Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 *  linux/fs/proc/base.c
   3 *
   4 *  Copyright (C) 1991, 1992 Linus Torvalds
   5 *
   6 *  proc base directory handling functions
   7 *
   8 *  1999, Al Viro. Rewritten. Now it covers the whole per-process part.
   9 *  Instead of using magical inumbers to determine the kind of object
  10 *  we allocate and fill in-core inodes upon lookup. They don't even
  11 *  go into icache. We cache the reference to task_struct upon lookup too.
  12 *  Eventually it should become a filesystem in its own. We don't use the
  13 *  rest of procfs anymore.
  14 *
  15 *
  16 *  Changelog:
  17 *  17-Jan-2005
  18 *  Allan Bezerra
  19 *  Bruna Moreira <bruna.moreira@indt.org.br>
  20 *  Edjard Mota <edjard.mota@indt.org.br>
  21 *  Ilias Biris <ilias.biris@indt.org.br>
  22 *  Mauricio Lin <mauricio.lin@indt.org.br>
  23 *
  24 *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
  25 *
  26 *  A new process specific entry (smaps) included in /proc. It shows the
  27 *  size of rss for each memory area. The maps entry lacks information
  28 *  about physical memory size (rss) for each mapped file, i.e.,
  29 *  rss information for executables and library files.
  30 *  This additional information is useful for any tools that need to know
  31 *  about physical memory consumption for a process specific library.
  32 *
  33 *  Changelog:
  34 *  21-Feb-2005
  35 *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
  36 *  Pud inclusion in the page table walking.
  37 *
  38 *  ChangeLog:
  39 *  10-Mar-2005
  40 *  10LE Instituto Nokia de Tecnologia - INdT:
  41 *  A better way to walks through the page table as suggested by Hugh Dickins.
  42 *
  43 *  Simo Piiroinen <simo.piiroinen@nokia.com>:
  44 *  Smaps information related to shared, private, clean and dirty pages.
  45 *
  46 *  Paul Mundt <paul.mundt@nokia.com>:
  47 *  Overall revision about smaps.
  48 */
  49
  50#include <asm/uaccess.h>
  51
  52#include <linux/errno.h>
  53#include <linux/time.h>
  54#include <linux/proc_fs.h>
  55#include <linux/stat.h>
  56#include <linux/task_io_accounting_ops.h>
  57#include <linux/init.h>
  58#include <linux/capability.h>
  59#include <linux/file.h>
  60#include <linux/fdtable.h>
  61#include <linux/string.h>
  62#include <linux/seq_file.h>
  63#include <linux/namei.h>
  64#include <linux/mnt_namespace.h>
  65#include <linux/mm.h>
  66#include <linux/swap.h>
  67#include <linux/rcupdate.h>
  68#include <linux/kallsyms.h>
  69#include <linux/stacktrace.h>
  70#include <linux/resource.h>
  71#include <linux/module.h>
  72#include <linux/mount.h>
  73#include <linux/security.h>
  74#include <linux/ptrace.h>
  75#include <linux/tracehook.h>
 
  76#include <linux/cgroup.h>
  77#include <linux/cpuset.h>
  78#include <linux/audit.h>
  79#include <linux/poll.h>
  80#include <linux/nsproxy.h>
  81#include <linux/oom.h>
  82#include <linux/elf.h>
  83#include <linux/pid_namespace.h>
 
  84#include <linux/fs_struct.h>
  85#include <linux/slab.h>
 
 
  86#ifdef CONFIG_HARDWALL
  87#include <asm/hardwall.h>
  88#endif
 
  89#include "internal.h"
 
  90
  91/* NOTE:
  92 *	Implementing inode permission operations in /proc is almost
  93 *	certainly an error.  Permission checks need to happen during
  94 *	each system call not at open time.  The reason is that most of
  95 *	what we wish to check for permissions in /proc varies at runtime.
  96 *
  97 *	The classic example of a problem is opening file descriptors
  98 *	in /proc for a task before it execs a suid executable.
  99 */
 100
 
 
 
 101struct pid_entry {
 102	char *name;
 103	int len;
 104	mode_t mode;
 105	const struct inode_operations *iop;
 106	const struct file_operations *fop;
 107	union proc_op op;
 108};
 109
 110#define NOD(NAME, MODE, IOP, FOP, OP) {			\
 111	.name = (NAME),					\
 112	.len  = sizeof(NAME) - 1,			\
 113	.mode = MODE,					\
 114	.iop  = IOP,					\
 115	.fop  = FOP,					\
 116	.op   = OP,					\
 117}
 118
 119#define DIR(NAME, MODE, iops, fops)	\
 120	NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
 121#define LNK(NAME, get_link)					\
 122	NOD(NAME, (S_IFLNK|S_IRWXUGO),				\
 123		&proc_pid_link_inode_operations, NULL,		\
 124		{ .proc_get_link = get_link } )
 125#define REG(NAME, MODE, fops)				\
 126	NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
 127#define INF(NAME, MODE, read)				\
 128	NOD(NAME, (S_IFREG|(MODE)), 			\
 129		NULL, &proc_info_file_operations,	\
 130		{ .proc_read = read } )
 131#define ONE(NAME, MODE, show)				\
 132	NOD(NAME, (S_IFREG|(MODE)), 			\
 133		NULL, &proc_single_file_operations,	\
 134		{ .proc_show = show } )
 135
 136/*
 137 * Count the number of hardlinks for the pid_entry table, excluding the .
 138 * and .. links.
 139 */
 140static unsigned int pid_entry_count_dirs(const struct pid_entry *entries,
 141	unsigned int n)
 142{
 143	unsigned int i;
 144	unsigned int count;
 145
 146	count = 0;
 147	for (i = 0; i < n; ++i) {
 148		if (S_ISDIR(entries[i].mode))
 149			++count;
 150	}
 151
 152	return count;
 153}
 154
 155static int get_task_root(struct task_struct *task, struct path *root)
 156{
 157	int result = -ENOENT;
 158
 159	task_lock(task);
 160	if (task->fs) {
 161		get_fs_root(task->fs, root);
 162		result = 0;
 163	}
 164	task_unlock(task);
 165	return result;
 166}
 167
 168static int proc_cwd_link(struct inode *inode, struct path *path)
 169{
 170	struct task_struct *task = get_proc_task(inode);
 171	int result = -ENOENT;
 172
 173	if (task) {
 174		task_lock(task);
 175		if (task->fs) {
 176			get_fs_pwd(task->fs, path);
 177			result = 0;
 178		}
 179		task_unlock(task);
 180		put_task_struct(task);
 181	}
 182	return result;
 183}
 184
 185static int proc_root_link(struct inode *inode, struct path *path)
 186{
 187	struct task_struct *task = get_proc_task(inode);
 188	int result = -ENOENT;
 189
 190	if (task) {
 191		result = get_task_root(task, path);
 192		put_task_struct(task);
 193	}
 194	return result;
 195}
 196
 197static struct mm_struct *__check_mem_permission(struct task_struct *task)
 
 198{
 
 199	struct mm_struct *mm;
 
 
 
 
 
 
 
 200
 201	mm = get_task_mm(task);
 202	if (!mm)
 203		return ERR_PTR(-EINVAL);
 204
 205	/*
 206	 * A task can always look at itself, in case it chooses
 207	 * to use system calls instead of load instructions.
 208	 */
 209	if (task == current)
 210		return mm;
 211
 212	/*
 213	 * If current is actively ptrace'ing, and would also be
 214	 * permitted to freshly attach with ptrace now, permit it.
 215	 */
 216	if (task_is_stopped_or_traced(task)) {
 217		int match;
 218		rcu_read_lock();
 219		match = (ptrace_parent(task) == current);
 220		rcu_read_unlock();
 221		if (match && ptrace_may_access(task, PTRACE_MODE_ATTACH))
 222			return mm;
 223	}
 224
 225	/*
 226	 * No one else is allowed.
 227	 */
 228	mmput(mm);
 229	return ERR_PTR(-EPERM);
 230}
 
 
 
 
 
 
 231
 232/*
 233 * If current may access user memory in @task return a reference to the
 234 * corresponding mm, otherwise ERR_PTR.
 235 */
 236static struct mm_struct *check_mem_permission(struct task_struct *task)
 237{
 238	struct mm_struct *mm;
 239	int err;
 240
 
 
 
 
 
 
 
 
 241	/*
 242	 * Avoid racing if task exec's as we might get a new mm but validate
 243	 * against old credentials.
 244	 */
 245	err = mutex_lock_killable(&task->signal->cred_guard_mutex);
 246	if (err)
 247		return ERR_PTR(err);
 248
 249	mm = __check_mem_permission(task);
 250	mutex_unlock(&task->signal->cred_guard_mutex);
 251
 252	return mm;
 253}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 254
 255struct mm_struct *mm_for_maps(struct task_struct *task)
 256{
 257	struct mm_struct *mm;
 258	int err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 259
 260	err =  mutex_lock_killable(&task->signal->cred_guard_mutex);
 261	if (err)
 262		return ERR_PTR(err);
 
 263
 264	mm = get_task_mm(task);
 265	if (mm && mm != current->mm &&
 266			!ptrace_may_access(task, PTRACE_MODE_READ)) {
 267		mmput(mm);
 268		mm = ERR_PTR(-EACCES);
 269	}
 270	mutex_unlock(&task->signal->cred_guard_mutex);
 271
 272	return mm;
 273}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 274
 275static int proc_pid_cmdline(struct task_struct *task, char * buffer)
 276{
 277	int res = 0;
 278	unsigned int len;
 279	struct mm_struct *mm = get_task_mm(task);
 280	if (!mm)
 281		goto out;
 282	if (!mm->arg_end)
 283		goto out_mm;	/* Shh! No looking before we're done */
 284
 285 	len = mm->arg_end - mm->arg_start;
 286 
 287	if (len > PAGE_SIZE)
 288		len = PAGE_SIZE;
 289 
 290	res = access_process_vm(task, mm->arg_start, buffer, len, 0);
 291
 292	// If the nul at the end of args has been overwritten, then
 293	// assume application is using setproctitle(3).
 294	if (res > 0 && buffer[res-1] != '\0' && len < PAGE_SIZE) {
 295		len = strnlen(buffer, res);
 296		if (len < res) {
 297		    res = len;
 298		} else {
 299			len = mm->env_end - mm->env_start;
 300			if (len > PAGE_SIZE - res)
 301				len = PAGE_SIZE - res;
 302			res += access_process_vm(task, mm->env_start, buffer+res, len, 0);
 303			res = strnlen(buffer, res);
 304		}
 
 
 305	}
 306out_mm:
 307	mmput(mm);
 308out:
 309	return res;
 310}
 311
 312static int proc_pid_auxv(struct task_struct *task, char *buffer)
 313{
 314	struct mm_struct *mm = mm_for_maps(task);
 315	int res = PTR_ERR(mm);
 316	if (mm && !IS_ERR(mm)) {
 317		unsigned int nwords = 0;
 318		do {
 319			nwords += 2;
 320		} while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
 321		res = nwords * sizeof(mm->saved_auxv[0]);
 322		if (res > PAGE_SIZE)
 323			res = PAGE_SIZE;
 324		memcpy(buffer, mm->saved_auxv, res);
 325		mmput(mm);
 326	}
 327	return res;
 328}
 329
 
 
 
 
 330
 331#ifdef CONFIG_KALLSYMS
 332/*
 333 * Provides a wchan file via kallsyms in a proper one-value-per-file format.
 334 * Returns the resolved symbol.  If that fails, simply return the address.
 335 */
 336static int proc_pid_wchan(struct task_struct *task, char *buffer)
 
 337{
 338	unsigned long wchan;
 339	char symname[KSYM_NAME_LEN];
 340
 341	wchan = get_wchan(task);
 342
 343	if (lookup_symbol_name(wchan, symname) < 0)
 344		if (!ptrace_may_access(task, PTRACE_MODE_READ))
 345			return 0;
 346		else
 347			return sprintf(buffer, "%lu", wchan);
 348	else
 349		return sprintf(buffer, "%s", symname);
 
 
 350}
 351#endif /* CONFIG_KALLSYMS */
 352
 353static int lock_trace(struct task_struct *task)
 354{
 355	int err = mutex_lock_killable(&task->signal->cred_guard_mutex);
 356	if (err)
 357		return err;
 358	if (!ptrace_may_access(task, PTRACE_MODE_ATTACH)) {
 359		mutex_unlock(&task->signal->cred_guard_mutex);
 360		return -EPERM;
 361	}
 362	return 0;
 363}
 364
 365static void unlock_trace(struct task_struct *task)
 366{
 367	mutex_unlock(&task->signal->cred_guard_mutex);
 368}
 369
 370#ifdef CONFIG_STACKTRACE
 371
 372#define MAX_STACK_TRACE_DEPTH	64
 373
 374static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
 375			  struct pid *pid, struct task_struct *task)
 376{
 377	struct stack_trace trace;
 378	unsigned long *entries;
 379	int err;
 380	int i;
 381
 382	entries = kmalloc(MAX_STACK_TRACE_DEPTH * sizeof(*entries), GFP_KERNEL);
 383	if (!entries)
 384		return -ENOMEM;
 385
 386	trace.nr_entries	= 0;
 387	trace.max_entries	= MAX_STACK_TRACE_DEPTH;
 388	trace.entries		= entries;
 389	trace.skip		= 0;
 390
 391	err = lock_trace(task);
 392	if (!err) {
 393		save_stack_trace_tsk(task, &trace);
 394
 395		for (i = 0; i < trace.nr_entries; i++) {
 396			seq_printf(m, "[<%pK>] %pS\n",
 397				   (void *)entries[i], (void *)entries[i]);
 398		}
 399		unlock_trace(task);
 400	}
 401	kfree(entries);
 402
 403	return err;
 404}
 405#endif
 406
 407#ifdef CONFIG_SCHEDSTATS
 408/*
 409 * Provides /proc/PID/schedstat
 410 */
 411static int proc_pid_schedstat(struct task_struct *task, char *buffer)
 
 412{
 413	return sprintf(buffer, "%llu %llu %lu\n",
 414			(unsigned long long)task->se.sum_exec_runtime,
 415			(unsigned long long)task->sched_info.run_delay,
 416			task->sched_info.pcount);
 
 
 
 
 
 417}
 418#endif
 419
 420#ifdef CONFIG_LATENCYTOP
 421static int lstats_show_proc(struct seq_file *m, void *v)
 422{
 423	int i;
 424	struct inode *inode = m->private;
 425	struct task_struct *task = get_proc_task(inode);
 426
 427	if (!task)
 428		return -ESRCH;
 429	seq_puts(m, "Latency Top version : v0.1\n");
 430	for (i = 0; i < 32; i++) {
 431		struct latency_record *lr = &task->latency_record[i];
 432		if (lr->backtrace[0]) {
 433			int q;
 434			seq_printf(m, "%i %li %li",
 435				   lr->count, lr->time, lr->max);
 436			for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
 437				unsigned long bt = lr->backtrace[q];
 438				if (!bt)
 439					break;
 440				if (bt == ULONG_MAX)
 441					break;
 442				seq_printf(m, " %ps", (void *)bt);
 443			}
 444			seq_putc(m, '\n');
 445		}
 446
 447	}
 448	put_task_struct(task);
 449	return 0;
 450}
 451
 452static int lstats_open(struct inode *inode, struct file *file)
 453{
 454	return single_open(file, lstats_show_proc, inode);
 455}
 456
 457static ssize_t lstats_write(struct file *file, const char __user *buf,
 458			    size_t count, loff_t *offs)
 459{
 460	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
 461
 462	if (!task)
 463		return -ESRCH;
 464	clear_all_latency_tracing(task);
 465	put_task_struct(task);
 466
 467	return count;
 468}
 469
 470static const struct file_operations proc_lstats_operations = {
 471	.open		= lstats_open,
 472	.read		= seq_read,
 473	.write		= lstats_write,
 474	.llseek		= seq_lseek,
 475	.release	= single_release,
 476};
 477
 478#endif
 479
 480static int proc_oom_score(struct task_struct *task, char *buffer)
 
 481{
 
 482	unsigned long points = 0;
 483
 484	read_lock(&tasklist_lock);
 485	if (pid_alive(task))
 486		points = oom_badness(task, NULL, NULL,
 487					totalram_pages + total_swap_pages);
 488	read_unlock(&tasklist_lock);
 489	return sprintf(buffer, "%lu\n", points);
 490}
 491
 492struct limit_names {
 493	char *name;
 494	char *unit;
 495};
 496
 497static const struct limit_names lnames[RLIM_NLIMITS] = {
 498	[RLIMIT_CPU] = {"Max cpu time", "seconds"},
 499	[RLIMIT_FSIZE] = {"Max file size", "bytes"},
 500	[RLIMIT_DATA] = {"Max data size", "bytes"},
 501	[RLIMIT_STACK] = {"Max stack size", "bytes"},
 502	[RLIMIT_CORE] = {"Max core file size", "bytes"},
 503	[RLIMIT_RSS] = {"Max resident set", "bytes"},
 504	[RLIMIT_NPROC] = {"Max processes", "processes"},
 505	[RLIMIT_NOFILE] = {"Max open files", "files"},
 506	[RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
 507	[RLIMIT_AS] = {"Max address space", "bytes"},
 508	[RLIMIT_LOCKS] = {"Max file locks", "locks"},
 509	[RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
 510	[RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
 511	[RLIMIT_NICE] = {"Max nice priority", NULL},
 512	[RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
 513	[RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
 514};
 515
 516/* Display limits for a process */
 517static int proc_pid_limits(struct task_struct *task, char *buffer)
 
 518{
 519	unsigned int i;
 520	int count = 0;
 521	unsigned long flags;
 522	char *bufptr = buffer;
 523
 524	struct rlimit rlim[RLIM_NLIMITS];
 525
 526	if (!lock_task_sighand(task, &flags))
 527		return 0;
 528	memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
 529	unlock_task_sighand(task, &flags);
 530
 531	/*
 532	 * print the file header
 533	 */
 534	count += sprintf(&bufptr[count], "%-25s %-20s %-20s %-10s\n",
 535			"Limit", "Soft Limit", "Hard Limit", "Units");
 536
 537	for (i = 0; i < RLIM_NLIMITS; i++) {
 538		if (rlim[i].rlim_cur == RLIM_INFINITY)
 539			count += sprintf(&bufptr[count], "%-25s %-20s ",
 540					 lnames[i].name, "unlimited");
 541		else
 542			count += sprintf(&bufptr[count], "%-25s %-20lu ",
 543					 lnames[i].name, rlim[i].rlim_cur);
 544
 545		if (rlim[i].rlim_max == RLIM_INFINITY)
 546			count += sprintf(&bufptr[count], "%-20s ", "unlimited");
 547		else
 548			count += sprintf(&bufptr[count], "%-20lu ",
 549					 rlim[i].rlim_max);
 550
 551		if (lnames[i].unit)
 552			count += sprintf(&bufptr[count], "%-10s\n",
 553					 lnames[i].unit);
 554		else
 555			count += sprintf(&bufptr[count], "\n");
 556	}
 557
 558	return count;
 559}
 560
 561#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
 562static int proc_pid_syscall(struct task_struct *task, char *buffer)
 
 563{
 564	long nr;
 565	unsigned long args[6], sp, pc;
 566	int res = lock_trace(task);
 
 
 567	if (res)
 568		return res;
 569
 570	if (task_current_syscall(task, &nr, args, 6, &sp, &pc))
 571		res = sprintf(buffer, "running\n");
 572	else if (nr < 0)
 573		res = sprintf(buffer, "%ld 0x%lx 0x%lx\n", nr, sp, pc);
 574	else
 575		res = sprintf(buffer,
 576		       "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n",
 577		       nr,
 578		       args[0], args[1], args[2], args[3], args[4], args[5],
 579		       sp, pc);
 580	unlock_trace(task);
 581	return res;
 
 582}
 583#endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
 584
 585/************************************************************************/
 586/*                       Here the fs part begins                        */
 587/************************************************************************/
 588
 589/* permission checks */
 590static int proc_fd_access_allowed(struct inode *inode)
 591{
 592	struct task_struct *task;
 593	int allowed = 0;
 594	/* Allow access to a task's file descriptors if it is us or we
 595	 * may use ptrace attach to the process and find out that
 596	 * information.
 597	 */
 598	task = get_proc_task(inode);
 599	if (task) {
 600		allowed = ptrace_may_access(task, PTRACE_MODE_READ);
 601		put_task_struct(task);
 602	}
 603	return allowed;
 604}
 605
 606int proc_setattr(struct dentry *dentry, struct iattr *attr)
 607{
 608	int error;
 609	struct inode *inode = dentry->d_inode;
 610
 611	if (attr->ia_valid & ATTR_MODE)
 612		return -EPERM;
 613
 614	error = inode_change_ok(inode, attr);
 615	if (error)
 616		return error;
 617
 618	if ((attr->ia_valid & ATTR_SIZE) &&
 619	    attr->ia_size != i_size_read(inode)) {
 620		error = vmtruncate(inode, attr->ia_size);
 621		if (error)
 622			return error;
 623	}
 624
 625	setattr_copy(inode, attr);
 626	mark_inode_dirty(inode);
 627	return 0;
 628}
 629
 630static const struct inode_operations proc_def_inode_operations = {
 631	.setattr	= proc_setattr,
 632};
 633
 634static int mounts_open_common(struct inode *inode, struct file *file,
 635			      const struct seq_operations *op)
 636{
 637	struct task_struct *task = get_proc_task(inode);
 638	struct nsproxy *nsp;
 639	struct mnt_namespace *ns = NULL;
 640	struct path root;
 641	struct proc_mounts *p;
 642	int ret = -EINVAL;
 643
 644	if (task) {
 645		rcu_read_lock();
 646		nsp = task_nsproxy(task);
 647		if (nsp) {
 648			ns = nsp->mnt_ns;
 649			if (ns)
 650				get_mnt_ns(ns);
 651		}
 652		rcu_read_unlock();
 653		if (ns && get_task_root(task, &root) == 0)
 654			ret = 0;
 655		put_task_struct(task);
 656	}
 657
 658	if (!ns)
 659		goto err;
 660	if (ret)
 661		goto err_put_ns;
 662
 663	ret = -ENOMEM;
 664	p = kmalloc(sizeof(struct proc_mounts), GFP_KERNEL);
 665	if (!p)
 666		goto err_put_path;
 667
 668	file->private_data = &p->m;
 669	ret = seq_open(file, op);
 670	if (ret)
 671		goto err_free;
 672
 673	p->m.private = p;
 674	p->ns = ns;
 675	p->root = root;
 676	p->m.poll_event = ns->event;
 677
 678	return 0;
 679
 680 err_free:
 681	kfree(p);
 682 err_put_path:
 683	path_put(&root);
 684 err_put_ns:
 685	put_mnt_ns(ns);
 686 err:
 687	return ret;
 688}
 689
 690static int mounts_release(struct inode *inode, struct file *file)
 691{
 692	struct proc_mounts *p = file->private_data;
 693	path_put(&p->root);
 694	put_mnt_ns(p->ns);
 695	return seq_release(inode, file);
 696}
 697
 698static unsigned mounts_poll(struct file *file, poll_table *wait)
 699{
 700	struct proc_mounts *p = file->private_data;
 701	unsigned res = POLLIN | POLLRDNORM;
 702
 703	poll_wait(file, &p->ns->poll, wait);
 704	if (mnt_had_events(p))
 705		res |= POLLERR | POLLPRI;
 706
 707	return res;
 708}
 709
 710static int mounts_open(struct inode *inode, struct file *file)
 711{
 712	return mounts_open_common(inode, file, &mounts_op);
 713}
 714
 715static const struct file_operations proc_mounts_operations = {
 716	.open		= mounts_open,
 717	.read		= seq_read,
 718	.llseek		= seq_lseek,
 719	.release	= mounts_release,
 720	.poll		= mounts_poll,
 721};
 722
 723static int mountinfo_open(struct inode *inode, struct file *file)
 724{
 725	return mounts_open_common(inode, file, &mountinfo_op);
 726}
 727
 728static const struct file_operations proc_mountinfo_operations = {
 729	.open		= mountinfo_open,
 730	.read		= seq_read,
 731	.llseek		= seq_lseek,
 732	.release	= mounts_release,
 733	.poll		= mounts_poll,
 734};
 735
 736static int mountstats_open(struct inode *inode, struct file *file)
 737{
 738	return mounts_open_common(inode, file, &mountstats_op);
 
 
 
 
 739}
 740
 741static const struct file_operations proc_mountstats_operations = {
 742	.open		= mountstats_open,
 743	.read		= seq_read,
 744	.llseek		= seq_lseek,
 745	.release	= mounts_release,
 746};
 747
 748#define PROC_BLOCK_SIZE	(3*1024)		/* 4K page size but our output routines use some slack for overruns */
 749
 750static ssize_t proc_info_read(struct file * file, char __user * buf,
 751			  size_t count, loff_t *ppos)
 752{
 753	struct inode * inode = file->f_path.dentry->d_inode;
 754	unsigned long page;
 755	ssize_t length;
 756	struct task_struct *task = get_proc_task(inode);
 757
 758	length = -ESRCH;
 759	if (!task)
 760		goto out_no_task;
 
 
 761
 762	if (count > PROC_BLOCK_SIZE)
 763		count = PROC_BLOCK_SIZE;
 
 
 
 
 
 
 
 
 764
 765	length = -ENOMEM;
 766	if (!(page = __get_free_page(GFP_TEMPORARY)))
 767		goto out;
 
 768
 769	length = PROC_I(inode)->op.proc_read(task, (char*)page);
 770
 771	if (length >= 0)
 772		length = simple_read_from_buffer(buf, count, ppos, (char *)page, length);
 773	free_page(page);
 774out:
 775	put_task_struct(task);
 776out_no_task:
 777	return length;
 778}
 779
 780static const struct file_operations proc_info_file_operations = {
 781	.read		= proc_info_read,
 782	.llseek		= generic_file_llseek,
 783};
 784
 785static int proc_single_show(struct seq_file *m, void *v)
 786{
 787	struct inode *inode = m->private;
 788	struct pid_namespace *ns;
 789	struct pid *pid;
 790	struct task_struct *task;
 791	int ret;
 792
 793	ns = inode->i_sb->s_fs_info;
 794	pid = proc_pid(inode);
 795	task = get_pid_task(pid, PIDTYPE_PID);
 796	if (!task)
 797		return -ESRCH;
 798
 799	ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
 800
 801	put_task_struct(task);
 802	return ret;
 803}
 804
 805static int proc_single_open(struct inode *inode, struct file *filp)
 806{
 807	return single_open(filp, proc_single_show, inode);
 808}
 809
 810static const struct file_operations proc_single_file_operations = {
 811	.open		= proc_single_open,
 812	.read		= seq_read,
 813	.llseek		= seq_lseek,
 814	.release	= single_release,
 815};
 816
 817static int mem_open(struct inode* inode, struct file* file)
 818{
 819	file->private_data = (void*)((long)current->self_exec_id);
 820	/* OK to pass negative loff_t, we can catch out-of-range */
 821	file->f_mode |= FMODE_UNSIGNED_OFFSET;
 822	return 0;
 823}
 824
 825static ssize_t mem_read(struct file * file, char __user * buf,
 826			size_t count, loff_t *ppos)
 827{
 828	struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
 829	char *page;
 830	unsigned long src = *ppos;
 831	int ret = -ESRCH;
 832	struct mm_struct *mm;
 833
 834	if (!task)
 835		goto out_no_task;
 
 836
 837	ret = -ENOMEM;
 838	page = (char *)__get_free_page(GFP_TEMPORARY);
 839	if (!page)
 840		goto out;
 
 
 
 841
 842	mm = check_mem_permission(task);
 843	ret = PTR_ERR(mm);
 844	if (IS_ERR(mm))
 845		goto out_free;
 846
 847	ret = -EIO;
 848 
 849	if (file->private_data != (void*)((long)current->self_exec_id))
 850		goto out_put;
 851
 852	ret = 0;
 853 
 854	while (count > 0) {
 855		int this_len, retval;
 856
 857		this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
 858		retval = access_remote_vm(mm, src, page, this_len, 0);
 859		if (!retval) {
 860			if (!ret)
 861				ret = -EIO;
 862			break;
 863		}
 864
 865		if (copy_to_user(buf, page, retval)) {
 866			ret = -EFAULT;
 867			break;
 868		}
 869 
 870		ret += retval;
 871		src += retval;
 872		buf += retval;
 873		count -= retval;
 874	}
 875	*ppos = src;
 876
 877out_put:
 878	mmput(mm);
 879out_free:
 880	free_page((unsigned long) page);
 881out:
 882	put_task_struct(task);
 883out_no_task:
 884	return ret;
 885}
 886
 887static ssize_t mem_write(struct file * file, const char __user *buf,
 888			 size_t count, loff_t *ppos)
 889{
 890	int copied;
 
 
 891	char *page;
 892	struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
 893	unsigned long dst = *ppos;
 894	struct mm_struct *mm;
 895
 896	copied = -ESRCH;
 897	if (!task)
 898		goto out_no_task;
 899
 900	copied = -ENOMEM;
 901	page = (char *)__get_free_page(GFP_TEMPORARY);
 902	if (!page)
 903		goto out_task;
 904
 905	mm = check_mem_permission(task);
 906	copied = PTR_ERR(mm);
 907	if (IS_ERR(mm))
 908		goto out_free;
 909
 910	copied = -EIO;
 911	if (file->private_data != (void *)((long)current->self_exec_id))
 912		goto out_mm;
 
 913
 914	copied = 0;
 915	while (count > 0) {
 916		int this_len, retval;
 917
 918		this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
 919		if (copy_from_user(page, buf, this_len)) {
 920			copied = -EFAULT;
 921			break;
 922		}
 923		retval = access_remote_vm(mm, dst, page, this_len, 1);
 924		if (!retval) {
 
 925			if (!copied)
 926				copied = -EIO;
 927			break;
 928		}
 929		copied += retval;
 930		buf += retval;
 931		dst += retval;
 932		count -= retval;			
 
 
 
 
 
 
 933	}
 934	*ppos = dst;
 935
 936out_mm:
 937	mmput(mm);
 938out_free:
 939	free_page((unsigned long) page);
 940out_task:
 941	put_task_struct(task);
 942out_no_task:
 943	return copied;
 944}
 945
 
 
 
 
 
 
 
 
 
 
 
 
 946loff_t mem_lseek(struct file *file, loff_t offset, int orig)
 947{
 948	switch (orig) {
 949	case 0:
 950		file->f_pos = offset;
 951		break;
 952	case 1:
 953		file->f_pos += offset;
 954		break;
 955	default:
 956		return -EINVAL;
 957	}
 958	force_successful_syscall_return();
 959	return file->f_pos;
 960}
 961
 
 
 
 
 
 
 
 
 962static const struct file_operations proc_mem_operations = {
 963	.llseek		= mem_lseek,
 964	.read		= mem_read,
 965	.write		= mem_write,
 966	.open		= mem_open,
 
 967};
 968
 
 
 
 
 
 969static ssize_t environ_read(struct file *file, char __user *buf,
 970			size_t count, loff_t *ppos)
 971{
 972	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
 973	char *page;
 974	unsigned long src = *ppos;
 975	int ret = -ESRCH;
 976	struct mm_struct *mm;
 
 977
 978	if (!task)
 979		goto out_no_task;
 
 980
 981	ret = -ENOMEM;
 982	page = (char *)__get_free_page(GFP_TEMPORARY);
 983	if (!page)
 984		goto out;
 985
 
 
 
 986
 987	mm = mm_for_maps(task);
 988	ret = PTR_ERR(mm);
 989	if (!mm || IS_ERR(mm))
 990		goto out_free;
 991
 992	ret = 0;
 993	while (count > 0) {
 994		int this_len, retval, max_len;
 
 995
 996		this_len = mm->env_end - (mm->env_start + src);
 997
 998		if (this_len <= 0)
 999			break;
1000
1001		max_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
1002		this_len = (this_len > max_len) ? max_len : this_len;
 
 
1003
1004		retval = access_process_vm(task, (mm->env_start + src),
1005			page, this_len, 0);
1006
1007		if (retval <= 0) {
1008			ret = retval;
1009			break;
1010		}
1011
1012		if (copy_to_user(buf, page, retval)) {
1013			ret = -EFAULT;
1014			break;
1015		}
1016
1017		ret += retval;
1018		src += retval;
1019		buf += retval;
1020		count -= retval;
1021	}
1022	*ppos = src;
1023
1024	mmput(mm);
1025out_free:
 
1026	free_page((unsigned long) page);
1027out:
1028	put_task_struct(task);
1029out_no_task:
1030	return ret;
1031}
1032
1033static const struct file_operations proc_environ_operations = {
 
1034	.read		= environ_read,
1035	.llseek		= generic_file_llseek,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1036};
1037
1038static ssize_t oom_adjust_read(struct file *file, char __user *buf,
1039				size_t count, loff_t *ppos)
1040{
1041	struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
1042	char buffer[PROC_NUMBUF];
 
1043	size_t len;
1044	int oom_adjust = OOM_DISABLE;
1045	unsigned long flags;
1046
1047	if (!task)
1048		return -ESRCH;
 
 
 
 
 
 
 
 
 
1049
1050	if (lock_task_sighand(task, &flags)) {
1051		oom_adjust = task->signal->oom_adj;
1052		unlock_task_sighand(task, &flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1053	}
1054
1055	put_task_struct(task);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1056
1057	len = snprintf(buffer, sizeof(buffer), "%i\n", oom_adjust);
 
 
 
1058
1059	return simple_read_from_buffer(buf, count, ppos, buffer, len);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1060}
1061
1062static ssize_t oom_adjust_write(struct file *file, const char __user *buf,
1063				size_t count, loff_t *ppos)
 
 
 
 
 
 
 
 
 
 
1064{
1065	struct task_struct *task;
1066	char buffer[PROC_NUMBUF];
1067	int oom_adjust;
1068	unsigned long flags;
1069	int err;
1070
1071	memset(buffer, 0, sizeof(buffer));
1072	if (count > sizeof(buffer) - 1)
1073		count = sizeof(buffer) - 1;
1074	if (copy_from_user(buffer, buf, count)) {
1075		err = -EFAULT;
1076		goto out;
1077	}
1078
1079	err = kstrtoint(strstrip(buffer), 0, &oom_adjust);
1080	if (err)
1081		goto out;
1082	if ((oom_adjust < OOM_ADJUST_MIN || oom_adjust > OOM_ADJUST_MAX) &&
1083	     oom_adjust != OOM_DISABLE) {
1084		err = -EINVAL;
1085		goto out;
1086	}
1087
1088	task = get_proc_task(file->f_path.dentry->d_inode);
1089	if (!task) {
1090		err = -ESRCH;
1091		goto out;
1092	}
1093
1094	task_lock(task);
1095	if (!task->mm) {
1096		err = -EINVAL;
1097		goto err_task_lock;
1098	}
1099
1100	if (!lock_task_sighand(task, &flags)) {
1101		err = -ESRCH;
1102		goto err_task_lock;
1103	}
1104
1105	if (oom_adjust < task->signal->oom_adj && !capable(CAP_SYS_RESOURCE)) {
1106		err = -EACCES;
1107		goto err_sighand;
1108	}
1109
1110	if (oom_adjust != task->signal->oom_adj) {
1111		if (oom_adjust == OOM_DISABLE)
1112			atomic_inc(&task->mm->oom_disable_count);
1113		if (task->signal->oom_adj == OOM_DISABLE)
1114			atomic_dec(&task->mm->oom_disable_count);
1115	}
1116
1117	/*
1118	 * Warn that /proc/pid/oom_adj is deprecated, see
1119	 * Documentation/feature-removal-schedule.txt.
1120	 */
1121	printk_once(KERN_WARNING "%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
1122		  current->comm, task_pid_nr(current), task_pid_nr(task),
1123		  task_pid_nr(task));
1124	task->signal->oom_adj = oom_adjust;
1125	/*
1126	 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
1127	 * value is always attainable.
1128	 */
1129	if (task->signal->oom_adj == OOM_ADJUST_MAX)
1130		task->signal->oom_score_adj = OOM_SCORE_ADJ_MAX;
1131	else
1132		task->signal->oom_score_adj = (oom_adjust * OOM_SCORE_ADJ_MAX) /
1133								-OOM_DISABLE;
1134err_sighand:
1135	unlock_task_sighand(task, &flags);
1136err_task_lock:
1137	task_unlock(task);
1138	put_task_struct(task);
1139out:
1140	return err < 0 ? err : count;
1141}
1142
1143static const struct file_operations proc_oom_adjust_operations = {
1144	.read		= oom_adjust_read,
1145	.write		= oom_adjust_write,
1146	.llseek		= generic_file_llseek,
1147};
1148
1149static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
1150					size_t count, loff_t *ppos)
1151{
1152	struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
1153	char buffer[PROC_NUMBUF];
1154	int oom_score_adj = OOM_SCORE_ADJ_MIN;
1155	unsigned long flags;
1156	size_t len;
1157
1158	if (!task)
1159		return -ESRCH;
1160	if (lock_task_sighand(task, &flags)) {
1161		oom_score_adj = task->signal->oom_score_adj;
1162		unlock_task_sighand(task, &flags);
1163	}
1164	put_task_struct(task);
1165	len = snprintf(buffer, sizeof(buffer), "%d\n", oom_score_adj);
1166	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1167}
1168
1169static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
1170					size_t count, loff_t *ppos)
1171{
1172	struct task_struct *task;
1173	char buffer[PROC_NUMBUF];
1174	unsigned long flags;
1175	int oom_score_adj;
1176	int err;
1177
1178	memset(buffer, 0, sizeof(buffer));
1179	if (count > sizeof(buffer) - 1)
1180		count = sizeof(buffer) - 1;
1181	if (copy_from_user(buffer, buf, count)) {
1182		err = -EFAULT;
1183		goto out;
1184	}
1185
1186	err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
1187	if (err)
1188		goto out;
1189	if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1190			oom_score_adj > OOM_SCORE_ADJ_MAX) {
1191		err = -EINVAL;
1192		goto out;
1193	}
1194
1195	task = get_proc_task(file->f_path.dentry->d_inode);
1196	if (!task) {
1197		err = -ESRCH;
1198		goto out;
1199	}
1200
1201	task_lock(task);
1202	if (!task->mm) {
1203		err = -EINVAL;
1204		goto err_task_lock;
1205	}
1206
1207	if (!lock_task_sighand(task, &flags)) {
1208		err = -ESRCH;
1209		goto err_task_lock;
1210	}
1211
1212	if (oom_score_adj < task->signal->oom_score_adj_min &&
1213			!capable(CAP_SYS_RESOURCE)) {
1214		err = -EACCES;
1215		goto err_sighand;
1216	}
1217
1218	if (oom_score_adj != task->signal->oom_score_adj) {
1219		if (oom_score_adj == OOM_SCORE_ADJ_MIN)
1220			atomic_inc(&task->mm->oom_disable_count);
1221		if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MIN)
1222			atomic_dec(&task->mm->oom_disable_count);
1223	}
1224	task->signal->oom_score_adj = oom_score_adj;
1225	if (has_capability_noaudit(current, CAP_SYS_RESOURCE))
1226		task->signal->oom_score_adj_min = oom_score_adj;
1227	/*
1228	 * Scale /proc/pid/oom_adj appropriately ensuring that OOM_DISABLE is
1229	 * always attainable.
1230	 */
1231	if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MIN)
1232		task->signal->oom_adj = OOM_DISABLE;
1233	else
1234		task->signal->oom_adj = (oom_score_adj * OOM_ADJUST_MAX) /
1235							OOM_SCORE_ADJ_MAX;
1236err_sighand:
1237	unlock_task_sighand(task, &flags);
1238err_task_lock:
1239	task_unlock(task);
1240	put_task_struct(task);
1241out:
1242	return err < 0 ? err : count;
1243}
1244
1245static const struct file_operations proc_oom_score_adj_operations = {
1246	.read		= oom_score_adj_read,
1247	.write		= oom_score_adj_write,
1248	.llseek		= default_llseek,
1249};
1250
1251#ifdef CONFIG_AUDITSYSCALL
1252#define TMPBUFLEN 21
1253static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1254				  size_t count, loff_t *ppos)
1255{
1256	struct inode * inode = file->f_path.dentry->d_inode;
1257	struct task_struct *task = get_proc_task(inode);
1258	ssize_t length;
1259	char tmpbuf[TMPBUFLEN];
1260
1261	if (!task)
1262		return -ESRCH;
1263	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1264				audit_get_loginuid(task));
 
1265	put_task_struct(task);
1266	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1267}
1268
1269static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1270				   size_t count, loff_t *ppos)
1271{
1272	struct inode * inode = file->f_path.dentry->d_inode;
1273	char *page, *tmp;
1274	ssize_t length;
1275	uid_t loginuid;
1276
1277	if (!capable(CAP_AUDIT_CONTROL))
1278		return -EPERM;
1279
1280	rcu_read_lock();
1281	if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1282		rcu_read_unlock();
1283		return -EPERM;
1284	}
1285	rcu_read_unlock();
1286
1287	if (count >= PAGE_SIZE)
1288		count = PAGE_SIZE - 1;
1289
1290	if (*ppos != 0) {
1291		/* No partial writes. */
1292		return -EINVAL;
1293	}
1294	page = (char*)__get_free_page(GFP_TEMPORARY);
1295	if (!page)
1296		return -ENOMEM;
1297	length = -EFAULT;
1298	if (copy_from_user(page, buf, count))
1299		goto out_free_page;
1300
1301	page[count] = '\0';
1302	loginuid = simple_strtoul(page, &tmp, 10);
1303	if (tmp == page) {
1304		length = -EINVAL;
1305		goto out_free_page;
1306
1307	}
1308	length = audit_set_loginuid(current, loginuid);
1309	if (likely(length == 0))
1310		length = count;
1311
1312out_free_page:
1313	free_page((unsigned long) page);
1314	return length;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1315}
1316
1317static const struct file_operations proc_loginuid_operations = {
1318	.read		= proc_loginuid_read,
1319	.write		= proc_loginuid_write,
1320	.llseek		= generic_file_llseek,
1321};
1322
1323static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1324				  size_t count, loff_t *ppos)
1325{
1326	struct inode * inode = file->f_path.dentry->d_inode;
1327	struct task_struct *task = get_proc_task(inode);
1328	ssize_t length;
1329	char tmpbuf[TMPBUFLEN];
1330
1331	if (!task)
1332		return -ESRCH;
1333	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1334				audit_get_sessionid(task));
1335	put_task_struct(task);
1336	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1337}
1338
1339static const struct file_operations proc_sessionid_operations = {
1340	.read		= proc_sessionid_read,
1341	.llseek		= generic_file_llseek,
1342};
1343#endif
1344
1345#ifdef CONFIG_FAULT_INJECTION
1346static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1347				      size_t count, loff_t *ppos)
1348{
1349	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
1350	char buffer[PROC_NUMBUF];
1351	size_t len;
1352	int make_it_fail;
1353
1354	if (!task)
1355		return -ESRCH;
1356	make_it_fail = task->make_it_fail;
1357	put_task_struct(task);
1358
1359	len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1360
1361	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1362}
1363
1364static ssize_t proc_fault_inject_write(struct file * file,
1365			const char __user * buf, size_t count, loff_t *ppos)
1366{
1367	struct task_struct *task;
1368	char buffer[PROC_NUMBUF], *end;
1369	int make_it_fail;
 
1370
1371	if (!capable(CAP_SYS_RESOURCE))
1372		return -EPERM;
1373	memset(buffer, 0, sizeof(buffer));
1374	if (count > sizeof(buffer) - 1)
1375		count = sizeof(buffer) - 1;
1376	if (copy_from_user(buffer, buf, count))
1377		return -EFAULT;
1378	make_it_fail = simple_strtol(strstrip(buffer), &end, 0);
1379	if (*end)
 
 
1380		return -EINVAL;
1381	task = get_proc_task(file->f_dentry->d_inode);
 
1382	if (!task)
1383		return -ESRCH;
1384	task->make_it_fail = make_it_fail;
1385	put_task_struct(task);
1386
1387	return count;
1388}
1389
1390static const struct file_operations proc_fault_inject_operations = {
1391	.read		= proc_fault_inject_read,
1392	.write		= proc_fault_inject_write,
1393	.llseek		= generic_file_llseek,
1394};
1395#endif
1396
1397
1398#ifdef CONFIG_SCHED_DEBUG
1399/*
1400 * Print out various scheduling related per-task fields:
1401 */
1402static int sched_show(struct seq_file *m, void *v)
1403{
1404	struct inode *inode = m->private;
1405	struct task_struct *p;
1406
1407	p = get_proc_task(inode);
1408	if (!p)
1409		return -ESRCH;
1410	proc_sched_show_task(p, m);
1411
1412	put_task_struct(p);
1413
1414	return 0;
1415}
1416
1417static ssize_t
1418sched_write(struct file *file, const char __user *buf,
1419	    size_t count, loff_t *offset)
1420{
1421	struct inode *inode = file->f_path.dentry->d_inode;
1422	struct task_struct *p;
1423
1424	p = get_proc_task(inode);
1425	if (!p)
1426		return -ESRCH;
1427	proc_sched_set_task(p);
1428
1429	put_task_struct(p);
1430
1431	return count;
1432}
1433
1434static int sched_open(struct inode *inode, struct file *filp)
1435{
1436	return single_open(filp, sched_show, inode);
1437}
1438
1439static const struct file_operations proc_pid_sched_operations = {
1440	.open		= sched_open,
1441	.read		= seq_read,
1442	.write		= sched_write,
1443	.llseek		= seq_lseek,
1444	.release	= single_release,
1445};
1446
1447#endif
1448
1449#ifdef CONFIG_SCHED_AUTOGROUP
1450/*
1451 * Print out autogroup related information:
1452 */
1453static int sched_autogroup_show(struct seq_file *m, void *v)
1454{
1455	struct inode *inode = m->private;
1456	struct task_struct *p;
1457
1458	p = get_proc_task(inode);
1459	if (!p)
1460		return -ESRCH;
1461	proc_sched_autogroup_show_task(p, m);
1462
1463	put_task_struct(p);
1464
1465	return 0;
1466}
1467
1468static ssize_t
1469sched_autogroup_write(struct file *file, const char __user *buf,
1470	    size_t count, loff_t *offset)
1471{
1472	struct inode *inode = file->f_path.dentry->d_inode;
1473	struct task_struct *p;
1474	char buffer[PROC_NUMBUF];
1475	int nice;
1476	int err;
1477
1478	memset(buffer, 0, sizeof(buffer));
1479	if (count > sizeof(buffer) - 1)
1480		count = sizeof(buffer) - 1;
1481	if (copy_from_user(buffer, buf, count))
1482		return -EFAULT;
1483
1484	err = kstrtoint(strstrip(buffer), 0, &nice);
1485	if (err < 0)
1486		return err;
1487
1488	p = get_proc_task(inode);
1489	if (!p)
1490		return -ESRCH;
1491
1492	err = nice;
1493	err = proc_sched_autogroup_set_nice(p, &err);
1494	if (err)
1495		count = err;
1496
1497	put_task_struct(p);
1498
1499	return count;
1500}
1501
1502static int sched_autogroup_open(struct inode *inode, struct file *filp)
1503{
1504	int ret;
1505
1506	ret = single_open(filp, sched_autogroup_show, NULL);
1507	if (!ret) {
1508		struct seq_file *m = filp->private_data;
1509
1510		m->private = inode;
1511	}
1512	return ret;
1513}
1514
1515static const struct file_operations proc_pid_sched_autogroup_operations = {
1516	.open		= sched_autogroup_open,
1517	.read		= seq_read,
1518	.write		= sched_autogroup_write,
1519	.llseek		= seq_lseek,
1520	.release	= single_release,
1521};
1522
1523#endif /* CONFIG_SCHED_AUTOGROUP */
1524
1525static ssize_t comm_write(struct file *file, const char __user *buf,
1526				size_t count, loff_t *offset)
1527{
1528	struct inode *inode = file->f_path.dentry->d_inode;
1529	struct task_struct *p;
1530	char buffer[TASK_COMM_LEN];
 
1531
1532	memset(buffer, 0, sizeof(buffer));
1533	if (count > sizeof(buffer) - 1)
1534		count = sizeof(buffer) - 1;
1535	if (copy_from_user(buffer, buf, count))
1536		return -EFAULT;
1537
1538	p = get_proc_task(inode);
1539	if (!p)
1540		return -ESRCH;
1541
1542	if (same_thread_group(current, p))
1543		set_task_comm(p, buffer);
1544	else
1545		count = -EINVAL;
1546
1547	put_task_struct(p);
1548
1549	return count;
1550}
1551
1552static int comm_show(struct seq_file *m, void *v)
1553{
1554	struct inode *inode = m->private;
1555	struct task_struct *p;
1556
1557	p = get_proc_task(inode);
1558	if (!p)
1559		return -ESRCH;
1560
1561	task_lock(p);
1562	seq_printf(m, "%s\n", p->comm);
1563	task_unlock(p);
1564
1565	put_task_struct(p);
1566
1567	return 0;
1568}
1569
1570static int comm_open(struct inode *inode, struct file *filp)
1571{
1572	return single_open(filp, comm_show, inode);
1573}
1574
1575static const struct file_operations proc_pid_set_comm_operations = {
1576	.open		= comm_open,
1577	.read		= seq_read,
1578	.write		= comm_write,
1579	.llseek		= seq_lseek,
1580	.release	= single_release,
1581};
1582
1583static int proc_exe_link(struct inode *inode, struct path *exe_path)
1584{
1585	struct task_struct *task;
1586	struct mm_struct *mm;
1587	struct file *exe_file;
1588
1589	task = get_proc_task(inode);
1590	if (!task)
1591		return -ENOENT;
1592	mm = get_task_mm(task);
1593	put_task_struct(task);
1594	if (!mm)
1595		return -ENOENT;
1596	exe_file = get_mm_exe_file(mm);
1597	mmput(mm);
1598	if (exe_file) {
1599		*exe_path = exe_file->f_path;
1600		path_get(&exe_file->f_path);
1601		fput(exe_file);
1602		return 0;
1603	} else
1604		return -ENOENT;
1605}
1606
1607static void *proc_pid_follow_link(struct dentry *dentry, struct nameidata *nd)
 
 
1608{
1609	struct inode *inode = dentry->d_inode;
1610	int error = -EACCES;
1611
1612	/* We don't need a base pointer in the /proc filesystem */
1613	path_put(&nd->path);
1614
1615	/* Are we allowed to snoop on the tasks file descriptors? */
1616	if (!proc_fd_access_allowed(inode))
1617		goto out;
1618
1619	error = PROC_I(inode)->op.proc_get_link(inode, &nd->path);
 
 
 
 
 
1620out:
1621	return ERR_PTR(error);
1622}
1623
1624static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1625{
1626	char *tmp = (char*)__get_free_page(GFP_TEMPORARY);
1627	char *pathname;
1628	int len;
1629
1630	if (!tmp)
1631		return -ENOMEM;
1632
1633	pathname = d_path(path, tmp, PAGE_SIZE);
1634	len = PTR_ERR(pathname);
1635	if (IS_ERR(pathname))
1636		goto out;
1637	len = tmp + PAGE_SIZE - 1 - pathname;
1638
1639	if (len > buflen)
1640		len = buflen;
1641	if (copy_to_user(buffer, pathname, len))
1642		len = -EFAULT;
1643 out:
1644	free_page((unsigned long)tmp);
1645	return len;
1646}
1647
1648static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1649{
1650	int error = -EACCES;
1651	struct inode *inode = dentry->d_inode;
1652	struct path path;
1653
1654	/* Are we allowed to snoop on the tasks file descriptors? */
1655	if (!proc_fd_access_allowed(inode))
1656		goto out;
1657
1658	error = PROC_I(inode)->op.proc_get_link(inode, &path);
1659	if (error)
1660		goto out;
1661
1662	error = do_proc_readlink(&path, buffer, buflen);
1663	path_put(&path);
1664out:
1665	return error;
1666}
1667
1668static const struct inode_operations proc_pid_link_inode_operations = {
1669	.readlink	= proc_pid_readlink,
1670	.follow_link	= proc_pid_follow_link,
1671	.setattr	= proc_setattr,
1672};
1673
1674
1675/* building an inode */
1676
1677static int task_dumpable(struct task_struct *task)
1678{
1679	int dumpable = 0;
1680	struct mm_struct *mm;
1681
1682	task_lock(task);
1683	mm = task->mm;
1684	if (mm)
1685		dumpable = get_dumpable(mm);
1686	task_unlock(task);
1687	if(dumpable == 1)
1688		return 1;
1689	return 0;
1690}
1691
1692struct inode *proc_pid_make_inode(struct super_block * sb, struct task_struct *task)
1693{
1694	struct inode * inode;
1695	struct proc_inode *ei;
1696	const struct cred *cred;
1697
1698	/* We need a new inode */
1699
1700	inode = new_inode(sb);
1701	if (!inode)
1702		goto out;
1703
1704	/* Common stuff */
1705	ei = PROC_I(inode);
 
1706	inode->i_ino = get_next_ino();
1707	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
1708	inode->i_op = &proc_def_inode_operations;
1709
1710	/*
1711	 * grab the reference to task.
1712	 */
1713	ei->pid = get_task_pid(task, PIDTYPE_PID);
1714	if (!ei->pid)
1715		goto out_unlock;
1716
1717	if (task_dumpable(task)) {
1718		rcu_read_lock();
1719		cred = __task_cred(task);
1720		inode->i_uid = cred->euid;
1721		inode->i_gid = cred->egid;
1722		rcu_read_unlock();
1723	}
1724	security_task_to_inode(task, inode);
1725
1726out:
1727	return inode;
1728
1729out_unlock:
1730	iput(inode);
1731	return NULL;
1732}
1733
1734int pid_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
1735{
1736	struct inode *inode = dentry->d_inode;
1737	struct task_struct *task;
1738	const struct cred *cred;
 
1739
1740	generic_fillattr(inode, stat);
1741
1742	rcu_read_lock();
1743	stat->uid = 0;
1744	stat->gid = 0;
1745	task = pid_task(proc_pid(inode), PIDTYPE_PID);
1746	if (task) {
 
 
 
 
 
 
 
 
1747		if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1748		    task_dumpable(task)) {
1749			cred = __task_cred(task);
1750			stat->uid = cred->euid;
1751			stat->gid = cred->egid;
1752		}
1753	}
1754	rcu_read_unlock();
1755	return 0;
1756}
1757
1758/* dentry stuff */
1759
1760/*
1761 *	Exceptional case: normally we are not allowed to unhash a busy
1762 * directory. In this case, however, we can do it - no aliasing problems
1763 * due to the way we treat inodes.
1764 *
1765 * Rewrite the inode's ownerships here because the owning task may have
1766 * performed a setuid(), etc.
1767 *
1768 * Before the /proc/pid/status file was created the only way to read
1769 * the effective uid of a /process was to stat /proc/pid.  Reading
1770 * /proc/pid/status is slow enough that procps and other packages
1771 * kept stating /proc/pid.  To keep the rules in /proc simple I have
1772 * made this apply to all per process world readable and executable
1773 * directories.
1774 */
1775int pid_revalidate(struct dentry *dentry, struct nameidata *nd)
1776{
1777	struct inode *inode;
1778	struct task_struct *task;
1779	const struct cred *cred;
1780
1781	if (nd && nd->flags & LOOKUP_RCU)
1782		return -ECHILD;
1783
1784	inode = dentry->d_inode;
1785	task = get_proc_task(inode);
1786
1787	if (task) {
1788		if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1789		    task_dumpable(task)) {
1790			rcu_read_lock();
1791			cred = __task_cred(task);
1792			inode->i_uid = cred->euid;
1793			inode->i_gid = cred->egid;
1794			rcu_read_unlock();
1795		} else {
1796			inode->i_uid = 0;
1797			inode->i_gid = 0;
1798		}
1799		inode->i_mode &= ~(S_ISUID | S_ISGID);
1800		security_task_to_inode(task, inode);
1801		put_task_struct(task);
1802		return 1;
1803	}
1804	d_drop(dentry);
1805	return 0;
1806}
1807
1808static int pid_delete_dentry(const struct dentry * dentry)
 
 
 
 
 
1809{
1810	/* Is the task we represent dead?
1811	 * If so, then don't put the dentry on the lru list,
1812	 * kill it immediately.
1813	 */
1814	return !proc_pid(dentry->d_inode)->tasks[PIDTYPE_PID].first;
1815}
1816
1817const struct dentry_operations pid_dentry_operations =
1818{
1819	.d_revalidate	= pid_revalidate,
1820	.d_delete	= pid_delete_dentry,
1821};
1822
1823/* Lookups */
1824
1825/*
1826 * Fill a directory entry.
1827 *
1828 * If possible create the dcache entry and derive our inode number and
1829 * file type from dcache entry.
1830 *
1831 * Since all of the proc inode numbers are dynamically generated, the inode
1832 * numbers do not exist until the inode is cache.  This means creating the
1833 * the dcache entry in readdir is necessary to keep the inode numbers
1834 * reported by readdir in sync with the inode numbers reported
1835 * by stat.
1836 */
1837int proc_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
1838	const char *name, int len,
1839	instantiate_t instantiate, struct task_struct *task, const void *ptr)
1840{
1841	struct dentry *child, *dir = filp->f_path.dentry;
 
1842	struct inode *inode;
1843	struct qstr qname;
1844	ino_t ino = 0;
1845	unsigned type = DT_UNKNOWN;
1846
1847	qname.name = name;
1848	qname.len  = len;
1849	qname.hash = full_name_hash(name, len);
1850
1851	child = d_lookup(dir, &qname);
1852	if (!child) {
1853		struct dentry *new;
1854		new = d_alloc(dir, &qname);
1855		if (new) {
1856			child = instantiate(dir->d_inode, new, task, ptr);
1857			if (child)
1858				dput(new);
1859			else
1860				child = new;
1861		}
1862	}
1863	if (!child || IS_ERR(child) || !child->d_inode)
1864		goto end_instantiate;
1865	inode = child->d_inode;
1866	if (inode) {
1867		ino = inode->i_ino;
1868		type = inode->i_mode >> 12;
1869	}
 
 
 
1870	dput(child);
 
 
1871end_instantiate:
1872	if (!ino)
1873		ino = find_inode_number(dir, &qname);
1874	if (!ino)
1875		ino = 1;
1876	return filldir(dirent, name, len, filp->f_pos, ino, type);
1877}
1878
1879static unsigned name_to_int(struct dentry *dentry)
 
 
 
 
 
1880{
1881	const char *name = dentry->d_name.name;
1882	int len = dentry->d_name.len;
1883	unsigned n = 0;
1884
1885	if (len > 1 && *name == '0')
1886		goto out;
1887	while (len-- > 0) {
1888		unsigned c = *name++ - '0';
1889		if (c > 9)
1890			goto out;
1891		if (n >= (~0U-9)/10)
1892			goto out;
1893		n *= 10;
1894		n += c;
1895	}
1896	return n;
1897out:
1898	return ~0U;
1899}
1900
1901#define PROC_FDINFO_MAX 64
1902
1903static int proc_fd_info(struct inode *inode, struct path *path, char *info)
1904{
1905	struct task_struct *task = get_proc_task(inode);
1906	struct files_struct *files = NULL;
1907	struct file *file;
1908	int fd = proc_fd(inode);
 
 
 
1909
1910	if (task) {
1911		files = get_files_struct(task);
1912		put_task_struct(task);
 
 
 
 
 
 
 
 
 
 
 
 
 
1913	}
1914	if (files) {
1915		/*
1916		 * We are not taking a ref to the file structure, so we must
1917		 * hold ->file_lock.
1918		 */
1919		spin_lock(&files->file_lock);
1920		file = fcheck_files(files, fd);
1921		if (file) {
1922			unsigned int f_flags;
1923			struct fdtable *fdt;
1924
1925			fdt = files_fdtable(files);
1926			f_flags = file->f_flags & ~O_CLOEXEC;
1927			if (FD_ISSET(fd, fdt->close_on_exec))
1928				f_flags |= O_CLOEXEC;
1929
1930			if (path) {
1931				*path = file->f_path;
1932				path_get(&file->f_path);
1933			}
1934			if (info)
1935				snprintf(info, PROC_FDINFO_MAX,
1936					 "pos:\t%lli\n"
1937					 "flags:\t0%o\n",
1938					 (long long) file->f_pos,
1939					 f_flags);
1940			spin_unlock(&files->file_lock);
1941			put_files_struct(files);
1942			return 0;
1943		}
1944		spin_unlock(&files->file_lock);
1945		put_files_struct(files);
1946	}
1947	return -ENOENT;
1948}
1949
1950static int proc_fd_link(struct inode *inode, struct path *path)
1951{
1952	return proc_fd_info(inode, path, NULL);
 
 
1953}
1954
1955static int tid_fd_revalidate(struct dentry *dentry, struct nameidata *nd)
 
 
 
 
 
1956{
1957	struct inode *inode;
 
1958	struct task_struct *task;
1959	int fd;
1960	struct files_struct *files;
1961	const struct cred *cred;
1962
1963	if (nd && nd->flags & LOOKUP_RCU)
1964		return -ECHILD;
 
 
1965
1966	inode = dentry->d_inode;
1967	task = get_proc_task(inode);
1968	fd = proc_fd(inode);
 
1969
1970	if (task) {
1971		files = get_files_struct(task);
1972		if (files) {
1973			rcu_read_lock();
1974			if (fcheck_files(files, fd)) {
1975				rcu_read_unlock();
1976				put_files_struct(files);
1977				if (task_dumpable(task)) {
1978					rcu_read_lock();
1979					cred = __task_cred(task);
1980					inode->i_uid = cred->euid;
1981					inode->i_gid = cred->egid;
1982					rcu_read_unlock();
1983				} else {
1984					inode->i_uid = 0;
1985					inode->i_gid = 0;
1986				}
1987				inode->i_mode &= ~(S_ISUID | S_ISGID);
1988				security_task_to_inode(task, inode);
1989				put_task_struct(task);
1990				return 1;
1991			}
1992			rcu_read_unlock();
1993			put_files_struct(files);
1994		}
1995		put_task_struct(task);
1996	}
1997	d_drop(dentry);
1998	return 0;
 
 
 
 
1999}
2000
2001static const struct dentry_operations tid_fd_dentry_operations =
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2002{
2003	.d_revalidate	= tid_fd_revalidate,
2004	.d_delete	= pid_delete_dentry,
 
 
 
 
 
 
 
 
 
 
 
2005};
2006
2007static struct dentry *proc_fd_instantiate(struct inode *dir,
2008	struct dentry *dentry, struct task_struct *task, const void *ptr)
 
2009{
2010	unsigned fd = *(const unsigned *)ptr;
2011	struct file *file;
2012	struct files_struct *files;
2013 	struct inode *inode;
2014 	struct proc_inode *ei;
2015	struct dentry *error = ERR_PTR(-ENOENT);
2016
2017	inode = proc_pid_make_inode(dir->i_sb, task);
 
 
2018	if (!inode)
2019		goto out;
2020	ei = PROC_I(inode);
2021	ei->fd = fd;
2022	files = get_files_struct(task);
2023	if (!files)
2024		goto out_iput;
2025	inode->i_mode = S_IFLNK;
2026
2027	/*
2028	 * We are not taking a ref to the file structure, so we must
2029	 * hold ->file_lock.
2030	 */
2031	spin_lock(&files->file_lock);
2032	file = fcheck_files(files, fd);
2033	if (!file)
2034		goto out_unlock;
2035	if (file->f_mode & FMODE_READ)
2036		inode->i_mode |= S_IRUSR | S_IXUSR;
2037	if (file->f_mode & FMODE_WRITE)
2038		inode->i_mode |= S_IWUSR | S_IXUSR;
2039	spin_unlock(&files->file_lock);
2040	put_files_struct(files);
2041
2042	inode->i_op = &proc_pid_link_inode_operations;
2043	inode->i_size = 64;
2044	ei->op.proc_get_link = proc_fd_link;
2045	d_set_d_op(dentry, &tid_fd_dentry_operations);
2046	d_add(dentry, inode);
2047	/* Close the race of the process dying before we return the dentry */
2048	if (tid_fd_revalidate(dentry, NULL))
2049		error = NULL;
2050
2051 out:
2052	return error;
2053out_unlock:
2054	spin_unlock(&files->file_lock);
2055	put_files_struct(files);
2056out_iput:
2057	iput(inode);
2058	goto out;
2059}
2060
2061static struct dentry *proc_lookupfd_common(struct inode *dir,
2062					   struct dentry *dentry,
2063					   instantiate_t instantiate)
2064{
2065	struct task_struct *task = get_proc_task(dir);
2066	unsigned fd = name_to_int(dentry);
2067	struct dentry *result = ERR_PTR(-ENOENT);
 
 
2068
 
 
2069	if (!task)
2070		goto out_no_task;
2071	if (fd == ~0U)
2072		goto out;
2073
2074	result = instantiate(dir, dentry, task, &fd);
2075out:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2076	put_task_struct(task);
2077out_no_task:
2078	return result;
2079}
2080
2081static int proc_readfd_common(struct file * filp, void * dirent,
2082			      filldir_t filldir, instantiate_t instantiate)
 
 
 
 
 
 
2083{
2084	struct dentry *dentry = filp->f_path.dentry;
2085	struct inode *inode = dentry->d_inode;
2086	struct task_struct *p = get_proc_task(inode);
2087	unsigned int fd, ino;
2088	int retval;
2089	struct files_struct * files;
 
 
2090
2091	retval = -ENOENT;
2092	if (!p)
2093		goto out_no_task;
2094	retval = 0;
2095
2096	fd = filp->f_pos;
2097	switch (fd) {
2098		case 0:
2099			if (filldir(dirent, ".", 1, 0, inode->i_ino, DT_DIR) < 0)
2100				goto out;
2101			filp->f_pos++;
2102		case 1:
2103			ino = parent_ino(dentry);
2104			if (filldir(dirent, "..", 2, 1, ino, DT_DIR) < 0)
2105				goto out;
2106			filp->f_pos++;
2107		default:
2108			files = get_files_struct(p);
2109			if (!files)
2110				goto out;
2111			rcu_read_lock();
2112			for (fd = filp->f_pos-2;
2113			     fd < files_fdtable(files)->max_fds;
2114			     fd++, filp->f_pos++) {
2115				char name[PROC_NUMBUF];
2116				int len;
2117
2118				if (!fcheck_files(files, fd))
2119					continue;
2120				rcu_read_unlock();
2121
2122				len = snprintf(name, sizeof(name), "%d", fd);
2123				if (proc_fill_cache(filp, dirent, filldir,
2124						    name, len, instantiate,
2125						    p, &fd) < 0) {
2126					rcu_read_lock();
2127					break;
2128				}
2129				rcu_read_lock();
2130			}
2131			rcu_read_unlock();
2132			put_files_struct(files);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2133	}
 
 
 
 
 
 
2134out:
2135	put_task_struct(p);
2136out_no_task:
2137	return retval;
2138}
2139
2140static struct dentry *proc_lookupfd(struct inode *dir, struct dentry *dentry,
2141				    struct nameidata *nd)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2142{
2143	return proc_lookupfd_common(dir, dentry, proc_fd_instantiate);
 
 
 
 
 
 
 
 
 
 
2144}
2145
2146static int proc_readfd(struct file *filp, void *dirent, filldir_t filldir)
2147{
2148	return proc_readfd_common(filp, dirent, filldir, proc_fd_instantiate);
 
2149}
2150
2151static ssize_t proc_fdinfo_read(struct file *file, char __user *buf,
2152				      size_t len, loff_t *ppos)
2153{
2154	char tmp[PROC_FDINFO_MAX];
2155	int err = proc_fd_info(file->f_path.dentry->d_inode, NULL, tmp);
2156	if (!err)
2157		err = simple_read_from_buffer(buf, len, ppos, tmp, strlen(tmp));
2158	return err;
 
 
 
 
 
 
2159}
2160
2161static const struct file_operations proc_fdinfo_file_operations = {
2162	.open           = nonseekable_open,
2163	.read		= proc_fdinfo_read,
2164	.llseek		= no_llseek,
2165};
 
 
 
 
 
2166
2167static const struct file_operations proc_fd_operations = {
2168	.read		= generic_read_dir,
2169	.readdir	= proc_readfd,
2170	.llseek		= default_llseek,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2171};
2172
2173/*
2174 * /proc/pid/fd needs a special permission handler so that a process can still
2175 * access /proc/self/fd after it has executed a setuid().
2176 */
2177static int proc_fd_permission(struct inode *inode, int mask)
2178{
2179	int rv = generic_permission(inode, mask);
2180	if (rv == 0)
2181		return 0;
2182	if (task_pid(current) == proc_pid(inode))
2183		rv = 0;
2184	return rv;
 
 
 
 
2185}
2186
2187/*
2188 * proc directories can do almost nothing..
2189 */
2190static const struct inode_operations proc_fd_inode_operations = {
2191	.lookup		= proc_lookupfd,
2192	.permission	= proc_fd_permission,
2193	.setattr	= proc_setattr,
2194};
 
2195
2196static struct dentry *proc_fdinfo_instantiate(struct inode *dir,
2197	struct dentry *dentry, struct task_struct *task, const void *ptr)
2198{
2199	unsigned fd = *(unsigned *)ptr;
2200 	struct inode *inode;
2201 	struct proc_inode *ei;
2202	struct dentry *error = ERR_PTR(-ENOENT);
2203
2204	inode = proc_pid_make_inode(dir->i_sb, task);
2205	if (!inode)
2206		goto out;
2207	ei = PROC_I(inode);
2208	ei->fd = fd;
2209	inode->i_mode = S_IFREG | S_IRUSR;
2210	inode->i_fop = &proc_fdinfo_file_operations;
2211	d_set_d_op(dentry, &tid_fd_dentry_operations);
2212	d_add(dentry, inode);
2213	/* Close the race of the process dying before we return the dentry */
2214	if (tid_fd_revalidate(dentry, NULL))
2215		error = NULL;
2216
2217 out:
2218	return error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2219}
2220
2221static struct dentry *proc_lookupfdinfo(struct inode *dir,
2222					struct dentry *dentry,
2223					struct nameidata *nd)
2224{
2225	return proc_lookupfd_common(dir, dentry, proc_fdinfo_instantiate);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2226}
2227
2228static int proc_readfdinfo(struct file *filp, void *dirent, filldir_t filldir)
2229{
2230	return proc_readfd_common(filp, dirent, filldir,
2231				  proc_fdinfo_instantiate);
2232}
2233
2234static const struct file_operations proc_fdinfo_operations = {
2235	.read		= generic_read_dir,
2236	.readdir	= proc_readfdinfo,
2237	.llseek		= default_llseek,
2238};
2239
2240/*
2241 * proc directories can do almost nothing..
2242 */
2243static const struct inode_operations proc_fdinfo_inode_operations = {
2244	.lookup		= proc_lookupfdinfo,
2245	.setattr	= proc_setattr,
2246};
2247
2248
2249static struct dentry *proc_pident_instantiate(struct inode *dir,
2250	struct dentry *dentry, struct task_struct *task, const void *ptr)
2251{
2252	const struct pid_entry *p = ptr;
2253	struct inode *inode;
2254	struct proc_inode *ei;
2255	struct dentry *error = ERR_PTR(-ENOENT);
2256
2257	inode = proc_pid_make_inode(dir->i_sb, task);
2258	if (!inode)
2259		goto out;
2260
2261	ei = PROC_I(inode);
2262	inode->i_mode = p->mode;
2263	if (S_ISDIR(inode->i_mode))
2264		inode->i_nlink = 2;	/* Use getattr to fix if necessary */
2265	if (p->iop)
2266		inode->i_op = p->iop;
2267	if (p->fop)
2268		inode->i_fop = p->fop;
2269	ei->op = p->op;
2270	d_set_d_op(dentry, &pid_dentry_operations);
2271	d_add(dentry, inode);
2272	/* Close the race of the process dying before we return the dentry */
2273	if (pid_revalidate(dentry, NULL))
2274		error = NULL;
2275out:
2276	return error;
2277}
2278
2279static struct dentry *proc_pident_lookup(struct inode *dir, 
2280					 struct dentry *dentry,
2281					 const struct pid_entry *ents,
2282					 unsigned int nents)
2283{
2284	struct dentry *error;
2285	struct task_struct *task = get_proc_task(dir);
2286	const struct pid_entry *p, *last;
2287
2288	error = ERR_PTR(-ENOENT);
2289
2290	if (!task)
2291		goto out_no_task;
2292
2293	/*
2294	 * Yes, it does not scale. And it should not. Don't add
2295	 * new entries into /proc/<tgid>/ without very good reasons.
2296	 */
2297	last = &ents[nents - 1];
2298	for (p = ents; p <= last; p++) {
2299		if (p->len != dentry->d_name.len)
2300			continue;
2301		if (!memcmp(dentry->d_name.name, p->name, p->len))
2302			break;
2303	}
2304	if (p > last)
2305		goto out;
2306
2307	error = proc_pident_instantiate(dir, dentry, task, p);
2308out:
2309	put_task_struct(task);
2310out_no_task:
2311	return error;
2312}
2313
2314static int proc_pident_fill_cache(struct file *filp, void *dirent,
2315	filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
2316{
2317	return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
2318				proc_pident_instantiate, task, p);
2319}
2320
2321static int proc_pident_readdir(struct file *filp,
2322		void *dirent, filldir_t filldir,
2323		const struct pid_entry *ents, unsigned int nents)
2324{
2325	int i;
2326	struct dentry *dentry = filp->f_path.dentry;
2327	struct inode *inode = dentry->d_inode;
2328	struct task_struct *task = get_proc_task(inode);
2329	const struct pid_entry *p, *last;
2330	ino_t ino;
2331	int ret;
2332
2333	ret = -ENOENT;
2334	if (!task)
2335		goto out_no_task;
2336
2337	ret = 0;
2338	i = filp->f_pos;
2339	switch (i) {
2340	case 0:
2341		ino = inode->i_ino;
2342		if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0)
2343			goto out;
2344		i++;
2345		filp->f_pos++;
2346		/* fall through */
2347	case 1:
2348		ino = parent_ino(dentry);
2349		if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0)
2350			goto out;
2351		i++;
2352		filp->f_pos++;
2353		/* fall through */
2354	default:
2355		i -= 2;
2356		if (i >= nents) {
2357			ret = 1;
2358			goto out;
2359		}
2360		p = ents + i;
2361		last = &ents[nents - 1];
2362		while (p <= last) {
2363			if (proc_pident_fill_cache(filp, dirent, filldir, task, p) < 0)
2364				goto out;
2365			filp->f_pos++;
2366			p++;
2367		}
2368	}
2369
2370	ret = 1;
 
 
 
 
 
2371out:
2372	put_task_struct(task);
2373out_no_task:
2374	return ret;
2375}
2376
2377#ifdef CONFIG_SECURITY
2378static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2379				  size_t count, loff_t *ppos)
2380{
2381	struct inode * inode = file->f_path.dentry->d_inode;
2382	char *p = NULL;
2383	ssize_t length;
2384	struct task_struct *task = get_proc_task(inode);
2385
2386	if (!task)
2387		return -ESRCH;
2388
2389	length = security_getprocattr(task,
2390				      (char*)file->f_path.dentry->d_name.name,
2391				      &p);
2392	put_task_struct(task);
2393	if (length > 0)
2394		length = simple_read_from_buffer(buf, count, ppos, p, length);
2395	kfree(p);
2396	return length;
2397}
2398
2399static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2400				   size_t count, loff_t *ppos)
2401{
2402	struct inode * inode = file->f_path.dentry->d_inode;
2403	char *page;
2404	ssize_t length;
2405	struct task_struct *task = get_proc_task(inode);
2406
2407	length = -ESRCH;
2408	if (!task)
2409		goto out_no_task;
2410	if (count > PAGE_SIZE)
2411		count = PAGE_SIZE;
2412
2413	/* No partial writes. */
2414	length = -EINVAL;
2415	if (*ppos != 0)
2416		goto out;
2417
2418	length = -ENOMEM;
2419	page = (char*)__get_free_page(GFP_TEMPORARY);
2420	if (!page)
2421		goto out;
2422
2423	length = -EFAULT;
2424	if (copy_from_user(page, buf, count))
2425		goto out_free;
2426
2427	/* Guard against adverse ptrace interaction */
2428	length = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
2429	if (length < 0)
2430		goto out_free;
2431
2432	length = security_setprocattr(task,
2433				      (char*)file->f_path.dentry->d_name.name,
2434				      (void*)page, count);
2435	mutex_unlock(&task->signal->cred_guard_mutex);
2436out_free:
2437	free_page((unsigned long) page);
2438out:
2439	put_task_struct(task);
2440out_no_task:
2441	return length;
2442}
2443
2444static const struct file_operations proc_pid_attr_operations = {
2445	.read		= proc_pid_attr_read,
2446	.write		= proc_pid_attr_write,
2447	.llseek		= generic_file_llseek,
2448};
2449
2450static const struct pid_entry attr_dir_stuff[] = {
2451	REG("current",    S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2452	REG("prev",       S_IRUGO,	   proc_pid_attr_operations),
2453	REG("exec",       S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2454	REG("fscreate",   S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2455	REG("keycreate",  S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2456	REG("sockcreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2457};
2458
2459static int proc_attr_dir_readdir(struct file * filp,
2460			     void * dirent, filldir_t filldir)
2461{
2462	return proc_pident_readdir(filp,dirent,filldir,
2463				   attr_dir_stuff,ARRAY_SIZE(attr_dir_stuff));
2464}
2465
2466static const struct file_operations proc_attr_dir_operations = {
2467	.read		= generic_read_dir,
2468	.readdir	= proc_attr_dir_readdir,
2469	.llseek		= default_llseek,
2470};
2471
2472static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2473				struct dentry *dentry, struct nameidata *nd)
2474{
2475	return proc_pident_lookup(dir, dentry,
2476				  attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2477}
2478
2479static const struct inode_operations proc_attr_dir_inode_operations = {
2480	.lookup		= proc_attr_dir_lookup,
2481	.getattr	= pid_getattr,
2482	.setattr	= proc_setattr,
2483};
2484
2485#endif
2486
2487#ifdef CONFIG_ELF_CORE
2488static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2489					 size_t count, loff_t *ppos)
2490{
2491	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
2492	struct mm_struct *mm;
2493	char buffer[PROC_NUMBUF];
2494	size_t len;
2495	int ret;
2496
2497	if (!task)
2498		return -ESRCH;
2499
2500	ret = 0;
2501	mm = get_task_mm(task);
2502	if (mm) {
2503		len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2504			       ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2505				MMF_DUMP_FILTER_SHIFT));
2506		mmput(mm);
2507		ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2508	}
2509
2510	put_task_struct(task);
2511
2512	return ret;
2513}
2514
2515static ssize_t proc_coredump_filter_write(struct file *file,
2516					  const char __user *buf,
2517					  size_t count,
2518					  loff_t *ppos)
2519{
2520	struct task_struct *task;
2521	struct mm_struct *mm;
2522	char buffer[PROC_NUMBUF], *end;
2523	unsigned int val;
2524	int ret;
2525	int i;
2526	unsigned long mask;
2527
2528	ret = -EFAULT;
2529	memset(buffer, 0, sizeof(buffer));
2530	if (count > sizeof(buffer) - 1)
2531		count = sizeof(buffer) - 1;
2532	if (copy_from_user(buffer, buf, count))
2533		goto out_no_task;
2534
2535	ret = -EINVAL;
2536	val = (unsigned int)simple_strtoul(buffer, &end, 0);
2537	if (*end == '\n')
2538		end++;
2539	if (end - buffer == 0)
2540		goto out_no_task;
2541
2542	ret = -ESRCH;
2543	task = get_proc_task(file->f_dentry->d_inode);
2544	if (!task)
2545		goto out_no_task;
2546
2547	ret = end - buffer;
2548	mm = get_task_mm(task);
2549	if (!mm)
2550		goto out_no_mm;
 
2551
2552	for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2553		if (val & mask)
2554			set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2555		else
2556			clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2557	}
2558
2559	mmput(mm);
2560 out_no_mm:
2561	put_task_struct(task);
2562 out_no_task:
2563	return ret;
 
 
2564}
2565
2566static const struct file_operations proc_coredump_filter_operations = {
2567	.read		= proc_coredump_filter_read,
2568	.write		= proc_coredump_filter_write,
2569	.llseek		= generic_file_llseek,
2570};
2571#endif
2572
2573/*
2574 * /proc/self:
2575 */
2576static int proc_self_readlink(struct dentry *dentry, char __user *buffer,
2577			      int buflen)
2578{
2579	struct pid_namespace *ns = dentry->d_sb->s_fs_info;
2580	pid_t tgid = task_tgid_nr_ns(current, ns);
2581	char tmp[PROC_NUMBUF];
2582	if (!tgid)
2583		return -ENOENT;
2584	sprintf(tmp, "%d", tgid);
2585	return vfs_readlink(dentry,buffer,buflen,tmp);
2586}
2587
2588static void *proc_self_follow_link(struct dentry *dentry, struct nameidata *nd)
2589{
2590	struct pid_namespace *ns = dentry->d_sb->s_fs_info;
2591	pid_t tgid = task_tgid_nr_ns(current, ns);
2592	char *name = ERR_PTR(-ENOENT);
2593	if (tgid) {
2594		name = __getname();
2595		if (!name)
2596			name = ERR_PTR(-ENOMEM);
2597		else
2598			sprintf(name, "%d", tgid);
2599	}
2600	nd_set_link(nd, name);
2601	return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2602}
2603
2604static void proc_self_put_link(struct dentry *dentry, struct nameidata *nd,
2605				void *cookie)
2606{
2607	char *s = nd_get_link(nd);
2608	if (!IS_ERR(s))
2609		__putname(s);
2610}
2611
2612static const struct inode_operations proc_self_inode_operations = {
2613	.readlink	= proc_self_readlink,
2614	.follow_link	= proc_self_follow_link,
2615	.put_link	= proc_self_put_link,
2616};
2617
2618/*
2619 * proc base
2620 *
2621 * These are the directory entries in the root directory of /proc
2622 * that properly belong to the /proc filesystem, as they describe
2623 * describe something that is process related.
2624 */
2625static const struct pid_entry proc_base_stuff[] = {
2626	NOD("self", S_IFLNK|S_IRWXUGO,
2627		&proc_self_inode_operations, NULL, {}),
2628};
2629
2630static struct dentry *proc_base_instantiate(struct inode *dir,
2631	struct dentry *dentry, struct task_struct *task, const void *ptr)
 
2632{
2633	const struct pid_entry *p = ptr;
2634	struct inode *inode;
2635	struct proc_inode *ei;
2636	struct dentry *error;
2637
2638	/* Allocate the inode */
2639	error = ERR_PTR(-ENOMEM);
2640	inode = new_inode(dir->i_sb);
2641	if (!inode)
2642		goto out;
 
 
 
 
2643
2644	/* Initialize the inode */
2645	ei = PROC_I(inode);
2646	inode->i_ino = get_next_ino();
2647	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
2648
2649	/*
2650	 * grab the reference to the task.
2651	 */
2652	ei->pid = get_task_pid(task, PIDTYPE_PID);
2653	if (!ei->pid)
2654		goto out_iput;
2655
2656	inode->i_mode = p->mode;
2657	if (S_ISDIR(inode->i_mode))
2658		inode->i_nlink = 2;
2659	if (S_ISLNK(inode->i_mode))
2660		inode->i_size = 64;
2661	if (p->iop)
2662		inode->i_op = p->iop;
2663	if (p->fop)
2664		inode->i_fop = p->fop;
2665	ei->op = p->op;
2666	d_add(dentry, inode);
2667	error = NULL;
2668out:
2669	return error;
2670out_iput:
2671	iput(inode);
2672	goto out;
2673}
2674
2675static struct dentry *proc_base_lookup(struct inode *dir, struct dentry *dentry)
2676{
2677	struct dentry *error;
2678	struct task_struct *task = get_proc_task(dir);
2679	const struct pid_entry *p, *last;
2680
2681	error = ERR_PTR(-ENOENT);
2682
2683	if (!task)
2684		goto out_no_task;
2685
2686	/* Lookup the directory entry */
2687	last = &proc_base_stuff[ARRAY_SIZE(proc_base_stuff) - 1];
2688	for (p = proc_base_stuff; p <= last; p++) {
2689		if (p->len != dentry->d_name.len)
2690			continue;
2691		if (!memcmp(dentry->d_name.name, p->name, p->len))
2692			break;
2693	}
2694	if (p > last)
2695		goto out;
2696
2697	error = proc_base_instantiate(dir, dentry, task, p);
2698
2699out:
2700	put_task_struct(task);
2701out_no_task:
2702	return error;
2703}
2704
2705static int proc_base_fill_cache(struct file *filp, void *dirent,
2706	filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
2707{
2708	return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
2709				proc_base_instantiate, task, p);
2710}
2711
2712#ifdef CONFIG_TASK_IO_ACCOUNTING
2713static int do_io_accounting(struct task_struct *task, char *buffer, int whole)
2714{
2715	struct task_io_accounting acct = task->ioac;
2716	unsigned long flags;
2717	int result;
2718
2719	result = mutex_lock_killable(&task->signal->cred_guard_mutex);
2720	if (result)
2721		return result;
 
 
 
 
2722
2723	if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
2724		result = -EACCES;
2725		goto out_unlock;
2726	}
 
 
 
2727
2728	if (whole && lock_task_sighand(task, &flags)) {
2729		struct task_struct *t = task;
 
 
 
 
 
2730
2731		task_io_accounting_add(&acct, &task->signal->ioac);
2732		while_each_thread(task, t)
2733			task_io_accounting_add(&acct, &t->ioac);
 
 
2734
2735		unlock_task_sighand(task, &flags);
 
 
 
 
 
 
2736	}
2737	result = sprintf(buffer,
2738			"rchar: %llu\n"
2739			"wchar: %llu\n"
2740			"syscr: %llu\n"
2741			"syscw: %llu\n"
2742			"read_bytes: %llu\n"
2743			"write_bytes: %llu\n"
2744			"cancelled_write_bytes: %llu\n",
2745			(unsigned long long)acct.rchar,
2746			(unsigned long long)acct.wchar,
2747			(unsigned long long)acct.syscr,
2748			(unsigned long long)acct.syscw,
2749			(unsigned long long)acct.read_bytes,
2750			(unsigned long long)acct.write_bytes,
2751			(unsigned long long)acct.cancelled_write_bytes);
2752out_unlock:
2753	mutex_unlock(&task->signal->cred_guard_mutex);
2754	return result;
2755}
2756
2757static int proc_tid_io_accounting(struct task_struct *task, char *buffer)
2758{
2759	return do_io_accounting(task, buffer, 0);
 
 
 
 
 
 
 
 
 
 
 
 
2760}
2761
2762static int proc_tgid_io_accounting(struct task_struct *task, char *buffer)
2763{
2764	return do_io_accounting(task, buffer, 1);
 
 
 
 
2765}
2766#endif /* CONFIG_TASK_IO_ACCOUNTING */
 
 
 
 
 
 
 
 
2767
2768static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
2769				struct pid *pid, struct task_struct *task)
2770{
2771	int err = lock_trace(task);
2772	if (!err) {
2773		seq_printf(m, "%08x\n", task->personality);
2774		unlock_trace(task);
2775	}
2776	return err;
2777}
2778
2779/*
2780 * Thread groups
2781 */
2782static const struct file_operations proc_task_operations;
2783static const struct inode_operations proc_task_inode_operations;
2784
2785static const struct pid_entry tgid_base_stuff[] = {
2786	DIR("task",       S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
2787	DIR("fd",         S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
 
2788	DIR("fdinfo",     S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
2789	DIR("ns",	  S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
2790#ifdef CONFIG_NET
2791	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
2792#endif
2793	REG("environ",    S_IRUSR, proc_environ_operations),
2794	INF("auxv",       S_IRUSR, proc_pid_auxv),
2795	ONE("status",     S_IRUGO, proc_pid_status),
2796	ONE("personality", S_IRUGO, proc_pid_personality),
2797	INF("limits",	  S_IRUGO, proc_pid_limits),
2798#ifdef CONFIG_SCHED_DEBUG
2799	REG("sched",      S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2800#endif
2801#ifdef CONFIG_SCHED_AUTOGROUP
2802	REG("autogroup",  S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
2803#endif
2804	REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
2805#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2806	INF("syscall",    S_IRUGO, proc_pid_syscall),
2807#endif
2808	INF("cmdline",    S_IRUGO, proc_pid_cmdline),
2809	ONE("stat",       S_IRUGO, proc_tgid_stat),
2810	ONE("statm",      S_IRUGO, proc_pid_statm),
2811	REG("maps",       S_IRUGO, proc_maps_operations),
2812#ifdef CONFIG_NUMA
2813	REG("numa_maps",  S_IRUGO, proc_numa_maps_operations),
2814#endif
2815	REG("mem",        S_IRUSR|S_IWUSR, proc_mem_operations),
2816	LNK("cwd",        proc_cwd_link),
2817	LNK("root",       proc_root_link),
2818	LNK("exe",        proc_exe_link),
2819	REG("mounts",     S_IRUGO, proc_mounts_operations),
2820	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
2821	REG("mountstats", S_IRUSR, proc_mountstats_operations),
2822#ifdef CONFIG_PROC_PAGE_MONITOR
2823	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
2824	REG("smaps",      S_IRUGO, proc_smaps_operations),
2825	REG("pagemap",    S_IRUGO, proc_pagemap_operations),
2826#endif
2827#ifdef CONFIG_SECURITY
2828	DIR("attr",       S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
2829#endif
2830#ifdef CONFIG_KALLSYMS
2831	INF("wchan",      S_IRUGO, proc_pid_wchan),
2832#endif
2833#ifdef CONFIG_STACKTRACE
2834	ONE("stack",      S_IRUGO, proc_pid_stack),
2835#endif
2836#ifdef CONFIG_SCHEDSTATS
2837	INF("schedstat",  S_IRUGO, proc_pid_schedstat),
2838#endif
2839#ifdef CONFIG_LATENCYTOP
2840	REG("latency",  S_IRUGO, proc_lstats_operations),
2841#endif
2842#ifdef CONFIG_PROC_PID_CPUSET
2843	REG("cpuset",     S_IRUGO, proc_cpuset_operations),
2844#endif
2845#ifdef CONFIG_CGROUPS
2846	REG("cgroup",  S_IRUGO, proc_cgroup_operations),
2847#endif
2848	INF("oom_score",  S_IRUGO, proc_oom_score),
2849	REG("oom_adj",    S_IRUGO|S_IWUSR, proc_oom_adjust_operations),
2850	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
2851#ifdef CONFIG_AUDITSYSCALL
2852	REG("loginuid",   S_IWUSR|S_IRUGO, proc_loginuid_operations),
2853	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
2854#endif
2855#ifdef CONFIG_FAULT_INJECTION
2856	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
2857#endif
2858#ifdef CONFIG_ELF_CORE
2859	REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
2860#endif
2861#ifdef CONFIG_TASK_IO_ACCOUNTING
2862	INF("io",	S_IRUSR, proc_tgid_io_accounting),
2863#endif
2864#ifdef CONFIG_HARDWALL
2865	INF("hardwall",   S_IRUGO, proc_pid_hardwall),
 
 
 
 
 
 
2866#endif
 
 
 
 
2867};
2868
2869static int proc_tgid_base_readdir(struct file * filp,
2870			     void * dirent, filldir_t filldir)
2871{
2872	return proc_pident_readdir(filp,dirent,filldir,
2873				   tgid_base_stuff,ARRAY_SIZE(tgid_base_stuff));
2874}
2875
2876static const struct file_operations proc_tgid_base_operations = {
2877	.read		= generic_read_dir,
2878	.readdir	= proc_tgid_base_readdir,
2879	.llseek		= default_llseek,
2880};
2881
2882static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){
 
2883	return proc_pident_lookup(dir, dentry,
2884				  tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2885}
2886
2887static const struct inode_operations proc_tgid_base_inode_operations = {
2888	.lookup		= proc_tgid_base_lookup,
2889	.getattr	= pid_getattr,
2890	.setattr	= proc_setattr,
 
2891};
2892
2893static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
2894{
2895	struct dentry *dentry, *leader, *dir;
2896	char buf[PROC_NUMBUF];
2897	struct qstr name;
2898
2899	name.name = buf;
2900	name.len = snprintf(buf, sizeof(buf), "%d", pid);
 
2901	dentry = d_hash_and_lookup(mnt->mnt_root, &name);
2902	if (dentry) {
2903		shrink_dcache_parent(dentry);
2904		d_drop(dentry);
2905		dput(dentry);
2906	}
2907
 
 
 
2908	name.name = buf;
2909	name.len = snprintf(buf, sizeof(buf), "%d", tgid);
2910	leader = d_hash_and_lookup(mnt->mnt_root, &name);
2911	if (!leader)
2912		goto out;
2913
2914	name.name = "task";
2915	name.len = strlen(name.name);
2916	dir = d_hash_and_lookup(leader, &name);
2917	if (!dir)
2918		goto out_put_leader;
2919
2920	name.name = buf;
2921	name.len = snprintf(buf, sizeof(buf), "%d", pid);
2922	dentry = d_hash_and_lookup(dir, &name);
2923	if (dentry) {
2924		shrink_dcache_parent(dentry);
2925		d_drop(dentry);
2926		dput(dentry);
2927	}
2928
2929	dput(dir);
2930out_put_leader:
2931	dput(leader);
2932out:
2933	return;
2934}
2935
2936/**
2937 * proc_flush_task -  Remove dcache entries for @task from the /proc dcache.
2938 * @task: task that should be flushed.
2939 *
2940 * When flushing dentries from proc, one needs to flush them from global
2941 * proc (proc_mnt) and from all the namespaces' procs this task was seen
2942 * in. This call is supposed to do all of this job.
2943 *
2944 * Looks in the dcache for
2945 * /proc/@pid
2946 * /proc/@tgid/task/@pid
2947 * if either directory is present flushes it and all of it'ts children
2948 * from the dcache.
2949 *
2950 * It is safe and reasonable to cache /proc entries for a task until
2951 * that task exits.  After that they just clog up the dcache with
2952 * useless entries, possibly causing useful dcache entries to be
2953 * flushed instead.  This routine is proved to flush those useless
2954 * dcache entries at process exit time.
2955 *
2956 * NOTE: This routine is just an optimization so it does not guarantee
2957 *       that no dcache entries will exist at process exit time it
2958 *       just makes it very unlikely that any will persist.
2959 */
2960
2961void proc_flush_task(struct task_struct *task)
2962{
2963	int i;
2964	struct pid *pid, *tgid;
2965	struct upid *upid;
2966
2967	pid = task_pid(task);
2968	tgid = task_tgid(task);
2969
2970	for (i = 0; i <= pid->level; i++) {
2971		upid = &pid->numbers[i];
2972		proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
2973					tgid->numbers[i].nr);
2974	}
2975
2976	upid = &pid->numbers[pid->level];
2977	if (upid->nr == 1)
2978		pid_ns_release_proc(upid->ns);
2979}
2980
2981static struct dentry *proc_pid_instantiate(struct inode *dir,
2982					   struct dentry * dentry,
2983					   struct task_struct *task, const void *ptr)
2984{
2985	struct dentry *error = ERR_PTR(-ENOENT);
2986	struct inode *inode;
2987
2988	inode = proc_pid_make_inode(dir->i_sb, task);
2989	if (!inode)
2990		goto out;
2991
2992	inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
2993	inode->i_op = &proc_tgid_base_inode_operations;
2994	inode->i_fop = &proc_tgid_base_operations;
2995	inode->i_flags|=S_IMMUTABLE;
2996
2997	inode->i_nlink = 2 + pid_entry_count_dirs(tgid_base_stuff,
2998		ARRAY_SIZE(tgid_base_stuff));
2999
3000	d_set_d_op(dentry, &pid_dentry_operations);
3001
3002	d_add(dentry, inode);
3003	/* Close the race of the process dying before we return the dentry */
3004	if (pid_revalidate(dentry, NULL))
3005		error = NULL;
3006out:
3007	return error;
3008}
3009
3010struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
3011{
3012	struct dentry *result;
3013	struct task_struct *task;
3014	unsigned tgid;
3015	struct pid_namespace *ns;
3016
3017	result = proc_base_lookup(dir, dentry);
3018	if (!IS_ERR(result) || PTR_ERR(result) != -ENOENT)
3019		goto out;
3020
3021	tgid = name_to_int(dentry);
3022	if (tgid == ~0U)
3023		goto out;
3024
3025	ns = dentry->d_sb->s_fs_info;
3026	rcu_read_lock();
3027	task = find_task_by_pid_ns(tgid, ns);
3028	if (task)
3029		get_task_struct(task);
3030	rcu_read_unlock();
3031	if (!task)
3032		goto out;
3033
3034	result = proc_pid_instantiate(dir, dentry, task, NULL);
3035	put_task_struct(task);
3036out:
3037	return result;
3038}
3039
3040/*
3041 * Find the first task with tgid >= tgid
3042 *
3043 */
3044struct tgid_iter {
3045	unsigned int tgid;
3046	struct task_struct *task;
3047};
3048static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
3049{
3050	struct pid *pid;
3051
3052	if (iter.task)
3053		put_task_struct(iter.task);
3054	rcu_read_lock();
3055retry:
3056	iter.task = NULL;
3057	pid = find_ge_pid(iter.tgid, ns);
3058	if (pid) {
3059		iter.tgid = pid_nr_ns(pid, ns);
3060		iter.task = pid_task(pid, PIDTYPE_PID);
3061		/* What we to know is if the pid we have find is the
3062		 * pid of a thread_group_leader.  Testing for task
3063		 * being a thread_group_leader is the obvious thing
3064		 * todo but there is a window when it fails, due to
3065		 * the pid transfer logic in de_thread.
3066		 *
3067		 * So we perform the straight forward test of seeing
3068		 * if the pid we have found is the pid of a thread
3069		 * group leader, and don't worry if the task we have
3070		 * found doesn't happen to be a thread group leader.
3071		 * As we don't care in the case of readdir.
3072		 */
3073		if (!iter.task || !has_group_leader_pid(iter.task)) {
3074			iter.tgid += 1;
3075			goto retry;
3076		}
3077		get_task_struct(iter.task);
3078	}
3079	rcu_read_unlock();
3080	return iter;
3081}
3082
3083#define TGID_OFFSET (FIRST_PROCESS_ENTRY + ARRAY_SIZE(proc_base_stuff))
3084
3085static int proc_pid_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
3086	struct tgid_iter iter)
3087{
3088	char name[PROC_NUMBUF];
3089	int len = snprintf(name, sizeof(name), "%d", iter.tgid);
3090	return proc_fill_cache(filp, dirent, filldir, name, len,
3091				proc_pid_instantiate, iter.task, NULL);
3092}
3093
3094/* for the /proc/ directory itself, after non-process stuff has been done */
3095int proc_pid_readdir(struct file * filp, void * dirent, filldir_t filldir)
3096{
3097	unsigned int nr;
3098	struct task_struct *reaper;
3099	struct tgid_iter iter;
3100	struct pid_namespace *ns;
 
3101
3102	if (filp->f_pos >= PID_MAX_LIMIT + TGID_OFFSET)
3103		goto out_no_task;
3104	nr = filp->f_pos - FIRST_PROCESS_ENTRY;
3105
3106	reaper = get_proc_task(filp->f_path.dentry->d_inode);
3107	if (!reaper)
3108		goto out_no_task;
3109
3110	for (; nr < ARRAY_SIZE(proc_base_stuff); filp->f_pos++, nr++) {
3111		const struct pid_entry *p = &proc_base_stuff[nr];
3112		if (proc_base_fill_cache(filp, dirent, filldir, reaper, p) < 0)
3113			goto out;
 
3114	}
3115
3116	ns = filp->f_dentry->d_sb->s_fs_info;
 
 
 
 
 
3117	iter.task = NULL;
3118	iter.tgid = filp->f_pos - TGID_OFFSET;
3119	for (iter = next_tgid(ns, iter);
3120	     iter.task;
3121	     iter.tgid += 1, iter = next_tgid(ns, iter)) {
3122		filp->f_pos = iter.tgid + TGID_OFFSET;
3123		if (proc_pid_fill_cache(filp, dirent, filldir, iter) < 0) {
 
 
 
 
 
 
 
 
 
3124			put_task_struct(iter.task);
3125			goto out;
3126		}
3127	}
3128	filp->f_pos = PID_MAX_LIMIT + TGID_OFFSET;
3129out:
3130	put_task_struct(reaper);
3131out_no_task:
3132	return 0;
3133}
3134
3135/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3136 * Tasks
3137 */
3138static const struct pid_entry tid_base_stuff[] = {
3139	DIR("fd",        S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3140	DIR("fdinfo",    S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3141	DIR("ns",	 S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
 
 
 
3142	REG("environ",   S_IRUSR, proc_environ_operations),
3143	INF("auxv",      S_IRUSR, proc_pid_auxv),
3144	ONE("status",    S_IRUGO, proc_pid_status),
3145	ONE("personality", S_IRUGO, proc_pid_personality),
3146	INF("limits",	 S_IRUGO, proc_pid_limits),
3147#ifdef CONFIG_SCHED_DEBUG
3148	REG("sched",     S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3149#endif
3150	REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
 
 
3151#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3152	INF("syscall",   S_IRUGO, proc_pid_syscall),
3153#endif
3154	INF("cmdline",   S_IRUGO, proc_pid_cmdline),
3155	ONE("stat",      S_IRUGO, proc_tid_stat),
3156	ONE("statm",     S_IRUGO, proc_pid_statm),
3157	REG("maps",      S_IRUGO, proc_maps_operations),
 
 
 
3158#ifdef CONFIG_NUMA
3159	REG("numa_maps", S_IRUGO, proc_numa_maps_operations),
3160#endif
3161	REG("mem",       S_IRUSR|S_IWUSR, proc_mem_operations),
3162	LNK("cwd",       proc_cwd_link),
3163	LNK("root",      proc_root_link),
3164	LNK("exe",       proc_exe_link),
3165	REG("mounts",    S_IRUGO, proc_mounts_operations),
3166	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
3167#ifdef CONFIG_PROC_PAGE_MONITOR
3168	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3169	REG("smaps",     S_IRUGO, proc_smaps_operations),
3170	REG("pagemap",    S_IRUGO, proc_pagemap_operations),
3171#endif
3172#ifdef CONFIG_SECURITY
3173	DIR("attr",      S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3174#endif
3175#ifdef CONFIG_KALLSYMS
3176	INF("wchan",     S_IRUGO, proc_pid_wchan),
3177#endif
3178#ifdef CONFIG_STACKTRACE
3179	ONE("stack",      S_IRUGO, proc_pid_stack),
3180#endif
3181#ifdef CONFIG_SCHEDSTATS
3182	INF("schedstat", S_IRUGO, proc_pid_schedstat),
3183#endif
3184#ifdef CONFIG_LATENCYTOP
3185	REG("latency",  S_IRUGO, proc_lstats_operations),
3186#endif
3187#ifdef CONFIG_PROC_PID_CPUSET
3188	REG("cpuset",    S_IRUGO, proc_cpuset_operations),
3189#endif
3190#ifdef CONFIG_CGROUPS
3191	REG("cgroup",  S_IRUGO, proc_cgroup_operations),
3192#endif
3193	INF("oom_score", S_IRUGO, proc_oom_score),
3194	REG("oom_adj",   S_IRUGO|S_IWUSR, proc_oom_adjust_operations),
3195	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3196#ifdef CONFIG_AUDITSYSCALL
3197	REG("loginuid",  S_IWUSR|S_IRUGO, proc_loginuid_operations),
3198	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
3199#endif
3200#ifdef CONFIG_FAULT_INJECTION
3201	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3202#endif
3203#ifdef CONFIG_TASK_IO_ACCOUNTING
3204	INF("io",	S_IRUSR, proc_tid_io_accounting),
3205#endif
3206#ifdef CONFIG_HARDWALL
3207	INF("hardwall",   S_IRUGO, proc_pid_hardwall),
 
 
 
 
 
 
3208#endif
3209};
3210
3211static int proc_tid_base_readdir(struct file * filp,
3212			     void * dirent, filldir_t filldir)
3213{
3214	return proc_pident_readdir(filp,dirent,filldir,
3215				   tid_base_stuff,ARRAY_SIZE(tid_base_stuff));
3216}
3217
3218static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){
 
3219	return proc_pident_lookup(dir, dentry,
3220				  tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3221}
3222
3223static const struct file_operations proc_tid_base_operations = {
3224	.read		= generic_read_dir,
3225	.readdir	= proc_tid_base_readdir,
3226	.llseek		= default_llseek,
3227};
3228
3229static const struct inode_operations proc_tid_base_inode_operations = {
3230	.lookup		= proc_tid_base_lookup,
3231	.getattr	= pid_getattr,
3232	.setattr	= proc_setattr,
3233};
3234
3235static struct dentry *proc_task_instantiate(struct inode *dir,
3236	struct dentry *dentry, struct task_struct *task, const void *ptr)
3237{
3238	struct dentry *error = ERR_PTR(-ENOENT);
3239	struct inode *inode;
3240	inode = proc_pid_make_inode(dir->i_sb, task);
3241
3242	if (!inode)
3243		goto out;
3244	inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
3245	inode->i_op = &proc_tid_base_inode_operations;
3246	inode->i_fop = &proc_tid_base_operations;
3247	inode->i_flags|=S_IMMUTABLE;
3248
3249	inode->i_nlink = 2 + pid_entry_count_dirs(tid_base_stuff,
3250		ARRAY_SIZE(tid_base_stuff));
3251
3252	d_set_d_op(dentry, &pid_dentry_operations);
3253
3254	d_add(dentry, inode);
3255	/* Close the race of the process dying before we return the dentry */
3256	if (pid_revalidate(dentry, NULL))
3257		error = NULL;
3258out:
3259	return error;
3260}
3261
3262static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
3263{
3264	struct dentry *result = ERR_PTR(-ENOENT);
3265	struct task_struct *task;
3266	struct task_struct *leader = get_proc_task(dir);
3267	unsigned tid;
3268	struct pid_namespace *ns;
3269
3270	if (!leader)
3271		goto out_no_task;
3272
3273	tid = name_to_int(dentry);
3274	if (tid == ~0U)
3275		goto out;
3276
3277	ns = dentry->d_sb->s_fs_info;
3278	rcu_read_lock();
3279	task = find_task_by_pid_ns(tid, ns);
3280	if (task)
3281		get_task_struct(task);
3282	rcu_read_unlock();
3283	if (!task)
3284		goto out;
3285	if (!same_thread_group(leader, task))
3286		goto out_drop_task;
3287
3288	result = proc_task_instantiate(dir, dentry, task, NULL);
3289out_drop_task:
3290	put_task_struct(task);
3291out:
3292	put_task_struct(leader);
3293out_no_task:
3294	return result;
3295}
3296
3297/*
3298 * Find the first tid of a thread group to return to user space.
3299 *
3300 * Usually this is just the thread group leader, but if the users
3301 * buffer was too small or there was a seek into the middle of the
3302 * directory we have more work todo.
3303 *
3304 * In the case of a short read we start with find_task_by_pid.
3305 *
3306 * In the case of a seek we start with the leader and walk nr
3307 * threads past it.
3308 */
3309static struct task_struct *first_tid(struct task_struct *leader,
3310		int tid, int nr, struct pid_namespace *ns)
3311{
3312	struct task_struct *pos;
 
 
 
 
3313
3314	rcu_read_lock();
3315	/* Attempt to start with the pid of a thread */
3316	if (tid && (nr > 0)) {
 
 
 
 
3317		pos = find_task_by_pid_ns(tid, ns);
3318		if (pos && (pos->group_leader == leader))
3319			goto found;
3320	}
3321
3322	/* If nr exceeds the number of threads there is nothing todo */
3323	pos = NULL;
3324	if (nr && nr >= get_nr_threads(leader))
3325		goto out;
3326
3327	/* If we haven't found our starting place yet start
3328	 * with the leader and walk nr threads forward.
3329	 */
3330	for (pos = leader; nr > 0; --nr) {
3331		pos = next_thread(pos);
3332		if (pos == leader) {
3333			pos = NULL;
3334			goto out;
3335		}
3336	}
 
3337found:
3338	get_task_struct(pos);
3339out:
3340	rcu_read_unlock();
3341	return pos;
3342}
3343
3344/*
3345 * Find the next thread in the thread list.
3346 * Return NULL if there is an error or no next thread.
3347 *
3348 * The reference to the input task_struct is released.
3349 */
3350static struct task_struct *next_tid(struct task_struct *start)
3351{
3352	struct task_struct *pos = NULL;
3353	rcu_read_lock();
3354	if (pid_alive(start)) {
3355		pos = next_thread(start);
3356		if (thread_group_leader(pos))
3357			pos = NULL;
3358		else
3359			get_task_struct(pos);
3360	}
3361	rcu_read_unlock();
3362	put_task_struct(start);
3363	return pos;
3364}
3365
3366static int proc_task_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
3367	struct task_struct *task, int tid)
3368{
3369	char name[PROC_NUMBUF];
3370	int len = snprintf(name, sizeof(name), "%d", tid);
3371	return proc_fill_cache(filp, dirent, filldir, name, len,
3372				proc_task_instantiate, task, NULL);
3373}
3374
3375/* for the /proc/TGID/task/ directories */
3376static int proc_task_readdir(struct file * filp, void * dirent, filldir_t filldir)
3377{
3378	struct dentry *dentry = filp->f_path.dentry;
3379	struct inode *inode = dentry->d_inode;
3380	struct task_struct *leader = NULL;
3381	struct task_struct *task;
3382	int retval = -ENOENT;
3383	ino_t ino;
3384	int tid;
3385	struct pid_namespace *ns;
 
3386
3387	task = get_proc_task(inode);
3388	if (!task)
3389		goto out_no_task;
3390	rcu_read_lock();
3391	if (pid_alive(task)) {
3392		leader = task->group_leader;
3393		get_task_struct(leader);
3394	}
3395	rcu_read_unlock();
3396	put_task_struct(task);
3397	if (!leader)
3398		goto out_no_task;
3399	retval = 0;
3400
3401	switch ((unsigned long)filp->f_pos) {
3402	case 0:
3403		ino = inode->i_ino;
3404		if (filldir(dirent, ".", 1, filp->f_pos, ino, DT_DIR) < 0)
3405			goto out;
3406		filp->f_pos++;
3407		/* fall through */
3408	case 1:
3409		ino = parent_ino(dentry);
3410		if (filldir(dirent, "..", 2, filp->f_pos, ino, DT_DIR) < 0)
3411			goto out;
3412		filp->f_pos++;
3413		/* fall through */
3414	}
3415
3416	/* f_version caches the tgid value that the last readdir call couldn't
3417	 * return. lseek aka telldir automagically resets f_version to 0.
3418	 */
3419	ns = filp->f_dentry->d_sb->s_fs_info;
3420	tid = (int)filp->f_version;
3421	filp->f_version = 0;
3422	for (task = first_tid(leader, tid, filp->f_pos - 2, ns);
3423	     task;
3424	     task = next_tid(task), filp->f_pos++) {
 
 
3425		tid = task_pid_nr_ns(task, ns);
3426		if (proc_task_fill_cache(filp, dirent, filldir, task, tid) < 0) {
 
 
3427			/* returning this tgid failed, save it as the first
3428			 * pid for the next readir call */
3429			filp->f_version = (u64)tid;
3430			put_task_struct(task);
3431			break;
3432		}
3433	}
3434out:
3435	put_task_struct(leader);
3436out_no_task:
3437	return retval;
3438}
3439
3440static int proc_task_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
3441{
3442	struct inode *inode = dentry->d_inode;
3443	struct task_struct *p = get_proc_task(inode);
3444	generic_fillattr(inode, stat);
3445
3446	if (p) {
3447		stat->nlink += get_nr_threads(p);
3448		put_task_struct(p);
3449	}
3450
3451	return 0;
3452}
3453
3454static const struct inode_operations proc_task_inode_operations = {
3455	.lookup		= proc_task_lookup,
3456	.getattr	= proc_task_getattr,
3457	.setattr	= proc_setattr,
 
3458};
3459
3460static const struct file_operations proc_task_operations = {
3461	.read		= generic_read_dir,
3462	.readdir	= proc_task_readdir,
3463	.llseek		= default_llseek,
3464};
v4.10.11
   1/*
   2 *  linux/fs/proc/base.c
   3 *
   4 *  Copyright (C) 1991, 1992 Linus Torvalds
   5 *
   6 *  proc base directory handling functions
   7 *
   8 *  1999, Al Viro. Rewritten. Now it covers the whole per-process part.
   9 *  Instead of using magical inumbers to determine the kind of object
  10 *  we allocate and fill in-core inodes upon lookup. They don't even
  11 *  go into icache. We cache the reference to task_struct upon lookup too.
  12 *  Eventually it should become a filesystem in its own. We don't use the
  13 *  rest of procfs anymore.
  14 *
  15 *
  16 *  Changelog:
  17 *  17-Jan-2005
  18 *  Allan Bezerra
  19 *  Bruna Moreira <bruna.moreira@indt.org.br>
  20 *  Edjard Mota <edjard.mota@indt.org.br>
  21 *  Ilias Biris <ilias.biris@indt.org.br>
  22 *  Mauricio Lin <mauricio.lin@indt.org.br>
  23 *
  24 *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
  25 *
  26 *  A new process specific entry (smaps) included in /proc. It shows the
  27 *  size of rss for each memory area. The maps entry lacks information
  28 *  about physical memory size (rss) for each mapped file, i.e.,
  29 *  rss information for executables and library files.
  30 *  This additional information is useful for any tools that need to know
  31 *  about physical memory consumption for a process specific library.
  32 *
  33 *  Changelog:
  34 *  21-Feb-2005
  35 *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
  36 *  Pud inclusion in the page table walking.
  37 *
  38 *  ChangeLog:
  39 *  10-Mar-2005
  40 *  10LE Instituto Nokia de Tecnologia - INdT:
  41 *  A better way to walks through the page table as suggested by Hugh Dickins.
  42 *
  43 *  Simo Piiroinen <simo.piiroinen@nokia.com>:
  44 *  Smaps information related to shared, private, clean and dirty pages.
  45 *
  46 *  Paul Mundt <paul.mundt@nokia.com>:
  47 *  Overall revision about smaps.
  48 */
  49
  50#include <linux/uaccess.h>
  51
  52#include <linux/errno.h>
  53#include <linux/time.h>
  54#include <linux/proc_fs.h>
  55#include <linux/stat.h>
  56#include <linux/task_io_accounting_ops.h>
  57#include <linux/init.h>
  58#include <linux/capability.h>
  59#include <linux/file.h>
  60#include <linux/fdtable.h>
  61#include <linux/string.h>
  62#include <linux/seq_file.h>
  63#include <linux/namei.h>
  64#include <linux/mnt_namespace.h>
  65#include <linux/mm.h>
  66#include <linux/swap.h>
  67#include <linux/rcupdate.h>
  68#include <linux/kallsyms.h>
  69#include <linux/stacktrace.h>
  70#include <linux/resource.h>
  71#include <linux/module.h>
  72#include <linux/mount.h>
  73#include <linux/security.h>
  74#include <linux/ptrace.h>
  75#include <linux/tracehook.h>
  76#include <linux/printk.h>
  77#include <linux/cgroup.h>
  78#include <linux/cpuset.h>
  79#include <linux/audit.h>
  80#include <linux/poll.h>
  81#include <linux/nsproxy.h>
  82#include <linux/oom.h>
  83#include <linux/elf.h>
  84#include <linux/pid_namespace.h>
  85#include <linux/user_namespace.h>
  86#include <linux/fs_struct.h>
  87#include <linux/slab.h>
  88#include <linux/flex_array.h>
  89#include <linux/posix-timers.h>
  90#ifdef CONFIG_HARDWALL
  91#include <asm/hardwall.h>
  92#endif
  93#include <trace/events/oom.h>
  94#include "internal.h"
  95#include "fd.h"
  96
  97/* NOTE:
  98 *	Implementing inode permission operations in /proc is almost
  99 *	certainly an error.  Permission checks need to happen during
 100 *	each system call not at open time.  The reason is that most of
 101 *	what we wish to check for permissions in /proc varies at runtime.
 102 *
 103 *	The classic example of a problem is opening file descriptors
 104 *	in /proc for a task before it execs a suid executable.
 105 */
 106
 107static u8 nlink_tid;
 108static u8 nlink_tgid;
 109
 110struct pid_entry {
 111	const char *name;
 112	unsigned int len;
 113	umode_t mode;
 114	const struct inode_operations *iop;
 115	const struct file_operations *fop;
 116	union proc_op op;
 117};
 118
 119#define NOD(NAME, MODE, IOP, FOP, OP) {			\
 120	.name = (NAME),					\
 121	.len  = sizeof(NAME) - 1,			\
 122	.mode = MODE,					\
 123	.iop  = IOP,					\
 124	.fop  = FOP,					\
 125	.op   = OP,					\
 126}
 127
 128#define DIR(NAME, MODE, iops, fops)	\
 129	NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
 130#define LNK(NAME, get_link)					\
 131	NOD(NAME, (S_IFLNK|S_IRWXUGO),				\
 132		&proc_pid_link_inode_operations, NULL,		\
 133		{ .proc_get_link = get_link } )
 134#define REG(NAME, MODE, fops)				\
 135	NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
 
 
 
 
 136#define ONE(NAME, MODE, show)				\
 137	NOD(NAME, (S_IFREG|(MODE)), 			\
 138		NULL, &proc_single_file_operations,	\
 139		{ .proc_show = show } )
 140
 141/*
 142 * Count the number of hardlinks for the pid_entry table, excluding the .
 143 * and .. links.
 144 */
 145static unsigned int __init pid_entry_nlink(const struct pid_entry *entries,
 146	unsigned int n)
 147{
 148	unsigned int i;
 149	unsigned int count;
 150
 151	count = 2;
 152	for (i = 0; i < n; ++i) {
 153		if (S_ISDIR(entries[i].mode))
 154			++count;
 155	}
 156
 157	return count;
 158}
 159
 160static int get_task_root(struct task_struct *task, struct path *root)
 161{
 162	int result = -ENOENT;
 163
 164	task_lock(task);
 165	if (task->fs) {
 166		get_fs_root(task->fs, root);
 167		result = 0;
 168	}
 169	task_unlock(task);
 170	return result;
 171}
 172
 173static int proc_cwd_link(struct dentry *dentry, struct path *path)
 174{
 175	struct task_struct *task = get_proc_task(d_inode(dentry));
 176	int result = -ENOENT;
 177
 178	if (task) {
 179		task_lock(task);
 180		if (task->fs) {
 181			get_fs_pwd(task->fs, path);
 182			result = 0;
 183		}
 184		task_unlock(task);
 185		put_task_struct(task);
 186	}
 187	return result;
 188}
 189
 190static int proc_root_link(struct dentry *dentry, struct path *path)
 191{
 192	struct task_struct *task = get_proc_task(d_inode(dentry));
 193	int result = -ENOENT;
 194
 195	if (task) {
 196		result = get_task_root(task, path);
 197		put_task_struct(task);
 198	}
 199	return result;
 200}
 201
 202static ssize_t proc_pid_cmdline_read(struct file *file, char __user *buf,
 203				     size_t _count, loff_t *pos)
 204{
 205	struct task_struct *tsk;
 206	struct mm_struct *mm;
 207	char *page;
 208	unsigned long count = _count;
 209	unsigned long arg_start, arg_end, env_start, env_end;
 210	unsigned long len1, len2, len;
 211	unsigned long p;
 212	char c;
 213	ssize_t rv;
 214
 215	BUG_ON(*pos < 0);
 
 
 
 
 
 
 
 
 
 216
 217	tsk = get_proc_task(file_inode(file));
 218	if (!tsk)
 219		return -ESRCH;
 220	mm = get_task_mm(tsk);
 221	put_task_struct(tsk);
 222	if (!mm)
 223		return 0;
 224	/* Check if process spawned far enough to have cmdline. */
 225	if (!mm->env_end) {
 226		rv = 0;
 227		goto out_mmput;
 228	}
 229
 230	page = (char *)__get_free_page(GFP_TEMPORARY);
 231	if (!page) {
 232		rv = -ENOMEM;
 233		goto out_mmput;
 234	}
 235
 236	down_read(&mm->mmap_sem);
 237	arg_start = mm->arg_start;
 238	arg_end = mm->arg_end;
 239	env_start = mm->env_start;
 240	env_end = mm->env_end;
 241	up_read(&mm->mmap_sem);
 242
 243	BUG_ON(arg_start > arg_end);
 244	BUG_ON(env_start > env_end);
 
 
 
 
 
 
 245
 246	len1 = arg_end - arg_start;
 247	len2 = env_end - env_start;
 248
 249	/* Empty ARGV. */
 250	if (len1 == 0) {
 251		rv = 0;
 252		goto out_free_page;
 253	}
 254	/*
 255	 * Inherently racy -- command line shares address space
 256	 * with code and data.
 257	 */
 258	rv = access_remote_vm(mm, arg_end - 1, &c, 1, 0);
 259	if (rv <= 0)
 260		goto out_free_page;
 261
 262	rv = 0;
 
 263
 264	if (c == '\0') {
 265		/* Command line (set of strings) occupies whole ARGV. */
 266		if (len1 <= *pos)
 267			goto out_free_page;
 268
 269		p = arg_start + *pos;
 270		len = len1 - *pos;
 271		while (count > 0 && len > 0) {
 272			unsigned int _count;
 273			int nr_read;
 274
 275			_count = min3(count, len, PAGE_SIZE);
 276			nr_read = access_remote_vm(mm, p, page, _count, 0);
 277			if (nr_read < 0)
 278				rv = nr_read;
 279			if (nr_read <= 0)
 280				goto out_free_page;
 281
 282			if (copy_to_user(buf, page, nr_read)) {
 283				rv = -EFAULT;
 284				goto out_free_page;
 285			}
 286
 287			p	+= nr_read;
 288			len	-= nr_read;
 289			buf	+= nr_read;
 290			count	-= nr_read;
 291			rv	+= nr_read;
 292		}
 293	} else {
 294		/*
 295		 * Command line (1 string) occupies ARGV and maybe
 296		 * extends into ENVP.
 297		 */
 298		if (len1 + len2 <= *pos)
 299			goto skip_argv_envp;
 300		if (len1 <= *pos)
 301			goto skip_argv;
 302
 303		p = arg_start + *pos;
 304		len = len1 - *pos;
 305		while (count > 0 && len > 0) {
 306			unsigned int _count, l;
 307			int nr_read;
 308			bool final;
 309
 310			_count = min3(count, len, PAGE_SIZE);
 311			nr_read = access_remote_vm(mm, p, page, _count, 0);
 312			if (nr_read < 0)
 313				rv = nr_read;
 314			if (nr_read <= 0)
 315				goto out_free_page;
 316
 317			/*
 318			 * Command line can be shorter than whole ARGV
 319			 * even if last "marker" byte says it is not.
 320			 */
 321			final = false;
 322			l = strnlen(page, nr_read);
 323			if (l < nr_read) {
 324				nr_read = l;
 325				final = true;
 326			}
 327
 328			if (copy_to_user(buf, page, nr_read)) {
 329				rv = -EFAULT;
 330				goto out_free_page;
 331			}
 332
 333			p	+= nr_read;
 334			len	-= nr_read;
 335			buf	+= nr_read;
 336			count	-= nr_read;
 337			rv	+= nr_read;
 
 
 338
 339			if (final)
 340				goto out_free_page;
 341		}
 342skip_argv:
 343		/*
 344		 * Command line (1 string) occupies ARGV and
 345		 * extends into ENVP.
 346		 */
 347		if (len1 <= *pos) {
 348			p = env_start + *pos - len1;
 349			len = len1 + len2 - *pos;
 350		} else {
 351			p = env_start;
 352			len = len2;
 353		}
 354		while (count > 0 && len > 0) {
 355			unsigned int _count, l;
 356			int nr_read;
 357			bool final;
 358
 359			_count = min3(count, len, PAGE_SIZE);
 360			nr_read = access_remote_vm(mm, p, page, _count, 0);
 361			if (nr_read < 0)
 362				rv = nr_read;
 363			if (nr_read <= 0)
 364				goto out_free_page;
 365
 366			/* Find EOS. */
 367			final = false;
 368			l = strnlen(page, nr_read);
 369			if (l < nr_read) {
 370				nr_read = l;
 371				final = true;
 372			}
 373
 374			if (copy_to_user(buf, page, nr_read)) {
 375				rv = -EFAULT;
 376				goto out_free_page;
 377			}
 
 
 
 
 
 378
 379			p	+= nr_read;
 380			len	-= nr_read;
 381			buf	+= nr_read;
 382			count	-= nr_read;
 383			rv	+= nr_read;
 384
 385			if (final)
 386				goto out_free_page;
 
 
 
 
 
 
 
 
 
 
 
 387		}
 388skip_argv_envp:
 389		;
 390	}
 
 
 
 
 
 391
 392out_free_page:
 393	free_page((unsigned long)page);
 394out_mmput:
 395	mmput(mm);
 396	if (rv > 0)
 397		*pos += rv;
 398	return rv;
 
 
 
 
 
 
 
 
 
 399}
 400
 401static const struct file_operations proc_pid_cmdline_ops = {
 402	.read	= proc_pid_cmdline_read,
 403	.llseek	= generic_file_llseek,
 404};
 405
 406#ifdef CONFIG_KALLSYMS
 407/*
 408 * Provides a wchan file via kallsyms in a proper one-value-per-file format.
 409 * Returns the resolved symbol.  If that fails, simply return the address.
 410 */
 411static int proc_pid_wchan(struct seq_file *m, struct pid_namespace *ns,
 412			  struct pid *pid, struct task_struct *task)
 413{
 414	unsigned long wchan;
 415	char symname[KSYM_NAME_LEN];
 416
 417	wchan = get_wchan(task);
 418
 419	if (wchan && ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)
 420			&& !lookup_symbol_name(wchan, symname))
 421		seq_printf(m, "%s", symname);
 
 
 422	else
 423		seq_putc(m, '0');
 424
 425	return 0;
 426}
 427#endif /* CONFIG_KALLSYMS */
 428
 429static int lock_trace(struct task_struct *task)
 430{
 431	int err = mutex_lock_killable(&task->signal->cred_guard_mutex);
 432	if (err)
 433		return err;
 434	if (!ptrace_may_access(task, PTRACE_MODE_ATTACH_FSCREDS)) {
 435		mutex_unlock(&task->signal->cred_guard_mutex);
 436		return -EPERM;
 437	}
 438	return 0;
 439}
 440
 441static void unlock_trace(struct task_struct *task)
 442{
 443	mutex_unlock(&task->signal->cred_guard_mutex);
 444}
 445
 446#ifdef CONFIG_STACKTRACE
 447
 448#define MAX_STACK_TRACE_DEPTH	64
 449
 450static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
 451			  struct pid *pid, struct task_struct *task)
 452{
 453	struct stack_trace trace;
 454	unsigned long *entries;
 455	int err;
 456	int i;
 457
 458	entries = kmalloc(MAX_STACK_TRACE_DEPTH * sizeof(*entries), GFP_KERNEL);
 459	if (!entries)
 460		return -ENOMEM;
 461
 462	trace.nr_entries	= 0;
 463	trace.max_entries	= MAX_STACK_TRACE_DEPTH;
 464	trace.entries		= entries;
 465	trace.skip		= 0;
 466
 467	err = lock_trace(task);
 468	if (!err) {
 469		save_stack_trace_tsk(task, &trace);
 470
 471		for (i = 0; i < trace.nr_entries; i++) {
 472			seq_printf(m, "[<%pK>] %pB\n",
 473				   (void *)entries[i], (void *)entries[i]);
 474		}
 475		unlock_trace(task);
 476	}
 477	kfree(entries);
 478
 479	return err;
 480}
 481#endif
 482
 483#ifdef CONFIG_SCHED_INFO
 484/*
 485 * Provides /proc/PID/schedstat
 486 */
 487static int proc_pid_schedstat(struct seq_file *m, struct pid_namespace *ns,
 488			      struct pid *pid, struct task_struct *task)
 489{
 490	if (unlikely(!sched_info_on()))
 491		seq_printf(m, "0 0 0\n");
 492	else
 493		seq_printf(m, "%llu %llu %lu\n",
 494		   (unsigned long long)task->se.sum_exec_runtime,
 495		   (unsigned long long)task->sched_info.run_delay,
 496		   task->sched_info.pcount);
 497
 498	return 0;
 499}
 500#endif
 501
 502#ifdef CONFIG_LATENCYTOP
 503static int lstats_show_proc(struct seq_file *m, void *v)
 504{
 505	int i;
 506	struct inode *inode = m->private;
 507	struct task_struct *task = get_proc_task(inode);
 508
 509	if (!task)
 510		return -ESRCH;
 511	seq_puts(m, "Latency Top version : v0.1\n");
 512	for (i = 0; i < 32; i++) {
 513		struct latency_record *lr = &task->latency_record[i];
 514		if (lr->backtrace[0]) {
 515			int q;
 516			seq_printf(m, "%i %li %li",
 517				   lr->count, lr->time, lr->max);
 518			for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
 519				unsigned long bt = lr->backtrace[q];
 520				if (!bt)
 521					break;
 522				if (bt == ULONG_MAX)
 523					break;
 524				seq_printf(m, " %ps", (void *)bt);
 525			}
 526			seq_putc(m, '\n');
 527		}
 528
 529	}
 530	put_task_struct(task);
 531	return 0;
 532}
 533
 534static int lstats_open(struct inode *inode, struct file *file)
 535{
 536	return single_open(file, lstats_show_proc, inode);
 537}
 538
 539static ssize_t lstats_write(struct file *file, const char __user *buf,
 540			    size_t count, loff_t *offs)
 541{
 542	struct task_struct *task = get_proc_task(file_inode(file));
 543
 544	if (!task)
 545		return -ESRCH;
 546	clear_all_latency_tracing(task);
 547	put_task_struct(task);
 548
 549	return count;
 550}
 551
 552static const struct file_operations proc_lstats_operations = {
 553	.open		= lstats_open,
 554	.read		= seq_read,
 555	.write		= lstats_write,
 556	.llseek		= seq_lseek,
 557	.release	= single_release,
 558};
 559
 560#endif
 561
 562static int proc_oom_score(struct seq_file *m, struct pid_namespace *ns,
 563			  struct pid *pid, struct task_struct *task)
 564{
 565	unsigned long totalpages = totalram_pages + total_swap_pages;
 566	unsigned long points = 0;
 567
 568	points = oom_badness(task, NULL, NULL, totalpages) *
 569					1000 / totalpages;
 570	seq_printf(m, "%lu\n", points);
 571
 572	return 0;
 
 573}
 574
 575struct limit_names {
 576	const char *name;
 577	const char *unit;
 578};
 579
 580static const struct limit_names lnames[RLIM_NLIMITS] = {
 581	[RLIMIT_CPU] = {"Max cpu time", "seconds"},
 582	[RLIMIT_FSIZE] = {"Max file size", "bytes"},
 583	[RLIMIT_DATA] = {"Max data size", "bytes"},
 584	[RLIMIT_STACK] = {"Max stack size", "bytes"},
 585	[RLIMIT_CORE] = {"Max core file size", "bytes"},
 586	[RLIMIT_RSS] = {"Max resident set", "bytes"},
 587	[RLIMIT_NPROC] = {"Max processes", "processes"},
 588	[RLIMIT_NOFILE] = {"Max open files", "files"},
 589	[RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
 590	[RLIMIT_AS] = {"Max address space", "bytes"},
 591	[RLIMIT_LOCKS] = {"Max file locks", "locks"},
 592	[RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
 593	[RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
 594	[RLIMIT_NICE] = {"Max nice priority", NULL},
 595	[RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
 596	[RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
 597};
 598
 599/* Display limits for a process */
 600static int proc_pid_limits(struct seq_file *m, struct pid_namespace *ns,
 601			   struct pid *pid, struct task_struct *task)
 602{
 603	unsigned int i;
 
 604	unsigned long flags;
 
 605
 606	struct rlimit rlim[RLIM_NLIMITS];
 607
 608	if (!lock_task_sighand(task, &flags))
 609		return 0;
 610	memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
 611	unlock_task_sighand(task, &flags);
 612
 613	/*
 614	 * print the file header
 615	 */
 616       seq_printf(m, "%-25s %-20s %-20s %-10s\n",
 617		  "Limit", "Soft Limit", "Hard Limit", "Units");
 618
 619	for (i = 0; i < RLIM_NLIMITS; i++) {
 620		if (rlim[i].rlim_cur == RLIM_INFINITY)
 621			seq_printf(m, "%-25s %-20s ",
 622				   lnames[i].name, "unlimited");
 623		else
 624			seq_printf(m, "%-25s %-20lu ",
 625				   lnames[i].name, rlim[i].rlim_cur);
 626
 627		if (rlim[i].rlim_max == RLIM_INFINITY)
 628			seq_printf(m, "%-20s ", "unlimited");
 629		else
 630			seq_printf(m, "%-20lu ", rlim[i].rlim_max);
 
 631
 632		if (lnames[i].unit)
 633			seq_printf(m, "%-10s\n", lnames[i].unit);
 
 634		else
 635			seq_putc(m, '\n');
 636	}
 637
 638	return 0;
 639}
 640
 641#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
 642static int proc_pid_syscall(struct seq_file *m, struct pid_namespace *ns,
 643			    struct pid *pid, struct task_struct *task)
 644{
 645	long nr;
 646	unsigned long args[6], sp, pc;
 647	int res;
 648
 649	res = lock_trace(task);
 650	if (res)
 651		return res;
 652
 653	if (task_current_syscall(task, &nr, args, 6, &sp, &pc))
 654		seq_puts(m, "running\n");
 655	else if (nr < 0)
 656		seq_printf(m, "%ld 0x%lx 0x%lx\n", nr, sp, pc);
 657	else
 658		seq_printf(m,
 659		       "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n",
 660		       nr,
 661		       args[0], args[1], args[2], args[3], args[4], args[5],
 662		       sp, pc);
 663	unlock_trace(task);
 664
 665	return 0;
 666}
 667#endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
 668
 669/************************************************************************/
 670/*                       Here the fs part begins                        */
 671/************************************************************************/
 672
 673/* permission checks */
 674static int proc_fd_access_allowed(struct inode *inode)
 675{
 676	struct task_struct *task;
 677	int allowed = 0;
 678	/* Allow access to a task's file descriptors if it is us or we
 679	 * may use ptrace attach to the process and find out that
 680	 * information.
 681	 */
 682	task = get_proc_task(inode);
 683	if (task) {
 684		allowed = ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
 685		put_task_struct(task);
 686	}
 687	return allowed;
 688}
 689
 690int proc_setattr(struct dentry *dentry, struct iattr *attr)
 691{
 692	int error;
 693	struct inode *inode = d_inode(dentry);
 694
 695	if (attr->ia_valid & ATTR_MODE)
 696		return -EPERM;
 697
 698	error = setattr_prepare(dentry, attr);
 699	if (error)
 700		return error;
 701
 
 
 
 
 
 
 
 702	setattr_copy(inode, attr);
 703	mark_inode_dirty(inode);
 704	return 0;
 705}
 706
 707/*
 708 * May current process learn task's sched/cmdline info (for hide_pid_min=1)
 709 * or euid/egid (for hide_pid_min=2)?
 710 */
 711static bool has_pid_permissions(struct pid_namespace *pid,
 712				 struct task_struct *task,
 713				 int hide_pid_min)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 714{
 715	if (pid->hide_pid < hide_pid_min)
 716		return true;
 717	if (in_group_p(pid->pid_gid))
 718		return true;
 719	return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
 720}
 721
 
 
 
 
 
 
 
 
 722
 723static int proc_pid_permission(struct inode *inode, int mask)
 
 724{
 725	struct pid_namespace *pid = inode->i_sb->s_fs_info;
 726	struct task_struct *task;
 727	bool has_perms;
 
 728
 729	task = get_proc_task(inode);
 730	if (!task)
 731		return -ESRCH;
 732	has_perms = has_pid_permissions(pid, task, 1);
 733	put_task_struct(task);
 734
 735	if (!has_perms) {
 736		if (pid->hide_pid == 2) {
 737			/*
 738			 * Let's make getdents(), stat(), and open()
 739			 * consistent with each other.  If a process
 740			 * may not stat() a file, it shouldn't be seen
 741			 * in procfs at all.
 742			 */
 743			return -ENOENT;
 744		}
 745
 746		return -EPERM;
 747	}
 748	return generic_permission(inode, mask);
 749}
 750
 
 751
 
 
 
 
 
 
 
 
 752
 753static const struct inode_operations proc_def_inode_operations = {
 754	.setattr	= proc_setattr,
 
 755};
 756
 757static int proc_single_show(struct seq_file *m, void *v)
 758{
 759	struct inode *inode = m->private;
 760	struct pid_namespace *ns;
 761	struct pid *pid;
 762	struct task_struct *task;
 763	int ret;
 764
 765	ns = inode->i_sb->s_fs_info;
 766	pid = proc_pid(inode);
 767	task = get_pid_task(pid, PIDTYPE_PID);
 768	if (!task)
 769		return -ESRCH;
 770
 771	ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
 772
 773	put_task_struct(task);
 774	return ret;
 775}
 776
 777static int proc_single_open(struct inode *inode, struct file *filp)
 778{
 779	return single_open(filp, proc_single_show, inode);
 780}
 781
 782static const struct file_operations proc_single_file_operations = {
 783	.open		= proc_single_open,
 784	.read		= seq_read,
 785	.llseek		= seq_lseek,
 786	.release	= single_release,
 787};
 788
 
 
 
 
 
 
 
 789
 790struct mm_struct *proc_mem_open(struct inode *inode, unsigned int mode)
 
 791{
 792	struct task_struct *task = get_proc_task(inode);
 793	struct mm_struct *mm = ERR_PTR(-ESRCH);
 
 
 
 794
 795	if (task) {
 796		mm = mm_access(task, mode | PTRACE_MODE_FSCREDS);
 797		put_task_struct(task);
 798
 799		if (!IS_ERR_OR_NULL(mm)) {
 800			/* ensure this mm_struct can't be freed */
 801			atomic_inc(&mm->mm_count);
 802			/* but do not pin its memory */
 803			mmput(mm);
 804		}
 805	}
 806
 807	return mm;
 808}
 
 
 809
 810static int __mem_open(struct inode *inode, struct file *file, unsigned int mode)
 811{
 812	struct mm_struct *mm = proc_mem_open(inode, mode);
 
 813
 814	if (IS_ERR(mm))
 815		return PTR_ERR(mm);
 
 
 816
 817	file->private_data = mm;
 818	return 0;
 819}
 
 
 
 
 820
 821static int mem_open(struct inode *inode, struct file *file)
 822{
 823	int ret = __mem_open(inode, file, PTRACE_MODE_ATTACH);
 824
 825	/* OK to pass negative loff_t, we can catch out-of-range */
 826	file->f_mode |= FMODE_UNSIGNED_OFFSET;
 
 
 
 
 
 827
 
 
 
 
 
 
 
 828	return ret;
 829}
 830
 831static ssize_t mem_rw(struct file *file, char __user *buf,
 832			size_t count, loff_t *ppos, int write)
 833{
 834	struct mm_struct *mm = file->private_data;
 835	unsigned long addr = *ppos;
 836	ssize_t copied;
 837	char *page;
 838	unsigned int flags;
 
 
 839
 840	if (!mm)
 841		return 0;
 
 842
 
 843	page = (char *)__get_free_page(GFP_TEMPORARY);
 844	if (!page)
 845		return -ENOMEM;
 846
 847	copied = 0;
 848	if (!atomic_inc_not_zero(&mm->mm_users))
 849		goto free;
 
 850
 851	/* Maybe we should limit FOLL_FORCE to actual ptrace users? */
 852	flags = FOLL_FORCE;
 853	if (write)
 854		flags |= FOLL_WRITE;
 855
 
 856	while (count > 0) {
 857		int this_len = min_t(int, count, PAGE_SIZE);
 858
 859		if (write && copy_from_user(page, buf, this_len)) {
 
 860			copied = -EFAULT;
 861			break;
 862		}
 863
 864		this_len = access_remote_vm(mm, addr, page, this_len, flags);
 865		if (!this_len) {
 866			if (!copied)
 867				copied = -EIO;
 868			break;
 869		}
 870
 871		if (!write && copy_to_user(buf, page, this_len)) {
 872			copied = -EFAULT;
 873			break;
 874		}
 875
 876		buf += this_len;
 877		addr += this_len;
 878		copied += this_len;
 879		count -= this_len;
 880	}
 881	*ppos = addr;
 882
 
 883	mmput(mm);
 884free:
 885	free_page((unsigned long) page);
 
 
 
 886	return copied;
 887}
 888
 889static ssize_t mem_read(struct file *file, char __user *buf,
 890			size_t count, loff_t *ppos)
 891{
 892	return mem_rw(file, buf, count, ppos, 0);
 893}
 894
 895static ssize_t mem_write(struct file *file, const char __user *buf,
 896			 size_t count, loff_t *ppos)
 897{
 898	return mem_rw(file, (char __user*)buf, count, ppos, 1);
 899}
 900
 901loff_t mem_lseek(struct file *file, loff_t offset, int orig)
 902{
 903	switch (orig) {
 904	case 0:
 905		file->f_pos = offset;
 906		break;
 907	case 1:
 908		file->f_pos += offset;
 909		break;
 910	default:
 911		return -EINVAL;
 912	}
 913	force_successful_syscall_return();
 914	return file->f_pos;
 915}
 916
 917static int mem_release(struct inode *inode, struct file *file)
 918{
 919	struct mm_struct *mm = file->private_data;
 920	if (mm)
 921		mmdrop(mm);
 922	return 0;
 923}
 924
 925static const struct file_operations proc_mem_operations = {
 926	.llseek		= mem_lseek,
 927	.read		= mem_read,
 928	.write		= mem_write,
 929	.open		= mem_open,
 930	.release	= mem_release,
 931};
 932
 933static int environ_open(struct inode *inode, struct file *file)
 934{
 935	return __mem_open(inode, file, PTRACE_MODE_READ);
 936}
 937
 938static ssize_t environ_read(struct file *file, char __user *buf,
 939			size_t count, loff_t *ppos)
 940{
 
 941	char *page;
 942	unsigned long src = *ppos;
 943	int ret = 0;
 944	struct mm_struct *mm = file->private_data;
 945	unsigned long env_start, env_end;
 946
 947	/* Ensure the process spawned far enough to have an environment. */
 948	if (!mm || !mm->env_end)
 949		return 0;
 950
 
 951	page = (char *)__get_free_page(GFP_TEMPORARY);
 952	if (!page)
 953		return -ENOMEM;
 954
 955	ret = 0;
 956	if (!atomic_inc_not_zero(&mm->mm_users))
 957		goto free;
 958
 959	down_read(&mm->mmap_sem);
 960	env_start = mm->env_start;
 961	env_end = mm->env_end;
 962	up_read(&mm->mmap_sem);
 963
 
 964	while (count > 0) {
 965		size_t this_len, max_len;
 966		int retval;
 967
 968		if (src >= (env_end - env_start))
 
 
 969			break;
 970
 971		this_len = env_end - (env_start + src);
 972
 973		max_len = min_t(size_t, PAGE_SIZE, count);
 974		this_len = min(max_len, this_len);
 975
 976		retval = access_remote_vm(mm, (env_start + src), page, this_len, 0);
 
 977
 978		if (retval <= 0) {
 979			ret = retval;
 980			break;
 981		}
 982
 983		if (copy_to_user(buf, page, retval)) {
 984			ret = -EFAULT;
 985			break;
 986		}
 987
 988		ret += retval;
 989		src += retval;
 990		buf += retval;
 991		count -= retval;
 992	}
 993	*ppos = src;
 
 994	mmput(mm);
 995
 996free:
 997	free_page((unsigned long) page);
 
 
 
 998	return ret;
 999}
1000
1001static const struct file_operations proc_environ_operations = {
1002	.open		= environ_open,
1003	.read		= environ_read,
1004	.llseek		= generic_file_llseek,
1005	.release	= mem_release,
1006};
1007
1008static int auxv_open(struct inode *inode, struct file *file)
1009{
1010	return __mem_open(inode, file, PTRACE_MODE_READ_FSCREDS);
1011}
1012
1013static ssize_t auxv_read(struct file *file, char __user *buf,
1014			size_t count, loff_t *ppos)
1015{
1016	struct mm_struct *mm = file->private_data;
1017	unsigned int nwords = 0;
1018
1019	if (!mm)
1020		return 0;
1021	do {
1022		nwords += 2;
1023	} while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
1024	return simple_read_from_buffer(buf, count, ppos, mm->saved_auxv,
1025				       nwords * sizeof(mm->saved_auxv[0]));
1026}
1027
1028static const struct file_operations proc_auxv_operations = {
1029	.open		= auxv_open,
1030	.read		= auxv_read,
1031	.llseek		= generic_file_llseek,
1032	.release	= mem_release,
1033};
1034
1035static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count,
1036			    loff_t *ppos)
1037{
1038	struct task_struct *task = get_proc_task(file_inode(file));
1039	char buffer[PROC_NUMBUF];
1040	int oom_adj = OOM_ADJUST_MIN;
1041	size_t len;
 
 
1042
1043	if (!task)
1044		return -ESRCH;
1045	if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX)
1046		oom_adj = OOM_ADJUST_MAX;
1047	else
1048		oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) /
1049			  OOM_SCORE_ADJ_MAX;
1050	put_task_struct(task);
1051	len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj);
1052	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1053}
1054
1055static int __set_oom_adj(struct file *file, int oom_adj, bool legacy)
1056{
1057	static DEFINE_MUTEX(oom_adj_mutex);
1058	struct mm_struct *mm = NULL;
1059	struct task_struct *task;
1060	int err = 0;
1061
1062	task = get_proc_task(file_inode(file));
1063	if (!task)
1064		return -ESRCH;
1065
1066	mutex_lock(&oom_adj_mutex);
1067	if (legacy) {
1068		if (oom_adj < task->signal->oom_score_adj &&
1069				!capable(CAP_SYS_RESOURCE)) {
1070			err = -EACCES;
1071			goto err_unlock;
1072		}
1073		/*
1074		 * /proc/pid/oom_adj is provided for legacy purposes, ask users to use
1075		 * /proc/pid/oom_score_adj instead.
1076		 */
1077		pr_warn_once("%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
1078			  current->comm, task_pid_nr(current), task_pid_nr(task),
1079			  task_pid_nr(task));
1080	} else {
1081		if ((short)oom_adj < task->signal->oom_score_adj_min &&
1082				!capable(CAP_SYS_RESOURCE)) {
1083			err = -EACCES;
1084			goto err_unlock;
1085		}
1086	}
1087
1088	/*
1089	 * Make sure we will check other processes sharing the mm if this is
1090	 * not vfrok which wants its own oom_score_adj.
1091	 * pin the mm so it doesn't go away and get reused after task_unlock
1092	 */
1093	if (!task->vfork_done) {
1094		struct task_struct *p = find_lock_task_mm(task);
1095
1096		if (p) {
1097			if (atomic_read(&p->mm->mm_users) > 1) {
1098				mm = p->mm;
1099				atomic_inc(&mm->mm_count);
1100			}
1101			task_unlock(p);
1102		}
1103	}
1104
1105	task->signal->oom_score_adj = oom_adj;
1106	if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1107		task->signal->oom_score_adj_min = (short)oom_adj;
1108	trace_oom_score_adj_update(task);
1109
1110	if (mm) {
1111		struct task_struct *p;
1112
1113		rcu_read_lock();
1114		for_each_process(p) {
1115			if (same_thread_group(task, p))
1116				continue;
1117
1118			/* do not touch kernel threads or the global init */
1119			if (p->flags & PF_KTHREAD || is_global_init(p))
1120				continue;
1121
1122			task_lock(p);
1123			if (!p->vfork_done && process_shares_mm(p, mm)) {
1124				pr_info("updating oom_score_adj for %d (%s) from %d to %d because it shares mm with %d (%s). Report if this is unexpected.\n",
1125						task_pid_nr(p), p->comm,
1126						p->signal->oom_score_adj, oom_adj,
1127						task_pid_nr(task), task->comm);
1128				p->signal->oom_score_adj = oom_adj;
1129				if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1130					p->signal->oom_score_adj_min = (short)oom_adj;
1131			}
1132			task_unlock(p);
1133		}
1134		rcu_read_unlock();
1135		mmdrop(mm);
1136	}
1137err_unlock:
1138	mutex_unlock(&oom_adj_mutex);
1139	put_task_struct(task);
1140	return err;
1141}
1142
1143/*
1144 * /proc/pid/oom_adj exists solely for backwards compatibility with previous
1145 * kernels.  The effective policy is defined by oom_score_adj, which has a
1146 * different scale: oom_adj grew exponentially and oom_score_adj grows linearly.
1147 * Values written to oom_adj are simply mapped linearly to oom_score_adj.
1148 * Processes that become oom disabled via oom_adj will still be oom disabled
1149 * with this implementation.
1150 *
1151 * oom_adj cannot be removed since existing userspace binaries use it.
1152 */
1153static ssize_t oom_adj_write(struct file *file, const char __user *buf,
1154			     size_t count, loff_t *ppos)
1155{
 
1156	char buffer[PROC_NUMBUF];
1157	int oom_adj;
 
1158	int err;
1159
1160	memset(buffer, 0, sizeof(buffer));
1161	if (count > sizeof(buffer) - 1)
1162		count = sizeof(buffer) - 1;
1163	if (copy_from_user(buffer, buf, count)) {
1164		err = -EFAULT;
1165		goto out;
1166	}
1167
1168	err = kstrtoint(strstrip(buffer), 0, &oom_adj);
1169	if (err)
1170		goto out;
1171	if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) &&
1172	     oom_adj != OOM_DISABLE) {
1173		err = -EINVAL;
1174		goto out;
1175	}
1176
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1177	/*
1178	 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
1179	 * value is always attainable.
1180	 */
1181	if (oom_adj == OOM_ADJUST_MAX)
1182		oom_adj = OOM_SCORE_ADJ_MAX;
1183	else
1184		oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE;
1185
1186	err = __set_oom_adj(file, oom_adj, true);
 
 
 
 
1187out:
1188	return err < 0 ? err : count;
1189}
1190
1191static const struct file_operations proc_oom_adj_operations = {
1192	.read		= oom_adj_read,
1193	.write		= oom_adj_write,
1194	.llseek		= generic_file_llseek,
1195};
1196
1197static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
1198					size_t count, loff_t *ppos)
1199{
1200	struct task_struct *task = get_proc_task(file_inode(file));
1201	char buffer[PROC_NUMBUF];
1202	short oom_score_adj = OOM_SCORE_ADJ_MIN;
 
1203	size_t len;
1204
1205	if (!task)
1206		return -ESRCH;
1207	oom_score_adj = task->signal->oom_score_adj;
 
 
 
1208	put_task_struct(task);
1209	len = snprintf(buffer, sizeof(buffer), "%hd\n", oom_score_adj);
1210	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1211}
1212
1213static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
1214					size_t count, loff_t *ppos)
1215{
 
1216	char buffer[PROC_NUMBUF];
 
1217	int oom_score_adj;
1218	int err;
1219
1220	memset(buffer, 0, sizeof(buffer));
1221	if (count > sizeof(buffer) - 1)
1222		count = sizeof(buffer) - 1;
1223	if (copy_from_user(buffer, buf, count)) {
1224		err = -EFAULT;
1225		goto out;
1226	}
1227
1228	err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
1229	if (err)
1230		goto out;
1231	if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1232			oom_score_adj > OOM_SCORE_ADJ_MAX) {
1233		err = -EINVAL;
1234		goto out;
1235	}
1236
1237	err = __set_oom_adj(file, oom_score_adj, false);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1238out:
1239	return err < 0 ? err : count;
1240}
1241
1242static const struct file_operations proc_oom_score_adj_operations = {
1243	.read		= oom_score_adj_read,
1244	.write		= oom_score_adj_write,
1245	.llseek		= default_llseek,
1246};
1247
1248#ifdef CONFIG_AUDITSYSCALL
1249#define TMPBUFLEN 11
1250static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1251				  size_t count, loff_t *ppos)
1252{
1253	struct inode * inode = file_inode(file);
1254	struct task_struct *task = get_proc_task(inode);
1255	ssize_t length;
1256	char tmpbuf[TMPBUFLEN];
1257
1258	if (!task)
1259		return -ESRCH;
1260	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1261			   from_kuid(file->f_cred->user_ns,
1262				     audit_get_loginuid(task)));
1263	put_task_struct(task);
1264	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1265}
1266
1267static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1268				   size_t count, loff_t *ppos)
1269{
1270	struct inode * inode = file_inode(file);
 
 
1271	uid_t loginuid;
1272	kuid_t kloginuid;
1273	int rv;
 
1274
1275	rcu_read_lock();
1276	if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1277		rcu_read_unlock();
1278		return -EPERM;
1279	}
1280	rcu_read_unlock();
1281
 
 
 
1282	if (*ppos != 0) {
1283		/* No partial writes. */
1284		return -EINVAL;
1285	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1286
1287	rv = kstrtou32_from_user(buf, count, 10, &loginuid);
1288	if (rv < 0)
1289		return rv;
1290
1291	/* is userspace tring to explicitly UNSET the loginuid? */
1292	if (loginuid == AUDIT_UID_UNSET) {
1293		kloginuid = INVALID_UID;
1294	} else {
1295		kloginuid = make_kuid(file->f_cred->user_ns, loginuid);
1296		if (!uid_valid(kloginuid))
1297			return -EINVAL;
1298	}
1299
1300	rv = audit_set_loginuid(kloginuid);
1301	if (rv < 0)
1302		return rv;
1303	return count;
1304}
1305
1306static const struct file_operations proc_loginuid_operations = {
1307	.read		= proc_loginuid_read,
1308	.write		= proc_loginuid_write,
1309	.llseek		= generic_file_llseek,
1310};
1311
1312static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1313				  size_t count, loff_t *ppos)
1314{
1315	struct inode * inode = file_inode(file);
1316	struct task_struct *task = get_proc_task(inode);
1317	ssize_t length;
1318	char tmpbuf[TMPBUFLEN];
1319
1320	if (!task)
1321		return -ESRCH;
1322	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1323				audit_get_sessionid(task));
1324	put_task_struct(task);
1325	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1326}
1327
1328static const struct file_operations proc_sessionid_operations = {
1329	.read		= proc_sessionid_read,
1330	.llseek		= generic_file_llseek,
1331};
1332#endif
1333
1334#ifdef CONFIG_FAULT_INJECTION
1335static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1336				      size_t count, loff_t *ppos)
1337{
1338	struct task_struct *task = get_proc_task(file_inode(file));
1339	char buffer[PROC_NUMBUF];
1340	size_t len;
1341	int make_it_fail;
1342
1343	if (!task)
1344		return -ESRCH;
1345	make_it_fail = task->make_it_fail;
1346	put_task_struct(task);
1347
1348	len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1349
1350	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1351}
1352
1353static ssize_t proc_fault_inject_write(struct file * file,
1354			const char __user * buf, size_t count, loff_t *ppos)
1355{
1356	struct task_struct *task;
1357	char buffer[PROC_NUMBUF];
1358	int make_it_fail;
1359	int rv;
1360
1361	if (!capable(CAP_SYS_RESOURCE))
1362		return -EPERM;
1363	memset(buffer, 0, sizeof(buffer));
1364	if (count > sizeof(buffer) - 1)
1365		count = sizeof(buffer) - 1;
1366	if (copy_from_user(buffer, buf, count))
1367		return -EFAULT;
1368	rv = kstrtoint(strstrip(buffer), 0, &make_it_fail);
1369	if (rv < 0)
1370		return rv;
1371	if (make_it_fail < 0 || make_it_fail > 1)
1372		return -EINVAL;
1373
1374	task = get_proc_task(file_inode(file));
1375	if (!task)
1376		return -ESRCH;
1377	task->make_it_fail = make_it_fail;
1378	put_task_struct(task);
1379
1380	return count;
1381}
1382
1383static const struct file_operations proc_fault_inject_operations = {
1384	.read		= proc_fault_inject_read,
1385	.write		= proc_fault_inject_write,
1386	.llseek		= generic_file_llseek,
1387};
1388#endif
1389
1390
1391#ifdef CONFIG_SCHED_DEBUG
1392/*
1393 * Print out various scheduling related per-task fields:
1394 */
1395static int sched_show(struct seq_file *m, void *v)
1396{
1397	struct inode *inode = m->private;
1398	struct task_struct *p;
1399
1400	p = get_proc_task(inode);
1401	if (!p)
1402		return -ESRCH;
1403	proc_sched_show_task(p, m);
1404
1405	put_task_struct(p);
1406
1407	return 0;
1408}
1409
1410static ssize_t
1411sched_write(struct file *file, const char __user *buf,
1412	    size_t count, loff_t *offset)
1413{
1414	struct inode *inode = file_inode(file);
1415	struct task_struct *p;
1416
1417	p = get_proc_task(inode);
1418	if (!p)
1419		return -ESRCH;
1420	proc_sched_set_task(p);
1421
1422	put_task_struct(p);
1423
1424	return count;
1425}
1426
1427static int sched_open(struct inode *inode, struct file *filp)
1428{
1429	return single_open(filp, sched_show, inode);
1430}
1431
1432static const struct file_operations proc_pid_sched_operations = {
1433	.open		= sched_open,
1434	.read		= seq_read,
1435	.write		= sched_write,
1436	.llseek		= seq_lseek,
1437	.release	= single_release,
1438};
1439
1440#endif
1441
1442#ifdef CONFIG_SCHED_AUTOGROUP
1443/*
1444 * Print out autogroup related information:
1445 */
1446static int sched_autogroup_show(struct seq_file *m, void *v)
1447{
1448	struct inode *inode = m->private;
1449	struct task_struct *p;
1450
1451	p = get_proc_task(inode);
1452	if (!p)
1453		return -ESRCH;
1454	proc_sched_autogroup_show_task(p, m);
1455
1456	put_task_struct(p);
1457
1458	return 0;
1459}
1460
1461static ssize_t
1462sched_autogroup_write(struct file *file, const char __user *buf,
1463	    size_t count, loff_t *offset)
1464{
1465	struct inode *inode = file_inode(file);
1466	struct task_struct *p;
1467	char buffer[PROC_NUMBUF];
1468	int nice;
1469	int err;
1470
1471	memset(buffer, 0, sizeof(buffer));
1472	if (count > sizeof(buffer) - 1)
1473		count = sizeof(buffer) - 1;
1474	if (copy_from_user(buffer, buf, count))
1475		return -EFAULT;
1476
1477	err = kstrtoint(strstrip(buffer), 0, &nice);
1478	if (err < 0)
1479		return err;
1480
1481	p = get_proc_task(inode);
1482	if (!p)
1483		return -ESRCH;
1484
1485	err = proc_sched_autogroup_set_nice(p, nice);
 
1486	if (err)
1487		count = err;
1488
1489	put_task_struct(p);
1490
1491	return count;
1492}
1493
1494static int sched_autogroup_open(struct inode *inode, struct file *filp)
1495{
1496	int ret;
1497
1498	ret = single_open(filp, sched_autogroup_show, NULL);
1499	if (!ret) {
1500		struct seq_file *m = filp->private_data;
1501
1502		m->private = inode;
1503	}
1504	return ret;
1505}
1506
1507static const struct file_operations proc_pid_sched_autogroup_operations = {
1508	.open		= sched_autogroup_open,
1509	.read		= seq_read,
1510	.write		= sched_autogroup_write,
1511	.llseek		= seq_lseek,
1512	.release	= single_release,
1513};
1514
1515#endif /* CONFIG_SCHED_AUTOGROUP */
1516
1517static ssize_t comm_write(struct file *file, const char __user *buf,
1518				size_t count, loff_t *offset)
1519{
1520	struct inode *inode = file_inode(file);
1521	struct task_struct *p;
1522	char buffer[TASK_COMM_LEN];
1523	const size_t maxlen = sizeof(buffer) - 1;
1524
1525	memset(buffer, 0, sizeof(buffer));
1526	if (copy_from_user(buffer, buf, count > maxlen ? maxlen : count))
 
 
1527		return -EFAULT;
1528
1529	p = get_proc_task(inode);
1530	if (!p)
1531		return -ESRCH;
1532
1533	if (same_thread_group(current, p))
1534		set_task_comm(p, buffer);
1535	else
1536		count = -EINVAL;
1537
1538	put_task_struct(p);
1539
1540	return count;
1541}
1542
1543static int comm_show(struct seq_file *m, void *v)
1544{
1545	struct inode *inode = m->private;
1546	struct task_struct *p;
1547
1548	p = get_proc_task(inode);
1549	if (!p)
1550		return -ESRCH;
1551
1552	task_lock(p);
1553	seq_printf(m, "%s\n", p->comm);
1554	task_unlock(p);
1555
1556	put_task_struct(p);
1557
1558	return 0;
1559}
1560
1561static int comm_open(struct inode *inode, struct file *filp)
1562{
1563	return single_open(filp, comm_show, inode);
1564}
1565
1566static const struct file_operations proc_pid_set_comm_operations = {
1567	.open		= comm_open,
1568	.read		= seq_read,
1569	.write		= comm_write,
1570	.llseek		= seq_lseek,
1571	.release	= single_release,
1572};
1573
1574static int proc_exe_link(struct dentry *dentry, struct path *exe_path)
1575{
1576	struct task_struct *task;
 
1577	struct file *exe_file;
1578
1579	task = get_proc_task(d_inode(dentry));
1580	if (!task)
1581		return -ENOENT;
1582	exe_file = get_task_exe_file(task);
1583	put_task_struct(task);
 
 
 
 
1584	if (exe_file) {
1585		*exe_path = exe_file->f_path;
1586		path_get(&exe_file->f_path);
1587		fput(exe_file);
1588		return 0;
1589	} else
1590		return -ENOENT;
1591}
1592
1593static const char *proc_pid_get_link(struct dentry *dentry,
1594				     struct inode *inode,
1595				     struct delayed_call *done)
1596{
1597	struct path path;
1598	int error = -EACCES;
1599
1600	if (!dentry)
1601		return ERR_PTR(-ECHILD);
1602
1603	/* Are we allowed to snoop on the tasks file descriptors? */
1604	if (!proc_fd_access_allowed(inode))
1605		goto out;
1606
1607	error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1608	if (error)
1609		goto out;
1610
1611	nd_jump_link(&path);
1612	return NULL;
1613out:
1614	return ERR_PTR(error);
1615}
1616
1617static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1618{
1619	char *tmp = (char*)__get_free_page(GFP_TEMPORARY);
1620	char *pathname;
1621	int len;
1622
1623	if (!tmp)
1624		return -ENOMEM;
1625
1626	pathname = d_path(path, tmp, PAGE_SIZE);
1627	len = PTR_ERR(pathname);
1628	if (IS_ERR(pathname))
1629		goto out;
1630	len = tmp + PAGE_SIZE - 1 - pathname;
1631
1632	if (len > buflen)
1633		len = buflen;
1634	if (copy_to_user(buffer, pathname, len))
1635		len = -EFAULT;
1636 out:
1637	free_page((unsigned long)tmp);
1638	return len;
1639}
1640
1641static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1642{
1643	int error = -EACCES;
1644	struct inode *inode = d_inode(dentry);
1645	struct path path;
1646
1647	/* Are we allowed to snoop on the tasks file descriptors? */
1648	if (!proc_fd_access_allowed(inode))
1649		goto out;
1650
1651	error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1652	if (error)
1653		goto out;
1654
1655	error = do_proc_readlink(&path, buffer, buflen);
1656	path_put(&path);
1657out:
1658	return error;
1659}
1660
1661const struct inode_operations proc_pid_link_inode_operations = {
1662	.readlink	= proc_pid_readlink,
1663	.get_link	= proc_pid_get_link,
1664	.setattr	= proc_setattr,
1665};
1666
1667
1668/* building an inode */
1669
1670struct inode *proc_pid_make_inode(struct super_block * sb,
1671				  struct task_struct *task, umode_t mode)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1672{
1673	struct inode * inode;
1674	struct proc_inode *ei;
1675	const struct cred *cred;
1676
1677	/* We need a new inode */
1678
1679	inode = new_inode(sb);
1680	if (!inode)
1681		goto out;
1682
1683	/* Common stuff */
1684	ei = PROC_I(inode);
1685	inode->i_mode = mode;
1686	inode->i_ino = get_next_ino();
1687	inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode);
1688	inode->i_op = &proc_def_inode_operations;
1689
1690	/*
1691	 * grab the reference to task.
1692	 */
1693	ei->pid = get_task_pid(task, PIDTYPE_PID);
1694	if (!ei->pid)
1695		goto out_unlock;
1696
1697	if (task_dumpable(task)) {
1698		rcu_read_lock();
1699		cred = __task_cred(task);
1700		inode->i_uid = cred->euid;
1701		inode->i_gid = cred->egid;
1702		rcu_read_unlock();
1703	}
1704	security_task_to_inode(task, inode);
1705
1706out:
1707	return inode;
1708
1709out_unlock:
1710	iput(inode);
1711	return NULL;
1712}
1713
1714int pid_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
1715{
1716	struct inode *inode = d_inode(dentry);
1717	struct task_struct *task;
1718	const struct cred *cred;
1719	struct pid_namespace *pid = dentry->d_sb->s_fs_info;
1720
1721	generic_fillattr(inode, stat);
1722
1723	rcu_read_lock();
1724	stat->uid = GLOBAL_ROOT_UID;
1725	stat->gid = GLOBAL_ROOT_GID;
1726	task = pid_task(proc_pid(inode), PIDTYPE_PID);
1727	if (task) {
1728		if (!has_pid_permissions(pid, task, 2)) {
1729			rcu_read_unlock();
1730			/*
1731			 * This doesn't prevent learning whether PID exists,
1732			 * it only makes getattr() consistent with readdir().
1733			 */
1734			return -ENOENT;
1735		}
1736		if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1737		    task_dumpable(task)) {
1738			cred = __task_cred(task);
1739			stat->uid = cred->euid;
1740			stat->gid = cred->egid;
1741		}
1742	}
1743	rcu_read_unlock();
1744	return 0;
1745}
1746
1747/* dentry stuff */
1748
1749/*
1750 *	Exceptional case: normally we are not allowed to unhash a busy
1751 * directory. In this case, however, we can do it - no aliasing problems
1752 * due to the way we treat inodes.
1753 *
1754 * Rewrite the inode's ownerships here because the owning task may have
1755 * performed a setuid(), etc.
1756 *
1757 * Before the /proc/pid/status file was created the only way to read
1758 * the effective uid of a /process was to stat /proc/pid.  Reading
1759 * /proc/pid/status is slow enough that procps and other packages
1760 * kept stating /proc/pid.  To keep the rules in /proc simple I have
1761 * made this apply to all per process world readable and executable
1762 * directories.
1763 */
1764int pid_revalidate(struct dentry *dentry, unsigned int flags)
1765{
1766	struct inode *inode;
1767	struct task_struct *task;
1768	const struct cred *cred;
1769
1770	if (flags & LOOKUP_RCU)
1771		return -ECHILD;
1772
1773	inode = d_inode(dentry);
1774	task = get_proc_task(inode);
1775
1776	if (task) {
1777		if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1778		    task_dumpable(task)) {
1779			rcu_read_lock();
1780			cred = __task_cred(task);
1781			inode->i_uid = cred->euid;
1782			inode->i_gid = cred->egid;
1783			rcu_read_unlock();
1784		} else {
1785			inode->i_uid = GLOBAL_ROOT_UID;
1786			inode->i_gid = GLOBAL_ROOT_GID;
1787		}
1788		inode->i_mode &= ~(S_ISUID | S_ISGID);
1789		security_task_to_inode(task, inode);
1790		put_task_struct(task);
1791		return 1;
1792	}
 
1793	return 0;
1794}
1795
1796static inline bool proc_inode_is_dead(struct inode *inode)
1797{
1798	return !proc_pid(inode)->tasks[PIDTYPE_PID].first;
1799}
1800
1801int pid_delete_dentry(const struct dentry *dentry)
1802{
1803	/* Is the task we represent dead?
1804	 * If so, then don't put the dentry on the lru list,
1805	 * kill it immediately.
1806	 */
1807	return proc_inode_is_dead(d_inode(dentry));
1808}
1809
1810const struct dentry_operations pid_dentry_operations =
1811{
1812	.d_revalidate	= pid_revalidate,
1813	.d_delete	= pid_delete_dentry,
1814};
1815
1816/* Lookups */
1817
1818/*
1819 * Fill a directory entry.
1820 *
1821 * If possible create the dcache entry and derive our inode number and
1822 * file type from dcache entry.
1823 *
1824 * Since all of the proc inode numbers are dynamically generated, the inode
1825 * numbers do not exist until the inode is cache.  This means creating the
1826 * the dcache entry in readdir is necessary to keep the inode numbers
1827 * reported by readdir in sync with the inode numbers reported
1828 * by stat.
1829 */
1830bool proc_fill_cache(struct file *file, struct dir_context *ctx,
1831	const char *name, int len,
1832	instantiate_t instantiate, struct task_struct *task, const void *ptr)
1833{
1834	struct dentry *child, *dir = file->f_path.dentry;
1835	struct qstr qname = QSTR_INIT(name, len);
1836	struct inode *inode;
1837	unsigned type;
1838	ino_t ino;
 
 
 
 
 
1839
1840	child = d_hash_and_lookup(dir, &qname);
1841	if (!child) {
1842		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1843		child = d_alloc_parallel(dir, &qname, &wq);
1844		if (IS_ERR(child))
1845			goto end_instantiate;
1846		if (d_in_lookup(child)) {
1847			int err = instantiate(d_inode(dir), child, task, ptr);
1848			d_lookup_done(child);
1849			if (err < 0) {
1850				dput(child);
1851				goto end_instantiate;
1852			}
1853		}
 
 
 
 
1854	}
1855	inode = d_inode(child);
1856	ino = inode->i_ino;
1857	type = inode->i_mode >> 12;
1858	dput(child);
1859	return dir_emit(ctx, name, len, ino, type);
1860
1861end_instantiate:
1862	return dir_emit(ctx, name, len, 1, DT_UNKNOWN);
 
 
 
 
1863}
1864
1865/*
1866 * dname_to_vma_addr - maps a dentry name into two unsigned longs
1867 * which represent vma start and end addresses.
1868 */
1869static int dname_to_vma_addr(struct dentry *dentry,
1870			     unsigned long *start, unsigned long *end)
1871{
1872	if (sscanf(dentry->d_name.name, "%lx-%lx", start, end) != 2)
1873		return -EINVAL;
 
1874
1875	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
1876}
1877
1878static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags)
 
 
1879{
1880	unsigned long vm_start, vm_end;
1881	bool exact_vma_exists = false;
1882	struct mm_struct *mm = NULL;
1883	struct task_struct *task;
1884	const struct cred *cred;
1885	struct inode *inode;
1886	int status = 0;
1887
1888	if (flags & LOOKUP_RCU)
1889		return -ECHILD;
1890
1891	inode = d_inode(dentry);
1892	task = get_proc_task(inode);
1893	if (!task)
1894		goto out_notask;
1895
1896	mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
1897	if (IS_ERR_OR_NULL(mm))
1898		goto out;
1899
1900	if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) {
1901		down_read(&mm->mmap_sem);
1902		exact_vma_exists = !!find_exact_vma(mm, vm_start, vm_end);
1903		up_read(&mm->mmap_sem);
1904	}
1905
1906	mmput(mm);
1907
1908	if (exact_vma_exists) {
1909		if (task_dumpable(task)) {
1910			rcu_read_lock();
1911			cred = __task_cred(task);
1912			inode->i_uid = cred->euid;
1913			inode->i_gid = cred->egid;
1914			rcu_read_unlock();
1915		} else {
1916			inode->i_uid = GLOBAL_ROOT_UID;
1917			inode->i_gid = GLOBAL_ROOT_GID;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1918		}
1919		security_task_to_inode(task, inode);
1920		status = 1;
1921	}
 
 
1922
1923out:
1924	put_task_struct(task);
1925
1926out_notask:
1927	return status;
1928}
1929
1930static const struct dentry_operations tid_map_files_dentry_operations = {
1931	.d_revalidate	= map_files_d_revalidate,
1932	.d_delete	= pid_delete_dentry,
1933};
1934
1935static int map_files_get_link(struct dentry *dentry, struct path *path)
1936{
1937	unsigned long vm_start, vm_end;
1938	struct vm_area_struct *vma;
1939	struct task_struct *task;
1940	struct mm_struct *mm;
1941	int rc;
 
1942
1943	rc = -ENOENT;
1944	task = get_proc_task(d_inode(dentry));
1945	if (!task)
1946		goto out;
1947
1948	mm = get_task_mm(task);
1949	put_task_struct(task);
1950	if (!mm)
1951		goto out;
1952
1953	rc = dname_to_vma_addr(dentry, &vm_start, &vm_end);
1954	if (rc)
1955		goto out_mmput;
1956
1957	rc = -ENOENT;
1958	down_read(&mm->mmap_sem);
1959	vma = find_exact_vma(mm, vm_start, vm_end);
1960	if (vma && vma->vm_file) {
1961		*path = vma->vm_file->f_path;
1962		path_get(path);
1963		rc = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1964	}
1965	up_read(&mm->mmap_sem);
1966
1967out_mmput:
1968	mmput(mm);
1969out:
1970	return rc;
1971}
1972
1973struct map_files_info {
1974	fmode_t		mode;
1975	unsigned int	len;
1976	unsigned char	name[4*sizeof(long)+2]; /* max: %lx-%lx\0 */
1977};
1978
1979/*
1980 * Only allow CAP_SYS_ADMIN to follow the links, due to concerns about how the
1981 * symlinks may be used to bypass permissions on ancestor directories in the
1982 * path to the file in question.
1983 */
1984static const char *
1985proc_map_files_get_link(struct dentry *dentry,
1986			struct inode *inode,
1987		        struct delayed_call *done)
1988{
1989	if (!capable(CAP_SYS_ADMIN))
1990		return ERR_PTR(-EPERM);
1991
1992	return proc_pid_get_link(dentry, inode, done);
1993}
1994
1995/*
1996 * Identical to proc_pid_link_inode_operations except for get_link()
1997 */
1998static const struct inode_operations proc_map_files_link_inode_operations = {
1999	.readlink	= proc_pid_readlink,
2000	.get_link	= proc_map_files_get_link,
2001	.setattr	= proc_setattr,
2002};
2003
2004static int
2005proc_map_files_instantiate(struct inode *dir, struct dentry *dentry,
2006			   struct task_struct *task, const void *ptr)
2007{
2008	fmode_t mode = (fmode_t)(unsigned long)ptr;
2009	struct proc_inode *ei;
2010	struct inode *inode;
 
 
 
2011
2012	inode = proc_pid_make_inode(dir->i_sb, task, S_IFLNK |
2013				    ((mode & FMODE_READ ) ? S_IRUSR : 0) |
2014				    ((mode & FMODE_WRITE) ? S_IWUSR : 0));
2015	if (!inode)
2016		return -ENOENT;
 
 
 
 
 
 
2017
2018	ei = PROC_I(inode);
2019	ei->op.proc_get_link = map_files_get_link;
 
 
 
 
 
 
 
 
 
 
 
 
2020
2021	inode->i_op = &proc_map_files_link_inode_operations;
2022	inode->i_size = 64;
2023
2024	d_set_d_op(dentry, &tid_map_files_dentry_operations);
2025	d_add(dentry, inode);
 
 
 
2026
2027	return 0;
 
 
 
 
 
 
 
2028}
2029
2030static struct dentry *proc_map_files_lookup(struct inode *dir,
2031		struct dentry *dentry, unsigned int flags)
 
2032{
2033	unsigned long vm_start, vm_end;
2034	struct vm_area_struct *vma;
2035	struct task_struct *task;
2036	int result;
2037	struct mm_struct *mm;
2038
2039	result = -ENOENT;
2040	task = get_proc_task(dir);
2041	if (!task)
 
 
2042		goto out;
2043
2044	result = -EACCES;
2045	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2046		goto out_put_task;
2047
2048	result = -ENOENT;
2049	if (dname_to_vma_addr(dentry, &vm_start, &vm_end))
2050		goto out_put_task;
2051
2052	mm = get_task_mm(task);
2053	if (!mm)
2054		goto out_put_task;
2055
2056	down_read(&mm->mmap_sem);
2057	vma = find_exact_vma(mm, vm_start, vm_end);
2058	if (!vma)
2059		goto out_no_vma;
2060
2061	if (vma->vm_file)
2062		result = proc_map_files_instantiate(dir, dentry, task,
2063				(void *)(unsigned long)vma->vm_file->f_mode);
2064
2065out_no_vma:
2066	up_read(&mm->mmap_sem);
2067	mmput(mm);
2068out_put_task:
2069	put_task_struct(task);
2070out:
2071	return ERR_PTR(result);
2072}
2073
2074static const struct inode_operations proc_map_files_inode_operations = {
2075	.lookup		= proc_map_files_lookup,
2076	.permission	= proc_fd_permission,
2077	.setattr	= proc_setattr,
2078};
2079
2080static int
2081proc_map_files_readdir(struct file *file, struct dir_context *ctx)
2082{
2083	struct vm_area_struct *vma;
2084	struct task_struct *task;
2085	struct mm_struct *mm;
2086	unsigned long nr_files, pos, i;
2087	struct flex_array *fa = NULL;
2088	struct map_files_info info;
2089	struct map_files_info *p;
2090	int ret;
2091
2092	ret = -ENOENT;
2093	task = get_proc_task(file_inode(file));
2094	if (!task)
2095		goto out;
2096
2097	ret = -EACCES;
2098	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2099		goto out_put_task;
2100
2101	ret = 0;
2102	if (!dir_emit_dots(file, ctx))
2103		goto out_put_task;
2104
2105	mm = get_task_mm(task);
2106	if (!mm)
2107		goto out_put_task;
2108	down_read(&mm->mmap_sem);
2109
2110	nr_files = 0;
2111
2112	/*
2113	 * We need two passes here:
2114	 *
2115	 *  1) Collect vmas of mapped files with mmap_sem taken
2116	 *  2) Release mmap_sem and instantiate entries
2117	 *
2118	 * otherwise we get lockdep complained, since filldir()
2119	 * routine might require mmap_sem taken in might_fault().
2120	 */
2121
2122	for (vma = mm->mmap, pos = 2; vma; vma = vma->vm_next) {
2123		if (vma->vm_file && ++pos > ctx->pos)
2124			nr_files++;
2125	}
2126
2127	if (nr_files) {
2128		fa = flex_array_alloc(sizeof(info), nr_files,
2129					GFP_KERNEL);
2130		if (!fa || flex_array_prealloc(fa, 0, nr_files,
2131						GFP_KERNEL)) {
2132			ret = -ENOMEM;
2133			if (fa)
2134				flex_array_free(fa);
2135			up_read(&mm->mmap_sem);
2136			mmput(mm);
2137			goto out_put_task;
2138		}
2139		for (i = 0, vma = mm->mmap, pos = 2; vma;
2140				vma = vma->vm_next) {
2141			if (!vma->vm_file)
2142				continue;
2143			if (++pos <= ctx->pos)
2144				continue;
2145
2146			info.mode = vma->vm_file->f_mode;
2147			info.len = snprintf(info.name,
2148					sizeof(info.name), "%lx-%lx",
2149					vma->vm_start, vma->vm_end);
2150			if (flex_array_put(fa, i++, &info, GFP_KERNEL))
2151				BUG();
2152		}
2153	}
2154	up_read(&mm->mmap_sem);
2155
2156	for (i = 0; i < nr_files; i++) {
2157		p = flex_array_get(fa, i);
2158		if (!proc_fill_cache(file, ctx,
2159				      p->name, p->len,
2160				      proc_map_files_instantiate,
2161				      task,
2162				      (void *)(unsigned long)p->mode))
2163			break;
2164		ctx->pos++;
2165	}
2166	if (fa)
2167		flex_array_free(fa);
2168	mmput(mm);
2169
2170out_put_task:
2171	put_task_struct(task);
2172out:
2173	return ret;
 
 
2174}
2175
2176static const struct file_operations proc_map_files_operations = {
2177	.read		= generic_read_dir,
2178	.iterate_shared	= proc_map_files_readdir,
2179	.llseek		= generic_file_llseek,
2180};
2181
2182#ifdef CONFIG_CHECKPOINT_RESTORE
2183struct timers_private {
2184	struct pid *pid;
2185	struct task_struct *task;
2186	struct sighand_struct *sighand;
2187	struct pid_namespace *ns;
2188	unsigned long flags;
2189};
2190
2191static void *timers_start(struct seq_file *m, loff_t *pos)
2192{
2193	struct timers_private *tp = m->private;
2194
2195	tp->task = get_pid_task(tp->pid, PIDTYPE_PID);
2196	if (!tp->task)
2197		return ERR_PTR(-ESRCH);
2198
2199	tp->sighand = lock_task_sighand(tp->task, &tp->flags);
2200	if (!tp->sighand)
2201		return ERR_PTR(-ESRCH);
2202
2203	return seq_list_start(&tp->task->signal->posix_timers, *pos);
2204}
2205
2206static void *timers_next(struct seq_file *m, void *v, loff_t *pos)
2207{
2208	struct timers_private *tp = m->private;
2209	return seq_list_next(v, &tp->task->signal->posix_timers, pos);
2210}
2211
2212static void timers_stop(struct seq_file *m, void *v)
 
2213{
2214	struct timers_private *tp = m->private;
2215
2216	if (tp->sighand) {
2217		unlock_task_sighand(tp->task, &tp->flags);
2218		tp->sighand = NULL;
2219	}
2220
2221	if (tp->task) {
2222		put_task_struct(tp->task);
2223		tp->task = NULL;
2224	}
2225}
2226
2227static int show_timer(struct seq_file *m, void *v)
2228{
2229	struct k_itimer *timer;
2230	struct timers_private *tp = m->private;
2231	int notify;
2232	static const char * const nstr[] = {
2233		[SIGEV_SIGNAL] = "signal",
2234		[SIGEV_NONE] = "none",
2235		[SIGEV_THREAD] = "thread",
2236	};
2237
2238	timer = list_entry((struct list_head *)v, struct k_itimer, list);
2239	notify = timer->it_sigev_notify;
2240
2241	seq_printf(m, "ID: %d\n", timer->it_id);
2242	seq_printf(m, "signal: %d/%p\n",
2243		   timer->sigq->info.si_signo,
2244		   timer->sigq->info.si_value.sival_ptr);
2245	seq_printf(m, "notify: %s/%s.%d\n",
2246		   nstr[notify & ~SIGEV_THREAD_ID],
2247		   (notify & SIGEV_THREAD_ID) ? "tid" : "pid",
2248		   pid_nr_ns(timer->it_pid, tp->ns));
2249	seq_printf(m, "ClockID: %d\n", timer->it_clock);
2250
2251	return 0;
2252}
2253
2254static const struct seq_operations proc_timers_seq_ops = {
2255	.start	= timers_start,
2256	.next	= timers_next,
2257	.stop	= timers_stop,
2258	.show	= show_timer,
2259};
2260
2261static int proc_timers_open(struct inode *inode, struct file *file)
 
 
 
 
2262{
2263	struct timers_private *tp;
2264
2265	tp = __seq_open_private(file, &proc_timers_seq_ops,
2266			sizeof(struct timers_private));
2267	if (!tp)
2268		return -ENOMEM;
2269
2270	tp->pid = proc_pid(inode);
2271	tp->ns = inode->i_sb->s_fs_info;
2272	return 0;
2273}
2274
2275static const struct file_operations proc_timers_operations = {
2276	.open		= proc_timers_open,
2277	.read		= seq_read,
2278	.llseek		= seq_lseek,
2279	.release	= seq_release_private,
 
 
2280};
2281#endif
2282
2283static ssize_t timerslack_ns_write(struct file *file, const char __user *buf,
2284					size_t count, loff_t *offset)
2285{
2286	struct inode *inode = file_inode(file);
2287	struct task_struct *p;
2288	u64 slack_ns;
2289	int err;
2290
2291	err = kstrtoull_from_user(buf, count, 10, &slack_ns);
2292	if (err < 0)
2293		return err;
 
 
 
 
 
 
 
 
 
2294
2295	p = get_proc_task(inode);
2296	if (!p)
2297		return -ESRCH;
2298
2299	if (p != current) {
2300		if (!capable(CAP_SYS_NICE)) {
2301			count = -EPERM;
2302			goto out;
2303		}
2304
2305		err = security_task_setscheduler(p);
2306		if (err) {
2307			count = err;
2308			goto out;
2309		}
2310	}
2311
2312	task_lock(p);
2313	if (slack_ns == 0)
2314		p->timer_slack_ns = p->default_timer_slack_ns;
2315	else
2316		p->timer_slack_ns = slack_ns;
2317	task_unlock(p);
2318
2319out:
2320	put_task_struct(p);
2321
2322	return count;
2323}
2324
2325static int timerslack_ns_show(struct seq_file *m, void *v)
 
 
2326{
2327	struct inode *inode = m->private;
2328	struct task_struct *p;
2329	int err = 0;
2330
2331	p = get_proc_task(inode);
2332	if (!p)
2333		return -ESRCH;
2334
2335	if (p != current) {
2336
2337		if (!capable(CAP_SYS_NICE)) {
2338			err = -EPERM;
2339			goto out;
2340		}
2341		err = security_task_getscheduler(p);
2342		if (err)
2343			goto out;
2344	}
2345
2346	task_lock(p);
2347	seq_printf(m, "%llu\n", p->timer_slack_ns);
2348	task_unlock(p);
2349
2350out:
2351	put_task_struct(p);
2352
2353	return err;
2354}
2355
2356static int timerslack_ns_open(struct inode *inode, struct file *filp)
2357{
2358	return single_open(filp, timerslack_ns_show, inode);
 
2359}
2360
2361static const struct file_operations proc_pid_set_timerslack_ns_operations = {
2362	.open		= timerslack_ns_open,
2363	.read		= seq_read,
2364	.write		= timerslack_ns_write,
2365	.llseek		= seq_lseek,
2366	.release	= single_release,
 
 
 
 
 
 
2367};
2368
2369static int proc_pident_instantiate(struct inode *dir,
 
2370	struct dentry *dentry, struct task_struct *task, const void *ptr)
2371{
2372	const struct pid_entry *p = ptr;
2373	struct inode *inode;
2374	struct proc_inode *ei;
 
2375
2376	inode = proc_pid_make_inode(dir->i_sb, task, p->mode);
2377	if (!inode)
2378		goto out;
2379
2380	ei = PROC_I(inode);
 
2381	if (S_ISDIR(inode->i_mode))
2382		set_nlink(inode, 2);	/* Use getattr to fix if necessary */
2383	if (p->iop)
2384		inode->i_op = p->iop;
2385	if (p->fop)
2386		inode->i_fop = p->fop;
2387	ei->op = p->op;
2388	d_set_d_op(dentry, &pid_dentry_operations);
2389	d_add(dentry, inode);
2390	/* Close the race of the process dying before we return the dentry */
2391	if (pid_revalidate(dentry, 0))
2392		return 0;
2393out:
2394	return -ENOENT;
2395}
2396
2397static struct dentry *proc_pident_lookup(struct inode *dir, 
2398					 struct dentry *dentry,
2399					 const struct pid_entry *ents,
2400					 unsigned int nents)
2401{
2402	int error;
2403	struct task_struct *task = get_proc_task(dir);
2404	const struct pid_entry *p, *last;
2405
2406	error = -ENOENT;
2407
2408	if (!task)
2409		goto out_no_task;
2410
2411	/*
2412	 * Yes, it does not scale. And it should not. Don't add
2413	 * new entries into /proc/<tgid>/ without very good reasons.
2414	 */
2415	last = &ents[nents];
2416	for (p = ents; p < last; p++) {
2417		if (p->len != dentry->d_name.len)
2418			continue;
2419		if (!memcmp(dentry->d_name.name, p->name, p->len))
2420			break;
2421	}
2422	if (p >= last)
2423		goto out;
2424
2425	error = proc_pident_instantiate(dir, dentry, task, p);
2426out:
2427	put_task_struct(task);
2428out_no_task:
2429	return ERR_PTR(error);
 
 
 
 
 
 
 
2430}
2431
2432static int proc_pident_readdir(struct file *file, struct dir_context *ctx,
 
2433		const struct pid_entry *ents, unsigned int nents)
2434{
2435	struct task_struct *task = get_proc_task(file_inode(file));
2436	const struct pid_entry *p;
 
 
 
 
 
2437
 
2438	if (!task)
2439		return -ENOENT;
2440
2441	if (!dir_emit_dots(file, ctx))
2442		goto out;
2443
2444	if (ctx->pos >= nents + 2)
2445		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2446
2447	for (p = ents + (ctx->pos - 2); p < ents + nents; p++) {
2448		if (!proc_fill_cache(file, ctx, p->name, p->len,
2449				proc_pident_instantiate, task, p))
2450			break;
2451		ctx->pos++;
2452	}
2453out:
2454	put_task_struct(task);
2455	return 0;
 
2456}
2457
2458#ifdef CONFIG_SECURITY
2459static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2460				  size_t count, loff_t *ppos)
2461{
2462	struct inode * inode = file_inode(file);
2463	char *p = NULL;
2464	ssize_t length;
2465	struct task_struct *task = get_proc_task(inode);
2466
2467	if (!task)
2468		return -ESRCH;
2469
2470	length = security_getprocattr(task,
2471				      (char*)file->f_path.dentry->d_name.name,
2472				      &p);
2473	put_task_struct(task);
2474	if (length > 0)
2475		length = simple_read_from_buffer(buf, count, ppos, p, length);
2476	kfree(p);
2477	return length;
2478}
2479
2480static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2481				   size_t count, loff_t *ppos)
2482{
2483	struct inode * inode = file_inode(file);
2484	void *page;
2485	ssize_t length;
2486	struct task_struct *task = get_proc_task(inode);
2487
2488	length = -ESRCH;
2489	if (!task)
2490		goto out_no_task;
2491	if (count > PAGE_SIZE)
2492		count = PAGE_SIZE;
2493
2494	/* No partial writes. */
2495	length = -EINVAL;
2496	if (*ppos != 0)
2497		goto out;
2498
2499	page = memdup_user(buf, count);
2500	if (IS_ERR(page)) {
2501		length = PTR_ERR(page);
2502		goto out;
2503	}
 
 
 
2504
2505	/* Guard against adverse ptrace interaction */
2506	length = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
2507	if (length < 0)
2508		goto out_free;
2509
2510	length = security_setprocattr(task,
2511				      (char*)file->f_path.dentry->d_name.name,
2512				      page, count);
2513	mutex_unlock(&task->signal->cred_guard_mutex);
2514out_free:
2515	kfree(page);
2516out:
2517	put_task_struct(task);
2518out_no_task:
2519	return length;
2520}
2521
2522static const struct file_operations proc_pid_attr_operations = {
2523	.read		= proc_pid_attr_read,
2524	.write		= proc_pid_attr_write,
2525	.llseek		= generic_file_llseek,
2526};
2527
2528static const struct pid_entry attr_dir_stuff[] = {
2529	REG("current",    S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2530	REG("prev",       S_IRUGO,	   proc_pid_attr_operations),
2531	REG("exec",       S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2532	REG("fscreate",   S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2533	REG("keycreate",  S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2534	REG("sockcreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2535};
2536
2537static int proc_attr_dir_readdir(struct file *file, struct dir_context *ctx)
 
2538{
2539	return proc_pident_readdir(file, ctx, 
2540				   attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2541}
2542
2543static const struct file_operations proc_attr_dir_operations = {
2544	.read		= generic_read_dir,
2545	.iterate_shared	= proc_attr_dir_readdir,
2546	.llseek		= generic_file_llseek,
2547};
2548
2549static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2550				struct dentry *dentry, unsigned int flags)
2551{
2552	return proc_pident_lookup(dir, dentry,
2553				  attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2554}
2555
2556static const struct inode_operations proc_attr_dir_inode_operations = {
2557	.lookup		= proc_attr_dir_lookup,
2558	.getattr	= pid_getattr,
2559	.setattr	= proc_setattr,
2560};
2561
2562#endif
2563
2564#ifdef CONFIG_ELF_CORE
2565static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2566					 size_t count, loff_t *ppos)
2567{
2568	struct task_struct *task = get_proc_task(file_inode(file));
2569	struct mm_struct *mm;
2570	char buffer[PROC_NUMBUF];
2571	size_t len;
2572	int ret;
2573
2574	if (!task)
2575		return -ESRCH;
2576
2577	ret = 0;
2578	mm = get_task_mm(task);
2579	if (mm) {
2580		len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2581			       ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2582				MMF_DUMP_FILTER_SHIFT));
2583		mmput(mm);
2584		ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2585	}
2586
2587	put_task_struct(task);
2588
2589	return ret;
2590}
2591
2592static ssize_t proc_coredump_filter_write(struct file *file,
2593					  const char __user *buf,
2594					  size_t count,
2595					  loff_t *ppos)
2596{
2597	struct task_struct *task;
2598	struct mm_struct *mm;
 
2599	unsigned int val;
2600	int ret;
2601	int i;
2602	unsigned long mask;
2603
2604	ret = kstrtouint_from_user(buf, count, 0, &val);
2605	if (ret < 0)
2606		return ret;
 
 
 
 
 
 
 
 
 
 
2607
2608	ret = -ESRCH;
2609	task = get_proc_task(file_inode(file));
2610	if (!task)
2611		goto out_no_task;
2612
 
2613	mm = get_task_mm(task);
2614	if (!mm)
2615		goto out_no_mm;
2616	ret = 0;
2617
2618	for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2619		if (val & mask)
2620			set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2621		else
2622			clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2623	}
2624
2625	mmput(mm);
2626 out_no_mm:
2627	put_task_struct(task);
2628 out_no_task:
2629	if (ret < 0)
2630		return ret;
2631	return count;
2632}
2633
2634static const struct file_operations proc_coredump_filter_operations = {
2635	.read		= proc_coredump_filter_read,
2636	.write		= proc_coredump_filter_write,
2637	.llseek		= generic_file_llseek,
2638};
2639#endif
2640
2641#ifdef CONFIG_TASK_IO_ACCOUNTING
2642static int do_io_accounting(struct task_struct *task, struct seq_file *m, int whole)
 
 
 
2643{
2644	struct task_io_accounting acct = task->ioac;
2645	unsigned long flags;
2646	int result;
 
 
 
 
 
2647
2648	result = mutex_lock_killable(&task->signal->cred_guard_mutex);
2649	if (result)
2650		return result;
2651
2652	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) {
2653		result = -EACCES;
2654		goto out_unlock;
 
 
 
 
2655	}
2656
2657	if (whole && lock_task_sighand(task, &flags)) {
2658		struct task_struct *t = task;
2659
2660		task_io_accounting_add(&acct, &task->signal->ioac);
2661		while_each_thread(task, t)
2662			task_io_accounting_add(&acct, &t->ioac);
2663
2664		unlock_task_sighand(task, &flags);
2665	}
2666	seq_printf(m,
2667		   "rchar: %llu\n"
2668		   "wchar: %llu\n"
2669		   "syscr: %llu\n"
2670		   "syscw: %llu\n"
2671		   "read_bytes: %llu\n"
2672		   "write_bytes: %llu\n"
2673		   "cancelled_write_bytes: %llu\n",
2674		   (unsigned long long)acct.rchar,
2675		   (unsigned long long)acct.wchar,
2676		   (unsigned long long)acct.syscr,
2677		   (unsigned long long)acct.syscw,
2678		   (unsigned long long)acct.read_bytes,
2679		   (unsigned long long)acct.write_bytes,
2680		   (unsigned long long)acct.cancelled_write_bytes);
2681	result = 0;
2682
2683out_unlock:
2684	mutex_unlock(&task->signal->cred_guard_mutex);
2685	return result;
2686}
2687
2688static int proc_tid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2689				  struct pid *pid, struct task_struct *task)
2690{
2691	return do_io_accounting(task, m, 0);
 
 
2692}
2693
2694static int proc_tgid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2695				   struct pid *pid, struct task_struct *task)
2696{
2697	return do_io_accounting(task, m, 1);
2698}
2699#endif /* CONFIG_TASK_IO_ACCOUNTING */
 
 
 
 
 
 
 
 
 
 
 
2700
2701#ifdef CONFIG_USER_NS
2702static int proc_id_map_open(struct inode *inode, struct file *file,
2703	const struct seq_operations *seq_ops)
2704{
2705	struct user_namespace *ns = NULL;
2706	struct task_struct *task;
2707	struct seq_file *seq;
2708	int ret = -EINVAL;
2709
2710	task = get_proc_task(inode);
2711	if (task) {
2712		rcu_read_lock();
2713		ns = get_user_ns(task_cred_xxx(task, user_ns));
2714		rcu_read_unlock();
2715		put_task_struct(task);
2716	}
2717	if (!ns)
2718		goto err;
2719
2720	ret = seq_open(file, seq_ops);
2721	if (ret)
2722		goto err_put_ns;
 
2723
2724	seq = file->private_data;
2725	seq->private = ns;
 
 
 
 
2726
2727	return 0;
2728err_put_ns:
2729	put_user_ns(ns);
2730err:
2731	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
2732}
2733
2734static int proc_id_map_release(struct inode *inode, struct file *file)
2735{
2736	struct seq_file *seq = file->private_data;
2737	struct user_namespace *ns = seq->private;
2738	put_user_ns(ns);
2739	return seq_release(inode, file);
2740}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2741
2742static int proc_uid_map_open(struct inode *inode, struct file *file)
2743{
2744	return proc_id_map_open(inode, file, &proc_uid_seq_operations);
 
2745}
2746
2747static int proc_gid_map_open(struct inode *inode, struct file *file)
 
2748{
2749	return proc_id_map_open(inode, file, &proc_gid_seq_operations);
 
2750}
2751
2752static int proc_projid_map_open(struct inode *inode, struct file *file)
 
2753{
2754	return proc_id_map_open(inode, file, &proc_projid_seq_operations);
2755}
 
2756
2757static const struct file_operations proc_uid_map_operations = {
2758	.open		= proc_uid_map_open,
2759	.write		= proc_uid_map_write,
2760	.read		= seq_read,
2761	.llseek		= seq_lseek,
2762	.release	= proc_id_map_release,
2763};
2764
2765static const struct file_operations proc_gid_map_operations = {
2766	.open		= proc_gid_map_open,
2767	.write		= proc_gid_map_write,
2768	.read		= seq_read,
2769	.llseek		= seq_lseek,
2770	.release	= proc_id_map_release,
2771};
2772
2773static const struct file_operations proc_projid_map_operations = {
2774	.open		= proc_projid_map_open,
2775	.write		= proc_projid_map_write,
2776	.read		= seq_read,
2777	.llseek		= seq_lseek,
2778	.release	= proc_id_map_release,
2779};
2780
2781static int proc_setgroups_open(struct inode *inode, struct file *file)
2782{
2783	struct user_namespace *ns = NULL;
2784	struct task_struct *task;
2785	int ret;
2786
2787	ret = -ESRCH;
2788	task = get_proc_task(inode);
2789	if (task) {
2790		rcu_read_lock();
2791		ns = get_user_ns(task_cred_xxx(task, user_ns));
2792		rcu_read_unlock();
2793		put_task_struct(task);
2794	}
2795	if (!ns)
2796		goto err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2797
2798	if (file->f_mode & FMODE_WRITE) {
2799		ret = -EACCES;
2800		if (!ns_capable(ns, CAP_SYS_ADMIN))
2801			goto err_put_ns;
2802	}
2803
2804	ret = single_open(file, &proc_setgroups_show, ns);
2805	if (ret)
2806		goto err_put_ns;
2807
2808	return 0;
2809err_put_ns:
2810	put_user_ns(ns);
2811err:
2812	return ret;
2813}
2814
2815static int proc_setgroups_release(struct inode *inode, struct file *file)
2816{
2817	struct seq_file *seq = file->private_data;
2818	struct user_namespace *ns = seq->private;
2819	int ret = single_release(inode, file);
2820	put_user_ns(ns);
2821	return ret;
2822}
2823
2824static const struct file_operations proc_setgroups_operations = {
2825	.open		= proc_setgroups_open,
2826	.write		= proc_setgroups_write,
2827	.read		= seq_read,
2828	.llseek		= seq_lseek,
2829	.release	= proc_setgroups_release,
2830};
2831#endif /* CONFIG_USER_NS */
2832
2833static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
2834				struct pid *pid, struct task_struct *task)
2835{
2836	int err = lock_trace(task);
2837	if (!err) {
2838		seq_printf(m, "%08x\n", task->personality);
2839		unlock_trace(task);
2840	}
2841	return err;
2842}
2843
2844/*
2845 * Thread groups
2846 */
2847static const struct file_operations proc_task_operations;
2848static const struct inode_operations proc_task_inode_operations;
2849
2850static const struct pid_entry tgid_base_stuff[] = {
2851	DIR("task",       S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
2852	DIR("fd",         S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2853	DIR("map_files",  S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations),
2854	DIR("fdinfo",     S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
2855	DIR("ns",	  S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
2856#ifdef CONFIG_NET
2857	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
2858#endif
2859	REG("environ",    S_IRUSR, proc_environ_operations),
2860	REG("auxv",       S_IRUSR, proc_auxv_operations),
2861	ONE("status",     S_IRUGO, proc_pid_status),
2862	ONE("personality", S_IRUSR, proc_pid_personality),
2863	ONE("limits",	  S_IRUGO, proc_pid_limits),
2864#ifdef CONFIG_SCHED_DEBUG
2865	REG("sched",      S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2866#endif
2867#ifdef CONFIG_SCHED_AUTOGROUP
2868	REG("autogroup",  S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
2869#endif
2870	REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
2871#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2872	ONE("syscall",    S_IRUSR, proc_pid_syscall),
2873#endif
2874	REG("cmdline",    S_IRUGO, proc_pid_cmdline_ops),
2875	ONE("stat",       S_IRUGO, proc_tgid_stat),
2876	ONE("statm",      S_IRUGO, proc_pid_statm),
2877	REG("maps",       S_IRUGO, proc_pid_maps_operations),
2878#ifdef CONFIG_NUMA
2879	REG("numa_maps",  S_IRUGO, proc_pid_numa_maps_operations),
2880#endif
2881	REG("mem",        S_IRUSR|S_IWUSR, proc_mem_operations),
2882	LNK("cwd",        proc_cwd_link),
2883	LNK("root",       proc_root_link),
2884	LNK("exe",        proc_exe_link),
2885	REG("mounts",     S_IRUGO, proc_mounts_operations),
2886	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
2887	REG("mountstats", S_IRUSR, proc_mountstats_operations),
2888#ifdef CONFIG_PROC_PAGE_MONITOR
2889	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
2890	REG("smaps",      S_IRUGO, proc_pid_smaps_operations),
2891	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
2892#endif
2893#ifdef CONFIG_SECURITY
2894	DIR("attr",       S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
2895#endif
2896#ifdef CONFIG_KALLSYMS
2897	ONE("wchan",      S_IRUGO, proc_pid_wchan),
2898#endif
2899#ifdef CONFIG_STACKTRACE
2900	ONE("stack",      S_IRUSR, proc_pid_stack),
2901#endif
2902#ifdef CONFIG_SCHED_INFO
2903	ONE("schedstat",  S_IRUGO, proc_pid_schedstat),
2904#endif
2905#ifdef CONFIG_LATENCYTOP
2906	REG("latency",  S_IRUGO, proc_lstats_operations),
2907#endif
2908#ifdef CONFIG_PROC_PID_CPUSET
2909	ONE("cpuset",     S_IRUGO, proc_cpuset_show),
2910#endif
2911#ifdef CONFIG_CGROUPS
2912	ONE("cgroup",  S_IRUGO, proc_cgroup_show),
2913#endif
2914	ONE("oom_score",  S_IRUGO, proc_oom_score),
2915	REG("oom_adj",    S_IRUGO|S_IWUSR, proc_oom_adj_operations),
2916	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
2917#ifdef CONFIG_AUDITSYSCALL
2918	REG("loginuid",   S_IWUSR|S_IRUGO, proc_loginuid_operations),
2919	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
2920#endif
2921#ifdef CONFIG_FAULT_INJECTION
2922	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
2923#endif
2924#ifdef CONFIG_ELF_CORE
2925	REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
2926#endif
2927#ifdef CONFIG_TASK_IO_ACCOUNTING
2928	ONE("io",	S_IRUSR, proc_tgid_io_accounting),
2929#endif
2930#ifdef CONFIG_HARDWALL
2931	ONE("hardwall",   S_IRUGO, proc_pid_hardwall),
2932#endif
2933#ifdef CONFIG_USER_NS
2934	REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
2935	REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
2936	REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
2937	REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
2938#endif
2939#ifdef CONFIG_CHECKPOINT_RESTORE
2940	REG("timers",	  S_IRUGO, proc_timers_operations),
2941#endif
2942	REG("timerslack_ns", S_IRUGO|S_IWUGO, proc_pid_set_timerslack_ns_operations),
2943};
2944
2945static int proc_tgid_base_readdir(struct file *file, struct dir_context *ctx)
 
2946{
2947	return proc_pident_readdir(file, ctx,
2948				   tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2949}
2950
2951static const struct file_operations proc_tgid_base_operations = {
2952	.read		= generic_read_dir,
2953	.iterate_shared	= proc_tgid_base_readdir,
2954	.llseek		= generic_file_llseek,
2955};
2956
2957static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
2958{
2959	return proc_pident_lookup(dir, dentry,
2960				  tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2961}
2962
2963static const struct inode_operations proc_tgid_base_inode_operations = {
2964	.lookup		= proc_tgid_base_lookup,
2965	.getattr	= pid_getattr,
2966	.setattr	= proc_setattr,
2967	.permission	= proc_pid_permission,
2968};
2969
2970static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
2971{
2972	struct dentry *dentry, *leader, *dir;
2973	char buf[PROC_NUMBUF];
2974	struct qstr name;
2975
2976	name.name = buf;
2977	name.len = snprintf(buf, sizeof(buf), "%d", pid);
2978	/* no ->d_hash() rejects on procfs */
2979	dentry = d_hash_and_lookup(mnt->mnt_root, &name);
2980	if (dentry) {
2981		d_invalidate(dentry);
 
2982		dput(dentry);
2983	}
2984
2985	if (pid == tgid)
2986		return;
2987
2988	name.name = buf;
2989	name.len = snprintf(buf, sizeof(buf), "%d", tgid);
2990	leader = d_hash_and_lookup(mnt->mnt_root, &name);
2991	if (!leader)
2992		goto out;
2993
2994	name.name = "task";
2995	name.len = strlen(name.name);
2996	dir = d_hash_and_lookup(leader, &name);
2997	if (!dir)
2998		goto out_put_leader;
2999
3000	name.name = buf;
3001	name.len = snprintf(buf, sizeof(buf), "%d", pid);
3002	dentry = d_hash_and_lookup(dir, &name);
3003	if (dentry) {
3004		d_invalidate(dentry);
 
3005		dput(dentry);
3006	}
3007
3008	dput(dir);
3009out_put_leader:
3010	dput(leader);
3011out:
3012	return;
3013}
3014
3015/**
3016 * proc_flush_task -  Remove dcache entries for @task from the /proc dcache.
3017 * @task: task that should be flushed.
3018 *
3019 * When flushing dentries from proc, one needs to flush them from global
3020 * proc (proc_mnt) and from all the namespaces' procs this task was seen
3021 * in. This call is supposed to do all of this job.
3022 *
3023 * Looks in the dcache for
3024 * /proc/@pid
3025 * /proc/@tgid/task/@pid
3026 * if either directory is present flushes it and all of it'ts children
3027 * from the dcache.
3028 *
3029 * It is safe and reasonable to cache /proc entries for a task until
3030 * that task exits.  After that they just clog up the dcache with
3031 * useless entries, possibly causing useful dcache entries to be
3032 * flushed instead.  This routine is proved to flush those useless
3033 * dcache entries at process exit time.
3034 *
3035 * NOTE: This routine is just an optimization so it does not guarantee
3036 *       that no dcache entries will exist at process exit time it
3037 *       just makes it very unlikely that any will persist.
3038 */
3039
3040void proc_flush_task(struct task_struct *task)
3041{
3042	int i;
3043	struct pid *pid, *tgid;
3044	struct upid *upid;
3045
3046	pid = task_pid(task);
3047	tgid = task_tgid(task);
3048
3049	for (i = 0; i <= pid->level; i++) {
3050		upid = &pid->numbers[i];
3051		proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
3052					tgid->numbers[i].nr);
3053	}
 
 
 
 
3054}
3055
3056static int proc_pid_instantiate(struct inode *dir,
3057				   struct dentry * dentry,
3058				   struct task_struct *task, const void *ptr)
3059{
 
3060	struct inode *inode;
3061
3062	inode = proc_pid_make_inode(dir->i_sb, task, S_IFDIR | S_IRUGO | S_IXUGO);
3063	if (!inode)
3064		goto out;
3065
 
3066	inode->i_op = &proc_tgid_base_inode_operations;
3067	inode->i_fop = &proc_tgid_base_operations;
3068	inode->i_flags|=S_IMMUTABLE;
3069
3070	set_nlink(inode, nlink_tgid);
 
3071
3072	d_set_d_op(dentry, &pid_dentry_operations);
3073
3074	d_add(dentry, inode);
3075	/* Close the race of the process dying before we return the dentry */
3076	if (pid_revalidate(dentry, 0))
3077		return 0;
3078out:
3079	return -ENOENT;
3080}
3081
3082struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3083{
3084	int result = -ENOENT;
3085	struct task_struct *task;
3086	unsigned tgid;
3087	struct pid_namespace *ns;
3088
3089	tgid = name_to_int(&dentry->d_name);
 
 
 
 
3090	if (tgid == ~0U)
3091		goto out;
3092
3093	ns = dentry->d_sb->s_fs_info;
3094	rcu_read_lock();
3095	task = find_task_by_pid_ns(tgid, ns);
3096	if (task)
3097		get_task_struct(task);
3098	rcu_read_unlock();
3099	if (!task)
3100		goto out;
3101
3102	result = proc_pid_instantiate(dir, dentry, task, NULL);
3103	put_task_struct(task);
3104out:
3105	return ERR_PTR(result);
3106}
3107
3108/*
3109 * Find the first task with tgid >= tgid
3110 *
3111 */
3112struct tgid_iter {
3113	unsigned int tgid;
3114	struct task_struct *task;
3115};
3116static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
3117{
3118	struct pid *pid;
3119
3120	if (iter.task)
3121		put_task_struct(iter.task);
3122	rcu_read_lock();
3123retry:
3124	iter.task = NULL;
3125	pid = find_ge_pid(iter.tgid, ns);
3126	if (pid) {
3127		iter.tgid = pid_nr_ns(pid, ns);
3128		iter.task = pid_task(pid, PIDTYPE_PID);
3129		/* What we to know is if the pid we have find is the
3130		 * pid of a thread_group_leader.  Testing for task
3131		 * being a thread_group_leader is the obvious thing
3132		 * todo but there is a window when it fails, due to
3133		 * the pid transfer logic in de_thread.
3134		 *
3135		 * So we perform the straight forward test of seeing
3136		 * if the pid we have found is the pid of a thread
3137		 * group leader, and don't worry if the task we have
3138		 * found doesn't happen to be a thread group leader.
3139		 * As we don't care in the case of readdir.
3140		 */
3141		if (!iter.task || !has_group_leader_pid(iter.task)) {
3142			iter.tgid += 1;
3143			goto retry;
3144		}
3145		get_task_struct(iter.task);
3146	}
3147	rcu_read_unlock();
3148	return iter;
3149}
3150
3151#define TGID_OFFSET (FIRST_PROCESS_ENTRY + 2)
 
 
 
 
 
 
 
 
 
3152
3153/* for the /proc/ directory itself, after non-process stuff has been done */
3154int proc_pid_readdir(struct file *file, struct dir_context *ctx)
3155{
 
 
3156	struct tgid_iter iter;
3157	struct pid_namespace *ns = file_inode(file)->i_sb->s_fs_info;
3158	loff_t pos = ctx->pos;
3159
3160	if (pos >= PID_MAX_LIMIT + TGID_OFFSET)
3161		return 0;
 
 
 
 
 
3162
3163	if (pos == TGID_OFFSET - 2) {
3164		struct inode *inode = d_inode(ns->proc_self);
3165		if (!dir_emit(ctx, "self", 4, inode->i_ino, DT_LNK))
3166			return 0;
3167		ctx->pos = pos = pos + 1;
3168	}
3169	if (pos == TGID_OFFSET - 1) {
3170		struct inode *inode = d_inode(ns->proc_thread_self);
3171		if (!dir_emit(ctx, "thread-self", 11, inode->i_ino, DT_LNK))
3172			return 0;
3173		ctx->pos = pos = pos + 1;
3174	}
3175	iter.tgid = pos - TGID_OFFSET;
3176	iter.task = NULL;
 
3177	for (iter = next_tgid(ns, iter);
3178	     iter.task;
3179	     iter.tgid += 1, iter = next_tgid(ns, iter)) {
3180		char name[PROC_NUMBUF];
3181		int len;
3182
3183		cond_resched();
3184		if (!has_pid_permissions(ns, iter.task, 2))
3185			continue;
3186
3187		len = snprintf(name, sizeof(name), "%d", iter.tgid);
3188		ctx->pos = iter.tgid + TGID_OFFSET;
3189		if (!proc_fill_cache(file, ctx, name, len,
3190				     proc_pid_instantiate, iter.task, NULL)) {
3191			put_task_struct(iter.task);
3192			return 0;
3193		}
3194	}
3195	ctx->pos = PID_MAX_LIMIT + TGID_OFFSET;
 
 
 
3196	return 0;
3197}
3198
3199/*
3200 * proc_tid_comm_permission is a special permission function exclusively
3201 * used for the node /proc/<pid>/task/<tid>/comm.
3202 * It bypasses generic permission checks in the case where a task of the same
3203 * task group attempts to access the node.
3204 * The rationale behind this is that glibc and bionic access this node for
3205 * cross thread naming (pthread_set/getname_np(!self)). However, if
3206 * PR_SET_DUMPABLE gets set to 0 this node among others becomes uid=0 gid=0,
3207 * which locks out the cross thread naming implementation.
3208 * This function makes sure that the node is always accessible for members of
3209 * same thread group.
3210 */
3211static int proc_tid_comm_permission(struct inode *inode, int mask)
3212{
3213	bool is_same_tgroup;
3214	struct task_struct *task;
3215
3216	task = get_proc_task(inode);
3217	if (!task)
3218		return -ESRCH;
3219	is_same_tgroup = same_thread_group(current, task);
3220	put_task_struct(task);
3221
3222	if (likely(is_same_tgroup && !(mask & MAY_EXEC))) {
3223		/* This file (/proc/<pid>/task/<tid>/comm) can always be
3224		 * read or written by the members of the corresponding
3225		 * thread group.
3226		 */
3227		return 0;
3228	}
3229
3230	return generic_permission(inode, mask);
3231}
3232
3233static const struct inode_operations proc_tid_comm_inode_operations = {
3234		.permission = proc_tid_comm_permission,
3235};
3236
3237/*
3238 * Tasks
3239 */
3240static const struct pid_entry tid_base_stuff[] = {
3241	DIR("fd",        S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3242	DIR("fdinfo",    S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3243	DIR("ns",	 S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3244#ifdef CONFIG_NET
3245	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3246#endif
3247	REG("environ",   S_IRUSR, proc_environ_operations),
3248	REG("auxv",      S_IRUSR, proc_auxv_operations),
3249	ONE("status",    S_IRUGO, proc_pid_status),
3250	ONE("personality", S_IRUSR, proc_pid_personality),
3251	ONE("limits",	 S_IRUGO, proc_pid_limits),
3252#ifdef CONFIG_SCHED_DEBUG
3253	REG("sched",     S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3254#endif
3255	NOD("comm",      S_IFREG|S_IRUGO|S_IWUSR,
3256			 &proc_tid_comm_inode_operations,
3257			 &proc_pid_set_comm_operations, {}),
3258#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3259	ONE("syscall",   S_IRUSR, proc_pid_syscall),
3260#endif
3261	REG("cmdline",   S_IRUGO, proc_pid_cmdline_ops),
3262	ONE("stat",      S_IRUGO, proc_tid_stat),
3263	ONE("statm",     S_IRUGO, proc_pid_statm),
3264	REG("maps",      S_IRUGO, proc_tid_maps_operations),
3265#ifdef CONFIG_PROC_CHILDREN
3266	REG("children",  S_IRUGO, proc_tid_children_operations),
3267#endif
3268#ifdef CONFIG_NUMA
3269	REG("numa_maps", S_IRUGO, proc_tid_numa_maps_operations),
3270#endif
3271	REG("mem",       S_IRUSR|S_IWUSR, proc_mem_operations),
3272	LNK("cwd",       proc_cwd_link),
3273	LNK("root",      proc_root_link),
3274	LNK("exe",       proc_exe_link),
3275	REG("mounts",    S_IRUGO, proc_mounts_operations),
3276	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
3277#ifdef CONFIG_PROC_PAGE_MONITOR
3278	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3279	REG("smaps",     S_IRUGO, proc_tid_smaps_operations),
3280	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
3281#endif
3282#ifdef CONFIG_SECURITY
3283	DIR("attr",      S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3284#endif
3285#ifdef CONFIG_KALLSYMS
3286	ONE("wchan",     S_IRUGO, proc_pid_wchan),
3287#endif
3288#ifdef CONFIG_STACKTRACE
3289	ONE("stack",      S_IRUSR, proc_pid_stack),
3290#endif
3291#ifdef CONFIG_SCHED_INFO
3292	ONE("schedstat", S_IRUGO, proc_pid_schedstat),
3293#endif
3294#ifdef CONFIG_LATENCYTOP
3295	REG("latency",  S_IRUGO, proc_lstats_operations),
3296#endif
3297#ifdef CONFIG_PROC_PID_CPUSET
3298	ONE("cpuset",    S_IRUGO, proc_cpuset_show),
3299#endif
3300#ifdef CONFIG_CGROUPS
3301	ONE("cgroup",  S_IRUGO, proc_cgroup_show),
3302#endif
3303	ONE("oom_score", S_IRUGO, proc_oom_score),
3304	REG("oom_adj",   S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3305	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3306#ifdef CONFIG_AUDITSYSCALL
3307	REG("loginuid",  S_IWUSR|S_IRUGO, proc_loginuid_operations),
3308	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
3309#endif
3310#ifdef CONFIG_FAULT_INJECTION
3311	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3312#endif
3313#ifdef CONFIG_TASK_IO_ACCOUNTING
3314	ONE("io",	S_IRUSR, proc_tid_io_accounting),
3315#endif
3316#ifdef CONFIG_HARDWALL
3317	ONE("hardwall",   S_IRUGO, proc_pid_hardwall),
3318#endif
3319#ifdef CONFIG_USER_NS
3320	REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
3321	REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
3322	REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3323	REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
3324#endif
3325};
3326
3327static int proc_tid_base_readdir(struct file *file, struct dir_context *ctx)
 
3328{
3329	return proc_pident_readdir(file, ctx,
3330				   tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3331}
3332
3333static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3334{
3335	return proc_pident_lookup(dir, dentry,
3336				  tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3337}
3338
3339static const struct file_operations proc_tid_base_operations = {
3340	.read		= generic_read_dir,
3341	.iterate_shared	= proc_tid_base_readdir,
3342	.llseek		= generic_file_llseek,
3343};
3344
3345static const struct inode_operations proc_tid_base_inode_operations = {
3346	.lookup		= proc_tid_base_lookup,
3347	.getattr	= pid_getattr,
3348	.setattr	= proc_setattr,
3349};
3350
3351static int proc_task_instantiate(struct inode *dir,
3352	struct dentry *dentry, struct task_struct *task, const void *ptr)
3353{
 
3354	struct inode *inode;
3355	inode = proc_pid_make_inode(dir->i_sb, task, S_IFDIR | S_IRUGO | S_IXUGO);
3356
3357	if (!inode)
3358		goto out;
 
3359	inode->i_op = &proc_tid_base_inode_operations;
3360	inode->i_fop = &proc_tid_base_operations;
3361	inode->i_flags|=S_IMMUTABLE;
3362
3363	set_nlink(inode, nlink_tid);
 
3364
3365	d_set_d_op(dentry, &pid_dentry_operations);
3366
3367	d_add(dentry, inode);
3368	/* Close the race of the process dying before we return the dentry */
3369	if (pid_revalidate(dentry, 0))
3370		return 0;
3371out:
3372	return -ENOENT;
3373}
3374
3375static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3376{
3377	int result = -ENOENT;
3378	struct task_struct *task;
3379	struct task_struct *leader = get_proc_task(dir);
3380	unsigned tid;
3381	struct pid_namespace *ns;
3382
3383	if (!leader)
3384		goto out_no_task;
3385
3386	tid = name_to_int(&dentry->d_name);
3387	if (tid == ~0U)
3388		goto out;
3389
3390	ns = dentry->d_sb->s_fs_info;
3391	rcu_read_lock();
3392	task = find_task_by_pid_ns(tid, ns);
3393	if (task)
3394		get_task_struct(task);
3395	rcu_read_unlock();
3396	if (!task)
3397		goto out;
3398	if (!same_thread_group(leader, task))
3399		goto out_drop_task;
3400
3401	result = proc_task_instantiate(dir, dentry, task, NULL);
3402out_drop_task:
3403	put_task_struct(task);
3404out:
3405	put_task_struct(leader);
3406out_no_task:
3407	return ERR_PTR(result);
3408}
3409
3410/*
3411 * Find the first tid of a thread group to return to user space.
3412 *
3413 * Usually this is just the thread group leader, but if the users
3414 * buffer was too small or there was a seek into the middle of the
3415 * directory we have more work todo.
3416 *
3417 * In the case of a short read we start with find_task_by_pid.
3418 *
3419 * In the case of a seek we start with the leader and walk nr
3420 * threads past it.
3421 */
3422static struct task_struct *first_tid(struct pid *pid, int tid, loff_t f_pos,
3423					struct pid_namespace *ns)
3424{
3425	struct task_struct *pos, *task;
3426	unsigned long nr = f_pos;
3427
3428	if (nr != f_pos)	/* 32bit overflow? */
3429		return NULL;
3430
3431	rcu_read_lock();
3432	task = pid_task(pid, PIDTYPE_PID);
3433	if (!task)
3434		goto fail;
3435
3436	/* Attempt to start with the tid of a thread */
3437	if (tid && nr) {
3438		pos = find_task_by_pid_ns(tid, ns);
3439		if (pos && same_thread_group(pos, task))
3440			goto found;
3441	}
3442
3443	/* If nr exceeds the number of threads there is nothing todo */
3444	if (nr >= get_nr_threads(task))
3445		goto fail;
 
3446
3447	/* If we haven't found our starting place yet start
3448	 * with the leader and walk nr threads forward.
3449	 */
3450	pos = task = task->group_leader;
3451	do {
3452		if (!nr--)
3453			goto found;
3454	} while_each_thread(task, pos);
3455fail:
3456	pos = NULL;
3457	goto out;
3458found:
3459	get_task_struct(pos);
3460out:
3461	rcu_read_unlock();
3462	return pos;
3463}
3464
3465/*
3466 * Find the next thread in the thread list.
3467 * Return NULL if there is an error or no next thread.
3468 *
3469 * The reference to the input task_struct is released.
3470 */
3471static struct task_struct *next_tid(struct task_struct *start)
3472{
3473	struct task_struct *pos = NULL;
3474	rcu_read_lock();
3475	if (pid_alive(start)) {
3476		pos = next_thread(start);
3477		if (thread_group_leader(pos))
3478			pos = NULL;
3479		else
3480			get_task_struct(pos);
3481	}
3482	rcu_read_unlock();
3483	put_task_struct(start);
3484	return pos;
3485}
3486
 
 
 
 
 
 
 
 
 
3487/* for the /proc/TGID/task/ directories */
3488static int proc_task_readdir(struct file *file, struct dir_context *ctx)
3489{
3490	struct inode *inode = file_inode(file);
 
 
3491	struct task_struct *task;
 
 
 
3492	struct pid_namespace *ns;
3493	int tid;
3494
3495	if (proc_inode_is_dead(inode))
3496		return -ENOENT;
 
 
 
 
 
 
 
 
 
 
 
3497
3498	if (!dir_emit_dots(file, ctx))
3499		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
3500
3501	/* f_version caches the tgid value that the last readdir call couldn't
3502	 * return. lseek aka telldir automagically resets f_version to 0.
3503	 */
3504	ns = inode->i_sb->s_fs_info;
3505	tid = (int)file->f_version;
3506	file->f_version = 0;
3507	for (task = first_tid(proc_pid(inode), tid, ctx->pos - 2, ns);
3508	     task;
3509	     task = next_tid(task), ctx->pos++) {
3510		char name[PROC_NUMBUF];
3511		int len;
3512		tid = task_pid_nr_ns(task, ns);
3513		len = snprintf(name, sizeof(name), "%d", tid);
3514		if (!proc_fill_cache(file, ctx, name, len,
3515				proc_task_instantiate, task, NULL)) {
3516			/* returning this tgid failed, save it as the first
3517			 * pid for the next readir call */
3518			file->f_version = (u64)tid;
3519			put_task_struct(task);
3520			break;
3521		}
3522	}
3523
3524	return 0;
 
 
3525}
3526
3527static int proc_task_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
3528{
3529	struct inode *inode = d_inode(dentry);
3530	struct task_struct *p = get_proc_task(inode);
3531	generic_fillattr(inode, stat);
3532
3533	if (p) {
3534		stat->nlink += get_nr_threads(p);
3535		put_task_struct(p);
3536	}
3537
3538	return 0;
3539}
3540
3541static const struct inode_operations proc_task_inode_operations = {
3542	.lookup		= proc_task_lookup,
3543	.getattr	= proc_task_getattr,
3544	.setattr	= proc_setattr,
3545	.permission	= proc_pid_permission,
3546};
3547
3548static const struct file_operations proc_task_operations = {
3549	.read		= generic_read_dir,
3550	.iterate_shared	= proc_task_readdir,
3551	.llseek		= generic_file_llseek,
3552};
3553
3554void __init set_proc_pid_nlink(void)
3555{
3556	nlink_tid = pid_entry_nlink(tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3557	nlink_tgid = pid_entry_nlink(tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3558}