Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
   3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
   4 *
   5 * This file is released under the GPL.
   6 */
   7
   8#include "dm.h"
 
   9#include "dm-uevent.h"
  10
  11#include <linux/init.h>
  12#include <linux/module.h>
  13#include <linux/mutex.h>
  14#include <linux/moduleparam.h>
  15#include <linux/blkpg.h>
  16#include <linux/bio.h>
  17#include <linux/buffer_head.h>
  18#include <linux/mempool.h>
 
  19#include <linux/slab.h>
  20#include <linux/idr.h>
 
  21#include <linux/hdreg.h>
  22#include <linux/delay.h>
  23
  24#include <trace/events/block.h>
 
  25
  26#define DM_MSG_PREFIX "core"
  27
  28/*
  29 * Cookies are numeric values sent with CHANGE and REMOVE
  30 * uevents while resuming, removing or renaming the device.
  31 */
  32#define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
  33#define DM_COOKIE_LENGTH 24
  34
  35static const char *_name = DM_NAME;
  36
  37static unsigned int major = 0;
  38static unsigned int _major = 0;
  39
  40static DEFINE_IDR(_minor_idr);
  41
  42static DEFINE_SPINLOCK(_minor_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  43/*
  44 * For bio-based dm.
  45 * One of these is allocated per bio.
  46 */
  47struct dm_io {
  48	struct mapped_device *md;
  49	int error;
  50	atomic_t io_count;
  51	struct bio *bio;
  52	unsigned long start_time;
  53	spinlock_t endio_lock;
 
  54};
  55
  56/*
  57 * For bio-based dm.
  58 * One of these is allocated per target within a bio.  Hopefully
  59 * this will be simplified out one day.
  60 */
 
  61struct dm_target_io {
 
  62	struct dm_io *io;
  63	struct dm_target *ti;
  64	union map_info info;
 
 
 
  65};
  66
  67/*
  68 * For request-based dm.
  69 * One of these is allocated per request.
  70 */
  71struct dm_rq_target_io {
 
 
  72	struct mapped_device *md;
  73	struct dm_target *ti;
  74	struct request *orig, clone;
  75	int error;
  76	union map_info info;
 
 
 
 
  77};
  78
  79/*
  80 * For request-based dm.
  81 * One of these is allocated per bio.
  82 */
  83struct dm_rq_clone_bio_info {
  84	struct bio *orig;
  85	struct dm_rq_target_io *tio;
  86};
  87
  88union map_info *dm_get_mapinfo(struct bio *bio)
  89{
  90	if (bio && bio->bi_private)
  91		return &((struct dm_target_io *)bio->bi_private)->info;
  92	return NULL;
 
 
  93}
 
  94
  95union map_info *dm_get_rq_mapinfo(struct request *rq)
  96{
  97	if (rq && rq->end_io_data)
  98		return &((struct dm_rq_target_io *)rq->end_io_data)->info;
  99	return NULL;
 100}
 101EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo);
 102
 103#define MINOR_ALLOCED ((void *)-1)
 104
 105/*
 106 * Bits for the md->flags field.
 107 */
 108#define DMF_BLOCK_IO_FOR_SUSPEND 0
 109#define DMF_SUSPENDED 1
 110#define DMF_FROZEN 2
 111#define DMF_FREEING 3
 112#define DMF_DELETING 4
 113#define DMF_NOFLUSH_SUSPENDING 5
 114#define DMF_MERGE_IS_OPTIONAL 6
 
 
 
 
 115
 116/*
 117 * Work processed by per-device workqueue.
 118 */
 119struct mapped_device {
 120	struct rw_semaphore io_lock;
 121	struct mutex suspend_lock;
 122	rwlock_t map_lock;
 123	atomic_t holders;
 124	atomic_t open_count;
 125
 126	unsigned long flags;
 127
 128	struct request_queue *queue;
 129	unsigned type;
 130	/* Protect queue and type against concurrent access. */
 131	struct mutex type_lock;
 132
 133	struct gendisk *disk;
 134	char name[16];
 135
 136	void *interface_ptr;
 137
 138	/*
 139	 * A list of ios that arrived while we were suspended.
 140	 */
 141	atomic_t pending[2];
 142	wait_queue_head_t wait;
 143	struct work_struct work;
 144	struct bio_list deferred;
 145	spinlock_t deferred_lock;
 146
 147	/*
 148	 * Processing queue (flush)
 149	 */
 150	struct workqueue_struct *wq;
 151
 152	/*
 153	 * The current mapping.
 154	 */
 155	struct dm_table *map;
 
 156
 157	/*
 158	 * io objects are allocated from here.
 159	 */
 160	mempool_t *io_pool;
 161	mempool_t *tio_pool;
 162
 163	struct bio_set *bs;
 
 
 
 
 
 164
 165	/*
 166	 * Event handling.
 167	 */
 168	atomic_t event_nr;
 169	wait_queue_head_t eventq;
 170	atomic_t uevent_seq;
 171	struct list_head uevent_list;
 172	spinlock_t uevent_lock; /* Protect access to uevent_list */
 173
 174	/*
 175	 * freeze/thaw support require holding onto a super block
 176	 */
 177	struct super_block *frozen_sb;
 178	struct block_device *bdev;
 179
 180	/* forced geometry settings */
 181	struct hd_geometry geometry;
 
 
 
 182
 183	/* For saving the address of __make_request for request based dm */
 184	make_request_fn *saved_make_request_fn;
 
 
 185
 186	/* sysfs handle */
 187	struct kobject kobj;
 
 
 188
 189	/* zero-length flush that will be cloned and submitted to targets */
 190	struct bio flush_bio;
 191};
 192
 193/*
 194 * For mempools pre-allocation at the table loading time.
 195 */
 196struct dm_md_mempools {
 197	mempool_t *io_pool;
 198	mempool_t *tio_pool;
 199	struct bio_set *bs;
 200};
 201
 202#define MIN_IOS 256
 203static struct kmem_cache *_io_cache;
 204static struct kmem_cache *_tio_cache;
 205static struct kmem_cache *_rq_tio_cache;
 206static struct kmem_cache *_rq_bio_info_cache;
 207
 208static int __init local_init(void)
 209{
 210	int r = -ENOMEM;
 211
 212	/* allocate a slab for the dm_ios */
 213	_io_cache = KMEM_CACHE(dm_io, 0);
 214	if (!_io_cache)
 215		return r;
 216
 217	/* allocate a slab for the target ios */
 218	_tio_cache = KMEM_CACHE(dm_target_io, 0);
 219	if (!_tio_cache)
 220		goto out_free_io_cache;
 221
 222	_rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
 223	if (!_rq_tio_cache)
 224		goto out_free_tio_cache;
 225
 226	_rq_bio_info_cache = KMEM_CACHE(dm_rq_clone_bio_info, 0);
 227	if (!_rq_bio_info_cache)
 
 228		goto out_free_rq_tio_cache;
 229
 230	r = dm_uevent_init();
 231	if (r)
 232		goto out_free_rq_bio_info_cache;
 
 
 
 
 
 
 233
 234	_major = major;
 235	r = register_blkdev(_major, _name);
 236	if (r < 0)
 237		goto out_uevent_exit;
 238
 239	if (!_major)
 240		_major = r;
 241
 242	return 0;
 243
 
 
 244out_uevent_exit:
 245	dm_uevent_exit();
 246out_free_rq_bio_info_cache:
 247	kmem_cache_destroy(_rq_bio_info_cache);
 248out_free_rq_tio_cache:
 249	kmem_cache_destroy(_rq_tio_cache);
 250out_free_tio_cache:
 251	kmem_cache_destroy(_tio_cache);
 252out_free_io_cache:
 253	kmem_cache_destroy(_io_cache);
 254
 255	return r;
 256}
 257
 258static void local_exit(void)
 259{
 260	kmem_cache_destroy(_rq_bio_info_cache);
 
 
 
 261	kmem_cache_destroy(_rq_tio_cache);
 262	kmem_cache_destroy(_tio_cache);
 263	kmem_cache_destroy(_io_cache);
 264	unregister_blkdev(_major, _name);
 265	dm_uevent_exit();
 266
 267	_major = 0;
 268
 269	DMINFO("cleaned up");
 270}
 271
 272static int (*_inits[])(void) __initdata = {
 273	local_init,
 274	dm_target_init,
 275	dm_linear_init,
 276	dm_stripe_init,
 277	dm_io_init,
 278	dm_kcopyd_init,
 279	dm_interface_init,
 
 280};
 281
 282static void (*_exits[])(void) = {
 283	local_exit,
 284	dm_target_exit,
 285	dm_linear_exit,
 286	dm_stripe_exit,
 287	dm_io_exit,
 288	dm_kcopyd_exit,
 289	dm_interface_exit,
 
 290};
 291
 292static int __init dm_init(void)
 293{
 294	const int count = ARRAY_SIZE(_inits);
 295
 296	int r, i;
 297
 298	for (i = 0; i < count; i++) {
 299		r = _inits[i]();
 300		if (r)
 301			goto bad;
 302	}
 303
 304	return 0;
 305
 306      bad:
 307	while (i--)
 308		_exits[i]();
 309
 310	return r;
 311}
 312
 313static void __exit dm_exit(void)
 314{
 315	int i = ARRAY_SIZE(_exits);
 316
 317	while (i--)
 318		_exits[i]();
 319
 320	/*
 321	 * Should be empty by this point.
 322	 */
 323	idr_remove_all(&_minor_idr);
 324	idr_destroy(&_minor_idr);
 325}
 326
 327/*
 328 * Block device functions
 329 */
 330int dm_deleting_md(struct mapped_device *md)
 331{
 332	return test_bit(DMF_DELETING, &md->flags);
 333}
 334
 335static int dm_blk_open(struct block_device *bdev, fmode_t mode)
 336{
 337	struct mapped_device *md;
 338
 339	spin_lock(&_minor_lock);
 340
 341	md = bdev->bd_disk->private_data;
 342	if (!md)
 343		goto out;
 344
 345	if (test_bit(DMF_FREEING, &md->flags) ||
 346	    dm_deleting_md(md)) {
 347		md = NULL;
 348		goto out;
 349	}
 350
 351	dm_get(md);
 352	atomic_inc(&md->open_count);
 353
 354out:
 355	spin_unlock(&_minor_lock);
 356
 357	return md ? 0 : -ENXIO;
 358}
 359
 360static int dm_blk_close(struct gendisk *disk, fmode_t mode)
 361{
 362	struct mapped_device *md = disk->private_data;
 363
 364	spin_lock(&_minor_lock);
 365
 366	atomic_dec(&md->open_count);
 367	dm_put(md);
 
 368
 369	spin_unlock(&_minor_lock);
 
 
 370
 371	return 0;
 
 
 372}
 373
 374int dm_open_count(struct mapped_device *md)
 375{
 376	return atomic_read(&md->open_count);
 377}
 378
 379/*
 380 * Guarantees nothing is using the device before it's deleted.
 381 */
 382int dm_lock_for_deletion(struct mapped_device *md)
 383{
 384	int r = 0;
 385
 386	spin_lock(&_minor_lock);
 387
 388	if (dm_open_count(md))
 389		r = -EBUSY;
 
 
 
 
 390	else
 391		set_bit(DMF_DELETING, &md->flags);
 392
 393	spin_unlock(&_minor_lock);
 394
 395	return r;
 396}
 397
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 398static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
 399{
 400	struct mapped_device *md = bdev->bd_disk->private_data;
 401
 402	return dm_get_geometry(md, geo);
 403}
 404
 405static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
 406			unsigned int cmd, unsigned long arg)
 
 407{
 408	struct mapped_device *md = bdev->bd_disk->private_data;
 409	struct dm_table *map = dm_get_live_table(md);
 410	struct dm_target *tgt;
 411	int r = -ENOTTY;
 
 412
 
 
 
 413	if (!map || !dm_table_get_size(map))
 414		goto out;
 415
 416	/* We only support devices that have a single target */
 417	if (dm_table_get_num_targets(map) != 1)
 418		goto out;
 419
 420	tgt = dm_table_get_target(map, 0);
 
 
 421
 422	if (dm_suspended_md(md)) {
 423		r = -EAGAIN;
 424		goto out;
 425	}
 426
 427	if (tgt->type->ioctl)
 428		r = tgt->type->ioctl(tgt, cmd, arg);
 429
 430out:
 431	dm_table_put(map);
 
 
 
 
 432
 433	return r;
 434}
 435
 436static struct dm_io *alloc_io(struct mapped_device *md)
 
 437{
 438	return mempool_alloc(md->io_pool, GFP_NOIO);
 439}
 440
 441static void free_io(struct mapped_device *md, struct dm_io *io)
 
 442{
 443	mempool_free(io, md->io_pool);
 444}
 445
 446static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
 447{
 448	mempool_free(tio, md->tio_pool);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 449}
 450
 451static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md,
 452					    gfp_t gfp_mask)
 
 453{
 454	return mempool_alloc(md->tio_pool, gfp_mask);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 455}
 456
 457static void free_rq_tio(struct dm_rq_target_io *tio)
 458{
 459	mempool_free(tio, tio->md->tio_pool);
 460}
 461
 462static struct dm_rq_clone_bio_info *alloc_bio_info(struct mapped_device *md)
 
 463{
 464	return mempool_alloc(md->io_pool, GFP_ATOMIC);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 465}
 466
 467static void free_bio_info(struct dm_rq_clone_bio_info *info)
 468{
 469	mempool_free(info, info->tio->md->io_pool);
 
 
 470}
 471
 472static int md_in_flight(struct mapped_device *md)
 473{
 474	return atomic_read(&md->pending[READ]) +
 475	       atomic_read(&md->pending[WRITE]);
 476}
 477
 478static void start_io_acct(struct dm_io *io)
 479{
 480	struct mapped_device *md = io->md;
 481	int cpu;
 482	int rw = bio_data_dir(io->bio);
 483
 484	io->start_time = jiffies;
 485
 486	cpu = part_stat_lock();
 487	part_round_stats(cpu, &dm_disk(md)->part0);
 488	part_stat_unlock();
 489	atomic_set(&dm_disk(md)->part0.in_flight[rw],
 490		atomic_inc_return(&md->pending[rw]));
 
 
 
 
 
 491}
 492
 493static void end_io_acct(struct dm_io *io)
 494{
 495	struct mapped_device *md = io->md;
 496	struct bio *bio = io->bio;
 497	unsigned long duration = jiffies - io->start_time;
 498	int pending, cpu;
 499	int rw = bio_data_dir(bio);
 500
 501	cpu = part_stat_lock();
 502	part_round_stats(cpu, &dm_disk(md)->part0);
 503	part_stat_add(cpu, &dm_disk(md)->part0, ticks[rw], duration);
 504	part_stat_unlock();
 
 
 505
 506	/*
 507	 * After this is decremented the bio must not be touched if it is
 508	 * a flush.
 509	 */
 510	pending = atomic_dec_return(&md->pending[rw]);
 511	atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
 512	pending += atomic_read(&md->pending[rw^0x1]);
 513
 514	/* nudge anyone waiting on suspend queue */
 515	if (!pending)
 516		wake_up(&md->wait);
 517}
 518
 519/*
 520 * Add the bio to the list of deferred io.
 521 */
 522static void queue_io(struct mapped_device *md, struct bio *bio)
 523{
 524	unsigned long flags;
 525
 526	spin_lock_irqsave(&md->deferred_lock, flags);
 527	bio_list_add(&md->deferred, bio);
 528	spin_unlock_irqrestore(&md->deferred_lock, flags);
 529	queue_work(md->wq, &md->work);
 530}
 531
 532/*
 533 * Everyone (including functions in this file), should use this
 534 * function to access the md->map field, and make sure they call
 535 * dm_table_put() when finished.
 536 */
 537struct dm_table *dm_get_live_table(struct mapped_device *md)
 538{
 539	struct dm_table *t;
 540	unsigned long flags;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 541
 542	read_lock_irqsave(&md->map_lock, flags);
 543	t = md->map;
 544	if (t)
 545		dm_table_get(t);
 546	read_unlock_irqrestore(&md->map_lock, flags);
 547
 548	return t;
 
 
 
 549}
 550
 551/*
 552 * Get the geometry associated with a dm device
 553 */
 554int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
 555{
 556	*geo = md->geometry;
 557
 558	return 0;
 559}
 560
 561/*
 562 * Set the geometry of a device.
 563 */
 564int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
 565{
 566	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
 567
 568	if (geo->start > sz) {
 569		DMWARN("Start sector is beyond the geometry limits.");
 570		return -EINVAL;
 571	}
 572
 573	md->geometry = *geo;
 574
 575	return 0;
 576}
 577
 578/*-----------------------------------------------------------------
 579 * CRUD START:
 580 *   A more elegant soln is in the works that uses the queue
 581 *   merge fn, unfortunately there are a couple of changes to
 582 *   the block layer that I want to make for this.  So in the
 583 *   interests of getting something for people to use I give
 584 *   you this clearly demarcated crap.
 585 *---------------------------------------------------------------*/
 586
 587static int __noflush_suspending(struct mapped_device *md)
 588{
 589	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
 590}
 591
 592/*
 593 * Decrements the number of outstanding ios that a bio has been
 594 * cloned into, completing the original io if necc.
 595 */
 596static void dec_pending(struct dm_io *io, int error)
 597{
 598	unsigned long flags;
 599	int io_error;
 600	struct bio *bio;
 601	struct mapped_device *md = io->md;
 602
 603	/* Push-back supersedes any I/O errors */
 604	if (unlikely(error)) {
 605		spin_lock_irqsave(&io->endio_lock, flags);
 606		if (!(io->error > 0 && __noflush_suspending(md)))
 607			io->error = error;
 608		spin_unlock_irqrestore(&io->endio_lock, flags);
 609	}
 610
 611	if (atomic_dec_and_test(&io->io_count)) {
 612		if (io->error == DM_ENDIO_REQUEUE) {
 613			/*
 614			 * Target requested pushing back the I/O.
 615			 */
 616			spin_lock_irqsave(&md->deferred_lock, flags);
 617			if (__noflush_suspending(md))
 618				bio_list_add_head(&md->deferred, io->bio);
 
 619			else
 620				/* noflush suspend was interrupted. */
 621				io->error = -EIO;
 622			spin_unlock_irqrestore(&md->deferred_lock, flags);
 623		}
 624
 625		io_error = io->error;
 626		bio = io->bio;
 627		end_io_acct(io);
 628		free_io(md, io);
 629
 630		if (io_error == DM_ENDIO_REQUEUE)
 631			return;
 632
 633		if ((bio->bi_rw & REQ_FLUSH) && bio->bi_size) {
 634			/*
 635			 * Preflush done for flush with data, reissue
 636			 * without REQ_FLUSH.
 637			 */
 638			bio->bi_rw &= ~REQ_FLUSH;
 639			queue_io(md, bio);
 640		} else {
 641			/* done with normal IO or empty flush */
 642			trace_block_bio_complete(md->queue, bio, io_error);
 643			bio_endio(bio, io_error);
 
 644		}
 645	}
 646}
 647
 648static void clone_endio(struct bio *bio, int error)
 649{
 650	int r = 0;
 651	struct dm_target_io *tio = bio->bi_private;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 652	struct dm_io *io = tio->io;
 653	struct mapped_device *md = tio->io->md;
 654	dm_endio_fn endio = tio->ti->type->end_io;
 655
 656	if (!bio_flagged(bio, BIO_UPTODATE) && !error)
 657		error = -EIO;
 
 
 
 
 
 
 658
 659	if (endio) {
 660		r = endio(tio->ti, bio, error, &tio->info);
 661		if (r < 0 || r == DM_ENDIO_REQUEUE)
 662			/*
 663			 * error and requeue request are handled
 664			 * in dec_pending().
 665			 */
 666			error = r;
 667		else if (r == DM_ENDIO_INCOMPLETE)
 668			/* The target will handle the io */
 669			return;
 670		else if (r) {
 671			DMWARN("unimplemented target endio return value: %d", r);
 672			BUG();
 673		}
 674	}
 675
 676	/*
 677	 * Store md for cleanup instead of tio which is about to get freed.
 678	 */
 679	bio->bi_private = md->bs;
 680
 681	free_tio(md, tio);
 682	bio_put(bio);
 683	dec_pending(io, error);
 684}
 685
 686/*
 687 * Partial completion handling for request-based dm
 
 688 */
 689static void end_clone_bio(struct bio *clone, int error)
 690{
 691	struct dm_rq_clone_bio_info *info = clone->bi_private;
 692	struct dm_rq_target_io *tio = info->tio;
 693	struct bio *bio = info->orig;
 694	unsigned int nr_bytes = info->orig->bi_size;
 695
 696	bio_put(clone);
 697
 698	if (tio->error)
 699		/*
 700		 * An error has already been detected on the request.
 701		 * Once error occurred, just let clone->end_io() handle
 702		 * the remainder.
 703		 */
 704		return;
 705	else if (error) {
 706		/*
 707		 * Don't notice the error to the upper layer yet.
 708		 * The error handling decision is made by the target driver,
 709		 * when the request is completed.
 710		 */
 711		tio->error = error;
 712		return;
 713	}
 714
 715	/*
 716	 * I/O for the bio successfully completed.
 717	 * Notice the data completion to the upper layer.
 718	 */
 719
 720	/*
 721	 * bios are processed from the head of the list.
 722	 * So the completing bio should always be rq->bio.
 723	 * If it's not, something wrong is happening.
 724	 */
 725	if (tio->orig->bio != bio)
 726		DMERR("bio completion is going in the middle of the request");
 727
 728	/*
 729	 * Update the original request.
 730	 * Do not use blk_end_request() here, because it may complete
 731	 * the original request before the clone, and break the ordering.
 732	 */
 733	blk_update_request(tio->orig, 0, nr_bytes);
 734}
 735
 736/*
 737 * Don't touch any member of the md after calling this function because
 738 * the md may be freed in dm_put() at the end of this function.
 739 * Or do dm_get() before calling this function and dm_put() later.
 740 */
 741static void rq_completed(struct mapped_device *md, int rw, int run_queue)
 742{
 743	atomic_dec(&md->pending[rw]);
 744
 745	/* nudge anyone waiting on suspend queue */
 746	if (!md_in_flight(md))
 747		wake_up(&md->wait);
 748
 749	if (run_queue)
 750		blk_run_queue(md->queue);
 751
 752	/*
 753	 * dm_put() must be at the end of this function. See the comment above
 754	 */
 755	dm_put(md);
 756}
 757
 758static void free_rq_clone(struct request *clone)
 759{
 760	struct dm_rq_target_io *tio = clone->end_io_data;
 761
 762	blk_rq_unprep_clone(clone);
 763	free_rq_tio(tio);
 764}
 765
 766/*
 767 * Complete the clone and the original request.
 768 * Must be called without queue lock.
 769 */
 770static void dm_end_request(struct request *clone, int error)
 771{
 772	int rw = rq_data_dir(clone);
 773	struct dm_rq_target_io *tio = clone->end_io_data;
 774	struct mapped_device *md = tio->md;
 775	struct request *rq = tio->orig;
 776
 777	if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
 778		rq->errors = clone->errors;
 779		rq->resid_len = clone->resid_len;
 780
 781		if (rq->sense)
 782			/*
 783			 * We are using the sense buffer of the original
 784			 * request.
 785			 * So setting the length of the sense data is enough.
 786			 */
 787			rq->sense_len = clone->sense_len;
 788	}
 789
 790	free_rq_clone(clone);
 791	blk_end_request_all(rq, error);
 792	rq_completed(md, rw, true);
 793}
 794
 795static void dm_unprep_request(struct request *rq)
 796{
 797	struct request *clone = rq->special;
 
 
 
 
 
 798
 799	rq->special = NULL;
 800	rq->cmd_flags &= ~REQ_DONTPREP;
 
 
 
 
 
 
 
 801
 802	free_rq_clone(clone);
 803}
 
 804
 805/*
 806 * Requeue the original request of a clone.
 807 */
 808void dm_requeue_unmapped_request(struct request *clone)
 809{
 810	int rw = rq_data_dir(clone);
 811	struct dm_rq_target_io *tio = clone->end_io_data;
 812	struct mapped_device *md = tio->md;
 813	struct request *rq = tio->orig;
 814	struct request_queue *q = rq->q;
 815	unsigned long flags;
 816
 817	dm_unprep_request(rq);
 818
 819	spin_lock_irqsave(q->queue_lock, flags);
 820	blk_requeue_request(q, rq);
 821	spin_unlock_irqrestore(q->queue_lock, flags);
 822
 823	rq_completed(md, rw, 0);
 824}
 825EXPORT_SYMBOL_GPL(dm_requeue_unmapped_request);
 826
 827static void __stop_queue(struct request_queue *q)
 828{
 829	blk_stop_queue(q);
 830}
 831
 832static void stop_queue(struct request_queue *q)
 
 833{
 834	unsigned long flags;
 
 
 
 
 835
 836	spin_lock_irqsave(q->queue_lock, flags);
 837	__stop_queue(q);
 838	spin_unlock_irqrestore(q->queue_lock, flags);
 839}
 840
 841static void __start_queue(struct request_queue *q)
 842{
 843	if (blk_queue_stopped(q))
 844		blk_start_queue(q);
 845}
 
 
 
 
 
 846
 847static void start_queue(struct request_queue *q)
 848{
 849	unsigned long flags;
 850
 851	spin_lock_irqsave(q->queue_lock, flags);
 852	__start_queue(q);
 853	spin_unlock_irqrestore(q->queue_lock, flags);
 854}
 855
 856static void dm_done(struct request *clone, int error, bool mapped)
 
 857{
 858	int r = error;
 859	struct dm_rq_target_io *tio = clone->end_io_data;
 860	dm_request_endio_fn rq_end_io = tio->ti->type->rq_end_io;
 
 
 861
 862	if (mapped && rq_end_io)
 863		r = rq_end_io(tio->ti, clone, error, &tio->info);
 864
 865	if (r <= 0)
 866		/* The target wants to complete the I/O */
 867		dm_end_request(clone, r);
 868	else if (r == DM_ENDIO_INCOMPLETE)
 869		/* The target will handle the I/O */
 870		return;
 871	else if (r == DM_ENDIO_REQUEUE)
 872		/* The target wants to requeue the I/O */
 873		dm_requeue_unmapped_request(clone);
 874	else {
 875		DMWARN("unimplemented target endio return value: %d", r);
 876		BUG();
 877	}
 878}
 879
 880/*
 881 * Request completion handler for request-based dm
 882 */
 883static void dm_softirq_done(struct request *rq)
 884{
 885	bool mapped = true;
 886	struct request *clone = rq->completion_data;
 887	struct dm_rq_target_io *tio = clone->end_io_data;
 888
 889	if (rq->cmd_flags & REQ_FAILED)
 890		mapped = false;
 891
 892	dm_done(clone, tio->error, mapped);
 893}
 894
 895/*
 896 * Complete the clone and the original request with the error status
 897 * through softirq context.
 898 */
 899static void dm_complete_request(struct request *clone, int error)
 900{
 901	struct dm_rq_target_io *tio = clone->end_io_data;
 902	struct request *rq = tio->orig;
 903
 904	tio->error = error;
 905	rq->completion_data = clone;
 906	blk_complete_request(rq);
 907}
 908
 909/*
 910 * Complete the not-mapped clone and the original request with the error status
 911 * through softirq context.
 912 * Target's rq_end_io() function isn't called.
 913 * This may be used when the target's map_rq() function fails.
 914 */
 915void dm_kill_unmapped_request(struct request *clone, int error)
 916{
 917	struct dm_rq_target_io *tio = clone->end_io_data;
 918	struct request *rq = tio->orig;
 919
 920	rq->cmd_flags |= REQ_FAILED;
 921	dm_complete_request(clone, error);
 922}
 923EXPORT_SYMBOL_GPL(dm_kill_unmapped_request);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 924
 925/*
 926 * Called with the queue lock held
 927 */
 928static void end_clone_request(struct request *clone, int error)
 929{
 930	/*
 931	 * For just cleaning up the information of the queue in which
 932	 * the clone was dispatched.
 933	 * The clone is *NOT* freed actually here because it is alloced from
 934	 * dm own mempool and REQ_ALLOCED isn't set in clone->cmd_flags.
 935	 */
 936	__blk_put_request(clone->q, clone);
 937
 938	/*
 939	 * Actual request completion is done in a softirq context which doesn't
 940	 * hold the queue lock.  Otherwise, deadlock could occur because:
 941	 *     - another request may be submitted by the upper level driver
 942	 *       of the stacking during the completion
 943	 *     - the submission which requires queue lock may be done
 944	 *       against this queue
 945	 */
 946	dm_complete_request(clone, error);
 947}
 948
 949/*
 950 * Return maximum size of I/O possible at the supplied sector up to the current
 951 * target boundary.
 952 */
 953static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
 954{
 955	sector_t target_offset = dm_target_offset(ti, sector);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 956
 957	return ti->len - target_offset;
 958}
 959
 960static sector_t max_io_len(sector_t sector, struct dm_target *ti)
 961{
 962	sector_t len = max_io_len_target_boundary(sector, ti);
 963
 964	/*
 965	 * Does the target need to split even further ?
 966	 */
 967	if (ti->split_io) {
 968		sector_t boundary;
 969		sector_t offset = dm_target_offset(ti, sector);
 970		boundary = ((offset + ti->split_io) & ~(ti->split_io - 1))
 971			   - offset;
 972		if (len > boundary)
 973			len = boundary;
 974	}
 975
 976	return len;
 
 
 
 
 977}
 
 978
 979static void __map_bio(struct dm_target *ti, struct bio *clone,
 980		      struct dm_target_io *tio)
 981{
 982	int r;
 983	sector_t sector;
 984	struct mapped_device *md;
 
 
 
 
 985
 986	clone->bi_end_io = clone_endio;
 987	clone->bi_private = tio;
 988
 989	/*
 990	 * Map the clone.  If r == 0 we don't need to do
 991	 * anything, the target has assumed ownership of
 992	 * this io.
 993	 */
 994	atomic_inc(&tio->io->io_count);
 995	sector = clone->bi_sector;
 996	r = ti->type->map(ti, clone, &tio->info);
 997	if (r == DM_MAPIO_REMAPPED) {
 998		/* the bio has been remapped so dispatch it */
 999
1000		trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone,
1001				      tio->io->bio->bi_bdev->bd_dev, sector);
1002
1003		generic_make_request(clone);
1004	} else if (r < 0 || r == DM_MAPIO_REQUEUE) {
1005		/* error the io and bail out, or requeue it if needed */
1006		md = tio->io->md;
1007		dec_pending(tio->io, r);
1008		/*
1009		 * Store bio_set for cleanup.
1010		 */
1011		clone->bi_private = md->bs;
1012		bio_put(clone);
1013		free_tio(md, tio);
1014	} else if (r) {
 
 
 
 
 
 
 
1015		DMWARN("unimplemented target map return value: %d", r);
1016		BUG();
1017	}
1018}
1019
1020struct clone_info {
1021	struct mapped_device *md;
1022	struct dm_table *map;
1023	struct bio *bio;
1024	struct dm_io *io;
1025	sector_t sector;
1026	sector_t sector_count;
1027	unsigned short idx;
1028};
1029
1030static void dm_bio_destructor(struct bio *bio)
1031{
1032	struct bio_set *bs = bio->bi_private;
1033
1034	bio_free(bio, bs);
1035}
1036
1037/*
1038 * Creates a little bio that just does part of a bvec.
1039 */
1040static struct bio *split_bvec(struct bio *bio, sector_t sector,
1041			      unsigned short idx, unsigned int offset,
1042			      unsigned int len, struct bio_set *bs)
1043{
1044	struct bio *clone;
1045	struct bio_vec *bv = bio->bi_io_vec + idx;
1046
1047	clone = bio_alloc_bioset(GFP_NOIO, 1, bs);
1048	clone->bi_destructor = dm_bio_destructor;
1049	*clone->bi_io_vec = *bv;
1050
1051	clone->bi_sector = sector;
1052	clone->bi_bdev = bio->bi_bdev;
1053	clone->bi_rw = bio->bi_rw;
1054	clone->bi_vcnt = 1;
1055	clone->bi_size = to_bytes(len);
1056	clone->bi_io_vec->bv_offset = offset;
1057	clone->bi_io_vec->bv_len = clone->bi_size;
1058	clone->bi_flags |= 1 << BIO_CLONED;
1059
1060	if (bio_integrity(bio)) {
1061		bio_integrity_clone(clone, bio, GFP_NOIO, bs);
1062		bio_integrity_trim(clone,
1063				   bio_sector_offset(bio, idx, offset), len);
1064	}
1065
1066	return clone;
1067}
1068
1069/*
1070 * Creates a bio that consists of range of complete bvecs.
1071 */
1072static struct bio *clone_bio(struct bio *bio, sector_t sector,
1073			     unsigned short idx, unsigned short bv_count,
1074			     unsigned int len, struct bio_set *bs)
1075{
1076	struct bio *clone;
 
 
1077
1078	clone = bio_alloc_bioset(GFP_NOIO, bio->bi_max_vecs, bs);
1079	__bio_clone(clone, bio);
1080	clone->bi_destructor = dm_bio_destructor;
1081	clone->bi_sector = sector;
1082	clone->bi_idx = idx;
1083	clone->bi_vcnt = idx + bv_count;
1084	clone->bi_size = to_bytes(len);
1085	clone->bi_flags &= ~(1 << BIO_SEG_VALID);
1086
1087	if (bio_integrity(bio)) {
1088		bio_integrity_clone(clone, bio, GFP_NOIO, bs);
 
 
 
 
 
1089
1090		if (idx != bio->bi_idx || clone->bi_size < bio->bi_size)
1091			bio_integrity_trim(clone,
1092					   bio_sector_offset(bio, idx, 0), len);
1093	}
1094
1095	return clone;
1096}
 
1097
1098static struct dm_target_io *alloc_tio(struct clone_info *ci,
1099				      struct dm_target *ti)
1100{
1101	struct dm_target_io *tio = mempool_alloc(ci->md->tio_pool, GFP_NOIO);
1102
1103	tio->io = ci->io;
1104	tio->ti = ti;
1105	memset(&tio->info, 0, sizeof(tio->info));
1106
1107	return tio;
1108}
1109
1110static void __issue_target_request(struct clone_info *ci, struct dm_target *ti,
1111				   unsigned request_nr, sector_t len)
1112{
1113	struct dm_target_io *tio = alloc_tio(ci, ti);
1114	struct bio *clone;
1115
1116	tio->info.target_request_nr = request_nr;
 
1117
1118	/*
1119	 * Discard requests require the bio's inline iovecs be initialized.
1120	 * ci->bio->bi_max_vecs is BIO_INLINE_VECS anyway, for both flush
1121	 * and discard, so no need for concern about wasted bvec allocations.
1122	 */
1123	clone = bio_alloc_bioset(GFP_NOIO, ci->bio->bi_max_vecs, ci->md->bs);
1124	__bio_clone(clone, ci->bio);
1125	clone->bi_destructor = dm_bio_destructor;
1126	if (len) {
1127		clone->bi_sector = ci->sector;
1128		clone->bi_size = to_bytes(len);
1129	}
1130
1131	__map_bio(ti, clone, tio);
1132}
 
 
 
 
 
 
 
 
1133
1134static void __issue_target_requests(struct clone_info *ci, struct dm_target *ti,
1135				    unsigned num_requests, sector_t len)
1136{
1137	unsigned request_nr;
 
 
1138
1139	for (request_nr = 0; request_nr < num_requests; request_nr++)
1140		__issue_target_request(ci, ti, request_nr, len);
 
 
 
1141}
1142
1143static int __clone_and_map_empty_flush(struct clone_info *ci)
 
1144{
1145	unsigned target_nr = 0;
1146	struct dm_target *ti;
1147
1148	BUG_ON(bio_has_data(ci->bio));
1149	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1150		__issue_target_requests(ci, ti, ti->num_flush_requests, 0);
1151
1152	return 0;
 
 
 
 
1153}
1154
1155/*
1156 * Perform all io with a single clone.
1157 */
1158static void __clone_and_map_simple(struct clone_info *ci, struct dm_target *ti)
1159{
1160	struct bio *clone, *bio = ci->bio;
 
1161	struct dm_target_io *tio;
1162
1163	tio = alloc_tio(ci, ti);
1164	clone = clone_bio(bio, ci->sector, ci->idx,
1165			  bio->bi_vcnt - ci->idx, ci->sector_count,
1166			  ci->md->bs);
1167	__map_bio(ti, clone, tio);
1168	ci->sector_count = 0;
1169}
1170
1171static int __clone_and_map_discard(struct clone_info *ci)
1172{
 
1173	struct dm_target *ti;
1174	sector_t len;
1175
1176	do {
1177		ti = dm_table_find_target(ci->map, ci->sector);
1178		if (!dm_target_is_valid(ti))
1179			return -EIO;
1180
1181		/*
1182		 * Even though the device advertised discard support,
1183		 * that does not mean every target supports it, and
1184		 * reconfiguration might also have changed that since the
1185		 * check was performed.
1186		 */
1187		if (!ti->num_discard_requests)
1188			return -EOPNOTSUPP;
1189
1190		len = min(ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1191
1192		__issue_target_requests(ci, ti, ti->num_discard_requests, len);
1193
1194		ci->sector += len;
1195	} while (ci->sector_count -= len);
 
1196
1197	return 0;
1198}
1199
1200static int __clone_and_map(struct clone_info *ci)
 
1201{
1202	struct bio *clone, *bio = ci->bio;
1203	struct dm_target *ti;
1204	sector_t len = 0, max;
1205	struct dm_target_io *tio;
 
1206
1207	if (unlikely(bio->bi_rw & REQ_DISCARD))
1208		return __clone_and_map_discard(ci);
1209
1210	ti = dm_table_find_target(ci->map, ci->sector);
1211	if (!dm_target_is_valid(ti))
1212		return -EIO;
1213
1214	max = max_io_len(ci->sector, ti);
1215
1216	if (ci->sector_count <= max) {
1217		/*
1218		 * Optimise for the simple case where we can do all of
1219		 * the remaining io with a single clone.
1220		 */
1221		__clone_and_map_simple(ci, ti);
1222
1223	} else if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) {
1224		/*
1225		 * There are some bvecs that don't span targets.
1226		 * Do as many of these as possible.
1227		 */
1228		int i;
1229		sector_t remaining = max;
1230		sector_t bv_len;
1231
1232		for (i = ci->idx; remaining && (i < bio->bi_vcnt); i++) {
1233			bv_len = to_sector(bio->bi_io_vec[i].bv_len);
1234
1235			if (bv_len > remaining)
1236				break;
1237
1238			remaining -= bv_len;
1239			len += bv_len;
1240		}
1241
1242		tio = alloc_tio(ci, ti);
1243		clone = clone_bio(bio, ci->sector, ci->idx, i - ci->idx, len,
1244				  ci->md->bs);
1245		__map_bio(ti, clone, tio);
1246
1247		ci->sector += len;
1248		ci->sector_count -= len;
1249		ci->idx = i;
1250
1251	} else {
1252		/*
1253		 * Handle a bvec that must be split between two or more targets.
1254		 */
1255		struct bio_vec *bv = bio->bi_io_vec + ci->idx;
1256		sector_t remaining = to_sector(bv->bv_len);
1257		unsigned int offset = 0;
1258
1259		do {
1260			if (offset) {
1261				ti = dm_table_find_target(ci->map, ci->sector);
1262				if (!dm_target_is_valid(ti))
1263					return -EIO;
1264
1265				max = max_io_len(ci->sector, ti);
1266			}
1267
1268			len = min(remaining, max);
1269
1270			tio = alloc_tio(ci, ti);
1271			clone = split_bvec(bio, ci->sector, ci->idx,
1272					   bv->bv_offset + offset, len,
1273					   ci->md->bs);
1274
1275			__map_bio(ti, clone, tio);
1276
1277			ci->sector += len;
1278			ci->sector_count -= len;
1279			offset += to_bytes(len);
1280		} while (remaining -= len);
1281
1282		ci->idx++;
1283	}
 
1284
1285	return 0;
1286}
1287
1288/*
1289 * Split the bio into several clones and submit it to targets.
1290 */
1291static void __split_and_process_bio(struct mapped_device *md, struct bio *bio)
1292{
1293	struct clone_info ci;
1294	int error = 0;
1295
1296	ci.map = dm_get_live_table(md);
1297	if (unlikely(!ci.map)) {
1298		bio_io_error(bio);
1299		return;
1300	}
1301
1302	ci.md = md;
1303	ci.io = alloc_io(md);
1304	ci.io->error = 0;
1305	atomic_set(&ci.io->io_count, 1);
1306	ci.io->bio = bio;
1307	ci.io->md = md;
1308	spin_lock_init(&ci.io->endio_lock);
1309	ci.sector = bio->bi_sector;
1310	ci.idx = bio->bi_idx;
1311
1312	start_io_acct(ci.io);
1313	if (bio->bi_rw & REQ_FLUSH) {
1314		ci.bio = &ci.md->flush_bio;
1315		ci.sector_count = 0;
1316		error = __clone_and_map_empty_flush(&ci);
1317		/* dec_pending submits any data associated with flush */
1318	} else {
1319		ci.bio = bio;
1320		ci.sector_count = bio_sectors(bio);
1321		while (ci.sector_count && !error)
1322			error = __clone_and_map(&ci);
1323	}
1324
1325	/* drop the extra reference count */
1326	dec_pending(ci.io, error);
1327	dm_table_put(ci.map);
1328}
1329/*-----------------------------------------------------------------
1330 * CRUD END
1331 *---------------------------------------------------------------*/
1332
1333static int dm_merge_bvec(struct request_queue *q,
1334			 struct bvec_merge_data *bvm,
1335			 struct bio_vec *biovec)
1336{
1337	struct mapped_device *md = q->queuedata;
1338	struct dm_table *map = dm_get_live_table(md);
1339	struct dm_target *ti;
1340	sector_t max_sectors;
1341	int max_size = 0;
1342
1343	if (unlikely(!map))
1344		goto out;
1345
1346	ti = dm_table_find_target(map, bvm->bi_sector);
1347	if (!dm_target_is_valid(ti))
1348		goto out_table;
1349
1350	/*
1351	 * Find maximum amount of I/O that won't need splitting
1352	 */
1353	max_sectors = min(max_io_len(bvm->bi_sector, ti),
1354			  (sector_t) BIO_MAX_SECTORS);
1355	max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
1356	if (max_size < 0)
1357		max_size = 0;
1358
1359	/*
1360	 * merge_bvec_fn() returns number of bytes
1361	 * it can accept at this offset
1362	 * max is precomputed maximal io size
1363	 */
1364	if (max_size && ti->type->merge)
1365		max_size = ti->type->merge(ti, bvm, biovec, max_size);
1366	/*
1367	 * If the target doesn't support merge method and some of the devices
1368	 * provided their merge_bvec method (we know this by looking at
1369	 * queue_max_hw_sectors), then we can't allow bios with multiple vector
1370	 * entries.  So always set max_size to 0, and the code below allows
1371	 * just one page.
1372	 */
1373	else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9)
1374
1375		max_size = 0;
 
 
 
1376
1377out_table:
1378	dm_table_put(map);
 
 
1379
1380out:
1381	/*
1382	 * Always allow an entire first page
1383	 */
1384	if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
1385		max_size = biovec->bv_len;
1386
1387	return max_size;
 
 
1388}
1389
1390/*
1391 * The request function that just remaps the bio built up by
1392 * dm_merge_bvec.
1393 */
1394static int _dm_request(struct request_queue *q, struct bio *bio)
1395{
1396	int rw = bio_data_dir(bio);
1397	struct mapped_device *md = q->queuedata;
1398	int cpu;
1399
1400	down_read(&md->io_lock);
 
 
 
 
 
 
 
 
1401
1402	cpu = part_stat_lock();
1403	part_stat_inc(cpu, &dm_disk(md)->part0, ios[rw]);
1404	part_stat_add(cpu, &dm_disk(md)->part0, sectors[rw], bio_sectors(bio));
1405	part_stat_unlock();
1406
1407	/* if we're suspended, we have to queue this io for later */
1408	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1409		up_read(&md->io_lock);
1410
1411		if (bio_rw(bio) != READA)
1412			queue_io(md, bio);
1413		else
1414			bio_io_error(bio);
1415		return 0;
1416	}
1417
1418	__split_and_process_bio(md, bio);
1419	up_read(&md->io_lock);
1420	return 0;
1421}
1422
1423static int dm_make_request(struct request_queue *q, struct bio *bio)
1424{
1425	struct mapped_device *md = q->queuedata;
1426
1427	return md->saved_make_request_fn(q, bio); /* call __make_request() */
1428}
1429
1430static int dm_request_based(struct mapped_device *md)
1431{
1432	return blk_queue_stackable(md->queue);
1433}
1434
1435static int dm_request(struct request_queue *q, struct bio *bio)
1436{
1437	struct mapped_device *md = q->queuedata;
1438
1439	if (dm_request_based(md))
1440		return dm_make_request(q, bio);
1441
1442	return _dm_request(q, bio);
1443}
1444
1445void dm_dispatch_request(struct request *rq)
1446{
1447	int r;
1448
1449	if (blk_queue_io_stat(rq->q))
1450		rq->cmd_flags |= REQ_IO_STAT;
1451
1452	rq->start_time = jiffies;
1453	r = blk_insert_cloned_request(rq->q, rq);
1454	if (r)
1455		dm_complete_request(rq, r);
1456}
1457EXPORT_SYMBOL_GPL(dm_dispatch_request);
1458
1459static void dm_rq_bio_destructor(struct bio *bio)
 
1460{
1461	struct dm_rq_clone_bio_info *info = bio->bi_private;
1462	struct mapped_device *md = info->tio->md;
1463
1464	free_bio_info(info);
1465	bio_free(bio, md->bs);
 
 
 
 
 
 
 
 
 
 
1466}
1467
1468static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig,
1469				 void *data)
 
 
1470{
1471	struct dm_rq_target_io *tio = data;
1472	struct mapped_device *md = tio->md;
1473	struct dm_rq_clone_bio_info *info = alloc_bio_info(md);
1474
1475	if (!info)
1476		return -ENOMEM;
1477
1478	info->orig = bio_orig;
1479	info->tio = tio;
1480	bio->bi_end_io = end_clone_bio;
1481	bio->bi_private = info;
1482	bio->bi_destructor = dm_rq_bio_destructor;
1483
1484	return 0;
1485}
1486
1487static int setup_clone(struct request *clone, struct request *rq,
1488		       struct dm_rq_target_io *tio)
1489{
1490	int r;
 
1491
1492	r = blk_rq_prep_clone(clone, rq, tio->md->bs, GFP_ATOMIC,
1493			      dm_rq_bio_constructor, tio);
1494	if (r)
1495		return r;
1496
1497	clone->cmd = rq->cmd;
1498	clone->cmd_len = rq->cmd_len;
1499	clone->sense = rq->sense;
1500	clone->buffer = rq->buffer;
1501	clone->end_io = end_clone_request;
1502	clone->end_io_data = tio;
1503
1504	return 0;
1505}
1506
1507static struct request *clone_rq(struct request *rq, struct mapped_device *md,
1508				gfp_t gfp_mask)
1509{
1510	struct request *clone;
1511	struct dm_rq_target_io *tio;
1512
1513	tio = alloc_rq_tio(md, gfp_mask);
1514	if (!tio)
1515		return NULL;
1516
1517	tio->md = md;
1518	tio->ti = NULL;
1519	tio->orig = rq;
1520	tio->error = 0;
1521	memset(&tio->info, 0, sizeof(tio->info));
1522
1523	clone = &tio->clone;
1524	if (setup_clone(clone, rq, tio)) {
1525		/* -ENOMEM */
1526		free_rq_tio(tio);
1527		return NULL;
1528	}
1529
1530	return clone;
1531}
1532
1533/*
1534 * Called with the queue lock held.
1535 */
1536static int dm_prep_fn(struct request_queue *q, struct request *rq)
 
1537{
1538	struct mapped_device *md = q->queuedata;
1539	struct request *clone;
 
1540
1541	if (unlikely(rq->special)) {
1542		DMWARN("Already has something in rq->special.");
1543		return BLKPREP_KILL;
1544	}
1545
1546	clone = clone_rq(rq, md, GFP_ATOMIC);
1547	if (!clone)
1548		return BLKPREP_DEFER;
1549
1550	rq->special = clone;
1551	rq->cmd_flags |= REQ_DONTPREP;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1552
1553	return BLKPREP_OK;
 
 
1554}
1555
1556/*
1557 * Returns:
1558 * 0  : the request has been processed (not requeued)
1559 * !0 : the request has been requeued
1560 */
1561static int map_request(struct dm_target *ti, struct request *clone,
1562		       struct mapped_device *md)
1563{
1564	int r, requeued = 0;
1565	struct dm_rq_target_io *tio = clone->end_io_data;
 
1566
1567	/*
1568	 * Hold the md reference here for the in-flight I/O.
1569	 * We can't rely on the reference count by device opener,
1570	 * because the device may be closed during the request completion
1571	 * when all bios are completed.
1572	 * See the comment in rq_completed() too.
1573	 */
1574	dm_get(md);
1575
1576	tio->ti = ti;
1577	r = ti->type->map_rq(ti, clone, &tio->info);
1578	switch (r) {
1579	case DM_MAPIO_SUBMITTED:
1580		/* The target has taken the I/O to submit by itself later */
1581		break;
1582	case DM_MAPIO_REMAPPED:
1583		/* The target has remapped the I/O so dispatch it */
1584		trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)),
1585				     blk_rq_pos(tio->orig));
1586		dm_dispatch_request(clone);
1587		break;
1588	case DM_MAPIO_REQUEUE:
1589		/* The target wants to requeue the I/O */
1590		dm_requeue_unmapped_request(clone);
1591		requeued = 1;
1592		break;
1593	default:
1594		if (r > 0) {
1595			DMWARN("unimplemented target map return value: %d", r);
1596			BUG();
1597		}
1598
1599		/* The target wants to complete the I/O */
1600		dm_kill_unmapped_request(clone, r);
1601		break;
1602	}
1603
1604	return requeued;
 
 
 
 
 
 
1605}
1606
1607/*
1608 * q->request_fn for request-based dm.
1609 * Called with the queue lock held.
1610 */
1611static void dm_request_fn(struct request_queue *q)
1612{
1613	struct mapped_device *md = q->queuedata;
1614	struct dm_table *map = dm_get_live_table(md);
1615	struct dm_target *ti;
1616	struct request *rq, *clone;
1617	sector_t pos;
1618
1619	/*
1620	 * For suspend, check blk_queue_stopped() and increment
1621	 * ->pending within a single queue_lock not to increment the
1622	 * number of in-flight I/Os after the queue is stopped in
1623	 * dm_suspend().
1624	 */
1625	while (!blk_queue_stopped(q)) {
1626		rq = blk_peek_request(q);
1627		if (!rq)
1628			goto delay_and_out;
1629
1630		/* always use block 0 to find the target for flushes for now */
1631		pos = 0;
1632		if (!(rq->cmd_flags & REQ_FLUSH))
1633			pos = blk_rq_pos(rq);
1634
1635		ti = dm_table_find_target(map, pos);
1636		BUG_ON(!dm_target_is_valid(ti));
1637
1638		if (ti->type->busy && ti->type->busy(ti))
1639			goto delay_and_out;
1640
1641		blk_start_request(rq);
1642		clone = rq->special;
1643		atomic_inc(&md->pending[rq_data_dir(clone)]);
1644
1645		spin_unlock(q->queue_lock);
1646		if (map_request(ti, clone, md))
1647			goto requeued;
1648
1649		BUG_ON(!irqs_disabled());
1650		spin_lock(q->queue_lock);
 
 
 
1651	}
1652
1653	goto out;
1654
1655requeued:
1656	BUG_ON(!irqs_disabled());
1657	spin_lock(q->queue_lock);
1658
1659delay_and_out:
1660	blk_delay_queue(q, HZ / 10);
1661out:
1662	dm_table_put(map);
1663
1664	return;
 
1665}
1666
1667int dm_underlying_device_busy(struct request_queue *q)
 
 
 
 
1668{
1669	return blk_lld_busy(q);
1670}
1671EXPORT_SYMBOL_GPL(dm_underlying_device_busy);
1672
1673static int dm_lld_busy(struct request_queue *q)
1674{
1675	int r;
1676	struct mapped_device *md = q->queuedata;
1677	struct dm_table *map = dm_get_live_table(md);
1678
1679	if (!map || test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))
1680		r = 1;
1681	else
1682		r = dm_table_any_busy_target(map);
1683
1684	dm_table_put(map);
1685
1686	return r;
1687}
1688
1689static int dm_any_congested(void *congested_data, int bdi_bits)
1690{
1691	int r = bdi_bits;
1692	struct mapped_device *md = congested_data;
1693	struct dm_table *map;
1694
1695	if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1696		map = dm_get_live_table(md);
1697		if (map) {
1698			/*
1699			 * Request-based dm cares about only own queue for
1700			 * the query about congestion status of request_queue
1701			 */
1702			if (dm_request_based(md))
1703				r = md->queue->backing_dev_info.state &
1704				    bdi_bits;
1705			else
1706				r = dm_table_any_congested(map, bdi_bits);
1707
1708			dm_table_put(map);
1709		}
1710	}
1711
1712	return r;
1713}
1714
1715/*-----------------------------------------------------------------
1716 * An IDR is used to keep track of allocated minor numbers.
1717 *---------------------------------------------------------------*/
1718static void free_minor(int minor)
1719{
1720	spin_lock(&_minor_lock);
1721	idr_remove(&_minor_idr, minor);
1722	spin_unlock(&_minor_lock);
1723}
1724
1725/*
1726 * See if the device with a specific minor # is free.
1727 */
1728static int specific_minor(int minor)
1729{
1730	int r, m;
1731
1732	if (minor >= (1 << MINORBITS))
1733		return -EINVAL;
1734
1735	r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1736	if (!r)
1737		return -ENOMEM;
1738
1739	spin_lock(&_minor_lock);
1740
1741	if (idr_find(&_minor_idr, minor)) {
1742		r = -EBUSY;
1743		goto out;
1744	}
1745
1746	r = idr_get_new_above(&_minor_idr, MINOR_ALLOCED, minor, &m);
1747	if (r)
1748		goto out;
1749
1750	if (m != minor) {
1751		idr_remove(&_minor_idr, m);
1752		r = -EBUSY;
1753		goto out;
1754	}
1755
1756out:
1757	spin_unlock(&_minor_lock);
1758	return r;
 
 
 
1759}
1760
1761static int next_free_minor(int *minor)
1762{
1763	int r, m;
1764
1765	r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1766	if (!r)
1767		return -ENOMEM;
1768
 
1769	spin_lock(&_minor_lock);
1770
1771	r = idr_get_new(&_minor_idr, MINOR_ALLOCED, &m);
1772	if (r)
1773		goto out;
1774
1775	if (m >= (1 << MINORBITS)) {
1776		idr_remove(&_minor_idr, m);
1777		r = -ENOSPC;
1778		goto out;
1779	}
1780
1781	*minor = m;
1782
1783out:
1784	spin_unlock(&_minor_lock);
1785	return r;
 
 
 
 
1786}
1787
1788static const struct block_device_operations dm_blk_dops;
 
1789
1790static void dm_wq_work(struct work_struct *work);
1791
1792static void dm_init_md_queue(struct mapped_device *md)
1793{
 
 
1794	/*
1795	 * Request-based dm devices cannot be stacked on top of bio-based dm
1796	 * devices.  The type of this dm device has not been decided yet.
1797	 * The type is decided at the first table loading time.
1798	 * To prevent problematic device stacking, clear the queue flag
1799	 * for request stacking support until then.
1800	 *
1801	 * This queue is new, so no concurrency on the queue_flags.
1802	 */
1803	queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
 
1804
1805	md->queue->queuedata = md;
1806	md->queue->backing_dev_info.congested_fn = dm_any_congested;
1807	md->queue->backing_dev_info.congested_data = md;
1808	blk_queue_make_request(md->queue, dm_request);
1809	blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
1810	blk_queue_merge_bvec(md->queue, dm_merge_bvec);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1811}
1812
1813/*
1814 * Allocate and initialise a blank device with a given minor.
1815 */
1816static struct mapped_device *alloc_dev(int minor)
1817{
1818	int r;
1819	struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
 
1820	void *old_md;
1821
 
1822	if (!md) {
1823		DMWARN("unable to allocate device, out of memory.");
1824		return NULL;
1825	}
1826
1827	if (!try_module_get(THIS_MODULE))
1828		goto bad_module_get;
1829
1830	/* get a minor number for the dev */
1831	if (minor == DM_ANY_MINOR)
1832		r = next_free_minor(&minor);
1833	else
1834		r = specific_minor(minor);
1835	if (r < 0)
1836		goto bad_minor;
1837
 
 
 
 
 
 
 
1838	md->type = DM_TYPE_NONE;
1839	init_rwsem(&md->io_lock);
1840	mutex_init(&md->suspend_lock);
1841	mutex_init(&md->type_lock);
 
1842	spin_lock_init(&md->deferred_lock);
1843	rwlock_init(&md->map_lock);
1844	atomic_set(&md->holders, 1);
1845	atomic_set(&md->open_count, 0);
1846	atomic_set(&md->event_nr, 0);
1847	atomic_set(&md->uevent_seq, 0);
1848	INIT_LIST_HEAD(&md->uevent_list);
 
1849	spin_lock_init(&md->uevent_lock);
1850
1851	md->queue = blk_alloc_queue(GFP_KERNEL);
1852	if (!md->queue)
1853		goto bad_queue;
1854
1855	dm_init_md_queue(md);
1856
1857	md->disk = alloc_disk(1);
1858	if (!md->disk)
1859		goto bad_disk;
1860
1861	atomic_set(&md->pending[0], 0);
1862	atomic_set(&md->pending[1], 0);
1863	init_waitqueue_head(&md->wait);
1864	INIT_WORK(&md->work, dm_wq_work);
1865	init_waitqueue_head(&md->eventq);
 
 
1866
1867	md->disk->major = _major;
1868	md->disk->first_minor = minor;
1869	md->disk->fops = &dm_blk_dops;
1870	md->disk->queue = md->queue;
1871	md->disk->private_data = md;
1872	sprintf(md->disk->disk_name, "dm-%d", minor);
1873	add_disk(md->disk);
 
 
 
 
 
 
 
 
1874	format_dev_t(md->name, MKDEV(_major, minor));
1875
1876	md->wq = alloc_workqueue("kdmflush",
1877				 WQ_NON_REENTRANT | WQ_MEM_RECLAIM, 0);
1878	if (!md->wq)
1879		goto bad_thread;
1880
1881	md->bdev = bdget_disk(md->disk, 0);
1882	if (!md->bdev)
1883		goto bad_bdev;
 
 
 
 
1884
1885	bio_init(&md->flush_bio);
1886	md->flush_bio.bi_bdev = md->bdev;
1887	md->flush_bio.bi_rw = WRITE_FLUSH;
1888
1889	/* Populate the mapping, nobody knows we exist yet */
1890	spin_lock(&_minor_lock);
1891	old_md = idr_replace(&_minor_idr, md, minor);
1892	spin_unlock(&_minor_lock);
1893
1894	BUG_ON(old_md != MINOR_ALLOCED);
1895
1896	return md;
1897
1898bad_bdev:
1899	destroy_workqueue(md->wq);
1900bad_thread:
1901	del_gendisk(md->disk);
1902	put_disk(md->disk);
1903bad_disk:
1904	blk_cleanup_queue(md->queue);
1905bad_queue:
1906	free_minor(minor);
1907bad_minor:
1908	module_put(THIS_MODULE);
1909bad_module_get:
1910	kfree(md);
1911	return NULL;
1912}
1913
1914static void unlock_fs(struct mapped_device *md);
1915
1916static void free_dev(struct mapped_device *md)
1917{
1918	int minor = MINOR(disk_devt(md->disk));
1919
1920	unlock_fs(md);
1921	bdput(md->bdev);
1922	destroy_workqueue(md->wq);
1923	if (md->tio_pool)
1924		mempool_destroy(md->tio_pool);
1925	if (md->io_pool)
1926		mempool_destroy(md->io_pool);
1927	if (md->bs)
1928		bioset_free(md->bs);
1929	blk_integrity_unregister(md->disk);
1930	del_gendisk(md->disk);
1931	free_minor(minor);
1932
1933	spin_lock(&_minor_lock);
1934	md->disk->private_data = NULL;
1935	spin_unlock(&_minor_lock);
 
 
1936
1937	put_disk(md->disk);
1938	blk_cleanup_queue(md->queue);
1939	module_put(THIS_MODULE);
1940	kfree(md);
1941}
1942
1943static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
1944{
1945	struct dm_md_mempools *p;
1946
1947	if (md->io_pool && md->tio_pool && md->bs)
1948		/* the md already has necessary mempools */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1949		goto out;
 
1950
1951	p = dm_table_get_md_mempools(t);
1952	BUG_ON(!p || md->io_pool || md->tio_pool || md->bs);
1953
1954	md->io_pool = p->io_pool;
1955	p->io_pool = NULL;
1956	md->tio_pool = p->tio_pool;
1957	p->tio_pool = NULL;
1958	md->bs = p->bs;
1959	p->bs = NULL;
1960
 
1961out:
1962	/* mempool bind completed, now no need any mempools in the table */
1963	dm_table_free_md_mempools(t);
1964}
1965
1966/*
1967 * Bind a table to the device.
1968 */
1969static void event_callback(void *context)
1970{
1971	unsigned long flags;
1972	LIST_HEAD(uevents);
1973	struct mapped_device *md = (struct mapped_device *) context;
1974
1975	spin_lock_irqsave(&md->uevent_lock, flags);
1976	list_splice_init(&md->uevent_list, &uevents);
1977	spin_unlock_irqrestore(&md->uevent_lock, flags);
1978
1979	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
1980
1981	atomic_inc(&md->event_nr);
1982	wake_up(&md->eventq);
 
1983}
1984
1985/*
1986 * Protected by md->suspend_lock obtained by dm_swap_table().
1987 */
1988static void __set_size(struct mapped_device *md, sector_t size)
1989{
 
 
1990	set_capacity(md->disk, size);
1991
1992	i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
1993}
1994
1995/*
1996 * Return 1 if the queue has a compulsory merge_bvec_fn function.
1997 *
1998 * If this function returns 0, then the device is either a non-dm
1999 * device without a merge_bvec_fn, or it is a dm device that is
2000 * able to split any bios it receives that are too big.
2001 */
2002int dm_queue_merge_is_compulsory(struct request_queue *q)
2003{
2004	struct mapped_device *dev_md;
2005
2006	if (!q->merge_bvec_fn)
2007		return 0;
2008
2009	if (q->make_request_fn == dm_request) {
2010		dev_md = q->queuedata;
2011		if (test_bit(DMF_MERGE_IS_OPTIONAL, &dev_md->flags))
2012			return 0;
2013	}
2014
2015	return 1;
2016}
2017
2018static int dm_device_merge_is_compulsory(struct dm_target *ti,
2019					 struct dm_dev *dev, sector_t start,
2020					 sector_t len, void *data)
2021{
2022	struct block_device *bdev = dev->bdev;
2023	struct request_queue *q = bdev_get_queue(bdev);
2024
2025	return dm_queue_merge_is_compulsory(q);
2026}
2027
2028/*
2029 * Return 1 if it is acceptable to ignore merge_bvec_fn based
2030 * on the properties of the underlying devices.
2031 */
2032static int dm_table_merge_is_optional(struct dm_table *table)
2033{
2034	unsigned i = 0;
2035	struct dm_target *ti;
2036
2037	while (i < dm_table_get_num_targets(table)) {
2038		ti = dm_table_get_target(table, i++);
2039
2040		if (ti->type->iterate_devices &&
2041		    ti->type->iterate_devices(ti, dm_device_merge_is_compulsory, NULL))
2042			return 0;
2043	}
2044
2045	return 1;
2046}
2047
2048/*
2049 * Returns old map, which caller must destroy.
2050 */
2051static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2052			       struct queue_limits *limits)
2053{
2054	struct dm_table *old_map;
2055	struct request_queue *q = md->queue;
 
2056	sector_t size;
2057	unsigned long flags;
2058	int merge_is_optional;
2059
2060	size = dm_table_get_size(t);
2061
2062	/*
2063	 * Wipe any geometry if the size of the table changed.
2064	 */
2065	if (size != get_capacity(md->disk))
2066		memset(&md->geometry, 0, sizeof(md->geometry));
2067
2068	__set_size(md, size);
2069
2070	dm_table_event_callback(t, event_callback, md);
2071
2072	/*
2073	 * The queue hasn't been stopped yet, if the old table type wasn't
2074	 * for request-based during suspension.  So stop it to prevent
2075	 * I/O mapping before resume.
2076	 * This must be done before setting the queue restrictions,
2077	 * because request-based dm may be run just after the setting.
2078	 */
2079	if (dm_table_request_based(t) && !blk_queue_stopped(q))
2080		stop_queue(q);
 
 
 
 
 
 
 
 
 
 
2081
2082	__bind_mempools(md, t);
2083
2084	merge_is_optional = dm_table_merge_is_optional(t);
 
 
2085
2086	write_lock_irqsave(&md->map_lock, flags);
2087	old_map = md->map;
2088	md->map = t;
2089	dm_table_set_restrictions(t, q, limits);
2090	if (merge_is_optional)
2091		set_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2092	else
2093		clear_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2094	write_unlock_irqrestore(&md->map_lock, flags);
2095
2096	return old_map;
2097}
2098
2099/*
2100 * Returns unbound table for the caller to free.
2101 */
2102static struct dm_table *__unbind(struct mapped_device *md)
2103{
2104	struct dm_table *map = md->map;
2105	unsigned long flags;
2106
2107	if (!map)
2108		return NULL;
2109
2110	dm_table_event_callback(map, NULL, NULL);
2111	write_lock_irqsave(&md->map_lock, flags);
2112	md->map = NULL;
2113	write_unlock_irqrestore(&md->map_lock, flags);
2114
2115	return map;
2116}
2117
2118/*
2119 * Constructor for a new device.
2120 */
2121int dm_create(int minor, struct mapped_device **result)
2122{
 
2123	struct mapped_device *md;
2124
2125	md = alloc_dev(minor);
2126	if (!md)
2127		return -ENXIO;
2128
2129	dm_sysfs_init(md);
 
 
 
 
2130
2131	*result = md;
2132	return 0;
2133}
2134
2135/*
2136 * Functions to manage md->type.
2137 * All are required to hold md->type_lock.
2138 */
2139void dm_lock_md_type(struct mapped_device *md)
2140{
2141	mutex_lock(&md->type_lock);
2142}
2143
2144void dm_unlock_md_type(struct mapped_device *md)
2145{
2146	mutex_unlock(&md->type_lock);
2147}
2148
2149void dm_set_md_type(struct mapped_device *md, unsigned type)
2150{
 
2151	md->type = type;
2152}
2153
2154unsigned dm_get_md_type(struct mapped_device *md)
2155{
2156	return md->type;
2157}
2158
 
 
 
 
 
2159/*
2160 * Fully initialize a request-based queue (->elevator, ->request_fn, etc).
 
2161 */
2162static int dm_init_request_based_queue(struct mapped_device *md)
2163{
2164	struct request_queue *q = NULL;
2165
2166	if (md->queue->elevator)
2167		return 1;
2168
2169	/* Fully initialize the queue */
2170	q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL);
2171	if (!q)
2172		return 0;
2173
2174	md->queue = q;
2175	md->saved_make_request_fn = md->queue->make_request_fn;
2176	dm_init_md_queue(md);
2177	blk_queue_softirq_done(md->queue, dm_softirq_done);
2178	blk_queue_prep_rq(md->queue, dm_prep_fn);
2179	blk_queue_lld_busy(md->queue, dm_lld_busy);
2180
2181	elv_register_queue(md->queue);
2182
2183	return 1;
2184}
 
2185
2186/*
2187 * Setup the DM device's queue based on md's type
2188 */
2189int dm_setup_md_queue(struct mapped_device *md)
2190{
2191	if ((dm_get_md_type(md) == DM_TYPE_REQUEST_BASED) &&
2192	    !dm_init_request_based_queue(md)) {
2193		DMWARN("Cannot initialize queue for request-based mapped device");
2194		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2195	}
 
 
2196
2197	return 0;
2198}
2199
2200static struct mapped_device *dm_find_md(dev_t dev)
2201{
2202	struct mapped_device *md;
2203	unsigned minor = MINOR(dev);
2204
2205	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2206		return NULL;
2207
2208	spin_lock(&_minor_lock);
2209
2210	md = idr_find(&_minor_idr, minor);
2211	if (md && (md == MINOR_ALLOCED ||
2212		   (MINOR(disk_devt(dm_disk(md))) != minor) ||
2213		   dm_deleting_md(md) ||
2214		   test_bit(DMF_FREEING, &md->flags))) {
2215		md = NULL;
2216		goto out;
2217	}
2218
2219out:
2220	spin_unlock(&_minor_lock);
2221
2222	return md;
2223}
2224
2225struct mapped_device *dm_get_md(dev_t dev)
2226{
2227	struct mapped_device *md = dm_find_md(dev);
2228
2229	if (md)
2230		dm_get(md);
2231
2232	return md;
2233}
2234
2235void *dm_get_mdptr(struct mapped_device *md)
2236{
2237	return md->interface_ptr;
2238}
2239
2240void dm_set_mdptr(struct mapped_device *md, void *ptr)
2241{
2242	md->interface_ptr = ptr;
2243}
2244
2245void dm_get(struct mapped_device *md)
2246{
2247	atomic_inc(&md->holders);
2248	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2249}
2250
 
 
 
 
 
 
 
 
 
 
 
 
 
2251const char *dm_device_name(struct mapped_device *md)
2252{
2253	return md->name;
2254}
2255EXPORT_SYMBOL_GPL(dm_device_name);
2256
2257static void __dm_destroy(struct mapped_device *md, bool wait)
2258{
2259	struct dm_table *map;
 
2260
2261	might_sleep();
2262
2263	spin_lock(&_minor_lock);
2264	map = dm_get_live_table(md);
2265	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2266	set_bit(DMF_FREEING, &md->flags);
2267	spin_unlock(&_minor_lock);
2268
 
 
 
 
 
 
 
 
 
 
 
2269	if (!dm_suspended_md(md)) {
2270		dm_table_presuspend_targets(map);
2271		dm_table_postsuspend_targets(map);
2272	}
 
 
 
2273
2274	/*
2275	 * Rare, but there may be I/O requests still going to complete,
2276	 * for example.  Wait for all references to disappear.
2277	 * No one should increment the reference count of the mapped_device,
2278	 * after the mapped_device state becomes DMF_FREEING.
2279	 */
2280	if (wait)
2281		while (atomic_read(&md->holders))
2282			msleep(1);
2283	else if (atomic_read(&md->holders))
2284		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2285		       dm_device_name(md), atomic_read(&md->holders));
2286
2287	dm_sysfs_exit(md);
2288	dm_table_put(map);
2289	dm_table_destroy(__unbind(md));
2290	free_dev(md);
2291}
2292
2293void dm_destroy(struct mapped_device *md)
2294{
2295	__dm_destroy(md, true);
2296}
2297
2298void dm_destroy_immediate(struct mapped_device *md)
2299{
2300	__dm_destroy(md, false);
2301}
2302
2303void dm_put(struct mapped_device *md)
2304{
2305	atomic_dec(&md->holders);
2306}
2307EXPORT_SYMBOL_GPL(dm_put);
2308
2309static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
2310{
2311	int r = 0;
2312	DECLARE_WAITQUEUE(wait, current);
2313
2314	add_wait_queue(&md->wait, &wait);
2315
2316	while (1) {
2317		set_current_state(interruptible);
2318
2319		smp_mb();
2320		if (!md_in_flight(md))
2321			break;
2322
2323		if (interruptible == TASK_INTERRUPTIBLE &&
2324		    signal_pending(current)) {
2325			r = -EINTR;
2326			break;
2327		}
2328
2329		io_schedule();
2330	}
2331	set_current_state(TASK_RUNNING);
2332
2333	remove_wait_queue(&md->wait, &wait);
2334
2335	return r;
2336}
2337
2338/*
2339 * Process the deferred bios
2340 */
2341static void dm_wq_work(struct work_struct *work)
2342{
2343	struct mapped_device *md = container_of(work, struct mapped_device,
2344						work);
2345	struct bio *c;
 
 
2346
2347	down_read(&md->io_lock);
2348
2349	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2350		spin_lock_irq(&md->deferred_lock);
2351		c = bio_list_pop(&md->deferred);
2352		spin_unlock_irq(&md->deferred_lock);
2353
2354		if (!c)
2355			break;
2356
2357		up_read(&md->io_lock);
2358
2359		if (dm_request_based(md))
2360			generic_make_request(c);
2361		else
2362			__split_and_process_bio(md, c);
2363
2364		down_read(&md->io_lock);
2365	}
2366
2367	up_read(&md->io_lock);
2368}
2369
2370static void dm_queue_flush(struct mapped_device *md)
2371{
2372	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2373	smp_mb__after_clear_bit();
2374	queue_work(md->wq, &md->work);
2375}
2376
2377/*
2378 * Swap in a new table, returning the old one for the caller to destroy.
2379 */
2380struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2381{
2382	struct dm_table *map = ERR_PTR(-EINVAL);
2383	struct queue_limits limits;
2384	int r;
2385
2386	mutex_lock(&md->suspend_lock);
2387
2388	/* device must be suspended */
2389	if (!dm_suspended_md(md))
2390		goto out;
2391
2392	r = dm_calculate_queue_limits(table, &limits);
2393	if (r) {
2394		map = ERR_PTR(r);
2395		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2396	}
2397
2398	map = __bind(md, table, &limits);
 
2399
2400out:
2401	mutex_unlock(&md->suspend_lock);
2402	return map;
2403}
2404
2405/*
2406 * Functions to lock and unlock any filesystem running on the
2407 * device.
2408 */
2409static int lock_fs(struct mapped_device *md)
2410{
2411	int r;
2412
2413	WARN_ON(md->frozen_sb);
2414
2415	md->frozen_sb = freeze_bdev(md->bdev);
2416	if (IS_ERR(md->frozen_sb)) {
2417		r = PTR_ERR(md->frozen_sb);
2418		md->frozen_sb = NULL;
2419		return r;
2420	}
2421
2422	set_bit(DMF_FROZEN, &md->flags);
2423
2424	return 0;
2425}
2426
2427static void unlock_fs(struct mapped_device *md)
2428{
2429	if (!test_bit(DMF_FROZEN, &md->flags))
2430		return;
2431
2432	thaw_bdev(md->bdev, md->frozen_sb);
2433	md->frozen_sb = NULL;
2434	clear_bit(DMF_FROZEN, &md->flags);
2435}
2436
2437/*
2438 * We need to be able to change a mapping table under a mounted
2439 * filesystem.  For example we might want to move some data in
2440 * the background.  Before the table can be swapped with
2441 * dm_bind_table, dm_suspend must be called to flush any in
2442 * flight bios and ensure that any further io gets deferred.
2443 */
2444/*
2445 * Suspend mechanism in request-based dm.
2446 *
2447 * 1. Flush all I/Os by lock_fs() if needed.
2448 * 2. Stop dispatching any I/O by stopping the request_queue.
2449 * 3. Wait for all in-flight I/Os to be completed or requeued.
2450 *
2451 * To abort suspend, start the request_queue.
2452 */
2453int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2454{
2455	struct dm_table *map = NULL;
2456	int r = 0;
2457	int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0;
2458	int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0;
2459
2460	mutex_lock(&md->suspend_lock);
2461
2462	if (dm_suspended_md(md)) {
2463		r = -EINVAL;
2464		goto out_unlock;
2465	}
2466
2467	map = dm_get_live_table(md);
2468
2469	/*
2470	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2471	 * This flag is cleared before dm_suspend returns.
2472	 */
2473	if (noflush)
2474		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
 
 
2475
2476	/* This does not get reverted if there's an error later. */
 
 
 
2477	dm_table_presuspend_targets(map);
2478
2479	/*
2480	 * Flush I/O to the device.
2481	 * Any I/O submitted after lock_fs() may not be flushed.
2482	 * noflush takes precedence over do_lockfs.
2483	 * (lock_fs() flushes I/Os and waits for them to complete.)
2484	 */
2485	if (!noflush && do_lockfs) {
2486		r = lock_fs(md);
2487		if (r)
2488			goto out;
 
 
2489	}
2490
2491	/*
2492	 * Here we must make sure that no processes are submitting requests
2493	 * to target drivers i.e. no one may be executing
2494	 * __split_and_process_bio. This is called from dm_request and
2495	 * dm_wq_work.
2496	 *
2497	 * To get all processes out of __split_and_process_bio in dm_request,
2498	 * we take the write lock. To prevent any process from reentering
2499	 * __split_and_process_bio from dm_request and quiesce the thread
2500	 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2501	 * flush_workqueue(md->wq).
2502	 */
2503	down_write(&md->io_lock);
2504	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2505	up_write(&md->io_lock);
 
2506
2507	/*
2508	 * Stop md->queue before flushing md->wq in case request-based
2509	 * dm defers requests to md->wq from md->queue.
2510	 */
2511	if (dm_request_based(md))
2512		stop_queue(md->queue);
 
 
 
2513
2514	flush_workqueue(md->wq);
2515
2516	/*
2517	 * At this point no more requests are entering target request routines.
2518	 * We call dm_wait_for_completion to wait for all existing requests
2519	 * to finish.
2520	 */
2521	r = dm_wait_for_completion(md, TASK_INTERRUPTIBLE);
 
 
2522
2523	down_write(&md->io_lock);
2524	if (noflush)
2525		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2526	up_write(&md->io_lock);
 
2527
2528	/* were we interrupted ? */
2529	if (r < 0) {
2530		dm_queue_flush(md);
2531
2532		if (dm_request_based(md))
2533			start_queue(md->queue);
2534
2535		unlock_fs(md);
2536		goto out; /* pushback list is already flushed, so skip flush */
 
2537	}
2538
2539	/*
2540	 * If dm_wait_for_completion returned 0, the device is completely
2541	 * quiescent now. There is no request-processing activity. All new
2542	 * requests are being added to md->deferred list.
2543	 */
2544
2545	set_bit(DMF_SUSPENDED, &md->flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2546
2547	dm_table_postsuspend_targets(map);
 
2548
2549out:
2550	dm_table_put(map);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2551
2552out_unlock:
2553	mutex_unlock(&md->suspend_lock);
2554	return r;
2555}
2556
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2557int dm_resume(struct mapped_device *md)
2558{
2559	int r = -EINVAL;
2560	struct dm_table *map = NULL;
2561
2562	mutex_lock(&md->suspend_lock);
 
 
 
2563	if (!dm_suspended_md(md))
2564		goto out;
2565
2566	map = dm_get_live_table(md);
 
 
 
 
 
 
 
 
 
2567	if (!map || !dm_table_get_size(map))
2568		goto out;
2569
2570	r = dm_table_resume_targets(map);
2571	if (r)
2572		goto out;
2573
2574	dm_queue_flush(md);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2575
2576	/*
2577	 * Flushing deferred I/Os must be done after targets are resumed
2578	 * so that mapping of targets can work correctly.
2579	 * Request-based dm is queueing the deferred I/Os in its request_queue.
 
2580	 */
2581	if (dm_request_based(md))
2582		start_queue(md->queue);
2583
2584	unlock_fs(md);
 
2585
2586	clear_bit(DMF_SUSPENDED, &md->flags);
 
 
2587
2588	r = 0;
2589out:
2590	dm_table_put(map);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2591	mutex_unlock(&md->suspend_lock);
 
 
2592
2593	return r;
 
 
 
 
2594}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2595
2596/*-----------------------------------------------------------------
2597 * Event notification.
2598 *---------------------------------------------------------------*/
2599int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2600		       unsigned cookie)
2601{
2602	char udev_cookie[DM_COOKIE_LENGTH];
2603	char *envp[] = { udev_cookie, NULL };
2604
2605	if (!cookie)
2606		return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2607	else {
2608		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2609			 DM_COOKIE_ENV_VAR_NAME, cookie);
2610		return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2611					  action, envp);
2612	}
2613}
2614
2615uint32_t dm_next_uevent_seq(struct mapped_device *md)
2616{
2617	return atomic_add_return(1, &md->uevent_seq);
2618}
2619
2620uint32_t dm_get_event_nr(struct mapped_device *md)
2621{
2622	return atomic_read(&md->event_nr);
2623}
2624
2625int dm_wait_event(struct mapped_device *md, int event_nr)
2626{
2627	return wait_event_interruptible(md->eventq,
2628			(event_nr != atomic_read(&md->event_nr)));
2629}
2630
2631void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2632{
2633	unsigned long flags;
2634
2635	spin_lock_irqsave(&md->uevent_lock, flags);
2636	list_add(elist, &md->uevent_list);
2637	spin_unlock_irqrestore(&md->uevent_lock, flags);
2638}
2639
2640/*
2641 * The gendisk is only valid as long as you have a reference
2642 * count on 'md'.
2643 */
2644struct gendisk *dm_disk(struct mapped_device *md)
2645{
2646	return md->disk;
2647}
 
2648
2649struct kobject *dm_kobject(struct mapped_device *md)
2650{
2651	return &md->kobj;
2652}
2653
2654/*
2655 * struct mapped_device should not be exported outside of dm.c
2656 * so use this check to verify that kobj is part of md structure
2657 */
2658struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2659{
2660	struct mapped_device *md;
2661
2662	md = container_of(kobj, struct mapped_device, kobj);
2663	if (&md->kobj != kobj)
2664		return NULL;
2665
2666	if (test_bit(DMF_FREEING, &md->flags) ||
2667	    dm_deleting_md(md))
2668		return NULL;
2669
 
 
 
 
 
2670	dm_get(md);
 
 
 
2671	return md;
2672}
2673
2674int dm_suspended_md(struct mapped_device *md)
2675{
2676	return test_bit(DMF_SUSPENDED, &md->flags);
2677}
2678
 
 
 
 
 
 
 
 
 
 
2679int dm_suspended(struct dm_target *ti)
2680{
2681	return dm_suspended_md(dm_table_get_md(ti->table));
2682}
2683EXPORT_SYMBOL_GPL(dm_suspended);
2684
2685int dm_noflush_suspending(struct dm_target *ti)
2686{
2687	return __noflush_suspending(dm_table_get_md(ti->table));
2688}
2689EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2690
2691struct dm_md_mempools *dm_alloc_md_mempools(unsigned type, unsigned integrity)
2692{
2693	struct dm_md_mempools *pools = kmalloc(sizeof(*pools), GFP_KERNEL);
2694	unsigned int pool_size = (type == DM_TYPE_BIO_BASED) ? 16 : MIN_IOS;
 
 
 
2695
2696	if (!pools)
2697		return NULL;
2698
2699	pools->io_pool = (type == DM_TYPE_BIO_BASED) ?
2700			 mempool_create_slab_pool(MIN_IOS, _io_cache) :
2701			 mempool_create_slab_pool(MIN_IOS, _rq_bio_info_cache);
2702	if (!pools->io_pool)
2703		goto free_pools_and_out;
2704
2705	pools->tio_pool = (type == DM_TYPE_BIO_BASED) ?
2706			  mempool_create_slab_pool(MIN_IOS, _tio_cache) :
2707			  mempool_create_slab_pool(MIN_IOS, _rq_tio_cache);
2708	if (!pools->tio_pool)
2709		goto free_io_pool_and_out;
 
 
 
 
 
 
 
 
 
 
 
2710
2711	pools->bs = bioset_create(pool_size, 0);
2712	if (!pools->bs)
2713		goto free_tio_pool_and_out;
2714
2715	if (integrity && bioset_integrity_create(pools->bs, pool_size))
2716		goto free_bioset_and_out;
2717
2718	return pools;
2719
2720free_bioset_and_out:
2721	bioset_free(pools->bs);
2722
2723free_tio_pool_and_out:
2724	mempool_destroy(pools->tio_pool);
2725
2726free_io_pool_and_out:
2727	mempool_destroy(pools->io_pool);
2728
2729free_pools_and_out:
2730	kfree(pools);
2731
2732	return NULL;
2733}
2734
2735void dm_free_md_mempools(struct dm_md_mempools *pools)
2736{
2737	if (!pools)
2738		return;
2739
2740	if (pools->io_pool)
2741		mempool_destroy(pools->io_pool);
2742
2743	if (pools->tio_pool)
2744		mempool_destroy(pools->tio_pool);
2745
2746	if (pools->bs)
2747		bioset_free(pools->bs);
 
 
2748
2749	kfree(pools);
2750}
2751
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2752static const struct block_device_operations dm_blk_dops = {
2753	.open = dm_blk_open,
2754	.release = dm_blk_close,
2755	.ioctl = dm_blk_ioctl,
2756	.getgeo = dm_blk_getgeo,
 
2757	.owner = THIS_MODULE
2758};
2759
2760EXPORT_SYMBOL(dm_get_mapinfo);
 
 
 
2761
2762/*
2763 * module hooks
2764 */
2765module_init(dm_init);
2766module_exit(dm_exit);
2767
2768module_param(major, uint, 0);
2769MODULE_PARM_DESC(major, "The major number of the device mapper");
 
 
 
 
 
 
 
2770MODULE_DESCRIPTION(DM_NAME " driver");
2771MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
2772MODULE_LICENSE("GPL");
v4.17
   1/*
   2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
   3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
   4 *
   5 * This file is released under the GPL.
   6 */
   7
   8#include "dm-core.h"
   9#include "dm-rq.h"
  10#include "dm-uevent.h"
  11
  12#include <linux/init.h>
  13#include <linux/module.h>
  14#include <linux/mutex.h>
  15#include <linux/sched/signal.h>
  16#include <linux/blkpg.h>
  17#include <linux/bio.h>
 
  18#include <linux/mempool.h>
  19#include <linux/dax.h>
  20#include <linux/slab.h>
  21#include <linux/idr.h>
  22#include <linux/uio.h>
  23#include <linux/hdreg.h>
  24#include <linux/delay.h>
  25#include <linux/wait.h>
  26#include <linux/pr.h>
  27#include <linux/refcount.h>
  28
  29#define DM_MSG_PREFIX "core"
  30
  31/*
  32 * Cookies are numeric values sent with CHANGE and REMOVE
  33 * uevents while resuming, removing or renaming the device.
  34 */
  35#define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
  36#define DM_COOKIE_LENGTH 24
  37
  38static const char *_name = DM_NAME;
  39
  40static unsigned int major = 0;
  41static unsigned int _major = 0;
  42
  43static DEFINE_IDR(_minor_idr);
  44
  45static DEFINE_SPINLOCK(_minor_lock);
  46
  47static void do_deferred_remove(struct work_struct *w);
  48
  49static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
  50
  51static struct workqueue_struct *deferred_remove_workqueue;
  52
  53atomic_t dm_global_event_nr = ATOMIC_INIT(0);
  54DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
  55
  56void dm_issue_global_event(void)
  57{
  58	atomic_inc(&dm_global_event_nr);
  59	wake_up(&dm_global_eventq);
  60}
  61
  62/*
  63 * One of these is allocated (on-stack) per original bio.
 
  64 */
  65struct clone_info {
  66	struct dm_table *map;
 
 
  67	struct bio *bio;
  68	struct dm_io *io;
  69	sector_t sector;
  70	unsigned sector_count;
  71};
  72
  73/*
  74 * One of these is allocated per clone bio.
 
 
  75 */
  76#define DM_TIO_MAGIC 7282014
  77struct dm_target_io {
  78	unsigned magic;
  79	struct dm_io *io;
  80	struct dm_target *ti;
  81	unsigned target_bio_nr;
  82	unsigned *len_ptr;
  83	bool inside_dm_io;
  84	struct bio clone;
  85};
  86
  87/*
  88 * One of these is allocated per original bio.
  89 * It contains the first clone used for that original.
  90 */
  91#define DM_IO_MAGIC 5191977
  92struct dm_io {
  93	unsigned magic;
  94	struct mapped_device *md;
  95	blk_status_t status;
  96	atomic_t io_count;
  97	struct bio *orig_bio;
  98	unsigned long start_time;
  99	spinlock_t endio_lock;
 100	struct dm_stats_aux stats_aux;
 101	/* last member of dm_target_io is 'struct bio' */
 102	struct dm_target_io tio;
 103};
 104
 105void *dm_per_bio_data(struct bio *bio, size_t data_size)
 106{
 107	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
 108	if (!tio->inside_dm_io)
 109		return (char *)bio - offsetof(struct dm_target_io, clone) - data_size;
 110	return (char *)bio - offsetof(struct dm_target_io, clone) - offsetof(struct dm_io, tio) - data_size;
 111}
 112EXPORT_SYMBOL_GPL(dm_per_bio_data);
 113
 114struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
 115{
 116	struct dm_io *io = (struct dm_io *)((char *)data + data_size);
 117	if (io->magic == DM_IO_MAGIC)
 118		return (struct bio *)((char *)io + offsetof(struct dm_io, tio) + offsetof(struct dm_target_io, clone));
 119	BUG_ON(io->magic != DM_TIO_MAGIC);
 120	return (struct bio *)((char *)io + offsetof(struct dm_target_io, clone));
 121}
 122EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
 123
 124unsigned dm_bio_get_target_bio_nr(const struct bio *bio)
 125{
 126	return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
 
 
 127}
 128EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
 129
 130#define MINOR_ALLOCED ((void *)-1)
 131
 132/*
 133 * Bits for the md->flags field.
 134 */
 135#define DMF_BLOCK_IO_FOR_SUSPEND 0
 136#define DMF_SUSPENDED 1
 137#define DMF_FROZEN 2
 138#define DMF_FREEING 3
 139#define DMF_DELETING 4
 140#define DMF_NOFLUSH_SUSPENDING 5
 141#define DMF_DEFERRED_REMOVE 6
 142#define DMF_SUSPENDED_INTERNALLY 7
 143
 144#define DM_NUMA_NODE NUMA_NO_NODE
 145static int dm_numa_node = DM_NUMA_NODE;
 146
 147/*
 148 * For mempools pre-allocation at the table loading time.
 149 */
 150struct dm_md_mempools {
 151	struct bio_set *bs;
 152	struct bio_set *io_bs;
 153};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 154
 155struct table_device {
 156	struct list_head list;
 157	refcount_t count;
 158	struct dm_dev dm_dev;
 159};
 
 
 
 160
 161static struct kmem_cache *_rq_tio_cache;
 162static struct kmem_cache *_rq_cache;
 
 
 163
 164/*
 165 * Bio-based DM's mempools' reserved IOs set by the user.
 166 */
 167#define RESERVED_BIO_BASED_IOS		16
 168static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
 169
 170static int __dm_get_module_param_int(int *module_param, int min, int max)
 171{
 172	int param = READ_ONCE(*module_param);
 173	int modified_param = 0;
 174	bool modified = true;
 175
 176	if (param < min)
 177		modified_param = min;
 178	else if (param > max)
 179		modified_param = max;
 180	else
 181		modified = false;
 182
 183	if (modified) {
 184		(void)cmpxchg(module_param, param, modified_param);
 185		param = modified_param;
 186	}
 
 
 
 
 187
 188	return param;
 189}
 
 
 
 190
 191unsigned __dm_get_module_param(unsigned *module_param,
 192			       unsigned def, unsigned max)
 193{
 194	unsigned param = READ_ONCE(*module_param);
 195	unsigned modified_param = 0;
 196
 197	if (!param)
 198		modified_param = def;
 199	else if (param > max)
 200		modified_param = max;
 201
 202	if (modified_param) {
 203		(void)cmpxchg(module_param, param, modified_param);
 204		param = modified_param;
 205	}
 206
 207	return param;
 208}
 
 209
 210unsigned dm_get_reserved_bio_based_ios(void)
 211{
 212	return __dm_get_module_param(&reserved_bio_based_ios,
 213				     RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
 214}
 215EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
 
 
 216
 217static unsigned dm_get_numa_node(void)
 218{
 219	return __dm_get_module_param_int(&dm_numa_node,
 220					 DM_NUMA_NODE, num_online_nodes() - 1);
 221}
 222
 223static int __init local_init(void)
 224{
 225	int r = -ENOMEM;
 226
 
 
 
 
 
 
 
 
 
 
 227	_rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
 228	if (!_rq_tio_cache)
 229		return r;
 230
 231	_rq_cache = kmem_cache_create("dm_old_clone_request", sizeof(struct request),
 232				      __alignof__(struct request), 0, NULL);
 233	if (!_rq_cache)
 234		goto out_free_rq_tio_cache;
 235
 236	r = dm_uevent_init();
 237	if (r)
 238		goto out_free_rq_cache;
 239
 240	deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
 241	if (!deferred_remove_workqueue) {
 242		r = -ENOMEM;
 243		goto out_uevent_exit;
 244	}
 245
 246	_major = major;
 247	r = register_blkdev(_major, _name);
 248	if (r < 0)
 249		goto out_free_workqueue;
 250
 251	if (!_major)
 252		_major = r;
 253
 254	return 0;
 255
 256out_free_workqueue:
 257	destroy_workqueue(deferred_remove_workqueue);
 258out_uevent_exit:
 259	dm_uevent_exit();
 260out_free_rq_cache:
 261	kmem_cache_destroy(_rq_cache);
 262out_free_rq_tio_cache:
 263	kmem_cache_destroy(_rq_tio_cache);
 
 
 
 
 264
 265	return r;
 266}
 267
 268static void local_exit(void)
 269{
 270	flush_scheduled_work();
 271	destroy_workqueue(deferred_remove_workqueue);
 272
 273	kmem_cache_destroy(_rq_cache);
 274	kmem_cache_destroy(_rq_tio_cache);
 
 
 275	unregister_blkdev(_major, _name);
 276	dm_uevent_exit();
 277
 278	_major = 0;
 279
 280	DMINFO("cleaned up");
 281}
 282
 283static int (*_inits[])(void) __initdata = {
 284	local_init,
 285	dm_target_init,
 286	dm_linear_init,
 287	dm_stripe_init,
 288	dm_io_init,
 289	dm_kcopyd_init,
 290	dm_interface_init,
 291	dm_statistics_init,
 292};
 293
 294static void (*_exits[])(void) = {
 295	local_exit,
 296	dm_target_exit,
 297	dm_linear_exit,
 298	dm_stripe_exit,
 299	dm_io_exit,
 300	dm_kcopyd_exit,
 301	dm_interface_exit,
 302	dm_statistics_exit,
 303};
 304
 305static int __init dm_init(void)
 306{
 307	const int count = ARRAY_SIZE(_inits);
 308
 309	int r, i;
 310
 311	for (i = 0; i < count; i++) {
 312		r = _inits[i]();
 313		if (r)
 314			goto bad;
 315	}
 316
 317	return 0;
 318
 319      bad:
 320	while (i--)
 321		_exits[i]();
 322
 323	return r;
 324}
 325
 326static void __exit dm_exit(void)
 327{
 328	int i = ARRAY_SIZE(_exits);
 329
 330	while (i--)
 331		_exits[i]();
 332
 333	/*
 334	 * Should be empty by this point.
 335	 */
 
 336	idr_destroy(&_minor_idr);
 337}
 338
 339/*
 340 * Block device functions
 341 */
 342int dm_deleting_md(struct mapped_device *md)
 343{
 344	return test_bit(DMF_DELETING, &md->flags);
 345}
 346
 347static int dm_blk_open(struct block_device *bdev, fmode_t mode)
 348{
 349	struct mapped_device *md;
 350
 351	spin_lock(&_minor_lock);
 352
 353	md = bdev->bd_disk->private_data;
 354	if (!md)
 355		goto out;
 356
 357	if (test_bit(DMF_FREEING, &md->flags) ||
 358	    dm_deleting_md(md)) {
 359		md = NULL;
 360		goto out;
 361	}
 362
 363	dm_get(md);
 364	atomic_inc(&md->open_count);
 
 365out:
 366	spin_unlock(&_minor_lock);
 367
 368	return md ? 0 : -ENXIO;
 369}
 370
 371static void dm_blk_close(struct gendisk *disk, fmode_t mode)
 372{
 373	struct mapped_device *md;
 374
 375	spin_lock(&_minor_lock);
 376
 377	md = disk->private_data;
 378	if (WARN_ON(!md))
 379		goto out;
 380
 381	if (atomic_dec_and_test(&md->open_count) &&
 382	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
 383		queue_work(deferred_remove_workqueue, &deferred_remove_work);
 384
 385	dm_put(md);
 386out:
 387	spin_unlock(&_minor_lock);
 388}
 389
 390int dm_open_count(struct mapped_device *md)
 391{
 392	return atomic_read(&md->open_count);
 393}
 394
 395/*
 396 * Guarantees nothing is using the device before it's deleted.
 397 */
 398int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
 399{
 400	int r = 0;
 401
 402	spin_lock(&_minor_lock);
 403
 404	if (dm_open_count(md)) {
 405		r = -EBUSY;
 406		if (mark_deferred)
 407			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
 408	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
 409		r = -EEXIST;
 410	else
 411		set_bit(DMF_DELETING, &md->flags);
 412
 413	spin_unlock(&_minor_lock);
 414
 415	return r;
 416}
 417
 418int dm_cancel_deferred_remove(struct mapped_device *md)
 419{
 420	int r = 0;
 421
 422	spin_lock(&_minor_lock);
 423
 424	if (test_bit(DMF_DELETING, &md->flags))
 425		r = -EBUSY;
 426	else
 427		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
 428
 429	spin_unlock(&_minor_lock);
 430
 431	return r;
 432}
 433
 434static void do_deferred_remove(struct work_struct *w)
 435{
 436	dm_deferred_remove();
 437}
 438
 439sector_t dm_get_size(struct mapped_device *md)
 440{
 441	return get_capacity(md->disk);
 442}
 443
 444struct request_queue *dm_get_md_queue(struct mapped_device *md)
 445{
 446	return md->queue;
 447}
 448
 449struct dm_stats *dm_get_stats(struct mapped_device *md)
 450{
 451	return &md->stats;
 452}
 453
 454static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
 455{
 456	struct mapped_device *md = bdev->bd_disk->private_data;
 457
 458	return dm_get_geometry(md, geo);
 459}
 460
 461static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
 462			    struct block_device **bdev)
 463	__acquires(md->io_barrier)
 464{
 
 
 465	struct dm_target *tgt;
 466	struct dm_table *map;
 467	int r;
 468
 469retry:
 470	r = -ENOTTY;
 471	map = dm_get_live_table(md, srcu_idx);
 472	if (!map || !dm_table_get_size(map))
 473		return r;
 474
 475	/* We only support devices that have a single target */
 476	if (dm_table_get_num_targets(map) != 1)
 477		return r;
 478
 479	tgt = dm_table_get_target(map, 0);
 480	if (!tgt->type->prepare_ioctl)
 481		return r;
 482
 483	if (dm_suspended_md(md))
 484		return -EAGAIN;
 
 
 
 
 
 485
 486	r = tgt->type->prepare_ioctl(tgt, bdev);
 487	if (r == -ENOTCONN && !fatal_signal_pending(current)) {
 488		dm_put_live_table(md, *srcu_idx);
 489		msleep(10);
 490		goto retry;
 491	}
 492
 493	return r;
 494}
 495
 496static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
 497	__releases(md->io_barrier)
 498{
 499	dm_put_live_table(md, srcu_idx);
 500}
 501
 502static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
 503			unsigned int cmd, unsigned long arg)
 504{
 505	struct mapped_device *md = bdev->bd_disk->private_data;
 506	int r, srcu_idx;
 507
 508	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
 509	if (r < 0)
 510		goto out;
 511
 512	if (r > 0) {
 513		/*
 514		 * Target determined this ioctl is being issued against a
 515		 * subset of the parent bdev; require extra privileges.
 516		 */
 517		if (!capable(CAP_SYS_RAWIO)) {
 518			DMWARN_LIMIT(
 519	"%s: sending ioctl %x to DM device without required privilege.",
 520				current->comm, cmd);
 521			r = -ENOIOCTLCMD;
 522			goto out;
 523		}
 524	}
 525
 526	r =  __blkdev_driver_ioctl(bdev, mode, cmd, arg);
 527out:
 528	dm_unprepare_ioctl(md, srcu_idx);
 529	return r;
 530}
 531
 532static void start_io_acct(struct dm_io *io);
 533
 534static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio)
 535{
 536	struct dm_io *io;
 537	struct dm_target_io *tio;
 538	struct bio *clone;
 539
 540	clone = bio_alloc_bioset(GFP_NOIO, 0, md->io_bs);
 541	if (!clone)
 542		return NULL;
 543
 544	tio = container_of(clone, struct dm_target_io, clone);
 545	tio->inside_dm_io = true;
 546	tio->io = NULL;
 547
 548	io = container_of(tio, struct dm_io, tio);
 549	io->magic = DM_IO_MAGIC;
 550	io->status = 0;
 551	atomic_set(&io->io_count, 1);
 552	io->orig_bio = bio;
 553	io->md = md;
 554	spin_lock_init(&io->endio_lock);
 555
 556	start_io_acct(io);
 557
 558	return io;
 559}
 560
 561static void free_io(struct mapped_device *md, struct dm_io *io)
 562{
 563	bio_put(&io->tio.clone);
 564}
 565
 566static struct dm_target_io *alloc_tio(struct clone_info *ci, struct dm_target *ti,
 567				      unsigned target_bio_nr, gfp_t gfp_mask)
 568{
 569	struct dm_target_io *tio;
 570
 571	if (!ci->io->tio.io) {
 572		/* the dm_target_io embedded in ci->io is available */
 573		tio = &ci->io->tio;
 574	} else {
 575		struct bio *clone = bio_alloc_bioset(gfp_mask, 0, ci->io->md->bs);
 576		if (!clone)
 577			return NULL;
 578
 579		tio = container_of(clone, struct dm_target_io, clone);
 580		tio->inside_dm_io = false;
 581	}
 582
 583	tio->magic = DM_TIO_MAGIC;
 584	tio->io = ci->io;
 585	tio->ti = ti;
 586	tio->target_bio_nr = target_bio_nr;
 587
 588	return tio;
 589}
 590
 591static void free_tio(struct dm_target_io *tio)
 592{
 593	if (tio->inside_dm_io)
 594		return;
 595	bio_put(&tio->clone);
 596}
 597
 598int md_in_flight(struct mapped_device *md)
 599{
 600	return atomic_read(&md->pending[READ]) +
 601	       atomic_read(&md->pending[WRITE]);
 602}
 603
 604static void start_io_acct(struct dm_io *io)
 605{
 606	struct mapped_device *md = io->md;
 607	struct bio *bio = io->orig_bio;
 608	int rw = bio_data_dir(bio);
 609
 610	io->start_time = jiffies;
 611
 612	generic_start_io_acct(md->queue, rw, bio_sectors(bio), &dm_disk(md)->part0);
 613
 
 614	atomic_set(&dm_disk(md)->part0.in_flight[rw],
 615		   atomic_inc_return(&md->pending[rw]));
 616
 617	if (unlikely(dm_stats_used(&md->stats)))
 618		dm_stats_account_io(&md->stats, bio_data_dir(bio),
 619				    bio->bi_iter.bi_sector, bio_sectors(bio),
 620				    false, 0, &io->stats_aux);
 621}
 622
 623static void end_io_acct(struct dm_io *io)
 624{
 625	struct mapped_device *md = io->md;
 626	struct bio *bio = io->orig_bio;
 627	unsigned long duration = jiffies - io->start_time;
 628	int pending;
 629	int rw = bio_data_dir(bio);
 630
 631	generic_end_io_acct(md->queue, rw, &dm_disk(md)->part0, io->start_time);
 632
 633	if (unlikely(dm_stats_used(&md->stats)))
 634		dm_stats_account_io(&md->stats, bio_data_dir(bio),
 635				    bio->bi_iter.bi_sector, bio_sectors(bio),
 636				    true, duration, &io->stats_aux);
 637
 638	/*
 639	 * After this is decremented the bio must not be touched if it is
 640	 * a flush.
 641	 */
 642	pending = atomic_dec_return(&md->pending[rw]);
 643	atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
 644	pending += atomic_read(&md->pending[rw^0x1]);
 645
 646	/* nudge anyone waiting on suspend queue */
 647	if (!pending)
 648		wake_up(&md->wait);
 649}
 650
 651/*
 652 * Add the bio to the list of deferred io.
 653 */
 654static void queue_io(struct mapped_device *md, struct bio *bio)
 655{
 656	unsigned long flags;
 657
 658	spin_lock_irqsave(&md->deferred_lock, flags);
 659	bio_list_add(&md->deferred, bio);
 660	spin_unlock_irqrestore(&md->deferred_lock, flags);
 661	queue_work(md->wq, &md->work);
 662}
 663
 664/*
 665 * Everyone (including functions in this file), should use this
 666 * function to access the md->map field, and make sure they call
 667 * dm_put_live_table() when finished.
 668 */
 669struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
 670{
 671	*srcu_idx = srcu_read_lock(&md->io_barrier);
 672
 673	return srcu_dereference(md->map, &md->io_barrier);
 674}
 675
 676void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
 677{
 678	srcu_read_unlock(&md->io_barrier, srcu_idx);
 679}
 680
 681void dm_sync_table(struct mapped_device *md)
 682{
 683	synchronize_srcu(&md->io_barrier);
 684	synchronize_rcu_expedited();
 685}
 686
 687/*
 688 * A fast alternative to dm_get_live_table/dm_put_live_table.
 689 * The caller must not block between these two functions.
 690 */
 691static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
 692{
 693	rcu_read_lock();
 694	return rcu_dereference(md->map);
 695}
 696
 697static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
 698{
 699	rcu_read_unlock();
 700}
 701
 702static char *_dm_claim_ptr = "I belong to device-mapper";
 703
 704/*
 705 * Open a table device so we can use it as a map destination.
 706 */
 707static int open_table_device(struct table_device *td, dev_t dev,
 708			     struct mapped_device *md)
 709{
 710	struct block_device *bdev;
 711
 712	int r;
 713
 714	BUG_ON(td->dm_dev.bdev);
 715
 716	bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr);
 717	if (IS_ERR(bdev))
 718		return PTR_ERR(bdev);
 719
 720	r = bd_link_disk_holder(bdev, dm_disk(md));
 721	if (r) {
 722		blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
 723		return r;
 724	}
 725
 726	td->dm_dev.bdev = bdev;
 727	td->dm_dev.dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
 728	return 0;
 729}
 730
 731/*
 732 * Close a table device that we've been using.
 733 */
 734static void close_table_device(struct table_device *td, struct mapped_device *md)
 735{
 736	if (!td->dm_dev.bdev)
 737		return;
 738
 739	bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
 740	blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
 741	put_dax(td->dm_dev.dax_dev);
 742	td->dm_dev.bdev = NULL;
 743	td->dm_dev.dax_dev = NULL;
 744}
 745
 746static struct table_device *find_table_device(struct list_head *l, dev_t dev,
 747					      fmode_t mode) {
 748	struct table_device *td;
 749
 750	list_for_each_entry(td, l, list)
 751		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
 752			return td;
 753
 754	return NULL;
 755}
 756
 757int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
 758			struct dm_dev **result) {
 759	int r;
 760	struct table_device *td;
 761
 762	mutex_lock(&md->table_devices_lock);
 763	td = find_table_device(&md->table_devices, dev, mode);
 764	if (!td) {
 765		td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
 766		if (!td) {
 767			mutex_unlock(&md->table_devices_lock);
 768			return -ENOMEM;
 769		}
 770
 771		td->dm_dev.mode = mode;
 772		td->dm_dev.bdev = NULL;
 773
 774		if ((r = open_table_device(td, dev, md))) {
 775			mutex_unlock(&md->table_devices_lock);
 776			kfree(td);
 777			return r;
 778		}
 779
 780		format_dev_t(td->dm_dev.name, dev);
 781
 782		refcount_set(&td->count, 1);
 783		list_add(&td->list, &md->table_devices);
 784	} else {
 785		refcount_inc(&td->count);
 786	}
 787	mutex_unlock(&md->table_devices_lock);
 788
 789	*result = &td->dm_dev;
 790	return 0;
 791}
 792EXPORT_SYMBOL_GPL(dm_get_table_device);
 793
 794void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
 795{
 796	struct table_device *td = container_of(d, struct table_device, dm_dev);
 797
 798	mutex_lock(&md->table_devices_lock);
 799	if (refcount_dec_and_test(&td->count)) {
 800		close_table_device(td, md);
 801		list_del(&td->list);
 802		kfree(td);
 803	}
 804	mutex_unlock(&md->table_devices_lock);
 805}
 806EXPORT_SYMBOL(dm_put_table_device);
 807
 808static void free_table_devices(struct list_head *devices)
 809{
 810	struct list_head *tmp, *next;
 811
 812	list_for_each_safe(tmp, next, devices) {
 813		struct table_device *td = list_entry(tmp, struct table_device, list);
 
 
 
 814
 815		DMWARN("dm_destroy: %s still exists with %d references",
 816		       td->dm_dev.name, refcount_read(&td->count));
 817		kfree(td);
 818	}
 819}
 820
 821/*
 822 * Get the geometry associated with a dm device
 823 */
 824int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
 825{
 826	*geo = md->geometry;
 827
 828	return 0;
 829}
 830
 831/*
 832 * Set the geometry of a device.
 833 */
 834int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
 835{
 836	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
 837
 838	if (geo->start > sz) {
 839		DMWARN("Start sector is beyond the geometry limits.");
 840		return -EINVAL;
 841	}
 842
 843	md->geometry = *geo;
 844
 845	return 0;
 846}
 847
 
 
 
 
 
 
 
 
 
 848static int __noflush_suspending(struct mapped_device *md)
 849{
 850	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
 851}
 852
 853/*
 854 * Decrements the number of outstanding ios that a bio has been
 855 * cloned into, completing the original io if necc.
 856 */
 857static void dec_pending(struct dm_io *io, blk_status_t error)
 858{
 859	unsigned long flags;
 860	blk_status_t io_error;
 861	struct bio *bio;
 862	struct mapped_device *md = io->md;
 863
 864	/* Push-back supersedes any I/O errors */
 865	if (unlikely(error)) {
 866		spin_lock_irqsave(&io->endio_lock, flags);
 867		if (!(io->status == BLK_STS_DM_REQUEUE && __noflush_suspending(md)))
 868			io->status = error;
 869		spin_unlock_irqrestore(&io->endio_lock, flags);
 870	}
 871
 872	if (atomic_dec_and_test(&io->io_count)) {
 873		if (io->status == BLK_STS_DM_REQUEUE) {
 874			/*
 875			 * Target requested pushing back the I/O.
 876			 */
 877			spin_lock_irqsave(&md->deferred_lock, flags);
 878			if (__noflush_suspending(md))
 879				/* NOTE early return due to BLK_STS_DM_REQUEUE below */
 880				bio_list_add_head(&md->deferred, io->orig_bio);
 881			else
 882				/* noflush suspend was interrupted. */
 883				io->status = BLK_STS_IOERR;
 884			spin_unlock_irqrestore(&md->deferred_lock, flags);
 885		}
 886
 887		io_error = io->status;
 888		bio = io->orig_bio;
 889		end_io_acct(io);
 890		free_io(md, io);
 891
 892		if (io_error == BLK_STS_DM_REQUEUE)
 893			return;
 894
 895		if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) {
 896			/*
 897			 * Preflush done for flush with data, reissue
 898			 * without REQ_PREFLUSH.
 899			 */
 900			bio->bi_opf &= ~REQ_PREFLUSH;
 901			queue_io(md, bio);
 902		} else {
 903			/* done with normal IO or empty flush */
 904			if (io_error)
 905				bio->bi_status = io_error;
 906			bio_endio(bio);
 907		}
 908	}
 909}
 910
 911void disable_write_same(struct mapped_device *md)
 912{
 913	struct queue_limits *limits = dm_get_queue_limits(md);
 914
 915	/* device doesn't really support WRITE SAME, disable it */
 916	limits->max_write_same_sectors = 0;
 917}
 918
 919void disable_write_zeroes(struct mapped_device *md)
 920{
 921	struct queue_limits *limits = dm_get_queue_limits(md);
 922
 923	/* device doesn't really support WRITE ZEROES, disable it */
 924	limits->max_write_zeroes_sectors = 0;
 925}
 926
 927static void clone_endio(struct bio *bio)
 928{
 929	blk_status_t error = bio->bi_status;
 930	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
 931	struct dm_io *io = tio->io;
 932	struct mapped_device *md = tio->io->md;
 933	dm_endio_fn endio = tio->ti->type->end_io;
 934
 935	if (unlikely(error == BLK_STS_TARGET) && md->type != DM_TYPE_NVME_BIO_BASED) {
 936		if (bio_op(bio) == REQ_OP_WRITE_SAME &&
 937		    !bio->bi_disk->queue->limits.max_write_same_sectors)
 938			disable_write_same(md);
 939		if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
 940		    !bio->bi_disk->queue->limits.max_write_zeroes_sectors)
 941			disable_write_zeroes(md);
 942	}
 943
 944	if (endio) {
 945		int r = endio(tio->ti, bio, &error);
 946		switch (r) {
 947		case DM_ENDIO_REQUEUE:
 948			error = BLK_STS_DM_REQUEUE;
 949			/*FALLTHRU*/
 950		case DM_ENDIO_DONE:
 951			break;
 952		case DM_ENDIO_INCOMPLETE:
 953			/* The target will handle the io */
 954			return;
 955		default:
 956			DMWARN("unimplemented target endio return value: %d", r);
 957			BUG();
 958		}
 959	}
 960
 961	free_tio(tio);
 
 
 
 
 
 
 962	dec_pending(io, error);
 963}
 964
 965/*
 966 * Return maximum size of I/O possible at the supplied sector up to the current
 967 * target boundary.
 968 */
 969static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
 970{
 971	sector_t target_offset = dm_target_offset(ti, sector);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 972
 973	return ti->len - target_offset;
 
 
 
 
 
 974}
 975
 976static sector_t max_io_len(sector_t sector, struct dm_target *ti)
 
 
 
 
 
 977{
 978	sector_t len = max_io_len_target_boundary(sector, ti);
 979	sector_t offset, max_len;
 
 
 
 
 
 
 980
 981	/*
 982	 * Does the target need to split even further?
 983	 */
 984	if (ti->max_io_len) {
 985		offset = dm_target_offset(ti, sector);
 986		if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
 987			max_len = sector_div(offset, ti->max_io_len);
 988		else
 989			max_len = offset & (ti->max_io_len - 1);
 990		max_len = ti->max_io_len - max_len;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 991
 992		if (len > max_len)
 993			len = max_len;
 
 
 
 
 
 994	}
 995
 996	return len;
 
 
 997}
 998
 999int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1000{
1001	if (len > UINT_MAX) {
1002		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1003		      (unsigned long long)len, UINT_MAX);
1004		ti->error = "Maximum size of target IO is too large";
1005		return -EINVAL;
1006	}
1007
1008	/*
1009	 * BIO based queue uses its own splitting. When multipage bvecs
1010	 * is switched on, size of the incoming bio may be too big to
1011	 * be handled in some targets, such as crypt.
1012	 *
1013	 * When these targets are ready for the big bio, we can remove
1014	 * the limit.
1015	 */
1016	ti->max_io_len = min_t(uint32_t, len, BIO_MAX_PAGES * PAGE_SIZE);
1017
1018	return 0;
1019}
1020EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1021
1022static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1023						sector_t sector, int *srcu_idx)
1024	__acquires(md->io_barrier)
 
1025{
1026	struct dm_table *map;
1027	struct dm_target *ti;
 
 
 
 
 
 
1028
1029	map = dm_get_live_table(md, srcu_idx);
1030	if (!map)
1031		return NULL;
1032
1033	ti = dm_table_find_target(map, sector);
1034	if (!dm_target_is_valid(ti))
1035		return NULL;
1036
1037	return ti;
 
 
1038}
1039
1040static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1041				 long nr_pages, void **kaddr, pfn_t *pfn)
1042{
1043	struct mapped_device *md = dax_get_private(dax_dev);
1044	sector_t sector = pgoff * PAGE_SECTORS;
1045	struct dm_target *ti;
1046	long len, ret = -EIO;
1047	int srcu_idx;
1048
1049	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
 
 
 
1050
1051	if (!ti)
1052		goto out;
1053	if (!ti->type->direct_access)
1054		goto out;
1055	len = max_io_len(sector, ti) / PAGE_SECTORS;
1056	if (len < 1)
1057		goto out;
1058	nr_pages = min(len, nr_pages);
1059	if (ti->type->direct_access)
1060		ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn);
1061
1062 out:
1063	dm_put_live_table(md, srcu_idx);
 
1064
1065	return ret;
 
 
1066}
1067
1068static size_t dm_dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1069				    void *addr, size_t bytes, struct iov_iter *i)
1070{
1071	struct mapped_device *md = dax_get_private(dax_dev);
1072	sector_t sector = pgoff * PAGE_SECTORS;
1073	struct dm_target *ti;
1074	long ret = 0;
1075	int srcu_idx;
1076
1077	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
 
1078
1079	if (!ti)
1080		goto out;
1081	if (!ti->type->dax_copy_from_iter) {
1082		ret = copy_from_iter(addr, bytes, i);
1083		goto out;
 
 
 
 
 
 
 
1084	}
1085	ret = ti->type->dax_copy_from_iter(ti, pgoff, addr, bytes, i);
1086 out:
1087	dm_put_live_table(md, srcu_idx);
 
 
 
 
 
 
 
1088
1089	return ret;
 
 
 
1090}
1091
1092/*
1093 * A target may call dm_accept_partial_bio only from the map routine.  It is
1094 * allowed for all bio types except REQ_PREFLUSH and REQ_OP_ZONE_RESET.
1095 *
1096 * dm_accept_partial_bio informs the dm that the target only wants to process
1097 * additional n_sectors sectors of the bio and the rest of the data should be
1098 * sent in a next bio.
1099 *
1100 * A diagram that explains the arithmetics:
1101 * +--------------------+---------------+-------+
1102 * |         1          |       2       |   3   |
1103 * +--------------------+---------------+-------+
1104 *
1105 * <-------------- *tio->len_ptr --------------->
1106 *                      <------- bi_size ------->
1107 *                      <-- n_sectors -->
1108 *
1109 * Region 1 was already iterated over with bio_advance or similar function.
1110 *	(it may be empty if the target doesn't use bio_advance)
1111 * Region 2 is the remaining bio size that the target wants to process.
1112 *	(it may be empty if region 1 is non-empty, although there is no reason
1113 *	 to make it empty)
1114 * The target requires that region 3 is to be sent in the next bio.
1115 *
1116 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1117 * the partially processed part (the sum of regions 1+2) must be the same for all
1118 * copies of the bio.
1119 */
1120void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1121{
1122	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1123	unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1124	BUG_ON(bio->bi_opf & REQ_PREFLUSH);
1125	BUG_ON(bi_size > *tio->len_ptr);
1126	BUG_ON(n_sectors > bi_size);
1127	*tio->len_ptr -= bi_size - n_sectors;
1128	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1129}
1130EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1131
1132/*
1133 * The zone descriptors obtained with a zone report indicate
1134 * zone positions within the target device. The zone descriptors
1135 * must be remapped to match their position within the dm device.
1136 * A target may call dm_remap_zone_report after completion of a
1137 * REQ_OP_ZONE_REPORT bio to remap the zone descriptors obtained
1138 * from the target device mapping to the dm device.
1139 */
1140void dm_remap_zone_report(struct dm_target *ti, struct bio *bio, sector_t start)
1141{
1142#ifdef CONFIG_BLK_DEV_ZONED
1143	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1144	struct bio *report_bio = tio->io->orig_bio;
1145	struct blk_zone_report_hdr *hdr = NULL;
1146	struct blk_zone *zone;
1147	unsigned int nr_rep = 0;
1148	unsigned int ofst;
1149	struct bio_vec bvec;
1150	struct bvec_iter iter;
1151	void *addr;
1152
1153	if (bio->bi_status)
1154		return;
 
 
 
 
 
 
 
 
 
 
1155
1156	/*
1157	 * Remap the start sector of the reported zones. For sequential zones,
1158	 * also remap the write pointer position.
 
 
 
 
1159	 */
1160	bio_for_each_segment(bvec, report_bio, iter) {
1161		addr = kmap_atomic(bvec.bv_page);
1162
1163		/* Remember the report header in the first page */
1164		if (!hdr) {
1165			hdr = addr;
1166			ofst = sizeof(struct blk_zone_report_hdr);
1167		} else
1168			ofst = 0;
1169
1170		/* Set zones start sector */
1171		while (hdr->nr_zones && ofst < bvec.bv_len) {
1172			zone = addr + ofst;
1173			if (zone->start >= start + ti->len) {
1174				hdr->nr_zones = 0;
1175				break;
1176			}
1177			zone->start = zone->start + ti->begin - start;
1178			if (zone->type != BLK_ZONE_TYPE_CONVENTIONAL) {
1179				if (zone->cond == BLK_ZONE_COND_FULL)
1180					zone->wp = zone->start + zone->len;
1181				else if (zone->cond == BLK_ZONE_COND_EMPTY)
1182					zone->wp = zone->start;
1183				else
1184					zone->wp = zone->wp + ti->begin - start;
1185			}
1186			ofst += sizeof(struct blk_zone);
1187			hdr->nr_zones--;
1188			nr_rep++;
1189		}
1190
1191		if (addr != hdr)
1192			kunmap_atomic(addr);
1193
1194		if (!hdr->nr_zones)
1195			break;
1196	}
1197
1198	if (hdr) {
1199		hdr->nr_zones = nr_rep;
1200		kunmap_atomic(hdr);
 
 
 
 
 
 
 
1201	}
1202
1203	bio_advance(report_bio, report_bio->bi_iter.bi_size);
1204
1205#else /* !CONFIG_BLK_DEV_ZONED */
1206	bio->bi_status = BLK_STS_NOTSUPP;
1207#endif
1208}
1209EXPORT_SYMBOL_GPL(dm_remap_zone_report);
1210
1211static blk_qc_t __map_bio(struct dm_target_io *tio)
 
1212{
1213	int r;
1214	sector_t sector;
1215	struct bio *clone = &tio->clone;
1216	struct dm_io *io = tio->io;
1217	struct mapped_device *md = io->md;
1218	struct dm_target *ti = tio->ti;
1219	blk_qc_t ret = BLK_QC_T_NONE;
1220
1221	clone->bi_end_io = clone_endio;
 
1222
1223	/*
1224	 * Map the clone.  If r == 0 we don't need to do
1225	 * anything, the target has assumed ownership of
1226	 * this io.
1227	 */
1228	atomic_inc(&io->io_count);
1229	sector = clone->bi_iter.bi_sector;
 
 
 
1230
1231	r = ti->type->map(ti, clone);
1232	switch (r) {
1233	case DM_MAPIO_SUBMITTED:
1234		break;
1235	case DM_MAPIO_REMAPPED:
1236		/* the bio has been remapped so dispatch it */
1237		trace_block_bio_remap(clone->bi_disk->queue, clone,
1238				      bio_dev(io->orig_bio), sector);
1239		if (md->type == DM_TYPE_NVME_BIO_BASED)
1240			ret = direct_make_request(clone);
1241		else
1242			ret = generic_make_request(clone);
1243		break;
1244	case DM_MAPIO_KILL:
1245		free_tio(tio);
1246		dec_pending(io, BLK_STS_IOERR);
1247		break;
1248	case DM_MAPIO_REQUEUE:
1249		free_tio(tio);
1250		dec_pending(io, BLK_STS_DM_REQUEUE);
1251		break;
1252	default:
1253		DMWARN("unimplemented target map return value: %d", r);
1254		BUG();
1255	}
 
 
 
 
 
 
 
 
 
 
 
1256
1257	return ret;
 
 
 
 
1258}
1259
1260static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
 
 
 
 
 
1261{
1262	bio->bi_iter.bi_sector = sector;
1263	bio->bi_iter.bi_size = to_bytes(len);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1264}
1265
1266/*
1267 * Creates a bio that consists of range of complete bvecs.
1268 */
1269static int clone_bio(struct dm_target_io *tio, struct bio *bio,
1270		     sector_t sector, unsigned len)
 
1271{
1272	struct bio *clone = &tio->clone;
1273
1274	__bio_clone_fast(clone, bio);
1275
1276	if (unlikely(bio_integrity(bio) != NULL)) {
1277		int r;
 
 
 
 
 
 
1278
1279		if (unlikely(!dm_target_has_integrity(tio->ti->type) &&
1280			     !dm_target_passes_integrity(tio->ti->type))) {
1281			DMWARN("%s: the target %s doesn't support integrity data.",
1282				dm_device_name(tio->io->md),
1283				tio->ti->type->name);
1284			return -EIO;
1285		}
1286
1287		r = bio_integrity_clone(clone, bio, GFP_NOIO);
1288		if (r < 0)
1289			return r;
1290	}
1291
1292	if (bio_op(bio) != REQ_OP_ZONE_REPORT)
1293		bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1294	clone->bi_iter.bi_size = to_bytes(len);
1295
1296	if (unlikely(bio_integrity(bio) != NULL))
1297		bio_integrity_trim(clone);
 
 
1298
1299	return 0;
 
 
 
 
1300}
1301
1302static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1303				struct dm_target *ti, unsigned num_bios)
1304{
1305	struct dm_target_io *tio;
1306	int try;
1307
1308	if (!num_bios)
1309		return;
1310
1311	if (num_bios == 1) {
1312		tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1313		bio_list_add(blist, &tio->clone);
1314		return;
 
 
 
 
 
 
 
1315	}
1316
1317	for (try = 0; try < 2; try++) {
1318		int bio_nr;
1319		struct bio *bio;
1320
1321		if (try)
1322			mutex_lock(&ci->io->md->table_devices_lock);
1323		for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1324			tio = alloc_tio(ci, ti, bio_nr, try ? GFP_NOIO : GFP_NOWAIT);
1325			if (!tio)
1326				break;
1327
1328			bio_list_add(blist, &tio->clone);
1329		}
1330		if (try)
1331			mutex_unlock(&ci->io->md->table_devices_lock);
1332		if (bio_nr == num_bios)
1333			return;
1334
1335		while ((bio = bio_list_pop(blist))) {
1336			tio = container_of(bio, struct dm_target_io, clone);
1337			free_tio(tio);
1338		}
1339	}
1340}
1341
1342static blk_qc_t __clone_and_map_simple_bio(struct clone_info *ci,
1343					   struct dm_target_io *tio, unsigned *len)
1344{
1345	struct bio *clone = &tio->clone;
 
1346
1347	tio->len_ptr = len;
 
 
1348
1349	__bio_clone_fast(clone, ci->bio);
1350	if (len)
1351		bio_setup_sector(clone, ci->sector, *len);
1352
1353	return __map_bio(tio);
1354}
1355
1356static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1357				  unsigned num_bios, unsigned *len)
 
 
1358{
1359	struct bio_list blist = BIO_EMPTY_LIST;
1360	struct bio *bio;
1361	struct dm_target_io *tio;
1362
1363	alloc_multiple_bios(&blist, ci, ti, num_bios);
1364
1365	while ((bio = bio_list_pop(&blist))) {
1366		tio = container_of(bio, struct dm_target_io, clone);
1367		(void) __clone_and_map_simple_bio(ci, tio, len);
1368	}
1369}
1370
1371static int __send_empty_flush(struct clone_info *ci)
1372{
1373	unsigned target_nr = 0;
1374	struct dm_target *ti;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1375
1376	BUG_ON(bio_has_data(ci->bio));
1377	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1378		__send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1379
1380	return 0;
1381}
1382
1383static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1384				    sector_t sector, unsigned *len)
1385{
1386	struct bio *bio = ci->bio;
 
 
1387	struct dm_target_io *tio;
1388	int r;
1389
1390	tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1391	tio->len_ptr = len;
1392	r = clone_bio(tio, bio, sector, *len);
1393	if (r < 0) {
1394		free_tio(tio);
1395		return r;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1396	}
1397	(void) __map_bio(tio);
1398
1399	return 0;
1400}
1401
1402typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
 
 
 
 
 
 
1403
1404static unsigned get_num_discard_bios(struct dm_target *ti)
1405{
1406	return ti->num_discard_bios;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1407}
 
 
 
1408
1409static unsigned get_num_secure_erase_bios(struct dm_target *ti)
 
 
1410{
1411	return ti->num_secure_erase_bios;
1412}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1413
1414static unsigned get_num_write_same_bios(struct dm_target *ti)
1415{
1416	return ti->num_write_same_bios;
1417}
1418
1419static unsigned get_num_write_zeroes_bios(struct dm_target *ti)
1420{
1421	return ti->num_write_zeroes_bios;
1422}
1423
1424typedef bool (*is_split_required_fn)(struct dm_target *ti);
 
 
 
 
 
1425
1426static bool is_split_required_for_discard(struct dm_target *ti)
1427{
1428	return ti->split_discard_bios;
1429}
1430
1431static int __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti,
1432				       get_num_bios_fn get_num_bios,
1433				       is_split_required_fn is_split_required)
 
 
1434{
1435	unsigned len;
1436	unsigned num_bios;
 
1437
1438	/*
1439	 * Even though the device advertised support for this type of
1440	 * request, that does not mean every target supports it, and
1441	 * reconfiguration might also have changed that since the
1442	 * check was performed.
1443	 */
1444	num_bios = get_num_bios ? get_num_bios(ti) : 0;
1445	if (!num_bios)
1446		return -EOPNOTSUPP;
1447
1448	if (is_split_required && !is_split_required(ti))
1449		len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1450	else
1451		len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti));
1452
1453	__send_duplicate_bios(ci, ti, num_bios, &len);
 
 
1454
1455	ci->sector += len;
1456	ci->sector_count -= len;
 
 
 
 
1457
 
 
1458	return 0;
1459}
1460
1461static int __send_discard(struct clone_info *ci, struct dm_target *ti)
1462{
1463	return __send_changing_extent_only(ci, ti, get_num_discard_bios,
1464					   is_split_required_for_discard);
 
1465}
1466
1467static int __send_secure_erase(struct clone_info *ci, struct dm_target *ti)
1468{
1469	return __send_changing_extent_only(ci, ti, get_num_secure_erase_bios, NULL);
1470}
1471
1472static int __send_write_same(struct clone_info *ci, struct dm_target *ti)
1473{
1474	return __send_changing_extent_only(ci, ti, get_num_write_same_bios, NULL);
 
 
 
 
 
1475}
1476
1477static int __send_write_zeroes(struct clone_info *ci, struct dm_target *ti)
1478{
1479	return __send_changing_extent_only(ci, ti, get_num_write_zeroes_bios, NULL);
 
 
 
 
 
 
 
 
1480}
 
1481
1482static bool __process_abnormal_io(struct clone_info *ci, struct dm_target *ti,
1483				  int *result)
1484{
1485	struct bio *bio = ci->bio;
 
1486
1487	if (bio_op(bio) == REQ_OP_DISCARD)
1488		*result = __send_discard(ci, ti);
1489	else if (bio_op(bio) == REQ_OP_SECURE_ERASE)
1490		*result = __send_secure_erase(ci, ti);
1491	else if (bio_op(bio) == REQ_OP_WRITE_SAME)
1492		*result = __send_write_same(ci, ti);
1493	else if (bio_op(bio) == REQ_OP_WRITE_ZEROES)
1494		*result = __send_write_zeroes(ci, ti);
1495	else
1496		return false;
1497
1498	return true;
1499}
1500
1501/*
1502 * Select the correct strategy for processing a non-flush bio.
1503 */
1504static int __split_and_process_non_flush(struct clone_info *ci)
1505{
1506	struct bio *bio = ci->bio;
1507	struct dm_target *ti;
1508	unsigned len;
1509	int r;
 
 
1510
1511	ti = dm_table_find_target(ci->map, ci->sector);
1512	if (!dm_target_is_valid(ti))
1513		return -EIO;
 
 
1514
1515	if (unlikely(__process_abnormal_io(ci, ti, &r)))
1516		return r;
1517
1518	if (bio_op(bio) == REQ_OP_ZONE_REPORT)
1519		len = ci->sector_count;
1520	else
1521		len = min_t(sector_t, max_io_len(ci->sector, ti),
1522			    ci->sector_count);
1523
1524	r = __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1525	if (r < 0)
 
1526		return r;
1527
1528	ci->sector += len;
1529	ci->sector_count -= len;
 
 
 
 
1530
1531	return 0;
1532}
1533
1534static void init_clone_info(struct clone_info *ci, struct mapped_device *md,
1535			    struct dm_table *map, struct bio *bio)
1536{
1537	ci->map = map;
1538	ci->io = alloc_io(md, bio);
1539	ci->sector = bio->bi_iter.bi_sector;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1540}
1541
1542/*
1543 * Entry point to split a bio into clones and submit them to the targets.
1544 */
1545static blk_qc_t __split_and_process_bio(struct mapped_device *md,
1546					struct dm_table *map, struct bio *bio)
1547{
1548	struct clone_info ci;
1549	blk_qc_t ret = BLK_QC_T_NONE;
1550	int error = 0;
1551
1552	if (unlikely(!map)) {
1553		bio_io_error(bio);
1554		return ret;
1555	}
1556
1557	init_clone_info(&ci, md, map, bio);
 
 
1558
1559	if (bio->bi_opf & REQ_PREFLUSH) {
1560		ci.bio = &ci.io->md->flush_bio;
1561		ci.sector_count = 0;
1562		error = __send_empty_flush(&ci);
1563		/* dec_pending submits any data associated with flush */
1564	} else if (bio_op(bio) == REQ_OP_ZONE_RESET) {
1565		ci.bio = bio;
1566		ci.sector_count = 0;
1567		error = __split_and_process_non_flush(&ci);
1568	} else {
1569		ci.bio = bio;
1570		ci.sector_count = bio_sectors(bio);
1571		while (ci.sector_count && !error) {
1572			error = __split_and_process_non_flush(&ci);
1573			if (current->bio_list && ci.sector_count && !error) {
1574				/*
1575				 * Remainder must be passed to generic_make_request()
1576				 * so that it gets handled *after* bios already submitted
1577				 * have been completely processed.
1578				 * We take a clone of the original to store in
1579				 * ci.io->orig_bio to be used by end_io_acct() and
1580				 * for dec_pending to use for completion handling.
1581				 * As this path is not used for REQ_OP_ZONE_REPORT,
1582				 * the usage of io->orig_bio in dm_remap_zone_report()
1583				 * won't be affected by this reassignment.
1584				 */
1585				struct bio *b = bio_clone_bioset(bio, GFP_NOIO,
1586								 md->queue->bio_split);
1587				ci.io->orig_bio = b;
1588				bio_advance(bio, (bio_sectors(bio) - ci.sector_count) << 9);
1589				bio_chain(b, bio);
1590				ret = generic_make_request(bio);
1591				break;
1592			}
1593		}
1594	}
1595
1596	/* drop the extra reference count */
1597	dec_pending(ci.io, errno_to_blk_status(error));
1598	return ret;
1599}
1600
1601/*
1602 * Optimized variant of __split_and_process_bio that leverages the
1603 * fact that targets that use it do _not_ have a need to split bios.
 
1604 */
1605static blk_qc_t __process_bio(struct mapped_device *md,
1606			      struct dm_table *map, struct bio *bio)
1607{
1608	struct clone_info ci;
1609	blk_qc_t ret = BLK_QC_T_NONE;
1610	int error = 0;
1611
1612	if (unlikely(!map)) {
1613		bio_io_error(bio);
1614		return ret;
1615	}
 
 
 
 
1616
1617	init_clone_info(&ci, md, map, bio);
1618
1619	if (bio->bi_opf & REQ_PREFLUSH) {
1620		ci.bio = &ci.io->md->flush_bio;
1621		ci.sector_count = 0;
1622		error = __send_empty_flush(&ci);
1623		/* dec_pending submits any data associated with flush */
1624	} else {
1625		struct dm_target *ti = md->immutable_target;
1626		struct dm_target_io *tio;
1627
1628		/*
1629		 * Defend against IO still getting in during teardown
1630		 * - as was seen for a time with nvme-fcloop
1631		 */
1632		if (unlikely(WARN_ON_ONCE(!ti || !dm_target_is_valid(ti)))) {
1633			error = -EIO;
1634			goto out;
 
 
 
1635		}
1636
1637		ci.bio = bio;
1638		ci.sector_count = bio_sectors(bio);
1639		if (unlikely(__process_abnormal_io(&ci, ti, &error)))
1640			goto out;
1641
1642		tio = alloc_tio(&ci, ti, 0, GFP_NOIO);
1643		ret = __clone_and_map_simple_bio(&ci, tio, NULL);
1644	}
1645out:
1646	/* drop the extra reference count */
1647	dec_pending(ci.io, errno_to_blk_status(error));
1648	return ret;
1649}
1650
1651typedef blk_qc_t (process_bio_fn)(struct mapped_device *, struct dm_table *, struct bio *);
1652
1653static blk_qc_t __dm_make_request(struct request_queue *q, struct bio *bio,
1654				  process_bio_fn process_bio)
 
1655{
1656	struct mapped_device *md = q->queuedata;
1657	blk_qc_t ret = BLK_QC_T_NONE;
1658	int srcu_idx;
1659	struct dm_table *map;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1660
1661	map = dm_get_live_table(md, &srcu_idx);
 
 
1662
1663	/* if we're suspended, we have to queue this io for later */
1664	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1665		dm_put_live_table(md, srcu_idx);
1666
1667		if (!(bio->bi_opf & REQ_RAHEAD))
1668			queue_io(md, bio);
1669		else
1670			bio_io_error(bio);
1671		return ret;
1672	}
1673
1674	ret = process_bio(md, map, bio);
 
 
 
 
 
 
 
 
 
1675
1676	dm_put_live_table(md, srcu_idx);
1677	return ret;
1678}
1679
1680/*
1681 * The request function that remaps the bio to one target and
1682 * splits off any remainder.
1683 */
1684static blk_qc_t dm_make_request(struct request_queue *q, struct bio *bio)
1685{
1686	return __dm_make_request(q, bio, __split_and_process_bio);
1687}
 
1688
1689static blk_qc_t dm_make_request_nvme(struct request_queue *q, struct bio *bio)
1690{
1691	return __dm_make_request(q, bio, __process_bio);
 
 
 
 
 
 
 
 
 
 
 
1692}
1693
1694static int dm_any_congested(void *congested_data, int bdi_bits)
1695{
1696	int r = bdi_bits;
1697	struct mapped_device *md = congested_data;
1698	struct dm_table *map;
1699
1700	if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1701		if (dm_request_based(md)) {
 
1702			/*
1703			 * With request-based DM we only need to check the
1704			 * top-level queue for congestion.
1705			 */
1706			r = md->queue->backing_dev_info->wb.state & bdi_bits;
1707		} else {
1708			map = dm_get_live_table_fast(md);
1709			if (map)
1710				r = dm_table_any_congested(map, bdi_bits);
1711			dm_put_live_table_fast(md);
 
1712		}
1713	}
1714
1715	return r;
1716}
1717
1718/*-----------------------------------------------------------------
1719 * An IDR is used to keep track of allocated minor numbers.
1720 *---------------------------------------------------------------*/
1721static void free_minor(int minor)
1722{
1723	spin_lock(&_minor_lock);
1724	idr_remove(&_minor_idr, minor);
1725	spin_unlock(&_minor_lock);
1726}
1727
1728/*
1729 * See if the device with a specific minor # is free.
1730 */
1731static int specific_minor(int minor)
1732{
1733	int r;
1734
1735	if (minor >= (1 << MINORBITS))
1736		return -EINVAL;
1737
1738	idr_preload(GFP_KERNEL);
 
 
 
1739	spin_lock(&_minor_lock);
1740
1741	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
 
 
 
1742
 
 
 
 
 
 
 
 
 
 
 
1743	spin_unlock(&_minor_lock);
1744	idr_preload_end();
1745	if (r < 0)
1746		return r == -ENOSPC ? -EBUSY : r;
1747	return 0;
1748}
1749
1750static int next_free_minor(int *minor)
1751{
1752	int r;
 
 
 
 
1753
1754	idr_preload(GFP_KERNEL);
1755	spin_lock(&_minor_lock);
1756
1757	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
 
 
 
 
 
 
 
 
1758
 
 
 
1759	spin_unlock(&_minor_lock);
1760	idr_preload_end();
1761	if (r < 0)
1762		return r;
1763	*minor = r;
1764	return 0;
1765}
1766
1767static const struct block_device_operations dm_blk_dops;
1768static const struct dax_operations dm_dax_ops;
1769
1770static void dm_wq_work(struct work_struct *work);
1771
1772static void dm_init_normal_md_queue(struct mapped_device *md)
1773{
1774	md->use_blk_mq = false;
1775
1776	/*
1777	 * Initialize aspects of queue that aren't relevant for blk-mq
 
 
 
 
 
 
1778	 */
1779	md->queue->backing_dev_info->congested_fn = dm_any_congested;
1780}
1781
1782static void cleanup_mapped_device(struct mapped_device *md)
1783{
1784	if (md->wq)
1785		destroy_workqueue(md->wq);
1786	if (md->kworker_task)
1787		kthread_stop(md->kworker_task);
1788	if (md->bs)
1789		bioset_free(md->bs);
1790	if (md->io_bs)
1791		bioset_free(md->io_bs);
1792
1793	if (md->dax_dev) {
1794		kill_dax(md->dax_dev);
1795		put_dax(md->dax_dev);
1796		md->dax_dev = NULL;
1797	}
1798
1799	if (md->disk) {
1800		spin_lock(&_minor_lock);
1801		md->disk->private_data = NULL;
1802		spin_unlock(&_minor_lock);
1803		del_gendisk(md->disk);
1804		put_disk(md->disk);
1805	}
1806
1807	if (md->queue)
1808		blk_cleanup_queue(md->queue);
1809
1810	cleanup_srcu_struct(&md->io_barrier);
1811
1812	if (md->bdev) {
1813		bdput(md->bdev);
1814		md->bdev = NULL;
1815	}
1816
1817	mutex_destroy(&md->suspend_lock);
1818	mutex_destroy(&md->type_lock);
1819	mutex_destroy(&md->table_devices_lock);
1820
1821	dm_mq_cleanup_mapped_device(md);
1822}
1823
1824/*
1825 * Allocate and initialise a blank device with a given minor.
1826 */
1827static struct mapped_device *alloc_dev(int minor)
1828{
1829	int r, numa_node_id = dm_get_numa_node();
1830	struct dax_device *dax_dev = NULL;
1831	struct mapped_device *md;
1832	void *old_md;
1833
1834	md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
1835	if (!md) {
1836		DMWARN("unable to allocate device, out of memory.");
1837		return NULL;
1838	}
1839
1840	if (!try_module_get(THIS_MODULE))
1841		goto bad_module_get;
1842
1843	/* get a minor number for the dev */
1844	if (minor == DM_ANY_MINOR)
1845		r = next_free_minor(&minor);
1846	else
1847		r = specific_minor(minor);
1848	if (r < 0)
1849		goto bad_minor;
1850
1851	r = init_srcu_struct(&md->io_barrier);
1852	if (r < 0)
1853		goto bad_io_barrier;
1854
1855	md->numa_node_id = numa_node_id;
1856	md->use_blk_mq = dm_use_blk_mq_default();
1857	md->init_tio_pdu = false;
1858	md->type = DM_TYPE_NONE;
 
1859	mutex_init(&md->suspend_lock);
1860	mutex_init(&md->type_lock);
1861	mutex_init(&md->table_devices_lock);
1862	spin_lock_init(&md->deferred_lock);
 
1863	atomic_set(&md->holders, 1);
1864	atomic_set(&md->open_count, 0);
1865	atomic_set(&md->event_nr, 0);
1866	atomic_set(&md->uevent_seq, 0);
1867	INIT_LIST_HEAD(&md->uevent_list);
1868	INIT_LIST_HEAD(&md->table_devices);
1869	spin_lock_init(&md->uevent_lock);
1870
1871	md->queue = blk_alloc_queue_node(GFP_KERNEL, numa_node_id, NULL);
1872	if (!md->queue)
1873		goto bad;
1874	md->queue->queuedata = md;
1875	md->queue->backing_dev_info->congested_data = md;
1876
1877	md->disk = alloc_disk_node(1, md->numa_node_id);
1878	if (!md->disk)
1879		goto bad;
1880
1881	atomic_set(&md->pending[0], 0);
1882	atomic_set(&md->pending[1], 0);
1883	init_waitqueue_head(&md->wait);
1884	INIT_WORK(&md->work, dm_wq_work);
1885	init_waitqueue_head(&md->eventq);
1886	init_completion(&md->kobj_holder.completion);
1887	md->kworker_task = NULL;
1888
1889	md->disk->major = _major;
1890	md->disk->first_minor = minor;
1891	md->disk->fops = &dm_blk_dops;
1892	md->disk->queue = md->queue;
1893	md->disk->private_data = md;
1894	sprintf(md->disk->disk_name, "dm-%d", minor);
1895
1896	if (IS_ENABLED(CONFIG_DAX_DRIVER)) {
1897		dax_dev = alloc_dax(md, md->disk->disk_name, &dm_dax_ops);
1898		if (!dax_dev)
1899			goto bad;
1900	}
1901	md->dax_dev = dax_dev;
1902
1903	add_disk_no_queue_reg(md->disk);
1904	format_dev_t(md->name, MKDEV(_major, minor));
1905
1906	md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
 
1907	if (!md->wq)
1908		goto bad;
1909
1910	md->bdev = bdget_disk(md->disk, 0);
1911	if (!md->bdev)
1912		goto bad;
1913
1914	bio_init(&md->flush_bio, NULL, 0);
1915	bio_set_dev(&md->flush_bio, md->bdev);
1916	md->flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1917
1918	dm_stats_init(&md->stats);
 
 
1919
1920	/* Populate the mapping, nobody knows we exist yet */
1921	spin_lock(&_minor_lock);
1922	old_md = idr_replace(&_minor_idr, md, minor);
1923	spin_unlock(&_minor_lock);
1924
1925	BUG_ON(old_md != MINOR_ALLOCED);
1926
1927	return md;
1928
1929bad:
1930	cleanup_mapped_device(md);
1931bad_io_barrier:
 
 
 
 
 
1932	free_minor(minor);
1933bad_minor:
1934	module_put(THIS_MODULE);
1935bad_module_get:
1936	kvfree(md);
1937	return NULL;
1938}
1939
1940static void unlock_fs(struct mapped_device *md);
1941
1942static void free_dev(struct mapped_device *md)
1943{
1944	int minor = MINOR(disk_devt(md->disk));
1945
1946	unlock_fs(md);
 
 
 
 
 
 
 
 
 
 
 
1947
1948	cleanup_mapped_device(md);
1949
1950	free_table_devices(&md->table_devices);
1951	dm_stats_cleanup(&md->stats);
1952	free_minor(minor);
1953
 
 
1954	module_put(THIS_MODULE);
1955	kvfree(md);
1956}
1957
1958static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
1959{
1960	struct dm_md_mempools *p = dm_table_get_md_mempools(t);
1961
1962	if (dm_table_bio_based(t)) {
1963		/*
1964		 * The md may already have mempools that need changing.
1965		 * If so, reload bioset because front_pad may have changed
1966		 * because a different table was loaded.
1967		 */
1968		if (md->bs) {
1969			bioset_free(md->bs);
1970			md->bs = NULL;
1971		}
1972		if (md->io_bs) {
1973			bioset_free(md->io_bs);
1974			md->io_bs = NULL;
1975		}
1976
1977	} else if (md->bs) {
1978		/*
1979		 * There's no need to reload with request-based dm
1980		 * because the size of front_pad doesn't change.
1981		 * Note for future: If you are to reload bioset,
1982		 * prep-ed requests in the queue may refer
1983		 * to bio from the old bioset, so you must walk
1984		 * through the queue to unprep.
1985		 */
1986		goto out;
1987	}
1988
1989	BUG_ON(!p || md->bs || md->io_bs);
 
1990
 
 
 
 
1991	md->bs = p->bs;
1992	p->bs = NULL;
1993	md->io_bs = p->io_bs;
1994	p->io_bs = NULL;
1995out:
1996	/* mempool bind completed, no longer need any mempools in the table */
1997	dm_table_free_md_mempools(t);
1998}
1999
2000/*
2001 * Bind a table to the device.
2002 */
2003static void event_callback(void *context)
2004{
2005	unsigned long flags;
2006	LIST_HEAD(uevents);
2007	struct mapped_device *md = (struct mapped_device *) context;
2008
2009	spin_lock_irqsave(&md->uevent_lock, flags);
2010	list_splice_init(&md->uevent_list, &uevents);
2011	spin_unlock_irqrestore(&md->uevent_lock, flags);
2012
2013	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2014
2015	atomic_inc(&md->event_nr);
2016	wake_up(&md->eventq);
2017	dm_issue_global_event();
2018}
2019
2020/*
2021 * Protected by md->suspend_lock obtained by dm_swap_table().
2022 */
2023static void __set_size(struct mapped_device *md, sector_t size)
2024{
2025	lockdep_assert_held(&md->suspend_lock);
2026
2027	set_capacity(md->disk, size);
2028
2029	i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2030}
2031
2032/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2033 * Returns old map, which caller must destroy.
2034 */
2035static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2036			       struct queue_limits *limits)
2037{
2038	struct dm_table *old_map;
2039	struct request_queue *q = md->queue;
2040	bool request_based = dm_table_request_based(t);
2041	sector_t size;
2042
2043	lockdep_assert_held(&md->suspend_lock);
2044
2045	size = dm_table_get_size(t);
2046
2047	/*
2048	 * Wipe any geometry if the size of the table changed.
2049	 */
2050	if (size != dm_get_size(md))
2051		memset(&md->geometry, 0, sizeof(md->geometry));
2052
2053	__set_size(md, size);
2054
2055	dm_table_event_callback(t, event_callback, md);
2056
2057	/*
2058	 * The queue hasn't been stopped yet, if the old table type wasn't
2059	 * for request-based during suspension.  So stop it to prevent
2060	 * I/O mapping before resume.
2061	 * This must be done before setting the queue restrictions,
2062	 * because request-based dm may be run just after the setting.
2063	 */
2064	if (request_based)
2065		dm_stop_queue(q);
2066
2067	if (request_based || md->type == DM_TYPE_NVME_BIO_BASED) {
2068		/*
2069		 * Leverage the fact that request-based DM targets and
2070		 * NVMe bio based targets are immutable singletons
2071		 * - used to optimize both dm_request_fn and dm_mq_queue_rq;
2072		 *   and __process_bio.
2073		 */
2074		md->immutable_target = dm_table_get_immutable_target(t);
2075	}
2076
2077	__bind_mempools(md, t);
2078
2079	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2080	rcu_assign_pointer(md->map, (void *)t);
2081	md->immutable_target_type = dm_table_get_immutable_target_type(t);
2082
 
 
 
2083	dm_table_set_restrictions(t, q, limits);
2084	if (old_map)
2085		dm_sync_table(md);
 
 
 
2086
2087	return old_map;
2088}
2089
2090/*
2091 * Returns unbound table for the caller to free.
2092 */
2093static struct dm_table *__unbind(struct mapped_device *md)
2094{
2095	struct dm_table *map = rcu_dereference_protected(md->map, 1);
 
2096
2097	if (!map)
2098		return NULL;
2099
2100	dm_table_event_callback(map, NULL, NULL);
2101	RCU_INIT_POINTER(md->map, NULL);
2102	dm_sync_table(md);
 
2103
2104	return map;
2105}
2106
2107/*
2108 * Constructor for a new device.
2109 */
2110int dm_create(int minor, struct mapped_device **result)
2111{
2112	int r;
2113	struct mapped_device *md;
2114
2115	md = alloc_dev(minor);
2116	if (!md)
2117		return -ENXIO;
2118
2119	r = dm_sysfs_init(md);
2120	if (r) {
2121		free_dev(md);
2122		return r;
2123	}
2124
2125	*result = md;
2126	return 0;
2127}
2128
2129/*
2130 * Functions to manage md->type.
2131 * All are required to hold md->type_lock.
2132 */
2133void dm_lock_md_type(struct mapped_device *md)
2134{
2135	mutex_lock(&md->type_lock);
2136}
2137
2138void dm_unlock_md_type(struct mapped_device *md)
2139{
2140	mutex_unlock(&md->type_lock);
2141}
2142
2143void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2144{
2145	BUG_ON(!mutex_is_locked(&md->type_lock));
2146	md->type = type;
2147}
2148
2149enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2150{
2151	return md->type;
2152}
2153
2154struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2155{
2156	return md->immutable_target_type;
2157}
2158
2159/*
2160 * The queue_limits are only valid as long as you have a reference
2161 * count on 'md'.
2162 */
2163struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2164{
2165	BUG_ON(!atomic_read(&md->holders));
2166	return &md->queue->limits;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2167}
2168EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2169
2170/*
2171 * Setup the DM device's queue based on md's type
2172 */
2173int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2174{
2175	int r;
2176	struct queue_limits limits;
2177	enum dm_queue_mode type = dm_get_md_type(md);
2178
2179	switch (type) {
2180	case DM_TYPE_REQUEST_BASED:
2181		dm_init_normal_md_queue(md);
2182		r = dm_old_init_request_queue(md, t);
2183		if (r) {
2184			DMERR("Cannot initialize queue for request-based mapped device");
2185			return r;
2186		}
2187		break;
2188	case DM_TYPE_MQ_REQUEST_BASED:
2189		r = dm_mq_init_request_queue(md, t);
2190		if (r) {
2191			DMERR("Cannot initialize queue for request-based dm-mq mapped device");
2192			return r;
2193		}
2194		break;
2195	case DM_TYPE_BIO_BASED:
2196	case DM_TYPE_DAX_BIO_BASED:
2197		dm_init_normal_md_queue(md);
2198		blk_queue_make_request(md->queue, dm_make_request);
2199		break;
2200	case DM_TYPE_NVME_BIO_BASED:
2201		dm_init_normal_md_queue(md);
2202		blk_queue_make_request(md->queue, dm_make_request_nvme);
2203		break;
2204	case DM_TYPE_NONE:
2205		WARN_ON_ONCE(true);
2206		break;
2207	}
2208
2209	r = dm_calculate_queue_limits(t, &limits);
2210	if (r) {
2211		DMERR("Cannot calculate initial queue limits");
2212		return r;
2213	}
2214	dm_table_set_restrictions(t, md->queue, &limits);
2215	blk_register_queue(md->disk);
2216
2217	return 0;
2218}
2219
2220struct mapped_device *dm_get_md(dev_t dev)
2221{
2222	struct mapped_device *md;
2223	unsigned minor = MINOR(dev);
2224
2225	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2226		return NULL;
2227
2228	spin_lock(&_minor_lock);
2229
2230	md = idr_find(&_minor_idr, minor);
2231	if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2232	    test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
 
 
2233		md = NULL;
2234		goto out;
2235	}
2236	dm_get(md);
2237out:
2238	spin_unlock(&_minor_lock);
2239
2240	return md;
2241}
2242EXPORT_SYMBOL_GPL(dm_get_md);
 
 
 
 
 
 
 
 
 
2243
2244void *dm_get_mdptr(struct mapped_device *md)
2245{
2246	return md->interface_ptr;
2247}
2248
2249void dm_set_mdptr(struct mapped_device *md, void *ptr)
2250{
2251	md->interface_ptr = ptr;
2252}
2253
2254void dm_get(struct mapped_device *md)
2255{
2256	atomic_inc(&md->holders);
2257	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2258}
2259
2260int dm_hold(struct mapped_device *md)
2261{
2262	spin_lock(&_minor_lock);
2263	if (test_bit(DMF_FREEING, &md->flags)) {
2264		spin_unlock(&_minor_lock);
2265		return -EBUSY;
2266	}
2267	dm_get(md);
2268	spin_unlock(&_minor_lock);
2269	return 0;
2270}
2271EXPORT_SYMBOL_GPL(dm_hold);
2272
2273const char *dm_device_name(struct mapped_device *md)
2274{
2275	return md->name;
2276}
2277EXPORT_SYMBOL_GPL(dm_device_name);
2278
2279static void __dm_destroy(struct mapped_device *md, bool wait)
2280{
2281	struct dm_table *map;
2282	int srcu_idx;
2283
2284	might_sleep();
2285
2286	spin_lock(&_minor_lock);
 
2287	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2288	set_bit(DMF_FREEING, &md->flags);
2289	spin_unlock(&_minor_lock);
2290
2291	blk_set_queue_dying(md->queue);
2292
2293	if (dm_request_based(md) && md->kworker_task)
2294		kthread_flush_worker(&md->kworker);
2295
2296	/*
2297	 * Take suspend_lock so that presuspend and postsuspend methods
2298	 * do not race with internal suspend.
2299	 */
2300	mutex_lock(&md->suspend_lock);
2301	map = dm_get_live_table(md, &srcu_idx);
2302	if (!dm_suspended_md(md)) {
2303		dm_table_presuspend_targets(map);
2304		dm_table_postsuspend_targets(map);
2305	}
2306	/* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2307	dm_put_live_table(md, srcu_idx);
2308	mutex_unlock(&md->suspend_lock);
2309
2310	/*
2311	 * Rare, but there may be I/O requests still going to complete,
2312	 * for example.  Wait for all references to disappear.
2313	 * No one should increment the reference count of the mapped_device,
2314	 * after the mapped_device state becomes DMF_FREEING.
2315	 */
2316	if (wait)
2317		while (atomic_read(&md->holders))
2318			msleep(1);
2319	else if (atomic_read(&md->holders))
2320		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2321		       dm_device_name(md), atomic_read(&md->holders));
2322
2323	dm_sysfs_exit(md);
 
2324	dm_table_destroy(__unbind(md));
2325	free_dev(md);
2326}
2327
2328void dm_destroy(struct mapped_device *md)
2329{
2330	__dm_destroy(md, true);
2331}
2332
2333void dm_destroy_immediate(struct mapped_device *md)
2334{
2335	__dm_destroy(md, false);
2336}
2337
2338void dm_put(struct mapped_device *md)
2339{
2340	atomic_dec(&md->holders);
2341}
2342EXPORT_SYMBOL_GPL(dm_put);
2343
2344static int dm_wait_for_completion(struct mapped_device *md, long task_state)
2345{
2346	int r = 0;
2347	DEFINE_WAIT(wait);
 
 
2348
2349	while (1) {
2350		prepare_to_wait(&md->wait, &wait, task_state);
2351
 
2352		if (!md_in_flight(md))
2353			break;
2354
2355		if (signal_pending_state(task_state, current)) {
 
2356			r = -EINTR;
2357			break;
2358		}
2359
2360		io_schedule();
2361	}
2362	finish_wait(&md->wait, &wait);
 
 
2363
2364	return r;
2365}
2366
2367/*
2368 * Process the deferred bios
2369 */
2370static void dm_wq_work(struct work_struct *work)
2371{
2372	struct mapped_device *md = container_of(work, struct mapped_device,
2373						work);
2374	struct bio *c;
2375	int srcu_idx;
2376	struct dm_table *map;
2377
2378	map = dm_get_live_table(md, &srcu_idx);
2379
2380	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2381		spin_lock_irq(&md->deferred_lock);
2382		c = bio_list_pop(&md->deferred);
2383		spin_unlock_irq(&md->deferred_lock);
2384
2385		if (!c)
2386			break;
2387
 
 
2388		if (dm_request_based(md))
2389			generic_make_request(c);
2390		else
2391			__split_and_process_bio(md, map, c);
 
 
2392	}
2393
2394	dm_put_live_table(md, srcu_idx);
2395}
2396
2397static void dm_queue_flush(struct mapped_device *md)
2398{
2399	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2400	smp_mb__after_atomic();
2401	queue_work(md->wq, &md->work);
2402}
2403
2404/*
2405 * Swap in a new table, returning the old one for the caller to destroy.
2406 */
2407struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2408{
2409	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2410	struct queue_limits limits;
2411	int r;
2412
2413	mutex_lock(&md->suspend_lock);
2414
2415	/* device must be suspended */
2416	if (!dm_suspended_md(md))
2417		goto out;
2418
2419	/*
2420	 * If the new table has no data devices, retain the existing limits.
2421	 * This helps multipath with queue_if_no_path if all paths disappear,
2422	 * then new I/O is queued based on these limits, and then some paths
2423	 * reappear.
2424	 */
2425	if (dm_table_has_no_data_devices(table)) {
2426		live_map = dm_get_live_table_fast(md);
2427		if (live_map)
2428			limits = md->queue->limits;
2429		dm_put_live_table_fast(md);
2430	}
2431
2432	if (!live_map) {
2433		r = dm_calculate_queue_limits(table, &limits);
2434		if (r) {
2435			map = ERR_PTR(r);
2436			goto out;
2437		}
2438	}
2439
2440	map = __bind(md, table, &limits);
2441	dm_issue_global_event();
2442
2443out:
2444	mutex_unlock(&md->suspend_lock);
2445	return map;
2446}
2447
2448/*
2449 * Functions to lock and unlock any filesystem running on the
2450 * device.
2451 */
2452static int lock_fs(struct mapped_device *md)
2453{
2454	int r;
2455
2456	WARN_ON(md->frozen_sb);
2457
2458	md->frozen_sb = freeze_bdev(md->bdev);
2459	if (IS_ERR(md->frozen_sb)) {
2460		r = PTR_ERR(md->frozen_sb);
2461		md->frozen_sb = NULL;
2462		return r;
2463	}
2464
2465	set_bit(DMF_FROZEN, &md->flags);
2466
2467	return 0;
2468}
2469
2470static void unlock_fs(struct mapped_device *md)
2471{
2472	if (!test_bit(DMF_FROZEN, &md->flags))
2473		return;
2474
2475	thaw_bdev(md->bdev, md->frozen_sb);
2476	md->frozen_sb = NULL;
2477	clear_bit(DMF_FROZEN, &md->flags);
2478}
2479
2480/*
2481 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2482 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2483 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
 
 
 
 
 
2484 *
2485 * If __dm_suspend returns 0, the device is completely quiescent
2486 * now. There is no request-processing activity. All new requests
2487 * are being added to md->deferred list.
2488 */
2489static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2490			unsigned suspend_flags, long task_state,
2491			int dmf_suspended_flag)
2492{
2493	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2494	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2495	int r;
 
 
 
 
 
 
 
 
2496
2497	lockdep_assert_held(&md->suspend_lock);
2498
2499	/*
2500	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2501	 * This flag is cleared before dm_suspend returns.
2502	 */
2503	if (noflush)
2504		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2505	else
2506		pr_debug("%s: suspending with flush\n", dm_device_name(md));
2507
2508	/*
2509	 * This gets reverted if there's an error later and the targets
2510	 * provide the .presuspend_undo hook.
2511	 */
2512	dm_table_presuspend_targets(map);
2513
2514	/*
2515	 * Flush I/O to the device.
2516	 * Any I/O submitted after lock_fs() may not be flushed.
2517	 * noflush takes precedence over do_lockfs.
2518	 * (lock_fs() flushes I/Os and waits for them to complete.)
2519	 */
2520	if (!noflush && do_lockfs) {
2521		r = lock_fs(md);
2522		if (r) {
2523			dm_table_presuspend_undo_targets(map);
2524			return r;
2525		}
2526	}
2527
2528	/*
2529	 * Here we must make sure that no processes are submitting requests
2530	 * to target drivers i.e. no one may be executing
2531	 * __split_and_process_bio. This is called from dm_request and
2532	 * dm_wq_work.
2533	 *
2534	 * To get all processes out of __split_and_process_bio in dm_request,
2535	 * we take the write lock. To prevent any process from reentering
2536	 * __split_and_process_bio from dm_request and quiesce the thread
2537	 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2538	 * flush_workqueue(md->wq).
2539	 */
 
2540	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2541	if (map)
2542		synchronize_srcu(&md->io_barrier);
2543
2544	/*
2545	 * Stop md->queue before flushing md->wq in case request-based
2546	 * dm defers requests to md->wq from md->queue.
2547	 */
2548	if (dm_request_based(md)) {
2549		dm_stop_queue(md->queue);
2550		if (md->kworker_task)
2551			kthread_flush_worker(&md->kworker);
2552	}
2553
2554	flush_workqueue(md->wq);
2555
2556	/*
2557	 * At this point no more requests are entering target request routines.
2558	 * We call dm_wait_for_completion to wait for all existing requests
2559	 * to finish.
2560	 */
2561	r = dm_wait_for_completion(md, task_state);
2562	if (!r)
2563		set_bit(dmf_suspended_flag, &md->flags);
2564
 
2565	if (noflush)
2566		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2567	if (map)
2568		synchronize_srcu(&md->io_barrier);
2569
2570	/* were we interrupted ? */
2571	if (r < 0) {
2572		dm_queue_flush(md);
2573
2574		if (dm_request_based(md))
2575			dm_start_queue(md->queue);
2576
2577		unlock_fs(md);
2578		dm_table_presuspend_undo_targets(map);
2579		/* pushback list is already flushed, so skip flush */
2580	}
2581
2582	return r;
2583}
 
 
 
2584
2585/*
2586 * We need to be able to change a mapping table under a mounted
2587 * filesystem.  For example we might want to move some data in
2588 * the background.  Before the table can be swapped with
2589 * dm_bind_table, dm_suspend must be called to flush any in
2590 * flight bios and ensure that any further io gets deferred.
2591 */
2592/*
2593 * Suspend mechanism in request-based dm.
2594 *
2595 * 1. Flush all I/Os by lock_fs() if needed.
2596 * 2. Stop dispatching any I/O by stopping the request_queue.
2597 * 3. Wait for all in-flight I/Os to be completed or requeued.
2598 *
2599 * To abort suspend, start the request_queue.
2600 */
2601int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2602{
2603	struct dm_table *map = NULL;
2604	int r = 0;
2605
2606retry:
2607	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2608
2609	if (dm_suspended_md(md)) {
2610		r = -EINVAL;
2611		goto out_unlock;
2612	}
2613
2614	if (dm_suspended_internally_md(md)) {
2615		/* already internally suspended, wait for internal resume */
2616		mutex_unlock(&md->suspend_lock);
2617		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2618		if (r)
2619			return r;
2620		goto retry;
2621	}
2622
2623	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2624
2625	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2626	if (r)
2627		goto out_unlock;
2628
2629	dm_table_postsuspend_targets(map);
2630
2631out_unlock:
2632	mutex_unlock(&md->suspend_lock);
2633	return r;
2634}
2635
2636static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2637{
2638	if (map) {
2639		int r = dm_table_resume_targets(map);
2640		if (r)
2641			return r;
2642	}
2643
2644	dm_queue_flush(md);
2645
2646	/*
2647	 * Flushing deferred I/Os must be done after targets are resumed
2648	 * so that mapping of targets can work correctly.
2649	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2650	 */
2651	if (dm_request_based(md))
2652		dm_start_queue(md->queue);
2653
2654	unlock_fs(md);
2655
2656	return 0;
2657}
2658
2659int dm_resume(struct mapped_device *md)
2660{
2661	int r;
2662	struct dm_table *map = NULL;
2663
2664retry:
2665	r = -EINVAL;
2666	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2667
2668	if (!dm_suspended_md(md))
2669		goto out;
2670
2671	if (dm_suspended_internally_md(md)) {
2672		/* already internally suspended, wait for internal resume */
2673		mutex_unlock(&md->suspend_lock);
2674		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2675		if (r)
2676			return r;
2677		goto retry;
2678	}
2679
2680	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2681	if (!map || !dm_table_get_size(map))
2682		goto out;
2683
2684	r = __dm_resume(md, map);
2685	if (r)
2686		goto out;
2687
2688	clear_bit(DMF_SUSPENDED, &md->flags);
2689out:
2690	mutex_unlock(&md->suspend_lock);
2691
2692	return r;
2693}
2694
2695/*
2696 * Internal suspend/resume works like userspace-driven suspend. It waits
2697 * until all bios finish and prevents issuing new bios to the target drivers.
2698 * It may be used only from the kernel.
2699 */
2700
2701static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2702{
2703	struct dm_table *map = NULL;
2704
2705	lockdep_assert_held(&md->suspend_lock);
2706
2707	if (md->internal_suspend_count++)
2708		return; /* nested internal suspend */
2709
2710	if (dm_suspended_md(md)) {
2711		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2712		return; /* nest suspend */
2713	}
2714
2715	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2716
2717	/*
2718	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2719	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
2720	 * would require changing .presuspend to return an error -- avoid this
2721	 * until there is a need for more elaborate variants of internal suspend.
2722	 */
2723	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2724			    DMF_SUSPENDED_INTERNALLY);
2725
2726	dm_table_postsuspend_targets(map);
2727}
2728
2729static void __dm_internal_resume(struct mapped_device *md)
2730{
2731	BUG_ON(!md->internal_suspend_count);
2732
2733	if (--md->internal_suspend_count)
2734		return; /* resume from nested internal suspend */
2735
2736	if (dm_suspended_md(md))
2737		goto done; /* resume from nested suspend */
2738
2739	/*
2740	 * NOTE: existing callers don't need to call dm_table_resume_targets
2741	 * (which may fail -- so best to avoid it for now by passing NULL map)
2742	 */
2743	(void) __dm_resume(md, NULL);
2744
2745done:
2746	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2747	smp_mb__after_atomic();
2748	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2749}
2750
2751void dm_internal_suspend_noflush(struct mapped_device *md)
2752{
2753	mutex_lock(&md->suspend_lock);
2754	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2755	mutex_unlock(&md->suspend_lock);
2756}
2757EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2758
2759void dm_internal_resume(struct mapped_device *md)
2760{
2761	mutex_lock(&md->suspend_lock);
2762	__dm_internal_resume(md);
2763	mutex_unlock(&md->suspend_lock);
2764}
2765EXPORT_SYMBOL_GPL(dm_internal_resume);
2766
2767/*
2768 * Fast variants of internal suspend/resume hold md->suspend_lock,
2769 * which prevents interaction with userspace-driven suspend.
2770 */
2771
2772void dm_internal_suspend_fast(struct mapped_device *md)
2773{
2774	mutex_lock(&md->suspend_lock);
2775	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2776		return;
2777
2778	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2779	synchronize_srcu(&md->io_barrier);
2780	flush_workqueue(md->wq);
2781	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2782}
2783EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2784
2785void dm_internal_resume_fast(struct mapped_device *md)
2786{
2787	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2788		goto done;
2789
2790	dm_queue_flush(md);
2791
2792done:
2793	mutex_unlock(&md->suspend_lock);
2794}
2795EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2796
2797/*-----------------------------------------------------------------
2798 * Event notification.
2799 *---------------------------------------------------------------*/
2800int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2801		       unsigned cookie)
2802{
2803	char udev_cookie[DM_COOKIE_LENGTH];
2804	char *envp[] = { udev_cookie, NULL };
2805
2806	if (!cookie)
2807		return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2808	else {
2809		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2810			 DM_COOKIE_ENV_VAR_NAME, cookie);
2811		return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2812					  action, envp);
2813	}
2814}
2815
2816uint32_t dm_next_uevent_seq(struct mapped_device *md)
2817{
2818	return atomic_add_return(1, &md->uevent_seq);
2819}
2820
2821uint32_t dm_get_event_nr(struct mapped_device *md)
2822{
2823	return atomic_read(&md->event_nr);
2824}
2825
2826int dm_wait_event(struct mapped_device *md, int event_nr)
2827{
2828	return wait_event_interruptible(md->eventq,
2829			(event_nr != atomic_read(&md->event_nr)));
2830}
2831
2832void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2833{
2834	unsigned long flags;
2835
2836	spin_lock_irqsave(&md->uevent_lock, flags);
2837	list_add(elist, &md->uevent_list);
2838	spin_unlock_irqrestore(&md->uevent_lock, flags);
2839}
2840
2841/*
2842 * The gendisk is only valid as long as you have a reference
2843 * count on 'md'.
2844 */
2845struct gendisk *dm_disk(struct mapped_device *md)
2846{
2847	return md->disk;
2848}
2849EXPORT_SYMBOL_GPL(dm_disk);
2850
2851struct kobject *dm_kobject(struct mapped_device *md)
2852{
2853	return &md->kobj_holder.kobj;
2854}
2855
 
 
 
 
2856struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2857{
2858	struct mapped_device *md;
2859
2860	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
 
 
 
 
 
 
2861
2862	spin_lock(&_minor_lock);
2863	if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2864		md = NULL;
2865		goto out;
2866	}
2867	dm_get(md);
2868out:
2869	spin_unlock(&_minor_lock);
2870
2871	return md;
2872}
2873
2874int dm_suspended_md(struct mapped_device *md)
2875{
2876	return test_bit(DMF_SUSPENDED, &md->flags);
2877}
2878
2879int dm_suspended_internally_md(struct mapped_device *md)
2880{
2881	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2882}
2883
2884int dm_test_deferred_remove_flag(struct mapped_device *md)
2885{
2886	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2887}
2888
2889int dm_suspended(struct dm_target *ti)
2890{
2891	return dm_suspended_md(dm_table_get_md(ti->table));
2892}
2893EXPORT_SYMBOL_GPL(dm_suspended);
2894
2895int dm_noflush_suspending(struct dm_target *ti)
2896{
2897	return __noflush_suspending(dm_table_get_md(ti->table));
2898}
2899EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2900
2901struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type,
2902					    unsigned integrity, unsigned per_io_data_size,
2903					    unsigned min_pool_size)
2904{
2905	struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
2906	unsigned int pool_size = 0;
2907	unsigned int front_pad, io_front_pad;
2908
2909	if (!pools)
2910		return NULL;
2911
2912	switch (type) {
2913	case DM_TYPE_BIO_BASED:
2914	case DM_TYPE_DAX_BIO_BASED:
2915	case DM_TYPE_NVME_BIO_BASED:
2916		pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
2917		front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
2918		io_front_pad = roundup(front_pad,  __alignof__(struct dm_io)) + offsetof(struct dm_io, tio);
2919		pools->io_bs = bioset_create(pool_size, io_front_pad, 0);
2920		if (!pools->io_bs)
2921			goto out;
2922		if (integrity && bioset_integrity_create(pools->io_bs, pool_size))
2923			goto out;
2924		break;
2925	case DM_TYPE_REQUEST_BASED:
2926	case DM_TYPE_MQ_REQUEST_BASED:
2927		pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size);
2928		front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
2929		/* per_io_data_size is used for blk-mq pdu at queue allocation */
2930		break;
2931	default:
2932		BUG();
2933	}
2934
2935	pools->bs = bioset_create(pool_size, front_pad, 0);
2936	if (!pools->bs)
2937		goto out;
2938
2939	if (integrity && bioset_integrity_create(pools->bs, pool_size))
2940		goto out;
2941
2942	return pools;
2943
2944out:
2945	dm_free_md_mempools(pools);
 
 
 
 
 
 
 
 
 
2946
2947	return NULL;
2948}
2949
2950void dm_free_md_mempools(struct dm_md_mempools *pools)
2951{
2952	if (!pools)
2953		return;
2954
 
 
 
 
 
 
2955	if (pools->bs)
2956		bioset_free(pools->bs);
2957	if (pools->io_bs)
2958		bioset_free(pools->io_bs);
2959
2960	kfree(pools);
2961}
2962
2963struct dm_pr {
2964	u64	old_key;
2965	u64	new_key;
2966	u32	flags;
2967	bool	fail_early;
2968};
2969
2970static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
2971		      void *data)
2972{
2973	struct mapped_device *md = bdev->bd_disk->private_data;
2974	struct dm_table *table;
2975	struct dm_target *ti;
2976	int ret = -ENOTTY, srcu_idx;
2977
2978	table = dm_get_live_table(md, &srcu_idx);
2979	if (!table || !dm_table_get_size(table))
2980		goto out;
2981
2982	/* We only support devices that have a single target */
2983	if (dm_table_get_num_targets(table) != 1)
2984		goto out;
2985	ti = dm_table_get_target(table, 0);
2986
2987	ret = -EINVAL;
2988	if (!ti->type->iterate_devices)
2989		goto out;
2990
2991	ret = ti->type->iterate_devices(ti, fn, data);
2992out:
2993	dm_put_live_table(md, srcu_idx);
2994	return ret;
2995}
2996
2997/*
2998 * For register / unregister we need to manually call out to every path.
2999 */
3000static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
3001			    sector_t start, sector_t len, void *data)
3002{
3003	struct dm_pr *pr = data;
3004	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3005
3006	if (!ops || !ops->pr_register)
3007		return -EOPNOTSUPP;
3008	return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
3009}
3010
3011static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3012			  u32 flags)
3013{
3014	struct dm_pr pr = {
3015		.old_key	= old_key,
3016		.new_key	= new_key,
3017		.flags		= flags,
3018		.fail_early	= true,
3019	};
3020	int ret;
3021
3022	ret = dm_call_pr(bdev, __dm_pr_register, &pr);
3023	if (ret && new_key) {
3024		/* unregister all paths if we failed to register any path */
3025		pr.old_key = new_key;
3026		pr.new_key = 0;
3027		pr.flags = 0;
3028		pr.fail_early = false;
3029		dm_call_pr(bdev, __dm_pr_register, &pr);
3030	}
3031
3032	return ret;
3033}
3034
3035static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3036			 u32 flags)
3037{
3038	struct mapped_device *md = bdev->bd_disk->private_data;
3039	const struct pr_ops *ops;
3040	int r, srcu_idx;
3041
3042	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3043	if (r < 0)
3044		goto out;
3045
3046	ops = bdev->bd_disk->fops->pr_ops;
3047	if (ops && ops->pr_reserve)
3048		r = ops->pr_reserve(bdev, key, type, flags);
3049	else
3050		r = -EOPNOTSUPP;
3051out:
3052	dm_unprepare_ioctl(md, srcu_idx);
3053	return r;
3054}
3055
3056static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3057{
3058	struct mapped_device *md = bdev->bd_disk->private_data;
3059	const struct pr_ops *ops;
3060	int r, srcu_idx;
3061
3062	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3063	if (r < 0)
3064		goto out;
3065
3066	ops = bdev->bd_disk->fops->pr_ops;
3067	if (ops && ops->pr_release)
3068		r = ops->pr_release(bdev, key, type);
3069	else
3070		r = -EOPNOTSUPP;
3071out:
3072	dm_unprepare_ioctl(md, srcu_idx);
3073	return r;
3074}
3075
3076static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3077			 enum pr_type type, bool abort)
3078{
3079	struct mapped_device *md = bdev->bd_disk->private_data;
3080	const struct pr_ops *ops;
3081	int r, srcu_idx;
3082
3083	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3084	if (r < 0)
3085		goto out;
3086
3087	ops = bdev->bd_disk->fops->pr_ops;
3088	if (ops && ops->pr_preempt)
3089		r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
3090	else
3091		r = -EOPNOTSUPP;
3092out:
3093	dm_unprepare_ioctl(md, srcu_idx);
3094	return r;
3095}
3096
3097static int dm_pr_clear(struct block_device *bdev, u64 key)
3098{
3099	struct mapped_device *md = bdev->bd_disk->private_data;
3100	const struct pr_ops *ops;
3101	int r, srcu_idx;
3102
3103	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3104	if (r < 0)
3105		goto out;
3106
3107	ops = bdev->bd_disk->fops->pr_ops;
3108	if (ops && ops->pr_clear)
3109		r = ops->pr_clear(bdev, key);
3110	else
3111		r = -EOPNOTSUPP;
3112out:
3113	dm_unprepare_ioctl(md, srcu_idx);
3114	return r;
3115}
3116
3117static const struct pr_ops dm_pr_ops = {
3118	.pr_register	= dm_pr_register,
3119	.pr_reserve	= dm_pr_reserve,
3120	.pr_release	= dm_pr_release,
3121	.pr_preempt	= dm_pr_preempt,
3122	.pr_clear	= dm_pr_clear,
3123};
3124
3125static const struct block_device_operations dm_blk_dops = {
3126	.open = dm_blk_open,
3127	.release = dm_blk_close,
3128	.ioctl = dm_blk_ioctl,
3129	.getgeo = dm_blk_getgeo,
3130	.pr_ops = &dm_pr_ops,
3131	.owner = THIS_MODULE
3132};
3133
3134static const struct dax_operations dm_dax_ops = {
3135	.direct_access = dm_dax_direct_access,
3136	.copy_from_iter = dm_dax_copy_from_iter,
3137};
3138
3139/*
3140 * module hooks
3141 */
3142module_init(dm_init);
3143module_exit(dm_exit);
3144
3145module_param(major, uint, 0);
3146MODULE_PARM_DESC(major, "The major number of the device mapper");
3147
3148module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3149MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3150
3151module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
3152MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3153
3154MODULE_DESCRIPTION(DM_NAME " driver");
3155MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3156MODULE_LICENSE("GPL");