Linux Audio

Check our new training course

Loading...
v3.1
 
   1/*
   2 *  linux/fs/proc/base.c
   3 *
   4 *  Copyright (C) 1991, 1992 Linus Torvalds
   5 *
   6 *  proc base directory handling functions
   7 *
   8 *  1999, Al Viro. Rewritten. Now it covers the whole per-process part.
   9 *  Instead of using magical inumbers to determine the kind of object
  10 *  we allocate and fill in-core inodes upon lookup. They don't even
  11 *  go into icache. We cache the reference to task_struct upon lookup too.
  12 *  Eventually it should become a filesystem in its own. We don't use the
  13 *  rest of procfs anymore.
  14 *
  15 *
  16 *  Changelog:
  17 *  17-Jan-2005
  18 *  Allan Bezerra
  19 *  Bruna Moreira <bruna.moreira@indt.org.br>
  20 *  Edjard Mota <edjard.mota@indt.org.br>
  21 *  Ilias Biris <ilias.biris@indt.org.br>
  22 *  Mauricio Lin <mauricio.lin@indt.org.br>
  23 *
  24 *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
  25 *
  26 *  A new process specific entry (smaps) included in /proc. It shows the
  27 *  size of rss for each memory area. The maps entry lacks information
  28 *  about physical memory size (rss) for each mapped file, i.e.,
  29 *  rss information for executables and library files.
  30 *  This additional information is useful for any tools that need to know
  31 *  about physical memory consumption for a process specific library.
  32 *
  33 *  Changelog:
  34 *  21-Feb-2005
  35 *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
  36 *  Pud inclusion in the page table walking.
  37 *
  38 *  ChangeLog:
  39 *  10-Mar-2005
  40 *  10LE Instituto Nokia de Tecnologia - INdT:
  41 *  A better way to walks through the page table as suggested by Hugh Dickins.
  42 *
  43 *  Simo Piiroinen <simo.piiroinen@nokia.com>:
  44 *  Smaps information related to shared, private, clean and dirty pages.
  45 *
  46 *  Paul Mundt <paul.mundt@nokia.com>:
  47 *  Overall revision about smaps.
  48 */
  49
  50#include <asm/uaccess.h>
  51
  52#include <linux/errno.h>
  53#include <linux/time.h>
  54#include <linux/proc_fs.h>
  55#include <linux/stat.h>
  56#include <linux/task_io_accounting_ops.h>
  57#include <linux/init.h>
  58#include <linux/capability.h>
  59#include <linux/file.h>
  60#include <linux/fdtable.h>
 
  61#include <linux/string.h>
  62#include <linux/seq_file.h>
  63#include <linux/namei.h>
  64#include <linux/mnt_namespace.h>
  65#include <linux/mm.h>
  66#include <linux/swap.h>
  67#include <linux/rcupdate.h>
  68#include <linux/kallsyms.h>
  69#include <linux/stacktrace.h>
  70#include <linux/resource.h>
  71#include <linux/module.h>
  72#include <linux/mount.h>
  73#include <linux/security.h>
  74#include <linux/ptrace.h>
  75#include <linux/tracehook.h>
 
 
  76#include <linux/cgroup.h>
  77#include <linux/cpuset.h>
  78#include <linux/audit.h>
  79#include <linux/poll.h>
  80#include <linux/nsproxy.h>
  81#include <linux/oom.h>
  82#include <linux/elf.h>
  83#include <linux/pid_namespace.h>
 
  84#include <linux/fs_struct.h>
  85#include <linux/slab.h>
  86#ifdef CONFIG_HARDWALL
  87#include <asm/hardwall.h>
  88#endif
 
 
 
 
  89#include "internal.h"
 
 
 
  90
  91/* NOTE:
  92 *	Implementing inode permission operations in /proc is almost
  93 *	certainly an error.  Permission checks need to happen during
  94 *	each system call not at open time.  The reason is that most of
  95 *	what we wish to check for permissions in /proc varies at runtime.
  96 *
  97 *	The classic example of a problem is opening file descriptors
  98 *	in /proc for a task before it execs a suid executable.
  99 */
 100
 
 
 
 101struct pid_entry {
 102	char *name;
 103	int len;
 104	mode_t mode;
 105	const struct inode_operations *iop;
 106	const struct file_operations *fop;
 107	union proc_op op;
 108};
 109
 110#define NOD(NAME, MODE, IOP, FOP, OP) {			\
 111	.name = (NAME),					\
 112	.len  = sizeof(NAME) - 1,			\
 113	.mode = MODE,					\
 114	.iop  = IOP,					\
 115	.fop  = FOP,					\
 116	.op   = OP,					\
 117}
 118
 119#define DIR(NAME, MODE, iops, fops)	\
 120	NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
 121#define LNK(NAME, get_link)					\
 122	NOD(NAME, (S_IFLNK|S_IRWXUGO),				\
 123		&proc_pid_link_inode_operations, NULL,		\
 124		{ .proc_get_link = get_link } )
 125#define REG(NAME, MODE, fops)				\
 126	NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
 127#define INF(NAME, MODE, read)				\
 128	NOD(NAME, (S_IFREG|(MODE)), 			\
 129		NULL, &proc_info_file_operations,	\
 130		{ .proc_read = read } )
 131#define ONE(NAME, MODE, show)				\
 132	NOD(NAME, (S_IFREG|(MODE)), 			\
 133		NULL, &proc_single_file_operations,	\
 134		{ .proc_show = show } )
 
 
 
 
 135
 136/*
 137 * Count the number of hardlinks for the pid_entry table, excluding the .
 138 * and .. links.
 139 */
 140static unsigned int pid_entry_count_dirs(const struct pid_entry *entries,
 141	unsigned int n)
 142{
 143	unsigned int i;
 144	unsigned int count;
 145
 146	count = 0;
 147	for (i = 0; i < n; ++i) {
 148		if (S_ISDIR(entries[i].mode))
 149			++count;
 150	}
 151
 152	return count;
 153}
 154
 155static int get_task_root(struct task_struct *task, struct path *root)
 156{
 157	int result = -ENOENT;
 158
 159	task_lock(task);
 160	if (task->fs) {
 161		get_fs_root(task->fs, root);
 162		result = 0;
 163	}
 164	task_unlock(task);
 165	return result;
 166}
 167
 168static int proc_cwd_link(struct inode *inode, struct path *path)
 169{
 170	struct task_struct *task = get_proc_task(inode);
 171	int result = -ENOENT;
 172
 173	if (task) {
 174		task_lock(task);
 175		if (task->fs) {
 176			get_fs_pwd(task->fs, path);
 177			result = 0;
 178		}
 179		task_unlock(task);
 180		put_task_struct(task);
 181	}
 182	return result;
 183}
 184
 185static int proc_root_link(struct inode *inode, struct path *path)
 186{
 187	struct task_struct *task = get_proc_task(inode);
 188	int result = -ENOENT;
 189
 190	if (task) {
 191		result = get_task_root(task, path);
 192		put_task_struct(task);
 193	}
 194	return result;
 195}
 196
 197static struct mm_struct *__check_mem_permission(struct task_struct *task)
 
 
 
 
 
 
 198{
 199	struct mm_struct *mm;
 
 200
 201	mm = get_task_mm(task);
 202	if (!mm)
 203		return ERR_PTR(-EINVAL);
 204
 205	/*
 206	 * A task can always look at itself, in case it chooses
 207	 * to use system calls instead of load instructions.
 208	 */
 209	if (task == current)
 210		return mm;
 211
 212	/*
 213	 * If current is actively ptrace'ing, and would also be
 214	 * permitted to freshly attach with ptrace now, permit it.
 215	 */
 216	if (task_is_stopped_or_traced(task)) {
 217		int match;
 218		rcu_read_lock();
 219		match = (ptrace_parent(task) == current);
 220		rcu_read_unlock();
 221		if (match && ptrace_may_access(task, PTRACE_MODE_ATTACH))
 222			return mm;
 
 
 
 
 
 
 
 223	}
 224
 225	/*
 226	 * No one else is allowed.
 227	 */
 228	mmput(mm);
 229	return ERR_PTR(-EPERM);
 230}
 231
 232/*
 233 * If current may access user memory in @task return a reference to the
 234 * corresponding mm, otherwise ERR_PTR.
 235 */
 236static struct mm_struct *check_mem_permission(struct task_struct *task)
 237{
 238	struct mm_struct *mm;
 239	int err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 240
 241	/*
 242	 * Avoid racing if task exec's as we might get a new mm but validate
 243	 * against old credentials.
 
 244	 */
 245	err = mutex_lock_killable(&task->signal->cred_guard_mutex);
 246	if (err)
 247		return ERR_PTR(err);
 
 
 
 
 
 
 
 
 
 248
 249	mm = __check_mem_permission(task);
 250	mutex_unlock(&task->signal->cred_guard_mutex);
 
 
 
 
 
 
 
 251
 252	return mm;
 253}
 
 
 
 
 
 
 
 254
 255struct mm_struct *mm_for_maps(struct task_struct *task)
 256{
 257	struct mm_struct *mm;
 258	int err;
 259
 260	err =  mutex_lock_killable(&task->signal->cred_guard_mutex);
 261	if (err)
 262		return ERR_PTR(err);
 
 263
 264	mm = get_task_mm(task);
 265	if (mm && mm != current->mm &&
 266			!ptrace_may_access(task, PTRACE_MODE_READ)) {
 267		mmput(mm);
 268		mm = ERR_PTR(-EACCES);
 
 
 
 
 
 
 
 
 269	}
 270	mutex_unlock(&task->signal->cred_guard_mutex);
 271
 272	return mm;
 
 273}
 274
 275static int proc_pid_cmdline(struct task_struct *task, char * buffer)
 
 276{
 277	int res = 0;
 278	unsigned int len;
 279	struct mm_struct *mm = get_task_mm(task);
 
 280	if (!mm)
 281		goto out;
 282	if (!mm->arg_end)
 283		goto out_mm;	/* Shh! No looking before we're done */
 284
 285 	len = mm->arg_end - mm->arg_start;
 286 
 287	if (len > PAGE_SIZE)
 288		len = PAGE_SIZE;
 289 
 290	res = access_process_vm(task, mm->arg_start, buffer, len, 0);
 291
 292	// If the nul at the end of args has been overwritten, then
 293	// assume application is using setproctitle(3).
 294	if (res > 0 && buffer[res-1] != '\0' && len < PAGE_SIZE) {
 295		len = strnlen(buffer, res);
 296		if (len < res) {
 297		    res = len;
 298		} else {
 299			len = mm->env_end - mm->env_start;
 300			if (len > PAGE_SIZE - res)
 301				len = PAGE_SIZE - res;
 302			res += access_process_vm(task, mm->env_start, buffer+res, len, 0);
 303			res = strnlen(buffer, res);
 304		}
 305	}
 306out_mm:
 307	mmput(mm);
 308out:
 309	return res;
 310}
 311
 312static int proc_pid_auxv(struct task_struct *task, char *buffer)
 
 313{
 314	struct mm_struct *mm = mm_for_maps(task);
 315	int res = PTR_ERR(mm);
 316	if (mm && !IS_ERR(mm)) {
 317		unsigned int nwords = 0;
 318		do {
 319			nwords += 2;
 320		} while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
 321		res = nwords * sizeof(mm->saved_auxv[0]);
 322		if (res > PAGE_SIZE)
 323			res = PAGE_SIZE;
 324		memcpy(buffer, mm->saved_auxv, res);
 325		mmput(mm);
 326	}
 327	return res;
 328}
 329
 
 
 
 
 330
 331#ifdef CONFIG_KALLSYMS
 332/*
 333 * Provides a wchan file via kallsyms in a proper one-value-per-file format.
 334 * Returns the resolved symbol.  If that fails, simply return the address.
 335 */
 336static int proc_pid_wchan(struct task_struct *task, char *buffer)
 
 337{
 338	unsigned long wchan;
 339	char symname[KSYM_NAME_LEN];
 340
 
 
 
 341	wchan = get_wchan(task);
 
 
 
 
 342
 343	if (lookup_symbol_name(wchan, symname) < 0)
 344		if (!ptrace_may_access(task, PTRACE_MODE_READ))
 345			return 0;
 346		else
 347			return sprintf(buffer, "%lu", wchan);
 348	else
 349		return sprintf(buffer, "%s", symname);
 350}
 351#endif /* CONFIG_KALLSYMS */
 352
 353static int lock_trace(struct task_struct *task)
 354{
 355	int err = mutex_lock_killable(&task->signal->cred_guard_mutex);
 356	if (err)
 357		return err;
 358	if (!ptrace_may_access(task, PTRACE_MODE_ATTACH)) {
 359		mutex_unlock(&task->signal->cred_guard_mutex);
 360		return -EPERM;
 361	}
 362	return 0;
 363}
 364
 365static void unlock_trace(struct task_struct *task)
 366{
 367	mutex_unlock(&task->signal->cred_guard_mutex);
 368}
 369
 370#ifdef CONFIG_STACKTRACE
 371
 372#define MAX_STACK_TRACE_DEPTH	64
 373
 374static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
 375			  struct pid *pid, struct task_struct *task)
 376{
 377	struct stack_trace trace;
 378	unsigned long *entries;
 379	int err;
 380	int i;
 381
 382	entries = kmalloc(MAX_STACK_TRACE_DEPTH * sizeof(*entries), GFP_KERNEL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 383	if (!entries)
 384		return -ENOMEM;
 385
 386	trace.nr_entries	= 0;
 387	trace.max_entries	= MAX_STACK_TRACE_DEPTH;
 388	trace.entries		= entries;
 389	trace.skip		= 0;
 390
 391	err = lock_trace(task);
 392	if (!err) {
 393		save_stack_trace_tsk(task, &trace);
 
 
 
 394
 395		for (i = 0; i < trace.nr_entries; i++) {
 396			seq_printf(m, "[<%pK>] %pS\n",
 397				   (void *)entries[i], (void *)entries[i]);
 398		}
 
 399		unlock_trace(task);
 400	}
 401	kfree(entries);
 402
 403	return err;
 404}
 405#endif
 406
 407#ifdef CONFIG_SCHEDSTATS
 408/*
 409 * Provides /proc/PID/schedstat
 410 */
 411static int proc_pid_schedstat(struct task_struct *task, char *buffer)
 
 412{
 413	return sprintf(buffer, "%llu %llu %lu\n",
 414			(unsigned long long)task->se.sum_exec_runtime,
 415			(unsigned long long)task->sched_info.run_delay,
 416			task->sched_info.pcount);
 
 
 
 
 
 417}
 418#endif
 419
 420#ifdef CONFIG_LATENCYTOP
 421static int lstats_show_proc(struct seq_file *m, void *v)
 422{
 423	int i;
 424	struct inode *inode = m->private;
 425	struct task_struct *task = get_proc_task(inode);
 426
 427	if (!task)
 428		return -ESRCH;
 429	seq_puts(m, "Latency Top version : v0.1\n");
 430	for (i = 0; i < 32; i++) {
 431		struct latency_record *lr = &task->latency_record[i];
 432		if (lr->backtrace[0]) {
 433			int q;
 434			seq_printf(m, "%i %li %li",
 435				   lr->count, lr->time, lr->max);
 436			for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
 437				unsigned long bt = lr->backtrace[q];
 
 438				if (!bt)
 439					break;
 440				if (bt == ULONG_MAX)
 441					break;
 442				seq_printf(m, " %ps", (void *)bt);
 443			}
 444			seq_putc(m, '\n');
 445		}
 446
 447	}
 448	put_task_struct(task);
 449	return 0;
 450}
 451
 452static int lstats_open(struct inode *inode, struct file *file)
 453{
 454	return single_open(file, lstats_show_proc, inode);
 455}
 456
 457static ssize_t lstats_write(struct file *file, const char __user *buf,
 458			    size_t count, loff_t *offs)
 459{
 460	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
 461
 462	if (!task)
 463		return -ESRCH;
 464	clear_all_latency_tracing(task);
 465	put_task_struct(task);
 466
 467	return count;
 468}
 469
 470static const struct file_operations proc_lstats_operations = {
 471	.open		= lstats_open,
 472	.read		= seq_read,
 473	.write		= lstats_write,
 474	.llseek		= seq_lseek,
 475	.release	= single_release,
 476};
 477
 478#endif
 479
 480static int proc_oom_score(struct task_struct *task, char *buffer)
 
 481{
 
 482	unsigned long points = 0;
 483
 484	read_lock(&tasklist_lock);
 485	if (pid_alive(task))
 486		points = oom_badness(task, NULL, NULL,
 487					totalram_pages + total_swap_pages);
 488	read_unlock(&tasklist_lock);
 489	return sprintf(buffer, "%lu\n", points);
 490}
 491
 492struct limit_names {
 493	char *name;
 494	char *unit;
 495};
 496
 497static const struct limit_names lnames[RLIM_NLIMITS] = {
 498	[RLIMIT_CPU] = {"Max cpu time", "seconds"},
 499	[RLIMIT_FSIZE] = {"Max file size", "bytes"},
 500	[RLIMIT_DATA] = {"Max data size", "bytes"},
 501	[RLIMIT_STACK] = {"Max stack size", "bytes"},
 502	[RLIMIT_CORE] = {"Max core file size", "bytes"},
 503	[RLIMIT_RSS] = {"Max resident set", "bytes"},
 504	[RLIMIT_NPROC] = {"Max processes", "processes"},
 505	[RLIMIT_NOFILE] = {"Max open files", "files"},
 506	[RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
 507	[RLIMIT_AS] = {"Max address space", "bytes"},
 508	[RLIMIT_LOCKS] = {"Max file locks", "locks"},
 509	[RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
 510	[RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
 511	[RLIMIT_NICE] = {"Max nice priority", NULL},
 512	[RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
 513	[RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
 514};
 515
 516/* Display limits for a process */
 517static int proc_pid_limits(struct task_struct *task, char *buffer)
 
 518{
 519	unsigned int i;
 520	int count = 0;
 521	unsigned long flags;
 522	char *bufptr = buffer;
 523
 524	struct rlimit rlim[RLIM_NLIMITS];
 525
 526	if (!lock_task_sighand(task, &flags))
 527		return 0;
 528	memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
 529	unlock_task_sighand(task, &flags);
 530
 531	/*
 532	 * print the file header
 533	 */
 534	count += sprintf(&bufptr[count], "%-25s %-20s %-20s %-10s\n",
 535			"Limit", "Soft Limit", "Hard Limit", "Units");
 
 
 536
 537	for (i = 0; i < RLIM_NLIMITS; i++) {
 538		if (rlim[i].rlim_cur == RLIM_INFINITY)
 539			count += sprintf(&bufptr[count], "%-25s %-20s ",
 540					 lnames[i].name, "unlimited");
 541		else
 542			count += sprintf(&bufptr[count], "%-25s %-20lu ",
 543					 lnames[i].name, rlim[i].rlim_cur);
 544
 545		if (rlim[i].rlim_max == RLIM_INFINITY)
 546			count += sprintf(&bufptr[count], "%-20s ", "unlimited");
 547		else
 548			count += sprintf(&bufptr[count], "%-20lu ",
 549					 rlim[i].rlim_max);
 550
 551		if (lnames[i].unit)
 552			count += sprintf(&bufptr[count], "%-10s\n",
 553					 lnames[i].unit);
 554		else
 555			count += sprintf(&bufptr[count], "\n");
 556	}
 557
 558	return count;
 559}
 560
 561#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
 562static int proc_pid_syscall(struct task_struct *task, char *buffer)
 
 563{
 564	long nr;
 565	unsigned long args[6], sp, pc;
 566	int res = lock_trace(task);
 
 
 567	if (res)
 568		return res;
 569
 570	if (task_current_syscall(task, &nr, args, 6, &sp, &pc))
 571		res = sprintf(buffer, "running\n");
 572	else if (nr < 0)
 573		res = sprintf(buffer, "%ld 0x%lx 0x%lx\n", nr, sp, pc);
 
 574	else
 575		res = sprintf(buffer,
 576		       "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n",
 577		       nr,
 578		       args[0], args[1], args[2], args[3], args[4], args[5],
 579		       sp, pc);
 580	unlock_trace(task);
 581	return res;
 
 582}
 583#endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
 584
 585/************************************************************************/
 586/*                       Here the fs part begins                        */
 587/************************************************************************/
 588
 589/* permission checks */
 590static int proc_fd_access_allowed(struct inode *inode)
 591{
 592	struct task_struct *task;
 593	int allowed = 0;
 594	/* Allow access to a task's file descriptors if it is us or we
 595	 * may use ptrace attach to the process and find out that
 596	 * information.
 597	 */
 598	task = get_proc_task(inode);
 599	if (task) {
 600		allowed = ptrace_may_access(task, PTRACE_MODE_READ);
 601		put_task_struct(task);
 602	}
 603	return allowed;
 604}
 605
 606int proc_setattr(struct dentry *dentry, struct iattr *attr)
 607{
 608	int error;
 609	struct inode *inode = dentry->d_inode;
 610
 611	if (attr->ia_valid & ATTR_MODE)
 612		return -EPERM;
 613
 614	error = inode_change_ok(inode, attr);
 615	if (error)
 616		return error;
 617
 618	if ((attr->ia_valid & ATTR_SIZE) &&
 619	    attr->ia_size != i_size_read(inode)) {
 620		error = vmtruncate(inode, attr->ia_size);
 621		if (error)
 622			return error;
 623	}
 624
 625	setattr_copy(inode, attr);
 626	mark_inode_dirty(inode);
 627	return 0;
 628}
 629
 630static const struct inode_operations proc_def_inode_operations = {
 631	.setattr	= proc_setattr,
 632};
 633
 634static int mounts_open_common(struct inode *inode, struct file *file,
 635			      const struct seq_operations *op)
 636{
 637	struct task_struct *task = get_proc_task(inode);
 638	struct nsproxy *nsp;
 639	struct mnt_namespace *ns = NULL;
 640	struct path root;
 641	struct proc_mounts *p;
 642	int ret = -EINVAL;
 643
 644	if (task) {
 645		rcu_read_lock();
 646		nsp = task_nsproxy(task);
 647		if (nsp) {
 648			ns = nsp->mnt_ns;
 649			if (ns)
 650				get_mnt_ns(ns);
 651		}
 652		rcu_read_unlock();
 653		if (ns && get_task_root(task, &root) == 0)
 654			ret = 0;
 655		put_task_struct(task);
 656	}
 657
 658	if (!ns)
 659		goto err;
 660	if (ret)
 661		goto err_put_ns;
 662
 663	ret = -ENOMEM;
 664	p = kmalloc(sizeof(struct proc_mounts), GFP_KERNEL);
 665	if (!p)
 666		goto err_put_path;
 667
 668	file->private_data = &p->m;
 669	ret = seq_open(file, op);
 670	if (ret)
 671		goto err_free;
 672
 673	p->m.private = p;
 674	p->ns = ns;
 675	p->root = root;
 676	p->m.poll_event = ns->event;
 677
 678	return 0;
 679
 680 err_free:
 681	kfree(p);
 682 err_put_path:
 683	path_put(&root);
 684 err_put_ns:
 685	put_mnt_ns(ns);
 686 err:
 687	return ret;
 688}
 689
 690static int mounts_release(struct inode *inode, struct file *file)
 691{
 692	struct proc_mounts *p = file->private_data;
 693	path_put(&p->root);
 694	put_mnt_ns(p->ns);
 695	return seq_release(inode, file);
 696}
 697
 698static unsigned mounts_poll(struct file *file, poll_table *wait)
 699{
 700	struct proc_mounts *p = file->private_data;
 701	unsigned res = POLLIN | POLLRDNORM;
 702
 703	poll_wait(file, &p->ns->poll, wait);
 704	if (mnt_had_events(p))
 705		res |= POLLERR | POLLPRI;
 706
 707	return res;
 708}
 709
 710static int mounts_open(struct inode *inode, struct file *file)
 711{
 712	return mounts_open_common(inode, file, &mounts_op);
 713}
 714
 715static const struct file_operations proc_mounts_operations = {
 716	.open		= mounts_open,
 717	.read		= seq_read,
 718	.llseek		= seq_lseek,
 719	.release	= mounts_release,
 720	.poll		= mounts_poll,
 721};
 722
 723static int mountinfo_open(struct inode *inode, struct file *file)
 724{
 725	return mounts_open_common(inode, file, &mountinfo_op);
 726}
 727
 728static const struct file_operations proc_mountinfo_operations = {
 729	.open		= mountinfo_open,
 730	.read		= seq_read,
 731	.llseek		= seq_lseek,
 732	.release	= mounts_release,
 733	.poll		= mounts_poll,
 734};
 735
 736static int mountstats_open(struct inode *inode, struct file *file)
 737{
 738	return mounts_open_common(inode, file, &mountstats_op);
 
 
 
 
 739}
 740
 741static const struct file_operations proc_mountstats_operations = {
 742	.open		= mountstats_open,
 743	.read		= seq_read,
 744	.llseek		= seq_lseek,
 745	.release	= mounts_release,
 746};
 747
 748#define PROC_BLOCK_SIZE	(3*1024)		/* 4K page size but our output routines use some slack for overruns */
 749
 750static ssize_t proc_info_read(struct file * file, char __user * buf,
 751			  size_t count, loff_t *ppos)
 752{
 753	struct inode * inode = file->f_path.dentry->d_inode;
 754	unsigned long page;
 755	ssize_t length;
 756	struct task_struct *task = get_proc_task(inode);
 757
 758	length = -ESRCH;
 759	if (!task)
 760		goto out_no_task;
 
 
 761
 762	if (count > PROC_BLOCK_SIZE)
 763		count = PROC_BLOCK_SIZE;
 
 
 
 
 
 
 
 
 764
 765	length = -ENOMEM;
 766	if (!(page = __get_free_page(GFP_TEMPORARY)))
 767		goto out;
 
 768
 769	length = PROC_I(inode)->op.proc_read(task, (char*)page);
 770
 771	if (length >= 0)
 772		length = simple_read_from_buffer(buf, count, ppos, (char *)page, length);
 773	free_page(page);
 774out:
 775	put_task_struct(task);
 776out_no_task:
 777	return length;
 778}
 779
 780static const struct file_operations proc_info_file_operations = {
 781	.read		= proc_info_read,
 782	.llseek		= generic_file_llseek,
 783};
 784
 785static int proc_single_show(struct seq_file *m, void *v)
 786{
 787	struct inode *inode = m->private;
 788	struct pid_namespace *ns;
 789	struct pid *pid;
 790	struct task_struct *task;
 791	int ret;
 792
 793	ns = inode->i_sb->s_fs_info;
 794	pid = proc_pid(inode);
 795	task = get_pid_task(pid, PIDTYPE_PID);
 796	if (!task)
 797		return -ESRCH;
 798
 799	ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
 800
 801	put_task_struct(task);
 802	return ret;
 803}
 804
 805static int proc_single_open(struct inode *inode, struct file *filp)
 806{
 807	return single_open(filp, proc_single_show, inode);
 808}
 809
 810static const struct file_operations proc_single_file_operations = {
 811	.open		= proc_single_open,
 812	.read		= seq_read,
 813	.llseek		= seq_lseek,
 814	.release	= single_release,
 815};
 816
 817static int mem_open(struct inode* inode, struct file* file)
 818{
 819	file->private_data = (void*)((long)current->self_exec_id);
 820	/* OK to pass negative loff_t, we can catch out-of-range */
 821	file->f_mode |= FMODE_UNSIGNED_OFFSET;
 822	return 0;
 823}
 824
 825static ssize_t mem_read(struct file * file, char __user * buf,
 826			size_t count, loff_t *ppos)
 827{
 828	struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
 829	char *page;
 830	unsigned long src = *ppos;
 831	int ret = -ESRCH;
 832	struct mm_struct *mm;
 833
 834	if (!task)
 835		goto out_no_task;
 
 836
 837	ret = -ENOMEM;
 838	page = (char *)__get_free_page(GFP_TEMPORARY);
 839	if (!page)
 840		goto out;
 
 
 
 841
 842	mm = check_mem_permission(task);
 843	ret = PTR_ERR(mm);
 844	if (IS_ERR(mm))
 845		goto out_free;
 846
 847	ret = -EIO;
 848 
 849	if (file->private_data != (void*)((long)current->self_exec_id))
 850		goto out_put;
 851
 852	ret = 0;
 853 
 854	while (count > 0) {
 855		int this_len, retval;
 856
 857		this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
 858		retval = access_remote_vm(mm, src, page, this_len, 0);
 859		if (!retval) {
 860			if (!ret)
 861				ret = -EIO;
 862			break;
 863		}
 864
 865		if (copy_to_user(buf, page, retval)) {
 866			ret = -EFAULT;
 867			break;
 868		}
 869 
 870		ret += retval;
 871		src += retval;
 872		buf += retval;
 873		count -= retval;
 874	}
 875	*ppos = src;
 876
 877out_put:
 878	mmput(mm);
 879out_free:
 880	free_page((unsigned long) page);
 881out:
 882	put_task_struct(task);
 883out_no_task:
 884	return ret;
 885}
 886
 887static ssize_t mem_write(struct file * file, const char __user *buf,
 888			 size_t count, loff_t *ppos)
 889{
 890	int copied;
 
 
 891	char *page;
 892	struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
 893	unsigned long dst = *ppos;
 894	struct mm_struct *mm;
 895
 896	copied = -ESRCH;
 897	if (!task)
 898		goto out_no_task;
 899
 900	copied = -ENOMEM;
 901	page = (char *)__get_free_page(GFP_TEMPORARY);
 902	if (!page)
 903		goto out_task;
 904
 905	mm = check_mem_permission(task);
 906	copied = PTR_ERR(mm);
 907	if (IS_ERR(mm))
 908		goto out_free;
 909
 910	copied = -EIO;
 911	if (file->private_data != (void *)((long)current->self_exec_id))
 912		goto out_mm;
 913
 914	copied = 0;
 915	while (count > 0) {
 916		int this_len, retval;
 917
 918		this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
 919		if (copy_from_user(page, buf, this_len)) {
 920			copied = -EFAULT;
 921			break;
 922		}
 923		retval = access_remote_vm(mm, dst, page, this_len, 1);
 924		if (!retval) {
 
 925			if (!copied)
 926				copied = -EIO;
 927			break;
 928		}
 929		copied += retval;
 930		buf += retval;
 931		dst += retval;
 932		count -= retval;			
 
 
 
 
 
 
 933	}
 934	*ppos = dst;
 935
 936out_mm:
 937	mmput(mm);
 938out_free:
 939	free_page((unsigned long) page);
 940out_task:
 941	put_task_struct(task);
 942out_no_task:
 943	return copied;
 944}
 945
 
 
 
 
 
 
 
 
 
 
 
 
 946loff_t mem_lseek(struct file *file, loff_t offset, int orig)
 947{
 948	switch (orig) {
 949	case 0:
 950		file->f_pos = offset;
 951		break;
 952	case 1:
 953		file->f_pos += offset;
 954		break;
 955	default:
 956		return -EINVAL;
 957	}
 958	force_successful_syscall_return();
 959	return file->f_pos;
 960}
 961
 
 
 
 
 
 
 
 
 962static const struct file_operations proc_mem_operations = {
 963	.llseek		= mem_lseek,
 964	.read		= mem_read,
 965	.write		= mem_write,
 966	.open		= mem_open,
 
 967};
 968
 
 
 
 
 
 969static ssize_t environ_read(struct file *file, char __user *buf,
 970			size_t count, loff_t *ppos)
 971{
 972	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
 973	char *page;
 974	unsigned long src = *ppos;
 975	int ret = -ESRCH;
 976	struct mm_struct *mm;
 
 977
 978	if (!task)
 979		goto out_no_task;
 
 980
 981	ret = -ENOMEM;
 982	page = (char *)__get_free_page(GFP_TEMPORARY);
 983	if (!page)
 984		goto out;
 985
 
 
 
 986
 987	mm = mm_for_maps(task);
 988	ret = PTR_ERR(mm);
 989	if (!mm || IS_ERR(mm))
 990		goto out_free;
 991
 992	ret = 0;
 993	while (count > 0) {
 994		int this_len, retval, max_len;
 
 995
 996		this_len = mm->env_end - (mm->env_start + src);
 997
 998		if (this_len <= 0)
 999			break;
1000
1001		max_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
1002		this_len = (this_len > max_len) ? max_len : this_len;
 
 
1003
1004		retval = access_process_vm(task, (mm->env_start + src),
1005			page, this_len, 0);
1006
1007		if (retval <= 0) {
1008			ret = retval;
1009			break;
1010		}
1011
1012		if (copy_to_user(buf, page, retval)) {
1013			ret = -EFAULT;
1014			break;
1015		}
1016
1017		ret += retval;
1018		src += retval;
1019		buf += retval;
1020		count -= retval;
1021	}
1022	*ppos = src;
1023
1024	mmput(mm);
1025out_free:
 
1026	free_page((unsigned long) page);
1027out:
1028	put_task_struct(task);
1029out_no_task:
1030	return ret;
1031}
1032
1033static const struct file_operations proc_environ_operations = {
 
1034	.read		= environ_read,
1035	.llseek		= generic_file_llseek,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1036};
1037
1038static ssize_t oom_adjust_read(struct file *file, char __user *buf,
1039				size_t count, loff_t *ppos)
1040{
1041	struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
1042	char buffer[PROC_NUMBUF];
 
1043	size_t len;
1044	int oom_adjust = OOM_DISABLE;
1045	unsigned long flags;
1046
1047	if (!task)
1048		return -ESRCH;
 
 
 
 
 
 
 
 
 
1049
1050	if (lock_task_sighand(task, &flags)) {
1051		oom_adjust = task->signal->oom_adj;
1052		unlock_task_sighand(task, &flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1053	}
1054
1055	put_task_struct(task);
 
 
 
 
 
 
1056
1057	len = snprintf(buffer, sizeof(buffer), "%i\n", oom_adjust);
 
 
 
 
 
 
 
1058
1059	return simple_read_from_buffer(buf, count, ppos, buffer, len);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1060}
1061
1062static ssize_t oom_adjust_write(struct file *file, const char __user *buf,
1063				size_t count, loff_t *ppos)
 
 
 
 
 
 
 
 
 
 
1064{
1065	struct task_struct *task;
1066	char buffer[PROC_NUMBUF];
1067	int oom_adjust;
1068	unsigned long flags;
1069	int err;
1070
1071	memset(buffer, 0, sizeof(buffer));
1072	if (count > sizeof(buffer) - 1)
1073		count = sizeof(buffer) - 1;
1074	if (copy_from_user(buffer, buf, count)) {
1075		err = -EFAULT;
1076		goto out;
1077	}
1078
1079	err = kstrtoint(strstrip(buffer), 0, &oom_adjust);
1080	if (err)
1081		goto out;
1082	if ((oom_adjust < OOM_ADJUST_MIN || oom_adjust > OOM_ADJUST_MAX) &&
1083	     oom_adjust != OOM_DISABLE) {
1084		err = -EINVAL;
1085		goto out;
1086	}
1087
1088	task = get_proc_task(file->f_path.dentry->d_inode);
1089	if (!task) {
1090		err = -ESRCH;
1091		goto out;
1092	}
1093
1094	task_lock(task);
1095	if (!task->mm) {
1096		err = -EINVAL;
1097		goto err_task_lock;
1098	}
1099
1100	if (!lock_task_sighand(task, &flags)) {
1101		err = -ESRCH;
1102		goto err_task_lock;
1103	}
1104
1105	if (oom_adjust < task->signal->oom_adj && !capable(CAP_SYS_RESOURCE)) {
1106		err = -EACCES;
1107		goto err_sighand;
1108	}
1109
1110	if (oom_adjust != task->signal->oom_adj) {
1111		if (oom_adjust == OOM_DISABLE)
1112			atomic_inc(&task->mm->oom_disable_count);
1113		if (task->signal->oom_adj == OOM_DISABLE)
1114			atomic_dec(&task->mm->oom_disable_count);
1115	}
1116
1117	/*
1118	 * Warn that /proc/pid/oom_adj is deprecated, see
1119	 * Documentation/feature-removal-schedule.txt.
1120	 */
1121	printk_once(KERN_WARNING "%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
1122		  current->comm, task_pid_nr(current), task_pid_nr(task),
1123		  task_pid_nr(task));
1124	task->signal->oom_adj = oom_adjust;
1125	/*
1126	 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
1127	 * value is always attainable.
1128	 */
1129	if (task->signal->oom_adj == OOM_ADJUST_MAX)
1130		task->signal->oom_score_adj = OOM_SCORE_ADJ_MAX;
1131	else
1132		task->signal->oom_score_adj = (oom_adjust * OOM_SCORE_ADJ_MAX) /
1133								-OOM_DISABLE;
1134err_sighand:
1135	unlock_task_sighand(task, &flags);
1136err_task_lock:
1137	task_unlock(task);
1138	put_task_struct(task);
1139out:
1140	return err < 0 ? err : count;
1141}
1142
1143static const struct file_operations proc_oom_adjust_operations = {
1144	.read		= oom_adjust_read,
1145	.write		= oom_adjust_write,
1146	.llseek		= generic_file_llseek,
1147};
1148
1149static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
1150					size_t count, loff_t *ppos)
1151{
1152	struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
1153	char buffer[PROC_NUMBUF];
1154	int oom_score_adj = OOM_SCORE_ADJ_MIN;
1155	unsigned long flags;
1156	size_t len;
1157
1158	if (!task)
1159		return -ESRCH;
1160	if (lock_task_sighand(task, &flags)) {
1161		oom_score_adj = task->signal->oom_score_adj;
1162		unlock_task_sighand(task, &flags);
1163	}
1164	put_task_struct(task);
1165	len = snprintf(buffer, sizeof(buffer), "%d\n", oom_score_adj);
1166	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1167}
1168
1169static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
1170					size_t count, loff_t *ppos)
1171{
1172	struct task_struct *task;
1173	char buffer[PROC_NUMBUF];
1174	unsigned long flags;
1175	int oom_score_adj;
1176	int err;
1177
1178	memset(buffer, 0, sizeof(buffer));
1179	if (count > sizeof(buffer) - 1)
1180		count = sizeof(buffer) - 1;
1181	if (copy_from_user(buffer, buf, count)) {
1182		err = -EFAULT;
1183		goto out;
1184	}
1185
1186	err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
1187	if (err)
1188		goto out;
1189	if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1190			oom_score_adj > OOM_SCORE_ADJ_MAX) {
1191		err = -EINVAL;
1192		goto out;
1193	}
1194
1195	task = get_proc_task(file->f_path.dentry->d_inode);
1196	if (!task) {
1197		err = -ESRCH;
1198		goto out;
1199	}
1200
1201	task_lock(task);
1202	if (!task->mm) {
1203		err = -EINVAL;
1204		goto err_task_lock;
1205	}
1206
1207	if (!lock_task_sighand(task, &flags)) {
1208		err = -ESRCH;
1209		goto err_task_lock;
1210	}
1211
1212	if (oom_score_adj < task->signal->oom_score_adj_min &&
1213			!capable(CAP_SYS_RESOURCE)) {
1214		err = -EACCES;
1215		goto err_sighand;
1216	}
1217
1218	if (oom_score_adj != task->signal->oom_score_adj) {
1219		if (oom_score_adj == OOM_SCORE_ADJ_MIN)
1220			atomic_inc(&task->mm->oom_disable_count);
1221		if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MIN)
1222			atomic_dec(&task->mm->oom_disable_count);
1223	}
1224	task->signal->oom_score_adj = oom_score_adj;
1225	if (has_capability_noaudit(current, CAP_SYS_RESOURCE))
1226		task->signal->oom_score_adj_min = oom_score_adj;
1227	/*
1228	 * Scale /proc/pid/oom_adj appropriately ensuring that OOM_DISABLE is
1229	 * always attainable.
1230	 */
1231	if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MIN)
1232		task->signal->oom_adj = OOM_DISABLE;
1233	else
1234		task->signal->oom_adj = (oom_score_adj * OOM_ADJUST_MAX) /
1235							OOM_SCORE_ADJ_MAX;
1236err_sighand:
1237	unlock_task_sighand(task, &flags);
1238err_task_lock:
1239	task_unlock(task);
1240	put_task_struct(task);
1241out:
1242	return err < 0 ? err : count;
1243}
1244
1245static const struct file_operations proc_oom_score_adj_operations = {
1246	.read		= oom_score_adj_read,
1247	.write		= oom_score_adj_write,
1248	.llseek		= default_llseek,
1249};
1250
1251#ifdef CONFIG_AUDITSYSCALL
1252#define TMPBUFLEN 21
1253static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1254				  size_t count, loff_t *ppos)
1255{
1256	struct inode * inode = file->f_path.dentry->d_inode;
1257	struct task_struct *task = get_proc_task(inode);
1258	ssize_t length;
1259	char tmpbuf[TMPBUFLEN];
1260
1261	if (!task)
1262		return -ESRCH;
1263	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1264				audit_get_loginuid(task));
 
1265	put_task_struct(task);
1266	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1267}
1268
1269static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1270				   size_t count, loff_t *ppos)
1271{
1272	struct inode * inode = file->f_path.dentry->d_inode;
1273	char *page, *tmp;
1274	ssize_t length;
1275	uid_t loginuid;
1276
1277	if (!capable(CAP_AUDIT_CONTROL))
1278		return -EPERM;
1279
1280	rcu_read_lock();
1281	if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1282		rcu_read_unlock();
1283		return -EPERM;
1284	}
1285	rcu_read_unlock();
1286
1287	if (count >= PAGE_SIZE)
1288		count = PAGE_SIZE - 1;
1289
1290	if (*ppos != 0) {
1291		/* No partial writes. */
1292		return -EINVAL;
1293	}
1294	page = (char*)__get_free_page(GFP_TEMPORARY);
1295	if (!page)
1296		return -ENOMEM;
1297	length = -EFAULT;
1298	if (copy_from_user(page, buf, count))
1299		goto out_free_page;
1300
1301	page[count] = '\0';
1302	loginuid = simple_strtoul(page, &tmp, 10);
1303	if (tmp == page) {
1304		length = -EINVAL;
1305		goto out_free_page;
1306
1307	}
1308	length = audit_set_loginuid(current, loginuid);
1309	if (likely(length == 0))
1310		length = count;
1311
1312out_free_page:
1313	free_page((unsigned long) page);
1314	return length;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1315}
1316
1317static const struct file_operations proc_loginuid_operations = {
1318	.read		= proc_loginuid_read,
1319	.write		= proc_loginuid_write,
1320	.llseek		= generic_file_llseek,
1321};
1322
1323static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1324				  size_t count, loff_t *ppos)
1325{
1326	struct inode * inode = file->f_path.dentry->d_inode;
1327	struct task_struct *task = get_proc_task(inode);
1328	ssize_t length;
1329	char tmpbuf[TMPBUFLEN];
1330
1331	if (!task)
1332		return -ESRCH;
1333	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1334				audit_get_sessionid(task));
1335	put_task_struct(task);
1336	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1337}
1338
1339static const struct file_operations proc_sessionid_operations = {
1340	.read		= proc_sessionid_read,
1341	.llseek		= generic_file_llseek,
1342};
1343#endif
1344
1345#ifdef CONFIG_FAULT_INJECTION
1346static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1347				      size_t count, loff_t *ppos)
1348{
1349	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
1350	char buffer[PROC_NUMBUF];
1351	size_t len;
1352	int make_it_fail;
1353
1354	if (!task)
1355		return -ESRCH;
1356	make_it_fail = task->make_it_fail;
1357	put_task_struct(task);
1358
1359	len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1360
1361	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1362}
1363
1364static ssize_t proc_fault_inject_write(struct file * file,
1365			const char __user * buf, size_t count, loff_t *ppos)
1366{
1367	struct task_struct *task;
1368	char buffer[PROC_NUMBUF], *end;
1369	int make_it_fail;
 
1370
1371	if (!capable(CAP_SYS_RESOURCE))
1372		return -EPERM;
1373	memset(buffer, 0, sizeof(buffer));
1374	if (count > sizeof(buffer) - 1)
1375		count = sizeof(buffer) - 1;
1376	if (copy_from_user(buffer, buf, count))
1377		return -EFAULT;
1378	make_it_fail = simple_strtol(strstrip(buffer), &end, 0);
1379	if (*end)
 
 
1380		return -EINVAL;
1381	task = get_proc_task(file->f_dentry->d_inode);
 
1382	if (!task)
1383		return -ESRCH;
1384	task->make_it_fail = make_it_fail;
1385	put_task_struct(task);
1386
1387	return count;
1388}
1389
1390static const struct file_operations proc_fault_inject_operations = {
1391	.read		= proc_fault_inject_read,
1392	.write		= proc_fault_inject_write,
1393	.llseek		= generic_file_llseek,
1394};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1395#endif
1396
1397
1398#ifdef CONFIG_SCHED_DEBUG
1399/*
1400 * Print out various scheduling related per-task fields:
1401 */
1402static int sched_show(struct seq_file *m, void *v)
1403{
1404	struct inode *inode = m->private;
 
1405	struct task_struct *p;
1406
1407	p = get_proc_task(inode);
1408	if (!p)
1409		return -ESRCH;
1410	proc_sched_show_task(p, m);
1411
1412	put_task_struct(p);
1413
1414	return 0;
1415}
1416
1417static ssize_t
1418sched_write(struct file *file, const char __user *buf,
1419	    size_t count, loff_t *offset)
1420{
1421	struct inode *inode = file->f_path.dentry->d_inode;
1422	struct task_struct *p;
1423
1424	p = get_proc_task(inode);
1425	if (!p)
1426		return -ESRCH;
1427	proc_sched_set_task(p);
1428
1429	put_task_struct(p);
1430
1431	return count;
1432}
1433
1434static int sched_open(struct inode *inode, struct file *filp)
1435{
1436	return single_open(filp, sched_show, inode);
1437}
1438
1439static const struct file_operations proc_pid_sched_operations = {
1440	.open		= sched_open,
1441	.read		= seq_read,
1442	.write		= sched_write,
1443	.llseek		= seq_lseek,
1444	.release	= single_release,
1445};
1446
1447#endif
1448
1449#ifdef CONFIG_SCHED_AUTOGROUP
1450/*
1451 * Print out autogroup related information:
1452 */
1453static int sched_autogroup_show(struct seq_file *m, void *v)
1454{
1455	struct inode *inode = m->private;
1456	struct task_struct *p;
1457
1458	p = get_proc_task(inode);
1459	if (!p)
1460		return -ESRCH;
1461	proc_sched_autogroup_show_task(p, m);
1462
1463	put_task_struct(p);
1464
1465	return 0;
1466}
1467
1468static ssize_t
1469sched_autogroup_write(struct file *file, const char __user *buf,
1470	    size_t count, loff_t *offset)
1471{
1472	struct inode *inode = file->f_path.dentry->d_inode;
1473	struct task_struct *p;
1474	char buffer[PROC_NUMBUF];
1475	int nice;
1476	int err;
1477
1478	memset(buffer, 0, sizeof(buffer));
1479	if (count > sizeof(buffer) - 1)
1480		count = sizeof(buffer) - 1;
1481	if (copy_from_user(buffer, buf, count))
1482		return -EFAULT;
1483
1484	err = kstrtoint(strstrip(buffer), 0, &nice);
1485	if (err < 0)
1486		return err;
1487
1488	p = get_proc_task(inode);
1489	if (!p)
1490		return -ESRCH;
1491
1492	err = nice;
1493	err = proc_sched_autogroup_set_nice(p, &err);
1494	if (err)
1495		count = err;
1496
1497	put_task_struct(p);
1498
1499	return count;
1500}
1501
1502static int sched_autogroup_open(struct inode *inode, struct file *filp)
1503{
1504	int ret;
1505
1506	ret = single_open(filp, sched_autogroup_show, NULL);
1507	if (!ret) {
1508		struct seq_file *m = filp->private_data;
1509
1510		m->private = inode;
1511	}
1512	return ret;
1513}
1514
1515static const struct file_operations proc_pid_sched_autogroup_operations = {
1516	.open		= sched_autogroup_open,
1517	.read		= seq_read,
1518	.write		= sched_autogroup_write,
1519	.llseek		= seq_lseek,
1520	.release	= single_release,
1521};
1522
1523#endif /* CONFIG_SCHED_AUTOGROUP */
1524
1525static ssize_t comm_write(struct file *file, const char __user *buf,
1526				size_t count, loff_t *offset)
1527{
1528	struct inode *inode = file->f_path.dentry->d_inode;
1529	struct task_struct *p;
1530	char buffer[TASK_COMM_LEN];
 
1531
1532	memset(buffer, 0, sizeof(buffer));
1533	if (count > sizeof(buffer) - 1)
1534		count = sizeof(buffer) - 1;
1535	if (copy_from_user(buffer, buf, count))
1536		return -EFAULT;
1537
1538	p = get_proc_task(inode);
1539	if (!p)
1540		return -ESRCH;
1541
1542	if (same_thread_group(current, p))
1543		set_task_comm(p, buffer);
1544	else
1545		count = -EINVAL;
1546
1547	put_task_struct(p);
1548
1549	return count;
1550}
1551
1552static int comm_show(struct seq_file *m, void *v)
1553{
1554	struct inode *inode = m->private;
1555	struct task_struct *p;
1556
1557	p = get_proc_task(inode);
1558	if (!p)
1559		return -ESRCH;
1560
1561	task_lock(p);
1562	seq_printf(m, "%s\n", p->comm);
1563	task_unlock(p);
1564
1565	put_task_struct(p);
1566
1567	return 0;
1568}
1569
1570static int comm_open(struct inode *inode, struct file *filp)
1571{
1572	return single_open(filp, comm_show, inode);
1573}
1574
1575static const struct file_operations proc_pid_set_comm_operations = {
1576	.open		= comm_open,
1577	.read		= seq_read,
1578	.write		= comm_write,
1579	.llseek		= seq_lseek,
1580	.release	= single_release,
1581};
1582
1583static int proc_exe_link(struct inode *inode, struct path *exe_path)
1584{
1585	struct task_struct *task;
1586	struct mm_struct *mm;
1587	struct file *exe_file;
1588
1589	task = get_proc_task(inode);
1590	if (!task)
1591		return -ENOENT;
1592	mm = get_task_mm(task);
1593	put_task_struct(task);
1594	if (!mm)
1595		return -ENOENT;
1596	exe_file = get_mm_exe_file(mm);
1597	mmput(mm);
1598	if (exe_file) {
1599		*exe_path = exe_file->f_path;
1600		path_get(&exe_file->f_path);
1601		fput(exe_file);
1602		return 0;
1603	} else
1604		return -ENOENT;
1605}
1606
1607static void *proc_pid_follow_link(struct dentry *dentry, struct nameidata *nd)
 
 
1608{
1609	struct inode *inode = dentry->d_inode;
1610	int error = -EACCES;
1611
1612	/* We don't need a base pointer in the /proc filesystem */
1613	path_put(&nd->path);
1614
1615	/* Are we allowed to snoop on the tasks file descriptors? */
1616	if (!proc_fd_access_allowed(inode))
1617		goto out;
1618
1619	error = PROC_I(inode)->op.proc_get_link(inode, &nd->path);
 
 
 
 
 
1620out:
1621	return ERR_PTR(error);
1622}
1623
1624static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1625{
1626	char *tmp = (char*)__get_free_page(GFP_TEMPORARY);
1627	char *pathname;
1628	int len;
1629
1630	if (!tmp)
1631		return -ENOMEM;
1632
1633	pathname = d_path(path, tmp, PAGE_SIZE);
1634	len = PTR_ERR(pathname);
1635	if (IS_ERR(pathname))
1636		goto out;
1637	len = tmp + PAGE_SIZE - 1 - pathname;
1638
1639	if (len > buflen)
1640		len = buflen;
1641	if (copy_to_user(buffer, pathname, len))
1642		len = -EFAULT;
1643 out:
1644	free_page((unsigned long)tmp);
1645	return len;
1646}
1647
1648static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1649{
1650	int error = -EACCES;
1651	struct inode *inode = dentry->d_inode;
1652	struct path path;
1653
1654	/* Are we allowed to snoop on the tasks file descriptors? */
1655	if (!proc_fd_access_allowed(inode))
1656		goto out;
1657
1658	error = PROC_I(inode)->op.proc_get_link(inode, &path);
1659	if (error)
1660		goto out;
1661
1662	error = do_proc_readlink(&path, buffer, buflen);
1663	path_put(&path);
1664out:
1665	return error;
1666}
1667
1668static const struct inode_operations proc_pid_link_inode_operations = {
1669	.readlink	= proc_pid_readlink,
1670	.follow_link	= proc_pid_follow_link,
1671	.setattr	= proc_setattr,
1672};
1673
1674
1675/* building an inode */
1676
1677static int task_dumpable(struct task_struct *task)
 
1678{
1679	int dumpable = 0;
1680	struct mm_struct *mm;
 
 
 
 
1681
1682	task_lock(task);
1683	mm = task->mm;
1684	if (mm)
1685		dumpable = get_dumpable(mm);
1686	task_unlock(task);
1687	if(dumpable == 1)
1688		return 1;
1689	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1690}
1691
1692struct inode *proc_pid_make_inode(struct super_block * sb, struct task_struct *task)
 
1693{
1694	struct inode * inode;
1695	struct proc_inode *ei;
1696	const struct cred *cred;
1697
1698	/* We need a new inode */
1699
1700	inode = new_inode(sb);
1701	if (!inode)
1702		goto out;
1703
1704	/* Common stuff */
1705	ei = PROC_I(inode);
 
1706	inode->i_ino = get_next_ino();
1707	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
1708	inode->i_op = &proc_def_inode_operations;
1709
1710	/*
1711	 * grab the reference to task.
1712	 */
1713	ei->pid = get_task_pid(task, PIDTYPE_PID);
1714	if (!ei->pid)
1715		goto out_unlock;
1716
1717	if (task_dumpable(task)) {
1718		rcu_read_lock();
1719		cred = __task_cred(task);
1720		inode->i_uid = cred->euid;
1721		inode->i_gid = cred->egid;
1722		rcu_read_unlock();
1723	}
1724	security_task_to_inode(task, inode);
1725
1726out:
1727	return inode;
1728
1729out_unlock:
1730	iput(inode);
1731	return NULL;
1732}
1733
1734int pid_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
 
1735{
1736	struct inode *inode = dentry->d_inode;
 
1737	struct task_struct *task;
1738	const struct cred *cred;
1739
1740	generic_fillattr(inode, stat);
1741
 
 
1742	rcu_read_lock();
1743	stat->uid = 0;
1744	stat->gid = 0;
1745	task = pid_task(proc_pid(inode), PIDTYPE_PID);
1746	if (task) {
1747		if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1748		    task_dumpable(task)) {
1749			cred = __task_cred(task);
1750			stat->uid = cred->euid;
1751			stat->gid = cred->egid;
 
 
1752		}
 
1753	}
1754	rcu_read_unlock();
1755	return 0;
1756}
1757
1758/* dentry stuff */
1759
1760/*
1761 *	Exceptional case: normally we are not allowed to unhash a busy
1762 * directory. In this case, however, we can do it - no aliasing problems
1763 * due to the way we treat inodes.
1764 *
 
 
 
 
 
 
 
1765 * Rewrite the inode's ownerships here because the owning task may have
1766 * performed a setuid(), etc.
1767 *
1768 * Before the /proc/pid/status file was created the only way to read
1769 * the effective uid of a /process was to stat /proc/pid.  Reading
1770 * /proc/pid/status is slow enough that procps and other packages
1771 * kept stating /proc/pid.  To keep the rules in /proc simple I have
1772 * made this apply to all per process world readable and executable
1773 * directories.
1774 */
1775int pid_revalidate(struct dentry *dentry, struct nameidata *nd)
1776{
1777	struct inode *inode;
1778	struct task_struct *task;
1779	const struct cred *cred;
1780
1781	if (nd && nd->flags & LOOKUP_RCU)
1782		return -ECHILD;
1783
1784	inode = dentry->d_inode;
1785	task = get_proc_task(inode);
1786
1787	if (task) {
1788		if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1789		    task_dumpable(task)) {
1790			rcu_read_lock();
1791			cred = __task_cred(task);
1792			inode->i_uid = cred->euid;
1793			inode->i_gid = cred->egid;
1794			rcu_read_unlock();
1795		} else {
1796			inode->i_uid = 0;
1797			inode->i_gid = 0;
1798		}
1799		inode->i_mode &= ~(S_ISUID | S_ISGID);
1800		security_task_to_inode(task, inode);
1801		put_task_struct(task);
1802		return 1;
1803	}
1804	d_drop(dentry);
1805	return 0;
1806}
1807
1808static int pid_delete_dentry(const struct dentry * dentry)
 
 
 
 
 
1809{
1810	/* Is the task we represent dead?
1811	 * If so, then don't put the dentry on the lru list,
1812	 * kill it immediately.
1813	 */
1814	return !proc_pid(dentry->d_inode)->tasks[PIDTYPE_PID].first;
1815}
1816
1817const struct dentry_operations pid_dentry_operations =
1818{
1819	.d_revalidate	= pid_revalidate,
1820	.d_delete	= pid_delete_dentry,
1821};
1822
1823/* Lookups */
1824
1825/*
1826 * Fill a directory entry.
1827 *
1828 * If possible create the dcache entry and derive our inode number and
1829 * file type from dcache entry.
1830 *
1831 * Since all of the proc inode numbers are dynamically generated, the inode
1832 * numbers do not exist until the inode is cache.  This means creating the
1833 * the dcache entry in readdir is necessary to keep the inode numbers
1834 * reported by readdir in sync with the inode numbers reported
1835 * by stat.
1836 */
1837int proc_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
1838	const char *name, int len,
1839	instantiate_t instantiate, struct task_struct *task, const void *ptr)
1840{
1841	struct dentry *child, *dir = filp->f_path.dentry;
 
1842	struct inode *inode;
1843	struct qstr qname;
1844	ino_t ino = 0;
1845	unsigned type = DT_UNKNOWN;
 
1846
1847	qname.name = name;
1848	qname.len  = len;
1849	qname.hash = full_name_hash(name, len);
1850
1851	child = d_lookup(dir, &qname);
1852	if (!child) {
1853		struct dentry *new;
1854		new = d_alloc(dir, &qname);
1855		if (new) {
1856			child = instantiate(dir->d_inode, new, task, ptr);
1857			if (child)
1858				dput(new);
1859			else
1860				child = new;
1861		}
1862	}
1863	if (!child || IS_ERR(child) || !child->d_inode)
1864		goto end_instantiate;
1865	inode = child->d_inode;
1866	if (inode) {
1867		ino = inode->i_ino;
1868		type = inode->i_mode >> 12;
1869	}
 
 
 
1870	dput(child);
1871end_instantiate:
1872	if (!ino)
1873		ino = find_inode_number(dir, &qname);
1874	if (!ino)
1875		ino = 1;
1876	return filldir(dirent, name, len, filp->f_pos, ino, type);
1877}
1878
1879static unsigned name_to_int(struct dentry *dentry)
 
 
 
 
 
1880{
1881	const char *name = dentry->d_name.name;
1882	int len = dentry->d_name.len;
1883	unsigned n = 0;
1884
1885	if (len > 1 && *name == '0')
1886		goto out;
1887	while (len-- > 0) {
1888		unsigned c = *name++ - '0';
1889		if (c > 9)
1890			goto out;
1891		if (n >= (~0U-9)/10)
1892			goto out;
1893		n *= 10;
1894		n += c;
1895	}
1896	return n;
1897out:
1898	return ~0U;
1899}
1900
1901#define PROC_FDINFO_MAX 64
 
 
1902
1903static int proc_fd_info(struct inode *inode, struct path *path, char *info)
1904{
1905	struct task_struct *task = get_proc_task(inode);
1906	struct files_struct *files = NULL;
1907	struct file *file;
1908	int fd = proc_fd(inode);
 
 
1909
1910	if (task) {
1911		files = get_files_struct(task);
1912		put_task_struct(task);
1913	}
1914	if (files) {
1915		/*
1916		 * We are not taking a ref to the file structure, so we must
1917		 * hold ->file_lock.
1918		 */
1919		spin_lock(&files->file_lock);
1920		file = fcheck_files(files, fd);
1921		if (file) {
1922			unsigned int f_flags;
1923			struct fdtable *fdt;
1924
1925			fdt = files_fdtable(files);
1926			f_flags = file->f_flags & ~O_CLOEXEC;
1927			if (FD_ISSET(fd, fdt->close_on_exec))
1928				f_flags |= O_CLOEXEC;
1929
1930			if (path) {
1931				*path = file->f_path;
1932				path_get(&file->f_path);
1933			}
1934			if (info)
1935				snprintf(info, PROC_FDINFO_MAX,
1936					 "pos:\t%lli\n"
1937					 "flags:\t0%o\n",
1938					 (long long) file->f_pos,
1939					 f_flags);
1940			spin_unlock(&files->file_lock);
1941			put_files_struct(files);
1942			return 0;
1943		}
1944		spin_unlock(&files->file_lock);
1945		put_files_struct(files);
1946	}
1947	return -ENOENT;
1948}
1949
1950static int proc_fd_link(struct inode *inode, struct path *path)
1951{
1952	return proc_fd_info(inode, path, NULL);
 
1953}
1954
1955static int tid_fd_revalidate(struct dentry *dentry, struct nameidata *nd)
1956{
1957	struct inode *inode;
 
 
1958	struct task_struct *task;
1959	int fd;
1960	struct files_struct *files;
1961	const struct cred *cred;
1962
1963	if (nd && nd->flags & LOOKUP_RCU)
1964		return -ECHILD;
1965
1966	inode = dentry->d_inode;
1967	task = get_proc_task(inode);
1968	fd = proc_fd(inode);
 
1969
1970	if (task) {
1971		files = get_files_struct(task);
1972		if (files) {
1973			rcu_read_lock();
1974			if (fcheck_files(files, fd)) {
1975				rcu_read_unlock();
1976				put_files_struct(files);
1977				if (task_dumpable(task)) {
1978					rcu_read_lock();
1979					cred = __task_cred(task);
1980					inode->i_uid = cred->euid;
1981					inode->i_gid = cred->egid;
1982					rcu_read_unlock();
1983				} else {
1984					inode->i_uid = 0;
1985					inode->i_gid = 0;
1986				}
1987				inode->i_mode &= ~(S_ISUID | S_ISGID);
1988				security_task_to_inode(task, inode);
1989				put_task_struct(task);
1990				return 1;
1991			}
1992			rcu_read_unlock();
1993			put_files_struct(files);
1994		}
1995		put_task_struct(task);
1996	}
1997	d_drop(dentry);
1998	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
1999}
2000
2001static const struct dentry_operations tid_fd_dentry_operations =
2002{
2003	.d_revalidate	= tid_fd_revalidate,
2004	.d_delete	= pid_delete_dentry,
2005};
2006
2007static struct dentry *proc_fd_instantiate(struct inode *dir,
2008	struct dentry *dentry, struct task_struct *task, const void *ptr)
2009{
2010	unsigned fd = *(const unsigned *)ptr;
2011	struct file *file;
2012	struct files_struct *files;
2013 	struct inode *inode;
2014 	struct proc_inode *ei;
2015	struct dentry *error = ERR_PTR(-ENOENT);
2016
2017	inode = proc_pid_make_inode(dir->i_sb, task);
2018	if (!inode)
 
2019		goto out;
2020	ei = PROC_I(inode);
2021	ei->fd = fd;
2022	files = get_files_struct(task);
2023	if (!files)
2024		goto out_iput;
2025	inode->i_mode = S_IFLNK;
2026
2027	/*
2028	 * We are not taking a ref to the file structure, so we must
2029	 * hold ->file_lock.
2030	 */
2031	spin_lock(&files->file_lock);
2032	file = fcheck_files(files, fd);
2033	if (!file)
2034		goto out_unlock;
2035	if (file->f_mode & FMODE_READ)
2036		inode->i_mode |= S_IRUSR | S_IXUSR;
2037	if (file->f_mode & FMODE_WRITE)
2038		inode->i_mode |= S_IWUSR | S_IXUSR;
2039	spin_unlock(&files->file_lock);
2040	put_files_struct(files);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2041
2042	inode->i_op = &proc_pid_link_inode_operations;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2043	inode->i_size = 64;
2044	ei->op.proc_get_link = proc_fd_link;
2045	d_set_d_op(dentry, &tid_fd_dentry_operations);
2046	d_add(dentry, inode);
2047	/* Close the race of the process dying before we return the dentry */
2048	if (tid_fd_revalidate(dentry, NULL))
2049		error = NULL;
2050
2051 out:
2052	return error;
2053out_unlock:
2054	spin_unlock(&files->file_lock);
2055	put_files_struct(files);
2056out_iput:
2057	iput(inode);
2058	goto out;
2059}
2060
2061static struct dentry *proc_lookupfd_common(struct inode *dir,
2062					   struct dentry *dentry,
2063					   instantiate_t instantiate)
2064{
2065	struct task_struct *task = get_proc_task(dir);
2066	unsigned fd = name_to_int(dentry);
2067	struct dentry *result = ERR_PTR(-ENOENT);
 
 
2068
 
 
2069	if (!task)
2070		goto out_no_task;
2071	if (fd == ~0U)
2072		goto out;
2073
2074	result = instantiate(dir, dentry, task, &fd);
2075out:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2076	put_task_struct(task);
2077out_no_task:
2078	return result;
2079}
2080
2081static int proc_readfd_common(struct file * filp, void * dirent,
2082			      filldir_t filldir, instantiate_t instantiate)
 
 
 
 
 
 
2083{
2084	struct dentry *dentry = filp->f_path.dentry;
2085	struct inode *inode = dentry->d_inode;
2086	struct task_struct *p = get_proc_task(inode);
2087	unsigned int fd, ino;
2088	int retval;
2089	struct files_struct * files;
 
2090
2091	retval = -ENOENT;
2092	if (!p)
2093		goto out_no_task;
2094	retval = 0;
2095
2096	fd = filp->f_pos;
2097	switch (fd) {
2098		case 0:
2099			if (filldir(dirent, ".", 1, 0, inode->i_ino, DT_DIR) < 0)
2100				goto out;
2101			filp->f_pos++;
2102		case 1:
2103			ino = parent_ino(dentry);
2104			if (filldir(dirent, "..", 2, 1, ino, DT_DIR) < 0)
2105				goto out;
2106			filp->f_pos++;
2107		default:
2108			files = get_files_struct(p);
2109			if (!files)
2110				goto out;
2111			rcu_read_lock();
2112			for (fd = filp->f_pos-2;
2113			     fd < files_fdtable(files)->max_fds;
2114			     fd++, filp->f_pos++) {
2115				char name[PROC_NUMBUF];
2116				int len;
2117
2118				if (!fcheck_files(files, fd))
2119					continue;
2120				rcu_read_unlock();
2121
2122				len = snprintf(name, sizeof(name), "%d", fd);
2123				if (proc_fill_cache(filp, dirent, filldir,
2124						    name, len, instantiate,
2125						    p, &fd) < 0) {
2126					rcu_read_lock();
2127					break;
2128				}
2129				rcu_read_lock();
2130			}
2131			rcu_read_unlock();
2132			put_files_struct(files);
2133	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2134out:
2135	put_task_struct(p);
2136out_no_task:
2137	return retval;
2138}
2139
2140static struct dentry *proc_lookupfd(struct inode *dir, struct dentry *dentry,
2141				    struct nameidata *nd)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2142{
2143	return proc_lookupfd_common(dir, dentry, proc_fd_instantiate);
 
 
 
 
 
 
 
 
 
 
2144}
2145
2146static int proc_readfd(struct file *filp, void *dirent, filldir_t filldir)
2147{
2148	return proc_readfd_common(filp, dirent, filldir, proc_fd_instantiate);
 
2149}
2150
2151static ssize_t proc_fdinfo_read(struct file *file, char __user *buf,
2152				      size_t len, loff_t *ppos)
2153{
2154	char tmp[PROC_FDINFO_MAX];
2155	int err = proc_fd_info(file->f_path.dentry->d_inode, NULL, tmp);
2156	if (!err)
2157		err = simple_read_from_buffer(buf, len, ppos, tmp, strlen(tmp));
2158	return err;
 
 
 
 
 
 
2159}
2160
2161static const struct file_operations proc_fdinfo_file_operations = {
2162	.open           = nonseekable_open,
2163	.read		= proc_fdinfo_read,
2164	.llseek		= no_llseek,
2165};
 
 
 
 
 
2166
2167static const struct file_operations proc_fd_operations = {
2168	.read		= generic_read_dir,
2169	.readdir	= proc_readfd,
2170	.llseek		= default_llseek,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2171};
2172
2173/*
2174 * /proc/pid/fd needs a special permission handler so that a process can still
2175 * access /proc/self/fd after it has executed a setuid().
2176 */
2177static int proc_fd_permission(struct inode *inode, int mask)
2178{
2179	int rv = generic_permission(inode, mask);
2180	if (rv == 0)
2181		return 0;
2182	if (task_pid(current) == proc_pid(inode))
2183		rv = 0;
2184	return rv;
 
 
 
 
2185}
2186
2187/*
2188 * proc directories can do almost nothing..
2189 */
2190static const struct inode_operations proc_fd_inode_operations = {
2191	.lookup		= proc_lookupfd,
2192	.permission	= proc_fd_permission,
2193	.setattr	= proc_setattr,
2194};
 
2195
2196static struct dentry *proc_fdinfo_instantiate(struct inode *dir,
2197	struct dentry *dentry, struct task_struct *task, const void *ptr)
2198{
2199	unsigned fd = *(unsigned *)ptr;
2200 	struct inode *inode;
2201 	struct proc_inode *ei;
2202	struct dentry *error = ERR_PTR(-ENOENT);
2203
2204	inode = proc_pid_make_inode(dir->i_sb, task);
2205	if (!inode)
2206		goto out;
2207	ei = PROC_I(inode);
2208	ei->fd = fd;
2209	inode->i_mode = S_IFREG | S_IRUSR;
2210	inode->i_fop = &proc_fdinfo_file_operations;
2211	d_set_d_op(dentry, &tid_fd_dentry_operations);
2212	d_add(dentry, inode);
2213	/* Close the race of the process dying before we return the dentry */
2214	if (tid_fd_revalidate(dentry, NULL))
2215		error = NULL;
2216
2217 out:
2218	return error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2219}
2220
2221static struct dentry *proc_lookupfdinfo(struct inode *dir,
2222					struct dentry *dentry,
2223					struct nameidata *nd)
2224{
2225	return proc_lookupfd_common(dir, dentry, proc_fdinfo_instantiate);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2226}
2227
2228static int proc_readfdinfo(struct file *filp, void *dirent, filldir_t filldir)
2229{
2230	return proc_readfd_common(filp, dirent, filldir,
2231				  proc_fdinfo_instantiate);
2232}
2233
2234static const struct file_operations proc_fdinfo_operations = {
2235	.read		= generic_read_dir,
2236	.readdir	= proc_readfdinfo,
2237	.llseek		= default_llseek,
2238};
2239
2240/*
2241 * proc directories can do almost nothing..
2242 */
2243static const struct inode_operations proc_fdinfo_inode_operations = {
2244	.lookup		= proc_lookupfdinfo,
2245	.setattr	= proc_setattr,
2246};
2247
2248
2249static struct dentry *proc_pident_instantiate(struct inode *dir,
2250	struct dentry *dentry, struct task_struct *task, const void *ptr)
2251{
2252	const struct pid_entry *p = ptr;
2253	struct inode *inode;
2254	struct proc_inode *ei;
2255	struct dentry *error = ERR_PTR(-ENOENT);
2256
2257	inode = proc_pid_make_inode(dir->i_sb, task);
2258	if (!inode)
2259		goto out;
2260
2261	ei = PROC_I(inode);
2262	inode->i_mode = p->mode;
2263	if (S_ISDIR(inode->i_mode))
2264		inode->i_nlink = 2;	/* Use getattr to fix if necessary */
2265	if (p->iop)
2266		inode->i_op = p->iop;
2267	if (p->fop)
2268		inode->i_fop = p->fop;
2269	ei->op = p->op;
 
2270	d_set_d_op(dentry, &pid_dentry_operations);
2271	d_add(dentry, inode);
2272	/* Close the race of the process dying before we return the dentry */
2273	if (pid_revalidate(dentry, NULL))
2274		error = NULL;
2275out:
2276	return error;
2277}
2278
2279static struct dentry *proc_pident_lookup(struct inode *dir, 
2280					 struct dentry *dentry,
2281					 const struct pid_entry *ents,
2282					 unsigned int nents)
2283{
2284	struct dentry *error;
2285	struct task_struct *task = get_proc_task(dir);
2286	const struct pid_entry *p, *last;
2287
2288	error = ERR_PTR(-ENOENT);
2289
2290	if (!task)
2291		goto out_no_task;
2292
2293	/*
2294	 * Yes, it does not scale. And it should not. Don't add
2295	 * new entries into /proc/<tgid>/ without very good reasons.
2296	 */
2297	last = &ents[nents - 1];
2298	for (p = ents; p <= last; p++) {
2299		if (p->len != dentry->d_name.len)
2300			continue;
2301		if (!memcmp(dentry->d_name.name, p->name, p->len))
 
2302			break;
 
2303	}
2304	if (p > last)
2305		goto out;
2306
2307	error = proc_pident_instantiate(dir, dentry, task, p);
2308out:
2309	put_task_struct(task);
2310out_no_task:
2311	return error;
2312}
2313
2314static int proc_pident_fill_cache(struct file *filp, void *dirent,
2315	filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
2316{
2317	return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
2318				proc_pident_instantiate, task, p);
2319}
2320
2321static int proc_pident_readdir(struct file *filp,
2322		void *dirent, filldir_t filldir,
2323		const struct pid_entry *ents, unsigned int nents)
2324{
2325	int i;
2326	struct dentry *dentry = filp->f_path.dentry;
2327	struct inode *inode = dentry->d_inode;
2328	struct task_struct *task = get_proc_task(inode);
2329	const struct pid_entry *p, *last;
2330	ino_t ino;
2331	int ret;
2332
2333	ret = -ENOENT;
2334	if (!task)
2335		goto out_no_task;
2336
2337	ret = 0;
2338	i = filp->f_pos;
2339	switch (i) {
2340	case 0:
2341		ino = inode->i_ino;
2342		if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0)
2343			goto out;
2344		i++;
2345		filp->f_pos++;
2346		/* fall through */
2347	case 1:
2348		ino = parent_ino(dentry);
2349		if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0)
2350			goto out;
2351		i++;
2352		filp->f_pos++;
2353		/* fall through */
2354	default:
2355		i -= 2;
2356		if (i >= nents) {
2357			ret = 1;
2358			goto out;
2359		}
2360		p = ents + i;
2361		last = &ents[nents - 1];
2362		while (p <= last) {
2363			if (proc_pident_fill_cache(filp, dirent, filldir, task, p) < 0)
2364				goto out;
2365			filp->f_pos++;
2366			p++;
2367		}
2368	}
2369
2370	ret = 1;
 
 
 
 
 
2371out:
2372	put_task_struct(task);
2373out_no_task:
2374	return ret;
2375}
2376
2377#ifdef CONFIG_SECURITY
2378static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2379				  size_t count, loff_t *ppos)
2380{
2381	struct inode * inode = file->f_path.dentry->d_inode;
2382	char *p = NULL;
2383	ssize_t length;
2384	struct task_struct *task = get_proc_task(inode);
2385
2386	if (!task)
2387		return -ESRCH;
2388
2389	length = security_getprocattr(task,
2390				      (char*)file->f_path.dentry->d_name.name,
2391				      &p);
2392	put_task_struct(task);
2393	if (length > 0)
2394		length = simple_read_from_buffer(buf, count, ppos, p, length);
2395	kfree(p);
2396	return length;
2397}
2398
2399static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2400				   size_t count, loff_t *ppos)
2401{
2402	struct inode * inode = file->f_path.dentry->d_inode;
2403	char *page;
2404	ssize_t length;
2405	struct task_struct *task = get_proc_task(inode);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2406
2407	length = -ESRCH;
2408	if (!task)
2409		goto out_no_task;
2410	if (count > PAGE_SIZE)
2411		count = PAGE_SIZE;
2412
2413	/* No partial writes. */
2414	length = -EINVAL;
2415	if (*ppos != 0)
2416		goto out;
2417
2418	length = -ENOMEM;
2419	page = (char*)__get_free_page(GFP_TEMPORARY);
2420	if (!page)
2421		goto out;
2422
2423	length = -EFAULT;
2424	if (copy_from_user(page, buf, count))
2425		goto out_free;
2426
2427	/* Guard against adverse ptrace interaction */
2428	length = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
2429	if (length < 0)
2430		goto out_free;
2431
2432	length = security_setprocattr(task,
2433				      (char*)file->f_path.dentry->d_name.name,
2434				      (void*)page, count);
2435	mutex_unlock(&task->signal->cred_guard_mutex);
2436out_free:
2437	free_page((unsigned long) page);
2438out:
2439	put_task_struct(task);
2440out_no_task:
2441	return length;
2442}
2443
2444static const struct file_operations proc_pid_attr_operations = {
2445	.read		= proc_pid_attr_read,
2446	.write		= proc_pid_attr_write,
2447	.llseek		= generic_file_llseek,
2448};
2449
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2450static const struct pid_entry attr_dir_stuff[] = {
2451	REG("current",    S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2452	REG("prev",       S_IRUGO,	   proc_pid_attr_operations),
2453	REG("exec",       S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2454	REG("fscreate",   S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2455	REG("keycreate",  S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2456	REG("sockcreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
 
 
 
 
2457};
2458
2459static int proc_attr_dir_readdir(struct file * filp,
2460			     void * dirent, filldir_t filldir)
2461{
2462	return proc_pident_readdir(filp,dirent,filldir,
2463				   attr_dir_stuff,ARRAY_SIZE(attr_dir_stuff));
2464}
2465
2466static const struct file_operations proc_attr_dir_operations = {
2467	.read		= generic_read_dir,
2468	.readdir	= proc_attr_dir_readdir,
2469	.llseek		= default_llseek,
2470};
2471
2472static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2473				struct dentry *dentry, struct nameidata *nd)
2474{
2475	return proc_pident_lookup(dir, dentry,
2476				  attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
 
2477}
2478
2479static const struct inode_operations proc_attr_dir_inode_operations = {
2480	.lookup		= proc_attr_dir_lookup,
2481	.getattr	= pid_getattr,
2482	.setattr	= proc_setattr,
2483};
2484
2485#endif
2486
2487#ifdef CONFIG_ELF_CORE
2488static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2489					 size_t count, loff_t *ppos)
2490{
2491	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
2492	struct mm_struct *mm;
2493	char buffer[PROC_NUMBUF];
2494	size_t len;
2495	int ret;
2496
2497	if (!task)
2498		return -ESRCH;
2499
2500	ret = 0;
2501	mm = get_task_mm(task);
2502	if (mm) {
2503		len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2504			       ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2505				MMF_DUMP_FILTER_SHIFT));
2506		mmput(mm);
2507		ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2508	}
2509
2510	put_task_struct(task);
2511
2512	return ret;
2513}
2514
2515static ssize_t proc_coredump_filter_write(struct file *file,
2516					  const char __user *buf,
2517					  size_t count,
2518					  loff_t *ppos)
2519{
2520	struct task_struct *task;
2521	struct mm_struct *mm;
2522	char buffer[PROC_NUMBUF], *end;
2523	unsigned int val;
2524	int ret;
2525	int i;
2526	unsigned long mask;
2527
2528	ret = -EFAULT;
2529	memset(buffer, 0, sizeof(buffer));
2530	if (count > sizeof(buffer) - 1)
2531		count = sizeof(buffer) - 1;
2532	if (copy_from_user(buffer, buf, count))
2533		goto out_no_task;
2534
2535	ret = -EINVAL;
2536	val = (unsigned int)simple_strtoul(buffer, &end, 0);
2537	if (*end == '\n')
2538		end++;
2539	if (end - buffer == 0)
2540		goto out_no_task;
2541
2542	ret = -ESRCH;
2543	task = get_proc_task(file->f_dentry->d_inode);
2544	if (!task)
2545		goto out_no_task;
2546
2547	ret = end - buffer;
2548	mm = get_task_mm(task);
2549	if (!mm)
2550		goto out_no_mm;
 
2551
2552	for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2553		if (val & mask)
2554			set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2555		else
2556			clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2557	}
2558
2559	mmput(mm);
2560 out_no_mm:
2561	put_task_struct(task);
2562 out_no_task:
2563	return ret;
 
 
2564}
2565
2566static const struct file_operations proc_coredump_filter_operations = {
2567	.read		= proc_coredump_filter_read,
2568	.write		= proc_coredump_filter_write,
2569	.llseek		= generic_file_llseek,
2570};
2571#endif
2572
2573/*
2574 * /proc/self:
2575 */
2576static int proc_self_readlink(struct dentry *dentry, char __user *buffer,
2577			      int buflen)
2578{
2579	struct pid_namespace *ns = dentry->d_sb->s_fs_info;
2580	pid_t tgid = task_tgid_nr_ns(current, ns);
2581	char tmp[PROC_NUMBUF];
2582	if (!tgid)
2583		return -ENOENT;
2584	sprintf(tmp, "%d", tgid);
2585	return vfs_readlink(dentry,buffer,buflen,tmp);
2586}
2587
2588static void *proc_self_follow_link(struct dentry *dentry, struct nameidata *nd)
2589{
2590	struct pid_namespace *ns = dentry->d_sb->s_fs_info;
2591	pid_t tgid = task_tgid_nr_ns(current, ns);
2592	char *name = ERR_PTR(-ENOENT);
2593	if (tgid) {
2594		name = __getname();
2595		if (!name)
2596			name = ERR_PTR(-ENOMEM);
2597		else
2598			sprintf(name, "%d", tgid);
2599	}
2600	nd_set_link(nd, name);
2601	return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2602}
2603
2604static void proc_self_put_link(struct dentry *dentry, struct nameidata *nd,
2605				void *cookie)
2606{
2607	char *s = nd_get_link(nd);
2608	if (!IS_ERR(s))
2609		__putname(s);
2610}
2611
2612static const struct inode_operations proc_self_inode_operations = {
2613	.readlink	= proc_self_readlink,
2614	.follow_link	= proc_self_follow_link,
2615	.put_link	= proc_self_put_link,
2616};
2617
2618/*
2619 * proc base
2620 *
2621 * These are the directory entries in the root directory of /proc
2622 * that properly belong to the /proc filesystem, as they describe
2623 * describe something that is process related.
2624 */
2625static const struct pid_entry proc_base_stuff[] = {
2626	NOD("self", S_IFLNK|S_IRWXUGO,
2627		&proc_self_inode_operations, NULL, {}),
2628};
2629
2630static struct dentry *proc_base_instantiate(struct inode *dir,
2631	struct dentry *dentry, struct task_struct *task, const void *ptr)
 
2632{
2633	const struct pid_entry *p = ptr;
2634	struct inode *inode;
2635	struct proc_inode *ei;
2636	struct dentry *error;
2637
2638	/* Allocate the inode */
2639	error = ERR_PTR(-ENOMEM);
2640	inode = new_inode(dir->i_sb);
2641	if (!inode)
2642		goto out;
 
 
 
 
2643
2644	/* Initialize the inode */
2645	ei = PROC_I(inode);
2646	inode->i_ino = get_next_ino();
2647	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
2648
2649	/*
2650	 * grab the reference to the task.
2651	 */
2652	ei->pid = get_task_pid(task, PIDTYPE_PID);
2653	if (!ei->pid)
2654		goto out_iput;
2655
2656	inode->i_mode = p->mode;
2657	if (S_ISDIR(inode->i_mode))
2658		inode->i_nlink = 2;
2659	if (S_ISLNK(inode->i_mode))
2660		inode->i_size = 64;
2661	if (p->iop)
2662		inode->i_op = p->iop;
2663	if (p->fop)
2664		inode->i_fop = p->fop;
2665	ei->op = p->op;
2666	d_add(dentry, inode);
2667	error = NULL;
2668out:
2669	return error;
2670out_iput:
2671	iput(inode);
2672	goto out;
2673}
2674
2675static struct dentry *proc_base_lookup(struct inode *dir, struct dentry *dentry)
2676{
2677	struct dentry *error;
2678	struct task_struct *task = get_proc_task(dir);
2679	const struct pid_entry *p, *last;
2680
2681	error = ERR_PTR(-ENOENT);
2682
2683	if (!task)
2684		goto out_no_task;
2685
2686	/* Lookup the directory entry */
2687	last = &proc_base_stuff[ARRAY_SIZE(proc_base_stuff) - 1];
2688	for (p = proc_base_stuff; p <= last; p++) {
2689		if (p->len != dentry->d_name.len)
2690			continue;
2691		if (!memcmp(dentry->d_name.name, p->name, p->len))
2692			break;
2693	}
2694	if (p > last)
2695		goto out;
2696
2697	error = proc_base_instantiate(dir, dentry, task, p);
2698
2699out:
2700	put_task_struct(task);
2701out_no_task:
2702	return error;
2703}
2704
2705static int proc_base_fill_cache(struct file *filp, void *dirent,
2706	filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
2707{
2708	return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
2709				proc_base_instantiate, task, p);
2710}
2711
2712#ifdef CONFIG_TASK_IO_ACCOUNTING
2713static int do_io_accounting(struct task_struct *task, char *buffer, int whole)
2714{
2715	struct task_io_accounting acct = task->ioac;
2716	unsigned long flags;
2717	int result;
2718
2719	result = mutex_lock_killable(&task->signal->cred_guard_mutex);
2720	if (result)
2721		return result;
 
 
 
 
2722
2723	if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
2724		result = -EACCES;
2725		goto out_unlock;
2726	}
 
 
 
2727
2728	if (whole && lock_task_sighand(task, &flags)) {
2729		struct task_struct *t = task;
 
 
 
 
 
2730
2731		task_io_accounting_add(&acct, &task->signal->ioac);
2732		while_each_thread(task, t)
2733			task_io_accounting_add(&acct, &t->ioac);
 
 
2734
2735		unlock_task_sighand(task, &flags);
 
 
 
 
 
 
2736	}
2737	result = sprintf(buffer,
2738			"rchar: %llu\n"
2739			"wchar: %llu\n"
2740			"syscr: %llu\n"
2741			"syscw: %llu\n"
2742			"read_bytes: %llu\n"
2743			"write_bytes: %llu\n"
2744			"cancelled_write_bytes: %llu\n",
2745			(unsigned long long)acct.rchar,
2746			(unsigned long long)acct.wchar,
2747			(unsigned long long)acct.syscr,
2748			(unsigned long long)acct.syscw,
2749			(unsigned long long)acct.read_bytes,
2750			(unsigned long long)acct.write_bytes,
2751			(unsigned long long)acct.cancelled_write_bytes);
2752out_unlock:
2753	mutex_unlock(&task->signal->cred_guard_mutex);
2754	return result;
2755}
2756
2757static int proc_tid_io_accounting(struct task_struct *task, char *buffer)
2758{
2759	return do_io_accounting(task, buffer, 0);
 
 
 
 
 
 
 
 
 
 
 
 
2760}
2761
2762static int proc_tgid_io_accounting(struct task_struct *task, char *buffer)
2763{
2764	return do_io_accounting(task, buffer, 1);
 
 
 
 
2765}
2766#endif /* CONFIG_TASK_IO_ACCOUNTING */
 
 
 
 
 
 
 
 
2767
2768static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
2769				struct pid *pid, struct task_struct *task)
2770{
2771	int err = lock_trace(task);
2772	if (!err) {
2773		seq_printf(m, "%08x\n", task->personality);
2774		unlock_trace(task);
2775	}
2776	return err;
2777}
2778
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2779/*
2780 * Thread groups
2781 */
2782static const struct file_operations proc_task_operations;
2783static const struct inode_operations proc_task_inode_operations;
2784
2785static const struct pid_entry tgid_base_stuff[] = {
2786	DIR("task",       S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
2787	DIR("fd",         S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
 
2788	DIR("fdinfo",     S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
2789	DIR("ns",	  S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
2790#ifdef CONFIG_NET
2791	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
2792#endif
2793	REG("environ",    S_IRUSR, proc_environ_operations),
2794	INF("auxv",       S_IRUSR, proc_pid_auxv),
2795	ONE("status",     S_IRUGO, proc_pid_status),
2796	ONE("personality", S_IRUGO, proc_pid_personality),
2797	INF("limits",	  S_IRUGO, proc_pid_limits),
2798#ifdef CONFIG_SCHED_DEBUG
2799	REG("sched",      S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2800#endif
2801#ifdef CONFIG_SCHED_AUTOGROUP
2802	REG("autogroup",  S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
2803#endif
2804	REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
2805#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2806	INF("syscall",    S_IRUGO, proc_pid_syscall),
2807#endif
2808	INF("cmdline",    S_IRUGO, proc_pid_cmdline),
2809	ONE("stat",       S_IRUGO, proc_tgid_stat),
2810	ONE("statm",      S_IRUGO, proc_pid_statm),
2811	REG("maps",       S_IRUGO, proc_maps_operations),
2812#ifdef CONFIG_NUMA
2813	REG("numa_maps",  S_IRUGO, proc_numa_maps_operations),
2814#endif
2815	REG("mem",        S_IRUSR|S_IWUSR, proc_mem_operations),
2816	LNK("cwd",        proc_cwd_link),
2817	LNK("root",       proc_root_link),
2818	LNK("exe",        proc_exe_link),
2819	REG("mounts",     S_IRUGO, proc_mounts_operations),
2820	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
2821	REG("mountstats", S_IRUSR, proc_mountstats_operations),
2822#ifdef CONFIG_PROC_PAGE_MONITOR
2823	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
2824	REG("smaps",      S_IRUGO, proc_smaps_operations),
2825	REG("pagemap",    S_IRUGO, proc_pagemap_operations),
 
2826#endif
2827#ifdef CONFIG_SECURITY
2828	DIR("attr",       S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
2829#endif
2830#ifdef CONFIG_KALLSYMS
2831	INF("wchan",      S_IRUGO, proc_pid_wchan),
2832#endif
2833#ifdef CONFIG_STACKTRACE
2834	ONE("stack",      S_IRUGO, proc_pid_stack),
2835#endif
2836#ifdef CONFIG_SCHEDSTATS
2837	INF("schedstat",  S_IRUGO, proc_pid_schedstat),
2838#endif
2839#ifdef CONFIG_LATENCYTOP
2840	REG("latency",  S_IRUGO, proc_lstats_operations),
2841#endif
2842#ifdef CONFIG_PROC_PID_CPUSET
2843	REG("cpuset",     S_IRUGO, proc_cpuset_operations),
2844#endif
2845#ifdef CONFIG_CGROUPS
2846	REG("cgroup",  S_IRUGO, proc_cgroup_operations),
2847#endif
2848	INF("oom_score",  S_IRUGO, proc_oom_score),
2849	REG("oom_adj",    S_IRUGO|S_IWUSR, proc_oom_adjust_operations),
2850	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
2851#ifdef CONFIG_AUDITSYSCALL
2852	REG("loginuid",   S_IWUSR|S_IRUGO, proc_loginuid_operations),
2853	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
2854#endif
2855#ifdef CONFIG_FAULT_INJECTION
2856	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
 
2857#endif
2858#ifdef CONFIG_ELF_CORE
2859	REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
2860#endif
2861#ifdef CONFIG_TASK_IO_ACCOUNTING
2862	INF("io",	S_IRUSR, proc_tgid_io_accounting),
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2863#endif
2864#ifdef CONFIG_HARDWALL
2865	INF("hardwall",   S_IRUGO, proc_pid_hardwall),
2866#endif
2867};
2868
2869static int proc_tgid_base_readdir(struct file * filp,
2870			     void * dirent, filldir_t filldir)
2871{
2872	return proc_pident_readdir(filp,dirent,filldir,
2873				   tgid_base_stuff,ARRAY_SIZE(tgid_base_stuff));
2874}
2875
2876static const struct file_operations proc_tgid_base_operations = {
2877	.read		= generic_read_dir,
2878	.readdir	= proc_tgid_base_readdir,
2879	.llseek		= default_llseek,
2880};
2881
2882static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){
 
 
 
 
 
 
 
 
 
2883	return proc_pident_lookup(dir, dentry,
2884				  tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
 
2885}
2886
2887static const struct inode_operations proc_tgid_base_inode_operations = {
2888	.lookup		= proc_tgid_base_lookup,
2889	.getattr	= pid_getattr,
2890	.setattr	= proc_setattr,
 
2891};
2892
2893static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
2894{
2895	struct dentry *dentry, *leader, *dir;
2896	char buf[PROC_NUMBUF];
2897	struct qstr name;
2898
2899	name.name = buf;
2900	name.len = snprintf(buf, sizeof(buf), "%d", pid);
 
2901	dentry = d_hash_and_lookup(mnt->mnt_root, &name);
2902	if (dentry) {
2903		shrink_dcache_parent(dentry);
2904		d_drop(dentry);
2905		dput(dentry);
2906	}
2907
 
 
 
2908	name.name = buf;
2909	name.len = snprintf(buf, sizeof(buf), "%d", tgid);
2910	leader = d_hash_and_lookup(mnt->mnt_root, &name);
2911	if (!leader)
2912		goto out;
2913
2914	name.name = "task";
2915	name.len = strlen(name.name);
2916	dir = d_hash_and_lookup(leader, &name);
2917	if (!dir)
2918		goto out_put_leader;
2919
2920	name.name = buf;
2921	name.len = snprintf(buf, sizeof(buf), "%d", pid);
2922	dentry = d_hash_and_lookup(dir, &name);
2923	if (dentry) {
2924		shrink_dcache_parent(dentry);
2925		d_drop(dentry);
2926		dput(dentry);
2927	}
2928
2929	dput(dir);
2930out_put_leader:
2931	dput(leader);
2932out:
2933	return;
2934}
2935
2936/**
2937 * proc_flush_task -  Remove dcache entries for @task from the /proc dcache.
2938 * @task: task that should be flushed.
2939 *
2940 * When flushing dentries from proc, one needs to flush them from global
2941 * proc (proc_mnt) and from all the namespaces' procs this task was seen
2942 * in. This call is supposed to do all of this job.
2943 *
2944 * Looks in the dcache for
2945 * /proc/@pid
2946 * /proc/@tgid/task/@pid
2947 * if either directory is present flushes it and all of it'ts children
2948 * from the dcache.
2949 *
2950 * It is safe and reasonable to cache /proc entries for a task until
2951 * that task exits.  After that they just clog up the dcache with
2952 * useless entries, possibly causing useful dcache entries to be
2953 * flushed instead.  This routine is proved to flush those useless
2954 * dcache entries at process exit time.
2955 *
2956 * NOTE: This routine is just an optimization so it does not guarantee
2957 *       that no dcache entries will exist at process exit time it
2958 *       just makes it very unlikely that any will persist.
2959 */
2960
2961void proc_flush_task(struct task_struct *task)
2962{
2963	int i;
2964	struct pid *pid, *tgid;
2965	struct upid *upid;
2966
2967	pid = task_pid(task);
2968	tgid = task_tgid(task);
2969
2970	for (i = 0; i <= pid->level; i++) {
2971		upid = &pid->numbers[i];
2972		proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
2973					tgid->numbers[i].nr);
2974	}
2975
2976	upid = &pid->numbers[pid->level];
2977	if (upid->nr == 1)
2978		pid_ns_release_proc(upid->ns);
2979}
2980
2981static struct dentry *proc_pid_instantiate(struct inode *dir,
2982					   struct dentry * dentry,
2983					   struct task_struct *task, const void *ptr)
2984{
2985	struct dentry *error = ERR_PTR(-ENOENT);
2986	struct inode *inode;
2987
2988	inode = proc_pid_make_inode(dir->i_sb, task);
2989	if (!inode)
2990		goto out;
2991
2992	inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
2993	inode->i_op = &proc_tgid_base_inode_operations;
2994	inode->i_fop = &proc_tgid_base_operations;
2995	inode->i_flags|=S_IMMUTABLE;
2996
2997	inode->i_nlink = 2 + pid_entry_count_dirs(tgid_base_stuff,
2998		ARRAY_SIZE(tgid_base_stuff));
2999
3000	d_set_d_op(dentry, &pid_dentry_operations);
3001
3002	d_add(dentry, inode);
3003	/* Close the race of the process dying before we return the dentry */
3004	if (pid_revalidate(dentry, NULL))
3005		error = NULL;
3006out:
3007	return error;
3008}
3009
3010struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
3011{
3012	struct dentry *result;
3013	struct task_struct *task;
3014	unsigned tgid;
3015	struct pid_namespace *ns;
 
3016
3017	result = proc_base_lookup(dir, dentry);
3018	if (!IS_ERR(result) || PTR_ERR(result) != -ENOENT)
3019		goto out;
3020
3021	tgid = name_to_int(dentry);
3022	if (tgid == ~0U)
3023		goto out;
3024
3025	ns = dentry->d_sb->s_fs_info;
3026	rcu_read_lock();
3027	task = find_task_by_pid_ns(tgid, ns);
3028	if (task)
3029		get_task_struct(task);
3030	rcu_read_unlock();
3031	if (!task)
3032		goto out;
3033
3034	result = proc_pid_instantiate(dir, dentry, task, NULL);
3035	put_task_struct(task);
3036out:
3037	return result;
3038}
3039
3040/*
3041 * Find the first task with tgid >= tgid
3042 *
3043 */
3044struct tgid_iter {
3045	unsigned int tgid;
3046	struct task_struct *task;
3047};
3048static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
3049{
3050	struct pid *pid;
3051
3052	if (iter.task)
3053		put_task_struct(iter.task);
3054	rcu_read_lock();
3055retry:
3056	iter.task = NULL;
3057	pid = find_ge_pid(iter.tgid, ns);
3058	if (pid) {
3059		iter.tgid = pid_nr_ns(pid, ns);
3060		iter.task = pid_task(pid, PIDTYPE_PID);
3061		/* What we to know is if the pid we have find is the
3062		 * pid of a thread_group_leader.  Testing for task
3063		 * being a thread_group_leader is the obvious thing
3064		 * todo but there is a window when it fails, due to
3065		 * the pid transfer logic in de_thread.
3066		 *
3067		 * So we perform the straight forward test of seeing
3068		 * if the pid we have found is the pid of a thread
3069		 * group leader, and don't worry if the task we have
3070		 * found doesn't happen to be a thread group leader.
3071		 * As we don't care in the case of readdir.
3072		 */
3073		if (!iter.task || !has_group_leader_pid(iter.task)) {
3074			iter.tgid += 1;
3075			goto retry;
3076		}
3077		get_task_struct(iter.task);
3078	}
3079	rcu_read_unlock();
3080	return iter;
3081}
3082
3083#define TGID_OFFSET (FIRST_PROCESS_ENTRY + ARRAY_SIZE(proc_base_stuff))
3084
3085static int proc_pid_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
3086	struct tgid_iter iter)
3087{
3088	char name[PROC_NUMBUF];
3089	int len = snprintf(name, sizeof(name), "%d", iter.tgid);
3090	return proc_fill_cache(filp, dirent, filldir, name, len,
3091				proc_pid_instantiate, iter.task, NULL);
3092}
3093
3094/* for the /proc/ directory itself, after non-process stuff has been done */
3095int proc_pid_readdir(struct file * filp, void * dirent, filldir_t filldir)
3096{
3097	unsigned int nr;
3098	struct task_struct *reaper;
3099	struct tgid_iter iter;
3100	struct pid_namespace *ns;
 
3101
3102	if (filp->f_pos >= PID_MAX_LIMIT + TGID_OFFSET)
3103		goto out_no_task;
3104	nr = filp->f_pos - FIRST_PROCESS_ENTRY;
3105
3106	reaper = get_proc_task(filp->f_path.dentry->d_inode);
3107	if (!reaper)
3108		goto out_no_task;
3109
3110	for (; nr < ARRAY_SIZE(proc_base_stuff); filp->f_pos++, nr++) {
3111		const struct pid_entry *p = &proc_base_stuff[nr];
3112		if (proc_base_fill_cache(filp, dirent, filldir, reaper, p) < 0)
3113			goto out;
 
3114	}
3115
3116	ns = filp->f_dentry->d_sb->s_fs_info;
 
 
 
 
 
3117	iter.task = NULL;
3118	iter.tgid = filp->f_pos - TGID_OFFSET;
3119	for (iter = next_tgid(ns, iter);
3120	     iter.task;
3121	     iter.tgid += 1, iter = next_tgid(ns, iter)) {
3122		filp->f_pos = iter.tgid + TGID_OFFSET;
3123		if (proc_pid_fill_cache(filp, dirent, filldir, iter) < 0) {
 
 
 
 
 
 
 
 
 
3124			put_task_struct(iter.task);
3125			goto out;
3126		}
3127	}
3128	filp->f_pos = PID_MAX_LIMIT + TGID_OFFSET;
3129out:
3130	put_task_struct(reaper);
3131out_no_task:
3132	return 0;
3133}
3134
3135/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3136 * Tasks
3137 */
3138static const struct pid_entry tid_base_stuff[] = {
3139	DIR("fd",        S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3140	DIR("fdinfo",    S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3141	DIR("ns",	 S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
 
 
 
3142	REG("environ",   S_IRUSR, proc_environ_operations),
3143	INF("auxv",      S_IRUSR, proc_pid_auxv),
3144	ONE("status",    S_IRUGO, proc_pid_status),
3145	ONE("personality", S_IRUGO, proc_pid_personality),
3146	INF("limits",	 S_IRUGO, proc_pid_limits),
3147#ifdef CONFIG_SCHED_DEBUG
3148	REG("sched",     S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3149#endif
3150	REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
 
 
3151#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3152	INF("syscall",   S_IRUGO, proc_pid_syscall),
3153#endif
3154	INF("cmdline",   S_IRUGO, proc_pid_cmdline),
3155	ONE("stat",      S_IRUGO, proc_tid_stat),
3156	ONE("statm",     S_IRUGO, proc_pid_statm),
3157	REG("maps",      S_IRUGO, proc_maps_operations),
 
 
 
3158#ifdef CONFIG_NUMA
3159	REG("numa_maps", S_IRUGO, proc_numa_maps_operations),
3160#endif
3161	REG("mem",       S_IRUSR|S_IWUSR, proc_mem_operations),
3162	LNK("cwd",       proc_cwd_link),
3163	LNK("root",      proc_root_link),
3164	LNK("exe",       proc_exe_link),
3165	REG("mounts",    S_IRUGO, proc_mounts_operations),
3166	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
3167#ifdef CONFIG_PROC_PAGE_MONITOR
3168	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3169	REG("smaps",     S_IRUGO, proc_smaps_operations),
3170	REG("pagemap",    S_IRUGO, proc_pagemap_operations),
 
3171#endif
3172#ifdef CONFIG_SECURITY
3173	DIR("attr",      S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3174#endif
3175#ifdef CONFIG_KALLSYMS
3176	INF("wchan",     S_IRUGO, proc_pid_wchan),
3177#endif
3178#ifdef CONFIG_STACKTRACE
3179	ONE("stack",      S_IRUGO, proc_pid_stack),
3180#endif
3181#ifdef CONFIG_SCHEDSTATS
3182	INF("schedstat", S_IRUGO, proc_pid_schedstat),
3183#endif
3184#ifdef CONFIG_LATENCYTOP
3185	REG("latency",  S_IRUGO, proc_lstats_operations),
3186#endif
3187#ifdef CONFIG_PROC_PID_CPUSET
3188	REG("cpuset",    S_IRUGO, proc_cpuset_operations),
3189#endif
3190#ifdef CONFIG_CGROUPS
3191	REG("cgroup",  S_IRUGO, proc_cgroup_operations),
3192#endif
3193	INF("oom_score", S_IRUGO, proc_oom_score),
3194	REG("oom_adj",   S_IRUGO|S_IWUSR, proc_oom_adjust_operations),
3195	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3196#ifdef CONFIG_AUDITSYSCALL
3197	REG("loginuid",  S_IWUSR|S_IRUGO, proc_loginuid_operations),
3198	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
3199#endif
3200#ifdef CONFIG_FAULT_INJECTION
3201	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
 
3202#endif
3203#ifdef CONFIG_TASK_IO_ACCOUNTING
3204	INF("io",	S_IRUSR, proc_tid_io_accounting),
 
 
 
 
 
 
3205#endif
3206#ifdef CONFIG_HARDWALL
3207	INF("hardwall",   S_IRUGO, proc_pid_hardwall),
 
 
 
3208#endif
3209};
3210
3211static int proc_tid_base_readdir(struct file * filp,
3212			     void * dirent, filldir_t filldir)
3213{
3214	return proc_pident_readdir(filp,dirent,filldir,
3215				   tid_base_stuff,ARRAY_SIZE(tid_base_stuff));
3216}
3217
3218static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){
 
3219	return proc_pident_lookup(dir, dentry,
3220				  tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
 
3221}
3222
3223static const struct file_operations proc_tid_base_operations = {
3224	.read		= generic_read_dir,
3225	.readdir	= proc_tid_base_readdir,
3226	.llseek		= default_llseek,
3227};
3228
3229static const struct inode_operations proc_tid_base_inode_operations = {
3230	.lookup		= proc_tid_base_lookup,
3231	.getattr	= pid_getattr,
3232	.setattr	= proc_setattr,
3233};
3234
3235static struct dentry *proc_task_instantiate(struct inode *dir,
3236	struct dentry *dentry, struct task_struct *task, const void *ptr)
3237{
3238	struct dentry *error = ERR_PTR(-ENOENT);
3239	struct inode *inode;
3240	inode = proc_pid_make_inode(dir->i_sb, task);
3241
3242	if (!inode)
3243		goto out;
3244	inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
3245	inode->i_op = &proc_tid_base_inode_operations;
3246	inode->i_fop = &proc_tid_base_operations;
3247	inode->i_flags|=S_IMMUTABLE;
3248
3249	inode->i_nlink = 2 + pid_entry_count_dirs(tid_base_stuff,
3250		ARRAY_SIZE(tid_base_stuff));
3251
3252	d_set_d_op(dentry, &pid_dentry_operations);
3253
3254	d_add(dentry, inode);
3255	/* Close the race of the process dying before we return the dentry */
3256	if (pid_revalidate(dentry, NULL))
3257		error = NULL;
3258out:
3259	return error;
3260}
3261
3262static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
3263{
3264	struct dentry *result = ERR_PTR(-ENOENT);
3265	struct task_struct *task;
3266	struct task_struct *leader = get_proc_task(dir);
3267	unsigned tid;
3268	struct pid_namespace *ns;
 
3269
3270	if (!leader)
3271		goto out_no_task;
3272
3273	tid = name_to_int(dentry);
3274	if (tid == ~0U)
3275		goto out;
3276
3277	ns = dentry->d_sb->s_fs_info;
3278	rcu_read_lock();
3279	task = find_task_by_pid_ns(tid, ns);
3280	if (task)
3281		get_task_struct(task);
3282	rcu_read_unlock();
3283	if (!task)
3284		goto out;
3285	if (!same_thread_group(leader, task))
3286		goto out_drop_task;
3287
3288	result = proc_task_instantiate(dir, dentry, task, NULL);
3289out_drop_task:
3290	put_task_struct(task);
3291out:
3292	put_task_struct(leader);
3293out_no_task:
3294	return result;
3295}
3296
3297/*
3298 * Find the first tid of a thread group to return to user space.
3299 *
3300 * Usually this is just the thread group leader, but if the users
3301 * buffer was too small or there was a seek into the middle of the
3302 * directory we have more work todo.
3303 *
3304 * In the case of a short read we start with find_task_by_pid.
3305 *
3306 * In the case of a seek we start with the leader and walk nr
3307 * threads past it.
3308 */
3309static struct task_struct *first_tid(struct task_struct *leader,
3310		int tid, int nr, struct pid_namespace *ns)
3311{
3312	struct task_struct *pos;
 
 
 
 
3313
3314	rcu_read_lock();
3315	/* Attempt to start with the pid of a thread */
3316	if (tid && (nr > 0)) {
 
 
 
 
3317		pos = find_task_by_pid_ns(tid, ns);
3318		if (pos && (pos->group_leader == leader))
3319			goto found;
3320	}
3321
3322	/* If nr exceeds the number of threads there is nothing todo */
3323	pos = NULL;
3324	if (nr && nr >= get_nr_threads(leader))
3325		goto out;
3326
3327	/* If we haven't found our starting place yet start
3328	 * with the leader and walk nr threads forward.
3329	 */
3330	for (pos = leader; nr > 0; --nr) {
3331		pos = next_thread(pos);
3332		if (pos == leader) {
3333			pos = NULL;
3334			goto out;
3335		}
3336	}
 
3337found:
3338	get_task_struct(pos);
3339out:
3340	rcu_read_unlock();
3341	return pos;
3342}
3343
3344/*
3345 * Find the next thread in the thread list.
3346 * Return NULL if there is an error or no next thread.
3347 *
3348 * The reference to the input task_struct is released.
3349 */
3350static struct task_struct *next_tid(struct task_struct *start)
3351{
3352	struct task_struct *pos = NULL;
3353	rcu_read_lock();
3354	if (pid_alive(start)) {
3355		pos = next_thread(start);
3356		if (thread_group_leader(pos))
3357			pos = NULL;
3358		else
3359			get_task_struct(pos);
3360	}
3361	rcu_read_unlock();
3362	put_task_struct(start);
3363	return pos;
3364}
3365
3366static int proc_task_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
3367	struct task_struct *task, int tid)
3368{
3369	char name[PROC_NUMBUF];
3370	int len = snprintf(name, sizeof(name), "%d", tid);
3371	return proc_fill_cache(filp, dirent, filldir, name, len,
3372				proc_task_instantiate, task, NULL);
3373}
3374
3375/* for the /proc/TGID/task/ directories */
3376static int proc_task_readdir(struct file * filp, void * dirent, filldir_t filldir)
3377{
3378	struct dentry *dentry = filp->f_path.dentry;
3379	struct inode *inode = dentry->d_inode;
3380	struct task_struct *leader = NULL;
3381	struct task_struct *task;
3382	int retval = -ENOENT;
3383	ino_t ino;
3384	int tid;
3385	struct pid_namespace *ns;
 
3386
3387	task = get_proc_task(inode);
3388	if (!task)
3389		goto out_no_task;
3390	rcu_read_lock();
3391	if (pid_alive(task)) {
3392		leader = task->group_leader;
3393		get_task_struct(leader);
3394	}
3395	rcu_read_unlock();
3396	put_task_struct(task);
3397	if (!leader)
3398		goto out_no_task;
3399	retval = 0;
3400
3401	switch ((unsigned long)filp->f_pos) {
3402	case 0:
3403		ino = inode->i_ino;
3404		if (filldir(dirent, ".", 1, filp->f_pos, ino, DT_DIR) < 0)
3405			goto out;
3406		filp->f_pos++;
3407		/* fall through */
3408	case 1:
3409		ino = parent_ino(dentry);
3410		if (filldir(dirent, "..", 2, filp->f_pos, ino, DT_DIR) < 0)
3411			goto out;
3412		filp->f_pos++;
3413		/* fall through */
3414	}
3415
3416	/* f_version caches the tgid value that the last readdir call couldn't
3417	 * return. lseek aka telldir automagically resets f_version to 0.
3418	 */
3419	ns = filp->f_dentry->d_sb->s_fs_info;
3420	tid = (int)filp->f_version;
3421	filp->f_version = 0;
3422	for (task = first_tid(leader, tid, filp->f_pos - 2, ns);
3423	     task;
3424	     task = next_tid(task), filp->f_pos++) {
 
 
3425		tid = task_pid_nr_ns(task, ns);
3426		if (proc_task_fill_cache(filp, dirent, filldir, task, tid) < 0) {
 
 
3427			/* returning this tgid failed, save it as the first
3428			 * pid for the next readir call */
3429			filp->f_version = (u64)tid;
3430			put_task_struct(task);
3431			break;
3432		}
3433	}
3434out:
3435	put_task_struct(leader);
3436out_no_task:
3437	return retval;
3438}
3439
3440static int proc_task_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
 
3441{
3442	struct inode *inode = dentry->d_inode;
3443	struct task_struct *p = get_proc_task(inode);
3444	generic_fillattr(inode, stat);
3445
3446	if (p) {
3447		stat->nlink += get_nr_threads(p);
3448		put_task_struct(p);
3449	}
3450
3451	return 0;
3452}
3453
3454static const struct inode_operations proc_task_inode_operations = {
3455	.lookup		= proc_task_lookup,
3456	.getattr	= proc_task_getattr,
3457	.setattr	= proc_setattr,
 
3458};
3459
3460static const struct file_operations proc_task_operations = {
3461	.read		= generic_read_dir,
3462	.readdir	= proc_task_readdir,
3463	.llseek		= default_llseek,
3464};
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  linux/fs/proc/base.c
   4 *
   5 *  Copyright (C) 1991, 1992 Linus Torvalds
   6 *
   7 *  proc base directory handling functions
   8 *
   9 *  1999, Al Viro. Rewritten. Now it covers the whole per-process part.
  10 *  Instead of using magical inumbers to determine the kind of object
  11 *  we allocate and fill in-core inodes upon lookup. They don't even
  12 *  go into icache. We cache the reference to task_struct upon lookup too.
  13 *  Eventually it should become a filesystem in its own. We don't use the
  14 *  rest of procfs anymore.
  15 *
  16 *
  17 *  Changelog:
  18 *  17-Jan-2005
  19 *  Allan Bezerra
  20 *  Bruna Moreira <bruna.moreira@indt.org.br>
  21 *  Edjard Mota <edjard.mota@indt.org.br>
  22 *  Ilias Biris <ilias.biris@indt.org.br>
  23 *  Mauricio Lin <mauricio.lin@indt.org.br>
  24 *
  25 *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
  26 *
  27 *  A new process specific entry (smaps) included in /proc. It shows the
  28 *  size of rss for each memory area. The maps entry lacks information
  29 *  about physical memory size (rss) for each mapped file, i.e.,
  30 *  rss information for executables and library files.
  31 *  This additional information is useful for any tools that need to know
  32 *  about physical memory consumption for a process specific library.
  33 *
  34 *  Changelog:
  35 *  21-Feb-2005
  36 *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
  37 *  Pud inclusion in the page table walking.
  38 *
  39 *  ChangeLog:
  40 *  10-Mar-2005
  41 *  10LE Instituto Nokia de Tecnologia - INdT:
  42 *  A better way to walks through the page table as suggested by Hugh Dickins.
  43 *
  44 *  Simo Piiroinen <simo.piiroinen@nokia.com>:
  45 *  Smaps information related to shared, private, clean and dirty pages.
  46 *
  47 *  Paul Mundt <paul.mundt@nokia.com>:
  48 *  Overall revision about smaps.
  49 */
  50
  51#include <linux/uaccess.h>
  52
  53#include <linux/errno.h>
  54#include <linux/time.h>
  55#include <linux/proc_fs.h>
  56#include <linux/stat.h>
  57#include <linux/task_io_accounting_ops.h>
  58#include <linux/init.h>
  59#include <linux/capability.h>
  60#include <linux/file.h>
  61#include <linux/fdtable.h>
  62#include <linux/generic-radix-tree.h>
  63#include <linux/string.h>
  64#include <linux/seq_file.h>
  65#include <linux/namei.h>
  66#include <linux/mnt_namespace.h>
  67#include <linux/mm.h>
  68#include <linux/swap.h>
  69#include <linux/rcupdate.h>
  70#include <linux/kallsyms.h>
  71#include <linux/stacktrace.h>
  72#include <linux/resource.h>
  73#include <linux/module.h>
  74#include <linux/mount.h>
  75#include <linux/security.h>
  76#include <linux/ptrace.h>
  77#include <linux/tracehook.h>
  78#include <linux/printk.h>
  79#include <linux/cache.h>
  80#include <linux/cgroup.h>
  81#include <linux/cpuset.h>
  82#include <linux/audit.h>
  83#include <linux/poll.h>
  84#include <linux/nsproxy.h>
  85#include <linux/oom.h>
  86#include <linux/elf.h>
  87#include <linux/pid_namespace.h>
  88#include <linux/user_namespace.h>
  89#include <linux/fs_struct.h>
  90#include <linux/slab.h>
  91#include <linux/sched/autogroup.h>
  92#include <linux/sched/mm.h>
  93#include <linux/sched/coredump.h>
  94#include <linux/sched/debug.h>
  95#include <linux/sched/stat.h>
  96#include <linux/posix-timers.h>
  97#include <trace/events/oom.h>
  98#include "internal.h"
  99#include "fd.h"
 100
 101#include "../../lib/kstrtox.h"
 102
 103/* NOTE:
 104 *	Implementing inode permission operations in /proc is almost
 105 *	certainly an error.  Permission checks need to happen during
 106 *	each system call not at open time.  The reason is that most of
 107 *	what we wish to check for permissions in /proc varies at runtime.
 108 *
 109 *	The classic example of a problem is opening file descriptors
 110 *	in /proc for a task before it execs a suid executable.
 111 */
 112
 113static u8 nlink_tid __ro_after_init;
 114static u8 nlink_tgid __ro_after_init;
 115
 116struct pid_entry {
 117	const char *name;
 118	unsigned int len;
 119	umode_t mode;
 120	const struct inode_operations *iop;
 121	const struct file_operations *fop;
 122	union proc_op op;
 123};
 124
 125#define NOD(NAME, MODE, IOP, FOP, OP) {			\
 126	.name = (NAME),					\
 127	.len  = sizeof(NAME) - 1,			\
 128	.mode = MODE,					\
 129	.iop  = IOP,					\
 130	.fop  = FOP,					\
 131	.op   = OP,					\
 132}
 133
 134#define DIR(NAME, MODE, iops, fops)	\
 135	NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
 136#define LNK(NAME, get_link)					\
 137	NOD(NAME, (S_IFLNK|S_IRWXUGO),				\
 138		&proc_pid_link_inode_operations, NULL,		\
 139		{ .proc_get_link = get_link } )
 140#define REG(NAME, MODE, fops)				\
 141	NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
 
 
 
 
 142#define ONE(NAME, MODE, show)				\
 143	NOD(NAME, (S_IFREG|(MODE)),			\
 144		NULL, &proc_single_file_operations,	\
 145		{ .proc_show = show } )
 146#define ATTR(LSM, NAME, MODE)				\
 147	NOD(NAME, (S_IFREG|(MODE)),			\
 148		NULL, &proc_pid_attr_operations,	\
 149		{ .lsm = LSM })
 150
 151/*
 152 * Count the number of hardlinks for the pid_entry table, excluding the .
 153 * and .. links.
 154 */
 155static unsigned int __init pid_entry_nlink(const struct pid_entry *entries,
 156	unsigned int n)
 157{
 158	unsigned int i;
 159	unsigned int count;
 160
 161	count = 2;
 162	for (i = 0; i < n; ++i) {
 163		if (S_ISDIR(entries[i].mode))
 164			++count;
 165	}
 166
 167	return count;
 168}
 169
 170static int get_task_root(struct task_struct *task, struct path *root)
 171{
 172	int result = -ENOENT;
 173
 174	task_lock(task);
 175	if (task->fs) {
 176		get_fs_root(task->fs, root);
 177		result = 0;
 178	}
 179	task_unlock(task);
 180	return result;
 181}
 182
 183static int proc_cwd_link(struct dentry *dentry, struct path *path)
 184{
 185	struct task_struct *task = get_proc_task(d_inode(dentry));
 186	int result = -ENOENT;
 187
 188	if (task) {
 189		task_lock(task);
 190		if (task->fs) {
 191			get_fs_pwd(task->fs, path);
 192			result = 0;
 193		}
 194		task_unlock(task);
 195		put_task_struct(task);
 196	}
 197	return result;
 198}
 199
 200static int proc_root_link(struct dentry *dentry, struct path *path)
 201{
 202	struct task_struct *task = get_proc_task(d_inode(dentry));
 203	int result = -ENOENT;
 204
 205	if (task) {
 206		result = get_task_root(task, path);
 207		put_task_struct(task);
 208	}
 209	return result;
 210}
 211
 212/*
 213 * If the user used setproctitle(), we just get the string from
 214 * user space at arg_start, and limit it to a maximum of one page.
 215 */
 216static ssize_t get_mm_proctitle(struct mm_struct *mm, char __user *buf,
 217				size_t count, unsigned long pos,
 218				unsigned long arg_start)
 219{
 220	char *page;
 221	int ret, got;
 222
 223	if (pos >= PAGE_SIZE)
 224		return 0;
 
 225
 226	page = (char *)__get_free_page(GFP_KERNEL);
 227	if (!page)
 228		return -ENOMEM;
 
 
 
 229
 230	ret = 0;
 231	got = access_remote_vm(mm, arg_start, page, PAGE_SIZE, FOLL_ANON);
 232	if (got > 0) {
 233		int len = strnlen(page, got);
 234
 235		/* Include the NUL character if it was found */
 236		if (len < got)
 237			len++;
 238
 239		if (len > pos) {
 240			len -= pos;
 241			if (len > count)
 242				len = count;
 243			len -= copy_to_user(buf, page+pos, len);
 244			if (!len)
 245				len = -EFAULT;
 246			ret = len;
 247		}
 248	}
 249	free_page((unsigned long)page);
 250	return ret;
 
 
 
 
 251}
 252
 253static ssize_t get_mm_cmdline(struct mm_struct *mm, char __user *buf,
 254			      size_t count, loff_t *ppos)
 
 
 
 255{
 256	unsigned long arg_start, arg_end, env_start, env_end;
 257	unsigned long pos, len;
 258	char *page, c;
 259
 260	/* Check if process spawned far enough to have cmdline. */
 261	if (!mm->env_end)
 262		return 0;
 263
 264	spin_lock(&mm->arg_lock);
 265	arg_start = mm->arg_start;
 266	arg_end = mm->arg_end;
 267	env_start = mm->env_start;
 268	env_end = mm->env_end;
 269	spin_unlock(&mm->arg_lock);
 270
 271	if (arg_start >= arg_end)
 272		return 0;
 273
 274	/*
 275	 * We allow setproctitle() to overwrite the argument
 276	 * strings, and overflow past the original end. But
 277	 * only when it overflows into the environment area.
 278	 */
 279	if (env_start != arg_end || env_end < env_start)
 280		env_start = env_end = arg_end;
 281	len = env_end - arg_start;
 282
 283	/* We're not going to care if "*ppos" has high bits set */
 284	pos = *ppos;
 285	if (pos >= len)
 286		return 0;
 287	if (count > len - pos)
 288		count = len - pos;
 289	if (!count)
 290		return 0;
 291
 292	/*
 293	 * Magical special case: if the argv[] end byte is not
 294	 * zero, the user has overwritten it with setproctitle(3).
 295	 *
 296	 * Possible future enhancement: do this only once when
 297	 * pos is 0, and set a flag in the 'struct file'.
 298	 */
 299	if (access_remote_vm(mm, arg_end-1, &c, 1, FOLL_ANON) == 1 && c)
 300		return get_mm_proctitle(mm, buf, count, pos, arg_start);
 301
 302	/*
 303	 * For the non-setproctitle() case we limit things strictly
 304	 * to the [arg_start, arg_end[ range.
 305	 */
 306	pos += arg_start;
 307	if (pos < arg_start || pos >= arg_end)
 308		return 0;
 309	if (count > arg_end - pos)
 310		count = arg_end - pos;
 311
 312	page = (char *)__get_free_page(GFP_KERNEL);
 313	if (!page)
 314		return -ENOMEM;
 
 315
 316	len = 0;
 317	while (count) {
 318		int got;
 319		size_t size = min_t(size_t, PAGE_SIZE, count);
 320
 321		got = access_remote_vm(mm, pos, page, size, FOLL_ANON);
 322		if (got <= 0)
 323			break;
 324		got -= copy_to_user(buf, page, got);
 325		if (unlikely(!got)) {
 326			if (!len)
 327				len = -EFAULT;
 328			break;
 329		}
 330		pos += got;
 331		buf += got;
 332		len += got;
 333		count -= got;
 334	}
 
 335
 336	free_page((unsigned long)page);
 337	return len;
 338}
 339
 340static ssize_t get_task_cmdline(struct task_struct *tsk, char __user *buf,
 341				size_t count, loff_t *pos)
 342{
 343	struct mm_struct *mm;
 344	ssize_t ret;
 345
 346	mm = get_task_mm(tsk);
 347	if (!mm)
 348		return 0;
 
 
 349
 350	ret = get_mm_cmdline(mm, buf, count, pos);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 351	mmput(mm);
 352	return ret;
 
 353}
 354
 355static ssize_t proc_pid_cmdline_read(struct file *file, char __user *buf,
 356				     size_t count, loff_t *pos)
 357{
 358	struct task_struct *tsk;
 359	ssize_t ret;
 360
 361	BUG_ON(*pos < 0);
 362
 363	tsk = get_proc_task(file_inode(file));
 364	if (!tsk)
 365		return -ESRCH;
 366	ret = get_task_cmdline(tsk, buf, count, pos);
 367	put_task_struct(tsk);
 368	if (ret > 0)
 369		*pos += ret;
 370	return ret;
 
 371}
 372
 373static const struct file_operations proc_pid_cmdline_ops = {
 374	.read	= proc_pid_cmdline_read,
 375	.llseek	= generic_file_llseek,
 376};
 377
 378#ifdef CONFIG_KALLSYMS
 379/*
 380 * Provides a wchan file via kallsyms in a proper one-value-per-file format.
 381 * Returns the resolved symbol.  If that fails, simply return the address.
 382 */
 383static int proc_pid_wchan(struct seq_file *m, struct pid_namespace *ns,
 384			  struct pid *pid, struct task_struct *task)
 385{
 386	unsigned long wchan;
 387	char symname[KSYM_NAME_LEN];
 388
 389	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
 390		goto print0;
 391
 392	wchan = get_wchan(task);
 393	if (wchan && !lookup_symbol_name(wchan, symname)) {
 394		seq_puts(m, symname);
 395		return 0;
 396	}
 397
 398print0:
 399	seq_putc(m, '0');
 400	return 0;
 
 
 
 
 401}
 402#endif /* CONFIG_KALLSYMS */
 403
 404static int lock_trace(struct task_struct *task)
 405{
 406	int err = mutex_lock_killable(&task->signal->cred_guard_mutex);
 407	if (err)
 408		return err;
 409	if (!ptrace_may_access(task, PTRACE_MODE_ATTACH_FSCREDS)) {
 410		mutex_unlock(&task->signal->cred_guard_mutex);
 411		return -EPERM;
 412	}
 413	return 0;
 414}
 415
 416static void unlock_trace(struct task_struct *task)
 417{
 418	mutex_unlock(&task->signal->cred_guard_mutex);
 419}
 420
 421#ifdef CONFIG_STACKTRACE
 422
 423#define MAX_STACK_TRACE_DEPTH	64
 424
 425static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
 426			  struct pid *pid, struct task_struct *task)
 427{
 
 428	unsigned long *entries;
 429	int err;
 
 430
 431	/*
 432	 * The ability to racily run the kernel stack unwinder on a running task
 433	 * and then observe the unwinder output is scary; while it is useful for
 434	 * debugging kernel issues, it can also allow an attacker to leak kernel
 435	 * stack contents.
 436	 * Doing this in a manner that is at least safe from races would require
 437	 * some work to ensure that the remote task can not be scheduled; and
 438	 * even then, this would still expose the unwinder as local attack
 439	 * surface.
 440	 * Therefore, this interface is restricted to root.
 441	 */
 442	if (!file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN))
 443		return -EACCES;
 444
 445	entries = kmalloc_array(MAX_STACK_TRACE_DEPTH, sizeof(*entries),
 446				GFP_KERNEL);
 447	if (!entries)
 448		return -ENOMEM;
 449
 
 
 
 
 
 450	err = lock_trace(task);
 451	if (!err) {
 452		unsigned int i, nr_entries;
 453
 454		nr_entries = stack_trace_save_tsk(task, entries,
 455						  MAX_STACK_TRACE_DEPTH, 0);
 456
 457		for (i = 0; i < nr_entries; i++) {
 458			seq_printf(m, "[<0>] %pB\n", (void *)entries[i]);
 
 459		}
 460
 461		unlock_trace(task);
 462	}
 463	kfree(entries);
 464
 465	return err;
 466}
 467#endif
 468
 469#ifdef CONFIG_SCHED_INFO
 470/*
 471 * Provides /proc/PID/schedstat
 472 */
 473static int proc_pid_schedstat(struct seq_file *m, struct pid_namespace *ns,
 474			      struct pid *pid, struct task_struct *task)
 475{
 476	if (unlikely(!sched_info_on()))
 477		seq_puts(m, "0 0 0\n");
 478	else
 479		seq_printf(m, "%llu %llu %lu\n",
 480		   (unsigned long long)task->se.sum_exec_runtime,
 481		   (unsigned long long)task->sched_info.run_delay,
 482		   task->sched_info.pcount);
 483
 484	return 0;
 485}
 486#endif
 487
 488#ifdef CONFIG_LATENCYTOP
 489static int lstats_show_proc(struct seq_file *m, void *v)
 490{
 491	int i;
 492	struct inode *inode = m->private;
 493	struct task_struct *task = get_proc_task(inode);
 494
 495	if (!task)
 496		return -ESRCH;
 497	seq_puts(m, "Latency Top version : v0.1\n");
 498	for (i = 0; i < LT_SAVECOUNT; i++) {
 499		struct latency_record *lr = &task->latency_record[i];
 500		if (lr->backtrace[0]) {
 501			int q;
 502			seq_printf(m, "%i %li %li",
 503				   lr->count, lr->time, lr->max);
 504			for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
 505				unsigned long bt = lr->backtrace[q];
 506
 507				if (!bt)
 508					break;
 
 
 509				seq_printf(m, " %ps", (void *)bt);
 510			}
 511			seq_putc(m, '\n');
 512		}
 513
 514	}
 515	put_task_struct(task);
 516	return 0;
 517}
 518
 519static int lstats_open(struct inode *inode, struct file *file)
 520{
 521	return single_open(file, lstats_show_proc, inode);
 522}
 523
 524static ssize_t lstats_write(struct file *file, const char __user *buf,
 525			    size_t count, loff_t *offs)
 526{
 527	struct task_struct *task = get_proc_task(file_inode(file));
 528
 529	if (!task)
 530		return -ESRCH;
 531	clear_tsk_latency_tracing(task);
 532	put_task_struct(task);
 533
 534	return count;
 535}
 536
 537static const struct file_operations proc_lstats_operations = {
 538	.open		= lstats_open,
 539	.read		= seq_read,
 540	.write		= lstats_write,
 541	.llseek		= seq_lseek,
 542	.release	= single_release,
 543};
 544
 545#endif
 546
 547static int proc_oom_score(struct seq_file *m, struct pid_namespace *ns,
 548			  struct pid *pid, struct task_struct *task)
 549{
 550	unsigned long totalpages = totalram_pages() + total_swap_pages;
 551	unsigned long points = 0;
 552
 553	points = oom_badness(task, totalpages) * 1000 / totalpages;
 554	seq_printf(m, "%lu\n", points);
 555
 556	return 0;
 
 
 557}
 558
 559struct limit_names {
 560	const char *name;
 561	const char *unit;
 562};
 563
 564static const struct limit_names lnames[RLIM_NLIMITS] = {
 565	[RLIMIT_CPU] = {"Max cpu time", "seconds"},
 566	[RLIMIT_FSIZE] = {"Max file size", "bytes"},
 567	[RLIMIT_DATA] = {"Max data size", "bytes"},
 568	[RLIMIT_STACK] = {"Max stack size", "bytes"},
 569	[RLIMIT_CORE] = {"Max core file size", "bytes"},
 570	[RLIMIT_RSS] = {"Max resident set", "bytes"},
 571	[RLIMIT_NPROC] = {"Max processes", "processes"},
 572	[RLIMIT_NOFILE] = {"Max open files", "files"},
 573	[RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
 574	[RLIMIT_AS] = {"Max address space", "bytes"},
 575	[RLIMIT_LOCKS] = {"Max file locks", "locks"},
 576	[RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
 577	[RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
 578	[RLIMIT_NICE] = {"Max nice priority", NULL},
 579	[RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
 580	[RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
 581};
 582
 583/* Display limits for a process */
 584static int proc_pid_limits(struct seq_file *m, struct pid_namespace *ns,
 585			   struct pid *pid, struct task_struct *task)
 586{
 587	unsigned int i;
 
 588	unsigned long flags;
 
 589
 590	struct rlimit rlim[RLIM_NLIMITS];
 591
 592	if (!lock_task_sighand(task, &flags))
 593		return 0;
 594	memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
 595	unlock_task_sighand(task, &flags);
 596
 597	/*
 598	 * print the file header
 599	 */
 600	seq_puts(m, "Limit                     "
 601		"Soft Limit           "
 602		"Hard Limit           "
 603		"Units     \n");
 604
 605	for (i = 0; i < RLIM_NLIMITS; i++) {
 606		if (rlim[i].rlim_cur == RLIM_INFINITY)
 607			seq_printf(m, "%-25s %-20s ",
 608				   lnames[i].name, "unlimited");
 609		else
 610			seq_printf(m, "%-25s %-20lu ",
 611				   lnames[i].name, rlim[i].rlim_cur);
 612
 613		if (rlim[i].rlim_max == RLIM_INFINITY)
 614			seq_printf(m, "%-20s ", "unlimited");
 615		else
 616			seq_printf(m, "%-20lu ", rlim[i].rlim_max);
 
 617
 618		if (lnames[i].unit)
 619			seq_printf(m, "%-10s\n", lnames[i].unit);
 
 620		else
 621			seq_putc(m, '\n');
 622	}
 623
 624	return 0;
 625}
 626
 627#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
 628static int proc_pid_syscall(struct seq_file *m, struct pid_namespace *ns,
 629			    struct pid *pid, struct task_struct *task)
 630{
 631	struct syscall_info info;
 632	u64 *args = &info.data.args[0];
 633	int res;
 634
 635	res = lock_trace(task);
 636	if (res)
 637		return res;
 638
 639	if (task_current_syscall(task, &info))
 640		seq_puts(m, "running\n");
 641	else if (info.data.nr < 0)
 642		seq_printf(m, "%d 0x%llx 0x%llx\n",
 643			   info.data.nr, info.sp, info.data.instruction_pointer);
 644	else
 645		seq_printf(m,
 646		       "%d 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx\n",
 647		       info.data.nr,
 648		       args[0], args[1], args[2], args[3], args[4], args[5],
 649		       info.sp, info.data.instruction_pointer);
 650	unlock_trace(task);
 651
 652	return 0;
 653}
 654#endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
 655
 656/************************************************************************/
 657/*                       Here the fs part begins                        */
 658/************************************************************************/
 659
 660/* permission checks */
 661static int proc_fd_access_allowed(struct inode *inode)
 662{
 663	struct task_struct *task;
 664	int allowed = 0;
 665	/* Allow access to a task's file descriptors if it is us or we
 666	 * may use ptrace attach to the process and find out that
 667	 * information.
 668	 */
 669	task = get_proc_task(inode);
 670	if (task) {
 671		allowed = ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
 672		put_task_struct(task);
 673	}
 674	return allowed;
 675}
 676
 677int proc_setattr(struct dentry *dentry, struct iattr *attr)
 678{
 679	int error;
 680	struct inode *inode = d_inode(dentry);
 681
 682	if (attr->ia_valid & ATTR_MODE)
 683		return -EPERM;
 684
 685	error = setattr_prepare(dentry, attr);
 686	if (error)
 687		return error;
 688
 
 
 
 
 
 
 
 689	setattr_copy(inode, attr);
 690	mark_inode_dirty(inode);
 691	return 0;
 692}
 693
 694/*
 695 * May current process learn task's sched/cmdline info (for hide_pid_min=1)
 696 * or euid/egid (for hide_pid_min=2)?
 697 */
 698static bool has_pid_permissions(struct pid_namespace *pid,
 699				 struct task_struct *task,
 700				 int hide_pid_min)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 701{
 702	if (pid->hide_pid < hide_pid_min)
 703		return true;
 704	if (in_group_p(pid->pid_gid))
 705		return true;
 706	return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
 707}
 708
 
 
 
 
 
 
 
 
 709
 710static int proc_pid_permission(struct inode *inode, int mask)
 
 711{
 712	struct pid_namespace *pid = proc_pid_ns(inode);
 713	struct task_struct *task;
 714	bool has_perms;
 
 715
 716	task = get_proc_task(inode);
 717	if (!task)
 718		return -ESRCH;
 719	has_perms = has_pid_permissions(pid, task, HIDEPID_NO_ACCESS);
 720	put_task_struct(task);
 721
 722	if (!has_perms) {
 723		if (pid->hide_pid == HIDEPID_INVISIBLE) {
 724			/*
 725			 * Let's make getdents(), stat(), and open()
 726			 * consistent with each other.  If a process
 727			 * may not stat() a file, it shouldn't be seen
 728			 * in procfs at all.
 729			 */
 730			return -ENOENT;
 731		}
 732
 733		return -EPERM;
 734	}
 735	return generic_permission(inode, mask);
 736}
 737
 
 738
 
 
 
 
 
 
 
 
 739
 740static const struct inode_operations proc_def_inode_operations = {
 741	.setattr	= proc_setattr,
 
 742};
 743
 744static int proc_single_show(struct seq_file *m, void *v)
 745{
 746	struct inode *inode = m->private;
 747	struct pid_namespace *ns = proc_pid_ns(inode);
 748	struct pid *pid = proc_pid(inode);
 749	struct task_struct *task;
 750	int ret;
 751
 
 
 752	task = get_pid_task(pid, PIDTYPE_PID);
 753	if (!task)
 754		return -ESRCH;
 755
 756	ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
 757
 758	put_task_struct(task);
 759	return ret;
 760}
 761
 762static int proc_single_open(struct inode *inode, struct file *filp)
 763{
 764	return single_open(filp, proc_single_show, inode);
 765}
 766
 767static const struct file_operations proc_single_file_operations = {
 768	.open		= proc_single_open,
 769	.read		= seq_read,
 770	.llseek		= seq_lseek,
 771	.release	= single_release,
 772};
 773
 
 
 
 
 
 
 
 774
 775struct mm_struct *proc_mem_open(struct inode *inode, unsigned int mode)
 
 776{
 777	struct task_struct *task = get_proc_task(inode);
 778	struct mm_struct *mm = ERR_PTR(-ESRCH);
 
 
 
 779
 780	if (task) {
 781		mm = mm_access(task, mode | PTRACE_MODE_FSCREDS);
 782		put_task_struct(task);
 783
 784		if (!IS_ERR_OR_NULL(mm)) {
 785			/* ensure this mm_struct can't be freed */
 786			mmgrab(mm);
 787			/* but do not pin its memory */
 788			mmput(mm);
 789		}
 790	}
 791
 792	return mm;
 793}
 
 
 794
 795static int __mem_open(struct inode *inode, struct file *file, unsigned int mode)
 796{
 797	struct mm_struct *mm = proc_mem_open(inode, mode);
 
 798
 799	if (IS_ERR(mm))
 800		return PTR_ERR(mm);
 
 
 801
 802	file->private_data = mm;
 803	return 0;
 804}
 
 
 
 
 805
 806static int mem_open(struct inode *inode, struct file *file)
 807{
 808	int ret = __mem_open(inode, file, PTRACE_MODE_ATTACH);
 809
 810	/* OK to pass negative loff_t, we can catch out-of-range */
 811	file->f_mode |= FMODE_UNSIGNED_OFFSET;
 
 
 
 
 
 812
 
 
 
 
 
 
 
 813	return ret;
 814}
 815
 816static ssize_t mem_rw(struct file *file, char __user *buf,
 817			size_t count, loff_t *ppos, int write)
 818{
 819	struct mm_struct *mm = file->private_data;
 820	unsigned long addr = *ppos;
 821	ssize_t copied;
 822	char *page;
 823	unsigned int flags;
 
 
 824
 825	if (!mm)
 826		return 0;
 
 827
 828	page = (char *)__get_free_page(GFP_KERNEL);
 
 829	if (!page)
 830		return -ENOMEM;
 831
 832	copied = 0;
 833	if (!mmget_not_zero(mm))
 834		goto free;
 
 835
 836	flags = FOLL_FORCE | (write ? FOLL_WRITE : 0);
 
 
 837
 
 838	while (count > 0) {
 839		int this_len = min_t(int, count, PAGE_SIZE);
 840
 841		if (write && copy_from_user(page, buf, this_len)) {
 
 842			copied = -EFAULT;
 843			break;
 844		}
 845
 846		this_len = access_remote_vm(mm, addr, page, this_len, flags);
 847		if (!this_len) {
 848			if (!copied)
 849				copied = -EIO;
 850			break;
 851		}
 852
 853		if (!write && copy_to_user(buf, page, this_len)) {
 854			copied = -EFAULT;
 855			break;
 856		}
 857
 858		buf += this_len;
 859		addr += this_len;
 860		copied += this_len;
 861		count -= this_len;
 862	}
 863	*ppos = addr;
 864
 
 865	mmput(mm);
 866free:
 867	free_page((unsigned long) page);
 
 
 
 868	return copied;
 869}
 870
 871static ssize_t mem_read(struct file *file, char __user *buf,
 872			size_t count, loff_t *ppos)
 873{
 874	return mem_rw(file, buf, count, ppos, 0);
 875}
 876
 877static ssize_t mem_write(struct file *file, const char __user *buf,
 878			 size_t count, loff_t *ppos)
 879{
 880	return mem_rw(file, (char __user*)buf, count, ppos, 1);
 881}
 882
 883loff_t mem_lseek(struct file *file, loff_t offset, int orig)
 884{
 885	switch (orig) {
 886	case 0:
 887		file->f_pos = offset;
 888		break;
 889	case 1:
 890		file->f_pos += offset;
 891		break;
 892	default:
 893		return -EINVAL;
 894	}
 895	force_successful_syscall_return();
 896	return file->f_pos;
 897}
 898
 899static int mem_release(struct inode *inode, struct file *file)
 900{
 901	struct mm_struct *mm = file->private_data;
 902	if (mm)
 903		mmdrop(mm);
 904	return 0;
 905}
 906
 907static const struct file_operations proc_mem_operations = {
 908	.llseek		= mem_lseek,
 909	.read		= mem_read,
 910	.write		= mem_write,
 911	.open		= mem_open,
 912	.release	= mem_release,
 913};
 914
 915static int environ_open(struct inode *inode, struct file *file)
 916{
 917	return __mem_open(inode, file, PTRACE_MODE_READ);
 918}
 919
 920static ssize_t environ_read(struct file *file, char __user *buf,
 921			size_t count, loff_t *ppos)
 922{
 
 923	char *page;
 924	unsigned long src = *ppos;
 925	int ret = 0;
 926	struct mm_struct *mm = file->private_data;
 927	unsigned long env_start, env_end;
 928
 929	/* Ensure the process spawned far enough to have an environment. */
 930	if (!mm || !mm->env_end)
 931		return 0;
 932
 933	page = (char *)__get_free_page(GFP_KERNEL);
 
 934	if (!page)
 935		return -ENOMEM;
 936
 937	ret = 0;
 938	if (!mmget_not_zero(mm))
 939		goto free;
 940
 941	spin_lock(&mm->arg_lock);
 942	env_start = mm->env_start;
 943	env_end = mm->env_end;
 944	spin_unlock(&mm->arg_lock);
 945
 
 946	while (count > 0) {
 947		size_t this_len, max_len;
 948		int retval;
 949
 950		if (src >= (env_end - env_start))
 
 
 951			break;
 952
 953		this_len = env_end - (env_start + src);
 954
 955		max_len = min_t(size_t, PAGE_SIZE, count);
 956		this_len = min(max_len, this_len);
 957
 958		retval = access_remote_vm(mm, (env_start + src), page, this_len, FOLL_ANON);
 
 959
 960		if (retval <= 0) {
 961			ret = retval;
 962			break;
 963		}
 964
 965		if (copy_to_user(buf, page, retval)) {
 966			ret = -EFAULT;
 967			break;
 968		}
 969
 970		ret += retval;
 971		src += retval;
 972		buf += retval;
 973		count -= retval;
 974	}
 975	*ppos = src;
 
 976	mmput(mm);
 977
 978free:
 979	free_page((unsigned long) page);
 
 
 
 980	return ret;
 981}
 982
 983static const struct file_operations proc_environ_operations = {
 984	.open		= environ_open,
 985	.read		= environ_read,
 986	.llseek		= generic_file_llseek,
 987	.release	= mem_release,
 988};
 989
 990static int auxv_open(struct inode *inode, struct file *file)
 991{
 992	return __mem_open(inode, file, PTRACE_MODE_READ_FSCREDS);
 993}
 994
 995static ssize_t auxv_read(struct file *file, char __user *buf,
 996			size_t count, loff_t *ppos)
 997{
 998	struct mm_struct *mm = file->private_data;
 999	unsigned int nwords = 0;
1000
1001	if (!mm)
1002		return 0;
1003	do {
1004		nwords += 2;
1005	} while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
1006	return simple_read_from_buffer(buf, count, ppos, mm->saved_auxv,
1007				       nwords * sizeof(mm->saved_auxv[0]));
1008}
1009
1010static const struct file_operations proc_auxv_operations = {
1011	.open		= auxv_open,
1012	.read		= auxv_read,
1013	.llseek		= generic_file_llseek,
1014	.release	= mem_release,
1015};
1016
1017static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count,
1018			    loff_t *ppos)
1019{
1020	struct task_struct *task = get_proc_task(file_inode(file));
1021	char buffer[PROC_NUMBUF];
1022	int oom_adj = OOM_ADJUST_MIN;
1023	size_t len;
 
 
1024
1025	if (!task)
1026		return -ESRCH;
1027	if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX)
1028		oom_adj = OOM_ADJUST_MAX;
1029	else
1030		oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) /
1031			  OOM_SCORE_ADJ_MAX;
1032	put_task_struct(task);
1033	len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj);
1034	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1035}
1036
1037static int __set_oom_adj(struct file *file, int oom_adj, bool legacy)
1038{
1039	static DEFINE_MUTEX(oom_adj_mutex);
1040	struct mm_struct *mm = NULL;
1041	struct task_struct *task;
1042	int err = 0;
1043
1044	task = get_proc_task(file_inode(file));
1045	if (!task)
1046		return -ESRCH;
1047
1048	mutex_lock(&oom_adj_mutex);
1049	if (legacy) {
1050		if (oom_adj < task->signal->oom_score_adj &&
1051				!capable(CAP_SYS_RESOURCE)) {
1052			err = -EACCES;
1053			goto err_unlock;
1054		}
1055		/*
1056		 * /proc/pid/oom_adj is provided for legacy purposes, ask users to use
1057		 * /proc/pid/oom_score_adj instead.
1058		 */
1059		pr_warn_once("%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
1060			  current->comm, task_pid_nr(current), task_pid_nr(task),
1061			  task_pid_nr(task));
1062	} else {
1063		if ((short)oom_adj < task->signal->oom_score_adj_min &&
1064				!capable(CAP_SYS_RESOURCE)) {
1065			err = -EACCES;
1066			goto err_unlock;
1067		}
1068	}
1069
1070	/*
1071	 * Make sure we will check other processes sharing the mm if this is
1072	 * not vfrok which wants its own oom_score_adj.
1073	 * pin the mm so it doesn't go away and get reused after task_unlock
1074	 */
1075	if (!task->vfork_done) {
1076		struct task_struct *p = find_lock_task_mm(task);
1077
1078		if (p) {
1079			if (atomic_read(&p->mm->mm_users) > 1) {
1080				mm = p->mm;
1081				mmgrab(mm);
1082			}
1083			task_unlock(p);
1084		}
1085	}
1086
1087	task->signal->oom_score_adj = oom_adj;
1088	if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1089		task->signal->oom_score_adj_min = (short)oom_adj;
1090	trace_oom_score_adj_update(task);
1091
1092	if (mm) {
1093		struct task_struct *p;
1094
1095		rcu_read_lock();
1096		for_each_process(p) {
1097			if (same_thread_group(task, p))
1098				continue;
1099
1100			/* do not touch kernel threads or the global init */
1101			if (p->flags & PF_KTHREAD || is_global_init(p))
1102				continue;
1103
1104			task_lock(p);
1105			if (!p->vfork_done && process_shares_mm(p, mm)) {
1106				p->signal->oom_score_adj = oom_adj;
1107				if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1108					p->signal->oom_score_adj_min = (short)oom_adj;
1109			}
1110			task_unlock(p);
1111		}
1112		rcu_read_unlock();
1113		mmdrop(mm);
1114	}
1115err_unlock:
1116	mutex_unlock(&oom_adj_mutex);
1117	put_task_struct(task);
1118	return err;
1119}
1120
1121/*
1122 * /proc/pid/oom_adj exists solely for backwards compatibility with previous
1123 * kernels.  The effective policy is defined by oom_score_adj, which has a
1124 * different scale: oom_adj grew exponentially and oom_score_adj grows linearly.
1125 * Values written to oom_adj are simply mapped linearly to oom_score_adj.
1126 * Processes that become oom disabled via oom_adj will still be oom disabled
1127 * with this implementation.
1128 *
1129 * oom_adj cannot be removed since existing userspace binaries use it.
1130 */
1131static ssize_t oom_adj_write(struct file *file, const char __user *buf,
1132			     size_t count, loff_t *ppos)
1133{
 
1134	char buffer[PROC_NUMBUF];
1135	int oom_adj;
 
1136	int err;
1137
1138	memset(buffer, 0, sizeof(buffer));
1139	if (count > sizeof(buffer) - 1)
1140		count = sizeof(buffer) - 1;
1141	if (copy_from_user(buffer, buf, count)) {
1142		err = -EFAULT;
1143		goto out;
1144	}
1145
1146	err = kstrtoint(strstrip(buffer), 0, &oom_adj);
1147	if (err)
1148		goto out;
1149	if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) &&
1150	     oom_adj != OOM_DISABLE) {
1151		err = -EINVAL;
1152		goto out;
1153	}
1154
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1155	/*
1156	 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
1157	 * value is always attainable.
1158	 */
1159	if (oom_adj == OOM_ADJUST_MAX)
1160		oom_adj = OOM_SCORE_ADJ_MAX;
1161	else
1162		oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE;
1163
1164	err = __set_oom_adj(file, oom_adj, true);
 
 
 
 
1165out:
1166	return err < 0 ? err : count;
1167}
1168
1169static const struct file_operations proc_oom_adj_operations = {
1170	.read		= oom_adj_read,
1171	.write		= oom_adj_write,
1172	.llseek		= generic_file_llseek,
1173};
1174
1175static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
1176					size_t count, loff_t *ppos)
1177{
1178	struct task_struct *task = get_proc_task(file_inode(file));
1179	char buffer[PROC_NUMBUF];
1180	short oom_score_adj = OOM_SCORE_ADJ_MIN;
 
1181	size_t len;
1182
1183	if (!task)
1184		return -ESRCH;
1185	oom_score_adj = task->signal->oom_score_adj;
 
 
 
1186	put_task_struct(task);
1187	len = snprintf(buffer, sizeof(buffer), "%hd\n", oom_score_adj);
1188	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1189}
1190
1191static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
1192					size_t count, loff_t *ppos)
1193{
 
1194	char buffer[PROC_NUMBUF];
 
1195	int oom_score_adj;
1196	int err;
1197
1198	memset(buffer, 0, sizeof(buffer));
1199	if (count > sizeof(buffer) - 1)
1200		count = sizeof(buffer) - 1;
1201	if (copy_from_user(buffer, buf, count)) {
1202		err = -EFAULT;
1203		goto out;
1204	}
1205
1206	err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
1207	if (err)
1208		goto out;
1209	if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1210			oom_score_adj > OOM_SCORE_ADJ_MAX) {
1211		err = -EINVAL;
1212		goto out;
1213	}
1214
1215	err = __set_oom_adj(file, oom_score_adj, false);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1216out:
1217	return err < 0 ? err : count;
1218}
1219
1220static const struct file_operations proc_oom_score_adj_operations = {
1221	.read		= oom_score_adj_read,
1222	.write		= oom_score_adj_write,
1223	.llseek		= default_llseek,
1224};
1225
1226#ifdef CONFIG_AUDIT
1227#define TMPBUFLEN 11
1228static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1229				  size_t count, loff_t *ppos)
1230{
1231	struct inode * inode = file_inode(file);
1232	struct task_struct *task = get_proc_task(inode);
1233	ssize_t length;
1234	char tmpbuf[TMPBUFLEN];
1235
1236	if (!task)
1237		return -ESRCH;
1238	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1239			   from_kuid(file->f_cred->user_ns,
1240				     audit_get_loginuid(task)));
1241	put_task_struct(task);
1242	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1243}
1244
1245static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1246				   size_t count, loff_t *ppos)
1247{
1248	struct inode * inode = file_inode(file);
 
 
1249	uid_t loginuid;
1250	kuid_t kloginuid;
1251	int rv;
 
1252
1253	rcu_read_lock();
1254	if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1255		rcu_read_unlock();
1256		return -EPERM;
1257	}
1258	rcu_read_unlock();
1259
 
 
 
1260	if (*ppos != 0) {
1261		/* No partial writes. */
1262		return -EINVAL;
1263	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1264
1265	rv = kstrtou32_from_user(buf, count, 10, &loginuid);
1266	if (rv < 0)
1267		return rv;
1268
1269	/* is userspace tring to explicitly UNSET the loginuid? */
1270	if (loginuid == AUDIT_UID_UNSET) {
1271		kloginuid = INVALID_UID;
1272	} else {
1273		kloginuid = make_kuid(file->f_cred->user_ns, loginuid);
1274		if (!uid_valid(kloginuid))
1275			return -EINVAL;
1276	}
1277
1278	rv = audit_set_loginuid(kloginuid);
1279	if (rv < 0)
1280		return rv;
1281	return count;
1282}
1283
1284static const struct file_operations proc_loginuid_operations = {
1285	.read		= proc_loginuid_read,
1286	.write		= proc_loginuid_write,
1287	.llseek		= generic_file_llseek,
1288};
1289
1290static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1291				  size_t count, loff_t *ppos)
1292{
1293	struct inode * inode = file_inode(file);
1294	struct task_struct *task = get_proc_task(inode);
1295	ssize_t length;
1296	char tmpbuf[TMPBUFLEN];
1297
1298	if (!task)
1299		return -ESRCH;
1300	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1301				audit_get_sessionid(task));
1302	put_task_struct(task);
1303	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1304}
1305
1306static const struct file_operations proc_sessionid_operations = {
1307	.read		= proc_sessionid_read,
1308	.llseek		= generic_file_llseek,
1309};
1310#endif
1311
1312#ifdef CONFIG_FAULT_INJECTION
1313static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1314				      size_t count, loff_t *ppos)
1315{
1316	struct task_struct *task = get_proc_task(file_inode(file));
1317	char buffer[PROC_NUMBUF];
1318	size_t len;
1319	int make_it_fail;
1320
1321	if (!task)
1322		return -ESRCH;
1323	make_it_fail = task->make_it_fail;
1324	put_task_struct(task);
1325
1326	len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1327
1328	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1329}
1330
1331static ssize_t proc_fault_inject_write(struct file * file,
1332			const char __user * buf, size_t count, loff_t *ppos)
1333{
1334	struct task_struct *task;
1335	char buffer[PROC_NUMBUF];
1336	int make_it_fail;
1337	int rv;
1338
1339	if (!capable(CAP_SYS_RESOURCE))
1340		return -EPERM;
1341	memset(buffer, 0, sizeof(buffer));
1342	if (count > sizeof(buffer) - 1)
1343		count = sizeof(buffer) - 1;
1344	if (copy_from_user(buffer, buf, count))
1345		return -EFAULT;
1346	rv = kstrtoint(strstrip(buffer), 0, &make_it_fail);
1347	if (rv < 0)
1348		return rv;
1349	if (make_it_fail < 0 || make_it_fail > 1)
1350		return -EINVAL;
1351
1352	task = get_proc_task(file_inode(file));
1353	if (!task)
1354		return -ESRCH;
1355	task->make_it_fail = make_it_fail;
1356	put_task_struct(task);
1357
1358	return count;
1359}
1360
1361static const struct file_operations proc_fault_inject_operations = {
1362	.read		= proc_fault_inject_read,
1363	.write		= proc_fault_inject_write,
1364	.llseek		= generic_file_llseek,
1365};
1366
1367static ssize_t proc_fail_nth_write(struct file *file, const char __user *buf,
1368				   size_t count, loff_t *ppos)
1369{
1370	struct task_struct *task;
1371	int err;
1372	unsigned int n;
1373
1374	err = kstrtouint_from_user(buf, count, 0, &n);
1375	if (err)
1376		return err;
1377
1378	task = get_proc_task(file_inode(file));
1379	if (!task)
1380		return -ESRCH;
1381	task->fail_nth = n;
1382	put_task_struct(task);
1383
1384	return count;
1385}
1386
1387static ssize_t proc_fail_nth_read(struct file *file, char __user *buf,
1388				  size_t count, loff_t *ppos)
1389{
1390	struct task_struct *task;
1391	char numbuf[PROC_NUMBUF];
1392	ssize_t len;
1393
1394	task = get_proc_task(file_inode(file));
1395	if (!task)
1396		return -ESRCH;
1397	len = snprintf(numbuf, sizeof(numbuf), "%u\n", task->fail_nth);
1398	put_task_struct(task);
1399	return simple_read_from_buffer(buf, count, ppos, numbuf, len);
1400}
1401
1402static const struct file_operations proc_fail_nth_operations = {
1403	.read		= proc_fail_nth_read,
1404	.write		= proc_fail_nth_write,
1405};
1406#endif
1407
1408
1409#ifdef CONFIG_SCHED_DEBUG
1410/*
1411 * Print out various scheduling related per-task fields:
1412 */
1413static int sched_show(struct seq_file *m, void *v)
1414{
1415	struct inode *inode = m->private;
1416	struct pid_namespace *ns = proc_pid_ns(inode);
1417	struct task_struct *p;
1418
1419	p = get_proc_task(inode);
1420	if (!p)
1421		return -ESRCH;
1422	proc_sched_show_task(p, ns, m);
1423
1424	put_task_struct(p);
1425
1426	return 0;
1427}
1428
1429static ssize_t
1430sched_write(struct file *file, const char __user *buf,
1431	    size_t count, loff_t *offset)
1432{
1433	struct inode *inode = file_inode(file);
1434	struct task_struct *p;
1435
1436	p = get_proc_task(inode);
1437	if (!p)
1438		return -ESRCH;
1439	proc_sched_set_task(p);
1440
1441	put_task_struct(p);
1442
1443	return count;
1444}
1445
1446static int sched_open(struct inode *inode, struct file *filp)
1447{
1448	return single_open(filp, sched_show, inode);
1449}
1450
1451static const struct file_operations proc_pid_sched_operations = {
1452	.open		= sched_open,
1453	.read		= seq_read,
1454	.write		= sched_write,
1455	.llseek		= seq_lseek,
1456	.release	= single_release,
1457};
1458
1459#endif
1460
1461#ifdef CONFIG_SCHED_AUTOGROUP
1462/*
1463 * Print out autogroup related information:
1464 */
1465static int sched_autogroup_show(struct seq_file *m, void *v)
1466{
1467	struct inode *inode = m->private;
1468	struct task_struct *p;
1469
1470	p = get_proc_task(inode);
1471	if (!p)
1472		return -ESRCH;
1473	proc_sched_autogroup_show_task(p, m);
1474
1475	put_task_struct(p);
1476
1477	return 0;
1478}
1479
1480static ssize_t
1481sched_autogroup_write(struct file *file, const char __user *buf,
1482	    size_t count, loff_t *offset)
1483{
1484	struct inode *inode = file_inode(file);
1485	struct task_struct *p;
1486	char buffer[PROC_NUMBUF];
1487	int nice;
1488	int err;
1489
1490	memset(buffer, 0, sizeof(buffer));
1491	if (count > sizeof(buffer) - 1)
1492		count = sizeof(buffer) - 1;
1493	if (copy_from_user(buffer, buf, count))
1494		return -EFAULT;
1495
1496	err = kstrtoint(strstrip(buffer), 0, &nice);
1497	if (err < 0)
1498		return err;
1499
1500	p = get_proc_task(inode);
1501	if (!p)
1502		return -ESRCH;
1503
1504	err = proc_sched_autogroup_set_nice(p, nice);
 
1505	if (err)
1506		count = err;
1507
1508	put_task_struct(p);
1509
1510	return count;
1511}
1512
1513static int sched_autogroup_open(struct inode *inode, struct file *filp)
1514{
1515	int ret;
1516
1517	ret = single_open(filp, sched_autogroup_show, NULL);
1518	if (!ret) {
1519		struct seq_file *m = filp->private_data;
1520
1521		m->private = inode;
1522	}
1523	return ret;
1524}
1525
1526static const struct file_operations proc_pid_sched_autogroup_operations = {
1527	.open		= sched_autogroup_open,
1528	.read		= seq_read,
1529	.write		= sched_autogroup_write,
1530	.llseek		= seq_lseek,
1531	.release	= single_release,
1532};
1533
1534#endif /* CONFIG_SCHED_AUTOGROUP */
1535
1536static ssize_t comm_write(struct file *file, const char __user *buf,
1537				size_t count, loff_t *offset)
1538{
1539	struct inode *inode = file_inode(file);
1540	struct task_struct *p;
1541	char buffer[TASK_COMM_LEN];
1542	const size_t maxlen = sizeof(buffer) - 1;
1543
1544	memset(buffer, 0, sizeof(buffer));
1545	if (copy_from_user(buffer, buf, count > maxlen ? maxlen : count))
 
 
1546		return -EFAULT;
1547
1548	p = get_proc_task(inode);
1549	if (!p)
1550		return -ESRCH;
1551
1552	if (same_thread_group(current, p))
1553		set_task_comm(p, buffer);
1554	else
1555		count = -EINVAL;
1556
1557	put_task_struct(p);
1558
1559	return count;
1560}
1561
1562static int comm_show(struct seq_file *m, void *v)
1563{
1564	struct inode *inode = m->private;
1565	struct task_struct *p;
1566
1567	p = get_proc_task(inode);
1568	if (!p)
1569		return -ESRCH;
1570
1571	proc_task_name(m, p, false);
1572	seq_putc(m, '\n');
 
1573
1574	put_task_struct(p);
1575
1576	return 0;
1577}
1578
1579static int comm_open(struct inode *inode, struct file *filp)
1580{
1581	return single_open(filp, comm_show, inode);
1582}
1583
1584static const struct file_operations proc_pid_set_comm_operations = {
1585	.open		= comm_open,
1586	.read		= seq_read,
1587	.write		= comm_write,
1588	.llseek		= seq_lseek,
1589	.release	= single_release,
1590};
1591
1592static int proc_exe_link(struct dentry *dentry, struct path *exe_path)
1593{
1594	struct task_struct *task;
 
1595	struct file *exe_file;
1596
1597	task = get_proc_task(d_inode(dentry));
1598	if (!task)
1599		return -ENOENT;
1600	exe_file = get_task_exe_file(task);
1601	put_task_struct(task);
 
 
 
 
1602	if (exe_file) {
1603		*exe_path = exe_file->f_path;
1604		path_get(&exe_file->f_path);
1605		fput(exe_file);
1606		return 0;
1607	} else
1608		return -ENOENT;
1609}
1610
1611static const char *proc_pid_get_link(struct dentry *dentry,
1612				     struct inode *inode,
1613				     struct delayed_call *done)
1614{
1615	struct path path;
1616	int error = -EACCES;
1617
1618	if (!dentry)
1619		return ERR_PTR(-ECHILD);
1620
1621	/* Are we allowed to snoop on the tasks file descriptors? */
1622	if (!proc_fd_access_allowed(inode))
1623		goto out;
1624
1625	error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1626	if (error)
1627		goto out;
1628
1629	nd_jump_link(&path);
1630	return NULL;
1631out:
1632	return ERR_PTR(error);
1633}
1634
1635static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1636{
1637	char *tmp = (char *)__get_free_page(GFP_KERNEL);
1638	char *pathname;
1639	int len;
1640
1641	if (!tmp)
1642		return -ENOMEM;
1643
1644	pathname = d_path(path, tmp, PAGE_SIZE);
1645	len = PTR_ERR(pathname);
1646	if (IS_ERR(pathname))
1647		goto out;
1648	len = tmp + PAGE_SIZE - 1 - pathname;
1649
1650	if (len > buflen)
1651		len = buflen;
1652	if (copy_to_user(buffer, pathname, len))
1653		len = -EFAULT;
1654 out:
1655	free_page((unsigned long)tmp);
1656	return len;
1657}
1658
1659static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1660{
1661	int error = -EACCES;
1662	struct inode *inode = d_inode(dentry);
1663	struct path path;
1664
1665	/* Are we allowed to snoop on the tasks file descriptors? */
1666	if (!proc_fd_access_allowed(inode))
1667		goto out;
1668
1669	error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1670	if (error)
1671		goto out;
1672
1673	error = do_proc_readlink(&path, buffer, buflen);
1674	path_put(&path);
1675out:
1676	return error;
1677}
1678
1679const struct inode_operations proc_pid_link_inode_operations = {
1680	.readlink	= proc_pid_readlink,
1681	.get_link	= proc_pid_get_link,
1682	.setattr	= proc_setattr,
1683};
1684
1685
1686/* building an inode */
1687
1688void task_dump_owner(struct task_struct *task, umode_t mode,
1689		     kuid_t *ruid, kgid_t *rgid)
1690{
1691	/* Depending on the state of dumpable compute who should own a
1692	 * proc file for a task.
1693	 */
1694	const struct cred *cred;
1695	kuid_t uid;
1696	kgid_t gid;
1697
1698	if (unlikely(task->flags & PF_KTHREAD)) {
1699		*ruid = GLOBAL_ROOT_UID;
1700		*rgid = GLOBAL_ROOT_GID;
1701		return;
1702	}
1703
1704	/* Default to the tasks effective ownership */
1705	rcu_read_lock();
1706	cred = __task_cred(task);
1707	uid = cred->euid;
1708	gid = cred->egid;
1709	rcu_read_unlock();
1710
1711	/*
1712	 * Before the /proc/pid/status file was created the only way to read
1713	 * the effective uid of a /process was to stat /proc/pid.  Reading
1714	 * /proc/pid/status is slow enough that procps and other packages
1715	 * kept stating /proc/pid.  To keep the rules in /proc simple I have
1716	 * made this apply to all per process world readable and executable
1717	 * directories.
1718	 */
1719	if (mode != (S_IFDIR|S_IRUGO|S_IXUGO)) {
1720		struct mm_struct *mm;
1721		task_lock(task);
1722		mm = task->mm;
1723		/* Make non-dumpable tasks owned by some root */
1724		if (mm) {
1725			if (get_dumpable(mm) != SUID_DUMP_USER) {
1726				struct user_namespace *user_ns = mm->user_ns;
1727
1728				uid = make_kuid(user_ns, 0);
1729				if (!uid_valid(uid))
1730					uid = GLOBAL_ROOT_UID;
1731
1732				gid = make_kgid(user_ns, 0);
1733				if (!gid_valid(gid))
1734					gid = GLOBAL_ROOT_GID;
1735			}
1736		} else {
1737			uid = GLOBAL_ROOT_UID;
1738			gid = GLOBAL_ROOT_GID;
1739		}
1740		task_unlock(task);
1741	}
1742	*ruid = uid;
1743	*rgid = gid;
1744}
1745
1746struct inode *proc_pid_make_inode(struct super_block * sb,
1747				  struct task_struct *task, umode_t mode)
1748{
1749	struct inode * inode;
1750	struct proc_inode *ei;
 
1751
1752	/* We need a new inode */
1753
1754	inode = new_inode(sb);
1755	if (!inode)
1756		goto out;
1757
1758	/* Common stuff */
1759	ei = PROC_I(inode);
1760	inode->i_mode = mode;
1761	inode->i_ino = get_next_ino();
1762	inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode);
1763	inode->i_op = &proc_def_inode_operations;
1764
1765	/*
1766	 * grab the reference to task.
1767	 */
1768	ei->pid = get_task_pid(task, PIDTYPE_PID);
1769	if (!ei->pid)
1770		goto out_unlock;
1771
1772	task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
 
 
 
 
 
 
1773	security_task_to_inode(task, inode);
1774
1775out:
1776	return inode;
1777
1778out_unlock:
1779	iput(inode);
1780	return NULL;
1781}
1782
1783int pid_getattr(const struct path *path, struct kstat *stat,
1784		u32 request_mask, unsigned int query_flags)
1785{
1786	struct inode *inode = d_inode(path->dentry);
1787	struct pid_namespace *pid = proc_pid_ns(inode);
1788	struct task_struct *task;
 
1789
1790	generic_fillattr(inode, stat);
1791
1792	stat->uid = GLOBAL_ROOT_UID;
1793	stat->gid = GLOBAL_ROOT_GID;
1794	rcu_read_lock();
 
 
1795	task = pid_task(proc_pid(inode), PIDTYPE_PID);
1796	if (task) {
1797		if (!has_pid_permissions(pid, task, HIDEPID_INVISIBLE)) {
1798			rcu_read_unlock();
1799			/*
1800			 * This doesn't prevent learning whether PID exists,
1801			 * it only makes getattr() consistent with readdir().
1802			 */
1803			return -ENOENT;
1804		}
1805		task_dump_owner(task, inode->i_mode, &stat->uid, &stat->gid);
1806	}
1807	rcu_read_unlock();
1808	return 0;
1809}
1810
1811/* dentry stuff */
1812
1813/*
1814 * Set <pid>/... inode ownership (can change due to setuid(), etc.)
1815 */
1816void pid_update_inode(struct task_struct *task, struct inode *inode)
1817{
1818	task_dump_owner(task, inode->i_mode, &inode->i_uid, &inode->i_gid);
1819
1820	inode->i_mode &= ~(S_ISUID | S_ISGID);
1821	security_task_to_inode(task, inode);
1822}
1823
1824/*
1825 * Rewrite the inode's ownerships here because the owning task may have
1826 * performed a setuid(), etc.
1827 *
 
 
 
 
 
 
1828 */
1829static int pid_revalidate(struct dentry *dentry, unsigned int flags)
1830{
1831	struct inode *inode;
1832	struct task_struct *task;
 
1833
1834	if (flags & LOOKUP_RCU)
1835		return -ECHILD;
1836
1837	inode = d_inode(dentry);
1838	task = get_proc_task(inode);
1839
1840	if (task) {
1841		pid_update_inode(task, inode);
 
 
 
 
 
 
 
 
 
 
 
 
1842		put_task_struct(task);
1843		return 1;
1844	}
 
1845	return 0;
1846}
1847
1848static inline bool proc_inode_is_dead(struct inode *inode)
1849{
1850	return !proc_pid(inode)->tasks[PIDTYPE_PID].first;
1851}
1852
1853int pid_delete_dentry(const struct dentry *dentry)
1854{
1855	/* Is the task we represent dead?
1856	 * If so, then don't put the dentry on the lru list,
1857	 * kill it immediately.
1858	 */
1859	return proc_inode_is_dead(d_inode(dentry));
1860}
1861
1862const struct dentry_operations pid_dentry_operations =
1863{
1864	.d_revalidate	= pid_revalidate,
1865	.d_delete	= pid_delete_dentry,
1866};
1867
1868/* Lookups */
1869
1870/*
1871 * Fill a directory entry.
1872 *
1873 * If possible create the dcache entry and derive our inode number and
1874 * file type from dcache entry.
1875 *
1876 * Since all of the proc inode numbers are dynamically generated, the inode
1877 * numbers do not exist until the inode is cache.  This means creating the
1878 * the dcache entry in readdir is necessary to keep the inode numbers
1879 * reported by readdir in sync with the inode numbers reported
1880 * by stat.
1881 */
1882bool proc_fill_cache(struct file *file, struct dir_context *ctx,
1883	const char *name, unsigned int len,
1884	instantiate_t instantiate, struct task_struct *task, const void *ptr)
1885{
1886	struct dentry *child, *dir = file->f_path.dentry;
1887	struct qstr qname = QSTR_INIT(name, len);
1888	struct inode *inode;
 
 
1889	unsigned type = DT_UNKNOWN;
1890	ino_t ino = 1;
1891
1892	child = d_hash_and_lookup(dir, &qname);
 
 
 
 
1893	if (!child) {
1894		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1895		child = d_alloc_parallel(dir, &qname, &wq);
1896		if (IS_ERR(child))
1897			goto end_instantiate;
1898		if (d_in_lookup(child)) {
1899			struct dentry *res;
1900			res = instantiate(child, task, ptr);
1901			d_lookup_done(child);
1902			if (unlikely(res)) {
1903				dput(child);
1904				child = res;
1905				if (IS_ERR(child))
1906					goto end_instantiate;
1907			}
1908		}
 
1909	}
1910	inode = d_inode(child);
1911	ino = inode->i_ino;
1912	type = inode->i_mode >> 12;
1913	dput(child);
1914end_instantiate:
1915	return dir_emit(ctx, name, len, ino, type);
 
 
 
 
1916}
1917
1918/*
1919 * dname_to_vma_addr - maps a dentry name into two unsigned longs
1920 * which represent vma start and end addresses.
1921 */
1922static int dname_to_vma_addr(struct dentry *dentry,
1923			     unsigned long *start, unsigned long *end)
1924{
1925	const char *str = dentry->d_name.name;
1926	unsigned long long sval, eval;
1927	unsigned int len;
1928
1929	if (str[0] == '0' && str[1] != '-')
1930		return -EINVAL;
1931	len = _parse_integer(str, 16, &sval);
1932	if (len & KSTRTOX_OVERFLOW)
1933		return -EINVAL;
1934	if (sval != (unsigned long)sval)
1935		return -EINVAL;
1936	str += len;
 
 
 
 
 
 
 
1937
1938	if (*str != '-')
1939		return -EINVAL;
1940	str++;
1941
1942	if (str[0] == '0' && str[1])
1943		return -EINVAL;
1944	len = _parse_integer(str, 16, &eval);
1945	if (len & KSTRTOX_OVERFLOW)
1946		return -EINVAL;
1947	if (eval != (unsigned long)eval)
1948		return -EINVAL;
1949	str += len;
1950
1951	if (*str != '\0')
1952		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1953
1954	*start = sval;
1955	*end = eval;
1956
1957	return 0;
1958}
1959
1960static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags)
1961{
1962	unsigned long vm_start, vm_end;
1963	bool exact_vma_exists = false;
1964	struct mm_struct *mm = NULL;
1965	struct task_struct *task;
1966	struct inode *inode;
1967	int status = 0;
 
1968
1969	if (flags & LOOKUP_RCU)
1970		return -ECHILD;
1971
1972	inode = d_inode(dentry);
1973	task = get_proc_task(inode);
1974	if (!task)
1975		goto out_notask;
1976
1977	mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
1978	if (IS_ERR_OR_NULL(mm))
1979		goto out;
1980
1981	if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) {
1982		status = down_read_killable(&mm->mmap_sem);
1983		if (!status) {
1984			exact_vma_exists = !!find_exact_vma(mm, vm_start,
1985							    vm_end);
1986			up_read(&mm->mmap_sem);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1987		}
 
1988	}
1989
1990	mmput(mm);
1991
1992	if (exact_vma_exists) {
1993		task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
1994
1995		security_task_to_inode(task, inode);
1996		status = 1;
1997	}
1998
1999out:
2000	put_task_struct(task);
2001
2002out_notask:
2003	return status;
2004}
2005
2006static const struct dentry_operations tid_map_files_dentry_operations = {
2007	.d_revalidate	= map_files_d_revalidate,
 
2008	.d_delete	= pid_delete_dentry,
2009};
2010
2011static int map_files_get_link(struct dentry *dentry, struct path *path)
 
2012{
2013	unsigned long vm_start, vm_end;
2014	struct vm_area_struct *vma;
2015	struct task_struct *task;
2016	struct mm_struct *mm;
2017	int rc;
 
2018
2019	rc = -ENOENT;
2020	task = get_proc_task(d_inode(dentry));
2021	if (!task)
2022		goto out;
 
 
 
 
 
 
2023
2024	mm = get_task_mm(task);
2025	put_task_struct(task);
2026	if (!mm)
2027		goto out;
2028
2029	rc = dname_to_vma_addr(dentry, &vm_start, &vm_end);
2030	if (rc)
2031		goto out_mmput;
2032
2033	rc = down_read_killable(&mm->mmap_sem);
2034	if (rc)
2035		goto out_mmput;
2036
2037	rc = -ENOENT;
2038	vma = find_exact_vma(mm, vm_start, vm_end);
2039	if (vma && vma->vm_file) {
2040		*path = vma->vm_file->f_path;
2041		path_get(path);
2042		rc = 0;
2043	}
2044	up_read(&mm->mmap_sem);
2045
2046out_mmput:
2047	mmput(mm);
2048out:
2049	return rc;
2050}
2051
2052struct map_files_info {
2053	unsigned long	start;
2054	unsigned long	end;
2055	fmode_t		mode;
2056};
2057
2058/*
2059 * Only allow CAP_SYS_ADMIN to follow the links, due to concerns about how the
2060 * symlinks may be used to bypass permissions on ancestor directories in the
2061 * path to the file in question.
2062 */
2063static const char *
2064proc_map_files_get_link(struct dentry *dentry,
2065			struct inode *inode,
2066		        struct delayed_call *done)
2067{
2068	if (!capable(CAP_SYS_ADMIN))
2069		return ERR_PTR(-EPERM);
2070
2071	return proc_pid_get_link(dentry, inode, done);
2072}
2073
2074/*
2075 * Identical to proc_pid_link_inode_operations except for get_link()
2076 */
2077static const struct inode_operations proc_map_files_link_inode_operations = {
2078	.readlink	= proc_pid_readlink,
2079	.get_link	= proc_map_files_get_link,
2080	.setattr	= proc_setattr,
2081};
2082
2083static struct dentry *
2084proc_map_files_instantiate(struct dentry *dentry,
2085			   struct task_struct *task, const void *ptr)
2086{
2087	fmode_t mode = (fmode_t)(unsigned long)ptr;
2088	struct proc_inode *ei;
2089	struct inode *inode;
2090
2091	inode = proc_pid_make_inode(dentry->d_sb, task, S_IFLNK |
2092				    ((mode & FMODE_READ ) ? S_IRUSR : 0) |
2093				    ((mode & FMODE_WRITE) ? S_IWUSR : 0));
2094	if (!inode)
2095		return ERR_PTR(-ENOENT);
2096
2097	ei = PROC_I(inode);
2098	ei->op.proc_get_link = map_files_get_link;
2099
2100	inode->i_op = &proc_map_files_link_inode_operations;
2101	inode->i_size = 64;
 
 
 
 
 
 
2102
2103	d_set_d_op(dentry, &tid_map_files_dentry_operations);
2104	return d_splice_alias(inode, dentry);
 
 
 
 
 
 
2105}
2106
2107static struct dentry *proc_map_files_lookup(struct inode *dir,
2108		struct dentry *dentry, unsigned int flags)
 
2109{
2110	unsigned long vm_start, vm_end;
2111	struct vm_area_struct *vma;
2112	struct task_struct *task;
2113	struct dentry *result;
2114	struct mm_struct *mm;
2115
2116	result = ERR_PTR(-ENOENT);
2117	task = get_proc_task(dir);
2118	if (!task)
 
 
2119		goto out;
2120
2121	result = ERR_PTR(-EACCES);
2122	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2123		goto out_put_task;
2124
2125	result = ERR_PTR(-ENOENT);
2126	if (dname_to_vma_addr(dentry, &vm_start, &vm_end))
2127		goto out_put_task;
2128
2129	mm = get_task_mm(task);
2130	if (!mm)
2131		goto out_put_task;
2132
2133	result = ERR_PTR(-EINTR);
2134	if (down_read_killable(&mm->mmap_sem))
2135		goto out_put_mm;
2136
2137	result = ERR_PTR(-ENOENT);
2138	vma = find_exact_vma(mm, vm_start, vm_end);
2139	if (!vma)
2140		goto out_no_vma;
2141
2142	if (vma->vm_file)
2143		result = proc_map_files_instantiate(dentry, task,
2144				(void *)(unsigned long)vma->vm_file->f_mode);
2145
2146out_no_vma:
2147	up_read(&mm->mmap_sem);
2148out_put_mm:
2149	mmput(mm);
2150out_put_task:
2151	put_task_struct(task);
2152out:
2153	return result;
2154}
2155
2156static const struct inode_operations proc_map_files_inode_operations = {
2157	.lookup		= proc_map_files_lookup,
2158	.permission	= proc_fd_permission,
2159	.setattr	= proc_setattr,
2160};
2161
2162static int
2163proc_map_files_readdir(struct file *file, struct dir_context *ctx)
2164{
2165	struct vm_area_struct *vma;
2166	struct task_struct *task;
2167	struct mm_struct *mm;
2168	unsigned long nr_files, pos, i;
2169	GENRADIX(struct map_files_info) fa;
2170	struct map_files_info *p;
2171	int ret;
2172
2173	genradix_init(&fa);
 
 
 
2174
2175	ret = -ENOENT;
2176	task = get_proc_task(file_inode(file));
2177	if (!task)
2178		goto out;
2179
2180	ret = -EACCES;
2181	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2182		goto out_put_task;
2183
2184	ret = 0;
2185	if (!dir_emit_dots(file, ctx))
2186		goto out_put_task;
2187
2188	mm = get_task_mm(task);
2189	if (!mm)
2190		goto out_put_task;
2191
2192	ret = down_read_killable(&mm->mmap_sem);
2193	if (ret) {
2194		mmput(mm);
2195		goto out_put_task;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2196	}
2197
2198	nr_files = 0;
2199
2200	/*
2201	 * We need two passes here:
2202	 *
2203	 *  1) Collect vmas of mapped files with mmap_sem taken
2204	 *  2) Release mmap_sem and instantiate entries
2205	 *
2206	 * otherwise we get lockdep complained, since filldir()
2207	 * routine might require mmap_sem taken in might_fault().
2208	 */
2209
2210	for (vma = mm->mmap, pos = 2; vma; vma = vma->vm_next) {
2211		if (!vma->vm_file)
2212			continue;
2213		if (++pos <= ctx->pos)
2214			continue;
2215
2216		p = genradix_ptr_alloc(&fa, nr_files++, GFP_KERNEL);
2217		if (!p) {
2218			ret = -ENOMEM;
2219			up_read(&mm->mmap_sem);
2220			mmput(mm);
2221			goto out_put_task;
2222		}
2223
2224		p->start = vma->vm_start;
2225		p->end = vma->vm_end;
2226		p->mode = vma->vm_file->f_mode;
2227	}
2228	up_read(&mm->mmap_sem);
2229	mmput(mm);
2230
2231	for (i = 0; i < nr_files; i++) {
2232		char buf[4 * sizeof(long) + 2];	/* max: %lx-%lx\0 */
2233		unsigned int len;
2234
2235		p = genradix_ptr(&fa, i);
2236		len = snprintf(buf, sizeof(buf), "%lx-%lx", p->start, p->end);
2237		if (!proc_fill_cache(file, ctx,
2238				      buf, len,
2239				      proc_map_files_instantiate,
2240				      task,
2241				      (void *)(unsigned long)p->mode))
2242			break;
2243		ctx->pos++;
2244	}
2245
2246out_put_task:
2247	put_task_struct(task);
2248out:
2249	genradix_free(&fa);
2250	return ret;
 
2251}
2252
2253static const struct file_operations proc_map_files_operations = {
2254	.read		= generic_read_dir,
2255	.iterate_shared	= proc_map_files_readdir,
2256	.llseek		= generic_file_llseek,
2257};
2258
2259#if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
2260struct timers_private {
2261	struct pid *pid;
2262	struct task_struct *task;
2263	struct sighand_struct *sighand;
2264	struct pid_namespace *ns;
2265	unsigned long flags;
2266};
2267
2268static void *timers_start(struct seq_file *m, loff_t *pos)
2269{
2270	struct timers_private *tp = m->private;
2271
2272	tp->task = get_pid_task(tp->pid, PIDTYPE_PID);
2273	if (!tp->task)
2274		return ERR_PTR(-ESRCH);
2275
2276	tp->sighand = lock_task_sighand(tp->task, &tp->flags);
2277	if (!tp->sighand)
2278		return ERR_PTR(-ESRCH);
2279
2280	return seq_list_start(&tp->task->signal->posix_timers, *pos);
2281}
2282
2283static void *timers_next(struct seq_file *m, void *v, loff_t *pos)
2284{
2285	struct timers_private *tp = m->private;
2286	return seq_list_next(v, &tp->task->signal->posix_timers, pos);
2287}
2288
2289static void timers_stop(struct seq_file *m, void *v)
 
2290{
2291	struct timers_private *tp = m->private;
2292
2293	if (tp->sighand) {
2294		unlock_task_sighand(tp->task, &tp->flags);
2295		tp->sighand = NULL;
2296	}
2297
2298	if (tp->task) {
2299		put_task_struct(tp->task);
2300		tp->task = NULL;
2301	}
2302}
2303
2304static int show_timer(struct seq_file *m, void *v)
2305{
2306	struct k_itimer *timer;
2307	struct timers_private *tp = m->private;
2308	int notify;
2309	static const char * const nstr[] = {
2310		[SIGEV_SIGNAL] = "signal",
2311		[SIGEV_NONE] = "none",
2312		[SIGEV_THREAD] = "thread",
2313	};
2314
2315	timer = list_entry((struct list_head *)v, struct k_itimer, list);
2316	notify = timer->it_sigev_notify;
2317
2318	seq_printf(m, "ID: %d\n", timer->it_id);
2319	seq_printf(m, "signal: %d/%px\n",
2320		   timer->sigq->info.si_signo,
2321		   timer->sigq->info.si_value.sival_ptr);
2322	seq_printf(m, "notify: %s/%s.%d\n",
2323		   nstr[notify & ~SIGEV_THREAD_ID],
2324		   (notify & SIGEV_THREAD_ID) ? "tid" : "pid",
2325		   pid_nr_ns(timer->it_pid, tp->ns));
2326	seq_printf(m, "ClockID: %d\n", timer->it_clock);
2327
2328	return 0;
2329}
2330
2331static const struct seq_operations proc_timers_seq_ops = {
2332	.start	= timers_start,
2333	.next	= timers_next,
2334	.stop	= timers_stop,
2335	.show	= show_timer,
2336};
2337
2338static int proc_timers_open(struct inode *inode, struct file *file)
 
 
 
 
2339{
2340	struct timers_private *tp;
2341
2342	tp = __seq_open_private(file, &proc_timers_seq_ops,
2343			sizeof(struct timers_private));
2344	if (!tp)
2345		return -ENOMEM;
2346
2347	tp->pid = proc_pid(inode);
2348	tp->ns = proc_pid_ns(inode);
2349	return 0;
2350}
2351
2352static const struct file_operations proc_timers_operations = {
2353	.open		= proc_timers_open,
2354	.read		= seq_read,
2355	.llseek		= seq_lseek,
2356	.release	= seq_release_private,
 
 
2357};
2358#endif
2359
2360static ssize_t timerslack_ns_write(struct file *file, const char __user *buf,
2361					size_t count, loff_t *offset)
2362{
2363	struct inode *inode = file_inode(file);
2364	struct task_struct *p;
2365	u64 slack_ns;
2366	int err;
2367
2368	err = kstrtoull_from_user(buf, count, 10, &slack_ns);
2369	if (err < 0)
2370		return err;
 
 
 
 
 
 
 
 
 
2371
2372	p = get_proc_task(inode);
2373	if (!p)
2374		return -ESRCH;
2375
2376	if (p != current) {
2377		rcu_read_lock();
2378		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
2379			rcu_read_unlock();
2380			count = -EPERM;
2381			goto out;
2382		}
2383		rcu_read_unlock();
2384
2385		err = security_task_setscheduler(p);
2386		if (err) {
2387			count = err;
2388			goto out;
2389		}
2390	}
2391
2392	task_lock(p);
2393	if (slack_ns == 0)
2394		p->timer_slack_ns = p->default_timer_slack_ns;
2395	else
2396		p->timer_slack_ns = slack_ns;
2397	task_unlock(p);
2398
2399out:
2400	put_task_struct(p);
2401
2402	return count;
2403}
2404
2405static int timerslack_ns_show(struct seq_file *m, void *v)
 
 
2406{
2407	struct inode *inode = m->private;
2408	struct task_struct *p;
2409	int err = 0;
2410
2411	p = get_proc_task(inode);
2412	if (!p)
2413		return -ESRCH;
2414
2415	if (p != current) {
2416		rcu_read_lock();
2417		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
2418			rcu_read_unlock();
2419			err = -EPERM;
2420			goto out;
2421		}
2422		rcu_read_unlock();
2423
2424		err = security_task_getscheduler(p);
2425		if (err)
2426			goto out;
2427	}
2428
2429	task_lock(p);
2430	seq_printf(m, "%llu\n", p->timer_slack_ns);
2431	task_unlock(p);
2432
2433out:
2434	put_task_struct(p);
2435
2436	return err;
2437}
2438
2439static int timerslack_ns_open(struct inode *inode, struct file *filp)
2440{
2441	return single_open(filp, timerslack_ns_show, inode);
 
2442}
2443
2444static const struct file_operations proc_pid_set_timerslack_ns_operations = {
2445	.open		= timerslack_ns_open,
2446	.read		= seq_read,
2447	.write		= timerslack_ns_write,
2448	.llseek		= seq_lseek,
2449	.release	= single_release,
 
 
 
 
 
 
2450};
2451
2452static struct dentry *proc_pident_instantiate(struct dentry *dentry,
2453	struct task_struct *task, const void *ptr)
 
2454{
2455	const struct pid_entry *p = ptr;
2456	struct inode *inode;
2457	struct proc_inode *ei;
 
2458
2459	inode = proc_pid_make_inode(dentry->d_sb, task, p->mode);
2460	if (!inode)
2461		return ERR_PTR(-ENOENT);
2462
2463	ei = PROC_I(inode);
 
2464	if (S_ISDIR(inode->i_mode))
2465		set_nlink(inode, 2);	/* Use getattr to fix if necessary */
2466	if (p->iop)
2467		inode->i_op = p->iop;
2468	if (p->fop)
2469		inode->i_fop = p->fop;
2470	ei->op = p->op;
2471	pid_update_inode(task, inode);
2472	d_set_d_op(dentry, &pid_dentry_operations);
2473	return d_splice_alias(inode, dentry);
 
 
 
 
 
2474}
2475
2476static struct dentry *proc_pident_lookup(struct inode *dir, 
2477					 struct dentry *dentry,
2478					 const struct pid_entry *p,
2479					 const struct pid_entry *end)
2480{
 
2481	struct task_struct *task = get_proc_task(dir);
2482	struct dentry *res = ERR_PTR(-ENOENT);
 
 
2483
2484	if (!task)
2485		goto out_no_task;
2486
2487	/*
2488	 * Yes, it does not scale. And it should not. Don't add
2489	 * new entries into /proc/<tgid>/ without very good reasons.
2490	 */
2491	for (; p < end; p++) {
 
2492		if (p->len != dentry->d_name.len)
2493			continue;
2494		if (!memcmp(dentry->d_name.name, p->name, p->len)) {
2495			res = proc_pident_instantiate(dentry, task, p);
2496			break;
2497		}
2498	}
 
 
 
 
 
2499	put_task_struct(task);
2500out_no_task:
2501	return res;
 
 
 
 
 
 
 
2502}
2503
2504static int proc_pident_readdir(struct file *file, struct dir_context *ctx,
 
2505		const struct pid_entry *ents, unsigned int nents)
2506{
2507	struct task_struct *task = get_proc_task(file_inode(file));
2508	const struct pid_entry *p;
 
 
 
 
 
2509
 
2510	if (!task)
2511		return -ENOENT;
2512
2513	if (!dir_emit_dots(file, ctx))
2514		goto out;
2515
2516	if (ctx->pos >= nents + 2)
2517		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2518
2519	for (p = ents + (ctx->pos - 2); p < ents + nents; p++) {
2520		if (!proc_fill_cache(file, ctx, p->name, p->len,
2521				proc_pident_instantiate, task, p))
2522			break;
2523		ctx->pos++;
2524	}
2525out:
2526	put_task_struct(task);
2527	return 0;
 
2528}
2529
2530#ifdef CONFIG_SECURITY
2531static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2532				  size_t count, loff_t *ppos)
2533{
2534	struct inode * inode = file_inode(file);
2535	char *p = NULL;
2536	ssize_t length;
2537	struct task_struct *task = get_proc_task(inode);
2538
2539	if (!task)
2540		return -ESRCH;
2541
2542	length = security_getprocattr(task, PROC_I(inode)->op.lsm,
2543				      (char*)file->f_path.dentry->d_name.name,
2544				      &p);
2545	put_task_struct(task);
2546	if (length > 0)
2547		length = simple_read_from_buffer(buf, count, ppos, p, length);
2548	kfree(p);
2549	return length;
2550}
2551
2552static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2553				   size_t count, loff_t *ppos)
2554{
2555	struct inode * inode = file_inode(file);
2556	struct task_struct *task;
2557	void *page;
2558	int rv;
2559
2560	rcu_read_lock();
2561	task = pid_task(proc_pid(inode), PIDTYPE_PID);
2562	if (!task) {
2563		rcu_read_unlock();
2564		return -ESRCH;
2565	}
2566	/* A task may only write its own attributes. */
2567	if (current != task) {
2568		rcu_read_unlock();
2569		return -EACCES;
2570	}
2571	/* Prevent changes to overridden credentials. */
2572	if (current_cred() != current_real_cred()) {
2573		rcu_read_unlock();
2574		return -EBUSY;
2575	}
2576	rcu_read_unlock();
2577
 
 
 
2578	if (count > PAGE_SIZE)
2579		count = PAGE_SIZE;
2580
2581	/* No partial writes. */
 
2582	if (*ppos != 0)
2583		return -EINVAL;
2584
2585	page = memdup_user(buf, count);
2586	if (IS_ERR(page)) {
2587		rv = PTR_ERR(page);
2588		goto out;
2589	}
 
 
 
2590
2591	/* Guard against adverse ptrace interaction */
2592	rv = mutex_lock_interruptible(&current->signal->cred_guard_mutex);
2593	if (rv < 0)
2594		goto out_free;
2595
2596	rv = security_setprocattr(PROC_I(inode)->op.lsm,
2597				  file->f_path.dentry->d_name.name, page,
2598				  count);
2599	mutex_unlock(&current->signal->cred_guard_mutex);
2600out_free:
2601	kfree(page);
2602out:
2603	return rv;
 
 
2604}
2605
2606static const struct file_operations proc_pid_attr_operations = {
2607	.read		= proc_pid_attr_read,
2608	.write		= proc_pid_attr_write,
2609	.llseek		= generic_file_llseek,
2610};
2611
2612#define LSM_DIR_OPS(LSM) \
2613static int proc_##LSM##_attr_dir_iterate(struct file *filp, \
2614			     struct dir_context *ctx) \
2615{ \
2616	return proc_pident_readdir(filp, ctx, \
2617				   LSM##_attr_dir_stuff, \
2618				   ARRAY_SIZE(LSM##_attr_dir_stuff)); \
2619} \
2620\
2621static const struct file_operations proc_##LSM##_attr_dir_ops = { \
2622	.read		= generic_read_dir, \
2623	.iterate	= proc_##LSM##_attr_dir_iterate, \
2624	.llseek		= default_llseek, \
2625}; \
2626\
2627static struct dentry *proc_##LSM##_attr_dir_lookup(struct inode *dir, \
2628				struct dentry *dentry, unsigned int flags) \
2629{ \
2630	return proc_pident_lookup(dir, dentry, \
2631				  LSM##_attr_dir_stuff, \
2632				  LSM##_attr_dir_stuff + ARRAY_SIZE(LSM##_attr_dir_stuff)); \
2633} \
2634\
2635static const struct inode_operations proc_##LSM##_attr_dir_inode_ops = { \
2636	.lookup		= proc_##LSM##_attr_dir_lookup, \
2637	.getattr	= pid_getattr, \
2638	.setattr	= proc_setattr, \
2639}
2640
2641#ifdef CONFIG_SECURITY_SMACK
2642static const struct pid_entry smack_attr_dir_stuff[] = {
2643	ATTR("smack", "current",	0666),
2644};
2645LSM_DIR_OPS(smack);
2646#endif
2647
2648static const struct pid_entry attr_dir_stuff[] = {
2649	ATTR(NULL, "current",		0666),
2650	ATTR(NULL, "prev",		0444),
2651	ATTR(NULL, "exec",		0666),
2652	ATTR(NULL, "fscreate",		0666),
2653	ATTR(NULL, "keycreate",		0666),
2654	ATTR(NULL, "sockcreate",	0666),
2655#ifdef CONFIG_SECURITY_SMACK
2656	DIR("smack",			0555,
2657	    proc_smack_attr_dir_inode_ops, proc_smack_attr_dir_ops),
2658#endif
2659};
2660
2661static int proc_attr_dir_readdir(struct file *file, struct dir_context *ctx)
 
2662{
2663	return proc_pident_readdir(file, ctx, 
2664				   attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2665}
2666
2667static const struct file_operations proc_attr_dir_operations = {
2668	.read		= generic_read_dir,
2669	.iterate_shared	= proc_attr_dir_readdir,
2670	.llseek		= generic_file_llseek,
2671};
2672
2673static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2674				struct dentry *dentry, unsigned int flags)
2675{
2676	return proc_pident_lookup(dir, dentry,
2677				  attr_dir_stuff,
2678				  attr_dir_stuff + ARRAY_SIZE(attr_dir_stuff));
2679}
2680
2681static const struct inode_operations proc_attr_dir_inode_operations = {
2682	.lookup		= proc_attr_dir_lookup,
2683	.getattr	= pid_getattr,
2684	.setattr	= proc_setattr,
2685};
2686
2687#endif
2688
2689#ifdef CONFIG_ELF_CORE
2690static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2691					 size_t count, loff_t *ppos)
2692{
2693	struct task_struct *task = get_proc_task(file_inode(file));
2694	struct mm_struct *mm;
2695	char buffer[PROC_NUMBUF];
2696	size_t len;
2697	int ret;
2698
2699	if (!task)
2700		return -ESRCH;
2701
2702	ret = 0;
2703	mm = get_task_mm(task);
2704	if (mm) {
2705		len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2706			       ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2707				MMF_DUMP_FILTER_SHIFT));
2708		mmput(mm);
2709		ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2710	}
2711
2712	put_task_struct(task);
2713
2714	return ret;
2715}
2716
2717static ssize_t proc_coredump_filter_write(struct file *file,
2718					  const char __user *buf,
2719					  size_t count,
2720					  loff_t *ppos)
2721{
2722	struct task_struct *task;
2723	struct mm_struct *mm;
 
2724	unsigned int val;
2725	int ret;
2726	int i;
2727	unsigned long mask;
2728
2729	ret = kstrtouint_from_user(buf, count, 0, &val);
2730	if (ret < 0)
2731		return ret;
 
 
 
 
 
 
 
 
 
 
2732
2733	ret = -ESRCH;
2734	task = get_proc_task(file_inode(file));
2735	if (!task)
2736		goto out_no_task;
2737
 
2738	mm = get_task_mm(task);
2739	if (!mm)
2740		goto out_no_mm;
2741	ret = 0;
2742
2743	for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2744		if (val & mask)
2745			set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2746		else
2747			clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2748	}
2749
2750	mmput(mm);
2751 out_no_mm:
2752	put_task_struct(task);
2753 out_no_task:
2754	if (ret < 0)
2755		return ret;
2756	return count;
2757}
2758
2759static const struct file_operations proc_coredump_filter_operations = {
2760	.read		= proc_coredump_filter_read,
2761	.write		= proc_coredump_filter_write,
2762	.llseek		= generic_file_llseek,
2763};
2764#endif
2765
2766#ifdef CONFIG_TASK_IO_ACCOUNTING
2767static int do_io_accounting(struct task_struct *task, struct seq_file *m, int whole)
 
 
 
2768{
2769	struct task_io_accounting acct = task->ioac;
2770	unsigned long flags;
2771	int result;
 
 
 
 
 
2772
2773	result = mutex_lock_killable(&task->signal->cred_guard_mutex);
2774	if (result)
2775		return result;
2776
2777	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) {
2778		result = -EACCES;
2779		goto out_unlock;
 
 
 
 
2780	}
2781
2782	if (whole && lock_task_sighand(task, &flags)) {
2783		struct task_struct *t = task;
2784
2785		task_io_accounting_add(&acct, &task->signal->ioac);
2786		while_each_thread(task, t)
2787			task_io_accounting_add(&acct, &t->ioac);
2788
2789		unlock_task_sighand(task, &flags);
2790	}
2791	seq_printf(m,
2792		   "rchar: %llu\n"
2793		   "wchar: %llu\n"
2794		   "syscr: %llu\n"
2795		   "syscw: %llu\n"
2796		   "read_bytes: %llu\n"
2797		   "write_bytes: %llu\n"
2798		   "cancelled_write_bytes: %llu\n",
2799		   (unsigned long long)acct.rchar,
2800		   (unsigned long long)acct.wchar,
2801		   (unsigned long long)acct.syscr,
2802		   (unsigned long long)acct.syscw,
2803		   (unsigned long long)acct.read_bytes,
2804		   (unsigned long long)acct.write_bytes,
2805		   (unsigned long long)acct.cancelled_write_bytes);
2806	result = 0;
2807
2808out_unlock:
2809	mutex_unlock(&task->signal->cred_guard_mutex);
2810	return result;
2811}
2812
2813static int proc_tid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2814				  struct pid *pid, struct task_struct *task)
2815{
2816	return do_io_accounting(task, m, 0);
 
 
2817}
2818
2819static int proc_tgid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2820				   struct pid *pid, struct task_struct *task)
2821{
2822	return do_io_accounting(task, m, 1);
2823}
2824#endif /* CONFIG_TASK_IO_ACCOUNTING */
 
 
 
 
 
 
 
 
 
 
 
2825
2826#ifdef CONFIG_USER_NS
2827static int proc_id_map_open(struct inode *inode, struct file *file,
2828	const struct seq_operations *seq_ops)
2829{
2830	struct user_namespace *ns = NULL;
2831	struct task_struct *task;
2832	struct seq_file *seq;
2833	int ret = -EINVAL;
2834
2835	task = get_proc_task(inode);
2836	if (task) {
2837		rcu_read_lock();
2838		ns = get_user_ns(task_cred_xxx(task, user_ns));
2839		rcu_read_unlock();
2840		put_task_struct(task);
2841	}
2842	if (!ns)
2843		goto err;
2844
2845	ret = seq_open(file, seq_ops);
2846	if (ret)
2847		goto err_put_ns;
 
2848
2849	seq = file->private_data;
2850	seq->private = ns;
 
 
 
 
2851
2852	return 0;
2853err_put_ns:
2854	put_user_ns(ns);
2855err:
2856	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
2857}
2858
2859static int proc_id_map_release(struct inode *inode, struct file *file)
2860{
2861	struct seq_file *seq = file->private_data;
2862	struct user_namespace *ns = seq->private;
2863	put_user_ns(ns);
2864	return seq_release(inode, file);
2865}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2866
2867static int proc_uid_map_open(struct inode *inode, struct file *file)
2868{
2869	return proc_id_map_open(inode, file, &proc_uid_seq_operations);
 
2870}
2871
2872static int proc_gid_map_open(struct inode *inode, struct file *file)
 
2873{
2874	return proc_id_map_open(inode, file, &proc_gid_seq_operations);
 
2875}
2876
2877static int proc_projid_map_open(struct inode *inode, struct file *file)
 
2878{
2879	return proc_id_map_open(inode, file, &proc_projid_seq_operations);
2880}
 
2881
2882static const struct file_operations proc_uid_map_operations = {
2883	.open		= proc_uid_map_open,
2884	.write		= proc_uid_map_write,
2885	.read		= seq_read,
2886	.llseek		= seq_lseek,
2887	.release	= proc_id_map_release,
2888};
2889
2890static const struct file_operations proc_gid_map_operations = {
2891	.open		= proc_gid_map_open,
2892	.write		= proc_gid_map_write,
2893	.read		= seq_read,
2894	.llseek		= seq_lseek,
2895	.release	= proc_id_map_release,
2896};
2897
2898static const struct file_operations proc_projid_map_operations = {
2899	.open		= proc_projid_map_open,
2900	.write		= proc_projid_map_write,
2901	.read		= seq_read,
2902	.llseek		= seq_lseek,
2903	.release	= proc_id_map_release,
2904};
2905
2906static int proc_setgroups_open(struct inode *inode, struct file *file)
2907{
2908	struct user_namespace *ns = NULL;
2909	struct task_struct *task;
2910	int ret;
2911
2912	ret = -ESRCH;
2913	task = get_proc_task(inode);
2914	if (task) {
2915		rcu_read_lock();
2916		ns = get_user_ns(task_cred_xxx(task, user_ns));
2917		rcu_read_unlock();
2918		put_task_struct(task);
2919	}
2920	if (!ns)
2921		goto err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2922
2923	if (file->f_mode & FMODE_WRITE) {
2924		ret = -EACCES;
2925		if (!ns_capable(ns, CAP_SYS_ADMIN))
2926			goto err_put_ns;
2927	}
2928
2929	ret = single_open(file, &proc_setgroups_show, ns);
2930	if (ret)
2931		goto err_put_ns;
2932
2933	return 0;
2934err_put_ns:
2935	put_user_ns(ns);
2936err:
2937	return ret;
2938}
2939
2940static int proc_setgroups_release(struct inode *inode, struct file *file)
2941{
2942	struct seq_file *seq = file->private_data;
2943	struct user_namespace *ns = seq->private;
2944	int ret = single_release(inode, file);
2945	put_user_ns(ns);
2946	return ret;
2947}
2948
2949static const struct file_operations proc_setgroups_operations = {
2950	.open		= proc_setgroups_open,
2951	.write		= proc_setgroups_write,
2952	.read		= seq_read,
2953	.llseek		= seq_lseek,
2954	.release	= proc_setgroups_release,
2955};
2956#endif /* CONFIG_USER_NS */
2957
2958static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
2959				struct pid *pid, struct task_struct *task)
2960{
2961	int err = lock_trace(task);
2962	if (!err) {
2963		seq_printf(m, "%08x\n", task->personality);
2964		unlock_trace(task);
2965	}
2966	return err;
2967}
2968
2969#ifdef CONFIG_LIVEPATCH
2970static int proc_pid_patch_state(struct seq_file *m, struct pid_namespace *ns,
2971				struct pid *pid, struct task_struct *task)
2972{
2973	seq_printf(m, "%d\n", task->patch_state);
2974	return 0;
2975}
2976#endif /* CONFIG_LIVEPATCH */
2977
2978#ifdef CONFIG_STACKLEAK_METRICS
2979static int proc_stack_depth(struct seq_file *m, struct pid_namespace *ns,
2980				struct pid *pid, struct task_struct *task)
2981{
2982	unsigned long prev_depth = THREAD_SIZE -
2983				(task->prev_lowest_stack & (THREAD_SIZE - 1));
2984	unsigned long depth = THREAD_SIZE -
2985				(task->lowest_stack & (THREAD_SIZE - 1));
2986
2987	seq_printf(m, "previous stack depth: %lu\nstack depth: %lu\n",
2988							prev_depth, depth);
2989	return 0;
2990}
2991#endif /* CONFIG_STACKLEAK_METRICS */
2992
2993/*
2994 * Thread groups
2995 */
2996static const struct file_operations proc_task_operations;
2997static const struct inode_operations proc_task_inode_operations;
2998
2999static const struct pid_entry tgid_base_stuff[] = {
3000	DIR("task",       S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
3001	DIR("fd",         S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3002	DIR("map_files",  S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations),
3003	DIR("fdinfo",     S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3004	DIR("ns",	  S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3005#ifdef CONFIG_NET
3006	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3007#endif
3008	REG("environ",    S_IRUSR, proc_environ_operations),
3009	REG("auxv",       S_IRUSR, proc_auxv_operations),
3010	ONE("status",     S_IRUGO, proc_pid_status),
3011	ONE("personality", S_IRUSR, proc_pid_personality),
3012	ONE("limits",	  S_IRUGO, proc_pid_limits),
3013#ifdef CONFIG_SCHED_DEBUG
3014	REG("sched",      S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3015#endif
3016#ifdef CONFIG_SCHED_AUTOGROUP
3017	REG("autogroup",  S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
3018#endif
3019	REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
3020#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3021	ONE("syscall",    S_IRUSR, proc_pid_syscall),
3022#endif
3023	REG("cmdline",    S_IRUGO, proc_pid_cmdline_ops),
3024	ONE("stat",       S_IRUGO, proc_tgid_stat),
3025	ONE("statm",      S_IRUGO, proc_pid_statm),
3026	REG("maps",       S_IRUGO, proc_pid_maps_operations),
3027#ifdef CONFIG_NUMA
3028	REG("numa_maps",  S_IRUGO, proc_pid_numa_maps_operations),
3029#endif
3030	REG("mem",        S_IRUSR|S_IWUSR, proc_mem_operations),
3031	LNK("cwd",        proc_cwd_link),
3032	LNK("root",       proc_root_link),
3033	LNK("exe",        proc_exe_link),
3034	REG("mounts",     S_IRUGO, proc_mounts_operations),
3035	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
3036	REG("mountstats", S_IRUSR, proc_mountstats_operations),
3037#ifdef CONFIG_PROC_PAGE_MONITOR
3038	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3039	REG("smaps",      S_IRUGO, proc_pid_smaps_operations),
3040	REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations),
3041	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
3042#endif
3043#ifdef CONFIG_SECURITY
3044	DIR("attr",       S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3045#endif
3046#ifdef CONFIG_KALLSYMS
3047	ONE("wchan",      S_IRUGO, proc_pid_wchan),
3048#endif
3049#ifdef CONFIG_STACKTRACE
3050	ONE("stack",      S_IRUSR, proc_pid_stack),
3051#endif
3052#ifdef CONFIG_SCHED_INFO
3053	ONE("schedstat",  S_IRUGO, proc_pid_schedstat),
3054#endif
3055#ifdef CONFIG_LATENCYTOP
3056	REG("latency",  S_IRUGO, proc_lstats_operations),
3057#endif
3058#ifdef CONFIG_PROC_PID_CPUSET
3059	ONE("cpuset",     S_IRUGO, proc_cpuset_show),
3060#endif
3061#ifdef CONFIG_CGROUPS
3062	ONE("cgroup",  S_IRUGO, proc_cgroup_show),
3063#endif
3064	ONE("oom_score",  S_IRUGO, proc_oom_score),
3065	REG("oom_adj",    S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3066	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3067#ifdef CONFIG_AUDIT
3068	REG("loginuid",   S_IWUSR|S_IRUGO, proc_loginuid_operations),
3069	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
3070#endif
3071#ifdef CONFIG_FAULT_INJECTION
3072	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3073	REG("fail-nth", 0644, proc_fail_nth_operations),
3074#endif
3075#ifdef CONFIG_ELF_CORE
3076	REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
3077#endif
3078#ifdef CONFIG_TASK_IO_ACCOUNTING
3079	ONE("io",	S_IRUSR, proc_tgid_io_accounting),
3080#endif
3081#ifdef CONFIG_USER_NS
3082	REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
3083	REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
3084	REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3085	REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
3086#endif
3087#if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
3088	REG("timers",	  S_IRUGO, proc_timers_operations),
3089#endif
3090	REG("timerslack_ns", S_IRUGO|S_IWUGO, proc_pid_set_timerslack_ns_operations),
3091#ifdef CONFIG_LIVEPATCH
3092	ONE("patch_state",  S_IRUSR, proc_pid_patch_state),
3093#endif
3094#ifdef CONFIG_STACKLEAK_METRICS
3095	ONE("stack_depth", S_IRUGO, proc_stack_depth),
3096#endif
3097#ifdef CONFIG_PROC_PID_ARCH_STATUS
3098	ONE("arch_status", S_IRUGO, proc_pid_arch_status),
3099#endif
3100};
3101
3102static int proc_tgid_base_readdir(struct file *file, struct dir_context *ctx)
 
3103{
3104	return proc_pident_readdir(file, ctx,
3105				   tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3106}
3107
3108static const struct file_operations proc_tgid_base_operations = {
3109	.read		= generic_read_dir,
3110	.iterate_shared	= proc_tgid_base_readdir,
3111	.llseek		= generic_file_llseek,
3112};
3113
3114struct pid *tgid_pidfd_to_pid(const struct file *file)
3115{
3116	if (file->f_op != &proc_tgid_base_operations)
3117		return ERR_PTR(-EBADF);
3118
3119	return proc_pid(file_inode(file));
3120}
3121
3122static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3123{
3124	return proc_pident_lookup(dir, dentry,
3125				  tgid_base_stuff,
3126				  tgid_base_stuff + ARRAY_SIZE(tgid_base_stuff));
3127}
3128
3129static const struct inode_operations proc_tgid_base_inode_operations = {
3130	.lookup		= proc_tgid_base_lookup,
3131	.getattr	= pid_getattr,
3132	.setattr	= proc_setattr,
3133	.permission	= proc_pid_permission,
3134};
3135
3136static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
3137{
3138	struct dentry *dentry, *leader, *dir;
3139	char buf[10 + 1];
3140	struct qstr name;
3141
3142	name.name = buf;
3143	name.len = snprintf(buf, sizeof(buf), "%u", pid);
3144	/* no ->d_hash() rejects on procfs */
3145	dentry = d_hash_and_lookup(mnt->mnt_root, &name);
3146	if (dentry) {
3147		d_invalidate(dentry);
 
3148		dput(dentry);
3149	}
3150
3151	if (pid == tgid)
3152		return;
3153
3154	name.name = buf;
3155	name.len = snprintf(buf, sizeof(buf), "%u", tgid);
3156	leader = d_hash_and_lookup(mnt->mnt_root, &name);
3157	if (!leader)
3158		goto out;
3159
3160	name.name = "task";
3161	name.len = strlen(name.name);
3162	dir = d_hash_and_lookup(leader, &name);
3163	if (!dir)
3164		goto out_put_leader;
3165
3166	name.name = buf;
3167	name.len = snprintf(buf, sizeof(buf), "%u", pid);
3168	dentry = d_hash_and_lookup(dir, &name);
3169	if (dentry) {
3170		d_invalidate(dentry);
 
3171		dput(dentry);
3172	}
3173
3174	dput(dir);
3175out_put_leader:
3176	dput(leader);
3177out:
3178	return;
3179}
3180
3181/**
3182 * proc_flush_task -  Remove dcache entries for @task from the /proc dcache.
3183 * @task: task that should be flushed.
3184 *
3185 * When flushing dentries from proc, one needs to flush them from global
3186 * proc (proc_mnt) and from all the namespaces' procs this task was seen
3187 * in. This call is supposed to do all of this job.
3188 *
3189 * Looks in the dcache for
3190 * /proc/@pid
3191 * /proc/@tgid/task/@pid
3192 * if either directory is present flushes it and all of it'ts children
3193 * from the dcache.
3194 *
3195 * It is safe and reasonable to cache /proc entries for a task until
3196 * that task exits.  After that they just clog up the dcache with
3197 * useless entries, possibly causing useful dcache entries to be
3198 * flushed instead.  This routine is proved to flush those useless
3199 * dcache entries at process exit time.
3200 *
3201 * NOTE: This routine is just an optimization so it does not guarantee
3202 *       that no dcache entries will exist at process exit time it
3203 *       just makes it very unlikely that any will persist.
3204 */
3205
3206void proc_flush_task(struct task_struct *task)
3207{
3208	int i;
3209	struct pid *pid, *tgid;
3210	struct upid *upid;
3211
3212	pid = task_pid(task);
3213	tgid = task_tgid(task);
3214
3215	for (i = 0; i <= pid->level; i++) {
3216		upid = &pid->numbers[i];
3217		proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
3218					tgid->numbers[i].nr);
3219	}
 
 
 
 
3220}
3221
3222static struct dentry *proc_pid_instantiate(struct dentry * dentry,
3223				   struct task_struct *task, const void *ptr)
 
3224{
 
3225	struct inode *inode;
3226
3227	inode = proc_pid_make_inode(dentry->d_sb, task, S_IFDIR | S_IRUGO | S_IXUGO);
3228	if (!inode)
3229		return ERR_PTR(-ENOENT);
3230
 
3231	inode->i_op = &proc_tgid_base_inode_operations;
3232	inode->i_fop = &proc_tgid_base_operations;
3233	inode->i_flags|=S_IMMUTABLE;
3234
3235	set_nlink(inode, nlink_tgid);
3236	pid_update_inode(task, inode);
3237
3238	d_set_d_op(dentry, &pid_dentry_operations);
3239	return d_splice_alias(inode, dentry);
 
 
 
 
 
 
3240}
3241
3242struct dentry *proc_pid_lookup(struct dentry *dentry, unsigned int flags)
3243{
 
3244	struct task_struct *task;
3245	unsigned tgid;
3246	struct pid_namespace *ns;
3247	struct dentry *result = ERR_PTR(-ENOENT);
3248
3249	tgid = name_to_int(&dentry->d_name);
 
 
 
 
3250	if (tgid == ~0U)
3251		goto out;
3252
3253	ns = dentry->d_sb->s_fs_info;
3254	rcu_read_lock();
3255	task = find_task_by_pid_ns(tgid, ns);
3256	if (task)
3257		get_task_struct(task);
3258	rcu_read_unlock();
3259	if (!task)
3260		goto out;
3261
3262	result = proc_pid_instantiate(dentry, task, NULL);
3263	put_task_struct(task);
3264out:
3265	return result;
3266}
3267
3268/*
3269 * Find the first task with tgid >= tgid
3270 *
3271 */
3272struct tgid_iter {
3273	unsigned int tgid;
3274	struct task_struct *task;
3275};
3276static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
3277{
3278	struct pid *pid;
3279
3280	if (iter.task)
3281		put_task_struct(iter.task);
3282	rcu_read_lock();
3283retry:
3284	iter.task = NULL;
3285	pid = find_ge_pid(iter.tgid, ns);
3286	if (pid) {
3287		iter.tgid = pid_nr_ns(pid, ns);
3288		iter.task = pid_task(pid, PIDTYPE_PID);
3289		/* What we to know is if the pid we have find is the
3290		 * pid of a thread_group_leader.  Testing for task
3291		 * being a thread_group_leader is the obvious thing
3292		 * todo but there is a window when it fails, due to
3293		 * the pid transfer logic in de_thread.
3294		 *
3295		 * So we perform the straight forward test of seeing
3296		 * if the pid we have found is the pid of a thread
3297		 * group leader, and don't worry if the task we have
3298		 * found doesn't happen to be a thread group leader.
3299		 * As we don't care in the case of readdir.
3300		 */
3301		if (!iter.task || !has_group_leader_pid(iter.task)) {
3302			iter.tgid += 1;
3303			goto retry;
3304		}
3305		get_task_struct(iter.task);
3306	}
3307	rcu_read_unlock();
3308	return iter;
3309}
3310
3311#define TGID_OFFSET (FIRST_PROCESS_ENTRY + 2)
 
 
 
 
 
 
 
 
 
3312
3313/* for the /proc/ directory itself, after non-process stuff has been done */
3314int proc_pid_readdir(struct file *file, struct dir_context *ctx)
3315{
 
 
3316	struct tgid_iter iter;
3317	struct pid_namespace *ns = proc_pid_ns(file_inode(file));
3318	loff_t pos = ctx->pos;
3319
3320	if (pos >= PID_MAX_LIMIT + TGID_OFFSET)
3321		return 0;
 
 
 
 
 
3322
3323	if (pos == TGID_OFFSET - 2) {
3324		struct inode *inode = d_inode(ns->proc_self);
3325		if (!dir_emit(ctx, "self", 4, inode->i_ino, DT_LNK))
3326			return 0;
3327		ctx->pos = pos = pos + 1;
3328	}
3329	if (pos == TGID_OFFSET - 1) {
3330		struct inode *inode = d_inode(ns->proc_thread_self);
3331		if (!dir_emit(ctx, "thread-self", 11, inode->i_ino, DT_LNK))
3332			return 0;
3333		ctx->pos = pos = pos + 1;
3334	}
3335	iter.tgid = pos - TGID_OFFSET;
3336	iter.task = NULL;
 
3337	for (iter = next_tgid(ns, iter);
3338	     iter.task;
3339	     iter.tgid += 1, iter = next_tgid(ns, iter)) {
3340		char name[10 + 1];
3341		unsigned int len;
3342
3343		cond_resched();
3344		if (!has_pid_permissions(ns, iter.task, HIDEPID_INVISIBLE))
3345			continue;
3346
3347		len = snprintf(name, sizeof(name), "%u", iter.tgid);
3348		ctx->pos = iter.tgid + TGID_OFFSET;
3349		if (!proc_fill_cache(file, ctx, name, len,
3350				     proc_pid_instantiate, iter.task, NULL)) {
3351			put_task_struct(iter.task);
3352			return 0;
3353		}
3354	}
3355	ctx->pos = PID_MAX_LIMIT + TGID_OFFSET;
 
 
 
3356	return 0;
3357}
3358
3359/*
3360 * proc_tid_comm_permission is a special permission function exclusively
3361 * used for the node /proc/<pid>/task/<tid>/comm.
3362 * It bypasses generic permission checks in the case where a task of the same
3363 * task group attempts to access the node.
3364 * The rationale behind this is that glibc and bionic access this node for
3365 * cross thread naming (pthread_set/getname_np(!self)). However, if
3366 * PR_SET_DUMPABLE gets set to 0 this node among others becomes uid=0 gid=0,
3367 * which locks out the cross thread naming implementation.
3368 * This function makes sure that the node is always accessible for members of
3369 * same thread group.
3370 */
3371static int proc_tid_comm_permission(struct inode *inode, int mask)
3372{
3373	bool is_same_tgroup;
3374	struct task_struct *task;
3375
3376	task = get_proc_task(inode);
3377	if (!task)
3378		return -ESRCH;
3379	is_same_tgroup = same_thread_group(current, task);
3380	put_task_struct(task);
3381
3382	if (likely(is_same_tgroup && !(mask & MAY_EXEC))) {
3383		/* This file (/proc/<pid>/task/<tid>/comm) can always be
3384		 * read or written by the members of the corresponding
3385		 * thread group.
3386		 */
3387		return 0;
3388	}
3389
3390	return generic_permission(inode, mask);
3391}
3392
3393static const struct inode_operations proc_tid_comm_inode_operations = {
3394		.permission = proc_tid_comm_permission,
3395};
3396
3397/*
3398 * Tasks
3399 */
3400static const struct pid_entry tid_base_stuff[] = {
3401	DIR("fd",        S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3402	DIR("fdinfo",    S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3403	DIR("ns",	 S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3404#ifdef CONFIG_NET
3405	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3406#endif
3407	REG("environ",   S_IRUSR, proc_environ_operations),
3408	REG("auxv",      S_IRUSR, proc_auxv_operations),
3409	ONE("status",    S_IRUGO, proc_pid_status),
3410	ONE("personality", S_IRUSR, proc_pid_personality),
3411	ONE("limits",	 S_IRUGO, proc_pid_limits),
3412#ifdef CONFIG_SCHED_DEBUG
3413	REG("sched",     S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3414#endif
3415	NOD("comm",      S_IFREG|S_IRUGO|S_IWUSR,
3416			 &proc_tid_comm_inode_operations,
3417			 &proc_pid_set_comm_operations, {}),
3418#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3419	ONE("syscall",   S_IRUSR, proc_pid_syscall),
3420#endif
3421	REG("cmdline",   S_IRUGO, proc_pid_cmdline_ops),
3422	ONE("stat",      S_IRUGO, proc_tid_stat),
3423	ONE("statm",     S_IRUGO, proc_pid_statm),
3424	REG("maps",      S_IRUGO, proc_pid_maps_operations),
3425#ifdef CONFIG_PROC_CHILDREN
3426	REG("children",  S_IRUGO, proc_tid_children_operations),
3427#endif
3428#ifdef CONFIG_NUMA
3429	REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations),
3430#endif
3431	REG("mem",       S_IRUSR|S_IWUSR, proc_mem_operations),
3432	LNK("cwd",       proc_cwd_link),
3433	LNK("root",      proc_root_link),
3434	LNK("exe",       proc_exe_link),
3435	REG("mounts",    S_IRUGO, proc_mounts_operations),
3436	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
3437#ifdef CONFIG_PROC_PAGE_MONITOR
3438	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3439	REG("smaps",     S_IRUGO, proc_pid_smaps_operations),
3440	REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations),
3441	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
3442#endif
3443#ifdef CONFIG_SECURITY
3444	DIR("attr",      S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3445#endif
3446#ifdef CONFIG_KALLSYMS
3447	ONE("wchan",     S_IRUGO, proc_pid_wchan),
3448#endif
3449#ifdef CONFIG_STACKTRACE
3450	ONE("stack",      S_IRUSR, proc_pid_stack),
3451#endif
3452#ifdef CONFIG_SCHED_INFO
3453	ONE("schedstat", S_IRUGO, proc_pid_schedstat),
3454#endif
3455#ifdef CONFIG_LATENCYTOP
3456	REG("latency",  S_IRUGO, proc_lstats_operations),
3457#endif
3458#ifdef CONFIG_PROC_PID_CPUSET
3459	ONE("cpuset",    S_IRUGO, proc_cpuset_show),
3460#endif
3461#ifdef CONFIG_CGROUPS
3462	ONE("cgroup",  S_IRUGO, proc_cgroup_show),
3463#endif
3464	ONE("oom_score", S_IRUGO, proc_oom_score),
3465	REG("oom_adj",   S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3466	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3467#ifdef CONFIG_AUDIT
3468	REG("loginuid",  S_IWUSR|S_IRUGO, proc_loginuid_operations),
3469	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
3470#endif
3471#ifdef CONFIG_FAULT_INJECTION
3472	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3473	REG("fail-nth", 0644, proc_fail_nth_operations),
3474#endif
3475#ifdef CONFIG_TASK_IO_ACCOUNTING
3476	ONE("io",	S_IRUSR, proc_tid_io_accounting),
3477#endif
3478#ifdef CONFIG_USER_NS
3479	REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
3480	REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
3481	REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3482	REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
3483#endif
3484#ifdef CONFIG_LIVEPATCH
3485	ONE("patch_state",  S_IRUSR, proc_pid_patch_state),
3486#endif
3487#ifdef CONFIG_PROC_PID_ARCH_STATUS
3488	ONE("arch_status", S_IRUGO, proc_pid_arch_status),
3489#endif
3490};
3491
3492static int proc_tid_base_readdir(struct file *file, struct dir_context *ctx)
 
3493{
3494	return proc_pident_readdir(file, ctx,
3495				   tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3496}
3497
3498static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3499{
3500	return proc_pident_lookup(dir, dentry,
3501				  tid_base_stuff,
3502				  tid_base_stuff + ARRAY_SIZE(tid_base_stuff));
3503}
3504
3505static const struct file_operations proc_tid_base_operations = {
3506	.read		= generic_read_dir,
3507	.iterate_shared	= proc_tid_base_readdir,
3508	.llseek		= generic_file_llseek,
3509};
3510
3511static const struct inode_operations proc_tid_base_inode_operations = {
3512	.lookup		= proc_tid_base_lookup,
3513	.getattr	= pid_getattr,
3514	.setattr	= proc_setattr,
3515};
3516
3517static struct dentry *proc_task_instantiate(struct dentry *dentry,
3518	struct task_struct *task, const void *ptr)
3519{
 
3520	struct inode *inode;
3521	inode = proc_pid_make_inode(dentry->d_sb, task, S_IFDIR | S_IRUGO | S_IXUGO);
 
3522	if (!inode)
3523		return ERR_PTR(-ENOENT);
3524
3525	inode->i_op = &proc_tid_base_inode_operations;
3526	inode->i_fop = &proc_tid_base_operations;
3527	inode->i_flags |= S_IMMUTABLE;
3528
3529	set_nlink(inode, nlink_tid);
3530	pid_update_inode(task, inode);
3531
3532	d_set_d_op(dentry, &pid_dentry_operations);
3533	return d_splice_alias(inode, dentry);
 
 
 
 
 
 
3534}
3535
3536static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3537{
 
3538	struct task_struct *task;
3539	struct task_struct *leader = get_proc_task(dir);
3540	unsigned tid;
3541	struct pid_namespace *ns;
3542	struct dentry *result = ERR_PTR(-ENOENT);
3543
3544	if (!leader)
3545		goto out_no_task;
3546
3547	tid = name_to_int(&dentry->d_name);
3548	if (tid == ~0U)
3549		goto out;
3550
3551	ns = dentry->d_sb->s_fs_info;
3552	rcu_read_lock();
3553	task = find_task_by_pid_ns(tid, ns);
3554	if (task)
3555		get_task_struct(task);
3556	rcu_read_unlock();
3557	if (!task)
3558		goto out;
3559	if (!same_thread_group(leader, task))
3560		goto out_drop_task;
3561
3562	result = proc_task_instantiate(dentry, task, NULL);
3563out_drop_task:
3564	put_task_struct(task);
3565out:
3566	put_task_struct(leader);
3567out_no_task:
3568	return result;
3569}
3570
3571/*
3572 * Find the first tid of a thread group to return to user space.
3573 *
3574 * Usually this is just the thread group leader, but if the users
3575 * buffer was too small or there was a seek into the middle of the
3576 * directory we have more work todo.
3577 *
3578 * In the case of a short read we start with find_task_by_pid.
3579 *
3580 * In the case of a seek we start with the leader and walk nr
3581 * threads past it.
3582 */
3583static struct task_struct *first_tid(struct pid *pid, int tid, loff_t f_pos,
3584					struct pid_namespace *ns)
3585{
3586	struct task_struct *pos, *task;
3587	unsigned long nr = f_pos;
3588
3589	if (nr != f_pos)	/* 32bit overflow? */
3590		return NULL;
3591
3592	rcu_read_lock();
3593	task = pid_task(pid, PIDTYPE_PID);
3594	if (!task)
3595		goto fail;
3596
3597	/* Attempt to start with the tid of a thread */
3598	if (tid && nr) {
3599		pos = find_task_by_pid_ns(tid, ns);
3600		if (pos && same_thread_group(pos, task))
3601			goto found;
3602	}
3603
3604	/* If nr exceeds the number of threads there is nothing todo */
3605	if (nr >= get_nr_threads(task))
3606		goto fail;
 
3607
3608	/* If we haven't found our starting place yet start
3609	 * with the leader and walk nr threads forward.
3610	 */
3611	pos = task = task->group_leader;
3612	do {
3613		if (!nr--)
3614			goto found;
3615	} while_each_thread(task, pos);
3616fail:
3617	pos = NULL;
3618	goto out;
3619found:
3620	get_task_struct(pos);
3621out:
3622	rcu_read_unlock();
3623	return pos;
3624}
3625
3626/*
3627 * Find the next thread in the thread list.
3628 * Return NULL if there is an error or no next thread.
3629 *
3630 * The reference to the input task_struct is released.
3631 */
3632static struct task_struct *next_tid(struct task_struct *start)
3633{
3634	struct task_struct *pos = NULL;
3635	rcu_read_lock();
3636	if (pid_alive(start)) {
3637		pos = next_thread(start);
3638		if (thread_group_leader(pos))
3639			pos = NULL;
3640		else
3641			get_task_struct(pos);
3642	}
3643	rcu_read_unlock();
3644	put_task_struct(start);
3645	return pos;
3646}
3647
 
 
 
 
 
 
 
 
 
3648/* for the /proc/TGID/task/ directories */
3649static int proc_task_readdir(struct file *file, struct dir_context *ctx)
3650{
3651	struct inode *inode = file_inode(file);
 
 
3652	struct task_struct *task;
 
 
 
3653	struct pid_namespace *ns;
3654	int tid;
3655
3656	if (proc_inode_is_dead(inode))
3657		return -ENOENT;
 
 
 
 
 
 
 
 
 
 
 
3658
3659	if (!dir_emit_dots(file, ctx))
3660		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
3661
3662	/* f_version caches the tgid value that the last readdir call couldn't
3663	 * return. lseek aka telldir automagically resets f_version to 0.
3664	 */
3665	ns = proc_pid_ns(inode);
3666	tid = (int)file->f_version;
3667	file->f_version = 0;
3668	for (task = first_tid(proc_pid(inode), tid, ctx->pos - 2, ns);
3669	     task;
3670	     task = next_tid(task), ctx->pos++) {
3671		char name[10 + 1];
3672		unsigned int len;
3673		tid = task_pid_nr_ns(task, ns);
3674		len = snprintf(name, sizeof(name), "%u", tid);
3675		if (!proc_fill_cache(file, ctx, name, len,
3676				proc_task_instantiate, task, NULL)) {
3677			/* returning this tgid failed, save it as the first
3678			 * pid for the next readir call */
3679			file->f_version = (u64)tid;
3680			put_task_struct(task);
3681			break;
3682		}
3683	}
3684
3685	return 0;
 
 
3686}
3687
3688static int proc_task_getattr(const struct path *path, struct kstat *stat,
3689			     u32 request_mask, unsigned int query_flags)
3690{
3691	struct inode *inode = d_inode(path->dentry);
3692	struct task_struct *p = get_proc_task(inode);
3693	generic_fillattr(inode, stat);
3694
3695	if (p) {
3696		stat->nlink += get_nr_threads(p);
3697		put_task_struct(p);
3698	}
3699
3700	return 0;
3701}
3702
3703static const struct inode_operations proc_task_inode_operations = {
3704	.lookup		= proc_task_lookup,
3705	.getattr	= proc_task_getattr,
3706	.setattr	= proc_setattr,
3707	.permission	= proc_pid_permission,
3708};
3709
3710static const struct file_operations proc_task_operations = {
3711	.read		= generic_read_dir,
3712	.iterate_shared	= proc_task_readdir,
3713	.llseek		= generic_file_llseek,
3714};
3715
3716void __init set_proc_pid_nlink(void)
3717{
3718	nlink_tid = pid_entry_nlink(tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3719	nlink_tgid = pid_entry_nlink(tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3720}