Loading...
1/*
2 * linux/fs/proc/base.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * proc base directory handling functions
7 *
8 * 1999, Al Viro. Rewritten. Now it covers the whole per-process part.
9 * Instead of using magical inumbers to determine the kind of object
10 * we allocate and fill in-core inodes upon lookup. They don't even
11 * go into icache. We cache the reference to task_struct upon lookup too.
12 * Eventually it should become a filesystem in its own. We don't use the
13 * rest of procfs anymore.
14 *
15 *
16 * Changelog:
17 * 17-Jan-2005
18 * Allan Bezerra
19 * Bruna Moreira <bruna.moreira@indt.org.br>
20 * Edjard Mota <edjard.mota@indt.org.br>
21 * Ilias Biris <ilias.biris@indt.org.br>
22 * Mauricio Lin <mauricio.lin@indt.org.br>
23 *
24 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
25 *
26 * A new process specific entry (smaps) included in /proc. It shows the
27 * size of rss for each memory area. The maps entry lacks information
28 * about physical memory size (rss) for each mapped file, i.e.,
29 * rss information for executables and library files.
30 * This additional information is useful for any tools that need to know
31 * about physical memory consumption for a process specific library.
32 *
33 * Changelog:
34 * 21-Feb-2005
35 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
36 * Pud inclusion in the page table walking.
37 *
38 * ChangeLog:
39 * 10-Mar-2005
40 * 10LE Instituto Nokia de Tecnologia - INdT:
41 * A better way to walks through the page table as suggested by Hugh Dickins.
42 *
43 * Simo Piiroinen <simo.piiroinen@nokia.com>:
44 * Smaps information related to shared, private, clean and dirty pages.
45 *
46 * Paul Mundt <paul.mundt@nokia.com>:
47 * Overall revision about smaps.
48 */
49
50#include <asm/uaccess.h>
51
52#include <linux/errno.h>
53#include <linux/time.h>
54#include <linux/proc_fs.h>
55#include <linux/stat.h>
56#include <linux/task_io_accounting_ops.h>
57#include <linux/init.h>
58#include <linux/capability.h>
59#include <linux/file.h>
60#include <linux/fdtable.h>
61#include <linux/string.h>
62#include <linux/seq_file.h>
63#include <linux/namei.h>
64#include <linux/mnt_namespace.h>
65#include <linux/mm.h>
66#include <linux/swap.h>
67#include <linux/rcupdate.h>
68#include <linux/kallsyms.h>
69#include <linux/stacktrace.h>
70#include <linux/resource.h>
71#include <linux/module.h>
72#include <linux/mount.h>
73#include <linux/security.h>
74#include <linux/ptrace.h>
75#include <linux/tracehook.h>
76#include <linux/cgroup.h>
77#include <linux/cpuset.h>
78#include <linux/audit.h>
79#include <linux/poll.h>
80#include <linux/nsproxy.h>
81#include <linux/oom.h>
82#include <linux/elf.h>
83#include <linux/pid_namespace.h>
84#include <linux/fs_struct.h>
85#include <linux/slab.h>
86#ifdef CONFIG_HARDWALL
87#include <asm/hardwall.h>
88#endif
89#include "internal.h"
90
91/* NOTE:
92 * Implementing inode permission operations in /proc is almost
93 * certainly an error. Permission checks need to happen during
94 * each system call not at open time. The reason is that most of
95 * what we wish to check for permissions in /proc varies at runtime.
96 *
97 * The classic example of a problem is opening file descriptors
98 * in /proc for a task before it execs a suid executable.
99 */
100
101struct pid_entry {
102 char *name;
103 int len;
104 mode_t mode;
105 const struct inode_operations *iop;
106 const struct file_operations *fop;
107 union proc_op op;
108};
109
110#define NOD(NAME, MODE, IOP, FOP, OP) { \
111 .name = (NAME), \
112 .len = sizeof(NAME) - 1, \
113 .mode = MODE, \
114 .iop = IOP, \
115 .fop = FOP, \
116 .op = OP, \
117}
118
119#define DIR(NAME, MODE, iops, fops) \
120 NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
121#define LNK(NAME, get_link) \
122 NOD(NAME, (S_IFLNK|S_IRWXUGO), \
123 &proc_pid_link_inode_operations, NULL, \
124 { .proc_get_link = get_link } )
125#define REG(NAME, MODE, fops) \
126 NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
127#define INF(NAME, MODE, read) \
128 NOD(NAME, (S_IFREG|(MODE)), \
129 NULL, &proc_info_file_operations, \
130 { .proc_read = read } )
131#define ONE(NAME, MODE, show) \
132 NOD(NAME, (S_IFREG|(MODE)), \
133 NULL, &proc_single_file_operations, \
134 { .proc_show = show } )
135
136/*
137 * Count the number of hardlinks for the pid_entry table, excluding the .
138 * and .. links.
139 */
140static unsigned int pid_entry_count_dirs(const struct pid_entry *entries,
141 unsigned int n)
142{
143 unsigned int i;
144 unsigned int count;
145
146 count = 0;
147 for (i = 0; i < n; ++i) {
148 if (S_ISDIR(entries[i].mode))
149 ++count;
150 }
151
152 return count;
153}
154
155static int get_task_root(struct task_struct *task, struct path *root)
156{
157 int result = -ENOENT;
158
159 task_lock(task);
160 if (task->fs) {
161 get_fs_root(task->fs, root);
162 result = 0;
163 }
164 task_unlock(task);
165 return result;
166}
167
168static int proc_cwd_link(struct inode *inode, struct path *path)
169{
170 struct task_struct *task = get_proc_task(inode);
171 int result = -ENOENT;
172
173 if (task) {
174 task_lock(task);
175 if (task->fs) {
176 get_fs_pwd(task->fs, path);
177 result = 0;
178 }
179 task_unlock(task);
180 put_task_struct(task);
181 }
182 return result;
183}
184
185static int proc_root_link(struct inode *inode, struct path *path)
186{
187 struct task_struct *task = get_proc_task(inode);
188 int result = -ENOENT;
189
190 if (task) {
191 result = get_task_root(task, path);
192 put_task_struct(task);
193 }
194 return result;
195}
196
197static struct mm_struct *__check_mem_permission(struct task_struct *task)
198{
199 struct mm_struct *mm;
200
201 mm = get_task_mm(task);
202 if (!mm)
203 return ERR_PTR(-EINVAL);
204
205 /*
206 * A task can always look at itself, in case it chooses
207 * to use system calls instead of load instructions.
208 */
209 if (task == current)
210 return mm;
211
212 /*
213 * If current is actively ptrace'ing, and would also be
214 * permitted to freshly attach with ptrace now, permit it.
215 */
216 if (task_is_stopped_or_traced(task)) {
217 int match;
218 rcu_read_lock();
219 match = (ptrace_parent(task) == current);
220 rcu_read_unlock();
221 if (match && ptrace_may_access(task, PTRACE_MODE_ATTACH))
222 return mm;
223 }
224
225 /*
226 * No one else is allowed.
227 */
228 mmput(mm);
229 return ERR_PTR(-EPERM);
230}
231
232/*
233 * If current may access user memory in @task return a reference to the
234 * corresponding mm, otherwise ERR_PTR.
235 */
236static struct mm_struct *check_mem_permission(struct task_struct *task)
237{
238 struct mm_struct *mm;
239 int err;
240
241 /*
242 * Avoid racing if task exec's as we might get a new mm but validate
243 * against old credentials.
244 */
245 err = mutex_lock_killable(&task->signal->cred_guard_mutex);
246 if (err)
247 return ERR_PTR(err);
248
249 mm = __check_mem_permission(task);
250 mutex_unlock(&task->signal->cred_guard_mutex);
251
252 return mm;
253}
254
255struct mm_struct *mm_for_maps(struct task_struct *task)
256{
257 struct mm_struct *mm;
258 int err;
259
260 err = mutex_lock_killable(&task->signal->cred_guard_mutex);
261 if (err)
262 return ERR_PTR(err);
263
264 mm = get_task_mm(task);
265 if (mm && mm != current->mm &&
266 !ptrace_may_access(task, PTRACE_MODE_READ)) {
267 mmput(mm);
268 mm = ERR_PTR(-EACCES);
269 }
270 mutex_unlock(&task->signal->cred_guard_mutex);
271
272 return mm;
273}
274
275static int proc_pid_cmdline(struct task_struct *task, char * buffer)
276{
277 int res = 0;
278 unsigned int len;
279 struct mm_struct *mm = get_task_mm(task);
280 if (!mm)
281 goto out;
282 if (!mm->arg_end)
283 goto out_mm; /* Shh! No looking before we're done */
284
285 len = mm->arg_end - mm->arg_start;
286
287 if (len > PAGE_SIZE)
288 len = PAGE_SIZE;
289
290 res = access_process_vm(task, mm->arg_start, buffer, len, 0);
291
292 // If the nul at the end of args has been overwritten, then
293 // assume application is using setproctitle(3).
294 if (res > 0 && buffer[res-1] != '\0' && len < PAGE_SIZE) {
295 len = strnlen(buffer, res);
296 if (len < res) {
297 res = len;
298 } else {
299 len = mm->env_end - mm->env_start;
300 if (len > PAGE_SIZE - res)
301 len = PAGE_SIZE - res;
302 res += access_process_vm(task, mm->env_start, buffer+res, len, 0);
303 res = strnlen(buffer, res);
304 }
305 }
306out_mm:
307 mmput(mm);
308out:
309 return res;
310}
311
312static int proc_pid_auxv(struct task_struct *task, char *buffer)
313{
314 struct mm_struct *mm = mm_for_maps(task);
315 int res = PTR_ERR(mm);
316 if (mm && !IS_ERR(mm)) {
317 unsigned int nwords = 0;
318 do {
319 nwords += 2;
320 } while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
321 res = nwords * sizeof(mm->saved_auxv[0]);
322 if (res > PAGE_SIZE)
323 res = PAGE_SIZE;
324 memcpy(buffer, mm->saved_auxv, res);
325 mmput(mm);
326 }
327 return res;
328}
329
330
331#ifdef CONFIG_KALLSYMS
332/*
333 * Provides a wchan file via kallsyms in a proper one-value-per-file format.
334 * Returns the resolved symbol. If that fails, simply return the address.
335 */
336static int proc_pid_wchan(struct task_struct *task, char *buffer)
337{
338 unsigned long wchan;
339 char symname[KSYM_NAME_LEN];
340
341 wchan = get_wchan(task);
342
343 if (lookup_symbol_name(wchan, symname) < 0)
344 if (!ptrace_may_access(task, PTRACE_MODE_READ))
345 return 0;
346 else
347 return sprintf(buffer, "%lu", wchan);
348 else
349 return sprintf(buffer, "%s", symname);
350}
351#endif /* CONFIG_KALLSYMS */
352
353static int lock_trace(struct task_struct *task)
354{
355 int err = mutex_lock_killable(&task->signal->cred_guard_mutex);
356 if (err)
357 return err;
358 if (!ptrace_may_access(task, PTRACE_MODE_ATTACH)) {
359 mutex_unlock(&task->signal->cred_guard_mutex);
360 return -EPERM;
361 }
362 return 0;
363}
364
365static void unlock_trace(struct task_struct *task)
366{
367 mutex_unlock(&task->signal->cred_guard_mutex);
368}
369
370#ifdef CONFIG_STACKTRACE
371
372#define MAX_STACK_TRACE_DEPTH 64
373
374static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
375 struct pid *pid, struct task_struct *task)
376{
377 struct stack_trace trace;
378 unsigned long *entries;
379 int err;
380 int i;
381
382 entries = kmalloc(MAX_STACK_TRACE_DEPTH * sizeof(*entries), GFP_KERNEL);
383 if (!entries)
384 return -ENOMEM;
385
386 trace.nr_entries = 0;
387 trace.max_entries = MAX_STACK_TRACE_DEPTH;
388 trace.entries = entries;
389 trace.skip = 0;
390
391 err = lock_trace(task);
392 if (!err) {
393 save_stack_trace_tsk(task, &trace);
394
395 for (i = 0; i < trace.nr_entries; i++) {
396 seq_printf(m, "[<%pK>] %pS\n",
397 (void *)entries[i], (void *)entries[i]);
398 }
399 unlock_trace(task);
400 }
401 kfree(entries);
402
403 return err;
404}
405#endif
406
407#ifdef CONFIG_SCHEDSTATS
408/*
409 * Provides /proc/PID/schedstat
410 */
411static int proc_pid_schedstat(struct task_struct *task, char *buffer)
412{
413 return sprintf(buffer, "%llu %llu %lu\n",
414 (unsigned long long)task->se.sum_exec_runtime,
415 (unsigned long long)task->sched_info.run_delay,
416 task->sched_info.pcount);
417}
418#endif
419
420#ifdef CONFIG_LATENCYTOP
421static int lstats_show_proc(struct seq_file *m, void *v)
422{
423 int i;
424 struct inode *inode = m->private;
425 struct task_struct *task = get_proc_task(inode);
426
427 if (!task)
428 return -ESRCH;
429 seq_puts(m, "Latency Top version : v0.1\n");
430 for (i = 0; i < 32; i++) {
431 struct latency_record *lr = &task->latency_record[i];
432 if (lr->backtrace[0]) {
433 int q;
434 seq_printf(m, "%i %li %li",
435 lr->count, lr->time, lr->max);
436 for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
437 unsigned long bt = lr->backtrace[q];
438 if (!bt)
439 break;
440 if (bt == ULONG_MAX)
441 break;
442 seq_printf(m, " %ps", (void *)bt);
443 }
444 seq_putc(m, '\n');
445 }
446
447 }
448 put_task_struct(task);
449 return 0;
450}
451
452static int lstats_open(struct inode *inode, struct file *file)
453{
454 return single_open(file, lstats_show_proc, inode);
455}
456
457static ssize_t lstats_write(struct file *file, const char __user *buf,
458 size_t count, loff_t *offs)
459{
460 struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
461
462 if (!task)
463 return -ESRCH;
464 clear_all_latency_tracing(task);
465 put_task_struct(task);
466
467 return count;
468}
469
470static const struct file_operations proc_lstats_operations = {
471 .open = lstats_open,
472 .read = seq_read,
473 .write = lstats_write,
474 .llseek = seq_lseek,
475 .release = single_release,
476};
477
478#endif
479
480static int proc_oom_score(struct task_struct *task, char *buffer)
481{
482 unsigned long points = 0;
483
484 read_lock(&tasklist_lock);
485 if (pid_alive(task))
486 points = oom_badness(task, NULL, NULL,
487 totalram_pages + total_swap_pages);
488 read_unlock(&tasklist_lock);
489 return sprintf(buffer, "%lu\n", points);
490}
491
492struct limit_names {
493 char *name;
494 char *unit;
495};
496
497static const struct limit_names lnames[RLIM_NLIMITS] = {
498 [RLIMIT_CPU] = {"Max cpu time", "seconds"},
499 [RLIMIT_FSIZE] = {"Max file size", "bytes"},
500 [RLIMIT_DATA] = {"Max data size", "bytes"},
501 [RLIMIT_STACK] = {"Max stack size", "bytes"},
502 [RLIMIT_CORE] = {"Max core file size", "bytes"},
503 [RLIMIT_RSS] = {"Max resident set", "bytes"},
504 [RLIMIT_NPROC] = {"Max processes", "processes"},
505 [RLIMIT_NOFILE] = {"Max open files", "files"},
506 [RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
507 [RLIMIT_AS] = {"Max address space", "bytes"},
508 [RLIMIT_LOCKS] = {"Max file locks", "locks"},
509 [RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
510 [RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
511 [RLIMIT_NICE] = {"Max nice priority", NULL},
512 [RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
513 [RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
514};
515
516/* Display limits for a process */
517static int proc_pid_limits(struct task_struct *task, char *buffer)
518{
519 unsigned int i;
520 int count = 0;
521 unsigned long flags;
522 char *bufptr = buffer;
523
524 struct rlimit rlim[RLIM_NLIMITS];
525
526 if (!lock_task_sighand(task, &flags))
527 return 0;
528 memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
529 unlock_task_sighand(task, &flags);
530
531 /*
532 * print the file header
533 */
534 count += sprintf(&bufptr[count], "%-25s %-20s %-20s %-10s\n",
535 "Limit", "Soft Limit", "Hard Limit", "Units");
536
537 for (i = 0; i < RLIM_NLIMITS; i++) {
538 if (rlim[i].rlim_cur == RLIM_INFINITY)
539 count += sprintf(&bufptr[count], "%-25s %-20s ",
540 lnames[i].name, "unlimited");
541 else
542 count += sprintf(&bufptr[count], "%-25s %-20lu ",
543 lnames[i].name, rlim[i].rlim_cur);
544
545 if (rlim[i].rlim_max == RLIM_INFINITY)
546 count += sprintf(&bufptr[count], "%-20s ", "unlimited");
547 else
548 count += sprintf(&bufptr[count], "%-20lu ",
549 rlim[i].rlim_max);
550
551 if (lnames[i].unit)
552 count += sprintf(&bufptr[count], "%-10s\n",
553 lnames[i].unit);
554 else
555 count += sprintf(&bufptr[count], "\n");
556 }
557
558 return count;
559}
560
561#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
562static int proc_pid_syscall(struct task_struct *task, char *buffer)
563{
564 long nr;
565 unsigned long args[6], sp, pc;
566 int res = lock_trace(task);
567 if (res)
568 return res;
569
570 if (task_current_syscall(task, &nr, args, 6, &sp, &pc))
571 res = sprintf(buffer, "running\n");
572 else if (nr < 0)
573 res = sprintf(buffer, "%ld 0x%lx 0x%lx\n", nr, sp, pc);
574 else
575 res = sprintf(buffer,
576 "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n",
577 nr,
578 args[0], args[1], args[2], args[3], args[4], args[5],
579 sp, pc);
580 unlock_trace(task);
581 return res;
582}
583#endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
584
585/************************************************************************/
586/* Here the fs part begins */
587/************************************************************************/
588
589/* permission checks */
590static int proc_fd_access_allowed(struct inode *inode)
591{
592 struct task_struct *task;
593 int allowed = 0;
594 /* Allow access to a task's file descriptors if it is us or we
595 * may use ptrace attach to the process and find out that
596 * information.
597 */
598 task = get_proc_task(inode);
599 if (task) {
600 allowed = ptrace_may_access(task, PTRACE_MODE_READ);
601 put_task_struct(task);
602 }
603 return allowed;
604}
605
606int proc_setattr(struct dentry *dentry, struct iattr *attr)
607{
608 int error;
609 struct inode *inode = dentry->d_inode;
610
611 if (attr->ia_valid & ATTR_MODE)
612 return -EPERM;
613
614 error = inode_change_ok(inode, attr);
615 if (error)
616 return error;
617
618 if ((attr->ia_valid & ATTR_SIZE) &&
619 attr->ia_size != i_size_read(inode)) {
620 error = vmtruncate(inode, attr->ia_size);
621 if (error)
622 return error;
623 }
624
625 setattr_copy(inode, attr);
626 mark_inode_dirty(inode);
627 return 0;
628}
629
630static const struct inode_operations proc_def_inode_operations = {
631 .setattr = proc_setattr,
632};
633
634static int mounts_open_common(struct inode *inode, struct file *file,
635 const struct seq_operations *op)
636{
637 struct task_struct *task = get_proc_task(inode);
638 struct nsproxy *nsp;
639 struct mnt_namespace *ns = NULL;
640 struct path root;
641 struct proc_mounts *p;
642 int ret = -EINVAL;
643
644 if (task) {
645 rcu_read_lock();
646 nsp = task_nsproxy(task);
647 if (nsp) {
648 ns = nsp->mnt_ns;
649 if (ns)
650 get_mnt_ns(ns);
651 }
652 rcu_read_unlock();
653 if (ns && get_task_root(task, &root) == 0)
654 ret = 0;
655 put_task_struct(task);
656 }
657
658 if (!ns)
659 goto err;
660 if (ret)
661 goto err_put_ns;
662
663 ret = -ENOMEM;
664 p = kmalloc(sizeof(struct proc_mounts), GFP_KERNEL);
665 if (!p)
666 goto err_put_path;
667
668 file->private_data = &p->m;
669 ret = seq_open(file, op);
670 if (ret)
671 goto err_free;
672
673 p->m.private = p;
674 p->ns = ns;
675 p->root = root;
676 p->m.poll_event = ns->event;
677
678 return 0;
679
680 err_free:
681 kfree(p);
682 err_put_path:
683 path_put(&root);
684 err_put_ns:
685 put_mnt_ns(ns);
686 err:
687 return ret;
688}
689
690static int mounts_release(struct inode *inode, struct file *file)
691{
692 struct proc_mounts *p = file->private_data;
693 path_put(&p->root);
694 put_mnt_ns(p->ns);
695 return seq_release(inode, file);
696}
697
698static unsigned mounts_poll(struct file *file, poll_table *wait)
699{
700 struct proc_mounts *p = file->private_data;
701 unsigned res = POLLIN | POLLRDNORM;
702
703 poll_wait(file, &p->ns->poll, wait);
704 if (mnt_had_events(p))
705 res |= POLLERR | POLLPRI;
706
707 return res;
708}
709
710static int mounts_open(struct inode *inode, struct file *file)
711{
712 return mounts_open_common(inode, file, &mounts_op);
713}
714
715static const struct file_operations proc_mounts_operations = {
716 .open = mounts_open,
717 .read = seq_read,
718 .llseek = seq_lseek,
719 .release = mounts_release,
720 .poll = mounts_poll,
721};
722
723static int mountinfo_open(struct inode *inode, struct file *file)
724{
725 return mounts_open_common(inode, file, &mountinfo_op);
726}
727
728static const struct file_operations proc_mountinfo_operations = {
729 .open = mountinfo_open,
730 .read = seq_read,
731 .llseek = seq_lseek,
732 .release = mounts_release,
733 .poll = mounts_poll,
734};
735
736static int mountstats_open(struct inode *inode, struct file *file)
737{
738 return mounts_open_common(inode, file, &mountstats_op);
739}
740
741static const struct file_operations proc_mountstats_operations = {
742 .open = mountstats_open,
743 .read = seq_read,
744 .llseek = seq_lseek,
745 .release = mounts_release,
746};
747
748#define PROC_BLOCK_SIZE (3*1024) /* 4K page size but our output routines use some slack for overruns */
749
750static ssize_t proc_info_read(struct file * file, char __user * buf,
751 size_t count, loff_t *ppos)
752{
753 struct inode * inode = file->f_path.dentry->d_inode;
754 unsigned long page;
755 ssize_t length;
756 struct task_struct *task = get_proc_task(inode);
757
758 length = -ESRCH;
759 if (!task)
760 goto out_no_task;
761
762 if (count > PROC_BLOCK_SIZE)
763 count = PROC_BLOCK_SIZE;
764
765 length = -ENOMEM;
766 if (!(page = __get_free_page(GFP_TEMPORARY)))
767 goto out;
768
769 length = PROC_I(inode)->op.proc_read(task, (char*)page);
770
771 if (length >= 0)
772 length = simple_read_from_buffer(buf, count, ppos, (char *)page, length);
773 free_page(page);
774out:
775 put_task_struct(task);
776out_no_task:
777 return length;
778}
779
780static const struct file_operations proc_info_file_operations = {
781 .read = proc_info_read,
782 .llseek = generic_file_llseek,
783};
784
785static int proc_single_show(struct seq_file *m, void *v)
786{
787 struct inode *inode = m->private;
788 struct pid_namespace *ns;
789 struct pid *pid;
790 struct task_struct *task;
791 int ret;
792
793 ns = inode->i_sb->s_fs_info;
794 pid = proc_pid(inode);
795 task = get_pid_task(pid, PIDTYPE_PID);
796 if (!task)
797 return -ESRCH;
798
799 ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
800
801 put_task_struct(task);
802 return ret;
803}
804
805static int proc_single_open(struct inode *inode, struct file *filp)
806{
807 return single_open(filp, proc_single_show, inode);
808}
809
810static const struct file_operations proc_single_file_operations = {
811 .open = proc_single_open,
812 .read = seq_read,
813 .llseek = seq_lseek,
814 .release = single_release,
815};
816
817static int mem_open(struct inode* inode, struct file* file)
818{
819 file->private_data = (void*)((long)current->self_exec_id);
820 /* OK to pass negative loff_t, we can catch out-of-range */
821 file->f_mode |= FMODE_UNSIGNED_OFFSET;
822 return 0;
823}
824
825static ssize_t mem_read(struct file * file, char __user * buf,
826 size_t count, loff_t *ppos)
827{
828 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
829 char *page;
830 unsigned long src = *ppos;
831 int ret = -ESRCH;
832 struct mm_struct *mm;
833
834 if (!task)
835 goto out_no_task;
836
837 ret = -ENOMEM;
838 page = (char *)__get_free_page(GFP_TEMPORARY);
839 if (!page)
840 goto out;
841
842 mm = check_mem_permission(task);
843 ret = PTR_ERR(mm);
844 if (IS_ERR(mm))
845 goto out_free;
846
847 ret = -EIO;
848
849 if (file->private_data != (void*)((long)current->self_exec_id))
850 goto out_put;
851
852 ret = 0;
853
854 while (count > 0) {
855 int this_len, retval;
856
857 this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
858 retval = access_remote_vm(mm, src, page, this_len, 0);
859 if (!retval) {
860 if (!ret)
861 ret = -EIO;
862 break;
863 }
864
865 if (copy_to_user(buf, page, retval)) {
866 ret = -EFAULT;
867 break;
868 }
869
870 ret += retval;
871 src += retval;
872 buf += retval;
873 count -= retval;
874 }
875 *ppos = src;
876
877out_put:
878 mmput(mm);
879out_free:
880 free_page((unsigned long) page);
881out:
882 put_task_struct(task);
883out_no_task:
884 return ret;
885}
886
887static ssize_t mem_write(struct file * file, const char __user *buf,
888 size_t count, loff_t *ppos)
889{
890 int copied;
891 char *page;
892 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
893 unsigned long dst = *ppos;
894 struct mm_struct *mm;
895
896 copied = -ESRCH;
897 if (!task)
898 goto out_no_task;
899
900 copied = -ENOMEM;
901 page = (char *)__get_free_page(GFP_TEMPORARY);
902 if (!page)
903 goto out_task;
904
905 mm = check_mem_permission(task);
906 copied = PTR_ERR(mm);
907 if (IS_ERR(mm))
908 goto out_free;
909
910 copied = -EIO;
911 if (file->private_data != (void *)((long)current->self_exec_id))
912 goto out_mm;
913
914 copied = 0;
915 while (count > 0) {
916 int this_len, retval;
917
918 this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
919 if (copy_from_user(page, buf, this_len)) {
920 copied = -EFAULT;
921 break;
922 }
923 retval = access_remote_vm(mm, dst, page, this_len, 1);
924 if (!retval) {
925 if (!copied)
926 copied = -EIO;
927 break;
928 }
929 copied += retval;
930 buf += retval;
931 dst += retval;
932 count -= retval;
933 }
934 *ppos = dst;
935
936out_mm:
937 mmput(mm);
938out_free:
939 free_page((unsigned long) page);
940out_task:
941 put_task_struct(task);
942out_no_task:
943 return copied;
944}
945
946loff_t mem_lseek(struct file *file, loff_t offset, int orig)
947{
948 switch (orig) {
949 case 0:
950 file->f_pos = offset;
951 break;
952 case 1:
953 file->f_pos += offset;
954 break;
955 default:
956 return -EINVAL;
957 }
958 force_successful_syscall_return();
959 return file->f_pos;
960}
961
962static const struct file_operations proc_mem_operations = {
963 .llseek = mem_lseek,
964 .read = mem_read,
965 .write = mem_write,
966 .open = mem_open,
967};
968
969static ssize_t environ_read(struct file *file, char __user *buf,
970 size_t count, loff_t *ppos)
971{
972 struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
973 char *page;
974 unsigned long src = *ppos;
975 int ret = -ESRCH;
976 struct mm_struct *mm;
977
978 if (!task)
979 goto out_no_task;
980
981 ret = -ENOMEM;
982 page = (char *)__get_free_page(GFP_TEMPORARY);
983 if (!page)
984 goto out;
985
986
987 mm = mm_for_maps(task);
988 ret = PTR_ERR(mm);
989 if (!mm || IS_ERR(mm))
990 goto out_free;
991
992 ret = 0;
993 while (count > 0) {
994 int this_len, retval, max_len;
995
996 this_len = mm->env_end - (mm->env_start + src);
997
998 if (this_len <= 0)
999 break;
1000
1001 max_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
1002 this_len = (this_len > max_len) ? max_len : this_len;
1003
1004 retval = access_process_vm(task, (mm->env_start + src),
1005 page, this_len, 0);
1006
1007 if (retval <= 0) {
1008 ret = retval;
1009 break;
1010 }
1011
1012 if (copy_to_user(buf, page, retval)) {
1013 ret = -EFAULT;
1014 break;
1015 }
1016
1017 ret += retval;
1018 src += retval;
1019 buf += retval;
1020 count -= retval;
1021 }
1022 *ppos = src;
1023
1024 mmput(mm);
1025out_free:
1026 free_page((unsigned long) page);
1027out:
1028 put_task_struct(task);
1029out_no_task:
1030 return ret;
1031}
1032
1033static const struct file_operations proc_environ_operations = {
1034 .read = environ_read,
1035 .llseek = generic_file_llseek,
1036};
1037
1038static ssize_t oom_adjust_read(struct file *file, char __user *buf,
1039 size_t count, loff_t *ppos)
1040{
1041 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
1042 char buffer[PROC_NUMBUF];
1043 size_t len;
1044 int oom_adjust = OOM_DISABLE;
1045 unsigned long flags;
1046
1047 if (!task)
1048 return -ESRCH;
1049
1050 if (lock_task_sighand(task, &flags)) {
1051 oom_adjust = task->signal->oom_adj;
1052 unlock_task_sighand(task, &flags);
1053 }
1054
1055 put_task_struct(task);
1056
1057 len = snprintf(buffer, sizeof(buffer), "%i\n", oom_adjust);
1058
1059 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1060}
1061
1062static ssize_t oom_adjust_write(struct file *file, const char __user *buf,
1063 size_t count, loff_t *ppos)
1064{
1065 struct task_struct *task;
1066 char buffer[PROC_NUMBUF];
1067 int oom_adjust;
1068 unsigned long flags;
1069 int err;
1070
1071 memset(buffer, 0, sizeof(buffer));
1072 if (count > sizeof(buffer) - 1)
1073 count = sizeof(buffer) - 1;
1074 if (copy_from_user(buffer, buf, count)) {
1075 err = -EFAULT;
1076 goto out;
1077 }
1078
1079 err = kstrtoint(strstrip(buffer), 0, &oom_adjust);
1080 if (err)
1081 goto out;
1082 if ((oom_adjust < OOM_ADJUST_MIN || oom_adjust > OOM_ADJUST_MAX) &&
1083 oom_adjust != OOM_DISABLE) {
1084 err = -EINVAL;
1085 goto out;
1086 }
1087
1088 task = get_proc_task(file->f_path.dentry->d_inode);
1089 if (!task) {
1090 err = -ESRCH;
1091 goto out;
1092 }
1093
1094 task_lock(task);
1095 if (!task->mm) {
1096 err = -EINVAL;
1097 goto err_task_lock;
1098 }
1099
1100 if (!lock_task_sighand(task, &flags)) {
1101 err = -ESRCH;
1102 goto err_task_lock;
1103 }
1104
1105 if (oom_adjust < task->signal->oom_adj && !capable(CAP_SYS_RESOURCE)) {
1106 err = -EACCES;
1107 goto err_sighand;
1108 }
1109
1110 if (oom_adjust != task->signal->oom_adj) {
1111 if (oom_adjust == OOM_DISABLE)
1112 atomic_inc(&task->mm->oom_disable_count);
1113 if (task->signal->oom_adj == OOM_DISABLE)
1114 atomic_dec(&task->mm->oom_disable_count);
1115 }
1116
1117 /*
1118 * Warn that /proc/pid/oom_adj is deprecated, see
1119 * Documentation/feature-removal-schedule.txt.
1120 */
1121 printk_once(KERN_WARNING "%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
1122 current->comm, task_pid_nr(current), task_pid_nr(task),
1123 task_pid_nr(task));
1124 task->signal->oom_adj = oom_adjust;
1125 /*
1126 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
1127 * value is always attainable.
1128 */
1129 if (task->signal->oom_adj == OOM_ADJUST_MAX)
1130 task->signal->oom_score_adj = OOM_SCORE_ADJ_MAX;
1131 else
1132 task->signal->oom_score_adj = (oom_adjust * OOM_SCORE_ADJ_MAX) /
1133 -OOM_DISABLE;
1134err_sighand:
1135 unlock_task_sighand(task, &flags);
1136err_task_lock:
1137 task_unlock(task);
1138 put_task_struct(task);
1139out:
1140 return err < 0 ? err : count;
1141}
1142
1143static const struct file_operations proc_oom_adjust_operations = {
1144 .read = oom_adjust_read,
1145 .write = oom_adjust_write,
1146 .llseek = generic_file_llseek,
1147};
1148
1149static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
1150 size_t count, loff_t *ppos)
1151{
1152 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
1153 char buffer[PROC_NUMBUF];
1154 int oom_score_adj = OOM_SCORE_ADJ_MIN;
1155 unsigned long flags;
1156 size_t len;
1157
1158 if (!task)
1159 return -ESRCH;
1160 if (lock_task_sighand(task, &flags)) {
1161 oom_score_adj = task->signal->oom_score_adj;
1162 unlock_task_sighand(task, &flags);
1163 }
1164 put_task_struct(task);
1165 len = snprintf(buffer, sizeof(buffer), "%d\n", oom_score_adj);
1166 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1167}
1168
1169static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
1170 size_t count, loff_t *ppos)
1171{
1172 struct task_struct *task;
1173 char buffer[PROC_NUMBUF];
1174 unsigned long flags;
1175 int oom_score_adj;
1176 int err;
1177
1178 memset(buffer, 0, sizeof(buffer));
1179 if (count > sizeof(buffer) - 1)
1180 count = sizeof(buffer) - 1;
1181 if (copy_from_user(buffer, buf, count)) {
1182 err = -EFAULT;
1183 goto out;
1184 }
1185
1186 err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
1187 if (err)
1188 goto out;
1189 if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1190 oom_score_adj > OOM_SCORE_ADJ_MAX) {
1191 err = -EINVAL;
1192 goto out;
1193 }
1194
1195 task = get_proc_task(file->f_path.dentry->d_inode);
1196 if (!task) {
1197 err = -ESRCH;
1198 goto out;
1199 }
1200
1201 task_lock(task);
1202 if (!task->mm) {
1203 err = -EINVAL;
1204 goto err_task_lock;
1205 }
1206
1207 if (!lock_task_sighand(task, &flags)) {
1208 err = -ESRCH;
1209 goto err_task_lock;
1210 }
1211
1212 if (oom_score_adj < task->signal->oom_score_adj_min &&
1213 !capable(CAP_SYS_RESOURCE)) {
1214 err = -EACCES;
1215 goto err_sighand;
1216 }
1217
1218 if (oom_score_adj != task->signal->oom_score_adj) {
1219 if (oom_score_adj == OOM_SCORE_ADJ_MIN)
1220 atomic_inc(&task->mm->oom_disable_count);
1221 if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MIN)
1222 atomic_dec(&task->mm->oom_disable_count);
1223 }
1224 task->signal->oom_score_adj = oom_score_adj;
1225 if (has_capability_noaudit(current, CAP_SYS_RESOURCE))
1226 task->signal->oom_score_adj_min = oom_score_adj;
1227 /*
1228 * Scale /proc/pid/oom_adj appropriately ensuring that OOM_DISABLE is
1229 * always attainable.
1230 */
1231 if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MIN)
1232 task->signal->oom_adj = OOM_DISABLE;
1233 else
1234 task->signal->oom_adj = (oom_score_adj * OOM_ADJUST_MAX) /
1235 OOM_SCORE_ADJ_MAX;
1236err_sighand:
1237 unlock_task_sighand(task, &flags);
1238err_task_lock:
1239 task_unlock(task);
1240 put_task_struct(task);
1241out:
1242 return err < 0 ? err : count;
1243}
1244
1245static const struct file_operations proc_oom_score_adj_operations = {
1246 .read = oom_score_adj_read,
1247 .write = oom_score_adj_write,
1248 .llseek = default_llseek,
1249};
1250
1251#ifdef CONFIG_AUDITSYSCALL
1252#define TMPBUFLEN 21
1253static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1254 size_t count, loff_t *ppos)
1255{
1256 struct inode * inode = file->f_path.dentry->d_inode;
1257 struct task_struct *task = get_proc_task(inode);
1258 ssize_t length;
1259 char tmpbuf[TMPBUFLEN];
1260
1261 if (!task)
1262 return -ESRCH;
1263 length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1264 audit_get_loginuid(task));
1265 put_task_struct(task);
1266 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1267}
1268
1269static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1270 size_t count, loff_t *ppos)
1271{
1272 struct inode * inode = file->f_path.dentry->d_inode;
1273 char *page, *tmp;
1274 ssize_t length;
1275 uid_t loginuid;
1276
1277 if (!capable(CAP_AUDIT_CONTROL))
1278 return -EPERM;
1279
1280 rcu_read_lock();
1281 if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1282 rcu_read_unlock();
1283 return -EPERM;
1284 }
1285 rcu_read_unlock();
1286
1287 if (count >= PAGE_SIZE)
1288 count = PAGE_SIZE - 1;
1289
1290 if (*ppos != 0) {
1291 /* No partial writes. */
1292 return -EINVAL;
1293 }
1294 page = (char*)__get_free_page(GFP_TEMPORARY);
1295 if (!page)
1296 return -ENOMEM;
1297 length = -EFAULT;
1298 if (copy_from_user(page, buf, count))
1299 goto out_free_page;
1300
1301 page[count] = '\0';
1302 loginuid = simple_strtoul(page, &tmp, 10);
1303 if (tmp == page) {
1304 length = -EINVAL;
1305 goto out_free_page;
1306
1307 }
1308 length = audit_set_loginuid(current, loginuid);
1309 if (likely(length == 0))
1310 length = count;
1311
1312out_free_page:
1313 free_page((unsigned long) page);
1314 return length;
1315}
1316
1317static const struct file_operations proc_loginuid_operations = {
1318 .read = proc_loginuid_read,
1319 .write = proc_loginuid_write,
1320 .llseek = generic_file_llseek,
1321};
1322
1323static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1324 size_t count, loff_t *ppos)
1325{
1326 struct inode * inode = file->f_path.dentry->d_inode;
1327 struct task_struct *task = get_proc_task(inode);
1328 ssize_t length;
1329 char tmpbuf[TMPBUFLEN];
1330
1331 if (!task)
1332 return -ESRCH;
1333 length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1334 audit_get_sessionid(task));
1335 put_task_struct(task);
1336 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1337}
1338
1339static const struct file_operations proc_sessionid_operations = {
1340 .read = proc_sessionid_read,
1341 .llseek = generic_file_llseek,
1342};
1343#endif
1344
1345#ifdef CONFIG_FAULT_INJECTION
1346static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1347 size_t count, loff_t *ppos)
1348{
1349 struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
1350 char buffer[PROC_NUMBUF];
1351 size_t len;
1352 int make_it_fail;
1353
1354 if (!task)
1355 return -ESRCH;
1356 make_it_fail = task->make_it_fail;
1357 put_task_struct(task);
1358
1359 len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1360
1361 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1362}
1363
1364static ssize_t proc_fault_inject_write(struct file * file,
1365 const char __user * buf, size_t count, loff_t *ppos)
1366{
1367 struct task_struct *task;
1368 char buffer[PROC_NUMBUF], *end;
1369 int make_it_fail;
1370
1371 if (!capable(CAP_SYS_RESOURCE))
1372 return -EPERM;
1373 memset(buffer, 0, sizeof(buffer));
1374 if (count > sizeof(buffer) - 1)
1375 count = sizeof(buffer) - 1;
1376 if (copy_from_user(buffer, buf, count))
1377 return -EFAULT;
1378 make_it_fail = simple_strtol(strstrip(buffer), &end, 0);
1379 if (*end)
1380 return -EINVAL;
1381 task = get_proc_task(file->f_dentry->d_inode);
1382 if (!task)
1383 return -ESRCH;
1384 task->make_it_fail = make_it_fail;
1385 put_task_struct(task);
1386
1387 return count;
1388}
1389
1390static const struct file_operations proc_fault_inject_operations = {
1391 .read = proc_fault_inject_read,
1392 .write = proc_fault_inject_write,
1393 .llseek = generic_file_llseek,
1394};
1395#endif
1396
1397
1398#ifdef CONFIG_SCHED_DEBUG
1399/*
1400 * Print out various scheduling related per-task fields:
1401 */
1402static int sched_show(struct seq_file *m, void *v)
1403{
1404 struct inode *inode = m->private;
1405 struct task_struct *p;
1406
1407 p = get_proc_task(inode);
1408 if (!p)
1409 return -ESRCH;
1410 proc_sched_show_task(p, m);
1411
1412 put_task_struct(p);
1413
1414 return 0;
1415}
1416
1417static ssize_t
1418sched_write(struct file *file, const char __user *buf,
1419 size_t count, loff_t *offset)
1420{
1421 struct inode *inode = file->f_path.dentry->d_inode;
1422 struct task_struct *p;
1423
1424 p = get_proc_task(inode);
1425 if (!p)
1426 return -ESRCH;
1427 proc_sched_set_task(p);
1428
1429 put_task_struct(p);
1430
1431 return count;
1432}
1433
1434static int sched_open(struct inode *inode, struct file *filp)
1435{
1436 return single_open(filp, sched_show, inode);
1437}
1438
1439static const struct file_operations proc_pid_sched_operations = {
1440 .open = sched_open,
1441 .read = seq_read,
1442 .write = sched_write,
1443 .llseek = seq_lseek,
1444 .release = single_release,
1445};
1446
1447#endif
1448
1449#ifdef CONFIG_SCHED_AUTOGROUP
1450/*
1451 * Print out autogroup related information:
1452 */
1453static int sched_autogroup_show(struct seq_file *m, void *v)
1454{
1455 struct inode *inode = m->private;
1456 struct task_struct *p;
1457
1458 p = get_proc_task(inode);
1459 if (!p)
1460 return -ESRCH;
1461 proc_sched_autogroup_show_task(p, m);
1462
1463 put_task_struct(p);
1464
1465 return 0;
1466}
1467
1468static ssize_t
1469sched_autogroup_write(struct file *file, const char __user *buf,
1470 size_t count, loff_t *offset)
1471{
1472 struct inode *inode = file->f_path.dentry->d_inode;
1473 struct task_struct *p;
1474 char buffer[PROC_NUMBUF];
1475 int nice;
1476 int err;
1477
1478 memset(buffer, 0, sizeof(buffer));
1479 if (count > sizeof(buffer) - 1)
1480 count = sizeof(buffer) - 1;
1481 if (copy_from_user(buffer, buf, count))
1482 return -EFAULT;
1483
1484 err = kstrtoint(strstrip(buffer), 0, &nice);
1485 if (err < 0)
1486 return err;
1487
1488 p = get_proc_task(inode);
1489 if (!p)
1490 return -ESRCH;
1491
1492 err = nice;
1493 err = proc_sched_autogroup_set_nice(p, &err);
1494 if (err)
1495 count = err;
1496
1497 put_task_struct(p);
1498
1499 return count;
1500}
1501
1502static int sched_autogroup_open(struct inode *inode, struct file *filp)
1503{
1504 int ret;
1505
1506 ret = single_open(filp, sched_autogroup_show, NULL);
1507 if (!ret) {
1508 struct seq_file *m = filp->private_data;
1509
1510 m->private = inode;
1511 }
1512 return ret;
1513}
1514
1515static const struct file_operations proc_pid_sched_autogroup_operations = {
1516 .open = sched_autogroup_open,
1517 .read = seq_read,
1518 .write = sched_autogroup_write,
1519 .llseek = seq_lseek,
1520 .release = single_release,
1521};
1522
1523#endif /* CONFIG_SCHED_AUTOGROUP */
1524
1525static ssize_t comm_write(struct file *file, const char __user *buf,
1526 size_t count, loff_t *offset)
1527{
1528 struct inode *inode = file->f_path.dentry->d_inode;
1529 struct task_struct *p;
1530 char buffer[TASK_COMM_LEN];
1531
1532 memset(buffer, 0, sizeof(buffer));
1533 if (count > sizeof(buffer) - 1)
1534 count = sizeof(buffer) - 1;
1535 if (copy_from_user(buffer, buf, count))
1536 return -EFAULT;
1537
1538 p = get_proc_task(inode);
1539 if (!p)
1540 return -ESRCH;
1541
1542 if (same_thread_group(current, p))
1543 set_task_comm(p, buffer);
1544 else
1545 count = -EINVAL;
1546
1547 put_task_struct(p);
1548
1549 return count;
1550}
1551
1552static int comm_show(struct seq_file *m, void *v)
1553{
1554 struct inode *inode = m->private;
1555 struct task_struct *p;
1556
1557 p = get_proc_task(inode);
1558 if (!p)
1559 return -ESRCH;
1560
1561 task_lock(p);
1562 seq_printf(m, "%s\n", p->comm);
1563 task_unlock(p);
1564
1565 put_task_struct(p);
1566
1567 return 0;
1568}
1569
1570static int comm_open(struct inode *inode, struct file *filp)
1571{
1572 return single_open(filp, comm_show, inode);
1573}
1574
1575static const struct file_operations proc_pid_set_comm_operations = {
1576 .open = comm_open,
1577 .read = seq_read,
1578 .write = comm_write,
1579 .llseek = seq_lseek,
1580 .release = single_release,
1581};
1582
1583static int proc_exe_link(struct inode *inode, struct path *exe_path)
1584{
1585 struct task_struct *task;
1586 struct mm_struct *mm;
1587 struct file *exe_file;
1588
1589 task = get_proc_task(inode);
1590 if (!task)
1591 return -ENOENT;
1592 mm = get_task_mm(task);
1593 put_task_struct(task);
1594 if (!mm)
1595 return -ENOENT;
1596 exe_file = get_mm_exe_file(mm);
1597 mmput(mm);
1598 if (exe_file) {
1599 *exe_path = exe_file->f_path;
1600 path_get(&exe_file->f_path);
1601 fput(exe_file);
1602 return 0;
1603 } else
1604 return -ENOENT;
1605}
1606
1607static void *proc_pid_follow_link(struct dentry *dentry, struct nameidata *nd)
1608{
1609 struct inode *inode = dentry->d_inode;
1610 int error = -EACCES;
1611
1612 /* We don't need a base pointer in the /proc filesystem */
1613 path_put(&nd->path);
1614
1615 /* Are we allowed to snoop on the tasks file descriptors? */
1616 if (!proc_fd_access_allowed(inode))
1617 goto out;
1618
1619 error = PROC_I(inode)->op.proc_get_link(inode, &nd->path);
1620out:
1621 return ERR_PTR(error);
1622}
1623
1624static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1625{
1626 char *tmp = (char*)__get_free_page(GFP_TEMPORARY);
1627 char *pathname;
1628 int len;
1629
1630 if (!tmp)
1631 return -ENOMEM;
1632
1633 pathname = d_path(path, tmp, PAGE_SIZE);
1634 len = PTR_ERR(pathname);
1635 if (IS_ERR(pathname))
1636 goto out;
1637 len = tmp + PAGE_SIZE - 1 - pathname;
1638
1639 if (len > buflen)
1640 len = buflen;
1641 if (copy_to_user(buffer, pathname, len))
1642 len = -EFAULT;
1643 out:
1644 free_page((unsigned long)tmp);
1645 return len;
1646}
1647
1648static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1649{
1650 int error = -EACCES;
1651 struct inode *inode = dentry->d_inode;
1652 struct path path;
1653
1654 /* Are we allowed to snoop on the tasks file descriptors? */
1655 if (!proc_fd_access_allowed(inode))
1656 goto out;
1657
1658 error = PROC_I(inode)->op.proc_get_link(inode, &path);
1659 if (error)
1660 goto out;
1661
1662 error = do_proc_readlink(&path, buffer, buflen);
1663 path_put(&path);
1664out:
1665 return error;
1666}
1667
1668static const struct inode_operations proc_pid_link_inode_operations = {
1669 .readlink = proc_pid_readlink,
1670 .follow_link = proc_pid_follow_link,
1671 .setattr = proc_setattr,
1672};
1673
1674
1675/* building an inode */
1676
1677static int task_dumpable(struct task_struct *task)
1678{
1679 int dumpable = 0;
1680 struct mm_struct *mm;
1681
1682 task_lock(task);
1683 mm = task->mm;
1684 if (mm)
1685 dumpable = get_dumpable(mm);
1686 task_unlock(task);
1687 if(dumpable == 1)
1688 return 1;
1689 return 0;
1690}
1691
1692struct inode *proc_pid_make_inode(struct super_block * sb, struct task_struct *task)
1693{
1694 struct inode * inode;
1695 struct proc_inode *ei;
1696 const struct cred *cred;
1697
1698 /* We need a new inode */
1699
1700 inode = new_inode(sb);
1701 if (!inode)
1702 goto out;
1703
1704 /* Common stuff */
1705 ei = PROC_I(inode);
1706 inode->i_ino = get_next_ino();
1707 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
1708 inode->i_op = &proc_def_inode_operations;
1709
1710 /*
1711 * grab the reference to task.
1712 */
1713 ei->pid = get_task_pid(task, PIDTYPE_PID);
1714 if (!ei->pid)
1715 goto out_unlock;
1716
1717 if (task_dumpable(task)) {
1718 rcu_read_lock();
1719 cred = __task_cred(task);
1720 inode->i_uid = cred->euid;
1721 inode->i_gid = cred->egid;
1722 rcu_read_unlock();
1723 }
1724 security_task_to_inode(task, inode);
1725
1726out:
1727 return inode;
1728
1729out_unlock:
1730 iput(inode);
1731 return NULL;
1732}
1733
1734int pid_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
1735{
1736 struct inode *inode = dentry->d_inode;
1737 struct task_struct *task;
1738 const struct cred *cred;
1739
1740 generic_fillattr(inode, stat);
1741
1742 rcu_read_lock();
1743 stat->uid = 0;
1744 stat->gid = 0;
1745 task = pid_task(proc_pid(inode), PIDTYPE_PID);
1746 if (task) {
1747 if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1748 task_dumpable(task)) {
1749 cred = __task_cred(task);
1750 stat->uid = cred->euid;
1751 stat->gid = cred->egid;
1752 }
1753 }
1754 rcu_read_unlock();
1755 return 0;
1756}
1757
1758/* dentry stuff */
1759
1760/*
1761 * Exceptional case: normally we are not allowed to unhash a busy
1762 * directory. In this case, however, we can do it - no aliasing problems
1763 * due to the way we treat inodes.
1764 *
1765 * Rewrite the inode's ownerships here because the owning task may have
1766 * performed a setuid(), etc.
1767 *
1768 * Before the /proc/pid/status file was created the only way to read
1769 * the effective uid of a /process was to stat /proc/pid. Reading
1770 * /proc/pid/status is slow enough that procps and other packages
1771 * kept stating /proc/pid. To keep the rules in /proc simple I have
1772 * made this apply to all per process world readable and executable
1773 * directories.
1774 */
1775int pid_revalidate(struct dentry *dentry, struct nameidata *nd)
1776{
1777 struct inode *inode;
1778 struct task_struct *task;
1779 const struct cred *cred;
1780
1781 if (nd && nd->flags & LOOKUP_RCU)
1782 return -ECHILD;
1783
1784 inode = dentry->d_inode;
1785 task = get_proc_task(inode);
1786
1787 if (task) {
1788 if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1789 task_dumpable(task)) {
1790 rcu_read_lock();
1791 cred = __task_cred(task);
1792 inode->i_uid = cred->euid;
1793 inode->i_gid = cred->egid;
1794 rcu_read_unlock();
1795 } else {
1796 inode->i_uid = 0;
1797 inode->i_gid = 0;
1798 }
1799 inode->i_mode &= ~(S_ISUID | S_ISGID);
1800 security_task_to_inode(task, inode);
1801 put_task_struct(task);
1802 return 1;
1803 }
1804 d_drop(dentry);
1805 return 0;
1806}
1807
1808static int pid_delete_dentry(const struct dentry * dentry)
1809{
1810 /* Is the task we represent dead?
1811 * If so, then don't put the dentry on the lru list,
1812 * kill it immediately.
1813 */
1814 return !proc_pid(dentry->d_inode)->tasks[PIDTYPE_PID].first;
1815}
1816
1817const struct dentry_operations pid_dentry_operations =
1818{
1819 .d_revalidate = pid_revalidate,
1820 .d_delete = pid_delete_dentry,
1821};
1822
1823/* Lookups */
1824
1825/*
1826 * Fill a directory entry.
1827 *
1828 * If possible create the dcache entry and derive our inode number and
1829 * file type from dcache entry.
1830 *
1831 * Since all of the proc inode numbers are dynamically generated, the inode
1832 * numbers do not exist until the inode is cache. This means creating the
1833 * the dcache entry in readdir is necessary to keep the inode numbers
1834 * reported by readdir in sync with the inode numbers reported
1835 * by stat.
1836 */
1837int proc_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
1838 const char *name, int len,
1839 instantiate_t instantiate, struct task_struct *task, const void *ptr)
1840{
1841 struct dentry *child, *dir = filp->f_path.dentry;
1842 struct inode *inode;
1843 struct qstr qname;
1844 ino_t ino = 0;
1845 unsigned type = DT_UNKNOWN;
1846
1847 qname.name = name;
1848 qname.len = len;
1849 qname.hash = full_name_hash(name, len);
1850
1851 child = d_lookup(dir, &qname);
1852 if (!child) {
1853 struct dentry *new;
1854 new = d_alloc(dir, &qname);
1855 if (new) {
1856 child = instantiate(dir->d_inode, new, task, ptr);
1857 if (child)
1858 dput(new);
1859 else
1860 child = new;
1861 }
1862 }
1863 if (!child || IS_ERR(child) || !child->d_inode)
1864 goto end_instantiate;
1865 inode = child->d_inode;
1866 if (inode) {
1867 ino = inode->i_ino;
1868 type = inode->i_mode >> 12;
1869 }
1870 dput(child);
1871end_instantiate:
1872 if (!ino)
1873 ino = find_inode_number(dir, &qname);
1874 if (!ino)
1875 ino = 1;
1876 return filldir(dirent, name, len, filp->f_pos, ino, type);
1877}
1878
1879static unsigned name_to_int(struct dentry *dentry)
1880{
1881 const char *name = dentry->d_name.name;
1882 int len = dentry->d_name.len;
1883 unsigned n = 0;
1884
1885 if (len > 1 && *name == '0')
1886 goto out;
1887 while (len-- > 0) {
1888 unsigned c = *name++ - '0';
1889 if (c > 9)
1890 goto out;
1891 if (n >= (~0U-9)/10)
1892 goto out;
1893 n *= 10;
1894 n += c;
1895 }
1896 return n;
1897out:
1898 return ~0U;
1899}
1900
1901#define PROC_FDINFO_MAX 64
1902
1903static int proc_fd_info(struct inode *inode, struct path *path, char *info)
1904{
1905 struct task_struct *task = get_proc_task(inode);
1906 struct files_struct *files = NULL;
1907 struct file *file;
1908 int fd = proc_fd(inode);
1909
1910 if (task) {
1911 files = get_files_struct(task);
1912 put_task_struct(task);
1913 }
1914 if (files) {
1915 /*
1916 * We are not taking a ref to the file structure, so we must
1917 * hold ->file_lock.
1918 */
1919 spin_lock(&files->file_lock);
1920 file = fcheck_files(files, fd);
1921 if (file) {
1922 unsigned int f_flags;
1923 struct fdtable *fdt;
1924
1925 fdt = files_fdtable(files);
1926 f_flags = file->f_flags & ~O_CLOEXEC;
1927 if (FD_ISSET(fd, fdt->close_on_exec))
1928 f_flags |= O_CLOEXEC;
1929
1930 if (path) {
1931 *path = file->f_path;
1932 path_get(&file->f_path);
1933 }
1934 if (info)
1935 snprintf(info, PROC_FDINFO_MAX,
1936 "pos:\t%lli\n"
1937 "flags:\t0%o\n",
1938 (long long) file->f_pos,
1939 f_flags);
1940 spin_unlock(&files->file_lock);
1941 put_files_struct(files);
1942 return 0;
1943 }
1944 spin_unlock(&files->file_lock);
1945 put_files_struct(files);
1946 }
1947 return -ENOENT;
1948}
1949
1950static int proc_fd_link(struct inode *inode, struct path *path)
1951{
1952 return proc_fd_info(inode, path, NULL);
1953}
1954
1955static int tid_fd_revalidate(struct dentry *dentry, struct nameidata *nd)
1956{
1957 struct inode *inode;
1958 struct task_struct *task;
1959 int fd;
1960 struct files_struct *files;
1961 const struct cred *cred;
1962
1963 if (nd && nd->flags & LOOKUP_RCU)
1964 return -ECHILD;
1965
1966 inode = dentry->d_inode;
1967 task = get_proc_task(inode);
1968 fd = proc_fd(inode);
1969
1970 if (task) {
1971 files = get_files_struct(task);
1972 if (files) {
1973 rcu_read_lock();
1974 if (fcheck_files(files, fd)) {
1975 rcu_read_unlock();
1976 put_files_struct(files);
1977 if (task_dumpable(task)) {
1978 rcu_read_lock();
1979 cred = __task_cred(task);
1980 inode->i_uid = cred->euid;
1981 inode->i_gid = cred->egid;
1982 rcu_read_unlock();
1983 } else {
1984 inode->i_uid = 0;
1985 inode->i_gid = 0;
1986 }
1987 inode->i_mode &= ~(S_ISUID | S_ISGID);
1988 security_task_to_inode(task, inode);
1989 put_task_struct(task);
1990 return 1;
1991 }
1992 rcu_read_unlock();
1993 put_files_struct(files);
1994 }
1995 put_task_struct(task);
1996 }
1997 d_drop(dentry);
1998 return 0;
1999}
2000
2001static const struct dentry_operations tid_fd_dentry_operations =
2002{
2003 .d_revalidate = tid_fd_revalidate,
2004 .d_delete = pid_delete_dentry,
2005};
2006
2007static struct dentry *proc_fd_instantiate(struct inode *dir,
2008 struct dentry *dentry, struct task_struct *task, const void *ptr)
2009{
2010 unsigned fd = *(const unsigned *)ptr;
2011 struct file *file;
2012 struct files_struct *files;
2013 struct inode *inode;
2014 struct proc_inode *ei;
2015 struct dentry *error = ERR_PTR(-ENOENT);
2016
2017 inode = proc_pid_make_inode(dir->i_sb, task);
2018 if (!inode)
2019 goto out;
2020 ei = PROC_I(inode);
2021 ei->fd = fd;
2022 files = get_files_struct(task);
2023 if (!files)
2024 goto out_iput;
2025 inode->i_mode = S_IFLNK;
2026
2027 /*
2028 * We are not taking a ref to the file structure, so we must
2029 * hold ->file_lock.
2030 */
2031 spin_lock(&files->file_lock);
2032 file = fcheck_files(files, fd);
2033 if (!file)
2034 goto out_unlock;
2035 if (file->f_mode & FMODE_READ)
2036 inode->i_mode |= S_IRUSR | S_IXUSR;
2037 if (file->f_mode & FMODE_WRITE)
2038 inode->i_mode |= S_IWUSR | S_IXUSR;
2039 spin_unlock(&files->file_lock);
2040 put_files_struct(files);
2041
2042 inode->i_op = &proc_pid_link_inode_operations;
2043 inode->i_size = 64;
2044 ei->op.proc_get_link = proc_fd_link;
2045 d_set_d_op(dentry, &tid_fd_dentry_operations);
2046 d_add(dentry, inode);
2047 /* Close the race of the process dying before we return the dentry */
2048 if (tid_fd_revalidate(dentry, NULL))
2049 error = NULL;
2050
2051 out:
2052 return error;
2053out_unlock:
2054 spin_unlock(&files->file_lock);
2055 put_files_struct(files);
2056out_iput:
2057 iput(inode);
2058 goto out;
2059}
2060
2061static struct dentry *proc_lookupfd_common(struct inode *dir,
2062 struct dentry *dentry,
2063 instantiate_t instantiate)
2064{
2065 struct task_struct *task = get_proc_task(dir);
2066 unsigned fd = name_to_int(dentry);
2067 struct dentry *result = ERR_PTR(-ENOENT);
2068
2069 if (!task)
2070 goto out_no_task;
2071 if (fd == ~0U)
2072 goto out;
2073
2074 result = instantiate(dir, dentry, task, &fd);
2075out:
2076 put_task_struct(task);
2077out_no_task:
2078 return result;
2079}
2080
2081static int proc_readfd_common(struct file * filp, void * dirent,
2082 filldir_t filldir, instantiate_t instantiate)
2083{
2084 struct dentry *dentry = filp->f_path.dentry;
2085 struct inode *inode = dentry->d_inode;
2086 struct task_struct *p = get_proc_task(inode);
2087 unsigned int fd, ino;
2088 int retval;
2089 struct files_struct * files;
2090
2091 retval = -ENOENT;
2092 if (!p)
2093 goto out_no_task;
2094 retval = 0;
2095
2096 fd = filp->f_pos;
2097 switch (fd) {
2098 case 0:
2099 if (filldir(dirent, ".", 1, 0, inode->i_ino, DT_DIR) < 0)
2100 goto out;
2101 filp->f_pos++;
2102 case 1:
2103 ino = parent_ino(dentry);
2104 if (filldir(dirent, "..", 2, 1, ino, DT_DIR) < 0)
2105 goto out;
2106 filp->f_pos++;
2107 default:
2108 files = get_files_struct(p);
2109 if (!files)
2110 goto out;
2111 rcu_read_lock();
2112 for (fd = filp->f_pos-2;
2113 fd < files_fdtable(files)->max_fds;
2114 fd++, filp->f_pos++) {
2115 char name[PROC_NUMBUF];
2116 int len;
2117
2118 if (!fcheck_files(files, fd))
2119 continue;
2120 rcu_read_unlock();
2121
2122 len = snprintf(name, sizeof(name), "%d", fd);
2123 if (proc_fill_cache(filp, dirent, filldir,
2124 name, len, instantiate,
2125 p, &fd) < 0) {
2126 rcu_read_lock();
2127 break;
2128 }
2129 rcu_read_lock();
2130 }
2131 rcu_read_unlock();
2132 put_files_struct(files);
2133 }
2134out:
2135 put_task_struct(p);
2136out_no_task:
2137 return retval;
2138}
2139
2140static struct dentry *proc_lookupfd(struct inode *dir, struct dentry *dentry,
2141 struct nameidata *nd)
2142{
2143 return proc_lookupfd_common(dir, dentry, proc_fd_instantiate);
2144}
2145
2146static int proc_readfd(struct file *filp, void *dirent, filldir_t filldir)
2147{
2148 return proc_readfd_common(filp, dirent, filldir, proc_fd_instantiate);
2149}
2150
2151static ssize_t proc_fdinfo_read(struct file *file, char __user *buf,
2152 size_t len, loff_t *ppos)
2153{
2154 char tmp[PROC_FDINFO_MAX];
2155 int err = proc_fd_info(file->f_path.dentry->d_inode, NULL, tmp);
2156 if (!err)
2157 err = simple_read_from_buffer(buf, len, ppos, tmp, strlen(tmp));
2158 return err;
2159}
2160
2161static const struct file_operations proc_fdinfo_file_operations = {
2162 .open = nonseekable_open,
2163 .read = proc_fdinfo_read,
2164 .llseek = no_llseek,
2165};
2166
2167static const struct file_operations proc_fd_operations = {
2168 .read = generic_read_dir,
2169 .readdir = proc_readfd,
2170 .llseek = default_llseek,
2171};
2172
2173/*
2174 * /proc/pid/fd needs a special permission handler so that a process can still
2175 * access /proc/self/fd after it has executed a setuid().
2176 */
2177static int proc_fd_permission(struct inode *inode, int mask)
2178{
2179 int rv = generic_permission(inode, mask);
2180 if (rv == 0)
2181 return 0;
2182 if (task_pid(current) == proc_pid(inode))
2183 rv = 0;
2184 return rv;
2185}
2186
2187/*
2188 * proc directories can do almost nothing..
2189 */
2190static const struct inode_operations proc_fd_inode_operations = {
2191 .lookup = proc_lookupfd,
2192 .permission = proc_fd_permission,
2193 .setattr = proc_setattr,
2194};
2195
2196static struct dentry *proc_fdinfo_instantiate(struct inode *dir,
2197 struct dentry *dentry, struct task_struct *task, const void *ptr)
2198{
2199 unsigned fd = *(unsigned *)ptr;
2200 struct inode *inode;
2201 struct proc_inode *ei;
2202 struct dentry *error = ERR_PTR(-ENOENT);
2203
2204 inode = proc_pid_make_inode(dir->i_sb, task);
2205 if (!inode)
2206 goto out;
2207 ei = PROC_I(inode);
2208 ei->fd = fd;
2209 inode->i_mode = S_IFREG | S_IRUSR;
2210 inode->i_fop = &proc_fdinfo_file_operations;
2211 d_set_d_op(dentry, &tid_fd_dentry_operations);
2212 d_add(dentry, inode);
2213 /* Close the race of the process dying before we return the dentry */
2214 if (tid_fd_revalidate(dentry, NULL))
2215 error = NULL;
2216
2217 out:
2218 return error;
2219}
2220
2221static struct dentry *proc_lookupfdinfo(struct inode *dir,
2222 struct dentry *dentry,
2223 struct nameidata *nd)
2224{
2225 return proc_lookupfd_common(dir, dentry, proc_fdinfo_instantiate);
2226}
2227
2228static int proc_readfdinfo(struct file *filp, void *dirent, filldir_t filldir)
2229{
2230 return proc_readfd_common(filp, dirent, filldir,
2231 proc_fdinfo_instantiate);
2232}
2233
2234static const struct file_operations proc_fdinfo_operations = {
2235 .read = generic_read_dir,
2236 .readdir = proc_readfdinfo,
2237 .llseek = default_llseek,
2238};
2239
2240/*
2241 * proc directories can do almost nothing..
2242 */
2243static const struct inode_operations proc_fdinfo_inode_operations = {
2244 .lookup = proc_lookupfdinfo,
2245 .setattr = proc_setattr,
2246};
2247
2248
2249static struct dentry *proc_pident_instantiate(struct inode *dir,
2250 struct dentry *dentry, struct task_struct *task, const void *ptr)
2251{
2252 const struct pid_entry *p = ptr;
2253 struct inode *inode;
2254 struct proc_inode *ei;
2255 struct dentry *error = ERR_PTR(-ENOENT);
2256
2257 inode = proc_pid_make_inode(dir->i_sb, task);
2258 if (!inode)
2259 goto out;
2260
2261 ei = PROC_I(inode);
2262 inode->i_mode = p->mode;
2263 if (S_ISDIR(inode->i_mode))
2264 inode->i_nlink = 2; /* Use getattr to fix if necessary */
2265 if (p->iop)
2266 inode->i_op = p->iop;
2267 if (p->fop)
2268 inode->i_fop = p->fop;
2269 ei->op = p->op;
2270 d_set_d_op(dentry, &pid_dentry_operations);
2271 d_add(dentry, inode);
2272 /* Close the race of the process dying before we return the dentry */
2273 if (pid_revalidate(dentry, NULL))
2274 error = NULL;
2275out:
2276 return error;
2277}
2278
2279static struct dentry *proc_pident_lookup(struct inode *dir,
2280 struct dentry *dentry,
2281 const struct pid_entry *ents,
2282 unsigned int nents)
2283{
2284 struct dentry *error;
2285 struct task_struct *task = get_proc_task(dir);
2286 const struct pid_entry *p, *last;
2287
2288 error = ERR_PTR(-ENOENT);
2289
2290 if (!task)
2291 goto out_no_task;
2292
2293 /*
2294 * Yes, it does not scale. And it should not. Don't add
2295 * new entries into /proc/<tgid>/ without very good reasons.
2296 */
2297 last = &ents[nents - 1];
2298 for (p = ents; p <= last; p++) {
2299 if (p->len != dentry->d_name.len)
2300 continue;
2301 if (!memcmp(dentry->d_name.name, p->name, p->len))
2302 break;
2303 }
2304 if (p > last)
2305 goto out;
2306
2307 error = proc_pident_instantiate(dir, dentry, task, p);
2308out:
2309 put_task_struct(task);
2310out_no_task:
2311 return error;
2312}
2313
2314static int proc_pident_fill_cache(struct file *filp, void *dirent,
2315 filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
2316{
2317 return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
2318 proc_pident_instantiate, task, p);
2319}
2320
2321static int proc_pident_readdir(struct file *filp,
2322 void *dirent, filldir_t filldir,
2323 const struct pid_entry *ents, unsigned int nents)
2324{
2325 int i;
2326 struct dentry *dentry = filp->f_path.dentry;
2327 struct inode *inode = dentry->d_inode;
2328 struct task_struct *task = get_proc_task(inode);
2329 const struct pid_entry *p, *last;
2330 ino_t ino;
2331 int ret;
2332
2333 ret = -ENOENT;
2334 if (!task)
2335 goto out_no_task;
2336
2337 ret = 0;
2338 i = filp->f_pos;
2339 switch (i) {
2340 case 0:
2341 ino = inode->i_ino;
2342 if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0)
2343 goto out;
2344 i++;
2345 filp->f_pos++;
2346 /* fall through */
2347 case 1:
2348 ino = parent_ino(dentry);
2349 if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0)
2350 goto out;
2351 i++;
2352 filp->f_pos++;
2353 /* fall through */
2354 default:
2355 i -= 2;
2356 if (i >= nents) {
2357 ret = 1;
2358 goto out;
2359 }
2360 p = ents + i;
2361 last = &ents[nents - 1];
2362 while (p <= last) {
2363 if (proc_pident_fill_cache(filp, dirent, filldir, task, p) < 0)
2364 goto out;
2365 filp->f_pos++;
2366 p++;
2367 }
2368 }
2369
2370 ret = 1;
2371out:
2372 put_task_struct(task);
2373out_no_task:
2374 return ret;
2375}
2376
2377#ifdef CONFIG_SECURITY
2378static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2379 size_t count, loff_t *ppos)
2380{
2381 struct inode * inode = file->f_path.dentry->d_inode;
2382 char *p = NULL;
2383 ssize_t length;
2384 struct task_struct *task = get_proc_task(inode);
2385
2386 if (!task)
2387 return -ESRCH;
2388
2389 length = security_getprocattr(task,
2390 (char*)file->f_path.dentry->d_name.name,
2391 &p);
2392 put_task_struct(task);
2393 if (length > 0)
2394 length = simple_read_from_buffer(buf, count, ppos, p, length);
2395 kfree(p);
2396 return length;
2397}
2398
2399static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2400 size_t count, loff_t *ppos)
2401{
2402 struct inode * inode = file->f_path.dentry->d_inode;
2403 char *page;
2404 ssize_t length;
2405 struct task_struct *task = get_proc_task(inode);
2406
2407 length = -ESRCH;
2408 if (!task)
2409 goto out_no_task;
2410 if (count > PAGE_SIZE)
2411 count = PAGE_SIZE;
2412
2413 /* No partial writes. */
2414 length = -EINVAL;
2415 if (*ppos != 0)
2416 goto out;
2417
2418 length = -ENOMEM;
2419 page = (char*)__get_free_page(GFP_TEMPORARY);
2420 if (!page)
2421 goto out;
2422
2423 length = -EFAULT;
2424 if (copy_from_user(page, buf, count))
2425 goto out_free;
2426
2427 /* Guard against adverse ptrace interaction */
2428 length = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
2429 if (length < 0)
2430 goto out_free;
2431
2432 length = security_setprocattr(task,
2433 (char*)file->f_path.dentry->d_name.name,
2434 (void*)page, count);
2435 mutex_unlock(&task->signal->cred_guard_mutex);
2436out_free:
2437 free_page((unsigned long) page);
2438out:
2439 put_task_struct(task);
2440out_no_task:
2441 return length;
2442}
2443
2444static const struct file_operations proc_pid_attr_operations = {
2445 .read = proc_pid_attr_read,
2446 .write = proc_pid_attr_write,
2447 .llseek = generic_file_llseek,
2448};
2449
2450static const struct pid_entry attr_dir_stuff[] = {
2451 REG("current", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2452 REG("prev", S_IRUGO, proc_pid_attr_operations),
2453 REG("exec", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2454 REG("fscreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2455 REG("keycreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2456 REG("sockcreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2457};
2458
2459static int proc_attr_dir_readdir(struct file * filp,
2460 void * dirent, filldir_t filldir)
2461{
2462 return proc_pident_readdir(filp,dirent,filldir,
2463 attr_dir_stuff,ARRAY_SIZE(attr_dir_stuff));
2464}
2465
2466static const struct file_operations proc_attr_dir_operations = {
2467 .read = generic_read_dir,
2468 .readdir = proc_attr_dir_readdir,
2469 .llseek = default_llseek,
2470};
2471
2472static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2473 struct dentry *dentry, struct nameidata *nd)
2474{
2475 return proc_pident_lookup(dir, dentry,
2476 attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2477}
2478
2479static const struct inode_operations proc_attr_dir_inode_operations = {
2480 .lookup = proc_attr_dir_lookup,
2481 .getattr = pid_getattr,
2482 .setattr = proc_setattr,
2483};
2484
2485#endif
2486
2487#ifdef CONFIG_ELF_CORE
2488static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2489 size_t count, loff_t *ppos)
2490{
2491 struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
2492 struct mm_struct *mm;
2493 char buffer[PROC_NUMBUF];
2494 size_t len;
2495 int ret;
2496
2497 if (!task)
2498 return -ESRCH;
2499
2500 ret = 0;
2501 mm = get_task_mm(task);
2502 if (mm) {
2503 len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2504 ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2505 MMF_DUMP_FILTER_SHIFT));
2506 mmput(mm);
2507 ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2508 }
2509
2510 put_task_struct(task);
2511
2512 return ret;
2513}
2514
2515static ssize_t proc_coredump_filter_write(struct file *file,
2516 const char __user *buf,
2517 size_t count,
2518 loff_t *ppos)
2519{
2520 struct task_struct *task;
2521 struct mm_struct *mm;
2522 char buffer[PROC_NUMBUF], *end;
2523 unsigned int val;
2524 int ret;
2525 int i;
2526 unsigned long mask;
2527
2528 ret = -EFAULT;
2529 memset(buffer, 0, sizeof(buffer));
2530 if (count > sizeof(buffer) - 1)
2531 count = sizeof(buffer) - 1;
2532 if (copy_from_user(buffer, buf, count))
2533 goto out_no_task;
2534
2535 ret = -EINVAL;
2536 val = (unsigned int)simple_strtoul(buffer, &end, 0);
2537 if (*end == '\n')
2538 end++;
2539 if (end - buffer == 0)
2540 goto out_no_task;
2541
2542 ret = -ESRCH;
2543 task = get_proc_task(file->f_dentry->d_inode);
2544 if (!task)
2545 goto out_no_task;
2546
2547 ret = end - buffer;
2548 mm = get_task_mm(task);
2549 if (!mm)
2550 goto out_no_mm;
2551
2552 for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2553 if (val & mask)
2554 set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2555 else
2556 clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2557 }
2558
2559 mmput(mm);
2560 out_no_mm:
2561 put_task_struct(task);
2562 out_no_task:
2563 return ret;
2564}
2565
2566static const struct file_operations proc_coredump_filter_operations = {
2567 .read = proc_coredump_filter_read,
2568 .write = proc_coredump_filter_write,
2569 .llseek = generic_file_llseek,
2570};
2571#endif
2572
2573/*
2574 * /proc/self:
2575 */
2576static int proc_self_readlink(struct dentry *dentry, char __user *buffer,
2577 int buflen)
2578{
2579 struct pid_namespace *ns = dentry->d_sb->s_fs_info;
2580 pid_t tgid = task_tgid_nr_ns(current, ns);
2581 char tmp[PROC_NUMBUF];
2582 if (!tgid)
2583 return -ENOENT;
2584 sprintf(tmp, "%d", tgid);
2585 return vfs_readlink(dentry,buffer,buflen,tmp);
2586}
2587
2588static void *proc_self_follow_link(struct dentry *dentry, struct nameidata *nd)
2589{
2590 struct pid_namespace *ns = dentry->d_sb->s_fs_info;
2591 pid_t tgid = task_tgid_nr_ns(current, ns);
2592 char *name = ERR_PTR(-ENOENT);
2593 if (tgid) {
2594 name = __getname();
2595 if (!name)
2596 name = ERR_PTR(-ENOMEM);
2597 else
2598 sprintf(name, "%d", tgid);
2599 }
2600 nd_set_link(nd, name);
2601 return NULL;
2602}
2603
2604static void proc_self_put_link(struct dentry *dentry, struct nameidata *nd,
2605 void *cookie)
2606{
2607 char *s = nd_get_link(nd);
2608 if (!IS_ERR(s))
2609 __putname(s);
2610}
2611
2612static const struct inode_operations proc_self_inode_operations = {
2613 .readlink = proc_self_readlink,
2614 .follow_link = proc_self_follow_link,
2615 .put_link = proc_self_put_link,
2616};
2617
2618/*
2619 * proc base
2620 *
2621 * These are the directory entries in the root directory of /proc
2622 * that properly belong to the /proc filesystem, as they describe
2623 * describe something that is process related.
2624 */
2625static const struct pid_entry proc_base_stuff[] = {
2626 NOD("self", S_IFLNK|S_IRWXUGO,
2627 &proc_self_inode_operations, NULL, {}),
2628};
2629
2630static struct dentry *proc_base_instantiate(struct inode *dir,
2631 struct dentry *dentry, struct task_struct *task, const void *ptr)
2632{
2633 const struct pid_entry *p = ptr;
2634 struct inode *inode;
2635 struct proc_inode *ei;
2636 struct dentry *error;
2637
2638 /* Allocate the inode */
2639 error = ERR_PTR(-ENOMEM);
2640 inode = new_inode(dir->i_sb);
2641 if (!inode)
2642 goto out;
2643
2644 /* Initialize the inode */
2645 ei = PROC_I(inode);
2646 inode->i_ino = get_next_ino();
2647 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
2648
2649 /*
2650 * grab the reference to the task.
2651 */
2652 ei->pid = get_task_pid(task, PIDTYPE_PID);
2653 if (!ei->pid)
2654 goto out_iput;
2655
2656 inode->i_mode = p->mode;
2657 if (S_ISDIR(inode->i_mode))
2658 inode->i_nlink = 2;
2659 if (S_ISLNK(inode->i_mode))
2660 inode->i_size = 64;
2661 if (p->iop)
2662 inode->i_op = p->iop;
2663 if (p->fop)
2664 inode->i_fop = p->fop;
2665 ei->op = p->op;
2666 d_add(dentry, inode);
2667 error = NULL;
2668out:
2669 return error;
2670out_iput:
2671 iput(inode);
2672 goto out;
2673}
2674
2675static struct dentry *proc_base_lookup(struct inode *dir, struct dentry *dentry)
2676{
2677 struct dentry *error;
2678 struct task_struct *task = get_proc_task(dir);
2679 const struct pid_entry *p, *last;
2680
2681 error = ERR_PTR(-ENOENT);
2682
2683 if (!task)
2684 goto out_no_task;
2685
2686 /* Lookup the directory entry */
2687 last = &proc_base_stuff[ARRAY_SIZE(proc_base_stuff) - 1];
2688 for (p = proc_base_stuff; p <= last; p++) {
2689 if (p->len != dentry->d_name.len)
2690 continue;
2691 if (!memcmp(dentry->d_name.name, p->name, p->len))
2692 break;
2693 }
2694 if (p > last)
2695 goto out;
2696
2697 error = proc_base_instantiate(dir, dentry, task, p);
2698
2699out:
2700 put_task_struct(task);
2701out_no_task:
2702 return error;
2703}
2704
2705static int proc_base_fill_cache(struct file *filp, void *dirent,
2706 filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
2707{
2708 return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
2709 proc_base_instantiate, task, p);
2710}
2711
2712#ifdef CONFIG_TASK_IO_ACCOUNTING
2713static int do_io_accounting(struct task_struct *task, char *buffer, int whole)
2714{
2715 struct task_io_accounting acct = task->ioac;
2716 unsigned long flags;
2717 int result;
2718
2719 result = mutex_lock_killable(&task->signal->cred_guard_mutex);
2720 if (result)
2721 return result;
2722
2723 if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
2724 result = -EACCES;
2725 goto out_unlock;
2726 }
2727
2728 if (whole && lock_task_sighand(task, &flags)) {
2729 struct task_struct *t = task;
2730
2731 task_io_accounting_add(&acct, &task->signal->ioac);
2732 while_each_thread(task, t)
2733 task_io_accounting_add(&acct, &t->ioac);
2734
2735 unlock_task_sighand(task, &flags);
2736 }
2737 result = sprintf(buffer,
2738 "rchar: %llu\n"
2739 "wchar: %llu\n"
2740 "syscr: %llu\n"
2741 "syscw: %llu\n"
2742 "read_bytes: %llu\n"
2743 "write_bytes: %llu\n"
2744 "cancelled_write_bytes: %llu\n",
2745 (unsigned long long)acct.rchar,
2746 (unsigned long long)acct.wchar,
2747 (unsigned long long)acct.syscr,
2748 (unsigned long long)acct.syscw,
2749 (unsigned long long)acct.read_bytes,
2750 (unsigned long long)acct.write_bytes,
2751 (unsigned long long)acct.cancelled_write_bytes);
2752out_unlock:
2753 mutex_unlock(&task->signal->cred_guard_mutex);
2754 return result;
2755}
2756
2757static int proc_tid_io_accounting(struct task_struct *task, char *buffer)
2758{
2759 return do_io_accounting(task, buffer, 0);
2760}
2761
2762static int proc_tgid_io_accounting(struct task_struct *task, char *buffer)
2763{
2764 return do_io_accounting(task, buffer, 1);
2765}
2766#endif /* CONFIG_TASK_IO_ACCOUNTING */
2767
2768static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
2769 struct pid *pid, struct task_struct *task)
2770{
2771 int err = lock_trace(task);
2772 if (!err) {
2773 seq_printf(m, "%08x\n", task->personality);
2774 unlock_trace(task);
2775 }
2776 return err;
2777}
2778
2779/*
2780 * Thread groups
2781 */
2782static const struct file_operations proc_task_operations;
2783static const struct inode_operations proc_task_inode_operations;
2784
2785static const struct pid_entry tgid_base_stuff[] = {
2786 DIR("task", S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
2787 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2788 DIR("fdinfo", S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
2789 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
2790#ifdef CONFIG_NET
2791 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
2792#endif
2793 REG("environ", S_IRUSR, proc_environ_operations),
2794 INF("auxv", S_IRUSR, proc_pid_auxv),
2795 ONE("status", S_IRUGO, proc_pid_status),
2796 ONE("personality", S_IRUGO, proc_pid_personality),
2797 INF("limits", S_IRUGO, proc_pid_limits),
2798#ifdef CONFIG_SCHED_DEBUG
2799 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2800#endif
2801#ifdef CONFIG_SCHED_AUTOGROUP
2802 REG("autogroup", S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
2803#endif
2804 REG("comm", S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
2805#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2806 INF("syscall", S_IRUGO, proc_pid_syscall),
2807#endif
2808 INF("cmdline", S_IRUGO, proc_pid_cmdline),
2809 ONE("stat", S_IRUGO, proc_tgid_stat),
2810 ONE("statm", S_IRUGO, proc_pid_statm),
2811 REG("maps", S_IRUGO, proc_maps_operations),
2812#ifdef CONFIG_NUMA
2813 REG("numa_maps", S_IRUGO, proc_numa_maps_operations),
2814#endif
2815 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations),
2816 LNK("cwd", proc_cwd_link),
2817 LNK("root", proc_root_link),
2818 LNK("exe", proc_exe_link),
2819 REG("mounts", S_IRUGO, proc_mounts_operations),
2820 REG("mountinfo", S_IRUGO, proc_mountinfo_operations),
2821 REG("mountstats", S_IRUSR, proc_mountstats_operations),
2822#ifdef CONFIG_PROC_PAGE_MONITOR
2823 REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
2824 REG("smaps", S_IRUGO, proc_smaps_operations),
2825 REG("pagemap", S_IRUGO, proc_pagemap_operations),
2826#endif
2827#ifdef CONFIG_SECURITY
2828 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
2829#endif
2830#ifdef CONFIG_KALLSYMS
2831 INF("wchan", S_IRUGO, proc_pid_wchan),
2832#endif
2833#ifdef CONFIG_STACKTRACE
2834 ONE("stack", S_IRUGO, proc_pid_stack),
2835#endif
2836#ifdef CONFIG_SCHEDSTATS
2837 INF("schedstat", S_IRUGO, proc_pid_schedstat),
2838#endif
2839#ifdef CONFIG_LATENCYTOP
2840 REG("latency", S_IRUGO, proc_lstats_operations),
2841#endif
2842#ifdef CONFIG_PROC_PID_CPUSET
2843 REG("cpuset", S_IRUGO, proc_cpuset_operations),
2844#endif
2845#ifdef CONFIG_CGROUPS
2846 REG("cgroup", S_IRUGO, proc_cgroup_operations),
2847#endif
2848 INF("oom_score", S_IRUGO, proc_oom_score),
2849 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adjust_operations),
2850 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
2851#ifdef CONFIG_AUDITSYSCALL
2852 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations),
2853 REG("sessionid", S_IRUGO, proc_sessionid_operations),
2854#endif
2855#ifdef CONFIG_FAULT_INJECTION
2856 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
2857#endif
2858#ifdef CONFIG_ELF_CORE
2859 REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
2860#endif
2861#ifdef CONFIG_TASK_IO_ACCOUNTING
2862 INF("io", S_IRUSR, proc_tgid_io_accounting),
2863#endif
2864#ifdef CONFIG_HARDWALL
2865 INF("hardwall", S_IRUGO, proc_pid_hardwall),
2866#endif
2867};
2868
2869static int proc_tgid_base_readdir(struct file * filp,
2870 void * dirent, filldir_t filldir)
2871{
2872 return proc_pident_readdir(filp,dirent,filldir,
2873 tgid_base_stuff,ARRAY_SIZE(tgid_base_stuff));
2874}
2875
2876static const struct file_operations proc_tgid_base_operations = {
2877 .read = generic_read_dir,
2878 .readdir = proc_tgid_base_readdir,
2879 .llseek = default_llseek,
2880};
2881
2882static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){
2883 return proc_pident_lookup(dir, dentry,
2884 tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2885}
2886
2887static const struct inode_operations proc_tgid_base_inode_operations = {
2888 .lookup = proc_tgid_base_lookup,
2889 .getattr = pid_getattr,
2890 .setattr = proc_setattr,
2891};
2892
2893static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
2894{
2895 struct dentry *dentry, *leader, *dir;
2896 char buf[PROC_NUMBUF];
2897 struct qstr name;
2898
2899 name.name = buf;
2900 name.len = snprintf(buf, sizeof(buf), "%d", pid);
2901 dentry = d_hash_and_lookup(mnt->mnt_root, &name);
2902 if (dentry) {
2903 shrink_dcache_parent(dentry);
2904 d_drop(dentry);
2905 dput(dentry);
2906 }
2907
2908 name.name = buf;
2909 name.len = snprintf(buf, sizeof(buf), "%d", tgid);
2910 leader = d_hash_and_lookup(mnt->mnt_root, &name);
2911 if (!leader)
2912 goto out;
2913
2914 name.name = "task";
2915 name.len = strlen(name.name);
2916 dir = d_hash_and_lookup(leader, &name);
2917 if (!dir)
2918 goto out_put_leader;
2919
2920 name.name = buf;
2921 name.len = snprintf(buf, sizeof(buf), "%d", pid);
2922 dentry = d_hash_and_lookup(dir, &name);
2923 if (dentry) {
2924 shrink_dcache_parent(dentry);
2925 d_drop(dentry);
2926 dput(dentry);
2927 }
2928
2929 dput(dir);
2930out_put_leader:
2931 dput(leader);
2932out:
2933 return;
2934}
2935
2936/**
2937 * proc_flush_task - Remove dcache entries for @task from the /proc dcache.
2938 * @task: task that should be flushed.
2939 *
2940 * When flushing dentries from proc, one needs to flush them from global
2941 * proc (proc_mnt) and from all the namespaces' procs this task was seen
2942 * in. This call is supposed to do all of this job.
2943 *
2944 * Looks in the dcache for
2945 * /proc/@pid
2946 * /proc/@tgid/task/@pid
2947 * if either directory is present flushes it and all of it'ts children
2948 * from the dcache.
2949 *
2950 * It is safe and reasonable to cache /proc entries for a task until
2951 * that task exits. After that they just clog up the dcache with
2952 * useless entries, possibly causing useful dcache entries to be
2953 * flushed instead. This routine is proved to flush those useless
2954 * dcache entries at process exit time.
2955 *
2956 * NOTE: This routine is just an optimization so it does not guarantee
2957 * that no dcache entries will exist at process exit time it
2958 * just makes it very unlikely that any will persist.
2959 */
2960
2961void proc_flush_task(struct task_struct *task)
2962{
2963 int i;
2964 struct pid *pid, *tgid;
2965 struct upid *upid;
2966
2967 pid = task_pid(task);
2968 tgid = task_tgid(task);
2969
2970 for (i = 0; i <= pid->level; i++) {
2971 upid = &pid->numbers[i];
2972 proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
2973 tgid->numbers[i].nr);
2974 }
2975
2976 upid = &pid->numbers[pid->level];
2977 if (upid->nr == 1)
2978 pid_ns_release_proc(upid->ns);
2979}
2980
2981static struct dentry *proc_pid_instantiate(struct inode *dir,
2982 struct dentry * dentry,
2983 struct task_struct *task, const void *ptr)
2984{
2985 struct dentry *error = ERR_PTR(-ENOENT);
2986 struct inode *inode;
2987
2988 inode = proc_pid_make_inode(dir->i_sb, task);
2989 if (!inode)
2990 goto out;
2991
2992 inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
2993 inode->i_op = &proc_tgid_base_inode_operations;
2994 inode->i_fop = &proc_tgid_base_operations;
2995 inode->i_flags|=S_IMMUTABLE;
2996
2997 inode->i_nlink = 2 + pid_entry_count_dirs(tgid_base_stuff,
2998 ARRAY_SIZE(tgid_base_stuff));
2999
3000 d_set_d_op(dentry, &pid_dentry_operations);
3001
3002 d_add(dentry, inode);
3003 /* Close the race of the process dying before we return the dentry */
3004 if (pid_revalidate(dentry, NULL))
3005 error = NULL;
3006out:
3007 return error;
3008}
3009
3010struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
3011{
3012 struct dentry *result;
3013 struct task_struct *task;
3014 unsigned tgid;
3015 struct pid_namespace *ns;
3016
3017 result = proc_base_lookup(dir, dentry);
3018 if (!IS_ERR(result) || PTR_ERR(result) != -ENOENT)
3019 goto out;
3020
3021 tgid = name_to_int(dentry);
3022 if (tgid == ~0U)
3023 goto out;
3024
3025 ns = dentry->d_sb->s_fs_info;
3026 rcu_read_lock();
3027 task = find_task_by_pid_ns(tgid, ns);
3028 if (task)
3029 get_task_struct(task);
3030 rcu_read_unlock();
3031 if (!task)
3032 goto out;
3033
3034 result = proc_pid_instantiate(dir, dentry, task, NULL);
3035 put_task_struct(task);
3036out:
3037 return result;
3038}
3039
3040/*
3041 * Find the first task with tgid >= tgid
3042 *
3043 */
3044struct tgid_iter {
3045 unsigned int tgid;
3046 struct task_struct *task;
3047};
3048static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
3049{
3050 struct pid *pid;
3051
3052 if (iter.task)
3053 put_task_struct(iter.task);
3054 rcu_read_lock();
3055retry:
3056 iter.task = NULL;
3057 pid = find_ge_pid(iter.tgid, ns);
3058 if (pid) {
3059 iter.tgid = pid_nr_ns(pid, ns);
3060 iter.task = pid_task(pid, PIDTYPE_PID);
3061 /* What we to know is if the pid we have find is the
3062 * pid of a thread_group_leader. Testing for task
3063 * being a thread_group_leader is the obvious thing
3064 * todo but there is a window when it fails, due to
3065 * the pid transfer logic in de_thread.
3066 *
3067 * So we perform the straight forward test of seeing
3068 * if the pid we have found is the pid of a thread
3069 * group leader, and don't worry if the task we have
3070 * found doesn't happen to be a thread group leader.
3071 * As we don't care in the case of readdir.
3072 */
3073 if (!iter.task || !has_group_leader_pid(iter.task)) {
3074 iter.tgid += 1;
3075 goto retry;
3076 }
3077 get_task_struct(iter.task);
3078 }
3079 rcu_read_unlock();
3080 return iter;
3081}
3082
3083#define TGID_OFFSET (FIRST_PROCESS_ENTRY + ARRAY_SIZE(proc_base_stuff))
3084
3085static int proc_pid_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
3086 struct tgid_iter iter)
3087{
3088 char name[PROC_NUMBUF];
3089 int len = snprintf(name, sizeof(name), "%d", iter.tgid);
3090 return proc_fill_cache(filp, dirent, filldir, name, len,
3091 proc_pid_instantiate, iter.task, NULL);
3092}
3093
3094/* for the /proc/ directory itself, after non-process stuff has been done */
3095int proc_pid_readdir(struct file * filp, void * dirent, filldir_t filldir)
3096{
3097 unsigned int nr;
3098 struct task_struct *reaper;
3099 struct tgid_iter iter;
3100 struct pid_namespace *ns;
3101
3102 if (filp->f_pos >= PID_MAX_LIMIT + TGID_OFFSET)
3103 goto out_no_task;
3104 nr = filp->f_pos - FIRST_PROCESS_ENTRY;
3105
3106 reaper = get_proc_task(filp->f_path.dentry->d_inode);
3107 if (!reaper)
3108 goto out_no_task;
3109
3110 for (; nr < ARRAY_SIZE(proc_base_stuff); filp->f_pos++, nr++) {
3111 const struct pid_entry *p = &proc_base_stuff[nr];
3112 if (proc_base_fill_cache(filp, dirent, filldir, reaper, p) < 0)
3113 goto out;
3114 }
3115
3116 ns = filp->f_dentry->d_sb->s_fs_info;
3117 iter.task = NULL;
3118 iter.tgid = filp->f_pos - TGID_OFFSET;
3119 for (iter = next_tgid(ns, iter);
3120 iter.task;
3121 iter.tgid += 1, iter = next_tgid(ns, iter)) {
3122 filp->f_pos = iter.tgid + TGID_OFFSET;
3123 if (proc_pid_fill_cache(filp, dirent, filldir, iter) < 0) {
3124 put_task_struct(iter.task);
3125 goto out;
3126 }
3127 }
3128 filp->f_pos = PID_MAX_LIMIT + TGID_OFFSET;
3129out:
3130 put_task_struct(reaper);
3131out_no_task:
3132 return 0;
3133}
3134
3135/*
3136 * Tasks
3137 */
3138static const struct pid_entry tid_base_stuff[] = {
3139 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3140 DIR("fdinfo", S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3141 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3142 REG("environ", S_IRUSR, proc_environ_operations),
3143 INF("auxv", S_IRUSR, proc_pid_auxv),
3144 ONE("status", S_IRUGO, proc_pid_status),
3145 ONE("personality", S_IRUGO, proc_pid_personality),
3146 INF("limits", S_IRUGO, proc_pid_limits),
3147#ifdef CONFIG_SCHED_DEBUG
3148 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3149#endif
3150 REG("comm", S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
3151#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3152 INF("syscall", S_IRUGO, proc_pid_syscall),
3153#endif
3154 INF("cmdline", S_IRUGO, proc_pid_cmdline),
3155 ONE("stat", S_IRUGO, proc_tid_stat),
3156 ONE("statm", S_IRUGO, proc_pid_statm),
3157 REG("maps", S_IRUGO, proc_maps_operations),
3158#ifdef CONFIG_NUMA
3159 REG("numa_maps", S_IRUGO, proc_numa_maps_operations),
3160#endif
3161 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations),
3162 LNK("cwd", proc_cwd_link),
3163 LNK("root", proc_root_link),
3164 LNK("exe", proc_exe_link),
3165 REG("mounts", S_IRUGO, proc_mounts_operations),
3166 REG("mountinfo", S_IRUGO, proc_mountinfo_operations),
3167#ifdef CONFIG_PROC_PAGE_MONITOR
3168 REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3169 REG("smaps", S_IRUGO, proc_smaps_operations),
3170 REG("pagemap", S_IRUGO, proc_pagemap_operations),
3171#endif
3172#ifdef CONFIG_SECURITY
3173 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3174#endif
3175#ifdef CONFIG_KALLSYMS
3176 INF("wchan", S_IRUGO, proc_pid_wchan),
3177#endif
3178#ifdef CONFIG_STACKTRACE
3179 ONE("stack", S_IRUGO, proc_pid_stack),
3180#endif
3181#ifdef CONFIG_SCHEDSTATS
3182 INF("schedstat", S_IRUGO, proc_pid_schedstat),
3183#endif
3184#ifdef CONFIG_LATENCYTOP
3185 REG("latency", S_IRUGO, proc_lstats_operations),
3186#endif
3187#ifdef CONFIG_PROC_PID_CPUSET
3188 REG("cpuset", S_IRUGO, proc_cpuset_operations),
3189#endif
3190#ifdef CONFIG_CGROUPS
3191 REG("cgroup", S_IRUGO, proc_cgroup_operations),
3192#endif
3193 INF("oom_score", S_IRUGO, proc_oom_score),
3194 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adjust_operations),
3195 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3196#ifdef CONFIG_AUDITSYSCALL
3197 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations),
3198 REG("sessionid", S_IRUGO, proc_sessionid_operations),
3199#endif
3200#ifdef CONFIG_FAULT_INJECTION
3201 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3202#endif
3203#ifdef CONFIG_TASK_IO_ACCOUNTING
3204 INF("io", S_IRUSR, proc_tid_io_accounting),
3205#endif
3206#ifdef CONFIG_HARDWALL
3207 INF("hardwall", S_IRUGO, proc_pid_hardwall),
3208#endif
3209};
3210
3211static int proc_tid_base_readdir(struct file * filp,
3212 void * dirent, filldir_t filldir)
3213{
3214 return proc_pident_readdir(filp,dirent,filldir,
3215 tid_base_stuff,ARRAY_SIZE(tid_base_stuff));
3216}
3217
3218static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){
3219 return proc_pident_lookup(dir, dentry,
3220 tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3221}
3222
3223static const struct file_operations proc_tid_base_operations = {
3224 .read = generic_read_dir,
3225 .readdir = proc_tid_base_readdir,
3226 .llseek = default_llseek,
3227};
3228
3229static const struct inode_operations proc_tid_base_inode_operations = {
3230 .lookup = proc_tid_base_lookup,
3231 .getattr = pid_getattr,
3232 .setattr = proc_setattr,
3233};
3234
3235static struct dentry *proc_task_instantiate(struct inode *dir,
3236 struct dentry *dentry, struct task_struct *task, const void *ptr)
3237{
3238 struct dentry *error = ERR_PTR(-ENOENT);
3239 struct inode *inode;
3240 inode = proc_pid_make_inode(dir->i_sb, task);
3241
3242 if (!inode)
3243 goto out;
3244 inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
3245 inode->i_op = &proc_tid_base_inode_operations;
3246 inode->i_fop = &proc_tid_base_operations;
3247 inode->i_flags|=S_IMMUTABLE;
3248
3249 inode->i_nlink = 2 + pid_entry_count_dirs(tid_base_stuff,
3250 ARRAY_SIZE(tid_base_stuff));
3251
3252 d_set_d_op(dentry, &pid_dentry_operations);
3253
3254 d_add(dentry, inode);
3255 /* Close the race of the process dying before we return the dentry */
3256 if (pid_revalidate(dentry, NULL))
3257 error = NULL;
3258out:
3259 return error;
3260}
3261
3262static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
3263{
3264 struct dentry *result = ERR_PTR(-ENOENT);
3265 struct task_struct *task;
3266 struct task_struct *leader = get_proc_task(dir);
3267 unsigned tid;
3268 struct pid_namespace *ns;
3269
3270 if (!leader)
3271 goto out_no_task;
3272
3273 tid = name_to_int(dentry);
3274 if (tid == ~0U)
3275 goto out;
3276
3277 ns = dentry->d_sb->s_fs_info;
3278 rcu_read_lock();
3279 task = find_task_by_pid_ns(tid, ns);
3280 if (task)
3281 get_task_struct(task);
3282 rcu_read_unlock();
3283 if (!task)
3284 goto out;
3285 if (!same_thread_group(leader, task))
3286 goto out_drop_task;
3287
3288 result = proc_task_instantiate(dir, dentry, task, NULL);
3289out_drop_task:
3290 put_task_struct(task);
3291out:
3292 put_task_struct(leader);
3293out_no_task:
3294 return result;
3295}
3296
3297/*
3298 * Find the first tid of a thread group to return to user space.
3299 *
3300 * Usually this is just the thread group leader, but if the users
3301 * buffer was too small or there was a seek into the middle of the
3302 * directory we have more work todo.
3303 *
3304 * In the case of a short read we start with find_task_by_pid.
3305 *
3306 * In the case of a seek we start with the leader and walk nr
3307 * threads past it.
3308 */
3309static struct task_struct *first_tid(struct task_struct *leader,
3310 int tid, int nr, struct pid_namespace *ns)
3311{
3312 struct task_struct *pos;
3313
3314 rcu_read_lock();
3315 /* Attempt to start with the pid of a thread */
3316 if (tid && (nr > 0)) {
3317 pos = find_task_by_pid_ns(tid, ns);
3318 if (pos && (pos->group_leader == leader))
3319 goto found;
3320 }
3321
3322 /* If nr exceeds the number of threads there is nothing todo */
3323 pos = NULL;
3324 if (nr && nr >= get_nr_threads(leader))
3325 goto out;
3326
3327 /* If we haven't found our starting place yet start
3328 * with the leader and walk nr threads forward.
3329 */
3330 for (pos = leader; nr > 0; --nr) {
3331 pos = next_thread(pos);
3332 if (pos == leader) {
3333 pos = NULL;
3334 goto out;
3335 }
3336 }
3337found:
3338 get_task_struct(pos);
3339out:
3340 rcu_read_unlock();
3341 return pos;
3342}
3343
3344/*
3345 * Find the next thread in the thread list.
3346 * Return NULL if there is an error or no next thread.
3347 *
3348 * The reference to the input task_struct is released.
3349 */
3350static struct task_struct *next_tid(struct task_struct *start)
3351{
3352 struct task_struct *pos = NULL;
3353 rcu_read_lock();
3354 if (pid_alive(start)) {
3355 pos = next_thread(start);
3356 if (thread_group_leader(pos))
3357 pos = NULL;
3358 else
3359 get_task_struct(pos);
3360 }
3361 rcu_read_unlock();
3362 put_task_struct(start);
3363 return pos;
3364}
3365
3366static int proc_task_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
3367 struct task_struct *task, int tid)
3368{
3369 char name[PROC_NUMBUF];
3370 int len = snprintf(name, sizeof(name), "%d", tid);
3371 return proc_fill_cache(filp, dirent, filldir, name, len,
3372 proc_task_instantiate, task, NULL);
3373}
3374
3375/* for the /proc/TGID/task/ directories */
3376static int proc_task_readdir(struct file * filp, void * dirent, filldir_t filldir)
3377{
3378 struct dentry *dentry = filp->f_path.dentry;
3379 struct inode *inode = dentry->d_inode;
3380 struct task_struct *leader = NULL;
3381 struct task_struct *task;
3382 int retval = -ENOENT;
3383 ino_t ino;
3384 int tid;
3385 struct pid_namespace *ns;
3386
3387 task = get_proc_task(inode);
3388 if (!task)
3389 goto out_no_task;
3390 rcu_read_lock();
3391 if (pid_alive(task)) {
3392 leader = task->group_leader;
3393 get_task_struct(leader);
3394 }
3395 rcu_read_unlock();
3396 put_task_struct(task);
3397 if (!leader)
3398 goto out_no_task;
3399 retval = 0;
3400
3401 switch ((unsigned long)filp->f_pos) {
3402 case 0:
3403 ino = inode->i_ino;
3404 if (filldir(dirent, ".", 1, filp->f_pos, ino, DT_DIR) < 0)
3405 goto out;
3406 filp->f_pos++;
3407 /* fall through */
3408 case 1:
3409 ino = parent_ino(dentry);
3410 if (filldir(dirent, "..", 2, filp->f_pos, ino, DT_DIR) < 0)
3411 goto out;
3412 filp->f_pos++;
3413 /* fall through */
3414 }
3415
3416 /* f_version caches the tgid value that the last readdir call couldn't
3417 * return. lseek aka telldir automagically resets f_version to 0.
3418 */
3419 ns = filp->f_dentry->d_sb->s_fs_info;
3420 tid = (int)filp->f_version;
3421 filp->f_version = 0;
3422 for (task = first_tid(leader, tid, filp->f_pos - 2, ns);
3423 task;
3424 task = next_tid(task), filp->f_pos++) {
3425 tid = task_pid_nr_ns(task, ns);
3426 if (proc_task_fill_cache(filp, dirent, filldir, task, tid) < 0) {
3427 /* returning this tgid failed, save it as the first
3428 * pid for the next readir call */
3429 filp->f_version = (u64)tid;
3430 put_task_struct(task);
3431 break;
3432 }
3433 }
3434out:
3435 put_task_struct(leader);
3436out_no_task:
3437 return retval;
3438}
3439
3440static int proc_task_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
3441{
3442 struct inode *inode = dentry->d_inode;
3443 struct task_struct *p = get_proc_task(inode);
3444 generic_fillattr(inode, stat);
3445
3446 if (p) {
3447 stat->nlink += get_nr_threads(p);
3448 put_task_struct(p);
3449 }
3450
3451 return 0;
3452}
3453
3454static const struct inode_operations proc_task_inode_operations = {
3455 .lookup = proc_task_lookup,
3456 .getattr = proc_task_getattr,
3457 .setattr = proc_setattr,
3458};
3459
3460static const struct file_operations proc_task_operations = {
3461 .read = generic_read_dir,
3462 .readdir = proc_task_readdir,
3463 .llseek = default_llseek,
3464};
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * linux/fs/proc/base.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 *
7 * proc base directory handling functions
8 *
9 * 1999, Al Viro. Rewritten. Now it covers the whole per-process part.
10 * Instead of using magical inumbers to determine the kind of object
11 * we allocate and fill in-core inodes upon lookup. They don't even
12 * go into icache. We cache the reference to task_struct upon lookup too.
13 * Eventually it should become a filesystem in its own. We don't use the
14 * rest of procfs anymore.
15 *
16 *
17 * Changelog:
18 * 17-Jan-2005
19 * Allan Bezerra
20 * Bruna Moreira <bruna.moreira@indt.org.br>
21 * Edjard Mota <edjard.mota@indt.org.br>
22 * Ilias Biris <ilias.biris@indt.org.br>
23 * Mauricio Lin <mauricio.lin@indt.org.br>
24 *
25 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
26 *
27 * A new process specific entry (smaps) included in /proc. It shows the
28 * size of rss for each memory area. The maps entry lacks information
29 * about physical memory size (rss) for each mapped file, i.e.,
30 * rss information for executables and library files.
31 * This additional information is useful for any tools that need to know
32 * about physical memory consumption for a process specific library.
33 *
34 * Changelog:
35 * 21-Feb-2005
36 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
37 * Pud inclusion in the page table walking.
38 *
39 * ChangeLog:
40 * 10-Mar-2005
41 * 10LE Instituto Nokia de Tecnologia - INdT:
42 * A better way to walks through the page table as suggested by Hugh Dickins.
43 *
44 * Simo Piiroinen <simo.piiroinen@nokia.com>:
45 * Smaps information related to shared, private, clean and dirty pages.
46 *
47 * Paul Mundt <paul.mundt@nokia.com>:
48 * Overall revision about smaps.
49 */
50
51#include <linux/uaccess.h>
52
53#include <linux/errno.h>
54#include <linux/time.h>
55#include <linux/proc_fs.h>
56#include <linux/stat.h>
57#include <linux/task_io_accounting_ops.h>
58#include <linux/init.h>
59#include <linux/capability.h>
60#include <linux/file.h>
61#include <linux/fdtable.h>
62#include <linux/generic-radix-tree.h>
63#include <linux/string.h>
64#include <linux/seq_file.h>
65#include <linux/namei.h>
66#include <linux/mnt_namespace.h>
67#include <linux/mm.h>
68#include <linux/swap.h>
69#include <linux/rcupdate.h>
70#include <linux/kallsyms.h>
71#include <linux/stacktrace.h>
72#include <linux/resource.h>
73#include <linux/module.h>
74#include <linux/mount.h>
75#include <linux/security.h>
76#include <linux/ptrace.h>
77#include <linux/tracehook.h>
78#include <linux/printk.h>
79#include <linux/cache.h>
80#include <linux/cgroup.h>
81#include <linux/cpuset.h>
82#include <linux/audit.h>
83#include <linux/poll.h>
84#include <linux/nsproxy.h>
85#include <linux/oom.h>
86#include <linux/elf.h>
87#include <linux/pid_namespace.h>
88#include <linux/user_namespace.h>
89#include <linux/fs_struct.h>
90#include <linux/slab.h>
91#include <linux/sched/autogroup.h>
92#include <linux/sched/mm.h>
93#include <linux/sched/coredump.h>
94#include <linux/sched/debug.h>
95#include <linux/sched/stat.h>
96#include <linux/posix-timers.h>
97#include <linux/time_namespace.h>
98#include <linux/resctrl.h>
99#include <trace/events/oom.h>
100#include "internal.h"
101#include "fd.h"
102
103#include "../../lib/kstrtox.h"
104
105/* NOTE:
106 * Implementing inode permission operations in /proc is almost
107 * certainly an error. Permission checks need to happen during
108 * each system call not at open time. The reason is that most of
109 * what we wish to check for permissions in /proc varies at runtime.
110 *
111 * The classic example of a problem is opening file descriptors
112 * in /proc for a task before it execs a suid executable.
113 */
114
115static u8 nlink_tid __ro_after_init;
116static u8 nlink_tgid __ro_after_init;
117
118struct pid_entry {
119 const char *name;
120 unsigned int len;
121 umode_t mode;
122 const struct inode_operations *iop;
123 const struct file_operations *fop;
124 union proc_op op;
125};
126
127#define NOD(NAME, MODE, IOP, FOP, OP) { \
128 .name = (NAME), \
129 .len = sizeof(NAME) - 1, \
130 .mode = MODE, \
131 .iop = IOP, \
132 .fop = FOP, \
133 .op = OP, \
134}
135
136#define DIR(NAME, MODE, iops, fops) \
137 NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
138#define LNK(NAME, get_link) \
139 NOD(NAME, (S_IFLNK|S_IRWXUGO), \
140 &proc_pid_link_inode_operations, NULL, \
141 { .proc_get_link = get_link } )
142#define REG(NAME, MODE, fops) \
143 NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
144#define ONE(NAME, MODE, show) \
145 NOD(NAME, (S_IFREG|(MODE)), \
146 NULL, &proc_single_file_operations, \
147 { .proc_show = show } )
148#define ATTR(LSM, NAME, MODE) \
149 NOD(NAME, (S_IFREG|(MODE)), \
150 NULL, &proc_pid_attr_operations, \
151 { .lsm = LSM })
152
153/*
154 * Count the number of hardlinks for the pid_entry table, excluding the .
155 * and .. links.
156 */
157static unsigned int __init pid_entry_nlink(const struct pid_entry *entries,
158 unsigned int n)
159{
160 unsigned int i;
161 unsigned int count;
162
163 count = 2;
164 for (i = 0; i < n; ++i) {
165 if (S_ISDIR(entries[i].mode))
166 ++count;
167 }
168
169 return count;
170}
171
172static int get_task_root(struct task_struct *task, struct path *root)
173{
174 int result = -ENOENT;
175
176 task_lock(task);
177 if (task->fs) {
178 get_fs_root(task->fs, root);
179 result = 0;
180 }
181 task_unlock(task);
182 return result;
183}
184
185static int proc_cwd_link(struct dentry *dentry, struct path *path)
186{
187 struct task_struct *task = get_proc_task(d_inode(dentry));
188 int result = -ENOENT;
189
190 if (task) {
191 task_lock(task);
192 if (task->fs) {
193 get_fs_pwd(task->fs, path);
194 result = 0;
195 }
196 task_unlock(task);
197 put_task_struct(task);
198 }
199 return result;
200}
201
202static int proc_root_link(struct dentry *dentry, struct path *path)
203{
204 struct task_struct *task = get_proc_task(d_inode(dentry));
205 int result = -ENOENT;
206
207 if (task) {
208 result = get_task_root(task, path);
209 put_task_struct(task);
210 }
211 return result;
212}
213
214/*
215 * If the user used setproctitle(), we just get the string from
216 * user space at arg_start, and limit it to a maximum of one page.
217 */
218static ssize_t get_mm_proctitle(struct mm_struct *mm, char __user *buf,
219 size_t count, unsigned long pos,
220 unsigned long arg_start)
221{
222 char *page;
223 int ret, got;
224
225 if (pos >= PAGE_SIZE)
226 return 0;
227
228 page = (char *)__get_free_page(GFP_KERNEL);
229 if (!page)
230 return -ENOMEM;
231
232 ret = 0;
233 got = access_remote_vm(mm, arg_start, page, PAGE_SIZE, FOLL_ANON);
234 if (got > 0) {
235 int len = strnlen(page, got);
236
237 /* Include the NUL character if it was found */
238 if (len < got)
239 len++;
240
241 if (len > pos) {
242 len -= pos;
243 if (len > count)
244 len = count;
245 len -= copy_to_user(buf, page+pos, len);
246 if (!len)
247 len = -EFAULT;
248 ret = len;
249 }
250 }
251 free_page((unsigned long)page);
252 return ret;
253}
254
255static ssize_t get_mm_cmdline(struct mm_struct *mm, char __user *buf,
256 size_t count, loff_t *ppos)
257{
258 unsigned long arg_start, arg_end, env_start, env_end;
259 unsigned long pos, len;
260 char *page, c;
261
262 /* Check if process spawned far enough to have cmdline. */
263 if (!mm->env_end)
264 return 0;
265
266 spin_lock(&mm->arg_lock);
267 arg_start = mm->arg_start;
268 arg_end = mm->arg_end;
269 env_start = mm->env_start;
270 env_end = mm->env_end;
271 spin_unlock(&mm->arg_lock);
272
273 if (arg_start >= arg_end)
274 return 0;
275
276 /*
277 * We allow setproctitle() to overwrite the argument
278 * strings, and overflow past the original end. But
279 * only when it overflows into the environment area.
280 */
281 if (env_start != arg_end || env_end < env_start)
282 env_start = env_end = arg_end;
283 len = env_end - arg_start;
284
285 /* We're not going to care if "*ppos" has high bits set */
286 pos = *ppos;
287 if (pos >= len)
288 return 0;
289 if (count > len - pos)
290 count = len - pos;
291 if (!count)
292 return 0;
293
294 /*
295 * Magical special case: if the argv[] end byte is not
296 * zero, the user has overwritten it with setproctitle(3).
297 *
298 * Possible future enhancement: do this only once when
299 * pos is 0, and set a flag in the 'struct file'.
300 */
301 if (access_remote_vm(mm, arg_end-1, &c, 1, FOLL_ANON) == 1 && c)
302 return get_mm_proctitle(mm, buf, count, pos, arg_start);
303
304 /*
305 * For the non-setproctitle() case we limit things strictly
306 * to the [arg_start, arg_end[ range.
307 */
308 pos += arg_start;
309 if (pos < arg_start || pos >= arg_end)
310 return 0;
311 if (count > arg_end - pos)
312 count = arg_end - pos;
313
314 page = (char *)__get_free_page(GFP_KERNEL);
315 if (!page)
316 return -ENOMEM;
317
318 len = 0;
319 while (count) {
320 int got;
321 size_t size = min_t(size_t, PAGE_SIZE, count);
322
323 got = access_remote_vm(mm, pos, page, size, FOLL_ANON);
324 if (got <= 0)
325 break;
326 got -= copy_to_user(buf, page, got);
327 if (unlikely(!got)) {
328 if (!len)
329 len = -EFAULT;
330 break;
331 }
332 pos += got;
333 buf += got;
334 len += got;
335 count -= got;
336 }
337
338 free_page((unsigned long)page);
339 return len;
340}
341
342static ssize_t get_task_cmdline(struct task_struct *tsk, char __user *buf,
343 size_t count, loff_t *pos)
344{
345 struct mm_struct *mm;
346 ssize_t ret;
347
348 mm = get_task_mm(tsk);
349 if (!mm)
350 return 0;
351
352 ret = get_mm_cmdline(mm, buf, count, pos);
353 mmput(mm);
354 return ret;
355}
356
357static ssize_t proc_pid_cmdline_read(struct file *file, char __user *buf,
358 size_t count, loff_t *pos)
359{
360 struct task_struct *tsk;
361 ssize_t ret;
362
363 BUG_ON(*pos < 0);
364
365 tsk = get_proc_task(file_inode(file));
366 if (!tsk)
367 return -ESRCH;
368 ret = get_task_cmdline(tsk, buf, count, pos);
369 put_task_struct(tsk);
370 if (ret > 0)
371 *pos += ret;
372 return ret;
373}
374
375static const struct file_operations proc_pid_cmdline_ops = {
376 .read = proc_pid_cmdline_read,
377 .llseek = generic_file_llseek,
378};
379
380#ifdef CONFIG_KALLSYMS
381/*
382 * Provides a wchan file via kallsyms in a proper one-value-per-file format.
383 * Returns the resolved symbol. If that fails, simply return the address.
384 */
385static int proc_pid_wchan(struct seq_file *m, struct pid_namespace *ns,
386 struct pid *pid, struct task_struct *task)
387{
388 unsigned long wchan;
389 char symname[KSYM_NAME_LEN];
390
391 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
392 goto print0;
393
394 wchan = get_wchan(task);
395 if (wchan && !lookup_symbol_name(wchan, symname)) {
396 seq_puts(m, symname);
397 return 0;
398 }
399
400print0:
401 seq_putc(m, '0');
402 return 0;
403}
404#endif /* CONFIG_KALLSYMS */
405
406static int lock_trace(struct task_struct *task)
407{
408 int err = mutex_lock_killable(&task->signal->exec_update_mutex);
409 if (err)
410 return err;
411 if (!ptrace_may_access(task, PTRACE_MODE_ATTACH_FSCREDS)) {
412 mutex_unlock(&task->signal->exec_update_mutex);
413 return -EPERM;
414 }
415 return 0;
416}
417
418static void unlock_trace(struct task_struct *task)
419{
420 mutex_unlock(&task->signal->exec_update_mutex);
421}
422
423#ifdef CONFIG_STACKTRACE
424
425#define MAX_STACK_TRACE_DEPTH 64
426
427static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
428 struct pid *pid, struct task_struct *task)
429{
430 unsigned long *entries;
431 int err;
432
433 /*
434 * The ability to racily run the kernel stack unwinder on a running task
435 * and then observe the unwinder output is scary; while it is useful for
436 * debugging kernel issues, it can also allow an attacker to leak kernel
437 * stack contents.
438 * Doing this in a manner that is at least safe from races would require
439 * some work to ensure that the remote task can not be scheduled; and
440 * even then, this would still expose the unwinder as local attack
441 * surface.
442 * Therefore, this interface is restricted to root.
443 */
444 if (!file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN))
445 return -EACCES;
446
447 entries = kmalloc_array(MAX_STACK_TRACE_DEPTH, sizeof(*entries),
448 GFP_KERNEL);
449 if (!entries)
450 return -ENOMEM;
451
452 err = lock_trace(task);
453 if (!err) {
454 unsigned int i, nr_entries;
455
456 nr_entries = stack_trace_save_tsk(task, entries,
457 MAX_STACK_TRACE_DEPTH, 0);
458
459 for (i = 0; i < nr_entries; i++) {
460 seq_printf(m, "[<0>] %pB\n", (void *)entries[i]);
461 }
462
463 unlock_trace(task);
464 }
465 kfree(entries);
466
467 return err;
468}
469#endif
470
471#ifdef CONFIG_SCHED_INFO
472/*
473 * Provides /proc/PID/schedstat
474 */
475static int proc_pid_schedstat(struct seq_file *m, struct pid_namespace *ns,
476 struct pid *pid, struct task_struct *task)
477{
478 if (unlikely(!sched_info_on()))
479 seq_puts(m, "0 0 0\n");
480 else
481 seq_printf(m, "%llu %llu %lu\n",
482 (unsigned long long)task->se.sum_exec_runtime,
483 (unsigned long long)task->sched_info.run_delay,
484 task->sched_info.pcount);
485
486 return 0;
487}
488#endif
489
490#ifdef CONFIG_LATENCYTOP
491static int lstats_show_proc(struct seq_file *m, void *v)
492{
493 int i;
494 struct inode *inode = m->private;
495 struct task_struct *task = get_proc_task(inode);
496
497 if (!task)
498 return -ESRCH;
499 seq_puts(m, "Latency Top version : v0.1\n");
500 for (i = 0; i < LT_SAVECOUNT; i++) {
501 struct latency_record *lr = &task->latency_record[i];
502 if (lr->backtrace[0]) {
503 int q;
504 seq_printf(m, "%i %li %li",
505 lr->count, lr->time, lr->max);
506 for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
507 unsigned long bt = lr->backtrace[q];
508
509 if (!bt)
510 break;
511 seq_printf(m, " %ps", (void *)bt);
512 }
513 seq_putc(m, '\n');
514 }
515
516 }
517 put_task_struct(task);
518 return 0;
519}
520
521static int lstats_open(struct inode *inode, struct file *file)
522{
523 return single_open(file, lstats_show_proc, inode);
524}
525
526static ssize_t lstats_write(struct file *file, const char __user *buf,
527 size_t count, loff_t *offs)
528{
529 struct task_struct *task = get_proc_task(file_inode(file));
530
531 if (!task)
532 return -ESRCH;
533 clear_tsk_latency_tracing(task);
534 put_task_struct(task);
535
536 return count;
537}
538
539static const struct file_operations proc_lstats_operations = {
540 .open = lstats_open,
541 .read = seq_read,
542 .write = lstats_write,
543 .llseek = seq_lseek,
544 .release = single_release,
545};
546
547#endif
548
549static int proc_oom_score(struct seq_file *m, struct pid_namespace *ns,
550 struct pid *pid, struct task_struct *task)
551{
552 unsigned long totalpages = totalram_pages() + total_swap_pages;
553 unsigned long points = 0;
554 long badness;
555
556 badness = oom_badness(task, totalpages);
557 /*
558 * Special case OOM_SCORE_ADJ_MIN for all others scale the
559 * badness value into [0, 2000] range which we have been
560 * exporting for a long time so userspace might depend on it.
561 */
562 if (badness != LONG_MIN)
563 points = (1000 + badness * 1000 / (long)totalpages) * 2 / 3;
564
565 seq_printf(m, "%lu\n", points);
566
567 return 0;
568}
569
570struct limit_names {
571 const char *name;
572 const char *unit;
573};
574
575static const struct limit_names lnames[RLIM_NLIMITS] = {
576 [RLIMIT_CPU] = {"Max cpu time", "seconds"},
577 [RLIMIT_FSIZE] = {"Max file size", "bytes"},
578 [RLIMIT_DATA] = {"Max data size", "bytes"},
579 [RLIMIT_STACK] = {"Max stack size", "bytes"},
580 [RLIMIT_CORE] = {"Max core file size", "bytes"},
581 [RLIMIT_RSS] = {"Max resident set", "bytes"},
582 [RLIMIT_NPROC] = {"Max processes", "processes"},
583 [RLIMIT_NOFILE] = {"Max open files", "files"},
584 [RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
585 [RLIMIT_AS] = {"Max address space", "bytes"},
586 [RLIMIT_LOCKS] = {"Max file locks", "locks"},
587 [RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
588 [RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
589 [RLIMIT_NICE] = {"Max nice priority", NULL},
590 [RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
591 [RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
592};
593
594/* Display limits for a process */
595static int proc_pid_limits(struct seq_file *m, struct pid_namespace *ns,
596 struct pid *pid, struct task_struct *task)
597{
598 unsigned int i;
599 unsigned long flags;
600
601 struct rlimit rlim[RLIM_NLIMITS];
602
603 if (!lock_task_sighand(task, &flags))
604 return 0;
605 memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
606 unlock_task_sighand(task, &flags);
607
608 /*
609 * print the file header
610 */
611 seq_puts(m, "Limit "
612 "Soft Limit "
613 "Hard Limit "
614 "Units \n");
615
616 for (i = 0; i < RLIM_NLIMITS; i++) {
617 if (rlim[i].rlim_cur == RLIM_INFINITY)
618 seq_printf(m, "%-25s %-20s ",
619 lnames[i].name, "unlimited");
620 else
621 seq_printf(m, "%-25s %-20lu ",
622 lnames[i].name, rlim[i].rlim_cur);
623
624 if (rlim[i].rlim_max == RLIM_INFINITY)
625 seq_printf(m, "%-20s ", "unlimited");
626 else
627 seq_printf(m, "%-20lu ", rlim[i].rlim_max);
628
629 if (lnames[i].unit)
630 seq_printf(m, "%-10s\n", lnames[i].unit);
631 else
632 seq_putc(m, '\n');
633 }
634
635 return 0;
636}
637
638#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
639static int proc_pid_syscall(struct seq_file *m, struct pid_namespace *ns,
640 struct pid *pid, struct task_struct *task)
641{
642 struct syscall_info info;
643 u64 *args = &info.data.args[0];
644 int res;
645
646 res = lock_trace(task);
647 if (res)
648 return res;
649
650 if (task_current_syscall(task, &info))
651 seq_puts(m, "running\n");
652 else if (info.data.nr < 0)
653 seq_printf(m, "%d 0x%llx 0x%llx\n",
654 info.data.nr, info.sp, info.data.instruction_pointer);
655 else
656 seq_printf(m,
657 "%d 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx\n",
658 info.data.nr,
659 args[0], args[1], args[2], args[3], args[4], args[5],
660 info.sp, info.data.instruction_pointer);
661 unlock_trace(task);
662
663 return 0;
664}
665#endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
666
667/************************************************************************/
668/* Here the fs part begins */
669/************************************************************************/
670
671/* permission checks */
672static int proc_fd_access_allowed(struct inode *inode)
673{
674 struct task_struct *task;
675 int allowed = 0;
676 /* Allow access to a task's file descriptors if it is us or we
677 * may use ptrace attach to the process and find out that
678 * information.
679 */
680 task = get_proc_task(inode);
681 if (task) {
682 allowed = ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
683 put_task_struct(task);
684 }
685 return allowed;
686}
687
688int proc_setattr(struct dentry *dentry, struct iattr *attr)
689{
690 int error;
691 struct inode *inode = d_inode(dentry);
692
693 if (attr->ia_valid & ATTR_MODE)
694 return -EPERM;
695
696 error = setattr_prepare(dentry, attr);
697 if (error)
698 return error;
699
700 setattr_copy(inode, attr);
701 mark_inode_dirty(inode);
702 return 0;
703}
704
705/*
706 * May current process learn task's sched/cmdline info (for hide_pid_min=1)
707 * or euid/egid (for hide_pid_min=2)?
708 */
709static bool has_pid_permissions(struct proc_fs_info *fs_info,
710 struct task_struct *task,
711 enum proc_hidepid hide_pid_min)
712{
713 /*
714 * If 'hidpid' mount option is set force a ptrace check,
715 * we indicate that we are using a filesystem syscall
716 * by passing PTRACE_MODE_READ_FSCREDS
717 */
718 if (fs_info->hide_pid == HIDEPID_NOT_PTRACEABLE)
719 return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
720
721 if (fs_info->hide_pid < hide_pid_min)
722 return true;
723 if (in_group_p(fs_info->pid_gid))
724 return true;
725 return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
726}
727
728
729static int proc_pid_permission(struct inode *inode, int mask)
730{
731 struct proc_fs_info *fs_info = proc_sb_info(inode->i_sb);
732 struct task_struct *task;
733 bool has_perms;
734
735 task = get_proc_task(inode);
736 if (!task)
737 return -ESRCH;
738 has_perms = has_pid_permissions(fs_info, task, HIDEPID_NO_ACCESS);
739 put_task_struct(task);
740
741 if (!has_perms) {
742 if (fs_info->hide_pid == HIDEPID_INVISIBLE) {
743 /*
744 * Let's make getdents(), stat(), and open()
745 * consistent with each other. If a process
746 * may not stat() a file, it shouldn't be seen
747 * in procfs at all.
748 */
749 return -ENOENT;
750 }
751
752 return -EPERM;
753 }
754 return generic_permission(inode, mask);
755}
756
757
758
759static const struct inode_operations proc_def_inode_operations = {
760 .setattr = proc_setattr,
761};
762
763static int proc_single_show(struct seq_file *m, void *v)
764{
765 struct inode *inode = m->private;
766 struct pid_namespace *ns = proc_pid_ns(inode->i_sb);
767 struct pid *pid = proc_pid(inode);
768 struct task_struct *task;
769 int ret;
770
771 task = get_pid_task(pid, PIDTYPE_PID);
772 if (!task)
773 return -ESRCH;
774
775 ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
776
777 put_task_struct(task);
778 return ret;
779}
780
781static int proc_single_open(struct inode *inode, struct file *filp)
782{
783 return single_open(filp, proc_single_show, inode);
784}
785
786static const struct file_operations proc_single_file_operations = {
787 .open = proc_single_open,
788 .read = seq_read,
789 .llseek = seq_lseek,
790 .release = single_release,
791};
792
793
794struct mm_struct *proc_mem_open(struct inode *inode, unsigned int mode)
795{
796 struct task_struct *task = get_proc_task(inode);
797 struct mm_struct *mm = ERR_PTR(-ESRCH);
798
799 if (task) {
800 mm = mm_access(task, mode | PTRACE_MODE_FSCREDS);
801 put_task_struct(task);
802
803 if (!IS_ERR_OR_NULL(mm)) {
804 /* ensure this mm_struct can't be freed */
805 mmgrab(mm);
806 /* but do not pin its memory */
807 mmput(mm);
808 }
809 }
810
811 return mm;
812}
813
814static int __mem_open(struct inode *inode, struct file *file, unsigned int mode)
815{
816 struct mm_struct *mm = proc_mem_open(inode, mode);
817
818 if (IS_ERR(mm))
819 return PTR_ERR(mm);
820
821 file->private_data = mm;
822 return 0;
823}
824
825static int mem_open(struct inode *inode, struct file *file)
826{
827 int ret = __mem_open(inode, file, PTRACE_MODE_ATTACH);
828
829 /* OK to pass negative loff_t, we can catch out-of-range */
830 file->f_mode |= FMODE_UNSIGNED_OFFSET;
831
832 return ret;
833}
834
835static ssize_t mem_rw(struct file *file, char __user *buf,
836 size_t count, loff_t *ppos, int write)
837{
838 struct mm_struct *mm = file->private_data;
839 unsigned long addr = *ppos;
840 ssize_t copied;
841 char *page;
842 unsigned int flags;
843
844 if (!mm)
845 return 0;
846
847 page = (char *)__get_free_page(GFP_KERNEL);
848 if (!page)
849 return -ENOMEM;
850
851 copied = 0;
852 if (!mmget_not_zero(mm))
853 goto free;
854
855 flags = FOLL_FORCE | (write ? FOLL_WRITE : 0);
856
857 while (count > 0) {
858 int this_len = min_t(int, count, PAGE_SIZE);
859
860 if (write && copy_from_user(page, buf, this_len)) {
861 copied = -EFAULT;
862 break;
863 }
864
865 this_len = access_remote_vm(mm, addr, page, this_len, flags);
866 if (!this_len) {
867 if (!copied)
868 copied = -EIO;
869 break;
870 }
871
872 if (!write && copy_to_user(buf, page, this_len)) {
873 copied = -EFAULT;
874 break;
875 }
876
877 buf += this_len;
878 addr += this_len;
879 copied += this_len;
880 count -= this_len;
881 }
882 *ppos = addr;
883
884 mmput(mm);
885free:
886 free_page((unsigned long) page);
887 return copied;
888}
889
890static ssize_t mem_read(struct file *file, char __user *buf,
891 size_t count, loff_t *ppos)
892{
893 return mem_rw(file, buf, count, ppos, 0);
894}
895
896static ssize_t mem_write(struct file *file, const char __user *buf,
897 size_t count, loff_t *ppos)
898{
899 return mem_rw(file, (char __user*)buf, count, ppos, 1);
900}
901
902loff_t mem_lseek(struct file *file, loff_t offset, int orig)
903{
904 switch (orig) {
905 case 0:
906 file->f_pos = offset;
907 break;
908 case 1:
909 file->f_pos += offset;
910 break;
911 default:
912 return -EINVAL;
913 }
914 force_successful_syscall_return();
915 return file->f_pos;
916}
917
918static int mem_release(struct inode *inode, struct file *file)
919{
920 struct mm_struct *mm = file->private_data;
921 if (mm)
922 mmdrop(mm);
923 return 0;
924}
925
926static const struct file_operations proc_mem_operations = {
927 .llseek = mem_lseek,
928 .read = mem_read,
929 .write = mem_write,
930 .open = mem_open,
931 .release = mem_release,
932};
933
934static int environ_open(struct inode *inode, struct file *file)
935{
936 return __mem_open(inode, file, PTRACE_MODE_READ);
937}
938
939static ssize_t environ_read(struct file *file, char __user *buf,
940 size_t count, loff_t *ppos)
941{
942 char *page;
943 unsigned long src = *ppos;
944 int ret = 0;
945 struct mm_struct *mm = file->private_data;
946 unsigned long env_start, env_end;
947
948 /* Ensure the process spawned far enough to have an environment. */
949 if (!mm || !mm->env_end)
950 return 0;
951
952 page = (char *)__get_free_page(GFP_KERNEL);
953 if (!page)
954 return -ENOMEM;
955
956 ret = 0;
957 if (!mmget_not_zero(mm))
958 goto free;
959
960 spin_lock(&mm->arg_lock);
961 env_start = mm->env_start;
962 env_end = mm->env_end;
963 spin_unlock(&mm->arg_lock);
964
965 while (count > 0) {
966 size_t this_len, max_len;
967 int retval;
968
969 if (src >= (env_end - env_start))
970 break;
971
972 this_len = env_end - (env_start + src);
973
974 max_len = min_t(size_t, PAGE_SIZE, count);
975 this_len = min(max_len, this_len);
976
977 retval = access_remote_vm(mm, (env_start + src), page, this_len, FOLL_ANON);
978
979 if (retval <= 0) {
980 ret = retval;
981 break;
982 }
983
984 if (copy_to_user(buf, page, retval)) {
985 ret = -EFAULT;
986 break;
987 }
988
989 ret += retval;
990 src += retval;
991 buf += retval;
992 count -= retval;
993 }
994 *ppos = src;
995 mmput(mm);
996
997free:
998 free_page((unsigned long) page);
999 return ret;
1000}
1001
1002static const struct file_operations proc_environ_operations = {
1003 .open = environ_open,
1004 .read = environ_read,
1005 .llseek = generic_file_llseek,
1006 .release = mem_release,
1007};
1008
1009static int auxv_open(struct inode *inode, struct file *file)
1010{
1011 return __mem_open(inode, file, PTRACE_MODE_READ_FSCREDS);
1012}
1013
1014static ssize_t auxv_read(struct file *file, char __user *buf,
1015 size_t count, loff_t *ppos)
1016{
1017 struct mm_struct *mm = file->private_data;
1018 unsigned int nwords = 0;
1019
1020 if (!mm)
1021 return 0;
1022 do {
1023 nwords += 2;
1024 } while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
1025 return simple_read_from_buffer(buf, count, ppos, mm->saved_auxv,
1026 nwords * sizeof(mm->saved_auxv[0]));
1027}
1028
1029static const struct file_operations proc_auxv_operations = {
1030 .open = auxv_open,
1031 .read = auxv_read,
1032 .llseek = generic_file_llseek,
1033 .release = mem_release,
1034};
1035
1036static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count,
1037 loff_t *ppos)
1038{
1039 struct task_struct *task = get_proc_task(file_inode(file));
1040 char buffer[PROC_NUMBUF];
1041 int oom_adj = OOM_ADJUST_MIN;
1042 size_t len;
1043
1044 if (!task)
1045 return -ESRCH;
1046 if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX)
1047 oom_adj = OOM_ADJUST_MAX;
1048 else
1049 oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) /
1050 OOM_SCORE_ADJ_MAX;
1051 put_task_struct(task);
1052 len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj);
1053 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1054}
1055
1056static int __set_oom_adj(struct file *file, int oom_adj, bool legacy)
1057{
1058 static DEFINE_MUTEX(oom_adj_mutex);
1059 struct mm_struct *mm = NULL;
1060 struct task_struct *task;
1061 int err = 0;
1062
1063 task = get_proc_task(file_inode(file));
1064 if (!task)
1065 return -ESRCH;
1066
1067 mutex_lock(&oom_adj_mutex);
1068 if (legacy) {
1069 if (oom_adj < task->signal->oom_score_adj &&
1070 !capable(CAP_SYS_RESOURCE)) {
1071 err = -EACCES;
1072 goto err_unlock;
1073 }
1074 /*
1075 * /proc/pid/oom_adj is provided for legacy purposes, ask users to use
1076 * /proc/pid/oom_score_adj instead.
1077 */
1078 pr_warn_once("%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
1079 current->comm, task_pid_nr(current), task_pid_nr(task),
1080 task_pid_nr(task));
1081 } else {
1082 if ((short)oom_adj < task->signal->oom_score_adj_min &&
1083 !capable(CAP_SYS_RESOURCE)) {
1084 err = -EACCES;
1085 goto err_unlock;
1086 }
1087 }
1088
1089 /*
1090 * Make sure we will check other processes sharing the mm if this is
1091 * not vfrok which wants its own oom_score_adj.
1092 * pin the mm so it doesn't go away and get reused after task_unlock
1093 */
1094 if (!task->vfork_done) {
1095 struct task_struct *p = find_lock_task_mm(task);
1096
1097 if (p) {
1098 if (atomic_read(&p->mm->mm_users) > 1) {
1099 mm = p->mm;
1100 mmgrab(mm);
1101 }
1102 task_unlock(p);
1103 }
1104 }
1105
1106 task->signal->oom_score_adj = oom_adj;
1107 if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1108 task->signal->oom_score_adj_min = (short)oom_adj;
1109 trace_oom_score_adj_update(task);
1110
1111 if (mm) {
1112 struct task_struct *p;
1113
1114 rcu_read_lock();
1115 for_each_process(p) {
1116 if (same_thread_group(task, p))
1117 continue;
1118
1119 /* do not touch kernel threads or the global init */
1120 if (p->flags & PF_KTHREAD || is_global_init(p))
1121 continue;
1122
1123 task_lock(p);
1124 if (!p->vfork_done && process_shares_mm(p, mm)) {
1125 p->signal->oom_score_adj = oom_adj;
1126 if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1127 p->signal->oom_score_adj_min = (short)oom_adj;
1128 }
1129 task_unlock(p);
1130 }
1131 rcu_read_unlock();
1132 mmdrop(mm);
1133 }
1134err_unlock:
1135 mutex_unlock(&oom_adj_mutex);
1136 put_task_struct(task);
1137 return err;
1138}
1139
1140/*
1141 * /proc/pid/oom_adj exists solely for backwards compatibility with previous
1142 * kernels. The effective policy is defined by oom_score_adj, which has a
1143 * different scale: oom_adj grew exponentially and oom_score_adj grows linearly.
1144 * Values written to oom_adj are simply mapped linearly to oom_score_adj.
1145 * Processes that become oom disabled via oom_adj will still be oom disabled
1146 * with this implementation.
1147 *
1148 * oom_adj cannot be removed since existing userspace binaries use it.
1149 */
1150static ssize_t oom_adj_write(struct file *file, const char __user *buf,
1151 size_t count, loff_t *ppos)
1152{
1153 char buffer[PROC_NUMBUF];
1154 int oom_adj;
1155 int err;
1156
1157 memset(buffer, 0, sizeof(buffer));
1158 if (count > sizeof(buffer) - 1)
1159 count = sizeof(buffer) - 1;
1160 if (copy_from_user(buffer, buf, count)) {
1161 err = -EFAULT;
1162 goto out;
1163 }
1164
1165 err = kstrtoint(strstrip(buffer), 0, &oom_adj);
1166 if (err)
1167 goto out;
1168 if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) &&
1169 oom_adj != OOM_DISABLE) {
1170 err = -EINVAL;
1171 goto out;
1172 }
1173
1174 /*
1175 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
1176 * value is always attainable.
1177 */
1178 if (oom_adj == OOM_ADJUST_MAX)
1179 oom_adj = OOM_SCORE_ADJ_MAX;
1180 else
1181 oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE;
1182
1183 err = __set_oom_adj(file, oom_adj, true);
1184out:
1185 return err < 0 ? err : count;
1186}
1187
1188static const struct file_operations proc_oom_adj_operations = {
1189 .read = oom_adj_read,
1190 .write = oom_adj_write,
1191 .llseek = generic_file_llseek,
1192};
1193
1194static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
1195 size_t count, loff_t *ppos)
1196{
1197 struct task_struct *task = get_proc_task(file_inode(file));
1198 char buffer[PROC_NUMBUF];
1199 short oom_score_adj = OOM_SCORE_ADJ_MIN;
1200 size_t len;
1201
1202 if (!task)
1203 return -ESRCH;
1204 oom_score_adj = task->signal->oom_score_adj;
1205 put_task_struct(task);
1206 len = snprintf(buffer, sizeof(buffer), "%hd\n", oom_score_adj);
1207 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1208}
1209
1210static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
1211 size_t count, loff_t *ppos)
1212{
1213 char buffer[PROC_NUMBUF];
1214 int oom_score_adj;
1215 int err;
1216
1217 memset(buffer, 0, sizeof(buffer));
1218 if (count > sizeof(buffer) - 1)
1219 count = sizeof(buffer) - 1;
1220 if (copy_from_user(buffer, buf, count)) {
1221 err = -EFAULT;
1222 goto out;
1223 }
1224
1225 err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
1226 if (err)
1227 goto out;
1228 if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1229 oom_score_adj > OOM_SCORE_ADJ_MAX) {
1230 err = -EINVAL;
1231 goto out;
1232 }
1233
1234 err = __set_oom_adj(file, oom_score_adj, false);
1235out:
1236 return err < 0 ? err : count;
1237}
1238
1239static const struct file_operations proc_oom_score_adj_operations = {
1240 .read = oom_score_adj_read,
1241 .write = oom_score_adj_write,
1242 .llseek = default_llseek,
1243};
1244
1245#ifdef CONFIG_AUDIT
1246#define TMPBUFLEN 11
1247static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1248 size_t count, loff_t *ppos)
1249{
1250 struct inode * inode = file_inode(file);
1251 struct task_struct *task = get_proc_task(inode);
1252 ssize_t length;
1253 char tmpbuf[TMPBUFLEN];
1254
1255 if (!task)
1256 return -ESRCH;
1257 length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1258 from_kuid(file->f_cred->user_ns,
1259 audit_get_loginuid(task)));
1260 put_task_struct(task);
1261 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1262}
1263
1264static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1265 size_t count, loff_t *ppos)
1266{
1267 struct inode * inode = file_inode(file);
1268 uid_t loginuid;
1269 kuid_t kloginuid;
1270 int rv;
1271
1272 rcu_read_lock();
1273 if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1274 rcu_read_unlock();
1275 return -EPERM;
1276 }
1277 rcu_read_unlock();
1278
1279 if (*ppos != 0) {
1280 /* No partial writes. */
1281 return -EINVAL;
1282 }
1283
1284 rv = kstrtou32_from_user(buf, count, 10, &loginuid);
1285 if (rv < 0)
1286 return rv;
1287
1288 /* is userspace tring to explicitly UNSET the loginuid? */
1289 if (loginuid == AUDIT_UID_UNSET) {
1290 kloginuid = INVALID_UID;
1291 } else {
1292 kloginuid = make_kuid(file->f_cred->user_ns, loginuid);
1293 if (!uid_valid(kloginuid))
1294 return -EINVAL;
1295 }
1296
1297 rv = audit_set_loginuid(kloginuid);
1298 if (rv < 0)
1299 return rv;
1300 return count;
1301}
1302
1303static const struct file_operations proc_loginuid_operations = {
1304 .read = proc_loginuid_read,
1305 .write = proc_loginuid_write,
1306 .llseek = generic_file_llseek,
1307};
1308
1309static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1310 size_t count, loff_t *ppos)
1311{
1312 struct inode * inode = file_inode(file);
1313 struct task_struct *task = get_proc_task(inode);
1314 ssize_t length;
1315 char tmpbuf[TMPBUFLEN];
1316
1317 if (!task)
1318 return -ESRCH;
1319 length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1320 audit_get_sessionid(task));
1321 put_task_struct(task);
1322 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1323}
1324
1325static const struct file_operations proc_sessionid_operations = {
1326 .read = proc_sessionid_read,
1327 .llseek = generic_file_llseek,
1328};
1329#endif
1330
1331#ifdef CONFIG_FAULT_INJECTION
1332static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1333 size_t count, loff_t *ppos)
1334{
1335 struct task_struct *task = get_proc_task(file_inode(file));
1336 char buffer[PROC_NUMBUF];
1337 size_t len;
1338 int make_it_fail;
1339
1340 if (!task)
1341 return -ESRCH;
1342 make_it_fail = task->make_it_fail;
1343 put_task_struct(task);
1344
1345 len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1346
1347 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1348}
1349
1350static ssize_t proc_fault_inject_write(struct file * file,
1351 const char __user * buf, size_t count, loff_t *ppos)
1352{
1353 struct task_struct *task;
1354 char buffer[PROC_NUMBUF];
1355 int make_it_fail;
1356 int rv;
1357
1358 if (!capable(CAP_SYS_RESOURCE))
1359 return -EPERM;
1360 memset(buffer, 0, sizeof(buffer));
1361 if (count > sizeof(buffer) - 1)
1362 count = sizeof(buffer) - 1;
1363 if (copy_from_user(buffer, buf, count))
1364 return -EFAULT;
1365 rv = kstrtoint(strstrip(buffer), 0, &make_it_fail);
1366 if (rv < 0)
1367 return rv;
1368 if (make_it_fail < 0 || make_it_fail > 1)
1369 return -EINVAL;
1370
1371 task = get_proc_task(file_inode(file));
1372 if (!task)
1373 return -ESRCH;
1374 task->make_it_fail = make_it_fail;
1375 put_task_struct(task);
1376
1377 return count;
1378}
1379
1380static const struct file_operations proc_fault_inject_operations = {
1381 .read = proc_fault_inject_read,
1382 .write = proc_fault_inject_write,
1383 .llseek = generic_file_llseek,
1384};
1385
1386static ssize_t proc_fail_nth_write(struct file *file, const char __user *buf,
1387 size_t count, loff_t *ppos)
1388{
1389 struct task_struct *task;
1390 int err;
1391 unsigned int n;
1392
1393 err = kstrtouint_from_user(buf, count, 0, &n);
1394 if (err)
1395 return err;
1396
1397 task = get_proc_task(file_inode(file));
1398 if (!task)
1399 return -ESRCH;
1400 task->fail_nth = n;
1401 put_task_struct(task);
1402
1403 return count;
1404}
1405
1406static ssize_t proc_fail_nth_read(struct file *file, char __user *buf,
1407 size_t count, loff_t *ppos)
1408{
1409 struct task_struct *task;
1410 char numbuf[PROC_NUMBUF];
1411 ssize_t len;
1412
1413 task = get_proc_task(file_inode(file));
1414 if (!task)
1415 return -ESRCH;
1416 len = snprintf(numbuf, sizeof(numbuf), "%u\n", task->fail_nth);
1417 put_task_struct(task);
1418 return simple_read_from_buffer(buf, count, ppos, numbuf, len);
1419}
1420
1421static const struct file_operations proc_fail_nth_operations = {
1422 .read = proc_fail_nth_read,
1423 .write = proc_fail_nth_write,
1424};
1425#endif
1426
1427
1428#ifdef CONFIG_SCHED_DEBUG
1429/*
1430 * Print out various scheduling related per-task fields:
1431 */
1432static int sched_show(struct seq_file *m, void *v)
1433{
1434 struct inode *inode = m->private;
1435 struct pid_namespace *ns = proc_pid_ns(inode->i_sb);
1436 struct task_struct *p;
1437
1438 p = get_proc_task(inode);
1439 if (!p)
1440 return -ESRCH;
1441 proc_sched_show_task(p, ns, m);
1442
1443 put_task_struct(p);
1444
1445 return 0;
1446}
1447
1448static ssize_t
1449sched_write(struct file *file, const char __user *buf,
1450 size_t count, loff_t *offset)
1451{
1452 struct inode *inode = file_inode(file);
1453 struct task_struct *p;
1454
1455 p = get_proc_task(inode);
1456 if (!p)
1457 return -ESRCH;
1458 proc_sched_set_task(p);
1459
1460 put_task_struct(p);
1461
1462 return count;
1463}
1464
1465static int sched_open(struct inode *inode, struct file *filp)
1466{
1467 return single_open(filp, sched_show, inode);
1468}
1469
1470static const struct file_operations proc_pid_sched_operations = {
1471 .open = sched_open,
1472 .read = seq_read,
1473 .write = sched_write,
1474 .llseek = seq_lseek,
1475 .release = single_release,
1476};
1477
1478#endif
1479
1480#ifdef CONFIG_SCHED_AUTOGROUP
1481/*
1482 * Print out autogroup related information:
1483 */
1484static int sched_autogroup_show(struct seq_file *m, void *v)
1485{
1486 struct inode *inode = m->private;
1487 struct task_struct *p;
1488
1489 p = get_proc_task(inode);
1490 if (!p)
1491 return -ESRCH;
1492 proc_sched_autogroup_show_task(p, m);
1493
1494 put_task_struct(p);
1495
1496 return 0;
1497}
1498
1499static ssize_t
1500sched_autogroup_write(struct file *file, const char __user *buf,
1501 size_t count, loff_t *offset)
1502{
1503 struct inode *inode = file_inode(file);
1504 struct task_struct *p;
1505 char buffer[PROC_NUMBUF];
1506 int nice;
1507 int err;
1508
1509 memset(buffer, 0, sizeof(buffer));
1510 if (count > sizeof(buffer) - 1)
1511 count = sizeof(buffer) - 1;
1512 if (copy_from_user(buffer, buf, count))
1513 return -EFAULT;
1514
1515 err = kstrtoint(strstrip(buffer), 0, &nice);
1516 if (err < 0)
1517 return err;
1518
1519 p = get_proc_task(inode);
1520 if (!p)
1521 return -ESRCH;
1522
1523 err = proc_sched_autogroup_set_nice(p, nice);
1524 if (err)
1525 count = err;
1526
1527 put_task_struct(p);
1528
1529 return count;
1530}
1531
1532static int sched_autogroup_open(struct inode *inode, struct file *filp)
1533{
1534 int ret;
1535
1536 ret = single_open(filp, sched_autogroup_show, NULL);
1537 if (!ret) {
1538 struct seq_file *m = filp->private_data;
1539
1540 m->private = inode;
1541 }
1542 return ret;
1543}
1544
1545static const struct file_operations proc_pid_sched_autogroup_operations = {
1546 .open = sched_autogroup_open,
1547 .read = seq_read,
1548 .write = sched_autogroup_write,
1549 .llseek = seq_lseek,
1550 .release = single_release,
1551};
1552
1553#endif /* CONFIG_SCHED_AUTOGROUP */
1554
1555#ifdef CONFIG_TIME_NS
1556static int timens_offsets_show(struct seq_file *m, void *v)
1557{
1558 struct task_struct *p;
1559
1560 p = get_proc_task(file_inode(m->file));
1561 if (!p)
1562 return -ESRCH;
1563 proc_timens_show_offsets(p, m);
1564
1565 put_task_struct(p);
1566
1567 return 0;
1568}
1569
1570static ssize_t timens_offsets_write(struct file *file, const char __user *buf,
1571 size_t count, loff_t *ppos)
1572{
1573 struct inode *inode = file_inode(file);
1574 struct proc_timens_offset offsets[2];
1575 char *kbuf = NULL, *pos, *next_line;
1576 struct task_struct *p;
1577 int ret, noffsets;
1578
1579 /* Only allow < page size writes at the beginning of the file */
1580 if ((*ppos != 0) || (count >= PAGE_SIZE))
1581 return -EINVAL;
1582
1583 /* Slurp in the user data */
1584 kbuf = memdup_user_nul(buf, count);
1585 if (IS_ERR(kbuf))
1586 return PTR_ERR(kbuf);
1587
1588 /* Parse the user data */
1589 ret = -EINVAL;
1590 noffsets = 0;
1591 for (pos = kbuf; pos; pos = next_line) {
1592 struct proc_timens_offset *off = &offsets[noffsets];
1593 char clock[10];
1594 int err;
1595
1596 /* Find the end of line and ensure we don't look past it */
1597 next_line = strchr(pos, '\n');
1598 if (next_line) {
1599 *next_line = '\0';
1600 next_line++;
1601 if (*next_line == '\0')
1602 next_line = NULL;
1603 }
1604
1605 err = sscanf(pos, "%9s %lld %lu", clock,
1606 &off->val.tv_sec, &off->val.tv_nsec);
1607 if (err != 3 || off->val.tv_nsec >= NSEC_PER_SEC)
1608 goto out;
1609
1610 clock[sizeof(clock) - 1] = 0;
1611 if (strcmp(clock, "monotonic") == 0 ||
1612 strcmp(clock, __stringify(CLOCK_MONOTONIC)) == 0)
1613 off->clockid = CLOCK_MONOTONIC;
1614 else if (strcmp(clock, "boottime") == 0 ||
1615 strcmp(clock, __stringify(CLOCK_BOOTTIME)) == 0)
1616 off->clockid = CLOCK_BOOTTIME;
1617 else
1618 goto out;
1619
1620 noffsets++;
1621 if (noffsets == ARRAY_SIZE(offsets)) {
1622 if (next_line)
1623 count = next_line - kbuf;
1624 break;
1625 }
1626 }
1627
1628 ret = -ESRCH;
1629 p = get_proc_task(inode);
1630 if (!p)
1631 goto out;
1632 ret = proc_timens_set_offset(file, p, offsets, noffsets);
1633 put_task_struct(p);
1634 if (ret)
1635 goto out;
1636
1637 ret = count;
1638out:
1639 kfree(kbuf);
1640 return ret;
1641}
1642
1643static int timens_offsets_open(struct inode *inode, struct file *filp)
1644{
1645 return single_open(filp, timens_offsets_show, inode);
1646}
1647
1648static const struct file_operations proc_timens_offsets_operations = {
1649 .open = timens_offsets_open,
1650 .read = seq_read,
1651 .write = timens_offsets_write,
1652 .llseek = seq_lseek,
1653 .release = single_release,
1654};
1655#endif /* CONFIG_TIME_NS */
1656
1657static ssize_t comm_write(struct file *file, const char __user *buf,
1658 size_t count, loff_t *offset)
1659{
1660 struct inode *inode = file_inode(file);
1661 struct task_struct *p;
1662 char buffer[TASK_COMM_LEN];
1663 const size_t maxlen = sizeof(buffer) - 1;
1664
1665 memset(buffer, 0, sizeof(buffer));
1666 if (copy_from_user(buffer, buf, count > maxlen ? maxlen : count))
1667 return -EFAULT;
1668
1669 p = get_proc_task(inode);
1670 if (!p)
1671 return -ESRCH;
1672
1673 if (same_thread_group(current, p))
1674 set_task_comm(p, buffer);
1675 else
1676 count = -EINVAL;
1677
1678 put_task_struct(p);
1679
1680 return count;
1681}
1682
1683static int comm_show(struct seq_file *m, void *v)
1684{
1685 struct inode *inode = m->private;
1686 struct task_struct *p;
1687
1688 p = get_proc_task(inode);
1689 if (!p)
1690 return -ESRCH;
1691
1692 proc_task_name(m, p, false);
1693 seq_putc(m, '\n');
1694
1695 put_task_struct(p);
1696
1697 return 0;
1698}
1699
1700static int comm_open(struct inode *inode, struct file *filp)
1701{
1702 return single_open(filp, comm_show, inode);
1703}
1704
1705static const struct file_operations proc_pid_set_comm_operations = {
1706 .open = comm_open,
1707 .read = seq_read,
1708 .write = comm_write,
1709 .llseek = seq_lseek,
1710 .release = single_release,
1711};
1712
1713static int proc_exe_link(struct dentry *dentry, struct path *exe_path)
1714{
1715 struct task_struct *task;
1716 struct file *exe_file;
1717
1718 task = get_proc_task(d_inode(dentry));
1719 if (!task)
1720 return -ENOENT;
1721 exe_file = get_task_exe_file(task);
1722 put_task_struct(task);
1723 if (exe_file) {
1724 *exe_path = exe_file->f_path;
1725 path_get(&exe_file->f_path);
1726 fput(exe_file);
1727 return 0;
1728 } else
1729 return -ENOENT;
1730}
1731
1732static const char *proc_pid_get_link(struct dentry *dentry,
1733 struct inode *inode,
1734 struct delayed_call *done)
1735{
1736 struct path path;
1737 int error = -EACCES;
1738
1739 if (!dentry)
1740 return ERR_PTR(-ECHILD);
1741
1742 /* Are we allowed to snoop on the tasks file descriptors? */
1743 if (!proc_fd_access_allowed(inode))
1744 goto out;
1745
1746 error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1747 if (error)
1748 goto out;
1749
1750 error = nd_jump_link(&path);
1751out:
1752 return ERR_PTR(error);
1753}
1754
1755static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1756{
1757 char *tmp = (char *)__get_free_page(GFP_KERNEL);
1758 char *pathname;
1759 int len;
1760
1761 if (!tmp)
1762 return -ENOMEM;
1763
1764 pathname = d_path(path, tmp, PAGE_SIZE);
1765 len = PTR_ERR(pathname);
1766 if (IS_ERR(pathname))
1767 goto out;
1768 len = tmp + PAGE_SIZE - 1 - pathname;
1769
1770 if (len > buflen)
1771 len = buflen;
1772 if (copy_to_user(buffer, pathname, len))
1773 len = -EFAULT;
1774 out:
1775 free_page((unsigned long)tmp);
1776 return len;
1777}
1778
1779static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1780{
1781 int error = -EACCES;
1782 struct inode *inode = d_inode(dentry);
1783 struct path path;
1784
1785 /* Are we allowed to snoop on the tasks file descriptors? */
1786 if (!proc_fd_access_allowed(inode))
1787 goto out;
1788
1789 error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1790 if (error)
1791 goto out;
1792
1793 error = do_proc_readlink(&path, buffer, buflen);
1794 path_put(&path);
1795out:
1796 return error;
1797}
1798
1799const struct inode_operations proc_pid_link_inode_operations = {
1800 .readlink = proc_pid_readlink,
1801 .get_link = proc_pid_get_link,
1802 .setattr = proc_setattr,
1803};
1804
1805
1806/* building an inode */
1807
1808void task_dump_owner(struct task_struct *task, umode_t mode,
1809 kuid_t *ruid, kgid_t *rgid)
1810{
1811 /* Depending on the state of dumpable compute who should own a
1812 * proc file for a task.
1813 */
1814 const struct cred *cred;
1815 kuid_t uid;
1816 kgid_t gid;
1817
1818 if (unlikely(task->flags & PF_KTHREAD)) {
1819 *ruid = GLOBAL_ROOT_UID;
1820 *rgid = GLOBAL_ROOT_GID;
1821 return;
1822 }
1823
1824 /* Default to the tasks effective ownership */
1825 rcu_read_lock();
1826 cred = __task_cred(task);
1827 uid = cred->euid;
1828 gid = cred->egid;
1829 rcu_read_unlock();
1830
1831 /*
1832 * Before the /proc/pid/status file was created the only way to read
1833 * the effective uid of a /process was to stat /proc/pid. Reading
1834 * /proc/pid/status is slow enough that procps and other packages
1835 * kept stating /proc/pid. To keep the rules in /proc simple I have
1836 * made this apply to all per process world readable and executable
1837 * directories.
1838 */
1839 if (mode != (S_IFDIR|S_IRUGO|S_IXUGO)) {
1840 struct mm_struct *mm;
1841 task_lock(task);
1842 mm = task->mm;
1843 /* Make non-dumpable tasks owned by some root */
1844 if (mm) {
1845 if (get_dumpable(mm) != SUID_DUMP_USER) {
1846 struct user_namespace *user_ns = mm->user_ns;
1847
1848 uid = make_kuid(user_ns, 0);
1849 if (!uid_valid(uid))
1850 uid = GLOBAL_ROOT_UID;
1851
1852 gid = make_kgid(user_ns, 0);
1853 if (!gid_valid(gid))
1854 gid = GLOBAL_ROOT_GID;
1855 }
1856 } else {
1857 uid = GLOBAL_ROOT_UID;
1858 gid = GLOBAL_ROOT_GID;
1859 }
1860 task_unlock(task);
1861 }
1862 *ruid = uid;
1863 *rgid = gid;
1864}
1865
1866void proc_pid_evict_inode(struct proc_inode *ei)
1867{
1868 struct pid *pid = ei->pid;
1869
1870 if (S_ISDIR(ei->vfs_inode.i_mode)) {
1871 spin_lock(&pid->lock);
1872 hlist_del_init_rcu(&ei->sibling_inodes);
1873 spin_unlock(&pid->lock);
1874 }
1875
1876 put_pid(pid);
1877}
1878
1879struct inode *proc_pid_make_inode(struct super_block * sb,
1880 struct task_struct *task, umode_t mode)
1881{
1882 struct inode * inode;
1883 struct proc_inode *ei;
1884 struct pid *pid;
1885
1886 /* We need a new inode */
1887
1888 inode = new_inode(sb);
1889 if (!inode)
1890 goto out;
1891
1892 /* Common stuff */
1893 ei = PROC_I(inode);
1894 inode->i_mode = mode;
1895 inode->i_ino = get_next_ino();
1896 inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode);
1897 inode->i_op = &proc_def_inode_operations;
1898
1899 /*
1900 * grab the reference to task.
1901 */
1902 pid = get_task_pid(task, PIDTYPE_PID);
1903 if (!pid)
1904 goto out_unlock;
1905
1906 /* Let the pid remember us for quick removal */
1907 ei->pid = pid;
1908 if (S_ISDIR(mode)) {
1909 spin_lock(&pid->lock);
1910 hlist_add_head_rcu(&ei->sibling_inodes, &pid->inodes);
1911 spin_unlock(&pid->lock);
1912 }
1913
1914 task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
1915 security_task_to_inode(task, inode);
1916
1917out:
1918 return inode;
1919
1920out_unlock:
1921 iput(inode);
1922 return NULL;
1923}
1924
1925int pid_getattr(const struct path *path, struct kstat *stat,
1926 u32 request_mask, unsigned int query_flags)
1927{
1928 struct inode *inode = d_inode(path->dentry);
1929 struct proc_fs_info *fs_info = proc_sb_info(inode->i_sb);
1930 struct task_struct *task;
1931
1932 generic_fillattr(inode, stat);
1933
1934 stat->uid = GLOBAL_ROOT_UID;
1935 stat->gid = GLOBAL_ROOT_GID;
1936 rcu_read_lock();
1937 task = pid_task(proc_pid(inode), PIDTYPE_PID);
1938 if (task) {
1939 if (!has_pid_permissions(fs_info, task, HIDEPID_INVISIBLE)) {
1940 rcu_read_unlock();
1941 /*
1942 * This doesn't prevent learning whether PID exists,
1943 * it only makes getattr() consistent with readdir().
1944 */
1945 return -ENOENT;
1946 }
1947 task_dump_owner(task, inode->i_mode, &stat->uid, &stat->gid);
1948 }
1949 rcu_read_unlock();
1950 return 0;
1951}
1952
1953/* dentry stuff */
1954
1955/*
1956 * Set <pid>/... inode ownership (can change due to setuid(), etc.)
1957 */
1958void pid_update_inode(struct task_struct *task, struct inode *inode)
1959{
1960 task_dump_owner(task, inode->i_mode, &inode->i_uid, &inode->i_gid);
1961
1962 inode->i_mode &= ~(S_ISUID | S_ISGID);
1963 security_task_to_inode(task, inode);
1964}
1965
1966/*
1967 * Rewrite the inode's ownerships here because the owning task may have
1968 * performed a setuid(), etc.
1969 *
1970 */
1971static int pid_revalidate(struct dentry *dentry, unsigned int flags)
1972{
1973 struct inode *inode;
1974 struct task_struct *task;
1975
1976 if (flags & LOOKUP_RCU)
1977 return -ECHILD;
1978
1979 inode = d_inode(dentry);
1980 task = get_proc_task(inode);
1981
1982 if (task) {
1983 pid_update_inode(task, inode);
1984 put_task_struct(task);
1985 return 1;
1986 }
1987 return 0;
1988}
1989
1990static inline bool proc_inode_is_dead(struct inode *inode)
1991{
1992 return !proc_pid(inode)->tasks[PIDTYPE_PID].first;
1993}
1994
1995int pid_delete_dentry(const struct dentry *dentry)
1996{
1997 /* Is the task we represent dead?
1998 * If so, then don't put the dentry on the lru list,
1999 * kill it immediately.
2000 */
2001 return proc_inode_is_dead(d_inode(dentry));
2002}
2003
2004const struct dentry_operations pid_dentry_operations =
2005{
2006 .d_revalidate = pid_revalidate,
2007 .d_delete = pid_delete_dentry,
2008};
2009
2010/* Lookups */
2011
2012/*
2013 * Fill a directory entry.
2014 *
2015 * If possible create the dcache entry and derive our inode number and
2016 * file type from dcache entry.
2017 *
2018 * Since all of the proc inode numbers are dynamically generated, the inode
2019 * numbers do not exist until the inode is cache. This means creating the
2020 * the dcache entry in readdir is necessary to keep the inode numbers
2021 * reported by readdir in sync with the inode numbers reported
2022 * by stat.
2023 */
2024bool proc_fill_cache(struct file *file, struct dir_context *ctx,
2025 const char *name, unsigned int len,
2026 instantiate_t instantiate, struct task_struct *task, const void *ptr)
2027{
2028 struct dentry *child, *dir = file->f_path.dentry;
2029 struct qstr qname = QSTR_INIT(name, len);
2030 struct inode *inode;
2031 unsigned type = DT_UNKNOWN;
2032 ino_t ino = 1;
2033
2034 child = d_hash_and_lookup(dir, &qname);
2035 if (!child) {
2036 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
2037 child = d_alloc_parallel(dir, &qname, &wq);
2038 if (IS_ERR(child))
2039 goto end_instantiate;
2040 if (d_in_lookup(child)) {
2041 struct dentry *res;
2042 res = instantiate(child, task, ptr);
2043 d_lookup_done(child);
2044 if (unlikely(res)) {
2045 dput(child);
2046 child = res;
2047 if (IS_ERR(child))
2048 goto end_instantiate;
2049 }
2050 }
2051 }
2052 inode = d_inode(child);
2053 ino = inode->i_ino;
2054 type = inode->i_mode >> 12;
2055 dput(child);
2056end_instantiate:
2057 return dir_emit(ctx, name, len, ino, type);
2058}
2059
2060/*
2061 * dname_to_vma_addr - maps a dentry name into two unsigned longs
2062 * which represent vma start and end addresses.
2063 */
2064static int dname_to_vma_addr(struct dentry *dentry,
2065 unsigned long *start, unsigned long *end)
2066{
2067 const char *str = dentry->d_name.name;
2068 unsigned long long sval, eval;
2069 unsigned int len;
2070
2071 if (str[0] == '0' && str[1] != '-')
2072 return -EINVAL;
2073 len = _parse_integer(str, 16, &sval);
2074 if (len & KSTRTOX_OVERFLOW)
2075 return -EINVAL;
2076 if (sval != (unsigned long)sval)
2077 return -EINVAL;
2078 str += len;
2079
2080 if (*str != '-')
2081 return -EINVAL;
2082 str++;
2083
2084 if (str[0] == '0' && str[1])
2085 return -EINVAL;
2086 len = _parse_integer(str, 16, &eval);
2087 if (len & KSTRTOX_OVERFLOW)
2088 return -EINVAL;
2089 if (eval != (unsigned long)eval)
2090 return -EINVAL;
2091 str += len;
2092
2093 if (*str != '\0')
2094 return -EINVAL;
2095
2096 *start = sval;
2097 *end = eval;
2098
2099 return 0;
2100}
2101
2102static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags)
2103{
2104 unsigned long vm_start, vm_end;
2105 bool exact_vma_exists = false;
2106 struct mm_struct *mm = NULL;
2107 struct task_struct *task;
2108 struct inode *inode;
2109 int status = 0;
2110
2111 if (flags & LOOKUP_RCU)
2112 return -ECHILD;
2113
2114 inode = d_inode(dentry);
2115 task = get_proc_task(inode);
2116 if (!task)
2117 goto out_notask;
2118
2119 mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
2120 if (IS_ERR_OR_NULL(mm))
2121 goto out;
2122
2123 if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) {
2124 status = mmap_read_lock_killable(mm);
2125 if (!status) {
2126 exact_vma_exists = !!find_exact_vma(mm, vm_start,
2127 vm_end);
2128 mmap_read_unlock(mm);
2129 }
2130 }
2131
2132 mmput(mm);
2133
2134 if (exact_vma_exists) {
2135 task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
2136
2137 security_task_to_inode(task, inode);
2138 status = 1;
2139 }
2140
2141out:
2142 put_task_struct(task);
2143
2144out_notask:
2145 return status;
2146}
2147
2148static const struct dentry_operations tid_map_files_dentry_operations = {
2149 .d_revalidate = map_files_d_revalidate,
2150 .d_delete = pid_delete_dentry,
2151};
2152
2153static int map_files_get_link(struct dentry *dentry, struct path *path)
2154{
2155 unsigned long vm_start, vm_end;
2156 struct vm_area_struct *vma;
2157 struct task_struct *task;
2158 struct mm_struct *mm;
2159 int rc;
2160
2161 rc = -ENOENT;
2162 task = get_proc_task(d_inode(dentry));
2163 if (!task)
2164 goto out;
2165
2166 mm = get_task_mm(task);
2167 put_task_struct(task);
2168 if (!mm)
2169 goto out;
2170
2171 rc = dname_to_vma_addr(dentry, &vm_start, &vm_end);
2172 if (rc)
2173 goto out_mmput;
2174
2175 rc = mmap_read_lock_killable(mm);
2176 if (rc)
2177 goto out_mmput;
2178
2179 rc = -ENOENT;
2180 vma = find_exact_vma(mm, vm_start, vm_end);
2181 if (vma && vma->vm_file) {
2182 *path = vma->vm_file->f_path;
2183 path_get(path);
2184 rc = 0;
2185 }
2186 mmap_read_unlock(mm);
2187
2188out_mmput:
2189 mmput(mm);
2190out:
2191 return rc;
2192}
2193
2194struct map_files_info {
2195 unsigned long start;
2196 unsigned long end;
2197 fmode_t mode;
2198};
2199
2200/*
2201 * Only allow CAP_SYS_ADMIN and CAP_CHECKPOINT_RESTORE to follow the links, due
2202 * to concerns about how the symlinks may be used to bypass permissions on
2203 * ancestor directories in the path to the file in question.
2204 */
2205static const char *
2206proc_map_files_get_link(struct dentry *dentry,
2207 struct inode *inode,
2208 struct delayed_call *done)
2209{
2210 if (!checkpoint_restore_ns_capable(&init_user_ns))
2211 return ERR_PTR(-EPERM);
2212
2213 return proc_pid_get_link(dentry, inode, done);
2214}
2215
2216/*
2217 * Identical to proc_pid_link_inode_operations except for get_link()
2218 */
2219static const struct inode_operations proc_map_files_link_inode_operations = {
2220 .readlink = proc_pid_readlink,
2221 .get_link = proc_map_files_get_link,
2222 .setattr = proc_setattr,
2223};
2224
2225static struct dentry *
2226proc_map_files_instantiate(struct dentry *dentry,
2227 struct task_struct *task, const void *ptr)
2228{
2229 fmode_t mode = (fmode_t)(unsigned long)ptr;
2230 struct proc_inode *ei;
2231 struct inode *inode;
2232
2233 inode = proc_pid_make_inode(dentry->d_sb, task, S_IFLNK |
2234 ((mode & FMODE_READ ) ? S_IRUSR : 0) |
2235 ((mode & FMODE_WRITE) ? S_IWUSR : 0));
2236 if (!inode)
2237 return ERR_PTR(-ENOENT);
2238
2239 ei = PROC_I(inode);
2240 ei->op.proc_get_link = map_files_get_link;
2241
2242 inode->i_op = &proc_map_files_link_inode_operations;
2243 inode->i_size = 64;
2244
2245 d_set_d_op(dentry, &tid_map_files_dentry_operations);
2246 return d_splice_alias(inode, dentry);
2247}
2248
2249static struct dentry *proc_map_files_lookup(struct inode *dir,
2250 struct dentry *dentry, unsigned int flags)
2251{
2252 unsigned long vm_start, vm_end;
2253 struct vm_area_struct *vma;
2254 struct task_struct *task;
2255 struct dentry *result;
2256 struct mm_struct *mm;
2257
2258 result = ERR_PTR(-ENOENT);
2259 task = get_proc_task(dir);
2260 if (!task)
2261 goto out;
2262
2263 result = ERR_PTR(-EACCES);
2264 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2265 goto out_put_task;
2266
2267 result = ERR_PTR(-ENOENT);
2268 if (dname_to_vma_addr(dentry, &vm_start, &vm_end))
2269 goto out_put_task;
2270
2271 mm = get_task_mm(task);
2272 if (!mm)
2273 goto out_put_task;
2274
2275 result = ERR_PTR(-EINTR);
2276 if (mmap_read_lock_killable(mm))
2277 goto out_put_mm;
2278
2279 result = ERR_PTR(-ENOENT);
2280 vma = find_exact_vma(mm, vm_start, vm_end);
2281 if (!vma)
2282 goto out_no_vma;
2283
2284 if (vma->vm_file)
2285 result = proc_map_files_instantiate(dentry, task,
2286 (void *)(unsigned long)vma->vm_file->f_mode);
2287
2288out_no_vma:
2289 mmap_read_unlock(mm);
2290out_put_mm:
2291 mmput(mm);
2292out_put_task:
2293 put_task_struct(task);
2294out:
2295 return result;
2296}
2297
2298static const struct inode_operations proc_map_files_inode_operations = {
2299 .lookup = proc_map_files_lookup,
2300 .permission = proc_fd_permission,
2301 .setattr = proc_setattr,
2302};
2303
2304static int
2305proc_map_files_readdir(struct file *file, struct dir_context *ctx)
2306{
2307 struct vm_area_struct *vma;
2308 struct task_struct *task;
2309 struct mm_struct *mm;
2310 unsigned long nr_files, pos, i;
2311 GENRADIX(struct map_files_info) fa;
2312 struct map_files_info *p;
2313 int ret;
2314
2315 genradix_init(&fa);
2316
2317 ret = -ENOENT;
2318 task = get_proc_task(file_inode(file));
2319 if (!task)
2320 goto out;
2321
2322 ret = -EACCES;
2323 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2324 goto out_put_task;
2325
2326 ret = 0;
2327 if (!dir_emit_dots(file, ctx))
2328 goto out_put_task;
2329
2330 mm = get_task_mm(task);
2331 if (!mm)
2332 goto out_put_task;
2333
2334 ret = mmap_read_lock_killable(mm);
2335 if (ret) {
2336 mmput(mm);
2337 goto out_put_task;
2338 }
2339
2340 nr_files = 0;
2341
2342 /*
2343 * We need two passes here:
2344 *
2345 * 1) Collect vmas of mapped files with mmap_lock taken
2346 * 2) Release mmap_lock and instantiate entries
2347 *
2348 * otherwise we get lockdep complained, since filldir()
2349 * routine might require mmap_lock taken in might_fault().
2350 */
2351
2352 for (vma = mm->mmap, pos = 2; vma; vma = vma->vm_next) {
2353 if (!vma->vm_file)
2354 continue;
2355 if (++pos <= ctx->pos)
2356 continue;
2357
2358 p = genradix_ptr_alloc(&fa, nr_files++, GFP_KERNEL);
2359 if (!p) {
2360 ret = -ENOMEM;
2361 mmap_read_unlock(mm);
2362 mmput(mm);
2363 goto out_put_task;
2364 }
2365
2366 p->start = vma->vm_start;
2367 p->end = vma->vm_end;
2368 p->mode = vma->vm_file->f_mode;
2369 }
2370 mmap_read_unlock(mm);
2371 mmput(mm);
2372
2373 for (i = 0; i < nr_files; i++) {
2374 char buf[4 * sizeof(long) + 2]; /* max: %lx-%lx\0 */
2375 unsigned int len;
2376
2377 p = genradix_ptr(&fa, i);
2378 len = snprintf(buf, sizeof(buf), "%lx-%lx", p->start, p->end);
2379 if (!proc_fill_cache(file, ctx,
2380 buf, len,
2381 proc_map_files_instantiate,
2382 task,
2383 (void *)(unsigned long)p->mode))
2384 break;
2385 ctx->pos++;
2386 }
2387
2388out_put_task:
2389 put_task_struct(task);
2390out:
2391 genradix_free(&fa);
2392 return ret;
2393}
2394
2395static const struct file_operations proc_map_files_operations = {
2396 .read = generic_read_dir,
2397 .iterate_shared = proc_map_files_readdir,
2398 .llseek = generic_file_llseek,
2399};
2400
2401#if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
2402struct timers_private {
2403 struct pid *pid;
2404 struct task_struct *task;
2405 struct sighand_struct *sighand;
2406 struct pid_namespace *ns;
2407 unsigned long flags;
2408};
2409
2410static void *timers_start(struct seq_file *m, loff_t *pos)
2411{
2412 struct timers_private *tp = m->private;
2413
2414 tp->task = get_pid_task(tp->pid, PIDTYPE_PID);
2415 if (!tp->task)
2416 return ERR_PTR(-ESRCH);
2417
2418 tp->sighand = lock_task_sighand(tp->task, &tp->flags);
2419 if (!tp->sighand)
2420 return ERR_PTR(-ESRCH);
2421
2422 return seq_list_start(&tp->task->signal->posix_timers, *pos);
2423}
2424
2425static void *timers_next(struct seq_file *m, void *v, loff_t *pos)
2426{
2427 struct timers_private *tp = m->private;
2428 return seq_list_next(v, &tp->task->signal->posix_timers, pos);
2429}
2430
2431static void timers_stop(struct seq_file *m, void *v)
2432{
2433 struct timers_private *tp = m->private;
2434
2435 if (tp->sighand) {
2436 unlock_task_sighand(tp->task, &tp->flags);
2437 tp->sighand = NULL;
2438 }
2439
2440 if (tp->task) {
2441 put_task_struct(tp->task);
2442 tp->task = NULL;
2443 }
2444}
2445
2446static int show_timer(struct seq_file *m, void *v)
2447{
2448 struct k_itimer *timer;
2449 struct timers_private *tp = m->private;
2450 int notify;
2451 static const char * const nstr[] = {
2452 [SIGEV_SIGNAL] = "signal",
2453 [SIGEV_NONE] = "none",
2454 [SIGEV_THREAD] = "thread",
2455 };
2456
2457 timer = list_entry((struct list_head *)v, struct k_itimer, list);
2458 notify = timer->it_sigev_notify;
2459
2460 seq_printf(m, "ID: %d\n", timer->it_id);
2461 seq_printf(m, "signal: %d/%px\n",
2462 timer->sigq->info.si_signo,
2463 timer->sigq->info.si_value.sival_ptr);
2464 seq_printf(m, "notify: %s/%s.%d\n",
2465 nstr[notify & ~SIGEV_THREAD_ID],
2466 (notify & SIGEV_THREAD_ID) ? "tid" : "pid",
2467 pid_nr_ns(timer->it_pid, tp->ns));
2468 seq_printf(m, "ClockID: %d\n", timer->it_clock);
2469
2470 return 0;
2471}
2472
2473static const struct seq_operations proc_timers_seq_ops = {
2474 .start = timers_start,
2475 .next = timers_next,
2476 .stop = timers_stop,
2477 .show = show_timer,
2478};
2479
2480static int proc_timers_open(struct inode *inode, struct file *file)
2481{
2482 struct timers_private *tp;
2483
2484 tp = __seq_open_private(file, &proc_timers_seq_ops,
2485 sizeof(struct timers_private));
2486 if (!tp)
2487 return -ENOMEM;
2488
2489 tp->pid = proc_pid(inode);
2490 tp->ns = proc_pid_ns(inode->i_sb);
2491 return 0;
2492}
2493
2494static const struct file_operations proc_timers_operations = {
2495 .open = proc_timers_open,
2496 .read = seq_read,
2497 .llseek = seq_lseek,
2498 .release = seq_release_private,
2499};
2500#endif
2501
2502static ssize_t timerslack_ns_write(struct file *file, const char __user *buf,
2503 size_t count, loff_t *offset)
2504{
2505 struct inode *inode = file_inode(file);
2506 struct task_struct *p;
2507 u64 slack_ns;
2508 int err;
2509
2510 err = kstrtoull_from_user(buf, count, 10, &slack_ns);
2511 if (err < 0)
2512 return err;
2513
2514 p = get_proc_task(inode);
2515 if (!p)
2516 return -ESRCH;
2517
2518 if (p != current) {
2519 rcu_read_lock();
2520 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
2521 rcu_read_unlock();
2522 count = -EPERM;
2523 goto out;
2524 }
2525 rcu_read_unlock();
2526
2527 err = security_task_setscheduler(p);
2528 if (err) {
2529 count = err;
2530 goto out;
2531 }
2532 }
2533
2534 task_lock(p);
2535 if (slack_ns == 0)
2536 p->timer_slack_ns = p->default_timer_slack_ns;
2537 else
2538 p->timer_slack_ns = slack_ns;
2539 task_unlock(p);
2540
2541out:
2542 put_task_struct(p);
2543
2544 return count;
2545}
2546
2547static int timerslack_ns_show(struct seq_file *m, void *v)
2548{
2549 struct inode *inode = m->private;
2550 struct task_struct *p;
2551 int err = 0;
2552
2553 p = get_proc_task(inode);
2554 if (!p)
2555 return -ESRCH;
2556
2557 if (p != current) {
2558 rcu_read_lock();
2559 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
2560 rcu_read_unlock();
2561 err = -EPERM;
2562 goto out;
2563 }
2564 rcu_read_unlock();
2565
2566 err = security_task_getscheduler(p);
2567 if (err)
2568 goto out;
2569 }
2570
2571 task_lock(p);
2572 seq_printf(m, "%llu\n", p->timer_slack_ns);
2573 task_unlock(p);
2574
2575out:
2576 put_task_struct(p);
2577
2578 return err;
2579}
2580
2581static int timerslack_ns_open(struct inode *inode, struct file *filp)
2582{
2583 return single_open(filp, timerslack_ns_show, inode);
2584}
2585
2586static const struct file_operations proc_pid_set_timerslack_ns_operations = {
2587 .open = timerslack_ns_open,
2588 .read = seq_read,
2589 .write = timerslack_ns_write,
2590 .llseek = seq_lseek,
2591 .release = single_release,
2592};
2593
2594static struct dentry *proc_pident_instantiate(struct dentry *dentry,
2595 struct task_struct *task, const void *ptr)
2596{
2597 const struct pid_entry *p = ptr;
2598 struct inode *inode;
2599 struct proc_inode *ei;
2600
2601 inode = proc_pid_make_inode(dentry->d_sb, task, p->mode);
2602 if (!inode)
2603 return ERR_PTR(-ENOENT);
2604
2605 ei = PROC_I(inode);
2606 if (S_ISDIR(inode->i_mode))
2607 set_nlink(inode, 2); /* Use getattr to fix if necessary */
2608 if (p->iop)
2609 inode->i_op = p->iop;
2610 if (p->fop)
2611 inode->i_fop = p->fop;
2612 ei->op = p->op;
2613 pid_update_inode(task, inode);
2614 d_set_d_op(dentry, &pid_dentry_operations);
2615 return d_splice_alias(inode, dentry);
2616}
2617
2618static struct dentry *proc_pident_lookup(struct inode *dir,
2619 struct dentry *dentry,
2620 const struct pid_entry *p,
2621 const struct pid_entry *end)
2622{
2623 struct task_struct *task = get_proc_task(dir);
2624 struct dentry *res = ERR_PTR(-ENOENT);
2625
2626 if (!task)
2627 goto out_no_task;
2628
2629 /*
2630 * Yes, it does not scale. And it should not. Don't add
2631 * new entries into /proc/<tgid>/ without very good reasons.
2632 */
2633 for (; p < end; p++) {
2634 if (p->len != dentry->d_name.len)
2635 continue;
2636 if (!memcmp(dentry->d_name.name, p->name, p->len)) {
2637 res = proc_pident_instantiate(dentry, task, p);
2638 break;
2639 }
2640 }
2641 put_task_struct(task);
2642out_no_task:
2643 return res;
2644}
2645
2646static int proc_pident_readdir(struct file *file, struct dir_context *ctx,
2647 const struct pid_entry *ents, unsigned int nents)
2648{
2649 struct task_struct *task = get_proc_task(file_inode(file));
2650 const struct pid_entry *p;
2651
2652 if (!task)
2653 return -ENOENT;
2654
2655 if (!dir_emit_dots(file, ctx))
2656 goto out;
2657
2658 if (ctx->pos >= nents + 2)
2659 goto out;
2660
2661 for (p = ents + (ctx->pos - 2); p < ents + nents; p++) {
2662 if (!proc_fill_cache(file, ctx, p->name, p->len,
2663 proc_pident_instantiate, task, p))
2664 break;
2665 ctx->pos++;
2666 }
2667out:
2668 put_task_struct(task);
2669 return 0;
2670}
2671
2672#ifdef CONFIG_SECURITY
2673static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2674 size_t count, loff_t *ppos)
2675{
2676 struct inode * inode = file_inode(file);
2677 char *p = NULL;
2678 ssize_t length;
2679 struct task_struct *task = get_proc_task(inode);
2680
2681 if (!task)
2682 return -ESRCH;
2683
2684 length = security_getprocattr(task, PROC_I(inode)->op.lsm,
2685 (char*)file->f_path.dentry->d_name.name,
2686 &p);
2687 put_task_struct(task);
2688 if (length > 0)
2689 length = simple_read_from_buffer(buf, count, ppos, p, length);
2690 kfree(p);
2691 return length;
2692}
2693
2694static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2695 size_t count, loff_t *ppos)
2696{
2697 struct inode * inode = file_inode(file);
2698 struct task_struct *task;
2699 void *page;
2700 int rv;
2701
2702 rcu_read_lock();
2703 task = pid_task(proc_pid(inode), PIDTYPE_PID);
2704 if (!task) {
2705 rcu_read_unlock();
2706 return -ESRCH;
2707 }
2708 /* A task may only write its own attributes. */
2709 if (current != task) {
2710 rcu_read_unlock();
2711 return -EACCES;
2712 }
2713 /* Prevent changes to overridden credentials. */
2714 if (current_cred() != current_real_cred()) {
2715 rcu_read_unlock();
2716 return -EBUSY;
2717 }
2718 rcu_read_unlock();
2719
2720 if (count > PAGE_SIZE)
2721 count = PAGE_SIZE;
2722
2723 /* No partial writes. */
2724 if (*ppos != 0)
2725 return -EINVAL;
2726
2727 page = memdup_user(buf, count);
2728 if (IS_ERR(page)) {
2729 rv = PTR_ERR(page);
2730 goto out;
2731 }
2732
2733 /* Guard against adverse ptrace interaction */
2734 rv = mutex_lock_interruptible(¤t->signal->cred_guard_mutex);
2735 if (rv < 0)
2736 goto out_free;
2737
2738 rv = security_setprocattr(PROC_I(inode)->op.lsm,
2739 file->f_path.dentry->d_name.name, page,
2740 count);
2741 mutex_unlock(¤t->signal->cred_guard_mutex);
2742out_free:
2743 kfree(page);
2744out:
2745 return rv;
2746}
2747
2748static const struct file_operations proc_pid_attr_operations = {
2749 .read = proc_pid_attr_read,
2750 .write = proc_pid_attr_write,
2751 .llseek = generic_file_llseek,
2752};
2753
2754#define LSM_DIR_OPS(LSM) \
2755static int proc_##LSM##_attr_dir_iterate(struct file *filp, \
2756 struct dir_context *ctx) \
2757{ \
2758 return proc_pident_readdir(filp, ctx, \
2759 LSM##_attr_dir_stuff, \
2760 ARRAY_SIZE(LSM##_attr_dir_stuff)); \
2761} \
2762\
2763static const struct file_operations proc_##LSM##_attr_dir_ops = { \
2764 .read = generic_read_dir, \
2765 .iterate = proc_##LSM##_attr_dir_iterate, \
2766 .llseek = default_llseek, \
2767}; \
2768\
2769static struct dentry *proc_##LSM##_attr_dir_lookup(struct inode *dir, \
2770 struct dentry *dentry, unsigned int flags) \
2771{ \
2772 return proc_pident_lookup(dir, dentry, \
2773 LSM##_attr_dir_stuff, \
2774 LSM##_attr_dir_stuff + ARRAY_SIZE(LSM##_attr_dir_stuff)); \
2775} \
2776\
2777static const struct inode_operations proc_##LSM##_attr_dir_inode_ops = { \
2778 .lookup = proc_##LSM##_attr_dir_lookup, \
2779 .getattr = pid_getattr, \
2780 .setattr = proc_setattr, \
2781}
2782
2783#ifdef CONFIG_SECURITY_SMACK
2784static const struct pid_entry smack_attr_dir_stuff[] = {
2785 ATTR("smack", "current", 0666),
2786};
2787LSM_DIR_OPS(smack);
2788#endif
2789
2790#ifdef CONFIG_SECURITY_APPARMOR
2791static const struct pid_entry apparmor_attr_dir_stuff[] = {
2792 ATTR("apparmor", "current", 0666),
2793 ATTR("apparmor", "prev", 0444),
2794 ATTR("apparmor", "exec", 0666),
2795};
2796LSM_DIR_OPS(apparmor);
2797#endif
2798
2799static const struct pid_entry attr_dir_stuff[] = {
2800 ATTR(NULL, "current", 0666),
2801 ATTR(NULL, "prev", 0444),
2802 ATTR(NULL, "exec", 0666),
2803 ATTR(NULL, "fscreate", 0666),
2804 ATTR(NULL, "keycreate", 0666),
2805 ATTR(NULL, "sockcreate", 0666),
2806#ifdef CONFIG_SECURITY_SMACK
2807 DIR("smack", 0555,
2808 proc_smack_attr_dir_inode_ops, proc_smack_attr_dir_ops),
2809#endif
2810#ifdef CONFIG_SECURITY_APPARMOR
2811 DIR("apparmor", 0555,
2812 proc_apparmor_attr_dir_inode_ops, proc_apparmor_attr_dir_ops),
2813#endif
2814};
2815
2816static int proc_attr_dir_readdir(struct file *file, struct dir_context *ctx)
2817{
2818 return proc_pident_readdir(file, ctx,
2819 attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2820}
2821
2822static const struct file_operations proc_attr_dir_operations = {
2823 .read = generic_read_dir,
2824 .iterate_shared = proc_attr_dir_readdir,
2825 .llseek = generic_file_llseek,
2826};
2827
2828static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2829 struct dentry *dentry, unsigned int flags)
2830{
2831 return proc_pident_lookup(dir, dentry,
2832 attr_dir_stuff,
2833 attr_dir_stuff + ARRAY_SIZE(attr_dir_stuff));
2834}
2835
2836static const struct inode_operations proc_attr_dir_inode_operations = {
2837 .lookup = proc_attr_dir_lookup,
2838 .getattr = pid_getattr,
2839 .setattr = proc_setattr,
2840};
2841
2842#endif
2843
2844#ifdef CONFIG_ELF_CORE
2845static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2846 size_t count, loff_t *ppos)
2847{
2848 struct task_struct *task = get_proc_task(file_inode(file));
2849 struct mm_struct *mm;
2850 char buffer[PROC_NUMBUF];
2851 size_t len;
2852 int ret;
2853
2854 if (!task)
2855 return -ESRCH;
2856
2857 ret = 0;
2858 mm = get_task_mm(task);
2859 if (mm) {
2860 len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2861 ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2862 MMF_DUMP_FILTER_SHIFT));
2863 mmput(mm);
2864 ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2865 }
2866
2867 put_task_struct(task);
2868
2869 return ret;
2870}
2871
2872static ssize_t proc_coredump_filter_write(struct file *file,
2873 const char __user *buf,
2874 size_t count,
2875 loff_t *ppos)
2876{
2877 struct task_struct *task;
2878 struct mm_struct *mm;
2879 unsigned int val;
2880 int ret;
2881 int i;
2882 unsigned long mask;
2883
2884 ret = kstrtouint_from_user(buf, count, 0, &val);
2885 if (ret < 0)
2886 return ret;
2887
2888 ret = -ESRCH;
2889 task = get_proc_task(file_inode(file));
2890 if (!task)
2891 goto out_no_task;
2892
2893 mm = get_task_mm(task);
2894 if (!mm)
2895 goto out_no_mm;
2896 ret = 0;
2897
2898 for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2899 if (val & mask)
2900 set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2901 else
2902 clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2903 }
2904
2905 mmput(mm);
2906 out_no_mm:
2907 put_task_struct(task);
2908 out_no_task:
2909 if (ret < 0)
2910 return ret;
2911 return count;
2912}
2913
2914static const struct file_operations proc_coredump_filter_operations = {
2915 .read = proc_coredump_filter_read,
2916 .write = proc_coredump_filter_write,
2917 .llseek = generic_file_llseek,
2918};
2919#endif
2920
2921#ifdef CONFIG_TASK_IO_ACCOUNTING
2922static int do_io_accounting(struct task_struct *task, struct seq_file *m, int whole)
2923{
2924 struct task_io_accounting acct = task->ioac;
2925 unsigned long flags;
2926 int result;
2927
2928 result = mutex_lock_killable(&task->signal->exec_update_mutex);
2929 if (result)
2930 return result;
2931
2932 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) {
2933 result = -EACCES;
2934 goto out_unlock;
2935 }
2936
2937 if (whole && lock_task_sighand(task, &flags)) {
2938 struct task_struct *t = task;
2939
2940 task_io_accounting_add(&acct, &task->signal->ioac);
2941 while_each_thread(task, t)
2942 task_io_accounting_add(&acct, &t->ioac);
2943
2944 unlock_task_sighand(task, &flags);
2945 }
2946 seq_printf(m,
2947 "rchar: %llu\n"
2948 "wchar: %llu\n"
2949 "syscr: %llu\n"
2950 "syscw: %llu\n"
2951 "read_bytes: %llu\n"
2952 "write_bytes: %llu\n"
2953 "cancelled_write_bytes: %llu\n",
2954 (unsigned long long)acct.rchar,
2955 (unsigned long long)acct.wchar,
2956 (unsigned long long)acct.syscr,
2957 (unsigned long long)acct.syscw,
2958 (unsigned long long)acct.read_bytes,
2959 (unsigned long long)acct.write_bytes,
2960 (unsigned long long)acct.cancelled_write_bytes);
2961 result = 0;
2962
2963out_unlock:
2964 mutex_unlock(&task->signal->exec_update_mutex);
2965 return result;
2966}
2967
2968static int proc_tid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2969 struct pid *pid, struct task_struct *task)
2970{
2971 return do_io_accounting(task, m, 0);
2972}
2973
2974static int proc_tgid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2975 struct pid *pid, struct task_struct *task)
2976{
2977 return do_io_accounting(task, m, 1);
2978}
2979#endif /* CONFIG_TASK_IO_ACCOUNTING */
2980
2981#ifdef CONFIG_USER_NS
2982static int proc_id_map_open(struct inode *inode, struct file *file,
2983 const struct seq_operations *seq_ops)
2984{
2985 struct user_namespace *ns = NULL;
2986 struct task_struct *task;
2987 struct seq_file *seq;
2988 int ret = -EINVAL;
2989
2990 task = get_proc_task(inode);
2991 if (task) {
2992 rcu_read_lock();
2993 ns = get_user_ns(task_cred_xxx(task, user_ns));
2994 rcu_read_unlock();
2995 put_task_struct(task);
2996 }
2997 if (!ns)
2998 goto err;
2999
3000 ret = seq_open(file, seq_ops);
3001 if (ret)
3002 goto err_put_ns;
3003
3004 seq = file->private_data;
3005 seq->private = ns;
3006
3007 return 0;
3008err_put_ns:
3009 put_user_ns(ns);
3010err:
3011 return ret;
3012}
3013
3014static int proc_id_map_release(struct inode *inode, struct file *file)
3015{
3016 struct seq_file *seq = file->private_data;
3017 struct user_namespace *ns = seq->private;
3018 put_user_ns(ns);
3019 return seq_release(inode, file);
3020}
3021
3022static int proc_uid_map_open(struct inode *inode, struct file *file)
3023{
3024 return proc_id_map_open(inode, file, &proc_uid_seq_operations);
3025}
3026
3027static int proc_gid_map_open(struct inode *inode, struct file *file)
3028{
3029 return proc_id_map_open(inode, file, &proc_gid_seq_operations);
3030}
3031
3032static int proc_projid_map_open(struct inode *inode, struct file *file)
3033{
3034 return proc_id_map_open(inode, file, &proc_projid_seq_operations);
3035}
3036
3037static const struct file_operations proc_uid_map_operations = {
3038 .open = proc_uid_map_open,
3039 .write = proc_uid_map_write,
3040 .read = seq_read,
3041 .llseek = seq_lseek,
3042 .release = proc_id_map_release,
3043};
3044
3045static const struct file_operations proc_gid_map_operations = {
3046 .open = proc_gid_map_open,
3047 .write = proc_gid_map_write,
3048 .read = seq_read,
3049 .llseek = seq_lseek,
3050 .release = proc_id_map_release,
3051};
3052
3053static const struct file_operations proc_projid_map_operations = {
3054 .open = proc_projid_map_open,
3055 .write = proc_projid_map_write,
3056 .read = seq_read,
3057 .llseek = seq_lseek,
3058 .release = proc_id_map_release,
3059};
3060
3061static int proc_setgroups_open(struct inode *inode, struct file *file)
3062{
3063 struct user_namespace *ns = NULL;
3064 struct task_struct *task;
3065 int ret;
3066
3067 ret = -ESRCH;
3068 task = get_proc_task(inode);
3069 if (task) {
3070 rcu_read_lock();
3071 ns = get_user_ns(task_cred_xxx(task, user_ns));
3072 rcu_read_unlock();
3073 put_task_struct(task);
3074 }
3075 if (!ns)
3076 goto err;
3077
3078 if (file->f_mode & FMODE_WRITE) {
3079 ret = -EACCES;
3080 if (!ns_capable(ns, CAP_SYS_ADMIN))
3081 goto err_put_ns;
3082 }
3083
3084 ret = single_open(file, &proc_setgroups_show, ns);
3085 if (ret)
3086 goto err_put_ns;
3087
3088 return 0;
3089err_put_ns:
3090 put_user_ns(ns);
3091err:
3092 return ret;
3093}
3094
3095static int proc_setgroups_release(struct inode *inode, struct file *file)
3096{
3097 struct seq_file *seq = file->private_data;
3098 struct user_namespace *ns = seq->private;
3099 int ret = single_release(inode, file);
3100 put_user_ns(ns);
3101 return ret;
3102}
3103
3104static const struct file_operations proc_setgroups_operations = {
3105 .open = proc_setgroups_open,
3106 .write = proc_setgroups_write,
3107 .read = seq_read,
3108 .llseek = seq_lseek,
3109 .release = proc_setgroups_release,
3110};
3111#endif /* CONFIG_USER_NS */
3112
3113static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
3114 struct pid *pid, struct task_struct *task)
3115{
3116 int err = lock_trace(task);
3117 if (!err) {
3118 seq_printf(m, "%08x\n", task->personality);
3119 unlock_trace(task);
3120 }
3121 return err;
3122}
3123
3124#ifdef CONFIG_LIVEPATCH
3125static int proc_pid_patch_state(struct seq_file *m, struct pid_namespace *ns,
3126 struct pid *pid, struct task_struct *task)
3127{
3128 seq_printf(m, "%d\n", task->patch_state);
3129 return 0;
3130}
3131#endif /* CONFIG_LIVEPATCH */
3132
3133#ifdef CONFIG_STACKLEAK_METRICS
3134static int proc_stack_depth(struct seq_file *m, struct pid_namespace *ns,
3135 struct pid *pid, struct task_struct *task)
3136{
3137 unsigned long prev_depth = THREAD_SIZE -
3138 (task->prev_lowest_stack & (THREAD_SIZE - 1));
3139 unsigned long depth = THREAD_SIZE -
3140 (task->lowest_stack & (THREAD_SIZE - 1));
3141
3142 seq_printf(m, "previous stack depth: %lu\nstack depth: %lu\n",
3143 prev_depth, depth);
3144 return 0;
3145}
3146#endif /* CONFIG_STACKLEAK_METRICS */
3147
3148/*
3149 * Thread groups
3150 */
3151static const struct file_operations proc_task_operations;
3152static const struct inode_operations proc_task_inode_operations;
3153
3154static const struct pid_entry tgid_base_stuff[] = {
3155 DIR("task", S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
3156 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3157 DIR("map_files", S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations),
3158 DIR("fdinfo", S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3159 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3160#ifdef CONFIG_NET
3161 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3162#endif
3163 REG("environ", S_IRUSR, proc_environ_operations),
3164 REG("auxv", S_IRUSR, proc_auxv_operations),
3165 ONE("status", S_IRUGO, proc_pid_status),
3166 ONE("personality", S_IRUSR, proc_pid_personality),
3167 ONE("limits", S_IRUGO, proc_pid_limits),
3168#ifdef CONFIG_SCHED_DEBUG
3169 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3170#endif
3171#ifdef CONFIG_SCHED_AUTOGROUP
3172 REG("autogroup", S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
3173#endif
3174#ifdef CONFIG_TIME_NS
3175 REG("timens_offsets", S_IRUGO|S_IWUSR, proc_timens_offsets_operations),
3176#endif
3177 REG("comm", S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
3178#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3179 ONE("syscall", S_IRUSR, proc_pid_syscall),
3180#endif
3181 REG("cmdline", S_IRUGO, proc_pid_cmdline_ops),
3182 ONE("stat", S_IRUGO, proc_tgid_stat),
3183 ONE("statm", S_IRUGO, proc_pid_statm),
3184 REG("maps", S_IRUGO, proc_pid_maps_operations),
3185#ifdef CONFIG_NUMA
3186 REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations),
3187#endif
3188 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations),
3189 LNK("cwd", proc_cwd_link),
3190 LNK("root", proc_root_link),
3191 LNK("exe", proc_exe_link),
3192 REG("mounts", S_IRUGO, proc_mounts_operations),
3193 REG("mountinfo", S_IRUGO, proc_mountinfo_operations),
3194 REG("mountstats", S_IRUSR, proc_mountstats_operations),
3195#ifdef CONFIG_PROC_PAGE_MONITOR
3196 REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3197 REG("smaps", S_IRUGO, proc_pid_smaps_operations),
3198 REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations),
3199 REG("pagemap", S_IRUSR, proc_pagemap_operations),
3200#endif
3201#ifdef CONFIG_SECURITY
3202 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3203#endif
3204#ifdef CONFIG_KALLSYMS
3205 ONE("wchan", S_IRUGO, proc_pid_wchan),
3206#endif
3207#ifdef CONFIG_STACKTRACE
3208 ONE("stack", S_IRUSR, proc_pid_stack),
3209#endif
3210#ifdef CONFIG_SCHED_INFO
3211 ONE("schedstat", S_IRUGO, proc_pid_schedstat),
3212#endif
3213#ifdef CONFIG_LATENCYTOP
3214 REG("latency", S_IRUGO, proc_lstats_operations),
3215#endif
3216#ifdef CONFIG_PROC_PID_CPUSET
3217 ONE("cpuset", S_IRUGO, proc_cpuset_show),
3218#endif
3219#ifdef CONFIG_CGROUPS
3220 ONE("cgroup", S_IRUGO, proc_cgroup_show),
3221#endif
3222#ifdef CONFIG_PROC_CPU_RESCTRL
3223 ONE("cpu_resctrl_groups", S_IRUGO, proc_resctrl_show),
3224#endif
3225 ONE("oom_score", S_IRUGO, proc_oom_score),
3226 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3227 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3228#ifdef CONFIG_AUDIT
3229 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations),
3230 REG("sessionid", S_IRUGO, proc_sessionid_operations),
3231#endif
3232#ifdef CONFIG_FAULT_INJECTION
3233 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3234 REG("fail-nth", 0644, proc_fail_nth_operations),
3235#endif
3236#ifdef CONFIG_ELF_CORE
3237 REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
3238#endif
3239#ifdef CONFIG_TASK_IO_ACCOUNTING
3240 ONE("io", S_IRUSR, proc_tgid_io_accounting),
3241#endif
3242#ifdef CONFIG_USER_NS
3243 REG("uid_map", S_IRUGO|S_IWUSR, proc_uid_map_operations),
3244 REG("gid_map", S_IRUGO|S_IWUSR, proc_gid_map_operations),
3245 REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3246 REG("setgroups", S_IRUGO|S_IWUSR, proc_setgroups_operations),
3247#endif
3248#if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
3249 REG("timers", S_IRUGO, proc_timers_operations),
3250#endif
3251 REG("timerslack_ns", S_IRUGO|S_IWUGO, proc_pid_set_timerslack_ns_operations),
3252#ifdef CONFIG_LIVEPATCH
3253 ONE("patch_state", S_IRUSR, proc_pid_patch_state),
3254#endif
3255#ifdef CONFIG_STACKLEAK_METRICS
3256 ONE("stack_depth", S_IRUGO, proc_stack_depth),
3257#endif
3258#ifdef CONFIG_PROC_PID_ARCH_STATUS
3259 ONE("arch_status", S_IRUGO, proc_pid_arch_status),
3260#endif
3261};
3262
3263static int proc_tgid_base_readdir(struct file *file, struct dir_context *ctx)
3264{
3265 return proc_pident_readdir(file, ctx,
3266 tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3267}
3268
3269static const struct file_operations proc_tgid_base_operations = {
3270 .read = generic_read_dir,
3271 .iterate_shared = proc_tgid_base_readdir,
3272 .llseek = generic_file_llseek,
3273};
3274
3275struct pid *tgid_pidfd_to_pid(const struct file *file)
3276{
3277 if (file->f_op != &proc_tgid_base_operations)
3278 return ERR_PTR(-EBADF);
3279
3280 return proc_pid(file_inode(file));
3281}
3282
3283static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3284{
3285 return proc_pident_lookup(dir, dentry,
3286 tgid_base_stuff,
3287 tgid_base_stuff + ARRAY_SIZE(tgid_base_stuff));
3288}
3289
3290static const struct inode_operations proc_tgid_base_inode_operations = {
3291 .lookup = proc_tgid_base_lookup,
3292 .getattr = pid_getattr,
3293 .setattr = proc_setattr,
3294 .permission = proc_pid_permission,
3295};
3296
3297/**
3298 * proc_flush_pid - Remove dcache entries for @pid from the /proc dcache.
3299 * @pid: pid that should be flushed.
3300 *
3301 * This function walks a list of inodes (that belong to any proc
3302 * filesystem) that are attached to the pid and flushes them from
3303 * the dentry cache.
3304 *
3305 * It is safe and reasonable to cache /proc entries for a task until
3306 * that task exits. After that they just clog up the dcache with
3307 * useless entries, possibly causing useful dcache entries to be
3308 * flushed instead. This routine is provided to flush those useless
3309 * dcache entries when a process is reaped.
3310 *
3311 * NOTE: This routine is just an optimization so it does not guarantee
3312 * that no dcache entries will exist after a process is reaped
3313 * it just makes it very unlikely that any will persist.
3314 */
3315
3316void proc_flush_pid(struct pid *pid)
3317{
3318 proc_invalidate_siblings_dcache(&pid->inodes, &pid->lock);
3319}
3320
3321static struct dentry *proc_pid_instantiate(struct dentry * dentry,
3322 struct task_struct *task, const void *ptr)
3323{
3324 struct inode *inode;
3325
3326 inode = proc_pid_make_inode(dentry->d_sb, task, S_IFDIR | S_IRUGO | S_IXUGO);
3327 if (!inode)
3328 return ERR_PTR(-ENOENT);
3329
3330 inode->i_op = &proc_tgid_base_inode_operations;
3331 inode->i_fop = &proc_tgid_base_operations;
3332 inode->i_flags|=S_IMMUTABLE;
3333
3334 set_nlink(inode, nlink_tgid);
3335 pid_update_inode(task, inode);
3336
3337 d_set_d_op(dentry, &pid_dentry_operations);
3338 return d_splice_alias(inode, dentry);
3339}
3340
3341struct dentry *proc_pid_lookup(struct dentry *dentry, unsigned int flags)
3342{
3343 struct task_struct *task;
3344 unsigned tgid;
3345 struct proc_fs_info *fs_info;
3346 struct pid_namespace *ns;
3347 struct dentry *result = ERR_PTR(-ENOENT);
3348
3349 tgid = name_to_int(&dentry->d_name);
3350 if (tgid == ~0U)
3351 goto out;
3352
3353 fs_info = proc_sb_info(dentry->d_sb);
3354 ns = fs_info->pid_ns;
3355 rcu_read_lock();
3356 task = find_task_by_pid_ns(tgid, ns);
3357 if (task)
3358 get_task_struct(task);
3359 rcu_read_unlock();
3360 if (!task)
3361 goto out;
3362
3363 /* Limit procfs to only ptraceable tasks */
3364 if (fs_info->hide_pid == HIDEPID_NOT_PTRACEABLE) {
3365 if (!has_pid_permissions(fs_info, task, HIDEPID_NO_ACCESS))
3366 goto out_put_task;
3367 }
3368
3369 result = proc_pid_instantiate(dentry, task, NULL);
3370out_put_task:
3371 put_task_struct(task);
3372out:
3373 return result;
3374}
3375
3376/*
3377 * Find the first task with tgid >= tgid
3378 *
3379 */
3380struct tgid_iter {
3381 unsigned int tgid;
3382 struct task_struct *task;
3383};
3384static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
3385{
3386 struct pid *pid;
3387
3388 if (iter.task)
3389 put_task_struct(iter.task);
3390 rcu_read_lock();
3391retry:
3392 iter.task = NULL;
3393 pid = find_ge_pid(iter.tgid, ns);
3394 if (pid) {
3395 iter.tgid = pid_nr_ns(pid, ns);
3396 iter.task = pid_task(pid, PIDTYPE_TGID);
3397 if (!iter.task) {
3398 iter.tgid += 1;
3399 goto retry;
3400 }
3401 get_task_struct(iter.task);
3402 }
3403 rcu_read_unlock();
3404 return iter;
3405}
3406
3407#define TGID_OFFSET (FIRST_PROCESS_ENTRY + 2)
3408
3409/* for the /proc/ directory itself, after non-process stuff has been done */
3410int proc_pid_readdir(struct file *file, struct dir_context *ctx)
3411{
3412 struct tgid_iter iter;
3413 struct proc_fs_info *fs_info = proc_sb_info(file_inode(file)->i_sb);
3414 struct pid_namespace *ns = proc_pid_ns(file_inode(file)->i_sb);
3415 loff_t pos = ctx->pos;
3416
3417 if (pos >= PID_MAX_LIMIT + TGID_OFFSET)
3418 return 0;
3419
3420 if (pos == TGID_OFFSET - 2) {
3421 struct inode *inode = d_inode(fs_info->proc_self);
3422 if (!dir_emit(ctx, "self", 4, inode->i_ino, DT_LNK))
3423 return 0;
3424 ctx->pos = pos = pos + 1;
3425 }
3426 if (pos == TGID_OFFSET - 1) {
3427 struct inode *inode = d_inode(fs_info->proc_thread_self);
3428 if (!dir_emit(ctx, "thread-self", 11, inode->i_ino, DT_LNK))
3429 return 0;
3430 ctx->pos = pos = pos + 1;
3431 }
3432 iter.tgid = pos - TGID_OFFSET;
3433 iter.task = NULL;
3434 for (iter = next_tgid(ns, iter);
3435 iter.task;
3436 iter.tgid += 1, iter = next_tgid(ns, iter)) {
3437 char name[10 + 1];
3438 unsigned int len;
3439
3440 cond_resched();
3441 if (!has_pid_permissions(fs_info, iter.task, HIDEPID_INVISIBLE))
3442 continue;
3443
3444 len = snprintf(name, sizeof(name), "%u", iter.tgid);
3445 ctx->pos = iter.tgid + TGID_OFFSET;
3446 if (!proc_fill_cache(file, ctx, name, len,
3447 proc_pid_instantiate, iter.task, NULL)) {
3448 put_task_struct(iter.task);
3449 return 0;
3450 }
3451 }
3452 ctx->pos = PID_MAX_LIMIT + TGID_OFFSET;
3453 return 0;
3454}
3455
3456/*
3457 * proc_tid_comm_permission is a special permission function exclusively
3458 * used for the node /proc/<pid>/task/<tid>/comm.
3459 * It bypasses generic permission checks in the case where a task of the same
3460 * task group attempts to access the node.
3461 * The rationale behind this is that glibc and bionic access this node for
3462 * cross thread naming (pthread_set/getname_np(!self)). However, if
3463 * PR_SET_DUMPABLE gets set to 0 this node among others becomes uid=0 gid=0,
3464 * which locks out the cross thread naming implementation.
3465 * This function makes sure that the node is always accessible for members of
3466 * same thread group.
3467 */
3468static int proc_tid_comm_permission(struct inode *inode, int mask)
3469{
3470 bool is_same_tgroup;
3471 struct task_struct *task;
3472
3473 task = get_proc_task(inode);
3474 if (!task)
3475 return -ESRCH;
3476 is_same_tgroup = same_thread_group(current, task);
3477 put_task_struct(task);
3478
3479 if (likely(is_same_tgroup && !(mask & MAY_EXEC))) {
3480 /* This file (/proc/<pid>/task/<tid>/comm) can always be
3481 * read or written by the members of the corresponding
3482 * thread group.
3483 */
3484 return 0;
3485 }
3486
3487 return generic_permission(inode, mask);
3488}
3489
3490static const struct inode_operations proc_tid_comm_inode_operations = {
3491 .permission = proc_tid_comm_permission,
3492};
3493
3494/*
3495 * Tasks
3496 */
3497static const struct pid_entry tid_base_stuff[] = {
3498 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3499 DIR("fdinfo", S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3500 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3501#ifdef CONFIG_NET
3502 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3503#endif
3504 REG("environ", S_IRUSR, proc_environ_operations),
3505 REG("auxv", S_IRUSR, proc_auxv_operations),
3506 ONE("status", S_IRUGO, proc_pid_status),
3507 ONE("personality", S_IRUSR, proc_pid_personality),
3508 ONE("limits", S_IRUGO, proc_pid_limits),
3509#ifdef CONFIG_SCHED_DEBUG
3510 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3511#endif
3512 NOD("comm", S_IFREG|S_IRUGO|S_IWUSR,
3513 &proc_tid_comm_inode_operations,
3514 &proc_pid_set_comm_operations, {}),
3515#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3516 ONE("syscall", S_IRUSR, proc_pid_syscall),
3517#endif
3518 REG("cmdline", S_IRUGO, proc_pid_cmdline_ops),
3519 ONE("stat", S_IRUGO, proc_tid_stat),
3520 ONE("statm", S_IRUGO, proc_pid_statm),
3521 REG("maps", S_IRUGO, proc_pid_maps_operations),
3522#ifdef CONFIG_PROC_CHILDREN
3523 REG("children", S_IRUGO, proc_tid_children_operations),
3524#endif
3525#ifdef CONFIG_NUMA
3526 REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations),
3527#endif
3528 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations),
3529 LNK("cwd", proc_cwd_link),
3530 LNK("root", proc_root_link),
3531 LNK("exe", proc_exe_link),
3532 REG("mounts", S_IRUGO, proc_mounts_operations),
3533 REG("mountinfo", S_IRUGO, proc_mountinfo_operations),
3534#ifdef CONFIG_PROC_PAGE_MONITOR
3535 REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3536 REG("smaps", S_IRUGO, proc_pid_smaps_operations),
3537 REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations),
3538 REG("pagemap", S_IRUSR, proc_pagemap_operations),
3539#endif
3540#ifdef CONFIG_SECURITY
3541 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3542#endif
3543#ifdef CONFIG_KALLSYMS
3544 ONE("wchan", S_IRUGO, proc_pid_wchan),
3545#endif
3546#ifdef CONFIG_STACKTRACE
3547 ONE("stack", S_IRUSR, proc_pid_stack),
3548#endif
3549#ifdef CONFIG_SCHED_INFO
3550 ONE("schedstat", S_IRUGO, proc_pid_schedstat),
3551#endif
3552#ifdef CONFIG_LATENCYTOP
3553 REG("latency", S_IRUGO, proc_lstats_operations),
3554#endif
3555#ifdef CONFIG_PROC_PID_CPUSET
3556 ONE("cpuset", S_IRUGO, proc_cpuset_show),
3557#endif
3558#ifdef CONFIG_CGROUPS
3559 ONE("cgroup", S_IRUGO, proc_cgroup_show),
3560#endif
3561#ifdef CONFIG_PROC_CPU_RESCTRL
3562 ONE("cpu_resctrl_groups", S_IRUGO, proc_resctrl_show),
3563#endif
3564 ONE("oom_score", S_IRUGO, proc_oom_score),
3565 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3566 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3567#ifdef CONFIG_AUDIT
3568 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations),
3569 REG("sessionid", S_IRUGO, proc_sessionid_operations),
3570#endif
3571#ifdef CONFIG_FAULT_INJECTION
3572 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3573 REG("fail-nth", 0644, proc_fail_nth_operations),
3574#endif
3575#ifdef CONFIG_TASK_IO_ACCOUNTING
3576 ONE("io", S_IRUSR, proc_tid_io_accounting),
3577#endif
3578#ifdef CONFIG_USER_NS
3579 REG("uid_map", S_IRUGO|S_IWUSR, proc_uid_map_operations),
3580 REG("gid_map", S_IRUGO|S_IWUSR, proc_gid_map_operations),
3581 REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3582 REG("setgroups", S_IRUGO|S_IWUSR, proc_setgroups_operations),
3583#endif
3584#ifdef CONFIG_LIVEPATCH
3585 ONE("patch_state", S_IRUSR, proc_pid_patch_state),
3586#endif
3587#ifdef CONFIG_PROC_PID_ARCH_STATUS
3588 ONE("arch_status", S_IRUGO, proc_pid_arch_status),
3589#endif
3590};
3591
3592static int proc_tid_base_readdir(struct file *file, struct dir_context *ctx)
3593{
3594 return proc_pident_readdir(file, ctx,
3595 tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3596}
3597
3598static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3599{
3600 return proc_pident_lookup(dir, dentry,
3601 tid_base_stuff,
3602 tid_base_stuff + ARRAY_SIZE(tid_base_stuff));
3603}
3604
3605static const struct file_operations proc_tid_base_operations = {
3606 .read = generic_read_dir,
3607 .iterate_shared = proc_tid_base_readdir,
3608 .llseek = generic_file_llseek,
3609};
3610
3611static const struct inode_operations proc_tid_base_inode_operations = {
3612 .lookup = proc_tid_base_lookup,
3613 .getattr = pid_getattr,
3614 .setattr = proc_setattr,
3615};
3616
3617static struct dentry *proc_task_instantiate(struct dentry *dentry,
3618 struct task_struct *task, const void *ptr)
3619{
3620 struct inode *inode;
3621 inode = proc_pid_make_inode(dentry->d_sb, task, S_IFDIR | S_IRUGO | S_IXUGO);
3622 if (!inode)
3623 return ERR_PTR(-ENOENT);
3624
3625 inode->i_op = &proc_tid_base_inode_operations;
3626 inode->i_fop = &proc_tid_base_operations;
3627 inode->i_flags |= S_IMMUTABLE;
3628
3629 set_nlink(inode, nlink_tid);
3630 pid_update_inode(task, inode);
3631
3632 d_set_d_op(dentry, &pid_dentry_operations);
3633 return d_splice_alias(inode, dentry);
3634}
3635
3636static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3637{
3638 struct task_struct *task;
3639 struct task_struct *leader = get_proc_task(dir);
3640 unsigned tid;
3641 struct proc_fs_info *fs_info;
3642 struct pid_namespace *ns;
3643 struct dentry *result = ERR_PTR(-ENOENT);
3644
3645 if (!leader)
3646 goto out_no_task;
3647
3648 tid = name_to_int(&dentry->d_name);
3649 if (tid == ~0U)
3650 goto out;
3651
3652 fs_info = proc_sb_info(dentry->d_sb);
3653 ns = fs_info->pid_ns;
3654 rcu_read_lock();
3655 task = find_task_by_pid_ns(tid, ns);
3656 if (task)
3657 get_task_struct(task);
3658 rcu_read_unlock();
3659 if (!task)
3660 goto out;
3661 if (!same_thread_group(leader, task))
3662 goto out_drop_task;
3663
3664 result = proc_task_instantiate(dentry, task, NULL);
3665out_drop_task:
3666 put_task_struct(task);
3667out:
3668 put_task_struct(leader);
3669out_no_task:
3670 return result;
3671}
3672
3673/*
3674 * Find the first tid of a thread group to return to user space.
3675 *
3676 * Usually this is just the thread group leader, but if the users
3677 * buffer was too small or there was a seek into the middle of the
3678 * directory we have more work todo.
3679 *
3680 * In the case of a short read we start with find_task_by_pid.
3681 *
3682 * In the case of a seek we start with the leader and walk nr
3683 * threads past it.
3684 */
3685static struct task_struct *first_tid(struct pid *pid, int tid, loff_t f_pos,
3686 struct pid_namespace *ns)
3687{
3688 struct task_struct *pos, *task;
3689 unsigned long nr = f_pos;
3690
3691 if (nr != f_pos) /* 32bit overflow? */
3692 return NULL;
3693
3694 rcu_read_lock();
3695 task = pid_task(pid, PIDTYPE_PID);
3696 if (!task)
3697 goto fail;
3698
3699 /* Attempt to start with the tid of a thread */
3700 if (tid && nr) {
3701 pos = find_task_by_pid_ns(tid, ns);
3702 if (pos && same_thread_group(pos, task))
3703 goto found;
3704 }
3705
3706 /* If nr exceeds the number of threads there is nothing todo */
3707 if (nr >= get_nr_threads(task))
3708 goto fail;
3709
3710 /* If we haven't found our starting place yet start
3711 * with the leader and walk nr threads forward.
3712 */
3713 pos = task = task->group_leader;
3714 do {
3715 if (!nr--)
3716 goto found;
3717 } while_each_thread(task, pos);
3718fail:
3719 pos = NULL;
3720 goto out;
3721found:
3722 get_task_struct(pos);
3723out:
3724 rcu_read_unlock();
3725 return pos;
3726}
3727
3728/*
3729 * Find the next thread in the thread list.
3730 * Return NULL if there is an error or no next thread.
3731 *
3732 * The reference to the input task_struct is released.
3733 */
3734static struct task_struct *next_tid(struct task_struct *start)
3735{
3736 struct task_struct *pos = NULL;
3737 rcu_read_lock();
3738 if (pid_alive(start)) {
3739 pos = next_thread(start);
3740 if (thread_group_leader(pos))
3741 pos = NULL;
3742 else
3743 get_task_struct(pos);
3744 }
3745 rcu_read_unlock();
3746 put_task_struct(start);
3747 return pos;
3748}
3749
3750/* for the /proc/TGID/task/ directories */
3751static int proc_task_readdir(struct file *file, struct dir_context *ctx)
3752{
3753 struct inode *inode = file_inode(file);
3754 struct task_struct *task;
3755 struct pid_namespace *ns;
3756 int tid;
3757
3758 if (proc_inode_is_dead(inode))
3759 return -ENOENT;
3760
3761 if (!dir_emit_dots(file, ctx))
3762 return 0;
3763
3764 /* f_version caches the tgid value that the last readdir call couldn't
3765 * return. lseek aka telldir automagically resets f_version to 0.
3766 */
3767 ns = proc_pid_ns(inode->i_sb);
3768 tid = (int)file->f_version;
3769 file->f_version = 0;
3770 for (task = first_tid(proc_pid(inode), tid, ctx->pos - 2, ns);
3771 task;
3772 task = next_tid(task), ctx->pos++) {
3773 char name[10 + 1];
3774 unsigned int len;
3775 tid = task_pid_nr_ns(task, ns);
3776 len = snprintf(name, sizeof(name), "%u", tid);
3777 if (!proc_fill_cache(file, ctx, name, len,
3778 proc_task_instantiate, task, NULL)) {
3779 /* returning this tgid failed, save it as the first
3780 * pid for the next readir call */
3781 file->f_version = (u64)tid;
3782 put_task_struct(task);
3783 break;
3784 }
3785 }
3786
3787 return 0;
3788}
3789
3790static int proc_task_getattr(const struct path *path, struct kstat *stat,
3791 u32 request_mask, unsigned int query_flags)
3792{
3793 struct inode *inode = d_inode(path->dentry);
3794 struct task_struct *p = get_proc_task(inode);
3795 generic_fillattr(inode, stat);
3796
3797 if (p) {
3798 stat->nlink += get_nr_threads(p);
3799 put_task_struct(p);
3800 }
3801
3802 return 0;
3803}
3804
3805static const struct inode_operations proc_task_inode_operations = {
3806 .lookup = proc_task_lookup,
3807 .getattr = proc_task_getattr,
3808 .setattr = proc_setattr,
3809 .permission = proc_pid_permission,
3810};
3811
3812static const struct file_operations proc_task_operations = {
3813 .read = generic_read_dir,
3814 .iterate_shared = proc_task_readdir,
3815 .llseek = generic_file_llseek,
3816};
3817
3818void __init set_proc_pid_nlink(void)
3819{
3820 nlink_tid = pid_entry_nlink(tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3821 nlink_tgid = pid_entry_nlink(tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3822}