Loading...
1/*
2 * linux/fs/proc/base.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * proc base directory handling functions
7 *
8 * 1999, Al Viro. Rewritten. Now it covers the whole per-process part.
9 * Instead of using magical inumbers to determine the kind of object
10 * we allocate and fill in-core inodes upon lookup. They don't even
11 * go into icache. We cache the reference to task_struct upon lookup too.
12 * Eventually it should become a filesystem in its own. We don't use the
13 * rest of procfs anymore.
14 *
15 *
16 * Changelog:
17 * 17-Jan-2005
18 * Allan Bezerra
19 * Bruna Moreira <bruna.moreira@indt.org.br>
20 * Edjard Mota <edjard.mota@indt.org.br>
21 * Ilias Biris <ilias.biris@indt.org.br>
22 * Mauricio Lin <mauricio.lin@indt.org.br>
23 *
24 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
25 *
26 * A new process specific entry (smaps) included in /proc. It shows the
27 * size of rss for each memory area. The maps entry lacks information
28 * about physical memory size (rss) for each mapped file, i.e.,
29 * rss information for executables and library files.
30 * This additional information is useful for any tools that need to know
31 * about physical memory consumption for a process specific library.
32 *
33 * Changelog:
34 * 21-Feb-2005
35 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
36 * Pud inclusion in the page table walking.
37 *
38 * ChangeLog:
39 * 10-Mar-2005
40 * 10LE Instituto Nokia de Tecnologia - INdT:
41 * A better way to walks through the page table as suggested by Hugh Dickins.
42 *
43 * Simo Piiroinen <simo.piiroinen@nokia.com>:
44 * Smaps information related to shared, private, clean and dirty pages.
45 *
46 * Paul Mundt <paul.mundt@nokia.com>:
47 * Overall revision about smaps.
48 */
49
50#include <asm/uaccess.h>
51
52#include <linux/errno.h>
53#include <linux/time.h>
54#include <linux/proc_fs.h>
55#include <linux/stat.h>
56#include <linux/task_io_accounting_ops.h>
57#include <linux/init.h>
58#include <linux/capability.h>
59#include <linux/file.h>
60#include <linux/fdtable.h>
61#include <linux/string.h>
62#include <linux/seq_file.h>
63#include <linux/namei.h>
64#include <linux/mnt_namespace.h>
65#include <linux/mm.h>
66#include <linux/swap.h>
67#include <linux/rcupdate.h>
68#include <linux/kallsyms.h>
69#include <linux/stacktrace.h>
70#include <linux/resource.h>
71#include <linux/module.h>
72#include <linux/mount.h>
73#include <linux/security.h>
74#include <linux/ptrace.h>
75#include <linux/tracehook.h>
76#include <linux/cgroup.h>
77#include <linux/cpuset.h>
78#include <linux/audit.h>
79#include <linux/poll.h>
80#include <linux/nsproxy.h>
81#include <linux/oom.h>
82#include <linux/elf.h>
83#include <linux/pid_namespace.h>
84#include <linux/fs_struct.h>
85#include <linux/slab.h>
86#ifdef CONFIG_HARDWALL
87#include <asm/hardwall.h>
88#endif
89#include "internal.h"
90
91/* NOTE:
92 * Implementing inode permission operations in /proc is almost
93 * certainly an error. Permission checks need to happen during
94 * each system call not at open time. The reason is that most of
95 * what we wish to check for permissions in /proc varies at runtime.
96 *
97 * The classic example of a problem is opening file descriptors
98 * in /proc for a task before it execs a suid executable.
99 */
100
101struct pid_entry {
102 char *name;
103 int len;
104 mode_t mode;
105 const struct inode_operations *iop;
106 const struct file_operations *fop;
107 union proc_op op;
108};
109
110#define NOD(NAME, MODE, IOP, FOP, OP) { \
111 .name = (NAME), \
112 .len = sizeof(NAME) - 1, \
113 .mode = MODE, \
114 .iop = IOP, \
115 .fop = FOP, \
116 .op = OP, \
117}
118
119#define DIR(NAME, MODE, iops, fops) \
120 NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
121#define LNK(NAME, get_link) \
122 NOD(NAME, (S_IFLNK|S_IRWXUGO), \
123 &proc_pid_link_inode_operations, NULL, \
124 { .proc_get_link = get_link } )
125#define REG(NAME, MODE, fops) \
126 NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
127#define INF(NAME, MODE, read) \
128 NOD(NAME, (S_IFREG|(MODE)), \
129 NULL, &proc_info_file_operations, \
130 { .proc_read = read } )
131#define ONE(NAME, MODE, show) \
132 NOD(NAME, (S_IFREG|(MODE)), \
133 NULL, &proc_single_file_operations, \
134 { .proc_show = show } )
135
136/*
137 * Count the number of hardlinks for the pid_entry table, excluding the .
138 * and .. links.
139 */
140static unsigned int pid_entry_count_dirs(const struct pid_entry *entries,
141 unsigned int n)
142{
143 unsigned int i;
144 unsigned int count;
145
146 count = 0;
147 for (i = 0; i < n; ++i) {
148 if (S_ISDIR(entries[i].mode))
149 ++count;
150 }
151
152 return count;
153}
154
155static int get_task_root(struct task_struct *task, struct path *root)
156{
157 int result = -ENOENT;
158
159 task_lock(task);
160 if (task->fs) {
161 get_fs_root(task->fs, root);
162 result = 0;
163 }
164 task_unlock(task);
165 return result;
166}
167
168static int proc_cwd_link(struct inode *inode, struct path *path)
169{
170 struct task_struct *task = get_proc_task(inode);
171 int result = -ENOENT;
172
173 if (task) {
174 task_lock(task);
175 if (task->fs) {
176 get_fs_pwd(task->fs, path);
177 result = 0;
178 }
179 task_unlock(task);
180 put_task_struct(task);
181 }
182 return result;
183}
184
185static int proc_root_link(struct inode *inode, struct path *path)
186{
187 struct task_struct *task = get_proc_task(inode);
188 int result = -ENOENT;
189
190 if (task) {
191 result = get_task_root(task, path);
192 put_task_struct(task);
193 }
194 return result;
195}
196
197static struct mm_struct *__check_mem_permission(struct task_struct *task)
198{
199 struct mm_struct *mm;
200
201 mm = get_task_mm(task);
202 if (!mm)
203 return ERR_PTR(-EINVAL);
204
205 /*
206 * A task can always look at itself, in case it chooses
207 * to use system calls instead of load instructions.
208 */
209 if (task == current)
210 return mm;
211
212 /*
213 * If current is actively ptrace'ing, and would also be
214 * permitted to freshly attach with ptrace now, permit it.
215 */
216 if (task_is_stopped_or_traced(task)) {
217 int match;
218 rcu_read_lock();
219 match = (ptrace_parent(task) == current);
220 rcu_read_unlock();
221 if (match && ptrace_may_access(task, PTRACE_MODE_ATTACH))
222 return mm;
223 }
224
225 /*
226 * No one else is allowed.
227 */
228 mmput(mm);
229 return ERR_PTR(-EPERM);
230}
231
232/*
233 * If current may access user memory in @task return a reference to the
234 * corresponding mm, otherwise ERR_PTR.
235 */
236static struct mm_struct *check_mem_permission(struct task_struct *task)
237{
238 struct mm_struct *mm;
239 int err;
240
241 /*
242 * Avoid racing if task exec's as we might get a new mm but validate
243 * against old credentials.
244 */
245 err = mutex_lock_killable(&task->signal->cred_guard_mutex);
246 if (err)
247 return ERR_PTR(err);
248
249 mm = __check_mem_permission(task);
250 mutex_unlock(&task->signal->cred_guard_mutex);
251
252 return mm;
253}
254
255struct mm_struct *mm_for_maps(struct task_struct *task)
256{
257 struct mm_struct *mm;
258 int err;
259
260 err = mutex_lock_killable(&task->signal->cred_guard_mutex);
261 if (err)
262 return ERR_PTR(err);
263
264 mm = get_task_mm(task);
265 if (mm && mm != current->mm &&
266 !ptrace_may_access(task, PTRACE_MODE_READ)) {
267 mmput(mm);
268 mm = ERR_PTR(-EACCES);
269 }
270 mutex_unlock(&task->signal->cred_guard_mutex);
271
272 return mm;
273}
274
275static int proc_pid_cmdline(struct task_struct *task, char * buffer)
276{
277 int res = 0;
278 unsigned int len;
279 struct mm_struct *mm = get_task_mm(task);
280 if (!mm)
281 goto out;
282 if (!mm->arg_end)
283 goto out_mm; /* Shh! No looking before we're done */
284
285 len = mm->arg_end - mm->arg_start;
286
287 if (len > PAGE_SIZE)
288 len = PAGE_SIZE;
289
290 res = access_process_vm(task, mm->arg_start, buffer, len, 0);
291
292 // If the nul at the end of args has been overwritten, then
293 // assume application is using setproctitle(3).
294 if (res > 0 && buffer[res-1] != '\0' && len < PAGE_SIZE) {
295 len = strnlen(buffer, res);
296 if (len < res) {
297 res = len;
298 } else {
299 len = mm->env_end - mm->env_start;
300 if (len > PAGE_SIZE - res)
301 len = PAGE_SIZE - res;
302 res += access_process_vm(task, mm->env_start, buffer+res, len, 0);
303 res = strnlen(buffer, res);
304 }
305 }
306out_mm:
307 mmput(mm);
308out:
309 return res;
310}
311
312static int proc_pid_auxv(struct task_struct *task, char *buffer)
313{
314 struct mm_struct *mm = mm_for_maps(task);
315 int res = PTR_ERR(mm);
316 if (mm && !IS_ERR(mm)) {
317 unsigned int nwords = 0;
318 do {
319 nwords += 2;
320 } while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
321 res = nwords * sizeof(mm->saved_auxv[0]);
322 if (res > PAGE_SIZE)
323 res = PAGE_SIZE;
324 memcpy(buffer, mm->saved_auxv, res);
325 mmput(mm);
326 }
327 return res;
328}
329
330
331#ifdef CONFIG_KALLSYMS
332/*
333 * Provides a wchan file via kallsyms in a proper one-value-per-file format.
334 * Returns the resolved symbol. If that fails, simply return the address.
335 */
336static int proc_pid_wchan(struct task_struct *task, char *buffer)
337{
338 unsigned long wchan;
339 char symname[KSYM_NAME_LEN];
340
341 wchan = get_wchan(task);
342
343 if (lookup_symbol_name(wchan, symname) < 0)
344 if (!ptrace_may_access(task, PTRACE_MODE_READ))
345 return 0;
346 else
347 return sprintf(buffer, "%lu", wchan);
348 else
349 return sprintf(buffer, "%s", symname);
350}
351#endif /* CONFIG_KALLSYMS */
352
353static int lock_trace(struct task_struct *task)
354{
355 int err = mutex_lock_killable(&task->signal->cred_guard_mutex);
356 if (err)
357 return err;
358 if (!ptrace_may_access(task, PTRACE_MODE_ATTACH)) {
359 mutex_unlock(&task->signal->cred_guard_mutex);
360 return -EPERM;
361 }
362 return 0;
363}
364
365static void unlock_trace(struct task_struct *task)
366{
367 mutex_unlock(&task->signal->cred_guard_mutex);
368}
369
370#ifdef CONFIG_STACKTRACE
371
372#define MAX_STACK_TRACE_DEPTH 64
373
374static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
375 struct pid *pid, struct task_struct *task)
376{
377 struct stack_trace trace;
378 unsigned long *entries;
379 int err;
380 int i;
381
382 entries = kmalloc(MAX_STACK_TRACE_DEPTH * sizeof(*entries), GFP_KERNEL);
383 if (!entries)
384 return -ENOMEM;
385
386 trace.nr_entries = 0;
387 trace.max_entries = MAX_STACK_TRACE_DEPTH;
388 trace.entries = entries;
389 trace.skip = 0;
390
391 err = lock_trace(task);
392 if (!err) {
393 save_stack_trace_tsk(task, &trace);
394
395 for (i = 0; i < trace.nr_entries; i++) {
396 seq_printf(m, "[<%pK>] %pS\n",
397 (void *)entries[i], (void *)entries[i]);
398 }
399 unlock_trace(task);
400 }
401 kfree(entries);
402
403 return err;
404}
405#endif
406
407#ifdef CONFIG_SCHEDSTATS
408/*
409 * Provides /proc/PID/schedstat
410 */
411static int proc_pid_schedstat(struct task_struct *task, char *buffer)
412{
413 return sprintf(buffer, "%llu %llu %lu\n",
414 (unsigned long long)task->se.sum_exec_runtime,
415 (unsigned long long)task->sched_info.run_delay,
416 task->sched_info.pcount);
417}
418#endif
419
420#ifdef CONFIG_LATENCYTOP
421static int lstats_show_proc(struct seq_file *m, void *v)
422{
423 int i;
424 struct inode *inode = m->private;
425 struct task_struct *task = get_proc_task(inode);
426
427 if (!task)
428 return -ESRCH;
429 seq_puts(m, "Latency Top version : v0.1\n");
430 for (i = 0; i < 32; i++) {
431 struct latency_record *lr = &task->latency_record[i];
432 if (lr->backtrace[0]) {
433 int q;
434 seq_printf(m, "%i %li %li",
435 lr->count, lr->time, lr->max);
436 for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
437 unsigned long bt = lr->backtrace[q];
438 if (!bt)
439 break;
440 if (bt == ULONG_MAX)
441 break;
442 seq_printf(m, " %ps", (void *)bt);
443 }
444 seq_putc(m, '\n');
445 }
446
447 }
448 put_task_struct(task);
449 return 0;
450}
451
452static int lstats_open(struct inode *inode, struct file *file)
453{
454 return single_open(file, lstats_show_proc, inode);
455}
456
457static ssize_t lstats_write(struct file *file, const char __user *buf,
458 size_t count, loff_t *offs)
459{
460 struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
461
462 if (!task)
463 return -ESRCH;
464 clear_all_latency_tracing(task);
465 put_task_struct(task);
466
467 return count;
468}
469
470static const struct file_operations proc_lstats_operations = {
471 .open = lstats_open,
472 .read = seq_read,
473 .write = lstats_write,
474 .llseek = seq_lseek,
475 .release = single_release,
476};
477
478#endif
479
480static int proc_oom_score(struct task_struct *task, char *buffer)
481{
482 unsigned long points = 0;
483
484 read_lock(&tasklist_lock);
485 if (pid_alive(task))
486 points = oom_badness(task, NULL, NULL,
487 totalram_pages + total_swap_pages);
488 read_unlock(&tasklist_lock);
489 return sprintf(buffer, "%lu\n", points);
490}
491
492struct limit_names {
493 char *name;
494 char *unit;
495};
496
497static const struct limit_names lnames[RLIM_NLIMITS] = {
498 [RLIMIT_CPU] = {"Max cpu time", "seconds"},
499 [RLIMIT_FSIZE] = {"Max file size", "bytes"},
500 [RLIMIT_DATA] = {"Max data size", "bytes"},
501 [RLIMIT_STACK] = {"Max stack size", "bytes"},
502 [RLIMIT_CORE] = {"Max core file size", "bytes"},
503 [RLIMIT_RSS] = {"Max resident set", "bytes"},
504 [RLIMIT_NPROC] = {"Max processes", "processes"},
505 [RLIMIT_NOFILE] = {"Max open files", "files"},
506 [RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
507 [RLIMIT_AS] = {"Max address space", "bytes"},
508 [RLIMIT_LOCKS] = {"Max file locks", "locks"},
509 [RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
510 [RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
511 [RLIMIT_NICE] = {"Max nice priority", NULL},
512 [RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
513 [RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
514};
515
516/* Display limits for a process */
517static int proc_pid_limits(struct task_struct *task, char *buffer)
518{
519 unsigned int i;
520 int count = 0;
521 unsigned long flags;
522 char *bufptr = buffer;
523
524 struct rlimit rlim[RLIM_NLIMITS];
525
526 if (!lock_task_sighand(task, &flags))
527 return 0;
528 memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
529 unlock_task_sighand(task, &flags);
530
531 /*
532 * print the file header
533 */
534 count += sprintf(&bufptr[count], "%-25s %-20s %-20s %-10s\n",
535 "Limit", "Soft Limit", "Hard Limit", "Units");
536
537 for (i = 0; i < RLIM_NLIMITS; i++) {
538 if (rlim[i].rlim_cur == RLIM_INFINITY)
539 count += sprintf(&bufptr[count], "%-25s %-20s ",
540 lnames[i].name, "unlimited");
541 else
542 count += sprintf(&bufptr[count], "%-25s %-20lu ",
543 lnames[i].name, rlim[i].rlim_cur);
544
545 if (rlim[i].rlim_max == RLIM_INFINITY)
546 count += sprintf(&bufptr[count], "%-20s ", "unlimited");
547 else
548 count += sprintf(&bufptr[count], "%-20lu ",
549 rlim[i].rlim_max);
550
551 if (lnames[i].unit)
552 count += sprintf(&bufptr[count], "%-10s\n",
553 lnames[i].unit);
554 else
555 count += sprintf(&bufptr[count], "\n");
556 }
557
558 return count;
559}
560
561#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
562static int proc_pid_syscall(struct task_struct *task, char *buffer)
563{
564 long nr;
565 unsigned long args[6], sp, pc;
566 int res = lock_trace(task);
567 if (res)
568 return res;
569
570 if (task_current_syscall(task, &nr, args, 6, &sp, &pc))
571 res = sprintf(buffer, "running\n");
572 else if (nr < 0)
573 res = sprintf(buffer, "%ld 0x%lx 0x%lx\n", nr, sp, pc);
574 else
575 res = sprintf(buffer,
576 "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n",
577 nr,
578 args[0], args[1], args[2], args[3], args[4], args[5],
579 sp, pc);
580 unlock_trace(task);
581 return res;
582}
583#endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
584
585/************************************************************************/
586/* Here the fs part begins */
587/************************************************************************/
588
589/* permission checks */
590static int proc_fd_access_allowed(struct inode *inode)
591{
592 struct task_struct *task;
593 int allowed = 0;
594 /* Allow access to a task's file descriptors if it is us or we
595 * may use ptrace attach to the process and find out that
596 * information.
597 */
598 task = get_proc_task(inode);
599 if (task) {
600 allowed = ptrace_may_access(task, PTRACE_MODE_READ);
601 put_task_struct(task);
602 }
603 return allowed;
604}
605
606int proc_setattr(struct dentry *dentry, struct iattr *attr)
607{
608 int error;
609 struct inode *inode = dentry->d_inode;
610
611 if (attr->ia_valid & ATTR_MODE)
612 return -EPERM;
613
614 error = inode_change_ok(inode, attr);
615 if (error)
616 return error;
617
618 if ((attr->ia_valid & ATTR_SIZE) &&
619 attr->ia_size != i_size_read(inode)) {
620 error = vmtruncate(inode, attr->ia_size);
621 if (error)
622 return error;
623 }
624
625 setattr_copy(inode, attr);
626 mark_inode_dirty(inode);
627 return 0;
628}
629
630static const struct inode_operations proc_def_inode_operations = {
631 .setattr = proc_setattr,
632};
633
634static int mounts_open_common(struct inode *inode, struct file *file,
635 const struct seq_operations *op)
636{
637 struct task_struct *task = get_proc_task(inode);
638 struct nsproxy *nsp;
639 struct mnt_namespace *ns = NULL;
640 struct path root;
641 struct proc_mounts *p;
642 int ret = -EINVAL;
643
644 if (task) {
645 rcu_read_lock();
646 nsp = task_nsproxy(task);
647 if (nsp) {
648 ns = nsp->mnt_ns;
649 if (ns)
650 get_mnt_ns(ns);
651 }
652 rcu_read_unlock();
653 if (ns && get_task_root(task, &root) == 0)
654 ret = 0;
655 put_task_struct(task);
656 }
657
658 if (!ns)
659 goto err;
660 if (ret)
661 goto err_put_ns;
662
663 ret = -ENOMEM;
664 p = kmalloc(sizeof(struct proc_mounts), GFP_KERNEL);
665 if (!p)
666 goto err_put_path;
667
668 file->private_data = &p->m;
669 ret = seq_open(file, op);
670 if (ret)
671 goto err_free;
672
673 p->m.private = p;
674 p->ns = ns;
675 p->root = root;
676 p->m.poll_event = ns->event;
677
678 return 0;
679
680 err_free:
681 kfree(p);
682 err_put_path:
683 path_put(&root);
684 err_put_ns:
685 put_mnt_ns(ns);
686 err:
687 return ret;
688}
689
690static int mounts_release(struct inode *inode, struct file *file)
691{
692 struct proc_mounts *p = file->private_data;
693 path_put(&p->root);
694 put_mnt_ns(p->ns);
695 return seq_release(inode, file);
696}
697
698static unsigned mounts_poll(struct file *file, poll_table *wait)
699{
700 struct proc_mounts *p = file->private_data;
701 unsigned res = POLLIN | POLLRDNORM;
702
703 poll_wait(file, &p->ns->poll, wait);
704 if (mnt_had_events(p))
705 res |= POLLERR | POLLPRI;
706
707 return res;
708}
709
710static int mounts_open(struct inode *inode, struct file *file)
711{
712 return mounts_open_common(inode, file, &mounts_op);
713}
714
715static const struct file_operations proc_mounts_operations = {
716 .open = mounts_open,
717 .read = seq_read,
718 .llseek = seq_lseek,
719 .release = mounts_release,
720 .poll = mounts_poll,
721};
722
723static int mountinfo_open(struct inode *inode, struct file *file)
724{
725 return mounts_open_common(inode, file, &mountinfo_op);
726}
727
728static const struct file_operations proc_mountinfo_operations = {
729 .open = mountinfo_open,
730 .read = seq_read,
731 .llseek = seq_lseek,
732 .release = mounts_release,
733 .poll = mounts_poll,
734};
735
736static int mountstats_open(struct inode *inode, struct file *file)
737{
738 return mounts_open_common(inode, file, &mountstats_op);
739}
740
741static const struct file_operations proc_mountstats_operations = {
742 .open = mountstats_open,
743 .read = seq_read,
744 .llseek = seq_lseek,
745 .release = mounts_release,
746};
747
748#define PROC_BLOCK_SIZE (3*1024) /* 4K page size but our output routines use some slack for overruns */
749
750static ssize_t proc_info_read(struct file * file, char __user * buf,
751 size_t count, loff_t *ppos)
752{
753 struct inode * inode = file->f_path.dentry->d_inode;
754 unsigned long page;
755 ssize_t length;
756 struct task_struct *task = get_proc_task(inode);
757
758 length = -ESRCH;
759 if (!task)
760 goto out_no_task;
761
762 if (count > PROC_BLOCK_SIZE)
763 count = PROC_BLOCK_SIZE;
764
765 length = -ENOMEM;
766 if (!(page = __get_free_page(GFP_TEMPORARY)))
767 goto out;
768
769 length = PROC_I(inode)->op.proc_read(task, (char*)page);
770
771 if (length >= 0)
772 length = simple_read_from_buffer(buf, count, ppos, (char *)page, length);
773 free_page(page);
774out:
775 put_task_struct(task);
776out_no_task:
777 return length;
778}
779
780static const struct file_operations proc_info_file_operations = {
781 .read = proc_info_read,
782 .llseek = generic_file_llseek,
783};
784
785static int proc_single_show(struct seq_file *m, void *v)
786{
787 struct inode *inode = m->private;
788 struct pid_namespace *ns;
789 struct pid *pid;
790 struct task_struct *task;
791 int ret;
792
793 ns = inode->i_sb->s_fs_info;
794 pid = proc_pid(inode);
795 task = get_pid_task(pid, PIDTYPE_PID);
796 if (!task)
797 return -ESRCH;
798
799 ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
800
801 put_task_struct(task);
802 return ret;
803}
804
805static int proc_single_open(struct inode *inode, struct file *filp)
806{
807 return single_open(filp, proc_single_show, inode);
808}
809
810static const struct file_operations proc_single_file_operations = {
811 .open = proc_single_open,
812 .read = seq_read,
813 .llseek = seq_lseek,
814 .release = single_release,
815};
816
817static int mem_open(struct inode* inode, struct file* file)
818{
819 file->private_data = (void*)((long)current->self_exec_id);
820 /* OK to pass negative loff_t, we can catch out-of-range */
821 file->f_mode |= FMODE_UNSIGNED_OFFSET;
822 return 0;
823}
824
825static ssize_t mem_read(struct file * file, char __user * buf,
826 size_t count, loff_t *ppos)
827{
828 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
829 char *page;
830 unsigned long src = *ppos;
831 int ret = -ESRCH;
832 struct mm_struct *mm;
833
834 if (!task)
835 goto out_no_task;
836
837 ret = -ENOMEM;
838 page = (char *)__get_free_page(GFP_TEMPORARY);
839 if (!page)
840 goto out;
841
842 mm = check_mem_permission(task);
843 ret = PTR_ERR(mm);
844 if (IS_ERR(mm))
845 goto out_free;
846
847 ret = -EIO;
848
849 if (file->private_data != (void*)((long)current->self_exec_id))
850 goto out_put;
851
852 ret = 0;
853
854 while (count > 0) {
855 int this_len, retval;
856
857 this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
858 retval = access_remote_vm(mm, src, page, this_len, 0);
859 if (!retval) {
860 if (!ret)
861 ret = -EIO;
862 break;
863 }
864
865 if (copy_to_user(buf, page, retval)) {
866 ret = -EFAULT;
867 break;
868 }
869
870 ret += retval;
871 src += retval;
872 buf += retval;
873 count -= retval;
874 }
875 *ppos = src;
876
877out_put:
878 mmput(mm);
879out_free:
880 free_page((unsigned long) page);
881out:
882 put_task_struct(task);
883out_no_task:
884 return ret;
885}
886
887static ssize_t mem_write(struct file * file, const char __user *buf,
888 size_t count, loff_t *ppos)
889{
890 int copied;
891 char *page;
892 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
893 unsigned long dst = *ppos;
894 struct mm_struct *mm;
895
896 copied = -ESRCH;
897 if (!task)
898 goto out_no_task;
899
900 copied = -ENOMEM;
901 page = (char *)__get_free_page(GFP_TEMPORARY);
902 if (!page)
903 goto out_task;
904
905 mm = check_mem_permission(task);
906 copied = PTR_ERR(mm);
907 if (IS_ERR(mm))
908 goto out_free;
909
910 copied = -EIO;
911 if (file->private_data != (void *)((long)current->self_exec_id))
912 goto out_mm;
913
914 copied = 0;
915 while (count > 0) {
916 int this_len, retval;
917
918 this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
919 if (copy_from_user(page, buf, this_len)) {
920 copied = -EFAULT;
921 break;
922 }
923 retval = access_remote_vm(mm, dst, page, this_len, 1);
924 if (!retval) {
925 if (!copied)
926 copied = -EIO;
927 break;
928 }
929 copied += retval;
930 buf += retval;
931 dst += retval;
932 count -= retval;
933 }
934 *ppos = dst;
935
936out_mm:
937 mmput(mm);
938out_free:
939 free_page((unsigned long) page);
940out_task:
941 put_task_struct(task);
942out_no_task:
943 return copied;
944}
945
946loff_t mem_lseek(struct file *file, loff_t offset, int orig)
947{
948 switch (orig) {
949 case 0:
950 file->f_pos = offset;
951 break;
952 case 1:
953 file->f_pos += offset;
954 break;
955 default:
956 return -EINVAL;
957 }
958 force_successful_syscall_return();
959 return file->f_pos;
960}
961
962static const struct file_operations proc_mem_operations = {
963 .llseek = mem_lseek,
964 .read = mem_read,
965 .write = mem_write,
966 .open = mem_open,
967};
968
969static ssize_t environ_read(struct file *file, char __user *buf,
970 size_t count, loff_t *ppos)
971{
972 struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
973 char *page;
974 unsigned long src = *ppos;
975 int ret = -ESRCH;
976 struct mm_struct *mm;
977
978 if (!task)
979 goto out_no_task;
980
981 ret = -ENOMEM;
982 page = (char *)__get_free_page(GFP_TEMPORARY);
983 if (!page)
984 goto out;
985
986
987 mm = mm_for_maps(task);
988 ret = PTR_ERR(mm);
989 if (!mm || IS_ERR(mm))
990 goto out_free;
991
992 ret = 0;
993 while (count > 0) {
994 int this_len, retval, max_len;
995
996 this_len = mm->env_end - (mm->env_start + src);
997
998 if (this_len <= 0)
999 break;
1000
1001 max_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
1002 this_len = (this_len > max_len) ? max_len : this_len;
1003
1004 retval = access_process_vm(task, (mm->env_start + src),
1005 page, this_len, 0);
1006
1007 if (retval <= 0) {
1008 ret = retval;
1009 break;
1010 }
1011
1012 if (copy_to_user(buf, page, retval)) {
1013 ret = -EFAULT;
1014 break;
1015 }
1016
1017 ret += retval;
1018 src += retval;
1019 buf += retval;
1020 count -= retval;
1021 }
1022 *ppos = src;
1023
1024 mmput(mm);
1025out_free:
1026 free_page((unsigned long) page);
1027out:
1028 put_task_struct(task);
1029out_no_task:
1030 return ret;
1031}
1032
1033static const struct file_operations proc_environ_operations = {
1034 .read = environ_read,
1035 .llseek = generic_file_llseek,
1036};
1037
1038static ssize_t oom_adjust_read(struct file *file, char __user *buf,
1039 size_t count, loff_t *ppos)
1040{
1041 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
1042 char buffer[PROC_NUMBUF];
1043 size_t len;
1044 int oom_adjust = OOM_DISABLE;
1045 unsigned long flags;
1046
1047 if (!task)
1048 return -ESRCH;
1049
1050 if (lock_task_sighand(task, &flags)) {
1051 oom_adjust = task->signal->oom_adj;
1052 unlock_task_sighand(task, &flags);
1053 }
1054
1055 put_task_struct(task);
1056
1057 len = snprintf(buffer, sizeof(buffer), "%i\n", oom_adjust);
1058
1059 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1060}
1061
1062static ssize_t oom_adjust_write(struct file *file, const char __user *buf,
1063 size_t count, loff_t *ppos)
1064{
1065 struct task_struct *task;
1066 char buffer[PROC_NUMBUF];
1067 int oom_adjust;
1068 unsigned long flags;
1069 int err;
1070
1071 memset(buffer, 0, sizeof(buffer));
1072 if (count > sizeof(buffer) - 1)
1073 count = sizeof(buffer) - 1;
1074 if (copy_from_user(buffer, buf, count)) {
1075 err = -EFAULT;
1076 goto out;
1077 }
1078
1079 err = kstrtoint(strstrip(buffer), 0, &oom_adjust);
1080 if (err)
1081 goto out;
1082 if ((oom_adjust < OOM_ADJUST_MIN || oom_adjust > OOM_ADJUST_MAX) &&
1083 oom_adjust != OOM_DISABLE) {
1084 err = -EINVAL;
1085 goto out;
1086 }
1087
1088 task = get_proc_task(file->f_path.dentry->d_inode);
1089 if (!task) {
1090 err = -ESRCH;
1091 goto out;
1092 }
1093
1094 task_lock(task);
1095 if (!task->mm) {
1096 err = -EINVAL;
1097 goto err_task_lock;
1098 }
1099
1100 if (!lock_task_sighand(task, &flags)) {
1101 err = -ESRCH;
1102 goto err_task_lock;
1103 }
1104
1105 if (oom_adjust < task->signal->oom_adj && !capable(CAP_SYS_RESOURCE)) {
1106 err = -EACCES;
1107 goto err_sighand;
1108 }
1109
1110 if (oom_adjust != task->signal->oom_adj) {
1111 if (oom_adjust == OOM_DISABLE)
1112 atomic_inc(&task->mm->oom_disable_count);
1113 if (task->signal->oom_adj == OOM_DISABLE)
1114 atomic_dec(&task->mm->oom_disable_count);
1115 }
1116
1117 /*
1118 * Warn that /proc/pid/oom_adj is deprecated, see
1119 * Documentation/feature-removal-schedule.txt.
1120 */
1121 printk_once(KERN_WARNING "%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
1122 current->comm, task_pid_nr(current), task_pid_nr(task),
1123 task_pid_nr(task));
1124 task->signal->oom_adj = oom_adjust;
1125 /*
1126 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
1127 * value is always attainable.
1128 */
1129 if (task->signal->oom_adj == OOM_ADJUST_MAX)
1130 task->signal->oom_score_adj = OOM_SCORE_ADJ_MAX;
1131 else
1132 task->signal->oom_score_adj = (oom_adjust * OOM_SCORE_ADJ_MAX) /
1133 -OOM_DISABLE;
1134err_sighand:
1135 unlock_task_sighand(task, &flags);
1136err_task_lock:
1137 task_unlock(task);
1138 put_task_struct(task);
1139out:
1140 return err < 0 ? err : count;
1141}
1142
1143static const struct file_operations proc_oom_adjust_operations = {
1144 .read = oom_adjust_read,
1145 .write = oom_adjust_write,
1146 .llseek = generic_file_llseek,
1147};
1148
1149static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
1150 size_t count, loff_t *ppos)
1151{
1152 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
1153 char buffer[PROC_NUMBUF];
1154 int oom_score_adj = OOM_SCORE_ADJ_MIN;
1155 unsigned long flags;
1156 size_t len;
1157
1158 if (!task)
1159 return -ESRCH;
1160 if (lock_task_sighand(task, &flags)) {
1161 oom_score_adj = task->signal->oom_score_adj;
1162 unlock_task_sighand(task, &flags);
1163 }
1164 put_task_struct(task);
1165 len = snprintf(buffer, sizeof(buffer), "%d\n", oom_score_adj);
1166 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1167}
1168
1169static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
1170 size_t count, loff_t *ppos)
1171{
1172 struct task_struct *task;
1173 char buffer[PROC_NUMBUF];
1174 unsigned long flags;
1175 int oom_score_adj;
1176 int err;
1177
1178 memset(buffer, 0, sizeof(buffer));
1179 if (count > sizeof(buffer) - 1)
1180 count = sizeof(buffer) - 1;
1181 if (copy_from_user(buffer, buf, count)) {
1182 err = -EFAULT;
1183 goto out;
1184 }
1185
1186 err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
1187 if (err)
1188 goto out;
1189 if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1190 oom_score_adj > OOM_SCORE_ADJ_MAX) {
1191 err = -EINVAL;
1192 goto out;
1193 }
1194
1195 task = get_proc_task(file->f_path.dentry->d_inode);
1196 if (!task) {
1197 err = -ESRCH;
1198 goto out;
1199 }
1200
1201 task_lock(task);
1202 if (!task->mm) {
1203 err = -EINVAL;
1204 goto err_task_lock;
1205 }
1206
1207 if (!lock_task_sighand(task, &flags)) {
1208 err = -ESRCH;
1209 goto err_task_lock;
1210 }
1211
1212 if (oom_score_adj < task->signal->oom_score_adj_min &&
1213 !capable(CAP_SYS_RESOURCE)) {
1214 err = -EACCES;
1215 goto err_sighand;
1216 }
1217
1218 if (oom_score_adj != task->signal->oom_score_adj) {
1219 if (oom_score_adj == OOM_SCORE_ADJ_MIN)
1220 atomic_inc(&task->mm->oom_disable_count);
1221 if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MIN)
1222 atomic_dec(&task->mm->oom_disable_count);
1223 }
1224 task->signal->oom_score_adj = oom_score_adj;
1225 if (has_capability_noaudit(current, CAP_SYS_RESOURCE))
1226 task->signal->oom_score_adj_min = oom_score_adj;
1227 /*
1228 * Scale /proc/pid/oom_adj appropriately ensuring that OOM_DISABLE is
1229 * always attainable.
1230 */
1231 if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MIN)
1232 task->signal->oom_adj = OOM_DISABLE;
1233 else
1234 task->signal->oom_adj = (oom_score_adj * OOM_ADJUST_MAX) /
1235 OOM_SCORE_ADJ_MAX;
1236err_sighand:
1237 unlock_task_sighand(task, &flags);
1238err_task_lock:
1239 task_unlock(task);
1240 put_task_struct(task);
1241out:
1242 return err < 0 ? err : count;
1243}
1244
1245static const struct file_operations proc_oom_score_adj_operations = {
1246 .read = oom_score_adj_read,
1247 .write = oom_score_adj_write,
1248 .llseek = default_llseek,
1249};
1250
1251#ifdef CONFIG_AUDITSYSCALL
1252#define TMPBUFLEN 21
1253static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1254 size_t count, loff_t *ppos)
1255{
1256 struct inode * inode = file->f_path.dentry->d_inode;
1257 struct task_struct *task = get_proc_task(inode);
1258 ssize_t length;
1259 char tmpbuf[TMPBUFLEN];
1260
1261 if (!task)
1262 return -ESRCH;
1263 length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1264 audit_get_loginuid(task));
1265 put_task_struct(task);
1266 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1267}
1268
1269static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1270 size_t count, loff_t *ppos)
1271{
1272 struct inode * inode = file->f_path.dentry->d_inode;
1273 char *page, *tmp;
1274 ssize_t length;
1275 uid_t loginuid;
1276
1277 if (!capable(CAP_AUDIT_CONTROL))
1278 return -EPERM;
1279
1280 rcu_read_lock();
1281 if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1282 rcu_read_unlock();
1283 return -EPERM;
1284 }
1285 rcu_read_unlock();
1286
1287 if (count >= PAGE_SIZE)
1288 count = PAGE_SIZE - 1;
1289
1290 if (*ppos != 0) {
1291 /* No partial writes. */
1292 return -EINVAL;
1293 }
1294 page = (char*)__get_free_page(GFP_TEMPORARY);
1295 if (!page)
1296 return -ENOMEM;
1297 length = -EFAULT;
1298 if (copy_from_user(page, buf, count))
1299 goto out_free_page;
1300
1301 page[count] = '\0';
1302 loginuid = simple_strtoul(page, &tmp, 10);
1303 if (tmp == page) {
1304 length = -EINVAL;
1305 goto out_free_page;
1306
1307 }
1308 length = audit_set_loginuid(current, loginuid);
1309 if (likely(length == 0))
1310 length = count;
1311
1312out_free_page:
1313 free_page((unsigned long) page);
1314 return length;
1315}
1316
1317static const struct file_operations proc_loginuid_operations = {
1318 .read = proc_loginuid_read,
1319 .write = proc_loginuid_write,
1320 .llseek = generic_file_llseek,
1321};
1322
1323static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1324 size_t count, loff_t *ppos)
1325{
1326 struct inode * inode = file->f_path.dentry->d_inode;
1327 struct task_struct *task = get_proc_task(inode);
1328 ssize_t length;
1329 char tmpbuf[TMPBUFLEN];
1330
1331 if (!task)
1332 return -ESRCH;
1333 length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1334 audit_get_sessionid(task));
1335 put_task_struct(task);
1336 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1337}
1338
1339static const struct file_operations proc_sessionid_operations = {
1340 .read = proc_sessionid_read,
1341 .llseek = generic_file_llseek,
1342};
1343#endif
1344
1345#ifdef CONFIG_FAULT_INJECTION
1346static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1347 size_t count, loff_t *ppos)
1348{
1349 struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
1350 char buffer[PROC_NUMBUF];
1351 size_t len;
1352 int make_it_fail;
1353
1354 if (!task)
1355 return -ESRCH;
1356 make_it_fail = task->make_it_fail;
1357 put_task_struct(task);
1358
1359 len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1360
1361 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1362}
1363
1364static ssize_t proc_fault_inject_write(struct file * file,
1365 const char __user * buf, size_t count, loff_t *ppos)
1366{
1367 struct task_struct *task;
1368 char buffer[PROC_NUMBUF], *end;
1369 int make_it_fail;
1370
1371 if (!capable(CAP_SYS_RESOURCE))
1372 return -EPERM;
1373 memset(buffer, 0, sizeof(buffer));
1374 if (count > sizeof(buffer) - 1)
1375 count = sizeof(buffer) - 1;
1376 if (copy_from_user(buffer, buf, count))
1377 return -EFAULT;
1378 make_it_fail = simple_strtol(strstrip(buffer), &end, 0);
1379 if (*end)
1380 return -EINVAL;
1381 task = get_proc_task(file->f_dentry->d_inode);
1382 if (!task)
1383 return -ESRCH;
1384 task->make_it_fail = make_it_fail;
1385 put_task_struct(task);
1386
1387 return count;
1388}
1389
1390static const struct file_operations proc_fault_inject_operations = {
1391 .read = proc_fault_inject_read,
1392 .write = proc_fault_inject_write,
1393 .llseek = generic_file_llseek,
1394};
1395#endif
1396
1397
1398#ifdef CONFIG_SCHED_DEBUG
1399/*
1400 * Print out various scheduling related per-task fields:
1401 */
1402static int sched_show(struct seq_file *m, void *v)
1403{
1404 struct inode *inode = m->private;
1405 struct task_struct *p;
1406
1407 p = get_proc_task(inode);
1408 if (!p)
1409 return -ESRCH;
1410 proc_sched_show_task(p, m);
1411
1412 put_task_struct(p);
1413
1414 return 0;
1415}
1416
1417static ssize_t
1418sched_write(struct file *file, const char __user *buf,
1419 size_t count, loff_t *offset)
1420{
1421 struct inode *inode = file->f_path.dentry->d_inode;
1422 struct task_struct *p;
1423
1424 p = get_proc_task(inode);
1425 if (!p)
1426 return -ESRCH;
1427 proc_sched_set_task(p);
1428
1429 put_task_struct(p);
1430
1431 return count;
1432}
1433
1434static int sched_open(struct inode *inode, struct file *filp)
1435{
1436 return single_open(filp, sched_show, inode);
1437}
1438
1439static const struct file_operations proc_pid_sched_operations = {
1440 .open = sched_open,
1441 .read = seq_read,
1442 .write = sched_write,
1443 .llseek = seq_lseek,
1444 .release = single_release,
1445};
1446
1447#endif
1448
1449#ifdef CONFIG_SCHED_AUTOGROUP
1450/*
1451 * Print out autogroup related information:
1452 */
1453static int sched_autogroup_show(struct seq_file *m, void *v)
1454{
1455 struct inode *inode = m->private;
1456 struct task_struct *p;
1457
1458 p = get_proc_task(inode);
1459 if (!p)
1460 return -ESRCH;
1461 proc_sched_autogroup_show_task(p, m);
1462
1463 put_task_struct(p);
1464
1465 return 0;
1466}
1467
1468static ssize_t
1469sched_autogroup_write(struct file *file, const char __user *buf,
1470 size_t count, loff_t *offset)
1471{
1472 struct inode *inode = file->f_path.dentry->d_inode;
1473 struct task_struct *p;
1474 char buffer[PROC_NUMBUF];
1475 int nice;
1476 int err;
1477
1478 memset(buffer, 0, sizeof(buffer));
1479 if (count > sizeof(buffer) - 1)
1480 count = sizeof(buffer) - 1;
1481 if (copy_from_user(buffer, buf, count))
1482 return -EFAULT;
1483
1484 err = kstrtoint(strstrip(buffer), 0, &nice);
1485 if (err < 0)
1486 return err;
1487
1488 p = get_proc_task(inode);
1489 if (!p)
1490 return -ESRCH;
1491
1492 err = nice;
1493 err = proc_sched_autogroup_set_nice(p, &err);
1494 if (err)
1495 count = err;
1496
1497 put_task_struct(p);
1498
1499 return count;
1500}
1501
1502static int sched_autogroup_open(struct inode *inode, struct file *filp)
1503{
1504 int ret;
1505
1506 ret = single_open(filp, sched_autogroup_show, NULL);
1507 if (!ret) {
1508 struct seq_file *m = filp->private_data;
1509
1510 m->private = inode;
1511 }
1512 return ret;
1513}
1514
1515static const struct file_operations proc_pid_sched_autogroup_operations = {
1516 .open = sched_autogroup_open,
1517 .read = seq_read,
1518 .write = sched_autogroup_write,
1519 .llseek = seq_lseek,
1520 .release = single_release,
1521};
1522
1523#endif /* CONFIG_SCHED_AUTOGROUP */
1524
1525static ssize_t comm_write(struct file *file, const char __user *buf,
1526 size_t count, loff_t *offset)
1527{
1528 struct inode *inode = file->f_path.dentry->d_inode;
1529 struct task_struct *p;
1530 char buffer[TASK_COMM_LEN];
1531
1532 memset(buffer, 0, sizeof(buffer));
1533 if (count > sizeof(buffer) - 1)
1534 count = sizeof(buffer) - 1;
1535 if (copy_from_user(buffer, buf, count))
1536 return -EFAULT;
1537
1538 p = get_proc_task(inode);
1539 if (!p)
1540 return -ESRCH;
1541
1542 if (same_thread_group(current, p))
1543 set_task_comm(p, buffer);
1544 else
1545 count = -EINVAL;
1546
1547 put_task_struct(p);
1548
1549 return count;
1550}
1551
1552static int comm_show(struct seq_file *m, void *v)
1553{
1554 struct inode *inode = m->private;
1555 struct task_struct *p;
1556
1557 p = get_proc_task(inode);
1558 if (!p)
1559 return -ESRCH;
1560
1561 task_lock(p);
1562 seq_printf(m, "%s\n", p->comm);
1563 task_unlock(p);
1564
1565 put_task_struct(p);
1566
1567 return 0;
1568}
1569
1570static int comm_open(struct inode *inode, struct file *filp)
1571{
1572 return single_open(filp, comm_show, inode);
1573}
1574
1575static const struct file_operations proc_pid_set_comm_operations = {
1576 .open = comm_open,
1577 .read = seq_read,
1578 .write = comm_write,
1579 .llseek = seq_lseek,
1580 .release = single_release,
1581};
1582
1583static int proc_exe_link(struct inode *inode, struct path *exe_path)
1584{
1585 struct task_struct *task;
1586 struct mm_struct *mm;
1587 struct file *exe_file;
1588
1589 task = get_proc_task(inode);
1590 if (!task)
1591 return -ENOENT;
1592 mm = get_task_mm(task);
1593 put_task_struct(task);
1594 if (!mm)
1595 return -ENOENT;
1596 exe_file = get_mm_exe_file(mm);
1597 mmput(mm);
1598 if (exe_file) {
1599 *exe_path = exe_file->f_path;
1600 path_get(&exe_file->f_path);
1601 fput(exe_file);
1602 return 0;
1603 } else
1604 return -ENOENT;
1605}
1606
1607static void *proc_pid_follow_link(struct dentry *dentry, struct nameidata *nd)
1608{
1609 struct inode *inode = dentry->d_inode;
1610 int error = -EACCES;
1611
1612 /* We don't need a base pointer in the /proc filesystem */
1613 path_put(&nd->path);
1614
1615 /* Are we allowed to snoop on the tasks file descriptors? */
1616 if (!proc_fd_access_allowed(inode))
1617 goto out;
1618
1619 error = PROC_I(inode)->op.proc_get_link(inode, &nd->path);
1620out:
1621 return ERR_PTR(error);
1622}
1623
1624static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1625{
1626 char *tmp = (char*)__get_free_page(GFP_TEMPORARY);
1627 char *pathname;
1628 int len;
1629
1630 if (!tmp)
1631 return -ENOMEM;
1632
1633 pathname = d_path(path, tmp, PAGE_SIZE);
1634 len = PTR_ERR(pathname);
1635 if (IS_ERR(pathname))
1636 goto out;
1637 len = tmp + PAGE_SIZE - 1 - pathname;
1638
1639 if (len > buflen)
1640 len = buflen;
1641 if (copy_to_user(buffer, pathname, len))
1642 len = -EFAULT;
1643 out:
1644 free_page((unsigned long)tmp);
1645 return len;
1646}
1647
1648static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1649{
1650 int error = -EACCES;
1651 struct inode *inode = dentry->d_inode;
1652 struct path path;
1653
1654 /* Are we allowed to snoop on the tasks file descriptors? */
1655 if (!proc_fd_access_allowed(inode))
1656 goto out;
1657
1658 error = PROC_I(inode)->op.proc_get_link(inode, &path);
1659 if (error)
1660 goto out;
1661
1662 error = do_proc_readlink(&path, buffer, buflen);
1663 path_put(&path);
1664out:
1665 return error;
1666}
1667
1668static const struct inode_operations proc_pid_link_inode_operations = {
1669 .readlink = proc_pid_readlink,
1670 .follow_link = proc_pid_follow_link,
1671 .setattr = proc_setattr,
1672};
1673
1674
1675/* building an inode */
1676
1677static int task_dumpable(struct task_struct *task)
1678{
1679 int dumpable = 0;
1680 struct mm_struct *mm;
1681
1682 task_lock(task);
1683 mm = task->mm;
1684 if (mm)
1685 dumpable = get_dumpable(mm);
1686 task_unlock(task);
1687 if(dumpable == 1)
1688 return 1;
1689 return 0;
1690}
1691
1692struct inode *proc_pid_make_inode(struct super_block * sb, struct task_struct *task)
1693{
1694 struct inode * inode;
1695 struct proc_inode *ei;
1696 const struct cred *cred;
1697
1698 /* We need a new inode */
1699
1700 inode = new_inode(sb);
1701 if (!inode)
1702 goto out;
1703
1704 /* Common stuff */
1705 ei = PROC_I(inode);
1706 inode->i_ino = get_next_ino();
1707 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
1708 inode->i_op = &proc_def_inode_operations;
1709
1710 /*
1711 * grab the reference to task.
1712 */
1713 ei->pid = get_task_pid(task, PIDTYPE_PID);
1714 if (!ei->pid)
1715 goto out_unlock;
1716
1717 if (task_dumpable(task)) {
1718 rcu_read_lock();
1719 cred = __task_cred(task);
1720 inode->i_uid = cred->euid;
1721 inode->i_gid = cred->egid;
1722 rcu_read_unlock();
1723 }
1724 security_task_to_inode(task, inode);
1725
1726out:
1727 return inode;
1728
1729out_unlock:
1730 iput(inode);
1731 return NULL;
1732}
1733
1734int pid_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
1735{
1736 struct inode *inode = dentry->d_inode;
1737 struct task_struct *task;
1738 const struct cred *cred;
1739
1740 generic_fillattr(inode, stat);
1741
1742 rcu_read_lock();
1743 stat->uid = 0;
1744 stat->gid = 0;
1745 task = pid_task(proc_pid(inode), PIDTYPE_PID);
1746 if (task) {
1747 if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1748 task_dumpable(task)) {
1749 cred = __task_cred(task);
1750 stat->uid = cred->euid;
1751 stat->gid = cred->egid;
1752 }
1753 }
1754 rcu_read_unlock();
1755 return 0;
1756}
1757
1758/* dentry stuff */
1759
1760/*
1761 * Exceptional case: normally we are not allowed to unhash a busy
1762 * directory. In this case, however, we can do it - no aliasing problems
1763 * due to the way we treat inodes.
1764 *
1765 * Rewrite the inode's ownerships here because the owning task may have
1766 * performed a setuid(), etc.
1767 *
1768 * Before the /proc/pid/status file was created the only way to read
1769 * the effective uid of a /process was to stat /proc/pid. Reading
1770 * /proc/pid/status is slow enough that procps and other packages
1771 * kept stating /proc/pid. To keep the rules in /proc simple I have
1772 * made this apply to all per process world readable and executable
1773 * directories.
1774 */
1775int pid_revalidate(struct dentry *dentry, struct nameidata *nd)
1776{
1777 struct inode *inode;
1778 struct task_struct *task;
1779 const struct cred *cred;
1780
1781 if (nd && nd->flags & LOOKUP_RCU)
1782 return -ECHILD;
1783
1784 inode = dentry->d_inode;
1785 task = get_proc_task(inode);
1786
1787 if (task) {
1788 if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1789 task_dumpable(task)) {
1790 rcu_read_lock();
1791 cred = __task_cred(task);
1792 inode->i_uid = cred->euid;
1793 inode->i_gid = cred->egid;
1794 rcu_read_unlock();
1795 } else {
1796 inode->i_uid = 0;
1797 inode->i_gid = 0;
1798 }
1799 inode->i_mode &= ~(S_ISUID | S_ISGID);
1800 security_task_to_inode(task, inode);
1801 put_task_struct(task);
1802 return 1;
1803 }
1804 d_drop(dentry);
1805 return 0;
1806}
1807
1808static int pid_delete_dentry(const struct dentry * dentry)
1809{
1810 /* Is the task we represent dead?
1811 * If so, then don't put the dentry on the lru list,
1812 * kill it immediately.
1813 */
1814 return !proc_pid(dentry->d_inode)->tasks[PIDTYPE_PID].first;
1815}
1816
1817const struct dentry_operations pid_dentry_operations =
1818{
1819 .d_revalidate = pid_revalidate,
1820 .d_delete = pid_delete_dentry,
1821};
1822
1823/* Lookups */
1824
1825/*
1826 * Fill a directory entry.
1827 *
1828 * If possible create the dcache entry and derive our inode number and
1829 * file type from dcache entry.
1830 *
1831 * Since all of the proc inode numbers are dynamically generated, the inode
1832 * numbers do not exist until the inode is cache. This means creating the
1833 * the dcache entry in readdir is necessary to keep the inode numbers
1834 * reported by readdir in sync with the inode numbers reported
1835 * by stat.
1836 */
1837int proc_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
1838 const char *name, int len,
1839 instantiate_t instantiate, struct task_struct *task, const void *ptr)
1840{
1841 struct dentry *child, *dir = filp->f_path.dentry;
1842 struct inode *inode;
1843 struct qstr qname;
1844 ino_t ino = 0;
1845 unsigned type = DT_UNKNOWN;
1846
1847 qname.name = name;
1848 qname.len = len;
1849 qname.hash = full_name_hash(name, len);
1850
1851 child = d_lookup(dir, &qname);
1852 if (!child) {
1853 struct dentry *new;
1854 new = d_alloc(dir, &qname);
1855 if (new) {
1856 child = instantiate(dir->d_inode, new, task, ptr);
1857 if (child)
1858 dput(new);
1859 else
1860 child = new;
1861 }
1862 }
1863 if (!child || IS_ERR(child) || !child->d_inode)
1864 goto end_instantiate;
1865 inode = child->d_inode;
1866 if (inode) {
1867 ino = inode->i_ino;
1868 type = inode->i_mode >> 12;
1869 }
1870 dput(child);
1871end_instantiate:
1872 if (!ino)
1873 ino = find_inode_number(dir, &qname);
1874 if (!ino)
1875 ino = 1;
1876 return filldir(dirent, name, len, filp->f_pos, ino, type);
1877}
1878
1879static unsigned name_to_int(struct dentry *dentry)
1880{
1881 const char *name = dentry->d_name.name;
1882 int len = dentry->d_name.len;
1883 unsigned n = 0;
1884
1885 if (len > 1 && *name == '0')
1886 goto out;
1887 while (len-- > 0) {
1888 unsigned c = *name++ - '0';
1889 if (c > 9)
1890 goto out;
1891 if (n >= (~0U-9)/10)
1892 goto out;
1893 n *= 10;
1894 n += c;
1895 }
1896 return n;
1897out:
1898 return ~0U;
1899}
1900
1901#define PROC_FDINFO_MAX 64
1902
1903static int proc_fd_info(struct inode *inode, struct path *path, char *info)
1904{
1905 struct task_struct *task = get_proc_task(inode);
1906 struct files_struct *files = NULL;
1907 struct file *file;
1908 int fd = proc_fd(inode);
1909
1910 if (task) {
1911 files = get_files_struct(task);
1912 put_task_struct(task);
1913 }
1914 if (files) {
1915 /*
1916 * We are not taking a ref to the file structure, so we must
1917 * hold ->file_lock.
1918 */
1919 spin_lock(&files->file_lock);
1920 file = fcheck_files(files, fd);
1921 if (file) {
1922 unsigned int f_flags;
1923 struct fdtable *fdt;
1924
1925 fdt = files_fdtable(files);
1926 f_flags = file->f_flags & ~O_CLOEXEC;
1927 if (FD_ISSET(fd, fdt->close_on_exec))
1928 f_flags |= O_CLOEXEC;
1929
1930 if (path) {
1931 *path = file->f_path;
1932 path_get(&file->f_path);
1933 }
1934 if (info)
1935 snprintf(info, PROC_FDINFO_MAX,
1936 "pos:\t%lli\n"
1937 "flags:\t0%o\n",
1938 (long long) file->f_pos,
1939 f_flags);
1940 spin_unlock(&files->file_lock);
1941 put_files_struct(files);
1942 return 0;
1943 }
1944 spin_unlock(&files->file_lock);
1945 put_files_struct(files);
1946 }
1947 return -ENOENT;
1948}
1949
1950static int proc_fd_link(struct inode *inode, struct path *path)
1951{
1952 return proc_fd_info(inode, path, NULL);
1953}
1954
1955static int tid_fd_revalidate(struct dentry *dentry, struct nameidata *nd)
1956{
1957 struct inode *inode;
1958 struct task_struct *task;
1959 int fd;
1960 struct files_struct *files;
1961 const struct cred *cred;
1962
1963 if (nd && nd->flags & LOOKUP_RCU)
1964 return -ECHILD;
1965
1966 inode = dentry->d_inode;
1967 task = get_proc_task(inode);
1968 fd = proc_fd(inode);
1969
1970 if (task) {
1971 files = get_files_struct(task);
1972 if (files) {
1973 rcu_read_lock();
1974 if (fcheck_files(files, fd)) {
1975 rcu_read_unlock();
1976 put_files_struct(files);
1977 if (task_dumpable(task)) {
1978 rcu_read_lock();
1979 cred = __task_cred(task);
1980 inode->i_uid = cred->euid;
1981 inode->i_gid = cred->egid;
1982 rcu_read_unlock();
1983 } else {
1984 inode->i_uid = 0;
1985 inode->i_gid = 0;
1986 }
1987 inode->i_mode &= ~(S_ISUID | S_ISGID);
1988 security_task_to_inode(task, inode);
1989 put_task_struct(task);
1990 return 1;
1991 }
1992 rcu_read_unlock();
1993 put_files_struct(files);
1994 }
1995 put_task_struct(task);
1996 }
1997 d_drop(dentry);
1998 return 0;
1999}
2000
2001static const struct dentry_operations tid_fd_dentry_operations =
2002{
2003 .d_revalidate = tid_fd_revalidate,
2004 .d_delete = pid_delete_dentry,
2005};
2006
2007static struct dentry *proc_fd_instantiate(struct inode *dir,
2008 struct dentry *dentry, struct task_struct *task, const void *ptr)
2009{
2010 unsigned fd = *(const unsigned *)ptr;
2011 struct file *file;
2012 struct files_struct *files;
2013 struct inode *inode;
2014 struct proc_inode *ei;
2015 struct dentry *error = ERR_PTR(-ENOENT);
2016
2017 inode = proc_pid_make_inode(dir->i_sb, task);
2018 if (!inode)
2019 goto out;
2020 ei = PROC_I(inode);
2021 ei->fd = fd;
2022 files = get_files_struct(task);
2023 if (!files)
2024 goto out_iput;
2025 inode->i_mode = S_IFLNK;
2026
2027 /*
2028 * We are not taking a ref to the file structure, so we must
2029 * hold ->file_lock.
2030 */
2031 spin_lock(&files->file_lock);
2032 file = fcheck_files(files, fd);
2033 if (!file)
2034 goto out_unlock;
2035 if (file->f_mode & FMODE_READ)
2036 inode->i_mode |= S_IRUSR | S_IXUSR;
2037 if (file->f_mode & FMODE_WRITE)
2038 inode->i_mode |= S_IWUSR | S_IXUSR;
2039 spin_unlock(&files->file_lock);
2040 put_files_struct(files);
2041
2042 inode->i_op = &proc_pid_link_inode_operations;
2043 inode->i_size = 64;
2044 ei->op.proc_get_link = proc_fd_link;
2045 d_set_d_op(dentry, &tid_fd_dentry_operations);
2046 d_add(dentry, inode);
2047 /* Close the race of the process dying before we return the dentry */
2048 if (tid_fd_revalidate(dentry, NULL))
2049 error = NULL;
2050
2051 out:
2052 return error;
2053out_unlock:
2054 spin_unlock(&files->file_lock);
2055 put_files_struct(files);
2056out_iput:
2057 iput(inode);
2058 goto out;
2059}
2060
2061static struct dentry *proc_lookupfd_common(struct inode *dir,
2062 struct dentry *dentry,
2063 instantiate_t instantiate)
2064{
2065 struct task_struct *task = get_proc_task(dir);
2066 unsigned fd = name_to_int(dentry);
2067 struct dentry *result = ERR_PTR(-ENOENT);
2068
2069 if (!task)
2070 goto out_no_task;
2071 if (fd == ~0U)
2072 goto out;
2073
2074 result = instantiate(dir, dentry, task, &fd);
2075out:
2076 put_task_struct(task);
2077out_no_task:
2078 return result;
2079}
2080
2081static int proc_readfd_common(struct file * filp, void * dirent,
2082 filldir_t filldir, instantiate_t instantiate)
2083{
2084 struct dentry *dentry = filp->f_path.dentry;
2085 struct inode *inode = dentry->d_inode;
2086 struct task_struct *p = get_proc_task(inode);
2087 unsigned int fd, ino;
2088 int retval;
2089 struct files_struct * files;
2090
2091 retval = -ENOENT;
2092 if (!p)
2093 goto out_no_task;
2094 retval = 0;
2095
2096 fd = filp->f_pos;
2097 switch (fd) {
2098 case 0:
2099 if (filldir(dirent, ".", 1, 0, inode->i_ino, DT_DIR) < 0)
2100 goto out;
2101 filp->f_pos++;
2102 case 1:
2103 ino = parent_ino(dentry);
2104 if (filldir(dirent, "..", 2, 1, ino, DT_DIR) < 0)
2105 goto out;
2106 filp->f_pos++;
2107 default:
2108 files = get_files_struct(p);
2109 if (!files)
2110 goto out;
2111 rcu_read_lock();
2112 for (fd = filp->f_pos-2;
2113 fd < files_fdtable(files)->max_fds;
2114 fd++, filp->f_pos++) {
2115 char name[PROC_NUMBUF];
2116 int len;
2117
2118 if (!fcheck_files(files, fd))
2119 continue;
2120 rcu_read_unlock();
2121
2122 len = snprintf(name, sizeof(name), "%d", fd);
2123 if (proc_fill_cache(filp, dirent, filldir,
2124 name, len, instantiate,
2125 p, &fd) < 0) {
2126 rcu_read_lock();
2127 break;
2128 }
2129 rcu_read_lock();
2130 }
2131 rcu_read_unlock();
2132 put_files_struct(files);
2133 }
2134out:
2135 put_task_struct(p);
2136out_no_task:
2137 return retval;
2138}
2139
2140static struct dentry *proc_lookupfd(struct inode *dir, struct dentry *dentry,
2141 struct nameidata *nd)
2142{
2143 return proc_lookupfd_common(dir, dentry, proc_fd_instantiate);
2144}
2145
2146static int proc_readfd(struct file *filp, void *dirent, filldir_t filldir)
2147{
2148 return proc_readfd_common(filp, dirent, filldir, proc_fd_instantiate);
2149}
2150
2151static ssize_t proc_fdinfo_read(struct file *file, char __user *buf,
2152 size_t len, loff_t *ppos)
2153{
2154 char tmp[PROC_FDINFO_MAX];
2155 int err = proc_fd_info(file->f_path.dentry->d_inode, NULL, tmp);
2156 if (!err)
2157 err = simple_read_from_buffer(buf, len, ppos, tmp, strlen(tmp));
2158 return err;
2159}
2160
2161static const struct file_operations proc_fdinfo_file_operations = {
2162 .open = nonseekable_open,
2163 .read = proc_fdinfo_read,
2164 .llseek = no_llseek,
2165};
2166
2167static const struct file_operations proc_fd_operations = {
2168 .read = generic_read_dir,
2169 .readdir = proc_readfd,
2170 .llseek = default_llseek,
2171};
2172
2173/*
2174 * /proc/pid/fd needs a special permission handler so that a process can still
2175 * access /proc/self/fd after it has executed a setuid().
2176 */
2177static int proc_fd_permission(struct inode *inode, int mask)
2178{
2179 int rv = generic_permission(inode, mask);
2180 if (rv == 0)
2181 return 0;
2182 if (task_pid(current) == proc_pid(inode))
2183 rv = 0;
2184 return rv;
2185}
2186
2187/*
2188 * proc directories can do almost nothing..
2189 */
2190static const struct inode_operations proc_fd_inode_operations = {
2191 .lookup = proc_lookupfd,
2192 .permission = proc_fd_permission,
2193 .setattr = proc_setattr,
2194};
2195
2196static struct dentry *proc_fdinfo_instantiate(struct inode *dir,
2197 struct dentry *dentry, struct task_struct *task, const void *ptr)
2198{
2199 unsigned fd = *(unsigned *)ptr;
2200 struct inode *inode;
2201 struct proc_inode *ei;
2202 struct dentry *error = ERR_PTR(-ENOENT);
2203
2204 inode = proc_pid_make_inode(dir->i_sb, task);
2205 if (!inode)
2206 goto out;
2207 ei = PROC_I(inode);
2208 ei->fd = fd;
2209 inode->i_mode = S_IFREG | S_IRUSR;
2210 inode->i_fop = &proc_fdinfo_file_operations;
2211 d_set_d_op(dentry, &tid_fd_dentry_operations);
2212 d_add(dentry, inode);
2213 /* Close the race of the process dying before we return the dentry */
2214 if (tid_fd_revalidate(dentry, NULL))
2215 error = NULL;
2216
2217 out:
2218 return error;
2219}
2220
2221static struct dentry *proc_lookupfdinfo(struct inode *dir,
2222 struct dentry *dentry,
2223 struct nameidata *nd)
2224{
2225 return proc_lookupfd_common(dir, dentry, proc_fdinfo_instantiate);
2226}
2227
2228static int proc_readfdinfo(struct file *filp, void *dirent, filldir_t filldir)
2229{
2230 return proc_readfd_common(filp, dirent, filldir,
2231 proc_fdinfo_instantiate);
2232}
2233
2234static const struct file_operations proc_fdinfo_operations = {
2235 .read = generic_read_dir,
2236 .readdir = proc_readfdinfo,
2237 .llseek = default_llseek,
2238};
2239
2240/*
2241 * proc directories can do almost nothing..
2242 */
2243static const struct inode_operations proc_fdinfo_inode_operations = {
2244 .lookup = proc_lookupfdinfo,
2245 .setattr = proc_setattr,
2246};
2247
2248
2249static struct dentry *proc_pident_instantiate(struct inode *dir,
2250 struct dentry *dentry, struct task_struct *task, const void *ptr)
2251{
2252 const struct pid_entry *p = ptr;
2253 struct inode *inode;
2254 struct proc_inode *ei;
2255 struct dentry *error = ERR_PTR(-ENOENT);
2256
2257 inode = proc_pid_make_inode(dir->i_sb, task);
2258 if (!inode)
2259 goto out;
2260
2261 ei = PROC_I(inode);
2262 inode->i_mode = p->mode;
2263 if (S_ISDIR(inode->i_mode))
2264 inode->i_nlink = 2; /* Use getattr to fix if necessary */
2265 if (p->iop)
2266 inode->i_op = p->iop;
2267 if (p->fop)
2268 inode->i_fop = p->fop;
2269 ei->op = p->op;
2270 d_set_d_op(dentry, &pid_dentry_operations);
2271 d_add(dentry, inode);
2272 /* Close the race of the process dying before we return the dentry */
2273 if (pid_revalidate(dentry, NULL))
2274 error = NULL;
2275out:
2276 return error;
2277}
2278
2279static struct dentry *proc_pident_lookup(struct inode *dir,
2280 struct dentry *dentry,
2281 const struct pid_entry *ents,
2282 unsigned int nents)
2283{
2284 struct dentry *error;
2285 struct task_struct *task = get_proc_task(dir);
2286 const struct pid_entry *p, *last;
2287
2288 error = ERR_PTR(-ENOENT);
2289
2290 if (!task)
2291 goto out_no_task;
2292
2293 /*
2294 * Yes, it does not scale. And it should not. Don't add
2295 * new entries into /proc/<tgid>/ without very good reasons.
2296 */
2297 last = &ents[nents - 1];
2298 for (p = ents; p <= last; p++) {
2299 if (p->len != dentry->d_name.len)
2300 continue;
2301 if (!memcmp(dentry->d_name.name, p->name, p->len))
2302 break;
2303 }
2304 if (p > last)
2305 goto out;
2306
2307 error = proc_pident_instantiate(dir, dentry, task, p);
2308out:
2309 put_task_struct(task);
2310out_no_task:
2311 return error;
2312}
2313
2314static int proc_pident_fill_cache(struct file *filp, void *dirent,
2315 filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
2316{
2317 return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
2318 proc_pident_instantiate, task, p);
2319}
2320
2321static int proc_pident_readdir(struct file *filp,
2322 void *dirent, filldir_t filldir,
2323 const struct pid_entry *ents, unsigned int nents)
2324{
2325 int i;
2326 struct dentry *dentry = filp->f_path.dentry;
2327 struct inode *inode = dentry->d_inode;
2328 struct task_struct *task = get_proc_task(inode);
2329 const struct pid_entry *p, *last;
2330 ino_t ino;
2331 int ret;
2332
2333 ret = -ENOENT;
2334 if (!task)
2335 goto out_no_task;
2336
2337 ret = 0;
2338 i = filp->f_pos;
2339 switch (i) {
2340 case 0:
2341 ino = inode->i_ino;
2342 if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0)
2343 goto out;
2344 i++;
2345 filp->f_pos++;
2346 /* fall through */
2347 case 1:
2348 ino = parent_ino(dentry);
2349 if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0)
2350 goto out;
2351 i++;
2352 filp->f_pos++;
2353 /* fall through */
2354 default:
2355 i -= 2;
2356 if (i >= nents) {
2357 ret = 1;
2358 goto out;
2359 }
2360 p = ents + i;
2361 last = &ents[nents - 1];
2362 while (p <= last) {
2363 if (proc_pident_fill_cache(filp, dirent, filldir, task, p) < 0)
2364 goto out;
2365 filp->f_pos++;
2366 p++;
2367 }
2368 }
2369
2370 ret = 1;
2371out:
2372 put_task_struct(task);
2373out_no_task:
2374 return ret;
2375}
2376
2377#ifdef CONFIG_SECURITY
2378static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2379 size_t count, loff_t *ppos)
2380{
2381 struct inode * inode = file->f_path.dentry->d_inode;
2382 char *p = NULL;
2383 ssize_t length;
2384 struct task_struct *task = get_proc_task(inode);
2385
2386 if (!task)
2387 return -ESRCH;
2388
2389 length = security_getprocattr(task,
2390 (char*)file->f_path.dentry->d_name.name,
2391 &p);
2392 put_task_struct(task);
2393 if (length > 0)
2394 length = simple_read_from_buffer(buf, count, ppos, p, length);
2395 kfree(p);
2396 return length;
2397}
2398
2399static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2400 size_t count, loff_t *ppos)
2401{
2402 struct inode * inode = file->f_path.dentry->d_inode;
2403 char *page;
2404 ssize_t length;
2405 struct task_struct *task = get_proc_task(inode);
2406
2407 length = -ESRCH;
2408 if (!task)
2409 goto out_no_task;
2410 if (count > PAGE_SIZE)
2411 count = PAGE_SIZE;
2412
2413 /* No partial writes. */
2414 length = -EINVAL;
2415 if (*ppos != 0)
2416 goto out;
2417
2418 length = -ENOMEM;
2419 page = (char*)__get_free_page(GFP_TEMPORARY);
2420 if (!page)
2421 goto out;
2422
2423 length = -EFAULT;
2424 if (copy_from_user(page, buf, count))
2425 goto out_free;
2426
2427 /* Guard against adverse ptrace interaction */
2428 length = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
2429 if (length < 0)
2430 goto out_free;
2431
2432 length = security_setprocattr(task,
2433 (char*)file->f_path.dentry->d_name.name,
2434 (void*)page, count);
2435 mutex_unlock(&task->signal->cred_guard_mutex);
2436out_free:
2437 free_page((unsigned long) page);
2438out:
2439 put_task_struct(task);
2440out_no_task:
2441 return length;
2442}
2443
2444static const struct file_operations proc_pid_attr_operations = {
2445 .read = proc_pid_attr_read,
2446 .write = proc_pid_attr_write,
2447 .llseek = generic_file_llseek,
2448};
2449
2450static const struct pid_entry attr_dir_stuff[] = {
2451 REG("current", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2452 REG("prev", S_IRUGO, proc_pid_attr_operations),
2453 REG("exec", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2454 REG("fscreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2455 REG("keycreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2456 REG("sockcreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2457};
2458
2459static int proc_attr_dir_readdir(struct file * filp,
2460 void * dirent, filldir_t filldir)
2461{
2462 return proc_pident_readdir(filp,dirent,filldir,
2463 attr_dir_stuff,ARRAY_SIZE(attr_dir_stuff));
2464}
2465
2466static const struct file_operations proc_attr_dir_operations = {
2467 .read = generic_read_dir,
2468 .readdir = proc_attr_dir_readdir,
2469 .llseek = default_llseek,
2470};
2471
2472static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2473 struct dentry *dentry, struct nameidata *nd)
2474{
2475 return proc_pident_lookup(dir, dentry,
2476 attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2477}
2478
2479static const struct inode_operations proc_attr_dir_inode_operations = {
2480 .lookup = proc_attr_dir_lookup,
2481 .getattr = pid_getattr,
2482 .setattr = proc_setattr,
2483};
2484
2485#endif
2486
2487#ifdef CONFIG_ELF_CORE
2488static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2489 size_t count, loff_t *ppos)
2490{
2491 struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
2492 struct mm_struct *mm;
2493 char buffer[PROC_NUMBUF];
2494 size_t len;
2495 int ret;
2496
2497 if (!task)
2498 return -ESRCH;
2499
2500 ret = 0;
2501 mm = get_task_mm(task);
2502 if (mm) {
2503 len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2504 ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2505 MMF_DUMP_FILTER_SHIFT));
2506 mmput(mm);
2507 ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2508 }
2509
2510 put_task_struct(task);
2511
2512 return ret;
2513}
2514
2515static ssize_t proc_coredump_filter_write(struct file *file,
2516 const char __user *buf,
2517 size_t count,
2518 loff_t *ppos)
2519{
2520 struct task_struct *task;
2521 struct mm_struct *mm;
2522 char buffer[PROC_NUMBUF], *end;
2523 unsigned int val;
2524 int ret;
2525 int i;
2526 unsigned long mask;
2527
2528 ret = -EFAULT;
2529 memset(buffer, 0, sizeof(buffer));
2530 if (count > sizeof(buffer) - 1)
2531 count = sizeof(buffer) - 1;
2532 if (copy_from_user(buffer, buf, count))
2533 goto out_no_task;
2534
2535 ret = -EINVAL;
2536 val = (unsigned int)simple_strtoul(buffer, &end, 0);
2537 if (*end == '\n')
2538 end++;
2539 if (end - buffer == 0)
2540 goto out_no_task;
2541
2542 ret = -ESRCH;
2543 task = get_proc_task(file->f_dentry->d_inode);
2544 if (!task)
2545 goto out_no_task;
2546
2547 ret = end - buffer;
2548 mm = get_task_mm(task);
2549 if (!mm)
2550 goto out_no_mm;
2551
2552 for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2553 if (val & mask)
2554 set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2555 else
2556 clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2557 }
2558
2559 mmput(mm);
2560 out_no_mm:
2561 put_task_struct(task);
2562 out_no_task:
2563 return ret;
2564}
2565
2566static const struct file_operations proc_coredump_filter_operations = {
2567 .read = proc_coredump_filter_read,
2568 .write = proc_coredump_filter_write,
2569 .llseek = generic_file_llseek,
2570};
2571#endif
2572
2573/*
2574 * /proc/self:
2575 */
2576static int proc_self_readlink(struct dentry *dentry, char __user *buffer,
2577 int buflen)
2578{
2579 struct pid_namespace *ns = dentry->d_sb->s_fs_info;
2580 pid_t tgid = task_tgid_nr_ns(current, ns);
2581 char tmp[PROC_NUMBUF];
2582 if (!tgid)
2583 return -ENOENT;
2584 sprintf(tmp, "%d", tgid);
2585 return vfs_readlink(dentry,buffer,buflen,tmp);
2586}
2587
2588static void *proc_self_follow_link(struct dentry *dentry, struct nameidata *nd)
2589{
2590 struct pid_namespace *ns = dentry->d_sb->s_fs_info;
2591 pid_t tgid = task_tgid_nr_ns(current, ns);
2592 char *name = ERR_PTR(-ENOENT);
2593 if (tgid) {
2594 name = __getname();
2595 if (!name)
2596 name = ERR_PTR(-ENOMEM);
2597 else
2598 sprintf(name, "%d", tgid);
2599 }
2600 nd_set_link(nd, name);
2601 return NULL;
2602}
2603
2604static void proc_self_put_link(struct dentry *dentry, struct nameidata *nd,
2605 void *cookie)
2606{
2607 char *s = nd_get_link(nd);
2608 if (!IS_ERR(s))
2609 __putname(s);
2610}
2611
2612static const struct inode_operations proc_self_inode_operations = {
2613 .readlink = proc_self_readlink,
2614 .follow_link = proc_self_follow_link,
2615 .put_link = proc_self_put_link,
2616};
2617
2618/*
2619 * proc base
2620 *
2621 * These are the directory entries in the root directory of /proc
2622 * that properly belong to the /proc filesystem, as they describe
2623 * describe something that is process related.
2624 */
2625static const struct pid_entry proc_base_stuff[] = {
2626 NOD("self", S_IFLNK|S_IRWXUGO,
2627 &proc_self_inode_operations, NULL, {}),
2628};
2629
2630static struct dentry *proc_base_instantiate(struct inode *dir,
2631 struct dentry *dentry, struct task_struct *task, const void *ptr)
2632{
2633 const struct pid_entry *p = ptr;
2634 struct inode *inode;
2635 struct proc_inode *ei;
2636 struct dentry *error;
2637
2638 /* Allocate the inode */
2639 error = ERR_PTR(-ENOMEM);
2640 inode = new_inode(dir->i_sb);
2641 if (!inode)
2642 goto out;
2643
2644 /* Initialize the inode */
2645 ei = PROC_I(inode);
2646 inode->i_ino = get_next_ino();
2647 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
2648
2649 /*
2650 * grab the reference to the task.
2651 */
2652 ei->pid = get_task_pid(task, PIDTYPE_PID);
2653 if (!ei->pid)
2654 goto out_iput;
2655
2656 inode->i_mode = p->mode;
2657 if (S_ISDIR(inode->i_mode))
2658 inode->i_nlink = 2;
2659 if (S_ISLNK(inode->i_mode))
2660 inode->i_size = 64;
2661 if (p->iop)
2662 inode->i_op = p->iop;
2663 if (p->fop)
2664 inode->i_fop = p->fop;
2665 ei->op = p->op;
2666 d_add(dentry, inode);
2667 error = NULL;
2668out:
2669 return error;
2670out_iput:
2671 iput(inode);
2672 goto out;
2673}
2674
2675static struct dentry *proc_base_lookup(struct inode *dir, struct dentry *dentry)
2676{
2677 struct dentry *error;
2678 struct task_struct *task = get_proc_task(dir);
2679 const struct pid_entry *p, *last;
2680
2681 error = ERR_PTR(-ENOENT);
2682
2683 if (!task)
2684 goto out_no_task;
2685
2686 /* Lookup the directory entry */
2687 last = &proc_base_stuff[ARRAY_SIZE(proc_base_stuff) - 1];
2688 for (p = proc_base_stuff; p <= last; p++) {
2689 if (p->len != dentry->d_name.len)
2690 continue;
2691 if (!memcmp(dentry->d_name.name, p->name, p->len))
2692 break;
2693 }
2694 if (p > last)
2695 goto out;
2696
2697 error = proc_base_instantiate(dir, dentry, task, p);
2698
2699out:
2700 put_task_struct(task);
2701out_no_task:
2702 return error;
2703}
2704
2705static int proc_base_fill_cache(struct file *filp, void *dirent,
2706 filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
2707{
2708 return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
2709 proc_base_instantiate, task, p);
2710}
2711
2712#ifdef CONFIG_TASK_IO_ACCOUNTING
2713static int do_io_accounting(struct task_struct *task, char *buffer, int whole)
2714{
2715 struct task_io_accounting acct = task->ioac;
2716 unsigned long flags;
2717 int result;
2718
2719 result = mutex_lock_killable(&task->signal->cred_guard_mutex);
2720 if (result)
2721 return result;
2722
2723 if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
2724 result = -EACCES;
2725 goto out_unlock;
2726 }
2727
2728 if (whole && lock_task_sighand(task, &flags)) {
2729 struct task_struct *t = task;
2730
2731 task_io_accounting_add(&acct, &task->signal->ioac);
2732 while_each_thread(task, t)
2733 task_io_accounting_add(&acct, &t->ioac);
2734
2735 unlock_task_sighand(task, &flags);
2736 }
2737 result = sprintf(buffer,
2738 "rchar: %llu\n"
2739 "wchar: %llu\n"
2740 "syscr: %llu\n"
2741 "syscw: %llu\n"
2742 "read_bytes: %llu\n"
2743 "write_bytes: %llu\n"
2744 "cancelled_write_bytes: %llu\n",
2745 (unsigned long long)acct.rchar,
2746 (unsigned long long)acct.wchar,
2747 (unsigned long long)acct.syscr,
2748 (unsigned long long)acct.syscw,
2749 (unsigned long long)acct.read_bytes,
2750 (unsigned long long)acct.write_bytes,
2751 (unsigned long long)acct.cancelled_write_bytes);
2752out_unlock:
2753 mutex_unlock(&task->signal->cred_guard_mutex);
2754 return result;
2755}
2756
2757static int proc_tid_io_accounting(struct task_struct *task, char *buffer)
2758{
2759 return do_io_accounting(task, buffer, 0);
2760}
2761
2762static int proc_tgid_io_accounting(struct task_struct *task, char *buffer)
2763{
2764 return do_io_accounting(task, buffer, 1);
2765}
2766#endif /* CONFIG_TASK_IO_ACCOUNTING */
2767
2768static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
2769 struct pid *pid, struct task_struct *task)
2770{
2771 int err = lock_trace(task);
2772 if (!err) {
2773 seq_printf(m, "%08x\n", task->personality);
2774 unlock_trace(task);
2775 }
2776 return err;
2777}
2778
2779/*
2780 * Thread groups
2781 */
2782static const struct file_operations proc_task_operations;
2783static const struct inode_operations proc_task_inode_operations;
2784
2785static const struct pid_entry tgid_base_stuff[] = {
2786 DIR("task", S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
2787 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2788 DIR("fdinfo", S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
2789 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
2790#ifdef CONFIG_NET
2791 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
2792#endif
2793 REG("environ", S_IRUSR, proc_environ_operations),
2794 INF("auxv", S_IRUSR, proc_pid_auxv),
2795 ONE("status", S_IRUGO, proc_pid_status),
2796 ONE("personality", S_IRUGO, proc_pid_personality),
2797 INF("limits", S_IRUGO, proc_pid_limits),
2798#ifdef CONFIG_SCHED_DEBUG
2799 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2800#endif
2801#ifdef CONFIG_SCHED_AUTOGROUP
2802 REG("autogroup", S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
2803#endif
2804 REG("comm", S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
2805#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2806 INF("syscall", S_IRUGO, proc_pid_syscall),
2807#endif
2808 INF("cmdline", S_IRUGO, proc_pid_cmdline),
2809 ONE("stat", S_IRUGO, proc_tgid_stat),
2810 ONE("statm", S_IRUGO, proc_pid_statm),
2811 REG("maps", S_IRUGO, proc_maps_operations),
2812#ifdef CONFIG_NUMA
2813 REG("numa_maps", S_IRUGO, proc_numa_maps_operations),
2814#endif
2815 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations),
2816 LNK("cwd", proc_cwd_link),
2817 LNK("root", proc_root_link),
2818 LNK("exe", proc_exe_link),
2819 REG("mounts", S_IRUGO, proc_mounts_operations),
2820 REG("mountinfo", S_IRUGO, proc_mountinfo_operations),
2821 REG("mountstats", S_IRUSR, proc_mountstats_operations),
2822#ifdef CONFIG_PROC_PAGE_MONITOR
2823 REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
2824 REG("smaps", S_IRUGO, proc_smaps_operations),
2825 REG("pagemap", S_IRUGO, proc_pagemap_operations),
2826#endif
2827#ifdef CONFIG_SECURITY
2828 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
2829#endif
2830#ifdef CONFIG_KALLSYMS
2831 INF("wchan", S_IRUGO, proc_pid_wchan),
2832#endif
2833#ifdef CONFIG_STACKTRACE
2834 ONE("stack", S_IRUGO, proc_pid_stack),
2835#endif
2836#ifdef CONFIG_SCHEDSTATS
2837 INF("schedstat", S_IRUGO, proc_pid_schedstat),
2838#endif
2839#ifdef CONFIG_LATENCYTOP
2840 REG("latency", S_IRUGO, proc_lstats_operations),
2841#endif
2842#ifdef CONFIG_PROC_PID_CPUSET
2843 REG("cpuset", S_IRUGO, proc_cpuset_operations),
2844#endif
2845#ifdef CONFIG_CGROUPS
2846 REG("cgroup", S_IRUGO, proc_cgroup_operations),
2847#endif
2848 INF("oom_score", S_IRUGO, proc_oom_score),
2849 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adjust_operations),
2850 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
2851#ifdef CONFIG_AUDITSYSCALL
2852 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations),
2853 REG("sessionid", S_IRUGO, proc_sessionid_operations),
2854#endif
2855#ifdef CONFIG_FAULT_INJECTION
2856 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
2857#endif
2858#ifdef CONFIG_ELF_CORE
2859 REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
2860#endif
2861#ifdef CONFIG_TASK_IO_ACCOUNTING
2862 INF("io", S_IRUSR, proc_tgid_io_accounting),
2863#endif
2864#ifdef CONFIG_HARDWALL
2865 INF("hardwall", S_IRUGO, proc_pid_hardwall),
2866#endif
2867};
2868
2869static int proc_tgid_base_readdir(struct file * filp,
2870 void * dirent, filldir_t filldir)
2871{
2872 return proc_pident_readdir(filp,dirent,filldir,
2873 tgid_base_stuff,ARRAY_SIZE(tgid_base_stuff));
2874}
2875
2876static const struct file_operations proc_tgid_base_operations = {
2877 .read = generic_read_dir,
2878 .readdir = proc_tgid_base_readdir,
2879 .llseek = default_llseek,
2880};
2881
2882static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){
2883 return proc_pident_lookup(dir, dentry,
2884 tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2885}
2886
2887static const struct inode_operations proc_tgid_base_inode_operations = {
2888 .lookup = proc_tgid_base_lookup,
2889 .getattr = pid_getattr,
2890 .setattr = proc_setattr,
2891};
2892
2893static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
2894{
2895 struct dentry *dentry, *leader, *dir;
2896 char buf[PROC_NUMBUF];
2897 struct qstr name;
2898
2899 name.name = buf;
2900 name.len = snprintf(buf, sizeof(buf), "%d", pid);
2901 dentry = d_hash_and_lookup(mnt->mnt_root, &name);
2902 if (dentry) {
2903 shrink_dcache_parent(dentry);
2904 d_drop(dentry);
2905 dput(dentry);
2906 }
2907
2908 name.name = buf;
2909 name.len = snprintf(buf, sizeof(buf), "%d", tgid);
2910 leader = d_hash_and_lookup(mnt->mnt_root, &name);
2911 if (!leader)
2912 goto out;
2913
2914 name.name = "task";
2915 name.len = strlen(name.name);
2916 dir = d_hash_and_lookup(leader, &name);
2917 if (!dir)
2918 goto out_put_leader;
2919
2920 name.name = buf;
2921 name.len = snprintf(buf, sizeof(buf), "%d", pid);
2922 dentry = d_hash_and_lookup(dir, &name);
2923 if (dentry) {
2924 shrink_dcache_parent(dentry);
2925 d_drop(dentry);
2926 dput(dentry);
2927 }
2928
2929 dput(dir);
2930out_put_leader:
2931 dput(leader);
2932out:
2933 return;
2934}
2935
2936/**
2937 * proc_flush_task - Remove dcache entries for @task from the /proc dcache.
2938 * @task: task that should be flushed.
2939 *
2940 * When flushing dentries from proc, one needs to flush them from global
2941 * proc (proc_mnt) and from all the namespaces' procs this task was seen
2942 * in. This call is supposed to do all of this job.
2943 *
2944 * Looks in the dcache for
2945 * /proc/@pid
2946 * /proc/@tgid/task/@pid
2947 * if either directory is present flushes it and all of it'ts children
2948 * from the dcache.
2949 *
2950 * It is safe and reasonable to cache /proc entries for a task until
2951 * that task exits. After that they just clog up the dcache with
2952 * useless entries, possibly causing useful dcache entries to be
2953 * flushed instead. This routine is proved to flush those useless
2954 * dcache entries at process exit time.
2955 *
2956 * NOTE: This routine is just an optimization so it does not guarantee
2957 * that no dcache entries will exist at process exit time it
2958 * just makes it very unlikely that any will persist.
2959 */
2960
2961void proc_flush_task(struct task_struct *task)
2962{
2963 int i;
2964 struct pid *pid, *tgid;
2965 struct upid *upid;
2966
2967 pid = task_pid(task);
2968 tgid = task_tgid(task);
2969
2970 for (i = 0; i <= pid->level; i++) {
2971 upid = &pid->numbers[i];
2972 proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
2973 tgid->numbers[i].nr);
2974 }
2975
2976 upid = &pid->numbers[pid->level];
2977 if (upid->nr == 1)
2978 pid_ns_release_proc(upid->ns);
2979}
2980
2981static struct dentry *proc_pid_instantiate(struct inode *dir,
2982 struct dentry * dentry,
2983 struct task_struct *task, const void *ptr)
2984{
2985 struct dentry *error = ERR_PTR(-ENOENT);
2986 struct inode *inode;
2987
2988 inode = proc_pid_make_inode(dir->i_sb, task);
2989 if (!inode)
2990 goto out;
2991
2992 inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
2993 inode->i_op = &proc_tgid_base_inode_operations;
2994 inode->i_fop = &proc_tgid_base_operations;
2995 inode->i_flags|=S_IMMUTABLE;
2996
2997 inode->i_nlink = 2 + pid_entry_count_dirs(tgid_base_stuff,
2998 ARRAY_SIZE(tgid_base_stuff));
2999
3000 d_set_d_op(dentry, &pid_dentry_operations);
3001
3002 d_add(dentry, inode);
3003 /* Close the race of the process dying before we return the dentry */
3004 if (pid_revalidate(dentry, NULL))
3005 error = NULL;
3006out:
3007 return error;
3008}
3009
3010struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
3011{
3012 struct dentry *result;
3013 struct task_struct *task;
3014 unsigned tgid;
3015 struct pid_namespace *ns;
3016
3017 result = proc_base_lookup(dir, dentry);
3018 if (!IS_ERR(result) || PTR_ERR(result) != -ENOENT)
3019 goto out;
3020
3021 tgid = name_to_int(dentry);
3022 if (tgid == ~0U)
3023 goto out;
3024
3025 ns = dentry->d_sb->s_fs_info;
3026 rcu_read_lock();
3027 task = find_task_by_pid_ns(tgid, ns);
3028 if (task)
3029 get_task_struct(task);
3030 rcu_read_unlock();
3031 if (!task)
3032 goto out;
3033
3034 result = proc_pid_instantiate(dir, dentry, task, NULL);
3035 put_task_struct(task);
3036out:
3037 return result;
3038}
3039
3040/*
3041 * Find the first task with tgid >= tgid
3042 *
3043 */
3044struct tgid_iter {
3045 unsigned int tgid;
3046 struct task_struct *task;
3047};
3048static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
3049{
3050 struct pid *pid;
3051
3052 if (iter.task)
3053 put_task_struct(iter.task);
3054 rcu_read_lock();
3055retry:
3056 iter.task = NULL;
3057 pid = find_ge_pid(iter.tgid, ns);
3058 if (pid) {
3059 iter.tgid = pid_nr_ns(pid, ns);
3060 iter.task = pid_task(pid, PIDTYPE_PID);
3061 /* What we to know is if the pid we have find is the
3062 * pid of a thread_group_leader. Testing for task
3063 * being a thread_group_leader is the obvious thing
3064 * todo but there is a window when it fails, due to
3065 * the pid transfer logic in de_thread.
3066 *
3067 * So we perform the straight forward test of seeing
3068 * if the pid we have found is the pid of a thread
3069 * group leader, and don't worry if the task we have
3070 * found doesn't happen to be a thread group leader.
3071 * As we don't care in the case of readdir.
3072 */
3073 if (!iter.task || !has_group_leader_pid(iter.task)) {
3074 iter.tgid += 1;
3075 goto retry;
3076 }
3077 get_task_struct(iter.task);
3078 }
3079 rcu_read_unlock();
3080 return iter;
3081}
3082
3083#define TGID_OFFSET (FIRST_PROCESS_ENTRY + ARRAY_SIZE(proc_base_stuff))
3084
3085static int proc_pid_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
3086 struct tgid_iter iter)
3087{
3088 char name[PROC_NUMBUF];
3089 int len = snprintf(name, sizeof(name), "%d", iter.tgid);
3090 return proc_fill_cache(filp, dirent, filldir, name, len,
3091 proc_pid_instantiate, iter.task, NULL);
3092}
3093
3094/* for the /proc/ directory itself, after non-process stuff has been done */
3095int proc_pid_readdir(struct file * filp, void * dirent, filldir_t filldir)
3096{
3097 unsigned int nr;
3098 struct task_struct *reaper;
3099 struct tgid_iter iter;
3100 struct pid_namespace *ns;
3101
3102 if (filp->f_pos >= PID_MAX_LIMIT + TGID_OFFSET)
3103 goto out_no_task;
3104 nr = filp->f_pos - FIRST_PROCESS_ENTRY;
3105
3106 reaper = get_proc_task(filp->f_path.dentry->d_inode);
3107 if (!reaper)
3108 goto out_no_task;
3109
3110 for (; nr < ARRAY_SIZE(proc_base_stuff); filp->f_pos++, nr++) {
3111 const struct pid_entry *p = &proc_base_stuff[nr];
3112 if (proc_base_fill_cache(filp, dirent, filldir, reaper, p) < 0)
3113 goto out;
3114 }
3115
3116 ns = filp->f_dentry->d_sb->s_fs_info;
3117 iter.task = NULL;
3118 iter.tgid = filp->f_pos - TGID_OFFSET;
3119 for (iter = next_tgid(ns, iter);
3120 iter.task;
3121 iter.tgid += 1, iter = next_tgid(ns, iter)) {
3122 filp->f_pos = iter.tgid + TGID_OFFSET;
3123 if (proc_pid_fill_cache(filp, dirent, filldir, iter) < 0) {
3124 put_task_struct(iter.task);
3125 goto out;
3126 }
3127 }
3128 filp->f_pos = PID_MAX_LIMIT + TGID_OFFSET;
3129out:
3130 put_task_struct(reaper);
3131out_no_task:
3132 return 0;
3133}
3134
3135/*
3136 * Tasks
3137 */
3138static const struct pid_entry tid_base_stuff[] = {
3139 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3140 DIR("fdinfo", S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3141 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3142 REG("environ", S_IRUSR, proc_environ_operations),
3143 INF("auxv", S_IRUSR, proc_pid_auxv),
3144 ONE("status", S_IRUGO, proc_pid_status),
3145 ONE("personality", S_IRUGO, proc_pid_personality),
3146 INF("limits", S_IRUGO, proc_pid_limits),
3147#ifdef CONFIG_SCHED_DEBUG
3148 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3149#endif
3150 REG("comm", S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
3151#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3152 INF("syscall", S_IRUGO, proc_pid_syscall),
3153#endif
3154 INF("cmdline", S_IRUGO, proc_pid_cmdline),
3155 ONE("stat", S_IRUGO, proc_tid_stat),
3156 ONE("statm", S_IRUGO, proc_pid_statm),
3157 REG("maps", S_IRUGO, proc_maps_operations),
3158#ifdef CONFIG_NUMA
3159 REG("numa_maps", S_IRUGO, proc_numa_maps_operations),
3160#endif
3161 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations),
3162 LNK("cwd", proc_cwd_link),
3163 LNK("root", proc_root_link),
3164 LNK("exe", proc_exe_link),
3165 REG("mounts", S_IRUGO, proc_mounts_operations),
3166 REG("mountinfo", S_IRUGO, proc_mountinfo_operations),
3167#ifdef CONFIG_PROC_PAGE_MONITOR
3168 REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3169 REG("smaps", S_IRUGO, proc_smaps_operations),
3170 REG("pagemap", S_IRUGO, proc_pagemap_operations),
3171#endif
3172#ifdef CONFIG_SECURITY
3173 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3174#endif
3175#ifdef CONFIG_KALLSYMS
3176 INF("wchan", S_IRUGO, proc_pid_wchan),
3177#endif
3178#ifdef CONFIG_STACKTRACE
3179 ONE("stack", S_IRUGO, proc_pid_stack),
3180#endif
3181#ifdef CONFIG_SCHEDSTATS
3182 INF("schedstat", S_IRUGO, proc_pid_schedstat),
3183#endif
3184#ifdef CONFIG_LATENCYTOP
3185 REG("latency", S_IRUGO, proc_lstats_operations),
3186#endif
3187#ifdef CONFIG_PROC_PID_CPUSET
3188 REG("cpuset", S_IRUGO, proc_cpuset_operations),
3189#endif
3190#ifdef CONFIG_CGROUPS
3191 REG("cgroup", S_IRUGO, proc_cgroup_operations),
3192#endif
3193 INF("oom_score", S_IRUGO, proc_oom_score),
3194 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adjust_operations),
3195 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3196#ifdef CONFIG_AUDITSYSCALL
3197 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations),
3198 REG("sessionid", S_IRUGO, proc_sessionid_operations),
3199#endif
3200#ifdef CONFIG_FAULT_INJECTION
3201 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3202#endif
3203#ifdef CONFIG_TASK_IO_ACCOUNTING
3204 INF("io", S_IRUSR, proc_tid_io_accounting),
3205#endif
3206#ifdef CONFIG_HARDWALL
3207 INF("hardwall", S_IRUGO, proc_pid_hardwall),
3208#endif
3209};
3210
3211static int proc_tid_base_readdir(struct file * filp,
3212 void * dirent, filldir_t filldir)
3213{
3214 return proc_pident_readdir(filp,dirent,filldir,
3215 tid_base_stuff,ARRAY_SIZE(tid_base_stuff));
3216}
3217
3218static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){
3219 return proc_pident_lookup(dir, dentry,
3220 tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3221}
3222
3223static const struct file_operations proc_tid_base_operations = {
3224 .read = generic_read_dir,
3225 .readdir = proc_tid_base_readdir,
3226 .llseek = default_llseek,
3227};
3228
3229static const struct inode_operations proc_tid_base_inode_operations = {
3230 .lookup = proc_tid_base_lookup,
3231 .getattr = pid_getattr,
3232 .setattr = proc_setattr,
3233};
3234
3235static struct dentry *proc_task_instantiate(struct inode *dir,
3236 struct dentry *dentry, struct task_struct *task, const void *ptr)
3237{
3238 struct dentry *error = ERR_PTR(-ENOENT);
3239 struct inode *inode;
3240 inode = proc_pid_make_inode(dir->i_sb, task);
3241
3242 if (!inode)
3243 goto out;
3244 inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
3245 inode->i_op = &proc_tid_base_inode_operations;
3246 inode->i_fop = &proc_tid_base_operations;
3247 inode->i_flags|=S_IMMUTABLE;
3248
3249 inode->i_nlink = 2 + pid_entry_count_dirs(tid_base_stuff,
3250 ARRAY_SIZE(tid_base_stuff));
3251
3252 d_set_d_op(dentry, &pid_dentry_operations);
3253
3254 d_add(dentry, inode);
3255 /* Close the race of the process dying before we return the dentry */
3256 if (pid_revalidate(dentry, NULL))
3257 error = NULL;
3258out:
3259 return error;
3260}
3261
3262static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
3263{
3264 struct dentry *result = ERR_PTR(-ENOENT);
3265 struct task_struct *task;
3266 struct task_struct *leader = get_proc_task(dir);
3267 unsigned tid;
3268 struct pid_namespace *ns;
3269
3270 if (!leader)
3271 goto out_no_task;
3272
3273 tid = name_to_int(dentry);
3274 if (tid == ~0U)
3275 goto out;
3276
3277 ns = dentry->d_sb->s_fs_info;
3278 rcu_read_lock();
3279 task = find_task_by_pid_ns(tid, ns);
3280 if (task)
3281 get_task_struct(task);
3282 rcu_read_unlock();
3283 if (!task)
3284 goto out;
3285 if (!same_thread_group(leader, task))
3286 goto out_drop_task;
3287
3288 result = proc_task_instantiate(dir, dentry, task, NULL);
3289out_drop_task:
3290 put_task_struct(task);
3291out:
3292 put_task_struct(leader);
3293out_no_task:
3294 return result;
3295}
3296
3297/*
3298 * Find the first tid of a thread group to return to user space.
3299 *
3300 * Usually this is just the thread group leader, but if the users
3301 * buffer was too small or there was a seek into the middle of the
3302 * directory we have more work todo.
3303 *
3304 * In the case of a short read we start with find_task_by_pid.
3305 *
3306 * In the case of a seek we start with the leader and walk nr
3307 * threads past it.
3308 */
3309static struct task_struct *first_tid(struct task_struct *leader,
3310 int tid, int nr, struct pid_namespace *ns)
3311{
3312 struct task_struct *pos;
3313
3314 rcu_read_lock();
3315 /* Attempt to start with the pid of a thread */
3316 if (tid && (nr > 0)) {
3317 pos = find_task_by_pid_ns(tid, ns);
3318 if (pos && (pos->group_leader == leader))
3319 goto found;
3320 }
3321
3322 /* If nr exceeds the number of threads there is nothing todo */
3323 pos = NULL;
3324 if (nr && nr >= get_nr_threads(leader))
3325 goto out;
3326
3327 /* If we haven't found our starting place yet start
3328 * with the leader and walk nr threads forward.
3329 */
3330 for (pos = leader; nr > 0; --nr) {
3331 pos = next_thread(pos);
3332 if (pos == leader) {
3333 pos = NULL;
3334 goto out;
3335 }
3336 }
3337found:
3338 get_task_struct(pos);
3339out:
3340 rcu_read_unlock();
3341 return pos;
3342}
3343
3344/*
3345 * Find the next thread in the thread list.
3346 * Return NULL if there is an error or no next thread.
3347 *
3348 * The reference to the input task_struct is released.
3349 */
3350static struct task_struct *next_tid(struct task_struct *start)
3351{
3352 struct task_struct *pos = NULL;
3353 rcu_read_lock();
3354 if (pid_alive(start)) {
3355 pos = next_thread(start);
3356 if (thread_group_leader(pos))
3357 pos = NULL;
3358 else
3359 get_task_struct(pos);
3360 }
3361 rcu_read_unlock();
3362 put_task_struct(start);
3363 return pos;
3364}
3365
3366static int proc_task_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
3367 struct task_struct *task, int tid)
3368{
3369 char name[PROC_NUMBUF];
3370 int len = snprintf(name, sizeof(name), "%d", tid);
3371 return proc_fill_cache(filp, dirent, filldir, name, len,
3372 proc_task_instantiate, task, NULL);
3373}
3374
3375/* for the /proc/TGID/task/ directories */
3376static int proc_task_readdir(struct file * filp, void * dirent, filldir_t filldir)
3377{
3378 struct dentry *dentry = filp->f_path.dentry;
3379 struct inode *inode = dentry->d_inode;
3380 struct task_struct *leader = NULL;
3381 struct task_struct *task;
3382 int retval = -ENOENT;
3383 ino_t ino;
3384 int tid;
3385 struct pid_namespace *ns;
3386
3387 task = get_proc_task(inode);
3388 if (!task)
3389 goto out_no_task;
3390 rcu_read_lock();
3391 if (pid_alive(task)) {
3392 leader = task->group_leader;
3393 get_task_struct(leader);
3394 }
3395 rcu_read_unlock();
3396 put_task_struct(task);
3397 if (!leader)
3398 goto out_no_task;
3399 retval = 0;
3400
3401 switch ((unsigned long)filp->f_pos) {
3402 case 0:
3403 ino = inode->i_ino;
3404 if (filldir(dirent, ".", 1, filp->f_pos, ino, DT_DIR) < 0)
3405 goto out;
3406 filp->f_pos++;
3407 /* fall through */
3408 case 1:
3409 ino = parent_ino(dentry);
3410 if (filldir(dirent, "..", 2, filp->f_pos, ino, DT_DIR) < 0)
3411 goto out;
3412 filp->f_pos++;
3413 /* fall through */
3414 }
3415
3416 /* f_version caches the tgid value that the last readdir call couldn't
3417 * return. lseek aka telldir automagically resets f_version to 0.
3418 */
3419 ns = filp->f_dentry->d_sb->s_fs_info;
3420 tid = (int)filp->f_version;
3421 filp->f_version = 0;
3422 for (task = first_tid(leader, tid, filp->f_pos - 2, ns);
3423 task;
3424 task = next_tid(task), filp->f_pos++) {
3425 tid = task_pid_nr_ns(task, ns);
3426 if (proc_task_fill_cache(filp, dirent, filldir, task, tid) < 0) {
3427 /* returning this tgid failed, save it as the first
3428 * pid for the next readir call */
3429 filp->f_version = (u64)tid;
3430 put_task_struct(task);
3431 break;
3432 }
3433 }
3434out:
3435 put_task_struct(leader);
3436out_no_task:
3437 return retval;
3438}
3439
3440static int proc_task_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
3441{
3442 struct inode *inode = dentry->d_inode;
3443 struct task_struct *p = get_proc_task(inode);
3444 generic_fillattr(inode, stat);
3445
3446 if (p) {
3447 stat->nlink += get_nr_threads(p);
3448 put_task_struct(p);
3449 }
3450
3451 return 0;
3452}
3453
3454static const struct inode_operations proc_task_inode_operations = {
3455 .lookup = proc_task_lookup,
3456 .getattr = proc_task_getattr,
3457 .setattr = proc_setattr,
3458};
3459
3460static const struct file_operations proc_task_operations = {
3461 .read = generic_read_dir,
3462 .readdir = proc_task_readdir,
3463 .llseek = default_llseek,
3464};
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * linux/fs/proc/base.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 *
7 * proc base directory handling functions
8 *
9 * 1999, Al Viro. Rewritten. Now it covers the whole per-process part.
10 * Instead of using magical inumbers to determine the kind of object
11 * we allocate and fill in-core inodes upon lookup. They don't even
12 * go into icache. We cache the reference to task_struct upon lookup too.
13 * Eventually it should become a filesystem in its own. We don't use the
14 * rest of procfs anymore.
15 *
16 *
17 * Changelog:
18 * 17-Jan-2005
19 * Allan Bezerra
20 * Bruna Moreira <bruna.moreira@indt.org.br>
21 * Edjard Mota <edjard.mota@indt.org.br>
22 * Ilias Biris <ilias.biris@indt.org.br>
23 * Mauricio Lin <mauricio.lin@indt.org.br>
24 *
25 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
26 *
27 * A new process specific entry (smaps) included in /proc. It shows the
28 * size of rss for each memory area. The maps entry lacks information
29 * about physical memory size (rss) for each mapped file, i.e.,
30 * rss information for executables and library files.
31 * This additional information is useful for any tools that need to know
32 * about physical memory consumption for a process specific library.
33 *
34 * Changelog:
35 * 21-Feb-2005
36 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
37 * Pud inclusion in the page table walking.
38 *
39 * ChangeLog:
40 * 10-Mar-2005
41 * 10LE Instituto Nokia de Tecnologia - INdT:
42 * A better way to walks through the page table as suggested by Hugh Dickins.
43 *
44 * Simo Piiroinen <simo.piiroinen@nokia.com>:
45 * Smaps information related to shared, private, clean and dirty pages.
46 *
47 * Paul Mundt <paul.mundt@nokia.com>:
48 * Overall revision about smaps.
49 */
50
51#include <linux/uaccess.h>
52
53#include <linux/errno.h>
54#include <linux/time.h>
55#include <linux/proc_fs.h>
56#include <linux/stat.h>
57#include <linux/task_io_accounting_ops.h>
58#include <linux/init.h>
59#include <linux/capability.h>
60#include <linux/file.h>
61#include <linux/generic-radix-tree.h>
62#include <linux/string.h>
63#include <linux/seq_file.h>
64#include <linux/namei.h>
65#include <linux/mnt_namespace.h>
66#include <linux/mm.h>
67#include <linux/swap.h>
68#include <linux/rcupdate.h>
69#include <linux/kallsyms.h>
70#include <linux/stacktrace.h>
71#include <linux/resource.h>
72#include <linux/module.h>
73#include <linux/mount.h>
74#include <linux/security.h>
75#include <linux/ptrace.h>
76#include <linux/printk.h>
77#include <linux/cache.h>
78#include <linux/cgroup.h>
79#include <linux/cpuset.h>
80#include <linux/audit.h>
81#include <linux/poll.h>
82#include <linux/nsproxy.h>
83#include <linux/oom.h>
84#include <linux/elf.h>
85#include <linux/pid_namespace.h>
86#include <linux/user_namespace.h>
87#include <linux/fs_parser.h>
88#include <linux/fs_struct.h>
89#include <linux/slab.h>
90#include <linux/sched/autogroup.h>
91#include <linux/sched/mm.h>
92#include <linux/sched/coredump.h>
93#include <linux/sched/debug.h>
94#include <linux/sched/stat.h>
95#include <linux/posix-timers.h>
96#include <linux/time_namespace.h>
97#include <linux/resctrl.h>
98#include <linux/cn_proc.h>
99#include <linux/ksm.h>
100#include <uapi/linux/lsm.h>
101#include <trace/events/oom.h>
102#include "internal.h"
103#include "fd.h"
104
105#include "../../lib/kstrtox.h"
106
107/* NOTE:
108 * Implementing inode permission operations in /proc is almost
109 * certainly an error. Permission checks need to happen during
110 * each system call not at open time. The reason is that most of
111 * what we wish to check for permissions in /proc varies at runtime.
112 *
113 * The classic example of a problem is opening file descriptors
114 * in /proc for a task before it execs a suid executable.
115 */
116
117static u8 nlink_tid __ro_after_init;
118static u8 nlink_tgid __ro_after_init;
119
120enum proc_mem_force {
121 PROC_MEM_FORCE_ALWAYS,
122 PROC_MEM_FORCE_PTRACE,
123 PROC_MEM_FORCE_NEVER
124};
125
126static enum proc_mem_force proc_mem_force_override __ro_after_init =
127 IS_ENABLED(CONFIG_PROC_MEM_NO_FORCE) ? PROC_MEM_FORCE_NEVER :
128 IS_ENABLED(CONFIG_PROC_MEM_FORCE_PTRACE) ? PROC_MEM_FORCE_PTRACE :
129 PROC_MEM_FORCE_ALWAYS;
130
131static const struct constant_table proc_mem_force_table[] __initconst = {
132 { "always", PROC_MEM_FORCE_ALWAYS },
133 { "ptrace", PROC_MEM_FORCE_PTRACE },
134 { "never", PROC_MEM_FORCE_NEVER },
135 { }
136};
137
138static int __init early_proc_mem_force_override(char *buf)
139{
140 if (!buf)
141 return -EINVAL;
142
143 /*
144 * lookup_constant() defaults to proc_mem_force_override to preseve
145 * the initial Kconfig choice in case an invalid param gets passed.
146 */
147 proc_mem_force_override = lookup_constant(proc_mem_force_table,
148 buf, proc_mem_force_override);
149
150 return 0;
151}
152early_param("proc_mem.force_override", early_proc_mem_force_override);
153
154struct pid_entry {
155 const char *name;
156 unsigned int len;
157 umode_t mode;
158 const struct inode_operations *iop;
159 const struct file_operations *fop;
160 union proc_op op;
161};
162
163#define NOD(NAME, MODE, IOP, FOP, OP) { \
164 .name = (NAME), \
165 .len = sizeof(NAME) - 1, \
166 .mode = MODE, \
167 .iop = IOP, \
168 .fop = FOP, \
169 .op = OP, \
170}
171
172#define DIR(NAME, MODE, iops, fops) \
173 NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
174#define LNK(NAME, get_link) \
175 NOD(NAME, (S_IFLNK|S_IRWXUGO), \
176 &proc_pid_link_inode_operations, NULL, \
177 { .proc_get_link = get_link } )
178#define REG(NAME, MODE, fops) \
179 NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
180#define ONE(NAME, MODE, show) \
181 NOD(NAME, (S_IFREG|(MODE)), \
182 NULL, &proc_single_file_operations, \
183 { .proc_show = show } )
184#define ATTR(LSMID, NAME, MODE) \
185 NOD(NAME, (S_IFREG|(MODE)), \
186 NULL, &proc_pid_attr_operations, \
187 { .lsmid = LSMID })
188
189/*
190 * Count the number of hardlinks for the pid_entry table, excluding the .
191 * and .. links.
192 */
193static unsigned int __init pid_entry_nlink(const struct pid_entry *entries,
194 unsigned int n)
195{
196 unsigned int i;
197 unsigned int count;
198
199 count = 2;
200 for (i = 0; i < n; ++i) {
201 if (S_ISDIR(entries[i].mode))
202 ++count;
203 }
204
205 return count;
206}
207
208static int get_task_root(struct task_struct *task, struct path *root)
209{
210 int result = -ENOENT;
211
212 task_lock(task);
213 if (task->fs) {
214 get_fs_root(task->fs, root);
215 result = 0;
216 }
217 task_unlock(task);
218 return result;
219}
220
221static int proc_cwd_link(struct dentry *dentry, struct path *path)
222{
223 struct task_struct *task = get_proc_task(d_inode(dentry));
224 int result = -ENOENT;
225
226 if (task) {
227 task_lock(task);
228 if (task->fs) {
229 get_fs_pwd(task->fs, path);
230 result = 0;
231 }
232 task_unlock(task);
233 put_task_struct(task);
234 }
235 return result;
236}
237
238static int proc_root_link(struct dentry *dentry, struct path *path)
239{
240 struct task_struct *task = get_proc_task(d_inode(dentry));
241 int result = -ENOENT;
242
243 if (task) {
244 result = get_task_root(task, path);
245 put_task_struct(task);
246 }
247 return result;
248}
249
250/*
251 * If the user used setproctitle(), we just get the string from
252 * user space at arg_start, and limit it to a maximum of one page.
253 */
254static ssize_t get_mm_proctitle(struct mm_struct *mm, char __user *buf,
255 size_t count, unsigned long pos,
256 unsigned long arg_start)
257{
258 char *page;
259 int ret, got;
260
261 if (pos >= PAGE_SIZE)
262 return 0;
263
264 page = (char *)__get_free_page(GFP_KERNEL);
265 if (!page)
266 return -ENOMEM;
267
268 ret = 0;
269 got = access_remote_vm(mm, arg_start, page, PAGE_SIZE, FOLL_ANON);
270 if (got > 0) {
271 int len = strnlen(page, got);
272
273 /* Include the NUL character if it was found */
274 if (len < got)
275 len++;
276
277 if (len > pos) {
278 len -= pos;
279 if (len > count)
280 len = count;
281 len -= copy_to_user(buf, page+pos, len);
282 if (!len)
283 len = -EFAULT;
284 ret = len;
285 }
286 }
287 free_page((unsigned long)page);
288 return ret;
289}
290
291static ssize_t get_mm_cmdline(struct mm_struct *mm, char __user *buf,
292 size_t count, loff_t *ppos)
293{
294 unsigned long arg_start, arg_end, env_start, env_end;
295 unsigned long pos, len;
296 char *page, c;
297
298 /* Check if process spawned far enough to have cmdline. */
299 if (!mm->env_end)
300 return 0;
301
302 spin_lock(&mm->arg_lock);
303 arg_start = mm->arg_start;
304 arg_end = mm->arg_end;
305 env_start = mm->env_start;
306 env_end = mm->env_end;
307 spin_unlock(&mm->arg_lock);
308
309 if (arg_start >= arg_end)
310 return 0;
311
312 /*
313 * We allow setproctitle() to overwrite the argument
314 * strings, and overflow past the original end. But
315 * only when it overflows into the environment area.
316 */
317 if (env_start != arg_end || env_end < env_start)
318 env_start = env_end = arg_end;
319 len = env_end - arg_start;
320
321 /* We're not going to care if "*ppos" has high bits set */
322 pos = *ppos;
323 if (pos >= len)
324 return 0;
325 if (count > len - pos)
326 count = len - pos;
327 if (!count)
328 return 0;
329
330 /*
331 * Magical special case: if the argv[] end byte is not
332 * zero, the user has overwritten it with setproctitle(3).
333 *
334 * Possible future enhancement: do this only once when
335 * pos is 0, and set a flag in the 'struct file'.
336 */
337 if (access_remote_vm(mm, arg_end-1, &c, 1, FOLL_ANON) == 1 && c)
338 return get_mm_proctitle(mm, buf, count, pos, arg_start);
339
340 /*
341 * For the non-setproctitle() case we limit things strictly
342 * to the [arg_start, arg_end[ range.
343 */
344 pos += arg_start;
345 if (pos < arg_start || pos >= arg_end)
346 return 0;
347 if (count > arg_end - pos)
348 count = arg_end - pos;
349
350 page = (char *)__get_free_page(GFP_KERNEL);
351 if (!page)
352 return -ENOMEM;
353
354 len = 0;
355 while (count) {
356 int got;
357 size_t size = min_t(size_t, PAGE_SIZE, count);
358
359 got = access_remote_vm(mm, pos, page, size, FOLL_ANON);
360 if (got <= 0)
361 break;
362 got -= copy_to_user(buf, page, got);
363 if (unlikely(!got)) {
364 if (!len)
365 len = -EFAULT;
366 break;
367 }
368 pos += got;
369 buf += got;
370 len += got;
371 count -= got;
372 }
373
374 free_page((unsigned long)page);
375 return len;
376}
377
378static ssize_t get_task_cmdline(struct task_struct *tsk, char __user *buf,
379 size_t count, loff_t *pos)
380{
381 struct mm_struct *mm;
382 ssize_t ret;
383
384 mm = get_task_mm(tsk);
385 if (!mm)
386 return 0;
387
388 ret = get_mm_cmdline(mm, buf, count, pos);
389 mmput(mm);
390 return ret;
391}
392
393static ssize_t proc_pid_cmdline_read(struct file *file, char __user *buf,
394 size_t count, loff_t *pos)
395{
396 struct task_struct *tsk;
397 ssize_t ret;
398
399 BUG_ON(*pos < 0);
400
401 tsk = get_proc_task(file_inode(file));
402 if (!tsk)
403 return -ESRCH;
404 ret = get_task_cmdline(tsk, buf, count, pos);
405 put_task_struct(tsk);
406 if (ret > 0)
407 *pos += ret;
408 return ret;
409}
410
411static const struct file_operations proc_pid_cmdline_ops = {
412 .read = proc_pid_cmdline_read,
413 .llseek = generic_file_llseek,
414};
415
416#ifdef CONFIG_KALLSYMS
417/*
418 * Provides a wchan file via kallsyms in a proper one-value-per-file format.
419 * Returns the resolved symbol. If that fails, simply return the address.
420 */
421static int proc_pid_wchan(struct seq_file *m, struct pid_namespace *ns,
422 struct pid *pid, struct task_struct *task)
423{
424 unsigned long wchan;
425 char symname[KSYM_NAME_LEN];
426
427 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
428 goto print0;
429
430 wchan = get_wchan(task);
431 if (wchan && !lookup_symbol_name(wchan, symname)) {
432 seq_puts(m, symname);
433 return 0;
434 }
435
436print0:
437 seq_putc(m, '0');
438 return 0;
439}
440#endif /* CONFIG_KALLSYMS */
441
442static int lock_trace(struct task_struct *task)
443{
444 int err = down_read_killable(&task->signal->exec_update_lock);
445 if (err)
446 return err;
447 if (!ptrace_may_access(task, PTRACE_MODE_ATTACH_FSCREDS)) {
448 up_read(&task->signal->exec_update_lock);
449 return -EPERM;
450 }
451 return 0;
452}
453
454static void unlock_trace(struct task_struct *task)
455{
456 up_read(&task->signal->exec_update_lock);
457}
458
459#ifdef CONFIG_STACKTRACE
460
461#define MAX_STACK_TRACE_DEPTH 64
462
463static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
464 struct pid *pid, struct task_struct *task)
465{
466 unsigned long *entries;
467 int err;
468
469 /*
470 * The ability to racily run the kernel stack unwinder on a running task
471 * and then observe the unwinder output is scary; while it is useful for
472 * debugging kernel issues, it can also allow an attacker to leak kernel
473 * stack contents.
474 * Doing this in a manner that is at least safe from races would require
475 * some work to ensure that the remote task can not be scheduled; and
476 * even then, this would still expose the unwinder as local attack
477 * surface.
478 * Therefore, this interface is restricted to root.
479 */
480 if (!file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN))
481 return -EACCES;
482
483 entries = kmalloc_array(MAX_STACK_TRACE_DEPTH, sizeof(*entries),
484 GFP_KERNEL);
485 if (!entries)
486 return -ENOMEM;
487
488 err = lock_trace(task);
489 if (!err) {
490 unsigned int i, nr_entries;
491
492 nr_entries = stack_trace_save_tsk(task, entries,
493 MAX_STACK_TRACE_DEPTH, 0);
494
495 for (i = 0; i < nr_entries; i++) {
496 seq_printf(m, "[<0>] %pB\n", (void *)entries[i]);
497 }
498
499 unlock_trace(task);
500 }
501 kfree(entries);
502
503 return err;
504}
505#endif
506
507#ifdef CONFIG_SCHED_INFO
508/*
509 * Provides /proc/PID/schedstat
510 */
511static int proc_pid_schedstat(struct seq_file *m, struct pid_namespace *ns,
512 struct pid *pid, struct task_struct *task)
513{
514 if (unlikely(!sched_info_on()))
515 seq_puts(m, "0 0 0\n");
516 else
517 seq_printf(m, "%llu %llu %lu\n",
518 (unsigned long long)task->se.sum_exec_runtime,
519 (unsigned long long)task->sched_info.run_delay,
520 task->sched_info.pcount);
521
522 return 0;
523}
524#endif
525
526#ifdef CONFIG_LATENCYTOP
527static int lstats_show_proc(struct seq_file *m, void *v)
528{
529 int i;
530 struct inode *inode = m->private;
531 struct task_struct *task = get_proc_task(inode);
532
533 if (!task)
534 return -ESRCH;
535 seq_puts(m, "Latency Top version : v0.1\n");
536 for (i = 0; i < LT_SAVECOUNT; i++) {
537 struct latency_record *lr = &task->latency_record[i];
538 if (lr->backtrace[0]) {
539 int q;
540 seq_printf(m, "%i %li %li",
541 lr->count, lr->time, lr->max);
542 for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
543 unsigned long bt = lr->backtrace[q];
544
545 if (!bt)
546 break;
547 seq_printf(m, " %ps", (void *)bt);
548 }
549 seq_putc(m, '\n');
550 }
551
552 }
553 put_task_struct(task);
554 return 0;
555}
556
557static int lstats_open(struct inode *inode, struct file *file)
558{
559 return single_open(file, lstats_show_proc, inode);
560}
561
562static ssize_t lstats_write(struct file *file, const char __user *buf,
563 size_t count, loff_t *offs)
564{
565 struct task_struct *task = get_proc_task(file_inode(file));
566
567 if (!task)
568 return -ESRCH;
569 clear_tsk_latency_tracing(task);
570 put_task_struct(task);
571
572 return count;
573}
574
575static const struct file_operations proc_lstats_operations = {
576 .open = lstats_open,
577 .read = seq_read,
578 .write = lstats_write,
579 .llseek = seq_lseek,
580 .release = single_release,
581};
582
583#endif
584
585static int proc_oom_score(struct seq_file *m, struct pid_namespace *ns,
586 struct pid *pid, struct task_struct *task)
587{
588 unsigned long totalpages = totalram_pages() + total_swap_pages;
589 unsigned long points = 0;
590 long badness;
591
592 badness = oom_badness(task, totalpages);
593 /*
594 * Special case OOM_SCORE_ADJ_MIN for all others scale the
595 * badness value into [0, 2000] range which we have been
596 * exporting for a long time so userspace might depend on it.
597 */
598 if (badness != LONG_MIN)
599 points = (1000 + badness * 1000 / (long)totalpages) * 2 / 3;
600
601 seq_printf(m, "%lu\n", points);
602
603 return 0;
604}
605
606struct limit_names {
607 const char *name;
608 const char *unit;
609};
610
611static const struct limit_names lnames[RLIM_NLIMITS] = {
612 [RLIMIT_CPU] = {"Max cpu time", "seconds"},
613 [RLIMIT_FSIZE] = {"Max file size", "bytes"},
614 [RLIMIT_DATA] = {"Max data size", "bytes"},
615 [RLIMIT_STACK] = {"Max stack size", "bytes"},
616 [RLIMIT_CORE] = {"Max core file size", "bytes"},
617 [RLIMIT_RSS] = {"Max resident set", "bytes"},
618 [RLIMIT_NPROC] = {"Max processes", "processes"},
619 [RLIMIT_NOFILE] = {"Max open files", "files"},
620 [RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
621 [RLIMIT_AS] = {"Max address space", "bytes"},
622 [RLIMIT_LOCKS] = {"Max file locks", "locks"},
623 [RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
624 [RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
625 [RLIMIT_NICE] = {"Max nice priority", NULL},
626 [RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
627 [RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
628};
629
630/* Display limits for a process */
631static int proc_pid_limits(struct seq_file *m, struct pid_namespace *ns,
632 struct pid *pid, struct task_struct *task)
633{
634 unsigned int i;
635 unsigned long flags;
636
637 struct rlimit rlim[RLIM_NLIMITS];
638
639 if (!lock_task_sighand(task, &flags))
640 return 0;
641 memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
642 unlock_task_sighand(task, &flags);
643
644 /*
645 * print the file header
646 */
647 seq_puts(m, "Limit "
648 "Soft Limit "
649 "Hard Limit "
650 "Units \n");
651
652 for (i = 0; i < RLIM_NLIMITS; i++) {
653 if (rlim[i].rlim_cur == RLIM_INFINITY)
654 seq_printf(m, "%-25s %-20s ",
655 lnames[i].name, "unlimited");
656 else
657 seq_printf(m, "%-25s %-20lu ",
658 lnames[i].name, rlim[i].rlim_cur);
659
660 if (rlim[i].rlim_max == RLIM_INFINITY)
661 seq_printf(m, "%-20s ", "unlimited");
662 else
663 seq_printf(m, "%-20lu ", rlim[i].rlim_max);
664
665 if (lnames[i].unit)
666 seq_printf(m, "%-10s\n", lnames[i].unit);
667 else
668 seq_putc(m, '\n');
669 }
670
671 return 0;
672}
673
674#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
675static int proc_pid_syscall(struct seq_file *m, struct pid_namespace *ns,
676 struct pid *pid, struct task_struct *task)
677{
678 struct syscall_info info;
679 u64 *args = &info.data.args[0];
680 int res;
681
682 res = lock_trace(task);
683 if (res)
684 return res;
685
686 if (task_current_syscall(task, &info))
687 seq_puts(m, "running\n");
688 else if (info.data.nr < 0)
689 seq_printf(m, "%d 0x%llx 0x%llx\n",
690 info.data.nr, info.sp, info.data.instruction_pointer);
691 else
692 seq_printf(m,
693 "%d 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx\n",
694 info.data.nr,
695 args[0], args[1], args[2], args[3], args[4], args[5],
696 info.sp, info.data.instruction_pointer);
697 unlock_trace(task);
698
699 return 0;
700}
701#endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
702
703/************************************************************************/
704/* Here the fs part begins */
705/************************************************************************/
706
707/* permission checks */
708static bool proc_fd_access_allowed(struct inode *inode)
709{
710 struct task_struct *task;
711 bool allowed = false;
712 /* Allow access to a task's file descriptors if it is us or we
713 * may use ptrace attach to the process and find out that
714 * information.
715 */
716 task = get_proc_task(inode);
717 if (task) {
718 allowed = ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
719 put_task_struct(task);
720 }
721 return allowed;
722}
723
724int proc_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
725 struct iattr *attr)
726{
727 int error;
728 struct inode *inode = d_inode(dentry);
729
730 if (attr->ia_valid & ATTR_MODE)
731 return -EPERM;
732
733 error = setattr_prepare(&nop_mnt_idmap, dentry, attr);
734 if (error)
735 return error;
736
737 setattr_copy(&nop_mnt_idmap, inode, attr);
738 return 0;
739}
740
741/*
742 * May current process learn task's sched/cmdline info (for hide_pid_min=1)
743 * or euid/egid (for hide_pid_min=2)?
744 */
745static bool has_pid_permissions(struct proc_fs_info *fs_info,
746 struct task_struct *task,
747 enum proc_hidepid hide_pid_min)
748{
749 /*
750 * If 'hidpid' mount option is set force a ptrace check,
751 * we indicate that we are using a filesystem syscall
752 * by passing PTRACE_MODE_READ_FSCREDS
753 */
754 if (fs_info->hide_pid == HIDEPID_NOT_PTRACEABLE)
755 return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
756
757 if (fs_info->hide_pid < hide_pid_min)
758 return true;
759 if (in_group_p(fs_info->pid_gid))
760 return true;
761 return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
762}
763
764
765static int proc_pid_permission(struct mnt_idmap *idmap,
766 struct inode *inode, int mask)
767{
768 struct proc_fs_info *fs_info = proc_sb_info(inode->i_sb);
769 struct task_struct *task;
770 bool has_perms;
771
772 task = get_proc_task(inode);
773 if (!task)
774 return -ESRCH;
775 has_perms = has_pid_permissions(fs_info, task, HIDEPID_NO_ACCESS);
776 put_task_struct(task);
777
778 if (!has_perms) {
779 if (fs_info->hide_pid == HIDEPID_INVISIBLE) {
780 /*
781 * Let's make getdents(), stat(), and open()
782 * consistent with each other. If a process
783 * may not stat() a file, it shouldn't be seen
784 * in procfs at all.
785 */
786 return -ENOENT;
787 }
788
789 return -EPERM;
790 }
791 return generic_permission(&nop_mnt_idmap, inode, mask);
792}
793
794
795
796static const struct inode_operations proc_def_inode_operations = {
797 .setattr = proc_setattr,
798};
799
800static int proc_single_show(struct seq_file *m, void *v)
801{
802 struct inode *inode = m->private;
803 struct pid_namespace *ns = proc_pid_ns(inode->i_sb);
804 struct pid *pid = proc_pid(inode);
805 struct task_struct *task;
806 int ret;
807
808 task = get_pid_task(pid, PIDTYPE_PID);
809 if (!task)
810 return -ESRCH;
811
812 ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
813
814 put_task_struct(task);
815 return ret;
816}
817
818static int proc_single_open(struct inode *inode, struct file *filp)
819{
820 return single_open(filp, proc_single_show, inode);
821}
822
823static const struct file_operations proc_single_file_operations = {
824 .open = proc_single_open,
825 .read = seq_read,
826 .llseek = seq_lseek,
827 .release = single_release,
828};
829
830
831struct mm_struct *proc_mem_open(struct inode *inode, unsigned int mode)
832{
833 struct task_struct *task = get_proc_task(inode);
834 struct mm_struct *mm;
835
836 if (!task)
837 return ERR_PTR(-ESRCH);
838
839 mm = mm_access(task, mode | PTRACE_MODE_FSCREDS);
840 put_task_struct(task);
841
842 if (IS_ERR(mm))
843 return mm == ERR_PTR(-ESRCH) ? NULL : mm;
844
845 /* ensure this mm_struct can't be freed */
846 mmgrab(mm);
847 /* but do not pin its memory */
848 mmput(mm);
849
850 return mm;
851}
852
853static int __mem_open(struct inode *inode, struct file *file, unsigned int mode)
854{
855 struct mm_struct *mm = proc_mem_open(inode, mode);
856
857 if (IS_ERR(mm))
858 return PTR_ERR(mm);
859
860 file->private_data = mm;
861 return 0;
862}
863
864static int mem_open(struct inode *inode, struct file *file)
865{
866 if (WARN_ON_ONCE(!(file->f_op->fop_flags & FOP_UNSIGNED_OFFSET)))
867 return -EINVAL;
868 return __mem_open(inode, file, PTRACE_MODE_ATTACH);
869}
870
871static bool proc_mem_foll_force(struct file *file, struct mm_struct *mm)
872{
873 struct task_struct *task;
874 bool ptrace_active = false;
875
876 switch (proc_mem_force_override) {
877 case PROC_MEM_FORCE_NEVER:
878 return false;
879 case PROC_MEM_FORCE_PTRACE:
880 task = get_proc_task(file_inode(file));
881 if (task) {
882 ptrace_active = READ_ONCE(task->ptrace) &&
883 READ_ONCE(task->mm) == mm &&
884 READ_ONCE(task->parent) == current;
885 put_task_struct(task);
886 }
887 return ptrace_active;
888 default:
889 return true;
890 }
891}
892
893static ssize_t mem_rw(struct file *file, char __user *buf,
894 size_t count, loff_t *ppos, int write)
895{
896 struct mm_struct *mm = file->private_data;
897 unsigned long addr = *ppos;
898 ssize_t copied;
899 char *page;
900 unsigned int flags;
901
902 if (!mm)
903 return 0;
904
905 page = (char *)__get_free_page(GFP_KERNEL);
906 if (!page)
907 return -ENOMEM;
908
909 copied = 0;
910 if (!mmget_not_zero(mm))
911 goto free;
912
913 flags = write ? FOLL_WRITE : 0;
914 if (proc_mem_foll_force(file, mm))
915 flags |= FOLL_FORCE;
916
917 while (count > 0) {
918 size_t this_len = min_t(size_t, count, PAGE_SIZE);
919
920 if (write && copy_from_user(page, buf, this_len)) {
921 copied = -EFAULT;
922 break;
923 }
924
925 this_len = access_remote_vm(mm, addr, page, this_len, flags);
926 if (!this_len) {
927 if (!copied)
928 copied = -EIO;
929 break;
930 }
931
932 if (!write && copy_to_user(buf, page, this_len)) {
933 copied = -EFAULT;
934 break;
935 }
936
937 buf += this_len;
938 addr += this_len;
939 copied += this_len;
940 count -= this_len;
941 }
942 *ppos = addr;
943
944 mmput(mm);
945free:
946 free_page((unsigned long) page);
947 return copied;
948}
949
950static ssize_t mem_read(struct file *file, char __user *buf,
951 size_t count, loff_t *ppos)
952{
953 return mem_rw(file, buf, count, ppos, 0);
954}
955
956static ssize_t mem_write(struct file *file, const char __user *buf,
957 size_t count, loff_t *ppos)
958{
959 return mem_rw(file, (char __user*)buf, count, ppos, 1);
960}
961
962loff_t mem_lseek(struct file *file, loff_t offset, int orig)
963{
964 switch (orig) {
965 case 0:
966 file->f_pos = offset;
967 break;
968 case 1:
969 file->f_pos += offset;
970 break;
971 default:
972 return -EINVAL;
973 }
974 force_successful_syscall_return();
975 return file->f_pos;
976}
977
978static int mem_release(struct inode *inode, struct file *file)
979{
980 struct mm_struct *mm = file->private_data;
981 if (mm)
982 mmdrop(mm);
983 return 0;
984}
985
986static const struct file_operations proc_mem_operations = {
987 .llseek = mem_lseek,
988 .read = mem_read,
989 .write = mem_write,
990 .open = mem_open,
991 .release = mem_release,
992 .fop_flags = FOP_UNSIGNED_OFFSET,
993};
994
995static int environ_open(struct inode *inode, struct file *file)
996{
997 return __mem_open(inode, file, PTRACE_MODE_READ);
998}
999
1000static ssize_t environ_read(struct file *file, char __user *buf,
1001 size_t count, loff_t *ppos)
1002{
1003 char *page;
1004 unsigned long src = *ppos;
1005 int ret = 0;
1006 struct mm_struct *mm = file->private_data;
1007 unsigned long env_start, env_end;
1008
1009 /* Ensure the process spawned far enough to have an environment. */
1010 if (!mm || !mm->env_end)
1011 return 0;
1012
1013 page = (char *)__get_free_page(GFP_KERNEL);
1014 if (!page)
1015 return -ENOMEM;
1016
1017 ret = 0;
1018 if (!mmget_not_zero(mm))
1019 goto free;
1020
1021 spin_lock(&mm->arg_lock);
1022 env_start = mm->env_start;
1023 env_end = mm->env_end;
1024 spin_unlock(&mm->arg_lock);
1025
1026 while (count > 0) {
1027 size_t this_len, max_len;
1028 int retval;
1029
1030 if (src >= (env_end - env_start))
1031 break;
1032
1033 this_len = env_end - (env_start + src);
1034
1035 max_len = min_t(size_t, PAGE_SIZE, count);
1036 this_len = min(max_len, this_len);
1037
1038 retval = access_remote_vm(mm, (env_start + src), page, this_len, FOLL_ANON);
1039
1040 if (retval <= 0) {
1041 ret = retval;
1042 break;
1043 }
1044
1045 if (copy_to_user(buf, page, retval)) {
1046 ret = -EFAULT;
1047 break;
1048 }
1049
1050 ret += retval;
1051 src += retval;
1052 buf += retval;
1053 count -= retval;
1054 }
1055 *ppos = src;
1056 mmput(mm);
1057
1058free:
1059 free_page((unsigned long) page);
1060 return ret;
1061}
1062
1063static const struct file_operations proc_environ_operations = {
1064 .open = environ_open,
1065 .read = environ_read,
1066 .llseek = generic_file_llseek,
1067 .release = mem_release,
1068};
1069
1070static int auxv_open(struct inode *inode, struct file *file)
1071{
1072 return __mem_open(inode, file, PTRACE_MODE_READ_FSCREDS);
1073}
1074
1075static ssize_t auxv_read(struct file *file, char __user *buf,
1076 size_t count, loff_t *ppos)
1077{
1078 struct mm_struct *mm = file->private_data;
1079 unsigned int nwords = 0;
1080
1081 if (!mm)
1082 return 0;
1083 do {
1084 nwords += 2;
1085 } while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
1086 return simple_read_from_buffer(buf, count, ppos, mm->saved_auxv,
1087 nwords * sizeof(mm->saved_auxv[0]));
1088}
1089
1090static const struct file_operations proc_auxv_operations = {
1091 .open = auxv_open,
1092 .read = auxv_read,
1093 .llseek = generic_file_llseek,
1094 .release = mem_release,
1095};
1096
1097static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count,
1098 loff_t *ppos)
1099{
1100 struct task_struct *task = get_proc_task(file_inode(file));
1101 char buffer[PROC_NUMBUF];
1102 int oom_adj = OOM_ADJUST_MIN;
1103 size_t len;
1104
1105 if (!task)
1106 return -ESRCH;
1107 if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX)
1108 oom_adj = OOM_ADJUST_MAX;
1109 else
1110 oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) /
1111 OOM_SCORE_ADJ_MAX;
1112 put_task_struct(task);
1113 if (oom_adj > OOM_ADJUST_MAX)
1114 oom_adj = OOM_ADJUST_MAX;
1115 len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj);
1116 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1117}
1118
1119static int __set_oom_adj(struct file *file, int oom_adj, bool legacy)
1120{
1121 struct mm_struct *mm = NULL;
1122 struct task_struct *task;
1123 int err = 0;
1124
1125 task = get_proc_task(file_inode(file));
1126 if (!task)
1127 return -ESRCH;
1128
1129 mutex_lock(&oom_adj_mutex);
1130 if (legacy) {
1131 if (oom_adj < task->signal->oom_score_adj &&
1132 !capable(CAP_SYS_RESOURCE)) {
1133 err = -EACCES;
1134 goto err_unlock;
1135 }
1136 /*
1137 * /proc/pid/oom_adj is provided for legacy purposes, ask users to use
1138 * /proc/pid/oom_score_adj instead.
1139 */
1140 pr_warn_once("%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
1141 current->comm, task_pid_nr(current), task_pid_nr(task),
1142 task_pid_nr(task));
1143 } else {
1144 if ((short)oom_adj < task->signal->oom_score_adj_min &&
1145 !capable(CAP_SYS_RESOURCE)) {
1146 err = -EACCES;
1147 goto err_unlock;
1148 }
1149 }
1150
1151 /*
1152 * Make sure we will check other processes sharing the mm if this is
1153 * not vfrok which wants its own oom_score_adj.
1154 * pin the mm so it doesn't go away and get reused after task_unlock
1155 */
1156 if (!task->vfork_done) {
1157 struct task_struct *p = find_lock_task_mm(task);
1158
1159 if (p) {
1160 if (test_bit(MMF_MULTIPROCESS, &p->mm->flags)) {
1161 mm = p->mm;
1162 mmgrab(mm);
1163 }
1164 task_unlock(p);
1165 }
1166 }
1167
1168 task->signal->oom_score_adj = oom_adj;
1169 if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1170 task->signal->oom_score_adj_min = (short)oom_adj;
1171 trace_oom_score_adj_update(task);
1172
1173 if (mm) {
1174 struct task_struct *p;
1175
1176 rcu_read_lock();
1177 for_each_process(p) {
1178 if (same_thread_group(task, p))
1179 continue;
1180
1181 /* do not touch kernel threads or the global init */
1182 if (p->flags & PF_KTHREAD || is_global_init(p))
1183 continue;
1184
1185 task_lock(p);
1186 if (!p->vfork_done && process_shares_mm(p, mm)) {
1187 p->signal->oom_score_adj = oom_adj;
1188 if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1189 p->signal->oom_score_adj_min = (short)oom_adj;
1190 }
1191 task_unlock(p);
1192 }
1193 rcu_read_unlock();
1194 mmdrop(mm);
1195 }
1196err_unlock:
1197 mutex_unlock(&oom_adj_mutex);
1198 put_task_struct(task);
1199 return err;
1200}
1201
1202/*
1203 * /proc/pid/oom_adj exists solely for backwards compatibility with previous
1204 * kernels. The effective policy is defined by oom_score_adj, which has a
1205 * different scale: oom_adj grew exponentially and oom_score_adj grows linearly.
1206 * Values written to oom_adj are simply mapped linearly to oom_score_adj.
1207 * Processes that become oom disabled via oom_adj will still be oom disabled
1208 * with this implementation.
1209 *
1210 * oom_adj cannot be removed since existing userspace binaries use it.
1211 */
1212static ssize_t oom_adj_write(struct file *file, const char __user *buf,
1213 size_t count, loff_t *ppos)
1214{
1215 char buffer[PROC_NUMBUF] = {};
1216 int oom_adj;
1217 int err;
1218
1219 if (count > sizeof(buffer) - 1)
1220 count = sizeof(buffer) - 1;
1221 if (copy_from_user(buffer, buf, count)) {
1222 err = -EFAULT;
1223 goto out;
1224 }
1225
1226 err = kstrtoint(strstrip(buffer), 0, &oom_adj);
1227 if (err)
1228 goto out;
1229 if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) &&
1230 oom_adj != OOM_DISABLE) {
1231 err = -EINVAL;
1232 goto out;
1233 }
1234
1235 /*
1236 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
1237 * value is always attainable.
1238 */
1239 if (oom_adj == OOM_ADJUST_MAX)
1240 oom_adj = OOM_SCORE_ADJ_MAX;
1241 else
1242 oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE;
1243
1244 err = __set_oom_adj(file, oom_adj, true);
1245out:
1246 return err < 0 ? err : count;
1247}
1248
1249static const struct file_operations proc_oom_adj_operations = {
1250 .read = oom_adj_read,
1251 .write = oom_adj_write,
1252 .llseek = generic_file_llseek,
1253};
1254
1255static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
1256 size_t count, loff_t *ppos)
1257{
1258 struct task_struct *task = get_proc_task(file_inode(file));
1259 char buffer[PROC_NUMBUF];
1260 short oom_score_adj = OOM_SCORE_ADJ_MIN;
1261 size_t len;
1262
1263 if (!task)
1264 return -ESRCH;
1265 oom_score_adj = task->signal->oom_score_adj;
1266 put_task_struct(task);
1267 len = snprintf(buffer, sizeof(buffer), "%hd\n", oom_score_adj);
1268 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1269}
1270
1271static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
1272 size_t count, loff_t *ppos)
1273{
1274 char buffer[PROC_NUMBUF] = {};
1275 int oom_score_adj;
1276 int err;
1277
1278 if (count > sizeof(buffer) - 1)
1279 count = sizeof(buffer) - 1;
1280 if (copy_from_user(buffer, buf, count)) {
1281 err = -EFAULT;
1282 goto out;
1283 }
1284
1285 err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
1286 if (err)
1287 goto out;
1288 if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1289 oom_score_adj > OOM_SCORE_ADJ_MAX) {
1290 err = -EINVAL;
1291 goto out;
1292 }
1293
1294 err = __set_oom_adj(file, oom_score_adj, false);
1295out:
1296 return err < 0 ? err : count;
1297}
1298
1299static const struct file_operations proc_oom_score_adj_operations = {
1300 .read = oom_score_adj_read,
1301 .write = oom_score_adj_write,
1302 .llseek = default_llseek,
1303};
1304
1305#ifdef CONFIG_AUDIT
1306#define TMPBUFLEN 11
1307static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1308 size_t count, loff_t *ppos)
1309{
1310 struct inode * inode = file_inode(file);
1311 struct task_struct *task = get_proc_task(inode);
1312 ssize_t length;
1313 char tmpbuf[TMPBUFLEN];
1314
1315 if (!task)
1316 return -ESRCH;
1317 length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1318 from_kuid(file->f_cred->user_ns,
1319 audit_get_loginuid(task)));
1320 put_task_struct(task);
1321 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1322}
1323
1324static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1325 size_t count, loff_t *ppos)
1326{
1327 struct inode * inode = file_inode(file);
1328 uid_t loginuid;
1329 kuid_t kloginuid;
1330 int rv;
1331
1332 /* Don't let kthreads write their own loginuid */
1333 if (current->flags & PF_KTHREAD)
1334 return -EPERM;
1335
1336 rcu_read_lock();
1337 if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1338 rcu_read_unlock();
1339 return -EPERM;
1340 }
1341 rcu_read_unlock();
1342
1343 if (*ppos != 0) {
1344 /* No partial writes. */
1345 return -EINVAL;
1346 }
1347
1348 rv = kstrtou32_from_user(buf, count, 10, &loginuid);
1349 if (rv < 0)
1350 return rv;
1351
1352 /* is userspace tring to explicitly UNSET the loginuid? */
1353 if (loginuid == AUDIT_UID_UNSET) {
1354 kloginuid = INVALID_UID;
1355 } else {
1356 kloginuid = make_kuid(file->f_cred->user_ns, loginuid);
1357 if (!uid_valid(kloginuid))
1358 return -EINVAL;
1359 }
1360
1361 rv = audit_set_loginuid(kloginuid);
1362 if (rv < 0)
1363 return rv;
1364 return count;
1365}
1366
1367static const struct file_operations proc_loginuid_operations = {
1368 .read = proc_loginuid_read,
1369 .write = proc_loginuid_write,
1370 .llseek = generic_file_llseek,
1371};
1372
1373static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1374 size_t count, loff_t *ppos)
1375{
1376 struct inode * inode = file_inode(file);
1377 struct task_struct *task = get_proc_task(inode);
1378 ssize_t length;
1379 char tmpbuf[TMPBUFLEN];
1380
1381 if (!task)
1382 return -ESRCH;
1383 length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1384 audit_get_sessionid(task));
1385 put_task_struct(task);
1386 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1387}
1388
1389static const struct file_operations proc_sessionid_operations = {
1390 .read = proc_sessionid_read,
1391 .llseek = generic_file_llseek,
1392};
1393#endif
1394
1395#ifdef CONFIG_FAULT_INJECTION
1396static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1397 size_t count, loff_t *ppos)
1398{
1399 struct task_struct *task = get_proc_task(file_inode(file));
1400 char buffer[PROC_NUMBUF];
1401 size_t len;
1402 int make_it_fail;
1403
1404 if (!task)
1405 return -ESRCH;
1406 make_it_fail = task->make_it_fail;
1407 put_task_struct(task);
1408
1409 len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1410
1411 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1412}
1413
1414static ssize_t proc_fault_inject_write(struct file * file,
1415 const char __user * buf, size_t count, loff_t *ppos)
1416{
1417 struct task_struct *task;
1418 char buffer[PROC_NUMBUF] = {};
1419 int make_it_fail;
1420 int rv;
1421
1422 if (!capable(CAP_SYS_RESOURCE))
1423 return -EPERM;
1424
1425 if (count > sizeof(buffer) - 1)
1426 count = sizeof(buffer) - 1;
1427 if (copy_from_user(buffer, buf, count))
1428 return -EFAULT;
1429 rv = kstrtoint(strstrip(buffer), 0, &make_it_fail);
1430 if (rv < 0)
1431 return rv;
1432 if (make_it_fail < 0 || make_it_fail > 1)
1433 return -EINVAL;
1434
1435 task = get_proc_task(file_inode(file));
1436 if (!task)
1437 return -ESRCH;
1438 task->make_it_fail = make_it_fail;
1439 put_task_struct(task);
1440
1441 return count;
1442}
1443
1444static const struct file_operations proc_fault_inject_operations = {
1445 .read = proc_fault_inject_read,
1446 .write = proc_fault_inject_write,
1447 .llseek = generic_file_llseek,
1448};
1449
1450static ssize_t proc_fail_nth_write(struct file *file, const char __user *buf,
1451 size_t count, loff_t *ppos)
1452{
1453 struct task_struct *task;
1454 int err;
1455 unsigned int n;
1456
1457 err = kstrtouint_from_user(buf, count, 0, &n);
1458 if (err)
1459 return err;
1460
1461 task = get_proc_task(file_inode(file));
1462 if (!task)
1463 return -ESRCH;
1464 task->fail_nth = n;
1465 put_task_struct(task);
1466
1467 return count;
1468}
1469
1470static ssize_t proc_fail_nth_read(struct file *file, char __user *buf,
1471 size_t count, loff_t *ppos)
1472{
1473 struct task_struct *task;
1474 char numbuf[PROC_NUMBUF];
1475 ssize_t len;
1476
1477 task = get_proc_task(file_inode(file));
1478 if (!task)
1479 return -ESRCH;
1480 len = snprintf(numbuf, sizeof(numbuf), "%u\n", task->fail_nth);
1481 put_task_struct(task);
1482 return simple_read_from_buffer(buf, count, ppos, numbuf, len);
1483}
1484
1485static const struct file_operations proc_fail_nth_operations = {
1486 .read = proc_fail_nth_read,
1487 .write = proc_fail_nth_write,
1488};
1489#endif
1490
1491
1492#ifdef CONFIG_SCHED_DEBUG
1493/*
1494 * Print out various scheduling related per-task fields:
1495 */
1496static int sched_show(struct seq_file *m, void *v)
1497{
1498 struct inode *inode = m->private;
1499 struct pid_namespace *ns = proc_pid_ns(inode->i_sb);
1500 struct task_struct *p;
1501
1502 p = get_proc_task(inode);
1503 if (!p)
1504 return -ESRCH;
1505 proc_sched_show_task(p, ns, m);
1506
1507 put_task_struct(p);
1508
1509 return 0;
1510}
1511
1512static ssize_t
1513sched_write(struct file *file, const char __user *buf,
1514 size_t count, loff_t *offset)
1515{
1516 struct inode *inode = file_inode(file);
1517 struct task_struct *p;
1518
1519 p = get_proc_task(inode);
1520 if (!p)
1521 return -ESRCH;
1522 proc_sched_set_task(p);
1523
1524 put_task_struct(p);
1525
1526 return count;
1527}
1528
1529static int sched_open(struct inode *inode, struct file *filp)
1530{
1531 return single_open(filp, sched_show, inode);
1532}
1533
1534static const struct file_operations proc_pid_sched_operations = {
1535 .open = sched_open,
1536 .read = seq_read,
1537 .write = sched_write,
1538 .llseek = seq_lseek,
1539 .release = single_release,
1540};
1541
1542#endif
1543
1544#ifdef CONFIG_SCHED_AUTOGROUP
1545/*
1546 * Print out autogroup related information:
1547 */
1548static int sched_autogroup_show(struct seq_file *m, void *v)
1549{
1550 struct inode *inode = m->private;
1551 struct task_struct *p;
1552
1553 p = get_proc_task(inode);
1554 if (!p)
1555 return -ESRCH;
1556 proc_sched_autogroup_show_task(p, m);
1557
1558 put_task_struct(p);
1559
1560 return 0;
1561}
1562
1563static ssize_t
1564sched_autogroup_write(struct file *file, const char __user *buf,
1565 size_t count, loff_t *offset)
1566{
1567 struct inode *inode = file_inode(file);
1568 struct task_struct *p;
1569 char buffer[PROC_NUMBUF] = {};
1570 int nice;
1571 int err;
1572
1573 if (count > sizeof(buffer) - 1)
1574 count = sizeof(buffer) - 1;
1575 if (copy_from_user(buffer, buf, count))
1576 return -EFAULT;
1577
1578 err = kstrtoint(strstrip(buffer), 0, &nice);
1579 if (err < 0)
1580 return err;
1581
1582 p = get_proc_task(inode);
1583 if (!p)
1584 return -ESRCH;
1585
1586 err = proc_sched_autogroup_set_nice(p, nice);
1587 if (err)
1588 count = err;
1589
1590 put_task_struct(p);
1591
1592 return count;
1593}
1594
1595static int sched_autogroup_open(struct inode *inode, struct file *filp)
1596{
1597 int ret;
1598
1599 ret = single_open(filp, sched_autogroup_show, NULL);
1600 if (!ret) {
1601 struct seq_file *m = filp->private_data;
1602
1603 m->private = inode;
1604 }
1605 return ret;
1606}
1607
1608static const struct file_operations proc_pid_sched_autogroup_operations = {
1609 .open = sched_autogroup_open,
1610 .read = seq_read,
1611 .write = sched_autogroup_write,
1612 .llseek = seq_lseek,
1613 .release = single_release,
1614};
1615
1616#endif /* CONFIG_SCHED_AUTOGROUP */
1617
1618#ifdef CONFIG_TIME_NS
1619static int timens_offsets_show(struct seq_file *m, void *v)
1620{
1621 struct task_struct *p;
1622
1623 p = get_proc_task(file_inode(m->file));
1624 if (!p)
1625 return -ESRCH;
1626 proc_timens_show_offsets(p, m);
1627
1628 put_task_struct(p);
1629
1630 return 0;
1631}
1632
1633static ssize_t timens_offsets_write(struct file *file, const char __user *buf,
1634 size_t count, loff_t *ppos)
1635{
1636 struct inode *inode = file_inode(file);
1637 struct proc_timens_offset offsets[2];
1638 char *kbuf = NULL, *pos, *next_line;
1639 struct task_struct *p;
1640 int ret, noffsets;
1641
1642 /* Only allow < page size writes at the beginning of the file */
1643 if ((*ppos != 0) || (count >= PAGE_SIZE))
1644 return -EINVAL;
1645
1646 /* Slurp in the user data */
1647 kbuf = memdup_user_nul(buf, count);
1648 if (IS_ERR(kbuf))
1649 return PTR_ERR(kbuf);
1650
1651 /* Parse the user data */
1652 ret = -EINVAL;
1653 noffsets = 0;
1654 for (pos = kbuf; pos; pos = next_line) {
1655 struct proc_timens_offset *off = &offsets[noffsets];
1656 char clock[10];
1657 int err;
1658
1659 /* Find the end of line and ensure we don't look past it */
1660 next_line = strchr(pos, '\n');
1661 if (next_line) {
1662 *next_line = '\0';
1663 next_line++;
1664 if (*next_line == '\0')
1665 next_line = NULL;
1666 }
1667
1668 err = sscanf(pos, "%9s %lld %lu", clock,
1669 &off->val.tv_sec, &off->val.tv_nsec);
1670 if (err != 3 || off->val.tv_nsec >= NSEC_PER_SEC)
1671 goto out;
1672
1673 clock[sizeof(clock) - 1] = 0;
1674 if (strcmp(clock, "monotonic") == 0 ||
1675 strcmp(clock, __stringify(CLOCK_MONOTONIC)) == 0)
1676 off->clockid = CLOCK_MONOTONIC;
1677 else if (strcmp(clock, "boottime") == 0 ||
1678 strcmp(clock, __stringify(CLOCK_BOOTTIME)) == 0)
1679 off->clockid = CLOCK_BOOTTIME;
1680 else
1681 goto out;
1682
1683 noffsets++;
1684 if (noffsets == ARRAY_SIZE(offsets)) {
1685 if (next_line)
1686 count = next_line - kbuf;
1687 break;
1688 }
1689 }
1690
1691 ret = -ESRCH;
1692 p = get_proc_task(inode);
1693 if (!p)
1694 goto out;
1695 ret = proc_timens_set_offset(file, p, offsets, noffsets);
1696 put_task_struct(p);
1697 if (ret)
1698 goto out;
1699
1700 ret = count;
1701out:
1702 kfree(kbuf);
1703 return ret;
1704}
1705
1706static int timens_offsets_open(struct inode *inode, struct file *filp)
1707{
1708 return single_open(filp, timens_offsets_show, inode);
1709}
1710
1711static const struct file_operations proc_timens_offsets_operations = {
1712 .open = timens_offsets_open,
1713 .read = seq_read,
1714 .write = timens_offsets_write,
1715 .llseek = seq_lseek,
1716 .release = single_release,
1717};
1718#endif /* CONFIG_TIME_NS */
1719
1720static ssize_t comm_write(struct file *file, const char __user *buf,
1721 size_t count, loff_t *offset)
1722{
1723 struct inode *inode = file_inode(file);
1724 struct task_struct *p;
1725 char buffer[TASK_COMM_LEN] = {};
1726 const size_t maxlen = sizeof(buffer) - 1;
1727
1728 if (copy_from_user(buffer, buf, count > maxlen ? maxlen : count))
1729 return -EFAULT;
1730
1731 p = get_proc_task(inode);
1732 if (!p)
1733 return -ESRCH;
1734
1735 if (same_thread_group(current, p)) {
1736 set_task_comm(p, buffer);
1737 proc_comm_connector(p);
1738 }
1739 else
1740 count = -EINVAL;
1741
1742 put_task_struct(p);
1743
1744 return count;
1745}
1746
1747static int comm_show(struct seq_file *m, void *v)
1748{
1749 struct inode *inode = m->private;
1750 struct task_struct *p;
1751
1752 p = get_proc_task(inode);
1753 if (!p)
1754 return -ESRCH;
1755
1756 proc_task_name(m, p, false);
1757 seq_putc(m, '\n');
1758
1759 put_task_struct(p);
1760
1761 return 0;
1762}
1763
1764static int comm_open(struct inode *inode, struct file *filp)
1765{
1766 return single_open(filp, comm_show, inode);
1767}
1768
1769static const struct file_operations proc_pid_set_comm_operations = {
1770 .open = comm_open,
1771 .read = seq_read,
1772 .write = comm_write,
1773 .llseek = seq_lseek,
1774 .release = single_release,
1775};
1776
1777static int proc_exe_link(struct dentry *dentry, struct path *exe_path)
1778{
1779 struct task_struct *task;
1780 struct file *exe_file;
1781
1782 task = get_proc_task(d_inode(dentry));
1783 if (!task)
1784 return -ENOENT;
1785 exe_file = get_task_exe_file(task);
1786 put_task_struct(task);
1787 if (exe_file) {
1788 *exe_path = exe_file->f_path;
1789 path_get(&exe_file->f_path);
1790 fput(exe_file);
1791 return 0;
1792 } else
1793 return -ENOENT;
1794}
1795
1796static const char *proc_pid_get_link(struct dentry *dentry,
1797 struct inode *inode,
1798 struct delayed_call *done)
1799{
1800 struct path path;
1801 int error = -EACCES;
1802
1803 if (!dentry)
1804 return ERR_PTR(-ECHILD);
1805
1806 /* Are we allowed to snoop on the tasks file descriptors? */
1807 if (!proc_fd_access_allowed(inode))
1808 goto out;
1809
1810 error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1811 if (error)
1812 goto out;
1813
1814 error = nd_jump_link(&path);
1815out:
1816 return ERR_PTR(error);
1817}
1818
1819static int do_proc_readlink(const struct path *path, char __user *buffer, int buflen)
1820{
1821 char *tmp = kmalloc(PATH_MAX, GFP_KERNEL);
1822 char *pathname;
1823 int len;
1824
1825 if (!tmp)
1826 return -ENOMEM;
1827
1828 pathname = d_path(path, tmp, PATH_MAX);
1829 len = PTR_ERR(pathname);
1830 if (IS_ERR(pathname))
1831 goto out;
1832 len = tmp + PATH_MAX - 1 - pathname;
1833
1834 if (len > buflen)
1835 len = buflen;
1836 if (copy_to_user(buffer, pathname, len))
1837 len = -EFAULT;
1838 out:
1839 kfree(tmp);
1840 return len;
1841}
1842
1843static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1844{
1845 int error = -EACCES;
1846 struct inode *inode = d_inode(dentry);
1847 struct path path;
1848
1849 /* Are we allowed to snoop on the tasks file descriptors? */
1850 if (!proc_fd_access_allowed(inode))
1851 goto out;
1852
1853 error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1854 if (error)
1855 goto out;
1856
1857 error = do_proc_readlink(&path, buffer, buflen);
1858 path_put(&path);
1859out:
1860 return error;
1861}
1862
1863const struct inode_operations proc_pid_link_inode_operations = {
1864 .readlink = proc_pid_readlink,
1865 .get_link = proc_pid_get_link,
1866 .setattr = proc_setattr,
1867};
1868
1869
1870/* building an inode */
1871
1872void task_dump_owner(struct task_struct *task, umode_t mode,
1873 kuid_t *ruid, kgid_t *rgid)
1874{
1875 /* Depending on the state of dumpable compute who should own a
1876 * proc file for a task.
1877 */
1878 const struct cred *cred;
1879 kuid_t uid;
1880 kgid_t gid;
1881
1882 if (unlikely(task->flags & PF_KTHREAD)) {
1883 *ruid = GLOBAL_ROOT_UID;
1884 *rgid = GLOBAL_ROOT_GID;
1885 return;
1886 }
1887
1888 /* Default to the tasks effective ownership */
1889 rcu_read_lock();
1890 cred = __task_cred(task);
1891 uid = cred->euid;
1892 gid = cred->egid;
1893 rcu_read_unlock();
1894
1895 /*
1896 * Before the /proc/pid/status file was created the only way to read
1897 * the effective uid of a /process was to stat /proc/pid. Reading
1898 * /proc/pid/status is slow enough that procps and other packages
1899 * kept stating /proc/pid. To keep the rules in /proc simple I have
1900 * made this apply to all per process world readable and executable
1901 * directories.
1902 */
1903 if (mode != (S_IFDIR|S_IRUGO|S_IXUGO)) {
1904 struct mm_struct *mm;
1905 task_lock(task);
1906 mm = task->mm;
1907 /* Make non-dumpable tasks owned by some root */
1908 if (mm) {
1909 if (get_dumpable(mm) != SUID_DUMP_USER) {
1910 struct user_namespace *user_ns = mm->user_ns;
1911
1912 uid = make_kuid(user_ns, 0);
1913 if (!uid_valid(uid))
1914 uid = GLOBAL_ROOT_UID;
1915
1916 gid = make_kgid(user_ns, 0);
1917 if (!gid_valid(gid))
1918 gid = GLOBAL_ROOT_GID;
1919 }
1920 } else {
1921 uid = GLOBAL_ROOT_UID;
1922 gid = GLOBAL_ROOT_GID;
1923 }
1924 task_unlock(task);
1925 }
1926 *ruid = uid;
1927 *rgid = gid;
1928}
1929
1930void proc_pid_evict_inode(struct proc_inode *ei)
1931{
1932 struct pid *pid = ei->pid;
1933
1934 if (S_ISDIR(ei->vfs_inode.i_mode)) {
1935 spin_lock(&pid->lock);
1936 hlist_del_init_rcu(&ei->sibling_inodes);
1937 spin_unlock(&pid->lock);
1938 }
1939}
1940
1941struct inode *proc_pid_make_inode(struct super_block *sb,
1942 struct task_struct *task, umode_t mode)
1943{
1944 struct inode * inode;
1945 struct proc_inode *ei;
1946 struct pid *pid;
1947
1948 /* We need a new inode */
1949
1950 inode = new_inode(sb);
1951 if (!inode)
1952 goto out;
1953
1954 /* Common stuff */
1955 ei = PROC_I(inode);
1956 inode->i_mode = mode;
1957 inode->i_ino = get_next_ino();
1958 simple_inode_init_ts(inode);
1959 inode->i_op = &proc_def_inode_operations;
1960
1961 /*
1962 * grab the reference to task.
1963 */
1964 pid = get_task_pid(task, PIDTYPE_PID);
1965 if (!pid)
1966 goto out_unlock;
1967
1968 /* Let the pid remember us for quick removal */
1969 ei->pid = pid;
1970
1971 task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
1972 security_task_to_inode(task, inode);
1973
1974out:
1975 return inode;
1976
1977out_unlock:
1978 iput(inode);
1979 return NULL;
1980}
1981
1982/*
1983 * Generating an inode and adding it into @pid->inodes, so that task will
1984 * invalidate inode's dentry before being released.
1985 *
1986 * This helper is used for creating dir-type entries under '/proc' and
1987 * '/proc/<tgid>/task'. Other entries(eg. fd, stat) under '/proc/<tgid>'
1988 * can be released by invalidating '/proc/<tgid>' dentry.
1989 * In theory, dentries under '/proc/<tgid>/task' can also be released by
1990 * invalidating '/proc/<tgid>' dentry, we reserve it to handle single
1991 * thread exiting situation: Any one of threads should invalidate its
1992 * '/proc/<tgid>/task/<pid>' dentry before released.
1993 */
1994static struct inode *proc_pid_make_base_inode(struct super_block *sb,
1995 struct task_struct *task, umode_t mode)
1996{
1997 struct inode *inode;
1998 struct proc_inode *ei;
1999 struct pid *pid;
2000
2001 inode = proc_pid_make_inode(sb, task, mode);
2002 if (!inode)
2003 return NULL;
2004
2005 /* Let proc_flush_pid find this directory inode */
2006 ei = PROC_I(inode);
2007 pid = ei->pid;
2008 spin_lock(&pid->lock);
2009 hlist_add_head_rcu(&ei->sibling_inodes, &pid->inodes);
2010 spin_unlock(&pid->lock);
2011
2012 return inode;
2013}
2014
2015int pid_getattr(struct mnt_idmap *idmap, const struct path *path,
2016 struct kstat *stat, u32 request_mask, unsigned int query_flags)
2017{
2018 struct inode *inode = d_inode(path->dentry);
2019 struct proc_fs_info *fs_info = proc_sb_info(inode->i_sb);
2020 struct task_struct *task;
2021
2022 generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat);
2023
2024 stat->uid = GLOBAL_ROOT_UID;
2025 stat->gid = GLOBAL_ROOT_GID;
2026 rcu_read_lock();
2027 task = pid_task(proc_pid(inode), PIDTYPE_PID);
2028 if (task) {
2029 if (!has_pid_permissions(fs_info, task, HIDEPID_INVISIBLE)) {
2030 rcu_read_unlock();
2031 /*
2032 * This doesn't prevent learning whether PID exists,
2033 * it only makes getattr() consistent with readdir().
2034 */
2035 return -ENOENT;
2036 }
2037 task_dump_owner(task, inode->i_mode, &stat->uid, &stat->gid);
2038 }
2039 rcu_read_unlock();
2040 return 0;
2041}
2042
2043/* dentry stuff */
2044
2045/*
2046 * Set <pid>/... inode ownership (can change due to setuid(), etc.)
2047 */
2048void pid_update_inode(struct task_struct *task, struct inode *inode)
2049{
2050 task_dump_owner(task, inode->i_mode, &inode->i_uid, &inode->i_gid);
2051
2052 inode->i_mode &= ~(S_ISUID | S_ISGID);
2053 security_task_to_inode(task, inode);
2054}
2055
2056/*
2057 * Rewrite the inode's ownerships here because the owning task may have
2058 * performed a setuid(), etc.
2059 *
2060 */
2061static int pid_revalidate(struct dentry *dentry, unsigned int flags)
2062{
2063 struct inode *inode;
2064 struct task_struct *task;
2065 int ret = 0;
2066
2067 rcu_read_lock();
2068 inode = d_inode_rcu(dentry);
2069 if (!inode)
2070 goto out;
2071 task = pid_task(proc_pid(inode), PIDTYPE_PID);
2072
2073 if (task) {
2074 pid_update_inode(task, inode);
2075 ret = 1;
2076 }
2077out:
2078 rcu_read_unlock();
2079 return ret;
2080}
2081
2082static inline bool proc_inode_is_dead(struct inode *inode)
2083{
2084 return !proc_pid(inode)->tasks[PIDTYPE_PID].first;
2085}
2086
2087int pid_delete_dentry(const struct dentry *dentry)
2088{
2089 /* Is the task we represent dead?
2090 * If so, then don't put the dentry on the lru list,
2091 * kill it immediately.
2092 */
2093 return proc_inode_is_dead(d_inode(dentry));
2094}
2095
2096const struct dentry_operations pid_dentry_operations =
2097{
2098 .d_revalidate = pid_revalidate,
2099 .d_delete = pid_delete_dentry,
2100};
2101
2102/* Lookups */
2103
2104/*
2105 * Fill a directory entry.
2106 *
2107 * If possible create the dcache entry and derive our inode number and
2108 * file type from dcache entry.
2109 *
2110 * Since all of the proc inode numbers are dynamically generated, the inode
2111 * numbers do not exist until the inode is cache. This means creating
2112 * the dcache entry in readdir is necessary to keep the inode numbers
2113 * reported by readdir in sync with the inode numbers reported
2114 * by stat.
2115 */
2116bool proc_fill_cache(struct file *file, struct dir_context *ctx,
2117 const char *name, unsigned int len,
2118 instantiate_t instantiate, struct task_struct *task, const void *ptr)
2119{
2120 struct dentry *child, *dir = file->f_path.dentry;
2121 struct qstr qname = QSTR_INIT(name, len);
2122 struct inode *inode;
2123 unsigned type = DT_UNKNOWN;
2124 ino_t ino = 1;
2125
2126 child = d_hash_and_lookup(dir, &qname);
2127 if (!child) {
2128 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
2129 child = d_alloc_parallel(dir, &qname, &wq);
2130 if (IS_ERR(child))
2131 goto end_instantiate;
2132 if (d_in_lookup(child)) {
2133 struct dentry *res;
2134 res = instantiate(child, task, ptr);
2135 d_lookup_done(child);
2136 if (unlikely(res)) {
2137 dput(child);
2138 child = res;
2139 if (IS_ERR(child))
2140 goto end_instantiate;
2141 }
2142 }
2143 }
2144 inode = d_inode(child);
2145 ino = inode->i_ino;
2146 type = inode->i_mode >> 12;
2147 dput(child);
2148end_instantiate:
2149 return dir_emit(ctx, name, len, ino, type);
2150}
2151
2152/*
2153 * dname_to_vma_addr - maps a dentry name into two unsigned longs
2154 * which represent vma start and end addresses.
2155 */
2156static int dname_to_vma_addr(struct dentry *dentry,
2157 unsigned long *start, unsigned long *end)
2158{
2159 const char *str = dentry->d_name.name;
2160 unsigned long long sval, eval;
2161 unsigned int len;
2162
2163 if (str[0] == '0' && str[1] != '-')
2164 return -EINVAL;
2165 len = _parse_integer(str, 16, &sval);
2166 if (len & KSTRTOX_OVERFLOW)
2167 return -EINVAL;
2168 if (sval != (unsigned long)sval)
2169 return -EINVAL;
2170 str += len;
2171
2172 if (*str != '-')
2173 return -EINVAL;
2174 str++;
2175
2176 if (str[0] == '0' && str[1])
2177 return -EINVAL;
2178 len = _parse_integer(str, 16, &eval);
2179 if (len & KSTRTOX_OVERFLOW)
2180 return -EINVAL;
2181 if (eval != (unsigned long)eval)
2182 return -EINVAL;
2183 str += len;
2184
2185 if (*str != '\0')
2186 return -EINVAL;
2187
2188 *start = sval;
2189 *end = eval;
2190
2191 return 0;
2192}
2193
2194static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags)
2195{
2196 unsigned long vm_start, vm_end;
2197 bool exact_vma_exists = false;
2198 struct mm_struct *mm = NULL;
2199 struct task_struct *task;
2200 struct inode *inode;
2201 int status = 0;
2202
2203 if (flags & LOOKUP_RCU)
2204 return -ECHILD;
2205
2206 inode = d_inode(dentry);
2207 task = get_proc_task(inode);
2208 if (!task)
2209 goto out_notask;
2210
2211 mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
2212 if (IS_ERR(mm))
2213 goto out;
2214
2215 if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) {
2216 status = mmap_read_lock_killable(mm);
2217 if (!status) {
2218 exact_vma_exists = !!find_exact_vma(mm, vm_start,
2219 vm_end);
2220 mmap_read_unlock(mm);
2221 }
2222 }
2223
2224 mmput(mm);
2225
2226 if (exact_vma_exists) {
2227 task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
2228
2229 security_task_to_inode(task, inode);
2230 status = 1;
2231 }
2232
2233out:
2234 put_task_struct(task);
2235
2236out_notask:
2237 return status;
2238}
2239
2240static const struct dentry_operations tid_map_files_dentry_operations = {
2241 .d_revalidate = map_files_d_revalidate,
2242 .d_delete = pid_delete_dentry,
2243};
2244
2245static int map_files_get_link(struct dentry *dentry, struct path *path)
2246{
2247 unsigned long vm_start, vm_end;
2248 struct vm_area_struct *vma;
2249 struct task_struct *task;
2250 struct mm_struct *mm;
2251 int rc;
2252
2253 rc = -ENOENT;
2254 task = get_proc_task(d_inode(dentry));
2255 if (!task)
2256 goto out;
2257
2258 mm = get_task_mm(task);
2259 put_task_struct(task);
2260 if (!mm)
2261 goto out;
2262
2263 rc = dname_to_vma_addr(dentry, &vm_start, &vm_end);
2264 if (rc)
2265 goto out_mmput;
2266
2267 rc = mmap_read_lock_killable(mm);
2268 if (rc)
2269 goto out_mmput;
2270
2271 rc = -ENOENT;
2272 vma = find_exact_vma(mm, vm_start, vm_end);
2273 if (vma && vma->vm_file) {
2274 *path = *file_user_path(vma->vm_file);
2275 path_get(path);
2276 rc = 0;
2277 }
2278 mmap_read_unlock(mm);
2279
2280out_mmput:
2281 mmput(mm);
2282out:
2283 return rc;
2284}
2285
2286struct map_files_info {
2287 unsigned long start;
2288 unsigned long end;
2289 fmode_t mode;
2290};
2291
2292/*
2293 * Only allow CAP_SYS_ADMIN and CAP_CHECKPOINT_RESTORE to follow the links, due
2294 * to concerns about how the symlinks may be used to bypass permissions on
2295 * ancestor directories in the path to the file in question.
2296 */
2297static const char *
2298proc_map_files_get_link(struct dentry *dentry,
2299 struct inode *inode,
2300 struct delayed_call *done)
2301{
2302 if (!checkpoint_restore_ns_capable(&init_user_ns))
2303 return ERR_PTR(-EPERM);
2304
2305 return proc_pid_get_link(dentry, inode, done);
2306}
2307
2308/*
2309 * Identical to proc_pid_link_inode_operations except for get_link()
2310 */
2311static const struct inode_operations proc_map_files_link_inode_operations = {
2312 .readlink = proc_pid_readlink,
2313 .get_link = proc_map_files_get_link,
2314 .setattr = proc_setattr,
2315};
2316
2317static struct dentry *
2318proc_map_files_instantiate(struct dentry *dentry,
2319 struct task_struct *task, const void *ptr)
2320{
2321 fmode_t mode = (fmode_t)(unsigned long)ptr;
2322 struct proc_inode *ei;
2323 struct inode *inode;
2324
2325 inode = proc_pid_make_inode(dentry->d_sb, task, S_IFLNK |
2326 ((mode & FMODE_READ ) ? S_IRUSR : 0) |
2327 ((mode & FMODE_WRITE) ? S_IWUSR : 0));
2328 if (!inode)
2329 return ERR_PTR(-ENOENT);
2330
2331 ei = PROC_I(inode);
2332 ei->op.proc_get_link = map_files_get_link;
2333
2334 inode->i_op = &proc_map_files_link_inode_operations;
2335 inode->i_size = 64;
2336
2337 return proc_splice_unmountable(inode, dentry,
2338 &tid_map_files_dentry_operations);
2339}
2340
2341static struct dentry *proc_map_files_lookup(struct inode *dir,
2342 struct dentry *dentry, unsigned int flags)
2343{
2344 unsigned long vm_start, vm_end;
2345 struct vm_area_struct *vma;
2346 struct task_struct *task;
2347 struct dentry *result;
2348 struct mm_struct *mm;
2349
2350 result = ERR_PTR(-ENOENT);
2351 task = get_proc_task(dir);
2352 if (!task)
2353 goto out;
2354
2355 result = ERR_PTR(-EACCES);
2356 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2357 goto out_put_task;
2358
2359 result = ERR_PTR(-ENOENT);
2360 if (dname_to_vma_addr(dentry, &vm_start, &vm_end))
2361 goto out_put_task;
2362
2363 mm = get_task_mm(task);
2364 if (!mm)
2365 goto out_put_task;
2366
2367 result = ERR_PTR(-EINTR);
2368 if (mmap_read_lock_killable(mm))
2369 goto out_put_mm;
2370
2371 result = ERR_PTR(-ENOENT);
2372 vma = find_exact_vma(mm, vm_start, vm_end);
2373 if (!vma)
2374 goto out_no_vma;
2375
2376 if (vma->vm_file)
2377 result = proc_map_files_instantiate(dentry, task,
2378 (void *)(unsigned long)vma->vm_file->f_mode);
2379
2380out_no_vma:
2381 mmap_read_unlock(mm);
2382out_put_mm:
2383 mmput(mm);
2384out_put_task:
2385 put_task_struct(task);
2386out:
2387 return result;
2388}
2389
2390static const struct inode_operations proc_map_files_inode_operations = {
2391 .lookup = proc_map_files_lookup,
2392 .permission = proc_fd_permission,
2393 .setattr = proc_setattr,
2394};
2395
2396static int
2397proc_map_files_readdir(struct file *file, struct dir_context *ctx)
2398{
2399 struct vm_area_struct *vma;
2400 struct task_struct *task;
2401 struct mm_struct *mm;
2402 unsigned long nr_files, pos, i;
2403 GENRADIX(struct map_files_info) fa;
2404 struct map_files_info *p;
2405 int ret;
2406 struct vma_iterator vmi;
2407
2408 genradix_init(&fa);
2409
2410 ret = -ENOENT;
2411 task = get_proc_task(file_inode(file));
2412 if (!task)
2413 goto out;
2414
2415 ret = -EACCES;
2416 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2417 goto out_put_task;
2418
2419 ret = 0;
2420 if (!dir_emit_dots(file, ctx))
2421 goto out_put_task;
2422
2423 mm = get_task_mm(task);
2424 if (!mm)
2425 goto out_put_task;
2426
2427 ret = mmap_read_lock_killable(mm);
2428 if (ret) {
2429 mmput(mm);
2430 goto out_put_task;
2431 }
2432
2433 nr_files = 0;
2434
2435 /*
2436 * We need two passes here:
2437 *
2438 * 1) Collect vmas of mapped files with mmap_lock taken
2439 * 2) Release mmap_lock and instantiate entries
2440 *
2441 * otherwise we get lockdep complained, since filldir()
2442 * routine might require mmap_lock taken in might_fault().
2443 */
2444
2445 pos = 2;
2446 vma_iter_init(&vmi, mm, 0);
2447 for_each_vma(vmi, vma) {
2448 if (!vma->vm_file)
2449 continue;
2450 if (++pos <= ctx->pos)
2451 continue;
2452
2453 p = genradix_ptr_alloc(&fa, nr_files++, GFP_KERNEL);
2454 if (!p) {
2455 ret = -ENOMEM;
2456 mmap_read_unlock(mm);
2457 mmput(mm);
2458 goto out_put_task;
2459 }
2460
2461 p->start = vma->vm_start;
2462 p->end = vma->vm_end;
2463 p->mode = vma->vm_file->f_mode;
2464 }
2465 mmap_read_unlock(mm);
2466 mmput(mm);
2467
2468 for (i = 0; i < nr_files; i++) {
2469 char buf[4 * sizeof(long) + 2]; /* max: %lx-%lx\0 */
2470 unsigned int len;
2471
2472 p = genradix_ptr(&fa, i);
2473 len = snprintf(buf, sizeof(buf), "%lx-%lx", p->start, p->end);
2474 if (!proc_fill_cache(file, ctx,
2475 buf, len,
2476 proc_map_files_instantiate,
2477 task,
2478 (void *)(unsigned long)p->mode))
2479 break;
2480 ctx->pos++;
2481 }
2482
2483out_put_task:
2484 put_task_struct(task);
2485out:
2486 genradix_free(&fa);
2487 return ret;
2488}
2489
2490static const struct file_operations proc_map_files_operations = {
2491 .read = generic_read_dir,
2492 .iterate_shared = proc_map_files_readdir,
2493 .llseek = generic_file_llseek,
2494};
2495
2496#if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
2497struct timers_private {
2498 struct pid *pid;
2499 struct task_struct *task;
2500 struct sighand_struct *sighand;
2501 struct pid_namespace *ns;
2502 unsigned long flags;
2503};
2504
2505static void *timers_start(struct seq_file *m, loff_t *pos)
2506{
2507 struct timers_private *tp = m->private;
2508
2509 tp->task = get_pid_task(tp->pid, PIDTYPE_PID);
2510 if (!tp->task)
2511 return ERR_PTR(-ESRCH);
2512
2513 tp->sighand = lock_task_sighand(tp->task, &tp->flags);
2514 if (!tp->sighand)
2515 return ERR_PTR(-ESRCH);
2516
2517 return seq_hlist_start(&tp->task->signal->posix_timers, *pos);
2518}
2519
2520static void *timers_next(struct seq_file *m, void *v, loff_t *pos)
2521{
2522 struct timers_private *tp = m->private;
2523 return seq_hlist_next(v, &tp->task->signal->posix_timers, pos);
2524}
2525
2526static void timers_stop(struct seq_file *m, void *v)
2527{
2528 struct timers_private *tp = m->private;
2529
2530 if (tp->sighand) {
2531 unlock_task_sighand(tp->task, &tp->flags);
2532 tp->sighand = NULL;
2533 }
2534
2535 if (tp->task) {
2536 put_task_struct(tp->task);
2537 tp->task = NULL;
2538 }
2539}
2540
2541static int show_timer(struct seq_file *m, void *v)
2542{
2543 struct k_itimer *timer;
2544 struct timers_private *tp = m->private;
2545 int notify;
2546 static const char * const nstr[] = {
2547 [SIGEV_SIGNAL] = "signal",
2548 [SIGEV_NONE] = "none",
2549 [SIGEV_THREAD] = "thread",
2550 };
2551
2552 timer = hlist_entry((struct hlist_node *)v, struct k_itimer, list);
2553 notify = timer->it_sigev_notify;
2554
2555 seq_printf(m, "ID: %d\n", timer->it_id);
2556 seq_printf(m, "signal: %d/%px\n",
2557 timer->sigq.info.si_signo,
2558 timer->sigq.info.si_value.sival_ptr);
2559 seq_printf(m, "notify: %s/%s.%d\n",
2560 nstr[notify & ~SIGEV_THREAD_ID],
2561 (notify & SIGEV_THREAD_ID) ? "tid" : "pid",
2562 pid_nr_ns(timer->it_pid, tp->ns));
2563 seq_printf(m, "ClockID: %d\n", timer->it_clock);
2564
2565 return 0;
2566}
2567
2568static const struct seq_operations proc_timers_seq_ops = {
2569 .start = timers_start,
2570 .next = timers_next,
2571 .stop = timers_stop,
2572 .show = show_timer,
2573};
2574
2575static int proc_timers_open(struct inode *inode, struct file *file)
2576{
2577 struct timers_private *tp;
2578
2579 tp = __seq_open_private(file, &proc_timers_seq_ops,
2580 sizeof(struct timers_private));
2581 if (!tp)
2582 return -ENOMEM;
2583
2584 tp->pid = proc_pid(inode);
2585 tp->ns = proc_pid_ns(inode->i_sb);
2586 return 0;
2587}
2588
2589static const struct file_operations proc_timers_operations = {
2590 .open = proc_timers_open,
2591 .read = seq_read,
2592 .llseek = seq_lseek,
2593 .release = seq_release_private,
2594};
2595#endif
2596
2597static ssize_t timerslack_ns_write(struct file *file, const char __user *buf,
2598 size_t count, loff_t *offset)
2599{
2600 struct inode *inode = file_inode(file);
2601 struct task_struct *p;
2602 u64 slack_ns;
2603 int err;
2604
2605 err = kstrtoull_from_user(buf, count, 10, &slack_ns);
2606 if (err < 0)
2607 return err;
2608
2609 p = get_proc_task(inode);
2610 if (!p)
2611 return -ESRCH;
2612
2613 if (p != current) {
2614 rcu_read_lock();
2615 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
2616 rcu_read_unlock();
2617 count = -EPERM;
2618 goto out;
2619 }
2620 rcu_read_unlock();
2621
2622 err = security_task_setscheduler(p);
2623 if (err) {
2624 count = err;
2625 goto out;
2626 }
2627 }
2628
2629 task_lock(p);
2630 if (rt_or_dl_task_policy(p))
2631 slack_ns = 0;
2632 else if (slack_ns == 0)
2633 slack_ns = p->default_timer_slack_ns;
2634 p->timer_slack_ns = slack_ns;
2635 task_unlock(p);
2636
2637out:
2638 put_task_struct(p);
2639
2640 return count;
2641}
2642
2643static int timerslack_ns_show(struct seq_file *m, void *v)
2644{
2645 struct inode *inode = m->private;
2646 struct task_struct *p;
2647 int err = 0;
2648
2649 p = get_proc_task(inode);
2650 if (!p)
2651 return -ESRCH;
2652
2653 if (p != current) {
2654 rcu_read_lock();
2655 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
2656 rcu_read_unlock();
2657 err = -EPERM;
2658 goto out;
2659 }
2660 rcu_read_unlock();
2661
2662 err = security_task_getscheduler(p);
2663 if (err)
2664 goto out;
2665 }
2666
2667 task_lock(p);
2668 seq_printf(m, "%llu\n", p->timer_slack_ns);
2669 task_unlock(p);
2670
2671out:
2672 put_task_struct(p);
2673
2674 return err;
2675}
2676
2677static int timerslack_ns_open(struct inode *inode, struct file *filp)
2678{
2679 return single_open(filp, timerslack_ns_show, inode);
2680}
2681
2682static const struct file_operations proc_pid_set_timerslack_ns_operations = {
2683 .open = timerslack_ns_open,
2684 .read = seq_read,
2685 .write = timerslack_ns_write,
2686 .llseek = seq_lseek,
2687 .release = single_release,
2688};
2689
2690static struct dentry *proc_pident_instantiate(struct dentry *dentry,
2691 struct task_struct *task, const void *ptr)
2692{
2693 const struct pid_entry *p = ptr;
2694 struct inode *inode;
2695 struct proc_inode *ei;
2696
2697 inode = proc_pid_make_inode(dentry->d_sb, task, p->mode);
2698 if (!inode)
2699 return ERR_PTR(-ENOENT);
2700
2701 ei = PROC_I(inode);
2702 if (S_ISDIR(inode->i_mode))
2703 set_nlink(inode, 2); /* Use getattr to fix if necessary */
2704 if (p->iop)
2705 inode->i_op = p->iop;
2706 if (p->fop)
2707 inode->i_fop = p->fop;
2708 ei->op = p->op;
2709 pid_update_inode(task, inode);
2710 d_set_d_op(dentry, &pid_dentry_operations);
2711 return d_splice_alias(inode, dentry);
2712}
2713
2714static struct dentry *proc_pident_lookup(struct inode *dir,
2715 struct dentry *dentry,
2716 const struct pid_entry *p,
2717 const struct pid_entry *end)
2718{
2719 struct task_struct *task = get_proc_task(dir);
2720 struct dentry *res = ERR_PTR(-ENOENT);
2721
2722 if (!task)
2723 goto out_no_task;
2724
2725 /*
2726 * Yes, it does not scale. And it should not. Don't add
2727 * new entries into /proc/<tgid>/ without very good reasons.
2728 */
2729 for (; p < end; p++) {
2730 if (p->len != dentry->d_name.len)
2731 continue;
2732 if (!memcmp(dentry->d_name.name, p->name, p->len)) {
2733 res = proc_pident_instantiate(dentry, task, p);
2734 break;
2735 }
2736 }
2737 put_task_struct(task);
2738out_no_task:
2739 return res;
2740}
2741
2742static int proc_pident_readdir(struct file *file, struct dir_context *ctx,
2743 const struct pid_entry *ents, unsigned int nents)
2744{
2745 struct task_struct *task = get_proc_task(file_inode(file));
2746 const struct pid_entry *p;
2747
2748 if (!task)
2749 return -ENOENT;
2750
2751 if (!dir_emit_dots(file, ctx))
2752 goto out;
2753
2754 if (ctx->pos >= nents + 2)
2755 goto out;
2756
2757 for (p = ents + (ctx->pos - 2); p < ents + nents; p++) {
2758 if (!proc_fill_cache(file, ctx, p->name, p->len,
2759 proc_pident_instantiate, task, p))
2760 break;
2761 ctx->pos++;
2762 }
2763out:
2764 put_task_struct(task);
2765 return 0;
2766}
2767
2768#ifdef CONFIG_SECURITY
2769static int proc_pid_attr_open(struct inode *inode, struct file *file)
2770{
2771 file->private_data = NULL;
2772 __mem_open(inode, file, PTRACE_MODE_READ_FSCREDS);
2773 return 0;
2774}
2775
2776static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2777 size_t count, loff_t *ppos)
2778{
2779 struct inode * inode = file_inode(file);
2780 char *p = NULL;
2781 ssize_t length;
2782 struct task_struct *task = get_proc_task(inode);
2783
2784 if (!task)
2785 return -ESRCH;
2786
2787 length = security_getprocattr(task, PROC_I(inode)->op.lsmid,
2788 file->f_path.dentry->d_name.name,
2789 &p);
2790 put_task_struct(task);
2791 if (length > 0)
2792 length = simple_read_from_buffer(buf, count, ppos, p, length);
2793 kfree(p);
2794 return length;
2795}
2796
2797static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2798 size_t count, loff_t *ppos)
2799{
2800 struct inode * inode = file_inode(file);
2801 struct task_struct *task;
2802 void *page;
2803 int rv;
2804
2805 /* A task may only write when it was the opener. */
2806 if (file->private_data != current->mm)
2807 return -EPERM;
2808
2809 rcu_read_lock();
2810 task = pid_task(proc_pid(inode), PIDTYPE_PID);
2811 if (!task) {
2812 rcu_read_unlock();
2813 return -ESRCH;
2814 }
2815 /* A task may only write its own attributes. */
2816 if (current != task) {
2817 rcu_read_unlock();
2818 return -EACCES;
2819 }
2820 /* Prevent changes to overridden credentials. */
2821 if (current_cred() != current_real_cred()) {
2822 rcu_read_unlock();
2823 return -EBUSY;
2824 }
2825 rcu_read_unlock();
2826
2827 if (count > PAGE_SIZE)
2828 count = PAGE_SIZE;
2829
2830 /* No partial writes. */
2831 if (*ppos != 0)
2832 return -EINVAL;
2833
2834 page = memdup_user(buf, count);
2835 if (IS_ERR(page)) {
2836 rv = PTR_ERR(page);
2837 goto out;
2838 }
2839
2840 /* Guard against adverse ptrace interaction */
2841 rv = mutex_lock_interruptible(¤t->signal->cred_guard_mutex);
2842 if (rv < 0)
2843 goto out_free;
2844
2845 rv = security_setprocattr(PROC_I(inode)->op.lsmid,
2846 file->f_path.dentry->d_name.name, page,
2847 count);
2848 mutex_unlock(¤t->signal->cred_guard_mutex);
2849out_free:
2850 kfree(page);
2851out:
2852 return rv;
2853}
2854
2855static const struct file_operations proc_pid_attr_operations = {
2856 .open = proc_pid_attr_open,
2857 .read = proc_pid_attr_read,
2858 .write = proc_pid_attr_write,
2859 .llseek = generic_file_llseek,
2860 .release = mem_release,
2861};
2862
2863#define LSM_DIR_OPS(LSM) \
2864static int proc_##LSM##_attr_dir_iterate(struct file *filp, \
2865 struct dir_context *ctx) \
2866{ \
2867 return proc_pident_readdir(filp, ctx, \
2868 LSM##_attr_dir_stuff, \
2869 ARRAY_SIZE(LSM##_attr_dir_stuff)); \
2870} \
2871\
2872static const struct file_operations proc_##LSM##_attr_dir_ops = { \
2873 .read = generic_read_dir, \
2874 .iterate_shared = proc_##LSM##_attr_dir_iterate, \
2875 .llseek = default_llseek, \
2876}; \
2877\
2878static struct dentry *proc_##LSM##_attr_dir_lookup(struct inode *dir, \
2879 struct dentry *dentry, unsigned int flags) \
2880{ \
2881 return proc_pident_lookup(dir, dentry, \
2882 LSM##_attr_dir_stuff, \
2883 LSM##_attr_dir_stuff + ARRAY_SIZE(LSM##_attr_dir_stuff)); \
2884} \
2885\
2886static const struct inode_operations proc_##LSM##_attr_dir_inode_ops = { \
2887 .lookup = proc_##LSM##_attr_dir_lookup, \
2888 .getattr = pid_getattr, \
2889 .setattr = proc_setattr, \
2890}
2891
2892#ifdef CONFIG_SECURITY_SMACK
2893static const struct pid_entry smack_attr_dir_stuff[] = {
2894 ATTR(LSM_ID_SMACK, "current", 0666),
2895};
2896LSM_DIR_OPS(smack);
2897#endif
2898
2899#ifdef CONFIG_SECURITY_APPARMOR
2900static const struct pid_entry apparmor_attr_dir_stuff[] = {
2901 ATTR(LSM_ID_APPARMOR, "current", 0666),
2902 ATTR(LSM_ID_APPARMOR, "prev", 0444),
2903 ATTR(LSM_ID_APPARMOR, "exec", 0666),
2904};
2905LSM_DIR_OPS(apparmor);
2906#endif
2907
2908static const struct pid_entry attr_dir_stuff[] = {
2909 ATTR(LSM_ID_UNDEF, "current", 0666),
2910 ATTR(LSM_ID_UNDEF, "prev", 0444),
2911 ATTR(LSM_ID_UNDEF, "exec", 0666),
2912 ATTR(LSM_ID_UNDEF, "fscreate", 0666),
2913 ATTR(LSM_ID_UNDEF, "keycreate", 0666),
2914 ATTR(LSM_ID_UNDEF, "sockcreate", 0666),
2915#ifdef CONFIG_SECURITY_SMACK
2916 DIR("smack", 0555,
2917 proc_smack_attr_dir_inode_ops, proc_smack_attr_dir_ops),
2918#endif
2919#ifdef CONFIG_SECURITY_APPARMOR
2920 DIR("apparmor", 0555,
2921 proc_apparmor_attr_dir_inode_ops, proc_apparmor_attr_dir_ops),
2922#endif
2923};
2924
2925static int proc_attr_dir_readdir(struct file *file, struct dir_context *ctx)
2926{
2927 return proc_pident_readdir(file, ctx,
2928 attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2929}
2930
2931static const struct file_operations proc_attr_dir_operations = {
2932 .read = generic_read_dir,
2933 .iterate_shared = proc_attr_dir_readdir,
2934 .llseek = generic_file_llseek,
2935};
2936
2937static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2938 struct dentry *dentry, unsigned int flags)
2939{
2940 return proc_pident_lookup(dir, dentry,
2941 attr_dir_stuff,
2942 attr_dir_stuff + ARRAY_SIZE(attr_dir_stuff));
2943}
2944
2945static const struct inode_operations proc_attr_dir_inode_operations = {
2946 .lookup = proc_attr_dir_lookup,
2947 .getattr = pid_getattr,
2948 .setattr = proc_setattr,
2949};
2950
2951#endif
2952
2953#ifdef CONFIG_ELF_CORE
2954static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2955 size_t count, loff_t *ppos)
2956{
2957 struct task_struct *task = get_proc_task(file_inode(file));
2958 struct mm_struct *mm;
2959 char buffer[PROC_NUMBUF];
2960 size_t len;
2961 int ret;
2962
2963 if (!task)
2964 return -ESRCH;
2965
2966 ret = 0;
2967 mm = get_task_mm(task);
2968 if (mm) {
2969 len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2970 ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2971 MMF_DUMP_FILTER_SHIFT));
2972 mmput(mm);
2973 ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2974 }
2975
2976 put_task_struct(task);
2977
2978 return ret;
2979}
2980
2981static ssize_t proc_coredump_filter_write(struct file *file,
2982 const char __user *buf,
2983 size_t count,
2984 loff_t *ppos)
2985{
2986 struct task_struct *task;
2987 struct mm_struct *mm;
2988 unsigned int val;
2989 int ret;
2990 int i;
2991 unsigned long mask;
2992
2993 ret = kstrtouint_from_user(buf, count, 0, &val);
2994 if (ret < 0)
2995 return ret;
2996
2997 ret = -ESRCH;
2998 task = get_proc_task(file_inode(file));
2999 if (!task)
3000 goto out_no_task;
3001
3002 mm = get_task_mm(task);
3003 if (!mm)
3004 goto out_no_mm;
3005 ret = 0;
3006
3007 for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
3008 if (val & mask)
3009 set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
3010 else
3011 clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
3012 }
3013
3014 mmput(mm);
3015 out_no_mm:
3016 put_task_struct(task);
3017 out_no_task:
3018 if (ret < 0)
3019 return ret;
3020 return count;
3021}
3022
3023static const struct file_operations proc_coredump_filter_operations = {
3024 .read = proc_coredump_filter_read,
3025 .write = proc_coredump_filter_write,
3026 .llseek = generic_file_llseek,
3027};
3028#endif
3029
3030#ifdef CONFIG_TASK_IO_ACCOUNTING
3031static int do_io_accounting(struct task_struct *task, struct seq_file *m, int whole)
3032{
3033 struct task_io_accounting acct;
3034 int result;
3035
3036 result = down_read_killable(&task->signal->exec_update_lock);
3037 if (result)
3038 return result;
3039
3040 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) {
3041 result = -EACCES;
3042 goto out_unlock;
3043 }
3044
3045 if (whole) {
3046 struct signal_struct *sig = task->signal;
3047 struct task_struct *t;
3048 unsigned int seq = 1;
3049 unsigned long flags;
3050
3051 rcu_read_lock();
3052 do {
3053 seq++; /* 2 on the 1st/lockless path, otherwise odd */
3054 flags = read_seqbegin_or_lock_irqsave(&sig->stats_lock, &seq);
3055
3056 acct = sig->ioac;
3057 __for_each_thread(sig, t)
3058 task_io_accounting_add(&acct, &t->ioac);
3059
3060 } while (need_seqretry(&sig->stats_lock, seq));
3061 done_seqretry_irqrestore(&sig->stats_lock, seq, flags);
3062 rcu_read_unlock();
3063 } else {
3064 acct = task->ioac;
3065 }
3066
3067 seq_printf(m,
3068 "rchar: %llu\n"
3069 "wchar: %llu\n"
3070 "syscr: %llu\n"
3071 "syscw: %llu\n"
3072 "read_bytes: %llu\n"
3073 "write_bytes: %llu\n"
3074 "cancelled_write_bytes: %llu\n",
3075 (unsigned long long)acct.rchar,
3076 (unsigned long long)acct.wchar,
3077 (unsigned long long)acct.syscr,
3078 (unsigned long long)acct.syscw,
3079 (unsigned long long)acct.read_bytes,
3080 (unsigned long long)acct.write_bytes,
3081 (unsigned long long)acct.cancelled_write_bytes);
3082 result = 0;
3083
3084out_unlock:
3085 up_read(&task->signal->exec_update_lock);
3086 return result;
3087}
3088
3089static int proc_tid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
3090 struct pid *pid, struct task_struct *task)
3091{
3092 return do_io_accounting(task, m, 0);
3093}
3094
3095static int proc_tgid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
3096 struct pid *pid, struct task_struct *task)
3097{
3098 return do_io_accounting(task, m, 1);
3099}
3100#endif /* CONFIG_TASK_IO_ACCOUNTING */
3101
3102#ifdef CONFIG_USER_NS
3103static int proc_id_map_open(struct inode *inode, struct file *file,
3104 const struct seq_operations *seq_ops)
3105{
3106 struct user_namespace *ns = NULL;
3107 struct task_struct *task;
3108 struct seq_file *seq;
3109 int ret = -EINVAL;
3110
3111 task = get_proc_task(inode);
3112 if (task) {
3113 rcu_read_lock();
3114 ns = get_user_ns(task_cred_xxx(task, user_ns));
3115 rcu_read_unlock();
3116 put_task_struct(task);
3117 }
3118 if (!ns)
3119 goto err;
3120
3121 ret = seq_open(file, seq_ops);
3122 if (ret)
3123 goto err_put_ns;
3124
3125 seq = file->private_data;
3126 seq->private = ns;
3127
3128 return 0;
3129err_put_ns:
3130 put_user_ns(ns);
3131err:
3132 return ret;
3133}
3134
3135static int proc_id_map_release(struct inode *inode, struct file *file)
3136{
3137 struct seq_file *seq = file->private_data;
3138 struct user_namespace *ns = seq->private;
3139 put_user_ns(ns);
3140 return seq_release(inode, file);
3141}
3142
3143static int proc_uid_map_open(struct inode *inode, struct file *file)
3144{
3145 return proc_id_map_open(inode, file, &proc_uid_seq_operations);
3146}
3147
3148static int proc_gid_map_open(struct inode *inode, struct file *file)
3149{
3150 return proc_id_map_open(inode, file, &proc_gid_seq_operations);
3151}
3152
3153static int proc_projid_map_open(struct inode *inode, struct file *file)
3154{
3155 return proc_id_map_open(inode, file, &proc_projid_seq_operations);
3156}
3157
3158static const struct file_operations proc_uid_map_operations = {
3159 .open = proc_uid_map_open,
3160 .write = proc_uid_map_write,
3161 .read = seq_read,
3162 .llseek = seq_lseek,
3163 .release = proc_id_map_release,
3164};
3165
3166static const struct file_operations proc_gid_map_operations = {
3167 .open = proc_gid_map_open,
3168 .write = proc_gid_map_write,
3169 .read = seq_read,
3170 .llseek = seq_lseek,
3171 .release = proc_id_map_release,
3172};
3173
3174static const struct file_operations proc_projid_map_operations = {
3175 .open = proc_projid_map_open,
3176 .write = proc_projid_map_write,
3177 .read = seq_read,
3178 .llseek = seq_lseek,
3179 .release = proc_id_map_release,
3180};
3181
3182static int proc_setgroups_open(struct inode *inode, struct file *file)
3183{
3184 struct user_namespace *ns = NULL;
3185 struct task_struct *task;
3186 int ret;
3187
3188 ret = -ESRCH;
3189 task = get_proc_task(inode);
3190 if (task) {
3191 rcu_read_lock();
3192 ns = get_user_ns(task_cred_xxx(task, user_ns));
3193 rcu_read_unlock();
3194 put_task_struct(task);
3195 }
3196 if (!ns)
3197 goto err;
3198
3199 if (file->f_mode & FMODE_WRITE) {
3200 ret = -EACCES;
3201 if (!ns_capable(ns, CAP_SYS_ADMIN))
3202 goto err_put_ns;
3203 }
3204
3205 ret = single_open(file, &proc_setgroups_show, ns);
3206 if (ret)
3207 goto err_put_ns;
3208
3209 return 0;
3210err_put_ns:
3211 put_user_ns(ns);
3212err:
3213 return ret;
3214}
3215
3216static int proc_setgroups_release(struct inode *inode, struct file *file)
3217{
3218 struct seq_file *seq = file->private_data;
3219 struct user_namespace *ns = seq->private;
3220 int ret = single_release(inode, file);
3221 put_user_ns(ns);
3222 return ret;
3223}
3224
3225static const struct file_operations proc_setgroups_operations = {
3226 .open = proc_setgroups_open,
3227 .write = proc_setgroups_write,
3228 .read = seq_read,
3229 .llseek = seq_lseek,
3230 .release = proc_setgroups_release,
3231};
3232#endif /* CONFIG_USER_NS */
3233
3234static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
3235 struct pid *pid, struct task_struct *task)
3236{
3237 int err = lock_trace(task);
3238 if (!err) {
3239 seq_printf(m, "%08x\n", task->personality);
3240 unlock_trace(task);
3241 }
3242 return err;
3243}
3244
3245#ifdef CONFIG_LIVEPATCH
3246static int proc_pid_patch_state(struct seq_file *m, struct pid_namespace *ns,
3247 struct pid *pid, struct task_struct *task)
3248{
3249 seq_printf(m, "%d\n", task->patch_state);
3250 return 0;
3251}
3252#endif /* CONFIG_LIVEPATCH */
3253
3254#ifdef CONFIG_KSM
3255static int proc_pid_ksm_merging_pages(struct seq_file *m, struct pid_namespace *ns,
3256 struct pid *pid, struct task_struct *task)
3257{
3258 struct mm_struct *mm;
3259
3260 mm = get_task_mm(task);
3261 if (mm) {
3262 seq_printf(m, "%lu\n", mm->ksm_merging_pages);
3263 mmput(mm);
3264 }
3265
3266 return 0;
3267}
3268static int proc_pid_ksm_stat(struct seq_file *m, struct pid_namespace *ns,
3269 struct pid *pid, struct task_struct *task)
3270{
3271 struct mm_struct *mm;
3272
3273 mm = get_task_mm(task);
3274 if (mm) {
3275 seq_printf(m, "ksm_rmap_items %lu\n", mm->ksm_rmap_items);
3276 seq_printf(m, "ksm_zero_pages %ld\n", mm_ksm_zero_pages(mm));
3277 seq_printf(m, "ksm_merging_pages %lu\n", mm->ksm_merging_pages);
3278 seq_printf(m, "ksm_process_profit %ld\n", ksm_process_profit(mm));
3279 mmput(mm);
3280 }
3281
3282 return 0;
3283}
3284#endif /* CONFIG_KSM */
3285
3286#ifdef CONFIG_STACKLEAK_METRICS
3287static int proc_stack_depth(struct seq_file *m, struct pid_namespace *ns,
3288 struct pid *pid, struct task_struct *task)
3289{
3290 unsigned long prev_depth = THREAD_SIZE -
3291 (task->prev_lowest_stack & (THREAD_SIZE - 1));
3292 unsigned long depth = THREAD_SIZE -
3293 (task->lowest_stack & (THREAD_SIZE - 1));
3294
3295 seq_printf(m, "previous stack depth: %lu\nstack depth: %lu\n",
3296 prev_depth, depth);
3297 return 0;
3298}
3299#endif /* CONFIG_STACKLEAK_METRICS */
3300
3301/*
3302 * Thread groups
3303 */
3304static const struct file_operations proc_task_operations;
3305static const struct inode_operations proc_task_inode_operations;
3306
3307static const struct pid_entry tgid_base_stuff[] = {
3308 DIR("task", S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
3309 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3310 DIR("map_files", S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations),
3311 DIR("fdinfo", S_IRUGO|S_IXUGO, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3312 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3313#ifdef CONFIG_NET
3314 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3315#endif
3316 REG("environ", S_IRUSR, proc_environ_operations),
3317 REG("auxv", S_IRUSR, proc_auxv_operations),
3318 ONE("status", S_IRUGO, proc_pid_status),
3319 ONE("personality", S_IRUSR, proc_pid_personality),
3320 ONE("limits", S_IRUGO, proc_pid_limits),
3321#ifdef CONFIG_SCHED_DEBUG
3322 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3323#endif
3324#ifdef CONFIG_SCHED_AUTOGROUP
3325 REG("autogroup", S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
3326#endif
3327#ifdef CONFIG_TIME_NS
3328 REG("timens_offsets", S_IRUGO|S_IWUSR, proc_timens_offsets_operations),
3329#endif
3330 REG("comm", S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
3331#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3332 ONE("syscall", S_IRUSR, proc_pid_syscall),
3333#endif
3334 REG("cmdline", S_IRUGO, proc_pid_cmdline_ops),
3335 ONE("stat", S_IRUGO, proc_tgid_stat),
3336 ONE("statm", S_IRUGO, proc_pid_statm),
3337 REG("maps", S_IRUGO, proc_pid_maps_operations),
3338#ifdef CONFIG_NUMA
3339 REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations),
3340#endif
3341 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations),
3342 LNK("cwd", proc_cwd_link),
3343 LNK("root", proc_root_link),
3344 LNK("exe", proc_exe_link),
3345 REG("mounts", S_IRUGO, proc_mounts_operations),
3346 REG("mountinfo", S_IRUGO, proc_mountinfo_operations),
3347 REG("mountstats", S_IRUSR, proc_mountstats_operations),
3348#ifdef CONFIG_PROC_PAGE_MONITOR
3349 REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3350 REG("smaps", S_IRUGO, proc_pid_smaps_operations),
3351 REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations),
3352 REG("pagemap", S_IRUSR, proc_pagemap_operations),
3353#endif
3354#ifdef CONFIG_SECURITY
3355 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3356#endif
3357#ifdef CONFIG_KALLSYMS
3358 ONE("wchan", S_IRUGO, proc_pid_wchan),
3359#endif
3360#ifdef CONFIG_STACKTRACE
3361 ONE("stack", S_IRUSR, proc_pid_stack),
3362#endif
3363#ifdef CONFIG_SCHED_INFO
3364 ONE("schedstat", S_IRUGO, proc_pid_schedstat),
3365#endif
3366#ifdef CONFIG_LATENCYTOP
3367 REG("latency", S_IRUGO, proc_lstats_operations),
3368#endif
3369#ifdef CONFIG_PROC_PID_CPUSET
3370 ONE("cpuset", S_IRUGO, proc_cpuset_show),
3371#endif
3372#ifdef CONFIG_CGROUPS
3373 ONE("cgroup", S_IRUGO, proc_cgroup_show),
3374#endif
3375#ifdef CONFIG_PROC_CPU_RESCTRL
3376 ONE("cpu_resctrl_groups", S_IRUGO, proc_resctrl_show),
3377#endif
3378 ONE("oom_score", S_IRUGO, proc_oom_score),
3379 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3380 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3381#ifdef CONFIG_AUDIT
3382 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations),
3383 REG("sessionid", S_IRUGO, proc_sessionid_operations),
3384#endif
3385#ifdef CONFIG_FAULT_INJECTION
3386 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3387 REG("fail-nth", 0644, proc_fail_nth_operations),
3388#endif
3389#ifdef CONFIG_ELF_CORE
3390 REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
3391#endif
3392#ifdef CONFIG_TASK_IO_ACCOUNTING
3393 ONE("io", S_IRUSR, proc_tgid_io_accounting),
3394#endif
3395#ifdef CONFIG_USER_NS
3396 REG("uid_map", S_IRUGO|S_IWUSR, proc_uid_map_operations),
3397 REG("gid_map", S_IRUGO|S_IWUSR, proc_gid_map_operations),
3398 REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3399 REG("setgroups", S_IRUGO|S_IWUSR, proc_setgroups_operations),
3400#endif
3401#if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
3402 REG("timers", S_IRUGO, proc_timers_operations),
3403#endif
3404 REG("timerslack_ns", S_IRUGO|S_IWUGO, proc_pid_set_timerslack_ns_operations),
3405#ifdef CONFIG_LIVEPATCH
3406 ONE("patch_state", S_IRUSR, proc_pid_patch_state),
3407#endif
3408#ifdef CONFIG_STACKLEAK_METRICS
3409 ONE("stack_depth", S_IRUGO, proc_stack_depth),
3410#endif
3411#ifdef CONFIG_PROC_PID_ARCH_STATUS
3412 ONE("arch_status", S_IRUGO, proc_pid_arch_status),
3413#endif
3414#ifdef CONFIG_SECCOMP_CACHE_DEBUG
3415 ONE("seccomp_cache", S_IRUSR, proc_pid_seccomp_cache),
3416#endif
3417#ifdef CONFIG_KSM
3418 ONE("ksm_merging_pages", S_IRUSR, proc_pid_ksm_merging_pages),
3419 ONE("ksm_stat", S_IRUSR, proc_pid_ksm_stat),
3420#endif
3421};
3422
3423static int proc_tgid_base_readdir(struct file *file, struct dir_context *ctx)
3424{
3425 return proc_pident_readdir(file, ctx,
3426 tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3427}
3428
3429static const struct file_operations proc_tgid_base_operations = {
3430 .read = generic_read_dir,
3431 .iterate_shared = proc_tgid_base_readdir,
3432 .llseek = generic_file_llseek,
3433};
3434
3435struct pid *tgid_pidfd_to_pid(const struct file *file)
3436{
3437 if (file->f_op != &proc_tgid_base_operations)
3438 return ERR_PTR(-EBADF);
3439
3440 return proc_pid(file_inode(file));
3441}
3442
3443static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3444{
3445 return proc_pident_lookup(dir, dentry,
3446 tgid_base_stuff,
3447 tgid_base_stuff + ARRAY_SIZE(tgid_base_stuff));
3448}
3449
3450static const struct inode_operations proc_tgid_base_inode_operations = {
3451 .lookup = proc_tgid_base_lookup,
3452 .getattr = pid_getattr,
3453 .setattr = proc_setattr,
3454 .permission = proc_pid_permission,
3455};
3456
3457/**
3458 * proc_flush_pid - Remove dcache entries for @pid from the /proc dcache.
3459 * @pid: pid that should be flushed.
3460 *
3461 * This function walks a list of inodes (that belong to any proc
3462 * filesystem) that are attached to the pid and flushes them from
3463 * the dentry cache.
3464 *
3465 * It is safe and reasonable to cache /proc entries for a task until
3466 * that task exits. After that they just clog up the dcache with
3467 * useless entries, possibly causing useful dcache entries to be
3468 * flushed instead. This routine is provided to flush those useless
3469 * dcache entries when a process is reaped.
3470 *
3471 * NOTE: This routine is just an optimization so it does not guarantee
3472 * that no dcache entries will exist after a process is reaped
3473 * it just makes it very unlikely that any will persist.
3474 */
3475
3476void proc_flush_pid(struct pid *pid)
3477{
3478 proc_invalidate_siblings_dcache(&pid->inodes, &pid->lock);
3479}
3480
3481static struct dentry *proc_pid_instantiate(struct dentry * dentry,
3482 struct task_struct *task, const void *ptr)
3483{
3484 struct inode *inode;
3485
3486 inode = proc_pid_make_base_inode(dentry->d_sb, task,
3487 S_IFDIR | S_IRUGO | S_IXUGO);
3488 if (!inode)
3489 return ERR_PTR(-ENOENT);
3490
3491 inode->i_op = &proc_tgid_base_inode_operations;
3492 inode->i_fop = &proc_tgid_base_operations;
3493 inode->i_flags|=S_IMMUTABLE;
3494
3495 set_nlink(inode, nlink_tgid);
3496 pid_update_inode(task, inode);
3497
3498 d_set_d_op(dentry, &pid_dentry_operations);
3499 return d_splice_alias(inode, dentry);
3500}
3501
3502struct dentry *proc_pid_lookup(struct dentry *dentry, unsigned int flags)
3503{
3504 struct task_struct *task;
3505 unsigned tgid;
3506 struct proc_fs_info *fs_info;
3507 struct pid_namespace *ns;
3508 struct dentry *result = ERR_PTR(-ENOENT);
3509
3510 tgid = name_to_int(&dentry->d_name);
3511 if (tgid == ~0U)
3512 goto out;
3513
3514 fs_info = proc_sb_info(dentry->d_sb);
3515 ns = fs_info->pid_ns;
3516 rcu_read_lock();
3517 task = find_task_by_pid_ns(tgid, ns);
3518 if (task)
3519 get_task_struct(task);
3520 rcu_read_unlock();
3521 if (!task)
3522 goto out;
3523
3524 /* Limit procfs to only ptraceable tasks */
3525 if (fs_info->hide_pid == HIDEPID_NOT_PTRACEABLE) {
3526 if (!has_pid_permissions(fs_info, task, HIDEPID_NO_ACCESS))
3527 goto out_put_task;
3528 }
3529
3530 result = proc_pid_instantiate(dentry, task, NULL);
3531out_put_task:
3532 put_task_struct(task);
3533out:
3534 return result;
3535}
3536
3537/*
3538 * Find the first task with tgid >= tgid
3539 *
3540 */
3541struct tgid_iter {
3542 unsigned int tgid;
3543 struct task_struct *task;
3544};
3545static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
3546{
3547 struct pid *pid;
3548
3549 if (iter.task)
3550 put_task_struct(iter.task);
3551 rcu_read_lock();
3552retry:
3553 iter.task = NULL;
3554 pid = find_ge_pid(iter.tgid, ns);
3555 if (pid) {
3556 iter.tgid = pid_nr_ns(pid, ns);
3557 iter.task = pid_task(pid, PIDTYPE_TGID);
3558 if (!iter.task) {
3559 iter.tgid += 1;
3560 goto retry;
3561 }
3562 get_task_struct(iter.task);
3563 }
3564 rcu_read_unlock();
3565 return iter;
3566}
3567
3568#define TGID_OFFSET (FIRST_PROCESS_ENTRY + 2)
3569
3570/* for the /proc/ directory itself, after non-process stuff has been done */
3571int proc_pid_readdir(struct file *file, struct dir_context *ctx)
3572{
3573 struct tgid_iter iter;
3574 struct proc_fs_info *fs_info = proc_sb_info(file_inode(file)->i_sb);
3575 struct pid_namespace *ns = proc_pid_ns(file_inode(file)->i_sb);
3576 loff_t pos = ctx->pos;
3577
3578 if (pos >= PID_MAX_LIMIT + TGID_OFFSET)
3579 return 0;
3580
3581 if (pos == TGID_OFFSET - 2) {
3582 struct inode *inode = d_inode(fs_info->proc_self);
3583 if (!dir_emit(ctx, "self", 4, inode->i_ino, DT_LNK))
3584 return 0;
3585 ctx->pos = pos = pos + 1;
3586 }
3587 if (pos == TGID_OFFSET - 1) {
3588 struct inode *inode = d_inode(fs_info->proc_thread_self);
3589 if (!dir_emit(ctx, "thread-self", 11, inode->i_ino, DT_LNK))
3590 return 0;
3591 ctx->pos = pos = pos + 1;
3592 }
3593 iter.tgid = pos - TGID_OFFSET;
3594 iter.task = NULL;
3595 for (iter = next_tgid(ns, iter);
3596 iter.task;
3597 iter.tgid += 1, iter = next_tgid(ns, iter)) {
3598 char name[10 + 1];
3599 unsigned int len;
3600
3601 cond_resched();
3602 if (!has_pid_permissions(fs_info, iter.task, HIDEPID_INVISIBLE))
3603 continue;
3604
3605 len = snprintf(name, sizeof(name), "%u", iter.tgid);
3606 ctx->pos = iter.tgid + TGID_OFFSET;
3607 if (!proc_fill_cache(file, ctx, name, len,
3608 proc_pid_instantiate, iter.task, NULL)) {
3609 put_task_struct(iter.task);
3610 return 0;
3611 }
3612 }
3613 ctx->pos = PID_MAX_LIMIT + TGID_OFFSET;
3614 return 0;
3615}
3616
3617/*
3618 * proc_tid_comm_permission is a special permission function exclusively
3619 * used for the node /proc/<pid>/task/<tid>/comm.
3620 * It bypasses generic permission checks in the case where a task of the same
3621 * task group attempts to access the node.
3622 * The rationale behind this is that glibc and bionic access this node for
3623 * cross thread naming (pthread_set/getname_np(!self)). However, if
3624 * PR_SET_DUMPABLE gets set to 0 this node among others becomes uid=0 gid=0,
3625 * which locks out the cross thread naming implementation.
3626 * This function makes sure that the node is always accessible for members of
3627 * same thread group.
3628 */
3629static int proc_tid_comm_permission(struct mnt_idmap *idmap,
3630 struct inode *inode, int mask)
3631{
3632 bool is_same_tgroup;
3633 struct task_struct *task;
3634
3635 task = get_proc_task(inode);
3636 if (!task)
3637 return -ESRCH;
3638 is_same_tgroup = same_thread_group(current, task);
3639 put_task_struct(task);
3640
3641 if (likely(is_same_tgroup && !(mask & MAY_EXEC))) {
3642 /* This file (/proc/<pid>/task/<tid>/comm) can always be
3643 * read or written by the members of the corresponding
3644 * thread group.
3645 */
3646 return 0;
3647 }
3648
3649 return generic_permission(&nop_mnt_idmap, inode, mask);
3650}
3651
3652static const struct inode_operations proc_tid_comm_inode_operations = {
3653 .setattr = proc_setattr,
3654 .permission = proc_tid_comm_permission,
3655};
3656
3657/*
3658 * Tasks
3659 */
3660static const struct pid_entry tid_base_stuff[] = {
3661 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3662 DIR("fdinfo", S_IRUGO|S_IXUGO, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3663 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3664#ifdef CONFIG_NET
3665 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3666#endif
3667 REG("environ", S_IRUSR, proc_environ_operations),
3668 REG("auxv", S_IRUSR, proc_auxv_operations),
3669 ONE("status", S_IRUGO, proc_pid_status),
3670 ONE("personality", S_IRUSR, proc_pid_personality),
3671 ONE("limits", S_IRUGO, proc_pid_limits),
3672#ifdef CONFIG_SCHED_DEBUG
3673 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3674#endif
3675 NOD("comm", S_IFREG|S_IRUGO|S_IWUSR,
3676 &proc_tid_comm_inode_operations,
3677 &proc_pid_set_comm_operations, {}),
3678#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3679 ONE("syscall", S_IRUSR, proc_pid_syscall),
3680#endif
3681 REG("cmdline", S_IRUGO, proc_pid_cmdline_ops),
3682 ONE("stat", S_IRUGO, proc_tid_stat),
3683 ONE("statm", S_IRUGO, proc_pid_statm),
3684 REG("maps", S_IRUGO, proc_pid_maps_operations),
3685#ifdef CONFIG_PROC_CHILDREN
3686 REG("children", S_IRUGO, proc_tid_children_operations),
3687#endif
3688#ifdef CONFIG_NUMA
3689 REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations),
3690#endif
3691 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations),
3692 LNK("cwd", proc_cwd_link),
3693 LNK("root", proc_root_link),
3694 LNK("exe", proc_exe_link),
3695 REG("mounts", S_IRUGO, proc_mounts_operations),
3696 REG("mountinfo", S_IRUGO, proc_mountinfo_operations),
3697#ifdef CONFIG_PROC_PAGE_MONITOR
3698 REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3699 REG("smaps", S_IRUGO, proc_pid_smaps_operations),
3700 REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations),
3701 REG("pagemap", S_IRUSR, proc_pagemap_operations),
3702#endif
3703#ifdef CONFIG_SECURITY
3704 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3705#endif
3706#ifdef CONFIG_KALLSYMS
3707 ONE("wchan", S_IRUGO, proc_pid_wchan),
3708#endif
3709#ifdef CONFIG_STACKTRACE
3710 ONE("stack", S_IRUSR, proc_pid_stack),
3711#endif
3712#ifdef CONFIG_SCHED_INFO
3713 ONE("schedstat", S_IRUGO, proc_pid_schedstat),
3714#endif
3715#ifdef CONFIG_LATENCYTOP
3716 REG("latency", S_IRUGO, proc_lstats_operations),
3717#endif
3718#ifdef CONFIG_PROC_PID_CPUSET
3719 ONE("cpuset", S_IRUGO, proc_cpuset_show),
3720#endif
3721#ifdef CONFIG_CGROUPS
3722 ONE("cgroup", S_IRUGO, proc_cgroup_show),
3723#endif
3724#ifdef CONFIG_PROC_CPU_RESCTRL
3725 ONE("cpu_resctrl_groups", S_IRUGO, proc_resctrl_show),
3726#endif
3727 ONE("oom_score", S_IRUGO, proc_oom_score),
3728 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3729 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3730#ifdef CONFIG_AUDIT
3731 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations),
3732 REG("sessionid", S_IRUGO, proc_sessionid_operations),
3733#endif
3734#ifdef CONFIG_FAULT_INJECTION
3735 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3736 REG("fail-nth", 0644, proc_fail_nth_operations),
3737#endif
3738#ifdef CONFIG_TASK_IO_ACCOUNTING
3739 ONE("io", S_IRUSR, proc_tid_io_accounting),
3740#endif
3741#ifdef CONFIG_USER_NS
3742 REG("uid_map", S_IRUGO|S_IWUSR, proc_uid_map_operations),
3743 REG("gid_map", S_IRUGO|S_IWUSR, proc_gid_map_operations),
3744 REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3745 REG("setgroups", S_IRUGO|S_IWUSR, proc_setgroups_operations),
3746#endif
3747#ifdef CONFIG_LIVEPATCH
3748 ONE("patch_state", S_IRUSR, proc_pid_patch_state),
3749#endif
3750#ifdef CONFIG_PROC_PID_ARCH_STATUS
3751 ONE("arch_status", S_IRUGO, proc_pid_arch_status),
3752#endif
3753#ifdef CONFIG_SECCOMP_CACHE_DEBUG
3754 ONE("seccomp_cache", S_IRUSR, proc_pid_seccomp_cache),
3755#endif
3756#ifdef CONFIG_KSM
3757 ONE("ksm_merging_pages", S_IRUSR, proc_pid_ksm_merging_pages),
3758 ONE("ksm_stat", S_IRUSR, proc_pid_ksm_stat),
3759#endif
3760};
3761
3762static int proc_tid_base_readdir(struct file *file, struct dir_context *ctx)
3763{
3764 return proc_pident_readdir(file, ctx,
3765 tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3766}
3767
3768static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3769{
3770 return proc_pident_lookup(dir, dentry,
3771 tid_base_stuff,
3772 tid_base_stuff + ARRAY_SIZE(tid_base_stuff));
3773}
3774
3775static const struct file_operations proc_tid_base_operations = {
3776 .read = generic_read_dir,
3777 .iterate_shared = proc_tid_base_readdir,
3778 .llseek = generic_file_llseek,
3779};
3780
3781static const struct inode_operations proc_tid_base_inode_operations = {
3782 .lookup = proc_tid_base_lookup,
3783 .getattr = pid_getattr,
3784 .setattr = proc_setattr,
3785};
3786
3787static struct dentry *proc_task_instantiate(struct dentry *dentry,
3788 struct task_struct *task, const void *ptr)
3789{
3790 struct inode *inode;
3791 inode = proc_pid_make_base_inode(dentry->d_sb, task,
3792 S_IFDIR | S_IRUGO | S_IXUGO);
3793 if (!inode)
3794 return ERR_PTR(-ENOENT);
3795
3796 inode->i_op = &proc_tid_base_inode_operations;
3797 inode->i_fop = &proc_tid_base_operations;
3798 inode->i_flags |= S_IMMUTABLE;
3799
3800 set_nlink(inode, nlink_tid);
3801 pid_update_inode(task, inode);
3802
3803 d_set_d_op(dentry, &pid_dentry_operations);
3804 return d_splice_alias(inode, dentry);
3805}
3806
3807static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3808{
3809 struct task_struct *task;
3810 struct task_struct *leader = get_proc_task(dir);
3811 unsigned tid;
3812 struct proc_fs_info *fs_info;
3813 struct pid_namespace *ns;
3814 struct dentry *result = ERR_PTR(-ENOENT);
3815
3816 if (!leader)
3817 goto out_no_task;
3818
3819 tid = name_to_int(&dentry->d_name);
3820 if (tid == ~0U)
3821 goto out;
3822
3823 fs_info = proc_sb_info(dentry->d_sb);
3824 ns = fs_info->pid_ns;
3825 rcu_read_lock();
3826 task = find_task_by_pid_ns(tid, ns);
3827 if (task)
3828 get_task_struct(task);
3829 rcu_read_unlock();
3830 if (!task)
3831 goto out;
3832 if (!same_thread_group(leader, task))
3833 goto out_drop_task;
3834
3835 result = proc_task_instantiate(dentry, task, NULL);
3836out_drop_task:
3837 put_task_struct(task);
3838out:
3839 put_task_struct(leader);
3840out_no_task:
3841 return result;
3842}
3843
3844/*
3845 * Find the first tid of a thread group to return to user space.
3846 *
3847 * Usually this is just the thread group leader, but if the users
3848 * buffer was too small or there was a seek into the middle of the
3849 * directory we have more work todo.
3850 *
3851 * In the case of a short read we start with find_task_by_pid.
3852 *
3853 * In the case of a seek we start with the leader and walk nr
3854 * threads past it.
3855 */
3856static struct task_struct *first_tid(struct pid *pid, int tid, loff_t f_pos,
3857 struct pid_namespace *ns)
3858{
3859 struct task_struct *pos, *task;
3860 unsigned long nr = f_pos;
3861
3862 if (nr != f_pos) /* 32bit overflow? */
3863 return NULL;
3864
3865 rcu_read_lock();
3866 task = pid_task(pid, PIDTYPE_PID);
3867 if (!task)
3868 goto fail;
3869
3870 /* Attempt to start with the tid of a thread */
3871 if (tid && nr) {
3872 pos = find_task_by_pid_ns(tid, ns);
3873 if (pos && same_thread_group(pos, task))
3874 goto found;
3875 }
3876
3877 /* If nr exceeds the number of threads there is nothing todo */
3878 if (nr >= get_nr_threads(task))
3879 goto fail;
3880
3881 /* If we haven't found our starting place yet start
3882 * with the leader and walk nr threads forward.
3883 */
3884 for_each_thread(task, pos) {
3885 if (!nr--)
3886 goto found;
3887 }
3888fail:
3889 pos = NULL;
3890 goto out;
3891found:
3892 get_task_struct(pos);
3893out:
3894 rcu_read_unlock();
3895 return pos;
3896}
3897
3898/*
3899 * Find the next thread in the thread list.
3900 * Return NULL if there is an error or no next thread.
3901 *
3902 * The reference to the input task_struct is released.
3903 */
3904static struct task_struct *next_tid(struct task_struct *start)
3905{
3906 struct task_struct *pos = NULL;
3907 rcu_read_lock();
3908 if (pid_alive(start)) {
3909 pos = __next_thread(start);
3910 if (pos)
3911 get_task_struct(pos);
3912 }
3913 rcu_read_unlock();
3914 put_task_struct(start);
3915 return pos;
3916}
3917
3918/* for the /proc/TGID/task/ directories */
3919static int proc_task_readdir(struct file *file, struct dir_context *ctx)
3920{
3921 struct inode *inode = file_inode(file);
3922 struct task_struct *task;
3923 struct pid_namespace *ns;
3924 int tid;
3925
3926 if (proc_inode_is_dead(inode))
3927 return -ENOENT;
3928
3929 if (!dir_emit_dots(file, ctx))
3930 return 0;
3931
3932 /* We cache the tgid value that the last readdir call couldn't
3933 * return and lseek resets it to 0.
3934 */
3935 ns = proc_pid_ns(inode->i_sb);
3936 tid = (int)(intptr_t)file->private_data;
3937 file->private_data = NULL;
3938 for (task = first_tid(proc_pid(inode), tid, ctx->pos - 2, ns);
3939 task;
3940 task = next_tid(task), ctx->pos++) {
3941 char name[10 + 1];
3942 unsigned int len;
3943
3944 tid = task_pid_nr_ns(task, ns);
3945 if (!tid)
3946 continue; /* The task has just exited. */
3947 len = snprintf(name, sizeof(name), "%u", tid);
3948 if (!proc_fill_cache(file, ctx, name, len,
3949 proc_task_instantiate, task, NULL)) {
3950 /* returning this tgid failed, save it as the first
3951 * pid for the next readir call */
3952 file->private_data = (void *)(intptr_t)tid;
3953 put_task_struct(task);
3954 break;
3955 }
3956 }
3957
3958 return 0;
3959}
3960
3961static int proc_task_getattr(struct mnt_idmap *idmap,
3962 const struct path *path, struct kstat *stat,
3963 u32 request_mask, unsigned int query_flags)
3964{
3965 struct inode *inode = d_inode(path->dentry);
3966 struct task_struct *p = get_proc_task(inode);
3967 generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat);
3968
3969 if (p) {
3970 stat->nlink += get_nr_threads(p);
3971 put_task_struct(p);
3972 }
3973
3974 return 0;
3975}
3976
3977/*
3978 * proc_task_readdir() set @file->private_data to a positive integer
3979 * value, so casting that to u64 is safe. generic_llseek_cookie() will
3980 * set @cookie to 0, so casting to an int is safe. The WARN_ON_ONCE() is
3981 * here to catch any unexpected change in behavior either in
3982 * proc_task_readdir() or generic_llseek_cookie().
3983 */
3984static loff_t proc_dir_llseek(struct file *file, loff_t offset, int whence)
3985{
3986 u64 cookie = (u64)(intptr_t)file->private_data;
3987 loff_t off;
3988
3989 off = generic_llseek_cookie(file, offset, whence, &cookie);
3990 WARN_ON_ONCE(cookie > INT_MAX);
3991 file->private_data = (void *)(intptr_t)cookie; /* serialized by f_pos_lock */
3992 return off;
3993}
3994
3995static const struct inode_operations proc_task_inode_operations = {
3996 .lookup = proc_task_lookup,
3997 .getattr = proc_task_getattr,
3998 .setattr = proc_setattr,
3999 .permission = proc_pid_permission,
4000};
4001
4002static const struct file_operations proc_task_operations = {
4003 .read = generic_read_dir,
4004 .iterate_shared = proc_task_readdir,
4005 .llseek = proc_dir_llseek,
4006};
4007
4008void __init set_proc_pid_nlink(void)
4009{
4010 nlink_tid = pid_entry_nlink(tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
4011 nlink_tgid = pid_entry_nlink(tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
4012}