the bio to the list of deferred io.
 521 */
 522static void queue_io(struct mapped_device *md, struct bio *bio)
 523{
 524	unsigned long flags;
 525
 526	spin_lock_irqsave(&md->deferred_lock, flags);
 527	bio_list_add(&md->deferred, bio);
 528	spin_unlock_irqrestore(&md->deferred_lock, flags);
 529	queue_work(md->wq, &md->work);
 530}
 531
 532/*
 533 * Everyone (including functions in this file), should use this
 534 * function to access the md->map field, and make sure they call
 535 * dm_table_put() when finished.
 536 */
 537struct dm_table *dm_get_live_table(struct mapped_device *md)
 538{
 539	struct dm_table *t;
 540	unsigned long flags;
 
 
 
 
 
 
 
 
 
 
 
 
 
 541
 542	read_lock_irqsave(&md->map_lock, flags);
 543	t = md->map;
 544	if (t)
 545		dm_table_get(t);
 546	read_unlock_irqrestore(&md->map_lock, flags);
 
 
 
 
 547
 548	return t;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 549}
 550
 551/*
 552 * Get the geometry associated with a dm device
 553 */
 554int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
 555{
 556	*geo = md->geometry;
 557
 558	return 0;
 559}
 560
 561/*
 562 * Set the geometry of a device.
 563 */
 564int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
 565{
 566	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
 567
 568	if (geo->start > sz) {
 569		DMWARN("Start sector is beyond the geometry limits.");
 570		return -EINVAL;
 571	}
 572
 573	md->geometry = *geo;
 574
 575	return 0;
 576}
 577
 578/*-----------------------------------------------------------------
 579 * CRUD START:
 580 *   A more elegant soln is in the works that uses the queue
 581 *   merge fn, unfortunately there are a couple of changes to
 582 *   the block layer that I want to make for this.  So in the
 583 *   interests of getting something for people to use I give
 584 *   you this clearly demarcated crap.
 585 *---------------------------------------------------------------*/
 586
 587static int __noflush_suspending(struct mapped_device *md)
 588{
 589	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
 590}
 591
 592/*
 593 * Decrements the number of outstanding ios that a bio has been
 594 * cloned into, completing the original io if necc.
 595 */
 596static void dec_pending(struct dm_io *io, int error)
 597{
 598	unsigned long flags;
 599	int io_error;
 600	struct bio *bio;
 601	struct mapped_device *md = io->md;
 602
 603	/* Push-back supersedes any I/O errors */
 604	if (unlikely(error)) {
 605		spin_lock_irqsave(&io->endio_lock, flags);
 606		if (!(io->error > 0 && __noflush_suspending(md)))
 607			io->error = error;
 608		spin_unlock_irqrestore(&io->endio_lock, flags);
 609	}
 610
 611	if (atomic_dec_and_test(&io->io_count)) {
 612		if (io->error == DM_ENDIO_REQUEUE) {
 613			/*
 614			 * Target requested pushing back the I/O.
 615			 */
 616			spin_lock_irqsave(&md->deferred_lock, flags);
 617			if (__noflush_suspending(md))
 618				bio_list_add_head(&md->deferred, io->bio);
 619			else
 620				/* noflush suspend was interrupted. */
 621				io->error = -EIO;
 622			spin_unlock_irqrestore(&md->deferred_lock, flags);
 623		}
 624
 625		io_error = io->error;
 626		bio = io->bio;
 627		end_io_acct(io);
 628		free_io(md, io);
 629
 630		if (io_error == DM_ENDIO_REQUEUE)
 631			return;
 632
 633		if ((bio->bi_rw & REQ_FLUSH) && bio->bi_size) {
 634			/*
 635			 * Preflush done for flush with data, reissue
 636			 * without REQ_FLUSH.
 637			 */
 638			bio->bi_rw &= ~REQ_FLUSH;
 639			queue_io(md, bio);
 640		} else {
 641			/* done with normal IO or empty flush */
 642			trace_block_bio_complete(md->queue, bio, io_error);
 643			bio_endio(bio, io_error);
 
 644		}
 645	}
 646}
 647
 648static void clone_endio(struct bio *bio, int error)
 649{
 650	int r = 0;
 651	struct dm_target_io *tio = bio->bi_private;
 
 
 
 
 
 
 
 
 
 652	struct dm_io *io = tio->io;
 653	struct mapped_device *md = tio->io->md;
 654	dm_endio_fn endio = tio->ti->type->end_io;
 655
 656	if (!bio_flagged(bio, BIO_UPTODATE) && !error)
 657		error = -EIO;
 658
 659	if (endio) {
 660		r = endio(tio->ti, bio, error, &tio->info);
 661		if (r < 0 || r == DM_ENDIO_REQUEUE)
 662			/*
 663			 * error and requeue request are handled
 664			 * in dec_pending().
 665			 */
 666			error = r;
 667		else if (r == DM_ENDIO_INCOMPLETE)
 668			/* The target will handle the io */
 669			return;
 670		else if (r) {
 671			DMWARN("unimplemented target endio return value: %d", r);
 672			BUG();
 673		}
 674	}
 675
 676	/*
 677	 * Store md for cleanup instead of tio which is about to get freed.
 678	 */
 679	bio->bi_private = md->bs;
 680
 681	free_tio(md, tio);
 682	bio_put(bio);
 683	dec_pending(io, error);
 684}
 685
 686/*
 687 * Partial completion handling for request-based dm
 688 */
 689static void end_clone_bio(struct bio *clone, int error)
 690{
 691	struct dm_rq_clone_bio_info *info = clone->bi_private;
 
 692	struct dm_rq_target_io *tio = info->tio;
 693	struct bio *bio = info->orig;
 694	unsigned int nr_bytes = info->orig->bi_size;
 
 695
 696	bio_put(clone);
 697
 698	if (tio->error)
 699		/*
 700		 * An error has already been detected on the request.
 701		 * Once error occurred, just let clone->end_io() handle
 702		 * the remainder.
 703		 */
 704		return;
 705	else if (error) {
 706		/*
 707		 * Don't notice the error to the upper layer yet.
 708		 * The error handling decision is made by the target driver,
 709		 * when the request is completed.
 710		 */
 711		tio->error = error;
 712		return;
 713	}
 714
 715	/*
 716	 * I/O for the bio successfully completed.
 717	 * Notice the data completion to the upper layer.
 718	 */
 719
 720	/*
 721	 * bios are processed from the head of the list.
 722	 * So the completing bio should always be rq->bio.
 723	 * If it's not, something wrong is happening.
 724	 */
 725	if (tio->orig->bio != bio)
 726		DMERR("bio completion is going in the middle of the request");
 727
 728	/*
 729	 * Update the original request.
 730	 * Do not use blk_end_request() here, because it may complete
 731	 * the original request before the clone, and break the ordering.
 732	 */
 733	blk_update_request(tio->orig, 0, nr_bytes);
 734}
 735
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 736/*
 737 * Don't touch any member of the md after calling this function because
 738 * the md may be freed in dm_put() at the end of this function.
 739 * Or do dm_get() before calling this function and dm_put() later.
 740 */
 741static void rq_completed(struct mapped_device *md, int rw, int run_queue)
 742{
 743	atomic_dec(&md->pending[rw]);
 744
 745	/* nudge anyone waiting on suspend queue */
 746	if (!md_in_flight(md))
 747		wake_up(&md->wait);
 748
 749	if (run_queue)
 750		blk_run_queue(md->queue);
 
 
 
 
 
 
 751
 752	/*
 753	 * dm_put() must be at the end of this function. See the comment above
 754	 */
 755	dm_put(md);
 756}
 757
 758static void free_rq_clone(struct request *clone)
 759{
 760	struct dm_rq_target_io *tio = clone->end_io_data;
 
 761
 762	blk_rq_unprep_clone(clone);
 763	free_rq_tio(tio);
 
 
 
 
 
 
 
 
 
 764}
 765
 766/*
 767 * Complete the clone and the original request.
 768 * Must be called without queue lock.
 
 769 */
 770static void dm_end_request(struct request *clone, int error)
 771{
 772	int rw = rq_data_dir(clone);
 773	struct dm_rq_target_io *tio = clone->end_io_data;
 774	struct mapped_device *md = tio->md;
 775	struct request *rq = tio->orig;
 776
 777	if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
 778		rq->errors = clone->errors;
 779		rq->resid_len = clone->resid_len;
 780
 781		if (rq->sense)
 782			/*
 783			 * We are using the sense buffer of the original
 784			 * request.
 785			 * So setting the length of the sense data is enough.
 786			 */
 787			rq->sense_len = clone->sense_len;
 788	}
 789
 790	free_rq_clone(clone);
 791	blk_end_request_all(rq, error);
 
 
 
 
 792	rq_completed(md, rw, true);
 793}
 794
 795static void dm_unprep_request(struct request *rq)
 796{
 797	struct request *clone = rq->special;
 
 798
 799	rq->special = NULL;
 800	rq->cmd_flags &= ~REQ_DONTPREP;
 
 
 801
 802	free_rq_clone(clone);
 
 
 
 803}
 804
 805/*
 806 * Requeue the original request of a clone.
 807 */
 808void dm_requeue_unmapped_request(struct request *clone)
 809{
 810	int rw = rq_data_dir(clone);
 811	struct dm_rq_target_io *tio = clone->end_io_data;
 812	struct mapped_device *md = tio->md;
 813	struct request *rq = tio->orig;
 814	struct request_queue *q = rq->q;
 815	unsigned long flags;
 816
 817	dm_unprep_request(rq);
 818
 819	spin_lock_irqsave(q->queue_lock, flags);
 820	blk_requeue_request(q, rq);
 
 821	spin_unlock_irqrestore(q->queue_lock, flags);
 
 
 
 
 
 
 822
 823	rq_completed(md, rw, 0);
 
 
 
 
 824}
 825EXPORT_SYMBOL_GPL(dm_requeue_unmapped_request);
 826
 827static void __stop_queue(struct request_queue *q)
 
 828{
 829	blk_stop_queue(q);
 
 
 
 
 
 
 
 
 
 
 830}
 831
 832static void stop_queue(struct request_queue *q)
 833{
 834	unsigned long flags;
 835
 836	spin_lock_irqsave(q->queue_lock, flags);
 837	__stop_queue(q);
 
 
 
 
 
 838	spin_unlock_irqrestore(q->queue_lock, flags);
 839}
 840
 841static void __start_queue(struct request_queue *q)
 842{
 843	if (blk_queue_stopped(q))
 844		blk_start_queue(q);
 
 
 845}
 846
 847static void start_queue(struct request_queue *q)
 848{
 849	unsigned long flags;
 850
 851	spin_lock_irqsave(q->queue_lock, flags);
 852	__start_queue(q);
 
 853	spin_unlock_irqrestore(q->queue_lock, flags);
 854}
 855
 
 
 
 
 
 
 
 
 
 
 856static void dm_done(struct request *clone, int error, bool mapped)
 857{
 858	int r = error;
 859	struct dm_rq_target_io *tio = clone->end_io_data;
 860	dm_request_endio_fn rq_end_io = tio->ti->type->rq_end_io;
 861
 862	if (mapped && rq_end_io)
 863		r = rq_end_io(tio->ti, clone, error, &tio->info);
 
 
 
 
 
 
 
 
 864
 865	if (r <= 0)
 866		/* The target wants to complete the I/O */
 867		dm_end_request(clone, r);
 868	else if (r == DM_ENDIO_INCOMPLETE)
 869		/* The target will handle the I/O */
 870		return;
 871	else if (r == DM_ENDIO_REQUEUE)
 872		/* The target wants to requeue the I/O */
 873		dm_requeue_unmapped_request(clone);
 874	else {
 875		DMWARN("unimplemented target endio return value: %d", r);
 876		BUG();
 877	}
 878}
 879
 880/*
 881 * Request completion handler for request-based dm
 882 */
 883static void dm_softirq_done(struct request *rq)
 884{
 885	bool mapped = true;
 886	struct request *clone = rq->completion_data;
 887	struct dm_rq_target_io *tio = clone->end_io_data;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 888
 889	if (rq->cmd_flags & REQ_FAILED)
 890		mapped = false;
 891
 892	dm_done(clone, tio->error, mapped);
 893}
 894
 895/*
 896 * Complete the clone and the original request with the error status
 897 * through softirq context.
 898 */
 899static void dm_complete_request(struct request *clone, int error)
 900{
 901	struct dm_rq_target_io *tio = clone->end_io_data;
 902	struct request *rq = tio->orig;
 903
 904	tio->error = error;
 905	rq->completion_data = clone;
 906	blk_complete_request(rq);
 
 
 907}
 908
 909/*
 910 * Complete the not-mapped clone and the original request with the error status
 911 * through softirq context.
 912 * Target's rq_end_io() function isn't called.
 913 * This may be used when the target's map_rq() function fails.
 914 */
 915void dm_kill_unmapped_request(struct request *clone, int error)
 916{
 917	struct dm_rq_target_io *tio = clone->end_io_data;
 918	struct request *rq = tio->orig;
 919
 920	rq->cmd_flags |= REQ_FAILED;
 921	dm_complete_request(clone, error);
 922}
 923EXPORT_SYMBOL_GPL(dm_kill_unmapped_request);
 924
 925/*
 926 * Called with the queue lock held
 927 */
 928static void end_clone_request(struct request *clone, int error)
 929{
 930	/*
 931	 * For just cleaning up the information of the queue in which
 932	 * the clone was dispatched.
 933	 * The clone is *NOT* freed actually here because it is alloced from
 934	 * dm own mempool and REQ_ALLOCED isn't set in clone->cmd_flags.
 935	 */
 936	__blk_put_request(clone->q, clone);
 
 
 
 
 937
 938	/*
 939	 * Actual request completion is done in a softirq context which doesn't
 940	 * hold the queue lock.  Otherwise, deadlock could occur because:
 941	 *     - another request may be submitted by the upper level driver
 942	 *       of the stacking during the completion
 943	 *     - the submission which requires queue lock may be done
 944	 *       against this queue
 945	 */
 946	dm_complete_request(clone, error);
 947}
 948
 949/*
 950 * Return maximum size of I/O possible at the supplied sector up to the current
 951 * target boundary.
 952 */
 953static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
 954{
 955	sector_t target_offset = dm_target_offset(ti, sector);
 956
 957	return ti->len - target_offset;
 958}
 959
 960static sector_t max_io_len(sector_t sector, struct dm_target *ti)
 961{
 962	sector_t len = max_io_len_target_boundary(sector, ti);
 
 963
 964	/*
 965	 * Does the target need to split even further ?
 966	 */
 967	if (ti->split_io) {
 968		sector_t boundary;
 969		sector_t offset = dm_target_offset(ti, sector);
 970		boundary = ((offset + ti->split_io) & ~(ti->split_io - 1))
 971			   - offset;
 972		if (len > boundary)
 973			len = boundary;
 
 
 
 974	}
 975
 976	return len;
 977}
 978
 979static void __map_bio(struct dm_target *ti, struct bio *clone,
 980		      struct dm_target_io *tio)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 981{
 982	int r;
 983	sector_t sector;
 984	struct mapped_device *md;
 
 
 985
 986	clone->bi_end_io = clone_endio;
 987	clone->bi_private = tio;
 988
 989	/*
 990	 * Map the clone.  If r == 0 we don't need to do
 991	 * anything, the target has assumed ownership of
 992	 * this io.
 993	 */
 994	atomic_inc(&tio->io->io_count);
 995	sector = clone->bi_sector;
 996	r = ti->type->map(ti, clone, &tio->info);
 997	if (r == DM_MAPIO_REMAPPED) {
 998		/* the bio has been remapped so dispatch it */
 999
1000		trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone,
1001				      tio->io->bio->bi_bdev->bd_dev, sector);
1002
1003		generic_make_request(clone);
1004	} else if (r < 0 || r == DM_MAPIO_REQUEUE) {
1005		/* error the io and bail out, or requeue it if needed */
1006		md = tio->io->md;
1007		dec_pending(tio->io, r);
1008		/*
1009		 * Store bio_set for cleanup.
1010		 */
1011		clone->bi_private = md->bs;
1012		bio_put(clone);
1013		free_tio(md, tio);
1014	} else if (r) {
1015		DMWARN("unimplemented target map return value: %d", r);
1016		BUG();
1017	}
1018}
1019
1020struct clone_info {
1021	struct mapped_device *md;
1022	struct dm_table *map;
1023	struct bio *bio;
1024	struct dm_io *io;
1025	sector_t sector;
1026	sector_t sector_count;
1027	unsigned short idx;
1028};
1029
1030static void dm_bio_destructor(struct bio *bio)
1031{
1032	struct bio_set *bs = bio->bi_private;
1033
1034	bio_free(bio, bs);
1035}
1036
1037/*
1038 * Creates a little bio that just does part of a bvec.
1039 */
1040static struct bio *split_bvec(struct bio *bio, sector_t sector,
1041			      unsigned short idx, unsigned int offset,
1042			      unsigned int len, struct bio_set *bs)
1043{
1044	struct bio *clone;
1045	struct bio_vec *bv = bio->bi_io_vec + idx;
1046
1047	clone = bio_alloc_bioset(GFP_NOIO, 1, bs);
1048	clone->bi_destructor = dm_bio_destructor;
1049	*clone->bi_io_vec = *bv;
1050
1051	clone->bi_sector = sector;
1052	clone->bi_bdev = bio->bi_bdev;
1053	clone->bi_rw = bio->bi_rw;
1054	clone->bi_vcnt = 1;
1055	clone->bi_size = to_bytes(len);
1056	clone->bi_io_vec->bv_offset = offset;
1057	clone->bi_io_vec->bv_len = clone->bi_size;
1058	clone->bi_flags |= 1 << BIO_CLONED;
1059
1060	if (bio_integrity(bio)) {
1061		bio_integrity_clone(clone, bio, GFP_NOIO, bs);
1062		bio_integrity_trim(clone,
1063				   bio_sector_offset(bio, idx, offset), len);
1064	}
1065
1066	return clone;
1067}
1068
1069/*
1070 * Creates a bio that consists of range of complete bvecs.
1071 */
1072static struct bio *clone_bio(struct bio *bio, sector_t sector,
1073			     unsigned short idx, unsigned short bv_count,
1074			     unsigned int len, struct bio_set *bs)
1075{
1076	struct bio *clone;
1077
1078	clone = bio_alloc_bioset(GFP_NOIO, bio->bi_max_vecs, bs);
1079	__bio_clone(clone, bio);
1080	clone->bi_destructor = dm_bio_destructor;
1081	clone->bi_sector = sector;
1082	clone->bi_idx = idx;
1083	clone->bi_vcnt = idx + bv_count;
1084	clone->bi_size = to_bytes(len);
1085	clone->bi_flags &= ~(1 << BIO_SEG_VALID);
1086
1087	if (bio_integrity(bio)) {
1088		bio_integrity_clone(clone, bio, GFP_NOIO, bs);
1089
1090		if (idx != bio->bi_idx || clone->bi_size < bio->bi_size)
1091			bio_integrity_trim(clone,
1092					   bio_sector_offset(bio, idx, 0), len);
1093	}
1094
1095	return clone;
1096}
1097
1098static struct dm_target_io *alloc_tio(struct clone_info *ci,
1099				      struct dm_target *ti)
 
1100{
1101	struct dm_target_io *tio = mempool_alloc(ci->md->tio_pool, GFP_NOIO);
 
 
 
 
1102
1103	tio->io = ci->io;
1104	tio->ti = ti;
1105	memset(&tio->info, 0, sizeof(tio->info));
1106
1107	return tio;
1108}
1109
1110static void __issue_target_request(struct clone_info *ci, struct dm_target *ti,
1111				   unsigned request_nr, sector_t len)
 
1112{
1113	struct dm_target_io *tio = alloc_tio(ci, ti);
1114	struct bio *clone;
1115
1116	tio->info.target_request_nr = request_nr;
1117
1118	/*
1119	 * Discard requests require the bio's inline iovecs be initialized.
1120	 * ci->bio->bi_max_vecs is BIO_INLINE_VECS anyway, for both flush
1121	 * and discard, so no need for concern about wasted bvec allocations.
1122	 */
1123	clone = bio_alloc_bioset(GFP_NOIO, ci->bio->bi_max_vecs, ci->md->bs);
1124	__bio_clone(clone, ci->bio);
1125	clone->bi_destructor = dm_bio_destructor;
1126	if (len) {
1127		clone->bi_sector = ci->sector;
1128		clone->bi_size = to_bytes(len);
1129	}
1130
1131	__map_bio(ti, clone, tio);
1132}
1133
1134static void __issue_target_requests(struct clone_info *ci, struct dm_target *ti,
1135				    unsigned num_requests, sector_t len)
1136{
1137	unsigned request_nr;
1138
1139	for (request_nr = 0; request_nr < num_requests; request_nr++)
1140		__issue_target_request(ci, ti, request_nr, len);
1141}
1142
1143static int __clone_and_map_empty_flush(struct clone_info *ci)
1144{
1145	unsigned target_nr = 0;
1146	struct dm_target *ti;
1147
1148	BUG_ON(bio_has_data(ci->bio));
1149	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1150		__issue_target_requests(ci, ti, ti->num_flush_requests, 0);
1151
1152	return 0;
1153}
1154
1155/*
1156 * Perform all io with a single clone.
1157 */
1158static void __clone_and_map_simple(struct clone_info *ci, struct dm_target *ti)
1159{
1160	struct bio *clone, *bio = ci->bio;
1161	struct dm_target_io *tio;
 
 
 
1162
1163	tio = alloc_tio(ci, ti);
1164	clone = clone_bio(bio, ci->sector, ci->idx,
1165			  bio->bi_vcnt - ci->idx, ci->sector_count,
1166			  ci->md->bs);
1167	__map_bio(ti, clone, tio);
1168	ci->sector_count = 0;
 
 
 
 
 
 
 
 
 
 
 
 
1169}
1170
1171static int __clone_and_map_discard(struct clone_info *ci)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1172{
1173	struct dm_target *ti;
1174	sector_t len;
 
1175
1176	do {
1177		ti = dm_table_find_target(ci->map, ci->sector);
1178		if (!dm_target_is_valid(ti))
1179			return -EIO;
1180
1181		/*
1182		 * Even though the device advertised discard support,
1183		 * that does not mean every target supports it, and
1184		 * reconfiguration might also have changed that since the
1185		 * check was performed.
1186		 */
1187		if (!ti->num_discard_requests)
 
1188			return -EOPNOTSUPP;
1189
1190		len = min(ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
 
 
 
1191
1192		__issue_target_requests(ci, ti, ti->num_discard_requests, len);
1193
1194		ci->sector += len;
1195	} while (ci->sector_count -= len);
1196
1197	return 0;
1198}
1199
1200static int __clone_and_map(struct clone_info *ci)
 
 
 
 
 
 
1201{
1202	struct bio *clone, *bio = ci->bio;
 
 
 
 
 
 
 
 
1203	struct dm_target *ti;
1204	sector_t len = 0, max;
1205	struct dm_target_io *tio;
1206
1207	if (unlikely(bio->bi_rw & REQ_DISCARD))
1208		return __clone_and_map_discard(ci);
 
 
1209
1210	ti = dm_table_find_target(ci->map, ci->sector);
1211	if (!dm_target_is_valid(ti))
1212		return -EIO;
1213
1214	max = max_io_len(ci->sector, ti);
1215
1216	if (ci->sector_count <= max) {
1217		/*
1218		 * Optimise for the simple case where we can do all of
1219		 * the remaining io with a single clone.
1220		 */
1221		__clone_and_map_simple(ci, ti);
1222
1223	} else if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) {
1224		/*
1225		 * There are some bvecs that don't span targets.
1226		 * Do as many of these as possible.
1227		 */
1228		int i;
1229		sector_t remaining = max;
1230		sector_t bv_len;
1231
1232		for (i = ci->idx; remaining && (i < bio->bi_vcnt); i++) {
1233			bv_len = to_sector(bio->bi_io_vec[i].bv_len);
1234
1235			if (bv_len > remaining)
1236				break;
1237
1238			remaining -= bv_len;
1239			len += bv_len;
1240		}
1241
1242		tio = alloc_tio(ci, ti);
1243		clone = clone_bio(bio, ci->sector, ci->idx, i - ci->idx, len,
1244				  ci->md->bs);
1245		__map_bio(ti, clone, tio);
1246
1247		ci->sector += len;
1248		ci->sector_count -= len;
1249		ci->idx = i;
1250
1251	} else {
1252		/*
1253		 * Handle a bvec that must be split between two or more targets.
1254		 */
1255		struct bio_vec *bv = bio->bi_io_vec + ci->idx;
1256		sector_t remaining = to_sector(bv->bv_len);
1257		unsigned int offset = 0;
1258
1259		do {
1260			if (offset) {
1261				ti = dm_table_find_target(ci->map, ci->sector);
1262				if (!dm_target_is_valid(ti))
1263					return -EIO;
1264
1265				max = max_io_len(ci->sector, ti);
1266			}
1267
1268			len = min(remaining, max);
1269
1270			tio = alloc_tio(ci, ti);
1271			clone = split_bvec(bio, ci->sector, ci->idx,
1272					   bv->bv_offset + offset, len,
1273					   ci->md->bs);
1274
1275			__map_bio(ti, clone, tio);
1276
1277			ci->sector += len;
1278			ci->sector_count -= len;
1279			offset += to_bytes(len);
1280		} while (remaining -= len);
1281
1282		ci->idx++;
1283	}
1284
1285	return 0;
1286}
1287
1288/*
1289 * Split the bio into several clones and submit it to targets.
1290 */
1291static void __split_and_process_bio(struct mapped_device *md, struct bio *bio)
 
1292{
1293	struct clone_info ci;
1294	int error = 0;
1295
1296	ci.map = dm_get_live_table(md);
1297	if (unlikely(!ci.map)) {
1298		bio_io_error(bio);
1299		return;
1300	}
1301
 
1302	ci.md = md;
1303	ci.io = alloc_io(md);
1304	ci.io->error = 0;
1305	atomic_set(&ci.io->io_count, 1);
1306	ci.io->bio = bio;
1307	ci.io->md = md;
1308	spin_lock_init(&ci.io->endio_lock);
1309	ci.sector = bio->bi_sector;
1310	ci.idx = bio->bi_idx;
1311
1312	start_io_acct(ci.io);
 
1313	if (bio->bi_rw & REQ_FLUSH) {
1314		ci.bio = &ci.md->flush_bio;
1315		ci.sector_count = 0;
1316		error = __clone_and_map_empty_flush(&ci);
1317		/* dec_pending submits any data associated with flush */
1318	} else {
1319		ci.bio = bio;
1320		ci.sector_count = bio_sectors(bio);
1321		while (ci.sector_count && !error)
1322			error = __clone_and_map(&ci);
1323	}
1324
1325	/* drop the extra reference count */
1326	dec_pending(ci.io, error);
1327	dm_table_put(ci.map);
1328}
1329/*-----------------------------------------------------------------
1330 * CRUD END
1331 *---------------------------------------------------------------*/
1332
1333static int dm_merge_bvec(struct request_queue *q,
1334			 struct bvec_merge_data *bvm,
1335			 struct bio_vec *biovec)
1336{
1337	struct mapped_device *md = q->queuedata;
1338	struct dm_table *map = dm_get_live_table(md);
1339	struct dm_target *ti;
1340	sector_t max_sectors;
1341	int max_size = 0;
1342
1343	if (unlikely(!map))
1344		goto out;
1345
1346	ti = dm_table_find_target(map, bvm->bi_sector);
1347	if (!dm_target_is_valid(ti))
1348		goto out_table;
1349
1350	/*
1351	 * Find maximum amount of I/O that won't need splitting
1352	 */
1353	max_sectors = min(max_io_len(bvm->bi_sector, ti),
1354			  (sector_t) BIO_MAX_SECTORS);
1355	max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
1356	if (max_size < 0)
1357		max_size = 0;
1358
1359	/*
1360	 * merge_bvec_fn() returns number of bytes
1361	 * it can accept at this offset
1362	 * max is precomputed maximal io size
1363	 */
1364	if (max_size && ti->type->merge)
1365		max_size = ti->type->merge(ti, bvm, biovec, max_size);
1366	/*
1367	 * If the target doesn't support merge method and some of the devices
1368	 * provided their merge_bvec method (we know this by looking at
1369	 * queue_max_hw_sectors), then we can't allow bios with multiple vector
1370	 * entries.  So always set max_size to 0, and the code below allows
1371	 * just one page.
1372	 */
1373	else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9)
1374
1375		max_size = 0;
1376
1377out_table:
1378	dm_table_put(map);
1379
1380out:
1381	/*
1382	 * Always allow an entire first page
1383	 */
1384	if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
1385		max_size = biovec->bv_len;
1386
1387	return max_size;
1388}
1389
1390/*
1391 * The request function that just remaps the bio built up by
1392 * dm_merge_bvec.
1393 */
1394static int _dm_request(struct request_queue *q, struct bio *bio)
1395{
1396	int rw = bio_data_dir(bio);
1397	struct mapped_device *md = q->queuedata;
1398	int cpu;
 
1399
1400	down_read(&md->io_lock);
1401
1402	cpu = part_stat_lock();
1403	part_stat_inc(cpu, &dm_disk(md)->part0, ios[rw]);
1404	part_stat_add(cpu, &dm_disk(md)->part0, sectors[rw], bio_sectors(bio));
1405	part_stat_unlock();
1406
1407	/* if we're suspended, we have to queue this io for later */
1408	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1409		up_read(&md->io_lock);
1410
1411		if (bio_rw(bio) != READA)
1412			queue_io(md, bio);
1413		else
1414			bio_io_error(bio);
1415		return 0;
1416	}
1417
1418	__split_and_process_bio(md, bio);
1419	up_read(&md->io_lock);
1420	return 0;
1421}
1422
1423static int dm_make_request(struct request_queue *q, struct bio *bio)
1424{
1425	struct mapped_device *md = q->queuedata;
1426
1427	return md->saved_make_request_fn(q, bio); /* call __make_request() */
1428}
1429
1430static int dm_request_based(struct mapped_device *md)
1431{
1432	return blk_queue_stackable(md->queue);
1433}
1434
1435static int dm_request(struct request_queue *q, struct bio *bio)
1436{
1437	struct mapped_device *md = q->queuedata;
1438
1439	if (dm_request_based(md))
1440		return dm_make_request(q, bio);
1441
1442	return _dm_request(q, bio);
1443}
1444
1445void dm_dispatch_request(struct request *rq)
1446{
1447	int r;
1448
1449	if (blk_queue_io_stat(rq->q))
1450		rq->cmd_flags |= REQ_IO_STAT;
1451
1452	rq->start_time = jiffies;
1453	r = blk_insert_cloned_request(rq->q, rq);
1454	if (r)
 
1455		dm_complete_request(rq, r);
1456}
1457EXPORT_SYMBOL_GPL(dm_dispatch_request);
1458
1459static void dm_rq_bio_destructor(struct bio *bio)
1460{
1461	struct dm_rq_clone_bio_info *info = bio->bi_private;
1462	struct mapped_device *md = info->tio->md;
1463
1464	free_bio_info(info);
1465	bio_free(bio, md->bs);
1466}
1467
1468static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig,
1469				 void *data)
1470{
1471	struct dm_rq_target_io *tio = data;
1472	struct mapped_device *md = tio->md;
1473	struct dm_rq_clone_bio_info *info = alloc_bio_info(md);
1474
1475	if (!info)
1476		return -ENOMEM;
1477
1478	info->orig = bio_orig;
1479	info->tio = tio;
1480	bio->bi_end_io = end_clone_bio;
1481	bio->bi_private = info;
1482	bio->bi_destructor = dm_rq_bio_destructor;
1483
1484	return 0;
1485}
1486
1487static int setup_clone(struct request *clone, struct request *rq,
1488		       struct dm_rq_target_io *tio)
1489{
1490	int r;
1491
1492	r = blk_rq_prep_clone(clone, rq, tio->md->bs, GFP_ATOMIC,
1493			      dm_rq_bio_constructor, tio);
1494	if (r)
1495		return r;
1496
1497	clone->cmd = rq->cmd;
1498	clone->cmd_len = rq->cmd_len;
1499	clone->sense = rq->sense;
1500	clone->buffer = rq->buffer;
1501	clone->end_io = end_clone_request;
1502	clone->end_io_data = tio;
1503
 
 
1504	return 0;
1505}
1506
1507static struct request *clone_rq(struct request *rq, struct mapped_device *md,
1508				gfp_t gfp_mask)
1509{
 
 
 
1510	struct request *clone;
1511	struct dm_rq_target_io *tio;
1512
1513	tio = alloc_rq_tio(md, gfp_mask);
1514	if (!tio)
 
 
 
 
 
 
1515		return NULL;
 
 
 
 
1516
 
 
 
 
 
1517	tio->md = md;
1518	tio->ti = NULL;
 
1519	tio->orig = rq;
1520	tio->error = 0;
1521	memset(&tio->info, 0, sizeof(tio->info));
 
 
 
 
 
 
 
 
 
1522
1523	clone = &tio->clone;
1524	if (setup_clone(clone, rq, tio)) {
1525		/* -ENOMEM */
1526		free_rq_tio(tio);
 
 
 
 
 
 
1527		return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1528	}
 
1529
1530	return clone;
1531}
1532
1533/*
1534 * Called with the queue lock held.
1535 */
1536static int dm_prep_fn(struct request_queue *q, struct request *rq)
1537{
1538	struct mapped_device *md = q->queuedata;
1539	struct request *clone;
1540
1541	if (unlikely(rq->special)) {
1542		DMWARN("Already has something in rq->special.");
1543		return BLKPREP_KILL;
1544	}
1545
1546	clone = clone_rq(rq, md, GFP_ATOMIC);
1547	if (!clone)
1548		return BLKPREP_DEFER;
1549
1550	rq->special = clone;
1551	rq->cmd_flags |= REQ_DONTPREP;
1552
1553	return BLKPREP_OK;
1554}
1555
1556/*
1557 * Returns:
1558 * 0  : the request has been processed (not requeued)
1559 * !0 : the request has been requeued
 
1560 */
1561static int map_request(struct dm_target *ti, struct request *clone,
1562		       struct mapped_device *md)
1563{
1564	int r, requeued = 0;
1565	struct dm_rq_target_io *tio = clone->end_io_data;
 
1566
1567	/*
1568	 * Hold the md reference here for the in-flight I/O.
1569	 * We can't rely on the reference count by device opener,
1570	 * because the device may be closed during the request completion
1571	 * when all bios are completed.
1572	 * See the comment in rq_completed() too.
1573	 */
1574	dm_get(md);
 
 
 
 
 
 
 
 
 
 
1575
1576	tio->ti = ti;
1577	r = ti->type->map_rq(ti, clone, &tio->info);
1578	switch (r) {
1579	case DM_MAPIO_SUBMITTED:
1580		/* The target has taken the I/O to submit by itself later */
1581		break;
1582	case DM_MAPIO_REMAPPED:
1583		/* The target has remapped the I/O so dispatch it */
1584		trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)),
1585				     blk_rq_pos(tio->orig));
1586		dm_dispatch_request(clone);
1587		break;
1588	case DM_MAPIO_REQUEUE:
1589		/* The target wants to requeue the I/O */
1590		dm_requeue_unmapped_request(clone);
1591		requeued = 1;
1592		break;
1593	default:
1594		if (r > 0) {
1595			DMWARN("unimplemented target map return value: %d", r);
1596			BUG();
1597		}
1598
1599		/* The target wants to complete the I/O */
1600		dm_kill_unmapped_request(clone, r);
1601		break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1602	}
1603
1604	return requeued;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1605}
1606
1607/*
1608 * q->request_fn for request-based dm.
1609 * Called with the queue lock held.
1610 */
1611static void dm_request_fn(struct request_queue *q)
1612{
1613	struct mapped_device *md = q->queuedata;
1614	struct dm_table *map = dm_get_live_table(md);
1615	struct dm_target *ti;
1616	struct request *rq, *clone;
1617	sector_t pos;
 
 
 
 
 
 
 
 
1618
1619	/*
1620	 * For suspend, check blk_queue_stopped() and increment
1621	 * ->pending within a single queue_lock not to increment the
1622	 * number of in-flight I/Os after the queue is stopped in
1623	 * dm_suspend().
1624	 */
1625	while (!blk_queue_stopped(q)) {
1626		rq = blk_peek_request(q);
1627		if (!rq)
1628			goto delay_and_out;
1629
1630		/* always use block 0 to find the target for flushes for now */
1631		pos = 0;
1632		if (!(rq->cmd_flags & REQ_FLUSH))
1633			pos = blk_rq_pos(rq);
1634
1635		ti = dm_table_find_target(map, pos);
1636		BUG_ON(!dm_target_is_valid(ti));
1637
1638		if (ti->type->busy && ti->type->busy(ti))
1639			goto delay_and_out;
 
 
1640
1641		blk_start_request(rq);
1642		clone = rq->special;
1643		atomic_inc(&md->pending[rq_data_dir(clone)]);
1644
1645		spin_unlock(q->queue_lock);
1646		if (map_request(ti, clone, md))
1647			goto requeued;
1648
 
 
 
 
1649		BUG_ON(!irqs_disabled());
1650		spin_lock(q->queue_lock);
1651	}
1652
1653	goto out;
1654
1655requeued:
1656	BUG_ON(!irqs_disabled());
1657	spin_lock(q->queue_lock);
1658
1659delay_and_out:
1660	blk_delay_queue(q, HZ / 10);
1661out:
1662	dm_table_put(map);
1663
1664	return;
1665}
1666
1667int dm_underlying_device_busy(struct request_queue *q)
1668{
1669	return blk_lld_busy(q);
1670}
1671EXPORT_SYMBOL_GPL(dm_underlying_device_busy);
1672
1673static int dm_lld_busy(struct request_queue *q)
1674{
1675	int r;
1676	struct mapped_device *md = q->queuedata;
1677	struct dm_table *map = dm_get_live_table(md);
1678
1679	if (!map || test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))
1680		r = 1;
1681	else
1682		r = dm_table_any_busy_target(map);
1683
1684	dm_table_put(map);
1685
1686	return r;
1687}
1688
1689static int dm_any_congested(void *congested_data, int bdi_bits)
1690{
1691	int r = bdi_bits;
1692	struct mapped_device *md = congested_data;
1693	struct dm_table *map;
1694
1695	if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1696		map = dm_get_live_table(md);
1697		if (map) {
1698			/*
1699			 * Request-based dm cares about only own queue for
1700			 * the query about congestion status of request_queue
1701			 */
1702			if (dm_request_based(md))
1703				r = md->queue->backing_dev_info.state &
1704				    bdi_bits;
1705			else
1706				r = dm_table_any_congested(map, bdi_bits);
1707
1708			dm_table_put(map);
1709		}
1710	}
1711
1712	return r;
1713}
1714
1715/*-----------------------------------------------------------------
1716 * An IDR is used to keep track of allocated minor numbers.
1717 *---------------------------------------------------------------*/
1718static void free_minor(int minor)
1719{
1720	spin_lock(&_minor_lock);
1721	idr_remove(&_minor_idr, minor);
1722	spin_unlock(&_minor_lock);
1723}
1724
1725/*
1726 * See if the device with a specific minor # is free.
1727 */
1728static int specific_minor(int minor)
1729{
1730	int r, m;
1731
1732	if (minor >= (1 << MINORBITS))
1733		return -EINVAL;
1734
1735	r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1736	if (!r)
1737		return -ENOMEM;
1738
1739	spin_lock(&_minor_lock);
1740
1741	if (idr_find(&_minor_idr, minor)) {
1742		r = -EBUSY;
1743		goto out;
1744	}
1745
1746	r = idr_get_new_above(&_minor_idr, MINOR_ALLOCED, minor, &m);
1747	if (r)
1748		goto out;
1749
1750	if (m != minor) {
1751		idr_remove(&_minor_idr, m);
1752		r = -EBUSY;
1753		goto out;
1754	}
1755
1756out:
1757	spin_unlock(&_minor_lock);
1758	return r;
 
 
 
1759}
1760
1761static int next_free_minor(int *minor)
1762{
1763	int r, m;
1764
1765	r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1766	if (!r)
1767		return -ENOMEM;
1768
 
1769	spin_lock(&_minor_lock);
1770
1771	r = idr_get_new(&_minor_idr, MINOR_ALLOCED, &m);
1772	if (r)
1773		goto out;
1774
1775	if (m >= (1 << MINORBITS)) {
1776		idr_remove(&_minor_idr, m);
1777		r = -ENOSPC;
1778		goto out;
1779	}
1780
1781	*minor = m;
1782
1783out:
1784	spin_unlock(&_minor_lock);
1785	return r;
 
 
 
 
1786}
1787
1788static const struct block_device_operations dm_blk_dops;
1789
1790static void dm_wq_work(struct work_struct *work);
1791
1792static void dm_init_md_queue(struct mapped_device *md)
1793{
1794	/*
1795	 * Request-based dm devices cannot be stacked on top of bio-based dm
1796	 * devices.  The type of this dm device has not been decided yet.
1797	 * The type is decided at the first table loading time.
1798	 * To prevent problematic device stacking, clear the queue flag
1799	 * for request stacking support until then.
1800	 *
1801	 * This queue is new, so no concurrency on the queue_flags.
1802	 */
1803	queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
1804
 
 
 
 
1805	md->queue->queuedata = md;
1806	md->queue->backing_dev_info.congested_fn = dm_any_congested;
1807	md->queue->backing_dev_info.congested_data = md;
1808	blk_queue_make_request(md->queue, dm_request);
 
 
 
 
 
 
 
 
 
 
1809	blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
1810	blk_queue_merge_bvec(md->queue, dm_merge_bvec);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1811}
1812
1813/*
1814 * Allocate and initialise a blank device with a given minor.
1815 */
1816static struct mapped_device *alloc_dev(int minor)
1817{
1818	int r;
1819	struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
1820	void *old_md;
1821
 
1822	if (!md) {
1823		DMWARN("unable to allocate device, out of memory.");
1824		return NULL;
1825	}
1826
1827	if (!try_module_get(THIS_MODULE))
1828		goto bad_module_get;
1829
1830	/* get a minor number for the dev */
1831	if (minor == DM_ANY_MINOR)
1832		r = next_free_minor(&minor);
1833	else
1834		r = specific_minor(minor);
1835	if (r < 0)
1836		goto bad_minor;
1837
 
 
 
 
 
 
 
1838	md->type = DM_TYPE_NONE;
1839	init_rwsem(&md->io_lock);
1840	mutex_init(&md->suspend_lock);
1841	mutex_init(&md->type_lock);
 
1842	spin_lock_init(&md->deferred_lock);
1843	rwlock_init(&md->map_lock);
1844	atomic_set(&md->holders, 1);
1845	atomic_set(&md->open_count, 0);
1846	atomic_set(&md->event_nr, 0);
1847	atomic_set(&md->uevent_seq, 0);
1848	INIT_LIST_HEAD(&md->uevent_list);
 
1849	spin_lock_init(&md->uevent_lock);
1850
1851	md->queue = blk_alloc_queue(GFP_KERNEL);
1852	if (!md->queue)
1853		goto bad_queue;
1854
1855	dm_init_md_queue(md);
1856
1857	md->disk = alloc_disk(1);
1858	if (!md->disk)
1859		goto bad_disk;
1860
1861	atomic_set(&md->pending[0], 0);
1862	atomic_set(&md->pending[1], 0);
1863	init_waitqueue_head(&md->wait);
1864	INIT_WORK(&md->work, dm_wq_work);
1865	init_waitqueue_head(&md->eventq);
 
 
1866
1867	md->disk->major = _major;
1868	md->disk->first_minor = minor;
1869	md->disk->fops = &dm_blk_dops;
1870	md->disk->queue = md->queue;
1871	md->disk->private_data = md;
1872	sprintf(md->disk->disk_name, "dm-%d", minor);
1873	add_disk(md->disk);
1874	format_dev_t(md->name, MKDEV(_major, minor));
1875
1876	md->wq = alloc_workqueue("kdmflush",
1877				 WQ_NON_REENTRANT | WQ_MEM_RECLAIM, 0);
1878	if (!md->wq)
1879		goto bad_thread;
1880
1881	md->bdev = bdget_disk(md->disk, 0);
1882	if (!md->bdev)
1883		goto bad_bdev;
1884
1885	bio_init(&md->flush_bio);
1886	md->flush_bio.bi_bdev = md->bdev;
1887	md->flush_bio.bi_rw = WRITE_FLUSH;
1888
 
 
1889	/* Populate the mapping, nobody knows we exist yet */
1890	spin_lock(&_minor_lock);
1891	old_md = idr_replace(&_minor_idr, md, minor);
1892	spin_unlock(&_minor_lock);
1893
1894	BUG_ON(old_md != MINOR_ALLOCED);
1895
1896	return md;
1897
1898bad_bdev:
1899	destroy_workqueue(md->wq);
1900bad_thread:
1901	del_gendisk(md->disk);
1902	put_disk(md->disk);
1903bad_disk:
1904	blk_cleanup_queue(md->queue);
1905bad_queue:
1906	free_minor(minor);
1907bad_minor:
1908	module_put(THIS_MODULE);
1909bad_module_get:
1910	kfree(md);
1911	return NULL;
1912}
1913
1914static void unlock_fs(struct mapped_device *md);
1915
1916static void free_dev(struct mapped_device *md)
1917{
1918	int minor = MINOR(disk_devt(md->disk));
1919
1920	unlock_fs(md);
1921	bdput(md->bdev);
1922	destroy_workqueue(md->wq);
1923	if (md->tio_pool)
1924		mempool_destroy(md->tio_pool);
1925	if (md->io_pool)
1926		mempool_destroy(md->io_pool);
1927	if (md->bs)
1928		bioset_free(md->bs);
1929	blk_integrity_unregister(md->disk);
1930	del_gendisk(md->disk);
1931	free_minor(minor);
1932
1933	spin_lock(&_minor_lock);
1934	md->disk->private_data = NULL;
1935	spin_unlock(&_minor_lock);
 
 
 
 
 
 
1936
1937	put_disk(md->disk);
1938	blk_cleanup_queue(md->queue);
1939	module_put(THIS_MODULE);
1940	kfree(md);
1941}
1942
1943static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
1944{
1945	struct dm_md_mempools *p;
1946
1947	if (md->io_pool && md->tio_pool && md->bs)
1948		/* the md already has necessary mempools */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1949		goto out;
 
1950
1951	p = dm_table_get_md_mempools(t);
1952	BUG_ON(!p || md->io_pool || md->tio_pool || md->bs);
1953
1954	md->io_pool = p->io_pool;
1955	p->io_pool = NULL;
1956	md->tio_pool = p->tio_pool;
1957	p->tio_pool = NULL;
1958	md->bs = p->bs;
1959	p->bs = NULL;
1960
1961out:
1962	/* mempool bind completed, now no need any mempools in the table */
1963	dm_table_free_md_mempools(t);
1964}
1965
1966/*
1967 * Bind a table to the device.
1968 */
1969static void event_callback(void *context)
1970{
1971	unsigned long flags;
1972	LIST_HEAD(uevents);
1973	struct mapped_device *md = (struct mapped_device *) context;
1974
1975	spin_lock_irqsave(&md->uevent_lock, flags);
1976	list_splice_init(&md->uevent_list, &uevents);
1977	spin_unlock_irqrestore(&md->uevent_lock, flags);
1978
1979	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
1980
1981	atomic_inc(&md->event_nr);
1982	wake_up(&md->eventq);
1983}
1984
1985/*
1986 * Protected by md->suspend_lock obtained by dm_swap_table().
1987 */
1988static void __set_size(struct mapped_device *md, sector_t size)
1989{
1990	set_capacity(md->disk, size);
1991
1992	i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
1993}
1994
1995/*
1996 * Return 1 if the queue has a compulsory merge_bvec_fn function.
1997 *
1998 * If this function returns 0, then the device is either a non-dm
1999 * device without a merge_bvec_fn, or it is a dm device that is
2000 * able to split any bios it receives that are too big.
2001 */
2002int dm_queue_merge_is_compulsory(struct request_queue *q)
2003{
2004	struct mapped_device *dev_md;
2005
2006	if (!q->merge_bvec_fn)
2007		return 0;
2008
2009	if (q->make_request_fn == dm_request) {
2010		dev_md = q->queuedata;
2011		if (test_bit(DMF_MERGE_IS_OPTIONAL, &dev_md->flags))
2012			return 0;
2013	}
2014
2015	return 1;
2016}
2017
2018static int dm_device_merge_is_compulsory(struct dm_target *ti,
2019					 struct dm_dev *dev, sector_t start,
2020					 sector_t len, void *data)
2021{
2022	struct block_device *bdev = dev->bdev;
2023	struct request_queue *q = bdev_get_queue(bdev);
2024
2025	return dm_queue_merge_is_compulsory(q);
2026}
2027
2028/*
2029 * Return 1 if it is acceptable to ignore merge_bvec_fn based
2030 * on the properties of the underlying devices.
2031 */
2032static int dm_table_merge_is_optional(struct dm_table *table)
2033{
2034	unsigned i = 0;
2035	struct dm_target *ti;
2036
2037	while (i < dm_table_get_num_targets(table)) {
2038		ti = dm_table_get_target(table, i++);
2039
2040		if (ti->type->iterate_devices &&
2041		    ti->type->iterate_devices(ti, dm_device_merge_is_compulsory, NULL))
2042			return 0;
2043	}
2044
2045	return 1;
2046}
2047
2048/*
2049 * Returns old map, which caller must destroy.
2050 */
2051static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2052			       struct queue_limits *limits)
2053{
2054	struct dm_table *old_map;
2055	struct request_queue *q = md->queue;
2056	sector_t size;
2057	unsigned long flags;
2058	int merge_is_optional;
2059
2060	size = dm_table_get_size(t);
2061
2062	/*
2063	 * Wipe any geometry if the size of the table changed.
2064	 */
2065	if (size != get_capacity(md->disk))
2066		memset(&md->geometry, 0, sizeof(md->geometry));
2067
2068	__set_size(md, size);
2069
2070	dm_table_event_callback(t, event_callback, md);
2071
2072	/*
2073	 * The queue hasn't been stopped yet, if the old table type wasn't
2074	 * for request-based during suspension.  So stop it to prevent
2075	 * I/O mapping before resume.
2076	 * This must be done before setting the queue restrictions,
2077	 * because request-based dm may be run just after the setting.
2078	 */
2079	if (dm_table_request_based(t) && !blk_queue_stopped(q))
2080		stop_queue(q);
 
 
 
 
 
 
 
2081
2082	__bind_mempools(md, t);
2083
2084	merge_is_optional = dm_table_merge_is_optional(t);
 
 
2085
2086	write_lock_irqsave(&md->map_lock, flags);
2087	old_map = md->map;
2088	md->map = t;
2089	dm_table_set_restrictions(t, q, limits);
2090	if (merge_is_optional)
2091		set_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2092	else
2093		clear_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2094	write_unlock_irqrestore(&md->map_lock, flags);
2095
2096	return old_map;
2097}
2098
2099/*
2100 * Returns unbound table for the caller to free.
2101 */
2102static struct dm_table *__unbind(struct mapped_device *md)
2103{
2104	struct dm_table *map = md->map;
2105	unsigned long flags;
2106
2107	if (!map)
2108		return NULL;
2109
2110	dm_table_event_callback(map, NULL, NULL);
2111	write_lock_irqsave(&md->map_lock, flags);
2112	md->map = NULL;
2113	write_unlock_irqrestore(&md->map_lock, flags);
2114
2115	return map;
2116}
2117
2118/*
2119 * Constructor for a new device.
2120 */
2121int dm_create(int minor, struct mapped_device **result)
2122{
2123	struct mapped_device *md;
2124
2125	md = alloc_dev(minor);
2126	if (!md)
2127		return -ENXIO;
2128
2129	dm_sysfs_init(md);
2130
2131	*result = md;
2132	return 0;
2133}
2134
2135/*
2136 * Functions to manage md->type.
2137 * All are required to hold md->type_lock.
2138 */
2139void dm_lock_md_type(struct mapped_device *md)
2140{
2141	mutex_lock(&md->type_lock);
2142}
2143
2144void dm_unlock_md_type(struct mapped_device *md)
2145{
2146	mutex_unlock(&md->type_lock);
2147}
2148
2149void dm_set_md_type(struct mapped_device *md, unsigned type)
2150{
 
2151	md->type = type;
2152}
2153
2154unsigned dm_get_md_type(struct mapped_device *md)
2155{
2156	return md->type;
2157}
2158
 
 
 
 
 
2159/*
2160 * Fully initialize a request-based queue (->elevator, ->request_fn, etc).
 
2161 */
2162static int dm_init_request_based_queue(struct mapped_device *md)
2163{
2164	struct request_queue *q = NULL;
 
 
 
2165
2166	if (md->queue->elevator)
2167		return 1;
 
 
 
 
 
2168
 
 
 
 
 
2169	/* Fully initialize the queue */
2170	q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL);
2171	if (!q)
2172		return 0;
2173
2174	md->queue = q;
2175	md->saved_make_request_fn = md->queue->make_request_fn;
2176	dm_init_md_queue(md);
 
2177	blk_queue_softirq_done(md->queue, dm_softirq_done);
2178	blk_queue_prep_rq(md->queue, dm_prep_fn);
2179	blk_queue_lld_busy(md->queue, dm_lld_busy);
 
2180
2181	elv_register_queue(md->queue);
2182
2183	return 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2184}
2185
2186/*
2187 * Setup the DM device's queue based on md's type
2188 */
2189int dm_setup_md_queue(struct mapped_device *md)
2190{
2191	if ((dm_get_md_type(md) == DM_TYPE_REQUEST_BASED) &&
2192	    !dm_init_request_based_queue(md)) {
2193		DMWARN("Cannot initialize queue for request-based mapped device");
2194		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2195	}
2196
2197	return 0;
2198}
2199
2200static struct mapped_device *dm_find_md(dev_t dev)
2201{
2202	struct mapped_device *md;
2203	unsigned minor = MINOR(dev);
2204
2205	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2206		return NULL;
2207
2208	spin_lock(&_minor_lock);
2209
2210	md = idr_find(&_minor_idr, minor);
2211	if (md && (md == MINOR_ALLOCED ||
2212		   (MINOR(disk_devt(dm_disk(md))) != minor) ||
2213		   dm_deleting_md(md) ||
2214		   test_bit(DMF_FREEING, &md->flags))) {
2215		md = NULL;
2216		goto out;
 
 
 
2217	}
2218
2219out:
2220	spin_unlock(&_minor_lock);
2221
2222	return md;
2223}
2224
2225struct mapped_device *dm_get_md(dev_t dev)
2226{
2227	struct mapped_device *md = dm_find_md(dev);
2228
2229	if (md)
2230		dm_get(md);
2231
2232	return md;
2233}
2234
2235void *dm_get_mdptr(struct mapped_device *md)
2236{
2237	return md->interface_ptr;
2238}
2239
2240void dm_set_mdptr(struct mapped_device *md, void *ptr)
2241{
2242	md->interface_ptr = ptr;
2243}
2244
2245void dm_get(struct mapped_device *md)
2246{
2247	atomic_inc(&md->holders);
2248	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2249}
2250
 
 
 
 
 
 
 
 
 
 
 
 
 
2251const char *dm_device_name(struct mapped_device *md)
2252{
2253	return md->name;
2254}
2255EXPORT_SYMBOL_GPL(dm_device_name);
2256
2257static void __dm_destroy(struct mapped_device *md, bool wait)
2258{
2259	struct dm_table *map;
 
2260
2261	might_sleep();
2262
2263	spin_lock(&_minor_lock);
2264	map = dm_get_live_table(md);
2265	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2266	set_bit(DMF_FREEING, &md->flags);
2267	spin_unlock(&_minor_lock);
2268
 
 
 
 
 
 
 
 
 
2269	if (!dm_suspended_md(md)) {
2270		dm_table_presuspend_targets(map);
2271		dm_table_postsuspend_targets(map);
2272	}
 
 
 
2273
2274	/*
2275	 * Rare, but there may be I/O requests still going to complete,
2276	 * for example.  Wait for all references to disappear.
2277	 * No one should increment the reference count of the mapped_device,
2278	 * after the mapped_device state becomes DMF_FREEING.
2279	 */
2280	if (wait)
2281		while (atomic_read(&md->holders))
2282			msleep(1);
2283	else if (atomic_read(&md->holders))
2284		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2285		       dm_device_name(md), atomic_read(&md->holders));
2286
2287	dm_sysfs_exit(md);
2288	dm_table_put(map);
2289	dm_table_destroy(__unbind(md));
2290	free_dev(md);
2291}
2292
2293void dm_destroy(struct mapped_device *md)
2294{
2295	__dm_destroy(md, true);
2296}
2297
2298void dm_destroy_immediate(struct mapped_device *md)
2299{
2300	__dm_destroy(md, false);
2301}
2302
2303void dm_put(struct mapped_device *md)
2304{
2305	atomic_dec(&md->holders);
2306}
2307EXPORT_SYMBOL_GPL(dm_put);
2308
2309static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
2310{
2311	int r = 0;
2312	DECLARE_WAITQUEUE(wait, current);
2313
2314	add_wait_queue(&md->wait, &wait);
2315
2316	while (1) {
2317		set_current_state(interruptible);
2318
2319		smp_mb();
2320		if (!md_in_flight(md))
2321			break;
2322
2323		if (interruptible == TASK_INTERRUPTIBLE &&
2324		    signal_pending(current)) {
2325			r = -EINTR;
2326			break;
2327		}
2328
2329		io_schedule();
2330	}
2331	set_current_state(TASK_RUNNING);
2332
2333	remove_wait_queue(&md->wait, &wait);
2334
2335	return r;
2336}
2337
2338/*
2339 * Process the deferred bios
2340 */
2341static void dm_wq_work(struct work_struct *work)
2342{
2343	struct mapped_device *md = container_of(work, struct mapped_device,
2344						work);
2345	struct bio *c;
 
 
2346
2347	down_read(&md->io_lock);
2348
2349	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2350		spin_lock_irq(&md->deferred_lock);
2351		c = bio_list_pop(&md->deferred);
2352		spin_unlock_irq(&md->deferred_lock);
2353
2354		if (!c)
2355			break;
2356
2357		up_read(&md->io_lock);
2358
2359		if (dm_request_based(md))
2360			generic_make_request(c);
2361		else
2362			__split_and_process_bio(md, c);
2363
2364		down_read(&md->io_lock);
2365	}
2366
2367	up_read(&md->io_lock);
2368}
2369
2370static void dm_queue_flush(struct mapped_device *md)
2371{
2372	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2373	smp_mb__after_clear_bit();
2374	queue_work(md->wq, &md->work);
2375}
2376
2377/*
2378 * Swap in a new table, returning the old one for the caller to destroy.
2379 */
2380struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2381{
2382	struct dm_table *map = ERR_PTR(-EINVAL);
2383	struct queue_limits limits;
2384	int r;
2385
2386	mutex_lock(&md->suspend_lock);
2387
2388	/* device must be suspended */
2389	if (!dm_suspended_md(md))
2390		goto out;
2391
2392	r = dm_calculate_queue_limits(table, &limits);
2393	if (r) {
2394		map = ERR_PTR(r);
2395		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2396	}
2397
2398	map = __bind(md, table, &limits);
2399
2400out:
2401	mutex_unlock(&md->suspend_lock);
2402	return map;
2403}
2404
2405/*
2406 * Functions to lock and unlock any filesystem running on the
2407 * device.
2408 */
2409static int lock_fs(struct mapped_device *md)
2410{
2411	int r;
2412
2413	WARN_ON(md->frozen_sb);
2414
2415	md->frozen_sb = freeze_bdev(md->bdev);
2416	if (IS_ERR(md->frozen_sb)) {
2417		r = PTR_ERR(md->frozen_sb);
2418		md->frozen_sb = NULL;
2419		return r;
2420	}
2421
2422	set_bit(DMF_FROZEN, &md->flags);
2423
2424	return 0;
2425}
2426
2427static void unlock_fs(struct mapped_device *md)
2428{
2429	if (!test_bit(DMF_FROZEN, &md->flags))
2430		return;
2431
2432	thaw_bdev(md->bdev, md->frozen_sb);
2433	md->frozen_sb = NULL;
2434	clear_bit(DMF_FROZEN, &md->flags);
2435}
2436
2437/*
2438 * We need to be able to change a mapping table under a mounted
2439 * filesystem.  For example we might want to move some data in
2440 * the background.  Before the table can be swapped with
2441 * dm_bind_table, dm_suspend must be called to flush any in
2442 * flight bios and ensure that any further io gets deferred.
2443 */
2444/*
2445 * Suspend mechanism in request-based dm.
2446 *
2447 * 1. Flush all I/Os by lock_fs() if needed.
2448 * 2. Stop dispatching any I/O by stopping the request_queue.
2449 * 3. Wait for all in-flight I/Os to be completed or requeued.
2450 *
2451 * To abort suspend, start the request_queue.
2452 */
2453int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
 
2454{
2455	struct dm_table *map = NULL;
2456	int r = 0;
2457	int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0;
2458	int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0;
2459
2460	mutex_lock(&md->suspend_lock);
2461
2462	if (dm_suspended_md(md)) {
2463		r = -EINVAL;
2464		goto out_unlock;
2465	}
2466
2467	map = dm_get_live_table(md);
2468
2469	/*
2470	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2471	 * This flag is cleared before dm_suspend returns.
2472	 */
2473	if (noflush)
2474		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2475
2476	/* This does not get reverted if there's an error later. */
 
 
 
2477	dm_table_presuspend_targets(map);
2478
2479	/*
2480	 * Flush I/O to the device.
2481	 * Any I/O submitted after lock_fs() may not be flushed.
2482	 * noflush takes precedence over do_lockfs.
2483	 * (lock_fs() flushes I/Os and waits for them to complete.)
2484	 */
2485	if (!noflush && do_lockfs) {
2486		r = lock_fs(md);
2487		if (r)
2488			goto out;
 
 
2489	}
2490
2491	/*
2492	 * Here we must make sure that no processes are submitting requests
2493	 * to target drivers i.e. no one may be executing
2494	 * __split_and_process_bio. This is called from dm_request and
2495	 * dm_wq_work.
2496	 *
2497	 * To get all processes out of __split_and_process_bio in dm_request,
2498	 * we take the write lock. To prevent any process from reentering
2499	 * __split_and_process_bio from dm_request and quiesce the thread
2500	 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2501	 * flush_workqueue(md->wq).
2502	 */
2503	down_write(&md->io_lock);
2504	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2505	up_write(&md->io_lock);
 
2506
2507	/*
2508	 * Stop md->queue before flushing md->wq in case request-based
2509	 * dm defers requests to md->wq from md->queue.
2510	 */
2511	if (dm_request_based(md))
2512		stop_queue(md->queue);
 
 
 
2513
2514	flush_workqueue(md->wq);
2515
2516	/*
2517	 * At this point no more requests are entering target request routines.
2518	 * We call dm_wait_for_completion to wait for all existing requests
2519	 * to finish.
2520	 */
2521	r = dm_wait_for_completion(md, TASK_INTERRUPTIBLE);
2522
2523	down_write(&md->io_lock);
2524	if (noflush)
2525		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2526	up_write(&md->io_lock);
 
2527
2528	/* were we interrupted ? */
2529	if (r < 0) {
2530		dm_queue_flush(md);
2531
2532		if (dm_request_based(md))
2533			start_queue(md->queue);
2534
2535		unlock_fs(md);
2536		goto out; /* pushback list is already flushed, so skip flush */
 
2537	}
2538
2539	/*
2540	 * If dm_wait_for_completion returned 0, the device is completely
2541	 * quiescent now. There is no request-processing activity. All new
2542	 * requests are being added to md->deferred list.
2543	 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2544
2545	set_bit(DMF_SUSPENDED, &md->flags);
2546
2547	dm_table_postsuspend_targets(map);
2548
2549out:
2550	dm_table_put(map);
2551
2552out_unlock:
2553	mutex_unlock(&md->suspend_lock);
2554	return r;
2555}
2556
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2557int dm_resume(struct mapped_device *md)
2558{
2559	int r = -EINVAL;
2560	struct dm_table *map = NULL;
2561
2562	mutex_lock(&md->suspend_lock);
 
 
2563	if (!dm_suspended_md(md))
2564		goto out;
2565
2566	map = dm_get_live_table(md);
 
 
 
 
 
 
 
 
 
2567	if (!map || !dm_table_get_size(map))
2568		goto out;
2569
2570	r = dm_table_resume_targets(map);
2571	if (r)
2572		goto out;
2573
2574	dm_queue_flush(md);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2575
2576	/*
2577	 * Flushing deferred I/Os must be done after targets are resumed
2578	 * so that mapping of targets can work correctly.
2579	 * Request-based dm is queueing the deferred I/Os in its request_queue.
 
2580	 */
2581	if (dm_request_based(md))
2582		start_queue(md->queue);
2583
2584	unlock_fs(md);
2585
2586	clear_bit(DMF_SUSPENDED, &md->flags);
 
2587
2588	r = 0;
2589out:
2590	dm_table_put(map);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2591	mutex_unlock(&md->suspend_lock);
 
 
2592
2593	return r;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2594}
 
2595
2596/*-----------------------------------------------------------------
2597 * Event notification.
2598 *---------------------------------------------------------------*/
2599int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2600		       unsigned cookie)
2601{
2602	char udev_cookie[DM_COOKIE_LENGTH];
2603	char *envp[] = { udev_cookie, NULL };
2604
2605	if (!cookie)
2606		return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2607	else {
2608		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2609			 DM_COOKIE_ENV_VAR_NAME, cookie);
2610		return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2611					  action, envp);
2612	}
2613}
2614
2615uint32_t dm_next_uevent_seq(struct mapped_device *md)
2616{
2617	return atomic_add_return(1, &md->uevent_seq);
2618}
2619
2620uint32_t dm_get_event_nr(struct mapped_device *md)
2621{
2622	return atomic_read(&md->event_nr);
2623}
2624
2625int dm_wait_event(struct mapped_device *md, int event_nr)
2626{
2627	return wait_event_interruptible(md->eventq,
2628			(event_nr != atomic_read(&md->event_nr)));
2629}
2630
2631void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2632{
2633	unsigned long flags;
2634
2635	spin_lock_irqsave(&md->uevent_lock, flags);
2636	list_add(elist, &md->uevent_list);
2637	spin_unlock_irqrestore(&md->uevent_lock, flags);
2638}
2639
2640/*
2641 * The gendisk is only valid as long as you have a reference
2642 * count on 'md'.
2643 */
2644struct gendisk *dm_disk(struct mapped_device *md)
2645{
2646	return md->disk;
2647}
 
2648
2649struct kobject *dm_kobject(struct mapped_device *md)
2650{
2651	return &md->kobj;
2652}
2653
2654/*
2655 * struct mapped_device should not be exported outside of dm.c
2656 * so use this check to verify that kobj is part of md structure
2657 */
2658struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2659{
2660	struct mapped_device *md;
2661
2662	md = container_of(kobj, struct mapped_device, kobj);
2663	if (&md->kobj != kobj)
2664		return NULL;
2665
2666	if (test_bit(DMF_FREEING, &md->flags) ||
2667	    dm_deleting_md(md))
2668		return NULL;
2669
2670	dm_get(md);
2671	return md;
2672}
2673
2674int dm_suspended_md(struct mapped_device *md)
2675{
2676	return test_bit(DMF_SUSPENDED, &md->flags);
2677}
2678
 
 
 
 
 
 
 
 
 
 
2679int dm_suspended(struct dm_target *ti)
2680{
2681	return dm_suspended_md(dm_table_get_md(ti->table));
2682}
2683EXPORT_SYMBOL_GPL(dm_suspended);
2684
2685int dm_noflush_suspending(struct dm_target *ti)
2686{
2687	return __noflush_suspending(dm_table_get_md(ti->table));
2688}
2689EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2690
2691struct dm_md_mempools *dm_alloc_md_mempools(unsigned type, unsigned integrity)
 
2692{
2693	struct dm_md_mempools *pools = kmalloc(sizeof(*pools), GFP_KERNEL);
2694	unsigned int pool_size = (type == DM_TYPE_BIO_BASED) ? 16 : MIN_IOS;
 
 
2695
2696	if (!pools)
2697		return NULL;
2698
2699	pools->io_pool = (type == DM_TYPE_BIO_BASED) ?
2700			 mempool_create_slab_pool(MIN_IOS, _io_cache) :
2701			 mempool_create_slab_pool(MIN_IOS, _rq_bio_info_cache);
2702	if (!pools->io_pool)
2703		goto free_pools_and_out;
2704
2705	pools->tio_pool = (type == DM_TYPE_BIO_BASED) ?
2706			  mempool_create_slab_pool(MIN_IOS, _tio_cache) :
2707			  mempool_create_slab_pool(MIN_IOS, _rq_tio_cache);
2708	if (!pools->tio_pool)
2709		goto free_io_pool_and_out;
2710
2711	pools->bs = bioset_create(pool_size, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2712	if (!pools->bs)
2713		goto free_tio_pool_and_out;
2714
2715	if (integrity && bioset_integrity_create(pools->bs, pool_size))
2716		goto free_bioset_and_out;
2717
2718	return pools;
2719
2720free_bioset_and_out:
2721	bioset_free(pools->bs);
2722
2723free_tio_pool_and_out:
2724	mempool_destroy(pools->tio_pool);
2725
2726free_io_pool_and_out:
2727	mempool_destroy(pools->io_pool);
2728
2729free_pools_and_out:
2730	kfree(pools);
2731
2732	return NULL;
2733}
2734
2735void dm_free_md_mempools(struct dm_md_mempools *pools)
2736{
2737	if (!pools)
2738		return;
2739
2740	if (pools->io_pool)
2741		mempool_destroy(pools->io_pool);
2742
2743	if (pools->tio_pool)
2744		mempool_destroy(pools->tio_pool);
2745
2746	if (pools->bs)
2747		bioset_free(pools->bs);
2748
2749	kfree(pools);
2750}
2751
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2752static const struct block_device_operations dm_blk_dops = {
2753	.open = dm_blk_open,
2754	.release = dm_blk_close,
2755	.ioctl = dm_blk_ioctl,
2756	.getgeo = dm_blk_getgeo,
 
2757	.owner = THIS_MODULE
2758};
2759
2760EXPORT_SYMBOL(dm_get_mapinfo);
2761
2762/*
2763 * module hooks
2764 */
2765module_init(dm_init);
2766module_exit(dm_exit);
2767
2768module_param(major, uint, 0);
2769MODULE_PARM_DESC(major, "The major number of the device mapper");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2770MODULE_DESCRIPTION(DM_NAME " driver");
2771MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
2772MODULE_LICENSE("GPL");
v4.6
   1/*
   2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
   3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
   4 *
   5 * This file is released under the GPL.
   6 */
   7
   8#include "dm.h"
   9#include "dm-uevent.h"
  10
  11#include <linux/init.h>
  12#include <linux/module.h>
  13#include <linux/mutex.h>
  14#include <linux/moduleparam.h>
  15#include <linux/blkpg.h>
  16#include <linux/bio.h>
 
  17#include <linux/mempool.h>
  18#include <linux/slab.h>
  19#include <linux/idr.h>
  20#include <linux/hdreg.h>
  21#include <linux/delay.h>
  22#include <linux/wait.h>
  23#include <linux/kthread.h>
  24#include <linux/ktime.h>
  25#include <linux/elevator.h> /* for rq_end_sector() */
  26#include <linux/blk-mq.h>
  27#include <linux/pr.h>
  28
  29#include <trace/events/block.h>
  30
  31#define DM_MSG_PREFIX "core"
  32
  33#ifdef CONFIG_PRINTK
  34/*
  35 * ratelimit state to be used in DMXXX_LIMIT().
  36 */
  37DEFINE_RATELIMIT_STATE(dm_ratelimit_state,
  38		       DEFAULT_RATELIMIT_INTERVAL,
  39		       DEFAULT_RATELIMIT_BURST);
  40EXPORT_SYMBOL(dm_ratelimit_state);
  41#endif
  42
  43/*
  44 * Cookies are numeric values sent with CHANGE and REMOVE
  45 * uevents while resuming, removing or renaming the device.
  46 */
  47#define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
  48#define DM_COOKIE_LENGTH 24
  49
  50static const char *_name = DM_NAME;
  51
  52static unsigned int major = 0;
  53static unsigned int _major = 0;
  54
  55static DEFINE_IDR(_minor_idr);
  56
  57static DEFINE_SPINLOCK(_minor_lock);
  58
  59static void do_deferred_remove(struct work_struct *w);
  60
  61static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
  62
  63static struct workqueue_struct *deferred_remove_workqueue;
  64
  65/*
  66 * For bio-based dm.
  67 * One of these is allocated per bio.
  68 */
  69struct dm_io {
  70	struct mapped_device *md;
  71	int error;
  72	atomic_t io_count;
  73	struct bio *bio;
  74	unsigned long start_time;
  75	spinlock_t endio_lock;
  76	struct dm_stats_aux stats_aux;
 
 
 
 
 
 
 
 
 
 
  77};
  78
  79/*
  80 * For request-based dm.
  81 * One of these is allocated per request.
  82 */
  83struct dm_rq_target_io {
  84	struct mapped_device *md;
  85	struct dm_target *ti;
  86	struct request *orig, *clone;
  87	struct kthread_work work;
  88	int error;
  89	union map_info info;
  90	struct dm_stats_aux stats_aux;
  91	unsigned long duration_jiffies;
  92	unsigned n_sectors;
  93};
  94
  95/*
  96 * For request-based dm - the bio clones we allocate are embedded in these
  97 * structs.
  98 *
  99 * We allocate these with bio_alloc_bioset, using the front_pad parameter when
 100 * the bioset is created - this means the bio has to come at the end of the
 101 * struct.
 102 */
 103struct dm_rq_clone_bio_info {
 104	struct bio *orig;
 105	struct dm_rq_target_io *tio;
 106	struct bio clone;
 107};
 108
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 109#define MINOR_ALLOCED ((void *)-1)
 110
 111/*
 112 * Bits for the md->flags field.
 113 */
 114#define DMF_BLOCK_IO_FOR_SUSPEND 0
 115#define DMF_SUSPENDED 1
 116#define DMF_FROZEN 2
 117#define DMF_FREEING 3
 118#define DMF_DELETING 4
 119#define DMF_NOFLUSH_SUSPENDING 5
 120#define DMF_DEFERRED_REMOVE 6
 121#define DMF_SUSPENDED_INTERNALLY 7
 122
 123/*
 124 * Work processed by per-device workqueue.
 125 */
 126struct mapped_device {
 127	struct srcu_struct io_barrier;
 128	struct mutex suspend_lock;
 129
 130	/*
 131	 * The current mapping (struct dm_table *).
 132	 * Use dm_get_live_table{_fast} or take suspend_lock for
 133	 * dereference.
 134	 */
 135	void __rcu *map;
 136
 137	struct list_head table_devices;
 138	struct mutex table_devices_lock;
 139
 140	unsigned long flags;
 141
 142	struct request_queue *queue;
 143	int numa_node_id;
 144
 145	unsigned type;
 146	/* Protect queue and type against concurrent access. */
 147	struct mutex type_lock;
 148
 149	atomic_t holders;
 150	atomic_t open_count;
 151
 152	struct dm_target *immutable_target;
 153	struct target_type *immutable_target_type;
 154
 155	struct gendisk *disk;
 156	char name[16];
 157
 158	void *interface_ptr;
 159
 160	/*
 161	 * A list of ios that arrived while we were suspended.
 162	 */
 163	atomic_t pending[2];
 164	wait_queue_head_t wait;
 165	struct work_struct work;
 
 166	spinlock_t deferred_lock;
 167	struct bio_list deferred;
 168
 169	/*
 170	 * Event handling.
 171	 */
 172	wait_queue_head_t eventq;
 173	atomic_t event_nr;
 174	atomic_t uevent_seq;
 175	struct list_head uevent_list;
 176	spinlock_t uevent_lock; /* Protect access to uevent_list */
 177
 178	/* the number of internal suspends */
 179	unsigned internal_suspend_count;
 180
 181	/*
 182	 * Processing queue (flush)
 183	 */
 184	struct workqueue_struct *wq;
 185
 186	/*
 187	 * io objects are allocated from here.
 188	 */
 189	mempool_t *io_pool;
 190	mempool_t *rq_pool;
 191
 192	struct bio_set *bs;
 193
 194	/*
 
 
 
 
 
 
 
 
 
 195	 * freeze/thaw support require holding onto a super block
 196	 */
 197	struct super_block *frozen_sb;
 
 198
 199	/* forced geometry settings */
 200	struct hd_geometry geometry;
 201
 202	struct block_device *bdev;
 
 203
 204	/* kobject and completion */
 205	struct dm_kobject_holder kobj_holder;
 206
 207	/* zero-length flush that will be cloned and submitted to targets */
 208	struct bio flush_bio;
 209
 210	struct dm_stats stats;
 211
 212	struct kthread_worker kworker;
 213	struct task_struct *kworker_task;
 214
 215	/* for request-based merge heuristic in dm_request_fn() */
 216	unsigned seq_rq_merge_deadline_usecs;
 217	int last_rq_rw;
 218	sector_t last_rq_pos;
 219	ktime_t last_rq_start_time;
 220
 221	/* for blk-mq request-based DM support */
 222	struct blk_mq_tag_set *tag_set;
 223	bool use_blk_mq:1;
 224	bool init_tio_pdu:1;
 225};
 226
 227#ifdef CONFIG_DM_MQ_DEFAULT
 228static bool use_blk_mq = true;
 229#else
 230static bool use_blk_mq = false;
 231#endif
 232
 233#define DM_MQ_NR_HW_QUEUES 1
 234#define DM_MQ_QUEUE_DEPTH 2048
 235#define DM_NUMA_NODE NUMA_NO_NODE
 236
 237static unsigned dm_mq_nr_hw_queues = DM_MQ_NR_HW_QUEUES;
 238static unsigned dm_mq_queue_depth = DM_MQ_QUEUE_DEPTH;
 239static int dm_numa_node = DM_NUMA_NODE;
 240
 241bool dm_use_blk_mq(struct mapped_device *md)
 242{
 243	return md->use_blk_mq;
 244}
 245EXPORT_SYMBOL_GPL(dm_use_blk_mq);
 246
 247/*
 248 * For mempools pre-allocation at the table loading time.
 249 */
 250struct dm_md_mempools {
 251	mempool_t *io_pool;
 252	mempool_t *rq_pool;
 253	struct bio_set *bs;
 254};
 255
 256struct table_device {
 257	struct list_head list;
 258	atomic_t count;
 259	struct dm_dev dm_dev;
 260};
 261
 262#define RESERVED_BIO_BASED_IOS		16
 263#define RESERVED_REQUEST_BASED_IOS	256
 264#define RESERVED_MAX_IOS		1024
 265static struct kmem_cache *_io_cache;
 
 266static struct kmem_cache *_rq_tio_cache;
 267static struct kmem_cache *_rq_cache;
 268
 269/*
 270 * Bio-based DM's mempools' reserved IOs set by the user.
 271 */
 272static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
 273
 274/*
 275 * Request-based DM's mempools' reserved IOs set by the user.
 276 */
 277static unsigned reserved_rq_based_ios = RESERVED_REQUEST_BASED_IOS;
 278
 279static int __dm_get_module_param_int(int *module_param, int min, int max)
 280{
 281	int param = ACCESS_ONCE(*module_param);
 282	int modified_param = 0;
 283	bool modified = true;
 284
 285	if (param < min)
 286		modified_param = min;
 287	else if (param > max)
 288		modified_param = max;
 289	else
 290		modified = false;
 291
 292	if (modified) {
 293		(void)cmpxchg(module_param, param, modified_param);
 294		param = modified_param;
 295	}
 296
 297	return param;
 298}
 299
 300static unsigned __dm_get_module_param(unsigned *module_param,
 301				      unsigned def, unsigned max)
 302{
 303	unsigned param = ACCESS_ONCE(*module_param);
 304	unsigned modified_param = 0;
 305
 306	if (!param)
 307		modified_param = def;
 308	else if (param > max)
 309		modified_param = max;
 310
 311	if (modified_param) {
 312		(void)cmpxchg(module_param, param, modified_param);
 313		param = modified_param;
 314	}
 315
 316	return param;
 317}
 318
 319unsigned dm_get_reserved_bio_based_ios(void)
 320{
 321	return __dm_get_module_param(&reserved_bio_based_ios,
 322				     RESERVED_BIO_BASED_IOS, RESERVED_MAX_IOS);
 323}
 324EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
 325
 326unsigned dm_get_reserved_rq_based_ios(void)
 327{
 328	return __dm_get_module_param(&reserved_rq_based_ios,
 329				     RESERVED_REQUEST_BASED_IOS, RESERVED_MAX_IOS);
 330}
 331EXPORT_SYMBOL_GPL(dm_get_reserved_rq_based_ios);
 332
 333static unsigned dm_get_blk_mq_nr_hw_queues(void)
 334{
 335	return __dm_get_module_param(&dm_mq_nr_hw_queues, 1, 32);
 336}
 337
 338static unsigned dm_get_blk_mq_queue_depth(void)
 339{
 340	return __dm_get_module_param(&dm_mq_queue_depth,
 341				     DM_MQ_QUEUE_DEPTH, BLK_MQ_MAX_DEPTH);
 342}
 343
 344static unsigned dm_get_numa_node(void)
 345{
 346	return __dm_get_module_param_int(&dm_numa_node,
 347					 DM_NUMA_NODE, num_online_nodes() - 1);
 348}
 349
 350static int __init local_init(void)
 351{
 352	int r = -ENOMEM;
 353
 354	/* allocate a slab for the dm_ios */
 355	_io_cache = KMEM_CACHE(dm_io, 0);
 356	if (!_io_cache)
 357		return r;
 358
 
 
 
 
 
 359	_rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
 360	if (!_rq_tio_cache)
 361		goto out_free_io_cache;
 362
 363	_rq_cache = kmem_cache_create("dm_old_clone_request", sizeof(struct request),
 364				      __alignof__(struct request), 0, NULL);
 365	if (!_rq_cache)
 366		goto out_free_rq_tio_cache;
 367
 368	r = dm_uevent_init();
 369	if (r)
 370		goto out_free_rq_cache;
 371
 372	deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
 373	if (!deferred_remove_workqueue) {
 374		r = -ENOMEM;
 375		goto out_uevent_exit;
 376	}
 377
 378	_major = major;
 379	r = register_blkdev(_major, _name);
 380	if (r < 0)
 381		goto out_free_workqueue;
 382
 383	if (!_major)
 384		_major = r;
 385
 386	return 0;
 387
 388out_free_workqueue:
 389	destroy_workqueue(deferred_remove_workqueue);
 390out_uevent_exit:
 391	dm_uevent_exit();
 392out_free_rq_cache:
 393	kmem_cache_destroy(_rq_cache);
 394out_free_rq_tio_cache:
 395	kmem_cache_destroy(_rq_tio_cache);
 
 
 396out_free_io_cache:
 397	kmem_cache_destroy(_io_cache);
 398
 399	return r;
 400}
 401
 402static void local_exit(void)
 403{
 404	flush_scheduled_work();
 405	destroy_workqueue(deferred_remove_workqueue);
 406
 407	kmem_cache_destroy(_rq_cache);
 408	kmem_cache_destroy(_rq_tio_cache);
 
 409	kmem_cache_destroy(_io_cache);
 410	unregister_blkdev(_major, _name);
 411	dm_uevent_exit();
 412
 413	_major = 0;
 414
 415	DMINFO("cleaned up");
 416}
 417
 418static int (*_inits[])(void) __initdata = {
 419	local_init,
 420	dm_target_init,
 421	dm_linear_init,
 422	dm_stripe_init,
 423	dm_io_init,
 424	dm_kcopyd_init,
 425	dm_interface_init,
 426	dm_statistics_init,
 427};
 428
 429static void (*_exits[])(void) = {
 430	local_exit,
 431	dm_target_exit,
 432	dm_linear_exit,
 433	dm_stripe_exit,
 434	dm_io_exit,
 435	dm_kcopyd_exit,
 436	dm_interface_exit,
 437	dm_statistics_exit,
 438};
 439
 440static int __init dm_init(void)
 441{
 442	const int count = ARRAY_SIZE(_inits);
 443
 444	int r, i;
 445
 446	for (i = 0; i < count; i++) {
 447		r = _inits[i]();
 448		if (r)
 449			goto bad;
 450	}
 451
 452	return 0;
 453
 454      bad:
 455	while (i--)
 456		_exits[i]();
 457
 458	return r;
 459}
 460
 461static void __exit dm_exit(void)
 462{
 463	int i = ARRAY_SIZE(_exits);
 464
 465	while (i--)
 466		_exits[i]();
 467
 468	/*
 469	 * Should be empty by this point.
 470	 */
 
 471	idr_destroy(&_minor_idr);
 472}
 473
 474/*
 475 * Block device functions
 476 */
 477int dm_deleting_md(struct mapped_device *md)
 478{
 479	return test_bit(DMF_DELETING, &md->flags);
 480}
 481
 482static int dm_blk_open(struct block_device *bdev, fmode_t mode)
 483{
 484	struct mapped_device *md;
 485
 486	spin_lock(&_minor_lock);
 487
 488	md = bdev->bd_disk->private_data;
 489	if (!md)
 490		goto out;
 491
 492	if (test_bit(DMF_FREEING, &md->flags) ||
 493	    dm_deleting_md(md)) {
 494		md = NULL;
 495		goto out;
 496	}
 497
 498	dm_get(md);
 499	atomic_inc(&md->open_count);
 
 500out:
 501	spin_unlock(&_minor_lock);
 502
 503	return md ? 0 : -ENXIO;
 504}
 505
 506static void dm_blk_close(struct gendisk *disk, fmode_t mode)
 507{
 508	struct mapped_device *md;
 509
 510	spin_lock(&_minor_lock);
 511
 512	md = disk->private_data;
 513	if (WARN_ON(!md))
 514		goto out;
 515
 516	if (atomic_dec_and_test(&md->open_count) &&
 517	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
 518		queue_work(deferred_remove_workqueue, &deferred_remove_work);
 519
 520	dm_put(md);
 521out:
 522	spin_unlock(&_minor_lock);
 523}
 524
 525int dm_open_count(struct mapped_device *md)
 526{
 527	return atomic_read(&md->open_count);
 528}
 529
 530/*
 531 * Guarantees nothing is using the device before it's deleted.
 532 */
 533int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
 534{
 535	int r = 0;
 536
 537	spin_lock(&_minor_lock);
 538
 539	if (dm_open_count(md)) {
 540		r = -EBUSY;
 541		if (mark_deferred)
 542			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
 543	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
 544		r = -EEXIST;
 545	else
 546		set_bit(DMF_DELETING, &md->flags);
 547
 548	spin_unlock(&_minor_lock);
 549
 550	return r;
 551}
 552
 553int dm_cancel_deferred_remove(struct mapped_device *md)
 554{
 555	int r = 0;
 556
 557	spin_lock(&_minor_lock);
 558
 559	if (test_bit(DMF_DELETING, &md->flags))
 560		r = -EBUSY;
 561	else
 562		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
 563
 564	spin_unlock(&_minor_lock);
 565
 566	return r;
 567}
 568
 569static void do_deferred_remove(struct work_struct *w)
 570{
 571	dm_deferred_remove();
 572}
 573
 574sector_t dm_get_size(struct mapped_device *md)
 575{
 576	return get_capacity(md->disk);
 577}
 578
 579struct request_queue *dm_get_md_queue(struct mapped_device *md)
 580{
 581	return md->queue;
 582}
 583
 584struct dm_stats *dm_get_stats(struct mapped_device *md)
 585{
 586	return &md->stats;
 587}
 588
 589static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
 590{
 591	struct mapped_device *md = bdev->bd_disk->private_data;
 592
 593	return dm_get_geometry(md, geo);
 594}
 595
 596static int dm_grab_bdev_for_ioctl(struct mapped_device *md,
 597				  struct block_device **bdev,
 598				  fmode_t *mode)
 599{
 
 
 600	struct dm_target *tgt;
 601	struct dm_table *map;
 602	int srcu_idx, r;
 603
 604retry:
 605	r = -ENOTTY;
 606	map = dm_get_live_table(md, &srcu_idx);
 607	if (!map || !dm_table_get_size(map))
 608		goto out;
 609
 610	/* We only support devices that have a single target */
 611	if (dm_table_get_num_targets(map) != 1)
 612		goto out;
 613
 614	tgt = dm_table_get_target(map, 0);
 615	if (!tgt->type->prepare_ioctl)
 616		goto out;
 617
 618	if (dm_suspended_md(md)) {
 619		r = -EAGAIN;
 620		goto out;
 621	}
 622
 623	r = tgt->type->prepare_ioctl(tgt, bdev, mode);
 624	if (r < 0)
 625		goto out;
 626
 627	bdgrab(*bdev);
 628	dm_put_live_table(md, srcu_idx);
 629	return r;
 630
 631out:
 632	dm_put_live_table(md, srcu_idx);
 633	if (r == -ENOTCONN && !fatal_signal_pending(current)) {
 634		msleep(10);
 635		goto retry;
 636	}
 637	return r;
 638}
 639
 640static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
 641			unsigned int cmd, unsigned long arg)
 642{
 643	struct mapped_device *md = bdev->bd_disk->private_data;
 644	int r;
 645
 646	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
 647	if (r < 0)
 648		return r;
 649
 650	if (r > 0) {
 651		/*
 652		 * Target determined this ioctl is being issued against
 653		 * a logical partition of the parent bdev; so extra
 654		 * validation is needed.
 655		 */
 656		r = scsi_verify_blk_ioctl(NULL, cmd);
 657		if (r)
 658			goto out;
 659	}
 660
 661	r =  __blkdev_driver_ioctl(bdev, mode, cmd, arg);
 662out:
 663	bdput(bdev);
 664	return r;
 665}
 666
 667static struct dm_io *alloc_io(struct mapped_device *md)
 668{
 669	return mempool_alloc(md->io_pool, GFP_NOIO);
 670}
 671
 672static void free_io(struct mapped_device *md, struct dm_io *io)
 673{
 674	mempool_free(io, md->io_pool);
 675}
 676
 677static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
 678{
 679	bio_put(&tio->clone);
 680}
 681
 682static struct dm_rq_target_io *alloc_old_rq_tio(struct mapped_device *md,
 683						gfp_t gfp_mask)
 684{
 685	return mempool_alloc(md->io_pool, gfp_mask);
 686}
 687
 688static void free_old_rq_tio(struct dm_rq_target_io *tio)
 689{
 690	mempool_free(tio, tio->md->io_pool);
 691}
 692
 693static struct request *alloc_old_clone_request(struct mapped_device *md,
 694					       gfp_t gfp_mask)
 695{
 696	return mempool_alloc(md->rq_pool, gfp_mask);
 697}
 698
 699static void free_old_clone_request(struct mapped_device *md, struct request *rq)
 700{
 701	mempool_free(rq, md->rq_pool);
 702}
 703
 704static int md_in_flight(struct mapped_device *md)
 705{
 706	return atomic_read(&md->pending[READ]) +
 707	       atomic_read(&md->pending[WRITE]);
 708}
 709
 710static void start_io_acct(struct dm_io *io)
 711{
 712	struct mapped_device *md = io->md;
 713	struct bio *bio = io->bio;
 714	int cpu;
 715	int rw = bio_data_dir(bio);
 716
 717	io->start_time = jiffies;
 718
 719	cpu = part_stat_lock();
 720	part_round_stats(cpu, &dm_disk(md)->part0);
 721	part_stat_unlock();
 722	atomic_set(&dm_disk(md)->part0.in_flight[rw],
 723		atomic_inc_return(&md->pending[rw]));
 724
 725	if (unlikely(dm_stats_used(&md->stats)))
 726		dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector,
 727				    bio_sectors(bio), false, 0, &io->stats_aux);
 728}
 729
 730static void end_io_acct(struct dm_io *io)
 731{
 732	struct mapped_device *md = io->md;
 733	struct bio *bio = io->bio;
 734	unsigned long duration = jiffies - io->start_time;
 735	int pending;
 736	int rw = bio_data_dir(bio);
 737
 738	generic_end_io_acct(rw, &dm_disk(md)->part0, io->start_time);
 739
 740	if (unlikely(dm_stats_used(&md->stats)))
 741		dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector,
 742				    bio_sectors(bio), true, duration, &io->stats_aux);
 743
 744	/*
 745	 * After this is decremented the bio must not be touched if it is
 746	 * a flush.
 747	 */
 748	pending = atomic_dec_return(&md->pending[rw]);
 749	atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
 750	pending += atomic_read(&md->pending[rw^0x1]);
 751
 752	/* nudge anyone waiting on suspend queue */
 753	if (!pending)
 754		wake_up(&md->wait);
 755}
 756
 757/*
 758 * Add the bio to the list of deferred io.
 759 */
 760static void queue_io(struct mapped_device *md, struct bio *bio)
 761{
 762	unsigned long flags;
 763
 764	spin_lock_irqsave(&md->deferred_lock, flags);
 765	bio_list_add(&md->deferred, bio);
 766	spin_unlock_irqrestore(&md->deferred_lock, flags);
 767	queue_work(md->wq, &md->work);
 768}
 769
 770/*
 771 * Everyone (including functions in this file), should use this
 772 * function to access the md->map field, and make sure they call
 773 * dm_put_live_table() when finished.
 774 */
 775struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
 776{
 777	*srcu_idx = srcu_read_lock(&md->io_barrier);
 778
 779	return srcu_dereference(md->map, &md->io_barrier);
 780}
 781
 782void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
 783{
 784	srcu_read_unlock(&md->io_barrier, srcu_idx);
 785}
 786
 787void dm_sync_table(struct mapped_device *md)
 788{
 789	synchronize_srcu(&md->io_barrier);
 790	synchronize_rcu_expedited();
 791}
 792
 793/*
 794 * A fast alternative to dm_get_live_table/dm_put_live_table.
 795 * The caller must not block between these two functions.
 796 */
 797static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
 798{
 799	rcu_read_lock();
 800	return rcu_dereference(md->map);
 801}
 802
 803static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
 804{
 805	rcu_read_unlock();
 806}
 807
 808/*
 809 * Open a table device so we can use it as a map destination.
 810 */
 811static int open_table_device(struct table_device *td, dev_t dev,
 812			     struct mapped_device *md)
 813{
 814	static char *_claim_ptr = "I belong to device-mapper";
 815	struct block_device *bdev;
 816
 817	int r;
 818
 819	BUG_ON(td->dm_dev.bdev);
 820
 821	bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _claim_ptr);
 822	if (IS_ERR(bdev))
 823		return PTR_ERR(bdev);
 824
 825	r = bd_link_disk_holder(bdev, dm_disk(md));
 826	if (r) {
 827		blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
 828		return r;
 829	}
 830
 831	td->dm_dev.bdev = bdev;
 832	return 0;
 833}
 834
 835/*
 836 * Close a table device that we've been using.
 837 */
 838static void close_table_device(struct table_device *td, struct mapped_device *md)
 839{
 840	if (!td->dm_dev.bdev)
 841		return;
 842
 843	bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
 844	blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
 845	td->dm_dev.bdev = NULL;
 846}
 847
 848static struct table_device *find_table_device(struct list_head *l, dev_t dev,
 849					      fmode_t mode) {
 850	struct table_device *td;
 851
 852	list_for_each_entry(td, l, list)
 853		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
 854			return td;
 855
 856	return NULL;
 857}
 858
 859int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
 860			struct dm_dev **result) {
 861	int r;
 862	struct table_device *td;
 863
 864	mutex_lock(&md->table_devices_lock);
 865	td = find_table_device(&md->table_devices, dev, mode);
 866	if (!td) {
 867		td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
 868		if (!td) {
 869			mutex_unlock(&md->table_devices_lock);
 870			return -ENOMEM;
 871		}
 872
 873		td->dm_dev.mode = mode;
 874		td->dm_dev.bdev = NULL;
 875
 876		if ((r = open_table_device(td, dev, md))) {
 877			mutex_unlock(&md->table_devices_lock);
 878			kfree(td);
 879			return r;
 880		}
 881
 882		format_dev_t(td->dm_dev.name, dev);
 883
 884		atomic_set(&td->count, 0);
 885		list_add(&td->list, &md->table_devices);
 886	}
 887	atomic_inc(&td->count);
 888	mutex_unlock(&md->table_devices_lock);
 889
 890	*result = &td->dm_dev;
 891	return 0;
 892}
 893EXPORT_SYMBOL_GPL(dm_get_table_device);
 894
 895void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
 896{
 897	struct table_device *td = container_of(d, struct table_device, dm_dev);
 898
 899	mutex_lock(&md->table_devices_lock);
 900	if (atomic_dec_and_test(&td->count)) {
 901		close_table_device(td, md);
 902		list_del(&td->list);
 903		kfree(td);
 904	}
 905	mutex_unlock(&md->table_devices_lock);
 906}
 907EXPORT_SYMBOL(dm_put_table_device);
 908
 909static void free_table_devices(struct list_head *devices)
 910{
 911	struct list_head *tmp, *next;
 912
 913	list_for_each_safe(tmp, next, devices) {
 914		struct table_device *td = list_entry(tmp, struct table_device, list);
 915
 916		DMWARN("dm_destroy: %s still exists with %d references",
 917		       td->dm_dev.name, atomic_read(&td->count));
 918		kfree(td);
 919	}
 920}
 921
 922/*
 923 * Get the geometry associated with a dm device
 924 */
 925int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
 926{
 927	*geo = md->geometry;
 928
 929	return 0;
 930}
 931
 932/*
 933 * Set the geometry of a device.
 934 */
 935int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
 936{
 937	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
 938
 939	if (geo->start > sz) {
 940		DMWARN("Start sector is beyond the geometry limits.");
 941		return -EINVAL;
 942	}
 943
 944	md->geometry = *geo;
 945
 946	return 0;
 947}
 948
 949/*-----------------------------------------------------------------
 950 * CRUD START:
 951 *   A more elegant soln is in the works that uses the queue
 952 *   merge fn, unfortunately there are a couple of changes to
 953 *   the block layer that I want to make for this.  So in the
 954 *   interests of getting something for people to use I give
 955 *   you this clearly demarcated crap.
 956 *---------------------------------------------------------------*/
 957
 958static int __noflush_suspending(struct mapped_device *md)
 959{
 960	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
 961}
 962
 963/*
 964 * Decrements the number of outstanding ios that a bio has been
 965 * cloned into, completing the original io if necc.
 966 */
 967static void dec_pending(struct dm_io *io, int error)
 968{
 969	unsigned long flags;
 970	int io_error;
 971	struct bio *bio;
 972	struct mapped_device *md = io->md;
 973
 974	/* Push-back supersedes any I/O errors */
 975	if (unlikely(error)) {
 976		spin_lock_irqsave(&io->endio_lock, flags);
 977		if (!(io->error > 0 && __noflush_suspending(md)))
 978			io->error = error;
 979		spin_unlock_irqrestore(&io->endio_lock, flags);
 980	}
 981
 982	if (atomic_dec_and_test(&io->io_count)) {
 983		if (io->error == DM_ENDIO_REQUEUE) {
 984			/*
 985			 * Target requested pushing back the I/O.
 986			 */
 987			spin_lock_irqsave(&md->deferred_lock, flags);
 988			if (__noflush_suspending(md))
 989				bio_list_add_head(&md->deferred, io->bio);
 990			else
 991				/* noflush suspend was interrupted. */
 992				io->error = -EIO;
 993			spin_unlock_irqrestore(&md->deferred_lock, flags);
 994		}
 995
 996		io_error = io->error;
 997		bio = io->bio;
 998		end_io_acct(io);
 999		free_io(md, io);
1000
1001		if (io_error == DM_ENDIO_REQUEUE)
1002			return;
1003
1004		if ((bio->bi_rw & REQ_FLUSH) && bio->bi_iter.bi_size) {
1005			/*
1006			 * Preflush done for flush with data, reissue
1007			 * without REQ_FLUSH.
1008			 */
1009			bio->bi_rw &= ~REQ_FLUSH;
1010			queue_io(md, bio);
1011		} else {
1012			/* done with normal IO or empty flush */
1013			trace_block_bio_complete(md->queue, bio, io_error);
1014			bio->bi_error = io_error;
1015			bio_endio(bio);
1016		}
1017	}
1018}
1019
1020static void disable_write_same(struct mapped_device *md)
1021{
1022	struct queue_limits *limits = dm_get_queue_limits(md);
1023
1024	/* device doesn't really support WRITE SAME, disable it */
1025	limits->max_write_same_sectors = 0;
1026}
1027
1028static void clone_endio(struct bio *bio)
1029{
1030	int error = bio->bi_error;
1031	int r = error;
1032	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1033	struct dm_io *io = tio->io;
1034	struct mapped_device *md = tio->io->md;
1035	dm_endio_fn endio = tio->ti->type->end_io;
1036
 
 
 
1037	if (endio) {
1038		r = endio(tio->ti, bio, error);
1039		if (r < 0 || r == DM_ENDIO_REQUEUE)
1040			/*
1041			 * error and requeue request are handled
1042			 * in dec_pending().
1043			 */
1044			error = r;
1045		else if (r == DM_ENDIO_INCOMPLETE)
1046			/* The target will handle the io */
1047			return;
1048		else if (r) {
1049			DMWARN("unimplemented target endio return value: %d", r);
1050			BUG();
1051		}
1052	}
1053
1054	if (unlikely(r == -EREMOTEIO && (bio->bi_rw & REQ_WRITE_SAME) &&
1055		     !bdev_get_queue(bio->bi_bdev)->limits.max_write_same_sectors))
1056		disable_write_same(md);
 
1057
1058	free_tio(md, tio);
 
1059	dec_pending(io, error);
1060}
1061
1062/*
1063 * Partial completion handling for request-based dm
1064 */
1065static void end_clone_bio(struct bio *clone)
1066{
1067	struct dm_rq_clone_bio_info *info =
1068		container_of(clone, struct dm_rq_clone_bio_info, clone);
1069	struct dm_rq_target_io *tio = info->tio;
1070	struct bio *bio = info->orig;
1071	unsigned int nr_bytes = info->orig->bi_iter.bi_size;
1072	int error = clone->bi_error;
1073
1074	bio_put(clone);
1075
1076	if (tio->error)
1077		/*
1078		 * An error has already been detected on the request.
1079		 * Once error occurred, just let clone->end_io() handle
1080		 * the remainder.
1081		 */
1082		return;
1083	else if (error) {
1084		/*
1085		 * Don't notice the error to the upper layer yet.
1086		 * The error handling decision is made by the target driver,
1087		 * when the request is completed.
1088		 */
1089		tio->error = error;
1090		return;
1091	}
1092
1093	/*
1094	 * I/O for the bio successfully completed.
1095	 * Notice the data completion to the upper layer.
1096	 */
1097
1098	/*
1099	 * bios are processed from the head of the list.
1100	 * So the completing bio should always be rq->bio.
1101	 * If it's not, something wrong is happening.
1102	 */
1103	if (tio->orig->bio != bio)
1104		DMERR("bio completion is going in the middle of the request");
1105
1106	/*
1107	 * Update the original request.
1108	 * Do not use blk_end_request() here, because it may complete
1109	 * the original request before the clone, and break the ordering.
1110	 */
1111	blk_update_request(tio->orig, 0, nr_bytes);
1112}
1113
1114static struct dm_rq_target_io *tio_from_request(struct request *rq)
1115{
1116	return (rq->q->mq_ops ? blk_mq_rq_to_pdu(rq) : rq->special);
1117}
1118
1119static void rq_end_stats(struct mapped_device *md, struct request *orig)
1120{
1121	if (unlikely(dm_stats_used(&md->stats))) {
1122		struct dm_rq_target_io *tio = tio_from_request(orig);
1123		tio->duration_jiffies = jiffies - tio->duration_jiffies;
1124		dm_stats_account_io(&md->stats, orig->cmd_flags, blk_rq_pos(orig),
1125				    tio->n_sectors, true, tio->duration_jiffies,
1126				    &tio->stats_aux);
1127	}
1128}
1129
1130/*
1131 * Don't touch any member of the md after calling this function because
1132 * the md may be freed in dm_put() at the end of this function.
1133 * Or do dm_get() before calling this function and dm_put() later.
1134 */
1135static void rq_completed(struct mapped_device *md, int rw, bool run_queue)
1136{
1137	atomic_dec(&md->pending[rw]);
1138
1139	/* nudge anyone waiting on suspend queue */
1140	if (!md_in_flight(md))
1141		wake_up(&md->wait);
1142
1143	/*
1144	 * Run this off this callpath, as drivers could invoke end_io while
1145	 * inside their request_fn (and holding the queue lock). Calling
1146	 * back into ->request_fn() could deadlock attempting to grab the
1147	 * queue lock again.
1148	 */
1149	if (!md->queue->mq_ops && run_queue)
1150		blk_run_queue_async(md->queue);
1151
1152	/*
1153	 * dm_put() must be at the end of this function. See the comment above
1154	 */
1155	dm_put(md);
1156}
1157
1158static void free_rq_clone(struct request *clone)
1159{
1160	struct dm_rq_target_io *tio = clone->end_io_data;
1161	struct mapped_device *md = tio->md;
1162
1163	blk_rq_unprep_clone(clone);
1164
1165	if (md->type == DM_TYPE_MQ_REQUEST_BASED)
1166		/* stacked on blk-mq queue(s) */
1167		tio->ti->type->release_clone_rq(clone);
1168	else if (!md->queue->mq_ops)
1169		/* request_fn queue stacked on request_fn queue(s) */
1170		free_old_clone_request(md, clone);
1171
1172	if (!md->queue->mq_ops)
1173		free_old_rq_tio(tio);
1174}
1175
1176/*
1177 * Complete the clone and the original request.
1178 * Must be called without clone's queue lock held,
1179 * see end_clone_request() for more details.
1180 */
1181static void dm_end_request(struct request *clone, int error)
1182{
1183	int rw = rq_data_dir(clone);
1184	struct dm_rq_target_io *tio = clone->end_io_data;
1185	struct mapped_device *md = tio->md;
1186	struct request *rq = tio->orig;
1187
1188	if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
1189		rq->errors = clone->errors;
1190		rq->resid_len = clone->resid_len;
1191
1192		if (rq->sense)
1193			/*
1194			 * We are using the sense buffer of the original
1195			 * request.
1196			 * So setting the length of the sense data is enough.
1197			 */
1198			rq->sense_len = clone->sense_len;
1199	}
1200
1201	free_rq_clone(clone);
1202	rq_end_stats(md, rq);
1203	if (!rq->q->mq_ops)
1204		blk_end_request_all(rq, error);
1205	else
1206		blk_mq_end_request(rq, error);
1207	rq_completed(md, rw, true);
1208}
1209
1210static void dm_unprep_request(struct request *rq)
1211{
1212	struct dm_rq_target_io *tio = tio_from_request(rq);
1213	struct request *clone = tio->clone;
1214
1215	if (!rq->q->mq_ops) {
1216		rq->special = NULL;
1217		rq->cmd_flags &= ~REQ_DONTPREP;
1218	}
1219
1220	if (clone)
1221		free_rq_clone(clone);
1222	else if (!tio->md->queue->mq_ops)
1223		free_old_rq_tio(tio);
1224}
1225
1226/*
1227 * Requeue the original request of a clone.
1228 */
1229static void dm_old_requeue_request(struct request *rq)
1230{
 
 
 
 
1231	struct request_queue *q = rq->q;
1232	unsigned long flags;
1233
 
 
1234	spin_lock_irqsave(q->queue_lock, flags);
1235	blk_requeue_request(q, rq);
1236	blk_run_queue_async(q);
1237	spin_unlock_irqrestore(q->queue_lock, flags);
1238}
1239
1240static void dm_mq_requeue_request(struct request *rq)
1241{
1242	struct request_queue *q = rq->q;
1243	unsigned long flags;
1244
1245	blk_mq_requeue_request(rq);
1246	spin_lock_irqsave(q->queue_lock, flags);
1247	if (!blk_queue_stopped(q))
1248		blk_mq_kick_requeue_list(q);
1249	spin_unlock_irqrestore(q->queue_lock, flags);
1250}
 
1251
1252static void dm_requeue_original_request(struct mapped_device *md,
1253					struct request *rq)
1254{
1255	int rw = rq_data_dir(rq);
1256
1257	rq_end_stats(md, rq);
1258	dm_unprep_request(rq);
1259
1260	if (!rq->q->mq_ops)
1261		dm_old_requeue_request(rq);
1262	else
1263		dm_mq_requeue_request(rq);
1264
1265	rq_completed(md, rw, false);
1266}
1267
1268static void dm_old_stop_queue(struct request_queue *q)
1269{
1270	unsigned long flags;
1271
1272	spin_lock_irqsave(q->queue_lock, flags);
1273	if (blk_queue_stopped(q)) {
1274		spin_unlock_irqrestore(q->queue_lock, flags);
1275		return;
1276	}
1277
1278	blk_stop_queue(q);
1279	spin_unlock_irqrestore(q->queue_lock, flags);
1280}
1281
1282static void dm_stop_queue(struct request_queue *q)
1283{
1284	if (!q->mq_ops)
1285		dm_old_stop_queue(q);
1286	else
1287		blk_mq_stop_hw_queues(q);
1288}
1289
1290static void dm_old_start_queue(struct request_queue *q)
1291{
1292	unsigned long flags;
1293
1294	spin_lock_irqsave(q->queue_lock, flags);
1295	if (blk_queue_stopped(q))
1296		blk_start_queue(q);
1297	spin_unlock_irqrestore(q->queue_lock, flags);
1298}
1299
1300static void dm_start_queue(struct request_queue *q)
1301{
1302	if (!q->mq_ops)
1303		dm_old_start_queue(q);
1304	else {
1305		blk_mq_start_stopped_hw_queues(q, true);
1306		blk_mq_kick_requeue_list(q);
1307	}
1308}
1309
1310static void dm_done(struct request *clone, int error, bool mapped)
1311{
1312	int r = error;
1313	struct dm_rq_target_io *tio = clone->end_io_data;
1314	dm_request_endio_fn rq_end_io = NULL;
1315
1316	if (tio->ti) {
1317		rq_end_io = tio->ti->type->rq_end_io;
1318
1319		if (mapped && rq_end_io)
1320			r = rq_end_io(tio->ti, clone, error, &tio->info);
1321	}
1322
1323	if (unlikely(r == -EREMOTEIO && (clone->cmd_flags & REQ_WRITE_SAME) &&
1324		     !clone->q->limits.max_write_same_sectors))
1325		disable_write_same(tio->md);
1326
1327	if (r <= 0)
1328		/* The target wants to complete the I/O */
1329		dm_end_request(clone, r);
1330	else if (r == DM_ENDIO_INCOMPLETE)
1331		/* The target will handle the I/O */
1332		return;
1333	else if (r == DM_ENDIO_REQUEUE)
1334		/* The target wants to requeue the I/O */
1335		dm_requeue_original_request(tio->md, tio->orig);
1336	else {
1337		DMWARN("unimplemented target endio return value: %d", r);
1338		BUG();
1339	}
1340}
1341
1342/*
1343 * Request completion handler for request-based dm
1344 */
1345static void dm_softirq_done(struct request *rq)
1346{
1347	bool mapped = true;
1348	struct dm_rq_target_io *tio = tio_from_request(rq);
1349	struct request *clone = tio->clone;
1350	int rw;
1351
1352	if (!clone) {
1353		rq_end_stats(tio->md, rq);
1354		rw = rq_data_dir(rq);
1355		if (!rq->q->mq_ops) {
1356			blk_end_request_all(rq, tio->error);
1357			rq_completed(tio->md, rw, false);
1358			free_old_rq_tio(tio);
1359		} else {
1360			blk_mq_end_request(rq, tio->error);
1361			rq_completed(tio->md, rw, false);
1362		}
1363		return;
1364	}
1365
1366	if (rq->cmd_flags & REQ_FAILED)
1367		mapped = false;
1368
1369	dm_done(clone, tio->error, mapped);
1370}
1371
1372/*
1373 * Complete the clone and the original request with the error status
1374 * through softirq context.
1375 */
1376static void dm_complete_request(struct request *rq, int error)
1377{
1378	struct dm_rq_target_io *tio = tio_from_request(rq);
 
1379
1380	tio->error = error;
1381	if (!rq->q->mq_ops)
1382		blk_complete_request(rq);
1383	else
1384		blk_mq_complete_request(rq, error);
1385}
1386
1387/*
1388 * Complete the not-mapped clone and the original request with the error status
1389 * through softirq context.
1390 * Target's rq_end_io() function isn't called.
1391 * This may be used when the target's map_rq() or clone_and_map_rq() functions fail.
1392 */
1393static void dm_kill_unmapped_request(struct request *rq, int error)
1394{
 
 
 
1395	rq->cmd_flags |= REQ_FAILED;
1396	dm_complete_request(rq, error);
1397}
 
1398
1399/*
1400 * Called with the clone's queue lock held (in the case of .request_fn)
1401 */
1402static void end_clone_request(struct request *clone, int error)
1403{
1404	struct dm_rq_target_io *tio = clone->end_io_data;
1405
1406	if (!clone->q->mq_ops) {
1407		/*
1408		 * For just cleaning up the information of the queue in which
1409		 * the clone was dispatched.
1410		 * The clone is *NOT* freed actually here because it is alloced
1411		 * from dm own mempool (REQ_ALLOCED isn't set).
1412		 */
1413		__blk_put_request(clone->q, clone);
1414	}
1415
1416	/*
1417	 * Actual request completion is done in a softirq context which doesn't
1418	 * hold the clone's queue lock.  Otherwise, deadlock could occur because:
1419	 *     - another request may be submitted by the upper level driver
1420	 *       of the stacking during the completion
1421	 *     - the submission which requires queue lock may be done
1422	 *       against this clone's queue
1423	 */
1424	dm_complete_request(tio->orig, error);
1425}
1426
1427/*
1428 * Return maximum size of I/O possible at the supplied sector up to the current
1429 * target boundary.
1430 */
1431static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
1432{
1433	sector_t target_offset = dm_target_offset(ti, sector);
1434
1435	return ti->len - target_offset;
1436}
1437
1438static sector_t max_io_len(sector_t sector, struct dm_target *ti)
1439{
1440	sector_t len = max_io_len_target_boundary(sector, ti);
1441	sector_t offset, max_len;
1442
1443	/*
1444	 * Does the target need to split even further?
1445	 */
1446	if (ti->max_io_len) {
1447		offset = dm_target_offset(ti, sector);
1448		if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
1449			max_len = sector_div(offset, ti->max_io_len);
1450		else
1451			max_len = offset & (ti->max_io_len - 1);
1452		max_len = ti->max_io_len - max_len;
1453
1454		if (len > max_len)
1455			len = max_len;
1456	}
1457
1458	return len;
1459}
1460
1461int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1462{
1463	if (len > UINT_MAX) {
1464		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1465		      (unsigned long long)len, UINT_MAX);
1466		ti->error = "Maximum size of target IO is too large";
1467		return -EINVAL;
1468	}
1469
1470	ti->max_io_len = (uint32_t) len;
1471
1472	return 0;
1473}
1474EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1475
1476/*
1477 * A target may call dm_accept_partial_bio only from the map routine.  It is
1478 * allowed for all bio types except REQ_FLUSH.
1479 *
1480 * dm_accept_partial_bio informs the dm that the target only wants to process
1481 * additional n_sectors sectors of the bio and the rest of the data should be
1482 * sent in a next bio.
1483 *
1484 * A diagram that explains the arithmetics:
1485 * +--------------------+---------------+-------+
1486 * |         1          |       2       |   3   |
1487 * +--------------------+---------------+-------+
1488 *
1489 * <-------------- *tio->len_ptr --------------->
1490 *                      <------- bi_size ------->
1491 *                      <-- n_sectors -->
1492 *
1493 * Region 1 was already iterated over with bio_advance or similar function.
1494 *	(it may be empty if the target doesn't use bio_advance)
1495 * Region 2 is the remaining bio size that the target wants to process.
1496 *	(it may be empty if region 1 is non-empty, although there is no reason
1497 *	 to make it empty)
1498 * The target requires that region 3 is to be sent in the next bio.
1499 *
1500 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1501 * the partially processed part (the sum of regions 1+2) must be the same for all
1502 * copies of the bio.
1503 */
1504void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1505{
1506	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1507	unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1508	BUG_ON(bio->bi_rw & REQ_FLUSH);
1509	BUG_ON(bi_size > *tio->len_ptr);
1510	BUG_ON(n_sectors > bi_size);
1511	*tio->len_ptr -= bi_size - n_sectors;
1512	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1513}
1514EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1515
1516static void __map_bio(struct dm_target_io *tio)
1517{
1518	int r;
1519	sector_t sector;
1520	struct mapped_device *md;
1521	struct bio *clone = &tio->clone;
1522	struct dm_target *ti = tio->ti;
1523
1524	clone->bi_end_io = clone_endio;
 
1525
1526	/*
1527	 * Map the clone.  If r == 0 we don't need to do
1528	 * anything, the target has assumed ownership of
1529	 * this io.
1530	 */
1531	atomic_inc(&tio->io->io_count);
1532	sector = clone->bi_iter.bi_sector;
1533	r = ti->type->map(ti, clone);
1534	if (r == DM_MAPIO_REMAPPED) {
1535		/* the bio has been remapped so dispatch it */
1536
1537		trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone,
1538				      tio->io->bio->bi_bdev->bd_dev, sector);
1539
1540		generic_make_request(clone);
1541	} else if (r < 0 || r == DM_MAPIO_REQUEUE) {
1542		/* error the io and bail out, or requeue it if needed */
1543		md = tio->io->md;
1544		dec_pending(tio->io, r);
 
 
 
 
 
1545		free_tio(md, tio);
1546	} else if (r != DM_MAPIO_SUBMITTED) {
1547		DMWARN("unimplemented target map return value: %d", r);
1548		BUG();
1549	}
1550}
1551
1552struct clone_info {
1553	struct mapped_device *md;
1554	struct dm_table *map;
1555	struct bio *bio;
1556	struct dm_io *io;
1557	sector_t sector;
1558	unsigned sector_count;
 
1559};
1560
1561static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1562{
1563	bio->bi_iter.bi_sector = sector;
1564	bio->bi_iter.bi_size = to_bytes(len);
 
1565}
1566
1567/*
1568 * Creates a bio that consists of range of complete bvecs.
1569 */
1570static int clone_bio(struct dm_target_io *tio, struct bio *bio,
1571		     sector_t sector, unsigned len)
 
1572{
1573	struct bio *clone = &tio->clone;
 
1574
1575	__bio_clone_fast(clone, bio);
 
 
 
 
 
 
 
 
 
 
 
1576
1577	if (bio_integrity(bio)) {
1578		int r = bio_integrity_clone(clone, bio, GFP_NOIO);
1579		if (r < 0)
1580			return r;
1581	}
1582
1583	bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1584	clone->bi_iter.bi_size = to_bytes(len);
 
 
 
 
 
 
 
 
 
1585
1586	if (bio_integrity(bio))
1587		bio_integrity_trim(clone, 0, len);
 
 
 
 
 
 
1588
1589	return 0;
 
 
 
 
 
 
 
 
1590}
1591
1592static struct dm_target_io *alloc_tio(struct clone_info *ci,
1593				      struct dm_target *ti,
1594				      unsigned target_bio_nr)
1595{
1596	struct dm_target_io *tio;
1597	struct bio *clone;
1598
1599	clone = bio_alloc_bioset(GFP_NOIO, 0, ci->md->bs);
1600	tio = container_of(clone, struct dm_target_io, clone);
1601
1602	tio->io = ci->io;
1603	tio->ti = ti;
1604	tio->target_bio_nr = target_bio_nr;
1605
1606	return tio;
1607}
1608
1609static void __clone_and_map_simple_bio(struct clone_info *ci,
1610				       struct dm_target *ti,
1611				       unsigned target_bio_nr, unsigned *len)
1612{
1613	struct dm_target_io *tio = alloc_tio(ci, ti, target_bio_nr);
1614	struct bio *clone = &tio->clone;
1615
1616	tio->len_ptr = len;
1617
1618	__bio_clone_fast(clone, ci->bio);
1619	if (len)
1620		bio_setup_sector(clone, ci->sector, *len);
 
 
 
 
 
 
 
 
 
1621
1622	__map_bio(tio);
1623}
1624
1625static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1626				  unsigned num_bios, unsigned *len)
1627{
1628	unsigned target_bio_nr;
1629
1630	for (target_bio_nr = 0; target_bio_nr < num_bios; target_bio_nr++)
1631		__clone_and_map_simple_bio(ci, ti, target_bio_nr, len);
1632}
1633
1634static int __send_empty_flush(struct clone_info *ci)
1635{
1636	unsigned target_nr = 0;
1637	struct dm_target *ti;
1638
1639	BUG_ON(bio_has_data(ci->bio));
1640	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1641		__send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1642
1643	return 0;
1644}
1645
1646static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1647				     sector_t sector, unsigned *len)
 
 
1648{
1649	struct bio *bio = ci->bio;
1650	struct dm_target_io *tio;
1651	unsigned target_bio_nr;
1652	unsigned num_target_bios = 1;
1653	int r = 0;
1654
1655	/*
1656	 * Does the target want to receive duplicate copies of the bio?
1657	 */
1658	if (bio_data_dir(bio) == WRITE && ti->num_write_bios)
1659		num_target_bios = ti->num_write_bios(ti, bio);
1660
1661	for (target_bio_nr = 0; target_bio_nr < num_target_bios; target_bio_nr++) {
1662		tio = alloc_tio(ci, ti, target_bio_nr);
1663		tio->len_ptr = len;
1664		r = clone_bio(tio, bio, sector, *len);
1665		if (r < 0) {
1666			free_tio(ci->md, tio);
1667			break;
1668		}
1669		__map_bio(tio);
1670	}
1671
1672	return r;
1673}
1674
1675typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1676
1677static unsigned get_num_discard_bios(struct dm_target *ti)
1678{
1679	return ti->num_discard_bios;
1680}
1681
1682static unsigned get_num_write_same_bios(struct dm_target *ti)
1683{
1684	return ti->num_write_same_bios;
1685}
1686
1687typedef bool (*is_split_required_fn)(struct dm_target *ti);
1688
1689static bool is_split_required_for_discard(struct dm_target *ti)
1690{
1691	return ti->split_discard_bios;
1692}
1693
1694static int __send_changing_extent_only(struct clone_info *ci,
1695				       get_num_bios_fn get_num_bios,
1696				       is_split_required_fn is_split_required)
1697{
1698	struct dm_target *ti;
1699	unsigned len;
1700	unsigned num_bios;
1701
1702	do {
1703		ti = dm_table_find_target(ci->map, ci->sector);
1704		if (!dm_target_is_valid(ti))
1705			return -EIO;
1706
1707		/*
1708		 * Even though the device advertised support for this type of
1709		 * request, that does not mean every target supports it, and
1710		 * reconfiguration might also have changed that since the
1711		 * check was performed.
1712		 */
1713		num_bios = get_num_bios ? get_num_bios(ti) : 0;
1714		if (!num_bios)
1715			return -EOPNOTSUPP;
1716
1717		if (is_split_required && !is_split_required(ti))
1718			len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1719		else
1720			len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti));
1721
1722		__send_duplicate_bios(ci, ti, num_bios, &len);
1723
1724		ci->sector += len;
1725	} while (ci->sector_count -= len);
1726
1727	return 0;
1728}
1729
1730static int __send_discard(struct clone_info *ci)
1731{
1732	return __send_changing_extent_only(ci, get_num_discard_bios,
1733					   is_split_required_for_discard);
1734}
1735
1736static int __send_write_same(struct clone_info *ci)
1737{
1738	return __send_changing_extent_only(ci, get_num_write_same_bios, NULL);
1739}
1740
1741/*
1742 * Select the correct strategy for processing a non-flush bio.
1743 */
1744static int __split_and_process_non_flush(struct clone_info *ci)
1745{
1746	struct bio *bio = ci->bio;
1747	struct dm_target *ti;
1748	unsigned len;
1749	int r;
1750
1751	if (unlikely(bio->bi_rw & REQ_DISCARD))
1752		return __send_discard(ci);
1753	else if (unlikely(bio->bi_rw & REQ_WRITE_SAME))
1754		return __send_write_same(ci);
1755
1756	ti = dm_table_find_target(ci->map, ci->sector);
1757	if (!dm_target_is_valid(ti))
1758		return -EIO;
1759
1760	len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1761
1762	r = __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1763	if (r < 0)
1764		return r;
 
 
 
1765
1766	ci->sector += len;
1767	ci->sector_count -= len;
1768
1769	return 0;
1770}
1771
1772/*
1773 * Entry point to split a bio into clones and submit them to the targets.
1774 */
1775static void __split_and_process_bio(struct mapped_device *md,
1776				    struct dm_table *map, struct bio *bio)
1777{
1778	struct clone_info ci;
1779	int error = 0;
1780
1781	if (unlikely(!map)) {
 
1782		bio_io_error(bio);
1783		return;
1784	}
1785
1786	ci.map = map;
1787	ci.md = md;
1788	ci.io = alloc_io(md);
1789	ci.io->error = 0;
1790	atomic_set(&ci.io->io_count, 1);
1791	ci.io->bio = bio;
1792	ci.io->md = md;
1793	spin_lock_init(&ci.io->endio_lock);
1794	ci.sector = bio->bi_iter.bi_sector;
 
1795
1796	start_io_acct(ci.io);
1797
1798	if (bio->bi_rw & REQ_FLUSH) {
1799		ci.bio = &ci.md->flush_bio;
1800		ci.sector_count = 0;
1801		error = __send_empty_flush(&ci);
1802		/* dec_pending submits any data associated with flush */
1803	} else {
1804		ci.bio = bio;
1805		ci.sector_count = bio_sectors(bio);
1806		while (ci.sector_count && !error)
1807			error = __split_and_process_non_flush(&ci);
1808	}
1809
1810	/* drop the extra reference count */
1811	dec_pending(ci.io, error);
 
1812}
1813/*-----------------------------------------------------------------
1814 * CRUD END
1815 *---------------------------------------------------------------*/
1816
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1817/*
1818 * The request function that just remaps the bio built up by
1819 * dm_merge_bvec.
1820 */
1821static blk_qc_t dm_make_request(struct request_queue *q, struct bio *bio)
1822{
1823	int rw = bio_data_dir(bio);
1824	struct mapped_device *md = q->queuedata;
1825	int srcu_idx;
1826	struct dm_table *map;
1827
1828	map = dm_get_live_table(md, &srcu_idx);
1829
1830	generic_start_io_acct(rw, bio_sectors(bio), &dm_disk(md)->part0);
 
 
 
1831
1832	/* if we're suspended, we have to queue this io for later */
1833	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1834		dm_put_live_table(md, srcu_idx);
1835
1836		if (bio_rw(bio) != READA)
1837			queue_io(md, bio);
1838		else
1839			bio_io_error(bio);
1840		return BLK_QC_T_NONE;
1841	}
1842
1843	__split_and_process_bio(md, map, bio);
1844	dm_put_live_table(md, srcu_idx);
1845	return BLK_QC_T_NONE;
 
 
 
 
 
 
 
1846}
1847
1848int dm_request_based(struct mapped_device *md)
1849{
1850	return blk_queue_stackable(md->queue);
1851}
1852
1853static void dm_dispatch_clone_request(struct request *clone, struct request *rq)
 
 
 
 
 
 
 
 
 
 
1854{
1855	int r;
1856
1857	if (blk_queue_io_stat(clone->q))
1858		clone->cmd_flags |= REQ_IO_STAT;
1859
1860	clone->start_time = jiffies;
1861	r = blk_insert_cloned_request(clone->q, clone);
1862	if (r)
1863		/* must complete clone in terms of original request */
1864		dm_complete_request(rq, r);
1865}
 
 
 
 
 
 
 
 
 
 
1866
1867static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig,
1868				 void *data)
1869{
1870	struct dm_rq_target_io *tio = data;
1871	struct dm_rq_clone_bio_info *info =
1872		container_of(bio, struct dm_rq_clone_bio_info, clone);
 
 
 
1873
1874	info->orig = bio_orig;
1875	info->tio = tio;
1876	bio->bi_end_io = end_clone_bio;
 
 
1877
1878	return 0;
1879}
1880
1881static int setup_clone(struct request *clone, struct request *rq,
1882		       struct dm_rq_target_io *tio, gfp_t gfp_mask)
1883{
1884	int r;
1885
1886	r = blk_rq_prep_clone(clone, rq, tio->md->bs, gfp_mask,
1887			      dm_rq_bio_constructor, tio);
1888	if (r)
1889		return r;
1890
1891	clone->cmd = rq->cmd;
1892	clone->cmd_len = rq->cmd_len;
1893	clone->sense = rq->sense;
 
1894	clone->end_io = end_clone_request;
1895	clone->end_io_data = tio;
1896
1897	tio->clone = clone;
1898
1899	return 0;
1900}
1901
1902static struct request *clone_old_rq(struct request *rq, struct mapped_device *md,
1903				    struct dm_rq_target_io *tio, gfp_t gfp_mask)
1904{
1905	/*
1906	 * Create clone for use with .request_fn request_queue
1907	 */
1908	struct request *clone;
 
1909
1910	clone = alloc_old_clone_request(md, gfp_mask);
1911	if (!clone)
1912		return NULL;
1913
1914	blk_rq_init(NULL, clone);
1915	if (setup_clone(clone, rq, tio, gfp_mask)) {
1916		/* -ENOMEM */
1917		free_old_clone_request(md, clone);
1918		return NULL;
1919	}
1920
1921	return clone;
1922}
1923
1924static void map_tio_request(struct kthread_work *work);
1925
1926static void init_tio(struct dm_rq_target_io *tio, struct request *rq,
1927		     struct mapped_device *md)
1928{
1929	tio->md = md;
1930	tio->ti = NULL;
1931	tio->clone = NULL;
1932	tio->orig = rq;
1933	tio->error = 0;
1934	/*
1935	 * Avoid initializing info for blk-mq; it passes
1936	 * target-specific data through info.ptr
1937	 * (see: dm_mq_init_request)
1938	 */
1939	if (!md->init_tio_pdu)
1940		memset(&tio->info, 0, sizeof(tio->info));
1941	if (md->kworker_task)
1942		init_kthread_work(&tio->work, map_tio_request);
1943}
1944
1945static struct dm_rq_target_io *dm_old_prep_tio(struct request *rq,
1946					       struct mapped_device *md,
1947					       gfp_t gfp_mask)
1948{
1949	struct dm_rq_target_io *tio;
1950	int srcu_idx;
1951	struct dm_table *table;
1952
1953	tio = alloc_old_rq_tio(md, gfp_mask);
1954	if (!tio)
1955		return NULL;
1956
1957	init_tio(tio, rq, md);
1958
1959	table = dm_get_live_table(md, &srcu_idx);
1960	/*
1961	 * Must clone a request if this .request_fn DM device
1962	 * is stacked on .request_fn device(s).
1963	 */
1964	if (!dm_table_mq_request_based(table)) {
1965		if (!clone_old_rq(rq, md, tio, gfp_mask)) {
1966			dm_put_live_table(md, srcu_idx);
1967			free_old_rq_tio(tio);
1968			return NULL;
1969		}
1970	}
1971	dm_put_live_table(md, srcu_idx);
1972
1973	return tio;
1974}
1975
1976/*
1977 * Called with the queue lock held.
1978 */
1979static int dm_old_prep_fn(struct request_queue *q, struct request *rq)
1980{
1981	struct mapped_device *md = q->queuedata;
1982	struct dm_rq_target_io *tio;
1983
1984	if (unlikely(rq->special)) {
1985		DMWARN("Already has something in rq->special.");
1986		return BLKPREP_KILL;
1987	}
1988
1989	tio = dm_old_prep_tio(rq, md, GFP_ATOMIC);
1990	if (!tio)
1991		return BLKPREP_DEFER;
1992
1993	rq->special = tio;
1994	rq->cmd_flags |= REQ_DONTPREP;
1995
1996	return BLKPREP_OK;
1997}
1998
1999/*
2000 * Returns:
2001 * 0                : the request has been processed
2002 * DM_MAPIO_REQUEUE : the original request needs to be requeued
2003 * < 0              : the request was completed due to failure
2004 */
2005static int map_request(struct dm_rq_target_io *tio, struct request *rq,
2006		       struct mapped_device *md)
2007{
2008	int r;
2009	struct dm_target *ti = tio->ti;
2010	struct request *clone = NULL;
2011
2012	if (tio->clone) {
2013		clone = tio->clone;
2014		r = ti->type->map_rq(ti, clone, &tio->info);
2015	} else {
2016		r = ti->type->clone_and_map_rq(ti, rq, &tio->info, &clone);
2017		if (r < 0) {
2018			/* The target wants to complete the I/O */
2019			dm_kill_unmapped_request(rq, r);
2020			return r;
2021		}
2022		if (r != DM_MAPIO_REMAPPED)
2023			return r;
2024		if (setup_clone(clone, rq, tio, GFP_ATOMIC)) {
2025			/* -ENOMEM */
2026			ti->type->release_clone_rq(clone);
2027			return DM_MAPIO_REQUEUE;
2028		}
2029	}
2030
 
 
2031	switch (r) {
2032	case DM_MAPIO_SUBMITTED:
2033		/* The target has taken the I/O to submit by itself later */
2034		break;
2035	case DM_MAPIO_REMAPPED:
2036		/* The target has remapped the I/O so dispatch it */
2037		trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)),
2038				     blk_rq_pos(rq));
2039		dm_dispatch_clone_request(clone, rq);
2040		break;
2041	case DM_MAPIO_REQUEUE:
2042		/* The target wants to requeue the I/O */
2043		dm_requeue_original_request(md, tio->orig);
 
2044		break;
2045	default:
2046		if (r > 0) {
2047			DMWARN("unimplemented target map return value: %d", r);
2048			BUG();
2049		}
2050
2051		/* The target wants to complete the I/O */
2052		dm_kill_unmapped_request(rq, r);
2053		return r;
2054	}
2055
2056	return 0;
2057}
2058
2059static void map_tio_request(struct kthread_work *work)
2060{
2061	struct dm_rq_target_io *tio = container_of(work, struct dm_rq_target_io, work);
2062	struct request *rq = tio->orig;
2063	struct mapped_device *md = tio->md;
2064
2065	if (map_request(tio, rq, md) == DM_MAPIO_REQUEUE)
2066		dm_requeue_original_request(md, rq);
2067}
2068
2069static void dm_start_request(struct mapped_device *md, struct request *orig)
2070{
2071	if (!orig->q->mq_ops)
2072		blk_start_request(orig);
2073	else
2074		blk_mq_start_request(orig);
2075	atomic_inc(&md->pending[rq_data_dir(orig)]);
2076
2077	if (md->seq_rq_merge_deadline_usecs) {
2078		md->last_rq_pos = rq_end_sector(orig);
2079		md->last_rq_rw = rq_data_dir(orig);
2080		md->last_rq_start_time = ktime_get();
2081	}
2082
2083	if (unlikely(dm_stats_used(&md->stats))) {
2084		struct dm_rq_target_io *tio = tio_from_request(orig);
2085		tio->duration_jiffies = jiffies;
2086		tio->n_sectors = blk_rq_sectors(orig);
2087		dm_stats_account_io(&md->stats, orig->cmd_flags, blk_rq_pos(orig),
2088				    tio->n_sectors, false, 0, &tio->stats_aux);
2089	}
2090
2091	/*
2092	 * Hold the md reference here for the in-flight I/O.
2093	 * We can't rely on the reference count by device opener,
2094	 * because the device may be closed during the request completion
2095	 * when all bios are completed.
2096	 * See the comment in rq_completed() too.
2097	 */
2098	dm_get(md);
2099}
2100
2101#define MAX_SEQ_RQ_MERGE_DEADLINE_USECS 100000
2102
2103ssize_t dm_attr_rq_based_seq_io_merge_deadline_show(struct mapped_device *md, char *buf)
2104{
2105	return sprintf(buf, "%u\n", md->seq_rq_merge_deadline_usecs);
2106}
2107
2108ssize_t dm_attr_rq_based_seq_io_merge_deadline_store(struct mapped_device *md,
2109						     const char *buf, size_t count)
2110{
2111	unsigned deadline;
2112
2113	if (!dm_request_based(md) || md->use_blk_mq)
2114		return count;
2115
2116	if (kstrtouint(buf, 10, &deadline))
2117		return -EINVAL;
2118
2119	if (deadline > MAX_SEQ_RQ_MERGE_DEADLINE_USECS)
2120		deadline = MAX_SEQ_RQ_MERGE_DEADLINE_USECS;
2121
2122	md->seq_rq_merge_deadline_usecs = deadline;
2123
2124	return count;
2125}
2126
2127static bool dm_request_peeked_before_merge_deadline(struct mapped_device *md)
2128{
2129	ktime_t kt_deadline;
2130
2131	if (!md->seq_rq_merge_deadline_usecs)
2132		return false;
2133
2134	kt_deadline = ns_to_ktime((u64)md->seq_rq_merge_deadline_usecs * NSEC_PER_USEC);
2135	kt_deadline = ktime_add_safe(md->last_rq_start_time, kt_deadline);
2136
2137	return !ktime_after(ktime_get(), kt_deadline);
2138}
2139
2140/*
2141 * q->request_fn for request-based dm.
2142 * Called with the queue lock held.
2143 */
2144static void dm_request_fn(struct request_queue *q)
2145{
2146	struct mapped_device *md = q->queuedata;
2147	struct dm_target *ti = md->immutable_target;
2148	struct request *rq;
2149	struct dm_rq_target_io *tio;
2150	sector_t pos = 0;
2151
2152	if (unlikely(!ti)) {
2153		int srcu_idx;
2154		struct dm_table *map = dm_get_live_table(md, &srcu_idx);
2155
2156		ti = dm_table_find_target(map, pos);
2157		dm_put_live_table(md, srcu_idx);
2158	}
2159
2160	/*
2161	 * For suspend, check blk_queue_stopped() and increment
2162	 * ->pending within a single queue_lock not to increment the
2163	 * number of in-flight I/Os after the queue is stopped in
2164	 * dm_suspend().
2165	 */
2166	while (!blk_queue_stopped(q)) {
2167		rq = blk_peek_request(q);
2168		if (!rq)
2169			return;
2170
2171		/* always use block 0 to find the target for flushes for now */
2172		pos = 0;
2173		if (!(rq->cmd_flags & REQ_FLUSH))
2174			pos = blk_rq_pos(rq);
2175
2176		if ((dm_request_peeked_before_merge_deadline(md) &&
2177		     md_in_flight(md) && rq->bio && rq->bio->bi_vcnt == 1 &&
2178		     md->last_rq_pos == pos && md->last_rq_rw == rq_data_dir(rq)) ||
2179		    (ti->type->busy && ti->type->busy(ti))) {
2180			blk_delay_queue(q, HZ / 100);
2181			return;
2182		}
2183
2184		dm_start_request(md, rq);
 
 
 
 
 
 
2185
2186		tio = tio_from_request(rq);
2187		/* Establish tio->ti before queuing work (map_tio_request) */
2188		tio->ti = ti;
2189		queue_kthread_work(&md->kworker, &tio->work);
2190		BUG_ON(!irqs_disabled());
 
2191	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2192}
2193
2194static int dm_any_congested(void *congested_data, int bdi_bits)
2195{
2196	int r = bdi_bits;
2197	struct mapped_device *md = congested_data;
2198	struct dm_table *map;
2199
2200	if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2201		if (dm_request_based(md)) {
 
2202			/*
2203			 * With request-based DM we only need to check the
2204			 * top-level queue for congestion.
2205			 */
2206			r = md->queue->backing_dev_info.wb.state & bdi_bits;
2207		} else {
2208			map = dm_get_live_table_fast(md);
2209			if (map)
2210				r = dm_table_any_congested(map, bdi_bits);
2211			dm_put_live_table_fast(md);
 
2212		}
2213	}
2214
2215	return r;
2216}
2217
2218/*-----------------------------------------------------------------
2219 * An IDR is used to keep track of allocated minor numbers.
2220 *---------------------------------------------------------------*/
2221static void free_minor(int minor)
2222{
2223	spin_lock(&_minor_lock);
2224	idr_remove(&_minor_idr, minor);
2225	spin_unlock(&_minor_lock);
2226}
2227
2228/*
2229 * See if the device with a specific minor # is free.
2230 */
2231static int specific_minor(int minor)
2232{
2233	int r;
2234
2235	if (minor >= (1 << MINORBITS))
2236		return -EINVAL;
2237
2238	idr_preload(GFP_KERNEL);
 
 
 
2239	spin_lock(&_minor_lock);
2240
2241	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
 
 
 
 
 
 
 
 
 
 
 
 
 
2242
 
2243	spin_unlock(&_minor_lock);
2244	idr_preload_end();
2245	if (r < 0)
2246		return r == -ENOSPC ? -EBUSY : r;
2247	return 0;
2248}
2249
2250static int next_free_minor(int *minor)
2251{
2252	int r;
 
 
 
 
2253
2254	idr_preload(GFP_KERNEL);
2255	spin_lock(&_minor_lock);
2256
2257	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
 
 
2258
 
 
 
 
 
 
 
 
 
2259	spin_unlock(&_minor_lock);
2260	idr_preload_end();
2261	if (r < 0)
2262		return r;
2263	*minor = r;
2264	return 0;
2265}
2266
2267static const struct block_device_operations dm_blk_dops;
2268
2269static void dm_wq_work(struct work_struct *work);
2270
2271static void dm_init_md_queue(struct mapped_device *md)
2272{
2273	/*
2274	 * Request-based dm devices cannot be stacked on top of bio-based dm
2275	 * devices.  The type of this dm device may not have been decided yet.
2276	 * The type is decided at the first table loading time.
2277	 * To prevent problematic device stacking, clear the queue flag
2278	 * for request stacking support until then.
2279	 *
2280	 * This queue is new, so no concurrency on the queue_flags.
2281	 */
2282	queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
2283
2284	/*
2285	 * Initialize data that will only be used by a non-blk-mq DM queue
2286	 * - must do so here (in alloc_dev callchain) before queue is used
2287	 */
2288	md->queue->queuedata = md;
 
2289	md->queue->backing_dev_info.congested_data = md;
2290}
2291
2292static void dm_init_normal_md_queue(struct mapped_device *md)
2293{
2294	md->use_blk_mq = false;
2295	dm_init_md_queue(md);
2296
2297	/*
2298	 * Initialize aspects of queue that aren't relevant for blk-mq
2299	 */
2300	md->queue->backing_dev_info.congested_fn = dm_any_congested;
2301	blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
2302}
2303
2304static void cleanup_mapped_device(struct mapped_device *md)
2305{
2306	if (md->wq)
2307		destroy_workqueue(md->wq);
2308	if (md->kworker_task)
2309		kthread_stop(md->kworker_task);
2310	mempool_destroy(md->io_pool);
2311	mempool_destroy(md->rq_pool);
2312	if (md->bs)
2313		bioset_free(md->bs);
2314
2315	cleanup_srcu_struct(&md->io_barrier);
2316
2317	if (md->disk) {
2318		spin_lock(&_minor_lock);
2319		md->disk->private_data = NULL;
2320		spin_unlock(&_minor_lock);
2321		del_gendisk(md->disk);
2322		put_disk(md->disk);
2323	}
2324
2325	if (md->queue)
2326		blk_cleanup_queue(md->queue);
2327
2328	if (md->bdev) {
2329		bdput(md->bdev);
2330		md->bdev = NULL;
2331	}
2332}
2333
2334/*
2335 * Allocate and initialise a blank device with a given minor.
2336 */
2337static struct mapped_device *alloc_dev(int minor)
2338{
2339	int r, numa_node_id = dm_get_numa_node();
2340	struct mapped_device *md;
2341	void *old_md;
2342
2343	md = kzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
2344	if (!md) {
2345		DMWARN("unable to allocate device, out of memory.");
2346		return NULL;
2347	}
2348
2349	if (!try_module_get(THIS_MODULE))
2350		goto bad_module_get;
2351
2352	/* get a minor number for the dev */
2353	if (minor == DM_ANY_MINOR)
2354		r = next_free_minor(&minor);
2355	else
2356		r = specific_minor(minor);
2357	if (r < 0)
2358		goto bad_minor;
2359
2360	r = init_srcu_struct(&md->io_barrier);
2361	if (r < 0)
2362		goto bad_io_barrier;
2363
2364	md->numa_node_id = numa_node_id;
2365	md->use_blk_mq = use_blk_mq;
2366	md->init_tio_pdu = false;
2367	md->type = DM_TYPE_NONE;
 
2368	mutex_init(&md->suspend_lock);
2369	mutex_init(&md->type_lock);
2370	mutex_init(&md->table_devices_lock);
2371	spin_lock_init(&md->deferred_lock);
 
2372	atomic_set(&md->holders, 1);
2373	atomic_set(&md->open_count, 0);
2374	atomic_set(&md->event_nr, 0);
2375	atomic_set(&md->uevent_seq, 0);
2376	INIT_LIST_HEAD(&md->uevent_list);
2377	INIT_LIST_HEAD(&md->table_devices);
2378	spin_lock_init(&md->uevent_lock);
2379
2380	md->queue = blk_alloc_queue_node(GFP_KERNEL, numa_node_id);
2381	if (!md->queue)
2382		goto bad;
2383
2384	dm_init_md_queue(md);
2385
2386	md->disk = alloc_disk_node(1, numa_node_id);
2387	if (!md->disk)
2388		goto bad;
2389
2390	atomic_set(&md->pending[0], 0);
2391	atomic_set(&md->pending[1], 0);
2392	init_waitqueue_head(&md->wait);
2393	INIT_WORK(&md->work, dm_wq_work);
2394	init_waitqueue_head(&md->eventq);
2395	init_completion(&md->kobj_holder.completion);
2396	md->kworker_task = NULL;
2397
2398	md->disk->major = _major;
2399	md->disk->first_minor = minor;
2400	md->disk->fops = &dm_blk_dops;
2401	md->disk->queue = md->queue;
2402	md->disk->private_data = md;
2403	sprintf(md->disk->disk_name, "dm-%d", minor);
2404	add_disk(md->disk);
2405	format_dev_t(md->name, MKDEV(_major, minor));
2406
2407	md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
 
2408	if (!md->wq)
2409		goto bad;
2410
2411	md->bdev = bdget_disk(md->disk, 0);
2412	if (!md->bdev)
2413		goto bad;
2414
2415	bio_init(&md->flush_bio);
2416	md->flush_bio.bi_bdev = md->bdev;
2417	md->flush_bio.bi_rw = WRITE_FLUSH;
2418
2419	dm_stats_init(&md->stats);
2420
2421	/* Populate the mapping, nobody knows we exist yet */
2422	spin_lock(&_minor_lock);
2423	old_md = idr_replace(&_minor_idr, md, minor);
2424	spin_unlock(&_minor_lock);
2425
2426	BUG_ON(old_md != MINOR_ALLOCED);
2427
2428	return md;
2429
2430bad:
2431	cleanup_mapped_device(md);
2432bad_io_barrier:
 
 
 
 
 
2433	free_minor(minor);
2434bad_minor:
2435	module_put(THIS_MODULE);
2436bad_module_get:
2437	kfree(md);
2438	return NULL;
2439}
2440
2441static void unlock_fs(struct mapped_device *md);
2442
2443static void free_dev(struct mapped_device *md)
2444{
2445	int minor = MINOR(disk_devt(md->disk));
2446
2447	unlock_fs(md);
 
 
 
 
 
 
 
 
 
 
 
2448
2449	cleanup_mapped_device(md);
2450	if (md->tag_set) {
2451		blk_mq_free_tag_set(md->tag_set);
2452		kfree(md->tag_set);
2453	}
2454
2455	free_table_devices(&md->table_devices);
2456	dm_stats_cleanup(&md->stats);
2457	free_minor(minor);
2458
 
 
2459	module_put(THIS_MODULE);
2460	kfree(md);
2461}
2462
2463static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
2464{
2465	struct dm_md_mempools *p = dm_table_get_md_mempools(t);
2466
2467	if (md->bs) {
2468		/* The md already has necessary mempools. */
2469		if (dm_table_get_type(t) == DM_TYPE_BIO_BASED) {
2470			/*
2471			 * Reload bioset because front_pad may have changed
2472			 * because a different table was loaded.
2473			 */
2474			bioset_free(md->bs);
2475			md->bs = p->bs;
2476			p->bs = NULL;
2477		}
2478		/*
2479		 * There's no need to reload with request-based dm
2480		 * because the size of front_pad doesn't change.
2481		 * Note for future: If you are to reload bioset,
2482		 * prep-ed requests in the queue may refer
2483		 * to bio from the old bioset, so you must walk
2484		 * through the queue to unprep.
2485		 */
2486		goto out;
2487	}
2488
2489	BUG_ON(!p || md->io_pool || md->rq_pool || md->bs);
 
2490
2491	md->io_pool = p->io_pool;
2492	p->io_pool = NULL;
2493	md->rq_pool = p->rq_pool;
2494	p->rq_pool = NULL;
2495	md->bs = p->bs;
2496	p->bs = NULL;
2497
2498out:
2499	/* mempool bind completed, no longer need any mempools in the table */
2500	dm_table_free_md_mempools(t);
2501}
2502
2503/*
2504 * Bind a table to the device.
2505 */
2506static void event_callback(void *context)
2507{
2508	unsigned long flags;
2509	LIST_HEAD(uevents);
2510	struct mapped_device *md = (struct mapped_device *) context;
2511
2512	spin_lock_irqsave(&md->uevent_lock, flags);
2513	list_splice_init(&md->uevent_list, &uevents);
2514	spin_unlock_irqrestore(&md->uevent_lock, flags);
2515
2516	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2517
2518	atomic_inc(&md->event_nr);
2519	wake_up(&md->eventq);
2520}
2521
2522/*
2523 * Protected by md->suspend_lock obtained by dm_swap_table().
2524 */
2525static void __set_size(struct mapped_device *md, sector_t size)
2526{
2527	set_capacity(md->disk, size);
2528
2529	i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2530}
2531
2532/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2533 * Returns old map, which caller must destroy.
2534 */
2535static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2536			       struct queue_limits *limits)
2537{
2538	struct dm_table *old_map;
2539	struct request_queue *q = md->queue;
2540	sector_t size;
 
 
2541
2542	size = dm_table_get_size(t);
2543
2544	/*
2545	 * Wipe any geometry if the size of the table changed.
2546	 */
2547	if (size != dm_get_size(md))
2548		memset(&md->geometry, 0, sizeof(md->geometry));
2549
2550	__set_size(md, size);
2551
2552	dm_table_event_callback(t, event_callback, md);
2553
2554	/*
2555	 * The queue hasn't been stopped yet, if the old table type wasn't
2556	 * for request-based during suspension.  So stop it to prevent
2557	 * I/O mapping before resume.
2558	 * This must be done before setting the queue restrictions,
2559	 * because request-based dm may be run just after the setting.
2560	 */
2561	if (dm_table_request_based(t)) {
2562		dm_stop_queue(q);
2563		/*
2564		 * Leverage the fact that request-based DM targets are
2565		 * immutable singletons and establish md->immutable_target
2566		 * - used to optimize both dm_request_fn and dm_mq_queue_rq
2567		 */
2568		md->immutable_target = dm_table_get_immutable_target(t);
2569	}
2570
2571	__bind_mempools(md, t);
2572
2573	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2574	rcu_assign_pointer(md->map, (void *)t);
2575	md->immutable_target_type = dm_table_get_immutable_target_type(t);
2576
 
 
 
2577	dm_table_set_restrictions(t, q, limits);
2578	if (old_map)
2579		dm_sync_table(md);
 
 
 
2580
2581	return old_map;
2582}
2583
2584/*
2585 * Returns unbound table for the caller to free.
2586 */
2587static struct dm_table *__unbind(struct mapped_device *md)
2588{
2589	struct dm_table *map = rcu_dereference_protected(md->map, 1);
 
2590
2591	if (!map)
2592		return NULL;
2593
2594	dm_table_event_callback(map, NULL, NULL);
2595	RCU_INIT_POINTER(md->map, NULL);
2596	dm_sync_table(md);
 
2597
2598	return map;
2599}
2600
2601/*
2602 * Constructor for a new device.
2603 */
2604int dm_create(int minor, struct mapped_device **result)
2605{
2606	struct mapped_device *md;
2607
2608	md = alloc_dev(minor);
2609	if (!md)
2610		return -ENXIO;
2611
2612	dm_sysfs_init(md);
2613
2614	*result = md;
2615	return 0;
2616}
2617
2618/*
2619 * Functions to manage md->type.
2620 * All are required to hold md->type_lock.
2621 */
2622void dm_lock_md_type(struct mapped_device *md)
2623{
2624	mutex_lock(&md->type_lock);
2625}
2626
2627void dm_unlock_md_type(struct mapped_device *md)
2628{
2629	mutex_unlock(&md->type_lock);
2630}
2631
2632void dm_set_md_type(struct mapped_device *md, unsigned type)
2633{
2634	BUG_ON(!mutex_is_locked(&md->type_lock));
2635	md->type = type;
2636}
2637
2638unsigned dm_get_md_type(struct mapped_device *md)
2639{
2640	return md->type;
2641}
2642
2643struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2644{
2645	return md->immutable_target_type;
2646}
2647
2648/*
2649 * The queue_limits are only valid as long as you have a reference
2650 * count on 'md'.
2651 */
2652struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2653{
2654	BUG_ON(!atomic_read(&md->holders));
2655	return &md->queue->limits;
2656}
2657EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2658
2659static void dm_old_init_rq_based_worker_thread(struct mapped_device *md)
2660{
2661	/* Initialize the request-based DM worker thread */
2662	init_kthread_worker(&md->kworker);
2663	md->kworker_task = kthread_run(kthread_worker_fn, &md->kworker,
2664				       "kdmwork-%s", dm_device_name(md));
2665}
2666
2667/*
2668 * Fully initialize a .request_fn request-based queue.
2669 */
2670static int dm_old_init_request_queue(struct mapped_device *md)
2671{
2672	/* Fully initialize the queue */
2673	if (!blk_init_allocated_queue(md->queue, dm_request_fn, NULL))
2674		return -EINVAL;
 
2675
2676	/* disable dm_request_fn's merge heuristic by default */
2677	md->seq_rq_merge_deadline_usecs = 0;
2678
2679	dm_init_normal_md_queue(md);
2680	blk_queue_softirq_done(md->queue, dm_softirq_done);
2681	blk_queue_prep_rq(md->queue, dm_old_prep_fn);
2682
2683	dm_old_init_rq_based_worker_thread(md);
2684
2685	elv_register_queue(md->queue);
2686
2687	return 0;
2688}
2689
2690static int dm_mq_init_request(void *data, struct request *rq,
2691			      unsigned int hctx_idx, unsigned int request_idx,
2692			      unsigned int numa_node)
2693{
2694	struct mapped_device *md = data;
2695	struct dm_rq_target_io *tio = blk_mq_rq_to_pdu(rq);
2696
2697	/*
2698	 * Must initialize md member of tio, otherwise it won't
2699	 * be available in dm_mq_queue_rq.
2700	 */
2701	tio->md = md;
2702
2703	if (md->init_tio_pdu) {
2704		/* target-specific per-io data is immediately after the tio */
2705		tio->info.ptr = tio + 1;
2706	}
2707
2708	return 0;
2709}
2710
2711static int dm_mq_queue_rq(struct blk_mq_hw_ctx *hctx,
2712			  const struct blk_mq_queue_data *bd)
2713{
2714	struct request *rq = bd->rq;
2715	struct dm_rq_target_io *tio = blk_mq_rq_to_pdu(rq);
2716	struct mapped_device *md = tio->md;
2717	struct dm_target *ti = md->immutable_target;
2718
2719	if (unlikely(!ti)) {
2720		int srcu_idx;
2721		struct dm_table *map = dm_get_live_table(md, &srcu_idx);
2722
2723		ti = dm_table_find_target(map, 0);
2724		dm_put_live_table(md, srcu_idx);
2725	}
2726
2727	if (ti->type->busy && ti->type->busy(ti))
2728		return BLK_MQ_RQ_QUEUE_BUSY;
2729
2730	dm_start_request(md, rq);
2731
2732	/* Init tio using md established in .init_request */
2733	init_tio(tio, rq, md);
2734
2735	/*
2736	 * Establish tio->ti before queuing work (map_tio_request)
2737	 * or making direct call to map_request().
2738	 */
2739	tio->ti = ti;
2740
2741	/* Direct call is fine since .queue_rq allows allocations */
2742	if (map_request(tio, rq, md) == DM_MAPIO_REQUEUE) {
2743		/* Undo dm_start_request() before requeuing */
2744		rq_end_stats(md, rq);
2745		rq_completed(md, rq_data_dir(rq), false);
2746		return BLK_MQ_RQ_QUEUE_BUSY;
2747	}
2748
2749	return BLK_MQ_RQ_QUEUE_OK;
2750}
2751
2752static struct blk_mq_ops dm_mq_ops = {
2753	.queue_rq = dm_mq_queue_rq,
2754	.map_queue = blk_mq_map_queue,
2755	.complete = dm_softirq_done,
2756	.init_request = dm_mq_init_request,
2757};
2758
2759static int dm_mq_init_request_queue(struct mapped_device *md,
2760				    struct dm_target *immutable_tgt)
2761{
2762	struct request_queue *q;
2763	int err;
2764
2765	if (dm_get_md_type(md) == DM_TYPE_REQUEST_BASED) {
2766		DMERR("request-based dm-mq may only be stacked on blk-mq device(s)");
2767		return -EINVAL;
2768	}
2769
2770	md->tag_set = kzalloc_node(sizeof(struct blk_mq_tag_set), GFP_KERNEL, md->numa_node_id);
2771	if (!md->tag_set)
2772		return -ENOMEM;
2773
2774	md->tag_set->ops = &dm_mq_ops;
2775	md->tag_set->queue_depth = dm_get_blk_mq_queue_depth();
2776	md->tag_set->numa_node = md->numa_node_id;
2777	md->tag_set->flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
2778	md->tag_set->nr_hw_queues = dm_get_blk_mq_nr_hw_queues();
2779	md->tag_set->driver_data = md;
2780
2781	md->tag_set->cmd_size = sizeof(struct dm_rq_target_io);
2782	if (immutable_tgt && immutable_tgt->per_io_data_size) {
2783		/* any target-specific per-io data is immediately after the tio */
2784		md->tag_set->cmd_size += immutable_tgt->per_io_data_size;
2785		md->init_tio_pdu = true;
2786	}
2787
2788	err = blk_mq_alloc_tag_set(md->tag_set);
2789	if (err)
2790		goto out_kfree_tag_set;
2791
2792	q = blk_mq_init_allocated_queue(md->tag_set, md->queue);
2793	if (IS_ERR(q)) {
2794		err = PTR_ERR(q);
2795		goto out_tag_set;
2796	}
2797	dm_init_md_queue(md);
2798
2799	/* backfill 'mq' sysfs registration normally done in blk_register_queue */
2800	blk_mq_register_disk(md->disk);
2801
2802	return 0;
2803
2804out_tag_set:
2805	blk_mq_free_tag_set(md->tag_set);
2806out_kfree_tag_set:
2807	kfree(md->tag_set);
2808
2809	return err;
2810}
2811
2812static unsigned filter_md_type(unsigned type, struct mapped_device *md)
2813{
2814	if (type == DM_TYPE_BIO_BASED)
2815		return type;
2816
2817	return !md->use_blk_mq ? DM_TYPE_REQUEST_BASED : DM_TYPE_MQ_REQUEST_BASED;
2818}
2819
2820/*
2821 * Setup the DM device's queue based on md's type
2822 */
2823int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2824{
2825	int r;
2826	unsigned md_type = filter_md_type(dm_get_md_type(md), md);
2827
2828	switch (md_type) {
2829	case DM_TYPE_REQUEST_BASED:
2830		r = dm_old_init_request_queue(md);
2831		if (r) {
2832			DMERR("Cannot initialize queue for request-based mapped device");
2833			return r;
2834		}
2835		break;
2836	case DM_TYPE_MQ_REQUEST_BASED:
2837		r = dm_mq_init_request_queue(md, dm_table_get_immutable_target(t));
2838		if (r) {
2839			DMERR("Cannot initialize queue for request-based dm-mq mapped device");
2840			return r;
2841		}
2842		break;
2843	case DM_TYPE_BIO_BASED:
2844		dm_init_normal_md_queue(md);
2845		blk_queue_make_request(md->queue, dm_make_request);
2846		/*
2847		 * DM handles splitting bios as needed.  Free the bio_split bioset
2848		 * since it won't be used (saves 1 process per bio-based DM device).
2849		 */
2850		bioset_free(md->queue->bio_split);
2851		md->queue->bio_split = NULL;
2852		break;
2853	}
2854
2855	return 0;
2856}
2857
2858struct mapped_device *dm_get_md(dev_t dev)
2859{
2860	struct mapped_device *md;
2861	unsigned minor = MINOR(dev);
2862
2863	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2864		return NULL;
2865
2866	spin_lock(&_minor_lock);
2867
2868	md = idr_find(&_minor_idr, minor);
2869	if (md) {
2870		if ((md == MINOR_ALLOCED ||
2871		     (MINOR(disk_devt(dm_disk(md))) != minor) ||
2872		     dm_deleting_md(md) ||
2873		     test_bit(DMF_FREEING, &md->flags))) {
2874			md = NULL;
2875			goto out;
2876		}
2877		dm_get(md);
2878	}
2879
2880out:
2881	spin_unlock(&_minor_lock);
2882
2883	return md;
2884}
2885EXPORT_SYMBOL_GPL(dm_get_md);
 
 
 
 
 
 
 
 
 
2886
2887void *dm_get_mdptr(struct mapped_device *md)
2888{
2889	return md->interface_ptr;
2890}
2891
2892void dm_set_mdptr(struct mapped_device *md, void *ptr)
2893{
2894	md->interface_ptr = ptr;
2895}
2896
2897void dm_get(struct mapped_device *md)
2898{
2899	atomic_inc(&md->holders);
2900	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2901}
2902
2903int dm_hold(struct mapped_device *md)
2904{
2905	spin_lock(&_minor_lock);
2906	if (test_bit(DMF_FREEING, &md->flags)) {
2907		spin_unlock(&_minor_lock);
2908		return -EBUSY;
2909	}
2910	dm_get(md);
2911	spin_unlock(&_minor_lock);
2912	return 0;
2913}
2914EXPORT_SYMBOL_GPL(dm_hold);
2915
2916const char *dm_device_name(struct mapped_device *md)
2917{
2918	return md->name;
2919}
2920EXPORT_SYMBOL_GPL(dm_device_name);
2921
2922static void __dm_destroy(struct mapped_device *md, bool wait)
2923{
2924	struct dm_table *map;
2925	int srcu_idx;
2926
2927	might_sleep();
2928
2929	spin_lock(&_minor_lock);
 
2930	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2931	set_bit(DMF_FREEING, &md->flags);
2932	spin_unlock(&_minor_lock);
2933
2934	if (dm_request_based(md) && md->kworker_task)
2935		flush_kthread_worker(&md->kworker);
2936
2937	/*
2938	 * Take suspend_lock so that presuspend and postsuspend methods
2939	 * do not race with internal suspend.
2940	 */
2941	mutex_lock(&md->suspend_lock);
2942	map = dm_get_live_table(md, &srcu_idx);
2943	if (!dm_suspended_md(md)) {
2944		dm_table_presuspend_targets(map);
2945		dm_table_postsuspend_targets(map);
2946	}
2947	/* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2948	dm_put_live_table(md, srcu_idx);
2949	mutex_unlock(&md->suspend_lock);
2950
2951	/*
2952	 * Rare, but there may be I/O requests still going to complete,
2953	 * for example.  Wait for all references to disappear.
2954	 * No one should increment the reference count of the mapped_device,
2955	 * after the mapped_device state becomes DMF_FREEING.
2956	 */
2957	if (wait)
2958		while (atomic_read(&md->holders))
2959			msleep(1);
2960	else if (atomic_read(&md->holders))
2961		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2962		       dm_device_name(md), atomic_read(&md->holders));
2963
2964	dm_sysfs_exit(md);
 
2965	dm_table_destroy(__unbind(md));
2966	free_dev(md);
2967}
2968
2969void dm_destroy(struct mapped_device *md)
2970{
2971	__dm_destroy(md, true);
2972}
2973
2974void dm_destroy_immediate(struct mapped_device *md)
2975{
2976	__dm_destroy(md, false);
2977}
2978
2979void dm_put(struct mapped_device *md)
2980{
2981	atomic_dec(&md->holders);
2982}
2983EXPORT_SYMBOL_GPL(dm_put);
2984
2985static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
2986{
2987	int r = 0;
2988	DECLARE_WAITQUEUE(wait, current);
2989
2990	add_wait_queue(&md->wait, &wait);
2991
2992	while (1) {
2993		set_current_state(interruptible);
2994
 
2995		if (!md_in_flight(md))
2996			break;
2997
2998		if (interruptible == TASK_INTERRUPTIBLE &&
2999		    signal_pending(current)) {
3000			r = -EINTR;
3001			break;
3002		}
3003
3004		io_schedule();
3005	}
3006	set_current_state(TASK_RUNNING);
3007
3008	remove_wait_queue(&md->wait, &wait);
3009
3010	return r;
3011}
3012
3013/*
3014 * Process the deferred bios
3015 */
3016static void dm_wq_work(struct work_struct *work)
3017{
3018	struct mapped_device *md = container_of(work, struct mapped_device,
3019						work);
3020	struct bio *c;
3021	int srcu_idx;
3022	struct dm_table *map;
3023
3024	map = dm_get_live_table(md, &srcu_idx);
3025
3026	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
3027		spin_lock_irq(&md->deferred_lock);
3028		c = bio_list_pop(&md->deferred);
3029		spin_unlock_irq(&md->deferred_lock);
3030
3031		if (!c)
3032			break;
3033
 
 
3034		if (dm_request_based(md))
3035			generic_make_request(c);
3036		else
3037			__split_and_process_bio(md, map, c);
 
 
3038	}
3039
3040	dm_put_live_table(md, srcu_idx);
3041}
3042
3043static void dm_queue_flush(struct mapped_device *md)
3044{
3045	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
3046	smp_mb__after_atomic();
3047	queue_work(md->wq, &md->work);
3048}
3049
3050/*
3051 * Swap in a new table, returning the old one for the caller to destroy.
3052 */
3053struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
3054{
3055	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
3056	struct queue_limits limits;
3057	int r;
3058
3059	mutex_lock(&md->suspend_lock);
3060
3061	/* device must be suspended */
3062	if (!dm_suspended_md(md))
3063		goto out;
3064
3065	/*
3066	 * If the new table has no data devices, retain the existing limits.
3067	 * This helps multipath with queue_if_no_path if all paths disappear,
3068	 * then new I/O is queued based on these limits, and then some paths
3069	 * reappear.
3070	 */
3071	if (dm_table_has_no_data_devices(table)) {
3072		live_map = dm_get_live_table_fast(md);
3073		if (live_map)
3074			limits = md->queue->limits;
3075		dm_put_live_table_fast(md);
3076	}
3077
3078	if (!live_map) {
3079		r = dm_calculate_queue_limits(table, &limits);
3080		if (r) {
3081			map = ERR_PTR(r);
3082			goto out;
3083		}
3084	}
3085
3086	map = __bind(md, table, &limits);
3087
3088out:
3089	mutex_unlock(&md->suspend_lock);
3090	return map;
3091}
3092
3093/*
3094 * Functions to lock and unlock any filesystem running on the
3095 * device.
3096 */
3097static int lock_fs(struct mapped_device *md)
3098{
3099	int r;
3100
3101	WARN_ON(md->frozen_sb);
3102
3103	md->frozen_sb = freeze_bdev(md->bdev);
3104	if (IS_ERR(md->frozen_sb)) {
3105		r = PTR_ERR(md->frozen_sb);
3106		md->frozen_sb = NULL;
3107		return r;
3108	}
3109
3110	set_bit(DMF_FROZEN, &md->flags);
3111
3112	return 0;
3113}
3114
3115static void unlock_fs(struct mapped_device *md)
3116{
3117	if (!test_bit(DMF_FROZEN, &md->flags))
3118		return;
3119
3120	thaw_bdev(md->bdev, md->frozen_sb);
3121	md->frozen_sb = NULL;
3122	clear_bit(DMF_FROZEN, &md->flags);
3123}
3124
3125/*
3126 * If __dm_suspend returns 0, the device is completely quiescent
3127 * now. There is no request-processing activity. All new requests
3128 * are being added to md->deferred list.
 
 
 
 
 
3129 *
3130 * Caller must hold md->suspend_lock
 
 
 
 
3131 */
3132static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
3133			unsigned suspend_flags, int interruptible)
3134{
3135	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
3136	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
3137	int r;
 
 
 
 
 
 
 
 
 
 
3138
3139	/*
3140	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
3141	 * This flag is cleared before dm_suspend returns.
3142	 */
3143	if (noflush)
3144		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
3145
3146	/*
3147	 * This gets reverted if there's an error later and the targets
3148	 * provide the .presuspend_undo hook.
3149	 */
3150	dm_table_presuspend_targets(map);
3151
3152	/*
3153	 * Flush I/O to the device.
3154	 * Any I/O submitted after lock_fs() may not be flushed.
3155	 * noflush takes precedence over do_lockfs.
3156	 * (lock_fs() flushes I/Os and waits for them to complete.)
3157	 */
3158	if (!noflush && do_lockfs) {
3159		r = lock_fs(md);
3160		if (r) {
3161			dm_table_presuspend_undo_targets(map);
3162			return r;
3163		}
3164	}
3165
3166	/*
3167	 * Here we must make sure that no processes are submitting requests
3168	 * to target drivers i.e. no one may be executing
3169	 * __split_and_process_bio. This is called from dm_request and
3170	 * dm_wq_work.
3171	 *
3172	 * To get all processes out of __split_and_process_bio in dm_request,
3173	 * we take the write lock. To prevent any process from reentering
3174	 * __split_and_process_bio from dm_request and quiesce the thread
3175	 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
3176	 * flush_workqueue(md->wq).
3177	 */
 
3178	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
3179	if (map)
3180		synchronize_srcu(&md->io_barrier);
3181
3182	/*
3183	 * Stop md->queue before flushing md->wq in case request-based
3184	 * dm defers requests to md->wq from md->queue.
3185	 */
3186	if (dm_request_based(md)) {
3187		dm_stop_queue(md->queue);
3188		if (md->kworker_task)
3189			flush_kthread_worker(&md->kworker);
3190	}
3191
3192	flush_workqueue(md->wq);
3193
3194	/*
3195	 * At this point no more requests are entering target request routines.
3196	 * We call dm_wait_for_completion to wait for all existing requests
3197	 * to finish.
3198	 */
3199	r = dm_wait_for_completion(md, interruptible);
3200
 
3201	if (noflush)
3202		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
3203	if (map)
3204		synchronize_srcu(&md->io_barrier);
3205
3206	/* were we interrupted ? */
3207	if (r < 0) {
3208		dm_queue_flush(md);
3209
3210		if (dm_request_based(md))
3211			dm_start_queue(md->queue);
3212
3213		unlock_fs(md);
3214		dm_table_presuspend_undo_targets(map);
3215		/* pushback list is already flushed, so skip flush */
3216	}
3217
3218	return r;
3219}
3220
3221/*
3222 * We need to be able to change a mapping table under a mounted
3223 * filesystem.  For example we might want to move some data in
3224 * the background.  Before the table can be swapped with
3225 * dm_bind_table, dm_suspend must be called to flush any in
3226 * flight bios and ensure that any further io gets deferred.
3227 */
3228/*
3229 * Suspend mechanism in request-based dm.
3230 *
3231 * 1. Flush all I/Os by lock_fs() if needed.
3232 * 2. Stop dispatching any I/O by stopping the request_queue.
3233 * 3. Wait for all in-flight I/Os to be completed or requeued.
3234 *
3235 * To abort suspend, start the request_queue.
3236 */
3237int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
3238{
3239	struct dm_table *map = NULL;
3240	int r = 0;
3241
3242retry:
3243	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
3244
3245	if (dm_suspended_md(md)) {
3246		r = -EINVAL;
3247		goto out_unlock;
3248	}
3249
3250	if (dm_suspended_internally_md(md)) {
3251		/* already internally suspended, wait for internal resume */
3252		mutex_unlock(&md->suspend_lock);
3253		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
3254		if (r)
3255			return r;
3256		goto retry;
3257	}
3258
3259	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3260
3261	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE);
3262	if (r)
3263		goto out_unlock;
3264
3265	set_bit(DMF_SUSPENDED, &md->flags);
3266
3267	dm_table_postsuspend_targets(map);
3268
 
 
 
3269out_unlock:
3270	mutex_unlock(&md->suspend_lock);
3271	return r;
3272}
3273
3274static int __dm_resume(struct mapped_device *md, struct dm_table *map)
3275{
3276	if (map) {
3277		int r = dm_table_resume_targets(map);
3278		if (r)
3279			return r;
3280	}
3281
3282	dm_queue_flush(md);
3283
3284	/*
3285	 * Flushing deferred I/Os must be done after targets are resumed
3286	 * so that mapping of targets can work correctly.
3287	 * Request-based dm is queueing the deferred I/Os in its request_queue.
3288	 */
3289	if (dm_request_based(md))
3290		dm_start_queue(md->queue);
3291
3292	unlock_fs(md);
3293
3294	return 0;
3295}
3296
3297int dm_resume(struct mapped_device *md)
3298{
3299	int r = -EINVAL;
3300	struct dm_table *map = NULL;
3301
3302retry:
3303	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
3304
3305	if (!dm_suspended_md(md))
3306		goto out;
3307
3308	if (dm_suspended_internally_md(md)) {
3309		/* already internally suspended, wait for internal resume */
3310		mutex_unlock(&md->suspend_lock);
3311		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
3312		if (r)
3313			return r;
3314		goto retry;
3315	}
3316
3317	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3318	if (!map || !dm_table_get_size(map))
3319		goto out;
3320
3321	r = __dm_resume(md, map);
3322	if (r)
3323		goto out;
3324
3325	clear_bit(DMF_SUSPENDED, &md->flags);
3326
3327	r = 0;
3328out:
3329	mutex_unlock(&md->suspend_lock);
3330
3331	return r;
3332}
3333
3334/*
3335 * Internal suspend/resume works like userspace-driven suspend. It waits
3336 * until all bios finish and prevents issuing new bios to the target drivers.
3337 * It may be used only from the kernel.
3338 */
3339
3340static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
3341{
3342	struct dm_table *map = NULL;
3343
3344	if (md->internal_suspend_count++)
3345		return; /* nested internal suspend */
3346
3347	if (dm_suspended_md(md)) {
3348		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3349		return; /* nest suspend */
3350	}
3351
3352	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3353
3354	/*
3355	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
3356	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
3357	 * would require changing .presuspend to return an error -- avoid this
3358	 * until there is a need for more elaborate variants of internal suspend.
3359	 */
3360	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE);
 
3361
3362	set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3363
3364	dm_table_postsuspend_targets(map);
3365}
3366
3367static void __dm_internal_resume(struct mapped_device *md)
3368{
3369	BUG_ON(!md->internal_suspend_count);
3370
3371	if (--md->internal_suspend_count)
3372		return; /* resume from nested internal suspend */
3373
3374	if (dm_suspended_md(md))
3375		goto done; /* resume from nested suspend */
3376
3377	/*
3378	 * NOTE: existing callers don't need to call dm_table_resume_targets
3379	 * (which may fail -- so best to avoid it for now by passing NULL map)
3380	 */
3381	(void) __dm_resume(md, NULL);
3382
3383done:
3384	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3385	smp_mb__after_atomic();
3386	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
3387}
3388
3389void dm_internal_suspend_noflush(struct mapped_device *md)
3390{
3391	mutex_lock(&md->suspend_lock);
3392	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
3393	mutex_unlock(&md->suspend_lock);
3394}
3395EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
3396
3397void dm_internal_resume(struct mapped_device *md)
3398{
3399	mutex_lock(&md->suspend_lock);
3400	__dm_internal_resume(md);
3401	mutex_unlock(&md->suspend_lock);
3402}
3403EXPORT_SYMBOL_GPL(dm_internal_resume);
3404
3405/*
3406 * Fast variants of internal suspend/resume hold md->suspend_lock,
3407 * which prevents interaction with userspace-driven suspend.
3408 */
3409
3410void dm_internal_suspend_fast(struct mapped_device *md)
3411{
3412	mutex_lock(&md->suspend_lock);
3413	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3414		return;
3415
3416	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
3417	synchronize_srcu(&md->io_barrier);
3418	flush_workqueue(md->wq);
3419	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
3420}
3421EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
3422
3423void dm_internal_resume_fast(struct mapped_device *md)
3424{
3425	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3426		goto done;
3427
3428	dm_queue_flush(md);
3429
3430done:
3431	mutex_unlock(&md->suspend_lock);
3432}
3433EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
3434
3435/*-----------------------------------------------------------------
3436 * Event notification.
3437 *---------------------------------------------------------------*/
3438int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
3439		       unsigned cookie)
3440{
3441	char udev_cookie[DM_COOKIE_LENGTH];
3442	char *envp[] = { udev_cookie, NULL };
3443
3444	if (!cookie)
3445		return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
3446	else {
3447		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
3448			 DM_COOKIE_ENV_VAR_NAME, cookie);
3449		return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
3450					  action, envp);
3451	}
3452}
3453
3454uint32_t dm_next_uevent_seq(struct mapped_device *md)
3455{
3456	return atomic_add_return(1, &md->uevent_seq);
3457}
3458
3459uint32_t dm_get_event_nr(struct mapped_device *md)
3460{
3461	return atomic_read(&md->event_nr);
3462}
3463
3464int dm_wait_event(struct mapped_device *md, int event_nr)
3465{
3466	return wait_event_interruptible(md->eventq,
3467			(event_nr != atomic_read(&md->event_nr)));
3468}
3469
3470void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
3471{
3472	unsigned long flags;
3473
3474	spin_lock_irqsave(&md->uevent_lock, flags);
3475	list_add(elist, &md->uevent_list);
3476	spin_unlock_irqrestore(&md->uevent_lock, flags);
3477}
3478
3479/*
3480 * The gendisk is only valid as long as you have a reference
3481 * count on 'md'.
3482 */
3483struct gendisk *dm_disk(struct mapped_device *md)
3484{
3485	return md->disk;
3486}
3487EXPORT_SYMBOL_GPL(dm_disk);
3488
3489struct kobject *dm_kobject(struct mapped_device *md)
3490{
3491	return &md->kobj_holder.kobj;
3492}
3493
 
 
 
 
3494struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
3495{
3496	struct mapped_device *md;
3497
3498	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
 
 
3499
3500	if (test_bit(DMF_FREEING, &md->flags) ||
3501	    dm_deleting_md(md))
3502		return NULL;
3503
3504	dm_get(md);
3505	return md;
3506}
3507
3508int dm_suspended_md(struct mapped_device *md)
3509{
3510	return test_bit(DMF_SUSPENDED, &md->flags);
3511}
3512
3513int dm_suspended_internally_md(struct mapped_device *md)
3514{
3515	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3516}
3517
3518int dm_test_deferred_remove_flag(struct mapped_device *md)
3519{
3520	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
3521}
3522
3523int dm_suspended(struct dm_target *ti)
3524{
3525	return dm_suspended_md(dm_table_get_md(ti->table));
3526}
3527EXPORT_SYMBOL_GPL(dm_suspended);
3528
3529int dm_noflush_suspending(struct dm_target *ti)
3530{
3531	return __noflush_suspending(dm_table_get_md(ti->table));
3532}
3533EXPORT_SYMBOL_GPL(dm_noflush_suspending);
3534
3535struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, unsigned type,
3536					    unsigned integrity, unsigned per_io_data_size)
3537{
3538	struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
3539	struct kmem_cache *cachep = NULL;
3540	unsigned int pool_size = 0;
3541	unsigned int front_pad;
3542
3543	if (!pools)
3544		return NULL;
3545
3546	type = filter_md_type(type, md);
 
 
 
 
 
 
 
 
 
 
3547
3548	switch (type) {
3549	case DM_TYPE_BIO_BASED:
3550		cachep = _io_cache;
3551		pool_size = dm_get_reserved_bio_based_ios();
3552		front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
3553		break;
3554	case DM_TYPE_REQUEST_BASED:
3555		cachep = _rq_tio_cache;
3556		pool_size = dm_get_reserved_rq_based_ios();
3557		pools->rq_pool = mempool_create_slab_pool(pool_size, _rq_cache);
3558		if (!pools->rq_pool)
3559			goto out;
3560		/* fall through to setup remaining rq-based pools */
3561	case DM_TYPE_MQ_REQUEST_BASED:
3562		if (!pool_size)
3563			pool_size = dm_get_reserved_rq_based_ios();
3564		front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
3565		/* per_io_data_size is used for blk-mq pdu at queue allocation */
3566		break;
3567	default:
3568		BUG();
3569	}
3570
3571	if (cachep) {
3572		pools->io_pool = mempool_create_slab_pool(pool_size, cachep);
3573		if (!pools->io_pool)
3574			goto out;
3575	}
3576
3577	pools->bs = bioset_create_nobvec(pool_size, front_pad);
3578	if (!pools->bs)
3579		goto out;
3580
3581	if (integrity && bioset_integrity_create(pools->bs, pool_size))
3582		goto out;
3583
3584	return pools;
3585
3586out:
3587	dm_free_md_mempools(pools);
 
 
 
 
 
 
 
 
 
3588
3589	return NULL;
3590}
3591
3592void dm_free_md_mempools(struct dm_md_mempools *pools)
3593{
3594	if (!pools)
3595		return;
3596
3597	mempool_destroy(pools->io_pool);
3598	mempool_destroy(pools->rq_pool);
 
 
 
3599
3600	if (pools->bs)
3601		bioset_free(pools->bs);
3602
3603	kfree(pools);
3604}
3605
3606static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3607			  u32 flags)
3608{
3609	struct mapped_device *md = bdev->bd_disk->private_data;
3610	const struct pr_ops *ops;
3611	fmode_t mode;
3612	int r;
3613
3614	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
3615	if (r < 0)
3616		return r;
3617
3618	ops = bdev->bd_disk->fops->pr_ops;
3619	if (ops && ops->pr_register)
3620		r = ops->pr_register(bdev, old_key, new_key, flags);
3621	else
3622		r = -EOPNOTSUPP;
3623
3624	bdput(bdev);
3625	return r;
3626}
3627
3628static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3629			 u32 flags)
3630{
3631	struct mapped_device *md = bdev->bd_disk->private_data;
3632	const struct pr_ops *ops;
3633	fmode_t mode;
3634	int r;
3635
3636	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
3637	if (r < 0)
3638		return r;
3639
3640	ops = bdev->bd_disk->fops->pr_ops;
3641	if (ops && ops->pr_reserve)
3642		r = ops->pr_reserve(bdev, key, type, flags);
3643	else
3644		r = -EOPNOTSUPP;
3645
3646	bdput(bdev);
3647	return r;
3648}
3649
3650static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3651{
3652	struct mapped_device *md = bdev->bd_disk->private_data;
3653	const struct pr_ops *ops;
3654	fmode_t mode;
3655	int r;
3656
3657	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
3658	if (r < 0)
3659		return r;
3660
3661	ops = bdev->bd_disk->fops->pr_ops;
3662	if (ops && ops->pr_release)
3663		r = ops->pr_release(bdev, key, type);
3664	else
3665		r = -EOPNOTSUPP;
3666
3667	bdput(bdev);
3668	return r;
3669}
3670
3671static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3672			 enum pr_type type, bool abort)
3673{
3674	struct mapped_device *md = bdev->bd_disk->private_data;
3675	const struct pr_ops *ops;
3676	fmode_t mode;
3677	int r;
3678
3679	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
3680	if (r < 0)
3681		return r;
3682
3683	ops = bdev->bd_disk->fops->pr_ops;
3684	if (ops && ops->pr_preempt)
3685		r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
3686	else
3687		r = -EOPNOTSUPP;
3688
3689	bdput(bdev);
3690	return r;
3691}
3692
3693static int dm_pr_clear(struct block_device *bdev, u64 key)
3694{
3695	struct mapped_device *md = bdev->bd_disk->private_data;
3696	const struct pr_ops *ops;
3697	fmode_t mode;
3698	int r;
3699
3700	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
3701	if (r < 0)
3702		return r;
3703
3704	ops = bdev->bd_disk->fops->pr_ops;
3705	if (ops && ops->pr_clear)
3706		r = ops->pr_clear(bdev, key);
3707	else
3708		r = -EOPNOTSUPP;
3709
3710	bdput(bdev);
3711	return r;
3712}
3713
3714static const struct pr_ops dm_pr_ops = {
3715	.pr_register	= dm_pr_register,
3716	.pr_reserve	= dm_pr_reserve,
3717	.pr_release	= dm_pr_release,
3718	.pr_preempt	= dm_pr_preempt,
3719	.pr_clear	= dm_pr_clear,
3720};
3721
3722static const struct block_device_operations dm_blk_dops = {
3723	.open = dm_blk_open,
3724	.release = dm_blk_close,
3725	.ioctl = dm_blk_ioctl,
3726	.getgeo = dm_blk_getgeo,
3727	.pr_ops = &dm_pr_ops,
3728	.owner = THIS_MODULE
3729};
3730
 
 
3731/*
3732 * module hooks
3733 */
3734module_init(dm_init);
3735module_exit(dm_exit);
3736
3737module_param(major, uint, 0);
3738MODULE_PARM_DESC(major, "The major number of the device mapper");
3739
3740module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3741MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3742
3743module_param(reserved_rq_based_ios, uint, S_IRUGO | S_IWUSR);
3744MODULE_PARM_DESC(reserved_rq_based_ios, "Reserved IOs in request-based mempools");
3745
3746module_param(use_blk_mq, bool, S_IRUGO | S_IWUSR);
3747MODULE_PARM_DESC(use_blk_mq, "Use block multiqueue for request-based DM devices");
3748
3749module_param(dm_mq_nr_hw_queues, uint, S_IRUGO | S_IWUSR);
3750MODULE_PARM_DESC(dm_mq_nr_hw_queues, "Number of hardware queues for request-based dm-mq devices");
3751
3752module_param(dm_mq_queue_depth, uint, S_IRUGO | S_IWUSR);
3753MODULE_PARM_DESC(dm_mq_queue_depth, "Queue depth for request-based dm-mq devices");
3754
3755module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
3756MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3757
3758MODULE_DESCRIPTION(DM_NAME " driver");
3759MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3760MODULE_LICENSE("GPL");