Loading...
1/*
2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8#include "dm.h"
9#include "dm-uevent.h"
10
11#include <linux/init.h>
12#include <linux/module.h>
13#include <linux/mutex.h>
14#include <linux/moduleparam.h>
15#include <linux/blkpg.h>
16#include <linux/bio.h>
17#include <linux/buffer_head.h>
18#include <linux/mempool.h>
19#include <linux/slab.h>
20#include <linux/idr.h>
21#include <linux/hdreg.h>
22#include <linux/delay.h>
23
24#include <trace/events/block.h>
25
26#define DM_MSG_PREFIX "core"
27
28/*
29 * Cookies are numeric values sent with CHANGE and REMOVE
30 * uevents while resuming, removing or renaming the device.
31 */
32#define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
33#define DM_COOKIE_LENGTH 24
34
35static const char *_name = DM_NAME;
36
37static unsigned int major = 0;
38static unsigned int _major = 0;
39
40static DEFINE_IDR(_minor_idr);
41
42static DEFINE_SPINLOCK(_minor_lock);
43/*
44 * For bio-based dm.
45 * One of these is allocated per bio.
46 */
47struct dm_io {
48 struct mapped_device *md;
49 int error;
50 atomic_t io_count;
51 struct bio *bio;
52 unsigned long start_time;
53 spinlock_t endio_lock;
54};
55
56/*
57 * For bio-based dm.
58 * One of these is allocated per target within a bio. Hopefully
59 * this will be simplified out one day.
60 */
61struct dm_target_io {
62 struct dm_io *io;
63 struct dm_target *ti;
64 union map_info info;
65};
66
67/*
68 * For request-based dm.
69 * One of these is allocated per request.
70 */
71struct dm_rq_target_io {
72 struct mapped_device *md;
73 struct dm_target *ti;
74 struct request *orig, clone;
75 int error;
76 union map_info info;
77};
78
79/*
80 * For request-based dm.
81 * One of these is allocated per bio.
82 */
83struct dm_rq_clone_bio_info {
84 struct bio *orig;
85 struct dm_rq_target_io *tio;
86};
87
88union map_info *dm_get_mapinfo(struct bio *bio)
89{
90 if (bio && bio->bi_private)
91 return &((struct dm_target_io *)bio->bi_private)->info;
92 return NULL;
93}
94
95union map_info *dm_get_rq_mapinfo(struct request *rq)
96{
97 if (rq && rq->end_io_data)
98 return &((struct dm_rq_target_io *)rq->end_io_data)->info;
99 return NULL;
100}
101EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo);
102
103#define MINOR_ALLOCED ((void *)-1)
104
105/*
106 * Bits for the md->flags field.
107 */
108#define DMF_BLOCK_IO_FOR_SUSPEND 0
109#define DMF_SUSPENDED 1
110#define DMF_FROZEN 2
111#define DMF_FREEING 3
112#define DMF_DELETING 4
113#define DMF_NOFLUSH_SUSPENDING 5
114#define DMF_MERGE_IS_OPTIONAL 6
115
116/*
117 * Work processed by per-device workqueue.
118 */
119struct mapped_device {
120 struct rw_semaphore io_lock;
121 struct mutex suspend_lock;
122 rwlock_t map_lock;
123 atomic_t holders;
124 atomic_t open_count;
125
126 unsigned long flags;
127
128 struct request_queue *queue;
129 unsigned type;
130 /* Protect queue and type against concurrent access. */
131 struct mutex type_lock;
132
133 struct gendisk *disk;
134 char name[16];
135
136 void *interface_ptr;
137
138 /*
139 * A list of ios that arrived while we were suspended.
140 */
141 atomic_t pending[2];
142 wait_queue_head_t wait;
143 struct work_struct work;
144 struct bio_list deferred;
145 spinlock_t deferred_lock;
146
147 /*
148 * Processing queue (flush)
149 */
150 struct workqueue_struct *wq;
151
152 /*
153 * The current mapping.
154 */
155 struct dm_table *map;
156
157 /*
158 * io objects are allocated from here.
159 */
160 mempool_t *io_pool;
161 mempool_t *tio_pool;
162
163 struct bio_set *bs;
164
165 /*
166 * Event handling.
167 */
168 atomic_t event_nr;
169 wait_queue_head_t eventq;
170 atomic_t uevent_seq;
171 struct list_head uevent_list;
172 spinlock_t uevent_lock; /* Protect access to uevent_list */
173
174 /*
175 * freeze/thaw support require holding onto a super block
176 */
177 struct super_block *frozen_sb;
178 struct block_device *bdev;
179
180 /* forced geometry settings */
181 struct hd_geometry geometry;
182
183 /* For saving the address of __make_request for request based dm */
184 make_request_fn *saved_make_request_fn;
185
186 /* sysfs handle */
187 struct kobject kobj;
188
189 /* zero-length flush that will be cloned and submitted to targets */
190 struct bio flush_bio;
191};
192
193/*
194 * For mempools pre-allocation at the table loading time.
195 */
196struct dm_md_mempools {
197 mempool_t *io_pool;
198 mempool_t *tio_pool;
199 struct bio_set *bs;
200};
201
202#define MIN_IOS 256
203static struct kmem_cache *_io_cache;
204static struct kmem_cache *_tio_cache;
205static struct kmem_cache *_rq_tio_cache;
206static struct kmem_cache *_rq_bio_info_cache;
207
208static int __init local_init(void)
209{
210 int r = -ENOMEM;
211
212 /* allocate a slab for the dm_ios */
213 _io_cache = KMEM_CACHE(dm_io, 0);
214 if (!_io_cache)
215 return r;
216
217 /* allocate a slab for the target ios */
218 _tio_cache = KMEM_CACHE(dm_target_io, 0);
219 if (!_tio_cache)
220 goto out_free_io_cache;
221
222 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
223 if (!_rq_tio_cache)
224 goto out_free_tio_cache;
225
226 _rq_bio_info_cache = KMEM_CACHE(dm_rq_clone_bio_info, 0);
227 if (!_rq_bio_info_cache)
228 goto out_free_rq_tio_cache;
229
230 r = dm_uevent_init();
231 if (r)
232 goto out_free_rq_bio_info_cache;
233
234 _major = major;
235 r = register_blkdev(_major, _name);
236 if (r < 0)
237 goto out_uevent_exit;
238
239 if (!_major)
240 _major = r;
241
242 return 0;
243
244out_uevent_exit:
245 dm_uevent_exit();
246out_free_rq_bio_info_cache:
247 kmem_cache_destroy(_rq_bio_info_cache);
248out_free_rq_tio_cache:
249 kmem_cache_destroy(_rq_tio_cache);
250out_free_tio_cache:
251 kmem_cache_destroy(_tio_cache);
252out_free_io_cache:
253 kmem_cache_destroy(_io_cache);
254
255 return r;
256}
257
258static void local_exit(void)
259{
260 kmem_cache_destroy(_rq_bio_info_cache);
261 kmem_cache_destroy(_rq_tio_cache);
262 kmem_cache_destroy(_tio_cache);
263 kmem_cache_destroy(_io_cache);
264 unregister_blkdev(_major, _name);
265 dm_uevent_exit();
266
267 _major = 0;
268
269 DMINFO("cleaned up");
270}
271
272static int (*_inits[])(void) __initdata = {
273 local_init,
274 dm_target_init,
275 dm_linear_init,
276 dm_stripe_init,
277 dm_io_init,
278 dm_kcopyd_init,
279 dm_interface_init,
280};
281
282static void (*_exits[])(void) = {
283 local_exit,
284 dm_target_exit,
285 dm_linear_exit,
286 dm_stripe_exit,
287 dm_io_exit,
288 dm_kcopyd_exit,
289 dm_interface_exit,
290};
291
292static int __init dm_init(void)
293{
294 const int count = ARRAY_SIZE(_inits);
295
296 int r, i;
297
298 for (i = 0; i < count; i++) {
299 r = _inits[i]();
300 if (r)
301 goto bad;
302 }
303
304 return 0;
305
306 bad:
307 while (i--)
308 _exits[i]();
309
310 return r;
311}
312
313static void __exit dm_exit(void)
314{
315 int i = ARRAY_SIZE(_exits);
316
317 while (i--)
318 _exits[i]();
319
320 /*
321 * Should be empty by this point.
322 */
323 idr_remove_all(&_minor_idr);
324 idr_destroy(&_minor_idr);
325}
326
327/*
328 * Block device functions
329 */
330int dm_deleting_md(struct mapped_device *md)
331{
332 return test_bit(DMF_DELETING, &md->flags);
333}
334
335static int dm_blk_open(struct block_device *bdev, fmode_t mode)
336{
337 struct mapped_device *md;
338
339 spin_lock(&_minor_lock);
340
341 md = bdev->bd_disk->private_data;
342 if (!md)
343 goto out;
344
345 if (test_bit(DMF_FREEING, &md->flags) ||
346 dm_deleting_md(md)) {
347 md = NULL;
348 goto out;
349 }
350
351 dm_get(md);
352 atomic_inc(&md->open_count);
353
354out:
355 spin_unlock(&_minor_lock);
356
357 return md ? 0 : -ENXIO;
358}
359
360static int dm_blk_close(struct gendisk *disk, fmode_t mode)
361{
362 struct mapped_device *md = disk->private_data;
363
364 spin_lock(&_minor_lock);
365
366 atomic_dec(&md->open_count);
367 dm_put(md);
368
369 spin_unlock(&_minor_lock);
370
371 return 0;
372}
373
374int dm_open_count(struct mapped_device *md)
375{
376 return atomic_read(&md->open_count);
377}
378
379/*
380 * Guarantees nothing is using the device before it's deleted.
381 */
382int dm_lock_for_deletion(struct mapped_device *md)
383{
384 int r = 0;
385
386 spin_lock(&_minor_lock);
387
388 if (dm_open_count(md))
389 r = -EBUSY;
390 else
391 set_bit(DMF_DELETING, &md->flags);
392
393 spin_unlock(&_minor_lock);
394
395 return r;
396}
397
398static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
399{
400 struct mapped_device *md = bdev->bd_disk->private_data;
401
402 return dm_get_geometry(md, geo);
403}
404
405static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
406 unsigned int cmd, unsigned long arg)
407{
408 struct mapped_device *md = bdev->bd_disk->private_data;
409 struct dm_table *map = dm_get_live_table(md);
410 struct dm_target *tgt;
411 int r = -ENOTTY;
412
413 if (!map || !dm_table_get_size(map))
414 goto out;
415
416 /* We only support devices that have a single target */
417 if (dm_table_get_num_targets(map) != 1)
418 goto out;
419
420 tgt = dm_table_get_target(map, 0);
421
422 if (dm_suspended_md(md)) {
423 r = -EAGAIN;
424 goto out;
425 }
426
427 if (tgt->type->ioctl)
428 r = tgt->type->ioctl(tgt, cmd, arg);
429
430out:
431 dm_table_put(map);
432
433 return r;
434}
435
436static struct dm_io *alloc_io(struct mapped_device *md)
437{
438 return mempool_alloc(md->io_pool, GFP_NOIO);
439}
440
441static void free_io(struct mapped_device *md, struct dm_io *io)
442{
443 mempool_free(io, md->io_pool);
444}
445
446static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
447{
448 mempool_free(tio, md->tio_pool);
449}
450
451static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md,
452 gfp_t gfp_mask)
453{
454 return mempool_alloc(md->tio_pool, gfp_mask);
455}
456
457static void free_rq_tio(struct dm_rq_target_io *tio)
458{
459 mempool_free(tio, tio->md->tio_pool);
460}
461
462static struct dm_rq_clone_bio_info *alloc_bio_info(struct mapped_device *md)
463{
464 return mempool_alloc(md->io_pool, GFP_ATOMIC);
465}
466
467static void free_bio_info(struct dm_rq_clone_bio_info *info)
468{
469 mempool_free(info, info->tio->md->io_pool);
470}
471
472static int md_in_flight(struct mapped_device *md)
473{
474 return atomic_read(&md->pending[READ]) +
475 atomic_read(&md->pending[WRITE]);
476}
477
478static void start_io_acct(struct dm_io *io)
479{
480 struct mapped_device *md = io->md;
481 int cpu;
482 int rw = bio_data_dir(io->bio);
483
484 io->start_time = jiffies;
485
486 cpu = part_stat_lock();
487 part_round_stats(cpu, &dm_disk(md)->part0);
488 part_stat_unlock();
489 atomic_set(&dm_disk(md)->part0.in_flight[rw],
490 atomic_inc_return(&md->pending[rw]));
491}
492
493static void end_io_acct(struct dm_io *io)
494{
495 struct mapped_device *md = io->md;
496 struct bio *bio = io->bio;
497 unsigned long duration = jiffies - io->start_time;
498 int pending, cpu;
499 int rw = bio_data_dir(bio);
500
501 cpu = part_stat_lock();
502 part_round_stats(cpu, &dm_disk(md)->part0);
503 part_stat_add(cpu, &dm_disk(md)->part0, ticks[rw], duration);
504 part_stat_unlock();
505
506 /*
507 * After this is decremented the bio must not be touched if it is
508 * a flush.
509 */
510 pending = atomic_dec_return(&md->pending[rw]);
511 atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
512 pending += atomic_read(&md->pending[rw^0x1]);
513
514 /* nudge anyone waiting on suspend queue */
515 if (!pending)
516 wake_up(&md->wait);
517}
518
519/*
520 * Add the bio to the list of deferred io.
521 */
522static void queue_io(struct mapped_device *md, struct bio *bio)
523{
524 unsigned long flags;
525
526 spin_lock_irqsave(&md->deferred_lock, flags);
527 bio_list_add(&md->deferred, bio);
528 spin_unlock_irqrestore(&md->deferred_lock, flags);
529 queue_work(md->wq, &md->work);
530}
531
532/*
533 * Everyone (including functions in this file), should use this
534 * function to access the md->map field, and make sure they call
535 * dm_table_put() when finished.
536 */
537struct dm_table *dm_get_live_table(struct mapped_device *md)
538{
539 struct dm_table *t;
540 unsigned long flags;
541
542 read_lock_irqsave(&md->map_lock, flags);
543 t = md->map;
544 if (t)
545 dm_table_get(t);
546 read_unlock_irqrestore(&md->map_lock, flags);
547
548 return t;
549}
550
551/*
552 * Get the geometry associated with a dm device
553 */
554int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
555{
556 *geo = md->geometry;
557
558 return 0;
559}
560
561/*
562 * Set the geometry of a device.
563 */
564int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
565{
566 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
567
568 if (geo->start > sz) {
569 DMWARN("Start sector is beyond the geometry limits.");
570 return -EINVAL;
571 }
572
573 md->geometry = *geo;
574
575 return 0;
576}
577
578/*-----------------------------------------------------------------
579 * CRUD START:
580 * A more elegant soln is in the works that uses the queue
581 * merge fn, unfortunately there are a couple of changes to
582 * the block layer that I want to make for this. So in the
583 * interests of getting something for people to use I give
584 * you this clearly demarcated crap.
585 *---------------------------------------------------------------*/
586
587static int __noflush_suspending(struct mapped_device *md)
588{
589 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
590}
591
592/*
593 * Decrements the number of outstanding ios that a bio has been
594 * cloned into, completing the original io if necc.
595 */
596static void dec_pending(struct dm_io *io, int error)
597{
598 unsigned long flags;
599 int io_error;
600 struct bio *bio;
601 struct mapped_device *md = io->md;
602
603 /* Push-back supersedes any I/O errors */
604 if (unlikely(error)) {
605 spin_lock_irqsave(&io->endio_lock, flags);
606 if (!(io->error > 0 && __noflush_suspending(md)))
607 io->error = error;
608 spin_unlock_irqrestore(&io->endio_lock, flags);
609 }
610
611 if (atomic_dec_and_test(&io->io_count)) {
612 if (io->error == DM_ENDIO_REQUEUE) {
613 /*
614 * Target requested pushing back the I/O.
615 */
616 spin_lock_irqsave(&md->deferred_lock, flags);
617 if (__noflush_suspending(md))
618 bio_list_add_head(&md->deferred, io->bio);
619 else
620 /* noflush suspend was interrupted. */
621 io->error = -EIO;
622 spin_unlock_irqrestore(&md->deferred_lock, flags);
623 }
624
625 io_error = io->error;
626 bio = io->bio;
627 end_io_acct(io);
628 free_io(md, io);
629
630 if (io_error == DM_ENDIO_REQUEUE)
631 return;
632
633 if ((bio->bi_rw & REQ_FLUSH) && bio->bi_size) {
634 /*
635 * Preflush done for flush with data, reissue
636 * without REQ_FLUSH.
637 */
638 bio->bi_rw &= ~REQ_FLUSH;
639 queue_io(md, bio);
640 } else {
641 /* done with normal IO or empty flush */
642 trace_block_bio_complete(md->queue, bio, io_error);
643 bio_endio(bio, io_error);
644 }
645 }
646}
647
648static void clone_endio(struct bio *bio, int error)
649{
650 int r = 0;
651 struct dm_target_io *tio = bio->bi_private;
652 struct dm_io *io = tio->io;
653 struct mapped_device *md = tio->io->md;
654 dm_endio_fn endio = tio->ti->type->end_io;
655
656 if (!bio_flagged(bio, BIO_UPTODATE) && !error)
657 error = -EIO;
658
659 if (endio) {
660 r = endio(tio->ti, bio, error, &tio->info);
661 if (r < 0 || r == DM_ENDIO_REQUEUE)
662 /*
663 * error and requeue request are handled
664 * in dec_pending().
665 */
666 error = r;
667 else if (r == DM_ENDIO_INCOMPLETE)
668 /* The target will handle the io */
669 return;
670 else if (r) {
671 DMWARN("unimplemented target endio return value: %d", r);
672 BUG();
673 }
674 }
675
676 /*
677 * Store md for cleanup instead of tio which is about to get freed.
678 */
679 bio->bi_private = md->bs;
680
681 free_tio(md, tio);
682 bio_put(bio);
683 dec_pending(io, error);
684}
685
686/*
687 * Partial completion handling for request-based dm
688 */
689static void end_clone_bio(struct bio *clone, int error)
690{
691 struct dm_rq_clone_bio_info *info = clone->bi_private;
692 struct dm_rq_target_io *tio = info->tio;
693 struct bio *bio = info->orig;
694 unsigned int nr_bytes = info->orig->bi_size;
695
696 bio_put(clone);
697
698 if (tio->error)
699 /*
700 * An error has already been detected on the request.
701 * Once error occurred, just let clone->end_io() handle
702 * the remainder.
703 */
704 return;
705 else if (error) {
706 /*
707 * Don't notice the error to the upper layer yet.
708 * The error handling decision is made by the target driver,
709 * when the request is completed.
710 */
711 tio->error = error;
712 return;
713 }
714
715 /*
716 * I/O for the bio successfully completed.
717 * Notice the data completion to the upper layer.
718 */
719
720 /*
721 * bios are processed from the head of the list.
722 * So the completing bio should always be rq->bio.
723 * If it's not, something wrong is happening.
724 */
725 if (tio->orig->bio != bio)
726 DMERR("bio completion is going in the middle of the request");
727
728 /*
729 * Update the original request.
730 * Do not use blk_end_request() here, because it may complete
731 * the original request before the clone, and break the ordering.
732 */
733 blk_update_request(tio->orig, 0, nr_bytes);
734}
735
736/*
737 * Don't touch any member of the md after calling this function because
738 * the md may be freed in dm_put() at the end of this function.
739 * Or do dm_get() before calling this function and dm_put() later.
740 */
741static void rq_completed(struct mapped_device *md, int rw, int run_queue)
742{
743 atomic_dec(&md->pending[rw]);
744
745 /* nudge anyone waiting on suspend queue */
746 if (!md_in_flight(md))
747 wake_up(&md->wait);
748
749 if (run_queue)
750 blk_run_queue(md->queue);
751
752 /*
753 * dm_put() must be at the end of this function. See the comment above
754 */
755 dm_put(md);
756}
757
758static void free_rq_clone(struct request *clone)
759{
760 struct dm_rq_target_io *tio = clone->end_io_data;
761
762 blk_rq_unprep_clone(clone);
763 free_rq_tio(tio);
764}
765
766/*
767 * Complete the clone and the original request.
768 * Must be called without queue lock.
769 */
770static void dm_end_request(struct request *clone, int error)
771{
772 int rw = rq_data_dir(clone);
773 struct dm_rq_target_io *tio = clone->end_io_data;
774 struct mapped_device *md = tio->md;
775 struct request *rq = tio->orig;
776
777 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
778 rq->errors = clone->errors;
779 rq->resid_len = clone->resid_len;
780
781 if (rq->sense)
782 /*
783 * We are using the sense buffer of the original
784 * request.
785 * So setting the length of the sense data is enough.
786 */
787 rq->sense_len = clone->sense_len;
788 }
789
790 free_rq_clone(clone);
791 blk_end_request_all(rq, error);
792 rq_completed(md, rw, true);
793}
794
795static void dm_unprep_request(struct request *rq)
796{
797 struct request *clone = rq->special;
798
799 rq->special = NULL;
800 rq->cmd_flags &= ~REQ_DONTPREP;
801
802 free_rq_clone(clone);
803}
804
805/*
806 * Requeue the original request of a clone.
807 */
808void dm_requeue_unmapped_request(struct request *clone)
809{
810 int rw = rq_data_dir(clone);
811 struct dm_rq_target_io *tio = clone->end_io_data;
812 struct mapped_device *md = tio->md;
813 struct request *rq = tio->orig;
814 struct request_queue *q = rq->q;
815 unsigned long flags;
816
817 dm_unprep_request(rq);
818
819 spin_lock_irqsave(q->queue_lock, flags);
820 blk_requeue_request(q, rq);
821 spin_unlock_irqrestore(q->queue_lock, flags);
822
823 rq_completed(md, rw, 0);
824}
825EXPORT_SYMBOL_GPL(dm_requeue_unmapped_request);
826
827static void __stop_queue(struct request_queue *q)
828{
829 blk_stop_queue(q);
830}
831
832static void stop_queue(struct request_queue *q)
833{
834 unsigned long flags;
835
836 spin_lock_irqsave(q->queue_lock, flags);
837 __stop_queue(q);
838 spin_unlock_irqrestore(q->queue_lock, flags);
839}
840
841static void __start_queue(struct request_queue *q)
842{
843 if (blk_queue_stopped(q))
844 blk_start_queue(q);
845}
846
847static void start_queue(struct request_queue *q)
848{
849 unsigned long flags;
850
851 spin_lock_irqsave(q->queue_lock, flags);
852 __start_queue(q);
853 spin_unlock_irqrestore(q->queue_lock, flags);
854}
855
856static void dm_done(struct request *clone, int error, bool mapped)
857{
858 int r = error;
859 struct dm_rq_target_io *tio = clone->end_io_data;
860 dm_request_endio_fn rq_end_io = tio->ti->type->rq_end_io;
861
862 if (mapped && rq_end_io)
863 r = rq_end_io(tio->ti, clone, error, &tio->info);
864
865 if (r <= 0)
866 /* The target wants to complete the I/O */
867 dm_end_request(clone, r);
868 else if (r == DM_ENDIO_INCOMPLETE)
869 /* The target will handle the I/O */
870 return;
871 else if (r == DM_ENDIO_REQUEUE)
872 /* The target wants to requeue the I/O */
873 dm_requeue_unmapped_request(clone);
874 else {
875 DMWARN("unimplemented target endio return value: %d", r);
876 BUG();
877 }
878}
879
880/*
881 * Request completion handler for request-based dm
882 */
883static void dm_softirq_done(struct request *rq)
884{
885 bool mapped = true;
886 struct request *clone = rq->completion_data;
887 struct dm_rq_target_io *tio = clone->end_io_data;
888
889 if (rq->cmd_flags & REQ_FAILED)
890 mapped = false;
891
892 dm_done(clone, tio->error, mapped);
893}
894
895/*
896 * Complete the clone and the original request with the error status
897 * through softirq context.
898 */
899static void dm_complete_request(struct request *clone, int error)
900{
901 struct dm_rq_target_io *tio = clone->end_io_data;
902 struct request *rq = tio->orig;
903
904 tio->error = error;
905 rq->completion_data = clone;
906 blk_complete_request(rq);
907}
908
909/*
910 * Complete the not-mapped clone and the original request with the error status
911 * through softirq context.
912 * Target's rq_end_io() function isn't called.
913 * This may be used when the target's map_rq() function fails.
914 */
915void dm_kill_unmapped_request(struct request *clone, int error)
916{
917 struct dm_rq_target_io *tio = clone->end_io_data;
918 struct request *rq = tio->orig;
919
920 rq->cmd_flags |= REQ_FAILED;
921 dm_complete_request(clone, error);
922}
923EXPORT_SYMBOL_GPL(dm_kill_unmapped_request);
924
925/*
926 * Called with the queue lock held
927 */
928static void end_clone_request(struct request *clone, int error)
929{
930 /*
931 * For just cleaning up the information of the queue in which
932 * the clone was dispatched.
933 * The clone is *NOT* freed actually here because it is alloced from
934 * dm own mempool and REQ_ALLOCED isn't set in clone->cmd_flags.
935 */
936 __blk_put_request(clone->q, clone);
937
938 /*
939 * Actual request completion is done in a softirq context which doesn't
940 * hold the queue lock. Otherwise, deadlock could occur because:
941 * - another request may be submitted by the upper level driver
942 * of the stacking during the completion
943 * - the submission which requires queue lock may be done
944 * against this queue
945 */
946 dm_complete_request(clone, error);
947}
948
949/*
950 * Return maximum size of I/O possible at the supplied sector up to the current
951 * target boundary.
952 */
953static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
954{
955 sector_t target_offset = dm_target_offset(ti, sector);
956
957 return ti->len - target_offset;
958}
959
960static sector_t max_io_len(sector_t sector, struct dm_target *ti)
961{
962 sector_t len = max_io_len_target_boundary(sector, ti);
963
964 /*
965 * Does the target need to split even further ?
966 */
967 if (ti->split_io) {
968 sector_t boundary;
969 sector_t offset = dm_target_offset(ti, sector);
970 boundary = ((offset + ti->split_io) & ~(ti->split_io - 1))
971 - offset;
972 if (len > boundary)
973 len = boundary;
974 }
975
976 return len;
977}
978
979static void __map_bio(struct dm_target *ti, struct bio *clone,
980 struct dm_target_io *tio)
981{
982 int r;
983 sector_t sector;
984 struct mapped_device *md;
985
986 clone->bi_end_io = clone_endio;
987 clone->bi_private = tio;
988
989 /*
990 * Map the clone. If r == 0 we don't need to do
991 * anything, the target has assumed ownership of
992 * this io.
993 */
994 atomic_inc(&tio->io->io_count);
995 sector = clone->bi_sector;
996 r = ti->type->map(ti, clone, &tio->info);
997 if (r == DM_MAPIO_REMAPPED) {
998 /* the bio has been remapped so dispatch it */
999
1000 trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone,
1001 tio->io->bio->bi_bdev->bd_dev, sector);
1002
1003 generic_make_request(clone);
1004 } else if (r < 0 || r == DM_MAPIO_REQUEUE) {
1005 /* error the io and bail out, or requeue it if needed */
1006 md = tio->io->md;
1007 dec_pending(tio->io, r);
1008 /*
1009 * Store bio_set for cleanup.
1010 */
1011 clone->bi_private = md->bs;
1012 bio_put(clone);
1013 free_tio(md, tio);
1014 } else if (r) {
1015 DMWARN("unimplemented target map return value: %d", r);
1016 BUG();
1017 }
1018}
1019
1020struct clone_info {
1021 struct mapped_device *md;
1022 struct dm_table *map;
1023 struct bio *bio;
1024 struct dm_io *io;
1025 sector_t sector;
1026 sector_t sector_count;
1027 unsigned short idx;
1028};
1029
1030static void dm_bio_destructor(struct bio *bio)
1031{
1032 struct bio_set *bs = bio->bi_private;
1033
1034 bio_free(bio, bs);
1035}
1036
1037/*
1038 * Creates a little bio that just does part of a bvec.
1039 */
1040static struct bio *split_bvec(struct bio *bio, sector_t sector,
1041 unsigned short idx, unsigned int offset,
1042 unsigned int len, struct bio_set *bs)
1043{
1044 struct bio *clone;
1045 struct bio_vec *bv = bio->bi_io_vec + idx;
1046
1047 clone = bio_alloc_bioset(GFP_NOIO, 1, bs);
1048 clone->bi_destructor = dm_bio_destructor;
1049 *clone->bi_io_vec = *bv;
1050
1051 clone->bi_sector = sector;
1052 clone->bi_bdev = bio->bi_bdev;
1053 clone->bi_rw = bio->bi_rw;
1054 clone->bi_vcnt = 1;
1055 clone->bi_size = to_bytes(len);
1056 clone->bi_io_vec->bv_offset = offset;
1057 clone->bi_io_vec->bv_len = clone->bi_size;
1058 clone->bi_flags |= 1 << BIO_CLONED;
1059
1060 if (bio_integrity(bio)) {
1061 bio_integrity_clone(clone, bio, GFP_NOIO, bs);
1062 bio_integrity_trim(clone,
1063 bio_sector_offset(bio, idx, offset), len);
1064 }
1065
1066 return clone;
1067}
1068
1069/*
1070 * Creates a bio that consists of range of complete bvecs.
1071 */
1072static struct bio *clone_bio(struct bio *bio, sector_t sector,
1073 unsigned short idx, unsigned short bv_count,
1074 unsigned int len, struct bio_set *bs)
1075{
1076 struct bio *clone;
1077
1078 clone = bio_alloc_bioset(GFP_NOIO, bio->bi_max_vecs, bs);
1079 __bio_clone(clone, bio);
1080 clone->bi_destructor = dm_bio_destructor;
1081 clone->bi_sector = sector;
1082 clone->bi_idx = idx;
1083 clone->bi_vcnt = idx + bv_count;
1084 clone->bi_size = to_bytes(len);
1085 clone->bi_flags &= ~(1 << BIO_SEG_VALID);
1086
1087 if (bio_integrity(bio)) {
1088 bio_integrity_clone(clone, bio, GFP_NOIO, bs);
1089
1090 if (idx != bio->bi_idx || clone->bi_size < bio->bi_size)
1091 bio_integrity_trim(clone,
1092 bio_sector_offset(bio, idx, 0), len);
1093 }
1094
1095 return clone;
1096}
1097
1098static struct dm_target_io *alloc_tio(struct clone_info *ci,
1099 struct dm_target *ti)
1100{
1101 struct dm_target_io *tio = mempool_alloc(ci->md->tio_pool, GFP_NOIO);
1102
1103 tio->io = ci->io;
1104 tio->ti = ti;
1105 memset(&tio->info, 0, sizeof(tio->info));
1106
1107 return tio;
1108}
1109
1110static void __issue_target_request(struct clone_info *ci, struct dm_target *ti,
1111 unsigned request_nr, sector_t len)
1112{
1113 struct dm_target_io *tio = alloc_tio(ci, ti);
1114 struct bio *clone;
1115
1116 tio->info.target_request_nr = request_nr;
1117
1118 /*
1119 * Discard requests require the bio's inline iovecs be initialized.
1120 * ci->bio->bi_max_vecs is BIO_INLINE_VECS anyway, for both flush
1121 * and discard, so no need for concern about wasted bvec allocations.
1122 */
1123 clone = bio_alloc_bioset(GFP_NOIO, ci->bio->bi_max_vecs, ci->md->bs);
1124 __bio_clone(clone, ci->bio);
1125 clone->bi_destructor = dm_bio_destructor;
1126 if (len) {
1127 clone->bi_sector = ci->sector;
1128 clone->bi_size = to_bytes(len);
1129 }
1130
1131 __map_bio(ti, clone, tio);
1132}
1133
1134static void __issue_target_requests(struct clone_info *ci, struct dm_target *ti,
1135 unsigned num_requests, sector_t len)
1136{
1137 unsigned request_nr;
1138
1139 for (request_nr = 0; request_nr < num_requests; request_nr++)
1140 __issue_target_request(ci, ti, request_nr, len);
1141}
1142
1143static int __clone_and_map_empty_flush(struct clone_info *ci)
1144{
1145 unsigned target_nr = 0;
1146 struct dm_target *ti;
1147
1148 BUG_ON(bio_has_data(ci->bio));
1149 while ((ti = dm_table_get_target(ci->map, target_nr++)))
1150 __issue_target_requests(ci, ti, ti->num_flush_requests, 0);
1151
1152 return 0;
1153}
1154
1155/*
1156 * Perform all io with a single clone.
1157 */
1158static void __clone_and_map_simple(struct clone_info *ci, struct dm_target *ti)
1159{
1160 struct bio *clone, *bio = ci->bio;
1161 struct dm_target_io *tio;
1162
1163 tio = alloc_tio(ci, ti);
1164 clone = clone_bio(bio, ci->sector, ci->idx,
1165 bio->bi_vcnt - ci->idx, ci->sector_count,
1166 ci->md->bs);
1167 __map_bio(ti, clone, tio);
1168 ci->sector_count = 0;
1169}
1170
1171static int __clone_and_map_discard(struct clone_info *ci)
1172{
1173 struct dm_target *ti;
1174 sector_t len;
1175
1176 do {
1177 ti = dm_table_find_target(ci->map, ci->sector);
1178 if (!dm_target_is_valid(ti))
1179 return -EIO;
1180
1181 /*
1182 * Even though the device advertised discard support,
1183 * that does not mean every target supports it, and
1184 * reconfiguration might also have changed that since the
1185 * check was performed.
1186 */
1187 if (!ti->num_discard_requests)
1188 return -EOPNOTSUPP;
1189
1190 len = min(ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1191
1192 __issue_target_requests(ci, ti, ti->num_discard_requests, len);
1193
1194 ci->sector += len;
1195 } while (ci->sector_count -= len);
1196
1197 return 0;
1198}
1199
1200static int __clone_and_map(struct clone_info *ci)
1201{
1202 struct bio *clone, *bio = ci->bio;
1203 struct dm_target *ti;
1204 sector_t len = 0, max;
1205 struct dm_target_io *tio;
1206
1207 if (unlikely(bio->bi_rw & REQ_DISCARD))
1208 return __clone_and_map_discard(ci);
1209
1210 ti = dm_table_find_target(ci->map, ci->sector);
1211 if (!dm_target_is_valid(ti))
1212 return -EIO;
1213
1214 max = max_io_len(ci->sector, ti);
1215
1216 if (ci->sector_count <= max) {
1217 /*
1218 * Optimise for the simple case where we can do all of
1219 * the remaining io with a single clone.
1220 */
1221 __clone_and_map_simple(ci, ti);
1222
1223 } else if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) {
1224 /*
1225 * There are some bvecs that don't span targets.
1226 * Do as many of these as possible.
1227 */
1228 int i;
1229 sector_t remaining = max;
1230 sector_t bv_len;
1231
1232 for (i = ci->idx; remaining && (i < bio->bi_vcnt); i++) {
1233 bv_len = to_sector(bio->bi_io_vec[i].bv_len);
1234
1235 if (bv_len > remaining)
1236 break;
1237
1238 remaining -= bv_len;
1239 len += bv_len;
1240 }
1241
1242 tio = alloc_tio(ci, ti);
1243 clone = clone_bio(bio, ci->sector, ci->idx, i - ci->idx, len,
1244 ci->md->bs);
1245 __map_bio(ti, clone, tio);
1246
1247 ci->sector += len;
1248 ci->sector_count -= len;
1249 ci->idx = i;
1250
1251 } else {
1252 /*
1253 * Handle a bvec that must be split between two or more targets.
1254 */
1255 struct bio_vec *bv = bio->bi_io_vec + ci->idx;
1256 sector_t remaining = to_sector(bv->bv_len);
1257 unsigned int offset = 0;
1258
1259 do {
1260 if (offset) {
1261 ti = dm_table_find_target(ci->map, ci->sector);
1262 if (!dm_target_is_valid(ti))
1263 return -EIO;
1264
1265 max = max_io_len(ci->sector, ti);
1266 }
1267
1268 len = min(remaining, max);
1269
1270 tio = alloc_tio(ci, ti);
1271 clone = split_bvec(bio, ci->sector, ci->idx,
1272 bv->bv_offset + offset, len,
1273 ci->md->bs);
1274
1275 __map_bio(ti, clone, tio);
1276
1277 ci->sector += len;
1278 ci->sector_count -= len;
1279 offset += to_bytes(len);
1280 } while (remaining -= len);
1281
1282 ci->idx++;
1283 }
1284
1285 return 0;
1286}
1287
1288/*
1289 * Split the bio into several clones and submit it to targets.
1290 */
1291static void __split_and_process_bio(struct mapped_device *md, struct bio *bio)
1292{
1293 struct clone_info ci;
1294 int error = 0;
1295
1296 ci.map = dm_get_live_table(md);
1297 if (unlikely(!ci.map)) {
1298 bio_io_error(bio);
1299 return;
1300 }
1301
1302 ci.md = md;
1303 ci.io = alloc_io(md);
1304 ci.io->error = 0;
1305 atomic_set(&ci.io->io_count, 1);
1306 ci.io->bio = bio;
1307 ci.io->md = md;
1308 spin_lock_init(&ci.io->endio_lock);
1309 ci.sector = bio->bi_sector;
1310 ci.idx = bio->bi_idx;
1311
1312 start_io_acct(ci.io);
1313 if (bio->bi_rw & REQ_FLUSH) {
1314 ci.bio = &ci.md->flush_bio;
1315 ci.sector_count = 0;
1316 error = __clone_and_map_empty_flush(&ci);
1317 /* dec_pending submits any data associated with flush */
1318 } else {
1319 ci.bio = bio;
1320 ci.sector_count = bio_sectors(bio);
1321 while (ci.sector_count && !error)
1322 error = __clone_and_map(&ci);
1323 }
1324
1325 /* drop the extra reference count */
1326 dec_pending(ci.io, error);
1327 dm_table_put(ci.map);
1328}
1329/*-----------------------------------------------------------------
1330 * CRUD END
1331 *---------------------------------------------------------------*/
1332
1333static int dm_merge_bvec(struct request_queue *q,
1334 struct bvec_merge_data *bvm,
1335 struct bio_vec *biovec)
1336{
1337 struct mapped_device *md = q->queuedata;
1338 struct dm_table *map = dm_get_live_table(md);
1339 struct dm_target *ti;
1340 sector_t max_sectors;
1341 int max_size = 0;
1342
1343 if (unlikely(!map))
1344 goto out;
1345
1346 ti = dm_table_find_target(map, bvm->bi_sector);
1347 if (!dm_target_is_valid(ti))
1348 goto out_table;
1349
1350 /*
1351 * Find maximum amount of I/O that won't need splitting
1352 */
1353 max_sectors = min(max_io_len(bvm->bi_sector, ti),
1354 (sector_t) BIO_MAX_SECTORS);
1355 max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
1356 if (max_size < 0)
1357 max_size = 0;
1358
1359 /*
1360 * merge_bvec_fn() returns number of bytes
1361 * it can accept at this offset
1362 * max is precomputed maximal io size
1363 */
1364 if (max_size && ti->type->merge)
1365 max_size = ti->type->merge(ti, bvm, biovec, max_size);
1366 /*
1367 * If the target doesn't support merge method and some of the devices
1368 * provided their merge_bvec method (we know this by looking at
1369 * queue_max_hw_sectors), then we can't allow bios with multiple vector
1370 * entries. So always set max_size to 0, and the code below allows
1371 * just one page.
1372 */
1373 else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9)
1374
1375 max_size = 0;
1376
1377out_table:
1378 dm_table_put(map);
1379
1380out:
1381 /*
1382 * Always allow an entire first page
1383 */
1384 if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
1385 max_size = biovec->bv_len;
1386
1387 return max_size;
1388}
1389
1390/*
1391 * The request function that just remaps the bio built up by
1392 * dm_merge_bvec.
1393 */
1394static int _dm_request(struct request_queue *q, struct bio *bio)
1395{
1396 int rw = bio_data_dir(bio);
1397 struct mapped_device *md = q->queuedata;
1398 int cpu;
1399
1400 down_read(&md->io_lock);
1401
1402 cpu = part_stat_lock();
1403 part_stat_inc(cpu, &dm_disk(md)->part0, ios[rw]);
1404 part_stat_add(cpu, &dm_disk(md)->part0, sectors[rw], bio_sectors(bio));
1405 part_stat_unlock();
1406
1407 /* if we're suspended, we have to queue this io for later */
1408 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1409 up_read(&md->io_lock);
1410
1411 if (bio_rw(bio) != READA)
1412 queue_io(md, bio);
1413 else
1414 bio_io_error(bio);
1415 return 0;
1416 }
1417
1418 __split_and_process_bio(md, bio);
1419 up_read(&md->io_lock);
1420 return 0;
1421}
1422
1423static int dm_make_request(struct request_queue *q, struct bio *bio)
1424{
1425 struct mapped_device *md = q->queuedata;
1426
1427 return md->saved_make_request_fn(q, bio); /* call __make_request() */
1428}
1429
1430static int dm_request_based(struct mapped_device *md)
1431{
1432 return blk_queue_stackable(md->queue);
1433}
1434
1435static int dm_request(struct request_queue *q, struct bio *bio)
1436{
1437 struct mapped_device *md = q->queuedata;
1438
1439 if (dm_request_based(md))
1440 return dm_make_request(q, bio);
1441
1442 return _dm_request(q, bio);
1443}
1444
1445void dm_dispatch_request(struct request *rq)
1446{
1447 int r;
1448
1449 if (blk_queue_io_stat(rq->q))
1450 rq->cmd_flags |= REQ_IO_STAT;
1451
1452 rq->start_time = jiffies;
1453 r = blk_insert_cloned_request(rq->q, rq);
1454 if (r)
1455 dm_complete_request(rq, r);
1456}
1457EXPORT_SYMBOL_GPL(dm_dispatch_request);
1458
1459static void dm_rq_bio_destructor(struct bio *bio)
1460{
1461 struct dm_rq_clone_bio_info *info = bio->bi_private;
1462 struct mapped_device *md = info->tio->md;
1463
1464 free_bio_info(info);
1465 bio_free(bio, md->bs);
1466}
1467
1468static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig,
1469 void *data)
1470{
1471 struct dm_rq_target_io *tio = data;
1472 struct mapped_device *md = tio->md;
1473 struct dm_rq_clone_bio_info *info = alloc_bio_info(md);
1474
1475 if (!info)
1476 return -ENOMEM;
1477
1478 info->orig = bio_orig;
1479 info->tio = tio;
1480 bio->bi_end_io = end_clone_bio;
1481 bio->bi_private = info;
1482 bio->bi_destructor = dm_rq_bio_destructor;
1483
1484 return 0;
1485}
1486
1487static int setup_clone(struct request *clone, struct request *rq,
1488 struct dm_rq_target_io *tio)
1489{
1490 int r;
1491
1492 r = blk_rq_prep_clone(clone, rq, tio->md->bs, GFP_ATOMIC,
1493 dm_rq_bio_constructor, tio);
1494 if (r)
1495 return r;
1496
1497 clone->cmd = rq->cmd;
1498 clone->cmd_len = rq->cmd_len;
1499 clone->sense = rq->sense;
1500 clone->buffer = rq->buffer;
1501 clone->end_io = end_clone_request;
1502 clone->end_io_data = tio;
1503
1504 return 0;
1505}
1506
1507static struct request *clone_rq(struct request *rq, struct mapped_device *md,
1508 gfp_t gfp_mask)
1509{
1510 struct request *clone;
1511 struct dm_rq_target_io *tio;
1512
1513 tio = alloc_rq_tio(md, gfp_mask);
1514 if (!tio)
1515 return NULL;
1516
1517 tio->md = md;
1518 tio->ti = NULL;
1519 tio->orig = rq;
1520 tio->error = 0;
1521 memset(&tio->info, 0, sizeof(tio->info));
1522
1523 clone = &tio->clone;
1524 if (setup_clone(clone, rq, tio)) {
1525 /* -ENOMEM */
1526 free_rq_tio(tio);
1527 return NULL;
1528 }
1529
1530 return clone;
1531}
1532
1533/*
1534 * Called with the queue lock held.
1535 */
1536static int dm_prep_fn(struct request_queue *q, struct request *rq)
1537{
1538 struct mapped_device *md = q->queuedata;
1539 struct request *clone;
1540
1541 if (unlikely(rq->special)) {
1542 DMWARN("Already has something in rq->special.");
1543 return BLKPREP_KILL;
1544 }
1545
1546 clone = clone_rq(rq, md, GFP_ATOMIC);
1547 if (!clone)
1548 return BLKPREP_DEFER;
1549
1550 rq->special = clone;
1551 rq->cmd_flags |= REQ_DONTPREP;
1552
1553 return BLKPREP_OK;
1554}
1555
1556/*
1557 * Returns:
1558 * 0 : the request has been processed (not requeued)
1559 * !0 : the request has been requeued
1560 */
1561static int map_request(struct dm_target *ti, struct request *clone,
1562 struct mapped_device *md)
1563{
1564 int r, requeued = 0;
1565 struct dm_rq_target_io *tio = clone->end_io_data;
1566
1567 /*
1568 * Hold the md reference here for the in-flight I/O.
1569 * We can't rely on the reference count by device opener,
1570 * because the device may be closed during the request completion
1571 * when all bios are completed.
1572 * See the comment in rq_completed() too.
1573 */
1574 dm_get(md);
1575
1576 tio->ti = ti;
1577 r = ti->type->map_rq(ti, clone, &tio->info);
1578 switch (r) {
1579 case DM_MAPIO_SUBMITTED:
1580 /* The target has taken the I/O to submit by itself later */
1581 break;
1582 case DM_MAPIO_REMAPPED:
1583 /* The target has remapped the I/O so dispatch it */
1584 trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)),
1585 blk_rq_pos(tio->orig));
1586 dm_dispatch_request(clone);
1587 break;
1588 case DM_MAPIO_REQUEUE:
1589 /* The target wants to requeue the I/O */
1590 dm_requeue_unmapped_request(clone);
1591 requeued = 1;
1592 break;
1593 default:
1594 if (r > 0) {
1595 DMWARN("unimplemented target map return value: %d", r);
1596 BUG();
1597 }
1598
1599 /* The target wants to complete the I/O */
1600 dm_kill_unmapped_request(clone, r);
1601 break;
1602 }
1603
1604 return requeued;
1605}
1606
1607/*
1608 * q->request_fn for request-based dm.
1609 * Called with the queue lock held.
1610 */
1611static void dm_request_fn(struct request_queue *q)
1612{
1613 struct mapped_device *md = q->queuedata;
1614 struct dm_table *map = dm_get_live_table(md);
1615 struct dm_target *ti;
1616 struct request *rq, *clone;
1617 sector_t pos;
1618
1619 /*
1620 * For suspend, check blk_queue_stopped() and increment
1621 * ->pending within a single queue_lock not to increment the
1622 * number of in-flight I/Os after the queue is stopped in
1623 * dm_suspend().
1624 */
1625 while (!blk_queue_stopped(q)) {
1626 rq = blk_peek_request(q);
1627 if (!rq)
1628 goto delay_and_out;
1629
1630 /* always use block 0 to find the target for flushes for now */
1631 pos = 0;
1632 if (!(rq->cmd_flags & REQ_FLUSH))
1633 pos = blk_rq_pos(rq);
1634
1635 ti = dm_table_find_target(map, pos);
1636 BUG_ON(!dm_target_is_valid(ti));
1637
1638 if (ti->type->busy && ti->type->busy(ti))
1639 goto delay_and_out;
1640
1641 blk_start_request(rq);
1642 clone = rq->special;
1643 atomic_inc(&md->pending[rq_data_dir(clone)]);
1644
1645 spin_unlock(q->queue_lock);
1646 if (map_request(ti, clone, md))
1647 goto requeued;
1648
1649 BUG_ON(!irqs_disabled());
1650 spin_lock(q->queue_lock);
1651 }
1652
1653 goto out;
1654
1655requeued:
1656 BUG_ON(!irqs_disabled());
1657 spin_lock(q->queue_lock);
1658
1659delay_and_out:
1660 blk_delay_queue(q, HZ / 10);
1661out:
1662 dm_table_put(map);
1663
1664 return;
1665}
1666
1667int dm_underlying_device_busy(struct request_queue *q)
1668{
1669 return blk_lld_busy(q);
1670}
1671EXPORT_SYMBOL_GPL(dm_underlying_device_busy);
1672
1673static int dm_lld_busy(struct request_queue *q)
1674{
1675 int r;
1676 struct mapped_device *md = q->queuedata;
1677 struct dm_table *map = dm_get_live_table(md);
1678
1679 if (!map || test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))
1680 r = 1;
1681 else
1682 r = dm_table_any_busy_target(map);
1683
1684 dm_table_put(map);
1685
1686 return r;
1687}
1688
1689static int dm_any_congested(void *congested_data, int bdi_bits)
1690{
1691 int r = bdi_bits;
1692 struct mapped_device *md = congested_data;
1693 struct dm_table *map;
1694
1695 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1696 map = dm_get_live_table(md);
1697 if (map) {
1698 /*
1699 * Request-based dm cares about only own queue for
1700 * the query about congestion status of request_queue
1701 */
1702 if (dm_request_based(md))
1703 r = md->queue->backing_dev_info.state &
1704 bdi_bits;
1705 else
1706 r = dm_table_any_congested(map, bdi_bits);
1707
1708 dm_table_put(map);
1709 }
1710 }
1711
1712 return r;
1713}
1714
1715/*-----------------------------------------------------------------
1716 * An IDR is used to keep track of allocated minor numbers.
1717 *---------------------------------------------------------------*/
1718static void free_minor(int minor)
1719{
1720 spin_lock(&_minor_lock);
1721 idr_remove(&_minor_idr, minor);
1722 spin_unlock(&_minor_lock);
1723}
1724
1725/*
1726 * See if the device with a specific minor # is free.
1727 */
1728static int specific_minor(int minor)
1729{
1730 int r, m;
1731
1732 if (minor >= (1 << MINORBITS))
1733 return -EINVAL;
1734
1735 r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1736 if (!r)
1737 return -ENOMEM;
1738
1739 spin_lock(&_minor_lock);
1740
1741 if (idr_find(&_minor_idr, minor)) {
1742 r = -EBUSY;
1743 goto out;
1744 }
1745
1746 r = idr_get_new_above(&_minor_idr, MINOR_ALLOCED, minor, &m);
1747 if (r)
1748 goto out;
1749
1750 if (m != minor) {
1751 idr_remove(&_minor_idr, m);
1752 r = -EBUSY;
1753 goto out;
1754 }
1755
1756out:
1757 spin_unlock(&_minor_lock);
1758 return r;
1759}
1760
1761static int next_free_minor(int *minor)
1762{
1763 int r, m;
1764
1765 r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1766 if (!r)
1767 return -ENOMEM;
1768
1769 spin_lock(&_minor_lock);
1770
1771 r = idr_get_new(&_minor_idr, MINOR_ALLOCED, &m);
1772 if (r)
1773 goto out;
1774
1775 if (m >= (1 << MINORBITS)) {
1776 idr_remove(&_minor_idr, m);
1777 r = -ENOSPC;
1778 goto out;
1779 }
1780
1781 *minor = m;
1782
1783out:
1784 spin_unlock(&_minor_lock);
1785 return r;
1786}
1787
1788static const struct block_device_operations dm_blk_dops;
1789
1790static void dm_wq_work(struct work_struct *work);
1791
1792static void dm_init_md_queue(struct mapped_device *md)
1793{
1794 /*
1795 * Request-based dm devices cannot be stacked on top of bio-based dm
1796 * devices. The type of this dm device has not been decided yet.
1797 * The type is decided at the first table loading time.
1798 * To prevent problematic device stacking, clear the queue flag
1799 * for request stacking support until then.
1800 *
1801 * This queue is new, so no concurrency on the queue_flags.
1802 */
1803 queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
1804
1805 md->queue->queuedata = md;
1806 md->queue->backing_dev_info.congested_fn = dm_any_congested;
1807 md->queue->backing_dev_info.congested_data = md;
1808 blk_queue_make_request(md->queue, dm_request);
1809 blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
1810 blk_queue_merge_bvec(md->queue, dm_merge_bvec);
1811}
1812
1813/*
1814 * Allocate and initialise a blank device with a given minor.
1815 */
1816static struct mapped_device *alloc_dev(int minor)
1817{
1818 int r;
1819 struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
1820 void *old_md;
1821
1822 if (!md) {
1823 DMWARN("unable to allocate device, out of memory.");
1824 return NULL;
1825 }
1826
1827 if (!try_module_get(THIS_MODULE))
1828 goto bad_module_get;
1829
1830 /* get a minor number for the dev */
1831 if (minor == DM_ANY_MINOR)
1832 r = next_free_minor(&minor);
1833 else
1834 r = specific_minor(minor);
1835 if (r < 0)
1836 goto bad_minor;
1837
1838 md->type = DM_TYPE_NONE;
1839 init_rwsem(&md->io_lock);
1840 mutex_init(&md->suspend_lock);
1841 mutex_init(&md->type_lock);
1842 spin_lock_init(&md->deferred_lock);
1843 rwlock_init(&md->map_lock);
1844 atomic_set(&md->holders, 1);
1845 atomic_set(&md->open_count, 0);
1846 atomic_set(&md->event_nr, 0);
1847 atomic_set(&md->uevent_seq, 0);
1848 INIT_LIST_HEAD(&md->uevent_list);
1849 spin_lock_init(&md->uevent_lock);
1850
1851 md->queue = blk_alloc_queue(GFP_KERNEL);
1852 if (!md->queue)
1853 goto bad_queue;
1854
1855 dm_init_md_queue(md);
1856
1857 md->disk = alloc_disk(1);
1858 if (!md->disk)
1859 goto bad_disk;
1860
1861 atomic_set(&md->pending[0], 0);
1862 atomic_set(&md->pending[1], 0);
1863 init_waitqueue_head(&md->wait);
1864 INIT_WORK(&md->work, dm_wq_work);
1865 init_waitqueue_head(&md->eventq);
1866
1867 md->disk->major = _major;
1868 md->disk->first_minor = minor;
1869 md->disk->fops = &dm_blk_dops;
1870 md->disk->queue = md->queue;
1871 md->disk->private_data = md;
1872 sprintf(md->disk->disk_name, "dm-%d", minor);
1873 add_disk(md->disk);
1874 format_dev_t(md->name, MKDEV(_major, minor));
1875
1876 md->wq = alloc_workqueue("kdmflush",
1877 WQ_NON_REENTRANT | WQ_MEM_RECLAIM, 0);
1878 if (!md->wq)
1879 goto bad_thread;
1880
1881 md->bdev = bdget_disk(md->disk, 0);
1882 if (!md->bdev)
1883 goto bad_bdev;
1884
1885 bio_init(&md->flush_bio);
1886 md->flush_bio.bi_bdev = md->bdev;
1887 md->flush_bio.bi_rw = WRITE_FLUSH;
1888
1889 /* Populate the mapping, nobody knows we exist yet */
1890 spin_lock(&_minor_lock);
1891 old_md = idr_replace(&_minor_idr, md, minor);
1892 spin_unlock(&_minor_lock);
1893
1894 BUG_ON(old_md != MINOR_ALLOCED);
1895
1896 return md;
1897
1898bad_bdev:
1899 destroy_workqueue(md->wq);
1900bad_thread:
1901 del_gendisk(md->disk);
1902 put_disk(md->disk);
1903bad_disk:
1904 blk_cleanup_queue(md->queue);
1905bad_queue:
1906 free_minor(minor);
1907bad_minor:
1908 module_put(THIS_MODULE);
1909bad_module_get:
1910 kfree(md);
1911 return NULL;
1912}
1913
1914static void unlock_fs(struct mapped_device *md);
1915
1916static void free_dev(struct mapped_device *md)
1917{
1918 int minor = MINOR(disk_devt(md->disk));
1919
1920 unlock_fs(md);
1921 bdput(md->bdev);
1922 destroy_workqueue(md->wq);
1923 if (md->tio_pool)
1924 mempool_destroy(md->tio_pool);
1925 if (md->io_pool)
1926 mempool_destroy(md->io_pool);
1927 if (md->bs)
1928 bioset_free(md->bs);
1929 blk_integrity_unregister(md->disk);
1930 del_gendisk(md->disk);
1931 free_minor(minor);
1932
1933 spin_lock(&_minor_lock);
1934 md->disk->private_data = NULL;
1935 spin_unlock(&_minor_lock);
1936
1937 put_disk(md->disk);
1938 blk_cleanup_queue(md->queue);
1939 module_put(THIS_MODULE);
1940 kfree(md);
1941}
1942
1943static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
1944{
1945 struct dm_md_mempools *p;
1946
1947 if (md->io_pool && md->tio_pool && md->bs)
1948 /* the md already has necessary mempools */
1949 goto out;
1950
1951 p = dm_table_get_md_mempools(t);
1952 BUG_ON(!p || md->io_pool || md->tio_pool || md->bs);
1953
1954 md->io_pool = p->io_pool;
1955 p->io_pool = NULL;
1956 md->tio_pool = p->tio_pool;
1957 p->tio_pool = NULL;
1958 md->bs = p->bs;
1959 p->bs = NULL;
1960
1961out:
1962 /* mempool bind completed, now no need any mempools in the table */
1963 dm_table_free_md_mempools(t);
1964}
1965
1966/*
1967 * Bind a table to the device.
1968 */
1969static void event_callback(void *context)
1970{
1971 unsigned long flags;
1972 LIST_HEAD(uevents);
1973 struct mapped_device *md = (struct mapped_device *) context;
1974
1975 spin_lock_irqsave(&md->uevent_lock, flags);
1976 list_splice_init(&md->uevent_list, &uevents);
1977 spin_unlock_irqrestore(&md->uevent_lock, flags);
1978
1979 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
1980
1981 atomic_inc(&md->event_nr);
1982 wake_up(&md->eventq);
1983}
1984
1985/*
1986 * Protected by md->suspend_lock obtained by dm_swap_table().
1987 */
1988static void __set_size(struct mapped_device *md, sector_t size)
1989{
1990 set_capacity(md->disk, size);
1991
1992 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
1993}
1994
1995/*
1996 * Return 1 if the queue has a compulsory merge_bvec_fn function.
1997 *
1998 * If this function returns 0, then the device is either a non-dm
1999 * device without a merge_bvec_fn, or it is a dm device that is
2000 * able to split any bios it receives that are too big.
2001 */
2002int dm_queue_merge_is_compulsory(struct request_queue *q)
2003{
2004 struct mapped_device *dev_md;
2005
2006 if (!q->merge_bvec_fn)
2007 return 0;
2008
2009 if (q->make_request_fn == dm_request) {
2010 dev_md = q->queuedata;
2011 if (test_bit(DMF_MERGE_IS_OPTIONAL, &dev_md->flags))
2012 return 0;
2013 }
2014
2015 return 1;
2016}
2017
2018static int dm_device_merge_is_compulsory(struct dm_target *ti,
2019 struct dm_dev *dev, sector_t start,
2020 sector_t len, void *data)
2021{
2022 struct block_device *bdev = dev->bdev;
2023 struct request_queue *q = bdev_get_queue(bdev);
2024
2025 return dm_queue_merge_is_compulsory(q);
2026}
2027
2028/*
2029 * Return 1 if it is acceptable to ignore merge_bvec_fn based
2030 * on the properties of the underlying devices.
2031 */
2032static int dm_table_merge_is_optional(struct dm_table *table)
2033{
2034 unsigned i = 0;
2035 struct dm_target *ti;
2036
2037 while (i < dm_table_get_num_targets(table)) {
2038 ti = dm_table_get_target(table, i++);
2039
2040 if (ti->type->iterate_devices &&
2041 ti->type->iterate_devices(ti, dm_device_merge_is_compulsory, NULL))
2042 return 0;
2043 }
2044
2045 return 1;
2046}
2047
2048/*
2049 * Returns old map, which caller must destroy.
2050 */
2051static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2052 struct queue_limits *limits)
2053{
2054 struct dm_table *old_map;
2055 struct request_queue *q = md->queue;
2056 sector_t size;
2057 unsigned long flags;
2058 int merge_is_optional;
2059
2060 size = dm_table_get_size(t);
2061
2062 /*
2063 * Wipe any geometry if the size of the table changed.
2064 */
2065 if (size != get_capacity(md->disk))
2066 memset(&md->geometry, 0, sizeof(md->geometry));
2067
2068 __set_size(md, size);
2069
2070 dm_table_event_callback(t, event_callback, md);
2071
2072 /*
2073 * The queue hasn't been stopped yet, if the old table type wasn't
2074 * for request-based during suspension. So stop it to prevent
2075 * I/O mapping before resume.
2076 * This must be done before setting the queue restrictions,
2077 * because request-based dm may be run just after the setting.
2078 */
2079 if (dm_table_request_based(t) && !blk_queue_stopped(q))
2080 stop_queue(q);
2081
2082 __bind_mempools(md, t);
2083
2084 merge_is_optional = dm_table_merge_is_optional(t);
2085
2086 write_lock_irqsave(&md->map_lock, flags);
2087 old_map = md->map;
2088 md->map = t;
2089 dm_table_set_restrictions(t, q, limits);
2090 if (merge_is_optional)
2091 set_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2092 else
2093 clear_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2094 write_unlock_irqrestore(&md->map_lock, flags);
2095
2096 return old_map;
2097}
2098
2099/*
2100 * Returns unbound table for the caller to free.
2101 */
2102static struct dm_table *__unbind(struct mapped_device *md)
2103{
2104 struct dm_table *map = md->map;
2105 unsigned long flags;
2106
2107 if (!map)
2108 return NULL;
2109
2110 dm_table_event_callback(map, NULL, NULL);
2111 write_lock_irqsave(&md->map_lock, flags);
2112 md->map = NULL;
2113 write_unlock_irqrestore(&md->map_lock, flags);
2114
2115 return map;
2116}
2117
2118/*
2119 * Constructor for a new device.
2120 */
2121int dm_create(int minor, struct mapped_device **result)
2122{
2123 struct mapped_device *md;
2124
2125 md = alloc_dev(minor);
2126 if (!md)
2127 return -ENXIO;
2128
2129 dm_sysfs_init(md);
2130
2131 *result = md;
2132 return 0;
2133}
2134
2135/*
2136 * Functions to manage md->type.
2137 * All are required to hold md->type_lock.
2138 */
2139void dm_lock_md_type(struct mapped_device *md)
2140{
2141 mutex_lock(&md->type_lock);
2142}
2143
2144void dm_unlock_md_type(struct mapped_device *md)
2145{
2146 mutex_unlock(&md->type_lock);
2147}
2148
2149void dm_set_md_type(struct mapped_device *md, unsigned type)
2150{
2151 md->type = type;
2152}
2153
2154unsigned dm_get_md_type(struct mapped_device *md)
2155{
2156 return md->type;
2157}
2158
2159/*
2160 * Fully initialize a request-based queue (->elevator, ->request_fn, etc).
2161 */
2162static int dm_init_request_based_queue(struct mapped_device *md)
2163{
2164 struct request_queue *q = NULL;
2165
2166 if (md->queue->elevator)
2167 return 1;
2168
2169 /* Fully initialize the queue */
2170 q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL);
2171 if (!q)
2172 return 0;
2173
2174 md->queue = q;
2175 md->saved_make_request_fn = md->queue->make_request_fn;
2176 dm_init_md_queue(md);
2177 blk_queue_softirq_done(md->queue, dm_softirq_done);
2178 blk_queue_prep_rq(md->queue, dm_prep_fn);
2179 blk_queue_lld_busy(md->queue, dm_lld_busy);
2180
2181 elv_register_queue(md->queue);
2182
2183 return 1;
2184}
2185
2186/*
2187 * Setup the DM device's queue based on md's type
2188 */
2189int dm_setup_md_queue(struct mapped_device *md)
2190{
2191 if ((dm_get_md_type(md) == DM_TYPE_REQUEST_BASED) &&
2192 !dm_init_request_based_queue(md)) {
2193 DMWARN("Cannot initialize queue for request-based mapped device");
2194 return -EINVAL;
2195 }
2196
2197 return 0;
2198}
2199
2200static struct mapped_device *dm_find_md(dev_t dev)
2201{
2202 struct mapped_device *md;
2203 unsigned minor = MINOR(dev);
2204
2205 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2206 return NULL;
2207
2208 spin_lock(&_minor_lock);
2209
2210 md = idr_find(&_minor_idr, minor);
2211 if (md && (md == MINOR_ALLOCED ||
2212 (MINOR(disk_devt(dm_disk(md))) != minor) ||
2213 dm_deleting_md(md) ||
2214 test_bit(DMF_FREEING, &md->flags))) {
2215 md = NULL;
2216 goto out;
2217 }
2218
2219out:
2220 spin_unlock(&_minor_lock);
2221
2222 return md;
2223}
2224
2225struct mapped_device *dm_get_md(dev_t dev)
2226{
2227 struct mapped_device *md = dm_find_md(dev);
2228
2229 if (md)
2230 dm_get(md);
2231
2232 return md;
2233}
2234
2235void *dm_get_mdptr(struct mapped_device *md)
2236{
2237 return md->interface_ptr;
2238}
2239
2240void dm_set_mdptr(struct mapped_device *md, void *ptr)
2241{
2242 md->interface_ptr = ptr;
2243}
2244
2245void dm_get(struct mapped_device *md)
2246{
2247 atomic_inc(&md->holders);
2248 BUG_ON(test_bit(DMF_FREEING, &md->flags));
2249}
2250
2251const char *dm_device_name(struct mapped_device *md)
2252{
2253 return md->name;
2254}
2255EXPORT_SYMBOL_GPL(dm_device_name);
2256
2257static void __dm_destroy(struct mapped_device *md, bool wait)
2258{
2259 struct dm_table *map;
2260
2261 might_sleep();
2262
2263 spin_lock(&_minor_lock);
2264 map = dm_get_live_table(md);
2265 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2266 set_bit(DMF_FREEING, &md->flags);
2267 spin_unlock(&_minor_lock);
2268
2269 if (!dm_suspended_md(md)) {
2270 dm_table_presuspend_targets(map);
2271 dm_table_postsuspend_targets(map);
2272 }
2273
2274 /*
2275 * Rare, but there may be I/O requests still going to complete,
2276 * for example. Wait for all references to disappear.
2277 * No one should increment the reference count of the mapped_device,
2278 * after the mapped_device state becomes DMF_FREEING.
2279 */
2280 if (wait)
2281 while (atomic_read(&md->holders))
2282 msleep(1);
2283 else if (atomic_read(&md->holders))
2284 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2285 dm_device_name(md), atomic_read(&md->holders));
2286
2287 dm_sysfs_exit(md);
2288 dm_table_put(map);
2289 dm_table_destroy(__unbind(md));
2290 free_dev(md);
2291}
2292
2293void dm_destroy(struct mapped_device *md)
2294{
2295 __dm_destroy(md, true);
2296}
2297
2298void dm_destroy_immediate(struct mapped_device *md)
2299{
2300 __dm_destroy(md, false);
2301}
2302
2303void dm_put(struct mapped_device *md)
2304{
2305 atomic_dec(&md->holders);
2306}
2307EXPORT_SYMBOL_GPL(dm_put);
2308
2309static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
2310{
2311 int r = 0;
2312 DECLARE_WAITQUEUE(wait, current);
2313
2314 add_wait_queue(&md->wait, &wait);
2315
2316 while (1) {
2317 set_current_state(interruptible);
2318
2319 smp_mb();
2320 if (!md_in_flight(md))
2321 break;
2322
2323 if (interruptible == TASK_INTERRUPTIBLE &&
2324 signal_pending(current)) {
2325 r = -EINTR;
2326 break;
2327 }
2328
2329 io_schedule();
2330 }
2331 set_current_state(TASK_RUNNING);
2332
2333 remove_wait_queue(&md->wait, &wait);
2334
2335 return r;
2336}
2337
2338/*
2339 * Process the deferred bios
2340 */
2341static void dm_wq_work(struct work_struct *work)
2342{
2343 struct mapped_device *md = container_of(work, struct mapped_device,
2344 work);
2345 struct bio *c;
2346
2347 down_read(&md->io_lock);
2348
2349 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2350 spin_lock_irq(&md->deferred_lock);
2351 c = bio_list_pop(&md->deferred);
2352 spin_unlock_irq(&md->deferred_lock);
2353
2354 if (!c)
2355 break;
2356
2357 up_read(&md->io_lock);
2358
2359 if (dm_request_based(md))
2360 generic_make_request(c);
2361 else
2362 __split_and_process_bio(md, c);
2363
2364 down_read(&md->io_lock);
2365 }
2366
2367 up_read(&md->io_lock);
2368}
2369
2370static void dm_queue_flush(struct mapped_device *md)
2371{
2372 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2373 smp_mb__after_clear_bit();
2374 queue_work(md->wq, &md->work);
2375}
2376
2377/*
2378 * Swap in a new table, returning the old one for the caller to destroy.
2379 */
2380struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2381{
2382 struct dm_table *map = ERR_PTR(-EINVAL);
2383 struct queue_limits limits;
2384 int r;
2385
2386 mutex_lock(&md->suspend_lock);
2387
2388 /* device must be suspended */
2389 if (!dm_suspended_md(md))
2390 goto out;
2391
2392 r = dm_calculate_queue_limits(table, &limits);
2393 if (r) {
2394 map = ERR_PTR(r);
2395 goto out;
2396 }
2397
2398 map = __bind(md, table, &limits);
2399
2400out:
2401 mutex_unlock(&md->suspend_lock);
2402 return map;
2403}
2404
2405/*
2406 * Functions to lock and unlock any filesystem running on the
2407 * device.
2408 */
2409static int lock_fs(struct mapped_device *md)
2410{
2411 int r;
2412
2413 WARN_ON(md->frozen_sb);
2414
2415 md->frozen_sb = freeze_bdev(md->bdev);
2416 if (IS_ERR(md->frozen_sb)) {
2417 r = PTR_ERR(md->frozen_sb);
2418 md->frozen_sb = NULL;
2419 return r;
2420 }
2421
2422 set_bit(DMF_FROZEN, &md->flags);
2423
2424 return 0;
2425}
2426
2427static void unlock_fs(struct mapped_device *md)
2428{
2429 if (!test_bit(DMF_FROZEN, &md->flags))
2430 return;
2431
2432 thaw_bdev(md->bdev, md->frozen_sb);
2433 md->frozen_sb = NULL;
2434 clear_bit(DMF_FROZEN, &md->flags);
2435}
2436
2437/*
2438 * We need to be able to change a mapping table under a mounted
2439 * filesystem. For example we might want to move some data in
2440 * the background. Before the table can be swapped with
2441 * dm_bind_table, dm_suspend must be called to flush any in
2442 * flight bios and ensure that any further io gets deferred.
2443 */
2444/*
2445 * Suspend mechanism in request-based dm.
2446 *
2447 * 1. Flush all I/Os by lock_fs() if needed.
2448 * 2. Stop dispatching any I/O by stopping the request_queue.
2449 * 3. Wait for all in-flight I/Os to be completed or requeued.
2450 *
2451 * To abort suspend, start the request_queue.
2452 */
2453int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2454{
2455 struct dm_table *map = NULL;
2456 int r = 0;
2457 int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0;
2458 int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0;
2459
2460 mutex_lock(&md->suspend_lock);
2461
2462 if (dm_suspended_md(md)) {
2463 r = -EINVAL;
2464 goto out_unlock;
2465 }
2466
2467 map = dm_get_live_table(md);
2468
2469 /*
2470 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2471 * This flag is cleared before dm_suspend returns.
2472 */
2473 if (noflush)
2474 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2475
2476 /* This does not get reverted if there's an error later. */
2477 dm_table_presuspend_targets(map);
2478
2479 /*
2480 * Flush I/O to the device.
2481 * Any I/O submitted after lock_fs() may not be flushed.
2482 * noflush takes precedence over do_lockfs.
2483 * (lock_fs() flushes I/Os and waits for them to complete.)
2484 */
2485 if (!noflush && do_lockfs) {
2486 r = lock_fs(md);
2487 if (r)
2488 goto out;
2489 }
2490
2491 /*
2492 * Here we must make sure that no processes are submitting requests
2493 * to target drivers i.e. no one may be executing
2494 * __split_and_process_bio. This is called from dm_request and
2495 * dm_wq_work.
2496 *
2497 * To get all processes out of __split_and_process_bio in dm_request,
2498 * we take the write lock. To prevent any process from reentering
2499 * __split_and_process_bio from dm_request and quiesce the thread
2500 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2501 * flush_workqueue(md->wq).
2502 */
2503 down_write(&md->io_lock);
2504 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2505 up_write(&md->io_lock);
2506
2507 /*
2508 * Stop md->queue before flushing md->wq in case request-based
2509 * dm defers requests to md->wq from md->queue.
2510 */
2511 if (dm_request_based(md))
2512 stop_queue(md->queue);
2513
2514 flush_workqueue(md->wq);
2515
2516 /*
2517 * At this point no more requests are entering target request routines.
2518 * We call dm_wait_for_completion to wait for all existing requests
2519 * to finish.
2520 */
2521 r = dm_wait_for_completion(md, TASK_INTERRUPTIBLE);
2522
2523 down_write(&md->io_lock);
2524 if (noflush)
2525 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2526 up_write(&md->io_lock);
2527
2528 /* were we interrupted ? */
2529 if (r < 0) {
2530 dm_queue_flush(md);
2531
2532 if (dm_request_based(md))
2533 start_queue(md->queue);
2534
2535 unlock_fs(md);
2536 goto out; /* pushback list is already flushed, so skip flush */
2537 }
2538
2539 /*
2540 * If dm_wait_for_completion returned 0, the device is completely
2541 * quiescent now. There is no request-processing activity. All new
2542 * requests are being added to md->deferred list.
2543 */
2544
2545 set_bit(DMF_SUSPENDED, &md->flags);
2546
2547 dm_table_postsuspend_targets(map);
2548
2549out:
2550 dm_table_put(map);
2551
2552out_unlock:
2553 mutex_unlock(&md->suspend_lock);
2554 return r;
2555}
2556
2557int dm_resume(struct mapped_device *md)
2558{
2559 int r = -EINVAL;
2560 struct dm_table *map = NULL;
2561
2562 mutex_lock(&md->suspend_lock);
2563 if (!dm_suspended_md(md))
2564 goto out;
2565
2566 map = dm_get_live_table(md);
2567 if (!map || !dm_table_get_size(map))
2568 goto out;
2569
2570 r = dm_table_resume_targets(map);
2571 if (r)
2572 goto out;
2573
2574 dm_queue_flush(md);
2575
2576 /*
2577 * Flushing deferred I/Os must be done after targets are resumed
2578 * so that mapping of targets can work correctly.
2579 * Request-based dm is queueing the deferred I/Os in its request_queue.
2580 */
2581 if (dm_request_based(md))
2582 start_queue(md->queue);
2583
2584 unlock_fs(md);
2585
2586 clear_bit(DMF_SUSPENDED, &md->flags);
2587
2588 r = 0;
2589out:
2590 dm_table_put(map);
2591 mutex_unlock(&md->suspend_lock);
2592
2593 return r;
2594}
2595
2596/*-----------------------------------------------------------------
2597 * Event notification.
2598 *---------------------------------------------------------------*/
2599int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2600 unsigned cookie)
2601{
2602 char udev_cookie[DM_COOKIE_LENGTH];
2603 char *envp[] = { udev_cookie, NULL };
2604
2605 if (!cookie)
2606 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2607 else {
2608 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2609 DM_COOKIE_ENV_VAR_NAME, cookie);
2610 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2611 action, envp);
2612 }
2613}
2614
2615uint32_t dm_next_uevent_seq(struct mapped_device *md)
2616{
2617 return atomic_add_return(1, &md->uevent_seq);
2618}
2619
2620uint32_t dm_get_event_nr(struct mapped_device *md)
2621{
2622 return atomic_read(&md->event_nr);
2623}
2624
2625int dm_wait_event(struct mapped_device *md, int event_nr)
2626{
2627 return wait_event_interruptible(md->eventq,
2628 (event_nr != atomic_read(&md->event_nr)));
2629}
2630
2631void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2632{
2633 unsigned long flags;
2634
2635 spin_lock_irqsave(&md->uevent_lock, flags);
2636 list_add(elist, &md->uevent_list);
2637 spin_unlock_irqrestore(&md->uevent_lock, flags);
2638}
2639
2640/*
2641 * The gendisk is only valid as long as you have a reference
2642 * count on 'md'.
2643 */
2644struct gendisk *dm_disk(struct mapped_device *md)
2645{
2646 return md->disk;
2647}
2648
2649struct kobject *dm_kobject(struct mapped_device *md)
2650{
2651 return &md->kobj;
2652}
2653
2654/*
2655 * struct mapped_device should not be exported outside of dm.c
2656 * so use this check to verify that kobj is part of md structure
2657 */
2658struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2659{
2660 struct mapped_device *md;
2661
2662 md = container_of(kobj, struct mapped_device, kobj);
2663 if (&md->kobj != kobj)
2664 return NULL;
2665
2666 if (test_bit(DMF_FREEING, &md->flags) ||
2667 dm_deleting_md(md))
2668 return NULL;
2669
2670 dm_get(md);
2671 return md;
2672}
2673
2674int dm_suspended_md(struct mapped_device *md)
2675{
2676 return test_bit(DMF_SUSPENDED, &md->flags);
2677}
2678
2679int dm_suspended(struct dm_target *ti)
2680{
2681 return dm_suspended_md(dm_table_get_md(ti->table));
2682}
2683EXPORT_SYMBOL_GPL(dm_suspended);
2684
2685int dm_noflush_suspending(struct dm_target *ti)
2686{
2687 return __noflush_suspending(dm_table_get_md(ti->table));
2688}
2689EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2690
2691struct dm_md_mempools *dm_alloc_md_mempools(unsigned type, unsigned integrity)
2692{
2693 struct dm_md_mempools *pools = kmalloc(sizeof(*pools), GFP_KERNEL);
2694 unsigned int pool_size = (type == DM_TYPE_BIO_BASED) ? 16 : MIN_IOS;
2695
2696 if (!pools)
2697 return NULL;
2698
2699 pools->io_pool = (type == DM_TYPE_BIO_BASED) ?
2700 mempool_create_slab_pool(MIN_IOS, _io_cache) :
2701 mempool_create_slab_pool(MIN_IOS, _rq_bio_info_cache);
2702 if (!pools->io_pool)
2703 goto free_pools_and_out;
2704
2705 pools->tio_pool = (type == DM_TYPE_BIO_BASED) ?
2706 mempool_create_slab_pool(MIN_IOS, _tio_cache) :
2707 mempool_create_slab_pool(MIN_IOS, _rq_tio_cache);
2708 if (!pools->tio_pool)
2709 goto free_io_pool_and_out;
2710
2711 pools->bs = bioset_create(pool_size, 0);
2712 if (!pools->bs)
2713 goto free_tio_pool_and_out;
2714
2715 if (integrity && bioset_integrity_create(pools->bs, pool_size))
2716 goto free_bioset_and_out;
2717
2718 return pools;
2719
2720free_bioset_and_out:
2721 bioset_free(pools->bs);
2722
2723free_tio_pool_and_out:
2724 mempool_destroy(pools->tio_pool);
2725
2726free_io_pool_and_out:
2727 mempool_destroy(pools->io_pool);
2728
2729free_pools_and_out:
2730 kfree(pools);
2731
2732 return NULL;
2733}
2734
2735void dm_free_md_mempools(struct dm_md_mempools *pools)
2736{
2737 if (!pools)
2738 return;
2739
2740 if (pools->io_pool)
2741 mempool_destroy(pools->io_pool);
2742
2743 if (pools->tio_pool)
2744 mempool_destroy(pools->tio_pool);
2745
2746 if (pools->bs)
2747 bioset_free(pools->bs);
2748
2749 kfree(pools);
2750}
2751
2752static const struct block_device_operations dm_blk_dops = {
2753 .open = dm_blk_open,
2754 .release = dm_blk_close,
2755 .ioctl = dm_blk_ioctl,
2756 .getgeo = dm_blk_getgeo,
2757 .owner = THIS_MODULE
2758};
2759
2760EXPORT_SYMBOL(dm_get_mapinfo);
2761
2762/*
2763 * module hooks
2764 */
2765module_init(dm_init);
2766module_exit(dm_exit);
2767
2768module_param(major, uint, 0);
2769MODULE_PARM_DESC(major, "The major number of the device mapper");
2770MODULE_DESCRIPTION(DM_NAME " driver");
2771MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
2772MODULE_LICENSE("GPL");
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
4 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5 *
6 * This file is released under the GPL.
7 */
8
9#include "dm-core.h"
10#include "dm-rq.h"
11#include "dm-uevent.h"
12#include "dm-ima.h"
13
14#include <linux/init.h>
15#include <linux/module.h>
16#include <linux/mutex.h>
17#include <linux/sched/mm.h>
18#include <linux/sched/signal.h>
19#include <linux/blkpg.h>
20#include <linux/bio.h>
21#include <linux/mempool.h>
22#include <linux/dax.h>
23#include <linux/slab.h>
24#include <linux/idr.h>
25#include <linux/uio.h>
26#include <linux/hdreg.h>
27#include <linux/delay.h>
28#include <linux/wait.h>
29#include <linux/pr.h>
30#include <linux/refcount.h>
31#include <linux/part_stat.h>
32#include <linux/blk-crypto.h>
33#include <linux/blk-crypto-profile.h>
34
35#define DM_MSG_PREFIX "core"
36
37/*
38 * Cookies are numeric values sent with CHANGE and REMOVE
39 * uevents while resuming, removing or renaming the device.
40 */
41#define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
42#define DM_COOKIE_LENGTH 24
43
44/*
45 * For REQ_POLLED fs bio, this flag is set if we link mapped underlying
46 * dm_io into one list, and reuse bio->bi_private as the list head. Before
47 * ending this fs bio, we will recover its ->bi_private.
48 */
49#define REQ_DM_POLL_LIST REQ_DRV
50
51static const char *_name = DM_NAME;
52
53static unsigned int major;
54static unsigned int _major;
55
56static DEFINE_IDR(_minor_idr);
57
58static DEFINE_SPINLOCK(_minor_lock);
59
60static void do_deferred_remove(struct work_struct *w);
61
62static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
63
64static struct workqueue_struct *deferred_remove_workqueue;
65
66atomic_t dm_global_event_nr = ATOMIC_INIT(0);
67DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
68
69void dm_issue_global_event(void)
70{
71 atomic_inc(&dm_global_event_nr);
72 wake_up(&dm_global_eventq);
73}
74
75DEFINE_STATIC_KEY_FALSE(stats_enabled);
76DEFINE_STATIC_KEY_FALSE(swap_bios_enabled);
77DEFINE_STATIC_KEY_FALSE(zoned_enabled);
78
79/*
80 * One of these is allocated (on-stack) per original bio.
81 */
82struct clone_info {
83 struct dm_table *map;
84 struct bio *bio;
85 struct dm_io *io;
86 sector_t sector;
87 unsigned int sector_count;
88 bool is_abnormal_io:1;
89 bool submit_as_polled:1;
90};
91
92static inline struct dm_target_io *clone_to_tio(struct bio *clone)
93{
94 return container_of(clone, struct dm_target_io, clone);
95}
96
97void *dm_per_bio_data(struct bio *bio, size_t data_size)
98{
99 if (!dm_tio_flagged(clone_to_tio(bio), DM_TIO_INSIDE_DM_IO))
100 return (char *)bio - DM_TARGET_IO_BIO_OFFSET - data_size;
101 return (char *)bio - DM_IO_BIO_OFFSET - data_size;
102}
103EXPORT_SYMBOL_GPL(dm_per_bio_data);
104
105struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
106{
107 struct dm_io *io = (struct dm_io *)((char *)data + data_size);
108
109 if (io->magic == DM_IO_MAGIC)
110 return (struct bio *)((char *)io + DM_IO_BIO_OFFSET);
111 BUG_ON(io->magic != DM_TIO_MAGIC);
112 return (struct bio *)((char *)io + DM_TARGET_IO_BIO_OFFSET);
113}
114EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
115
116unsigned int dm_bio_get_target_bio_nr(const struct bio *bio)
117{
118 return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
119}
120EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
121
122#define MINOR_ALLOCED ((void *)-1)
123
124#define DM_NUMA_NODE NUMA_NO_NODE
125static int dm_numa_node = DM_NUMA_NODE;
126
127#define DEFAULT_SWAP_BIOS (8 * 1048576 / PAGE_SIZE)
128static int swap_bios = DEFAULT_SWAP_BIOS;
129static int get_swap_bios(void)
130{
131 int latch = READ_ONCE(swap_bios);
132
133 if (unlikely(latch <= 0))
134 latch = DEFAULT_SWAP_BIOS;
135 return latch;
136}
137
138struct table_device {
139 struct list_head list;
140 refcount_t count;
141 struct dm_dev dm_dev;
142};
143
144/*
145 * Bio-based DM's mempools' reserved IOs set by the user.
146 */
147#define RESERVED_BIO_BASED_IOS 16
148static unsigned int reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
149
150static int __dm_get_module_param_int(int *module_param, int min, int max)
151{
152 int param = READ_ONCE(*module_param);
153 int modified_param = 0;
154 bool modified = true;
155
156 if (param < min)
157 modified_param = min;
158 else if (param > max)
159 modified_param = max;
160 else
161 modified = false;
162
163 if (modified) {
164 (void)cmpxchg(module_param, param, modified_param);
165 param = modified_param;
166 }
167
168 return param;
169}
170
171unsigned int __dm_get_module_param(unsigned int *module_param, unsigned int def, unsigned int max)
172{
173 unsigned int param = READ_ONCE(*module_param);
174 unsigned int modified_param = 0;
175
176 if (!param)
177 modified_param = def;
178 else if (param > max)
179 modified_param = max;
180
181 if (modified_param) {
182 (void)cmpxchg(module_param, param, modified_param);
183 param = modified_param;
184 }
185
186 return param;
187}
188
189unsigned int dm_get_reserved_bio_based_ios(void)
190{
191 return __dm_get_module_param(&reserved_bio_based_ios,
192 RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
193}
194EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
195
196static unsigned int dm_get_numa_node(void)
197{
198 return __dm_get_module_param_int(&dm_numa_node,
199 DM_NUMA_NODE, num_online_nodes() - 1);
200}
201
202static int __init local_init(void)
203{
204 int r;
205
206 r = dm_uevent_init();
207 if (r)
208 return r;
209
210 deferred_remove_workqueue = alloc_ordered_workqueue("kdmremove", 0);
211 if (!deferred_remove_workqueue) {
212 r = -ENOMEM;
213 goto out_uevent_exit;
214 }
215
216 _major = major;
217 r = register_blkdev(_major, _name);
218 if (r < 0)
219 goto out_free_workqueue;
220
221 if (!_major)
222 _major = r;
223
224 return 0;
225
226out_free_workqueue:
227 destroy_workqueue(deferred_remove_workqueue);
228out_uevent_exit:
229 dm_uevent_exit();
230
231 return r;
232}
233
234static void local_exit(void)
235{
236 destroy_workqueue(deferred_remove_workqueue);
237
238 unregister_blkdev(_major, _name);
239 dm_uevent_exit();
240
241 _major = 0;
242
243 DMINFO("cleaned up");
244}
245
246static int (*_inits[])(void) __initdata = {
247 local_init,
248 dm_target_init,
249 dm_linear_init,
250 dm_stripe_init,
251 dm_io_init,
252 dm_kcopyd_init,
253 dm_interface_init,
254 dm_statistics_init,
255};
256
257static void (*_exits[])(void) = {
258 local_exit,
259 dm_target_exit,
260 dm_linear_exit,
261 dm_stripe_exit,
262 dm_io_exit,
263 dm_kcopyd_exit,
264 dm_interface_exit,
265 dm_statistics_exit,
266};
267
268static int __init dm_init(void)
269{
270 const int count = ARRAY_SIZE(_inits);
271 int r, i;
272
273#if (IS_ENABLED(CONFIG_IMA) && !IS_ENABLED(CONFIG_IMA_DISABLE_HTABLE))
274 DMWARN("CONFIG_IMA_DISABLE_HTABLE is disabled."
275 " Duplicate IMA measurements will not be recorded in the IMA log.");
276#endif
277
278 for (i = 0; i < count; i++) {
279 r = _inits[i]();
280 if (r)
281 goto bad;
282 }
283
284 return 0;
285bad:
286 while (i--)
287 _exits[i]();
288
289 return r;
290}
291
292static void __exit dm_exit(void)
293{
294 int i = ARRAY_SIZE(_exits);
295
296 while (i--)
297 _exits[i]();
298
299 /*
300 * Should be empty by this point.
301 */
302 idr_destroy(&_minor_idr);
303}
304
305/*
306 * Block device functions
307 */
308int dm_deleting_md(struct mapped_device *md)
309{
310 return test_bit(DMF_DELETING, &md->flags);
311}
312
313static int dm_blk_open(struct gendisk *disk, blk_mode_t mode)
314{
315 struct mapped_device *md;
316
317 spin_lock(&_minor_lock);
318
319 md = disk->private_data;
320 if (!md)
321 goto out;
322
323 if (test_bit(DMF_FREEING, &md->flags) ||
324 dm_deleting_md(md)) {
325 md = NULL;
326 goto out;
327 }
328
329 dm_get(md);
330 atomic_inc(&md->open_count);
331out:
332 spin_unlock(&_minor_lock);
333
334 return md ? 0 : -ENXIO;
335}
336
337static void dm_blk_close(struct gendisk *disk)
338{
339 struct mapped_device *md;
340
341 spin_lock(&_minor_lock);
342
343 md = disk->private_data;
344 if (WARN_ON(!md))
345 goto out;
346
347 if (atomic_dec_and_test(&md->open_count) &&
348 (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
349 queue_work(deferred_remove_workqueue, &deferred_remove_work);
350
351 dm_put(md);
352out:
353 spin_unlock(&_minor_lock);
354}
355
356int dm_open_count(struct mapped_device *md)
357{
358 return atomic_read(&md->open_count);
359}
360
361/*
362 * Guarantees nothing is using the device before it's deleted.
363 */
364int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
365{
366 int r = 0;
367
368 spin_lock(&_minor_lock);
369
370 if (dm_open_count(md)) {
371 r = -EBUSY;
372 if (mark_deferred)
373 set_bit(DMF_DEFERRED_REMOVE, &md->flags);
374 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
375 r = -EEXIST;
376 else
377 set_bit(DMF_DELETING, &md->flags);
378
379 spin_unlock(&_minor_lock);
380
381 return r;
382}
383
384int dm_cancel_deferred_remove(struct mapped_device *md)
385{
386 int r = 0;
387
388 spin_lock(&_minor_lock);
389
390 if (test_bit(DMF_DELETING, &md->flags))
391 r = -EBUSY;
392 else
393 clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
394
395 spin_unlock(&_minor_lock);
396
397 return r;
398}
399
400static void do_deferred_remove(struct work_struct *w)
401{
402 dm_deferred_remove();
403}
404
405static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
406{
407 struct mapped_device *md = bdev->bd_disk->private_data;
408
409 return dm_get_geometry(md, geo);
410}
411
412static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
413 struct block_device **bdev)
414{
415 struct dm_target *ti;
416 struct dm_table *map;
417 int r;
418
419retry:
420 r = -ENOTTY;
421 map = dm_get_live_table(md, srcu_idx);
422 if (!map || !dm_table_get_size(map))
423 return r;
424
425 /* We only support devices that have a single target */
426 if (map->num_targets != 1)
427 return r;
428
429 ti = dm_table_get_target(map, 0);
430 if (!ti->type->prepare_ioctl)
431 return r;
432
433 if (dm_suspended_md(md))
434 return -EAGAIN;
435
436 r = ti->type->prepare_ioctl(ti, bdev);
437 if (r == -ENOTCONN && !fatal_signal_pending(current)) {
438 dm_put_live_table(md, *srcu_idx);
439 fsleep(10000);
440 goto retry;
441 }
442
443 return r;
444}
445
446static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
447{
448 dm_put_live_table(md, srcu_idx);
449}
450
451static int dm_blk_ioctl(struct block_device *bdev, blk_mode_t mode,
452 unsigned int cmd, unsigned long arg)
453{
454 struct mapped_device *md = bdev->bd_disk->private_data;
455 int r, srcu_idx;
456
457 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
458 if (r < 0)
459 goto out;
460
461 if (r > 0) {
462 /*
463 * Target determined this ioctl is being issued against a
464 * subset of the parent bdev; require extra privileges.
465 */
466 if (!capable(CAP_SYS_RAWIO)) {
467 DMDEBUG_LIMIT(
468 "%s: sending ioctl %x to DM device without required privilege.",
469 current->comm, cmd);
470 r = -ENOIOCTLCMD;
471 goto out;
472 }
473 }
474
475 if (!bdev->bd_disk->fops->ioctl)
476 r = -ENOTTY;
477 else
478 r = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg);
479out:
480 dm_unprepare_ioctl(md, srcu_idx);
481 return r;
482}
483
484u64 dm_start_time_ns_from_clone(struct bio *bio)
485{
486 return jiffies_to_nsecs(clone_to_tio(bio)->io->start_time);
487}
488EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone);
489
490static inline bool bio_is_flush_with_data(struct bio *bio)
491{
492 return ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size);
493}
494
495static inline unsigned int dm_io_sectors(struct dm_io *io, struct bio *bio)
496{
497 /*
498 * If REQ_PREFLUSH set, don't account payload, it will be
499 * submitted (and accounted) after this flush completes.
500 */
501 if (bio_is_flush_with_data(bio))
502 return 0;
503 if (unlikely(dm_io_flagged(io, DM_IO_WAS_SPLIT)))
504 return io->sectors;
505 return bio_sectors(bio);
506}
507
508static void dm_io_acct(struct dm_io *io, bool end)
509{
510 struct bio *bio = io->orig_bio;
511
512 if (dm_io_flagged(io, DM_IO_BLK_STAT)) {
513 if (!end)
514 bdev_start_io_acct(bio->bi_bdev, bio_op(bio),
515 io->start_time);
516 else
517 bdev_end_io_acct(bio->bi_bdev, bio_op(bio),
518 dm_io_sectors(io, bio),
519 io->start_time);
520 }
521
522 if (static_branch_unlikely(&stats_enabled) &&
523 unlikely(dm_stats_used(&io->md->stats))) {
524 sector_t sector;
525
526 if (unlikely(dm_io_flagged(io, DM_IO_WAS_SPLIT)))
527 sector = bio_end_sector(bio) - io->sector_offset;
528 else
529 sector = bio->bi_iter.bi_sector;
530
531 dm_stats_account_io(&io->md->stats, bio_data_dir(bio),
532 sector, dm_io_sectors(io, bio),
533 end, io->start_time, &io->stats_aux);
534 }
535}
536
537static void __dm_start_io_acct(struct dm_io *io)
538{
539 dm_io_acct(io, false);
540}
541
542static void dm_start_io_acct(struct dm_io *io, struct bio *clone)
543{
544 /*
545 * Ensure IO accounting is only ever started once.
546 */
547 if (dm_io_flagged(io, DM_IO_ACCOUNTED))
548 return;
549
550 /* Expect no possibility for race unless DM_TIO_IS_DUPLICATE_BIO. */
551 if (!clone || likely(dm_tio_is_normal(clone_to_tio(clone)))) {
552 dm_io_set_flag(io, DM_IO_ACCOUNTED);
553 } else {
554 unsigned long flags;
555 /* Can afford locking given DM_TIO_IS_DUPLICATE_BIO */
556 spin_lock_irqsave(&io->lock, flags);
557 if (dm_io_flagged(io, DM_IO_ACCOUNTED)) {
558 spin_unlock_irqrestore(&io->lock, flags);
559 return;
560 }
561 dm_io_set_flag(io, DM_IO_ACCOUNTED);
562 spin_unlock_irqrestore(&io->lock, flags);
563 }
564
565 __dm_start_io_acct(io);
566}
567
568static void dm_end_io_acct(struct dm_io *io)
569{
570 dm_io_acct(io, true);
571}
572
573static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio, gfp_t gfp_mask)
574{
575 struct dm_io *io;
576 struct dm_target_io *tio;
577 struct bio *clone;
578
579 clone = bio_alloc_clone(NULL, bio, gfp_mask, &md->mempools->io_bs);
580 if (unlikely(!clone))
581 return NULL;
582 tio = clone_to_tio(clone);
583 tio->flags = 0;
584 dm_tio_set_flag(tio, DM_TIO_INSIDE_DM_IO);
585 tio->io = NULL;
586
587 io = container_of(tio, struct dm_io, tio);
588 io->magic = DM_IO_MAGIC;
589 io->status = BLK_STS_OK;
590
591 /* one ref is for submission, the other is for completion */
592 atomic_set(&io->io_count, 2);
593 this_cpu_inc(*md->pending_io);
594 io->orig_bio = bio;
595 io->md = md;
596 spin_lock_init(&io->lock);
597 io->start_time = jiffies;
598 io->flags = 0;
599 if (blk_queue_io_stat(md->queue))
600 dm_io_set_flag(io, DM_IO_BLK_STAT);
601
602 if (static_branch_unlikely(&stats_enabled) &&
603 unlikely(dm_stats_used(&md->stats)))
604 dm_stats_record_start(&md->stats, &io->stats_aux);
605
606 return io;
607}
608
609static void free_io(struct dm_io *io)
610{
611 bio_put(&io->tio.clone);
612}
613
614static struct bio *alloc_tio(struct clone_info *ci, struct dm_target *ti,
615 unsigned int target_bio_nr, unsigned int *len, gfp_t gfp_mask)
616{
617 struct mapped_device *md = ci->io->md;
618 struct dm_target_io *tio;
619 struct bio *clone;
620
621 if (!ci->io->tio.io) {
622 /* the dm_target_io embedded in ci->io is available */
623 tio = &ci->io->tio;
624 /* alloc_io() already initialized embedded clone */
625 clone = &tio->clone;
626 } else {
627 clone = bio_alloc_clone(NULL, ci->bio, gfp_mask,
628 &md->mempools->bs);
629 if (!clone)
630 return NULL;
631
632 /* REQ_DM_POLL_LIST shouldn't be inherited */
633 clone->bi_opf &= ~REQ_DM_POLL_LIST;
634
635 tio = clone_to_tio(clone);
636 tio->flags = 0; /* also clears DM_TIO_INSIDE_DM_IO */
637 }
638
639 tio->magic = DM_TIO_MAGIC;
640 tio->io = ci->io;
641 tio->ti = ti;
642 tio->target_bio_nr = target_bio_nr;
643 tio->len_ptr = len;
644 tio->old_sector = 0;
645
646 /* Set default bdev, but target must bio_set_dev() before issuing IO */
647 clone->bi_bdev = md->disk->part0;
648 if (unlikely(ti->needs_bio_set_dev))
649 bio_set_dev(clone, md->disk->part0);
650
651 if (len) {
652 clone->bi_iter.bi_size = to_bytes(*len);
653 if (bio_integrity(clone))
654 bio_integrity_trim(clone);
655 }
656
657 return clone;
658}
659
660static void free_tio(struct bio *clone)
661{
662 if (dm_tio_flagged(clone_to_tio(clone), DM_TIO_INSIDE_DM_IO))
663 return;
664 bio_put(clone);
665}
666
667/*
668 * Add the bio to the list of deferred io.
669 */
670static void queue_io(struct mapped_device *md, struct bio *bio)
671{
672 unsigned long flags;
673
674 spin_lock_irqsave(&md->deferred_lock, flags);
675 bio_list_add(&md->deferred, bio);
676 spin_unlock_irqrestore(&md->deferred_lock, flags);
677 queue_work(md->wq, &md->work);
678}
679
680/*
681 * Everyone (including functions in this file), should use this
682 * function to access the md->map field, and make sure they call
683 * dm_put_live_table() when finished.
684 */
685struct dm_table *dm_get_live_table(struct mapped_device *md,
686 int *srcu_idx) __acquires(md->io_barrier)
687{
688 *srcu_idx = srcu_read_lock(&md->io_barrier);
689
690 return srcu_dereference(md->map, &md->io_barrier);
691}
692
693void dm_put_live_table(struct mapped_device *md,
694 int srcu_idx) __releases(md->io_barrier)
695{
696 srcu_read_unlock(&md->io_barrier, srcu_idx);
697}
698
699void dm_sync_table(struct mapped_device *md)
700{
701 synchronize_srcu(&md->io_barrier);
702 synchronize_rcu_expedited();
703}
704
705/*
706 * A fast alternative to dm_get_live_table/dm_put_live_table.
707 * The caller must not block between these two functions.
708 */
709static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
710{
711 rcu_read_lock();
712 return rcu_dereference(md->map);
713}
714
715static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
716{
717 rcu_read_unlock();
718}
719
720static char *_dm_claim_ptr = "I belong to device-mapper";
721
722/*
723 * Open a table device so we can use it as a map destination.
724 */
725static struct table_device *open_table_device(struct mapped_device *md,
726 dev_t dev, blk_mode_t mode)
727{
728 struct table_device *td;
729 struct file *bdev_file;
730 struct block_device *bdev;
731 u64 part_off;
732 int r;
733
734 td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
735 if (!td)
736 return ERR_PTR(-ENOMEM);
737 refcount_set(&td->count, 1);
738
739 bdev_file = bdev_file_open_by_dev(dev, mode, _dm_claim_ptr, NULL);
740 if (IS_ERR(bdev_file)) {
741 r = PTR_ERR(bdev_file);
742 goto out_free_td;
743 }
744
745 bdev = file_bdev(bdev_file);
746
747 /*
748 * We can be called before the dm disk is added. In that case we can't
749 * register the holder relation here. It will be done once add_disk was
750 * called.
751 */
752 if (md->disk->slave_dir) {
753 r = bd_link_disk_holder(bdev, md->disk);
754 if (r)
755 goto out_blkdev_put;
756 }
757
758 td->dm_dev.mode = mode;
759 td->dm_dev.bdev = bdev;
760 td->dm_dev.bdev_file = bdev_file;
761 td->dm_dev.dax_dev = fs_dax_get_by_bdev(bdev, &part_off,
762 NULL, NULL);
763 format_dev_t(td->dm_dev.name, dev);
764 list_add(&td->list, &md->table_devices);
765 return td;
766
767out_blkdev_put:
768 __fput_sync(bdev_file);
769out_free_td:
770 kfree(td);
771 return ERR_PTR(r);
772}
773
774/*
775 * Close a table device that we've been using.
776 */
777static void close_table_device(struct table_device *td, struct mapped_device *md)
778{
779 if (md->disk->slave_dir)
780 bd_unlink_disk_holder(td->dm_dev.bdev, md->disk);
781
782 /* Leverage async fput() if DMF_DEFERRED_REMOVE set */
783 if (unlikely(test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
784 fput(td->dm_dev.bdev_file);
785 else
786 __fput_sync(td->dm_dev.bdev_file);
787
788 put_dax(td->dm_dev.dax_dev);
789 list_del(&td->list);
790 kfree(td);
791}
792
793static struct table_device *find_table_device(struct list_head *l, dev_t dev,
794 blk_mode_t mode)
795{
796 struct table_device *td;
797
798 list_for_each_entry(td, l, list)
799 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
800 return td;
801
802 return NULL;
803}
804
805int dm_get_table_device(struct mapped_device *md, dev_t dev, blk_mode_t mode,
806 struct dm_dev **result)
807{
808 struct table_device *td;
809
810 mutex_lock(&md->table_devices_lock);
811 td = find_table_device(&md->table_devices, dev, mode);
812 if (!td) {
813 td = open_table_device(md, dev, mode);
814 if (IS_ERR(td)) {
815 mutex_unlock(&md->table_devices_lock);
816 return PTR_ERR(td);
817 }
818 } else {
819 refcount_inc(&td->count);
820 }
821 mutex_unlock(&md->table_devices_lock);
822
823 *result = &td->dm_dev;
824 return 0;
825}
826
827void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
828{
829 struct table_device *td = container_of(d, struct table_device, dm_dev);
830
831 mutex_lock(&md->table_devices_lock);
832 if (refcount_dec_and_test(&td->count))
833 close_table_device(td, md);
834 mutex_unlock(&md->table_devices_lock);
835}
836
837/*
838 * Get the geometry associated with a dm device
839 */
840int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
841{
842 *geo = md->geometry;
843
844 return 0;
845}
846
847/*
848 * Set the geometry of a device.
849 */
850int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
851{
852 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
853
854 if (geo->start > sz) {
855 DMERR("Start sector is beyond the geometry limits.");
856 return -EINVAL;
857 }
858
859 md->geometry = *geo;
860
861 return 0;
862}
863
864static int __noflush_suspending(struct mapped_device *md)
865{
866 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
867}
868
869static void dm_requeue_add_io(struct dm_io *io, bool first_stage)
870{
871 struct mapped_device *md = io->md;
872
873 if (first_stage) {
874 struct dm_io *next = md->requeue_list;
875
876 md->requeue_list = io;
877 io->next = next;
878 } else {
879 bio_list_add_head(&md->deferred, io->orig_bio);
880 }
881}
882
883static void dm_kick_requeue(struct mapped_device *md, bool first_stage)
884{
885 if (first_stage)
886 queue_work(md->wq, &md->requeue_work);
887 else
888 queue_work(md->wq, &md->work);
889}
890
891/*
892 * Return true if the dm_io's original bio is requeued.
893 * io->status is updated with error if requeue disallowed.
894 */
895static bool dm_handle_requeue(struct dm_io *io, bool first_stage)
896{
897 struct bio *bio = io->orig_bio;
898 bool handle_requeue = (io->status == BLK_STS_DM_REQUEUE);
899 bool handle_polled_eagain = ((io->status == BLK_STS_AGAIN) &&
900 (bio->bi_opf & REQ_POLLED));
901 struct mapped_device *md = io->md;
902 bool requeued = false;
903
904 if (handle_requeue || handle_polled_eagain) {
905 unsigned long flags;
906
907 if (bio->bi_opf & REQ_POLLED) {
908 /*
909 * Upper layer won't help us poll split bio
910 * (io->orig_bio may only reflect a subset of the
911 * pre-split original) so clear REQ_POLLED.
912 */
913 bio_clear_polled(bio);
914 }
915
916 /*
917 * Target requested pushing back the I/O or
918 * polled IO hit BLK_STS_AGAIN.
919 */
920 spin_lock_irqsave(&md->deferred_lock, flags);
921 if ((__noflush_suspending(md) &&
922 !WARN_ON_ONCE(dm_is_zone_write(md, bio))) ||
923 handle_polled_eagain || first_stage) {
924 dm_requeue_add_io(io, first_stage);
925 requeued = true;
926 } else {
927 /*
928 * noflush suspend was interrupted or this is
929 * a write to a zoned target.
930 */
931 io->status = BLK_STS_IOERR;
932 }
933 spin_unlock_irqrestore(&md->deferred_lock, flags);
934 }
935
936 if (requeued)
937 dm_kick_requeue(md, first_stage);
938
939 return requeued;
940}
941
942static void __dm_io_complete(struct dm_io *io, bool first_stage)
943{
944 struct bio *bio = io->orig_bio;
945 struct mapped_device *md = io->md;
946 blk_status_t io_error;
947 bool requeued;
948
949 requeued = dm_handle_requeue(io, first_stage);
950 if (requeued && first_stage)
951 return;
952
953 io_error = io->status;
954 if (dm_io_flagged(io, DM_IO_ACCOUNTED))
955 dm_end_io_acct(io);
956 else if (!io_error) {
957 /*
958 * Must handle target that DM_MAPIO_SUBMITTED only to
959 * then bio_endio() rather than dm_submit_bio_remap()
960 */
961 __dm_start_io_acct(io);
962 dm_end_io_acct(io);
963 }
964 free_io(io);
965 smp_wmb();
966 this_cpu_dec(*md->pending_io);
967
968 /* nudge anyone waiting on suspend queue */
969 if (unlikely(wq_has_sleeper(&md->wait)))
970 wake_up(&md->wait);
971
972 /* Return early if the original bio was requeued */
973 if (requeued)
974 return;
975
976 if (bio_is_flush_with_data(bio)) {
977 /*
978 * Preflush done for flush with data, reissue
979 * without REQ_PREFLUSH.
980 */
981 bio->bi_opf &= ~REQ_PREFLUSH;
982 queue_io(md, bio);
983 } else {
984 /* done with normal IO or empty flush */
985 if (io_error)
986 bio->bi_status = io_error;
987 bio_endio(bio);
988 }
989}
990
991static void dm_wq_requeue_work(struct work_struct *work)
992{
993 struct mapped_device *md = container_of(work, struct mapped_device,
994 requeue_work);
995 unsigned long flags;
996 struct dm_io *io;
997
998 /* reuse deferred lock to simplify dm_handle_requeue */
999 spin_lock_irqsave(&md->deferred_lock, flags);
1000 io = md->requeue_list;
1001 md->requeue_list = NULL;
1002 spin_unlock_irqrestore(&md->deferred_lock, flags);
1003
1004 while (io) {
1005 struct dm_io *next = io->next;
1006
1007 dm_io_rewind(io, &md->disk->bio_split);
1008
1009 io->next = NULL;
1010 __dm_io_complete(io, false);
1011 io = next;
1012 cond_resched();
1013 }
1014}
1015
1016/*
1017 * Two staged requeue:
1018 *
1019 * 1) io->orig_bio points to the real original bio, and the part mapped to
1020 * this io must be requeued, instead of other parts of the original bio.
1021 *
1022 * 2) io->orig_bio points to new cloned bio which matches the requeued dm_io.
1023 */
1024static void dm_io_complete(struct dm_io *io)
1025{
1026 bool first_requeue;
1027
1028 /*
1029 * Only dm_io that has been split needs two stage requeue, otherwise
1030 * we may run into long bio clone chain during suspend and OOM could
1031 * be triggered.
1032 *
1033 * Also flush data dm_io won't be marked as DM_IO_WAS_SPLIT, so they
1034 * also aren't handled via the first stage requeue.
1035 */
1036 if (dm_io_flagged(io, DM_IO_WAS_SPLIT))
1037 first_requeue = true;
1038 else
1039 first_requeue = false;
1040
1041 __dm_io_complete(io, first_requeue);
1042}
1043
1044/*
1045 * Decrements the number of outstanding ios that a bio has been
1046 * cloned into, completing the original io if necc.
1047 */
1048static inline void __dm_io_dec_pending(struct dm_io *io)
1049{
1050 if (atomic_dec_and_test(&io->io_count))
1051 dm_io_complete(io);
1052}
1053
1054static void dm_io_set_error(struct dm_io *io, blk_status_t error)
1055{
1056 unsigned long flags;
1057
1058 /* Push-back supersedes any I/O errors */
1059 spin_lock_irqsave(&io->lock, flags);
1060 if (!(io->status == BLK_STS_DM_REQUEUE &&
1061 __noflush_suspending(io->md))) {
1062 io->status = error;
1063 }
1064 spin_unlock_irqrestore(&io->lock, flags);
1065}
1066
1067static void dm_io_dec_pending(struct dm_io *io, blk_status_t error)
1068{
1069 if (unlikely(error))
1070 dm_io_set_error(io, error);
1071
1072 __dm_io_dec_pending(io);
1073}
1074
1075/*
1076 * The queue_limits are only valid as long as you have a reference
1077 * count on 'md'. But _not_ imposing verification to avoid atomic_read(),
1078 */
1079static inline struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
1080{
1081 return &md->queue->limits;
1082}
1083
1084void disable_discard(struct mapped_device *md)
1085{
1086 struct queue_limits *limits = dm_get_queue_limits(md);
1087
1088 /* device doesn't really support DISCARD, disable it */
1089 limits->max_discard_sectors = 0;
1090}
1091
1092void disable_write_zeroes(struct mapped_device *md)
1093{
1094 struct queue_limits *limits = dm_get_queue_limits(md);
1095
1096 /* device doesn't really support WRITE ZEROES, disable it */
1097 limits->max_write_zeroes_sectors = 0;
1098}
1099
1100static bool swap_bios_limit(struct dm_target *ti, struct bio *bio)
1101{
1102 return unlikely((bio->bi_opf & REQ_SWAP) != 0) && unlikely(ti->limit_swap_bios);
1103}
1104
1105static void clone_endio(struct bio *bio)
1106{
1107 blk_status_t error = bio->bi_status;
1108 struct dm_target_io *tio = clone_to_tio(bio);
1109 struct dm_target *ti = tio->ti;
1110 dm_endio_fn endio = ti->type->end_io;
1111 struct dm_io *io = tio->io;
1112 struct mapped_device *md = io->md;
1113
1114 if (unlikely(error == BLK_STS_TARGET)) {
1115 if (bio_op(bio) == REQ_OP_DISCARD &&
1116 !bdev_max_discard_sectors(bio->bi_bdev))
1117 disable_discard(md);
1118 else if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
1119 !bdev_write_zeroes_sectors(bio->bi_bdev))
1120 disable_write_zeroes(md);
1121 }
1122
1123 if (static_branch_unlikely(&zoned_enabled) &&
1124 unlikely(bdev_is_zoned(bio->bi_bdev)))
1125 dm_zone_endio(io, bio);
1126
1127 if (endio) {
1128 int r = endio(ti, bio, &error);
1129
1130 switch (r) {
1131 case DM_ENDIO_REQUEUE:
1132 if (static_branch_unlikely(&zoned_enabled)) {
1133 /*
1134 * Requeuing writes to a sequential zone of a zoned
1135 * target will break the sequential write pattern:
1136 * fail such IO.
1137 */
1138 if (WARN_ON_ONCE(dm_is_zone_write(md, bio)))
1139 error = BLK_STS_IOERR;
1140 else
1141 error = BLK_STS_DM_REQUEUE;
1142 } else
1143 error = BLK_STS_DM_REQUEUE;
1144 fallthrough;
1145 case DM_ENDIO_DONE:
1146 break;
1147 case DM_ENDIO_INCOMPLETE:
1148 /* The target will handle the io */
1149 return;
1150 default:
1151 DMCRIT("unimplemented target endio return value: %d", r);
1152 BUG();
1153 }
1154 }
1155
1156 if (static_branch_unlikely(&swap_bios_enabled) &&
1157 unlikely(swap_bios_limit(ti, bio)))
1158 up(&md->swap_bios_semaphore);
1159
1160 free_tio(bio);
1161 dm_io_dec_pending(io, error);
1162}
1163
1164/*
1165 * Return maximum size of I/O possible at the supplied sector up to the current
1166 * target boundary.
1167 */
1168static inline sector_t max_io_len_target_boundary(struct dm_target *ti,
1169 sector_t target_offset)
1170{
1171 return ti->len - target_offset;
1172}
1173
1174static sector_t __max_io_len(struct dm_target *ti, sector_t sector,
1175 unsigned int max_granularity,
1176 unsigned int max_sectors)
1177{
1178 sector_t target_offset = dm_target_offset(ti, sector);
1179 sector_t len = max_io_len_target_boundary(ti, target_offset);
1180
1181 /*
1182 * Does the target need to split IO even further?
1183 * - varied (per target) IO splitting is a tenet of DM; this
1184 * explains why stacked chunk_sectors based splitting via
1185 * bio_split_to_limits() isn't possible here.
1186 */
1187 if (!max_granularity)
1188 return len;
1189 return min_t(sector_t, len,
1190 min(max_sectors ? : queue_max_sectors(ti->table->md->queue),
1191 blk_chunk_sectors_left(target_offset, max_granularity)));
1192}
1193
1194static inline sector_t max_io_len(struct dm_target *ti, sector_t sector)
1195{
1196 return __max_io_len(ti, sector, ti->max_io_len, 0);
1197}
1198
1199int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1200{
1201 if (len > UINT_MAX) {
1202 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1203 (unsigned long long)len, UINT_MAX);
1204 ti->error = "Maximum size of target IO is too large";
1205 return -EINVAL;
1206 }
1207
1208 ti->max_io_len = (uint32_t) len;
1209
1210 return 0;
1211}
1212EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1213
1214static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1215 sector_t sector, int *srcu_idx)
1216 __acquires(md->io_barrier)
1217{
1218 struct dm_table *map;
1219 struct dm_target *ti;
1220
1221 map = dm_get_live_table(md, srcu_idx);
1222 if (!map)
1223 return NULL;
1224
1225 ti = dm_table_find_target(map, sector);
1226 if (!ti)
1227 return NULL;
1228
1229 return ti;
1230}
1231
1232static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1233 long nr_pages, enum dax_access_mode mode, void **kaddr,
1234 pfn_t *pfn)
1235{
1236 struct mapped_device *md = dax_get_private(dax_dev);
1237 sector_t sector = pgoff * PAGE_SECTORS;
1238 struct dm_target *ti;
1239 long len, ret = -EIO;
1240 int srcu_idx;
1241
1242 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1243
1244 if (!ti)
1245 goto out;
1246 if (!ti->type->direct_access)
1247 goto out;
1248 len = max_io_len(ti, sector) / PAGE_SECTORS;
1249 if (len < 1)
1250 goto out;
1251 nr_pages = min(len, nr_pages);
1252 ret = ti->type->direct_access(ti, pgoff, nr_pages, mode, kaddr, pfn);
1253
1254 out:
1255 dm_put_live_table(md, srcu_idx);
1256
1257 return ret;
1258}
1259
1260static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
1261 size_t nr_pages)
1262{
1263 struct mapped_device *md = dax_get_private(dax_dev);
1264 sector_t sector = pgoff * PAGE_SECTORS;
1265 struct dm_target *ti;
1266 int ret = -EIO;
1267 int srcu_idx;
1268
1269 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1270
1271 if (!ti)
1272 goto out;
1273 if (WARN_ON(!ti->type->dax_zero_page_range)) {
1274 /*
1275 * ->zero_page_range() is mandatory dax operation. If we are
1276 * here, something is wrong.
1277 */
1278 goto out;
1279 }
1280 ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages);
1281 out:
1282 dm_put_live_table(md, srcu_idx);
1283
1284 return ret;
1285}
1286
1287static size_t dm_dax_recovery_write(struct dax_device *dax_dev, pgoff_t pgoff,
1288 void *addr, size_t bytes, struct iov_iter *i)
1289{
1290 struct mapped_device *md = dax_get_private(dax_dev);
1291 sector_t sector = pgoff * PAGE_SECTORS;
1292 struct dm_target *ti;
1293 int srcu_idx;
1294 long ret = 0;
1295
1296 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1297 if (!ti || !ti->type->dax_recovery_write)
1298 goto out;
1299
1300 ret = ti->type->dax_recovery_write(ti, pgoff, addr, bytes, i);
1301out:
1302 dm_put_live_table(md, srcu_idx);
1303 return ret;
1304}
1305
1306/*
1307 * A target may call dm_accept_partial_bio only from the map routine. It is
1308 * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_* zone management
1309 * operations, REQ_OP_ZONE_APPEND (zone append writes) and any bio serviced by
1310 * __send_duplicate_bios().
1311 *
1312 * dm_accept_partial_bio informs the dm that the target only wants to process
1313 * additional n_sectors sectors of the bio and the rest of the data should be
1314 * sent in a next bio.
1315 *
1316 * A diagram that explains the arithmetics:
1317 * +--------------------+---------------+-------+
1318 * | 1 | 2 | 3 |
1319 * +--------------------+---------------+-------+
1320 *
1321 * <-------------- *tio->len_ptr --------------->
1322 * <----- bio_sectors ----->
1323 * <-- n_sectors -->
1324 *
1325 * Region 1 was already iterated over with bio_advance or similar function.
1326 * (it may be empty if the target doesn't use bio_advance)
1327 * Region 2 is the remaining bio size that the target wants to process.
1328 * (it may be empty if region 1 is non-empty, although there is no reason
1329 * to make it empty)
1330 * The target requires that region 3 is to be sent in the next bio.
1331 *
1332 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1333 * the partially processed part (the sum of regions 1+2) must be the same for all
1334 * copies of the bio.
1335 */
1336void dm_accept_partial_bio(struct bio *bio, unsigned int n_sectors)
1337{
1338 struct dm_target_io *tio = clone_to_tio(bio);
1339 struct dm_io *io = tio->io;
1340 unsigned int bio_sectors = bio_sectors(bio);
1341
1342 BUG_ON(dm_tio_flagged(tio, DM_TIO_IS_DUPLICATE_BIO));
1343 BUG_ON(op_is_zone_mgmt(bio_op(bio)));
1344 BUG_ON(bio_op(bio) == REQ_OP_ZONE_APPEND);
1345 BUG_ON(bio_sectors > *tio->len_ptr);
1346 BUG_ON(n_sectors > bio_sectors);
1347
1348 *tio->len_ptr -= bio_sectors - n_sectors;
1349 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1350
1351 /*
1352 * __split_and_process_bio() may have already saved mapped part
1353 * for accounting but it is being reduced so update accordingly.
1354 */
1355 dm_io_set_flag(io, DM_IO_WAS_SPLIT);
1356 io->sectors = n_sectors;
1357 io->sector_offset = bio_sectors(io->orig_bio);
1358}
1359EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1360
1361/*
1362 * @clone: clone bio that DM core passed to target's .map function
1363 * @tgt_clone: clone of @clone bio that target needs submitted
1364 *
1365 * Targets should use this interface to submit bios they take
1366 * ownership of when returning DM_MAPIO_SUBMITTED.
1367 *
1368 * Target should also enable ti->accounts_remapped_io
1369 */
1370void dm_submit_bio_remap(struct bio *clone, struct bio *tgt_clone)
1371{
1372 struct dm_target_io *tio = clone_to_tio(clone);
1373 struct dm_io *io = tio->io;
1374
1375 /* establish bio that will get submitted */
1376 if (!tgt_clone)
1377 tgt_clone = clone;
1378
1379 /*
1380 * Account io->origin_bio to DM dev on behalf of target
1381 * that took ownership of IO with DM_MAPIO_SUBMITTED.
1382 */
1383 dm_start_io_acct(io, clone);
1384
1385 trace_block_bio_remap(tgt_clone, disk_devt(io->md->disk),
1386 tio->old_sector);
1387 submit_bio_noacct(tgt_clone);
1388}
1389EXPORT_SYMBOL_GPL(dm_submit_bio_remap);
1390
1391static noinline void __set_swap_bios_limit(struct mapped_device *md, int latch)
1392{
1393 mutex_lock(&md->swap_bios_lock);
1394 while (latch < md->swap_bios) {
1395 cond_resched();
1396 down(&md->swap_bios_semaphore);
1397 md->swap_bios--;
1398 }
1399 while (latch > md->swap_bios) {
1400 cond_resched();
1401 up(&md->swap_bios_semaphore);
1402 md->swap_bios++;
1403 }
1404 mutex_unlock(&md->swap_bios_lock);
1405}
1406
1407static void __map_bio(struct bio *clone)
1408{
1409 struct dm_target_io *tio = clone_to_tio(clone);
1410 struct dm_target *ti = tio->ti;
1411 struct dm_io *io = tio->io;
1412 struct mapped_device *md = io->md;
1413 int r;
1414
1415 clone->bi_end_io = clone_endio;
1416
1417 /*
1418 * Map the clone.
1419 */
1420 tio->old_sector = clone->bi_iter.bi_sector;
1421
1422 if (static_branch_unlikely(&swap_bios_enabled) &&
1423 unlikely(swap_bios_limit(ti, clone))) {
1424 int latch = get_swap_bios();
1425
1426 if (unlikely(latch != md->swap_bios))
1427 __set_swap_bios_limit(md, latch);
1428 down(&md->swap_bios_semaphore);
1429 }
1430
1431 if (static_branch_unlikely(&zoned_enabled)) {
1432 /*
1433 * Check if the IO needs a special mapping due to zone append
1434 * emulation on zoned target. In this case, dm_zone_map_bio()
1435 * calls the target map operation.
1436 */
1437 if (unlikely(dm_emulate_zone_append(md)))
1438 r = dm_zone_map_bio(tio);
1439 else
1440 goto do_map;
1441 } else {
1442do_map:
1443 if (likely(ti->type->map == linear_map))
1444 r = linear_map(ti, clone);
1445 else if (ti->type->map == stripe_map)
1446 r = stripe_map(ti, clone);
1447 else
1448 r = ti->type->map(ti, clone);
1449 }
1450
1451 switch (r) {
1452 case DM_MAPIO_SUBMITTED:
1453 /* target has assumed ownership of this io */
1454 if (!ti->accounts_remapped_io)
1455 dm_start_io_acct(io, clone);
1456 break;
1457 case DM_MAPIO_REMAPPED:
1458 dm_submit_bio_remap(clone, NULL);
1459 break;
1460 case DM_MAPIO_KILL:
1461 case DM_MAPIO_REQUEUE:
1462 if (static_branch_unlikely(&swap_bios_enabled) &&
1463 unlikely(swap_bios_limit(ti, clone)))
1464 up(&md->swap_bios_semaphore);
1465 free_tio(clone);
1466 if (r == DM_MAPIO_KILL)
1467 dm_io_dec_pending(io, BLK_STS_IOERR);
1468 else
1469 dm_io_dec_pending(io, BLK_STS_DM_REQUEUE);
1470 break;
1471 default:
1472 DMCRIT("unimplemented target map return value: %d", r);
1473 BUG();
1474 }
1475}
1476
1477static void setup_split_accounting(struct clone_info *ci, unsigned int len)
1478{
1479 struct dm_io *io = ci->io;
1480
1481 if (ci->sector_count > len) {
1482 /*
1483 * Split needed, save the mapped part for accounting.
1484 * NOTE: dm_accept_partial_bio() will update accordingly.
1485 */
1486 dm_io_set_flag(io, DM_IO_WAS_SPLIT);
1487 io->sectors = len;
1488 io->sector_offset = bio_sectors(ci->bio);
1489 }
1490}
1491
1492static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1493 struct dm_target *ti, unsigned int num_bios,
1494 unsigned *len, gfp_t gfp_flag)
1495{
1496 struct bio *bio;
1497 int try = (gfp_flag & GFP_NOWAIT) ? 0 : 1;
1498
1499 for (; try < 2; try++) {
1500 int bio_nr;
1501
1502 if (try && num_bios > 1)
1503 mutex_lock(&ci->io->md->table_devices_lock);
1504 for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1505 bio = alloc_tio(ci, ti, bio_nr, len,
1506 try ? GFP_NOIO : GFP_NOWAIT);
1507 if (!bio)
1508 break;
1509
1510 bio_list_add(blist, bio);
1511 }
1512 if (try && num_bios > 1)
1513 mutex_unlock(&ci->io->md->table_devices_lock);
1514 if (bio_nr == num_bios)
1515 return;
1516
1517 while ((bio = bio_list_pop(blist)))
1518 free_tio(bio);
1519 }
1520}
1521
1522static unsigned int __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1523 unsigned int num_bios, unsigned int *len,
1524 gfp_t gfp_flag)
1525{
1526 struct bio_list blist = BIO_EMPTY_LIST;
1527 struct bio *clone;
1528 unsigned int ret = 0;
1529
1530 if (WARN_ON_ONCE(num_bios == 0)) /* num_bios = 0 is a bug in caller */
1531 return 0;
1532
1533 /* dm_accept_partial_bio() is not supported with shared tio->len_ptr */
1534 if (len)
1535 setup_split_accounting(ci, *len);
1536
1537 /*
1538 * Using alloc_multiple_bios(), even if num_bios is 1, to consistently
1539 * support allocating using GFP_NOWAIT with GFP_NOIO fallback.
1540 */
1541 alloc_multiple_bios(&blist, ci, ti, num_bios, len, gfp_flag);
1542 while ((clone = bio_list_pop(&blist))) {
1543 if (num_bios > 1)
1544 dm_tio_set_flag(clone_to_tio(clone), DM_TIO_IS_DUPLICATE_BIO);
1545 __map_bio(clone);
1546 ret += 1;
1547 }
1548
1549 return ret;
1550}
1551
1552static void __send_empty_flush(struct clone_info *ci)
1553{
1554 struct dm_table *t = ci->map;
1555 struct bio flush_bio;
1556
1557 /*
1558 * Use an on-stack bio for this, it's safe since we don't
1559 * need to reference it after submit. It's just used as
1560 * the basis for the clone(s).
1561 */
1562 bio_init(&flush_bio, ci->io->md->disk->part0, NULL, 0,
1563 REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC);
1564
1565 ci->bio = &flush_bio;
1566 ci->sector_count = 0;
1567 ci->io->tio.clone.bi_iter.bi_size = 0;
1568
1569 for (unsigned int i = 0; i < t->num_targets; i++) {
1570 unsigned int bios;
1571 struct dm_target *ti = dm_table_get_target(t, i);
1572
1573 if (unlikely(ti->num_flush_bios == 0))
1574 continue;
1575
1576 atomic_add(ti->num_flush_bios, &ci->io->io_count);
1577 bios = __send_duplicate_bios(ci, ti, ti->num_flush_bios,
1578 NULL, GFP_NOWAIT);
1579 atomic_sub(ti->num_flush_bios - bios, &ci->io->io_count);
1580 }
1581
1582 /*
1583 * alloc_io() takes one extra reference for submission, so the
1584 * reference won't reach 0 without the following subtraction
1585 */
1586 atomic_sub(1, &ci->io->io_count);
1587
1588 bio_uninit(ci->bio);
1589}
1590
1591static void __send_abnormal_io(struct clone_info *ci, struct dm_target *ti,
1592 unsigned int num_bios, unsigned int max_granularity,
1593 unsigned int max_sectors)
1594{
1595 unsigned int len, bios;
1596
1597 len = min_t(sector_t, ci->sector_count,
1598 __max_io_len(ti, ci->sector, max_granularity, max_sectors));
1599
1600 atomic_add(num_bios, &ci->io->io_count);
1601 bios = __send_duplicate_bios(ci, ti, num_bios, &len, GFP_NOIO);
1602 /*
1603 * alloc_io() takes one extra reference for submission, so the
1604 * reference won't reach 0 without the following (+1) subtraction
1605 */
1606 atomic_sub(num_bios - bios + 1, &ci->io->io_count);
1607
1608 ci->sector += len;
1609 ci->sector_count -= len;
1610}
1611
1612static bool is_abnormal_io(struct bio *bio)
1613{
1614 enum req_op op = bio_op(bio);
1615
1616 if (op != REQ_OP_READ && op != REQ_OP_WRITE && op != REQ_OP_FLUSH) {
1617 switch (op) {
1618 case REQ_OP_DISCARD:
1619 case REQ_OP_SECURE_ERASE:
1620 case REQ_OP_WRITE_ZEROES:
1621 return true;
1622 default:
1623 break;
1624 }
1625 }
1626
1627 return false;
1628}
1629
1630static blk_status_t __process_abnormal_io(struct clone_info *ci,
1631 struct dm_target *ti)
1632{
1633 unsigned int num_bios = 0;
1634 unsigned int max_granularity = 0;
1635 unsigned int max_sectors = 0;
1636 struct queue_limits *limits = dm_get_queue_limits(ti->table->md);
1637
1638 switch (bio_op(ci->bio)) {
1639 case REQ_OP_DISCARD:
1640 num_bios = ti->num_discard_bios;
1641 max_sectors = limits->max_discard_sectors;
1642 if (ti->max_discard_granularity)
1643 max_granularity = max_sectors;
1644 break;
1645 case REQ_OP_SECURE_ERASE:
1646 num_bios = ti->num_secure_erase_bios;
1647 max_sectors = limits->max_secure_erase_sectors;
1648 if (ti->max_secure_erase_granularity)
1649 max_granularity = max_sectors;
1650 break;
1651 case REQ_OP_WRITE_ZEROES:
1652 num_bios = ti->num_write_zeroes_bios;
1653 max_sectors = limits->max_write_zeroes_sectors;
1654 if (ti->max_write_zeroes_granularity)
1655 max_granularity = max_sectors;
1656 break;
1657 default:
1658 break;
1659 }
1660
1661 /*
1662 * Even though the device advertised support for this type of
1663 * request, that does not mean every target supports it, and
1664 * reconfiguration might also have changed that since the
1665 * check was performed.
1666 */
1667 if (unlikely(!num_bios))
1668 return BLK_STS_NOTSUPP;
1669
1670 __send_abnormal_io(ci, ti, num_bios, max_granularity, max_sectors);
1671
1672 return BLK_STS_OK;
1673}
1674
1675/*
1676 * Reuse ->bi_private as dm_io list head for storing all dm_io instances
1677 * associated with this bio, and this bio's bi_private needs to be
1678 * stored in dm_io->data before the reuse.
1679 *
1680 * bio->bi_private is owned by fs or upper layer, so block layer won't
1681 * touch it after splitting. Meantime it won't be changed by anyone after
1682 * bio is submitted. So this reuse is safe.
1683 */
1684static inline struct dm_io **dm_poll_list_head(struct bio *bio)
1685{
1686 return (struct dm_io **)&bio->bi_private;
1687}
1688
1689static void dm_queue_poll_io(struct bio *bio, struct dm_io *io)
1690{
1691 struct dm_io **head = dm_poll_list_head(bio);
1692
1693 if (!(bio->bi_opf & REQ_DM_POLL_LIST)) {
1694 bio->bi_opf |= REQ_DM_POLL_LIST;
1695 /*
1696 * Save .bi_private into dm_io, so that we can reuse
1697 * .bi_private as dm_io list head for storing dm_io list
1698 */
1699 io->data = bio->bi_private;
1700
1701 /* tell block layer to poll for completion */
1702 bio->bi_cookie = ~BLK_QC_T_NONE;
1703
1704 io->next = NULL;
1705 } else {
1706 /*
1707 * bio recursed due to split, reuse original poll list,
1708 * and save bio->bi_private too.
1709 */
1710 io->data = (*head)->data;
1711 io->next = *head;
1712 }
1713
1714 *head = io;
1715}
1716
1717/*
1718 * Select the correct strategy for processing a non-flush bio.
1719 */
1720static blk_status_t __split_and_process_bio(struct clone_info *ci)
1721{
1722 struct bio *clone;
1723 struct dm_target *ti;
1724 unsigned int len;
1725
1726 ti = dm_table_find_target(ci->map, ci->sector);
1727 if (unlikely(!ti))
1728 return BLK_STS_IOERR;
1729
1730 if (unlikely(ci->is_abnormal_io))
1731 return __process_abnormal_io(ci, ti);
1732
1733 /*
1734 * Only support bio polling for normal IO, and the target io is
1735 * exactly inside the dm_io instance (verified in dm_poll_dm_io)
1736 */
1737 ci->submit_as_polled = !!(ci->bio->bi_opf & REQ_POLLED);
1738
1739 len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count);
1740 setup_split_accounting(ci, len);
1741
1742 if (unlikely(ci->bio->bi_opf & REQ_NOWAIT)) {
1743 if (unlikely(!dm_target_supports_nowait(ti->type)))
1744 return BLK_STS_NOTSUPP;
1745
1746 clone = alloc_tio(ci, ti, 0, &len, GFP_NOWAIT);
1747 if (unlikely(!clone))
1748 return BLK_STS_AGAIN;
1749 } else {
1750 clone = alloc_tio(ci, ti, 0, &len, GFP_NOIO);
1751 }
1752 __map_bio(clone);
1753
1754 ci->sector += len;
1755 ci->sector_count -= len;
1756
1757 return BLK_STS_OK;
1758}
1759
1760static void init_clone_info(struct clone_info *ci, struct dm_io *io,
1761 struct dm_table *map, struct bio *bio, bool is_abnormal)
1762{
1763 ci->map = map;
1764 ci->io = io;
1765 ci->bio = bio;
1766 ci->is_abnormal_io = is_abnormal;
1767 ci->submit_as_polled = false;
1768 ci->sector = bio->bi_iter.bi_sector;
1769 ci->sector_count = bio_sectors(bio);
1770
1771 /* Shouldn't happen but sector_count was being set to 0 so... */
1772 if (static_branch_unlikely(&zoned_enabled) &&
1773 WARN_ON_ONCE(op_is_zone_mgmt(bio_op(bio)) && ci->sector_count))
1774 ci->sector_count = 0;
1775}
1776
1777/*
1778 * Entry point to split a bio into clones and submit them to the targets.
1779 */
1780static void dm_split_and_process_bio(struct mapped_device *md,
1781 struct dm_table *map, struct bio *bio)
1782{
1783 struct clone_info ci;
1784 struct dm_io *io;
1785 blk_status_t error = BLK_STS_OK;
1786 bool is_abnormal;
1787
1788 is_abnormal = is_abnormal_io(bio);
1789 if (unlikely(is_abnormal)) {
1790 /*
1791 * Use bio_split_to_limits() for abnormal IO (e.g. discard, etc)
1792 * otherwise associated queue_limits won't be imposed.
1793 */
1794 bio = bio_split_to_limits(bio);
1795 if (!bio)
1796 return;
1797 }
1798
1799 /* Only support nowait for normal IO */
1800 if (unlikely(bio->bi_opf & REQ_NOWAIT) && !is_abnormal) {
1801 io = alloc_io(md, bio, GFP_NOWAIT);
1802 if (unlikely(!io)) {
1803 /* Unable to do anything without dm_io. */
1804 bio_wouldblock_error(bio);
1805 return;
1806 }
1807 } else {
1808 io = alloc_io(md, bio, GFP_NOIO);
1809 }
1810 init_clone_info(&ci, io, map, bio, is_abnormal);
1811
1812 if (bio->bi_opf & REQ_PREFLUSH) {
1813 __send_empty_flush(&ci);
1814 /* dm_io_complete submits any data associated with flush */
1815 goto out;
1816 }
1817
1818 error = __split_and_process_bio(&ci);
1819 if (error || !ci.sector_count)
1820 goto out;
1821 /*
1822 * Remainder must be passed to submit_bio_noacct() so it gets handled
1823 * *after* bios already submitted have been completely processed.
1824 */
1825 bio_trim(bio, io->sectors, ci.sector_count);
1826 trace_block_split(bio, bio->bi_iter.bi_sector);
1827 bio_inc_remaining(bio);
1828 submit_bio_noacct(bio);
1829out:
1830 /*
1831 * Drop the extra reference count for non-POLLED bio, and hold one
1832 * reference for POLLED bio, which will be released in dm_poll_bio
1833 *
1834 * Add every dm_io instance into the dm_io list head which is stored
1835 * in bio->bi_private, so that dm_poll_bio can poll them all.
1836 */
1837 if (error || !ci.submit_as_polled) {
1838 /*
1839 * In case of submission failure, the extra reference for
1840 * submitting io isn't consumed yet
1841 */
1842 if (error)
1843 atomic_dec(&io->io_count);
1844 dm_io_dec_pending(io, error);
1845 } else
1846 dm_queue_poll_io(bio, io);
1847}
1848
1849static void dm_submit_bio(struct bio *bio)
1850{
1851 struct mapped_device *md = bio->bi_bdev->bd_disk->private_data;
1852 int srcu_idx;
1853 struct dm_table *map;
1854
1855 map = dm_get_live_table(md, &srcu_idx);
1856
1857 /* If suspended, or map not yet available, queue this IO for later */
1858 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) ||
1859 unlikely(!map)) {
1860 if (bio->bi_opf & REQ_NOWAIT)
1861 bio_wouldblock_error(bio);
1862 else if (bio->bi_opf & REQ_RAHEAD)
1863 bio_io_error(bio);
1864 else
1865 queue_io(md, bio);
1866 goto out;
1867 }
1868
1869 dm_split_and_process_bio(md, map, bio);
1870out:
1871 dm_put_live_table(md, srcu_idx);
1872}
1873
1874static bool dm_poll_dm_io(struct dm_io *io, struct io_comp_batch *iob,
1875 unsigned int flags)
1876{
1877 WARN_ON_ONCE(!dm_tio_is_normal(&io->tio));
1878
1879 /* don't poll if the mapped io is done */
1880 if (atomic_read(&io->io_count) > 1)
1881 bio_poll(&io->tio.clone, iob, flags);
1882
1883 /* bio_poll holds the last reference */
1884 return atomic_read(&io->io_count) == 1;
1885}
1886
1887static int dm_poll_bio(struct bio *bio, struct io_comp_batch *iob,
1888 unsigned int flags)
1889{
1890 struct dm_io **head = dm_poll_list_head(bio);
1891 struct dm_io *list = *head;
1892 struct dm_io *tmp = NULL;
1893 struct dm_io *curr, *next;
1894
1895 /* Only poll normal bio which was marked as REQ_DM_POLL_LIST */
1896 if (!(bio->bi_opf & REQ_DM_POLL_LIST))
1897 return 0;
1898
1899 WARN_ON_ONCE(!list);
1900
1901 /*
1902 * Restore .bi_private before possibly completing dm_io.
1903 *
1904 * bio_poll() is only possible once @bio has been completely
1905 * submitted via submit_bio_noacct()'s depth-first submission.
1906 * So there is no dm_queue_poll_io() race associated with
1907 * clearing REQ_DM_POLL_LIST here.
1908 */
1909 bio->bi_opf &= ~REQ_DM_POLL_LIST;
1910 bio->bi_private = list->data;
1911
1912 for (curr = list, next = curr->next; curr; curr = next, next =
1913 curr ? curr->next : NULL) {
1914 if (dm_poll_dm_io(curr, iob, flags)) {
1915 /*
1916 * clone_endio() has already occurred, so no
1917 * error handling is needed here.
1918 */
1919 __dm_io_dec_pending(curr);
1920 } else {
1921 curr->next = tmp;
1922 tmp = curr;
1923 }
1924 }
1925
1926 /* Not done? */
1927 if (tmp) {
1928 bio->bi_opf |= REQ_DM_POLL_LIST;
1929 /* Reset bio->bi_private to dm_io list head */
1930 *head = tmp;
1931 return 0;
1932 }
1933 return 1;
1934}
1935
1936/*
1937 *---------------------------------------------------------------
1938 * An IDR is used to keep track of allocated minor numbers.
1939 *---------------------------------------------------------------
1940 */
1941static void free_minor(int minor)
1942{
1943 spin_lock(&_minor_lock);
1944 idr_remove(&_minor_idr, minor);
1945 spin_unlock(&_minor_lock);
1946}
1947
1948/*
1949 * See if the device with a specific minor # is free.
1950 */
1951static int specific_minor(int minor)
1952{
1953 int r;
1954
1955 if (minor >= (1 << MINORBITS))
1956 return -EINVAL;
1957
1958 idr_preload(GFP_KERNEL);
1959 spin_lock(&_minor_lock);
1960
1961 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1962
1963 spin_unlock(&_minor_lock);
1964 idr_preload_end();
1965 if (r < 0)
1966 return r == -ENOSPC ? -EBUSY : r;
1967 return 0;
1968}
1969
1970static int next_free_minor(int *minor)
1971{
1972 int r;
1973
1974 idr_preload(GFP_KERNEL);
1975 spin_lock(&_minor_lock);
1976
1977 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1978
1979 spin_unlock(&_minor_lock);
1980 idr_preload_end();
1981 if (r < 0)
1982 return r;
1983 *minor = r;
1984 return 0;
1985}
1986
1987static const struct block_device_operations dm_blk_dops;
1988static const struct block_device_operations dm_rq_blk_dops;
1989static const struct dax_operations dm_dax_ops;
1990
1991static void dm_wq_work(struct work_struct *work);
1992
1993#ifdef CONFIG_BLK_INLINE_ENCRYPTION
1994static void dm_queue_destroy_crypto_profile(struct request_queue *q)
1995{
1996 dm_destroy_crypto_profile(q->crypto_profile);
1997}
1998
1999#else /* CONFIG_BLK_INLINE_ENCRYPTION */
2000
2001static inline void dm_queue_destroy_crypto_profile(struct request_queue *q)
2002{
2003}
2004#endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
2005
2006static void cleanup_mapped_device(struct mapped_device *md)
2007{
2008 if (md->wq)
2009 destroy_workqueue(md->wq);
2010 dm_free_md_mempools(md->mempools);
2011
2012 if (md->dax_dev) {
2013 dax_remove_host(md->disk);
2014 kill_dax(md->dax_dev);
2015 put_dax(md->dax_dev);
2016 md->dax_dev = NULL;
2017 }
2018
2019 dm_cleanup_zoned_dev(md);
2020 if (md->disk) {
2021 spin_lock(&_minor_lock);
2022 md->disk->private_data = NULL;
2023 spin_unlock(&_minor_lock);
2024 if (dm_get_md_type(md) != DM_TYPE_NONE) {
2025 struct table_device *td;
2026
2027 dm_sysfs_exit(md);
2028 list_for_each_entry(td, &md->table_devices, list) {
2029 bd_unlink_disk_holder(td->dm_dev.bdev,
2030 md->disk);
2031 }
2032
2033 /*
2034 * Hold lock to make sure del_gendisk() won't concurrent
2035 * with open/close_table_device().
2036 */
2037 mutex_lock(&md->table_devices_lock);
2038 del_gendisk(md->disk);
2039 mutex_unlock(&md->table_devices_lock);
2040 }
2041 dm_queue_destroy_crypto_profile(md->queue);
2042 put_disk(md->disk);
2043 }
2044
2045 if (md->pending_io) {
2046 free_percpu(md->pending_io);
2047 md->pending_io = NULL;
2048 }
2049
2050 cleanup_srcu_struct(&md->io_barrier);
2051
2052 mutex_destroy(&md->suspend_lock);
2053 mutex_destroy(&md->type_lock);
2054 mutex_destroy(&md->table_devices_lock);
2055 mutex_destroy(&md->swap_bios_lock);
2056
2057 dm_mq_cleanup_mapped_device(md);
2058}
2059
2060/*
2061 * Allocate and initialise a blank device with a given minor.
2062 */
2063static struct mapped_device *alloc_dev(int minor)
2064{
2065 int r, numa_node_id = dm_get_numa_node();
2066 struct dax_device *dax_dev;
2067 struct mapped_device *md;
2068 void *old_md;
2069
2070 md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
2071 if (!md) {
2072 DMERR("unable to allocate device, out of memory.");
2073 return NULL;
2074 }
2075
2076 if (!try_module_get(THIS_MODULE))
2077 goto bad_module_get;
2078
2079 /* get a minor number for the dev */
2080 if (minor == DM_ANY_MINOR)
2081 r = next_free_minor(&minor);
2082 else
2083 r = specific_minor(minor);
2084 if (r < 0)
2085 goto bad_minor;
2086
2087 r = init_srcu_struct(&md->io_barrier);
2088 if (r < 0)
2089 goto bad_io_barrier;
2090
2091 md->numa_node_id = numa_node_id;
2092 md->init_tio_pdu = false;
2093 md->type = DM_TYPE_NONE;
2094 mutex_init(&md->suspend_lock);
2095 mutex_init(&md->type_lock);
2096 mutex_init(&md->table_devices_lock);
2097 spin_lock_init(&md->deferred_lock);
2098 atomic_set(&md->holders, 1);
2099 atomic_set(&md->open_count, 0);
2100 atomic_set(&md->event_nr, 0);
2101 atomic_set(&md->uevent_seq, 0);
2102 INIT_LIST_HEAD(&md->uevent_list);
2103 INIT_LIST_HEAD(&md->table_devices);
2104 spin_lock_init(&md->uevent_lock);
2105
2106 /*
2107 * default to bio-based until DM table is loaded and md->type
2108 * established. If request-based table is loaded: blk-mq will
2109 * override accordingly.
2110 */
2111 md->disk = blk_alloc_disk(NULL, md->numa_node_id);
2112 if (IS_ERR(md->disk))
2113 goto bad;
2114 md->queue = md->disk->queue;
2115
2116 init_waitqueue_head(&md->wait);
2117 INIT_WORK(&md->work, dm_wq_work);
2118 INIT_WORK(&md->requeue_work, dm_wq_requeue_work);
2119 init_waitqueue_head(&md->eventq);
2120 init_completion(&md->kobj_holder.completion);
2121
2122 md->requeue_list = NULL;
2123 md->swap_bios = get_swap_bios();
2124 sema_init(&md->swap_bios_semaphore, md->swap_bios);
2125 mutex_init(&md->swap_bios_lock);
2126
2127 md->disk->major = _major;
2128 md->disk->first_minor = minor;
2129 md->disk->minors = 1;
2130 md->disk->flags |= GENHD_FL_NO_PART;
2131 md->disk->fops = &dm_blk_dops;
2132 md->disk->private_data = md;
2133 sprintf(md->disk->disk_name, "dm-%d", minor);
2134
2135 dax_dev = alloc_dax(md, &dm_dax_ops);
2136 if (IS_ERR(dax_dev)) {
2137 if (PTR_ERR(dax_dev) != -EOPNOTSUPP)
2138 goto bad;
2139 } else {
2140 set_dax_nocache(dax_dev);
2141 set_dax_nomc(dax_dev);
2142 md->dax_dev = dax_dev;
2143 if (dax_add_host(dax_dev, md->disk))
2144 goto bad;
2145 }
2146
2147 format_dev_t(md->name, MKDEV(_major, minor));
2148
2149 md->wq = alloc_workqueue("kdmflush/%s", WQ_MEM_RECLAIM, 0, md->name);
2150 if (!md->wq)
2151 goto bad;
2152
2153 md->pending_io = alloc_percpu(unsigned long);
2154 if (!md->pending_io)
2155 goto bad;
2156
2157 r = dm_stats_init(&md->stats);
2158 if (r < 0)
2159 goto bad;
2160
2161 /* Populate the mapping, nobody knows we exist yet */
2162 spin_lock(&_minor_lock);
2163 old_md = idr_replace(&_minor_idr, md, minor);
2164 spin_unlock(&_minor_lock);
2165
2166 BUG_ON(old_md != MINOR_ALLOCED);
2167
2168 return md;
2169
2170bad:
2171 cleanup_mapped_device(md);
2172bad_io_barrier:
2173 free_minor(minor);
2174bad_minor:
2175 module_put(THIS_MODULE);
2176bad_module_get:
2177 kvfree(md);
2178 return NULL;
2179}
2180
2181static void unlock_fs(struct mapped_device *md);
2182
2183static void free_dev(struct mapped_device *md)
2184{
2185 int minor = MINOR(disk_devt(md->disk));
2186
2187 unlock_fs(md);
2188
2189 cleanup_mapped_device(md);
2190
2191 WARN_ON_ONCE(!list_empty(&md->table_devices));
2192 dm_stats_cleanup(&md->stats);
2193 free_minor(minor);
2194
2195 module_put(THIS_MODULE);
2196 kvfree(md);
2197}
2198
2199/*
2200 * Bind a table to the device.
2201 */
2202static void event_callback(void *context)
2203{
2204 unsigned long flags;
2205 LIST_HEAD(uevents);
2206 struct mapped_device *md = context;
2207
2208 spin_lock_irqsave(&md->uevent_lock, flags);
2209 list_splice_init(&md->uevent_list, &uevents);
2210 spin_unlock_irqrestore(&md->uevent_lock, flags);
2211
2212 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2213
2214 atomic_inc(&md->event_nr);
2215 wake_up(&md->eventq);
2216 dm_issue_global_event();
2217}
2218
2219/*
2220 * Returns old map, which caller must destroy.
2221 */
2222static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2223 struct queue_limits *limits)
2224{
2225 struct dm_table *old_map;
2226 sector_t size;
2227 int ret;
2228
2229 lockdep_assert_held(&md->suspend_lock);
2230
2231 size = dm_table_get_size(t);
2232
2233 /*
2234 * Wipe any geometry if the size of the table changed.
2235 */
2236 if (size != dm_get_size(md))
2237 memset(&md->geometry, 0, sizeof(md->geometry));
2238
2239 set_capacity(md->disk, size);
2240
2241 dm_table_event_callback(t, event_callback, md);
2242
2243 if (dm_table_request_based(t)) {
2244 /*
2245 * Leverage the fact that request-based DM targets are
2246 * immutable singletons - used to optimize dm_mq_queue_rq.
2247 */
2248 md->immutable_target = dm_table_get_immutable_target(t);
2249
2250 /*
2251 * There is no need to reload with request-based dm because the
2252 * size of front_pad doesn't change.
2253 *
2254 * Note for future: If you are to reload bioset, prep-ed
2255 * requests in the queue may refer to bio from the old bioset,
2256 * so you must walk through the queue to unprep.
2257 */
2258 if (!md->mempools) {
2259 md->mempools = t->mempools;
2260 t->mempools = NULL;
2261 }
2262 } else {
2263 /*
2264 * The md may already have mempools that need changing.
2265 * If so, reload bioset because front_pad may have changed
2266 * because a different table was loaded.
2267 */
2268 dm_free_md_mempools(md->mempools);
2269 md->mempools = t->mempools;
2270 t->mempools = NULL;
2271 }
2272
2273 ret = dm_table_set_restrictions(t, md->queue, limits);
2274 if (ret) {
2275 old_map = ERR_PTR(ret);
2276 goto out;
2277 }
2278
2279 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2280 rcu_assign_pointer(md->map, (void *)t);
2281 md->immutable_target_type = dm_table_get_immutable_target_type(t);
2282
2283 if (old_map)
2284 dm_sync_table(md);
2285out:
2286 return old_map;
2287}
2288
2289/*
2290 * Returns unbound table for the caller to free.
2291 */
2292static struct dm_table *__unbind(struct mapped_device *md)
2293{
2294 struct dm_table *map = rcu_dereference_protected(md->map, 1);
2295
2296 if (!map)
2297 return NULL;
2298
2299 dm_table_event_callback(map, NULL, NULL);
2300 RCU_INIT_POINTER(md->map, NULL);
2301 dm_sync_table(md);
2302
2303 return map;
2304}
2305
2306/*
2307 * Constructor for a new device.
2308 */
2309int dm_create(int minor, struct mapped_device **result)
2310{
2311 struct mapped_device *md;
2312
2313 md = alloc_dev(minor);
2314 if (!md)
2315 return -ENXIO;
2316
2317 dm_ima_reset_data(md);
2318
2319 *result = md;
2320 return 0;
2321}
2322
2323/*
2324 * Functions to manage md->type.
2325 * All are required to hold md->type_lock.
2326 */
2327void dm_lock_md_type(struct mapped_device *md)
2328{
2329 mutex_lock(&md->type_lock);
2330}
2331
2332void dm_unlock_md_type(struct mapped_device *md)
2333{
2334 mutex_unlock(&md->type_lock);
2335}
2336
2337void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2338{
2339 BUG_ON(!mutex_is_locked(&md->type_lock));
2340 md->type = type;
2341}
2342
2343enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2344{
2345 return md->type;
2346}
2347
2348struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2349{
2350 return md->immutable_target_type;
2351}
2352
2353/*
2354 * Setup the DM device's queue based on md's type
2355 */
2356int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2357{
2358 enum dm_queue_mode type = dm_table_get_type(t);
2359 struct queue_limits limits;
2360 struct table_device *td;
2361 int r;
2362
2363 switch (type) {
2364 case DM_TYPE_REQUEST_BASED:
2365 md->disk->fops = &dm_rq_blk_dops;
2366 r = dm_mq_init_request_queue(md, t);
2367 if (r) {
2368 DMERR("Cannot initialize queue for request-based dm mapped device");
2369 return r;
2370 }
2371 break;
2372 case DM_TYPE_BIO_BASED:
2373 case DM_TYPE_DAX_BIO_BASED:
2374 blk_queue_flag_set(QUEUE_FLAG_IO_STAT, md->queue);
2375 break;
2376 case DM_TYPE_NONE:
2377 WARN_ON_ONCE(true);
2378 break;
2379 }
2380
2381 r = dm_calculate_queue_limits(t, &limits);
2382 if (r) {
2383 DMERR("Cannot calculate initial queue limits");
2384 return r;
2385 }
2386 r = dm_table_set_restrictions(t, md->queue, &limits);
2387 if (r)
2388 return r;
2389
2390 /*
2391 * Hold lock to make sure add_disk() and del_gendisk() won't concurrent
2392 * with open_table_device() and close_table_device().
2393 */
2394 mutex_lock(&md->table_devices_lock);
2395 r = add_disk(md->disk);
2396 mutex_unlock(&md->table_devices_lock);
2397 if (r)
2398 return r;
2399
2400 /*
2401 * Register the holder relationship for devices added before the disk
2402 * was live.
2403 */
2404 list_for_each_entry(td, &md->table_devices, list) {
2405 r = bd_link_disk_holder(td->dm_dev.bdev, md->disk);
2406 if (r)
2407 goto out_undo_holders;
2408 }
2409
2410 r = dm_sysfs_init(md);
2411 if (r)
2412 goto out_undo_holders;
2413
2414 md->type = type;
2415 return 0;
2416
2417out_undo_holders:
2418 list_for_each_entry_continue_reverse(td, &md->table_devices, list)
2419 bd_unlink_disk_holder(td->dm_dev.bdev, md->disk);
2420 mutex_lock(&md->table_devices_lock);
2421 del_gendisk(md->disk);
2422 mutex_unlock(&md->table_devices_lock);
2423 return r;
2424}
2425
2426struct mapped_device *dm_get_md(dev_t dev)
2427{
2428 struct mapped_device *md;
2429 unsigned int minor = MINOR(dev);
2430
2431 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2432 return NULL;
2433
2434 spin_lock(&_minor_lock);
2435
2436 md = idr_find(&_minor_idr, minor);
2437 if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2438 test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2439 md = NULL;
2440 goto out;
2441 }
2442 dm_get(md);
2443out:
2444 spin_unlock(&_minor_lock);
2445
2446 return md;
2447}
2448EXPORT_SYMBOL_GPL(dm_get_md);
2449
2450void *dm_get_mdptr(struct mapped_device *md)
2451{
2452 return md->interface_ptr;
2453}
2454
2455void dm_set_mdptr(struct mapped_device *md, void *ptr)
2456{
2457 md->interface_ptr = ptr;
2458}
2459
2460void dm_get(struct mapped_device *md)
2461{
2462 atomic_inc(&md->holders);
2463 BUG_ON(test_bit(DMF_FREEING, &md->flags));
2464}
2465
2466int dm_hold(struct mapped_device *md)
2467{
2468 spin_lock(&_minor_lock);
2469 if (test_bit(DMF_FREEING, &md->flags)) {
2470 spin_unlock(&_minor_lock);
2471 return -EBUSY;
2472 }
2473 dm_get(md);
2474 spin_unlock(&_minor_lock);
2475 return 0;
2476}
2477EXPORT_SYMBOL_GPL(dm_hold);
2478
2479const char *dm_device_name(struct mapped_device *md)
2480{
2481 return md->name;
2482}
2483EXPORT_SYMBOL_GPL(dm_device_name);
2484
2485static void __dm_destroy(struct mapped_device *md, bool wait)
2486{
2487 struct dm_table *map;
2488 int srcu_idx;
2489
2490 might_sleep();
2491
2492 spin_lock(&_minor_lock);
2493 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2494 set_bit(DMF_FREEING, &md->flags);
2495 spin_unlock(&_minor_lock);
2496
2497 blk_mark_disk_dead(md->disk);
2498
2499 /*
2500 * Take suspend_lock so that presuspend and postsuspend methods
2501 * do not race with internal suspend.
2502 */
2503 mutex_lock(&md->suspend_lock);
2504 map = dm_get_live_table(md, &srcu_idx);
2505 if (!dm_suspended_md(md)) {
2506 dm_table_presuspend_targets(map);
2507 set_bit(DMF_SUSPENDED, &md->flags);
2508 set_bit(DMF_POST_SUSPENDING, &md->flags);
2509 dm_table_postsuspend_targets(map);
2510 }
2511 /* dm_put_live_table must be before fsleep, otherwise deadlock is possible */
2512 dm_put_live_table(md, srcu_idx);
2513 mutex_unlock(&md->suspend_lock);
2514
2515 /*
2516 * Rare, but there may be I/O requests still going to complete,
2517 * for example. Wait for all references to disappear.
2518 * No one should increment the reference count of the mapped_device,
2519 * after the mapped_device state becomes DMF_FREEING.
2520 */
2521 if (wait)
2522 while (atomic_read(&md->holders))
2523 fsleep(1000);
2524 else if (atomic_read(&md->holders))
2525 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2526 dm_device_name(md), atomic_read(&md->holders));
2527
2528 dm_table_destroy(__unbind(md));
2529 free_dev(md);
2530}
2531
2532void dm_destroy(struct mapped_device *md)
2533{
2534 __dm_destroy(md, true);
2535}
2536
2537void dm_destroy_immediate(struct mapped_device *md)
2538{
2539 __dm_destroy(md, false);
2540}
2541
2542void dm_put(struct mapped_device *md)
2543{
2544 atomic_dec(&md->holders);
2545}
2546EXPORT_SYMBOL_GPL(dm_put);
2547
2548static bool dm_in_flight_bios(struct mapped_device *md)
2549{
2550 int cpu;
2551 unsigned long sum = 0;
2552
2553 for_each_possible_cpu(cpu)
2554 sum += *per_cpu_ptr(md->pending_io, cpu);
2555
2556 return sum != 0;
2557}
2558
2559static int dm_wait_for_bios_completion(struct mapped_device *md, unsigned int task_state)
2560{
2561 int r = 0;
2562 DEFINE_WAIT(wait);
2563
2564 while (true) {
2565 prepare_to_wait(&md->wait, &wait, task_state);
2566
2567 if (!dm_in_flight_bios(md))
2568 break;
2569
2570 if (signal_pending_state(task_state, current)) {
2571 r = -EINTR;
2572 break;
2573 }
2574
2575 io_schedule();
2576 }
2577 finish_wait(&md->wait, &wait);
2578
2579 smp_rmb();
2580
2581 return r;
2582}
2583
2584static int dm_wait_for_completion(struct mapped_device *md, unsigned int task_state)
2585{
2586 int r = 0;
2587
2588 if (!queue_is_mq(md->queue))
2589 return dm_wait_for_bios_completion(md, task_state);
2590
2591 while (true) {
2592 if (!blk_mq_queue_inflight(md->queue))
2593 break;
2594
2595 if (signal_pending_state(task_state, current)) {
2596 r = -EINTR;
2597 break;
2598 }
2599
2600 fsleep(5000);
2601 }
2602
2603 return r;
2604}
2605
2606/*
2607 * Process the deferred bios
2608 */
2609static void dm_wq_work(struct work_struct *work)
2610{
2611 struct mapped_device *md = container_of(work, struct mapped_device, work);
2612 struct bio *bio;
2613
2614 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2615 spin_lock_irq(&md->deferred_lock);
2616 bio = bio_list_pop(&md->deferred);
2617 spin_unlock_irq(&md->deferred_lock);
2618
2619 if (!bio)
2620 break;
2621
2622 submit_bio_noacct(bio);
2623 cond_resched();
2624 }
2625}
2626
2627static void dm_queue_flush(struct mapped_device *md)
2628{
2629 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2630 smp_mb__after_atomic();
2631 queue_work(md->wq, &md->work);
2632}
2633
2634/*
2635 * Swap in a new table, returning the old one for the caller to destroy.
2636 */
2637struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2638{
2639 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2640 struct queue_limits limits;
2641 int r;
2642
2643 mutex_lock(&md->suspend_lock);
2644
2645 /* device must be suspended */
2646 if (!dm_suspended_md(md))
2647 goto out;
2648
2649 /*
2650 * If the new table has no data devices, retain the existing limits.
2651 * This helps multipath with queue_if_no_path if all paths disappear,
2652 * then new I/O is queued based on these limits, and then some paths
2653 * reappear.
2654 */
2655 if (dm_table_has_no_data_devices(table)) {
2656 live_map = dm_get_live_table_fast(md);
2657 if (live_map)
2658 limits = md->queue->limits;
2659 dm_put_live_table_fast(md);
2660 }
2661
2662 if (!live_map) {
2663 r = dm_calculate_queue_limits(table, &limits);
2664 if (r) {
2665 map = ERR_PTR(r);
2666 goto out;
2667 }
2668 }
2669
2670 map = __bind(md, table, &limits);
2671 dm_issue_global_event();
2672
2673out:
2674 mutex_unlock(&md->suspend_lock);
2675 return map;
2676}
2677
2678/*
2679 * Functions to lock and unlock any filesystem running on the
2680 * device.
2681 */
2682static int lock_fs(struct mapped_device *md)
2683{
2684 int r;
2685
2686 WARN_ON(test_bit(DMF_FROZEN, &md->flags));
2687
2688 r = bdev_freeze(md->disk->part0);
2689 if (!r)
2690 set_bit(DMF_FROZEN, &md->flags);
2691 return r;
2692}
2693
2694static void unlock_fs(struct mapped_device *md)
2695{
2696 if (!test_bit(DMF_FROZEN, &md->flags))
2697 return;
2698 bdev_thaw(md->disk->part0);
2699 clear_bit(DMF_FROZEN, &md->flags);
2700}
2701
2702/*
2703 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2704 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2705 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2706 *
2707 * If __dm_suspend returns 0, the device is completely quiescent
2708 * now. There is no request-processing activity. All new requests
2709 * are being added to md->deferred list.
2710 */
2711static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2712 unsigned int suspend_flags, unsigned int task_state,
2713 int dmf_suspended_flag)
2714{
2715 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2716 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2717 int r;
2718
2719 lockdep_assert_held(&md->suspend_lock);
2720
2721 /*
2722 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2723 * This flag is cleared before dm_suspend returns.
2724 */
2725 if (noflush)
2726 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2727 else
2728 DMDEBUG("%s: suspending with flush", dm_device_name(md));
2729
2730 /*
2731 * This gets reverted if there's an error later and the targets
2732 * provide the .presuspend_undo hook.
2733 */
2734 dm_table_presuspend_targets(map);
2735
2736 /*
2737 * Flush I/O to the device.
2738 * Any I/O submitted after lock_fs() may not be flushed.
2739 * noflush takes precedence over do_lockfs.
2740 * (lock_fs() flushes I/Os and waits for them to complete.)
2741 */
2742 if (!noflush && do_lockfs) {
2743 r = lock_fs(md);
2744 if (r) {
2745 dm_table_presuspend_undo_targets(map);
2746 return r;
2747 }
2748 }
2749
2750 /*
2751 * Here we must make sure that no processes are submitting requests
2752 * to target drivers i.e. no one may be executing
2753 * dm_split_and_process_bio from dm_submit_bio.
2754 *
2755 * To get all processes out of dm_split_and_process_bio in dm_submit_bio,
2756 * we take the write lock. To prevent any process from reentering
2757 * dm_split_and_process_bio from dm_submit_bio and quiesce the thread
2758 * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call
2759 * flush_workqueue(md->wq).
2760 */
2761 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2762 if (map)
2763 synchronize_srcu(&md->io_barrier);
2764
2765 /*
2766 * Stop md->queue before flushing md->wq in case request-based
2767 * dm defers requests to md->wq from md->queue.
2768 */
2769 if (dm_request_based(md))
2770 dm_stop_queue(md->queue);
2771
2772 flush_workqueue(md->wq);
2773
2774 /*
2775 * At this point no more requests are entering target request routines.
2776 * We call dm_wait_for_completion to wait for all existing requests
2777 * to finish.
2778 */
2779 r = dm_wait_for_completion(md, task_state);
2780 if (!r)
2781 set_bit(dmf_suspended_flag, &md->flags);
2782
2783 if (noflush)
2784 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2785 if (map)
2786 synchronize_srcu(&md->io_barrier);
2787
2788 /* were we interrupted ? */
2789 if (r < 0) {
2790 dm_queue_flush(md);
2791
2792 if (dm_request_based(md))
2793 dm_start_queue(md->queue);
2794
2795 unlock_fs(md);
2796 dm_table_presuspend_undo_targets(map);
2797 /* pushback list is already flushed, so skip flush */
2798 }
2799
2800 return r;
2801}
2802
2803/*
2804 * We need to be able to change a mapping table under a mounted
2805 * filesystem. For example we might want to move some data in
2806 * the background. Before the table can be swapped with
2807 * dm_bind_table, dm_suspend must be called to flush any in
2808 * flight bios and ensure that any further io gets deferred.
2809 */
2810/*
2811 * Suspend mechanism in request-based dm.
2812 *
2813 * 1. Flush all I/Os by lock_fs() if needed.
2814 * 2. Stop dispatching any I/O by stopping the request_queue.
2815 * 3. Wait for all in-flight I/Os to be completed or requeued.
2816 *
2817 * To abort suspend, start the request_queue.
2818 */
2819int dm_suspend(struct mapped_device *md, unsigned int suspend_flags)
2820{
2821 struct dm_table *map = NULL;
2822 int r = 0;
2823
2824retry:
2825 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2826
2827 if (dm_suspended_md(md)) {
2828 r = -EINVAL;
2829 goto out_unlock;
2830 }
2831
2832 if (dm_suspended_internally_md(md)) {
2833 /* already internally suspended, wait for internal resume */
2834 mutex_unlock(&md->suspend_lock);
2835 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2836 if (r)
2837 return r;
2838 goto retry;
2839 }
2840
2841 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2842 if (!map) {
2843 /* avoid deadlock with fs/namespace.c:do_mount() */
2844 suspend_flags &= ~DM_SUSPEND_LOCKFS_FLAG;
2845 }
2846
2847 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2848 if (r)
2849 goto out_unlock;
2850
2851 set_bit(DMF_POST_SUSPENDING, &md->flags);
2852 dm_table_postsuspend_targets(map);
2853 clear_bit(DMF_POST_SUSPENDING, &md->flags);
2854
2855out_unlock:
2856 mutex_unlock(&md->suspend_lock);
2857 return r;
2858}
2859
2860static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2861{
2862 if (map) {
2863 int r = dm_table_resume_targets(map);
2864
2865 if (r)
2866 return r;
2867 }
2868
2869 dm_queue_flush(md);
2870
2871 /*
2872 * Flushing deferred I/Os must be done after targets are resumed
2873 * so that mapping of targets can work correctly.
2874 * Request-based dm is queueing the deferred I/Os in its request_queue.
2875 */
2876 if (dm_request_based(md))
2877 dm_start_queue(md->queue);
2878
2879 unlock_fs(md);
2880
2881 return 0;
2882}
2883
2884int dm_resume(struct mapped_device *md)
2885{
2886 int r;
2887 struct dm_table *map = NULL;
2888
2889retry:
2890 r = -EINVAL;
2891 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2892
2893 if (!dm_suspended_md(md))
2894 goto out;
2895
2896 if (dm_suspended_internally_md(md)) {
2897 /* already internally suspended, wait for internal resume */
2898 mutex_unlock(&md->suspend_lock);
2899 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2900 if (r)
2901 return r;
2902 goto retry;
2903 }
2904
2905 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2906 if (!map || !dm_table_get_size(map))
2907 goto out;
2908
2909 r = __dm_resume(md, map);
2910 if (r)
2911 goto out;
2912
2913 clear_bit(DMF_SUSPENDED, &md->flags);
2914out:
2915 mutex_unlock(&md->suspend_lock);
2916
2917 return r;
2918}
2919
2920/*
2921 * Internal suspend/resume works like userspace-driven suspend. It waits
2922 * until all bios finish and prevents issuing new bios to the target drivers.
2923 * It may be used only from the kernel.
2924 */
2925
2926static void __dm_internal_suspend(struct mapped_device *md, unsigned int suspend_flags)
2927{
2928 struct dm_table *map = NULL;
2929
2930 lockdep_assert_held(&md->suspend_lock);
2931
2932 if (md->internal_suspend_count++)
2933 return; /* nested internal suspend */
2934
2935 if (dm_suspended_md(md)) {
2936 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2937 return; /* nest suspend */
2938 }
2939
2940 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2941
2942 /*
2943 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2944 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend
2945 * would require changing .presuspend to return an error -- avoid this
2946 * until there is a need for more elaborate variants of internal suspend.
2947 */
2948 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2949 DMF_SUSPENDED_INTERNALLY);
2950
2951 set_bit(DMF_POST_SUSPENDING, &md->flags);
2952 dm_table_postsuspend_targets(map);
2953 clear_bit(DMF_POST_SUSPENDING, &md->flags);
2954}
2955
2956static void __dm_internal_resume(struct mapped_device *md)
2957{
2958 int r;
2959 struct dm_table *map;
2960
2961 BUG_ON(!md->internal_suspend_count);
2962
2963 if (--md->internal_suspend_count)
2964 return; /* resume from nested internal suspend */
2965
2966 if (dm_suspended_md(md))
2967 goto done; /* resume from nested suspend */
2968
2969 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2970 r = __dm_resume(md, map);
2971 if (r) {
2972 /*
2973 * If a preresume method of some target failed, we are in a
2974 * tricky situation. We can't return an error to the caller. We
2975 * can't fake success because then the "resume" and
2976 * "postsuspend" methods would not be paired correctly, and it
2977 * would break various targets, for example it would cause list
2978 * corruption in the "origin" target.
2979 *
2980 * So, we fake normal suspend here, to make sure that the
2981 * "resume" and "postsuspend" methods will be paired correctly.
2982 */
2983 DMERR("Preresume method failed: %d", r);
2984 set_bit(DMF_SUSPENDED, &md->flags);
2985 }
2986done:
2987 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2988 smp_mb__after_atomic();
2989 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2990}
2991
2992void dm_internal_suspend_noflush(struct mapped_device *md)
2993{
2994 mutex_lock(&md->suspend_lock);
2995 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2996 mutex_unlock(&md->suspend_lock);
2997}
2998EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2999
3000void dm_internal_resume(struct mapped_device *md)
3001{
3002 mutex_lock(&md->suspend_lock);
3003 __dm_internal_resume(md);
3004 mutex_unlock(&md->suspend_lock);
3005}
3006EXPORT_SYMBOL_GPL(dm_internal_resume);
3007
3008/*
3009 * Fast variants of internal suspend/resume hold md->suspend_lock,
3010 * which prevents interaction with userspace-driven suspend.
3011 */
3012
3013void dm_internal_suspend_fast(struct mapped_device *md)
3014{
3015 mutex_lock(&md->suspend_lock);
3016 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3017 return;
3018
3019 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
3020 synchronize_srcu(&md->io_barrier);
3021 flush_workqueue(md->wq);
3022 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
3023}
3024EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
3025
3026void dm_internal_resume_fast(struct mapped_device *md)
3027{
3028 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3029 goto done;
3030
3031 dm_queue_flush(md);
3032
3033done:
3034 mutex_unlock(&md->suspend_lock);
3035}
3036EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
3037
3038/*
3039 *---------------------------------------------------------------
3040 * Event notification.
3041 *---------------------------------------------------------------
3042 */
3043int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
3044 unsigned int cookie, bool need_resize_uevent)
3045{
3046 int r;
3047 unsigned int noio_flag;
3048 char udev_cookie[DM_COOKIE_LENGTH];
3049 char *envp[3] = { NULL, NULL, NULL };
3050 char **envpp = envp;
3051 if (cookie) {
3052 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
3053 DM_COOKIE_ENV_VAR_NAME, cookie);
3054 *envpp++ = udev_cookie;
3055 }
3056 if (need_resize_uevent) {
3057 *envpp++ = "RESIZE=1";
3058 }
3059
3060 noio_flag = memalloc_noio_save();
3061
3062 r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj, action, envp);
3063
3064 memalloc_noio_restore(noio_flag);
3065
3066 return r;
3067}
3068
3069uint32_t dm_next_uevent_seq(struct mapped_device *md)
3070{
3071 return atomic_add_return(1, &md->uevent_seq);
3072}
3073
3074uint32_t dm_get_event_nr(struct mapped_device *md)
3075{
3076 return atomic_read(&md->event_nr);
3077}
3078
3079int dm_wait_event(struct mapped_device *md, int event_nr)
3080{
3081 return wait_event_interruptible(md->eventq,
3082 (event_nr != atomic_read(&md->event_nr)));
3083}
3084
3085void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
3086{
3087 unsigned long flags;
3088
3089 spin_lock_irqsave(&md->uevent_lock, flags);
3090 list_add(elist, &md->uevent_list);
3091 spin_unlock_irqrestore(&md->uevent_lock, flags);
3092}
3093
3094/*
3095 * The gendisk is only valid as long as you have a reference
3096 * count on 'md'.
3097 */
3098struct gendisk *dm_disk(struct mapped_device *md)
3099{
3100 return md->disk;
3101}
3102EXPORT_SYMBOL_GPL(dm_disk);
3103
3104struct kobject *dm_kobject(struct mapped_device *md)
3105{
3106 return &md->kobj_holder.kobj;
3107}
3108
3109struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
3110{
3111 struct mapped_device *md;
3112
3113 md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
3114
3115 spin_lock(&_minor_lock);
3116 if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
3117 md = NULL;
3118 goto out;
3119 }
3120 dm_get(md);
3121out:
3122 spin_unlock(&_minor_lock);
3123
3124 return md;
3125}
3126
3127int dm_suspended_md(struct mapped_device *md)
3128{
3129 return test_bit(DMF_SUSPENDED, &md->flags);
3130}
3131
3132static int dm_post_suspending_md(struct mapped_device *md)
3133{
3134 return test_bit(DMF_POST_SUSPENDING, &md->flags);
3135}
3136
3137int dm_suspended_internally_md(struct mapped_device *md)
3138{
3139 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3140}
3141
3142int dm_test_deferred_remove_flag(struct mapped_device *md)
3143{
3144 return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
3145}
3146
3147int dm_suspended(struct dm_target *ti)
3148{
3149 return dm_suspended_md(ti->table->md);
3150}
3151EXPORT_SYMBOL_GPL(dm_suspended);
3152
3153int dm_post_suspending(struct dm_target *ti)
3154{
3155 return dm_post_suspending_md(ti->table->md);
3156}
3157EXPORT_SYMBOL_GPL(dm_post_suspending);
3158
3159int dm_noflush_suspending(struct dm_target *ti)
3160{
3161 return __noflush_suspending(ti->table->md);
3162}
3163EXPORT_SYMBOL_GPL(dm_noflush_suspending);
3164
3165void dm_free_md_mempools(struct dm_md_mempools *pools)
3166{
3167 if (!pools)
3168 return;
3169
3170 bioset_exit(&pools->bs);
3171 bioset_exit(&pools->io_bs);
3172
3173 kfree(pools);
3174}
3175
3176struct dm_pr {
3177 u64 old_key;
3178 u64 new_key;
3179 u32 flags;
3180 bool abort;
3181 bool fail_early;
3182 int ret;
3183 enum pr_type type;
3184 struct pr_keys *read_keys;
3185 struct pr_held_reservation *rsv;
3186};
3187
3188static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
3189 struct dm_pr *pr)
3190{
3191 struct mapped_device *md = bdev->bd_disk->private_data;
3192 struct dm_table *table;
3193 struct dm_target *ti;
3194 int ret = -ENOTTY, srcu_idx;
3195
3196 table = dm_get_live_table(md, &srcu_idx);
3197 if (!table || !dm_table_get_size(table))
3198 goto out;
3199
3200 /* We only support devices that have a single target */
3201 if (table->num_targets != 1)
3202 goto out;
3203 ti = dm_table_get_target(table, 0);
3204
3205 if (dm_suspended_md(md)) {
3206 ret = -EAGAIN;
3207 goto out;
3208 }
3209
3210 ret = -EINVAL;
3211 if (!ti->type->iterate_devices)
3212 goto out;
3213
3214 ti->type->iterate_devices(ti, fn, pr);
3215 ret = 0;
3216out:
3217 dm_put_live_table(md, srcu_idx);
3218 return ret;
3219}
3220
3221/*
3222 * For register / unregister we need to manually call out to every path.
3223 */
3224static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
3225 sector_t start, sector_t len, void *data)
3226{
3227 struct dm_pr *pr = data;
3228 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3229 int ret;
3230
3231 if (!ops || !ops->pr_register) {
3232 pr->ret = -EOPNOTSUPP;
3233 return -1;
3234 }
3235
3236 ret = ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
3237 if (!ret)
3238 return 0;
3239
3240 if (!pr->ret)
3241 pr->ret = ret;
3242
3243 if (pr->fail_early)
3244 return -1;
3245
3246 return 0;
3247}
3248
3249static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3250 u32 flags)
3251{
3252 struct dm_pr pr = {
3253 .old_key = old_key,
3254 .new_key = new_key,
3255 .flags = flags,
3256 .fail_early = true,
3257 .ret = 0,
3258 };
3259 int ret;
3260
3261 ret = dm_call_pr(bdev, __dm_pr_register, &pr);
3262 if (ret) {
3263 /* Didn't even get to register a path */
3264 return ret;
3265 }
3266
3267 if (!pr.ret)
3268 return 0;
3269 ret = pr.ret;
3270
3271 if (!new_key)
3272 return ret;
3273
3274 /* unregister all paths if we failed to register any path */
3275 pr.old_key = new_key;
3276 pr.new_key = 0;
3277 pr.flags = 0;
3278 pr.fail_early = false;
3279 (void) dm_call_pr(bdev, __dm_pr_register, &pr);
3280 return ret;
3281}
3282
3283
3284static int __dm_pr_reserve(struct dm_target *ti, struct dm_dev *dev,
3285 sector_t start, sector_t len, void *data)
3286{
3287 struct dm_pr *pr = data;
3288 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3289
3290 if (!ops || !ops->pr_reserve) {
3291 pr->ret = -EOPNOTSUPP;
3292 return -1;
3293 }
3294
3295 pr->ret = ops->pr_reserve(dev->bdev, pr->old_key, pr->type, pr->flags);
3296 if (!pr->ret)
3297 return -1;
3298
3299 return 0;
3300}
3301
3302static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3303 u32 flags)
3304{
3305 struct dm_pr pr = {
3306 .old_key = key,
3307 .flags = flags,
3308 .type = type,
3309 .fail_early = false,
3310 .ret = 0,
3311 };
3312 int ret;
3313
3314 ret = dm_call_pr(bdev, __dm_pr_reserve, &pr);
3315 if (ret)
3316 return ret;
3317
3318 return pr.ret;
3319}
3320
3321/*
3322 * If there is a non-All Registrants type of reservation, the release must be
3323 * sent down the holding path. For the cases where there is no reservation or
3324 * the path is not the holder the device will also return success, so we must
3325 * try each path to make sure we got the correct path.
3326 */
3327static int __dm_pr_release(struct dm_target *ti, struct dm_dev *dev,
3328 sector_t start, sector_t len, void *data)
3329{
3330 struct dm_pr *pr = data;
3331 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3332
3333 if (!ops || !ops->pr_release) {
3334 pr->ret = -EOPNOTSUPP;
3335 return -1;
3336 }
3337
3338 pr->ret = ops->pr_release(dev->bdev, pr->old_key, pr->type);
3339 if (pr->ret)
3340 return -1;
3341
3342 return 0;
3343}
3344
3345static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3346{
3347 struct dm_pr pr = {
3348 .old_key = key,
3349 .type = type,
3350 .fail_early = false,
3351 };
3352 int ret;
3353
3354 ret = dm_call_pr(bdev, __dm_pr_release, &pr);
3355 if (ret)
3356 return ret;
3357
3358 return pr.ret;
3359}
3360
3361static int __dm_pr_preempt(struct dm_target *ti, struct dm_dev *dev,
3362 sector_t start, sector_t len, void *data)
3363{
3364 struct dm_pr *pr = data;
3365 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3366
3367 if (!ops || !ops->pr_preempt) {
3368 pr->ret = -EOPNOTSUPP;
3369 return -1;
3370 }
3371
3372 pr->ret = ops->pr_preempt(dev->bdev, pr->old_key, pr->new_key, pr->type,
3373 pr->abort);
3374 if (!pr->ret)
3375 return -1;
3376
3377 return 0;
3378}
3379
3380static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3381 enum pr_type type, bool abort)
3382{
3383 struct dm_pr pr = {
3384 .new_key = new_key,
3385 .old_key = old_key,
3386 .type = type,
3387 .fail_early = false,
3388 };
3389 int ret;
3390
3391 ret = dm_call_pr(bdev, __dm_pr_preempt, &pr);
3392 if (ret)
3393 return ret;
3394
3395 return pr.ret;
3396}
3397
3398static int dm_pr_clear(struct block_device *bdev, u64 key)
3399{
3400 struct mapped_device *md = bdev->bd_disk->private_data;
3401 const struct pr_ops *ops;
3402 int r, srcu_idx;
3403
3404 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3405 if (r < 0)
3406 goto out;
3407
3408 ops = bdev->bd_disk->fops->pr_ops;
3409 if (ops && ops->pr_clear)
3410 r = ops->pr_clear(bdev, key);
3411 else
3412 r = -EOPNOTSUPP;
3413out:
3414 dm_unprepare_ioctl(md, srcu_idx);
3415 return r;
3416}
3417
3418static int __dm_pr_read_keys(struct dm_target *ti, struct dm_dev *dev,
3419 sector_t start, sector_t len, void *data)
3420{
3421 struct dm_pr *pr = data;
3422 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3423
3424 if (!ops || !ops->pr_read_keys) {
3425 pr->ret = -EOPNOTSUPP;
3426 return -1;
3427 }
3428
3429 pr->ret = ops->pr_read_keys(dev->bdev, pr->read_keys);
3430 if (!pr->ret)
3431 return -1;
3432
3433 return 0;
3434}
3435
3436static int dm_pr_read_keys(struct block_device *bdev, struct pr_keys *keys)
3437{
3438 struct dm_pr pr = {
3439 .read_keys = keys,
3440 };
3441 int ret;
3442
3443 ret = dm_call_pr(bdev, __dm_pr_read_keys, &pr);
3444 if (ret)
3445 return ret;
3446
3447 return pr.ret;
3448}
3449
3450static int __dm_pr_read_reservation(struct dm_target *ti, struct dm_dev *dev,
3451 sector_t start, sector_t len, void *data)
3452{
3453 struct dm_pr *pr = data;
3454 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3455
3456 if (!ops || !ops->pr_read_reservation) {
3457 pr->ret = -EOPNOTSUPP;
3458 return -1;
3459 }
3460
3461 pr->ret = ops->pr_read_reservation(dev->bdev, pr->rsv);
3462 if (!pr->ret)
3463 return -1;
3464
3465 return 0;
3466}
3467
3468static int dm_pr_read_reservation(struct block_device *bdev,
3469 struct pr_held_reservation *rsv)
3470{
3471 struct dm_pr pr = {
3472 .rsv = rsv,
3473 };
3474 int ret;
3475
3476 ret = dm_call_pr(bdev, __dm_pr_read_reservation, &pr);
3477 if (ret)
3478 return ret;
3479
3480 return pr.ret;
3481}
3482
3483static const struct pr_ops dm_pr_ops = {
3484 .pr_register = dm_pr_register,
3485 .pr_reserve = dm_pr_reserve,
3486 .pr_release = dm_pr_release,
3487 .pr_preempt = dm_pr_preempt,
3488 .pr_clear = dm_pr_clear,
3489 .pr_read_keys = dm_pr_read_keys,
3490 .pr_read_reservation = dm_pr_read_reservation,
3491};
3492
3493static const struct block_device_operations dm_blk_dops = {
3494 .submit_bio = dm_submit_bio,
3495 .poll_bio = dm_poll_bio,
3496 .open = dm_blk_open,
3497 .release = dm_blk_close,
3498 .ioctl = dm_blk_ioctl,
3499 .getgeo = dm_blk_getgeo,
3500 .report_zones = dm_blk_report_zones,
3501 .pr_ops = &dm_pr_ops,
3502 .owner = THIS_MODULE
3503};
3504
3505static const struct block_device_operations dm_rq_blk_dops = {
3506 .open = dm_blk_open,
3507 .release = dm_blk_close,
3508 .ioctl = dm_blk_ioctl,
3509 .getgeo = dm_blk_getgeo,
3510 .pr_ops = &dm_pr_ops,
3511 .owner = THIS_MODULE
3512};
3513
3514static const struct dax_operations dm_dax_ops = {
3515 .direct_access = dm_dax_direct_access,
3516 .zero_page_range = dm_dax_zero_page_range,
3517 .recovery_write = dm_dax_recovery_write,
3518};
3519
3520/*
3521 * module hooks
3522 */
3523module_init(dm_init);
3524module_exit(dm_exit);
3525
3526module_param(major, uint, 0);
3527MODULE_PARM_DESC(major, "The major number of the device mapper");
3528
3529module_param(reserved_bio_based_ios, uint, 0644);
3530MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3531
3532module_param(dm_numa_node, int, 0644);
3533MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3534
3535module_param(swap_bios, int, 0644);
3536MODULE_PARM_DESC(swap_bios, "Maximum allowed inflight swap IOs");
3537
3538MODULE_DESCRIPTION(DM_NAME " driver");
3539MODULE_AUTHOR("Joe Thornber <dm-devel@lists.linux.dev>");
3540MODULE_LICENSE("GPL");