Loading...
1/*
2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8#include "dm.h"
9#include "dm-uevent.h"
10
11#include <linux/init.h>
12#include <linux/module.h>
13#include <linux/mutex.h>
14#include <linux/moduleparam.h>
15#include <linux/blkpg.h>
16#include <linux/bio.h>
17#include <linux/buffer_head.h>
18#include <linux/mempool.h>
19#include <linux/slab.h>
20#include <linux/idr.h>
21#include <linux/hdreg.h>
22#include <linux/delay.h>
23
24#include <trace/events/block.h>
25
26#define DM_MSG_PREFIX "core"
27
28/*
29 * Cookies are numeric values sent with CHANGE and REMOVE
30 * uevents while resuming, removing or renaming the device.
31 */
32#define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
33#define DM_COOKIE_LENGTH 24
34
35static const char *_name = DM_NAME;
36
37static unsigned int major = 0;
38static unsigned int _major = 0;
39
40static DEFINE_IDR(_minor_idr);
41
42static DEFINE_SPINLOCK(_minor_lock);
43/*
44 * For bio-based dm.
45 * One of these is allocated per bio.
46 */
47struct dm_io {
48 struct mapped_device *md;
49 int error;
50 atomic_t io_count;
51 struct bio *bio;
52 unsigned long start_time;
53 spinlock_t endio_lock;
54};
55
56/*
57 * For bio-based dm.
58 * One of these is allocated per target within a bio. Hopefully
59 * this will be simplified out one day.
60 */
61struct dm_target_io {
62 struct dm_io *io;
63 struct dm_target *ti;
64 union map_info info;
65};
66
67/*
68 * For request-based dm.
69 * One of these is allocated per request.
70 */
71struct dm_rq_target_io {
72 struct mapped_device *md;
73 struct dm_target *ti;
74 struct request *orig, clone;
75 int error;
76 union map_info info;
77};
78
79/*
80 * For request-based dm.
81 * One of these is allocated per bio.
82 */
83struct dm_rq_clone_bio_info {
84 struct bio *orig;
85 struct dm_rq_target_io *tio;
86};
87
88union map_info *dm_get_mapinfo(struct bio *bio)
89{
90 if (bio && bio->bi_private)
91 return &((struct dm_target_io *)bio->bi_private)->info;
92 return NULL;
93}
94
95union map_info *dm_get_rq_mapinfo(struct request *rq)
96{
97 if (rq && rq->end_io_data)
98 return &((struct dm_rq_target_io *)rq->end_io_data)->info;
99 return NULL;
100}
101EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo);
102
103#define MINOR_ALLOCED ((void *)-1)
104
105/*
106 * Bits for the md->flags field.
107 */
108#define DMF_BLOCK_IO_FOR_SUSPEND 0
109#define DMF_SUSPENDED 1
110#define DMF_FROZEN 2
111#define DMF_FREEING 3
112#define DMF_DELETING 4
113#define DMF_NOFLUSH_SUSPENDING 5
114#define DMF_MERGE_IS_OPTIONAL 6
115
116/*
117 * Work processed by per-device workqueue.
118 */
119struct mapped_device {
120 struct rw_semaphore io_lock;
121 struct mutex suspend_lock;
122 rwlock_t map_lock;
123 atomic_t holders;
124 atomic_t open_count;
125
126 unsigned long flags;
127
128 struct request_queue *queue;
129 unsigned type;
130 /* Protect queue and type against concurrent access. */
131 struct mutex type_lock;
132
133 struct gendisk *disk;
134 char name[16];
135
136 void *interface_ptr;
137
138 /*
139 * A list of ios that arrived while we were suspended.
140 */
141 atomic_t pending[2];
142 wait_queue_head_t wait;
143 struct work_struct work;
144 struct bio_list deferred;
145 spinlock_t deferred_lock;
146
147 /*
148 * Processing queue (flush)
149 */
150 struct workqueue_struct *wq;
151
152 /*
153 * The current mapping.
154 */
155 struct dm_table *map;
156
157 /*
158 * io objects are allocated from here.
159 */
160 mempool_t *io_pool;
161 mempool_t *tio_pool;
162
163 struct bio_set *bs;
164
165 /*
166 * Event handling.
167 */
168 atomic_t event_nr;
169 wait_queue_head_t eventq;
170 atomic_t uevent_seq;
171 struct list_head uevent_list;
172 spinlock_t uevent_lock; /* Protect access to uevent_list */
173
174 /*
175 * freeze/thaw support require holding onto a super block
176 */
177 struct super_block *frozen_sb;
178 struct block_device *bdev;
179
180 /* forced geometry settings */
181 struct hd_geometry geometry;
182
183 /* For saving the address of __make_request for request based dm */
184 make_request_fn *saved_make_request_fn;
185
186 /* sysfs handle */
187 struct kobject kobj;
188
189 /* zero-length flush that will be cloned and submitted to targets */
190 struct bio flush_bio;
191};
192
193/*
194 * For mempools pre-allocation at the table loading time.
195 */
196struct dm_md_mempools {
197 mempool_t *io_pool;
198 mempool_t *tio_pool;
199 struct bio_set *bs;
200};
201
202#define MIN_IOS 256
203static struct kmem_cache *_io_cache;
204static struct kmem_cache *_tio_cache;
205static struct kmem_cache *_rq_tio_cache;
206static struct kmem_cache *_rq_bio_info_cache;
207
208static int __init local_init(void)
209{
210 int r = -ENOMEM;
211
212 /* allocate a slab for the dm_ios */
213 _io_cache = KMEM_CACHE(dm_io, 0);
214 if (!_io_cache)
215 return r;
216
217 /* allocate a slab for the target ios */
218 _tio_cache = KMEM_CACHE(dm_target_io, 0);
219 if (!_tio_cache)
220 goto out_free_io_cache;
221
222 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
223 if (!_rq_tio_cache)
224 goto out_free_tio_cache;
225
226 _rq_bio_info_cache = KMEM_CACHE(dm_rq_clone_bio_info, 0);
227 if (!_rq_bio_info_cache)
228 goto out_free_rq_tio_cache;
229
230 r = dm_uevent_init();
231 if (r)
232 goto out_free_rq_bio_info_cache;
233
234 _major = major;
235 r = register_blkdev(_major, _name);
236 if (r < 0)
237 goto out_uevent_exit;
238
239 if (!_major)
240 _major = r;
241
242 return 0;
243
244out_uevent_exit:
245 dm_uevent_exit();
246out_free_rq_bio_info_cache:
247 kmem_cache_destroy(_rq_bio_info_cache);
248out_free_rq_tio_cache:
249 kmem_cache_destroy(_rq_tio_cache);
250out_free_tio_cache:
251 kmem_cache_destroy(_tio_cache);
252out_free_io_cache:
253 kmem_cache_destroy(_io_cache);
254
255 return r;
256}
257
258static void local_exit(void)
259{
260 kmem_cache_destroy(_rq_bio_info_cache);
261 kmem_cache_destroy(_rq_tio_cache);
262 kmem_cache_destroy(_tio_cache);
263 kmem_cache_destroy(_io_cache);
264 unregister_blkdev(_major, _name);
265 dm_uevent_exit();
266
267 _major = 0;
268
269 DMINFO("cleaned up");
270}
271
272static int (*_inits[])(void) __initdata = {
273 local_init,
274 dm_target_init,
275 dm_linear_init,
276 dm_stripe_init,
277 dm_io_init,
278 dm_kcopyd_init,
279 dm_interface_init,
280};
281
282static void (*_exits[])(void) = {
283 local_exit,
284 dm_target_exit,
285 dm_linear_exit,
286 dm_stripe_exit,
287 dm_io_exit,
288 dm_kcopyd_exit,
289 dm_interface_exit,
290};
291
292static int __init dm_init(void)
293{
294 const int count = ARRAY_SIZE(_inits);
295
296 int r, i;
297
298 for (i = 0; i < count; i++) {
299 r = _inits[i]();
300 if (r)
301 goto bad;
302 }
303
304 return 0;
305
306 bad:
307 while (i--)
308 _exits[i]();
309
310 return r;
311}
312
313static void __exit dm_exit(void)
314{
315 int i = ARRAY_SIZE(_exits);
316
317 while (i--)
318 _exits[i]();
319
320 /*
321 * Should be empty by this point.
322 */
323 idr_remove_all(&_minor_idr);
324 idr_destroy(&_minor_idr);
325}
326
327/*
328 * Block device functions
329 */
330int dm_deleting_md(struct mapped_device *md)
331{
332 return test_bit(DMF_DELETING, &md->flags);
333}
334
335static int dm_blk_open(struct block_device *bdev, fmode_t mode)
336{
337 struct mapped_device *md;
338
339 spin_lock(&_minor_lock);
340
341 md = bdev->bd_disk->private_data;
342 if (!md)
343 goto out;
344
345 if (test_bit(DMF_FREEING, &md->flags) ||
346 dm_deleting_md(md)) {
347 md = NULL;
348 goto out;
349 }
350
351 dm_get(md);
352 atomic_inc(&md->open_count);
353
354out:
355 spin_unlock(&_minor_lock);
356
357 return md ? 0 : -ENXIO;
358}
359
360static int dm_blk_close(struct gendisk *disk, fmode_t mode)
361{
362 struct mapped_device *md = disk->private_data;
363
364 spin_lock(&_minor_lock);
365
366 atomic_dec(&md->open_count);
367 dm_put(md);
368
369 spin_unlock(&_minor_lock);
370
371 return 0;
372}
373
374int dm_open_count(struct mapped_device *md)
375{
376 return atomic_read(&md->open_count);
377}
378
379/*
380 * Guarantees nothing is using the device before it's deleted.
381 */
382int dm_lock_for_deletion(struct mapped_device *md)
383{
384 int r = 0;
385
386 spin_lock(&_minor_lock);
387
388 if (dm_open_count(md))
389 r = -EBUSY;
390 else
391 set_bit(DMF_DELETING, &md->flags);
392
393 spin_unlock(&_minor_lock);
394
395 return r;
396}
397
398static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
399{
400 struct mapped_device *md = bdev->bd_disk->private_data;
401
402 return dm_get_geometry(md, geo);
403}
404
405static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
406 unsigned int cmd, unsigned long arg)
407{
408 struct mapped_device *md = bdev->bd_disk->private_data;
409 struct dm_table *map = dm_get_live_table(md);
410 struct dm_target *tgt;
411 int r = -ENOTTY;
412
413 if (!map || !dm_table_get_size(map))
414 goto out;
415
416 /* We only support devices that have a single target */
417 if (dm_table_get_num_targets(map) != 1)
418 goto out;
419
420 tgt = dm_table_get_target(map, 0);
421
422 if (dm_suspended_md(md)) {
423 r = -EAGAIN;
424 goto out;
425 }
426
427 if (tgt->type->ioctl)
428 r = tgt->type->ioctl(tgt, cmd, arg);
429
430out:
431 dm_table_put(map);
432
433 return r;
434}
435
436static struct dm_io *alloc_io(struct mapped_device *md)
437{
438 return mempool_alloc(md->io_pool, GFP_NOIO);
439}
440
441static void free_io(struct mapped_device *md, struct dm_io *io)
442{
443 mempool_free(io, md->io_pool);
444}
445
446static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
447{
448 mempool_free(tio, md->tio_pool);
449}
450
451static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md,
452 gfp_t gfp_mask)
453{
454 return mempool_alloc(md->tio_pool, gfp_mask);
455}
456
457static void free_rq_tio(struct dm_rq_target_io *tio)
458{
459 mempool_free(tio, tio->md->tio_pool);
460}
461
462static struct dm_rq_clone_bio_info *alloc_bio_info(struct mapped_device *md)
463{
464 return mempool_alloc(md->io_pool, GFP_ATOMIC);
465}
466
467static void free_bio_info(struct dm_rq_clone_bio_info *info)
468{
469 mempool_free(info, info->tio->md->io_pool);
470}
471
472static int md_in_flight(struct mapped_device *md)
473{
474 return atomic_read(&md->pending[READ]) +
475 atomic_read(&md->pending[WRITE]);
476}
477
478static void start_io_acct(struct dm_io *io)
479{
480 struct mapped_device *md = io->md;
481 int cpu;
482 int rw = bio_data_dir(io->bio);
483
484 io->start_time = jiffies;
485
486 cpu = part_stat_lock();
487 part_round_stats(cpu, &dm_disk(md)->part0);
488 part_stat_unlock();
489 atomic_set(&dm_disk(md)->part0.in_flight[rw],
490 atomic_inc_return(&md->pending[rw]));
491}
492
493static void end_io_acct(struct dm_io *io)
494{
495 struct mapped_device *md = io->md;
496 struct bio *bio = io->bio;
497 unsigned long duration = jiffies - io->start_time;
498 int pending, cpu;
499 int rw = bio_data_dir(bio);
500
501 cpu = part_stat_lock();
502 part_round_stats(cpu, &dm_disk(md)->part0);
503 part_stat_add(cpu, &dm_disk(md)->part0, ticks[rw], duration);
504 part_stat_unlock();
505
506 /*
507 * After this is decremented the bio must not be touched if it is
508 * a flush.
509 */
510 pending = atomic_dec_return(&md->pending[rw]);
511 atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
512 pending += atomic_read(&md->pending[rw^0x1]);
513
514 /* nudge anyone waiting on suspend queue */
515 if (!pending)
516 wake_up(&md->wait);
517}
518
519/*
520 * Add the bio to the list of deferred io.
521 */
522static void queue_io(struct mapped_device *md, struct bio *bio)
523{
524 unsigned long flags;
525
526 spin_lock_irqsave(&md->deferred_lock, flags);
527 bio_list_add(&md->deferred, bio);
528 spin_unlock_irqrestore(&md->deferred_lock, flags);
529 queue_work(md->wq, &md->work);
530}
531
532/*
533 * Everyone (including functions in this file), should use this
534 * function to access the md->map field, and make sure they call
535 * dm_table_put() when finished.
536 */
537struct dm_table *dm_get_live_table(struct mapped_device *md)
538{
539 struct dm_table *t;
540 unsigned long flags;
541
542 read_lock_irqsave(&md->map_lock, flags);
543 t = md->map;
544 if (t)
545 dm_table_get(t);
546 read_unlock_irqrestore(&md->map_lock, flags);
547
548 return t;
549}
550
551/*
552 * Get the geometry associated with a dm device
553 */
554int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
555{
556 *geo = md->geometry;
557
558 return 0;
559}
560
561/*
562 * Set the geometry of a device.
563 */
564int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
565{
566 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
567
568 if (geo->start > sz) {
569 DMWARN("Start sector is beyond the geometry limits.");
570 return -EINVAL;
571 }
572
573 md->geometry = *geo;
574
575 return 0;
576}
577
578/*-----------------------------------------------------------------
579 * CRUD START:
580 * A more elegant soln is in the works that uses the queue
581 * merge fn, unfortunately there are a couple of changes to
582 * the block layer that I want to make for this. So in the
583 * interests of getting something for people to use I give
584 * you this clearly demarcated crap.
585 *---------------------------------------------------------------*/
586
587static int __noflush_suspending(struct mapped_device *md)
588{
589 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
590}
591
592/*
593 * Decrements the number of outstanding ios that a bio has been
594 * cloned into, completing the original io if necc.
595 */
596static void dec_pending(struct dm_io *io, int error)
597{
598 unsigned long flags;
599 int io_error;
600 struct bio *bio;
601 struct mapped_device *md = io->md;
602
603 /* Push-back supersedes any I/O errors */
604 if (unlikely(error)) {
605 spin_lock_irqsave(&io->endio_lock, flags);
606 if (!(io->error > 0 && __noflush_suspending(md)))
607 io->error = error;
608 spin_unlock_irqrestore(&io->endio_lock, flags);
609 }
610
611 if (atomic_dec_and_test(&io->io_count)) {
612 if (io->error == DM_ENDIO_REQUEUE) {
613 /*
614 * Target requested pushing back the I/O.
615 */
616 spin_lock_irqsave(&md->deferred_lock, flags);
617 if (__noflush_suspending(md))
618 bio_list_add_head(&md->deferred, io->bio);
619 else
620 /* noflush suspend was interrupted. */
621 io->error = -EIO;
622 spin_unlock_irqrestore(&md->deferred_lock, flags);
623 }
624
625 io_error = io->error;
626 bio = io->bio;
627 end_io_acct(io);
628 free_io(md, io);
629
630 if (io_error == DM_ENDIO_REQUEUE)
631 return;
632
633 if ((bio->bi_rw & REQ_FLUSH) && bio->bi_size) {
634 /*
635 * Preflush done for flush with data, reissue
636 * without REQ_FLUSH.
637 */
638 bio->bi_rw &= ~REQ_FLUSH;
639 queue_io(md, bio);
640 } else {
641 /* done with normal IO or empty flush */
642 trace_block_bio_complete(md->queue, bio, io_error);
643 bio_endio(bio, io_error);
644 }
645 }
646}
647
648static void clone_endio(struct bio *bio, int error)
649{
650 int r = 0;
651 struct dm_target_io *tio = bio->bi_private;
652 struct dm_io *io = tio->io;
653 struct mapped_device *md = tio->io->md;
654 dm_endio_fn endio = tio->ti->type->end_io;
655
656 if (!bio_flagged(bio, BIO_UPTODATE) && !error)
657 error = -EIO;
658
659 if (endio) {
660 r = endio(tio->ti, bio, error, &tio->info);
661 if (r < 0 || r == DM_ENDIO_REQUEUE)
662 /*
663 * error and requeue request are handled
664 * in dec_pending().
665 */
666 error = r;
667 else if (r == DM_ENDIO_INCOMPLETE)
668 /* The target will handle the io */
669 return;
670 else if (r) {
671 DMWARN("unimplemented target endio return value: %d", r);
672 BUG();
673 }
674 }
675
676 /*
677 * Store md for cleanup instead of tio which is about to get freed.
678 */
679 bio->bi_private = md->bs;
680
681 free_tio(md, tio);
682 bio_put(bio);
683 dec_pending(io, error);
684}
685
686/*
687 * Partial completion handling for request-based dm
688 */
689static void end_clone_bio(struct bio *clone, int error)
690{
691 struct dm_rq_clone_bio_info *info = clone->bi_private;
692 struct dm_rq_target_io *tio = info->tio;
693 struct bio *bio = info->orig;
694 unsigned int nr_bytes = info->orig->bi_size;
695
696 bio_put(clone);
697
698 if (tio->error)
699 /*
700 * An error has already been detected on the request.
701 * Once error occurred, just let clone->end_io() handle
702 * the remainder.
703 */
704 return;
705 else if (error) {
706 /*
707 * Don't notice the error to the upper layer yet.
708 * The error handling decision is made by the target driver,
709 * when the request is completed.
710 */
711 tio->error = error;
712 return;
713 }
714
715 /*
716 * I/O for the bio successfully completed.
717 * Notice the data completion to the upper layer.
718 */
719
720 /*
721 * bios are processed from the head of the list.
722 * So the completing bio should always be rq->bio.
723 * If it's not, something wrong is happening.
724 */
725 if (tio->orig->bio != bio)
726 DMERR("bio completion is going in the middle of the request");
727
728 /*
729 * Update the original request.
730 * Do not use blk_end_request() here, because it may complete
731 * the original request before the clone, and break the ordering.
732 */
733 blk_update_request(tio->orig, 0, nr_bytes);
734}
735
736/*
737 * Don't touch any member of the md after calling this function because
738 * the md may be freed in dm_put() at the end of this function.
739 * Or do dm_get() before calling this function and dm_put() later.
740 */
741static void rq_completed(struct mapped_device *md, int rw, int run_queue)
742{
743 atomic_dec(&md->pending[rw]);
744
745 /* nudge anyone waiting on suspend queue */
746 if (!md_in_flight(md))
747 wake_up(&md->wait);
748
749 if (run_queue)
750 blk_run_queue(md->queue);
751
752 /*
753 * dm_put() must be at the end of this function. See the comment above
754 */
755 dm_put(md);
756}
757
758static void free_rq_clone(struct request *clone)
759{
760 struct dm_rq_target_io *tio = clone->end_io_data;
761
762 blk_rq_unprep_clone(clone);
763 free_rq_tio(tio);
764}
765
766/*
767 * Complete the clone and the original request.
768 * Must be called without queue lock.
769 */
770static void dm_end_request(struct request *clone, int error)
771{
772 int rw = rq_data_dir(clone);
773 struct dm_rq_target_io *tio = clone->end_io_data;
774 struct mapped_device *md = tio->md;
775 struct request *rq = tio->orig;
776
777 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
778 rq->errors = clone->errors;
779 rq->resid_len = clone->resid_len;
780
781 if (rq->sense)
782 /*
783 * We are using the sense buffer of the original
784 * request.
785 * So setting the length of the sense data is enough.
786 */
787 rq->sense_len = clone->sense_len;
788 }
789
790 free_rq_clone(clone);
791 blk_end_request_all(rq, error);
792 rq_completed(md, rw, true);
793}
794
795static void dm_unprep_request(struct request *rq)
796{
797 struct request *clone = rq->special;
798
799 rq->special = NULL;
800 rq->cmd_flags &= ~REQ_DONTPREP;
801
802 free_rq_clone(clone);
803}
804
805/*
806 * Requeue the original request of a clone.
807 */
808void dm_requeue_unmapped_request(struct request *clone)
809{
810 int rw = rq_data_dir(clone);
811 struct dm_rq_target_io *tio = clone->end_io_data;
812 struct mapped_device *md = tio->md;
813 struct request *rq = tio->orig;
814 struct request_queue *q = rq->q;
815 unsigned long flags;
816
817 dm_unprep_request(rq);
818
819 spin_lock_irqsave(q->queue_lock, flags);
820 blk_requeue_request(q, rq);
821 spin_unlock_irqrestore(q->queue_lock, flags);
822
823 rq_completed(md, rw, 0);
824}
825EXPORT_SYMBOL_GPL(dm_requeue_unmapped_request);
826
827static void __stop_queue(struct request_queue *q)
828{
829 blk_stop_queue(q);
830}
831
832static void stop_queue(struct request_queue *q)
833{
834 unsigned long flags;
835
836 spin_lock_irqsave(q->queue_lock, flags);
837 __stop_queue(q);
838 spin_unlock_irqrestore(q->queue_lock, flags);
839}
840
841static void __start_queue(struct request_queue *q)
842{
843 if (blk_queue_stopped(q))
844 blk_start_queue(q);
845}
846
847static void start_queue(struct request_queue *q)
848{
849 unsigned long flags;
850
851 spin_lock_irqsave(q->queue_lock, flags);
852 __start_queue(q);
853 spin_unlock_irqrestore(q->queue_lock, flags);
854}
855
856static void dm_done(struct request *clone, int error, bool mapped)
857{
858 int r = error;
859 struct dm_rq_target_io *tio = clone->end_io_data;
860 dm_request_endio_fn rq_end_io = tio->ti->type->rq_end_io;
861
862 if (mapped && rq_end_io)
863 r = rq_end_io(tio->ti, clone, error, &tio->info);
864
865 if (r <= 0)
866 /* The target wants to complete the I/O */
867 dm_end_request(clone, r);
868 else if (r == DM_ENDIO_INCOMPLETE)
869 /* The target will handle the I/O */
870 return;
871 else if (r == DM_ENDIO_REQUEUE)
872 /* The target wants to requeue the I/O */
873 dm_requeue_unmapped_request(clone);
874 else {
875 DMWARN("unimplemented target endio return value: %d", r);
876 BUG();
877 }
878}
879
880/*
881 * Request completion handler for request-based dm
882 */
883static void dm_softirq_done(struct request *rq)
884{
885 bool mapped = true;
886 struct request *clone = rq->completion_data;
887 struct dm_rq_target_io *tio = clone->end_io_data;
888
889 if (rq->cmd_flags & REQ_FAILED)
890 mapped = false;
891
892 dm_done(clone, tio->error, mapped);
893}
894
895/*
896 * Complete the clone and the original request with the error status
897 * through softirq context.
898 */
899static void dm_complete_request(struct request *clone, int error)
900{
901 struct dm_rq_target_io *tio = clone->end_io_data;
902 struct request *rq = tio->orig;
903
904 tio->error = error;
905 rq->completion_data = clone;
906 blk_complete_request(rq);
907}
908
909/*
910 * Complete the not-mapped clone and the original request with the error status
911 * through softirq context.
912 * Target's rq_end_io() function isn't called.
913 * This may be used when the target's map_rq() function fails.
914 */
915void dm_kill_unmapped_request(struct request *clone, int error)
916{
917 struct dm_rq_target_io *tio = clone->end_io_data;
918 struct request *rq = tio->orig;
919
920 rq->cmd_flags |= REQ_FAILED;
921 dm_complete_request(clone, error);
922}
923EXPORT_SYMBOL_GPL(dm_kill_unmapped_request);
924
925/*
926 * Called with the queue lock held
927 */
928static void end_clone_request(struct request *clone, int error)
929{
930 /*
931 * For just cleaning up the information of the queue in which
932 * the clone was dispatched.
933 * The clone is *NOT* freed actually here because it is alloced from
934 * dm own mempool and REQ_ALLOCED isn't set in clone->cmd_flags.
935 */
936 __blk_put_request(clone->q, clone);
937
938 /*
939 * Actual request completion is done in a softirq context which doesn't
940 * hold the queue lock. Otherwise, deadlock could occur because:
941 * - another request may be submitted by the upper level driver
942 * of the stacking during the completion
943 * - the submission which requires queue lock may be done
944 * against this queue
945 */
946 dm_complete_request(clone, error);
947}
948
949/*
950 * Return maximum size of I/O possible at the supplied sector up to the current
951 * target boundary.
952 */
953static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
954{
955 sector_t target_offset = dm_target_offset(ti, sector);
956
957 return ti->len - target_offset;
958}
959
960static sector_t max_io_len(sector_t sector, struct dm_target *ti)
961{
962 sector_t len = max_io_len_target_boundary(sector, ti);
963
964 /*
965 * Does the target need to split even further ?
966 */
967 if (ti->split_io) {
968 sector_t boundary;
969 sector_t offset = dm_target_offset(ti, sector);
970 boundary = ((offset + ti->split_io) & ~(ti->split_io - 1))
971 - offset;
972 if (len > boundary)
973 len = boundary;
974 }
975
976 return len;
977}
978
979static void __map_bio(struct dm_target *ti, struct bio *clone,
980 struct dm_target_io *tio)
981{
982 int r;
983 sector_t sector;
984 struct mapped_device *md;
985
986 clone->bi_end_io = clone_endio;
987 clone->bi_private = tio;
988
989 /*
990 * Map the clone. If r == 0 we don't need to do
991 * anything, the target has assumed ownership of
992 * this io.
993 */
994 atomic_inc(&tio->io->io_count);
995 sector = clone->bi_sector;
996 r = ti->type->map(ti, clone, &tio->info);
997 if (r == DM_MAPIO_REMAPPED) {
998 /* the bio has been remapped so dispatch it */
999
1000 trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone,
1001 tio->io->bio->bi_bdev->bd_dev, sector);
1002
1003 generic_make_request(clone);
1004 } else if (r < 0 || r == DM_MAPIO_REQUEUE) {
1005 /* error the io and bail out, or requeue it if needed */
1006 md = tio->io->md;
1007 dec_pending(tio->io, r);
1008 /*
1009 * Store bio_set for cleanup.
1010 */
1011 clone->bi_private = md->bs;
1012 bio_put(clone);
1013 free_tio(md, tio);
1014 } else if (r) {
1015 DMWARN("unimplemented target map return value: %d", r);
1016 BUG();
1017 }
1018}
1019
1020struct clone_info {
1021 struct mapped_device *md;
1022 struct dm_table *map;
1023 struct bio *bio;
1024 struct dm_io *io;
1025 sector_t sector;
1026 sector_t sector_count;
1027 unsigned short idx;
1028};
1029
1030static void dm_bio_destructor(struct bio *bio)
1031{
1032 struct bio_set *bs = bio->bi_private;
1033
1034 bio_free(bio, bs);
1035}
1036
1037/*
1038 * Creates a little bio that just does part of a bvec.
1039 */
1040static struct bio *split_bvec(struct bio *bio, sector_t sector,
1041 unsigned short idx, unsigned int offset,
1042 unsigned int len, struct bio_set *bs)
1043{
1044 struct bio *clone;
1045 struct bio_vec *bv = bio->bi_io_vec + idx;
1046
1047 clone = bio_alloc_bioset(GFP_NOIO, 1, bs);
1048 clone->bi_destructor = dm_bio_destructor;
1049 *clone->bi_io_vec = *bv;
1050
1051 clone->bi_sector = sector;
1052 clone->bi_bdev = bio->bi_bdev;
1053 clone->bi_rw = bio->bi_rw;
1054 clone->bi_vcnt = 1;
1055 clone->bi_size = to_bytes(len);
1056 clone->bi_io_vec->bv_offset = offset;
1057 clone->bi_io_vec->bv_len = clone->bi_size;
1058 clone->bi_flags |= 1 << BIO_CLONED;
1059
1060 if (bio_integrity(bio)) {
1061 bio_integrity_clone(clone, bio, GFP_NOIO, bs);
1062 bio_integrity_trim(clone,
1063 bio_sector_offset(bio, idx, offset), len);
1064 }
1065
1066 return clone;
1067}
1068
1069/*
1070 * Creates a bio that consists of range of complete bvecs.
1071 */
1072static struct bio *clone_bio(struct bio *bio, sector_t sector,
1073 unsigned short idx, unsigned short bv_count,
1074 unsigned int len, struct bio_set *bs)
1075{
1076 struct bio *clone;
1077
1078 clone = bio_alloc_bioset(GFP_NOIO, bio->bi_max_vecs, bs);
1079 __bio_clone(clone, bio);
1080 clone->bi_destructor = dm_bio_destructor;
1081 clone->bi_sector = sector;
1082 clone->bi_idx = idx;
1083 clone->bi_vcnt = idx + bv_count;
1084 clone->bi_size = to_bytes(len);
1085 clone->bi_flags &= ~(1 << BIO_SEG_VALID);
1086
1087 if (bio_integrity(bio)) {
1088 bio_integrity_clone(clone, bio, GFP_NOIO, bs);
1089
1090 if (idx != bio->bi_idx || clone->bi_size < bio->bi_size)
1091 bio_integrity_trim(clone,
1092 bio_sector_offset(bio, idx, 0), len);
1093 }
1094
1095 return clone;
1096}
1097
1098static struct dm_target_io *alloc_tio(struct clone_info *ci,
1099 struct dm_target *ti)
1100{
1101 struct dm_target_io *tio = mempool_alloc(ci->md->tio_pool, GFP_NOIO);
1102
1103 tio->io = ci->io;
1104 tio->ti = ti;
1105 memset(&tio->info, 0, sizeof(tio->info));
1106
1107 return tio;
1108}
1109
1110static void __issue_target_request(struct clone_info *ci, struct dm_target *ti,
1111 unsigned request_nr, sector_t len)
1112{
1113 struct dm_target_io *tio = alloc_tio(ci, ti);
1114 struct bio *clone;
1115
1116 tio->info.target_request_nr = request_nr;
1117
1118 /*
1119 * Discard requests require the bio's inline iovecs be initialized.
1120 * ci->bio->bi_max_vecs is BIO_INLINE_VECS anyway, for both flush
1121 * and discard, so no need for concern about wasted bvec allocations.
1122 */
1123 clone = bio_alloc_bioset(GFP_NOIO, ci->bio->bi_max_vecs, ci->md->bs);
1124 __bio_clone(clone, ci->bio);
1125 clone->bi_destructor = dm_bio_destructor;
1126 if (len) {
1127 clone->bi_sector = ci->sector;
1128 clone->bi_size = to_bytes(len);
1129 }
1130
1131 __map_bio(ti, clone, tio);
1132}
1133
1134static void __issue_target_requests(struct clone_info *ci, struct dm_target *ti,
1135 unsigned num_requests, sector_t len)
1136{
1137 unsigned request_nr;
1138
1139 for (request_nr = 0; request_nr < num_requests; request_nr++)
1140 __issue_target_request(ci, ti, request_nr, len);
1141}
1142
1143static int __clone_and_map_empty_flush(struct clone_info *ci)
1144{
1145 unsigned target_nr = 0;
1146 struct dm_target *ti;
1147
1148 BUG_ON(bio_has_data(ci->bio));
1149 while ((ti = dm_table_get_target(ci->map, target_nr++)))
1150 __issue_target_requests(ci, ti, ti->num_flush_requests, 0);
1151
1152 return 0;
1153}
1154
1155/*
1156 * Perform all io with a single clone.
1157 */
1158static void __clone_and_map_simple(struct clone_info *ci, struct dm_target *ti)
1159{
1160 struct bio *clone, *bio = ci->bio;
1161 struct dm_target_io *tio;
1162
1163 tio = alloc_tio(ci, ti);
1164 clone = clone_bio(bio, ci->sector, ci->idx,
1165 bio->bi_vcnt - ci->idx, ci->sector_count,
1166 ci->md->bs);
1167 __map_bio(ti, clone, tio);
1168 ci->sector_count = 0;
1169}
1170
1171static int __clone_and_map_discard(struct clone_info *ci)
1172{
1173 struct dm_target *ti;
1174 sector_t len;
1175
1176 do {
1177 ti = dm_table_find_target(ci->map, ci->sector);
1178 if (!dm_target_is_valid(ti))
1179 return -EIO;
1180
1181 /*
1182 * Even though the device advertised discard support,
1183 * that does not mean every target supports it, and
1184 * reconfiguration might also have changed that since the
1185 * check was performed.
1186 */
1187 if (!ti->num_discard_requests)
1188 return -EOPNOTSUPP;
1189
1190 len = min(ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1191
1192 __issue_target_requests(ci, ti, ti->num_discard_requests, len);
1193
1194 ci->sector += len;
1195 } while (ci->sector_count -= len);
1196
1197 return 0;
1198}
1199
1200static int __clone_and_map(struct clone_info *ci)
1201{
1202 struct bio *clone, *bio = ci->bio;
1203 struct dm_target *ti;
1204 sector_t len = 0, max;
1205 struct dm_target_io *tio;
1206
1207 if (unlikely(bio->bi_rw & REQ_DISCARD))
1208 return __clone_and_map_discard(ci);
1209
1210 ti = dm_table_find_target(ci->map, ci->sector);
1211 if (!dm_target_is_valid(ti))
1212 return -EIO;
1213
1214 max = max_io_len(ci->sector, ti);
1215
1216 if (ci->sector_count <= max) {
1217 /*
1218 * Optimise for the simple case where we can do all of
1219 * the remaining io with a single clone.
1220 */
1221 __clone_and_map_simple(ci, ti);
1222
1223 } else if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) {
1224 /*
1225 * There are some bvecs that don't span targets.
1226 * Do as many of these as possible.
1227 */
1228 int i;
1229 sector_t remaining = max;
1230 sector_t bv_len;
1231
1232 for (i = ci->idx; remaining && (i < bio->bi_vcnt); i++) {
1233 bv_len = to_sector(bio->bi_io_vec[i].bv_len);
1234
1235 if (bv_len > remaining)
1236 break;
1237
1238 remaining -= bv_len;
1239 len += bv_len;
1240 }
1241
1242 tio = alloc_tio(ci, ti);
1243 clone = clone_bio(bio, ci->sector, ci->idx, i - ci->idx, len,
1244 ci->md->bs);
1245 __map_bio(ti, clone, tio);
1246
1247 ci->sector += len;
1248 ci->sector_count -= len;
1249 ci->idx = i;
1250
1251 } else {
1252 /*
1253 * Handle a bvec that must be split between two or more targets.
1254 */
1255 struct bio_vec *bv = bio->bi_io_vec + ci->idx;
1256 sector_t remaining = to_sector(bv->bv_len);
1257 unsigned int offset = 0;
1258
1259 do {
1260 if (offset) {
1261 ti = dm_table_find_target(ci->map, ci->sector);
1262 if (!dm_target_is_valid(ti))
1263 return -EIO;
1264
1265 max = max_io_len(ci->sector, ti);
1266 }
1267
1268 len = min(remaining, max);
1269
1270 tio = alloc_tio(ci, ti);
1271 clone = split_bvec(bio, ci->sector, ci->idx,
1272 bv->bv_offset + offset, len,
1273 ci->md->bs);
1274
1275 __map_bio(ti, clone, tio);
1276
1277 ci->sector += len;
1278 ci->sector_count -= len;
1279 offset += to_bytes(len);
1280 } while (remaining -= len);
1281
1282 ci->idx++;
1283 }
1284
1285 return 0;
1286}
1287
1288/*
1289 * Split the bio into several clones and submit it to targets.
1290 */
1291static void __split_and_process_bio(struct mapped_device *md, struct bio *bio)
1292{
1293 struct clone_info ci;
1294 int error = 0;
1295
1296 ci.map = dm_get_live_table(md);
1297 if (unlikely(!ci.map)) {
1298 bio_io_error(bio);
1299 return;
1300 }
1301
1302 ci.md = md;
1303 ci.io = alloc_io(md);
1304 ci.io->error = 0;
1305 atomic_set(&ci.io->io_count, 1);
1306 ci.io->bio = bio;
1307 ci.io->md = md;
1308 spin_lock_init(&ci.io->endio_lock);
1309 ci.sector = bio->bi_sector;
1310 ci.idx = bio->bi_idx;
1311
1312 start_io_acct(ci.io);
1313 if (bio->bi_rw & REQ_FLUSH) {
1314 ci.bio = &ci.md->flush_bio;
1315 ci.sector_count = 0;
1316 error = __clone_and_map_empty_flush(&ci);
1317 /* dec_pending submits any data associated with flush */
1318 } else {
1319 ci.bio = bio;
1320 ci.sector_count = bio_sectors(bio);
1321 while (ci.sector_count && !error)
1322 error = __clone_and_map(&ci);
1323 }
1324
1325 /* drop the extra reference count */
1326 dec_pending(ci.io, error);
1327 dm_table_put(ci.map);
1328}
1329/*-----------------------------------------------------------------
1330 * CRUD END
1331 *---------------------------------------------------------------*/
1332
1333static int dm_merge_bvec(struct request_queue *q,
1334 struct bvec_merge_data *bvm,
1335 struct bio_vec *biovec)
1336{
1337 struct mapped_device *md = q->queuedata;
1338 struct dm_table *map = dm_get_live_table(md);
1339 struct dm_target *ti;
1340 sector_t max_sectors;
1341 int max_size = 0;
1342
1343 if (unlikely(!map))
1344 goto out;
1345
1346 ti = dm_table_find_target(map, bvm->bi_sector);
1347 if (!dm_target_is_valid(ti))
1348 goto out_table;
1349
1350 /*
1351 * Find maximum amount of I/O that won't need splitting
1352 */
1353 max_sectors = min(max_io_len(bvm->bi_sector, ti),
1354 (sector_t) BIO_MAX_SECTORS);
1355 max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
1356 if (max_size < 0)
1357 max_size = 0;
1358
1359 /*
1360 * merge_bvec_fn() returns number of bytes
1361 * it can accept at this offset
1362 * max is precomputed maximal io size
1363 */
1364 if (max_size && ti->type->merge)
1365 max_size = ti->type->merge(ti, bvm, biovec, max_size);
1366 /*
1367 * If the target doesn't support merge method and some of the devices
1368 * provided their merge_bvec method (we know this by looking at
1369 * queue_max_hw_sectors), then we can't allow bios with multiple vector
1370 * entries. So always set max_size to 0, and the code below allows
1371 * just one page.
1372 */
1373 else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9)
1374
1375 max_size = 0;
1376
1377out_table:
1378 dm_table_put(map);
1379
1380out:
1381 /*
1382 * Always allow an entire first page
1383 */
1384 if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
1385 max_size = biovec->bv_len;
1386
1387 return max_size;
1388}
1389
1390/*
1391 * The request function that just remaps the bio built up by
1392 * dm_merge_bvec.
1393 */
1394static int _dm_request(struct request_queue *q, struct bio *bio)
1395{
1396 int rw = bio_data_dir(bio);
1397 struct mapped_device *md = q->queuedata;
1398 int cpu;
1399
1400 down_read(&md->io_lock);
1401
1402 cpu = part_stat_lock();
1403 part_stat_inc(cpu, &dm_disk(md)->part0, ios[rw]);
1404 part_stat_add(cpu, &dm_disk(md)->part0, sectors[rw], bio_sectors(bio));
1405 part_stat_unlock();
1406
1407 /* if we're suspended, we have to queue this io for later */
1408 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1409 up_read(&md->io_lock);
1410
1411 if (bio_rw(bio) != READA)
1412 queue_io(md, bio);
1413 else
1414 bio_io_error(bio);
1415 return 0;
1416 }
1417
1418 __split_and_process_bio(md, bio);
1419 up_read(&md->io_lock);
1420 return 0;
1421}
1422
1423static int dm_make_request(struct request_queue *q, struct bio *bio)
1424{
1425 struct mapped_device *md = q->queuedata;
1426
1427 return md->saved_make_request_fn(q, bio); /* call __make_request() */
1428}
1429
1430static int dm_request_based(struct mapped_device *md)
1431{
1432 return blk_queue_stackable(md->queue);
1433}
1434
1435static int dm_request(struct request_queue *q, struct bio *bio)
1436{
1437 struct mapped_device *md = q->queuedata;
1438
1439 if (dm_request_based(md))
1440 return dm_make_request(q, bio);
1441
1442 return _dm_request(q, bio);
1443}
1444
1445void dm_dispatch_request(struct request *rq)
1446{
1447 int r;
1448
1449 if (blk_queue_io_stat(rq->q))
1450 rq->cmd_flags |= REQ_IO_STAT;
1451
1452 rq->start_time = jiffies;
1453 r = blk_insert_cloned_request(rq->q, rq);
1454 if (r)
1455 dm_complete_request(rq, r);
1456}
1457EXPORT_SYMBOL_GPL(dm_dispatch_request);
1458
1459static void dm_rq_bio_destructor(struct bio *bio)
1460{
1461 struct dm_rq_clone_bio_info *info = bio->bi_private;
1462 struct mapped_device *md = info->tio->md;
1463
1464 free_bio_info(info);
1465 bio_free(bio, md->bs);
1466}
1467
1468static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig,
1469 void *data)
1470{
1471 struct dm_rq_target_io *tio = data;
1472 struct mapped_device *md = tio->md;
1473 struct dm_rq_clone_bio_info *info = alloc_bio_info(md);
1474
1475 if (!info)
1476 return -ENOMEM;
1477
1478 info->orig = bio_orig;
1479 info->tio = tio;
1480 bio->bi_end_io = end_clone_bio;
1481 bio->bi_private = info;
1482 bio->bi_destructor = dm_rq_bio_destructor;
1483
1484 return 0;
1485}
1486
1487static int setup_clone(struct request *clone, struct request *rq,
1488 struct dm_rq_target_io *tio)
1489{
1490 int r;
1491
1492 r = blk_rq_prep_clone(clone, rq, tio->md->bs, GFP_ATOMIC,
1493 dm_rq_bio_constructor, tio);
1494 if (r)
1495 return r;
1496
1497 clone->cmd = rq->cmd;
1498 clone->cmd_len = rq->cmd_len;
1499 clone->sense = rq->sense;
1500 clone->buffer = rq->buffer;
1501 clone->end_io = end_clone_request;
1502 clone->end_io_data = tio;
1503
1504 return 0;
1505}
1506
1507static struct request *clone_rq(struct request *rq, struct mapped_device *md,
1508 gfp_t gfp_mask)
1509{
1510 struct request *clone;
1511 struct dm_rq_target_io *tio;
1512
1513 tio = alloc_rq_tio(md, gfp_mask);
1514 if (!tio)
1515 return NULL;
1516
1517 tio->md = md;
1518 tio->ti = NULL;
1519 tio->orig = rq;
1520 tio->error = 0;
1521 memset(&tio->info, 0, sizeof(tio->info));
1522
1523 clone = &tio->clone;
1524 if (setup_clone(clone, rq, tio)) {
1525 /* -ENOMEM */
1526 free_rq_tio(tio);
1527 return NULL;
1528 }
1529
1530 return clone;
1531}
1532
1533/*
1534 * Called with the queue lock held.
1535 */
1536static int dm_prep_fn(struct request_queue *q, struct request *rq)
1537{
1538 struct mapped_device *md = q->queuedata;
1539 struct request *clone;
1540
1541 if (unlikely(rq->special)) {
1542 DMWARN("Already has something in rq->special.");
1543 return BLKPREP_KILL;
1544 }
1545
1546 clone = clone_rq(rq, md, GFP_ATOMIC);
1547 if (!clone)
1548 return BLKPREP_DEFER;
1549
1550 rq->special = clone;
1551 rq->cmd_flags |= REQ_DONTPREP;
1552
1553 return BLKPREP_OK;
1554}
1555
1556/*
1557 * Returns:
1558 * 0 : the request has been processed (not requeued)
1559 * !0 : the request has been requeued
1560 */
1561static int map_request(struct dm_target *ti, struct request *clone,
1562 struct mapped_device *md)
1563{
1564 int r, requeued = 0;
1565 struct dm_rq_target_io *tio = clone->end_io_data;
1566
1567 /*
1568 * Hold the md reference here for the in-flight I/O.
1569 * We can't rely on the reference count by device opener,
1570 * because the device may be closed during the request completion
1571 * when all bios are completed.
1572 * See the comment in rq_completed() too.
1573 */
1574 dm_get(md);
1575
1576 tio->ti = ti;
1577 r = ti->type->map_rq(ti, clone, &tio->info);
1578 switch (r) {
1579 case DM_MAPIO_SUBMITTED:
1580 /* The target has taken the I/O to submit by itself later */
1581 break;
1582 case DM_MAPIO_REMAPPED:
1583 /* The target has remapped the I/O so dispatch it */
1584 trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)),
1585 blk_rq_pos(tio->orig));
1586 dm_dispatch_request(clone);
1587 break;
1588 case DM_MAPIO_REQUEUE:
1589 /* The target wants to requeue the I/O */
1590 dm_requeue_unmapped_request(clone);
1591 requeued = 1;
1592 break;
1593 default:
1594 if (r > 0) {
1595 DMWARN("unimplemented target map return value: %d", r);
1596 BUG();
1597 }
1598
1599 /* The target wants to complete the I/O */
1600 dm_kill_unmapped_request(clone, r);
1601 break;
1602 }
1603
1604 return requeued;
1605}
1606
1607/*
1608 * q->request_fn for request-based dm.
1609 * Called with the queue lock held.
1610 */
1611static void dm_request_fn(struct request_queue *q)
1612{
1613 struct mapped_device *md = q->queuedata;
1614 struct dm_table *map = dm_get_live_table(md);
1615 struct dm_target *ti;
1616 struct request *rq, *clone;
1617 sector_t pos;
1618
1619 /*
1620 * For suspend, check blk_queue_stopped() and increment
1621 * ->pending within a single queue_lock not to increment the
1622 * number of in-flight I/Os after the queue is stopped in
1623 * dm_suspend().
1624 */
1625 while (!blk_queue_stopped(q)) {
1626 rq = blk_peek_request(q);
1627 if (!rq)
1628 goto delay_and_out;
1629
1630 /* always use block 0 to find the target for flushes for now */
1631 pos = 0;
1632 if (!(rq->cmd_flags & REQ_FLUSH))
1633 pos = blk_rq_pos(rq);
1634
1635 ti = dm_table_find_target(map, pos);
1636 BUG_ON(!dm_target_is_valid(ti));
1637
1638 if (ti->type->busy && ti->type->busy(ti))
1639 goto delay_and_out;
1640
1641 blk_start_request(rq);
1642 clone = rq->special;
1643 atomic_inc(&md->pending[rq_data_dir(clone)]);
1644
1645 spin_unlock(q->queue_lock);
1646 if (map_request(ti, clone, md))
1647 goto requeued;
1648
1649 BUG_ON(!irqs_disabled());
1650 spin_lock(q->queue_lock);
1651 }
1652
1653 goto out;
1654
1655requeued:
1656 BUG_ON(!irqs_disabled());
1657 spin_lock(q->queue_lock);
1658
1659delay_and_out:
1660 blk_delay_queue(q, HZ / 10);
1661out:
1662 dm_table_put(map);
1663
1664 return;
1665}
1666
1667int dm_underlying_device_busy(struct request_queue *q)
1668{
1669 return blk_lld_busy(q);
1670}
1671EXPORT_SYMBOL_GPL(dm_underlying_device_busy);
1672
1673static int dm_lld_busy(struct request_queue *q)
1674{
1675 int r;
1676 struct mapped_device *md = q->queuedata;
1677 struct dm_table *map = dm_get_live_table(md);
1678
1679 if (!map || test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))
1680 r = 1;
1681 else
1682 r = dm_table_any_busy_target(map);
1683
1684 dm_table_put(map);
1685
1686 return r;
1687}
1688
1689static int dm_any_congested(void *congested_data, int bdi_bits)
1690{
1691 int r = bdi_bits;
1692 struct mapped_device *md = congested_data;
1693 struct dm_table *map;
1694
1695 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1696 map = dm_get_live_table(md);
1697 if (map) {
1698 /*
1699 * Request-based dm cares about only own queue for
1700 * the query about congestion status of request_queue
1701 */
1702 if (dm_request_based(md))
1703 r = md->queue->backing_dev_info.state &
1704 bdi_bits;
1705 else
1706 r = dm_table_any_congested(map, bdi_bits);
1707
1708 dm_table_put(map);
1709 }
1710 }
1711
1712 return r;
1713}
1714
1715/*-----------------------------------------------------------------
1716 * An IDR is used to keep track of allocated minor numbers.
1717 *---------------------------------------------------------------*/
1718static void free_minor(int minor)
1719{
1720 spin_lock(&_minor_lock);
1721 idr_remove(&_minor_idr, minor);
1722 spin_unlock(&_minor_lock);
1723}
1724
1725/*
1726 * See if the device with a specific minor # is free.
1727 */
1728static int specific_minor(int minor)
1729{
1730 int r, m;
1731
1732 if (minor >= (1 << MINORBITS))
1733 return -EINVAL;
1734
1735 r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1736 if (!r)
1737 return -ENOMEM;
1738
1739 spin_lock(&_minor_lock);
1740
1741 if (idr_find(&_minor_idr, minor)) {
1742 r = -EBUSY;
1743 goto out;
1744 }
1745
1746 r = idr_get_new_above(&_minor_idr, MINOR_ALLOCED, minor, &m);
1747 if (r)
1748 goto out;
1749
1750 if (m != minor) {
1751 idr_remove(&_minor_idr, m);
1752 r = -EBUSY;
1753 goto out;
1754 }
1755
1756out:
1757 spin_unlock(&_minor_lock);
1758 return r;
1759}
1760
1761static int next_free_minor(int *minor)
1762{
1763 int r, m;
1764
1765 r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1766 if (!r)
1767 return -ENOMEM;
1768
1769 spin_lock(&_minor_lock);
1770
1771 r = idr_get_new(&_minor_idr, MINOR_ALLOCED, &m);
1772 if (r)
1773 goto out;
1774
1775 if (m >= (1 << MINORBITS)) {
1776 idr_remove(&_minor_idr, m);
1777 r = -ENOSPC;
1778 goto out;
1779 }
1780
1781 *minor = m;
1782
1783out:
1784 spin_unlock(&_minor_lock);
1785 return r;
1786}
1787
1788static const struct block_device_operations dm_blk_dops;
1789
1790static void dm_wq_work(struct work_struct *work);
1791
1792static void dm_init_md_queue(struct mapped_device *md)
1793{
1794 /*
1795 * Request-based dm devices cannot be stacked on top of bio-based dm
1796 * devices. The type of this dm device has not been decided yet.
1797 * The type is decided at the first table loading time.
1798 * To prevent problematic device stacking, clear the queue flag
1799 * for request stacking support until then.
1800 *
1801 * This queue is new, so no concurrency on the queue_flags.
1802 */
1803 queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
1804
1805 md->queue->queuedata = md;
1806 md->queue->backing_dev_info.congested_fn = dm_any_congested;
1807 md->queue->backing_dev_info.congested_data = md;
1808 blk_queue_make_request(md->queue, dm_request);
1809 blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
1810 blk_queue_merge_bvec(md->queue, dm_merge_bvec);
1811}
1812
1813/*
1814 * Allocate and initialise a blank device with a given minor.
1815 */
1816static struct mapped_device *alloc_dev(int minor)
1817{
1818 int r;
1819 struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
1820 void *old_md;
1821
1822 if (!md) {
1823 DMWARN("unable to allocate device, out of memory.");
1824 return NULL;
1825 }
1826
1827 if (!try_module_get(THIS_MODULE))
1828 goto bad_module_get;
1829
1830 /* get a minor number for the dev */
1831 if (minor == DM_ANY_MINOR)
1832 r = next_free_minor(&minor);
1833 else
1834 r = specific_minor(minor);
1835 if (r < 0)
1836 goto bad_minor;
1837
1838 md->type = DM_TYPE_NONE;
1839 init_rwsem(&md->io_lock);
1840 mutex_init(&md->suspend_lock);
1841 mutex_init(&md->type_lock);
1842 spin_lock_init(&md->deferred_lock);
1843 rwlock_init(&md->map_lock);
1844 atomic_set(&md->holders, 1);
1845 atomic_set(&md->open_count, 0);
1846 atomic_set(&md->event_nr, 0);
1847 atomic_set(&md->uevent_seq, 0);
1848 INIT_LIST_HEAD(&md->uevent_list);
1849 spin_lock_init(&md->uevent_lock);
1850
1851 md->queue = blk_alloc_queue(GFP_KERNEL);
1852 if (!md->queue)
1853 goto bad_queue;
1854
1855 dm_init_md_queue(md);
1856
1857 md->disk = alloc_disk(1);
1858 if (!md->disk)
1859 goto bad_disk;
1860
1861 atomic_set(&md->pending[0], 0);
1862 atomic_set(&md->pending[1], 0);
1863 init_waitqueue_head(&md->wait);
1864 INIT_WORK(&md->work, dm_wq_work);
1865 init_waitqueue_head(&md->eventq);
1866
1867 md->disk->major = _major;
1868 md->disk->first_minor = minor;
1869 md->disk->fops = &dm_blk_dops;
1870 md->disk->queue = md->queue;
1871 md->disk->private_data = md;
1872 sprintf(md->disk->disk_name, "dm-%d", minor);
1873 add_disk(md->disk);
1874 format_dev_t(md->name, MKDEV(_major, minor));
1875
1876 md->wq = alloc_workqueue("kdmflush",
1877 WQ_NON_REENTRANT | WQ_MEM_RECLAIM, 0);
1878 if (!md->wq)
1879 goto bad_thread;
1880
1881 md->bdev = bdget_disk(md->disk, 0);
1882 if (!md->bdev)
1883 goto bad_bdev;
1884
1885 bio_init(&md->flush_bio);
1886 md->flush_bio.bi_bdev = md->bdev;
1887 md->flush_bio.bi_rw = WRITE_FLUSH;
1888
1889 /* Populate the mapping, nobody knows we exist yet */
1890 spin_lock(&_minor_lock);
1891 old_md = idr_replace(&_minor_idr, md, minor);
1892 spin_unlock(&_minor_lock);
1893
1894 BUG_ON(old_md != MINOR_ALLOCED);
1895
1896 return md;
1897
1898bad_bdev:
1899 destroy_workqueue(md->wq);
1900bad_thread:
1901 del_gendisk(md->disk);
1902 put_disk(md->disk);
1903bad_disk:
1904 blk_cleanup_queue(md->queue);
1905bad_queue:
1906 free_minor(minor);
1907bad_minor:
1908 module_put(THIS_MODULE);
1909bad_module_get:
1910 kfree(md);
1911 return NULL;
1912}
1913
1914static void unlock_fs(struct mapped_device *md);
1915
1916static void free_dev(struct mapped_device *md)
1917{
1918 int minor = MINOR(disk_devt(md->disk));
1919
1920 unlock_fs(md);
1921 bdput(md->bdev);
1922 destroy_workqueue(md->wq);
1923 if (md->tio_pool)
1924 mempool_destroy(md->tio_pool);
1925 if (md->io_pool)
1926 mempool_destroy(md->io_pool);
1927 if (md->bs)
1928 bioset_free(md->bs);
1929 blk_integrity_unregister(md->disk);
1930 del_gendisk(md->disk);
1931 free_minor(minor);
1932
1933 spin_lock(&_minor_lock);
1934 md->disk->private_data = NULL;
1935 spin_unlock(&_minor_lock);
1936
1937 put_disk(md->disk);
1938 blk_cleanup_queue(md->queue);
1939 module_put(THIS_MODULE);
1940 kfree(md);
1941}
1942
1943static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
1944{
1945 struct dm_md_mempools *p;
1946
1947 if (md->io_pool && md->tio_pool && md->bs)
1948 /* the md already has necessary mempools */
1949 goto out;
1950
1951 p = dm_table_get_md_mempools(t);
1952 BUG_ON(!p || md->io_pool || md->tio_pool || md->bs);
1953
1954 md->io_pool = p->io_pool;
1955 p->io_pool = NULL;
1956 md->tio_pool = p->tio_pool;
1957 p->tio_pool = NULL;
1958 md->bs = p->bs;
1959 p->bs = NULL;
1960
1961out:
1962 /* mempool bind completed, now no need any mempools in the table */
1963 dm_table_free_md_mempools(t);
1964}
1965
1966/*
1967 * Bind a table to the device.
1968 */
1969static void event_callback(void *context)
1970{
1971 unsigned long flags;
1972 LIST_HEAD(uevents);
1973 struct mapped_device *md = (struct mapped_device *) context;
1974
1975 spin_lock_irqsave(&md->uevent_lock, flags);
1976 list_splice_init(&md->uevent_list, &uevents);
1977 spin_unlock_irqrestore(&md->uevent_lock, flags);
1978
1979 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
1980
1981 atomic_inc(&md->event_nr);
1982 wake_up(&md->eventq);
1983}
1984
1985/*
1986 * Protected by md->suspend_lock obtained by dm_swap_table().
1987 */
1988static void __set_size(struct mapped_device *md, sector_t size)
1989{
1990 set_capacity(md->disk, size);
1991
1992 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
1993}
1994
1995/*
1996 * Return 1 if the queue has a compulsory merge_bvec_fn function.
1997 *
1998 * If this function returns 0, then the device is either a non-dm
1999 * device without a merge_bvec_fn, or it is a dm device that is
2000 * able to split any bios it receives that are too big.
2001 */
2002int dm_queue_merge_is_compulsory(struct request_queue *q)
2003{
2004 struct mapped_device *dev_md;
2005
2006 if (!q->merge_bvec_fn)
2007 return 0;
2008
2009 if (q->make_request_fn == dm_request) {
2010 dev_md = q->queuedata;
2011 if (test_bit(DMF_MERGE_IS_OPTIONAL, &dev_md->flags))
2012 return 0;
2013 }
2014
2015 return 1;
2016}
2017
2018static int dm_device_merge_is_compulsory(struct dm_target *ti,
2019 struct dm_dev *dev, sector_t start,
2020 sector_t len, void *data)
2021{
2022 struct block_device *bdev = dev->bdev;
2023 struct request_queue *q = bdev_get_queue(bdev);
2024
2025 return dm_queue_merge_is_compulsory(q);
2026}
2027
2028/*
2029 * Return 1 if it is acceptable to ignore merge_bvec_fn based
2030 * on the properties of the underlying devices.
2031 */
2032static int dm_table_merge_is_optional(struct dm_table *table)
2033{
2034 unsigned i = 0;
2035 struct dm_target *ti;
2036
2037 while (i < dm_table_get_num_targets(table)) {
2038 ti = dm_table_get_target(table, i++);
2039
2040 if (ti->type->iterate_devices &&
2041 ti->type->iterate_devices(ti, dm_device_merge_is_compulsory, NULL))
2042 return 0;
2043 }
2044
2045 return 1;
2046}
2047
2048/*
2049 * Returns old map, which caller must destroy.
2050 */
2051static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2052 struct queue_limits *limits)
2053{
2054 struct dm_table *old_map;
2055 struct request_queue *q = md->queue;
2056 sector_t size;
2057 unsigned long flags;
2058 int merge_is_optional;
2059
2060 size = dm_table_get_size(t);
2061
2062 /*
2063 * Wipe any geometry if the size of the table changed.
2064 */
2065 if (size != get_capacity(md->disk))
2066 memset(&md->geometry, 0, sizeof(md->geometry));
2067
2068 __set_size(md, size);
2069
2070 dm_table_event_callback(t, event_callback, md);
2071
2072 /*
2073 * The queue hasn't been stopped yet, if the old table type wasn't
2074 * for request-based during suspension. So stop it to prevent
2075 * I/O mapping before resume.
2076 * This must be done before setting the queue restrictions,
2077 * because request-based dm may be run just after the setting.
2078 */
2079 if (dm_table_request_based(t) && !blk_queue_stopped(q))
2080 stop_queue(q);
2081
2082 __bind_mempools(md, t);
2083
2084 merge_is_optional = dm_table_merge_is_optional(t);
2085
2086 write_lock_irqsave(&md->map_lock, flags);
2087 old_map = md->map;
2088 md->map = t;
2089 dm_table_set_restrictions(t, q, limits);
2090 if (merge_is_optional)
2091 set_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2092 else
2093 clear_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2094 write_unlock_irqrestore(&md->map_lock, flags);
2095
2096 return old_map;
2097}
2098
2099/*
2100 * Returns unbound table for the caller to free.
2101 */
2102static struct dm_table *__unbind(struct mapped_device *md)
2103{
2104 struct dm_table *map = md->map;
2105 unsigned long flags;
2106
2107 if (!map)
2108 return NULL;
2109
2110 dm_table_event_callback(map, NULL, NULL);
2111 write_lock_irqsave(&md->map_lock, flags);
2112 md->map = NULL;
2113 write_unlock_irqrestore(&md->map_lock, flags);
2114
2115 return map;
2116}
2117
2118/*
2119 * Constructor for a new device.
2120 */
2121int dm_create(int minor, struct mapped_device **result)
2122{
2123 struct mapped_device *md;
2124
2125 md = alloc_dev(minor);
2126 if (!md)
2127 return -ENXIO;
2128
2129 dm_sysfs_init(md);
2130
2131 *result = md;
2132 return 0;
2133}
2134
2135/*
2136 * Functions to manage md->type.
2137 * All are required to hold md->type_lock.
2138 */
2139void dm_lock_md_type(struct mapped_device *md)
2140{
2141 mutex_lock(&md->type_lock);
2142}
2143
2144void dm_unlock_md_type(struct mapped_device *md)
2145{
2146 mutex_unlock(&md->type_lock);
2147}
2148
2149void dm_set_md_type(struct mapped_device *md, unsigned type)
2150{
2151 md->type = type;
2152}
2153
2154unsigned dm_get_md_type(struct mapped_device *md)
2155{
2156 return md->type;
2157}
2158
2159/*
2160 * Fully initialize a request-based queue (->elevator, ->request_fn, etc).
2161 */
2162static int dm_init_request_based_queue(struct mapped_device *md)
2163{
2164 struct request_queue *q = NULL;
2165
2166 if (md->queue->elevator)
2167 return 1;
2168
2169 /* Fully initialize the queue */
2170 q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL);
2171 if (!q)
2172 return 0;
2173
2174 md->queue = q;
2175 md->saved_make_request_fn = md->queue->make_request_fn;
2176 dm_init_md_queue(md);
2177 blk_queue_softirq_done(md->queue, dm_softirq_done);
2178 blk_queue_prep_rq(md->queue, dm_prep_fn);
2179 blk_queue_lld_busy(md->queue, dm_lld_busy);
2180
2181 elv_register_queue(md->queue);
2182
2183 return 1;
2184}
2185
2186/*
2187 * Setup the DM device's queue based on md's type
2188 */
2189int dm_setup_md_queue(struct mapped_device *md)
2190{
2191 if ((dm_get_md_type(md) == DM_TYPE_REQUEST_BASED) &&
2192 !dm_init_request_based_queue(md)) {
2193 DMWARN("Cannot initialize queue for request-based mapped device");
2194 return -EINVAL;
2195 }
2196
2197 return 0;
2198}
2199
2200static struct mapped_device *dm_find_md(dev_t dev)
2201{
2202 struct mapped_device *md;
2203 unsigned minor = MINOR(dev);
2204
2205 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2206 return NULL;
2207
2208 spin_lock(&_minor_lock);
2209
2210 md = idr_find(&_minor_idr, minor);
2211 if (md && (md == MINOR_ALLOCED ||
2212 (MINOR(disk_devt(dm_disk(md))) != minor) ||
2213 dm_deleting_md(md) ||
2214 test_bit(DMF_FREEING, &md->flags))) {
2215 md = NULL;
2216 goto out;
2217 }
2218
2219out:
2220 spin_unlock(&_minor_lock);
2221
2222 return md;
2223}
2224
2225struct mapped_device *dm_get_md(dev_t dev)
2226{
2227 struct mapped_device *md = dm_find_md(dev);
2228
2229 if (md)
2230 dm_get(md);
2231
2232 return md;
2233}
2234
2235void *dm_get_mdptr(struct mapped_device *md)
2236{
2237 return md->interface_ptr;
2238}
2239
2240void dm_set_mdptr(struct mapped_device *md, void *ptr)
2241{
2242 md->interface_ptr = ptr;
2243}
2244
2245void dm_get(struct mapped_device *md)
2246{
2247 atomic_inc(&md->holders);
2248 BUG_ON(test_bit(DMF_FREEING, &md->flags));
2249}
2250
2251const char *dm_device_name(struct mapped_device *md)
2252{
2253 return md->name;
2254}
2255EXPORT_SYMBOL_GPL(dm_device_name);
2256
2257static void __dm_destroy(struct mapped_device *md, bool wait)
2258{
2259 struct dm_table *map;
2260
2261 might_sleep();
2262
2263 spin_lock(&_minor_lock);
2264 map = dm_get_live_table(md);
2265 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2266 set_bit(DMF_FREEING, &md->flags);
2267 spin_unlock(&_minor_lock);
2268
2269 if (!dm_suspended_md(md)) {
2270 dm_table_presuspend_targets(map);
2271 dm_table_postsuspend_targets(map);
2272 }
2273
2274 /*
2275 * Rare, but there may be I/O requests still going to complete,
2276 * for example. Wait for all references to disappear.
2277 * No one should increment the reference count of the mapped_device,
2278 * after the mapped_device state becomes DMF_FREEING.
2279 */
2280 if (wait)
2281 while (atomic_read(&md->holders))
2282 msleep(1);
2283 else if (atomic_read(&md->holders))
2284 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2285 dm_device_name(md), atomic_read(&md->holders));
2286
2287 dm_sysfs_exit(md);
2288 dm_table_put(map);
2289 dm_table_destroy(__unbind(md));
2290 free_dev(md);
2291}
2292
2293void dm_destroy(struct mapped_device *md)
2294{
2295 __dm_destroy(md, true);
2296}
2297
2298void dm_destroy_immediate(struct mapped_device *md)
2299{
2300 __dm_destroy(md, false);
2301}
2302
2303void dm_put(struct mapped_device *md)
2304{
2305 atomic_dec(&md->holders);
2306}
2307EXPORT_SYMBOL_GPL(dm_put);
2308
2309static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
2310{
2311 int r = 0;
2312 DECLARE_WAITQUEUE(wait, current);
2313
2314 add_wait_queue(&md->wait, &wait);
2315
2316 while (1) {
2317 set_current_state(interruptible);
2318
2319 smp_mb();
2320 if (!md_in_flight(md))
2321 break;
2322
2323 if (interruptible == TASK_INTERRUPTIBLE &&
2324 signal_pending(current)) {
2325 r = -EINTR;
2326 break;
2327 }
2328
2329 io_schedule();
2330 }
2331 set_current_state(TASK_RUNNING);
2332
2333 remove_wait_queue(&md->wait, &wait);
2334
2335 return r;
2336}
2337
2338/*
2339 * Process the deferred bios
2340 */
2341static void dm_wq_work(struct work_struct *work)
2342{
2343 struct mapped_device *md = container_of(work, struct mapped_device,
2344 work);
2345 struct bio *c;
2346
2347 down_read(&md->io_lock);
2348
2349 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2350 spin_lock_irq(&md->deferred_lock);
2351 c = bio_list_pop(&md->deferred);
2352 spin_unlock_irq(&md->deferred_lock);
2353
2354 if (!c)
2355 break;
2356
2357 up_read(&md->io_lock);
2358
2359 if (dm_request_based(md))
2360 generic_make_request(c);
2361 else
2362 __split_and_process_bio(md, c);
2363
2364 down_read(&md->io_lock);
2365 }
2366
2367 up_read(&md->io_lock);
2368}
2369
2370static void dm_queue_flush(struct mapped_device *md)
2371{
2372 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2373 smp_mb__after_clear_bit();
2374 queue_work(md->wq, &md->work);
2375}
2376
2377/*
2378 * Swap in a new table, returning the old one for the caller to destroy.
2379 */
2380struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2381{
2382 struct dm_table *map = ERR_PTR(-EINVAL);
2383 struct queue_limits limits;
2384 int r;
2385
2386 mutex_lock(&md->suspend_lock);
2387
2388 /* device must be suspended */
2389 if (!dm_suspended_md(md))
2390 goto out;
2391
2392 r = dm_calculate_queue_limits(table, &limits);
2393 if (r) {
2394 map = ERR_PTR(r);
2395 goto out;
2396 }
2397
2398 map = __bind(md, table, &limits);
2399
2400out:
2401 mutex_unlock(&md->suspend_lock);
2402 return map;
2403}
2404
2405/*
2406 * Functions to lock and unlock any filesystem running on the
2407 * device.
2408 */
2409static int lock_fs(struct mapped_device *md)
2410{
2411 int r;
2412
2413 WARN_ON(md->frozen_sb);
2414
2415 md->frozen_sb = freeze_bdev(md->bdev);
2416 if (IS_ERR(md->frozen_sb)) {
2417 r = PTR_ERR(md->frozen_sb);
2418 md->frozen_sb = NULL;
2419 return r;
2420 }
2421
2422 set_bit(DMF_FROZEN, &md->flags);
2423
2424 return 0;
2425}
2426
2427static void unlock_fs(struct mapped_device *md)
2428{
2429 if (!test_bit(DMF_FROZEN, &md->flags))
2430 return;
2431
2432 thaw_bdev(md->bdev, md->frozen_sb);
2433 md->frozen_sb = NULL;
2434 clear_bit(DMF_FROZEN, &md->flags);
2435}
2436
2437/*
2438 * We need to be able to change a mapping table under a mounted
2439 * filesystem. For example we might want to move some data in
2440 * the background. Before the table can be swapped with
2441 * dm_bind_table, dm_suspend must be called to flush any in
2442 * flight bios and ensure that any further io gets deferred.
2443 */
2444/*
2445 * Suspend mechanism in request-based dm.
2446 *
2447 * 1. Flush all I/Os by lock_fs() if needed.
2448 * 2. Stop dispatching any I/O by stopping the request_queue.
2449 * 3. Wait for all in-flight I/Os to be completed or requeued.
2450 *
2451 * To abort suspend, start the request_queue.
2452 */
2453int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2454{
2455 struct dm_table *map = NULL;
2456 int r = 0;
2457 int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0;
2458 int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0;
2459
2460 mutex_lock(&md->suspend_lock);
2461
2462 if (dm_suspended_md(md)) {
2463 r = -EINVAL;
2464 goto out_unlock;
2465 }
2466
2467 map = dm_get_live_table(md);
2468
2469 /*
2470 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2471 * This flag is cleared before dm_suspend returns.
2472 */
2473 if (noflush)
2474 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2475
2476 /* This does not get reverted if there's an error later. */
2477 dm_table_presuspend_targets(map);
2478
2479 /*
2480 * Flush I/O to the device.
2481 * Any I/O submitted after lock_fs() may not be flushed.
2482 * noflush takes precedence over do_lockfs.
2483 * (lock_fs() flushes I/Os and waits for them to complete.)
2484 */
2485 if (!noflush && do_lockfs) {
2486 r = lock_fs(md);
2487 if (r)
2488 goto out;
2489 }
2490
2491 /*
2492 * Here we must make sure that no processes are submitting requests
2493 * to target drivers i.e. no one may be executing
2494 * __split_and_process_bio. This is called from dm_request and
2495 * dm_wq_work.
2496 *
2497 * To get all processes out of __split_and_process_bio in dm_request,
2498 * we take the write lock. To prevent any process from reentering
2499 * __split_and_process_bio from dm_request and quiesce the thread
2500 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2501 * flush_workqueue(md->wq).
2502 */
2503 down_write(&md->io_lock);
2504 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2505 up_write(&md->io_lock);
2506
2507 /*
2508 * Stop md->queue before flushing md->wq in case request-based
2509 * dm defers requests to md->wq from md->queue.
2510 */
2511 if (dm_request_based(md))
2512 stop_queue(md->queue);
2513
2514 flush_workqueue(md->wq);
2515
2516 /*
2517 * At this point no more requests are entering target request routines.
2518 * We call dm_wait_for_completion to wait for all existing requests
2519 * to finish.
2520 */
2521 r = dm_wait_for_completion(md, TASK_INTERRUPTIBLE);
2522
2523 down_write(&md->io_lock);
2524 if (noflush)
2525 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2526 up_write(&md->io_lock);
2527
2528 /* were we interrupted ? */
2529 if (r < 0) {
2530 dm_queue_flush(md);
2531
2532 if (dm_request_based(md))
2533 start_queue(md->queue);
2534
2535 unlock_fs(md);
2536 goto out; /* pushback list is already flushed, so skip flush */
2537 }
2538
2539 /*
2540 * If dm_wait_for_completion returned 0, the device is completely
2541 * quiescent now. There is no request-processing activity. All new
2542 * requests are being added to md->deferred list.
2543 */
2544
2545 set_bit(DMF_SUSPENDED, &md->flags);
2546
2547 dm_table_postsuspend_targets(map);
2548
2549out:
2550 dm_table_put(map);
2551
2552out_unlock:
2553 mutex_unlock(&md->suspend_lock);
2554 return r;
2555}
2556
2557int dm_resume(struct mapped_device *md)
2558{
2559 int r = -EINVAL;
2560 struct dm_table *map = NULL;
2561
2562 mutex_lock(&md->suspend_lock);
2563 if (!dm_suspended_md(md))
2564 goto out;
2565
2566 map = dm_get_live_table(md);
2567 if (!map || !dm_table_get_size(map))
2568 goto out;
2569
2570 r = dm_table_resume_targets(map);
2571 if (r)
2572 goto out;
2573
2574 dm_queue_flush(md);
2575
2576 /*
2577 * Flushing deferred I/Os must be done after targets are resumed
2578 * so that mapping of targets can work correctly.
2579 * Request-based dm is queueing the deferred I/Os in its request_queue.
2580 */
2581 if (dm_request_based(md))
2582 start_queue(md->queue);
2583
2584 unlock_fs(md);
2585
2586 clear_bit(DMF_SUSPENDED, &md->flags);
2587
2588 r = 0;
2589out:
2590 dm_table_put(map);
2591 mutex_unlock(&md->suspend_lock);
2592
2593 return r;
2594}
2595
2596/*-----------------------------------------------------------------
2597 * Event notification.
2598 *---------------------------------------------------------------*/
2599int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2600 unsigned cookie)
2601{
2602 char udev_cookie[DM_COOKIE_LENGTH];
2603 char *envp[] = { udev_cookie, NULL };
2604
2605 if (!cookie)
2606 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2607 else {
2608 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2609 DM_COOKIE_ENV_VAR_NAME, cookie);
2610 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2611 action, envp);
2612 }
2613}
2614
2615uint32_t dm_next_uevent_seq(struct mapped_device *md)
2616{
2617 return atomic_add_return(1, &md->uevent_seq);
2618}
2619
2620uint32_t dm_get_event_nr(struct mapped_device *md)
2621{
2622 return atomic_read(&md->event_nr);
2623}
2624
2625int dm_wait_event(struct mapped_device *md, int event_nr)
2626{
2627 return wait_event_interruptible(md->eventq,
2628 (event_nr != atomic_read(&md->event_nr)));
2629}
2630
2631void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2632{
2633 unsigned long flags;
2634
2635 spin_lock_irqsave(&md->uevent_lock, flags);
2636 list_add(elist, &md->uevent_list);
2637 spin_unlock_irqrestore(&md->uevent_lock, flags);
2638}
2639
2640/*
2641 * The gendisk is only valid as long as you have a reference
2642 * count on 'md'.
2643 */
2644struct gendisk *dm_disk(struct mapped_device *md)
2645{
2646 return md->disk;
2647}
2648
2649struct kobject *dm_kobject(struct mapped_device *md)
2650{
2651 return &md->kobj;
2652}
2653
2654/*
2655 * struct mapped_device should not be exported outside of dm.c
2656 * so use this check to verify that kobj is part of md structure
2657 */
2658struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2659{
2660 struct mapped_device *md;
2661
2662 md = container_of(kobj, struct mapped_device, kobj);
2663 if (&md->kobj != kobj)
2664 return NULL;
2665
2666 if (test_bit(DMF_FREEING, &md->flags) ||
2667 dm_deleting_md(md))
2668 return NULL;
2669
2670 dm_get(md);
2671 return md;
2672}
2673
2674int dm_suspended_md(struct mapped_device *md)
2675{
2676 return test_bit(DMF_SUSPENDED, &md->flags);
2677}
2678
2679int dm_suspended(struct dm_target *ti)
2680{
2681 return dm_suspended_md(dm_table_get_md(ti->table));
2682}
2683EXPORT_SYMBOL_GPL(dm_suspended);
2684
2685int dm_noflush_suspending(struct dm_target *ti)
2686{
2687 return __noflush_suspending(dm_table_get_md(ti->table));
2688}
2689EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2690
2691struct dm_md_mempools *dm_alloc_md_mempools(unsigned type, unsigned integrity)
2692{
2693 struct dm_md_mempools *pools = kmalloc(sizeof(*pools), GFP_KERNEL);
2694 unsigned int pool_size = (type == DM_TYPE_BIO_BASED) ? 16 : MIN_IOS;
2695
2696 if (!pools)
2697 return NULL;
2698
2699 pools->io_pool = (type == DM_TYPE_BIO_BASED) ?
2700 mempool_create_slab_pool(MIN_IOS, _io_cache) :
2701 mempool_create_slab_pool(MIN_IOS, _rq_bio_info_cache);
2702 if (!pools->io_pool)
2703 goto free_pools_and_out;
2704
2705 pools->tio_pool = (type == DM_TYPE_BIO_BASED) ?
2706 mempool_create_slab_pool(MIN_IOS, _tio_cache) :
2707 mempool_create_slab_pool(MIN_IOS, _rq_tio_cache);
2708 if (!pools->tio_pool)
2709 goto free_io_pool_and_out;
2710
2711 pools->bs = bioset_create(pool_size, 0);
2712 if (!pools->bs)
2713 goto free_tio_pool_and_out;
2714
2715 if (integrity && bioset_integrity_create(pools->bs, pool_size))
2716 goto free_bioset_and_out;
2717
2718 return pools;
2719
2720free_bioset_and_out:
2721 bioset_free(pools->bs);
2722
2723free_tio_pool_and_out:
2724 mempool_destroy(pools->tio_pool);
2725
2726free_io_pool_and_out:
2727 mempool_destroy(pools->io_pool);
2728
2729free_pools_and_out:
2730 kfree(pools);
2731
2732 return NULL;
2733}
2734
2735void dm_free_md_mempools(struct dm_md_mempools *pools)
2736{
2737 if (!pools)
2738 return;
2739
2740 if (pools->io_pool)
2741 mempool_destroy(pools->io_pool);
2742
2743 if (pools->tio_pool)
2744 mempool_destroy(pools->tio_pool);
2745
2746 if (pools->bs)
2747 bioset_free(pools->bs);
2748
2749 kfree(pools);
2750}
2751
2752static const struct block_device_operations dm_blk_dops = {
2753 .open = dm_blk_open,
2754 .release = dm_blk_close,
2755 .ioctl = dm_blk_ioctl,
2756 .getgeo = dm_blk_getgeo,
2757 .owner = THIS_MODULE
2758};
2759
2760EXPORT_SYMBOL(dm_get_mapinfo);
2761
2762/*
2763 * module hooks
2764 */
2765module_init(dm_init);
2766module_exit(dm_exit);
2767
2768module_param(major, uint, 0);
2769MODULE_PARM_DESC(major, "The major number of the device mapper");
2770MODULE_DESCRIPTION(DM_NAME " driver");
2771MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
2772MODULE_LICENSE("GPL");
1/*
2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8#include "dm-core.h"
9#include "dm-rq.h"
10#include "dm-uevent.h"
11
12#include <linux/init.h>
13#include <linux/module.h>
14#include <linux/mutex.h>
15#include <linux/sched/signal.h>
16#include <linux/blkpg.h>
17#include <linux/bio.h>
18#include <linux/mempool.h>
19#include <linux/dax.h>
20#include <linux/slab.h>
21#include <linux/idr.h>
22#include <linux/uio.h>
23#include <linux/hdreg.h>
24#include <linux/delay.h>
25#include <linux/wait.h>
26#include <linux/pr.h>
27#include <linux/refcount.h>
28
29#define DM_MSG_PREFIX "core"
30
31/*
32 * Cookies are numeric values sent with CHANGE and REMOVE
33 * uevents while resuming, removing or renaming the device.
34 */
35#define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
36#define DM_COOKIE_LENGTH 24
37
38static const char *_name = DM_NAME;
39
40static unsigned int major = 0;
41static unsigned int _major = 0;
42
43static DEFINE_IDR(_minor_idr);
44
45static DEFINE_SPINLOCK(_minor_lock);
46
47static void do_deferred_remove(struct work_struct *w);
48
49static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
50
51static struct workqueue_struct *deferred_remove_workqueue;
52
53atomic_t dm_global_event_nr = ATOMIC_INIT(0);
54DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
55
56void dm_issue_global_event(void)
57{
58 atomic_inc(&dm_global_event_nr);
59 wake_up(&dm_global_eventq);
60}
61
62/*
63 * One of these is allocated (on-stack) per original bio.
64 */
65struct clone_info {
66 struct dm_table *map;
67 struct bio *bio;
68 struct dm_io *io;
69 sector_t sector;
70 unsigned sector_count;
71};
72
73/*
74 * One of these is allocated per clone bio.
75 */
76#define DM_TIO_MAGIC 7282014
77struct dm_target_io {
78 unsigned magic;
79 struct dm_io *io;
80 struct dm_target *ti;
81 unsigned target_bio_nr;
82 unsigned *len_ptr;
83 bool inside_dm_io;
84 struct bio clone;
85};
86
87/*
88 * One of these is allocated per original bio.
89 * It contains the first clone used for that original.
90 */
91#define DM_IO_MAGIC 5191977
92struct dm_io {
93 unsigned magic;
94 struct mapped_device *md;
95 blk_status_t status;
96 atomic_t io_count;
97 struct bio *orig_bio;
98 unsigned long start_time;
99 spinlock_t endio_lock;
100 struct dm_stats_aux stats_aux;
101 /* last member of dm_target_io is 'struct bio' */
102 struct dm_target_io tio;
103};
104
105void *dm_per_bio_data(struct bio *bio, size_t data_size)
106{
107 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
108 if (!tio->inside_dm_io)
109 return (char *)bio - offsetof(struct dm_target_io, clone) - data_size;
110 return (char *)bio - offsetof(struct dm_target_io, clone) - offsetof(struct dm_io, tio) - data_size;
111}
112EXPORT_SYMBOL_GPL(dm_per_bio_data);
113
114struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
115{
116 struct dm_io *io = (struct dm_io *)((char *)data + data_size);
117 if (io->magic == DM_IO_MAGIC)
118 return (struct bio *)((char *)io + offsetof(struct dm_io, tio) + offsetof(struct dm_target_io, clone));
119 BUG_ON(io->magic != DM_TIO_MAGIC);
120 return (struct bio *)((char *)io + offsetof(struct dm_target_io, clone));
121}
122EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
123
124unsigned dm_bio_get_target_bio_nr(const struct bio *bio)
125{
126 return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
127}
128EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
129
130#define MINOR_ALLOCED ((void *)-1)
131
132/*
133 * Bits for the md->flags field.
134 */
135#define DMF_BLOCK_IO_FOR_SUSPEND 0
136#define DMF_SUSPENDED 1
137#define DMF_FROZEN 2
138#define DMF_FREEING 3
139#define DMF_DELETING 4
140#define DMF_NOFLUSH_SUSPENDING 5
141#define DMF_DEFERRED_REMOVE 6
142#define DMF_SUSPENDED_INTERNALLY 7
143
144#define DM_NUMA_NODE NUMA_NO_NODE
145static int dm_numa_node = DM_NUMA_NODE;
146
147/*
148 * For mempools pre-allocation at the table loading time.
149 */
150struct dm_md_mempools {
151 struct bio_set *bs;
152 struct bio_set *io_bs;
153};
154
155struct table_device {
156 struct list_head list;
157 refcount_t count;
158 struct dm_dev dm_dev;
159};
160
161static struct kmem_cache *_rq_tio_cache;
162static struct kmem_cache *_rq_cache;
163
164/*
165 * Bio-based DM's mempools' reserved IOs set by the user.
166 */
167#define RESERVED_BIO_BASED_IOS 16
168static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
169
170static int __dm_get_module_param_int(int *module_param, int min, int max)
171{
172 int param = READ_ONCE(*module_param);
173 int modified_param = 0;
174 bool modified = true;
175
176 if (param < min)
177 modified_param = min;
178 else if (param > max)
179 modified_param = max;
180 else
181 modified = false;
182
183 if (modified) {
184 (void)cmpxchg(module_param, param, modified_param);
185 param = modified_param;
186 }
187
188 return param;
189}
190
191unsigned __dm_get_module_param(unsigned *module_param,
192 unsigned def, unsigned max)
193{
194 unsigned param = READ_ONCE(*module_param);
195 unsigned modified_param = 0;
196
197 if (!param)
198 modified_param = def;
199 else if (param > max)
200 modified_param = max;
201
202 if (modified_param) {
203 (void)cmpxchg(module_param, param, modified_param);
204 param = modified_param;
205 }
206
207 return param;
208}
209
210unsigned dm_get_reserved_bio_based_ios(void)
211{
212 return __dm_get_module_param(&reserved_bio_based_ios,
213 RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
214}
215EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
216
217static unsigned dm_get_numa_node(void)
218{
219 return __dm_get_module_param_int(&dm_numa_node,
220 DM_NUMA_NODE, num_online_nodes() - 1);
221}
222
223static int __init local_init(void)
224{
225 int r = -ENOMEM;
226
227 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
228 if (!_rq_tio_cache)
229 return r;
230
231 _rq_cache = kmem_cache_create("dm_old_clone_request", sizeof(struct request),
232 __alignof__(struct request), 0, NULL);
233 if (!_rq_cache)
234 goto out_free_rq_tio_cache;
235
236 r = dm_uevent_init();
237 if (r)
238 goto out_free_rq_cache;
239
240 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
241 if (!deferred_remove_workqueue) {
242 r = -ENOMEM;
243 goto out_uevent_exit;
244 }
245
246 _major = major;
247 r = register_blkdev(_major, _name);
248 if (r < 0)
249 goto out_free_workqueue;
250
251 if (!_major)
252 _major = r;
253
254 return 0;
255
256out_free_workqueue:
257 destroy_workqueue(deferred_remove_workqueue);
258out_uevent_exit:
259 dm_uevent_exit();
260out_free_rq_cache:
261 kmem_cache_destroy(_rq_cache);
262out_free_rq_tio_cache:
263 kmem_cache_destroy(_rq_tio_cache);
264
265 return r;
266}
267
268static void local_exit(void)
269{
270 flush_scheduled_work();
271 destroy_workqueue(deferred_remove_workqueue);
272
273 kmem_cache_destroy(_rq_cache);
274 kmem_cache_destroy(_rq_tio_cache);
275 unregister_blkdev(_major, _name);
276 dm_uevent_exit();
277
278 _major = 0;
279
280 DMINFO("cleaned up");
281}
282
283static int (*_inits[])(void) __initdata = {
284 local_init,
285 dm_target_init,
286 dm_linear_init,
287 dm_stripe_init,
288 dm_io_init,
289 dm_kcopyd_init,
290 dm_interface_init,
291 dm_statistics_init,
292};
293
294static void (*_exits[])(void) = {
295 local_exit,
296 dm_target_exit,
297 dm_linear_exit,
298 dm_stripe_exit,
299 dm_io_exit,
300 dm_kcopyd_exit,
301 dm_interface_exit,
302 dm_statistics_exit,
303};
304
305static int __init dm_init(void)
306{
307 const int count = ARRAY_SIZE(_inits);
308
309 int r, i;
310
311 for (i = 0; i < count; i++) {
312 r = _inits[i]();
313 if (r)
314 goto bad;
315 }
316
317 return 0;
318
319 bad:
320 while (i--)
321 _exits[i]();
322
323 return r;
324}
325
326static void __exit dm_exit(void)
327{
328 int i = ARRAY_SIZE(_exits);
329
330 while (i--)
331 _exits[i]();
332
333 /*
334 * Should be empty by this point.
335 */
336 idr_destroy(&_minor_idr);
337}
338
339/*
340 * Block device functions
341 */
342int dm_deleting_md(struct mapped_device *md)
343{
344 return test_bit(DMF_DELETING, &md->flags);
345}
346
347static int dm_blk_open(struct block_device *bdev, fmode_t mode)
348{
349 struct mapped_device *md;
350
351 spin_lock(&_minor_lock);
352
353 md = bdev->bd_disk->private_data;
354 if (!md)
355 goto out;
356
357 if (test_bit(DMF_FREEING, &md->flags) ||
358 dm_deleting_md(md)) {
359 md = NULL;
360 goto out;
361 }
362
363 dm_get(md);
364 atomic_inc(&md->open_count);
365out:
366 spin_unlock(&_minor_lock);
367
368 return md ? 0 : -ENXIO;
369}
370
371static void dm_blk_close(struct gendisk *disk, fmode_t mode)
372{
373 struct mapped_device *md;
374
375 spin_lock(&_minor_lock);
376
377 md = disk->private_data;
378 if (WARN_ON(!md))
379 goto out;
380
381 if (atomic_dec_and_test(&md->open_count) &&
382 (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
383 queue_work(deferred_remove_workqueue, &deferred_remove_work);
384
385 dm_put(md);
386out:
387 spin_unlock(&_minor_lock);
388}
389
390int dm_open_count(struct mapped_device *md)
391{
392 return atomic_read(&md->open_count);
393}
394
395/*
396 * Guarantees nothing is using the device before it's deleted.
397 */
398int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
399{
400 int r = 0;
401
402 spin_lock(&_minor_lock);
403
404 if (dm_open_count(md)) {
405 r = -EBUSY;
406 if (mark_deferred)
407 set_bit(DMF_DEFERRED_REMOVE, &md->flags);
408 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
409 r = -EEXIST;
410 else
411 set_bit(DMF_DELETING, &md->flags);
412
413 spin_unlock(&_minor_lock);
414
415 return r;
416}
417
418int dm_cancel_deferred_remove(struct mapped_device *md)
419{
420 int r = 0;
421
422 spin_lock(&_minor_lock);
423
424 if (test_bit(DMF_DELETING, &md->flags))
425 r = -EBUSY;
426 else
427 clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
428
429 spin_unlock(&_minor_lock);
430
431 return r;
432}
433
434static void do_deferred_remove(struct work_struct *w)
435{
436 dm_deferred_remove();
437}
438
439sector_t dm_get_size(struct mapped_device *md)
440{
441 return get_capacity(md->disk);
442}
443
444struct request_queue *dm_get_md_queue(struct mapped_device *md)
445{
446 return md->queue;
447}
448
449struct dm_stats *dm_get_stats(struct mapped_device *md)
450{
451 return &md->stats;
452}
453
454static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
455{
456 struct mapped_device *md = bdev->bd_disk->private_data;
457
458 return dm_get_geometry(md, geo);
459}
460
461static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
462 struct block_device **bdev)
463 __acquires(md->io_barrier)
464{
465 struct dm_target *tgt;
466 struct dm_table *map;
467 int r;
468
469retry:
470 r = -ENOTTY;
471 map = dm_get_live_table(md, srcu_idx);
472 if (!map || !dm_table_get_size(map))
473 return r;
474
475 /* We only support devices that have a single target */
476 if (dm_table_get_num_targets(map) != 1)
477 return r;
478
479 tgt = dm_table_get_target(map, 0);
480 if (!tgt->type->prepare_ioctl)
481 return r;
482
483 if (dm_suspended_md(md))
484 return -EAGAIN;
485
486 r = tgt->type->prepare_ioctl(tgt, bdev);
487 if (r == -ENOTCONN && !fatal_signal_pending(current)) {
488 dm_put_live_table(md, *srcu_idx);
489 msleep(10);
490 goto retry;
491 }
492
493 return r;
494}
495
496static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
497 __releases(md->io_barrier)
498{
499 dm_put_live_table(md, srcu_idx);
500}
501
502static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
503 unsigned int cmd, unsigned long arg)
504{
505 struct mapped_device *md = bdev->bd_disk->private_data;
506 int r, srcu_idx;
507
508 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
509 if (r < 0)
510 goto out;
511
512 if (r > 0) {
513 /*
514 * Target determined this ioctl is being issued against a
515 * subset of the parent bdev; require extra privileges.
516 */
517 if (!capable(CAP_SYS_RAWIO)) {
518 DMWARN_LIMIT(
519 "%s: sending ioctl %x to DM device without required privilege.",
520 current->comm, cmd);
521 r = -ENOIOCTLCMD;
522 goto out;
523 }
524 }
525
526 r = __blkdev_driver_ioctl(bdev, mode, cmd, arg);
527out:
528 dm_unprepare_ioctl(md, srcu_idx);
529 return r;
530}
531
532static void start_io_acct(struct dm_io *io);
533
534static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio)
535{
536 struct dm_io *io;
537 struct dm_target_io *tio;
538 struct bio *clone;
539
540 clone = bio_alloc_bioset(GFP_NOIO, 0, md->io_bs);
541 if (!clone)
542 return NULL;
543
544 tio = container_of(clone, struct dm_target_io, clone);
545 tio->inside_dm_io = true;
546 tio->io = NULL;
547
548 io = container_of(tio, struct dm_io, tio);
549 io->magic = DM_IO_MAGIC;
550 io->status = 0;
551 atomic_set(&io->io_count, 1);
552 io->orig_bio = bio;
553 io->md = md;
554 spin_lock_init(&io->endio_lock);
555
556 start_io_acct(io);
557
558 return io;
559}
560
561static void free_io(struct mapped_device *md, struct dm_io *io)
562{
563 bio_put(&io->tio.clone);
564}
565
566static struct dm_target_io *alloc_tio(struct clone_info *ci, struct dm_target *ti,
567 unsigned target_bio_nr, gfp_t gfp_mask)
568{
569 struct dm_target_io *tio;
570
571 if (!ci->io->tio.io) {
572 /* the dm_target_io embedded in ci->io is available */
573 tio = &ci->io->tio;
574 } else {
575 struct bio *clone = bio_alloc_bioset(gfp_mask, 0, ci->io->md->bs);
576 if (!clone)
577 return NULL;
578
579 tio = container_of(clone, struct dm_target_io, clone);
580 tio->inside_dm_io = false;
581 }
582
583 tio->magic = DM_TIO_MAGIC;
584 tio->io = ci->io;
585 tio->ti = ti;
586 tio->target_bio_nr = target_bio_nr;
587
588 return tio;
589}
590
591static void free_tio(struct dm_target_io *tio)
592{
593 if (tio->inside_dm_io)
594 return;
595 bio_put(&tio->clone);
596}
597
598int md_in_flight(struct mapped_device *md)
599{
600 return atomic_read(&md->pending[READ]) +
601 atomic_read(&md->pending[WRITE]);
602}
603
604static void start_io_acct(struct dm_io *io)
605{
606 struct mapped_device *md = io->md;
607 struct bio *bio = io->orig_bio;
608 int rw = bio_data_dir(bio);
609
610 io->start_time = jiffies;
611
612 generic_start_io_acct(md->queue, rw, bio_sectors(bio), &dm_disk(md)->part0);
613
614 atomic_set(&dm_disk(md)->part0.in_flight[rw],
615 atomic_inc_return(&md->pending[rw]));
616
617 if (unlikely(dm_stats_used(&md->stats)))
618 dm_stats_account_io(&md->stats, bio_data_dir(bio),
619 bio->bi_iter.bi_sector, bio_sectors(bio),
620 false, 0, &io->stats_aux);
621}
622
623static void end_io_acct(struct dm_io *io)
624{
625 struct mapped_device *md = io->md;
626 struct bio *bio = io->orig_bio;
627 unsigned long duration = jiffies - io->start_time;
628 int pending;
629 int rw = bio_data_dir(bio);
630
631 generic_end_io_acct(md->queue, rw, &dm_disk(md)->part0, io->start_time);
632
633 if (unlikely(dm_stats_used(&md->stats)))
634 dm_stats_account_io(&md->stats, bio_data_dir(bio),
635 bio->bi_iter.bi_sector, bio_sectors(bio),
636 true, duration, &io->stats_aux);
637
638 /*
639 * After this is decremented the bio must not be touched if it is
640 * a flush.
641 */
642 pending = atomic_dec_return(&md->pending[rw]);
643 atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
644 pending += atomic_read(&md->pending[rw^0x1]);
645
646 /* nudge anyone waiting on suspend queue */
647 if (!pending)
648 wake_up(&md->wait);
649}
650
651/*
652 * Add the bio to the list of deferred io.
653 */
654static void queue_io(struct mapped_device *md, struct bio *bio)
655{
656 unsigned long flags;
657
658 spin_lock_irqsave(&md->deferred_lock, flags);
659 bio_list_add(&md->deferred, bio);
660 spin_unlock_irqrestore(&md->deferred_lock, flags);
661 queue_work(md->wq, &md->work);
662}
663
664/*
665 * Everyone (including functions in this file), should use this
666 * function to access the md->map field, and make sure they call
667 * dm_put_live_table() when finished.
668 */
669struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
670{
671 *srcu_idx = srcu_read_lock(&md->io_barrier);
672
673 return srcu_dereference(md->map, &md->io_barrier);
674}
675
676void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
677{
678 srcu_read_unlock(&md->io_barrier, srcu_idx);
679}
680
681void dm_sync_table(struct mapped_device *md)
682{
683 synchronize_srcu(&md->io_barrier);
684 synchronize_rcu_expedited();
685}
686
687/*
688 * A fast alternative to dm_get_live_table/dm_put_live_table.
689 * The caller must not block between these two functions.
690 */
691static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
692{
693 rcu_read_lock();
694 return rcu_dereference(md->map);
695}
696
697static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
698{
699 rcu_read_unlock();
700}
701
702static char *_dm_claim_ptr = "I belong to device-mapper";
703
704/*
705 * Open a table device so we can use it as a map destination.
706 */
707static int open_table_device(struct table_device *td, dev_t dev,
708 struct mapped_device *md)
709{
710 struct block_device *bdev;
711
712 int r;
713
714 BUG_ON(td->dm_dev.bdev);
715
716 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr);
717 if (IS_ERR(bdev))
718 return PTR_ERR(bdev);
719
720 r = bd_link_disk_holder(bdev, dm_disk(md));
721 if (r) {
722 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
723 return r;
724 }
725
726 td->dm_dev.bdev = bdev;
727 td->dm_dev.dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
728 return 0;
729}
730
731/*
732 * Close a table device that we've been using.
733 */
734static void close_table_device(struct table_device *td, struct mapped_device *md)
735{
736 if (!td->dm_dev.bdev)
737 return;
738
739 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
740 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
741 put_dax(td->dm_dev.dax_dev);
742 td->dm_dev.bdev = NULL;
743 td->dm_dev.dax_dev = NULL;
744}
745
746static struct table_device *find_table_device(struct list_head *l, dev_t dev,
747 fmode_t mode) {
748 struct table_device *td;
749
750 list_for_each_entry(td, l, list)
751 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
752 return td;
753
754 return NULL;
755}
756
757int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
758 struct dm_dev **result) {
759 int r;
760 struct table_device *td;
761
762 mutex_lock(&md->table_devices_lock);
763 td = find_table_device(&md->table_devices, dev, mode);
764 if (!td) {
765 td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
766 if (!td) {
767 mutex_unlock(&md->table_devices_lock);
768 return -ENOMEM;
769 }
770
771 td->dm_dev.mode = mode;
772 td->dm_dev.bdev = NULL;
773
774 if ((r = open_table_device(td, dev, md))) {
775 mutex_unlock(&md->table_devices_lock);
776 kfree(td);
777 return r;
778 }
779
780 format_dev_t(td->dm_dev.name, dev);
781
782 refcount_set(&td->count, 1);
783 list_add(&td->list, &md->table_devices);
784 } else {
785 refcount_inc(&td->count);
786 }
787 mutex_unlock(&md->table_devices_lock);
788
789 *result = &td->dm_dev;
790 return 0;
791}
792EXPORT_SYMBOL_GPL(dm_get_table_device);
793
794void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
795{
796 struct table_device *td = container_of(d, struct table_device, dm_dev);
797
798 mutex_lock(&md->table_devices_lock);
799 if (refcount_dec_and_test(&td->count)) {
800 close_table_device(td, md);
801 list_del(&td->list);
802 kfree(td);
803 }
804 mutex_unlock(&md->table_devices_lock);
805}
806EXPORT_SYMBOL(dm_put_table_device);
807
808static void free_table_devices(struct list_head *devices)
809{
810 struct list_head *tmp, *next;
811
812 list_for_each_safe(tmp, next, devices) {
813 struct table_device *td = list_entry(tmp, struct table_device, list);
814
815 DMWARN("dm_destroy: %s still exists with %d references",
816 td->dm_dev.name, refcount_read(&td->count));
817 kfree(td);
818 }
819}
820
821/*
822 * Get the geometry associated with a dm device
823 */
824int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
825{
826 *geo = md->geometry;
827
828 return 0;
829}
830
831/*
832 * Set the geometry of a device.
833 */
834int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
835{
836 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
837
838 if (geo->start > sz) {
839 DMWARN("Start sector is beyond the geometry limits.");
840 return -EINVAL;
841 }
842
843 md->geometry = *geo;
844
845 return 0;
846}
847
848static int __noflush_suspending(struct mapped_device *md)
849{
850 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
851}
852
853/*
854 * Decrements the number of outstanding ios that a bio has been
855 * cloned into, completing the original io if necc.
856 */
857static void dec_pending(struct dm_io *io, blk_status_t error)
858{
859 unsigned long flags;
860 blk_status_t io_error;
861 struct bio *bio;
862 struct mapped_device *md = io->md;
863
864 /* Push-back supersedes any I/O errors */
865 if (unlikely(error)) {
866 spin_lock_irqsave(&io->endio_lock, flags);
867 if (!(io->status == BLK_STS_DM_REQUEUE && __noflush_suspending(md)))
868 io->status = error;
869 spin_unlock_irqrestore(&io->endio_lock, flags);
870 }
871
872 if (atomic_dec_and_test(&io->io_count)) {
873 if (io->status == BLK_STS_DM_REQUEUE) {
874 /*
875 * Target requested pushing back the I/O.
876 */
877 spin_lock_irqsave(&md->deferred_lock, flags);
878 if (__noflush_suspending(md))
879 /* NOTE early return due to BLK_STS_DM_REQUEUE below */
880 bio_list_add_head(&md->deferred, io->orig_bio);
881 else
882 /* noflush suspend was interrupted. */
883 io->status = BLK_STS_IOERR;
884 spin_unlock_irqrestore(&md->deferred_lock, flags);
885 }
886
887 io_error = io->status;
888 bio = io->orig_bio;
889 end_io_acct(io);
890 free_io(md, io);
891
892 if (io_error == BLK_STS_DM_REQUEUE)
893 return;
894
895 if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) {
896 /*
897 * Preflush done for flush with data, reissue
898 * without REQ_PREFLUSH.
899 */
900 bio->bi_opf &= ~REQ_PREFLUSH;
901 queue_io(md, bio);
902 } else {
903 /* done with normal IO or empty flush */
904 if (io_error)
905 bio->bi_status = io_error;
906 bio_endio(bio);
907 }
908 }
909}
910
911void disable_write_same(struct mapped_device *md)
912{
913 struct queue_limits *limits = dm_get_queue_limits(md);
914
915 /* device doesn't really support WRITE SAME, disable it */
916 limits->max_write_same_sectors = 0;
917}
918
919void disable_write_zeroes(struct mapped_device *md)
920{
921 struct queue_limits *limits = dm_get_queue_limits(md);
922
923 /* device doesn't really support WRITE ZEROES, disable it */
924 limits->max_write_zeroes_sectors = 0;
925}
926
927static void clone_endio(struct bio *bio)
928{
929 blk_status_t error = bio->bi_status;
930 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
931 struct dm_io *io = tio->io;
932 struct mapped_device *md = tio->io->md;
933 dm_endio_fn endio = tio->ti->type->end_io;
934
935 if (unlikely(error == BLK_STS_TARGET) && md->type != DM_TYPE_NVME_BIO_BASED) {
936 if (bio_op(bio) == REQ_OP_WRITE_SAME &&
937 !bio->bi_disk->queue->limits.max_write_same_sectors)
938 disable_write_same(md);
939 if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
940 !bio->bi_disk->queue->limits.max_write_zeroes_sectors)
941 disable_write_zeroes(md);
942 }
943
944 if (endio) {
945 int r = endio(tio->ti, bio, &error);
946 switch (r) {
947 case DM_ENDIO_REQUEUE:
948 error = BLK_STS_DM_REQUEUE;
949 /*FALLTHRU*/
950 case DM_ENDIO_DONE:
951 break;
952 case DM_ENDIO_INCOMPLETE:
953 /* The target will handle the io */
954 return;
955 default:
956 DMWARN("unimplemented target endio return value: %d", r);
957 BUG();
958 }
959 }
960
961 free_tio(tio);
962 dec_pending(io, error);
963}
964
965/*
966 * Return maximum size of I/O possible at the supplied sector up to the current
967 * target boundary.
968 */
969static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
970{
971 sector_t target_offset = dm_target_offset(ti, sector);
972
973 return ti->len - target_offset;
974}
975
976static sector_t max_io_len(sector_t sector, struct dm_target *ti)
977{
978 sector_t len = max_io_len_target_boundary(sector, ti);
979 sector_t offset, max_len;
980
981 /*
982 * Does the target need to split even further?
983 */
984 if (ti->max_io_len) {
985 offset = dm_target_offset(ti, sector);
986 if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
987 max_len = sector_div(offset, ti->max_io_len);
988 else
989 max_len = offset & (ti->max_io_len - 1);
990 max_len = ti->max_io_len - max_len;
991
992 if (len > max_len)
993 len = max_len;
994 }
995
996 return len;
997}
998
999int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1000{
1001 if (len > UINT_MAX) {
1002 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1003 (unsigned long long)len, UINT_MAX);
1004 ti->error = "Maximum size of target IO is too large";
1005 return -EINVAL;
1006 }
1007
1008 /*
1009 * BIO based queue uses its own splitting. When multipage bvecs
1010 * is switched on, size of the incoming bio may be too big to
1011 * be handled in some targets, such as crypt.
1012 *
1013 * When these targets are ready for the big bio, we can remove
1014 * the limit.
1015 */
1016 ti->max_io_len = min_t(uint32_t, len, BIO_MAX_PAGES * PAGE_SIZE);
1017
1018 return 0;
1019}
1020EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1021
1022static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1023 sector_t sector, int *srcu_idx)
1024 __acquires(md->io_barrier)
1025{
1026 struct dm_table *map;
1027 struct dm_target *ti;
1028
1029 map = dm_get_live_table(md, srcu_idx);
1030 if (!map)
1031 return NULL;
1032
1033 ti = dm_table_find_target(map, sector);
1034 if (!dm_target_is_valid(ti))
1035 return NULL;
1036
1037 return ti;
1038}
1039
1040static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1041 long nr_pages, void **kaddr, pfn_t *pfn)
1042{
1043 struct mapped_device *md = dax_get_private(dax_dev);
1044 sector_t sector = pgoff * PAGE_SECTORS;
1045 struct dm_target *ti;
1046 long len, ret = -EIO;
1047 int srcu_idx;
1048
1049 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1050
1051 if (!ti)
1052 goto out;
1053 if (!ti->type->direct_access)
1054 goto out;
1055 len = max_io_len(sector, ti) / PAGE_SECTORS;
1056 if (len < 1)
1057 goto out;
1058 nr_pages = min(len, nr_pages);
1059 if (ti->type->direct_access)
1060 ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn);
1061
1062 out:
1063 dm_put_live_table(md, srcu_idx);
1064
1065 return ret;
1066}
1067
1068static size_t dm_dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1069 void *addr, size_t bytes, struct iov_iter *i)
1070{
1071 struct mapped_device *md = dax_get_private(dax_dev);
1072 sector_t sector = pgoff * PAGE_SECTORS;
1073 struct dm_target *ti;
1074 long ret = 0;
1075 int srcu_idx;
1076
1077 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1078
1079 if (!ti)
1080 goto out;
1081 if (!ti->type->dax_copy_from_iter) {
1082 ret = copy_from_iter(addr, bytes, i);
1083 goto out;
1084 }
1085 ret = ti->type->dax_copy_from_iter(ti, pgoff, addr, bytes, i);
1086 out:
1087 dm_put_live_table(md, srcu_idx);
1088
1089 return ret;
1090}
1091
1092/*
1093 * A target may call dm_accept_partial_bio only from the map routine. It is
1094 * allowed for all bio types except REQ_PREFLUSH and REQ_OP_ZONE_RESET.
1095 *
1096 * dm_accept_partial_bio informs the dm that the target only wants to process
1097 * additional n_sectors sectors of the bio and the rest of the data should be
1098 * sent in a next bio.
1099 *
1100 * A diagram that explains the arithmetics:
1101 * +--------------------+---------------+-------+
1102 * | 1 | 2 | 3 |
1103 * +--------------------+---------------+-------+
1104 *
1105 * <-------------- *tio->len_ptr --------------->
1106 * <------- bi_size ------->
1107 * <-- n_sectors -->
1108 *
1109 * Region 1 was already iterated over with bio_advance or similar function.
1110 * (it may be empty if the target doesn't use bio_advance)
1111 * Region 2 is the remaining bio size that the target wants to process.
1112 * (it may be empty if region 1 is non-empty, although there is no reason
1113 * to make it empty)
1114 * The target requires that region 3 is to be sent in the next bio.
1115 *
1116 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1117 * the partially processed part (the sum of regions 1+2) must be the same for all
1118 * copies of the bio.
1119 */
1120void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1121{
1122 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1123 unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1124 BUG_ON(bio->bi_opf & REQ_PREFLUSH);
1125 BUG_ON(bi_size > *tio->len_ptr);
1126 BUG_ON(n_sectors > bi_size);
1127 *tio->len_ptr -= bi_size - n_sectors;
1128 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1129}
1130EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1131
1132/*
1133 * The zone descriptors obtained with a zone report indicate
1134 * zone positions within the target device. The zone descriptors
1135 * must be remapped to match their position within the dm device.
1136 * A target may call dm_remap_zone_report after completion of a
1137 * REQ_OP_ZONE_REPORT bio to remap the zone descriptors obtained
1138 * from the target device mapping to the dm device.
1139 */
1140void dm_remap_zone_report(struct dm_target *ti, struct bio *bio, sector_t start)
1141{
1142#ifdef CONFIG_BLK_DEV_ZONED
1143 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1144 struct bio *report_bio = tio->io->orig_bio;
1145 struct blk_zone_report_hdr *hdr = NULL;
1146 struct blk_zone *zone;
1147 unsigned int nr_rep = 0;
1148 unsigned int ofst;
1149 struct bio_vec bvec;
1150 struct bvec_iter iter;
1151 void *addr;
1152
1153 if (bio->bi_status)
1154 return;
1155
1156 /*
1157 * Remap the start sector of the reported zones. For sequential zones,
1158 * also remap the write pointer position.
1159 */
1160 bio_for_each_segment(bvec, report_bio, iter) {
1161 addr = kmap_atomic(bvec.bv_page);
1162
1163 /* Remember the report header in the first page */
1164 if (!hdr) {
1165 hdr = addr;
1166 ofst = sizeof(struct blk_zone_report_hdr);
1167 } else
1168 ofst = 0;
1169
1170 /* Set zones start sector */
1171 while (hdr->nr_zones && ofst < bvec.bv_len) {
1172 zone = addr + ofst;
1173 if (zone->start >= start + ti->len) {
1174 hdr->nr_zones = 0;
1175 break;
1176 }
1177 zone->start = zone->start + ti->begin - start;
1178 if (zone->type != BLK_ZONE_TYPE_CONVENTIONAL) {
1179 if (zone->cond == BLK_ZONE_COND_FULL)
1180 zone->wp = zone->start + zone->len;
1181 else if (zone->cond == BLK_ZONE_COND_EMPTY)
1182 zone->wp = zone->start;
1183 else
1184 zone->wp = zone->wp + ti->begin - start;
1185 }
1186 ofst += sizeof(struct blk_zone);
1187 hdr->nr_zones--;
1188 nr_rep++;
1189 }
1190
1191 if (addr != hdr)
1192 kunmap_atomic(addr);
1193
1194 if (!hdr->nr_zones)
1195 break;
1196 }
1197
1198 if (hdr) {
1199 hdr->nr_zones = nr_rep;
1200 kunmap_atomic(hdr);
1201 }
1202
1203 bio_advance(report_bio, report_bio->bi_iter.bi_size);
1204
1205#else /* !CONFIG_BLK_DEV_ZONED */
1206 bio->bi_status = BLK_STS_NOTSUPP;
1207#endif
1208}
1209EXPORT_SYMBOL_GPL(dm_remap_zone_report);
1210
1211static blk_qc_t __map_bio(struct dm_target_io *tio)
1212{
1213 int r;
1214 sector_t sector;
1215 struct bio *clone = &tio->clone;
1216 struct dm_io *io = tio->io;
1217 struct mapped_device *md = io->md;
1218 struct dm_target *ti = tio->ti;
1219 blk_qc_t ret = BLK_QC_T_NONE;
1220
1221 clone->bi_end_io = clone_endio;
1222
1223 /*
1224 * Map the clone. If r == 0 we don't need to do
1225 * anything, the target has assumed ownership of
1226 * this io.
1227 */
1228 atomic_inc(&io->io_count);
1229 sector = clone->bi_iter.bi_sector;
1230
1231 r = ti->type->map(ti, clone);
1232 switch (r) {
1233 case DM_MAPIO_SUBMITTED:
1234 break;
1235 case DM_MAPIO_REMAPPED:
1236 /* the bio has been remapped so dispatch it */
1237 trace_block_bio_remap(clone->bi_disk->queue, clone,
1238 bio_dev(io->orig_bio), sector);
1239 if (md->type == DM_TYPE_NVME_BIO_BASED)
1240 ret = direct_make_request(clone);
1241 else
1242 ret = generic_make_request(clone);
1243 break;
1244 case DM_MAPIO_KILL:
1245 free_tio(tio);
1246 dec_pending(io, BLK_STS_IOERR);
1247 break;
1248 case DM_MAPIO_REQUEUE:
1249 free_tio(tio);
1250 dec_pending(io, BLK_STS_DM_REQUEUE);
1251 break;
1252 default:
1253 DMWARN("unimplemented target map return value: %d", r);
1254 BUG();
1255 }
1256
1257 return ret;
1258}
1259
1260static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1261{
1262 bio->bi_iter.bi_sector = sector;
1263 bio->bi_iter.bi_size = to_bytes(len);
1264}
1265
1266/*
1267 * Creates a bio that consists of range of complete bvecs.
1268 */
1269static int clone_bio(struct dm_target_io *tio, struct bio *bio,
1270 sector_t sector, unsigned len)
1271{
1272 struct bio *clone = &tio->clone;
1273
1274 __bio_clone_fast(clone, bio);
1275
1276 if (unlikely(bio_integrity(bio) != NULL)) {
1277 int r;
1278
1279 if (unlikely(!dm_target_has_integrity(tio->ti->type) &&
1280 !dm_target_passes_integrity(tio->ti->type))) {
1281 DMWARN("%s: the target %s doesn't support integrity data.",
1282 dm_device_name(tio->io->md),
1283 tio->ti->type->name);
1284 return -EIO;
1285 }
1286
1287 r = bio_integrity_clone(clone, bio, GFP_NOIO);
1288 if (r < 0)
1289 return r;
1290 }
1291
1292 if (bio_op(bio) != REQ_OP_ZONE_REPORT)
1293 bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1294 clone->bi_iter.bi_size = to_bytes(len);
1295
1296 if (unlikely(bio_integrity(bio) != NULL))
1297 bio_integrity_trim(clone);
1298
1299 return 0;
1300}
1301
1302static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1303 struct dm_target *ti, unsigned num_bios)
1304{
1305 struct dm_target_io *tio;
1306 int try;
1307
1308 if (!num_bios)
1309 return;
1310
1311 if (num_bios == 1) {
1312 tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1313 bio_list_add(blist, &tio->clone);
1314 return;
1315 }
1316
1317 for (try = 0; try < 2; try++) {
1318 int bio_nr;
1319 struct bio *bio;
1320
1321 if (try)
1322 mutex_lock(&ci->io->md->table_devices_lock);
1323 for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1324 tio = alloc_tio(ci, ti, bio_nr, try ? GFP_NOIO : GFP_NOWAIT);
1325 if (!tio)
1326 break;
1327
1328 bio_list_add(blist, &tio->clone);
1329 }
1330 if (try)
1331 mutex_unlock(&ci->io->md->table_devices_lock);
1332 if (bio_nr == num_bios)
1333 return;
1334
1335 while ((bio = bio_list_pop(blist))) {
1336 tio = container_of(bio, struct dm_target_io, clone);
1337 free_tio(tio);
1338 }
1339 }
1340}
1341
1342static blk_qc_t __clone_and_map_simple_bio(struct clone_info *ci,
1343 struct dm_target_io *tio, unsigned *len)
1344{
1345 struct bio *clone = &tio->clone;
1346
1347 tio->len_ptr = len;
1348
1349 __bio_clone_fast(clone, ci->bio);
1350 if (len)
1351 bio_setup_sector(clone, ci->sector, *len);
1352
1353 return __map_bio(tio);
1354}
1355
1356static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1357 unsigned num_bios, unsigned *len)
1358{
1359 struct bio_list blist = BIO_EMPTY_LIST;
1360 struct bio *bio;
1361 struct dm_target_io *tio;
1362
1363 alloc_multiple_bios(&blist, ci, ti, num_bios);
1364
1365 while ((bio = bio_list_pop(&blist))) {
1366 tio = container_of(bio, struct dm_target_io, clone);
1367 (void) __clone_and_map_simple_bio(ci, tio, len);
1368 }
1369}
1370
1371static int __send_empty_flush(struct clone_info *ci)
1372{
1373 unsigned target_nr = 0;
1374 struct dm_target *ti;
1375
1376 BUG_ON(bio_has_data(ci->bio));
1377 while ((ti = dm_table_get_target(ci->map, target_nr++)))
1378 __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1379
1380 return 0;
1381}
1382
1383static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1384 sector_t sector, unsigned *len)
1385{
1386 struct bio *bio = ci->bio;
1387 struct dm_target_io *tio;
1388 int r;
1389
1390 tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1391 tio->len_ptr = len;
1392 r = clone_bio(tio, bio, sector, *len);
1393 if (r < 0) {
1394 free_tio(tio);
1395 return r;
1396 }
1397 (void) __map_bio(tio);
1398
1399 return 0;
1400}
1401
1402typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1403
1404static unsigned get_num_discard_bios(struct dm_target *ti)
1405{
1406 return ti->num_discard_bios;
1407}
1408
1409static unsigned get_num_secure_erase_bios(struct dm_target *ti)
1410{
1411 return ti->num_secure_erase_bios;
1412}
1413
1414static unsigned get_num_write_same_bios(struct dm_target *ti)
1415{
1416 return ti->num_write_same_bios;
1417}
1418
1419static unsigned get_num_write_zeroes_bios(struct dm_target *ti)
1420{
1421 return ti->num_write_zeroes_bios;
1422}
1423
1424typedef bool (*is_split_required_fn)(struct dm_target *ti);
1425
1426static bool is_split_required_for_discard(struct dm_target *ti)
1427{
1428 return ti->split_discard_bios;
1429}
1430
1431static int __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti,
1432 get_num_bios_fn get_num_bios,
1433 is_split_required_fn is_split_required)
1434{
1435 unsigned len;
1436 unsigned num_bios;
1437
1438 /*
1439 * Even though the device advertised support for this type of
1440 * request, that does not mean every target supports it, and
1441 * reconfiguration might also have changed that since the
1442 * check was performed.
1443 */
1444 num_bios = get_num_bios ? get_num_bios(ti) : 0;
1445 if (!num_bios)
1446 return -EOPNOTSUPP;
1447
1448 if (is_split_required && !is_split_required(ti))
1449 len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1450 else
1451 len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti));
1452
1453 __send_duplicate_bios(ci, ti, num_bios, &len);
1454
1455 ci->sector += len;
1456 ci->sector_count -= len;
1457
1458 return 0;
1459}
1460
1461static int __send_discard(struct clone_info *ci, struct dm_target *ti)
1462{
1463 return __send_changing_extent_only(ci, ti, get_num_discard_bios,
1464 is_split_required_for_discard);
1465}
1466
1467static int __send_secure_erase(struct clone_info *ci, struct dm_target *ti)
1468{
1469 return __send_changing_extent_only(ci, ti, get_num_secure_erase_bios, NULL);
1470}
1471
1472static int __send_write_same(struct clone_info *ci, struct dm_target *ti)
1473{
1474 return __send_changing_extent_only(ci, ti, get_num_write_same_bios, NULL);
1475}
1476
1477static int __send_write_zeroes(struct clone_info *ci, struct dm_target *ti)
1478{
1479 return __send_changing_extent_only(ci, ti, get_num_write_zeroes_bios, NULL);
1480}
1481
1482static bool __process_abnormal_io(struct clone_info *ci, struct dm_target *ti,
1483 int *result)
1484{
1485 struct bio *bio = ci->bio;
1486
1487 if (bio_op(bio) == REQ_OP_DISCARD)
1488 *result = __send_discard(ci, ti);
1489 else if (bio_op(bio) == REQ_OP_SECURE_ERASE)
1490 *result = __send_secure_erase(ci, ti);
1491 else if (bio_op(bio) == REQ_OP_WRITE_SAME)
1492 *result = __send_write_same(ci, ti);
1493 else if (bio_op(bio) == REQ_OP_WRITE_ZEROES)
1494 *result = __send_write_zeroes(ci, ti);
1495 else
1496 return false;
1497
1498 return true;
1499}
1500
1501/*
1502 * Select the correct strategy for processing a non-flush bio.
1503 */
1504static int __split_and_process_non_flush(struct clone_info *ci)
1505{
1506 struct bio *bio = ci->bio;
1507 struct dm_target *ti;
1508 unsigned len;
1509 int r;
1510
1511 ti = dm_table_find_target(ci->map, ci->sector);
1512 if (!dm_target_is_valid(ti))
1513 return -EIO;
1514
1515 if (unlikely(__process_abnormal_io(ci, ti, &r)))
1516 return r;
1517
1518 if (bio_op(bio) == REQ_OP_ZONE_REPORT)
1519 len = ci->sector_count;
1520 else
1521 len = min_t(sector_t, max_io_len(ci->sector, ti),
1522 ci->sector_count);
1523
1524 r = __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1525 if (r < 0)
1526 return r;
1527
1528 ci->sector += len;
1529 ci->sector_count -= len;
1530
1531 return 0;
1532}
1533
1534static void init_clone_info(struct clone_info *ci, struct mapped_device *md,
1535 struct dm_table *map, struct bio *bio)
1536{
1537 ci->map = map;
1538 ci->io = alloc_io(md, bio);
1539 ci->sector = bio->bi_iter.bi_sector;
1540}
1541
1542/*
1543 * Entry point to split a bio into clones and submit them to the targets.
1544 */
1545static blk_qc_t __split_and_process_bio(struct mapped_device *md,
1546 struct dm_table *map, struct bio *bio)
1547{
1548 struct clone_info ci;
1549 blk_qc_t ret = BLK_QC_T_NONE;
1550 int error = 0;
1551
1552 if (unlikely(!map)) {
1553 bio_io_error(bio);
1554 return ret;
1555 }
1556
1557 init_clone_info(&ci, md, map, bio);
1558
1559 if (bio->bi_opf & REQ_PREFLUSH) {
1560 ci.bio = &ci.io->md->flush_bio;
1561 ci.sector_count = 0;
1562 error = __send_empty_flush(&ci);
1563 /* dec_pending submits any data associated with flush */
1564 } else if (bio_op(bio) == REQ_OP_ZONE_RESET) {
1565 ci.bio = bio;
1566 ci.sector_count = 0;
1567 error = __split_and_process_non_flush(&ci);
1568 } else {
1569 ci.bio = bio;
1570 ci.sector_count = bio_sectors(bio);
1571 while (ci.sector_count && !error) {
1572 error = __split_and_process_non_flush(&ci);
1573 if (current->bio_list && ci.sector_count && !error) {
1574 /*
1575 * Remainder must be passed to generic_make_request()
1576 * so that it gets handled *after* bios already submitted
1577 * have been completely processed.
1578 * We take a clone of the original to store in
1579 * ci.io->orig_bio to be used by end_io_acct() and
1580 * for dec_pending to use for completion handling.
1581 * As this path is not used for REQ_OP_ZONE_REPORT,
1582 * the usage of io->orig_bio in dm_remap_zone_report()
1583 * won't be affected by this reassignment.
1584 */
1585 struct bio *b = bio_clone_bioset(bio, GFP_NOIO,
1586 md->queue->bio_split);
1587 ci.io->orig_bio = b;
1588 bio_advance(bio, (bio_sectors(bio) - ci.sector_count) << 9);
1589 bio_chain(b, bio);
1590 ret = generic_make_request(bio);
1591 break;
1592 }
1593 }
1594 }
1595
1596 /* drop the extra reference count */
1597 dec_pending(ci.io, errno_to_blk_status(error));
1598 return ret;
1599}
1600
1601/*
1602 * Optimized variant of __split_and_process_bio that leverages the
1603 * fact that targets that use it do _not_ have a need to split bios.
1604 */
1605static blk_qc_t __process_bio(struct mapped_device *md,
1606 struct dm_table *map, struct bio *bio)
1607{
1608 struct clone_info ci;
1609 blk_qc_t ret = BLK_QC_T_NONE;
1610 int error = 0;
1611
1612 if (unlikely(!map)) {
1613 bio_io_error(bio);
1614 return ret;
1615 }
1616
1617 init_clone_info(&ci, md, map, bio);
1618
1619 if (bio->bi_opf & REQ_PREFLUSH) {
1620 ci.bio = &ci.io->md->flush_bio;
1621 ci.sector_count = 0;
1622 error = __send_empty_flush(&ci);
1623 /* dec_pending submits any data associated with flush */
1624 } else {
1625 struct dm_target *ti = md->immutable_target;
1626 struct dm_target_io *tio;
1627
1628 /*
1629 * Defend against IO still getting in during teardown
1630 * - as was seen for a time with nvme-fcloop
1631 */
1632 if (unlikely(WARN_ON_ONCE(!ti || !dm_target_is_valid(ti)))) {
1633 error = -EIO;
1634 goto out;
1635 }
1636
1637 ci.bio = bio;
1638 ci.sector_count = bio_sectors(bio);
1639 if (unlikely(__process_abnormal_io(&ci, ti, &error)))
1640 goto out;
1641
1642 tio = alloc_tio(&ci, ti, 0, GFP_NOIO);
1643 ret = __clone_and_map_simple_bio(&ci, tio, NULL);
1644 }
1645out:
1646 /* drop the extra reference count */
1647 dec_pending(ci.io, errno_to_blk_status(error));
1648 return ret;
1649}
1650
1651typedef blk_qc_t (process_bio_fn)(struct mapped_device *, struct dm_table *, struct bio *);
1652
1653static blk_qc_t __dm_make_request(struct request_queue *q, struct bio *bio,
1654 process_bio_fn process_bio)
1655{
1656 struct mapped_device *md = q->queuedata;
1657 blk_qc_t ret = BLK_QC_T_NONE;
1658 int srcu_idx;
1659 struct dm_table *map;
1660
1661 map = dm_get_live_table(md, &srcu_idx);
1662
1663 /* if we're suspended, we have to queue this io for later */
1664 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1665 dm_put_live_table(md, srcu_idx);
1666
1667 if (!(bio->bi_opf & REQ_RAHEAD))
1668 queue_io(md, bio);
1669 else
1670 bio_io_error(bio);
1671 return ret;
1672 }
1673
1674 ret = process_bio(md, map, bio);
1675
1676 dm_put_live_table(md, srcu_idx);
1677 return ret;
1678}
1679
1680/*
1681 * The request function that remaps the bio to one target and
1682 * splits off any remainder.
1683 */
1684static blk_qc_t dm_make_request(struct request_queue *q, struct bio *bio)
1685{
1686 return __dm_make_request(q, bio, __split_and_process_bio);
1687}
1688
1689static blk_qc_t dm_make_request_nvme(struct request_queue *q, struct bio *bio)
1690{
1691 return __dm_make_request(q, bio, __process_bio);
1692}
1693
1694static int dm_any_congested(void *congested_data, int bdi_bits)
1695{
1696 int r = bdi_bits;
1697 struct mapped_device *md = congested_data;
1698 struct dm_table *map;
1699
1700 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1701 if (dm_request_based(md)) {
1702 /*
1703 * With request-based DM we only need to check the
1704 * top-level queue for congestion.
1705 */
1706 r = md->queue->backing_dev_info->wb.state & bdi_bits;
1707 } else {
1708 map = dm_get_live_table_fast(md);
1709 if (map)
1710 r = dm_table_any_congested(map, bdi_bits);
1711 dm_put_live_table_fast(md);
1712 }
1713 }
1714
1715 return r;
1716}
1717
1718/*-----------------------------------------------------------------
1719 * An IDR is used to keep track of allocated minor numbers.
1720 *---------------------------------------------------------------*/
1721static void free_minor(int minor)
1722{
1723 spin_lock(&_minor_lock);
1724 idr_remove(&_minor_idr, minor);
1725 spin_unlock(&_minor_lock);
1726}
1727
1728/*
1729 * See if the device with a specific minor # is free.
1730 */
1731static int specific_minor(int minor)
1732{
1733 int r;
1734
1735 if (minor >= (1 << MINORBITS))
1736 return -EINVAL;
1737
1738 idr_preload(GFP_KERNEL);
1739 spin_lock(&_minor_lock);
1740
1741 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1742
1743 spin_unlock(&_minor_lock);
1744 idr_preload_end();
1745 if (r < 0)
1746 return r == -ENOSPC ? -EBUSY : r;
1747 return 0;
1748}
1749
1750static int next_free_minor(int *minor)
1751{
1752 int r;
1753
1754 idr_preload(GFP_KERNEL);
1755 spin_lock(&_minor_lock);
1756
1757 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1758
1759 spin_unlock(&_minor_lock);
1760 idr_preload_end();
1761 if (r < 0)
1762 return r;
1763 *minor = r;
1764 return 0;
1765}
1766
1767static const struct block_device_operations dm_blk_dops;
1768static const struct dax_operations dm_dax_ops;
1769
1770static void dm_wq_work(struct work_struct *work);
1771
1772static void dm_init_normal_md_queue(struct mapped_device *md)
1773{
1774 md->use_blk_mq = false;
1775
1776 /*
1777 * Initialize aspects of queue that aren't relevant for blk-mq
1778 */
1779 md->queue->backing_dev_info->congested_fn = dm_any_congested;
1780}
1781
1782static void cleanup_mapped_device(struct mapped_device *md)
1783{
1784 if (md->wq)
1785 destroy_workqueue(md->wq);
1786 if (md->kworker_task)
1787 kthread_stop(md->kworker_task);
1788 if (md->bs)
1789 bioset_free(md->bs);
1790 if (md->io_bs)
1791 bioset_free(md->io_bs);
1792
1793 if (md->dax_dev) {
1794 kill_dax(md->dax_dev);
1795 put_dax(md->dax_dev);
1796 md->dax_dev = NULL;
1797 }
1798
1799 if (md->disk) {
1800 spin_lock(&_minor_lock);
1801 md->disk->private_data = NULL;
1802 spin_unlock(&_minor_lock);
1803 del_gendisk(md->disk);
1804 put_disk(md->disk);
1805 }
1806
1807 if (md->queue)
1808 blk_cleanup_queue(md->queue);
1809
1810 cleanup_srcu_struct(&md->io_barrier);
1811
1812 if (md->bdev) {
1813 bdput(md->bdev);
1814 md->bdev = NULL;
1815 }
1816
1817 mutex_destroy(&md->suspend_lock);
1818 mutex_destroy(&md->type_lock);
1819 mutex_destroy(&md->table_devices_lock);
1820
1821 dm_mq_cleanup_mapped_device(md);
1822}
1823
1824/*
1825 * Allocate and initialise a blank device with a given minor.
1826 */
1827static struct mapped_device *alloc_dev(int minor)
1828{
1829 int r, numa_node_id = dm_get_numa_node();
1830 struct dax_device *dax_dev = NULL;
1831 struct mapped_device *md;
1832 void *old_md;
1833
1834 md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
1835 if (!md) {
1836 DMWARN("unable to allocate device, out of memory.");
1837 return NULL;
1838 }
1839
1840 if (!try_module_get(THIS_MODULE))
1841 goto bad_module_get;
1842
1843 /* get a minor number for the dev */
1844 if (minor == DM_ANY_MINOR)
1845 r = next_free_minor(&minor);
1846 else
1847 r = specific_minor(minor);
1848 if (r < 0)
1849 goto bad_minor;
1850
1851 r = init_srcu_struct(&md->io_barrier);
1852 if (r < 0)
1853 goto bad_io_barrier;
1854
1855 md->numa_node_id = numa_node_id;
1856 md->use_blk_mq = dm_use_blk_mq_default();
1857 md->init_tio_pdu = false;
1858 md->type = DM_TYPE_NONE;
1859 mutex_init(&md->suspend_lock);
1860 mutex_init(&md->type_lock);
1861 mutex_init(&md->table_devices_lock);
1862 spin_lock_init(&md->deferred_lock);
1863 atomic_set(&md->holders, 1);
1864 atomic_set(&md->open_count, 0);
1865 atomic_set(&md->event_nr, 0);
1866 atomic_set(&md->uevent_seq, 0);
1867 INIT_LIST_HEAD(&md->uevent_list);
1868 INIT_LIST_HEAD(&md->table_devices);
1869 spin_lock_init(&md->uevent_lock);
1870
1871 md->queue = blk_alloc_queue_node(GFP_KERNEL, numa_node_id, NULL);
1872 if (!md->queue)
1873 goto bad;
1874 md->queue->queuedata = md;
1875 md->queue->backing_dev_info->congested_data = md;
1876
1877 md->disk = alloc_disk_node(1, md->numa_node_id);
1878 if (!md->disk)
1879 goto bad;
1880
1881 atomic_set(&md->pending[0], 0);
1882 atomic_set(&md->pending[1], 0);
1883 init_waitqueue_head(&md->wait);
1884 INIT_WORK(&md->work, dm_wq_work);
1885 init_waitqueue_head(&md->eventq);
1886 init_completion(&md->kobj_holder.completion);
1887 md->kworker_task = NULL;
1888
1889 md->disk->major = _major;
1890 md->disk->first_minor = minor;
1891 md->disk->fops = &dm_blk_dops;
1892 md->disk->queue = md->queue;
1893 md->disk->private_data = md;
1894 sprintf(md->disk->disk_name, "dm-%d", minor);
1895
1896 if (IS_ENABLED(CONFIG_DAX_DRIVER)) {
1897 dax_dev = alloc_dax(md, md->disk->disk_name, &dm_dax_ops);
1898 if (!dax_dev)
1899 goto bad;
1900 }
1901 md->dax_dev = dax_dev;
1902
1903 add_disk_no_queue_reg(md->disk);
1904 format_dev_t(md->name, MKDEV(_major, minor));
1905
1906 md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
1907 if (!md->wq)
1908 goto bad;
1909
1910 md->bdev = bdget_disk(md->disk, 0);
1911 if (!md->bdev)
1912 goto bad;
1913
1914 bio_init(&md->flush_bio, NULL, 0);
1915 bio_set_dev(&md->flush_bio, md->bdev);
1916 md->flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1917
1918 dm_stats_init(&md->stats);
1919
1920 /* Populate the mapping, nobody knows we exist yet */
1921 spin_lock(&_minor_lock);
1922 old_md = idr_replace(&_minor_idr, md, minor);
1923 spin_unlock(&_minor_lock);
1924
1925 BUG_ON(old_md != MINOR_ALLOCED);
1926
1927 return md;
1928
1929bad:
1930 cleanup_mapped_device(md);
1931bad_io_barrier:
1932 free_minor(minor);
1933bad_minor:
1934 module_put(THIS_MODULE);
1935bad_module_get:
1936 kvfree(md);
1937 return NULL;
1938}
1939
1940static void unlock_fs(struct mapped_device *md);
1941
1942static void free_dev(struct mapped_device *md)
1943{
1944 int minor = MINOR(disk_devt(md->disk));
1945
1946 unlock_fs(md);
1947
1948 cleanup_mapped_device(md);
1949
1950 free_table_devices(&md->table_devices);
1951 dm_stats_cleanup(&md->stats);
1952 free_minor(minor);
1953
1954 module_put(THIS_MODULE);
1955 kvfree(md);
1956}
1957
1958static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
1959{
1960 struct dm_md_mempools *p = dm_table_get_md_mempools(t);
1961
1962 if (dm_table_bio_based(t)) {
1963 /*
1964 * The md may already have mempools that need changing.
1965 * If so, reload bioset because front_pad may have changed
1966 * because a different table was loaded.
1967 */
1968 if (md->bs) {
1969 bioset_free(md->bs);
1970 md->bs = NULL;
1971 }
1972 if (md->io_bs) {
1973 bioset_free(md->io_bs);
1974 md->io_bs = NULL;
1975 }
1976
1977 } else if (md->bs) {
1978 /*
1979 * There's no need to reload with request-based dm
1980 * because the size of front_pad doesn't change.
1981 * Note for future: If you are to reload bioset,
1982 * prep-ed requests in the queue may refer
1983 * to bio from the old bioset, so you must walk
1984 * through the queue to unprep.
1985 */
1986 goto out;
1987 }
1988
1989 BUG_ON(!p || md->bs || md->io_bs);
1990
1991 md->bs = p->bs;
1992 p->bs = NULL;
1993 md->io_bs = p->io_bs;
1994 p->io_bs = NULL;
1995out:
1996 /* mempool bind completed, no longer need any mempools in the table */
1997 dm_table_free_md_mempools(t);
1998}
1999
2000/*
2001 * Bind a table to the device.
2002 */
2003static void event_callback(void *context)
2004{
2005 unsigned long flags;
2006 LIST_HEAD(uevents);
2007 struct mapped_device *md = (struct mapped_device *) context;
2008
2009 spin_lock_irqsave(&md->uevent_lock, flags);
2010 list_splice_init(&md->uevent_list, &uevents);
2011 spin_unlock_irqrestore(&md->uevent_lock, flags);
2012
2013 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2014
2015 atomic_inc(&md->event_nr);
2016 wake_up(&md->eventq);
2017 dm_issue_global_event();
2018}
2019
2020/*
2021 * Protected by md->suspend_lock obtained by dm_swap_table().
2022 */
2023static void __set_size(struct mapped_device *md, sector_t size)
2024{
2025 lockdep_assert_held(&md->suspend_lock);
2026
2027 set_capacity(md->disk, size);
2028
2029 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2030}
2031
2032/*
2033 * Returns old map, which caller must destroy.
2034 */
2035static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2036 struct queue_limits *limits)
2037{
2038 struct dm_table *old_map;
2039 struct request_queue *q = md->queue;
2040 bool request_based = dm_table_request_based(t);
2041 sector_t size;
2042
2043 lockdep_assert_held(&md->suspend_lock);
2044
2045 size = dm_table_get_size(t);
2046
2047 /*
2048 * Wipe any geometry if the size of the table changed.
2049 */
2050 if (size != dm_get_size(md))
2051 memset(&md->geometry, 0, sizeof(md->geometry));
2052
2053 __set_size(md, size);
2054
2055 dm_table_event_callback(t, event_callback, md);
2056
2057 /*
2058 * The queue hasn't been stopped yet, if the old table type wasn't
2059 * for request-based during suspension. So stop it to prevent
2060 * I/O mapping before resume.
2061 * This must be done before setting the queue restrictions,
2062 * because request-based dm may be run just after the setting.
2063 */
2064 if (request_based)
2065 dm_stop_queue(q);
2066
2067 if (request_based || md->type == DM_TYPE_NVME_BIO_BASED) {
2068 /*
2069 * Leverage the fact that request-based DM targets and
2070 * NVMe bio based targets are immutable singletons
2071 * - used to optimize both dm_request_fn and dm_mq_queue_rq;
2072 * and __process_bio.
2073 */
2074 md->immutable_target = dm_table_get_immutable_target(t);
2075 }
2076
2077 __bind_mempools(md, t);
2078
2079 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2080 rcu_assign_pointer(md->map, (void *)t);
2081 md->immutable_target_type = dm_table_get_immutable_target_type(t);
2082
2083 dm_table_set_restrictions(t, q, limits);
2084 if (old_map)
2085 dm_sync_table(md);
2086
2087 return old_map;
2088}
2089
2090/*
2091 * Returns unbound table for the caller to free.
2092 */
2093static struct dm_table *__unbind(struct mapped_device *md)
2094{
2095 struct dm_table *map = rcu_dereference_protected(md->map, 1);
2096
2097 if (!map)
2098 return NULL;
2099
2100 dm_table_event_callback(map, NULL, NULL);
2101 RCU_INIT_POINTER(md->map, NULL);
2102 dm_sync_table(md);
2103
2104 return map;
2105}
2106
2107/*
2108 * Constructor for a new device.
2109 */
2110int dm_create(int minor, struct mapped_device **result)
2111{
2112 int r;
2113 struct mapped_device *md;
2114
2115 md = alloc_dev(minor);
2116 if (!md)
2117 return -ENXIO;
2118
2119 r = dm_sysfs_init(md);
2120 if (r) {
2121 free_dev(md);
2122 return r;
2123 }
2124
2125 *result = md;
2126 return 0;
2127}
2128
2129/*
2130 * Functions to manage md->type.
2131 * All are required to hold md->type_lock.
2132 */
2133void dm_lock_md_type(struct mapped_device *md)
2134{
2135 mutex_lock(&md->type_lock);
2136}
2137
2138void dm_unlock_md_type(struct mapped_device *md)
2139{
2140 mutex_unlock(&md->type_lock);
2141}
2142
2143void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2144{
2145 BUG_ON(!mutex_is_locked(&md->type_lock));
2146 md->type = type;
2147}
2148
2149enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2150{
2151 return md->type;
2152}
2153
2154struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2155{
2156 return md->immutable_target_type;
2157}
2158
2159/*
2160 * The queue_limits are only valid as long as you have a reference
2161 * count on 'md'.
2162 */
2163struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2164{
2165 BUG_ON(!atomic_read(&md->holders));
2166 return &md->queue->limits;
2167}
2168EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2169
2170/*
2171 * Setup the DM device's queue based on md's type
2172 */
2173int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2174{
2175 int r;
2176 struct queue_limits limits;
2177 enum dm_queue_mode type = dm_get_md_type(md);
2178
2179 switch (type) {
2180 case DM_TYPE_REQUEST_BASED:
2181 dm_init_normal_md_queue(md);
2182 r = dm_old_init_request_queue(md, t);
2183 if (r) {
2184 DMERR("Cannot initialize queue for request-based mapped device");
2185 return r;
2186 }
2187 break;
2188 case DM_TYPE_MQ_REQUEST_BASED:
2189 r = dm_mq_init_request_queue(md, t);
2190 if (r) {
2191 DMERR("Cannot initialize queue for request-based dm-mq mapped device");
2192 return r;
2193 }
2194 break;
2195 case DM_TYPE_BIO_BASED:
2196 case DM_TYPE_DAX_BIO_BASED:
2197 dm_init_normal_md_queue(md);
2198 blk_queue_make_request(md->queue, dm_make_request);
2199 break;
2200 case DM_TYPE_NVME_BIO_BASED:
2201 dm_init_normal_md_queue(md);
2202 blk_queue_make_request(md->queue, dm_make_request_nvme);
2203 break;
2204 case DM_TYPE_NONE:
2205 WARN_ON_ONCE(true);
2206 break;
2207 }
2208
2209 r = dm_calculate_queue_limits(t, &limits);
2210 if (r) {
2211 DMERR("Cannot calculate initial queue limits");
2212 return r;
2213 }
2214 dm_table_set_restrictions(t, md->queue, &limits);
2215 blk_register_queue(md->disk);
2216
2217 return 0;
2218}
2219
2220struct mapped_device *dm_get_md(dev_t dev)
2221{
2222 struct mapped_device *md;
2223 unsigned minor = MINOR(dev);
2224
2225 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2226 return NULL;
2227
2228 spin_lock(&_minor_lock);
2229
2230 md = idr_find(&_minor_idr, minor);
2231 if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2232 test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2233 md = NULL;
2234 goto out;
2235 }
2236 dm_get(md);
2237out:
2238 spin_unlock(&_minor_lock);
2239
2240 return md;
2241}
2242EXPORT_SYMBOL_GPL(dm_get_md);
2243
2244void *dm_get_mdptr(struct mapped_device *md)
2245{
2246 return md->interface_ptr;
2247}
2248
2249void dm_set_mdptr(struct mapped_device *md, void *ptr)
2250{
2251 md->interface_ptr = ptr;
2252}
2253
2254void dm_get(struct mapped_device *md)
2255{
2256 atomic_inc(&md->holders);
2257 BUG_ON(test_bit(DMF_FREEING, &md->flags));
2258}
2259
2260int dm_hold(struct mapped_device *md)
2261{
2262 spin_lock(&_minor_lock);
2263 if (test_bit(DMF_FREEING, &md->flags)) {
2264 spin_unlock(&_minor_lock);
2265 return -EBUSY;
2266 }
2267 dm_get(md);
2268 spin_unlock(&_minor_lock);
2269 return 0;
2270}
2271EXPORT_SYMBOL_GPL(dm_hold);
2272
2273const char *dm_device_name(struct mapped_device *md)
2274{
2275 return md->name;
2276}
2277EXPORT_SYMBOL_GPL(dm_device_name);
2278
2279static void __dm_destroy(struct mapped_device *md, bool wait)
2280{
2281 struct dm_table *map;
2282 int srcu_idx;
2283
2284 might_sleep();
2285
2286 spin_lock(&_minor_lock);
2287 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2288 set_bit(DMF_FREEING, &md->flags);
2289 spin_unlock(&_minor_lock);
2290
2291 blk_set_queue_dying(md->queue);
2292
2293 if (dm_request_based(md) && md->kworker_task)
2294 kthread_flush_worker(&md->kworker);
2295
2296 /*
2297 * Take suspend_lock so that presuspend and postsuspend methods
2298 * do not race with internal suspend.
2299 */
2300 mutex_lock(&md->suspend_lock);
2301 map = dm_get_live_table(md, &srcu_idx);
2302 if (!dm_suspended_md(md)) {
2303 dm_table_presuspend_targets(map);
2304 dm_table_postsuspend_targets(map);
2305 }
2306 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2307 dm_put_live_table(md, srcu_idx);
2308 mutex_unlock(&md->suspend_lock);
2309
2310 /*
2311 * Rare, but there may be I/O requests still going to complete,
2312 * for example. Wait for all references to disappear.
2313 * No one should increment the reference count of the mapped_device,
2314 * after the mapped_device state becomes DMF_FREEING.
2315 */
2316 if (wait)
2317 while (atomic_read(&md->holders))
2318 msleep(1);
2319 else if (atomic_read(&md->holders))
2320 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2321 dm_device_name(md), atomic_read(&md->holders));
2322
2323 dm_sysfs_exit(md);
2324 dm_table_destroy(__unbind(md));
2325 free_dev(md);
2326}
2327
2328void dm_destroy(struct mapped_device *md)
2329{
2330 __dm_destroy(md, true);
2331}
2332
2333void dm_destroy_immediate(struct mapped_device *md)
2334{
2335 __dm_destroy(md, false);
2336}
2337
2338void dm_put(struct mapped_device *md)
2339{
2340 atomic_dec(&md->holders);
2341}
2342EXPORT_SYMBOL_GPL(dm_put);
2343
2344static int dm_wait_for_completion(struct mapped_device *md, long task_state)
2345{
2346 int r = 0;
2347 DEFINE_WAIT(wait);
2348
2349 while (1) {
2350 prepare_to_wait(&md->wait, &wait, task_state);
2351
2352 if (!md_in_flight(md))
2353 break;
2354
2355 if (signal_pending_state(task_state, current)) {
2356 r = -EINTR;
2357 break;
2358 }
2359
2360 io_schedule();
2361 }
2362 finish_wait(&md->wait, &wait);
2363
2364 return r;
2365}
2366
2367/*
2368 * Process the deferred bios
2369 */
2370static void dm_wq_work(struct work_struct *work)
2371{
2372 struct mapped_device *md = container_of(work, struct mapped_device,
2373 work);
2374 struct bio *c;
2375 int srcu_idx;
2376 struct dm_table *map;
2377
2378 map = dm_get_live_table(md, &srcu_idx);
2379
2380 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2381 spin_lock_irq(&md->deferred_lock);
2382 c = bio_list_pop(&md->deferred);
2383 spin_unlock_irq(&md->deferred_lock);
2384
2385 if (!c)
2386 break;
2387
2388 if (dm_request_based(md))
2389 generic_make_request(c);
2390 else
2391 __split_and_process_bio(md, map, c);
2392 }
2393
2394 dm_put_live_table(md, srcu_idx);
2395}
2396
2397static void dm_queue_flush(struct mapped_device *md)
2398{
2399 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2400 smp_mb__after_atomic();
2401 queue_work(md->wq, &md->work);
2402}
2403
2404/*
2405 * Swap in a new table, returning the old one for the caller to destroy.
2406 */
2407struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2408{
2409 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2410 struct queue_limits limits;
2411 int r;
2412
2413 mutex_lock(&md->suspend_lock);
2414
2415 /* device must be suspended */
2416 if (!dm_suspended_md(md))
2417 goto out;
2418
2419 /*
2420 * If the new table has no data devices, retain the existing limits.
2421 * This helps multipath with queue_if_no_path if all paths disappear,
2422 * then new I/O is queued based on these limits, and then some paths
2423 * reappear.
2424 */
2425 if (dm_table_has_no_data_devices(table)) {
2426 live_map = dm_get_live_table_fast(md);
2427 if (live_map)
2428 limits = md->queue->limits;
2429 dm_put_live_table_fast(md);
2430 }
2431
2432 if (!live_map) {
2433 r = dm_calculate_queue_limits(table, &limits);
2434 if (r) {
2435 map = ERR_PTR(r);
2436 goto out;
2437 }
2438 }
2439
2440 map = __bind(md, table, &limits);
2441 dm_issue_global_event();
2442
2443out:
2444 mutex_unlock(&md->suspend_lock);
2445 return map;
2446}
2447
2448/*
2449 * Functions to lock and unlock any filesystem running on the
2450 * device.
2451 */
2452static int lock_fs(struct mapped_device *md)
2453{
2454 int r;
2455
2456 WARN_ON(md->frozen_sb);
2457
2458 md->frozen_sb = freeze_bdev(md->bdev);
2459 if (IS_ERR(md->frozen_sb)) {
2460 r = PTR_ERR(md->frozen_sb);
2461 md->frozen_sb = NULL;
2462 return r;
2463 }
2464
2465 set_bit(DMF_FROZEN, &md->flags);
2466
2467 return 0;
2468}
2469
2470static void unlock_fs(struct mapped_device *md)
2471{
2472 if (!test_bit(DMF_FROZEN, &md->flags))
2473 return;
2474
2475 thaw_bdev(md->bdev, md->frozen_sb);
2476 md->frozen_sb = NULL;
2477 clear_bit(DMF_FROZEN, &md->flags);
2478}
2479
2480/*
2481 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2482 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2483 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2484 *
2485 * If __dm_suspend returns 0, the device is completely quiescent
2486 * now. There is no request-processing activity. All new requests
2487 * are being added to md->deferred list.
2488 */
2489static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2490 unsigned suspend_flags, long task_state,
2491 int dmf_suspended_flag)
2492{
2493 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2494 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2495 int r;
2496
2497 lockdep_assert_held(&md->suspend_lock);
2498
2499 /*
2500 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2501 * This flag is cleared before dm_suspend returns.
2502 */
2503 if (noflush)
2504 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2505 else
2506 pr_debug("%s: suspending with flush\n", dm_device_name(md));
2507
2508 /*
2509 * This gets reverted if there's an error later and the targets
2510 * provide the .presuspend_undo hook.
2511 */
2512 dm_table_presuspend_targets(map);
2513
2514 /*
2515 * Flush I/O to the device.
2516 * Any I/O submitted after lock_fs() may not be flushed.
2517 * noflush takes precedence over do_lockfs.
2518 * (lock_fs() flushes I/Os and waits for them to complete.)
2519 */
2520 if (!noflush && do_lockfs) {
2521 r = lock_fs(md);
2522 if (r) {
2523 dm_table_presuspend_undo_targets(map);
2524 return r;
2525 }
2526 }
2527
2528 /*
2529 * Here we must make sure that no processes are submitting requests
2530 * to target drivers i.e. no one may be executing
2531 * __split_and_process_bio. This is called from dm_request and
2532 * dm_wq_work.
2533 *
2534 * To get all processes out of __split_and_process_bio in dm_request,
2535 * we take the write lock. To prevent any process from reentering
2536 * __split_and_process_bio from dm_request and quiesce the thread
2537 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2538 * flush_workqueue(md->wq).
2539 */
2540 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2541 if (map)
2542 synchronize_srcu(&md->io_barrier);
2543
2544 /*
2545 * Stop md->queue before flushing md->wq in case request-based
2546 * dm defers requests to md->wq from md->queue.
2547 */
2548 if (dm_request_based(md)) {
2549 dm_stop_queue(md->queue);
2550 if (md->kworker_task)
2551 kthread_flush_worker(&md->kworker);
2552 }
2553
2554 flush_workqueue(md->wq);
2555
2556 /*
2557 * At this point no more requests are entering target request routines.
2558 * We call dm_wait_for_completion to wait for all existing requests
2559 * to finish.
2560 */
2561 r = dm_wait_for_completion(md, task_state);
2562 if (!r)
2563 set_bit(dmf_suspended_flag, &md->flags);
2564
2565 if (noflush)
2566 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2567 if (map)
2568 synchronize_srcu(&md->io_barrier);
2569
2570 /* were we interrupted ? */
2571 if (r < 0) {
2572 dm_queue_flush(md);
2573
2574 if (dm_request_based(md))
2575 dm_start_queue(md->queue);
2576
2577 unlock_fs(md);
2578 dm_table_presuspend_undo_targets(map);
2579 /* pushback list is already flushed, so skip flush */
2580 }
2581
2582 return r;
2583}
2584
2585/*
2586 * We need to be able to change a mapping table under a mounted
2587 * filesystem. For example we might want to move some data in
2588 * the background. Before the table can be swapped with
2589 * dm_bind_table, dm_suspend must be called to flush any in
2590 * flight bios and ensure that any further io gets deferred.
2591 */
2592/*
2593 * Suspend mechanism in request-based dm.
2594 *
2595 * 1. Flush all I/Os by lock_fs() if needed.
2596 * 2. Stop dispatching any I/O by stopping the request_queue.
2597 * 3. Wait for all in-flight I/Os to be completed or requeued.
2598 *
2599 * To abort suspend, start the request_queue.
2600 */
2601int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2602{
2603 struct dm_table *map = NULL;
2604 int r = 0;
2605
2606retry:
2607 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2608
2609 if (dm_suspended_md(md)) {
2610 r = -EINVAL;
2611 goto out_unlock;
2612 }
2613
2614 if (dm_suspended_internally_md(md)) {
2615 /* already internally suspended, wait for internal resume */
2616 mutex_unlock(&md->suspend_lock);
2617 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2618 if (r)
2619 return r;
2620 goto retry;
2621 }
2622
2623 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2624
2625 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2626 if (r)
2627 goto out_unlock;
2628
2629 dm_table_postsuspend_targets(map);
2630
2631out_unlock:
2632 mutex_unlock(&md->suspend_lock);
2633 return r;
2634}
2635
2636static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2637{
2638 if (map) {
2639 int r = dm_table_resume_targets(map);
2640 if (r)
2641 return r;
2642 }
2643
2644 dm_queue_flush(md);
2645
2646 /*
2647 * Flushing deferred I/Os must be done after targets are resumed
2648 * so that mapping of targets can work correctly.
2649 * Request-based dm is queueing the deferred I/Os in its request_queue.
2650 */
2651 if (dm_request_based(md))
2652 dm_start_queue(md->queue);
2653
2654 unlock_fs(md);
2655
2656 return 0;
2657}
2658
2659int dm_resume(struct mapped_device *md)
2660{
2661 int r;
2662 struct dm_table *map = NULL;
2663
2664retry:
2665 r = -EINVAL;
2666 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2667
2668 if (!dm_suspended_md(md))
2669 goto out;
2670
2671 if (dm_suspended_internally_md(md)) {
2672 /* already internally suspended, wait for internal resume */
2673 mutex_unlock(&md->suspend_lock);
2674 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2675 if (r)
2676 return r;
2677 goto retry;
2678 }
2679
2680 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2681 if (!map || !dm_table_get_size(map))
2682 goto out;
2683
2684 r = __dm_resume(md, map);
2685 if (r)
2686 goto out;
2687
2688 clear_bit(DMF_SUSPENDED, &md->flags);
2689out:
2690 mutex_unlock(&md->suspend_lock);
2691
2692 return r;
2693}
2694
2695/*
2696 * Internal suspend/resume works like userspace-driven suspend. It waits
2697 * until all bios finish and prevents issuing new bios to the target drivers.
2698 * It may be used only from the kernel.
2699 */
2700
2701static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2702{
2703 struct dm_table *map = NULL;
2704
2705 lockdep_assert_held(&md->suspend_lock);
2706
2707 if (md->internal_suspend_count++)
2708 return; /* nested internal suspend */
2709
2710 if (dm_suspended_md(md)) {
2711 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2712 return; /* nest suspend */
2713 }
2714
2715 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2716
2717 /*
2718 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2719 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend
2720 * would require changing .presuspend to return an error -- avoid this
2721 * until there is a need for more elaborate variants of internal suspend.
2722 */
2723 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2724 DMF_SUSPENDED_INTERNALLY);
2725
2726 dm_table_postsuspend_targets(map);
2727}
2728
2729static void __dm_internal_resume(struct mapped_device *md)
2730{
2731 BUG_ON(!md->internal_suspend_count);
2732
2733 if (--md->internal_suspend_count)
2734 return; /* resume from nested internal suspend */
2735
2736 if (dm_suspended_md(md))
2737 goto done; /* resume from nested suspend */
2738
2739 /*
2740 * NOTE: existing callers don't need to call dm_table_resume_targets
2741 * (which may fail -- so best to avoid it for now by passing NULL map)
2742 */
2743 (void) __dm_resume(md, NULL);
2744
2745done:
2746 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2747 smp_mb__after_atomic();
2748 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2749}
2750
2751void dm_internal_suspend_noflush(struct mapped_device *md)
2752{
2753 mutex_lock(&md->suspend_lock);
2754 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2755 mutex_unlock(&md->suspend_lock);
2756}
2757EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2758
2759void dm_internal_resume(struct mapped_device *md)
2760{
2761 mutex_lock(&md->suspend_lock);
2762 __dm_internal_resume(md);
2763 mutex_unlock(&md->suspend_lock);
2764}
2765EXPORT_SYMBOL_GPL(dm_internal_resume);
2766
2767/*
2768 * Fast variants of internal suspend/resume hold md->suspend_lock,
2769 * which prevents interaction with userspace-driven suspend.
2770 */
2771
2772void dm_internal_suspend_fast(struct mapped_device *md)
2773{
2774 mutex_lock(&md->suspend_lock);
2775 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2776 return;
2777
2778 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2779 synchronize_srcu(&md->io_barrier);
2780 flush_workqueue(md->wq);
2781 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2782}
2783EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2784
2785void dm_internal_resume_fast(struct mapped_device *md)
2786{
2787 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2788 goto done;
2789
2790 dm_queue_flush(md);
2791
2792done:
2793 mutex_unlock(&md->suspend_lock);
2794}
2795EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2796
2797/*-----------------------------------------------------------------
2798 * Event notification.
2799 *---------------------------------------------------------------*/
2800int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2801 unsigned cookie)
2802{
2803 char udev_cookie[DM_COOKIE_LENGTH];
2804 char *envp[] = { udev_cookie, NULL };
2805
2806 if (!cookie)
2807 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2808 else {
2809 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2810 DM_COOKIE_ENV_VAR_NAME, cookie);
2811 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2812 action, envp);
2813 }
2814}
2815
2816uint32_t dm_next_uevent_seq(struct mapped_device *md)
2817{
2818 return atomic_add_return(1, &md->uevent_seq);
2819}
2820
2821uint32_t dm_get_event_nr(struct mapped_device *md)
2822{
2823 return atomic_read(&md->event_nr);
2824}
2825
2826int dm_wait_event(struct mapped_device *md, int event_nr)
2827{
2828 return wait_event_interruptible(md->eventq,
2829 (event_nr != atomic_read(&md->event_nr)));
2830}
2831
2832void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2833{
2834 unsigned long flags;
2835
2836 spin_lock_irqsave(&md->uevent_lock, flags);
2837 list_add(elist, &md->uevent_list);
2838 spin_unlock_irqrestore(&md->uevent_lock, flags);
2839}
2840
2841/*
2842 * The gendisk is only valid as long as you have a reference
2843 * count on 'md'.
2844 */
2845struct gendisk *dm_disk(struct mapped_device *md)
2846{
2847 return md->disk;
2848}
2849EXPORT_SYMBOL_GPL(dm_disk);
2850
2851struct kobject *dm_kobject(struct mapped_device *md)
2852{
2853 return &md->kobj_holder.kobj;
2854}
2855
2856struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2857{
2858 struct mapped_device *md;
2859
2860 md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2861
2862 spin_lock(&_minor_lock);
2863 if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2864 md = NULL;
2865 goto out;
2866 }
2867 dm_get(md);
2868out:
2869 spin_unlock(&_minor_lock);
2870
2871 return md;
2872}
2873
2874int dm_suspended_md(struct mapped_device *md)
2875{
2876 return test_bit(DMF_SUSPENDED, &md->flags);
2877}
2878
2879int dm_suspended_internally_md(struct mapped_device *md)
2880{
2881 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2882}
2883
2884int dm_test_deferred_remove_flag(struct mapped_device *md)
2885{
2886 return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2887}
2888
2889int dm_suspended(struct dm_target *ti)
2890{
2891 return dm_suspended_md(dm_table_get_md(ti->table));
2892}
2893EXPORT_SYMBOL_GPL(dm_suspended);
2894
2895int dm_noflush_suspending(struct dm_target *ti)
2896{
2897 return __noflush_suspending(dm_table_get_md(ti->table));
2898}
2899EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2900
2901struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type,
2902 unsigned integrity, unsigned per_io_data_size,
2903 unsigned min_pool_size)
2904{
2905 struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
2906 unsigned int pool_size = 0;
2907 unsigned int front_pad, io_front_pad;
2908
2909 if (!pools)
2910 return NULL;
2911
2912 switch (type) {
2913 case DM_TYPE_BIO_BASED:
2914 case DM_TYPE_DAX_BIO_BASED:
2915 case DM_TYPE_NVME_BIO_BASED:
2916 pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
2917 front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
2918 io_front_pad = roundup(front_pad, __alignof__(struct dm_io)) + offsetof(struct dm_io, tio);
2919 pools->io_bs = bioset_create(pool_size, io_front_pad, 0);
2920 if (!pools->io_bs)
2921 goto out;
2922 if (integrity && bioset_integrity_create(pools->io_bs, pool_size))
2923 goto out;
2924 break;
2925 case DM_TYPE_REQUEST_BASED:
2926 case DM_TYPE_MQ_REQUEST_BASED:
2927 pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size);
2928 front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
2929 /* per_io_data_size is used for blk-mq pdu at queue allocation */
2930 break;
2931 default:
2932 BUG();
2933 }
2934
2935 pools->bs = bioset_create(pool_size, front_pad, 0);
2936 if (!pools->bs)
2937 goto out;
2938
2939 if (integrity && bioset_integrity_create(pools->bs, pool_size))
2940 goto out;
2941
2942 return pools;
2943
2944out:
2945 dm_free_md_mempools(pools);
2946
2947 return NULL;
2948}
2949
2950void dm_free_md_mempools(struct dm_md_mempools *pools)
2951{
2952 if (!pools)
2953 return;
2954
2955 if (pools->bs)
2956 bioset_free(pools->bs);
2957 if (pools->io_bs)
2958 bioset_free(pools->io_bs);
2959
2960 kfree(pools);
2961}
2962
2963struct dm_pr {
2964 u64 old_key;
2965 u64 new_key;
2966 u32 flags;
2967 bool fail_early;
2968};
2969
2970static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
2971 void *data)
2972{
2973 struct mapped_device *md = bdev->bd_disk->private_data;
2974 struct dm_table *table;
2975 struct dm_target *ti;
2976 int ret = -ENOTTY, srcu_idx;
2977
2978 table = dm_get_live_table(md, &srcu_idx);
2979 if (!table || !dm_table_get_size(table))
2980 goto out;
2981
2982 /* We only support devices that have a single target */
2983 if (dm_table_get_num_targets(table) != 1)
2984 goto out;
2985 ti = dm_table_get_target(table, 0);
2986
2987 ret = -EINVAL;
2988 if (!ti->type->iterate_devices)
2989 goto out;
2990
2991 ret = ti->type->iterate_devices(ti, fn, data);
2992out:
2993 dm_put_live_table(md, srcu_idx);
2994 return ret;
2995}
2996
2997/*
2998 * For register / unregister we need to manually call out to every path.
2999 */
3000static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
3001 sector_t start, sector_t len, void *data)
3002{
3003 struct dm_pr *pr = data;
3004 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3005
3006 if (!ops || !ops->pr_register)
3007 return -EOPNOTSUPP;
3008 return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
3009}
3010
3011static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3012 u32 flags)
3013{
3014 struct dm_pr pr = {
3015 .old_key = old_key,
3016 .new_key = new_key,
3017 .flags = flags,
3018 .fail_early = true,
3019 };
3020 int ret;
3021
3022 ret = dm_call_pr(bdev, __dm_pr_register, &pr);
3023 if (ret && new_key) {
3024 /* unregister all paths if we failed to register any path */
3025 pr.old_key = new_key;
3026 pr.new_key = 0;
3027 pr.flags = 0;
3028 pr.fail_early = false;
3029 dm_call_pr(bdev, __dm_pr_register, &pr);
3030 }
3031
3032 return ret;
3033}
3034
3035static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3036 u32 flags)
3037{
3038 struct mapped_device *md = bdev->bd_disk->private_data;
3039 const struct pr_ops *ops;
3040 int r, srcu_idx;
3041
3042 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3043 if (r < 0)
3044 goto out;
3045
3046 ops = bdev->bd_disk->fops->pr_ops;
3047 if (ops && ops->pr_reserve)
3048 r = ops->pr_reserve(bdev, key, type, flags);
3049 else
3050 r = -EOPNOTSUPP;
3051out:
3052 dm_unprepare_ioctl(md, srcu_idx);
3053 return r;
3054}
3055
3056static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3057{
3058 struct mapped_device *md = bdev->bd_disk->private_data;
3059 const struct pr_ops *ops;
3060 int r, srcu_idx;
3061
3062 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3063 if (r < 0)
3064 goto out;
3065
3066 ops = bdev->bd_disk->fops->pr_ops;
3067 if (ops && ops->pr_release)
3068 r = ops->pr_release(bdev, key, type);
3069 else
3070 r = -EOPNOTSUPP;
3071out:
3072 dm_unprepare_ioctl(md, srcu_idx);
3073 return r;
3074}
3075
3076static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3077 enum pr_type type, bool abort)
3078{
3079 struct mapped_device *md = bdev->bd_disk->private_data;
3080 const struct pr_ops *ops;
3081 int r, srcu_idx;
3082
3083 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3084 if (r < 0)
3085 goto out;
3086
3087 ops = bdev->bd_disk->fops->pr_ops;
3088 if (ops && ops->pr_preempt)
3089 r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
3090 else
3091 r = -EOPNOTSUPP;
3092out:
3093 dm_unprepare_ioctl(md, srcu_idx);
3094 return r;
3095}
3096
3097static int dm_pr_clear(struct block_device *bdev, u64 key)
3098{
3099 struct mapped_device *md = bdev->bd_disk->private_data;
3100 const struct pr_ops *ops;
3101 int r, srcu_idx;
3102
3103 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3104 if (r < 0)
3105 goto out;
3106
3107 ops = bdev->bd_disk->fops->pr_ops;
3108 if (ops && ops->pr_clear)
3109 r = ops->pr_clear(bdev, key);
3110 else
3111 r = -EOPNOTSUPP;
3112out:
3113 dm_unprepare_ioctl(md, srcu_idx);
3114 return r;
3115}
3116
3117static const struct pr_ops dm_pr_ops = {
3118 .pr_register = dm_pr_register,
3119 .pr_reserve = dm_pr_reserve,
3120 .pr_release = dm_pr_release,
3121 .pr_preempt = dm_pr_preempt,
3122 .pr_clear = dm_pr_clear,
3123};
3124
3125static const struct block_device_operations dm_blk_dops = {
3126 .open = dm_blk_open,
3127 .release = dm_blk_close,
3128 .ioctl = dm_blk_ioctl,
3129 .getgeo = dm_blk_getgeo,
3130 .pr_ops = &dm_pr_ops,
3131 .owner = THIS_MODULE
3132};
3133
3134static const struct dax_operations dm_dax_ops = {
3135 .direct_access = dm_dax_direct_access,
3136 .copy_from_iter = dm_dax_copy_from_iter,
3137};
3138
3139/*
3140 * module hooks
3141 */
3142module_init(dm_init);
3143module_exit(dm_exit);
3144
3145module_param(major, uint, 0);
3146MODULE_PARM_DESC(major, "The major number of the device mapper");
3147
3148module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3149MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3150
3151module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
3152MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3153
3154MODULE_DESCRIPTION(DM_NAME " driver");
3155MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3156MODULE_LICENSE("GPL");