Loading...
1/*
2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8#include "dm.h"
9#include "dm-uevent.h"
10
11#include <linux/init.h>
12#include <linux/module.h>
13#include <linux/mutex.h>
14#include <linux/moduleparam.h>
15#include <linux/blkpg.h>
16#include <linux/bio.h>
17#include <linux/buffer_head.h>
18#include <linux/mempool.h>
19#include <linux/slab.h>
20#include <linux/idr.h>
21#include <linux/hdreg.h>
22#include <linux/delay.h>
23
24#include <trace/events/block.h>
25
26#define DM_MSG_PREFIX "core"
27
28/*
29 * Cookies are numeric values sent with CHANGE and REMOVE
30 * uevents while resuming, removing or renaming the device.
31 */
32#define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
33#define DM_COOKIE_LENGTH 24
34
35static const char *_name = DM_NAME;
36
37static unsigned int major = 0;
38static unsigned int _major = 0;
39
40static DEFINE_IDR(_minor_idr);
41
42static DEFINE_SPINLOCK(_minor_lock);
43/*
44 * For bio-based dm.
45 * One of these is allocated per bio.
46 */
47struct dm_io {
48 struct mapped_device *md;
49 int error;
50 atomic_t io_count;
51 struct bio *bio;
52 unsigned long start_time;
53 spinlock_t endio_lock;
54};
55
56/*
57 * For bio-based dm.
58 * One of these is allocated per target within a bio. Hopefully
59 * this will be simplified out one day.
60 */
61struct dm_target_io {
62 struct dm_io *io;
63 struct dm_target *ti;
64 union map_info info;
65};
66
67/*
68 * For request-based dm.
69 * One of these is allocated per request.
70 */
71struct dm_rq_target_io {
72 struct mapped_device *md;
73 struct dm_target *ti;
74 struct request *orig, clone;
75 int error;
76 union map_info info;
77};
78
79/*
80 * For request-based dm.
81 * One of these is allocated per bio.
82 */
83struct dm_rq_clone_bio_info {
84 struct bio *orig;
85 struct dm_rq_target_io *tio;
86};
87
88union map_info *dm_get_mapinfo(struct bio *bio)
89{
90 if (bio && bio->bi_private)
91 return &((struct dm_target_io *)bio->bi_private)->info;
92 return NULL;
93}
94
95union map_info *dm_get_rq_mapinfo(struct request *rq)
96{
97 if (rq && rq->end_io_data)
98 return &((struct dm_rq_target_io *)rq->end_io_data)->info;
99 return NULL;
100}
101EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo);
102
103#define MINOR_ALLOCED ((void *)-1)
104
105/*
106 * Bits for the md->flags field.
107 */
108#define DMF_BLOCK_IO_FOR_SUSPEND 0
109#define DMF_SUSPENDED 1
110#define DMF_FROZEN 2
111#define DMF_FREEING 3
112#define DMF_DELETING 4
113#define DMF_NOFLUSH_SUSPENDING 5
114#define DMF_MERGE_IS_OPTIONAL 6
115
116/*
117 * Work processed by per-device workqueue.
118 */
119struct mapped_device {
120 struct rw_semaphore io_lock;
121 struct mutex suspend_lock;
122 rwlock_t map_lock;
123 atomic_t holders;
124 atomic_t open_count;
125
126 unsigned long flags;
127
128 struct request_queue *queue;
129 unsigned type;
130 /* Protect queue and type against concurrent access. */
131 struct mutex type_lock;
132
133 struct gendisk *disk;
134 char name[16];
135
136 void *interface_ptr;
137
138 /*
139 * A list of ios that arrived while we were suspended.
140 */
141 atomic_t pending[2];
142 wait_queue_head_t wait;
143 struct work_struct work;
144 struct bio_list deferred;
145 spinlock_t deferred_lock;
146
147 /*
148 * Processing queue (flush)
149 */
150 struct workqueue_struct *wq;
151
152 /*
153 * The current mapping.
154 */
155 struct dm_table *map;
156
157 /*
158 * io objects are allocated from here.
159 */
160 mempool_t *io_pool;
161 mempool_t *tio_pool;
162
163 struct bio_set *bs;
164
165 /*
166 * Event handling.
167 */
168 atomic_t event_nr;
169 wait_queue_head_t eventq;
170 atomic_t uevent_seq;
171 struct list_head uevent_list;
172 spinlock_t uevent_lock; /* Protect access to uevent_list */
173
174 /*
175 * freeze/thaw support require holding onto a super block
176 */
177 struct super_block *frozen_sb;
178 struct block_device *bdev;
179
180 /* forced geometry settings */
181 struct hd_geometry geometry;
182
183 /* For saving the address of __make_request for request based dm */
184 make_request_fn *saved_make_request_fn;
185
186 /* sysfs handle */
187 struct kobject kobj;
188
189 /* zero-length flush that will be cloned and submitted to targets */
190 struct bio flush_bio;
191};
192
193/*
194 * For mempools pre-allocation at the table loading time.
195 */
196struct dm_md_mempools {
197 mempool_t *io_pool;
198 mempool_t *tio_pool;
199 struct bio_set *bs;
200};
201
202#define MIN_IOS 256
203static struct kmem_cache *_io_cache;
204static struct kmem_cache *_tio_cache;
205static struct kmem_cache *_rq_tio_cache;
206static struct kmem_cache *_rq_bio_info_cache;
207
208static int __init local_init(void)
209{
210 int r = -ENOMEM;
211
212 /* allocate a slab for the dm_ios */
213 _io_cache = KMEM_CACHE(dm_io, 0);
214 if (!_io_cache)
215 return r;
216
217 /* allocate a slab for the target ios */
218 _tio_cache = KMEM_CACHE(dm_target_io, 0);
219 if (!_tio_cache)
220 goto out_free_io_cache;
221
222 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
223 if (!_rq_tio_cache)
224 goto out_free_tio_cache;
225
226 _rq_bio_info_cache = KMEM_CACHE(dm_rq_clone_bio_info, 0);
227 if (!_rq_bio_info_cache)
228 goto out_free_rq_tio_cache;
229
230 r = dm_uevent_init();
231 if (r)
232 goto out_free_rq_bio_info_cache;
233
234 _major = major;
235 r = register_blkdev(_major, _name);
236 if (r < 0)
237 goto out_uevent_exit;
238
239 if (!_major)
240 _major = r;
241
242 return 0;
243
244out_uevent_exit:
245 dm_uevent_exit();
246out_free_rq_bio_info_cache:
247 kmem_cache_destroy(_rq_bio_info_cache);
248out_free_rq_tio_cache:
249 kmem_cache_destroy(_rq_tio_cache);
250out_free_tio_cache:
251 kmem_cache_destroy(_tio_cache);
252out_free_io_cache:
253 kmem_cache_destroy(_io_cache);
254
255 return r;
256}
257
258static void local_exit(void)
259{
260 kmem_cache_destroy(_rq_bio_info_cache);
261 kmem_cache_destroy(_rq_tio_cache);
262 kmem_cache_destroy(_tio_cache);
263 kmem_cache_destroy(_io_cache);
264 unregister_blkdev(_major, _name);
265 dm_uevent_exit();
266
267 _major = 0;
268
269 DMINFO("cleaned up");
270}
271
272static int (*_inits[])(void) __initdata = {
273 local_init,
274 dm_target_init,
275 dm_linear_init,
276 dm_stripe_init,
277 dm_io_init,
278 dm_kcopyd_init,
279 dm_interface_init,
280};
281
282static void (*_exits[])(void) = {
283 local_exit,
284 dm_target_exit,
285 dm_linear_exit,
286 dm_stripe_exit,
287 dm_io_exit,
288 dm_kcopyd_exit,
289 dm_interface_exit,
290};
291
292static int __init dm_init(void)
293{
294 const int count = ARRAY_SIZE(_inits);
295
296 int r, i;
297
298 for (i = 0; i < count; i++) {
299 r = _inits[i]();
300 if (r)
301 goto bad;
302 }
303
304 return 0;
305
306 bad:
307 while (i--)
308 _exits[i]();
309
310 return r;
311}
312
313static void __exit dm_exit(void)
314{
315 int i = ARRAY_SIZE(_exits);
316
317 while (i--)
318 _exits[i]();
319
320 /*
321 * Should be empty by this point.
322 */
323 idr_remove_all(&_minor_idr);
324 idr_destroy(&_minor_idr);
325}
326
327/*
328 * Block device functions
329 */
330int dm_deleting_md(struct mapped_device *md)
331{
332 return test_bit(DMF_DELETING, &md->flags);
333}
334
335static int dm_blk_open(struct block_device *bdev, fmode_t mode)
336{
337 struct mapped_device *md;
338
339 spin_lock(&_minor_lock);
340
341 md = bdev->bd_disk->private_data;
342 if (!md)
343 goto out;
344
345 if (test_bit(DMF_FREEING, &md->flags) ||
346 dm_deleting_md(md)) {
347 md = NULL;
348 goto out;
349 }
350
351 dm_get(md);
352 atomic_inc(&md->open_count);
353
354out:
355 spin_unlock(&_minor_lock);
356
357 return md ? 0 : -ENXIO;
358}
359
360static int dm_blk_close(struct gendisk *disk, fmode_t mode)
361{
362 struct mapped_device *md = disk->private_data;
363
364 spin_lock(&_minor_lock);
365
366 atomic_dec(&md->open_count);
367 dm_put(md);
368
369 spin_unlock(&_minor_lock);
370
371 return 0;
372}
373
374int dm_open_count(struct mapped_device *md)
375{
376 return atomic_read(&md->open_count);
377}
378
379/*
380 * Guarantees nothing is using the device before it's deleted.
381 */
382int dm_lock_for_deletion(struct mapped_device *md)
383{
384 int r = 0;
385
386 spin_lock(&_minor_lock);
387
388 if (dm_open_count(md))
389 r = -EBUSY;
390 else
391 set_bit(DMF_DELETING, &md->flags);
392
393 spin_unlock(&_minor_lock);
394
395 return r;
396}
397
398static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
399{
400 struct mapped_device *md = bdev->bd_disk->private_data;
401
402 return dm_get_geometry(md, geo);
403}
404
405static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
406 unsigned int cmd, unsigned long arg)
407{
408 struct mapped_device *md = bdev->bd_disk->private_data;
409 struct dm_table *map = dm_get_live_table(md);
410 struct dm_target *tgt;
411 int r = -ENOTTY;
412
413 if (!map || !dm_table_get_size(map))
414 goto out;
415
416 /* We only support devices that have a single target */
417 if (dm_table_get_num_targets(map) != 1)
418 goto out;
419
420 tgt = dm_table_get_target(map, 0);
421
422 if (dm_suspended_md(md)) {
423 r = -EAGAIN;
424 goto out;
425 }
426
427 if (tgt->type->ioctl)
428 r = tgt->type->ioctl(tgt, cmd, arg);
429
430out:
431 dm_table_put(map);
432
433 return r;
434}
435
436static struct dm_io *alloc_io(struct mapped_device *md)
437{
438 return mempool_alloc(md->io_pool, GFP_NOIO);
439}
440
441static void free_io(struct mapped_device *md, struct dm_io *io)
442{
443 mempool_free(io, md->io_pool);
444}
445
446static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
447{
448 mempool_free(tio, md->tio_pool);
449}
450
451static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md,
452 gfp_t gfp_mask)
453{
454 return mempool_alloc(md->tio_pool, gfp_mask);
455}
456
457static void free_rq_tio(struct dm_rq_target_io *tio)
458{
459 mempool_free(tio, tio->md->tio_pool);
460}
461
462static struct dm_rq_clone_bio_info *alloc_bio_info(struct mapped_device *md)
463{
464 return mempool_alloc(md->io_pool, GFP_ATOMIC);
465}
466
467static void free_bio_info(struct dm_rq_clone_bio_info *info)
468{
469 mempool_free(info, info->tio->md->io_pool);
470}
471
472static int md_in_flight(struct mapped_device *md)
473{
474 return atomic_read(&md->pending[READ]) +
475 atomic_read(&md->pending[WRITE]);
476}
477
478static void start_io_acct(struct dm_io *io)
479{
480 struct mapped_device *md = io->md;
481 int cpu;
482 int rw = bio_data_dir(io->bio);
483
484 io->start_time = jiffies;
485
486 cpu = part_stat_lock();
487 part_round_stats(cpu, &dm_disk(md)->part0);
488 part_stat_unlock();
489 atomic_set(&dm_disk(md)->part0.in_flight[rw],
490 atomic_inc_return(&md->pending[rw]));
491}
492
493static void end_io_acct(struct dm_io *io)
494{
495 struct mapped_device *md = io->md;
496 struct bio *bio = io->bio;
497 unsigned long duration = jiffies - io->start_time;
498 int pending, cpu;
499 int rw = bio_data_dir(bio);
500
501 cpu = part_stat_lock();
502 part_round_stats(cpu, &dm_disk(md)->part0);
503 part_stat_add(cpu, &dm_disk(md)->part0, ticks[rw], duration);
504 part_stat_unlock();
505
506 /*
507 * After this is decremented the bio must not be touched if it is
508 * a flush.
509 */
510 pending = atomic_dec_return(&md->pending[rw]);
511 atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
512 pending += atomic_read(&md->pending[rw^0x1]);
513
514 /* nudge anyone waiting on suspend queue */
515 if (!pending)
516 wake_up(&md->wait);
517}
518
519/*
520 * Add the bio to the list of deferred io.
521 */
522static void queue_io(struct mapped_device *md, struct bio *bio)
523{
524 unsigned long flags;
525
526 spin_lock_irqsave(&md->deferred_lock, flags);
527 bio_list_add(&md->deferred, bio);
528 spin_unlock_irqrestore(&md->deferred_lock, flags);
529 queue_work(md->wq, &md->work);
530}
531
532/*
533 * Everyone (including functions in this file), should use this
534 * function to access the md->map field, and make sure they call
535 * dm_table_put() when finished.
536 */
537struct dm_table *dm_get_live_table(struct mapped_device *md)
538{
539 struct dm_table *t;
540 unsigned long flags;
541
542 read_lock_irqsave(&md->map_lock, flags);
543 t = md->map;
544 if (t)
545 dm_table_get(t);
546 read_unlock_irqrestore(&md->map_lock, flags);
547
548 return t;
549}
550
551/*
552 * Get the geometry associated with a dm device
553 */
554int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
555{
556 *geo = md->geometry;
557
558 return 0;
559}
560
561/*
562 * Set the geometry of a device.
563 */
564int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
565{
566 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
567
568 if (geo->start > sz) {
569 DMWARN("Start sector is beyond the geometry limits.");
570 return -EINVAL;
571 }
572
573 md->geometry = *geo;
574
575 return 0;
576}
577
578/*-----------------------------------------------------------------
579 * CRUD START:
580 * A more elegant soln is in the works that uses the queue
581 * merge fn, unfortunately there are a couple of changes to
582 * the block layer that I want to make for this. So in the
583 * interests of getting something for people to use I give
584 * you this clearly demarcated crap.
585 *---------------------------------------------------------------*/
586
587static int __noflush_suspending(struct mapped_device *md)
588{
589 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
590}
591
592/*
593 * Decrements the number of outstanding ios that a bio has been
594 * cloned into, completing the original io if necc.
595 */
596static void dec_pending(struct dm_io *io, int error)
597{
598 unsigned long flags;
599 int io_error;
600 struct bio *bio;
601 struct mapped_device *md = io->md;
602
603 /* Push-back supersedes any I/O errors */
604 if (unlikely(error)) {
605 spin_lock_irqsave(&io->endio_lock, flags);
606 if (!(io->error > 0 && __noflush_suspending(md)))
607 io->error = error;
608 spin_unlock_irqrestore(&io->endio_lock, flags);
609 }
610
611 if (atomic_dec_and_test(&io->io_count)) {
612 if (io->error == DM_ENDIO_REQUEUE) {
613 /*
614 * Target requested pushing back the I/O.
615 */
616 spin_lock_irqsave(&md->deferred_lock, flags);
617 if (__noflush_suspending(md))
618 bio_list_add_head(&md->deferred, io->bio);
619 else
620 /* noflush suspend was interrupted. */
621 io->error = -EIO;
622 spin_unlock_irqrestore(&md->deferred_lock, flags);
623 }
624
625 io_error = io->error;
626 bio = io->bio;
627 end_io_acct(io);
628 free_io(md, io);
629
630 if (io_error == DM_ENDIO_REQUEUE)
631 return;
632
633 if ((bio->bi_rw & REQ_FLUSH) && bio->bi_size) {
634 /*
635 * Preflush done for flush with data, reissue
636 * without REQ_FLUSH.
637 */
638 bio->bi_rw &= ~REQ_FLUSH;
639 queue_io(md, bio);
640 } else {
641 /* done with normal IO or empty flush */
642 trace_block_bio_complete(md->queue, bio, io_error);
643 bio_endio(bio, io_error);
644 }
645 }
646}
647
648static void clone_endio(struct bio *bio, int error)
649{
650 int r = 0;
651 struct dm_target_io *tio = bio->bi_private;
652 struct dm_io *io = tio->io;
653 struct mapped_device *md = tio->io->md;
654 dm_endio_fn endio = tio->ti->type->end_io;
655
656 if (!bio_flagged(bio, BIO_UPTODATE) && !error)
657 error = -EIO;
658
659 if (endio) {
660 r = endio(tio->ti, bio, error, &tio->info);
661 if (r < 0 || r == DM_ENDIO_REQUEUE)
662 /*
663 * error and requeue request are handled
664 * in dec_pending().
665 */
666 error = r;
667 else if (r == DM_ENDIO_INCOMPLETE)
668 /* The target will handle the io */
669 return;
670 else if (r) {
671 DMWARN("unimplemented target endio return value: %d", r);
672 BUG();
673 }
674 }
675
676 /*
677 * Store md for cleanup instead of tio which is about to get freed.
678 */
679 bio->bi_private = md->bs;
680
681 free_tio(md, tio);
682 bio_put(bio);
683 dec_pending(io, error);
684}
685
686/*
687 * Partial completion handling for request-based dm
688 */
689static void end_clone_bio(struct bio *clone, int error)
690{
691 struct dm_rq_clone_bio_info *info = clone->bi_private;
692 struct dm_rq_target_io *tio = info->tio;
693 struct bio *bio = info->orig;
694 unsigned int nr_bytes = info->orig->bi_size;
695
696 bio_put(clone);
697
698 if (tio->error)
699 /*
700 * An error has already been detected on the request.
701 * Once error occurred, just let clone->end_io() handle
702 * the remainder.
703 */
704 return;
705 else if (error) {
706 /*
707 * Don't notice the error to the upper layer yet.
708 * The error handling decision is made by the target driver,
709 * when the request is completed.
710 */
711 tio->error = error;
712 return;
713 }
714
715 /*
716 * I/O for the bio successfully completed.
717 * Notice the data completion to the upper layer.
718 */
719
720 /*
721 * bios are processed from the head of the list.
722 * So the completing bio should always be rq->bio.
723 * If it's not, something wrong is happening.
724 */
725 if (tio->orig->bio != bio)
726 DMERR("bio completion is going in the middle of the request");
727
728 /*
729 * Update the original request.
730 * Do not use blk_end_request() here, because it may complete
731 * the original request before the clone, and break the ordering.
732 */
733 blk_update_request(tio->orig, 0, nr_bytes);
734}
735
736/*
737 * Don't touch any member of the md after calling this function because
738 * the md may be freed in dm_put() at the end of this function.
739 * Or do dm_get() before calling this function and dm_put() later.
740 */
741static void rq_completed(struct mapped_device *md, int rw, int run_queue)
742{
743 atomic_dec(&md->pending[rw]);
744
745 /* nudge anyone waiting on suspend queue */
746 if (!md_in_flight(md))
747 wake_up(&md->wait);
748
749 if (run_queue)
750 blk_run_queue(md->queue);
751
752 /*
753 * dm_put() must be at the end of this function. See the comment above
754 */
755 dm_put(md);
756}
757
758static void free_rq_clone(struct request *clone)
759{
760 struct dm_rq_target_io *tio = clone->end_io_data;
761
762 blk_rq_unprep_clone(clone);
763 free_rq_tio(tio);
764}
765
766/*
767 * Complete the clone and the original request.
768 * Must be called without queue lock.
769 */
770static void dm_end_request(struct request *clone, int error)
771{
772 int rw = rq_data_dir(clone);
773 struct dm_rq_target_io *tio = clone->end_io_data;
774 struct mapped_device *md = tio->md;
775 struct request *rq = tio->orig;
776
777 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
778 rq->errors = clone->errors;
779 rq->resid_len = clone->resid_len;
780
781 if (rq->sense)
782 /*
783 * We are using the sense buffer of the original
784 * request.
785 * So setting the length of the sense data is enough.
786 */
787 rq->sense_len = clone->sense_len;
788 }
789
790 free_rq_clone(clone);
791 blk_end_request_all(rq, error);
792 rq_completed(md, rw, true);
793}
794
795static void dm_unprep_request(struct request *rq)
796{
797 struct request *clone = rq->special;
798
799 rq->special = NULL;
800 rq->cmd_flags &= ~REQ_DONTPREP;
801
802 free_rq_clone(clone);
803}
804
805/*
806 * Requeue the original request of a clone.
807 */
808void dm_requeue_unmapped_request(struct request *clone)
809{
810 int rw = rq_data_dir(clone);
811 struct dm_rq_target_io *tio = clone->end_io_data;
812 struct mapped_device *md = tio->md;
813 struct request *rq = tio->orig;
814 struct request_queue *q = rq->q;
815 unsigned long flags;
816
817 dm_unprep_request(rq);
818
819 spin_lock_irqsave(q->queue_lock, flags);
820 blk_requeue_request(q, rq);
821 spin_unlock_irqrestore(q->queue_lock, flags);
822
823 rq_completed(md, rw, 0);
824}
825EXPORT_SYMBOL_GPL(dm_requeue_unmapped_request);
826
827static void __stop_queue(struct request_queue *q)
828{
829 blk_stop_queue(q);
830}
831
832static void stop_queue(struct request_queue *q)
833{
834 unsigned long flags;
835
836 spin_lock_irqsave(q->queue_lock, flags);
837 __stop_queue(q);
838 spin_unlock_irqrestore(q->queue_lock, flags);
839}
840
841static void __start_queue(struct request_queue *q)
842{
843 if (blk_queue_stopped(q))
844 blk_start_queue(q);
845}
846
847static void start_queue(struct request_queue *q)
848{
849 unsigned long flags;
850
851 spin_lock_irqsave(q->queue_lock, flags);
852 __start_queue(q);
853 spin_unlock_irqrestore(q->queue_lock, flags);
854}
855
856static void dm_done(struct request *clone, int error, bool mapped)
857{
858 int r = error;
859 struct dm_rq_target_io *tio = clone->end_io_data;
860 dm_request_endio_fn rq_end_io = tio->ti->type->rq_end_io;
861
862 if (mapped && rq_end_io)
863 r = rq_end_io(tio->ti, clone, error, &tio->info);
864
865 if (r <= 0)
866 /* The target wants to complete the I/O */
867 dm_end_request(clone, r);
868 else if (r == DM_ENDIO_INCOMPLETE)
869 /* The target will handle the I/O */
870 return;
871 else if (r == DM_ENDIO_REQUEUE)
872 /* The target wants to requeue the I/O */
873 dm_requeue_unmapped_request(clone);
874 else {
875 DMWARN("unimplemented target endio return value: %d", r);
876 BUG();
877 }
878}
879
880/*
881 * Request completion handler for request-based dm
882 */
883static void dm_softirq_done(struct request *rq)
884{
885 bool mapped = true;
886 struct request *clone = rq->completion_data;
887 struct dm_rq_target_io *tio = clone->end_io_data;
888
889 if (rq->cmd_flags & REQ_FAILED)
890 mapped = false;
891
892 dm_done(clone, tio->error, mapped);
893}
894
895/*
896 * Complete the clone and the original request with the error status
897 * through softirq context.
898 */
899static void dm_complete_request(struct request *clone, int error)
900{
901 struct dm_rq_target_io *tio = clone->end_io_data;
902 struct request *rq = tio->orig;
903
904 tio->error = error;
905 rq->completion_data = clone;
906 blk_complete_request(rq);
907}
908
909/*
910 * Complete the not-mapped clone and the original request with the error status
911 * through softirq context.
912 * Target's rq_end_io() function isn't called.
913 * This may be used when the target's map_rq() function fails.
914 */
915void dm_kill_unmapped_request(struct request *clone, int error)
916{
917 struct dm_rq_target_io *tio = clone->end_io_data;
918 struct request *rq = tio->orig;
919
920 rq->cmd_flags |= REQ_FAILED;
921 dm_complete_request(clone, error);
922}
923EXPORT_SYMBOL_GPL(dm_kill_unmapped_request);
924
925/*
926 * Called with the queue lock held
927 */
928static void end_clone_request(struct request *clone, int error)
929{
930 /*
931 * For just cleaning up the information of the queue in which
932 * the clone was dispatched.
933 * The clone is *NOT* freed actually here because it is alloced from
934 * dm own mempool and REQ_ALLOCED isn't set in clone->cmd_flags.
935 */
936 __blk_put_request(clone->q, clone);
937
938 /*
939 * Actual request completion is done in a softirq context which doesn't
940 * hold the queue lock. Otherwise, deadlock could occur because:
941 * - another request may be submitted by the upper level driver
942 * of the stacking during the completion
943 * - the submission which requires queue lock may be done
944 * against this queue
945 */
946 dm_complete_request(clone, error);
947}
948
949/*
950 * Return maximum size of I/O possible at the supplied sector up to the current
951 * target boundary.
952 */
953static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
954{
955 sector_t target_offset = dm_target_offset(ti, sector);
956
957 return ti->len - target_offset;
958}
959
960static sector_t max_io_len(sector_t sector, struct dm_target *ti)
961{
962 sector_t len = max_io_len_target_boundary(sector, ti);
963
964 /*
965 * Does the target need to split even further ?
966 */
967 if (ti->split_io) {
968 sector_t boundary;
969 sector_t offset = dm_target_offset(ti, sector);
970 boundary = ((offset + ti->split_io) & ~(ti->split_io - 1))
971 - offset;
972 if (len > boundary)
973 len = boundary;
974 }
975
976 return len;
977}
978
979static void __map_bio(struct dm_target *ti, struct bio *clone,
980 struct dm_target_io *tio)
981{
982 int r;
983 sector_t sector;
984 struct mapped_device *md;
985
986 clone->bi_end_io = clone_endio;
987 clone->bi_private = tio;
988
989 /*
990 * Map the clone. If r == 0 we don't need to do
991 * anything, the target has assumed ownership of
992 * this io.
993 */
994 atomic_inc(&tio->io->io_count);
995 sector = clone->bi_sector;
996 r = ti->type->map(ti, clone, &tio->info);
997 if (r == DM_MAPIO_REMAPPED) {
998 /* the bio has been remapped so dispatch it */
999
1000 trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone,
1001 tio->io->bio->bi_bdev->bd_dev, sector);
1002
1003 generic_make_request(clone);
1004 } else if (r < 0 || r == DM_MAPIO_REQUEUE) {
1005 /* error the io and bail out, or requeue it if needed */
1006 md = tio->io->md;
1007 dec_pending(tio->io, r);
1008 /*
1009 * Store bio_set for cleanup.
1010 */
1011 clone->bi_private = md->bs;
1012 bio_put(clone);
1013 free_tio(md, tio);
1014 } else if (r) {
1015 DMWARN("unimplemented target map return value: %d", r);
1016 BUG();
1017 }
1018}
1019
1020struct clone_info {
1021 struct mapped_device *md;
1022 struct dm_table *map;
1023 struct bio *bio;
1024 struct dm_io *io;
1025 sector_t sector;
1026 sector_t sector_count;
1027 unsigned short idx;
1028};
1029
1030static void dm_bio_destructor(struct bio *bio)
1031{
1032 struct bio_set *bs = bio->bi_private;
1033
1034 bio_free(bio, bs);
1035}
1036
1037/*
1038 * Creates a little bio that just does part of a bvec.
1039 */
1040static struct bio *split_bvec(struct bio *bio, sector_t sector,
1041 unsigned short idx, unsigned int offset,
1042 unsigned int len, struct bio_set *bs)
1043{
1044 struct bio *clone;
1045 struct bio_vec *bv = bio->bi_io_vec + idx;
1046
1047 clone = bio_alloc_bioset(GFP_NOIO, 1, bs);
1048 clone->bi_destructor = dm_bio_destructor;
1049 *clone->bi_io_vec = *bv;
1050
1051 clone->bi_sector = sector;
1052 clone->bi_bdev = bio->bi_bdev;
1053 clone->bi_rw = bio->bi_rw;
1054 clone->bi_vcnt = 1;
1055 clone->bi_size = to_bytes(len);
1056 clone->bi_io_vec->bv_offset = offset;
1057 clone->bi_io_vec->bv_len = clone->bi_size;
1058 clone->bi_flags |= 1 << BIO_CLONED;
1059
1060 if (bio_integrity(bio)) {
1061 bio_integrity_clone(clone, bio, GFP_NOIO, bs);
1062 bio_integrity_trim(clone,
1063 bio_sector_offset(bio, idx, offset), len);
1064 }
1065
1066 return clone;
1067}
1068
1069/*
1070 * Creates a bio that consists of range of complete bvecs.
1071 */
1072static struct bio *clone_bio(struct bio *bio, sector_t sector,
1073 unsigned short idx, unsigned short bv_count,
1074 unsigned int len, struct bio_set *bs)
1075{
1076 struct bio *clone;
1077
1078 clone = bio_alloc_bioset(GFP_NOIO, bio->bi_max_vecs, bs);
1079 __bio_clone(clone, bio);
1080 clone->bi_destructor = dm_bio_destructor;
1081 clone->bi_sector = sector;
1082 clone->bi_idx = idx;
1083 clone->bi_vcnt = idx + bv_count;
1084 clone->bi_size = to_bytes(len);
1085 clone->bi_flags &= ~(1 << BIO_SEG_VALID);
1086
1087 if (bio_integrity(bio)) {
1088 bio_integrity_clone(clone, bio, GFP_NOIO, bs);
1089
1090 if (idx != bio->bi_idx || clone->bi_size < bio->bi_size)
1091 bio_integrity_trim(clone,
1092 bio_sector_offset(bio, idx, 0), len);
1093 }
1094
1095 return clone;
1096}
1097
1098static struct dm_target_io *alloc_tio(struct clone_info *ci,
1099 struct dm_target *ti)
1100{
1101 struct dm_target_io *tio = mempool_alloc(ci->md->tio_pool, GFP_NOIO);
1102
1103 tio->io = ci->io;
1104 tio->ti = ti;
1105 memset(&tio->info, 0, sizeof(tio->info));
1106
1107 return tio;
1108}
1109
1110static void __issue_target_request(struct clone_info *ci, struct dm_target *ti,
1111 unsigned request_nr, sector_t len)
1112{
1113 struct dm_target_io *tio = alloc_tio(ci, ti);
1114 struct bio *clone;
1115
1116 tio->info.target_request_nr = request_nr;
1117
1118 /*
1119 * Discard requests require the bio's inline iovecs be initialized.
1120 * ci->bio->bi_max_vecs is BIO_INLINE_VECS anyway, for both flush
1121 * and discard, so no need for concern about wasted bvec allocations.
1122 */
1123 clone = bio_alloc_bioset(GFP_NOIO, ci->bio->bi_max_vecs, ci->md->bs);
1124 __bio_clone(clone, ci->bio);
1125 clone->bi_destructor = dm_bio_destructor;
1126 if (len) {
1127 clone->bi_sector = ci->sector;
1128 clone->bi_size = to_bytes(len);
1129 }
1130
1131 __map_bio(ti, clone, tio);
1132}
1133
1134static void __issue_target_requests(struct clone_info *ci, struct dm_target *ti,
1135 unsigned num_requests, sector_t len)
1136{
1137 unsigned request_nr;
1138
1139 for (request_nr = 0; request_nr < num_requests; request_nr++)
1140 __issue_target_request(ci, ti, request_nr, len);
1141}
1142
1143static int __clone_and_map_empty_flush(struct clone_info *ci)
1144{
1145 unsigned target_nr = 0;
1146 struct dm_target *ti;
1147
1148 BUG_ON(bio_has_data(ci->bio));
1149 while ((ti = dm_table_get_target(ci->map, target_nr++)))
1150 __issue_target_requests(ci, ti, ti->num_flush_requests, 0);
1151
1152 return 0;
1153}
1154
1155/*
1156 * Perform all io with a single clone.
1157 */
1158static void __clone_and_map_simple(struct clone_info *ci, struct dm_target *ti)
1159{
1160 struct bio *clone, *bio = ci->bio;
1161 struct dm_target_io *tio;
1162
1163 tio = alloc_tio(ci, ti);
1164 clone = clone_bio(bio, ci->sector, ci->idx,
1165 bio->bi_vcnt - ci->idx, ci->sector_count,
1166 ci->md->bs);
1167 __map_bio(ti, clone, tio);
1168 ci->sector_count = 0;
1169}
1170
1171static int __clone_and_map_discard(struct clone_info *ci)
1172{
1173 struct dm_target *ti;
1174 sector_t len;
1175
1176 do {
1177 ti = dm_table_find_target(ci->map, ci->sector);
1178 if (!dm_target_is_valid(ti))
1179 return -EIO;
1180
1181 /*
1182 * Even though the device advertised discard support,
1183 * that does not mean every target supports it, and
1184 * reconfiguration might also have changed that since the
1185 * check was performed.
1186 */
1187 if (!ti->num_discard_requests)
1188 return -EOPNOTSUPP;
1189
1190 len = min(ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1191
1192 __issue_target_requests(ci, ti, ti->num_discard_requests, len);
1193
1194 ci->sector += len;
1195 } while (ci->sector_count -= len);
1196
1197 return 0;
1198}
1199
1200static int __clone_and_map(struct clone_info *ci)
1201{
1202 struct bio *clone, *bio = ci->bio;
1203 struct dm_target *ti;
1204 sector_t len = 0, max;
1205 struct dm_target_io *tio;
1206
1207 if (unlikely(bio->bi_rw & REQ_DISCARD))
1208 return __clone_and_map_discard(ci);
1209
1210 ti = dm_table_find_target(ci->map, ci->sector);
1211 if (!dm_target_is_valid(ti))
1212 return -EIO;
1213
1214 max = max_io_len(ci->sector, ti);
1215
1216 if (ci->sector_count <= max) {
1217 /*
1218 * Optimise for the simple case where we can do all of
1219 * the remaining io with a single clone.
1220 */
1221 __clone_and_map_simple(ci, ti);
1222
1223 } else if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) {
1224 /*
1225 * There are some bvecs that don't span targets.
1226 * Do as many of these as possible.
1227 */
1228 int i;
1229 sector_t remaining = max;
1230 sector_t bv_len;
1231
1232 for (i = ci->idx; remaining && (i < bio->bi_vcnt); i++) {
1233 bv_len = to_sector(bio->bi_io_vec[i].bv_len);
1234
1235 if (bv_len > remaining)
1236 break;
1237
1238 remaining -= bv_len;
1239 len += bv_len;
1240 }
1241
1242 tio = alloc_tio(ci, ti);
1243 clone = clone_bio(bio, ci->sector, ci->idx, i - ci->idx, len,
1244 ci->md->bs);
1245 __map_bio(ti, clone, tio);
1246
1247 ci->sector += len;
1248 ci->sector_count -= len;
1249 ci->idx = i;
1250
1251 } else {
1252 /*
1253 * Handle a bvec that must be split between two or more targets.
1254 */
1255 struct bio_vec *bv = bio->bi_io_vec + ci->idx;
1256 sector_t remaining = to_sector(bv->bv_len);
1257 unsigned int offset = 0;
1258
1259 do {
1260 if (offset) {
1261 ti = dm_table_find_target(ci->map, ci->sector);
1262 if (!dm_target_is_valid(ti))
1263 return -EIO;
1264
1265 max = max_io_len(ci->sector, ti);
1266 }
1267
1268 len = min(remaining, max);
1269
1270 tio = alloc_tio(ci, ti);
1271 clone = split_bvec(bio, ci->sector, ci->idx,
1272 bv->bv_offset + offset, len,
1273 ci->md->bs);
1274
1275 __map_bio(ti, clone, tio);
1276
1277 ci->sector += len;
1278 ci->sector_count -= len;
1279 offset += to_bytes(len);
1280 } while (remaining -= len);
1281
1282 ci->idx++;
1283 }
1284
1285 return 0;
1286}
1287
1288/*
1289 * Split the bio into several clones and submit it to targets.
1290 */
1291static void __split_and_process_bio(struct mapped_device *md, struct bio *bio)
1292{
1293 struct clone_info ci;
1294 int error = 0;
1295
1296 ci.map = dm_get_live_table(md);
1297 if (unlikely(!ci.map)) {
1298 bio_io_error(bio);
1299 return;
1300 }
1301
1302 ci.md = md;
1303 ci.io = alloc_io(md);
1304 ci.io->error = 0;
1305 atomic_set(&ci.io->io_count, 1);
1306 ci.io->bio = bio;
1307 ci.io->md = md;
1308 spin_lock_init(&ci.io->endio_lock);
1309 ci.sector = bio->bi_sector;
1310 ci.idx = bio->bi_idx;
1311
1312 start_io_acct(ci.io);
1313 if (bio->bi_rw & REQ_FLUSH) {
1314 ci.bio = &ci.md->flush_bio;
1315 ci.sector_count = 0;
1316 error = __clone_and_map_empty_flush(&ci);
1317 /* dec_pending submits any data associated with flush */
1318 } else {
1319 ci.bio = bio;
1320 ci.sector_count = bio_sectors(bio);
1321 while (ci.sector_count && !error)
1322 error = __clone_and_map(&ci);
1323 }
1324
1325 /* drop the extra reference count */
1326 dec_pending(ci.io, error);
1327 dm_table_put(ci.map);
1328}
1329/*-----------------------------------------------------------------
1330 * CRUD END
1331 *---------------------------------------------------------------*/
1332
1333static int dm_merge_bvec(struct request_queue *q,
1334 struct bvec_merge_data *bvm,
1335 struct bio_vec *biovec)
1336{
1337 struct mapped_device *md = q->queuedata;
1338 struct dm_table *map = dm_get_live_table(md);
1339 struct dm_target *ti;
1340 sector_t max_sectors;
1341 int max_size = 0;
1342
1343 if (unlikely(!map))
1344 goto out;
1345
1346 ti = dm_table_find_target(map, bvm->bi_sector);
1347 if (!dm_target_is_valid(ti))
1348 goto out_table;
1349
1350 /*
1351 * Find maximum amount of I/O that won't need splitting
1352 */
1353 max_sectors = min(max_io_len(bvm->bi_sector, ti),
1354 (sector_t) BIO_MAX_SECTORS);
1355 max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
1356 if (max_size < 0)
1357 max_size = 0;
1358
1359 /*
1360 * merge_bvec_fn() returns number of bytes
1361 * it can accept at this offset
1362 * max is precomputed maximal io size
1363 */
1364 if (max_size && ti->type->merge)
1365 max_size = ti->type->merge(ti, bvm, biovec, max_size);
1366 /*
1367 * If the target doesn't support merge method and some of the devices
1368 * provided their merge_bvec method (we know this by looking at
1369 * queue_max_hw_sectors), then we can't allow bios with multiple vector
1370 * entries. So always set max_size to 0, and the code below allows
1371 * just one page.
1372 */
1373 else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9)
1374
1375 max_size = 0;
1376
1377out_table:
1378 dm_table_put(map);
1379
1380out:
1381 /*
1382 * Always allow an entire first page
1383 */
1384 if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
1385 max_size = biovec->bv_len;
1386
1387 return max_size;
1388}
1389
1390/*
1391 * The request function that just remaps the bio built up by
1392 * dm_merge_bvec.
1393 */
1394static int _dm_request(struct request_queue *q, struct bio *bio)
1395{
1396 int rw = bio_data_dir(bio);
1397 struct mapped_device *md = q->queuedata;
1398 int cpu;
1399
1400 down_read(&md->io_lock);
1401
1402 cpu = part_stat_lock();
1403 part_stat_inc(cpu, &dm_disk(md)->part0, ios[rw]);
1404 part_stat_add(cpu, &dm_disk(md)->part0, sectors[rw], bio_sectors(bio));
1405 part_stat_unlock();
1406
1407 /* if we're suspended, we have to queue this io for later */
1408 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1409 up_read(&md->io_lock);
1410
1411 if (bio_rw(bio) != READA)
1412 queue_io(md, bio);
1413 else
1414 bio_io_error(bio);
1415 return 0;
1416 }
1417
1418 __split_and_process_bio(md, bio);
1419 up_read(&md->io_lock);
1420 return 0;
1421}
1422
1423static int dm_make_request(struct request_queue *q, struct bio *bio)
1424{
1425 struct mapped_device *md = q->queuedata;
1426
1427 return md->saved_make_request_fn(q, bio); /* call __make_request() */
1428}
1429
1430static int dm_request_based(struct mapped_device *md)
1431{
1432 return blk_queue_stackable(md->queue);
1433}
1434
1435static int dm_request(struct request_queue *q, struct bio *bio)
1436{
1437 struct mapped_device *md = q->queuedata;
1438
1439 if (dm_request_based(md))
1440 return dm_make_request(q, bio);
1441
1442 return _dm_request(q, bio);
1443}
1444
1445void dm_dispatch_request(struct request *rq)
1446{
1447 int r;
1448
1449 if (blk_queue_io_stat(rq->q))
1450 rq->cmd_flags |= REQ_IO_STAT;
1451
1452 rq->start_time = jiffies;
1453 r = blk_insert_cloned_request(rq->q, rq);
1454 if (r)
1455 dm_complete_request(rq, r);
1456}
1457EXPORT_SYMBOL_GPL(dm_dispatch_request);
1458
1459static void dm_rq_bio_destructor(struct bio *bio)
1460{
1461 struct dm_rq_clone_bio_info *info = bio->bi_private;
1462 struct mapped_device *md = info->tio->md;
1463
1464 free_bio_info(info);
1465 bio_free(bio, md->bs);
1466}
1467
1468static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig,
1469 void *data)
1470{
1471 struct dm_rq_target_io *tio = data;
1472 struct mapped_device *md = tio->md;
1473 struct dm_rq_clone_bio_info *info = alloc_bio_info(md);
1474
1475 if (!info)
1476 return -ENOMEM;
1477
1478 info->orig = bio_orig;
1479 info->tio = tio;
1480 bio->bi_end_io = end_clone_bio;
1481 bio->bi_private = info;
1482 bio->bi_destructor = dm_rq_bio_destructor;
1483
1484 return 0;
1485}
1486
1487static int setup_clone(struct request *clone, struct request *rq,
1488 struct dm_rq_target_io *tio)
1489{
1490 int r;
1491
1492 r = blk_rq_prep_clone(clone, rq, tio->md->bs, GFP_ATOMIC,
1493 dm_rq_bio_constructor, tio);
1494 if (r)
1495 return r;
1496
1497 clone->cmd = rq->cmd;
1498 clone->cmd_len = rq->cmd_len;
1499 clone->sense = rq->sense;
1500 clone->buffer = rq->buffer;
1501 clone->end_io = end_clone_request;
1502 clone->end_io_data = tio;
1503
1504 return 0;
1505}
1506
1507static struct request *clone_rq(struct request *rq, struct mapped_device *md,
1508 gfp_t gfp_mask)
1509{
1510 struct request *clone;
1511 struct dm_rq_target_io *tio;
1512
1513 tio = alloc_rq_tio(md, gfp_mask);
1514 if (!tio)
1515 return NULL;
1516
1517 tio->md = md;
1518 tio->ti = NULL;
1519 tio->orig = rq;
1520 tio->error = 0;
1521 memset(&tio->info, 0, sizeof(tio->info));
1522
1523 clone = &tio->clone;
1524 if (setup_clone(clone, rq, tio)) {
1525 /* -ENOMEM */
1526 free_rq_tio(tio);
1527 return NULL;
1528 }
1529
1530 return clone;
1531}
1532
1533/*
1534 * Called with the queue lock held.
1535 */
1536static int dm_prep_fn(struct request_queue *q, struct request *rq)
1537{
1538 struct mapped_device *md = q->queuedata;
1539 struct request *clone;
1540
1541 if (unlikely(rq->special)) {
1542 DMWARN("Already has something in rq->special.");
1543 return BLKPREP_KILL;
1544 }
1545
1546 clone = clone_rq(rq, md, GFP_ATOMIC);
1547 if (!clone)
1548 return BLKPREP_DEFER;
1549
1550 rq->special = clone;
1551 rq->cmd_flags |= REQ_DONTPREP;
1552
1553 return BLKPREP_OK;
1554}
1555
1556/*
1557 * Returns:
1558 * 0 : the request has been processed (not requeued)
1559 * !0 : the request has been requeued
1560 */
1561static int map_request(struct dm_target *ti, struct request *clone,
1562 struct mapped_device *md)
1563{
1564 int r, requeued = 0;
1565 struct dm_rq_target_io *tio = clone->end_io_data;
1566
1567 /*
1568 * Hold the md reference here for the in-flight I/O.
1569 * We can't rely on the reference count by device opener,
1570 * because the device may be closed during the request completion
1571 * when all bios are completed.
1572 * See the comment in rq_completed() too.
1573 */
1574 dm_get(md);
1575
1576 tio->ti = ti;
1577 r = ti->type->map_rq(ti, clone, &tio->info);
1578 switch (r) {
1579 case DM_MAPIO_SUBMITTED:
1580 /* The target has taken the I/O to submit by itself later */
1581 break;
1582 case DM_MAPIO_REMAPPED:
1583 /* The target has remapped the I/O so dispatch it */
1584 trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)),
1585 blk_rq_pos(tio->orig));
1586 dm_dispatch_request(clone);
1587 break;
1588 case DM_MAPIO_REQUEUE:
1589 /* The target wants to requeue the I/O */
1590 dm_requeue_unmapped_request(clone);
1591 requeued = 1;
1592 break;
1593 default:
1594 if (r > 0) {
1595 DMWARN("unimplemented target map return value: %d", r);
1596 BUG();
1597 }
1598
1599 /* The target wants to complete the I/O */
1600 dm_kill_unmapped_request(clone, r);
1601 break;
1602 }
1603
1604 return requeued;
1605}
1606
1607/*
1608 * q->request_fn for request-based dm.
1609 * Called with the queue lock held.
1610 */
1611static void dm_request_fn(struct request_queue *q)
1612{
1613 struct mapped_device *md = q->queuedata;
1614 struct dm_table *map = dm_get_live_table(md);
1615 struct dm_target *ti;
1616 struct request *rq, *clone;
1617 sector_t pos;
1618
1619 /*
1620 * For suspend, check blk_queue_stopped() and increment
1621 * ->pending within a single queue_lock not to increment the
1622 * number of in-flight I/Os after the queue is stopped in
1623 * dm_suspend().
1624 */
1625 while (!blk_queue_stopped(q)) {
1626 rq = blk_peek_request(q);
1627 if (!rq)
1628 goto delay_and_out;
1629
1630 /* always use block 0 to find the target for flushes for now */
1631 pos = 0;
1632 if (!(rq->cmd_flags & REQ_FLUSH))
1633 pos = blk_rq_pos(rq);
1634
1635 ti = dm_table_find_target(map, pos);
1636 BUG_ON(!dm_target_is_valid(ti));
1637
1638 if (ti->type->busy && ti->type->busy(ti))
1639 goto delay_and_out;
1640
1641 blk_start_request(rq);
1642 clone = rq->special;
1643 atomic_inc(&md->pending[rq_data_dir(clone)]);
1644
1645 spin_unlock(q->queue_lock);
1646 if (map_request(ti, clone, md))
1647 goto requeued;
1648
1649 BUG_ON(!irqs_disabled());
1650 spin_lock(q->queue_lock);
1651 }
1652
1653 goto out;
1654
1655requeued:
1656 BUG_ON(!irqs_disabled());
1657 spin_lock(q->queue_lock);
1658
1659delay_and_out:
1660 blk_delay_queue(q, HZ / 10);
1661out:
1662 dm_table_put(map);
1663
1664 return;
1665}
1666
1667int dm_underlying_device_busy(struct request_queue *q)
1668{
1669 return blk_lld_busy(q);
1670}
1671EXPORT_SYMBOL_GPL(dm_underlying_device_busy);
1672
1673static int dm_lld_busy(struct request_queue *q)
1674{
1675 int r;
1676 struct mapped_device *md = q->queuedata;
1677 struct dm_table *map = dm_get_live_table(md);
1678
1679 if (!map || test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))
1680 r = 1;
1681 else
1682 r = dm_table_any_busy_target(map);
1683
1684 dm_table_put(map);
1685
1686 return r;
1687}
1688
1689static int dm_any_congested(void *congested_data, int bdi_bits)
1690{
1691 int r = bdi_bits;
1692 struct mapped_device *md = congested_data;
1693 struct dm_table *map;
1694
1695 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1696 map = dm_get_live_table(md);
1697 if (map) {
1698 /*
1699 * Request-based dm cares about only own queue for
1700 * the query about congestion status of request_queue
1701 */
1702 if (dm_request_based(md))
1703 r = md->queue->backing_dev_info.state &
1704 bdi_bits;
1705 else
1706 r = dm_table_any_congested(map, bdi_bits);
1707
1708 dm_table_put(map);
1709 }
1710 }
1711
1712 return r;
1713}
1714
1715/*-----------------------------------------------------------------
1716 * An IDR is used to keep track of allocated minor numbers.
1717 *---------------------------------------------------------------*/
1718static void free_minor(int minor)
1719{
1720 spin_lock(&_minor_lock);
1721 idr_remove(&_minor_idr, minor);
1722 spin_unlock(&_minor_lock);
1723}
1724
1725/*
1726 * See if the device with a specific minor # is free.
1727 */
1728static int specific_minor(int minor)
1729{
1730 int r, m;
1731
1732 if (minor >= (1 << MINORBITS))
1733 return -EINVAL;
1734
1735 r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1736 if (!r)
1737 return -ENOMEM;
1738
1739 spin_lock(&_minor_lock);
1740
1741 if (idr_find(&_minor_idr, minor)) {
1742 r = -EBUSY;
1743 goto out;
1744 }
1745
1746 r = idr_get_new_above(&_minor_idr, MINOR_ALLOCED, minor, &m);
1747 if (r)
1748 goto out;
1749
1750 if (m != minor) {
1751 idr_remove(&_minor_idr, m);
1752 r = -EBUSY;
1753 goto out;
1754 }
1755
1756out:
1757 spin_unlock(&_minor_lock);
1758 return r;
1759}
1760
1761static int next_free_minor(int *minor)
1762{
1763 int r, m;
1764
1765 r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1766 if (!r)
1767 return -ENOMEM;
1768
1769 spin_lock(&_minor_lock);
1770
1771 r = idr_get_new(&_minor_idr, MINOR_ALLOCED, &m);
1772 if (r)
1773 goto out;
1774
1775 if (m >= (1 << MINORBITS)) {
1776 idr_remove(&_minor_idr, m);
1777 r = -ENOSPC;
1778 goto out;
1779 }
1780
1781 *minor = m;
1782
1783out:
1784 spin_unlock(&_minor_lock);
1785 return r;
1786}
1787
1788static const struct block_device_operations dm_blk_dops;
1789
1790static void dm_wq_work(struct work_struct *work);
1791
1792static void dm_init_md_queue(struct mapped_device *md)
1793{
1794 /*
1795 * Request-based dm devices cannot be stacked on top of bio-based dm
1796 * devices. The type of this dm device has not been decided yet.
1797 * The type is decided at the first table loading time.
1798 * To prevent problematic device stacking, clear the queue flag
1799 * for request stacking support until then.
1800 *
1801 * This queue is new, so no concurrency on the queue_flags.
1802 */
1803 queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
1804
1805 md->queue->queuedata = md;
1806 md->queue->backing_dev_info.congested_fn = dm_any_congested;
1807 md->queue->backing_dev_info.congested_data = md;
1808 blk_queue_make_request(md->queue, dm_request);
1809 blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
1810 blk_queue_merge_bvec(md->queue, dm_merge_bvec);
1811}
1812
1813/*
1814 * Allocate and initialise a blank device with a given minor.
1815 */
1816static struct mapped_device *alloc_dev(int minor)
1817{
1818 int r;
1819 struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
1820 void *old_md;
1821
1822 if (!md) {
1823 DMWARN("unable to allocate device, out of memory.");
1824 return NULL;
1825 }
1826
1827 if (!try_module_get(THIS_MODULE))
1828 goto bad_module_get;
1829
1830 /* get a minor number for the dev */
1831 if (minor == DM_ANY_MINOR)
1832 r = next_free_minor(&minor);
1833 else
1834 r = specific_minor(minor);
1835 if (r < 0)
1836 goto bad_minor;
1837
1838 md->type = DM_TYPE_NONE;
1839 init_rwsem(&md->io_lock);
1840 mutex_init(&md->suspend_lock);
1841 mutex_init(&md->type_lock);
1842 spin_lock_init(&md->deferred_lock);
1843 rwlock_init(&md->map_lock);
1844 atomic_set(&md->holders, 1);
1845 atomic_set(&md->open_count, 0);
1846 atomic_set(&md->event_nr, 0);
1847 atomic_set(&md->uevent_seq, 0);
1848 INIT_LIST_HEAD(&md->uevent_list);
1849 spin_lock_init(&md->uevent_lock);
1850
1851 md->queue = blk_alloc_queue(GFP_KERNEL);
1852 if (!md->queue)
1853 goto bad_queue;
1854
1855 dm_init_md_queue(md);
1856
1857 md->disk = alloc_disk(1);
1858 if (!md->disk)
1859 goto bad_disk;
1860
1861 atomic_set(&md->pending[0], 0);
1862 atomic_set(&md->pending[1], 0);
1863 init_waitqueue_head(&md->wait);
1864 INIT_WORK(&md->work, dm_wq_work);
1865 init_waitqueue_head(&md->eventq);
1866
1867 md->disk->major = _major;
1868 md->disk->first_minor = minor;
1869 md->disk->fops = &dm_blk_dops;
1870 md->disk->queue = md->queue;
1871 md->disk->private_data = md;
1872 sprintf(md->disk->disk_name, "dm-%d", minor);
1873 add_disk(md->disk);
1874 format_dev_t(md->name, MKDEV(_major, minor));
1875
1876 md->wq = alloc_workqueue("kdmflush",
1877 WQ_NON_REENTRANT | WQ_MEM_RECLAIM, 0);
1878 if (!md->wq)
1879 goto bad_thread;
1880
1881 md->bdev = bdget_disk(md->disk, 0);
1882 if (!md->bdev)
1883 goto bad_bdev;
1884
1885 bio_init(&md->flush_bio);
1886 md->flush_bio.bi_bdev = md->bdev;
1887 md->flush_bio.bi_rw = WRITE_FLUSH;
1888
1889 /* Populate the mapping, nobody knows we exist yet */
1890 spin_lock(&_minor_lock);
1891 old_md = idr_replace(&_minor_idr, md, minor);
1892 spin_unlock(&_minor_lock);
1893
1894 BUG_ON(old_md != MINOR_ALLOCED);
1895
1896 return md;
1897
1898bad_bdev:
1899 destroy_workqueue(md->wq);
1900bad_thread:
1901 del_gendisk(md->disk);
1902 put_disk(md->disk);
1903bad_disk:
1904 blk_cleanup_queue(md->queue);
1905bad_queue:
1906 free_minor(minor);
1907bad_minor:
1908 module_put(THIS_MODULE);
1909bad_module_get:
1910 kfree(md);
1911 return NULL;
1912}
1913
1914static void unlock_fs(struct mapped_device *md);
1915
1916static void free_dev(struct mapped_device *md)
1917{
1918 int minor = MINOR(disk_devt(md->disk));
1919
1920 unlock_fs(md);
1921 bdput(md->bdev);
1922 destroy_workqueue(md->wq);
1923 if (md->tio_pool)
1924 mempool_destroy(md->tio_pool);
1925 if (md->io_pool)
1926 mempool_destroy(md->io_pool);
1927 if (md->bs)
1928 bioset_free(md->bs);
1929 blk_integrity_unregister(md->disk);
1930 del_gendisk(md->disk);
1931 free_minor(minor);
1932
1933 spin_lock(&_minor_lock);
1934 md->disk->private_data = NULL;
1935 spin_unlock(&_minor_lock);
1936
1937 put_disk(md->disk);
1938 blk_cleanup_queue(md->queue);
1939 module_put(THIS_MODULE);
1940 kfree(md);
1941}
1942
1943static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
1944{
1945 struct dm_md_mempools *p;
1946
1947 if (md->io_pool && md->tio_pool && md->bs)
1948 /* the md already has necessary mempools */
1949 goto out;
1950
1951 p = dm_table_get_md_mempools(t);
1952 BUG_ON(!p || md->io_pool || md->tio_pool || md->bs);
1953
1954 md->io_pool = p->io_pool;
1955 p->io_pool = NULL;
1956 md->tio_pool = p->tio_pool;
1957 p->tio_pool = NULL;
1958 md->bs = p->bs;
1959 p->bs = NULL;
1960
1961out:
1962 /* mempool bind completed, now no need any mempools in the table */
1963 dm_table_free_md_mempools(t);
1964}
1965
1966/*
1967 * Bind a table to the device.
1968 */
1969static void event_callback(void *context)
1970{
1971 unsigned long flags;
1972 LIST_HEAD(uevents);
1973 struct mapped_device *md = (struct mapped_device *) context;
1974
1975 spin_lock_irqsave(&md->uevent_lock, flags);
1976 list_splice_init(&md->uevent_list, &uevents);
1977 spin_unlock_irqrestore(&md->uevent_lock, flags);
1978
1979 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
1980
1981 atomic_inc(&md->event_nr);
1982 wake_up(&md->eventq);
1983}
1984
1985/*
1986 * Protected by md->suspend_lock obtained by dm_swap_table().
1987 */
1988static void __set_size(struct mapped_device *md, sector_t size)
1989{
1990 set_capacity(md->disk, size);
1991
1992 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
1993}
1994
1995/*
1996 * Return 1 if the queue has a compulsory merge_bvec_fn function.
1997 *
1998 * If this function returns 0, then the device is either a non-dm
1999 * device without a merge_bvec_fn, or it is a dm device that is
2000 * able to split any bios it receives that are too big.
2001 */
2002int dm_queue_merge_is_compulsory(struct request_queue *q)
2003{
2004 struct mapped_device *dev_md;
2005
2006 if (!q->merge_bvec_fn)
2007 return 0;
2008
2009 if (q->make_request_fn == dm_request) {
2010 dev_md = q->queuedata;
2011 if (test_bit(DMF_MERGE_IS_OPTIONAL, &dev_md->flags))
2012 return 0;
2013 }
2014
2015 return 1;
2016}
2017
2018static int dm_device_merge_is_compulsory(struct dm_target *ti,
2019 struct dm_dev *dev, sector_t start,
2020 sector_t len, void *data)
2021{
2022 struct block_device *bdev = dev->bdev;
2023 struct request_queue *q = bdev_get_queue(bdev);
2024
2025 return dm_queue_merge_is_compulsory(q);
2026}
2027
2028/*
2029 * Return 1 if it is acceptable to ignore merge_bvec_fn based
2030 * on the properties of the underlying devices.
2031 */
2032static int dm_table_merge_is_optional(struct dm_table *table)
2033{
2034 unsigned i = 0;
2035 struct dm_target *ti;
2036
2037 while (i < dm_table_get_num_targets(table)) {
2038 ti = dm_table_get_target(table, i++);
2039
2040 if (ti->type->iterate_devices &&
2041 ti->type->iterate_devices(ti, dm_device_merge_is_compulsory, NULL))
2042 return 0;
2043 }
2044
2045 return 1;
2046}
2047
2048/*
2049 * Returns old map, which caller must destroy.
2050 */
2051static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2052 struct queue_limits *limits)
2053{
2054 struct dm_table *old_map;
2055 struct request_queue *q = md->queue;
2056 sector_t size;
2057 unsigned long flags;
2058 int merge_is_optional;
2059
2060 size = dm_table_get_size(t);
2061
2062 /*
2063 * Wipe any geometry if the size of the table changed.
2064 */
2065 if (size != get_capacity(md->disk))
2066 memset(&md->geometry, 0, sizeof(md->geometry));
2067
2068 __set_size(md, size);
2069
2070 dm_table_event_callback(t, event_callback, md);
2071
2072 /*
2073 * The queue hasn't been stopped yet, if the old table type wasn't
2074 * for request-based during suspension. So stop it to prevent
2075 * I/O mapping before resume.
2076 * This must be done before setting the queue restrictions,
2077 * because request-based dm may be run just after the setting.
2078 */
2079 if (dm_table_request_based(t) && !blk_queue_stopped(q))
2080 stop_queue(q);
2081
2082 __bind_mempools(md, t);
2083
2084 merge_is_optional = dm_table_merge_is_optional(t);
2085
2086 write_lock_irqsave(&md->map_lock, flags);
2087 old_map = md->map;
2088 md->map = t;
2089 dm_table_set_restrictions(t, q, limits);
2090 if (merge_is_optional)
2091 set_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2092 else
2093 clear_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2094 write_unlock_irqrestore(&md->map_lock, flags);
2095
2096 return old_map;
2097}
2098
2099/*
2100 * Returns unbound table for the caller to free.
2101 */
2102static struct dm_table *__unbind(struct mapped_device *md)
2103{
2104 struct dm_table *map = md->map;
2105 unsigned long flags;
2106
2107 if (!map)
2108 return NULL;
2109
2110 dm_table_event_callback(map, NULL, NULL);
2111 write_lock_irqsave(&md->map_lock, flags);
2112 md->map = NULL;
2113 write_unlock_irqrestore(&md->map_lock, flags);
2114
2115 return map;
2116}
2117
2118/*
2119 * Constructor for a new device.
2120 */
2121int dm_create(int minor, struct mapped_device **result)
2122{
2123 struct mapped_device *md;
2124
2125 md = alloc_dev(minor);
2126 if (!md)
2127 return -ENXIO;
2128
2129 dm_sysfs_init(md);
2130
2131 *result = md;
2132 return 0;
2133}
2134
2135/*
2136 * Functions to manage md->type.
2137 * All are required to hold md->type_lock.
2138 */
2139void dm_lock_md_type(struct mapped_device *md)
2140{
2141 mutex_lock(&md->type_lock);
2142}
2143
2144void dm_unlock_md_type(struct mapped_device *md)
2145{
2146 mutex_unlock(&md->type_lock);
2147}
2148
2149void dm_set_md_type(struct mapped_device *md, unsigned type)
2150{
2151 md->type = type;
2152}
2153
2154unsigned dm_get_md_type(struct mapped_device *md)
2155{
2156 return md->type;
2157}
2158
2159/*
2160 * Fully initialize a request-based queue (->elevator, ->request_fn, etc).
2161 */
2162static int dm_init_request_based_queue(struct mapped_device *md)
2163{
2164 struct request_queue *q = NULL;
2165
2166 if (md->queue->elevator)
2167 return 1;
2168
2169 /* Fully initialize the queue */
2170 q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL);
2171 if (!q)
2172 return 0;
2173
2174 md->queue = q;
2175 md->saved_make_request_fn = md->queue->make_request_fn;
2176 dm_init_md_queue(md);
2177 blk_queue_softirq_done(md->queue, dm_softirq_done);
2178 blk_queue_prep_rq(md->queue, dm_prep_fn);
2179 blk_queue_lld_busy(md->queue, dm_lld_busy);
2180
2181 elv_register_queue(md->queue);
2182
2183 return 1;
2184}
2185
2186/*
2187 * Setup the DM device's queue based on md's type
2188 */
2189int dm_setup_md_queue(struct mapped_device *md)
2190{
2191 if ((dm_get_md_type(md) == DM_TYPE_REQUEST_BASED) &&
2192 !dm_init_request_based_queue(md)) {
2193 DMWARN("Cannot initialize queue for request-based mapped device");
2194 return -EINVAL;
2195 }
2196
2197 return 0;
2198}
2199
2200static struct mapped_device *dm_find_md(dev_t dev)
2201{
2202 struct mapped_device *md;
2203 unsigned minor = MINOR(dev);
2204
2205 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2206 return NULL;
2207
2208 spin_lock(&_minor_lock);
2209
2210 md = idr_find(&_minor_idr, minor);
2211 if (md && (md == MINOR_ALLOCED ||
2212 (MINOR(disk_devt(dm_disk(md))) != minor) ||
2213 dm_deleting_md(md) ||
2214 test_bit(DMF_FREEING, &md->flags))) {
2215 md = NULL;
2216 goto out;
2217 }
2218
2219out:
2220 spin_unlock(&_minor_lock);
2221
2222 return md;
2223}
2224
2225struct mapped_device *dm_get_md(dev_t dev)
2226{
2227 struct mapped_device *md = dm_find_md(dev);
2228
2229 if (md)
2230 dm_get(md);
2231
2232 return md;
2233}
2234
2235void *dm_get_mdptr(struct mapped_device *md)
2236{
2237 return md->interface_ptr;
2238}
2239
2240void dm_set_mdptr(struct mapped_device *md, void *ptr)
2241{
2242 md->interface_ptr = ptr;
2243}
2244
2245void dm_get(struct mapped_device *md)
2246{
2247 atomic_inc(&md->holders);
2248 BUG_ON(test_bit(DMF_FREEING, &md->flags));
2249}
2250
2251const char *dm_device_name(struct mapped_device *md)
2252{
2253 return md->name;
2254}
2255EXPORT_SYMBOL_GPL(dm_device_name);
2256
2257static void __dm_destroy(struct mapped_device *md, bool wait)
2258{
2259 struct dm_table *map;
2260
2261 might_sleep();
2262
2263 spin_lock(&_minor_lock);
2264 map = dm_get_live_table(md);
2265 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2266 set_bit(DMF_FREEING, &md->flags);
2267 spin_unlock(&_minor_lock);
2268
2269 if (!dm_suspended_md(md)) {
2270 dm_table_presuspend_targets(map);
2271 dm_table_postsuspend_targets(map);
2272 }
2273
2274 /*
2275 * Rare, but there may be I/O requests still going to complete,
2276 * for example. Wait for all references to disappear.
2277 * No one should increment the reference count of the mapped_device,
2278 * after the mapped_device state becomes DMF_FREEING.
2279 */
2280 if (wait)
2281 while (atomic_read(&md->holders))
2282 msleep(1);
2283 else if (atomic_read(&md->holders))
2284 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2285 dm_device_name(md), atomic_read(&md->holders));
2286
2287 dm_sysfs_exit(md);
2288 dm_table_put(map);
2289 dm_table_destroy(__unbind(md));
2290 free_dev(md);
2291}
2292
2293void dm_destroy(struct mapped_device *md)
2294{
2295 __dm_destroy(md, true);
2296}
2297
2298void dm_destroy_immediate(struct mapped_device *md)
2299{
2300 __dm_destroy(md, false);
2301}
2302
2303void dm_put(struct mapped_device *md)
2304{
2305 atomic_dec(&md->holders);
2306}
2307EXPORT_SYMBOL_GPL(dm_put);
2308
2309static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
2310{
2311 int r = 0;
2312 DECLARE_WAITQUEUE(wait, current);
2313
2314 add_wait_queue(&md->wait, &wait);
2315
2316 while (1) {
2317 set_current_state(interruptible);
2318
2319 smp_mb();
2320 if (!md_in_flight(md))
2321 break;
2322
2323 if (interruptible == TASK_INTERRUPTIBLE &&
2324 signal_pending(current)) {
2325 r = -EINTR;
2326 break;
2327 }
2328
2329 io_schedule();
2330 }
2331 set_current_state(TASK_RUNNING);
2332
2333 remove_wait_queue(&md->wait, &wait);
2334
2335 return r;
2336}
2337
2338/*
2339 * Process the deferred bios
2340 */
2341static void dm_wq_work(struct work_struct *work)
2342{
2343 struct mapped_device *md = container_of(work, struct mapped_device,
2344 work);
2345 struct bio *c;
2346
2347 down_read(&md->io_lock);
2348
2349 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2350 spin_lock_irq(&md->deferred_lock);
2351 c = bio_list_pop(&md->deferred);
2352 spin_unlock_irq(&md->deferred_lock);
2353
2354 if (!c)
2355 break;
2356
2357 up_read(&md->io_lock);
2358
2359 if (dm_request_based(md))
2360 generic_make_request(c);
2361 else
2362 __split_and_process_bio(md, c);
2363
2364 down_read(&md->io_lock);
2365 }
2366
2367 up_read(&md->io_lock);
2368}
2369
2370static void dm_queue_flush(struct mapped_device *md)
2371{
2372 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2373 smp_mb__after_clear_bit();
2374 queue_work(md->wq, &md->work);
2375}
2376
2377/*
2378 * Swap in a new table, returning the old one for the caller to destroy.
2379 */
2380struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2381{
2382 struct dm_table *map = ERR_PTR(-EINVAL);
2383 struct queue_limits limits;
2384 int r;
2385
2386 mutex_lock(&md->suspend_lock);
2387
2388 /* device must be suspended */
2389 if (!dm_suspended_md(md))
2390 goto out;
2391
2392 r = dm_calculate_queue_limits(table, &limits);
2393 if (r) {
2394 map = ERR_PTR(r);
2395 goto out;
2396 }
2397
2398 map = __bind(md, table, &limits);
2399
2400out:
2401 mutex_unlock(&md->suspend_lock);
2402 return map;
2403}
2404
2405/*
2406 * Functions to lock and unlock any filesystem running on the
2407 * device.
2408 */
2409static int lock_fs(struct mapped_device *md)
2410{
2411 int r;
2412
2413 WARN_ON(md->frozen_sb);
2414
2415 md->frozen_sb = freeze_bdev(md->bdev);
2416 if (IS_ERR(md->frozen_sb)) {
2417 r = PTR_ERR(md->frozen_sb);
2418 md->frozen_sb = NULL;
2419 return r;
2420 }
2421
2422 set_bit(DMF_FROZEN, &md->flags);
2423
2424 return 0;
2425}
2426
2427static void unlock_fs(struct mapped_device *md)
2428{
2429 if (!test_bit(DMF_FROZEN, &md->flags))
2430 return;
2431
2432 thaw_bdev(md->bdev, md->frozen_sb);
2433 md->frozen_sb = NULL;
2434 clear_bit(DMF_FROZEN, &md->flags);
2435}
2436
2437/*
2438 * We need to be able to change a mapping table under a mounted
2439 * filesystem. For example we might want to move some data in
2440 * the background. Before the table can be swapped with
2441 * dm_bind_table, dm_suspend must be called to flush any in
2442 * flight bios and ensure that any further io gets deferred.
2443 */
2444/*
2445 * Suspend mechanism in request-based dm.
2446 *
2447 * 1. Flush all I/Os by lock_fs() if needed.
2448 * 2. Stop dispatching any I/O by stopping the request_queue.
2449 * 3. Wait for all in-flight I/Os to be completed or requeued.
2450 *
2451 * To abort suspend, start the request_queue.
2452 */
2453int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2454{
2455 struct dm_table *map = NULL;
2456 int r = 0;
2457 int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0;
2458 int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0;
2459
2460 mutex_lock(&md->suspend_lock);
2461
2462 if (dm_suspended_md(md)) {
2463 r = -EINVAL;
2464 goto out_unlock;
2465 }
2466
2467 map = dm_get_live_table(md);
2468
2469 /*
2470 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2471 * This flag is cleared before dm_suspend returns.
2472 */
2473 if (noflush)
2474 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2475
2476 /* This does not get reverted if there's an error later. */
2477 dm_table_presuspend_targets(map);
2478
2479 /*
2480 * Flush I/O to the device.
2481 * Any I/O submitted after lock_fs() may not be flushed.
2482 * noflush takes precedence over do_lockfs.
2483 * (lock_fs() flushes I/Os and waits for them to complete.)
2484 */
2485 if (!noflush && do_lockfs) {
2486 r = lock_fs(md);
2487 if (r)
2488 goto out;
2489 }
2490
2491 /*
2492 * Here we must make sure that no processes are submitting requests
2493 * to target drivers i.e. no one may be executing
2494 * __split_and_process_bio. This is called from dm_request and
2495 * dm_wq_work.
2496 *
2497 * To get all processes out of __split_and_process_bio in dm_request,
2498 * we take the write lock. To prevent any process from reentering
2499 * __split_and_process_bio from dm_request and quiesce the thread
2500 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2501 * flush_workqueue(md->wq).
2502 */
2503 down_write(&md->io_lock);
2504 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2505 up_write(&md->io_lock);
2506
2507 /*
2508 * Stop md->queue before flushing md->wq in case request-based
2509 * dm defers requests to md->wq from md->queue.
2510 */
2511 if (dm_request_based(md))
2512 stop_queue(md->queue);
2513
2514 flush_workqueue(md->wq);
2515
2516 /*
2517 * At this point no more requests are entering target request routines.
2518 * We call dm_wait_for_completion to wait for all existing requests
2519 * to finish.
2520 */
2521 r = dm_wait_for_completion(md, TASK_INTERRUPTIBLE);
2522
2523 down_write(&md->io_lock);
2524 if (noflush)
2525 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2526 up_write(&md->io_lock);
2527
2528 /* were we interrupted ? */
2529 if (r < 0) {
2530 dm_queue_flush(md);
2531
2532 if (dm_request_based(md))
2533 start_queue(md->queue);
2534
2535 unlock_fs(md);
2536 goto out; /* pushback list is already flushed, so skip flush */
2537 }
2538
2539 /*
2540 * If dm_wait_for_completion returned 0, the device is completely
2541 * quiescent now. There is no request-processing activity. All new
2542 * requests are being added to md->deferred list.
2543 */
2544
2545 set_bit(DMF_SUSPENDED, &md->flags);
2546
2547 dm_table_postsuspend_targets(map);
2548
2549out:
2550 dm_table_put(map);
2551
2552out_unlock:
2553 mutex_unlock(&md->suspend_lock);
2554 return r;
2555}
2556
2557int dm_resume(struct mapped_device *md)
2558{
2559 int r = -EINVAL;
2560 struct dm_table *map = NULL;
2561
2562 mutex_lock(&md->suspend_lock);
2563 if (!dm_suspended_md(md))
2564 goto out;
2565
2566 map = dm_get_live_table(md);
2567 if (!map || !dm_table_get_size(map))
2568 goto out;
2569
2570 r = dm_table_resume_targets(map);
2571 if (r)
2572 goto out;
2573
2574 dm_queue_flush(md);
2575
2576 /*
2577 * Flushing deferred I/Os must be done after targets are resumed
2578 * so that mapping of targets can work correctly.
2579 * Request-based dm is queueing the deferred I/Os in its request_queue.
2580 */
2581 if (dm_request_based(md))
2582 start_queue(md->queue);
2583
2584 unlock_fs(md);
2585
2586 clear_bit(DMF_SUSPENDED, &md->flags);
2587
2588 r = 0;
2589out:
2590 dm_table_put(map);
2591 mutex_unlock(&md->suspend_lock);
2592
2593 return r;
2594}
2595
2596/*-----------------------------------------------------------------
2597 * Event notification.
2598 *---------------------------------------------------------------*/
2599int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2600 unsigned cookie)
2601{
2602 char udev_cookie[DM_COOKIE_LENGTH];
2603 char *envp[] = { udev_cookie, NULL };
2604
2605 if (!cookie)
2606 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2607 else {
2608 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2609 DM_COOKIE_ENV_VAR_NAME, cookie);
2610 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2611 action, envp);
2612 }
2613}
2614
2615uint32_t dm_next_uevent_seq(struct mapped_device *md)
2616{
2617 return atomic_add_return(1, &md->uevent_seq);
2618}
2619
2620uint32_t dm_get_event_nr(struct mapped_device *md)
2621{
2622 return atomic_read(&md->event_nr);
2623}
2624
2625int dm_wait_event(struct mapped_device *md, int event_nr)
2626{
2627 return wait_event_interruptible(md->eventq,
2628 (event_nr != atomic_read(&md->event_nr)));
2629}
2630
2631void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2632{
2633 unsigned long flags;
2634
2635 spin_lock_irqsave(&md->uevent_lock, flags);
2636 list_add(elist, &md->uevent_list);
2637 spin_unlock_irqrestore(&md->uevent_lock, flags);
2638}
2639
2640/*
2641 * The gendisk is only valid as long as you have a reference
2642 * count on 'md'.
2643 */
2644struct gendisk *dm_disk(struct mapped_device *md)
2645{
2646 return md->disk;
2647}
2648
2649struct kobject *dm_kobject(struct mapped_device *md)
2650{
2651 return &md->kobj;
2652}
2653
2654/*
2655 * struct mapped_device should not be exported outside of dm.c
2656 * so use this check to verify that kobj is part of md structure
2657 */
2658struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2659{
2660 struct mapped_device *md;
2661
2662 md = container_of(kobj, struct mapped_device, kobj);
2663 if (&md->kobj != kobj)
2664 return NULL;
2665
2666 if (test_bit(DMF_FREEING, &md->flags) ||
2667 dm_deleting_md(md))
2668 return NULL;
2669
2670 dm_get(md);
2671 return md;
2672}
2673
2674int dm_suspended_md(struct mapped_device *md)
2675{
2676 return test_bit(DMF_SUSPENDED, &md->flags);
2677}
2678
2679int dm_suspended(struct dm_target *ti)
2680{
2681 return dm_suspended_md(dm_table_get_md(ti->table));
2682}
2683EXPORT_SYMBOL_GPL(dm_suspended);
2684
2685int dm_noflush_suspending(struct dm_target *ti)
2686{
2687 return __noflush_suspending(dm_table_get_md(ti->table));
2688}
2689EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2690
2691struct dm_md_mempools *dm_alloc_md_mempools(unsigned type, unsigned integrity)
2692{
2693 struct dm_md_mempools *pools = kmalloc(sizeof(*pools), GFP_KERNEL);
2694 unsigned int pool_size = (type == DM_TYPE_BIO_BASED) ? 16 : MIN_IOS;
2695
2696 if (!pools)
2697 return NULL;
2698
2699 pools->io_pool = (type == DM_TYPE_BIO_BASED) ?
2700 mempool_create_slab_pool(MIN_IOS, _io_cache) :
2701 mempool_create_slab_pool(MIN_IOS, _rq_bio_info_cache);
2702 if (!pools->io_pool)
2703 goto free_pools_and_out;
2704
2705 pools->tio_pool = (type == DM_TYPE_BIO_BASED) ?
2706 mempool_create_slab_pool(MIN_IOS, _tio_cache) :
2707 mempool_create_slab_pool(MIN_IOS, _rq_tio_cache);
2708 if (!pools->tio_pool)
2709 goto free_io_pool_and_out;
2710
2711 pools->bs = bioset_create(pool_size, 0);
2712 if (!pools->bs)
2713 goto free_tio_pool_and_out;
2714
2715 if (integrity && bioset_integrity_create(pools->bs, pool_size))
2716 goto free_bioset_and_out;
2717
2718 return pools;
2719
2720free_bioset_and_out:
2721 bioset_free(pools->bs);
2722
2723free_tio_pool_and_out:
2724 mempool_destroy(pools->tio_pool);
2725
2726free_io_pool_and_out:
2727 mempool_destroy(pools->io_pool);
2728
2729free_pools_and_out:
2730 kfree(pools);
2731
2732 return NULL;
2733}
2734
2735void dm_free_md_mempools(struct dm_md_mempools *pools)
2736{
2737 if (!pools)
2738 return;
2739
2740 if (pools->io_pool)
2741 mempool_destroy(pools->io_pool);
2742
2743 if (pools->tio_pool)
2744 mempool_destroy(pools->tio_pool);
2745
2746 if (pools->bs)
2747 bioset_free(pools->bs);
2748
2749 kfree(pools);
2750}
2751
2752static const struct block_device_operations dm_blk_dops = {
2753 .open = dm_blk_open,
2754 .release = dm_blk_close,
2755 .ioctl = dm_blk_ioctl,
2756 .getgeo = dm_blk_getgeo,
2757 .owner = THIS_MODULE
2758};
2759
2760EXPORT_SYMBOL(dm_get_mapinfo);
2761
2762/*
2763 * module hooks
2764 */
2765module_init(dm_init);
2766module_exit(dm_exit);
2767
2768module_param(major, uint, 0);
2769MODULE_PARM_DESC(major, "The major number of the device mapper");
2770MODULE_DESCRIPTION(DM_NAME " driver");
2771MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
2772MODULE_LICENSE("GPL");
1/*
2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8#include "dm.h"
9#include "dm-uevent.h"
10
11#include <linux/init.h>
12#include <linux/module.h>
13#include <linux/mutex.h>
14#include <linux/moduleparam.h>
15#include <linux/blkpg.h>
16#include <linux/bio.h>
17#include <linux/mempool.h>
18#include <linux/slab.h>
19#include <linux/idr.h>
20#include <linux/hdreg.h>
21#include <linux/delay.h>
22#include <linux/wait.h>
23#include <linux/kthread.h>
24#include <linux/ktime.h>
25#include <linux/elevator.h> /* for rq_end_sector() */
26#include <linux/blk-mq.h>
27#include <linux/pr.h>
28
29#include <trace/events/block.h>
30
31#define DM_MSG_PREFIX "core"
32
33#ifdef CONFIG_PRINTK
34/*
35 * ratelimit state to be used in DMXXX_LIMIT().
36 */
37DEFINE_RATELIMIT_STATE(dm_ratelimit_state,
38 DEFAULT_RATELIMIT_INTERVAL,
39 DEFAULT_RATELIMIT_BURST);
40EXPORT_SYMBOL(dm_ratelimit_state);
41#endif
42
43/*
44 * Cookies are numeric values sent with CHANGE and REMOVE
45 * uevents while resuming, removing or renaming the device.
46 */
47#define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
48#define DM_COOKIE_LENGTH 24
49
50static const char *_name = DM_NAME;
51
52static unsigned int major = 0;
53static unsigned int _major = 0;
54
55static DEFINE_IDR(_minor_idr);
56
57static DEFINE_SPINLOCK(_minor_lock);
58
59static void do_deferred_remove(struct work_struct *w);
60
61static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
62
63static struct workqueue_struct *deferred_remove_workqueue;
64
65/*
66 * For bio-based dm.
67 * One of these is allocated per bio.
68 */
69struct dm_io {
70 struct mapped_device *md;
71 int error;
72 atomic_t io_count;
73 struct bio *bio;
74 unsigned long start_time;
75 spinlock_t endio_lock;
76 struct dm_stats_aux stats_aux;
77};
78
79/*
80 * For request-based dm.
81 * One of these is allocated per request.
82 */
83struct dm_rq_target_io {
84 struct mapped_device *md;
85 struct dm_target *ti;
86 struct request *orig, *clone;
87 struct kthread_work work;
88 int error;
89 union map_info info;
90 struct dm_stats_aux stats_aux;
91 unsigned long duration_jiffies;
92 unsigned n_sectors;
93};
94
95/*
96 * For request-based dm - the bio clones we allocate are embedded in these
97 * structs.
98 *
99 * We allocate these with bio_alloc_bioset, using the front_pad parameter when
100 * the bioset is created - this means the bio has to come at the end of the
101 * struct.
102 */
103struct dm_rq_clone_bio_info {
104 struct bio *orig;
105 struct dm_rq_target_io *tio;
106 struct bio clone;
107};
108
109#define MINOR_ALLOCED ((void *)-1)
110
111/*
112 * Bits for the md->flags field.
113 */
114#define DMF_BLOCK_IO_FOR_SUSPEND 0
115#define DMF_SUSPENDED 1
116#define DMF_FROZEN 2
117#define DMF_FREEING 3
118#define DMF_DELETING 4
119#define DMF_NOFLUSH_SUSPENDING 5
120#define DMF_DEFERRED_REMOVE 6
121#define DMF_SUSPENDED_INTERNALLY 7
122
123/*
124 * Work processed by per-device workqueue.
125 */
126struct mapped_device {
127 struct srcu_struct io_barrier;
128 struct mutex suspend_lock;
129
130 /*
131 * The current mapping (struct dm_table *).
132 * Use dm_get_live_table{_fast} or take suspend_lock for
133 * dereference.
134 */
135 void __rcu *map;
136
137 struct list_head table_devices;
138 struct mutex table_devices_lock;
139
140 unsigned long flags;
141
142 struct request_queue *queue;
143 int numa_node_id;
144
145 unsigned type;
146 /* Protect queue and type against concurrent access. */
147 struct mutex type_lock;
148
149 atomic_t holders;
150 atomic_t open_count;
151
152 struct dm_target *immutable_target;
153 struct target_type *immutable_target_type;
154
155 struct gendisk *disk;
156 char name[16];
157
158 void *interface_ptr;
159
160 /*
161 * A list of ios that arrived while we were suspended.
162 */
163 atomic_t pending[2];
164 wait_queue_head_t wait;
165 struct work_struct work;
166 spinlock_t deferred_lock;
167 struct bio_list deferred;
168
169 /*
170 * Event handling.
171 */
172 wait_queue_head_t eventq;
173 atomic_t event_nr;
174 atomic_t uevent_seq;
175 struct list_head uevent_list;
176 spinlock_t uevent_lock; /* Protect access to uevent_list */
177
178 /* the number of internal suspends */
179 unsigned internal_suspend_count;
180
181 /*
182 * Processing queue (flush)
183 */
184 struct workqueue_struct *wq;
185
186 /*
187 * io objects are allocated from here.
188 */
189 mempool_t *io_pool;
190 mempool_t *rq_pool;
191
192 struct bio_set *bs;
193
194 /*
195 * freeze/thaw support require holding onto a super block
196 */
197 struct super_block *frozen_sb;
198
199 /* forced geometry settings */
200 struct hd_geometry geometry;
201
202 struct block_device *bdev;
203
204 /* kobject and completion */
205 struct dm_kobject_holder kobj_holder;
206
207 /* zero-length flush that will be cloned and submitted to targets */
208 struct bio flush_bio;
209
210 struct dm_stats stats;
211
212 struct kthread_worker kworker;
213 struct task_struct *kworker_task;
214
215 /* for request-based merge heuristic in dm_request_fn() */
216 unsigned seq_rq_merge_deadline_usecs;
217 int last_rq_rw;
218 sector_t last_rq_pos;
219 ktime_t last_rq_start_time;
220
221 /* for blk-mq request-based DM support */
222 struct blk_mq_tag_set *tag_set;
223 bool use_blk_mq:1;
224 bool init_tio_pdu:1;
225};
226
227#ifdef CONFIG_DM_MQ_DEFAULT
228static bool use_blk_mq = true;
229#else
230static bool use_blk_mq = false;
231#endif
232
233#define DM_MQ_NR_HW_QUEUES 1
234#define DM_MQ_QUEUE_DEPTH 2048
235#define DM_NUMA_NODE NUMA_NO_NODE
236
237static unsigned dm_mq_nr_hw_queues = DM_MQ_NR_HW_QUEUES;
238static unsigned dm_mq_queue_depth = DM_MQ_QUEUE_DEPTH;
239static int dm_numa_node = DM_NUMA_NODE;
240
241bool dm_use_blk_mq(struct mapped_device *md)
242{
243 return md->use_blk_mq;
244}
245EXPORT_SYMBOL_GPL(dm_use_blk_mq);
246
247/*
248 * For mempools pre-allocation at the table loading time.
249 */
250struct dm_md_mempools {
251 mempool_t *io_pool;
252 mempool_t *rq_pool;
253 struct bio_set *bs;
254};
255
256struct table_device {
257 struct list_head list;
258 atomic_t count;
259 struct dm_dev dm_dev;
260};
261
262#define RESERVED_BIO_BASED_IOS 16
263#define RESERVED_REQUEST_BASED_IOS 256
264#define RESERVED_MAX_IOS 1024
265static struct kmem_cache *_io_cache;
266static struct kmem_cache *_rq_tio_cache;
267static struct kmem_cache *_rq_cache;
268
269/*
270 * Bio-based DM's mempools' reserved IOs set by the user.
271 */
272static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
273
274/*
275 * Request-based DM's mempools' reserved IOs set by the user.
276 */
277static unsigned reserved_rq_based_ios = RESERVED_REQUEST_BASED_IOS;
278
279static int __dm_get_module_param_int(int *module_param, int min, int max)
280{
281 int param = ACCESS_ONCE(*module_param);
282 int modified_param = 0;
283 bool modified = true;
284
285 if (param < min)
286 modified_param = min;
287 else if (param > max)
288 modified_param = max;
289 else
290 modified = false;
291
292 if (modified) {
293 (void)cmpxchg(module_param, param, modified_param);
294 param = modified_param;
295 }
296
297 return param;
298}
299
300static unsigned __dm_get_module_param(unsigned *module_param,
301 unsigned def, unsigned max)
302{
303 unsigned param = ACCESS_ONCE(*module_param);
304 unsigned modified_param = 0;
305
306 if (!param)
307 modified_param = def;
308 else if (param > max)
309 modified_param = max;
310
311 if (modified_param) {
312 (void)cmpxchg(module_param, param, modified_param);
313 param = modified_param;
314 }
315
316 return param;
317}
318
319unsigned dm_get_reserved_bio_based_ios(void)
320{
321 return __dm_get_module_param(&reserved_bio_based_ios,
322 RESERVED_BIO_BASED_IOS, RESERVED_MAX_IOS);
323}
324EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
325
326unsigned dm_get_reserved_rq_based_ios(void)
327{
328 return __dm_get_module_param(&reserved_rq_based_ios,
329 RESERVED_REQUEST_BASED_IOS, RESERVED_MAX_IOS);
330}
331EXPORT_SYMBOL_GPL(dm_get_reserved_rq_based_ios);
332
333static unsigned dm_get_blk_mq_nr_hw_queues(void)
334{
335 return __dm_get_module_param(&dm_mq_nr_hw_queues, 1, 32);
336}
337
338static unsigned dm_get_blk_mq_queue_depth(void)
339{
340 return __dm_get_module_param(&dm_mq_queue_depth,
341 DM_MQ_QUEUE_DEPTH, BLK_MQ_MAX_DEPTH);
342}
343
344static unsigned dm_get_numa_node(void)
345{
346 return __dm_get_module_param_int(&dm_numa_node,
347 DM_NUMA_NODE, num_online_nodes() - 1);
348}
349
350static int __init local_init(void)
351{
352 int r = -ENOMEM;
353
354 /* allocate a slab for the dm_ios */
355 _io_cache = KMEM_CACHE(dm_io, 0);
356 if (!_io_cache)
357 return r;
358
359 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
360 if (!_rq_tio_cache)
361 goto out_free_io_cache;
362
363 _rq_cache = kmem_cache_create("dm_old_clone_request", sizeof(struct request),
364 __alignof__(struct request), 0, NULL);
365 if (!_rq_cache)
366 goto out_free_rq_tio_cache;
367
368 r = dm_uevent_init();
369 if (r)
370 goto out_free_rq_cache;
371
372 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
373 if (!deferred_remove_workqueue) {
374 r = -ENOMEM;
375 goto out_uevent_exit;
376 }
377
378 _major = major;
379 r = register_blkdev(_major, _name);
380 if (r < 0)
381 goto out_free_workqueue;
382
383 if (!_major)
384 _major = r;
385
386 return 0;
387
388out_free_workqueue:
389 destroy_workqueue(deferred_remove_workqueue);
390out_uevent_exit:
391 dm_uevent_exit();
392out_free_rq_cache:
393 kmem_cache_destroy(_rq_cache);
394out_free_rq_tio_cache:
395 kmem_cache_destroy(_rq_tio_cache);
396out_free_io_cache:
397 kmem_cache_destroy(_io_cache);
398
399 return r;
400}
401
402static void local_exit(void)
403{
404 flush_scheduled_work();
405 destroy_workqueue(deferred_remove_workqueue);
406
407 kmem_cache_destroy(_rq_cache);
408 kmem_cache_destroy(_rq_tio_cache);
409 kmem_cache_destroy(_io_cache);
410 unregister_blkdev(_major, _name);
411 dm_uevent_exit();
412
413 _major = 0;
414
415 DMINFO("cleaned up");
416}
417
418static int (*_inits[])(void) __initdata = {
419 local_init,
420 dm_target_init,
421 dm_linear_init,
422 dm_stripe_init,
423 dm_io_init,
424 dm_kcopyd_init,
425 dm_interface_init,
426 dm_statistics_init,
427};
428
429static void (*_exits[])(void) = {
430 local_exit,
431 dm_target_exit,
432 dm_linear_exit,
433 dm_stripe_exit,
434 dm_io_exit,
435 dm_kcopyd_exit,
436 dm_interface_exit,
437 dm_statistics_exit,
438};
439
440static int __init dm_init(void)
441{
442 const int count = ARRAY_SIZE(_inits);
443
444 int r, i;
445
446 for (i = 0; i < count; i++) {
447 r = _inits[i]();
448 if (r)
449 goto bad;
450 }
451
452 return 0;
453
454 bad:
455 while (i--)
456 _exits[i]();
457
458 return r;
459}
460
461static void __exit dm_exit(void)
462{
463 int i = ARRAY_SIZE(_exits);
464
465 while (i--)
466 _exits[i]();
467
468 /*
469 * Should be empty by this point.
470 */
471 idr_destroy(&_minor_idr);
472}
473
474/*
475 * Block device functions
476 */
477int dm_deleting_md(struct mapped_device *md)
478{
479 return test_bit(DMF_DELETING, &md->flags);
480}
481
482static int dm_blk_open(struct block_device *bdev, fmode_t mode)
483{
484 struct mapped_device *md;
485
486 spin_lock(&_minor_lock);
487
488 md = bdev->bd_disk->private_data;
489 if (!md)
490 goto out;
491
492 if (test_bit(DMF_FREEING, &md->flags) ||
493 dm_deleting_md(md)) {
494 md = NULL;
495 goto out;
496 }
497
498 dm_get(md);
499 atomic_inc(&md->open_count);
500out:
501 spin_unlock(&_minor_lock);
502
503 return md ? 0 : -ENXIO;
504}
505
506static void dm_blk_close(struct gendisk *disk, fmode_t mode)
507{
508 struct mapped_device *md;
509
510 spin_lock(&_minor_lock);
511
512 md = disk->private_data;
513 if (WARN_ON(!md))
514 goto out;
515
516 if (atomic_dec_and_test(&md->open_count) &&
517 (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
518 queue_work(deferred_remove_workqueue, &deferred_remove_work);
519
520 dm_put(md);
521out:
522 spin_unlock(&_minor_lock);
523}
524
525int dm_open_count(struct mapped_device *md)
526{
527 return atomic_read(&md->open_count);
528}
529
530/*
531 * Guarantees nothing is using the device before it's deleted.
532 */
533int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
534{
535 int r = 0;
536
537 spin_lock(&_minor_lock);
538
539 if (dm_open_count(md)) {
540 r = -EBUSY;
541 if (mark_deferred)
542 set_bit(DMF_DEFERRED_REMOVE, &md->flags);
543 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
544 r = -EEXIST;
545 else
546 set_bit(DMF_DELETING, &md->flags);
547
548 spin_unlock(&_minor_lock);
549
550 return r;
551}
552
553int dm_cancel_deferred_remove(struct mapped_device *md)
554{
555 int r = 0;
556
557 spin_lock(&_minor_lock);
558
559 if (test_bit(DMF_DELETING, &md->flags))
560 r = -EBUSY;
561 else
562 clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
563
564 spin_unlock(&_minor_lock);
565
566 return r;
567}
568
569static void do_deferred_remove(struct work_struct *w)
570{
571 dm_deferred_remove();
572}
573
574sector_t dm_get_size(struct mapped_device *md)
575{
576 return get_capacity(md->disk);
577}
578
579struct request_queue *dm_get_md_queue(struct mapped_device *md)
580{
581 return md->queue;
582}
583
584struct dm_stats *dm_get_stats(struct mapped_device *md)
585{
586 return &md->stats;
587}
588
589static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
590{
591 struct mapped_device *md = bdev->bd_disk->private_data;
592
593 return dm_get_geometry(md, geo);
594}
595
596static int dm_grab_bdev_for_ioctl(struct mapped_device *md,
597 struct block_device **bdev,
598 fmode_t *mode)
599{
600 struct dm_target *tgt;
601 struct dm_table *map;
602 int srcu_idx, r;
603
604retry:
605 r = -ENOTTY;
606 map = dm_get_live_table(md, &srcu_idx);
607 if (!map || !dm_table_get_size(map))
608 goto out;
609
610 /* We only support devices that have a single target */
611 if (dm_table_get_num_targets(map) != 1)
612 goto out;
613
614 tgt = dm_table_get_target(map, 0);
615 if (!tgt->type->prepare_ioctl)
616 goto out;
617
618 if (dm_suspended_md(md)) {
619 r = -EAGAIN;
620 goto out;
621 }
622
623 r = tgt->type->prepare_ioctl(tgt, bdev, mode);
624 if (r < 0)
625 goto out;
626
627 bdgrab(*bdev);
628 dm_put_live_table(md, srcu_idx);
629 return r;
630
631out:
632 dm_put_live_table(md, srcu_idx);
633 if (r == -ENOTCONN && !fatal_signal_pending(current)) {
634 msleep(10);
635 goto retry;
636 }
637 return r;
638}
639
640static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
641 unsigned int cmd, unsigned long arg)
642{
643 struct mapped_device *md = bdev->bd_disk->private_data;
644 int r;
645
646 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
647 if (r < 0)
648 return r;
649
650 if (r > 0) {
651 /*
652 * Target determined this ioctl is being issued against
653 * a logical partition of the parent bdev; so extra
654 * validation is needed.
655 */
656 r = scsi_verify_blk_ioctl(NULL, cmd);
657 if (r)
658 goto out;
659 }
660
661 r = __blkdev_driver_ioctl(bdev, mode, cmd, arg);
662out:
663 bdput(bdev);
664 return r;
665}
666
667static struct dm_io *alloc_io(struct mapped_device *md)
668{
669 return mempool_alloc(md->io_pool, GFP_NOIO);
670}
671
672static void free_io(struct mapped_device *md, struct dm_io *io)
673{
674 mempool_free(io, md->io_pool);
675}
676
677static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
678{
679 bio_put(&tio->clone);
680}
681
682static struct dm_rq_target_io *alloc_old_rq_tio(struct mapped_device *md,
683 gfp_t gfp_mask)
684{
685 return mempool_alloc(md->io_pool, gfp_mask);
686}
687
688static void free_old_rq_tio(struct dm_rq_target_io *tio)
689{
690 mempool_free(tio, tio->md->io_pool);
691}
692
693static struct request *alloc_old_clone_request(struct mapped_device *md,
694 gfp_t gfp_mask)
695{
696 return mempool_alloc(md->rq_pool, gfp_mask);
697}
698
699static void free_old_clone_request(struct mapped_device *md, struct request *rq)
700{
701 mempool_free(rq, md->rq_pool);
702}
703
704static int md_in_flight(struct mapped_device *md)
705{
706 return atomic_read(&md->pending[READ]) +
707 atomic_read(&md->pending[WRITE]);
708}
709
710static void start_io_acct(struct dm_io *io)
711{
712 struct mapped_device *md = io->md;
713 struct bio *bio = io->bio;
714 int cpu;
715 int rw = bio_data_dir(bio);
716
717 io->start_time = jiffies;
718
719 cpu = part_stat_lock();
720 part_round_stats(cpu, &dm_disk(md)->part0);
721 part_stat_unlock();
722 atomic_set(&dm_disk(md)->part0.in_flight[rw],
723 atomic_inc_return(&md->pending[rw]));
724
725 if (unlikely(dm_stats_used(&md->stats)))
726 dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector,
727 bio_sectors(bio), false, 0, &io->stats_aux);
728}
729
730static void end_io_acct(struct dm_io *io)
731{
732 struct mapped_device *md = io->md;
733 struct bio *bio = io->bio;
734 unsigned long duration = jiffies - io->start_time;
735 int pending;
736 int rw = bio_data_dir(bio);
737
738 generic_end_io_acct(rw, &dm_disk(md)->part0, io->start_time);
739
740 if (unlikely(dm_stats_used(&md->stats)))
741 dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector,
742 bio_sectors(bio), true, duration, &io->stats_aux);
743
744 /*
745 * After this is decremented the bio must not be touched if it is
746 * a flush.
747 */
748 pending = atomic_dec_return(&md->pending[rw]);
749 atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
750 pending += atomic_read(&md->pending[rw^0x1]);
751
752 /* nudge anyone waiting on suspend queue */
753 if (!pending)
754 wake_up(&md->wait);
755}
756
757/*
758 * Add the bio to the list of deferred io.
759 */
760static void queue_io(struct mapped_device *md, struct bio *bio)
761{
762 unsigned long flags;
763
764 spin_lock_irqsave(&md->deferred_lock, flags);
765 bio_list_add(&md->deferred, bio);
766 spin_unlock_irqrestore(&md->deferred_lock, flags);
767 queue_work(md->wq, &md->work);
768}
769
770/*
771 * Everyone (including functions in this file), should use this
772 * function to access the md->map field, and make sure they call
773 * dm_put_live_table() when finished.
774 */
775struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
776{
777 *srcu_idx = srcu_read_lock(&md->io_barrier);
778
779 return srcu_dereference(md->map, &md->io_barrier);
780}
781
782void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
783{
784 srcu_read_unlock(&md->io_barrier, srcu_idx);
785}
786
787void dm_sync_table(struct mapped_device *md)
788{
789 synchronize_srcu(&md->io_barrier);
790 synchronize_rcu_expedited();
791}
792
793/*
794 * A fast alternative to dm_get_live_table/dm_put_live_table.
795 * The caller must not block between these two functions.
796 */
797static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
798{
799 rcu_read_lock();
800 return rcu_dereference(md->map);
801}
802
803static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
804{
805 rcu_read_unlock();
806}
807
808/*
809 * Open a table device so we can use it as a map destination.
810 */
811static int open_table_device(struct table_device *td, dev_t dev,
812 struct mapped_device *md)
813{
814 static char *_claim_ptr = "I belong to device-mapper";
815 struct block_device *bdev;
816
817 int r;
818
819 BUG_ON(td->dm_dev.bdev);
820
821 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _claim_ptr);
822 if (IS_ERR(bdev))
823 return PTR_ERR(bdev);
824
825 r = bd_link_disk_holder(bdev, dm_disk(md));
826 if (r) {
827 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
828 return r;
829 }
830
831 td->dm_dev.bdev = bdev;
832 return 0;
833}
834
835/*
836 * Close a table device that we've been using.
837 */
838static void close_table_device(struct table_device *td, struct mapped_device *md)
839{
840 if (!td->dm_dev.bdev)
841 return;
842
843 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
844 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
845 td->dm_dev.bdev = NULL;
846}
847
848static struct table_device *find_table_device(struct list_head *l, dev_t dev,
849 fmode_t mode) {
850 struct table_device *td;
851
852 list_for_each_entry(td, l, list)
853 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
854 return td;
855
856 return NULL;
857}
858
859int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
860 struct dm_dev **result) {
861 int r;
862 struct table_device *td;
863
864 mutex_lock(&md->table_devices_lock);
865 td = find_table_device(&md->table_devices, dev, mode);
866 if (!td) {
867 td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
868 if (!td) {
869 mutex_unlock(&md->table_devices_lock);
870 return -ENOMEM;
871 }
872
873 td->dm_dev.mode = mode;
874 td->dm_dev.bdev = NULL;
875
876 if ((r = open_table_device(td, dev, md))) {
877 mutex_unlock(&md->table_devices_lock);
878 kfree(td);
879 return r;
880 }
881
882 format_dev_t(td->dm_dev.name, dev);
883
884 atomic_set(&td->count, 0);
885 list_add(&td->list, &md->table_devices);
886 }
887 atomic_inc(&td->count);
888 mutex_unlock(&md->table_devices_lock);
889
890 *result = &td->dm_dev;
891 return 0;
892}
893EXPORT_SYMBOL_GPL(dm_get_table_device);
894
895void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
896{
897 struct table_device *td = container_of(d, struct table_device, dm_dev);
898
899 mutex_lock(&md->table_devices_lock);
900 if (atomic_dec_and_test(&td->count)) {
901 close_table_device(td, md);
902 list_del(&td->list);
903 kfree(td);
904 }
905 mutex_unlock(&md->table_devices_lock);
906}
907EXPORT_SYMBOL(dm_put_table_device);
908
909static void free_table_devices(struct list_head *devices)
910{
911 struct list_head *tmp, *next;
912
913 list_for_each_safe(tmp, next, devices) {
914 struct table_device *td = list_entry(tmp, struct table_device, list);
915
916 DMWARN("dm_destroy: %s still exists with %d references",
917 td->dm_dev.name, atomic_read(&td->count));
918 kfree(td);
919 }
920}
921
922/*
923 * Get the geometry associated with a dm device
924 */
925int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
926{
927 *geo = md->geometry;
928
929 return 0;
930}
931
932/*
933 * Set the geometry of a device.
934 */
935int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
936{
937 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
938
939 if (geo->start > sz) {
940 DMWARN("Start sector is beyond the geometry limits.");
941 return -EINVAL;
942 }
943
944 md->geometry = *geo;
945
946 return 0;
947}
948
949/*-----------------------------------------------------------------
950 * CRUD START:
951 * A more elegant soln is in the works that uses the queue
952 * merge fn, unfortunately there are a couple of changes to
953 * the block layer that I want to make for this. So in the
954 * interests of getting something for people to use I give
955 * you this clearly demarcated crap.
956 *---------------------------------------------------------------*/
957
958static int __noflush_suspending(struct mapped_device *md)
959{
960 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
961}
962
963/*
964 * Decrements the number of outstanding ios that a bio has been
965 * cloned into, completing the original io if necc.
966 */
967static void dec_pending(struct dm_io *io, int error)
968{
969 unsigned long flags;
970 int io_error;
971 struct bio *bio;
972 struct mapped_device *md = io->md;
973
974 /* Push-back supersedes any I/O errors */
975 if (unlikely(error)) {
976 spin_lock_irqsave(&io->endio_lock, flags);
977 if (!(io->error > 0 && __noflush_suspending(md)))
978 io->error = error;
979 spin_unlock_irqrestore(&io->endio_lock, flags);
980 }
981
982 if (atomic_dec_and_test(&io->io_count)) {
983 if (io->error == DM_ENDIO_REQUEUE) {
984 /*
985 * Target requested pushing back the I/O.
986 */
987 spin_lock_irqsave(&md->deferred_lock, flags);
988 if (__noflush_suspending(md))
989 bio_list_add_head(&md->deferred, io->bio);
990 else
991 /* noflush suspend was interrupted. */
992 io->error = -EIO;
993 spin_unlock_irqrestore(&md->deferred_lock, flags);
994 }
995
996 io_error = io->error;
997 bio = io->bio;
998 end_io_acct(io);
999 free_io(md, io);
1000
1001 if (io_error == DM_ENDIO_REQUEUE)
1002 return;
1003
1004 if ((bio->bi_rw & REQ_FLUSH) && bio->bi_iter.bi_size) {
1005 /*
1006 * Preflush done for flush with data, reissue
1007 * without REQ_FLUSH.
1008 */
1009 bio->bi_rw &= ~REQ_FLUSH;
1010 queue_io(md, bio);
1011 } else {
1012 /* done with normal IO or empty flush */
1013 trace_block_bio_complete(md->queue, bio, io_error);
1014 bio->bi_error = io_error;
1015 bio_endio(bio);
1016 }
1017 }
1018}
1019
1020static void disable_write_same(struct mapped_device *md)
1021{
1022 struct queue_limits *limits = dm_get_queue_limits(md);
1023
1024 /* device doesn't really support WRITE SAME, disable it */
1025 limits->max_write_same_sectors = 0;
1026}
1027
1028static void clone_endio(struct bio *bio)
1029{
1030 int error = bio->bi_error;
1031 int r = error;
1032 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1033 struct dm_io *io = tio->io;
1034 struct mapped_device *md = tio->io->md;
1035 dm_endio_fn endio = tio->ti->type->end_io;
1036
1037 if (endio) {
1038 r = endio(tio->ti, bio, error);
1039 if (r < 0 || r == DM_ENDIO_REQUEUE)
1040 /*
1041 * error and requeue request are handled
1042 * in dec_pending().
1043 */
1044 error = r;
1045 else if (r == DM_ENDIO_INCOMPLETE)
1046 /* The target will handle the io */
1047 return;
1048 else if (r) {
1049 DMWARN("unimplemented target endio return value: %d", r);
1050 BUG();
1051 }
1052 }
1053
1054 if (unlikely(r == -EREMOTEIO && (bio->bi_rw & REQ_WRITE_SAME) &&
1055 !bdev_get_queue(bio->bi_bdev)->limits.max_write_same_sectors))
1056 disable_write_same(md);
1057
1058 free_tio(md, tio);
1059 dec_pending(io, error);
1060}
1061
1062/*
1063 * Partial completion handling for request-based dm
1064 */
1065static void end_clone_bio(struct bio *clone)
1066{
1067 struct dm_rq_clone_bio_info *info =
1068 container_of(clone, struct dm_rq_clone_bio_info, clone);
1069 struct dm_rq_target_io *tio = info->tio;
1070 struct bio *bio = info->orig;
1071 unsigned int nr_bytes = info->orig->bi_iter.bi_size;
1072 int error = clone->bi_error;
1073
1074 bio_put(clone);
1075
1076 if (tio->error)
1077 /*
1078 * An error has already been detected on the request.
1079 * Once error occurred, just let clone->end_io() handle
1080 * the remainder.
1081 */
1082 return;
1083 else if (error) {
1084 /*
1085 * Don't notice the error to the upper layer yet.
1086 * The error handling decision is made by the target driver,
1087 * when the request is completed.
1088 */
1089 tio->error = error;
1090 return;
1091 }
1092
1093 /*
1094 * I/O for the bio successfully completed.
1095 * Notice the data completion to the upper layer.
1096 */
1097
1098 /*
1099 * bios are processed from the head of the list.
1100 * So the completing bio should always be rq->bio.
1101 * If it's not, something wrong is happening.
1102 */
1103 if (tio->orig->bio != bio)
1104 DMERR("bio completion is going in the middle of the request");
1105
1106 /*
1107 * Update the original request.
1108 * Do not use blk_end_request() here, because it may complete
1109 * the original request before the clone, and break the ordering.
1110 */
1111 blk_update_request(tio->orig, 0, nr_bytes);
1112}
1113
1114static struct dm_rq_target_io *tio_from_request(struct request *rq)
1115{
1116 return (rq->q->mq_ops ? blk_mq_rq_to_pdu(rq) : rq->special);
1117}
1118
1119static void rq_end_stats(struct mapped_device *md, struct request *orig)
1120{
1121 if (unlikely(dm_stats_used(&md->stats))) {
1122 struct dm_rq_target_io *tio = tio_from_request(orig);
1123 tio->duration_jiffies = jiffies - tio->duration_jiffies;
1124 dm_stats_account_io(&md->stats, orig->cmd_flags, blk_rq_pos(orig),
1125 tio->n_sectors, true, tio->duration_jiffies,
1126 &tio->stats_aux);
1127 }
1128}
1129
1130/*
1131 * Don't touch any member of the md after calling this function because
1132 * the md may be freed in dm_put() at the end of this function.
1133 * Or do dm_get() before calling this function and dm_put() later.
1134 */
1135static void rq_completed(struct mapped_device *md, int rw, bool run_queue)
1136{
1137 atomic_dec(&md->pending[rw]);
1138
1139 /* nudge anyone waiting on suspend queue */
1140 if (!md_in_flight(md))
1141 wake_up(&md->wait);
1142
1143 /*
1144 * Run this off this callpath, as drivers could invoke end_io while
1145 * inside their request_fn (and holding the queue lock). Calling
1146 * back into ->request_fn() could deadlock attempting to grab the
1147 * queue lock again.
1148 */
1149 if (!md->queue->mq_ops && run_queue)
1150 blk_run_queue_async(md->queue);
1151
1152 /*
1153 * dm_put() must be at the end of this function. See the comment above
1154 */
1155 dm_put(md);
1156}
1157
1158static void free_rq_clone(struct request *clone)
1159{
1160 struct dm_rq_target_io *tio = clone->end_io_data;
1161 struct mapped_device *md = tio->md;
1162
1163 blk_rq_unprep_clone(clone);
1164
1165 if (md->type == DM_TYPE_MQ_REQUEST_BASED)
1166 /* stacked on blk-mq queue(s) */
1167 tio->ti->type->release_clone_rq(clone);
1168 else if (!md->queue->mq_ops)
1169 /* request_fn queue stacked on request_fn queue(s) */
1170 free_old_clone_request(md, clone);
1171
1172 if (!md->queue->mq_ops)
1173 free_old_rq_tio(tio);
1174}
1175
1176/*
1177 * Complete the clone and the original request.
1178 * Must be called without clone's queue lock held,
1179 * see end_clone_request() for more details.
1180 */
1181static void dm_end_request(struct request *clone, int error)
1182{
1183 int rw = rq_data_dir(clone);
1184 struct dm_rq_target_io *tio = clone->end_io_data;
1185 struct mapped_device *md = tio->md;
1186 struct request *rq = tio->orig;
1187
1188 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
1189 rq->errors = clone->errors;
1190 rq->resid_len = clone->resid_len;
1191
1192 if (rq->sense)
1193 /*
1194 * We are using the sense buffer of the original
1195 * request.
1196 * So setting the length of the sense data is enough.
1197 */
1198 rq->sense_len = clone->sense_len;
1199 }
1200
1201 free_rq_clone(clone);
1202 rq_end_stats(md, rq);
1203 if (!rq->q->mq_ops)
1204 blk_end_request_all(rq, error);
1205 else
1206 blk_mq_end_request(rq, error);
1207 rq_completed(md, rw, true);
1208}
1209
1210static void dm_unprep_request(struct request *rq)
1211{
1212 struct dm_rq_target_io *tio = tio_from_request(rq);
1213 struct request *clone = tio->clone;
1214
1215 if (!rq->q->mq_ops) {
1216 rq->special = NULL;
1217 rq->cmd_flags &= ~REQ_DONTPREP;
1218 }
1219
1220 if (clone)
1221 free_rq_clone(clone);
1222 else if (!tio->md->queue->mq_ops)
1223 free_old_rq_tio(tio);
1224}
1225
1226/*
1227 * Requeue the original request of a clone.
1228 */
1229static void dm_old_requeue_request(struct request *rq)
1230{
1231 struct request_queue *q = rq->q;
1232 unsigned long flags;
1233
1234 spin_lock_irqsave(q->queue_lock, flags);
1235 blk_requeue_request(q, rq);
1236 blk_run_queue_async(q);
1237 spin_unlock_irqrestore(q->queue_lock, flags);
1238}
1239
1240static void dm_mq_requeue_request(struct request *rq)
1241{
1242 struct request_queue *q = rq->q;
1243 unsigned long flags;
1244
1245 blk_mq_requeue_request(rq);
1246 spin_lock_irqsave(q->queue_lock, flags);
1247 if (!blk_queue_stopped(q))
1248 blk_mq_kick_requeue_list(q);
1249 spin_unlock_irqrestore(q->queue_lock, flags);
1250}
1251
1252static void dm_requeue_original_request(struct mapped_device *md,
1253 struct request *rq)
1254{
1255 int rw = rq_data_dir(rq);
1256
1257 rq_end_stats(md, rq);
1258 dm_unprep_request(rq);
1259
1260 if (!rq->q->mq_ops)
1261 dm_old_requeue_request(rq);
1262 else
1263 dm_mq_requeue_request(rq);
1264
1265 rq_completed(md, rw, false);
1266}
1267
1268static void dm_old_stop_queue(struct request_queue *q)
1269{
1270 unsigned long flags;
1271
1272 spin_lock_irqsave(q->queue_lock, flags);
1273 if (blk_queue_stopped(q)) {
1274 spin_unlock_irqrestore(q->queue_lock, flags);
1275 return;
1276 }
1277
1278 blk_stop_queue(q);
1279 spin_unlock_irqrestore(q->queue_lock, flags);
1280}
1281
1282static void dm_stop_queue(struct request_queue *q)
1283{
1284 if (!q->mq_ops)
1285 dm_old_stop_queue(q);
1286 else
1287 blk_mq_stop_hw_queues(q);
1288}
1289
1290static void dm_old_start_queue(struct request_queue *q)
1291{
1292 unsigned long flags;
1293
1294 spin_lock_irqsave(q->queue_lock, flags);
1295 if (blk_queue_stopped(q))
1296 blk_start_queue(q);
1297 spin_unlock_irqrestore(q->queue_lock, flags);
1298}
1299
1300static void dm_start_queue(struct request_queue *q)
1301{
1302 if (!q->mq_ops)
1303 dm_old_start_queue(q);
1304 else {
1305 blk_mq_start_stopped_hw_queues(q, true);
1306 blk_mq_kick_requeue_list(q);
1307 }
1308}
1309
1310static void dm_done(struct request *clone, int error, bool mapped)
1311{
1312 int r = error;
1313 struct dm_rq_target_io *tio = clone->end_io_data;
1314 dm_request_endio_fn rq_end_io = NULL;
1315
1316 if (tio->ti) {
1317 rq_end_io = tio->ti->type->rq_end_io;
1318
1319 if (mapped && rq_end_io)
1320 r = rq_end_io(tio->ti, clone, error, &tio->info);
1321 }
1322
1323 if (unlikely(r == -EREMOTEIO && (clone->cmd_flags & REQ_WRITE_SAME) &&
1324 !clone->q->limits.max_write_same_sectors))
1325 disable_write_same(tio->md);
1326
1327 if (r <= 0)
1328 /* The target wants to complete the I/O */
1329 dm_end_request(clone, r);
1330 else if (r == DM_ENDIO_INCOMPLETE)
1331 /* The target will handle the I/O */
1332 return;
1333 else if (r == DM_ENDIO_REQUEUE)
1334 /* The target wants to requeue the I/O */
1335 dm_requeue_original_request(tio->md, tio->orig);
1336 else {
1337 DMWARN("unimplemented target endio return value: %d", r);
1338 BUG();
1339 }
1340}
1341
1342/*
1343 * Request completion handler for request-based dm
1344 */
1345static void dm_softirq_done(struct request *rq)
1346{
1347 bool mapped = true;
1348 struct dm_rq_target_io *tio = tio_from_request(rq);
1349 struct request *clone = tio->clone;
1350 int rw;
1351
1352 if (!clone) {
1353 rq_end_stats(tio->md, rq);
1354 rw = rq_data_dir(rq);
1355 if (!rq->q->mq_ops) {
1356 blk_end_request_all(rq, tio->error);
1357 rq_completed(tio->md, rw, false);
1358 free_old_rq_tio(tio);
1359 } else {
1360 blk_mq_end_request(rq, tio->error);
1361 rq_completed(tio->md, rw, false);
1362 }
1363 return;
1364 }
1365
1366 if (rq->cmd_flags & REQ_FAILED)
1367 mapped = false;
1368
1369 dm_done(clone, tio->error, mapped);
1370}
1371
1372/*
1373 * Complete the clone and the original request with the error status
1374 * through softirq context.
1375 */
1376static void dm_complete_request(struct request *rq, int error)
1377{
1378 struct dm_rq_target_io *tio = tio_from_request(rq);
1379
1380 tio->error = error;
1381 if (!rq->q->mq_ops)
1382 blk_complete_request(rq);
1383 else
1384 blk_mq_complete_request(rq, error);
1385}
1386
1387/*
1388 * Complete the not-mapped clone and the original request with the error status
1389 * through softirq context.
1390 * Target's rq_end_io() function isn't called.
1391 * This may be used when the target's map_rq() or clone_and_map_rq() functions fail.
1392 */
1393static void dm_kill_unmapped_request(struct request *rq, int error)
1394{
1395 rq->cmd_flags |= REQ_FAILED;
1396 dm_complete_request(rq, error);
1397}
1398
1399/*
1400 * Called with the clone's queue lock held (in the case of .request_fn)
1401 */
1402static void end_clone_request(struct request *clone, int error)
1403{
1404 struct dm_rq_target_io *tio = clone->end_io_data;
1405
1406 if (!clone->q->mq_ops) {
1407 /*
1408 * For just cleaning up the information of the queue in which
1409 * the clone was dispatched.
1410 * The clone is *NOT* freed actually here because it is alloced
1411 * from dm own mempool (REQ_ALLOCED isn't set).
1412 */
1413 __blk_put_request(clone->q, clone);
1414 }
1415
1416 /*
1417 * Actual request completion is done in a softirq context which doesn't
1418 * hold the clone's queue lock. Otherwise, deadlock could occur because:
1419 * - another request may be submitted by the upper level driver
1420 * of the stacking during the completion
1421 * - the submission which requires queue lock may be done
1422 * against this clone's queue
1423 */
1424 dm_complete_request(tio->orig, error);
1425}
1426
1427/*
1428 * Return maximum size of I/O possible at the supplied sector up to the current
1429 * target boundary.
1430 */
1431static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
1432{
1433 sector_t target_offset = dm_target_offset(ti, sector);
1434
1435 return ti->len - target_offset;
1436}
1437
1438static sector_t max_io_len(sector_t sector, struct dm_target *ti)
1439{
1440 sector_t len = max_io_len_target_boundary(sector, ti);
1441 sector_t offset, max_len;
1442
1443 /*
1444 * Does the target need to split even further?
1445 */
1446 if (ti->max_io_len) {
1447 offset = dm_target_offset(ti, sector);
1448 if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
1449 max_len = sector_div(offset, ti->max_io_len);
1450 else
1451 max_len = offset & (ti->max_io_len - 1);
1452 max_len = ti->max_io_len - max_len;
1453
1454 if (len > max_len)
1455 len = max_len;
1456 }
1457
1458 return len;
1459}
1460
1461int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1462{
1463 if (len > UINT_MAX) {
1464 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1465 (unsigned long long)len, UINT_MAX);
1466 ti->error = "Maximum size of target IO is too large";
1467 return -EINVAL;
1468 }
1469
1470 ti->max_io_len = (uint32_t) len;
1471
1472 return 0;
1473}
1474EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1475
1476/*
1477 * A target may call dm_accept_partial_bio only from the map routine. It is
1478 * allowed for all bio types except REQ_FLUSH.
1479 *
1480 * dm_accept_partial_bio informs the dm that the target only wants to process
1481 * additional n_sectors sectors of the bio and the rest of the data should be
1482 * sent in a next bio.
1483 *
1484 * A diagram that explains the arithmetics:
1485 * +--------------------+---------------+-------+
1486 * | 1 | 2 | 3 |
1487 * +--------------------+---------------+-------+
1488 *
1489 * <-------------- *tio->len_ptr --------------->
1490 * <------- bi_size ------->
1491 * <-- n_sectors -->
1492 *
1493 * Region 1 was already iterated over with bio_advance or similar function.
1494 * (it may be empty if the target doesn't use bio_advance)
1495 * Region 2 is the remaining bio size that the target wants to process.
1496 * (it may be empty if region 1 is non-empty, although there is no reason
1497 * to make it empty)
1498 * The target requires that region 3 is to be sent in the next bio.
1499 *
1500 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1501 * the partially processed part (the sum of regions 1+2) must be the same for all
1502 * copies of the bio.
1503 */
1504void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1505{
1506 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1507 unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1508 BUG_ON(bio->bi_rw & REQ_FLUSH);
1509 BUG_ON(bi_size > *tio->len_ptr);
1510 BUG_ON(n_sectors > bi_size);
1511 *tio->len_ptr -= bi_size - n_sectors;
1512 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1513}
1514EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1515
1516static void __map_bio(struct dm_target_io *tio)
1517{
1518 int r;
1519 sector_t sector;
1520 struct mapped_device *md;
1521 struct bio *clone = &tio->clone;
1522 struct dm_target *ti = tio->ti;
1523
1524 clone->bi_end_io = clone_endio;
1525
1526 /*
1527 * Map the clone. If r == 0 we don't need to do
1528 * anything, the target has assumed ownership of
1529 * this io.
1530 */
1531 atomic_inc(&tio->io->io_count);
1532 sector = clone->bi_iter.bi_sector;
1533 r = ti->type->map(ti, clone);
1534 if (r == DM_MAPIO_REMAPPED) {
1535 /* the bio has been remapped so dispatch it */
1536
1537 trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone,
1538 tio->io->bio->bi_bdev->bd_dev, sector);
1539
1540 generic_make_request(clone);
1541 } else if (r < 0 || r == DM_MAPIO_REQUEUE) {
1542 /* error the io and bail out, or requeue it if needed */
1543 md = tio->io->md;
1544 dec_pending(tio->io, r);
1545 free_tio(md, tio);
1546 } else if (r != DM_MAPIO_SUBMITTED) {
1547 DMWARN("unimplemented target map return value: %d", r);
1548 BUG();
1549 }
1550}
1551
1552struct clone_info {
1553 struct mapped_device *md;
1554 struct dm_table *map;
1555 struct bio *bio;
1556 struct dm_io *io;
1557 sector_t sector;
1558 unsigned sector_count;
1559};
1560
1561static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1562{
1563 bio->bi_iter.bi_sector = sector;
1564 bio->bi_iter.bi_size = to_bytes(len);
1565}
1566
1567/*
1568 * Creates a bio that consists of range of complete bvecs.
1569 */
1570static int clone_bio(struct dm_target_io *tio, struct bio *bio,
1571 sector_t sector, unsigned len)
1572{
1573 struct bio *clone = &tio->clone;
1574
1575 __bio_clone_fast(clone, bio);
1576
1577 if (bio_integrity(bio)) {
1578 int r = bio_integrity_clone(clone, bio, GFP_NOIO);
1579 if (r < 0)
1580 return r;
1581 }
1582
1583 bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1584 clone->bi_iter.bi_size = to_bytes(len);
1585
1586 if (bio_integrity(bio))
1587 bio_integrity_trim(clone, 0, len);
1588
1589 return 0;
1590}
1591
1592static struct dm_target_io *alloc_tio(struct clone_info *ci,
1593 struct dm_target *ti,
1594 unsigned target_bio_nr)
1595{
1596 struct dm_target_io *tio;
1597 struct bio *clone;
1598
1599 clone = bio_alloc_bioset(GFP_NOIO, 0, ci->md->bs);
1600 tio = container_of(clone, struct dm_target_io, clone);
1601
1602 tio->io = ci->io;
1603 tio->ti = ti;
1604 tio->target_bio_nr = target_bio_nr;
1605
1606 return tio;
1607}
1608
1609static void __clone_and_map_simple_bio(struct clone_info *ci,
1610 struct dm_target *ti,
1611 unsigned target_bio_nr, unsigned *len)
1612{
1613 struct dm_target_io *tio = alloc_tio(ci, ti, target_bio_nr);
1614 struct bio *clone = &tio->clone;
1615
1616 tio->len_ptr = len;
1617
1618 __bio_clone_fast(clone, ci->bio);
1619 if (len)
1620 bio_setup_sector(clone, ci->sector, *len);
1621
1622 __map_bio(tio);
1623}
1624
1625static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1626 unsigned num_bios, unsigned *len)
1627{
1628 unsigned target_bio_nr;
1629
1630 for (target_bio_nr = 0; target_bio_nr < num_bios; target_bio_nr++)
1631 __clone_and_map_simple_bio(ci, ti, target_bio_nr, len);
1632}
1633
1634static int __send_empty_flush(struct clone_info *ci)
1635{
1636 unsigned target_nr = 0;
1637 struct dm_target *ti;
1638
1639 BUG_ON(bio_has_data(ci->bio));
1640 while ((ti = dm_table_get_target(ci->map, target_nr++)))
1641 __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1642
1643 return 0;
1644}
1645
1646static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1647 sector_t sector, unsigned *len)
1648{
1649 struct bio *bio = ci->bio;
1650 struct dm_target_io *tio;
1651 unsigned target_bio_nr;
1652 unsigned num_target_bios = 1;
1653 int r = 0;
1654
1655 /*
1656 * Does the target want to receive duplicate copies of the bio?
1657 */
1658 if (bio_data_dir(bio) == WRITE && ti->num_write_bios)
1659 num_target_bios = ti->num_write_bios(ti, bio);
1660
1661 for (target_bio_nr = 0; target_bio_nr < num_target_bios; target_bio_nr++) {
1662 tio = alloc_tio(ci, ti, target_bio_nr);
1663 tio->len_ptr = len;
1664 r = clone_bio(tio, bio, sector, *len);
1665 if (r < 0) {
1666 free_tio(ci->md, tio);
1667 break;
1668 }
1669 __map_bio(tio);
1670 }
1671
1672 return r;
1673}
1674
1675typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1676
1677static unsigned get_num_discard_bios(struct dm_target *ti)
1678{
1679 return ti->num_discard_bios;
1680}
1681
1682static unsigned get_num_write_same_bios(struct dm_target *ti)
1683{
1684 return ti->num_write_same_bios;
1685}
1686
1687typedef bool (*is_split_required_fn)(struct dm_target *ti);
1688
1689static bool is_split_required_for_discard(struct dm_target *ti)
1690{
1691 return ti->split_discard_bios;
1692}
1693
1694static int __send_changing_extent_only(struct clone_info *ci,
1695 get_num_bios_fn get_num_bios,
1696 is_split_required_fn is_split_required)
1697{
1698 struct dm_target *ti;
1699 unsigned len;
1700 unsigned num_bios;
1701
1702 do {
1703 ti = dm_table_find_target(ci->map, ci->sector);
1704 if (!dm_target_is_valid(ti))
1705 return -EIO;
1706
1707 /*
1708 * Even though the device advertised support for this type of
1709 * request, that does not mean every target supports it, and
1710 * reconfiguration might also have changed that since the
1711 * check was performed.
1712 */
1713 num_bios = get_num_bios ? get_num_bios(ti) : 0;
1714 if (!num_bios)
1715 return -EOPNOTSUPP;
1716
1717 if (is_split_required && !is_split_required(ti))
1718 len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1719 else
1720 len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti));
1721
1722 __send_duplicate_bios(ci, ti, num_bios, &len);
1723
1724 ci->sector += len;
1725 } while (ci->sector_count -= len);
1726
1727 return 0;
1728}
1729
1730static int __send_discard(struct clone_info *ci)
1731{
1732 return __send_changing_extent_only(ci, get_num_discard_bios,
1733 is_split_required_for_discard);
1734}
1735
1736static int __send_write_same(struct clone_info *ci)
1737{
1738 return __send_changing_extent_only(ci, get_num_write_same_bios, NULL);
1739}
1740
1741/*
1742 * Select the correct strategy for processing a non-flush bio.
1743 */
1744static int __split_and_process_non_flush(struct clone_info *ci)
1745{
1746 struct bio *bio = ci->bio;
1747 struct dm_target *ti;
1748 unsigned len;
1749 int r;
1750
1751 if (unlikely(bio->bi_rw & REQ_DISCARD))
1752 return __send_discard(ci);
1753 else if (unlikely(bio->bi_rw & REQ_WRITE_SAME))
1754 return __send_write_same(ci);
1755
1756 ti = dm_table_find_target(ci->map, ci->sector);
1757 if (!dm_target_is_valid(ti))
1758 return -EIO;
1759
1760 len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count);
1761
1762 r = __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1763 if (r < 0)
1764 return r;
1765
1766 ci->sector += len;
1767 ci->sector_count -= len;
1768
1769 return 0;
1770}
1771
1772/*
1773 * Entry point to split a bio into clones and submit them to the targets.
1774 */
1775static void __split_and_process_bio(struct mapped_device *md,
1776 struct dm_table *map, struct bio *bio)
1777{
1778 struct clone_info ci;
1779 int error = 0;
1780
1781 if (unlikely(!map)) {
1782 bio_io_error(bio);
1783 return;
1784 }
1785
1786 ci.map = map;
1787 ci.md = md;
1788 ci.io = alloc_io(md);
1789 ci.io->error = 0;
1790 atomic_set(&ci.io->io_count, 1);
1791 ci.io->bio = bio;
1792 ci.io->md = md;
1793 spin_lock_init(&ci.io->endio_lock);
1794 ci.sector = bio->bi_iter.bi_sector;
1795
1796 start_io_acct(ci.io);
1797
1798 if (bio->bi_rw & REQ_FLUSH) {
1799 ci.bio = &ci.md->flush_bio;
1800 ci.sector_count = 0;
1801 error = __send_empty_flush(&ci);
1802 /* dec_pending submits any data associated with flush */
1803 } else {
1804 ci.bio = bio;
1805 ci.sector_count = bio_sectors(bio);
1806 while (ci.sector_count && !error)
1807 error = __split_and_process_non_flush(&ci);
1808 }
1809
1810 /* drop the extra reference count */
1811 dec_pending(ci.io, error);
1812}
1813/*-----------------------------------------------------------------
1814 * CRUD END
1815 *---------------------------------------------------------------*/
1816
1817/*
1818 * The request function that just remaps the bio built up by
1819 * dm_merge_bvec.
1820 */
1821static blk_qc_t dm_make_request(struct request_queue *q, struct bio *bio)
1822{
1823 int rw = bio_data_dir(bio);
1824 struct mapped_device *md = q->queuedata;
1825 int srcu_idx;
1826 struct dm_table *map;
1827
1828 map = dm_get_live_table(md, &srcu_idx);
1829
1830 generic_start_io_acct(rw, bio_sectors(bio), &dm_disk(md)->part0);
1831
1832 /* if we're suspended, we have to queue this io for later */
1833 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1834 dm_put_live_table(md, srcu_idx);
1835
1836 if (bio_rw(bio) != READA)
1837 queue_io(md, bio);
1838 else
1839 bio_io_error(bio);
1840 return BLK_QC_T_NONE;
1841 }
1842
1843 __split_and_process_bio(md, map, bio);
1844 dm_put_live_table(md, srcu_idx);
1845 return BLK_QC_T_NONE;
1846}
1847
1848int dm_request_based(struct mapped_device *md)
1849{
1850 return blk_queue_stackable(md->queue);
1851}
1852
1853static void dm_dispatch_clone_request(struct request *clone, struct request *rq)
1854{
1855 int r;
1856
1857 if (blk_queue_io_stat(clone->q))
1858 clone->cmd_flags |= REQ_IO_STAT;
1859
1860 clone->start_time = jiffies;
1861 r = blk_insert_cloned_request(clone->q, clone);
1862 if (r)
1863 /* must complete clone in terms of original request */
1864 dm_complete_request(rq, r);
1865}
1866
1867static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig,
1868 void *data)
1869{
1870 struct dm_rq_target_io *tio = data;
1871 struct dm_rq_clone_bio_info *info =
1872 container_of(bio, struct dm_rq_clone_bio_info, clone);
1873
1874 info->orig = bio_orig;
1875 info->tio = tio;
1876 bio->bi_end_io = end_clone_bio;
1877
1878 return 0;
1879}
1880
1881static int setup_clone(struct request *clone, struct request *rq,
1882 struct dm_rq_target_io *tio, gfp_t gfp_mask)
1883{
1884 int r;
1885
1886 r = blk_rq_prep_clone(clone, rq, tio->md->bs, gfp_mask,
1887 dm_rq_bio_constructor, tio);
1888 if (r)
1889 return r;
1890
1891 clone->cmd = rq->cmd;
1892 clone->cmd_len = rq->cmd_len;
1893 clone->sense = rq->sense;
1894 clone->end_io = end_clone_request;
1895 clone->end_io_data = tio;
1896
1897 tio->clone = clone;
1898
1899 return 0;
1900}
1901
1902static struct request *clone_old_rq(struct request *rq, struct mapped_device *md,
1903 struct dm_rq_target_io *tio, gfp_t gfp_mask)
1904{
1905 /*
1906 * Create clone for use with .request_fn request_queue
1907 */
1908 struct request *clone;
1909
1910 clone = alloc_old_clone_request(md, gfp_mask);
1911 if (!clone)
1912 return NULL;
1913
1914 blk_rq_init(NULL, clone);
1915 if (setup_clone(clone, rq, tio, gfp_mask)) {
1916 /* -ENOMEM */
1917 free_old_clone_request(md, clone);
1918 return NULL;
1919 }
1920
1921 return clone;
1922}
1923
1924static void map_tio_request(struct kthread_work *work);
1925
1926static void init_tio(struct dm_rq_target_io *tio, struct request *rq,
1927 struct mapped_device *md)
1928{
1929 tio->md = md;
1930 tio->ti = NULL;
1931 tio->clone = NULL;
1932 tio->orig = rq;
1933 tio->error = 0;
1934 /*
1935 * Avoid initializing info for blk-mq; it passes
1936 * target-specific data through info.ptr
1937 * (see: dm_mq_init_request)
1938 */
1939 if (!md->init_tio_pdu)
1940 memset(&tio->info, 0, sizeof(tio->info));
1941 if (md->kworker_task)
1942 init_kthread_work(&tio->work, map_tio_request);
1943}
1944
1945static struct dm_rq_target_io *dm_old_prep_tio(struct request *rq,
1946 struct mapped_device *md,
1947 gfp_t gfp_mask)
1948{
1949 struct dm_rq_target_io *tio;
1950 int srcu_idx;
1951 struct dm_table *table;
1952
1953 tio = alloc_old_rq_tio(md, gfp_mask);
1954 if (!tio)
1955 return NULL;
1956
1957 init_tio(tio, rq, md);
1958
1959 table = dm_get_live_table(md, &srcu_idx);
1960 /*
1961 * Must clone a request if this .request_fn DM device
1962 * is stacked on .request_fn device(s).
1963 */
1964 if (!dm_table_mq_request_based(table)) {
1965 if (!clone_old_rq(rq, md, tio, gfp_mask)) {
1966 dm_put_live_table(md, srcu_idx);
1967 free_old_rq_tio(tio);
1968 return NULL;
1969 }
1970 }
1971 dm_put_live_table(md, srcu_idx);
1972
1973 return tio;
1974}
1975
1976/*
1977 * Called with the queue lock held.
1978 */
1979static int dm_old_prep_fn(struct request_queue *q, struct request *rq)
1980{
1981 struct mapped_device *md = q->queuedata;
1982 struct dm_rq_target_io *tio;
1983
1984 if (unlikely(rq->special)) {
1985 DMWARN("Already has something in rq->special.");
1986 return BLKPREP_KILL;
1987 }
1988
1989 tio = dm_old_prep_tio(rq, md, GFP_ATOMIC);
1990 if (!tio)
1991 return BLKPREP_DEFER;
1992
1993 rq->special = tio;
1994 rq->cmd_flags |= REQ_DONTPREP;
1995
1996 return BLKPREP_OK;
1997}
1998
1999/*
2000 * Returns:
2001 * 0 : the request has been processed
2002 * DM_MAPIO_REQUEUE : the original request needs to be requeued
2003 * < 0 : the request was completed due to failure
2004 */
2005static int map_request(struct dm_rq_target_io *tio, struct request *rq,
2006 struct mapped_device *md)
2007{
2008 int r;
2009 struct dm_target *ti = tio->ti;
2010 struct request *clone = NULL;
2011
2012 if (tio->clone) {
2013 clone = tio->clone;
2014 r = ti->type->map_rq(ti, clone, &tio->info);
2015 } else {
2016 r = ti->type->clone_and_map_rq(ti, rq, &tio->info, &clone);
2017 if (r < 0) {
2018 /* The target wants to complete the I/O */
2019 dm_kill_unmapped_request(rq, r);
2020 return r;
2021 }
2022 if (r != DM_MAPIO_REMAPPED)
2023 return r;
2024 if (setup_clone(clone, rq, tio, GFP_ATOMIC)) {
2025 /* -ENOMEM */
2026 ti->type->release_clone_rq(clone);
2027 return DM_MAPIO_REQUEUE;
2028 }
2029 }
2030
2031 switch (r) {
2032 case DM_MAPIO_SUBMITTED:
2033 /* The target has taken the I/O to submit by itself later */
2034 break;
2035 case DM_MAPIO_REMAPPED:
2036 /* The target has remapped the I/O so dispatch it */
2037 trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)),
2038 blk_rq_pos(rq));
2039 dm_dispatch_clone_request(clone, rq);
2040 break;
2041 case DM_MAPIO_REQUEUE:
2042 /* The target wants to requeue the I/O */
2043 dm_requeue_original_request(md, tio->orig);
2044 break;
2045 default:
2046 if (r > 0) {
2047 DMWARN("unimplemented target map return value: %d", r);
2048 BUG();
2049 }
2050
2051 /* The target wants to complete the I/O */
2052 dm_kill_unmapped_request(rq, r);
2053 return r;
2054 }
2055
2056 return 0;
2057}
2058
2059static void map_tio_request(struct kthread_work *work)
2060{
2061 struct dm_rq_target_io *tio = container_of(work, struct dm_rq_target_io, work);
2062 struct request *rq = tio->orig;
2063 struct mapped_device *md = tio->md;
2064
2065 if (map_request(tio, rq, md) == DM_MAPIO_REQUEUE)
2066 dm_requeue_original_request(md, rq);
2067}
2068
2069static void dm_start_request(struct mapped_device *md, struct request *orig)
2070{
2071 if (!orig->q->mq_ops)
2072 blk_start_request(orig);
2073 else
2074 blk_mq_start_request(orig);
2075 atomic_inc(&md->pending[rq_data_dir(orig)]);
2076
2077 if (md->seq_rq_merge_deadline_usecs) {
2078 md->last_rq_pos = rq_end_sector(orig);
2079 md->last_rq_rw = rq_data_dir(orig);
2080 md->last_rq_start_time = ktime_get();
2081 }
2082
2083 if (unlikely(dm_stats_used(&md->stats))) {
2084 struct dm_rq_target_io *tio = tio_from_request(orig);
2085 tio->duration_jiffies = jiffies;
2086 tio->n_sectors = blk_rq_sectors(orig);
2087 dm_stats_account_io(&md->stats, orig->cmd_flags, blk_rq_pos(orig),
2088 tio->n_sectors, false, 0, &tio->stats_aux);
2089 }
2090
2091 /*
2092 * Hold the md reference here for the in-flight I/O.
2093 * We can't rely on the reference count by device opener,
2094 * because the device may be closed during the request completion
2095 * when all bios are completed.
2096 * See the comment in rq_completed() too.
2097 */
2098 dm_get(md);
2099}
2100
2101#define MAX_SEQ_RQ_MERGE_DEADLINE_USECS 100000
2102
2103ssize_t dm_attr_rq_based_seq_io_merge_deadline_show(struct mapped_device *md, char *buf)
2104{
2105 return sprintf(buf, "%u\n", md->seq_rq_merge_deadline_usecs);
2106}
2107
2108ssize_t dm_attr_rq_based_seq_io_merge_deadline_store(struct mapped_device *md,
2109 const char *buf, size_t count)
2110{
2111 unsigned deadline;
2112
2113 if (!dm_request_based(md) || md->use_blk_mq)
2114 return count;
2115
2116 if (kstrtouint(buf, 10, &deadline))
2117 return -EINVAL;
2118
2119 if (deadline > MAX_SEQ_RQ_MERGE_DEADLINE_USECS)
2120 deadline = MAX_SEQ_RQ_MERGE_DEADLINE_USECS;
2121
2122 md->seq_rq_merge_deadline_usecs = deadline;
2123
2124 return count;
2125}
2126
2127static bool dm_request_peeked_before_merge_deadline(struct mapped_device *md)
2128{
2129 ktime_t kt_deadline;
2130
2131 if (!md->seq_rq_merge_deadline_usecs)
2132 return false;
2133
2134 kt_deadline = ns_to_ktime((u64)md->seq_rq_merge_deadline_usecs * NSEC_PER_USEC);
2135 kt_deadline = ktime_add_safe(md->last_rq_start_time, kt_deadline);
2136
2137 return !ktime_after(ktime_get(), kt_deadline);
2138}
2139
2140/*
2141 * q->request_fn for request-based dm.
2142 * Called with the queue lock held.
2143 */
2144static void dm_request_fn(struct request_queue *q)
2145{
2146 struct mapped_device *md = q->queuedata;
2147 struct dm_target *ti = md->immutable_target;
2148 struct request *rq;
2149 struct dm_rq_target_io *tio;
2150 sector_t pos = 0;
2151
2152 if (unlikely(!ti)) {
2153 int srcu_idx;
2154 struct dm_table *map = dm_get_live_table(md, &srcu_idx);
2155
2156 ti = dm_table_find_target(map, pos);
2157 dm_put_live_table(md, srcu_idx);
2158 }
2159
2160 /*
2161 * For suspend, check blk_queue_stopped() and increment
2162 * ->pending within a single queue_lock not to increment the
2163 * number of in-flight I/Os after the queue is stopped in
2164 * dm_suspend().
2165 */
2166 while (!blk_queue_stopped(q)) {
2167 rq = blk_peek_request(q);
2168 if (!rq)
2169 return;
2170
2171 /* always use block 0 to find the target for flushes for now */
2172 pos = 0;
2173 if (!(rq->cmd_flags & REQ_FLUSH))
2174 pos = blk_rq_pos(rq);
2175
2176 if ((dm_request_peeked_before_merge_deadline(md) &&
2177 md_in_flight(md) && rq->bio && rq->bio->bi_vcnt == 1 &&
2178 md->last_rq_pos == pos && md->last_rq_rw == rq_data_dir(rq)) ||
2179 (ti->type->busy && ti->type->busy(ti))) {
2180 blk_delay_queue(q, HZ / 100);
2181 return;
2182 }
2183
2184 dm_start_request(md, rq);
2185
2186 tio = tio_from_request(rq);
2187 /* Establish tio->ti before queuing work (map_tio_request) */
2188 tio->ti = ti;
2189 queue_kthread_work(&md->kworker, &tio->work);
2190 BUG_ON(!irqs_disabled());
2191 }
2192}
2193
2194static int dm_any_congested(void *congested_data, int bdi_bits)
2195{
2196 int r = bdi_bits;
2197 struct mapped_device *md = congested_data;
2198 struct dm_table *map;
2199
2200 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2201 if (dm_request_based(md)) {
2202 /*
2203 * With request-based DM we only need to check the
2204 * top-level queue for congestion.
2205 */
2206 r = md->queue->backing_dev_info.wb.state & bdi_bits;
2207 } else {
2208 map = dm_get_live_table_fast(md);
2209 if (map)
2210 r = dm_table_any_congested(map, bdi_bits);
2211 dm_put_live_table_fast(md);
2212 }
2213 }
2214
2215 return r;
2216}
2217
2218/*-----------------------------------------------------------------
2219 * An IDR is used to keep track of allocated minor numbers.
2220 *---------------------------------------------------------------*/
2221static void free_minor(int minor)
2222{
2223 spin_lock(&_minor_lock);
2224 idr_remove(&_minor_idr, minor);
2225 spin_unlock(&_minor_lock);
2226}
2227
2228/*
2229 * See if the device with a specific minor # is free.
2230 */
2231static int specific_minor(int minor)
2232{
2233 int r;
2234
2235 if (minor >= (1 << MINORBITS))
2236 return -EINVAL;
2237
2238 idr_preload(GFP_KERNEL);
2239 spin_lock(&_minor_lock);
2240
2241 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
2242
2243 spin_unlock(&_minor_lock);
2244 idr_preload_end();
2245 if (r < 0)
2246 return r == -ENOSPC ? -EBUSY : r;
2247 return 0;
2248}
2249
2250static int next_free_minor(int *minor)
2251{
2252 int r;
2253
2254 idr_preload(GFP_KERNEL);
2255 spin_lock(&_minor_lock);
2256
2257 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
2258
2259 spin_unlock(&_minor_lock);
2260 idr_preload_end();
2261 if (r < 0)
2262 return r;
2263 *minor = r;
2264 return 0;
2265}
2266
2267static const struct block_device_operations dm_blk_dops;
2268
2269static void dm_wq_work(struct work_struct *work);
2270
2271static void dm_init_md_queue(struct mapped_device *md)
2272{
2273 /*
2274 * Request-based dm devices cannot be stacked on top of bio-based dm
2275 * devices. The type of this dm device may not have been decided yet.
2276 * The type is decided at the first table loading time.
2277 * To prevent problematic device stacking, clear the queue flag
2278 * for request stacking support until then.
2279 *
2280 * This queue is new, so no concurrency on the queue_flags.
2281 */
2282 queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
2283
2284 /*
2285 * Initialize data that will only be used by a non-blk-mq DM queue
2286 * - must do so here (in alloc_dev callchain) before queue is used
2287 */
2288 md->queue->queuedata = md;
2289 md->queue->backing_dev_info.congested_data = md;
2290}
2291
2292static void dm_init_normal_md_queue(struct mapped_device *md)
2293{
2294 md->use_blk_mq = false;
2295 dm_init_md_queue(md);
2296
2297 /*
2298 * Initialize aspects of queue that aren't relevant for blk-mq
2299 */
2300 md->queue->backing_dev_info.congested_fn = dm_any_congested;
2301 blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
2302}
2303
2304static void cleanup_mapped_device(struct mapped_device *md)
2305{
2306 if (md->wq)
2307 destroy_workqueue(md->wq);
2308 if (md->kworker_task)
2309 kthread_stop(md->kworker_task);
2310 mempool_destroy(md->io_pool);
2311 mempool_destroy(md->rq_pool);
2312 if (md->bs)
2313 bioset_free(md->bs);
2314
2315 cleanup_srcu_struct(&md->io_barrier);
2316
2317 if (md->disk) {
2318 spin_lock(&_minor_lock);
2319 md->disk->private_data = NULL;
2320 spin_unlock(&_minor_lock);
2321 del_gendisk(md->disk);
2322 put_disk(md->disk);
2323 }
2324
2325 if (md->queue)
2326 blk_cleanup_queue(md->queue);
2327
2328 if (md->bdev) {
2329 bdput(md->bdev);
2330 md->bdev = NULL;
2331 }
2332}
2333
2334/*
2335 * Allocate and initialise a blank device with a given minor.
2336 */
2337static struct mapped_device *alloc_dev(int minor)
2338{
2339 int r, numa_node_id = dm_get_numa_node();
2340 struct mapped_device *md;
2341 void *old_md;
2342
2343 md = kzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
2344 if (!md) {
2345 DMWARN("unable to allocate device, out of memory.");
2346 return NULL;
2347 }
2348
2349 if (!try_module_get(THIS_MODULE))
2350 goto bad_module_get;
2351
2352 /* get a minor number for the dev */
2353 if (minor == DM_ANY_MINOR)
2354 r = next_free_minor(&minor);
2355 else
2356 r = specific_minor(minor);
2357 if (r < 0)
2358 goto bad_minor;
2359
2360 r = init_srcu_struct(&md->io_barrier);
2361 if (r < 0)
2362 goto bad_io_barrier;
2363
2364 md->numa_node_id = numa_node_id;
2365 md->use_blk_mq = use_blk_mq;
2366 md->init_tio_pdu = false;
2367 md->type = DM_TYPE_NONE;
2368 mutex_init(&md->suspend_lock);
2369 mutex_init(&md->type_lock);
2370 mutex_init(&md->table_devices_lock);
2371 spin_lock_init(&md->deferred_lock);
2372 atomic_set(&md->holders, 1);
2373 atomic_set(&md->open_count, 0);
2374 atomic_set(&md->event_nr, 0);
2375 atomic_set(&md->uevent_seq, 0);
2376 INIT_LIST_HEAD(&md->uevent_list);
2377 INIT_LIST_HEAD(&md->table_devices);
2378 spin_lock_init(&md->uevent_lock);
2379
2380 md->queue = blk_alloc_queue_node(GFP_KERNEL, numa_node_id);
2381 if (!md->queue)
2382 goto bad;
2383
2384 dm_init_md_queue(md);
2385
2386 md->disk = alloc_disk_node(1, numa_node_id);
2387 if (!md->disk)
2388 goto bad;
2389
2390 atomic_set(&md->pending[0], 0);
2391 atomic_set(&md->pending[1], 0);
2392 init_waitqueue_head(&md->wait);
2393 INIT_WORK(&md->work, dm_wq_work);
2394 init_waitqueue_head(&md->eventq);
2395 init_completion(&md->kobj_holder.completion);
2396 md->kworker_task = NULL;
2397
2398 md->disk->major = _major;
2399 md->disk->first_minor = minor;
2400 md->disk->fops = &dm_blk_dops;
2401 md->disk->queue = md->queue;
2402 md->disk->private_data = md;
2403 sprintf(md->disk->disk_name, "dm-%d", minor);
2404 add_disk(md->disk);
2405 format_dev_t(md->name, MKDEV(_major, minor));
2406
2407 md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
2408 if (!md->wq)
2409 goto bad;
2410
2411 md->bdev = bdget_disk(md->disk, 0);
2412 if (!md->bdev)
2413 goto bad;
2414
2415 bio_init(&md->flush_bio);
2416 md->flush_bio.bi_bdev = md->bdev;
2417 md->flush_bio.bi_rw = WRITE_FLUSH;
2418
2419 dm_stats_init(&md->stats);
2420
2421 /* Populate the mapping, nobody knows we exist yet */
2422 spin_lock(&_minor_lock);
2423 old_md = idr_replace(&_minor_idr, md, minor);
2424 spin_unlock(&_minor_lock);
2425
2426 BUG_ON(old_md != MINOR_ALLOCED);
2427
2428 return md;
2429
2430bad:
2431 cleanup_mapped_device(md);
2432bad_io_barrier:
2433 free_minor(minor);
2434bad_minor:
2435 module_put(THIS_MODULE);
2436bad_module_get:
2437 kfree(md);
2438 return NULL;
2439}
2440
2441static void unlock_fs(struct mapped_device *md);
2442
2443static void free_dev(struct mapped_device *md)
2444{
2445 int minor = MINOR(disk_devt(md->disk));
2446
2447 unlock_fs(md);
2448
2449 cleanup_mapped_device(md);
2450 if (md->tag_set) {
2451 blk_mq_free_tag_set(md->tag_set);
2452 kfree(md->tag_set);
2453 }
2454
2455 free_table_devices(&md->table_devices);
2456 dm_stats_cleanup(&md->stats);
2457 free_minor(minor);
2458
2459 module_put(THIS_MODULE);
2460 kfree(md);
2461}
2462
2463static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
2464{
2465 struct dm_md_mempools *p = dm_table_get_md_mempools(t);
2466
2467 if (md->bs) {
2468 /* The md already has necessary mempools. */
2469 if (dm_table_get_type(t) == DM_TYPE_BIO_BASED) {
2470 /*
2471 * Reload bioset because front_pad may have changed
2472 * because a different table was loaded.
2473 */
2474 bioset_free(md->bs);
2475 md->bs = p->bs;
2476 p->bs = NULL;
2477 }
2478 /*
2479 * There's no need to reload with request-based dm
2480 * because the size of front_pad doesn't change.
2481 * Note for future: If you are to reload bioset,
2482 * prep-ed requests in the queue may refer
2483 * to bio from the old bioset, so you must walk
2484 * through the queue to unprep.
2485 */
2486 goto out;
2487 }
2488
2489 BUG_ON(!p || md->io_pool || md->rq_pool || md->bs);
2490
2491 md->io_pool = p->io_pool;
2492 p->io_pool = NULL;
2493 md->rq_pool = p->rq_pool;
2494 p->rq_pool = NULL;
2495 md->bs = p->bs;
2496 p->bs = NULL;
2497
2498out:
2499 /* mempool bind completed, no longer need any mempools in the table */
2500 dm_table_free_md_mempools(t);
2501}
2502
2503/*
2504 * Bind a table to the device.
2505 */
2506static void event_callback(void *context)
2507{
2508 unsigned long flags;
2509 LIST_HEAD(uevents);
2510 struct mapped_device *md = (struct mapped_device *) context;
2511
2512 spin_lock_irqsave(&md->uevent_lock, flags);
2513 list_splice_init(&md->uevent_list, &uevents);
2514 spin_unlock_irqrestore(&md->uevent_lock, flags);
2515
2516 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2517
2518 atomic_inc(&md->event_nr);
2519 wake_up(&md->eventq);
2520}
2521
2522/*
2523 * Protected by md->suspend_lock obtained by dm_swap_table().
2524 */
2525static void __set_size(struct mapped_device *md, sector_t size)
2526{
2527 set_capacity(md->disk, size);
2528
2529 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2530}
2531
2532/*
2533 * Returns old map, which caller must destroy.
2534 */
2535static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2536 struct queue_limits *limits)
2537{
2538 struct dm_table *old_map;
2539 struct request_queue *q = md->queue;
2540 sector_t size;
2541
2542 size = dm_table_get_size(t);
2543
2544 /*
2545 * Wipe any geometry if the size of the table changed.
2546 */
2547 if (size != dm_get_size(md))
2548 memset(&md->geometry, 0, sizeof(md->geometry));
2549
2550 __set_size(md, size);
2551
2552 dm_table_event_callback(t, event_callback, md);
2553
2554 /*
2555 * The queue hasn't been stopped yet, if the old table type wasn't
2556 * for request-based during suspension. So stop it to prevent
2557 * I/O mapping before resume.
2558 * This must be done before setting the queue restrictions,
2559 * because request-based dm may be run just after the setting.
2560 */
2561 if (dm_table_request_based(t)) {
2562 dm_stop_queue(q);
2563 /*
2564 * Leverage the fact that request-based DM targets are
2565 * immutable singletons and establish md->immutable_target
2566 * - used to optimize both dm_request_fn and dm_mq_queue_rq
2567 */
2568 md->immutable_target = dm_table_get_immutable_target(t);
2569 }
2570
2571 __bind_mempools(md, t);
2572
2573 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2574 rcu_assign_pointer(md->map, (void *)t);
2575 md->immutable_target_type = dm_table_get_immutable_target_type(t);
2576
2577 dm_table_set_restrictions(t, q, limits);
2578 if (old_map)
2579 dm_sync_table(md);
2580
2581 return old_map;
2582}
2583
2584/*
2585 * Returns unbound table for the caller to free.
2586 */
2587static struct dm_table *__unbind(struct mapped_device *md)
2588{
2589 struct dm_table *map = rcu_dereference_protected(md->map, 1);
2590
2591 if (!map)
2592 return NULL;
2593
2594 dm_table_event_callback(map, NULL, NULL);
2595 RCU_INIT_POINTER(md->map, NULL);
2596 dm_sync_table(md);
2597
2598 return map;
2599}
2600
2601/*
2602 * Constructor for a new device.
2603 */
2604int dm_create(int minor, struct mapped_device **result)
2605{
2606 struct mapped_device *md;
2607
2608 md = alloc_dev(minor);
2609 if (!md)
2610 return -ENXIO;
2611
2612 dm_sysfs_init(md);
2613
2614 *result = md;
2615 return 0;
2616}
2617
2618/*
2619 * Functions to manage md->type.
2620 * All are required to hold md->type_lock.
2621 */
2622void dm_lock_md_type(struct mapped_device *md)
2623{
2624 mutex_lock(&md->type_lock);
2625}
2626
2627void dm_unlock_md_type(struct mapped_device *md)
2628{
2629 mutex_unlock(&md->type_lock);
2630}
2631
2632void dm_set_md_type(struct mapped_device *md, unsigned type)
2633{
2634 BUG_ON(!mutex_is_locked(&md->type_lock));
2635 md->type = type;
2636}
2637
2638unsigned dm_get_md_type(struct mapped_device *md)
2639{
2640 return md->type;
2641}
2642
2643struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2644{
2645 return md->immutable_target_type;
2646}
2647
2648/*
2649 * The queue_limits are only valid as long as you have a reference
2650 * count on 'md'.
2651 */
2652struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2653{
2654 BUG_ON(!atomic_read(&md->holders));
2655 return &md->queue->limits;
2656}
2657EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2658
2659static void dm_old_init_rq_based_worker_thread(struct mapped_device *md)
2660{
2661 /* Initialize the request-based DM worker thread */
2662 init_kthread_worker(&md->kworker);
2663 md->kworker_task = kthread_run(kthread_worker_fn, &md->kworker,
2664 "kdmwork-%s", dm_device_name(md));
2665}
2666
2667/*
2668 * Fully initialize a .request_fn request-based queue.
2669 */
2670static int dm_old_init_request_queue(struct mapped_device *md)
2671{
2672 /* Fully initialize the queue */
2673 if (!blk_init_allocated_queue(md->queue, dm_request_fn, NULL))
2674 return -EINVAL;
2675
2676 /* disable dm_request_fn's merge heuristic by default */
2677 md->seq_rq_merge_deadline_usecs = 0;
2678
2679 dm_init_normal_md_queue(md);
2680 blk_queue_softirq_done(md->queue, dm_softirq_done);
2681 blk_queue_prep_rq(md->queue, dm_old_prep_fn);
2682
2683 dm_old_init_rq_based_worker_thread(md);
2684
2685 elv_register_queue(md->queue);
2686
2687 return 0;
2688}
2689
2690static int dm_mq_init_request(void *data, struct request *rq,
2691 unsigned int hctx_idx, unsigned int request_idx,
2692 unsigned int numa_node)
2693{
2694 struct mapped_device *md = data;
2695 struct dm_rq_target_io *tio = blk_mq_rq_to_pdu(rq);
2696
2697 /*
2698 * Must initialize md member of tio, otherwise it won't
2699 * be available in dm_mq_queue_rq.
2700 */
2701 tio->md = md;
2702
2703 if (md->init_tio_pdu) {
2704 /* target-specific per-io data is immediately after the tio */
2705 tio->info.ptr = tio + 1;
2706 }
2707
2708 return 0;
2709}
2710
2711static int dm_mq_queue_rq(struct blk_mq_hw_ctx *hctx,
2712 const struct blk_mq_queue_data *bd)
2713{
2714 struct request *rq = bd->rq;
2715 struct dm_rq_target_io *tio = blk_mq_rq_to_pdu(rq);
2716 struct mapped_device *md = tio->md;
2717 struct dm_target *ti = md->immutable_target;
2718
2719 if (unlikely(!ti)) {
2720 int srcu_idx;
2721 struct dm_table *map = dm_get_live_table(md, &srcu_idx);
2722
2723 ti = dm_table_find_target(map, 0);
2724 dm_put_live_table(md, srcu_idx);
2725 }
2726
2727 if (ti->type->busy && ti->type->busy(ti))
2728 return BLK_MQ_RQ_QUEUE_BUSY;
2729
2730 dm_start_request(md, rq);
2731
2732 /* Init tio using md established in .init_request */
2733 init_tio(tio, rq, md);
2734
2735 /*
2736 * Establish tio->ti before queuing work (map_tio_request)
2737 * or making direct call to map_request().
2738 */
2739 tio->ti = ti;
2740
2741 /* Direct call is fine since .queue_rq allows allocations */
2742 if (map_request(tio, rq, md) == DM_MAPIO_REQUEUE) {
2743 /* Undo dm_start_request() before requeuing */
2744 rq_end_stats(md, rq);
2745 rq_completed(md, rq_data_dir(rq), false);
2746 return BLK_MQ_RQ_QUEUE_BUSY;
2747 }
2748
2749 return BLK_MQ_RQ_QUEUE_OK;
2750}
2751
2752static struct blk_mq_ops dm_mq_ops = {
2753 .queue_rq = dm_mq_queue_rq,
2754 .map_queue = blk_mq_map_queue,
2755 .complete = dm_softirq_done,
2756 .init_request = dm_mq_init_request,
2757};
2758
2759static int dm_mq_init_request_queue(struct mapped_device *md,
2760 struct dm_target *immutable_tgt)
2761{
2762 struct request_queue *q;
2763 int err;
2764
2765 if (dm_get_md_type(md) == DM_TYPE_REQUEST_BASED) {
2766 DMERR("request-based dm-mq may only be stacked on blk-mq device(s)");
2767 return -EINVAL;
2768 }
2769
2770 md->tag_set = kzalloc_node(sizeof(struct blk_mq_tag_set), GFP_KERNEL, md->numa_node_id);
2771 if (!md->tag_set)
2772 return -ENOMEM;
2773
2774 md->tag_set->ops = &dm_mq_ops;
2775 md->tag_set->queue_depth = dm_get_blk_mq_queue_depth();
2776 md->tag_set->numa_node = md->numa_node_id;
2777 md->tag_set->flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
2778 md->tag_set->nr_hw_queues = dm_get_blk_mq_nr_hw_queues();
2779 md->tag_set->driver_data = md;
2780
2781 md->tag_set->cmd_size = sizeof(struct dm_rq_target_io);
2782 if (immutable_tgt && immutable_tgt->per_io_data_size) {
2783 /* any target-specific per-io data is immediately after the tio */
2784 md->tag_set->cmd_size += immutable_tgt->per_io_data_size;
2785 md->init_tio_pdu = true;
2786 }
2787
2788 err = blk_mq_alloc_tag_set(md->tag_set);
2789 if (err)
2790 goto out_kfree_tag_set;
2791
2792 q = blk_mq_init_allocated_queue(md->tag_set, md->queue);
2793 if (IS_ERR(q)) {
2794 err = PTR_ERR(q);
2795 goto out_tag_set;
2796 }
2797 dm_init_md_queue(md);
2798
2799 /* backfill 'mq' sysfs registration normally done in blk_register_queue */
2800 blk_mq_register_disk(md->disk);
2801
2802 return 0;
2803
2804out_tag_set:
2805 blk_mq_free_tag_set(md->tag_set);
2806out_kfree_tag_set:
2807 kfree(md->tag_set);
2808
2809 return err;
2810}
2811
2812static unsigned filter_md_type(unsigned type, struct mapped_device *md)
2813{
2814 if (type == DM_TYPE_BIO_BASED)
2815 return type;
2816
2817 return !md->use_blk_mq ? DM_TYPE_REQUEST_BASED : DM_TYPE_MQ_REQUEST_BASED;
2818}
2819
2820/*
2821 * Setup the DM device's queue based on md's type
2822 */
2823int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2824{
2825 int r;
2826 unsigned md_type = filter_md_type(dm_get_md_type(md), md);
2827
2828 switch (md_type) {
2829 case DM_TYPE_REQUEST_BASED:
2830 r = dm_old_init_request_queue(md);
2831 if (r) {
2832 DMERR("Cannot initialize queue for request-based mapped device");
2833 return r;
2834 }
2835 break;
2836 case DM_TYPE_MQ_REQUEST_BASED:
2837 r = dm_mq_init_request_queue(md, dm_table_get_immutable_target(t));
2838 if (r) {
2839 DMERR("Cannot initialize queue for request-based dm-mq mapped device");
2840 return r;
2841 }
2842 break;
2843 case DM_TYPE_BIO_BASED:
2844 dm_init_normal_md_queue(md);
2845 blk_queue_make_request(md->queue, dm_make_request);
2846 /*
2847 * DM handles splitting bios as needed. Free the bio_split bioset
2848 * since it won't be used (saves 1 process per bio-based DM device).
2849 */
2850 bioset_free(md->queue->bio_split);
2851 md->queue->bio_split = NULL;
2852 break;
2853 }
2854
2855 return 0;
2856}
2857
2858struct mapped_device *dm_get_md(dev_t dev)
2859{
2860 struct mapped_device *md;
2861 unsigned minor = MINOR(dev);
2862
2863 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2864 return NULL;
2865
2866 spin_lock(&_minor_lock);
2867
2868 md = idr_find(&_minor_idr, minor);
2869 if (md) {
2870 if ((md == MINOR_ALLOCED ||
2871 (MINOR(disk_devt(dm_disk(md))) != minor) ||
2872 dm_deleting_md(md) ||
2873 test_bit(DMF_FREEING, &md->flags))) {
2874 md = NULL;
2875 goto out;
2876 }
2877 dm_get(md);
2878 }
2879
2880out:
2881 spin_unlock(&_minor_lock);
2882
2883 return md;
2884}
2885EXPORT_SYMBOL_GPL(dm_get_md);
2886
2887void *dm_get_mdptr(struct mapped_device *md)
2888{
2889 return md->interface_ptr;
2890}
2891
2892void dm_set_mdptr(struct mapped_device *md, void *ptr)
2893{
2894 md->interface_ptr = ptr;
2895}
2896
2897void dm_get(struct mapped_device *md)
2898{
2899 atomic_inc(&md->holders);
2900 BUG_ON(test_bit(DMF_FREEING, &md->flags));
2901}
2902
2903int dm_hold(struct mapped_device *md)
2904{
2905 spin_lock(&_minor_lock);
2906 if (test_bit(DMF_FREEING, &md->flags)) {
2907 spin_unlock(&_minor_lock);
2908 return -EBUSY;
2909 }
2910 dm_get(md);
2911 spin_unlock(&_minor_lock);
2912 return 0;
2913}
2914EXPORT_SYMBOL_GPL(dm_hold);
2915
2916const char *dm_device_name(struct mapped_device *md)
2917{
2918 return md->name;
2919}
2920EXPORT_SYMBOL_GPL(dm_device_name);
2921
2922static void __dm_destroy(struct mapped_device *md, bool wait)
2923{
2924 struct dm_table *map;
2925 int srcu_idx;
2926
2927 might_sleep();
2928
2929 spin_lock(&_minor_lock);
2930 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2931 set_bit(DMF_FREEING, &md->flags);
2932 spin_unlock(&_minor_lock);
2933
2934 if (dm_request_based(md) && md->kworker_task)
2935 flush_kthread_worker(&md->kworker);
2936
2937 /*
2938 * Take suspend_lock so that presuspend and postsuspend methods
2939 * do not race with internal suspend.
2940 */
2941 mutex_lock(&md->suspend_lock);
2942 map = dm_get_live_table(md, &srcu_idx);
2943 if (!dm_suspended_md(md)) {
2944 dm_table_presuspend_targets(map);
2945 dm_table_postsuspend_targets(map);
2946 }
2947 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2948 dm_put_live_table(md, srcu_idx);
2949 mutex_unlock(&md->suspend_lock);
2950
2951 /*
2952 * Rare, but there may be I/O requests still going to complete,
2953 * for example. Wait for all references to disappear.
2954 * No one should increment the reference count of the mapped_device,
2955 * after the mapped_device state becomes DMF_FREEING.
2956 */
2957 if (wait)
2958 while (atomic_read(&md->holders))
2959 msleep(1);
2960 else if (atomic_read(&md->holders))
2961 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2962 dm_device_name(md), atomic_read(&md->holders));
2963
2964 dm_sysfs_exit(md);
2965 dm_table_destroy(__unbind(md));
2966 free_dev(md);
2967}
2968
2969void dm_destroy(struct mapped_device *md)
2970{
2971 __dm_destroy(md, true);
2972}
2973
2974void dm_destroy_immediate(struct mapped_device *md)
2975{
2976 __dm_destroy(md, false);
2977}
2978
2979void dm_put(struct mapped_device *md)
2980{
2981 atomic_dec(&md->holders);
2982}
2983EXPORT_SYMBOL_GPL(dm_put);
2984
2985static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
2986{
2987 int r = 0;
2988 DECLARE_WAITQUEUE(wait, current);
2989
2990 add_wait_queue(&md->wait, &wait);
2991
2992 while (1) {
2993 set_current_state(interruptible);
2994
2995 if (!md_in_flight(md))
2996 break;
2997
2998 if (interruptible == TASK_INTERRUPTIBLE &&
2999 signal_pending(current)) {
3000 r = -EINTR;
3001 break;
3002 }
3003
3004 io_schedule();
3005 }
3006 set_current_state(TASK_RUNNING);
3007
3008 remove_wait_queue(&md->wait, &wait);
3009
3010 return r;
3011}
3012
3013/*
3014 * Process the deferred bios
3015 */
3016static void dm_wq_work(struct work_struct *work)
3017{
3018 struct mapped_device *md = container_of(work, struct mapped_device,
3019 work);
3020 struct bio *c;
3021 int srcu_idx;
3022 struct dm_table *map;
3023
3024 map = dm_get_live_table(md, &srcu_idx);
3025
3026 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
3027 spin_lock_irq(&md->deferred_lock);
3028 c = bio_list_pop(&md->deferred);
3029 spin_unlock_irq(&md->deferred_lock);
3030
3031 if (!c)
3032 break;
3033
3034 if (dm_request_based(md))
3035 generic_make_request(c);
3036 else
3037 __split_and_process_bio(md, map, c);
3038 }
3039
3040 dm_put_live_table(md, srcu_idx);
3041}
3042
3043static void dm_queue_flush(struct mapped_device *md)
3044{
3045 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
3046 smp_mb__after_atomic();
3047 queue_work(md->wq, &md->work);
3048}
3049
3050/*
3051 * Swap in a new table, returning the old one for the caller to destroy.
3052 */
3053struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
3054{
3055 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
3056 struct queue_limits limits;
3057 int r;
3058
3059 mutex_lock(&md->suspend_lock);
3060
3061 /* device must be suspended */
3062 if (!dm_suspended_md(md))
3063 goto out;
3064
3065 /*
3066 * If the new table has no data devices, retain the existing limits.
3067 * This helps multipath with queue_if_no_path if all paths disappear,
3068 * then new I/O is queued based on these limits, and then some paths
3069 * reappear.
3070 */
3071 if (dm_table_has_no_data_devices(table)) {
3072 live_map = dm_get_live_table_fast(md);
3073 if (live_map)
3074 limits = md->queue->limits;
3075 dm_put_live_table_fast(md);
3076 }
3077
3078 if (!live_map) {
3079 r = dm_calculate_queue_limits(table, &limits);
3080 if (r) {
3081 map = ERR_PTR(r);
3082 goto out;
3083 }
3084 }
3085
3086 map = __bind(md, table, &limits);
3087
3088out:
3089 mutex_unlock(&md->suspend_lock);
3090 return map;
3091}
3092
3093/*
3094 * Functions to lock and unlock any filesystem running on the
3095 * device.
3096 */
3097static int lock_fs(struct mapped_device *md)
3098{
3099 int r;
3100
3101 WARN_ON(md->frozen_sb);
3102
3103 md->frozen_sb = freeze_bdev(md->bdev);
3104 if (IS_ERR(md->frozen_sb)) {
3105 r = PTR_ERR(md->frozen_sb);
3106 md->frozen_sb = NULL;
3107 return r;
3108 }
3109
3110 set_bit(DMF_FROZEN, &md->flags);
3111
3112 return 0;
3113}
3114
3115static void unlock_fs(struct mapped_device *md)
3116{
3117 if (!test_bit(DMF_FROZEN, &md->flags))
3118 return;
3119
3120 thaw_bdev(md->bdev, md->frozen_sb);
3121 md->frozen_sb = NULL;
3122 clear_bit(DMF_FROZEN, &md->flags);
3123}
3124
3125/*
3126 * If __dm_suspend returns 0, the device is completely quiescent
3127 * now. There is no request-processing activity. All new requests
3128 * are being added to md->deferred list.
3129 *
3130 * Caller must hold md->suspend_lock
3131 */
3132static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
3133 unsigned suspend_flags, int interruptible)
3134{
3135 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
3136 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
3137 int r;
3138
3139 /*
3140 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
3141 * This flag is cleared before dm_suspend returns.
3142 */
3143 if (noflush)
3144 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
3145
3146 /*
3147 * This gets reverted if there's an error later and the targets
3148 * provide the .presuspend_undo hook.
3149 */
3150 dm_table_presuspend_targets(map);
3151
3152 /*
3153 * Flush I/O to the device.
3154 * Any I/O submitted after lock_fs() may not be flushed.
3155 * noflush takes precedence over do_lockfs.
3156 * (lock_fs() flushes I/Os and waits for them to complete.)
3157 */
3158 if (!noflush && do_lockfs) {
3159 r = lock_fs(md);
3160 if (r) {
3161 dm_table_presuspend_undo_targets(map);
3162 return r;
3163 }
3164 }
3165
3166 /*
3167 * Here we must make sure that no processes are submitting requests
3168 * to target drivers i.e. no one may be executing
3169 * __split_and_process_bio. This is called from dm_request and
3170 * dm_wq_work.
3171 *
3172 * To get all processes out of __split_and_process_bio in dm_request,
3173 * we take the write lock. To prevent any process from reentering
3174 * __split_and_process_bio from dm_request and quiesce the thread
3175 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
3176 * flush_workqueue(md->wq).
3177 */
3178 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
3179 if (map)
3180 synchronize_srcu(&md->io_barrier);
3181
3182 /*
3183 * Stop md->queue before flushing md->wq in case request-based
3184 * dm defers requests to md->wq from md->queue.
3185 */
3186 if (dm_request_based(md)) {
3187 dm_stop_queue(md->queue);
3188 if (md->kworker_task)
3189 flush_kthread_worker(&md->kworker);
3190 }
3191
3192 flush_workqueue(md->wq);
3193
3194 /*
3195 * At this point no more requests are entering target request routines.
3196 * We call dm_wait_for_completion to wait for all existing requests
3197 * to finish.
3198 */
3199 r = dm_wait_for_completion(md, interruptible);
3200
3201 if (noflush)
3202 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
3203 if (map)
3204 synchronize_srcu(&md->io_barrier);
3205
3206 /* were we interrupted ? */
3207 if (r < 0) {
3208 dm_queue_flush(md);
3209
3210 if (dm_request_based(md))
3211 dm_start_queue(md->queue);
3212
3213 unlock_fs(md);
3214 dm_table_presuspend_undo_targets(map);
3215 /* pushback list is already flushed, so skip flush */
3216 }
3217
3218 return r;
3219}
3220
3221/*
3222 * We need to be able to change a mapping table under a mounted
3223 * filesystem. For example we might want to move some data in
3224 * the background. Before the table can be swapped with
3225 * dm_bind_table, dm_suspend must be called to flush any in
3226 * flight bios and ensure that any further io gets deferred.
3227 */
3228/*
3229 * Suspend mechanism in request-based dm.
3230 *
3231 * 1. Flush all I/Os by lock_fs() if needed.
3232 * 2. Stop dispatching any I/O by stopping the request_queue.
3233 * 3. Wait for all in-flight I/Os to be completed or requeued.
3234 *
3235 * To abort suspend, start the request_queue.
3236 */
3237int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
3238{
3239 struct dm_table *map = NULL;
3240 int r = 0;
3241
3242retry:
3243 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
3244
3245 if (dm_suspended_md(md)) {
3246 r = -EINVAL;
3247 goto out_unlock;
3248 }
3249
3250 if (dm_suspended_internally_md(md)) {
3251 /* already internally suspended, wait for internal resume */
3252 mutex_unlock(&md->suspend_lock);
3253 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
3254 if (r)
3255 return r;
3256 goto retry;
3257 }
3258
3259 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3260
3261 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE);
3262 if (r)
3263 goto out_unlock;
3264
3265 set_bit(DMF_SUSPENDED, &md->flags);
3266
3267 dm_table_postsuspend_targets(map);
3268
3269out_unlock:
3270 mutex_unlock(&md->suspend_lock);
3271 return r;
3272}
3273
3274static int __dm_resume(struct mapped_device *md, struct dm_table *map)
3275{
3276 if (map) {
3277 int r = dm_table_resume_targets(map);
3278 if (r)
3279 return r;
3280 }
3281
3282 dm_queue_flush(md);
3283
3284 /*
3285 * Flushing deferred I/Os must be done after targets are resumed
3286 * so that mapping of targets can work correctly.
3287 * Request-based dm is queueing the deferred I/Os in its request_queue.
3288 */
3289 if (dm_request_based(md))
3290 dm_start_queue(md->queue);
3291
3292 unlock_fs(md);
3293
3294 return 0;
3295}
3296
3297int dm_resume(struct mapped_device *md)
3298{
3299 int r = -EINVAL;
3300 struct dm_table *map = NULL;
3301
3302retry:
3303 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
3304
3305 if (!dm_suspended_md(md))
3306 goto out;
3307
3308 if (dm_suspended_internally_md(md)) {
3309 /* already internally suspended, wait for internal resume */
3310 mutex_unlock(&md->suspend_lock);
3311 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
3312 if (r)
3313 return r;
3314 goto retry;
3315 }
3316
3317 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3318 if (!map || !dm_table_get_size(map))
3319 goto out;
3320
3321 r = __dm_resume(md, map);
3322 if (r)
3323 goto out;
3324
3325 clear_bit(DMF_SUSPENDED, &md->flags);
3326
3327 r = 0;
3328out:
3329 mutex_unlock(&md->suspend_lock);
3330
3331 return r;
3332}
3333
3334/*
3335 * Internal suspend/resume works like userspace-driven suspend. It waits
3336 * until all bios finish and prevents issuing new bios to the target drivers.
3337 * It may be used only from the kernel.
3338 */
3339
3340static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
3341{
3342 struct dm_table *map = NULL;
3343
3344 if (md->internal_suspend_count++)
3345 return; /* nested internal suspend */
3346
3347 if (dm_suspended_md(md)) {
3348 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3349 return; /* nest suspend */
3350 }
3351
3352 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3353
3354 /*
3355 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
3356 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend
3357 * would require changing .presuspend to return an error -- avoid this
3358 * until there is a need for more elaborate variants of internal suspend.
3359 */
3360 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE);
3361
3362 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3363
3364 dm_table_postsuspend_targets(map);
3365}
3366
3367static void __dm_internal_resume(struct mapped_device *md)
3368{
3369 BUG_ON(!md->internal_suspend_count);
3370
3371 if (--md->internal_suspend_count)
3372 return; /* resume from nested internal suspend */
3373
3374 if (dm_suspended_md(md))
3375 goto done; /* resume from nested suspend */
3376
3377 /*
3378 * NOTE: existing callers don't need to call dm_table_resume_targets
3379 * (which may fail -- so best to avoid it for now by passing NULL map)
3380 */
3381 (void) __dm_resume(md, NULL);
3382
3383done:
3384 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3385 smp_mb__after_atomic();
3386 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
3387}
3388
3389void dm_internal_suspend_noflush(struct mapped_device *md)
3390{
3391 mutex_lock(&md->suspend_lock);
3392 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
3393 mutex_unlock(&md->suspend_lock);
3394}
3395EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
3396
3397void dm_internal_resume(struct mapped_device *md)
3398{
3399 mutex_lock(&md->suspend_lock);
3400 __dm_internal_resume(md);
3401 mutex_unlock(&md->suspend_lock);
3402}
3403EXPORT_SYMBOL_GPL(dm_internal_resume);
3404
3405/*
3406 * Fast variants of internal suspend/resume hold md->suspend_lock,
3407 * which prevents interaction with userspace-driven suspend.
3408 */
3409
3410void dm_internal_suspend_fast(struct mapped_device *md)
3411{
3412 mutex_lock(&md->suspend_lock);
3413 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3414 return;
3415
3416 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
3417 synchronize_srcu(&md->io_barrier);
3418 flush_workqueue(md->wq);
3419 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
3420}
3421EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
3422
3423void dm_internal_resume_fast(struct mapped_device *md)
3424{
3425 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3426 goto done;
3427
3428 dm_queue_flush(md);
3429
3430done:
3431 mutex_unlock(&md->suspend_lock);
3432}
3433EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
3434
3435/*-----------------------------------------------------------------
3436 * Event notification.
3437 *---------------------------------------------------------------*/
3438int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
3439 unsigned cookie)
3440{
3441 char udev_cookie[DM_COOKIE_LENGTH];
3442 char *envp[] = { udev_cookie, NULL };
3443
3444 if (!cookie)
3445 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
3446 else {
3447 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
3448 DM_COOKIE_ENV_VAR_NAME, cookie);
3449 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
3450 action, envp);
3451 }
3452}
3453
3454uint32_t dm_next_uevent_seq(struct mapped_device *md)
3455{
3456 return atomic_add_return(1, &md->uevent_seq);
3457}
3458
3459uint32_t dm_get_event_nr(struct mapped_device *md)
3460{
3461 return atomic_read(&md->event_nr);
3462}
3463
3464int dm_wait_event(struct mapped_device *md, int event_nr)
3465{
3466 return wait_event_interruptible(md->eventq,
3467 (event_nr != atomic_read(&md->event_nr)));
3468}
3469
3470void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
3471{
3472 unsigned long flags;
3473
3474 spin_lock_irqsave(&md->uevent_lock, flags);
3475 list_add(elist, &md->uevent_list);
3476 spin_unlock_irqrestore(&md->uevent_lock, flags);
3477}
3478
3479/*
3480 * The gendisk is only valid as long as you have a reference
3481 * count on 'md'.
3482 */
3483struct gendisk *dm_disk(struct mapped_device *md)
3484{
3485 return md->disk;
3486}
3487EXPORT_SYMBOL_GPL(dm_disk);
3488
3489struct kobject *dm_kobject(struct mapped_device *md)
3490{
3491 return &md->kobj_holder.kobj;
3492}
3493
3494struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
3495{
3496 struct mapped_device *md;
3497
3498 md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
3499
3500 if (test_bit(DMF_FREEING, &md->flags) ||
3501 dm_deleting_md(md))
3502 return NULL;
3503
3504 dm_get(md);
3505 return md;
3506}
3507
3508int dm_suspended_md(struct mapped_device *md)
3509{
3510 return test_bit(DMF_SUSPENDED, &md->flags);
3511}
3512
3513int dm_suspended_internally_md(struct mapped_device *md)
3514{
3515 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3516}
3517
3518int dm_test_deferred_remove_flag(struct mapped_device *md)
3519{
3520 return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
3521}
3522
3523int dm_suspended(struct dm_target *ti)
3524{
3525 return dm_suspended_md(dm_table_get_md(ti->table));
3526}
3527EXPORT_SYMBOL_GPL(dm_suspended);
3528
3529int dm_noflush_suspending(struct dm_target *ti)
3530{
3531 return __noflush_suspending(dm_table_get_md(ti->table));
3532}
3533EXPORT_SYMBOL_GPL(dm_noflush_suspending);
3534
3535struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, unsigned type,
3536 unsigned integrity, unsigned per_io_data_size)
3537{
3538 struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
3539 struct kmem_cache *cachep = NULL;
3540 unsigned int pool_size = 0;
3541 unsigned int front_pad;
3542
3543 if (!pools)
3544 return NULL;
3545
3546 type = filter_md_type(type, md);
3547
3548 switch (type) {
3549 case DM_TYPE_BIO_BASED:
3550 cachep = _io_cache;
3551 pool_size = dm_get_reserved_bio_based_ios();
3552 front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
3553 break;
3554 case DM_TYPE_REQUEST_BASED:
3555 cachep = _rq_tio_cache;
3556 pool_size = dm_get_reserved_rq_based_ios();
3557 pools->rq_pool = mempool_create_slab_pool(pool_size, _rq_cache);
3558 if (!pools->rq_pool)
3559 goto out;
3560 /* fall through to setup remaining rq-based pools */
3561 case DM_TYPE_MQ_REQUEST_BASED:
3562 if (!pool_size)
3563 pool_size = dm_get_reserved_rq_based_ios();
3564 front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
3565 /* per_io_data_size is used for blk-mq pdu at queue allocation */
3566 break;
3567 default:
3568 BUG();
3569 }
3570
3571 if (cachep) {
3572 pools->io_pool = mempool_create_slab_pool(pool_size, cachep);
3573 if (!pools->io_pool)
3574 goto out;
3575 }
3576
3577 pools->bs = bioset_create_nobvec(pool_size, front_pad);
3578 if (!pools->bs)
3579 goto out;
3580
3581 if (integrity && bioset_integrity_create(pools->bs, pool_size))
3582 goto out;
3583
3584 return pools;
3585
3586out:
3587 dm_free_md_mempools(pools);
3588
3589 return NULL;
3590}
3591
3592void dm_free_md_mempools(struct dm_md_mempools *pools)
3593{
3594 if (!pools)
3595 return;
3596
3597 mempool_destroy(pools->io_pool);
3598 mempool_destroy(pools->rq_pool);
3599
3600 if (pools->bs)
3601 bioset_free(pools->bs);
3602
3603 kfree(pools);
3604}
3605
3606static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3607 u32 flags)
3608{
3609 struct mapped_device *md = bdev->bd_disk->private_data;
3610 const struct pr_ops *ops;
3611 fmode_t mode;
3612 int r;
3613
3614 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
3615 if (r < 0)
3616 return r;
3617
3618 ops = bdev->bd_disk->fops->pr_ops;
3619 if (ops && ops->pr_register)
3620 r = ops->pr_register(bdev, old_key, new_key, flags);
3621 else
3622 r = -EOPNOTSUPP;
3623
3624 bdput(bdev);
3625 return r;
3626}
3627
3628static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3629 u32 flags)
3630{
3631 struct mapped_device *md = bdev->bd_disk->private_data;
3632 const struct pr_ops *ops;
3633 fmode_t mode;
3634 int r;
3635
3636 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
3637 if (r < 0)
3638 return r;
3639
3640 ops = bdev->bd_disk->fops->pr_ops;
3641 if (ops && ops->pr_reserve)
3642 r = ops->pr_reserve(bdev, key, type, flags);
3643 else
3644 r = -EOPNOTSUPP;
3645
3646 bdput(bdev);
3647 return r;
3648}
3649
3650static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3651{
3652 struct mapped_device *md = bdev->bd_disk->private_data;
3653 const struct pr_ops *ops;
3654 fmode_t mode;
3655 int r;
3656
3657 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
3658 if (r < 0)
3659 return r;
3660
3661 ops = bdev->bd_disk->fops->pr_ops;
3662 if (ops && ops->pr_release)
3663 r = ops->pr_release(bdev, key, type);
3664 else
3665 r = -EOPNOTSUPP;
3666
3667 bdput(bdev);
3668 return r;
3669}
3670
3671static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3672 enum pr_type type, bool abort)
3673{
3674 struct mapped_device *md = bdev->bd_disk->private_data;
3675 const struct pr_ops *ops;
3676 fmode_t mode;
3677 int r;
3678
3679 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
3680 if (r < 0)
3681 return r;
3682
3683 ops = bdev->bd_disk->fops->pr_ops;
3684 if (ops && ops->pr_preempt)
3685 r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
3686 else
3687 r = -EOPNOTSUPP;
3688
3689 bdput(bdev);
3690 return r;
3691}
3692
3693static int dm_pr_clear(struct block_device *bdev, u64 key)
3694{
3695 struct mapped_device *md = bdev->bd_disk->private_data;
3696 const struct pr_ops *ops;
3697 fmode_t mode;
3698 int r;
3699
3700 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
3701 if (r < 0)
3702 return r;
3703
3704 ops = bdev->bd_disk->fops->pr_ops;
3705 if (ops && ops->pr_clear)
3706 r = ops->pr_clear(bdev, key);
3707 else
3708 r = -EOPNOTSUPP;
3709
3710 bdput(bdev);
3711 return r;
3712}
3713
3714static const struct pr_ops dm_pr_ops = {
3715 .pr_register = dm_pr_register,
3716 .pr_reserve = dm_pr_reserve,
3717 .pr_release = dm_pr_release,
3718 .pr_preempt = dm_pr_preempt,
3719 .pr_clear = dm_pr_clear,
3720};
3721
3722static const struct block_device_operations dm_blk_dops = {
3723 .open = dm_blk_open,
3724 .release = dm_blk_close,
3725 .ioctl = dm_blk_ioctl,
3726 .getgeo = dm_blk_getgeo,
3727 .pr_ops = &dm_pr_ops,
3728 .owner = THIS_MODULE
3729};
3730
3731/*
3732 * module hooks
3733 */
3734module_init(dm_init);
3735module_exit(dm_exit);
3736
3737module_param(major, uint, 0);
3738MODULE_PARM_DESC(major, "The major number of the device mapper");
3739
3740module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3741MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3742
3743module_param(reserved_rq_based_ios, uint, S_IRUGO | S_IWUSR);
3744MODULE_PARM_DESC(reserved_rq_based_ios, "Reserved IOs in request-based mempools");
3745
3746module_param(use_blk_mq, bool, S_IRUGO | S_IWUSR);
3747MODULE_PARM_DESC(use_blk_mq, "Use block multiqueue for request-based DM devices");
3748
3749module_param(dm_mq_nr_hw_queues, uint, S_IRUGO | S_IWUSR);
3750MODULE_PARM_DESC(dm_mq_nr_hw_queues, "Number of hardware queues for request-based dm-mq devices");
3751
3752module_param(dm_mq_queue_depth, uint, S_IRUGO | S_IWUSR);
3753MODULE_PARM_DESC(dm_mq_queue_depth, "Queue depth for request-based dm-mq devices");
3754
3755module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
3756MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3757
3758MODULE_DESCRIPTION(DM_NAME " driver");
3759MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3760MODULE_LICENSE("GPL");